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Abstract 
  

 

Though the honey bee (Apis mellifera) is exposed to an extensive diversity of 

parasites and pathogens from multiple kingdoms, few are as devastating as American 

foulbrood. American foulbrood is a highly contagious bacterial disease, of which the 

causative agent (bacterium Paenibacillus larvae) infects honey bee brood through the 

ingestion of its spores, ultimately leading to the death of the infected larva and the 

collapse of the infected hive. Paenibacillus larvae’s genotypes (ERIC I-IV) exhibit 

differing ‘killing time’ of infected larvae, resulting in different larval and colony level 

virulence of the disease within hives.  

American foulbrood is found in New Zealand’s registered hives, and poses a threat 

to the country’s apiculture industry. The first objective of this thesis was to perform a 

genetic analysis on New Zealand’s P. larvae field strains using the well-established 

methodology of rep-PCR with MBO REP1 primers. A total of 172 bacteria isolates 

were gathered from registered hives from 2011 to 2014 and examined. The MBO 

REP1 primer identifies the ‘beta’ genetic subgroups of P. larvae. By identifying beta 

subgroups, the ERIC genotypes that are present in New Zealand can also be 

concluded. The genetic analysis of P. larvae using rep-PCR is a first for New 

Zealand, and appears to be a first for Australasia. The second objective of this thesis 

was to conduct a temporal and geographical statistical analysis on American 

foulbrood infection rate trends in New Zealand’s national and regional, divided into 

seven regions, registered hives and apiaries from 1994 to 2013.  

The genetic analysis of P. larvae detected three ‘beta’ genotypic subgroups: B, b, 

and Б. From these findings it was concluded that ERIC I and ERIC II are present in 
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New Zealand. Previous to my findings, subgroup B and Б and ERIC II genotype had 

not been recorded outside of Europe. The statistical analysis reported that American 

foulbrood infection rates were significantly decreasing nationally. Results also 

reported that four of the seven regions’ infection rates were significantly decreasing, 

whilst three regions were significantly increasing.  

Conclusions on the subgroups and genotypes present in New Zealand gives the 

first insight to the virulence and occurrence of P. larvae strains. Additionally, the use 

of rep-PCR for the genetic analysis of P. larvae enables this thesis to contribute to the 

increasing knowledge on American foulbrood. By examining the temporal and 

geographic dynamics of American foulbrood, the results allow for the evaluation of 

current management strategies and the most recent understanding on the national and 

regional infection rates of the disease.  
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CHAPTER ONE 

 

Introduction 

 

World pollinators   

The relationship between pollinators and angiosperms (flowering plants) is critical to 

sustaining healthy agricultural and natural ecosystems (Calderone, 2012a). Pollinator species 

from multiple classes perform pollination services to over 80% of angiosperm species 

(Calderone, 2012a). The mutualistically beneficial relationship between pollinator and plant 

facilitates the plant’s sexual reproduction while providing nectar, a food source, to the 

pollinator. In the absence of pollinators, angiosperms’ fruit development is substantially 

compromised (Calderone, 2012a).  

Primarily driven by flower morphology, the evolutionary selection pressures on the 

plant-pollinator relationship have lead to bifurcation of pollinators into specialised or 

generalised (Campbell, 2008; Klein et al., 2007). An example of a specialised pollinator is 

seen with the hummingbird (Trochilidae). The hummingbird, with its specialised elongated 

beak and tongue, is the only species able to pollinate the deep tubular flowers of the crimson 

beebalm (Monarda didyma) (Campbell, 2008). Conversely, generalist pollinators exhibit 

‘plant choice flexibility’ during foraging. This behaviour is most commonly recorded among 

insects (Campbell, 2008; Klein et al., 2007).  

The versatility in flower selection behaviours has allowed the agricultural industry to 

become reliant on insect pollinators. Approximately 84% of animal-pollinated crops are 

insect pollinated, generating US$215 billion worldwide annually (Le Conte & Navajas, 

2008; vanEnglesdorp & Meixner, 2010). The significance of insect pollination services to 
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global food production is rising. An example of this is seen with the agricultural sector’s 

reliance on pollinators increasing by 50-62% from 1961 to 2004 (vanEnglesdorp & Meixner, 

2010). 

Of the agricultural insect pollinators, the generalist western honey bee Apis mellifera 

(also known as the European honey bee) is the most economically important (Le Conte & 

Navajas, 2008). The honey bee’s pollination services increase animal-pollinated crop yield 

by 96%, with 45% of leading food commodities reliant on its services (Potts et al., 2010; 

vanEnglesdorp & Meixner, 2010). Attributing to the pollination efficiency of Apis mellifera 

is its ‘crop constancy’ behaviour, or the behaviour of consistently visiting one plant species 

at a time (Genersch, 2010a). Considered the “most important productive livestock” 

(Genersch, 2010a), the honey bee is now the primary pollinator of agricultural crops (Le 

Conte & Navajas, 2008; Klein et al., 2007). 

The honey bee colony 

The classification of eusocial (highly social) insects is based on the division of labour, 

mutual care of brood, and sterile workers. Within insect species, this rare social structure has 

proven to be extremely successful (Amdam et al., 2004). The honey bee is a prime example 

of a successful eusocial insect, with its hierarchical caste divisions, elasticity in labour 

division, and cooperative broodcare (Amdam et al., 2004).  

The honey bee has three caste divisions: the reproducing queen, the sterile female 

workers, and the drones (males) (Matherson & Reid, 2011; Winston, 1987). Honey bees 

exhibit the four holometabolous life stages (full metamorphosis) of an egg, larvae, pupa, and 

adult stage. The length of each stage is dependent on the caste and gender of the individual 

bee (Matherson & Reid, 2011). The caste with the shortest length for complete 
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metamorphism is the queen (16 days), followed by the worker (21 days), with the drone 

exhibiting the longest development length (24 days) (Matherson & Reid, 2011). 

The colony structure comprises primarily of tens of thousands of the related female 

workers, who form the division of labour; the brood; and the one reproducing queen. The 

cooperation and complex social interactions between the workers enable the colony 

opportunities for optimum health, growth, and development (Evans & Schwarz, 2011). The 

mechanism ‘temporal polyethism’, or the allocation of age-based labour between sterile 

workers, is the main catalyst in the maintenance and development of the hive (Huang & 

Robinson, 1996). There is, however, plasticity within workers, with the workers’ labour 

allocation able to change depending on the colony’s requirements and conditions (Matherson 

& Reid, 2011; Huang & Robinson, 1996).  

The honey bee and the human  

Originating in Africa, Europe, and Asia, the western honey bee is now naturalised 

worldwide (Butz Huryn, 1997). The expansion of the honey bee’s range is primarily 

accredited to its value to humans, with domesticated colonies being transported alongside 

human migrations and colonisations (Huryn, 1997; vanEnglesdorp & Meixner, 2010).  

In modern beekeeping, individual honey bee colonies are managed within individual 

artificial hives. The hive is separated into distinct sections to cater for different functions 

(Matherson & Reid, 2011). For example, the separation of the honeycomb section and the 

broodcomb section within the hive allows for brood to be kept isolated from the stored 

honey. An apiary, the location that hives are kept, may hold one or more hives (Matherson & 

Reid, 2011).  
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The value of the honey bee to humans has maintained its significance, with the utilisation 

of colonies continuing into the 21
st
 century. Hive products, such as honey and wax, continue 

to remain a desirable commodity, with honey’s global worth valued annually at US$1.25 

billion (vanEnglesdorp & Meixner, 2010). However, the value of A. mellifera is substantially 

attributed to pollination services, which assist in sustaining global food production 

(Genersch, 2010b; vanEnglesdorp & Meixner, 2010).  

Similar to other domesticated animals, honey bees have undergone ‘selective breeding’, 

or traits desirable to humans being selected through arranged breeding. An example of this is 

demonsrated in the selecting for a placid temperament in managed honey bees to minimises 

the potential threat of worker aggression towards beekeepers (Vogel, 1871). An additional 

example is beekeepers selecting for a higher annual honey yield. A study showed that within 

five years of selecting for higher honey yields honey storage increased by 15.9% (Guzman-

Novoa & Page, 1999). Managed hives are now able to produce over 150kg of honey 

annually (Guzman-Novoa & Page, 1999; Donovan, 1980).  

Understanding the selective breeding of honey bees gives a brief insight to the shifting 

demands and values of humans towards the honey bee. Currently, beekeepers are addressing 

a new principal concern in beekeeping, honey bee diseases. Diseases frequently lead to a 

shortening of life spans, a decrease in sperm productivity, an increased risk of contracting 

further diseases, and a decrease in body reserves in honey bees (Currie & Tahmasbi, 2008). 

With such an investment in hives through agricultural pollination and hive products, there is 

a demand for the overall health and prosperity of colonies.  

The effect of diseases and the demand for hive health has led to selective breeding for 

genetic and behavioural traits that encourage the honey bee’s resistance to diseases (Currie & 

Tahmasbi, 2008; Danka et al., 2012). Selectively breeding for more resilient honey bees may 
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also be in response to the repercussions of using chemicals as a long-term method for disease 

control. Chemical treatment for diseases can lead to increased costs in hive management, 

contaminated hive products, and resistance development of the disease to the chemicals 

(Rinderer et al., 2014). The varroa mite (Varroa destructor) has substantially affected honey 

bee colonies worldwide and is showing resistance to chemical treatment (Sammataro et al., 

2000). This has lead to breeding programmes selecting for ‘Varroa sensitive hygiene’ 

behaviours. Studies show that hygienic behaviours such as self-grooming (autogrooming) 

and group grooming (allogrooming) are the most effective defence mechanisms for mite 

removal (Currie & Tahmasbi, 2008; Ibrahim et al., 2007; Rinderer et al., 2014).  

