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Abstract

A connectivity function is a symmetric, submodular set function. Connec-

tivity functions arise naturally from graphs, matroids and other structures.

This thesis focuses mainly on recognition problems for connectivity func-

tions, that is when a connectivity function comes from a particular type of

structure. In particular we give a method for identifying when a connectivity

function comes from a graph, which uses no more than a polynomial number

of evaluations of the connectivity function. We also give a proof that no such

method can exist for matroids.
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Chapter 1

Introduction

A number of mathematical structures, such as graphs, matroids, and poly-

matroids, have an associated set function that captures connectivity in these

structures. All these functions have certain properties in common, namely

they are all symmetric and submodular. It turns out that these are often the

only properties we need to prove theorems about the connectivity of these

structures. This motivates the study of connectivity functions in general,

where we define a connectivity function to be a symmetric, submodular set

function.

A polymatroid is similar to a matroid, except that it may have elements e

such that r(e) > 1, where r is the rank function of the polymatroid. A half-

integral polymatroid is a polymatroid such that r(A) ∈ {n
2

: n ∈ Z≥0}. In [8]

the following result is proved:

Theorem 1.1. Let λ be a connectivity function of E. Then there is a half-

integral polymatroid, P , on E such that λ = µP where µP is the connectivity

function of P .

This motivates us to study polymatroids in detail later on, in the hopes

of developing better insight into the structure of connectivity functions. In

our study we develop a notion of duality for polymatroids and a new minor

operation, which corresponds to a natural minor operation in connectivity

functions. We spend some time investigating the relationship between the

notion of polymatroid duality given here and this minor operation. This

work extends work done in [8].
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CHAPTER 1. INTRODUCTION 2

The main aim of this thesis is to study recognition problems for connectiv-

ity functions, that is identifying when a connectivity function comes from a

particular class of mathematical structures. There are two different types of

such problems that we study here. The first is recognising when a connectiv-

ity function comes from some particular structure in a polynomial number of

evaluations of the connectivity function, where, when we talk about a polyno-

mial number of evaluations of the connectivity function, we mean polynomial

in the size of the set on which the connectivity function is based. As this is

the main type of recognition problem that we study, to simplify things, this

interpretation of polynomial number will be used throughout the thesis; that

is when we talk about a polynomial number of evaluations of the connectivity

function, we shall be talking about polynomial in the size of the set on which

the connectivity function is based. The other type of recognition problem we

look briefly at is adding an extra axiom to the axioms of connectivity func-

tions to get an axiomatization of when a connectivity function comes from a

particular structure. Say we are considering the question of when a connec-

tivity function is matroidal. We can, of course, always add an axiom to the

axioms of a connectivity function that states for a connectivity function, λ

“There exists a matroid M such that the connectivity function of M is equal

to λ”. This ensures that there is some matroid with connectivity function

λ, but it also does not seem like a particularly satisfactory axiom. What we

are really interested in is the question of whether there is an axiom that can

be written in the language in which the axioms of connectivity functions are

written, which, when added to the axioms of connectivity functions, gives

an axiomatization of when a connectivity function comes from a particular

structure. A discussion of a somewhat similar problem for matroids can be

found in [7].

In Chapter 4 we show that the connectivity function of a graph gives a

lot of information about the structure of the graph with that connectivity

function. In fact, we show that, from the connectivity function of a graph,

we can determine the edge adjacencies. We then give a method for building

the graph (almost uniquely) from the edge adjacencies. In fact, building

the graph given a graphic connectivity function requires only a polynomial

number of rank evaluations. The main result of this thesis is the following:

Theorem 4.1. There is some polynomial p such that, given an arbitrary
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connectivity function λ, we are able to establish whether or not λ is graphic

in at most p(n) evaluations of the connectivity function, where n is the size

of the set on which λ is based.

We prove this by first building the graph that would have λ as its connectivity

function, were λ graphic. To do this we pretend that λ is graphic and use

the method for building the graph given a graphic connectivity function. We

then show that if λ and the connectivity function, γ, of the graph that we

just built agree on some particular collection of subsets of E (of which there

will be a polynomial number), then λ and γ agree everywhere, and so λ is

graphic.

This result is reminiscent of results of Seymour [12] and Lemos [6] (the latter

result we shall later go into in some detail), which show that connectivity

function of a matroid tell us a lot about the structure of that matroid and, in

all but a few cases, determines, up to duality, the structure of the matroid.

In Chapter 5 we look at the aforementioned result of Lemos, from [6], which

states that if two matroids, M1 and M2, have the same connectivity function,

and r(M1) 6= r(M2), then M2 = M∗
1 . This result shows that, in some sense,

the connectivity function of a matroid in many cases almost uniquely iden-

tifies the matroid. As this is an interesting and important result we reprove

it here. The proof is very similar to the one given in [6], but uses slightly

more elementary results. We also give a slight generalisation of a result from

[8], that gives a description of when a connectivity polymatroid (a particu-

lar type of polymatroid which we construct from a connectivity function), is

the connectivity polymatroid of a connectivity function that comes from a

matroid. We then prove the following result:

Theorem 5.34.We cannot tell in a polynomial number of evaluations of the

connectivity function, if a connectivity function is matroidal.

To prove this we look to a class of matroids known as spikes, which are

known to provide counterexamples to many natural conjectures. Finally we

take a slightly different approach and look at adding extra axioms to the

axioms of connectivity function that identify when a connectivity function is

the connectivity function of an identically self-dual matroid. Unfortunately

the methods used to do this in this special case do not seem to generalise

obviously into a method for doing this for matroids in general.
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We also take a detour and consider branch-width of connectivity functions.

We prove that the class of excluded minors for connectivity functions of

bounded branch-width have bounded size. The proof of this closely follows

[2], which gives a bound on the size excluded minors of branch-width k.

However, in the case of connectivity functions, we think the bound on size

that actually exists is much better than the one I have.



Chapter 2

Basic Results

In this section we introduce connectivity functions, give some example of

connectivity functions, and give some basic results that will be used in later

sections.

Definition 2.1.

1. Let E be a finite set, an integer-valued set function on E is a function

from the power set of E, denoted 2|E| to some subset of Z.

2. An integer-valued set function f on E is normalised if f(∅) = 0.

3. An integer-valued set function f on E is symmetric if f(X) = f(E−X)

for all X ⊆ E.

4. An integer-valued set function f on E is submodular if f(X) + f(Y ) ≥
f(X ∪ Y ) + f(X ∩ Y ) for all X, Y ⊆ E.

5. A normalised integer-valued set function f on E is unitary if f(e) ≤ 1

for all e ∈ E.

Definition 2.2. An integer-valued set function µ : 2|E| → Z is a connectivity

function if the following hold:

(C1) µ is normalised

(C2) µ is symmetric

(C3) µ is submodular.

5
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Definition 2.3. We say that a connectivity function λ is connected if λ(X) 6=
0 for all non-empty X ( E. If λ is not connected then we say that λ is

disconnected. If λ(X) = 0 for some non-empty X ( E, then we say that X

is a separator of λ, and we say that X is a connected component of λ if X is

a minimal non-empty separator of λ.

2.1 Examples

The following examples of connectivity functions arise naturally from math-

ematical structures. They are well-known and can be found in [9] and [8] for

example. These objects and their connectivity functions will be studied in

more detail in later sections.

Matroids

Definition 2.4. A matroid M is a pair (E, r), where E is a finite set and r

is an integer-valued set function on E having the following properties:

(R1) r is normalised.

(R2) r(X) ≤ |X|, for all X ⊆ E .

(R3) r(X) ≤ r(Y ), for all X ⊆ Y ⊆ E (r is increasing).

(R4) r is submodular.

We define the connectivity function of a matroid as follows:

Definition 2.5. Let M = (E, r). Define an integer-valued set function on

E by

µ(X) = r(X) + r(E −X)− r(E),

for X ⊆ E. Then µ is the connectivity function of the matroid M .

A proof that the connectivity function of a matroid is a unitary connectivity

function can be found in [8]

We will also define the notion of a dual of a matroid:
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Definition 2.6. Let M = (E, r) be a matroid and let r∗ be a integer-valued

set function on E defined by r∗(X) = |X|+ r(E −X)− r(E) for all X ⊆ E.

Define the dual of M to be M∗ = (E, r∗).

It is a well-known result and can be found in [9] that the dual of a matroid

is a matroid and if M is a matroid, then M∗∗ = M . It is also clear from the

definition of the connectivity function of a matroid and the definition of dual

that, for a matroid M = (E, r), we have µ(X) = r(X) + r∗(X)− |X| for all

X ⊆ E, and therefore, the connectivity function of M and the connectivity

function of the dual of M are equal.

Sometimes a matroid, M = (E, r), can be represented by a matrix, A, over

a field F, whose columns are labelled by the elements of E, where X ⊆
E is independent if, and only if, the columns labelled by X are linearly

independent in F. This means that the rank of a subset, X, of E is given

by the dimension of the span of X. When we can represent a matroid in

such a way we say that it is representable. If M is representable, then

µM(X) = r(〈X〉 ∩ 〈E − X〉) for all X ⊆ E. That is the connectivity of a

subset, X, of E is the dimension of the span of the intersection of the spans

of X and E −X.

Graphs

Definition 2.7. A graph consists of a set V (G) of vertices, a set E(G) of

edges, and an incidence relation ϕ : E → 2|V | such that |ϕ({e})| ∈ {1, 2}.
We say that two vertices, vi and vj, are adjacent if there is some e ∈ E such

that ϕ({e}) = {vi, vj}; and we say that an edge, e, is incident with a vertex,

v, if v ∈ ϕ({e}).

Let X ⊆ E. We use V (X) to denote the collection of vertices of G that are

incident with some edge in X. We define the connectivity function of a graph

as follows:

Definition 2.8. Let G be a graph with vertex set V (G) and edge set E(G).

The graphic connectivity function of G, denoted by γ, is defined by

γ(X) = |V (X)|+ |V (E −X)| − |V (E)|,
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for all X ⊆ E(G)

A proof that a graphic connectivity function is indeed a connectivity function

can be found in [8]. It is easy to see that for X ⊆ E, the connectivity, γ(X),

is equal to the number of vertices that X and E −X have in common (i.e.

|V (X) ∩ V (E −X)|).

Note that the connectivity function of the graph as defined above does not

agree with the connectivity function of the graphic matroid. For example

consider the following graph, G:

a c

d

b

This has graphic connectivity function γG as follows:

γG({a}) = 2, γG({b}) = 2, γG({c}) = 2, γG({d}) = 2, γG({a, b}) = 2,

γG({a, c}) = 4, γG({a, d}) = 2, γG({b, c}) = 2, γG({b, d}) = 4, γG({c, d}) = 2

and the matroid connectivity of the cycle matroid of the graph, denoted

µM(G), is as follows:

µM(G)({a}) = 1, µM(G)({b}) = 1, µM(G)({c}) = 1, µM(G)({d}) = 1,

µM(G)({a, b}) = 1, µM(G)({a, c}) = 1, µM(G)({a, d}) = 1, µM(G)({b, c}) = 1,

µM(G)({b, d}) = 1, µM(G)({c, d}) = 1.

In fact it is not even the case that a matroid connectivity function of the cycle

matroid of the graph will be connected if the graph is connected. Trees, as

graphs, have a connected graphic connectivity function, but viewed as cycle

matroids the matroidal connectivity function of the cycle matroid is not

connected.

The graphic connectivity function defined above is also known as the vertex

connectivity of G, and when we talk about the connectivity function of a

graph, this is the connectivity function we mean. However, this is not the

only connectivity function we can get from a graph and we now define another

connectivity function which comes from a graph, this connectivity function

is discussed in [1] for example. It is given here as another example of a

connectivity function, and to show that we can define more than one type of

connectivity function on a graph; it will not be used again in this thesis.
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Let G = (V,E) be a graph with V as its collection of vertices and E as

its collection of edges. Let X ⊆ V . Let λV (G)(X) be the number of edges

incident with both a vertex in X and a vertex in E − X. It is clear that

λV (G) is symmetric and normalised. To see that λV (G) is submodular, consider

λV (G)(X) + λVG(Y ) for some X, Y ⊆ V . As λV (G)(X) is equal to the number

of edges incident with both a vertex in X and a vertex in E −X we can say

that λV (G)(X) = |E(X)|+ |E(V −X)| − |E|, where we use E(X) to denote

the edges incident with a vertex in X. Therefore:

λV (G)(X) + λV (G)(Y ) = |E(X)|+ |E(V −X)|+ |E(Y )|+ |E(V − Y )| − 2|E(G)|

= |E(X) ∪ E(Y )|+ |E(X) ∩ E(Y )|+ |E(V −X)∪

E(V − Y )|+ |E(V −X) ∩ E(V − Y )| − 2|E(G)| (1)

≥ |E(X ∪ Y )|+ |E(X ∩ Y )|+ |E((V −X) ∪ (V − Y ))|

+ |E((V −X) ∩ (V − Y ))| − 2|E(G)| (2)

= |E(X ∪ Y )|+ |E(X ∩ Y )|+ |E(V − (X ∩ Y ))|

+ |E(V − (X ∪ Y ))| − 2|E(G)|

= λV (G)(X ∪ Y ) + λV (G)(X ∩ Y ), (3)

where (1) follows by the principle of inclusion exclusion, (2) follows as |E(X)∪
E(Y )| = |E(X ∪ Y )| and E(X) ∩ E(Y ) ⊇ E(X ∩ Y ). Therefore λV (G) is

submodular. As it is also normalised and symmetric, λV (G) is a connectivity

function.

Polymatroids

Definition 2.9. A polymatroid P is a pair (E, r), where E is a finite set and

r is a rational valued set function on E having the following properties:

(R1) r is normalised.

(R2) r(X) ≤ r(Y ), for all X ⊆ Y ⊆ E

(R3) r is submodular.

This is the same as the definition of a matroid, except that r(X) is not

required to be less than or equal to |X|, and need not be integer-valued. We

shall sometimes use r(P ) to denote rP (E).
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We say that a polymatroid P = (E, r) is integer-valued if r(X) ∈ Z for all

X ⊆ E.

We define the connectivity function of a polymatroid as follows:

Definition 2.10. Let P = (E, r). Define a set function on E by

λP (X) = r(X) + r(E −X)− r(P ),

for X ⊆ E. Then λP is the connectivity function of the polymatroid, P.

In fact the connectivity function of a polymatroid is not necessarily a con-

nectivity function, as λP (X) may not be integer-valued for all X. However,

it is proved in [8] that a connectivity function of a polymatroid is normalised,

increasing and submodular. Therefore we can say that the connectivity func-

tion of a polymatroid, P = (E, r), is a connectivity function if, and only

if, λP (X) ∈ Z for all X ⊆ E. Therefore the connectivity function of an

integer-valued polymatroid is a connectivity function. We can also have the

connectivity functions of polymatroids which are not integer polymatroids,

that are still connectivity functions. One such example is given in [8] and

another is given here: Let E = {a, b, c, d} and the rank function be defined

as follows:

r(X) =


1 if |X| = 1
3
2

|X| = 2

2 otherwise

Then

λP (X) =

{
1 if |X| = 1 or |X| = 2 or |X| = 3

0 if |X| = 0 or |X| = 4

2.2 Minors of Connectivity Functions

This section gives an operation that removes a single element from a con-

nectivity function but still preserves some of the structure of the original

connectivity function. It is studied for unitary connectivity functions in de-

tail in [8], and we generalise those results to general connectivity functions

here.

Definition 2.11. Let µ be a connectivity function on E and let e ∈ E. The
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elision of e from λ, which we denote by λ ↓ e, is defined as follows:

(λ ↓ e)(A) = min{λ(A), λ(A ∪ {e})}

for all A ⊆ E − {e}.

Note that for all A ⊆ E − {e}, we have (λ ↓ e)(A) ≤ λ(A) and (λ ↓ e)(A) ≤
λ(A ∪ {e}).

Theorem 2.12. Let λ be connectivity function on set E and let e ∈ E; then

λ ↓ e is a connectivity function on the set E − {e}.

Proof. It is easy to see that (λ ↓ e)(∅) = 0.

Let {A, e,B} be a partition of E. Then:

(λ ↓ e)(A) = min{λ(A), λ(A ∪ {e})}

= min{λ(B ∪ {e}), λ(B)}

= (λ ↓ e)(B).

Therefore λ ↓ e is symmetric.

To show submodularity consider A,B ⊆ E−{e}. By definition (λ ↓ e)(A) +

λ ↓ (B) = min{λ(A), λ(A ∪ {e})} + min{λ(B), λ(B ∪ {e})}. We shall now

split into four cases:

Suppose that (λ ↓ e)(A) = λ(A) and (λ ↓ e)(B) = λ(B). Then

(λ ↓ e)(A) + (λ ↓ e)(B) = λ(A) + λ(B)

≥ λ(A ∪B) + λ(A ∩B)

≥ (λ ↓ e)(A ∪B) + (λ ↓ e)(A ∩B).

Suppose that (λ ↓ e)(A) = λ(A ∪ {e}), and (λ ↓ e)(B) = λ(B). Then

(λ ↓ e)(A) + (λ ↓ e)(B) = λ(A ∪ {e}) + λ(B)

≥ λ(A ∪B ∪ {e}) + λ(A ∩B)

≥ (λ ↓ e)(A ∪B) + (λ ↓ e)(A ∩B).

If (λ ↓ e)(A) = λ(A), and (λ ↓ e)(B) 6= λ(B), then the proof is similar.
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Finally, suppose that (λ ↓ e)(A) = λ(A ∪ {e}) and (λ ↓ e)(B) = λ(B ∪ {e}).
Then

(λ ↓ e)(A) + (λ ↓ e)(B) = λ(A ∪ {e}) + λ(B ∪ {e})

≥ λ((A ∩B) ∪ {e}) + λ((A ∪B) ∪ {e})

≥ (λ ↓ e)(A ∩B) + (λ ↓ e)(A ∪B).

Therefore submodularity holds in all cases. As λ ↓ e is symmetric and

submodular and normalised, it must be that λ ↓ e is a connectivity function.

Clearly if we have a connectivity function that has the property that λ({a}) ≤
k for all a ∈ E, then we also have this property for λ ↓ e for any e ∈ E. In

particular if λ is a unitary connectivity function, then so is λ ↓ e.

Lemma 2.13. Let λ be a connectivity function on a set E and let e ∈ E.

Let X ⊆ E − {e} be such that λ(X ∪ {e}) ≤ λ(X). Then for any X ′ ⊇ X

we have λ(X ′ ∪ {e}) ≤ λ(X ′) .

Proof. Suppose that λ(X ′ ∪ {e}) > λ(X ′). Then:

λ(X ′ ∪ {e}) + λ(X ∪ {e}) > λ(X ′) + λ(X ∪ {e}) (1)

≥ λ(X ′ ∪ {e}) + λ(X) (2)

≥ λ(X ′ ∪ {e}) + λ(X ∪ {e}) (3)

where the first inequality holds by our supposition, (2) follows from (1) by

submodularity and (3) follows from (2) by the assumption in the statement

of the lemma. Therefore λ(X ′∪{e})+λ(X∪{e}) > λ(X ′∪{e})+λ(X∪{e}),
a contradiction.

Lemma 2.14. Suppose that (λ ↓ e)(X) = λ(X ∪{e}), then for any X ′ ⊃ X,

we have (λ ↓ e)(X ′) = λ(X ′ ∪ {e}).

Proof. If (λ ↓ e)(X) = λ(X ∪ {e}), then λ(X ∪ {e}) ≤ λ(X). Therefore, by

the previous lemma, λ(X ′ ∪ {e}) ≤ λ(X ′) for any X ′ ⊆ E that is a superset

of X. Therefore (λ ↓ e)(X ′) = min{λ(X ′), λ(X ′ ∪ {e})}) = λ(X ′ ∪ {e}).
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By symmetry we can say that if (λ ↓ e)(X) = λ(X), then for any X ′ ⊆ X,

we have (λ ↓ e)(X ′) = λ(X ′).

2.3 Direct Sum

Recall that a connectivity function λ is connected if λ(X) 6= 0 for all non-

empty X ( E. If λ is not connected then we say that λ is disconnected. If

λ(X) = 0 for some non-empty X ( E, then we say that X is a separator

of λ, and we say that X is a connected component of λ if X is a minimal

non-empty separator of λ.

Definition 2.15. Let λ1 and λ2 be connectivity functions on sets E1 and E2

respectively, such that E1 ∩ E2 = ∅. The direct-sum of λ1 and λ2, denoted

λ1 ⊕ λ2, is defined as follows:

λ1 ⊕ λ2(X) = λ1(X ∩ E1) + λ2(X ∩ E2),

for all X ⊆ E1 ∪ E2.

In [8] it is proved that the direct-sum of two connectivity functions is a

connectivity function on E1 ∪E2. The following lemma can also be found in

[8].

Lemma 2.16. Let λ be a connectivity function on a set E, such that λ(X) =

0 for some non-empty proper subset, X, of E. Then there are connectivity

functions λ1 on X and λ2 on E − X such that λ = λ1 ⊕ λ2. Conversely

if λ = λ1 ⊕ λ2, where λ1 is a connectivity function on set X, and λ2 is a

connectivity function on set E −X, then λ(X) = 0.

Proof. For the first part, suppose λ(X) = 0, and define λ1 on set X such

that λ1(A) = λ(A) for all A ⊆ X.

Claim 2.16.1. λ1 is a connectivity function

Proof. λ1(∅) = λ(∅) = 0, so λ1 is normalised.

Let A and B be subsets of X. Then λ1(A) + λ1(B) = λ(A) + λ(B) ≥
λ(A∪B)+λ(A∩B) = λ1(A∪B)+λ1(A∩B). Therefore λ1 is submodular.
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Let A ⊆ X. Then λ1(A) = λ(A) = λ(E − A) = λ((E −X) ∪ (X − A)).

Therefore, as λ(E −X) = 0, by submodularity of λ,

λ1(X −A) = λ(E −X) + λ(X −A) ≥ λ((E −X) ∪ (X −A)) = λ1(A),

Therefore λ(X −A) = λ1(X −A) ≥ λ1(A). By symmetry and submod-

ularity of λ,

λ(X) + λ1(A) = λ(X) + λ(E − A) ≥ λ(E) + λ(X − A),

and therefore λ1(A) ≥ λ1(X−A). Combining the two inequalities shows

that λ1(A) = λ1(X − A), and so λ1 is symmetric.

Similarly we can define a connectivity function λ2 on E−X such that λ2(B) =

λ(B) for all B ⊆ E −X.

Consider λ(Y ) for any Y ⊆ E, and let Y1 = Y ∩X and Y2 = Y ∩ (E −X).

By submodularity λ1(Y1) +λ2(Y2) = λ(Y1) +λ(Y2) ≥ λ(Y1∪Y2) = λ(Y ). We

also have:

λ(Y ) = λ(Y ) + λ(X) + λ(E −X) (1)

≥ λ(Y1) + λ(X ∪ Y2) + λ(E −X) (2)

≥ λ(Y1) + λ(E) + λ(Y2) (3)

= λ1(Y1) + λ2(Y2), (4)

where (2) follows from (1) by submodularity applied to λ(Y ) +λ(X) and (3)

follows from (2) by submodularity applied to λ(X ∪ Y2) and λ(E −X).

Therefore λ(Y ) = λ(Y1) + λ(Y2) = λ1(Y1) + λ2(Y2) so λ = λ1 ⊕ λ2.

For the converse, suppose that λ = λ1 ⊕ λ2, where λ1 is a connectivity

function on set X and λ2 is a connectivity function on E−X. Then λ(X) =

λ1(X) = 0.

We would like our minor operation to be able to ‘pick out’ the connected

components of a connectivity function. The following lemma shows that the

elision operation can indeed do this.

In [8] it is proved that (λ ↓ e) ↓ f = (λ ↓ f) ↓ e. Therefore it makes sense to
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talk about λ ↓ A for some A ⊆ E. It can easily be seen that

(λ ↓ A)(X) = min{λ(X ∪ C) : C ⊆ A}.

Lemma 2.17. Let λ be a connectivity function on a set E and let ∅ 6= X ( E

be such that λ(X) = 0. Let Y = E − X. Then (λ ↓ Y )(A) = λ(A) for all

A ⊆ X.

Proof. As λ(X) = 0 we can find connectivity functions, λ1 on set X and λ2 on

set E−X, such that λ = λ1⊕λ2. We want to show that (λ ↓ Y )(A) = λ(A)

for all A ⊆ X, in other words, min{λ(A ∪ C) for all C ⊆ Y } = λ(A). This

holds as λ(A ∪ C) = λ1(A) + λ2(C) ≥ λ1(A) = λ(A).

2.4 Connected Matroids and Graphs

Ideally we would like the connectivity function of a structure to be connected

if, and only if, that structure is connected. We show that this is true for

graphs and matroids.

2.4.1 Graphs

In [9] a graph is said to be connected, if each pair of distinct vertices is joined

by a path, otherwise it is said to be disconnected. A connected component of

G is a maximal connected subgraph of G. We show that a graph is connected

if, and only if, its vertex connectivity function is connected. Suppose that

G is not connected. Then G must have at least two connected components.

Call one of these GA and let E(GA) = A. As there is no walk from any

vertex of GA to any vertex in the complement of GA, we can say that V (A)∩
V (E −A) = ∅, and therefore V (A) + |V (E −A)| = |V (E)|, and so γG(A) =

|V (A)|+ |V (E − A)| − |V (E)| = 0.

Now suppose that γG(A) = 0 for some ∅ 6= A 6= E. Then |V (A)| + |V (E −
A)| = |V (E)|, and so V (A) ∩ V (E − A) = ∅. We shall show that A induces

a connected component, or collection of connected components of G. For

suppose not, then for every v ∈ V (A), there is a path between v and some

u ∈ V (E − A). Chose u so that this path is of minimal length, and suppose
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the path is v, e1, v1, e2, v2, . . . , en, vn, en+1, u. If en+1 ∈ A, then u ∈ V (A), so

V (A)∩V (E−A) 6= ∅, a contradiction. Therefore en+1 /∈ A, so en+1 ∈ E−A,

and so vn ∈ V (E − A) contradicting the choice of u.

2.4.2 Matroids

Definition 2.18. Let M1 = (E1, r1) and M2 = (E2, r2) be matroids such

that E1 ∩ E2 = ∅. We define the direct sum of M1 and M2 by M1 ⊕M2 =

(E1 ∪ E2, rM1⊕M2) where rM1⊕M2 is defined as follows:

rM1⊕M2(X) = r1(X ∩ E1) + r2(X ∩ E2),

for all X ⊆ E1 ∪ E2.

It is easily verified that M1 ⊕M2 is a matroid.

Definition 2.19. We say that a matroid, M , is disconnected if there is some

partition (A,B) of the groundset of M such that there is no circuit of M

intersecting both A and B. Otherwise we say that M is connected.

We could also say that a matroid, M , is connected if, and only if, there is no

pair of matroids M1 and M2 such that M = M1 ⊕M2.

We use M |A to denote the matroid M \ (E − A).

Lemma 2.20. A matroid M = (E, rM) is connected if, and only if, its

connectivity function, µM is connected.

Proof. Suppose that M is connected, then, for each non-trivial partition,

(A,B), of the groundset of M , there is some circuit C that has a non-empty

intersection with both A and B. This means that r(A∩C)+r(B∩C)−r(C) =

1. Now consider r(A) + r(B) + r(C),

r(A) + r(B) + r(C) ≥ r(A ∩ C) + r(A ∪ C) + r(B) (1)

≥ r(A ∩ C) + r((A ∪ C) ∪B)) + r((A ∪ C) ∩B) (2)

= r(A ∩ C) + r(E) + r(C ∩B), (3)

where the first and second inequalities follow by submodularity and (3) fol-

lows from (2) by noting that A ∪ B = E and that A ∩ B = ∅. Therefore
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r(A)+r(B)+r(C) ≥ r(A∩C)+r(B∩C)+r(E), and so r(A)+r(B)−r(E) ≥
r(A ∩ C) + r(B ∩ C) − r(C) = 1. This means µM(A) 6= 0. As this holds

for all partitions (A,B) of E, the connectivity function is non-zero on all

non-empty proper subsets of E, and therefore µM is connected.

Now suppose that M is not connected. Then there is some non-trivial par-

tition, (X, Y ) of E such that no circuit of M has a non-empty intersection

with both X and Y . Let BX be a base of M |X and BY be a base of M |Y . As

neither BX nor BY contains a circuit of M and BX ∪BY does not contain a

circuit of M , the set BX ∪BY must be independent in M . Consider µM(X):

µM(X) = r(X) + r(Y )− r(E)

= |BX |+ |BY | − r(E)

≤ |BX |+ |BY | − |BX ∪BY |

= 0

Therefore when M is not connected there is some ∅ 6= X 6= E such that

µ(X) = 0.

This means that if µ(X) = 0, then there is no circuit intersecting both X

and E −X. This fact will be used later, in Section 5.



Chapter 3

Polymatroids

In [8] it is proved that every connectivity function is the connectivity function

of a half-integral polymatroid. This leads us to study polymatroids in some

detail and, as part of that study, to generalise some of the results given in

[8].

Recall that a polymatroid is an ordered pair P = (E, rP ) where E is a finite

set and rP is a non-negative rational valued set function on E which has the

following properties:

(P1) rP (∅) = 0 (rP is normalised),

(P2) If A ⊆ B ⊆ E then rP (A) ≤ rP (B) (rP is increasing),

(P3) If A,B ⊆ E then rP (A) + rP (B) ≥ rP (A ∪ B) + rP (A ∩ B) (rP is

submodular).

If P = (E, rP ) is a polymatroid, then we call rP the rank function of P and we

define the rank of the polymatroid, which we denote r(P ), by r(P ) = rP (E).

Throughout this section we shall let P = (E, rP ) be a polymatroid.

When trying to visualise a polymatroid it can be helpful to think of rank-0

elements as loops, rank-1 elements as points, rank-2 elements as lines etc.

Therefore we shall sometimes refer to rank-1 elements as points, rank-2 ele-

ments as lines etc.

We do not require the rank of an element to be an integer, which leads to

the following definitions:

18
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Definition 3.1.

i) An integer polymatroid is one in which rP : 2E → Z≥0.

ii) A half-integral polymatroid is one in which rP (A) ∈ {n
2

: n ∈ Z≥0} for

all A ⊆ E.

Definition 3.2. A k-polymatroid is a polymatroid P = (E, rP ) such that for

each e ∈ E we have rP ({e}) ≤ k. A k-polymatroid is a pure k-polymatroid if

for every e ∈ E we have rP ({e}) = k.

We will briefly look at a few examples of polymatroids.

3.1 Examples

Graphic Polymatroids

Suppose we have a graph G. Define P (G) = (E(G), r) where r(X) = |V (X)|
for every X ⊆ E(G). It can be seen that P (G) is a 2-polymatroid, and when

G is a loopless graph this is a pure 2-polymatroid. A proof of this can be

found in [8].

Polymatroids that come from matroids

i) Clearly a matroid is just a 1-polymatroid.

ii) Suppose we have a matroid M with groundset E ′ and rank function r′.

Define P = (E, r) where E is some subset of the set of flats of M of rank

at most k and r(X) = r′(
⋃
x∈X

x) for all X ⊆ E. This is a k-polymatroid

and every integer-valued k-polymatroid can be obtained in this way. A

sketch of the proof of this can be found in [9].

iii) Let M1 = (E, r1) and M2 = (E, r2) be matroids. Define M1 + M2 =

(E, r1 + r2), where (r1 + r2)(X) = r1(X) + r2(X). It is easy to see

that this is a 2-polymatroid. Intuitively the two matroids are embedded

in disjoint dimensions, and corresponding points are then joined by a

line which becomes an element of the polymatroid. The points of the

matroid are then deleted.



CHAPTER 3. POLYMATROIDS 20

3.2 Connectivity Functions and Polyma-

troids

We now look at some results relating to the connectivity functions of poly-

matroids.

Recall that the connectivity function of a polymatroid, µP (X), is defined by

µP (X) = rP (X) + rP (E −X)− r(P ),

for all X ⊆ E. A proof that the connectivity function of a polymatroid is

indeed a connectivity function can be found in [8]. When the polymatroid

comes from a graph, G, then µP = γ, where γ is the connectivity function of

G. When a polymatroid is a matroid then the polymatroid connectivity and

the matroid connectivity agree.

Throughout the remainder of this section we shall assume that µP is the

connectivity function of the polymatroid P = (E, rP ).

Definition 3.3. We say that P is connected if rP (X) + rP (E −X) > r(P )

for all non-empty X ( E

This is equivalent to saying that µP (X) 6= 0 for all non-empty X ( E. Note

that is P is connected if, and only if, µP is connected.

Definition 3.4. Let e ∈ E.

i) e is compact if rP ({e}) = µP ({e}).

ii) A set X ⊆ E is called compact if every element x ∈ X is compact.

iii) P is called compact if every element of P is compact.

Lemma 3.5. The element e is a compact element of E if, and only if, rP (E−
{e}) = rP (E).

Proof. If e is compact then rP ({e}) = µP ({e}) = rP ({e}) + rP (E − {e}) −
rP (E). Therefore rP (E−{e}) = rP (E). The reverse direction is similar.

