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Abstract

This thesis is motivated by the large variety of high-temperature supercon-

ductors that contain iron in the superconducting layer. This number has

grown rapidly since the discovery in 2008 of the iron-pnictides (and chalco-

genides), where iron and arsenic form the superconducting layer. Also of

interest are the iron-cuprate hybrid materials, where one out of three copper

atoms is replaced by iron. The aim is to understand the superconducting,

magnetic and electronic properties of these materials in respect to their iron

content. This thesis describes some of these properties for the iron-pnictide

compounds of CeFeAsO1-xFx and AFe2As2 (A=Ba, Sr), and for the iron-

cuprate hybrids of FeSr2YCu2O6+y and FeSr2Y2-xCexCu2O10-y.

Here it has been found that CeFeAsO1-xFx follows a 3D fluctuation con-

ductivity above the superconducting transition and the thermal activation

energy is correlated to the critical current density within a two fluid-flux

creep model below the superconducting transition. NMR measurements show

that there is considerable charge disorder within the superconducting dop-

ing region. The AFe2As2 show a positive magnetoresistance, which could

be interpreted through three-carrier transport. Superconducting samples of

SrFe2As2 display a large enhancement in the magnetoresistance below the su-

perconducting transition up to 1600 %, which is due to three-carrier transport

through metallic and superconducting regions in an inhomogeneous state.

The superconducting properties of the iron-cuprate FeSr2YCu2O6+y in

respect to the location of iron was studied under the influence of electron and

hole doping and with additional magnetic impurities. FeSr2Y2-xCexCu2O10-y

shows a disorder induced spin-glass state and strong localization depending

on the doping.
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Chapter 1

Introduction

Superconductivity is a very interesting physical phenomenon, where the elec-

trical resistivity goes to zero and the applied magnetic fields are expelled

from the sample’s core at a finite temperature. Superconductivity, in the

low-temperature superconductors, is understood in terms of the (Bardeen,

Cooper and Schrieffer) BCS theory [1]. However, there remain many unan-

swered questions in the field of high temperature superconductivity. The

research presented here is focused on the investigation of the magnetic and

electronic properties of iron-based (iron-pnictides) and iron-cuprate1 hybrid

superconductors. These compounds cover both groups of high-temperature

superconductors while containing a large amount of iron. They also show

antiferromagnetic order in the parent compound and interesting multiferroic

properties.

The iron-pnictide are second only to the well-studied cuprates in terms

of the superconducting transition temperature, TC . The superconductivity

is based in conducting layers of FeAs, where the iron and arsenic atoms are

in tetrahedral bond configuration, and with the arsenic alternating above

and below the iron atoms. There is also the intriguing co-existence of su-

perconductivity, spin fluctuations and magnetism spanning almost the entire

temperature range in the underdoped region [2–12].

The other group of interesting compounds are the two-dimensional (2D)

1these are cuprates where every third Cu is replaced by Fe
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iron-cuprate hybrids. They contain a FeO2-y deficit layer as well as a 2D

CuO2 layer, which is the superconducting layer. Excess iron is known to

be present in the CuO2 layer and the amount can be reduced or increased

through different processing steps. The presence of both magnetic as well

as superconducting ordering makes these compounds the ideal candidates

to study the competing electronic and magnetic interactions. Furthermore,

they display a wide variety of interesting physical properties, such as a low

temperature spin glass transition and a high negative magnetoresistance in

FeSr2Y2-xCexCu2O10-y (Fe1222) [13] and a superconducting transition tem-

perature depending on the Fe distribution in FeSr2YCu2O6+y (Fe1212) [14].

There are also no studies covering the electron and hole doping range of

Fe1212 and the whole Ce doping range for Fe1222.

The layout of this thesis is as follows. Beginning with chapter 2 the the-

oretical framework to the electronic and magnetic phenomena encountered

in this thesis is described. A short introduction into superconductivity is

presented first. The relevant similarities and differences between cuprates

and the iron-based superconductors is discussed next, followed by an expla-

nation of the different types of magnetic order observed. A short introduc-

tion to spin-glasses is then given before continuing on the variable-range-

hopping electronic transport. This is then followed by an introduction to

magnetoresistance and the quantum interference magnetoresistance which

is applicable to the variable-range-hopping magnetotransport found in the

FeSr2Y2-xCexCu2O10-y. A three-carrier model is also discussed and this is

used in chapter 6 to account for the magnetoresistance in the iron-pnictides.

Finally a short introduction to nuclear magnetic resonance (NMR) is pre-

sented at the end of this chapter.

The experimental details are described in chapter 3. This includes the

general sample preparation and the characterization tools used. Particular

emphasis is given to describing the electronic transport, magnetotransport

and magnetization measurements carried out on the two Quantum Design

systems: the Physical Property Measurement System (PPMS) and the Mag-

netic Property Measurement System (MPMS). The last part of chapter 3 is

used to explain the experimental details for the NMR setup.
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Chapter 4 investigates the electronic and magnetic properties of

CeFeAsO1-xFx. A detailed description of the synthesis procedure is given

and the atomic structure is explained. Results from the temperature depen-

dent resistivity measurements on the non-superconducting CeFeAsO0.93F0.07

is presented, followed by the superconducting samples (x=0.13-0.25). The

fluctuation conductivity is extracted from the superconducting samples when

approaching the superconducting transition temperature. The field depen-

dence of the resistivity is analyzed by means of the thermally activated flux

flow (TAFF) model. The doping dependence of the flux flow activation en-

ergy, U0, and the critical current density, JC, are compared. The temperature

and doping dependence of the upper critical field and the irreversible field of

the superconducting samples are then presented and analyzed. The last part

of this chapter describes the susceptibility measurements and the determi-

nation of the effective magnetic moment of the non-superconducting sample;

the results of which are used to aid the understanding of the NMR results

presented in the next chapter.

Chapter 5 focuses on the NMR measurements on the same materials as in

chapter 4. These measurements were done under a magnetic field of 11.74 T

both parallel and perpendicular to the c-axis of the aligned sample. The

investigation begins with the parent compound CeFeAsO without fluoride

doping. The temperature dependence of the NMR spectrum shows the an-

tiferromagnetic ordering due to the spin-density-wave (SDW) transition and

it allows an estimation of the internal field strength of this ordering. Spin-

lattice relaxation and spin-spin relaxation are studied next. The x=0.07

nominal fluoride doped sample is studied first, where the spin-density-wave

is vanishing and on the verge of becoming superconducting. The temperature

dependence of the NMR spectra, linewidth, shift, spin-lattice relaxation and

spin-spin relaxation were investigated in both field directions. Similar mea-

surements were done on the superconducting compounds CeFeAsO0.87F0.13

and CeFeAsO0.80F0.20. By comparing all these measurements the doping de-

pendence of the NMR properties of CeFeAsO1-xFx is extracted.

Chapter 6 is dedicated to a different type of iron-based superconduc-

tor. While chapter 4 and 5 are focused on one member of the 1111-family,
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in this chapter two members of the 122-family, namely AFe2As2 (A=Ba or

Sr) were investigated. This is motivated by the appearance of a resistivity

downturn in these samples at low temperatures, which indicates a develop-

ing superconducting state [15, 16]. The temperature dependent resistivity

and magnetoresistance are presented for BaFe2As2, SrFe2As2 and 0.8 at%Ca

implanted SrFe2As2. The magnetoresistance is analyzed with both linear

quantum magnetoresistance and a three-carrier model. This is followed by a

description of an aging effect in SrFe2As2, in which it becomes superconduct-

ing after being held in a vacuum desiccator for seven months, and displays

significant changes to the resistivity and magnetoresistance. This process is

reversible by annealing in an Argon atmosphere.

Chapter 7 presents the study of the effect of electronic doping on the

magnetic, electronic and vibrational properties of FeSr2YCu2O6+y known as

Fe1212. A detailed synthesis is described and the structure is compared

to the well-known structure of RuSr2RCu2O6+y (R is a rare earth or Y).

Results from magnetization measurements are shown including the changes

in the superconducting transition temperature, the room temperature ther-

mopower and the temperature independent part of the susceptibility. This

is followed by the Curie-Weiss (CW) temperature dependence with electron

(La) and hole (Ca) doping. In addition to these measurements the effect of

Zn substitution for Cu on the superconducting properties were also studied.

The magnetic and magnetotransport properties of FeSr2Y2-xCexCu2O10-y

are investigated in chapter 8, in regard to the spin and electronic disorder.

The synthesis and the structure is described, before presenting the magneti-

zation where an interesting spin glass behavior was observed. This is followed

by a study of the doping dependence of the susceptibility, where the effective

moment is calculated from a Curie-Weiss temperature dependent fit. The

second part of this chapter covers the temperature dependence of the re-

sistivity and the magnetoresistance. The last part of the chapter presents

the changes that occur in effective moment, magnetic ordering and electronic

transport when the sample is in the oxygen reduced and the oxygen saturated

state.

The last chapter summarizes the presented work on the iron-cuprate hy-
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brid and the iron-based superconductors. Then an overall conclusion is given

and a short outlook of possible further work.
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Chapter 2

Theory

Chapter 2 provides the theoretical framework as well as an introduction into

superconductivity. This includes a historical overview of superconductivity

and an explanation of a few important concepts. The relevant similarities and

differences between cuprates and the iron-based superconductors will be dis-

cussed next, followed by an explanation of the antiferromagnetic Mott insu-

lating state observed in the cuprates and the antiferromagnetic spin-density-

wave (SDW) ordered state observed in the iron-based superconductors. A

short introduction to spin-glasses is given before continuing to the electronic

transport where variable-range-hopping (VRH) will be presented. This is

followed by an introduction to magnetoresistance (MR) and the applicable

models of quantum interference (QI) magnetoresistance and the three-carrier

model. Finally, there is a short introduction to nuclear magnetic resonance

(NMR).
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2.1 Superconductivity

The materials under investigation are all either superconducting or have su-

perconductivity suppressed by iron-copper anti-site disorder. Hence, it seems

appropriate to begin with a short overview of superconductivity starting with

the history of superconductivity. This is followed by a discussion of the con-

cept of the superconducting transition temperature, TC, the critical magnetic

field, BC, and the critical current density, JC. Further information can be

found for example, in “Introduction to Superconductivity” by Michael Tin-

kham [17], and Ashcroft and Mermin’s “Solid State Physics” [18].

2.1.1 Historical overview

The history of superconductivity starts with Heike Kamerlingh Omnes, who

discovered superconductivity in 1911 in his laboratory in Leiden [19–21].

This discovery was made possible by his earlier achievement in 1908 where he

liquefied Helium for the first time. He used this to study the low temperature

resistivity of mercury, where he observed a sudden drop in resistivity at 4.2 K.

One of his later experiments used a superconducting ring of mercury wire, in

which a persistent current flowed for over a year. He was awarded the Nobel

Prize in 1913 for his development of the liquefaction of helium rather than

his discovery of superconductivity.

The next big step was made by W. Meissner and R. Ochsenfeld with their

discovery of the exclusion of the magnetic field later called the Meissner ef-

fect [22]. A superconductor does not allow the magnetic field to penetrate

into it through induced screening currents which create a magnetic field op-

posite of the external field. This leads to the most popular demonstration

of superconductivity by levitating a magnet above a superconductor or vice

versa. However, this stays true until the critical magnetic field, BC for a type

I superconductor is reached and the magnetic field starts to penetrate into

the superconductor (see figure 2.2 for more details), which destroys super-

conductivity.

John Bardeen, Lean Cooper and Robert Schrieffer developed in 1957, at

the University of Illinois, a model for superconductivity [1]. This model states
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that electrons in a certain energy range close to the Fermi level can form

Cooper pairs out of 2 electrons with opposite spin under a constant pairing

potential. These Cooper pairs have zero spin in the quantum ground state,

where the coherence can be as large as 1000�A in some type I superconductors

and as small as a few �A (smaller than their inter-layer distance) in some type

II superconductors. The Nobel Prize in physics was awarded to them in

1972 for the development of this theory of superconductivity called the BCS

theory.

A rather unexpected discovery was made 1986 by Alex Müller and Georg

Bednorz while working on metal oxide ceramics (perovskite). They found

that the resistivity of La2-xBaxCuO4 drops to zero around 35 K indicating su-

perconductivity [23]. This was quite astonishing, because up to that time the

highest known superconducting transition temperature was 22.3 K in Nb3Ge

[24]. This triggered a race around the world to look for even higher TC in

similar kinds of materials, which were found over the following years with TC

higher than liquid nitrogen (77 K). Examples of these copper-based oxides in-

clude YBa2Cu3O6+y (YBCO is the parent compound of the iron cuprate com-

pound studied in chapter 7 and 8) with a TC of 92 K [25], Bi2Sr2Ca2Cu3O10+y

[26] (BSCCO) with a TC of 108 K and HgBa2Ca2Cu3O8+y [27] with the high-

est observed TC of 134 K so far at ambient pressure1.

In February 2008 Hideo Hosono and colleagues at Tokyo Institute of Tech-

nology discovered that LaFeAsO1-xFx was superconducting at 26 K [29]. The

new iron-based family of high temperature superconductors vastly expanded

over the next few months with the highest TC observed in the oxypnictides

(1111-group) with SmFeAsO1-x at 55 K [30] and the oxygen free variant of

Sr0.5Sm0.5FeAsF at 56 K [31]. Other related groups are the 122-group with a

maximum TC of 38 K in Ba1-xKxFe2As2 [32], 111-group like NaFeAs [33, 34]

reaching 18 K and 11-family with FeSe having a TC of 14 K [35, 36]2.

1the higher TC is achieved for HBCOO with 164 K under high pressure. Just recently
H2S was found to be superconducting under high pressure (around 200 GPa up to a TC of
190 K [28].

2much higher TC have been reported for single layer FeSe [37]
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2.1.2 The critical temperature

The critical superconducting transition temperature, TC, is the temperature

at which a material becomes superconducting. However, in practice there ex-

ist many ways to define TC experimentally. The four more common methods

are shown in figure 2.1 with T I
C as the beginning of a downturn in resistivity,

T II
C at 90 % of the normal state resistivity, T III

C the intersection between the

slope of the resistivity from above (red line) and during (orange line) the tran-

sition and T IV
C when zero resistivity is reached. This complexity comes from

the fact that a superconducting transition is an effect, which often stretches

over a long temperature range despite being well defined theoretically. The

width of such a transition (for example, from T I
C to T IV

C ) is often broadened

by vortex pinning and fluctuation conductivity, which makes it difficult to

determine an exact TC.
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Figure 2.1: Four different ways to determine TC.

2.1.3 The critical magnetic field

The critical magnetic field, BC, is the magnetic field at a given temperature,

where superconductivity is suppressed. This is only the case for conventional

superconductivity found in the type I superconductors (for example, Hg and

Al). The high temperature superconductors (for example, cuprates and iron-

based) are all type II where two different critical magnetic fields exist. The

lower critical field, Bc1, is the field at which at a given temperature the

magnetic field starts to penetrate the superconductor in the form of vortices,
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which all contain exactly one magnetic flux quantum, Φ0 = h/2e [38]. The

number density of vortices increases with increasing applied field until a

certain upper critical field, Bc2, at which superconductivity is completely

destroyed just as in the type I superconductors. The temperature dependence

of these critical fields can be seen in figure 2.2.

B

T

SC

normal

BC

TC

(a) Type I superconductor

B

T

SC

mixed
SC

normal

Bc1

Bc2

TC

(b) Type II superconductor

Figure 2.2: The temperature dependence of the critical magnetic fields of
type I and type II superconductors.

The vortices penetrating the superconductors are free to move in the

direction of the magnetic field. This leads to dissipation of energy and heat-

ing, both unwanted effects in a superconductor. This can be prevented if

the vortices are pinned, which happens naturally on crystal defects or can be

achieved artificially with the introduction of dedicated impurities and defects.

An easy way to distinguish between these two types of superconductors is

made possible within the Ginzburg-Landau (GL) theory of superconductors

[39]. The GL theory introduces the GL coherence length [17, 39],

ξ(T ) =
~

|2m∗α(T )|1/2
(2.1)

where ~ is the reduced Planck constant, m∗ is the mass and α(T ) is an

expansion coefficient of ∇ψ, where ψ is a pseudo wave function within the

GL theory. The London brothers developed the London equations [40] in

1935 from which the London penetration depth can be derived [17],
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λL(0) =

√
m∗

µ0ne2
(2.2)

where µ0 is the vacuum permeability, n is the number density of supercon-

ducting electrons and e the elemental charge. The GL parameter is defined

as the ratio of those two characteristic lengths,

κ =
λ

ξ
(2.3)

Both lengths diverge as 1/
√

(T−TC) near TC, which makes κ approximately tem-

perature independent [17]. Abrikosov [38] showed in 1957 that the crossover

between type I and type II occurs at κ = 1/
√

2 with typical type I supercon-

ductors having κ� 1.

2.1.4 The critical current density

Another important property for practical applications is the critical current

density, JC. For a type I superconductor it is possible to derive a supercon-

ducting critical current based on the assumption that when the field created

by the superconducting critical current is greater than BC, then supercon-

ductivity is completely suppressed. This is called the Silsbee criterion for

type I superconductors and for a long superconducting wire with a radius,

r � λ, [17]:

IC =
2 · π · r ·BC

µ0

The current in a superconducting wire only flows in a surface layer of thick-

ness equal to the London penetration depth λL. This leads to a critical

current density [17],

JC =
2 ·BC

µ0 · r · λL

(2.4)
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2.2 Comparison between cuprates and iron-

based superconductors

Both the cuprates and iron-based superconductors have obvious similarities,

but also significant differences. To highlight just a few, which are relevant

to this thesis, one could begin by examining the phase diagram from each

group of superconductors. Figure 2.3a shows the generic phase diagram of a

cuprate from the 214-type, figure 2.3b shows the phase diagram of iron-based

CeFeAsO1-xFx (Ce1111) and 2.3c the phase diagram of 122-type pnictide

and chalcogenide. Both groups develop superconductivity by adding addi-

tional charge carriers to an antiferromagnetically ordered parent compound.

However, the detailed antiferromagnetic ordering in both parent compounds

is different. The parent compound of the cuprates is an antiferromagnetic

(AFM) Mott insulator, while the parent compound of the iron-based super-

conductors is a metal with an AFM spin-density-wave phase. Such differ-

ences continue for the doped materials, despite both containing 3d transition

metals and a basic structure is built out of 2-dimensional (2D) planes. The

superconducting planes of the cuprates are the CuO2 planes, which can be

described by a single band model involving the Cu 3dx2−y2 orbital and the

oxygen 2p orbital [41]. For the iron-based superconductors however, all five

3d orbitals of Fe contribute to the states around the Fermi level and hence a

multi-band model is necessary [42–45].

The transport properties of both materials show similarities in the normal

state. For example, the resistivity shows a Fermi-liquid like T 2 behavior

in the overdoped region [46, 47]. This temperature dependence changes to

a linear dependency close to optimal doping suggesting a non-Fermi-liquid

state sometimes referred to as “strange metal”[48–52].
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Figure 2.3: The phase diagram of cuprates and iron-based superconductors.
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2.3 Magnetic order

This section discusses magnetic order relevant to this thesis. Further details

and other types of magnetic order can be found in standard textbooks of con-

densed matter physics [18, 53]. Hence, only a few special forms of magnetic

order encountered in high temperature superconductors will be mentioned in

this section.

2.3.1 Antiferromagnetic spin-density-wave order

Most iron-based superconductors have a low temperature spin-density-wave

(SDW) ordering in the parent compound. For example, the spins in the SDW

ordered state can have an antiferromagnetic spin alignment along one crystal

axis and a ferromagnetic alignment along the other which is called co-linear

antiferromagnetic order, as shown in figure 2.4 and are observed in La1111

[54, 55], Ce1111 [2, 56], Pr1111 [3] and Nd1111 [57].

a

b

Figure 2.4: Depiction of the co-linear antiferromagnetic order if the Fe
atoms in the spin-density-wave state commonly observed in the 1111- and

122-family of the iron-based superconductors.

The SDW transition is always observed at a temperature that is slightly

lower than the structural transition. When these materials are cooled down

from room temperature they reach the structural transition first, which

changes the structure from the tetragonal space group P4/nmm to a mon-

oclinic P112/n or orthorhombic Cmma in the temperature range of 160 K
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to 150 K [2, 3, 54, 55, 57]. The structural transition is followed by a long-

range SDW ordering with a co-linear spin structure (figure 2.4) below 145 K

[2, 3, 55, 58]. Similar behavior, a structural transition followed by an AFM

order, also occurs in the 214-type cuprates [59]. The observed AFM order

in different rare-earth oxypnictides is suggested to arise from a spin-density-

wave (SDW) instability from a nested Fermi surface [5, 42, 54, 60]. However,

it remains unclear how the difference in the band structure can explain the

different observed AFM magnetic structures and moments of Fe in the oxyp-

nictides [2].
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2.3.2 Antiferromagnetic Mott insulator

The parent compounds of many cuprates are antiferromagnetic Mott insula-

tors [61]. They are similar too a number of metal oxides, which should be

metallic under conventional band theory, but they are insulators when they

are measured. Nevill F. Mott [62] proposed that this discrepancy can be

explained by including interactions between electrons and in particular via

the Coulomb interaction. This results in the opening of a gap in the density

of states and leads to insulating behavior.

The simplest theoretical model explaining the metal-to-insulator transi-

tion (MIT) was developed by Hubbard [63–66] in 1964 and is now called the

Hubbard model. This model is based on the tight-binding approximation,

which approximates electrons as occupying the standard orbitals of their

constituent atoms. The electrons then hop between atoms during conduc-

tion described by a hopping matrix term, t. The Hubbard model considers

only electrons in a single band and includes the on-site Coulomb repulsion

as an additional term, U . The Hamiltonian3 is given by

HH = Ht+HU−µN

Ht = −t
∑
〈ij〉

(
c†iσcjσ + c†jσciσ

)
HU = U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
N =

∑
iσ

niσ

where µ is the chemical potential, c†iσ(ciσ) is the creation (annihilation) op-

erator of the electron at site i and with spin σ, while niσ = c†iσciσ is the

number operator. This requires that the relevant low energy excitations be

described by a single band near the Fermi surface. Such a description is

3in second quantized form
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possible with an additional assumption that the orbital degeneracy is lifted

through the strong anisotropic crystal field and that the ligand p-band is

either far enough away or strongly hybridized. Furthermore, the potential is

the on-site Coulomb repulsion and the inter-site effects are neglected. De-

spite the many simplifications used in creating this model is it successful in

recreating the transition between a Mott insulator to a metal.

Further, models [67] were subsequently developed based on the Hubbard

model through the inclusion of additional terms for the nearest-neighbor

interaction (which can explain the charge ordering effect). Cases where more

than one d-orbital have to be considered lead to the degenerate Hubbard

model. But in the case of transition metals such as Cu where all d-orbitals

are filled, except the dx2−y2 band that is half-filled, making the assumption

of a single band still valid. The later case was first described by K.A. Chao,

J. Spalek and A.M. Oles [68] in 1977 by a second order perturbation in t/U to

the Hubbard model, J , leading to the t− J model [68–70] with the following

Hamiltonian,

Ht−J = −t
∑
〈ij〉,σ

Pd

(
c†iσcjσ + c†jσciσ

)
Pd + J

∑
〈ij〉

(SiSj) (2.5)

where the double occupied sites are excluded through the projection operator

Pd and Si,Sj are the spins at sites i and j.

2.3.3 Spin Glasses

The special form of magnetic order observed here is a spin glass state for

the doped Fe1222 compound. A spin glass [71–75] does not show long range

magnetic order and it can occur when there is either a randomness in the

position of the spins or a randomness in the sign of neighboring interactions.

This means there needs to be either site or bond disorder to create a spin

glass. For such a system there exists a characteristic temperature, Tf , called

the freezing temperature. Below this temperature there develops a frozen

irreversible metastable state. The dynamics of such a system is commonly

described by a frequency dependence of the spin glass state with changing
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temperature through the Vogel-Fulcher equation [76–80]:

τ(Tf) = τ0 exp

[
Ea

kB (Tf − T1)

]
(2.6)

where Ea is the activation energy, kB is Boltzmann’s constant and T1 is a

phenomenological parameter of the Vogel-Fulcher law for spin-glasses [80].

The phenomenological parameter is introduced as a measure of the interac-

tion strength within spin clusters to fit the data. The frequency dependence

of τ can be obtained from AC magnetization measurements.
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2.4 Electronic Transport

In this section several models used to explain the electronic transport proper-

ties of the investigated materials in this thesis are described. Most high tem-

perature superconductors have a Fermi-liquid phase in the overdoped region

of their doping phase diagram, where the resistivity follows a T 2-behavior.

Detailed descriptions of the Fermi-liquid state can be found in Ashcroft and

Mermin [18] and references therein, as well as in these references [81–83].

