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Abstract

Surtseyan ejecta are formed in shallow sub-aqueous volcanic eruptions. They
occur when water, containing a slurry of previously erupted material, is washed
into the volcanic vent. This slurry is incorporated into the magma and ejected from
the volcano inside a ball of magma. These magma bombs containing entrained

material are called, Surtseyan ejecta or Surtseyan bombs .

At the time of entrainment there is a large temperature difference between the
magma (at approximately 1000°C) and the slurry (at approximately 20°C). As
the inclusion temperature increases, the water contained in the slurry evaporates,
causing an increase in the pressure at the boundary of the entrainment. This
pressure increase is offset by the vapour diffusing through the pores of the magma.
If the pressure exceeds the tensile strength of the surrounding magma the Surtseyan

ejecta will rupture.

The volcanological question of interest is whether the magma ruptures. There
is evidence of intact ejecta so it can be concluded that rupture does not always
occur. We have developed a set of equations that transiently model the changes
in temperature and pressure in Surtseyan ejecta. Numerical solutions show that
the pressure rapidly increases to a stable value. Because the pressure reaches
equilibrium a steady-state solution can be used to determine the maximum pressure

and a criterion for rupture.
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Chapter 1

Introduction

1.1 Background

The island of Surtsey was created by a volcanic eruption in Vestmanyaar, off the
coast of Iceland, on the 14th of November 1963. This eruption remains the
archetype for this class of marine shallow to emergent explosive volcanic
eruptions known as Surtseyan eruptions. Other examples of these eruptions
include the 16th January 2015 eruption in Tonga and some similar features can

be seen in past Ruapehu (NZ) eruptions.

Surtseyan eruptions occur when a volcanic vent is situated at the surface of a
body of water. The mixing of the magma and water causes the violent explosive
activity that is a characteristic of Surtseyan eruptions [13]]. During the eruption
water containing previously erupted material is washed back into the volcanic
vent and incorporated into the magma. There is evidence that one outcome is that
entrained slurry is ejected, from the volcano, inside balls of magma called
Surtseyan ejecta. The mechanism of the creation of Surtseyan ejecta is still not

well understood.

At the time of entrainment Surtseyan ejecta have a large temperature difference
between the magma (at approximately 1000°C) and the inclusion (20°C). This
temperature difference causes the water in the entrained slurry to rapidly
evaporate. The surrounding magma does not significantly expand resulting in the

pressure at the boundary of inclusion to increase until the water is depleted. This

1
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Figure 1.1: Photo of a Surtseyan ejecta taken by Mark McGuinness. An inclusion
is visible just left of the centre, with a void space around it.

pressure increase is offset by the water vapour diffusing through the surrounding
magma. If the pressure exceeds the tensile strength of the magma, the critical
pressure, the Surtseyan ejecta will rupture. Intact Surtseyan ejecta have been
found on Surtsey and it can therefore be concluded that this critical pressure is
not always reached. Figure[I.T]is a photo of a small intact Surtseyan ejecta, from
the eruption at Surtsey. Surtseyan ejecta come in a variety of sizes and they are

categorized in three groups:

e Ash (< 2mm in diameter)
e Lapilli (=2 — 64mm in diameter)

e Bomb (> 64mm in diameter)

Lapilli and bombs often contain multiple inclusions, of entrained ash, lapilli and
water. After a Surtseyan ejecta is cooled there exists a void space around the
inclusion. This is due to the compacting of the sediments as the water evaporates.

This void can be seen surrounding the inclusion in Figure[I.1].
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The volcanological question of interest is whether the ejecta ruptures before the
water source is depleted. If the vapour is confined to the inclusion, pressures rise
and exceed the tensile strength of magma by approximately a factor of 300 (see
Section [2.1)). This would indicate that ejecta would always explode. Evidence of
intact ejecta has been found which would suggest that sometimes the pressures
do not reach the levels seen in Section [2.1] It can be concluded that the gas

escaping though the pores is not negligible and needs to be included in the model.

The following chapters show the development of a set of equations that model
Surtseyan ejecta behaviour and the conditions needed for rupture. These
equations were solved numerically and the results are be used to provide Ian
Schipper, a geologist from Victoria University of Wellington, with a criterion for

the rupture of Surtseyan ejecta to use in his studies of this phenomenon.

1.2 Literature Review

The modelling of Surtseyan ejecta is a new area in mathematical modelling.
There is currently no literature that provides a mathematical model for the
behaviour of Surtseyan ejecta. The available literature concerns the mechanisms

of Surtseyan volcanism and the mixing of water and magma.

1.2.1 Surtseyan Eurptions

The addition of water in the subaqueous eruption process produces hazards that
are not normally seen in dry land volcanoes. Mastin and Witter [16] show that
subaqueous eruptions make up 8% of the world’s eruptions but cause 20% of the
fatalities associated with volcanic eruptions. The high fatality rate is due to
lahars, tsunami and base surges that have the potential to cause devastation far
away from the eruption. Base surges are caused by the mixing of water and
magma producing fast moving clouds of gas and ash. There are two mechanisms
that drive the explosive mixing of magma and water in central vent eruptions.

Mastin et al. [[1'/]] describe the two mechanisms as:

1. the lowering of magma in a channel below the water table followed by an

influx of water
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2. the jetting of magma through surface water or through a wet crater that has

water entering though the porous walls.

The first mechanism occurred in Ukinrek Maars eruption in Alaska in 1977 and

the second is the mechanism driving the eruption at Surtsey.

Surtseyan volcanism is characterised by intermittent, almost silent, jets or a
continuous uprush of tephra along with a large amount of steam. This behaviour
has been observed to persist as long as the water can flood across or through the
top of the volcanic pile into the vent. Kokelaar’s model for Surtseyan eruption
processes is an explanation for the observed characteristics ([13] [[14]). He
proposes that there exists a funnel shaped vent filled with a slurry of water and
previous erupted material. This is surrounded by a ring of previous erupted
material which is slipping back into the vent. As the volcano erupts the slurry is
continuously incorporated into the magma and then is replenished as more slurry
is washed from the pile into the vent. Pockets of liquid water enclosed in the
magma cause violent and continuous expansion producing the characteristic jets
seen in Surtseyan eruptions. If there is a higher rate of magma supply a
continuous uprush of tephra is the result instead of the intermittent jets. When
the water can no longer be replenished the slurry, in the vent, gradually dries and

the eruptive style changes to Hawaiian fountaining of incandescent magma.

Fragmentation and magma mixing processes are difficult to observe directly. In
order to quantitatively determine the mechanisms causing magma mixing and
fragmentation, a textural study of the pyroclasts is needed. Zimanowski et al.
[31] studies the differences in the pyroclasts between those produced by
decompression or molten fuel coolant interaction. A textural study of Surtseyan
ejecta could identify features that would indicate whether ejecta are produced by

the mingling of magma and water.

1.2.2 Magma Fragmentation

There currently exists no mathematical modelling for the fragmentation of the
magma in Surtseyan ejecta. There are studies concerning the fragmentation of
magma in high energy eruptions ([10] [1] [24] ) and some of these concepts
could be applied to the Surtseyan ejecta model. High energy volcanic eruptions



1.2. LITERATURE REVIEW 5

(Volcanian, Plinian and Ultra Plinian) are the result of a build up of pressure that
undergoes rapid decompression. This depressurization can be caused by either
the collapsing of a dome or dislodging of a plug in the volcanic vent. The sudden
pressure change causes fragmentation of the magma. This is similar to the build

up of pressure in Surtseyan ejecta causing the magma to rupture.

Magma fragmentation is difficult to study as it occurs inside the volcanic vent.
To study this process accurately an experiment using an analogue material is
required. Alidibirov [1] designed a vertical shock tube apparatus that is used to
investigate the mechanisms driving magma fragmentation. This experiment has
been modified to solve a variety of different problems. For example Spieler [27]]
research on the fragmentation threshold of pyroclastic rocks. The experiment
takes a sample of porous volcanic rock and uses it as an analogue material for
magma. This analogue material for magma is justified because in the time-scale
of the experiment the magma would act like a brittle solid. This rock is glued
into a sample holder. This sample is placed inside an autoclave which is attached
to a larger chamber at atmospheric pressure. These two chambers are separated
by a diaphragm. The autoclave is slowly pressurized and rapid decompression is
triggered by a failure in the diaphragm. A high speed video camera is used to

record the results.