A coloop-free matroid, M , is a compact 1-polymatroid. For, if e is not a

coloop then there is some basis, B, of M that does not contain e and so
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e ∈ cl(B). Therefore r(E − {e}) = r(E) and so e is compact for every

element, e, of M . A connected matroid on a groundset containing at least

two elements is coloop-free as, if e were a coloop r(E − {e}) = r(E)− 1 and

so r(E − {e}) + r({e}) = r(E), a contradiction to the connectedness of M .

Therefore a connected matroid is compact.

In [8] it is proved that if µP is the connectivity function of a polymatroid

P , then there is a compact polymatroid P ′ whose connectivity function is

also µP . The following very nice result (mentioned earlier) is also proved

and we include the proof for the sake of completeness. Before we do this we

introduce the following notation:

Suppose that we have a connectivity function λ on a set E. Then for any

X ⊆ E, we define ||X||λ as follows:

||X||λ =
∑
x∈X

λ({x}).

Theorem 3.6. Let λ be a connectivity function on a set E. Then there is a

half-integral polymatroid, P = (E, rP ), such that µP = λ.

Proof. The proof follows by constructing the rank function of P .

Define rP by:

rP (X) =
λ(X) + ||X||λ

2

for all X ⊆ E.

It is not hard to see that rP is the rank function of a polymatroid. This

polymatroid is clearly half-integral as both λ(X) and ||X||λ are integers.

Now consider the connectivity function, µP , of P .

µP (X) = rP (X) + rP (E −X)− rP (E)

=
1

2
(λ(X) + ||X||λ + λ(E −X) + ||E −X||λ − λ(E)− ||E||λ)

=
1

2
(λ(X) + ||X||λ + λ(X) + ||E||λ − ||X||λ − λ(E)− ||E||λ)

=
1

2
(2λ(X))

= λ(X).
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This motivates the following definition:

Definition 3.7. Let λ be a connectivity function on E. Then the polyma-

troid Pλ, with rank function rPλ defined by:

rPλ(X) = ||X||λ + λ(X),

for all X ⊆ E, is called the connectivity polymatroid generated by λ.

We say that P is a connectivity polymatroid, if we can find some connectivity

function λ such that rP = rPλ .

3.3 Duality

It is proved in [8] that a pure 2-polymatroid, P , is the connectivity polyma-

troid generated by a unitary connectivity function if, and only if, P = P ∗,

where, for a 2-polymatroid P , the polymatroid P ∗ is defined by

rP ∗(X) = 2|X|+ rP (E −X)− rP (E).

The definition of duality given above is an example of the k − dual of a

matroid, which is defined in [16]. The k-dual of a k-polymatroid, P , is

a polymatroid on the same groundset of P with rank function defined as

follows:

rP ∗(X) = k|X|+ rP (E −X)− rP (E).

In [16] Whittle proved that this is the only definition of duality in polyma-

troids that interchanges deletion and contraction and has the property that

P = P ∗∗. However, this definition of duality relies on the value of k, and,

as a 2-polymatroid is also a 3-polymatroid, this means that the dual is not

uniquely defined. Another problem is that the 2-dual of a 3-polymatroid

is not even a polymatroid. We introduce a new notion of duality which

also gives a fairly nice relationship between deletion and contraction and

agrees with the previous definition of duality when P is a pure, compact

2-polymatroid. This means that, with our new definition of duality, we are



CHAPTER 3. POLYMATROIDS 23

still able to say that a pure 2-polymatroid, P , is the connectivity polyma-

troid generated by a unitary connectivity function if, and only if, P = P ∗.

We are also able to extend this characterisation to general (that is, not nec-

essarily unitary) connectivity polymatroids. Before we do this we show that

our definition of duality is a reasonable definition.

If P is a polymatroid on set E with rank function rP , then we define

||X||rP =
∑
x∈X

rP ({x})

for all X ⊆ E. Note that if P is a compact polymatroid with connectivity

function µ, then ||X||r = ||X||µ.

Definition 3.8. Let P = (E, r) be a polymatroid; we define a function rP ∗

on E as follows:

rP ∗(X) = r(E −X) + ||X||r − r(E),

for all X ⊆ E. We call the pair P ∗ = (E, rP ∗) the dual of P .

It is not hard to see that when P is a pure, compact k-polymatroid, then

the definition of the k-polymatroid dual agrees with the dual given in Defi-

nition 3.8. The dual defined in Definition 3.8 will be the polymatroid dual

that we use throughout the remainder of this thesis.

Lemma 3.9. Suppose we have a polymatroid P = (E, rP ) with dual P ∗ =

(E, rP ∗). Then P ∗ is a polymatroid on E with rank function rP ∗.

Proof. If X = ∅ then rP ∗(X) = rP ∗(∅) = rP (E − ∅) + ||∅||rP − rP (E) = 0, in

other words rP ∗ is normalised.

Suppose that X ⊆ Y ⊆ E such that X ∪ {e} = Y for e ∈ E − X, and let

rP ({e}) = k for some k. By the definition of dual rP ∗(X) = rP (E − X) +

||X||rP − rP (E), in other words, rP ∗(X) = rP (E −X) + ||Y ||rP − k− rP (E).

As E−X = (E−Y )∪{e}, it follows by submodularity of r, that rP (E−X) ≤
rP (E − Y ) + rP ({e}). Therefore, rP ∗(X) ≤ rP (E − Y ) + k + ||Y ||rP − k −
rP (E) = rP ∗(Y ). Therefore, inductively, if X ⊆ Y then rP ∗(X) ≤ rP ∗(Y ),

that is rP ∗ is increasing.
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Suppose X, Y ⊆ E and consider rP ∗(X) + rP ∗(Y ). By definition of rP ∗

we know that rP ∗(X) + rP ∗(Y ) = rP (E − X) + ||X||rP − rP (E) + rP (E −
Y ) + ||Y ||rP − rP (E) which, by submodularity, is greater than or equal to

rP ((E−X)∪ (E−Y )) + rP ((E−X)∩ (E−Y )) + ||X||rP + ||Y ||rP −2rP (E).

It is clear that ||X||rP + ||Y ||rP = ||X ∪Y ||rP + ||X ∩Y ||rP , and so rP ∗(X) +

rP ∗(Y ) ≥ rP (E − (X ∩ Y )) + rP (E − (X ∪ Y )) + ||X ∪ Y ||rP + ||X ∩ Y ||rP −
2rP (E) = rP ∗(X ∪ Y ) + rP ∗(X ∩ Y ). In other words rP ∗ is submodular.

P ∗ = (E, rP ∗) is normalised, increasing and submodular, and so P ∗ is a

polymatroid.

Lemma 3.10. The dual of P is a compact polymatroid.

Proof. By the definition of the connectivity function of a polymatroid,

µP ∗({e}) = rP ∗({e}) + rP ∗(E − {e}) − rP ∗(E); and, by the definition of

rP ∗ , we know that rP ∗(E−{e}) = rP (E− (E−{e})) + ||E−{e}||rP − rP (E)

and rP ∗(E) = rP (E−E)+ ||E||rP − rP (E). Substituting into the formula for

µP ∗({e}) we get µP ∗({e}) = rP ∗({e})+rP ({e})+ ||E||rP −rP ({e})−rP (E)−
||E||rP + rP (E) = rP ∗({e})

It is also worth noting the following two lemmas:

Lemma 3.11. A polymatroid P is connected if, and only if, P ∗ is connected.

Proof. Suppose P is connected, then for all non-empty X ( E we have

rP (X) + rP (E −X) > rP (E). Therefore:

rP ∗(X) + rP ∗(E −X) = rP (E −X) + ||X||r − rP (E) + rP (X)

+ ||E −X||r − rP (E)

= rP (X) + rP (E −X) + ||E||r − 2rP (E)

> rP (E) + ||E||r − 2rP (E)

= ||E||r − rP (E)

= rP ∗(E).

A similar argument works to show that if P is not connected then P ∗ is not

connected.

Lemma 3.12. For every e ∈ E, the rank of e in the dual, rP ∗({e}), is equal

to µP ({e}). Moreover, when e is compact, rP ∗({e}) = rP ({e}).
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Proof. By the definition of duality of a polymatroid, rP ∗({e}) = rP (E −
{e}) + rP ({e}) − rP (E) which is just the definition of µP ({e}). When P is

compact µP ({e}) = rP ({e}), so rP ∗({e}) = rP ({e}).

Therefore, if e is a compact element of E that corresponds to a point in P ,

it will also correspond to a point in P ∗. Similarly if e corresponds to a line

in P , it will correspond to a line in P ∗ etc. This means that this concept of

polymatroid duality does not correspond to the standard concept of duality

in a matroid as, in matroid duality, the dual of a loop (a rank-0 element) is

a point (a rank-1 element).

We shall show that the dual of the dual of a compact polymatroid is the

polymatroid itself. However, by Lemma 3.10, the dual of a non-compact

polymatroid is a compact polymatroid and so, as the dual of the dual of

a non-compact polymatroid is compact, it therefore cannot be the original

polymatroid. We shall see that the dual of the dual of a non-compact poly-

matroid is what is known as the “compactification” of the polymatroid.

Definition 3.13. Let r[(P ) be a function defined on 2E as follows:

r[(P )(X) = rP (X) +
∑
x∈X

(µP (x)− rP (x))

for all X ⊆ E. The pair [(P ) = (E, r[(P )) is the compactification of P .

The next lemma is a direct consequence of [8] Lemma 5.3.

Lemma 3.14. [(P ) is a compact polymatroid with connectivity function µP .

Note that when X is compact µP ({x}) = rP ({x}) for all x ∈ X so r[(P )(X) =

rP (X). To give an intuitive idea of compactification we consider the following

2-polymatroids and their compactifications.

a

b

P1

a
b

[(P1)
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a

b d

c

e

P2

ab d

c

e

[(P2)

We also consider the dual of P1. It can easily be seen that the dual of

P1 is equal to [(P1), and the dual of [(P1) is [(P1) so (P ∗1 )∗ = [(P1), the

compactification of P1.

Lemma 3.15. The polymatroid P is connected if, and only if, [(P ) is con-

nected.

The proof is immediate from the definition of compactification.

Lemma 3.16. Let P = (E, rP ) be a polymatroid. Then (P ∗)∗ = [(P ).

Proof. Consider r(P ∗)∗(X) for X ⊆ E. Then

r(P ∗)∗(X) = rP ∗(E −X) + ||X||rP∗ − rP ∗(E)

= rP (E − (E −X)) + ||E −X||rP − rP (E) + ||X||rP∗
− rP (E − E)− ||E||rP + rP (E)

= rP (X)− ||X||rP + ||X||rP∗
= rP (X) +

∑
x∈X

(µP ({x})− rP ({x})) (1)

= r[(P )(X),

where (1) follows by Lemma 3.12.

The above results show that the dual polymatroid behaves in a reason-

able way, so we now look at a characterisation of connectivity polyma-

troids. Recall that a connectivity polymatroid is a polymatroid P such that

rP (X) = ||X||λ + λ(X) for some connectivity function λ.

Theorem 3.17. A polymatroid P = (E, r) is a connectivity polymatroid if,

and only if, P = P ∗ and rP ({e}) is even for all e ∈ E.
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Proof. Suppose that P = (E, r) is a connectivity polymatroid. Then

rP (X) = ||X||λ +λ(X) for some connectivity function λ on E. Therefore for

any e ∈ E we have rP ({e}) = ||{e}||λ + λ({e}) = 2λ({e}), and so rP ({e}) is

even.

Next we must show that P = P ∗. To do this note rP (E − X) = ||E −
X||λ + λ(E −X) = ||E −X||λ + λ(X), where the second equality follows by

symmetry of the connectivity function; and rP (E) = ||E||λ + λ(E) = ||E||λ.
Therefore:

rP ∗(X) = rP (E −X) + ||X||rP − rP (E)

= ||E −X||λ + λ(X) + ||X||rP − ||E||λ
= ||E||λ − ||X||λ + λ(X) + ||X||rP − ||E||λ
= λ(X)− ||X||λ + ||X||rP
= λ(X) +

∑
x∈X

(rP ({x})− λ({x}))

= λ(X) +
∑
x∈X

(2λ({x})− λ({x})) (1)

= λ(X) + ||X||λ
= rP (X).

where (1) follows as P is a connectivity polymatroid.

For the converse suppose that P = P ∗, and that rP ({e}) is even for all e ∈ E.

Let the connectivity function of P be µP . By rearranging the definition of the

rank of the dual polymatroid we get rP (E−X)− rP (E) = rP ∗(X)− ||X||rP ,

and therefore:

µP (X) = rP (X) + rP (E −X)− rP (E)

= rP (X) + rP ∗(X)− ||X||rP
= 2rP (X)− ||X||rP .

As rP ({e}) is even for all e ∈ E, we also know that ||X||rP is even for any

X ⊆ E. Therefore µ(X) is even for all X ⊆ E, and so λ = µ
2

is a connectivity

function. As λ = µ
2
, for any e ∈ E we have λ({e}) = rP ({e})− 1

2
||{e}||rP =
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1
2
rP ({e}). Rearranging this we get rP ({e}) = 2λ({e}). Therefore:

λ(X) =
µ(X)

2

= rP (X)− 1

2
||X||rP

= rP (X)− 1

2

∑
x∈X

rP (x)

= rP (X)−
∑
x∈X

1

2
2λ(x)

= rP (X)− ||X||λ.

Therefore rP (X) = λ(X) + ||X||λ and so P = (E, r) is a connectivity poly-

matroid.

3.4 Minors

In this section we study deletion and contraction in polymatroids. We also

introduce a new minor operation, which we call “squidging”. If P is a poly-

matroid obtained from a polymatroid P ′ by a series of deletions and contrac-

tions, then we call P a minor of P ′. If P is a polymatroid obtained from P ′

by a series of deletions, contractions, and squidging, then we say that P is a

squidge-minor of P ′. We prove that in a connected polymatroid we can find

some squidge-minor operation that preserves connectedness. What is more,

in a compact, connected polymatroid, almost all squidges preserve connect-

edness, although, in general, deletion and contraction do not. We also study

the relationship between minor operations under duality.

Definition 3.18. Define the polymatroid P \A, for every A ⊆ E, (which we

call P delete A) by P \ A = (E − A, rP\A) where rP\A is defined as follows:

rP\A(B) = rP (B)

for each B ⊆ E − A. We also define the polymatroid P/A = (E − A), rP/A)

(known as P contract A) where rP/A is defined as follows:

rP/A(B) = rP (A ∪B)− rP (A).
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From [16] we know that P \A and P/A are indeed polymatroids, but it could

be that P \ A is not a compact polymatroid, even when P is compact. For

example, let P be the compact 2-polymatroid below:

a b

c

This has rP ({d}) = 2 and rP ({d, e}) = 3 for d, e ∈ {a, b, c} and rP ({a, b, c}) =

3. It can be seen that this polymatroid is compact.

The polymatroid P \ a is shown below:

b

c

The connectivity µP\a({b}) = 2 + 2− 3 = 1, so µP\a({b}) 6= rP\a({b}) and so

P \ a is not compact.

However, contraction does preserve compactness.

Theorem 3.19. Suppose that P = (E, rP ) is a compact polymatroid, then

P/A is a compact polymatroid for any A ⊆ E.

Proof. We want to show that µP/A({e}) = rP/A({e}) for any e ∈ E−A. To do

this recall Lemma 3.5, that is, if e is compact in P , then rP (E) = rP (E−{e}).

µP/A({e}) = rP/A({e}) + rP/A((E − A)− {e})− rP/A(E − A)

= rP (A ∪ {e})− rP (A) + rP (E − {e})− rP (A)− (rP (E)− rP (A))

= rP (A ∪ {e})− rP (A) (1)

= rP/A({e}),

where (1) follows from simplifying the line above and noticing that, as P is

compact, rP (E − {e}) = rP (E).

Our notion of duality does not interchange deletion and contraction, however

the two operations do have a nice relation under duality.
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Theorem 3.20. If P = (E, r) is a polymatroid, then (P/A)∗ = [(P ∗ \ A)

Proof. First note that both (P/A)∗ and [(P ∗\A) are defined on the same set,

that is E − A. Consider r[(P ∗\A)(X) for X ⊆ E − A. We have the following

chain of equalities:

r[(P ∗\A)(X) = (rP ∗\A)(X) +
∑
a∈X

[(µP ∗\A)({a})− (rP ∗\A)({a})]

= (rP ∗\A)(X) +
∑
a∈X

[(rP ∗\A)((E − A)− {a})− (rP ∗\A)(E − A)]

= rP ∗(X) +
∑
a∈X

[rP ∗((E − A)− {a})− rP ∗(E − A)]

= rP (E −X) + ||X||rP − rP (E) +
∑
a∈X

[(rP (A ∪ {a})

+ ||E − (A ∪ {a})||rP − rP (E)− (rP (A) + ||E − A||rP
− rP (E)))]

= rP (E −X) + ||X||rP − rP (E) +
∑
a∈X

[(rP (A ∪ {a}) + ||E||rP

− ||A||rP − rP ({a})− rP (E)− rP (A)− ||E||rP + ||A||rP
+ rP (E))]

= rP (E −X) + ||X||rP − rP (E) +
∑
a∈X

[rP (A ∪ {a})− rP ({a})

− rP (A)]

= rP (E −X)− rP (E) +
∑
a∈X

[rP (A ∪ {a})− rP (A)].

Now consider r(P/A)∗(X) and consider the following chain of equalities:

r(P/A)∗(X) = (rP/A)((E − A)−X) + ||X||rP/A − (rP/A)(E − A)

= rP (E −X)− rP (A) + ||X||rP/A − rP (E) + rP (A)

= rP (E −X)− rP (E) +
∑
a∈X

(rP/A)({a})

= rP (E −X)− rP (E) +
∑
a∈X

[rP (A ∪ {a})− rP (A)].

Therefore (P/A)∗ = [(P ∗ \ A)

Earlier we proved that every connectivity function is the connectivity func-
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tion of a half-integral polymatroid. In a connectivity function we may remove

elements via the elision operation. We now look at a corresponding operation

for polymatroids.

In [8] it is proved that if we have a 2-polymatroid P = (E, rP ) such that

a ∈ E and if we define P ↓1a as a pair (E − {a}, rP↓1a) where rP↓1a is a set

function from E − {a} as defined as follows:

rP↓1a(X) =

{
rP (X)− 1 if rP (X) = rP (X ∪ {a})
rP (X) if rP (X) 6= rP (X ∪ {a}),

then Pλ ↓1a= Pλ↓a where Pλ is the connectivity polymatroid on E generated

by the unitary connectivity function λ. Intuitively this operation can be

thought of as adding a point freely on a, contracting the added point and

then deleting a. This motivates our next definition.

Definition 3.21. Suppose we have a polymatroid P = (E, rP ) and an ele-

ment a ∈ E such that rP ({a}) = k. For 0 ≤ l ≤ k we define an l-squidge of

a, denoted P ↓la, by

rP↓la(X) = min{rP (X), rP (X ∪ {a})− l}

Notice that deletion is just a 0-squidge and contraction of a rank-k element

of E is a k-squidge.

Intuitively an l-squidge of a corresponds to putting l points freely onto a,

contracting them, then deleting a (which will have dropped in rank by l). In

practice, squidging will often be followed by compactification.

Lemma 3.22. Let P = (E, rP ) be a polymatroid, and let a ∈ E be such that

rP ({a}) ≥ l for some l ∈ Z. Then the l-squidge of a in P is a polymatroid.

Proof. First rP↓la(∅) = min{rP (∅), rP ({a})− l} = 0 so rP↓la is normalised.

Next we show that rP↓la is increasing. To do this let A ⊆ B ⊆ E − {a}. We

shall show that min{rP (A), rP (A∪{a})− l} ≤ min{rP (B), rP (B ∪{a})− l}.

Suppose min{rP (A), rP (A ∪ {a}) − l} = rP (A) and min{rP (B), rP (B ∪
{a}) − l} = rP (B). Then, as r is increasing rP (A) ≤ rP (B), and so

min{rP (A), rP (A ∪ {a})− l} ≤ min{rP (B), rP (B ∪ {a})− l}.
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Suppose min{rP (A), rP (A∪{a})− l} = rP (A) and min{rP (B), rP (B∪{a})−
l} = rP (B ∪ {a}) − l. Then rP (A) ≤ rP (A ∪ {a}) − l ≤ rP (B ∪ {a}) − l.
Again this gives min{rP (A), rP (A∪{a})− l} ≤ min{rP (B), rP (B∪{a})− l}.

Suppose min{rP (A), rP (A∪{a})−l} = rP (A∪{a})−l and min{rP (B), rP (B∪
{a}) − l} = rP (B ∪ {a}) − l. Then rP (A ∪ {a}) − l ≤ rP (B ∪ {a}) − l as r

is increasing. This gives min{rP (A), rP (A ∪ {a})− l} ≤ min{rP (B), rP (B ∪
{a})− l}.

Suppose min{rP (A), rP (A∪{a})−l} = rP (A∪{a})−l and min{rP (B), rP (B∪
{a})− l} = rP (B). Then rP (A∪{a})− l ≤ rP (A) ≤ rP (B). This is the final

case and gives min{rP (A), rP (A ∪ {a})− l} ≤ min{rP (B), rP (B ∪ {a})− l}.

Therefore rP↓la(A) ≤ rP↓la(B) for all A ⊆ B ⊆ E − {a}.

Finally we must show that submodularity holds. To do this we take A,B ⊆
E − {a} and again split into cases as above.

If rP↓la(A) = rP (A) and rP↓la(B) = rP (B), then:

rP↓la(A) + rP↓la(B) = rP (A) + rP (B)

≥ rP (A ∪B) + rP (A ∩B)

≥ rP↓la(A ∪B) + rP↓la(A ∩B),

and so we are done.

If rP↓la(A) = rP (A ∪ {a})− l and rP↓la(B) = rP (B), then:

rP↓la(A) + rP↓la(B) = rP (A ∪ {a})− l + rP (B)

≥ rP (A ∪ {a} ∪B)− l + rP ((A ∪ {a}) ∩B)

= rP (A ∪ {a} ∪B)− l + rP (A ∩B)

≥ rP↓la(A ∪B) + rP↓la(A ∩B),

and so we are done.

The proof of of the case where rP↓la(A) = rP (A) and rP↓la(B) = rP (B∪{a})−l
is the same as above.
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If rP↓la(A) = rP (A ∪ {a})− l and rP↓la(B) = rP (B ∪ {a})− l, then:

rP↓la(A) + rP↓la(B) = rP (A ∪ {a})− l + rP (B ∪ {a})− l

≥ rP (A ∪ {a} ∪B)− l + rP ((A ∩B) ∪ {a})− l

≥ rP↓la(A ∪B) + rP↓la(A ∩B),

and so we are done.

Therefore an l-squidge of an element a of P is a polymatroid.

Another way that squidging naturally arises in polymatroids is when the

polymatroid is graphic. Then squidging an element, e, in the polymatroid

corresponds to contracting edge e in the graph. To see this, suppose that G

is a graph and let PG = (E(G), rG) where rG(X) = |VG(X)|, where VG(X) is

the set of vertices incident with some edge of X. Let e ∈ E(G) and consider

PG ↓1e which has rank function rG ↓1e (X) = min{r(X), r(X ∪ {e}) − 1} =

min{|V (X)|, |V (X ∪ {e})− 1}. In other words:

rG ↓1e (X) =

{
|V (X)| − 1 if V (X) = V (X ∪ {e})
|V (X)| if V (X) 6= V (X ∪ {e}).

Now consider G/e and let X ⊆ E(G) − {e}. If VG({e}) ⊆ VG(X), then

|VG/e(X)| = |VG(X)| − 1. If VG({e}) * VG(X), then |VG(X)| = |VG/e(X)|.
Now consider PG/e = (E(G/e), rG/e) where rG/e = |VG/e(X)|; by the equali-

ties above this means that:

rG/e(X) =

{
|V (X)| − 1 if V (X) = V (X ∪ {e})
|V (X)| if V (X) 6= V (X ∪ {e}),

which is equal to rG ↓1e (X) for all X ⊆ E(G) − {e}. This means that we

have proved the following lemma:

Lemma 3.23. Let G and PG = (E(G), rG) where rG(X) = |V (X)| for all

X ⊆ E(G). Then PG ↓1e= PG/e for all e ∈ E(G).

We now look at the behaviour of squidging under duality,

Lemma 3.24. Let P = (E, rP ) be a polymatroid and a be a compact element

of E such that rP ({a}) = k. Then (P ↓k−la )∗ = [((P ∗) ↓la).
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Proof. We first prove the following claim:

Claim 3.24.1. (rP ∗↓la)(X) = ||X||rP − rP (E) + (k − l) + (rP↓k−la
)((E −

{a})−X).

Proof. Recall that the rank function of the dual polymatroid is defined by

rP ∗(X) = rP (E −X) + ||X||rP − rP (E), and that rP ({a}) = k.

(rP ∗↓la)(X) = min{rP ∗(X), rP ∗(X ∪ {a})− l}

= min{rP (E −X) + ||X||rP − rP (E),

rP (E − (X ∪ {a})) + ||X||rP + rP ({a})− rP (E)− l}

= ||X||rP − rP (E) + (k − l)+

min{rP (E −X)− (k − l), rP ((E − {a})−X)}

= ||X||rP − rP (E) + (k − l) + (rP↓k−la
)((E − {a})−X).

Therefore, for any x ∈ E − {a},

rP ∗↓la((E − {a})− x) = ||E − {a}||rP − rP ({x})− rP (E) + (k − l) + rP↓k−la
({x}),

(i)

and

rP ∗↓la(E − {a}) = ||E − {a}||rP − rP (E) + (k − l). (ii)

By the definition of duality

r(P↓k−la )∗(X) = rP↓k−la
((E − {a})−X) + ||X||r

P↓k−la

− rP↓k−la
(E − {a}),

which, by the defintion of squidging and as a is compact in P , is equal to

r(P↓k−la )∗(X) = rP↓k−la
((E − {a})−X) + ||X||r

P↓k−la

− rP (E) + (k − l) (iii)
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We now consider the compactification of rP ∗↓la .

(r[(P ∗↓la))(X) = rP ∗↓la(X) +
∑
x∈X

[µP ∗↓la({x})− rP ∗↓la({x})] (1)

= rP↓k−la
((E − {a})−X) + (k − l)− rP (E)+ (2)

||X||rP +
∑
x∈X

[µP ∗↓la({x})− rP ∗↓la({x})]

= rP↓k−la
((E − {a})−X) + (k − l)− rP (E)+ (3)∑

x∈X

[µP ∗↓la({x})− rP ∗↓la({x}) + rP ({x})]

= rP↓k−la
((E − {a})−X) + (k − l)− rP (E)+ (4)∑

x∈X

[rP ∗↓la((E − {a})− {x})− rP ∗↓la(E − {a}) + rP ({x})]

= rP↓k−la
((E − {a})−X) + (k − l)− rP (E)+ (5)∑

x∈X

[||E − {a}||rP − rP ({x})− rP (E) + (k − l) + rP↓k−la
({x})

− (||E − {a}||rP − rP (E) + (k − l)) + rP ({x})]

= rP↓k−la
((E − {a})−X) + (k − l)− rP (E) +

∑
x∈X

rP↓k−la
({x})

(6)

= rP↓k−la
((E − {a})−X) + (k − l)− rP (E) + ||X||r

P↓k−la

(7)

= r(P↓k−la )∗(X), (8)

where (2) follows from (1) by the claim, (4) follows from (3) by the definition

of µP ∗↓la({x}), (5) follows from (4) by (i) and (ii), and (8) follows from (7)

by (iii).

Recall that a polymatroid is called connected if rP (X) + rP (E−X) > rP (E)

for all non-empty X ( E. Tutte proved in [13] that if a matroid M = (E, r)

is connected then, for any element a in E, either M \ a or M/a is connected.

This is not in general true for connected polymatroids. For consider the

polymatroid, P , given below:
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a

b

c

The rank function is as follows: rP ({a}) = 2, rP ({b}) = 2, rP ({c}) =

2, rP ({a, b}) = 3, rP ({a, c}) = 3, rP ({b, c}) = 4, rP ({a, b, c}) = 4.

The rank function of P \ a is: rP\a({b}) = 2, rP\a({c}) = 2, rP\a({b, c}) = 4,

and this is not connected as rP\a({b}) + rP\a({c}) = rP\a({b, c}).

The rank function of P/a is: rP\a({b}) = 1, rP\a({c}) = 1, rP\a({b, c}) = 2,

and this is not connected as rP\a({b}) + rP\a({c}) = rP\a({b, c})

We also have the following example of a 2-polymatroid, P , that is connected

but has an element a such that P ↓1a is not connected. However, note that

P/a is connected.

rP ({a}) = 2, rP ({b}) = 2, rP ({c}) = 2, rP ({a, b}) = 4, rP ({a, c}) =

4, rP ({b, c}) = 4, rP ({a, b, c}) = 5.

Consider P ↓1a, whose rank function is: rP ({b}) = 2, rP ({c}) = 2, rP ({b, c}) =

4. This is clearly not connected.

Consider P/a, whose rank function is: rP ({b}) = 2, rP ({c}) = 2, rP ({b, c}) =

3. This is connected.

Also note that, in this example, a is not compact as rP (E) 6= rP (E − {a}).

We shall shortly prove that if P is a connected polymatroid, then, for any

a ∈ E there is some 0 ≤ j ≤ rP (a) such that P ↓ja is a connected polymatroid.

To do this we introduce an operation known as principal truncation, which

is very closely related to squidging.

Intuitively principal truncation is adding a point freely on an element of P

and contracting that point. Performing principal truncation on a polyma-

troid results in a polymatroid, see [4].

Definition 3.25. Let P = (E, rP ) be a polymatroid and let a ∈ E. We

denote the principal truncation of a by Ta(P ) = (E, rTa(P )) where rTa(P ) is
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defined as follows:

rTa(P )(X) =

{
rP (X)− 1 if rP (X ∪ {a}) = rP (X)

rP (X) otherwise

Observe that a 1-squidge of an element e of P is just the principal truncation

of e in P followed by the deletion of e. An l-squidge for l < rP ({e}) is just

the principal truncation of e in P followed by an (l − 1)-squidge of e in P .

This is an important observation and will be used in inductive arguments

later on.

In the proof that if P is connected then P ↓ja is connected for some j, we

shall use the following lemma, which is proved in [4]

Lemma 3.26. Let P = (E, rP ) be a connected k-polymatroid with e ∈ E.

Then Te(P ) is connected if, and only if, P is connected and rP ({e}) > 1.

We also need to introduce the notion of closure in a polymatroid. This is

very similar to closure in a matroid.

Definition 3.27. Let P = (E, r) be a polymatroid and let X ⊂ E. The

closure of X, denoted cl(X), is equal to {x ∈ E : r(X ∪ {x}) = r(X)}.

The proof of the following lemma is simple.

Lemma 3.28. Let P = (E, r) be a polymatroid and suppose that X ⊆ E

Then the following hold:

1. r(cl(X)) = r(X)

2. cl(cl(X)) = cl(X)

3. If X ⊆ Y ⊆ E then cl(X) ⊆ cl(Y )

This ensures that the closure of a polymatroid is indeed a closure operator.

Lemma 3.29. Suppose that P is a connected polymatroid, and that P \ a is

not connected, where a is a rank-1 element of E. Let ∅ 6= X 6= E be such

that µP\a(X) = 0. Then a /∈ cl(X) and a /∈ cl((E − {a})−X).
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Proof. As

µP\a(X) = 0

= rP\a(X) + rP\a((E − {a})−X)− rP\a(E − {a})

= rP\a(X) + rP\a((E − {a})−X)− rP (E),

then µP (X) = rP (X) + rP (E − X) − rP (E) ≤ 1. As P is connected this

means that µP (X) = 1. A similar argument shows that µP (X ∪ {a}) = 1.

Suppose that rP (E−X) = rP ((E−{a})−X), that is, a ∈ cl((E−{a})−X).

Then:

0 = µP\a(X)

= rP\a(X) + rP\a((E − {a})−X)− rP\a(E − {a})

= rP (X) + rP ((E − {a})−X)− rP (E − {a})

= rP (X) + rP (E −X)− rP (E)

= µP (X),

a contradiction to the fact that µ is connected. Therefore a /∈ cl((E −
{a}) − X). As rP (X) + rP (E − X) − rP (E) = 1 = rP (X ∪ {a}) + rP (E −
(X ∪ {a})) − rP (E), and rP (E − (X ∪ {a}) = rP (E − X) − 1, we must

also have rP (X ∪ {a}) = rP (X) + 1. This means that a /∈ cl(X) and a /∈
cl((E − {a})−X).

We also need to recall, from Section 2.3, that a direct sum of two connectivity

functions, λ1 and λ2, on sets E1 and E2 respectively, is defined by λ1 ⊕
λ2(X) = λ1(X ∩E1) +λ2(X ∩E2). Also recall Lemma 2.16. That is, if λ is a

connectivity function on a set E, such that some non-empty, proper subset,

X, of E is such that λ(X) = 0, then there are connectivity functions λ1 on

X and λ2 on E −X such that λ = λ1 ⊕ λ2.

