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1 ABSTRACT  

 
 
 
 
 
 

Animals are regularly exposed to environmental, social and physiological challenges. 

In reaction to these challenges, individuals adjust their physiology and behaviour to 

maintain essential processes and optimise fitness.  The most widely used indicators 

of physiological stress in vertebrates are glucocorticoid hormones (corticosterone 

(CORT) or cortisol), which are commonly referred to as ‘stress hormones’. The use of 

CORT as a tool to understand how individuals respond to natural or human-caused 

challenges is central to stress physiology research. Here, I investigated intrinsic and 

extrinsic factors associated with CORT secretion, CORT secretion as an indicator of 

physiological response to challenges/stressors, and the value of CORT secretion as 

conservation tool in an iconic protected reptile (the tuatara, Sphenodon punctatus). 

A capture-restraint time series revealed a significant CORT response over a 24 h 

period in male and female (non-gravid and gravid) tuatara. Baseline CORT and the 

CORT response to capture and restraint (i.e. a standardised capture-stress protocol) 

were similar between sexes; however, female reproductive condition was correlated 

with CORT secretion in that higher baseline CORT and a lower CORT response were 

observed in gravid females.  An observational study incorporating data across a 

wide range of ambient temperatures (from four island sites) confirmed that body 

temperature (Tb) is positively correlated with baseline CORT in gravid females only, 

and revealed a positive correlation between the CORT response and higher Tb in all 

adults.  A supporting experimental study showed that acute ambient temperature 

increase (in which mean Tb reached 21.4±0.4°C) elicits a significant CORT response 

to capture-restraint in gravid females.  These results confirmed that gravid females 

are not secreting CORT maximally during nesting, but actively modulate secretion.  

An inter-island comparison of CORT secretion (for four populations) revealed that 

baseline CORT secretion was similar among populations during the non-breeding 

and breeding seasons; however, the CORT response to capture-restraint varied 

significantly among populations.  Inter-population variation in testosterone (T) was 
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observed in males (but not females) and was positively linked with increased 

baseline CORT from the non-breeding season to the breeding season, suggesting 

male reproductive activity may drive seasonal change of baseline CORT.  Significant 

correlations were observed between the CORT response to capture-restraint (but 

not baseline CORT) and habitat elements of latitude, tuatara density and seabird 

abundance and 2) demogenetic factors of sex ratio and genetic diversity. The 

measurement of CORT as a physiological monitoring tool indicated that short- and 

long- term dynamics of CORT secretion in tuatara are not altered through 

translocation to a new island, as the acute CORT response remained stable 

throughout exposure to cumulative stressors and long-term dynamics of CORT 

secretion in translocated populations simultaneously mirrored those in source 

populations.  

These findings deliver the most detailed study of CORT secretion patterns in tuatara 

to date. Moreover, as the first study to apply CORT secretion data as an conservation 

physiology monitoring tool in tuatara, these results serve as a baseline reference for 

future research and monitoring of conservation efforts.
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1 Biology of glucocorticoids and their application in 

conservation: an overview 

1.1 Introduction 

Human impacts continue to influence ecological change of natural ecosystems; 

therefore, it is becoming increasingly important to understand how organisms 

respond and cope with environmental change and unpredicted challenges 

(Wingfield, 2013).  Physiological techniques have been utilised in  

ecological/conservation studies as tools to assess an individual’s physiological 

response to challenges or a changing environment (Wikelski and Cooke, 2006). 

Understanding an individual’s physiological response to certain challenges or 

stressors, and/or identifying the root of physiological stress, will enable 

development and consideration of more effective conservation management 

strategies and solutions (Dantzer et al., 2014; Madliger and Love, 2014). This thesis 

aims to advance the current understanding of reptile physiology by identifying 

intrinsic and extrinsic factors associated with the endocrine stress response in a 

rare reptile, the tuatara (Sphenodon punctatus), and subsequently examine its utility 

in monitoring conservation efforts.  In this overview, I provide a brief background of 

glucocorticoid physiology, conservation physiology, and tuatara ecology to provide a 

general introductory framework for the four data chapters that follow. 

1.2 Glucocorticoids: physiology and function in vertebrates 

The endocrine system in vertebrates produces hormones that regulate and facilitate 

life-history transitions and responses to intrinsic and extrinsic changes/challenges 

    CHAPTER 1 
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(i.e. stressors), thereby playing an important fitness role (Crespi et al., 2013; Dufty et 

al., 2002; Jessop et al., 2013; Schultner et al., 2013).  The hypothalamo-pituitary-

adrenal (HPA) axis produces steroid hormones referred to as glucocorticoids (GCs) 

(Fig 1.1).  At a basal level, GC secretion promotes essential life processes such as 

carbohydrate/ intermediary metabolism balance and cell provisioning of glucose 

(i.e. basic energy regulation). However, when an individual is exposed to 

unpredictable challenges/stressors, a complex adaptive hormonal response 

commonly referred to as the ‘stress response’ cascades through the HPA axis and 

stimulates further secretion of GCs (Busch and Hayward, 2009; Landys et al., 2006; 

Sapolsky et al., 2000)(Fig 1.1). 

 

Figure 1.1. The vertebrate hypothalamo-pituitary-adrenal (HPA) axis. Increased glucocorticoid 
(GC) secretion (corticosterone (CORT) and cortisol) is activated through stimulation of the HPA 
axis in response to challenges/stressors. CORT is dispersed through the circulatory system by 
way of corticosteroid-binding globulins (CBGs). Figure modified from Romero (2004). 
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The hypothalamus is stimulated in response to a challenge or stressor, triggering 

release of corticotropin-releasing hormone (CRH).  In turn, CRH stimulates the 

pituitary to synthesise and release adrenocorticotropin hormone (ACTH), which 

then stimulates adrenal tissues to increase GC secretion well above basal levels 

(Sheriff et al., 2011) (Fig 1.1). 

The primary GCs in vertebrates are corticosterone (CORT) and cortisol.  CORT is 

dispersed through the circulatory system by way of corticosteroid-binding globulins 

(CBGs), and is delivered to specific target tissues, whereupon CORT binds to 

receptors (Schoech et al., 2013)(Fig 1.1).  Receptors are widely distributed 

throughout cells in the body, and can therefore initiate a range of responses affecting 

behaviour, energy provision by stimulating gluconeogenesis (the formation of  

“new” glucose from non-carbohydrate sources), growth, immune response, and 

reproduction (Jessop et al., 2013; Romero, 2004) (Fig 1.1). CORT is modulated by 

two types of receptors: mineralocorticoid receptors (MR) and glucocorticoid 

receptors (GR).  At lower CORT levels (i.e. basal CORT secretion), CORT 

preferentially binds to MRs (to regulate energy balance) and in contrast, GR 

receptors are bound when CORT concentrations are high (i.e. after a 

challenge/stressor) (Busch and Hayward, 2009; Romero, 2004). A negative feedback 

cycle regulates the continuation (or conversely discontinuation) of the CORT 

secretion process, and is based on the prevalence/status of the challenge or stressor 

(Romero, 2004; Sapolsky et al., 2000) (Fig 1.1).  

Although GCs primarily function to support immediate survival and fitness, elevated 

GCs over extended periods of time (i.e. chronic stress) have been shown to have 

deleterious effects on an individual’s overall health, condition and reproductive 

success (Tokarz and Summers, 2011).  Harmful effects of elevated or sustained 

CORT secretion (both endogenous and exogenous) have been confirmed in a wide 

range of taxa.  Examples include: decreased body condition in brown tree snakes 

(Boiga irregularis) (Waye and Mason, 2008), reduced bacterial killing ability and 

slower wound healing in marine iguanas (Amblyrhynchus cristatus) (French et al., 

2010), reduced display and attack behaviour (DeNardo and Licht, 1993) and home 
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range territories (DeNardo and Sinervo, 1994) in side-blotched lizards (Uta 

stansburiana).   

Several studies have also shown that maternal CORT is transferred to young (in both 

viviparous and oviparous species) (Cree et al., 2003; Love et al., 2013; Uller et al., 

2009).  Hormones contribute to developmental plasticity in individuals and 

reproducing females exposed to stressors can affect morphological, physiological 

and behavioural traits in offspring that can subsequently affect their performance 

(Meylan et al., 2010; Michel et al., 2011). For example, stressed barn swallows 

(Hirundo rustica) (exposed to predators) laid eggs that had higher CORT than un-

stressed controls (exposed to herbivores) and eggs with higher CORT had lower 

hatching success and produced smaller hatchlings with slower plumage 

development, compared to controls (Saino et al., 2005).  Pregnant female garter 

snakes (Thamnophis elegans) with elevated CORT produced offspring that exhibited 

decreased anti-predator behaviour (Robert et al., 2009).  Activity (Belliure et al., 

2004) and sprint speed/motivation to run (Meylan and Clobert, 2004) were 

decreased in common lizard (Lacerta vivipara) hatchlings produced by mothers with 

elevated CORT.  Recent studies also demonstrate that CORT can influence sex 

determination of embryos. For example, in two lizard species that have 

temperature-dependent sex determination (TSD), elevated CORT altered sex-ratios 

in offspring; more males were produced in Bassiana duperreyi and more females 

were produced in Amphibolurus muricatus at pivotal temperatures (normally 

producing a 1:1 sex ratio). Sex-specific embryonic mortality was affected by CORT 

levels in A. muricatus, but not in B. duperreyi (Warner et al., 2009).  

1.3 Factors associated with CORT secretion  

It is generally agreed that baseline CORT serves to meet the energetic demands 

associated with everyday life, whereas the acute CORT response is a reaction to 

unpredictable and/or challenging events (Fig 1.2) (Tokarz and Summers, 2011; 

Wingfield et al., 1998).  The acute CORT response allows individuals to react to a 

stressor by way of an adaptive physiological and/or behavioural response, and 

serves to promote overall fitness (Breuner et al., 2008; Busch and Hayward, 2009). 



5 
 

Modulation of CORT secretion (i.e. daily and/or seasonal)(Fig 1.2) occurs and helps 

individuals cope with their specific environment to effectively increase fitness 

(Moore and Jessop, 2003; Romero, 2002).   

Baseline CORT is commonly elevated during the breeding season to support 

energetic requirements associated with reproductive activities (such as nesting and 

mating), and similarly,  individuals experiencing reduced breeding opportunities or 

living in harsh environments have been found to dampen their CORT response 

during the breeding season, which may serve to increase chances of reproductive 

success (Ebensperger et al., 2013; Holding et al., 2014b; Moore and Jessop, 2003; 

Romero, 2006; Wingfield et al., 1998; Wingfield and Sapolsky, 2003).  For example,  

sea turtles display a reduced CORT response during nesting, even when faced with 

challenges such as non-lethal shark attacks and overheating, suggesting a trade-off 

of immediate survival for fitness (Jessop et al., 2004a; Jessop et al., 2000).   

Patterns of CORT secretion are not universally consistent; variation is observed 

among species and within/among populations (Baker et al., 2013; Cockrem, 2013; 

Creel et al., 2013; Love et al., 2013).  Variation in CORT secretion can be linked with 

intrinsic factors such as sex, reproductive status, body condition, and age (reviewed 

in Baker et al. (2013) and Cockrem (2013)). Also, extrinsic factors such as habitat 

modification – both natural and human-induced (Berner et al., 2013; French et al., 

2010; Owen et al., 2014; Tartu et al., 2014; Taylor et al., 2014), seasonal/annual 

changes in food availability (Bryan et al., 2014; Kitaysky et al., 2007; Woodley et al., 

2003), and fluctuating environmental temperature and/or weather (Lance et al., 

2010; Telemeco and Addis, 2014) can influence CORT secretion. Furthermore, 

increased energy demands required during reproduction (Woodley and Moore, 

2002), territorial disputes (Baird et al., 2014; Yang and Wilczynski, 2003) and 

migration (Hamann et al., 2007; Jessop et al., 2004b) can influence patterns of CORT 

secretion. 
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Figure 1.2. Schematic diagram of CORT secretion in vertebrates.  Baseline CORT concentrations 
reflect the basal range necessary for basic life functions (black band) and modulated range in 
response to daily, seasonal and life-history demands (solid black line within white band). An 
acute CORT response (dashed line), in which CORT concentrations are significantly elevated from 
baseline, will be mounted in response to physiological challenges or stressors. Figure modified 
from Busch and Hayward (2009). 

 

 

1.4 Corticosterone as an indicator of physiological stress  

The measurement of CORT as a tool to assess population health and/or to monitor 

conservation efforts is instrumental in stress physiology research, with CORT being 

the most widely used indicator of physiological stress in vertebrates (Busch and 

Hayward, 2009; Dantzer et al., 2014; Wikelski and Cooke, 2006).  Increased CORT 

secretion in vertebrates has been linked with reduced body condition, depressed 

immunity, decreased locomotor performance, and changes in behaviour - all of 

which are performance measures that can have fitness implications (Busch and 

Hayward, 2009; DeNardo and Sinervo, 1994; Meylan and Clobert, 2004; Towns et al., 

2007; Warner et al., 2009; Waye and Mason, 2008).    
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Applied conservation physiology has been used to monitor and/or assess issues and 

conservation efforts such as: habitat alteration/human exposure (Owen et al., 2014; 

Romero and Wikelski, 2002; Taylor et al., 2014), weather and climate change 

(Breuner and Hahn, 2003; Lance et al., 2010; Thierry et al., 2013), increased 

predation and/or invasive species (Anson et al., 2013; Berger et al., 2007; Rödl et al., 

2007; Thaker et al., 2010), immune function and disease (Lucas and French, 2012; 

Martin et al., 2012), reproduction (Klose et al., 2006; Moore et al., 2005; Smith et al., 

2012; Strasser and Heath, 2013; Tartu et al., 2014), and translocations (Bosson et al., 

2013; Drake et al., 2012; Franceschini et al., 2008; Holding et al., 2014a; Socorro 

Aguilar-Cucurachi et al., 2010; Zidon et al., 2009).  

For example, Romero and Wikelski  (2001, 2010) determined CORT secretion in 

Galápagos marine iguanas (Amblyrhynchus cristatus) during El Niño and found that 

1) CORT secretion (both baseline CORT and the CORT response to capture-restraint) 

was higher during El Niño-induced famine conditions (compared to non-famine 

conditions), 2) baseline CORT was elevated in individuals with body condition 

scores below a certain threshold, and 3) the CORT response to capture-restraint and 

negative feedback of CORT predicted survival. Hartup et al. (2005) examined CORT 

secretion (faecal CORT concentrations) to assess potential stress in whooping cranes 

(Grus americana) undergoing translocation to the wild. The authors found that acute 

stressors of capture, restraint, and severe weather were connected with CORT 

secretion, but the overall translocation process (i.e. costume-rearing, ultralight 

aircraft habituation, training, artificial migration) did not lead to chronic stress. 

There is still confusion, however, in how to identify chronic stress in wild animals, 

although it is commonly assumed that measures of CORT will increase.  The best 

approach for identifying a chronically stressed population appears to be 

documentation of changes in CORT secretion, as the detection of a change in 

response may be more important than the direction of change (increase or 

decrease) (Dantzer et al., 2014; Dickens and Romero, 2013). 

1.4.1 Determining CORT concentrations 

1.4.1.1 Immunoassay 
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Corticosterone concentrations are determined in biological samples (i.e. blood 

plasma/serum, saliva, urine, faeces, hair, feather, skin, milk, and albumen/yolk) 

mainly by either enzyme-immunoassay (EIA) or radio-immunoassay (RIA) (Sheriff 

et al., 2011).  Both EIA and RIA techniques use competitive binding assays that are 

extremely sensitive in detecting CORT. Assays can be developed in-house or be 

purchased as commercial kits (complete with all necessary components). Both 

options need to be carefully validated for the species and biological sample of choice 

(as in Chapter Two) to ensure proper quantification of CORT concentrations, as 

other variables can interfere with the assay and the validation process will identify 

any issues (Sheriff et al., 2011). 

1.4.1.2 Total vs free CORT in blood plasma samples 

Determining CORT concentrations in blood samples (by assaying plasma or serum) 

is the most commonly used method in vertebrate studies. Blood samples provide an 

instantaneous ‘snap-shot’ of circulating CORT concentrations in an individual, for 

both baseline and CORT response measures (Sheriff et al., 2011) (Fig 1.2).   Assays of 

plasma/serum CORT measure the total available CORT concentration (versus free 

CORT concentration – unbound to CBGs) in a blood sample.  Breuner et al. (2013) 

recommended that researchers determine and report both total CORT and free 

CORT concentrations, arguing that free CORT is the biologically relevant component 

in blood. However, total CORT concentrations are currently considered more 

accurate and more interpretable/relevant for ecological field studies than free CORT 

concentrations, as total CORT indicates the total available CORT that will eventually 

be utilised by tissues (Schoech et al., 2013).  

1.5 Tuatara ecology   

The Tuatara (Sphenodon punctatus) (Fig 1.3) is a protected reptile species endemic 

to New Zealand and the sole living representative of the order Rhynchocephalia, the 

sister group to squamates (Cree, 2014). Tuatara are sexually dimorphic once they 

reach sexual maturity at approximately 13 years of age (~ SVL ≥ 170mm), 

whereupon sex can be identified by examining characteristics such as head size, 
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head shape, body shape, crest development and spine shape (Cree, 2014; Cree et al., 

1991a; Dawbin, 1982).  Tuatara have seasonally distinct breeding and nesting 

seasons, with breeding activity (mating and ovulation) occurring in autumn 

(February – March) and nesting activity occurring in spring (October – December), 

though not all females ovulate and nest each year (Cree, 2014).  Female tuatara 

exhibit an extended reproductive cycle, carrying eggs in the oviduct for 6–8 months 

and producing one clutch of eggs every 2-9 years, depending on the population (Cree 

et al., 1992; Moore et al., 2009a; Refsnider et al., 2010).   

Historically, tuatara were widely distributed throughout New Zealand, but following 

human settlement, they became extinct on the mainland (North and South Islands). 

Currently, natural populations occur on 32 isolated offshore islands and 

translocated populations occur on nine offshore islands and five mainland 

sanctuaries (Cree, 2014; Jones and Cree, 2012). Captive breeding programs, 

eradication of invasive species/predator control, and translocations (Cree, 2014; 

Gaze, 2001) are relevant ongoing conservation efforts for tuatara, all of which  have 

potential to benefit from relevant endocrine data. 

 

Figure 1.3. A wild adult male tuatara (Sphenodon punctatus) that was hand-captured on Taranga 
Island, and subsequently sampled by Lindsay Anderson. Photo: Susan Keall.  
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Previous research has shown that baseline CORT in tuatara is generally low, with no 

evidence of a diel cycle  (Cree and Tyrrell, 2001; Tyrrell and Cree, 1998), and a 

significant CORT response is observed to capture-restraint (Tyrrell and Cree, 1998).  

Seasonal variation in baseline CORT has been observed in the population on 

Stephens Island/Takapourewa, where baseline CORT was highest in November for 

females and February and May for males (Tyrrell and Cree, 1998); however, 

seasonal patterns of baseline CORT secretion in other island populations, seasonal 

patterns of the CORT response, and factors influencing inter-island variation have 

not been investigated. Overall, we know very little about how intrinsic and extrinsic 

factors influence variation in CORT secretion (both baseline CORT and the CORT 

response) within and among populations of tuatara. 

1.6 Study populations/sites  

The study populations/sites (Fig 1.4) in this thesis were chosen based on population 

size and connection to ongoing conservation efforts.  Stephens Island has the largest 

population of tuatara, and was chosen as the study site to thoroughly examine 

intrinsic factors influencing CORT secretion (baseline CORT and a 24 h CORT 

response time-series) in male and female (both gravid and non-gravid) tuatara 

(Chapter Two).  The Stephens Island, North Brother Island, Lady Alice Island, and 

Taranga Island populations were included in studies examining the influence of 

temperature on CORT secretion (Chapter Three) and inter-island variation of CORT 

secretion (Chapter Four).  Finally, Stephens Island and Lady Alice Island were source 

populations in two translocation programmes (Chapter Five), where I examined 

CORT secretion through the translocation process in the translocated populations of 

Motuihe Island (from Lady Alice Island),  Sanctuary Mountain Maungatautari and 

Cape Kidnappers Sanctuary (both from Stephens Island). 
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Figure 1.4. Location of study populations/sites mentioned in this thesis.  Naturally occurring 
island populations are indicated by black dots and translocated populations are indicated by 
white dots.   
 
 

1.7 Thesis structure 

The data chapters of this thesis are written as stand-alone manuscripts that have 

been submitted to or published in peer-reviewed journals.  Therefore, there is 

inevitably some repetition, specifically in the introduction and methods sections 

(note: references for all chapters are combined at the end of this thesis).  I led the 

study design, data collection, data analyses, and writing of this thesis, under the 

guidance and supervision of my supervisors who are listed as co-authors for all four 

data chapters. 
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The overall aim of this thesis is to advance the understanding of CORT physiology in 

the tuatara (Sphenodon punctatus) and to assess the value of monitoring CORT in 

relevant conservation efforts.  The results from this thesis will contribute to the 

broader field of comparative endocrinology and will provide applied results and 

information to conservation managers and future researchers. 

 

The main questions of this thesis are:  

1) What factors influence CORT secretion (both baseline CORT and the CORT 

response) in tuatara? 

2) Do patterns of CORT secretion indicate a physiological response to 

challenges/stressors in tuatara?   

3) Is the measurement of CORT secretion a valuable addition to the conservation 

‘tool-box’ for tuatara? 

 

Basic intrinsic patterns of CORT secretion must first be understood in order to 

reliably interpret and/or compare outcomes from a study employing CORT 

secretion as a tool.  Failing to account for influential factors and correlates of CORT 

secretion can lead to uncertain results. Therefore, in Chapter Two, I conduct a 24 h 

time-series of capture-restraint in a wild population of tuatara on Stephens Island.  I 

simultaneously examine patterns of CORT secretion in males, non-gravid females, 

and gravid females. I test the hypothesis that gravid females have a dampened CORT 

response to capture-restraint compared to non-gravid females.  I also consider 

correlations with body condition and internal body temperature.  Chapter Two has 

been published as: 

Anderson L, Cree A, Towns D, Nelson N (2014) Modulation of 
corticosterone secretion in tuatara (Sphenodon punctatus): evidence 
of a dampened stress response in gravid females. General and 
Comparative Endocrinology 201: 45-52 
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Chapter Three expands on results from Chapter Two, to further examine (both 

observationally and experimentally) the correlation between internal body 

temperature (Tb) and CORT secretion.  I test the hypothesis that an acute increase in 

Tb increases the CORT response to capture-restraint. Chapter Three has been 

submitted to Physiological and Biochemical Zoology as:  

Anderson L, Nelson N, Cree A (in review) Increased body temperature 
amplifies the corticosterone stress response in tuatara (Sphenodon 
punctatus). Physiological and Biochemical Zoology 

Taken together, Chapters Two and Three identify key intrinsic factors that are 

correlated with baseline CORT and the CORT response in tuatara.  Chapters Four 

and Five build on (and consider) results from the previous chapters to examine if 

patterns of CORT secretion indicate a physiological response to challenges/stressors 

and assess the value of CORT measurement as a conservation physiology tool in 

tuatara conservation efforts.   

Chapter Four compares CORT secretion among four contrasting island populations 

(with respect to potential challenges/stressors) and identifies ecological attributes 

that best explain variation in CORT secretion among populations.  I test the 

hypotheses that (i) baseline CORT varies among populations, (ii) baseline CORT is 

higher during the breeding season, compared to the non-breeding season, and (iii) 

the CORT response is higher in northern populations that experience a milder 

climate and past/recent presence of an introduced mammal, the Pacific rat (Rattus 

exulans). Chapter Four has been submitted to Animal Conservation as: 

Anderson L, Nelson N, Towns D, Cree A (in review) The corticosterone 
stress response varies among island populations of tuatara 
(Sphenodon punctatus) and is predicted by linear ecological attributes. 
Animal Conservation. 

Chapter Five monitors the CORT response through the initial translocation 

procedure in tuatara, and examines long-term patterns of CORT secretion in 



14 
 

translocated populations as an indicator of chronic stress.  I test the hypothesis that 

cumulative stressors (experienced during the translocation process) and 

translocation to a novel location increase CORT secretion. Chapter Five has been 

published as:  

Anderson L, Cree A, Towns D, Nelson (2015) Moving house: Long-
term dynamics of corticosterone secretion are unaltered in 
translocated populations of a rare reptile (the tuatara, Sphenodon 
punctatus). Conservation Physiology. DOI: 10.1093/conphys/cov014 

Chapter Six summarises the main findings of this thesis, discusses conservation 

applications and the value of measuring CORT secretion as a conservation 

physiology tool in tuatara, and identifies knowledge gaps and areas for future 

research. 
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CHAPTER 2 

2 Modulation of corticosterone secretion in tuatara 

(Sphenodon punctatus): Evidence of a dampened stress 

response in gravid females1 

2.1 Abstract 

Baseline and stress response glucocorticoid (GC) secretion can be modulated by 

individuals to support activities and physiological functions connected with 

reproduction (migration, mating, oviposition and/or parturition, care of young).  

Corticosterone (CORT) is the primary GC in reptiles and, in accordance with other 

vertebrates, an adrenocortical stress response is observed.  Modulation of CORT 

secretion occurs in several reptile species, such that elevated baseline CORT and/or 

a dampened CORT response are common during reproductive life-history events.  I 

investigated CORT secretion after 24 h capture-restraint in the oviparous tuatara 

(Sphenodon punctatus), the last living rhynchocephalian, and tested whether gravid 

females have a dampened CORT response compared with non-gravid females.  I also 

included males as a comparison.  I confirmed that gravid females have significantly 

higher baseline plasma CORT than non-gravid females, suggesting increased CORT 

secretion during nesting.  Furthermore, I found that gravid females exhibit a 

dampened CORT response compared to non-gravid females and males.  My results 

demonstrate that female reproductive condition is correlated with CORT secretion 

in tuatara, and suggest that CORT secretion is modulated in gravid females during 

                                                             
1
 This chapter is based on the following publication with minor modifications:  

Anderson L, Cree A, Towns D, Nelson N (2014) Modulation of corticosterone secretion in tuatara 
(Sphenodon punctatus): evidence of a dampened stress response in gravid females. General and 
Comparative Endocrinology 201: 45-52 
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nesting to maintain homeostasis, which could increase chances of reproductive 

success and/or promote overall fitness. 