There have been proposed many different fragmentation mechanisms. These
mechanisms can be categorised into groups depending on the viscosity and
temperature of the magma. A proposed mechanism for magma fragmentation at
a low viscosity is bubble formation. This was first suggested by Verhoogen [29]]
and was later modified by McBirney and Murase [[19]. Bubbles are formed in the
magma after decompression from the gases enclosed in the porous magma.
When the magma is depressurised the enclosed gas has a higher pressure than the
surface. This pressure difference deforms the low viscosity magma and expands
the pores to form bubbles. If the volume ratio of bubbles to magma becomes too
large fragmentation of the magma occurs. Sparks proposed explosive

fragmentation is the result of these bubbles bursting [25]].

If the magma has a higher viscosity, then a larger force will be required to deform
it and the gases trapped in the pores cannot expand to reduce the pressure. This

causes an over pressure in the vesicles. There is debate over the mechanism
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causing fragmentation in this case. Bennet [5] proposed that the mechanism
relies on expansion waves and that it can be studied using one dimensional shock
tube experiments. Another theory (Sparks [25]) argues that the bubbles in the
magma would create their own expansion and compression waves and every
bubble would act as its own diaphragm. There is also a theory that fragmentation

depends on turbulence more than the fluidization processes (Valentine [28]]).

A mathematical model for explosive fragmentation of vesicular magma is
presented by Fowler et al. [10]. This model considers the flow of vapour though a
sample of porous rock in Alidibirov’s [1]] experimental set up. The fragmentation
mechanism is controlled by the gas pore pressure exceeding the yield stress, the
lowest stress needed for the rock to rupture, of the porous rock. At the time of
rapid decompression the decreasing pressure at the surface causes a over pressure
in the pores of the rock. This creates a pressure difference between the pores and

the surface that will cause fragmentation if it exceeds the yield stress.

The model consists of conservation of mass and momentum equations for both
the pressurized gas and the solid. It uses a rock base and further work by Singh
[24]] modified this model to create a model for dusts as they have significantly

different tensile strength to rock. In the rock model, taken from Biot’s equations,

_1 8wi aWj
6,’j—§<(9—xj+a—)q), (11)

where w is the solid displacement. The dilatations are defined by

the solid strain tensor is

e = ex=V-w, (1.2)
g = V-W. (1.3)

The dilatation of the solid (Equation (1.2))) depends of the solid displacement, w,
and the fluid (Equation (I.3)) on the gas displacement, W. The resulting
equations for the stress are

(1—¢)o) = 2Ngeij+ [Ape+ Qper]i;, (1.4)

—0p; = Qre+Rgey, (1.5)

(1—¢)o;; = 2Ngei;+ [Bie— aipg)5ij, (1.6)
B, = E—Q—%
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90:

o —=
1 RE,

(1.7)

where p is the gas pressure, G,'Sj is the yield stress , Ax and Ng are Lamé constants
for the solid equation and both Qf and Rg are related to the deformability of the
pore space and fluid. In Equation (I.6) the stress equations have been rewritten to

cancel €.

The conservation of fluid momentum equation for a pore fluid is
psovi = —9Vpg— Ay — Dy, (1.8)
and for the solid
ps(1=9)(we)u = (1-9)V-0"+An+ Dy, (1.9)

where p; and pr denote the densities of the solid and the fluid respectively, v is
the gas velocity, w, is the solid displacement from equilibrium and the subscripts
t denote the time derivatives. A is the added mass effect, this represents the beads

movement in the fluid, and is taken to be

d
Am:paz(v_(we)t)- (1-10)

Dy is the interfacial drag and b is the interfacial drag coefficient. The interfacial
drag coefficient is obtained using Darcy’s law, with the small acceleration terms

ignored. D, and b are defined as

Dy = b(v—(we)), (1.11)
_ g’
b= M (1.12)

where 1 is the gas viscosity and k the gas permeability.

To complete the model the conservation of mass equations

(Pr9):+V-(prov) =0, (1.13)
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for the fluid, and

(1=9)ps) +V-((1=9)ps(we)r) =0, (1.14)

for the solid along with the state equation for an ideal gas must be considered.
After non-dimensionalisation and setting small terms to zero, the gas pressure

satisfies 1

2
Ipg

1
Pg?
(pg)z

1
I _ 9
dr 9z

where the subscript z denotes that space derivative. Equation (1.15)) is a

non-linear diffusion equation in py.

The magma fragmentation model proposed by Fowler et al. [[10] considers a
porous solid with over-pressurized gas in its pores and the amount of stress
required for the solid to fragment. This is similar to the Surtseyan ejecta problem
as it also considers an overpressure between the entrained slurry and the
magma’s surface and when this will cause ejecta to fragment. Therefore some of
the methods used in this model, particularly the momentum and stress equations,
could be used to solve the Surtseyan ejecta problem. The pressure build-up
inside Surtseyan ejecta is driven by a temperature difference, not a rapid

decompression, and therefore the temperature analysis needs to be considered.

1.2.3 Fluid flow in a porous medium

A simpler approach to that described above, is to consider the equations for fluid
flow through a uniformly constant porous media. The equations describing fluid
flow in a porous medium were developed in the petroleum, groundwater and soil
science literature and were applied to geothermal reservoirs by Grant et al. [11].
In geothermal systems fluid can exist in either liquid, vapour or a mixture of both

states in the pores of the medium.

Conservation equations apply separately to each phase, but they can be added
together to obtain a single equation for the two phase flow. The mass

conservation equation for a single phase flow is

dpx
¢ ot

+V-(u,) =0, (1.16)
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where u, is the mass flux density and p, is the density of the fluid.

The conservation of mass equation for a two phase flow is a combination of the
single phase vapour and liquid flows. If the porous media is saturated with a
mixture of liquid and vapour, a fraction of the pore space is filled with each
phase. The fraction of the pore space containing liquid is denoted S; and as the
pore space is saturated with fluid the fraction containing vapour is 1 —S; = S,.

The conservation of mass equation for a two phase flow is

I (P1S; + pvSy)

T +V- (u,+u) =0. (1.17)

The conservation of energy can also be considered for both single and two-phase
fluid flows. Energy can be transferred between the rock and fluid through
conduction as well as being carried by the fluid. The single phase conservation of

energy equation is given by

d

E((l—(p)prUr+¢pU)+V-(uH—KVT):O, (1.18)
where U, and U are the specific internal energies of the rock and fluid
respectively. The energy flux density carried by the fluid is uH, where H is the
specific enthalpy of the fluid, the conductive heat flux density is KVT and where
K is the conductivity of the rock. The conservation of energy equation for a two

phase flow is

0
5, (1=0)p:Us + 9 (SipiU; +8up,U)) +V - (wHy +wH, — KVT) = 0. (1.19)

In the Surtseyan ejecta problem these equations describe the flow of fluid through
the ball of porous magma. The energy conservation equation could be used to

calculate the amount of heat escaping the ejecta with the vapour.
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1.2.4 Injection of geothermal waste model

This technique described in Chapter[[.2.3has been used by Pruess [22] to model
the injection of geothermal waste (water) back into depleted geothermal
reservoirs that contain superheated vapour. The injection of waste water causes a
cold front to propagate outwards from the injection site. It is assumed, because of
the large temperature difference, that the water flashes to steam over a finite

distance allowing the single phase vapour flow equations to be used.