Theorem 3.30. Let P be a connected polymatroid, then, for any a ∈ E,

there is some 0 ≤ j ≤ r({a}) such that P ↓ja is connected.

Proof. The proof is by induction on r({a}) and the following claim provides

the base case:
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Claim 3.30.1. If r({a}) = 1 then either P \ a or P/a is connected.

Proof. Suppose that P \ a were not connected, and let S be the collection

of all minimal separators (that is, connected components) of P \ a. Let

∅ 6= Y ( E − {a}.

First suppose that there is some S ∈ S such that Y ∩ S = ∅. As S ∈ S
we have λP\a(S) = 0, and as P is connected, by Lemma 3.29, this means

that a /∈ cl(S) and a /∈ cl((E − {a})− S). As Y ∩ S = ∅, this means that

Y ⊆ (E − {a})− S, and so a /∈ cl(Y ). Therefore:

λP/a(Y ) = rP/a(Y ) + rP/a((E − {a})− Y )− rP/a(E − {a})

= rP (Y ∪ {a})− rP ({a}) + rP (E − Y )− rP ({a})− rp(E) + rP ({a})

= rP (Y ∪ {a}) + rP (E − Y )− rp(E)− 1 (1)

= rP (Y ) + rP (E − Y )− rP (E) (2)

= λP (Y )

> 0, (3)

where (1) follows as rP ({a}) = 1, (2) follows as a /∈ cl(Y ), so rP (Y ∪{a}) =

rP (Y ) + 1, and (3) follows as P is connected. Therefore if Y ∩ S = ∅ for

some S ∈ S, then λP/a(Y ) > 0.

Next suppose that there is no S ∈ S such that Y ∩S = ∅. Further suppose

that Y ∩ Si = Si for all Si ∈ S − S for some S ∈ S. If Y ∩ Si = Si for

all Si ∈ S, then Y = E − {a}, a contradiction. Let S1 be a member of

S that is such that Y ∩ S1 6= S1. As there is only one such member, this

means that (E − {a}) − S1 ⊆ Y , and so (E − {a}) − Y ⊆ S1. Therefore

a /∈ cl((E − {a})− Y ). Therefore

λP/a(Y ) = rP/a(Y ) + rP/a((E − {a})− Y )− rP/a(E − {a})

= rP (Y ∪ {a})− rP ({a}) + rP (E − Y )− rP ({a})− rp(E) + rP ({a})

= rP (Y ∪ {a}) + rP (E − Y )− rp(E)− 1

= rP (Y ) + rP (E − Y )− rP (E)

= λP (Y )

> 0,
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and so, if there is only one member of S that is not fully contained in Y ,

then λP/a(Y ) > 0.

Finally suppose that Y has a non-zero intersection with every member

of S, and further suppose that at least two members of S are not fully

contained in Y . Let these members of S be S1 and S2. By Lemma 2.16

and the definition of a direct sum of connectivity functions, λP\a(Y ) =

λP\a(S1 ∩ Y ) +λP\a(S2 ∩ Y ) + · · ·+λP\a(Sn ∩ Y ) where S = {S1, . . . , Sn}.
As Si ∩ Y is non-empty and is not equal to Si, for i ∈ {1, 2}, this means

that λP\a(S1 ∩ Y ) + λP\a(S2 ∩ Y ) ≥ 2, and so λP\a(Y ) ≥ 2. This means

that λP (Y ) ≥ 2 as:

λP\a(Y ) = rP (Y ) + rP ((E − {a})− Y )− rP (E − {a})

= rP (Y ) + rP ((E − {a})− Y )− rP (E) (1)

≤ rP (Y ) + rP (E − Y )− rP (E)

= λP (Y ),

where (1) follows as a is compact in P and has rank 1.

Now consider λP/a(Y ).

λP/a(Y ) = rP/a(Y )− rP/a((E − {a})− Y )− rP/a(E − {a})

= rP (Y ∪ {a})− rP ({a}) + rP (E − Y )− rP ({a})− rP (E) + rP ({a})

= rP (Y ∪ {a}) + rP (E − Y )− rP (E)− 1

≥ rP (Y ) + rP (E − Y )− rP (E)− 1

= λP (Y )− 1

≥ 1.

Therefore, if P \ a is not connected, then for every possible choice of ∅ 6=
Y ( E, λP/a(Y ) > 0; that is P/a is connected. This means that, for any

a ∈ E, either P \ a is connected or P/a is connected.

Suppose for the purposes of induction that the result holds when rP ({a}) =

k − 1, and let rP ({a}) = k.

As P is connected Ta(P ) is connected and rTa(P )({a}) = k − 1 so for some

0 ≤ j ≤ k− 1, by the induction hypothesis we have (Ta(P )) ↓ja is connected.
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Therefore P ↓j+1
a is connected and j + 1 ≤ k so we have found some squidge

of P that is connected.

Definition 3.31. Let P = (E, rP ) be a polymatroid and let e ∈ E such that

rP ({e}) = k. An intermediate-squidge of e is any squidge of e in P that is

not a 0-squidge or a k-squidge.

We shall now show that, when a is a compact element of a connected polyma-

troid, P , any intermediate squidge of a results in a connected polymatroid.

We first show this for a rank-2 element of P (in other words we show that

P ↓1a is connected) and then use this as a base case to prove the result when

rP ({a}) = k.

Lemma 3.32. Suppose that a is a non-compact element of P = (E, rP ).

Then for every X ⊆ E − {a} we have rP (X) < rP (X ∪ {a}).

Proof. Suppose that rP (X ∪ {a}) = rP (X) for some X ⊆ E − {a}. Then

a ∈ cl(X). This means that a ∈ cl(E − {a}), as X ⊆ E − {a}, and therefore

rP (E − {a}) = rP (E); a contradiction.

Lemma 3.33. Let P = (E, rP ) be a polymatroid and let a ∈ E. Then

rP↓1a(X) =

{
rP (X) if a /∈ cl(X)

rP (X)− 1 if a ∈ cl(X)

Proof. Suppose that a /∈ cl(X); then rP (X ∪ {a}) > rP (X). Therefore,

min{rP (X), rP (X ∪ {a}) − 1} = rP (X). Suppose that a ∈ cl(X); then

rP (X ∪ {a}) = rP (X). Therefore, min{rP (X), rP (X ∪ {a}) − 1} = rP (X ∪
{a})− 1 = rP (X)− 1.

Lemma 3.34. Let P be a connected polymatroid and a be a compact element

of P such that r({a}) = 2. Then P ↓1a is a connected polymatroid.

Proof. Let X ⊆ E − {a}, and Y = (E − {a}) − X. First suppose that

a ∈ cl(X) and a ∈ cl(Y ). Then, by Lemma 3.33, it is clear that rP↓1a(X) +

rP↓1a(Y ) = rP (X∪{a})+rP (Y ∪{a})−2, and, as a is compact, rP↓1a(E−{a}) =
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rP (E)− 1 Therefore:

rP↓1a(X) + rP↓1a(Y ) = rP (X ∪ {a}) + rP (Y ∪ {a})− 2

≥ rP (X ∪ Y ∪ {a}) + rP ({a})− 2 (1)

= rP (E)

> rP↓1a(E − {a}),

where(1) follows by submodularity. Therefore rP↓1a(X)+rP↓1a(Y ) > rP↓1a(E−
{a}).

Next suppose that a ∈ cl(X) and a /∈ cl(Y ). Then, by Lemma 3.33, we

have rP↓1a(X) + rP↓1a(Y ) = rP (X ∪ {a}) + rP (Y ) − 1, and, as a is compact,

rP↓1a(E − {a}) = rP (E)− 1. Therefore:

rP↓1a(X) + rP↓1a(Y ) = rP (X ∪ {a}) + rP (Y )− 1 (1)

> rP (E)− 1 (2)

= rP↓1a(E − {a}), (3)

where (2) follows from (1) as (X∪{a}, Y ) is a partition of E, the set Y is non-

empty, and P is connected. Therefore rP↓1a(X) + rP↓1a(Y ) > rP↓1a(E − {a}).

The proof of the case where a /∈ cl(X) and a ∈ cl(Y ) is the same.

Finally, suppose that a /∈ cl(X) and a /∈ cl(Y ). Then, by Lemma 3.33, we

have rP↓1a(X) + rP↓1a(Y ) = rP (X) + rP (Y ), and, as a is compact, rP↓1a(E −
{a}) = rP (E)− 1. Therefore:

rP↓1a(X) + rP↓1a(Y ) = rP (X) + rP (Y ) (1)

≥ rP (X ∪ Y ) (2)

= rP (E − {a}) (3)

= rP (E) (4)

> rP↓1a(E − {a}), (5)

where (4) follows from (3) by the compactness of a. Therefore rP↓1a(X) +

rP↓1a(Y ) > rP↓1a(E − {a}).
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Before we prove that any intermediate squidge of any element of P results

in a connected polymatroid we take a brief detour and prove the following

easy corollaries of Lemma 3.34. These theorems are both known, but the

proofs become much shorter when we view the objects as polymatroids, and

use squidging. This helps to provide motivation for the operation.

Corollary 3.35. Let G be a connected graph, then G/e is a connected graph

for any e ∈ E(G).

Proof. Consider the polymatroid, PG obtained from G. The polymatroid

PG ↓1e is connected by Lemma 3.34, and we showed earlier that PG ↓1e= PG/e.

Therefore PG/e is connected so G/e is connected.

Definition 3.36. Let M be a matroid and a, b be elements of M . Then a

and b are clones in M if there is an automorphism on M that interchanges

a and b and fixes all other elements. When a and b are clones in M then we

call {a, b} a clonal pair in M .

Clones are used frequently in [3] and the following corollary also comes easily

from Lemma 3.34.

Corollary 3.37. Suppose M is a connected matroid and {a, b} is a clonal

pair in M , then deleting one of a, b and contracting the other will result in a

connected matroid.

Proof. Consider the 2-polymatroid that has the same groundset and rank

function as M except that elements a and b of the groundset have been

replaced by a single rank-2 element l with the property that rP (A ∪ {l}) =

rM(A ∪ {a, b}) for all A ⊆ E − {a, b}.

Claim 3.37.1. The polymatroid resulting from squidging l is the same as

the matroid resulting from deleting a and contracting b.

Proof. Consider rM\a/b(A) and rP↓1l (A) for any A ⊆ E − {a, b}. By the

definition of deletion and contraction in a matroid, rM\a/b(A) = rM(A ∪
{b})− rM({b}), and recall rP↓1l (A) = min{rP (A), rP (A ∪ {l})− 1}.
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If b ∈ cl(A), then rM\a/b(A) = rM(A)−rM({b}). As b ∈ cl(A) and {a, b} is

a clonal pair, a ∈ cl(A). Therefore rP (A∪{l}) = rM(A∪{a, b}) = rM(A).

Therefore rP↓1l (A) = rP (A∪{l})−1 = rP (A)−1 = rM(A)−1 = rM\a/b(A).

If b /∈ cl(A), then rM\a/b(A) = rM(A) (note that if b /∈ cl(A), then r({b}) 6=
0). We also have rP (A∪{l}) > rP (A) so rP↓1l (A) = rM(A) = rM\a/b(A).

By Lemma 3.34, P ↓1l is connected, and P ↓1l = M \ a/b so M \ a/b is

connected.

We now prove that any intermediate squidge of any element of P , a connected

polymatoid, preserves connectedness. To do this we shall use the following

lemma:

Lemma 3.38. Let e be a compact element of P , then e is a compact element

of Ta(P ).

Proof. µTa(P )({e}) = rTa(P )({e}) + rTa(P )(E−{e})− rTa(P )(E). If e 6= a then

r(E − {e}) = r((E − {e})∪ {a}) and if e = a then, as e is compact in P , we

have r(E − {e}) = r(E) = r((E − {e}) ∪ {a}). Therefore rTa(P )(E − {e}) =

r(E − {e})− 1.

Therefore µTa(P )({e}) = rTa(P )({e})+r(E−{e})−1−(r(E)−1) = rTa(P )({e})
by compactness of e in P ; and so e is compact in Ta(P ).

In other words, principal truncation preserves compactness.

Before stating the next theorem, we note that an intermediate squidge is

only defined for elements of rank at least 2.

Theorem 3.39. Let P = (E, r) be a connected, compact polymatroid. Then

any intermediate-squidge of an element, a, of E, in P , results in a connected

polymatroid.

Proof. Let rP ({a}) = k. The result holds when k = 2 by Lemma 3.34.

Suppose, for the purposes of induction, that the result holds for all a such

that rP ({a}) < k.

Let rP ({a}) = k and consider Ta(P ). As P is connected and compact and

rP ({a}) > 1, we have Ta(P ) is also connected and compact by Lemmas 3.26

and 3.38; and rTa(P )({a}) = k − 1. Therefore (Ta(P )) ↓ja is connected for
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all 1 ≤ j ≤ k − 1, and so P ↓j+1
a is connected. Therefore all intermediate

squidges result in a connected polymatroid except, possibly, when j = 1. We

shall now prove that P ↓1a is connected.

Consider (P ∗ ↓k−1a )∗. This is connected, as the dual of a connected polyma-

troid is connected and P ∗ ↓k−1a is connected, as rP (a) = k. By Lemma 3.24,

as P is compact, we have (P ∗ ↓k−1a )∗ = [(P ∗∗ ↓1a) = [(P ↓1a). Therefore, by

Lemma 3.15, P ↓1a is connected.

3.5 2-sums and Unavoidable Squidge-Minors

of 2-polymatroids

Using squidging as a minor operation can sometimes simplify solutions quite

drastically. We demonstrate this by looking at the following result from [4].

In [4], Hall gives the unavoidable minors for 2-polymatroids when we define a

minor of a 2-polymatroid, P , as a polymatroid obtained from P be a series of

deletions and contractions. Recall that a squidge-minor of a polymatroid P ,

is a polymatroid obtained from P be a series of deletions, contractions and

squidges. When we look at the unavoidable squidge-minors of a connected

2-polymatroid rather than just the unavoidable minors, this list is greatly

reduced.

First we introduce various ways of adding polymatroids.

Recall from the previous section that if we have two polymatroids, P1 =

(E1, r1) and P2 = (E2, r2), on disjoint groundsets, then P1⊕P2 = (E1∪E2, r)

where r is defined as follows:

r(X) = r1(X ∩ E1) + r2(X ∩ E2)

for all X ⊆ E1 ∪ E2, and this is known as the direct sum of P1 and P2.

Definition 3.40. Suppose we have two k-polymatroids P1 = (E, r1) and

P2 = (E, r2) on the same groundset, then we call P1 + P2 the general sum of

P1 and P2 and define rP1+P2 as follows:

rP1+P2(X) = r1(X) + r2(X)
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for all X ⊆ E.

Definition 3.41. Let A = (E1, r1) and B = (E2, r2) be k-polymatroids with

E1 ∩ E2 = {p} and r1({p}) = r2({p}). Then we define a pair A ⊕2 B =

((E1 ∪ E2), rM1⊕2M2) where we define rM1⊕2M2 as follows:

rM1⊕2M2(A) = min{r1(A1) + r2(A2), r1(A1 ∪ p) + r2(A2 ∪ p)− r1(p)}

where A ⊆ (E1 ∪ E2)− p and A1 = A ∩ E1 and A2 = A ∩ E2.

We call A⊕2 B the 2-sum of A and B.

It can easily be seen that the direct sum, the general sum, and 2-sum of two

polymatroids are polymatroids.

Theorem 3.42. If P1 = (E1, r1) and P2 = (E2, r2) are polymatroids, E1 ∩
E2 = p and r1(p) = r2(p), then P1 ↓le ⊕2P2 = (P1 ⊕2 P2) ↓le, for any

e ∈ E1 − {p}

Proof. First note that

min{min{P1, P2},min{C,D}} = min{min{P1, C},min{P2, D}}.

Let e ∈ P1 and e 6= p and consider r(P1⊕2P2)↓le . For all X ∈ (E1 ∪ E2)− p we

let X1 = E1 ∩X and X2 = E2 ∩X and get the following chain of equalities:

r(P1⊕2P2)↓le(X) = min{rP1⊕2P2(X), rP1⊕P2(X ∪ {e})− l}

= min{min{r1(X1) + r2(X2), r1(X1 ∪ p) + r2(X2 ∪ p)− r1(p)},

min{r1(X1 ∪ {e}) + r2(X2)− l,

r1(X1 ∪ {e} ∪ p) + r2(X2 ∪ p)− r1(p)− l}}

= min{min{r1(X1) + r2(X2), r1(X1 ∪ {e}) + r2(X2)− l},

min{r1(X1 ∪ p) + r2(X2 ∪ p)− r1(p),

r1(X1 ∪ {e} ∪ p) + r2(X2 ∪ p)− r1(p)− l}}

= min{min{r1(X1), r1(X1 ∪ {e})− l}+ r2(X2),

min{r1(X1 ∪ p), r1(X1 ∪ {e} ∪ p)− l}+ r2(X2 ∪ p)− r1(p)}

= min{rP1↓le(X1) + r2(X2), rP1↓le(X1 ∪ p) + r2(X2 ∪ p)− r1(b)}

= (P1 ↓le ⊕2P2)(X)
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In [4] the unavoidable minors for connected 2-polymatroids are described as

follows:

Let E be a non-empty finite set and choose distinct elements a, b /∈ E. Let M1

be a matroid with groundset E ∪ {a, b} isomorphic to U1,|E|+1 ⊕ U0,1, where

b is the loop, and let M2 be a matroid on the same groundset isomorphic

to U|E|,|E|+1 ⊕ U0,1, where a is the loop. Then we denote by S|E| the 2-

polymatroid M1 +M2 and define S0 = U1,2 + (U1,1 ⊕ U0,1).

Theorem 3.43. For every positive integer n, there is an integer r such that

every connected 2-polymatroid with at least r elements has a minor isomor-

phic to

1. U1,n,

2. Un,n + Un−1,n,

3. Un−1,n,

4. Un,n + U1,n,

5. 2U1,n; 2Un−1,n or

6. Q1 ⊕2 Q2 ⊕2 ...⊕2 Qn,

where each Qi is isomorphic to one of S0,S1, . . . ,Sn−1 and the groundsets of

the Qi,Qi+1 are disjoint in all but a single rank-1 element.

As stated before this paper defines a minor of a 2-polymatroid P as a poly-

matroid obtained from P by a series of deletions and contractions. We shall

show now that squidging S|E| gives a 2-polymatroid isomorphic to S|E|−1, and

so we can find a squidge-minor of S|E| that is isomorphic to S1.

Theorem 3.44. Let S|E| = M1+M2, where M1 and M2 are as above, be a 2-

polymatroid on groundset E∪{a, b}. Then for every e ∈ E, the 2-polymatroid

S|E| ↓1e∼= S|E|−1

Proof. We first give the rank function of S|E| by finding the rank functions
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for M1 and for M2. As M1 = U1,|E|+1 ⊕ U0,1 we have

rM1(A) = 1 for all A ⊆ E

rM1(a) = 1

rM1(b) = 0

rM1(A ∪ a) = 1 for all A ⊆ E

rM1(A ∪ b) = 1 for all A ⊆ E

rM1(a ∪ b) = 1

rM1(A ∪ a ∪ b) = 1 for all A ⊆ E

and the rank function for M2 is as follows:

rM2(A) = |A| for all A ⊆ E

rM2(a) = 0

rM2(b) = 1

rM2(A ∪ a) = |A| for all A ⊆ E

rM2(A ∪ b) =

{
|A ∪ b| if A ( E

|E| if A = E

rM2(a ∪ b) = 1

rM2(A ∪ a ∪ b) = rM2(A ∪ b) for all A ⊆ E

Now we can find the rank function of M1 +M2

rM1+M2(A) = |A|+ 1 for all A ⊆ E

rM1+M2(a) = 1

rM1+M2(b) = 1

rM1+M2(A ∪ a) = |A|+ 1 for all A ⊆ E

rM1+M2(A ∪ b) =

{
|A ∪ b|+ 1 if A ( E

|E|+ 1 if A = E
for all A ⊆ E

rM1+M2(a ∪ b) = 2

rM1+M2(A ∪ a ∪ b) = rM1+M2(A ∪ b) for all A ⊆ E

Now that we have the rank function of M1 + M2 we find the rank function
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of (M1 +M2) ↓1e for e ∈ E.

r(M1+M2)↓1e(A) = min{rM1+M2(A), rM1+M2(A ∪ {e})− 1} for all A ⊆ E

r(M1+M2)↓le(a) = min{rM1+M2(a), rM1+M2(a ∪ {e})− 1}

r(M1+M2)↓le(b) = min{rM1+M2(b), rM1+M2(b ∪ {e})− 1}

r(M1+M2)↓le(A ∪ a) = min{rM1+M2(A ∪ a), rM1+M2(A ∪ a ∪ {e})− 1} for all A ⊆ E

r(M1+M2)↓le(A ∪ b) = min{rM1+M2(A ∪ b), rM1+M2(A ∪ b ∪ {e})− 1}

r(M1+M2)↓le(a ∪ b) = min{rM1+M2(a ∪ b), rM1+M2(a ∪ b ∪ {e})− 1}

r(M1+M2)↓le(A ∪ a ∪ b) = min{rM1+M2(A ∪ b), rM1+M2(A ∪ {e} ∪ b)− 1}

Which gives

r(M1+M2)↓le(A) = |A|+ 1 for all A ⊆ E − {e}

r(M1+M2)↓le({a}) = 1

r(M1+M2)↓le({b}) = 1

r(M1+M2)↓le(A ∪ {b}) =

{
|A ∪ {b}|+ 1 if A ( E

|E|+ 1 if A = E

r(M1+M2)↓le(A ∪ {a}) = |A|+ 1 for all A ⊆ E − {e}

r(M1+M2)↓le({a, b}) = 2

r(M1+M2)↓le(A ∪ {a, b}) = r(M1+M2)↓le(A ∪ b)

Notice that when |A ∪ b| = |E − {e}|, we have that r(M1+M2)↓le(A ∪ b) =

|E − {e}|+ 1 so we can write

r(M1+M2)↓le(A ∪ a) =

{
|A ∪ {b}|+ 1 if |A ∪ {b}| ≤ |E − {e}|
|E − {e}|+ 1 if |A| > |E − {e}|

Which is the rank function for S|E−{e}|.
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Graphic Connectivity Functions

In [11] Seymour proved that that there is an algorithm for establishing when a

matroid is graphic in p(n) rank evaluations where p is a particular polynomial

and n is the size of the groundset of the matroid. He also proved that there is

no such algorithm for establishing when a matroid is binary. In this section

we prove a similar theorem for graphic connectivity functions, that is we

prove the following theorem:

Theorem 4.1. There is some polynomial p such that, given an arbitrary

connectivity function λ, we are able to establish whether or not λ is graphic

in at most p(n) evaluations of the connectivity function, where n is the size

of the set on which λ is based.

Throughout this section we are working with the vertex connectivity of the

graph, and so, when we talk about the connectivity function of G, we mean

the connectivity function, γG, of graph G defined as follows:

γG(X) = |V (X)|+ |V (E(G)−X)| − |V (E(G))|

for all X ⊆ E(G). Recall that γ(X) counts the number of vertices X has in

common with E(G)−X.

Definition 4.2. A connectivity function, λ, is graphic if there is some graph

G such that λ = γG.

We shall often abbreviate γG to γ when it is clear what we mean from the

context.

50
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As previously stated, this section aims to provide a polynomial-time algo-

rithm for deciding whether or not a connectivity function is graphic. To do

this we first suppose that we have a graphic connectivity function, γ. The

first part of this section gives a method for finding the edge adjacencies of the

graph (or graphs) that has γ as its connectivity function. The second part

gives a method for identically building the graph from its edge adjacencies.

The third section first gives an algorithm that builds a graph which would

have λ as its connectivity function were λ graphic. At some stages in this we

may be able to identify λ as not graphic. However, it may be that λ is not

graphic but we do not find this from the algorithm. The section then gives

a method for deciding whether or not λ is the connectivity function of the

graph, G, we just built. If λ were graphic, then G would have connectivity

function λ, so from this we are able to identify exactly when λ is graphic.

We call e ∈ E(G) a leaf if e is an edge that is incident with a vertex of

degree one. It can easily be seen that a connectivity function cannot tell the

difference between loops and leaves. The following example demonstrates

this:

a b

c

d

G1

a b

d c

G2

In G1 the edge c is a leaf and d is a loop. In G2 this is reversed. Both

G1 and G2 have the following connectivity function: γ({a}) = 2, γ({b}) =

1, γ({c}) = 1, γ({d}) = 1, γ({a, b}) = 2, γ({a, c}) = 2, γ({a, d}) =

1, γ({b, c}) = 1, γ({b.d}) = 2, γ({c, d}) = 2. The remaining values can be

found by symmetry.

The connectivity function is also based on the edges of the graph and cannot

tell whether or not a graph contains isolated vertices, that is single vertices

with no edges of E(G) incident with them. In other words we have the

following lemma:

Lemma 4.3. Let γ be a graphic connectivity function, then γ is the connec-

tivity function of some loopless graph with no isolated vertices.
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Therefore, throughout this chapter we assume that all graphs we talk about

are loopless graphs with no isolated vertices, unless stated otherwise.

Because we are interested in the vertex-connectivity in this section, and that

is based on the set of edges of the graph, the sets in this section will generally

be sets of edges. To simplify notation, when we are given a graph, G, we

shall use |G| to mean |E(G)|.

4.1 Facts About Connectivity Functions of

Graphs

Given a graphic connectivity function we are able to find the edge adjacencies

of the graphs with that connectivity function. This section gives a method

for doing this.

Definition 4.4. Let G be a graph and e, f ∈ E(G), then:

1. P is a parallel set of G if P ⊆ E(G) and every pair of edges in P are

parallel.

2. P is a parallel class if P is a maximal parallel set in G.

3. P is a parallel-leaf if P is a parallel class and for every e ∈ P we have

e is a leaf edge in G \ (P − e).

4. If A ⊆ E(G), then V (A) is the collection of vertices incident with an

element of A.

5. If A ⊆ E(G), then the subgraph induced by A is the graph (V (A), A).

6. If A ⊆ E(G), then we say A is connected if the subgraph induced by A

is connected.

7. A connected component of a graph G is a maximal connected subgraph

of G.

8. A separator of G is the (entire) set of edges of a collection of connected

components of G.

9. An isolated egde of G is an edge of G that is a separator of G.
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10. An m-star of G is a set S ⊆ E such that all edges of S are incident

with a common vertex and |S| = m. We call a subset of the edges of

G a star if it is an m-star for some m.

11. A complete star of G is the collection of all edges incident with a spec-

ified vertex.

12. A partial star of G is a star of G that is not a complete star of G.

13. If S is a star and every edge of S is incident with vertex v then v is a

centre of S.

There is a unique complete star with centre v and, if S is a star that is not

a parallel set, then the centre of S is unique.

Definition 4.5. Let {a1, . . . , am} be a collection of edges in G. We say that

a vertex vi is full in G with respect to {a1, . . . , am} if the complete star with

centre vi is a subset of {a1, . . . , am}.

Throughout this section, when we refer to a graph, G, we shall assume that

G has edgeset E and connectivity function γ, unless stated otherwise. As

stated before we shall also assume that G is loopless and contains no isolated

vertices.

It can easily be seen that, for a graph G, if A ⊆ E then A is a separator of

G if, and only if, γ(A) = 0.

The following lemma is obvious from noting that the connectivity of a set is

the number of vertices that set has in common with its complement.

Lemma 4.6. An edge e of a graph G has connectivity 1 or 0 if, and only

if, e is a leaf. Otherwise γ(e) = 2. Moreover, if γ(e) = 0 then e induces a

connected component of G.

Lemma 4.7. Let G be a graph with at least three vertices and connectivity

function γ; and suppose we have two non-isolated edges e, f of G neither of

which induces a connected component of G. Then:

(i) if e and f are not leaves, then 0 ≤ γ({e, f}) ≤ 3 if, and only if, e and

f are adjacent.
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(ii) if exactly one of e or f is a leaf, then 0 ≤ γ({e, f}) ≤ 2 if, and only if,

e and f are adjacent.

(iii) if both e and f are leaves, then 0 ≤ γ({e, f}) ≤ 1 if, and only if, e and

f are adjacent.

Proof.

(i) Suppose that e and f are adjacent. Then |V ({e, f})| ≤ 3 and so

γ({e, f}) ≤ 3.

Suppose that e and f are not adjacent. Then |V ({e, f})| = 4, as

neither e nor f is a loop. As neither e nor f is a leaf and neither edge

induces a connected component of G, no vertex in V ({e, f}) is full with

respect to {e, f} and therefore V (E−{e, f}) = V (E). This means that

γ({e, f}) = |V ({e, f})| = 4.

(ii) Suppose that e and f are adjacent. Then |V ({e, f})| ≤ 3 and at least

one of those vertices is full with respect to one of e and f . Therefore

γ({e, f}) ≤ 2.

Suppose that e and f are not adjacent. Then |V ({e, f})| = 4, as neither

e nor f is a loop. As exactly one of e and f is a leaf and neither edge

induces a connected component of G, exactly one vertex in V ({e, f})
is full with respect to {e, f} and therefore V (E − {e, f}) = V (E)− 1.

This means that γ({e, f}) = |V ({e, f})| − 1 = 3.

(iii) Suppose that e and f are adjacent. Then |V ({e, f})| ≤ 3, and one of

those vertices is full with respect to e, and one is full with respect to f .

Therefore γ({e, f}) ≤ 1.

Suppose that e and f are not adjacent. Then |V ({e, f})| = 4, as neither

e nor f is a loop. As both of e and f are leaves and neither edge induces

a connected component of G, exactly two vertices in V ({e, f}) are full

with respect to {e, f} and therefore V (E − {e, f}) = V (E) − 2. This

means that γ({e, f}) = |V ({e, f})| − 2 = 2.
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Lemmas 4.6 and 4.7 together enable us to identify, for every pair of edges a

and b, whether or not a and b are adjacent by evaluating γ({a}), γ({b}) and

γ({a, b}).

Definition 4.8. A graph is called simple if it contains no loops or parallel

edges. An underlying simple graph Gs of a graph G is the graph obtained by

deleting all loops of G and all but one member of each parallel class of G.

To be able to construct an underlying simple graph of G we need to know

which edges of G are loops, and which edges are in a parallel class. As we

are assuming that G contains no loops we need only identify parallel classes.

The following section will, where possible, give a method for doing this.

4.1.1 Parallel Edges

Definition 4.9. Let γ be a graphic connectivity function on E and e, f be

distinct edges of E. We call the pair {e, f} parallel ambiguous if there exists

graphs G1 and G2 on set E such that G1 and G2 both have connectivity

function γ and the pair {e, f} is parallel in G1 but not G2.

In this section we shall prove the following Lemma:

Lemma 4.10. Let γ be a graphic connectivity function on set E and let

a, b ∈ E. If {a, b} is parallel ambiguous then the only graphs with connectivity

function γ must contain a connected component containing a and b that is

isomorphic to one of:

a b

c

ab c

a b

c

d

c d

a

b
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We shall also give a way to identify parallel edges when they are not parallel

ambiguous.

Definition 4.11. A triangle of a graph G is a subgraph of G isomorphic to

K3. A parallel triangle is a loopless subgraph of G whose underlying simple

graph is a triangle. We say that an edge, e, in a parallel triangle is a single

side of the parallel triangle if it is not parallel to any other element of G.

Lemma 4.12. Let G be a graph with at least three edges, and let e, f be

distinct edges of G, such that γ({e}) = γ({f}) = 2 and γ({e, f}) ≤ 2. Let

G′ be the connected component of G containing e and f . Then γ({e, g}) =

γ({f, g}) for all g ∈ E(G)−{e, f} if, and only if, {e, f} is a parallel pair or

G′ is a parallel-triangle with e and f as single sides.

Proof. Clearly if e, f are parallel or G′ is a parallel triangle with e and f

single sides then for all g ∈ E(G)− {e, f} we have γ({e, g}) = γ({f, g}).

Suppose that e and f are not parallel to each other. As γ({e}) = γ({f}) = 2

neither e nor f can be a leaf. As γ({e, f}) ≤ 2 and e and f are not leaves,

e and f must be adjacent. Let V ({e}) = {v1, v2} and V ({f}) = {v2, v3}. As

e and f are not parallel v1 6= v3, and as γ({e, f}) ≤ 2, and e and f are not

leaves, the vertex v2 must be full with respect to the pair {e, f}. This vertex

is shown in red on the diagram below.

Suppose γ({e, g}) = γ({f, g}) for all g ∈ E(G). Then every edge that is

adjacent to e must also be adjacent to f and vice verse, for suppose that g

were adjacent to e but not to f . If g is a leaf then, by Lemma 4.7, γ({e, g}) ≤
2 and γ({f, g}) > 2. If g is not a leaf then, by Lemma 4.7, γ({e, g}) ≤ 3

and γ({f, g}) > 3. Both alternatives lead to a contradiction, and so every

edge that is adjacent to e must also be adjacent to f . Similarly every edge

that is adjacent to f must also be adjacent to e. The only way an edge

g ∈ E(G)−{e, f} can be adjacent to e is if it is incident with v1 as v2 is full

with respect to {e, f}, and, for the same reason, the only way for an edge

to be adjacent to f is for it to be incident with v3. Therefore every edge

that is adjacent to e must be incident with v1 and v3, and every edge that
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is adjacent to f is also adjacent to e. This means that G′ must be a parallel

triangle.