Honey bee disease transmission  

Honey bee disease transmission routes bifurcate into vertical and horizontal transmission. 

Vertical transmission, or the transmission route of a disease from the queen to the lower 

castes, is deemed to have greater manageability by beekeepers compared with horizontal 

transmission (Evans & Schwarz, 2011). However, horizontal transmission, or the 

transmission route of a disease between individuals of the same caste, is the most common 

transmission route (Evans & Schwarz, 2011).  

The spread of honey bee diseases is facilitated both by honey bee behaviours and 

management practises. The honey bees’ eusocial behaviours provide benefits to the colony 

such as sustained growth and longevity. However, the eusocial behaviours of dense living 

conditions, sharing amongst nest-mates, and crossovers with neighbouring colonies, 

enhances the opportunities for the spread of diseases (Berenyi et al., 2006). Disease spread is 

also facilitated by honey bee management practises, with the uniformed spacing of managed 

hives within apiaries promoting the spread of diseases between hives by increasing 

interactions and crossovers with neighbouring colonies (Lindstrom et al., 2008b). Poor 
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management is a transmission route for the honey bee disease American foulbrood 

(bacterium Paenibacillus larvae), with the use of infected equipment and the movement of 

infected hives into healthy apiaries greatly facilitating the spread of the disease (Berenyi et 

al., 2006; Genersch, 2008).  

The holometabolous life cycle of honey bees presents distinctive niche opportunities for 

disease infections, with some diseases exclusively infecting specific development stages 

(Evans & Schwarz, 2011). For example, the bacterial diseases American foulbrood and 

European foulbrood (bacterium Melissococcus plutonius) solely infect the larval and pupal 

development stages, while the parasitic tracheal mite (Acarapis woodi) infects only the adult 

stage (Evans & Schwarz, 2011; Donovan, 1980; Sammataro et al., 2000). Diseases can also 

infect multiple development stages, for instance the sacbrood virus can infect the honey 

bee’s larval, pupal, and adult stages (Chen et al., 2004). 

Honey bees exhibit colony and individual level behaviours that provide resistance to 

diseases (Evans & Spivak, 2010). ‘Social immunity’ is the collective colony resistance to 

diseases, employed through the cooperative behaviours of workers (Evans & Spivak, 2010). 

Social immunity is demonstrated through the use of allogrooming, where workers remove 

and discard foreign bodies and pathogens from nest-mates. Allogrooming is successfully 

employed by the Asian honey bee (Apis cerana) for the removal of varroa mites (Evans & 

Spivak, 2010). Autogrooming is another form of resistance behaviour, with individual bees 

removing foreign pathogens, such as tracheal mite, from themselves (Evans & Spivak, 

2010). Both of these behaviours reduce the spread of parasites and diseases within the hive 

(Evans & Spivak, 2010). 

The utilisation of hygienic behaviours as a resistance mechanism to diseases can be 

disadvantageous to the honey bee. The nurse bee’s hygienic behaviours successfully reduce 
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the spread of European foulbrood within a hive. However, these same behaviours enhance 

the spread of American foulbrood (Forsgren, 2010; Genersch, 2010a). In attempt to rid the 

hive of American foulbrood, the nurse bee removes infected larvae and cleans the brood cells 

(Genersch, 2010a). By doing so, the nurse bee becomes contaminated with the disease, 

spreading it throughout the hive and infecting healthy larvae (Evans & Spivak, 2010; 

Genersch, 2010a).  

Honey bee diseases 

Globally, managed honey bee colony numbers have risen over the last fifty years.  This is 

accredited to the expansion of beekeeping in developing nations and the technique of 

splitting hives to replace colony losses (vanEnglesdorp & Meixner, 2010). In contrast, other 

regions have recorded a mass decline in honey bee populations (Becher et al., 2013; 

vanEnglesdorp & Meixner, 2010). The decline has been centred primarily to Europe and 

America, which have recorded a loss of 26.5% and 49.5% of colonies respectively from 

1961 to 2007 (vanEnglesdorp & Meixner, 2010). The mass decline of honey bee populations 

has been categorised under the term ‘Colony Collapse Disorder’ (CCD)  (Genersch et al., 

2009). CCD is recognised by its distinct symptoms such as the mass loss of workers from 

apparently healthy hives, the lack of dead bees within and outside hives, and a lack of 

robbing of the weakened hive. The enigmatic condition of CCD has generated international 

interest and concern towards honey bee health, and directed attention to the ‘global 

pollinator crisis’ debate (Genersch et al., 2009; Neumann & Carreck, 2010). CCD is just one 

of the many devastating diseases that affect the honey bee’s overall health and prosperity. 

The worldwide naturalisation and globalisation of A. mellifera has exposed the honey bee to 

an extensive diversity of parasites and pathogens from multiple kingdoms  (vanEnglesdorp 



 

8 

 

& Meixner, 2010). Furthermore, diseases are found to be host switching to A. mellifera, this 

has been reported with the varroa mite.  

The varroa mite, once exclusively parasitic to the Asian bee, first switched hosts to the 

western honey bee in 1963 (Goodwin & Van Eaton, 2001; vanEnglesdorp & Meixner, 2010). 

It now populates most regions that manage honey bees. The female mite and her offspring 

feed off the honey bee’s hemolymph, resulting in colony collapse by means of severe 

malnutrition and deformity of infected bees (vanEnglesdorp & Meixner, 2010; Todd et al., 

2007; Le Conte & Navajas, 2008). It has also been reported that varroa mites are 

transmission vectors for honey bee viruses (vanEnglesdorp & Meixner, 2010). Virus 

transmission from the varroa mite to the honey bee may occur directly into the honey bee’s 

haemolymph or through the opportunities caused by the mite’s infection, such weakening of 

the honey bee’s immune system (vanEnglesdorp & Meixner, 2010). The Deformed wing 

virus (DWV) and Acute bee paralysis virus (ABPV) infection rate show a positive 

correlation with colony mite load (vanEnglesdorp & Meixner, 2010). Potential links have 

also been reported between varroa infections and the Kashmir bee virus (KBV) 

(vanEnglesdorp & Meixner, 2010). Studies show that KBV and ABPV infections are 

harmless to honey bees until artificially injected into the hemolymph, in which the viruses 

become lethal (Todd et al., 2007; Chen et al., 2004). Introducted in 2000, the varroa mite is 

now established throughout New Zealand, and is ascribed to the 16% loss reported in North 

Island colonies and the almost total loss of feral colonies (Todd et al., 2007; Zhang, 2000; 

Mondet et al., 2014).  

The honey bee is host to at least 18 viruses. Kashmir bee virus, Acute bee paralysis virus, 

black queen cell virus (BQCV) and sacbrood virus (SBV) are recorded as the most common 

viruses infecting managed hives (Chen et al., 2004). Research suggests that Israeli acute 
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paralysis virus (IAPV) is linked to the mass colony losses in America and Europe 

(vanEnglesdorp & Meixner, 2010). Yet, as there is shared genetic relationship between 

ABPV, KBV, and IAPV there is possibility for misclassification (vanEnglesdorp & Meixner, 

2010). Honey bee viruses infect the honey bee at various development stages. For example, 

DWV and KBV infect the larval, pupal and adult stages of the honey bee whilst ABPV 

solely infects the adult stage (Chen et al., 2004).    

Nosema apis and Nosema cerana are microspordia  (or fungal protozoa) species that 

infect honey bees (Klee et al., 2007). Separation between N. apis and N. cerana is achieved 

by molecular analysis involving 16S rRNA gene sequences, as morphologically the fungi are 

indistinguishable (Klee et al., 2007). Similarly to the varroa mite, N. cerana has switched 

hosts from the Asian honey bee to the western honey bee. N. cerana was first reported in 

western honey bee hives in America in 1995, then in Europe in 1998 (vanEnglesdorp & 

Meixner, 2010). In laboratory studies, N. cerana infections demonstrated a higher virulence 

in the western honey bee than N. apis (Le Conte & Navajas, 2008; vanEnglesdorp & 

Meixner, 2010). These findings are supported in field studies, with Spain reporting a greater 

loss of N. cerana infected colonies than N. apis infected colonies (Le Conte & Navajas, 

2008; vanEnglesdorp & Meixner, 2010). The fungus is spread by horizontal transmission, 

infecting the adult bee’s midgut through the ingestion of Nosema spores (vanEnglesdorp & 

Meixner, 2010; Le Conte & Navajas, 2008). Nosema infection causes inflammation and 

damage to the epithelial cells, leading to death of the infected individual and colony collapse 

(vanEnglesdorp & Meixner, 2010; Le Conte & Navajas, 2008). Consequences of Nosema 

infections have prompted it to be labelled as an economically significant disease 

(vanEnglesdorp & Meixner, 2010). N. apis and N. cerana have both been reported in New 

Zealand’s managed hives (Klee et al., 2007). 
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Honey bees are susceptible to two bacterial brood diseases, American foulbrood and 

European foulbrood (vanEnglesdorp & Meixner, 2010). American foulbrood is considered a 

greater threat to honey bee hives than European foulbrood, due to European foulbrood’s 

lower morality rate (Genersch, 2010a; Forsgren, 2010). While European foulbrood has not 

been reported within New Zealand (Forsgren, 2010), American foulbrood is regarded as one 

of the most devastating diseases to New Zealand’s honey bees (Goodwin, 2006). 