Pruess’s model [22] starts with the conservation of mass equation for a single

phase vapour flow

a(opy)
5 =—VF. (1.20)

where F, is the mass flux that can be calculated using Darcy’s law

F, — Py, (1.21)

4%

Darcy’s law describes the fluid flow through a porous medium, and in this case

the hot vapour though porous rock. Equations (1.20)) and (I.2T)) are combined to

form

2Ppy) o Py
5=V kqup), (1.22)

which is a non-linear vapour density diffusion equation. The vapour density
depends on pressure and the ideal gas law can be used to form the non-linear

pressure diffusion equation

2
g&(apt ) ‘uﬁvzpz' (1.23)

Equation (1.23) can be simplified to

IP?) _ kb 2 2

a linear diffusion equation in p? by assuming an average pressure, p, in the
diffusivity constant. This is a reasonable assumption because the pressure
changes are small in the geothermal reservoirs . The equivalent assumption
cannot be made in the context of Surtseyan ejecta as there may be large pressure

variations.
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In Pruess’s model [22] the initial condition is
P’ =pi, (1.25)

where p; is the initial pressure. There are two boundary conditions. At infinity
the boundary condition is
dp?
dr
The boundary condition at the front is

=0. (1.26)

r—yoo

dp?
dr

o 2ZWRTy gy

= 1.27
r=f Mk 2nr¢H’ (1.27)

where Z is the real gas compressibility factor, 7j is the initial water temperature,
M is the molecular mass of water, R is the gas constant, & is the permeability of
the rock, g, is the mass flow rate at the front and r is the distance for the
injection site to the front. This can be solved analytically, as the diffusivity

parameter is known, to give

2oy _ 2
2> 2 ZRTouy T < r‘P“v)? (1.28)

_ 2 T E
Pr=Pi = omemm " I T apk

an approximate solution for the pressure. This approximate solution was

confirmed to be reasonable by Pruess [22] using numerical solutions.

Equation is used in Chapter 2 as the diffusion equation describing the
pressure behaviour of Surtseyan ejecta. The boundary conditions at the front in
Pruess’s model [22] cannot be used in the Surtseyan ejecta problem as the
entrainment only has a finite supply of water. Furthermore, Pruess’s model has

an expanding front where our model requires a collapsing front.
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Chapter 2

The Transient Model

The interior pressure of a Surtseyan ejecta depends on the rate of steam generation,
due to the heating of the enclosed slurry, and on the flow of vapour escaping
through the pores of the surrounding vesicular magma. Our aim is to create
a model that allows us to calculate the transient pressure response from steam
generated when slurry is entrained in a larger ball of molten magma. The focus of
this study is the magnitude of the maximum pressure produced by the heating of
the liquid inside the entrained slurry. The maximum pressure is used to determine

whether the ejecta will explode due to the buildup of pressure.

We assume that a single deposit of entrained slurry is placed at the centre of the
ball of hot magma, see Figure This allows spherical symmetry to be assumed.
The magma surrounding the inclusion is a highly viscous liquid which is freezing.
This magma is charged with vapour bubbles, called vesicles, due to the water
separating from the magma solution; this provides the porosity. The speed with
which the pressure changes allows us to treat the viscous liquid as a solid porous

medium with cohesive strength [[1].

This model will consist of coupled pressure and temperature equations. The
temperature equation is a conduction equation considering the conduction of heat
from the hot magma to the entrained slurry. The thermal equation is then used to
calculate the amount of vapour generated in the entrained slurry. It is this vapour
production that drives the pressure change and therefore the vapour flow through

the pores of the magma.

13
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SLURRY

Figure 2.1: Surtseyan ejecta simple model problem set up

2.1 Confined Vapour Model

If it is assumed that the water vapour is confined to the inclusion, the maximum
pressure will occur when all of the water, in the inclusion, has evaporated. At the
time of entrainment there are no vapour molecules present in the slurry. When
maximum pressure is achieved the amount of water vapour (in moles, n) will be
equal to the moles of liquid water present at the time of entrainment and this can

be calculated

n, = n, 2.1)
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m
n = M’, (2.2)
475R13¢rpl

M (2.3)

where R is the inclusion radius, ¢, is the inclusion porosity, p; is the density of
liquid water, M is the molecular mass of water and m; is the mass of liquid water
at the time of entrainment. The maximum pressure can be calculated, using the

ideal gas law, as follows:

nRT

RT
- B 2.5)
~ 600 MPa, (2.6)

where P is the pressure, R is the gas constant, T is the temperature of the inclusion,
which is estimated by the magma temperature (7, ~ 1273K), and V is the volume
of the inclusion. The pressure calculated in the confined vapour model is 300
times the tensile strength of the magma ball (2MPa) and this would indicate that
the magma would always fragment. However there is evidence of surviving ejecta

and therefore the assumption that the vapour is confined cannot be made.

2.2 Biot Number

To model Surtseyan ejecta the thermal behaviour of the inclusion needs to be
considered. In the transient model it would be convenient if the inclusion could
be considered to heat in a uniform manner. The Biot number represents the ratio
of the heat transfer resistance inside of, and at the surface of a body. This ratio
can be used to determine if the temperature will significantly vary with position
inside the body as a temperature gradient is applied to the surface. If a body is
calculated to have a small Biot number (less than 1) it can be assumed that inside
the body it is heating uniformly. If the Biot number is greater than one we can

not assume this.

The Biot number (B;) is
Bi=— 2.7
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where 4 is the heat transfer coefficient of the surroundings, L. is the characteristic
length of the object and Kj, is the thermal conductivity of the object. To find the
value of the Biot number for a Surtseyan ejecta the heat transfer coefficient must

be estimated. The heat transfer coefficient is calculated using the formula

(2.8)

where %, the heat flow per unit area, is calculated using the heat flux conduction

equation
0 dT
= K=
A dr’

where K3 is the magma’s thermal conductivity which is a known constant. A

(2.9)

approximate estimate for il—{ is given by the change in temperature (AT") over the
change in radius (Ar). The change in radius can be approximatly estimated to be
the characteristic length, L;, of the magma ball. This is a sufficient
approximation for the Biot number but a more accurate approximation will be
needed in the thermal equation. Using the estimate for ‘fi—f the heat flow per unit
area 1s

= =—-K—, (2.10)

_ g 1

h o= ATaT)’ 2.11)
K
- (2.12)

The Biot number can be found by assuming that K; ~ K5, which is a reasonable
assumption as the sediment and the magma are made up of the same type of rock.

Then using the definition for characteristic length, L, = % = %, we find that

KoL,

K\L,’

Ry

3

Ry’

3

Ry

= —, 2.13
R (2.13)

B =
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As the entrained slurry is enclosed in a ball of magma the Biot number is always
less than 1. Therefore the inclusion can be considered as heating uniformly. Now

a thermal equation for the Surtseyan ejecta is needed.

2.3 The Thermal equation

To model the thermal system it is assumed that the heating of the entrained slurry
is due only to conductive heat transport between the magma and the inclusion. It
is also assumed that the radius of the entrained slurry, Ry, is small compared to
the radius of the magma ball, R,. As a result the initial temperature of the
magma, 7, does not vary significantly in the time it takes for the water in the
slurry to evaporate. In our model the origin of the radius is considered to be at
the centre of the ball, and the time is considered to be zero when the slurry is
entrained. Assuming that the amount of heat diffusing out of the magma is
equivalent to the amount of heat diffusing into the inclusion a heat balance can be
used to estimate the flow of heat into the entrained slurry

20 » 0T

The rate of change of the internal energy of the inclusion is assumed to be

equivalent the to flow of heat into the slurry

oT

9o _ 4 T
ot’

= _7R’pc,

% =3 (2.15)

where the effective density of the slurry is p = ¢,p; + (1 — @) pyn. The effective
density includes p;, the density of the liquid water, p,, is the density of the solid
magma and ¢ is the porosity of the entrained slurry. To simplify the model we
would like to consider the thermal problem separately from the pressure. Heat
capacity varies with temperature and pressure. At the boiling point of water the
heat capacity increases due to the specific heat of vaporisation of the water. If
heat capacity is considered to be the effective heat capacity at constant pressure,
Cp, this allows for the pressure and temperature equations to be considered

separately.

Using Equations (2.14)) and (2.15) an equation for the temperature at the surface
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of the inclusion, 7', can be calculated

T, 4 aT
K)4nR*—=" = ~7R;’ 2.16
AR = 3R Py - (2.16)
Equation (2.16) simplifies to
3K, 0T, dT

(2.17)

pcpRy or ot

An estimate for == T is required to solve the differential equation for 7. There is a
temperature gradlent between the magma and the inclusion’s varying surface
temperature. Over the times taken to heat the inclusion it is reasonable to

estimate the length scale as the radius of the inclusion. This gives equation

3K aT
22 (T —T) =5, (2.18)
pcpRy ot
which can be solved as the equation is separable
3K
2 sdt = (2.19)
pcpR; ( )
3K
/ 2 dt = / (2.20)
0 pcpRy T —~T)’
—3Kot -T
> = (2L (2.21)
pCpRl Tm — T()
T = Tn—(Tun—Tye ¥, (2.22)

where the value Tj represents the initial temperature of the slurry when entrained,

and
3K,

~ pcpR*

(2.23)

So in our model the temperature at the surface of the entrained slurry increases

and approaches the magma temperature with a time-scale of .
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2.4 Amount of heat required to reach equilibrium

The amount of heat transferred into the entrained slurry to reach equilibrium, is a
value which will be needed to calculate the velocity of the steam generation
boundary in Section [2.6] This value will be used to estimate the amount of

magma driving the temperature changes in the ball.