The more interesting transport behavior is at the lower temperature re-

gion for highly disordered systems. Under such circumstances variable-range-

hopping (VRH) can occur, which was first described by Mott [84, 85]. When

VRH is the dominant conduction mechanism, the percolation pathway is de-

termined by two competing types of conduction, which are tunneling, defined

by exp(−2R/ξ), and thermal activated hopping, defined by exp (W/kBT). The

resultant hopping rate between the two states can be written as:

1

τh

=
1

τh,0

exp

(
−2D

ξ
− W

kBT

)
(2.7)

where D is the distance between the two localized states, ξ is the localization

radius, W is the energy difference between the two localized states, and

1/τh,0 is a constant that includes the attempt frequency. Mott then derived

the conduction of the transport process through a single critical hop leading

to the Mott conductivity:

σ = σ0 exp

(
−
(
T0

T

)p)
(2.8)

where T0 is a characteristic temperature of the system and p a characteristic

exponent which differs for different conduction mechanisms. Mott assumed

a constant density of states (DOS) near the Fermi energy, N(EF), which

leads to p = 1/4 and 1/3 for 3D and 2D VRH hopping, respectively. The

characteristic temperature in d dimensions is then given by

T0 =
1

kBN(EF)ξd
(2.9)
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Efros and Shklovskii [86] showed later that the DOS is not constant when

Coulomb interactions are taken into consideration. However, equation 2.8

is still valid in this case with p = 1/2 for all dimensions. The characteristic

temperature in 2D and 3D is given by

T0 =
2.8e2

4πεε0kBξ
(2.10)

where ε0 is the permittivity of vacuum, ε is the dielectric constant of the

material and e the elementary charge. It is possible depending on the disorder

of the system and the temperature to only see a 2D or 3D dependence, or a

crossover from 2D to 3D or vice versa.
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2.5 Magnetoresistance

Magnetoresistance is an effect where the resistivity of the material changes

depending on the applied magnetic field. The magnetoresistance, MR(B),

can be defined as,

MR(B) =
ρ(B)− ρ(0)

ρ(0)
(2.11)

where ρ(B) is the resistivity at an applied magnetic field, B, and ρ(0) is

the resistivity for B = 0. There are several different magnetoresistance

effects including the original ordinary MR discovered by Lord Kelvin 1856

as well as the later discoveries of giant and colossal MR, tunnel MR and

extraordinary MR. This section will mention the basic mechanism of several

types of commonly encountered magnetoresistance and then continue with

a detailed description of the variable-range-hopping quantum interference

(VRH QI) model and the three-carrier formalism used in this work.

Ordinary MR [87] is the simplest form of magnetoresistance, which is due

to the Lorentz force acting on the applied current. This usually means that

a magnetic field perpendicular to the current increases the resistance of the

material and results in a positive MR. This positive MR usually follows a

quadratic field dependent behavior. Extraordinary MR is a geometrical MR

effect associated with an extreme rise in resistance with the application of a

large transverse magnetic field in metal-semiconductor hybrid systems. This

effect is due to the large magnetic field causing the Hall angle to approach

90°, with the current flow inside the metallic region dramatically reduced.

The system’s geometry has a strong effect on this type of MR [88, 89].

A number of compounds are known to show an anisotropic magnetore-

sistance where there is a difference in the resistance depending on whether

the magnetization is parallel or perpendicular to the applied magnetic field.

Anisotropic MR can occur in some 3d transition metals (e.g. Ni, Fe), where

there is s-d scattering and a spin orbit interaction results in scattering in

between the up-spin and the down-spin d states [90]. The net results is that

the resistance is greatest when the magnetization is parallel to the current
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[87, 90, 91].

Giant MR [92, 93] is observed in thin films of electronically spin polarized

materials, where the magnetoresistance depends on the magnetization align-

ment of the spins in adjacent ferromagnetic layer (for example, Co) separated

by a nonmagnetic layer (for example, Cu). Such an arrangement leads to low

resistance for parallel and large resistance in an antiparallel arrangements and

can be controlled by the magnetic field because of the spin scattering rate

dependence on the spin orientation. Another form of giant MR occurs in

magnetic tunnel junctions through spin tunneling [94] also called spin tun-

neling MR. These magnetic tunnel junctions consist of two electronically spin

polarized ferromagnetic layers with an insulating layer in between. If the in-

sulating layer is thin enough (a few nm) then electrons can travel from one

side to the other through quantum mechanical tunneling. The MR in such a

device occurs because the tunneling favors a parallel orientation of the two

ferromagnetic layers. The orientation of the magnetization in these layers

can be changed by the magnetic field and hence the MR also.
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2.5.1 Quantum interference magnetoresistance

Quantum Interference (QI) MR occurs in weakly localized systems where

there is forward and back scattering in a self-intersecting loop that results

in a negative MR [95, 96]. It can also occur in strongly localized materials

and in the 2D and 3D VRH regimes if there are many elastic scattering

centers between the localized hopping sites [97, 98]. This can lead to different

tunneling paths in a “cigar-shaped”4 region that connects two hopping sites

where interference of the tunneling amplitudes can result in an orbital MR

in the presence of an applied magnetic field [97, 98]. Unlike the weakly

localized case, VRH QI occurs only for forward scattering events because

back scattering provides a negligible contribution to the orbital MR. The

requirement for many scattering centers between the hopping sites means

that this type of quantum interference MR is observed at low temperatures

and where the average hopping distance, R̃ [84], is large.

R̃ =

[
T0

T

]n
ξ (2.12)

If the scattering amplitudes are positive then it is possible to have quantum

interference and a positive MR [97, 99–104]. A negative MR can occur if

there is randomness in the scattering amplitude [97, 98, 105–109] with a

typical field dependence of ∼ B2 at low fields and linear at high fields.

4“cigar-shaped” = so called in literature, region which contributes to relevant scattering
amplitude
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2.5.2 Three-carrier formalism

For systems such as the iron-based superconductors, where more than one

band crosses the Fermi surface, multiple carriers can be involved in the

transport, which can have different behaviors. Hence, attempts to explain

such system with just one model often fail and a multi-carrier approach is

needed. Such formalisms were developed for semiconductors using a reduced-

conductivity-tensor (RCT) scheme [110] with different carrier components,

J .

Kim [111] has developed a three-carrier matrix formalism for the longi-

tudinal MR under which the MR can be written as,

MR =
[(α + γB2)B2]

[1 + (β + δB2)B2]
(2.13)

where

α = f1f2 (µ1 − µ2)2 + f1f3 (µ1 − µ3)2 + f2f3 (µ2 − µ3)2

γ = f1f2 (µ1 − µ2)2 µ2
3 + f1f3 (µ1 − µ3)2 µ2

2 + f2f3 (µ2 − µ3)2 µ2
1

β = (f1µ2 + f2µ1)2 + (f1µ3 + f3µ1)2 + (f3µ2 + f2µ3)2

δ = (f1µ2µ3 + f2µ1µ3 + f3µ1µ2)2

fi =
| niµi |∑
| niµi |

and ni is the carrier density while µi is the carrier mobility. This model is
valid for different numbers of carriers J , however the MR for J = 1 would
be zero in an ideal case.
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2.6 Nuclear Magnetic Resonance

NMR uses the splitting of the energy levels of the nuclear spin, I, in an

external magnetic field, B0, (Zeeman effect) and excites these energy differ-

ence with resonant radio frequency pulses. These frequencies are a unique

fingerprint of the nucleus and it surroundings and hence offer a non-invasive

method to study static and dynamic effects. A good overview about NMR

can be found in the book of C.P. Slichter “Principles of Magnetic Resonance”

[112].

NMR is a very good tool for studying high temperature superconductors

because most nuclei contained in them either have I ≥ 1/2 (for example, 63Cu

and 75As have I = 3/2) or it is possible to exchange them for other isotopes

that do (for example, 16O has I = 0, but 17O has I = 5/2). However, NMR in

this work is focused on a systematic study of 75As in CeFeAsO1-xFx (chapter

5). 75As has a nuclear spin of I = 3/2 and this means that quadrupole

interactions play a major role in the spectra. Figure 2.5 shows the energy

level of such a nuclei under an applied magnetic field (Zeeman) and then the

further shifts due to quadrupole interactions treated as first and second order

perturbations. In CeFeAsO1-xFx the first order quadrupole perturbation is

of the order of 10 MHz to 11 MHz. It is possible to directly observe this

without an applied magnetic field in nuclear quadrupole resonance (NQR)

measurements.
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Figure 2.5: NMR energy levels of 75As.

The magnetic frequency shift (ω = 0) and relaxation times (ω = 2πfNMR)

probe the dynamic spin susceptibility, χS(ω, q), which contains information

about the microscopic magnetic structure [112, 113]. Different information

can be extracted from various measurements. For example, the simple ap-

pearance of additional lines in the spectra offers information about magnetic

ordering of the sample. The temperature dependence of the Knight shift

(probing the temperature dependence of χS) can be related to the magnetic

ordering. The spin-lattice relaxation time, T1, probes spin dynamics, which

allows to investigate the increasing spin fluctuations with decreasing temper-

ature.
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2.6.1 75As NMR shift

To be able to calculate the shift of the central transition (m = 1/2 → m =

−1/2), we need to make to several assumptions. First, we have to assume

that the quadrupole interaction can be treated as a perturbation of second

order5. The second assumption is on the axial symmetry of the electric field

gradient (EFG), described by the asymmetry parameter, η:

η =
Vxx − Vyy

Vzz
(2.14)

where Vxx, Vyy and Vzz are the diagonal elements of the EFG6 in its princi-

pal axis. For the relevant iron-based superconductor studied in this thesis

(Ce1111) it is been observed that there is no anisotropy in-plane Vxx = Vyy,

which means η = 0. Then the 75As NMR frequency of the central transition

in a high magnetic field can be written as:

f = 75γB0(1 +K) + ∆fq(Θ, B0) (2.15)

where 75γ =4.596 163× 10−7 rad T−1 s−1 is the gyromagnetic ratio of 75As,

K is the NMR shift and ∆fq is the second order quadrupole contribution as

a function of the applied magnetic field, B0, and Θ is the angle between B0

and the c-axis. Following from equation 2.15 the frequency for c ‖ B0 and

ab ‖ B0 is then:

f‖ = γB0(1 +K‖) (2.16)

f⊥ = 75γB0(1 +K⊥) +
3f 2

q

16 · 75γB0

(2.17)

where the quadrupole frequency measured in c ‖ B0 direction is fq. To be

able to calculate the shift 75K from equations 2.16 and 2.17, it is necessary

to determine the value of 75γB0. This is done by measuring a reference

5the first order perturbation lifts the energy degeneracy of the energy levels. It leads to
a upward shift of the energy levels of |m|=3/2 and a downward shift of these with |m|=1/2
creating three distinct energy differences and hence 3 different resonance frequencies as
shown in figure 2.5.

6The EFG is a second-rank symmetrical tensor
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compound, which is NaAsF6 as described by Harris et. al. [114]. The NMR

shift K usually consists of three different contributions,

K‖,⊥(T ) = KL,‖,⊥ +KS,‖,⊥(T ) +KM,‖,⊥ (2.18)

where KL is the orbital shift, KS is the spin (Knight) shift and KM is the

Meissner (diamagnetic) shift. The Meissner shift only appears in supercon-

ducting samples below TC and is small in comparison to the orbital and the

Knight shifts observed in our samples, hence KM can be safely neglected.

KL and KS are both field independent and magnetic in origin. They are also

orientation dependent due to the orientation dependent hyperfine coupling

constant. However, only KS is dependent on temperature, because KS can

be written as KS = A‖,⊥χS. A is the hyperfine coupling constant and χS the

uniform electronic spin susceptibility. Accordingly, only KS(T ) reflects the

temperature dependence of χS(T ).

2.6.2 The spin-lattice relaxation time, T1 for 75As

The spin-lattice relaxation time, T1, was measured with an inversion recovery

method, τπ − t − τπ/2 − τecho − τπ, where τπ is the time for the π-pulse

which is twice as long as the π/2-pulse, τπ/2. The π/2-pulse was of the

order of several µs and a second π-pulse (the echo) was done after waiting a

certain time, τecho (30 µs for the NMR results reported in this thesis). The

duration, t, between the initial π-pulse (the inversion) and the rest of the

sequence (standard Hahn-echo sequence) was adjusted accordingly. For 75As,

a nucleus with I = 3/2, the theoretical formula to fit the central transition

of a magnetization recovery signal is given by:

M(t) = M(∞)

[
1− f

(
0.1 exp

(
−t
T1

)
+ 0.9 exp

(
−6t

T1

))]
(2.19)

where f is a measure of the quality of the inversion with f = 2 for a perfect

inversion.
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2.6.3 The spin-spin relaxation time, T2 for 75As

The spin-spin relaxation time, T2, was measured with a normal echo sequence

τπ/2 − τecho − τπ, where τecho was changed. The obtained signal can then be

fitted to either a Lorentzian (equation 2.20) or Gaussian (equation 2.21)

decay:

M(t) = M(0) exp

(
−t
T2

)
(2.20)

M(t) = M(0) exp

(
−t2

T 2
2

)
(2.21)

where the separation time, t, is the time between the initial τπ/2 pulse and

the signal, which means t = 2 · τecho.
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Chapter 3

Experimental details

This chapter describes the common sample preparation methods and the

measurement techniques starting with the sample characterization through-

out the synthesis process to ascertain the sample quality or the changing

oxygen content. The electronic and magnetic properties were measured on

these samples using a Physical Property Measurement System (PPMS) or a

Magnetic Property Measurement Systems (MPMS) from Quantum Design.

Nuclear Magnetic Resonance (NMR) experimental details are also discussed

including the NMR spectrometer and the NMR magnets. Measurements

uncertainties are given in brackets with starting with the last digit, f.e.:

0.38(4) meaning that the measured value of 0.38 has a uncertainty of 0.04

and 1350(240) where the value of 1350 has a uncertainty of 240.
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3.1 Sample preparation

3.1.1 Cuprate superconductors

Samples of FeSr2YCu2O6+y (Fe1212) and FeSr2Y2-xCexCu2O8+y (Fe1222)

were made from powders of Fe2O3, Sr(NO3)2, Y2O3, CuO and Ce2O3 (for

Fe1222). Some samples of Fe1212 were also made by adding ZnO so that Zn

partially substitutes on the copper site, while adding CaO or La2O3 for hole

(Ca) and electron (La) doping. These powders are ground together and then

denitrated on a gold foil. Since Sr(NO3)2 was used as a starting product, the

nitrogen had to be removed. The target material itself was synthesized in

the second step in air at temperatures above 1000 ◦C. Further steps involved

annealing in a nitrogen or an argon atmosphere to redistribute as much of the

Fe as possible from the Cu(2) plane to the Cu(1) chain site with subsequent

quenching in liquid nitrogen. Those samples were annealed in an oxygen

atmosphere to increase their oxygen content to promote the appearance of

superconductivity. The high temperature furnaces used are shown in figure

3.1.
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(a) Ventilated furnace for denitration.

(b) Vertical furnace for argon treatment and
quenching.

(c) Horizontal furnace for initial synthesis
and oxygen loading.

Figure 3.1: High temperature furnaces used for synthesis of the
iron-cuprate hybrids.
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3.1.2 Iron-based superconductor

The preparation of pnictide samples is significantly more difficult than the

preparation of the cuprates, because the starting materials as well as the

reaction products are sensitive to oxygen and water contamination, and the

central ingredient is arsenic (As1). Hence, the preparation has to be done in

the controlled environment of a glove box (figure 3.2a) where the humidity

and oxygen content were kept very low (below 3ppm for oxygen and there

are two water traps to keep the water content at a similar level). The glove

box also ensures the arsenic is handled safely.

(a) Humidity and oxygen controlled glove
box.

(b) High temperature oven (up to 1250 ◦C) for
iron-based superconductor synthesis.

Figure 3.2: Equipment used in the synthesis of iron-based superconductors.

The starting materials were mixed inside the glove box and encapsulated

in double walled sealed quartz tubes (figure 3.3) to ensure that no oxygen

could reach the material through diffusion and that no arsenic could escape.

The quartz tubes were filled inside the glove box which contains high purity

argon (99.998 %). They were then taken outside where the open end was

sealed by a vacuum valve. The Tubes were then evacuated and sealed by

heating and melting the quartz with a glass-blower torch. The samples in the

quartz tubes were heated up to temperatures of 1500 K (in a high temperature

1Arsenic is very toxic, for example: the estimated lethal dose of inorganic arsenic in
drinking water is 1 mg kg−1 per day.
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oven shown in figure 3.2b) depending on the material being synthesized. The

final samples were stored in an oxygen and water free environment.

Figure 3.3: An example of a double walled quartz tube sealed under
reduced pressure with a SrFe2As2 sample surrounded by flux.
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3.2 Sample characterization

The samples where characterized after each step in the synthesis by powder

X-ray diffraction (XRD). The room-temperature thermopower, S(300K), was

measured for later steps to get an idea of the oxygen content using a S(300K)

versus hole concentration correlation [115]. Some of the iron pnictide samples

(for example,. BaFe2As2) were later viewed in a scanning electron microscope

(SEM) to investigate their surface and composition. Raman spectroscopy was

performed on the FeSr2YCu2O6+y system to investigate possible changes to

the Raman modes with hole doping.

3.2.1 X-ray diffraction

The X-ray diffraction measurements were done on pressed powder pellets

using a Philips PW1700 series powder diffractometer shown in figure 3.4.

It has a Co tube (λ = 1.789Å) with an operating voltage of 40 kV and a

current of 20 mA. The obtained XRD data were analyzed by EVA software

to determine the sample quality.

Figure 3.4: Philips PW1700 series powder diffractometer.
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3.2.2 Home built thermopower setup

The room temperature thermopower, S(300K), was determined using a home

built thermopower setup shown in figure 3.5. The sample pellet was squeezed

in between two copper plates, which are used to measure the voltage across

the sample. A simple resistor is used to heat one side of the sample to cre-

ate a temperature gradient across the sample and a differential thermocou-

ple measured the change in temperature. The thermoelectric voltages were

measured before and after a stable temperature gradient was applied. The

thermopower was obtained from ∆V/∆T were ∆V is the change in voltage

and ∆T is the change in temperature.

Figure 3.5: Room temperature thermopower measurement setup.
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3.2.3 Scanning electron microscope

A Quanta scanning electron microscope (SEM) (figure 3.6) was used for

imaging the iron pnictide samples. Several different configurations were used

including bright-field, dark-field imaging and electron back scattering to ob-

tain the images. Energy dispersive X-ray spectroscopy (EDS) measurements

were done to ascertain the composition and sample quality.

Figure 3.6: Quanta SEM
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3.2.4 Raman spectroscopy

The Raman measurements were carried out using a 514 nm green Ar-ion laser

on a LabRAM system shown in figure 3.7. The LabRAM setup uses a con-

tinuously adjustable confocal aperture in the object plane of the microscope

with an Olympus BX objective enabling high performance in spatial and ax-

ial resolution. A laser notch filter was used to reject the laser line. There is a

single grating to disperse the scattered light and it is possible to select a 600

lines per mm or an 1800 lines per mm grating using a translating shaft to

provide different spectral resolutions. The dispersed light was detected using

a cooled highly sensitive CCD2 linear array detection system and laser notch

filter technology is used inside the single stage spectrometer. The system

also provides the possibility to maximize sensitivity at different excitation

laser lines by selecting specifically blaze optimized gratings.

Figure 3.7: LabRAM

2CCD= charge-couple-device
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3.3 The Physical Property Measurement Sys-

tems and the Magnetic Property Mea-

surement System

A large part of the investigation of the sample properties were done using the

commercial Physical Property Measurement System (PPMS) and Magnetic

Property Measurement System (MPMS) system from Quantum Design (fig-

ure 3.8). Detailed information about the equipment can be found on their

website.

(a) PPMS (b) MPMS

Figure 3.8: Magnetic lab at Robinson Research Institute (RRI) with a)
PPMS and b) MPMS.

3.3.1 Resistivity and magnetoresistance

Resistivity measurements were performed with the resistivity option of the

PPMS, which includes a sample rotator to orient the sample relative to the

applied magnetic field for magnetoresistance (MR) measurements. A 4-point

probe configuration was used and the sample contacts were established with

a two-part silver epoxy from EPO-TEK. An example can be seen in figure

3.9, where a sample of BaFe2As2 is shown with copper wire contacts on it.

Similar configurations were used for all samples and the resultant resistivity,

ρ, can be calculated from the measured resistance R, the cross-section area
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A, and the voltage contacts separation l :

ρ =
R · l
A

(3.1)

The cross-section area is determined by the thickness of the sample typical

in the order of 0.1 mm and the relevant width between the two voltage con-

tacts (inner two) typically around 0.5 mm. However, the uncertainty in the

resistivity is rather large for the iron-arsendide samples due to their size and

hence the width of the sample is usually larger than the voltage separation.

Therefore, the resistance is usually displayed for those samples. This is also

no problem for the analysis, because the values are consistent in each other

(for example figure 4.2 and 4.3) and there are only trends analyzed, where it

is not important if that absolute value of the resistivity is 5 times bigger or

smaller.

Figure 3.9: A sample of BaFe2As2 with copper wires connected for
resistivity and magnetoresistance measurements.
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3.3.2 DC magnetization in a vibrating sample magne-

tometer

DC magnetization measurements were performed using the vibrating sample

magnetometer (VSM) option of the PPMS. A small portion of the sample

weighing around 10 mg to 50 mg was placed in a gelatin capsule mounted on

a brass holder (figure 3.10), which was inserted into the VSM.

Figure 3.10: Sample in the gelatin capsule in a brass sample holder for the
VSM option of the PPMS.

The vibrating sample magnetometer (VSM) was initially invented by Si-

mon Foner in 1956 [116] and is nowadays available as a dedicated option of

the PPMS. The PPMS provides a static and uniform magnetic field to mag-

netize the sample, which is physically vibrated sinusoidally inside this field.

This movement induces a voltage in the surrounding pickup coils which is

proportional to the magnetic moment of the sample. Hence, the obtained

voltage can be directly related to the magnetic moment of the sample memu,

in [emu], which can subsequently be converted to SI magnetization in [A m−1]

as shown below,

M =
memu

m
ρ · 1000 (3.2)

where ρ is the density of the sample in [g/cm3] and m the mass of the sample

in [g].

The susceptibility, χ, in the paramagnetic state can be written in the
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Curie-Weiss (CW) form as,

χ =
M

H
=

Nµ0µ
2
BP

2
eff

3V kB(T −Θ)
+ χ0 (3.3)

where V is the volume that contains N magnetic ions, µ0 is the vacuum

permeability, Peff is the effective moment per magnetic ion (Fe and Cu) in

units of Bohr magnetons µB, Θ is the CW temperature, T is the temperature

and χ0 is the temperature independent susceptibility. When fitting the data

the Curie constant, C, is obtained and can be written as:

C =
Nµ0µ

2
BP

2
eff

3V kB

(3.4)

The effective moment per formula unit in Bohr magnetons can be calculated

from C [18]:

P f.u.
eff =

√
3kBV C

Nµ0µ2
B

(3.5)

The relevant volume is the volume per formula unit, where the number of

iron and copper atoms is known. This volume per formula unit, Vf.u., can be

calculated from,

Vf.u. =
Mr

NAρ
(3.6)

where Mr is the molar mass and NA is Avogadro’s constant. The suscepti-

bility will depart from the CW temperature dependence as the temperature

approaches a magnetic ordering transition. This departure can be seen by

a plot of 1/(χ−χ0) against temperature, which is linear in the paramagnetic

temperature region. The value for the Curie-constant is represented by the

slope of the linear region and the Curie-temperature by the intercept with

the temperature-axis.
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3.3.3 DC magnetization with the MPMS

An alternative to the VSM for DC magnetization measurements is the stan-

dard transport of the MPMS. Each sample was mounted in a plastic straw

and then inserted into the standard transport of the MPMS. The moment is

measured by moving the sample through a series of coils that are connected

to a SQUID, which is the acronym for superconducting quantum interfer-

ence device. The SQUID, consisting of a superconducting loop containing a

Josephson junction [117, 118], is a very sensitive magnetometer and moments

below 1 µemu can be measured.

3.3.4 AC magnetization

AC magnetization measurements were performed with the ACMS option of

the PPMS to determine the frequency dependence of magnetic transitions.

The ACMS has an AC drive coil that provides an AC magnetic field. A

DC magnetic field can also be applied using the superconducting magnet. It

is then possible to measure the sample response under a small alternating

excitation field provided by the AC drive coil. The AC moment can be

measured from 10 Hz to 10 000 Hz.
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3.4 Nuclear Magnetic Resonance setup

NMR measurements were done at the University of Leipzig in the group of

Prof. Jürgen Haase, where the necessary equipment is available. A magnet

(figure 3.11a) with a field of 11.74 T was used for NMR measurements, which

corresponds to a proton frequency of 500 MHz. To check the field dependence

of the NMR signal smaller and larger magnets with fields of 7.04 T and

17.63 T were also used. These magnets supplied an uniform static external

field, B0, which leads to a Zeeman splitting. The samples were mounted

in a tuneable and matchable probehead (figure 3.11c), and placed inside a

continuous flow cryostat allowing NMR measurements to be performed in a

temperature range of 300 to 5 K. Two different spectrometers were used - the

first is from Apollo (figure 3.11b) and the second from Bruker. Both provide

high power radio frequency pulses and can detect the resultant NMR signal.
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(a) 11.74 T magnet corresponding to a proton
NMR frequency of 500 MHz

(b) NMR spectrometer

(c) Tuneable and matchable NMR probehead

Figure 3.11: NMR lab equipment.
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3.4.1 The resonant circuit

(a) Enlargement of the NMR probehead.