2.2 Introduction 

 

Animals continuously adjust to their environment to support immediate survival 

and long-term fitness.  Environmental  perturbations such as increased predator 

abundance, decreased food availability, habitat alteration, human exposure, 

pollution and extreme weather can test individuals’ abilities to maintain 

homeostasis (Angelier and Wingfield, 2013; Busch and Hayward, 2009; Langkilde 

and Trompeter, 2011; Romero and Wikelski, 2001; Wingfield and Sapolsky, 2003).  

Similarly, physiological and social demands such as reproduction, migration and 

territorial disputes can be challenging (Creel et al., 2013; Klukowski, 2011; Phillips 

and Klukowski, 2008; Yang and Wilczynski, 2003).  One way that individuals manage 

these environmental, social and physical challenges is through release of 

glucocorticoids (GCs) from adrenal tissues.   

GCs promote basic life processes such as energy intake and cell provisioning of 

glucose (Landys et al., 2006).  When individuals are subject to challenging stimuli, an 

adaptive integrated process commonly referred to as the ‘stress response’ activates 

the hypothalamo-pituitary-adrenal (HPA) axis and leads to an increase in GC 

secretion (Boonstra, 2013; Busch and Hayward, 2009; Cockrem, 2013).  This surge 

of GCs (along with other related hormones, signalling molecules and complementary 

processes) mobilises and diverts energy resources towards muscular, 

cardiovascular and cognitive systems to promote immediate survival, a reaction that 

is conserved across the majority of vertebrate groups (Cockrem, 2013; Sapolsky et 

al., 2000; Wingfield and Sapolsky, 2003).  Although GCs primarily function to 

support immediate survival and fitness, elevated GCs over extended periods of time 

(i.e. chronic stress) have been shown to have deleterious effects on an individual’s 

overall health, condition and reproductive success (Almasi et al., 2013; Sapolsky et 

al., 2000).  Nevertheless, baseline and stress response GC secretion can be 

modulated by individuals to support activities and physiological functions connected 
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with reproduction (migration, mating, oviposition and/or parturition, care of 

young).   

Glucocorticoid modulation during reproductive life-history stages is attributable to 

higher energetic demands and serves to maintain homeostasis and promote 

reproductive success (Breuner et al., 2008; Love et al., 2008; Romero, 2002).  

Therefore, identifying and understanding modulation of GCs and the GC stress 

response in a context-dependent manner clarifies relationships between GC 

secretion, behaviour and potential fitness trade-offs (Angelier and Wingfield, 2013; 

Busch and Hayward, 2009; Madliger and Love, 2014).  

Research investigating synthesis, secretion and modulation of GCs has focussed 

primarily on fish, mammals and birds, with reptiles and amphibians constituting 

only ~ 10% of studies to date (Baker et al., 2013; Bonier et al., 2009; Breuner et al., 

2008; Cockrem, 2013).  Reptiles are good model organisms to examine modulation 

of GC secretion as they exhibit a diverse range of characteristics 

(oviparity/viviparity, several different sex-determining patterns, various 

reproductive systems and life-history strategies) conducive to studying the interplay 

and potential trade-offs between stress, reproductive success and survival (Crews 

and Moore, 1986; Moore and Jessop, 2003).   In reptiles, the primary GC is 

corticosterone (CORT), and similar to other vertebrates a CORT response to 

stressors is observed (Cockrem, 2013; Romero, 2002).  Modulation of CORT 

secretion occurs in several reptile species, such that elevated baseline CORT 

concentration and/or a dampened CORT response are common during reproductive 

life-history events (Moore and Jessop, 2003; Wingfield and Sapolsky, 2003).  The 

functional significances and underlying mechanisms of this trait in gravid/pregnant 

reptiles are unclear, but some authors have suggested potential links with 

egg/embryo maintenance (Cree and Tyrrell, 2001), with adaptive maternal effects 

such as shielding embryos from hormone exposure or influences on offspring 

phenotype  (Cartledge and Jones, 2007; Uller et al., 2009; Warner et al., 2009), and 

with timing of oviposition/parturition (Jones and Guillette, 1982; Smith et al., 2012).   
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When breeding  individuals are exposed to stressors, a dampened CORT response 

may also serve to buffer activation of the ‘emergency life-history stage ’ (in which 

immediate survival is prioritized and activities such as mating and nesting attempts 

can be abandoned) to increase chances of successful reproduction (Jessop et al., 

2000; Moore and Jessop, 2003; Wingfield et al., 1998; Wingfield and Sapolsky, 2003). 

For example,  several species of sea turtle show a dampened CORT response during 

nesting, even when faced with additional (potentially lethal) stressors such as 

extreme predation attacks and overheating, suggesting a trade-off of immediate 

survival for an increased chance of reproductive success (Jessop et al., 2004a; Jessop 

et al., 2000).  Lack of a significant CORT response during breeding events could also 

suggest an inability to mount a response due to changes in the capacity of the 

adrenal gland to secrete CORT (Romero, 2006).   

Numerous intrinsic and extrinsic factors can influence modulation of baseline CORT 

concentration and the CORT response in reptiles. These include age, sex, 

reproductive condition, body condition, season, weather, pathogens and population 

(Baker et al., 2013; Boonstra, 2013; Breuner et al., 2008; Creel et al., 2013; Eikenaar 

et al., 2012; Wingfield, 2013).  In recent reviews of the existing literature, it is 

apparent that failing to account for influential factors and correlates of CORT 

secretion can lead to uncertain results (Baker et al., 2013; Busch and Hayward, 

2009; Cockrem, 2013; Creel et al., 2013; Wingfield, 2013).  For example, comparing 

modulation of CORT secretion in breeding and non-breeding reptiles is often 

confounded with seasonal changes, as sampling of non-breeding individuals takes 

place outside of the breeding season (for both males and females) (Cartledge and 

Jones, 2007; Klukowski, 2011; Moore and Jessop, 2003; Selman et al., 2012).  

Variation between geographically separated populations (both permanently and 

temporarily) can also be a limiting factor.  For example, in a study comparing the 

CORT response in breeding and non-breeding female green sea turtles (Chelonia 

mydas), season was controlled for but non-breeding females were part of a 

permanently resident reef population whereas breeding females were migratory 

non-residents (Jessop et al., 2000).   
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To my knowledge, only two studies have simultaneously investigated the 

modulation of CORT secretion in reptiles, in a way that allowed for separation of the 

effects of sex, reproductive condition, season and population.  For example, the 

viviparous New Zealand common gecko (Woodworthia maculatus) and oviparous 

tree lizard (Urosaurus ornatus) are model reptile species that allow for concurrent 

sampling of gravid female, non-gravid female and male individuals, without 

confounding factors such as population and season (Cree et al., 2003; Woodley and 

Moore, 2002).  Interestingly, modulation of the CORT response was not observed in 

pregnant female common geckos; therefore, the functional significance and 

mechanism of the ability to modulate CORT secretion (with regards to female 

reproductive condition) in reptiles may not be fruitful to be explored further in this 

species (Cree et al., 2003).  A dampened CORT response was observed in gravid 

female tree lizards, compared with vitellogenic females and males (Woodley and 

Moore, 2002). However in gravid females, an obvious temporal separation of mating, 

ovulation, and nesting/oviposition activity is lacking (as oviposition occurs ~ 1 

week after ovulation), making it difficult to tease out the functional significance of 

CORT modulation (with regards to gravid females) in this species.   

Tuatara (Sphenodon punctatus) are an attractive model species for studies 

investigating CORT secretion and modulation as their distribution and biology 

allows for simultaneous control of factors that can influence CORT release.  Here, I 

test for a dampened CORT response in gravid females of this oviparous species 

during the nesting life-history stage.    Tuatara are a protected reptile species 

endemic to New Zealand,  and wild populations are currently restricted to isolated 

offshore islands (Jones and Cree, 2012).  They are the only extant representatives of 

the order Rhynchocephalia, which is the sister group to squamates (Jones, 2008). 

Studying tuatara could therefore contribute to understanding of patterns that are 

general among amniotes, for example whether nesting in oviparous species is 

associated with a dampened CORT response to capture.  Tuatara reach sexual 

maturity at approximately 13 years of age (~ SVL ≥ 170 mm), and males and females 

can be identified by examining secondary sex characteristics such as head 

size/shape, body shape, crest development and spine shape (Cree et al., 1991a; 

Dawbin, 1982).  Tuatara have a seasonally distinct reproductive cycle with mating 
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taking place in the austral autumn (February – March) and nesting in the austral 

spring (October – November).  Females do not have an annual reproductive cycle; 

instead, ovulation and nesting events occur only every 2-9 years (Cree et al., 1992; 

Moore et al., 2009a; Refsnider et al., 2010).  Therefore, gravid and non-gravid 

females can be found in the same population at the same time, allowing for control 

of reproductive condition and season.  Nesting is separated by 6-7 months from 

mating and ovulation in tuatara (Cree, 1994); therefore, patterns in CORT secretion 

that are related specifically to nesting/oviposition are much more readily identified 

than in other reptiles.   

Baseline CORT secretion in tuatara is relatively low and variation is observed 

seasonally, but not diurnally (Tyrrell and Cree, 1998).  Gravid females have 

significantly higher baseline CORT levels during the nesting life-history stage 

compared with non-gravid females and males, with levels highest during nest 

digging and oviposition (Cree and Tyrrell, 2001).  Interestingly, a distinct fall (~5-

fold) in baseline CORT secretion is observed after oviposition, even in the case of 

females that continue to guard their nests, which suggests a potential role of CORT 

in the timing of oviposition (Cree and Tyrrell, 2001).   In accordance with other 

vertebrate species, a stress response to capture-restraint is detected in tuatara, 

although CORT concentration values at 3 h capture-restraint, are relatively low 

compared to other reptiles (Tyrrell, 1993; Tyrrell and Cree, 1998).  Studies 

examining the magnitude and duration of the CORT response are limited (Cree and 

Tyrrell, 2001), and CORT modulation in gravid females during the nesting life-

history stage has not been examined.   

The aim of this study was to test whether gravid females exhibit a modulated CORT 

response during the nesting life-history stage compared with non-gravid females. 

Males were included for comparison.  By examining the responses of gravid females, 

non-gravid females and males simultaneously, I am able to identify variation in the 

CORT response related to sex and reproductive condition, apart from seasonal or 

environmental changes.    I also tested for interactions between the CORT response 

and predictors such as body temperature and body condition, as some studies 

report a positive relationship between internal body temperature and baseline 
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CORT concentration (including studies in tuatara) (Cree et al., 1990a; Cree et al., 

2003) and a negative relationship between body condition and magnitude of the 

CORT response (Baker et al., 2013; Dunlap and Wingfield, 1995).   

2.3 Material and methods  

2.3.1 Study animals and experimental design 

Wild adult tuatara (Sphenodon punctatus) were captured and sampled on Stephens 

Island/Takapourewa (40° 40’ S, 174° 00’ E) in Cook Strait, New Zealand during the 

2011 nesting season (October – December, austral spring).  Individuals that had 

emerged from burrows were caught by hand at night between 20:00 h and 05:00 h 

and were subsequently assigned to an appropriate group based on sex and 

reproductive status (male, gravid female, or non-gravid female).  Gravid females 

were selectively captured at or near a nesting rookery, and female reproductive 

status was inferred through abdominal palpation for shelled eggs.  Following the 

blood sampling described in section 2.3.2, synthetic oxytocin (10 I.U./ml/kg body 

mass) (Thompson et al., 1991) was administered by an intraperitoneal injection to a 

subset of gravid females (n=13) (as a component of another study - unpublished). 

Oviposition was observed within 24 h in 12 of the 13 females, which helped validate 

the inference of reproductive status from palpation.  

2.3.2 CORT response to 24 h capture-restraint  

Male (n=30), gravid female (n=28) and non-gravid female (n=31) tuatara were 

subject to a standardized capture-restraint protocol to determine patterns of CORT 

secretion over time.  Capture/sampling occurred over 2 nights during the 2011 

nesting season (25–26 October). To determine baseline CORT levels, a blood sample 

(up to 1 ml) was collected within 10 min of capture (mean = 5.22 ± 0.34 min) from 

the base of the tail with a heparinized 23-gauge needle and 1 ml syringe.  Previous 

studies of tuatara observed no significant effect of bleeding effort (time from capture 

to blood sample collection) on baseline CORT concentration in blood samples 

collected within 20 min of capture (Tyrrell, 1993).  As expected, I observed no 

correlation between duration of bleeding effort and baseline CORT concentration for 
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samples obtained within 10 min of capture (r=-0.085, P=0.429).  After baseline 

samples were taken, individuals were randomly assigned to capture-restraint 

treatment times of 1.5, 3, 6, 12, 18 or 24 h (n=4-5/group/treatment time) to 

determine the 24 h CORT response and were held in a cloth capture bag for assigned 

times in a quiet room inside the research house (basic accommodation on Stephens 

Island).  A second blood sample (up to 1 ml) was taken from each individual 

immediately after the assigned capture-restraint treatment time was reached.  

Individuals were randomly selected to obtain desired sample sizes and were 

sampled for blood only twice in 24 h.  Blood samples were separated into plasma 

and red blood cell components under normal gravity (as centrifugation was not 

available at the remote island field site) for 6 to 8 h at 4°C (CORT levels in plasma 

and serum have been shown to remain stable when kept at room temperature and 

4°C for up to 72 h, with and without centrifugation)(Reimers et al., 1983; Sheriff et 

al., 2011). Plasma was transferred into cryogenic vials with a micropipette and held 

in a freezer at -20°C until returned to the laboratory where it was stored at -80°C 

until assayed.   

2.3.3 Internal body temperature and body-condition measurements 

Internal body temperature (Tb) was recorded with a cloacal thermocouple (Fluke® 

Multimeter, model: 179, specified accuracy ±0.1°C, USA) prior to taking blood 

samples for each individual (both baseline and stress response).  Morphometric 

measurements were taken after capture-restraint and CORT response blood 

sampling was completed.  Individual animals were weighed to the nearest ± 5 g with 

a 1000 g spring scale (Pesola AG, Switzerland) to determine mass (g), and snout-

vent length (mm), tail length (mm), tail regeneration length (mm), and pelvis width 

(mm) were measured with a straight ruler.  I calculated tail-corrected mass 

following the equation described by Newman et al. (1994) to account for tail-loss 

and regeneration (Newman et al., 1994) .  I pooled morphometric measurement data 

(male, non-gravid, gravid) to generate individual body-condition scores using 

principal components analysis (PCA) to incorporate size-index traits related to 

condition (SVL, width, mass) (Taillon et al., 2011).  This created a correlation matrix 

that produced a ‘size-index’ scoring system in which the first principal component 

(PC1) explained 84.9% of the total variance.  For this study, PC1 scores are 
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considered to be a measure of tuatara body condition.  The body-condition score 

(PC1) was dominated by the following morphometric loadings: tail-corrected mass 

(TCM), pelvis width (PW) and snout-vent length (SVL).  The scoring system equation 

for PC1 is 0.602TCM + 0.534PW + 0.593SVL, and as all loadings have positive 

coefficients this indicates that individuals with greater measurements of TCM, PW 

and SVL will have higher body-condition scores.  This scoring system was compared 

with an alternative scoring system (standardized residuals from the regression of 

TCM on SVL) and a strong correlation was observed (r=0.981, P<0.001).  

2.3.4 Hormone determination and enzyme immunoassay (EIA) validation 

Plasma samples were randomly selected for assay (29/plate), thawed at room 

temperature and spun in a centrifuge at 5000 rpm for 5 min at 4°C to separate any 

residual debris.  Aliquots of 10 µl plasma were extracted once with 600 µl of freshly 

distilled dichloromethane.  After 15 min of incubation at room temperature, samples 

were snap-frozen in a -70°C ethanol bath, decanted into clean glass vials, and dried 

in a vacuum oven at 37°C for 2 h.  Samples were reconstituted with 120 µl EIA buffer 

(for a 12-fold dilution), vortexed and held at 4°C until assayed.  Extraction efficiency 

was measured by comparing mean recovery of extracted (n=5) versus non-extracted 

(n=5) 2000 cpm tritiated CORT (H3).  Mean extraction efficiency of H3 was 101% ± 

2% s.d. (n=9 extractions) with an overall CV of 1.64%.  Extracted plasma samples 

(50 µl) were analysed in duplicate using commercial enzyme immunoassay kits 

(Cayman Chemical Co., Ann Arbor, MI, note: kit validation for first-time use in 

tuatara is detailed below) containing 96-well plates coated with rabbit polyclonal 

anti-sheep IgG antibody. CORT-specific acetylcholinesterase (AChE) tracer and 

sheep CORT antiserum were added to sample wells and placed on an orbital shaker 

for 2 h. Plates were washed five times, developed for 1 h on an orbital shaker and 

subsequently read at 405 nm. The concentration of CORT was calculated by 

comparing results to a standard curve. Samples that did not yield CORT 

concentrations within the 10 – 90% bound range were re-assayed after an 

appropriate dilution.   

To calculate the intra-assay co-efficient of variation (CV), three quality-control (QC) 

samples with binding levels of 20%, 50% and 65% were prepared in extracted 
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tuatara plasma and analysed (in duplicate) repeatedly throughout one assay.  

Replicate aliquots (n=9) of the QCs yielded similar plasma CORT concentrations 

(ng/ml) at each level, with %CVs of 8.3, 10.4 and 13.9 for the 20%, 50% and 65% 

bound QCs, respectively.  The mean intra-assay CV for all QCs was 10.9%.  Inter-

assay CVs were calculated from the same QCs placed at the start and end wells (in 

duplicate) of each assay plate (n=8).  Mean inter-assay CVs were 11.4% (20% bound 

QC), 12.2% (50% bound QC), and 13.5% (65% bound QC).  The mean inter-assay CV 

for all QCs was 12.4%.  Serial dilutions at 100%, 80%, 60%, 40%, 20%, and 10% of 

pooled tuatara plasma samples showed good parallelism to the standard curve for 

CORT over the assay standard range.  Multiple linear regression analysis was used to 

provide confirmation that the serial dilutions were comparable to the CORT 

standard curve provided (P=0.746).  Linear regression equations were: %B/B0 = 

48.9 – 42.3 logcort (r2=99.2, P<0.001) for the serial dilution and: %B/B0 = 5.6 – 40.7 

logcort for the standard curve (r2=99.1, P<0.001).  To determine the minimum 

detectable concentration (MDC) of CORT I assayed B0 wells (n=16, each in duplicate) 

on a single plate and calculated mean CORT concentration minus two standard 

deviations. Results showed a MDC of 0.03 ng/ml, which corresponds with the MDC 

supplied by the EIA kit manufacturers.  

2.3.5 Statistical analyses 

Data analyses were carried out using R v3.0.0 statistical software (R Development 

Core 2008) and Prism 6 (Graphpad Software Inc.).  All data were checked for normal 

distributions and homoscedasticity, and if necessary, were transformed to meet 

assumptions for parametric statistical tests.  A linear mixed effects regression 

(LMER) model was fitted using the ‘lme4’ (Bates, 2013) package in R to investigate 

the influence of sex, reproductive condition, Tb, body condition and duration of 

capture-restraint (0 – 24 h) on the CORT response.  Log-transformed CORT was the 

response variable, predictors were group (male, gravid female, non-gravid female), 

duration of capture-restraint (h), Tb and body condition were fixed main effects 

(with significant interaction terms included), and tuatara ID was included as a 

random effect to account for repeat sampling of individuals for baseline CORT and 

CORT response values.  The ‘languageR’ package (Baayen, 2011) was used to 

compute P-values based on Markov-chain Monte Carlo (MCMC) sampling.  
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Significance for all tests was assumed at p< 0.05. To quantify the magnitude of the 

mean CORT response (ng/ml) over the 24 h capture-restraint period, I calculated 

the area under the curve (AUC) in Prism 6 using the trapezoid rule, where AUC 

values reflect an ‘integrated CORT response’ for each group (Cockrem and Silverin, 

2002; Narayan et al., 2011a).  Baseline values were set at zero and negative values 

were not included.  I used linear models (LMs) and post-hoc contrast tests to 

compare body condition between groups, and to investigate the relationship 

between Tb and baseline CORT secretion in all groups.  I used a LMER model to 

compare Tb between groups and sample times (at baseline and CORT response 

sampling), with tuatara ID included as a random effect to account for repeat Tb 

sampling of individuals.   

2.4 Results 

2.4.1 CORT response to 24 h capture-restraint  

I analysed the effect of acute 24 h capture-restraint on CORT secretion profiles in 

gravid, non-gravid and male tuatara by fitting a linear mixed effects regression 

(LMER) model to CORT concentrations from 0 to 24 hours.  Neither Tb nor body 

condition were significant predictors of the CORT response across groups and were 

therefore excluded from the final model (Table 2.1).  Mean baseline CORT 

concentrations (ng/ml) were significantly higher in gravid females (5.75 ± 1.21) 

compared to non-gravid females (1.05 ± 0.15) and males (1.30 ± 0.19) (Fig 2.1a, 

Table 2.1).  The CORT response over 24 h was significantly dampened in gravid 

females compared with non-gravid females and males (Fig 2.1b-d, Table 2.1).  By 

determining AUCs, I was able to quantify the magnitude of the mean CORT response 

(ng/ml) over a 24 h period of capture-restraint stress (Fig 2.1b-d).  Gravid females 

had the lowest mean integrated CORT response (ng/ml/24 h) at 2.61, followed by 

males at 11.13 (4-fold greater than gravid females) and non-gravid females at 13.36 

(5-fold greater than gravid females).   Peak secretion of CORT occurred at 1.5 hours 

for gravid females, and at 12 hours for both non-gravid females and males (Fig 2.1b-

d).  
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Table 2.1: Results from linear mixed effects regression models explaining variation in measures 
of baseline and stress response corticosterone secretion (ng/ml) as a function of time (0-24 h) 
after explaining variation accounted for by the fixed effects of sex, reproductive condition, 
duration of capture-restraint and the interaction of these effects1. 

Fixed effect predictor Est. 
Lower 
95%CI 

Upper 
95%CI 

P-
MCMC 

     

gravid females (Intercept)  0.792 0.673 0.910 <0.001 

non-gravid females  -0.626 -0.788 -0.462 <0.001 

males  -0.656 -0.825 -0.495 <0.001 

capture-restraint  (gravid females) -0.002 -0.014 0.010 0.718 

capture-restraint  × non-gravid females 0.017 0.001 0.035 0.041 

capture-restraint  × males 0.023 0.007 0.041 0.011 

     

1  Coefficient estimates (positive or negative) are shown and indicate direction of the linear 
regression from the specified intercept. 95% credible intervals (CI) are shown. P-values based 
on MCMC sampling are shown.  

2.4.2 Relationships with body temperature and body condition 

Neither Tb (P>0.05) nor body condition (P>0.05) were significant predictors for the 

CORT response.  I found a significant positive relationship between Tb and baseline 

CORT concentrations (ng/ml) in gravid females only (LM, logCORT = -0.603 + 0.108 

Tb, r2=0.210, P=0.015, Fig 2.2).  Tb was comparable across groups at baseline 

(F2,86=1.147, P=0.322) and during CORT response (F2,86=0.128, P=0.880) sampling.  

An increase in Tb from baseline to CORT response sampling occurred in all groups 

(LMER, P<0.001).  Mean Tb (°C) at baseline sampling was 12.2 ± 0.4 for gravid 

females, 11.7 ± 0.3 for non-gravid females and 11.4 ± 0.4 for males, and at CORT 

response sampling was 13.8 ± 0.3 for gravid females, 13.9 ± 0.2 for non-gravid 

females and 13.7 ± 0.2 for males.  On average, males were larger in body size, but I 

did not find a significant difference in body condition scores across groups 

(F2,86=1.374, P=0.259). 
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Figure 2.1: Patterns in (a) baseline CORT concentration (ng/ml) and the 24 h CORT response in 
(b) gravid female, (c) non-gravid female and (d) male tuatara (Sphenodon punctatus) over a 
period of 24 h capture-restraint. Data points represent means ± SE.  Baseline CORT 
concentrations are also indicated by dashed lines in (b)-(d). Shaded curves delineate the 
integrated CORT response (ng/ml/24 h) for each group calculated by area under the curve (AUC). 
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Figure 2.2: Relationship between cloacal body temperature (°C) and the log of baseline CORT 
concentration (ng/ml) in male (grey dotted line w/triangles), non-gravid female (black dotted 
line w/ stars) and gravid female (black solid line w/circles) tuatara (Sphenodon punctatus). A 
significant relationship was observed in gravid females only (r2=0.210, P=0.015).   

 

2.5 Discussion 

As expected, gravid females had significantly higher baseline CORT concentrations 

compared with non-gravid females (and males) during the nesting life-history stage.  

This result is consistent with a previous study on wild tuatara, in which the mean 

plasma concentration of  baseline CORT in gravid females was almost twice that of 

non-gravid females and males (Tyrrell and Cree, 1998).  Here, I established that the 

CORT response is dampened (4- to 5-fold) in gravid females, compared with non-

gravid females and males during 24 h capture-restraint.  A dampened CORT 

response has been observed in other oviparous reptiles during the gravid life-

history stage, including female tree lizards (Woodley and Moore, 2002) green turtles 

(Jessop et al., 2000) and olive ridley turtles (Lepidochelys olivacea) (Valverde et al., 

1999).  This naturally leads to the question of why some gravid oviparous reptile 

species modulate the CORT response (specifically down-regulating CORT secretion) 

during a physiologically and behaviourally challenging situation (Jessop, 2001; 

Moore and Jessop, 2003).  Possible explanations for this trait include: adaptive 
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interruption of certain stress response reactions (e.g. flight response) to nest 

successfully, adaptive maternal effects and/or programming, lack of awareness 

towards certain stressors, or an inability to mount a further CORT response.  

Furthermore, alternative physiological mechanisms such as changes in binding 

proteins (CBGs) and/or CORT receptors at target tissues may play a role in the CORT 

response to stress in gravid individuals (Romero, 2002). 

Gravid reptiles that are actively nesting could have a suppressed CORT response to 

interrupt or shield activation of the emergency life-history stage (in which self-

maintenance takes precedence) in order to successfully carry out nesting (Wingfield 

et al., 1998).  Suppression of the CORT response during nesting has been observed in 

other amniotes, including reptiles, and may serve to increase reproductive success 

and overall fitness.  Female sea turtles show a dampened CORT response during 

nesting activities, and maintain suppression of a CORT response in the face of 

predation attacks (Jessop et al., 2004a), thermal stress (Jessop et al., 2000) and 

overcrowding (Jessop and Hamann, 2004) in order to successfully nest. Similarly, 

studies in birds report modulation of the CORT response in order to increase 

reproductive success (Lendvai et al., 2007; Wingfield et al., 1994; Wingfield and 

Sapolsky, 2003), with a few authors noting increased CORT secretion that leads to 

nest abandonment (Spee et al., 2010; Strasser and Heath, 2013; Thierry et al., 2013).   