American foulbrood  

American foulbrood (AFB) is a widely distributed, highly contagious bacterial disease 

that infects the honey bee’s larval and pupal stages (Genersch, 2008; Lindstrom et al., 

2008b). American foulbrood is considered to be one of the most consequential and severe 

diseases affecting honey bees, and one of the few diseases that causes complete collapse of 

the infected colony (Alippi et al., 2004; Genersch, 2010b; Lindstrom et al., 2008a). 

‘Foulbrood’ was first described in the 18
th

 century to give characterisation to a honey bee 

disease that produced a foul odour. In the 20
th

 century ‘Foulbrood’ was differentiated into 

two diseases, American foulbrood and European foulbrood (Forsgren, 2010; Genersch, 

2008). Unlike European foulbrood, the only other bacterial honey bee brood disease, 

American foulbrood is lethal to all larvae infected (Forsgren, 2010; Alippi et al., 2002). Due 

to the ultimate death of infected larvae and colony collapse, American foulbrood is 

significantly impacting the apiculture industry worldwide (Genersch et al., 2005; Lindstrom, 

2008). 

The causative agent of American foulbrood is the rod-shaped (2.5–5 μm by 0.5–0.8 μm), 

Gram-positive, spore-forming bacterium Paenibacillus larvae (Alippi et al., 2002; Forsgren, 

2010). Larvae are most susceptible to American foulbrood between 12-36 hours after 

hatching, with infection occurring through the ingestion of P. larvae spores (Genersch et al., 
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2005). Studies differ on the number of spores needed to be ingested for infection to occur, 

with arguments from 10 spores through to ‘large numbers’ (Genersch, 2010; Lindstrom et 

al., 2008a; Genersch et al., 2005). Fluorescence in situ hybridisation has shown that spores, 

once ingested, germinate into vegetative rods and proliferate within the larvae’s midgut. This 

proliferation leads to damage of the larvae’s epithelium and ultimately death by possible 

starvation or bacterial invasion of the haemocoel (Genersch, 2010; Genersch, 2008; 

Poppinga et al., 2012). Upon the larvae’s death, the decaying tissue resembles a brown, 

semi-fluid, ‘ropy’ mass. The ropy stage is followed by the ‘foulbrood scale’ stage, in which 

the tissue becomes ‘glued’ to the brood cell wall causing a hardened scale (Genersch, 2010a; 

Genersch et al., 2005). The ropy and foulbrood scale stage are visual characteristics for the 

diagnosing of American foulbrood (Goodwin, 2006). Once the bacteria have consumed the 

larva’s tissue, the vegetative rods produce spores. A deceased larva in the foulbrood scale 

stage is capable of containing millions of infectious spores (Genersch, 2010a; Genersch et 

al., 2005).  

Although a brood disease, adult workers bees can become contaminated with American 

foulbrood (Genersch, 2010a; Lindstrom et al., 2008a). Contamination of a worker occurs by 

the transferral of spores directly from the deceased larva’s infected tissue to the worker or 

from interactions with other contaminated workers (Genersch, 2010a; Lindstrom et al., 

2008a). Contaminated workers, whilst they cannot be infected with the disease, are able to 

transmit American foulbrood to healthy brood (Lindstrom, 2008). A hive with contaminated 

workers can possess a high spore density without displaying the clinical symptoms of the 

disease (Lindstrom et al., 2008b).  

Paenibacillus larvae spores exhibit a high resistance to chemicals and heat with the 

ability to survive extreme environmental conditions and 35 years without contact with its 
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host (Genersch, 2010a). The durability and resilience of P. larvae spores present limitations 

and unique dilemmas to the risk assessment and control of American foulbrood (Genersch, 

2010a; Ryba et al., 2012). There is no effective long-term control for American foulbrood; 

with the control method for many countries is the applying of antibiotics (Ryba et al., 2012). 

While antibiotics suppress the symptoms by targeting the P. larvae vegetative cells, the non-

targeted spores are able to remain and accumulate within the hive, contaminating the honey, 

workers, and the surrounding area (Alippi et al., 2004; Genersch & Otten, 2003). Moreover, 

the long-term implemention of the antibiotic oxytetracycline, has lead to infected hives 

developing resistance to the chemical in North and South America (Alippi & Reynaldi, 

2006). In New Zealand antibiotics are banned as a method of American foulbrood control. 

New Zealand law instead demands the burning of infected hives and the disinfecting of 

contaminated equipment (Alippi et al., 2002; Genersch, 2008). 

American foulbrood in New Zealand  

Honey bees were introduced to New Zealand in 1839 from Europe with additional 

imports from America and Britain (Palmer-Jones, 1964; Huryn, 1997). Beekeeping is now 

one of New Zealand’s most important primary industries, producing pollination services and 

internationally renowned hive products, such as Manuka honey (Matherson & Reid, 2011). 

New Zealand’s honey bee pollination services, hive products, and live exports have an 

estimated annual value of NZ$5.1 billion, with honey exports alone valuing at NZ$81 

million annually (NBA, 2011). The introduced honey bee also provides pollination to 10-

15% of New Zealand’s native flowering taxa  (Huryn, 1997). In 1906, the first national 

census of beekeepers and hives was published, recording 15,396 beekeepers and 74,341 

hives. The registration of hives became compulsory under the Apiaries Amendment Act in 

1913 (Matherson & Reid, 2011). More recently, the Biosecurity Order, legislated in 1998, 
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states that all apiary locations must be registered (Matherson & Reid, 2011; Biosecurity 

Order, 1998). In mid 2014, 4,814 beekeepers, 30,668 apiaries, and 507,247 hives were 

registered in New Zealand.   

In 1877, 38 years after the initial introduction of honey bees to New Zealand, the first 

incidences of American foulbrood were reported in managed hives (Palmer-Jones, 1964). 

Ten years later American foulbrood was reported throughout the country and accredited for 

the 70% drop in honey production (MAF, 2008; Palmer- Jones, 1964; Goodwin, 2006). The 

Apiaries Act, legislated in 1924, banned the importation of honey bees, used equipment and 

hives into New Zealand to limit the spread of American foulbrood (Donovan, 1980). 

Government-led hive inspections during 1947 led to the first reliable report on the 

prevalence of American foulbrood in New Zealand hives. The report showed that of the 74% 

registered hives inspected, 1.7% were detected as being infected with American foulbrood 

(Goodwin, 2006). In 1950, the government-led hive inspections were held again. Of the 78% 

registered hives inspected, 2.02% were detected as being infected with American foulbrood 

(Goodwin, 2006). In 1961, the reports of American foulbrood in managed hives had fallen to 

0.23%. This decline was attributed to the banning of ‘shook swarming’, where bees are 

shaken from an infected hive to an empty hive, and the implementing of the new control 

methods (Goodwin, 2006). Goodwin’s (2006) review of American foulbrood infection rates 

in New Zealand hives were reported to have fluctuated during the 1960s to the early 1980s, 

with between 0.23% and 0.8% hives being reported as infected. In 1990, hive infection rates 

peaked at 1.2%. Infection rates gradually declined to 0.38% in 1998, and finally fluctuating 

between 0.31% and 0.26% from 1999 to 2006 (Goodwin, 2006).  

In 1993, Goodwin et al. (1994) found that 12.5% of hives owned by beekeepers that 

manage fewer than 50 hives were infected with American foulbrood. The disparity between 
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the percentage of infected hives by those beekeepers who kept fewer than 50 hives (12.5% of 

hives infected) and the overall hive infection for New Zealand (0.9% of hives infected) 

provides a potential insight to the relationship between beekeeping and honey bee diseases. 

One reason for this disparity could be that beekeepers that manage over 50 hives may be 

professional beekeepers with greater skill at noticing the symptoms of American foulbrood 

and therefore report it. With potentially those who managed fewer than 50 hives being 

hobbyists, and lacking the skills needed for diagnosing American foulbrood. This theory 

requires further study but with the increasing number of hobbyists, especially in urban 

spaces, understanding the levels in the ability to diagnose diseases could be beneficial 

(Arena, 2010). New Zealand has seemingly begun to account for the difference in diagnosing 

abilities, with laws stating that a certified American foulbrood inspector must inspect hives 

once a year (Biosecurity Order, 1998).  

Changes in American foulbrood control methods were introduced by the Department of 

Agriculture in 1950 (Goodwin, 2006). Shook swarming and other methods of disease control 

were replaced with the control method of burning diseased hives and sterilisation of infected 

equipment (Goodwin, 2006). Infected hives are diagnosed by the beekeeper or by a certified 

inspector, through recognising the visual symptoms of American foulbrood (Genersch, 2008; 

Goodwin, 2006; Biosecurity Order, 1998). The standard test for American foulbrood is the 

‘ropiness test’. The ropiness test is when a matchstick is inserted into the suspected diseased 

larva or pupa, and when the matchstick is drawn out if the tissue stretches then snaps it is 

consider a sign of infection (Matherson & Reid, 2011). Samples of suspected diseased hives 

can also be voluntarily sent to registered laboratories for the diagnosis of American 

foulbrood. For laboratory analysis, adult bee, larvae, brood comb, honey, or frames are sent 

for spore identification using microscope analysis or bacteria cultivation on agar plates 

(Goodwin, 2006).  
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Since 1991, the National Beekeepers’ Association of New Zealand Inc (NBA) under the 

American foulbrood National Pest Management Strategy (AFB NPMS) has managed the 

control of American foulbrood in New Zealand. The aim of the AFB NPMS is the 

elimination of American foulbrood from New Zealand (Goodwin, 2006). In 2008, the 

strategy’s aim to reduce American foulbrood incidences to 0.1% was considered 

unsuccessful (MAF, 2008). The introduction of varroa mite (Varroa destructor) into New 

Zealand in 2000 was given as a potential explanation for the lack of decline in American 

foulbrood numbers, as honey bee disease control and awareness was primarily directed 

towards the mite (Todd et al., 2007; MAF, 2008). A further explanation given was the 

possibility of under-reporting of infected hives leading to incorrect practises in American 

foulbrood control (MAF, 2008).  