L R

C2

C1

(b) Schematic of the resonant circuit

Figure 3.12: NMR probehead with resonant circuit.

The probehead itself contains a capacitive loaded resonant circuit, which is

shown in figure 3.12. The actual resonant circuit has an additional capacitor,

C1, placed before it to match the input impedance of the spectrometer of

50 Ω. The circuit then contains a second capacitor, C2, to tune the resonant

circuit to the desired resonance frequency. The resistance of the circuit comes

nearly completely from the coil (with the inductance L), which is indicated

by a resistor in series with the coil. Then the frequency, f0, of the resonant

circuit is given by

f0 =
1

2π
√
L (C1 + C2)

(3.7)
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Chapter 4

Magnetic and electronic

properties of CeFeAsO1-xFx

4.1 Introduction

Superconductivity in the iron-based superconductors with higher supercon-

ducting transition temperatures, TC, was first discovered in LaFeAsO1-xFx

(La1111) [29] with a maximum TC of 26 K. La[119] can be replaced with

other rare-earth ions (R-1111) such as Ce [2, 120], Pr [121], Nd [57], Sm

[122] and others [6, 123, 124]. The highest recorded TC is 56 K [30]. When

La is replaced by Ce (in CeFeAsO1-xFx) superconductivity starts to appear

at a fluoride (F) concentration of x=0.06, reaching a plateau in TC=41 K

around CeFeAsO0.84F0.16 [2, 10, 125] and slowly increasing further even be-

yond x=0.30 [9]. Hence, the superconducting dome is rather flat when

compared to the cuprates. For a fluoride content below x=0.06 there is a

spin-density-wave (SDW) transition [2], which is associated with an anti-

ferromagnetic order of the Fe moments. The SDW transition occurs at a

temperature of 140 K [2] for the parent compound of Ce1111. The SDW

transition temperature is decreasing with increasing F doping and vanishes

when superconductivity appears. There is also a structural transition from

tetrahedral to orthorhombic around a temperature of 155 K for pure Ce1111

[2]. The structural transition temperature decreases with increasing F con-
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tent up to x=0.10, where it vanishes into the superconducting dome [2].

The Ce moments order below 5 K [2] for the pure Ce1111 material and the

ordering temperature decreases with increasing F doping.

In addition to having a high TC the 1111-family also exhibits a very

high upper critical field, Bc2, and a high irreversible field, Birr [126–128].

Both are very important properties for practical applications and the latter

suggests a higher superconducting critical current density. Earlier studies on

superconducting CeFeAsO0.9F0.1 samples indicate Bc2 values between 94 T

[129] to 185 T [130].
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4.2 Synthesis and structure

Polycrystalline samples of CeFeAsO1-xFx were synthesized using a standard

solid state reaction method, where FeAs and CeAs were pre-synthesized [131]

and ground together with Fe, As, CeO2 and CeF3. The powder was pressed

into pellets and sealed into evacuated quartz tubes. These pellets were then

heated to 1000 ◦C for 24h before a second heating to 1180 ◦C for 50h with an

intermediate grinding and repelleting. The quality of all the prepared sam-

ples were checked by powder XRD measurements (figure A.1), which showed

minor impurities caused by FeAs, FeAs2 and Ce3Fe4O3. Superconductivity

was confirmed in the higher doped samples of x≥0.13 by resistivity measure-

ments. For NMR measurements all samples were mixed with a slow curing

epoxy (EPO-TEK 301) and aligned in a 1 T magnet rotating at 60 rpm with

the field perpendicular to the rotating axis. XRD analysis of the aligned

samples via rocking curves1 showed the (004) reflection’s full width at half

maximum (FWHM) of around 7° or smaller employing Co-Kα radiation.

CeFeAsO1-xFx has a layered structure of alternating CeO and FeAs layers

(figure 4.1). There are two important facts worth mentioning here: the 1111

family is closest to being 2D-like similar to the cuprates, and secondly, the

Fe and As are not planar (unlike Cu and O in the cuprates), but sit in a

tetrahedral configuration, where arsenic atoms are above and below the iron.

This appears to be important as the highest values for TC are observed for

the doping where the Fe-As configuration approaches a perfect tetrahedron

[2].

1fixed 2Θ angle on a certain strong peak to determine the quality of the alignment,
which is important for NMR measurements
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Figure 4.1: Crystal structure of CeFeAsO1-xFx (adjusted from [132]).
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4.3 Resistivity ρ

The resistivity was measured with a 4-point-probe configuration under dif-

ferent applied magnetic fields. All samples show a low resistivity value at

room temperature in the mΩ cm range.

4.3.1 Zero field resistivity of the non-superconducting

sample x=0.07
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Figure 4.2: Temperature dependence of the resistivity for the 0.07 sample
with a minimum around 150 K. Inset: Enlarged low temperature region

where there is a small decrease of the resistivity due to antiferromagnetic
order of the Ce moments.

Figure 4.2 shows temperature dependent resistivity for x=0.07, which ini-

tially decreases with decreasing temperature from 300 K to a minimum around

150 K before increasing with temperature. However, neither a SDW transi-

tion, which should have resulted in a significant drop in resistivity at the

transition temperature, nor a superconducting transition, with the decrease
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to zero resistivity, were observed. Examples of these aforementioned fea-

tures are seen at different dopings in CeFeAsO1-xFx [120, 133, 134] and in

LaFeAsO1-xFx [29, 135]. The sample with x=0.07 is expected to be in the

region were SDW ordering vanishes and superconductivity emerges. The ob-

served resistivity in figure 4.2 indicates that the sample is close to that point,

where neither SDW nor superconducting ordering take place. It is clearly

non-superconducting and shows only a slight indication of a transition (inset

of figure 4.2) below 4 K, which is likely to be due to antiferromagnetic order-

ing of the Ce moments [2]. In the next chapter, NMR measurements (figure

5.15) confirms a SDW transition in the aligned sample of CeFeAsO0.93F0.07

around 20 K. The change in slope in the resistivity around 150 K is too high

to be due to Kondo behavior. However, these are polycrystalline powders

similar to the cuprates and other polycrystalline samples where such behavior

is seen for transport through grain boundaries.

4.3.2 Zero field resistance for superconducting samples

The temperature dependence of the resistance is shown in figure 4.3 for all

superconducting samples (x=0.13, 0.15, 0.20, 0.25). TC is found to increase

from 35(1) K for x=0.13 to 42(1) K for x=0.25 which is consistent with the

reported phase diagrams in references [2, 9, 120]. The temperature depen-

dence of the resistivity follows a Fermi-liquid (proportional to T 2) behavior

until the vicinity of the superconducting transition, where there are super-

conducting fluctuations followed by a superconducting transition in which

the resistivity drops to zero. This region above TC can be analyzed in terms

of fluctuation conductivity (FC) [136, 137] and the region below TC can be

broadened by thermally assisted motion of the vortices similar to the cuprates

[138].
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Figure 4.3: Temperature dependence of the resistance for all the
superconducting samples with a Fermi liquid fit to the normal state

resistance.

4.3.3 Fluctuation conductivity of superconducting sam-

ples

The fluctuation conductivity becomes noticeable by the deviation of the resis-

tivity from the normal state behavior in the vicinity of the superconducting

transition. For layered superconductors there are two dimensional super-

conducting fluctuations at higher temperatures and three dimensional super-

conducting fluctuations very close to TC [136]. The fluctuation conductivity

was calculated from the resistivity by subtracting the normal-state resistiv-
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ity from the measured resistivity. The normal-state resistivity is observed to

follow a Fermi-liquid temperature dependent behavior,

Rn(T ) = R0 + A · T 2 (4.1)

where R0 is the temperature independent resistance. Equation 4.1 is then fit-

ted to the measured resistance above 60 K and the difference between normal-

state resistance and the observed resistance is calculated at the vicinity of

the superconducting transition to obtain the excess conductivity, ∆σ. The

fitted normal-state resistance are shown in figure 4.3 as red lines and the

calculated fluctuation conductivity in figure 4.4. The fluctuation conductiv-

ity in a layered superconductor is due to an acceleration of superconducting

pairs and can be written as [136, 137] in the case of ε� 1,

∆σ =
πe2

16hdε[1 + (2ξc
d

)2(1
ε
)]1/2

(4.2)

where e is the elemental charge, h is the Planck constant, d is the separation

between the superconducting planes, ξc is the c-axis coherence length and

ε = T/TC − 1. Figure 4.4 also shows the fit to 3D regions (ξC > d), where

the fluctuation conductivity follows a ∆σ ∝ ε−0.5 dependence for 3D [136].

There is a crossover between 3D to 2D as the temperature is increased and

the crossover is closer to TC for lesser fluoride content, which is due to a

smaller coherence length. Liu et. al. [139] investigated RFeAsO1-xFx (R=Nd,

Pr, Sm) where they also found a small 3D temperature region crossing over

to a larger temperature region with 2D fluctuations in agreement with our

observations. A similar crossover is also reported for LiFeAs [140].
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Figure 4.4: Fluctuation conductivity for all the superconducting samples
with fitting to 3D regions.

4.3.4 Field dependent resistivity in the superconduct-

ing state

The resistance was measured for different applied magnetic fields and shown

in figure 4.5. It is apparent that the superconducting transition becomes

broader and develops a tail with higher field. This tail is due to thermally

assisted motion of vortices [138, 140, 141].
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Figure 4.5: Temperature dependent resistance at around the
superconducting transition at different applied fields.

It has been found in the iron-based superconductors that this vortex

motion can be analyzed using the thermally assisted flux flow (TAFF) theory,

where the resistivity can be written as [138, 140, 141]:

ρ =

(
2ν0LB

J

)
exp

(
−Jc0BV L

T

)
sinh

(
JBV L

T

)
(4.3)

with ν0 being the attempt frequency of a flux bundle hopping, L is the hop-

ping distance, B is the magnetic induction, J is the applied current density,

Jc0 is the critical current density without flux creep, V is the bundle volume

and T as the temperature. With the introduction of the thermal activation
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energy U = Jc0BV L and ρC = ν0LB/Jc0 equation 4.3 can be reduced, if J

is small enough and JBV L/T � 1 , to

ρ =

(
2ρCU

T

)
exp

(
−U
T

)
= ρ0f exp

(
−U
T

)
(4.4)

Because the prefactor
(

2ρCU
T

)
is only weakly temperature dependent, it is

assumed to be a constant ρ0f for the cuprate superconductors [141]. The

activation energy can be written as U (T,B) = U0 (B) (1− t) [140], where

the reduced temperature, t = T/TC. The Arrhenius relation is then:

ln (ρ (T,B)) = ln (ρ0 (B))− U0 (B)

T
(4.5)

ln(ρ0(B)) = ln(ρ0f ) +
U0(B)

TC

(4.6)

where the linear slope in the TAFF region of the plot of ln ρ vs 1/T gives the

activation energy U0 (B) and the vertical intercept equals ln ρ0 (B) [140]. An

example of the Arrhenius fit is shown in figure 4.6.
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Figure 4.6: Example of Arrhenius plot for x=0.15 at 2 T with a linear fit to
the TAFF region.

Similar plots were done for all magnetic fields and for all the supercon-

ducting samples and the extracted linear fit values from the TAFF region

are shown in figure 4.7. Such a plot allows the extraction of TC and lnρ0f

from the linear fit using equation 4.6. The obtained values for the activation
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energy are shown in table 4.1 and plotted in figure 4.8, where it can be fitted

to a power-law U0 (B) ∼ Bn.
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Figure 4.7: Arrhenius fits for Ce1111 for all superconducting samples.
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H [T] 0.13 0.15 0.20 0.25

1 770(80) 1410(140) 1350(130) 980(100)
2 690(70) 1080(110) 1010(100) 860(90)
3 570(60) 950(100) 990(100) 760(80)
4 500(50) 830(80) 890(90) 650(60)
5 430(40) 710(70) 750(80) 540(50)
6 380(40) 650(60) 600(60) 530(50)
7 340(30) 580(60) 530(50) 480(50)
8 300(30) 530(50) 430(40) 440(40)

Table 4.1: Field dependence of U0/kB for all Ce1111 superconducting
samples.
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Figure 4.8: Field dependence of U0/kB for all Ce1111 superconducting
samples and fits to a power-law. Inset: Fitted exponent n of the power-law.

The field dependence of the activation energy U0 (B) can be fitted to a

power-law with an exponent which is close to n ∼ −0.5 for all samples within

the uncertainties. Previous studies of the activation energy, U0, in iron-based

superconductors [4, 130, 142] have followed a power-law dependence as well.
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An exponent value of n ∼ −0.5 suggests a strong field dependency and

collective-vortex pinning is dominant over that field region [143–145].
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4.4 Superconducting critical current density

Another important property of superconductors, especially for potential prac-

tical applications, is the critical current density, JC. Magnetization field-

loops (M vs. B) were used to obtain the width of the irreversible magneti-

zation ∆M = M− −M+ , with M+ and M− being the branches of the field

loop with increasing and decreasing field, respectively. An example of a field

loop for x=0.15 at 5 K is shown in figure 4.9. The paramagnetic component

of the magnetization, Mp ≈ (M− −M+) /2, was subtracted from the field

loop before using the Bean’s critical state model [146, 147] to determine JC:

JC =
3∆M

R
(4.7)

The average particle size, R, can be determined from scanning electron mi-

croscope (SEM) and XRD. All XRD patterns of CeFeAsO1-xFx show small

linewidth (figure A.1), which are to small for the Scherrer equation suggesting

the overall particle size has to be larger than 1 µm. The SEM image (figure

A.2) showed particle sizes in the range of 1 µm to 100 µm. While the particle

size has a big influence on the absolute value of JC, it does not change the

studied dynamics. Hence, for all further calculations R was assumed to be

∼10 µm2.
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Figure 4.9: Magnetization field loop for CeFeAsO0.85F0.15 at 5 K.

2obtained values for JC are in the same range as values obtained by other group for
similar compounds
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JC is calculated for all four samples for 5 K and 10 K as shown in figure

4.10. The field dependence of JC for all four samples show three different

field regions. A very low field region below 0.04 T, an intermediate region

from 0.04 T to a certain field, B∗, and a high field region above B∗.
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Figure 4.10: Field dependence of the critical current density JC for all four
superconducting samples.

JC is roughly field-independent in the low field region. The screening

currents produce a self-field which is much higher than the external field

(Bself � Bext). With increasing field above 0.04 T JC starts to decrease in the

intermediate region, which is a common feature in both low temperature su-

perconductors (LTSC) and high temperature superconductors (HTSC) [148].

In this region, JC is linear in a log vs log plot as shown in figure 4.10. Hence, it

can be fitted to an inverse power-law dependence on the field: JC (B) ∝ B−n

[149], which is shown as solid lines in figure 4.10. The exponent, n, of the

inverse power-law increases with increasing doping from 0.39 for x=0.13 to

0.62 for x=0.25 shown in figure 4.11, and display a correlation with B∗.

83



0.12 0.16 0.20 0.24
0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10
 

n

x

B
* 

[T
]

Figure 4.11: Doping dependence of B∗ together with the exponent, n, from
the power-law fit.

These values are within the range observed in the cuprates (n = 0.25−1)

[149, 150]. It is also believed that the existence of networks from weak links

between grains and the thickness of the grains boundaries are responsible for

the observed power-law behavior in HTSC [148, 149]. It is also noticeable

above a certain critical field, B∗, that the power-law dependence of JC van-

ishes. This is due to the suppression of weak links, which are responsible for

the power-law dependency. Above B∗ they are driven to normal state and

hence no longer contribute to JC as observed in HTSC [149]. Furthermore,

there is clear evidence of a peak-effect which is most obvious in the x=0.15

sample. The peak-effect in JC is observed in some HTSC [151, 152] as well as

in the iron-based superconductors [130, 131, 153–156]. Possible explanations

of the peak-effect include the magnetic field dependence of the vortex pinning

potential and different crossover regimes in the vortex structure [154, 156].
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Figure 4.12: Doping dependence of JC and the activation energy U0.

The doping behavior of JC is shown in figure 4.12 for an external mag-

netic field of 1 T. It is apparent from the plot that JC peaks somewhere

between x=0.15 and x=0.20 for 5 and 10 K. This behavior is contrary to

a monotonic increase in TC with increasing doping. A maximum in JC in

the slightly overdoped region was previously reported in the HTSC material

Y1-xCaxBa2Cu3O7-δ [157]. It is attributed to an effect of the normal-state

pseudogap which reduces the superconducting order parameter. JC reaches

a maximum at 0.19 holes per copper then decreases when the normal-state

pseudogap vanishes. It is believed to reduce afterwards due to a reduction

in the superconducting gap energy. There are reports of a normal state

pseudogap in LaFeAsO1-xFx [158–160] and SmFeAsO1-xFx [161]. However,

no observation of a normal-state pseudogap is reported for CeFeAsO1-xFx.

It was also suggested that the normal-state pseudogap causes the decrease

of Bc2 in Y1-xCaxBa2Cu3O7-δ, which peaks around p ∼ 0.19 hole doping

where the normal-state pseudogap vanishes [162]. The opposite behavior is

observed for CeFeAsO1-xFx, where no peak is noticed in Bc2 from x=0.13

to x=0.25 F-doping presented in the next section. Therefore, a pseudogap

cannot explain the observed peak in JC in our sample.

Figure 4.12 shows the doping dependence of JC as well as the doping

dependence of the activation energy. A peak in U0 is seen at the same

doping region as the peak in JC. This means that the maximum in JC is

due to the doping dependence of the depinning energy barrier. In a two-fluid
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flux creep model in granular samples a correlation occurs between JC and U0

where the collective response of vortices operates [143, 163]. In this model

the relationship between U0 and JC is described by [143, 163]:

U0 (t, B) ≈ JC (0)

[
Kg (t) t

B

]
(4.8)

with t = T/TC the reduced temperature, g (t) = 4 (1− t)3/2, and the constant

K = 3
√

3Φ0β/ (2c), where c is the speed of light, Φ0 is the flux quantum and

β a numerical constant close to unity value. By plotting JC (from figure 4.10

at 5 K and 1 T) versus U0 (from figure 4.8 at 1 T) in figure 4.13 an excel-

lent agreement between both values within the experimental uncertainties is

observed, which is predicted by this two-fluid flux model.
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Figure 4.13: A linear relationship between U0 and JC within the two fluid
flux creep model.
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4.5 Upper critical field, Bc2

The superconducting transition temperature, TC, is seen to reduce system-

atically with increasing magnetic field in all samples. The change in TC from

zero field to the maximum applied field (∆TC = T 0T
C −T 8T

C ) in figure 4.5, for

all the superconducting samples are compared. The observed change is small

for x=0.13 with ∆TC=1 K and increases with increasing F-doping towards

∆TC=3.9 K for x=0.25. This indicates a decrease in Bc2 with increasing

doping. The method used in the literature [128, 130, 164, 165] to estimate

the powder-averaged upper critical field is to use the temperature where the

resistivity is reduced to 90 % of the normal state resistivity. The obtained

upper critical field versus temperature are shown in figure 4.14.
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Figure 4.14: Temperature dependence of the upper critical field, Bc2.

Bc2 is not linear over the whole field region and it deviates from the high

field linearity moving closer to TC [130]. Therefore the average gradient above

1 T was used to estimate dBc2/dT from figure 4.14. This method of obtaining

Bc2 was previously demonstrated in the “linear analysis” to determine Bc2 for

YBa2Cu3O7-δ [152] and MgB2 [166]. Figure 4.15 shows the gradient obtained

with the described method, which decreases from −6.1 T K−1 for x=0.13 with

increasing doping to −2.1 T K−1 for x=0.25. These values agree with values

reported earlier by Shabazi et al. [130], but are slightly higher than those

reported by Prakash et al. [129].
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Figure 4.15: Doping dependence of dBc2/dT .

From figure 4.15 it is possible to estimate the orbital limiting field at 0 K,

Borb
c2 (0), through the single-band Bardeen-Cooper-Schrieffer (BCS) Werthamer-

Helfand-Hohenberg (WHH) formula [167]:

Borb
c2 (0) = 0.693TC |

dBc2

dT
|TC (4.9)

The obtained orbital limiting fields for x=0.13 to 0.25 F-doping are shown in

figure 4.16a. There is a noticeable decrease in Bc2 (0) with increasing doping

until it becomes roughly independent of doping for x ≥ 0.20.
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Figure 4.16: Limiting fields for Bc2 against doping.

In the BCS theory there exists a limit for Bc2 which a BCS superconductor
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cannot exceed. This limit is call the Pauli limiting field, BP
c2(0), and it

can be defined as the field, where the superconducting condensate energy

equals the normal state Zeeman energy. The BCS BP
c2(0) can be calculated

from BP
c2(0) = 1.84µ0TC and these values are shown in figure 4.16b. It is

shown in previous studies of iron-based superconductors that several of them

can exceed the Pauli limiting field [128, 168, 169]. The relative importance

of spin-orbit versus Pauli paramagnetic pair-breaking can be qualitatively

gauged by the Maki parameter, α [144],

α =
√

2
Borb

c2 (0)

BP
c2(0)

(4.10)

At low orbital limiting field, α can reach values close to 1, which is observed

for x=0.20 and above. The value of α can even exceed 1 as shown in figure

4.17 for a doping of x=0.15 and below. Such large α values suggest that pair-

breaking is not limited to Pauli limiting effects but orbital effects have to be

included. Large α values have been observed in other RFeAsO superconduc-

tors with R=La [168] and Sm [169]. They suggest that spin-orbit scattering

should be included to calculate Bc2. However, it looks like the single-band

model is insufficient to get a satisfactory result. A two-gap model seems

to be required to describe Bc2 in the iron-based superconductors [168, 169]

although that can depend on the orientation of the ab-plane with respect to

the applied magnetic field [169].
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Figure 4.17: Maki parameter, α, against doping.
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4.6 Irreversible field, Birr

The irreversible magnetic field, Birr, is commonly used to determine an upper

limit for JC. Birr for all the superconducting samples of CeFeAsO1-xFx was

determined from the difference between the field-cooled (FC) and zero-field-

cooled (ZFC) magnetization, ∆M (figure 4.18a), at fixed applied magnetic

fields up to 6 T. Birr is defined as the magnetic field at which ∆M fell to less

than 140 A m−13 [170].
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Figure 4.18: Irreversible magnetic field, Birr.

Figure 4.18b shows the obtained Birr for all four samples plotted against

the reduced temperature, t = T/TC. In the HTSC cuprates there is a critical

behavior commonly observed around TC. Therefore, the data from figure

4.18b is replotted on a log-log scale in figure 4.19, which provides more details

about the vortex dynamics especially their melting behavior. The data can

be described with a power-law:

Birr ∝ (1− t)n (4.11)

where the exponent n is an indication of the different vortex dynamics. An

exponent of n ∼ 1.5 was found for MgB2 [171] which is due to a collective

31 mT=7.958× 10−6 A m−1
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pinning commonly observed in LTSC. An exponent of n = 1.5− 2 was found

in HTSC Bi2-xPbxSr2Ca2Cu3O10+y [170] and Y1-xPrxBa2Cu3O6+y [152, 172]

for t > 0.8, which is associated with a 3D vortex lattice-melting model. In

CeFeAsO1-xFx there are two regions with different exponent values. The

regions are separated at around t = 0.8, with values above 0.8 being n ≥
3 and values below 0.8 following a power-law dependence around n ∼ 2.

This is associated with 3D vortex lattice-melting model as it is observed in

other low anisotropy iron-based superconductors [147, 173, 174] and in the

aforementioned HTSC cuprates [152, 170, 172].

doping TC[K] n for t < 0.8 n for t > 0.8

0.13 33.5 1.74 3.08
0.15 35.0 2.02 3.84
0.20 38.1 2.24 6.78
0.25 42.5 2.68 4.70

Table 4.2: Fitted exponent values of the power-law dependence of the
irreversible field Birr.
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Figure 4.19: Plot of log(Birr) vs log(1− t) for CeFeAsO1-xFx. Also plotted
are fits to (1− t)n with n ∼ 1.7 to 2.7 for t < 0.8 (dashed lines) and n > 3

for t > 0.8 (solid lines).

To investigate the doping dependent behavior of Birr, one can scale the ir-

reversible field against Bc2(0) as shown in figure 4.20 by the zero temperature
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Bc2:
Birr(T, p)

Bc2(0, p)
= β · (1− t)n (4.12)

The scaled Birr increases with increasing doping (figure 4.20) and the ob-

tained power-law exponent values are the same as shown in figure 4.19.
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Figure 4.20: Scaling of Birr by Bc2(0) and the fit to a power-law dependent
behavior.
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4.7 Susceptibility

Susceptibility measurements were performed to determine the effective mo-

ment of non-superconducting CeFeAsO0.93F0.07. This particular sample was

chosen because it is close to the crossover from SDW transition and super-

conductivity as previously shown in section 4.3.1. Therefore it is neither

superconducting and should not be magnetically ordered, although it will be

shown later that there is a SDW transition around 20 K (chapter 5). The

effective moment (in µB) of Ce in the paramagnetic region can be calculated

from [18]:

PCe
eff = g(JLS)

√
J(J + 1) (4.13)

where g is the Landé g-factor and L, S and J are the orbital, spin and total

angular momentum. Ce has a standard electron configuration of 4f 1, which

gives s = 1/2, L = 3 and J = 5/2. With that g(JLS) can be calculated from

[18],

g(JLS) =
3

2
+

1

2

S(S + 1)− L(L+ 1)

J(J + 1)
(4.14)

giving g(JLS) for Ce= 6/7. Therefore, the theoretical free effective moment

for Ce is PCe
eff = 2.54µB.