An attenuated CORT response could also be a product of adaptive maternal effects 

such as protecting eggs/embryos from potential deleterious effects of hormones, or 

allowing maternal programming of offspring to occur.  Maternal hormones have 

been discovered in yolk of numerous vertebrate species, including birds (Almasi et 

al., 2012; Hayward and Wingfield, 2004), fish (Manire et al., 2004) and reptiles 

(Rhen et al., 2006).  Increased levels of maternal CORT can affect exposure of 

developing embryos to CORT (Cree et al., 2003; Uller et al., 2009), which can 

influence phenotype, behaviour, and fitness performance measures.  For example, 

maternal sources of CORT can influence offspring size and sex-ratio (Uller et al., 

2009; Warner et al., 2009).  Pregnant females with increased plasma CORT 

concentrations produced offspring that exhibited decreased anti-predator behaviour 

in garter snakes (Thamnophis elegans) (Robert et al., 2009) and decreased activity, 
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sprint speed, and motivation to run in common lizard hatchlings (Lacerta vivipara) 

(Belliure et al., 2004; Meylan and Clobert, 2004).  Future studies could investigate 

and possibly manipulate maternal transfer of CORT to eggs of tuatara to further 

explore the potential relationship with yolk hormones and subsequent offspring 

development, phenotype and performance.   

It is also possible that gravid females that lack a stress response to capture-restraint 

(or in which the stress response is attenuated) do not actually perceive the stressor 

as a threat during specific life-history events such as nesting, oviposition, or 

parturition. Therefore, behavioural resistance to stressors could effectively 

modulate CORT secretion to maintain reproductive behaviour (Jessop et al., 2004a; 

Jessop et al., 2000; Jessop et al., 1999b).  Threat perception could be tested in tuatara 

by intensifying or compounding the stressor (e.g. heat/cold-stress or exposure to 

predators in addition to capture-restraint stress) to see if there is a behavioural 

threshold that activates the CORT response.  Finally, the absence of a significant 

CORT response in gravid females could be attributed to the fact that gravid females 

are operating at maximal CORT secretion during nesting or are experiencing a form 

of chronic stress, and are simply unable to further mount a response.  This could be 

tested further by administering an ACTH challenge (Cartledge and Jones, 2007; 

Preest et al., 2005) (addressed in Appendix A). 

The functional significance of elevated baseline CORT in gravid oviparous reptiles 

(and the potential relationship with oviposition) has received little attention, even 

though several oviparous reptile species exhibit elevated concentrations of baseline 

CORT concentrations directly preceding oviposition (Cree and Tyrrell, 2001; Jessop, 

2001; Moore and Jessop, 2003). Female tuatara have a unique egg 

development/maintenance strategy, retaining their eggs for the longest known 

period in reptiles (7-9 months) (Cree et al., 1992). Therefore, elevated baseline 

CORT concentrations during the nesting life-history stage in tuatara cannot be 

attributed to sexual receptivity or ovulation, as these mating events are greatly 

separated in time from nesting.  Prior studies on tuatara (Cree and Tyrrell, 2001) 

and marine iguanas (Rubenstein and Wikelski, 2005) show that baseline CORT 

concentrations decline shortly after oviposition, which suggests a possible role in 
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the timing of egg-laying, and other studies suggest hormonal control of ovulation 

and parturition in viviparous and oviparous reptiles (Jones and Guillette, 1982).  For 

example, it was shown that embryonic production of CORT may trigger parturition 

in viviparous southern snow skinks (Niveoscincus microlepidotus) (Girling and Jones, 

2006), and exogenous elevation of baseline CORT concentrations in gravid eastern 

three-lined skinks (Bassiana duperreyi) induced ‘premature’ oviposition (Radder et 

al., 2008).  These findings suggest that up-regulating baseline CORT secretion during 

nesting could function to stimulate oviposition in gravid reptiles.  This could be 

investigated further by experimentally manipulating baseline CORT secretion in 

gravid females to see if there is a relationship between CORT secretion and 

oviposition (Appendix A).    

In the current study, neither Tb nor body condition were significant predictors of the 

CORT response in tuatara.  However, I found a significant positive relationship 

between Tb and baseline CORT secretion in gravid females only, with no relationship 

observed between Tb and the CORT response in non-gravid females or males. An 

increase in Tb occurred between capture and CORT response sampling; however, 

this is most likely due to sheltered conditions (in the capture bags), rather than a 

physiological response (Tyrrell and Cree, 1998).  As individuals in this study were 

captured and sampled over two nights, Tb varied over a  limited range (8°C -15°C) 

and approached the lower end of field Tb observed in tuatara (emergence and 

activity occurs between ~6°C and 25°C (Besson and Cree, 2010; Saint Girons et al., 

1980) ); therefore, it would be useful to investigate CORT secretion at increased Tb 

over a wider range (see Chapter Three).  Likewise, I did not find a relationship 

between body condition and baseline CORT secretion or the CORT response in 

females (gravid and non-gravid) and males.  The influence of body condition on 

CORT secretion is quite variable among reptile species, with some studies reporting 

a significant influence (Baker et al., 2013; Dayger et al., 2013; Dunlap and Wingfield, 

1995; Hews and Baniki, 2013; Jessop et al., 2004c; Waye and Mason, 2008), no 

relationship (Baker et al., 2013; Jessop et al., 2004c; Selman et al., 2012) or both 

(Wikelski and Romero, 2003). Interestingly, Wilkelski and Romero (2003) found 

that CORT secretion is elevated in marine iguanas (Amblyrhynchus cristatus) that 

have body condition scores below a critical threshold level, but they did not find a 
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significant correlation between CORT and body condition in individuals with scores 

above the threshold level. Studies incorporating an expanded range of body 

condition scores (including populations in obvious poor condition) could clarify the 

relationship between body condition and CORT secretion in tuatara, and may 

identify a critical threshold level (related to body condition) at which  CORT 

secretion is affected.  Nonetheless, the influence of Tb and body condition (and 

possible physiological thresholds of both measurements) on CORT secretion are 

areas of research that require further study in reptiles. 

2.6 Conclusions 

I found that the CORT response is dampened in gravid female tuatara during the 

nesting life-history stage, which suggests modulation of CORT secretion to support 

nesting success.  Perhaps down-regulating CORT secretion during exposure to acute 

stressors facilitates reproductive success by ensuring that nesting activities carry on 

regardless and that eggs/embryos are potentially shielded from elevated levels of 

maternal CORT.  I confirmed that female reproductive condition is significantly 

correlated with baseline CORT secretion, with gravid females showing levels that are 

significantly higher than non-gravid females (and also males). The functional 

significance of elevated baseline CORT secretion in gravid females during nesting is 

unclear; therefore, it would be useful to carry out experimental studies involving 

hormone manipulation (in which CORT secretion is increased or decreased) in 

gravid females (see Appendix A). This would provide insight into whether CORT is 

being secreted at maximal levels during nesting, if/how it plays a role in oviposition 

and nesting behaviour, and how CORT modulation contributes to reproductive 

success and overall fitness in tuatara, the sole extant representative of an ancient 

order of reptiles. 
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  CHAPTER 3 

3 Body temperature is correlated with the corticosterone 

stress response in tuatara (Sphenodon punctatus)1 

3.1 Abstract 

When vertebrates experience environmental, physiological or social challenges, the 

glucocorticoid (GC) stress response is activated and rapid secretion of GCs ensues as 

an essential life process to promote survival.  Ambient temperature affects essential 

life processes in most organisms.  In reptiles, ambient temperature directly 

influences internal body temperature (Tb), which has downstream effects on 

physiology and behaviour.  In a natural setting, fluctuations in temperature occur 

routinely, yet despite its relevance to essential processes in reptiles, Tb has received 

limited attention with regards to its influence on the GC stress response.  In this 

study, I examined the influence of Tb on baseline secretion of corticosterone (CORT), 

the main GC in reptiles, and on the CORT response to capture-restraint across a 

range of Tb in free-living tuatara (Sphenodon punctatus) (males, non-gravid females 

and gravid females) I also tested the effect of an acute increase in Tb on the 

magnitude of the CORT response. I confirmed a positive correlation between Tb and 

the CORT response to capture in all groups, and a positive correlation between Tb 

and baseline CORT in gravid females only.  Furthermore, gravid females only 

exhibited a significant CORT response to capture at high Tb , which in combination 

with results from Chapter Two, suggests a response threshold at ~22-25°C (i.e. at or 

                                                             
1
 This chapter is based on the following manuscript submitted to Physiological and Biochemical 

Zoology (in review) with minor modifications: Anderson L, Nelson N, Cree A. Increased body 
temperature amplifies the corticosterone stress response in tuatara (Sphenodon punctatus).  
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above selected temperature). Overall, this study confirms experimentally that Tb is 

correlated with CORT secretion in a cold-adapted reptile and should be considered 

in studies on other ectotherms, especially when fluctuations in Tb are experienced. 

3.2 Introduction 

Free-living organisms are regularly exposed to environmental fluctuations.  To cope 

with daily, seasonal and annual variation in environmental conditions, individuals 

adjust their physiology and behaviour to maintain essential processes and optimise 

fitness.  One way that vertebrates adjust to environmental conditions is through 

secretion of glucocorticoids (GCs) from adrenal tissues.  GC secretion upholds 

everyday maintenance such as energy intake and cell provisioning of glucose 

(Landys et al., 2006), and variation in GC secretion (ranging from hourly to annually) 

is observed within and between species.  Furthermore, when individuals experience 

environmental perturbations, the hypothalamo-pituitary-adrenal (HPA) axis is 

activated and GC secretion is rapidly increased to promote immediate survival 

(Boonstra, 2013; Busch and Hayward, 2009; Cockrem, 2013).  Although numerous 

studies have investigated factors that affect GC secretion (both baseline and in 

response to stressors) (Baker et al., 2013; Boonstra, 2013; Breuner et al., 2008; Creel 

et al., 2013; Wingfield, 2013),  few studies consider the influence of body 

temperature (Tb).   

Ambient temperature affects essential life processes in most organisms.  In 

ectotherms, most notably reptiles, ambient environmental temperature directly 

influences Tb, which has downstream effects on several aspects of physiology and 

behaviour (Adams et al., 1989; Firth et al., 1989; Jasnic et al., 2013; Seebacher et al., 

1999). Despite its relevance to physiological processes in reptiles, Tb has received 

limited consideration in the scientific literature with regards to GC secretion.  In 

reptiles, corticosterone (CORT) is the primary GC in reptiles, and as in other 

vertebrates, an adrenocortical stress response is observed (Cockrem, 2013; Romero, 

2002).  Numerous intrinsic and extrinsic factors are associated with CORT secretion 

in reptiles. Examples include sex, reproductive condition, body condition, disease, 

population, season and pathogens (Baker et al., 2013; Barry et al., 2010; Berger et al., 
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2005; Eikenaar et al., 2012; Selman et al., 2012).  However, the relationship between 

Tb and baseline CORT secretion in reptiles remains unclear. Some studies suggest a 

relationship while others question it, and the direction and magnitude of the 

relationship (if any) varies within and between species (Baker et al., 2013; Cree et 

al., 2003; Dupoue et al., 2013; Li et al., 2011; Sykes and Klukowski, 2009; Tyrrell and 

Cree, 1998).  Among the limited studies that exist, most have focussed on the 

influence of Tb on baseline CORT secretion.  To my knowledge, only two studies have 

experimentally tested the influence of Tb on the CORT response in reptiles.  

Furthermore, the species used in these studies were both warm-adapted snakes that 

were exposed to a either a sub-optimal temperature treatment in captivity (Dupoue 

et al., 2013) or to 1 h acute temperature treatments (semi-aquatic snakes were 

warmed or cooled within physiological limits) (Sykes and Klukowski, 2009). These 

studies do not clarify the effect of Tb on the CORT response in free-living terrestrial 

ectotherms.  Moreover, neither study considers the association between Tb and 

CORT secretion (baseline CORT and the CORT response) in gravid females. 

Tuatara (Sphenodon punctatus) are a cool-climate terrestrial reptile with a low mean 

preferred body temperature (Tsel) of about 21°C in laboratory conditions (Besson 

and Cree, 2010), although Tb in basking individuals (in both laboratory and field 

conditions) can reach 25-30°C (Barwick, 1982; Besson and Cree, 2010; Cree, 2014; 

Saint-Girons et al., 1981; Stebbins, 1958).  Hence, tuatara provide a valuable 

opportunity to examine the influence of Tb (at capture in natural conditions and in 

warmer increments up to Tsel) on CORT secretion in a cold-adapted ectotherm.  

Here, I conduct an observational field study to examine baseline CORT secretion and 

the CORT response across a range of ambient environmental temperatures, and 

experimentally test whether elevated Tb during capture-restraint stress affects the 

CORT response.   

Tuatara are protected reptile species endemic to New Zealand and natural 

populations are currently restricted to isolated offshore islands (Jones and Cree, 

2012).  They are the only extant representatives of the order Rhynchocephalia, the 

sister group to squamates (Jones, 2008).  Tuatara have a seasonally distinct 

reproductive cycle with mating taking place in the austral autumn (February – 
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March) and nesting in the austral spring (October – November).  Individual females 

do not reproduce annually; instead, ovulation and nesting events occur only every 2-

5 years (Cree et al., 1992; Moore et al., 2009a; Refsnider et al., 2010).  Therefore, 

males and non-gravid females can be found in the same population at the same time 

(along with gravid females in spring), which allows for control of sex, reproductive 

condition, population and season.    

Baseline CORT secretion in tuatara is relatively low and variation is observed 

seasonally, but not diurnally (Tyrrell and Cree, 1998), and a CORT response to 

capture-restraint stress is detected (Tyrrell, 1993; Tyrrell and Cree, 1998; Chapter 

Two).  A previous study has reported observations of a positive relationship 

between Tb and baseline CORT secretion in males (but not females) during summer 

and winter (Tyrrell and Cree, 1998).  More recently, a positive relationship between 

Tb and baseline CORT secretion was observed in gravid females (but not males or 

females) during spring, whereas no association was observed between Tb and the 

CORT response (Chapter Two); however, the range of Tb (8 -15°C) observed in that 

study was narrow and at the lower end of Tb observed in natural populations of 

tuatara.   

There were two main aims to the present study.  First, I examined whether Tb is 

associated with baseline CORT secretion and the magnitude of the CORT response in 

natural populations of tuatara.   Second, I experimentally tested whether an acute 

increase in temperature influenced the magnitude of the CORT response in males, 

non-gravid females and gravid females. I predicted that the CORT response would be 

amplified at increased temperatures compared to the control temperature 

treatment (Tb at capture) in all groups.  At the same time, I examined whether gravid 

females are capable of mounting a significant CORT response during nesting when 

simultaneously exposed to capture-restraint and an acute temperature increase.  A 

significant CORT response in gravid females would suggest that the ability to secrete 

CORT is not fundamentally impaired during the nesting life-history stage, but is 

seasonally modulated.   
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3.3 Materials and methods  

3.3.1 Influence of natural variation in body temperature on CORT secretion  

3.3.1.1 Study sites and animals 

Wild adult tuatara (Sphenodon punctatus) were captured and sampled from 

Stephens Island/Takapourewa (40° 40’ S, 174° 00’ E), North Brother Island (41° 6’ S, 

174° 25’ E), Lady Alice Island (35° 53’ S, 174° 43’ E) and Taranga Island ('35° 58’ S, 

174° 43’ E) in New Zealand during the austral spring (November) and austral 

autumn (March) in the 2011/2012 and 2012/2013 seasons.  Emerged individuals 

were captured by hand at night between 19:00 h and 03:00 h and were 

subsequently assigned to an appropriate group based on sex and reproductive 

status (male, non-gravid female, gravid female).  Tuatara reach sexual maturity at 

approximately 13 years of age (~ SVL ≥ 170mm), and previous studies have 

distinguished males and females by examining secondary sex characteristics such as 

head and body size/shape and spine/crest morphology (Cree et al., 1991a; Dawbin, 

1982).  Gravid females (present in spring only) were selectively captured at or near 

a nesting rookery on Stephens Island/North Brother Island and reproductive status 

was inferred through abdominal palpation for shelled eggs (Mitchell et al., 2006; 

Refsnider et al., 2013).  Locations of nesting rookeries on Lady Alice Island and 

Taranga Islands are not known; therefore, for the purpose of analyses, all females 

captured during the spring season on these two islands were classified as non-

gravid adults (although a proportion of sampled females could have been gravid). I 

intentionally include data from four island sites in order to expand the range of Tb 

observed, as samples collected within a site often showed limited variation in Tb.   

3.3.1.2 Study design 

Male (n=72), non-gravid female (n=77) and gravid females (n=30) were sampled 

over a two year study period to examine the influence of Tb on baseline CORT 

secretion and the CORT response across a wide range of environmental 

temperatures. Blood samples were collected within 10 min of capture to determine 

baseline CORT secretion (described in section 4.1.3) and tuatara were subsequently 
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subject to 3 h of capture-restraint stress in cloth bags at ambient environmental 

temperatures. Upon completion of capture-restraint, all individuals were re-bled to 

determine the CORT response.   

3.3.1.3 Blood sampling protocol 

To determine baseline CORT concentrations, a blood sample (up to 1 ml) was 

collected within 10 min of capture from the base of the tail with a heparinized 23-

gauge needle and 1 ml syringe.  In previous studies of tuatara, no significant effect of 

bleeding effort (time from capture to blood sample collection) was observed on 

baseline CORT concentrations in blood samples collected within 20 min of capture 

(Chapter Two; Tyrell, 1993).  After baseline samples were taken, individuals 

underwent 3 h capture-restraint whereupon a second blood sample (up to 1 ml) was 

taken. Depending on field conditions, blood samples were separated either by 

centrifuge (5 min at 2000 rpm) or under normal gravity for 6 to 8 h at 4°C (Reimers 

et al., 1983; Sheriff et al., 2011).  Plasma was transferred into cryogenic vials with a 

micropipette, stored in a cryogenic dry shipper (Thermo Fisher ScientificTM, Arctic 

ExpressTM Dual 10, Waltham, Massachusetts, USA) or in a freezer at -20°C until 

return to the laboratory, and then stored at -80°C until assayed.   

3.3.1.4 Internal body temperature (Tb) and body condition measurements  

Internal body temperature (Tb) was recorded with a cloacal thermocouple (Fluke® 

Multimeter, model: 179, Everett, Washington, USA, reported accuracy ±1°C) prior to 

taking blood samples (both baseline and CORT response) for each individual.  

Morphometric measurements were taken after capture-restraint and CORT 

response blood sampling was completed.  Individual animals were weighed with a 

spring scale (Pesola AG, Barr, Switzerland) to determine mass (g), and snout-vent 

length (mm), tail length (mm), and tail regeneration length (mm) were measured 

with a ruler.  I calculated tail-corrected mass (TCM) following Newman et al. (1994) 

to account for tail-loss and regeneration.  Body condition scores for all individuals 

were obtained by generating standardized residuals from a regression of logTCM vs. 
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log SVL for each group (males, non-gravid females, gravid females) (Schulte-

Hostedde et al., 2005). 

3.3.2 Effect of acute increased body temperature on the CORT response 

3.3.2.1 Study site and animals 

Wild adult tuatara were captured and sampled on Stephens Island (40° 40’ S, 174° 

00’ E) in Cook Strait, New Zealand over 3 nights during the 2012 spring season (21-

24 October). Emerged individuals were caught by hand at night between 19:00 h 

and 03:00 h and were subsequently grouped by sex and reproductive status (male, 

non-gravid female, gravid female).  Gravid females were selectively captured at a 

nesting rookery and reproductive status was inferred through abdominal palpation 

for shelled eggs. 

3.3.2.2 Study design 

Male (n=14), non-gravid female (n=14) and gravid female (n=14) tuatara were 

subject to an acute increase in temperature to test whether the CORT response is 

amplified at higher temperatures.  Blood samples were collected within 10 min of 

capture to determine baseline CORT secretion (described in section 3.3.1.3).  Next, 

individuals were randomly assigned to an air temperature treatment of either 

‘control’ (ambient), ‘warm’ (20°C) or ‘hot’ (25°C).  Individuals were subject to 3 h of 

capture-restraint stress in perforated cardboard postal tubes (10 cm x 50 cm) at 

assigned temperature treatments and upon completion, were re-bled to determine 

the effect of capture-restraint and temperature treatment on CORT secretion.  

Internal Tb was taken immediately prior to each blood sample and body condition 

was determined for each individual (described in section 4.1.4) after the second 

blood sample was taken. Temperature treatments of 20°C and 25°C were chosen to 

approximate the average (‘warm’ treatment) and highest (‘hot’ treatment) Tb, 

respectively, measured in the parallel observational study.  These temperatures are 

physiologically appropriate (i.e. not considered lethal or expected to invoke signs of 

obvious ‘heat-stress’ such as panting) and fall within the range of Tb observed in 
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(and selected by) individual tuatara in field and laboratory settings (Barwick, 1982; 

Besson and Cree, 2010; Corkery, 2012; Cree, 2014; Saint Girons, 1980; Werner and 

Whitaker, 1978).  Treatment conditions were achieved by elevating air 

temperatures in a quiet confined space in the research house with convection 

heaters.  Labelled postal tubes housing individuals were placed uniformly at an even 

height (established by a pilot study to determine optimal height for each 

temperature treatment), and air temperatures (within the grouping of postal tubes 

at each treatment height) for both treatments were monitored every 15-30 min with 

a thermocouple to ensure consistency of treatments.  Individuals assigned to control 

treatments (ambient air temperature) were housed in postal tubes outside the 

research house.  

3.3.3 Determination of plasma CORT concentrations  

Plasma CORT concentrations for all samples were determined as described in 

Chapter Two.  Briefly, I randomly selected plasma samples (29/plate) for assay that 

were thawed at room temperature and spun in a centrifuge at 5000 rpm for 5 min at 

4°C to remove any residual debris.  I added 600 µl of freshly distilled 

dichloromethane to extract 10 µl aliquots of plasma samples.  Samples were 

incubated 15 min at room temperature, snap-frozen in a -70°C ethanol bath, 

decanted into glass tubes and then dried in a vacuum oven at 37°C for 2 h.  Samples 

were reconstituted with 120 µl enzyme immunoassay (EIA) buffer (for a 12-fold 

dilution), vortexed and held at 4°C until assayed.  I determined extraction efficiency 

by comparing mean recovery of extracted (n=5) versus non-extracted (n=5) 2000 

cpm tritiated CORT (H3).  Mean extraction efficiency of H3 was 106% ± 2% s.d. (n=16 

extractions) with an overall CV of 2%.   

Extracted plasma samples (50 µl) were analysed in duplicate using commercial 

enzyme immunoassay kits (Cayman Chemical Co., Ann Arbor, MI, USA) containing 

96-well plates coated with rabbit polyclonal anti-sheep IgG antibody. CORT-specific 

acetylcholinesterase (AChE) tracer and sheep CORT antiserum were added to 

sample wells, and the plate was placed on an orbital shaker for 2 h. Plates were 

washed five times with wash buffer solution, developed for 1 h on an orbital shaker 

and subsequently read at 405 nm. The concentration of CORT was calculated by 
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comparing results to a standard curve. Samples that did not yield CORT 

concentrations within the 10 – 90% bound range were re-assayed after an 

appropriate dilution.  The mean intra-assay CV was 10.9% and the mean inter-assay 

CV was 15.4%.  

3.3.4 Statistical analyses 

Data analyses were carried out using R v3.2.0 statistical software (R Development 

Core 2013) and Prism 6 (Graphpad Software Inc.).  Residual plots were checked for 

normal distributions and homoscedasticity, and if necessary, data were transformed 

to meet assumptions for parametric statistical tests.  Linear mixed effects regression 

(LMER) models were fitted using the ‘lme4’  package (Bates, 2013) in R to analyse 1) 

the relationship between Tb and CORT secretion across a range of ambient 

environmental temperatures, and 2) the effect of increased Tb on the CORT response 

in males, non-gravid females and gravid females subject to 3 h of capture-restraint 

stress in controlled temperature treatments.  Log-transformed CORT was the 

response variable in all LMER models.  Final model selection was determined by 

likelihood ratio tests comparing the addition of random and fixed effects to 

intercept-only baseline models.   

In analysis 1 (influence of natural variation in Tb on CORT secretion), input variables 

included fixed main effects of time (0 h, 3 h), Tb, body condition, and all interaction 

terms.  Random effects of year and tuatara ID (nested within site) were included to 

account for annual variation, repeat sampling of individuals for baseline CORT and 

CORT response values, and random unmeasured variation between sites.  Final 

models were fitted to data from each group for spring (males, non-gravid females, 

gravid females) and autumn (males, non-gravid females).   

In analysis 2 (effect of increased Tb on the CORT response), input variables included 

fixed main effects of time (0 h, 3 h), body condition and temperature treatment 

(ambient, warm, hot), with all interaction terms included. A random effect of tuatara 

ID was included in both models to account for repeat sampling.  Due to small sample 

size, I pooled data for males and non-gravid females for the experimental analyses, 

as sex was not a significant predictor in this study (P>0.05); therefore final models 
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were fitted to data from non-gravid adults (males, non-gravid females) and gravid 

adults (gravid females).  Body condition did not have a significant influence on CORT 

secretion for any group (P>0.05) and was not included in final models. I used linear 

models (LMs) and post-hoc contrast tests to compare Tb and body condition 

between groups within each controlled temperature treatment at 0 h and 3 h sample 

times, and I used a LMER model to compare change in Tb from 0 h to 3 h in each 

temperature treatment (with tuatara ID included as a random effect to account for 

repeat sampling).  The ‘lmerTest’ package (Kuznetsova, 2013) was used to compute 

P-values for final models and significance was assumed at P< 0.05.  

3.4 Results 

3.4.1 Influence of natural variation in body temperature on CORT secretion  

 

Internal Tb ranged from 8°C to 20°C in spring and 12°C to 23°C in autumn (Fig. 3.1). 

Body temperature at  capture (0 h) and at 3 h after capture was not significantly 

different among groups (males, non-gravid females, gravid females) in either season 

(LM, P>0.05).  However, Tb was significantly increased at 3 h after capture (LMER, 

P<0.001), which is most likely due to sheltered conditions (in capture bags) 

(Chapter Two; Tyrrell and Cree, 1998).  