American foulbrood is a major and devastating disease to honey bees in New Zealand, 

with significant economic loss incurred due to the disease and its control (Alippi et al., 

2004). Furthermore, as the spores are able to spread via contaminated honey, there may be 

severe repercussions for New Zealand’s highly valued honey exports in the future (Alippi et 

al., 2004; Lindstrom et al., 2008a). 

Genetic classification and identification of Paenibacillus larvae  

The scientific classification of Paenibacillus larvae has undergone multiple linage 

restructures in response to 16S rRNA sequencing and strain analysis. This has lead to P. 

larvae being a branch away from the original Bacillus genus to the now known genus 

Paenibacillus (Genersch, 2010a; Genersch, 2008). The Bacillus genus included two species, 

Bacillus larvae and Bacillus pulvifaciens, which at the time were not yet associated with 

American foulbrood (Genersch, 2010a). With the classification of Paenibacillus, B. larvae 

and B. pulvifaciens were reclassified to two species of American foulbrood, P. larvae and 
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Paenibacillus pulvifaciens respectively (Genersch, 2010a). However, the molecular 

similarity between P. larvae and P. pulvifaciens caused a reshuffling of the Paenibacillus 

genus from two species to two subspecies P. larvae larvae and P. larvae pulvifaciens 

(Genersch, 2010a). Most recently, through a lack of diverse pathologies between the P. l. 

larvae and P. l. pulvifaciens, the subspecies were discarded merging into one species P. 

larvae (Genersch, 2010a). The reclassification of the P. l. larvae and P. l. pulvifaciens 

without subspecies differentiation into P. larvae has allowed for a new direction in American 

foulbrood epidemiology studies, especially towards genetic analysis (Genersch et al., 2006; 

Genersch, 2010a).  

American foulbrood’s global distribution has led to the agreement that a reliable database 

on the genotypic identification of P. larvae is essential (Genersch, 2010a). With a look 

towards an internationally consistent methodology for the genetic analysis of P. larvae’s 

subgroups and genotypes, the ‘COLOSS beebook’ was formulated. The ‘COLOSS beebook’ 

provides standardised methodologies for the genetic analysis of P. larvae, which are now 

commonly applied in international studies (de Graaf et al., 2013; Genersch, 2010a).  

Repetitive sequence based polymerase chain reaction (rep-PCR) has been successfully 

used for the genetic identification of P. larvae field strains, using primers that amplify the 

16S rRNA gene region (Alippi et al., 2004; Genersch, 2010a; Ryba et al., 2012). Other 

microbiology techniques for P. larvae genetic analysis exist such as pulsed-field gel 

electrophoresis and random amplified polymorphic DNA, though rep-PCR using marker 

ERIC, and primers BOX A1R, and MBO REP1 is considered the most accessible and 

standardised method for P. larvae genetic identification, allowing for comparison between 

studies (Genersch, 2010a; Genersch & Otten, 2003, de Graaf et al., 2013). Using rep-PCR 

with marker ERIC, and primers BOX A1R, and MBO REP1 gives identification of the 
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genotype and subgroups of P. larvae through the reading of banding patterns (Loncaric et 

al., 2009). 

Of Paenibacillus  larvae’s four  ERIC genotypes (ERIC I, II, III, and IV), ERIC I and II 

are consider the most significant as both are currently identified in honey bee field 

populations (Alippi et al, 2004; Poppinga et al., 2012). ERIC I has been recorded in both 

Europe and America, with ERIC II cited as restricted to Europe. ERIC III and IV only occur 

in laboratory collections (Genersch, 2010a; Poppinga et al., 2012).  

Studies have shown that the different ERIC genotypes are related to the virulence of the 

disease (Genersch et al., 2005). ERIC II-IV exhibit a high larval level virulence, killing 

infected larvae within 5-7 days compared to ERIC I, which exhibits a lower larval level 

virulence with a longer ‘killing time’ (12-13 days) (Poppinga et al., 2012). Conversely, 

ERIC I is recorded to have higher colony level virulence than ERIC II-IV, due to its longer 

prevalence within the infected hive. ERIC I’s longer prevalence is attributed to its longer 

killing time (Poppinga et al., 2012). The longer killing time delays the displaying of 

American foulbrood symptoms, causing the disease to be ‘undiagnosed’ by the nurse bees 

and the infected larvae to be capped for pupation rather than removed (Genersch, 2010a; 

Genersch, 2008; Poppinga et al., 2012). This allows ERIC I to have an extended presence in 

the hives, increasing the opportunity to for spread. ERIC II, due to its faster killing time, 

produces symptoms before capping and is recognised by the nurse bees, leading to the 

infected larvae being removed before spore proliferation, decreasing the opportunity for the 

disease’s spread (Genersch, 2010a; Genersch, 2008; Poppinga et al., 2012). A colony 

infected with ERIC I is reported to exhibit a more rapid collapse compared to a colony 

infected with ERIC II (Genersch, 2008). 
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Subgroups of P. larvae, identified through the use of BOX A1R and MBO REP1 

primers, are either categorised within the ERIC I and ERIC II genotypes or remain 

uncategorised. The BOX A1R and MBO REP1 primers identify the subgroups ‘A, a, and α’ 

and ‘B, b, β, and Б’ respectively, with ERIC I and II being identified as ‘e’ and ‘E’ 

respectively (Loncaric et al., 2009; Peters et al., 2006; Genersch & Otten, 2003). The 

subgroups Ab, ab, αb are categorised into ERIC I, and AB, aB, αB categorised into ERIC II; 

subgroups aβ and AБ are yet to be categorised (Table 1.1).  

Table 1.1: The categorisation of Paenibacillus larvae’s genetic subgroups in ERIC 

genotypes, identified through the rep-PCR using the primers BOX A1R and MBO REP1. 

Subgroups are categorised into either ERIC I genotype (e), ERIC II genotype (E), or Not 

categorised (yet to be classified into ERIC genotype)
1 

(Loncaric et al., 2009; Peters et al., 

2006; Genersch & Otten, 2003). Results are based on banding patterns expressed in gel 

electrophoresis.  

 

ERIC I (e) 

 

ERIC II (E) 

 

Not categorised 

Ab 

ab 

αb 

AB 

aB 

αB 

aβ 

AБ 

 

1
 Genetic subgroups, identified by primers BOX A1R and MBO REP1 in rep-PCR, 

ostensibly lack categorisation into genotypes ERIC III and IV. 

 

Objectives  

Objective 1: This thesis aims to identify the genetic subgroups of Paenibacillus larvae in 

New Zealand field strains using rep-PCR with the primer MBO REP1. I have chosen to use 
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the primer MBO REP1 for the genetic identification of P. larvae, as subgroups identified by 

this primer can be differentiated into the ERIC I and ERIC II genotypes based on subgroup 

differentiation in previous papers (Genersch & Otten, 2003; Loncaric et al., 2009; Peters et 

al., 2006). A genetic analysis of P. larvae will provide the first insight to the genetic 

subgroups and genotypes present in New Zealand. As the New Zealand honey bee lineage 

originates from the importation of European and American stock, there is potential for both 

ERIC I and ERIC II to be identified. ERIC I is hypothesised to be the most abundant strain 

in New Zealand, given it is the most prevalent strain globally (Genersch, 2010a; Poppinga et 

al., 2012).  

Objective 2: This thesis will analyse temporal and geographic data on reported American 

foulbrood infections in New Zealand’s registered hives and apiaries. The study period will 

be from 1994 to 2013, encompassing 20 years of infection reports in New Zealand overall 

and within seven regional boundaries of New Zealand. The monthly trends in American 

foulbrood reports for registered hives and apiaries will be examined. It is hypothesised that 

both regionally and nationally, American foulbrood infection rates in New Zealand’s 

registered hives and apiaries would have decreased, based on previous analysis and the 

implementation of new management strategies and laws in 1998 (Matherson & Reid, 2011).  

The following chapter (Chapter Two) will be presented in the form of a manuscript in 

preparation for publication, therefore some repetition may occur between Chapter One and 

Chapter Two.  
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CHAPTER TWO 

 

Introduction 

 

American foulbrood is a globally distributed, highly contagious honey bee brood disease 

(Genersch, 2008; Lindstrom et al., 2008b). It is a devastating and severe disease that leads to 

the collapse of infected colonies (Genersch, 2010b; Lindstrom et al., 2008a; D’Alessandro et 

al., 2007).  

The causative agent Paenibacillus larvae is a Gram-positive, spore-forming bacterium, 

which through the ingestion of spores infects the honey bee brood (Alippi et al., 2004). 

Within American foulbrood literature, including the ‘COLOSS beebook’, the use of rep-PCR 

with ERIC marker, BOX A1R, and MBO REP1 primers has become a well-established 

method for the identification of P. larvae’s genetic subgroups and genotypes, allowing for 

comparison between studies internationally (de Graaf et al., 2013; Genersch & Otten, 2003; 

Loncaric et al., 2009; Peters et al., 2006).  

The genotypes ERIC I, II, III, and IV have been identified in P. larvae (Alippi et al., 

2004). ERIC I has been recorded in European and American continent isolates, with ERIC II 

cited as restricted to European isolates (Genersch, 2010a; Poppinga et al., 2012). ERIC III 

and IV have not been recorded in field populations in “recent years” (Genersch, 2010a) and 

now appear to be restricted to laboratory collections (Poppinga et al., 2012). 