0 50 100 150 200 250 300
0.0

5.0x10-4

1.0x10-3

1.5x10-3

2.0x10-3

2.5x10-3

3.0x10-3

T [K]

Figure 4.21: Temperature dependent susceptibility of CeFeAsO0.93F0.07.

The susceptibility was measured in a field of B=6 T on a sample with a

mass of 40.1 mg. The results are shown in figure 4.21 together with a fit to

a Curie-Weiss (CW) temperature dependent behavior above 25 K, which is
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above the iron and the cerium magnetic ordering temperatures. The obtained

fitted parameters gave a CW temperature of−4 K in good agreement with the

ordering of the Ce moments, a value of χ0 =2.5× 10−5 for the temperature

independent part of the susceptibility and a CW constant of 0.0234. With the

fitted χ0 value the temperature dependent of 1/(χ−χ0) can be plotted, which

shows a linear dependency over the whole measured temperature region as

shown in figure 4.22.
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Figure 4.22: Linear temperature dependent behavior of 1/(χ− χ0)
for CeFeAsO0.93F0.07.

The effective magnetic moment of CeFeAsO0.93F0.07 can then be calcu-

lated with equation 3.5. N is 2 (two formula per unit cell) [175] and the

volume V can be calculated from the known density ρ=6.981 g/cm3 through

equation 3.6 with a empirical molar mass of 287.092 g mol−1. Equation 3.5

gives an effective moment per cerium of PCe
eff =1.57(1)µB for the least-squares

fit from figure 4.21. This is smaller than the predicted value for the free mag-

netic moment of Ce3+. The measured values could be lower, because this cal-

culation ignored the contribution from iron moments. The iron effective mo-

ment is not known although there is an ordered moment of PFe =∼ 0.4−0.8µB

[145, 159, 176–178] in the SDW state. A possible explanation is that there are

Zener-type [179] antiferromagnetic interactions between the itinerant carriers

in the FeAs plane and the localized Ce moments. These interactions are a

special form of superexchange interactions called double exchange or Zener-

type, where electrons can be exchanged between two metal ions of equal or
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+2 charge state via a connecting ligand.
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4.8 Summary and conclusions

The electronic transport and magnetic properties of CeFeAsO1-xFx were

reported in this chapter. It was found that the resistivity for the non-

superconducting sample (x=0.07) follows a linear temperature dependence

often called “strange metal”. The superconducting samples show a Fermi

liquid temperature dependence above the superconducting transition tem-

perature and a three-dimensional fluctuation conductivity is observed near

TC. A crossover to two-dimensional behavior happens further away from

TC with increasing fluoride content due to a growing coherence length. The

superconducting region of the resistivity was analyzed within the thermally

activated flux flow model and vortex motion could be observed within the

model. The activation energy and the critical current density JC are observed

to peak around the optimal doping region. A correlation between these two

values is observed, which is accounted for in the two-fluid flux creep model.

The irreversibility field is higher for larger fluoride content and the data could

be described by a power-law. An exponent of around 2 within the power-

law was interpreted as 3D vortex lattice melting as it was observed in some

cuprates and other low anisotropy pnictides. An orbital limiting field, Borb
c2 ,

of up to 150 T for x=0.13 was calculated using the WHH model. The Maki

parameter reaches the largest value for x=0.13 and decreases with increasing

x reaching a value still larger than 1 for x ≥ 0.20. This indicates that an

orbital limiting effect alone is not enough to describe the pair-breaking effect

and the Pauli limiting effect has to be included. The effective moment per

formula unit was found to be lower than expected for the free moment of Ce.

This may be due to Zener-type interactions between the local Ce moments

and the itinerant carriers.
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Chapter 5

75As NMR on CeFeAsO1-xFx:

Spin and charge

inhomogeneities

5.1 Introduction

The magnetic ordering of Fe as well as Ce allows a unique opportunity to

study their relationship to superconductivity. A lot of attention is focused on

the lower doping region, due to a better sample purity as well as the transition

between superconductivity and magnetism with a possible coexistence of

both phases. But the higher doping region also has a lot to offer. A good tool

to access such information is through NMR, where NMR peaks from more

than one As environment can appear and there can also be two different spin-

lattice relaxations times, T1 [7, 176, 180–183]. Performing such measurements

can reveal critical insights into the magnetic and electronic properties of

CeFeAsO1-xFx, and provide an additional source of information to understand

this system.
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5.2 NMR on CeFeAsO

The undoped parent material is non-superconducting and undergoes a struc-

tural transition from tetrahedral to octahedral around 155 K [2]. The struc-

tural change results in a developing asymmetry (η > 0), but those changes

are small enough to have no significant effect on the NMR spectra. However,

at around 140 K CeFeAsO undergoes a SDW transition which has large ef-

fect on the 75As NMR Spectra. The usual spectra of a I = 3/2 nuclei (two

satellite transition (ST) peaks and one central transition (CT) peak) double

and shift by a factor proportional to the internal field of the SDW magnetic

ordering. Changes in T1 and T2 are also expected.

5.2.1 Temperature-dependence of 75As NMR spectra

The room temperature (RT) central transition (CT) could be found at

85.875(5) MHz in the c ‖ B0 direction (figure 5.1a) and at a slightly higher

frequency of 86.14(1) MHz for ab ‖ B0 (figure 5.1b), due to the 2nd or-

der quadrupole contribution. The magnetic shift K can be calculated us-

ing equations 2.16 and 2.17. This results in a shift of Kc=0.306(1) % and

Kab=0.616(1) %.
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Figure 5.1: 75As NMR spectra of the central transition from CeFeAsO at
room temperature.

99



The NMR spectra at 295 K for c ‖ B0 over a wider frequency range

can be seen in figure 5.2. The lower and higher frequency peaks are the 75As

satellites. Their separation can be used to estimate the quadrupole frequency

fq=9.9 MHz.
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Figure 5.2: 75As NMR spectra of
CeFeAsO at room temperature

for c ‖ B0 including satellite
transitions.
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Figure 5.3: CeFeAsO 75As NMR
spectra for both orientations at
170 K and room temperature.

There is no significant change to the spectra with temperature above the

SDW transition, as it is show by the spectra at 170 K in figure 5.3. Below the

SDW transition the Fe moments order antiferromagnetically in a stripe-type

fashion [2]. This antiferromagnetic ordering results in an additional internal

field contribution, Bint, which shifts the whole spectrum. Furthermore, there

are now two different As-environments, due to either a positive or negative

net effect at the As position, which results from a non-zero hyperfine contri-

bution only in the c-direction similar to that observed in BaFe2As2[184] and

SrFe2As2 [185]. Therefore, the expectation is to observe a spectra containing

two sets of three lines. Those lines could indeed be measured as shown in

figure 5.4. An interesting feature to note is that the splitting increases with

decreasing temperature, which is likely to be due to spin waves.
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Figure 5.4: CeFeAsO 75As NMR Spectra for c ‖ B0 below the SDW
transition.

A non-zero hyperfine contribution only in the c-direction also means,

that there should be no splitting in the ab-direction. Indeed this is what

was found. When cooling through the SDW transition the only change in

the NMR spectra in the ab-direction is an increase in the line broadening as

shown in figure 5.5 and a small NMR shift.
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Figure 5.5: CeFeAsO 75As NMR spectra for ab ‖ B0 above and below the
SDW transition.

The additional internal field, Bint, caused by the ordered Fe moments

can be calculated. The behavior of the splitting indicates that the internal

field is parallel to c, which means there is an effective field Beff = B0 ± Bint

in the c-direction. No effect is observed perpendicular to c as shown in
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figure 5.5. The calculated internal fields Bint are shown in figure 5.6 and

table 5.1. These values of Bc
int are similar to those observed for BaFe2As2

and lower then those for SrFe2As2[185]. However, errors are larger for low

temperatures, because no full spectra was measured at low temperature and

only a few frequency steps were used to check the maximum position for the

relaxation measurements.

0 20 40 60 80 100
1.3

1.4

1.5

1.6

1.7

1.8

B
in

t [
T]

 cIIB

T [K]

Figure 5.6: Internal field, Bint, below the SDW transition.

Temperature [K] Bc
int [T]

100 1.40(4)
80 1.48(4)
50 1.58(4)
40 1.6(2)
20 1.6(2)
10 1.6(2)

Table 5.1: Internal field, Bc
int, in the c-direction below the SDW transition.

5.2.2 Temperature dependence of the spin-lattice re-

laxation in CeFeAsO

The spin lattice relaxation times were all measured using a 2D-inversion-

recovery-sequence with an additional Hahn-echo, as described in section

2.6.2. Typical values for T1 are around 10 ms and below. Therefore, the
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typical values for t (duration) are up to 50 ms. Figure 5.71 shows the result

of T1 measured for the CT in c ‖ B0 at room temperature (RT), which is

roughly 295 K. Similar measurements were done for several temperatures in

both orientations and the results are presented in table 5.2 and figure 5.8a.
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Figure 5.7: Integrated intensities of the echo for different durations of t at
295K in c ‖ B0 where the fit to equation 2.19 is in red.

Temperature [K] T c1 [µs] T ab1 [µs]

295 6720(80) 7170(90)
170 3610(30) 6140(80)
100 6200(500)
80 2060(130) 8000(600)
50 920(80) 7250(250)
40 1100(130) 7800(250)
20 1000(60) 10400(300)
10 1700(100) 19600(2100)

Table 5.2: T1 for CeFeAsO at different temperatures and both orientations
and the experimental uncertainty.

1the inversion of the recovery sequence is not perfect because the τπ/2 is already 13 µs
and thus the excitation width does not cover the whole CT.
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Figure 5.8: Temperature dependence of the spin-lattice relaxation time T1

and rate, 1/T1

There are no large changes in the spin-lattice relaxation rate near the

SDW transition temperature, which might be at least expected for 1/T c1

because it couples to the ab-plane spin fluctuations. 1/T c1 is found to increase

with increasing temperature, while 1/T ab1 decreases. For both orientations

the spin-lattice relaxation rate is lower at the lowest temperatures and this

might be due to an ordering of Ce moments around 5 K [2]. The resultant

anisotropy ratio, R1:

R1 =
T−1

1,ab

T−1
1,c

(5.1)

is found to decrease with decreasing temperature as shown in figure 5.9 and

reaches a value below 0.1 at 10 K.
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Figure 5.9: Temperature dependence of the anisotropy ratio, R1, of the spin
lattice relaxation rates.

5.2.3 Temperature dependence of the spin-spin relax-

ation in CeFeAsO

Spin-spin relaxation times were all measured with a 2D-Hahn-echo-sequence,

as described on page 49. Typical values for T2 are around 1200 µs for ab ‖ B0

and lower for c ‖ B0. Therefore, the values for τecho where varied in a range

between 10 µs to 1500µs 2. A typical measurement for x=0.00 is shown in

figure 5.10, with a Lorentz fit from equation 2.20. All other measurements

for the pure compound could also be fitted with a Lorentzian decay and the

T2 values are plotted in figure 5.11a. The spin-spin relaxation rate, 1/T2,

in figure 5.11b shows the same trend as 1/T1. The anisotropy ratio, R2, is

shown in figure 5.11c, reveals a similar trend as R1, towards higher anisotropy

with decreasing temperature down to a ratio of 0.1 at 10 K. The values of T2

rapidly increase (double) for 10 K, because with 10 K we reach the vicinity

of the ordering temperature from Ce moments [2]. This slows down the Ce

fluctuations and therefore reduce all connected relaxations rates, which leads

to the observed increase in the spin-spin relaxation time.

2This results in separation times, t, in the range of 20 µs to 3000 µs
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Figure 5.10: Integrated intensity of the echo after different t for T2 at 295K
for c ‖ B0. Also included is a fit to a Lorentz decay function (equation 2.20).

Temperature [K] T c2 [µs] T ab2 [µs]

295 1180(40) 1320(40)
170 740(20) 1160(20)
100 540(50) 1240(90)
80 340(20) 1260(100)
50 230(20) 1100(80)
40 200(10) 1200(30)
20 185(25) 1300(75)
10 340(20) 2670(80)

Table 5.3: T2 for CeFeAsO at different temperatures and both orientations
and their experimental uncertainty.
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Figure 5.11: Temperature dependence of the spin-spin relaxation time, rate
and anisotropy ratio for CeFeAsO in both magnetic field directions.
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5.3 NMR of CeFeAsO0.93F0.07

The next sample in this study has a nominal F-doping of x=0.07, which

might be slightly in the superconducting region, x > 0.06 [2]. However, no

sign of superconductivity could be found, whereas a clear indication of a

SDW transition between 10 K and 30 K is observed as shown below. The

fact that SDW is nearly suppressed without a clear sign of superconductivity

is an interesting prospect for the NMR measurements. The nominal doping

values will be used for all samples throughout the study, since it is difficult

to ascertain the true F-doping values of those compounds.
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Figure 5.12: Room temperature spectra of CeFeAsO0.93F0.07 for both
orientations including their satellite transitions.

Figure 5.12 shows the room temperature spectra for both orientations,

including their satellites. The quadrupole frequency, fq, can be determined

from the frequency difference between the CT and the ST. This results in a

quadrupole frequency for c ‖ B0, f cq, of 10.0(2) MHz and for ab ‖ B0, fabq , of

5.0(2) MHz. Hence, fabq is roughly half of f cq, which could have been expected

from the electric field gradient3 (EFG).

3The diagonal elements of the EFG-tensor in the principal axis system have to fulfill
the Laplace-equation, Vxx + Vyy + Vzz = 0. Additional the asymmetry parameter was
assumed to be 0, which means that Vxx = Vyy. Hence, to fulfill the Laplace-equation these
components have to be of same strength and opposite direction, 2 ∗ Vxx = Vzz.
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Figure 5.13: Temperature dependence of the CT for temperatures from
room temperature to 40 K.

Figure 5.13 shows the temperature dependence of the CT line for both

orientations from room temperature down to 40 K. No magnetic ordering or

transition can be seen down to 40 K in either direction, but there is a shift

towards lower (higher) frequencies for ab ‖ B0 (c ‖ B0). The low temperature

spectra is shown in figure 5.14 at 10 K, where it can be seen that for c ‖ B0

there are additional peaks that indicate that there is a SDW order at this

temperature. There is no splitting for the ab ‖ B0 orientation observed as it is

expected within the hyperfine coupling scenario [184, 185]. From the spectra

at higher temperatures it is possible to estimate that the SDW ordering

temperature is around 20 K. SDW ordering is not expected for x=0.07 and

this suggests that x is slightly lower and probably around x=0.06.
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Figure 5.14: Temperature dependence of the CT for temperatures 30 K to
10 K in both orientations.
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Figure 5.15: Spectra at 10K for c ‖ B0 with a fit to 2 sets of 3 75As NMR
lines (green and blue) as well as a large Gaussian background (black). The

cumulative fit is in red.

It is apparent in figure 5.15 that there is a broad background underneath

the SDW split peaks. This may suggest that there might be a distribution

of x where some regions correspond to SDW and other regions with higher x

slightly above the critical point of x=0.06 where there is no SDW. This can be

illustrated in figure 5.15 where the data has been modeled with Gaussians to

represented the SDW split peaks and a much broader Gaussian to represent

the background from a distribution in fluorine doping where x is greater
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than 0.06. Based on earlier studies [2] of the change in the SDW ordering

temperature with x, it is possible to use the SDW ordering temperature of

20 K to estimate that the lower bound for x is 0.055.

5.3.1 NMR shift
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Figure 5.16: Magnetic shift for both orientations with a fit to Curie-Weiss
(CW) temperature dependent behavior.

The magnetic shift can be calculated from equation 2.16 for c ‖ B0 and 2.17

for ab ‖ B0, which are shown in figure 5.16. Figure 5.16 shows the shift with a

Curie-Weiss-like temperature dependent behavior above the SDW transition.

Only FeAs and Ce have significant spin susceptibility in this material and

equation (2.18) can be rewritten to:

K‖,⊥(T ) = KL,‖,⊥ + AFeAs
‖,⊥ χFeAs(T ) + ACe

‖,⊥χCe(T ) (5.2)

Hence, KS was replaced with the appropriate susceptibilities of the itinerant

electrons of the FeAs-layer and of the localized Ce moments. Measurements

of the magnetic shift of La1111, which does not possess a magnetic rare earth

ion, has a temperature dependence of KS, that is over a magnitude smaller

[160, 186] than values measured here. Only the spin susceptibility of FeAs,

χFeAs, is relevant in this case. It is reasonable to assume that the other

members of the 1111-family have similar values for χFeAs and that it can be

neglected in comparison to the larger contribution from the spin susceptibility
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of the rare-earth ion. Since χCe has a CW temperature dependent behavior

equation (5.2) can be further rewritten to:

K‖,⊥(T ) = KL,‖,⊥ +
b‖,⊥
T −Θ

(5.3)

The NMR shifts in figure 5.16 were fitted using equation 5.3. The fitting

parameters are shown in table 5.4. There are several things to note here. Θ is

the same for both orientations within the experimental errors. This should be

the case because the ordering of Ce moments is independent of the orientation

of the sample. Zhao et al. [2] measured a very low antiferromagnetic ordering

temperature for Ce, which is below 2 K at the critical point. Furthermore,

the parameter b includes the hyperfine coupling constant and all constants

from the temperature dependent part of χS. Because of this b fulfills the

Laplace-equation4 , meaning bc = −2 · bab within the experimental errors.

The fitted values for the parameter a, which is the orbital shift, are different

for both orientations through their orientation dependence.

orientation Θ [K] KL [%] b [% K]

c ‖ B0 −1(2) 0.23(1) 18(2)
ab ‖ B0 −2(2) 0.40(1) −8(2)

Table 5.4: Obtained fit-parameters from a CW fit to the NMR shift data.

5.3.2 NMR linewidth

The extracted NMR linewidths are plotted in figure 5.17 and were fitted

to a CW-temperature dependent behavior, which fits well above 60 K (the

fit parameters are shown in table 5.5) . This was done because the NMR

linewidth should be dominated by magnetic interactions with Ce. The Curie

temperatures are the same as those found for the NMR shift data within the

experimental uncertainty.

4similar to the diagonal elements of the EFG in the principal axis system
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Figure 5.17: Temperature dependence of the linewidth for both orientations.

orientation Θ [K] a [%] b [% K]

c ‖ B0 −2(1) 20(3) 7200(600)
ab ‖ B0 −2(1) 57(5) 10 100(600)

Table 5.5: Obtained fit parameters from the CW fit to the linewidth.

5.3.3 Temperature dependence of the spin-lattice re-

laxation of CeFeAsO0.93F0.07
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Figure 5.18: Temperature dependence of the spin-lattice relaxation
in CeFeAsO0.93F0.07.

113



Orientation C [s−1] T0 [K]

c ‖ B0 250(20) 490(30)
ab ‖ B0 50(20) 3000(3000)

Table 5.6: Fitted parameters from a 2D spin fluctuations fit to the data in
figure 5.18b.

The measurements for the spin-lattice relaxation were done for different tem-

peratures in both orientations and the results are presented in figure 5.18a.

The temperature dependence of 1/T1 is shown in figure 5.18b where it in-

creases up to a maximum around 50 K, which is slightly above the observed

SDW transition (see section 5.3). Values of 1/T1 are compared with those

from La1111 [180, 182, 187] and they are significant larger. Similar increases

are observed for Pr1111, Nd1111, Sm1111 [7, 188] and SmCoPO [189]. This

is an indication that the low-energy excitations from the f -electrons of the

rare-earth elements Ce, Sm, Nd and Pr are the main probe of the As nuclei.

It appears that the temperature dependence of 1/T1 above the SDW transi-

tion can be described by Moriya’s theory [49] for weakly itinerant 2D AFM

such as in Sm1111 [188]. Already the fit to the linewidth and the Knight

shift indicated an AFM ordering at very low temperatures and it is known

through neutron diffraction experiments that Ce moments order AFM below

2 K [2] for a doping of x=0.07. When the spin fluctuations are the main

relaxation mechanism, is the spin-lattice relaxation given by [190]:

1

T1

=
2γ2T

N0

∑
q

|Aq|2
Imχ⊥(q, ω0)

ω0

(5.4)

where N0 is the number of magnetic atoms per unit volume,Aq is the Fourier

q-component of the hyperfine coupling constant and χ⊥(q, ω0) is the trans-

verse component of the dynamical spin susceptibility at the resonance fre-

quency ω0. For AFM correlations it is predicted [191, 192] that 3D fluctu-

ations should be ∝
(
T
T0

) 1
4

and 2D fluctuations ∝ −ln
(
T
T0

)
. T0 comes from

the spin fluctuation theory [191] and is a characteristic parameter thereof.

Good fits were obtained for the 2D case, shown in figure 5.18b as solid lines.

The parameters obtained from the fit are shown in table 5.6.
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The anisotropy ratio (equation 5.1) is plotted in figure 5.19 and shows

first a decrease in the anisotropy ratio with decreasing temperature until

125 K. Below this temperature no further change is observed due to an

arising influence from spin fluctuations of the SDW transition after which

another decrease is observed, because the former spin fluctuations are gone

again.
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Figure 5.19: Temperature dependence of the anisotropy ratio R1

for CeFeAsO0.93F0.07.

5.3.4 Temperature dependence of the spin-spin

relaxation in CeFeAsO0.93F0.07

The spin-spin relaxation time, T2, at room temperature is around 1530 µs for

ab ‖ B0 and 1370µs for c ‖ B0. With decreasing temperature these values

become lower with the exception at 10 K as shown in table 5.7 and plotted

in figure 5.20.
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Temperature [K] Tc
2 [µs] Tc

2,short [µs] Tab
2 [µs] Tab

2,short [µs]

295 1370(50) 1530(50)
250 1300(80) 1540(50)
200 990(30) 1490(40)
150 740(20) 1360(30)
125 625(10) 1250(20)
107 550(10) 1025(25)
80 415(5) 915(40) 80(45)
60 540(90) 185(35) 895(40) 155(40)
50 390(50) 85(20) 910(60) 140(40)
40 350(110) 90(60) 950(50) 190(30)
30 300(100) 60(90) 820(30) 80(15)
20 350(120) 50(60) 850(45) 90(30)
10 340(110) 135(145) 1410(30) 170(45)

Table 5.7: Two components of T2 for CeFeAsO0.93F0.07 at different
temperatures and orientations including their uncertainty (in brackets).
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Figure 5.20: Temperature dependence of T2 for both orientations and both
components.

Contrary to x=0.00 T2 cannot be fitted over the whole range with a

single Lorentzian component. An example for both regions and in both

directions is shown in figure 5.21. 1/T2 increases until the second component

appears, after which it becomes stable as shown in figure 5.22a. This double

component behavior appears around the temperature where R1 becomes flat.

Therefore, the second (short) component is most likely due to the appearance
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of iron spin fluctuations. A similar anisotropy behavior as seen in R1 is also

seen for R2 as shown in figure 5.22b.
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Figure 5.21: Fits to T2 measurements with single or double Lorentzian
components.
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Figure 5.22: The temperature dependence of the spin-spin relaxation rate
and the anisotropy ratio.
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5.4 NMR on CeFeAsO0.87F0.13

The sample with a nominal F doping of 0.13 has a TC of 35 K. Therefore it

is positioned on the underdoped region of the phase diagram.

5.4.1 Temperature dependence of 75As NMR spectra
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Figure 5.23: Temperature dependence of the central transition for x=0.13
for both magnetic field orientations.

Since this sample is superconducting, we do not expect to see a splitting in

the central-lines originating from a SDW transition. A splitting is however

observed at 40 K and below for c||B0 (figure 5.23) and it occurs at 60 K

for ab||B0 (figure 5.23). These splittings (more than two peaks) come from
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charge inhomogeneities due to an inhomogeneous doping environment [193].

A possible alternative explanation in terms of vortices could be excluded

because this would limit such a splitting to only two lines (one from inside

and outside of the vortices) [193]. However, a third line was observed at even

lower temperature, which is noticeable at 10 K in both directions in figure

5.23.

NMR shift

The magnetic shift is shown in figure 5.24 and the shift of the CT peaks can

be fitted to a CW temperature dependent behavior. The main peaks have a

CW temperature of 0 K and the secondary lines have negative values, which

are shown in table 5.8. This is an indication that the Knight shift is still

dominated by interactions with Ce moments.
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Figure 5.24: Temperature dependence of the NMR shift for both magnetic
field orientations.

orientation Θ [K] KL [%] b [% K]

c ‖ B0 -1(2) 0.17(4) 20(4)
c ‖ B0 lower line -13(5) 0.20(4) 18(5)

ab ‖ B0 0(2) 0.44(4) -10(2)

Table 5.8: CW fit parameters for the temperature dependence of the NMR
shift for x=0.13.
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5.4.2 Temperature dependence of the spin-lattice

relaxation in CeFeAsO0.87F0.13

The spin-lattice-relaxation times are plotted in figure 5.25a and the rates in

figure 5.25b. The rate peaks around TC and decreases afterwards due to the

transition into the superconducting state.
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Figure 5.25: Temperature dependence of the spin-lattice relaxation for both
magnetic field orientations.

