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ABSTRACT 
Metals are a common source of pollution in coastal waters, and have long been 

recognised as a major concern for many marine species, especially their early life 

stages. Although effects have been examined using standard toxicity assays, the 

impact of metals in more complex and realistic exposure regimes is still poorly 

known, in particular with regards to latent effects across multiple life stages and the 

interaction of multiple stressors. In this thesis, the effects of metals were investigated 

for multiple life stages of the endemic New Zealand sea urchin Evechinus chloroticus.   

 

Standard short-term bioassays were performed on the early life stage of E. chloroticus 

and also the endemic abalone Haliotis iris, for comparison. These assays evaluated 

the toxicity of three major pollutants (copper, lead and zinc) alone and in combination, 

on these species. Embryos of both species were highly vulnerable to copper (EC50s: 

5.4 and 3.4 µg/L respectively for E. chloroticus and H. iris) and zinc (27.7 and 13.1 

µg/L) but relatively tolerant to lead (52.2 and 775 µg/L), and there was no evidence 

of synergistic effects of metal mixtures.  

 

The latent effects of copper across two life stages in E. chloroticus, larval and 

juvenile, were investigated with laboratory experiments using realistic scenarios of 

low copper concentration, short pulses of exposure and examining exposure through 

dietary intake as well as waterborne exposure. Strong latent and carry-over effects 

were observed even at low concentration and short exposure time. For example, 

individuals exposed as larvae to 10.4 µg/L Cu for two days developed normally 

during the larval stage but had strongly impaired subsequent growth, with average 

body size decreasing by 24% in the 25 d following settlement. Moreover, juveniles 

previously exposed to copper as larvae were less resistant to a subsequent exposure, 

with up to four times higher mortality.  Latent effects were especially important when 

copper was present in the diet rather than dissolved in water. For example, E. 

chloroticus larvae exposed to 2.3 µg/L Cu in water and fed with an algal diet cultured 

in the same concentration had a settlement success three times lower than those 

exposed only to waterborne copper. Furthermore, a short pulse exposure (4 days) to 

copper in the algal diet was generally more toxic than chronic exposure, showing that 
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a short-lived bloom of contaminated phytoplankton may have a more severe impact 

on zooplankton than chronic pollution. 

 

Because metal discharge in coastal water is generally associated with freshwater (e.g. 

storm water or river plumes), the toxicity of copper was evaluated in both normal and 

low salinity seawater. Low salinity (24 ppt) increased copper toxicity in E. 

chloroticus larvae under chronic exposure to high levels (15 µg/L; 43% and 80% 

lower survival and normal development rate, respectively) but not under a single 

pulse exposure (4 days) to low concentration (5 µg/L). This highlights the importance 

of using realistic exposure in laboratory assays. 

 

Finally, the effect of copper on adult E. chloroticus and in particular on their 

fertilisation success was evaluated. Strong sublethal effects were observed after 

exposure to 50 µg/L Cu for two weeks including spawning impairment (especially in 

females) and elevated copper burden in gonads (25-times higher than control animals). 

However, the fertilisation success of successfully spawning males was not affected. 

 

The prevalence of local metal contamination was also measured at the mouth of local 

river plumes and in E. chloroticus gonads at sites expected to vary in likely exposure 

to pollution. Copper levels exceeding water quality criteria were found in two 

instances in coastal agricultural runoff (Makara stream). Other metals were within 

water quality cirteria in all samplings. Adult E. chloroticus had an elevated copper 

burden in gonads in an urban site compared to a control site (0.77 µg/g vs. 0.27 µg/g). 

 

In total, this research demonstrates the need for considering toxic effects across 

multiple life stages and using realistic exposure regimes (e.g. timing, concentration, 

multiple stressors) to better understand the likely impact of metal pollution on marine 

populations. It also provides the first measure of metal toxicity on early life stages of 

an endemic species of cultural and commercial importance in New Zealand. 
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It this thesis this acronym is used to describe a metal concentration 
similar to the water quality criteria defined by ANZECC (2000). See 
WQC 

BL:  Body Length. Used for E. chloroticus pluteus larvae 

d:  day 

DOC:  Dissolved organic carbon 

EC10:  Effective Concentration 10%; i.e. concentration at which 10% of the 
test population is affected. 

EC50:  Effective Concentration 50%; i.e. concentration at which 50% of the 
test population is affected.  

EO:  Preoral arm length. Used for E. chloroticus pluteus larvae 

FSW:  Filtered seawater (0.2 µm) 
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CHAPTER 1                                     
General Introduction 

Effects of land-based impacts, such as effluent, on coastal communities are a growing 

concern (Bryan 1971, Thrush et al. 2004, Green et al. 2007). As a result of increased 

urbanisation, agriculture and industrial discharge, effluent composition has changed 

in impacted streams and rivers worldwide. These changes have strong effects on river 

health and also on coastal communities (Bryan 1971, Johnston & Keough 2002, 

Thrush et al. 2004, Shahidul Islam & Tanaka 2004). Coastal organisms subjected to 

river plumes are simultaneously exposed to a vast array of stressors, including 

pollutants, suspended sediments and low salinity. In New Zealand, rainstorms are 

predicted to increase in frequency and intensity due to climate change, leading to an 

increased volume of effluents discharged in coastal waters (Morrison et al. 2009). It is 

crucial to understand the impact of effluent on coastal systems to develop appropriate 

regulations on water quality.  

1.1 COASTAL BENTHIC ORGANISMS 

Coastal systems are often dominated by benthic organisms, both algae and 

invertebrates. Some of these organisms shape the substrate and are habitat forming 

(eg. kelp, coral but also to a lesser extent bivalves, sponges, anemones, etc.) and 

therefore determine local assemblages (Mann 2000). Benthic organisms also 

constitute the lower levels of the food chain as they are usually primary producers, 

grazers or suspension-feeders. Indeed, coastal systems are highly productive, 

providing numerous services and supporting most exploited fisheries (Mann 2000, 

Morrison et al. 2009). 
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Studies evaluating anthropogenic impacts on coastal organisms tend to focus on adult 

populations (Johnston & Keough 2002, Lindegarth & Underwood 2002, Fukunaga et 

al. 2010). However, most invertebrate species have a planktonic larval stage and these 

larvae may be exposed to different stressors or react differently to the same stressors 

than do later life stages (Pechenik 1987, Pechenik et al. 1998). For example, a rocky 

reef subtidal benthic population may not be exposed to significant level of pollution. 

Yet planktonic larvae may encounter a highly polluted river plume far away from the 

source population and be affected by even a short exposure time. Therefore pollution 

may induce a decrease in the adult population via impacts on early life stages. 

 

Early life stages are usually more vulnerable to disturbance than are later stages 

(Pechenik 1987, Diederich et al. 2011). In addition, stress experienced in early life 

may have cascading effects on performance in later life (Pechenik et al. 1998, 2001, 

Gimenez et al. 2004, Allen & Marshall 2010, Marshall & Morgan 2011). Finally, 

survival and quality of larvae and new recruits is a critical factor limiting adult 

population size and persistence (Caley et al. 1996, Pechenik et al. 1998, Crean et al. 

2011). Therefore it is crucial to take into account early life stages and multiple life 

stages when evaluating the potential impact of anthropogenic disturbances on coastal 

organisms. 

1.2 PREVALENCE OF METAL POLLUTION 
WORLDWIDE 

Pollution is one of the major threats to coastal systems. With an increased awareness 

of the risks pollution causes to marine organisms and human health, many countries 

have developed a routine monitoring program to keep track of pollutants present in 

coastal water (Milne 2006, Osman 2010, Roose et al. 2011, Engle 2012). Metals are 

amongst the contaminants most commonly found in concentrations toxic to marine 

life (US EPA 2014). Metal concentration in coastal water is highly variable in areas 

strongly affected by human activities and range from near natural to two orders of 

magnitude higher than natural concentrations (Table 1.1). Cadmium, copper and lead 

are commonly found in high concentrations in many coastal areas especially in areas 
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affected by urban and industrial discharges or mining activities (Fatoki & Mathabatha 

2001, Kobayashi & Okamura 2004, SFEI 2015). Zinc is generally not considered a 

priority pollutant (US EPA 2014) but its prevalence is increasing as a result of 

urbanisation in many countries including New Zealand (Eisler 2007, Milne & Watts 

2008, Neale 2009, SFEI 2015).  

 
Table 1.1: Copper (Cu), lead (Pb) and zinc (Zn) contamination (µg/L) in coastal water in areas of low 
human impact and areas of high human impact (urban/industrial, shipping activity and mining). All 
concentrations reported are the dissolved fraction (< 0.45 µm). The highest concentrations are 
highlighted in bold. 

Site	
   Country	
   Cu	
  	
   Pb	
  	
   Zn	
  	
   Reference	
  
Low	
  impact	
  

Waitemata	
  Harbour	
   New	
  Zealand	
   <	
  1	
  -­‐	
  1.3	
  
	
   -­‐	
   <	
  4	
  

	
  
(Gadd	
  &	
  Cameron	
  
2012)	
  

Seto	
   Japan	
   0.79	
   0.1	
   4.9	
   (Kobayashi	
  &	
  
Okamura	
  2004)	
  

Various	
  locations	
   Antarctica	
   0.18	
  -­‐	
  1.17	
  
	
  

0.22	
  -­‐	
  0.49	
  
	
  

0.41	
  -­‐	
  1.26	
  
	
   (Honda	
  et	
  al.	
  1987)	
  

High	
  impact,	
  urban/industrial	
  

Port	
  Phillip	
  Bay	
   Australia	
  
	
  

0.4	
  -­‐	
  0.6	
  
	
  

0.02	
  -­‐	
  0.13	
  
	
  

0.3	
  -­‐	
  1.1	
  
	
  

(Gorski	
  &	
  
Nugegoda	
  2006)	
  

East	
  London	
  Harbour	
   South	
  Africa	
   0.6	
  -­‐	
  42.6	
  
	
  

0.6	
  -­‐	
  16.3	
  
	
  

0.5	
  -­‐	
  27.6	
  
	
  

(Fatoki	
  &	
  
Mathabatha	
  2001)	
  

Port	
  Elizabeth	
  
Harbour	
   South	
  Africa	
   0.5	
  -­‐	
  11.3	
  

	
  
0.6	
  -­‐	
  4.2	
  
	
  

0.7	
  -­‐	
  16.2	
  
	
  

(Fatoki	
  &	
  
Mathabatha	
  2001)	
  

Southwest	
  Coast	
   India	
   3.9	
  -­‐	
  13.1	
  
	
  

0.05	
  -­‐	
  5.3	
  
	
  

3.9	
  -­‐	
  35.6	
  
	
  

(Udayakumar	
  et	
  al.	
  
2011)	
  

Pondicherry	
  Coast	
   India	
   0.7	
  -­‐	
  61.5	
   -­‐	
   16.7	
  -­‐	
  135.7	
  	
  
	
  

(Govindasamy	
  et	
  al.	
  
1998)	
  

San	
  Francisco	
  Bay	
   USA	
   0.4	
  -­‐	
  10.8	
  
	
  

0.003	
  -­‐	
  2.97	
  
	
  

0.04	
  -­‐	
  14.3	
  
	
   (SFEI	
  2015)a	
  

San	
  Jorge	
  Bay	
   Chile	
   0.62	
  -­‐	
  1.96	
   0.02	
  -­‐	
  0.09	
   1.41	
  -­‐	
  8.99	
   (Valdés	
  et	
  al.	
  2011)	
  
High	
  impact,	
  shipping	
  activity	
  

Auckland’s	
  Marinas	
   New	
  Zealand	
   <	
  1	
  -­‐	
  20.0	
  
	
   -­‐	
   <	
  4	
  -­‐	
  22	
  

	
  
(Gadd	
  &	
  Cameron	
  
2012)	
  

San	
  Diego	
  Bay’s	
  
Marinas	
   USA	
   1.1	
  -­‐	
  21.0	
   -­‐	
   -­‐	
   (Schiff	
  et	
  al.	
  2007)	
  

High	
  impact,	
  mining	
  

Kanayama	
  Cove	
   Japan	
   0.1	
  
	
  

16	
  
	
  

35	
  
	
  

(Kobayashi	
  &	
  
Okamura	
  2004)	
  

Chanaral	
  Bay	
   Chile	
   <1	
  -­‐	
  32	
   -­‐	
   <1	
  -­‐	
  6.7	
   (Stauber	
  et	
  al.	
  
2005)	
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1.3 MECHANISMS OF TOXICITY 

1.3.1 BIOAVAILABILITY 

Metals in water tend to form organic and inorganic complexes or bind with sediments 

(Di Toro et al. 2001). Only the free ions are available for uptake by aquatic organisms. 

The bioavailable portion is largely dependent on water chemistry such as pH, 

dissolved organic carbon and ions composition (Santore et al. 2001, McGeer et al. 

2002, Paquin et al. 2002). For freshwater organisms, a biotic ligand model (BLM) has 

been developed to predict metal accumulation in organisms under specific water 

chemistry conditions (US EPA 2007). In seawater, until a similar model is developed, 

the best method to measure bioavailable metals is by analysing the fraction < 0.45 µm 

(dissolved fraction; US EPA 2007).  

1.3.2 COPPER 

Most studies on the mechanisms underlying copper toxicity focus on freshwater fish 

or crustaceans (Hinton et al. 2005, Grosell et al. 2007). In freshwater organisms, 

copper causes toxicity mainly by impairing sodium uptake at the gills and thus 

disrupting osmoregulation (Grosell et al. 2002, Eisler 2007). Most marine 

invertebrates and especially their early life stages are both osmo- and iono-

conformers – their ionic composition and osmotic pressure are similar to the marine 

environment. Mechanisms of copper toxicity for such organisms are likely to be very 

different from those of fish (Grosell et al. 2007). In marine invertebrates copper 

toxicity has been associated with respiratory impairment, in particular by disrupting 

haemocyanin functions (Bielmyer et al. 2005, Lee et al. 2010, Jakimska et al. 2011) 

as well as disruption of protein and enzyme activity (Flemming & Trevors 1989, 

Durkina & Evtushenko 1991). In addition, copper has been shown to causes DNA 

damage both in vitro and in vivo (Haldsrud & Krokje 2009, Al-Shami et al. 2011). 
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1.3.3 ZINC 

Zinc has an important role in regulating protein and cellular activites (Oteiza & 

Mackenzie 2005) but it induces oxidative stress in high concentration (Formigari et al. 

2007). In fish, zinc impairs osmoregulation and damages the gills (Eisler 2007). 

However, zinc is commonly found in high concentration in invertebrates tissues with 

no apparent adverse effects, possibly due to their ability to sequester zinc in hard 

tissues or granules (Eisler 2007). Adult mollusks in particular have been found to 

bioaccumulate high levels of zinc (Chong & Wang 2001). When zinc toxicity occurs 

in marine invertebrates, it involves respiratory impairment and metabolic dysfunction 

(Devi 1995) as well as oxidative damage (Franco et al. 2006, Trevisan et al. 2014). 

1.3.4 LEAD 

The mechanisms of lead toxicity are different from copper and zinc as lead acts 

mainly on the nervous system by replacing calcium ions (Eisler 2007, Zizza et al. 

2013). Accordingly, in vertebrates, lead also accumulates in hard tissues (e.g. bones) 

creating an internal source of exposure potentially leading to chronic poisoning 

(Eisler 2007, Mager 2012). Lead toxicity pathways in marine invertebrates, especially 

their early life stages, is poorly known but would presumably be similar to those in 

vertebrates. For example, in invertebrate larvae with a calcium carbonate structure 

such as echinoderm larvae, the replacement of calcium ions by lead might account for 

the ‘skeletal’ abnormality observed in presence of lead (Ghorani et al. 2013). A recent 

study showing a lower whole body calcium accumulation in sea urchin larvae in 

presence of lead seems to confirm this hypothesis (Tellis et al. 2014). 

1.4 IMPACTS OF METAL POLLUTION ON MARINE 
SPECIES 

As the larval stage is usually the most sensitive stage to pollutants, many studies have 

used early life stages to determine the sensitivity of species to pollutants (Hunt & 

Anderson 1993, Conroy et al. 1996, US EPA 2002a). These sorts of ecotoxicology 

studies, however, are typically very short (no more than 96 hours) and use high 



Chapter 1: General Introduction 

   6 

concentrations of pollutants that are not necessarily representative of realistic levels 

in coastal environments. Standard ecotoxicity tests are useful in determining priority 

pollutants and providing fast and cost-effective methods for routine monitoring and 

defining water quality criteria (WQC). However, they have limited use in predicting 

the likely effects of pollutants on marine populations. Further studies using 

environmentally relevant concentrations and longer-term end points are needed to 

evaluate the likely impacts of pollutants on early life stages in the field.  

 

Moreover, many pollutants tend to accumulate in tissues of marine organisms. Non-

essential metals (i.e. metals that cannot be used by the organism) and metals with a 

low rate of excretion (e.g. lead and mercury) are of special concern (Bryan 1971, 

Shahidul Islam & Tanaka 2004). In addition, biomagnification may occur; that is, 

metal and organic pollutants pass up the food chain with little loss (reviewed in 

Meyer et al. 2005). Therefore, organisms are not only exposed to waterborne 

concentrations but also to pollutants in their diet. For some species and pollutants, 

dietary intake may be the major route by which heavy metals are accumulated. For 

example, cadmium accumulation was almost 10-fold higher in sea urchins exposed to 

metal-spiked algae than it was when the urchins were exposed to a similar seawater 

concentration of metals (Bremer et al. 1990).  

 

A decrease in salinity occurs when effluents enter the coastal system, especially after 

a strong rain event. While it is a natural phenomenon, a decrease in salinity can be an 

important stressor for coastal organisms especially during the larval stage (Pechenik 

et al. 2001, Gimenez et al. 2004, Allen & Pechenik 2010, Diederich et al. 2011). A 

study showed that low salinity was actually the main factor responsible for a change 

in the adult community composition near an effluent (Roberts et al. 2008). Therefore, 

salinity may be a confounding factor and need to be taken into account when 

attempting to evaluate effluent impact on populations. In addition, salinity stress may 

affect the resilience of coastal organisms to other stressors occurring simultaneously, 

such as sediment or pollutants (Lee et al. 2010).  
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1.5 HOW TO EVALUATE THE IMPACT OF THESE 
STRESSORS?  

1.5.1 INTERACTION BETWEEN STRESSORS 

Existing studies typically evaluate the impact of different stressors associated with 

effluent independently, although there is some evidence that the presence of more 

than one pollutant produces a different outcome than each taken separately (King et al. 

2006, Mann et al. 2009, Manzo et al. 2010, Xu et al. 2011). For example, copper had 

no impact in isolation but increased the impact of polycyclic aromatic hydrocarbons 

(PAH) on sponge early life stages (Cebrian & Uriz 2007). Some studies have 

investigated the effects of metal mixtures but these vary strongly both between 

species and between pollutant mixtures (reviewed in Norwood et al. 2003). Given the 

large number of pollutants present in coastal water, more work needs to be done to 

characterise the effect of pollutant mixtures on the major groups of marine organisms.   

 

Furthermore, salinity affects the toxicity of pollutants (Ozoh 1992, Du Laing et al. 

2009, Barbieri & Doi 2011). Chloride in seawater tends to form complexes with 

metals, thus reducing a metal’s free ion activity and bioavailability (Du Laing et al. 

2009). Therefore the same level of pollutant may be more toxic in low salinity waters 

(Ozoh 1992). However, the toxicity of metals under realistic scenarios of low salinity 

has rarely been evaluated in marine larvae (but see MacInnes & Calabrese 1979, 

Nadella et al. 2013). Larvae of many species, including echinoderms, are able to 

avoid freshwater and position themselves at or below the halocline (Mann et al. 1991, 

Vazquez & Young 1996, Metaxas & Young 1998). In New Zealand, the presence of 

such an avoidance behaviour in a local echinoid, Evechinus chloroticus, is supported 

by an absence of larvae in the low salinity layer in fjords (Lamare 1998, Antonie 

2003). This behaviour may strongly mitigate the risk of exposure to pollutants in 

hyposaline conditions. However, pollutants discharge increases during major rain 

events and strong rain events tend to be associated to high wind. Therefore larvae 

may be unable to maintain their position in the water column under such condition of 

high turbulence.  
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1.5.2 CARRY-OVER AND LATENT IMPACTS 

The study of pollution impacts on early life stages derives from toxicology and uses 

similar standard toxicity protocols of typically short duration over a single life stage. 

However, there is increasing evidence that larval-stage experience influences 

performance in later life (Pechenik et al. 1998, Gimenez et al. 2004, Pechenik 2006, 

Crean et al. 2011), i.e. carry-over effects, where the stressor visibly affects larvae but 

the effect does not stop with settlement and continues to affect the juveniles. For 

example, starvation decreases larval growth but juveniles continue to have a low 

growth rate even when raised with normal food levels after settlement. The reason for 

this carry-over effect is that starved larvae metamorphose into smaller juveniles with 

feeding structures that are less developed, thus reducing feeding ability and growth 

rate (Phillips 2002, 2004, Pechenik 2006, Allen & Marshall 2010). Latent effects 

occur at later juvenile or adult stages even though larvae have not been notably 

affected. These type of effects are well known in humans where a stressor such as 

maternal intake of alcohol during fetal development may impact learning ability, 

detectable only years after birth citation (O’Callaghan et al. 2007). In aquatic 

organisms, carry-over and latent effects have been shown for nutritional stress 

(Phillips 2002, 2004, Allen & Marshall 2010), low salinity stress (Pechenik et al. 

2001, Diederich et al. 2011) and delayed metamorphosis (Pechenik 1990, 2006, 

Marshall et al. 2003). Very few studies have investigated the potential carry-over or 

latent effects of pollutants (Hoare et al. 1995, Pechenik et al. 2001, Ng & Keough 

2003). Effects may occur a long time after exposure, such as the latent impact seen in 

bryozoans 11 weeks after settlement (Ng & Keough 2003). Similarly, arthropods 

exposed to copper suffered no observable effect throughout their life cycle but failed 

to produce viable offsprings (Manyin & Rowe 2010).  

 

On the other hand, stressors may have a negative impact on larvae but surviving 

individuals may be more resistant when exposed later in life to the same stressor. A 

change in stressor tolerance has been reported with multiple exposures during the 

same life stage in freshwater fish (Dixon & Sprague 1981, Brinkman & Woodling 

2014). In aquatic organisms, one study recently investigated the effect of further 

exposure to a pollutant in later life stages (Kimberly & Salice 2014). This study 

showed an increase in sensitivity to cadmium in juvenile freshwater snails, Physa 
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pomilia, previously exposed to the same stressor during embryonic development. In 

marine organisms, the resistance/weakening hypothesis has been investigated for 

hyposaline stress but not for metal pollution (Diederich et al. 2011, Russell 2013).  

1.5.3 ECOLOGICAL RELEVANCE 

By their nature, ecotoxicology studies tend to demonstrate impacts at the individual 

level, e.g. mortality, growth rate. However, to develop management strategies it is 

important to understand the ecological relevance of impacts, e.g. whether increased 

larval mortality is likely to affect the population. Evaluating a stressor’s effect on 

field populations or communities is a very complex task as many factors, such as the 

effect of the stressor on interacting species (e.g. prey, competitors or predators), will 

influence the response (Johnston et al. 2003, Mayer-Pinto et al. 2010). Several studies 

have used soft sediment or hard substrate assemblages to test the impact of different 

stressors (pollutant, sedimentation, nutrients) in the field (Johnston & Keough 2002, 

Lindegarth & Underwood 2002, Fukunaga et al. 2010). However, this approach can 

be done only with low mobility organisms such as juvenile and adult stages of sessile 

organisms, and is not suited to the study of larval stages. 

 

Where the study of whole communities is not possible, a common strategy is to use 

test species. Test species are usually selected for their importance in the community 

(ecosystem engineers), sensitivity (indicator species) and/or cultural and economic 

importance (valuable stock). To investigate the effects of a stressor using key species 

while aiming for ecological relevance, it is important to use realistic concentrations 

and exposure times. For example, it is unlikely that larvae are going to be exposed to 

high levels of suspended sediment throughout the full duration of their larval stage. It 

is more relevant to use ‘pulse exposure’ in which organisms are exposed only for a 

short time to mimic exposure to a sediment plume after a rain event. In addition, 

long-term experiments should be used to investigate potential carry-over or latent 

effects. Test organisms should at least be kept for several weeks after settlement or 

for their full life cycle for short-lived species. Finally, effort should be made to 

correlate lab findings to populations in the field.  
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1.6 WHAT IS KNOWN IN NEW ZEALAND? 

Local authorities have a statutory obligation under the Resource Management Act 

(1991) concerning contaminant discharge into receiving water. Most coastal cities 

monitor sediment levels, especially in harbours and estuaries, and pollutant 

concentration is monitored in sewage water, and sometimes in rivers and in coastal 

sediments (Milne & Watts 2008, Neale 2009, Table 1.2). Pollutants of concern are 

usually copper, zinc, lead, PAH and ammonia. The regulation concerning the 

acceptable levels of pollutants and sediment is based on the Australian and New 

Zealand Environment and Conservation Council (ANZECC) WQC (ANZECC 2000). 

These criteria, however, have been developed mainly using studies on Australian 

species; few studies on local species are available. New Zealand is a highly isolated 

system with a high endemism rate especially amongst invertebrates and coastal fish 

with a short range dispersal (MacDiarmid 2007). Land-use impacts including 

pollution and sedimentation have been identified as a major threat to coastal 

invertebrates in NZ (Morrison et al. 2009, Freeman et al. 2010). New Zealand has an 

extensive coastline of more than 15000 km (ratio coast/land of 53) with coastal 

fisheries including some of the most valued species such as snapper, lobster and paua 

(Morrison et al. 2009). It is therefore particularly important to verify whether the 

WQC are appropriate for local species.  

 
Table 1.2: Range of copper (Cu), lead (Pb) and zinc (Zn) concentrations (µg/L) in rivers in Auckland 
and Wellington regions and water quality trigger values for 95% species protection (WQC 95%) and 
90% species protection (WQC 90%) in coastal water. Dissolved = fraction < 0.45 µm. 

	
   Cu	
   	
   Pb	
   	
   Zn	
  
	
   Total	
   Dissolved	
   	
   Total	
   Dissolved	
   	
   Total	
   Dissolved	
  

WGC	
  95%	
  a	
   -­‐	
   1.3	
   	
   -­‐	
   4.4	
   	
   -­‐	
   15	
  

WGC	
  90%	
  a	
   -­‐	
   3.0	
   	
   -­‐	
   6.6	
   	
   -­‐	
   23	
  

Auckland	
  b	
   0.6	
  -­‐	
  17	
   0.25	
  –	
  6.4	
   	
   0.7	
  –	
  4.6	
   0.03	
  –	
  0.7	
   	
   2.3	
  -­‐	
  180	
   0.3	
  -­‐	
  120	
  

Wellington	
  c	
   1.1	
  –	
  64.5	
   0.8	
  -­‐	
  9.3	
   	
   0.4	
  -­‐	
  168	
   <0.1	
  –	
  0.8	
   	
   3	
  -­‐	
  1170	
   2	
  -­‐	
  135	
  
a  (ANZECC 2000) 
b  (Neale 2009) 
c  (Milne & Watts 2008) 
 
 
Very few studies have evaluated the impacts of pollution on the NZ environment. 

Fukunaga (2010) found an adverse effect of copper and zinc in sediments on infaunal 
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abundance and species richness in Auckland (Fukunaga et al. 2010). To my 

knowledge, no study has investigated the impacts of waterborne pollutants on 

sensitive organisms in New Zealand.  

 

Rocky reefs are a major component of coastal ecosystems throughout New Zealand. 

They are highly productive systems supporting a suite of invertebrate species of 

significance to commercial, recreational, and customary fishing e.g. abalone, urchins 

and rock lobster (Morrison et al. 2009). However, the impacts of pollutants on rocky 

reefs have been largely ignored as it is thought that pollutants are rapidly flushed out 

of the system by wave action. As discussed above, however, pollutants may affect 

rocky reef populations in the water column via planktonic larval stages. 

1.7 FOCAL SPECIES 

1.7.1 EVECHINUS CHLOROTICUS (SEA URCHIN) 

Sea urchins are an ideal test species due to their high sensitivity to pollutants, 

ecological importance and ease of maintenance in the laboratory. As such, they have 

been widely used in ecotoxicity studies (US EPA 2002a, ASTM 2012). In New 

Zealand, the endemic sea urchin E. chloroticus is not only important ecologically but 

also supports an important customary and commercial fishery (Miller & Abraham 

2011). E. chloroticus has a major effect on the community structure of subtidal rocky 

reef by changing the nature and abundance of macroalgal cover (Andrew 1988). This 

shift in algal composition/cover has important indirect effects on mollusks and many 

fish species. However the vulnerability of E. chloroticus to metal pollution has not 

yet been studied.  

 

E. chloroticus is a shallow subtidal species primarily found on hard substrates and is 

distributed around New Zealand mainland and Snares and Chatham Islands (Dix 1969, 

1970a). The spawning season occurs between October to April with variation 

between populations (Dix 1970b, Lamare et al. 2002). E. chloroticus is a broadcast 

spawner with indirect development and planktotrophic larvae. Embryos hatch within 

two days post-fertilisation and pelagic larval development is highly variable 
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depending on environmental conditions such as temperature, occurring in 17 to 30 

days in the laboratory and upwards of 6 – 8 weeks in the field (Dix 1969, Lamare & 

Barker 1999). The larval development is typical for a sea urchin species (Dix 1969, 

Strathmann 1987). The first hatching stage is the gastrula, followed by the feeding 

pluteus stage (Figure 1.1). At the 8-armed stage, a juvenile rudiment develops within 

larvae (Dix 1970b, Lamare & Barker 2001). The rudiment grows into a juvenile 

urchin and the larval body is gradually resorbed. Eventually, metamorphosis occurs 

and the larval body is completely shed. The mouth of young juveniles opens after 

approximately 8 days post-settlement and feeding can begin. E. chloroticus reaches 

sexual maturity at around 4 years of age (Dix 1970b).  

 

 
Figure 1.1: Evechinus chloroticus life cycle. The numbers next to the life stages show the chapter in 
which the corresponding life stage was used. The numbers on arrows represent chapters in which the 
carry-over effects between the two linked life stages were investigated. The red arrow on the fully 
developed pluteus larvae shows the juvenile rudiment.  
 

Adult

Gametes
Embryo

Pluteus

Juvenile Settler

2, 5

2, 3, 4, 5

3, 4, 5

3, 43, 4

6

6

3, 4

6
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1.7.2 HALIOTIS IRIS (ABALONE) 

For comparison, because the response to pollutants is highly species specific and very 

little data on metal tolerance is available for New Zealand species (ANZECC 2000), 

another species was used in toxicity assays in Chapter 2. The abalone Haliotis iris is 

an important fishery species in New Zealand and has also high cultural and ecological 

importance (Naylor et al. 2006, Morrison et al. 2009). H. iris has a shorter larval 

development than E. chloroticus (Moss & Tong 1992, Tong et al. 1992). Larvae hatch 

as trochophores 1 day after fertilisation, reach the veliger stage in 2 to 3 days post-

fertilisation and settle approximately 9 days post-fertilisation depending mainly on 

the seawater temperature. Only the embryo/early veliger life stages (i.e. the first 3 

days of development) were used in this research. 

1.8 THESIS RESEARCH 

1.8.1 AIMS 

The effects of metals were investigated for E. chloroticus across multiple life stages 

using laboratory experiments with realistic exposure scenarios. A special emphasis 

was given to early life stages and carry-over and/or latent effects across the larval and 

juvenile development (Figure 1.1). In addition, the effect of multiple pollutants, 

multiple stressors (metal and salinity) and trophic interactions were evaluated. 

1.8.2 THESIS STRUCTURE 

In Chapter 2, standard short-term bioassays (72 h) were performed on the 

embryo/early larval stages of E. chloroticus and also the endemic abalone Haliotis 

iris, for comparison. These assays evaluated the toxicity of three major pollutants 

(copper, lead and zinc) alone and in combination, on these species. This provided a 

first measure of metal toxicity on theses species. 

 

In Chapter 3, the latent effects of copper across two life stages in E. chloroticus – 

larval and juvenile, were investigated using realistic scenarios of low copper 
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concentration and short pulses of exposure. Organisms were followed for six weeks 

post-settlement. Stage-dependent toxicity was evaluated by exposing larvae either 

early (4 – 6 d post-fertilisation) or late (11 – 13 d post-fertilisation) during 

development, and as young juveniles (25 – 27 d post-settlement). I then tested 

resistance of the surviving juveniles to a further exposure to the same stressor. 

 

In Chapter 4, I investigated separate and combined impact of dietary and waterborne 

copper by exposing E. chloroticus larvae to dissolved copper and to algal food 

(Dunaliella terticola) cultured in environmentally relevant copper concentrations. 

Direct effect on larvae as well as carry-over and latent effects on juveniles five weeks 

post-settlement were evaluated. I also compared the effect of pulse (four days) versus 

chronic exposure both for the dietary and waterborne route. 

 

In Chapter 5, the toxicity of copper was evaluated in both normal and low salinity 

seawater, as metal discharge in coastal water is generally associated with freshwater 

(e.g. storm water or river plumes). Here I used embryos and larvae of E. chloroticus 

to characterise the effect of low salinity on copper toxicity with variable timing of 

exposure. In embryo/early pluteus assays, embryos were exposed for 72 h shortly 

after fertilisation. In larval assays, larvae were either exposed chronically to 

treatments or in a single pulse to better mimic realistic field conditions. 

 

In Chapter 6, I evaluate whether acute exposure to high copper concentration lead to 

an increase in copper burden in gonads within a short time frame (two weeks) and I 

examined the fertilisation success of exposed animal. Gametes were also subjected to 

direct exposure to moderately elevated level of copper during fertilisation to 

investigate parental effect on gametes tolerance to copper. Finally I compared copper 

burden in gonads between natural populations and animals exposed in the laboratory 

to evaluate whether populations from a moderately polluted urban site might be at 

risk of reproductive impairment.  

 

In addition, the prevalence of local metal contamination was measured in coastal 

water near four rivers or streams in the Wellington region. These field measurements 
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provided the basis for the metals concentrations used in Chapters 3, 4 and 5 

(Appendix A). 
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CHAPTER 2                                       
Acute toxicity of copper, lead, zinc 
and their mixtures on Evechinus 
chloroticus and Haliotis iris larvae 

ABSTRACT  

Short-term bioassays on marine invertebrate early life stages are a widely used 

method to evaluate toxicity of a single compound or mixed compounds. This study 

provides the first evaluation of toxicity of three major pollutants (copper, lead and 

zinc) on Evechinus chloroticus and Haliotis iris; two large benthic invertebrates 

species endemic to New Zealand. Larval development assays were conducted for 72 h 

with individual metals and their binary mixtures. All three metals significantly 

affected larval development of both species. Median effective concentrations (EC50) 

based on nominal concentrations were 5.4 µg/L Cu, 52.2 µg/L Pb, 27.7 µg/L Zn for E. 

chloroticus and 3.4 µg/L Cu, 775 µg/L Pb, 13.1 µg/L Zn for H. iris. ‘No observable 

effect concentrations’ (NOEC) based on larval size were lower than those based on 

larval development for lead but not for copper and zinc in E. chloroticus. None of the 

metals tested affected H. iris larval size. Effects of metal mixtures were analysed 

using a toxic unit (TU) method. Cu + Zn had an antagonistic effect on E. chloroticus 

development. All other pairs were found to have a slightly less-than-additive or 

strictly additive effect. None of the interactions were strong, with sums of TU ranging 

from 1.00 to 1.85. Both species were extremely sensitive to copper and zinc with 

EC50 values near or above current NZ water quality criteria (WQC) and highlight the 



Chapter 2: Acute toxicity of copper, lead, zinc and their mixtures on Evechinus chloroticus and Haliotis iris larvae 

   18 

importance of obtaining toxicity data for species of special importance instead of 

relying exclusively on indicator species or international studies.  

2.1 INTRODUCTION 

For many aquatic species, early life stages are the most vulnerable to environmental 

stressors, and therefore embryos and larvae are commonly used to determine the 

sensitivity of organisms to pollutants (Kobayashi 1980, Anderson et al. 1994, 

Fitzpatrick et al. 2008). Despite being short term (hours to days), these tests are 

presumed to be ecologically relevant because sublethal impacts on these critical life 

stages can persist after exposure, causing mortality or imparing reproduction later in 

life (Conroy et al. 1996, Raimondo & McKenney 2005, Tellis et al. 2014). 

 

Decades of toxicity studies have revealed that sensitivity to particular pollutants is 

strongly species-specific (US EPA 2007, Grosell et al. 2007). Toxicity values can 

span several orders of magnitude and vary with the life stage tested, size of organisms 

and physiology, with closely related species tending to have a similar response 

(Grosell et al. 2007). Therefore a toxicity threshold found for a test species cannot 

necessarily be applied to other, especially phylogenetically distant, species. Given 

this restriction, acceptable pollutant levels for water bodies as determined by 

environmental agencies are usually defined by compiling results from a wide range of 

local organisms (ANZECC 2000, US EPA 2014).  

 

More recently, it has become evident that the presence of more than one pollutant 

often produces a different outcome than each does separately (King et al. 2006, Mann 

et al. 2009, Manzo et al. 2010, Xu et al. 2011). Effects are complex and variable, even 

for the same metal pair on different organisms (Norwood et al. 2003), and as a result 

methods have been developed to analyse toxicant interaction (reviewed in Norwood 

et al. 2003 and Newman 2012). Concentration addition (CA) methods assume that 

each component of the mixture acts in a similar way and can be substituted for 

another component at the appropriate dilution, with no change to the observed toxic 
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effect. These methods are effective at predicting mixture toxicity of similarly acting 

toxicants (Faust 2001).  

 

Environmental regulation bodies emphasise the need to acquire data on local species 

to define locally acceptable pollution levels (ANZECC 2000, US EPA 2007). This is 

especially important for geographically isolated areas where many species are 

endemic or have isolated populations that might have evolved a different response to 

pollutants. In New Zealand, the regulations concerning the acceptable levels of 

pollutants and sediment on coastal organisms is based on the Australian and New 

Zealand Environment and Conservation Council (ANZECC) water quality criteria 

(WQC) (ANZECC 2000). Theses criteria have been developed mainly using data 

from Australian species, as few studies on local NZ species are available. However, 

given NZ geographic isolation and high endemism rate, it is especially important to 

verify whether the WQC are appropriate for local species. 

