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Abstract

Multiple antenna systems provide spatial multiplexing and diversity benefits.

These systems also offer beamforming and interference mitigation capabilities

in single-user (SU) and multi-user (MU) scenarios, respectively. Although diver-

sity can be achieved without channel state information (CSI) at the transmitter

using space-time codes, the knowledge of instantaneous CSI at the transmit-

ter is essential to the above mentioned gains. In frequency division duplexing

(FDD) systems, limited feedback techniques are employed to obtain CSI at the

transmitter from the receiver using a low-rate link. As a consequence, CSI ac-

quired by the transmitter in such manner have errors due to channel estimation

and codebook quantization at the receiver, resulting in performance degrada-

tion of multi-antenna systems. In this thesis, we examine CSI inaccuracies due

to codebook quantization errors and investigate several other aspects of limited

feedback in SU, MU and multicell wireless communication systems with various

channel models.

For SU multiple-input multiple-output (MIMO) systems, we examine the capac-

ity loss using standard codebooks. In particular, we consider single-stream and

two-stream MIMO transmissions and derive capacity loss expressions in terms

of minimum squared chordal distance for various MIMO receivers. Through

simulations, we investigate the impact of codebook quantization errors on the

capacity performance in uncorrelated Rayleigh, spatially correlated Rayleigh

and standardized MIMO channels. This work motivates the need of effective

codebook design to reduce the codebook quantization errors in correlated chan-

nels.

Subsequently, we explore the improvements in the design of codebooks in tem-

porally and spatially correlated channels for MU multiple-input single-output

(MISO) systems, by employing scaling and rotation techniques. These code-

books quantize instantaneous channel direction information (CDI) and are re-

ferred as differential codebooks in the thesis. We also propose various adaptive

scaling techniques for differential codebooks where packing density of codewords
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in the differential codebook are altered according to the channel condition, in

order to reduce the quantization errors. The proposed differential codebooks

improve the spectral efficiency of the system by minimizing the codebook quan-

tization errors in spatially and temporally correlated channels.

Later, we broaden the scope to massive MISO systems and propose trellis coded

quantization (TCQ) schemes to quantize CDI. Unlike conventional codebook

approach, the TCQ scheme does not require exhaustive search to select an

appropriate codeword, thus reducing computational complexity and memory

requirement at the receiver. The proposed TCQ schemes yield significant per-

formance improvements compared to the existing TCQ based limited feedback

schemes in both temporally and spatially correlated channels.

Finally, we investigate interference coordination for multicell MU MISO systems

using regularized zero-forcing (RZF) precoding. We consider random vector

quantization (RVQ) codebooks and uncorrelated Rayleigh channels. We derive

expected SINR approximations for perfect CDI and RVQ codebook-based CDI.

We also propose an adaptive bit allocation scheme which aims to minimize the

network interference and moreover, improves the spectral efficiency compared

to equal bit allocation and coordinated zero-forcing (ZF) based adaptive bit

allocation schemes.
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ḧ Estimated MISO channel

u Channel direction information

q Quantized channel direction information

g Quantized channel state information

FS-S Codebook for single-stream MIMO or MISO transmission

FM-S Codebook for multi-stream MIMO transmission

Kf Rician K-factor

Rt Transmit correlation matrix

Rr Receive correlation matrix

zt Transmit correlation coefficient

zr Receive correlation coefficient

ǫ Temporal correlation coefficient

fd Maximum Doppler frequency

Ts Channel sample time

φ Azimuth angle-of-arrival

ϕ Azimuth angle-of-departure

fc Carrier frequency

λ0 Wavelength of a carrier frequency



xiii

Fi,V Receive vertical antenna field pattern

Fi,H Receive horizontal antenna field pattern

Fk,V Transmit vertical antenna field pattern

Fk,H Transmit horizontal antenna field pattern

v Velocity of the receiver

̟ Cross polarization power ratio (XPR)

Mr Number of rays in the cluster

Ns Number of scatterers/cluster

Pn Power of the nth cluster

Θxy
n,m Random phase offset of the nth cluster and the mth ray between

the x component of the transmitter element and the y component

of the reciver element.

ρ Signal-to-noise ratio (SNR)

C̄ MIMO Capacity with full CSI at transmitter

CM MIMO Capacity with no CSI at transmitter

C̃M MIMO Capacity with waterfilling

CS SISO Capacity

f MIMO precoding vector for single-stream transmission

F MIMO precoding matrix for multi-stream transmission

Df Distortion function for MIMO/MISO

U Left unitary matrix of the channel



xiv

udom Dominant left unitary eigenvector of the channel

V Right unitary matrix of the channel

vdom Dominant right unitary eigenvector of the channel

CMIMO-SM Capacity of MIMO spatial multiplexing system

Csum Spectral efficiency of the MU system

L Number of transmission streams

K Number of users in the MU MISO system

SINR SINR at the receiver

Wzf ZF Precoding matrix

Wrzf RZF Precoding matrix

ζ RZF regularization parameter

w Precoding vector for a MU MISO system

B Number of feedback bits

Nc Number of entries in the codebook

Q Codebook quantization error

R Capacity Ratio

D Capacity difference

R̃ Capacity ratio with full CSI at transmitter

D̃ Capacity difference with full CSI at transmitter

λi ith eigenvalue of Wishart matrix



xv

ddmin Minimum squared chordal distance

ΩSVD SVD receive filter

ΩZF ZF receive filter

ΩMMSE MMSE receive filter

Nsub Number of subcarriers in OFDM systems

Cr Number of channel realizations

sk Data symbol for the kth user

nk Noise term for the kth user

σ2
k Noise variance for the kth user

Ωnt
One-dimensional complex Stiefel manifold on Cnt

G(nt, 1) Complex Grassmannian manifold of nt dimension

O(c, ς) Spherical-cap with center c and radius ς

α Scaling parameter for the spherical-cap

Θ Rotation matrix

α̃ Adaptive Scaling Technique I for spherical-cap

α̃∗ Adaptive Scaling Technique II for spherical-cap

dmean Mean channel variation in terms of chordal distance

derror Mean quantization error in terms of chordal distance

Fspherical Spherical-cap codebook

Fpolar Polar-cap codebook



xvi

αp Radius of Polar-cap in double-cap differential codebook

αs Radius of Spherical-cap in double-cap differential codebook

χ Estimation error coefficient

dEuclidean Mean Euclidean distance between channel entries over time

κc Scaling parameter for the source constellation

q Ratio between number of transmit antenna and number of users

N Number of states in a trellis

Lc Number of constellation points

C Number of coordinating cells

γc Normalization parameter for RZF precoding matrix in the cth cell

Ec Concatenated quantization error matrix

Tc Concatenated quantized channel matrix

δk,c Expected signal power (without pathloss and shadowing) at the

kth user in the cth cell

γ̄c Expected value of normalization parameter for RZF precoding

matrix in the cth cell

ψc Expected interference power (without pathloss and shadowing) at

the user from the cth cell

ψj Expected interference power (without pathloss and shadowing) at

the user from the jth cell



CONTENTS xvii

Contents

Acknowledgments i

Acronyms v

Notation and Symbols ix

1 Introduction 1

1.1 Multi-Antenna Downlink Systems . . . . . . . . . . . . . . . . . 1

1.1.1 Single User Systems . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Multiuser Systems . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Multicell Systems . . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Massive Multi-antenna Systems . . . . . . . . . . . . . . 3

1.2 Limited Feedback Techniques . . . . . . . . . . . . . . . . . . . 3

1.3 Research Framework . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 List of Publications . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Wireless Channels 11

2.1 Wireless Radio Channel . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Analytical MIMO Channel Models . . . . . . . . . . . . . . . . 14

2.2.1 Rayleigh i.i.d. Channel . . . . . . . . . . . . . . . . . . . 14

2.2.2 Rician Channel . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Spatially Correlated Rayleigh Channel . . . . . . . . . . 15

2.2.4 Temporally Correlated Rayleigh Channel . . . . . . . . . 15

2.3 Standardized MIMO Channel Models . . . . . . . . . . . . . . . 16

2.3.1 3GPP Spatial Channel Model . . . . . . . . . . . . . . . 16

2.3.2 WINNER Channel Models . . . . . . . . . . . . . . . . . 17

2.4 Capacity of MIMO Wireless Channels . . . . . . . . . . . . . . . 21

2.4.1 Perfect CSI at Transmitter . . . . . . . . . . . . . . . . . 21

2.4.2 No CSI at Transmitter . . . . . . . . . . . . . . . . . . . 22

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



CONTENTS xviii

3 Theoretical Background of Limited Feedback Systems 23

3.1 Limited Feedback Multiple Antenna Systems . . . . . . . . . . . 23

3.2 SU Systems with Limited Feedback . . . . . . . . . . . . . . . . 24

3.2.1 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Spatial Multiplexing . . . . . . . . . . . . . . . . . . . . 26

3.3 MU Systems with Limited Feedback . . . . . . . . . . . . . . . . 26

3.3.1 ZF Precoding . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 RZF Precoding . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 MF Precoding . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.4 SLNR Precoding . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Codeword Selection . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 SNR Maximization . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Squared Chordal Distance . . . . . . . . . . . . . . . . . 30

3.4.3 Capacity Maximization . . . . . . . . . . . . . . . . . . . 30

3.4.4 Random Selection . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Codebook Quantization Errors . . . . . . . . . . . . . . . . . . . 31

3.6 Feedback Update Interval . . . . . . . . . . . . . . . . . . . . . 32

3.7 MIMO Channels and Codebooks . . . . . . . . . . . . . . . . . 32

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 MIMO Capacity Analysis 35

4.1 MIMO Capacity Gains . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 MIMO Capacity Loss Analysis with Limited Feedback . . . . . 38

4.2.1 System Description . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Capacity Loss in ZF and MMSE Recivers . . . . . . . . . 41

4.2.3 Capacity Loss in SVD Reciever . . . . . . . . . . . . . . 43

4.2.4 Numerical Results and Discussion . . . . . . . . . . . . . 44

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 MU MISO Systems with Differential Codebooks 51

5.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . 51

5.2 Downlink System Description . . . . . . . . . . . . . . . . . . . 53

5.3 Spherical-Cap Differential Codebook . . . . . . . . . . . . . . . 54

5.4 Feedback Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Tracking Channel with Spherical-Cap . . . . . . . . . . . . . . . 56

5.6 Rotation Operation on Codebooks . . . . . . . . . . . . . . . . . 57

5.7 Scaling Operation on Codebooks . . . . . . . . . . . . . . . . . 57

5.7.1 Adaptive Scaling Technique I . . . . . . . . . . . . . . . 57

5.7.2 Adaptive Scaling Technique II . . . . . . . . . . . . . . . 58

5.8 Double-Cap Differential Codebook . . . . . . . . . . . . . . . . 61

5.8.1 Double-Cap Design . . . . . . . . . . . . . . . . . . . . . 62

5.8.2 Blind Adaptive Scaling . . . . . . . . . . . . . . . . . . . 64



CONTENTS xix

5.9 Numerical Results and Discussion . . . . . . . . . . . . . . . . . 65

5.9.1 Comparison of Differential Codebooks . . . . . . . . . . 65

5.9.2 Differential Codebooks Versus User Velocity . . . . . . . 66

5.9.3 Estimation Errors . . . . . . . . . . . . . . . . . . . . . . 67

5.9.4 Performance of Spherical-Cap Differential Codebooks . . 68

5.9.5 Performance of Double-Cap Differential Codebook . . . . 73

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 MU Massive MISO Systems with TCQ 77

6.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . 77

6.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Expected SINR with MF Precoding . . . . . . . . . . . . . . . . 79

6.3.1 Perfect CDI . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.2 RVQ Codebook CDI . . . . . . . . . . . . . . . . . . . . 81

6.4 Impracticality of RVQ Codebooks For Massive MISO . . . . . . 82

6.5 Limited Feedback with TCQ . . . . . . . . . . . . . . . . . . . . 83

6.6 Differential TCQ Scheme for Temporally Correlated Channels . 87

6.6.1 Transformed Source Constellation . . . . . . . . . . . . . 87

6.6.2 2D Translation and Scaling Techniques . . . . . . . . . . 89

6.7 TCQ Scheme for Spatially Correlated Channels . . . . . . . . . 91

6.8 Numerical Results and Discussion . . . . . . . . . . . . . . . . . 94

6.8.1 Temporally Correlated Channels . . . . . . . . . . . . . . 95

6.8.2 Spatially Correlated Channels . . . . . . . . . . . . . . . 99

6.8.3 WINNER II Channels . . . . . . . . . . . . . . . . . . . 101

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Coordinated Multicell MU MISO Systems 103

7.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . 103

7.2 Downlink System Description . . . . . . . . . . . . . . . . . . . 105

7.3 Coordinated RZF Precoding . . . . . . . . . . . . . . . . . . . . 106

7.3.1 Expected SINR with Perfect CDI . . . . . . . . . . . . . 107

7.3.2 Expected SINR with RVQ CDI . . . . . . . . . . . . . . 111

7.4 Adaptive Bit Allocation . . . . . . . . . . . . . . . . . . . . . . 115

7.5 Regularization Parameter . . . . . . . . . . . . . . . . . . . . . 117

7.6 Numerical Results and Discussion . . . . . . . . . . . . . . . . . 118

7.6.1 Coordination Area . . . . . . . . . . . . . . . . . . . . . 118

7.6.2 SINR and Spectral Efficiency . . . . . . . . . . . . . . . 119

7.6.3 Performance of Adaptive Bit Allocation Scheme . . . . . 122

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



CONTENTS xx

8 Conclusions and Future Work 127

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . 130

8.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendices 135

A Proof of Result 1 137

B Proof of Result 2 141



CHAPTER 1. INTRODUCTION 1

1
Introduction

In this chapter, a brief overview of limited feedback in multiple antenna com-

munication systems is presented, followed by the research motivation and major

thesis contributions. The outline of the thesis is provided in the last section of

this chapter.

1.1 Multi-Antenna Downlink Systems

The use of multiple antennas at the transmitter and the receiver have enabled

wireless communication systems to improve capacity, quality and reliability [1].

Such systems are known as multiple-input multiple-output (MIMO) systems.

The research on MIMO was pioneered by Winters [2], Teletar [3], Alamouti

[4] and Foschini and Gans [5]. In MIMO systems, spatial multiplexing and

spatial diversity techniques are used to improve the capacity and the reliability,

respectively. Spatial multiplexing divides the data into multiple streams and

transmits each stream on a different antenna, hence increasing the capacity of

the system, the increase being referred to as multiplexing gain [6, 7]. On the

other hand, spatial diversity techniques achieve diversity and array gain at the

transmitter (transmit diversity) and at the receiver (receive diversity) in turn

improving the reliability of the system [1, 8–10]. The trade-off between spatial

multiplexing and spatial diversity have been extensively studied in [11–15] (and

references within). In addition to the MIMO antenna configuration, there are

two other types of antenna configurations: single-input multiple-output (SIMO)

and multiple-input single-output (MISO). SIMO has a single transmit antenna

and multiple receive antennas, whereas MISO has multiple transmit antennas

and a single receive antenna.
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1.1.1 Single User Systems

In single user (SU) systems, SIMO channels can achieve receive diversity using

combining techniques at the receiver, but transmit diversity is not applicable to

SIMO channels. Conversely, receive diversity is not applicable to MISO chan-

nels but such channels can achieve transmit diversity with or without channel

knowledge at the transmitter [10]. Transmit beamforming techniques [8,16–19]

with channel state information (CSI) at the transmitter, have been shown to

improve the performance of the system in fading channels, by using complex

weights at the transmit antennas [20]. The transmit beamforming increases the

link signal-to-noise ratio (SNR) and also achieves higher array gains with perfect

CSI. However, these gains are somewhat reduced if imperfect CSI is available

at the transmitter [17, 21, 22].

1.1.2 Multiuser Systems

Multiple antennas can be used at the transmitter to support multiple users

in the same time/frequency resource by assigning one or more antennas per

user. Such systems are called multiuser (MU) communication systems. Modern

cellular communication systems are multiuser systems, where on downlink the

transmitter or base station (BS) uses multiple antennas to serve multiple users.

Due to multiple users, MU systems achieve MU diversity [23–25] that provides

improvement in the performance as the system resources are only allocated to

the users having the best channels and spatial separation.

Precoding is an important component in MU MIMO/MISO systems as it al-

lows spatial multiplexing in the downlink [26, 27]. There are various linear and

non-linear precoding strategies developed to improve the performance of MU

MIMO/MISO systems. Furthermore, CSI at the BS is critical for precoding to

achieve user multiplexing. Like SU systems, MU systems also suffer in the ab-

sence of perfect CSI at the transmitter. With imperfect CSI, precoding schemes

at the BS cannot suppress the interference effectively at the user, caused by

other users, therefore reducing the spectral efficiency of the system [27,28]. In-

terference is considered to be one of the limiting factors that reduces the spectral

efficiency of MU systems. In a single cell MU communication system, we refer

to the interference among the users as inter-user interference (IUI).

1.1.3 Multicell Systems

In addition to IUI, there is another type of interference known as out of cell

interference. In cellular communication systems, increasing power of the BS

increases the level of interference to other cells, especially in the 4G networks

where the frequency reuse factor is one [1]. We refer to out of cell interference
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as inter-cell interference (ICI).

Despite the gains provided by the MIMO technology in the single-cell MU

system, in practice the users close to the cell-edge are more susceptible to ICI,

hence degrading the spectral efficiency of the cell. These systems are also known

as multicell systems. In multicell MIMO [29–31], serving and neighboring base

stations together contribute in enhancing the performance and reducing ICI.

The coordination allows base stations to share the information (such as CSI)

related to coordination via a backhaul link. Like MU systems, the quality of

CSI at the BS also plays an important role in the performance of multicell MU

systems.

1.1.4 Massive Multi-antenna Systems

Massive multi-antenna systems use large numbers of transmit antennas at the

base station [32] and a relatively smaller numbers of antenna at the user, re-

sulting in a higher spectral efficiency, less inter-user interference and reduced

energy consumption [32–34]. The use of large numbers of antennas at the BS

also provides highly directional beamforming [1]; the array gain from beamform-

ing could improve the link budget. Due to these and several other attractive

features, massive MISO is becoming a popular contender for 5G wireless sys-

tems. However, there are a number of factors that limit the performance of

massive MISO systems, e.g. pilot contamination [34,35], reduced MU diversity

due to channel hardening [36] and high spatial correlation at the BS [37]. An

overview of massive MIMO is described in [32] including information theoretic

aspects and linear transceivers along with the main design features and practi-

cal challenges. The attractive features of massive MIMO systems also apply to

massive MISO systems. Like conventional (small-scale) multi-antenna systems,

massive multi-antenna systems provide significant performance gains when CSI

is available at the transmitter. However, in massive multi-antenna systems, the

resources required to obtain CSI at the transmitter increase proportionally to

the number of transmit antennas. Time division duplexing (TDD) communica-

tion is preferred for massive MIMO systems, but for systems with the imperfect

RF chain calibration, limited feedback schemes can be used to equip the trans-

mitter with CSI.

1.2 Limited Feedback Techniques

From the above discussion, it is clear that in order for MIMO wireless com-

munication systems to provide further improvements in the performance, the

transmitter must be able to adapt to changing channel conditions [20]. For this

purpose, the transmitter requires some form of CSI. It is not practically possible
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to have perfect CSI at the transmitter, in fact CSI at the transmitter incorpo-

rates errors such as estimation and quantization, depending on a duplexing

method. In TDD transmission, where forward and reverse links usually experi-

ence the same fading distribution, CSI can be obtained at the transmitter using

channel reciprocity. To accomplish reciprocity in TDD systems, the transmitter

and the receiver must have tight RF chain calibration [38–40]. However, in fre-

quency division duplexing (FDD) communication, the forward and reverse links

are uncorrelated due to different operating frequencies [20]. Therefore, limited

feedback techniques are used in FDD MIMO systems to equip the transmitter

with CSI; such systems are referred to as closed-loop MIMO. As the focus of

this thesis is on limited feedback techniques, we restrict the further discussion

to FDD based limited feedback multiple antenna systems.

In limited feedback MIMO systems, the receiver estimates the channel and

selects an appropriate codebook entry or codeword and feeds back the index

of that codeword to the transmitter. For this purpose, both transmitter and

receiver maintains a common codebook. At the receiver, the mismatch between

the estimated CSI and the selected codeword gives rise to codebook quantiza-

tion error. Due to bandwidth limitations, a low-rate feedback link is commonly

used by the receiver to send the index of the appropriate codeword to the trans-

mitter. The number of bits required to send the index of the selected codeword

to the transmitter is considered as a feedback overhead and it increases with

the number of transmit antennas in MISO systems. Feedback bits are sent to

the transmitter using an existing low-rate link for control signals. This link

is well protected from errors by using error correcting codes and high trans-

mission power. The receiver feeds back CSI frequently so that transmitter can

adapt to the changing channel. The performance of limited feedback MIMO

systems heavily depend on the codebook design and the quality of the CSI at

the transmitter.

Efficient limited feedback schemes aim to minimize the quantization errors

by employing effective codebooks and feedback strategy. Limited feedback tech-

niques have shown to be effective in providing CSI at the transmitter for both

SU and MU systems. The quantized CSI at the transmitter degrades the per-

formance compared to the perfect CSI, but the performance with the quantized

CSI is still better than the case where no CSI is available at the transmitter.

Limited feedback techniques are part of 4G wireless communications stan-

dards such as third generation partnership program (3GPP) long term evolu-

tion (LTE) and IEEE 802.16m standards. In order to meet the requirement

of the International Telecommunication Union (ITU) for International Mobile

Telecommunications advanced (IMT-Advanced) 4G technologies [41], both stan-

dards support closed-loop MIMO communication in SU and MU transmissions.

The codebooks developed for LTE and IEEE 802.16m standards are different,
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targeting different antenna configurations and channel characteristics. Network

coordinated and massive MIMO are an integral part of beyond 4G systems, such

as 5G cellular systems.

1.3 Research Framework

This section discusses the motivation and the main contributions of the thesis.

1.3.1 Motivation

One of the major factors influencing codebook design in limited feedback sys-

tems is the propagation environment. The research on designing a codebook

for Rayleigh independent and identically distributed (i.i.d.) channels [22,42,43]

has dominated for many years. In practice, MIMO communication channels are

spatially/temporally correlated. Codebooks such as the Grassmannian and LTE

(designed for Rayleigh i.i.d. channels) do not perform well in correlated chan-

nels [44]. The drawback of these codebooks are that they are fixed and cannot

adapt to changing channel conditions. In the recent past numerous codebook

designs [44–46] have been developed for correlated channels. Depending on a

level of spatial and temporal correlation, a codebook can be maneuvered and

transformed accordingly after each feedback interval. In this thesis, we refer to

such codebooks as differential codebooks.

Recent work on differential codebooks and their importance in next gener-

ation of wireless systems motivate us to develop codebooks for MISO systems

that exploit spatial and temporal correlation in the channel. By considering the

correlation statistics of the channel in a codebook design, the quality of CSI at

the transmitter can be improved significantly.

In temporally correlated scenarios, the channel entries do not change abruptly

over time. Differential codebooks take advantage of this property and transform

the codewords such that they lie close to the previously selected codeword.

Hence, enabling the differential codebook to track the slow varying channel.

Furthermore, spatial correlation restricts the variation of the channel towards

the direction of the eigenvectors of the transmit correlation matrix. Therefore,

by taking into account the effects of correlation, differential codebooks with

effective adaptive scaling and rotation techniques improve CSI quality at the

transmitter and minimize codebook quantization errors [46].

Recently, massive MISO has been widely investigated [47, 48] with limited

feedback techniques in FDD based systems. The codebook-based methods are

practically infeasible for massive MIMO systems due to the exhaustive search re-

quired for selecting the appropriate codeword. This issue of codebook impracti-

cality motivates us to design an alternate limited feedback scheme in temporally
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correlated channels for massive MISO systems with a lower search complexity.

In coordinated multicell systems, adaptive bit allocation methods [49–52]

have received enormous attention recently. A typical adaptive bit allocation

method divides the total number of feedback bits between the desired and out-of-

cell interfering channels by maximizing/minimizing a specific performance/distortion

metric. Motivated by existing adaptive bit allocation methods using different

precoding schemes, we investigate an adaptive bit allocation scheme for the

coordinated regularized zero-forcing (RZF) precoding.

1.3.2 Contributions

In order to make practical and productive use of MIMO technology, limited

feedback schemes with effective codebook designs are essential to minimize CSI

quantization errors. In this thesis, different aspects of limited feedback schemes

are examined. Throughout the thesis multi-antenna downlink systems are con-

sidered.

We begin by investigating capacity gains of MIMO systems over single-input

single-output (SISO) systems with perfect CSI and no CSI at the transmitter.

With imperfect CSI, we analyze the capacity loss due to codebook quantiza-

tion errors using well-known codebooks for SU systems with three different

MIMO receivers. After considering SU MIMO capacity loss analysis, the focus

of the research shifts towards the design of differential codebooks for MU MISO

systems in temporally/spatially correlated channels. We investigate various dif-

ferential codebook designs, that quantize channel direction information (CDI),

by exploiting temporal/spatial correlation in the channel and transforming the

codebook after each feedback interval. We also consider massive MU MISO sys-

tems with limited feedback to acquire CDI at the transmitter, where we design

an effective limited feedback strategy that reduces the search complexity while

quantizing temporally correlated channels at the receiver. Finally, we study

limited feedback in multicell MU MISO systems for Rayleigh i.i.d. channels

and develop a coordinated regularized zero-forcing (RZF) precoding scheme for

conventional (small-scale) MU MISO systems.

The main contributions of the thesis are listed below:

• MIMO capacity analysis: The contributions of MIMO capacity gain

and MIMO capacity loss analysis for SU systems are:

– Investigation of capacity gains of the MIMO system over the SISO

system using various analytical channel models with perfect CSI and

no CSI at the transmitter.

– Derivation of capacity loss approximations in terms of codebook

quantization errors for SU MIMO systems with multilayer transmis-
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sion and using three different MIMO receivers, namely: zero forcing

(ZF), minimum mean-squared error (MMSE) and singular value de-

composition (SVD).

– Evaluation of the capacity loss using 3GPP LTE and Grassmannian

codebooks and three different MIMO channel models: i.i.d. Rayleigh

channel, spatially correlated Rayleigh channel and industry standard

based WINNER II channel.

• MU MISO systems with differential codebooks: We study two

differential codebook structures for single-cell MU MISO systems operat-

ing under spatially and temporally correlated channels. The two types

of differential codebook designs are based on single-cap (spherical) and

double-cap (spherical and polar) structures, where a cap is a spherical

region on a sphere with a specific radius. The main contributions of the

work are given below:

Spherical cap differential codebook :

– Introduction of an SVD based rotation scheme that effectively rotates

the codewords in the codebook to the desired position without errors.

– In order to successfully track the slow varying channel, two adaptive

scaling techniques are developed: Adaptive Scaling Technique I and

Adaptive Scaling Technique II.

Double cap differential codebook :

– Construction of combined spherical cap and polar cap based differ-

ential codebook.

– Development of the blind adaptive scaling technique that leverage

the information inherent in a two cap structure to enable scaling up

and scaling down of the cap radii

• MU massive MISO systems with differential trellis coded quan-

tization (TCQ): We investigate MU massive MISO systems with limited

feedback in temporally correlated channels. The main contributions are:

– Development of an efficient differential TCQ method that quantizes

temporally correlated channels at the receiver with a lower search

complexity than that of conventional codebook schemes.

– Transformation of the TCQ source constellation by using 2D trans-

lation and scaling techniques.

– Derivation of a scaling factor for the TCQ source constellation as a

function of the number of BS antennas and the temporal correlation.
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– Development of a TCQ based limited feedback scheme for spatially

correlated massive MISO channels using uniform linear array (ULA)

and uniform rectangular array (URA) antenna topologies.

• Coordinated multicell MU MISO systems: We study coordinated

multicell MU MISO systems for i.i.d. Rayleigh channels with limited

feedback. The contributions of this work are summarized as follows:

– Development of a coordinated RZF precoding strategy where the

serving BS of the cell shares out-of-cell interfering channels with the

respective interfering base stations to minimize interference in the

network.

– Derivation of expected signal-to-interference-plus-noise ratio (SINR)

approximations for coordinated RZF scheme with both perfect CDI

and limited feedback based quantized random vector quantization

(RVQ) CDI.

– Development of an adaptive feedback bit allocation strategy that

minimizes the interference in the network.

1.3.3 List of Publications

The content of this thesis has been partially published, accepted or submitted

for publication in the papers listed below.

1. M. Zhang, P. J. Smith, M. Shafi, P. A. Dmochowski, J. Mirza, “MIMO

Capacity Gain Analysis for General Channel Models”, in Proc. IEEE In-

ternational Conference on Communications (ICC), pp. 4846-4851, 2012.

2. J. Mirza, P. A. Dmochowski, P. J. Smith, M. Shafi, “Capacity Loss for

Multilayer Codebook Precoding in MIMO Systems”, in Proc. 23rd IEEE

International Symposium on Personal, Indoor and Mobile Radio Commu-

nications (PIMRC), pp. 1890-1895, 2012.

3. J. Mirza, P. A. Dmochowski, P. J. Smith, M. Shafi, “Limited feedback mul-

tiuser MISO systems with differential codebooks in correlated channels”,

in Proc. IEEE International Conference on Communications (ICC), pp.

5386-5391, 2013.

4. J. Mirza, P. A. Dmochowski, P. J. Smith, M. Shafi, “A differential code-

book with adaptive scaling for limited feedback MU MISO systems”, IEEE

Wireless Communications Letters, pp. 2-5, 2014.
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5. J. Mirza, P. J. Smith, M. Shafi, P. A. Dmochowski, A. Firag, A. Pap-

athanassiou, “Double-Cap Differential Codebook Structure for MU MISO

Systems in Correlated Channels”, IEEE Wireless Communications Letters,

pp. 441-444, 2014.

6. J. Mirza, M. Shafi, P. J. Smith, P. A. Dmochowski, “Limited Feedback

Massive MISO Systems with Trellis Coded Quantization for Correlated

Channels”, accepted in IEEE Transactions on Vehicular Technology, 2015.

7. J. Mirza, P. J. Smith, P. A. Dmochowski, M. Shafi, “Coordinated Reg-

ularized Zero-Forcing Precoding for Multicell MISO Systems with Lim-

ited Feedback”, submitted to IEEE Transactions on Vehicular Technology,

2015.

1.4 Thesis Outline

The rest of the dissertation is organized as follows:

Chapter 2 introduces the theoretical background of MIMO channel models

that are used in this thesis. The MIMO channel models are classified into two

categories: analytical and standardized MIMO channel models.

Chapter 3 provides an overview of basic concepts and background theory in

limited feedback MIMO systems.

Chapter 4 gives the capacity loss analysis of the SU MIMO limited feedback

system using LTE and Grassmannian codebooks. This chapter begins with a

brief description of MIMO capacity gains without limited feedback. Later, in the

capacity loss analysis, single stream and two stream MIMO transmission modes

are considered. The capacity loss expressions are also derived using different

MIMO receivers, followed by numerical results and discussion.

Chapter 5 investigates differential codebook designs for spatially/temporally

correlated MU MISO channels. This chapter is divided into two categories:

single spherical-cap and double-cap differential codebooks. Various adaptive

scaling techniques are discussed for both differential codebook designs. An

SVD based codebook rotation method is discussed. Simulation results are also

presented for single spherical-cap and double-cap differential codebooks.