As expected, I observed a significant CORT response to capture restraint in males 

and non-gravid females in both seasons (Fig. 3.1, Table 3.1), and observed a 

dampened CORT response in gravid females in spring (Fig. 3.1, Table 3.1a).  I found 

that Tb was not correlated with baseline CORT in males and non-gravid females 

during spring or autumn (Table 3.1); however, Tb is positively correlated with CORT 

secretion in gravid females in spring (Table 3.1a, Fig. 3.1a).  Furthermore, a higher 

CORT response was observed at higher Tb in all groups in each season (including 

gravid females - present in spring only) (Fig. 3.1b, d, Table 3.1).   

Body condition scores were not significantly different between seasons (spring, 

autumn) or among groups (male, non-gravid female, gravid female) (LM, F4, 

355=0.309, P=0.872).  Body condition was not correlated with baseline CORT for any 
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group/season (LMER, P>0.05). However, in spring only, a significant positive 

correlation was observed between body condition and the CORT response in non-

gravid females (LMER, P<0.001) and in gravid females (LMER, P=0.035), with a 

weak trend observed in males (LMER, P=0.09).  No significant interactions between 

Tb and body condition were observed for any group/season (LMER, P>0.05, Table 

3.1). 
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Figure 3.1: Relationships between internal body temperature (°C) and log CORT concentration 
(ng/ml) in tuatara (Sphenodon punctatus). Data are shown for male (open circles, dotted lines), 
non-gravid female (black circles, dashed lines) and gravid female (crosses, solid lines) tuatara at 
0 h after capture in a) spring and b) autumn and after 3 h capture-restraint in c) spring and d) 
autumn. Data points represent each individual sampled and regression lines show positive 
relationships.  Note: gravid females are only present during spring. 

 

 



44 
 

Table 3.1: Results from LMER models explaining variation in baseline CORT and the CORT 
response in tuatara (S. punctatus) accounting for fixed effects of time (0 h capture and 3 h 
capture-restraint), internal body temperature, body condition and the interaction of these 
effects (if applicable). Models were fitted to data for males, non-gravid females, and gravid 
females in spring (a), and for males and non-gravid females in autumn (b). 1Gravid adults are 
present in spring season only.   

Fixed effect predictor estimate s.e. T value P value 

a)   Spring     

males 
    

0 h (Intercept)  0.198 0.162 1.215 0.378 
3 h  0.571 0.063 9.027 <0.001* 
Tb -0.029 0.199 -1.428 0.156 
body condition -0.028 0.052 -0.527 0.599 
3 h x body condition 0.112 0.066 1.691  0.093· 
3 h x Tb 0.116 0.028 4.049 <0.001* 
Tb x body condition 0.021 0.019 1.115 0.267 
3 h x Tb x body condition -0.004 0.030 -0.134 0.893 

Non-gravid females 
    

0 h (Intercept)  0.349 0.273 1.279 0.367 
3 h  0.631 0.049 12.867 <0.001* 
Tb -0.004 0.017 -0.291 0.771 
body condition -0.046 0.040 -1.146 0.254 
3 h x body condition 0.210 0.059 3.552 <0.001* 
3 h x Tb 0.084 0.021 3.937 <0.001* 
Tb x body condition -0.013 0.022 -0.593 0.554 
3 h x Tb x body condition -0.023 0.035 -0.680 0.498 

gravid females1     

0 h (Intercept)  0.780 0.064 12.074 <0.001 
3 h  - 0.027 0.070 -0.383 0.704 
Tb 0.109 0.026 4.143 <0.001* 
body condition 0.121 0.054 2.233 0.035* 

     
b)    Autumn     

Males 
    

0 h (Intercept)  0.430 0.144 2.967 0.171 
3 h  0.349 0.055 6.246 <0.001* 
Tb 0.018 0.017 1.056 0.334 
3 h x Tb 0.055 0.021 2.561 0.012* 

Non-gravid females 
    

0 h (Intercept)  0.396 0.168 2.354 0.086 
3 h  0.545 0.050 10.791 <0.001* 
Tb -0.017 0.019 -0.855 0.378 
3 h x Tb 0.031 0.018 1.740 0.084· 
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3.4.2 Effect of acute increased body temperature on the CORT response 

 

Body temperature at capture (0 h) was comparable between groups assigned to all 

temperature treatments (LM, P>0.05).  As expected, significantly higher Tb was 

reached at 3 h in the ‘warm’ and ‘hot’ temperature treatments, compared to the 

ambient ‘control’ treatment (LMER, P<0.05, Fig. 3.2a).   

The increase in Tb was not significantly different among groups (males, non-gravid 

females, gravid females) within each temperature treatment at 3 h (LM, P>0.05).  

Mean Tb after 3 h reached 12.6 ± 0.7°C in the ‘control’ treatment, 17.3 ± 0.4°C in the 

‘warm’ treatment and 21.4 ± 0.4°C (which is Tsel for tuatara) in the ‘hot’ temperature 

treatment (Fig. 3.2a). Body condition was comparable among groups (LM, P>0.05), 

and was not a significant predictor of CORT secretion in this experiment (LMER, 

P>0.05). 

Males and non-gravid females (pooled data) exhibited a significant CORT response 

in all temperature treatments (Fig. 3.2b, Table 3.2a).  The magnitude of the CORT 

response was not significantly different between the ‘control’ and ‘warm’ treatments 

(LMER, P>0.05); however, a positive trend in the ‘hot’ temperature treatment was 

observed and suggests an amplified CORT response in this treatment, compared to 

‘control’ and ‘warm’ treatments (LMER, P=0.09) (Fig. 3.2b, Table 3.2a).  Gravid 

females maintained a dampened CORT response in the ‘control’ and ‘warm’ 

temperature treatments (LMER, P>0.05), but exhibited a significant CORT response 

in the ‘hot’ temperature treatment (LMER, P=0.04) (Fig. 3.2c, Table 3.2b).   
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Figure 3.2: Effect of acute increased body temperature on the CORT response in tuatara 
(Sphenodon punctatus). Data show change from 0 h to 3 h in a) internal body temperature, CORT 
secretion in b) male and non-gravid female and c) gravid female tuatara subject to capture-
restraint and temperature treatments of ‘control’ (mean Tb = 12.6°C), ‘warm’ (mean Tb = 17.3°C) 
and ‘hot’ (mean Tb = 21.4°C).  Data points represent mean ± s.e.  Asterisks indicate a significant 
change observed after 3 h compared to baseline (0 h), and bars above treatments show the 
difference in magnitude of the CORT response. Numbers in brackets indicate sample size.   
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 Table 3.2: Results from LMER models explaining variation in measures of baseline CORT and the 
CORT response in tuatara (S.punctatus) accounting for fixed effects of time , temperature 
treatment (control, warm, hot) and the interaction of these effects for a) male/non-gravid 
female tuatara and b) gravid female tuatara. 

 

Fixed effect predictor estimate s.e. T value P value 

     

a) males/non-gravid females      

0 h control (Intercept)   0.560  0.673  0.910 <0.001 
0 h warm  -0.084  0.101 -0.831   0.410 
0 h hot  -0.027   0.105 -0.253   0.801 
3 h x control  0.343  0.097   3.575 <0.001* 
3 h × warm  0.096  0.126   0.076   0.454 
3 h × hot     0.223  0.132   1.694   0.094· 
     

b) gravid females       

0 h control (Intercept)   0.823  0.121  6.818 <0.001 
0 h warm  -0.217  0.171 -1.275   0.218 
0 h hot  0.034  0.155 0.219   0.828 
3 h x control -0.145   0.124  -1.166   0.268 
3 h × warm  0.096  0.126   0.076   0.454 
3 h × hot     0.360  0.161   2.243   0.046* 
     

 

3.5 Discussion 

I examined the relationship between natural variation in ambient temperature and 

baseline CORT and the CORT response in tuatara, and experimentally tested 

whether acute increased body temperature affects the magnitude of the CORT 

response.  Here, I confirm for a cold-adapted reptile a significant correlation 

between body temperature and CORT secretion.  My results reveal three interesting 

patterns: (i) a significant positive correlation between Tb and baseline CORT 

secretion in gravid females only, (ii) a significant positive correlation between Tb 

and the CORT response in males and females (gravid and non-gravid), and (iii) an 

acute increase in Tb approaching a threshold at/near ambient temperatures of 25°C 

elicits a significant CORT response in gravid females (which at lower temperatures 

fail to show a response), and may influence the magnitude of the CORT response in 
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males and non-gravid females (though the latter is a marginal trend). These findings 

are important as many behavioural and physiological processes in ectotherms are 

sensitive to changes in ambient environmental temperature (Bonnet et al., 2013; 

Cartland and Grimmond, 1994; Finkler, 2006; Gaby et al., 2011; Lawrence, 1997; 

Lourdais et al., 2008), and should therefore be considered in physiological studies 

utilising ectotherms as model organisms.   

3.5.1 Body temperature is correlated with baseline CORT in gravid females 
only 

I observed a positive correlation between Tb and baseline CORT in gravid females 

only, and found no significant correlation between Tb and baseline CORT in males or 

non-gravid females.  These results agree with findings from a previous study 

investigating patterns of CORT in male, non-gravid female and gravid female tuatara 

(Chapter Two).  Other studies have reported inconsistent effects of Tb on baseline 

CORT in reptiles, with reports of a positive relationship, negative relationship or no 

relationship at all (Baker et al., 2013; Romero and Wikelski, 2006).  Tyrrell and Cree 

(1998) found a positive correlation between Tb and baseline CORT in male but not 

female tuatara, during summer and winter months, which the authors suggested 

could be a product of increased Tb promoting specific behavioural activity that 

coincides with increased baseline CORT.  This hypothesis could potentially explain 

the elevated baseline CORT observed in gravid females in the current study, i.e. it is 

possible that higher Tb in gravid females may facilitate (or be connected with) 

migration to nesting grounds, nest digging and/or oviposition activities in the spring 

nesting season.  Cree and Tyrrell (2001) associated nesting behaviour (digging/nest 

guarding) with elevated baseline CORT in gravid female tuatara; however Tb was not 

measured/reported in that study. Therefore, further research is required to better 

understand the relationship and connection between Tb, behavioural activities, and 

baseline CORT.   

3.5.2 The CORT response is higher at warmer ambient temperatures 

The magnitude of the CORT response was significantly higher in tuatara sampled at 

warmer ambient temperatures, with effectively higher Tb.  Numerous studies have 
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reported increased rates for physiological processes at warmer temperatures in 

reptiles, including hormone secretion (Callard et al., 1975; Narayan and Hero, 2014), 

blood circulation (Dunlap, 2006; Maclean et al., 1975), gestation (Michel et al., 

2013), and metabolic processes such as growth, digestion and locomotion (Aidam et 

al., 2013; Bonnet et al., 2013; Cartland and Grimmond, 1994; Gillooly et al., 2001; 

Narayan et al., 2012; Polo-Cavia et al., 2012; Preest and Cree, 2008; Tamplin et al., 

2013). 

In addition, I found that body condition is positively correlated with the CORT 

response in the spring season, but not in the autumn season.  In tuatara, it is possible 

that a stronger CORT response may contribute to better body condition in the 

spring. Food resources are reduced during the winter period, with a seasonal shift of 

increased prey availability occurring in late spring/summer (Walls, 1981); 

therefore, the presence of a stronger CORT response may reflect increased foraging 

activity in certain individuals leading to better body condition.  Many studies have 

found a positive correlation between CORT secretion and feeding behaviour 

(reviewed in Landys et al., 2006), and experimentally elevated CORT levels have 

been shown to stimulate foraging activities (Breuner and Hahn, 2003; Crossin et al., 

2012; Lancaster et al., 2008).  Therefore, it may be beneficial to have a stronger 

CORT response during specific seasons, environmental conditions and/or life-

history events.  Alternatively, my results may indicate that individuals in better body 

condition are able to mount a stronger CORT response compared to individuals with 

reduced body condition. This prediction could be examined by looking at the CORT 

response across a range of body conditions, seasons and environmental scenarios 

(see Chapter Four). The role of CORT in regulating foraging activity could be 

examined experimentally in a controlled setting by applying exogenous CORT and 

monitoring feeding behaviour. Results from such studies may clarify the relationship 

between body condition and the magnitude of the CORT response.  

3.5.3 Acute increased body temperature elicits a CORT response in gravid 
females 

In my experimental study, I confirmed that an acute increase in Tb can elicit a CORT 

response in gravid females. I did not observe a significant CORT response in gravid 
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females in both ‘control’ and ‘warm’ temperature treatments; yet a significant CORT 

response was exhibited by gravid females in the ‘hot’ temperature treatment. My 

experiment demonstrates, as previously suggested (Chapter Two), that gravid 

females are not operating at maximal CORT secretion at capture (despite their high 

baseline CORT levels) and are indeed able to mount a significant CORT response 

during the nesting life-history stage.  In addition, I also observed a weak trend 

between an acute increase in Tb and the CORT response in males and non-gravid 

females in the ‘hot’ temperature treatment, though the trend status is marginal.  I 

recognise that my sample sizes are small (particularly for gravid females); therefore 

it would be useful to conduct a larger-scale experiment in which Tb extends slightly 

above Tsel to confirm and extend this result.   

Nevertheless, the significant findings observed in gravid females in my experimental 

study, paired with the weak trend observed in males and non-gravid females, 

provides compelling evidence that exposure to acute temperature increases (up to 

and most likely above Tsel) can increase the magnitude of the CORT response in a 

cold-adapted reptile.  This may be explained by an increase in the rate of hormone 

secretion at higher temperatures (as discussed in section 3.5.2), or possibly an effect 

of exposure to compound stressors (capture-restraint plus Tb increase/inability to 

thermoregulate). In a natural setting, ectotherms have the capacity to buffer changes 

in ambient air temperatures (and thus actively thermoregulate Tb) through 

behavioural actions such as seeking shade, retreating to burrows, or basking 

(Besson and Cree, 2010; Kearney et al., 2009; Seebacher et al., 1999); therefore, 

exposure to increased temperatures (without the option to regulate Tb) may explain 

my findings.  

In a similar study to mine, the Children’s python (Antaresia childreni) exhibited an 

higher CORT response when subject to a cold temperature treatment of 17°C (which 

is well below the pythons’ Tsel of ~29°C).  The authors suggest a response threshold 

exists to allow individuals to cope with suboptimal temperatures when unable to 

thermoregulate.  It would be interesting to see if the same response was observed at 

higher Tb (above Tsel) in this species.  Likewise, the magnitude of the CORT response 

to suboptimal temperatures could be tested in tuatara by decreasing Tb. However, as 
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tuatara are a cold-adapted reptile and have been observed at ambient temperatures 

as low as 5-6°C , with a critical thermal minimum temperature of 0.7°C (Besson and 

Cree, 2011), it would be likely that a ‘cool’ temperature for tuatara could possibly 

approach 0°C and there could be a risk of tissue/cell freezing (Gillooly et al., 2001).  

In a recent study on the Qinghai toad-headed lizard (Phrynocephalus  vlangalii) (a 

cold-adapted alpine reptile with ambient daytime Tb ranging from 0 – 20°C), CORT 

secretion was examined after exposure to acute cold-temperature treatments (at 

0.1-0.5°C) of varying durations. No significant response to temperature treatments 

was observed; however, the lizards used in this study were wild-caught, held in 

captivity for two weeks before the experiment and neither baseline CORT secretion 

values, the effect of captivity nor inter-individual fights were considered, which may 

have contributed to the observed results (Li et al., 2011).  Similarly, the influence of 

both ‘cold’ and ‘warm’ temperatures on the CORT response in water snakes (Nerodia 

sipedon) was investigated (in which acute change from Tb at capture was ± 10°C), 

and no effect of acute temperature on the magnitude of the CORT response was 

observed (Sykes and Klukowski, 2009). Water snakes are known to regularly 

experience acute temperature change (i.e. moving from basking to swimming) and 

are able to function over a wide range of Tb (~7-30°C), which may explain the lack of 

response to temperature in this species. Clearly, more research investigating the 

interplay between temperature, thermoregulatory capacity, and CORT secretion in 

ectotherms is needed.   

Increased CORT secretion supports immediate survival during situations where 

challenges are numerous or perceived as more intense/stressful (Bonnet et al., 

2013; Graham et al., 2012). I recommend the examination of nesting behaviour 

(digging, oviposition, guarding etc.) of gravid female tuatara to test the prediction 

that they will abandon (or possibly will not initiate) nesting activities at a specific 

temperature threshold (at or above Tsel) at which a significant CORT response is 

produced.  Studies in green turtles have reported that gravid females exposed to 

heat-stress or severe shark attacks maintain a dampened CORT response and 

continue nesting (Jessop et al., 2004a; Jessop, 2001).   
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3.6 Conclusions 

I confirm a significant correlation between Tb and CORT secretion in a cold-adapted 

ectotherm.  The magnitude of the CORT response is positively correlated with 

ambient temperatures in male and female (gravid and non-gravid) tuatara, whereas 

baseline CORT is positively correlated with ambient temperatures in gravid females 

only.  An acute increase in Tb to Tsel (~21°C Tb) elicits a significant CORT response in 

gravid female tuatara, and may increase the CORT response in males and non-gravid 

females (although this is a weak trend).  Possible explanations for this observation 

include a CORT response threshold at Tsel, an increase in the rate of hormone 

secretion caused by higher temperatures, or an effect of compound stressors 

(capture-restraint plus Tb increase /inability to thermoregulate). These findings are 

important as many behavioural and physiological processes in ectotherms are 

sensitive to changes in ambient temperature and should therefore be considered in 

physiological studies utilising ectotherms as model organisms, especially where 

variation in ambient temperatures is experienced.  Furthermore, these results will 

inform conservation efforts involving capture-restraint (which constrains normal 

thermoregulatory behaviour), such as in population monitoring, research 

programmes, translocation and captive management programmes.
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  CHAPTER 4 

4 The corticosterone stress response varies among island 

populations of tuatara (Sphenodon punctatus) and is 

associated with linear ecological attributes1 

4.1 Abstract 

The most widely used indicators of physiological stress in free-living vertebrates are 

glucocorticoid (GC) hormones. Measurement of GC concentrations in body fluids or 

products to assess population status and/or to monitor conservation efforts is 

central to stress physiology research.  However, in order to fully understand the 

stress physiology of a species, and to make comparisons among populations, it is 

essential to consider seasonal patterns in GC secretion and incorporate ecological 

variation.  I compared baseline corticosterone (CORT), the primary GC in reptiles, 

and the 3 h CORT response to capture-restraint among four populations of a rare 

rhynchocephalian reptile, the tuatara (Sphenodon punctatus) during the non-

breeding and breeding seasons to determine inter-population variation in CORT 

secretion. Then, I used principal components analysis (PCA) to simplify five 

ecological attributes into two component axes that explained 96% of the ecological 

variance among populations, and used principal component regression to test linear 

ecological predictors (PC1, PC2) of CORT secretion.  Finally, I determined plasma 

testosterone (T) in a subset of two populations as a proxy for reproductive activity 

                                                             
1
 This chapter is based on the following manuscript submitted to Animal Conservation (in review) 

with minor modifications: Anderson L, Nelson N, Towns D, Cree A. The corticosterone stress 
response varies among island populations of tuatara (Sphenodon punctatus) and is predicted by 
linear ecological attributes. 
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and examined associations between T and CORT secretion.  I found that baseline 

CORT secretion was similar among populations during the non-breeding and 

breeding seasons; however, the CORT response to capture-restraint varied 

significantly among populations.  In general, baseline CORT increased, and the CORT 

response decreased, from the non-breeding season to the breeding season.  I found 

significant correlations between the CORT response and habitat factors of latitude, 

tuatara density and seabird abundance (PC1 axis) and demogenetic factors of sex 

ratio and genetic diversity (PC2 axis); however, no correlations were observed 

between baseline CORT along both axes.  Testosterone secretion was not associated 

with CORT secretion. Nonetheless, inter-population variation in T was observed in 

males (but not females) and was positively linked with increased baseline CORT 

from the non-breeding season to the breeding season, suggesting that male 

reproductive activity may drive the seasonal increase in baseline CORT.  

 

4.2 Introduction 

Glucocorticoid  hormones (corticosterone (CORT) or cortisol) are the most widely 

used indicators of physiological stress in free-living vertebrates (Wikelski and 

Cooke, 2006). The use of CORT in body fluids (plasma) or products (urine, faeces) as 

a rapid tool to assess population health and/or to monitor conservation efforts is 

instrumental in stress physiology research (Busch and Hayward, 2009; Dantzer et 

al., 2014; Wikelski and Cooke, 2006).  When individuals experience unpredictable 

challenges (i.e. stressors) that affect internal balance or homeostasis, a complex 

physiological response cascades through the hypothalamo-pituitary-adrenal (HPA) 

axis to stimulate CORT secretion (as either a gradual increase in baseline CORT or as 

an immediate CORT stress-response) to help individuals cope with stressors and to 

promote overall fitness and survival (Wingfield and Kitaysky, 2002; Wingfield et al., 

1998).  Even so, patterns of CORT secretion are not universally consistent; variation 

is observed among species, and within and among populations (Cockrem, 2013; 

Creel et al., 2013; Love et al., 2013).   
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Variation in CORT secretion can be linked to intrinsic factors (sex, reproductive 

status, age) and to environmental, social and/or physiological stressors such as 

habitat modification (either natural or anthropogenic causes), as well as seasonal 

changes in food availability, temperature and/or weather, and in reaction to 

increased energy demands required during reproduction, territorial disputes and 

migration (Baker et al., 2013; Berner et al., 2013; Hamann et al., 2007; Holding et al., 

2014b; Owen et al., 2014; Rubenstein and Wikelski, 2005; Taylor et al., 2014; 

Woodley et al., 2003).   

It is generally agreed that baseline CORT meets energetic demands associated with 

predictable life-history stages, whereas the CORT response is a reaction to 

unpredictable and/or challenging events (Tokarz and Summers, 2011; Wingfield et 

al., 1998).  Modulation of CORT secretion helps individuals cope with their specific 

environment to effectively increase fitness (Moore and Jessop, 2003; Romero, 2002).  

Baseline CORT is commonly elevated during the breeding season to support 

energetic requirements associated with reproductive activities, and similarly,  

individuals experiencing reduced breeding opportunities or living in harsh 

environments have been found to dampen their CORT response during the breeding 

season, which may serve to increase chances of reproductive success (Ebensperger 

et al., 2013; Holding et al., 2014b; Jessop et al., 2000; Moore and Jessop, 2003; 

Romero, 2006; Wingfield et al., 1998; Wingfield and Sapolsky, 2003).   

Examining patterns of CORT secretion within a population can be a useful tool to 

assess and monitor overall health, and may be a way to identify unpredicted 

challenges and gauge an individual’s ability to respond to stressors (Bonier et al., 

2009; Breuner et al., 2008). That said, gaining a good understanding of factors that 

influence CORT secretion, while considering environmental context, is important. 

Many studies have examined factors influencing CORT secretion (both baseline 

CORT and the CORT response); however, studies that incorporate intrinsic, seasonal, 

and ecological/anthropogenic attributes to assess sources of variation in CORT 

secretion among wild populations are limited (Boonstra, 2013; Dantzer et al., 2014).  
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Here, I compare patterns in the secretion of CORT, the main GC in reptiles, among 

four wild populations of tuatara (Sphenodon punctatus) during the non-breeding and 

breeding seasons, and examine potential attributes that may explain variation in 

CORT secretion. Natural populations of tuatara are currently restricted to isolated 

offshore islands (Jones and Cree, 2012) with considerable variation in ecological 

attributes such as island size, sex ratio, body condition, climate, conspecific density, 

seabird abundance, food availability, human activity, history of introduced Pacific 

rats (Rattus exulans), genetic diversity and demography (Cree, 2014; Gaze, 2001).  

Tuatara are an ideal species to examine relationships between CORT secretion and 

influential factors (intrinsic, seasonal, ecological/anthropogenic) due to the variety 

of environmental conditions observed among island populations and to their 

distinctive breeding cycle.   

Tuatara have seasonally distinct reproductive activity with breeding (mating and 

ovulation) occurring in autumn (February – March) and nesting in spring (October – 

December), though not all females ovulate and nest each year (Cree, 2014).  Male 

reproductive activity peaks in late summer/early autumn (January-March) (Saint 

Girons and Newman, 1987) and includes prenuptial displays, courtship, mating, and 

territorial defence (Gans et al., 1984; Moore et al., 2009b).  Male reproductive 

success is highly skewed, with only 25-30% of individuals successful in securing a 

mate (Moore et al., 2009a).  Spermatogenesis and plasma testosterone 

concentrations in males follow an annual cycle, being low during the winter, rising in 

the spring, and peaking in midsummer to early autumn during the mating period 

(Cree, 2014). Female tuatara exhibit an extended reproductive cycle, carrying eggs 

in the oviduct for 6–8 months and producing one clutch of eggs every 2-9 years, 

depending on the population (Cree et al., 1992; Moore et al., 2009a; Refsnider et al., 

2010).  Female tuatara show highest levels of testosterone and estradiol when in 

pre-ovulatory condition during the breeding season, however; only ~10 - 50% of 

females in a given population are ovulating (hence receptive to a mate) during the 

breeding season (Cree, 2014; Mitchell et al., 2010; Moore et al., 2009a; Tyrrell et al., 

2000).  
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Baseline CORT in tuatara is generally low (Cree and Tyrrell, 2001; Tyrrell and Cree, 

1998) and a significant CORT response is observed to capture-restraint (Chapter 

Two; Tyrrell and Cree, 1998).  Studies examining variation in CORT secretion among 

tuatara populations are limited, with only one previous study comparing CORT 

secretion between two northern populations (a rat-free population vs a rat-

inhabited population), in which presence of rats was associated with an elevation in 

the 3 h and 18 h CORT response but did not influence baseline CORT (Tyrrell et al., 

2000). 

Seasonal variation in baseline CORT has been observed in the population on 

Stephens Island, where baseline CORT was highest in November for females and 

February/May for males (Tyrrell and Cree, 1998); however, seasonal patterns of 

baseline CORT secretion (in other island populations) and seasonal patterns of the 

CORT response have not been investigated.  I found a positive correlation between 

body temperature (Tb) and the CORT response in tuatara (Chapter Three), and that 

body condition is not correlated with baseline CORT or the CORT response (Chapter 

Two; Chapter Three).  Here, I make further use of samples collected in Chapter 

Three (along with new samples) to examine inter-island variation of CORT secretion 

in two seasons, while effectively controlling for (and examining) the influence of 

temperature and body condition.  