The following two examples illustrate that γ does not always uniquely define

G; in both examples the pair {a, b} is parallel ambiguous.

a b

c

G1

ab c

G1

It is easy to see that both G1 and G2 have the following connectivity function:

γ({a}) = 2, γ({b}) = 2, γ({c}) = 2, γ({a, b}) = 2, γ({a, c}) = 2, γ({b, c}) =

2, γ({a, b, c}) = 0,

The following two graphs also have the same connectivity functions:

a b

c

d

G3

c d

a

b

G4

Again, we can see that both G3 and G4 have the following connectivity

function: γ({a}) = 2, γ({b}) = 2, γ({c}) = 2, γ({d}) = 2, γ({a, b}) =

2, γ({a, c}) = 3, γ({a, d}) = 3, γ({b, c}) = 3, γ({b.d}) = 3, γ({c, d}) = 2.

The remaining values can be found by symmetry.

We shall now show that the only way we cannot tell from a connectivity

function when two edges are parallel are if those two edges are contained in

a connected component of isomorphic to one of G1, ..., G4 above.

Lemma 4.12 gives a way to identify when two distinct adjacent edges a and

b are either parallel, or are single sides in a connected component of G′ that

is a parallel triangle. Our next lemma gives a way to distinguish between

these two cases.
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Lemma 4.13. Suppose that G′ is a connected component of G containing

two distinct non-leaf edges a and b and suppose that either G′ is a parallel

triangle with a and b as single sides, or a is parallel to b in G (in this case

G′ need not be a parallel triangle) and suppose that |G′| > 4. Then a and b

are parallel in G if, and only if, one of the following holds:

1. γ({a, b}) < 2

2. there exists an e such that γ({e}) = 1 and e is adjacent to a or b

3. there is some non-isolated e such that γ({a, e}) = γ({b, e}) = 2

4. there are some e, f adjacent to a and b respectively such that γ({e, f}) 6=
2

Proof. Suppose that {a, b} are not parallel. Then a and b are single sides of

a parallel triangle as shown below in G1

a b

G1

It is clear that if we have this situation, all of 1.-4. fail.

Suppose that none of 1.-4. hold. For the purposes of contradiction suppose

that a and b are parallel. We know that {a, b} cannot be a parallel leaf as

γ({a, b}) ≥ 2. Also, as there is no e ∈ E such that γ({a, e}) = γ({b, e}) = 2,

there can be no e ∈ E such that e is in a parallel class with a and b. The

diagram, G2, below gives the form of the situation we must, therefore, be

in, where the dashed lines show edges that must be adjacent to a and b.

However, the diagram does not show how these dashed edges interact with

each other, or any edges of the graph that are not a or b.

v1 v3
a

b

G2



CHAPTER 4. GRAPHIC CONNECTIVITY FUNCTIONS 59

Let one of the edges incident with v1 be called e and one of the edges incident

with v3 be called f . Note that as there can be no edges parallel to a and

b, the edges e and f must be distinct and not parallel. Neither e nor f

can be a leaf in G, as otherwise 2. would hold. As 4. does not hold, it

must be that γ{e, f} = 2, and therefore, by Lemma 4.7, e and f must be

adjacent. Moreover if v2 ∈ V (e)∩ V (f), then v2 is full with respect to e and

f . Therefore we are now in the situation shown below in G3, where the red

dot indicates a full vertex.

v1

v2

v3

e f

a

b

G3

As |G′| ≥ 5, there is some edge g incident with some vertex in {v1, v2.v3}.
It cannot be incident with v2 as this vertex is full with respect to {e, f},
therefore, without loss of generality, assume that g is incident with v1. The

edge g cannot be a leaf, as otherwise 2. would hold, and g cannot be parallel

to a, b as otherwise 3. would hold. Therefore we now are in the situation

illustrated by G4 below, where the green vertex is not full with respect to g:

g

v1

v2

v3

e f

a

b

G4

Therefore γ{g, f} = 4, and so 4. holds, a contradiction. Therefore assuming

that none of 1.-4. held and that {a, b} were parallel led to a contradiction,

so if none of 1.-4. hold, G′ must be a parallel triangle with a and b as single

sides.

Suppose that G′ is a connected component of G containing two adjacent

edges, a and b, and exactly one other edge. We are able to find out when

this case occurs by finding the elements adjacent to one or both of a and b.
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If there is more than one such element, or no such element then |G′| 6= 3, a

contradiction, and if there is only one such element, say e, |G′| = 3 if, and

only if, γ({a, b, e}) = 0.

Suppose that G′ is a connected component of G containing two edges a and

b, which are adjacent, and exactly two other edges. We are able to find out

when this case occurs by finding the elements adjacent to one or both of

a and b. If there are more than two such elements then |G′| > 4, and if

there are exactly two such elements, say e, f , then |G′| = 4 if, and only if,

γ({a, b, e, f}) = 0. If there is only one such element, e, and it is not a leaf

then we can find the elements adjacent to e, and if there is more than one

element adjacent to e that is not a or b, then |G′| ≥ 4 and if there is exactly

one such element, say f , then |G′| = 4 if, and only if, γ({a, b, e, f}) = 0.

Therefore, when |G′| ≥ 3 we are now in a position to identify when two edges,

a and b, are either single edges in a parallel triangle that makes up an entire

connected component of G or parallel. Given we know that a and b are in

one of these two categories, we are able to tell if the connected component

of G containing a and b has more than four edges. If it does we are able

to tell when a and b are parallel. Suppose that the connected component

containing a and b contains exactly three edges. Then it must be one of the

graphs shown below (with a possible relabelling of c):

a b

c

G1

ab c

G2

a b

c

G3

We can tell when we are in situation G3, by noting that this contains an

edge, c, such that γ({c}) = 1.

Suppose that the connected component containing a and b has four edges.

Then the only options for this connected component are the ones shown

below:
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a b

e

f

G4

e f

a

b

G5

e f

a

b

G6

ef

a

b

G7

e

f a

b

G8

e

f

a

b

G9

f

e

a

b

G10

a
b
e

f
G11

All these graphs, except G4 and G5 can be told apart by their connectivity

functions, and, more importantly, the connectivity function of G4 and G5 is

not equal to the connectivity function of any of the other graphs.

Lemma 4.10.Let γ be a graphic connectivity function on set E and let a, b ∈
E. If {a, b} is parallel ambiguous then the only graphs with connectivity

function γ must contain a connected component containing a and b that is

isomorphic to one of:

a b

c

ab c

a b

c

d

c d

a

b
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Proof. Clearly if |G′| ≤ 2, where G′ is the connected component of G contain-

ing a and b, then we can tell when a and b are parallel. So suppose |G′| ≥ 3.

Given two edges a and b, Lemmas 4.6 and 4.7 enable us to tell, from the

connectivity function, whether a and b are adjacent. As the graph is loop

free, if a and b are parallel then γ({a}) = 2, γ({b}) = 2 and γ({a, b}) ≤ 2.

This means that we can apply Lemma 4.12 which gives us a condition on the

connectivity function that is sufficient to determine whether {a, b} lies within

the class of edges that are either parallel or single sides of a parallel triangle

that is a connected component of G. If a and b are parallel ambiguous then

the ambiguity lies between a and b being parallel and a and b being single

sides of a connected component that is a parallel triangle. Lemma 4.13 then

shows that, given a connectivity function, there can be no ambiguity unless

|G′| = 3 or 4. The remarks following Lemma 4.13 show that the cases where

|G′| = 3 and when |G′| = 4 can be resolved by considering the connectivity

function in all but the two cases given above.

Furthermore it is clear that whether a pair is parallel ambiguous, and if not,

whether it is parallel, can be determined in polynomial time.

4.2 Building a Graph from the Edge Adja-

cencies

Suppose that we know the collection of stars of a simple graph. This is the

same as knowing the vertices of the graph and the edges incident to those

vertices and so we can build the graph. In [17] a polynomial time algorithm

for constructing a graph given the edge adjacencies is given. However, this

algorithm only guarantees that the graph is built up to isomorphism (al-

though, in most cases, it will be identically built). We modify this algorithm

slightly so that we construct the graph identically. Other papers on building

the graph from the edge adjacencies exist (equivalently building the graph

from what is known as its line graph), such as [5] and [15], but, from a brief

scan of the literature, these papers did not seem to guarantee building the

graph up to identity.

Let G be a simple graph with edge set E and let A be the set of all pairs of
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elements {e, f} ⊆ E that are edge adjacent in G.

Let P be the collection of subsets of E such that for every P ∈ P every pair

of elements of P is in A and P is maximal with respect to this property.

If G contains a connected component isomorphic to K3 or Y (as given be-

low), then we cannot tell from the edge adjacencies whether the connected

component is isomorphic to K3 or to Y .

K3 Y

If G contains a connected component isomorphic to one of the graphs given

below, then from the edge adjacencies we can tell which of the following

graphs the connected component is isomorphic to but we cannot tell in which

way the edges are distributed over the connected component.

Y K−4 K4

Lemma 4.14. If P ∈ P then either P is a complete star or P is a triangle.

What is more P contains all complete stars on more than two elements and

all triangles.

Proof. Let Q be a partial star. Then there is an edge e ∈ E −Q such that e

is adjacent to all edges in Q. Therefore Q /∈ P , by the maximality of sets in

P .

Let Q be a connected set that is not a star or triangle in G. Then Q must

contain a path of length 3. The first and least elements in this path cannot be

adjacent, as otherwise Q would be a star or a triangle, and therefore Q /∈ P .

Suppose there is a complete star, S, such that |S| > 2 and S /∈ P . By the

definition of P there must be some P ∈ P such that S ( P . Therefore there

is an f ∈ E − S such that S ∪ {f} ⊆ P . The edge f cannot be incident

with more than two vertices in |V (S)|, and f cannot be incident with the
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centre of S, therefore f can be adjacent to only two edges of S. Therefore

S ∪ {f} * P ; a contradiction.

If there were some triangle, T , of G, not contained in P then either not every

pair of elements of T is inA contradicting the fact that T is a triangle, or there

is some other edge adjacent to every pair of elements of T , a contradiction

to G being simple.

The set P may not contain all complete stars with two elements, as these

may be subsets of a triangle. We need a way of listing all stars of E, so we

need to be able to distinguish between 3-element stars and triangles. Our

next lemmas will give a method for doing this except in the five ambiguous

cases described above. Let P3 be the collection of 3-element sets of P and

let P − P3 = P∗.

Lemma 4.15. Suppose that P ∈ P3 and there is some P ′ ∈ P∗ that has a

non-zero intersection with P . Then either |P ∩ P ′| = 1 or |P ∩ P ′| = 2. If

|P ∩ P ′| = 1 then P is a star and if |P ∩ P ′| = 2 then P is a triangle.

Proof. If |P ∩ P ′| > 2, then P ( P ′, contradicting the maximality of P .

Suppose that P is not a star; then P must be a triangle. Therefore every

vertex in V (P ) would be incident with exactly two edges of P . As P ′ is a star

that shares an edge with P , the set V (P ′), must also share two vertices with

V (P ) and one of these vertices must be the centre of the star P ′. This means

that P must share two edges with P ′ as P ′ is a complete star. Therefore

|P ∩ P ′| = 2.

If |P ∩ P ′| = 2 then there is some vertex of P at which exactly two edges of

P meet, for consider the vertex where the two edges of P ∩ P ′ meet (by the

definition of P they must meet at some vertex). If this vertex had more than

two edges of P incident with it, then P ′ would not be maximal. Therefore

there is some vertex of P at which exactly two edges of P meet and so P

must be a triangle.

For the remainder of this section we shall suppose that P ∈ P3 and there

is no member of P∗ whose intersection with P is non-empty. We shall also

assume that A is not the collection of edge adjacencies of any of K4,K
−
4 ,Y ,K3

or Y .
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Lemma 4.16. Suppose that there is a member, P ′, of P3 such that |P ∩P ′| =
1. Then either P and P ′ are both 3-element stars or both triangles.

Proof. Suppose that P is a star and P ′ is a triangle and suppose that |P ∩
P ′| = 1. Then P and P ′ must share exactly two vertices and one of those

vertices must be the centre vertex, v, of the star P . But as P ′ is a triangle

there must be two edges incident with v in P ′ and as P is a complete star

at vertex v both those edges must be in P , so |P ∩ P ′| = 2, a contradiction.

Similarly P cannot be a triangle while P ′ is a star.

Lemma 4.17. Let P ′ ∈ P3 be such that |P ∩ P ′| = 1. Then if there is some

edge, e of P such that for all f ∈ P ′ − P we have {e, f} /∈ A then P is a

star.

Proof. Suppose that P were a triangle. As |P ∩ P ′| = 1 we must also have

P ′ is a triangle, and the two triangles must meet along a single edge. Then

every edge of P ′ − P is adjacent to an edge of P , a contradiction.

Lemma 4.18. Let P ′ ∈ P3 be such that |P ∩ P ′| = 1 and suppose that for

every edge e of P there is some f ∈ P ′ − P such that {e, f} ∈ A. Suppose

that there is an element, P ′′ * P ∪ P ′, of P such that |P ∩ P ′′| = 2 or

|P ′ ∩ P ′′| = 2. Then P is a triangle or G′ ∼= K4, where G′ is the connected

component of the graph which contains P . If no such P ′′ exists then P is a

star or G′ ∼= K−4 .

Proof. We know that, as P, P ′ ∈ P3 and |P ∩ P ′| = 1, either P and P ′

are both triangles, or both stars. If, for every edge e of P , there is some

f ∈ P ′ − P such that {e, f} ∈ A, then, when we restrict the edges in our

graph to P ∪P ′ and our vertices to V (P ∪P ′), we get a graph isomorphic to

K−4 . The possible ways this may arise are shown below with the edges of P

shown in red and those of P ′ shown in blue, the common edge of P and P ′

is shown in purple.

Situation 1 Situation 2
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Proof that, if there exists a P ′′ ∈ P such that |P ∩ P ′′| = 2 or |P ′ ∩ P ′′| = 2

and P ′′ * P ∪ P ′, then either P is a triangle or G′ ∼= K4:

Suppose that there exists such a P ′′.

First suppose that P ′′ ∈ P∗. Then, by Lemmas 4.15 and 4.16, P must be a

triangle.

Next suppose that there is no such P ′′ ∈ P∗ and suppose that P ′′ is a triangle.

The only way that we can have a triangle meeting with either P or P ′ in

two edges, is to have the situation shown below (remember that the graph is

simple).

Note that the subgraph generated by P ∪ P ′ ∪ P ′′ ∼= K4. Suppose that

G′ � K4. There there is some edge in G′ not shown above and this edge is

contained in an element of P . However, this element of P must have size at

least four, and must either intersect with P , or intersect with two edges of

P ′; a contradiction to the assumption that there is no element of P∗ that has

an intersection of size two with P or P ′. Therefore G′ ∼= K4.

Finally suppose that there is no such P ′′ ∈ P∗ and suppose that P ′′ is a

three-element star. As |P ∩ P ′′| = 2 or |P ′ ∩ P ′′| = 2, if P is a star we must

have the situation shown below:

However, as P ′′ ∈ P , all three edges of P must be in P ′′, and so P ′′ ∈ P∗.
As |P ′′ ∩ P | = 2 or |P ′′ ∩ P ′| = 2 this is a contradiction. Therefore, if P ′′ is

a three element star, P must be a triangle.

Proof that, if no such P ′′ exists, then P is a star or G′ ∼= K−4 :

Assume that there is for all P ′′ * P ∪P ′ we have |P ∩P ′′| ≤ 1 and |P ′∩P ′′| ≤
1. If |P ∩P ′′| = 0 and |P ′∩P ′′| = 0 for all P ′′ ∈ P , then G′ ∼= K−4 . Therefore

assume that |P ′′ ∩ (P ∪ P ′)| ≥ 1.
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If we can find some such P ′′ ∈ P∗, then, by Lemmas 4.15 and 4.16, P must

be a star.

Therefore suppose that there is some P ′′ such that |P ′′ ∩ (P ∪ P ′)| ≥ 1, but

no such P ′′ ∈ P∗. Suppose, for the purposes of contradiction, that P is a

triangle.

First assume that P ′′ is a triangle. If P ′′ ∩ (P ∪ P ′) = 1 then we must be in

one of the situations shown below:

B

But in both these situations there is an intersection of a four element set and

P , a contradiction.

If P ′′ ∩ (P ∪ P ′) = 2 then, as P ′′ * P ∪ P ′ and we are assuming that P is a

triangle, we must have the following situation:

But this gives a star that is not contained in P ∪P ′ that has an intersection

of size two with P , a contradiction.

Next assume that P ′′ is a star and again suppose that P is a triangle. There

is no way to have P intersecting P ′′ or P ′ intersecting P ′′ that does not given

an intersection of size two between P ′′ and P or P ′, a contradiction.

Therefore, if for all P ′′ * P ∪P ′ we have |P ∩P ′′| ≤ 1 or |P ′ ∩P ′′| ≤ 1, then

either G′ ∼= K−4 or P is a star.

We shall now assume, for the remainder of the section, that there is no

element of P3 that has an intersection of size one with P .

As A is the collection of edge adjacencies of a graph, there can be no more

than three members of P that have a 2-element intersection with P .

Lemma 4.19. If there exists a 3-element set, P ′ 6= P , that has a two element

intersection with P , then one of P, P ′ is a 3-element star and the other is a
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triangle

Proof. If P and P ′ were both triangles then |V (P )| = |V (P ′)| = 3 and any

two edges of P must be incident with three vertices. As |P ∩ P ′| = 2 we

have |V (P ∩ P ′)| = 3 and so there is no vertex of V (P ) or V (P ′) that is not

in V (P ∩ P ′). Therefore the edge of P ′ that is not in P must be parallel to

the edge of P that is not in P ′ but this contradicts the fact that the graph

is simple.

Suppose that both P and P ′ were both stars and P ∩ P ′ = {e, f} for some

e, f ∈ E(G). By the maximality of elements in A, we know that P and P ′

cannot share the same centre. Let a be the centre of P . As e ∈ P ∩ P ′, the

centre of P ′ must be V ({e}) − {a}. Similarly the centre of P ′ must also be

V ({f})−{a}, and as a ∈ (V ({f})∩V ({e})), we must have V ({e}) = V ({f})
so e and f are parallel, a contradiction as our graph is simple.

Lemma 4.20. Suppose that there are two or more sets, P ′ and P ′′ from P3

that have a 2-element intersection with P . Then P is a triangle.

Proof. Suppose that P were a 3-element star. Then P ′ and P ′′ would be

triangles each with one edge not in P . This would mean that P ′ and P ′′

would have to share a common edge with each other and that edge must also

be in P . This means that the edges of P ′ and P ′′ that are not in P along

with the edge of P that is in both P ′ and P ′′ would form a three element star

with a one element intersection with P ; a contradiction, as we are assuming

that there is no element of P3 that meets P in a single edge.

Lemma 4.21. Suppose that there is exactly one set, P ′ ∈ P3 that has a

2-element intersection with P . Then either the connected component of G

containing P is isomorphic to Y , or P is a triangle.

Proof. Let G′ be the connected component of G that contains P . Suppose

that G′ is not isomorphic to Y and that P is a star. Then we must have the

situation below, where P is shown in red and P ′ is shown in blue and the

common edges are shown in purple:
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As G′ is not isomorphic to Y , then there is a set Q, in P that is not contained

in P ∪P ′, but does share at least one edge with P ∪P ′. As there is no P ′ ∈ P∗

that intersects with P in at least one element, and no member of P3 that is

not P or Q, that has P ′ ∩P 6= ∅, the only way we can have this is to have Q

a triangle as shown below (Q is shown in green):

v

However, this gives a member of P − {P ∪ P ′} (specifically the star with

centre v) which has a 1-element intersection with P ; a contradiction.

Lemma 4.22. Suppose that there is no member of P3 that has a non-empty

intersection with P . Then P is a connected component of G and is either a

triangle or a 3-element star.

This means that we have now identified which sets of P3 are 3-element stars

and which are triangles, except in some cases for small connected compo-

nents. Our final step is to find all two element stars. The two element stars

that are not part of a triangle are in P so we need to find out when a pair of

elements of a triangle is a 2-element star.

Let the collection of all P ∈ P such that P is not a triangle be known as S.

Lemma 4.23. Let P be a triangle and suppose that P = {e1, e2, e3}. Then

{ei, ej}, where i, j ∈ {1, 2, 3} and i 6= j, is a two element star if, and only if,

{ei, ej} * S ∈ S.

Proof. As ei, ej are adjacent either {ei, ej} is a star or {ei, ej} is properly

contained in a star. If it is properly contained in a star then it will be a

subset of an element of S as S is a complete collection of stars of more than

two elements.

Summary

Given P , to find the complete stars of G we split P into two sets, P∗ and P3,

where P3 is the collection of all and only the three element members of P
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and P∗ = P −P3. Every complete star that contains more than three edges

is contained in P∗ and these are the only sets of P∗ except for some one and

two element complete stars.

If a two element star is not contained in P∗, then the edges in this star are

two of the edges of a triangle.

Consider a member, P , of P3. To find out if P is a three-element star:

i) Find a P ′ ∈ P∗ that has a non-empty intersection with P . If the inter-

section is of size one then P is a star, if the intersection is of size two

then P is a triangle. The intersection cannot be of size greater than two.

ii) If no such P ′ exists find a P ′ ∈ P3 such that |P ∩ P ′| = 1.

a) If there is some e ∈ P such that for all f ∈ P ′−P we have {e, f} /∈ A,

then P is a star.

b) If no such e exists then:

• If there is P ′′ * P ∪ P ′ such that P ′′ ∈ P and |P ∩ P ′′| = 2 or

|P ′ ∩ P ′′| = 2, then P is a triangle or G′ ∼= K4.

– If there is no set Q * P ∪ P ′ ∪ P ′′ such that Q ∈ P and Q

has non-empty intersection with P ∪P ′ ∪P ′′, then G′ ∼= K4.

Otherwise P is a triangle.

• If there is no such P ′′ then either G′ ∼= K−4 or P is a star.

– If there is no set Q * P ∪P ′ such that Q ∈ P and Q has non-

empty intersection with P ∪ P ′, then G′ ∼= K−4 . Otherwise

P is a star.

iii) If there is no set in P3 that has an intersection of size one with P , then

find P ′ ∈ P3 such that |P ∩ P ′| = 2

(a) Suppose that there are two elements of P3 that have a two element

intersection with P , then P is a triangle.

(b) If there is exactly one member of P ′ ∈ P3 that has a 2-element

intersection with P , then P is a triangle or G′ ∼= Y .

• If there is no member of P that is not contained in P ∪ P ′

that has a non-empty intersection with P or P ′, then G ∼= Y .

Otherwise P is a triangle.
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iv) If there no set in P3 that has an intersection of size one or two with P ,

then G′ ∼= K3 or Y .

We have now identified all stars of more than two elements. We have also

identified all triangles. To find all two element stars we look at all pairs of

edges {e, f} that are in some triangle. If {e, f} * P for any P ∈ P∗, then

{e, f} is a two element star, otherwise it is not. The collection of all such

pairs of edges along with the two element members of P∗ gives the collection

of all 2-element stars of the graph. To find all single elements stars we look at

edges that appear in exactly one star. These, along with all sets of P∗ of size

one gives the collection of all single-element stars of the graph. This means

that we are able, except in the ambiguous cases of K3, Y, Y ,K
−
4 and K4, to

identify all stars of the graph and therefore have a complete description of

the graph. Given a list of stars of G we can build G from this list.

The algorithm also gives a way of identifying when we have a connected

component isomorphic to Y or to K−4 or to K4 or when we have a connected

component that is isomorphic to either K3 or Y . The connectivity function

cannot tell the difference between the following labellings of K4.

a b

c

d

ef
f d

e

a

bc

so when, from the edge adjacencies, we identify that we have a connected

component isomorphic to one of the above graphs, we may arbitrarily choose

which one the graph contains. The other ambiguous cases can be told apart

by their connectivity functions and will be dealt with shortly.

4.3 When Is a Connectivity Function

Graphic?

In this section we shall give a method for establishing when a connectivity

function, λ, is graphic. This algorithm uses a polynomial, in the size of the

set on which the connectivity function is based, number of evaluations of
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the connectivity function. To do this we use the results from the previous

sections to build a graph that would have connectivity function λ were λ

graphic. We shall then show that if we have a connectivity function λ and

a graphic connectivity function, γ, both on set E, then if λ and γ agree on

some particular subsets of E then λ and γ will agree everywhere.

Building a Graph From a Connectivity Function

Suppose that we have a connectivity function λ on E. We now give an

algorithm that builds a graph which would have connectivity function λ

were λ graphic. If λ is not graphic we may still be able to build such a graph

or at some stage of the algorithm we may be able to stop and state that λ

is not graphic. We will therefore assume that λ is graphic and comes from

graph G, and may at some stage find a contradiction to this.

From Section 4.1 we know that the leaves of G are exactly those elements,

e ∈ E such that λ({e}) ≤ 1. If for any a, b ∈ E we have λ({a}) > 2

then we are able to say λ is not graphic, otherwise Lemma 4.7 then gives a

method for finding out which elements of E are adjacent in G. The algorithm

given for building a graph given the edge adjacencies requires the graph to

be simple. We are assuming that G does not contain any loops but G may

contain parallel edges. We shall therefore identify the parallel classes of G

using Lemmas 4.12 and 4.13. Once we know the parallel classes we are able

to find the adjacencies of an underlying simple graph, Gs, of G. We are then

able to build Gs using the algorithm given in Section 4.2. This will uniquely

build Gs in all but a few cases which we shall consider shortly. If there are

more than three sets with a 2-element intersection with some element, P ,

of P3, then λ is not graphic. Suppose that we have successfully found the

collection of stars from the edge adjacencies. We must now check that this

collection of stars is the collection of stars of a graph. To do this we must

check that every element appears in no more than two stars. This will be so

if, and only if, we have the collection of stars of a graph, and so if an element

appears in more than two stars, then λ is not graphic.

Having built Gs, we know which collections of edges form parallel classes in

G. We are then able to add the parallel edges uniquely to Gs to obtain G.

In some cases Gs may not be able to be uniquely built from the adja-
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cencies. However, the connectivity function gives more information than

the adjacency relation, so in some of these cases we are able to build Gs

uniquely. The cases where we cannot build Gs uniquely from the adjacency

relation are when Gs contains a connected component, G′s isomorphic to one

of Y,K3, Y ,K
−
4 , K4. We now consider these cases. Note that we know all

parallel classes of G.

Suppose that G′s is isomorphic to K3 or Y (from the edge adjacency relation

we cannot tell which). If there is some element, e, of G′s such that λ({e}) = 1

then this element is a leaf of Gs (as Gs contains no loops) and so G′s
∼= Y .

Suppose that there is no e ∈ E(G′s) such that λ({e}) = 1. Then either

G′s
∼= K3, or G′s

∼= Y and for every e ∈ E(G′s) there is some f ∈ E(G)−E(Gs)

such that f is parallel to e. In this second case it must be that λ(E(G′s)) = 4

as no vertex of G′s is full in G with respect to G′s. In the case where G′s
∼= K3

it must be that λ(G′s) ≤ 3 as G′s contains three vertices.

Suppose that G′s
∼= Y , the adjacency relation cannot tell the difference be-

tween the following two situations:

ab

c

d

ab

d

c

Suppose that we are in the first situation. Then λ({d}) = 1 or else there is

some edge of G that is parallel to d. If there is some edge of G that is parallel

to d then λ({a, b, d}) = 4. This distinguishes this situation from the second

one which has λ({a, b, d}) ≤ 3.

Suppose that G′s
∼= K−4 . Then from the edge adjacencies we cannot distin-

guish between the following two graphs:

c

a b

d e c

a d

b e

Either there is no edge parallel to a or b in which case λ({a, b, c}) = 2 in the

first case and λ({a, b, c}) ≥ 3 in the second case, or there is an edge parallel

to at least one of a or b. Without loss of generality say that there is an edge
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parallel to a, then λ({a, b, c}) = 3 in the first case and λ({a, b, c}) = 4 in the

second case.

Suppose that G′s
∼= K4. From the edge adjacencies we cannot distinguish

between the following two graphs:

f

d e
bc

a

c

a b

fd

e

If there are no edges of G parallel to edges of G′s, the connectivity function

of the two connected components are the same so we cannot distinguish

between the two cases. Suppose that there is an edge of G parallel to a. In

the first case this gives λ({a, d, e}) = 4 so we know that {a, d, e} is a star and

in the second case λ({a, d, e}) = 3 so {a, d, e} is a triangle. Once we know

one star or triangle of K4 we can find the rest of the stars and triangles and

distinguish between stars and triangles that are subgraphs induced by three

element subsets of K4.

Therefore except when G has a connected component isomorphic to K4 we

can build G uniquely (except that we cannot distinguish loops from leaves)

from its connectivity function.

When is a Connectivity function Equal to a Graphic

Connectivity Function?

The next question is, given we have been able to build this graph, is λ

necessarily graphic. The answer is no, we cannot say that λ is graphic just

because we have built the graph that would have λ as its connectivity function

were λ graphic. For consider the following two connectivity functions λ and

γ described on the next page:
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λ γ

{a} 2 2

{b} 2 2

{c} 2 2

{d} 2 2

{e} 2 2

{f} 2 2

{a,b} 3 3

{a,c} 3 3

{a,d} 3 3

{a,e} 3 3

{a,f} 4 4

{b,c} 3 3

{b,d} 4 4

{b,e} 3 3

{b,f} 3 3

{c,d} 3 3

{c,e} 4 4

{c,f} 3 3

{d,e} 3 3

{d,f} 3 3

{e,f} 3 3

{a,b,c} 4 3

{a,b,d} 4 4

{a,b,e} 3 3

{a,b,f} 4 4

{a,c,d} 3 3

{a,c,e} 4 4

{a,c,f} 4 4

{a,d,e} 3 3

{a,d,f} 4 4

{a,e,f} 4 4

The remaining values can be found by symmetry. Note that λ 6= γ as

λ({a, b, c}) = 4 and γ({a, b, c}) = 3.
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If we consider the edge adjacencies of the graph that would have λ as its

connectivity function were λ graphic, we find that this graph would have to

be isomorphic to one of the graphs shown below, and to establish this we

only need to check sets of size at most two.

f

d e
bc

a

c

a b

fd

e

However, these graphs have connectivity function, γ, Therefore λ 6= γ so

λ cannot be a graphic connectivity function despite the fact that we were

able to build a graph that would have λ as its connectivity function were λ

graphic.

We now prove that, if λ and γ agree on some particular collection of sets,

then λ and γ agree everywhere and so λ is graphic.

Definition 4.24. If S is a complete star of G and e ∈ S then S − {e} is an

almost-complete star of G. Let S is a complete star of G, and e ∈ S. For any

a ∈ E that is adjacent to e but not in S, the set (S − {e}) ∪ {a} is a broken

star of G.

The definition of a broken star is a little hard to digest so a couple of pictures

of broken stars are given below, where the dashed red line is in G but not in

the broken star.

e a
e

a

Recall that a parallel class is a maximal parallel set. In this section we prove

the following theorem:

Theorem 4.25. Let G be a graph with connectivity function γ. Let λ be

a connectivity function on E(G) such that λ(X) = γ(X) whenever X ⊆ E

satisfies any one of the following:
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C1 |X| ≤ 2,

C2 X is a complete star of G,

C3 X is an almost-complete star of G,

C4 X is a broken star of G,

C5 X is a triangle, maximal parallel triangle, or X∪{e} is a maximal parallel

triangle for some e ∈ E(G)− E(X),

C6 X is a parallel class in G.

Then λ(X) = γ(X), for all X ⊆ E.

Suppose that we are given an arbitrary connectivity function, λ, on a set E.

We can then build a graph, G, in the way described earlier in the section

(labelled Building a Graph From a Connectivity Function). Now consider

the connectivity function, γ of G. Suppose that, for all X ⊆ E such that one

of C1-C6 from Theorem 4.25 holds, γ(X) = λ(X). Then, by Theorem 4.25,

λ(X) = γ(X) for all X ⊆ E, and so λ is a graphic connectivity function.

This means that, given Theorem 4.25, we have proved Theorem 4.1 holds, in

other words we have proved the following theorem:

Theorem 4.1. There is some polynomial p such that, given an arbitrary

connectivity function λ, we are able to establish whether or not λ is graphic

in at most p(n) evaluations of the connectivity function, where n is the size

of the set on which λ is based.

The following lemma is immediate from the definition of graphic connectivity

functions.

Lemma 4.26. Suppose that G is a graph with connectivity function γ. Then

γ(X) is the number of non-full vertices of G with respect to X.

If S is a star of G then we shall use S̃ to denote the complete star of G

containing S; and if P is a parallel set of G then we shall use
...
P to denote

the parallel class containing P in G.

Throughout this section we shall consider G to be a loopless graph with no

isolated vertices, whose edge set is E whose connectivity function is γ. Let
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λ be a connectivity function on E such that λ(X) = γ(X) if one of C1-C6

from Theorem 4.25 holds.