Chapter 6 focuses on massive MU MISO systems with limited feedback. As

motivation, the impracticality of RVQ codebooks is discussed. Later, a dif-

ferential TCQ method is presented to quantize the channel (at the user) and

reconstruct the channel (at the BS) in temporally correlated channels. The 2D

translation and scaling techniques for differential TCQ are also presented. A

scaling parameter that is a function of the number of transmit antennas and

temporal correlation is derived for the source constellation. A TCQ based lim-
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ited feedback scheme for spatially correlated channels is investigated, followed

by numerical results and discussion.

Chapter 7 studies coordinated multicell MU MISO systems in Rayleigh i.i.d.

fading channels. First, coordinated RZF scheme is described, followed by the

expected SINR analysis for both perfect CDI and RVQ based imperfect CDI.

An adaptive bit allocation strategy is also presented in this chapter. Finally,

simulation results are presented for the coordinated RZF precoding scheme.

Chapter 8 draws conclusions from the contributions of the thesis and suggests

future research directions.
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2
Wireless Channels

An overview of MIMO channels is presented in this chapter. First, some key

concepts of wireless channels are discussed, followed by a detailed explanation

of analytical and standardized MIMO channel models used in this thesis. We

also discuss the capacity of MIMO wireless channels assuming that perfect CSI

is available at the receiver.

2.1 Wireless Radio Channel

It is important to understand the characteristics of wireless communication

channels, as they generally dictate the performance of wireless systems.

In a typical wireless communication system, the variation in the power of

the received signal with respect to distance is generally due to path loss and

shadowing [23]. These variations usually occur at large distances, and are thus

also referred to as large-scale propagation effects. On the other hand, multipath

where a signal reaches the receiver from two or more paths (and adds up con-

structively or destructively) is termed small-scale propagation effects [23]. The

effects of large-scale and small-scale fading are illustrated in Fig. 2.1, where Pt

is the transmit signal power, Pr is the receive signal power and the distance

between the transmitter and receiver is denoted by d.

The well-known free-space path loss model is commonly used when there

is no obstruction in the path of the signal [23]. Also, there are numerous ray-

tracing propagation models developed when the geometry of the region is known

and there are few multipath components [23]. In addition to free space path

loss and ray-tracing models, there are some empirical path loss models that

are developed to estimate the path loss in the typical wireless communication
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Figure 2.1: Effects of path loss, shadowing and multipath on Pr/Pt (dB) ratio
with log distance [23].

environments such as urban macro (UMa), urban micro (UMi), outdoor-to-

indoor (O2I) and a few others. Empirical path loss models are developed by

Okumara, Hata, COST 231, SUI, LTE and many other studies.

In this thesis, we consider a combined path loss and shadowing model for

evaluating the performance of cellular systems. The received signal power with

the combined path loss and shadowing model is written in linear scale as [24]

Pr = P0

(
Rc

d

)a

Φ, (2.1)

where P0 is the received power at the radius Rc without shadowing, and a is a

path loss exponent. The shadowing is modeled as a log-normal random variable,

given by Φ = 10(ησSF/10), where σSF is the shadowing standard deviation in dB

and η is a zero mean Gaussian random variable with unit variance. The distance

d represents the distance of the receiver from the transmitter.

For any SISO link, the channel impulse response (CIR) of the time-varying

fading multipath channel is given by [24]

h(τ, t) =
∑

i

αi(t)δ (τ − τi(t)) , (2.2)

where t and τ denote time and delay, respectively. αi is the overall attenuation

and τi is the propagation delay at time t for the path i, from the transmitter to

the receiver.

Now, we briefly discuss the concept of time-frequency coherence in a wireless

communication channel. The coherence time, Tc, of the channel is inversely

proportional to the Doppler spread, Ds, such that, Tc = 1/4Ds [24]. If the

carrier frequency is denoted by fc, then the Doppler spread is defined as the
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maximum difference between the Doppler shifts of paths i and j, such that

Ds := max
i,j

fc|τi(t)− τj(t)|. (2.3)

When the coherence time, Tc is smaller than the delay requirement of the ap-

plication, Treq, the channel is considered to be a fast fading channel and a slow

fading channel if Tc is larger than Treq [24].

Another key time-frequency coherence parameter of the wireless communica-

tion channel is the coherence bandwidth, Bc, defined as Bc = 1/2Td [24], where

Td is the delay spread given by

Td := max
i,j

|τi(t)− τj(t)|. (2.4)

A channel is considered to be flat fading when Bc is much greater than the

bandwidth of the signal, Bs, i.e., Bc ≫ Bs and frequency selective fading when

Bc ≪ Bs. Table 2.1, shows the types of wireless channels. In wideband channels,

Table 2.1: Types of wireless channels [24].

Type Definition
Fast fading Tc ≪ Treq

Slow fading Tc ≫ Treq

Flat fading Bs ≪ Bc

Frequency selective fading Bs ≫ Bc

multipath components are resolvable as the delay spread of the channel is greater

than the inverse of the bandwidth of the signal, i.e., Td ≫ B−1
s . On the contrary,

in narrowband channels multipath components are non-resolvable as Td ≪ B−1
s .

Therefore, in narrowband channels, we have hnr ,nt
(t, τ) ≈ hnr,nt

(t).

The discussion so far only considered a SISO link. For MIMO channels

with nt transmit and nr receive antennas, the wideband MIMO channel matrix,

H(t, τ) of size nr × nt is written as

H(t, τ) =








h1,1(t, τ) h1,2(t, τ) · · · h1,nt
(t, τ)

h2,1(t, τ) h2,2(t, τ) · · · h2,nt
(t, τ)

...
...

. . .
...

hnr,1(t, τ) hnr,2(t, τ) · · · hnr,nt
(t, τ)







, (2.5)

where hnr ,nt
(t, τ) is a CIR between the nth

t transmit and the nth
r receive antenna.

Most of the channels used in this thesis are narrowband channels. However,

when evaluating capacity loss for MIMO orthogonal frequency-division multi-

plexing (OFDM) channels in Chapter 3, we use wideband channels. In the next

two sections, we discuss analytical and standardized MIMO channel models.
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2.2 Analytical MIMO Channel Models

Analytical channel models, also referred as stochastic channel models give the

statistical representation of the channel. Although, they do not fully match

real-world channels, they are widely used to evaluate the performance of MIMO

systems. In this section, we discuss four kinds of analytical MIMO channel

models, namely, Rayleigh i.i.d., Rician, spatially correlated and temporally cor-

related channel models.

2.2.1 Rayleigh i.i.d. Channel

The Rayleigh i.i.d. Channel is the simplest statistical MIMO channel model

for rich scattering and non-line-of-sight (NLoS) environments [3]. In Rayleigh

i.i.d. MIMO channels, each link is assumed independent and complex random

variable with Rayleigh distributed amplitude and uniformly distributed phase

[1]. This model is practically suitable when the spacing between the antenna

elements is sufficiently large and angular spreads are large (rich scattering) at

the transmitter and the receiver. The entries of i.i.d. Rayleigh MIMO channel

matrix, H, are independent and distributed according to CN (0, 1). Without

considering path loss and shadowing, the i.i.d. Rayleigh MIMO channels follow

E
[
‖H‖2F

]
= ntnr. (2.6)

In this thesis, we extensively use MISO channels where the receiver has only

one antenna. In such cases, Rayleigh i.i.d. MISO channel, h, is a vector of size

1× nt, where E [‖h‖22] = nt.

2.2.2 Rician Channel

Rician channel models are used in the scenarios where there exists a strong line-

of-sight (LoS) path between the transmitter and the receiver. The LoS path is

independent of fading [1], therefore it is not modeled as a zero-mean random

variable [23]. The Rician channel consists of both LoS and NLoS components

and it is modeled as

HRician =

√

Kf

1 +Kf
HLoS +

√

1

1 +Kf
H (2.7)

where HLoS is the matrix containing LoS components. The entry (i, j) of the

HLoS can be expressed as ejθi,j , where θi,j is the uniform phase. H is the Rayleigh

i.i.d. channel and Kf is the so-called K factor. The K factor is defined as the

ratio of the energy in the LoS component to the energy in NLoS components [24].
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When Kf = 0, we have the Rayleigh i.i.d. channel in (2.7) and for Kf = ∞ we

get only the LoS component. The distribution of the magnitude of the channel

entries in (2.7) is Rician.

2.2.3 Spatially Correlated Rayleigh Channel

For spatially correlated Rayleigh MIMO channels, we rely on the separable

Kronecker model [53, 54], where correlation matrices are used to express the

spatially correlated Rayleigh MIMO channel as

Ĥ = R1/2
r HR

1/2
t , (2.8)

where Rr and Rt are the receive and transmit correlation matrices, respectively.

H is the i.i.d. Rayleigh MIMO channel. This model is useful when the spacing

between the antenna elements is small either at the transmitter, the receiver,

or both. The underlaying channel in (2.8) is the i.i.d. Rayleigh channel which

assumes independent and rich scattering at both ends, therefore making it pos-

sible to separate the transmit and receive correlations. In this thesis, the entries

of correlation matrices Rt and Rr follow an exponential model [55], given by

rijt = zd
ij

t (2.9)

and

rijr = zd
ij

r , (2.10)

respectively, where dij is the distance between the antenna i and j. zt and zr
are the transmit and receive correlation coefficients. The magnitude of zt and

zr varies from 0 to 1, where 0 represents no spatial correlation and 1 means

full correlation, i.e., the same fading on both links. In a MISO channel, (2.8)

simplifies to

ĥ = hR
1/2
t . (2.11)

where h is the i.i.d. Rayleigh MISO channel. The exponential correlation

model has shown to be reasonable for the equally-spaced linear antenna arrays,

but it may not be a valid model for some real-world scenarios. However, the

exponential model is a simple model which is helpful in studying the effect of

correlation on the MIMO capacity and also provides some useful insights [55].

2.2.4 Temporally Correlated Rayleigh Channel

Most of the work done in this thesis considers temporally correlated channels.

When the receiver is moving slowly, its channel entries vary slowly over time.

A first-order Gauss-Markov (FOGM) filter, is used to model the temporally
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correlated MIMO channel at time t as [24, 56]

H̃[t] = ǫH̃[t− 1] +
√
1− ǫ2Y[t], (2.12)

where ǫ is a temporal correlation coefficient that follows Jakes’ model (which is

an isotropic scattering leading to Bessel function), such that, ǫ = J0(2πfdTs),

where J0 is a Bessel function of zeroth order, fd is the maximum Doppler fre-

quency and Ts is the channel sample time. Y[t] is an innovation process with its

entries distributed according to CN (0, 1). For fast moving receivers, ǫ is close

to or equal to zero and for slow moving receivers the ǫ value is close to one.

For temporally correlated MISO channels, we have

h̃[t] = ǫh̃[t− 1] +
√
1− ǫ2y[t]. (2.13)

A combined spatially and temporally correlated MISO channel can also be mod-

eled as [1, 46]

h̄[t] = ǫh̄[t− 1] +
√
1− ǫ2y[t]R

1/2
t . (2.14)

In this thesis, we have extensively used analytical MIMO/MISO channel models,

however we also used standardized MIMO channel models in order to evaluate

the performance of the developed methods and schemes under more realistic

propagation environments.

2.3 Standardized MIMO Channel Models

Several standards for MIMO channels are developed by various international

organizations including 3GPP and IMT-Advanced [57]. These standards are

sometimes extended in order to improve spatial channel modeling by support-

ing more MIMO technologies and propagation scenarios. Mostly, the standards

follow geometry-based stochastic channel modeling approaches, where statistics

of the key channel parameters are estimated using real-time channel measure-

ments. In this section, two standards are discussed, namely, 3GPP spatial

channel model (SCM) and Wireless World Initiative New Radio (WINNER)

channel models.

2.3.1 3GPP Spatial Channel Model

3GPP SCM [58] has been designed for outdoor scenarios with system bandwidth

of 5 MHz, operating at around 2 GHz carrier frequency. The outdoor scenarios

supported by the SCM model are UMa (only NLoS), UMi (both LoS and NLoS)

and suburban macro (SMa) (only NLoS). The statistics of channel parameters

are obtained from real-world channel measurements. Polarized antennas are also
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included in 3GPP SCM. Due to lack of scenarios considered and few LoS Rician

K-factor results, 3GPP SCM model has been extended by SCME (extended-

SCM). SCME supports bandwidths up to 100 MHz and carrier frequency of 5

GHz. This model aids both LoS and NLoS environments in UMa, UMi and SMa

scenarios. Both SCM and SCME lack some features such as indoor scenarios,

LoS measurements, elevation angles and time evolution.

2.3.2 WINNER Channel Models

WINNER channel models target beyond 3G wireless systems with higher band-

widths and operating frequencies. This model includes both outdoor and indoor

scenarios. Apart from additional scenarios, it also includes more results on LoS

Rician K-factor. The WINNER project introduced WINNER I channel models

initially and those were later extended by WINNER II channel models. Fi-

nally, WINNER+ channel models have been developed which are evolved from

WINNER I and WINNER II channel models.

WINNER I [59] supports 7 outdoor/indoor scenarios and introduce two types

of models: geometric-based stochastic model and reduced variability (cluster

delay line) model. The geometric-based stochastic model allows the genera-

tion of a double directional propagation channel which is antenna independent

and supports multi-links. In the WINNER I project, measurements are per-

formed at 2 GHz and 5 GHz carrier frequencies with 100 MHz bandwidth. The

channel parameters investigated are power delay profile, path loss, shadowing,

delay spreads, angle spreads and cross-polarization ratio (XPR). The model

also provides correlation between large-scale parameters WINNER II channel

models [60] for link and system level simulations are evolved from WINNER I.

It supports 11 outdoor and indoor scenarios. Apart from new scenarios, this

model also features steady time and space evolution. The model is scalable

from a single-cell SU/MU SISO/MIMO to SU/MU multicell MIMO. Both fixed

and moving relay stations are supported by WINNER II channel models. Some

additional features include modeling of elevation rays and moving scatterers.

WINNER II channels have been the starting point for the IMT-Advanced based

channel model (M.2135) recommended by ITU-R.

WINNER+ channel models [61] are developed to support IMT-Advanced

technologies like 3GPP LTE-Advanced. WINNER+ upgrades 2D channel mod-

els to 3D channel models by specifying elevation angles, and large-scale and

small-scale parameters for the elevation domain. For the elevation domain,

large-scale and small-scale parameters are assumed to have normal and Laplace

distributions, respectively. This model is applicable to wireless systems operat-

ing in 450 MHz to 6 GHz frequency range.

This thesis considers a standardized MIMO channel based on the WINNER
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II channel models [60]. The single link between the transmitter and the receiver

in the WINNER II channel model is shown in Fig. 2.2.

The single link model consists of a finite number of clusters and each cluster

has a fixed number of rays. For example, the number of clusters for UMa

scenario is 20, whereas, for rural macro (RMa) propagation scenario the number

of clusters is 10. For both the scenarios, the number of rays in each cluster is 30.

Each ray has its own angle of departure (AoD) and angle of arrival (AoA). All the

cluster

rays

Tx angular spread 

Tx cluster spread 

Rx angular spread 

Rx cluster spread 

Tx

Rx

Figure 2.2: The single link between the transmitter and the receiver in the
WINNER II channel model.

Table 2.2: WINNER II MIMO channel model parameters

Parameters UMa RMa 02I-UMa

Delay, τ , spread log10 (s)
µ -6.63 -7.60 -6.62

σ 0.32 0.48 0.32

Azimuth AoD, φ, spread log10 (degree)
µ 0.93 0.96 1.76

σ 0.22 0.45 0.16

Azimuth AoA, ϕ, spread log10 (degree)
µ 1.72 1.52 1.25

σ 0.14 0.27 0.42

Cross-polarization ratio (XPR) (dB) µ 7 7 9

σ 3 4 11

Number of clusters 20 10 12

Delay distribution EXP

Azimuth AoA and AoD distribution Wrapped Gaussian
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clusters in the link have different power and delay values associated with them.

The WINNER II channel model incorporates various antenna configurations

such as co-polarized, dual polarized and group polarized. Benefit of using the

WINNER II channel model is that it can be used to generate both narrowband

and wideband communication channels.

The parameters of WINNER II channels for UMa, RMa, and O2I-UMa

scenarios under the NLoS propagation are summarized in Table 2.2.

In this thesis, MATLAB simulation of the WINNER II channel model in [62]

are used to generate the MIMO channel.

Narrowband WINNER II channel

The narrowband WINNER II channel coefficient between the ith receive antenna

and the kth transmit antenna, for the nth cluster is given by

h (i, k, n, t) =
√

Pn

Mr∑

m=1

[

Fi,V (ϕn,m)

Fi,H(ϕn,m)

]T [

ejΘ
V V
n,m

√
̟n,mejΘ

VH
n,m

√
̟n,mejΘ

HV
n,m ejΘ

HH
n,m

]

×
[

Fk,V (φn,m)

Fk,H(φn,m)

]

exp (jdk2πλ
−1
0 sin (φn,m))

× exp (jdi2πλ
−1
0 sin (ϕn,m)) exp (j2πvn,mt), (2.15)

where:

• Mr is the total number of rays in the cluster.

• Pn is the power of the nth cluster.

• Fi,V and Fi,H are receive antenna field patterns for the vertical and hori-

zontal polarizations respectively.

• Fk,V and Fk,H are transmit antenna field patterns for the vertical and

horizontal polarizations respectively.

• ΘV V
n,m, ΘV H

n,m, ΘHV
n,m and ΘHH

n,m are initial random phases uniformly distributed

from −π to π, for the nth cluster and the mth ray.

• λ0 is the wavelength of the carrier frequency.

• φn,m is AoD for the ray coming from the nth cluster and mth ray.

• ϕn,m is AoA for the ray coming from the nth cluster and mth ray.

• dk and di are the transmit antenna and the receive antenna spacing, re-

spectively.
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• vn,m is the velocity component corresponding to the mth ray in the nth

cluster.

• ̟n,m is the cross polarization power ratio (XPR) corresponding to the mth

ray in the nth cluster.

In order to generate a narrowband channel, the channel coefficients from

different clusters are summed together. The resulting narrowband channel co-

efficient for any given time t is

h(i, k, t) =
Ns∑

n=1

h(i, k, n, t). (2.16)

where Ns is the total number of clusters. In (2.15), both spatial correlation

and temporal correlation are present. The spatial correlation is induced by the

transmit antenna spacing, dk, and the receive antenna spacing, di, the smaller

the spacings, the higher the spatial correlation in the channel and vice versa. On

the other hand, the velocity component, vn,m, controls the amount of temporal

correlation in the channel, where higher the velocity, the lower the temporal

correlation in the channel, and vice versa.

Wideband WINNER II channel

Unlike narrowband channels, the wideband channels consider the time dispersive

nature of the communication channel. Therefore, the delay associated with each

ray is required in order to model a wideband channel. The wideband channel

coefficient, between the ith receive antenna and the kth transmit antenna, at any

particular time t with path delay τ is given by

h(i, k, t, τ) =
Ns∑

n=1

h(i, k, n, t, τ), (2.17)

where the wideband channel for the nth cluster is given by

h(i, k, n, t, τ) =
√

Pn

Mr∑

m=1

[

Fi,V (ϕn,m)

Fi,H(ϕn,m)

]T [

ejΘ
V V
n,m

√
̟n,mejΘ

VH
n,m

√
̟n,mejΘ

HV
n,m ejΘ

HH
n,m

]

×
[

Fk,V (φn,m)

Fk,H(φn,m)

]

exp (jdk2πλ
−1
0 sin (φn,m))

× exp (jdi2πλ
−1
0 sin (ϕn,m)) exp (j2πvn,mt)δ(τ − τn,m). (2.18)

In Chapter 4, we generate a wideband MIMO channel for an OFDM system

using (2.17) assuming all the rays within the cluster have same delay. The
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channel frequency response is required in wideband MIMO channels, in order

to solve for the cluster delay values.

In this thesis, two basic antenna configurations, namely: co-polarized and

dual polarized are considered. We consider co-polarized antennas where dipole

antennas are mounted vertically (single polarization). For the dual polarized

antenna case, we consider a pair of dipole antennas which are vertical/horizontal

arrays having +/−45 degree slant orientation.

2.4 Capacity of MIMO Wireless Channels

In this section, we discuss the capacity of SU MIMO channels. We assume that

perfect CSI is available at the receiver and discuss two cases: perfect CSI and

no CSI at the transmitter.

2.4.1 Perfect CSI at Transmitter

The capacity of the MIMO channel when both transmitter and receiver have

perfect CSI is given by [3, 5]

C̄ = max
Q:tr(Q)=ρ

log2 det
(
I+HQHH

)
, (2.19)

where Q is the input covariance matrix. ρ is the average SNR defined as ρ =

Pt/σ
2 where Pt is the total transmit power and σ2 is the noise power. In [24], it

is shown that the MIMO channel can be decomposed into min(nt, nr) parallel

independent SISO channels by taking the SVD of the channel matrix H. For

the MIMO channel, the SVD of H is H = UDVH, where U ∈ Cnr×nr and

V ∈ Cnt×nt are unitary matrices and D is a diagonal matrix containing the m =

min(nr, nt) singular values of H. Waterfilling is used to allocate the transmit

power to these parallel SISO channels. The capacity of the MIMO channel with

waterfilling is written as [3]

C̃M =
m∑

i=1

log2

(

1 +
1

σ2

(
λiµ− σ2

)+
)

, (2.20)

where µ is the waterfill level and λi is the ith eigenvalue of the matrix Υ, given

by

Υ =

{

HHH nr ≤ nt

HHH nt ≤ nr

. (2.21)
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2.4.2 No CSI at Transmitter

When the channel is unknown to the transmitter, but channel statistics are

known at the transmitter then it is shown in [3] that the ergodic capacity is

maximized by having Q = (ρ/nt)I (i.e., equal power allocation to all the trans-

mit antennas). Thus, the capacity of the MIMO channel can be expressed as

CM = log2 det

(

I+
ρ

nt
Υ

)

. (2.22)

On the other hand, the SISO capacity is given as

CS = log2
(
1 + ρ |h|2

)
, (2.23)

where h is the SISO channel coefficient.

2.5 Summary

In this chapter we have presented an overview of analytical and standardized

MIMO channel models. In analytical MIMO channel models four commonly

used channels are discussed: Rayleigh i.i.d., Rician, spatially correlated and

temporally correlated channels. In addition to analytical models, MIMO stan-

dardized channel models are also discussed. In this thesis, both analytical and

standardized channel models are used. We have also discussed the capacity of

MIMO channels assuming perfect CSI is available at the receiver.
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3
Theoretical Background of Limited

Feedback Systems

In this chapter, we provide a general overview of limited feedback systems. We

briefly discuss beamforming and spatial multiplexing for SU systems and linear

precoding for MU systems with limited feedback. We explain basic concepts

of limited feedback systems, such as codeword selection, quantization errors

and feedback interval. We also examine the distribution of the dominant right

singular vector for various channels.

3.1 Limited Feedback Multiple Antenna Systems

Research in MIMO systems has shown that CSI at the transmitter improves the

performance in terms of capacity and reliability. However, providing perfect CSI

to the transmitter is not possible under a low-rate feedback control channel from

the receiver to the transmitter. Researchers have designed various techniques

that try to efficiently utilize this low-rate feedback link, so that the quantized

channel information delivered to the transmitter achieves the desired perfor-

mance with a minimum loss relative to the case where perfect CSI is available.

The codebook based limited feedback approach is considered to be a successful

technique for this purpose [20]. The block diagram of the basic limited feedback

MIMO system is shown in Fig. 3.1.

In limited feedback schemes, the main idea is that the receiver estimates the

channel and quantizes it using a codebook. In this thesis, for SU MIMO systems,

we quantize the dominant right singular vectors of the channel at the receiver,

whereas, in MU systems, we quantize CDI for each user. Generally, the channel
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Transmitter Receiver

Feedback Link

Transmitter 

Codebook

Receiver 

Codebook

Figure 3.1: The block diagram of a limited feedback MIMO system.

quantization is realized by selecting a codeword that maximizes/minimizes a

specific performance/distortion function (SNR, squared chordal distance etc.).

Suppose there are Nc codewords in the codebook, the receiver selects an ap-

propriate codeword and feeds back the index of the selected codeword to the

transmitter via a low-rate feedback link, using B = log2(Nc) bits. Due to band-

width limitations, the number of feedback bits required to feedback the index

of the selected codeword is considered as feedback overhead. The feedback link

is generally assumed to be a lossless with zero delay, for study purposes. There

are many studies [63–66] that investigate codebook quantization with delayed

and lossy feedback links. At the transmitter, the same codebook is already

available and it selects the codebook entry corresponding to the sent index. In

SU scenarios, the transmitter may use this codeword directly as a beamforming

vector, however, in MU transmission further processing may be required at the

BS to eliminate or suppress the interference coming from other users. The main

focus of the research in limited feedback systems is to use the minimum number

of bits and obtain maximum quality of CSI at the transmitter.

3.2 SU Systems with Limited Feedback

In this section, we briefly discuss limited feedback in SU systems. Based on the

transmission strategy, SU multiple antenna systems can be categorized into two

parts: beamforming and spatial multiplexing.

3.2.1 Beamforming

Beamforming achieves array and diversity gains by transmitting the same sym-

bol weighted by a complex number from each transmit antenna. The weights

at all the antennas can be collected into a beamforming vector, denoted by w.
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In the case of MIMO, the signals at multiple receive antennas are combined by

a weighted summation to obtain the resulting symbol.

It is shown in [8] that the received SNR is maximized when weights at the

transmitter and receiver are vdom and uH
dom, respectively, where vdom and udom

are the right and left singular vectors associated with the dominant singular

value of the channel, H. This scheme is also known as dominant eigenmode

transmission.

In the case of the MISO system, matched-filter (MF) beamforming [67] is

used to maximize the receive SNR, where the beamforming vector is given by

w = hH/‖h‖. This technique is also known as conventional beamforming.

The above discussion is for the case when perfect CSI is available at the

transmitter. For limited feedback MIMO/MISO systems, the performance de-

grades when using quantized beamforming vectors from the codebook. The

amount of capacity loss and SNR loss with quantized beamforming is investi-

gated in [42,68,69]. The capacities of the MIMO system and the MISO system

with limited feedback beamforming vector denoted by f and q, are given by

CMIMO-BF = log2

(

1 +
ρ

nt
‖Hf‖2

)

(3.1)

and

CMISO-BF = log2

(

1 +
ρ

nt
|hq|2

)

, (3.2)

respectively.

There are numerous studies [42, 70–72] that examine the performance of

MIMO beamforming with limited feedback techniques. Beamforming techniques

in limited feedback MISO systems are also well investigated in [22, 27, 73].

In order to measure the average loss in the array gain due to the quantized

beamforming vectors, the distortion function for MIMO systems that is generally

used is given by [1]

Df = E
[
λmax − ‖Hf‖2

]
, (3.3)

where λmax is the dominant singular value of the channel H, (array gain with

perfect CSI). The quantized codebook beamforming vector is denoted f . Simi-

larly for the MISO system, the distortion function is given by

Df = E
[
1− |hq|2

]
, (3.4)

where q is the selected beamforming vector from the codebook. The distortion

function for various codebook designs is thoroughly discussed in [1].
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3.2.2 Spatial Multiplexing

A MIMO channel can be decomposed into multiple parallel independent chan-

nels depending on the rank of the channel. MIMO systems provide multiplex-

ing gain by transmitting independent data symbols through these independent

channels. Such systems are also known as MIMO spatial multiplexing systems.

The multiplexing gain increases the data rate of the system [3].

Given that SVD (H) = UDVH, the parallel decomposition of the MIMO

channel is realized by transforming the input data vector and received data

vector by V and UH , respectively. The transformation at the transmitter is

known as transmit precoding and the transformation at the receiver is called

receiver shaping [23].

A limited feedback MIMO system with spatial multiplexing is studied in [74],

where optimal precoding matrix selection criteria is presented for various MIMO

receivers. It is also shown in [74] that the codebook design criteria for all the

receivers are related and equivalent to subspace packing in a Grassmannian

manifold. Denoting the limited feedback MIMO precoding matrix by F, the

capacity of the MIMO spatial multiplexing system is given by

CMIMO-SM = log2 det

(

I+
ρ

nt

FHHHHF

)

. (3.5)

In multimode MIMO systems, unlike single-mode, the number of transmission

streams are not fixed but vary according to the channel state [1,75]. For limited

feedback multimode MIMO systems, the adaptive transmission is studied in [75],

where adaptation is performed by varying the number of streams in order to

minimize the bit error rate for the given data rate.

3.3 MU Systems with Limited Feedback

In this section, we restrict the limited feedback discussion to MISO antenna

configurations only, as in this thesis, we use MU MISO systems. In a MU MISO

system, the BS with nt antennas serves K single antenna receivers (users),

simultaneously in the same time and frequency resource. Each user quantizes

its own channel (CDI) and use the limited feedback link to send the index of

the appropriate codeword to the BS. The BS compute the precoding vectors for

each user using the quantized channel information. The sum-rate of the MU

MISO system is [27]

Csum =
K∑

k=1

log2 (1 + SINRk) , (3.6)
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where the SINR of the kth user is given by

SINRk =
ρ
K
|hkwk|2

1 + ρ
K

∑K
j 6=k |hkwj|2

(3.7)

where hk and wk denote the channel and the precoding vector for the kth user.

It is assumed throughout the thesis that the transmitter has perfect knowl-

edge of the channel quality indicator (CQI) for each receiver, where CQI = ‖hk‖.
The selected codeword from the codebook at the kth user is denoted by qk, which

represents the quantized version of the perfect CDI given by uk = hk/‖hk‖. The

BS constructs the quantized channel for the kth user, gk, using and the CQI and

the quantized CDI, qk, such that gk = ‖hk‖qk
T .

The precoding schemes used in this thesis are ZF, RZF, MF and signal-

to-leakage-plus-noise ratio (SLNR). An overview of these precoding schemes is

given in the following subsections.

3.3.1 ZF Precoding

ZF precoding [25,76] is one of the most commonly used precoding strategies in

MU MISO systems. With perfect CSI, the ZF precoding vectors are formed such

that for the kth user, the product hkwj is zero, for all k 6= j, where hk and wj

are the kth user channel and the precoding vector of the jth user, respectively.

In the case of a limited feedback system, ZF precoding cannot cancel the MU

interference completely but is still able to reduce it significantly [27]. For a

total of K number of users in the system, the quantized K×nt channel matrix,

Hzf, is constructed at the BS, given by Hzf = [gT
1 · · · gT

K ]
T , where g1 is the

quantized channel of the 1st user. A beamforming weight matrix is obtained by

taking the right pseudo-inverse of Hzf given by Wzf = HH
zf (HzfH

H
zf )

−1. The ZF

precoding vector for the kth user, wk, is the normalized kth column of W. In

ZF precoding, there is a constraint that the total number of users cannot be

greater that the number of transmit antennas, i.e., K ≤ nt.

3.3.2 RZF Precoding

RZF precoding is introduced in [77]. It performs better than ZF precoding in

the low SNR regime while matching ZF precoding performance at high SNR.