The amount of heat required for the inclusion to reach an equilibrium
temperature, assuming that the magma remains at a constant temperature, 7,,, is
calculated in 3 stages. The first stage is heating the water in the inclusion, from
the initial temperature 7y to 373K. As this flashing process occurs quickly it is
assumed that the pressure is still equal to 1 bar. The water in the inclusion
changing phase from liquid to gas is the second stage. The finial stage is heating

the water vapour from 373K to 7.

The amount of heat needed to heat the liquid water in the inclusion to 373K, Qy,

is

Q1 = OpVepAT, (2.24)
= ¢,pl4§R§4187 x (373 —Tp), (2.25)
= (1.8 x 10%)(373 —Ty) ¢, pR3 (2sf) T, (2.26)

where ¢, is the specific heat of water, 4184 Jkg 'K, The specific heat of water
describes the amount of energy needed to heat 1kg of water by 1 K. Equation
also includes the volume of the inclusion, V, the porosity of the inclusion,
@, the density of water, p;, and the initial temperature of the inclusion, 7.

The amount of heat required to vaporise the water is

02 = hyopV, (2.27)
= (9.47x10%¢,p,R3 T, (2.28)

which includes £, the latent heat of vaporisation, 2260kJ kg ~!. The latent heat
of vaporisation of water describes the amount of energy needed to convert 1kg of

water into steam.
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Qs is the amount of heat needed to change the temperature of the vapour from
373K to T,,. To find out the amount of energy required the specific heat of water
vapour is needed. The specific heat of water vapour varies with pressure and
temperature. In Table [2.4|there is a range of pressures and temperatures that
could occur in the inclusion and their corresponding specific heats. The
maximum pressure that can occur in the inclusion is the tensile strength of the
magma, which we take here to be 2MPa, because after this pressure is exceeded

the ejecta will explode.

Specific Heat (c,) at changing Temperatures and Pressures
Temperature (K) | Pressure (MPa) | Specific Heat (J kg™ K=
373 0.1 2042
473 0.5 2138
573 1 2147
673 1 2132
773 1 2168
873 1 2224
973 1 2287
1073 1 2353
1173 1 2419
1273 2 2490

Table 2.1: Values of the specific heat of water vapour at different pressures and
temperatures [4].

The specific heat from Table 2.4| and the corresponding temperature can be used
to estimate 3. The trapezoidal rule is used to integrate the specific heat with

respect to temperature,

L

T T —
/373cp(T)dT ~ WT3973)(2042+2(2138+2147+2132, (2.29)

+ 216842224 +2287 + 2353 +2419) +2490),
(T, —373) x 2237 T kg . (2.30)

Q

Qs is then calculated using a similar method to Equation (2.24)),

03 = GpVepAT, (2.31)
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= ¢,p,4?”R§(Tm —373) x 2237, (2.32)
= (9.4 x 10%)(T;,, —373),p,R3 (2sf) . (2.33)

The results of Q1, Q> and Q3 are combined to find an estimate of the heat

transferred into the inclusion for its temperature to reach equilibrium ,

Q=01+ 02+ 03 = (19.37 x 10°)9,p1R] (2sf) 7, (2.34)

it is assumed that 7o = 293 and 7,,, = 1273. Table |2.4|shows typical values for Q;

at a variety of different inclusion sizes assuming that ¢, = 0.4 and p; = 999.97kg
-3

m
Typical values of Q; at different inclusion sizes

Ry (m) | 01 () 0> () 03 () oW
0.0001 [ 5.76 x 1074 [ 3.79x 103 [ 3.38 x 103 | 7.75 x 103
0.001 | 0.576 3.79 3.38 7.75

0.01 576 3790 3380 7750

0.1 576 x 103 | 379 x 10* | 338 x 10* | 775 x 10*

1 576 x 10° | 379 x 107 | 338 x 107 | 775 x 107

Table 2.2: Values for Q; and the amount of energy needed to reach equilibrium
for different inclusion sizes.

The energy needed to change phase and to heat the magma to 1273K is of the
same order of magnitude. However the energy needed to heat the water to 373K
is negligible when the total amount of heat needed to reach equilibrium is

considered.

2.5 Estimating the temperature gradient

In Section [2.6|a better estimate for the temperature gradient is required. The
temperature gradient can be estimated by the change in temperature of the
inclusion divided by a length-scale, Ar. In Section [2.2]this length-scale was the
radius of the inclusion. To find a better estimate for the temperature gradient a

more accurate length-scale is required.

To estimate the new length-scale we need to consider the amount of heat needed
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to vaporise water and how much magma is required to provide this heat. In
Section [2.4] the amount of energy needed to vaporise the water in the inclusion is

calculated. If we consider 7p = 293K the energy required is,

01 = GpIVeyAT, (2.35)

= (1.44 x10%)¢,pR3 (2sf) T, (2.36)
0, = (9.47x10%¢,pR,>, (2.37)
Oy = O01+0, (2.38)
0, = (10.87 x 10%)¢.piR;°, (2.39)

where Q, is the amount of energy needed to vaporise the water in the inclusion.
We have previously assumed that all the energy heating the inclusion must be
provided by the magma. Using this assumption and Equation (2.39) the volume

of magma required to vaporise the water can be calculated

(10.87 x 109)¢,p1R1> = Viu@mpmCnAT, (2.40)
1.086x1010ﬂR13 = V,x2.352x10°, (2.41)
Om
Vi = 4.62ﬂR13, (2.42)
Om

using the typical values for the density of water (p;) and magma (p,,) as well as
the heat capacity of magma (C,,) that can be found in Table

Typical Values
Parameter | Value Units
0 999.97 kg.m—>
Pm 2800 kg.m—3
o 0.84 x 103 | Tkg~'.K™!

Table 2.3: Typical parameter values.

This magma is in a spherical shell surrounding the inclusion. The volume of this

shell is 4 4
T T
Vin = = (Rused +R) - 71&13, (2.43)

where R4 is the radius of magma used to heat the inclusion. R,y is an
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estimate for the length-scale at short times. By equating Equations (2.42)) and
(2.43) Ryseq is calculated

V= 4.62%1?13, (2.44)
4 4 \
e I Rud R — R =462 PR3, (2.45)
3 3 Om
= (Rused+R1)3—R§:1.132’—’><R13, (2.46)
m
3 _ (Pr 3
= (Rusea +R1) _(1.13¢—+1)><R1, (2.47)
m
- (Rused+R1):(1.13%+1)§><R1, (2.48)
m
= Rmd:((l.13%+l)é—1)><R1. (2.49)

The entrained slurry is comprised of cold bubbly (vesicular) magma that was
soaked with water before being washed back into the volcano, it can therefore be
assumed that the porosity of the inclusion is equal to that of the magma . When
this is assumed R,;,; = 0.28R| and the temperature gradient can be estimated to
be

T _ Ty—T

—_— " — 2.
or 0.28R;’ (2.50)
T,—Ty)e ™

which will be used in the boundary condition for the pressure model.

2.6 Pressure Equations

The pressure variations in this system are driven by vapour generation and the
diffusion of vapour through the pores of the surrounding magma. In geothermal
literature there are models for water vapour flowing through a porous medium
([22]] [L1]). We have adapted a geothermal approach to suit the Surtseyan ejecta

problem.