We will define a function fullvi : 2E → {0, 1} by

fullvi(X) =

{
1 if vi is full in G with respect to X

0 otherwise

for all X ⊆ 2E.

Lemma 4.27. Let P be a parallel set in G. Then λ(P ) = γ(P ).

Proof. Let V (P ) = {v1, v2}. Suppose that v1 or v2 is full with respect to

P . Then P is a complete star of G and so λ(P ) = γ(P ) by C2. We shall

therefore assume that neither v1 nor v2 is full in G with respect to P .

First, we show that λ(P ) ≤ γ(P ). If |P | ≤ 2 then this result holds by C1

so we assume that |P | ≥ 3. Assume for the purposes of induction that this

result holds for all parallel sets P ′ such that |P ′| < |P |. Let e ∈ P . As P is

not a complete star of G and |P | ≥ 3, we have γ(P − {e}) = γ(P ) and for

f ∈ P − {e} we have γ({e, f}) = γ({f}). Therefore:

γ(P ) + γ({f}) = γ(P − {e}) + γ({e, f}) (1)

≥ λ(P − {e}) + λ({e, f}) (2)

≥ λ(P ) + λ({f}) (3)

= λ(P ) + γ({f}), (4)

where (2) follows from (1) by the induction hypothesis and C1, (3) follows

from (2) by submodularity, and (4) follows from (3) by C1.

Therefore λ(P ) ≤ γ(P ).

Next, we show that λ(P ) ≥ γ(P ). We do this by induction on |
...
P − P |. If

|
...
P − P | = 0, then P is a parallel class, so the result holds by C6. Assume

that the result holds for all P ′ ⊆
...
P such that |

...
P −P ′| < k and suppose that

|
...
P − P | = k for some k ≥ 1. Let e ∈ P and f ∈

...
P − P . If neither vertex of

P ∪ {f} is full in G with respect to P ∪ {f} then γ(P ) = γ(P ∪ {f}) and
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γ({e, f}) = γ({e}). Therefore

γ(P ) + γ({e, f}) = γ(P ∪ {f}) + γ({e}) (1)

≤ λ(P ∪ {f}) + λ({e}) (2)

≤ λ(P ) + λ({e, f}) (3)

= λ(P ) + γ({e, f}), (4)

where (2) follows from (1) by the induction hypothesis and C1, (3) follows

from (2) by submodularity, and (4) follows from (3) by C1. Therefore, in

this case, λ(P ) ≥ γ(P ).

If some vertex of P ∪ f were full in G with respect to P ∪ f , then P would

be an almost-complete star of G, so λ(P ) = γ(P ) by C3.

Therefore λ(P ) ≥ γ(P )

Lemma 4.28. Suppose that S is a star of G with centre v. Then λ(S) =

γ(S).

Proof. We shall assume that S 6= ∅ and S 6= S̃, as in these cases the result

follows directly from C2.

First we show that λ(S) ≥ γ(S). We do this by induction on |S̃ − S|. If

|S̃ − S| ≤ 1, then the result holds by C3. For the purposes of induction we

assume that this result holds for all S ′ ⊆ S̃ such that |S̃ − S ′| < k. Let

|S̃ − S| = k for k > 1, and let a ∈ S̃ − S be such that V ({a}) = {v, v1}. Let

e ∈ S.

Suppose that a is not parallel to any edge of S. As |S̃ − S| > 1, we have

γ(S) = γ(S∪{a})−(1−fullv1({a})) and γ({e, a}) = γ({e})+(1−fullv1({a})).
Therefore:

γ(S) + γ({a, e}) = γ(S ∪ {a}) + γ({e}) (1)

≤ λ(S ∪ {a}) + λ({e}) (2)

≤ λ(S) + λ({a, e}) (3)

= λ(S) + γ({a, e}), (4)

where (2) follows from (1) by the induction hypothesis and C1, (3) follows

from (2) by submodularity and (4) follows from (3) by C1. Therefore, in this
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case, γ(S) ≤ λ(S).

Now suppose that a is parallel to some edge of S and let P be the maximal

parallel subset of S−{a} with which a is parallel. Then γ(S) = γ(S∪{a})+

fullv1(S ∪ {a}) and γ(P ∪ {a}) = γ(P )− fullv1(P ∪ {a}), as |S̃ − S| > 1. As

fullv1(S ∪ {a}) = fullv1(P ∪ {a}) we have:

γ(S) + γ(P ∪ {a}) = γ(S ∪ {a}) + γ(P ) (1)

≤ λ(S ∪ {a}) + λ(P ) (2)

≤ λ(S) + λ(P ∪ {a}) (3)

= λ(S) + γ(P ∪ {a}), (4)

where (2) follows from (1) by the induction hypothesis and Lemma 4.27, (3)

follows from (2) by submodularity, and (4) follows from (3) by Lemma 4.27.

Therefore λ(S) ≥ γ(S).

Next we show that λ(S) ≤ γ(S). We shall do this by induction on the

number of edges contained in non-trivial parallel classes of S. The following

claim provides our base case:

Claim 4.28.1. If S contains no parallel edges than λ(S) ≤ γ(S)

Proof. The result holds for S such that |S| ≤ 2 by C1. For the purposes

of induction suppose that the result holds for all S such that |S| < m.

Let S = {b1, . . . , bm}, for some m ≥ 3, and consider the subsets, {b1, b2}
and {b2, . . . , bm}, of S. Let V ({b1}) = v, v1. As {b1, . . . , bm} is not

a complete star of G, γ({b1, b2}) = γ({b2}) + (1 − fullv1({b1})) and

γ({b2, . . . , bm}) = γ({b1, . . . , bm})− (1− fullv1(b1)) Therefore:

γ({b1, . . . , bm}) + γ({b2}) = γ({b2, . . . , bm}) + γ({b1, b2}) (1)

≥ λ({b2, . . . , bm}) + λ({b1, b2}) (2)

≥ λ({b1, . . . , bm}) + λ({b2}) (3)

= λ({b1, . . . , bm}) + γ({b2}), (4)

where (2) follows from (1) by C1 and the induction hypothesis of the

claim, (3) follows from (2) by submodularity, and (4) follows from (3)
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by C1. Therefore λ(S) ≤ γ(S) when S contains no parallel edges.

Assume, for the purposes of induction, that the result holds for all stars S ′

with less than k edges contained in non-trivial parallel subsets of S. Let S

be a star with k > 1 edges contained in non-trivial parallel subsets of S. Let

b1 be an edge of one such parallel set, which we shall call Pb1 . Either S = Pb1

or there is some edge, e, which is not contained in Pb1 but is contained in S.

If S = Pb1 , then the result holds by Lemma 4.27; so suppose that there exists

e ∈ S−Pb1 . Let v1 be the vertex of G that is incident with b1 but not with e.

Then γ(S−{b1}) = γ(S)+fullv1(Pb1) and γ(Pb1−{b1}) = γ(Pb1)+fullv1(Pb1).

Therefore:

γ(S) + γ(Pb1 − {b1}) = γ(S − {b1}) + γ(Pb1) (1)

≥ λ(S − {b1}) + λ(Pb1) (2)

≥ λ(S) + λ(Pb1 − {b1}) (3)

= λ(S) + γ(Pb1 − {b1}), (4)

where (2) follows from (1) by the induction hypothesis and Lemma 4.27, (3)

follows from (2) by submodularity, and (4) follows from (3) by Lemma 4.27.

Therefore λ(S) ≤ γ(S)

Lemma 4.29. Let P1, P2, P3 be three parallel sets of G such that P1∪P2∪P3

is a parallel triangle in G. Then λ(P1 ∪ P2 ∪ P3) = γ(P1 ∪ P2 ∪ P3).

Proof. Let V (P1) = {v1, v2}, V (P2) = {v2, v3} and V (P3) = {v3, v1} We

shall first show, by induction, that λ(P1 ∪ P2 ∪ P3) ≥ γ(P1 ∪ P2 ∪ P3). If

|(
...
P 1 ∪

...
P 2 ∪

...
P 3)− (P1 ∪P2 ∪P2)| ≤ 1 then the result holds by C5. Therefore

we shall assume that |(
...
P 1∪

...
P 2∪

...
P 3)−(P1∪P2∪P2)| ≥ 2 and without loss of

generality let e ∈
...
P 1− P1. As (P1 ∪ {e})∪ P2 ∪ P3 is not a maximal parallel

triangle it must contain at most one full vertex. If v1 is not full with respect

to (P1∪{e})∪P2∪P3, then γ(P1∪P2) = γ(P1∪{e}∪P2)+fullv2(P1∪{e}∪P2)

and γ(P1 ∪ P2 ∪ P3) = γ((P1 ∪ {e}) ∪ P2 ∪ P3) + fullv2((P1 ∪ {e}) ∪ P2 ∪ P3).
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As fullv2((P1 ∪ {e}) ∪ P2 ∪ P3) = fullv2(P1 ∪ {e} ∪ P2) we have:

γ(P1 ∪ P2 ∪ P3) + γ(P1 ∪ {e} ∪ P2) (1)

= γ((P1 ∪ {e}) ∪ P2 ∪ P3) + γ(P1 ∪ P2) (2)

≤ λ((P1 ∪ {e}) ∪ P2 ∪ P3) + λ(P1 ∪ P2) (3)

≤ λ(P1 ∪ P2 ∪ P3) + λ(P1 ∪ {e} ∪ P2) (4)

= λ(P1 ∪ P2 ∪ P3) + γ(P1 ∪ {e} ∪ P2) (5)

where (3) follows from (2) by the induction hypothesis and Lemma 4.28, (4)

follows from (3) by submodularity and (5) follows from (4) by Lemma 4.28.

If v1 were full with respect to P1 ∪ P2 ∪ P3, then v2 would not be and so we

could use a similar argument using the pair P1, P3 instead of P1, P2. Therefore

γ(P1 ∪ P2 ∪ P3) ≤ λ(P1 ∪ P2 ∪ P3).

We now show that λ(P1∪P2∪P3) ≤ γ(P1∪P2∪P3). To do this we first need

to note that the result holds if P1 ∪ P2 ∪ P3 is a maximal parallel triangle of

G by C5, and if P1 ∪ P2 ∪ P3 is not a maximal parallel triangle of G it must

contain at least two non-full vertices. Also note that the result holds for

triangles by C5. Assume for the purposes of induction that the result holds

for all parallel triangles that are strict subsets of P1 ∪ P2 ∪ P3 and assume

that P1 ∪ P2 ∪ P3 is not a maximal parallel triangle.

Suppose that |P1| ≥ 2 and e ∈ P1. As P1 ∪ P2 ∪ P2 is not maximal, at most

one of v1 and v2 can be full with respect to P1 ∪ P2 ∪ P3. Without loss of

generality we shall assume that v1 is not full with respect to P1 ∪ P2 ∪ P3.

Note that γ((P1−{e})∪P2∪P3) = γ(P1∪P2∪P3) + fullv2(P1∪P2∪P3) and

γ(P1 ∪ P2) = γ((P1 − {e}) ∪ P2) − fullv2(P1 ∪ P2). Therefore, as fullv2(P1 ∪
P2 ∪ P3) = fullv2(P1 ∪ P2) we have γ((P1 − {e}) ∪ (P2 ∪ P3) + γ(P1 ∪ P2) =

γ(P1 ∪ P2 ∪ P3) + γ((P1 − {e}) ∪ P2). Therefore:

γ(P1 ∪ P2 ∪ P3) + γ((P1 − {e}) ∪ P2) (1)

= γ((P1 − {e}) ∪ P2 ∪ P3) + γ(P1 ∪ P2) (2)

≥ λ((P1 − {e}) ∪ P2 ∪ P3) + λ(P1 ∪ P2) (3)

≥ λ(P1 ∪ P2 ∪ P3) + λ((P1 − {e}) ∪ P2) (4)

= λ(P1 ∪ P2 ∪ P3) + γ((P1 − {e}) ∪ P2), (5)
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where (3) follows from (2) by the induction hypothesis and Lemma 4.28, (4)

follows from (3) by submodularity and (5) follows from (4) by Lemma 4.28.

Lemma 4.30. Let S be a partial star of G with centre v, and P a parallel

set of G which is adjacent to an edge f of S. Then λ(S ∪ P ) ≤ γ(S ∪ P ).

Proof. If P ⊆ S̃ then we are done by Lemma 4.28, so we will assume that P

is not contained in S̃.

Suppose that P does not form a parallel triangle with any pair of edges of S.

Let V (P ) = {v1, v2} and let f ∈ S be such that V ({f}) = {v1, v}. We shall

use Pf to denote the collection of edges of S that are parallel to f .

f

Pf

P
v

v1 v2

Note that γ(S ∪P ) = γ(S) + (1− fullv2(P ))− fullv1(P ∪Pf ) and γ(P ∪Pf ) =

γ(Pf ) + (1− fullv2(P ))− fullv1(P ∪ Pf ). Therefore:

γ(S ∪ P ) + γ(Pf ) = γ(S) + γ(P ∪ Pf ) (1)

= λ(S) + λ(P ∪ Pf ) (2)

≥ λ(S ∪ P ) + λ(Pf ) (3)

= λ(S ∪ P ) + γ(Pf ), (4)

where (2) follows from (1) by Lemma 4.28, (3) follows from (2) by submodu-

larity and (4) follows from (3) by Lemma 4.28. Therefore λ(S∪P ) ≤ γ(S∪P )

when P does not form a parallel triangle with any edges of S.

Now suppose that P forms a parallel triangle with two classes of parallel edges

of S which we shall call Q1 and Q2. Let V (P ) = {v1, v2}, V (Q1) = {v1, v}
and V (Q2) = {v2, v}.
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Q1

Q2 P

v

v2

v1

Then γ(S) = γ(S∪P )+ fullv1(P ∪Q1)+ fullv2(P ∪Q2) and γ(P ∪Q1∪Q2) =

γ(Q1 ∪Q2)− fullv1(P ∪Q1)− fullv2(P ∪Q2). Therefore:

γ(S ∪ P ) + γ(Q1 ∪Q2) = γ(S) + γ(Q1 ∪Q2 ∪ P ) (1)

= λ(S) + λ(Q1 ∪Q2 ∪ P ) (2)

≥ λ(S ∪ P ) + λ(Q1 ∪Q2) (3)

= λ(S ∪ P ) + γ(Q1 ∪Q2), (4)

where (2) follows from (1) by Lemmas 4.28 and 4.29, (3) follows from (2) by

submodularity and (4) follows from (3) by Lemma 4.28.

Therefore λ(S ∪ P ) ≤ γ(S ∪ P )

Lemma 4.31. Let S be a partial star of G with centre v, and e an element

of E(G)−S which is adjacent to an edge, a, of S. Then λ((S∪{e})−{a}) =

γ((S ∪ {e})− {a}).

Proof. If e is contained in the complete star containing S then the result

holds by Lemma 4.28. Therefore, for the remainder of the proof, we shall

assume that e is not contained in the complete star containing S. This means

that the sets we are interested in have one of the forms shown below, where

the dotted lines indicate some of the edges of G that are not in (S∪{e})−{a}.

a e
a

e
a

e

First we show that λ(S ∪ {e}− {a}) ≤ γ((S ∪ {e})−{a}). If a is parallel to

some other element of S or e forms a triangle with some elements of S, then

the result holds by Lemma 4.30 To do this, note that γ(S −{a}) + γ({e}) =
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γ((S ∪ {e})− {a}). Therefore:

γ(S ∪ {e} − {a}) = γ(S − {a}) + γ({e}) (1)

= λ(S − {a}) + λ({e}) (2)

≥ λ((S ∪ {e})− {a}), (3)

where (2) comes from (1) by Lemma 4.28 and C1, and (3) comes from (2)

by submodularity.

Next we show that λ((S ∪ {e})− {a}) ≥ γ((S ∪ {e})− {a}). We do this by

induction on |S̃ − S|. By C4 the result holds when |S̃ − S| = 0. Assume

that the result holds for S such that |S̃ − S| < k. Suppose that |S̃ − S| = k,

where k ≥ 1, and let f ′ be an edge of S that is not a and that is not adjacent

to e, (if we cannot find such an edge then |S ∪ {e} − {a}| ≤ 2 so the result

holds by C1). Let f ∈ S̃ − S be such that V (f) = {v, v1}.

Suppose that f is not parallel to any element of S.

a
f

f ′

e
v

v1

Case 1

a

f

f ′

e

v

v1

Case 2

In Case 1, γ((S ∪ {e}) − {a}) = γ((S ∪ {e, f}) − {a}) − (1 − fullv1(f)) and

γ({f, f ′, e}) = γ({f ′, e})+(1− fullv1(f)), and in Case 2 γ((S∪{e})−{a}) =

γ((S ∪ {e, f}) − {a}) + fullv1(f) and γ({f, f ′, e}) = γ({f ′, e}) − fullv1(f).

Therefore:

γ((S ∪ {e})− {a}) + γ({f, f ′, e}) = γ((S ∪ {e, f})− {a}) + γ({f ′, e}) (1)

≤ λ((S ∪ {e, f})− {a}) + λ({f ′, e}) (2)

≤ λ((S ∪ {e})− {a}) + λ({f, f ′, e}) (3)

≤ λ((S ∪ {e})− {a}) + γ({f, f ′, e}), (4)

where (2) comes from (1) by the induction hypothesis and C1, (3) comes



CHAPTER 4. GRAPHIC CONNECTIVITY FUNCTIONS 86

from (2) by submodularity, and (4) comes from (3) by the first half of the

lemma. Therefore γ((S ∪ {e})− {a}) ≤ λ((S ∪ {e})− {a}).

Suppose that f is parallel to some element of S − {a} .

a

Pf f

f ′
e

v

v1

a

Pf f

f ′

e

v

v1

Then γ((S ∪ {e})−{a}) = γ((S ∪ {e, f})−{a}) + fullv1(Pf ∪ {e}) where Pf

is the collection of elements parallel to f in S, and γ(Pf ) = γ(Pf − {f}) −
fullv1(Pf ∪ {e}). Therefore:

γ((S ∪ {e})− {a}) + γ(Pf ) = γ((S ∪ {e, f})− {a}) + γ(Pf − {f}) (1)

≤ λ((S ∪ {e, f})− {a}) + λ(Pf − {f}) (2)

≤ λ((S ∪ {e})− {a}) + λ(Pf ) (3)

≤ λ((S ∪ {e})− {a}) + γ(Pf ), (4)

where (2) comes from (1) by the induction hypothesis and Lemma 4.28, (3)

comes from (2) by submodularity, and (4) comes from (3) by Lemma 4.28.

Therefore γ((S ∪ {e})− {a}) ≤ λ((S ∪ {e})− {a}).

Finally suppose that f is parallel to a.

a

f

f ′

e
v

Then γ((S∪{e})−{a}) = γ((S∪{e, f})−{a}) and γ({f, f ′, e}) = γ({f ′, e}).
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Therefore:

γ((S ∪ {e})− {a}) + γ({f, f ′, e}) = γ((S ∪ {e, f})− {a}) + γ({f ′, e}) (1)

≤ λ((S ∪ {e, f})− {a}) + λ({f ′, e}) (2)

≤ λ((S ∪ {e})− {a}) + λ({f, f ′, e}) (3)

≤ λ((S ∪ {e})− {a}) + γ({f, f ′, e}), (4)

where (2) comes from (1) by the induction hypothesis and C1, (3) comes

from (2) by submodularity, and (4) comes from (3) by the first half of the

lemma.

The result follows.

This next lemma considers at structures that look something like the one

shown below:

e

Lemma 4.32. Let e be an edge of G between vertices v1 and v2. Let S1 be

a star at v1 such that e ∈ S1, and S2 be a star at v2 such that e ∈ S2. Then

λ((S1 ∪ S2)− {e}) = γ((S1 ∪ S2)− {e}).

Proof. We first show that λ((S1∪S2)−{e}) ≥ γ((S1∪S2)−{e}). The result

holds for |(S1 ∪ S2) − {e}| ≤ 2 by C1 on λ. Suppose for the purposes of

induction that the result holds for all (S1 ∪ S2)− {e} such that |(S1 ∪ S2)−
{e}| < m.

Suppose that |(S1 ∪ S2) − {e}| = m ≥ 3. If at least one of S1 and S2 has

cardinality less than three, then the result holds by Lemma 4.31 so we can

assume that |S1| ≥ 3 and |S2| ≥ 3. Let f be an edge in S1 ∪ S2 that is not

e and is not parallel to e. If no such f exists then all edges in S1 ∪ S2 are

parallel to e and therefore S1 ∪S2−{e} is a parallel set and the result holds

by Lemma 4.28. Therefore we assume such an f exists and without loss of

generality we shall assume that it is in S1.

Let V ({f}) = {v1, v3} (note that v2 6= v3 as f is not parallel to e). Let S be

the complete star of G at v3 and let the collection of all edges of S that are
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also in S1 be P1 and the collection of all edges that are also in S2 be P2. Let

P = P1 ∪ P2.

The pictures below aim to illustrate this situation, although do not, by any

means, cover all possible configurations. In the pictures below, the red edges

are the edges of S− (S1 ∪S2) and in the second picture S1−{e} is shown in

blue.

e e

Suppose that S1 − {e} 6= P1 and S2 − {e} 6= P2. This means that there is

some edge in S1−{e} that is not in S and some edge in S2−{e} that is not

in S. Then γ((S1 ∪ S2)− {e}) = γ(((S1 ∪ S2)− {e})− P ) + (1− full v3(P )),

and γ(S∪{e}) = γ(S∪{e}−P )− (1− full v3(P )) (note that this holds when

S = P ). Therefore:

γ((S1 ∪ S2)− {e}) + γ(S ∪ {e}) (1)

= γ(((S1 ∪ S2)− {e})− P ) + γ((S ∪ {e})− P ) (2)

≤ λ(((S1 ∪ S2)− {e})− P ) + λ((S ∪ {e})− P ) (3)

= λ(E − (((S1 ∪ S2)− {e})− P )) + λ((S ∪ {e})− P ) (4)

≤ λ(E − ((S1 ∪ S2)− {e})) + λ(S ∪ {e}) (5)

≤ λ((S1 ∪ S2)− {e}) + γ(S ∪ {e}), (6)

where (2) follows from (1) by the equalities given above, (3) follows from

(2) by the induction hypothesis and Lemma 4.31, (4) follows from (3) by

symmetry, (5) follows from (4) by submodularity and (6) follows from (5) by

symmetry and Lemma 4.30. Therefore γ((S1∪S2)−{e}) ≤ λ((S1∪S2)−{e}).

Suppose that either S1 − {e} = P1 or S2 − {e} = P2. If S1 − {e} = P1

and S2 − {e} = P2 then, as P1 ∪ P2 share vertex v3, the collection of edges

(S1 ∪ S2)− {e} is a star, and so the result holds by Lemma 4.28. Therefore

we assume that only one of S1−{e} = P1 and S2−{e} = P2 hold. Without

loss of generality let S1 − {e} = P1 and recall that f ∈ S1 − {e} = P1. We
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shall split into two cases here, one for when S = P and one for when S 6= P .

First consider the case where S = P .

e e

Then γ((S1∪S2)−{e}) = γ((S1∪S2)−{e, f})−1 and γ({e, f}) = γ({e})+1.

Therefore:

γ((S1 ∪ S2)− {e}) + γ({e, f}) = γ((S1 ∪ S2)− {e, f}) + γ({e}) (1)

= γ(E − ((S1 ∪ S2)− {e, f})) + γ({e}) (2)

≤ λ(E − ((S1 ∪ S2)− {e, f})) + λ({e}) (3)

≤ λ(E − ((S1 ∪ S2)− {e})) + λ({e, f}) (4)

= λ((S1 ∪ S2)− {e}) + γ({e, f}), (5)

where (2) follows from (1) by symmetry, (3) follows from (2) by the induction

hypothesis and C1, (4) follows from (3) by submodularity and (5) follows from

(4) by symmetry and C1. Therefore γ((S1 ∪S2)−{e}) ≤ λ((S1 ∪S2)−{e}).

Now consider the case where S 6= P and again note that f ∈ P1. As S 6= P ,

let g be an element of S − P . Note that there are at least two edges in P1

as P1 = S1 − {e} and |S1| ≥ 3. On the diagram below edges of S − P are

shown in red.

e e

Then γ((S1 ∪ S2)− {e}) = γ((S1 ∪ S2)− {e, f}) and γ({e, f, g}) = γ({e, g})
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as |S1| ≥ 3. Therefore:

γ((S1 ∪ S2)− {e}) + γ({e, f, g}) (1)

= γ((S1 ∪ S2)− {e, f}) + γ({e, g}) (2)

≤ λ((S1 ∪ S2)− {e, f}) + λ({e, g}) (3)

= λ(E − ((S1 ∪ S2)− {e, f})) + λ({e, g}) (4)

≤ λ(E − ((S1 ∪ S2)− {e})) + λ({e, f, g}) (5)

≤ λ((S1 ∪ S2)− {e}) + γ({e, f, g}), (6)

where (2) follows from (1) by the equalities given above, (3) follows from (2)

by the induction hypothesis and C1, (4) follows from (3) by symmetry, (5)

follows from (4) by submodularity and (6) follows from (5) by symmetry and

Lemma 4.30.

Therefore γ((S1 ∪ S2)− {e}) ≤ λ((S1 ∪ S2)− {e})

Next we show that λ((S1 ∪S2)−{e}) ≤ γ((S1 ∪S2)−{e}). Again the result

holds for (S1 ∪ S2) − {e} such that |(S1 ∪ S2) − {e}| ≤ 2. Suppose that

(S1 ∪ S2) contains no triangles.

Q

Let Q be the collection of edges of S1 ∪ S2 that are parallel to e and notice

that γ(S1−{e}) + γ(S2−{e}) = γ((S1 ∪S2)−{e}) + γ(Q−{e}) (note that

this works even if Q = {e} and if S1, S2 or both are equal to Q). Therefore:

γ((S1 ∪ S2)− {e}) + γ(Q− {e}) = γ(S1 − {e}) + γ(S2 − {e}) (1)

= λ(S1 − {e}) + λ(S2 − {e}) (2)

≥ λ((S1 ∪ S2)− {e}) + λ(Q− {e}) (3)

= λ((S1 ∪ S2)− {e}) + γ(Q− {e}), (4)

where (2) follows from (1) by Lemma 4.28, (3) follows from (2) by submod-

ularity and (4) follows from (3) by Lemma 4.28.

Suppose that S1 ∪ S2 is not triangle free. We will proceed by induction on
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the number of parallel triangles in S1 ∪ S2. The following claim provides the

base case.

Claim 4.32.1. If S1 ∪ S2 contains exactly one parallel triangle then

λ((S1 ∪ S2)− {e}) ≤ γ((S1 ∪ S2)− {e}).

Proof. Let the maximal parallel subsets of the parallel triangle be

P1, P2, Q where P1 ⊆ S1 and P2 ⊆ S2.

Q

P1 P2

Then γ((S1 ∪ P2) − {e}) + γ((S2 ∪ P1) − {e}) = γ((S1 ∪ S2) − {e}) +

γ(P1 ∪ P2). Therefore:

γ((S1 ∪ S2)− {e}) + γ(P1 ∪ P2) (1)

= γ((S1 ∪ P2)− {e}) + γ((S2 ∪ P1)− {e}) (2)

≥ λ((S1 ∪ P2)− {e}) + λ((S2 ∪ P1)− {e}) (3)

≥ λ((S1 ∪ S2)− {e}) + λ(P1 ∪ P2) (4)

= λ((S1 ∪ S2)− {e}) + γ(P1 ∪ P2), (5)

where (2) follows from (1) by the equalities given above, (3) follows from

(2) by Lemma 4.30, (4) follows from (3) by submodularity, (5) follows

from (4) by Lemma 4.28. Therefore the claim holds.

Now suppose that S1∪S2 contains at least two parallel triangles, two of which

we shall call P1, P2, Q and P ′1, P
′
2, Q where P1, P

′
1 ∈ S1 and P2, P

′
2 ∈ S2.

Q

P1 P2

P ′1 P ′2
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Note that γ((S1∪S2)− (P1∪{e})) +γ((S1∪S2)− (P ′2∪{e}) = γ((S1∪S2)−
{e}) + γ((S1 ∪ S2)− (P1 ∪ P ′2 ∪ {e})). Therefore:

γ((S1 ∪ S2)− {e}) + γ((S1 ∪ S2)− ({e} ∪ P1 ∪ P ′2)) (1)

= γ((S1 ∪ S2)− ({e} ∪ P1)) + γ((S1 ∪ S2)− ({e} ∪ P ′2)) (2)

≥ λ((S1 ∪ S2)− ({e} ∪ P1)) + λ((S1 ∪ S2)− ({e} ∪ P ′2)) (3)

≥ λ((S1 ∪ S2)− {e}) + λ((S1 ∪ S2)− ({e} ∪ P1 ∪ P ′2)) (4)

≥ λ((S1 ∪ S2)− {e}) + γ((S1 ∪ S2)− ({e} ∪ (P1 ∪ P ′2)) (5)

where (2) follows from (1) by equalities given above, (3) follows from (2)

by the induction hypothesis, (4) follows from (3) by submodularity and (5)

follows from (4) by the first part of the lemma. Therefore λ((S1∪S2)−{e}) ≤
γ((S1 ∪ S2)− {e}).

Lemma 4.33. Let e be an edge of G between vertices v1 and v2 and let S1 be

a star at v1 such that e ∈ S1, and S2 be a star at v2 such that e ∈ S2. Then

λ(S1 ∪ S2) ≤ γ(S1 ∪ S2).

Proof. Let Q be the collection of edges of S1 ∪ S2 that are parallel to e. If

S1 ∪ S2 = Q or one of S1, S2 is contained in Q then the result holds by

Lemma 4.28. Our proof will be by induction on the number of triangles in

S1 ∪ S2 and the following claim will provide our base case:

Claim 4.33.1. When S1 ∪ S2 is triangle free λ(S1 ∪ S2) ≤ γ(S1 ∪ S2).

Proof. Suppose that S1∪S2 is a triangle free subgraph of G. If the only

edges in S1 or S2 are parallel to e, then the result holds by Lemma 4.28,

so we will assume that both S1 and S2 contain at least one edge each

that is not parallel to e.

Q

Observe that γ(S1 ∪ Q) + γ(S2 ∪ Q) = γ(S1 ∪ S2) + 2 and note that

by Lemma 4.28 γ(S1 ∪ Q) = λ(S1 ∪ Q), γ(S2 ∪ Q) = λ(S2 ∪ Q), and
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γ(Q) = 2 = λ(Q). Therefore:

γ(S1 ∪ S1) + γ(Q) = γ(S1 ∪Q) + γ(S2 ∪Q) (1)

= λ(S1 ∪Q) + λ(S2 ∪Q) (2)

≥ λ(S1 ∪ S2) + λ(Q) (3)

= λ(S1 ∪ S2) + γ(Q), (4)

where the first equality holds by the equalities given above, (2) follows

from (1) by Lemma 4.28, (3) follows from (2) by submodularity and (4)

follows from (3) by Lemma 4.28. Therefore λ(S1∪S2) ≤ γ(S1∪S2).

Suppose that the result holds for subgraphs with less than k parallel triangles.

Now suppose that S1 ∪ S2 contains k ≥ 1 parallel triangles. Let one of the

triangles of S1∪S2 be P1, P2, Q (note that Q will be in all parallel triangles),

where P1 ∈ S1 and P2 ∈ S2.

Q

P1 P2

Suppose one of S1 and S2 contains no edges other than those in Q or in

P1 ∪ P2. Then the result holds by Lemma 4.30.

So suppose that both S1 and S2 contain an element that is not parallel to any

element of Q and is not contained in P1∪P2. Then v1 is not full with respect

to P1 ∪Q and v2 is not full with respect to P2 ∪Q. Let V (P1) = {v1, v3} and

note that γ(S1∪P2∪Q) = γ((S1−P1)∪P2∪Q)−fullv3(P1∪P2)−fullv1(S1∪Q)
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and γ((S1∪S2)−P1) = γ(S1∪S2)+fullv3(P1∪P2)+fullv1(S1∪Q). Therefore:

γ(S1 ∪ S2) + γ((S1 − P1) ∪ P2 ∪Q) = γ((S1 ∪ S2)− P1) + γ(S1 ∪ P2 ∪Q)

(1)

≥ λ((S1 ∪ S2)− P1) + λ(S1 ∪ P2 ∪Q)

(2)

≥ λ(S1 ∪ S2) + λ((S1 − P1) ∪ P2) (3)

= λ(S1 ∪ S2) + γ((S1 − P1) ∪ P2 ∪Q),

(4)

where the first equality follows from the equalities given above, (2) follows

from (1) by the induction hypothesis and Lemma 4.30, (3) follows from (2)

by submodularity and (4) follows from (3) by Lemma 4.32 using stars (S1 −
P1) ∪ {e} and P2 ∪ {e} for some e ∈ P1.

Therefore γ(S1 ∪ S2) ≥ λ(S1 ∪ S2).

Lemma 4.34. For all Y ⊆ E(G), we have λ(Y ) ≤ γ(Y ).

Proof. Let Y be a minimal subset of E(G) for which the lemma fails. In other

words, let Y be such that λ(Y ) > γ(Y ) and every Y ′ ⊆ Y has λ(Y ′) ≤ γ(Y ′).