The ERIC genotypes are linked to the virulence of P. larvae in infected hives (Genersch 

& Otten, 2003). ERIC II-IV exhibit a higher larval level virulence than ERIC I, killing the 



 

21 

 

infected larvae within 5-7 days. Attributing to ERIC I’s lower larval level virulence, due to 

the ‘killing time’ of 12-13 days, ERIC I exhibits a higher colony level virulence (Poppinga et 

al., 2012). The higher colony level virulence of ERIC I leads to a more rapid collapse of the 

infected colony than colonies infected with ERIC II-IV (Genersch, 2008; Poppinga et al., 

2012). 

The method of rep-PCR with primers BOX A1R and MBO REP1 is used to identify the 

P. larvae subgroups ‘A, a, and α’ and ‘B, b, β, and Б’ respectively. These subgroups are 

categorised within ERIC I, ERIC II, or are yet to be categorised (Table 1.1) (Loncaric et al., 

2009; Peters et al., 2006; Genersch & Otten, 2003).‘Alpha’ subgroups are seemingly 

ambiguous when categorised into the ERIC genotypes with ‘A’ and ‘a’ being differentiated 

into both ERIC I and II. Conversely, the ‘beta’ subgroups ‘b’ and ‘B’ can be differentiate into 

ERIC I and II respectively, with ‘β’ and ‘Б’ yet to be categorised (Loncaric et al., 2009; 

Peters et al., 2006; Genersch & Otten, 2003).  

American foulbrood, introduced to New Zealand in 1877, is recorded throughout the 

country and is considered to be devastating to New Zealand’s apiculture industry (Palmer-

Jones, 1964; Goodwin, 2006). Since 1991, control of American foulbrood in New Zealand 

has been administrated under the American foulbrood National Pest Management Strategy 

(AFB NPMS). In 1998, AFB NPMS legislatively employed the aim of reducing American 

foulbrood hive infection rates to 0.1%, or one in a thousand hives (Biosecurity Order, 1998). 

Previous analysis reported a decreas in New Zealand’s American foulbrood infection rate 

from 1990 to 1998. With hive’s infection rates fluctuating between 0.31% and 0.26% from 

1999 to 2006 (Goodwin, 2006). The burning of infected hives and sterilisation of infected 

equipment is the only legal method of control for American foulbrood in New Zealand, with 

the use of chemical controls banned (Goodwin, 2006). 
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I conducted an epidemiological study on American foulbrood and its causative agent 

Paenibacillus larvae in New Zealand’s registered hives and apiaries Firstly, focus was given 

to genetically analysing and identifying P. larvae subgroups using the rep-PCR with MBO 

REP1 primers. The bacterial isolates analysed were from honey bee samples gathered over 

the period of 2011-2014 from the North and South Island. The MBO REP1 primers were 

used to identify P. larvae’s ‘beta’ genetic subgroups. By identifying the ‘beta’ subgroups, 

ERIC genotypes and frequency can also be concluded (Genersch & Otten, 2003; Loncaric et 

al., 2009; Peters et al., 2006). Secondly, a statistical analysis was conducted to examine 

temporal and geographical trends in American foulbrood infection rates in New Zealand’s 

registered hives and apiaries from 1994 to 2013.  

Methods and Materials 

Genetic analysis of Paenibacillus larvae 

Sample collection   

New Zealand hives that present the clinical symptoms of American foulbrood had 

samples taken by the beekeepers and were sent to Plant and Food Research Ltd (Hamilton, 

New Zealand) for laboratory diagnosis. The samples were taken directly as adult worker bees 

or broodcomb. Once collected, the samples were placed in either a snap-lock airtight plastic 

bag or a lid covered plastic jar and sent by mail. Adult bee and broodcomb samples are 

placed in a -30
o
C freezer for long-term storage viability. Subsamples were removed from the 

original samples when required for diagnostic testing of Paenibacillus larvae, thus American 

foulbrood.   

Plant and Food Ltd provided the samples used in this thesis. A total of 172 samples that 

had been previously found to be infected with P. larvae were cultivated on agar. Of the 172 
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Figure 2.1: The seven regions of New Zealand. These regions are used as the 

regional boundaries in this thesis’s genetic and statistical analysis.  

 

samples, 42 presented colony growth and were identified as P. larvae colonies. These 

colonies were from adult honey bee workers samples and broodcomb (larvae) samples. These 

samples had previously been collected during 2011 to 2014 from six New Zealand regions: 

Whangarei, Hamilton, Tauranga, Palmerston North, Blenheim, and Canterbury (Table 2.1, 

Figure 2.1). American foulbrood has been reported in the Otago region, however, no samples 

were available for genetic testing. 

 

 

 

 

 

 

 

 



 

24 

 

Table 2.1: The governmental geographic boundaries (region locales) encompassed within the 

seven regions of New Zealand. Registered hive and apiary locations are assigned into regions 

based on their location.   

 

 

 

 

 

 

 

 

Sample preparation  

The preparation for the cultivating of P. larvae from adult bee samples was based on 

Lindstrom and Fries’ (2005) protocol. To cultivate a P. larvae sample, 30 adult female 

worker bees from a single hive were added to 10ml of sterilised deionised water and crushed 

into a solution.  The solution was then heat treated with a waterbath at 70
o
C for 20 minutes to 

reduce contamination with 64 microlitres of the solution then spread onto Oxoid (CM1136) 

Brain Heart infusion agar (Forsgren et al., 2008; de Graaf et al., 2006). To cultivate a P. 

larvae sample from larvae, 1g of larvae tissue, from a single hive, was spread directly onto 

the agar with a sterile glass hook using a streak technique (Alippi & Reynaldi, 2006; Peters et 

al., 2006). As per the method of de Graaf et al. (2013) and Pinto et al., 2011 for agar 

preparation, Oxoid (CM1136) Brain Heart infusion agar (containing 1mg of thiamine 

hydrochloride per litre of agar to limit contamination) was used. Once samples were spread 

b) 
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on the agar, the plates were inverted and incubated at 37.5
o
C with 5% carbon dioxide for 3 

days (de Graaf et al., 2013; Bakonyi et al., 2003).  

Sample identification and storage 

Cultures produced from the incubation period that morphologically resembled P. larvae 

(grey-white in colour with a ropy texture when touched; Figure 2.2) underwent further 

identification (Genersch & Otten, 2003).   

 

 

 

 

 

 

Two tests were preformed in order to confirm the identity of the cultures as P. larvae, 

based on Genersch and Otten’s (2003) protocol. The first test was a catalyst test where a 

bactiloop swab removed part of the culture in question, which was then placed onto a 

microscopic slide. A drop of hydrogen peroxide was added to the slide, and the presence of 

Figure 2.2:  Three-day-old Paenibacillus larvae colony growth on Oxoid Brain Heart 

infusion agar. The ‘ropy’ texture of the colony with grey-white colouring gives a 

preliminary identification of P. larvae (Genersch & Otten, 2003). The bacteria colony 

then undergoes an additional catalyst tests and gram staining for further positive 

identification of American foulbrood.  
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P. larvae is indicated by the lack of bubbles produced from a lack of catalysis. The second 

test was gram staining in which a bactiloop swab was taken from the culture and placed onto 

a microscopic slide. The slide was then stained with crystal violet for 1 minute and washed 

off with water, then with iodine for 1 minute and washed off with water, then with ethanol 

(70%) for 30 seconds that was dabbed off, and finally stained with safranin O solution for 10 

seconds then washed off with water (Bakonyi et al., 2003). The slides were examined under a 

microscope using oil immersion and 100x magnification. A positive result for P. larvae is 

given by the observation of purple stained vegetative rods and spores under magnification 

(Yoshiyama & Kimura, 2009; Genersch & Otten, 2003).   

Once identified as P. larvae, the culture was entirely removed from the agar with a 

bactiloop, sealed into a 1ml cryovial with 0.5ml of glycerol and mixed well. The 

bacteria/glycerol suspension was labelled and placed into an -80
o
C freezer for storage and 

later was used for genetic identification using the molecular methods described below (de 

Graaf et al., 2013; Alippi & Reynaldi, 2006).  

DNA extraction  

In preparation for DNA extraction, cryovials were removed from the -80
o
C freezer and 

the suspensions were transferred into microcentrifuge tubes. The microcentrifuge tubes were 

centrifuged for 10 minutes at 22
o
C at 13,200 rpm causing the glycerol to separate from the 

bacteria pellet. The glycerol was then removed and discarded leaving the bacteria pellet in the 

microcentrifuge tube ready for extraction. 

The bacteria extraction followed Instagene Matrix (Bio-Rad) listed instructions (Genersch 

& Otten, 2003). The bacterial pellet was first resuspended in 1ml of autoclaved water and 

centrifuged for 1 minute at 11,000 rpm with the supernatant then removed. The bacteria 

pellet was resuspended in 200µl of 6% Instagene Matrix (Bio-Rad), incubated in a heating 
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block set at 56
o
C for 25 minutes, vortexed at high speed for 10 seconds, incubated for an 

additional 8 minutes at 100
o
C, and again vortexed at high speed for 10 seconds. The solution 

was then centrifuged for 2 minutes 30 seconds at 11,000rpm. For each PCR reaction 1µl of 

the resulting supernatant of the bacteria solution was used. 

rep-PCR 

The standard method of de Graaf et al (2013), based on Loncaric et al.’s (2009) and 

Genersch & Otten’s (2003) protocol, was used to identify P. larvae’s genetic subgroups ‘B, 

b, β, and Б’ through rep-PCR DNA fingerprinting. The subgroups are obtained through DNA 

amplification by the primer MBO REP1 DNA sequence 5’-

CCGCCGTTGCCGCCGTTGCCGCCG-3’. The MBO REP1 primer produces distinct 

banding patterns ranging from 750bp to 1100bp on agarose gels (Table 2.1, Figure 2.2) 

(Genersch & Otten, 2003; Peters et al., 2006). I chose to use the MBO REP1 primer as the 

genetic subgroups identified by this primer can be used to distinguish the genotypes ERIC I 

and ERIC II. Literature has segregated subgroups b and B into ERIC I and II respectively, 

whilst subgroups β and Б are currently without ERIC categorisation (Table 1.1) (Genersch & 

Otten, 2003; Loncaric et al., 2009). 