In Pruess’s geothermal injection model [22]], to construct the pressure equation, a
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conservation of vapour mass equation is considered

(Pmpy)
T =—-V.F,. (2.52)

The mass flux (F,) is calculated using Darcy’s law

F, = kv, (2.53)
1%
Darcy’s law describes fluid flow in a porous media. We are assuming that only
vapour flows through the pores of the magma. In the Surtseyan ejecta problem
this describes the water vapour escaping through the vesicular magma. By
combining Equation (2.53)) and (2.52)) we obtain

d(¢mpy) _ ko
we) Ly (o, 9p) .54

The density of the gas depends on pressure through the ideal gas law. In the
Surtseyan ejecta problem we will ignore the temperature variation and assume
that the vapour when flowing through the magma has already reached the
temperature of the magma 7,. To use this technique we are assuming that the

water vapour acts like an ideal gas. Using the ideal gas law we obtain:

¢uM dp . ﬁ ) Mp
RT, o m kD, P 223
dp  k
= ‘ng = EV' (PVp), (2.56)
dp  k 1_ ,

Equation (2.57) can be expressed in spherical polar coordinates as

dp 10 ,dp?
T ﬁﬂ” ar ] (2:39)
k
D = . (2.59
20m Ly )

This is a non-linear diffusion equation for the vapour pressure. The initial
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condition is that the partial pressure of water in the vesicular magma is negligible
at the time of entrainment p(r,0) = 0. The total pressure at the surface of the
ejecta is assumed to be one atmosphere. The partial pressure of water vapour at
the surface can range up to 1 atmosphere, which is much smaller that the critical
fragmentation pressure (p.). Therefore the boundary condition at the surface of
the magma ball is assumed to also correspond to negligible partial pressure of

water vapour
p=0, r=R,. (2.60)

For the second boundary condition the steam generation boundary in the
entrained slurry is considered. The flow of heat entering the inclusion vaporises
the water resulting in the pressure build up. In the model we are considering the
steam generation boundary to be propagating into the inclusion at a rate

governed by the temperature gradient.

The following assumptions are made:

e The slurry starts to boil at the surface but the temperature of the slurry
heats in a uniform manner (Biot Number from Section [2.2)

e The boiling front moves towards the centre of the inclusion with time

e The large temperature gradient causing the boiling of the vapour has a

much larger effect than the steam removal and energy balance processes.

Using the assumption that the heat is driving the change in enthalpy in the

problem it can be assumed that
(Heat In — Heat out) = A enthalpy. (2.61)
The amount of heat that is transferred into the inclusion in the time At is

T
47rs2Ka— At, (2.62)
8r Ky

and the heat escaping the inclusion in this time is assumed to be negligible. In
Equation li it is assumed that %—Z is a know value (derived in Section .
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Boiling Front

Figure 2.2: Diagram depicting the movement of the steam generation boundary

The change of enthalpy is

¥4

387 (0) =50+ APy (2.63)

The enthalpy change is derived by considering the amount of energy needed for
the water swept by the steam generation boundary in time Az to vaporise. This
can be seen in Figure The change in enthalpy and the heat transfer can be
substituted into Equation (2.61)) to obtain

4r

A —0=(—I[s(1) =5 (1 + A)|pdhyy),  (2.64)

Ans*K 8_T
5 3

ar
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IT| _ (38°() — s>t +An)]piphn)
K5-| = o . (2.65)

Using the formal definition of a derivative

and by the taking the limit as Af tends to zero, Equation (2.64) can be written in
terms of the velocity of the steam generation boundary

1r_3¢2¢
7| _ G350 o
or ls 52
oT .
K5-| = —Gpion). (2.68)
K 0T
=— —1 . 2.69
o9y Ir s (269

An equation for the position of the steam generation boundary is obtained using
Equation and the initial condition s = R; at r = 0. This is achieved by
integrating (2.69) with respect to time, while assuming that the temperature
gradient is %—Z ) ~ % which is derived in Section

= fhw ‘;—z r, (2.70)
. —ot
- ds:_nghvz (Tmo_zg‘);f dr, 2.71)
R1 t _ —ot
= — [ as= /O _Pl(fhvl (T’”O.zg‘}: dr, 2.72)
= s=Ble ¥ —-1)+Ry, (2.73)
M T a7

The critical time ¢., the time at which the water is completely depleted, can be
calculated by setting Equation (2.73)) to zero resulting in

1 R
tcz—aln(l—El). (2.75)

The velocity of the steam generation boundary, s, can be used to determine the
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pressure boundary condition at the surface s. If we consider the rate of change of

water volume swept by the boiling front

deater

_ 2(1¢
7 =4ms (|s]), (2.76)

this can be used to obtain the rate of change of the mass of water swept by the
steam generation boundary. The rate of change of the mass of water swept by the
boiling front must be equal to the rate of change of vapour produced by the steam
generation boundary, due to conservation of mass in the system. The rate of

change of vapour produced by the steam generation boundary is

dmvapour

o =4ns’ls|opr, (2.77)

and this can be used to find the rate of change of vapour volume produced by the

steam generation boundary

dvvapour . 2. ]

Using Equation (2.69) and Darcy’s law, Equation (2.53), together with the ideal
gas law (to replace the density of the water vapour) the flux boundary condition

at the surface of the entrained slurry can be written as

d Vvapour kA

= 2Vl 2.79
7 o Dlr= (2.79)
RT,  kdms?
= 4ns?|s|pp—= = VDl r—s, 2.80
s |s‘¢lep Ly p|r s ( )
Uy 9 p1|S|RT,,
\% — Sy Ple I m 2.81
= P Pl _ Mk , (2.81)
209 p1|S|RTy
Vp?| = ZvrEITEm 2.82
= P r=s Mk ( )

This gives the mass flux at the steam generation boundary

k 2
\Y%
(2¢m.UV) u

When the steam generation boundary is between the origin and Ry Equation

_ ¢pl|S’RTm
r=s M(pm '

(2.83)
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(2.83)) is the boundary condition. However after the critical time, when there is
no more liquid vaporising in the slurry, the boundary condition at the origin is

k
Vp? =0. 2.84
<2¢muv> P (289

To summarise the dimensional problem to solve is,

dp 10 ,0p?
a T Ao [D”W (28
p = 0, r=R (2.86)
op? q’pﬂjﬂ <t
DX = Om , r=s(t 2.87
3, { 0 . (t) (2.87)
. —at
g = KIn=To)e (2.88)
pl¢hvl x 0.28R;
3K
o = - ;2 (2.89)
cpiq
k
D — T (2.90)
mMy
1 R
te = —aln(l—gl) (2.91)
(T —To)pepR,
B = . 2.92
0.28 x 3pl¢hvl ( )

2.7 Non-Dimensionalisation

Non-dimensionalisation is used to simplify systems that are too complicated to
analyse rigorously. During this process all of the terms are scaled to produce
dimensionless variables. By doing this it is possible to compare different
components by setting the biggest terms to order one, so that the smaller terms
are apparent, this is to ensure that the parameters are combined into appropriate
groupings. The purpose in this case is to create a simple model appropriate for
numerical simulations and to find the combination of parameters that affect
rupture. The challenge with non-dimensionalisation is if it is scaled incorrectly
the area of interest can get lost as the relevant information occurs in a really

small time span.
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The dimensional problem is non-dimensionalised using the scaling

. p . t r
p=—_—,1t=—, r=—_1, (2.93)
Pc Ic R
where p. ~ 2 x 10Pa is the tensile strength of the magma. When the pressure
reaches this value it is expected that the Surtseyan ejecta will rupture. In the
rescaling, rupture will occur at p = 1. A rescaling for the diffusivity is also

needed but this will be derived when we apply the rescaling to the model.