In RZF precoding, a regularization parameter, ζ , is designed to maximize or

minimize a certain performance metric such as SINR. In [77], ζ is designed for

homogeneous users (users having same mean link gain), that maximizes the

SINR, given by ζ = K/ρ. The RZF precoding matrix is written as

Wrzf = HH
rzf

(
HrzfH

H
rzf + ζI

)−1
(3.8)
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where Hrzf = [gT
1 · · · gT

K ]
T . The RZF precoding vector for the kth user, wk, is

the normalized kth column of W. By selecting ζ = 0, RZF precoding becomes

equivalent to ZF precoding.

3.3.3 MF Precoding

MF precoding is the simplest form of precoding used in MU MISO systems. The

precoding vector is a conjugate of the CDI, such that for the kth user, wk = uH
k

(for perfect CDI) and wk = qH
k (for codebook CDI). The MF precoding maxi-

mizes the received SNR at each user [1], but it totally ignores the interference,

especially when the interfering channels lie close to the desired channel in a

vector space.

3.3.4 SLNR Precoding

The main idea of SLNR precoding is to minimize the total power leaked from

a user to all other users, while maintaining a strong SNR. The SLNR pre-

coding solution is provided in [78] for the perfect CSI case. In limited feed-

back systems, the leakage from the user k is approximated by
∑K

i=1,k 6=i |giwk|2.
The SLNR precoding vector, wk, for the kth user is the normalized maxi-

mum eigenvector of (K/ρkI + HH
slnr,kHslnr,k)

−1gH
k gk, where Hslnr,k is a quan-

tized channel matrix of size (K − 1) × nt for the kth user constructed from

the codebook entries fed back by the other users to the transmitter, such that,

Hslnr,k = [gT
1 · · ·gT

k−1 ḡT
k+1 · · ·gT

K ]
T . The SNR of the kth user is denoted by ρk.

Figure 3.2 shows SLNR precoding for the limited feedback MU MISO system

with leakage from the user 1.

Transmitter

user 1

user 2

user K

Figure 3.2: The block diagram of SLNR precoding for the limited feedback MU
MISO system.

In the following sections, we briefly explain some important concepts in

limited feedback theory: codeword selection, quantization errors and feedback

interval.
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3.4 Codeword Selection

The codeword selection is an important step in a codebook-based limited feed-

back system, where the receiver selects an appropriate codeword from the code-

book that minimizes/maximizes a given distortion/performance metric.

In SU single-stream MIMO transmission, the dominant right singular vector,

vdom, is selected as the optimal beamforming choice to maximize SNR [1] and to

achieve array and diversity gains. On the other hand, in SU multi-stream MIMO

transmission, multiple dominant right singular vectors, Vdom, are selected as the

precoding matrix to achieve multiplexing gains.

Denoting L as the number of transmission streams, consider a codebook

having Nc = 2B codewords representing the quantized dominant L columns

of V. The codebook at the transmitter and the receiver is given by, FM-S =

[F(1),F(2), . . . ,F(2B)], for multi-stream transmission. Thus, for L ≤ m transmit-

ted data streams, the size of each codeword in the codebook is nt × L.

In single-stream MIMO transmission, the codebook is denoted by FS-S =

[f (1), f (2), . . . , f (2
B)], where each codeword is a column vector of size nt × 1.

In the MISO channel, channel direction information (CDI) given by u =

h/‖h‖ is quantized at the receiver using the single-stream codebook, FS-S.

There are many distortion/performance based metrics developed in the lit-

erature to select an appropriate codeword from the codebook. Some of them

are briefly discussed in the following subsections.

3.4.1 SNR Maximization

In this method, for MIMO multi-stream transmission, the receiver selects a

codeword that maximizes the SNR, such that [1]

F = arg max
F(i)∈FM-S

1≤i≤2B

‖HF(i)‖2F . (3.9)

Similarly, for the single-stream MIMO, we can express SNR maximization se-

lection criteria as

f = arg max
f (i)∈FS-S

1≤i≤2B

‖Hf (i)‖2. (3.10)

For a MISO system, the codeword selection that maximizes the SNR is given

by

q = arg max
f (i)∈FS-S

1≤i≤2B

|hf (i)|2. (3.11)

The SNR maximization codeword selection method is one of the most common

type of selection criteria in MIMO/MISO limited feedback systems.



3.4. CODEWORD SELECTION 30

3.4.2 Squared Chordal Distance

Chordal distance [79] is a measure of distance between two matrices or vectors.

Like SNR maximization method, the squared chordal distance based codeword

selection criteria is also commonly used. For the MIMO system with multi-

stream transmission, the codeword selection according to the minimum squared

chordal distance is given by

F = arg min
F(i)∈FM-S

1≤i≤2B

L−
L∑

j=1

|vH
j f

(i)
j |2, (3.12)

where vj and f
(i)
j are the jth columns of the right singular matrix Vdom and the

ith codebook entry, F(i), respectively. For the single-stream MIMO system, the

minimum squared chordal distance based codeword selection criteria is given by

f = arg min
f (i)∈FS-S

1≤i≤2B

1− |vH
domf

(i)|2. (3.13)

For the MISO channel, the selected codeword, determined by the minimum

squared chordal distance, is written as

q = arg min
f (i)∈FS-S

1≤i≤2B

1− |uf (i)|2. (3.14)

3.4.3 Capacity Maximization

The capacity maximization [74] based selection method selects a codeword that

maximizes the capacity of the SU MIMO system. The selection criteria is given

by

F = arg max
F(i)∈FM-S

1≤i≤2B

log2 det

(

I+
ρ

nt
F(i)HHHHF(i)

)

, (3.15)

where ρ is the SNR of the channel. In the case of MIMO single-stream transmis-

sion, the capacity or mutual information maximization based codeword selection

is performed by [70]

f = arg max
f (i)∈FS-S

1≤i≤2B

log2

(

1 +
ρ

nt
‖Hf (i)‖2

)

. (3.16)

Similarly for a MISO system, capacity maximization selection is given by [73]

q = arg max
f (i)∈FS-S

1≤i≤2B

log2

(

1 +
ρ

nt

|hf (i)|2
)

. (3.17)
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3.4.4 Random Selection

In a random codeword selection [68], the codeword is selected randomly from

the codebook without maximizing/minimizing any performance/distortion met-

ric. Although, this selection scheme may not select a worst codeword from the

codebook, but it is often used for comparison purposes [68].

In Chapter 4, we use squared chordal distance as the selection criteria for SU

MIMO systems. However, for MU MISO systems, we use SNR maximization

based codeword selection criteria.

3.5 Codebook Quantization Errors

In a limited feedback MISO system, the mismatch between the selected code-

word, q, and the perfect CDI, u, results in codebook quantization errors (we

remove the user subscript k for simplicity). Quantization errors degrade the

performance of MIMO/MISO systems. In MISO systems, quantization error is

expressed as

Q = sin2
(
∠
(
uH ,q

))

= 1− |uq|2.
(3.18)

For RVQ codebooks, the mean quantization error in i.i.d. Rayleigh channels

has been shown to be upper bounded by [22]

E [Q] = 2Bβ(2B,
nt

nt − 1
)

≤ 2
− B

nt−1 , (3.19)

where B is the number of feedback bits and β(·, ·) represents the beta function.

It can be noticed that the larger the number of feedback bits, the smaller the

mean quantization error becomes. However, it is not practically acceptable to

increase B, and it is desirable to have minimum quantization errors with a small

number of feedback bits. The mean quantization errors for the codebooks such

as DFT and channel distribution information at the transmitter (CDIT) are

discussed in [1] for spatially correlated MISO channels.

For a MIMO system, the total quantization error can be written as the sum
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of quantization errors of each stream;

Q =

L∑

j=1

sin2 (∠ (vj , fj))

=
L∑

j=1

1− |vH
j fj |2, (3.20)

where vj and fj are the jth columns of the right singular matrix Vdom and the

selected codebook entry, F, respectively.

3.6 Feedback Update Interval

In limited feedback systems, sufficiently frequent CSI feedback is required from

the receiver to the transmitter for beamforming or precoding purposes. Specif-

ically, it is necessary to feedback the CSI within a time which is less than the

coherence time, Tc, of the channel, so that the channel between the transmit-

ter and the receiver is not changed significantly. For reasonable performance,

it is important to feedback the CSI to the transmitter well before the channel

coherence time, such that, Tfb ≪ Tc, where Tfb is the feedback update interval.

Although, the coherence time of the channel can be measured but there is no

standard calculation of the feedback interval for fast fading channels. For slow

fading channels with temporal correlation, there are a few studies [68, 80–82]

that deal with the feedback update period.

To evaluate the performance of limited feedback systems in temporally cor-

related channels, wireless standards contributions and most of the previous

work [46,48,83] use 5 milliseconds (ms) as the feedback update interval. There-

fore, in this thesis we also set the feedback update interval to be 5 ms in slow

fading channels.

3.7 MIMO Channels and Codebooks

Early limited feedback studies considered Rayleigh i.i.d. channels and later

the focus of the research shifted towards more practical spatially and tempo-

rally correlated channels. It is important to design a codebook that takes into

account the effects of the propagation environment, as different propagation

environments may need different codebooks. In Chapter 2, we discussed analyt-

ical MIMO channels: Rayleigh i.i.d., Rician, spatially correlated and temporally

correlated MIMO channels.

The distribution of the right singular vectors (corresponding to the dominant

singular value of the channel) on a unit sphere for 2 × 2 MIMO channels, is
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Rayleigh i.i.d. channels
Spatially corr. channels

Figure 3.3: The distribution of right singular vectors on the unit sphere for the
Rayleigh i.i.d. and spatially correlated 2× 2 MIMO channels.

illustrated in Fig. 3.3 for the Rayleigh i.i.d. and spatially correlated channels.

In Fig. 3.3, it is seen that the right singular vectors of the channel are uniformly

distributed across the entire unit sphere in the case of Rayleigh i.i.d. channel,

however, they form clusters for spatially correlated channels with zt = zr = 0.95

in (2.9) and (2.10). The figure helps to understand what sort of codebooks are

required to deal with such channels. For example, in Rayleigh i.i.d. channels

(blue circles) in Fig. 3.3, it is evident that in order to effectively quantize

the channel, a codebook structure should have codewords that are uniformly

distributed on the sphere. For spatially correlated channels (red circles), in

Fig. 3.3, the effective codebook should have a cap like structure with clustered

Temporally corr. channels

Figure 3.4: The distribution of right singular vectors on the unit sphere for the
temporally correlated Rayleigh 2× 2 MIMO channel with 100 time samples.
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WINNER II channels

Figure 3.5: The distribution of right singular vectors on the unit sphere for the
WINNER II 2× 2 MIMO channel with 100 time samples.

codewords.

The right singular vectors for the temporally correlated channel are plotted

in Fig. 3.4 for 100 consecutive time intervals with ǫ = 0.9987 for carrier fre-

quency 2.5 GHz and velocity, v = 1 km/h, in (2.12). The vectors generally lie

very close to previous right singular vectors and follow a trajectory on the unit

sphere as seen in Fig. 3.4. In Fig. 3.4, the channel lies close to the previous

channel in time, therefore in order to successfully track the slowly varying chan-

nel, a codebook should be able to transform itself after each feedback interval.

Similarly, it is noted in Fig. 3.5 for the WINNER II channel, with velocity v = 1

km/h and 0.5λ0 antenna spacing, that the right singular vectors lie close to each

other and similar to Fig. 3.4, the entries also follow a trajectory. The main goal

of an effective codebook design is to reduce quantization errors by taking into

account factors such as propagation environment, antenna polarizations and

channel correlation statistics.

3.8 Summary

In this chapter, we briefly discussed important concepts of limited feedback

MIMO/MISO systems. For SU systems, we discussed beamforming and spatial

multiplexing. We have provided an overview of various precoding schemes for

limited feedback MU MISO systems as used in this thesis.
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4
MIMO Capacity Analysis

In this chapter, the capacity gains of the MIMO system over the SISO system

with full and no CSI at the transmitter are discussed. We then consider a limited

feedback SU MIMO system and derive capacity loss expressions for various linear

receivers; the capacity loss is defined as the difference between the capacity with

perfect CSI feedback and the capacity with codebook feedback. The capacity

loss analysis considers both analytical and standardized MIMO channel models

discussed in the previous chapter. The capacity loss study is focused on single-

stream and two-stream MIMO transmission modes. The results in this chapter

serves as a motivation for various codebook designs in the following chapters.

4.1 MIMO Capacity Gains

In [84], we investigate the MIMO capacity gains1 relative to the SISO capacity

using two metrics: the ratio between the expected value of the two capacities

and the difference between the two capacities. We derive limiting values of the

two capacity metrics for low and high SNR regimes and show via simulation

their behavior at other values of SNR. We also examine a range of correlation

conditions using the spatially correlated Kronecker channel model described in

Chapter 2 Section 2.2.3. In [84], we do not consider a limited feedback system

and assume either perfect CSI or no CSI is available at the transmitter.

The difference, D, between the expected MIMO capacity and the expected

1The analysis of MIMO capacity gain has been adopted from [84], this analysis serves as
a motivation to investigate MIMO channels.
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SISO capacity is defined as

D = E [CM]−mE [CS] , (4.1)

where CM and CS are the capacities of MIMO and SISO systems given in (2.22)

and (2.23), respectively. m is given by m = min(nt, nr). Similarly, the ratio of

the MIMO capacity to the SISO capacity, denoted by R is defined as

R =
E [CM]

E [CS]
(4.2)

The results derived in [84] are summarized in Table 4.1, for limiting values

of SNR, ρ = Pt/σ
2, under the i.i.d. Rayleigh channel and the fully correlated

Kronecker channel (2.8), such that zt = zr = 1. Here D̃ and R̃ represent

the capacity difference and capacity ratio when full CSI is available at the

transmitter, given by

D̃ = E
[

C̃M

]

−mE [CS] (4.3)

and

R̃ =
E
[

C̃M

]

E [CS]
, (4.4)

respectively, where C̃M is given by (2.20). In Table 4.1, D∞ is a constant that

could be positive or negative depending on the channel statistics and is shown

in [84] to be, D∞ , E [log2 ((nt|h|2)−m det (Υ))], where Υ is given in (2.21).

Table 4.1: Capacity gain results: ratio, R, and difference, D [84].

i.i.d. Rayleigh Channel Fully Correlated Channel

ρ→ 0 ρ→ ∞ ρ→ 0 ρ→ ∞

No CSI
R nr m nr 1

D 0 D∞ 0 −∞

Full CSI
R̃ E(λ1) m ntnr 1

D̃ 0 D∞ +m log2
nt

m
0 log2 ntnr (m = 1), −∞ (m > 1)

Figures 4.1 and 4.2 show the capacity difference, D, and ratio, R, for i.i.d.

Rayleigh and spatially correlated channels when each eigenchannel is given equal

power. The antenna configurations are denoted as nt × nr in the figures. The

results with i.i.d Rayleigh channels agree with the limits given in Table 4.1.

Troughs in R for 2 × 2 and 4 × 4 systems are visible in Fig. 4.2 indicating an

intermediate drop in the value of R before returning to the limit. A peak in R

is observed for a 4 × 2 system, in the −5 to 20 dB SNR range. The capacity

scaling of m in MIMO relative to SISO is not achieved for nt = nr systems and

it is seen that correlation also reduces the gain. As shown in Fig. 4.2, there are
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Figure 4.1: D with equal power and spatial correlation at both transmitter and
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Figure 4.2: R with equal power and spatial correlation at both transmitter and
receiver.

two kinds of gain; the power gain regime at low SNR and the spatial degrees of

freedom (DOF) gain at high SNR.

Figures 4.3 and 4.4 show the capacity difference and ratio, respectively, with

waterfilling power allocation for i.i.d. Rayleigh and spatially correlated channels.

We note that the difference, D̃, in Fig. 4.3 with waterfilling is higher for nt 6= nr

systems compared to nt = nr systems, at high SNR values. On the other hand,

the ratio, R̃, in Fig. 4.4 with waterfilling yields higher gains at low SNR values

compared to the R (in Fig. 4.2), but eventually drops down to R, for high SNR

values.
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Figure 4.3: D̃ with waterfilling and spatial correlation at both transmitter and
receiver.

SNR ρ (dB)
-60 -40 -20 0 20 40

C
ap

ac
it
y
R
at
io
,R̃

=
C̃

M
/C

S

2

3

4

5

6

7

8

9

10

11

12
i.i.d.
z

t
 = z

r
 = 0.3

z
t
 = z

r
 = 0.5

4x4

2x4 , 4x2

2x2

Figure 4.4: R̃ with waterfilling and spatial correlation at both transmitter and
receiver.

4.2 MIMO Capacity Loss Analysis with Limited

Feedback

In this section, we present capacity loss analysis with limited feedback systems

and various MIMO receivers. There are many studies that deal with estimating

and limiting the capacity loss. In [85], a codebook design for a multimode

MIMO system is proposed that bounds the capacity loss. The effects of limited

feedback on the performance of MIMO systems over an i.i.d. Rayleigh flat fading

channel are studied in [86] and tight lower bounds are derived for the capacity

loss due to limited feedback for the MIMO systems employing a fixed number

of equal power spatial streams (layers). A similar study is also done in [87].
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A bound on the ergodic capacity loss for a limited feedback MIMO system is

given in [88] when random codebooks, generated from the uniform distribution

on the complex unit sphere are used. The authors in [88] provide a closed-form

expression for the ergodic capacity loss as a function of the number of feedback

bits.

With limited numbers of codebook entries, it is rarely possible to find a

codebook entry that has a zero or negligible distance from the corresponding

channel values. A non zero distance (or quantization error) manifests itself as

a capacity loss arising mainly due to interstream interference.

While there are a number of studies that determine or bound the capacity

loss, or determine the number of feedback bits required to minimize the capacity

loss, the bulk of these papers consider an i.i.d. flat fading Rayleigh channel

[27,85–88]. Yet in practical deployments there is always some amount of spatial

and temporal correlation present. We examine the capacity loss for codebooks

that are already standardized and used in practical settings.

Some useful capacity loss expressions are derived for MIMO systems in [68],

that explain the impact of capacity loss on codebook design, selection criteria

and receiver design. Motivated by [68], we evaluate and quantify the amount

of capacity loss in [69] with LTE and Grassmannian codebooks with single-

stream/Layer 1 (L1) and two-stream/Layer 2 (L2) transmission modes in three

different channel models. We derive capacity loss approximations for ZF, mini-

mum mean-squared error (MMSE) and SVD receivers in terms of the minimum

squared chordal distance [69]. We find that the capacity loss approximations for

single-stream transmission are accurate for all receivers and lead to an extremely

simple relationship between capacity loss and codebook quantization errors. We

evaluate the distribution of the quantization errors for LTE and Grassmannian

codebooks via simulations.

4.2.1 System Description

We consider a SU limited feedback MIMO-OFDM system with nt transmit and

nr receive antennas, where, for a single subcarrier, the frequency flat fading

channel is denoted by H.

In the case of multi-stream transmission, the transmitter encodes the data

sequence, s, by a precoding matrix, F, selected from a codebook of quan-

tized values of the first L columns of right singular matrix V, denoted by

FM-S = [F(1),F(2), . . . ,F(2B)], where L is the total number of transmission

streams. Thus, for L ≤ m transmitted data streams, the codebook consists

of 2B codewords each of size nt × L. For the single-stream transmission, the

precoding vector, f , is selected from the codebook, FS-S = [f (1), f (2), . . . , f (2
B)].

The codeword selection for multi-stream and single-stream is performed ac-
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cording to the minimum squared chordal distance given in (3.12) and (3.13),

respectively. Denoting by vk and fk, the kth column of V and F, respectively,

the minimum squared chordal distance, dmink
, is given by

dmink
= 1− |vH

k fk|2. (4.5)

The index of the selected codeword is fed back to the transmitter and the

resulting received signal for multi-stream and single-stream is given by

y =
√
ρHFs + n, (4.6)

and

y =
√
ρHfs+ n, (4.7)

respectively, where n is a vector of i.i.d. complex Gaussian CN (0, σ2) random

variables. We have E[ssH ] = (1/L)I and tr(FFH) = I. We assume a zero mean

i.i.d. structure for the symbols. The noise power for each stream is E[|nk|2] = σ2,

so the link SNR is ρ = Pt/σ
2, where Pt is the total transmit power. The received

vector y is decoded by means of a linear combiner Ω to produce ỹ = ΩHy. We

consider three types of receivers, namely SVD receiver, ZF receiver and MMSE

receiver. The linear combiner expressions for the SVD, ZF and MMSE receivers

in multi-stream MIMO transmission are given by

ΩSVD = U (4.8)

ΩZF = HF(FHHHHF)−1 (4.9)

and

ΩMMSE = HF

(

L

ρ
I+ FHHHHF

)−1

, (4.10)

respectively, where U represents the left unitary matrix of the channel. Similarly

for the single-stream MIMO transmission, the SVD, ZF and MMSE receivers

are given by

wSVD = udom (4.11)

wZF = Hf(fHHHHf)−1 (4.12)

and

wMMSE = Hf

(

1

ρ
I+ fHHHHf

)−1

, (4.13)

respectively, where udom denotes the left unitary vector corresponding to dom-

inant singular value of H.
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4.2.2 Capacity Loss in ZF and MMSE Recivers

We now derive the SINR and capacity loss results as a function of the quan-

tization error (in terms minimum squared chordal distance), dmink , for the ZF

and MMSE receivers discussed in the previous section. We will focus on the

most common scenarios, namely one and two-stream transmission, referred to

as Layer 1 (L1) and Layer 2 (L2). The SINR of the kth stream in the ZF receiver

is given by [10] [89] [68]

SINRk =
ρ

L[(FHHHHF)−1]k,k
, (4.14)

which can be written as

SINRk =
ρ

L[(FHVΛVHF)−1]k,k
, (4.15)

where Λ is a diagonal matrix containing the eigenvalues of the matrix HHH.

Two Stream Transmission (L2)

In this subsection, we derive the capacity loss expression at high SNR for the

ZF and MMSE receivers with L2 transmission. We can write the SINR of the

kth stream for the ZF receiver in (4.15) as

SINRk =
ρ

L

1








∑m
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k,k

, (4.16)

where λi denotes the ith eigenvalue of HHH. Taking the inverse in (4.16), we

can, after some manipulation, express the SINR of the ZF receiver with L2

transmission as

SINRk =
ρ

L

m∑

i=1

λi|αk,i|2 −
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where we have defined αk,i = fHk vi. We can approximate (4.17) by disregarding

the second term as it is relatively a smaller value, giving

SINRk ≈
ρ

L

m∑

i=1

λi|αk,i|2. (4.18)

In the high SNR regime, the performance of the ZF and MMSE receivers are

similar [10], therefore, (4.17) and (4.18) are also valid for the MMSE receiver

with L2 transmission. Isolating the kth stream in the summation in (4.18) and

using (4.5) we can express (4.18) in terms of dmink
as

SINRk (ZF/MMSE)
≈ ρ

L

[

λk (1− dmink
) +

m∑

i=1,i 6=k

λi|αk,i|2
]

. (4.19)

The capacity for the linear receivers is given in terms of their respective stream

SINR values as

CMIMO-SM =

L∑

k=1

log2(1 + SINRk). (4.20)

We define capacity loss (CL) for all receivers as the difference between the

capacity with perfect feedback and the capacity with codebook feedback. Hence,

CL =
L∑

k=1

[

log2(1 + ρλk/L)− log2(1 + SINRk)
]

. (4.21)

The total capacity loss for the ZF and MMSE receivers at high SNR with L2

transmission can be approximated using (4.17) as

CL (ZF/MMSE) ≈

2∑

k=1

− log2
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1
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(4.22)

A simplified expression can be obtained by substituting (4.19) in (4.21), giving

CL (ZF/MMSE) ≈
2∑

k=1

− log2



1− dmink
+

1

λk

m∑

i=1,i 6=k

λi|αk,i|2


. (4.23)
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The approximate of the capacity loss derived here is plotted against the actual

capacity loss in Section 4.2.4.

Single Stream Transmission (L1)

In the case of L1 transmission, the second term in (4.17) is zero and the SINR

of the 1st stream is the same as (4.18)

SINR1 ≈
ρ

L





m∑

i=1

λi|α1,i|2


, (4.24)

which can be expressed in terms of quantization error as

SINR1 (ZF/MMSE)
≈ ρ(1− dmin1)λ1, (4.25)

where we neglected the second term in (4.19) because it is comparatively a

smaller value. The capacity loss for ZF and MMSE receivers with L1 transmis-

sion is obtained by substituting (4.25) in (4.21), which, for high SNR, gives

CL (ZF/MMSE) ≈ − log2(1− dmin1
). (4.26)

4.2.3 Capacity Loss in SVD Reciever

The SVD receiver in a MIMO channel is more susceptible to inter stream in-

terference as compared to the ZF and MMSE receivers [68]. Here, we present

the capacity loss of MIMO systems with SVD receiver in both multi-stream and

single-stream transmissions.

Two Stream Transmission (L2)

For L2 transmission, we can express a received symbol on the kth stream in (4.6)

as

ỹk =
√

ρλkV
H(k)Fs + ñk, (4.27)

where F = [F(1) F(2)], s = [s1 s2]
T and ñk is the kth element of ñ = UHn.

From (4.27), we have that the desired signal and inter stream interference for

the 1st stream are
√
ρλ1V

H(1)F(1)s1 and
√
ρλ1V

H(1)F(2)s2 respectively, and

similarly the SINR of the SVD receiver for the kth stream is

SINRk (SVD)
=




ρλkE(|sk|2)|V(k)HF(k)|2

ρλkE(|sq|2)|F(q)HV(k)|2 + σ2





q=1,2
q 6=k

. (4.28)
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We can further simplify (4.28) by using E(|sk|2) = E(|sq|2) = 1/L and σ2 = 1.

Now (4.28) can be expressed in terms of quantization errors using (4.5) as

SINRk (SVD)
=




1− dmink

|αq,k|2 + L/ρλk





q=1,2
q 6=k

. (4.29)

Note that SINRk (SVD)
→ (1− dmink

) /|αq,k|2 as ρ → ∞, so there is an upper

limit on the SINR due to interference. This results in a capacity loss which

grows with SNR as seen in (4.30). The total capacity loss approximated at high

SNR for an SVD receiver with L2 transmission is obtained by using (4.29) in

(4.21) to give

CL (SVD) ≈
2∑

k=1

log2

[
ρ|αq,k|2λk/L

|αq,k|2 + 1− dmink

]

q=1,2
q 6=k

. (4.30)

Single Stream Transmission (L1)

In the case of L1 transmission, there is no inter stream interference and |αq,k|2 =
0 for q 6= k in (4.29), giving

SINR1 (SVD)
≈ ρ(1− dmin1)λ1. (4.31)

The capacity loss for the SVD receiver in L1 MIMO transmission mode is ap-

proximated as

CL (SVD) ≈ − log2(1− dmin1). (4.32)

Note that the capacity loss expression for the SVD receiver is identical to that

of the ZF and MMSE receivers (4.26) for L1 transmission.

4.2.4 Numerical Results and Discussion

In this section, we provide capacity loss simulation results for SVD, ZF and

MMSE MIMO receivers in Rayleigh i.i.d., spatially correlated Kronecker and

wideband WINNER II channels. The MIMO system simulated has four anten-

nas each at transmitter and receiver, where the transmitter uses either L1 or

L2 transmission modes. The Kronecker channel is highly correlated with the

exponential correlation coefficient zt = zr = 0.9 at both ends.

The total number of OFDM subcarriers are Nsub = 2048. For each subcar-

rier, we select a separate codebook entry from the codebook. The codebooks

used in the simulation are 4 bit LTE and Grassmannian codebooks. The feed-

back link is assumed lossless with zero delay. We calculate the ergodic capacity

(EC) of the MIMO system by taking the mean of the capacity in (4.20) for all
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the OFDM tones and then averaging it over all the channel realizations, Cr,

such that

EC =
1

NsubCr

Cr∑

i=1

Nsub∑

j=1

L∑

k=1

log2(1 + SINRk,j,i), (4.33)

where SINRk,j,i denotes the SINR of the kth stream corresponding to the jth

subcarrier and the ith channel realization. Similarly, the ergodic capacity loss

(ECL) is given by

ECL =
1

NsubCr

Cr∑

i=1

Nsub∑

j=1

L∑

k=1

[log2(1 + ρλk,j,i/L)− log2(1 + SINRk,j,i)] , (4.34)

where λk,j,i is the kth eigenvalue of HH
j,iHj,i, where Hj,i is the MIMO channel for

the jth subcarrier and the ith channel realization. The total power gain satisfies

E[tr(HH
j,iHj,i)] = nrnt.

The parameters for the WINNER II channel model are given in Table 4.2.

In Fig. 4.5, we plot the cumulative distribution function (CDF) of the quan-

tization error for both L1 and L2 transmissions with LTE and Grassmannian

codebooks in the WINNER II channel. The quantization error is slightly smaller

in L1 transmission with the LTE codebook compared to the Grassmannian code-

book. However, for L2 transmission, the Grassmannian codebook yields a much

smaller quantization error than the LTE codebook. The average quantization

error, dmink
, given in (4.5), for L1 and L2 transmission with all three channels

and both the codebooks is given in Table 4.3.

In Fig. 4.6, EC results for all three receivers with the LTE codebook are

presented for different channels. The correlated channels improves the EC in

Table 4.2: WINNER II Simulation Parameters

Scenario UMa
Frequency Band 2.1 GHz
Bandwidth 20 MHz
Propagation NLoS
Antenna configuration 4x4 slant pol
Antenna spacing 4λ0 @ Tx, 0.5λ0 @ Rx
Receiver speed 5 km/h
Sampling density 4 samples per λ0

Table 4.3: Average Quantization Errors

WINNER II i.i.d. Kronecker
LTE Grass. LTE Grass. LTE Grass

dmin L1 0.28 0.30 0.34 0.30 0.18 0.30
dmin L2 1.43 0.90 1.45 0.90 1.44 0.90
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Figure 4.5: Quantization error CDF with LTE and Grassmannian (4 bit) code-
books for L1 and L2 transmission in the WINNER II channel.
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Figure 4.6: Ergodic capacity for L1 transmission with LTE (4 bit) codebook.

the L1 transmission as the dominant eigenmode becomes more dominant in

correlated channels. Therefore, the WINNER II and Kronecker channels provide

better capacity results than the i.i.d. channel in an L1 transmission.

Figure 4.7 shows the ECL for the L1 transmission with the LTE codebook

for WINNER II and Kronecker channels. The approximated capacity loss is cal-

culated using (4.32). It is seen that (4.32) approximates the SVD receiver ECL

accurately at high SNR, but a small offset between the actual and approximated

ECL for the ZF and MMSE receivers is the result of ignoring the contribution

towards signal power from the other unused layers.

In Fig. 4.8, we provide the EC results for all three receivers with an L2

transmission in the WINNER II channel. For moderate SNR, the EC with

the Grassmannian codebook is larger than the EC with the LTE codebook for

both ZF and MMSE receivers. At high SNR, EC for the SVD receiver is the



CHAPTER 4. MIMO CAPACITY ANALYSIS 47

−10 0 10 20 30 40 50 60 70 80

−0.2

0

0.2

0.4

0.6

0.8

1

SNR (dB)

E
C

L 
(b

ps
/H

z)

 

 

Actual SVD ECL
Approx. SVD/ZF/MMSE ECL
Actual ZF/MMSE ECL

WINNER II

Kronecker
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Figure 4.8: Ergodic capacity for L2 transmission with LTE and Grassmannian
(4 bit) codebooks in the WINNER II channel.

same for both codebooks. Fig. 4.9 shows the EC results for all three receivers

with L2 transmission in the Kronecker channel. The Kronecker channel is highly

correlated with zt = zr = 0.9 and it is seen that at low SNR there is a significant

difference between the EC of the ZF and MMSE receivers. In the high SNR

regime, the EC of the ZF and MMSE receivers is equal for both codebooks. The

LTE codebook gives better capacity results than the Grassmannian codebook

for the SVD receiver at high SNR.