 

Sea urchins, echinoderms in the Class Echinoidea, are commonly used in ecotoxicity 

assays around the world due to the ease of handling and spawning in the laboratory, 

and their high sensitivity to pollutants, which makes them good indicator species (US 

EPA 2002a, ASTM 2012). Pluteus (the urchin larval type) formation has been shown 

to be more sensitive than fertilisation or gastrula development in many species, thus 

the early pluteus stage is a common endpoint in toxicity assays (Kobayashi 1980, 

King & Riddle 2001). Abalone, molluscs in the Class Gastropoda, are less 

extensively studied but have been shown to be extremely sensitive to pollutants and 

environmental stressors in general during the larval stage (Hunt & Anderson 1989, 

Conroy et al. 1996). Declines in abalone populations have been linked to urban and 

industrial discharges in North America and Australia (Martin et al. 1977, Anderson et 

al. 1990, Bielmyer et al. 2005, Gorski & Nugegoda 2006).  Importantly, urchins and 

abalone are common and ecologically important members of subtidal reef 

communities that are likely to be impacted by coastal runoff (Andrew 1988, Morrison 

et al. 2009). 

 

This study investigated the toxicity of three major pollutants, copper, lead, zinc and a 

combination of these, on Haliotis iris (abalone) and Evechinus chloroticus (sea 
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urchin), two endemic species of high ecological, cultural and commercial importance 

(MacDiarmid 2007, Morrison et al. 2009). Responses of H. iris and E. chloroticus to 

pollutants have never been investigated. Both species are endemic but also distantly 

related to other abalone and sea urchin species (Degnan et al. 2006, Gillard et al. 

2014). Therefore their sensitivity to pollutants may be different from their Australian 

counterparts and they might not be protected by the current WQC. 

 

Copper, lead and zinc are major pollutants in many industrial countries and are 

considered as priority pollutants by environmental authorities due to their high 

toxicity to aquatic life (ANZECC 2000, US EPA 2014). A study on complex urban 

effluents identified copper, lead and zinc as being responsible for most of the toxicity 

observed (McCready et al. 2006). In New Zealand, these three metals are commonly 

found in concentrations exceeding WQC in urban effluents (Milne & Watts 2008, 

Neale 2009), but very few studies have investigated their effects on local coastal 

organisms (Fukunaga et al. 2010, 2011). An adverse effect of copper and zinc on soft 

sediment infaunal species has been shown (Fukunaga et al. 2010, 2011) but no study 

has investigated the effect of metals on hard substrate macro-invertebrates. 

 

Despite a lack of understanding of metal physiology on marine invertebrates, copper 

lead and zinc all appear to act in a similar way in marine organisms (Section 1.3) 

especially in their disruption of ion transport and calcium absorption, supporting the 

use of CA models to predict how they will act in combination. In this study, copper, 

lead and zinc binary mixtures were evaluated using a commonly used CA model: the 

Toxic Unit method first described by Sprague (1970). The effect of metal mixtures is 

not well studied but appears to be highly variable depending on the metal pairs and 

test organisms. In a review of more than 60 studies on aquatic organisms, more than 

half of the studies reported a less-than-additive effect of metal mixtures while the 

other half reported a more-than-additive effect (Norwood 2003). Few studies have 

addressed metal mixtures on larval development of sea urchins (but see Fernández & 

Beiras 2001, Phillips et al. 2003, Kobayashi & Okamura 2005, Xu et al. 2011) and to 

the best of my knowledge none on abalone. Furthermore, ANZECC have established 

a criterion based on the CA approach to predict whether a simple metal mixture (< 6 

toxicants) exceeds WQC: 
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𝑇𝑇𝑀 =    (
𝐶!

𝑊𝑄𝐶!
) 

where TTM is the predicted total toxicity of the mixture, Ci is the concentration of the 

compound and  WQCi is the guideline for that compound. The mixture is considered 

as exceeding the WQC if TTM is greater than 1 (ANZECC 2000). This criterion 

assumes simple additivity of the toxic effect of the mixture and does not account for 

potential synergism. 

 

The aims of this study were to provide 1) a first measure of metal toxicity in two 

important coastal NZ species, 2) a comparison of metal toxicity with the current 

WQC to assess its validity using local species, and 3) an evaluation of toxicity 

behaviour (e.g. synergistic, antagonistic) in simple metal mixtures. These aims were 

addressed with standard biotoxicity assays on H. iris and E. chloroticus embryo and 

larval stages. 

2.2 METHODS 

2.2.1 BROODSTOCK AND SPAWNING 

2.2.1.1 Sea urchin 

Adult E. chloroticus (8 - 20 cm test diameter) were collected from Kau Bay in 

October 2011 and October 2013. A total of 25 adults were kept at Victoria University 

Coastal Ecology Laboratory (VUCEL) in a 200 L tank with flow-through raw 

seawater. VUCEL’s seawater is pumped ~5 m from shore in the Taputeranga Marine 

Reserve. Raw seawater receives no treatment while filtered seawater (FSW) is pre-

filtered (15 µm) and then filtered through a 0.2 µm paper cartridge. Adults were fed 

twice a week with native kelp (Macrocystis pyrifera) or commercial feed (ABMAX, 

E.N. Hutchinson Ltd Auckland NZ). Single metal tests were run in February 2012 

and January 2014; combined metal tests were done in January 2012. For each 

spawning, 3-4 males and females were haphazardly selected. Spawning was induced 

by injecting 3 ml of 0.5 M potassium chloride into the abdominal cavity through the 

perioral membrane (ASTM 2012). Eggs were collected by inverting females over a 
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beaker of FSW, and sperm were collected ‘dry’ and placed on ice until fertilisation. 

After spawning, the eggs were filtered through a 125 µm sieve and placed in fresh 

FSW. Gametes of each spawning adult were pooled in approximately similar quantity 

to produce a composite sperm and egg stock. Fertilisation occurred less than 1 h after 

spawning in the presence of a high concentration of sperm (estimated sperm 

concentration 106 – 108 cells/ml). Eggs were left in contact with sperm for 15 min and 

rinsed thoroughly to avoid polyspermy.  

2.2.1.2 Abalone 

Due to difficulties in spawning wild H. iris, I used cultured animals kept at the 

National Institute for Water and Atmospheric research (NIWA) aquaculture facilities 

in Wellington. All individuals had been in culture for more than two years and were 

kept in flow-through tanks with a system of tipping buckets to recreate wave motion 

and sufficient oxygenation. They were fed a blend of commercial feed (ABMAX, 

E.N. Hutchinson Ltd Auckland NZ) and locally abundant brown seaweed including 

Macrocystis pyrifera, Lessonia variegata and Durvillaea antartica. Single metal runs 

were conducted in June and November 2012; metal mixture experiments were 

conducted in November 2012 only. For each spawning, 16 mature females and 12 

mature males were selected from a pool of more than 50 individuals. Maturity was 

determined by the size of the gonad. Spawning was induced at NIWA’s facilities 

following the protocol by Tong et al. (1992). Males and females were placed in 

separate 8 L buckets, with two animals per bucket. Spawning was induced by the 

addition of hydrogen peroxide and sodium hydroxide to the seawater. After spawning, 

all eggs were pooled in a single bucket, poured through a 400 µm sieve, collected in 

an 80 µm sieve and rinsed thoroughly in FSW for 15 min. Sperm were then added to 

the eggs and the mixture was constantly stirred. After 15 min, the eggs were rinsed to 

wash off excess sperm and avoid polyspermy and deterioration of the egg membrane. 

Fertilised eggs were then transferred to a clean 5 L glass bottle maintained at room 

temperature (13-14°C) in ambient light during transportation (30 min) and brought 

back to VUCEL where the larval assays were conducted. 
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2.2.2 LARVAL ASSAYS 

H. iris and E. chloroticus larvae were raised for 72 h in 300 ml FSW in glass jars 

placed in a flowing seawater bath to maintain a near constant temperature. Water 

temperature was 16°C ±1 in all E. chloroticus assays and 14°C ±1 in all H. iris assays.  

Embryos were placed in culture jars before 1st cell division, no more than 1 h after 

fertilisation. Embryo density was 30/ml for E. chloroticus (ASTM 2012) and 1/ml for 

H. iris (Anderson et al. 1994), and was confirmed to be suitable for these species in 

previous pilot experiments. All glassware was washed with hot water, soaked in 10% 

hydrochloric acid for a minimum of 4 h, rinsed and soaked in distilled water for 12 h, 

and rinsed in FSW before use. Two experiments were conducted: one with single 

metals (Cu, Zn and Pb) and one with combined metals (Cu + Zn, Cu + Pn and Zn + 

Pb). The single metal experiment had two runs for both species and the combined 

metal experiment a single run. Metal concentrations are shown in Table 2.1. They 

were based on a range-finding pilot trial, and the current experiments were designed 

to have one concentration producing no toxic effect, one producing close to 100% 

abnormal larvae, and two concentrations producing intermediate effects as required 

for accurate estimation of EC50s (US EPA 2002a). The concentration range was 

adjusted between the two runs of single metal tests on H. iris to add more 

intermediate effects and reduce EC50s confidence intervals. Each metal level and 

control had three replicates, plus an additional replicate jar in control conditions 

(FSW) and one in the highest metal level for each metal, in which to monitor pH and 

temperature.  
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Table 2.1: Nominal metal concentrations (µg/L) used in assays: (a) E. chloroticus all tests, (b) H. iris  
single metal test run 1, (c) H. iris  single metal test run 2 and combined metal test (b). 
Species	
   Metal	
   Level	
  1	
   Level	
  2	
   Level	
  3	
   Level	
  4	
  

E.	
  chloroticus	
  	
  
(a)	
  

Copper	
   1	
   5	
   10	
   20	
  

Lead	
   10	
   20	
   50	
   100	
  

Zinc	
   5	
   10	
   20	
   40	
  

H.	
  iris	
  	
  	
  
(b)	
  

Copper	
   1	
   4	
   16	
   32	
  

Lead	
   400	
   800	
   1600	
   3200	
  

Zinc	
   8	
   16	
   32	
   64	
  

H.	
  iris	
  	
  	
  
(c)	
  

Copper	
   1	
   2	
   4	
   8	
  

Lead	
   400	
   600	
   800	
   1600	
  
Zinc	
   4	
   8	
   16	
   24	
  

 

Metal stock solutions were made from reagent grade metal salts, namely copper 

sulphate (CuSO4.5H2O), zinc sulphate (ZnSO4.7H2O) and lead nitrate (Pb(NO3)2) 

mixed with deionised water (ASTM 2012). Stock solutions were analysed by 

Environmental Laboratory Services, Lower Hutt and were always within 96% 

recovery for copper, 105% for lead and 110% for zinc. Therefore, all concentrations 

reported in this study are nominal concentrations. 

2.2.3 END POINT 

After 72 h, E. chloroticus larvae had reached the pluteus stage while H. iris larvae 

had reached the veliger stage. Larvae in all jars, except the temperature and pH 

control jars, were collected and preserved in 40% ethanol. Larvae were then checked 

for developmental abnormalities or delayed development and measured within two 

weeks.  

 

Larvae were placed on a microscope slide with a raised cover slip. The first 100 

larvae encountered were rated into seven and eight developmental categories, 

respectively (Table 2.2 and Table 2.3). The first ten normal larvae encountered were 

measured using an ocular micrometer (body length, BL, and postoral arm length, PO, 

for E. chloroticus, Table 2.2; shell length for H. iris, Table 2.3). In one E. chloroticus 

assay, larval size was determined by taking a photo of each larva using a different 

microscope than in the previous assays, and measuring BL and PO using the image 
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software Image J. In order to remove any bias due to the difference in methodology, 

only the PO/BL ratio was used in subsequent analyses. 
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Table 2.2: Developmental categories of Evechinus chloroticus larvae after 72 h. Categories in bold are 
considered as normal, while other categories are considered as severely delayed or abnormal. BL: total 
body length, PO: postoral arms, AL: anterolateral arms. 
Category Description Photo 

4-arms 
pluteus Well developed AL arms (> 30 µm) 

 

2-arms 
pluteus AL arms absent or budding (< 30 µm) 

 

Pluteus with 
skeletal 
abnormalities 

Strongly asymmetric larva, skeletal rods 
strongly protruding (pictured), broken, 
missing or forked skeletal rod. 

 

Pluteus with 
stunted arms PO < half BL 

 

Early prism Early prism stage with no mouth and 
oesophagus developed 

 

Early mobile 
stage Gastrula stage 

 
 

Egg Egg or unhatched larvae (No photo available) 

Abnormal 
larvae 

Larvae with more than one abnormality or 
with severe abnormalities not fitting any 
other categories (pictured). 
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Table 2.3: Developmental categories of Haliotis iris larvae after 72 h. Categories in bold are 
considered as normal, while other categories are considered as severely delayed or abnormal. SL: shell 
length. 
Category	
   Description	
   Photo	
  

Normal  Normal veliger with well developed shell 
and foot. 

 

Abnormal 
shell 

Veliger with normal looking body but shell 
broken, cracked (pictured) or abnormally 
shaped. 

 

No shell Veliger with normal looking body but no 
shell 

 

Abnormal 
body  

Veliger with abnormal body with or without 
shell, includes veliger ‘heads’ 

 

Early mobile 
stage Trochophore stage 

 
Egg Egg or unhatched larvae (No photo available) 

Abnormal 
larvae 

Larvae with more than one abnormality or 
with severe abnormality not fitting any other 
category 
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2.2.4 STATISTICS 

2.2.4.1 Single metals 

All data analyses were based on U.S. EPA methods (US EPA 2002a). Data from the 

separate runs for single metal assays were pooled. All abnormal categories were 

pooled to determine toxic effect. Both point estimation techniques and hypothesis 

testing were used.  

 

For point estimation techniques, a probit regression in SPSS (v.22) was used to 

estimate EC50s (median effective concentration), EC10s (effective concentration 

affecting more than 10% of the population) and their respective 95% confidence 

intervals. These probit regressions were also used to estimate the proportion of 

abnormal larvae at metal concentrations of special interest, such as WQC level.  

 

Hypothesis testing, where each metal concentration was compared to the control, was 

performed in R version 3.1, package multcomp (Hothorn et al. 2008). NOEC (No 

Observable Effect Concentration) and LOEC (Lowest Observable Effect 

Concentration) on the proportion of normal development data (arcsine transformed) 

and size data (PO/BL ratio or shell length) were determined using one-way ANOVA 

followed by Dunnett’s pairwise comparison when sample sizes were equal (all E. 

chloroticus experiments and H. iris combined metal experiment) or Games-Howell 

pairwise comparison for unequal sample size (H. iris single metal experiment). Jars 

with less than 5 normal larvae measured were removed from the size analyses. 

Minimum significant differences (MSD) were calculated following U.S. EPA (2002) 

methods and expressed as the percentage of the controls mean to give a measure of 

Dunnett’s test sensitivity.  

2.2.4.2 Metal mixtures  

Metal interactions were evaluated using the Toxic Unit approach described in 

Sprague (1970). Each compound is given a Toxic Unit (TU) determined from its 

concentration in the mixture and its toxic effect as a single toxicant. The chosen toxic 

effect was EC50 based on a probit regression as described for single metals.  
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The sum of TUs was calculated using the following equation: 

Σ𝑇𝑈! =   
𝑐!
𝑇𝐸!

!

!!!

 

Where n is the number of components in the mixture, ci is the individual 

concentration of the ith substance in the mixture at toxic effect level, and TEi is the 

individual toxic effect of the ith substance.  

 

A mixture was classified as strictly additive if the sum of TUs = 1, and less-than-

additive and more-than additive, respectively, if the sum of TUs > 1 and < 1  

(Norwood 2003, Faust 2001). It is worth noting that terminology in the literature 

varies between authors. A synergetic effect is used to describe more-than-additive 

mixtures while ‘less-than-additive’ is often termed an antagonistic effect. However, 

the term ‘antagonistic’ suggests that a mixture is less toxic than any of its components 

taken individually. For instance a mixture can be as toxic as its most toxic component 

with no added effect of other chemicals, in which case it will be less-than-additive but 

the term antagonistic would be misleading (Newman 2012, Norwood 2003). In this 

study, ‘less-than-additive’ was used if the sum of TUs > 1 but TEmix < TEi, while 

‘antagonistic’ was used if the sum of TUs > 1 and TEmix > TEi (i.e. the mixture was 

less toxic than the most toxic metal individually). To give a measure of experimental 

variation, a range for the sum of TUs was determined using both extreme values of 

the EC50s 95% confidence interval, obtained from probit regression as described 

above. 

2.3 RESULTS 

In all tests, the proportion of normal larvae in controls for E. chloroticus and H. iris 

was a minimum of 92% and 80% respectively, which is deemed acceptable by the 

U.S. EPA method (US EPA 2002a). Salinity was 34 ppt and pH was 7.99 ± 0.2 in all 

tests, with no differences between treatments and controls. 
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2.3.1 SINGLE METALS 

2.3.1.1 Sea urchin 

All of the metals tested significantly affected E. chloroticus larval development with 

the proportion of normal larvae decreasing with increasing doses (One-way ANOVA; 

Cu: F(4, 25) = 159, p < 0.001, Pb: F(4, 24) = 63.4, p < 0.001, Zn: F(4, 23) = 61.5, p < 0.001). 

The resulting 72 h-EC50s were 5.4 µg/L Cu, 52.2 µg/L Pb and 27.7 µg/L Zn (Figure 

2.1). There was a significant disruption of pluteus development (LOEC) at 

concentrations from 5 µg/L Cu, 100 µg/L Pb and 30 µg/L Zn (Dunnett’s comparisons; 

Cu: t = -15.22, p < 0.001, Pb: t = -13.30, p < 0.001, Zn: t = -3.80, p = 0.003). 

Corresponding NOEC were 1 µg/L Cu, 50 µg/L Pb and 10 µg/L Zn. Dunnett’s 

comparisons could detect a significant difference in normal development (MSD) of 

more than 3.9% (Cu) and 5.2% (Pb and Zn) of the control means. Point estimates 

(EC10) were 2 to 5 times more sensitive than hypothesis testing (LOEC), with 

concentrations of 2.1 µg/L Cu, 19.1 µg/L Pb and 9.7 µg/L Zn or greater resulting in 

more than 10% abnormal development (Table 2.4). Metal effects were severe, with 

very little normal development (< 10%) at 10 µg/L Cu (9.3%), 100 µg/L Pb (3.8%) 

and 60 µg/L Zn (1.8%) or greater (Figure 2.1). 
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Figure 2.1: Proportion of 
normal larvae of the sea 
urchin Evechinus chloroticus 
after a 72 h exposure to 
increasing levels of (a) 
copper, (b) lead and (c) zinc. 
Error bars represent the 
standard deviation (N = 3). 
Dashed lines represent the 
median effective 
concentration (EC50, probit 
regression analysis). Shaded 
grey areas represent the 
EC50s 95% confidence 
interval. Dotted lines 
represent current NZ water 
quality trigger values for 95% 
species protection (ANZECC 
2000). 
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EC50s were well above WQC for all three metals, while EC10s were below WQC for 

zinc, near WQC for copper and well above WQC for lead. Based on the probit 

regression, metal concentrations at WQC levels induced a low frequency of abnormal 

larvae for copper and lead (< 3 %), and a moderate frequency for zinc (25%, Table 

2.4). 

  
Table 2.4: Summary of 10% effective concentration (EC10) and median effective concentration 
(EC50) values (µg/L) with 95% confidence intervals (95% CI), and toxicity at water quality criteria 
(WQC) for 95% species protection levels (ANZECC 2000) derived from probit regression for each 
heavy metal tested in a 72 h bioassay on Evechinus chloroticus and Haliotis iris larvae.  

Species	
   Metal	
   EC10	
  (95%	
  CI)	
   EC50	
  (95%	
  CI)	
  

Toxicity	
  	
  
at	
  WQC	
  level	
  
(%	
  abnormal	
  
larvae)	
   WQC	
  	
  

E.	
  chloro-­‐
ticus	
  

Copper	
   2.1	
  (1.0	
  -­‐	
  3.0)	
   5.4	
  (3.9	
  -­‐	
  7.0)	
   3	
   1.3	
  

Lead	
   19.1	
  (10.3	
  -­‐	
  26.7)	
   52.2	
  (39.6	
  -­‐	
  73.0)	
   <1	
   4.4	
  

Zinc	
   9.7	
  (5.4	
  -­‐	
  13.7)	
   27.7	
  (20.5	
  -­‐	
  40.1)	
   25	
   15	
  

H.	
  iris	
  

Copper	
   0.7	
  (0.03	
  -­‐	
  1.5)	
   3.4	
  (1.7	
  -­‐	
  9.0)	
   20	
   1.3	
  

Lead	
   417	
  (292	
  -­‐	
  510)	
   775	
  (658	
  -­‐	
  934)	
   <1	
   4.4	
  

Zinc	
   3.3	
  (0.3	
  -­‐	
  6.0)	
   13.1	
  (7.9	
  -­‐	
  25.0)	
   55	
   15	
  

 

All three metals significantly affected pluteus size (PO/BL ratio; one-way ANOVA, 

Cu: F(2, 15) = 6.01, p = 0.012, Pb: F(3, 19) = 4.19, p = 0.02, Zn: F(3, 19) = 4.70, p = 0.013). 

However, LOEC and NOEC could not be calculated for zinc, as none of the 

treatments were significantly different from the control (Dunnett’s comparison, t = -

2.20, p = 0.10), despite being within detectable range (MSD = 1.5% of control mean). 

LOECs for copper and lead were 5 µg/L Cu and 50 µg/L Pb (Dunnett’s comparison; 

Cu: t = -2.62, p = 0.035, Pb: t = -2.99, p = 0.02; Figure 2.2) with a MSD of 1.2 and 

1.3% of the control mean, respectively. Corresponding NOECs were lower for lead 

(20µg/L) than NOEC based on normal development (50 µg/L), but identical for 

copper (1 µg/L). Overall, copper and lead induced a slightly shorter PO arm relative 

to the total body length, but the effect was small. E. chloroticus larvae exposed to 5 

µg/L Cu had only a marginally lower PO/BL ratio than did the control larvae (mean 

PO/BL ratio ± standard deviation: 0.57 ± 0.015 vs. 0.60 ± 0.017 in controls). A very 

similar effect was observed in plutei exposed to 50 µg/L Pb (PO/BL ratio: 0.57 ± 

0.018 vs. 0.60 ± 0.017 in controls). 
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Figure 2.2: Postoral arm / total body length ratio (PO/BL) of Evechinus chloroticus larvae after 72 h 
exposure to increasing levels of copper (Cu), lead (Pb), and zinc (Zn). Grey shading represents 
treatment significantly different from control (Dunnett’s pairwise comparison, p < 0.05). 
 

Abnormal development categories were widely variable within treatments. 

Nonetheless, a trend of increasing severity of abnormality with increasing metal 

concentration was observable (Figure 2.3). Observations with a total of less than ten 

abnormal individuals were removed from the dataset. The dominant abnormal 

category at a low concentration of copper was minor arm abnormality (skeletal), with 

stunted E. chloroticus becoming progressively dominant at intermediate 

concentrations, and the majority of larvae arrested in the gastrula stage at the highest 

concentration. A similar pattern was visible for zinc, but starting at intermediate-high 

concentrations with an increased frequency of stunted larvae, and a majority of 

severely abnormal larvae at the highest concentration. For lead, skeletal abnormalities 

were dominant at low and intermediate concentrations, with stunted arms and arrested 

development at the prism stage being the main abnormalities visible at the highest 
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concentration. Furthermore, all three metals appeared to delay development of normal 

larvae, with the proportion of 4-armed pluteus amongst normal larvae decreasing with 

metal concentration.   

 

 
 
Figure 2.3: Relative frequency of each abnormal development categories in single metal assays on 
Evechinus chloroticus after 72 h exposure to increasing levels of copper (Cu), lead (Pb) and zinc (Zn). 
 

2.3.1.2 Abalone 

All three metals significantly affected H. iris larval development (One-way ANOVA; 

Cu: F(5, 22) = 7.13, p < 0.001, Pb: F(5, 26) = 24.1, p < 0.001, Zn: F(6, 25) = 11.5, p < 

0.001). The resulting EC50s were 3.4 µg/L Cu, 775 µg/L Pb and 13.1 µg/L Zn 

(Figure 2.4). A significant decrease in the proportion of normal veliger (LOEC) 

occurred from 8 µg/L Cu, 1600 µg/L Pb and 24 µg/L Zn (Games-Howell’s 

comparison; Cu: t = 15.9, p = 0.002, Pb: t = 16.5, p < 0.001, Zn: t = 11.9, p = 0.011). 

Corresponding NOECs were 4 µg/L Cu, 800 µg/L Pb and 16 µg/L Zn. No MSD could 

be calculated with Games-Howell’s tests due to unequal sample sizes. However, 

hypothesis testing on this dataset had a poor detection power due to unequal sample 

size and large variability within treatments. For instance, at NOEC level for lead, an 
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average of only 36% (± 31% standard deviation) of veligers were normal compared to 

80% (± 6%) in controls.  

 

 
Figure 2.4: Proportion of 
normal larvae of the abalone 
Haliotis iris after a 72 h 
exposure to increasing levels 
of (a) copper, (b) lead and (c) 
zinc. Error bars represent the 
standard deviation (N = 3). 
Dashed lines represent the 
median effective 
concentration (EC50, probit 
regression analysis). Shaded 
grey areas represent the 
EC50s 95% confidence 
interval. Dotted lines 
represent current NZ water 
quality trigger values for 95% 
species protection (ANZECC 
2000). 
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Point estimates (EC10s) were 4 to 11 times more sensitive than hypothesis testing 

(LOEC), with concentrations of 0.7 µg/L Cu, 417 µg/L Pb and 3.3 µg/L Zn or greater 

resulting in more than 10% abnormal development (Table 2.4). Very low rates of 

normal development were observed at 8 µg/L Cu (1.6% normal veliger), 1600 µg/L 

Pb (3.8%) and 24 µg/L Zn (3.2%) or greater (Figure 2.4). 

 

H. iris appeared to be more sensitive than E. chloroticus to copper and zinc, with an 

EC50 that was 1.6 and 2.1 times lower respectively, but more tolerant to lead with an 

EC50 that was more than 3 times higher. EC50s were below WQC for zinc, with an 

estimate of 55% abnormal larvae at this level, close to WQC for copper with 20% 

abnormal larvae, and well above for lead with less than 1% abnormal larvae (Table 

2.4). 

 

Shell length of normal veligers was not influenced by any of the three metals tested 

(One-way ANOVA; Cu: F(3, 12) = 1.7, p = 0.22, Pb: F(3, 15) = 1.7, p = 0.21, Zn: F(3, 14) = 

1.1, p = 0.38; Figure 2.5). 
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Figure 2.5: Shell length (µm) of Haliotis iris larvae after 72 h exposure to increasing levels of copper 
(Cu), lead (Pb) and zinc (Zn). Grey shading represents treatment significantly different from control 
(Dunnett’s pairwise comparison, p < 0.05). 

 

Abnormality categories varied greatly within treatment but general patterns and 

trends could be observed. The most common developmental abnormalities at low 

concentrations were those relating to the shell, such as a flattened or cracked shell, 

but these were not concentration dependent and occurred in equally high proportions 

in controls. In copper and zinc, a general trend of increasing frequency of 

undeveloped eggs and severely abnormal veligers at intermediate and high 

concentrations was visible. No trend was apparent with lead (Figure 2.6).  
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Figure 2.6: Relative frequency of each abnormal development categories in single metal assays on 
Haliotis iris after 72 h exposure to increasing levels of copper (Cu), lead (Pb) and zinc (Zn). 
 

2.3.2 METAL MIXTURES 

Normal development rates in mixture controls were 92 ± 4% for E. chloroticus and 

89 ± 3% for H. iris. Sum of TUs with their range for each metal combination are 

shown in Table 2.5. For E. chloroticus, all three mixtures produced different 

interactions. Cu + Zn had the strongest interaction with a sum of TUs of 1.85 (range 

1.7 – 1.99). These two metals were antagonists and produced a higher EC50 in 

combination (6.9 µg/L Cu, 95% CI: 3.8 – 4.5 µg/L) than when the most toxic metal 

(i.e. copper) was present singly (5.4 µg/L Cu, 95% CI: 3.9 – 7.0 µg/L). Cu + Pb had a 

less-than-additive effect and Zn + Pb mixtures were strictly additive. For H. iris, all 

three mixtures produced a less-than-additive effect, with a sum of TUs ranging from 

1.44 (1.37 – 1.5) to 1.64 (1.56 – 1.71). None of these interactions were very strong 

and the EC50s of the mixtures were always similar to the EC50 of the most toxic 

metal of the pair (< 30% of difference).  
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Table 2.5: Toxic effect of metals in mixture based on Toxic Units (TUs). EC50mix is the value (72 h-
EC50) for the mixture; EC50i is the value for individual metals. Sum of TUs is determined from each 
metal concentration in the mixture and its toxic effect as a single toxicant. Sum of TUs range is based 
on EC50s 95% confidence intervals.  

Species	
   Pair	
   Metal	
   EC50mix	
   EC50i	
  
Sum	
  of	
  TUs	
  
(range)	
   Interaction	
  

E.	
  
chloroticus	
  

Cu	
  +	
  Pb	
   Cu	
   4.16	
   5.39	
   1.21	
   less-­‐than-­‐
additive	
  

	
   Pb	
   22.60	
   52.20	
   (1.11	
  –	
  1.30)	
   	
  
Cu	
  +	
  Zn	
   Cu	
   6.95	
   5.39	
   1.85	
   antagonistic	
  
	
   Zn	
   15.48	
   27.73	
   (1.70	
  –	
  1.99)	
   	
  

Zn	
  +	
  Pb	
   Zn	
   12.79	
   27.73	
   1.00	
   strictly	
  
additive	
  

	
   Pb	
   28.20	
   52.20	
   (0.94	
  –	
  1.06)	
   	
  

H.	
  iris	
  

Cu	
  +	
  Pb	
   Cu	
   2.49	
   3.42	
   1.57	
   less-­‐than-­‐
additive	
  

	
   Pb	
   653	
   775	
   (1.52	
  –	
  1.63)	
   	
  

Cu	
  +	
  Zn	
   Cu	
   2.40	
   3.42	
   1.44	
   less-­‐than-­‐
additive	
  

	
   Zn	
   9.60	
   13.11	
   (1.37	
  –	
  1.5)	
   	
  

Zn	
  +	
  Pb	
   Zn	
   10.09	
   13.11	
   1.64	
   less-­‐than-­‐
additive	
  

	
   Pb	
   671	
   775	
   (1.56	
  –	
  1.71)	
   	
  

2.4 DISCUSSION 

The results of this study provide the first examination of copper, lead and zinc 

toxicity on E. chloroticus and H. iris larvae. All developmental anomalies recorded 

were severe and likely to result in larval death before settlement, for example the 

absence of shell in H. iris. In the case of delayed or arrested development, 

development might resume when larvae return to uncontaminated water. A recent 

study showed that sea urchin larvae (Strongylocentrotus nudus from Korea) 

displaying arrested development after exposure to triclosan could recover only if 

exposure was for less than 30 h (Hwang et al. 2014). Further, prolonging time in the 

plankton due to increased development time can have a range of adverse effects, such 

as increased predation risk, dispersal away from suitable habitat, and lower settlement 

success and juvenile growth rate, especially for non-feeding larvae such as H. iris that 

are dependent on maternal reserves (Pechenik 1999). Therefore, although toxic 

effects observed are sublethal in the sense that they are categorized as developmental 

abnormalities, they are likely to result in mortality, in many cases quite rapidly.  
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Both point estimation (probit-derived) and hypothesis testing (pairwise comparison) 

toxicity values were given in this study. Hypothesis testing was reported as NOEC 

and LOEC values are often used in defining WQC. However, discussion will focus on 

EC50s and EC10s, as probit-derived values are considered more robust because they 

are more representative of the whole dataset and more sensitive than pairwise 

comparison (Moore & Caux 1997). This is especially the case when intermediate 

proportions have a high variance, as observed in the present study with H. iris. EC10 

may be considered as being equivalent to LOEC but without the shortcoming of being 

directly affected by concentrations chosen in tests, which is arbitrary. 

2.4.1 COMPARISON WITH CURRENT WATER QUALITY CRITERIA  

The 72 h-EC50s showed a decreasing order of toxicity for each metal as follows for 

both species: Cu > Zn > Pb. H. iris and E. chloroticus appeared to be highly sensitive 

to copper with EC50s being near, but above, WQC. Cu EC10 for H. iris was below 

WQC, suggesting that H. iris larvae could be notably affected if such a concentration 

ever occurs frequently in coastal waters (20% abnormal larvae at WQC level). This is 

of concern as, in New Zealand, copper has been found to be above WQC in urban 

effluents (Milne & Watts 2008, Neale 2009), marinas (Gadd & Cameron 2012) and, 

to a lesser extent, coastal water near agricultural effluent (Appendix A). While zinc 

was less toxic than copper, WQC are higher for this metal and concentrations at this 

level are likely to severely affect H. iris (55% abnormal larvae at WQC level) and 

moderately affect E. chloroticus (25% abnormal larvae at WQC level). The EC50 

value for H. iris was lower than WQC, indicating a potential failure of WQC to 

protect this species in NZ. Lead was not a concern for either species, with both EC50s 

and EC10s well above WQC. 

2.4.2 COMPARISON WITH RELATED SPECIES 

Metal toxicity for E. chloroticus were toward the low end of the range of toxicities 

reported for sea urchin embryos for all 3 metals. Toxicity range is 1.4 – 100 µg/L for 

copper, 34 - > 2000 µg/L for lead and 7.2 – 327 µg/L for zinc (Table 2.6). E. 

chloroticus is the only species of its genus and belongs to the Echinometridae family 

with Australian species of the genus Heliocidaris thought to be its closest related 
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species based on morphological evidence (McRae 1959). However, a recent study 

showed E. chloroticus as being phylogenetically distinct from other members of its 

family (Gillard et al. 2014). Toxicity values reported for Heliocidaris were very 

similar to the present study and mostly toward the low end of the toxicity range 

although the different toxicity endpoints (EC50, NOEC, LOEC) make direct 

comparison between studies difficult.  

 
Table 2.6: Comparative metal toxicity for the early life stages (embryo/larval) of sea urchin species. 
Present study is shaded in grey. Other members of Evechinus chloroticus family (Echinometridae) are 
highlighted in bold.   

Metal Species 
Test 
endpoint 

Test 
duration 

Toxicity 
(µg/L) Reference 

Copper 

Sterechinus neumayeri EC50 20 d 1.4 (King & Riddle 2001) 
Evechinus chloroticus EC10 72 h 2.1 present study 
Heliocidaris crassispina  NOEC 30 h 3.8 (Kobayashi & Okamura 2005) 
Heliocidaris erythrogramma  LOEC 15 h 5 (Kobayashi 1980) 
Evechinus chloroticus EC50 72 h 5.4 present study 
Strongylocentrotus purpuratus  EC50 48-96 h 6.3 (in King & Riddle 2001) 
Heliocidaris tuberculata  EC50 72 h 8 (Doyle et al. 2003) 
Heliocidaris tuberculata  EC50 96 h 9.4 (in King & Riddle) 
Hemicentrotus pulcherrimus  EC50 48 h 10-20 (in King & Riddle 2001) 
Diadema antillarum EC50 40 h 11 (Bielmyer et al. 2005) 
Centrostephanus rodgersii EC50  96 h 11.8 (in King & Riddle 2001) 
Arbacia punctulata  EC50 2-4 d 14 (in King & Riddle 2001) 
Strongylocentrotus purpuratus  EC50 96 h 15.3 (Phillips et al. 2003) 
Paracentrotus lividus LOEC 48 h 16 (Fernández & Beiras 2001) 
Diadema savignyi EC50 48 h 19 (Rosen et al. 2015) 
Peronella japonica LOEC 24 h 20 (Kobayashi 1980) 
Strongylocentrotus droebachiensis  EC50 48-96 h 21 (in King & Riddle 2001) 
Echinodermata lucunte  EC50 24 h 21.9 (Rumbold & Snedaker 1997) 
Paracentrotus lividus  EC50 48 h <32 (in King & Riddle 2001) 
Paracentrotus lividus  EC50 48 h 32.9 (Lorenzo et al. 2002) 
Lytechinus variegatus  EC50 24 h 33.8 (Rumbold & Snedaker 1997) 
Diadema setosum  EC50 48 h 43 (Ramachandran et al. 1997) 
Paracentrotus lividus  EC50 48 h 46 (Manzo et al. 2008) 
Hemicentrotus puleherrimus  LOEC 24 h 50 (Kobayashi 1980) 
Heliocidaris crassispina  EC50 24 h 50-100 (in King & Riddle 2001) 
Paracentrotus lividus  EC50 72 h 62 (Novelli et al. 2003) 
Paracentrotus lividus EC50 48 h 66.8 (Fernández & Beiras 2001) 

Paracentrotus lividus  EC50 48 h 85 (Manzo 2004) 

Table 2.6 continued on next page 
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Metal Species 
Test 
endpoint 

Test 
duration 

Toxicity 
(µg/L) Reference 

Lead 

Evechinus chloroticus EC10 72 h 19.1 present study 
Heliocidaris crassispina  NOEC 30 h 34 (Kobayashi & Okamura 2005) 
Heliocidaris tuberculata  EC50 72 h 47 (Doyle et al. 2003) 
Evechinus chloroticus EC50 72 h 52.2 present study 
Paracentrotus lividus  EC50 72 h 68 (Novelli et al. 2003) 
Strongylocentrotus purpuratus  EC50 72 h 74 (Nadella et al. 2013) 
Paracentrotus lividus  EC50 96 h 210-620 (in King & Riddle 2001) 
Paracentrotus lividus LOEC 48 h 250 (Fernández & Beiras 2001) 
Paracentrotus lividus EC50 48 h 509 (Fernández & Beiras 2001) 
Echinometra mathaei EC50 30 h 2179 (Ghorani et al. 2013) 
Strongylocentrotus purpuratus  EC50 48-96 h <9700 (in King & Riddle 2001) 
Strongylocentrotus droebachiensis  EC50 48-96 h <9700 (in King & Riddle 2001) 
Arbacia punctulata  EC50 2-4 d <32500 (in King & Riddle 2001) 

Zinc 

Heliocidaris crassispina  NOEC 30 h 7.2 (Kobayashi & Okamura 2005) 
Evechinus chloroticus EC10 72 h 9.7 present study 
Hemicentrotus pulcherrimus  EC50 48 h 10-20 (in King & Riddle 2001) 
Diadema setosum  EC50 48 h 10-20 (in King & Riddle 2001) 
Arbacia lixula EC50 96 h 10-100 (in King & Riddle 2001) 
Strongylocentrotus purpuratus  EC50 48-96 h 23 (in King & Riddle 2001) 
Strongylocentrotus droebachiensis  EC50 48-96 h 27 (in King & Riddle 2001) 
Evechinus chloroticus EC50 72 h 27.7 present study 
Paracentrotus lividus  EC50 48 h <33 (in King & Riddle 2001) 
Paracentrotus lividus  EC50 72 h 49 (Novelli et al. 2003) 
Peronella japonica LOEC 24 h 50 (Kobayashi 1980) 
Hemicentrotus puleherrimus  LOEC 24 h 50 (Kobayashi 1980) 
Heliocidaris crassispina  EC50 24 h 50-100 (in King & Riddle 2001) 
Strongylocentrotus purpuratus  EC50 96 h 96.9 (Phillips et al. 2003) 
Strongylocentrotus purpuratus  EC50 96 h 97.2 (Phillips et al. 1998) 
Strongylocentrotus purpuratus  EC50 72 h 151 (Nadella et al. 2013) 
Heliocidaris tuberculata  EC50 72 h 160 (Doyle et al. 2003) 
Arbacia punctulata  EC50 2-4 d 205 (in King & Riddle 2001) 
Heliocidaris tuberculata  EC50 96 h 280 (in King & Riddle 2001) 
Centrostephanus rodgersii  EC50 96 h 289 (in King & Riddle 2001) 
Sterechinus neumayeri EC50 20 d 327 (King & Riddle 2001) 
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Very few studies have reported metal toxicity values for abalone, with only two 

species from the Southern Hemisphere having been tested (Table 2.7). Toxicity range 

was 5.6 – 114 µg/L for copper and 35 – 102 µg/L for zinc, and only one study 

reported a toxicity value of 5111 µg/L of lead (Gorski & Nugegoda 2006). H. iris 

appears to be considerably more sensitive to metals than are other abalone species, 

especially for zinc. All abalone species belong to the same genus, however, a 

phylogeny study showed H. iris as basal to other southern Haliotidae, suggesting that 

it is not closely related to Southern Hemisphere abalone species except for New 

Zealand’s H. virginia, for which no toxicity data are available (Degnan et al. 2006). 