In this study, I examined variation in CORT secretion (baseline CORT and the CORT 

response to capture-restraint) among four populations during the non-breeding and 

breeding seasons.  I predicted that (i) baseline CORT would vary among populations 

during each season due to contrasting environmental attributes; (ii) baseline CORT 

would be higher during the breeding season (compared to the non-breeding season) 

in all populations, as tuatara exhibit energetically demanding reproductive 

behaviours/activity during the breeding season (Moore et al., 2009b; Saint Girons 

and Newman, 1987); and, (iii) the CORT response would be higher in northern 

populations (compared to Cook Strait populations), in both seasons, due to a milder 

climate (e.g. warmer Tb) and past/recent rat presence.  I tested relevant ecological 

predictors of CORT secretion (through principal component analysis) to identify 

significant factors that may contribute to variation among populations.  Secondly, I 
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examined the association between reproductive activity (as indicated by 

testosterone (T) concentrations) and modulation of CORT secretion from the non-

breeding season to the breeding season in a subset of two populations with 

contrasting seasonal modulation of baseline CORT.   

4.3 Material and methods  

4.3.1 Study sites and animals 

 Wild adult tuatara (Sphenodon punctatus) were captured and sampled from four 

island populations in New Zealand during the non-breeding (austral spring) and 

breeding (austral autumn) seasons.  Samples were collected from Stephens 

Island/Takapourewa (40° 40’ S, 174° 00’ E), North Brother Island (41° 6’ S, 174° 25’ 

E), Lady Alice Island (35° 53’ S, 174° 43’ E) and Taranga Island ('35° 58’ S, 174° 43’ 

E)  during the non-breeding season (November 2011) and breeding season (March 

2011* and March 2012, *Lady Alice and Taranga Islands only).  Both Lady Alice 

Island and Taranga Island CORT concentrations were not significantly different 

between the 2011 and 2012 breeding seasons (LMER, P>0.05), therefore I pooled 

2011/2012 breeding season samples for each site to increase sample size for 

analyses.  

Samples were obtained from adult males and adult non-gravid females during each 

season.  Tuatara reach sexual maturity at approximately 13 years of age (~ SVL ≥ 

170mm) (Castanet et al., 1988), at which point sex can be identified by examining 

head shape, spine shape, and body size/shape (Cree, 2014; Cree et al., 1991a; 

Dawbin, 1982). Gravid females with eggs are only present during the non-breeding 

season and are difficult to locate on lower density islands (pers. obs.); therefore I 

chose not to include gravid females in my sampling regime.  

4.3.2 Sampling protocol 

Samples were collected at night (between 20:00 h and 04:00 h) from hand-captured 

individuals that had emerged from their underground burrows.  To determine 

baseline CORT concentrations, a blood sample (up to 1 ml) was collected within 10 
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min of capture from the base of the tail with a heparinized 23-gauge needle and 1 ml 

syringe.  In previous studies of tuatara, no significant effect of bleeding effort (time 

from capture to blood sample collection) was observed on baseline CORT 

concentrations in blood samples collected within 20 min of capture (Chapter Two; 

Tyrrell, 1993).  After baseline samples were taken, individuals underwent 3 h 

capture-restraint in cloth capture bags either outdoors or in a research house 

(depending on the field site), whereupon a second blood sample (up to 1 ml) was 

taken.  

Internal body temperature (Tb) was recorded with a cloacal thermocouple (Fluke® 

Multimeter, model: 179, reported accuracy ±1°C) prior to taking blood samples 

(both baseline CORT and CORT response) for each individual, as Tb has been shown 

to influence CORT secretion in tuatara (Chapter Three).  After the 3 h blood 

sampling was completed, individuals were weighed with a 1000 g spring scale 

(Pesola AG, Switzerland) to determine mass (g), and snout-vent length (SVL) (mm), 

tail length (mm), and tail regeneration length (mm) were measured with a ruler to 

determine body condition.  Depending on field conditions, blood samples were 

separated either by centrifuge (5 min at 2000 rpm) or under normal gravity for 6 to 

8 h at 4°C (Reimers et al., 1983; Sheriff et al., 2011).  Plasma was transferred into 

cryogenic vials with a micropipette, stored in a cryogenic dry shipper at -190°C 

(Thermo ScientificTM, Arctic ExpressTM Dual 10) or in a freezer at -20°C until return 

to the laboratory, and then stored at -80°C until assayed.  

 

4.3.3 Linear ecological predictors: Principal components analysis (PCA) of 
ecological attributes 

I used principal components analysis (PCA) to identify combinations of ecological 

attributes that explain variation between island populations.  A correlation matrix 

was used to generate PCA scores from ecological attributes (Table 4.1).  Principal 

component axes with eigenvalues ≥1.0 were retained and a minimum absolute value 

of ≥ 0.4 for loading coefficients was chosen as a requirement for significance of an 

ecological variable in each PCA axis (Field et al., 2012). 
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  Table 4.1: Description and ecological attributes of study populations  

 

Population Latitude 
Island 

size 
(ha) 

Tuatara 
density 
 (#/ha) 

Relative 
seabird 
density 

History of  
introduced 

rats 

Genetic 
Diversity 

(H) 

Sex 
ratio 
(M:F) 

Female 
gravidity 

rate 
(%/yr) 

References 

Stephens 40° 40’ S 150 
 

674 
 

high None 0.6 1 : 1 21.9 
(Cree, 2014; Gaze, 2001; Hay et al., 2010; 
Moore et al., 2010; Newman, 1987; Newman 
et al., 1994) 

North 
Brother 

41° 6’ S 4 
134 - 
159 

high None 0.1 
3.2 : 

1 
10.8 

(Cree, 2014; Cree et al., 1991a; Gaston and 
Scofield, 1995; Gaze, 2001; Grayson et al., 
2014; Hay et al., 2010; Mitchell et al., 2010; 
Nelson et al., 2002; Wilson, 2010) 

Lady Alice 35° 53’ S 155 
13.6 – 
17.7 

med 
Rats 

eradicated 
in 1994 

0.7 1 : 1 28.8 -32 

(Cassey and Ussher, 1999; Cree, 2014; Cree 
et al., 1995; Gaze, 2001; Hay et al., 2010; 
Newman et al., 1994; Towns et al., 2007; 
Tyrrell et al., 2000)  

Taranga 35° 58’ S 500 1.1 low 
Rats 

eradicated 
in 2011 

0.7 
1 : 
1.5 

27 
(Buxton et al., 2013; Cree, 2014; Cree et al., 
1995; Gaze, 2001; Hay et al., 2010) 
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4.3.4 Reproductive activity: Testosterone (T) secretion  

I determined plasma testosterone (T) concentrations (at both 0 h and 3 h)  in a 

subset of plasma samples obtained in this study from the Stephens (males: n=10, 

females: n=20) and North Brother (males: n=15, females: n=15) populations in Cook 

Strait.  Plasma T concentrations can be used as a gauge for reproductive activity in 

males, where increased T implies increased sperm production, territoriality, 

courtship, and mating events (Cree et al., 1992; Gillingham et al., 1995). In females, 

plasma T concentrations are normally lower than males; however, results can be 

used to gauge percentage of reproductively active females in each population, as 

elevated T concentrations (obtained within 3 h of capture) in February–March 

distinguish female tuatara in ovulatory condition (Cree et al., 1991b).  

 

4.3.5 Enzyme-Immunoassay 

4.3.5.1 Corticosterone 

Plasma CORT concentrations for all samples were determined as described in 

Chapter Two.  Mean extraction efficiency of tritiated CORT (H3) was 106% ± 5% s.d. 

(n=25 extractions) with an overall CV of 5.18%. The mean intra-assay CV was 9.9% 

and the mean inter-assay CV was 15.4%.  

4.3.5.2 Testosterone 

Plasma samples from the Cook Strait populations (Stephens and North Brother 

Island - NBI) obtained during the March 2012 breeding season (n=120) were sorted 

into male and female samples (30/plate) and extracted for assay as described for 

CORT in Chapter Two.  Serial dilutions at 100%, 80%, 60%, 40%, 20%, 10%, 5% and 

1% of pooled male tuatara plasma samples showed good parallelism to the standard 

curve for testosterone (T) over the assay standard range (P>0.05).  Samples were 

reconstituted with 2 ml EIA buffer (for a 200-fold dilution), vortexed and held at 4°C 

until assayed.   
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Extraction efficiency was measured by comparing mean recovery of extracted (n=5) 

versus non-extracted (n=5) 2000 cpm tritiated T [1,2,6,7-H3].  Extracted plasma 

samples (50 µl) were analysed in duplicate using commercial enzyme immunoassay 

kits (Cayman Chemical Co., Ann Arbor, MI) containing 96-well plates coated with 

mouse monoclonal anti-rabbit IgG antibody. Testosterone-specific 

acetylcholinesterase (AChE) tracer and sheep T antiserum were added to sample 

wells and placed on an orbital shaker for 2 h. Plates were washed five times, 

developed for 1 h on an orbital shaker and subsequently read at 412 nm. The 

concentration of T was calculated by comparing results to a standard curve; all 

samples yielded T concentrations within the 20 – 80% bound range.  Mean 

extraction efficiency of [1,2,6,7-H3] was 100% ± 5% s.d. (n=4 extractions) with an 

overall CV of 4.9%.  The mean intra-assay CV was 10.9% and the mean inter-assay 

CV was 12.4%.   

 

4.3.6 Statistical analyses 

Data analyses were carried out using R v3.2.0 statistical software (R Development 

Core 2013) and Prism 6 (Graphpad Software Inc.).  All data were checked for 

assumptions of normality and were transformed if necessary. To generate body 

condition scores, I calculated tail-corrected mass (TCM) following Newman et al. 

(1994) to account for tail-loss and regeneration, pooled data across both seasons 

(separated by sex) then generated standardized residuals from a regression of 

logTCM vs. logSVL (Schulte-Hostedde et al., 2005). 

Linear models (LM) and linear mixed effects regression models (LMER) were fitted 

using the ‘lme4’ package (Bates, 2013)  to analyse: 1) inter-population variation in 

CORT secretion, body condition and T secretion, and 2) linear ecological predictors 

(PCA axes) of CORT secretion. Final models were selected through forward selection 

by comparing the addition of fixed and random effects to intercept-only baseline 

models (Field et al., 2012), whereupon parameter estimates were obtained with the 

summary() function in R.  The ‘lmerTest’ package (Kuznetsova, 2013) was used to 

compute P-values for parameter estimates and statistical significance was assumed 

at P< 0.05.  
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First, I determined variation in CORT secretion and body condition among 

populations during the non-breeding and breeding seasons.  Sex was not a 

significant predictor in any of the final models (P>0.05); therefore sexes were 

pooled for all analyses. Final models for CORT secretion included response variables 

of log transformed baseline CORT and the CORT response (3 h CORT – 0 h CORT) 

and input variables of season (non-breeding, breeding), population (Stephens, NBI, 

LA, Taranga), linear covariates of internal body temperature (Tb) and body 

condition, and an interaction term of season* population.  The final model for body 

condition included a response variable of body condition score and input variables 

of season (non-breeding, breeding), population (Stephens, NBI, LA, Taranga) and an 

interaction term of season* population.   

 

Second, I examined linear ecological predictors (PCA axes) of CORT secretion 

through principle component regression models.  Sex was not a significant predictor 

in any of the final models (P>0.05); therefore sexes were pooled for all analyses. The 

final models  included a response variable of log transformed CORT response (3 h 

CORT – 0 h CORT) and input variables of season (non-breeding, breeding), linear 

covariates of PCA Axes (PC1 and PC2) and an interaction terms of season * PCA axes 

(PC1 and PC2).   

 

Lastly, I determined variation in T secretion between a subset of two populations 

and examined associations with CORT secretion.  The final model for T secretion 

included a response variable of T (ng/ml) and input variables of hour (0 h, 3 h), 

population (Stephens, NBI), sex (M, F) and an interaction term of population * sex.  

The final model for CORT and T association included a response variable of log 

transformed CORT and input variables of hour (0 h, 3 h), population (Stephens, NBI), 

sex (M, F) and a linear covariate of T.  A random effect of tuatara ID was included in 

both models to account for repeat sampling of individuals (at 0 and 3 h). 

 



64 
 

4.4 Results 

4.4.1 CORT secretion and body condition  

Baseline CORT did not significantly vary among populations during either the non-

breeding (Fig 4.1a, Table 4.2) or breeding (Fig 4.1a, Table 4.2) seasons. Baseline 

CORT secretion significantly increased from the non-breeding season to the 

breeding season in the Stephens (LM, t=3.16, P=0.001, Fig 4.1a) and LA (LM, t= 2.92, 

P=0.004, Fig 4.1a) populations, but was similar between seasons in the NBI (LM, t= 

1.09, P=0.277, Fig 4.1a) and Taranga (LM, t= -0.16, P=0.874, Fig 4.1a) populations.   

The CORT response varied significantly among populations during both seasons (Fig 

4.1b, Table 4.2).  During the non-breeding season, the CORT response was similar 

between the Stephens and NBI populations (Fig 4.1b, Table 4.2), the Taranga 

population was significantly higher than the Stephens (Fig 4.1b, Table 4.2) and NBI 

(LM, t= 3.55, P=0.001, Fig 4.1b) populations, and the LA population was significantly 

higher than the Stephens (Fig 4.1b, Table 4.2), NBI  (LM, t= 5.84, P<0.001, Fig 4.1b), 

and Taranga  (LM, t= 2.79, P=0.006, Fig 4.1b) populations .  During the breeding 

season, the CORT response was similar among the Stephens, LA, and Taranga 

populations, and was significantly lower in the NBI population (Fig 4.1b, Table 4.2).  

The CORT response significantly decreased from the non-breeding season to the 

breeding season in the LA population only (LM, t=-4.38, P<0.001, Fig 4.1b), but was 

similar between seasons in the Stephens (Fig 4.1b, Table 4.2), NBI (LM, t=-1.27, 

P=0.205, Fig 4.1b), and Taranga (LM, t= -1.07, P=0.287, Fig 4.1b) populations. 

Body condition varied significantly among populations during both seasons (Fig 

4.1c, Table 4.2).  During the non-breeding season, body condition was significantly 

higher in the Stephens population compared to all other populations (Fig 4.1c, Table 

4.2), was similar between the NBI and Taranga (LM, t= 1.14, P =0.256, Fig 4.1c) 

populations, and the LA and Taranga (LM, t= -1.10, P = 0.270, Fig 4.1c) populations, 

and was significantly lower in the NBI population compared to the LA population 

(LM, t= -2.23, P = 0.027, Fig 4.1c).  
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Figure 4.1: Patterns of a) baseline CORT, b) the CORT response (3 h – 0 h CORT), and c) body 
condition (standardised residuals from regression of TCMlog/SVLlog) among four contrasting 
populations of adult tuatara (Sphenodon punctatus) during the non-breeding and breeding 
seasons.  Data (Mean ± SE) from males and females (non-gravid only) from each population are 
pooled. Populations sharing the same letters are not significantly different during the non-
breeding (a, b, c) and breeding (z, y, x, w) seasons. Significant seasonal change (breeding season 
– non-breeding season) is indicated by asterisks (P<0.01). Sample size (n) is indicated by 
numbers at base of each bar.
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Table 4.2: Linear model parameter estimates for baseline CORT, the CORT response, and body condition examining variation among four populations of 
tuatara (Sphenodon punctatus): Stephens Island (ST), North Brother Island (NBI), Lady Alice Island (LA), and Taranga Island.  1Centred covariates of body 
temperature and body condition were included in CORT secretion models.  

 Baseline CORT1 CORT response1 Body Condition 

Parameter            Est ± se t P          Est ± se t P          Est ± se t P 

non-breeding 
         

 (ST - Intercept )  0.06 ± 0.05 1.320    0.187 0.54 ± 0.07 7.781 <0.001 0.57 ± 0.08  6.891 <0.001 

 season  0.20 ± 0.07 3.162 <0.001*** 0.01 ± 0.10 0.079    0.936 -0.01 ± 0.13 -0.053   0.957 

 NBI 0.03 ± 0.07 0.561    0.575 0.01 ± 0.10 -0.682    0.496 -1.29 ± 0.13 -9.390 <0.001*** 

 LA -0.01 ± 0.08 -0.070    0.944 0.69 ± 0.12 4.857 <0.001*** -0.91 ± 0.14 -6.363 <0.001*** 

 Taranga 0.13 ± 0.07 1.814    0.070 0.35 ± 0.09 2.957    0.003* -1.10 ± 0.13 -7.920 <0.001*** 

breeding 
         

 (ST - Intercept)  0.27 ± 0.06 4.806 <0.001 0.54 ± 0.07 7.700 <0.001 0.57 ± 0.11  4.874 <0.001 

 season  -0.20 ± 0.07 -3.162    0.001*** -0.01 ± 0.10 -0.079   0.936 0.01 ± 0.13   0.053   0.957 

 NBI -0.08 ± 0.08 -1.032    0.303 -0.21 ± 0.12 -2.126   0.034* -1.56 ± 0.16 -9.749 <0.001*** 

 LA 0.01 ± 0.08 0.080    0.936 0.16 ± 0.11 1.120   0.263 -0.91 ± 0.14 -3.771 <0.001*** 

 Taranga -0.08 ± 0.08 -0.959    0.338 0.17 ± 0.12 1.210   0.227 -0.96 ± 0.14 -6.129 <0.001*** 
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During the breeding season, body condition varied significantly among all four 

populations (Fig 4.1c, Table 4.2) with highest to lowest body condition observed in 

the Stephens, LA, Taranga and NBI populations, respectively.  Body condition 

significantly increased from the non-breeding season to the breeding season in the 

LA population only (LM, t=2.55, P=0.011, Fig 4.1c), but was similar between seasons 

in the Stephens (Fig 4.1c, Table 4.2), NBI (LM, t= -1.73, P=0.08, Fig 4.1c), and 

Taranga (LM, t=0.83, P=409, Fig 4.1c) populations. 

4.4.2 Linear ecological predictors of CORT secretion (PCA axes) 

I used principal components analysis (PCA) to simplify five ecological variables into 

linear ecological predictors (Table 4.3).  Together, the first two principal 

components (PC1, PC2) explained approximately 96% of the variance in ecological 

attributes among the four island populations (Table 4.3).  

Table 4.3: Results from principal components analysis (PCA) of five ecological variables from four 
island populations of tuatara (Sphenodon punctatus). Coefficient loadings in bold (≥ absolute 
value of 0.4) are interpreted as significant.  

Ecological Attribute 
 Coefficient loadings 

 PC1 PC2 

Latitude (deg, min)  0.450           -0.142 

Tuatara density (#/ha)  0.400  0.440 

Seabird abundance (#/ha)  0.476           -0.120 

Genetic diversity (H)  0.319  0.583 

Sex ratio (% males)  0.284 -0.645 

Importance of components    

Eigenvalues  2.06 1.24 

Proportion of variance  70% 26% 

Cumulative proportion  70% 96% 

 

In general, the PC1 axis (explaining 70% variance) distinguished an ecological 

predictor based on habitat variation, in which individuals that loaded positively on 
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the PC1 axis were from populations at higher latitudes combined with higher 

tuatara densities and higher seabird abundance (Table 4.3).  The PC2 axis 

(explaining 26% variance) teased out an ecological predictor based on demogenetic 

variation, in which individuals that loaded positively on the PC2 axis were from 

populations with a lower percentage of males combined with higher genetic 

diversity (Table 4.3).   

Table 4.4 presents results from the principle component regression analyses of 

ecological predictors.  A significant relationship between baseline CORT and PC1 or 

PC2 scores was not observed in either season (LM, P>0.05, Figs 4.2a and 4.3a).  

However, a significant negative relationship was observed between the CORT 

response and PC1 scores during both the non-breeding season (Fig 4.2b, Table 4.4) 

and (to a greater extent) the breeding season (Fig 4.2b, Table 4.4), and a significant 

positive relationship was observed between the CORT response and PC2 scores 

during the breeding season (Fig 4.3b, Table 4.4) but not during the non-breeding 

season (Fig 4.3b, Table 4.4). In other words, higher CORT responses are associated 

with a) lower latitude, lower tuatara density and lower seabird abundance (both 

seasons), and b) balanced sex ratios and greater genetic diversity (breeding season 

only).  

Table 4.4: Linear model parameter estimates for the CORT response in tuatara (Sphenodon 
punctatus) with a fixed effect of season (non-breeding, breeding), and linear covariates of PC1 
scores (latitude, tuatara density, seabird abundance) and PC2 scores (% males, genetic diversity) 
as predictor variables. 

Parameter   Est ± se t P 

(Intercept)   0.78 ± 0.03  27.041      <0.001*** 
 season   -0.04 ± 0.04   -0.899   0.367 
 PC1   -0.13 ± 0.01   -9.300       <0.001*** 
 season x PC1 0.07 ± 0.02     3.101        0.002** 

     
(Intercept)   0.73 ± 0.03 22.194     <0.001*** 

 season    0.03 ± 0.05    0.639  0.523 
 PC2   -0.01 ± 0.03          -0.542  0.588 
 season x PC2  0.13 ± 0.04    3.581      <0.001*** 
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Figure 4.2: The relationship between PC1 “latitude, tuatara density and seabird abundance” on 
a) baseline CORT and b) the CORT response in four populations of tuatara (Sphenodon 
punctatus) during the non-breeding (gray symbols) and breeding (black symbols) seasons.  
Individuals with higher PC1 scores are from populations at higher latitudes with higher tuatara 
density and seabird abundance.  A significant relationship was not observed between baseline 
CORT and PC1 scores. However, a significant negative relationship was observed between the 
CORT response and PC1 scores during the breeding season (indicated by the solid black line) and 
to a greater extent during the non-breeding season (indicated by the solid gray line). 
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Figure 4.3: The relationship between PC2 “percentage of males in population and genetic 
diversity” on a) baseline CORT and b) the CORT response in four populations of tuatara 
(Sphenodon punctatus) during the non-breeding (gray symbols) and breeding (black symbols) 
seasons.  Individuals with higher PC2 scores are from populations with higher tuatara density, a 
lower percentage of males and higher genetic diversity (H).  A significant relationship was not 
observed between baseline CORT and PC2 scores. However, a significant positive relationship 
was observed between the CORT response and PC2 scores during breeding season (indicated by 
the solid black line) but not during the non-breeding season (indicated by the solid gray line)
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4.4.3 Reproductive activity: Testosterone (T) secretion during the breeding 
season 

Testosterone (T) secretion in males varied between the two populations sampled 

during the breeding season, with males from the Stephens population showing 

significantly higher T secretion (almost two-fold) compared to males from the NBI 

population (LMER, t=2.53, P =0.013, Fig 4.4). Testosterone secretion in females was 

similar between populations (LMER, t=0.65, P=0.517, Fig 4.4). A significant 

difference in T was observed between sexes in the Stephens population only, with 

males showing higher T secretion than females (LMER, t=3.83, P<0.001, Fig 4.4). 

Surprisingly, males and females in the NBI population had similar T secretion 

(LMER, t=1.87, P=0.065, Fig 4.4). I did not observe a significant T response to 3 h 

capture-restraint in the Stephens (LMER, t=0.69, P=0.496) or NBI population (LMER, 

t=-0.37, P=0.713), nor did I find a significant linear relationship between CORT 

secretion (baseline and/or CORT response) and T secretion (LMER, t =0.33, 

P=0.743) during the breeding season.  

 
 

Figure 4.4: Baseline testosterone secretion (mean ± SE) in male and female tuatara (Sphenodon 
punctatus) from Stephens and North Brother populations during the breeding season (autumn). 
A significant difference between populations is indicated by an asterisk (males only, P=0.013).  
Sample size (n) is indicated by numbers at base of each bar. 
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4.5 Discussion 

I examined variation in CORT secretion among four populations of a rare reptile (the 

tuatara, Sphenodon punctatus) during the non-breeding and breeding seasons and 

tested linear ecological predictors of CORT secretion (results summarised in Table 

4.5).  I established that baseline CORT is similar, whereas the CORT response varies, 

among populations during each season.  Furthermore, I show significant 

relationships between linear ecological predictors (PCA axes) ant the CORT 

response but not baseline CORT, suggesting that habitat factors (PC1) and 

demogenetic factors (PC2) can influence the CORT response.  These findings show 

that the CORT response appears more sensitive than baseline CORT to ecological 

factors in tuatara, and thus may be a more informative gauge to assess and/or 

monitor populations.   

Secondly, I examined variation in testosterone (T) concentrations between a subset 

of two populations during the breeding season and examined the association 

between reproductive activity and seasonal modulation of baseline CORT.  I did not 

find a significant linear relationship between T and CORT secretion during the 

breeding season; however, significant inter-population variation in T secretion was 

observed in males, but not females, and may indicate a positive association between 

male reproductive activity (as indicated by T concentrations) and baseline CORT 

increase from the non-breeding season to the breeding season.   
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Table 4.5: Summary of results. (a) Inter-population comparisons for the non-breeding season, 
breeding season, and seasonal change.  Relative levels of inter-population variation of baseline 
CORT, the CORT response, body condition, and reproductive activity (T) among/between 
populations are shown.  (b) Relationship/association between ecological factors and relevant 
response variables with direction of trend and associated season(s) shown.    

 Inter-population variation  

a) Inter-population 
comparison 

Baseline 
CORT 

CORT 
Response 

Body 
Condition 

Reproductive 
Activity (T)1 

Non-breeding season 
(NB) 

low high high - 

Breeding  
season  
(B) 

low low high 
high (males) 
low(females) 

Seasonal modulation 
(NB to B) 

high low low - 

b) Relationship/ 
      association 

Response 
variable 

Direction Season 

Body Condition 
Baseline CORT 
CORT response 

No 
relationship 

Both  
(NB & B) 

Seasonal modulation Baseline CORT Positive NB to B 

Habitat effects (PC1) 
↑ Latitude 
↑ Tuatara density 
↑ Seabird abundance 

CORT response  Negative 
Both  

(NB & B) 

Demogenetic effects (PC2) 
↓ Male-bias sex ratio 
↑ Genetic diversity 

CORT response  Positive B 

Male reproductive activity1 

↑ T concentrations 
 

Seasonal change 
(B-NB) 

in baseline CORT 
Positive B 

 

1 Stephens and North Brother populations only 
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4.5.1 The CORT response and body condition vary among populations, but 
baseline CORT does not  

Body condition varied significantly among populations; however, body condition 

was not a significant predictor of CORT secretion (baseline CORT or the CORT 

response) in spite of the apparent variation. The lack of relationship may be 

explained by the fact that a certain threshold must be met for body condition to 

affect CORT secretion (Romero and Wikelski, 2001).  