Figure 4.10 shows the ECL for the ZF and MMSE receivers in the case

of L2 transmission. As we are not including the effect of interference from

other unused layers in (4.23), the approximate ECL values have a 13% and 28%

error with respect to actual ECL values for LTE and Grassmannian codebooks,

respectively. On the other hand, (4.22) approximates the capacity loss perfectly
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Figure 4.10: Ergodic capacity loss for ZF and MMSE receivers with L2 transmis-
sion and LTE and Grassmannian (4 bit) codebooks in the WINNER II channel.

at high SNR for both the codebooks.

In Fig. 4.11, the ECL for the SVD receiver is shown with L2 transmission

in the WINNER II channel. The approximated capacity loss is calculated using

(4.30). In the case of L2 transmission, the use of (4.30) in the high SNR regime

provides the best ECL approximation for the SVD receivers. The ECL for the

SVD receiver increases with the SNR in L2 transmission, whereas the ECL for

the ZF and MMSE receivers remains constant in the high SNR regime.

Effects of Spatial Correlation on Capacity

We note that the single-stream MIMO yields better capacity results when corre-

lation is high with Kronecker channels. This is due to the fact that the dominant
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Figure 4.11: Ergodic capacity loss for SVD L2 transmission with LTE and
Grassmannian (4 bit) codebooks in the WINNER II channel.

singular value of the channel becomes more dominant, compared to the i.i.d.

Rayleigh channel. However, in multi-stream MIMO transmission, as the spatial

correlation increases at the transmitter and the receiver, the variance of ‖H‖2F
increases, leading to a reduced diversity order [1]. Therefore, with uniform

power allocation, the capacity of the MIMO Kronecker channel (2.8) decreases

with the increase in the magnitude of the spatial correlation at the transmitter

and the receiver [1].

Extension to MU Systems

The results presented and discussed in this section are for SU MIMO systems.

The challenge of extending limited feedback SU system to MU system is that the

feedback requirement increases because IUI is not canceled/suppressed properly

with quantized channel information at the BS. It is shown in [27] that for MU

MISO systems with ZF precoding, the feedback requirement increases as the

number of transmit antennas and the SNR increases. The users do not have

the information of the other user’s channel during quantization, therefore in

MU MISO systems the user only quantizes its own channel, like SU systems.

However, in MU MISO systems [27], the user quantizes the CDI, whereas in SU

MIMO systems (discussed in this chapter) the dominant vectors of the right sin-

gular matrix of the channel are quantized. In the following chapters, we consider

a MU MISO system where CDI is quantized at the user using codebooks.
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4.3 Summary

In this chapter, we have discussed MIMO capacity gains relative to SISO ca-

pacity in terms of ratio and difference. We have also shown how the gains are

effected at high and low SNR values with different antenna configurations.

We have derived an approximate expression for the capacity loss for a MIMO

system that uses multilayer transmission based on codebook beamforming. The

capacity loss approximation is expressed in terms of the quantization error be-

tween the selected codebook entry and the corresponding channel values and

is valid for high SNR. The accuracy of this approximation is compared for

single-stream L1 and two-stream L2 transmission modes via simulation of three

kinds of channels; a Rayleigh i.i.d. channel, a spatially correlated Kronecker

channel and an industry standard WINNER II channel and for three types of

receivers (ZF, MMSE and SVD). The approximation is in agreement for both

layers for the SVD receiver but slightly under-estimates the loss for the other

receiver types, especially for two-stream L2 transmission. In this regard, it

could be used as a lower bound. However, in practice, one is likely to only use

single-stream L1 transmission for which the loss approximation is good. The

approximation therefore provides a useful measure to relate the capacity loss to

codebook design in SU MIMO systems.
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5
MU MISO Systems with

Differential Codebooks

As discussed in the previous chapter, the quality of the CSI at the transmitter

plays an important role in determining the capacity performance for SU sys-

tems. This is also the case with MU systems, where multiple users are served

simultaneously. The multiple users sharing time and frequency resources inter-

fere with each other, degrading the overall system performance. In MU systems,

CSI is critical for transmit precoding and interference mitigation or suppression.

Majority of the codebooks developed for SU MIMO systems with single-

stream transmission are also applicable to MU MISO systems, as each user

quantizes the channel independently. The quantization of the channel using

codebooks can be made effective by taking advantage of the correlation in the

channel. Real-world MIMO channels are both spatially and temporally corre-

lated. Depending on the level of spatial and temporal correlation, a codebook

can be designed accordingly. Such codebooks have the ability to adjust (at

the transmitter and the receiver) according to the changing channel after each

feedback interval. These codebooks are referred as differential codebooks in this

thesis.

In this chapter, two differential codebook designs are investigated namely:

spherical-cap and double-cap based differential codebooks.

5.1 Motivation and Related Work

Present day wireless communication systems are not limited to SU scenarios.

The majority of systems are designed to support more than one active user. In
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cellular communications, users communicate to the BS on both downlink and

uplink. In this thesis, we only investigate the downlink broadcast.

To achieve MIMO gains in a MU setting, multiple users must be served in

the same time/frequency resource, as each user has fewer antennas than has at

the BS. However, using the same time/frequency resource results in interference

at the user, originating from other users signals. Serving multiple users gives

rise to MU diversity [23–25] that helps to improve the overall capacity of the

system.

In [27], the spectral efficiency loss due to quantized CDI is derived for MU

MISO system with the RVQ codebook and ZF precoding. It is mentioned that

feedback rate must increase linearly with SNR to achieve full multiplexing gain.

In MU MIMO systems, it is shown in [90] that multiple receive antennas provide

spectral efficiency improvement by combining received signals. The concept of

block diagonalization with limited feedback MU MIMO is given in [91]. The

multi-stream MU MIMO broadcast with limited feedback is investigated in [92]

with random beamforming.

Most of the work discussed so far considers i.i.d. Rayleigh fading channels.

For spatially correlated channels, there are many studies that deal with limited

feedback MU multiple antenna systems. In [93], it is mentioned that spatial

correlation due to the transmitter is helpful to MU MISO systems, if codebooks

are designed accordingly. According to [93], DFT codebooks are useful under

spatially correlated channels and outperform Grassmannian codebooks, due to

their robust codebook structure. However, DFT codebooks only perform well

for correlated ULA scenarios. In [94], the effect of spatial correlation on the

performance of RVQ codebooks for MU MISO systems is studied. The codebook

structures for spatially correlated MISO channels are also studied in [46,95]. For

MU MIMO systems, the codebook designs for spatially correlated channels are

investigated in [96, 97].

For temporally correlated channels, Grassmannian predictive frameworks for

limited feedback MU MISO systems are discussed in [98–101], where the main

idea is to exploit the differential geometric structure of the Grassmannian man-

ifold. In [102], a differential feedback scheme is presented that updates the

previous CSI at the BS using a spectral efficiency loss metric and a Gaussian

quantization error assumption. A polar-cap differential codebook design for a

temporally and spatially correlated MISO channel is discussed in [46]. In the

polar-cap structure, one codeword is at the center of the cap (also called the

basis vector) and all other codewords are on the circumference of the cap (lo-

cated at the same distance from the basis vector). This codebook is rotated to

be centered on the previously selected codeword after each feedback and out-

performs the rotation-based codebook [103]. The disadvantage of [46] is that

it requires the feedback process to be reset after a few feedback intervals, es-
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pecially when using the adaptive scaling method. The adaptive scaling in [46]

continually shrinks the radius of the codebook as the channel evolves, where

the radius of the cap is defined as the distance between the basis vector to the

furthest codeword in the cap. After a while, the codebook radius becomes too

small to successfully track the channel and this issue is handled by resetting the

codebook to the base codebook. A differential codebook is developed in [104] for

dual-polarized MISO channels that are rotation-based and has shown to achieve

better spectral efficiency than 3GPP LTE codebooks even with smaller code-

book size. In IEEE 802.16m wireless communication standards, two differential

codebook based limited feedback schemes are considered that are based on ro-

tation [105, 106] and transformation [107, 108]. In [109], an adaptive codebook

has been investigated that tracks slowly varying MIMO channels. It also adapts

to the varying statistics of the channel. The operations necessary for codebook

adaptation such as rotation and scaling are also discussed in [109].

Motivated by [109], we develop two differential codebook designs based on

spherical-cap [110, 111] and double-cap [112] structures. The structure and

working of these differential codebooks are explained in this chapter. Both

differential codebook designs require rotation and scaling operations in order to

maneuver the codebook entries (codewords). We also introduce an SVD based

rotation of the codewords.

Adaptive scaling of the codebooks after every feedback interval is crucial to

adjust the differential codebooks cap radii, as it controls the codeword packing

density inside the codebook. We discuss two adaptive scaling methods [110,111]

for the spherical-cap differential codebook. An adaptive scaling method for the

double-cap differential codebook [112] is also investigated that jointly scales the

two caps after each feedback interval. We evaluate the performance of these

differential codebooks in a MU setting, therefore we rely on ZF and SLNR

precoding schemes at the transmitter to mitigate/suppress interference.

Some of the adaptive scaling techniques discussed in this chapter assume that

the long-term channel statistics (such as spatial and temporal correlations) are

known at the receiver, through an estimation or a negligible signaling overhead.

5.2 Downlink System Description

Consider a single cell MU MISO system with a single BS serving K single-

antenna users. The number of transmit antennas at the BS is nt and we assume

here that K ≤ nt
1. In this chapter, we do not consider path loss and shadowing.

On the downlink, the received signal at user k for the transmitted data symbol,

1ZF precoding is constrained by the fact that the number of users must be equal to or
less than number of transmit antennas for perfect interference nulling. Therefore, here we
consider the case where K ≤ nt. Also, we do not consider scheduling of the users.
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sk, is given by

yk =

√
ρ

K
(h̄kwk)sk +

√
ρ

K

K∑

j=1,j 6=k

(h̄kwj)sj + nk, (5.1)

where h̄k denotes the 1× nt correlated channel vector between the BS and the

user k. The precoding vector of size nt × 1 for the kth user is denoted by wk

and nk is a noise term at the kth user, modeled as nk ∼ CN (0, σ2
k), where, σ2

k is

the noise variance at the kth user. The SNR is given by ρ = Pt/σ
2
k, where Pt is

the total transmit power. We assume equal noise variance and average power

for all users. The data symbols and precoding vector are normalized such that

E[|sk|2] = ‖wk‖2 = 1, ∀k. The spectral efficiency of the MU MISO system is

given by (3.6).

5.3 Spherical-Cap Differential Codebook

In this section, we discuss the spherical-cap design for the differential codebook.

The spherical-cap design was originally proposed for spatially correlated MIMO

channels in [45].

In order to explain the spherical-cap structure, we begin by discussing the

concepts of the Grassmannian manifold and the Grassmannian line packing

(GLP) problem. Let x denote the unit vector in Cnt . The set of unit norm

vectors in Cnt lie in a unit sphere space also called the one-dimensional complex

Stiefel manifold, Ωnt
, given by [45]

Ωnt
= {x ∈ Cnt : ‖x‖ = 1}. (5.2)

Let x1 and x2 be the two unit norm vectors in Ωnt
for which an equivalence

relation between these two unit vectors is given by x1 = ejφx2 for some φ ∈
[0, 2π) [42]. This means that the two vectors are equivalent if they are on the

same plane in Cnt [42, 113]. The Grassmannian manifold is the set of all one-

dimensional subspaces in Cnt .

According to [45], the phase invariance of vector x (the performance of the

beamforming is independent of the phase of the beamforming vector) can be

incorporated by considering vectors as points on the Grassmannian manifold

G(nt, 1). Therefore, the Grassmannian line packing (GLP) problem of finding

the set of Nc = 2B lines in Cnt having maximum distance between any pair of

lines [42] can be used to design the codebook for i.i.d. Rayleigh channels. Using

chordal distance metric on G(nt, 1), a spherical-cap on G(nt, 1) with center, c,



CHAPTER 5. MU MISO SYSTEMS WITH DIFFERENTIAL CODEBOOKS 55

Figure 5.1: Transformation of Grassmannian codebook to spherical-cap differ-
ential codebook.

and radius, ς, can be defined as [45]

O(c, ς) = {x ∈ G(nt, 1) :
√

1− |cHx|2 < ς} (5.3)

The transformation of the Grassmannian codebook to the spherical-cap dif-

ferential codebook is illustrated in Fig. 5.1.

For the MU MISO system considered in this chapter, each user generates

its spherical-cap differential codebook according to the method in (5.3). The

spherical cap is centered on c = [1, 0, · · · , 0]T . A spherical cap of size 2B on

G(nt, 1) with center c and radius, ς, is denoted by Ok(c, ς), such that Ok(c, ς) =

{f (i)k ∈ G(nt, 1) :

√

1− |cHf (i)k |2 < ς}, ∀i. Each codeword is scaled individually

[45] to give the spherical cap differential codebook, given by

Fspherical =













√

1− α2(1− r21,1)e
jθ1,1

...

αrnt,1e
jθnt,1






, · · · ,







√

1− α2(1− r2
1,2B

)ejθ1,2B

...

αrnt,2Be
jθ

nt,2
B













,

(5.4)

where rm,ne
jθm,n is the polar form of the mth entry of the nth GLP codeword

and α is a scaling parameter satisfying 0 < α < 1. After scaling operation, all

the codewords in the spherical cap lie inside the radius, α.

5.4 Feedback Procedure

The feedback steps are as follows:

• For the first feedback at t = 0, the user k selects an appropriate codeword

q̄k (discussed in Chapter 3, Section 3.4) from a base codebook (e.g. RVQ,



5.5. TRACKING CHANNEL WITH SPHERICAL-CAP 56

Grassmannian or LTE) and feeds back the index of this selected codeword

to the BS.

• For the second feedback period denoted by t = 1, both BS and user k

use spherical-cap differential codebook centered on the previous selected

codeword (from the base codebook).

• For the rest of the feedback periods, the process continues with the dif-

ferential codebook with fixed or adaptive scaling. The adaptive scaling

methods are discussed later, where the main idea is to vary the value of

the scaling parameter, α in (5.4), after each feedback interval.

5.5 Tracking Channel with Spherical-Cap

In this section, we discuss the tracking of the correlated channel with the

spherical-cap differential codebook over time. The spherical-cap differential

codebook feedback approach for time t = 1 (first feedback) and t = 2 (second

feedback) is depicted in Fig. 5.2. It is shown that the selected codeword at time

t = 0 (from the base codebook) is the center of the spherical-cap differential

codebook at time t = 1. The user selects the codeword (represented by the red

dot) that is closest to the actual channel (represented by orange color). For the

next feedback time t = 2, the selected codeword at t = 1 becomes a new center

of the spherical cap differential codebook using the rotation technique discussed

in Section 5.6. Therefore, once the codebook starts following the channel, the

quantization errors also reduce. The reason is that the spherical-cap takes ad-

vantage of the adaptive scaling techniques (discussed later) to adjust the radius

of the cap over time, for tracking the channel.

 Selected codeword at t=1  Selected codeword at t=0 

 Actual channel 

 Selected codeword at t=2 
 Selected codeword at t=1 

 Actual channel 

Figure 5.2: Structure of the spherical-cap differential codebook at time, t = 1
and t = 2.
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5.6 Rotation Operation on Codebooks

In this section, we introduce an SVD-based rotation operation that can effec-

tively rotate the codewords in the codebook to the desired location. For clarity,

we drop the user index k and time index t. To rotate a codebook, we first

perform SVD operation on the codewords, given by

SVD
(
q̄cH

)
= UDVH (5.5)

where, c is the center of the cap and q̄ is the current selected codeword given

by (3.14). D is a diagonal matrix with zero non-diagonal entries containing

only the single singular value which is equal to one. U and V are the left and

right unitary matrices, respectively. Now, we can define the rotation matrix as

Θ = UVH. Using Θ, the cap center c can be rotated to q̄, such that q̄ = Θc.

As q̄ and c are orthogonal vectors, therefore Θ can be expressed as the form

given in [45], such that

Θ = [q̄ q̄⊥
1 . . . q̄

⊥
nt−1

︸ ︷︷ ︸

nt−1 null vectors

] [c c⊥1 . . . c
⊥
nt−1

︸ ︷︷ ︸

nt−1 null vectors

]H (5.6)

The rotation matrix, Θ, is a unitary matrix with determinant equal to one.

Once the rotation matrix Θ is calculated, all the codewords in the codebook

are rotated using this rotation matrix that results in a new codebook structure

with the center q̄.

5.7 Scaling Operation on Codebooks

Differential codebooks can have a fixed or adaptive scaling (corresponding to α

in (5.4)). Fixed scaling means that the differential codebook keeps a constant

radius of the codebook cap and it does not change throughout the transmission.

On the other hand, in adaptive scaling the radius of the codebook varies after

each feedback interval depending on factors such as spatial/temporal correlation

and quantization errors. For both fixed or adaptive scaling techniques, the

scaling to alter the radius of the codebook is performed using (5.4).

5.7.1 Adaptive Scaling Technique I

An adaptive scaling technique for the differential codebook that does not re-

quire the knowledge of the spatial/temporal correlation statistics at the BS is

discussed in this section. We denote the adaptive scaling parameter by α̃. The

idea is that after each feedback the codebook is re-scaled using (5.4), however

initially for the second feedback (at time t = 1), the cap radius is set to a value
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α̃[1] [46], known at both transmitter and receiver. The scaling parameter for

the successive feedback transmissions, t > 1, is defined as the chordal distance

between the current selected codeword and the previously selected codeword,

such that

α̃[t+ 1] =

{√

1− |q̄H [t− 1]q̄[t]|2, if codeword at the center is not selected

α̃[t] if codeword at the center is selected.

(5.7)

where α̃[t+1] is the scaling parameter for the next feedback interval. For clarity,

we drop the user index k. This method is effective when the differential code-

book reset time is small. The disadvantage of this adaptive scaling technique is

that the radius of the spherical-cap keeps shrinking after every feedback time

as the distance between codewords decreases over time. Therefore, the reset is

required where the process begins again with the base codebook.

5.7.2 Adaptive Scaling Technique II

Adaptive Scaling Technique I requires resetting of the differential codebook after

a few feedback intervals as the spherical-cap radius shrinks to zero over time.

This results in large quantization errors if the feedback process is not reset to the

base codebook. To address this issue, if long term channel correlation (spatial

and temporal) statistics are shared with the BS [103], then adaptive scaling

can be used for longer transmission periods without a reset. The temporal and

spatial correlation coefficients (i.e., ǫ and zt) are estimated at the user and fed

back to the BS. However, in this study, like [46, 114], we assume that perfect

knowledge of both spatial and temporal channel statistics are available at the

BS.

In this section, we explain the Adaptive Scaling Technique II for spatially

and temporally correlated channel, h̄, given by (2.14). The Adaptive Scaling

Technique II depends on mean quantization error and mean channel variation

(i.e., the amount of spatial/temporal correlation in the channel). The mean

channel variation is defined as the average chordal distance between the previous

and current channel directions, given by (for clarity, we drop the user index k)

dmean = E

[√

1− |ūH [t− 1]ū[t]|2
]

. (5.8)

Using Jensen’s inequality in (5.8) we have

dmean ≤
√

1− E
[
|ūH [t− 1]ū[t]|2

]
. (5.9)

We find the expected value in (5.9) for the channel modeled by the FOGM
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process with both spatial and temporal correlation (2.14) [46]. We can write

(5.9) as

E
[∣
∣h̄H [t− 1]h̄[t]

∣
∣
2
]

= E

[∣
∣
∣h̄

H [t− 1](ǫh̄[t− 1] +
√
1− ǫ2y[t]R

1/2
t )
∣
∣
∣

2
]

, (5.10)

where y[t] is a C1×nt vector having i.i.d. CN (0, 1) entries and Rt is a spatial

correlation matrix (assumed to follow an exponential model [46]) with spatial

correlation coefficient zt. We later show that the zt value has a minimal effect on

the adaptation process. We assume the channel is temporally correlated with a

correlation coefficient ǫ, following the Jakes’ model ǫ = J0(2πfDτ), where fD is

the Doppler frequency. Simplifying (5.10) we note that the expectation of cross

terms is zero, therefore we get

E
[∣
∣h̄H [t− 1]h̄[t]

∣
∣
2
]

= ǫ2E
[
‖h̄[t− 1]‖4

]
+ (1− ǫ2)E

[∥
∥
∥h̄

H [t− 1]y[t]R
1/2
t

∥
∥
∥

2

F

]

.

(5.11)

Using the independence between amplitude and direction of h̄[t] and h̄[t−1] [82],

we can approximate E
[∣
∣h̄H [t− 1]h̄[t]

∣
∣
2
]

for spatially and temporally correlated

channels with ǫ ≈ 1 by

E
[∣
∣h̄H [t− 1]h̄[t]

∣
∣
2
]

≈ E
[
‖h̄H [t− 1]‖4

]
E
[∣
∣ūH [t− 1]ū[t]

∣
∣
2
]

. (5.12)

Substituting (5.12) in (5.11) and simplifying gives

E
[∣
∣ūH [t− 1]ū[t]

∣
∣
2
]

≈ ǫ2 + (1− ǫ2)Ψ (5.13)

where

Ψ ≈
E

[∥
∥
∥h̄H [t− 1]y[t]R

1/2
t

∥
∥
∥

2

F

]

E
[
‖h̄H [t− 1]‖4

] . (5.14)

Noting the fact that h̄H [t − 1] = (y[t− 1]R
1/2
t )H , where y[t− 1] is distributed

according to CN (0, 1) and substituting in (5.14), we get

Ψ ≈
E

[∥
∥
∥R

1/2
t yH [t− 1]y[t]R

1/2
t

∥
∥
∥

2

F

]

E
[

(‖R1/2
t yH [t− 1]‖2)2

] . (5.15)

Using the eigenvalue decomposition Rt = ΦOΦH , where Φ is an nt×nt matrix

of eigenvectors of Rt and O is a diagonal matrix containing the eigenvalues
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(o1, o2, . . . , ont
) of Rt, (5.15) can be written as

Ψ ≈ tr
(
E
[
OỹH [t− 1]ỹ[t− 1]

]
E
[
OỹH [t]ỹ[t]

])

E [(ỹ[t− 1]OỹH [t− 1])2]
. (5.16)

where ỹH [t − 1] = ΦHyH [t − 1] and ỹ[t − 1] = y[t − 1]Φ are also distributed

according to CN (0, 1). The numerator of (5.16) can be simplified using the fact

that off diagonal entries of (OỹH [t− 1]ỹ[t− 1]) and (OỹH [t]ỹ[t]) are zero mean

and entries of the vectors |ỹ[t − 1]|2 and |ỹ[t]|2 are exponentially distributed

with E [|ỹ[t− 1]|2] = E [|ỹ[t]|2] = 1. This gives

tr
(
E
[
OỹH [t− 1]ỹ[t− 1]

]
E
[
OỹH [t]ỹ[t]

])
=

nt∑

i=1

o2i . (5.17)

Similarly, the denominator in (5.16) can be expressed as

E
[
(ỹ[t− 1]OỹH [t− 1])2

]
= E





(
nt∑

i=1

o2i |ỹ(i)[t− 1]|2
)2


 , (5.18)

where ỹ(i)[t−1] denotes the ith entry of the vector ỹ[t−1]. Expanding the term
(∑nt

i=1 o2i |ỹ(i)[t− 1]|2
)2

and using the fact that E
[
|ỹ(i)[t− 1]|4

]
= 2, we can write

(5.16) as

Ψ ≈

nt∑

i=1

o2i

2
nt∑

i=1

o2i + 2
nt∑

i=1
i<j

oioj

, j = 1, . . . , nt. (5.19)

Finally, this leads to the approximation

dmean ≈
√

1− ǫ2 − (1− ǫ2)Ψ. (5.20)

For the range of values of zt (0 ≤ zt ≤ 1), the corresponding values of Ψ have

little impact on dmean in (5.20), for pedestrian velocities.

Another factor that must also be taken into account before selecting the

scaling parameter is the mean quantization error associated with the previous

feedback with scaling parameter α̃∗[t − 1]. Denoting by α̃∗[t] the scaling pa-

rameter at time t, the upper bound on the mean quantization error at time t is

given by [46]

E
[
1− |q̄H [t]ū[t]|2

]
≤
[

α̃∗[t]2
−B

2(nt−1)

]2

. (5.21)

The mean quantization error in (5.21) is given in terms of the squared chordal

distance. We can have a loose upper bound on the quantization error in terms

of the chordal distance by taking the square root of (5.21) and denoting it by
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Figure 5.3: The adaptive scaling technique II. Note that dmean and derror are
mean distances and are shown here for illustrative purposes only.

derror,

derror ≤ α̃∗[t]2
−B

2(nt−1) . (5.22)

In order to track the varying channel, we propose the scaling parameter for

time t+ 1 to be the sum of (5.20) and (5.22),

α̃∗[t+ 1]
∆
= dmean + derror, for t > 1. (5.23)

Starting the process with the base codebook, we initially set the scaling param-

eter α̃∗[0] = 1. For the second feedback, the scaling parameter is determined

using (5.22) such that α̃∗[1] = 2
−B

2(nt−1) . The scaling parameter for the successive

feedback intervals is calculated using (5.23). This adaptive scaling parameter

can be shown to reach an asymptotic value

α̃∗
∞ = dmean

[

1− 2
−B

2(nt−1)

]−1

. (5.24)

The adaptive scaling technique for time t−1 and t is depicted in Fig. 5.3. In the

Adaptive Scaling Technique II, the periodic reset of the differential codebook

to the base codebook is not required as the radius of the spherical-cap does not

shrink to zero with time.

5.8 Double-Cap Differential Codebook

The main motivation for designing a double-cap differential codebook is to have

a codebook structure for correlated MISO channels that efficiently quantizes

the CDI and performs adaptive scaling to keep track of the channel without re-

quiring an additional feedback or a periodic reset. The polar-cap design in [46]
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is not able to track the channel for longer transmission periods as quantization

errors becomes large due to shrinkage of the cap radius with time. Therefore,

the polar-cap needs to be reset after a few feedback intervals. Also, the adap-

tive scaling technique presented in [46] requires correlation information at the

transmitter to adapt the cap radius over time. In this section, we discuss the

double-cap differential codebook [112] capable of running for longer transmission

periods without requiring correlation information at the transmitter.

A double-cap differential codebook comprises of two different cap structures

with different radii on the Grassmannian manifold, centered around the same

location. The double-cap differential codebook consists of an inner spherical cap

(discussed in section 5.3) and an outer polar cap [46] structures. The codewords

on the circumference of the outer cap are not only used to quantize the channel

vector, but also enable rapid tracking of the channel. On the other hand, the

inner spherical cap codewords are distributed inside the cap, hence reducing

quantization errors once the differential codebook closely follows the channel.

As will be shown, splitting the codewords into two distinct subsets allows us

to signal the need for the radius adaptation without the additional feedback

overhead.

5.8.1 Double-Cap Design

The spherical-cap design has already been discussed in Section 5.3. Here, we

first look at the polar cap design and then discuss the scaling parameters αp

and αs for polar and spherical caps, respectively.

The polar cap differential codebook consists of a basis vector of size nt × 1

given by c = [1, 0, · · · , 0]T that is also the center of the polar-cap. However, in

the double-cap structure, the polar-cap does not include the basis vector as a

codeword and all 2B codewords are located on the circumference of the polar-

cap. In order to generate these 2B codewords, a Grassmannian codebook [42]

on G(nt, 1), is generated where each codeword is of size (nt − 1)× 1, given by

Fk = [f
(1)
k , · · · , f (2B)

k ], at the kth user. The next step is to set an appropriate

scaling parameter, αp, that defines the distance between the basis vector c and

the 2B codewords. Once αp is set, then the polar cap differential codebook,

Fpolar, of size 2B is generated by [46]

Fpolar =

{[√
1− α2

p

αpf
(1)
k

]

, · · · ,
[√

1− α2
p

αpf
(2B)
k

]}

. (5.25)

Following the first feedback interval, where a base codebook (e.g. RVQ, Grass-

mannian or LTE) is used, and the double-cap differential codebook is centered

around the selected base codebook codeword, q̄k[0]. Intuitively, it would be ap-

propriate to scale the codebook using knowledge of the quantization error due
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to the base codebook. For this purpose, we assume that the base codebook is

the RVQ codebook and use the mean quantization errors result derived in [22].

The initial radius, αs, for the inner cap (spherical cap) is set to the average

chordal distance between the selected RVQ codeword, q̄k, and the perfect chan-

nel direction, ūk. The outer polar cap radius is initially set to the maximum

quantization error limit, αp = 1. Hence, for smaller errors than the mean quan-

tization error, we use the inner spherical cap for fine tracking of the channel.

When the quantization error is larger than the mean quantization error, the

outer polar cap codewords are used for quantizing and tracking of the channel.

We can write the distance, αs, as

αs = E
[√

1− |q̄kūk|2
]

. (5.26)

We solve the expectation in (5.26) to compute the value of αs. As shown in [22],

the random variable X =

√

1− |f (i)k ūk|2 is beta distributed with parameters

2(nt−1) and 1. If we let y be the minimum of the 2B random variables X, then

the probability density function (PDF) of y can be written as

f(y) = 2Bf(x) (1− F (x))2
B−1 , 0 < y < 1, (5.27)

where f(x) and F (x) are the PDF and CDF of the independent X variables,

given by

f(x) = 2(nt − 1)x(2nt−3) (5.28)

and

F (x) = x2(nt−1). (5.29)

Substituting (5.28) and (5.29) in (5.27), we have

f(y) = 2B+1(nt − 1)y(2nt−3)
(
1− y2(nt−1)

)2B−1
. (5.30)

Using f(y), we can calculate the value of αs in (5.26) as

αs =

∫ 1

0

yf(y)dy (5.31)

= 2B+1(nt − 1)

∫ 1

0

y2(nt−1)
(
1− y2(nt−1)

)2B−1
dy (5.32)

= 2B β

(
nt − 1

2

nt − 1
, 2B
)

. (5.33)

where β(·, ·) denotes a Beta function. A bound for the squared chordal distance

is derived in [27].

We set the radius of the inner cap (spherical cap) to αs initially, given in
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(5.33). The double-cap differential codebook structure is obtained by generating

a spherical cap with radius αs and a polar cap with radius αp. This double-cap

differential codebook is centered around the basis vector, c (not a codeword),

and it is used for the second feedback interval with αp and αs. The double-cap

differential codebook design is shown in Fig. 5.4. The number of codewords is

 

 

Polar Cap 

 

Spherical Cap 

C 

 

Figure 5.4: The structure of the double-cap differential codebook based on
polar/spherical caps.

evenly distributed on both inner and outer caps i.e., 2B/2 codewords on each

cap. Although a double-cap differential codebook can also be designed with

different numbers of codewords in two caps, we restrict our study to the equal

distribution of codewords. The feedback procedure is explained in Section 5.4.

Following the second feedback interval, the double-cap differential codebook

radii follow the blind adaptive scaling technique discussed in the next section.