Amplification reactions of 15µl of total volume included 1.5 µl 10x buffer, 0.6µl of 

dNTPs (5mM), 0.6µl of BSA (10mg/mL), 0.6µl of MBO REP1 (10µm), 0.9µl of MgCl2, 

9.74µl of ddH2O, 0.06µl Taq DNA polymerase (5 U/ µl ), and 1µl of extracted bacteria 

solution. PCR cycle parameters used for the MBO REP1 primers were from Loncaric et al. 

(2009), which follows 95
o
C for 5 minutes; 35 cycles of 94

o
C for 1 minute, 59

o
C for 1 minute, 

and 72
o
C for 1.5 minutes; and a final 72

o
C for 10 minutes.  

Five microlitres of loading dye and two microlitres of PCR product were mixed together 

and loaded on a 1.5% agarose gel. Electrophoresis was carried out in 0.5 TBE buffer, at 
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400mA, 90V, for 30 minutes with HyperLadder 1 (BioLine) for reference. The DNA bands 

were stained in ethidium bromide (1 µg ml-1) for 15 minutes, visualised by UV light and 

photography (Figure 2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The rep-PCR 

fingerprinting of Paenibacillus 

larvae, from New Zealand field 

isolates, produced the three 

distinct banding patterns of b, Б, 

and B subgroups.  The primer MBO 

REP1 was used for the 

identification of the subgroups. The 

arrows point to the band/s, which 

identify the genetic subgroup.  

 

Table 2.2: The individual banding patterns for Paenibacillus larvae’s four genetic 

subgroups B, b, β, and Б, identified by using the rep-PCR with primers MBO REP1. The 

bands are distinguished by gel electrophoresis and are ethidium bromide stained. 

Subgroups b and B are segregated into ERIC I and ERIC II respectively. Subgroups β and 

Б are seemingly without ERIC categorisation.  
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Statistical analysis of American foulbrood historic data 

Data source  

Beekeepers in New Zealand under law must register themselves, their hives, and their 

apiaries and its location. Under the Disease Elimination Conformity Agreement (DECA), a 

formal agreement between beekeeper and AFB NPMS, hives must legally be inspected 

annually for American foulbrood by a certified beekeeper (Goodwin, 2006). It is 

recommended to examine hives for American foulbrood during particular months and before 

the removal of hive products or equipment (Matherson & Reid, 2011). If hives are infected, 

under New Zealand law the infected hive must be reported within seven days of the disease 

being discovered and destroyed through burning. Infections are reported by the beekeeper or 

by Plant and Food Research Ltd, if samples sent to Plant and Food Research Ltd tested 

positive for American foulbrood.  

The New Zealand beekeeping reporting ‘year’ runs from July 1st to June 30th. The year 

the initial July falls into is the year presented in data output. For example, the beekeeping 

year of July 1st 2013 to June 30th 2014 is represented as 2013 in data outputs.  

Data used for this thesis’ statistical analysis was accessed from AsureQuality Ltd and 

Plant and Food Research Ltd, government owned institutions, and the New Zealand 

Beekeeper Journal. Data analysed was New Zealand’s registered beekeepers, hives, and 

apiaries numbers, New Zealand American foulbrood infection reports, and the location of the 

infected hives and apiaries.  

The dates analysed were chosen as statistical reporting had become consistent and reliable 

from that start date onwards. For beekeepers registration, numbers were from 1984 to 2013, 

and for registered hives and apiaries from 1964 to 2013. The data on American foulbrood 
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infection reports in New Zealand was presented as separate individual reports per year from 

1994 to 2013. For the American foulbrood analysis each year was assessed independently as 

the same apiary may be infected with the disease in different years. The data analysis on the 

monthly trends of American foulbrood reports examined data from 1997 to 2013. The ‘1997’ 

date was chosen as the start date, as from 1997 onwards, the month in which an American 

foulbrood report is made is noted in the system. Prior to 1997, all American foulbrood reports 

were entered into the system in December, therefore not providing distinctive months when 

the report was made. The reports were averaged for each month from 1997 to 2013.  

Limitations may be experienced with this data. The data does not account for unregistered 

beekeepers, hives, or apiaries. Nor does it account for undiagnosed American foulbrood 

infections or infections that were not reported. All infection rates of American foulbrood in 

this thesis are based on American foulbrood reports, therefore the use of words ‘reports’ and 

‘infection rates’ towards hives and apiaries will be used interchangeably. Data on regional 

registered hives and apiaries was not obtainable in 1999, as the New Zealand Beekeeper 

Journal did not provide an American foulbrood infection report for that year. Therefore, the 

regional hive and apiary infection rates in 1999 have been excluded from the analysis.  

The seven regions used in this thesis are based on boundaries applied in previous 

American foulbrood analysis. The seven regions are: Whangarei, Hamilton, Tauranga, 

Palmerston North, Blenheim, Canterbury, and Otago (Figure 2.1). These regions represent 

the locations of registered apiaries and encompass multiple governmental geographic 

boundaries (Table 2.1).  

The Coromandel is recognised as an area within the Waikato for the data gathered on 

American foulbrood infection rates in New Zealand hives and apiaries. However, for the data 

gathered on the overall number of hives and apiaries registered per region, the Coromandel is 
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recognised a part of Tauranga. There is a consistent error for all years in data output, as the 

Coromandel’s American foulbrood infections will be associated with Waikato’s overall hive 

and apiary numbers rather than Tauranga’s. 

Data analysis 

The statistical analysis within this thesis was performed using the dedicated statistical 

software R 3.0.3. Data mapping was achieved through ArcGIS 10.2. Statistical tests were 2-

tailed, used standard errors, with P-values considered significant if ≤ 0.05.  

Generalised linear models (GLM) were applied to examine the change in a region’s 

registered hive or apiary infection rate (dependent variable) over the independent variable of 

time (a year). The average New Zealand infection rate for hives or apiaries was used as the 

reference level. Registered hives and apiaries’ infection rates were analysed separately. Data 

in hive and apiary infection rates were gathered from 1994 to 2013.  A binominal distribution 

model was used. The GLM equations accounted for the total number of registered hives or 

apiaries in each region. Registered hives and apiaries’ infection rates were both analysed to 

provide an overall view of American foulbrood infection rates.  

To find whether American foulbrood infection rates in New Zealand hives and apiaries 

(dependent variable) on a national level were increasing or decreasing annually (independent 

variable), generalised linear models were used. Data in hive and apiary infection rates were 

gathered from 1994 to 2013. The GLM equations accounted for the total number of registered 

hives or apiaries in each region. A binominal distribution model was used. Regional infection 

rates from 1994 to 2013 were used in the GLM equation. Registered hives and apiaries’ 

infection rates were analysed separately.  
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Results 

Genetic analysis of Paenibacillus larvae 

Of the 172 samples that were cultivated on agar, 42 produced P. larvae colonies. Of those 

42 isolates, 33 produced results post the rep-PCR. Multiple attempts were made in culturing 

additional samples and the running of rep-PCR analysis on isolates that had previously failed 

to produce results. Table 2.3 shows the 33 P. larvae field isolates from the six regions of 

New Zealand (gathered from 2011 to 2014) that produced fingerprinting results from the rep-

PCR with the primers MBO REP1. 

The 33 isolates are predominantly divided into the years 2011 (n=10), 2012 (n=9), and 

2013 (n=12) (Table 2.3). These years represent the year in which the samples from a 

suspected American foulbrood hive were sent to Plant and Food Ltd for diagnosis. The 

isolates diagnosed during 2014 had the lowest sample size (n=2), because at the time of 

analysis only a partial year’s samples were available.  

Table 2.3: The regions from which the 33 Paenibacillus larvae isolates originated. Isolates 

are from samples taken from infected hives within six regions of New Zealand from 2011 to 

2014. The 33 isolates generated results when processed through rep-PCR using the MBO 

REP1 primers. No samples were available from Otago for genetic analysis. 
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The rep-PCR using primers MBO REP1 produced three genotypic subgroups of 

Paenibacillus larvae from the New Zealand field strains tested. The three genotypic 

subgroups detected were B, b, and Б. Subgroups B and b are bifurcated into genotypes ERIC 

II and ERIC I respectively (Genersch & Otten, 2003). Based on the results of the isolates, 

ERIC II was the most common genotype. Subgroup B was the most prominent and frequently 

detected subgroup in the isolates, occurring in all six regions and in 15 (46%) of the 33 

isolates (Table 2.4). Subgroup Б was the second most commonly detected subgroup, both 

regionally and in frequency. Subgroup Б was detected in five of the six regions (absent in 

Blenheim) and occurred in 10 (30%) of 33 isolates (Table 2.4). Subgroup b was occurred in 8 

(24%) of the 33 isolates and was detected in four of the six regions (absent in Hamilton and 

Tauranga) (Table 2.4). Figure 2.4 shows a visual summary of the regional variance in the 

frequency and presence of genetic subgroups B, b, and Б.   