Contrary to my prediction, baseline CORT did not vary among populations during 

the non-breeding or breeding seasons.  Baseline CORT is often used as an indicator 

of overall health or stress levels (Bonier et al., 2009) and the CORT response is often 

used as an indicator of an individual’s ability to respond to a stressor (Breuner et al., 

2008).  The CORT response varied significantly among populations during both 

seasons.  During the non-breeding season, the CORT response was higher in the 

Lady Alice and Taranga (Northern) populations, compared to the Stephens and 

North Brother (Cook Strait) populations, which is consistent with my prediction.  

However, the CORT response was similar between all populations during the 

breeding season, except for the North Brother population which was significantly 

lower. My findings show that the CORT response appears more sensitive than 

baseline CORT to ecological factors in tuatara, and thus may be a more informative 

gauge to assess and/or monitor populations.   

4.5.2 Relationships between The CORT response and linear ecological 
attributes (PC1 and PC2 scores) 

Significant relationships were observed between the CORT response, but not 

baseline CORT, and linear ecological attributes (PC1 and PC2).  Thus, the variation in 

the CORT response that I observed among populations during the non-breeding and 

breeding seasons is currently best explained by 1) habitat factors of latitude, tuatara 

density and seabird abundance (PC1) and 2) demogenetic factors of sex ratio and 

genetic diversity (PC2). 
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4.5.2.1 Habitat factors of latitude, tuatara density and seabird abundance (PC1) 

A significant positive relationship was observed between PC1 scores and the CORT 

response during the non-breeding and breeding seasons. The first PCA axis (PC1) 

had significant positive loadings of latitude, tuatara density and seabird abundance 

(Table 4.3).  In other words, higher PC1 scores are connected to individuals from 

populations at higher latitudes with higher tuatara density/seabird abundance.   

It is possible that tuatara populations at lower latitudes mount a greater CORT 

response due to the milder climate (where mounting a greater CORT response may 

be less energetically costly).  Warmer but drier climates (not necessarily more 

benign for tuatara) are experienced at lower latitudes, compared to higher latitudes. 

Moore et al. (2001) found that male garter snakes (Thamnophis sirtalis) living at a 

lower latitude had higher CORT responses than those at higher latitudes, and the 

authors suggest that snakes inhabiting milder climates (with extended breeding 

seasons) can energetically afford to mount a greater CORT response.  Similarly, a 

recent study on tadpoles (Rana temporaria) found that the CORT response was 

higher in low-latitude populations, and the authors associated a lower CORT 

response in high-latitude populations with avoidance of CORT-mediated reduction 

in growth and development (Dahl et al., 2012).  In birds, there is support that 

populations from higher latitudes exhibit a lower CORT response compared to those 

in lower latitudes (Hau et al., 2010; Silverin et al., 1997).  On the other hand, there 

are also studies in both reptiles and birds that have found no correlation between 

latitude and the CORT response (Hews and Baniki, 2013; Quirici et al., 2014).   

Lower tuatara density/seabird abundance is indicative of a history of introduced 

rats (the Pacific rat, Rattus exulans)  (Cree et al., 1995; Jones et al., 2008; Towns, 

2009) and it is possible that past/recent presence of rats has directed selection of a 

greater CORT response to deal with indirect and direct effects of predation and/or 

resource competition.   Tyrrell et al. (2000) observed that tuatara from a rat-

inhabited island had significantly higher CORT responses, but similar baseline CORT, 

compared to tuatara from a rat-free island (Blair et al., 2000). Similarly, higher CORT 

responses have been observed in marine iguanas (Amblyrhynchus  cristatus) 
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exposed to invasive predatory mammals (Felis catus, Canis lupus) (Berger et al., 

2007; Rödl et al., 2007).  Therefore, the past/recent presence of an introduced 

species/predator may induce a long-term effect of sensitisation in stress 

responsiveness and/or a higher CORT response may be a modulating mechanism to 

cope with impact of a novel stressor (Berger et al., 2007; Langkilde and Trompeter, 

2011; Rödl et al., 2007).  

The significant relationship between PC1 and the CORT response was stronger 

during the non-breeding season (Fig 4.2b), which could indicate that competition for 

food resources may be greater during the non-breeding season, especially on islands 

with a history of rats.  There is ample evidence that seabirds elevate invertebrate 

density, and both invertebrates and seabirds (which can be reduced by introduced 

rats) are an important food source for tuatara in island populations (Markwell and 

Daugherty, 2002; Towns, 2009; Towns and Broome, 2003; Towns et al., 2007). 

While I did not collect any quantitative measures of food availability, the seasonal 

change in body condition observed in the Lady Alice population in this study (in 

which body condition significantly increased from the non-breeding to the breeding 

season) provides support for reduced food availability during the non-breeding 

season.  

4.5.2.2 Demogenetic factors of sex ratio and genetic diversity (PC2) 

A significant negative relationship was observed between PC2 scores and the CORT 

response during the breeding season, but not during the non-breeding season.  . The 

second PCA axis (PC2) had a significant negative loading of percentage of males in 

the population and a significant positive loading of genetic diversity (Table 4.3). In 

other words, higher PC2 scores are connected to individuals from populations with a 

lower percentage of males present and higher genetic diversity.   

A highly skewed male-biased sex ratio in the North Brother population (Grayson et 

al., 2014) could indicate more male-male aggressive interactions during the 

breeding season; therefore, the CORT response may be modulated in tuatara to 

avoid chronic elevation of CORT.  Male tree lizards (Urosaurus ornatus) experiencing 
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a single male-male aggressive encounter experienced a sustained CORT response up 

to 24 h, but males that continued interacting with other males had a dampened 

CORT response, which may facilitate metabolic recovery (Knapp and Moore, 1995).  

In male fruit bats (Artibeus jamaicensis), a dampened CORT response during the 

breeding season could reflect lowered stress sensitivity to avoid chronically elevated 

CORT levels in times of aggressive and costly male-male encounters (Klose et al., 

2006).  

There are very few studies examining relationships between genetic diversity and 

the CORT response, and I found none for reptiles or birds, however; my results are 

consistent with studies on mammals.  Sea otter populations with lower genetic 

diversity had lower CORT response to capture (Larson et al., 2009).  Sarrieau et al. 

(1998) found that genetic diversity had no effect on baseline CORT in rats; whereas, 

the CORT response was lower in inbred rats compared to outbred and hybrid rats.  

Clearly, further research examining relationships between demogenetic effects and 

CORT secretion in reptiles is required to determine whether consistent patterns are 

seen across species.   

 

4.5.3 Associations between reproductive activity (T) and modulation of CORT 
secretion 

A significant seasonal increase in baseline CORT (from the non-breeding season to 

the breeding season) was observed in only two of the four populations, which 

reveals that (contrary to my prediction) seasonal modulation of baseline CORT 

varies among populations.  Seasonal change in baseline CORT was slight in the North 

Brother population and negligible in the Taranga population. Conversely, the 

Stephens and Lady Alice populations had significant seasonal change in baseline 

CORT, with increased secretion during the breeding season.    

Numerous studies have reported increased baseline CORT in vertebrates during the 

breeding season, which is attributed to meeting energetic demands of reproductive 

activities (Moore et al., 2001; Moore et al., 2000b; Romero, 2002; Wingfield and 

Sapolsky, 2003). The CORT-fitness hypothesis suggests that the relationship 



78 
 

between CORT secretion and fitness may depend on reproductive activity of 

individuals (Bonier et al., 2009) and that a seasonal increase in baseline CORT levels 

is necessary to meet demands of predictable reproductive activities such as 

gametogenesis, courtship and mating (Bonier et al., 2009; Landys et al., 2006; 

Whirledge and Cidlowski, 2013).  Therefore, variation in seasonal modulation of 

baseline CORT among populations may be explained by different levels of 

reproductive activity.  In support of this idea, I determined levels of T secretion (as a 

proxy of reproductive activity) in male and female tuatara from the Stephens 

population (significant seasonal change in baseline CORT) and the North Brother 

population (no seasonal change in baseline CORT) to examine the association 

between seasonal modulation of baseline CORT and reproductive activity.  

Testosterone secretion in males from the Stephens population (~14 ng/ml) was 

nearly twice the level of T secretion observed in males from the North Brother 

population (~ 7.5 ng/ml) (Fig 4.4).  Previously reported levels of T concentrations in 

male tuatara are ~ 14-16 ng/ml on Stephens Island (Cree, 2014; Cree et al., 1990b) 

and ~ 10 ng/ml on NBI (Cree, 2014).   As expected, I found higher T secretion in 

males compared to females, but the difference only reached statistical significance in 

the Stephens population.  It is generally recognized that territoriality and other 

aspects of male mating behaviour are regulated by androgens such as T (Garamszegi 

et al., 2005; Jessop et al., 1999a; Schramm et al., 1999; Sinervo and Miles, 2011; 

Wingfield et al., 1990).  Given the highly male-biased sex ratio (3.2 males : 1 female) 

in the North Brother population (Grayson et al., 2014), it is probable that some 

males have entirely no access to females, as during the breeding season (in any one 

year) in the North Brother population, it is likely that only a few dozen females are 

in breeding condition (i.e. sexually receptive) (Mitchell et al., 2010). As male tuatara 

exhibit highly territorial behaviour (Moore, 2008), a proportion of males in the 

North Brother population are probably constrained to a ‘male-only’ environment, 

which may explain the lower levels of reproductive activity (specifically courting, 

mating, territorial defence and mate guarding). Research on reproductive activity 

and mating behaviour in tuatara is currently limited to information collected on 

Stephens Island; and to my knowledge there have been no studies that examine the 

association between baseline CORT and male reproductive activity, therefore 
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studies on mating behaviour/reproductive activity in contrasting ecological 

scenarios would be required to support this association.   

Testosterone secretion varied between populations for males, but not for females.  

Previous studies have shown that the annual gravidity rate for female tuatara from 

the North Brother population was half that of the Stephens population (Table 4.1).  

My results for T secretion in females suggest that the proportion of ovulating 

females is similar between the Stephens and North Brother populations. Possible 

explanations could be that female gravidity rates in the North Brother population 

have increased, that females ovulate but fail to produce shelled eggs, or that females 

nest earlier (and are no longer gravid when sampled).  Alternatively, a sampling bias 

could have occurred in my study if ovulating (i.e. sexually receptive) females were 

more readily captured during the breeding season.  Nonetheless, inter-population 

variation in T was observed in males (but not females) and was positively associated 

(though not statistically tested) with increased baseline CORT from the non-

breeding season to the breeding season, suggesting male reproductive activity may 

drive the seasonal change in baseline CORT.   

4.6 Conclusions 

Results from this study demonstrate that baseline CORT is relatively stable among 

populations, despite considerable environmental and genetic variation among 

populations.   However, the CORT response varies and significant relationships 

between the CORT response and linear ecological predictor are observed, which 

suggests that stress reactivity is more sensitive than baseline CORT to ecological 

conditions (such as climate, food resource availability and/or introduced species) 

and/or demogenetic effects (such as sex ratio and/or inbreeding depression).  

Future research could tease out the influence of habitat and demogenetic predictors 

on the CORT response in tuatara, specifically through translocation programs, by 

examining whether patterns of the CORT response at the population-level are solely 

a product of selection and are not plastic to changes in the environment. 
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    CHAPTER 5 

5 Moving house: Long-term dynamics of corticosterone 

secretion are unaltered in translocated populations of a 

rare reptile (the tuatara, Sphenodon punctatus)1 

5.1 Abstract 

Translocations are an important conservation tool used to restore at-risk species to 

their historical range.  Unavoidable procedures during translocations, such as 

habitat disturbance, capture, handling, processing, captivity, transport and release to 

a novel environment, have the potential to be stressful for most species.  In this 

study, I examined acute and chronic stress (through the measurement of the 

glucocorticoid corticosterone - CORT) in a rare reptile (the tuatara, Sphenodon 

punctatus).  Here, I found that 1) the acute CORT response remains elevated during 

the initial translocation process, but does not increase with cumulative stressors, 

and 2) the long-term dynamics of CORT secretion are similar in translocated and 

source populations. Taken together, my results show that translocated tuatara are 

generally resistant to cumulative acute stressors and show no hormonal sign of 

chronic stress. Translocation efforts in tuatara afford the potential to reduce 

extinction risk and restore natural ecosystems. 

 

                                                             
1
 This chapter is based on the following publication with minor modifications: Anderson L, Cree A, 

Towns D, Nelson (2015) Moving house: Long-term dynamics of corticosterone secretion are 
unaltered in translocated populations of a rare reptile (the tuatara, Sphenodon punctatus). 
Conservation Physiology 
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5.2 Introduction 

Translocations are human-assisted movements of living organisms from one area to 

another and are an important tool for conservation efforts and population 

restoration of species at risk (Armstrong and Seddon, 2008; Ewen et al., 2012; 

Seddon et al., 2014).  The International Union for Conservation of Nature (IUCN) 

recognises two types of conservation translocation to restore populations, namely 

(i) reinforcements, in which individuals are released into an existing population of 

conspecifics to enhance the sustainability of populations, and (ii) reintroductions, in 

which individuals are released in a historically occupied area in order to re-establish 

a population after extirpation. Although these type of movements are ultimately 

aimed at helping species, the translocation process is inherently stressful, as 

associated procedures such as habitat disturbance, capture, handling, processing, 

captivity, transport and release to a novel environment are necessary and 

unavoidable (Dickens et al., 2010; Germano and Bishop, 2009; Parker et al., 2012).  

In a recent review,  Tarszisz et al. (2014) identified physiology as a key disciplinary 

area that is lacking attention in conservation translocations, and also highlighted 

how physiological data can improve short- and long-term translocation success. 

In vertebrates, the stress-response produces a rapid increase in glucocorticoid 

hormone secretion (corticosterone (CORT) or cortisol ) to help individuals cope with 

immediate stressors (Wingfield et al., 1998); consequently, non-essential processes 

(such as reproduction and growth) are suspended until homeostasis returns. 

Although the stress response serves to promote immediate survival, prolonged or 

sustained CORT secretion (typically expected during translocations)  can manifest as 

‘chronic stress’, and is generally considered detrimental to overall health and fitness 

(i.e. the CORT-Fitness Hypothesis) (Almasi et al., 2013; Bonier et al., 2009; Parker et 

al., 2012; Sapolsky et al., 2000; Wingfield and Sapolsky, 2003). In a recent review of 

the associations between stress and movement of animals, Teixeira et al. (2007) 

concluded that stress is a contributing factor to the success or failure of a 

translocation project.  Stress induced by the initial translocation process and 

relocation to a novel environment  increases the vulnerability of individuals to 

reproductive failure, disease, starvation, predation, and long-range dispersal, 
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thereby decreasing the chance that individuals will survive and that a self-sustaining 

population will result (Dickens et al., 2009; Dickens et al., 2010; Parker et al., 2012; 

Teixeira et al., 2007).   

Measuring and monitoring CORT secretion is the most widely used method for 

assessing stress in vertebrates (Dickens et al., 2010; Sheriff et al., 2011; Wikelski and 

Cooke, 2006). Although several factors relevant to translocation efforts influence 

CORT secretion, studies that assess and monitor stress (by way of CORT secretion) 

throughout and after the translocation process are limited (Germano and Bishop, 

2009; Harrington et al., 2013; Tarszisz et al., 2014). Numerous studies have shown 

that associated procedures commonly applied in translocation programs (such as 

capture, handling, transport) stimulate a significant stress-response and influence 

CORT secretion (Baker et al., 2013; Bliley and Woodley, 2012; Fazio and Ferlazzo, 

2003; Fazio et al., 2014; Langkilde and Shine, 2006; Narayan and Hero, 2011).  

Similarly, altered CORT secretion has been associated with variation of 

environmental factors such as exposure to humans (French et al., 2010; Taylor et al., 

2014) and novel predators (Berger et al., 2007; Rödl et al., 2007), change in food 

availability (Bryan et al., 2014; Kitaysky et al., 2007; Woodley et al., 2003), 

latitudinal differences  (Dahl et al., 2012; Eikenaar et al., 2012; Quirici et al., 2014; 

Silverin et al., 1997) and habitat type (Bauer et al., 2013; French et al., 2008; Li et al., 

2012; Zhang et al., 2011). In addition to experiencing acute stressors during the 

initial translocation process, translocated individuals released into new 

environments are faced with several survival challenges (such as finding food, 

shelter, and avoiding predators); therefore, physiological stress is inevitable 

(Teixeira et al., 2007).  

Here, I examine the acute CORT response and long-term dynamics of CORT secretion 

through the translocation process in a rare reptile, the tuatara (Sphenodon 

punctatus).  Tuatara are a protected reptile endemic to New Zealand and are the 

only living representatives of the reptilian order Rhynchocephalia (Jones and Cree, 

2012).   Although tuatara are now considered non-threatened but “at-risk – relict” 

(Hitchmough et al., 2013), translocations contribute to conservation and ecological 

restoration efforts and serve to re-establish tuatara within their pre-human range 
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(Cree, 2014; Hitchmough et al., 2013).  In addition to easing extinction pressure, 

translocations also offer a chance to examine and address relevant research 

questions (Cree, 2014; Germano and Bishop, 2009; Miller et al., 2012).  In 2012, wild 

tuatara were translocated to six island and mainland sanctuaries from two source 

populations  (Lady Alice Island and Stephens Island/Takapourewa, New Zealand) 

(Cree, 2014), which presented an excellent opportunity to examine the CORT 

response to translocation in multiple populations. Previous studies have examined 

patterns of CORT secretion in tuatara; in general, baseline CORT in tuatara is fairly 

low (with plasma concentrations typically 2-5 ng/ml), a significant CORT response 

to capture-restraint is observed, and female reproductive condition, body 

temperature, and season (but not time of day) are influential factors (Chapter Two; 

Chapter Three, Chapter Four; Tyrrell and Cree, 1998). I found that baseline CORT 

was similar among all populations; however, the CORT response varied with 

latitude, seabird density, sex-ratio and genetic diversity (Chapter Four).  Although 

translocations of tuatara continue to happen, CORT secretion (as an indicator of 

stress) during and after the translocation process has not been examined.  

Comparing CORT secretion simultaneously in translocated and source populations 

of tuatara would allow detection of altered CORT secretion that is correlated with 

environmental and/or habitat change and that would be an indication of chronic 

stress. 

This study had two aims: first, I examined the acute CORT response in tuatara at 

different stages of the initial translocation process, and tested the prediction that the 

acute CORT response would be amplified with cumulative stressors. Second, I tested 

whether long-term changes in CORT secretion provide evidence of ‘chronic stress’ in 

three translocated populations (compared with the corresponding source 

populations as controls).  I predicted that 1) baseline CORT (post-translocation) 

would be similar among all populations and 2) the CORT response (post-

translocation) would be amplified in translocated populations that experienced a 

marked environmental and/or habitat change (e.g. a greater latitudinal shift).  

Moreover, body condition indices (mass relative to snout-vent length) in 

translocated populations (along with source populations as controls) were 

examined, as chronic stress can influence energy expenditure (Romero, 2002). 
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5.3 Materials and methods  

5.3.1 Study design 

I took advantage of two planned translocations in New Zealand (Fig 5.1) to examine 

short-term and long-term dynamics of CORT secretion in tuatara throughout the 

translocation process (Fig 5.2).   

 

Figure 5.1: Populations involved in short- and long-term monitoring of physiological data 
(corticosterone) throughout a conservation translocation programme in New Zealand. Source 
populations (white dots) and translocated populations (black dots) are shown. 
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Figure 5.2: Schematic of short-term (upper panel) and long-term (lower panel) monitoring during 
the translocations to Motuihe Island from Lady Alice Island in March 2012 (Translocation ‘A’) and 
to Cape Kidnappers and Sanctuary Mountain Maungatautari from Stephens Island in October 
2012 (Translocation ‘B’).  Short-term monitoring was carried out during Translocation ‘A’ only. 
Comparisons for long-term monitoring were made between source (dark gray) and translocated 
(light gray) populations. Sex-ratio (M:F) for each population is shown. 

 

In translocation ‘A’ (March 2012) wild adult tuatara were translocated to Motuihe 

Island (35° 58’ S, 174° 43’ E) (n=60) from Lady Alice Island (35° 53’ S, 174° 43’ E). 

Lady Alice and Motuihe Islands are located in the Northern New Zealand regional 

climate zone, experiencing sub-tropical warm humid summers and mild winters 

(NIWA, 2014).  In translocation ‘B’ (October 2012) wild adult tuatara were 

translocated to five locations from Stephens Island (40° 40’ S, 174° 00’ E), including 

Cape Kidnappers Sanctuary (39° 64’ S, 177° 09’ E) (n=40) and Sanctuary Mountain 

Maungatautari (38° 30’ S, 175° 33’ E) (n=50), which were the two locations 
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monitored in this study.  Stephens Island is located in the Northern South Island 

regional climate zone and Cape Kidnappers Sanctuary is located in the Eastern North 

Island regional climate zone, both experiencing warm dry summers and mild 

winters (with frost).  Sanctuary Mountain Maungatautari is located in the Central 

North Island regional climate zone, experiencing warm dry summers and cool 

winters (with frost and fog) (NIWA, 2014).  All translocation release sites offered 

suitable physical habitat for tuatara (with artificial burrows also provided), and 

social aspects such as M:F sex-ratio (Fig 5.2) and tuatara densities were within 

normal range.   

5.3.2 Short-term monitoring: The acute corticosterone response at different 
stages of the initial translocation process 

In translocation ‘A’ only, I examined the acute CORT response (i.e. CORT secretion 

above baseline) through all stages of the initial translocation process, during which 

standard translocation protocols were followed (Cromarty and Alderson, 2013; 

Towns et al., 1990).  In summary, adult tuatara (snout-vent length ≥ 170 mm) that 

were emerged from their underground burrows were captured by hand (between 

20:00 h and 04:00 h) and sex was identified by examining secondary sex 

characteristics such as head size/shape, body shape, spine shape and crest 

development (Cree, 2014).  

All individuals in the translocation programme were subject to a capture-restraint 

“hold” (which involved capture of individuals and initial holding (between 40 - 60 h) 

in cloth capture bags), processing (which involved handling, weighing, measuring 

and implantation of a passive integrated transponder (PIT) tag), and transfer to 

release site (which involved holding (between 6 -10 h) in perforated cardboard 

postal tubes (10 cm x 50 cm), movement by foot to the helicopter pick-up site, a 30-

min helicopter flight, unloading, and a 30-min handing-over ceremony upon arrival 

at Motuihe Island).  To determine the acute CORT response at different stages of the 

translocation program, I collected baseline CORT samples (following the blood 

sampling protocol described in section 5.3.4) from tuatara at capture (0 h) (n=54) 

and collected a second sample after either (a) an 18 h hold (n=15),  (b) a 42 h hold 

(n=14),  (c) a 42 h hold + process + transfer (n=11), or (d) a 66 h hold + process + 
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transfer (n=14).  Tuatara do not show significant daily variation in baseline CORT 

(Tyrrell and Cree, 1998); therefore, time of day at sampling is unlikely to contribute 

to variation in CORT secretion in this study.     

5.3.3 Long-term monitoring: Dynamics of corticosterone secretion post-
translocation 

Figure 5.2 presents a schematic of samples obtained during translocations ‘A’ and ‘B’ 

and displays sex-ratios (M:F) for each population.  For all samples, adult tuatara 

(both sexes) were captured at night by hand (between 20:00 h and 04:00 h). Upon 

capture, a baseline CORT sample was obtained, and after 3 h capture-restraint in a 

cloth bag, a second sample was obtained to determine the CORT response.   In 

translocation ‘A’, I collected samples from the source population (Lady Alice – LA) 

prior to translocation (March 2012) and from the source (LA) and translocated 

(Motuihe – Mot) populations at 12 months post-translocation (March 2013).  In 

translocation ‘B’, I collected samples from the source population (Stephens – ST) 

prior to translocation (October 2012) and from the source (ST) and translocated 

(Cape Kidnappers – CK; Sanctuary Mountain Maungatautari - MT) populations at 6 

months post-translocation (March 2013).  As significant seasonal variation in CORT 

secretion has been observed between the breeding (March) and non-breeding 

(October) seasons in tuatara (Chapter Four), I also analysed samples from the ST 

source population (obtained in a previous study, March 2012, Chapter Four) for 

annual comparison.    To determine if release-site (within a translocated population) 

had a significant effect on CORT secretion, I collected post-translocation samples 

from two separate release-site locations on Mot (Site#1 = Orchards Bush, Site#2 = 

Von Luckner’s Bush) and at MT (Site#1= Tuatarium, Site#2 = Northern Enclosure). 

5.3.4 Sampling protocol 

To determine baseline CORT concentrations, a blood sample (up to 1 ml) was 

collected within 10 min of capture from the base of the tail with a heparinized 23-

gauge needle and 1 ml syringe. After baseline samples were taken, individuals 

underwent capture-restraint in a cloth capture bag and/or postal tube (3 h – 66 h 

depending on study), whereupon a second blood sample (up to 1 ml) was taken to 
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determine the CORT response. Internal body temperature (Tb) was recorded with a 

cloacal thermocouple (Fluke® Multimeter, model: 179, specified accuracy ±0.1°C, 

USA) prior to taking blood samples from each individual (both baseline and CORT 

response).  After CORT response samples were obtained, individual mass (g) was 

determined (to the nearest ± 5 g) with a 1000 g spring scale (Pesola AG, 

Switzerland) and snout-vent length (mm), tail length (mm), and tail regeneration 

length (mm) were measured with a ruler. Body condition scores were generated for 

each individual as standardized residuals from a regression of log Tail-Corrected 

Mass (TCM) (Newman et al., 1994) and log SVL (Schulte-Hostedde et al., 2005). Body 

condition scores were generated separately for each source population (ST and LA) 

and sex. 

Depending on field conditions (i.e. electricity available or not), blood samples were 

separated either by centrifuge (5 min at 2000 rpm) or under normal gravity for 6 to 

8 h at 4°C (Reimers et al., 1983; Sheriff et al., 2011).  Plasma was transferred into 

cryogenic vials with a micropipette, stored in a cryogenic dry shipper (Thermo 

ScientificTM, Arctic ExpressTM Dual 10) or in a freezer at -20°C until return to the 

laboratory, and then stored at -80°C until assayed.  Corticosterone was analysed 

with commercial enzyme immunoassay kits (Cayman Chemical Co., Ann Arbor, MI) 

using a previously described method validated for tuatara (Chapter Two).  