5.8.2 Blind Adaptive Scaling

In this section, we explain the concept of blind adaptive scaling method for the

double-cap differential codebook. The advantage of having two different radii in

the codebook is that the codebook can be scaled up or scaled down depending on

the previously selected codeword without any additional feedback information.

In order to track the channel over time, we need to maintain a distance between

inner and outer caps. Therefore, we shrink and expand both the caps by αp−αs

2
.

The double-cap differential codebook expansion and contraction is described

below.

• If the previous selected codeword at time t is from the outer polar cap then

expand the double-cap differential codebook for the next feedback such

that αp[t+1] = αp[t]+(αp[t]−αs[t])/2 and αs[t+1] = αs[t]+(αp[t]−αs[t])/2.

• If the previous selected codeword is from the inner spherical cap then

contract the double-cap differential codebook such that αs[t+1] = αs[t]−
(αp[t]− αs[t])/2 and αp[t+ 1] = αp[t]− (αp[t]− αs[t])/2.
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This method does not require the BS to have any information about the statistics

of spatial and temporal correlation in the channel.

5.9 Numerical Results and Discussion

In this section, we present simulation results and evaluate the performance of

the MU MISO system with differential codebooks. We assume that nt = 4 and

K = 4. We assume that the feedback link is lossless with zero delay. The carrier

frequency is 2.5 GHz. It is also assumed that perfect CQI is available at the BS.

Typically, the feedback interval is a fraction of the coherence time [26], however

in this thesis, the feedback interval is set to 5 ms [46, 48, 103] which is the

most common feedback interval used in standard contributions. We evaluate

the performance of the MU MISO system by using ZF and SLNR precoding

schemes at the BS discussed in 3.3.1 and 3.3.4, respectively.

We begin by comparing various differential codebooks discussed in this chap-

ter using FOGM (2.13) and WINNER II (2.16) channel models. Then we present

and discuss the performance of each differential codebook separately.

5.9.1 Comparison of Differential Codebooks

Here, we present the comparison of the spherical-cap differential codebook with

Adaptive Scaling Techniques I and II and the double-cap differential codebook.

The comparison is performed with respect to the average spectral efficiency

against time, where time is represented in multiples of the feedback interval. The

BS is equipped with nt = 4 antennas in a ULA setting with 0.5λ0 spacing among

neighboring antennas. The scenario considered is UMa with NLOS propagation.

The base codebook is a 4 bit RVQ codebook. In Fig. 5.5, the comparison is

shown at SNR, ρ = 10 dB with users having velocity v = 1 km/h and B = 4

bit feedback rate.

It is seen that the SLNR precoding scheme outperforms the ZF precoding

scheme in general with differential codebooks. Also, the Adaptive Scaling Tech-

nique II with spherical-cap differential codebook gives superior average spectral

efficiency compared to the spherical-cap with Adaptive Scaling Technique I and

double-cap differential codebooks. However, it is important to mention that

the Adaptive Scaling Technique II requires spatial/temporal correlation to be

available at the BS, whereas this information is not needed in the double-cap

differential codebook. Therefore, there is a trade-off between the spectral effi-

ciency gain and the feedback overhead. On the other hand, the spherical-cap

with Adaptive Scaling Technique I requires a reset to the base codebook af-

ter some multiples of the feedback interval (here, 9). In the adaptive Scaling

Technique I, the frequent reset of the feedback process degrades the spectral
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Figure 5.5: Sum rate versus time at ρ = 10 dB with v = 1 km/h and 4 bit
feedback in the FOGM channel.
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Figure 5.6: Sum rate versus time at ρ = 10 dB with v = 1 km/h and 4 bit
feedback in the WINNER II channel.

efficiency performance over the transmission period.

In Fig. 5.6, the same trend (as in Fig. 5.5) is noticed for the WINNER II

channel. Both WINNER II channels and FOGM channels have almost similar

performance given that the user velocity is same, so we only consider the FOGM

channel model for the rest of the simulation results.

5.9.2 Differential Codebooks Versus User Velocity

In this subsection, we present the performance of differential codebooks against

different user velocities. In Fig. 5.7, the average spectral efficiency is plotted

against time for velocities v = 3 km/h, 5 km/h, 7 km/h and 10 km/h.

We note that as the user velocity increases, the Adaptive Scaling Technique
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(b) v = 5 km/h
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(c) v = 7 km/h
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(d) v = 10 km/h

Figure 5.7: Average spectral efficiency vs. time in a temporally correlated chan-
nel at ρ = 10 dB for various user velocities.

II and double-cap scaling are not able to track the channel as successfully as the

Adaptive Scaling Technique I. Although, the average spectral efficiency degrades

as the user velocity increases, it does not degrade significantly with the Adaptive

Technique I, unlike the other two methods. This is due to the reason that the

Adaptive Scaling Technique I relies on the periodic reset after few feedback

intervals. The double-cap codebook is capable of scaling the cap radius up and

down over time, however, it yields poor performance at v = 10 km/h, indicating

a failure in tracking the channel at higher velocities.

The Adaptive Scaling Technique II also show a poor average spectral effi-

ciency performance than the Adaptive Scaling Technique I at v = 10 km/h,

however unlike the double-cap, the performance after few feedback intervals

matches the performance of the base codebook (here, 4 bit RVQ codebook).

5.9.3 Estimation Errors

Results presented so far assume perfect channel estimation at the user, but in

practical systems the estimated channel at the user contains estimation errors.
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Figure 5.8: Average spectral efficiency vs. time in a temporally correlated chan-
nel at ρ = 10 dB for v = 3 km/h and χ = 0.95.

We model the estimated channel at time t as

ḧ[t] = χh̄[t] +
√

1− χ2y[t], (5.34)

where χ is the estimation error coefficient with χ = 1 yielding no estimation

error and χ = 0 resulting in a maximum estimation error. y[t] denotes the

innovation process with its entries distributed according to CN (0, 1).

In Fig. 5.8, we plot the average spectral efficiency (at ρ = 10 dB) against

time for temporally correlated channels (v = 3 km/h) with estimation errors.

We use χ = 0.95 which can be assumed as a small estimation error. We note that

the performance of differential codebooks suffers even with the small estimation

error at the user. The performance of the Adaptive Scaling Techniques I and

II degrades decently, but the performance of the double-cap decreases rapidly

over time.

5.9.4 Performance of Spherical-Cap Differential Codebooks

In this subsection, the performance of the spherical-cap differential codebook

is evaluated using fixed scaling, Adaptive Scaling Technique I and Adaptive

Scaling Technique II.

Adaptive Scaling Technique I Results

For the Adaptive Scaling Technique I, the differential codebook reset time is 9

feedback intervals (i.e., 45 ms).

We first present the results for the temporally correlated channel, h̃, gen-

erated using the model given in (2.13) with no spatial correlation. The base

codebook that each user uses at time t = 0 is a 4 bit RVQ codebook. We
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compare the proposed differential codebook performance with the polar cap

differential codebook with adaptive scaling technique [46]. We evaluate the per-

formance of the MU MISO system with both fixed scaling, α, and Adaptive

Scaling Technique I, α̃. The fixed scaling parameter, α, is the same as that

used in [46] for different user speeds. In Figs. 5.9(a) and 5.9(b), the average

spectral efficiency versus time results are shown for v = 1 km/h with ZF and

SLNR precoding schemes, respectively. The spherical-cap differential codebook

outperforms the polar-cap codebook with both fixed and Adaptive Scaling Tech-

nique I. This is due to the fact that in the spherical-cap differential codebook,

unlike [46], the codewords are evenly distributed inside the cap, and this helps

in further reducing quantization errors, once the codebook starts following the

channel. Also, the SLNR precoding scheme yields higher average spectral ef-

ficiency compared to the ZF precoding scheme, as the SLNR scheme not only

suppresses the interference but also maximizes the SNR.

In Fig. 5.10(a) and 5.10(b), the average spectral efficiency is shown for the

user speed v = 3 km/h with ZF and SLNR precoding schemes, respectively.

The spectral efficiency loss is higher when the speed is v = 3 km/h compared

to the v = 1 km/h case. As the user speed increases, the quantization errors

also become large, which is the reason for the spectral efficiency loss.

Figure 5.11 shows the average minimum chordal distance given by (5.26).

Small values of the scaling parameter, α, can be seen to yield a small minimum

chordal distance when the user speed is slow. As the user speed increases, large

scaling parameters perform better by yielding small average minimum chordal

distance. It is also evident that a scaling parameter of 0.1 is too small and does

not help the differential codebook to track the temporally correlated channel.

A suitable choice of α for different speeds can be obtained from Fig. 5.11, and

is also given in Table 5.1.
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Figure 5.9: Average spectral efficiency vs. time in a temporally correlated chan-
nel at ρ = 10 dB with v = 1 km/h (ǫ = 0.9987).
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Figure 5.10: Average spectral efficiency vs. time in a temporally correlated
channel at ρ = 10 dB with v = 3 km/h (ǫ = 0.9881).
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Figure 5.11: Average minimum chordal distance vs. user speed in temporally
correlated channels.

Table 5.1: Scaling Parameters in Temporally Correlated Channels

User speed v (km/h) 2 - 6 6 - 12 12 - 17 17 - 20

Scaling parameter α 0.3 0.5 0.7 0.9

We evaluate the performance of the spherical-cap differential codebook with

fixed scaling, α, and compare it to the polar-cap differential codebook. The

spatially and temporally correlated channel is modeled by (2.14). We use the 4

bit 3GPP LTE rel.8 codebook as a base codebook because the DFT codewords in

the LTE codebook improve the performance in the spatially correlated channel

[46]. As scheduling the users is not the part of this work, during simulation

we discard the case when more than one user selects the same codeword from

the LTE codebook. Reporting the same codeword affects the channel inversion

process of the ZF precoding scheme.
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In Fig. 5.12, the average spectral efficiency is evaluated when v = 3 km/h and

zt = 0.5. The performance is analyzed with two fixed scaling parameters given

in [46]; 0.1142 and 0.2836. For low spatial correlation, the channel approaches

i.i.d., and thus the scaling parameter α needs to be increased. This is the reason

that the performance gain with α = 0.2836 is higher than with α = 0.1142.
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Figure 5.12: Average spectral efficiency vs. time in a spatially/temporally cor-
related channel at ρ = 10 dB with v = 3 km/h (ǫ = 0.9881) and zt=0.5.

It is evident from the simulation results that the spherical-cap differential

codebook with fixed scaling or Adaptive Scaling Technique I, successfully ex-

ploits the correlation, both spatial and temporal, present in the channel and

helps the system to achieve a better average spectral efficiency.

Adaptive Scaling Technique II Results

Now we present the simulation results for the Adaptive Scaling Technique II

with the spherical-cap differential codebook. Again, we use both ZF and SLNR

precoding schemes to evaluate the MU MISO system. The Adaptive Scaling

Technique II discussed in Section 5.7.2 consider both temporal and spatial cor-

relations, therefore, we use the FOGM (2.14) channel model to evaluate the per-

formance of the Adaptive Scaling Technique II. For the FOGM channel model,

the value of zt is set to 0.5. The base codebook is a 4 bit RVQ codebook.

Figures 5.13(a) and 5.13(b) show the average spectral efficiency versus time

with v = 1 km/h and v = 3 km/h at ρ = 10 dB for ZF and SLNR precoding

schemes, respectively. The average spectral efficiency with the spherical-cap

differential codebook with Adaptive Scaling Technique II is higher than the

RVQ codebook and the polar-cap differential codebook. The average spectral

efficiency does not degrade over time with the the Adaptive Scaling Technique

II and remains stable over time. When the speed increases, the average spectral

efficiency decreases, as in the case of v = 3 km/h, implying that quantization
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Figure 5.13: Average spectral efficiency vs time at ρ = 10 dB for zt = 0.5 with
v = 1 km/h and v = 3 km/h.

errors are large and the spherical-cap differential codebook uses a large scaling

parameter in order to track the varying channel.
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Figure 5.14: Average spectral efficiency vs. ρ for different user speeds with v = 3
km/h.

Figures 5.14(a) and 5.14(b) show average spectral efficiency against the range

of ρ values for ZF and SLNR precoding schemes, respectively. The performance

of the spherical-cap differential codebook with Adaptive Scaling Technique II is

superior than the polar-cap differential codebook because it achieves temporal

stability in the spectral efficiency and has a better codeword arrangement inside

the codebook.

In Fig. 5.15, the CDF of the SINR is plotted for one of four users when the

user speed is v = 1 km/h. We compare three cases: perfect CDI, the spherical-

cap differential codebook with Adaptive Scaling Technique II, and the RVQ

codebook for both ZF and SLNR precoding schemes. The SLNR precoding

outperforms the ZF precoding scheme and with the Adaptive Scaling Technique
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Figure 5.15: SINR CDF for the user at ρ = 16 dB with v = 1 km/h (ǫ = 0.9987).

II it is even better than the perfect CDI ZF case at v = 1 km/h.

5.9.5 Performance of Double-Cap Differential Codebook

In this subsection, we evaluate the performance of the double-cap differential

codebook discussed in Section 5.8 over temporally correlated MISO channels.

The MU MISO channel is modeled using the FOGM channel model, h̃ (2.13).

The base codebook used is the 4 bit RVQ codebook.

Figure 5.16 shows the average spectral efficiency versus time results for the

double-cap differential codebook at SNR = 10dB with ZF and SLNR precoding

schemes. The speed of the users is v = 1 km/h. The codewords are evenly

distributed on both caps (i.e., 8 on the inner and 8 on the outer cap) in the

double-cap differential codebook. The average spectral efficiency achieved by
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Figure 5.16: Average spectral efficiency versus time at ρ = 10 dB with v = 1
km/h and 4 bit feedback.
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Figure 5.17: Average spectral efficiency against ρ values with v = 3 km/h and
4 bit feedback (100 feedback intervals).
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Figure 5.18: Quantization errors CDF at v = 3 km/h (100 feedback intervals).

the double-cap differential codebook is significant and outperforms the polar

cap differential codebook. The codebook reset time for the polar cap differen-

tial codebook is set to 8 feedback intervals [46]. It is important to note here that

the double-cap differential codebook is using blind adaptive scaling, whereas in

the case of the polar cap differential codebook, the adaptive scaling assumes

that the BS has perfect temporal correlation information. The blind adaptive

scaling technique for the double-cap is capable of scaling up and scaling down

the cap radii, and it therefore works well for longer transmission times. Aver-

age spectral efficiency is plotted against different SNR values in Fig. 5.17 for

v = 3 km/h for ZF and SLNR precoding schemes. The double-cap differential

codebook gives superior spectral efficiency compared to the polar-cap differen-

tial codebook and the RVQ codebook with 4 bit feedback. Fig. 5.18 shows the

quantization error CDF in terms of the chordal distance, given by (3.14), for

the double-cap differential codebook, the polar cap differential codebook with
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4 bit and RVQ codebooks with 4, 5 and 6 bits feedback. It is seen that even

with 6 bit feedback, the RVQ codebook gives larger quantization errors than the

4 bit double-cap differential codebook. Also, the double-cap differential code-

book produces small quantization errors compared to the polar cap differential

codebook, implying that the double-cap differential codebook tracks the channel

more effectively. It is seen that opposite scaling (i.e., scaling up the differential

codebook when an inner cap codeword is selected and vice versa) results in a

poor quantization performance compared to other differential codebooks, thus

validating the intuition behind the proposed scaling approach.

5.10 Summary

In this chapter, we have discussed two differential codebook structures: single

spherical-cap and double cap. For single spherical-cap differential codebook, we

discussed two adaptive scaling techniques: Adaptive Scaling Technique I and

Adaptive Scaling Technique II. Adaptive Scaling Technique I does not require

any additional feedback information but needs to be reset periodically, hence

loosing the performance gain regularly. However, Adaptive Scaling Technique

II works well for longer transmission periods without a reset. Also, Adaptive

Scaling Technique II yields better performance than the Adaptive Scaling Tech-

nique I in the cost of additional feedback information about spatial and temporal

correlation. Therefore, there is a trade off between two techniques.

Finally, the double cap differential codebook is discussed that consists of

two caps: a spherical cap and a polar cap. The two cap design allows the caps

radii to blindly adapt in a systematic manner without the requirement of a reset

and additional feedback information. The double cap differential codebook has

slightly lower performance than the spherical-cap differential codebooks, but

it does not exhibit the disadvantages of the periodic reset and the additional

feedback of the correlation statistics. We also note that the double-cap differ-

ential codebook does not work well for higher velocities and also show a poor

performance when the channel at the receiver has estimation errors.
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6
MU Massive MISO Systems with

TCQ

previous chapters discuss conventional multi-antenna systems where the num-

ber of antennas at the BS is small. This chapter considers limited feedback

in massive MISO systems, where the BS consists of a large number of trans-

mit antennas and simultaneously serves relatively few single antenna users. In

codebook-based limited feedback systems, the requirement of the number of

codewords in the codebook increases due to the large number of transmit an-

tennas. In turn, increasing the size of the codebook results in a higher search

complexity while selecting an appropriate codeword from the codebook. There-

fore, codebook-based limited feedback systems are not considered practical for

massive MIMO/MISO systems. In this chapter, we present differential TCQ

schemes for limited feedback massive MISO FDD systems in temporally and

spatially correlated channels. The TCQ schemes presented in this chapter have

lower search complexity than the conventional codebook approach and are thus

suitable for massive MISO systems.

6.1 Motivation and Related Work

Recently, massive MISO has been widely investigated [47, 48] in FDD based

limited feedback massive MIMO systems. Most of the research on massive

MIMO considers TDD operations, but the performance of massive MISO based

TDD systems is limited due to practical issues such as pilot contamination [34],

RF calibration errors [115] and no downlink CSI training at the receiver [116].

In fact, most of the existing cellular systems use FDD operation.
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For a spatially correlated channel, a compressive sensing-based feedback

scheme is proposed in [117] with FDD operation, where the feedback con-

tents are dynamically configured depending on channel conditions. Recently,

open-loop and closed-loop training techniques have been developed in [116] for

massive MISO FDD systems, where long-term channel statistics and previously

received training signals are used to increase the performance of channel esti-

mation at the user. Moreover, with a small amount of feedback overhead, it is

shown in [116] that the closed-loop training scheme reduces the downlink train-

ing overhead. Recently, trellis based channel quantization methods have drawn

much attention in limited feedback massive MISO FDD systems due to their

low complexity compared to conventional codebook approaches.

In TCQ based limited feedback systems, the channel is quantized by the

user using the concept of a trellis with a source constellation and the Viterbi

algorithm. The input bit sequence of the selected trellis path is fed back to the

BS, where the BS uses a convolutional coder to regenerate the quantized channel

and computes the beamforming vectors. In conventional channel coding, the

Viterbi algorithm runs over the trellis stages where each stage represents time,

in limited feedback MISO systems with TCQ, each trellis stage corresponds to

a particular BS antenna element.

One way of selecting the trellis path is by using brute-force maximum-

likelihood (ML) optimization that searches for the best path (most likely se-

quence) from the set of all the trellis paths (also known as trellis codewords).

However, due to the exhaustive search, it is not practical to consider brute-

force ML, therefore the Viterbi algorithm is preferred as it reduces the search

complexity by relying on the surviving trellis paths only.

A trellis based channel quantization scheme is proposed in [47], for SU mul-

ticell MISO systems with large numbers of BS antennas. A noncoherent TCQ

(NTCQ) approach for a massive MISO system is proposed in [48], where a bank

of coherent detectors is implemented to realize near optimal noncoherent detec-

tion. Here, TCQ with Ungerboeck’s trellis is used to quantize the CDI for a SU

massive MISO system. By adopting Ungerboeck’s TCM structures, the TCQ

scheme uses source constellations such as QPSK, 8PSK or 16QAM to quantize

channel entries. A convolutional code is implemented at the BS to reconstruct

the quantized channel. Three different limited feedback schemes are proposed

in [48] for three different channel models; an i.i.d. Rayleigh fading channel, a

temporally correlated channel and a spatially correlated channel. The drawback

of differential NTCQ method in [48] is that the quantization process requires

additional feedback of optimization parameters, thus increasing the feedback

overhead. On the other hand, the adaptive TCQ method proposed in [48] for

spatially correlated channels requires knowledge of transmit correlation at the

transmitter.
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In this chapter, we adopt the TCQ framework to quantize the MISO chan-

nel at each user for temporally correlated channels. Exploiting the temporal

correlation in the channel, we design a differential TCQ in [118] scheme that

transforms the source constellation at each stage in a trellis, such that it is cen-

tered around the previously selected constellation point, for the next feedback

instance. We use 2D translation and scaling schemes to transform the source

constellation. We derive a scaling parameter for the source constellation that

is a function of the amount of temporal correlation and the number of transmit

antennas.

We also discuss a TCQ based limited feedback scheme for spatially corre-

lated channels in [118] where we quantize correlated channel directly at the

receiver. Hence, unlike [48], the proposed scheme does not require knowledge

of the transmit correlation matrix at the transmitter. For spatially correlated

channels, we consider two antenna topologies: uniform linear array (ULA) and

uniform rectangular array (URA).

6.2 System Description

Consider a single-cell MU MISO system with nt transmit antennas at the BS.

The BS serves K single antenna users simultaneously using a suitable precoding

technique, where K < nt with a constant ratio q = nt/K. On the downlink, the

received signal for the kth user can be written as

yk =

√
ρ

K
h̃kx + nk, k = 1, . . . , K, (6.1)

where h̃k denotes the temporally correlated MISO channel modeled by FOGM

process given in (2.13). nk is the noise assumed to be i.i.d. with nk ∼ CN (0, 1)

∀k and ρ is the SNR. We assume uniform power allocation among K users. The

transmitted signal is given by x =
∑K

k=1wksk, where sk and wk are the data

symbol and nt × 1 unit-norm precoding vector for the kth user, respectively.

We use TCQ schemes (to be discussed later) to quantize CDI vectors, ũk =
h̃k

‖h̃k‖
, for temporally correlated channels (2.13), and ûk = ĥk

‖ĥk‖
, for spatially

correlated channels (2.11). We denote the “quantized” CDI for the kth user by

q̃k and q̂k, for temporally and spatially correlated channels, respectively.

6.3 Expected SINR with MF Precoding

In this section, we derive approximations of the expected SINR with both perfect

CDI and RVQ codebook-based CDI, with MF precoding and large nt. The SINR

approximations derived here are used in Section 6.4 to compute the number of
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bits required to obtain a mean SINR performance with RVQ CDI that is z dB

below the SINR with perfect CDI. The downlink received signal in (6.1) can

also be written as

yk =

√
ρ

K

(

h̃kwk

)

sk
︸ ︷︷ ︸

desired signal

+
∑

j 6=k

√
ρ

K

(

h̃kwj

)

sj

︸ ︷︷ ︸

interference

+ nk
︸︷︷︸
noise

. (6.2)

Using the SINR in (3.7), the expected SINR can be written as

E [SINRk] = E






ρ
K

∣
∣
∣h̃kwk

∣
∣
∣

2

ρ
K

∑K
j 6=i

∣
∣
∣h̃kwj

∣
∣
∣

2

+ 1




 . (6.3)

Using the approach given in [119] to evaluate the expectation over the numerator

and the denominator, where both are functions of the same random variables,

and nt → ∞, we can write (6.3) as

E [SINRk] ≈
ρ
K
E

[∣
∣
∣h̃kwk

∣
∣
∣

2
]

ρ
K

∑K
j 6=i E

[∣
∣
∣h̃kwj

∣
∣
∣

2
]

+ 1

. (6.4)

6.3.1 Perfect CDI

For MF precoding with perfect CDI, we have wk = ũH
k and the expected SINR

approximation for the kth user using, (6.4), is written as

E [SINRk] ≈
ρ
K
E

[∣
∣
∣h̃kwk

∣
∣
∣

2
]

ρ
K

∑K
j 6=i E

[∣
∣
∣h̃kwj

∣
∣
∣

2
]

+ 1

(6.5)

(a)
=

ρ
K
E
[

‖h̃k‖2
]

E
[
|ũkũ

H
k |2
]

ρ
K
E
[

‖h̃k‖2
]
∑K

j 6=k E
[
|ũkũ

H
j |2
]
+ 1

, (6.6)

where (a) is due to the fact that amplitude and direction of h̃k are independent

[102]. In (6.6), E[‖h̃k‖2] = nt and E[|ũkũ
H
k |2] = 1. We note that E[|ũkũ

H
j |2] =

1
nt

, as ũk and ũj are independent unit norm vectors. Therefore, the expected

SINR approximation becomes

E [SINRk] ≈
ρq

ρ(K−1)
K

+ 1
, (6.7)
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which at high SNR (ρ→ ∞), can be written as

lim
ρ→∞

E [SINRk] ≈
nt

K − 1
. (6.8)

6.3.2 RVQ Codebook CDI

Consider a limited feedback system where the CDI is quantized using an RVQ

codebook of size Nc, thus requiring B = log2(Nc) feedback bits per user. Let

us denote the selected RVQ codeword vector of size nt × 1 for the kth user as

q̃k, using (3.14). For MF precoding with RVQ limited feedback, the expected

SINR approximation for the kth user, denoted by E
[

S̃INRk

]

, becomes

E
[

S̃INRk

]

≈
ρ
K
E
[

|h̃kq̃
H
k |2
]

ρ
K
E
[
∑K

j 6=k |h̃kq̃
H
j |2
]

+ 1
(6.9)

=

ρ
K
E
[

‖h̃k‖2
]

E
[
|ũkq̃

H
k |2
]

ρ
K
E
[

‖h̃k‖2
]
∑K

j 6=k E
[
|ũkq̃

H
j |2
]
+ 1

. (6.10)

Equation (6.10) comes from the independence between the amplitude and di-

rection of h̃k [102]. It is shown in [22], that the expectation E
[
|ũkq̃

H
k |2
]

is given

by

E
[
|ũkq̃

H
k |2
]
= 1−Ncβ

(

Nc,
nt

nt − 1

)

∆
= 1− E [Q] , (6.11)

where β(·, ·) denotes a beta function. In [22], an upper bound on E [Q] is given

by

E [Q] ≤ 2
−B
nt−1 . (6.12)

Due to the independence between the unit norm vectors ũk and q̃j, the sec-

ond expectation in the denominator of (6.10), is E
[
|ũkq̃

H
j |2
]

= 1
nt

. Also,

E
[

‖h̃k‖2
]

= nt and thus, the expected SINR approximation for the kth user

for the MF precoding system with RVQ codebooks can be expressed as

E
[

S̃INRk

]

≈ ρq (1− E [Q])
ρ
K
(K − 1) + 1

. (6.13)

At high SNR (ρ→ ∞), (6.13) becomes

lim
ρ→∞

E
[

S̃INRk

]

≈ nt (1− E [Q])

K − 1
. (6.14)
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6.4 Impracticality of RVQ Codebooks For Mas-

sive MISO

In this section, we show that codebook based limited feedback approaches are

not practical in massive MISO systems. Although this is known in an intuitive

sense, here we quantify the scale of the problem by computing the size of the

codebook required for a particular performance target. In particular, using

the results of Section 6.3, we derive the number of bits required to achieve

an expected SINR performance with RVQ codebooks that suffers a z dB loss

compared to the expected SINR performance with perfect CDI. We also briefly

discuss the search complexity of the quantization process with RVQ codebooks.

Such calculations require the RVQ assumption but give a clear indication of the

order of the codebook size for other more practical schemes.

The expected SINR approximations for MF precoding with both perfect CDI

and RVQ codebook CDI, derived in the previous section allows us to compute

the number of bits that is required to achieve an expected SINR with RVQ

which is z dB below the expected SINR with perfect CDI. We use (6.7) and

(6.13) to obtain

E [SINRk]

10
z
10

= E
[

S̃INRk

]

, (6.15)

and thus

ρq

10
z
10

(
ρ(K−1)+1

K

) =
ρq
(

1− 2
−B
nt−1

)

ρ
K
(K − 1) + 1

. (6.16)

Solving (6.16) for the number of feedback bits required, we have

Bz
req = −(nt − 1) log2

(

1− 1

10
z
10

)

. (6.17)

We note that in MF precoding systems with RVQ codebooks, unlike ZF precod-

ing [27], the number of feedback bits required to represent the quantized channel

does not depend on ρ. If nt = 100 and z = 3 dB, the number of bits required

to obtain a half of the perfect CDI expected SINR performance is, Bz
req = 99

bits i.e., a codebook of size 299 = 6.3383 × 1029. Even to achieve a very low

target where the signal power is equal to the interference-plus-noise power, i.e.,

E
[

S̃INRk

]

= 1, the number of bits required is

Breq = −(nt − 1) log2

(

1− K − 1

nt

)

. (6.18)
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For example, for nt = 100 and K = 10, using (6.18) we have Breq = 13.4701 ≈
14, which corresponds to 16384 codebook entries per user. While the feed-

back overhead with large nt may be acceptable, the search for an appropriate

codeword within the codebook is very challenging and becomes computation-

ally infeasible as nt increases. The search complexity for the RVQ codebook

quantization, given by O(nt2
Bnt) [48], grows exponentially with large nt. The

memory requirement also increases at the user with large codebook sizes. There-

fore, codebook-based limited feedback schemes are infeasible for massive multi-

antenna systems. This serves as a motivation to seek a non-codebook approach

for limited feedback MISO systems. Therefore, we develop two limited feedback

schemes for temporally and spatially correlated channels in Section 6.6 and

Section 6.7, respectively, that are based on the (non-codebook) TCQ scheme.

6.5 Limited Feedback with TCQ

In this section, we review basic concepts of TCQ based limited feedback sys-

tems. Limited feedback schemes based on TCQ [47,48,120] are recently gaining

attention in massive multiple antenna FDD systems due to their reduced com-

plexity compared to the conventional codebook approaches, in searching for an

appropriate codeword. The quantization of CDI at the user is performed using

TCQ, which consists of two key components: a trellis and a source constella-

tion. At the user, a trellis path that gives the minimum squared Euclidean

distance to the CDI is selected using the Viterbi algorithm. The input bit se-

quence corresponding to the selected path is then fed back to the BS using a

low-rate feedback link. At the BS, a convolutional coder is implemented to

decode the input bit sequence of the selected path to obtain the corresponding

output sequence. The output sequence is then mapped to the source constella-

tion to obtain the quantized CDI at the BS. Thus, the decoder and encoder of

the TCM scheme are used, respectively, to quantize and reconstruct a channel

vector in the TCQ method.

The block diagram of the feedback process is shown in Fig. 6.1, where the

perfectly estimated channel, h̃, is quantized by a user with the N -state trel-

lis decoder and QPSK constellation. Note that, before implementing TCQ,

the channel vector is normalized to obtain CDI, such that, ũ = h̃/‖h̃‖. After

implementing the TCQ, the input bit sequence, b, (of length nt with QPSK

constellation) of the selected path is fed back to the BS, where it is decoded to

recover the corresponding output sequence (of length 2nt with QPSK constel-

lation), using a convolutional coder. The output bit sequence is then mapped

onto the QPSK constellation to reconstruct the quantized channel vector, q̃.

The complexity of the Viterbi algorithm is O(LcNnt) [48], where Lc is the total

number of points in the source constellation and N is the number of states in
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Figure 6.1: The block diagram of the TCQ feedback process with QPSK con-
stellation.

the trellis.