The resulting non-dimensionalised pressure diffusion equation is

op 1 9 [tepD ,0p?
D 2 |LBZRfP (2.94)
of 7 JF| Ry  OF
From Equation (2.94) the non-dimensionalised diffusivity can be set to
- tepeD
D=L (2.95)
Ry

When the rescaling is applied to the dimensional model, summarized in
Equations (2.83) to (2.92)), we obtain the following non-dimensional model:

p 19 [
= = 73 {D } (2.96)
5(70) = 0, p(1,7) (2.97)
~8 Cs f<1 _s(r)
- _ 3 2.98
e P 2
 K(T, —To) -~k
ST p,¢hle0.28R1 (2.99)
_ 1RTn0p1 (2.100)

RypcM ¢y,



Chapter 3
Numerical Solutions

We numerically solve our model for Surtseyan ejecta to determine the behaviour
of the pressures in the inclusion. As the model is based on a model for
geothermal injection [22], which can be solved analytically . We need to
consider whether the Surtseyan ejecta model can be solved in the same manner.
In the Surtseyan ejecta model an average pressure cannot be assumed because of
the wide range of pressures in the system. This differential equation without this
assumption cannot be solved analytically and numerical techniques must be
used. MATLARB is used to solve Equations (3.1) to (3.5)) numerically:

op 19 [~,0p>

Er T T G.D
p(7,0) = 0, p(Ro,f) =0, (3.2)
Da_~2 _ Cs :f<1 f:@ (3.3)
7 0 :F>1" Ry’ '

o —at.f
g = _KIn—ToJe ™ (3.4)

pl¢hvl X 0.28R;

_ tRTup;

€= RopcM¢y 3.5)

PDEPE, a standard MATLAB function, is used to solve partial differential
equations of the form c(x,7,u, %)% = x‘m%(xmf(x,t,u, %) +5(x,t,u, %))
where the value m is set to 0,1 or 2 depending on the whether the modelled

system has slab, cylindrical or spherical symmetries. The problem must also be

31
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defined over a fixed finite interval for PDEPE to be used. In the programming, x
is considered to be the non-dimensionalised radius and u is the
non-dimensionalised pressure. The Surtseyan ejecta model, derived in Chapter 2,
is already in the appropriate form so ¢, f and s can be immediately defined as

follows:

c = 1,
_du
= 2uD—
S ubD—=—,
s = 0.

As PDEPE requires a defined interval, singularities need to be considered. At
7 = 0 there is a singularity, dividing by zero, so this point cannot be contained
within the interval. Therefore we define the interval to be from a fixed small

number (close to 0) to 1, which is at the surface of the magma ball.

The last requirement is for the steam generation boundary to be fixed, as the
program used needs fixed boundary conditions. The non-dimensional model has
a travelling inner boundary condition. Since s < Ry << Rj3, this moving
boundary can be replaced with a point source of vapour at the origin. However

the flux condition is applied at the surface of the inclusion ¥ = € = % which is

R
much smaller than 1. This results in a fixed boundary condition near the origin

but it avoids problems that would arise from the singularity at the origin.

As at, is very small we can assume that e~ %< ~ 1 when 7 < 1. This simplifies

the velocity of the steam generation boundary to

K(T, — T
sr - KUTn—To) (3.6)
pl‘])hvl x 0.28R;
and the critical time to )
0.28 R h
_ X OR17pyhy (3.7)

t
¢ K(T,, —Tp)

which is a constant.
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Then the flux boundary condition becomes:

_dp? —E :i<1
D— = , T=E¢, 3.8
o7 { 0 :iz1 G9
. 2 R12pihy pek
D _ O 8 X ¢ 12 pl leC , (39)
2¢m.uvKR2 (Tm_TO)
R(RT,
g — RiRInop (3.10)
RZM(PmPc

The parameter E was found using the distance that the steam generation
boundary covers to reach the origin and the required time, 7., as well as the
parameter C. The key parameters controlling the solutions behaviour are the

diffusivity, D, and the flux at the point source E.

The behaviour at the origin in this system is difficult to deduce. As R; increases
the flux E at the origin and the diffusivity, D both increase making the behaviour
at the origin difficult to predict. The program we used to solve the model
numerically is found in Appendix [B]and the typical values for the parameters
used are listed in Table
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Typical Values
Parameter | Value Units
Pe 2 x 10° Pa
hy 2.26x10% | Tkg™!
P 999.97 kg m—3
k 10~ 14 m?
K 1.2 W.m~ ! K~!
Wy 3x107° | Pas™!
M 18x 1073 | kg mol™!
R 8.314 JK~ ! mol™!
T 1273 K
Ty 293 K
) 0.4 -
O 0.4 -
R; 0.001 m
R2 0.1 m

Table 3.2: Table containing typical parameter values of a Surtseyan ejecta
3.1 Results

The numerical solutions reveal that over a wide range of parameters the pressure
at the surface of the entrained slurry increases sharply from zero and then quickly
equilibrates. This can be seen clearly in Figure This rapid stabilisation
means that the maximum pressure can be calculated using the steady state
solution for pressure with vapour being produced continuously at the point 7 = €.
This steady state is not typically reached before the critical time, see Figure
but if the vapour continued to be produced a steady state would eventually be
reached. The pressure at the point 7 = € is equal to the steady state pressure as

the model reaches the stable value rapidly.

The steady state solution is

~2
19 {szai} _o G.11)
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Pressure p

06 . 1.4

Distance r 1 0.2

Timet

Figure 3.1: Numerical solutions to the non dimensional pressure equations with
the parameter as listed in Table[3.2]

Equation (3.T1) can be solved by integrating twice to for an equation for the
steady state pressure

P (3.12)
~ 1
= pP=——+0, (3.13)
where ¢; and ¢, are the constants of integration. The constants of integration are

determined by considering the boundary conditions at # = € and 7 = 1. By

setting 7 = 1 it is found that ¢; = ¢, and then by considering the flux at 7 = €,

")
Daaif ~ E, (3.14)
P -

= a—pf == (3.15)
20p° _ —E€’

“° ¢, (3.16)



36 CHAPTER 3. NUMERICAL SOLUTIONS

the value of ¢ is determined. The constants are substituted into Equation (3.13|)
this gives the steady solution
, Eg* 1

p :7(;_1)' (3.17)

If the maximum pressure inside a Surtseyan ejecta exceeds the critical pressure
the ejecta will rupture. To determine a criterion for rupture a formula for the

maximum pressure is required. The maximum pressure occurs at surface of the
inclusion, 7 = &, at this point the maximum pressure is rapidly approached and

can be determined using the steady state equation at 7 = €

pe)? = F(l—e), (3.18)
Ee

When the maximum pressure in equation [3.18|exceeds 1 the Surtseyan ejecta is

expected to rupture.

The criterion for rupture can be determined from Equation (3.18). If it is
assumed that the radius of the inclusion is much smaller than that of the magma
ball, then (1 — €) ~ 1, the approximate maximum pressure is j(&) = \/F.
Therefore the criterion for rupture is that

(3.20)

2RT it K (T — Tp) -
Mp.2 x 0.28h,k '

If it cannot be assumed that (1 — €) & 1 then the approximate maximum pressure

ple) =+/F(1—¢), (3.21)

and the criterion for rupture are

equation is

R, —R,
R,

(

\/ 2RT, K (T — To) 1> 1. (3.22)

Mpc2 x 0.28h,k

The criterion for rupture and the sensitivity analysis (Figure allow us to
determine which of the parameters affect the maximum pressure. It is interesting

to note that when the radius of the inclusion is much smaller than the magma ball



3.1. RESULTS 37

that the maximum pressure is independent of both R; and R;. An example of this
can be seen when comparing Figures [3.Tand [3.2] These figures show the
pressure distribution in two ejecta that have identical properties apart from a
change in Ry, the maximum pressure in the two figures is very similar, however

in[3.2]the steady state is almost reached before the water is depleted.

Pressure p

0.6

0.2

1 1
Distance r 0 Time t

Figure 3.2: Numerical solutions to the non dimensional pressure equations with
the parameter as listed in Table [3.2] apart from the radius of the entrained slurry
which is 1cm

The lack of dependence on the inclusion radius, when it is much smaller than the
magma, can also be seen in the sensitivity analysis (Figure [3.3). However the
sensitivity analysis shows that if the slurry entrainment is a larger fraction of the

magma size the pressures will start to decease, this is also apparent from

Equation (3.22).