This evolutionary distance could contribute to the difference in metal sensitivity. 
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Table 2.7: Comparative metal toxicity for the early life stages (embryo/larval) of abalone and related 
species. Southern hemispheres abalone species are highlighted in bold and results from the present 
study are shaded in grey.   

Metal Animal Species 
Toxicity 
endpoint 

Test 
duration 

Toxicity 
value (µg/L) Reference 

Copper 

Abalone Haliotis iris EC10 72 h 0.7 present study 
Abalone Haliotis iris EC50 72 h 3.4 present study 
Abalone Haliotis midae LC50  48 h 5.6 (Stofberg et al. 2011) 
Oyster Crassostrea gigas EC50 48 h 6.1 (Chapman 1990) 
Abalone Haliotis rubra EC50  48 h 7 (Gorski & Nugegoda 2006) 
Oyster Pteria colymbus  EC50 24 h 7 (Rumbold & Snedaker 1997) 
Abalone Haliotis rufescens EC50 48 h 9 (Hunt & Anderson 1993) 
Mollusk Strombus gigas  EC50 24 h 21.3 (Rumbold & Snedaker 1997) 
Abalone Haliotis rufescens LC50 48 h 114 (Martin et al. 1977) 

Lead 

Mussel Mytilus trossolus  EC50 48 h 45 (Nadella et al. 2013) 
Mussel Mytilus galloprovincialis  EC50 48 h 63 (Nadella et al. 2013) 
Abalone Haliotis iris EC10 72 h 417.3 present study 
Oyster Crassostrea gigas EC50 48 h 680 (Chapman 1990) 
Abalone Haliotis iris EC50 72 h 775.3 present study 
Abalone Haliotis rubra EC50 48 h 5111 (Gorski & Nugegoda 2006) 

 
Zinc 

Abalone Haliotis iris EC10 72 h 3.3 present study 
Abalone Haliotis iris EC50 72 h 13.1 present study 
Abalone Haliotis rubra EC50  48 h 35 (Gorski & Nugegoda 2006) 
Abalone Haliotis rufescens EC50 48 h 37 (Conroy et al. 1996) 
Abalone Haliotis rufescens EC50 48 h 68 (Hunt & Anderson 1989) 
Abalone Haliotis midae EC50  48 h 102.25 (Stofberg et al. 2011) 
Mussel Mytilus trossolus  EC50 48 h 135 (Nadella et al. 2013) 
Mussel Mytilus galloprovincialis  EC50 48 h 172 (Nadella et al. 2013) 
Mussel Mytilus edulis EC50 48 h 175 (Martin et al. 1981) 
Oyster Crassostrea gigas EC50 48 h 199 (Martin et al. 1981) 
Oyster Crassostrea gigas EC50 48 h 206.5 (Chapman 1990) 
Oyster Crassostrea virginica  EC50 48 h 209 (MacInnes & Calabrese 1979) 

 

Echinoderm embryos are commonly used for toxicity assays because of their extreme 

sensitivity to pollutants in general, and metals in particular (Kobayashi 1980, Phillips 

et al. 2003, Bielmyer et al. 2005, Grosell et al. 2007). However, our results show that 

H. iris is even more sensitive to copper and zinc than is E. chloroticus, and highlights 

the importance of obtaining metal toxicity data for species of special importance or 

concern instead of relying exclusively on indicator species.  

 

Many factors affect the toxicity of metal in aquatic organisms in addition to variation 

between species; for example, exposure time, abiotic factors such as salinity, pH, 
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temperature, and organic matter (Eisler 2007, Green et al. 2007, Rozman et al. 2010). 

Ecotoxicity studies use test duration ranging from 24 h to several days. This is 

because assays typically end when test animals reach the pluteus stage for 

echinoderms (ASTM 2012) or the veliger stage for molluscs (Hunt & Anderson 

1993), and development time is regulated by temperature (Strathmann 1987). 

Tropical species typically reach these stages after 24 h (Kobayashi 1980, Rumbold & 

Snedaker 1997, Bielmyer et al. 2005), warm temperate species in 48 h (Manzo 2004, 

Gorski & Nugegoda 2006), and colder temperate species in 72 to 96 h (King & 

Riddle 2001, Phillips et al. 2003). A study even used a 20-day test for an extremely 

slow developing Antarctic sea urchin (King & Riddle 2001). Longer assays may 

allow more time for metal absorption and result in generally lower EC50 values than 

shorter assays. Indeed, tropical species are often less sensitive than their temperate 

counterparts (Table 2.6 and Table 2.7); similarly, the only toxicity value reported for 

an Antarctic sea urchin was the lowest reported so far (King & Riddle 2001). 

Therefore, the relatively low toxicity values reported in this study may in part be due 

to longer test duration because of slower development time than most but not all other 

species. 

2.4.3 EFFECT OF METALS ON LARVAL DEVELOPMENT 

All three metals adversely affect calcification in addition to various enzymatic 

processes, as illustrated by the predominance of shell deformity in H. iris and 

abnormal arm development in E. chloroticus. These abnormalities are typical of metal 

effects on abalone (Conroy et al. 1996, Gorski & Nugegoda 2006, Stofberg et al. 

2011) and sea urchins (Bielmyer et al. 2005, Ghorani et al. 2013). Such abnormal 

development in the very early stages of larval development is a severe consequence 

of metal exposure, that usually results in failure to metamorphose and thus is a strong 

indicator of eventual mortality. A study on abalone showed that abnormal veligers did 

not recover even when maintained in clean seawater for an extended period following 

toxicant exposure (Conroy et al. 1996).  

 

Copper and lead induced shorter arms compared to total body length in normal E. 

chloroticus larvae. With lead this effect was visible before developmental 
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abnormality. This suggests that pluteus size is a better indicator of lead toxicity than 

development in E. chloroticus but not in H. iris. Previous studies showed a similar 

effect of lead on pluteus size from 250 µg/L (Parocentrotus lividus and Echinometra 

mathaei), although total body length was measured instead of arm/body ratio 

(Fernández & Beiras 2001, Ghorani et al. 2013). Lead competes with calcium for 

absorption in many organisms (Eisler 2007) and has recently been shown to lower 

whole body calcium accumulation in sea urchin larvae (Tellis et al. 2014). Lead-

induced calcium deficiency may impair skeletal rod and thus arm formation in pluteus 

larvae (Warnau & Pagano 1994, Ghorani et al. 2013).  

 

The severity of reduced arm or body length is less straightforward than abnormal 

development. Smaller pluteus larvae might be at greater risk of predation (Morgan 

1995, Marshall & Keough 2008). Furthermore, plutei use their arms to feed and an 

increase in arm length leads to an increase in feeding rate (Strathmann 1971). Indeed 

food limitation studies on echinoderms showed that plutei respond to food limitation 

by elongating their arms to attempt to increase feeding rate (Strathmann et al. 1992, 

Fenaux et al. 1994, Sewell et al. 2004). Early stunting is therefore likely to have a 

cascading effect, leading to lower growth rate throughout the larval stage and beyond. 

Studies on mussels found a cascading effect of low food on larval and juvenile 

growth, with smaller larvae metamorphosing into slower growing juveniles, thus 

further increasing the size difference and mortality rate in the juvenile stage (Phillips 

2002, 2004).  

 

Metal pollution may impact larvae physiologically in ways that do not result in gross 

developmental or size abnormalities, which would be unnoticed in this study. More 

sensitive measurements such as levels of metallothionein proteins have been proposed 

(Damiens et al. 2006, Geffard et al. 2007). Despite being a sign of metal-induced 

stress, elevated metallothionein might have no negative impact on short- or long-term 

growth and survival, and may not necessarily be present as invertebrate physiological 

responses to metals vary between species (Eisler 2007). Therefore, more research is 

needed to determine the relevance of such measurements at individual- and 

population-levels. 
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2.4.4 METAL MIXTURES 

Most metal mixtures tested had a strictly additive or slightly less-than-additive effect, 

except the pair Cu + Zn, which had an antagonistic effect on E. chloroticus but not on 

H. iris. However, none of these interactions were very strong and the EC50s of the 

mixtures were always similar to the EC50 of the most toxic metal of the pair. CA 

models suffer from the lack of a standardized way to account for experimental 

variability and to define a significant difference from 1 (Norwood et al. 2003, Manzo 

et al. 2010). Hayes’ criterion proposes that additive indices differing from 1 by no 

more than a factor of 2 could not be distinguished from simple additivity (Rozman et 

al. 2010). In this study, the sum of TUs was always within the range 0.5-2; so all 

mixtures could be considered as strictly additive. 

 

There is considerable variation in the combined effect of these three metals in the 

literature depending of the test organisms, method used for data analysis and 

interpretation. Norwood et al. (2003), in their review of 210 tests from 68 studies, 

showed that re-analysis with coherent statistical methods still yielded a wide range of 

interaction effects for the same metal pairs. They identified the wide range of 

organisms, life stages, metal ratio in the mixtures, and endpoints as likely being 

responsible for the differences observed.  

 

Few studies have tested the effects of copper, lead and zinc binary mixtures on sea 

urchins (but see Fernández & Beiras 2001, Phillips et al. 2003, Kobayashi & 

Okamura 2005, Xu et al. 2011) and, to the best of my knowledge, none on abalone. 

Overall, metal mixtures seem to be mostly additive or have only a slight interactive 

effect (synergistic or less-than additive) on sea urchin larvae. Fernández & Beiras 

(2001) reported a slight synergistic effect of Cu + Pb on Parocentrotus lividus from 

Spain’s Atlantic coast but warned that it should not be considered as significantly 

different from additivity based on Hayes’ criterion. Phillips et al. (2003), working in 

California, found a less-than-additive effect of Cu + Zn on Strongylocentrotus 

purpuratus, but with a sum of TUs less than 2. Another study on Strongylocentrotus 

intermedius from the East China Sea concluded that there was a synergistic effect of 

Cu + Zn and Zn + Pb, and an antagonistic effect of Cu + Pb. However, the authors 

did not take into account experimental variability and TU standard error for every 
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mixture tested overlapped 1, so the mixtures were likely all strictly additive (Xu et al. 

2011). Finally Kobayashi and Okamura (2005) suggested that copper and lead 

enhanced zinc toxicity for Anthocidaris crassispina from Japan, however, no formal 

additive indices were provided. 

 

In other aquatic organisms, copper and zinc mixtures had a less-than-additive effect 

in approximately half of the 21 tests and a more-than additive effect in the other half, 

in Norwood et al.’s (2003) review. The exact mechanisms of metal interaction in 

marine organisms are not known, but it has been hypothesized that copper may 

enhance zinc absorption (Flemming & Trevors 1989, Stauber & Florence 1990). 

However, the opposite has been observed as well; the presence of zinc in water 

decreased copper accumulation in tissues of juvenile catfish and barnacles, and vice 

versa (Eisler 2007). Effects of the pair Pb + Zn were evenly distributed between the 

three interactions (less-than-additive, strictly additive and more-than-additive) but 

this metal pair was rarely studied with only 5 assays reviewed by Norwood et al. 

(2003). Copper and lead mixtures were more rarely studied, but these were strictly 

additive for larval development of the sea urchin Strongylocentrotus intermedius (Xu 

et al. 2011), and synergistic for chironomid larvae (Eisler 2007) and Parocentrotus 

lividus when in tertiary mixture with cadmium (Manzo et al. 2010).  

2.4.5 CONSEQUENCE FOR FIELD POPULATIONS 

For many marine invertebrates, survival and quality of larvae and new recruits is a 

critical factor limiting adult population size (Caley et al. 1996, Pechenik et al. 1998, 

Crean et al. 2011). H. iris in particular already suffers from a low recruitment rate, 

which is thought to be a main limiting factor in population growth (McShane et al. 

1994, McShane 1995). Furthermore, this species may be especially vulnerable to 

metal contamination, as the larval stage is very short and larvae stay close to shore 

where they are more likely to encounter metal pollution. They also have a limited 

dispersal due to the short larval stage, so populations in contaminated areas are less 

likely to receive recruits from an unpolluted area. In addition, H. iris tends to spawn 

during storms, increasing the risk of exposure to large river plumes with maximal 

metal contamination. Abalone vulnerability to pollutants is recognised in the US and 
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Australia, where populations have become locally extinct or unhealthy in coastal 

areas that receive industrial and urban discharges (Martin et al. 1977, Anderson et al. 

1990, Bielmyer et al. 2005, Gorski & Nugegoda 2006). 

 

Ecotoxicity assays are a cost-efficient way of evaluating a species’ sensitivity to 

pollutants. Their main advantage is to be standardized, allowing for easy comparison 

between pollutants, species and life stages. They are thus very useful for identifying 

priority pollutants and species. However, interpreting the ecological relevance of 

bioassays is always a difficult challenge (Clements & Kiffney 1994, Calow et al. 

1997). Some studies attempted to use population-modeling tools with input from 

acute toxicity data and natural survival data, to model toxicant impacts on populations 

(Munns et al. 1997, Gleason et al. 2000). These models could be used with short lived 

species for which metal effects can be evaluated over their full life cycle (Raimondo 

& McKenney 2005). With long-lived species, however, such models suffer from lack 

of data for one or more life stage, and potential carry-over effects are totally 

disregarded, i.e. survival in one life stage is independent of pollutant exposure in the 

previous life stage (Gleason et al. 2000). More research is needed to predict pollutant 

effects on populations based on individual bioassays, especially for organisms for 

which full life cycle assays are not possible.  

2.4.6 CONCLUSION 

Both E. chloroticus and H. iris embryos are extremely sensitive to copper and zinc, 

but relatively robust to exposure to lead. NZ WQC should be reviewed and adjusted 

for zinc to provide better protection for vulnerable H. iris populations near major 

urban and industrial effluents. Effort should be made to reduce copper discharge in 

agricultural effluents and prevent metal contamination from becoming chronic. More 

research is needed to translate ecotoxicity results into ecologically relevant 

information, including investigating the importance of carry-over and latent effects. 

Concerning metal mixtures, my results are similar to previous studies on sea urchins 

and show that mixture toxicity for copper, lead and zinc may be accurately predicted 

with CA models. Therefore, the current additive criterion (ANZECC 2000) to adjust 

WQC when a mixture of contaminants is present seems appropriate, at least for 
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copper, lead and zinc. However, from a management point of view, the toxicity of an 

effluent containing multiple metals is still slightly higher than the toxicity of an 

effluent with only the most toxic metal present. Therefore, toxicity assays with single 

metals should be taken as a best-case scenario. 

 



Chapter 3: Latent effect of low level of copper contamination on Evechinus chloroticus early life stages 

     51 

CHAPTER 3                                       
Latent effect of low level of copper 
contamination on Evechinus 
chloroticus early life stages 

ABSTRACT 

Exposure to environmental stressors, such as pollutants, early in life may have latent 

effects visible only in later life stages. This study follows sea urchin larvae 

(Evechinus chloroticus) exposed briefly (two days) to four treatments of low level of 

copper (2.3 - 10.4 µg/L). Stage-dependent sensitivity to copper was evaluated by 

exposing larvae early or late during larval development, and then examining settlers 

for 40 d after settlement. Some of the juveniles were exposed to a further short pulse 

of copper (10.4 µg/L) to investigate a potential resistance to pollution. No major 

direct effect was observed on larvae or settlement success. However, complex latent 

effects started to appear from eight days post-settlement. Individuals exposed to the 

highest level of copper late in larval stage metamorphosed into 14% larger settlers 

with 45% longer spines. However, they had strongly impaired subsequent growth, 

with an average radial length and spine to body ratio decreasing by 24% for both 

variables, and were 23% smaller than controls with 15% shorter spines by 25 d post-

settlement. Juveniles previously exposed to copper as larvae were less resistant to a 

subsequent pulse, with up to four times higher mortality in groups previously exposed 

to copper during the larval stage. On the other hand, survivors exposed as larvae to 

the highest copper level had a 35% higher growth rate than naïve juveniles (i.e. no 

previous exposure). Overall copper impact was stronger in larvae exposed early rather 
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than late in development. Surprisingly, juveniles were more sensitive than pluteus 

larvae, with direct growth impairment in the highest copper treatment (-8% growth in 

naïve juveniles vs +15% in controls). These results highlight the importance of 

considering latent effects when evaluating the impacts of pollution. The effect of 

exposure to contaminants in larval stages may be far-reaching and much more 

complex than can be observed in shorter-term experiments.  

3.1 INTRODUCTION 

In organisms with complex life stages, early life history plays a major role in adult 

population dynamics. Both larval quantity and quality drive adult abundance and 

performance (Gaines et al. 1985, Johnson 2008). In the last 20 years it has become 

more and more evident that larval quality can vary strongly between cohorts due to 

environmental stresses encountered in early life (Pechenik et al. 1998, Shima & 

Swearer 2009). Understanding the impact of environmental disturbances on early life 

stages and their cascading effects on later life stages is crucial for managing 

vulnerable populations.  

 

Pollution is one of the most important anthropogenic disturbances. Among the myriad 

of pollutants entering coastal waters, copper is one of the most toxic to aquatic life 

(Bryan 1971, Flemming & Trevors 1989, US EPA 2007, Watson et al. 2008). While 

extensive ecotoxicity studies have been carried out on copper and other metals 

(Fernández & Beiras 2001, Doyle et al. 2003, Bielmyer et al. 2005), the ecologically 

relevant effects of metal pollution are still poorly understood (Mayer-Pinto et al. 

2010). Indeed, most toxicity studies are very short term (days) and use unrealistic 

concentrations and/or prolonged exposure. In the field, larvae are exposed to 

relatively low levels of copper in most countries (Table 1.1) and are unlikely to be 

exposed chronically to toxicants, except perhaps in enclosed bays or harbours with 

low water renewal. Thus, one of the most common sources of pollution affecting 

plankton is river plumes or terrestrial run off during rain events. Exposure to 

pollutants is probably on the order of a few days at the most. Sampling of coastal 
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water following a heavy rain event in Wellington showed a fast decrease in copper 

concentration, dropping to undetectable levels in two days (Table A.2).  

 

Nevertheless, early life stages are highly vulnerable to environmental disturbances 

and even short exposure to a stressor may have strong, lasting effects (Pechenik et al. 

1998, 2001, Gimenez et al. 2004). For example, abalone larvae had a dramatically 

increased mortality rate lasting throughout the larval stage following a three-day 

exposure to elevated sediment (Phillips & Shima 2006). In addition to direct effects 

such as larval mortality or larval growth, some effects may cross the metamorphic 

boundary and continue affecting performance in later life, i.e. carry-over effects, 

while other effects originating in the larval stage may become visible only in later life 

stages, i.e. latent effects. Latent and carry-over effects are difficult to investigate on 

long-lived species and most studies have focused on the effect of food availability 

and delayed metamorphosis (reviewed in Pechenik 2006). However, latent effects of 

metal exposure have been observed in bryozoans (Ng & Keough 2003) and 

arthropods (Manyin & Rowe 2010). 

 

Early exposure to an environmental stressor may also impact resistance to a 

subsequent exposure later in life. In the field, juveniles will likely encounter similar 

environmental disturbances as those encountered during the larval stage, especially in 

species with low dispersal. However, to the best of my knowledge, no studies have 

looked into the effects of subsequent exposure to pollutants later in life. On one hand, 

surviving juveniles may be less resistant to further stress. For example, two recent 

studies have shown that environmental stress in early life reduces resistance to further 

stress in the limpet Siphonaria australis (Fischer & Phillips 2014) and in the barnacle 

Amphibalanus improvises (Nasrolahi et al. 2012). On the other hand, surviving 

juveniles may be more resistant to subsequent stress, which can be caused by 

acquired resistance or selective mortality in favour of the more resistant individuals. 

Acquired resistance, or acclimation, to a pollutant has been observed repeatedly in 

fish and generally involves physiological processes that are quickly lost after 

exposure to the contaminant has stopped (Dixon & Sprague 1981, Brinkman & 

Woodling 2014). However, literature on whether acquired resistance may persist 

across the metamorphic boundary is lacking. Another aspect of resistance to 
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pollutants is inherited resistance and local adaptation at population level (reviewed by 

Wirgin & Waldman 2004); this has been observed for copper in short-lived marine 

invertebrates (McKenzie et al. 2011, Sun et al. 2014). While highly relevant for 

population persistence in the long term, inherited resistance is beyond the scope of 

this study. 

 

While early life stages are usually the most sensitive to pollutants and environmental 

disturbances, a specific developmental stage may be particularly sensitive - 

sometimes called the ‘critical life stage’ (Kobayashi 1980, Hunt & Anderson 1993, 

Conroy et al. 1996, Jezierska et al. 2009). As a general rule (although not always the 

case), younger organisms tend to be more vulnerable than older ones (King & Riddle 

2001, Jezierska et al. 2009, Aronzon et al. 2011). In echinoids, the early pluteus stage 

(occurring between fertilisation and the two-armed pluteus stage, which takes one to 

few days post-fertilisation depending on the species) has been shown to be the most 

sensitive in many species (Kobayashi 1980, King & Riddle 2001, Bielmyer et al. 

2005). As a result, most studies on pollutants have focused their observations during 

this critical life stage and little is known about the sensitivity of later pluteus stages 

(but see Kobayashi 1980, Phillips & Shima 2006) and young juveniles. 

Understanding the effect of pollutants outside of the critical life stage period is 

important for evaluating the impact of pollutants in the field and for natural 

populations. 

 

The aim of this study was to investigate the ecologically relevant impact (i.e. short-

term, low concentrations) of copper pollution on marine invertebrate larvae and 

young juveniles, with a focus on latent and carry-over effects, using the sea urchin 

Evechinus chloroticus as the focal species. Stage-dependent toxicity was evaluated by 

exposing larvae either early (4 – 6 d post-fertilisation) or late (11 – 13 d post-

fertilisation) during development, and as young juveniles (25 – 27 d post-settlement). 

I then tested resistance of the surviving juveniles to a further exposure to the same 

stressor. All copper concentrations used were derived from field measures in low to 

moderately polluted areas of New Zealand, and were expected to produce no major 

direct effects on larval survival or development when administered in a very short 
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pulse and outside of the critical life stage of early pluteus development. Young larvae 

were expected to be more vulnerable than older larvae and juveniles. 

3.2 METHODS 

3.2.1 BROODSTOCK AND SPAWNING 

Adult E. chloroticus (8 - 20 cm test diameter) were collected from Kau Bay, 

Wellington (41.2882° S, 174.8326° E) in November 2012. A total of 45 urchins were 

kept at Victoria University Coastal Ecology Laboratory (VUCEL) in a 200 L tank 

with flow-through raw seawater. VUCEL’s seawater is pumped ~ 5 m from shore in 

the Taputeranga Marine Reserve. Raw seawater receives no treatment, while filtered 

seawater (FSW) is pre-filtered (15 µm) and then filtered through a 0.2 µm paper 

cartridge. Adult E. chloroticus were fed twice a week with native kelp (Macrocystis 

pyrifera) and/or commercial abalone feed (ABMAX, E.N. Hutchinson Ltd Auckland 

NZ). The experiment was run from November 2012 to January 2013. E. chloroticus 

larvae were the product of multiple parents (five males, two females). Spawning was 

induced by injecting 3 ml of 0.5 M potassium chloride into the abdominal cavity 

through the perioral membrane (ASTM 2012). Eggs were collected by inverting 

females over a beaker of FSW and sperm were collected ‘dry’ and placed on ice until 

fertilisation. After spawning, the eggs were filtered through a 125 µm sieve and 

placed in fresh FSW. Gametes of each spawning adult were pooled in approximately 

similar quantity to produce a composite sperm and egg stock. Fertilisation occurred 

less than 1 h after spawning at high sperm concentration (estimated sperm 

concentration 107 - 109 cells/ml). Eggs were left in contact with sperm for 15 min and 

rinsed thoroughly to avoid polyspermy.  

3.2.2 METAL CONCENTRATIONS 

Larvae were exposed to one of four concentrations of copper, plus a control, either 

early or late in their development. Copper exposure lasted for a maximum of 48 h in 

all treatments. The ‘Early’ group received a copper spike at 4 d and the ‘Late’ group 
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at 11 d post-fertilisation. Each metal level and control had three replicate jars for each 

of the two timing of exposure.  

 

Copper concentrations for the four treatments are shown in Table 3.1. The ANZECC 

level was based on the current recommended water quality trigger value for 95% 

species protection (ANZECC 2000). The ‘Field’ concentration was based on the 

maximum dissolved copper concentration measured from 29 seawater samples 

collected across four sites in the Wellington region between September 2011 and 

January 2012 (Appendix A). The ‘High’ level was chosen as a realistic level 

occurring in moderately polluted water such as near large cities (Table 1.1). Metal 

stock solutions were made from reagent grade copper sulphate (CuSO4.5H2O). Actual 

copper concentrations were determined by recreating experimental conditions without 

urchin larvae in January 2013 using the same protocol, culture medium, glassware 

and stock solution as during the actual experiment. Water samples were analysed by 

Environmental Laboratory Services, Lower Hutt.  

 
Table 3.1: Copper concentration chosen in larval assays. Measured dissolved concentrations were 
filtered through a 0.45 µm mesh and send to ELS. 

Copper	
  level	
  
Nominal	
  concentration	
  
(µg/L)	
  

Measured	
  dissolved	
  
concentration	
  (µg/L)	
  

Control	
   0	
   <0.5	
  -­‐	
  1.2	
  
ANZECC	
   1.3	
   2.3	
  
Field	
   2.9	
   3.8	
  
Field	
  x2	
   5.8	
   6.1	
  
High	
   10	
   10.4	
  
 

3.2.3 LARVAL ASSAYS 

E. chloroticus larvae were raised for 28 d in a standing-renewal system composed of 

2 L glass jars placed in a flowing seawater bath to maintain a near constant 

temperature. Water temperature was 16° C ±1 throughout the whole experiment and 

pH was measured in each jar at one and three week post-fertilisation. Jars were gently 

stirred by a system of motorised paddles as described in Strathmann (1987), to 

provide adequate oxygenation. Embryos were placed in their culture jar within 1 h 

post-fertilisation at a density of 1 embryo/ml. All glassware was washed with hot 
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water, soaked in 10% hydrochloric acid for a minimum of 4 h, rinsed and soaked in 

distilled water for 12 h and rinsed in FSW before use. FSW in jars was renewed three 

times per week by inverse siphoning. From 4 d post-fertilisation, larvae were fed 

following each water change with Dunaliella tertiolecta at a concentration of 8000 

cells/ml of culture. Dunaliella stocks were rinsed thoroughly by three successive 

centrifugations (1201 g for 5 min) and resuspensions in clean FSW before being fed 

to the larvae, to remove traces of algal culture medium that was rich in essential 

metals. 

 

All jars were sampled at 4 d and 11 d post-fertilisation; jars in the Early timing group 

were sampled at 25 d, and jars in the Late timing group at 13 d and 27 d post-

fertilisation. During sampling, the water level in each jar was lowered to 750 ml to 

increase larval density and 3 x 15 ml aliquots were taken per jar. Jars were randomly 

numbered and all measurements were done blind with regard to the treatment 

classification. Number of live larvae was measured in each aliquot using a dissecting 

microscope (40x magnification). Each live larva was assigned to one of eight 

developmental categories (Table 3.2). The first ten normal larvae encountered were 

preserved in 40% ethanol to be photographed under a compound microscope (50x 

magnification). When two developmental stages were considered normal (e.g. at 25 d 

post-fertilisation both 6-armed plutei and 8-armed plutei were rated as normal), only 

larvae belonging to the most advanced developmental stage (e.g. 8-armed plutei at 25 

d) were taken for morphometric measurements. Measurements of larval body and arm 

lengths (average of R and L arms where possible; Table 3.2) as well as presence and 

size of the rudiment in the late larval stage were done using the software ImageJ.  

 



Chapter 3: Latent effect of low level of copper contamination on Evechinus chloroticus early life stages 

   58 

Table 3.2: Developmental categories of Evechinus chloroticus larvae. Arrows on 8-armed pluteus 
show morphometric measurments. BL: total body length, PO: postoral arms, AL: anterolateral arms, 
PD: posterodorsal arms, EO: preoral arms, S: stomach, R: rudiment. 
Category	
   Description	
   Photo	
   Rating	
  

8-­‐armed	
  pluteus	
  
All	
  4	
  pairs	
  of	
  
arms	
  well	
  
developed	
  

	
  

Normal	
  

6-­‐armed	
  pluteus	
  

Well	
  developed	
  
PD	
  arms,	
  EO	
  
arms	
  absent	
  or	
  
budding	
  (i.e.	
  no	
  
skeletal	
  rod	
  
visible	
  under	
  
dissecting	
  
microscope).	
  

	
  

Normal	
  	
  

4-­‐armed	
  pluteus	
  

Well	
  developed	
  
AL	
  arms,	
  PD	
  
arms	
  absent	
  or	
  
budding	
  

	
  

Normal:	
  4	
  d	
  and	
  
11	
  d	
  
Delayed:	
  25	
  d	
  and	
  
27	
  d	
  

Table 3.2 continued on next page 
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Category	
   Description	
   Photo	
   Rating	
  

2-­‐armed	
  pluteus	
  

Well	
  developed	
  
PO	
  arms,	
  AL	
  
arms	
  absent	
  or	
  
budding	
  	
  

	
  

Normal:	
  4	
  d	
  
Delayed:	
  11	
  d,	
  25	
  
d	
  and	
  27	
  d	
  

Missing	
  arm	
  

One	
  or	
  more	
  arm	
  
missing.	
  Only	
  if	
  
the	
  other	
  arm	
  of	
  
the	
  pair	
  is	
  well	
  
developed.	
  

	
  

Abnormal	
  

Broken	
  	
  
Broken	
  arm	
  or	
  
skeletal	
  rod	
  in	
  
body	
  

	
  

Abnormal	
  

Stunted	
  	
   PO	
  arms	
  <	
  half	
  
BL	
  

	
  

Abnormal	
  

Abnormal	
  

Larvae	
  with	
  
more	
  than	
  one	
  
abnormality	
  or	
  
with	
  severe	
  
abnormality	
  not	
  
fitting	
  any	
  other	
  
categories.	
  

	
  

Abnormal	
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3.2.4 SETTLEMENT 

Settlement containers consisted of 2 L white plastic containers with mesh sides (80 

µm) to allow for water circulation. Larvae in replicate jars were pooled to remove 

variation between jars and then divided into three replicate containers per copper 

level and timing of exposure, and 12 control replicates. Initial larval density was 

measured in pooled jars. Containers were placed into large plastic trays (ten randomly 

assigned containers per tray) filled with FSW and oxygenated with two airlines per 

tray. Trays were placed in a flowing seawater bath to maintain a near constant 

temperature similar to the temperature during larval development. Each settlement 

container was inoculated with benthic diatoms (mixed species) eight days prior to 

settlement to provide a settlement cue and food for young settlers (Xing et al. 2007). 

Complete water renewals were done three times per week. Temperature was 

measured daily while pH and dissolved oxygen were measured weekly in trays. All 

measures were constant across trays. All treatments except those from the High 

copper level were placed in settlement containers after 28 d of larval development. 

Larvae in High copper treatments, both Early and Late exposure groups, appeared to 

be delayed and were therefore given five additional days (33 d post-fertilisation) to 

achieve similar development as the other treatments (i.e. > 75% of normal larvae 

being at the 8-armed stage) before being transferred to the settlement containers. 

Time post-settlement was counted from the first day that larvae were placed in 

settlement containers. Larvae were given eight days to settle after which any 

remaining larvae were removed from the containers. 

 

Settler density was measured by counting the total number of settlers per container 

under a dissecting microscope at 8 and 25 d post-settlement. The first 20 settlers 

encountered were photographed under a dissecting microscope (25x magnification). 

Body diameter (radial length) and the length of three spines were measured using the 

software ImageJ. Benthic diatom cover was recorded qualitatively as low, medium or 

dense at 25 d and 40 d post-settlement to ensure food was not a limiting factor. 
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3.2.5 JUVENILE RE-EXPOSURE EXPERIMENT 

Out of the 12 control replicates from the larval exposure experiment, six were 

exposed to copper for the first time at the juvenile stage, i.e. naïve group, and the 

remaining six were kept in clean FSW, i.e. control group. At 25 d post-settlement, 

juveniles in all groups, except for controls, were exposed to a High level (10.4 µg/L) 

of copper for two days. Juveniles were then placed into clean FSW until 40 d post-

settlement when mortality, growth and normal development were assessed. 

Experimental set-up and maintenance routine were the same as described for settlers. 

Mortality and growth were measured as described for settlers. All juveniles in each 

container were rated for normal development and were deemed as ‘abnormal’ when 

body shape was strongly irregular, or lacked spines or pigmentation (Table 3.3) when 

observed under a dissecting microscope (40x magnification). 
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Table 3.3: Developmental categories of Evechinus chloroticus juveniles. All juveniles pictured are 25 
day-old. 
Categories	
   Description	
   Photo	
  

Normal	
   Spherical	
   body	
   with	
   pigmentation	
   and	
   well	
  
developed	
  spines	
  

	
  

Irregular	
   Strongly	
   irregular	
   body,	
   typically	
  with	
   a	
   large	
  
protrusion	
  on	
  top	
  of	
  the	
  test	
  (pictured)	
  

	
  

Spineless	
   Juvenile	
  completely	
  lacking	
  spines	
  

	
  

Ghost	
   Juveniles	
  lacking	
  pigmentation	
  in	
  the	
  body	
  but	
  
with	
  moving	
  tubular	
  feet	
  or	
  spines	
  

	
  

3.2.6 STATISTICS 

All data analyses were conducted using the software R (version 3.1) with package 

multcomp (Hothorn et al. 2008) for pairwise comparisons and package nlme 

(Pinheiro et al. 2015) for mixed effects models.  

3.2.6.1 Larval performance 

Direct effects of copper treatments on larvae were evaluated by (1) larval survival 

rate, (2) larval normal development, (3) delayed development, (4) larval growth and 

(5) larval morphometrics. More details concerning data analysis of all larval variables 

are given in Appendix B because they were not the main focus of this study. 
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3.2.6.2 Settler performance 

Settler performance was evaluated by (1) settlement success, (2) size at settlement, 

(3) mortality and (4) growth after 17 d. Settlement success was expressed as the 

number of settlers observed 8 d post-settlement divided by the initial number of 

larvae in containers. Size at settlement was evaluated by two variables: radial length 

(RL) and spine/body ratio (SBR). Settler mortality was the proportion of dead settlers 

(no moving tube feet or spines) at 25 d post-settlement. Settler growth was measured 

by two variables: body growth (radial length at 25 d / radial length at 8 d post-

settlement, averaged by container) and spine growth (average spine length at 25 d / 

average spine length at 8 d, averaged by containers). 

 

The effect of larval experiences on settler performance was evaluated by fitting an 

initial model including all of the following factors and covariates. Level of copper 

exposure and timing of copper exposure (main factors), and larval traits at the end of 

the larval stage (covariates): larval survival, proportion of normal larvae, larval size, 

proportion of larvae with a rudiment and rudiment size. All larval traits were 

averaged per treatment, as replicate jars were pooled before settlement. In addition to 

larval experience, two non-larval related covariates were used: initial larval density in 

settlement containers (initial density) for settlement success and size at settlement 

analyses; and settler density at 8 d post-settlement (settler density) for settler survival 

and growth analyses.  

 

The best model was selected from the initial model (full model) described above, 

using a stepwise regression based on AIC criterion for each settler performance 

variable. Best models were then analysed using ANCOVAs or mixed effect models 

with the selected factors and covariates, which are presented in the result section 

(section 3.3.2). Interactions were included only when selected in the best model. 

Settlement success and settler survival were fitted with an ANCOVA and were 

square-root arcsin transformed to meet model assumptions. RL and SBR were fitted 

with a mixed effect linear model with ‘container’ as the random effect and ‘individual 

settler’ as the residual. Body growth and spine growth were fitted with an ANCOVA.  
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For all settler performance analyses, when copper level was significant, a priori 

coefficient contrasts were used to compare all treatments against their control. If 

timing of exposure was also significant, Dunnett’s post hoc test was conducted on 

both exposure-timing groups separately. R-squared values reported for mixed effects 

models were conditional R2 as described by Nakagawa & Schielzeth (2013) and 

Johnson (2014), calculated using rsquared.glmer v0.2-4 function (Lefcheck & 

Casallas 2014). Partial R2 values for each component of the model were estimated by 

hierarchical partitioning (Chevan & Sutherland 1991, Mac Nally 1996) using the 

hier.part package (Walsh & Mac Nally 2013). Containers 10 and 13 (both treatment 

controls) were not measured at 8 d post-settlement and were removed from the 

analysis. 

3.2.6.3 Juvenile performance after re-exposure 

Juvenile performance was evaluated by (1) mortality, (2) growth: radial growth and 

spine growth, (3) normal development two weeks after re-exposure to copper (40 d 

post-settlement). Mortality was the inverse proportion of individuals alive before re-

exposure (25 d post-settlement) that were still alive at 40 d post-settlement. Mortality 

was square-root arcsin transformed to meet ANCOVA assumptions. Juvenile growth 

in each container was defined as: (average size at 40 d – average size at 25 d) / 

average size at 25 d. Normal development was measured as the proportion of live 

juveniles having a normal body at 40 d post-settlement. 