Consider an example with a QPSK constellation along with a trellis structure

having N = 4 states. The QPSK constellation points are normalized by the

number of transmit antennas, nt. The normalized QPSK constellation and the

4-state, rate 1/2 Ungerboeck trellis structure are shown in Fig. 6.2 and Fig.

6.3, respectively. The decimal numbers 0, 1, 2 and 3 (or 00, 01, 10, and 11 in

binary) represent QPSK constellation points in Fig. 6.2. In Fig. 6.3, there are

only two state-transitions from any given state. Each transition is mapped to a

single QPSK point, hence each channel entry of ũ will be quantized with one of

the two BPSK sub-constellations represented by black and white circles in Fig.

6.2. The main idea in TCQ encoding is to advance through an N-state trellis,

1

2

3

0

Figure 6.2: The normalized QPSK constellation points.

where the nth stage corresponds to the nth antenna channel. At any particular

stage, there will be only N survivor paths in the Viterbi algorithm. We label

the paths by their respective output symbols. For example, starting from state

0 and moving through all the paths in the trellis to reach stage 3, gives 2N

total paths. At stage 3, each state will have two paths terminating at it. As
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illustrated in Fig. 6.3, we have the following paths:

[0, 0, 0] and [2, 1, 2] at state 0,

[0, 0, 2] and [2, 1, 0] at state 1,

[0, 2, 1] and [2, 3, 3] at state 2,

[0, 2, 3] and [2, 3, 1] at state 3.

The path p2 = [2, 1, 2] terminating at state 0 corresponds to the output vector

out(p2) =
[

−1√
nt
, +j√

nt
, −1√

nt

]

from the QPSK constellation in Fig. 6.2 and the input

bit sequence is b = [1, 0, 0]. The user selects the best path from each state that

gives minimum squared Euclidean distance to the normalized channel vector ũ.

The path metric can be defined at the nth stage as [48]

metric(p(n)) = ‖ũ(n) − out(p(n))‖22, (6.19)

where ũ(n) is a truncated normalized channel vector up to the nth channel entry.

Equation (6.19) can be written recursively as

metric(p(n)) = metric(p(n−1)) + |ũ(n) − out(p(n))|2, (6.20)

where ũ(n) and p(n) are the nth entries of ũ and p(n). The solution to (6.20) that

minimizes the path metric is obtained via a Viterbi algorithm. This enables

us to determine the quantized CDI for large antenna numbers in a piecewise

manner.

We assume that the TCQ scheme always starts from state 0, and thus it

does not require the additional log2(N) bits to be fed back to the BS to indicate

the starting state. Due to large channel dimensions, we are dealing with a long
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Figure 6.3: The 4-state, rate 1/2 Ungerboeck trellis structure.
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1

2

3

0

QPSK Constellation

Figure 6.4: The convolutional coder corresponding to the 4-state rate 1/2 Unger-
boeck trellis. In this figure, b is the input bit sequence, while bout,1 and bout,2
are the corresponding output bits for each entry of the input.

trellis structure therefore the quantization errors associated with always starting

from state 0 is not significant.

0/0  1/4  2/4  3/6

0/1  1/5  2/3  3/7

0/4  1/0  2/6  3/2

0/5  1/1  2/7  3/3
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0/3  1/7  2/1  3/5
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0/7  1/3  2/5  3/1

(a) 8-state rate 2/3 Ungerboeck trellis structure for 8PSK constellation.

1

2

3
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8PSK Constellation

4
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6

7

(b) Convolutional coder corresponding to 8-state rate 2/3 Ungerboeck trellis structure
for 8PSK constellation.

Figure 6.5: Trellis structure and convolutional coder for limited feedback TCQ
with 8PSK constellation.
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The source constellation plays an important role in deciding the required

number of feedback bits. If the source constellation consists of Lc number of

symbols or constellation points, then the length of the input bit sequence (or the

number of feedback bits) after TCQ becomes nt (log2(Lc)− 1). Therefore, in

order to keep the feedback overhead reasonable, we use QPSK and 8PSK source

constellations, requiring nt and 2nt feedback bits, respectively. Another benefit

is that all the constellation points in a PSK constellation are positioned with

uniform angular spacing around a circle, yielding maximum phase separation

between adjacent constellation points.

The performance of the TCQ based limited feedback scheme depends on the

constellation size, the higher the constellation size the fewer the quantization

errors. However, using the higher order source constellation increases the feed-

back overhead. The 8PSK source constellation consists of Lc = 8 constellation

points. The 8-state, rate 2/3 Ungerboeck trellis structure and corresponding

convolutional coder are shown in Fig. 6.5(a) and Fig. 6.5(b), respectively.

The limited feedback TCQ method with 8PSK constellation is similar to

QPSK constellation, where with the 8PSK constellation each channel entry is

quantized by 2 bits, hence doubling the feedback overhead compared to the

QPSK constellation.

6.6 Differential TCQ Scheme for Temporally Cor-

related Channels

Here, we discuss a differential extension to the TCQ method discussed in Section

6.5 which allows us to quantize the temporally correlated massive MISO CDI

after successively transforming (translating and scaling) the source constellation

following each feedback interval. This repositioning of the source constellation

allows the feedback process to track the channel of each antenna over time. We

assume a single Viterbi block at each user1.

6.6.1 Transformed Source Constellation

The basic idea in the differential TCQ is to keep track of the selected source

constellation points at each trellis stage and define a new constellation for the

next feedback centered around the previously selected constellation points. For

the first feedback interval, we use the TCQ method described in Section 6.5.

Starting with the second feedback interval, the constellation points are trans-

formed for all the stages at time t such that the previously selected constellation

points becomes the new centers of the transformed constellations at time t+ 1.

1Unlike [48], multiple blocks of parallel coherent decoders with different amplitude scalings
and phase rotations are not used, as this offers limited gain.
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For example, all four points in the original non-normalized QPSK constella-

tion [1, j,−1,−j] are transformed into new points using translation and scaling

methods, to be discussed. Apart from this modification, the quantization pro-

cess follows the TCQ approach discussed in Section 6.5.

An example of the proposed method with QPSK constellation for the first

3 stages with N = 4 is shown in Fig. 6.6, where the first feedback at t = 0 is

illustrated at the top with red dots representing the selected QPSK points at

each stage for the selected path [2, 1, 2]. At t = 1, the transformed QPSK con-

stellation at each stage is shown in the middle of Fig. 6.6 for the selected path

[0, 2, 1]. At any given stage, the transformed QPSK constellation is centered

around the previously selected QPSK point (t = 0), with a scaling factor κc
(derived in Section 6.6.2). It should be stressed that this proposed transforma-

tion of the QPSK constellation is achieved at both BS and user without sharing

any additional information through the feedback link. The BS also transforms

the QPSK constellation after each feedback such that the new constellation at

each stage is centered around the previously selected QPSK point.
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Figure 6.6: An example of scaled and rotated QPSK constellation points at
t = 1 centered around the previously selected point at t = 0 for up to three
antenna channels.
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6.6.2 2D Translation and Scaling Techniques

The TCQ method for massive MISO channels uses the Viterbi algorithm to

quantize the channel and unlike conventional MISO systems, it does not main-

tain a codebook that is scaled and rotated to the desired location. Hence, we

introduce 2D translation and scaling transformations for the non-normalized

source constellation (i.e., [1, j,−1,−j], for QPSK) at each stage in the trellis.

Applying the transformation (6.21) to each point in the source constellation,

we ensure that the previously selected constellation point, x̂[t− 1] = â[t− 1] +

jb̂[t−1] is at the center of the transformed constellation. The translation of the

ith constellation point, xi = a + jb, along with scaling by κc is given by [121]







ã[t]

b̃[t]

1






=







1 0 â[t− 1]

0 1 b̂[t− 1]

0 0 1













κc 0 0

0 κc 0

0 0 1













a

b

1






, (6.21)

where x̃i[t] = ã[t] + jb̃[t] is the ith transformed constellation point. All points in

the constellation are translated and scaled using (6.21). Note that scaling and

translation are performed on the non-normalized source constellation points.

In order to track the nth channel entry, ũ(n), over time, the scaling factor,

κc, needs to be carefully designed, such that ũ(n) lies close to the transformed

constellation points. We can define the mean channel variation due to the

temporal correlation for the nth antenna as the mean Euclidean distance between

the current and the previous normalized channel values, that is

dEuclidean = E
[∣
∣ũ(n)[t− 1]− ũ(n)[t]

∣
∣
]
, (6.22)

= E

[∣
∣
∣
∣
∣

h̃(n)[t− 1]

‖h̃[t− 1]‖
− h̃(n)[t]

‖h̃[t]‖

∣
∣
∣
∣
∣

]

, (6.23)

where h̃(n)[t−1] and h̃(n)[t] denote the nth entry of the channel vectors h̃[t−1] and

h̃[t], respectively. Due to channel hardening [36] caused by the large dimensions

of h̃[t] and h̃[t− 1], ‖h̃[t]‖2
nt

and ‖h̃[t−1]‖2
nt

approach 1, and thus

h̃(n)[t]

‖h̃[t]‖
=

h̃(n)[t]/
√
nt

√

‖h̃[t]‖2/nt

≈ h̃(n)[t]√
nt

. (6.24)
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This allows us to approximate (6.23) as

dEuclidean ≈ 1√
nt

E
[∣
∣
∣h̃(n)[t− 1]− h̃(n)[t]

∣
∣
∣

]

, (6.25)

=
1√
nt
E
[∣
∣
∣h̃(n)[t− 1]−

(

ǫh̃(n)[t− 1] +
√
1− ǫ2y(n)[t]

)∣
∣
∣

]

, (6.26)

=
1√
nt

E
[∣
∣
∣h̃(n)[t− 1] (1− ǫ)−

√
1− ǫ2y(n)[t]

∣
∣
∣

]

, (6.27)

where y(n)[t] denotes the nth entry of the vector y[t] in (2.13). Denoting ℜ{h̃(n)[t−
1]} and ℑ{h̃(n)[t−1]}, ℜ{y(n)[t]} and ℑ{y(n)[t]} as the real and imaginary parts

of h̃(n)[t− 1] and y(n)[t], respectively, we have

dEuclidean ≈ 1√
nt
E
[√

X2 + Y 2
]

, (6.28)

where

X = (1− ǫ)ℜ{h̃(n)[t− 1]} −
√
1− ǫ2ℜ{y(n)[t]},

and

Y = (1− ǫ)ℑ{h̃(n)[t− 1]} −
√
1− ǫ2ℑ{y(n)[t]}. (6.29)

Since ℜ{h̃(n)[t−1]}, ℜ{y(n)[t]}, ℑ{h̃(n)[t−1]} and ℑ{y(n)[t]} are independent and

distributed according to the normal distribution N (0, 1/2), the random variables

X and Y are N (0, 1 − ǫ). Therefore, Z =
√
X2 + Y 2 is Rayleigh distributed

with scale parameter σ =
√
1− ǫ, and the mean value

√
1− ǫ

√

π/2 [122]. We

can now write (6.28) as

dEuclidean ≈
√

π(1− ǫ)

2nt
. (6.30)

The mean channel variation includes the effects of both temporal correlation

and the number of transmit antennas at the BS. Therefore, in order to track

slowly varying channels and to have the source constellation points closer to

each other for fine quantization, we use (6.30) as the scaling value, κc, after the

first feedback interval, such that

κc =

√

π(1− ǫ)

2nt
, t > 0. (6.31)

The initial scaling factor for the source constellation, κ0 = 1/
√
nt, is used only

for the first feedback interval. Following the first feedback interval, the value

used to scale the source constellation for the remaining feedback intervals is κc.

In (6.31), the larger the value of nt, the smaller the value of κc, i.e., there is

less variation in the channel. Both BS and the user compute the scaling value
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in (6.31) using the temporal correlation coefficient (assumed to be known at

the BS and user) and the number of BS antennas. This value needs not to

be computed after each feedback interval as long as the temporal correlation

statistic of the channel remains the same.

The differential TCQ method discussed in Section 6.6 for the temporally

correlated MISO channel does not increase the feedback overhead and perfor-

mance improvements are achieved via the systematic translation and scaling of

the QPSK constellation. It is important to note that the NTCQ differential

scheme [48] depends on two crucial operations: a) finding the null space of the

temporally correlated channel vector before quantization and b) selecting the

appropriate weights after quantization. In contrast, the differential TCQ scheme

relies solely on the transformation of the source constellation and does not re-

quire finding optimal weights, thus reducing the complexity. The differential

TCQ scheme also reduces the feedback overhead as it does not have to feedback

additional bits (for optimal weights) to the BS. We compare the performance

of the two schemes in Section 6.8.

6.7 TCQ Scheme for Spatially Correlated Chan-

nels

In this section, we present a TCQ scheme to quantize spatially correlated mas-

sive MISO channels. In conventional MIMO systems, the codebook design for a

spatially correlated channel is fixed where codebook entries are directed towards

dominant eigenvectors of the transmit correlation matrix [45]. As discussed in

Section 6.4, massive MISO systems using codebook based limited feedback tech-

niques are not practically feasible. Therefore, an alternate method is needed to

quantize a spatially correlated channel. For this purpose, an adaptive TCQ

based limited feedback method is developed in [48] that decorrelates the chan-

nel at the user before quantization. The drawback of this method is that it

requires the knowledge of the spatial correlation matrix at the transmitter. In

this study, the spatially correlated massive MISO channel is modeled by

ĥ = hR
1/2
t , (6.32)

where h is an 1×nt vector with entries distributed according to CN (0, 1). Rt is

the spatial correlation matrix of the transmitter. The entries of Rt, r
ij
t , follow

an exponential correlation model given by [55, 116]

rijt = zd
ij

t , (6.33)
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where dij is the distance between the antenna i and j. zt is a spatial correlation

coefficient with 0 ≤ zt ≤ 1, where 0 represents no spatial correlation and 1

represents a fully correlated channel. We consider ULA and URA antenna

topologies at the BS. The one-dimensional ULA is much larger than the compact

URA, therefore the latter is practically more suitable for Massive MISO. We

constrain the dimensions of the URA, such that for a given value of nt, the

dimensions of the URA are
√
nt ×

√
nt. In order to design a TCQ scheme for
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(û
)

-0.3

-0.2

-0.1

0

0.1

0.2

z
t
 = 0.999

ℜ(û)
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Figure 6.7: Distribution of channel entries of the normalized channel for nt =
100 and for different values of zt.

spatially correlated massive MISO channels, we first analyze the impact of zt
on the distribution of channel entries. For this purpose, we plot the channel

entries of the normalized spatially correlated channel with nt = 100, over a

large number of channel realizations in Fig. 6.7, for various values of zt. If û(i)

is the ith element of ĥ/‖ĥ‖ and ĥ(i) is the ith element of ĥ, then in the i.i.d.

case (zt = 0), |û(i)|2 = |ĥ(i)|2/∑nt

j=1 |ĥ(j)|2 and since each |ĥ(j)|2 is a standard

exponential, |û(i)|2 has a Beta distribution. Hence, the amplitude of û(i) is

the square root of the a Beta variable with range, 0 < |û(i)| < 1. Since the

phase of ĥ(i) is uniform on [0, 2π], it follows that the normalized channel entries

are isotropic, as shown by the circular pattern in Fig. 6.7. At the opposite

extreme, when zt = 1, we have perfectly or fully correlated entries. Denoting

the ith element of the fully correlated channel by û
(i)
f , where û

(i)
f = ûf ∀i, then

|û(i)f |2 = |ĥ(i)f |2/∑nt

j=1 |ĥ
(j)
f |2 = 1/nt. Hence, for zt = 1, the channel entries lie

on a circle of radius 1/
√
nt, as shown in Fig. 6.7. Clearly as zt varies from 0 to

1, the channel entry distribution changes from a circular spread with random

radius to a fixed circle of radius 1/
√
nt.

From Fig. 6.7, we also make the following observation. As, the value of zt
increases, the distribution of entries of the normalized spatially correlated chan-
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nel shows less spread compared to i.i.d. Rayleigh channels (zt = 0). However,

this trend is mainly visible for high values of zt, such that zt → 1. Even with

zt = 0.9, the spread of the normalized channel entries is similar to the zt = 0

case.

Motivated by these observations, we develop a TCQ scheme for highly spa-

tially correlated MISO channels by considering the fully correlated channel. We

set the scaling parameter, κ̂c, for the source constellation as MMSE between

the entries of the fully correlated normalized channel (zt = 1) and the scaled

source constellation, given by

κ̂c = arg min
0≤i≤Lc

κ̂c>0

E
[
|ûf − κ̂cxi|2

]
, (6.34)

where xi corresponds to the ith point in the source constellation. The scaling

parameter value is selected from the set of positive real numbers, such that, κ̂c >

0. The solution to (6.34) is equal to the standard deviation of the channel entries

ûf given by 1/
√
nt. Therefore, for the TCQ method for spatially correlated

channels, we set the scaling parameter for the source constellation as

κ̂c =
1√
nt
. (6.35)

The TCQ method for spatially correlated channels uses the TCQ method

discussed in Section 6.5 to quantize the channel, ĥ in (6.32), where the source

constellation (either QPSK or 8PSK) used is scaled by κ̂c and is fixed across all

the stages in the trellis. Although, we have assumed the fully coorelated channel

for computing κ̂c, this scaling value has shown to work well in the numerical

section (Section 6.8) for highly correlated channels (where zt < 1).

The block diagram of the TCQ technique for spatially correlated channels,

at the user/receiver is shown in Fig. 6.8. Note that as discussed in Section 6.5

and 6.6, the channel vector ĥ is normalized before TCQ encoding. The channel

reconstruction at the transmitter is same as explained in Section 6.5.

Unlike [48], the TCQ method for spatially correlated channels does not

decorrelate the channel at the user in order to quantize h, instead it directly

quantizes the channel ĥ. Therefore, unlike [48], it does not require the knowl-

edge of the correlation matrix at the transmitter to reconstruct the correlated

channel, hence reducing the feedback overhead of additional information to the

transmitter. The performance of the TCQ scheme for spatially correlated chan-

nels is demonstrated in Section 6.8 for ULA and URA topologies.
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     Source
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Figure 6.8: The block diagram of channel quantization at the user for spatially
correlated channels.

6.8 Numerical Results and Discussion

In this section, we present simulation results for TCQ schemes for temporally

and spatially correlated massive MISO channels, discussed in Section 6.6 and

Section 6.7, respectively. We compare the performance of these schemes with

the differential NTCQ and the adaptive NTCQ techniques in [48]. We consider

three types of channels: the temporally correlated channel (2.13), the spatially

correlated channel (2.11) and the standardized WINNER II channel (2.16).

In the case of a MU MISO system we assume a constant ratio q = nt/K = 10.

As discussed in the previous chapter, the feedback interval is set to 5 ms. The

carrier frequency is 2.5 GHz. We assume that the feedback link is lossless with

zero delay in the simulations. For a fair comparison between the TCQ schemes

and the NTCQ schemes [48], the source constellations used are QPSK and 8PSK

with N = 4 and N = 8, respectively. A single block of the trellis decoder is

considered at the receiver.

For the QPSK source constellation, we use the 4 state rate 1/2 Ungerboeck

trellis structure shown in Fig. 6.3 and the corresponding convolutional coder

presented in Fig. 6.4. For the 8PSK source constellation, we employ the 8 state

rate 2/3 Ungerboeck trellis structure shown in Fig. 6.5(a) and the corresponding

convolutional coder presented in Fig. 6.5(b).

In the figures, we refer to the differential NTCQ method of [48] for temporally

correlated channels as “Diff. NTCQ”. The differential TCQ method is referred

to as “Diff. TCQ”. Similarly, for spatially correlated channels, we refer to the

TCQ scheme in Section 6.7 as “Spatial corr.” and adaptive NTCQ scheme in [48]

is referred as “Adaptive spatial corr.”.
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Figure 6.9: Average beamforming gain versus feedback intervals with nt = 100
and nt = 200 for ǫ = 0.9881(v = 3 km/h).

6.8.1 Temporally Correlated Channels

For temporally correlated channels, we use the channel model in (2.13) and

present the performance of the proposed differential TCQ scheme in MU massive

MISO systems.

Beamforming gain

We use the average beamforming gain metric [48] defined as E
[

|h̃[t]q̃[t]|2
]

, to

evaluate the performance of a MISO system. The average beamforming gain

shows how well quantized channels match actual channels. Fig. 6.9 shows

average beamforming gain results in dB against 100 feedback blocks (size of

each block is 5 ms) for the user velocity v = 3 km/h (ǫ = 0.9881) with nt = 100

and nt = 200. The differential TCQ scheme provides approximately 1 dB gain

compared to [48] for both nt = 100 and nt = 200 with QPSK constellation. The

average beamforming gain with 8PSK constellation is higher than the QPSK

constellation because the former uses 2 bits to quantize each antenna channel,

resulting in smaller quantization errors.

It is important to note that the differential TCQ scheme requires nt and 2nt

feedback bits with QPSK and 8PSK constellations, respectively, whereas an ad-

ditional 4 bits are required in the differential NTCQ method [48] for obtaining

the optimal weights corresponding to quantized CDI, hence increasing the total

number of feedback bits to nt + 4 and 2nt + 4 for QPSK and 8PSK, respec-

tively. Thus, in addition to the improved beamforming gain, the differential

TCQ method also reduces the feedback overhead.
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Figure 6.10: Average spectral efficiency versus time with nt = 100 and ǫ =
0.9881 (v = 3 km/h).

MU spectral efficiency and SINR performance
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Figure 6.11: Average spectral efficiency versus time with nt = 100 and ǫ =
0.9672 (v = 5 km/h).

For MU MISO systems, we use ZF precoding and MF precoding to com-

pute average SINR (3.7) and spectral efficiency (3.6) results. Figs. 6.10(a) and

6.10(b) show the average spectral efficiency versus feedback interval for a MU

massive MISO system at SNR, ρ = 10 dB, with nt = 100 and v = 3 km/h

(ǫ = 0.9881) with QPSK and 8PSK constellations, respectively. ZF precod-

ing outperforms MF precoding in the temporally correlated channels. We also

note that the spectral efficiency of the differential TCQ scheme exceeds that

of the differential NTCQ method with both QPSK and 8PSK constellations.

In Fig. 6.10(a), the differential TCQ scheme provides nearly 13 bps/Hz and

2 bps/Hz average spectral efficiency gains compared to the differential NTCQ

method with QPSK constellation, for ZF and MF precoding schemes, respec-

tively. A similar trend is seen in Fig. 6.10(b) with 8PSK constellation for ZF
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Figure 6.12: Average spectral efficiency versus time with nt = 100 and ǫ =
0.9363 (v = 7 km/h).

precoding, but for MF precoding the performance gap between the differential

TCQ scheme and the differential NTCQ scheme decreases. As the velocity in-

creases to v = 5 km/h, the variations in the channel also increase which leads to

a higher spectral efficiency loss as seen in Fig. 6.11(a) and Fig. 6.11(b). A sim-

ilar trend is seen in Fig. 6.12(a) and Fig. 6.12(b), for v = 7 km/h. It is noticed

that as the velocity of the users increases, the differential TCQ scheme exhibits

higher spectral efficiency loss compared to differential NTCQ scheme with ZF

precoding, but still performs better than the differential NTCQ scheme.

Table 6.1 shows the average spectral efficiency of the differential TCQ scheme

and the differential NTCQ scheme for various speed values with ZF precoding

and QPSK constellation. The differential TCQ yields better average spectral

efficiency for slow speeds compared to the differential NTCQ scheme. However,

at v = 13 km/h, both schemes have the same performance.

Figure 6.13 shows the average spectral efficiency against different values

of q for the differential TCQ and differential NTCQ schemes using a QPSK

constellation with nt = 100, v = 3 km/h and ρ = 10 dB. The proposed scheme

achieves better spectral efficiency than the differential NTCQ scheme, as the

former yields less quantization error. It is seen that as more users are added to

the system, the performance gain with the proposed scheme increases compared

to the differential NTCQ scheme.

The per user SINR CDF is shown in Fig. 6.14 at SNR, ρ = 10 dB with

QPSK constellation. For ZF precoding, the SINR CDF of the differential TCQ

scheme has a long-tail. This is because the basic TCQ method (discussed in

Section 6.5) is used for the first feedback yielding low SINR performance, but

with time the SINR performance improves using the differential TCQ method.

The SINR CDFs confirm the spectral efficiency results i.e., the mean SINR of

the differential TCQ scheme is greater than the differential NTCQ method for
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Table 6.1: Average spectral efficiency of the proposed differential TCQ scheme
and the differential NTCQ scheme in [48] with ZF precoding and QPSK con-
stellation for nt = 100, q = 10 and ρ = 10 dB.

v = 3 km/h v = 5 km/h v = 7 km/h v = 10 km/h v = 13 km/h

ǫ = 0.9881 ǫ = 0.9672 ǫ = 0.9363 ǫ = 0.8721 ǫ = 0.7895

Diff. TCQ 60 bps/Hz 55 bps/Hz 52 bps/Hz 45 bps/Hz 39 bps/Hz

Diff. NTCQ 50 bps/Hz 48 bps/Hz 47 bps/Hz 44 bps/Hz 39 bps/Hz

q
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Figure 6.13: Average spectral efficiency for various q = nt/K values with QPSK
constellation, nt = 100 and ǫ = 0.9881 (v = 3 km/h).
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both ZF and MF precoding schemes.
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6.8.2 Spatially Correlated Channels

For spatially correlated channels, we use the channel model in (6.32) and present

the performance of the TCQ scheme for spatially correlated channels, discussed

in Section 6.7, for MU massive MISO systems. We consider both ULA and

URA antenna topologies as discussed in Section 6.7.

Beamforming gain

In Fig. 6.15, we compare the spatially correlated TCQ scheme and the adaptive

TCQ technique presented [48], in highly correlated channel, such that zt → 1.

The comparison is performed in terms of the average beamforming gain for

MISO systems given by E
[

|ĥq̂|2
]

, using QPSK and 8PSK constellations with
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ULA and URA. It is seen in Fig. 6.15 that the spatially correlated TCQ scheme

performs slightly better than the adaptive NTCQ with both QPSK and 8PSK

constellations. However, for not too high values of zt, the performance of both

the schemes is equivalent.

It is important to mention that the TCQ scheme for spatially correlated

channels (discussed in Section 6.7) does not require any knowledge (perfect

or partial) of the spatial correlation matrix, Rt, at the transmitter. On the

other hand, it is assumed in [48] that perfect knowledge of Rt is available at

the transmitter. It is also noted that the ULA provides higher beamforming

gain compared to the URA. This is due to the fact that the URA induces

higher spatial correlation in the channel than the ULA, thus resulting in reduced

beamforming gain.

We plot average beamforming gain in Fig. 6.16 for different values of nt with

fixed zt = 0.99. At higher values of nt, the gain of the spatially correlated TCQ

scheme is approximately 0.5 dB and 1 dB higher than the gain of the adaptive

NTCQ scheme, with QPSK and 8PSK constellations, respectively.

MU spectral efficiency performance

The average spectral efficiency of the MU MISO system is shown in Fig. 6.17

for the spatially correlated TCQ scheme with nt = 100 and zt = 0.9 and 0.99.
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Figure 6.17: Average spectral efficiency against different SNR values for nt = 100
with ZF precoding.

ZF precoding is used to compute precoding vectors at the BS. It is noticed

that the spatial correlation reduces the spectral efficiency of the TCQ based

limited feedback MU MISO system. Also, interference due to the quantization

process is a limiting factor that causes the spectral efficiency to saturate at

high SNR values. Due to their being more adjacent antennas, the correlation in
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the URA is higher than that of the ULA and this results in a reduced spatial

separation between users. Therefore, we note that the ULA provides significant

improvement in the spectral efficiency compared to the URA. The dominance of

ULA compared to other antenna topologies, in terms of the spectral efficiency,

is also noticed in [123–125].

6.8.3 WINNER II Channels

We also evaluate the performance of the differential TCQ scheme (discussed

in Section 6.6) in the standardized WINNER channel model given by (2.16).

For the WINNER II channel, we use nt = 100 transmit antennas in a ULA

setting with 0.5λ spacing between them. We consider a UMa scenario with

NLoS propagation. The carrier frequency is 2.5 GHz and the velocity of the

receiver is v = 1 km/h.

For the parameters discussed above, we generate WINNER II MISO chan-

nels and plot the average beamforming gain for massive MISO system with both

QPSK and 8PSK constellations. As the WINNER II channel model is both

temporally and spatially correlated, we rely on the differential TCQ scheme

(discussed in Section 6.5) to keep track of the channel entries over time. As-

suming that the velocity is perfectly estimated at the receiver, we compute the

temporal correlation coefficient, ǫ, as defined in FOGM channels (2.13). The

result shown in Fig. 6.18 has a similar trend to that of the temporally correlated

channel generated with the FOGM process shown in Fig. 6.9. This validates

the performance of the differential TCQ scheme in real-world channels.
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Figure 6.18: Average beamforming gain versus feedback intervals with nt = 100
for ǫ = 0.9987 (v = 1 km/h).

It is evident from the numerical results that the TCQ schemes discussed in

Section 6.6 and 6.7 for temporally and spatially correlated channels, respectively,
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yield better performance than existing NTCQ schemes [48]. For temporally cor-

related channels, we note that scaling and transforming the source constellation

is helpful in tracking the slowly varying channel entries over time. It is due

to this successful tracking that the differential TCQ scheme achieves high per-

formance in terms of spectral efficiency and beamforming gain. On the other

hand, the TCQ scheme for spatially correlated channels gives superior perfor-

mance than the adaptive NTCQ scheme [48], as unlike the adaptive NTCQ

scheme, it quantizes the correlated CDI. We also note that scaling the source

constellation by 1/
√
nt yields better performance in high spatially correlated

channels (zt → 1).

6.9 Summary

In this chapter, we have discussed efficient TCQ schemes to quantize tempo-

rally and spatially correlated channels in a massive MISO setting. We evaluated

performance using QPSK and 8PSK constellations and a single trellis decoder

block at each user. In the differential TCQ, we transformed the source constel-

lation at each stage in a trellis separately, such that the resulting constellation

is centered around the previously selected constellation point. Consequently,

2D translation and scaling techniques were introduced to transform the source

constellation. The scaling factor for the source constellation was also derived

that exploits the temporal correlation present in the channel and scales the con-

stellation accordingly for the given number of BS antennas and the temporal

correlation coefficient.

One of the major advantages of the TCQ based limited feedback technique

is that the selection and searching of the appropriate codeword becomes simpler

using the Viterbi algorithm.

We have shown through simulations that the TCQ schemes discussed out-

performs the NTCQ methods by improving the SINR and spectral efficiency

results and reducing the feedback overhead by a small amount.
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7
Coordinated Multicell MU MISO

Systems

Up to this point we have considered single-cell systems without out-of-cell in-

terference. In this chapter, we investigate a mutlicell system where out-of-cell

interference is considered. Unlike the previous chapter, we focus on conventional

(small-scale) MU MISO systems with i.i.d. Rayleigh fading channels. We use a

coordinated RZF precoding strategy where base stations installed at neighboring

cells share interfering CSI. By considering this CSI while precoding the serving

BS reduces interference at its users. Generally, in multicell systems the cell-edge

users are more susceptible to the interference coming from the neighboring cells.

Therefore, the main focus of this study is to reduce the interference at the cell-

edge users through cell coordination. We derive expected SINR approximations

for the coordinated RZF scheme with perfect CDI and RVQ codebook-based

limited feedback quantized CDI. Later, we discuss the adaptive bit allocation

scheme that minimizes the mean interference at the user, and present numerical

performance results.