The rupture criterion also has no dependence on either the porosity of the magma
or entrained slurry. This is also observed in the sensitivity analysis that shows

very small, practically negligible, changes in pressure when the porosity of either
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the magma or the slurry is varied. The porosity of the magma having little affect
could be explained by the observed steady state pressure solution, which is
independent of the diffusivity, as well as the velocity of the steam generation
boundary that does not depend on the magma porosity. The velocity of the steam
generation boundary depends on the temperature gradient driving the steam from
the magma and the porosity of the inclusion which is the source of the liquid
being vaporised. As a result the critical time depends on porosity of the inclusion
and this is included in the non dimensionalised diffusivity. The porosity of the
inclusion is also present in the parameter E from the rate of change of vapour
volume. The porosity of the inclusion appears linear in both E and D and
therefore is not present in the criterion for rupture, which depends on the ratio of
E and D.
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Figure 3.3: Sensitivity analysis for the changes in maximum pressure at the edge
of the inclusion when the radius of the entrained slurry (Graph A), permeability
of the magma (Graph B) and the porosities of the inclusion (Graph D) and magma
(Graph C) are varied

The sensitivity analysis (Figure[3.3) shows how the maximum pressure, at the
surface of the inclusion, in the Surtseyan ejecta system is affected by changing
one of the parameters. We have studied how varying the inclusion size, the

permeability of the magma and the porosity of both the magma and the inclusion
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affect the maximum pressure at the inclusion surface. When the radius of the

inclusion is varied there is little change in maximum pressure, at the inclusion’s
surface, if R; << R,. However in the sensitivity analysis when the radius of the
inclusion is about 10% of the radius of the magma ball the maximum pressures

start to vary more rapidly.

The sensitivity analysis for the permeability of the magma shows that if the
magma has a low permeability the maximum pressure at the surface of the ejecta
is high and this reduces as the permeability increases. Permeability is a measure
of how easily fluid flows through a porous rock. At low permeability vapour can
not easily escape through the porous magma and this causes the observed high
pressure at the surface of the inclusion. The criterion for rupture also shows an
increase in the maximum pressure as permeability decreases. Permeability of
magma has a wide range of typical values and this results in a wide range of

possible maximum pressures.

The sensitivity analysis for both the magma and slurry porosity shows small
variations in the maximum pressure at the surface of the inclusion. The criterion
for rupture also shows that the maximum pressure at the surface of the inclusion

is not affected by the porosity of the magma and slurry.
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Chapter 4

Conclusion and Discussion

4.1 Discussion

During the derivation of the model for pressure changes in Surtseyan ejecta we

assumed:

e That the inclusion would heat uniformly due to the low value of Biot

number.
e That the magma ball is much larger than the entrained slurry.
e That the steam generation boundary is fixed.
e That the system is a single phase vapour flow through the magma.

e That the Surtseyan ejecta considered is spherical containing a single

inclusion at the centre.

To improve the model these assumptions need to be addressed.

In the thermal equation we considered the inclusion to be heating uniformly and
due to the low value of Biot number this is a reasonable assumption. However
when heat penetrates into an object the surface of the object heats first and the
heat diffuses into the object over time. In order to improve the model a thermal

diffusion equation could be used to calculate the temperature.

41



42 CHAPTER 4. CONCLUSION AND DISCUSSION

In the thermal equation it was also assumed that the magma ball was much larger
than the entrained slurry. The result of this is that the heat escaping due to the
flow of steam is not considered. When it is assumed that R << R; the vapour
diffusing through the porous magma has not escaped the magma before the
critical time is reached and it can therefore be assumed that no heat escapes.
However if we cannot assume that R; << R, then the heat lost at the interface

between the magma and air due to the escaping vapour must be considered.

In the process of solving the model numerically the steam generation boundary is
fixed so that the PDEPE function can be used. The justification for this was that
the steam generation boundary is much smaller than the radius of the magma
ball. This can be assumed because the boundary moves towards the centre of the
inclusion from Ry, which is much smaller than the radius of the magma ball. If
the mesh, in the MATLAB code, is updated at each time step towards the origin,
we can solve the moving boundary problem on the interval [%, 1] . This
produces the numerical solutions seen in Figure The maximum pressure
observed for a range of parameters is approximately the same as that obtained
using a fixed boundary. Therefore the assumption to fix the steam generation

boundary did not significantly affect the criteria for rupture.

In the transient model a single phase vapour flow through the magma is assumed.
As the water in the inclusion flashes to steam quickly this is a reasonable
assumption. If a single phase vapour flow cannot be assumed we need to
consider what would happen to the pressure if it were a two phase flow [[11]]. This
would produce a more complex pressure equation which may make the model

more accurate.

In the Surtseyan ejecta model we have assumed that a Surtseyan ejecta contains a
single slurry inclusion entrained in the centre of the magma. However often
Surtseyan ejecta contain many different slurry inclusions scattered in the magma
ball. This would create a more complex model as there would be a lack of
symmetry. If we were to consider modelling a Surtseyan ejecta with multiple
inclusions, we would need to consider how the pressure of each deposit affects
the others. Future work modelling Surtseyan ejecta needs to focus on finding a

model for this case.
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Figure 4.1: Numerical solutions to the non dimensional pressure equations with
the parameter as listed in Table[3.2]on a moving mesh that is updated at each time
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step starting at Ig_z)

4.2 Conclusion

In this study we have constructed a mathematical model that allows us to
calculate the transient pressure response inside Surtseyan ejecta that only contain
one small slurry inclusion situated at the centre of the large magma ball. The
pressure increase inside the ejecta is due to the vaporization of the water in the
slurry and this is offset by the vapour escaping through the pores of the
surrounding magma. Our aim was to determine a criterion for rupture for

Surtseyan ejecta.

The numerical solutions of the non dimensional pressure equations showed that
the pressure at the surface of the inclusion equilibrated quickly, this occurred for
a wide range of parameters. As equilibrium is reach quickly the maximum
pressure could be described using steady state equations. The criteria for rupture

is that the maximum pressure is greater than 1. The criterion for rupture was
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calculated to be

PRTyp i K (T — To)
~ 1 : WhenR; <<R 4.1
\/Mpcsz.ZSthk en it 2 @D

Tt K (T —To) [ Ro— Ry
~ 1 : WhenR, < Ry. 42
\/Mpc2><0.28hvlk R, et =1 “4.2)

4.3)

It was interesting that the criteria for rupture does not depend on the porosity of
the inclusion or magma and that it only depends on the size of the radii when R
could not be considered much less than R;. As a result it is the permeability and

the temperature difference that control when the Surtseyan ejecta will rupture.
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Symbol Glossary

Terms in Chapter 1.2.2
Symbol Meaning Units
ejj Solid strain tensor -
w Solid displacement m
w Fluid displacement m
i Yield stress Pa
Ag,Ng,Op, R | Elastic constants
&f Fluid dilation m
Dg Gas pressure Pa
() Porosity -
Pr Density of fluid kg m—3
s Density of solid kg m—3
Pa Added mass density kg m—3
v Vertical gas velocity ms~!
We Solid displacement from equilibrium m
Apm Added mass effect kg m=2s72
Dy Interfacial drag Pam™!
b Interfacial drag coefficient Pasm 2
ng Gas viscosity Pas
k Gas permeability m 2
Y Adiabatic index -
t Time s
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Terms in Chapter 1.2.3
Symbol Meaning Units
Px Density of substance x kg m—3
u, Mass flux density of substance x kgs™ ! m™2
[0] Porosity -
t Time S
0 Density of liquid kg m—3
Py Density of vapour kg m—3
W Mass flux density of liquid kgs™ ' m2
u, Mass flux density of vapour kg s~ m?
S Fraction of pore space containing liquid -
Sy Fraction of pore space containing vapour -
pr Density of rock kg m—3
U, Specific internal energy of rock J
U Specific internal energy of liquid J
U, Specific internal energy of vapour J
K Thermal conductivity of rock Wm! K~!
H; Specific enthalpy of liquid J
H, Specific enthalpy of vapour J
Terms in Chapter 1.2.4
Symbol Meaning Units
F; Mass flux of x kgs™ ! m2
o Density of vapour kg m—3
() Porosity -
t Time S
k Absolute permeability or rock m?
Wy Dynamic viscosity of vapour m? s~}
p Pressure Pa
p Average pressure Pa
Di Initial pressure Pa
r Radius m
Z Real gas compressibility factor -
R Gas Constant JK~! mol~!
Ty Initial temperature of water K
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M Molecular mass of water kg mol~!
ry Distance from front to injection site m
qvf Mass flow rate at the front kg s~!
H Specific enthalpy J
Terms in Section 2.1
Symbol Meaning Units
n, Moles of water vapour mol
ny Moles of liquid water mol
my Mass of liquid water kg
M Molecular mass of water kg mol~!
R Radius of the inclusion m
o Porosity of the inclusion -
01 Density of liquid water kg m—3
T(1) Temperature of the inclusion at time t K
Tn Temperature of the magma K
1% Volume of the inclusion m’
R Gas Constant JK ! mol™!
P Pressure inside the inclusion Pa
Terms in Section 2.2
Symbol Meaning Units
B; Biot number -
h Heat Transfer Coefficient Wm~! K|
L. Characteristic length of substance x m
V. Volume or substance x m?
A, Area of substance x m?
K Thermal conductivity of substance x Wm~! K™!
0 Amount of heat J
A Area m?
AT Change in temperature K
Ar Change in radius m
K> Thermal conductivity of magma Wm ! K!
K Thermal conductivity of inclusion Wm! K™!
L Characteristic length of magma ball m
Ly Characteristic length of Inclusion m




48

APPENDIX A. SYMBOL GLOSSARY

R, Radius of the inclusion m

R Radius of the magma ball m
Terms in Section 2.3

Symbol Meaning Units

0 Amount of heat J

t Time S

R Radius of the inclusion m

p Effective density of the inclusion kg m—3

Cp Effective heat capacity at constant pressure JK!