 

For all variables, two independent hypotheses were tested separately: comparison 

between naïve juveniles (i.e. juveniles exposed for the first time at 25 d post-

settlement) and controls (i.e. juveniles never exposed to copper); and the effect of 

larval experience on juveniles exposed to copper at 25 d post-settlement, either for the 

first time (Naïve group) or for the second time (ANZEEC, Field, Field x2 and High 

groups). Best models for the later analyses were selected as described for settler 

performance and then analysed using ANCOVAs on linear model, with copper level 

and timing of exposure as the main factors and larval traits as the covariates. In 

addition, final radial length (at 40 d post-settlement) was analysed using a mixed 

effect linear model, with container as the random effect and individual settler as the 
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residual. Model fit, partitioning of variance and contrasts were calculated as described 

for settler performance. Type II SS are reported for all ANOVAs or ANCOVAs. 

3.3 RESULTS 

3.3.1 LARVAL SURVIVAL, GROWTH AND DEVELOPMENT 

Overall there were no major direct effects of copper exposure during larval 

development on any of the variables measured (see details in Appendix B).  

3.3.2 SETTLER PERFORMANCE 

Benthic diatom cover remained abundant throughout the experiment. At 25 d post-

settlement, all containers had a medium benthic cover. At 40 d post-settlement, six 

containers had a denser diatom cover (1 control, 2 naïve, 1 ANZECC, 1 Field and 1 

Field x2 treatment) and two had a lower diatom cover (1 control and 1 ANZECC 

treatment). Variation in benthic cover did no appear to be linked with treatment and 

even in containers with lower than average benthic cover, food supply seemed to 

remain in excess with scarce grazing tracks. 

3.3.2.1 Settlement success 

Settlement success was low in most containers and widely variable across containers, 

ranging from 3.5% to 68%. It was significantly driven by timing of copper exposure 

and rudiment size at the end of the larval stage (Timing: F(1,31) = 47.60, p < 0.001; 

Rudiment size: F(1,31) = 39.79, p < 0.001). Overall the model explained 61% of the 

observed variation (multiple R2) of which 58% was explained by timing of exposure 

and 42% by rudiment size. Settlers exposed as young larvae had a higher rate of 

settlement than settlers exposed later during the larval stage (Early exposure: 28% ± 

15; Late exposure: 18% ± 15). In both ‘timing of exposure’ groups, settlement 

success increased with rudiment size at the end of the larval stage (Figure 3.1).  
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Figure 3.1: Effect of timing of copper exposure during larval stage and rudiment size before settlement 
on Evechinus chloroticus settlement success expressed as proportion of settlers observed at 8 d post-
settlement. Settlers in the Early treatment group were exposed to various levels of copper as larvae at 4 
d post-fertilisation. Settlers in the Late treatment group were exposed later during larval development 
(11 d post-fertilisation).  
 

3.3.2.2 Settler size at settlement 

Size at settlement was significantly affected by copper exposure for both radial length 

and SBR (Table 3.4).  

 

Radial length was best explained by both timing and level of copper, rudiment size 

and initial density (Table 3.4a). The model was weak, with only 13% of the variation 

explained (conditional R2) by the following factors (in decreasing order of 

contribution): copper level, rudiment size, heterogeneity across containers (random 

term), initial density and timing of exposure. Settler radial length was significantly 

higher for controls only in the Late High copper treatment (812 µm ± 103 vs 714 µm 

± 70 in Late control; Dunnett’s contrasts: z = 5.92, p < 0.001). Individuals from jars 

in which average rudiment size was large at the end of the larval stage tended to 

metamorphose into larger settlers (Figure 3.2a). Settlers that had been exposed early 
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in the larval stage were significantly smaller than settlers that had been exposed later, 

but only by 2.2% on average (Table 3.4a).  

 
Table 3.4: Effect of larval experiences on Evechinus chloroticus settler size at 8 d post-settlement. 
Both variables, (A) radial length and (B) spine/body ratio, were analysed using an ANCOVA on linear 
mixed effect models. Spine/body ratio was square-root arcsin transformed to meet ANCOVA 
assumptions. Significant effects (p < 0.05) are highlighted in bold; p values are based on chi-squared 
statistic. 
Source	
   num	
  df,	
  den	
  df	
   Chi2	
   p	
  

(A)	
  Radial	
  length	
   	
   	
   	
  
Timing	
   1,	
  26	
   6.72	
   0.01	
  
Copper	
  level	
   4,	
  26	
   9.84	
   0.04	
  
Initial	
  density	
   1,	
  26	
   2.63	
   0.10	
  
Rudiment	
  size	
   1,	
  26	
   10.94	
   0.001	
  

(B)	
  Spine/Body	
  ratio	
   	
   	
   	
  
Copper	
  level	
   4,	
  28	
   31.5	
   <0.001	
  
Larval	
  body	
  size	
   1,	
  28	
   18.9	
   <0.001	
  

 

SBR was significantly affected by the level of copper exposure and larval size but not 

by timing of exposure (Table 3.4b). Level of copper exposure accounted for most of 

the variation explained by the model after heterogeneity across containers (random 

term), with a conditional R2 of 25% for the full model. However, only settlers from 

the High copper level were significantly different from controls, with spines an 

average of 49% ± 10 of body size against 40% ± 12 of body size in controls 

(Coefficients contrasts: t = 5.10, p < 0.001). Larvae from jars in which average body 

size was large at the end of the larval stage tended to produce settlers with larger 

spines relative to their body size (Figure 3.2b).  
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Figure 3.2: Evechinus chloroticus settlers size at 8 d post-settlement showing the effects of level and 
timing of copper exposure during larval development and rudiment size before settlement on (a) settler 
radial length, and effect of level of copper exposure during larval development and larval size before 
settlement on (b) settler spine/body ratio. Error bars represent the standard deviation (N = 3). 
 

3.3.2.3 Settler survival 

Survival after 25 d post-settlement was very high in all containers, ranging from 78% 

to 100%. The best model for survival explained 43% of the variation and included 

timing of copper exposure (but not level of copper), settler density and rudiment size 

(Table 3.5a). Survival was slightly higher in settlers having been exposed to copper 

early during the larval stage (96% ± 6 in Early group, 92% ± 8 in Late group). Timing 
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of exposure contributed to 43% of the multiple R2. Settler survival declined with 

density and increased with rudiment size. Both factors accounted for 22% and 23% of 

the variation, respectively. 

 
Table 3.5: Effect of larval experience on Evechinus chloroticus settlers (A) survival and (B, C) growth 
at 25 d post-settlement. All variables were analysed using ANCOVAs on linear models. Settler 
survival was square-root arcsin transformed to meet ANCOVA assumptions. Significant effects 
(p<0.05) are highlighted in bold. F-ratios are calculated from Type II SS.  
Source	
   df	
   SS	
   F	
   p	
  
(A)	
  Settler	
  survival	
   	
   	
   	
   	
  
Timing	
   1	
   0.33	
   14.07	
   0.001	
  
Settler	
  density	
   1	
   0.13	
   5.46	
   0.03	
  
Rudiment	
  size	
   1	
   0.25	
   10.82	
   0.003	
  
Larval	
  size	
   1	
   0.04	
   1.78	
   0.19	
  
Larval	
  development	
   1	
   0.04	
   1.77	
   0.19	
  
Residuals	
   28	
   0.66	
   	
   	
  
(B)	
  Radial	
  growth	
   	
   	
   	
   	
  
Timing	
   1	
   0.01	
   3.71	
   0.07	
  
Copper	
  level	
   4	
   0.28	
   44.25	
   <0.001	
  
Rudiment	
  size	
   1	
   0.01	
   5.16	
   0.03	
  
Larval	
  size	
   1	
   0.01	
   4.71	
   0.04	
  
Residuals	
   26	
   0.04	
   	
   	
  
(C)	
  Spine	
  growth	
   	
   	
   	
   	
  
Copper	
  level	
   4	
   1.39	
   7.47	
   <0.001	
  
Proportion	
  of	
  rudiment	
   1	
   0.27	
   6.00	
   0.02	
  
Larval	
  development	
   1	
   0.15	
   3.27	
   0.08	
  
Residuals	
   27	
   1.26	
   	
   	
  
 

3.3.2.4 Settler growth 

Settler radial growth was significantly affected by level of copper exposure, rudiment 

size and larval size (Table 3.5b). Model fit was excellent, with 93% of the variation in 

growth explained. Copper level accounted for most of the explained variation (71%), 

with settler growth from larvae exposed to the High copper level being strongly 

suppressed (Coefficients contrasts: t = -9.82, p < 0.001). Indeed settlers that had been 

exposed as larvae to the High copper treatment were 24% smaller at 25 d than at 8 d 

post-settlement (778 µm ± 95 at 8 d vs 594 µm ± 93 at 25 d). In contrast, control 

groups had an average growth of 6% ± 5 (Figure 3.3a). Consequently, settlers from 

the High treatment were significantly smaller than controls by 25 d (594 µm ± 93 in 

High level, 768 µm ± 95 in controls; Coefficient contrasts: t = -9.88, df = 30, p < 

0.001). Settler radial growth was positively related to larval size and rudiment size, 

with both factors accounting for 11% and 9% of the explained variance, respectively. 
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Figure 3.3: Effect of level and timing of copper exposure during larval development on Evechinus 
chloroticus (a) radial growth and (b) spine growth rate at 25 d post-settlement. Growth rate was 
expressed as the ratio of size at 25 d post-settlement to size at 8 d post-settlement. Boxplots represent 
medians and quartiles. Horizontal black line marks the null growth ratio; values above the line 
represent positive growth, values below represent negative growth. Note the difference in scale on the 
y-axes.  
 

Settler spine growth followed a similar pattern to that of radial growth, however, 

model fit was lower with a multiple R2 of 56%. Level of copper exposure was the 

most important factor, accounting for 83% of the explained variance (Table 3.5c). 

Settlers exposed to High level of copper during the larval stage had a significantly 

lower spine growth compared to controls, with an average negative growth of -24% ± 

7 versus a positive growth of 31% ± 22 in controls (Figure 3.3b). Settlers from the 
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High treatments had, on average, a shorter spine length at 25 d post-settlement than at 

8 d post-settlement (8 d: 380 µm ± 94, 25 d: 285 µm ± 52; Coefficients contrasts: t = -

4.92, p < 0.001). At 25 d, settlers from High level also had shorter spines than 

controls (285 µm ± 52 in High level, 334 µm ± 66; Coefficient contrast: t = -2.85, df 

= 30, p = 0.01). The proportion of larvae with a rudiment and larval normal 

development at the end of larval development were included as covariates and 

accounted for less than 9% of the total R2. 

3.3.3 JUVENILE PERFORMANCE  

3.3.3.1 Naive juveniles 

Juvenile mortality two weeks after re-exposure to copper was less than 8% in controls 

and was not different between juveniles exposed for the first time to copper (Naive 

group) and juveniles never exposed to copper (controls) (ANOVA: F(1,7) < 0.001, p = 

0.99; Figure 3.4). Radial growth was lower in Naive juveniles than controls 

(ANOVA: F(1,7) = 9.26, p = 0.02). Naïve juveniles had a near null growth of -8% ± 14 

compared with a positive growth of 15% ± 7 in controls (Figure 3.5a). Spine growth 

in control and Naive groups was not significantly different (ANOVA: F(1,7) = 1.08, p 

= 0.33). Similarly, there was no significant difference in normal development 

between Naive and control groups (Wilcoxon test: W = 20, p = 0.22). 
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Figure 3.4: Effect of copper exposure during larval development on juvenile Evechinus chloroticus 
mortality after subsequent exposure to 10 µg/L Cu at 25 d post-settlement. Juveniles in control group 
were never exposed to copper. Juveniles in Naive group were exposed to copper for the first time as 
juveniles. White bars represent individuals exposed early during larval development (4 d post-
fertilisation); grey bars represent individuals exposed late during larval development (11 d post-
fertilisation). Error bars represent the standard deviation (N = 3).  
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Figure 3.5: Effect of copper exposure during larval development on juvenile Evechinus chloroticus 
growth, both of (a) radial growth and (b) spine growth, after subsequent exposure to 10 µg/L Cu at 25 
d post-settlement. Juveniles in the control group were never exposed to copper. Juveniles in the ‘Naive’ 
group were exposed to copper for the first time as juveniles. Horizontal black line marks the null 
growth ratio; values above the line represent positive growth, values below represent negative growth. 
Note the difference in scale on the y-axes. 
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been exposed to ANZEEC and High levels of copper, but not for those exposed to 

Field and Field x2 levels (ANZEEC level: t = 2.16, p = 0.04, High level: t = 2.18, p = 

0.04; Figure 3.4). Mortality was more than four times higher for juveniles that had 

been exposed to High level of copper early during larval development (33% ± 8 in 

Early High vs. 8% ± 9 in Naïve). Mortality decreased with rudiment size and larval 

size, each explained 10 and 14% of the explained variability, respectively. 

 
Table 3.6: Effect of larval experience on Evechinus chloroticus juveniles (A) mortality and (B, C) 
growth two weeks after re-exposure to copper. All variables were analysed using ANCOVAs on linear 
models. Settler survival was square-root arcsin transformed to meet ANCOVA assumptions. 
Significant effects (p < 0.05) are highlighted in bold. F-ratios are calculated from Type II SS. 
Source	
   df	
   SS	
   F	
   p	
  

(A)	
  Juvenile	
  mortality	
   	
   	
   	
   	
  
Copper	
  level	
   4	
   0.39	
   4.01	
   0.006	
  
Rudiment	
  size	
   1	
   0.12	
   5.83	
   0.02	
  
Larval	
  size	
   1	
   0.10	
   4.87	
   0.04	
  
Residuals	
   22	
   0.45	
   	
   	
  

(B)	
  Radial	
  growth	
   	
   	
   	
   	
  
Copper	
  level	
   4	
   1.12	
   14.7	
   <0.001	
  
Settler	
  density	
   1	
   0.05	
   2.41	
   0.14	
  
Larval	
  size	
   1	
   0.05	
   2.48	
   0.13	
  
Residuals	
   22	
   0.42	
   	
   	
  

(C)	
  Spine	
  growth	
   	
   	
   	
   	
  
Copper	
  level	
   4	
   0.30	
   2.12	
   0.11	
  
Residuals	
   24	
   0.84	
   	
   	
  

 

Radial growth of juveniles was significantly affected by the level of copper exposure 

during larval development, with a high model fit of 74% (Table 3.6b). Juveniles 

exposed to High level of copper during the larval stage had a four-fold higher growth 

rate two weeks after subsequent copper exposure (43% ± 16 growth in High level vs. 

9% ± 13 in Naive juveniles; Contrasts: t = 6.24, p < 0.001; Figure 3.5a). Radial length 

at 40 d post-settlement was not significantly different between copper levels (two-

way ANOVA on mixed effect model; Chi2 = 9.53, df = 5, p = 0.09), timing of 

exposure (Chi2 = 0.32, df = 1, p = 0.57), or their interaction (Chi2 = 10.64, df = 5, p = 

0.06; Figure 3.6a and b). Spine growth, on the other hand, was unaffected by copper 

exposure or larval history (Figure 3.5b). The best model included copper level but 

differences between groups were non-significant (Table 3.6c).  
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Figure 3.6: Evechinus chloroticus radial length from 8 to 40 d post-settlement, showing the latent 
effects of copper exposure (a) early and  (b) late during the larval stage on settler size. All settlers 
(except controls) were exposed to copper at 25 d post-settlement. Error bars represent the standard 
deviation (N = 3).  
 

Normal juvenile development was high in all containers, with most juveniles having a 

regular body shape (91% to 100%), and was unaffected either by juvenile re-exposure 

to copper or by larval traits and life history (best model was the null model, Kruskal-

Wallis test on copper level: Chi2 = 0.37, df = 4, p = 0.98).  
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3.4 DISCUSSION 

My study shows that short exposure to low concentrations of copper has complex 

latent impacts on E. chloroticus juvenile performance, visible only from 8 d post-

settlement, and that it especially affects juvenile resistance to further copper exposure. 

3.4.1 LATENT EFFECTS OF LARVAL EXPOSURE TO COPPER ON 
SETTLERS 

Successful settlers were larger and had longer spines relative to body size when they 

had been exposed to the highest concentration of copper as larvae. However, this 

positive effect at settlement was cancelled by negative subsequent growth. Settlers 

that had been exposed to the highest copper concentration both early and late during 

larval development dramatically decreased in both body size and spine length 

between 8 d and 25 d post-settlement. As a result, at 25 d post-settlement, settlers that 

had been in the High copper level groups, were substantially smaller than controls.  

 

Juveniles were not individually followed during this experiment and thus a decrease 

in average size may be due to selective mortality of larger individuals. However, the 

reduction in average size was large (24%), with very little mortality (less than 5%, 

corresponding to an average of three individuals per container) suggesting that 

settlers had actually shrunk. Shrinkage in test diameter of adult sea urchins as the 

result of food limitation has been reported for some species, including E. chloroticus 

(Dix 1972, Levitan 1988, Constable 1993). In the current study, food abundance in 

settlement containers was not directly measured, however a broad estimation of 

benthic diatom cover was recorded and no difference was noted between treatments. 

In addition, benthic coverage appeared more than sufficient for grazing pressure (i.e. 

well developed brown film with sparse grazing tracks) and almost all settlers had 

visibly full guts at 25 d post-settlement. Furthermore, growth was not related to settler 

density, as would be expected if food limitation was a factor. This study provides the 

first evidence that test shrinkage in urchins might occur as a result of environmental 

stressors other than food limitation. Furthermore, for these very young juveniles it is a 

latent effect of larval experience, not their current experience as is the case for food 
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limitation. However, further experimental work following individual settlers would 

be needed to confirm this pattern. 

 

While there was no difference in settler survival for those from different larval copper 

concentrations in my experimental setting, growth impairment is likely to result in 

higher subsequent mortality due to predation in the field. Indeed, young juveniles in 

many benthic species are thought to be the most at risk of predation (Hunt & 

Scheibling 1997). Predators of juvenile urchins typically include crabs, demersal fish 

and sea stars (Hunt & Scheibling 1997, Clemente et al. 2013). Although little is 

known about predation patterns on small juveniles due to inherent difficulties in 

studying highly cryptic early life stages, Clemente et al. (2013) showed that the 

smallest Strongylocentrotus purpuratus juveniles tested (5 - 14 mm) were more than 

three times more likely to be eaten by crabs than larger juveniles, regardless of 

predator size. It has been suggested that juvenile urchins may reach an threshold size 

at which the predation rate dramatically decreases (Menge & Sutherland 1976) or at 

which they may start feeding on macroalgae thus substantially increasing their growth 

rate (Rowley 1990). Any delay in reaching this escape size would therefore have a 

strong impact on a juvenile’s chance of survival or growth, thus affecting population 

dynamics and adult abundance (Ebert 1983, Underwood & Fairweather 1989). 

Furthermore, if the observed negative growth was due to shrinkage, then juveniles 

may also be in poorer body condition as was observed for shrinking Heliocidaris 

erythrogramma (Constable 1993), and thus be less likely to survive in the field.  

 

Very few studies have followed the impact of copper on long-lived benthic 

invertebrates for as long after settlement as in this study (6 weeks post-settlement). 

Indeed most studies on pollutants are typically either short-term assays (days) or end 

shortly after settlement. However, Ng & Keough (2003) reported a dramatic decrease 

in survival and growth following larval copper exposure in bryozoans visible only 

weeks to months post-settlement. In contrast, no carry-over effects were observed in 

growth or survival of juvenile sponges up to six months after larval copper exposure 

(Cebrian & Uriz 2007).  
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In sea urchins, the early days post-settlement are arguably the lesser known, due to 

difficulties in finding highly cryptic, small individuals in the field and the time 

necessary to raise them from larvae in the laboratory. However, latent growth 

impairment following exposure to stressors during embryonic or larval development 

has been documented in various invertebrate species for low food availability (Miller 

& Emlet 1999, Phillips 2002, 2004, Pechenik 2006), ocean acidification (Gobler & 

Talmage 2013, Lane et al. 2013), and other environmental stressors (Pechenik et al. 

2001, Fischer & Phillips 2014). The mechanisms underlying latent and carry-over 

effects in marine invertebrates are not well understood, but Pechenik et al. (1998) 

suggested an impairment in gene transcription while Hoare et al. (1995) suggested 

that copper exposure could reduce larval lipid reserves, thus impairing growth post-

settlement. In my study, the duration of exposure was only two days and it is unclear 

whether the above mechanisms could have been triggered by such a short exposure. 

All latent effects reported occurred only at the highest copper concentration. However, 

this concentration is environmentally realistic (Table 1.1).  

3.4.2 RESISTANCE HYPOTHESIS 

Having been exposed to copper as larvae, juveniles were less resistant to a subsequent 

re-exposure. Mortality increased dramatically, in particular for those juveniles that 

had been exposed to a high copper concentration during early larval development, but 

also to a lesser extent in those exposed to the ANZEEC level. This is one of the first 

studies that demonstrate the effect of further exposure to a pollutant in later life stages. 

A recent study showed in increase in sensitivity to cadmium in juvenile freshwater 

snails, Physa pomilia, previously exposed to the same stressor during embryonic 

development (Kimberly & Salice 2014). In sea urchin, similar results have been 

observed for ocean acidification in Strongylocentrotus droebachiensis, where 

juveniles in elevated pCO2 had a higher mortality rate only when they had also been 

raised in elevated pCO2 as larvae (Dupont et al. 2013).  

 

On the other hand, surviving juveniles that had been previously exposed to the 

highest concentration of copper as larvae, had on average a higher radial growth rate 

when re-exposed than did naïve juveniles that had never been exposed to copper 
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before, and juveniles from all other groups. Faster growth arising from larval 

exposure to the highest concentration of copper may be explained by selective settler 

mortality in favour of fast growing juveniles, or increased mortality after re-exposure 

may have decreased conspecific competition. Patterns of lower survival but faster 

growth following copper stress in a previous life stage have been observed before for 

mussels (Hoare et al. 1995). Authors attributed this pattern to intra-specific 

competition, however as mentioned previously, there was no evidence of conspecific 

competition in my settlement containers. The selective mortality hypothesis is 

supported by a decrease in size heterogeneity in treatments with exposure early 

during larval development, where juvenile mortality was the highest, but not 

treatments with exposure later during larval development. It is important to note that, 

while growth was faster at the highest copper concentration after re-exposure, 

juvenile final size was no different from controls due to the strong growth impairment 

that occurred in this group shortly after settlement.  

3.4.3 TIMING OF LARVAL EXPOSURE TO COPPER 

My previous experiment showed 50% severe abnormality (EC50) at 5.4 µg/L Cu for 

E. chloroticus when exposed during the critical life stage period of 1 - 3 d post-

fertilisation (Table 2.4). In the current study, both early (4 - 6 d post-fertilisation) and 

late (11 - 13 d post-fertilisation) timing of exposure produced no direct effect on 

either mortality, growth or abnormal development, even at the highest copper 

concentration of 10.4 µg/L. The duration of exposure in the two experiments was 

different: two days in the current study against three days in the previous chapter, and 

probably contributed, at least in part, to the higher sensitivity observed in the previous 

experiment. However, it is likely that larvae are also less sensitive to copper outside 

of the early pluteus formation timeframe. This is consistent with the commonly 

accepted critical life stage of early pluteus formation for sea urchins (US EPA 2002b, 

ASTM 2012). 

 

The difference between early and late timing of exposure was important for many, but 

not all variables. Juveniles exposed early during larval development were more 

vulnerable to a subsequent copper exposure than those exposed later. On the other 
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hand, individuals exposed early during the larval stage seemed to fare slightly better, 

or similar, after settlement than those exposed late during larval stage in the absence 

of a further exposure. Vulnerability of younger larvae was expected, as similar results 

were found for sediment stress on E. chloroticus (Phillips & Shima 2006).  

 

Surprisingly however, young juveniles were more vulnerable than larvae to a first 

copper exposure. Indeed, a short pulse of the highest concentration copper to naive 

juveniles impaired radial growth, while no direct effect of copper on larval size or 

survival was observed. Copper toxicity has never been assessed for young juvenile 

urchins. Comparison of sensitivity to stressors between life stages of the sea urchin 

usually includes all the stages of larval development until, or shortly after, 

metamorphosis, but not young settlers and juveniles (Kobayashi 1980, King & Riddle 

2001).  

 

These findings confirm that E. chloroticus is sensitive to copper during the whole 

larval stage as well as shortly after settlement, although severity of impact decreases 

with larval age. Therefore, punctuated pollution events such as runoff are likely to 

affect, to some extent, all larval and young juvenile cohorts that occur in locations 

where they are common, such as near river mouths or in harbours. 

 

Besides exposure to copper, various larval traits significantly impacted subsequent 

performance in settlers and juveniles. Rudiment size at the end of the larval stage 

seems to be the best predictor of settler performance, significantly influencing 

settlement success, body size at settlement, settler survival and growth. This suggests 

that stress affecting rudiment formation may have long lasting impacts on settler 

performance. Larval body size at the end of the larval stage also influenced spine size 

at settlement and settler growth. This provides further evidence that ‘metamorphosis 

is not a new beginning’ (Pechenik et al. 1998) and that larval traits have a continued 

influence on performance in later life stages.  
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3.4.4 CONCLUSION 

My results show that even a short pulse of copper during larval development may 

have long lasting effects, especially on settler growth and resistance to further stress. 

When larvae are vulnerable to a stressor throughout their whole larval development, 

as was the case here, adult populations close to the source of larval stress not only 

produce few recruits but also have a low chance of acquiring recruits dispersed from 

populations further from the stressor source (Shima et al. 2010). Therefore, transient 

larval exposure, as in a river plume, may have a strong impact on recruitment and 

local population persistence. Decreased resistance to further stress is of special 

importance as larvae exposed to pollution are likely to settle in a polluted area; this is 

especially the case for species with low dispersal. On the other hand, selective 

mortality after subsequent copper exposure might mitigate the impact at the 

population level, as only the fitter, faster growing juveniles would survive. Only the 

highest level of copper (10.4 µg/L) produced latent effects after a single exposure, but 

even very low level approaching ANZEEC water quality criterion (2.3 µg/L) 

produced a decreased resistance to further copper exposure. This study highlights the 

importance of evaluating long-term effect of toxicants, as no strong impact was seen 

until 8 d post-settlement.  
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CHAPTER 4                                   
Separate and combined impacts of 
waterborne and dietary copper 
intake on Evechinus chloroticus 
early life stages 

ABSTRACT 

Most marine toxicity studies focus on waterborne pollutants, while organisms living 

in a polluted area are likely to be exposed to contaminated food as well. This study 

investigated the toxic effect of environmentally realistic levels of copper from the diet 

versus waterborne exposure, on larvae of the sea urchin Evechinus chloroticus. 

Larvae were exposed to two levels of copper: 1.3 µg/L or 10 µg/L via one of three 

copper sources: dissolved copper, algal diet (Dunaliella tertiolecta) cultured at these 

copper levels, or in a combined treatment. In addition, the effect of pulse (4 days 

exposure) vs. chronic exposure was evaluated. In chronic exposure, the experimental 

design was fully crossed between copper source and copper level. In pulse exposure, 

only the highest copper level was used for all copper sources. Sea urchins were 

monitored for 38 d post-settlement to investigate carry-over effects. Detrimental 

effects observed during larval development included a decrease in normal 

development at the highest copper level, and a delay in development (30% larvae 

with a rudiment across all copper levels vs. 65% in controls) with waterborne 

exposure. Settlement success was strongly impaired in most treatments (25 – 55% of 

controls) and was 30% lower in dietary than in waterborne treatments. Surviving 

settlers exposed to dietary copper as larvae were on average 30% smaller than 
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controls, while those exposed to dissolved copper were 60% larger. Overall toxic 

effects on larvae were stronger with waterborne exposure, but dietary exposure 

elicited stronger carry-over effects. Pulse exposure was more toxic than chronic 

exposure when copper was present in the diet but not when present in water only, 

suggesting that acclimation may occur; however this is dependent on the route of 

copper intake. Toxic effects occurred at a level of copper commonly found in the 

field, indicating the importance of considering pollutant intake from the diet by larvae.  

4.1 INTRODUCTION 

In polluted coastal areas, marine organisms are exposed not only to contaminated 

water but also, in most cases, to contaminated food. However, most toxicity studies 

focus primarily on the impact of dissolved waterborne pollutants (Hunt & Anderson 

1993, US EPA 2002a). Traditionally, the dietary route of uptake has been disregarded 

as of little importance compared to the dissolved route, except for a very few 

pollutants, such as mercury, for which biomagnification occurrs (i.e. metal burden 

increases with trophic level). Most of these early studies were conducted on fish, 

particularly salmonids (reviewed by Meyer et al. 2005).   

 

During recent years, the importance of the dietary route for the uptake of metal 

contaminants has become well established (Meyer et al. 2005, Ahn et al. 2009, 

Bielmyer et al. 2012). Dietary intake can be a dominant pathway for a variety of 

metals, especially in invertebrates (Reinfelder & Fisher 1991, Wang & Fisher 1998, 

Griscom et al. 2002). Furthermore, different intake routes also affect the distribution 

of metals in tissues (Fisher et al. 1996, Hook & Fisher 2001b, Campbell et al. 2005). 

For example, in mussels waterborne metals tend to accumulate in the shell, while 

metals taken up from food are deposited in the soft tissue (Fisher et al. 1996). Given 

the difference in accumulation patterns within an organism, the toxic effect of dietary 

intake of metals is likely to be different and may not be predicted from dissolved 

metal toxic effects. However, most studies have focused on the mechanisms of metal 

intake and few have investigated the actual toxicity of metals from contaminated diet 

in marine invertebrates, and those that have are generally on adults (Hook & Fisher 
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2001a, De Schamphelaere et al. 2004, Bielmyer et al. 2006). These studies have 

generally found a stronger response to metals taken up from food than to waterborne 

metals, with effective concentrations (EC) up to two orders of magnitude lower in 

dietary assays. This highlights the risk of underestimating the toxic effect of a 

pollutant when only waterborne effects are evaluated.  

 

Invertebrate larvae are commonly used in toxicity tests due to their high vulnerability 

to environmental stressors, including metals (Anderson et al. 1994, Fitzpatrick et al. 

2008). Furthermore, stressors encountered early in life may have long lasting effects 

on an individual’s performance later in life, known as carry-over effects (Pechenik et 

al. 1998, 2001, Gimenez et al. 2004). However, only one study of dietary toxicity has 

been conducted on planktotrophic (i.e. feeding) larvae (Gambardella et al. 2014) and 

none have investigated potential carry-over effects in later life-stages. Gambardella et 

al. (2014) found a decrease in survival (as low as 30% of controls) after dietary 

exposure to metal nanoparticles in the larvae of the sea urchin Paracentrotus lividus. 

However, no direct comparison with waterborne toxicity was provided.  

 

Sea urchin larvae are known to be strongly affected by copper exposure, with 

effective concentrations based on waterborne exposure often approaching water 

quality criteria (WQC; Tables 2.4 and 2.6). If sea urchin larvae are more severely 

affected by dietary copper than by waterborne exposure, current WQC may fail to 

protect these species. Evechinus chloroticus, a sea urchin endemic to New Zealand, is 

extremely sensitive to copper during its larval stage, with an EC10 of 2.1 µg/L (Table 

2.4) while current WQC in New Zealand (WQC) for copper are set at 1.3 µg/L for 

95% species protection and 3.0 µg/L for 90% species protection (ANZECC 2000).  

 

Here I investigated the separate and combined impacts of dietary and waterborne 

copper, by exposing E. chloroticus larvae to dissolved copper and to algal food 

(Dunaliella terticola) cultured at environmentally relevant copper concentrations. My 

aims were to: (1) evaluate the direct and carry-over effects of dietary copper; (2) 

compare the effects of waterborne and dietary uptake; and (3) to establish whether 

WQC are appropriate for E. chloroticus protection when the dietary route is taken 
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into consideration. I also compared the effect of pulse (4 days) vs. chronic exposure, 

both for the dietary and waterborne routes.  

4.2 METHODS 

4.2.1 BROODSTOCK AND SPAWNING 

Adult E. chloroticus (8-20 cm test diameter) were collected from Kau Bay, 

Wellington (41.2882° S, 174.8326° E) in November 2012. A total of 50 urchins were 

kept at Victoria University Coastal Ecology Laboratory (VUCEL) in two 50 L tanks 

with flow-through raw seawater. VUCEL’s seawater is pumped ~ 5 m from shore in 

the Taputeranga Marine Reserve. Raw seawater receives no treatment, while filtered 

seawater (FSW) is pre-filtered (15 µm) and then filtered through a 0.2 µm paper 

cartridge. Adult E. chloroticus were fed twice a week with native kelp (Macrocystis 

pyrifera) and/or commercial feed (ABMAX, E.N. Hutchinson Ltd, Auckland, NZ). 

The experiment was run from February to April 2013. E. chloroticus larvae were the 

product of multiple parents (two males, four females). The spawning and fertilisation 

protocol is described in section 3.2.1.  

4.2.2 EXPERIMENTAL DESIGN 

Larvae were exposed to copper in one of three ways (copper source): via dissolved 

copper in water (‘Water’ treatment), via algal food cultured in copper-enriched 

medium for approximately two weeks (‘Diet’ treatment), or both via food and water 

(‘Diet + Water’ treatment). Two concentrations of copper were used (copper level): 

ANZECC (1.3 µg/L, nominal concentration) and High (10 µg/L), plus a control. In 

addition, two types of exposure to copper were used: a chronic exposure lasting 

throughout the larval development, and a 4-day pulse exposure. In the dietary 

treatments, a pulse exposure means that larvae were fed copper-enriched algae during 

4 d. The algal cultures themselves were always cultured chronically in copper 

(Appendix C). The experimental design was fully crossed between copper source and 

copper level with chronic exposure, but with pulse exposure only the High copper 

level was used for all copper sources (Table 4.1).  
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Table 4.1: Experimental design. Chronic exposure started at 4 d post-fertilisation and lasted through 
the larval development. Pulse exposure lasted for 4 days midway through larval development (8 to 12 
d post-fertilisation). 
Source	
  of	
  copper	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Copper	
  concentration	
  
	
   ANZECC	
  (1.3	
  µg/L)	
   High	
  (10	
  µg/L)	
  
Diet	
   Chronic	
   Chronic	
  and	
  Pulse	
  
Diet	
  +	
  Water	
   Chronic	
   Chronic	
  and	
  Pulse	
  
Water	
   Chronic	
   Chronic	
  and	
  Pulse	
  
 

The actual copper concentration present in the algae and approximate copper ration 

delivered per feed is shown in Table 4.2. Detailed methods for algal culture and metal 

bioaccumulation in D. tertiolecta are shown in Appendix C. In the chronic exposure, 

larvae received a copper spike or were fed contaminated algae every 2 - 3 days from 

three days post-fertilisation to settlement; while in pulse exposure, a single 4-day 

pulse was administered midway through larval development (8 – 12 d post-

fertilisation). Each of the treatments, including the controls, were done in triplicate.   

 
Table 4.2: Copper concentration in water and in diet used in larval assays. Dissolved concentrations 
are measured concentrations in water (filtered through a 0.45 µm mesh). Dissolved copper in control 
seawater was measured four times between 2010 and 2014, and the range of concentrations is reported. 
Other dissolved concentrations were measured once in 2013. Metal in algae is the total metal 
accumulated in Dunaliella tertiolecta from two week-old cultures (N = 3). Ration per feed is the total 
metal present in a feed (ng / 8000 algal cells). 

Level	
  

Nominal	
  	
  
concentration	
  
(µg/L)	
  

Dissolved	
  
concentration	
  	
  
(µg/L)	
  	
  

Metal	
  in	
  
algae	
  (µg/g	
  
dry	
  weight)	
  

Approx.	
  ration	
  
per	
  feed	
  
(ng)	
  ±	
  sd	
  

Control	
   0	
   <	
  0.5	
  -­‐	
  1.2	
   17.5	
   0.011	
  	
  	
  	
  	
  ±	
  0.010	
  
ANZECC	
   1.3	
   2.3	
   66.3	
   0.042	
  	
  	
  	
  	
  ±	
  0.006	
  
High	
   10	
   10.4	
   351.3	
   0.225	
  	
  	
  	
  	
  ±	
  0.006	
  

 

Metal stock solutions were made from reagent grade copper sulphate (CuSO4.5H2O). 

Concentrations given are nominal concentrations, but actual dissolved copper 

concentrations in treatments were measured in January 2013 using the same 

experimental conditions without urchin larvae as described in section 3.2.2 (Table 

4.2). The ANZECC level was based on the current recommended water quality 

trigger value for 95% species protection (ANZECC 2000). The High level was 

chosen as a realistic level occurring in moderately polluted water, such as near large 

cities (Table 1.1).  
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4.2.3 LARVAL ASSAYS 

Fertilised eggs were first cultured in a 4-L glass jar at a density of 30 embryos/ml for 

three days, before being transferred to 2-L glass jars at a density of 1 larva/ml. Details 

of the experimental set-up are provided in section 3.2.3.  The temperature was 16.5° 

C ±1 throughout the whole experiment. Larvae were fed after each water change with 

D. tertiolecta from a clean culture or a copper enriched culture, depending on 

treatment, at a concentration of 8000 cells/ml. Algal stocks were rinsed thoroughly by 

three successive centrifugations (1201 g for 5 min) and re-suspensions in clean FSW, 

before being fed to the larvae to remove traces of metal unabsorbed by algae. 

 

Jars in the Diet and Diet + Water treatments, including both chronic and pulse 

exposure, were sampled at 15 and 24 d post-fertilisation, and jars in the Water 

treatment were sampled 16, 23 and 29 d post-fertilisation. Controls were sampled at 

15 and 23 d post-fertilisation. During sampling, the water level in each jar was 

lowered to 750 ml to increase larval density and 3 x 15 ml aliquots were taken per jar. 

Jars were randomly numbered and all measurements were conducted blind with 

regard to the treatment classification. The number of live larvae was counted in each 

aliquot using a dissecting microscope (40x magnification). Each live larva was 

assigned to one of nine developmental categories. The categories were the same as in 

Table 3.2, except that the 8-armed pluteus category was further divided in three 

categories: 8-armed pluteus with no visible rudiment, pluteus with small rudiment 

and competent pluteus (Table 4.3). Plutei with a rudiment and 8-armed plutei were 

always considered as normal. While 6-armed plutei were considered as normal until 

day 16 (inclusive). The first ten normal larvae encountered were preserved in 40% 

ethanol to be photographed under a compound microscope (50x magnification). 