7.1 Motivation and Related Work

In cellular communication, the performance of the MU MIMO system is mainly

assessed by the average spectral efficiency of the cell and by the data-rate at the

cell-edge. For single-cell systems, one way to improve the cell-edge performance

is by increasing the transmit power at the BS. However, for multicell systems

doing this increases the level of interference to other cells. In practice the

users close to the cell-edge are more susceptible to ICI. Consequently, their
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individual rate and the spectral efficiency of the cell degrades. Such a loss can

be avoided by having coordination between base stations, where information is

exchanged among the base stations via a backhaul link to suppress the ICI in

the downlink [29,30,126–130]. An overview of the multicell systems is presented

in [31].

Numerous studies have dealt with multicell MU MIMO systems with perfect

CSI, as well as for limited feedback based quantized CSI. In [49], a limited

feedback strategy for MU MISO multicell systems at high SNR is developed

using RVQ codebooks [22]. Here, the idea is to design beamforming vectors

using a generalized eigenvector approach. The multicell model considered in [49]

is based on the Wyner model [131] and feedback bits are allocated adaptively

among the serving and interfering channels by minimizing the mean rate loss of

the system.

An adaptive bit allocation method which maximizes the spectral efficiency

is proposed in [50] for limited feedback systems. Similarly, an adaptive feedback

scheme for limited feedback MISO systems is developed in [128] with the ZF

precoding scheme, where the adaptive bit allocation is realized by minimizing

the expected spectral efficiency loss in multicell systems. The majority of the

work discussed above has two common features, in that they all use RVQ code-

books and rely on solving optimization problems to adaptively allocate the bits

to the serving and out-of-cell interfering channels.

An adaptive bit allocation scheme for joint processing (JP) MISO systems

is presented in [51] with limited feedback. Here base stations not only exchange

CSI but also share data of the users through backhaul links. The proposed

work in [132] finds the precoder in each cell that maximizes a weighted spectral

efficiency across the network. It has been shown to achieve twice the spectral

efficiency performance compared to the conventional equal bit allocation scheme

in a three cell network. More recently, a coordinated beamforming with an

adaptive feedback bit allocation is proposed for MU heterogeneous networks

in [52].

Despite the numerous studies on coordinated multicell systems, little at-

tention was paid to coordinated RZF precoding until massive MIMO became

popular [133, 134]. Therefore, in this chapter, we investigate coordinated RZF

precoding but for conventional (small-scale) multicell MU MISO systems. We

develop a coordinated RZF precoding strategy [135], where base stations share

out-of-cell interfering CSI to coordinate, such that interference at cell-edge users

is suppressed. For this purpose, we adopt a coordination zone within each cell,

as in [128]. The user in this coordination region is defined as a cell-edge user

and it feeds back both serving and out-of-cell interfering channels to the serv-

ing BS. The serving BS shares the out-of-cell interfering CSI with the relevant

interfering base stations.
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The main reason for sharing interfering channels is that the interfering BS

considers these channels while designing precoding vectors to minimize the in-

terference in the network. Although the idea of sharing out-of-cell interfering

channels is presented in [128] using ZF precoding, in this study, we use RZF

precoding which has been shown to be more effective than ZF in the low SNR

regime [10]. We also derive expected SINR approximations for the coordinated

RZF scheme with the perfect CDI and the RVQ codebook CDI at the BS. Fur-

thermore, we develop an adaptive bit allocation scheme that distributes the bits

to serving and out-of-cell interfering channels, such that the expected interfer-

ence is minimized at the user.

7.2 Downlink System Description

Consider a multicell MU MISO system with C coordinating cells consisting of

a single BS each. Each BS has nt transmit antennas to simultaneously serve K

single antenna users in the cell. All the C cells are interconnected via backhaul

links. The backhaul is assumed to be error free and to have no delay. In this

study, we assume that the total number of users in all the coordinating cells

is equal to or less than the number of transmit antennas nt at each BS, such

that, CK ≤ nt
1. The channel vector of size 1 × nt between the kth user in

the cth cell and the serving BS is given by
√
Pk,c,chk,c,c, where Pk,c,c denotes

the instantaneous channel power of the user. Similarly, the interfering channel

vector between the kth user in the cth cell and the jth interfering BS is denoted

by
√
Pk,c,jhk,c,j, where j 6= c. The channel entries hk,c,c and hk,c,j are i.i.d.

complex Gaussian with unit variance, i.e., CN (0, 1). The downlink received

signal at the kth user in the cth cell is given by

yk,c =

√

Pk,c,c

γc
hk,c,cwk,csk,c

︸ ︷︷ ︸

desired signal

+

√

Pk,c,c

γc

K∑

l=1
l 6=k

hk,c,cwl,csl,c

︸ ︷︷ ︸
inter-user interference

+
C∑

j=1
j 6=c

√

Pk,c,j

γj
hk,c,j

K∑

q=1

wq,j

︸ ︷︷ ︸

inter-cell interference

sq,j + nk,c
︸︷︷︸
noise

, (7.1)

where wk,c is the non-normalized precoding vector for the kth user in the cth cell.

γc and γj are the normalization parameter (to be discussed later in Section 7.3)

for the cth and jth cell, respectively. sk,c and nk,c denote the data symbol and the

1In this chapter, we use RZF precoding and assume that CK ≤ nt, as at high SNR RZF
boils down to ZF, given the fact that nt exceeds the total number of receive antennas in the
system.
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noise for the kth user in the cth cell. The noise is assumed to be an i.i.d. complex

Gaussian random variable with zero mean and variance σ2
k, where without loss

of generality we set σ2
k = 1. We assume that the data symbols are selected from

the same constellation, where the symbol energy satisfies E [|sk,c|2] = 1.

The instantaneous received signal powers from the serving and interfering

base stations at the kth user in the cth cell are modeled, respectively, by (2.1)

[136]

Pk,c,c = P0

(
Rc

dk,c,c

)a

Φk,c,c (7.2)

and

Pk,c,j = P0

(
Rc

dk,c,j

)a

Φk,c,j. (7.3)

where P0 is the received power at cell radius Rc in the absence of shadowing,

assumed to be equal for all cells, and a is the path loss exponent. The shadowing,

Φk,c,c, between the kth user in the cth cell and cth BS, is modeled by a log-

normal random variable, given by Φk,c,c = 10(ηk,c,cσSF /10) [137], where σSF is

the shadowing standard deviation in dB and ηk,c,c is a zero mean Gaussian

random variable with unit variance. dk,c,c and dk,c,j represent the distances

from the serving and the interfering base stations to the kth user in the cth cell,

respectively.

7.3 Coordinated RZF Precoding

In this section, we explain the coordinated RZF precoding strategy for MU

MISO systems. Each BS uses RZF precoding [77] to compute the precoding

h1

Interfering channels

Interfering channels

Cell 1

Cell 2

Interfering channels

Serving channels

Figure 7.1: The system model for C = 2 cells and K = 2 cell-edge users.
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vectors for their respective cell users. In doing so, the serving BS applies RZF

not only to the channels of serving users but also considers the interfering chan-

nels from it to the other cells. Doing so allows the serving BS to suppress the

interference. All interfering channels and the serving channel at the kth user

in the cth cell are determined using cell-specific pilots [138] and these channels

are conveyed to the serving BS. We assume perfect channel estimation at the

user and also assume that a sufficient number of orthogonal reference signals

are available. The estimated interfering channels caused by the respective base

stations are delivered to them via backhaul links. For example, the cth cell BS

shares interfering channels with the jth cell BS and in return also receives in-

terfering channels between it and jth cell users, through the backhaul link. The

system model for C = 2 cells and K = 2 cell-edge users with serving and inter-

fering channels is shown in Fig. 7.1, where interfering channels are represented

by red-dashed arrows. With CK ≤ nt, the unnormalized RZF precoder wk,c,

for the kth user in the cth cell is the kth column of Wrzf,c
2, given by [77]

Wrzf,c = HH
c

(
HcH

H
c + ζcI

)−1
, (7.4)

where Hc =
[
XT

1 XT
2 . . . ,X

T
c . . .X

T
C

]T
is a CK × nt concatenated channel ma-

trix with X1 =
[
hT
1,1,c . . .h

T
K,1,c

]T
and Xc =

[
hT
1,c,c . . .h

T
K,c,c

]T
. The result-

ing precoder matrix is normalized by the normalization parameter, such that

Wrzf,c/
√
γc, where γc = ‖Wrzf,c‖2F/nt. This normalization is necessary to achieve

E [‖wk,c‖2] = 1. The regularization parameter for the cth BS is denoted by ζc.

The choice of regularization parameter is discussed in Section 7.5. When perfect

CDI and CQI are available at the BS, the SINR expression for the kth user in

the cth cell using (7.1) can be written as [134, 139]

SINRk,c =

Pk,c,c

γc
|hk,c,cwk,c|2

1 +
Pk,c,c

γc

∑K
l=1
l 6=k

|hk,c,cwl,c|2 +
∑C

j=1
j 6=c

Pk,c,j

γj

∑K
q=1 |hk,c,jwq,j|2

. (7.5)

7.3.1 Expected SINR with Perfect CDI

In this section, we derive an approximation to the expected SINR with perfect

CDI for the coordinated RZF scheme discussed in Section 7.3. We can take the

expectation of the SINR in (7.5) and approximate it by using the result in [119],

2The true serving channel at the kth user in the cth cell is given by,
√
Pk,c,chk,c,c, however

in this study, like [134,139], we do not consider path-loss and shadowing while computing the
precoding matrix, Wrzf,c, in (7.4).
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such that

E [SINRk,c] ≈
Pk,c,c

γ̄c
E
[
|hk,c,cwk,c|2

]

1 +
Pk,c,c

γ̄c

∑K
l=1
l 6=k

E
[
|hk,c,cwl,c|2

]
+
∑C

j=1
j 6=c

Pk,c,j

γ̄j

∑K
q=1 E

[
|hk,c,jwq,j|2

] . (7.6)

where γ̄c = E [γc] and γ̄j = E [γj]. Note that the numerator and the denominator

are dependent as they share some random variables in common. This compli-

cates the calculation of the mean SINR and we therefore employ the SINR

approximation approach given in [119]. This approximation has been shown

to get tighter as M grows large while also providing good accuracy for smaller

M values. We now evaluate (7.6) by computing the expected signal power and

the expected interference power in (7.6) for the case CK = nt, where the max-

imum number of users in the network are supported. However, the following

analysis can also be applied to the scenarios where CK < nt. To compute the

expectations, we use the approach presented in [77], and moreover, we evaluate

the expectation over the eigenvalues of HcH
H
c , which has not been investigated

in [77].

Expected signal power: The expected signal power in (7.6) is

Sk,c =
Pk,c,c

γ̄c
E
[
|hk,c,cwk,c|2

]
. (7.7)

Using the eigenvalue decomposition, HcH
H
c = QΛQH , the expectation in (7.7),

denoted by δk,c, is written as [77]

δk,c = E
[
|hk,c,cwk,c|2

]
= E





(
nt∑

n=1

λn
λn + ζc

|qk,n|2
)2


 , (7.8)

where λn is the nth eigenvalue corresponding to the nth diagonal entry of Λ.

The quantity qk,n denotes the entry of Q corresponding to the kth row and nth

column. Using [77, Appendix A], the mean over the entries of Q yields

δk,c =
1

nt(nt + 1)



Eλ





(
nt∑

n=1

λn
λn + ζc

)2


+ Eλ

[
nt∑

n=1

(
λn

λn + ζc

)2
]

 . (7.9)

The value of γ̄c is given by

γ̄c =
1

nt
E
[
‖Wrzf,c‖2F

]
=

1

nt
Eλ

[
nt∑

n=1

λn

(λn + ζc)
2

]

. (7.10)

The expectation of the terms in (7.9) and (7.10), with respect to the eigen-
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values, are given in Result 1 and Result 2.

Result 1: When the entries of an nt × nt matrix H are i.i.d. CN (0, 1),

then the expected value of
∑nt

n=1
(λn)

t

(λn+ζc)
2 , where λn is the nth eigenvalue of HHH

(uncorrelated central Wishart matrix), with respect to λn ∀n, is given by

D(t)
c =E

[
nt∑

n=1

(λn)
t

(λn + ζc)
2

]

=
nt∑

i=1

i−1∑

j=0

i−1∑

l=0

(−1)j+l

(
i− 1

i− 1− j

)(
i− 1

i− 1− l

)
1

j! l!

t+j+l∑

s=0

(
t + j + l

s

)

(−ζc)t+j+l−seζc
∫ ∞

ζc

vs−2e−vdv. (7.11)

Proof: See Appendix A.

Result 2: When the entries of an nt×nt matrix H are i.i.d. CN (0, 1), then

the expected value of
(
∑nt

n=1
λn

λn+ζc

)2

, where λn is the nth eigenvalue of HHH

(uncorrelated central Wishart matrix), with respect to λn ∀n, is given by

Fc =E





(
nt∑

n=1

λn
λn + ζc

)2


 = D(2)
c +

nt∑

i=1

nt∑

j=1,j 6=i

( i−1∑

r=0

i−1∑

s=0

(−1)r+s

(
i− 1

i− 1− r

)(
i− 1

i− 1− s

)
1

r! s!

1+r+s∑

b=0

(
1 + r + s

b

)

(−ζc)1+r+s−b

eζc
∫ ∞

ζc

vb−1e−vdv

)2

−
( i−1∑

r=0

j−1
∑

s=0

(−1)r+s

(
i− 1

i− 1− r

)(
j − 1

j − 1− s

)
1

r! s!

1+r+s∑

b=0

(
1 + r + s

b

)

(−ζc)1+r+s−beζc
∫ ∞

ζc

vb−1e−vdv

)2

, (7.12)

where D(2)
c is obtained from (7.11).

Proof: See Appendix B.

Using Result 1 and 2, we can write (7.9) and (7.10) as

δk,c =
Fc + D(2)

c

nt (nt + 1)
(7.13)

and

γ̄c =
D(1)

c

nt

. (7.14)

Therefore, the expected signal power (7.7) can be written as

Sk,c =
Pk,c,c

γ̄c
δk,c. (7.15)
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Expected interference power: The expected interference power in (7.6)

is given by

Ik,c =
Pk,c,c

γ̄c

K∑

l=1
l 6=k

E
[
|hk,c,cwl,c|2

]
+

C∑

j=1
j 6=c

Pk,c,j

γ̄j

K∑

q=1

E
[
|hk,c,jwq,j|2

]
. (7.16)

In order to evaluate (7.16), we observe that

ψ
∆
= E

[
|hk,c,cwl,c|2

]
= E

[
|hk,c,jwq,j|2

]
, ∀l, j, q. (7.17)

Hence,

Ik,c =
Pk,c,c

γ̄c
(K − 1)ψ +

C∑

j=1
j 6=c

Pk,c,j

γ̄j
Kψ. (7.18)

Now ψ can be found from ψsum/(nt − 1), where

ψsum =

K∑

l=1
l 6=k

E
[
|hk,c,cwl,c|2

]
+

C∑

j=1
j 6=c

K∑

q=1

E
[
|hk,c,jwq,j|2

]
. (7.19)

In order to compute ψsum, we note that (7.19) is the expected interference in

the absence of the powers and normalization parameters. Hence, (7.19) is given

by the difference between the expected total received power and the expected

signal power [77], again neglecting the power and normalization terms. Hence,

we can write (7.19) as

ψsum = ξc − δk,c

=

[

D(2)
c

nt
− Fc + D(2)

c

nt (nt + 1)

]

, (7.20)

where ξc is the expected total received signal (desired and interference) power

at the user in the cth cell, given by ξc = E [‖HcWrzf,c‖2F ] /nt = D(2)
c /nt.

Expected SINR with perfect CDI: We can now write the expected SINR

in (7.6) in terms of δk,c, ψc, ψj , γ̄c and γ̄j as

E [SINRk,c] ≈
Pk,c,c

γ̄c
δk,c

1 +
Pk,c,c

γ̄c
(K − 1)ψc +

∑C
j=1
j 6=c

Pk,c,j

γ̄j
Kψj

. (7.21)

Having derived the expected SINR approximation for the perfect CDI case, we

now investigate coordinated RZF precoding with limited feedback MU MISO

systems.
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7.3.2 Expected SINR with RVQ CDI

In this section, we discuss coordinated RZF precoding with limited feedback.

Like the perfect CDI case, here we give the derivation details for the expected

SINR approximation. In limited feedback multiple antenna systems, the user

quantizes the estimated channel (we assume perfect estimation) using a code-

book. The quantized vector of the channel between the kth user in the cth cell

and the cth BS is denoted by xk,c,c. We consider RVQ codebooks and B is the

total number of feedback bits3. Each user quantizes serving and out-of-cell in-

terfering channels, and so B =
∑C

i=1Bk,c,i. The feedback bits are sent to the

BS via a low-rate feedback link. In this case, the perfect concatenated channel

matrix for the cth BS can be modeled as [140, 141]

Hc = Tc + Ec, (7.22)

where Hc ∼ CN (0, 1) and Ec =
[
GT

1 GT
2 . . . ,G

T
c . . . ,G

T
C

]T
is a CK×nt concate-

nated quantization error matrix, such that G1 =
[
eT1,1,c . . . e

T
K,1,c

]T
. The quan-

tization error matrix, Ec, is assumed to have independent complex Gaussian

elements [140,141] such that the quantization error vector between the kth user

in the cth cell and the cth BS, denoted by ek,c,c, is given by ek,c,c ∼ CN (0, ̺2k,c,cI).

Using an upper bound on the quantization error for RVQ codebooks in terms

of squared chordal distance given in [27], denoting by Bk,c,c the number of bits

used to quantize the channel between the kth user in the cth cell and the cth BS,

we have, ̺2k,c,c ≤ 2
−Bk,c,c

nt−1 . In our model, we assume the worst case scenario where

̺2k,c,c ∼ 2
−Bk,c,c

M−1 . Similarly, the entries of the quantized concatenated channel ma-

trix, Tc =
[

G̃T
1 G̃T

2 . . . G̃
T
c . . . G̃

T
C

]T

where G̃1 =
[
xT
1,1,c . . .x

T
K,1,c

]T
, are assumed

to be independent and complex Gaussian, such that xk,c,c ∼ CN (0, (1−̺2k,c,c)I).
The unnormalized precoding vector of the kth user in the cth cell, ŵk,c, is the

kth column of the matrix Ŵrzf,c, given by

Ŵrzf,c = T̃H
c

(

T̃cT̃
H
c + ζcI

)−1

, (7.23)

where T̃c =
[

X̃T
1 X̃T

2 . . . X̃
T
c . . . X̃

T
C

]T

is a CK × nt concatenated matrix with

X̃1 =
[
x̃T
1,1,c . . . x̃

T
K,1,c

]T
, and x̃k,c,c = xk,c,c/

√

1− ̺2k,c,c in order to have T̃c ∼
CN (0, 1). In order to satisfy the power constraint, the precoding matrix is

normalized by the parameter, γ̂c, such that, W̄rzf,c = Ŵrzf,c/
√
γ̂c, where γ̂c =

‖Ŵrzf,c‖2F/nt. On the downlink, the received signal for the kth user in the cth

3We only study the effects of CDI quantization errors as in [45,46,128]. The quantization
of CQI is out of the scope of this study.
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cell is given by, similar to (7.1), as

ŷk,c =

√

Pk,c,c

γ̂c
(xk,c,c + ek,c,c) ŵk,csk,c +

√

Pk,c,c

γ̂c

K∑

l=1
l 6=k

(xk,c,c + ek,c,c) ŵl,csl,c

+

C∑

j=1
j 6=c

√

Pk,c,j

γ̂j
(xk,c,j + ek,c,j)

K∑

q=1

ŵq,jsq,j + nk,c. (7.24)

In the case of RVQ codebooks, the expected SINR at the kth user in the cth cell,

denoted by E
[

S̃INRk,c

]

, is approximated by [119], similar to (7.6), as

E
[

S̃INRk,c

]

≈ (7.25)

Pk,c,c

γ̄c
E
[

|(xk,c,c + ek,c,c) ŵk,c|2
]

1 + Pk,c,c

γ̄c

∑K
l=1
l 6=k

E
[

|(xk,c,c + ek,c,c) ŵl,c|2
]

+
∑C

j=1
j 6=c

Pk,c,j

γ̄j

∑K
q=1 E

[

|(xk,c,j + ek,c,j) ŵq,j|2
] ,

where γ̄c = E [γ̂c] and γ̄j = E [γ̂j]. The tightness of (7.25) is discussed in Section

7.6. As for the perfect CDI case, we compute the various expectation terms in

(7.25) individually, following a similar procedure for the CK = nt case.

Expected signal power: The expectation of the signal power at the kth

user in the cth cell in (7.25) is given by

S
′

k,c =
Pk,c,c

γ̄c
E
[
|(xk,c,c + ek,c,c) ŵk,c|2

]
. (7.26)

We can write

E
[

|(xk,c,c + ek,c,c) ŵk,c|2
]

= E
[

|xk,c,cŵk,c + ek,c,cŵk,c|2
]

(7.27)

(a)
= E

[

|xk,c,cŵk,c|2
]

+ E
[

|ek,c,cŵk,c|2
]

(b)
=

(

1− 2
−Bk,c,c

nt−1

)

E
[

|x̃k,c,cŵk,c|2
]

+ E
[

|ek,c,cŵk,c|2
]

,

(7.28)

where (a) follows because the expected value of the cross product terms is zero

and for (b) we use xk,c,c =

√

1− 2
−Bk,c,c

nt−1 x̃k,c,c. Denoting the eigenvalue values

of H̃cH̃c = Q̃Λ̃Q̃H by λ̃1, λ̃2, . . . λ̃nt
, and using the same approach as (7.7), we

can express the expectation in the first term in (7.28) as
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E
[

|x̃k,c,cŵk,c|2
]

=
1

nt(nt + 1)



Eλ̃





(
nt∑

n=1

λ̃n

λ̃n + ζc

)2


+ Eλ̃





nt∑

n=1

(

λ̃n

λ̃n + ζc

)2








= δk,c. (7.29)

Also, we have

E
[
|ek,c,cŵk,c|2

]
= E

[
|ek,c,c|2

] E
[

‖Ŵc‖2F
]

nt

=

(

2
−Bk,c,c

nt−1

)

γ̄c. (7.30)

Therefore, one obtains

E
[
|(xk,c,c + ek,c,c) ŵk,c|2

]
=

(

1− 2
−Bk,c,c

nt−1

)

δk,c +

(

2
−Bk,c,c

nt−1

)

γ̄c, (7.31)

where

γ̄c =
1

nt
Eλ̃n






nt∑

n=1

λ̃n
(

λ̃n + ζc

)2




 . (7.32)

Using Result 1 and Result 2, γ̄c and δk,c can be written as

γ̄c =
D(1)

c

nt

(7.33)

and

δk,c =
Fc + D(2)

c

nt (nt + 1)
, (7.34)

and thus the expected signal power in (7.26) can be expressed as

S
′

k,c =
Pk,c,c

γ̄c

[(

1− 2
−Bk,c,c

nt−1

)

δk,c +

(

2
−Bk,c,c

nt−1

)

γ̄c

]

. (7.35)

Expected interference power: Now we can solve for the expected inter-

ference in (7.25) given by

I
′

k,c =
Pk,c,c

γ̄c

K∑

l=1
l 6=k

E
[
|(xk,c,c + ek,c,c) ŵl,c|2

]
+

C∑

j=1
j 6=c

Pk,c,j

γ̄j

K∑

q=1

E
[
|(xk,c,j + ek,c,j) ŵq,j|2

]
.

(7.36)

Similar to the perfect CDI case, in order to find the expected interference terms
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in (7.36) (without pathloss and shadowing) at the kth user in the cth cell, we sub-

tract the expected signal power given in (7.31) from the total expected received

power, giving

ψ̃k,c =







E

[∣
∣
∣êk,c,cŴrzf,c

∣
∣
∣

2

F

]

+ E

[∣
∣
∣xk,c,cŴrzf,c

∣
∣
∣

2

F

]

︸ ︷︷ ︸

total power at the user

−
[(

1− 2
−Bk,c,c
nt−1

)

δk,c +

(

2
−Bk,c,c
nt−1

)

γ̄c

]








=






γ̄cnt2

−Bk,c,c
nt−1 +

(

1− 2
−Bk,c,c
nt−1

) E

[∣
∣
∣T̃cŴrzf,c

∣
∣
∣

2

F

]

nt
−
[(

1− 2
−Bk,c,c
nt−1

)

δk,c +

(

2
−Bk,c,c
nt−1

)

γ̄c

]







=

(

γ̄cnt2
−Bk,c,c
nt−1 +

(

1− 2
−Bk,c,c
nt−1

)

ξc −
[(

1− 2
−Bk,c,c
nt−1

)

δk,c +

(

2
−Bk,c,c
nt−1

)

γ̄c

])

,

(7.37)

where, using Result 1, the value of ξc is

ξc =
D(2)

c

nt
. (7.38)

Similarly, the interference at the kth user in the cth cell from the jth cell user, is

given by

ψ̃k,j =

(

γ̄jnt2
−Bk,c,j

nt−1 +

(

1− 2
−Bk,c,j

nt−1

)

ξj −
[(

1− 2
−Bk,c,j

nt−1

)

δk,j +

(

2
−Bk,c,j

nt−1

)

γ̄j

])

.

(7.39)

The interference from any single interfering source at the kth user from the cth

cell and jth cell are given by ψ
′

k,c = ψ̃k,c/(nt − 1) and ψ
′

k,j = ψ̃k,j/(nt − 1),

respectively. Therefore, the expected interference in (7.36) can be written as

I
′

k,c =
Pk,c,c

γ̄c
(K − 1)ψ

′

k,c +

C∑

j=1
j 6=c

Pk,c,j

γ̄j
Kψ

′

k,j. (7.40)

Expected SINR with RVQ: We can now express the expected SINR approx-

imation in (7.25) for RVQ codebooks, by using (7.35) and (7.40), as

E
[

S̃INRk,c

]

≈
Pk,c,c

γ̄c

[(

1− 2
−Bk,c,c

nt−1

)

δk,c +

(

2
−Bk,c,c

nt−1

)

γ̄c

]

1 +
Pk,c,c

γ̄c
(K − 1)ψ

′

k,c +
∑C

j=1
j 6=c

Pk,c,j

γ̄j
Kψ

′

k,j

. (7.41)

Comparing (7.21) and (7.41), we note that when the number of feedback bits

is large, the expected SINR approximation (7.41) approaches the expected SINR

approximation with perfect CDI (7.21), such that E
[

S̃INRk,c

]

→ E [SINRk,c].

The results derived in this section are used in developing an adaptive bit alloca-
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tion strategy for the coordinated RZF scheme. This is investigated in the next

section.

7.4 Adaptive Bit Allocation

In limited feedback systems, the user assigns bits to the channels (serving and

interfering) in each feedback period. Therefore, it is of interest to investigate

adaptive bit allocation at the user for each feedback instance. The upper bound

on the mean quantization errors associated with the error vectors in (7.41) can

be leveraged to estimate how many bits should be allocated to the serving and

interfering channels.

There are numerous studies [51,128,136,142,143] on adaptive bit allocation

for limited feedback systems. The majority of the schemes maximize/minimize

a specific performance/distortion metric. While there are a few studies [133,134]

that consider RZF precoding with adaptive bit allocation for massive MISO sys-

tems, adaptive bit allocation with RZF precoding scheme is not well investigated

for conventional (non-massive) MISO systems.

We propose an adaptive method to allocate the total number of bits at

the user, B =
∑C

i=1Bk,c,i, to quantize the serving channel and the out-of-cell

interfering channels, by minimizing the mean interference at the user. It is

important to note that minimizing the interference at each user in the system

is in fact reducing the overall interference in the multicell network. The mean

interference at the kth user in the cth cell in (7.41), is given by

I
′

k,c =
Pk,c,c

γ̄ ′

c

(K − 1)ψ
′

k,c +

C∑

j=1
j 6=c

Pk,c,j

γ̄
′

j

Kψ
′

k,j

=
Pk,c,c

γ̄ ′

c

(K − 1)

nt − 1
ψ̃k,c +

C∑

j=1
j 6=c

Pk,c,j

γ̄
′

j

K

nt − 1
ψ̃k,j. (7.42)

Substituting the values of ψ̃k,c and ψ̃k,j from (7.37) and (7.39) into (7.42) and

rearranging, gives

I
′

k,c =Pk,c,c(K − 1)2
−Bk,c,c
nt−1 (1−∆c) + Pk,c,c(K − 1)∆c (7.43)

+

C∑

j=1
j 6=c

Pk,c,jK2
−Bk,c,j

nt−1 (1−∆j) +

C∑

j=1
j 6=c

Pk,c,jK∆j ,

where ∆c = (ξc − δk,c)/(γ̄c(nt − 1)) and ∆j = (ξj − δk,j)/(γ̄j(nt − 1)). We can
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write (7.43) as

I
′

k,c = Pk,c,c(K − 1)(1−∆c)
︸ ︷︷ ︸

P̄k,c,c

2
−Bk,c,c
nt−1 +

C∑

j=1
j 6=c

Pk,c,jK(1−∆j)
︸ ︷︷ ︸

P̄k,c,j

2
−Bk,c,j
nt−1 (7.44)

+ Pk,c,c(K − 1)∆c +

C∑

j=1
j 6=c

Pk,c,jK∆j

︸ ︷︷ ︸
PI

= P̄k,c,c2
−Bk,c,c
nt−1 +

C∑

j=1
j 6=c

P̄k,c,j2
−Bk,c,j
nt−1 + PI

=

C∑

i=1

P̄k,c,i2
−Bk,c,i

nt−1 + PI . (7.45)

It is noted that the expected interference in (7.44) is composed of two terms,

where the first term is the sum of the product of channel gains (with path-

loss and shadowing) and codebook quantization errors. On the other hand,

the second term in (7.44) is the sum of weighted channel gains independent of

codebook quantization errors. Therefore, in order to solve for the number of bits

that minimizes the mean interference at the kth user in the cth cell, we define

an optimization problem, given by

min
Bk,c,1,...,Bk,c,C ∈ {0,R+}

C∑

i=1

P̄k,c,i2
−Bk,c,i

nt−1

s.t

C∑

i=1

Bk,c,i ≤ B (7.46)

where R+ denotes the set of positive real numbers. This is a convex optimization

problem as the objective function is logarithmically convex [128, 143]. Hence,

we find the solution in a real space and discretize to the nearest point [128].

The Lagrangian function is

L(Bk,c,i, λ) =

C∑

i=1

P̄k,c,i2
−Bk,c,i

nt−1 + λ

(
C∑

i=1

Bk,c,i −B

)

, (7.47)

where λ denotes the Lagrange multiplier. The first order optimality Karush-
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Kuhn-Tucker (KKT) conditions are given by

∂L(Bk,c,i, λ)

∂Bk,c,i

= − ln (2)P̄k,c,i

nt − 1
2

−Bk,c,i

nt−1 + λ = 0 (7.48)

∂L(Bk,c,i, λ)

∂λ
=

C∑

i=1

Bk,c,i − B = 0. (7.49)

Solving (7.48) and (7.49), yields the number of bits required by the kth user

in the cth cell to quantize the serving and out-of-cell interfering channels, such

that the mean interference is minimized. This gives

B∗
k,c,c = min







B,ℜ











B

C
+ (nt − 1) log2





(Pk,c,c(K − 1)(1 −∆c))

(C−1)/C

(
∏C

j=1,j 6=c Pk,c,jK(1−∆j)
)1/C












+










(7.50)

where ⌊·⌋+ = max{0, ·}. From (7.50), we can conclude that the bit allocation

is a function of serving and interfering channel powers at the user, the number

of users, K, the number of cells, C, and the number of transmit antennas at

each BS, nt. The solution obtained in (7.50) requires K > 1. Although the case

when C = 2 is straight forward, it is important to note that for C > 2, all the

interfering channels at the user are given an equal number of the remaining bits

for quantization, after solving (7.50), such that B∗
k,c,j = (B − B∗

k,c,c)/(C − 1),

∀j, where j 6= c.