The high temperature 1/T1 data can be fitted to a 2D fluctuations model

(section 5.3.3) similar to x=0.07 with fitting parameters shown in table 5.9.

The anisotropy ratio R1 (figure 5.26) shows a strong temperature depen-

dent behavior until 100 K, after which it stabilizes at a value of 0.4 for low

temperatures.

sample C [s−1] T0 [K]

c‖B 180(20) 580(60)
ab‖B 22(13) 36000(11000)

Table 5.9: Parameters from fitting the data of figure 5.25b to 2D spin
fluctuations according to equation 5.1.
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Figure 5.26: Temperature dependence of anisotropy ratio, R1.

5.4.3 Temperature dependence of the spin-spin

relaxation in CeFeAsO0.87F0.13

All the T2 data could again be fitted to a single Lorentzian component.

However, both observed central transition peaks in the spectra (figure 5.23)

show slightly different values of T2, which is around 1520µs for ab ‖ B0 and

1305 µs for c ‖ B0 (figure 5.27) at room temperature. These values are close

to the other values observed for lower F-doping and T2 also decreases with

temperature, which is shown in table 5.10 and plotted in figure 5.27.
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Figure 5.27: Temperature dependence of T2 for both orientations and both
components.
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Temperature [K] Tc
2 [µs] Tab

2 [µs]

295 1310(30) 1520(90)
200 970(50) 1530(40)
90 660(20) 1420(30)
60 500(10) 1170(20)
40 455(10) 1060(30)
20 450(20) 1030(40)
10 455(20) 860(40)

Table 5.10: Temperature dependence of T2 for both orientations and both
components.

A peak is clearly observed around TC when T2 is plotted as 1/T2 as shown

in figure 5.28a. The anisotropy ratio R2 (figure 5.28b) displays a similar

temperature dependent behavior to R1 , with a flat region at low temperature

around a value of 0.5.
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Figure 5.28: Temperature dependence of the spin-spin relaxation rate and
the anisotropy ratio for both magnetic field directions.
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5.5 NMR on CeFeAsO0.80F0.20

The sample with a nominal F doping of 0.20 is superconducting and in the

overdoped region of the phase diagram [2]. The results from this doping

have already been published by others in our group [193]. Therefore, a brief

description of the results will be presented here for comparison with other

doping. The new measurement done in this thesis is on the spin-spin relax-

ation rate.

5.5.1 Temperature dependence of the 75As NMR spec-

tra
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Figure 5.29: Room temperature spectra for both orientations.
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Figure 5.30: Temperature dependence of the central transition of x=0.20
for both magnetic field directions.
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The room temperature NMR spectra are plotted in figure 5.29. They are

similar to the NMR spectra from x=0.13 (figure ) where the CT and the

satellites can be seen. The temperature dependent behavior is similar to

the other superconducting sample with x=0.13 as can be seen in figure 5.30.

There is also a low-temperature splitting into two lines, which occurs at a

higher temperature than x=0.13. For the underdoped compound the splitting

could be observed at 60 K for ab ‖ B0 and at 40 K for c ‖ B0, whereas it can

be seen here at 100 K for ab ‖ B0 and at 50 K for c ‖ B0. The reasons for

the appearance have already been discussed for x=0.13 (section 5.4) and in

Rybicki et al. [193].

NMR shift

The temperature dependence of the NMR shift is shown in figure 5.31a.

There is a trend to higher values for c ‖ B0 and to lower for ab ‖ B0 with

decreasing temperature. Both directions can be fitted to a CW temperature

dependent behavior as shown in figure 5.31. All the fitting parameters are

shown in table 5.11.

orientation Θ [K] KL [%] b [%K]

c‖B −1(1) 0.19(1) 18(1)
c‖B lower f −40(10) 0.18(2) 25(6)

ab‖B −1(2) 0.40(2) −11(2)

Table 5.11: The obtained fitting parameters from CW fit of Knight shift.
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Figure 5.31: Temperature dependence of the magnetic shift in both
magnetic field orientations and CW fits to the upper and lower frequency

peaks.

NMR linewidth

The linewidth is plotted in figure 5.32 and was fitted to a CW temperature

dependent behavior, which fits well above 60 K. This was done, because the

temperature dependence of the linewidth should be dominated by magnetic

interaction with Ce, whereas below 60 K superconductivity becomes impor-

tant. The fitted CW temperature θ is 0 K within the experimental errors

as shown in table 5.12, which indicates that there is no ordering of the Ce

moments anymore at such high F-doping.
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Figure 5.32: Temperature dependence of the NMR linewidth for both
orientations.

orientation Θ [K] a [kHz] b [kHz K]

c‖B 0(2) 60(10) 7000(800)
ab‖B 0(1) 50(10) 21 000(1000)

Table 5.12: Obtained fitting parameters from a CW fit of the linewidth.

5.5.2 Temperature dependence of the spin-lattice re-

laxation in CeFeAsO0.80F0.20

Spin-lattice relaxation measurements were performed for several tempera-

tures in both orientations and the results [193] are presented in table 5.13

and figure 5.33a.
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Temperature [K] T c1 [µs] T ab1 [µs]

295 8000(250) 8650(160)
250 6920(240) 9140(130)
200 5790(390) 8850(190)
155 4310(110) 9050(270)
125 3590(50) 8140(160)
100 3180(110) 7530(260)
80 2770(50) 7150(220)
60 2410(50) 6560(330)
50 2400(50) 6060(270)
40 2200(30) 5610(280)
30 2130(40) 5570(240)
20 2190(60) 6120(450)
10 2620(90) 8090(870)

Table 5.13: T1 for CeFeAsO0.80F0.20 at different temperatures and both
field orientations with their uncertainties (in brackets).

The spin-lattice relaxation rate was fitted to 2D spin fluctuations (equa-

tion 5.4) similar to x=0.07 and x=0.13. Results are shown in figure 5.33b

and fit parameters in table 5.14. Finally, the observed relaxation rates can

be displayed in the anisotropy ratio R1, which is shown in figure 5.33c.
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Figure 5.33: Temperature dependence of the spin-lattice relaxation in both
magnetic field orientations.

orientation C [s−1] T0 [K]

c‖B 163(7) 650(60)
ab‖B 33(4) 6100(3000)

Table 5.14: Fit parameters according to equation 5.4 from 1/T1 data in
figure 5.33b.
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5.5.3 Temperature dependence of the spin-spin

relaxation in CeFeAsO0.80F0.20

Spin-spin relaxation measurements were performed as described earlier in

section 2.6.3 and start with a value of 1570µs for both directions. These

times decrease at a faster rate with decreasing temperature for c ‖ B0 than

for ab ‖ B0, as shown in table 5.15 and in figure 5.35a. All temperatures and

directions could be fitted with a single Lorentzian component, except at 10 K

for c ‖ B0, where a much better fit is obtained when using two Lorentzian

components as shown in figure 5.34. The spin-spin relaxation rate 1/T2 peaks

roughly around TC, as can be seen in figure 5.35b. The anisotropy ratio R2

has a value of 1 from room temperature down to 200 K and then decreases

with decreasing temperature reaching a value of 0.4 at the lowest measured

temperature as shown in figure 5.35c.

Temperature [µs] T c2 [µs] T c,lower
2 [µs] T ab2 [µs] T ab,higher

2 [µs]

295 1580(100) 1570(70)
250 1570(150) 1600(90)
200 1510(90) 1500(110)
150 960(70) 1470(110)
125 770(20) 1450(100)
100 750(40) 1470(60)
80 1300(20)
60 530(20) 1180(30) 1000(50)
50 490(20) 1120(30) 830(30)
40 420(20) 490(10) 1050(30) 800(30)
30 420(30) 450(40) 1030(40) 750(30)
20 420(30) 440(50) 1080(50) 740(40)
10 420(70) 430(40)

Table 5.15: Temperature dependence of the spin-spin relaxation time, T2.
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Figure 5.34: Double and single Lorentzian component fit of the spin-spin
relaxation time for c ‖ B0.
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Figure 5.35: Temperature dependence of the spin-spin relaxation rate and
the anisotropy ratio.
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5.6 Doping dependence of NMR properties

The purpose of this sections is to compare the NMR results from the four

different F-doped samples presented earlier and the doping dependence of

other iron-based superconductors in particular other members of the 1111-

family.

5.6.1 NMR spectra
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Figure 5.36: The room temperature (295 K) spectra for all doping in c ‖ B0

including their satellite transitions.

The room temperature NMR spectra is compared in figure 5.36. There is

no significant change in the resonance frequency of the CT (within errors).

However, the quadrupole frequency, fq, is found to increase with increasing

fluoride content. Such an increase of fq means that the EFG is increasing in

strength, which can come from an increase in charge density, as in the case of

HTSC cuprates. However, the increase here is most likely caused by a change

in lattice spacing instead. No change in fq is observed in c ‖ B0, but a change
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is observed in ab ‖ B0. To obtain an increasing EFG strength the lattice has

to contract, which is exactly what is observed in figure 5.37. A similar trend

is seen throughout the 1111 family [178, 194]. The next difference is due to

an increase in the fluoride content. There is a large splitting into essentially

two spectra for the parent material (figure 5.4), which is only seen in c ‖ B0

and is due to the SDW at around 140 K. A similar splitting is only seen at

10 K in x=0.07, also only in c ‖ B0 due to a SDW at around 20 K (figure

5.15). There is also a very broad Gaussian peak and the NMR data indicates

that there is a distribution of fluoride content. Additional peaks are observed

for the superconducting samples (x=0.13 and x=0.20), which are interpreted

in terms of a variation in the fluoride concentration.
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Figure 5.37: (a) Doping dependence of quadrupole frequency and lattice
parameter in c ‖ B0 and their relative changes in (b).

Doping fq[MHz] lattice spacing in ab ‖ B0 [�A] lattice spacing in c ‖ B0 [�A]

0.00 9.9(1) 4.001(2) 8.637(4)
0.07 10.0(3) 3.998(2) 8.623(4)
0.13 10.5(3) 3.995(2) 8.612(4)
0.15 3.997(2) 8.613(5)
0.20 10.9(2) 3.988(2) 8.613(5)
0.25 3.991(2) 8.617(5)

Table 5.16: Change in quadrupole frequency and lattice spacing in c ‖ B0.
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NMR shift

All temperature dependent shift data could be fitted to a CW temperature

dependent behavior. The measured values are plotted in figure 5.38 and the

obtained fitting parameters of the CW fits are shown in table 5.17. All the

F-doped samples could be fitted in both magnetic field directions with a CW

temperature of Θ =0 K within errors. The Knight shift is related to the

spin susceptibility determined by the Ce moment. Our NMR results suggest

that the real doping level for x=0.07 is slightly below the critical point and

therefore lies in a region which might have a Ce ordering. The expected

ordering temperature would be close to 0 K and hence is within errors of our

measurement. Furthermore, the Curie constant, C, is proportional to the

hyperfine coupling constant, A. As mentioned in section 5.3.1 A fulfills the

Laplace equation with Ac = −2 ·Aab. Hence, C fulfills the Laplace equation

as well which can be seen in table 5.17 for all samples within the experimental

errors.
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Figure 5.38: Temperature dependence of the NMR shift from the main line.
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sample C [%K] Θ [K] KL [%]

0.07 c ‖ B0 18(2) -1(2) 0.23(1)
0.07 ab ‖ B0 -8(2) -2(2) 0.40(1)
0.13 c ‖ B0 20(4) -1(2) 0.17(4)
0.13 ab ‖ B0 -10(2) 0(2) 0.44(4)
0.20 c ‖ B0 18(1) -1(1) 0.19(1)
0.20 ab ‖ B0 -11(2) -1(2) 0.40(2)

Table 5.17: CW fit parameters for the temperature dependent shift of
CeFeAsO1-xFx.

NMR linewidth

The NMR linewidth has a similar temperature dependence for all samples

and they become broader with increasing F concentration as is shown in

figure 5.39. All NMR data show an asymmetric lineshape at 295 K in c ‖
B0 with a lower frequency tail, due to non-perfect alignment of the micro

crystals, whereas ab ‖ B0 is more symmetric. The magnetic field dependence

was already published in reference [193] by our group. The temperature

dependence of the linewidths were fitted with a CW temperature dependence

(shown in previous sections) for all samples and the results are shown in table

5.18 for the main peaks. All CW fits could be done with a CW temperature of

zero within experimental uncertainty, which suggest that the NMR linewidth

of the main peaks is dominated by magnetic interactions with Ce moments.
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Figure 5.39: Temperature dependence of the linewidth.
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sample Θ [K] b [kHz] a [kHzK]

0.07 c‖B 0(2) 7000(500) 20(3)
0.07 ab‖B 0(2) 9700(600) 58(5)
0.13 c‖B 0(2) 4600(600) 63(4)

0.13 ab‖B 0(2) 7500(600) 78(5)
0.20 c‖B 0(2) 7000(800) 60(10)

0.20 ab‖B 0(2) 21000(1000) 50(10)

Table 5.18: CW fit parameters for the linewidth.

5.6.2 Spin-lattice relaxation

Results from T1 measurements are plotted for all samples in figure 5.40. The

major point to note here is that the relaxation rates for both superconduct-

ing samples are lower than the non-superconducting samples independent of

the orientation. This difference can be explained by the existence of an addi-

tional relaxation mechanism through hyperfine interactions with Fe moments,

which exhibits magnetic order only for non-superconducting samples at low

temperature. The temperature dependence can be described by Moriya’s

theory of weakly itinerant 2D AFM for all doping levels. The obtained fit-

ting parameters are summarized in table 5.19. No fitting attempt was made

for the undoped compound, because the high transition temperature of the

SDW around 140 K makes this impossible.

138



0 50 100 150 200 250 300

1000

10000

T 1 [
s]

T [K]

 0.00 cIIB
 0.00 abIIB
 0.07 cIIB
 0.07 abIIB
 0.13 cIIB
 0.13 abIIB
 0.20 cIIB
 0.20 abIIB

(a) Temperature dependence of T1.

0 50 100 150 200 250 300
0

250

500

750

1000

1250
 0.00 cIIB
 0.00 abIIB
 0.07 cIIB
 0.07 abIIB
 0.13 cIIB
 0.13 abIIB
 0.20 cIIB
 0.20 abIIB1/

T 1 [
s-1

]

T [K]

(b) Temperature dependence of 1/T1.

Figure 5.40: Temperature dependence of the spin-lattice relaxation for all
samples.

Sample C [s−1] T0 [K]

0.07 c‖B 270(20) 450(30)
0.07 ab‖B 35(10) 9000(3000)
0.13 c‖B 180(20) 580(60)

0.13 ab‖B 22(13) 36000(11000)
0.20 c‖B 163(7) 650(60)

0.20 ab‖B 33(4) 6100(3000)

Table 5.19: Fitting parameters for 2D spin fluctuations (section 5.3.3) to
figure 5.40.

The fits for c ‖ B0 are good over the whole fitting region, so it seems

appropriate to say that 2D spin fluctuations are the major relaxation mech-

anism. The 2D spin fluctuation behavior is supported by the anisotropy

ratio, which is shown in figure 5.41. The anisotropy ratio is roughly 1.0 at

room temperature indicating a similar relaxation rate in c ‖ B0 and ab ‖ B0.

With decreasing temperature both rates increase (figure 5.40b) for all sam-

ples, but this increase is faster in c ‖ B0. The first deviation from a joint

temperature-dependence for all samples occurs at the SDW transition tem-

perature (140 K) for the undoped compound x=0.00. From this temperature

downwards the spin-lattice relaxation rate is enhanced through hyperfine
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coupling to the AFM ordered Fe moments and their spin fluctuations, which

is an effect limited to the c ‖ B0 orientation. The second deviation occurs

around 100 K between the superconducting samples of x=0.13 and 0.20 and

the non-superconducting sample of x=0.07 where the later sample stays at a

ratio of 0.6 and the ratio for the superconducting samples reduces further be-

fore becoming stable at a ratio of around 0.4. This change occurs because of

a structural transition from the tetrahedral phase to an orthorhombic phase

around 100 K [2].
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Figure 5.41: Temperature dependence of the anisotropy ratio R1 for all
doping.

5.6.3 Spin-spin relaxation

The temperature dependence of the spin-spin relaxation rate is weakly tem-

perature dependent for ab ‖ B0 as shown in figure 5.42a. However, for

c ‖ B0 there is a continuous increase with decreasing temperature. Further-

more, the relaxation rate is the highest for the undoped compound at lower

temperatures, lower for the x=0.07 sample and the lowest values are found

in the superconducting samples where the 1/T2 values are similar over the

whole temperature range. The anisotropy ratio is shown in figure 5.42b.

The temperature dependence of the spin-spin relaxation is consistent with a

mechanism, which is dominated by magnetic dipole interaction with the Ce

moments. An additional contribution arises in samples, which have ordered

Fe moments. This can be seen in the undoped sample in figure 5.42b, where

140



all points measured below the SDW transition show a departure from the

common curve.
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Figure 5.42: Temperature dependence of the spin-spin-relaxation rate and
the anisotropy ratio R2.
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5.7 Summary and conclusions

In conclusion 75As NMR measurements on CeFeAsO1-xFx show the appear-

ance of additional peaks in the low temperature region. This is due to

spin-density-wave (SDW) ordering in the non-superconducting samples with

x = 0.00 and x = 0.07. For the x = 0.07 sample a SDW ordering temper-

ature at around 20 K was inferred from the NMR data, which was not ex-

pected because a SDW should only be observed for x ≤ 0.06. This together

with the appearance of a broad low temperature NMR peak is consistent

with charge inhomogeneities due to a variable fluoride concentration. Ad-

ditional NMR peaks are also seen for the superconducting samples in both

directions and for temperatures as high as 100 K, which are due to charge

inhomogeneities. Therefore, NMR results show that there are charge inho-

mogeneities for x = 0.06 to at least x = 0.20. Charge inhomogeneities have

also been reported in the cuprate superconductors.

The NMR shifts of the main line for x ≥ 0.07 are dominated by hyperfine

coupling to the Ce moments and where the main line CW temperatures are

zero within experimental errors. The additional peak at low temperatures

seen in the x = 0.13 and x = 0.20 NMR spectra has a negative CW tempera-

ture that indicates antiferromagnetic interactions between the Ce moments.

The NMR linewidths are all dominated by dipole interactions with the Ce

moments and they display a CW temperature equal to zero within experi-

mental errors for the main peak.

The spin-lattice relaxation can be interpreted with Moriya’s theory for

weakly itinerant 2D antiferromagnets [49, 190]. This mechanism is strongest

in c ‖ B0 because it is a hyperfine interaction, which only has non-zero

matrix elements in this direction. Therefore, the spin relaxation is via 2D

spin fluctuations. The spin-spin relaxation can be fitted with a Lorentzian

shape over the whole doping range and at all temperatures. However, for

CeFeAsO0.93F0.07 is it necessary to use two components to obtain a satisfying

fit in the low temperature region. The additional second component is very

short in comparison and is due to arising spin fluctuations from Fe.
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Chapter 6

Magnetotransport study of

AFe2As2 (A= Ba, Sr)

6.1 Introduction

The second group of iron-based superconductors are the ternary iron arsenide

AFe2As2 (A = Ba, Sr, Ca, Eu, K)1 with the tetragonal ThCr2Si2-type struc-

ture (space group I4/mmm) [195]. They contain practically identical layers

of edge-sharing FeAs tetrahedrons separated by ’A’ atoms instead of the R-O

layers (R = rare-earth) in the 1111-type. They can possess interesting prop-

erties such as a large magnetoresistance (MR) [196, 197], a Dirac-cone-like

energy dispersion [198, 199] and a sizable thermoelectric effect [200, 201].

Of particular interest is the Dirac-cone-like energy dispersion (figure 6.1),

because such an energy dispersion can have Dirac fermions with very high

mobilities and a nearly zero effective mass, m∗ [8, 201].

1under investigation here is M= Ba, Sr
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Figure 6.1: Dirac cone energy dispersion.

Under such conditions quantum linear magnetoresistance (MR) is pre-

dicted at high fields when only one Landau level is occupied and the Fermi

level is close enough to the cone apex. According to Abrikosov [202] the

resistivity can be written as:

ρxx = ρyy =

[
Ni

πn2
De

]
·B (6.1)

for a concentration of static scattering centres, Ni, density of carriers, nD,

and the applied magnetic field, B. Quantum linear MR was reported sev-

eral times from magnetotransport measurements on 1111 and 122 iron-based

superconductors [8, 203, 204], but arguments were made that the required

fields are too high for the observation of quantum linear MR in BaFe2As2

[205] and that none was observed in good quality and homogeneous samples

[196]. Therefore, BaFe2As2 and SrFe2As2 were investigated with the aim to

find evidence of the existence of quantum linear MR in these crystals.
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6.2 Synthesis and structure

Single crystals of BaFe2As2 were grown by the FeAs self-flux method [206,

207], while SrFe2As2 single crystals were grown by the self-flux method and

inductive melting of pre-synthesised polycrystalline SrFe2As2 [208]. For the

latter, pieces of polycrystalline SrFe2As2 were placed inside a capped alumina

“test tube” and loaded into an inductive furnace partially filled with high-

purity argon gas. The alumina “test tube” was heated above 1500 K and then

cooled down at a rate of 1 K min−1 to 1153 K before a rapid cool-down to

room temperature. The final crystals were obtained in both cases by cleaving

the bulk material. Sample quality was checked with powder X-ray diffraction,

which shows sharp c-axis (00l) Bragg reflections (figure A.3). Post-annealing

was only necessary for SrFe2As2 crystals to remove crystallographic strain.

This was done by sealing the crystals in a quartz tube partially filled with

high-purity argon gas and heating to 773 K for two hours.

Ca ion were implanted using the facility at GNS Science with 20 keV

beam energy. Both surfaces of roughly 50 µm thick crystals were implanted

with Ca, along the c-axis with the same fluence. The implantation depth

was estimated from Monte Carlo simulation [209, 210] to be around 10 nm

to 15 nm for Ba [211] and 16 nm to 22 nm for Sr [208]. Heating effects during

implantation will cause serious damage in the samples hence only low values

of ion current were used (typical around 1µA). The fluence was in the order

of 1× 1015 ions/cm2.
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Figure 6.2: Crystal structure of AFe2As2 (A= Ba, Sr).
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6.3 Resistivity

The resistivity of single crystalline BaFe2As2, SrFe2As2 and SrFe2As2 with

0.8 at%Ca implanted was measured with a 4-point method and the results

are shown in figure 6.3.
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(a) Temperature dependent resistivity of
BaFe2As2 (Ba122), SrFe2As2 (Sr122),

0.8 at%Ca implanted SrFe2As2 (Sr122 II) and
the same sample after re-annealing in Ar

(Sr122 II*).
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Figure 6.3: Temperature-dependent resistivity of BaFe2As2 (Ba122),
SrFe2As2 (Sr122), 0.8 at%Ca implanted SrFe2As2 (Sr122 II) and the sample

after re-annealing in Ar (Sr122 II*).

The spin-density-wave (SDW) transition causes a downturn in the re-

sistivity in the high temperature region for all samples similar to that of

CeFeAsO1-xFx as presented in section 4.3.1. This transition occurs at 205 K

for SrFe2As2 and at 135 K for BaFe2As2. No sign of superconductivity is

observed in the low temperature region for the non-implanted single crystals

and they follow a Fermi-liquid T 2 temperature dependent behavior down to

the lowest measured temperatures. However, the Ca implanted SrFe2As2 sin-

gle crystal shows a downturn in resistivity below 15 K2. Such a downturn in

the resistivity was previously observed by our group in a more Ca-implanted

SrFe2As2 [208] sample, which displayed a downturn at a higher temperature

2measured a month after synthesizes
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of 23.6 K and a zero resistivity state was reached at 16.4 K. However, in this

case a zero resistivity state is not reached even down to 2.2 K, which suggests

that only fractions of the implanted region are superconducting. The super-

conductivity results from ion implantation causing strain in the near sur-

face region [208], similar to strain induced superconductivity in as-prepared

SrFe2As2 samples [11, 212]. Furthermore, TC here is similar to samples un-

der hydrostatic pressure [213–216]. The re-annealed Ca implanted SrFe2As2

sample (Sr122 II*) was measured within the first week after re-annealing and

hence shows no team of the strain induced superconductivity, yet.
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6.4 Magnetoresistance

The magnetoresistance (MR) was defined in an earlier section 3.3.1 in equa-

tion 2.11. The field dependence of the magnetoresistance was investigated up

to a field of 8 T and their temperature dependence from room temperature

down to 8 K.

6.4.1 Magnetoresistance of BaFe2As2

Figure 6.4 shows the MR of BaFe2As2 for several temperatures between 150 K

to 8 K.
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Figure 6.4: Magnetoresistance of BaFe2As2.