If λ(Y ) > γ(Y ) then, by C1, |Y | > 2.

Suppose that e is an isolated edge in Y , that is, e is an edge of Y that is

adjacent to no other edge of Y . The diagram below shows that subgraph of

G whose edges are the edges in Y .

e
v1

v2

f

Let V ({e}) = {v1, v2}, and let f ∈ Y −{e}. Then γ(Y −{e}) = γ(Y )− (1−
fullv1(e))−(1−fullv2(e)), and γ({e, f} = γ({f})+(1−fullv1(e))+(1−fullv2(e)).
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Therefore:

γ(Y ) + γ({f}) = γ(Y − {e}) + γ({e, f}) (1)

≥ λ(Y − {e}) + λ({e, f}) (2)

≥ λ(Y ) + λ({f}) (3)

= λ(Y ) + γ({f}), (4)

where the first equality holds by the equalities given above, (2) follows from

(1) by minimality of Y and C1, (3) follows from (2) by submodularity and

(4) follows from (3) by C1.

Therefore γ(Y ) ≥ λ(Y ) contradicting the assumption that Y is a minimal

subset of E(G) for which λ(Y ) > γ(Y ). Therefore Y cannot contain an

isolated edge.

Suppose that e is an element of Y which is incident with exactly one vertex

in V (Y − {e}). Again, the diagram below shows that subgraph of G whose

edges are the edges in Y .

v1

e
v2

S

Let V ({e}) = {v1, v2} where v1 ∈ V (Y − {e}). Let S be a maximal subset

of Y that is a star of G at v1 (note that S contains at least two elements).

Then γ(Y − {e}) = γ(Y ) − (1 − fullv2(e)) + fullv1(Y ), and γ(S) = γ(S −
{e}) + (1− fullv2(e))− fullv1(S). As fullv1(S) = fullv1(Y ):

γ(Y ) + γ(S − {e}) = γ(Y − {e}) + γ(S) (1)

≥ λ(Y − {e}) + λ(S) (2)

≥ λ(Y ) + λ(S − {e}) (3)

= λ(Y ) + γ(S − {e}), (4)

where the first equality holds by the equalities given above, (2) follows from

(1) by the minimality of Y and Lemma 4.28, (3) follows from (2) by sub-

modularity and (4) follows from (2) by Lemma 4.28. Therefore γ(Y ) ≥ λ(Y )

contradicting the assumption that Y is a minimal subset of E(G) for which
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λ(Y ) > γ(Y ). Therefore every edge of Y must be incident with two vertices

in V (Y − {e}).

Suppose that e is an element of Y which is incident with two vertices in

V (Y − {e}).

v2

e
v1

S1

S2

Let V ({e}) = {v1, v2}. Let S1 be a maximal subset of Y that is a star of G

at v1 and let S2 be a maximal subset of Y that is a star of G at v2 (note that

S1 and S2 both contain at least two elements). Then γ(Y − {e}) = γ(Y ) +

fullv1(Y )+fullv2(Y ), and γ(S1∪S2) = γ(S1∪S2−{e})−fullv1(S1)−fullv2(S2).

As fullv1(S1) = fullv1(Y ) and fullv2(S2) = fullv2(Y ):

γ(Y ) + γ(S1 ∪ S2 − {e}) = γ(Y − {e}) + γ(S1 ∪ S2) (1)

≥ λ(Y − {e}) + λ(S1 ∪ S2) (2)

≥ λ(Y ) + λ(S1 ∪ S2 − {e}) (3)

= λ(Y ) + γ(S1 ∪ S2 − {e}), (4)

where the first equality holds by the equalities given above, (2) follows from

(1) by minimality of Y and Lemma 4.33, (3) follows from (2) by submod-

ularity and (4) follows from (3) by Lemma 4.32. Therefore γ(Y ) ≥ λ(Y )

contradicting the assumption that Y is a minimal subset of E(G) for which

λ(Y ) > γ(Y ).

As we cannot find a minimal Y for which λ(Y ) > γ(Y ), for all Y ⊆ E(G)

we have γ(Y ) ≥ λ(Y ).

Lemma 4.35. For all Y ⊆ E(G), λ(Y ) ≥ γ(Y ).

Proof. We will consider a set Y which is maximal with respect to λ(Y ) <

γ(Y ), in other words for any A ⊆ E(G) − Y , γ(Y ∪ A) ≤ λ(Y ∪ A). Note

that, by C1 and symmetry, λ(Y ) = γ(Y ) for all Y ⊆ E(G) such that |Y | ≥
|E(G)| − 2.
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Suppose that V (G) 6= V (Y ). Then, either there is an edge e with V (e) =

{v1, v2} where v1 ∈ V (Y ) or Y is a separator of G.

Suppose first that Y is a separator ofG. Note that γ(Y )+γ({e}) = γ(Y ∪{e})
if e is in E − E(Y ). Therefore:

γ(Y ) + γ({e}) = γ(Y ∪ {e}) (1)

≤ λ(Y ∪ {e}) (2)

≤ λ(Y ) + λ({e}) (3)

= λ(Y ) + γ({e}), (4)

(2) follows from (1) by maximality of Y , (3) follows from (2) by submodu-

larity and (4) follows from (3) by C1. Therefore in this case γ(Y ) ≤ λ(Y ).

Next suppose that Y is not a separator of G. Therefore there is some edge e

such that V ({e}) = {v1, v2} where v1 ∈ V (Y ) and v2 /∈ V (Y ).

v1

e
v2

S

Let the maximal subset of Y ∪ {e} that is a star of G at v1 be S. Note that

γ(Y ∪{e}) = γ(Y ) + (1− fullv2(e))− fullv1(S) and γ(S−{e}) = γ(S)− (1−
fullv2(e)) + fullv1(S). Therefore:

γ(Y ) + γ(S) = γ(Y ∪ {e}) + γ(S − {e}) (1)

≤ λ(Y ∪ {e}) + λ(S − {e}) (2)

≤ λ(Y ) + λ(S) (3)

< λ(Y ) + γ(S), (4)

where the first equality follows from the equalities given above, (2) follows

from (1) by maximality of Y and Lemma 4.28, (3) follows from (2) by sub-

modularity and (4) follows from (3) by assumption and Lemma 4.28; a con-

tradiction.

Therefore every vertex of G must be contained in V (Y ).

As the result holds for E(G) and we are considering Y to be a first subset of
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E(G) for which the result fails, there must be an edge in E(G) that is not in

Y . Let e be such an edge and suppose e is incident with vertices v1 and v2

(both of which are in V (Y )).

v2

e
v1

S1

S2

Consider the maximal subset of Y ∪{e} that is a star at v1 which we shall call

S1 and the maximal subset of Y ∪{e} that is a star at v2 which we shall call

S2. Then γ(S1∪S2) = γ((S1∪S2)−{e})− fullv1(S1)− fullv2(S2) and γ(Y ) =

γ(Y ∪{e}) + fullv1(Y ∪{e}) + fullv2(Y ∪{e}). As fullv1(S1) = fullv1(Y ∪{e})
and fullv2(S2) = fullv2(Y ∪ {e})

γ(Y ) + γ(S1 ∪ S2) = γ(Y ∪ {e}) + γ(S1 ∪ S2 − {e}) (1)

≤ λ(Y ∪ {e}) + λ(S1 ∪ S2 − {e}) (2)

≤ λ(Y ) + λ(S1 ∪ S2) (3)

< λ(Y ) + γ(S1 ∪ S2), (4)

where the first equality follows from the equalities given above, (2) follows

from (1) by maximality of Y and Lemma 4.32, (3) follows from (2) by sub-

modularity and (4) follows from (3) by assumption and Lemma 4.34. A

contradiction.

Therefore there does not exist a set Y for which the theorem fails so λ(Y ) ≥
γ(Y )

Combining our last two lemmas we immediately get a proof of the following

theorem:

Theorem 4.25. Let G be a graph with connectivity function γ. Let λ be a

connectivity function on E(G) such that λ(X) = γ(X) whenever X ⊆ E

satisfies any one of the following:

C1 |X| ≤ 2,

C2 X is a complete star of G,
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C3 X is an almost-complete star of G,

C4 X is a broken star of G,

C5 X is a triangle, maximal parallel triangle, or X∪{e} is a maximal parallel

triangle for some e ∈ E(G)− E(X),

C6 X is a parallel class in G.

Then λ(X) = γ(X), for all X ⊆ E.

Theorem 4.1. There is some polynomial p such that, given an arbitrary

connectivity function λ, we are able to establish whether or not λ is graphic

in at most p(n) evaluations of the connectivity function, where n is the size

of the set on which λ is based.

Earlier in this section we saw an example of a graph that could be built from

a connectivity function, λ, according to our algorithm, but did not have

connectivity function λ. This means that there is some case where not all

C1-C6 are redundant. However, we do not show that C1-C6 is a minimal

set of conditions and the example used to show that checking is sometimes

necessary is a graph whose connectivity function does not generally behave

nicely. This leaves us with the following open questions:

Open Question 1 Are C1-C6 a minimal set of conditions for checking

γ = λ?

Open Question 2 Are any such conditions necessary if we can build a graph

that would have λ as its connectivity function were λ graphic, and this graph

does not lie within some particular small collection of graphs (such as the

collection of graphs that cannot be built identically, when we do not consider

loops and isolated vertices, from the connectivity function).



Chapter 5

Matroidal Connectivity

Functions

Definition 5.1. A connectivity function, λ, is matroidal, if there is some

matroid M such that, µM = λ where µM is the connectivity function of M .

This section focuses on recognising when a connectivity function is matroidal.

Certainly not every connectivity function is matroidal, as all connectivity

functions that come from a matroid are unitary. In [8] an example is given

of a unitary connectivity function that is not matroidal. This example is

described below:

λ : {a, b, c, d} → Z≥0

λ({i}) = 1 for i ∈ {a, b, c, d}

λ({a, b}) = 1

λ({a, c}) = 1

λ({a, d}) = 2

The remaining values can be found by symmetry. This connectivity function

can be obtained by taking the connectivity function of a graph that is a cycle

of length four, and dividing this connectivity function by two.

In Section 5.1 we give an alternate, albeit similar, proof of a theorem of

Lemos. Specifically the theorem is that if two matroids, M1 and M2 have

100
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the same connectivity function and r(M1) 6= r(M2), then M2 = M∗
1 . Af-

ter this, the remainder of this chapter focuses on recognition problems for

matroidal connectivity functions. In Chapter 4 we provided an algorithm to

decide when a connectivity function is graphic. Recall that when we refer to

a polynomial number of evaluations of the connectivity function, we mean

polynomial in the size of the set on which the connectivity function is based.

The next step is to attempt to do the same for matroids, which leads to the

following question: Is there a polynomial p such that we can identify when a

connectivity function, λ, is the connectivity function of a matroid in at most

p(n) evaluations of the connectivity function where n is the size of the set on

which λ is based? We study this question in Section 5.3 and use spikes, a class

of matroids known to provide counterexamples to many natural conjectures,

to prove that the answer to this question is no, we cannot identify when a

connectivity function is matroidal in a polynomial number of evaluations of

the connectivity function.

This, however, is not the only recognition problem for connectivity functions;

there is also the question of whether it is possible to add an extra axiom,

or axioms, to the axioms of connectivity functions to give an axiomatiza-

tion of matroidal connectivity functions. In this case we are not looking

for something that may be checked in a small number of evaluations of the

connectivity function, but rather for something that can be written nicely

as an axiom. Mayhew, Newman, and Whittle investigate a similar question

for representable matroids. In [7] they investigate whether it is possible to

add finitely many axioms to the matroid axioms to give an axiomatization

of matroid representability. A discussion on what we mean by written nicely

as an axiom can be found in [7]. This leads us to another question:

Open Question 3: Is there an axiom that can be written in a logic that is

no stronger than the logic used to write connectivity function axioms, that

can be added to the axioms of connectivity functions, to ensure that the

connectivity function is the connectivity function of a matroid.

In Section 5.4 we investigate Open Question 3 for the restricted class of

self-dual matroids. In particular we find an axiomatization for when a con-

nectivity function comes from an identically self-dual matroid. Unfortunately

this didn’t seem to give me any intuition about whether or not we can do a

similar thing for general matroids.
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5.1 Matroids With The Same Connectivity

Function

It is proved in [6] that if two matroids, M1 and M2 have the same connectivity

function and r(M1) 6= r(M2), then M2 = M∗
1 (when M∗

1 is used to denote

the matroid dual of M1). As this is an important result we give a proof

of it again here. Our proof is very similar to the one in [6], but uses more

elementary results (for instance we do not rely on results of Tutte), and is a

little more detailed. The duals in this section will all be matroid duals.

Definition 5.2. Let M1,M2,M3,M4 be matroids on a set E, where each

Mi, for i ∈ {1, 2, 3, 4}, has rank function ri. If, for every X ⊆ E, we have

r1(X) + r2(X) = r3(X) + r4(X), then we say that (M1,M2) ∼ (M3,M4).

We are interested in such matroids as matroids M and N have the same

connectivity function if, and only if,

rM(X) + rM(E −X)− rM(E) = rN(X) + rN(E −X)− rN(E)

⇐⇒ rM(X) + r∗M(X)− |X| = rN(X) + r∗N(X)− |X|

⇐⇒ rM(X) + r∗M(X) = rN(X) + r∗N(X)

⇐⇒ (M,M∗) ∼ (N,N∗).

Definition 5.3. Recall from chapter 2 that we may say that a matroid

on a set E is not connected, or disconnected, if the connectivity of some

X ( E such that X 6= ∅, is equal to 0. Otherwise we say that the matroid is

connected. We say that a pair, (M1,M2), is connected if µM1(X)+µM2(X) ≥ 1

for some X ( E such that X 6= ∅.

For (M1,M2) to be connected it is sufficient that one of M1 and M2 is con-

nected, however, this is not necessary.

The main theorem for this section is the following:

Theorem 5.4. Let M1,M2,M3,M4 be matroids on a set E. If (M1,M2) ∼
(M3,M4) and (M1,M2) is connected, then B is a base of M1 or M2 if, and

only if, B is a base of M3 or M4.

It is a well known result, and can be found in [9], that if Bi is a basis for

matroid Mi, then |Bi| = r(Mi), so by Theorem 5.4, we are able to say
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that if (M1,M2) ∼ (M3,M4) and (M1,M2) is connected, then {M1,M2} =

{M3,M4} or rM1 = rM2 = rM3 = rM4 . Suppose that we have a connected

matroid with r(M) 6= r∗(M), and a matroid N with the same connectivity

function as M . Then (M,M∗) ∼ (N,N∗) and so {M,M∗} = {N,N∗}.

The following lemma shall be used throughout the remainder of this section.

Lemma 5.5. If (M1,M2) ∼ (M3,M4) and e ∈ E then

1. (M1 \ e,M2 \ e) ∼ (M3 \ e,M4 \ e)

2. (M1/e,M2/e) ∼ (M3/e,M4/e)

3. (M∗
1 ,M

∗
2 ) ∼ (M∗

3 ,M
∗
4 )

Throughout the remainder of this section we will let M1,M2,M3,M4 be ma-

troids on groundset E such that (M1,M2) ∼ (M3,M4).

Establishing when (M1,M2) ∼ (M3,M4)

The next few lemmas prove that (M1,M2) ∼ (M3,M4) if, and only if, for all

C ⊆ E

|{i : C is a circuit of Mi and i ∈ {1, 2}}| =
|{i : C is a circuit of Mi and i ∈ {3, 4}}|.

Definition 5.6. A modular pair of circuits of a matroid M is a pair of

circuits, {C1, C2}, such that r(C1 ∪ C2) = |C1 ∪ C2| − 2.

Definition 5.7. Let C1 and C2 be circuits of M . A path joining C1 to C2 is

a sequence of circuits, P0, . . . , Pn, of M such that all the following hold:

i) C1 = P0 and C2 = Pn

ii) Pi ∩ Pi+1 6= ∅, and

iii) {Pi, Pi+1} is a modular pair of circuits of M for every i.

Lemma 5.8. Suppose that C1 and C2 are circuits of a matroid M , and

e ∈ C1 ∩ C2. If (C1 ∪ C2) − {e} contains a unique circuit, then r((C1 ∪
C2)−{e}) = |(C1 ∪C2)−{e}| − 1. Moreover {C1, C2} are a modular pair of

circuits.
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Proof. If e ∈ C1∩C2, then there is some circuit contained in (C1∪C2)−{e},
and so r((C1∪C2)−{e}) < |(C1∪C2)−{e}|. Suppose that r((C1∪C2)−{e}) <
|(C1∪C2)−{e}|−1, then (C1∪C2)−{e} contains no independent set of size

|(C1 ∪C2)−{e}| − 1. Therefore ((C1 ∪C2)−{e})−{f} must be dependent

for all f ∈ C1∪C2, so for some α ∈ C1 it must be that ((C1∪C2)−{e})−{α}
contains some circuit C3, and, as C3 cannot be contained in C1 it must be

that C3 contains some β where β ∈ C2 (also note that C3 must contain an

element of C1 as C3 * C2). We also know that (C1∪C2)−{e}−{β} contains

a circuit, and this circuit does not contain β so is not equal to C3. Therefore

we have found two distinct circuits contained in (C1 ∪ C2)− {e}.

As e ∈ cl(C1 ∪C2)−{e} we know that r(C1 ∪C2) = r((C1 ∪C2)−{e}), so if

(C1 ∪ C2) − {e} contains a unique circuit, then r(C1 ∪ C2) = |C1 ∪ C2| − 2,

so {C1, C2} are a modular pair of circuits.

The following lemma is a direct consequence of a result of Tutte given in

[14]. However, we give a proof here which does not use that result. We do

however need the strong circuit elimination axiom, which can be found in

[9], that is: Let M be a matroid with set of circuits C. If C1 and C2 ∈ C are

such that e ∈ C1 ∩C2 and f ∈ C1 −C2, then there is some C3 ∈ C such that

f ∈ C3 ⊆ (C1 ∪ C2)− {e}.

We use A4B to denote the symmetric difference of A and B (ie (A− B) ∪
(B − A)).

Lemma 5.9. Let C1 and C2 be circuits of a matroid M with e ∈ C1 ∩ C2.

Then there is a path, P1, . . . , Pn, from C1 to C2 such that e ∈ Pi for all

i ∈ {1, . . . , n}.

Proof. We prove this result by induction on |C1 ∪ C2|. For the base case

assume that |C1 ∪ C2| = |C1| + 1. Suppose that (C1 ∪ C2) − {e} contains

at least two distinct circuits. As these two circuits cannot be contained in

C1−{e} they must both contain the element, β in C2−C1. We shall refer to

these two circuits as C3 and C4. By the circuit elimination axiom this means

that there is a circuit in (C3∪C4)−{β} which, as e /∈ C3∪C4, is a subset of,

but is not equal to, C1. This is a contradiction as C1 is a circuit. Therefore

there is a unique circuit contained in (C1 ∪C2)−{e} and so, by Lemma 5.8,

r(C1 ∪ C2) = |C1 ∪ C2| − 2.
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Suppose that C1 and C2 are circuits and e ∈ C1 ∩ C2. Then, by the circuit

elimination axiom, there exists some C3 ⊆ (C1 ∪ C2) − {e}. Suppose that

there is some such C3 such that there is some α ∈ C14C2 such that α /∈ C3.

Without loss of generality we shall assume that α ∈ C1 − C2. As C3 * C1

there is some β ∈ (C2 − C1) ∩ C3. By the strong circuit elimination axiom,

as e ∈ C2−C3, this means that we can find some C4 ⊆ (C3 ∪C2)−{β} such

that e ∈ C4, and |C1 ∪C4| < |C1 ∪C2| and |C2 ∪C4| < |C1 ∪C2|. Therefore,

by the induction hypothesis there is a path from C1 to C4 and from C4 to

C2, and so there is a path form C1 to C2.

Suppose there is no α ∈ C14C2 such that α /∈ C3. If there is only one

circuit in (C1 ∪ C2) − {e} then r(C1 ∪ C2) = |C1 ∪ C2| − 2 and so we are

done. Therefore we shall assume that there are two circuits, C3 and C4 in

(C1 ∪ C2) − {e}. For all α ∈ C14C2, by our assumption α ∈ C3 ∩ C4.

Without loss of generality let α ∈ C1 − C2. Then by the circuit elimination

axiom there is some C5 ⊆ (C3 ∪ C4) − {α} such that e /∈ C5. Therefore

e ∈ C2 − C5 and there is some β ∈ C2 that is also in C5, as otherwise

C5 ( C1. By the strong circuit elimination axiom this means that there is

some C6 ⊆ (C5∪C2)−{β} such that e ∈ C6 (note that this does not contain

α so is not C1). As C6 ⊆ C1 ∪ C2 and contains neither α nor β this means

that |C1 ∪ C6| < |C1 ∪ C2| and |C2 ∪ C6| < |C1 ∪ C2|. Therefore, by the

induction hypothesis there is a path from C1 to C6 and from C6 to C2, and

so there is a path form C1 to C2.

Lemma 5.10. Let {C1, C2} be a modular pair of circuits in a matroid, and

let α ∈ C1 − C2. Then C2 is the unique circuit contained in C1 ∪ C2 − {α}

Proof. Let α ∈ C1 − C2 and β ∈ C2 − C1 be arbitrary. Then, as C1 and C2

are circuits, we have α, β ∈ cl((C1 − {α}) ∪ (C2 − {β})), so r((C1 − {α}) ∪
(C2 − {β})) = r(C1 ∪ C2) = |C1 ∪ C2| − 2. Therefore, as |(C1 − {α}) ∪
(C2 − {β})| = |C1 ∪ C2| − 2 = r((C1 − {α}) ∪ (C2 − {β})), it must be that

(C1 − {α}) ∪ (C2 − {β}) is independent.

Suppose there is some circuit, C ⊆ C1 ∪C2 − {α}. Then, if there were some

β ∈ C2−C1 such that β /∈ C, C would be a circuit contained in (C1−{α})∪
(C2 − {β}), which would contradict the fact that (C1 − {α})∪ (C2 − {β}) is

independent. Therefore every β ∈ C2 − C1 is contained in C. Suppose that

C 6= C2, Then, for any β ∈ C2 − C1, there exists some C3 ⊆ C ∪ C2 − β.
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This means that C3 ⊆ ((C1 − {α}) ∪ (C2 − {β})), which is a contradiction

as (C1 − {α}) ∪ (C2 − {β}) is independent. Therefore no such C3 exists, so

C = C2.

Lemma 5.11. Let {C1, C2} be a modular pair of circuits and let e ∈ C1∩C2.

Then for every C ⊆ (C1 ∪ C2) − {e}, the symmetric difference, C14C2 is

contained in C. Moreover {C,C1} and {C,C2} are modular pairs of circuits.

Proof. Suppose that there is some C ⊆ (C1 ∪ C2) − {e} such that for some

α ∈ C14C2, we have α /∈ C. Without loss of generality we shall assume that

α ∈ C1 − C2. As both C and C1 are distinct circuits, C * C1, so there is

some β ∈ C2 − C1 such that β ∈ C. Therefore β ∈ C2 ∩ C. Therefore, by

circuit elimination, there is some C3 ⊆ C2 ∪ C − {β} ⊆ C1 ∪ C2 − {α, β} so

C3 6= C2 and C3 does not contain α. This contradicts Lemma 5.10, so there

can be no α ∈ C14C2 such that α /∈ C.

Now consider r(C ∪ Ci) for i ∈ {1, 2}. As C14C2 ⊆ C, it must be that

r(C ∪ Ci) = r(C1 ∪ C2) = |C1 ∪ C2| − 2 = |C ∪ Ci| − 2.

Lemma 5.12. Suppose that

|{i : C is a circuit of Mi and i ∈ {1, 2}}| =
|{i : C is a circuit of Mi and i ∈ {3, 4}}|,

for all C ⊆ E. Then (M1,M2) ∼ (M3,M4).

Proof. The result holds when |E| = 1.

Assume, for the purposes of induction, that (M1 \e,M2 \e) ∼ (M3 \e,M4 \e)
for every e ∈ E. We need to show that (M1,M2) ∼ (M3,M4). To do this it

suffices to show that r(M1) + r(M2) = r(M3) + r(M4), as (M1 \ e,M2 \ e) ∼
(M3\e,M4\e) for every e ∈ E. Suppose that r(M1)+r(M2) 6= r(M3)+r(M4).

Then, as r(M1 \ e) + r(M2 \ e) = r(M3 \ e) + r(M4 \ e) by the induction

hypothesis, and r(M1) + r(M2) 6= r(M3) + r(M4) by assumption, we must

have:

r(M1)−r(M1\e)+r(M2)−r(M2\e) 6= r(M3)−r(M3\e)+r(M4)−r(M4\e).

If E − {e} spanned e in all Mi then ri(E) = ri(E − {e}) for all i and so

we would have r(M1) − r(M1 \ e) + r(M2) − r(M2 \ e) = r(M3) − r(M3 \



CHAPTER 5. MATROIDAL CONNECTIVITY FUNCTIONS 107

e) + r(M4)− r(M4 \ e), a contradiction. Therefore there is some i such that

E − {e} does not span e in Mi. This means that e is a coloop of some Mi.

Without loss of generality let i = 1, in other words, suppose that e is a coloop

of M1.

Claim 5.12.1. E − {e} spans e in Mi for all i ∈ {2, 3, 4}.

Proof. First suppose that E − {e} does not span e in M2. This means

that e is a coloop of M2. Therefore e is not contained in any circuit of

M2 and, as e is also a coloop of M1, e is not contained in any circuit of

M1. By the assumption in the statement of the theorem this means that

E−{e} does not span e inM3 or inM4. Therefore ri(E) = ri(E−{e})+1,

so r(M1) + r(M1 \ e) + r(M2)− r(M2 \ e) = r(M3)− r(M3 \ e) + r(M4)−
r(M4 \ e), a contradiction. Therefore E − {e} must span e in M2.

It cannot be that E − {e} spans e in exactly one of M3 and M4 as

otherwise we would have r(M1) − r(M1 \ e) + r(M2) − r(M2 \ e) =

r(M3) − r(M3 \ e) + r(M4) − r(M4 \ e), a contradiction. Therefore

E − {e} either spans e in neither or both of M3 and M4. Suppose that

E − {e} spans e in neither M3 nor M4. This would make e a coloop of

M3 and of M4 so e would not be contained in any circuit of M3 or of

M4. However, this contradicts the assumption in the statement of the

theorem as E − {e} spans e in M2 and so e is contained in some circuit

of M2. Therefore E − {e} must span both M3 and M4.

This means that every circuit, C, of M3 or M4 which contains e, must also

be a circuit of M2, and C can only be a circuit of exactly one of M3 and M4

(as M1 does not contain any circuit containing e). Let C3 be a circuit of M3

which contains e and C4 be a circuit of M4 which also contains e. Note that

C3 and C4 are also circuits of M2. Therefore by Lemma 5.9, there is a path,

P0, . . . , Pn in M2, such that P0 = C3 and Pn = C4, and each Pi contains

e. Therefore Pi is not a circuit in M1 for all i ∈ {0, . . . , n}, so each Pi is a

circuit in exactly one of M3 and M4. Therefore there is some Pk so that Pk

is a circuit in M3, and Pk+1 is a circuit in M4. Let C be the circuit of M2

contained in Pk ∪ Pk+1 − {e} (such a circuit exists by the circuit exchange

axiom). As C is a circuit of M2 it must also be a circuit of M3 or M4.
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Without loss of generality say that C is a circuit of M3.

Let α ∈ Pk − Pk+1. Then, by Lemma 5.11, α ∈ C and {C,Pk} is a modular

pair of circuits.

Let C ′ be a circuit of M3 such that e ∈ C ′ and C ′ ⊆ (Pk ∪ C)− {α}. There

will be such a circuit by the strong circuit elimination axiom as both Pk

and C are circuits in M3. By Lemma 5.10, as {C,Pk} is a modular pair of

circuits, C ′ = Pk+1

This means that Pk+1 is a circuit in both M3 and M4, a contradiction.

Let M be a matroid with circuit set C. Recall that the collection of circuits

of M \ {e} is {C|C ∈ C, e /∈ C}

Lemma 5.13. Suppose that (M1,M2) ∼ (M3,M4). If C ⊆ E then

|{i : C is a circuit of Mi and i ∈ {1, 2}}| =
|{i : C is a circuit of Mi and i ∈ {3, 4}}|.

Proof. Suppose that we can find some M1,M2,M3,M4, E and C for which

the lemma fails. Choose these such that |C|+ |E| is as small as possible.

Claim 5.13.1. E = C.

Proof. Suppose E 6= C. Then there is some e ∈ E −C. By Lemma 5.5,

(M1 \ {e},M2 \ {e}) ∼ (M3 \ {e},M4 \ {e}), and, as e /∈ C, C is a

circuit of Mi \ {e} if, and only if, C is a circuit of M for i ∈ {1, 2, 3, 4}.
Therefore |{i : C is a circuit of Mi \ {e} and i ∈ {1, 2}}|
6= |{i : C is a circuit of Mi \ {e} and i ∈ {3, 4}}|, contradicting the

minimality of |E|+ |C|.

C cannot be a circuit of both M1 and either M3 or M4. Without loss of

generality suppose that C was a circuit of both M1 and M3. This would

mean M1 = M3 and so, since (M1,M2) ∼ (M3,M4), we would have M2 = M4,

which would mean |{i : C is a circuit of Mi \ {e} and i ∈ {1, 2}}|
= |{i : C is a circuit of Mi \{e} and i ∈ {3, 4}}|, a contradiction. Therefore

C cannot be a circuit of both M1 and M3 or M4.

Suppose C were a circuit of M1 and M2. By the previous paragraph C cannot

be a circuit of either M3 or M4.
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Claim 5.13.2. Neither M3 nor M4 contains a circuit.

Proof. Suppose that M3 contained a circuit, C ′. As C ′ 6= C there is some

e ∈ E that is not in C ′. This means that C ′ is also a circuit of M3 \ {e},
but is not a circuit of M1 \ {e} or M2 \ {e} (as C is a circuit of both M1

and M2). Therefore |{i : C is a circuit of Mi \ {e} and i ∈ {1, 2}}|
= |{i : C is a circuit of Mi \ {e} and i ∈ {3, 4}}|, and (M1 \ {e},M2 \
{e}) ∼ (M3\{e},M4\{e}), contradicting the minimality of |C|+|E|.

Therefore r(M1) + r(M2) = 2|E| − 2 6= 2|E| = r(M3) + r(M4) and so

(M1,M2) � (M3,M4); a contradiction.

Suppose that C is a circuit of M1 but not of Mi for i ∈ {2, 3, 4}. Let

C ′ ( E. If C ′ is a circuit of M3 or M4 then C ′ is a circuit of M2 and

exactly one of M3 or M4 (as otherwise |C| + |E| would not be as small

as possible). Let N be a matroid on groundset E with no circuits. Then

|{i : C is a circuit of Ni \ {e} and i ∈ {1, 2}}|
= |{i : C is a circuit of Ni \ {e} and i ∈ {3, 4}}|, where N1 = N and

Ni = Mi for all i ∈ {2, 3, 4}; which, by Lemma 5.12, means that (N,M2) ∼
(M3,M4). But r(N) = r(M1) + 1 so this contradicts the assumption given

in the lemma, that (M1,M2) ∼ (M3,M4).

Matroids with Low Connectivity

For this section we shall suppose that M1,M2,M3,M4 are matroids on a set

E such that (M1,M2) ∼ (M3,M4), and that Mi has connectivity function

µMi
for i ∈ {1, 2, 3, 4}. We shall further suppose that M1 and M2 are such

that 1 ≤ µM1(X) + µM2(X) ≤ 2 for all X ( E such that X 6= ∅. We study

these cases separately as these are the pairs of matroids that are connected

but may have (M1 \ {e},M2 \ {e}) not connected for some e ∈ E.

We use M | A to denote M \ (E − A).

We shall also need the following Lemma which can be found in [9].

Lemma 5.14. Suppose that M and N are connected matroids on the same

groundset, E. If e ∈ E and M1 and M2 have the same circuits containing e,

then M1 = M2.



CHAPTER 5. MATROIDAL CONNECTIVITY FUNCTIONS 110

Lemma 5.15. If there is an X that is a connected component in M1 and M2

and is such that M1|X = M2|X, then M1 = M3

Proof. Choose A1, A2 ⊆ E such that all the following hold:

i) µi(Ai) = 0 for i ∈ {1, 2},

ii) Mi | Ai = Mi+2 | Ai,

iii) |A1|+ |A2| is a maximum.

We know that we can find some such A1 and A2, as choosing A2 = ∅ and

A1 = N , where N is the connected component common to both M1 and M3,

will give a pair A1 and A2 that fulfil i)-iii) above. This means that we cannot

have both A1 and A2 = ∅, as we can find some A1 6= ∅ that works, and we

require |A1|+ |A2| to be a maximum.

Suppose that A1 = A2. As (M1,M2) is connected, then µM1(A1)+µM2(A1) >

0 unless A1 = ∅ or E. As we know that µM1(A1) = 0 and µM2(A1) =

µM2(A2) = 0, either A1 or A2 = ∅ or E. As A1 ∪ A2 6= ∅, this means that

A1 = A2 = E and so M1 = M2.