Table 2.4: The occurrence of Paenibacillus larvae subgroups B, b, and Б in six regions of 

New Zealand based on genetic fingerprinting results of isolates.  
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Figure 2.4: The regional variance in the frequency and occurrences of Paenibacillus larvae 

genetic subgroups B, b, and Б in New Zealand field strains, based on fingerprinted isolates. 

Subgroups represented by colours: B, brown; b, red; Б, blue. 

Of the 33 isolates, 24 were from North Island hives. Within the North Island, the 

subgroups B and Б were detected in 37.5% of the 24 isolates. Subgroup b was detected in 

25% of the 24 isolates. As subgroup Б is yet to be categorised into an ERIC genotype, ERIC 

II was the most common genotype recorded for the North Island based on isolates.  

Nine of the 33 isolates were from South Island hives. Subgroup B was detected most 

frequently in the South Island isolates (67%), with subgroup b and Б detected in 22% and 

11% respectively. Based on these results ERIC II was the most frequent genotype for the 

South Island, in addition to being the most frequently detected genotype in the North Island 

and New Zealand overall.  
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Though figure 2.4 suggests that all three subgroups are distributed throughout New 

Zealand more sampling would further confirm this distribution. Additionally, more samples 

would be required before confirming the prevalence of P. larvae genotypes in New Zealand 

field strains, especially for the South Island regions, which had only nine available samples 

for analysis, with no samples available for analysis in the Otago region.  

Statistical analysis of American foulbrood historic data  

Registered hives, apiaries, and beekeepers trends  

To gain an overall view of beekeeping in New Zealand, the trends in the number of 

registered beekeepers (from 1984 to 2013) and registered hives and apiaries (1964 to 2013) in 

New Zealand were analysed (Figure 2.5).  

Plots of New Zealand’s registered hives and apiaries numbers showed a near exponential 

increase since 2004 for hives and 2006 for apiaries. This recent growth in hive and apiary 

numbers surpasses the pervious peak in reported 1986. Understandably, hive numbers are 

increasing at a higher rate than apiaries. This result is likely as an apiary may contain 

multiple hives, meaning hives will always equal to or higher than the number of apiaries 

(Matherson & Reid, 2011).  

Plots of New Zealand registered beekeeper numbers from 1984 to 2013 follows a similar 

trend to hive and apiary registration during that period, with New Zealand beekeepers 

currently experiencing an increase in numbers from 2008 onwards (Figure 2.5). However, 

dissimilar to registered hive and apiary numbers, beekeeper numbers have not surpassed the 

previous peak in 1986.  
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American foulbrood infections in New Zealand registered hives and apiaries 

The generalised linear model (GLM) results showed that overall New Zealand’s 

registered hives and apiaries’ American foulbrood infection rates are significantly decreasing 

annually from the year 1994 to 2013  (GLM hives: b = -0.043, z = 41.51, p < 0.001) (GLM 

apiaries: b = -0.016, z = -11.97, p < 0.001).  

Figure 2.6 and 2.7 shows the temporal and geographical shifting of American foulbrood 

infection rates in regional hives and apiaries in five-year periods from 1994 to 2013. The 

infection rate for the maps and box plots represent the percentage of registered hives or 

Figure 2.5: The trends in New Zealand’s registered hive, apiary, and beekeeper numbers. 

Hives and apiaries are documented from 1964 to 2013, with beekeepers are documented 

from 1984 to 2013.  
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apiaries infected with American foulbrood. The box plots gives a detailed picture of New 

Zealand’s average infection rates, based on the seven regions infection rates, as well as the 

seven regions infection rates during four five-year periods from 1994 to 2013. The maps 

display the average infection rate for each of the seven regions during the same period as the 

box plots.  

The box plot ‘New Zealand’ in figure 2.6 represents the average American foulbrood 

infection rate for New Zealand hives in the four five-year periods from 1994 to 2013. The 

box plots shows a slight increase in hive infection rates during 1999-2003, followed by a 

decline for the periods 2004-2008 and 2009-2013. American foulbrood infection rates in New 

Zealand hives shows greater variation then infection rates in New Zealand apiaries during 

1994-1998. However, after the 1994-1999 period, variations in the infection rates decreased 

for both hives and apiaries, suggesting a decrease in the annual fluctuation in the diseases’ 

spread. 

The box plot ‘New Zealand’ in figure 2.7 represents the average American foulbrood 

infection rate in New Zealand apiaries in the four five-year periods from 1994 to 2013. These 

results show a similar trend to that seen with the New Zealand hives infection rates (Figure 

2.6) with a peak in apiary infection rates during the 1999-2003 period, then a continued 

decline in infection rates from 2004 onwards.   
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Figure 2.6: The maps show four five-year periods of the average percentage of New 

Zealand registered hives infected with American foulbrood regionally, based on 

infection reports. The five-year periods are from 1994 to 2013 and are divided as I) 

1994-1998; J) 1999-2003; K) 2004-2008; L) 2009-2013. Regions represented on the 

map are labelled within the box plots (B-H). The box plots present the percentage of 

New Zealand registered hives infected with American foulbrood during each of the 

five-year periods.  
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Figure 2.7: The maps show four five-year periods of the average percentage of New 

Zealand registered apiaries infected with American foulbrood regionally, based on 

infection reports. The five-year periods are from 1994 to 2013 and are divided as I) 

1994-1998; J) 1999-2003; K) 2004-2008; L) 2009-2013. Regions represented on the 

map are labelled within the box plots (B-H). The box plots present the percentage of 

New Zealand registered apiaries infected with American foulbrood during each of the 

five-year periods.  
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American foulbrood infections in regional registered hives  

Generalised linear models were used to analyse the annual change in the infection rate of 

American foulbrood in a region’s registered hives from 1994 to 2013, when compared to the 

New Zealand average. Both registered hive and apiary were analysed and done so separately 

to give a better understanding of regional infection rate of American foulbrood. 

The American foulbrood infection rate in Whangarei’s registered hives increased annually 

over the study period (GLM: b = 0.044, z = 10.87, p < 0.001). Figure 2.6 showed a 

fluctuation in the average percentage of registered hives infected with American foulbrood 

between 0.25-0.4% to 0.4-0.55% during 1994 to 2013. For the 2009-2013 period, Whangarei 

was reported to have the highest regional infection rate for New Zealand.  

The American foulbrood infection rate in Hamilton’s registered hives decreased annually 

over the study period (GLM: b = -0.011, z = -3.24, p < 0.005). During 1999-2003 Hamilton 

was observed as having the highest percentage of hives infected (1-1.15%) for the entirety of 

the study for all regions (Figure 2.6). From 2004, trends showed a sustained substantial 

decrease in the percentage of Hamilton’s hives infected with American foulbrood.  

The American foulbrood infection rate in Tauranga’s registered hives decreased annually 

over the study period (GLM: b = -0.036, z = -9.81, p < 0.001). Similar to Hamilton’s trends, 

Tauranga exhibited a peak in infection rates during the 1999-2003 period with 0.85-1% of the 

region’s registered hives infected with American foulbrood (Figure 2.6). Conversely, during 

2009-2013 both Hamilton and Tauranga were observed to have the lowest hive infection rate 

trends (alongside Otago) with 0.1-0.25% of registered hives being infected with American 

foulbrood.  
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The American foulbrood infection rate in Palmerston North’s registered hives increased 

annually over the study period (GLM: b = 0.008, z = 2.29, p < 0.051). Palmerston North’s 

infection rate showed a fluctuating trend from 1994 to 2013, with 0.25-0.4% to 0.55-0.7% of 

registered hives being infected with American foulbrood (Figure 2.6). Palmerston North’s 

lowest American foulbrood infection rate trend was reported during the 2009-2013 period. 

Palmerston North box plots showed a high level of variation in infection rates. The 

substantial variation in Palmerston North’s infection rates proposes a fluctuation in the 

number of hives infected per year. The variation showed less variance during the later period 

of the study (2009-2013), suggesting an increase in the consistency of the number of hives 

infected from year to year.  

Blenheim was the sole region to have insignificant generalised linear model results 

(GLM: b = 0.001, z = 0.23, p > 0.051).  

The American foulbrood infection rate in Canterbury’s registered hives increased 

annually over the study period (GLM: b = 0.016, z = 4.07, p < 0.001). Canterbury’s registered 

hives infection trends was shown to be fluctuating between the four five-year study periods 

(Figure 2.6). Similar to Palmerston North, Canterbury trends showed a high level of variation 

in the percentage of hives infected during the earlier part of the study (1994 to 2003) 

compared to the later part (2004 to 2013).  

The American foulbrood infection rate in Otago’s registered hives decreased annually 

over the study period (GLM: b = -0.056, z = -11.36, p < 0.001). Otago was, based on trends, 

the sole region to have a sustained decline in American foulbrood infection rates from 1994 

to 2013 (Figure 2.6). It was also the sole region in New Zealand, in respect to the average 

percentage of registered hives infected with American foulbrood, to maintain an infection 

rate of 0.1-0.25% from 1999 to 2013.  
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American foulbrood infections in regional registered apiaries  

Generalised linear models were used to analyse the annual change in the infection rate of 

American foulbrood in a region’s registered apiaries from 1994 to 2013 when compared to 

the New Zealand average.  

The American foulbrood infection rate in Whangarei’s registered apiaries increased 

annually over the study period (GLM: b = 0.038, z = 7.01, p < 0.001). A slight decreasing 

trend was recorded in the percentage of registered apiaries infected with American foulbrood 

during the 1999-2003 period (Figure 2.7). However, from 2004 onwards infection rates in 

Whangarei apiaries, based on percentages, were shown to be increasing.  