0 Density of liquid water kg m—3

Pm Density of magma kg m—3

o Porosity of inclusion -

T Temperature K

Ty Temperature of magma K

Ty Initial temperature K

r Radius r

K> Thermal conductivity of magma Wm! K!

o Thermal equation constant kg s~!
Terms in Section 2.4

Symbol Meaning Units

Ty Temperature of magma K

Ty Initial temperature K

O Porosity of inclusion -

pi Density of liquid water kg m—3

Cp Effective heat capacity at constant pressure JK!

1% Volume of the inclusion m?

AT Change in temperature K

hyy Latent heat of vaporization of water Jkg™!

0 Energy used to heat water to 373K J

0> Energy used to vaporise water in the ejecta J

03 Energy used to heat water vapour to 7, J
Terms in Section 2.5

Symbol Meaning Units

Ty Temperature of magma K
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Ty Initial temperature K

o, Porosity of inclusion -

01 Density of liquid water kg m—3

Cp Effective heat capacity at constant pressure JK!

Vv Volume of the inclusion m>

AT Change in temperature K

hyy Latent heat of vaporization of water Jkg™!

0 Energy used to heat water to 373K J

(0)) Energy used to vaporise water in the ejecta J

03 Energy used to heat water vapour to 7, J

o, Energy used to heat water from 373K to 7, vapour | J

Vin Volume of magma required to heat the inclusion m>

Om Porosity of magma -

R Radius of the inclusion m

Riseq Radius of the magma heating the inclusion m

Ar Change in radius m

T Temperature K

r Radius m

o Thermal equation constant kg s~
Terms in Section 2.6

Symbol Meaning Units

Om Porosity of magma -

Py Density of water vapour kg m—3

t Time S

F Mass flux of x kg s~ m?

k Absolute permeability of magma m?

Wy Dynamic viscosity of water vapour m?s~!

P Partial pressure of water vapour Pa

T, Temperature of the magma/lava ball K

M Molecular mass of water kg mol~!

R Gas constant JK ! mol™!

R Radius the inclusion m

R Radius of magma/lava ball m

r Radius m
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D Diffusivity constant S

s Location of the steam generation boundary m

T Temperature K

K Thermal conductivity of Inclusion Wm! K!

P Density of liquid water kg m—3

o, Porosity of inclusion -

hy; Latent heat of vaporization of water J kg*l

At Change in time S

§ Velocity of the steam generation boundary ms~!

B Pressure model constant m kg

Vivater Volume of water m?

Myapour Volume of water m3

t Critical time S

Vvapour Volume of vapour m?

o Thermal equation constant kg s~!
Terms in Section 2.7

Symbol Meaning Units

p Dimensionless pressure -

7 Dimensionless radius -

f Dimensionless time -

D Dimensionless diffusivity constant -

t, Critical time S

De Critical pressure Pa

Ry Radius of magma/lava ball m

s Location of the steam generation boundary m

§ Velocity of the steam generation boundary ms~!

o Thermal equation constant kgs™!

K Thermal conductivity of Inclusion Wm~!K-!

0 Density of liquid water kg m—3

o Porosity of inclusion -

M Molecular mass of water kg mol !

R Gas constant JK~! mol~!

R Radius the inclusion m

T, Temperature of the magma/lava ball K
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k Absolute permeability of magma m?
Wy, Dynamic viscosity of water vapour m?s~!
Ty Initial temperature K
Om Porosity of magma -
C Dimensionless pressure model constant Jsm3Pa~!
Terms in Chapter’s 3 and 4
Symbol Meaning Units
p Dimensionless pressure -
7 Dimensionless radius -
7 Dimensionless time -
D Dimensionless diffusivity constant -
t, Critical time S
De Critical pressure Pa
Ry Radius of magma/lava ball m
s Location of the steam generation boundary m
S Velocity of the steam generation boundary ms~!
o Thermal equation constant kg s~!
K Thermal conductivity of Inclusion Wm™! K!
01 Density of liquid water kg m—3
o Porosity of inclusion -
M Molecular mass of water kg mol~!
R Gas constant J K~ mol™!
R Radius the inclusion m
Ty Temperature of the magma/lava ball K
k Absolute permeability of magma m?
Wy Dynamic viscosity of water vapour m? s~!
Ty Initial temperature K
Om Porosity of magma -
C Dimensionless pressure model constant Jsm—3 Pa!
£ Ratio % -
Flux boundary condition constant IJm3 Pa~!
cl Arbitrary constant 1 -
1) Arbitrary constant 2 -
F Pressure criterion constant -
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Appendix B

Programming Numerics in Matlab

%%% Simple Pressure Modelling for Surtseyan Ejecta %%k

function SimpleSurtseyanEjectamodel

hzero partial pressure of water

pa=0;

%tensile strength of magma

pc=2.0e06;

%hspecific heat of vaporisation of water, J/kg
Hvl= 2.26e06;

hdensity of liquid water, kg/m~3

rhol1=999.97;

Jpermeability of hardened magma, m~2
k=1.0e-14;

Jsthermal conductivity of inclusion, W/m/K
K=1.2;

%hdynamic viscosity of vat steam at 10 bar, Pa s
mu=3.0e-05;

Jmelting point of magma, in Kelvin

Tm=1273;

%hroom temperature, Kelvin

T0=293;

%T difference driving steam production
dT=Tm-TO;
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Jiporosity of solid magma

phim=0.4;

hporosity of entrained slurry
phi=0.4;

Jhuniversal gas constant, J/k/mol
R = 8.314;

Jmolar mass of water, kg/mol
M= 18.0e-03;

%radius of the inclusion, m
R1=0.001;

Jradius of hot magma, m

R2 = 0.1;

% D the diffusivity

D = (0.28*pc*Hvl*rhol*phi*k*R1*R1)/(K*mu*dT*phim*R2*R2)
% point source flux

E = (R1*R*Tm*phi*rhol)/(R2*M*phim*pc)

%hsets to spherical symmetry

m= 2;

J»the number of x values meshed on

nxs=100;

xmesh=R1/R2 + [0 logspace(-5,10og10(1-R1/R2) ,nxs-1)];
tspan=[0 logspace(-5,0,50) logspace(0.001,0.1,10)];
options=odeset(’reltol’,1.0e-4,’abstol’,1.0e-4);

sol=pdepe (m,@surtseyDiffusion,@surtseyIC,@surtseyBC,xmesh,tspan,options);

u = sol(:,:,1); %pressures(t, r)

Jnote u is the pressure and x is the radius t is time
%hSurface Plot

surf (xmesh,tspan ,u)

xlabel(’Distance r’)

ylabel (’Time t’)

zlabel (’Pressure p’)



%hdiffusion equation

function [c,f,s] = surtseyDiffusion(~,~,u,DuDx)
c =1;

f = D.*u.*DuDx;

s = 0;

end

%initial conditions
function uO=surtseyIC(™)
u0= pa/pc ;

end

Jboundary conditions

function [pl,ql,pr,qr] = surtseyBC(~,”,”,ur,t)
if t< 1
pl= E;
ql =1 ;
pr= ur-(pa/pc) ;
qr= 0 ;
else
pl= 0 ;
ql= 1 ;
pr= ur-(pa/pc);
gqr= 0 ;
end
end

end
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