Measurements of larval body and arm lengths (average of R and L arms where 

possible; Table 4.3), as well as size of the juvenile rudiment in the late larval stage, 

were performed using the software ImageJ.  
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Table 4.3: Addition of 2 new developmental categories of Evechinus chloroticus larvae: pluteus with 
small rudiment and competent pluteus. Arrows on pluteus with small rudiment show morphometric 
measurements. BL: total body length, PO: postoral arms, AL: anterolateral arms, PD: posterodorsal 
arms, EO: preoral arms, S: stomach, R: rudiment. 
Category	
   Description	
   Photo	
   Rating	
  

Pl
ut
eu
s	
  w

ith
	
  ru
di
m
en
t	
  

Competent	
  
pluteus	
  

8-­‐armed	
  pluteus	
  with	
  
large	
  rudiment,	
  i.e.	
  	
  >	
  
half	
  of	
  the	
  body	
  cavity	
  
and	
  protruding	
  
spines.	
  	
  

	
  

Normal	
  

Pluteus	
  with	
  
small	
  
rudiment	
  

Well	
  developed	
  8-­‐
armed	
  pluteus	
  with	
  
small	
  bean-­‐shaped	
  
rudiment	
  	
  

	
  

Normal	
  

8-­‐armed	
  pluteus	
  	
  

All	
  4	
  pairs	
  of	
  arms	
  
well	
  developed,	
  no	
  
rudiment	
  visible	
  at	
  
40x	
  magnification	
  

	
  

Normal	
  

 

4.2.4 SETTLEMENT  

Diet and Diet + Water treatments and controls were placed in settlement containers 

after 26 days of larval development. Larvae in the Water treatment appeared to be 

delayed and were therefore given three additional days (29 d post-fertilisation) to 

achieve similar development as in the other treatments (i.e. > 50% of 8-armed plutei 

having a rudiment) before being transferred to the settlement containers. Details of 

the settlement procedure are described in section 3.2.4. Larvae were given eight days 

to settle, after which any remaining larvae were removed from the containers. Time 
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post-settlement was counted from the first day larvae were placed in settlement 

containers, as many larvae settled within a day. 

 

The total number of settlers per container was counted under a dissecting microscope 

(40x magnification) at 8 and 38 d post-settlement. All juveniles in each container 

were rated for normal development and were deemed as ‘abnormal’ when body shape 

was strongly irregular, or lacked spines or pigmentation (Table 3.3) when observed 

under a dissecting microscope (40x magnification). The first 20 settlers encountered 

were photographed under a dissecting microscope (25x magnification). Body 

diameter (radial length) and three spines were measured using the software ImageJ. 

4.2.5 STATISTICS 

All data analyses were conducted using the software R (version 3.1) with package 

multcomp (Hothorn et al. 2008) for pairwise comparisons and package nlme 

(Pinheiro et al. 2015) for mixed effects models.  

4.2.5.1 Larval performance 

Direct effects of copper treatments on larvae were evaluated by: (1) larval mortality 

rate; (2) larval normal development; (3) delayed development; (4) larval growth; and 

(5) larval size at the latest sampling.  

 

Larval mortality rate was the difference in larval density divided by the initial number 

of larvae and time interval, to obtain the daily probability of mortality per capita early 

(from 4 to 15 or 16 d post-fertilisation) and late (from 15 or 16 to 23 or 24 d post-

fertilisation) in development. Normal larval development was the proportion of 6- and 

8-armed pluteus larvae midway through development (i.e. 15 or 16 d post-

fertilisation) and the proportion of 8-armed pluteus larvae late in development (i.e. 23 

or 24 d post-fertilisation). Mortality and normal development were analysed using 

repeated measures ANOVA with copper level and source of copper (Diet, Water or 

Diet + Water) as ‘between’ factors and larval stage (early, mid or late) as the ‘within’ 

factor. Both variables were square-root arcsin transformed. 
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Delayed development was composed of three variables measured at 23 or 24 d post-

fertilisation: the proportion of normal larvae having reached the 8-armed pluteus 

stage; the proportion of 8-armed larvae having a rudiment; and the proportion of 

larvae with a rudiment that were competent (Table 4.3). The effects of source of 

copper, copper level, and their interaction were analysed using two-way ANOVA. All 

three variables were square-root arcsin transformed. 

 

Larval growth was expressed as the difference in average size per jar divided by 

initial size and time interval to obtain a daily growth rate. Variables were body length 

(BL), postoral arms (PO), anterolateral arms (AL), posterodorsal arms (PD), and 

preoral arms lengths (EO; Table 4.3). Average size per jar was calculated only if 

more than five larvae could be measured per jar for each sampling. The ANZECC 

copper level was removed from all arm growth analyses, as only one jar in the Diet 

and Diet + Water treatments was preserved well enough to take arm measurements. 

All growth measurements were analysed separately using two-way ANOVA and were 

log-transformed to meet assumptions. A Bonferroni correction was applied to control 

type I error rate on multiple testing (alpha = 0.01). 

 

Larval size late in development was the individual larval size at 23 or 24 d post-

fertilisation. Variables were BL, PO, AL, PD, EO and rudiment size. Mixed effect 

linear models to account for non-independence of individual larvae within a jar were 

used with copper level as a fixed effect, jars as a random effect and individual larvae 

as residuals. Separate ANOVAs were performed on the three copper sources, as larval 

measurements were not taken on the same day. Assumptions were graphically 

checked and all variables were log-transformed. 

4.2.5.2 Settler performance 

Settler performance was evaluated by: (1) settlement success; (2) size at settlement; 

(3) survival; (4) normal development; and (5) final size at 38 d post-settlement.  

 

Settlement success was expressed as the number of settlers observed 8 d post-

settlement divided by the initial number of larvae in the containers. Settler survival 

was the proportion of live settlers (moving tube feet and/or spines) at 38 d post-
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settlement. Settler size 8 d post-settlement and final size were evaluated by two 

variables: radial length (RL) and spine/body ratio (SBR). 

 

The effect of larval experiences on settler performance was evaluated by fitting an 

initial model including all of the following factors and covariates; level of copper 

exposure and source of copper exposure were the main factors, and larval traits at the 

end of the larval stage (24 d post-fertilisation for the Diet and Diet + Water treatments, 

29 d post-fertilisation for the Water treatment) were the covariates. Larval traits were 

the proportion of normal larvae, larval body size, proportion of larvae with a rudiment 

and rudiment size. All larval traits were averaged across triplicates, as replicate jars 

were pooled before settlement. In addition to larval experience, two non-larval related 

covariates were used: initial larval density in settlement containers (initial density) for 

settlement success and size-at-settlement analyses; and settler density at 8 d post-

settlement (settler density) for settler survival, normal development, and final size 

analyses.  

 

The best model was selected from the initial model (full model) described above, 

using a stepwise regression based on AIC criterion for each settler performance 

variable. Best models were then analysed using ANCOVAs or mixed effect models 

with the selected factors and covariates, which are presented in the result section 

(section 4.3.2). Interactions were included only when selected in the best model. 

Containers 10 and 13 (both controls) were not measured at 8 d post-settlement and 

were removed from the analysis.  

 

Settlement success and settler survival were fitted with an ANCOVA and were 

square-root arcsin transformed to meet model assumptions. For settler size, both 

variables were fitted with a mixed effect linear model with container as the random 

effect and individual settler as the residual. Sources of copper (i.e. Diet, Water and 

Diet + Water) were analysed separately for final size analyses, as not all copper levels 

were present for all copper source: less than five settlers could be measured at the 

High pulse level in the Diet and Diet + Water treatments.  
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For all larval and settler ANOVAs or ANCOVAs, when copper level was significant 

(p < 0.05), a priori coefficient contrasts were used to compare copper levels against 

controls. If source of copper was also significant, coefficient contrasts from one-way 

ANOVAs were conducted on each treatment separately. For two-way ANOVAs, F-

ratios were calculated from Type II SS. Partial R2 for each component of the model 

were estimated by hierarchical partitioning (Chevan & Sutherland 1991, Mac Nally 

1996) using the hier.part package (Walsh & Mac Nally 2013). R-squared values 

reported for mixed effects models were conditional R2, as described by Nakagawa & 

Schielzeth (2013) and Johnson (2014), calculated using rsquared.glmer v0.2-4 

function (Lefcheck & Casallas 2014).  

4.3 RESULTS 

4.3.1 LARVAL PERFORMANCE 

4.3.1.1 Daily per capita mortality rate 

Mortality rate varied with copper level and source of copper exposure (Table 4.4a, 

Figure 4.1). Overall, daily mortality rate was higher for early larval stages and 

dropped for later stages. This pattern was reversed in both the Diet and Water High 

Pulse treatments where mortality rate increased as larval development progressed, 

and to a lesser extend for the Water ANZECC Chronic treatment. However, the 

mortality rate was not significantly different between copper levels and control at the 

early and late larval stage (Dunnett contrasts: p > 0.05).  
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Table 4.4: Repeated measures ANOVA of Evechinus chloroticus larval daily per capita mortality rate 
(A) and percent normal development (B), to test effects of copper exposure (copper level) and source 
of copper (source) early and late (Age) during larval development. Significant effects (p < 0.05) are 
highlighted in bold.  
Source	
  of	
  variation	
   df	
   SS	
   F	
   p	
  
(A)	
  Daily	
  per	
  capita	
  mortality	
  rate	
  
Source	
   2	
   0.08	
   4.39	
   0.02	
  
Copper	
  level	
   3	
   0.01	
   0.48	
   0.70	
  
Age	
   1	
   0.42	
   11.02	
   0.003	
  
Source	
  x	
  Copper	
  level	
   6	
   0.08	
   1.46	
   0.23	
  
Source	
  x	
  Age	
   2	
   0.27	
   3.56	
   0.04	
  
Copper	
  level	
  x	
  Age	
   3	
   0.39	
   3.35	
   0.04	
  
(B)	
  Larval	
  normal	
  development	
  
Source	
   2	
   18.46	
   5.61	
   0.01	
  
Copper	
  level	
   3	
   4.15	
   0.84	
   0.48	
  
Age	
   1	
   4.78	
   5.05	
   0.03	
  
Source	
  x	
  Copper	
  level	
   6	
   24.79	
   2.51	
   <0.05	
  
Source	
  x	
  Age	
   2	
   3.71	
   1.96	
   0.16	
  
Copper	
  level	
  x	
  Age	
   3	
   31.54	
   11.11	
   <0.001	
  
 

 
 
Figure 4.1: Evechinus chloroticus daily per capita mortality rate in early (4 – 15 d post-fertilisation) 
and late (15 – 24 d post-fertilisation) larval development under different levels of copper exposure. 
Larvae were exposed to copper via contaminated food (Diet), dissolved metal (Water) or both (Diet + 
Water). Error bars represent the standard deviation (N = 3). 
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4.3.1.2 Larval development 

Larval development differed with copper level and route of copper intake, however 

the latter was barely significant (Table 4.4b). In controls, the percentage of normal 

larvae midway through development increased from 61% to 83%. In the Diet and 

Diet + Water treatments, the proportion of normal larvae changed less markedly than 

in the controls, but the final normal proportion was similar to in the controls, ranging 

from 66% to 81% (Figure 4.2). In the Water treatment, however, the proportion of 

normal larvae decreased sharply in both the High Pulse and High Chronic copper 

levels, to 44% and 50% respectively (Coefficient contrasts; p < 0.02).  

 

 
 
Figure 4.2: Evechinus chloroticus normal development in mid (15 – 16 d post-fertilisation) and late 
(23 – 24 d post-fertilisation) larval development under different levels and sources of copper. Larvae 
were exposed to copper via contaminated food (Diet), dissolved metal (Water) or both (Diet + Water). 
Error bars represent the standard deviation (N = 3). 
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Water treatment, only 4% of larvae were competent in the ANZECC Chronic 

treatment and none in the High Chronic treatment, compared with 39% in the controls 

(Coefficient contrasts; in all cases p < 0.01). There was no difference across all 

treatments with respect to the proportion of 8-armed plutei in late larval development 

(Two-way ANOVA; Source: F(2, 24) = 2.7, p = 0.09, Copper level: F(3, 24) = 0.12, p = 

0.95, Interaction: F(6, 24) = 1.4, p = 0.27).  

 
Table 4.5: Two-way ANOVA of Evechinus chloroticus proportion of larvae with a rudiment (A) and 
proportion of larvae with a large rudiment with protruding spines (B), to test for effects of copper 
exposure (copper level) and source of copper (source) late in larval development. Significant effects (p 
< 0.05) are highlighted in bold.  
Source	
  of	
  variation	
   df	
   SS	
   F	
   p	
  
(A)	
  Larvae	
  with	
  rudiment	
  
Source	
   2	
   0.13	
   1.50	
   0.24	
  
Copper	
  level	
   3	
   0.56	
   4.28	
   0.02	
  
Source	
  x	
  Copper	
  level	
   6	
   0.31	
   1.17	
   0.35	
  
(B)	
  Competent	
  larvae	
  
Source	
   2	
   1.01	
   13.54	
   <0.001	
  
Copper	
  level	
   3	
   0.35	
   3.09	
   <0.05	
  
Source	
  x	
  Copper	
  level	
   6	
   0.48	
   2.16	
   0.08	
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Figure 4.3: Proportion of Evechinus chloroticus larvae with a small rudiment and/or with a protruding 
rudiment (i.e. competent larvae) at 23 – 24 days post-fertilisation under different regimes of copper 
exposure. Copper levels were: control (Ctrl), ANZECC Chronic (A.), High Pulse (H.p.) and High 
Chronic (H.c.). Larvae were exposed to copper-contaminated food (Diet), dissolved metal (Water) or 
both (Diet + Water). Error bars represent the standard deviation of the total proportion of larvae with a 
rudiment (N = 3). 
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4.3.1.4 Larval size 

A delay in development was also evident with respect to the growth of the last two 

pairs of arms to develop (PD and EO). In controls, these arms reached near-maximum 

length by 15 d post-fertilisation, with little subsequent growth (Figure 4.4). However, 

in all copper treatments, PD and EO were not fully developed by 15 d and daily 

growth rate was significantly higher than controls, especially in the High Chronic 

treatment, with no difference between sources of copper (Table 4.6). The final size 

late in development was not significantly different between copper levels and controls. 

 
Table 4.6: Effect of copper exposure (Level) and source of copper (Source) on Evechinus chloroticus 
growth between 15 and 24 days post-fertilisation. Analysed using two-way ANOVA on linear model 
with Bonferroni correction. Significant effects (p < 0.01) are highlighted in bold.  
Variable	
   Source	
  F	
  (p)	
   Level	
  F	
  (p)	
   Source	
  x	
  Level	
  F	
  (p)	
  
Posterodorsal	
  arm	
  length	
  
(PD)	
   0.37	
  (0.70)	
   23.81	
  (<0.001)	
   0.15	
  (0.96)	
  

Preoral	
  arm	
  length	
  (EO)	
   4.44	
  (0.04)	
   22.81	
  (<0.001)	
   2.83	
  (0.07)	
  
 

 
 
Figure 4.4: Evechinus chloroticus daily posterodorsal arm (PD) and preoral arm (EO) growth between 
15 - 16 and 23 - 24 d post-fertilisation under different regimes of copper exposure. Copper levels were: 
control (Ctrl), ANZECC Chronic (A.), High Pulse (H.p.) and High Chronic (H.c.). Larvae were 
exposed to copper via contaminated food (Diet), dissolved metal (Water) or both (Diet + Water). 
Under normal conditions, larval arms have reached near maximum length by 15 days, and thus little 
growth occurred in controls between15 to 23 d post-fertilisation. Error bars represent the standard 
deviation (N = 3). 
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4.3.2 SETTLER PERFORMANCE 

4.3.2.1 Settlement success 

Settlement success was strongly affected by concentration of copper and patterns of 

variation were significantly different with the source of copper (two-way ANOVA; 

Source: F(2,24) = 11.4, p < 0.001; Copper level: F(2,24) = 53.7, p < 0.001; Interaction 

term: F(6,24) = 16.2, p < 0.001; Figure 4.5). Eight days after having been placed in 

settlement containers, significantly less urchins had settled successfully in the 

ANZECC and High Pulse levels in the Diet treatment, and across all copper levels in 

the Diet + Water treatments (Tukey HSD, p < 0.05; Figure 4.5). The High Pulse level 

had a stronger impact than the High Chronic level in the Diet and the Diet + Water 

treatments, with almost no settlement at the High Pulse level. In the Water treatment, 

only the High Chronic level was significantly different from controls, with 3.6% 

settlement success. The best model included no covariates and model fit was 

excellent, with a 92% multiple R2. 
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Figure 4.5: Settlement success of Evechinus chloroticus, 8 days post-settlement, under three different 
levels of copper exposure: control (Ctrl), ANZECC Chronic (A.), High Pulse (H.p.) and High Chronic 
(H.c.). Larvae were exposed to copper via contaminated food (Diet), dissolved metal (Water) or both 
(Diet + Water). Error bars represent the standard deviation (N = 3). Lower case letters show groupings 
based on pairwise comparisons (Tukey test, p < 0.05). 
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Table 4.7: Effect of larval experiences on Evechinus chloroticus size at settlement: (A) radial length 
and (B) spine/body ratio (SBR), analysed using ANCOVA on mixed effect models. SBR was log-
transformed to meet ANCOVA assumptions. Significant effects (p < 0.05) are highlighted in bold; p 
values are based on the chi-square statistic.  
Source	
  of	
  variation	
   df	
   Chi2	
   p	
  
(A)	
  Radial	
  length	
   	
   	
   	
  
Copper	
  level	
   3	
   12.60	
   0.006	
  
Density	
   1	
   4.10	
   0.04	
  
Rudiment	
  size	
   1	
   13.45	
   <0.001	
  
Larval	
  development	
   1	
   4.61	
   0.03	
  
(B)	
  Spine/body	
  ratio	
   	
   	
   	
  
Copper	
  level	
   3	
   26.41	
   <0.001	
  
Larval	
  size	
   1	
   14.15	
   0.05	
  
 

Final radial length at 38 d post-settlement was significantly higher at all copper levels 

in the Water treatment (One-way ANOVA: F(3,7) = 14.41, p = 0.002; Coefficients 

contrasts: in all cases p < 0.03). Juveniles were nearly two times larger at ANZECC 

levels than in controls, more than 1.5 times larger at the High Pulse level and 1.3 

times larger at High Chronic levels (Figure 4.6a). In contrast, in the Diet + Water 

treatment, juveniles were smaller with increasing copper exposure (One-way 

ANOVA: F(2,4) = 8.08, p = 0.04), with juveniles at both copper levels approximately 

1.5 times smaller than controls (Coefficients contrasts; in all cases p < 0.04); no 

significant differences was observed in the Diet treatment. 
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Figure 4.6: Evechinus chloroticus radial length (a) and spine/body ratio (b) at 8 and 38 days post-
settlement under different copper regimes: control (Ctrl), ANZECC Chronic (A.), High Pulse (H.p.) 
and High Chronic (H.c.). Larvae were exposed via contaminated food (Diet), dissolved metal (Water) 
or both (Diet + Water). Error bars represent the standard deviation (N = 3). No data are available in the 
H.p. treatment for Diet and Diet + Water, as less than five settlers per containers were alive at 38 d 
post-settlement. 
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all cases p < 0.001, Figure 4.6b). However, final SBR at 38 d post-settlement was 

similar to controls in all treatments. 

4.3.2.3 Settler survival and development 

Normal development of juveniles at 38 d post-settlement was significantly affected 

by copper level during larval development, and the proportion of larvae with a 

rudiment and normal larvae before settlement (23 - 24 d post-fertilisation, (Table 4.8). 

Model fit was good, with 70% of the variation explained. However, the proportion of 

larvae with a rudiment and the proportion of normal larvae contributed to most of the 

explained variation (23% and 43%, respectively), while copper level contributed to 

34%. Normal development was positively affected by both covariates (proportion of 

larvae with a rudiment and proportion of normal larvae). The percentage of normal 

juveniles at 38 d post-settlement was lower at the ANZECC level (54% ± 27; mean ± 

SD) and at the High Chronic level (60% ± 23), compared with 81% ± 11 in controls 

(Coefficient contrasts; in all cases p < 0.03).  

 
Table 4.8: Effect of larval experience of Evechinus chloroticus on settlers’ normal development at 38 
days post-settlement, analysed using ANCOVA on linear models. The proportion of normal settlers 
was square-root arcsin transformed to meet ANCOVA assumptions. Significant effects (p < 0.05) are 
highlighted in bold. F-ratios are calculated from Type II SS.  
Source	
  of	
  variation	
   Df	
   SS	
   F	
   p	
  
Copper	
  level	
   3	
   0.41	
   4.43	
   0.01	
  
Proportion	
  of	
  rudiment	
   1	
   0.44	
   14.15	
   <0.001	
  
Larval	
  development	
   1	
   0.73	
   23.51	
   <0.001	
  
 

Juvenile survival after 38 d varied between 10 and 100% across containers, and was 

unaffected by larval copper exposure but was positively affected by the proportion of 

larvae with a rudiment in the late larval stage (ANCOVA: F(1,32) = 4.63, p = 0.04). 

However, model fit was poor, with only 13% of the variation explained.  
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4.4 DISCUSSION 

4.4.1 DIETARY VS. WATERBORNE TOXICITY 

This study showed that copper accumulated in phytoplankton has a strong toxic effect 

on E. chloroticus post-settlement, especially given the very low amount of copper 

present per feed. Interestingly, dietary copper seemed to produce few direct effects on 

larvae, while carry-over effects were more severe when copper was administered in 

food rather than in water. Settlement success was on average 30% lower with dietary 

copper than with waterborne copper. Furthermore, surviving settlers tended to be 

smaller after 38 d post-settlement when raised in copper-laden food during larval 

development, while those raised in copper-spiked water had a higher growth and 

larger final body size than controls. These results show the importance of taking into 

account dietary intake when evaluating pollutant toxicity.  

 

Other studies evaluating the toxicity of metal-laden diet on zooplankton also found a 

higher sensitivity to metal when obtained from food rather than from a dissolved 

source. The copepod Acartia tonsa had a median lethal concentration (LC50) of 43.2 

µg/L with waterborne silver compared to an LC50 of only 3 µg/L and a median 

effective concentration (EC50) of 0.1 µg/L with dietary silver (Hook & Fisher 2001a, 

Bielmyer et al. 2006). Similar results were found for cadmium in copepods, however 

mercury was more toxic when absorbed from water showing that the relative 

importance of dietary vs. waterborne exposure varies between metals (Hook & Fisher 

2001b).  

 

For carry-over effects, combined exposure to dissolved and dietary copper followed 

the effect of dietary copper alone; this was as expected, as dietary copper had a 

stronger effect than dissolved copper on settlement success, and settler size and 

growth. Surprisingly however, this was also the case for direct effects, where 

combined dietary and waterborne exposure was less toxic than waterborne exposure 

alone. It appears that the presence of dietary copper mitigates the toxic effect of 

waterborne copper, perhaps by triggering acclimation mechanisms such as metal 

sequestration, as suggested by Hook and Fisher (2002). Acclimation following 
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dietary exposure is also supported by the fact that pulse exposure was worse than 

chronic exposure. In the field, organisms are likely to be exposed simultaneously to 

waterborne pollutants and contaminated diet. Therefore, it is crucial to evaluate the 

toxic effects of both acquisition pathways. However, this is the first study assessing 

the combined effects of waterborne and dietary metal uptake in invertebrates. 

 

It should be noted that this study was conservative with respect to the algal copper 

burden. Metal burden per algal cell is higher after 24 – 48 h exposure (Bielmyer et al. 

2006) and rapid cell division (as in an algal bloom induced by increase nutrients) 

reduces metal burden per cell (Pickhardt et al. 2002). In this study, algae were 

cultured for two weeks under high light-nutrient conditions leading to fast algal 

division. Therefore, metal burden per cell under these conditions is likely to be much 

lower than encountered in the field for the same water concentration following a rain 

event, especially in oligotrophic waters.  

4.4.2 DIRECT AND CARRY-OVER EFFECTS 

Low levels of copper exposure produced both direct and latent effects, in contrast 

with results from the previous chapter (section 3.3) where no direct effects were 

detectable. The difference is probably due to the longer exposure in the current study 

(chronic or four days pulse compared to two days pulse in Chapter 3). The strongest 

toxic effect observed in this study, however, was a carry-over effect (settlement 

success).  

 

The main direct effect was a delay in rudiment development at most copper levels, 

but especially in the Water treatment. The higher in arm growth in presence of copper 

also reflects a delay in arm development. The difference was predominantly with 

respect to the pair of arms that develop later in the larval stage (i.e. PD and EO). For 

these arms, almost no growth was observed in the controls, while increased growth 

occurred with copper exposure. Nevertheless, final size before settlement was similar 

across all copper levels, indicating that these arms developed later in the presence of 

copper. Other direct effects included a slight increase in mortality rate at the High 
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Pulse level and a decrease in normal development at the High Pulse and High Chronic 

levels, but in the Water treatment only.  

 

Although the proportions of larvae with a rudiment and competent larvae were similar 

to controls after only three days, a delay in settlement may have major impacts for 

settler survival. Intrinsic metabolic costs of delayed settlement have been linked to 

poorer settler survival and growth (Pechenik 2006). Furthermore, a delay in 

competency may have a range of adverse effects in the field, such as increased 

predation risk and dispersal away from suitable habitat (reviewed by Pechenik 1999). 

 

The main carry-over effect was a dramatic decrease in settlement success. Settlement 

success was less than 2% at the High Pulse level in the Diet and Diet + Water 

treatments, and less than five settlers remained alive at the end of the experiment (38 

d post-settlement). Furthermore, surviving settlers had a higher rate of abnormal 

development in all copper treatments. The effects on settler size and growth were 

complex. Radial length at settlement was similar at all copper levels, but a higher 

growth rate in all Water copper treatments led to larger settlers at 38 d post-settlement. 

On the other hand, settlers had shorter spines at settlement in the presence of copper 

but the no difference in spine length remained between copper treatments and 

controls at 38 d post-settlement. This is contrary to the strong growth impairment 

observed in High Pulse level in Chapter 3 (Figure 3.6). The difference may be due to 

longer copper exposure, however the effect would be expected to be stronger and not 

contrary, or it could be due to time of sampling. Indeed, growth impairment in 

Chapter 3 was observed at 25 d post-settlement. Settlers in the current study might 

have gone through an initial phase of depressed growth before increasing to levels 

observed at 38 d post-settlement. This emphasises the need to investigate long-term 

effects, to have a more complete understanding of copper effects.  

4.4.3 PULSE VS. CHRONIC 

The relative effect of pulse or chronic exposure was strongly dependent on the source 

of copper. Indeed, when copper was present in the diet (both Diet and Diet + Water 

treatments), a pulse exposure was generally more toxic than a chronic exposure. On 
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the other hand, when copper was administered in water alone, a chronic exposure was 

more toxic. This suggests that copper from the diet triggers a fast acclimation while 

no acclimation occurs when exposure is to waterborne copper, at least within the 

short time frame of the larval stage; this adds to the growing body of evidence that 

different routes of metal exposure induce profoundly different physiological 

responses (Fisher et al. 1996, Hook & Fisher 2001b, Meyer et al. 2005). Acclimation 

to metals including copper has been widely reported in fish but is poorly known in 

invertebrates, with the exception of inherited resistance, known as micro-adaptation, 

reported in short-lived marine invertebrates (Dixon & Sprague 1981, Wirgin & 

Waldman 2004, McKenzie et al. 2011, Brinkman & Woodling 2014, Sun et al. 2014).  

 

This study shows that a short-lived bloom of contaminated phytoplankton may have a 

more severe impact on zooplankton than chronic pollution. This finding has 

important implications for pollution management, as short increases in pollution 

concentration are usually considered to be of little consequence as long as the average 

concentration throughout the year is below WQC. Furthermore, many toxicity studies 

investigating dietary intake of pollutants have used a chronic exposure and focused on 

adults, and hence may have strongly underestimated the toxic effect of a pollutant (De 

Schamphelaere et al. 2004, Meyer et al. 2005, Guo et al. 2013). Conversely, 

acclimation to copper from a dietary source seemed to counteract the negative effects 

of chronic waterborne pollution in the Diet + Water treatment, suggesting that E. 

chloroticus is capable of acclimating quickly to moderate levels of chronic pollution.  

4.4.4 IMPLICATIONS FOR MANAGEMENT  

This study shows that even low levels of copper pollution, close to WQC, may have a 

toxic effect on invertebrate larvae when the dietary route is considered. The lowest 

copper level in this study negatively affected settlement success by 50 - 70% and 

settler development by 45 - 60%. Episodic spikes of pollution (e.g. in storm runoff) 

may seem acceptable to regulatory organizations so long as contamination does not 

become chronic, however this study stresses the importance of preventing sporadic 

discharge of pollutants as they can be more damaging to vulnerable species, or 

particular life stages, than chronic pollution. In addition, given the rapid algal division 
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achieved under laboratory conditions, metal burden per algal cell in this study is 

likely to be lower than encountered in the field following a rain event, especially in 

oligotrophic waters.  
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CHAPTER 5                                   
Multiple stressors: The effect of 
low salinity on copper toxicity in 
Evechinus chloroticus early life 
stages 

ABSTRACT 
Copper is a common pollutant in coastal waters, which are also prone to fluctuating 

salinity due to runoff. However, toxicity studies on marine organisms are nearly 

always conducted at normal seawater salinity and are thus not necessarily 

representative of field conditions. Here I used embryos and larvae of the sea urchin 

Evechinus chloroticus to characterise the effect of low salinity on copper toxicity with 

variable timing of exposure. In embryo/early pluteus assays, embryos were exposed 

to copper (0 – 20 µg/L) at 26 ppt salinity for 72 h shortly after fertilisation. In larval 

assays, larvae were either exposed chronically to treatments or in a single pulse to 

better mimic realistic field conditions. In the chronic experiment, larvae were exposed 

to two levels of copper (none or high: 15 µg/L) and two levels of salinity (normal: 36 

ppt or low: 24 ppt), in a fully crossed design. For the pulse exposure, larvae were 

exposed to a single 4-day pulse of low copper concentration (5 µg/L) at normal 

salinity (36 ppt) or low salinity (24 ppt). Low salinity by itself had a dramatic impact 

on embryos, with a complete inhibition of hatching compared to > 90% normal 

development at normal salinity. There was no added effect of copper. Larvae were 

more resistant to hyposaline stress than were embryos, with only a minor delay in arm 

growth. A high level of copper administered chronically had a severe impact on larval 
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survival, normal development and 8-armed pluteus development (43%, 80% and 

200% lower than control, respectively). However, a low level of copper administered 

in a single pulse was not detrimental to larvae. A strong synergistic effect of copper 

and salinity was observed under chronic exposure to high copper concentration and 

low salinity, with no larvae reaching full development compared to more than 50% in 

copper alone and 27% at low salinity alone. There was little evidence of increased 

copper toxicity at low salinity under pulse exposure to low copper concentration, 

except for a delay in rudiment development that was compensated for within three 

days. These findings demonstrate that, although low salinity and copper may have a 

synergistic effect under specific conditions, the combined exposure to these two 

stressors would not likely have major impacts on sea urchin larvae in the field.  

5.1 INTRODUCTION 

Coastal areas are impacted by terrestrial runoff following rain events, and therefore 

often affected by pollutants and fluctuations in water salinity simultaneously 

(Hayward et al. 2006). Change in rainfall patterns due to global climate change may 

lead to more frequent severe rainfall and flooding at high latitudes, leading to further 

freshwater input in coastal systems in the near future (Morrison et al. 2009, IPCC 

2014). Fluctuation in salinity is an important source of environmental stress in itself, 

but is also known to affect metal bioavailability and toxicity to aquatic organisms. 

Generally, metals, including copper, are more readily bioavailable at low salinity as a 

result of lower complexation with free metal ions and/or lower competition between 

sodium ions and free metal ions for binding sites in the organism (McLusky et al. 

1986, Santore et al. 2001). While salinity is well known to be an important mediator 

of metal toxicity in freshwater and estuarine systems (McLusky et al. 1986, Grosell et 

al. 2007, Lee et al. 2010), relatively few studies have looked at marine organisms and 

most of these have focused on adults (McLusky et al. 1986, Barbieri & Doi 2011, 

Patel & Bielmyer-Fraser 2015). 

 

Sea urchins are ecologically important members of near-shore reef communities and 

are may be found near large cities, including those with harbours, where metal 



Chapter 5: Multiple stressors: The effect of low salinity on copper toxicity in Evechinus chloroticus early life stages 

     111 

pollution is highly prevalent and often accompanied by fluctuations in salinity from 

urban runoff. Echinoderms are essentially stenohaline but have species-specific 

tolerances to variable salinity. For example, the green sea urchin Strongylocentrotus 

droebachiensis, one of the most tolerant species to hyposaline conditions, can tolerate 

prolonged exposure to salinities as low as 14 ppt as adults and 20 ppt as larvae 

(reviewed in Russell 2013). Such decreases in salinity are common in the field. For 

example, in Wellington, salinity as low as 12 ppt was measured up to 1 km offshore 

in surface water (30 cm) in a river plume one day following a rain event, and 18 ppt 

near-shore three days after the rain event (Tables A.1 and A.2). 

 

Sea urchin larvae are highly sensitive to metal pollution and environmental stress in 

general, including hyposalinity. The effects of metals on sea urchin larvae have been 

widely evaluated, and are characterised by impairment of fertilisation and normal 

larval development (Kobayashi 1980, King & Riddle 2001, Fernández & Beiras 2001, 

Phillips et al. 2003, Bielmyer et al. 2005). The effects of low salinity on the early life 

stages of echinoids are less understood but include deleterious effects on fertilisation, 

egg and larval development, and development rate (Allen & Pechenik 2010, 

Carballeira et al. 2011, Russell 2013, Delorme & Sewell 2014). However, no study 

has investigated the influence of low salinity on metal toxicity in the early life stages 

of sea urchins. In other marine invertebrates species, low salinity generally, but not 

always, tends to increase metal toxicity in adults (Lee et al. 2010, Barbieri & Doi 

2011, Patel & Bielmyer-Fraser 2015) and early life stages (MacInnes & Calabrese 

1979, Nadella et al. 2009, 2013). 

 

Copper is a major pollutant in many industrial countries and is considered as a 

priority pollutant by environmental authorities due to its high toxicity to aquatic life 

(ANZECC 2000, US EPA 2014). Standard toxicity assays are a cost-efficient way to 

determine acceptable copper levels in marine waters (US EPA 2002b). While copper 

assays have been conducted with sea urchin embryos and larvae in many species, 

these tests are always conducted at normal seawater salinity and may underestimate 

copper toxicity under common field conditions. The time over which embryo/early 

pluteus formation occurs (1 - 3 d post-fertilisation) has been reported as the most 

sensitive stage to pollutants in many species, so standard toxicity assays typically end 
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when larvae reach the pluteus stage (King & Riddle 2001, ASTM 2012). Salinity 

effects on the other hand, are often greater earlier in development during the pre-

hatching stage, and are detectable a few hours post-fertilisation (Kashenko 2007, 

Carballeira et al. 2011, Delorme & Sewell 2014). A study using E. chloroticus 

embryos showed a complete inhibition of hatching under 27.5 ppt (Antonie 2003). 

However, longer-term assays are preferable, whenever possible, to assess the 

potential longer term sublethal effects of stressors throughout larval development. In 

my previous experiments, the effects of low levels of copper were detectable one to 

two weeks after exposure, during rudiment formation in late larval development 

(Chapter 3 and 4).  

 

The aims of this study were to evaluate the effect of salinity on copper toxicity in 

early life stages of the sea urchin Evechinus chloroticus. To do this, I conducted two 

experiments. In the first experiment, toxicity was assessed during embryo/early 

pluteus development (first 72 h post-fertilisation) to characterise effects during the 

most sensitive life stage. In this experiment, embryos were exposed to four levels of 

copper at low salinity, plus a low salinity treatment (no copper) and a normal salinity 

control. In a second experiment, toxicity was evaluated later in larval development, 

during the pluteus stage (from 4 d post-fertilisation). Larvae are more likely to 

encounter fluctuations in salinity and metal contamination in the field post-hatching, 

when they are found in the surface layers for feeding (Lamare 1998). In this 

experiment, larvae were exposed to a chronic high copper concentration in normal 

salinity seawater or low salinity seawater, with an additional low salinity/no copper 

treatment, and normal salinity control. In addition to these chronic treatments, a 

treatment of pulse exposure (four days) to low concentration copper at low salinity 

and at normal salinity was used to mimic realistic field exposure to both stressors. 

5.2 METHODS 

5.2.1 BROODSTOCK AND SPAWNING 

Adult E. chloroticus (8-20 cm test diameter) were collected from Kau Bay, 

Wellington (41.2882° S, 174.8326° E) in October 2013. A total of 50 urchins were 
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kept at Victoria University Coastal Ecology Laboratory (VUCEL) in two 50 l tanks 

with flow-through raw seawater. VUCEL’s seawater is pumped ~ 5 m from shore in 

the Taputeranga Marine Reserve. Raw seawater receives no treatment, while filtered 

seawater (FSW) is pre-filtered (15 µm) and then filtered through a 0.2 µm paper 

cartridge. Adult E. chloroticus were fed twice a week with native kelp (Macrocystis 

pyrifera) and/or commercial feed (ABMAX, E.N. Hutchinson Ltd Auckland, NZ).  

5.2.2 EMBRYO/EARLY PLUTEUS EXPERIMENT 

The experiment was run in February 2014. Embryos were the product of multiple 

parents (three males, three females) and exposed to copper for 72 h from < 1 h post-

fertilisation in 300 ml glass jars, following standard static non-renewal toxicity 

protocols (US EPA 2002b, ASTM 2012). The spawning, fertilisation and 

experimental set-up are all described in section 2.2.1 and 2.2.2. Embryos were 

exposed to four copper levels, all in low salinity (26 ± 1 ppt) seawater: 1, 5, 10 and 20 

µg/L Cu. In addition, there was a low salinity/no copper treatment and a normal 

salinity/no copper control (35.5 ± 0.5 ppt). There were three replicate jars for each 

treatment. Copper concentrations were based on a previous assay at normal salinity, 

and were chosen to derive median effective concentrations (EC50) and no observable 

effect concentrations (NOEC) (section 2.3.1). Temperature was 16.5°C ± 0.5 during 

the assay. After 72 h, larvae were preserved in 40% ethanol and observed under a 

microscope at 100x magnification. The first 100 larvae encountered were assigned to 

one of seven developmental categories (Table 2.2). 

5.2.3 LARVAL EXPERIMENT 

This experiment was run from November to December 2013. E. chloroticus larvae 

were the product of multiple parents (four males, three females). Spawning and 

fertilisation protocols are described in section 3.2.1.  