Briefly, CORT was extracted from plasma samples with redistilled dichloromethane 

and each sample was assayed in duplicate. For each extraction, a subset of tritiated 

CORT samples were analysed to measure extraction recovery. Mean extraction 

recovery was 106% ± 8% s.d. with an overall CV of 7%. Intra-assay and inter-assay 

CVs were 9.9% and 14.2%, respectively.  

5.3.5 Statistical analyses 

Data analyses were carried out using R v3.2.0 statistical software (R Development 

Core 2013) and Prism 6 (Graphpad Software Inc.).  All data were checked for 

assumptions of normality and were transformed if necessary. Linear mixed effects 

regression (LMER) models were fitted using the ‘lme4’  package (Bates, 2013) in R to 

analyse 1) the acute CORT response during the initial translocation process and 2) 
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long-term dynamics of CORT secretion in translocated populations. Models were 

constructed through forward/backward stepwise regression procedures (Field et 

al., 2012). In all LMER models, a random effect of tuatara ID was included to account 

for repeat sampling of individuals. The ‘lmerTest’ package (Kuznetsova, 2013) was 

used to compute P-values for coefficients in final models and significance was 

assumed at P < 0.05.  

Sex (M, F) and linear covariates of body temperature (Tb) and body condition score 

(residuals from logMass vs. logSVL) were not significant predictors of CORT secretion 

in this study (LMER, P>0.05), and therefore were not included in final models. 

Furthermore, the location of release site (within translocated populations) did not 

have a significant effect on CORT secretion in either translocation study A (P=0.775) 

or B (P=0.656), therefore; individuals from separate release sites within 

translocated populations were pooled for further analyses. 

In analysis 1 (short-term monitoring), log transformed CORT was the response 

variable and sample (baseline, 18 h hold, 42 h hold, 42 h hold + processing + 

transfer, 66 h hold + processing + transfer) was the input variable.  In analysis 2 

(long-term monitoring), I first examined whether CORT secretion varied by release 

site within translocated populations,  with log transformed CORT  the response 

variable and input variables of hour (0 h, 3 h), site (#1, #2), and an interaction term 

of hour x site.  Models were fitted to data from Motuihe Island and Sanctuary 

Mountain Maungatautari, as these translocated populations had two separate 

release locations.  Then, I compared CORT secretion between translocated and 

source (control) populations, with log transformed CORT the response variable and 

input variables of hour (0 h, 3 h), sample (source pre-, source post-, translocated 

pre-, translocated post-) and an interaction term of hour x sample.  Lastly, I 

compared body condition pre- and post-translocation, with body condition score 

(residuals from logMass vs. logSVL) the response variable and sample (source pre-, 

source post-, translocated pre-, translocated post-) the input variable.  Models were 

fitted to data from translocation ‘A’ and ‘B’. 
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5.4 Results 

5.4.1 Short-term monitoring: The acute corticosterone response during 
different stages of the translocation process 

An acute CORT response (indicated by a significant increase from baseline CORT) 

was observed in all stages of the translocation process of tuatara from Lady Alice 

Island to Motuihe Island (Table 5.1, Fig 5.3).  The acute CORT response peaked at 18 

h hold and successively decreased (though remaining significantly higher than 

baseline CORT) at 42 h hold (LMER, t=-4.495, P<0.001), 42 h hold + processing + 

transfer (LMER, t=-3.899, P<0.001) and 66 h hold + processing + transfer (LMER, t=-

4.118, P<0.001) (Fig 5.3).   

Contrary to my prediction, cumulative procedures of processing + transfer did not 

amplify the acute CORT response, as individuals held for 42 h (without processing + 

transfer) showed a similar acute CORT response to individuals held for 42 h + 

processing + transfer (LMER, t= 0.305, P=0.761) and to individuals held for 66 h +  

processing + air-transfer (LMER, t= 0.371, P=0.712).  Corticosterone concentrations 

in animals experiencing the latter three treatments were significantly lower than in 

individuals held for 18 h only (Table 5.1, Fig 5.3).   

 
Table 5.1: Corticosterone secretion (ng/ml) in tuatara (Sphenodon punctatus) during different 
stages of the translocation process. Coefficient estimates (positive or negative) are shown and 
indicate direction of the linear regression from the intercept (baseline CORT 0 h). Standard 
errors (s.e.), t-values and P-values are shown.  

Stages of Translocation Process estimate s.e.   t value P value 

(Intercept)  0.400 0.038  10.39 <0.001 

18 h hold  0.956 0.077  12.42 <0.001 

42 h hold 0.496 0.079    6.25 <0.001 

42 h hold + process + transfer 0.530 0.088    6.01 <0.001 

66 h hold + process + transfer 0.535 0.079 6.74 <0.001 
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Figure 5.3: Short-term monitoring. The corticosterone response (ng/ml) of tuatara (Sphenodon 
punctatus) at different stages of the translocation process during translocation ‘A’ to Motuihe 
Island from Lady Alice Island in March 2012. Sample size (n) is indicated by numbers at base of 
each bar.  Bars that share identical letters are not significantly different (P>0.05). 

 

5.4.2 Long-term monitoring: Dynamics of corticosterone secretion in 
translocated populations  

In translocation ‘A’, CORT secretion was similar between translocated (Mot) and 

source (LA) populations at 12 months post-translocation (Baseline CORT: LMER, t= -

0.163, P=0.871; CORT response: LMER, t= 1.136, P=0.259, Fig 5.4a).  In both 

populations, baseline CORT was significantly higher at 12 months post-translocation 

(March 2013), compared to pre-translocation (March 2012); however, the CORT 

response was similar pre- and post- translocation (Table 5.2a, Fig 5.4a).  

 In translocation ‘B’, CORT secretion varied between translocated (CK and MT) and 

source (ST) populations at six months post-translocation. Baseline CORT was 

significantly lower in one translocated population (CK) (LMER, t= -2.345, P=0.020), 

but was similar in the other translocated population (MT) (LMER, t= -0.925, 

P=0.356), compared to the source (ST) population (Fig 5.4b). The CORT response 

was similar in one translocated population (CK) (LMER, t= -1.247, P=0.213), but was 

significantly higher in the other translocated population (MT) (LMER, t= 1.991, 
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P=0.048), compared to the source (ST) population (Fig 5.4b). CORT secretion (both 

baseline CORT and the CORT response) was similar between the two translocated 

populations (CK and MT) (Baseline CORT: LMER, t= 1.210, P=0.227; CORT response: 

LMER, t= 0.745, P=0.457, Fig 5.4b).   

CORT secretion in the source (ST) population was similar between both pre-

translocation samples (Mar ’12 vs Oct ’12) (Table 5.2b, Fig 5.4b).  In all populations, 

baseline CORT was significantly higher at six months post-translocation (Mar ’13), 

compared to both pre-translocation samples (Mar ’12 and Oct ’12) (Table 5.2b, Fig 

5.4b). The CORT response was similar pre- and post-translocation in the two 

translocated populations (CK and MT), but was significantly lower post-

translocation in the source (ST) population (Table 5.2b, Fig 5.4b).   

5.4.3 Body condition  

In translocation ‘A’, body condition was similar between translocated (Mot) and 

source (LA) populations at 12 months post-translocation (LMER, t=1.342, P =0.183, 

Fig 5.5a). In both populations, body condition was significantly lower at 12 months 

post-translocation (Mar ’13), compared to pre-translocation (Mar ’12) (Mot: LMER, 

t= -4.632, P<0.001; LA: LMER, t= -7.514, P<0.001, Fig 5.5a).   

In translocation ‘B’, body condition at six months post-translocation was similar in 

one translocated population (CK) (LMER, t=-1.351, P =0.179), but was significantly 

lower in the other translocated population (MT) (LMER, t= -3.058, P=0.003), 

compared to the source (ST) population (Fig 5.5b).  Furthermore, body condition in 

the translocated populations (CK and MT) varied as body condition was significantly 

lower in the (MT) population, compared to the (CK) population (LMER, t=-4.022, 

P<0.001, Fig 5.5b). Body condition was similar post-translocation (Mar ’13), 

compared to pre-translocation (Mar ’12 and Oct ‘12), in the translocated (CK) and 

source (ST) populations, but was significantly lower in the translocated (MT) 

population (CK: LMER, t=1.261, P=0.210; MT: LMER, t= -3.083, P=0.003; ST: LMER, 

t=-0.077, P=0.938, Fig 5.5
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Figure 5.4: Dynamics of corticosterone (CORT) secretion (mean ±standard error) in populations of tuatara (Sphenodon punctatus) translocated to a) 
Motuihe Island (Mot) from Lady Alice Island (LA) and b) Cape Kidnappers Sanctuary (CK) and Sanctuary Mountain Maungatautari (MT) from Stephens Island 
(ST).  Sample size (n) is indicated by numbers at the base of each bar and represents a paired sample of baseline CORT (black bars) and the CORT response 
(3 h – 0 h) (gray bars) taken from all individuals.  Bars that share identical letters are not significantly different (P>0.05). 
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Figure 5.5: Body condition scores (residuals from logMass vs logSVL) in populations of tuatara (Sphenodon punctatus) translocated to a) Motuihe Island (Mot) 
from Lady Alice Island (LA) and to b) Cape Kidnappers Sanctuary (CK) and Sanctuary Mountain Maungatautari (MT) from Stephens Island (ST). Data points 
(mean ±standard error) that share identical letters are not significantly different (P>0.05).
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Table 5.2: Results from linear mixed effects regression (LMER) models examining dynamics of 
CORT secretion (ng/ml) pre- and post- translocation to A) Motuihe Island from Lady Alice Island 
(source population) and B) Cape Kidnappers and Sanctuary Mountain Maungatautari from 
Stephens Island (source population). Coefficient estimates (positive or negative) are shown and 
indicate direction of the linear regression from the intercept (baseline CORT 0 h). Standard error 
(s.e.), t-values and P-values are shown.  

 

Long-term CORT dynamics post-
translocation 

Est. s.e.   t value P value 

     

a)  Translocation ‘A’  
      Lady Alice (LA) to Motuihe    

 

     

(Intercept)  0.401 0.04  9.97  <0.001 

hour 0.641 0.05 12.71  <0.001*** 

post-translocation (LA) 0.306 0.06 4.60  <0.001*** 

post-translocation (Motuihe) 0.291 0.08 3.55  <0.001*** 

hour x post-translocation (LA) -0.013 0.08 -0.15    0.875 

hour x post-translocation (Motuihe) 0.115 0.10 1.10    0.271 

     

     
b)  Translocation ‘B’  
      Stephens (ST) to Cape  Kidnappers 

(CK) and Sanctuary Mountain (MT)     

     

(Intercept)  0.244 0.05  4.89   <0.001 

hour  0.536 0.07  7.58   <0.001*** 

pre-translocation (Oct ST) 0.032 0.08  0.36     0.715 

post-translocation (Mar ST) 0.414 0.07  5.81   <0.001*** 

post-translocation (Mar CK) 0.227 0.07  2.88     0.004** 

post-translocation (Mar MT)  0.337 0.08  4.05   <0.001*** 

hour x pre-translocation (Oct ST) 0.008 0.12  0.06     0.945 

hour x post-translocation (Mar ST) -0.329 0.10 -3.26     0.001** 

hour x post-translocation (Mar CK) -0.188 0.11 -1.68     0.093 

hour x post-translocation (Mar MT) -0.093 0.11 -0.79     0.427 
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5.5 Discussion 

Here, for the first time, I examined CORT secretion throughout the entire 

translocation process in a rare reptile (the tuatara, Sphenodon punctatus).  I found 

that 1) plasma CORT concentrations remain elevated throughout the initial 

translocation process (short-term monitoring between 18 and 66 h), but are not 

amplified by cumulative stressors and 2) the long-term dynamics of CORT secretion 

are similar in translocated and source populations. Taken together, my results show 

that tuatara are generally resilient to cumulative acute stressors and to chronic 

translocation stress. 

5.5.1  Cumulative stressors during translocation do not affect the acute CORT 
response in tuatara  

To my knowledge, this is the first study to quantify the effect of cumulative stressors 

(routinely experienced in a translocation) on the acute CORT response in a reptile.  I 

expected to see an effect of additive stressors on the acute CORT response, but this 

was not the case.  The CORT response peaked at 18 h of holding/captivity-restraint 

and additional processing procedures of measurements/microchip insertion and 

air-transfer did not further increase CORT secretion, suggesting resistance to 

cumulative stressors in this species.  Some species show diel variation of CORT 

secretion (Breuner et al., 1999; Jones and Bell, 2004) which can confound 

interpretation of results if samples are not taken at 24 h intervals; however, no 

evidence of a diel cycle has been found in tuatara (Tyrrell and Cree, 1998). 

Nevertheless, a significant CORT response was observed throughout all stages of the 

translocation process, and at no point returned to baseline levels. This observation 

is consistent with results from my previous study examining the acute CORT 

response to capture-restraint in tuatara, in which a return to baseline CORT 

concentrations was not observed over 24 h (Chapter Two). Therefore, I recommend 

that animal disturbance, holding time, transport duration, and post-translocation 

disturbance be minimised in tuatara to mitigate potentially harmful effects of 

sustained CORT secretion in individuals directly following translocation. 
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In the present study, I did not examine patterns of CORT secretion in the immediate 

weeks following translocation (my first follow-up sampling occurred at 6 months 

post-translocation). Consequently, I am lacking information on the speed of recovery 

to baseline CORT secretion levels.  Langkilde and Shine (2006) found that CORT 

secretion in male and female lizards (Eulamprus heatwolei) subject to microchip 

implantation remained elevated at 14 days (post-treatment), and subsequently 

increased in response to additional stressors at that time.  Similarly, tortoises 

(Testudo hermanni) that experienced handling plus ground transport had increased 

baseline CORT at four weeks (post-stressor), compared to a control group that only 

experienced handling (Fazio et al., 2014). These studies have shown that short-term 

CORT secretion dynamics are significantly altered by processes experienced during 

a translocation; therefore, obtaining supplementary information on short-term 

patterns (within four weeks post-translocation) of CORT secretion in tuatara would 

shed light on the presence of a sustained CORT response and speed of 

recovery/negative feedback dynamics following translocation.   

5.5.2 Long-term dynamics of CORT secretion in tuatara are not altered by 
translocation 

I found that translocation of tuatara did not consistently result in altered CORT 

secretion relative to controls (source populations) at six or twelve months following 

translocation (summarised in Table 5.3).   

Table 5.3: Summary of long-term dynamics of baseline CORT, the 3 h CORT response, and body 
condition at 12 months post-translocation in source (Lady Alice Island, Stephens Island – shown 
in bold) and translocated (Motuihe Island, Cape Kidnappers, Sanctuary Mountain) populations. 
Arrows indicate direction of change and asterisks denote level of P-value significance.  

Population Baseline CORT CORT Response Body Condition 

    
Lady Alice Is. ↑ *** no change ↓ *** 
Motuihe Is. ↑ *** no change ↓ *** 
    
Stephens Is. ↑ *** ↓ ** no change 
Cape Kidnappers ↑ ** no change no change 
Sanctuary Mtn. ↑ *** no change ↓ *** 
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My results accord with recent studies of translocated reptiles in which CORT 

secretion was not altered post-translocation.  For example, Drake et al. (2012) found 

that baseline CORT in desert tortoises (Gopherus agassizii) was similar between 

translocated and control groups at both one- and two- years post-translocation, and 

both Holding et al. (2014a) and Heiken (2013) found that baseline CORT and the 

CORT response in translocated northern pacific rattlesnakes (Crotalus oreganus) 

were not altered post-translocation, compared to controls.  In contrast, Gerber et al. 

(2004) found that baseline CORT in translocated Turks and Caicos iguanas (Cyclura 

carinata) remained significantly higher than controls at one, five and 12 months 

following translocation; however, body condition improved and successful 

reproduction occurred in translocated animals.  Although studies are few, my results 

add to the general reported trend of resilience to translocation and/or translocation 

stress in reptiles. In contrast, several studies in mammals  and birds have reported 

significant long-term effects of translocation on CORT secretion (Dickens et al., 

2009; Franceschini et al., 2008; Gelling et al., 2012; Jachowski et al., 2013; Zidon et 

al., 2009). However, this observation is not consistent as other studies have reported 

no long-term effect (Adams et al., 2013; Bosson et al., 2013; Hartup et al., 2005; Ji et 

al., 2013), suggesting adaptation to new environments (indicated by long-term 

CORT secretion) is species-specific or context-dependent (e.g. might be due to time 

of year, weather conditions, or hard- vs soft- release). 

Unexpectedly, through long-term monitoring in this study, I observed a significant 

annual increase in baseline CORT among all source and translocated populations 

(Fig 5.4, Table 5.3), probably indicating a ubiquitous environmental effect.   The 

CORT response was unaltered in all populations, with the exception of the Stephens 

Island source population where the CORT response was reduced at 12-months post-

translocation (Table 5.3).  Body condition declined in the Lady Alice source 

population and the Motuihe Island and Cape Kidnappers translocated populations. 

Moreover, these results highlight the importance of collecting information 

simultaneously from source populations (as a control), as without this my results of 

increased baseline CORT in all translocated populations, and reduced body 

condition in two out of three translocated populations, could have been erroneously 

interpreted as an indication of chronic stress.   
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It is probable that I detected an unplanned/unexpected effect of drought on baseline 

CORT secretion in tuatara.  In 2012 – 2013, New Zealand experienced its worst 

drought in 40 years, with the North Island affected more severely (Porteous and 

Mullan, 2013). Lance et al. (2010) observed increased plasma CORT in alligators 

(Alligator mississippiensis) experiencing a severe drought, and recovery of CORT 

levels (to within normal limits) was observed after substantial rainfall. Although 

dehydration stress was not directly measured (by way of CORT secretion), Davis and 

DeNardo (2009) found that water supplementation in a long-lived desert lizard (the 

Gila monster, Heloderma suspectum) led to greater hydration, tail-fat reserves, and 

surface activity. In a recent experimental study, Dupoue et al. (2014) examined 

CORT secretion in water-deprived snakes (Antaresia childreni) and found that the 

CORT response, but not baseline CORT,  was significantly higher in dehydrated 

snakes, and the loss of body mass was 2-4 times greater, compared to controls.  The 

authors suggest that baseline CORT in snakes may only respond to a more severe 

degree of dehydration, and that reduced locomotion (to reduce levels of 

dehydration) may explain the amplified CORT response in water-deprived snakes 

(Dupoue et al., 2014).  

Reptiles, including tuatara, can moderate water loss through behavioural 

adaptations such as limiting movement/locomotion and retreating to (or not 

emerging from) burrows, caves, fallen logs, or undersides of rocks where humidity is 

higher (Bonnet and Brischoux, 2008; Cree, 2014; Davis and DeNardo, 2009; Wilson 

et al., 2001). Dunlap (1995) found that lizards (Sceloporus occidentalis) that were 

more active (compared to less active) during a drought experienced greater changes 

in physiological measures (e.g., CORT, weight loss, hematocrit, osmolality). 

Moreover, Dunlap (1995) suggested that individual variation in behavioural 

responses of reptiles (e.g. remaining active during drought) can lead to biased 

analysis of stress in natural populations. Burrowing in tuatara reduces water loss by 

up to three times the rate experienced when emerged (Cree, 2014). Thus, it is 

possible that the increased baseline CORT observed in my study is influenced by 

sampling bias (capturing active individuals out of burrows rather than inactive 

individuals remaining in burrows). 
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Contrary to my prediction, a higher CORT response (post-translocation) was not 

observed in translocated populations experiencing a shift to warmer climates/lower 

latitudes, specifically the Cape Kidnappers and Sanctuary Mountain translocated 

populations. In previous studies I observed a higher CORT response in tuatara at 

higher temperatures (Chapter Three) and at lower latitudes (Chapter Four).  The 

Stephens Island (40° 40’) source population showed a reduced CORT response 

(from pre-translocation to post-translocation), which was not observed in the Cape 

Kidnappers (39° 64’) and Sanctuary Mountain (38° 30’) translocated populations (in 

which the CORT response was unaltered). Similarly, individuals translocated to 

Motuihe Island (35° 58’) from Lady Alice Island (35° 53’) did not show an altered 

CORT response. It is possible that the individuals translocated from Stephens Island 

(to Cape Kidnappers and Sanctuary Mountain) would have shown a lower CORT 

response (at 12 months) if they remained on Stephens Island, or were translocated 

to equal or higher latitudes. Examining CORT secretion in tuatara populations 

translocated to equal/higher latitudes (e.g. to Orokonui Ecosanctuary (45° 77’) from 

Stephens Island; Cree, 2014), might clarify the effects of latitudinal/climate change 

on the CORT response. 

Although body condition was not significantly correlated with CORT secretion in my 

study, the sustained body condition in the Cape Kidnappers translocated population, 

and in the Stephens Island source population, suggests better hydration at these 

sites in the midst of a drought.  Porteous and Mullan (2013) report that New 

Zealand’s South Island (close to where Stephens Island is located) was not affected 

as severely as the North Island, and better hydration in the Cape Kidnappers 

population was probably achieved through provision of supplementary water 

sources (pers. obs.). Reduced body condition has been observed in 

dehydrated/water-restricted reptiles, including snakes (Dupoue et al., 2014; 

Lillywhite et al., 2014), lizards (Davis and DeNardo, 2009; Davis and DeNardo, 2010; 

Dunlap, 1995; Summers and Norman, 1988), alligators (Lance et al., 2010), and 

turtles  (Ray et al., 2004; Ray et al., 2008; van de Merwe et al., 2013).  Clearly, 

information on relationships among water availability/dehydration, body condition, 

stress, and CORT secretion is lacking, and should be considered in light of imminent 

climate change. 
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    CHAPTER 6 

6 Corticosterone secretion in tuatara: Thesis summary and 

conservation applications 

6.1 Introduction 

The endocrine system in vertebrates produces glucocorticoid hormones (including 

corticosterone – CORT) that promote basic life processes, regulate life-history 

transitions and help individuals cope with intrinsic and extrinsic changes/challenges 

(i.e. stressors); thereby playing an important fitness role (Boonstra, 2013; Busch and 

Hayward, 2009; Cockrem, 2013).  Here, I examined factors that are associated with 

CORT secretion in tuatara (Sphenodon punctatus) and measured CORT secretion as a 

physiological tool to monitor conservation efforts. Using both observational and 

experimental studies, I identified intrinsic and extrinsic factors that are significantly 

correlated with CORT secretion (both baseline and the CORT response) and, for the 

first time, utilised CORT physiology as a monitoring tool in relevant tuatara 

conservation efforts (i.e. through a Pacific rat (Rattus exulans) eradication and 

translocation programmes).  To date, this thesis delivers the most comprehensive 

information on CORT physiology in tuatara and provides a foundation for future 

stress physiology research and baseline data for long-term monitoring of 

conservation efforts and response to environmental change.   

6.2 Summary of findings 

The main findings from the previous four data chapters are summarised as follows: 
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A)  Chapter Two: Modulation of corticosterone secretion in tuatara (Sphenodon 

punctatus):  Evidence of a dampened stress response in gravid females 

Sex is not correlated with CORT secretion (either baseline CORT or the CORT 

response to capture-restraint) in tuatara; however, female reproductive 

condition is.  Gravid females have significantly higher baseline CORT, and a 

significantly dampened CORT response, compared to non-gravid females 

(and also males) during the nesting life-history stage. This result supports my 

hypothesis that gravid females will have a dampened CORT response 

compared to non-gravid females. The functional significance of elevated 

baseline CORT secretion in gravid females during nesting is unclear; 

therefore, experimental studies involving hormone manipulation (in which 

CORT secretion is increased or decreased) in gravid females would help 

determine if gravid females are able to mount a significant CORT response 

(examined in Appendix A; a question re-visited in Chapter Three) and/or if 

elevated baseline CORT is linked with timing of oviposition (examined in 

Appendix A). 

B) Chapter Three: Body temperature is correlated with the corticosterone stress 

response in tuatara (Sphenodon punctatus) 

The CORT response is positively correlated with internal body temperature 

(Tb) in male and female (gravid and non-gravid) tuatara, whereas baseline 

CORT is positively correlated with Tb in gravid females only.  Acute increase 

in mean Tb 12.0 ± 0.7°C to 21.4° ± 0.4°C elicits a significant CORT response in 

gravid female tuatara (proving that gravid females are in-fact able to mount a 

further CORT response – a question posed in Chapter Two) and may increase 

the CORT response in males and non-gravid females.  These results support 

my hypothesis that an acute increase in Tb increases the CORT response to 

capture-restraint in tuatara. 



105 
 

C) Chapter Four: The corticosterone stress response varies among island 

populations of tuatara (Sphenodon punctatus) and is associated with linear 

ecological attributes 

Baseline CORT was similar among tuatara populations during the non-

breeding season and the breeding season (which is contrary to my prediction 

that baseline CORT varies among populations); however, the CORT response 

to capture-restraint varied significantly among populations.  In general, 

baseline CORT increased, and the CORT response decreased, from the non-

breeding season to the breeding season.  This result supports my hypothesis 

that baseline CORT is higher during the breeding season, compared to the 

non-breeding season.  

Habitat factors of latitude, tuatara density and seabird abundance (PC1 axis) 

and 2) demogenetic factors of sex ratio and genetic diversity (PC2 axis) are 

significantly correlated with the CORT response, but not baseline CORT. The 

correlation with habitat factors provides support for my hypothesis that the 

CORT response is higher in northern populations that experience a milder 

climate and the past/recent presence of Pacific rats (Rattus exulans).  

Testosterone (T) secretion was not directly associated with CORT secretion; 

however, inter-population variation in T was observed in males (but not 

females) and was positively associated with increased baseline CORT 

secretion from the non-breeding season to the breeding season, suggesting 

male reproductive activity may drive the seasonal increase in baseline CORT.  

D) Chapter Five: Moving house: Long-term dynamics of corticosterone secretion 

are unaltered in translocated populations of a rare reptile (the tuatara, 

Sphenodon punctatus) 

The CORT response to capture-restraint remains elevated during the initial 

translocation process, but does increase with cumulative stressors. The long-

term dynamics of CORT secretion are similar in translocated and source 
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populations. Translocated tuatara are generally resistant to cumulative acute 

stressors and show no hormonal sign of chronic stress.  These results do not 

support my hypothesis that cumulative stressors (experienced during the 

translocation process) and translocation to a novel location increase CORT 

secretion.  It is hypothesised that drought leads to increased baseline CORT 

secretion in tuatara. 