Suppose that there is some e ∈ A1 − A2 (a similar argument works if e ∈
A2 − A1). As e ∈ A1 and M1 | A1 = M3 | A1, we know that M1 and M3

contain the same circuits containing e. By Lemma 5.14, we know that this

means that the connected component of M1 containing e, which we shall call

N1, and the connected component of M3 containing e, which we shall call

N3, are equal. As (M1,M2) ∼ (M3,M4), by Lemma 5.13 this means that M2

and M4 have the same circuits containing e and so the connected component

of M2 which contains e, which we shall call N2 and the connected component

of M4 which contains e, which we shall call N4, are equal. As e ∈ A1 − A2,

we know that A2 6= N2, but

i) µM2(A2 ∪ E(N2)) = 0,

ii) µM2|(A2∪E(N2)) = µM4|(A2∪E(N2)) as µM2|A2 = µM4|A2 and µM2|E(N2) =

µM4|E(N2).

and |A1| + |A2 ∪ E(N2)| > |A1| + |A2|, contradicting the assumption that

|A1| + |A2| is a maximum. Therefore we must have A1 = A2, and so the

result follows.
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We now consider matroids on E that have a set X ( E such that |X|, |E −
X| > 1 and µ(X) = 1.

Definition 5.16. Let M and N be matroids, both with at least two elements

such that E(M)∩E(N) = {e} where e is neither a loop nor a coloop. Then

M ⊕2 N , known as the two-sum of M and N , is the matroid with groundset

(E(M) ∪ E(N))− {e} and collection of circuits:

C(M \{e})+C(N \{e})∪{(C∪D)−{e} : e ∈ C ∈ C(M) and e ∈ D ∈ C(N)}

The following theorem can be found in [10].

Theorem 5.17. Let M be a matroid on groundset E with connectivity func-

tion µ, and let (X1, X2) be a partition of E such that µ(X1) = 1. Then there

are matroids M1 and M2 on X1∪{e} and X2∪{e} respectively where e /∈ E,

such that M is the 2-sum of M1 and M2. Conversely, if M is the 2-sum of

M1 and M2, then µ(E(M1)−E(M2)) = 1 and M1 and M2 are isomorphic to

minors of M .

Lemma 5.18. Suppose that N1 and N2 are matroids on a set E such that

for some X ( E such that |X|, |E−X| > 1, we have µN1(X) = µN2(X) = 1.

If N1 and N2 have the same set of circuits intersecting both X and E −X,

then N1 and N2 have a connected component in common.

Proof. As µN1(X) = µN2(X) = 1, then by Theorem 5.17 we can write N1 as

a 2-sum of matroids, H1 and H ′1, and N2 as a 2-sum of matroids, H2 and H ′2,

where E(Hi) = X ∪ {e} for i ∈ {1, 2} and e /∈ E.

As N1 and N2 have the same circuits intersecting both X and E − X, this

means, by the definition of 2-sum, that H1 and H2 have the same circuits

containing e. Let J1 be the connected component of H1 that contains e and

J2 be the connected component of H2 that contains e. As J1 and J2 both

contain the same circuits containing e and J1 and J2 are connected, J1 = J2.

Similarly let J ′1 be the connected component of H ′1 that contains e and J ′2

be the connected component of H ′2 that contains e. By the reasoning above

H ′1 and H ′2 will have the same circuits containing e so J ′1 = J ′2. Therefore

J14J ′1 = J24J ′2 and J14J ′1 is a connected component of N1 and J24J ′2 is a

connected component of N2.
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Lemma 5.19. Suppose that (M1,M2) ∼ (M3,M4) and there is some X ( E

such that |X|, |E−X| > 1, that has µM1(X) = µM3(X) = 1. Then if M1 and

M3 have the same circuits intersecting both X and E−X, we have M1 = M3.

Proof. This follows immediately from Lemma 5.18 and Lemma 5.15.

Before proving the following lemma we note that if (M1,M2) ∼ (M3,M4),

then µM1(X)+µM2(X) = µM3(X)+µM4(X). Recall, from Lemma 2.20, that

if µ(X) = 0 for some X ( E, then there cannot be a circuit that intersects

both X and E −X.

Lemma 5.20. If µM1(X) +µM2(X) = 1 for some X ⊆ E, then M1 = M3 or

M1 = M4.

Proof. As (M1,M2) ∼ (M3,M4), we can, without loss of generality, assume

that µM1(X) = µM3(X) = 1 and µM2(X) = µM4(X) = 0.

Suppose that |X| = 1. Then, as µM2(X) = µM4(X) = 0, we have rM2i
(X) +

r∗M2i
(X) = |X| for i ∈ {1, 2}, and so either rM2i

(X) = 0 or r∗M2i
(X) = 0. In

other words, X is either a loop or a coloop in M2i. Assume that X is a loop

in M2. Then, as (M1,M2) ∼ (M3,M4) it must be that X is loop of M3 or M4

by Lemma 5.13. In fact X must be a loop of M4, as µM3(X) = 1. Therefore,

if |X| = 1 and X is a loop of M2, then X is a loop of M4. By Lemma 5.5 we

can use a similar argument to show that if |X| = 1 and X is a coloop of M2,

then X is a coloop of M4.

Suppose |E−X| = 1. Then, by a similar argument, X is either a loop of M2

and M4, or a coloop of M2 and M4.

Therefore if |X| = 1 or |E −X| = 1, either the matroids M2 and M4 have a

connected component in common, in which case, by Lemma 5.15, M2 = M4;

or M∗
2 and M∗

4 have a connected component in common, in which case, as

(M∗
1 ,M

∗
2 ) ∼ (M∗

3 ,M
∗
4 ) by Lemma 5.5, we have M∗

2 = M∗
4 by Lemma 5.15,

and so M2 = M4. Therefore we must also have M1 = M3.

Now suppose that |X| > 1 and |E −X| > 1. As µM2i
(X) = 0 for i ∈ {1, 2},

there is no circuit of M2i that intersects both X and E − X. Therefore,

as (M1,M2) ∼ (M3,M4), the matroids M1 and M3 must have the same

circuits intersecting both X and E −X by Lemma 5.13. The result follows

by Lemma 5.19.
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Lemma 5.21. Let µM1(X) = µM2(X) = µM3(X) = µM4(X) = 1 and let

|X|, |E −X| ≥ 2. Then either M1 ∈ {M3,M4} or there are matroids Ni and

N for i ∈ {1, 2, 3, 4} such that all the following hold:

1. (N1, N2) ∼ (N3, N4),

2. Mi = Ni ⊕2 N ,

3. E ∩ E(N) ∈ {X,E −X}

Proof. As µMi
(X) = 1 for some X such that |X|, |E − X| ≥ 2, then, by

Theorem 5.17, Mi is the two-sum of two matroids with X∪{e} and (E−X)∪
{e} as their groundsets. Define Ci,Z , for Z ∈ {X,E−X} and i ∈ {1, 2, 3, 4},
as follows:

Ci,Z = {C ∩ Z : C is a circuit of Mi which intersects both X and E −X}.

Claim 5.21.1. C1,Z4C2,Z = C3,Z4C4,Z

Proof. Let Y ∈ Ci,Z . As Mi is the two-sum of two matroids, Ni and

N ′i , then Ni is isomrphic to a minor of Mi. Without loss of generality

we may assume that E(Ni) = Z ∪ {e} for some e /∈ E. Therefore for

some R, S ⊆ E − Z, we can say Ni = Mi \ R/S and, by the definition

of two-sum, Y ∪ {e} is a circuit of Ni.

By Lemma 5.5, (M1 \R/S,M2 \R/S) ∼ (M3 \R/S,M4 \R/S).

By Lemma 5.13, it follows that either Y ∪{e} is a circuit of exactly one

of M1 \R/S and M2 \R/S and exactly one of M3 \R/S and M4 \R/S,

or Y ∪ {e} is a circuit of all Mi \R/S for i ∈ {1, 2, 3, 4}.

We now show that if Y ∪ {e} is a circuit of Mj \ R/S, then Y ∈ Cj,Z
and so Y is a circuit in exactly one of C1,Z and C2,Z and exactly one of

C3,Z and C4,Z or Y is a circuit in all of C1,Z , C2,Z , C3,Z , and C4,Z , and

therefore C1,Z4C2,Z = C3,Z4C4,Z . Suppose that Y ∪ {e} is a circuit of

Mj \ R/S. Then there is a circuit, C, of Mj such that C ∩ R = ∅ and

C − S = Y ∪ {e}. As C ∩ Z 6= ∅ and C − Z 6= ∅, we have Y = C ∩ Z
and so Y ∈ Cj,Z
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Claim 5.21.2. If Y ∈ C1,Z − C2,Z, and Y ∈ C3,Z − C4,Z, then C1,(E−Z) =

C3,(E−Z) and C2,(E−Z) = C4,(E−Z).

Proof. Let Y ′ ∈ C1,(E−Z), then, by definition of the two-sum, Y ′ ∪ Y
is a circuit of M1 and not a circuit of M2 (as Y /∈ C2,Z). Therefore,

by Lemma 5.13, Y ′ ∪ Y is a circuit of exactly one of M3 and M4. As

Y /∈ C4,Z , we know Y ′ ∪ Y is not a circuit of M4, so Y ′ ∪ Y is a circuit

of M3. Therefore Y ′ ∈ C3,(E−Z). This shows that C1,(E−Z) ⊆ C3,(E−Z).
Similarly we can show that C3,(E−Z) ⊆ C1,(E−Z), and therefore C1,(E−Z) =

C3,(E−Z). As C1,Z4C2,Z = C3,Z4C4,Z , this also means that C2,(E−Z) =

C4,(E−Z).

We now show that either M1 ∈ {M3,M4} or there are matroids Ni and N

for i ∈ {1, 2, 3, 4} such that all the following hold:

1. (N1, N2) ∼ (N3, N4),

2. Mi = Ni ⊕2 N ,

3. E ∩ E(N) ∈ {X,E −X},

we split into two cases.

Case 1: assume that C1,Z 6= C2,Z for both Z = X and Z = (E − X). In

this case we show that we always have M1 = M3. As C1,Z 6= C2,Z , we can,

without loss of generality, assume that there is some Y ∈ C1,Z − C2,Z . Then,

by Claim 6.5.1, this means thatY ∈ C3,Z4C4,Z . Without loss of generality

we can assume that Y ∈ C3,Z − C4,Z . Therefore, by Claim 6.5.2, C1,(E−Z) =

C3,(E−Z) and C2,(E−Z) = C4,(E−Z).

We now show that C1,Z = C3,Z . By Lemma 5.19, this means that M1 = M3.

To show that C1,Z = C3,Z , we assume, without loss of generality, that there is

some Y ′ ∈ C1,E−Z − C2,E−Z . Then, by Claim 6.5.1, Y ′ ∈ C3,E−X4C4,E−X . If

Y ′ ∈ C4,E−Z , then, as C2,(E−Z) = C4,(E−Z), this means that Y ′ ∈ C2 so we get a

contradiction. Therefore Y ′ ∈ C3,E−X . This means that Y ′ ∈ C3,E−Z−C4,E−Z .

Therefore, by Claim 6.5.2, C1,Z = C3,Z .

Case 2: suppose that C1,Z = C2,Z for some Z ∈ {X,E −X}.
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Claim 5.21.3. If C1,Z = C2,Z for some Z ∈ {X,E − X}, then C1,Z =

C2,Z = C3,Z = C4,Z.

Proof. As C1,Z4C2,Z = C3,Z4C4,Z and C1,Z4C2,Z = ∅, we must have

C3,Z4C4,Z = 0 and so C3,Z = C4,Z . It remains to show that C1,Z = C3,Z .

To do this first let Y ∈ C1,Z . Then there is some circuit C of M1 that

is such that C ∩ X 6= ∅ and C ∩ (E − X) 6= ∅ and C ∩ Z = Y . By

Lemma 5.13, C is a circuit of M3 or M4 which, as M3 = M4, means that

C is a circuit of M3 and so Y ∈ C3,Z . Therefore C1,Z ⊆ C3,Z . In a similar

way C3,Z ⊆ C1,Z and so C1,Z = C3,Z .

Therefore there is some N,Ni for i ∈ {1, 2, 3, 4} such that E(N) = Z ∪ {e}
and E(Ni) = (E − Z) ∪ {e} for some e /∈ E, and Mi = Ni ⊕2 N . As

Mi = Ni ⊕2 N , the collection of circuits, CNi of Ni is equal to:

{C : C ⊆ E − Z and C is a circuit of Mi or e ∈ C and C − {e} ∈ Ci,(E−Z)}

To show that we have (N1, N2) ∼ (N3, N4), by Lemma 5.12 it suf-

fices to show that |{i : C is a circuit of Ni and i ∈ {1, 2}}| = |{i :

C is a circuit of Ni and i ∈ {3, 4}}|.

Let C ∈ CNi and C ∈ CNj for i, j ∈ {1, 2, 3, 4} and i 6= j. Then C cannot be

a circuit in Mi and in Cj,Z at the same time, as C1,Z = C2,Z = C3,Z = C4,Z and

no circuit of Mi is in Ci,Z .

Let C ∈ CN1 and C ∈ CN2 . Either C is a circuit of both M1 and M2 that does

not intersect with E − Z or is a circuit of neither M1 nor M2. Suppose the

former. As (M1,M2) ∼ (M3,M4) this means that C is a circuit of both M3

and M4 that does not intersect with E − Z, which means that C ∈ CN3 and

C ∈ CN4 . If C is a circuit of neither M1 nor M2, then C ∈ C1,Z and C ∈ C2,Z .

Therefore, as C1,Z = C2,Z = C3,Z = C4,Z , we have C ∈ C3,Z and C ∈ C4,Z , and

so C ∈ CN3 and C ∈ CN4 .

Let C ∈ CN1 and C /∈ CN2 . We cannot have C ∈ Ci,Z for i ∈ {1, 2, 3, 4} since,

as C1,Z = C2,Z = C3,Z = C4,Z , this would mean C ∈ C2,Z , a contradiction.

Therefore C is a circuit of M1 and not M2. This means that C is a circuit

of exactly one of M3 and M4 and so, as C /∈ Ci,Z for i ∈ {1, 2, 3, 4}, the set

C is a circuit of exactly one of N3 and N4.
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Similarly if C ∈ CN2 and C /∈ CN1 , the set C is a circuit of exactly one of N3

and N4.

Finally let C /∈ CN1 and C /∈ CN2 . This means that C is not a circuit of M1

or M2 and therefore not a circuit of M3 or M4, and C /∈ CN1 and so C /∈ CN3

and C /∈ CN4 . Therefore C is not a circuit of N3 or N4.

Proof of Theorem

We are now almost in a position to prove the main theorem for this section.

Before we do this we must prove the following:

Lemma 5.22. Let M1 and M2 be matroids such that E(M1)∩E(M2) = {e}.
Then B is a basis of M1 ⊕2 M2 if, and only if, B = (B1 ∪ B2) − {e} where

B1 and B2 are bases on M1 and M2 respectively such that e ∈ B14B2.

Proof. Let B1 and B2 be bases of M1 and M2 respectively, and suppose that

e ∈ B14B2. Without loss of generality let e ∈ B2 − B1. The set of circuits

of M1 ⊕M2 is:

C(M1\{e})+C(M2\{e})∪{(C∪D)−{e} : e ∈ C ∈ C(M1) and e ∈ D ∈ C(M2)}.

As neither B1 nor B2 contains a circuit in M1 \e or M2 \e, and B2∪{e} does

not contain a circuit in M1, we can see that (B1∪B2)−{e} does not contain

a circuit of M1 ⊕2 M2. This means that (B1 ∪ B2) − {e} is independent in

M1 ⊕2 M2.

To show that (B1 ∪ B2) − {e} is a basis of M1 ⊕2 M2, we must show that

(B1 ∪ B2) − {e} is maximally independent in M1 ⊕2 M2. Suppose that it is

not. Then there is some f ∈ E(M1 ⊕2 M2) − ((B1 ∪ B2) − {e}) such that

((B1 ∪ B2) − {e}) ∪ {f} is independent in M1 ⊕2 M2. Note that f 6= e as

e /∈ E(M1 ⊕2 M2). Either f ∈ E(M1) or f ∈ E(M2). Suppose first that

f ∈ E(M1). As B1 is a basis for M1, the set B1 ∪ {f} contains a circuit

in M1. The circuit of M1 contained in B1 ∪ {f} is also a circuit of M1 \ e
and therefore is a circuit of M1 ⊕2 M2. Therefore ((B1 ∪ B2) − {e}) ∪ {f}
contains a circuit of M1 ⊕2 M2 when f ∈ B1; a contradiction. Therefore

suppose that f ∈ E(M2). Then B2 ∪ {f} contains a circuit of M2, which we

shall call C2. If e /∈ C2, then C2 is a circuit of M2 \ e, and therefore a circuit
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of M1 ⊕2 M2, a contradiction and ((B1 ∪ B2){e}) ∪ {f} is independent in

M1 ⊕2 M2. Therefore assume that e ∈ C2. As B1 is a basis of M1 that does

not contain e, there is a circuit of M1 contained in B1 ∪ {e} that contains e.

Call this circuit C1. As C2 is a circuit of M2 containing e and C1 is a circuit

of M1 containing e, the set (C1 ∪C2)−{e} is a circuit of M1⊕2M2; but this

is contained in ((B1∪B2)−{e})∪{f} and therefore ((B1∪B2)−{e})∪{f}
is not independent. Therefore (B1 ∪ B2)− {e} is maximally independent in

M1 ⊕2 M2 and so is a basis of M1 ⊕2 M2.

Now suppose that we have a basis B of M1 ⊕M2. Suppose that B is fully

contained in M1. Then either |B| ≤ r(M1) or B contains a circuit of M1. If

B contains a circuit of M1, then, as e /∈ B, the set B also contains a circuit of

M1\e and therefore a circuit of M1⊕2M2. This contradicts the fact that B is

a basis of M1⊕M2, and therefore B cannot contain a circuit of M1. Therefore

B must be independent in M1. If |B| < r(M1), then |B| < r(M1)+r(M2)−1,

as r(M2) ≥ 1, as e is not a loop, and so |B| < r(M1⊕2M2), so B is not a basis

of M1⊕2M2, a contradiction. Therefore we shall assume that B is a basis for

M1. Therefore |B| = r(M1). We know that r(M1⊕2M2) = r(M1)+r(M2)−1,

so B can only be a basis for M1 ⊕M2 if r(M2) = 1. If r(M2) = 1 then e is a

basis for M2 as e is not a loop, therefore B = B1 ∪B2 − {e} where B1 = B,

a basis for M1 that does not include e, and B2 = {e}, a basis for M2.

Now suppose that B has a non-empty intersection with both M1 and M2.

Let B∩E1 = D1 and B∩E2 = D2. Both D1 and D2 must be independent in

M1 and M2 respectively, as otherwise B would contain a circuit of M1⊕2M2.

This means that D1 is independent in M1 and D2 is independent in M2.

The only way that D1 ∪ D2 could be dependent in M1 ⊕2 M2 would be if

both D1 ∪ {e} and D2 ∪ {e} contained circuits of M1 and M2 respectively,

containing e. As B = D1 ∪D2 is a basis for M1 ⊕2 M2, it cannot be that B

contains a circuit of M1 ⊕2 M .

Theorem 5.4. Let M1,M2,M3,M4 be matroids on a set E; then, if

(M1,M2) ∼ (M3,M4) and (M1,M2) is connected, then B is a base of M1

or M2 if, and only if, B is a base of M3 or M4.

Proof. We shall prove that if B is a base of M1, then it is a base of M3 or

M4. As the relation ∼ is symmetric we could use a similar argument to show
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that if B were a base of M3 or M4, then B would be a base of M1 or M2,

and the result follows.

The proof is by induction on |E|. For the base case assume that |E| ≤ 3. If

E contains an element, e, that is a loop of M1, then e is also a loop in M3

or M4 by Lemma 5.13, and so, by Lemma 5.15, M1 = M3 or M1 = M4 and

the result holds. Similarly if E contains an element that is a loop of M2 then

M2 = M3 or M2 = M4 and so, as (M1,M2) ∼ (M3,M4), we have M1 = M4

or M1 = M3 and the result holds. If E contains an element that is a coloop

of M1 or of M2, then the result holds by duality. Therefore assume that |E|
contains no loops or coloops of M1 or M2. Then the base case follows as there

are no such 1-element matroids, one such 2-element matroid, and two such

3-element matroids. The two such 3-element matroids have different rank so

the result follows.

Suppose that (M1 \ {e},M2 \ {e}) is disconnected for some e ∈ E. Then

there is some A ⊆ E such that µMi\{e}(A) = 0 for all i ∈ {1, 2, 3, 4}. There-

fore µMi
(A) ≤ 1 for all i ∈ {1, 2, 3, 4}. If µM1(A) + µM2(A) = 1, then

by Lemma 5.20, M1 = M3 or M1 = M4 and so the result holds. There-

fore we shall assume that µMi
(A) = 1 for all i ∈ {1, 2, 3, 4} (note that

µM1(A) + µM2(A) 6= 0 as (M1,M2) ∼ (M3,M4) and (M1,M2) is connected).

This means that by Lemma 5.21, either: M1 ∈ {M3,M4}, or there are ma-

troids Ni and N for i ∈ {1, 2, 3, 4} such that all the following hold:

i) (N1, N2) ∼ (N3, N4),

ii) Mi = Ni ⊕2 N ,

iii) E(N) = A ∪ {e} or E(N) = (E − A) ∪ {e}

If M1 ∈ {M3,M4} then we are done, so assume that such Ni and N exist,

and without loss of generality let E(N) = A ∪ {e}. By Lemma 5.22 we can

say that either:

(a) B − A is a base of N1 and (B ∩ A) ∪ {e} is a base of N , or

(b) (B − A) ∪ {e} is a base of N1 and B ∩ A is a base of N .

Note that, as (M1,M2) is connected, (N1, N2) is connected. Assume that (a)

holds. Then by induction B−A is a base of N3 or N4, and, as (B ∩A)∪{e}
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is a base of N and Mi = Ni ⊕2 N , the set B is a base of M3 or M4. If (b)

holds then a similar argument shows that, again, B is a base of M3 or M4.

We have now shown that the result holds when (M1,M2) is connected and

(M1 \ {e},M2 \ {e}) is disconnected for some e ∈ E. Therefore, for the

remainder of the proof, we shall assume that (M1\{e},M2\{e}) is connected

for all e ∈ E.

First suppose that B = E and recall that a coloop is not contained in any

circuit (see [9]). This means that every e ∈ E is a coloop of M1. Therefore,

by duality and Lemma 5.13, every element of E is a coloop of either M3

or M4. Let Ai = {e ∈ E : e is a coloop of Mi} for i ∈ {3, 4}. As every

element of E is a coloop of either M3 or M4, the set A3 ∪ A4 = E and, as a

coloop is not contained in any circuit, M3 and M4 do not contain an element

intersecting both A3 and A4. However, as (M3,M4) is connected, this means

that either A3 = ∅ or A4 = ∅, and so either A3 = E or A4 = E, and so either

B is a base of A3 or B is a base of A4.

Suppose that B 6= E, and let e /∈ B. By induction, as (M1 \ {e},M2 \ {e})
is connected and e /∈ B so B is a base of M1 \ {e}, the set B is either a base

of M3 \ {e} or M4 \ {e} and so B is a base of either M3 or M4.

5.2 Connectivity Polymatroids

Recall that the connectivity polymatroid generated by a connectivity func-

tion λ on a set E, known as Pλ, is defined by

rPλ(X) = ||X||λ + λ(X),

for all X ⊆ E. The connectivity function of Pλ is equal to twice λ.

In [8] a description of when a connectivity polymatroid is the connectivity

polymatroid of a matroidal connectivity function is given. We give a slight

generalisation of the result and proof here. Note that in this result we use

the polymatroid dual, as opposed to the matroid dual.

However, before we do this, we shall need the following two lemmas:

Lemma 5.23. If µ is the connectivity function of a matroid, then µ is the
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connectivity function of a coloop-free matroid.

Proof. Let M1 = (E, r1) be a matroid whose connectivity function is µM1 .

Let a be a coloop of M1 and let M2 = (E, r2) be the matroid defined as

follows:

r2(A) =

{
r1(A) if a /∈ A
r1(A)− 1 if a ∈ A.

This is the matroid obtained by replacing the coloop, a, of M1 by a loop in

M2. It is fairly easy to check that this is indeed a matroid. This gives

µM2(A) =

{
r1(A) + r1(E − A)− 1− (r1(E)− 1) if a /∈ A
r1(A)− 1 + r1(E − A)− (r1(E)− 1) if a ∈ A,

so, in both cases, µM1(A) = µM2(A). inductively, this means that for any

matroidal connectivity function µ, we can find a coloop-free matroid M , that

is such that µM = µ.

The proof of the following theorem is simple.

Lemma 5.24. Let M = (E, r) be a loopless matroid with connectivity func-

tion µM . Then, for all X ⊆ E we have µM(X) = r(X) + rM∗(X) − ||X||r,
where rM∗ is the polymatroid dual of M .

Theorem 5.25. Let λ be a unitary connectivity function on a set E, and

let Pλ be the connectivity polymatroid generated by λ. Then λ is a matroidal

connectivity function if, and only if, there is some matroid, M , on E with

rank function r such that:

rPλ(X) = rM(X) + rM∗(X),

where r∗ is the rank function of the polymatroid dual of M , and X ⊆ E.

Proof. Suppose that λ(X) is matroidal:

λ(X) is matroidal

=⇒ λ(X) = rM(X) + rM∗(X)− ||X||rM where M is a coloop-free matroid

=⇒ λ(X) + ||X||rM = rM(X) + rM∗(X)

=⇒ λ(X) + ||X||λ = rM(X) + rM∗(X) as M is coloop-free.
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Suppose that rPλ(X) = rM(X) + rM∗(X).

rPλ(X) = rM(X) + rM∗(X) (1)

=⇒ λ(X) + ||X||λ = rM(X) + rM∗(X) (2)

=⇒ λ(X) + ||X||λ = µM(X) + ||X||rM (3)

where (2) follows from (1) by definition of rPλ(X), and (3) follows from (2)

as µM(X) = rM(X) + rM∗(X)− ||X||rM .

When X = {a} for any A ⊆ E, we have 2λ({a}) = µM({a}) + rM({a}).
Therefore, as λ and µM are both unitary and rM({a}) ≤ 1, we have

rM({a}) = µM({a}) = λ({a}), so ||X||λ = ||X||rM . Therefore λ(X) =

µM(X) for any X ⊆ E, and so λ is matroidal.

5.3 Spikes

Definition 5.26. Let n be an integer greater than 2. A matroid M with the

following properties is a rank-n spike:

1. E(M) is the union of n lines L1, . . . , Ln where each line contains two

points. L1, . . . , Ln will be known as the legs of the spike (and each Lai
will be a leg).

2. For all k in {1, . . . , n− 1}, the union of any k legs has rank k + 1.

3. r(L1 ∪ L2 ∪ ... ∪ Ln) = n

The next result is taken from [9]:

Theorem 5.27. A pair M = (E, C), where M is a matroid with collection of

circuits C, is a rank-n spike, if, and only if, E can be partitioned into pairs

{xi, yi} such that C is equal to C1 ∪ C2 ∪ C3 where C1 = {{xi, yi, xj, yj} : 1 ≤
i < j ≤ r}, C2 is a, possibly empty, subset of {{z1, . . . , zn} : zi ∈ {xi, yi}}
such that no two members of C2 differ in exactly one element, and C3 is the

collection of all n + 1 element subsets of E(M) that contain no member of

C1 ∪ C2.
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The circuits in C2 are known as the transversal circuits of the spike. When

talking about spikes we shall use zi to describe a single element of {xi, yi},
and we shall refer to {z1, . . . , zn} as a transversal of a rank-n spike.

Throughout this section we shall use the following results:

Lemma 5.28. Let S be a spike with legs L1, . . . , Ln and connectivity function

µ. Then

i) µ({za1 , . . . , zak}) = k.

ii) µ(La1 ∪ · · · ∪ Lak) = 2.

iii) µ(La1 ∪ · · · ∪ Lak ∪ {zak+1
, . . . , zam}) = m− k + 2.

where k ≤ m < n and ai ∈ {1, ..., n}.

Proof.

i) r({za1 , . . . , zak}) = k and r(E − {za1 , . . . , zak}) = r(E). Therefore

µ({za1 , . . . , zak}) = r({za1 , . . . , zak}) = k.

ii) r(La1∪· · ·∪Lak) = k+1 and r(E−(La1∪· · ·∪Lak)) = n−k+1. Therefore

µ(La1∪· · ·∪Lak) = r(La1∪· · ·∪Lak)+r(E−(La1∪· · ·∪Lak))−r(E) = 2.

iii) It is easy to see that r(La1 ∪ · · · ∪ Lak ∪ {zak+1
, . . . , zam}) = m + 1 and

r(E−(La1∪· · ·∪Lak∪{zak+1
, . . . , zam})) = n−k+1. Therefore we must

have µ(La1∪· · ·∪Lak∪{zak+1
, . . . , zam}) = m+1+n−k+1−n = m−k+2.

Lemma 5.29. Let µ be the connectivity function of a spike with legs

L1, . . . , Ln where n ≥ 3, and let λ be a connectivity function that agrees with

µ everywhere except possibly on transversal sets. If there exists a matroid,

M , such that µM = λ, then M is a spike.

Proof. Let M = (E, r) be a matroid such that µM = λ. We do not yet know

that we have a spike, but we shall refer to pairs {xi, yi} as legs. We shall also

use ai to denote some integer in {1, ..., n}. We need to show that the union of

any k legs has rank k+1 for all k ∈ {1, . . . , n−1}, and the rank of the union
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of n legs is equal to n. First we shall look at the rank of k legs for k < n,

and without loss of generality we shall let those legs be La1 ∪ · · · ∪ Lak .
As µ is the connectivity function of a spike µ(La1 ∪ · · · ∪ Lak) = 2, and

so λ(La1 ∪ · · · ∪ Lak) = 2. Therefore, r(La1 ∪ · · · ∪ Lak) + r∗(La1 ∪ · · · ∪
Lak) = 2k + 2. We also know that µ(La1 ∪ {z2, . . . , zak}) = k + 1 and so

λ(La1 ∪ {z2, . . . , zak}) = k + 1, and therefore this matroid would also have

to have r(La1 ∪ {z2, . . . , zak}) + r∗(La1 ∪ {z2, . . . , zak}) − (k + 1) = k + 1.

Therefore r(La1 ∪ {z2, . . . , zak}) = k + 1 = r∗(La1 ∪ {z2, . . . , zak}). Therefore

r(La1 ∪ · · · ∪Lak) ≥ k+ 1 and r∗(La1 ∪ · · · ∪Lak) ≥ k+ 1 and as r(La1 ∪ · · · ∪
Lak) + r∗(La1 ∪ · · ·∪Lak) = 2k+ 2, it must be that r(La1 ∪ · · ·∪Lak) = k+ 1.

Now consider r(La1 ∪ · · · ∪ Lan). We know that r(La1 ∪ · · · ∪ Lan) +

r∗(La1 , . . . , Lan) = 2n and, as r(La1 ∪ · · · ∪Lan−1) = n = r∗(La1 ∪ · · · ∪Lan−1)

we have r(La1 ∪ · · · ∪ Lan) ≥ n and r∗(La1 ∪ · · · ∪ Lan) ≥ n. Therefore

r(La1 ∪ · · · ∪ Lan) = n.

We have now shown that M satisfies the definition of a spike.

For the remainder of this section we shall let ai ∈ {1, . . . , 2n}.

Lemma 5.30. Let E = {x1, y1, . . . , x2n, y2n} be a set and C be a collection

of subsets of E that contains

i) all sets of the form {xi, yi, xj, yj} for i 6= j and i, j ∈ {1, . . . , 2n},

ii) all sets of the form {z1, . . . , z2n} such that |{z1, ..., z2n} ∩ {y1, ..., y2n}| is

even and is strictly less than n.

iii) all sets of the form {z1, . . . , z2n}, such that |{z1, ..., z2n} ∩ {y1, ..., y2n}|
is odd and is strictly greater than n and

iv) all sets of 2n+1 elements that do not contain any of the subsets described

above.

Then (E, C) is a spike with C as its collection of circuits.

Proof. By Theorem 5.27 (E, C) will be a spike if, and only if, no pair of

elements of the form {z1, . . . , z2n} that are contained in C, differ in exactly

one element. It is clear that we have this property.
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For the remainder of this section we shall call this spike S and let its con-

nectivity function be µ.

Lemma 5.31. Let E = {x1, y1, . . . , x2n, y2n} be a set and C be a collection

of subsets of E that contains

i) all sets of the form {xi, yi, xj, yj} for i 6= j and i, j ∈ {1, . . . , 2n},

ii) all sets of the form {z1, . . . , z2n} such that |{z1, ..., z2n} ∩ {y1, ..., y2n}| is

even and is strictly less than n.

iii) all sets of the form {z1, . . . , z2n} such that |{z1, ..., z2n} ∩ {y1, ..., y2n}| is

odd and is strictly greater than n.,

iv) the set {ya1 , . . . , yan , xan+1 , . . . , xa2n}, and

v) all sets of 2n+1 elements that do not contain any of the subsets described

above.