5.2.3.1 Experimental design 

In this experiment, larvae were either exposed chronically to treatments, or in a single 

pulse to better mimic realistic field conditions. For the chronic exposure, larvae were 



Chapter 5: Multiple stressors: The effect of low salinity on copper toxicity in Evechinus chloroticus early life stages 

   114 

exposed to four treatments: high copper (15 µg/L) at normal salinity (35.5 ± 0.5 ppt), 

high copper at low salinity (24 ± 1 ppt), low salinity with no copper, or a normal 

seawater/no copper control. Larvae were subjected to these treatments from 4 to 32 d 

post-fertilisation. For the pulse exposure, larvae were exposed to a single 4-day pulse 

of low copper concentration (5 µg/L) in normal salinity (35.5 ± 0.5 ppt) or low 

salinity (24 ± 1 ppt) seawater. Exposure to both stressors occurred between 7 and 11 d 

post-fertilisation. All treatments had three replicate jars.  

 

Metal stock solutions were made from reagent grade copper sulphate (CuSO4.5H2O). 

Concentrations given are nominal, as actual dissolved copper concentrations were 

found to be close to nominal in the upper range measured in January 2013 using the 

same experimental conditions without urchin larvae (Table 3.1). The low copper level 

used in the pulse experiment was chosen as a realistic level occurring in moderately 

polluted water and was approximately twice the highest level measured in the field in 

the Wellington area (Figure A.2). The high copper level in the chronic treatments was 

chosen to induce a response during larval development and to evaluate the effect of 

low salinity on copper toxicity. While copper concentrations similar to the one in the 

high copper treatments could occur in polluted areas (Table 1.1), a chronic exposure 

to this level of copper and low salinity is unlikely to occur in the field. The low 

salinity treatment was chosen based on the salinity measured in river plumes 

following rain in the Wellington region (Table A.1). 

5.2.3.2 Larval assays 

Fertilised eggs were first placed in one 4 L glass jar within 1 h of fertilisation, at a 

density of 30 eggs/ml for three days; the larvae were held in this jar until they reached 

the pluteus stage. At this time larvae were then transferred to 2 L glass jars at a 

density of 1000 larvae/L. Details of the experimental set-up are described in section 

3.2.3. The temperature was 15°C ±1 throughout the duration of the experiment, which 

was terminated at 32 d post-fertilisation. 

 

Jars were sampled at 16, 21, 25 d post-fertilisation for all treatments and again at 28 d 

post-fertilisation for the low salinity treatments. During sampling, the water level in 

each jar was lowered to 750 ml to increase larval density and 3 x 15 ml aliquots were 
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taken per jar. In addition, larval survival was measured on pooled replicates at 28 d 

post-fertilisation in the normal salinity treatment and at 32 d post-fertilisation in the 

low salinity treatments. Jars were randomly numbered and all measurements were 

performed blind with regard to the treatment classification. The number of live larvae 

was counted in each aliquot, using a dissecting microscope. Each live larva was 

assigned to one of nine developmental categories (see section 4.2.3). The first ten 

normal larvae encountered were preserved in 40% ethanol to be photographed under a 

compound microscope (50x magnification). Measurements of larval body and arm 

lengths (average of R and L arms where possible; Table 4.3), as well as size of 

rudiment in the late larval stage, were performed using the software ImageJ.  

5.2.4 STATISTICS 

All analyses were conducted using the software R (version 3.1), with the package 

‘multcomp’ (Hothorn et al. 2008) for pairwise comparisons and the package ‘nlme’ 

(Pinheiro et al. 2015) for mixed effects models. Jars 2 (control) and 16 

(copper/normal salinity, pulse experiment) were lost at 25 d. 

 

The effect of treatment on larvae was evaluated with respect to the following 

response variables: (1) larval survival, (2) normal larval development, (3) delayed 

development, (4) larval growth, and (5) final larval size.  

 

Larval survival was the proportion of the initial number of larvae still alive at 16, 21 

and 25 d post-fertilisation. Normal larval development was the proportion of 4, 6 and 

8-armed plutei at 16 d post-fertilisation, the proportion 6 and 8-armed plutei at 21 d 

post-fertilisation, and the proportion of 8-armed plutei at 25 d post-fertilisation. Both 

variables were square-root arcsin transformed. 

 

Delayed development was assessed via three variables measured at 25 d post-

fertilisation: the proportion of normal larvae having reached the 8-armed pluteus 

stage, the proportion of 8-armed larvae having a rudiment, and the proportion of 

larvae with a rudiment competent to settle (i.e. having a large, protruding rudiment; 

Table 4.3). All three variables were square-root arcsin transformed. 
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Larval growth was measured as the proportional increase in size between 16 and 25 d 

post-fertilisation. Size was averaged per jar in each treatment and average size per jar 

was calculated only if more than five larvae could be measured per jar for each 

sampling. Variables were: body length (BL), postoral arms (PO), anterolateral arms 

(AL), and posterodorsal arms (PD; Table 4.3). Due to preservation issues, samples 

from only one jar with copper/normal salinity and copper/low salinity in the pulse 

experiment could be measured at 16 and 25 d. Therefore, larval growth was analysed 

only for the chronic exposure. The final larval size was the individual larval size at 25 

d post-fertilisation. Variables were BL, PO, AL, and PD, as well as preoral arms (EO) 

and rudiment size (Table 4.3). All variables, both for larval growth and for final size, 

were log-transformed (x + 1). 

 

In the chronic experiment, the effects of copper (none, high) and salinity (low, 

normal), and their interaction, were evaluated using repeated measures two-way 

ANOVA with copper and salinity as the ‘between’ factors and larval age (16, 21 and 

25 d post-fertilisation) as the ‘within’ factor, for survival and normal development, 

and two-way ANOVA for growth. At the end of the larval stage, no normal larvae 

remained in the high copper/low salinity treatment. Therefore, the remaining three 

treatments (control, low salinity and high copper/normal salinity) were analysed using 

one-way ANOVA for delayed development and a one-way mixed model (with jars as 

the random term) for final size. F-ratios were calculated for type II SS. Follow-up 

one-way ANOVAs and/or Tukey pairwise comparison tests were performed when 

appropriate. 

 

For the pulse experiment, the effect of the three treatments (control, copper/normal 

salinity and copper/low salinity) were analysed using repeated measures one-way 

ANOVA for survival and normal development, one-way ANOVA for delayed 

development and growth, and a one-way mixed model (with jars as the random term) 

for final size. Tukey pairwise comparison tests were performed when appropriate. 
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5.3 RESULTS 

5.3.1 EMBRYO/EARLY PLUTEUS EXPERIMENT 

Normal salinity controls had over 90% normal development. All other treatments, 

including the low salinity/no copper treatment, had 0% normal development. At 72 h 

post-fertilisation, none of the embryos at low salinity had hatched, while at normal 

salinity hatching usually occurs by 20 to 24 h post-fertilisation at 15 - 16° C (pers. 

obs.). In all cases, embryos seemed to be arrested before gastrulation. The egg 

membrane and embryo tissues did not appear damaged and no difference was 

observed between copper treatments. 

5.3.2 LARVAL EXPERIMENT 

5.3.2.1 Larval survival 

In the chronic experiment, larval survival was affected by the presence of copper, 

with 30% and 55% decrease in survival in the copper/normal salinity treatment and 

copper/low salinity treatment, respectively, at 25 d post-fertilisation (Table 5.1, 

Figure 5.1). The effect of copper was significant from 21 d post-fertilisation (one-way 

ANOVA: F(1,10) = 16.39, p = 0.002). Low salinity did not affect larval survival, with 

an average of 39% survival at low salinity (no copper) against 40% in controls at 25 d 

post-fertilisation. 

 
Table 5.1: Repeated measures ANOVA of Evechinus chloroticus larval survival to test effects of 
copper exposure (0 µg/L, 15 µg/L) and salinity (24 ppt, 36 ppt) at 16, 21 and 25 d post-fertilisation 
(Age) during the larval stage. Exposure to both stressors was chronic from 4 to 25 days post-
fertilisation. Significant effects (p < 0.05) are highlighted in bold.  
Source	
  of	
  variation	
   Df	
   SS	
   F	
   p	
  
Salinity	
   1	
   0.01	
   0.52	
   0.49	
  
Copper	
  	
   1	
   0.22	
   16.3	
   0.005	
  
Age	
   2	
   0.49	
   19.3	
   <	
  0.001	
  
Salinity	
  x	
  Copper	
  	
   1	
   0.07	
   5.46	
   0.05	
  
Salinity	
  x	
  Age	
   2	
   <	
  0.01	
   0.05	
   0.95	
  
Copper	
  x	
  Age	
   2	
   0.06	
   2.24	
   0.14	
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In the pulse experiment, larval survival did not significantly vary with larval age or 

treatment (repeated measures ANOVA; Treatment: F(2,4) = 0.62, p = 0.58; Age: F(2,8) 

= 3.25, p = 0.09; Treatment x Age: F(4,8) = 0.32, p = 0.86).  

 

 
 
Figure 5.1: Evechinus chloroticus survival from 4 to 25 d post-fertilisation under different levels of 
copper exposure and salinity. Larvae were exposed 0 µg/L (None) or 15 µg/L (High) copper at low 
salinity (Low, 24 ppt) or normal seawater salinity (36 ppt). Exposure to both stressors was chronic 
from 4 to 25 days post-fertilisation. Error bars represent the standard deviation (N = 3). 
 

5.3.2.2 Larval development 

In the chronic experiment, larval development was strongly influenced by salinity, 

copper and their interaction, as well as by age (Table 5.2a). The significant interaction 

between copper and age was driven by an increase in normal development from days 

21 to 25 without copper, while a decrease occurred with copper (Figure 5.2a). Copper 

and salinity had a significant negative impact on the normal development of larvae 

from 16 d post-fertilisation (Table 5.3). Copper and salinity had a strong interaction 

from 21 d post-fertilisation, with no normal larvae remaining in the copper/low 

salinity treatment compared to 30% normal larvae in the copper/normal salinity 

treatment at 25 d post-fertilisation (Tukey HSD: in all cases p < 0.01, Figure 5.2a). 
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The influence of the low salinity/no copper treatment was not significantly different 

from the normal salinity controls, but the proportion of normal larvae was strongly 

more heterogeneous in the low salinity/no copper treatments (59% ± 21 normal larvae 

± standard deviation) than in the controls (91% ± 3).  

 
Table 5.2: Repeated measures ANOVA of Evechinus chloroticus larval normal development to test 
effects of copper exposure and salinity at 16, 21 and 25 d post-fertilisation (Age) during the larval 
stage. Exposure to both stressors was either chronic (A), from 4 to 25 days post-fertilisation, or pulse 
(B), a single 4-day pulse at 7 days post-fertilisation. In the chronic experiment (A), the two main 
factors were salinity (24 ppt or 36 ppt) and copper (0 µg/L or 15 µg/L). In the Pulse experiment (B), 
treatments were normal salinity control, copper (5 µg/L) at normal salinity, and copper at low salinity. 
Significant effects (p < 0.05) are highlighted in bold.  
Source	
  of	
  variation	
   Df	
   SS	
   F	
   p	
  
(A)	
  Chronic	
  exposure	
  
Salinity	
   1	
   0.91	
   80.7	
   <	
  0.001	
  
Copper	
  	
   1	
   2.10	
   186	
   <	
  0.001	
  
Age	
   2	
   0.47	
   14.8	
   <	
  0.001	
  
Salinity	
  x	
  Copper	
  	
   1	
   0.20	
   17.7	
   0.006	
  
Salinity	
  x	
  Age	
   2	
   0.10	
   3.12	
   0.08	
  
Copper	
  x	
  Age	
   2	
   0.22	
   6.80	
   0.01	
  
(B)	
  Pulse	
  exposure	
   	
   	
   	
   	
  
Treatment	
   2	
   0.25	
   19.7	
   0.008	
  
Age	
   2	
   0.13	
   5.02	
   0.04	
  
Treatment	
  x	
  Age	
   4	
   0.11	
   2.10	
   0.17	
  
 
 
Table 5.3: Follow-up two-way ANOVA of the proportion of normal Evechinus chloroticus larvae, to 
test effects of copper exposure (none, 15 µg/L), salinity (24 ppt, 36 ppt) and their interaction on 
separate age classes (16, 21 and 25 d post-fertilisation). Exposure to both stressors was chronic from 4 
to 25 days post-fertilisation. Significant effects (p < 0.05) are highlighted in bold.  
Larval	
  age	
  (days	
  post-­‐
fertilisation)	
  

Salinity	
  
F	
  (p)	
  

Copper	
  
F	
  (p)	
  

Salinity	
  x	
  Copper	
  
F	
  (p)	
  

16	
  d	
   10.50	
  (0.01)	
   37.45	
  (<	
  0.001)	
   0.08	
  (0.05)	
  
21	
  d	
   40.10	
  (<	
  0.001)	
   49.60	
  (<	
  0.001)	
   20.10	
  (0.002)	
  
25	
  d	
   28.73	
  (0.002)	
   76.84	
  (<	
  0.001)	
   85.30	
  (<	
  0.001)	
  
 

In the pulse experiment, normal larval development was significantly influenced by 

treatment and larval age (Table 5.2b). No difference among treatments occurred until 

25 d post-fertilisation, when the response to the copper/low salinity treatment was 

significantly different from the controls (69% lower), but not from the copper/normal 

salinity treatments (one-way ANOVA: F(2,4) = 14.6, p = 0.01; Figure 5.2b). 
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Figure 5.2: Proportion of normal Evechinus chloroticus larvae from 4 d to 25 d post-fertilisation under 
different levels of copper exposure and salinity. Larvae were exposed to low salinity (Low, 24 ppt) or 
natural seawater salinity (Normal, 36 ppt). Exposure to both stressors was either chronic (A) or a single 
4-day pulse exposure (B). Copper levels are 0 µg/L (None and Control), 15 µg/L (High) in chronic 
exposure (A) and 5 µg/L (Low Cu/Normal salinity and Low Cu/Low salinity) in pulse exposure (B). 
Error bars represent the standard deviation (N = 3). 
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5.3.2.3 Delayed development 

There was evidence of delayed development, with a reduced proportion of 8-armed 

plutei in both the chronic and the pulse experiments (one-way ANOVA; Chronic: 

F(2,5) = 10.1, p = 0.02, Pulse: F(2,4) = 9.12, p = 0.03). In the chronic experiment, only 

the copper/normal salinity treatment induced a significantly different response from 

controls (30% vs. 88% of 8-armed plutei, respectively; Figure 5.3a). Low salinity by 

itself did not significantly affect the proportion of 8-armed plutei (60% vs. 88% in 

controls). In the pulse experiment, the proportion of 8-armed plutei in the copper/low 

salinity treatment (54%) was significantly different from controls but not from the 

copper/normal salinity treatment (77%; Figure 5.3b). 

 

The proportion of plutei with a rudiment was not significantly affected by low 

salinity/no copper or copper/normal salinity in the chronic experiment (one-way 

ANOVA: F(2,5) = 3.33, p = 0.12; Figure 5.3a). In the pulse experiment, the difference 

between treatments (one-way ANOVA: F(2,4) = 9.35, p = 0.03) was driven by 

copper/low salinity (Figure 5.3b). Only 19% of 8-armed plutei had a rudiment in the 

copper/low salinity treatment, compared to 52% in controls and 55% in the 

copper/normal salinity treatment (Tukey HSD: in all cases p < 0.05). 

 

Larvae in the copper/low salinity treatment had mostly recovered from their 

developmental delay after three days in the pulse experiment. At 28 d post-

fertilisation, the proportion of 8-armed plutei was 79% ± 32 in copper/low salinity vs. 

87% ± 7 in normal salinity controls, at 25 d post-fertilisation. Similarly, the 

proportion of larvae with a rudiment was 68% ± 17 in the copper/low salinity 

treatment vs. 60% ± 1 in the normal salinity controls. 
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Figure 5.3: Proportion of 8-armed Evechinus chloroticus larvae with or without rudiment at 25 days 
post-fertilisation when exposed to stressors chronically (A), from day 4 to 25, and a single 4-day pulse 
(B). Treatments in the chronic experiment (A) were: seawater control (36 ppt), high copper at normal 
salinity (15 µg/L) and low salinity/no copper (24 ppt). Treatments in the pulse experiment (B) were: 
seawater control, low copper at normal salinity (5 µg/L) and low copper at low salinity (5 µg/L, 24 ppt). 
Error bars represent the standard deviation of the total proportion of 8-armed larvae (N = 3). 
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5.3.2.4 Larval size 

A delay in development was also evident in the growth of AL and PD, which are 

arms that develop later in larval development. In controls, these arms had completed 

most of their growth before day 16 (Figure 5.4). In experimental treatments, AL and 

PD were little developed by day 16, and growth rate was higher than for controls 

(Table 5.4). For AL, growth was significantly higher in the copper treatment (95% 

higher than controls), while for PD growth was significantly higher in the low salinity 

treatment (92% higher than control). 

 

 
 
Figure 5.4: Anterolateral arm (AL) and posterodorsal arm (PD) growth in Evechinus chloroticus 
larvae between 16 and 25 days post-fertilisation under different regimes of copper exposure and 
salinity. Treatments are: seawater control (36 ppt), high copper at normal salinity (15 µg/L) and low 
salinity/no copper (24 ppt). Exposure to both stressors was chronic from 4 to 25 days post-fertilisation. 
Error bars represent the standard deviation (N = 3). 
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Table 5.4: One-way ANOVA of Evechinus chloroticus growth, to test effects of chronic copper at 
normal salinity (15 µg/L Cu, 36 ppt) and chronic low salinity with no added copper (24 ppt) between 
16 and 25 d post-fertilisation. Growth variables were body length (BL), postoral arms (PO), 
anterolateral arms (AL) and posterodorsal arms (PD). Exposure to both stressors was chronic from 4 to 
25 days post-fertilisation. Significant effects (p < 0.05) are highlighted in bold.  
Variable	
   df	
   SS	
   F	
   p	
  
BL	
   2,	
  4	
   0.01	
   2.19	
   0.23	
  
PO	
   2,	
  4	
   <	
  0.01	
   0.23	
   0.80	
  
AL	
   2,	
  4	
   0.08	
   7.53	
   0.04	
  
PD	
   2,	
  4	
   0.26	
   8.17	
   0.04	
  
 

The final sizes late in development were not significantly different between 

treatments, except with respect to EO, the last pair of arms to develop. At 25 d post-

fertilisation, EO were significantly shorter in the chronic low salinity treatment (150 

µm ± 58 vs. 237 µm ± 67 in controls; mixed effect ANOVA: F(2, 4) = 7, p = 0.04), and 

in the pulse copper/low salinity treatment (135 µm ± 60; mixed effects ANOVA: F(2, 

4) = 10, p = 0.03). 

 

No difference in the size of the rudiment was observed between treatments in both the 

chronic and the pulse exposures at 25 d post-fertilisation. 

5.4 DISCUSSION 

Chronic copper exposure was severely detrimental to larval survival, normal 

development and late pluteus formation. Low salinity by itself had a strong effect on 

embryos when exposure occurred shortly after fertilisation, with a complete inhibition 

of development. By contrast, only a minor delay in arm growth was observed when 

exposure to low salinity occurred later in larval development. A strong synergistic 

effect between low salinity and copper was observed on normal development with 

chronic exposure (and high copper concentration), but not with pulse exposure to low 

copper levels. 

5.4.1 SINGLE STRESSOR: LOW SALINITY  

Low salinity had a far greater effect on early embryo development than for later larval 

development, with no hatching observed when embryos were exposed to 26 ppt 

salinity shortly after fertilisation. This is consistent with the findings of a previous 
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study showing no hatching of E. chloroticus embryos under 27.5 ppt (Antonie 2003). 

Salinity tolerance varies between echinoid species but severe effects on embryonic or 

larval development have been reported from 15 ppt to 32 ppt (Cowart et al. 2008, 

Allen & Pechenik 2010, Russell 2013, Delorme & Sewell 2014). Sea urchin embryos 

might resume development when returned to normal salinity, as observed by Allen & 

Pechenik (2010). However, in their study, approximately 20% of embryos recovered 

after less than 1 h exposure to low salinity. It is unclear whether embryos with their 

development arrested for three days could recover, but mortality would likely be very 

high. Such decreases in salinity are common in the field. In Wellington, salinity as 

low as 12 ppt was measured up to 1 km offshore in surface water (30 cm) in a river 

plume one day following a rain event, and 18 ppt near-shore three days after the rain 

event (Tables A.1 and A.2). The extent and depth of low salinity associated with a 

river plume varies greatly between river systems and seasonally. For example, a river 

plume of 16 to 26 ppt over a depth of 10 m and spreading more than 20 km offshore 

has been recorded for the Columbia River (U.S West Coast) following typical annual 

rain events (McCabe et al. 2008). In a New Zealand fjord, Doubtful Sound, the low 

salinity surface layer (typically 5 - 30 ppt) is permanent, varying from 2 to 8 m deep 

(Stanton 1984, Lamare 1998, Antonie 2003). 

 

The effects of low salinity when encountered later during larval development are far 

less severe. In this study, only a delay in growth of the last two pairs of arms to 

develop (i.e. the posterodorsal and preoral arms) was observed. By the end of the 

experiment, the posterodorsal arms had increased in length and were not significantly 

shorter than controls. The preoral arms were still less than 40% shorter than controls 

at 25 d post-fertilisation, but would likely reach the size of controls within several 

days. It is likely that all pairs of arms were affected by a delay in growth, but arms 

developing earlier in the larval stage had already reached control sizes by the mid 

larval stage, when the first size measurements were made. Shorter arm length may 

impact feeding ability, as feeding rate increases with arm length (Strathmann 1971). 

However, because the size difference was not very large and delayed arms seem to 

grow rapidly, the effect on feeding is probably small.  
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5.4.2 SINGLE STRESSOR: COPPER  

Chronic exposure to 15 µg/L of copper had a negative impact on survival, normal 

development, pluteus formation and, to a lesser extent, arm growth in larvae, but a 

four day pulse exposure to 5 µg/L Cu had no direct impact on larval performance. 

This is consistent with my previous experiments on E. chloroticus (Chapter 3 and 4). 

No direct effect was observed on larvae exposed to 6 µg/L Cu during a 2-day pulse 

exposure, but a developmental delay was observed in larvae exposed to 10 µg/L Cu 

for two days (Figure B.1). Similarly, effects on development was observed in larvae 

exposed to 10 µg/L both chronically and for a 4-day pulse (Figure 4.2). This confirms 

that pulse exposure to copper concentrations below 10 µg/L produces no immediate 

impact on larval development, although latent effects may occur on later life stages.  

5.4.3 MULTIPLE STRESSORS 

Low salinity increased copper toxicity dramatically in E. chloroticus larvae under a 

chronic exposure scenario. There was no success in larval development when both 

stressors were present, compared with more than 50% larvae reaching normal 

development (including a rudiment) by 25 d post-fertilisation with copper at normal 

salinity and 27% with no added copper at low salinity. The influence of low salinity 

on copper bioavailability is well known. The high concentration of cations, such as 

sodium, in seawater competes with the toxic free copper ion (Cu2+) for binding sites 

in marine organisms, thus reducing copper accumulation and toxicity (Santore et al. 

2001). Most studies on copper and salinity have shown an increase in copper toxicity 

under hyposaline conditions (McLusky et al. 1986, Patel & Bielmyer-Fraser 2015). 

On the other hand, in some marine species, copper toxicity was independent of 

salinity (Nadella et al. 2009, Lee et al. 2010). However, all these studies used chronic 

exposure to both stressors. The present study shows little evidence of an interaction 

between copper and salinity under realistic field conditions (i.e. low copper 

concentration and 4-d pulse exposure). The proportion of normal larvae and fully 

developed larvae was slightly lower in the presence of copper at low salinity, 

resulting in a significant difference compared to controls. However, the difference 

between exposure to copper at low salinity and copper at normal salinity was never 

large enough to be significant, except with respect to rudiment formation. The 



Chapter 5: Multiple stressors: The effect of low salinity on copper toxicity in Evechinus chloroticus early life stages 

     127 

proportion of larvae having a rudiment was 80% lower when they were exposed to 

copper at low salinity compared to normal salinity, but this delay was offset in less 

than three days. This highlights the importance of using realistic levels and durations 

of stressors in laboratory assays to evaluate the possible consequences of these 

stressors in field populations.  

5.4.4 CONSEQUENCES FOR FIELD POPULATIONS 

Although low salinity had strong deleterious effects on E. chloroticus embryos, 

effects on larvae were relatively small, and it is larvae that are more likely to 

encounter freshwater discharge as they spend more time in the surface layer for 

feeding. Low salinity increased copper toxicity under chronic exposure but not under 

pulse exposure, which is more likely in the field. Therefore, it appears that combined 

exposure to these two stressors would not likely have major impacts on sea urchin 

larvae in the field. It should be noted, however, that exposure to low salinity and 

copper may have latent effects not detectable in this study. Indeed, my previous 

experiments have shown that stressors encountered during E. chloroticus larval 

development may have further and more dramatic impacts on settlement success and 

settler performance than on larval development itself (Chapter 3 and 4). It is crucial to 

evaluate the potential for latent impacts of combined copper and salinity stressors in 

order to more fully understand the effect of copper in contaminated runoff on sea 

urchin populations.  

 

If a synergistic relationship between copper and low salinity occurs under field 

conditions, it may be mitigated by the ability of sea urchin larvae to avoid freshwater 

exposure by adjusting their position in the water column (Metaxas & Young 1998, 

Sameoto & Metaxas 2008). The absence of E. chloroticus larvae in the low salinity 

layer in Fjordland, New Zealand, suggests that this avoidance behaviour may also be 

effective in the field, at least when the low salinity layer is maintained over long 

periods due to lack of mixing (Lamare 1998, Antonie 2003). Such behaviour would 

be highly beneficial to larvae, as it would also reduce the risk of exposure to copper 

and other contaminants associated with freshwater discharges, especially in low-

dynamism systems, where residence-time of contaminants is likely to be higher. 
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Furthermore, freshwater runoff is also generally characterised by elevated levels of 

dissolved organic carbon (DOC). DOC has been shown to reduce copper toxicity by 

binding with copper free ions, thus reducing their bioavailability (Nadella et al. 2009, 

Monteiro et al. 2013). These findings highlight the complexity of urban runoff and 

how the various components may affect marine populations in the field. 
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CHAPTER 6                                     
Copper burden in gonads and 
fertilisation success in the sea 
urchin Evechinus chloroticus 

ABSTRACT 
The environmental conditions in which parents live may affect their gamete quality 

and offspring success. Copper is a highly prevalent pollutant in coastal systems and is 

well known to affect sperm quality in marine organisms. However, the effect of 

copper in gonadal tissue on fertilisation success in sea urchins is poorly known. Here 

I measured the accumulation of copper in gonads of the sea urchin Evechinus 

chloroticus after two weeks of exposure to 50 µg/L Cu in the laboratory and then 

evaluate the fertilisation success of exposed males. Fertilisation occurred in clean 

seawater or in copper-polluted seawater (15 µg/L), to investigate whether copper 

contamination in the gonads affects gamete tolerance to copper in the water during 

fertilisation. I also compared the copper burden of experimentally contaminated 

animals to natural populations from a moderately polluted and a control site. Copper-

exposed adults had a copper burden in gonads 25-times higher than in control animals. 

Strong sublethal effects were observed in adults, with a near total impairment of 

feeding, low adherence to substrate and low spawning success. Despite an extremely 

elevated copper burden, the fertilisation success of exposed males was not affected. 

There was also no evidence of copper toxicity on gametes that were directly exposed 

to 15 µg/L, whether they were from contaminated males or not. Fertilisation 

experiments were performed at high sperm density, which may have masked a 
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potential toxic effect of copper. Copper burden in animals from the urban site was 

35% higher than in the control site but was well below laboratory-exposed animals. 

These results show that E. chloroticus is sensitive to copper as an adult, readily 

accumulates copper in its gonads, and is a suitable indicator of copper pollution. 

Elevated copper burden may have a strong impact on spawning success, especially 

for females, but may not impair fertilisation success, at least for males living in dense 

populations.  

6.1 INTRODUCTION 

Environmental stressors, such as pollutants, may impair reproductive success of 

adults by decreasing the quality and/or quantity of their gametes, leading to a 

decrease in fertilisation success and/or offspring viability. In recent years, several 

studies have highlighted the importance of parental effects on gamete quality and 

offspring success (Marshall & Keough 2004, Marshall 2008, Burgess & Marshall 

2011, Lister et al. 2015). Parental effects are not necessarily negative; in fact, parental 

exposure to a stressor may increase the resistance of their offspring to the same 

stressor (Marshall & Uller 2007, Suckling et al. 2014). Furthermore, in broadcast 

spawning species, the environment in which gametes are released can impair 

fertilisation success and have a carry-over effect on larval performance (Allen & 

Pechenik 2010, Ritchie & Marshall 2013).  

 

Metals are known to impair gamete quality and fertilisation success in many marine 

organisms, including sea urchins. Sperm bioassays that have been used for decades 

demonstrate that sperm is highly sensitive to a variety of toxicants, with results on 

fertilisation success usually visible in minutes (Dinnel et al. 1987, 1989, Ringwood 

1992). Copper is a major pollutant in many industrial countries and is considered as a 

priority pollutant by environmental authorities due to its high toxicity to aquatic life 

(ANZECC 2000, US EPA 2014). The exposure of gametes to copper affects 

reproduction success in sea urchins by impairing sperm motility (Hollows et al. 2007, 

Fitzpatrick et al. 2008). However, these studies assessed reproductive impairment via 

direct exposure of gametes rather than parental exposure. A decrease in gamete 
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quality or fertilisation success following adult exposure to metals has been 

documented in sea urchins for cadmium (Au et al. 2001) and lead (Nacci et al. 2000), 

but has not been examined for copper. Durkina & Evtushenko (1991) reported that 

adult exposure to copper increased the developmental rate of larvae, but they did not 

evaluate the effects on fertilisation success.  

 

The gonads of sea urchins readily accumulate copper. Indeed sea urchins are often 

used as an indicator species, with metal burden in gonads reflecting the short-term 

fluctuation in pollution, while metal burden in hard tissues reflects long-term 

pollution (Flammang et al. 1997, Soualili et al. 2008, Salvo et al. 2014). The 

relationship between copper accumulation in gonads and fertilisation impairment is, 

however, still unknown (Au et al. 2001). 

 

In this study, I evaluated whether acute exposure to high copper concentration leads 

to an increase in copper burden in gonads within a short time frame (two weeks), and 

I quantified the fertilisation success of exposed animals. Gametes were also subjected 

to direct exposure to a moderately elevated level of copper in the water during 

fertilisation, to investigate whether parental exposure affects gametes’ tolerance to 

copper. Finally, I compared copper burden in gonads between natural populations and 

animals exposed in the laboratory, to evaluate whether populations from a moderately 

polluted urban site might be at risk of reproductive impairment.  

6.2 METHODS 

6.2.1 COPPER BURDEN IN GONADS 

6.2.1.1 Laboratory experiment 

Adult E. chloroticus were collected at the beginning of the spawning season (October 

2013) from Kau Bay (41.2882° S, 174.8326° E), Wellington. Half of this group (KB1, 

N = 16) was kept for three weeks in the laboratory in a recirculating system in clean 

filtered seawater (0.2 µm, FSW). The other half (LAB, N = 16) was kept in similar 

conditions, but in clean seawater for a period of acclimation of one week and then in 
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copper-contaminated FSW (50 µg/L) for two weeks. The recirculating system 

consisted of two 200 L high-density polyethylene containers from which seawater 

was pumped into 20 L tanks (eight adults per tanks). Flow rate was 6 L/min. Tanks 

were cleaned and the water was fully renewed every two days. Adult E. chloroticus 

were fed twice a week with native kelp (Macrocystis pyrifera). During the second 

week of exposure, kelp wet weight was recorded at each feeding, to evaluate the 

quantity of food consumed per tank. Temperature, pH and dissolved oxygen were 

recorded twice a week to ensure homogeneity of these parameters across tanks.  

6.2.1.2 Field populations 

Adult E. chloroticus were collected at the end of the spawning season (late March 

2014) from Kau Bay (KB2, N = 11), a site far from major effluents and 

contamination sources, and from Frank Kitts Park (FK, N = 9), an inner harbour site 

receiving urban runoff. Sites were chosen based on a pilot study that compared 

copper burden in gonads from seven populations across Wellington Harbour 

(Appendix D). Animals were kept in the same recirculating system described above, 

with clean FSW to acclimate for three weeks before gonads were sampled. 

6.2.1.3 Metal analysis 

After spawning, all animals were measured (test diameter), and the gonads were 

dissected out and weighed (wet weight). To reduce the risk of metal contamination 

during the drying process, wet samples were used in all spectrometry work. A 

subsample of gonad tissues was taken for analysis of copper content, while the 

remaining tissues were dried at 60oC to determine the moisture content. In this study, 

copper burden in tissues is reported as µg/g of wet weight, but the average moisture 

content is provided for conversion to dry weight if necessary, for comparison with 

other species. Wet subsamples were digested in nitric acid and analysed by graphite-

furnace atomic absorption spectrometry following the U.S. EPA standard protocol 

(Creed & Martin 1997). Accuracy was checked by analysing two duplicate samples 

that had been fortified using a certified copper stock solution (Merck Millipore). 

Recovery was within 13% for each sample run.  
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6.2.2 FERTILISATION SUCCESS 

Animals from KB1 (control) and LAB (copper exposed) were induced to spawn in 

the laboratory, to obtain gametes from three males and three females in each group. 

The spawning protocol is described in Chapter 2.2.1. However, in the copper-exposed 

group, only one female of seven and three males of eight successfully spawned. 

Therefore, only exposed males were used in fertilisation assays. The three control 

females were paired either with the three control males (pair CC1, CC2 and CC3) or 

with the three exposed males (pair EC1, EC2 and EC3). Therefore, the pairs with the 

same number shared the same female (e.g. CC1 and EC1). Gametes from each pair 

were placed in six 10 ml glass vials: three replicate controls vials containing FSW and 

three replicate copper vials containing 15 µg/L of copper (reagent grade copper 

sulphate CuSO4.5H2O). Eggs and sperm were left in contact for 1 h before being 

preserved in 40% ethanol. Egg density was 100 eggs/ml and sperm density (measured 

with a heamocytometer) was 105 per ml. Sperm density was chosen based on a pilot 

study evaluating the effects of copper exposure on fertilisation success at different 

sperm densities. Fertilisation success was evaluated by observing 100 eggs per vial 

for signs of a fertilisation membrane under 200x magnification. Strongly non-

spherical or otherwise damaged eggs were recorded as abnormal. 

6.2.3 STATISTICS 

All data analyses were conducted using the software R (version 3.1) with package 

multcomp (Hothorn et al. 2008) for pairwise comparisons and package nlme 

(Pinheiro et al. 2015) for mixed effects models.  

6.2.3.1 Copper burden in gonads 

Copper burden in gonads was analysed separately for animals used in the laboratory 

experiment (LAB and KB1) and for animals from field populations (KB2 and FK) 

and control animals used in the laboratory experiment (KB1). The effect of sex, body 

size (test diameter), total gonad wet weight, and whether animals had released 

gametes before dissection were evaluated by selecting the best model using a 

stepwise regression based on AIC criterion. Best models were then analysed using 
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ANOVAs or ANCOVAs when covariates were included. Interactions are presented 

only when selected in the best model. F-ratios were calculated from Type II SS. Post 

hoc comparisons were performed using a Tukey test (p < 0.05) when the field 

population factor was significant.  

6.2.3.2 Fertilisation success 

The effects on fertilisation success of both adult contamination and gamete exposure 

to copper in the water were analysed using a nested mixed effects model, with adult 

exposure and gamete exposure as fixed factors, and gamete exposure being nested in 

adult pair (random factor).  

6.3 RESULTS 

6.3.1 LABORATORY EXPERIMENT 

6.3.1.1 Copper burden in gonads 

The copper burden was significantly affected by copper exposure, sex and total gonad 

weight; multiple R2 was 69% (Table 6.1a). Exposed adults (LAB) had a copper 

burden in their gonads that was 25-fold higher than in control animals (KB1; Figure 

6.1a). The interaction between treatment and sex, and between treatment and gonad 

weight were due to the fact that sex and gonad weight were a significant source of 

variation only in the LAB group (two-way ANOVA; Sex: F(1, 11) = 7.31, p = 0.02; 

Gonad: F(1, 11) = 18.95, p = 0.001). In the LAB group, the copper burden was 51% 

higher in males than in females (Figure 6.1a). Sea urchins with larger gonads had, on 

average, a lower copper burden than individuals with smaller gonads in the LAB 

group (Figure 6.2). 
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Table 6.1: Effect of Evechinus chloroticus copper treatment (A) or source populations (B) and 
individual characteristics on copper burden in gonads, analysed using ANCOVA (A) or ANOVA (B). 
Individual characteristics are sex, total gonad weight and whether the animal had spawned before 
dissection. Animals were from natural populations (B) or were exposed to 50 µg/L of copper for two 
weeks in the laboratory (A). Copper burden was log-transformed to meet ANCOVA assumptions. 
Significant effects (p < 0.05) are highlighted in bold. F-ratios are calculated from Type II SS. 
Source	
  of	
  variation	
   Df	
   SS	
   F	
   P	
  
(A)	
  Laboratory	
  experiment	
  
Treatment	
   1,	
  24	
   24.2	
   383	
   <0.001	
  
Sex	
   1,	
  24	
   0.61	
   9.69	
   0.005	
  
Gonad	
  wt	
   1,	
  24	
   0.36	
   5.65	
   0.03	
  
Treatment	
  x	
  Sex	
   1,	
  24	
   0.31	
   4.81	
   0.04	
  
Treatment	
  x	
  Gonad	
  wt	
   1,	
  24	
   1.96	
   31.0	
   <0.001	
  
(B)	
  Field	
  populations	
   	
   	
   	
   	
  
Population	
   2,	
  30	
   0.55	
   21.2	
   <0.001	
  
Sex	
   1,	
  30	
   0.03	
   1.92	
   0.18	
  
Spawned	
   1,	
  30	
   0.02	
   1.80	
   0.19	
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Figure 6.1: Copper accumulation in gonads (µg/g wet weight) of the sea urchin Evechinus chloroticus. 
Animals were from: Frank Kitts Lagoon (FK), a polluted inner city lagoon; a control site far from 
effluents and major contamination sources (Kau Bay, KB1 and KB2); and animals from Kau Bay held 
in 50 µg/L of copper for two weeks in the laboratory (LAB). Sea urchins were collected at the 
beginning of the spawning season (KB1 and LAB) and at the end of the spawning season (KB2 and 
FK). Error bars represent the standard deviation (N = 4 to 8). Black circles (females) and triangles 
(males) represent individuals that successfully spawned and text labels mark the parents used in the 
fertilisation experiment (e.g. F1 and M1 = pair CC1, F2 and MB = pair EC2; Figure 6.3). Lower case 
letters (B) show groupings based on pairwise comparisons (Tukey test, p < 0.05). 
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Figure 6.2: Copper burden in Evechinus chloroticus gonads vs. total gonad weight (wet weight), after 
two weeks of exposure to 50 µg/L (LAB group). Blue triangles represent males; orange circles 
represent females. Scale and regression equation is on log-transformed data. 
 