There is no noticeable MR above the SDW transition temperature at

135 K. However, there is a rapid increase in the MR for temperatures below

the SDW transition. This is due to the antiferromagnetic ordering from SDW

and contributions from multiband effects plus the possibility of quantum

linear MR [8, 202, 217, 218]. A maximum MR of 22 % was observed at

a magnetic field of 8 T and at a temperature of 8 K. In a previous study,

Ishida et al [196] reported a maximum MR of 280 % at a magnetic field of

7 T and a temperature of 5 K, also in single crystalline BaFe2As2 samples,

which is significantly higher than the values observed here.

To examine the linearity of the MR data, the MR for all temperatures in

the high field region (above 2 T) was fitted to a power-law behavior with:
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MR(B) = a1B
m (6.2)

A systematic reduction in the exponent m with decreasing temperature is

found as shown in table 6.1.

Temperature [K] m

8 1.15(1)
10 1.16(1)
30 1.22(1)
40 1.26(2)
50 1.35(2)
75 1.35(1)
100 1.48(1)

Table 6.1: Temperature dependence of the exponent m from a power-law fit
(equation 6.2) to the high-field region of the MR.
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Figure 6.5: Derivative of the MR in the low-field region.

A completely different magnetic field dependence was observed at low

applied magnetic fields, which is shown in figure 6.5 through the derivative

of the MR. The MR behavior is different between the low-field and the high-

field region, with a more rapid increase in MR in the low-field region. The MR

trends toward saturation, or displays signs of linearity, in the high field region.

In a quantum linear MR model, as described by Abrikosov [202, 218], such

a change can be attributed to a crossover from multi-level MR to quantum
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linear MR [8, 203, 204, 217] as the magnetic field increases. The crossover

occurs at a field, B?, where the energy splitting, 4LL, between the 0th and

the first Landau level:

4LL = ±νF

√
2e~B (6.3)

is equal to the Fermi energy, EF, and thermal fluctuations at finite temper-

atures

4LL = EF + kBT (6.4)

Then B? can be written as:

B? =
1

2e~ν2
F

(kBT + EF)2 (6.5)

Therefore, the Fermi velocity, νF, and the Fermi energy, EF, can be esti-

mated from the temperature dependence of B?. Figure 6.6 shows the tem-

perature dependence of B? for BaFe2As2, with a Fermi energy, EF=7.1 meV,

and Fermi velocity, νF=2.5× 105 m s−1. Similar values were observed in ear-

lier measurements by Tanabe et al. [8] with EF=2.5 meV to 11 meV and

νF=∼2× 105 m s−1 for BaFe2-xRuxAs2 and by Huynh et al. [217] with EF=1(5) meV

and νF=1.88× 105 m s−1 on BaFe2As2 with well documented Dirac cone states.
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Figure 6.6: Temperature dependence of B?.

An absence of a linear MR at high fields was noted by Terashima et al.
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[205] and Tanabe et al. [8], where they argued that the field required to fill

only one Landau level is far above our maximum field of 8 T. Hence, the

MR in the high field region is not dominated by quantum linear MR and can

be better described using a conventional three-band transport model [197],

similar to a previous study from my group on a SrFe2As2 sample that showed

superconducting and normal-state regions [208]. This is also consistent with

a study on BaFe2As2 crystals that were annealed to remove defects where no

quantum linear MR was observed and it could be described by a three-carrier

model over the measured magnetic field range [196].

6.4.2 Magnetoresistance of SrFe2As2

The MR for the non-superconducting SrFe2As2 crystal3 is slightly higher

than that of the BaFe2As2 crystal described in the previous section. Figure

6.7 shows the MR for SrFe2As2 with a maximum MR of 31 % for a magnetic

field of 8 T and temperature from 2 to 10 K.
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Figure 6.7: The magnetoresistance of the non-superconducting SrFe2As2

crystal at different temperatures.

The high field region above 2 T can be fitted to a power-law (equation

6.2) similar to BaFe2As with a systematic decrease in the exponent m shown

in table 6.2, which becomes more linear (closer to 1.0) with decreasing tem-

perature and high applied magnetic field. A crossover in the derivative of

3less then a month after synthesis
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the MR as shown in figure 6.8 is also found.

Temperature [K] m

2 1.26(1)
5 1.26(1)
10 1.26(1)
15 1.26(1)
20 1.27(1)
30 1.28(1)
40 1.30(1)
60 1.36(2)
80 1.44(3)
110 1.55(3)
150 1.75(4)

Table 6.2: Temperature dependence of the exponent m from a power-law fit
(equation 6.2) to the high-field region of the magnetoresistance.
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Figure 6.8: Derivative of the magnetoresistance for SrFe2As2 at different
temperatures.

Equation 6.5 can be used to analyze B? although the fit is worse than that

for BaFe2As2. Here, the Fermi energy is 10(2) meV and the Fermi velocity is

3.0(4)× 105 m s−1. These values suggest that the Fermi level would be too

high to be able to observe a quantum linear MR below a magnetic field of

8 T. Therefore, a three carrier-model is probably a better description than a

high-field quantum linear MR.
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6.4.3 Magnetoresistance of SrFe2As2 with 0.8 at% Ca

implantation

The MR is shown in figure 6.9, which is very similar to that of SrFe2As2

from the previous section for temperatures of 20 K and above where a maxi-

mum of 24 %4 is reached. The power-law fit to the high-field region shows a

systematic decrease as shown in table 6.3. However, the MR below 20 K is

different from those at higher temperatures and for the non-implanted sam-

ple. The major difference is a large initial rise in the MR, which can be

clearly seen at 2 K. The maximum MR at 2 K and 8 T is as high as 47 %,

which is significantly larger than that of the non-implanted sample (31 %).

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

 

 

M
R

 [%
]

B [T]

 2 K
 10 K
 20 K
 40 K
 60 K
 80 K
 110 K
 150 K

Figure 6.9: MR for the non-superconducting SrFe2As2 crystal with 0.8 at%
Ca ions implanted at different temperatures.

4for 20 K and 8 T
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Temperature [K] m

2 1.08(1)
10 1.14(1)
20 1.15(1)
40 1.19(2)
60 1.17(3)
80 1.23(2)
110 1.33(3)
150 1.39(3)

Table 6.3: Temperature dependence of the exponent m from a power-law fit
(equation 6.2) to the high-field region of the MR.
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Figure 6.10: Derivative of the MR for SrFe2As2 with 0.8 at% Ca
implantation at different temperatures.

The magnetic field dependence of the MR is also different, which is appar-

ent in the derivative of the MR shown in figure 6.10. The derivatives below

20 K are significantly larger at low fields and also reach a nearly constant

value at higher fields. The different MR behavior is most likely due to parts

of the near surface region becoming superconducting, which is evident in the

resistivity data shown earlier in section 6.3. An increase in the magnetic

field drives the weak-links in the superconducting region to normal, which

leads to an initial rise of the MR. A constant MR is achieved as soon as

all weak-links are driven normal by the applied field. Such MR behavior is

well known in HTSC, for example in granular samples of YBa2Cu3Oy high
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temperature superconductors [219]. However, the MR for the 0.8 at.% Ca

implanted SrFe2As2 crystal is still on increasing above 1.6 T. This means not

all weak-links have been driven normal, which is consistent with the fact that

the out-of-plane upper critical field, Bc
c2, for this type of superconductor is

higher than 8 T below 10 K [208]. It is unlikely that the remaining signal is

caused by quantum linear transport. The more likely explanation is inho-

mogeneous current transport in the near surface region through normal and

superconducting regions. Such a model was used to explain the bulk MR in a

SrFe2As2 sample that displayed an inhomogeneous state with superconduct-

ing and normal state regions after being left in a desiccator for seven months

[197].
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6.5 The aging effect on SrFe2As2

The unimplanted SrFe2As2 single crystal shows no sign of superconductivity

after the initial annealing. These crystals were stored in a vacuum desic-

cator with a pressure of around 0.2 bar yet they still developed a supercon-

ducting transition at low temperatures. This process is reversible through

re-annealing in a pure Ar atmosphere.

6.5.1 Resistivity

Resistivity measurements were carried out on the freshly made sample, after

six and nine months in the desiccator and after re-annealing the 9-month-old

sample, which are shown in figure 6.11.
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Figure 6.11: Temperature dependent resistivity of the unimplanted
SrFe2As2 single crystal freshly annealed (black), after 6 months (red), after

9 Months (green) and after re-annealing (blue). The solid symbols are
values from MR measurements after 7 months at zero (orange circles) and

at 8 T (magenta squares).

The resistivity increases when left in the desiccator and develops a low

temperature downturn after six months (red curve in figure 6.11) without

reaching zero resistivity. This indicates the presence a mixed electronic state

with superconducting and normal regions, where the superconducting re-

gion is still below the percolation threshold. After being left for a further
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three months (green curve in figure 6.11) in the desiccator a full supercon-

ducting transition is observed at 24 K. This value for TC is similar to the

value reported previously on ion-implanted SrFe2As2 [208].Furthermore, the

temperature of the SDW transition of 210 K stays constant, which excludes

charge-doping as a likely candidate to cause the superconductivity at lower

temperatures [11]. However, it is known that exposure to air [11] or water va-

por [220] can induce a superconducting phase. Hence, the superconductivity

in SrFe2As2 is most likely through air exposure, which then induces super-

conductivity through strain. This process is reversible through re-annealing

in an Ar atmosphere, as it can be seen in figure 6.11 with the blue curve.

6.5.2 Magnetoresistance above TC

The MR for the freshly annealed sample is shown in section 6.4.2. The MR

was measured again after seven months in the desiccator (shown in figure

6.12) and the resistivity values from the MR measurements (solid symbols)

are added for comparison in figure 6.11.
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Figure 6.12: The MR of the seven months old SrFe2As2 crystal above the
superconducting region (40 K and higher) with the data as open symbols

and the solid lines being the fits to a three-carrier model.

The MR reaches a value of 30 % at 40 K and at a field of 8 T, which is

nearly 10 % higher than the freshly annealed sample at the same temperature

and field. This MR was similarly analyzed in terms of a crossover to quantum
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linear MR (figure 6.13a). The temperature dependent crossover fields are

shown in figure 6.13b.
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Figure 6.13: B∗ analysis for the seven months old SrFe2As2 crystal.

This B∗ can then be fitted to equation 6.5, which is shown in figure 6.13b.

A Fermi energy of 7(2) meV and a Fermi velocity of 3.1(3)× 105 m s−1 are

obtained from this fit. The Fermi energy is slightly lower than that for

the fresh sample whereas no change in the Fermi velocity can be noted.

Therefore, these values seem to be sensible despite the fact that the observed

MR never becomes linear in the high field region and hence the MR cannot

completely be attributed to a quantum linear MR.

As suggested earlier a multi-carrier model might be the more appropriate

explanation. In such a case the change in MR would come from a change in

the carrier mobility and concentration with temperature [196]. The data can

be modeled by a three-carrier model with one hole and two electron bands,

which seems reasonable considering the band structure and a report from

quantum oscillation measurements on BaFe2As2 [205], where the appearance

of hole and electron pockets at the Fermi level was reported. Kim’s [111]

3-carrier matrix formalism for the longitudinal MR was used to analyze the

observed MR, where the MR can be written as,
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MR =
[(α + γB2)B2]

[1 + (β + δB2)B2]
(6.6)

as described earlier in section 2.5.2. The total carrier density below the SDW

transition was determined to be in the order of 1× 1020 /cm3 in Hall measure-

ments [125], optical conductivity measurements [15] and density functional

theory (DFT) calculations [221]. They all show that ni is temperature de-

pendent and the hole density should equal the sum of the electron densities,

nh = ne1 + ne2. The fit to the data is shown in figure 6.12 as solid red lines.

The obtained carrier mobilities and densities are shown in figure 6.14a and

6.14b.

0 40 80 120 160

0.01

0.1

1

 e1

 e2

 h

 T [K]

 

 [1
03  c

m
2 /V

s]

(a) Carrier mobility

0 40 80 120 160

0.01

0.1

1

 nh

 ne1

 ne2

 

 

n e
, n

h 
[1

020
 c

m
-3

]

T [K]

(b) Carrier densities

Figure 6.14: Temperature dependence of the (a) carrier mobilities and (b)
the carrier densities obtained from the fit to Kim’s three-carrier model.

Furthermore, figure 6.13a shows a fit to the three-carrier model to the

derivative of the MR as solid red line. Both fits are good over the measured

field range and the calculated zero-field resistivity from the fitted parameters,

ρxx = 1/
∑
| eniµi | (6.7)

is in the same order of magnitude with 0.2 mΩ cm and below. Fitting of the

MR by manually changing ni has no significant effect on the temperature

dependent behavior of | µi | and µe1 > µe2 > µh stays valid, despite changes in

the magnitude of µi. Hence, these fits show a reasonable agreement with the
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measured data, however the fixed values of ni and µi lead to an inconsistent

value of ρxx from equation 6.7, which is lower by a factor of 2 to 30 compared

with the observed resistivity (figure 6.11).

6.5.3 Magnetoresistance below TC

The MR for temperatures below TC are shown in figure 6.15a, together with

the MR at 40 K for comparison. The MR is significantly enhanced below TC,

with a value of 197 % at 8 T and 20 K. This enhancement of the MR is due

to a suppression of superconductivity by the applied magnetic field in the

superconducting regions together with a 3-carrier transport in the metallic

and non-superconducting regions, resulting in an inhomogeneous state below

TC. The low field part of the MR shows an initial increase in the MR, which

starts to saturate around 1 T. This is a sign of suppressed superconductivity,

which is even clearer in the derivative of the MR shown in figure 6.15b, with

a large increase below 1 T.
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Figure 6.15: The magnetoresistance below the superconducting transition.

The upper critical field, Bc2 (∼1 T at 20 K), measured on a strain-induced

SrFe2As2 crystal [208] is roughly the same as the observed crossover field

around ∼1 T. Furthermore, the resistivity at 8 T (figure 6.11) is very close

to the expected resistivity for the normal state when the MR is dominated
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by 3-carrier transport. Hence, it makes sense to assume that the MR, at a

field which is sufficiently high above the crossover field, is dominated by a

three-carrier transport. This can be confirmed by fitting the data to equation

6.6, which was simplified under the assumptions that there are no supercon-

ducting regions above a certain field:

MR(B) =
MR′(B)

ζ
+

1

ζ
− 1 (6.8)

with the three-carrier MR in the absence of superconductivity, MR′(B),

given by equation 6.6 and ζ = ρ′(0)/ρ(0), where ρ′(0) is defined as the

resistivity at zero field and without superconductivity. A good fit is obtained

with ζ(20K) = 0.506. The resultant mobilities and carrier densities are

shown in figure 6.14 as the half-filled symbols. These values continue the

trend seen in the higher temperature data.

The MR at 8 K increases only up to a field of ∼0.2 T before the mag-

netic field dependence changes, which results in a MR of 1600 % at 8 T.

The derivative shown in figure 6.15b indicates that this change is even more

pronounced. Josephson coupled weak-links as observed in superconductors

with poorly connected superconducting regions (for example, in grain-aligned

bulk YBa2Cu3Ox) [219, 222] are a possible explanation for the initial rise in

the MR. In this case the change in the magnetic-field dependence of the

MR at ∼0.2 T suggests that the weak-links are all driven normal for ap-

plied magnetic fields B >0.2 T and that the current percolation pathway is

poorly connected between the superconducting regions. However, the sup-

pression of superconductivity by the applied magnetic field cannot explain

the MR at larger fields, because Bc2 measured in SrFe2As2 crystals and films

[11, 208, 220] is far larger than the maximum applied field used here (8 T).

Furthermore, the irreversibility field at 8 K is close to the maximum applied

field of 8 T in superconducting samples [208, 220] and hence flux flow is not

expected below <8 T. Hence, vortex motion, which leads to a large MR with

increasing fields in superconductors, is also unlikely to be the reason.

A possible model is suggested by the appearance of a finite resistance

at 8 K where metallic and non-superconducting SrFe2As2 contains supercon-
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ducting droplets. Then the percolation pathway would include conduction

in the metallic regions and effectively shorted out superconducting regions.

Hence, the MR above ∼1 T might be completely due to the metallic re-

gions given by equation 6.6. Furthermore, figure 6.15a shows the fit using

equation 6.8 above 1 T to the data, which provides a good agreement with

ζ(8K) = 0.807. The mobilities (figure 6.14) are further enhanced with re-

spect to the higher temperature values. Such a large low-temperature en-

hancement was not reported by Ishida et al. [196] on non-superconducting

BaFe2As2 with a mobility of µe1=4.5× 103 cm2/Vs at 2 K, although the mo-

bilities did increase with deceasing temperature. The µe1=5.6× 103 cm2/Vs

presented here at 8 K is only slightly larger than that from Ishida et al. [196].

For SrFe2As2 a possible explanation is that part of the low-temperature in-

crease in the mobilities may be a consequence of the inhomogeneous state

and the complex percolation pathway.

6.5.4 Reversibility

The aged SrFe2As2 crystal, which became superconducting after nine months

can be reversed to its initial state by re-annealing the crystals in a pure Ar

atmosphere similar to the last annealing step done on the new samples. This

suggests that superconductivity in this sample is caused by air exposure,

which causes strain in the sample subsequently inducing superconductivity

[11]. The resistivity of the re-annealed sample is shown in figure 6.11 dis-

playing good agreement with the initial measurement on a fresh sample. The

MR is shown in figure 6.16 with the same field and temperature dependence

as those shown in figure 6.7.
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Figure 6.16: Magnetic field dependence of the MR for different
temperatures for the re-annealed SrFe2As2 crystal.

6.6 Summary and conclusions

The magnetoresistance of BaFe2As2, SrFe2As2 and low energy Ca implanted

SrFe2As2 crystals were studied. BaFe2As2 shows no sign of superconductiv-

ity, while SrFe2As2 is non-superconducting in the initial state and develops

superconductivity over time. SrFe2As2 with 0.8 at%Ca shows a low tem-

perature downturn indicating a developing superconducting state. The MR

is positive for all three samples and the derivative of the MR displays a

crossover between a low field and a high field region. It has been suggested

that the MR in the high field region can be described by quantum linear

MR. However, the field dependence of the MR is non-linear below 8 T and

the crossover field is far too low. The high field MR data can be fitted to

a simple power-law (equation 6.2). The exponent, m, should be 1 for linear

behavior, but ranges from 1.5 at high temperatures to around 1.1 – 1.2 at

low temperatures5. Hence, the MR in these compounds is unlikely to be

caused by quantum linear MR and it seems that a three-carrier model is

more appropriate as shown by the fits to the SrFe2As2 samples. There is a

MR up to 1600 % observed for the superconducting samples of SrFe2As2 at

2 K and 8 T. This enhancement is most likely due to three-carrier transport

in an inhomogeneous system with superconducting and metallic regions, and

5only for non-superconducting samples
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where the mobilities are significantly enhanced.
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Chapter 7

The effect of electronic doping

on the magnetic, electronic and

vibrational properties of

FeSr2YCu2O6+y

7.1 Introduction

Another interesting approach to study the effect of Fe in HTSC materials is

replacing some of the Cu in the cuprates with Fe. A good candidate for such a

replacement is on a derivative of a parent compound YSr2Cu3O6+y (YSCO),

which is similar to RuSr2RCu2O6+y
1 (Ru1212) and RuSr2R2-xCexCu2O10-y 1

(Ru1222)2, where a fraction of the Cu is replaced by Ru. This is interesting

to study because Ru1212/Ru1222 are well studied compounds, which have

shown coexistence between superconductivity arising from the CuO2 planes

and magnetic order from the RuO2 planes [170, 223–227]. Furthermore,

this kind of coexistence has not attracted much attention in FeSr2YCu2O6+y

(Fe1212). Despite the high Fe content Yamaguchi et al. [228] have found a

maximum superconducting transition temperature, TC, of 64 K. Therefore

1R is a rare earth element
2studied in the next chapter8
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the Fe1212 system has a high potential to offer some additional information

about the coexistence of superconductivity and magnetism.
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7.2 Synthesis and structure

Samples of Fe1212 were prepared by stoichiometric mixing of high purity

amounts of Y2O3, Sr(NO3)2, CuO and Fe2O3. CaO, La2O3 or ZnO were

added as dopants, which leads to hole doping when Y atoms are replaced

with Ca; electron doping when Sr is replaced by La; and a fast suppression of

superconductivity by replacing just a few percent of Cu with Zn. The powder

was ground together and denitrated at 700 ◦C for 12 h before regrinding,

pelleting and annealing at 1000 ◦C in air for 24 h. Afterward they were treated

in N2 at 700 ◦C for another 24 h, which should ensure a migration of most

of the Fe into the Cu(1)-chain site. Finally, the as-prepared samples were

oxygen loaded at 600 ◦C and slowly cooled down to 350 ◦C. The last step

could be done at ambient pressure to ensure full superconductivity contrary

to the parent compound of YSr2Cu3O6+y where high pressure oxygen loading

is necessary to ensure full superconductivity.

With this method samples of pure Fe1212, La and Ca doped samples

with 0.1 and 0.2, and samples with 0.01, 0.02, 0.03 and 0.05 Zn doping

were produced. The quality of the samples was checked between individual

steps as well as at the end via powder XRD measurements employing Co-Kα

radiation (figureA.4, A.5, A.6, A.7 and A.8). These measurements showed

phase-pure polycrystalline samples within the limit of detectability (less than

1 %). The structure of Fe1212 is shown in figure 7.1 which is very similar to

RuSr2RCu2O6+y [226]. It contains two CuO2 planes and a SrFeO3-y subunit

[170, 229].
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Figure 7.1: Crystal structure of FeSr2YCu2O6+y with Fe and Cu at their
preferred position.
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7.3 Magnetic properties

Zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements

were performed in an applied magnetic field of 2 mT. Figure 7.2 shows the

results for undoped Fe1212, where a crossing towards negative magnetization

for ZFC and FC is observed indicating the superconducting transition around

a temperature of 64 K.
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Figure 7.2: Temperature dependent magnetization for undoped Fe1212 at a
magnetic field of 2 mT.

Similar measurements were done for all samples and the effect of electron

and hole doping on TC is shown in figure 7.3a. Both dopings reduce TC and

superconductivity is completely suppressed at a doping of either 0.2 La or Ca.

Furthermore, figure 7.3a suggests that the optimal doping for this material

is very close to the undoped compound.
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Figure 7.3: Doping dependence of the superconducting transition
temperature and room temperature thermopower in FeSr2YCu2O6+y.

Such a superconducting dome is commonly observed in the HTSC cuprates,

which usually also shows a decrease in the room temperature (∼295 K) ther-

mopower value, S(295K), with increasing hole doping. This is indeed what

was found in figure 7.3b. The overall TC found here is significantly lower

than that in the parent compound YSCO where it reaches a maximum of

80 K [230]. It is known that Fe on the Cu(2) site suppresses TC in the Y123

compound via pair-breaking by around 5 K/%Fe [231–233]. It is likely that

some iron remains on the Cu(2) site in Fe1212 and the amount can be esti-

mated to be around ∼3 % assuming a similar suppression rate.

Susceptibility measurements were undertaken at a field of 6 T. All sam-

ples show a Curie-Weiss (CW) temperature dependence above TC with a

departure from the CW temperature dependent behavior when approaching

TC, suggesting superconductivity is still not completely suppressed at 6 T as

can be seen in figure 7.4. This is also an indication that the upper critical

field, Bc2, has to be much higher than the applied magnetic field of 6 T.
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Figure 7.4: Temperature dependence of the a) susceptibility and b) 1/χ−χ0

for Fe1212.

The departure from the CW temperature dependent behavior can be

clearly seen in figure 7.4b at 50 K, and the fitting to equation 3.3 was done

above this departure in order to avoid any contributions from superconduc-

tivity or magnetic order. Noticeable was a large increase in the temperature

independent part of the susceptibility, χ0, for all superconducting samples,

which shows a similar doping behavior as TC. The values for χ0 are shown in

figure 7.5a, where this behavior might originate from a Stoner enhancement

or an effective mass effect.
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Figure 7.5: Doping dependence of the fit parameters.

Furthermore, there is a decrease in the magnitude of the CW temperature

with increasing hole doping, which is shown in figure 7.5b. The negative sign

indicates a dominant antiferromagnetic exchange interaction, which becomes

weaker with increasing hole doping.