Then C is not the collection of circuits of a spike.

Proof. By Theorem 5.27, (E, C) will be a spike if, and only if, no pair of

elements of the form {z1, . . . , z2n} that are contained in C differ in exactly

one element. If n is odd, then the set {y1, . . . , yn−1, xn, . . . , x2n} is in C
and differs from {y1, . . . , yn, xn+1, . . . , x2n} (which is also a member of C), in

exactly one element. If n is even, then the set {y1, . . . , yn+1, xn+2, . . . , x2n}
is in C and differs from {y1, . . . , yn, xn+1, . . . , x2n}, in exactly one element.

Therefore, in neither case can C be the collection of circuits of a spike.

Lemma 5.32. Let µ be the connectivity function of the rank-2n spike whose

collection of circuits is:

i) all sets of the form {xi, yi, xj, yj} for i 6= j and i, j ∈ {1, . . . , 2n},

ii) all sets of the form {z1, . . . , z2n} such that |{z1, ..., z2n} ∩ {y1, ..., y2n}| is

even and is strictly less than n.

iii) all sets of the form {z1, . . . , z2n}, such that |{z1, ..., z2n} ∩ {y1, ..., y2n}|
is odd and is strictly greater than n and



CHAPTER 5. MATROIDAL CONNECTIVITY FUNCTIONS 125

iv) all sets of 2n+1 elements that do not contain any of the subsets described

above.

Let λ be a set-valued function on the same set as µ that agrees with

µ in all sets except on the two sets {ya1 , . . . , yan , xan+1 , . . . , xa2n} and

{xa1 , . . . , xan , yan+1 , . . . , ya2n}, which have λ({xa1 , . . . , xan , yan+1 , . . . , ya2n}) =

n− 1 = λ({ya1 , . . . , yan , xan+1 , . . . , xa2n}). Then λ is a connectivity function.

Proof. We need to show that λ is submodular, that is λ(A) + λ(B) ≥
λ(A ∪ B) + λ(A ∩ B) for all A,B ⊆ E. If neither A nor B is equal

to ({xa1 , . . . , xan , yan+1 , . . . , ya2n} or ({ya1 , . . . , yan , xan+1 , . . . , xa2n}, then this

holds by the submodularity of µ and by noting that for any X ⊆ E, we have

λ(X) ≤ µ(X).

If either A ⊆ B or B ⊆ A then the inequality is trivial, so we shall suppose

without loss of generality, that A is equal to {y1, . . . , yn, xn+1, . . . , x2n}, and

that A is not a subset of B and B dis not a subset of A.

Suppose that B = {z1, . . . , z2n}. Then λ(B), λ(A) ≥ 2n − 1. We have

λ(A∪B) = µ(A∪B) = 2n− k where k is the number of legs fully contained

in A∪B, and λ(A∩B) = µ(A∩B) = 2n− k where k is as above. As A and

B are both transversal sets and are not equal, we have k ≥ 1. Therefore:

λ(A) + λ(B) ≥ (2n− 1) + (2n− 1)

≥ (2n− k) + (2n− k)

= λ(A ∪B) + λ(A ∩B).

Suppose that B is not a transversal but contains elements from all legs. Then

λ(B) = 2n − k where k is the number of legs that contain two elements of

B. We also have λ(A∪B) = 2n−m where m is the number of legs of A∪B
that contain two elements of A ∪ B, and λ(A ∩ B) = (2n − m) + k. Note

that, as we are assuming that A * B we have m > k, so:

λ(A) + λ(B) = (2n− 1) + (2n− k)

≥ (2n−m+ k) + 2n−m

= λ(A ∪B) + λ(A ∩B).
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Suppose that B is of the form {za1 , . . . , zam} where m < n. Then λ(B) = m.

We also have λ(A ∪B) = 2n− k where k is the number of legs that contain

two elements of A∪B (note that as B * A we have k ≥ 1) and λ(A∩B) < m

as B * A. Therefore:

λ(A) + λ(B) = 2n− 1 +m

≥ 2n− k +m

≥ λ(A ∪B) + λ(A ∩B).

Finally suppose that B is not a subset of a transversal and does not contain

an element of every leg, so B is of the form {La1∪· · ·∪Lak∪{zak+1
, . . . , zm}}.

This means that λ({La1 ∪· · ·∪Lak ∪{zak+1
, . . . , zm}}) = m−k+2. Consider

A ∪B and A ∩B. We have λ(A ∪B) = 2n− l where l is the number of legs

fully contained in A∪B, and λ(A∩B) ≤ m as A∩B is a strict subset of A

and A ∩B is a subset of a transversal. Note that k ≤ l. Therefore:

λ(A) + λ(B) = 2n− 1 +m− k + 2

= 2n+m− k + 1

> 2n− l +m

≥ λ(A ∪B) + λ(A ∩B)

This means that in every case λ(A) + λ(B) ≥ λ(A ∪ B) + λ(A ∩ B), and so

λ is submodular.

The result we proved is actually slightly stronger than the one stated in the

lemma. We proved that, given a spike with connectivity function µ that has

connectivity at least n−1 on all transversals, for any set X = {z1, . . . , z2n}, if

we put λ(Y ) = µ(Y ) for all Y 6= X, (E−X) and λ(X) = 2n−1 = λ(E−X),

then λ is a connectivity function. However, the result stated in the lemma is

sufficient for our purposes.

Lemma 5.33. The connectivity function, λ, described in 5.32 cannot be the

connectivity function of any matroid.

Proof. For the purposes of contradiction let M be a matroid with connectiv-

ity function λ. As λ = µ on all non-transversal subsets of E, by Lemma 5.29,
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M must be a spike. For any k 6= n we have λ({xa1 , . . . , xak , yak+1
, . . . , ya2n}) =

2n − 1 and so, for any set of the form {xa1 , . . . , xak , yak+1
, . . . , ya2n} where

k 6= n, exactly one of it and its complement is a circuit of M . This means

that exactly one of {x1, ...x2n} and {y1, . . . , y2n} is a circuit of M . With-

out loss of generality let {x1, . . . , x2n} be a circuit of M . This forces all

sets of the form {z1, . . . , z2n} such that |{z1, ..., z2n} ∩ {y1, ..., y2n}| is strictly

less than n and is even, and all sets of the form {z1, . . . , zn} such that

|{z1, ..., z2n}∩{y1, ..., y2n}| is strictly greater than n and is odd, to be circuits

of M . As λ({xa1 , . . . , xan , yan+1 , . . . , ya2n}) = 2n − 1 either it or its comple-

ment must be a circuit of M , which contradicts Lemma 5.31, which states

that no such spike can exist.

Theorem 5.34. Let p be any polynomial. Let λ be a connectivity function

of set E such that |E| = n. We cannot recognise in p(n) of calls to the

connectivity function oracle, whether a connectivity function is matroidal.

Proof. Consider the connectivity function µ, which is the connectivity func-

tion of S, the spike whose collection of circuits is C, where C is described as

follows:

i) all sets of the form {xi, yi, xj, yj} for i 6= j and i, j ∈ {1, . . . , 2n},

ii) all sets of the form {z1, . . . , z2n} such that |{z1, ..., z2n} ∩ {y1, ..., y2n}| is

even and is strictly less than n.

iii) all sets of the form {z1, . . . , z2n}, such that |{z1, ..., z2n}∩{y1, ..., y2n}| is
odd and is strictly greater than n and

iv) all sets of 2n+1 elements that do not contain any of the subsets described

above.

As µ is the connectivity function of S, we know that µ is matroidal. Now

consider the connectivity function λ which is equal to µ except on the two sets

{xa1 , . . . , xan , yan+1 , . . . , ya2n} and {ya1 , . . . , yan , xan+1 , . . . , xa2n} which have

λ({xa1 , . . . , xan , yan+1 , . . . , ya2n}) = 2n−1 = λ({ya1 , . . . , yan , xan+1 , . . . , xa2n}).
From Lemma 5.33 we know that λ is not the connectivity function of

any matroid. However, to distinguish λ and µ we must check, in the

worst case, the connectivity of half (due to symmetry) the sets of the form
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{xa1 , . . . , xan , yan+1 , . . . , y2n}, that is the connectivity of 1
2

(
2n
n

)
sets, a non-

polynomial number.

As, by Lemma 5.29, the connectivity function of a spike cannot be the con-

nectivity function of any non-spike matroid, we cannot tell, in a polynomial

number of evaluations of the connectivity function, when a matroidal con-

nectivity function is the connectivity function of a binary matroid. The proof

of this is very similar to the proof that we cannot, in a polynomial number of

rank evaluations, determine if a matroid is binary. This proof can be found

in [11]. Given that we cannot recognise, in a polynomial number of rank

evaluations, when a matroid is binary, it is not surprising that we cannot

recognise when a connectivity function is binary in a polynomial number of

evaluations of the connectivity function, but it is worth noting as it shows

that, in this case anyway, connectivity functions behave as we expect them

to.

5.4 Self-Dual Matroids

Recall that the dual of the matroid M = (E, r) is the matroid M∗ = (E, r∗)

where r∗ is defined as follows:

r∗(X) = |X|+ r(E −X)− r(M)

for all X ⊆ E.

Recall that the connectivity function of a matroid, M , is µM(X) = r(X) +

r(E − X) − r(M), or, equivalently, µM(X) = r(X) + r∗(X) − |X|. An

identically self-dual matroid, M , is one in which r(X) = r∗(X) for all X ⊆ E,

so, for an identically self-dual matroid, µM(X) = 2r(X)− |X|.

For the remainder of this section we shall let µ be the connectivity function

of an identically self-dual matroid M , and let λ be a connectivity function

which agrees with µ on all the following sets

i) all circuits (and therefore cocircuits),

ii) all sets X such that there is some e ∈ E such that X ∪ {e} is a circuit,
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iii) singletons.

Note that no self-dual matroid contains loops or coloops, as a coloop is

contained in every basis so must have rank equal to one, and a loop must

have rank 0.

Lemma 5.35.

i) If C is a circuit of M then µ(C) = r(C)− 1

ii) If X is an independent set then µ(X) = r(X)

Proof.

i) If C is a circuit of M then r(C) = |C| − 1 so

µ(C) = 2|C| − 2− |C| = |C| − 2 = r(C)− 1

ii) is clear.

Lemma 5.36. Suppose that X is independent, then µ(X) = λ(X).

Proof. We first prove that µ(X) ≥ λ(X). We do this by noting that X is

independent, and therefore µ(X) = r(X) = |X|. As λ is unitary, λ(X) ≤
|X| = µ(X).

We now prove that µ(X) ≤ λ(X). If there is some circuit, C, of M such that

X ⊆ C then we proceed by induction on |C − X|, otherwise the induction

is on |E − X|. By our conditions on λ the result holds when |C − X| ≤ 1

and when |E − X| ≤ 1. For the purposes of induction assume that the

result holds for any X ′ such that |C − X ′| < |C − X|, or, if there is not C

such that C ⊇ X, then assume that the results holds for all X ′ such that

|E − X ′| < |E − X|. Assume that |C − X| ≥ 2 (or |E − X| ≥ 2), then

X ∪ {e} is independent for e ∈ C −X (or in E −X if no C ⊇ X exists) and
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so µ(X) + µ({e}) = µ(X ∪ {e}). Therefore:

µ(X) + µ({e}) = µ(X ∪ {e}) (1)

≤ λ(X ∪ {e}) (2)

≤ λ(X) + λ({e}) (3)

= λ(X) + µ({e}), (4)

where (2) follows from (1) by the induction hypothesis, (3) follows from (2)

by submodularity, and (4) follows from (3) by the conditions on λ. Therefore

µ(X) ≤ λ(X).

Lemma 5.37. Suppose that X is dependent, then µ(X) = λ(X)

Proof. We first show that µ(X) ≤ λ(X). We do this by induction on |E−X|.
If |E − X| ≤ 1 then the result holds by the definition of λ. Suppose first

that r(X ∪ {e}) = r(X) for some e ∈ E − X. Then e ∈ cl(X) and so,

as X contains a circuit, e is contained in a circuit Ce ( X ∪ {e}, (see [9]

Proposition 1.4.11). We next need the following equalities:

µ(X ∪ {e}) = 2r(X ∪ {e})− |X ∪ {e}|

= 2r(X)− |X| − 1

= µ(X)− 1,

and

µ(Ce − {e}) = 2r(Ce − {e})− |Ce − {e}|

= 2r(Ce)− (|Ce| − 1)

= 2r(Ce)− r(Ce)

= r(Ce)

= µ(Ce) + 1.
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Therefore µ(X) + µ(Ce) = µ(X ∪ {e}) + µ(Ce − {e}) and so:

µ(X) + µ(Ce) = µ(X ∪ {e}) + µ(Ce − {e}) (1)

≤ λ(X ∪ {e}) + λ(Ce − {e}) (2)

≤ λ(X) + λ(Ce) (3)

= λ(X) + µ(Ce), (4)

where (2) follows from (1) by the induction hypothesis and conditions on

λ, (3) follows from (2) by submodularity, and (4) follows from (3) by the

conditions on λ.

Suppose now that r(X ∪ {e}) = r(X) + 1. Note that r({e}) = 1 and so

µ({e}) = 1 as M is self dual. Therefore:

µ(X ∪ {e}) = 2r(X ∪ {e})− |X ∪ {e}|

= 2(r(X) + 1)− |X| − 1

= 2r(X)− |X|+ 1

= µ(X) + r({e})

= µ(X) + µ({e})

Therefore:

µ(X) + µ({e}) = µ(X ∪ {e}) (1)

≤ λ(X ∪ {e}) (2)

≤ λ(X) + λ({e}) (3)

= λ(X) + µ({e}). (4)

where (2) follows from (1) by the induction hypothesis, (3) follows from (2)

by submodularity, and (4) follows from (3) by conditions on λ.

We now show that µ(X) ≥ λ(X).

As X is dependent there is some circuit C ⊆ X; we proceed by induction on

|X|, keeping C fixed. If X = C then the result holds by conditions on λ.

If r(X) = r(X − {e}), then there is some circuit Ce ⊆ X such that e ∈ Ce
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(again, see [9], Proposition 1.4.11). Therefore:

µ(X) + µ(Ce − {e}) = µ(X − {e}) + µ(Ce) (1)

≥ λ(X − {e}) + λ(Ce) (2)

≥ λ(X) + λ(Ce − {e}) (3)

= λ(X) + µ(Ce − {e}), (4)

where (2) follows from (1) by the induction hypothesis and conditions of

λ, (3) follows from (2) by submodularity, and (4) follows from (3) by the

conditions on λ.

If r(X) 6= r(X − {e}), then r(X) = r(X − {e}) + 1, then

µ(X − {e}) = 2r(X − {e})− |X − {e}|

= 2(r(X)− 1)− |X|+ 1

= 2r(X)− |X| − 1

= µ(X)− 1,

and µ({e}) = 1, as e is not a loop or a coloop. Therefore:

µ(X) = µ(X − {e}) + µ({e}) (1)

≥ λ(X − {e}) + λ({e}) (2)

≥ λ(X), (3)

where (2) follows from (1) by the induction hypothesis, and (3) follows from

(2) by submodularity.

Theorem 5.38. Let λ be a connectivity function on a set E and let C be

the set of all C ⊆ E such that λ(C) < |C| and C is minimal with respect to

this property. Then λ is the connectivity function of an identically self-dual

matroid if, and only if, λ is unitary and both the following properties hold:

1. λ(C) = |C| − 2 for all C ∈ C

2. C is the collection of circuits of an identically self-dual matroid.

Proof. If λ is the connectivity function of an identically self-dual matroid, M ,

then the circuits ofM are the sets C that have λ(C) = |C|−2 and are minimal
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with respect to this property. Every subset of a circuit is independent so has

connectivity equal to its size. Therefore the circuits of C are the sets such

that λ(C) < |C| and C is minimal with respect to this property. In other

words M has collection of circuits C, where C is as described in the statement

of the theorem. It is then easy to see that i) and ii) hold.

Conversely if C is the collection of circuits of an identically self-dual matroid,

then let M be the matroid with collection of circuits C. The connectivity

function, µM , of M will have µM(C) = |C| − 2 = λ(C) and for any X ( C,

by the minimality of C, we will have µ(X) = |X| = λ(X). In particular

λ(X) = µM(X) when X is a circuit, a singleton, or when there is some e

such that X ∪ {e} is a circuit of M . Therefore µM = λ and so λ is the

connectivity function of an identically self-dual matroid.



Chapter 6

Branch-Width

Definition 6.1. A minor of a connectivity function λ on set E, is a connec-

tivity function λ′ such that λ′ = λ ↓ A for some A ⊆ E.

This section follows [2] closely to prove the following theorem:

Theorem 6.2. Let λ be a connectivity function on set E. If λ is an excluded

minor for the class of connectivity functions of branch-width at most k ≥ 1,

then |E| ≤ 3k+1−1
2

.

Introduction to Branch-Width

A tree is cubic if every vertex has either degree 1 or degree 3; we call a vertex

with degree 1 a leaf, and a vertex of a cubic tree that has degree 3 an internal

vertex. A partial branch-decomposition of a connectivity function λ on a set

E is a cubic tree whose leaves are labelled by elements of E and all elements

of E label some leaf of the tree. A branch-decomposition is a partial branch-

decomposition in which no leaf is labelled by more than one element of E. If

T is a branch decomposition and T ′ is a subgraph of T whose labelled leaves

are labelled by exactly X ⊆ E, then we say that T ′ displays X. The width

of an edge, e, of T is λ(X) where X is the subsets of E displayed by one of

the connected componets of T \ {e}. Note that this is well-defined as λ is

symmetric. The width of T is the maximum of the widths of the edges.

Definition 6.3. The branch-width of a connectivity function, λ, is the min-

imum of the widths of all possible branch decompositions.

134
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We shall allow our branch-decompositions to contain unlabelled leaves, but

note that we can always modify our branch-decomposition, without altering

that branch-width, so that we are left with a branch decomposition that

contains only labelled leaves.

Consider the following connectivity function λ on set {a, b, c, d}: λ({a}) = 1,

λ({b}) = 1, λ({c}) = 1, λ({d}) = 1, λ({a, b}) = 1, λ({a, c}) = 2, λ({a, d}) =

1 and the remaining values can be found by symmetry.

a

b

c

d

1

1

1

1
1

B1

a

d

b

c

1

1

1

1
1

B2

a

c

b

d

1

1

1

1
2

B3

All of the above graphs are branch decompositions of λ. The trees B1 and B2

have width 1 and B3 has width 2. The branch-width is therefore one and B1

and B2 are both minimal branch-decompositions (as clearly the branch-width

is not zero).

Definition 6.4. Let λ be a connectivity function on set E and let (A,B)

be a partition of E. A branching of B is a partial branch-decomposition of

λ in which there is a leaf displaying A and no other leaf is multiply labelled.

We say that B is k-branched if there is a branching, T , of B with width less

than or equal to k.

For example, if we look again at the connectivity function λ on set {a, b, c, d}
such that λ({a}) = 1, λ({b}) = 1, λ({c}) = 1, λ({d}) = 1, λ({a, b}) = 1,

λ({a, c}) = 2, λ({a, d}) = 1 and the remaining values can be found by

symmetry, the following would be a branching of {c, d} and so we can say

that {c, d} is 1-branched, and so k-branched for any k ≥ 1.
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{a, b}

c

d

1

1
1

Branch-Width Lemmas

The following lemma is proved in [2] but is proved again here in slightly more

detail.

Lemma 6.5. Let λ be a connectivity function on set E with branch-width

k, and let (A,B) be a partition of E such that λ(A) ≤ k. If B is not k-

branched, then there is a partition (A1, A2, A3) of A such that λ(Ai) < λ(A)

for all i ∈ {1, 2, 3} (note that Ai may be empty for som i ∈ {1, 2, 3, }).

Proof. Note that as λ has branch-width k, every e ∈ E must have λ({e}) ≤ k.

Suppose that for all (A1, A2, A3) that partition A, there is some λ(Ai) ≥ λ(A)

for i ∈ {1, 2, 3}.

Claim 6.5.1. If (X1, X2) is a partition of E such that λ(X1) ≤ k, then

either λ(B ∩X1) ≤ k or λ(B ∩X2) ≤ k.

Proof. Notice that (A ∩ X1, A ∩ X2, ∅) is a partition of A. Therefore

λ(A ∩ X1) ≥ λ(A) or λ(A ∩ X2) ≥ λ(A). Without loss of generality

suppose that λ(A ∩X1) ≥ λ(A). Therefore:

λ(X1) + λ(A) ≥ λ(A ∪X1) + λ(A ∩X1) (1)

≥ λ(A ∪X1) + λ(A) (2)

= λ(B ∩X2) + λ(A), (3)

where the first inequality follows by submodularity, (2) follows from (1)

by noting that λ(A∩X1) ≥ λ(A), and (3) follows from (2) by symmetry

of λ and noting that A ∪ X1 = E − (B ∩ X2). The claim follows by

noting that λ(X1) ≤ k.

Let T be a branch decomposition of λ that is of width k. If |E(T )| ≤ 1

then B will be k-branched, so we assume that T contains at least three edges
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(note that T cannot contain two edges).

If v is a vertex of T and e is an edge of T , then we use Xe,v to denote the set

of elements of E that are displayed by the component of T \ e that does not

contain v.

Claim 6.5.2. There is some degree-3 vertex, s, of T such that for every

edge, e, of T , we have λ(Xe,s ∩B) ≤ k.

Proof. We shall construct an orientation of T as follows: Let e be any

edge of T and let V ({e}) = {u, v}. If λ(Xe,v ∩ B) ≤ k then orient e

from u to v, and if λ(Xe,u ∩ B) ≤ k then orient e from v to u. As T

has branch-width k and so λ(Xe,w) ≤ k for w ∈ {u, v}, by Claim 6.5.1,

every edge will receive at least one orientation, and some may have two.

Suppose that there is some vertex v such that every vertex in the graph

can be connected to v via a directed path. If v has degree 3, then setting

s = v will prove the claim. Suppose now that v has degree 1 and let f

be the edge incident with v. Let the other vertex incident with f be v′.

From every vertex of T \ f there is an oriented path to v′, and f must

be oriented from v to v′ in T , as either Xf,v′ ∩B = ∅ or Xf,v′ ∩B = {v},
and therefore λ(Xf,v′∩B) ≤ k. Therefore v′ is also reachable from every

other vertex in the graph via a directed path, and v′ has degree 3, so

setting s = v′ gives an s that works.

Now suppose that there is no such vertex. We show that this leads to a

contradiction. If no such vertex exists then there is a pair of edges e and

f , and a vertex, w, on the (not directed) path connecting e and f such

that neither e nor f is oriented towards w. Let Y1 = Xe,w, Y2 = Xf,w

and Y3 = E − (Y1 ∪ Y2). As e is oriented away from w we must have

λ((Y2 ∪ Y3) ∩ B) ≤ k and as f is oriented away from w we must have

λ((Y1 ∪ Y3) ∩B) ≤ k. Therefore:

k + k ≥ λ((Y2 ∪ Y3) ∩B) + λ((Y1 ∪ Y3) ∩B) (1)

= λ((Y2 ∪ Y3) ∩B) + λ(Y2 ∪ A) (2)

≥ λ(Y2 ∩B) + λ((Y2 ∪ Y3) ∪ A), (3)

where (2) follows from (1) by symmetry of λ and noting that E− ((Y1∪
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Y3) ∩ B) = Y2 ∪ A, and (3) follows from (2) by submodularity and

noting that that (((Y2 ∪ Y3)∩B)∪ (Y2 ∪A)) = ((Y2 ∪ Y3)∪A) and that

(((Y2 ∪ Y3) ∩B) ∩ (Y2 ∪ A)) = (Y2 ∩B).

This means that either (Y2∩B) ≤ k or λ(Y1∩B) ≤ k which contradicts

the fact the both e and f are not oriented towards w, a contradiction.

Let s be a degree-3 vertex of T that is such that every edge, e, of T has

λ(Xe,s ∩ B) ≤ k. We know that such a vertex exists by Claim 6.5.2. Let

e1, e2, and e3 be the edges of T incident with s and let Xei,s = Xi for

i ∈ {1, 2, 3}. Recall that we are assuming that for any partition (A1, A2, A3)

of A there is some Ai such that λ(Ai) ≥ λ(A). Therefore we may, without

loss of generality, assume that (X1 ∩ A) ≥ λ(A). Consider the branching T ′

of B that is constructed by taking a copy of T and keeping only labels from

B, then subdividing e1 with a vertex w and adding a new leaf incident with

w whose other vertex is labelled by A. This construction is shown below.

The green vertices are the vertices from B (these are the labelled vertices in

T ′) and the new vertex, w, and the new leaf are shown in red. The black

vertices are unlabelled.

A

e1 e′1

s w

T ′

All edges, except the new edge and e1 and e′1, have width at most k as

λ(Xe,s ∩ B) ≤ k for all edges, e, of T and the only labels of the vertices

are labels from B (except the label A, which we are not considering at the

moment). We know that λ(A) ≤ k, as this is one of the assumptions in the

statement of the lemma, and so the new leaf (indicated by the red edge)

has width at most k. This means that to show that T ′ is a branching of



CHAPTER 6. BRANCH-WIDTH 139

B of width at most k, all that remains to check is the widths of e1 and e′1.

That is we must check λ(X1 ∩ B) ≤ k and λ((X2 ∪X3) ∩ B) ≤ k. The first

inequality holds by choice of s, and the second holds as: λ(X1) + λ(A) ≥
λ(X1 ∪A) + λ(X1 ∩A) ≥ λ(X1 ∪A) + λ(A) where the first inequality holds

by submodularity and the second by the assumption that λ(X1∩A) ≥ λ(A).

Therefore k ≥ λ(X1) ≥ λ(X1 ∪ A) = λ((X2 ∪X3) ∩ B) and so e′1 has width

at most k.

Definition 6.6. Let f : Z+ → Z+ and m ∈ Z. We say that a connectivity

function, λ, on set E is (m, f)-connected if, for all A ⊆ E such that λ(A) =

l < m, either |A| ≤ f(l) or |E − A| ≤ f(l).

Recall that the elision of an element, e, from a connectivity function, λ on a

set E with e ∈ E, is defined by (λ ↓ e)(A) = min{λ(A), λ(A ∪ {e})} for all

A ⊆ E.

Lemma 6.7. Let f : Z+ → Z+ be a non-decreasing function, and let λ be

a (m, f)-connected connectivity function on set E. Then for all e ∈ E, the

connectivity function λ ↓ e is (m, f)-connected.

Proof. Suppose that (λ ↓ e)(A) = l < m. Suppose that (λ ↓ e)(A) = λ(A).

Then λ(A) = l < m, and so, as λ is (m, f) connected, |A| ≤ f(l). Suppose

that λ ↓ e = λ(A ∪ {e}). Then λ(A ∪ {e}) = l < m so |A| ≤ |A ∪ {e}| ≤
f(l).

For the proof of the next lemma it may be helpful to refer back to Subsec-

tion 2.3

Lemma 6.8. If λ is an excluded minor for connectivity functions of branch-

width k, then λ is connected.

Proof. Suppose that λ is not connected. Then λ = λ1 ⊕ λ2 for some con-

nectivity functions λ1 and λ2 and λ1 and λ2 are minors of λ. Suppose that

λ1 and λ2 both have branch-width less than or equal to k. Let T1 be a

branch-decomposition of λ1 with branch width at most k and T2 be a branch-

decomposition of λ2 with branch width at most k. Now consider the graph

obtained by subdividing an edge of T1 and subdividing an edge of T2 and

joining the two new vertices with a new edge, e; call this new tree T . Clearly
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e has weight 0 in T , and T is a branch-decomposition of λ with branch-width

at most k.

Lemma 6.9. Let λ be a connectivity function on set E. If λ be an excluded

minor for branch-width k connectivity functions, and (A,B) be a partition of

E, then it cannot be that both A and B are k-branched.

Proof. Let T1 be a branching of A of width at most k, and let T2 be a

branching of B of width at most k. There is a vertex in T1 labelled by

B. Let e be the edge incident with this vertex. The width of e is equal to

λ(A) = λ(B). Similarly in T2 the edge, f , incident with the vertex labelled by

A, has width λ(B) = λ(A). Let v1 be the internal vertex of T1 incident with

e, and let v2 be the internal vertex of T2 incident with f . The graph obtained

by joining T1 \{e} to T2 \{f} via a new edge g, that is incident with vertices

v1 and v2 and has weight λ(A) as shown below, gives a branch-decomposition

of λ that has width k; a contradiction.

A
λ(A)

T2

B
λ(B)

T1

g

Let g be defined by g(0) = 0 and g(n) = 3g(n− 1) + 1 for all n > 1, that is

g(n) = 3n−1
2

.

Lemma 6.10. Let λ be a connectivity function on set E. If λ is an excluded

minor for the class of connectivity functions of branch-width k ≥ 1, then λ

is (k + 1, g)-connected.

Proof. The proof is by induction. As λ is connected, λ is (1, g)-connected.

For the purposes of induction suppose that λ is (m, g)-connected for some

m ≤ k. We shall now show that λ is (m+1, g)-connected. First suppose that
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λ(A) = l < m. As λ is (m, g)-connected, either |A| ≤ g(l) or |E −A| ≤ g(l).

Now let λ(A) = m and suppose, for the purposes of contradiction, that

|A| > g(m) and |B| > g(m) where B = E − A. That is, suppose that

|A| > 3g(m− 1) + 1 and |B| > 3g(m− 1) + 1.

As λ is an excluded minor for connectivity functions of branch-width k, it

cannot be that both A and B are k-branched. Without loss of generality we

may assume that B is not k-branched. Let e ∈ A, as λ is (m, g)-connected

then so is λ ↓ e. As λ ↓ e has branch-width k and (λ ↓ e)(A − {e}) ≤ k,

then by Lemma 6.5, either B is k-branched in λ ↓ e, or there is a partition

(A1, A2, A3) of A − {e} such that (λ ↓ e)(Ai) < (λ ↓ e)(A − {e}) for all

i ∈ {1, 2, 3}. We show that it must be that B is k-branched in λ ↓ e.

Suppose that there were some partition (A1, A2, A3) of A−{e} such that (λ ↓
e)(Ai) < (λ ↓ e)(A− {e}) for all i ∈ {1, 2, 3}. Then, as |A| > 3g(m− 1) + 1,

we have |A− {e}| > 3g(m− 1) and so for some i ∈ {1, 2, 3}, it must be that

|Ai| > g(m−1). As |B| > 3g(m−1)+1 we also have |E−Ai| > 3g(m−1)+1.

Therefore, as λ ↓ e is (m, g)-connected, it must be that (λ ↓ e)(Ai) ≥ m =

λ(A) ≥ (λ ↓ e)(A − {e}). Therefore (λ ↓ e)(Ai) ≥ (λ ↓ e)(A − {e}), a

contradiction.

Therefore no such partition exists, so B is k-branched in λ ↓ e.

We show next that this means that (λ ↓ e)(B) ≤ m − 1. For suppose

that (λ ↓ e)(B) ≥ m and recall that λ(B) = m. Then (λ ↓ e)(B) =

min{λ(B), λ(B ∪ {e})} = λ(B) so λ(B) ≤ λ(B ∪ {e}). Therefore, by

Lemma 2.14, (λ ↓ e)(B′) = λ(B′) for all B′ ⊆ B. Therefore B is k-branched

in λ, a contradiction. Therefore (λ ↓ e)(B) ≤ m− 1.

As λ ↓ e is (m, g) connected this means that |B| ≤ g(m− 1) or |A− {e}| ≤
g(m− 1) so |A| ≤ g(m), a contradiction.

The following lemma is well-known and a proof can be found in [9]

Lemma 6.11. Every cubic tree, T , has an edge, e, such that each of the two

connected components of T \ e contains at least one-third of the leaves of T .
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6.1 Main Branch-Width Theorem

Theorem 6.2 Let λ be a connectivity function on a set E. If λ is an excluded

minor for the class of connectivity functions of branch-width at most k ≥ 1,

then |E| ≤ 3k+1−1
2

.

Proof. First note that if |E| ≤ 3, then |E| ≤ 3k+1

2
. Therefore suppose that

|E| > 3. Let e ∈ E. As λ is an excluded minor for connectivity functions of

branch-width k, it must be that λ ↓ e has branch-width k. Let T be a branch

decomposition of λ ↓ e that has width k. As T contains at least two labelled

leaves then, as T is cubic, there is an edge f of T such that T \ f displays

some sets X1 and X2 such that |X1| ≥ |E−{e}|
3

and |X2| ≥ |E−{e}|
3

. Without

loss of generality we may assume that |X1| ≤ |X2|. As X1 is displayed

by T \ f the connectivity of X1 must be equal to the width of f . Therefore

(λ ↓ e)(X1) ≤ k. As λ is (k+1, g) connected, then so is λ ↓ e, so |X1| ≤ g(k).

Therefore g(k) ≥ |E|−1
3

, and so |E| ≤ 3g(k) + 1 = g(k + 1) = 3k+1−1
2

.
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