6.3.1.2 Sublethal effects on adults  
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of the experiment, as they were not the focus of this study. However, a sharp decline 

in feeding was noted after five days, and dramatic effects on behaviour were observed 

after one week, including spine closure and very weak attachment to the substrate. 
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almost nil in tanks with copper (Table 6.2). After two weeks in copper-contaminated 

water, spine loss started to occur with an almost total lack of movement; the 
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Table 6.2: Feeding of Evechinus chloroticus during the last nine days of exposure (total exposure time 
was 15 days) to 50 µg/L of copper. The food offered was the blades, with stipes removed, of the kelp 
Macrocystis pyrifera. 

	
   Time	
  interval	
  (day)	
   Treatment	
  
Food	
  consumed	
  (g	
  

wet	
  weight)	
  
Feeding	
  1	
   5	
   Control	
   67	
  
	
   	
   Copper	
   9.5	
  
Feeding	
  2	
   2	
   Control	
   76	
  
	
   	
   Copper	
   1	
  
Feeding	
  3	
   2	
   Control	
   89	
  
	
   	
   Copper	
   5.5	
  
 

Spawning success was also significantly impaired in the copper exposed group 

compared with the control group (Pearson Chi-square test: Chi2 = 13.61, df = 1, p < 

0.001). Only 4 of 15 copper-exposed animals (1 of 7 females and 3 of 8 males) 

successfully released gametes following injection with potassium chloride (KCl). In 

contrast, 14 of 16 animals (8 of 9 females and 5 of 7 males) induced to spawn 

successfully released gametes in the control group. Only animals with a relatively low 

copper burden in their gonads successfully spawned. Spawning males in the LAB 

group had 2.5 times less copper in their gonads than the average exposed males, while 

the only female that spawned contained 4.5 times less copper than the average 

exposed female (Figure 6.1a and b). KCl induces muscular spasms in healthy animals 

leading to spawning and rapid spine movement. Little or no spine movement was 

observed in copper-exposed animals after injection with 3 ml of 0.5 M KCl.  

6.3.1.3 Fertilisation success 

Fertilisation success was not affected by male copper contamination or gamete 

exposure to copper in the water (mixed model ANOVA; Male treatment: F(1, 4) < 0.01, 

p = 0.95; Gamete treatment: F(1, 27) = 0.43, p = 0.52; Interaction term: F(1, 27) = 0.21, p 

= 0.65). The average fertilisation success of exposed males in clean seawater was 

74% compared with 75% in control males (Figure 6.3). There was no evidence of 

copper toxicity in gametes, with an average of 72% fertilisation success when 

gametes where exposed to copper. Only five eggs from a total of 6575 eggs observed 

were recorded as abnormal, so no statistics were performed on this variable. 
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Figure 6.3: Fertilisation success of Evechinus chloroticus pairs after 1 h. In CC pairs, both parents are 
controls; in EC pairs, females are controls and males have been exposed to 50 µg/L copper (LAB 
group) for two weeks prior to spawning. Pairs with the same number share the same female (e.g. F1 
was used in pairs CC1 and EC1). Gametes from each pair have been fertilised either in clean seawater 
(control) or in seawater contaminated with 15 µg/L copper (copper). Error bars represent the standard 
deviation (N = 3). 
 

6.3.2 FIELD POPULATIONS 

In field populations, copper burden varied significantly among populations (Table 

6.1b). The best model also included sex and whether animals had spawned before 
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6.4 DISCUSSION 

6.4.1 COPPER BURDEN IN GONADS 

Copper exposure in the laboratory produced a 25-fold increase in copper burden in 

gonads after two weeks. This confirms that gonads can accumulate copper in a short 

period of time. As such E. chloroticus gonads may be a suitable indicator of short-

term pollution. Multiple studies have demonstrated that metal burden in sea urchin 

tissues is strongly related with metal pollution. Soft tissues, such as the gonads, are 

indicators of short-term contamination while calcareous tissues reflect longer term 

contamination (Flammang et al. 1997, Soualili et al. 2008, Catarino et al. 2008, Salvo 

et al. 2014).  

 

In this study, copper burden was consistently higher in males. No previous study has 

reported copper accumulation by sex in sea urchins. In the starfish Asterias rubens, 

males had a higher copper burden in gonads than females (Catarino et al. 2008). 

Interestingly, this was not the case for the other metals tested in that study; cadmium, 

lead and zinc burdens were all higher in females. This demonstrates the need to take 

sex into account when monitoring echinoderms, as a sampling bias toward males or 

females would skew the results. 

 

In laboratory-exposed animals, copper burden was higher in individuals with small 

gonads than in those with large gonads. Because of the short duration of the 

laboratory exposure, the equilibrium between copper intake and excretion was 

probably not reached, so copper in larger gonads was more ‘diluted’ than in small 

gonads. Because gonad and body size are positively correlated, sampling smaller 

individuals would be more appropriate to detect short-term variation in metal 

pollution. 

6.4.2 SUBLETHAL EFFECT ON ADULTS 

Adult individuals of E. chloroticus were severely affected by exposure to 50 µg/L Cu. 

This level of copper corresponds to a highly polluted harbour (Table 1.1). A dramatic 

decrease in feeding and a lower adherence to the substrate were observed from five 
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days of exposure in all individuals. Furthermore, only those individuals with less 

accumulation of copper in their gonads were able to successfully spawn. A total 

reproductive failure occurred in 60% of the males and 85% of the females after two 

weeks of exposure. While a formal EC50 could not be derived from this experiment, 

sublethal effects would likely be observable from 96 h exposure to 50 µg/L Cu, 

especially if more sensitive behavioural end points, such as their position in the tank, 

were used. Copper contaminated animals tend to position themselves at the bottom of 

the tank while healthy animals are often positioned on the sides of the tank (Bielmyer 

et al. 2005). By comparison, an early study showed no effect of copper at 

concentrations of less than 300 µg/L on adult Echinometra mathaei  (Heslinga 1976). 

A more recent study, however, reported sublethal effects at 10 µg/L, on Diadema 

antillarum (Bielmyer et al. 2005). Very few studies report copper toxicity on adult 

sea urchins, as they are generally considered to be more tolerant than the early life 

stages. My results suggest that adult E. chloroticus have the same level of sensitivity 

to copper as the larval stage of some of the more tolerant species, such as 

Parocentrotus lividus (Table 2.6). 

6.4.3 FERTILISATION SUCCESS 

Despite the high accumulation of copper in the gonads and poor condition of animals 

exposed in the laboratory, the fertilisation success of the exposed males was not 

affected. This is consistent with a study conducted in a highly polluted fjord in 

Norway, where no deleterious effect on gamete quality and fertilisation success in the 

sea urchin Echinus acutus and the sea star Asterias rubens was observed, despite a 

moderately elevated metal burden (Catarino et al. 2008). On the other hand, a 

relationship between paternal exposure to copper and sperm quality has been well 

established in various invertebrates, including polychaetes and mussels (Earnshaw et 

al. 1986, Watson et al. 2013). In these studies, egg quality was also negatively 

affected by maternal exposure to copper, although to a lesser extent. In the present 

study, adults were exposed for only two weeks, which might have been too short to 

affect sperm, as gametogenesis in the sea urchin spans several months (Walker et al. 

2006). Alternatively, sperm may have been affected in ways not detectable by the 

current study, such as DNA damage. In this case, fertilisation may occur normally but 
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embryos may fail to develop. Longer-term experiments would be needed to evaluate 

these hypotheses. 

 

There was no evidence of toxicity of low seawater copper concentration on spawned 

gametes. Therefore I could not assess whether sperm from exposed males differ in 

their resistance to copper relative to unexposed males. Toxic effects of copper on 

sperm in the water have been well established in other echinoid species, with 

fertilisation impairment occurring at concentrations ranging from 2 to 50 µg/L 

(Dinnel et al. 1989, Ringwood 1992, Novelli et al. 2003). It should be noted that 

sperm might have had motility impairment not detectable in this experiment. Indeed, 

a pilot study showed a trend of decreasing fertilisation success with copper exposure 

at a lower sperm density (104 per ml). However, this concentration also yielded a very 

low fertilisation success in controls (< 25%), and consequently a sperm concentration 

of 105 per ml was used in the present experiment. Previous studies have demonstrated 

the importance of using a range of sperm concentrations to detect metal toxicity in 

gametes, as the toxic effect of copper in particular may be masked at high sperm 

densities (Marshall 2006, Hollows et al. 2007). This experiment should be repeated at 

a slightly lower sperm concentration, to evaluate the potential effects on low-density 

populations. 

6.4.4 FIELD POPULATIONS 

Individuals of E. chloroticus from the urban site of Frank Kitts Park had a higher 

accumulation of copper in their gonads than did animals from the control site 

collected at the same time of year. Frank Kitts Park receives urban runoff from two 

stormwater outlets. Sediments at this site were found to be moderately contaminated 

with copper in 1998 - 1999 (Bolton-Ritchie 2003). More recently, the blue mussel 

Mytilus galloprovincialis from this site had an elevated copper burden compared with 

those from the outer harbour (Milne 2006). The average copper burden in blue 

mussels was 1.7 µg/g (wet weight) in Frank Kitts Park, which is similar to the copper 

burden in E. chloroticus found in the present study. Despite being elevated, the 

copper burden in sea urchins from Frank Kitts Park remains 14-fold lower than in 
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animals experimentally exposed to high copper concentrations. The present study 

suggests that copper pollution is present at the urban site, but is moderate. 

6.4.5 CONCLUSION 

E. chloroticus readily accumulates copper in gonads and is suitable as an indicator of 

copper pollution. Severe chronic copper pollution would likely affect adults and 

reduce reproductive success by impairing spawning. However, there was no evidence 

of fertilisation impairment in the presence of highly elevated copper burden in males 

or in the presence of moderate concentrations of copper in the water during 

fertilisation. Further work needs to be done regarding the fertilisation success of 

copper-exposed females to confirm whether copper is detrimental to fertilisation 

success. In addition, the present study did not investigate latent toxic effects; 

fertilised eggs may fail to develop into normal embryos and larvae. In echinoderms, 

only one study has examined the long-term effects of copper exposure in adults on 

larval performance, in the sea urchin Strongylocentrotus nudus (Durkina & 

Evtushenko 1991). While the authors reported no adverse effects, though a slight 

increase in developmental rate, further work would be needed to confirm this pattern 

in other species.  
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CHAPTER 7                                    
General Discussion 

Pollution is one of the most important anthropogenic disturbances in coastal waters 

and is globally increasing worldwide. While extensive ecotoxicity studies have been 

carried out on copper and other metals (Fernández & Beiras 2001, Doyle et al. 2003, 

Bielmyer et al. 2005), the ecologically relevant effects of metal pollution are still 

poorly understood (Mayer-Pinto et al. 2010). Indeed, most toxicity studies use 

unrealistic exposure times or concentrations, single life stages and/or single pollutants. 

In this thesis, the effects of copper were investigated for the sea urchin Evechinus 

chloroticus across multiple life stages using laboratory experiments with realistic 

exposure scenarios. A special emphasis was given to early life stages, carry-over 

and/or latent effects across the larval and juvenile development. In addition, the effect 

of multiple pollutants, multiple stressors (metal and low salinity) and trophic 

interactions were evaluated. 

7.1 MULTIPLE LIFE-STAGES 

7.1.1 VULNERABILITY OF E. CHLOROTICUS THROUGHOUT ITS 
LIFE CYCLE 

E. chloroticus is highly sensitive to copper throughout most of it’s life cycle. When 

only direct effects (i.e. effects visible during the same life stage as exposure) and 

waterborne exposure are taken into account, the lowest observable effect 

concentrations (LOEC) showed a decreasing order of vulnerability as follows: 

embryo > young juveniles > larvae > adults <?> gametes (Table 7.1). Therefore, 
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punctuated pollution events such as runoff are likely to affect, to some extent, all 

cohorts that occur in locations where these events are common, such as near river 

mouths or in harbours. Toxicity assays on short-lived arthropods have demonstrated 

the importance of using the full-life cycle to characterise pollutant effects. For 

example, the grass shrimp Palaemonetes pugio exposed to copper suffered no 

observable effects throughout their life cycle but failed to produce viable offspring 

(Manyin & Rowe 2010). While full life cycle assays are not practical with long-lived 

organism such as most large benthic invertebrates, effort should be made to 

investigate the toxicity of a compound on each parts of the life cycle. While early life 

stages are commonly more sensitive than later stage, it does not follow that pollution 

may not significantly affect later stages. Testing of each life stages has been proposed 

for mollusks but has rarely been implemented (but see Matthiessen 2008, Kimberly & 

Salice 2013). In echinoderms, gametes, embryos and larvae are commonly used in 

toxicity assays but juveniles and adults rarely are (Kobayashi 1980, Bay et al. 1993, 

King & Riddle 2001, Bielmyer et al. 2005). The present study offers a measure of 

copper toxicity for all E. chloroticus’ life stages.  

 
Table 7.1: Comparative toxicity of copper in Evechinus chloroticus life stages. Copper toxicity values 
are based on the lowest dissolved copper concentration (LOEC) producing direct effects, i.e. effects 
observable during the same life stage as copper exposure. nd = non determined 

Life	
  stage	
   LOEC	
  (µg/L)	
  
Duration	
  of	
  
exposure	
   Chapter	
  

Embryo/early	
  
pluteus	
   2.1	
  a	
   72	
  h	
   2	
  

Juvenile	
   10.4	
   2	
  days	
   3	
  

Larva	
  b	
   10.4	
   4	
  days	
   4	
  

Adult	
   50	
   2	
  weeks	
   6	
  

Gamete	
  	
   nd	
  (>	
  15)	
   1	
  h	
   6	
  
a based on EC10 values 
b larvae older than 72 h (4- to 8-armed pluteus stage) 
 

7.1.1.1 Embryo/early pluteus 

The embryo/early pluteus stage (i.e. the first 72 h post-fertilisation) was the most 

vulnerable part of the life cycle, with a LOEC of 2.1 µg/L (Table 7.1). The early 

pluteus formation has been shown to be more sensitive than fertilisation or gastrula 
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development in many species, thus the early pluteus stage is a common endpoint in 

toxicity assays (Kobayashi 1980, King & Riddle 2001, ASTM 2012).  

7.1.1.2 Juvenile 

Surprisingly, juveniles E. chloroticus were more sensitive to copper than larvae 

(Table 7.1). A short pulse of 10 µg/L Cu to naive juveniles impaired radial growth, 

while no direct effect of copper on larval size or survival was observed (Chapter 3). 

To the best of my knowledge, copper toxicity on juvenile sea urchins has never been 

assessed before. The early days immediately following settlement are arguably the 

lesser known, due to difficulties in finding highly cryptic, small individuals in the 

field and the time necessary to raise them from larvae in the laboratory. Juvenile 

urchins are usually assumed to be less sensitive than larvae, as younger organisms 

tend to be (but not always) more vulnerable than older ones (King & Riddle 2001, 

Jezierska et al. 2009, Aronzon et al. 2011, Kimberly & Salice 2013). The present 

study demonstrates that juvenile sea urchins may be highly sensitive to environmental 

disturbances and further work on this cryptic life-stage is warranted.  

7.1.1.3 Larvae 

Copper toxicity on larvae was assessed during three different experiments and 

therefore data on this life stage is more robust than on all other life stages investigated 

during this research. In all experiments, a pulse exposure under 10 µg/L Cu did not 

produce any direct effects (Chapters 3, 4 and 5). Exposure to 10 µg/L for 4 days 

produced moderate toxic effects (Chapter 4) and exposure to 15 µg/L during all the 

larval stage produce severe toxic effects (Chapter 5). Very few studies used 

echinoderms larval stage passed the early pluteus formation. In the sea urchin 

Heliocidaris erythrogramma, competent larvae exposed to 20 µg/L Cu produced a 

low rate of normal juveniles (40%) and 4-armed plutei of the sand dollar Peronella 

japonica exposed to 50 µg/L Cu produced abnormal juveniles (Kobayashi 1980). The 

duration of exposure in each case was not specified.   
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7.1.1.4 Adult 

Adult individuals of E. chloroticus were severely affected by a 2-week exposure to 50 

µg/L Cu. However, only one copper concentration was tested and most sublethal 

effects were not quantified. Therefore the actual LOEC is likely to be much lower 

than the one reported in Table 7.1. Only two other studies reported copper toxicity on 

adult sea urchins: Cu LOEC with Echinometra mathaei and Diadema antillarum was 

300 and 10 µg/L, respectively, showing considerable variation between species 

(Heslinga 1976, Bielmyer et al. 2005). Bielmyer’s results and mine demonstrate that 

adult sensitivity to copper may be in the same order as embryo or larval sensitivity, at 

least in some species (Table 2.6). 

7.1.1.5 Gametes  

It is not possible to determine whether gametes are more or less sensitive to copper 

than adults as the only concentration tested on gametes (15 µg/L) produced no effect 

but was lower than the concentration used on adults (50 µg/L; Table 7.1). Toxic 

effects of copper in the water on sperm have been well established in other echinoid 

species, with fertilisation impairment occurring at concentrations ranging from 2 to 

50 µg/L (Dinnel et al. 1989, Ringwood 1992, Novelli et al. 2003). Contrary to the 

literature, gamete assays in the present study were less sensitive than larval assays 

(Kobayashi 1980, Dinnel et al. 1989, Novelli et al. 2003). The observed difference 

might be due to species-specific response but it should also be noted that sperm might 

have had motility impairment and or DNA damage not detectable in Chapter 6. In 

addition, toxic effects might have been masked by the sperm concentration used (105 

per ml; Marshall 2006, Hollows et al. 2007). 

7.1.2 CARRY-OVER AND LATENT EFFECTS 

Carry-over and latent effects have strong ecological relevance especially for species 

with a high reproductive output. Lethal effects on larvae may have little implications 

for populations, due to the large number of larvae produced. Investigating the fate of 

the survivors, however, would give a better understanding of the implication of 

pollution for marine populations. 
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Exposure to a stressor during larval development may produce weaker juveniles 

displaying negative latent effects such as growth impairment. Alternatively, latent 

effects may be beneficial due to selective mortality in favour of larger, faster growing 

or generally fitter individuals. For example in Chapter 3, copper exposure during 

larval development led to larger settlers immediately after settlement. However, few 

positive carry-over or latent effects have been reported for metal stressors in aquatic 

invertebrates (Table 7.2). In the present study, latent effects mostly negative. Indeed, 

in Chapter 3, the slight positive effect in size at settlement is unlikely to compensate 

for the negative effect on growth one month after settlement. And in Chapter 4, a 

positive effect on size post-settlement follows a strong impairment in settlement 

success. Few studies evaluated the latent effects of pollutants. However, the majority 

of these studies reported negative latent effects such as lower growth, lower survival 

and/or lower reproduction success (Table 7.2). This research adds to the growing 

body of evidence that exposure to metal pollution during larval development produce 

a weakened surviving cohort in aquatic invertebrates.  
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Table 7.2: Latent effects of pollutants in aquatic invertebrates. ns: no significant difference from 
controls, +: increase from controls, -: decrease from controls, ?: not measured, PS: post-settlement. 

Species	
  

Metal	
  
(concentration,	
  
duration	
  of	
  
exposure)	
   End	
  point	
  

Effect	
  
observed	
  (%	
  
lower/higher	
  
than	
  control	
  
if	
  provided)	
   Reference	
  

Sea	
  urchin	
  
(Evechinus	
  
chloroticus)	
  

Copper	
  	
  
(10	
  µg/L,	
  2	
  
days)	
  

Settlement	
  success	
   ns	
  

Present	
  
study	
  
Chapter	
  3	
  

Size	
  at	
  settlement	
   +	
  (14%)	
  
Survival	
  <	
  1	
  month	
  
PS	
   ns	
  

Size	
  <	
  1	
  month	
  PS	
   -­‐	
  (30%)	
  

Sea	
  urchin	
  
(Evechinus	
  
chloroticus)	
  

Copper	
  	
  
(10	
  µg/L,	
  
chronic	
  during	
  
larval	
  stage)	
  

Settlement	
  success	
   -­‐	
  (600%)	
  

Present	
  
study	
  
Chapter	
  4	
  

Size	
  at	
  settlement	
   ns	
  

Survival	
  >	
  1	
  month	
  
PS	
   ns	
  

Size	
  >	
  1	
  month	
  PS	
   +	
  (130%)	
  

Bryozoan	
  
(Watersipora	
  
subtorquata)	
  

Copper	
  	
  
(100	
  µg/L,	
  6h)	
  

Settlement	
  success	
   ns	
  

(Ng	
  &	
  
Keough	
  
2003)	
  

Survival	
  <	
  1	
  month	
  
PS	
   ns	
  

Size	
  <	
  1	
  month	
  PS	
   -­‐	
  	
  
Survival	
  >	
  1	
  month	
  
PS	
   -­‐	
  (600%)	
  

Size	
  <	
  1	
  month	
  PS	
   -­‐	
  (100%)	
  

Freshwater	
  snail	
  
(Physa	
  pomilia)	
  

Cadmium	
  
(10	
  µg/L,	
  
chronic	
  during	
  
egg	
  
development)	
  

Hatching	
  success	
   ns	
  
(Kimberly	
  &	
  
Salice	
  
2014)	
  

Size	
  <	
  1	
  month	
  post-­‐
hatching	
   +	
  (25%)	
  

Size	
  >	
  1	
  month	
  post-­‐
hatching	
   -­‐	
  (10%)	
  

Mussel	
  
(Mytilus	
  edulis)	
  

Copper	
  (8	
  µg/L,	
  
chronic	
  during	
  
larval	
  
development)	
  

Survival	
  >	
  1	
  month	
  
PS	
   -­‐	
  (900%)	
   (Hoare	
  et	
  al.	
  

1995)	
  

Polychaete	
  
(Capitella	
  sp.I)	
  and	
  
gastropod	
  
(Crepidula	
  
fornicate)	
  

Cadmium	
  (2000	
  
µg/L	
  and	
  
20000µg/L,	
  
respectively,	
  
48h)	
  

Survival	
  <	
  1	
  month	
  
PS	
   ns	
   (Pechenik	
  

et	
  al.	
  2001)	
  

Sponge	
  	
  
(Scopalina	
  
lophyropoda)	
  

Copper	
  (30	
  
µg/L,	
  chronic	
  
during	
  larval	
  
development)	
  

Settlement	
  success	
   +	
  (250%)	
  
(Cebrian	
  &	
  
Uriz	
  2007)	
  Survival	
  >	
  1	
  month	
  

PS	
   ns	
  

Shrimp	
  
(Palaemonetes	
  
pugio)	
  

Copper	
  (9	
  µg/L,	
  
chronic	
  full	
  life	
  
cycle)	
  

Survival	
  >	
  1	
  month	
  
post-­‐metamorphosis	
   ns	
  

(Manyin	
  &	
  
Rowe	
  2010)	
  

Reproduction	
  output	
  

-­‐	
  	
  (0	
  larvae	
  per	
  
replicates	
  vs.	
  
1870	
  in	
  
controls)	
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It should be noted that the magnitude and even the presence of latent effects observed 

depends strongly on the endpoints measured and the time at which they are measured. 

In Chapter 3, individuals exposed as larvae to 10.4 µg/L Cu for two days developed 

normally during the larval stage but had strongly impaired subsequent growth, with 

average body size decreasing by 24% in the 25 days following settlement (Table 7.2). 

However, in a subsequent experiment, exposure to the same concentration during a 

longer period (4 days) produced no difference in size when measured at 38 days post-

settlement (Chapter 4). This suggests that growth impairment occurs shortly 

following metamorphosis but may be compensated for later during juvenile 

development. While early growth impairment would likely affect young settlers’ 

survival in the field, this effect is less severe than if the size discrepancy would 

continue or increase during juvenile development. These results emphasise the need 

to both evaluate long-term effect and monitor intermediate endpoints to better 

characterise the effect of a stressor on the development of marine organisms.  

7.1.3 ADULT-GAMETES TRANSITION  

Environmental stressors, such as pollutants, may impair the reproductive success of 

adults by decreasing the quality and/or quantity of their gametes, leading to a 

decrease in fertilisation success and/or offspring viability. In recent years, several 

studies have highlighted the importance of parental effects on gamete quality and 

offspring success (Marshall & Keough 2004, Marshall 2008, Burgess & Marshall 

2011, Lister et al. 2015). In Chapter 6, the quantity of gametes produced by adults 

exposed to 50 µg/L Cu for two weeks was severely affected given the very low 

spawning success (40% in males, 15% in females). However, the quality of the 

gametes that were spawned did not seem to be affected with no difference in 

fertilisation success in exposed males (the fertilisation success could not be evaluated 

in females given the small number of spawning females). This result is somewhat 

contradictory to the literature as a relationship between paternal exposure to copper 

and sperm quality has been well established in various invertebrates, including 

polychaetes and mussels (Earnshaw et al. 1986, Watson et al. 2013). Furthermore a 

decrease in gamete quality or fertilisation success following adult exposure to metals 
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has been documented in sea urchins for cadmium (Au et al. 2001) and lead (Nacci et 

al. 2000). The discrepancy may be due to the duration of copper exposure, which 

might have been too short to affect sperm quality. Indeed, in the present study, adults 

were exposed for only two weeks as opposed to one month in the two previously 

cited studies on sea urchins (Nacci et al. 2000, Au et al. 2001). Alternatively, sperm 

may have been affected in ways not detectable by the current study, such as DNA 

damage. In this case, fertilisation may occur normally but embryos may fail to 

develop. Longer-term experiments would be needed to evaluate these hypotheses. 

7.2 REALISTIC EXPOSURE SCENARIOS 

7.2.1 PULSE VS. CHRONIC EXPOSURE 

The concentration of pollutants in coastal water is usually not constant but surges 

after storm events or pollutant discharge (Govindasamy et al. 1998, Milne & Watts 

2008, TenBrook et al. 2008). In this study, the relative effect of pulse or chronic 

exposure was strongly dependent on the source of copper. Indeed, when copper was 

present in the diet (both Diet and Diet + Water treatments) of larvae, a pulse exposure 

was generally more toxic than a chronic exposure. On the other hand, when copper 

was administered in water alone, a chronic exposure was more toxic (Chapter 4). 

Looking at pulse exposure rather than chronic exposure is not particularly new; many 

studies, mostly in fish and freshwater organisms, have shown that pulse exposures to 

a stressor may have significant deleterious effects (Handy 1994, Brown et al. 2002, 

Forbes & Cold 2005). For some chemicals, including metals, pesticides, acids, and 

ammonia, pulse exposure led to stronger effects than chronic exposure in freshwater 

animals (Ingersoll & Winner 1982, Handy 1994, Schulz & Liess 2000). However, 

most long-term studies in marine organisms continue to use exclusively chronic 

exposure (De Schamphelaere et al. 2004, Meyer et al. 2005, Guo et al. 2013).    

 

Furthermore, regulatory authorities in many countries, including New Zealand, only 

include an exposure magnitude in their WQC that is designed to protect from chronic 

exposure (ANZECC 2000, TenBrook et al. 2008). This approach provides no science-

based guidelines as to the acceptable duration and frequency of exceedance of the 
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WQC. My study shows that chronic exposure is not necessarily a worst-case scenario 

and that effort should be made to prevent episodic discharge of copper in coastal 

waters.  

7.2.2 MULTIPLE EXPOSURES  

In this study, juveniles previously exposed to copper as larvae were less resistant to a 

subsequent exposure, with up to four times higher mortality (Chapter 3). This is one 

of the first studies to demonstrate the effect of further exposure to a pollutant in later 

life stages in aquatic organisms. A recent study showed an increase in sensitivity to 

cadmium in juvenile freshwater snails, Physa pomilia, previously exposed to the 

same stressor during embryonic development (Kimberly & Salice 2014). A change in 

stressor tolerance has been reported with multiple exposures during the same life 

stage in freshwater fish (Dixon & Sprague 1981, Brinkman & Woodling 2014). 

Decreased tolerance to pollutant following exposure during larval development has 

important ecological relevance, as larvae exposed to pollution are likely to settle in a 

polluted area; this is especially the case for species with low dispersal. This result 

further demonstrates that the surviving cohort following copper exposure during 

larval development is weakened. 

7.3 MULTIPLE STRESSORS 

Marine organisms are constantly exposed to a mixture of abiotic stressors, which will 

interact in a synergistic, strictly-additive or antagonistic fashion. Many studies have 

investigated the effects of metal mixtures and have found that these vary strongly 

depending on the metal pairs and on the test organisms (reviewed in Norwood et al. 

2003). In addition, very few studies have evaluated the interaction of metal stress and 

other abiotic stress such as salinity or dissolved organic carbon (but see MacInnes & 

Calabrese 1979, Nadella et al. 2009, 2013).  
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7.3.1 METAL MIXTURE 

In Chapter 2, the simple mixture of copper, lead and zinc were found to be strictly-

additive in both E. chloroticus and H. iris. In a review of more than 60 studies on 

aquatic organisms, more than half of the studies reported a less-than-additive effect of 

metal mixtures while the other half reported a more-than-additive effect (Norwood et 

al. 2003). However, the vast majority of papers reviewed in Norwood (2003) are on 

freshwater organisms. Of the few studies that have addressed metal mixtures on larval 

development of echinoderms, the reported effects were either strictly-additive or 

could not be distinguished from simple additivity when experimental variability was 

taken into account (Fernandez and Beiras 2001, Phillips et al. 2003, Kobayashi and 

Okamura 2005, Xu et al. 2011). It should also be noted that most studies on metal 

mixtures, including the present one, investigate only immediate toxic effects and may 

therefore underestimate the toxicity of metal mixtures over the full life cycle of an 

organism.  

7.3.2 METAL AND OTHER ABIOTIC STRESSORS 

The toxicity of multiple stressors in an area of growing interest (reviewed by 

Przeslawski et al. 2015). However, the stressors most commonly studied are climate 

change stressors (salinity, temperature and pH). The interaction between pollutants 

and other abiotic stressors has received comparatively little attention in marine 

organisms. While salinity is well known to be an important mediator of metal toxicity 

in freshwater and estuarine systems (McLusky et al. 1986, Grosell et al. 2007, Lee et 

al. 2010), relatively few studies have looked at marine organisms and most of these 

have focused on adults (McLusky et al. 1986, Barbieri & Doi 2011, Patel & 

Bielmyer-Fraser 2015). In Chapter 5, low salinity increased copper toxicity 

dramatically in E. chloroticus larvae under a chronic exposure scenario. There was no 

success in larval development when both stressors were present, compared with more 

than 50% larvae reaching normal development (including a rudiment) by 25 d post-

fertilisation with copper at normal salinity and 27% with no added copper at low 

salinity. Most studies on copper and salinity have shown an increase in copper 

toxicity under hyposaline conditions (McLusky et al. 1986, Patel & Bielmyer-Fraser 

2015). On the other hand, in some marine species, copper toxicity was independent of 
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salinity (Nadella et al. 2009, Lee et al. 2010). However, all these studies used chronic 

exposure to both stressors. The present study shows little evidence of an interaction 

between copper and salinity under realistic field conditions (i.e. low copper 

concentration and 4-d pulse exposure). However, exposure to low salinity and copper 

may have latent effects not detectable in this study. Indeed, my previous experiments 

have shown that stressors encountered during E. chloroticus larval development may 

have further and more dramatic impacts on settlement success and settler 

performance than on the larval development itself (Chapter 3 and 4). It is crucial to 

evaluate the potential for latent impacts of combined copper and salinity stressors in 

order to more fully understand the effect of copper in contaminated runoff on sea 

urchin populations.  

7.4 TROPHIC INTERACTIONS 

Most marine toxicity studies focus on waterborne pollutants, while organisms living 

in a polluted area are likely to be exposed to contaminated food as well. In Chapter 4, 

I investigated the toxic effect of environmentally realistic levels of copper from the 

diet vs. waterborne exposure. Overall, the settlement success was 30% lower in 

dietary treatments than in waterborne treatments. Surviving settlers exposed to dietary 

copper, as larvae were on average 30% smaller than controls, while those exposed to 

dissolved copper were 60% larger. Furthermore, surviving settlers had a higher rate of 

abnormal development in all copper treatments. Interestingly, dietary copper seemed 

to produce few direct effects on larvae, while carry-over effects were more severe 

when copper was administered in food rather than in water. The importance of the 

dietary pathway is well recognised in humans and top predators especially for 

pollutants with strong biomagnification, such as mercury, or hydrophobic pollutants 

such as PCBs (polychlorinated biphenyls) for which the waterborne pathway is 

negligible (Meyer et al. 2005, TenBrook et al. 2008, Mathews & Fisher 2009, 

Jakimska et al. 2011). In recent years, however, the dietary pathway has been shown 

to be an important route of intake in lower trophic levels as well (Griscom et al. 2002, 

Huang et al. 2010, Bielmyer et al. 2012). Most studies have focused on 

bioaccumulation patterns in filter feeders or grazers and little work has been done on 



Chapter 7: General Discussion 

   156 

planktonic species or early life stages (but see Table 7.3). The relative importance of 

the dietary route vs. waterborne exposure in zooplankton is dependent on the 

pollutant. For example, in copepods, mercury was more toxic when present in 

dissolved form than in the diet (Hook & Fisher 2001b). However, most studies have 

reported a higher toxicity of dietary metals.  

 
Table 7.3: The relative toxicity of waterborne and dietary metals on planktotrophic organisms. 

Species	
   Metal	
  
Measure	
  
of	
  toxicity	
  	
  

Water-­‐
borne	
  	
   Dietary	
  	
   Reference	
  

Copepod	
  
Acartia	
  tonsa	
   Silver	
   LC50	
  

(µg/L)	
   43.2	
  	
   3	
  	
  
(Hook	
   &	
   Fisher	
  
2001a,	
  Bielmyer	
  et	
  al.	
  
2006)	
  

Copepod	
  
Acartia	
  tonsa	
  
and	
  A.	
  hudsonica	
  	
  

Mercury	
   LOEC	
  
(nM)	
   0.25	
   1	
   (Hook	
   &	
   Fisher	
  

2001b)	
  

Copepod	
  
Acartia	
  tonsa	
  
and	
  A.	
  hudsonica	
  

Cadmium	
   LOEC	
  
(nM)	
   2	
   1	
   (Hook	
   &	
   Fisher	
  

2001b)	
  

Freshwater	
  
cladoceran	
  
Daphnia	
  magna	
  

Zinc	
   LOEC	
  
(µg/L)	
   >	
  155	
  	
   28	
   (De	
  Schamphelaere	
  et	
  

al.	
  2004)	
  

Sea	
  urchin	
  
(larvae)	
  
Evechinus	
  
chloroticus	
  

Copper	
  

LOEC	
  
(µg/L)	
  
based	
  on	
  
settlement	
  
success	
  

10.4	
   2.3	
   Present	
  study	
  	
  
(Chapter	
  4)	
  

Sea	
  urchin	
  
(larvae)	
  

Copper	
  
(nano-­‐
particules
)	
  

Mortality	
  
(%	
  of	
  
controls)	
  

n/a	
  a	
   70%	
   (Gambardella	
   et	
   al.	
  
2014)	
  

a  toxicant not available via waterborne exposure 
 

For other marine invertebrates, many studies have reported a higher increase in metal 

burden following dietary exposure compared with waterborne exposure (Wang & 

Fisher 1999, Griscom et al. 2002, Meyer et al. 2005, Huang et al. 2010). It remains 

unclear, however, if an increase in metal burden necessarily translates into an increase 

in toxicity (Hook & Fisher 2001a, De Schamphelaere & Janssen 2004, De 

Schamphelaere et al. 2004). De Schamphelaere et al. (2004) reported that despite 

similar zinc body burden between the two modes of exposure in freshwater 

cladocerans, the toxic effects were different. Dietary exposure was detrimental to 

reproductive output but no toxic effect was observed with waterborne exposure. In 

Chapter 4, dietary exposure produced toxic effects that were not only more severe 
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than dissolved exposure but were also acting on different components of E. 

chloroticus development. For example, dietary exposure produced no direct effect on 

larval development but impaired post-settlement growth, while larvae exposed to 

dissolved copper displayed delayed larval development but better post-settlement 

growth. Furthermore, E. chloroticus seemed to develop a resistance to copper when 

exposure was at least partially from the diet but not when exposure was strictly 

waterborne. The different mechanisms of toxicity between dietary and dissolved 

metal exposure may be explained by a difference in metal repartition in tissues. 

Indeed dietary metal tends to accumulate in soft tissues while dissolved metal tends to 

be more sequestered in hard tissues (Fisher et al. 1996, Hook & Fisher 2001a, 

Campbell et al. 2005). This shows metal burden in tissues may not be appropriate to 

determine toxic effects, especially in small organisms for which metal partitioning 

cannot be taken into account. Further research is needed on a range of organisms to 

better understand the toxic effects of dietary metals.    

7.5 RECOMMENDATION FOR MANAGEMENT 

This thesis provides valuable information on the sensitivity to metals of two 

important local species: the sea urchin E. chloroticus and the abalone H. iris. In New 

Zealand, copper, lead and zinc are commonly found in concentrations exceeding 

WQC in urban effluents (Milne & Watts 2008, Neale 2009), but very few studies 

have investigated their effects on local coastal organisms (but see Fukunaga et al. 

2010, 2011). H. iris and to a lesser extent, E. chloroticus, are comparatively more 

sensitive to metal than related species, highlighting the importance of using local 

species to determine WQC (Tables 2.6 and 2.7). H. iris already suffers from a low 

recruitment rate, which is thought to be a main limiting factor in population growth 

(McShane et al. 1994, McShane 1995). Furthermore, this species may be especially 

vulnerable to metal contamination, as the larval stage is very short and larvae stay 

close to shore where they are more likely to encounter metal pollution. They also 

have a limited dispersal due to the short larval stage, so populations in contaminated 

areas are less likely to receive recruits from an unpolluted area. In addition, H. iris 

tends to spawn during storms (citation), increasing the risk of exposure to large river 
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plumes with maximal metal contamination. The current copper contamination near a 

stream outfall comprised of agricultural effluent could potentially result in severe 

effect on H. iris population (Figure A.2).  