The effective moment per formula unit, P f.u.
eff , was calculated from the CW

constant, C (equation 3.5). Similar values were obtained for all supercon-

ducting samples (figure 7.6), and it is the highest for 0.2 La and the lowest

for 0.2 Ca doping. A value of P f.u.
eff = 3.4µB was obtained for the supercon-

ducting samples, which is in good agreement with other measurements on

Fe1212 by Pissas et al. [234]. The values for different spin configurations of

Fe are shown in table 7.1 and these suggest that there is a mixture of at least

two different spin configurations. Mössbauer measurements on the related

compound of FeBa2YCu2O6+y by Felner et al. and on FeSr2YCu2O6+y by

Hata et al. [14, 235] have shown that the Fe ions at the Cu(2) site are always

in the high spin (S = 5/2 →5.92µB) configuration of Fe3+. The Fe on the

Cu(1) site was found to be in two different states which are the high- and the

low-spin configurations of Fe3+ [235]. There is no Cu contribution because

the Cu plane is conducting and hence it has no static moment. Then it is
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possible to calculated the amount of Fe in the different spin states3 from,

P 2
f.u. = xP 2

s1 + (1− x)P 2
s2 (7.1)

where Pf.u. is the effective moment per formula unit and x is the amount of

Fe in the spin configuration s1 (Psi are the effective moments of Fe in the

spin configuration si). Equation 7.1 can be rewritten for x as,

x =
P 2

f.u. − P 2
s2

P 2
s1 − P 2

s2

(7.2)

and by assuming that there is a high spin (S = 5/2 →5.92µB) and a low

spin (S = 1/2→1.73µB) configuration yielding 27 % Fe in the high spin state

and 73 % in the low spin state. Hata et al. [235] have found a distribution of

60 % low-spin and 40 % high-spin Fe3+ from Mössbauer measurements, which

results in an effective moment for the whole compound of P f.u.
eff = 3.98µB.

Such a difference can occur through the redistribution of Fe from the Cu(2)

site to the Cu(1) site as it has in our sample.

S PFe
eff [µB]

Fe2+ 2 4.99
Fe3+ 5/2 5.92
Fe3+ 3/2 3.87
Fe3+ 1/2 1.73
Fe4+ 2 4.99
Fe4+ 1 2.83

Table 7.1: The effective moment of different spin configurations of Fe.

3Fe on the two different sites in the two different spin states behaves as completely
different magnetic Ions
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Figure 7.6: Doping dependence of the effective moment per formula unit.
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7.4 Raman Spectroscopy

Raman spectroscopy was carrier out on doped and undoped Fe1212 samples,

and a typical example of a room temperature spectrum for an undoped com-

pound is shown in figure 7.7. All samples show a variety of Raman peaks in

the spectra, which are interpreted through comparisons with similar samples

like YBa2Cu3O7+y[236–239], FeSr2Y2-xCexCu2O10-y[240] and RuSr2GdCu2O8

[241].
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Figure 7.7: Room temperature Raman spectrum of an undoped Fe1212
sample.

The assignment is presented starting from the low frequency side. The red

line at around 150 cm−1, can be attributed to an A1g mode involving either

Cu(2)4 motion or Sr vibrations both along the z-axis. These two modes

have the same symmetry and hence overlap. They are expected to interact

and split, which results in the small difference observed in our spectra. A

B1g mode from out-of-phase vibration of the O(1)/O(3) is assigned to the

green line at 320 cm−1. The feature around 400 cm−1 to 450 cm−1 in blue is

attributed to an A1g mode in-phase O(1)/O(3) motion. The cyan line around

575 cm−1 is identified as an A1g mode from the apical oxygen O(2). This line

also has features at the lower and higher frequency side (shown in figure 7.7

and 7.8 as the pink lines), which are most likely caused by impurities. None

of the modes show much frequency shift with doping probably because the

4see figure 7.1 for the position of Cu and O
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resolution is not good enough. Only the lower frequency feature (pink line)

for the apical oxygen O(2) displays lower frequency values with doping on

either side of the undoped parent compound.
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Figure 7.8: Doping dependence of the Raman peaks with electron and hole
doping.
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7.5 The effects of Zn doping

The idea behind adding Zn is to suppress superconductivity and investigate

any possible remaining magnetic order, which might previously be hidden.

Such a possibility is supported by the observed coexistence of magnetism

and superconductivity in the Ru1212 [224–226, 242] compound, where the

magnetism is from the RuO2 planes. Furthermore, a magnetic ordering is

observed in FeSr2Y2-xCexCu2O10-y (Fe1222), which will be described in chap-

ter 8. The doping range of x = 0.01-0.05 was chosen because with lower Zn

values one would only partially suppress superconductivity, which might offer

some additional insights into the superconducting pair-breaking mechanism

and furthermore allows an estimation of the suppression rate per Zn doping.

Figure 7.9 shows the results from ZFC and FC measurements where it

can be seen that superconductivity is gradually suppressed by Zn doping.

While the samples with a Zn content of x=0.01, 0.02 and 0.03 are still su-

perconducting with TC around 30 K, 20 K and 12 K respectively, the sample

with x=0.05 is not superconducting anymore. However, the ZFC still shows

a transition (peak) at around 64 K plus a separation between the ZFC and

FC traces at this temperature, which indicates that a certain fraction of this

sample might still be superconducting, since this is very close to the optimal

TC for the undoped sample [243]. Hence, it is most likely to arisen from an

inhomogeneous distribution of Zn rather than magnetic order.
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Figure 7.9: The temperature dependence of ZFC and FC magnetization of
FeSr2YCu2-xZnxO6+y in an applied field of 2 mT.

For YBCO it has been found that the suppression rate, dTC/dx, depends on

the hole concentration in the initial region, where the suppression is roughly

linear. This effect is related to the size of the normal state pseudogap [115,

244]. Figure 7.10 shows TC versus Zn content for Fe1212 as well as for

optimally doped (dashed blue line) and heavily underdoped (red solid line)

YBCO[244]. The suppression rate of 10 K/%Fe found here for Fe1212 is too

high for a Zn pair breaking pathway known in the cuprates. The most likely

reason is that it is due to more Fe on the Cu(2) site, which leads to additional

Fe pair breaking not appearing in the bulk sample. This also explains why

the initial TC is lower than expected for the x=0.01 Zn doping and results in
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an overall reduced TC.
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Figure 7.10: The superconducting transition temperature, TC, against the
Zn doping in Fe1212 (black circles). Also shown are the suppression rate for
optimally doped (dashed blue line) and heavily underdoped (solid red line)

YBCO [244] based on the initial TC of 64 K.
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Figure 7.11: 1/(χ− χ0) plot for Fe1212 samples together with the linear fit
for a CW temperature dependence.

Susceptibility measurements were undertaken in a magnetic field of 6 T.

Figure 7.11 displays plots of 1/(χ − χ0) for all four Zn doped samples. All

samples show a CW temperature dependent behavior down to 40 K except for

the sample with 0.05 Zn, which already shows a departure at a higher tem-

perature of 110 K. The resultant CW temperature, Θ, the effective moment

per formula unit, P f.u.
eff , χ0 and S(295K) are listed in table 7.2.
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Zn doping TC [K] Θ [K] P f.u.
eff [µB] χ0 S(295K) [µV K−1]

0.01 30(2) −50(2) 2.72 2.5e-4 10(1)
0.02 20(2) −48(2) 2.54 2.7e-4 11(1)
0.003 10(2) −47(2) 2.67 2.6e-4 12(1)
0.05 05 −69(3) 3.91 9.5e-6 39(2)

Table 7.2: TC ,Θ, P
f.u.
eff , χ0 and S(295K) of Zn doped Fe1212.

The values of S(295K) are nearly the same from x = 0.01 to x = 0.03 but

they are significantly higher for x = 0.05. Comparing the observed values for

the x = 0.05 sample to the S(295K) values found in the hole doped cuprates

[115] suggests that the sample is significantly underdoped. The CW temper-

ature and the temperature independent part of the susceptibility are nearly

the same for x = 0.01 to 0.03 and these values are similar to the undoped

compound. However, the effective moment P f.u.
eff is significant lower than that

previously observed. This can be the case, if there is more Fe in the low spin

state in these samples. There is no evidence for a Zn-induced local moment

at these concentrations as it is seen in the superconducting cuprates [245].

The Curie-Weiss temperature is more negative and the effective moment is

larger for x = 0.05. This may be due to a higher amount of disorder in the

sample and a larger fraction of Fe on the Cu(2) site.

Field loop measurements were performed at 5 K as shown in figure 7.12 for

x = 0.01− 0.03 and x = 0.05. The small initial decrease in the moment per

gram, M , in the low-field region of the field loops for x = 0.01 and x = 0.02 is

consistent with the presence of superconductivity that is seen in figure 7.12a

and 7.12b. The positive part is a contribution from paramagnetic Fe ions.

There is no initial decrease in M for the x = 0.03 and x = 0.05 samples and

there is hysteresis observed up to 6 T. However, hysteresis is also observed

up to 6 T for the superconducting samples with less Zn and hence it is not

clear if the hysteresis observed for x = 0.05 is due to some superconducting

regions with lower x or due to magnetic ordering. More measurements are

required at higher temperatures for x=0.05 and more homogeneous samples

are required where superconductivity is unambiguously suppressed and to

determine whether there is magnetic ordering.
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Figure 7.12: Low field magnetization loops at 5K for Fe1212 with different
Zn content.
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7.6 Summary and conclusions

FeSr2YCu2O6+y (Fe1212) was investigated by magnetic and magnetotrans-

port measurements with different dopants (La, Ca, Zn). A maximum TC

of 64 K was found for the undoped parent compound, which is smaller than

the iron free compound of YSr2Cu3O6+y (YSCO) which has a TC of around

80 K [230]. Fe1212 should have a similar TC, if all the irons are at the Cu(1)

sites. It is known that Fe on the Cu(2) site suppresses TC in the Y123

compound via pair-breaking by around 5 K/%Fe [231–233] and hence the

remaining iron on the Cu(2) site can be estimated to be around ∼3 %. A

possible Stoner enhancement was observed in the temperature independent

part of the susceptibility. Furthermore, through the CW analysis, a decrease

in the antiferromagnetic exchange interaction with increasing hole doping is

observed as well as a Fe3+ high spin configuration for the Cu(2) site and a

mixture of Fe3+ in the high and low spin configuration for the Cu(1) site.

Zn is found to be successful in suppressing superconductivity above x =

0.03. However, the rate of suppression, 4TC/x(Zn), is found to be high, which

suggests the pair breaking is unlikely to come from Zn alone. There is an

additional suppression due to an increased Fe content on the Cu(2) site in

comparison to the undoped sample. The samples with reduced superconduct-

ing transition temperatures x = 0.01− 0.03 show similar values of S(295K),

Θ, χ0 and Peff, while a significant difference in those values was observed for

the sample with x = 0.05. There is also a noticeable magnetization versus

applied field in all samples up to 6 T, but the origin of this hysteresis and

also the nature of this magnetic order are unclear.

More measurements with better homogenized samples are therefore needed

to clarify the origin of the transition in the x = 0.05 sample. Such samples

should prevent contribution from small fractions of the sample with signifi-

cant different doping. Hence, is should be possible to identify the origin of

the transition in the ZFC and FC traces for the x = 0.05 sample. Additional

measurements at higher temperatures will then make it possible to determine

the underlying magnetic ordering.
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Chapter 8

Magnetic and

magnetotransport properties of

FeSr2Y2-xCexCu2O10-y: Spin

and electronic disorder

8.1 Introduction

This chapter presents the results from magnetic and magnetotransport mea-

surements on FeSr2Y2-xCexCu2O10-y (Fe1222). This material offers valuable

additional insights into the properties of iron-based superconductors, because

it uses the same building blocks as the high temperature superconducting

cuprates and is very similar to RuSr2R2-xCexCu2O10-y [246] (Ru1222) (R is a

rare earth) and FeSr2YCu2O6+y (Fe1212) described in chapter 7. Fe1222 has

not shown any sign of superconductivity and hence offers a good option to

study the underlying magnetic properties without the influence from other

competing order mechanisms. It might also offer an explanation to why this

system is not superconducting and how it is suppressed.
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8.2 Synthesis and structure

Polycrystalline FeSr2Y2-xCexCu2O10-y samples were synthesized using a stan-

dard solid state reaction method. Stoichiometric amounts of Fe2O3, Sr(NO3)2,

Y2O3, CuO and CeO2 were ground together and the mixed powder was first

denitrated at 700 ◦C on gold foil, then reground and pressed into pellets. The

pellets were then sintered in air at 1050 ◦C for 24 h. From here two different

routes were taken. In the first attempt the pellets were oxygen loaded at

10 bar at a temperature of 550 ◦C for 12 h and then slowly cooled down to

room temperature over three days (type1). It became clear later on that it

is not necessary to do the oxygen loading at higher pressure and the oxy-

gen loading step could be done at ambient pressure with the same results.

However those samples are not superconducting, which was also reported in

some earlier reports on particular doping [223, 240, 247, 248]. From Möss-

bauer measurements it looks like Fe is nearly evenly distributed between the

CuO2 plane and the CuO1-y chains. Therefore Fe induced pair breaking is

very likely the cause of the non-existent superconductivity in this material.

Hence, a different approach was taken in the 2nd method to force as much Fe

from the CuO2 planes into the chains. To achieve such a re-positioning of Fe

and Cu an intermediate step was introduced, where the pellets were heated

to 750 ◦C in an Ar atmosphere and subsequently quenched in liquid N2. After

this procedure the samples are left with many oxygen deficiencies and it is

possible to study the effect of oxygen doping between these oxygen reduced

(OR) samples (type2 - OR) and those with a final oxygen loading step in a

O2-atmosphere at ambient pressure, which leads to oxygen saturated samples

(type2 - OS).

The quality of the samples was checked between individual steps as well

as at the end with powder XRD measurements employing Co-Kα radiation.

These measurements showed phase-pure polycrystalline samples within the

limit of detectability (less than 1 %) (figure A.9, A.10, A.11 and A.12).

The effects of oxygen loading as well as the additional annealing step in

Ar-atmosphere could be seen in the changes in thermoelectric power (ther-

mopower) (see table 8.1).
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sample Sinitial
1 [µV K−1] SOR

2 [µV K−1] SOS
3[µV K−1]

0.2 67(1) 4 29(1)
0.3 66(1) 424(1) 34(1)
0.5 65(5) 150(3) 19(1)
0.6 67(1) 197(2) 29(1)
0.7 68(1) 345(5) 28(1)
0.9 72(2) 350(10) 39(1)

Table 8.1: The thermopower for Fe1222 samples at different processing
steps.

The unit cell of Fe1222 has a fluorite block that is similar to the R2-xCexCuO4

electron-doped superconducting cuprates that have CuO2 planes. The fluo-

rite blocks are separated by perovskite structures of FeSrO3-y. The similar

compound of Ru1222 is superconducting for sufficient oxygen loading with a

value of x close to zero and it displays the coexistence of superconductivity

from the CuO2 planes and magnetic order from the RuO2 planes [246]. How-

ever the FeO2-y plane in Fe1222 is considerably oxygen deficient with y ∼ 0.8

in oxygen loaded samples [248]. The overall structure is shown in figure 8.1.

Sr

Y2-xCex

Fe/Cu

O

Figure 8.1: Crystal structure of FeSr2Y2-xCexCu2O10-y.
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8.3 Magnetization

Zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements

were performed in an applied magnetic field of 2 mT. Figure 8.2 shows the

results from these measurements, where a peak in the ZFC magnetization

is observed at around a temperature of 20 K. No indication was found for

any kind of high temperature Cu ordering. Magnetization measurements

on FeSr2Y1.5Ce0.5Cu2O10-y by Pissas et al. [240] show a peak in the ZFC

magnetization was observed at low temperature. It was not clear if this peak

is caused by a long range antiferromagnetic order or a spin-glass transition.

Later on the same peak was observed be Felner et al. [223], who interpreted

it as an antiferromagnetic order from Cu moments frustrated by Fe on the

Cu sites or Cu on the Fe site. Such an ordering is known to occur in oxygen

reduced samples around 350 K. Felner et al. [223] argued that increasing the

oxygen content would decrease the ordering temperature of the Cu moments.
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Figure 8.2: Temperature dependence of the ZFC and FC magnetization for
FeSr2Y1.3Ce0.7Cu2O10-y at an applied field of 2 mT.

However, the above DC magnetization does not clarify the origin of the

ZFC peak. AC magnetization measurements were performed for that purpose

around the low temperature magnetic transition. A spin-glass transition

would show a shift in the real part of the ac magnetization M ′ to higher

temperature with increasing frequency. Figure 8.3 shows the results for three

different Ce doping states, where a shift in the peak magnetization with AC
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field is observed.
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Figure 8.3: Temperature dependence of the real part of the AC
magnetization for seven different frequencies between 66 Hz to 10 000 Hz.

Such a spin-glass transition can be described by the relaxation time τ(Tf)

as described in section 2.3.3 with the Vogel-Fulcher-Equation [79],

τ(Tf) = τ0 exp

[
Ea

kB (Tf − T1)

]
(8.1)

where the freezing temperature Tf is the temperature where M ′ peaks. Ea is

the activation energy, kB is Boltzmann’s constant and T1 is a phenomenolog-

ical parameter of the Vogel-Fulcher law for spin-glasses [80]. The measured

data shows good agreement with such a fit as shown in figure 8.4.
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Figure 8.4: Relaxation times for different freezing temperatures with the
fits to equation 2.6.

Oxygen vacancies in the FeO2-y layers can cause highly disordered Fe-O-Fe

superexchange interactions, which can lead to spin-glass behavior. Another

option that would cause a spin-glass is site disorder with a significant fraction

of Fe on the Cu sites and vice versa.
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8.4 Susceptibility

High field susceptibility measurements were performed for different Ce dop-

ings ranging from x=0.2 to x=0.9 and varying oxygen content (an example

for an oxygen saturated (OS) sample with x=0.7 is shown in figure 8.5a).

The Curie-Weiss (CW) temperature and the effective moment per formula

unit can be obtained from these measurements as described in section 3.3.2

and they are shown in figure 8.5b and 8.5c.
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(a) Temperature dependence of the
susceptibility for x=0.7 in an oxygen

saturated (OS) sample.
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Figure 8.5: An example of the temperature dependent susceptibility for
x=0.7 (a) and the doping dependence of the CW temperature (b) and the

effective moment (c).
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The CW temperature, Θ, is found to be at around −40 K for the oxy-

gen saturated samples, which suggests there are antiferromagnetic exchange

interactions. The absolute value of the Θ is larger than those reported in

previous studies [223, 240]. The oxygen reduced samples show an even higher

negative value for the CW temperature, which is an indication of enhanced

antiferromagnetic interactions in these samples. The temperature indepen-

dent part of the susceptibility does not change much with doping and is in

the range of χ0 = 5× 10−5.

The effective moment per formula unit is only weakly dependent on the Ce

content and the highest value of Peff,f.u. = 3.33µB is observed for x=0.5. When

there are 2 copper atoms and one iron atom per formula unit contributing

to the effective moment per formula unit, it can then be written as:

P 2
eff,f.u. = 3P 2

eff,ion = P 2
eff,Fe + 2 ∗ P 2

eff,Cu (8.2)

Pissas et al. [240] measured an effective moment per Ion of Peff,ion = 1.9µB,

which yields Peff,f.u. = 3.29µB from equation 8.2. Felner et al. [223] measured

values of Peff,Fe = 3.85µB for Fe1222 with Y and different rare-earth ions.

They assumed that Peff,f.u. = Peff,Fe and these values are consistent with

neutron diffraction measurements. All of those measurements showed similar

values within experimental uncertainties and these values are also similar

to the observed effective moment in Fe1212 (previous chapter). However,

there is a significant reduction in the observed Peff,f.u. with the observed

antiferromagnetic ordering (section 8.7), which is interpreted as an ordering

of the Cu moments. The observed value of Peff,f.u. = 3.33µB results in Peff,ion =

1.92µB and Peff,Fe = 2.25µB when Peff,Cu = 1.73µB is assumed. Similar to the

compound Fe1212 there exist at least two different spin configurations of

Fe in Fe1222. Their possible values are already shown in table 7.1, and

assuming the same distribution of high spin (S = 5/2 →5.92µB) and low

spin (S = 1/2→1.73µB) configurations leads to a distribution of 96 % Fe in

the low spin state and only 4 % in the high spin state.
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8.5 Resistivity

The resistivity, ρ, is shown in figure 8.6 and it strongly increases with de-

creasing temperature for all samples, which is likely to be due to variable-

range-hopping (VRH). In this case the conductivity can be modeled with the

Mott conductivity as described by equation 2.8, where the exponent p = 1/4

for a Mott three-dimensional (3D) VRH, p = 1/3 for a Mott two-dimensional

(2D) VRH, and p = 1/2 for Efros-Shklovskii (ES) VRH in the presence of

Coulomb interactions [84, 86]. The observed data was subsequently fitted to

equation 2.8 with different VRH exponents p, and the results of these fits to

2D VRH are shown for a Ce doping of x=0.3 in figure 8.6a, x=0.7 in figure

8.6c and for x=0.9 in figure 8.6e. Fits to 3D VRH are shown in figure 8.6b,

8.6d and 8.6f, respectively. The data can be fitted over the whole tempera-

ture range for x=0.7 Ce doping to 2D VRH, while a fit to 3D VRH is only

possible above 4 K. In the case of x=0.3 and x=0.9 is it possible to fit to a 2D

VRH as well as 3D VRH above 10 K. Thus it seems that the data is the more

consistent with 2D VRH, but the average hopping distance can be estimated

to be in the order of several unit cells. There is also no anisotropic magne-

toresistance observed as shown below. Hence, it makes more sense that it

is 3D VRH where a departure occurs at low temperatures (below 10 K for

x=0.3 and 0.9 and below 5 K for x=0.7). No other report is known, which

discusses the resistivity of Fe1222 and hence it is not possible to determine

where the localized carriers reside. It is possible that the localized carriers

reside at or near the oxygen vacancies because the resistivity was found to

significantly increases as the oxygen content is reduced. Another possibil-

ity would be that the Fe on the Cu(2) site creates enough disorder so that

localized states occur, leading to the observed behavior.
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(c) x=0.7 for 2D-VRH.
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(d) x=0.7 for 3D-VRH.
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Figure 8.6: Resistivity against a temperature dependence of T−1/3 (2D) and
T−1/4 (3D) for different Ce content.

197



8.6 Magnetoresistance

The magnetoresistance (MR) was introduced in section 3.3.1 and was defined

in equation 2.11. Figure 8.7 shows the field dependence of the MR for all

samples, which is negative over the whole temperature range and can reach

values up to −22 % for x=0.7. An additional positive component is observed

for temperatures of 4 K and below for all samples, which is most visible at

2 K. This can be seen more clearly in figure 8.8 where the MR is plotted for a

field of a) 3 T and b) 8 T. It is apparent that there is a positive contribution

to the MR at least up to 4 K. It may be that the positive MR at low

field (see figure 8.8 and 8.7) and for temperatures below 5 K occurs because

the Nguen, Spivak, and Shklovskii (NSS) [97, 107] theory of negative VRH

quantum interference MR assumes scattering between static or frozen spins

for each hop. However, it has been noted that it is important to also include

scattering from a fraction of free spins that are localized at a scattering site

and where there is scattering from them for each hopping event [249, 250].

This can lead to a positive MR that is only observed or reported at low

temperatures [249, 250] as seen in our sample (figure 8.8 and 8.7).
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Figure 8.7: Magnetic field dependence of the MR for different Ce doping.
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Figure 8.8: Temperature dependence of the MR at different magnetic fields
and doping.

The magnitude of the normalized MR at and above 5 K is plotted next

in figure 8.9, where the MR was normalized to the MR at 8 T. It can be

seen that the magnetic field dependence of the MR is nearly the same for

temperatures below 15 K and at 40 K, which suggests a common underlying

mechanism. There is a small difference for the temperature range between

15 K to 30 K. This temperature range also includes the spin-glass tempera-

ture (23 K) and hence the small deviation may somehow be related to this

spin-glass transition.
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Figure 8.9: Magnetic field dependence of normalized MR for different
temperatures going through the spin-glass transition.

Large MR values have previously been reported in other compounds dis-

playing 2D and 3D VRH [99, 249–259]. VRH is a competition between

tunneling to nearby states and thermally activated hopping to more distant

states [84]. The resultant hopping rate between two states can be written as:

1

τh

=
1

τh,0

exp

(
−2D

ξ
− W

kBT

)
(8.3)

where D is the distance between the two localized states, ξ is the localization

radius, W is the energy difference between the two localized states, and

1/τh,0 is a constant that includes the attempt frequency. The hopping rate
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can change if ξ is affected by the applied magnetic field. This can occur where

the applied magnetic field can lead to a decrease in ξ and hence a shrinkage

of the localized electron wavefunction [98, 255, 256]. It results in a decrease

in the hopping rate and an increase in the resistance that leads to a positive

MR. This wavefunction shrinkage model cannot explain our data because we

observe negative MR values over most of the magnetic field and temperature

ranges. It is likely that the MR is due to VRH quantum interference.

As stated in the theory section 2.5.1 VRH QI can lead to positive or

negative MR. A negative VRH quantum interference MR can depend on the

angle between the sample and the applied magnetic field for thin samples

[250, 260]. However, if many hops dominate the conductivity then there is

no MR anisotropy [260]. This is observed experimentally in bulk samples

[251, 253–255, 257–259, 261]. It also appears to be the case for our sample

as can be seen in figure 8.10 where the MR is plotted at 5 K with the applied

magnetic field parallel and perpendicular to the sample.
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Figure 8.10: Magnetic field dependence of the MR at 5 K for parallel
(black) and perpendicular (red) to the external magnetic field.