 

6.3 Conservation implications: The value of CORT as a conservation 
physiology tool in tuatara 

Endocrine techniques have been utilised in  ecological studies as a tool to monitor or 

assess an individual’s physiological response to challenges and/or changing 

environments (Wikelski and Cooke, 2006), and hold great potential to inform and 

enhance conservation science (Tarszisz et al., 2014). The results of this thesis 

provide valuable information on intrinsic and extrinsic factors that are associated 

with CORT secretion in tuatara, which is a necessity when utilising endocrine data as 

an applied conservation physiology tool.   

 

6.3.1 Patterns of CORT secretion indicate a physiological response to 
challenges in tuatara 

Although there is still much to learn about CORT secretion in tuatara (and reptiles in 

general), this thesis has indicated patterns in baseline CORT and the CORT response 

in tuatara in response to challenges/stressors:  

6.3.1.1 Baseline CORT 

In accordance with other vertebrate species (Hamann et al., 2002; Romero, 2002), 

gravid female tuatara show elevated baseline CORT secretion during the 

energetically demanding nesting life-history stage (Chapter Two). Similarly, baseline 

CORT secretion increases (in both males and females) from the non-breeding season 

to the breeding season (Chapter Four), which suggests an increase in reproductive 
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activity (possibly driven by males) (Chapter Four).  Baseline CORT likely increased 

in response to drought conditions and this response was observed among all 

populations studied here (Chapter Five).   

6.3.1.2 The CORT response 

Tuatara exhibit a significant CORT response to capture-restraint (Chapter Two – 

Chapter Five; Cree and Tyrrell (2001)), with restraint times ranging from 1.5 h to 66 

h.  Throughout all periods of capture-restraint, CORT secretion remained 

significantly higher than baseline CORT (Chapter Two – Chapter Five).  

Cumulative stressors (including handling/measuring, PIT-tagging, extended holding, 

and helicopter transfer) did not increase the CORT response – which is contrary to 

what I predicted (Chapter Five), but internal body temperatures (Tb) approaching 

21.4°C elicit a significant CORT response in gravid females (Chapter Three).  A 

significant CORT response observed in gravid females (in response to increased 

Tb/capture-restraint) demonstrates that gravid females are indeed able to mount a 

CORT response during the nesting life-history stage, which under standard capture-

restraint conditions is dampened (Chapter Two). 

A significant difference in CORT secretion was not observed in response to the 

recent Pacific rat (Rattus exulans) eradication on Taranga Island (Chapter Four), but 

my results show that populations that have experienced rats (such as Lady Alice and 

Taranga Islands) have higher CORT responses compared to populations that have 

not (such as Stephens and North Brother Island).  This result could also be explained 

as a latitudinal pattern; therefore, further research and/or monitoring of CORT 

secretion in populations that have experienced Pacific rat introduction/eradication 

are needed to clarify my results.   

The North Brother Island population shows a lower CORT response compared to the 

other populations studied here, which could be a product of low genetic diversity 

and/or reproductive activity (Chapter Four).  Variation in the magnitude of the 

CORT response among populations does not necessarily imply that certain 

environments are more “stressful” than others (Breuner et al., 2008; Breuner et al., 
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1999), rather the CORT response is considered to be a measure of an individual’s 

ability to respond to a stressor and individuals in certain populations may simply 

have a modulated CORT response to adaptively cope with their respective 

environments.   It is likely that variation in the numerous regulatory mechanisms of 

the HPA axis (stress reactivity, negative feedback, regulation of CORT binding 

proteins, and adrenal sensitivity) are heritable and linked to variation in fitness 

(MacDougall-Shackleton et al., 2013). 

6.3.2 CORT secretion is a valuable addition to the conservation ‘tool-box’ for 
tuatara 

Results presented in this thesis can be applied toward conservation efforts of 

tuatara in several ways.  The knowledge that female reproductive condition (gravid 

vs. non-gravid, Chapter Two) and season (breeding vs. non-breeding, Chapter Four) 

are associated with CORT secretion emphasises the importance of 

identifying/considering reproductive status/activity.  Although testosterone (T) and 

CORT are not significantly correlated (Chapter Four), seasonal modulation of CORT 

may inform researchers/managers on the overall reproductive activity level (T) of 

populations.  

Conservation efforts such as population monitoring, research programmes, 

translocation and captive management programmes routinely employ capture-

restraint protocols.  These protocols induce a significant CORT response and if 

carried out for longer time periods (such as in translocations) can constrain normal 

thermoregulatory behaviours.  Knowing that temperature is positively correlated 

with the CORT response (Chapter Three) informs researchers/managers that 

caution should be taken when capture-restraint protocols are employed, specifically 

when longer restraint periods/higher ambient temperatures (>20°C) occur.  

Potential solutions to offset a higher CORT response include: ensuring cool holding 

conditions, providing shaded holding areas during translocation/research 

programmes, dampening catch bags if required. 

Knowing that CORT responses are significantly correlated with ecological attributes 

experienced by specific populations (Chapter Four) informs managers on the 
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population’s adaptive response/ability to respond to stressors, which may come in 

to play when selecting individuals and/or populations for captive breeding or 

translocation programmes.  For example, in a new environment (considered more 

benign compared to the original environment), a lower CORT response may be 

advantageous; however, if the new environment is degraded (i.e. wild to captivity) 

or becomes unpredictable (i.e. warmer temperatures/susceptible to 

drought/exposure to predators) a greater CORT response may be advantageous for 

overall fitness (MacDougall-Shackleton et al., 2013).  The merit of a lower versus a 

higher CORT response is an area of research that requires further testing in tuatara 

(and vertebrates in general). 

The lack of apparent chronic stress in translocated populations of tuatara (Chapter 

Five) provides positive feedback for ongoing conservation translocation efforts in 

New Zealand.  Moreover, the circumstantial evidence of increased baseline CORT in 

response to drought (Chapter Five) leads to a hypothesis that requires further 

testing (discussed further in section 6.4) and highlights the potential value of CORT 

physiology as a tool to quantitatively monitor the physiological response to 

impending environmental change (i.e. climate change).  

6.4 Recommendations for future research  

This thesis provides the most complete picture of CORT physiology in tuatara to 

date, but several new research topics (and associated questions) have arisen. A solid 

foundation has been laid for future research examining more complex details of 

CORT physiology in tuatara, which will expand on the work presented here. 

Topic 1: Relationships between CORT secretion and reproduction 

 What is the functional significance of elevated baseline CORT and/or a 

dampened CORT response in gravid females during nesting?  
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If there is a relation between baseline CORT secretion in gravid female 

tuatara and timing of oviposition, then manipulation of CORT concentrations 

(increased or decreased CORT) will induce or delay oviposition. Appendix A 

presents results from the first hormone manipulation studies investigating 

modulation of CORT secretion in tuatara (prompted by results obtained in 

Chapter Two).  Unexpectedly, hormone treatments (ACTH to increase CORT 

secretion; metyrapone to inhibit CORT secretion) did not significantly 

influence the CORT response to capture-restraint in gravid and non-gravid 

females compared with saline controls, though the trend of the CORT 

response for both treatments (in relation to saline controls) was as predicted, 

and oviposition patterns are suggestive of a functional role for CORT in 

timing of oviposition (Appendix A).   My preliminary results from this 

experiment can serve as baseline information for future hormone 

manipulation studies in tuatara, but further studies will be necessary to fine-

tune dosage information.  It would be useful to carry out a dose-response 

study for ACTH and metyrapone administration with several response 

sampling times in order to determine suitable dosages and durations to 

observe significant effects (Appendix A).  

 Does CORT secretion in gravid females vary based on nesting experience 

(higher/lower for first-time nesters?).  Does density of females on nesting 

grounds/in captivity influence baseline CORT and/or the CORT response?  

It would be useful to determine the influence of nesting experience and 

density on patterns of CORT secretion in gravid females, as this may explain 

individual-/population-level variation observed among gravid females 

(Jessop et al., 1999b; Riechert et al., 2012). 

 Do seasonal patterns of CORT reflect levels of reproductive activity?   

If reproductive activity is related to seasonal modulation of baseline CORT in 

tuatara, then populations with low levels of reproductive activity (as 

indicated by testosterone (T) in plasma samples) will lack seasonal change 
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(i.e. increased baseline CORT secretion from the non-breeding season to the 

breeding season) in baseline CORT. It would be useful to determine levels of 

testosterone (T) in plasma samples from Taranga to see if patterns are 

similar to those observed on North Brother Island (Chapter Four).  Low 

concentrations of T on Taranga would suggest low levels of reproductive 

activity (for both males and females), which may be a product of Pacific rat 

presence and/or aged individuals on Taranga (Chapter Four).   

Examining the above questions would inform future studies investigating whether 

and/or how CORT plays a role in oviposition/nesting behaviour and reproductive 

activity in tuatara, and may inform captive management programmes and island 

restoration programmes where groups of tuatara fail to reproduce. 

Topic 2: Exploring relationships between CORT and fitness measures 

Future research addressing the following questions will provide understanding and 

insight towards the effect (if any) of CORT secretion on fitness-related performance 

measures in tuatara. 

 What are the fitness implications (if any) of elevated baseline CORT and/or a 

dampened CORT response in gravid females? Is there evidence of maternal 

effects: Is maternal CORT transferred to egg yolk, and if so what are the patterns? 

Does maternal CORT influence hatchling fitness (i.e. size, growth rate, locomotor 

performance)? 

 What are the fitness implications of increased CORT secretion (as was observed 

in a drought year – Chapter Five)? What are the relationships between CORT 

secretion and immune function (i.e. wound healing)? Is there a threshold where 

body condition influences CORT secretion, as has been seen in marine iguanas 

(Romero and Wikelski, 2001)?   

 What is the relationship between individual genetic diversity and the CORT 

response?  North Brother individuals with less genetic diversity may not respond 
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as well to stressful environments as those with higher genetic diversity, as has 

been seen in mammals (Larson et al., 2009; Sarrieau et al., 1998) and 

invertebrates (Freitak et al., 2014; Reed et al., 2003). 

 What factors influence other aspects of the HPA-axis (such as negative feedback 

efficiency) and what is the relationship (if any) with fitness-related performance 

measures? 

Variation in negative feedback efficiency (which modulates CORT secretion – 

Chapter One, Fig 1.1) determines the magnitude and duration of CORT 

secretion (both baseline CORT and the CORT response to capture-restraint).  

For example, longer (i.e. older) red-sided garter snakes (Thamnophis sirtalis 

parietalis) (Moore et al., 2000a) and degus (Octodon degus) in lower quality 

habitat (Bauer et al., 2013) both exhibit reduced negative feedback efficiency 

of CORT secretion.  

It would be useful to test negative feedback efficiency in tuatara, by way of a 

dexamethasone challenge (Romero and Wikelski, 2006), in individuals of a 

known age and/or in contrasting environmental situations (both in natural 

conditions and in a controlled laboratory setting).  Results from such 

experiments would clarify whether age (suggested of Taranga individuals, 

Chapter Four) or resource competition/habitat quality (suggested of North 

Brother individuals, Chapter Four) explains inter-population variation in 

CORT secretion by way of a reduced negative feedback mechanism.  

Topic 3: Non-invasive measures of CORT in tuatara 

Obtaining blood samples from wild and captive individuals is considered invasive 

(Sheriff et al., 2011).  Several non-invasive measures have been developed to 

assess/determine CORT in other taxa.  Examples include: urinary samples in 

amphibians (Kindermann et al., 2012; Narayan et al., 2011b), faecal samples in 

elephants (Jachowski et al., 2013) and horses (Ji et al., 2013), skin sheds in snakes 
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(Berkvens et al., 2013), claw trimmings in turtles (Baxter-Gilbert et al., 2014), hair 

samples in bears (Bechshøft et al., 2012), and feather samples in birds (Bortolotti et 

al., 2008). 

Development and validation of non-invasive measures of CORT secretion for tuatara 

(for which blood collection training/equipment is not required) would allow for 

collection of opportunistic samples by management/conservation staff in captivity 

and in the wild.  In captive-breeding facilities/captive collections, samples could be 

collected from individuals to monitor baseline CORT non-invasively, and analysed 

for relationships with other measures of fitness (size, growth rate, locomotor 

performance, wound healing).   Development of non-invasive CORT determination 

would also allow for analysis of younger/smaller age classes (as blood sample 

collection is difficult in hatchlings and juveniles due to their small size), which is an 

area that has to date gone un-studied with respect to patterns of CORT secretion. 

6.5 Summary 

The field of conservation physiology is a relatively new discipline, and in order to 

reliably to use CORT as a conservation tool, one must know before-hand what 

factors contribute to CORT secretion to effectively control for covariates and 

interpret results (Dantzer et al., 2014; Wikelski and Cooke, 2006). Measurements of 

CORT can provide quantitative information about how environmental challenges or 

stressors impact individuals and populations. Furthermore, monitoring CORT has 

potential to be used as an ‘early warning system’ of possible population decline, and 

threshold levels of CORT could be set and (if reached) prompt implementation of 

management plans and conservation programmes (Dantzer et al., 2014). 

To date, this thesis delivers the most comprehensive information on stress 

physiology in tuatara, an iconic protected reptile. Intrinsic and extrinsic factors 

associated with CORT secretion are identified, patterns of CORT secretion in 

response to challenges/stressors are observed, and the potential value of measuring 

CORT secretion as a conservation tool in tuatara is explored. These results provide a 

foundation for future research that will further advance the comparative 
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understanding of stress physiology in reptiles. More importantly, understanding 

stress physiology may be critical for managing future population viability of tuatara 

in a changing climate, where increased temperatures, changes in water availability, 

and habitat alteration will present challenges. 
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7 Appendix A: Hormone manipulation studies in gravid 

tuatara 

Introduction  

Gravid females have significantly higher baseline CORT during the nesting life-

history stage compared with non-gravid females and males (Chapter Two). Baseline 

CORT is highest during nest digging and oviposition (Cree and Tyrrell, 2001).  

Interestingly, a distinct fall (~5-fold) in baseline CORT is observed after oviposition, 

even in the case of females that continue to guard their nests, which suggests a 

potential role in the timing of oviposition (Cree and Tyrrell, 2001).   Nesting is 

separated by 6-7 months from mating and ovulation in tuatara (Cree, 1994); 

therefore, patterns in CORT secretion that are related specifically to 

nesting/oviposition are much more readily identified than in other reptiles.   

In Chapter Two, I tested for (and confirmed), a dampened CORT response in gravid 

female tuatara during the nesting life-history stage.  Here, I further examine the 

responsiveness of gravid females to adrenocorticotrophic hormone (ACTH) and 

metyrapone challenges during the nesting life-history stage.  The pituitary hormone 

ACTH stimulates CORT release from the adrenal glands, whereas metyrapone is a 

CORT-synthesis blocker. Both have been used in several vertebrate species, 

including reptiles, to manipulate CORT synthesis (Cartledge and Jones, 2007; Dixon 

et al., 1985; Klukowski, 2011; Thaker et al., 2010; Yang and Wilczynski, 2003).  I 

predicted that CORT secretion would be increased in individual tuatara treated with 

ACTH and inhibited in individuals treated with metyrapone.  A reduced response to 

ACTH by gravid females compared with non-gravid females would suggest that the 

ability to secrete CORT is reduced during the nesting life-history stage. In exposing 

tuatara to these challenges, I also aimed to test whether increased or decreased 

CORT secretion influences oviposition in gravid females during nesting.   
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Material and methods  

 

Wild adult tuatara (Sphenodon punctatus) were captured and sampled on Stephens 

Island/Takapourewa (40° 40’ S, 174° 00’ E) in Cook Strait, New Zealand during the 

October 2012 nesting season.  Emerged individuals were caught by hand at night 

between 20:00h and 05:00h and were subsequently assigned to an appropriate 

group based reproductive status (gravid female or non-gravid female).  Gravid 

females were selectively captured at or near a nesting rookery and female 

reproductive status was inferred through abdominal palpation for shelled eggs.   

Studies investigating adrenocortical stress-responsiveness use physiological 

challenges to confirm that individuals can mount a stress response (Romero, 2002).  

In this study, gravid female (n=5) and non-gravid females (n=5) were subject to an 

ACTH challenge to determine if gravid females are capable of mounting a CORT 

response during nesting.  In conjunction, I administered a metyrapone challenge to 

different gravid (n=5) and non-gravid females (n=5) to test whether increased or 

decreased CORT secretion influences oviposition.  Saline was administered to other 

gravid (n=5) and non-gravid (n=4) females as a control treatment.  

Capture/sampling occurred over 5 nights during the 2012 nesting season (16–20 

October).  Reproductive condition of females was inferred by abdominal palpation 

and baseline blood samples were collected within 10 minutes of capture, as 

described in Chapter Two.  Body mass (g) was measured to calculate hormone 

dosage specific to mass.  Individuals were randomly assigned to a treatment of 

either ACTH (0.03 IU/µl/g body mass; Sigma A6303, fragments 1-39 porcine, Sigma-

Aldrich, NZ), metyrapone (30µg/µl/g body mass; 96% 2-methyl-1,2-di-3-pyridyl-1-

propanone, Sigma-Aldrich, NZ) or 0.9% saline (1µl/g of body mass).  These dosages 

were chosen on the basis of comparable dosages in other reptile species determined 

to be effective in producing CORT responses within normal physiological limits 

(Cartledge and Jones, 2007; Klukowski, 2011; Preest et al., 2005; Romero and 

Wikelski, 2006; Scholnick et al., 1997; Yang and Wilczynski, 2003).  Hormone 

solutions were freshly prepared at the field site and were held at 4°C until 
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administered.  Treatments were injected intraperitoneally with a 25 G needle and 1 

ml syringe.  Individuals were subsequently subject to 3 h of capture-restraint stress 

in individual cloth bags and upon completion were re-bled to determine the effect of 

capture-restraint, injection and hormone treatment on CORT secretion.  CORT 

concentrations were determined by EIA (as described in Chapter Two). 

To test if stimulation (ACTH) or inhibition (metyrapone) of CORT secretion 

influences oviposition during nesting, I held all individuals in clean cardboard boxes 

(a standard protocol for induction studies in tuatara (Cree et al., 1991a)) for five 

days following injection and blood sampling.  For the duration of holding, individuals 

were checked daily for signs of oviposition and daily measurements of body mass 

(g) and skin temperature (°C) of the dorsal body were taken with a 1000 g spring 

scale and handheld infrared temperature gun (Hare et al., 2007), respectively, 

between 14:00h and 16:00h.  

Data analyses were carried out using R v3.0.0 statistical software (R Development 

Core 2008) and Prism 6 (Graphpad Software Inc.).  All data were checked for normal 

distributions and homoscedasticity, and if necessary, were transformed to meet 

assumptions for parametric statistical tests.   Linear mixed effects regression 

(LMER) models were fitted using the ‘lme4’ (Bates, 2013) package in R to investigate 

the effect of ACTH and metyrapone hormone administration (compared to saline 

controls) on the CORT response in gravid and non-gravid females after 3 h of 

capture-restraint.  Log-transformed CORT was the response variable.  Predictors 

were group (gravid female, non-gravid female), time, and treatment as fixed main 

effects (with interaction terms included for all).  Tuatara ID was included as a 

random effect to account for repeat sampling of individuals for baseline and stress-

response CORT values.  The ‘languageR’ package (Baayen, 2011) was used to 

compute P-values based on Markov-chain Monte Carlo (MCMC) sampling. 

Significance for all tests was assumed at p< 0.05.  
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Results 

Unexpectedly, ACTH and metyrapone treatments did not significantly influence the 

CORT stress response in gravid and non-gravid females compared with saline 

controls (Table A.1),  though the trend of the CORT response for both treatments (in 

relation to saline controls) was as predicted (Fig A.1).  I did not observe a significant 

effect of treatment on oviposition.  During the 5-day holding period, one female from 

the ACTH group produced two eggs and one female from the saline group produced 

one egg, with no females from the metyrapone group producing eggs.  Furthermore, 

a significant CORT response to 3 h capture-restraint and treatment was observed in 

non-gravid females (Table A.1b), but not in gravid females (Table A.1).     

 

 
 

Figure A.1: CORT response to 3 h capture-restraint following either an ACTH challenge (solid line 
w/ closed circles), metyrapone challenge (dashed line w/ triangles) or saline control (dotted line 
w/ open circles) in gravid and non-gravid female tuatara (Sphenodon punctatus). Data points 
represent mean ± SE log CORT concentration (ng/ml) of baseline (0 h) and stress response (3 h) 
samples.  No significant difference was found between treatment and saline controls for either 
group (P>0.05).   
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Table A.1: Results from linear mixed effects regression models explaining variation in measures 
of baseline and stress response CORT secretion (ng/ml) as a function of time (0-3 h) after 
explaining variation accounted for by the fixed effects of hormone treatment (ACTH, 
metyrapone, saline), capture-restraint of 3 h and the interaction of these effects for a) gravid 
females and b) non-gravid females. 
 

Fixed effect predictor Estimate 
Lower
95%CI 

Upper
95%CI 

P 

     
c) gravid females     

saline (intercept)  0.962 0.108  8.871 
  
<0.001 

ACTH -0.118 0.153 -0.769  0.449 
metyrapone  0.136 0.153  0.887  0.384 
capture-restraint time (saline)  0.132 0.153  0.861  0.398 
capture-restraint time x ACTH  0.228 0.217  1.051  0.304 
capture-restraint time x 
metyrapone 

-0.276 0.217  -1.273  0.215 

     
d) non-gravid females     

saline (intercept)  0.575 0.092  6.238 <0.001 
ACTH  0.073 0.124  0.590   0.561 
metyrapone -0.197 0.124 -1.593   0.125 
capture-restraint time (saline)  0.345 0.110  3.127   0.005 
capture-restraint time x ACTH  0.201 0.148  1.135   0.188 
capture-restraint time x 
metyrapone 

 0.025 0.148  0.169   0.867 

     

Coefficient estimates (positive or negative) are shown and indicate direction of 
the linear regression from the specified intercept. 95% credible intervals (CI) are 
shown. P-values based on MCMC sampling are shown and statistically significant 
results are indicated in bold. A random intercept term for individual was included 
in the model. 

 

Discussion 

In an attempt to elucidate the underlying causes of the dampened CORT response in 

gravid female tuatara, I administered an ACTH challenge to determine if gravid 

females are operating at maximal CORT secretion during the nesting life-history 

stage.  I also used ACTH and metyrapone treatments to explore the hypothesis that 

modulation of CORT secretion influences the timing of oviposition. Unexpectedly, I 
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did not observe a significant effect from either treatment compared to saline 

controls in gravid or non-gravid females.  However, I did observe a response to 3 h 

capture-restraint in the saline groups that is consistent with my 24 h capture-

restraint results, namely that gravid females had a dampened stress response 

compared to non-gravid females.   

It is surprising that plasma CORT concentrations were unaffected by both ACTH and 

metyrapone hormone challenges, as studies on other reptile species have seen 

marked responses from similar doses in shorter time-frames than in this study 

(Cartledge and Jones, 2007; Klukowski, 2011; Preest et al., 2005; Romero and 

Wikelski, 2006).  A possible explanation could be that the timing of the CORT 

response sample at 3 h was either too soon or too late to detect a significant 

treatment effect.  Lack of significant effect from hormonal treatment at certain 

sample times was observed in related studies; for example, ACTH challenges 

produced plasma CORT concentrations that were significantly higher than saline 

controls at 1 h and 6 h only in male alligators (Alligator mississippiensis) (Mahmoud 

et al., 1996) and in New Zealand common geckos at 1 h only (Preest et al., 2005),  but 

not at any other sample time points tested in either study.  Another possibility 

explaining the absence of a significant treatment effect could be that my calculated 

hormone dosages may have been too low for my model species.  Tuatara are a 

temperate climate ectotherm (with nocturnal Tb largely tracking ambient 

temperature), and I planned hormone dosage based on other reptiles that may 

experience warmer temperatures and therefore may have different rates of 

hormone metabolism.  My preliminary results will be useful as a starting point to 

inform potential studies investigating mechanisms of CORT modulation in tuatara 

during nesting.  Due to permitting constraints and research timelines, I was unable 

to carry out a pilot study beforehand. Therefore, it would be beneficial to investigate 

the dose-dependent response to both ACTH and metyrapone treatment over a time-

series to inform future research and to understand mechanisms and importance of 

CORT secretion in tuatara when challenged with exogenous hormones.   

In the present study, I did not observe an influence of ACTH or metyrapone 

treatment on oviposition, but as plasma CORT concentrations were not significantly 



121 
 

affected by treatments in this study, these results do not illuminate my hypothesis.   

The functional significance of elevated baseline CORT in gravid oviparous reptiles 

(and the potential relationship with oviposition) has received little attention, even 

though several oviparous reptile species exhibit elevated concentrations of baseline 

CORT concentrations directly preceding oviposition (Cree and Tyrrell, 2001; Jessop, 

2001; Moore and Jessop, 2003). Female tuatara have a unique egg 

development/maintenance strategy, retaining their eggs for the longest known 

period in reptiles (7-9 months) (Cree et al., 1992). Therefore, elevated baseline 

CORT concentrations during the nesting life-history stage in tuatara cannot be 

attributed to sexual receptivity or ovulation, as these mating events are greatly 

separated in time from nesting.  A prior study on tuatara shows that baseline CORT 

concentrations decline shortly after oviposition (Cree and Tyrrell, 2001) , which 

suggests a possible role in the timing of egg-laying, and other studies suggest 

hormonal control of ovulation and parturition in viviparous and oviparous reptiles 

(Jones and Guillette, 1982).  For example, it was shown that embryonic production 

of CORT may trigger parturition in viviparous southern snow skinks (Niveoscincus 

microlepidotus) (Girling and Jones, 2006) and exogenous elevation of baseline CORT 

concentrations in gravid eastern three-lined skinks (Bassiana duperreyi) induced 

‘premature’ oviposition (Radder et al., 2008).  These findings suggest that up-

regulating baseline CORT secretion during nesting could function to stimulate 

oviposition in gravid reptiles.  

Conclusions 

I provide results from the first hormone manipulation studies investigating 

modulation of CORT secretion in tuatara.  While the present study provides baseline 

information for future hormone manipulation studies in tuatara, further studies will 

be necessary.  It would be useful to carry out a dose-response study for ACTH and 

metyrapone administration with several response sampling times in order to 

determine suitable dosages and durations to observe significant effects.  This would 

inform future studies investigating whether CORT is being secreted at maximal 

levels during nesting and if/how it plays a role in oviposition and nesting behaviour 

in tuatara, the sole extant representative of an ancient order of reptiles.   
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