7.5 Regularization Parameter

The optimization of the regularization parameter is considered to be a difficult

problem in multicell systems [144]. The regularization parameter is optimized in

a single-cell scenario in [77], such that it maximizes SINR. In [145], for single-cell

non-homogeneous MU systems, the regularization parameter is defined as

ζc =
1

K

K∑

k=1

1/Pk,c,c. (7.51)

As the multicell system considered in this paper consists of serving and out-of-

cell interfering channels with different link gains, we extend the regularization

parameter in [145], such that

ζ̃c =
1

CK

C∑

i=1

K∑

k=1

1/Pk,c,i. (7.52)
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In this study, we also consider an optimal regularization parameter, denoted

by ζoptc , that maximizes the spectral efficiency of the cell [133]. This optimal

regularization parameter is given by

ζopt
c = arg max

ζoptc >0

K∑

k=1

log2 (1 + SINRk,c) . (7.53)

Finding the optimal regularization parameter, ζopt
c , that maximizes the spectral

efficiency (7.53) is analytically difficult, therefore we numerically compute ζopt
c

to evaluate the performance of the coordinated RZF scheme in the next section.

7.6 Numerical Results and Discussion

We now present simulation results for a multicell MU MISO system with coor-

dinated RZF precoding. We divide this section into three parts, beginning by

explaining the concept of the coordination area in the cell, followed by compar-

ing the expected SINR approximation for perfect CDI and RVQ codebook CDI

derived in (7.21) and (7.41), respectively, with the corresponding simulated aver-

age SINRs. We present average cell-edge spectral efficiency for perfect CDI and

limited feedback based RVQ CDI under different transmission scenarios. Next,

we present the performance of the coordinated RZF scheme with the adaptive

bit allocation method and compare it with the coordinated ZF scheme [128], for

different numbers of coordinating cells. Finally, we remove the coordination area

restriction and present the average cell spectral efficiency comparison between

the coordinated RZF scheme and the coordinated ZF scheme [128]. We assume

i.i.d. Rayleigh block fading. The radius of the single cell is set to Rc = 500m.

The standard deviation of the shadowing is 8 dB and the path loss exponent is

a = 3.8 [146].

7.6.1 Coordination Area

We define the coordination area as an area in the cell where users may experience

high interfering power from the adjacent cells. The coordination area is based

on the user’s distance. As there is no such formal definition of the coordination

area, we follow the arbitrary definition given in [128], i.e., coordination is needed

when the user lies in the region 325m ≤ d ≤ 500m. The two- and three-cells

coordination areas are illustrated in Fig. 7.2(a) and Fig. 7.2(b), respectively.

The users are dropped in the coordination area uniformly and such users are

called cell-edge users.
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h1

Cell 1 Cell 2

Coordination area

(a) Coordination area in two-cell simula-
tions.

h1

Cell 1 Cell 2

Cell 3

(b) Coordination area in three-cell simula-
tions.

Figure 7.2: Illustration of two-cell and three-cell coordination areas in the sim-
ulations.

7.6.2 SINR and Spectral Efficiency

In this section, we present SINR and spectral efficiency results for the proposed

coordinated RZF scheme. We plot these results against the average received cell-

edge SNR, ρ0, obtained by substituting the link distance equal to Rc in (7.2)

given by ρ0 = E
[
10 log10

(
P010

(ησSF /10)/N0

)]
, where the noise power N0 = 1

and η ∼ N (0, 1). It is important to mention that increasing ρ0 also increases

the SNR at the users. The increase in ρ0 also increases interference to the

users (in the same or neighboring cells). Figure 7.3 shows the average SINR

performance of the coordinated RZF scheme with perfect CDI and limited feed-

back based RVQ CDI. The approximate expected SINRs derived in (7.21) and

(7.41) are plotted (in the linear scale) in Fig. 7.3 for perfect CDI and RVQ CDI

with various numbers of feedback bits. It is observed that the approximations

of the expected SINR with perfect CDI matches the average simulated spec-

tral efficiency, however the expected SINR approximation (7.41) with an RVQ

codebook shows a small deviation relative to the simulated average SINR at ρ0
values. The average cell-edge spectral efficiency for C = 2 and C = 3 cells with

K = 2 cell-edge users is shown in Fig. 7.4, where each BS has nt = 6 antennas.

Denoting the cell-edge spectral efficiency by Cedge, the average cell-edge spectral

efficiency simulations are performed using

E [Cedge] = E

[
K∑

k=1

log2 (1 + SINRk,c)

]

, (7.54)
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Figure 7.3: The average SINR for the kth user in the cth cell, with C = 2 cells
and K = 2 users where each BS has nt = 4 antennas with Bk,c,c = Bk,c,j = 20,
15 and 10.

where SINRk,c is given in (7.5) and the users are located in the cell-edge area.

Therefore we refer to (7.54) as the average cell-edge spectral efficiency of the

cell. This is plotted against different ρ0 values in Fig. 7.4. The single cell

MU system gives superior average cell-edge spectral efficiency compared to the

other scenarios, due to the absence of ICI. However, when ICI is present, the

average cell-edge spectral efficiency with the non-coordinated RZF precoding

scheme suffers high losses and the performance gap increases compared to the

single-cell case, as ρ0 increases. For the coordinated RZF scheme, we consider

two cases: 1) only 2 out of 3 cells coordinate and 2) all 3 cells coordinate. In

Fig. 7.4, we consider two regularization parameters for the coordinated RZF

case 2: ζc and ζopt
c .

The coordinated RZF case 2 with ζopt
c achieves better average cell-edge spec-

tral efficiency compared to the coordinated RZF case 1 (with ζc) and the non-

coordinated RZF scheme. The coordinated RZF schemes with both cases 1 and

2 outperform the coordinated ZF [128] scheme. However, for ρ0 < 2 dB and

ρ0 < 3 dB with case 1 and case 2, respectively, it is noted in Fig. 7.4(a) that the

coordinated RZF schemes with ζc are not effective and the non-coordinated RZF

scheme is more effective, as the former leverages the benefit of fewer channels

being orthogonalized while precoding, thus leading to a stronger signal power.

The same reasoning is applicable to the proposed coordinated RZF case 1 which

yields better performance than the proposed coordinated RZF case 2, for ρ0 < 8

dB, with the same number of antennas at the BS (i.e., nt = 6). In Fig. 7.4(b),

we plot the same cases as Fig. 7.4(a) with nt = 8 antennas at the BS. We

observe that for ρ0 > −4 dB, the proposed coordinated RZF schemes using ζk
outperforms the non-coordinated RZF scheme. Again, the performance of the
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Figure 7.4: The average cell-edge spectral efficiency with C = 3 cells for K = 2
users.

proposed RZF case 2 with ζopt
c is higher than all the other scenarios. There-

fore, by comparing Fig. 7.4(a) and Fig. 7.4(b), we note that the coordination

gain can be obtained over the non-coordinated RZF method, for a range of ρ0
values by either increasing nt, such that nt > CK, or by using an effective

regularization parameter (here, ζopt
c ).
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7.6.3 Performance of Adaptive Bit Allocation Scheme

We evaluate the average cell-edge spectral efficiency of the coordinated RZF

precoding scheme with the adaptive bit allocation scheme discussed in Section

7.4, when the numbers of coordinating cells are C = 2 and 3. From this point

onwards, we use the regularization parameter ζ̃c given in (7.52).

Coordination with 2 cells

The average cell-edge spectral efficiency for the proposed adaptive bit allocation

scheme is shown in Fig. 7.5 with B = 8, nt = 4 and K = 2. It is compared with
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Figure 7.5: The average cell-edge spectral efficiency with C = 2 cells and K = 2
users where each BS has nt = 4 antennas with B = 8 (σSF = 8dB).
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Figure 7.6: The average cell-edge spectral efficiency with C = 2 cells and K = 2
users where each BS has nt = 4 antennas with σSF = 8dB.
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Figure 7.7: The average proposed adaptive bit allocation for the kth user in the
cth with ρ0 = 5 dB, C = 2 cells and K = 2 users where each BS has nt = 4
antennas with B = 10 (no shadowing).

the coordinated ZF adaptive bit allocation scheme [128]. The scenario used in

the simulation is the C = 2 case depicted in Fig. 7.2(a). It is seen that the

coordinated RZF scheme improves the average cell-edge spectral efficiency com-

pared to the coordinated ZF adaptive bit allocation scheme [128]. Even equal

bit partitioning (i.e., 4 bits) to each serving and out-of-cell interfering channel,

results in better average cell-edge spectral efficiency than the coordinated ZF

adaptive bit allocation scheme [128]. The effect of quantization errors on the

average cell-edge spectral efficiency is shown in Fig. 7.6 for the coordinated RZF

scheme with nt = 4, K = 2 and various B values. As the total number of bits at

the user increases, quantization errors decrease which results in higher spectral

efficiency performance. The average number of bits allocated to the serving and

interfering channels with the adaptive bit allocation scheme is shown in Fig. 7.7

for coordinated RZF with B = 10 bits and ρ0 = 5 dB. It shows the average bit

allocation trend with respect to different distance values. The adaptive bit al-

location scheme divides bits equally among the serving and interfering channels

in the region 395m ≤ dk,c,c ≤ 425m. As the distance increases, the number of

bits allocated to the serving channel decreases.

Coordination with 3 cells

For C = 3 cells, we use the scenario shown in Fig. 7.2(b). The average cell-edge

spectral efficiency is shown in Fig. 7.8 for C = 3 cells using the coordinated

RZF with adaptive bit allocation strategy, where B = 9, nt = 6 and K = 2.

The trend is similar to Fig. 7.5, and the bit allocation strategy (7.50) yields

better average cell-edge spectral efficiency compared to the coordinated ZF with
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Figure 7.8: The average cell-edge spectral efficiency with C = 3 cells and K = 2
users where each BS has nt = 6 antennas with B = 9 (σSF = 8dB).

adaptive bit allocation method.

Full cell area coordination

Here we assume that there is no restriction on the coordination area, i.e., users

always coordinate regardless of their position in the cell. Figure 7.9 shows

average cell spectral efficiency for the coordinated RZF and the coordinated ZF

precoding [128] strategies at ρ0 = 5 dB (no shadowing). The performance is

shown for both adaptive bit allocation and equal bit allocation, with and without

shadowing. In all the four cases plotted, the average cell spectral efficiencies
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Figure 7.9: The average cell spectral efficiency with C = 3 coordinating cells
having K = 2 users where each BS has nt = 6 antennas with B = 9.
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with the coordinated RZF scheme are higher than the coordinated ZF scheme.

Hence, the effectiveness of the coordinated RZF scheme is not only limited to

the cell-edge, but it also yields acceptable performance across the entire cell

area.

7.7 Summary

In this chapter we have discussed the coordinated RZF precoding technique

for multicell MU MISO systems. We derived expected SINR approximations

for both perfect CDI and limited feedback RVQ based CDI. Via simulations,

we show that the coordinated RZF precoding outperforms the non-coordinated

RZF at high ρ0 values with a suitable choice of the regularization parameter.

We presented an adaptive feedback bit allocation scheme with limited feedback

RVQ CDI that minimizes the mean interference at the user. The adaptive

bit allocation with coordinated RZF was shown to yield higher average cell-

edge spectral efficiency performance than the equal bit allocation and existing

coordinated ZF based adaptive bit allocation schemes.
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8
Conclusions and Future Work

In this chapter, we present summary and conclusion of the research reported in

this thesis. We also provide directions for future research in this area.

8.1 Summary

As discussed in previous chapters, the quality of CSI at the transmitter has a

very large impact on the performance of a wireless communication system. In

this thesis, we have focused on limited feedback techniques for multi-antenna

systems and codebook adaptation. The aim of the study was mainly to de-

sign effective codebooks that quantizes CDI with a minimum quantization error

at the receiver for temporally/spatially correlated channels. For this purpose,

we exploited the temporal and/or spatial correlation present in the channel

and used this information to design various differential codebook structures.

With massive antennas at the transmitter, we developed TCQ based limited

feedback schemes for temporally and spatially correlated channels that rely on

TCQ encoding at the receiver to quantize CDI. In massive MISO systems, the

quantization with TCQ has lower search complexity than conventional codebook

quantization schemes. For multicell system we have considered coordinated RZF

precoding with adaptive bit allocation in Rayleigh i.i.d. channels. We present

summary of each chapter of the thesis below.

Capacity Loss Analysis in SU MIMO

We first investigated the capacity loss in SU MIMO systems due to the stan-

dard codebooks: Grassmannian and 3GPP LTE. As discussed in Chapter 4, we

considered right singular vectors as precoders and limited the study to single-
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and two-streams transmissions. On the receiver side, three linear receivers were

considered: ZF, MMSE and SVD. We also derived capacity loss expressions as

a function of codebook quantization errors.

Differential Codebooks in MU MISO

After investigating the capacity loss in SU MIMO systems, we shifted the focus

towards MU MISO systems, where unlike SU MIMO, there is no multi-stream

interference to suppress at the receiver; instead, there is MU interference. The

transmitter cannot practically obtain perfect CSI and precoders are computed

with quantized CSI and thus the system exhibits performance loss due to code-

book quantization errors.

In temporally correlated channels, the channel entries change slowly over

time. Using this property of temporally correlated channels, we developed dif-

ferential codebooks in Chapter 5, where single spherical-cap and double-cap

designs are investigated.

Spherical-cap Differential Codebook

In spherical-cap differential codebooks, the fixed Grassmannian codewords are

scaled to lie closer to each other packed in a cap with the fixed radius. The

radius of the cap is the distance between the center of the cap and the codeword

located furthest from the center. The spherical-cap is rotated after each feedback

interval to follow the changing channel. Two adaptive scaling techniques using

a spherical-cap are developed: Adaptive Scaling Technique I and II.

Double-cap Differential Codebook

In addition to single spherical-cap design, we have also designed a double-cap

differential codebook that overcomes the disadvantages of both Adaptive Scaling

Techniques I and II. The double-cap differential codebook does not require any

additional information or knowledge at the transmitter and also works well

for longer transmission periods. The double-cap design consists of a spherical-

cap as inner cap and a polar-cap as outer cap (with codewords on the cap

circumference). This two-cap design allows us to perform systematic scaling

up or down of the double-cap differential codebook to follow the slowly varying

channel. Depending on the system requirements, either spherical-cap or double-

cap differential codebook designs can be employed. We also introduced a SVD

based rotation method to direct the codewords towards the desired position.
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MU Massive MISO with TCQ

In Chapter 6, we investigated a non-codebook based limited feedback technique

in MU massive MISO systems for temporally and spatially correlated channels.

Conventional codebook approaches are not feasible for massive MISO systems

because as the number of transmit antennas increases, the required number

of codewords in the codebook also increase. This increase makes a search for

an appropriate codeword in the codebook computationally impractical. Using

this as the motivation, we adapt the TCQ approach to quantize the channel at

the user. For temporally correlated channels, we have developed a differential

TCQ method that exploits temporal correlation in the channel and transforms

(rotates and scales) the source constellation after each feedback interval. The

scaling parameter is a function of temporal correlation and the number of trans-

mit antennas. We have also presented a TCQ based limited feedback scheme

for spatially correlated channels.

Multicell MU MISO with Coordination

Coordinated RZF scheme for MU MISO systems with codebook-based limited

feedback is discussed in chapter 7 for Rayleigh i.i.d. channels. We have derived

expected SINR approximations for the coordinated RZF scheme with perfect

CDI and RVQ based quantized CDI. We have also presented an adaptive bit

allocation scheme that minimizes interference at the user.

8.2 Conclusions

In this thesis, we used limited feedback techniques to equip the transmitter

with CSI and investigated their performance in several wireless communication

networks: SU/MU single-cell and MU multicell. In Chapter 4, we demonstrated

that the MIMO capacity loss due to codebooks is closely related to minimum

squared chordal distance between the right singular vectors of the channel and

the codebook entries. The analysis provides meaningful insights on the MIMO

capacity loss in the presence of codebook quantization errors. Interestingly,

we observed that in single-stream MIMO systems, the performance of spatially

correlated channels is better than the performance with i.i.d. Rayleigh fading

channels. This is due to the fact that the dominant eigenmode of a spatially

correlated channel is very strong compared to other eigenmodes.

Differential codebooks with adaptive scaling techniques developed in Chap-

ter 5 have shown to effectively track temporally correlated channels. Three

adaptive scaling techniques are designed where Adaptive Scaling Technique II

requires additional channel statistics. Adaptive scaling Technique I is reset to

the base codebook after a few feedback intervals. The results confirm that



8.3. LIMITATIONS AND FUTURE WORK 130

there is a trade-off between the performance of adaptive scaling techniques and

additional feedback of channel statistics. In Chapter 6, for massive MISO sys-

tems, TCQ based limited feedback schemes are developed with temporally and

spatially correlated channels. These schemes quantize large dimensional chan-

nel vectors with smaller quantization errors than the existing NTCQ schemes.

Also, TCQ based limited feedback schemes reduce the search complexity at the

receiver compared to conventional codebook-based limited feedback schemes.

For temporally correlated channels, transformation of the source constellation

according to channel statistics yield significant performance gains.

The RZF based coordinated precoding for MU MISO systems discussed in

Chapter 7 has shown to provide better average cell-edge spectral efficiency than

the ZF based coordination scheme, at low operating SNRs. The SINR approxi-

mations derived for perfect CDI and RVQ CDI are shown to be in close agree-

ment with numerical simulations. The expected interference power is further

utilized to adaptively allocate feedback bits to serving and interfering channels.

This has shown to outperform equal feedback bit partitioning.

In the following section, we analyze the limitations of the thesis and discuss

future work prospects.

8.3 Limitations and Future Work

8.3.1 Limitations

Although the thesis has reached its aims, there are some inevitable limitations.

These limitations are briefly discussed below:

• Throughout the thesis, we assume that feedback links have no delays. In

practice, the feedback delay exists due to factors such as signal processing

and propagation [147]. The negative effects of delayed feedback on the

performance of MIMO systems are studied in [148–151]. The delayed

feedback results in a weak signal power and also introduces inter-stream

interference [147]. To mitigate the effects of the delayed feedback, channel

prediction based techniques are investigated in [152, 153].

• For MIMO-OFDM systems in Chapter 4, we do not investigate the fre-

quency correlation between the subcarriers and select a separate codebook

entry for each subcarrier. This increases the complexity at the receiver

and also increases the feedback overhead, when the number of subcarriers

is large. To reduce the feedback overhead, interpolation based techniques

are presented in [154, 155] for MIMO-OFDM systems. In [154], the cor-

relation between the beamforming vectors of subcarriers is explored to

reduce the feedback overhead.
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• Differential codebooks with adaptive scaling techniques (discussed in Chap-

ter 5) have shown to perform well under highly temporally correlated chan-

nels. However, the performance of the differential codebooks degrades

when the user velocity increases. Specifically, those schemes which do not

reset to the base codebook have shown to suffer the most under these sce-

narios. It will be useful to modify these adaptive scaling schemes such that

they can successfully track both slowly and moderately varying channels.

• Majority of the results presented in Chapter 5 assume perfect channel

estimation at the user, however it is seen that estimation errors have a

detrimental effect on the performance of differential codebooks. In Section

5.9.3, it is shown that even the small estimation error can degrade the

performance of the differential codebook, especially for the double-cap

structure. In [150], estimation errors have shown to increase bit error rate

(BER) and outage probability of the MIMO-SVD system. The negative

effects of estimation errors can be overcome by increasing the size of the

codebook.

8.3.2 Future Work

Limited feedback techniques are supported in current networks such as 3GPP

LTE release 8. The use of limited feedback techniques may also become part of

future 5G networks. 5G technologies such as millimeter wave (mmWave) and

massive MIMO are being widely investigated with limited feedback schemes.

We present the future research in the following categories:

Extension to MIMO Systems

We have developed differential codebooks for MISO systems in Chapter 5 and

assumed that the receiver is equipped with a single antenna. However, in

MIMO systems with multiple antennas at both the transmitter and the receiver,

the codebook (unlike that for MISO) consists of matrices with orthonormal

columns [74]. One possible approach is to use a set of orthogonal spherical-caps

on the Grassmannian manifold. A similar solution is proposed in [45] for spa-

tially correlated MIMO channels. For temporally correlated MIMO channels,

a rotation based differential codebook technique is investigated in [114]. The

drawback of this scheme is that error propagates over time as precoding matri-

ces depend on previous selected precoding matrices. Further studies are needed

to address this issue.

In Chapter 6, we presented TCQ based limited feedback schemes for massive

MISO channels. The extension to massive MIMO channels is not straightfor-

ward. If each column of the MIMO channel matrix is quantized separately using



8.3. LIMITATIONS AND FUTURE WORK 132

the TCQ approach, then the feedback overhead increases nr times compared to

the MISO channel. It will be interesting to investigate the massive MIMO chan-

nel by modifying the TCQ design, in a manner that the number of feedback bits

does not increase significantly for massive MIMO systems.

Unlike massive MISO channels, massive MIMO channels can exhibit spatial

correlation at both the transmitter and receiver. This will increase the com-

plexity of system analysis and will further impact the performance of massive

MIMO systems with limited feedback.

Heterogeneous Networks

Heterogeneous networks (HetNets) employ a number of small cells in the net-

work to achieve high spectral efficiency [156]. Recently, researchers have in-

vestigated the performance of multi-tier HetNet with limited feedback schemes

[52, 157]. In [157], the effect of feedback delay and quantization error on the

achievable macrocell sum-rate is investigated with transmit beamforming and

uncoordinated cross-tier interference. A low power vector perturbation (VP)

is designed for small cells in [158] which yields 300% improvement in power

efficiency levels compared to conventional VP. For future work, it is worth ex-

ploring coordinated non-linear beamforming strategies which increase the power

efficiency and also improve the cell spectral efficiency with limited feedback

schemes. Coordination schemes in HetNet are studied in [159] where various

levels of coordination between two-tier networks are presented.

In 5G systems, network coordination is considered to be an important com-

ponent for improving spectral efficiency and reducing ICI. However, the use of

massive MIMO and densely deployed small cells will increase the need of coor-

dination and precise CSI [160]. This issue needs to be addressed by optimizing

the coordination and improving the codebook design having a low codeword

search complexity. Therefore, the coupling of the network coordination with 5G

systems requires more robust and practical schemes.

MmWave Communication and Hybrid Precoding

MmWave communication recently gained attention for the development of 5G

communication networks. MmWave technology can yield multi-Gigabit through-

put by operating in GHz band. The effects of higher path loss at mmWave

frequencies are compensated by using massive MIMO which provides array gain

and also reduces the power consumption [161–163]. The conventional digital

beamforming techniques consume high power in massive arrays. Therefore, to

minimize the power consumption, directional beamforming should be employed

by mean of analog beamforming techniques. For this purpose analog beam-

forming schemes are investigated in [164–166] for SU systems and hybrid (both
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analog and digital) precoding for SU systems in [167] with partial knowledge of

the mmWave channel. In [168], a hybrid precoding scheme is proposed for MU

mmWave channels with limited feedback. The performances of several mmWave

precoding schemes are studied in [169] for various codebook based RF beam se-

lection strategies at the transmitter and receiver.

Recently, hybrid beamforming schemes have been developed for SU MIMO

systems in [170] that jointly optimize analog and digital beamforming matrices

to maximize the spectral efficiency of the system. These hybrid beamforming

schemes outperform the beam steering method [171], but have a high complexity.

Here it is assumed that each antenna is connected with a unique RF chain,

however, in massive multi-antenna systems, assigning each transmit antenna

with a unique RF chain is very costly. Also, power consumption is high for RF

hardware. To address these issues a hybrid beamforming has been proposed

for MU MISO systems in [172], where instead of each transmit antenna each

user is assigned a single RF chain, thus reducing the number of RF chains at

the transmitter for systems where the number of transmit antennas is large

compared to the number of users. It is noted in [172] that the spectral efficiency

with hybrid beamforming is lower than the conventional digital beamforming

methods, but this loss can be compensated by increasing the number of transmit

antennas by 27%. However, the study presented in [172] considers uncorrelated

Rayleigh channels and not mmWave channels. Therefore, the impact of reducing

the RF chains on the performance of massive mmWave arrays requires further

investigation with limited feedback techniques.

In order to understand mmWave channels, 3D mmWave channel models are

proposed in [173] and [174] for 28 GHz and 73 GHz, respectively. Due to reduced

scattering, the channel becomes more sparse, and so conventional codebooks

may not perform well in mmWave channels. Future studies are needed to ad-

dress this issue by developing effective limited feedback techniques for mmWave

channels.
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A
Proof of Result 1

In this appendix, we prove that if the entries of an nt × nt matrix H are i.i.d.

CN (0, 1), then the expected value of
∑nt

n=1
(λn)

t

(λn+ζc)
2 , where λn is the nth eigen-

value of HHH (uncorrelated central Wishart matrix), with respect to λn ∀n, is

given by

D(t)
c =E

[
nt∑

n=1

(λn)
t

(λn + ζc)
2

]

=
nt∑

i=1

i−1∑

j=0

i−1∑

l=0

(−1)j+l

(
i− 1

i− 1− j

)(
i− 1

i− 1− l

)
1

j! l!

t+j+l
∑

s=0

(
t + j + l

s

)

(−ζc)t+j+l−seζc
∫ ∞

ζc

vs−2e−vdv. (A.1)

Let, D(t)
c be defined by

D(t)
c = E

[
nt∑

i=1

(λn)
t

(λn + ζc)
2

]

= ntE

[

1

nt

nt∑

i=1

(λn)
t

(λn + ζc)
2

]

(A.2)

Now any expectation of the form (A.2) can be written as

D(t)
c = nt

[∫ ∞

0

(λ1)
t

(λ1 + ζc)
2 fλ1 (λ1) dλ1 + · · ·+

∫ ∞

0

(λnt
)t

(λnt
+ ζc)

2fλnt
(λnt

) dλnt

]

,

(A.3)

where fλ1 , . . . , fλnt
are the PDFs of λ1, . . . , λnt

, respectively. We can also write
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(A.3) in terms of an arbitrary eigenvalue as

D(t)
c = nt

[∫ ∞

0

1

nt

(λ)t

(λ + ζc)
2fλ1 (λ) dλ+ · · ·+

∫ ∞

0

1

nt

(λ)t

(λ+ ζc)
2 fλnt

(λ) dλ

]

= nt

[∫ ∞

0

1

nt

(λ)t

(λ + ζc)
2

(
fλ1 (λ) + . . .+ fλnt

(λ)
)
dλ

]

= nt

[∫ ∞

0

(λ)t

(λ+ ζc)
2f0 (λ) dλ

]

, (A.4)

where f0 (λ) is the PDF of an arbitrary eigenvalue and is written as (for the

case CK = nt) [3, 175]

f0 (λ) =
1

nt

nt∑

i=1

e−λLi−1 (λ)
2 , (A.5)

where Li−1 (·) is a Laguerre polynomial which can be also written as

Li−1 (λ) =
i−1∑

j=0

(−1)j
(

i− 1

i− 1− j

)
λj

j!
. (A.6)

Substituting (A.6) in (A.5), the PDF of an arbitrary eigenvalue becomes

f0 (λ) =
1

nt

nt∑

i=1

e−λ

(
i−1∑

j=0

(−1)j
(

i− 1

i− 1− j

)
λj

j!

)2

. (A.7)

Therefore, now (A.4) can be written as

D(t)
c =

∫ ∞

0

(λ)t

(λ+ ζc)
2

nt∑

i=1

e−λ

(
i−1∑

j=0

(−1)j
(

i− 1

i− 1− j

)
λj

j!

)2

dλ

=
nt∑

i=1

i−1∑

j=0

i−1∑

l=0

(−1)j+l

(
i− 1

i− 1− j

)(
i− 1

i− 1− l

)
1

j!l!

∫ ∞

0

λt+j+le−λ

(λ+ ζc)
2 dλ. (A.8)

Substituting λ = v − ζc, the integral in (A.8) becomes

∫ ∞

0

λt+j+le−λ

(λ+ ζc)
2 dλ =

t+j+l
∑

s=0

(
t+ j + l

s

)

(−ζc)t+j+l−seζc
∫ ∞

ζc

vs−2e−vdv (A.9)
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Therefore, we can write (A.8) as

D(t)
c =E

[
nt∑

n=1

(λn)
t

(λn + ζc)
2

]

=
nt∑
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)
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ζc

vs−2e−vdv. (A.10)

The integral can be written as

∫ ∞

ζc

vs−2e−vdv =







−Ei(1, ζc) +
e−ζc

ζ2c
for s = 0

Ei(1, ζc) for s = 1

Γ(s− 1, ζc) for s ≥ 2

(A.11)

Ei(·, ·) and Γ(·, ·) are generalized exponential integral and incomplete gamma

function, respectively.
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B
Proof of Result 2

In this appendix, we prove that when the entries of an nt × nt matrix H are

i.i.d. CN (0, 1), then the expected value of
(
∑nt

n=1
λn

λn+ζc

)2

, where λn is the nth

eigenvalue of HHH (uncorrelated central Wishart matrix), with respect to λn
∀n, is given by
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. (B.1)



142

Let, Fc be defined by

Fc = E





(
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λn
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)2
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[
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[
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(
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)(
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, (B.2)

where λa and λb are two distinct arbitrary eigenvalues. Using Result 1 given in

Appendix A to solve the first term in (B.2) and denoting f0 (λa, λb) as the joint

PDF of two distinct arbitrary eigenvalues, we can write (B.2) as

Fc = D(2)
c + nt(nt − 1)

∫ ∞

0

∫ ∞

0

(
λa

λa + ζc

)(
λa

λa + ζc

)

f0 (λa, λb) dλadλb. (B.3)

The joint PDF of two distinct arbitrary eigenvalues (for the case CK = nt) is

given by [3, 175]

f0 (λa, λb) =
1

nt(nt − 1)

nt∑

i=1

nt∑

j=1,j 6=i

e−(λa+λb)Z(λa, λb), (B.4)

where

Z(λa, λb) = Li−1 (λa)
2 Lj−1 (λb)

2 − Li−1 (λa)Lj−1 (λa)Li−1 (λb)Lj−1 (λb) . (B.5)

Now we can write (B.3) as
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c +
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Solving for Y in (B.6), we get

Y =
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As the double integrals in (B.7) are of the same function but with different

variables, we can also write Y by squaring the result of the single integral as
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(B.8)

Solving the integrals in (B.8) by substituting v = λ + ζc and then substituting

the resulting expression in (B.6), we can write (B.6) as

Fc =E
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The integral can also be written as

∫ ∞

ζc

vb−1e−vdv =

{

Ei(1, ζc) for b = 0

Γ(b, ζc) for b ≥ 1
(B.10)
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