7.5.1 WATER QUALITY CRITERIA (WGC) 

This study demonstrated that current WQC for zinc fails to protect the early life 

stages of H. iris and, to a lesser extent, E. chloroticus. Zinc WQC (15 µg/L) was 

above the EC50 for H. iris (13.1 µg/L) and above the EC10 for E. chloroticus (9.7 

µg/L; Table 2.4). In addition, these values are based on short-term standard toxicity 

assays (72 h) and do not take latent effects into consideration. The results of my 

research would suggest that WGC for zinc be lowered to 3 µg/L to be below H. iris 

EC10. However, it would be preferable to conduct long-term toxicity assays to 

evaluated potential latent effect and inform a better WQC. H. iris would be a good 

candidate to evaluate long-term zinc toxicity, given its very high sensitivity and high 

ecological and commercial importance.  

 

Copper and lead WQC seem to be adequate for both species but should be strictly 

enforced in the case of copper as concentrations only slightly higher than WQC could 

have important effect on the early life stages of vulnerable invertebrate species (Table 

2.4).  

 

Additive model for simple metal mixture seems appropriate of copper, lead and zinc 

simple mixtures. This research supports the use of the current additivity model 

described in the WQC for invertebrate larvae, given the very similar results obtained 

with two test organisms belonging to distant phyla (H. iris and E. chloroticus). It 

should be noted, however, that synergistic or antagonistic effects might occur with 

other classes of pollutants such as organic pollutants or with complex mixtures (more 

than two compounds).  
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7.5.2 PREVENTING EPISODIC DISCHARGE OF POLLUTANTS 

This study shows that a short-lived bloom of contaminated phytoplankton may have a 

more severe impact on zooplankton than chronic pollution. This finding has 

important implications for pollution management, as short increases in pollution 

concentration are usually considered to be of little consequence as long as the average 

concentration throughout the year is below WQC. Furthermore, many toxicity studies 

investigating dietary intake of pollutants have used a chronic exposure and focused on 

adults, and hence may have strongly underestimated the toxic effect of a pollutant (De 

Schamphelaere et al. 2004, Meyer et al. 2005, Guo et al. 2013). Actions to reduce 

pollution, such as increasing the buffer zone around agricultural streams, should be 

taken even when the contaminant(s) exceed WQC only episodically. For copper, I 

suggest that a concentration above 3 µg/L occurring on a monthly basis or more 

frequently be considered as a pollution level that should be addressed. Monitoring in 

coastal water suggests that agricultural effluent may be at high risk of episodic 

exceedances of copper (Appendix A). In addition, agricultural effluents are also 

typically rich in nutrients, which may produce contaminated algal blooms and have 

significant impact on the zooplankton and other trophic levels. As such, agricultural 

effluents as well as industrial effluents should be targeted in monitoring programs.  

7.5.3 DIETARY ASSAYS  

This study adds to the growing body of evidence that the dietary route is very 

important in metal toxicity even for low trophic levels. There is still a large 

knowledge gap in dietary toxicity with no reliable models or standard protocol to 

evaluate dietary toxicity (Schlekat et al. 2001, Meyer et al. 2005). However, risk 

assessments should include dietary assays using contaminated diet when relevant.  

7.5.4 MONITORING PROGRAMME AND RECOMMENDED ACTIONS 

I recommend a routine monitoring (yearly or every 2 – 3 years) of streams and rivers 

in New Zealand for metal pollution. Some regional councils already have such a 

routine monitoring programme in place but tend to target rivers and streams impacted 

by industries or dense urban areas. Streams and rivers impacted by agricultural 
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activities should also be included, especially with regard to copper. In addition, 

routine monitoring (yearly or every 2 – 3 years) of metal pollution in coastal water 

using bioindicators such as kina or blue mussels should be conducted to evaluate 

pollution non-related to effluent discharges. In areas identified as areas of concern by 

the routine monitoring, intensive monitoring should be conducted to evaluate the 

frequency and intensity of pulses of pollution. I suggest measuring pollutants after 

every rain event over several months. Finally, areas where WQC are monthly, or 

more frequently, exceeded should be considered as a polluted area in need of 

mitigation. 

7.6 FUTURE DIRECTIONS 

This thesis evaluated the effect of copper on E. chloroticus across multiple life stages 

and using realistic exposure regimes including low concentrations, episodic exposure, 

repeated exposure, dietary intake and multiple stressors (metal mixture and low 

salinity). These experiments highlighted areas requiring further investigations: 

 

My experiments demonstrated that juvenile E. chloroticus do not develop a resistance 

to waterborne copper exposure but are instead more vulnerable to further copper 

stress. However, the stronger toxicity of pulse exposure vs. chronic exposure in 

dietary assays suggested a potential acclimation to dietary copper. The resistance of 

sea urchin to dietary and/or waterborne copper following dietary exposure during 

larval development should be investigated. Furthermore, young juveniles prove to be 

highly sensitive to copper stress. Further research on this cryptic and under-studied 

life stage and its tolerance to metal and to other stressors is needed.  

 

In this thesis, I have addressed the toxicity of copper under hyposaline conditions. 

However, metal discharge in freshwater runoff is also usually associated with high 

sediments. Dissolved organic carbon (DOC) is known to impact metal toxicity by 

complexing with free metal ions and thus reducing its bioavailability (Nadella et al. 

2009, Monteiro et al. 2013). Therefore the combined effect of elevated sediment, 

elevated copper and low salinity should be investigated to better understand the likely 
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impact of copper under field conditions. This research has highlighted the importance 

of investigating latent effects. Therefore, the evaluation of multiple stressors (low 

salinity, high DOC, multiple metals) should include latent effects. 

 

I investigated one major of trophic interaction by looking at the toxicity of copper-

contaminated phytoplankton. Another important trophic interaction would be the 

vulnerability of contaminated E. chloroticus to predation. Indeed metal toxicity may 

result in sublethal effect affecting behaviour such as predator avoidance. Such effects 

have been shown in vertebrates (Lefcort et al. 1998, Zhou & Weis 1998, Scott & 

Sloman 2004) but have been more rarely evaluated in invertebrates and then mostly 

on adults (reviewed in Fleeger et al. 2003). This potential sublethal effect should be 

studied in E. chloroticus in both adult and early life stages. Juveniles would be 

particularly well suited for such investigation, as predation at this stage is high and is 

a major factor for population persistence (Hunt & Scheibling 1997, Clemente et al. 

2013).  

 

Finally, the effects of long-term metal exposure on gamete quality and resistance to 

pollution in offspring should be evaluated. In this thesis, I examined the fertilisation 

success of copper-exposed male E. chloroticus. The effect of copper exposure on 

females’ fertilisation success and, most importantly, on embryos viability should be 

explored. Several studies have demonstrated the importance of parental history on 

gametes quality and offspring success (Marshall & Keough 2004, Marshall 2008, 

Burgess & Marshall 2011). Parental exposure to a stressor may confer an increased 

resistance of their offspring to the same stressor (Marshall & Uller 2007, Suckling et 

al. 2014, Lister et al. 2015). For example, embryos of the sea urchin Sterechinus 

neumayeri from PAH-contaminated females had an increased resistance to oxidative 

stress than embryos from naive females (Lister et al. 2015). However, this resistance 

did not translate into an increase in offspring survival.  



Chapter 7: General Discussion 

   162 

7.7 CONCLUSION 

This research demonstrated the importance of considering latent effect when 

evaluating a pollutant’s toxic effect. Juvenile E. chloroticus were more sensitive to 

copper exposure when they had previously been exposed to copper during larval 

development suggesting that single life stage experiments may greatly underestimate 

metal toxicity. The dietary route proved to be very important even in a low trophic 

level organism and the toxic effects of dietary intake could not be predicted based on 

waterborne assays. The importance of using environmentally realistic exposure 

regimes was highlighted, as pulse exposure was more toxic than chronic exposure in 

dietary assays. Finally E. chloroticus was a suitable indicator species given its high 

sensitivity to copper and ease of maintenance in the laboratory. This study provides a 

first measure of metal toxicity on this endemic species of cultural and commercial 

importance in New Zealand.  
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APPENDIX A                               
Dissolved metal concentrations in 
Wellington coastal area 

A.1 AIMS 

Dissolved concentrations of copper, lead and zinc were measured in coastal water 

adjacent to a river or stream in four sites in the Wellington region to evaluate the 

prevalence of local metal pollution and provide realistic metal concentrations to use 

in laboratory experiments. The spatial and temporal scale of metal discharge 

following a rain event was also observed in the Hutt river plume. 

A.2 METHODS 

Coastal water was collected near the mouth of river or stream in four sites in the 

Wellington region: Orongorongo (ORO), Makara (MAK), Hutt (HUT) and Owhiro 

(OWH) (Figure A.1). The Orongorongo River passes mostly through a protected 

forest, the Rimutaka forest and through some rural land, mainly pastures, toward its 

lower reach. This site was considered as a low human impact site. Makara stream is 

affected by agricultural runoff throughout all its length. The Hutt River receives both 

residential and industrial runoff as its catchment includes the populated Hutt valley. 

Owhiro stream is a small stream passing through Wellington’s active Southern 

Landfill. At each site, two water samples were collected 3 m from shore at 

approximately 30 cm deep in acid washed high-density polyethylene plastic bottles. 
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Figure A.1: Location of the water sampling sites in the region of Wellington. MAK: Makara stream, 
HUT: Hutt River, OWH: Owhiro stream, ORO: Orongorongo River. 
 

Water was collected once during a period of low rain (< 5 mm daily rainfall for five 

days prior to sampling) to provide a baseline concentration of trace metals and on the 

day following three major rain events (rain 1 to 3), defined by over 15 mm rainfall in 

the previous 24 h (Table A.1). Rain events were ranked in three categories: 1 (15 – 20 

mm in 24 h), 2 (20 – 30 mm) and 3 (> 30 mm). Category 1 rain event occur every 

month on average; catergory 2 rain events occur every two months; category 3 rain 

event every three to four month with at strong variability between year. For example 

in 2013, a category 3 rain event occurred almost every month from February to 

October. On the other hand, only two category 3 rain events occurred in 2012 (in 

January and March; CliFlo). All the rain events sampled in this study occurred 

between October and January during the spawning season of Evechinus chloroticus in 

2011 to 2013.  
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Table A.1: Details of the freshwater input during sampling. Rainfall for the 24 h previous water 
collection is from Wellington airport weather station (CliFlo). Rain events were ranked as 1 (15 – 20 
mm in 24 h), 2 (20 – 30 mm) or 3 (> 30 mm). River flow at the time of sampling followed by 
maximum flow in the 24 h prior sampling and time of maximum flow in hour before sampling, in 
brackets, is from Orongorongo river at Truss Bridge (ORO) and Hutt river at Taita Gorge (HUT) 
(GWRC database). Salinity was measured by refractometer in coastal water at 3 m from shore. Water 
samples were collected at approximately 30 cm depth. 
Sampling	
   R

a
n
k	
  

Rain-­‐
fall	
  	
  
(mm)	
  

River	
  flow	
  (cubic	
  m	
  /	
  sec)	
  
(max	
  flow,	
  hours	
  before	
  

sampling)	
  
	
  

Salinity	
  in	
  water	
  samples	
  
(ppt)	
  

	
   	
   	
   HUT	
   ORO	
   	
   HUT	
   MAK	
   OWH	
   ORO	
  

Baseline	
   -­‐	
   2.2	
   18	
  (31,	
  23	
  h)	
   0.7	
  (1.8,	
  17	
  h)	
   	
   12	
   19	
   -­‐	
   1	
  

Rain	
  1	
   3	
   32.8	
   19	
  (21,	
  15	
  h)	
   3.4	
  (14,	
  24	
  h)	
   	
   28	
   11	
   -­‐	
   12	
  

Rain	
  2	
   2	
   21.4	
   12	
  (16,	
  17	
  h)	
   1.0	
  (2.1,	
  24	
  h)	
  	
   	
   30	
   12	
   21	
   1	
  

Rain	
  3	
   3	
   39.6	
   50	
  (200,	
  18	
  h)	
   2.8	
  (20,	
  17	
  h)	
   	
   6	
   	
  6	
   26	
   9	
  

Rain	
  4	
   1	
   19.4	
   53	
  (190,	
  16	
  h)	
   -­‐	
   	
   6	
   -­‐	
   -­‐	
   -­‐	
  

 
 
All samples were collected in an outgoing tide, 1 – 3 h after high tide. Sampling in 

Owhiro was done only for rain event 2 and 3. During a fourth rain event (rain event 4), 

the spatial and temporal scale of the metal contamination brought by the Hutt River 

was evaluated. On the day following the rain event, surface water (30 cm deep) 

samples were collected at 3 m, 50 m, 100 m and 1 km from shore. In addition, 

samples were taken at 3 m from shore every day for the three days following the rain 

event (rain event = day 0). 
 
Salinity was measured in the laboratory and samples were filtered through a 0.45 µm 

trace metal-free mesh (digiFilter, SCP Science). The filtrate was acidified with 

reagent grade nitric acid (Merck Millipore) and kept in a trace metal-free plastic tube 

(digiTubes, SCP Science). Trace metal content (copper, lead and zinc) was analysed 

by ICP-MS at Environmental Laboratory Services, Lower Hutt. Detection limits were 

0.5 µg/L Cu, 0.5 µg/L Pb, 2 µg/L Zn. Each water sample was analysed in duplicate 

and the average is used in all graphs and tables below.  
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A.3 RESULTS AND DISCUSSION 

No metals were detectable in baseline samples while copper and zinc were elevated 

after a rain event at most sites (Figure A.2). Copper was the only metal found above 

the water quality criteria (WQC; (ANZECC 2000). Zinc was found in Hutt and 

Owhiro during all the rain events sampled but was always well below WQC. Lead 

was only present in relatively high concentration (2.4 to 2.9 µg/L) from one rain event. 

Given the high concentration observed and the discrepancy with other rain events, a 

contamination of the water samples occurring in the laboratory might be responsible 

for the elevated lead levels in the rain event 1.  
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Figure A.2: Dissolved copper (A), lead (B) and zinc (C) in costal water near a stream or river 
discharge. HUT = Hutt river, MAK = Makara stream, ORO = Orongorongo river, OWH = Owhiro 
stream. Water samples were collected during a dry period (baseline) or on the day following a major 
rain event (rain 1 to 4). All water samples were collected 3 m from shore between 2011 and 2013. 
Error bars represent the standard deviation (N = 2). The dashed line represents the current water 
quality criteria for 95% species protection (ANZECC 2000). nd = non detectable. Detection limits 
were 0.5 µg/L Cu, 0.5 µg/L Pb, 2 µg/L Zn. 
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Orongorongo was the least contaminated site with a detectable level of dissolved 

copper present only during rain event 3 (Figure A.2), which was the largest rain event 

sampled for Orongorongo – i.e. highest maximum flow rate (Table A.1). Makara was 

the site of most concern with copper concentration above WQC found in at least one 

sample during two of the three rain events sampled. Copper concentration at this site 

reached 2.6 and 2.9 µg/L and could be due to copper-based agricultural products such 

as pesticides and fungicides. Owhiro stream itself is heavily polluted as shown by the 

monitoring of a broad range of contaminants in freshwater conducted in 2008 (Milne 

& Watts 2008). However, as Owhiro stream is a very small stream, dilution occurs 

quickly in coastal water and relatively high salinity (21 and 26 ppt) were observed at 

3 m from shore. Consequently, copper was near WQC and zinc was below WQC in 

coastal seawater at this site (Figure A.2).  

 

It should be noted that the rain events sampled here were not exceptional and occur 

on a monthly basis throughout the year in the Wellington region (CliFlo). 

Furthermore, metal concentration was likely higher during the maximum river flow, 

which occurred 15 to 24 h prior to water sampling (Table A.1). A monitoring study of 

river and streams in the Wellington area showed that metal concentration was usually 

at its highest during the first flush and decreased rapidly afterwards (Milne & Watts 

2008). However, maximum flow in the Hutt and Orongorongo rivers occurred on the 

day of the rainstorm when coastal water could not be sampled due to severe weather 

conditions. 

 

Metal contamination from a polluted river can affect a large coastal area. In this 

study, surface levels of copper and zinc up to 1 km from shore were similar to shore 

levels (Table A.2). Copper and zinc seemed to have a different residence time in the 

water column. Copper was detectable only on the day following the rain event while 

zinc concentration peaked at day 2 (rain event = day 0) and remained detectable up to 

day 3 (Table A.2). All water samples were surface samples collected at approximately 

30 cm deep. Therefore the vertical profile of metal concentrations during in the river 

plume has not been evaluated. 
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Table A.2: Dissolved metal (µg/L) and salinity from 3 m to 1 km offshore (A) in the Hutt river plume 
for three days following a rain event (B). For the spatial gradient (A), water samples were taken on the 
day following the rain event (day 1) between 3 m and 1 km from shore. For the temporal gradient (B), 
water samples were taken at 3 m from shore, everyday for three days following the rain event (rain 
event day = day 0). 
	
   Cu	
   Pb	
   Zn	
   Salinity	
  (ppt)	
  

(A)	
  Spatial	
  gradient	
  

3	
  m	
   1.4	
   <	
  0.5	
   3	
   6	
  

50	
  m	
   1.3	
   <	
  0.5	
   3	
   6	
  

100	
  m	
   0.9	
   <	
  0.5	
   2	
   2	
  

500	
  m	
   1.2	
   <	
  0.5	
   <	
  2	
   2	
  

1000	
  m	
   1.3	
   <	
  0.5	
   2	
   12	
  

(B)	
  Temporal	
  gradient	
  

Day	
  1	
   1.4	
   <	
  0.5	
   3	
   6	
  

Day	
  2	
   <	
  0.5	
   <	
  0.5	
   5	
   34	
  

Day	
  3	
   <	
  0.5	
   <	
  0.5	
   2	
   18	
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APPENDIX B                                       
Direct effects of copper exposure 
on Evechinus chloroticus larval 
stage (Additional data from 
Chapter 3) 

B.1 METHODS 

B.1.1 EXPERIMENTAL METHODS 

All experimental methods are described in section 3.2.3.  

B.1.2 STATISTICS 

Jars 10 (Late ANZECC treatment), 19 (Late High treatment) and 30 (Early Field 

treatment) were lost at 11 d, 6 d and 25 d respectively. Direct effects of copper 

treatments on larval stages were evaluated by (1) survival, (2) normal development, 

(3) delayed development, (4) growth and (5) morphometrics. 

B.1.2.1 Larval survival and development 

Survival rate was expressed as larval density at age d / larval density at age 4 to 

remove natural variation in early survival across jars. Normal development was 

expressed as the proportion of live larvae rated as normal (Table 3.2). In both survival 

and normal development analysis, 13 d was removed as only partial sampling was 

done (Late exposure group only) and 25 d and 27 d were considered as the same level 
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of treatment to allow comparison between the two timing groups. Delayed 

development was measured as the proportion of normal larvae at the final stage of 8-

armed plutei during last sampling (25 d post-fertilisation for Early group and 27 d for 

Late group). Jar 15 (Early ANZECC treatment) was not sampled at 25 d and removed 

from the survival and normal development analyses to have a balanced design.  

 

Larval survival and normal development was analysed using a three-ways split-plot 

factorial Repeated Measures ANOVA with copper level and timing of exposure as 

‘between’ factors and larval age (in days post-fertilisation) as ‘within’ factor. The 

effect of copper level on delayed development was analysed using a one-way 

ANOVA separately for Early and Late groups as sampling was done two days later in 

Late group, which may affect the proportion of 8-armed plutei. All three variables 

were square-root arcsin transformed to meet ANOVA assumptions. F-ratios values 

were calculated from Type II SS. When copper level factor was significant (p < 0.05) 

a post-hoc Dunnett’s comparison test was used to compare all treatments against their 

control.  

B.1.2.2 Larval growth and morphometrics 

For traits present from mid-larval stages: body length (BL), postoral arms (PO) and 

anterolateral arms (AL), average growth rate per jar was measured between 11 d and 

25 d post-fertilisation in Early exposure group and between 13 d and 27 d post-

fertilisation. Time interval was 14 days in both timing groups. All response variables 

were analysed using two-ways ANOVAs with copper level, exposure timing and their 

interaction as main factors and met ANOVA assumptions without transformation. F-

ratios were calculated from Type II SS.  

 

For traits present only in late larval stages: posterodorsal arms (PD), preoral arms 

(EO) and rudiment size (R), or for which growth is of no interest (i.e. stomach size), 

measures during last sampling (25 d in Early exposure group and 27 d in Late 

exposure group) were analysed separately for both exposure-timing groups. One-way 

ANOVAs on mixed effect linear models to account for non-independence of 

individual larvae within a jar were used with copper level as fixed effect, jars as 

random effect and individual larvae as residuals. Assumptions were graphically 
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checked and were met without transformation. F-ratios were calculated from Type I 

SS.  

 

Rudiment presence was expressed as the proportion of 8-armed pluteus having a 

rudiment visible under compound microscope per jar. Rudiment presence was square-

root arcsin transformed and analysed using a separate one-way ANOVA for both 

exposure timing groups. F-ratios were calculated from Type I SS. 

B.2 RESULTS 

B.2.1 LARVAL SURVIVAL AND DEVELOPMENT 

Larval survival and normal development were not affected by copper exposure or 

timing of exposure (Table B.1). Only larval age had a significant effect, with survival 

and proportion of normal larvae declining with time.  

 
Table B.1: Repeated measures ANOVA of Evechinus chloroticus larval survival rate (A) and larval 
normal development rate (B) to test effects of copper exposure (copper level) and timing of exposure 
(timing) during 3 sampling (Age) throughout larval stage. Significant effects (p < 0.05) are highlighted 
in bold.  
Source	
  of	
  variation	
   df	
   SS	
   F	
   p	
  
(A)	
  Larval	
  survival	
  
Timing	
   1,	
  16	
   0.0392	
   0.708	
   0.413	
  
Copper	
  level	
   4,	
  16	
   0.628	
   2.838	
   0.059	
  
Age	
   2,	
  32	
   12.49	
   178.5	
   <0.001	
  
Timing	
  x	
  Copper	
  level	
   4,	
  16	
   0.209	
   0.942	
   0.465	
  
Timing	
  x	
  Age	
   2,	
  32	
   0.032	
   0.464	
   0.633	
  
Copper	
  level	
  x	
  Age	
   8,	
  32	
   0.470	
   1.678	
   0.142	
  
(B)	
  Larval	
  normal	
  development	
  
Timing	
   1,	
  16	
   0.097	
   2.532	
   0.131	
  
Copper	
  level	
   4,	
  16	
   0.153	
   0.999	
   0.437	
  
Age	
   2,	
  32	
   3.922	
   80.18	
   <0.001	
  
Timing	
  x	
  Copper	
  level	
   4,	
  16	
   0.151	
   0.985	
   0.443	
  
Timing	
  x	
  Age	
   2,	
  32	
   0.134	
   2.739	
   0.080	
  
Copper	
  level	
  x	
  Age	
   8,	
  32	
   0.265	
   1.356	
   0.253	
  
 

However, there was a trend of delayed development (Figure B.1) with a lower 

proportion of 8-arms larvae in the High copper level in both Early and Late exposure 

groups (Early exposure: 0.53 ± 0.46 in High level vs 0.79 ± 0.17 in control; Late 

exposure: 0.52 ± 0.22 in High level vs 0.95 ± 0.03 controls; mean ± standard 
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deviation). However, this difference was significant only in the Late exposure group 

(Dunnett’s contrasts, Early: t = -1.26, p = 0.57; Late: t = -5.06, p = 0.002).  

 

 
 
Figure B.1: Delayed development of Evechinus chloroticus larvae exposed to copper expressed as 
proportion of normal larvae having reached the 8-armed pluteus stage at day 25 post-fertilisation for 
Early exposure group (white bars) and day 27 for Late exposure group (grey bars). Error bars represent 
the standard error of the mean (N = 3).  
 

B.2.2 LARVAL GROWTH AND MORPHOMETRICS 

Larval growth for all three variables: body length (BL), postoral arms (PO) and 

anterolateral arms (AL), was significantly lower in the Early exposure group with and 

average of 23% growth in BL, 18% in PO and 51% in AL against a growth rate of 

respectively 31%, 27% and 95% in Late exposure group (Table B.2). However, 

copper level was not significant and controls for each variable were also slightly 

lower in Early treatment than in Late treatment, although the difference was 

significant only for AL (t-test; t = -3.45, df = 4, p = 0.03; Figure B.2). This suggests 

that the difference between Early and Late treatment is due to stage-dependent growth 

rather than timing of copper exposure. Indeed growth rate in Late groups was 
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measured slightly later (13 – 17 d post-fertilisation) than in Early groups (11 – 25 d 

post-fertilisation). Interestingly, growth rate was higher in Late groups for all 

variables and copper levels except for arm growth (both PO and AL) in High copper 

level. There might be a trend of decreasing arm growth in High copper level but it is 

masked by the difference in sampling timing.  

 
Table B.2: Effect of copper exposure (Level) and timing of exposure (Timing) on Evechinus 
chloroticus growth rate during the last 14 days of larval stage analysed using a two-ways ANOVA 
model. Significant effects (p<0.05) are highlighted in bold. 
Variable	
   Timing	
  F	
  (p)	
   Level	
  F	
  (p)	
   Timing	
  x	
  Level	
  F	
  (p)	
  
Body	
  length	
  (BL)	
   6.59	
  (0.02)	
   0.23	
  (0.92)	
   0.92	
  (0.48)	
  
Postoral	
  arm	
  length	
  (PO)	
   11.05	
  (0.005)	
   2.99	
  (0.05)	
   1.43	
  (0.27)	
  
Antelateral	
  arm	
  length	
  (AL)	
   7.64	
  (0.01)	
   1.71	
  (0.20)	
   1.05	
  (0.41)	
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Figure B.2: Proportion of growth of Evechinus chloroticus larvae body length (BL), postoral arms 
(PO) and anterolateral arms (AL) during the last 2 weeks of larval stage. Larvae where exposed to 
different levels of copper either Early (4 - 6 days post-fertilisation) or Late (11 - 13 days post-
fertilisation) in larval stage. Boxes represent the median and quartiles. 
 

Copper exposure had no significant effect on larval morphometric measures at the 

end of the larval stage (PD, EO and R) except for EO in Early exposure group (Table 

B.3). However, the significance in EO was driven by a difference between Field and 

High copper level (Tukey comparisons: p = 0.02). Rudiment presence was not 

affected by copper exposure in both timing groups (one-way ANOVA, Early group: F 

= 4.28, p = 0.06; Late group: F = 0.25, p = 0.90). The difference between Early and 
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Late groups could not be evaluated, as measurements were not taken on the same day 

for both groups.  

 
Table B.3: Effect of copper exposure (copper level) on Evechinus chloroticus morphometric 
measurements in late larval stage (25 d post-fertilisation for Early exposure group and 27 d for Late 
exposure group) analysed using a one-way ANOVA on mixed effect model. Significant effects (p < 
0.05) are highlighted in bold. 

Variable	
  
Copper	
  level	
  in	
  Early	
  group	
  

F	
  (p)	
  
Copper	
  level	
  in	
  Late	
  group	
  

F	
  (p)	
  
Posterodorsal	
  arm	
  length	
  (PD)	
   1.05	
  (0.45)	
   1.39	
  (0.31)	
  
Preoral	
  arm	
  length	
  (EO)	
   5.81	
  (0.02)	
   0.44	
  (0.78)	
  
Stomach	
  size	
  	
   1.11	
  (0.42)	
   1.96	
  (0.19)	
  
Rudiment	
  size	
   0.37	
  (0.77)	
   0.62	
  (0.66)	
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APPENDIX C                      
Bioaccumulation of copper, lead 
and zinc by the planktonic alga 
Dunaliella tertiolecta 

C.1 METHODS 

C.1.1 EXPERIMENTAL METHODS 

Dunaliella tertiolecta was cultured in 100 ml trace metal-free HDPE plastic tubes 

(digitubes, SCP Science, Canada). Basic culture medium was prepared by adding 

standard F/2 medium to natural filtered seawater (FSW), pre-filtered to 15 µm and 

then filtered through a 0.2 µm paper cartridge. Tubes and culture medium were 

sterilised by autoclave (121°C, 15 min cycle).  

 

Metal enriched culture media were prepared by adding reagent grade metals after 

autoclaving: copper sulphate (CuSO4.5H2O), lead nitrate (Pb(NO3)2) and zinc 

sulphate (ZnSO4.7H2O), to standard F/2 medium. Nominal concentrations for each 

metal level used are shown in Table C.1. The ANZECC level was based on the 

current recommended water quality trigger value for 95% species protection 

(ANZECC 2000). The Field x2 concentration was twice the maximum dissolved 

copper concentration measured from 29 seawater samples collected across four sites 

in the Wellington region between September 2011 and January 2012 (Figure A.2). 

The High level was chosen as a realistic level occurring in moderately polluted water 
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such as near large cities (Table 1.1). Three replicate tubes were used for each metal 

and level of contamination plus control. 

 
Table C.1: Concentrations of copper (A), lead (B) and zinc (C) used in algal culture (nominal 
concentration) and corresponding cellular concentration in Dunaliella tertiolecta ± standard deviation 
(sd). Cellular concentration is measured in total recoverable metal per cell. Metal concentration per 
algal dry weight is based on a dry weight of 1.25 x 1010 cells/g (Fábregas et al. 1995). 

Metal	
  level	
  
Nominal	
  
concentration	
   N	
  

Mean	
  cellular	
  
concentration	
  
(fg/cell)	
  

	
  
±	
  sd	
  

Metal	
  
concentration	
  
per	
  dry	
  weight	
  	
  
(µg/g)	
  

(A)	
  Copper	
   	
   	
   	
   	
   	
  
Control	
   0	
   3	
   1.4	
   1.2	
   17.5	
  
ANZECC	
   1.3	
   3	
   5.3	
   0.8	
   66.3	
  
Field	
  x2	
   5.8	
   3	
   13.7	
   2.3	
   171.7	
  
High	
   10	
   2	
   28.1	
   0.7	
   351.3	
  
(B)	
  Lead	
   	
   	
   	
   	
   	
  
Control	
   0	
   3	
   0.5	
   0.6	
   6.7	
  
ANZECC	
   4.4	
   3	
   2.5	
   0.3	
   31.5	
  
Field	
  x2	
   5.4	
   1	
   2.1	
   -­‐	
   27.0	
  
High	
   10.4	
   3	
   16.41	
   6.2	
   205.2	
  
(C)	
  Zinc	
   	
   	
   	
   	
   	
  
Control	
   0	
   3	
   10.0	
   4.4	
   125.1	
  
Field	
  x2	
   9.4	
   2	
   22.8	
   6.3	
   284.4	
  
ANZECC	
   15	
   2	
   30.8	
   1.6	
   384.4	
  
High	
   50	
   2	
   75.5	
   6.3	
   943.1	
  
 

Culture tubes were inoculated with rinsed D. tertiolecta at a density of 2 x 105 cells / 

ml. Algae were cultured for 14 days at 13°C ±1 under a 12h light-cycle. Oxygenation 

was provided by daily manual stirring. After two weeks of culture, an aliquot of 60 

ml was taken per tubes. D. tertiolecta cells were rinsed thoroughly to remove 

unabsorbed metals by three successive centrifugations and resuspensions in clean 

FSW (1201 g for 5 min).  Precipitated cells were then resuspended in 20 ml deionized 

(ddi.) water and cell density was measured with a heamocytometer. Algal suspension 

was acidified with reagent grade nitric acid (final concentration: 1%) to preserve 

metal content and were sent to Environmental Laboratory Services, Lower Hutt, for 

total recoverable metal analysis. Metal concentrations were expressed in femtogram 

of metal per algal cell (cellular concentration).  
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C.1.2 STATISTICS 

The effect of metal spikes in culture medium on final concentration of metal in algal 

cells were analysed using separate linear regression on each metal tested. In lead, 

cellular concentration was log-transformed to meet the linear relationship assumption. 

Comparison between the different copper levels and controls was examined using a 

priori coefficients contrasts from one-way ANOVAs. A dry weight of 1.25 x 1010 

cells/g of dry weight was used to convert cellular metal in metal accumulation per 

weight (Fábregas et al. 1995). 

C.2 RESULTS 

Bioaccumulation occurred in all three metals tested with a significant increase of 

cellular metal concentration with metal exposure (Table C.2). The relationship 

between metal in culture and cellular metal was linear for copper and zinc, and 

exponential for lead across the metal range tested (Figure C.1). 

 
Table C.2: Effect of metal exposure on cellular metal concentration of Dunaliella tertiolecta analysed 
by linear regression. Data was log-transformed in lead. Significant effects (p < 0.05) are highlighted in 
bold. 
Metal	
   df	
   Estimate	
   t	
   p	
  
Copper	
   9	
   2.60	
   12.8	
   <0.001	
  
Lead	
   8	
   0.23	
   9.0	
   <0.001	
  
Zinc	
   7	
   1.31	
   17.6	
   <0.001	
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Figure C.1: Bioaccumulation of copper (Cu), lead (Pb) and zinc (Zn) by Dunaliella tertiolecta after 1 
week of culture in metal-spiked medium. Cellular metal concentration is the total recoverable metal 
per cell. Regression equation and R2 shown in Pb is based on log-transformed data, log(y + 1). 
 

Cellular copper concentration was more than 3-fold higher in the lowest copper level 

(ANZECC), 10-fold higher in Field x2 and more than 20-fold higher in High level 

(Table C.1a). However, due to the very small sample size and thereby lack of power, 

only Field x2 and High levels were significantly different from controls (Coefficient 

contrasts; Field x2: t = 6.7, p < 0.001; High: t = 13.1, p < 0.001). 
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Cellular lead concentration was 4 to 5-fold higher in ANZECC and Field x2 level and 

more than 30-fold higher in High level (Table C.1b). Only the High level was 

significantly different from control (Coefficient contrasts: t = 5.36, p = 0.002). 

 

Cellular zinc concentration was 2-fold higher in Field x2, 3-fold higher in ANZECC 

and more than 7-fold higher in High level (Table C.1c). All copper levels were 

significantly different from control (Coefficient contrasts; Field x2: t = 2.84, p = 0.04; 

ANZECC: t = 4.62, p = 0.006; High: t = 14.6, p < 0.001). 

 





Appendix D: Copper burden in Evechinus chloroticus populations from Wellington Harbour: a pilot study 

     185 

APPENDIX D                                    
Fertilisation success and copper 
burden in Evechinus chloroticus: 
pilot studies 

D.1 AIMS 

Copper burden pilot 

Copper burdens in the gonads of adult E. chloroticus from seven sites across 

Wellington Harbour were compared to select a population with elevated copper 

burden for further analysis. 

 

Fertilisation success pilot 

The effect of copper on E. chloroticus gametes was evaluated at different sperm 

concentrations to determine the sperm concentration yielding the maximum 

observable effect of copper toxicity on fertilisation success.  

D.2 METHODS 

D.2.1 COPPER BURDEN PILOT 

Five adults (test size > 7 cm) were collected from seven sites across Wellington 

Harbour in September – November 2012 (Figure D.1). Animals were measured (test 

diameter), and the gonads were dissected and weighed (wet weight). A subsample of 

gonad tissues was taken for analysis for copper content while, the remaining tissues 
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were dried at 60oC to determine the moisture content. Wet subsamples were digested 

in nitric acid and analysed by graphite-furnace atomic absorption spectrometry 

following the U.S. EPA standard protocol (Creed & Martin 1997). All copper burden 

values presented here should be used only to compare samples analysed in the same 

run (i.e. all samples presented here but excluding samples in Chapter 6) due to 

difference in the calibration procedure. 

 
Figure D.1: Map of Wellington Harbour showing sampling sites. FK: Frank Kitts park, FT: Ferry 
terminal, KG: Kaiwharawhara gorge, KB: Kau Bay, PH: Point Howard, MB: Mahina Bay, DB: Days 
Bay.  
 

D.2.2 FERTILISATION SUCCESS PILOT 

Broodstock was collected at the beginning of the spawning season (October 2013) in 

Kau Bay (KB, Figure D.1). Adults were kept in the laboratory for two months prior to 

spawning and were fed twice a week with native kelp (Macrocystis pyrifera) and/or 

commercial feed (ABMAX, E.N. Hutchinson Ltd Auckland NZ). E. chloroticus 

gametes from three males and three females were obtained by inducing spawning 

with potassium chloride (as described in section 3.2.1). Gametes from different 

parents were pooled in equivalent concentration, to obtain a composite sperm and egg 

stock. Fertilisation occurred in 10 ml glass vials containing seawater spiked with 0, 5, 

15 or 50 ug/L of copper (reagent grade copper sulfate CuSO4.5H2O). Egg density 

was 100 eggs/ml and sperm density (measured with a haemocytometer) was 10, 102, 

103 or 104 per ml. Eggs and sperm were left in contact for 1h before being preserved 

in 40% ethanol. All treatments had three replicate vials. Fertilisation success was 

FK

KG

KB

PH
MB

DB
FTWellington 

 CBD



Appendix D: Copper burden in Evechinus chloroticus populations from Wellington Harbour: a pilot study 

     187 

evaluated by observing 100 eggs per vials for sign of a fertilisation membrane, under 

x200 magnification 

D.3 RESULTS 

D.3.1 COPPER BURDEN PILOT 

Copper burden in E. chloroticus appeared to be elevated at the urban sites of FK and 

FT, and to a lesser extent at KG (Table D.1). The two individuals sampled from the 

industrial site showed no detectable copper. Most individuals from residential sites 

had a copper burden below detectable levels. Due to ease of access, FK was selected 

as the polluted site for Chapter 6. 

 
Table D.1: Copper burden in Evechinus chloroticus from seven sites across Wellington Harbour. FK, 
FT and KG receive urban runoff. PH is receives industrial and urban runoff. KB, MB and DB receive 
residential runoff. 
Site Size (mm) Gonad total weight (g) Copper burden (µg/g) 
FK 62 2.42 1.19 
FK 70 7.44 0.46 
FK 63 0.92 nd 
FK 61 4.22 0.76 
FT 61 5.11 1.76 
FT 76 17.10 0.13 
FT 77 7.24 0.19 
KG 71 8.47 0.01 
KG 68 5.64 0.04 
KG 66 4.71 nd 
PH 80 - nd 
PH 81 - nd 
KB 67 7.67 nd 
MB 60 2.03 nd 
MB 64 5.46 0.35 
DB 70 - nd 

D.3.2 FERTILISATION SUCCESS PILOT 

The fertilisation success was below 1% in seawater with no added copper, at all but 

the highest sperm concentration (104 per ml). At the highest sperm concentration, the 

fertilisation success had a dose-response relationship with copper concentration 
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(Figure D.2). However, the fertilisation success was very low, even in controls, with 

9, 16 and 52% success in the three control replicates. Therefore, a 105 per ml sperm 

density was chosen for the research described in Chapter 6.  

 
Figure D.2: Fertilisation success of Evechinus chloroticus with gamete exposure to increasing copper 
concentrations. The error bars represent the standard deviation (N = 3). 
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