It is apparent that there is a negligible MR anisotropy. This is surprising

given the good fit to the resistivity data to 2D VRH (figure 8.6c) and where an

anisotropy in the MR might be expected. As already mentioned above, it is

more likely that the underlying conduction mechanism is 3D VRH and there

is a departure from the expected temperature dependence at and below 4 K

(figure 8.6c). The onset temperature of this departure also corresponds with
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the temperature where there is a change in the magnetic field dependence

of the MR (see figure 8.7 and 8.8) and hence there may be a change in the

hopping mechanism. However, this is speculative and requires theoretical

input and further research outside the scope of this present study. For low

field the MR is proportional to B2 [253, 260] and it becomes linear for higher

field [253]. This can be seen in figure 8.11 where the MR is plotted against B2

at 10 K and 20 K. The MR is found to be proportional to B2 below ∼2.7 T

at 10 K and below ∼1.5 T at 20 K. The MR follows a linear field dependence

for B >4 T at both temperatures (figure 8.12). Similar quadratic and linear

magnetic field regions are found after doing the same analysis on the data in

figure 8.9 and for temperatures from 5 to 50 K for all samples.
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Figure 8.11: The MR for 10 and 20 K for the quadratic field dependence in
the low field region.
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Figure 8.12: The MR for 10 and 20 K for the linear field dependence in the
high field region.
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8.7 The effect of oxygen loading

This section will discuss the effects of different oxygen content through a

comparison between oxygen reduced (OR) (8.2) and oxygen saturated (OS)

samples. The masses of these samples were measured before and after oxy-

gen loading, which allowed the oxygen difference to be estimated as ∆y =

1.20(0.05). For HTSC cuprates there exists a correlation between the room

temperature thermopower and the hole concentration [245], hence thermopower

values were measured for all samples in the OR and OS state. The results

are shown in figure 8.13.
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Figure 8.13: Thermopower at room temperature for OR and OS samples of
Fe1222.

The initial thermopower values are around ∼70 µV K−1 and a huge in-

crease was observed after processing in Ar, towards values ranging from

150 µV K−1 to 424µV K−1, which is a good indication of oxygen removal. Af-

ter the final step where additional oxygen was introduced even lower values

of S(295K) are observed, which range from 19 µV K−1 to 39 µV K−1. These

thermopower values [245] correspond to the number of doped holes per Cu,

p, being 0.11 to 0.09 for OS and 0.03 to 0.00 for the OR sample. p for the

OS sample is in the range where superconductivity is expected (p > 0.05).

The absence of superconductivity is most likely due to pair breaking by a

small amount of Fe on the Cu site in the CuO2 plane. For the HTSC cuprate

YBa2Cu3O6+y less than 5 % Fe is required to reduce the superconducting
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transition temperature to zero [262]. The hole concentration in the OR sam-

ple is consistent with a non-superconducting and insulating sample where

the Cu moments in the CuO2 plane order antiferromagnetically. The ZFC

and FC magnetization data from the OS samples (not shown) are similar to

the magnetization shown in figure 8.2 (Sambale et al. [13]) where there is

a peak in the ZFC moment at ∼22 K that arises from a spin-glass [13]. It

can be seen in figure 8.14 that the peak occurs at approximately the same

temperature in the OR sample and hence it is apparent that the spin-glass

temperature is not affected by a large reduction in the oxygen content.
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Figure 8.14: ZFC and FC (2 mT) magnetization for the oxygen reduced
(OR) Fe1222 with 0.5 Ce doping.

The magnetization for the OR sample also has a broad peak at ∼300 K

and there is significant irreversibility below this temperature. This can be in-

terpreted in terms of antiferromagnetic order with a Nèel temperature around

300 K. A similar ordering is observed in the insulating phase of the cuprates,

where the ordering temperature ranges from 320 K to 415 K [263, 264]. In

these compounds the antiferromagnetic ordering is assigned to an ordering

of the Cu spins in the Cu(2) site and it makes sense to assume the same

happens in our OR samples.

The susceptibility of the OR and OS samples were determined through

high field measurements and an example is shown in figure 8.15 for x=0.5.

They were fitted to a CW temperature dependence and the results incor-

porated in figure 8.5b, where it is shown that the CW temperature of the
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OR samples is lower. This is an indication of enhanced antiferromagnetic

interactions between the Fe moments in the OR samples.
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Figure 8.15: Temperature dependence of the susceptibility and 1/(χ− χ0)
of the oxygen reduced (OR) and the oxygen saturated (OS) samples of

Fe1222 with x=0.5.

The P f.u.
eff of the OR samples are also different as is shown in figure 8.5c

where they are significantly smaller than those of the OS samples. The Cu is

ordered in the investigated temperature region and hence there is no observ-

able static moment in comparison to the OS samples. Therefore, copper has

no contribution to the observed effective moment in the OR sample. Cal-

culating the effective moment per Fe yields a value around PFe
eff = 2.63µB,

which is higher than the value observed for the OS samples. This change in
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PFe
eff also suggests a different Fe distribution where 12 % Fe are in the high

spin configuration and 88 % in the low spin configuration.
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Figure 8.16: Temperature dependence of the resistivity for OR and OS
samples of Fe1222 with x=0.5.

The results from resistivity measurements on the OS and OR samples of

FeSr2Y1.5Ce0.5Cu2O10-y are shown in figure 8.16. The resistivity from the OR

sample is 100 Ω cm at 370 K and it increases with decreasing temperature.

Figure 8.16 also shows that the resistivity below ∼260 K can be fitted to

VRH resistivity [84–86] from equation 2.8:
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ρ = ρ0 exp

[
C0α

3

N(EF)kBT

]1/4

(8.4)

where C0 is a constant, α is the inverse localization length, kB is Boltzmann’s

constant and N(EF) is the density of localized states at the Fermi energy.

Thus, a lower N(EF) leads to a higher resistivity. It is shown in figure 8.16c

in a plot of the resistivity against 1/T 1/4 that the data can be modeled by

equation 8.6 only for temperatures below 195 K. A fit of the resistivity data

to Mott 2D variable range hoping (equation 2.8 with 1/3) and variable-range-

hopping in the presence of Coulomb interactions (equation 2.8 with 1/2) is

also not possible over the full temperature range. However, there might be

more than one conductivity channel for the OR samples and it is possible

that there is variable-range-hopping between localized states near the Fermi

level as well as activated band edge conduction. Band edge conduction could

occur across a small bandgap in the CuO2 plane and there could be variable-

range-hopping between localized states in the oxygen deficient FeO2-y plane.

There are more possibilities than that, for example that there is two channel

conduction via localized states at the Fermi level and activation band edge

conduction in the CuO2 plane and where the localized states could arise

from some Fe on the Cu sites in the CuO2 plane. We note that the room

temperature thermopower indicates that p is ∼ 0.03 which is the hole doping

range where insulating or semiconducting behavior in the CuO2 plane is

observed in the superconducting cuprates. Thus, we model the OR resistivity

as,

ρ(T ) =
1

ρ0 exp(T0/T )1/4+ρ1[exp(Eg/kBT )−1]

(8.5)

where ρ1 is the temperature independent activated band edge conduction

resistivity prefactor, and Eg is the bandgap energy. Figure 8.16d shows that

the OR resistivity data can be fitted to equation 8.5, where T0 =1.34× 106 K

and Eg =160(7) meV. The absence of superconductivity is most likely due

to pair breaking by a small amount of Fe on the Cu site in the CuO2 plane.

We note that less than 5 % Fe is required to reduce the superconducting

transition temperature to zero [262].
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The estimated amount of holes per copper, p, is even higher than that

for an oxygen loaded x=0.7 sample that did not have the additional 700 ◦C

argon annealing step. Furthermore, unlike the oxygen loaded samples men-

tioned previously, the resistivity cannot be modeled in terms of variable-

range-hopping (figure 8.16b). This is not surprising because the room tem-

perature resistivity of 44 mΩ cm is too low for variable-range-hopping. It also

cannot be fitted to the activated band edge conduction mentioned above.

While the estimated p of 0.11 suggests that the OS sample should be simi-

lar to an underdoped (p < 0.16) superconducting cuprate, the temperature

dependence of the resistivity is clearly different. In particular, the resistivity

is too high and a large increase in the resistivity is not consistent with a

normal-state pseudogap.

It is also unlikely to be due to the Kondo effect characterized by a ln(T )

divergence below the Kondo temperature from scattering by magnetic ions

(e.g. Fe moments in the CuO2 plane), because there is no upturn in the

resistivity even at 370 K. This would imply a Kondo temperature above

370 K, which does not seem to be realistic. The large increase in the resistivity

by more than two orders of magnitude as the temperature is reduced is also

too much to be consistent with a Kondo effect.
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Figure 8.17: Plot of the resistivity against temperature for an oxygen
saturated sample (solid curve). The dashed curve is a fit to equation 8.6.

Also shown are the metallic (doted curve) and the T−3/2 (dot-dash)
contribution to the fit.
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It is shown in figure 8.17 that a reasonable fit can be achieved, when the

OS resistivity data is fitted to the following equation:

ρ(T ) = [ρ0 + aT ] +
b

T 3/2
(8.6)

where ρ0 is the temperature independent resistivity, and a, b are temperature

independent constants. The first term is a metallic linear resistivity. How-

ever, a Fermi liquid T 2 metallic resistivity can also provide a reasonable fit

to the data. The second T−3/2 term accounts for the large increase in the

resistivity as the temperature is reduced and such a temperature dependence

can be observed when there is disorder and weak localization. Provided the

disorder is not too large then the 3D resistivity at low temperatures and to

lowest order can have an additional weak localization quantum interference

contribution to the resistivity that can be written as [95, 96],

∆σ = a1T
p/2 + a2T

1/2 (8.7)

where a1 and a2 are constants. The first term has p = 2 or 3 depending on

whether the scattering rate is determined by electron-electron or electron-

phonon scattering. Thus, a T−3/2 term could occur provided that the first

term is significantly larger than the second term and p = 3. However, the

room temperature resistivities are too high (>44 mΩ cm) to make weak lo-

calization a likely explanation and the more than two orders of magnitude

increase in the resistivity as the temperature is reduced is not seen in ma-

terials where weak localization quantum interference is observed. Thus, the

T−3/2 term is likely to arise from considerable site disorder in the CuO2 plane

and the FeO2-y layer as well as oxygen vacancy disorder in the FeO2-y layer.
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8.8 Summary and conclusions

This chapter presented the electronic and magnetic measurements on poly-

crystalline FeSr2Y2-xCexCu2O10-y samples. A spin-glass transition was found

at 23 K and the freezing temperature is only weakly dependent on the Ce con-

tent. The spin-glass may occur in the oxygen deficient FeO2-y plane where

there could be disordered Fe-O-Fe superexchange interactions, or it may be

due to site disorder where there are significant fractions of Fe and Cu on

both transition metal sites. The conduction mechanism is 3D variable-range-

hopping (VRH) for all samples above 10 K, with a departure thereafter. The

magnetoresistance at low temperatures is as high as −22 % at 8 T for x=0.7

Ce doped sample and shows a similar trend for all samples. The magne-

toresistance is due to quantum interference effects that occur when there is

hopping over a large number of scattering centers. The magnetoresistance

for all samples at and above 5 K is negative and follows the magnetic field

dependence expected for VRH quantum interference when there is scatter-

ing from static or frozen spins. A positive magnetoresistance for all samples

occurs for temperatures below 5 K that may be due to a contribution from

hops where there is scattering from localized free spins that is not accounted

for in the Nguen, Spivak, and Shklovskii (NSS) model.

The effect of oxygen reduction was also studied on oxygen saturated (OS)

and oxygen reduced (OR) FeSr2Y2-xCexCu2O10-y. The oxygen content has no

significant effect on the spin-glass temperature. However, antiferromagnetic

order is observed around 300 K in the OR samples, which is interpreted as an

ordering of the Cu spins in the CuO2 plane. The Curie-Weiss temperature

shows an increase in magnitude for the OR samples, which is a sign of stronger

antiferromagnetic exchange interactions from Fe. There is also a decrease in

the effective moment per formula unit for the OR samples, which is due to

the fact that the Cu moments are ordered in the investigated temperature

region and have no static magnetic moment there. Hence, the OR samples

have a higher effective moment per Fe and thus a larger amount of Fe in

the high spin configuration. The resistivity data from the oxygen reduced

sample can be modeled in terms of variable-range-hopping and conduction
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across a small gap in a semiconductor with a bandgap of 160 meV. The

resistivity from the oxygen saturated samples is more than three orders of

magnitude lower. Unlike the resistivity measurements on the oxygen loaded

samples in earlier studies, no evidence for variable-range-hopping is found.

It may be that the additional high temperature argon annealing step in the

present study has reduced the disorder in the CuO2 plane by reducing the

fraction of Fe on the Cu site in the CuO2 plane. The resistivity of the OS

samples can be modeled with a metallic resistivity and an additional term

that is proportional to T−3/2. The origin of this term is not clear but it

does show that there is significant disorder. From the room temperature

thermopower correlation observed in the HTSC’s, it would be expected that

p ∼ 0.11 and the oxygen saturated sample should be superconducting. It is

likely that there is sufficient Fe on the CuO2 sites that superconductivity is

suppressed.
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Chapter 9

Summary

This thesis is about a study of iron-based superconductors that encompass

the iron-pnictides and the iron-cuprate superconductors. It was found that

disorder plays a major role in the resultant electronic and magnetic proper-

ties. Disorder can be seen in the NMR spectra of CeFeAsO1-xFx in the form

of charge disorder and it is apparent in FeSr2Y2-xCexCu2O10-y where there is

a spin glass and strong localization for certain doping levels. The two sec-

tions below provide a more detailed description of the compounds studied in

this thesis. This is followed by a section on further work.
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9.1 Iron-pnictide superconductor

The iron-pnictide superconductors were studied via two chosen groups of

compound. The first group is the CeFeAsO1-xFx compound, where poly-

crystalline samples were studied. It was found that the resistivity for the

non-superconducting sample (x = 0.07) follows a linear temperature depen-

dence while the superconducting samples show a Fermi liquid temperature

dependence above the superconducting transition temperature. Furthermore,

fluctuation conductivity is observed when approaching the superconducting

transition temperature with a crossover from 2D towards 3D fluctuation con-

ductivity. This crossover is observed closer to superconducting transition

temperature for the underdoped sample (x = 0.13) compared to the other

superconducting samples, which is due to a smaller coherence length in the

x = 0.13 sample. The superconducting region of the resistivity was analyzed

within the thermally activated flux-flow model and vortex motion could be

observed within the model. The activation energy and the critical current

density JC are observed to peak around the optimal doping region. They

are correlated which is accounted for in the two fluid-flux creep model. The

irreversibility field can be interpreted in terms of 3D vortex lattice melting

and the irreversibility field is higher for higher fluoride concentrations. An

orbital limiting field, Borb
c2 , of up to 150 T for x = 0.13 was calculated using

the Werthamer-Helfand-Hohenberg formula and it was found that an orbital

limiting effect alone is not enough (Maki parameter always larger than one)

to describe the pair-breaking effect and the Pauli limiting effect has to be

included.
75As NMR measurements on CeFeAsO1-xFx show the appearance of ad-

ditional peaks in the low temperature region. For the non-superconducting

samples with x = 0.00 and x = 0.07 this is due to SDW ordering. For the

x = 0.07 sample a spin-density-wave (SDW) ordering temperature at around

20 K was observed from the NMR data, which was not expected because a

SDW should only be observed for x ≤ 0.06. This as well as the appearance

of a broad low temperature NMR peak is consistent with charge inhomo-

geneities due to a variable fluoride concentration. Additional NMR peaks are
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also seen for the superconducting samples in both field directions and for tem-

perature as high as 100 K, which are due to charge inhomogeneities. There-

fore, NMR results show that there are charge inhomogeneities for x = 0.06

to at least x = 0.20. Charge inhomogeneities have also been reported in the

cuprate superconductors.

The NMR shifts of the main line for x ≥ 0.07 are dominated by hyperfine

coupling to the Ce moments and where the main line can be fitted to a

Curie-Weiss temperature dependence with a Curie-Weiss temperature of zero

within experimental errors. The additional peak at low temperatures seen

in the x = 0.13 and x = 0.20 NMR spectra has a negative Curie-Weiss

temperature that indicates antiferromagnetic interactions between the Ce

moments. The NMR linewidths are all dominated by dipole interactions

with the Ce moments and they display a Curie-Weiss temperature equal to

zero within experimental errors for the main peak.

The spin-lattice relaxation can be interpreted with Moriya’s theory for

weakly itinerant 2D antiferromagnets [49, 190]. This mechanism is strongest

in c ‖ B0, because it is a hyperfine interaction, which only has non-zero matrix

elements in this direction. Therefore, the spin relaxation is through 2D spin

fluctuations. The spin-spin relaxation can be fitted with a Lorentzian shape

over the whole doping range at all temperatures. However, for CeFeAsO0.93F0.07

is it necessary to use two components to achieve a satisfying fit in the low

temperature region. The second component arises from the spin fluctua-

tions of Fe and it is very short in comparison to the first component already

observed for higher temperatures.

The second group comprises single crystal samples of BaFe2As2, SrFe2As2

and low energy Ca implanted SrFe2As2 where their magneto-transport prop-

erties were studied. While the former shows no sign of superconductivity,

a mixed superconducting and normal state was detected in the later two.

A large magnetoresistance is observed in the normal state and it is shown

that this is unlikely due to quantum linear magnetoresistance. It was found

that the magnetoresistance can be modeled with a three-carrier transport

model for the non-superconducting samples and in the high field region for

the superconducting ones. An enhanced magnetoresistance is observed in
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the superconducting samples below TC, with a magnetoresistance as high

as 1600 % for aged SrFe2As2. This increase in the MR at low temperatures

was interpreted as three-carrier transport in an inhomogeneous state with

metallic and superconducting regions and enhanced carrier mobilities.
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9.2 Iron-copper oxide hybrids

Polycrystalline samples of the iron-copper hybrid materials FeSr2YCu2O6+y

(Fe1212) and FeSr2Y2-xCexCu2O10-y (Fe1222) were investigated by electronic

transport, magnetic and magnetotransport measurements as a function of

doping and impurity substitution. Fe1212 was found to be superconducting

with a maximum TC of 64 K in the undoped compound. Superconductivity

was found to be suppressed by Fe on the Cu(2) site causing pair breaking and

reducing Tmax
C to 64 K compared to 80 K for the Fe-free compound. Electron

(La) and hole (Ca) doping formed a typical dome-shaped superconducting

phase diagram while Zn substitution causes further pair breaking as well

as driving more Fe onto the Cu(2) site. Further findings include a possible

Stoner enhancement observed in the temperature independent part of the sus-

ceptibility in all superconducting samples (parent, 0.1 Ca and 0.1 La doping

and x=0.01-0.03 Zn doping). A decrease in the antiferromagnetic exchange

interaction with increasing hole doping was observed and the obtained effec-

tive moment is due to a mixture of high and low spin configurations of Fe.

There is also a noticeable hysteresis in the magnetization versus applied field

curves in all samples with Zn substitution, but it is not clear if this is due

to magnetic order or an inhomogeneous distribution in the Zn concentration

that results in superconducting regions even for higher Zn concentrations.

No sign of superconductivity was found in Fe1222, but a spin-glass tran-

sition was observed at 23 K due to disordered Fe-O-Fe superexchange inter-

actions or site disorder where there are significant fractions of Fe and Cu on

both transition metal sites. The conduction mechanism is 3D variable-range-

hopping (VRH) with a departure at low temperatures. A magnetoresistance

as high as −22 % at 8 T and at low temperatures is observed. The magne-

toresistance at and above 5 K is negative and is interpreted as VRH quantum

interference when there is scattering from static or frozen spins. A positive

magnetoresistance occurs for temperatures below 5 K that may be due to a

contribution from hops where there is scattering from localized free spins that

is not accounted for in the Nguen, Spivak, and Shklovskii (NSS) model. The

effect of oxygen reduction was also studied on oxygen loaded and oxygen re-

219



duced FeSr2Y2-xCexCu2O10-y samples. The oxygen content has no significant

effect on the spin-glass temperature, but antiferromagnetic order is observed

for the oxygen reduced sample, which is due to an ordering of the Cu mo-

ments in the CuO2 plane. The magnitude of the Curie-Weiss temperature is

increased in the oxygen reduced samples, which is a sign of enhanced antifer-

romagnetic interactions in these samples. The effective moment per formula

unit decreases in the oxygen reduced samples, but the effective moment per

Fe increases. The resistivity data from the oxygen reduced sample can be

modeled in terms of variable-range-hopping and conduction across a small

gap in a semiconductor with a bandgap of 160 meV. The resistivity from the

oxygen saturated samples is more than three orders of magnitude lower, and

the resistivity can be modeled with a metallic resistivity combined with an

additional term that is proportional to T−3/2. The origin of this term is not

clear but it does show that there is significant disorder.

220



9.3 Outlook

This section will outline possible further projects, which would add further

information and help to develop an even better understanding of the pre-

sented results. Further measurements that may include Shubnikov-de Haas

measurements on the SrFe2As2 single crystals used in this thesis, would help

us to understand the magnetoresistance better by directly measuring con-

centration and mobility of all charge carriers. It would also be helpful to do

a further doping dependent study on SrFe2As2 to properly map the Dirac

cone.

Nuclear quadrupole resonance (NQR) measurements on CeFeAsO1-xFx

could help to improve the knowledge about the internal field from the SDW

ordering in low fluoride content samples. It would also be helpful to perform

further NMR measurements on a few more superconducting samples that

include more heavily doped samples, to better understand the development

of the low temperature peaks and their eventual doping dependence. It would

also be interesting to see if similar inhomogeneities occur in the other 1111-

pnictides. This is to determine if the inhomogeneities seen in the Ce1111 is

common across the iron-pnictides.

Heat capacity measurements on the iron-cuprates could help to determine

the Stoner enhancement in Fe1212 and help to investigate the low tempera-

ture spin glass in Fe1222. Mössbauer spectroscopy and X-ray photoemission

spectroscopy could help to clarify the iron valence. Neutron and synchrotron

X-ray scattering to estimate the occupancy of the oxygen sites. Additional

measurements with better homogenized samples could clarify if there is an

underlying magnetic order in the Zn doped FeSr2YCu2O6+y samples. NQR

measurements might also be helpful to understand more about the internal

dynamics and to estimate the electric field gradient. Such samples should be

able to remove the contribution from a changed iron environment in compar-

ison to the non Zn doped samples. It would also be helpful to make samples

with an even higher Zn content to completely suppress superconductivity

through Zn doping alone and therefore allowing easier access to a possible

underlying magnetic order.
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Appendix A

XRD and SEM figures
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Figure A.1: XRD of CeFeAsO1-xFx, where the expected phase is identified
and their crystal planes are shown in brackets. The arrows at lower angles
show impurities, which are 1=FeAs, 2=FeAs2 and 3=Ce3Fe4O3. The peaks

at higher angles (*) are caused by the sample holder.
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Figure A.2: SEM of CeFeAsO0.87F0.13
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Figure A.3: XRD of AFe2As2 (A= Ba, Sr).
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Figure A.4: The measured pattern of pure FeSr2YCu2O6+y in black and the
corresponding theoretical patterns of FeSr2YCu2O7.5 in green and

FeSr2YCu2O6.8 in blue.
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Figure A.5: The measured pattern of FeSr2YCu2O6+y with 0.1Ca in black
and the corresponding theoretical patterns of FeSr2YCu2O7.5 in green and

FeSr2YCu2O6.8 in blue.
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Figure A.6: The measured pattern of FeSr2YCu2O6+y with 0.2Ca in black
and the corresponding theoretical patterns of FeSr2YCu2O7.5 in green and

FeSr2YCu2O6.8 in blue.
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Figure A.7: The measured pattern of FeSr2YCu2O6+y with 0.1La in black
and the corresponding theoretical patterns of FeSr2YCu2O7.5 in green and

FeSr2YCu2O6.8 in blue.
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Figure A.8: The measured pattern of FeSr2YCu2O6+y with 0.2La in black
and the corresponding theoretical patterns of FeSr2YCu2O7.5 in green and

FeSr2YCu2O6.8 in blue.
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Figure A.9: Measured XRD pattern of FeSr2Y1.7Ce0.3Cu2O10-y in black, the
reference patterns of FeSr2Y1.5Ce0.5Cu2O9 in red and FeSr2Y1.5Ce0.5Cu2O8.2

in blue as well as two possible impurity phases with FeSrY2CuO6.5 in pink
and YO1.401 in dark red.
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Figure A.10: FeSr2Y1.5Ce0.5Cu2O10-y in black, the reference patterns of
FeSr2Y1.5Ce0.5Cu2O9 in red and FeSr2Y1.5Ce0.5Cu2O8.2 in blue
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Figure A.11: FeSr2Y1.3Ce0.7Cu2O10-y in black, the reference patterns of
FeSr2Y1.5Ce0.5Cu2O9 in red and FeSr2Y1.5Ce0.5Cu2O8.2 in blue
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Figure A.12: FeSr2Y1.1Ce0.9Cu2O10-y in black, the reference patterns of
FeSr2Y1.5Ce0.5Cu2O9 in red and FeSr2Y1.5Ce0.5Cu2O8.2 in blue
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