The American foulbrood infection rate in Hamilton’s registered apiaries decreased 

annually over the study period (GLM: b = -0.019, z = -3.99, p < 0.005). Figure 2.7 showed 

Hamilton’s trends to have a steep decline in percentage of apiaries infected from 2004 to 

2013. Hamilton shows a high level of variation in the percentage of apiaries infected for each 

five-year period, indicating that though the average infection rate displayed a decline, there is 

still a high level of fluctuation in the number of apiaries infected with American foulbrood. 

As this was maintained for the entity of the study, it may demostrate a natural dynamics of 

the disease. 

The American foulbrood infection rate in Tauranga’s registered apiaries decreased 

annually over the study period (GLM: b = -0.025, z = -4.97, p < 0.001). Tauranga’s trends 

showed a similar pattern to Hamilton’s, with a peak in the average percentage of apiaries 

infected with American foulbrood in 1999-2003 (6-8%) then a steep continued decline from 

2004 to 2013 (Figure 2.7). During the 2009-2013 period, Tauranga’s infection rate trend 

suggested the region was exhibiting one of the lowest percentages of infected apiaries.  



 

43 

 

The American foulbrood infection rate in Palmerston North’s registered apiaries increased 

annually over the study period (GLM: b = 0.033, z = 6.86, p < 0.001). From 1994 to 2003, 

Palmerston North showed an increasing trend in the percentage of apiaries infected with 

American foulbrood (Figure 2.7). A slight decreasing trend was reported during 2009-2013 

with the average percentage of infected apiaries dropping from 5-6% in 2004-2008 to 4-5% 

in 2009-2013.  

The American foulbrood infection rate in Blenheim’s registered apiaries decreased 

annually over the study period (GLM: b = -0.017, z = -2.85, p < 0.005). Figure 2.7 showed an 

increasing level of variation between study periods, indicating a possible trend towards 

greater fluctuation in the number of apiaries infected per year. 

The American foulbrood infection rate in Canterbury’s registered apiaries increased 

annually over the study period (GLM: b = 0.013, z = 2.37, p < 0.05). The average percentage 

of apiaries infected was shown to have a slight fluctuation yet never surpass 2-3%. However, 

the 2009-2013 period showed to have the highest infection rate when compared to previous 

years.  

The American foulbrood infection rate in Otago’s registered apiaries decreased annually 

over the study period (GLM: b = -0.058, z = -9.33, p < 0.001). The results shown in figure 2.7 

indicate that Otago may be the sole region to sustain a decreasing trend in the percentage of 

apiaries infected during the entirety of the study period.  A sustained decrease in infection 

rates in Otago may be due the lower population density of the region allowing for greater 

distances between apiaries, therefore, limiting the ability for the disease to spread. 

Additionally, the implementing of control methods may have inhibited the disease’s 

dispersal.  
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Seasonal trends of American foulbrood infection rates  

The seasonal trends of American foulbrood infection in New Zealand hives and apiaries 

were examined by plotting the average monthly reports of the disease from 1997 to 2013 

(Figure 2.8). Two seasonal peaks in American foulbrood infection were observed. The major 

seasonal peak occurred in the spring months of September and October. A secondary, less 

severe, peak occurred during the autumn months of March and April. 

Figure 2.8: The monthly trends of American foulbrood reports. These trends 

represent the average number of registered hives (orange) and apiaries (green) 

to be reported as infected with American foulbrood per month from 1997 to 

2013, with standard error bars.  The graphs show two seasonal peaks during 

autumn and spring months.   
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CHAPTER THREE 

  

Discussion 

 

Despite the well-established methodology, research on the occurrence and 

distribution of Paenibacillus larvae genetic subgroups has been predominantly 

focused on European and American isolates (Peters et al., 2006). ERIC I has been 

suggested to be primarily found in Europe and America, and ERIC II cited as being 

restricted to Europe (Genersch, 2010, Antunez et al., 2007). Subgroups b and B, 

identified by the rep-PCR using MBO REP1 primers, are categorised into ERIC I and 

II respectively (Genersch & Otten, 2003; Loncaric et al., 2009).  

In this thesis, the rep-PCR method with the primer MBO REP1 was a successful 

tool in differentiating subgroups of P. larvae isolates from New Zealand field strains. 

The use of this method on genetic subgroups of P. larvae is a first for New Zealand. 

The results produced from this thesis allow for comparison with current international 

studies, and contributes to the increasing global knowledge on honey bee diseases. 

Three genetic subgroups, b, B, and Б, were identified from the 33 New Zealand 

isolates that responded to the rep-PCR. With the identification of subgroup b and B in 

New Zealand field strains, it can be concluded that both ERIC I and ERIC II are 

present in New Zealand. The reporting of ERIC I and II provides the foundation to the 

knowledge on the potential virulence of P. larvae in New Zealand hives, and future 

control strategies. This thesis’s finding of ERIC II and subgroup Б in New Zealand 

isolates is the first reported occurrence of the genotype and subgroup outside of 

Europe (Peters et al., 2006). 
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Of the 33 isolates, ERIC II was found to be the most frequent genotype. This 

result differs from European studies which reported that ERIC I was the most frequent 

genotype (Loncaric et al., 2009; Peters et al., 2006). The genotype ERIC II has a 

higher larval level virulence than ERIC I, yet ERIC I exhibits a higher colony level 

virulence than ERIC II (Genersch et al., 2005; Poppinga et al., 2012). The higher 

colony level virulence of ERIC I has been accredited to ERIC I’s lower larval level 

virulence, which causes P. larvae’s visual symptoms to be delayed and, consequently, 

‘hidden’ from the nurse bee. (Genersch, 2010), resulting in the infected larvae to be 

capped rather than removed, allowing for increased spore production and transmission 

of ERIC I (Genersch, 2010). 

Isolates in this study were gathered from Plant and Food Research Ltd. The 

samples sent to Plant and Food Research Ltd are from beekeepers’ hives around New 

Zealand, detected with possible symptoms of P. larvae. Due to the delayed 

development of ERIC I’s visual symptoms, once it is detected within the infected hive 

laboratory diagnosis may no longer be required as the symptoms are unambiguous 

and the hives are burnt. This may lead to ERIC I samples being less likely to be sent 

to Plant and Food Research Ltd for analysis. It is possible that ERIC II was observed 

as more abundant than ERIC I, as ERIC II infected hives are more ambiguous to 

diagnose on site. As a result ERIC II has a higher probability of being sent to Plant 

and Food Research Ltd for diagnosis than ERIC I samples. A potential method for 

examining this hypothesis would be for a randomized sampling of infected hives 

around New Zealand.  

Another explanation is that the visual symptoms of ERIC I are hidden from 

beekeepers in a similar way to what has been recorded with nurse bees (Genersch, 

2010). As a result ERIC II was observed as more abundant than ERIC I, as ERIC II 
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symptoms are easier for the beekeeper to notice and are detected more frequently, 

resulting in a greater number of ERIC II samples being sent for analysis than ERIC I 

samples. To test this hypothesis research would need to focus on determining what I 

have termed the ‘visual virulence’ of P. larvae’s genotypes, or the time taken for a 

hive infected with either ERIC I or ERIC II to display visual symptoms that are 

detectable in the field.  Another research option is again a randomized sampling of 

infected hives around New Zealand. 

During culturing, a high number samples (130 out of 172) failed to produce P. 

larvae colonies, even though these samples had previously been diagnosed as 

infected. A percentage of the isolates were from samples that had been stored at -30
o
C 

for over three years. This raises some key questions: was the high level of failed 

colony growth a result of P. larvae spores within these samples not ‘surviving’ the 

long-term storage? If so, is there a relationship between the longevity of spores in 

long-term storage and the genotypes of the spores? This could also explain the 

frequency in which ERIC II occurred. Examination of the relationship between spore 

survival and storage time, in addition to genotypes of the stored samples would need 

to be conducted before these questions may be answered.  

Subgroup b was found to be absent from isolates gathered from Hamilton and 

Tauranga. Subgroup Б was reported as absent from Blenheim isolates. Hamilton, 

Tauranga, and Blenheim had the lowest regional sample sizes with two isolates per 

region, yet all three regions had two different subgroups identified within them. The 

absence of subgroups b or Б in these regions respectively could be linked to the low 

sample size of the study. Regions with larger samples sizes (Whangarei, Palmerston 

North, and Canterbury) were found to have at least one of each of the three detected 

genetic subgroup within their isolates. These results suggest that a greater variation of 
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subgroups may occur in areas such as Blenheim. Further work with a greater sample 

size is needed before conclusions can be drawn on the regional variation of P. larvae 

subgroups. Previous studies have, however, recorded geographic clustering of the 

genetic subgroups of P. larvae (Genersch & Otten 2003; Peters et al., 2006). 

Suggesting that these subgroups may be truely absent from these regions. Another 

aspect to consider for further research is that P. larvae subgroups such as ‘β’ may 

have gone undiagnosed in this study due to the small sample size.  

Honey bees were introduced into New Zealand from Europe and America in the 

19
th

 century. Due to the introduction of American foulbrood, the importation of honey 

bees into New Zealand was banned in 1927 (Donovan, 1980). Theoretically, all P. 

larvae subgroups should have been present in New Zealand prior to 1927. 

Nevertheless, P. larvae subgroups being introduced illegally or accidentally cannot be 

ruled out. The introduction of varroa mite (Varroa destructor) in 2000 and the 

Argentine ant in 1990 emphasize the ability of diseases and pests to be introduced into 

New Zealand, despite strict biological control at the border (Zhang, 2000; Corin et al., 

2007). A more recent example of how diseases are potentially transmitted into New 

Zealand is seen with the attempted smuggling of multiple kilograms of pollen and 

honey into New Zealand from unknown origin in 2014 (Federated Farmers, 2014).  

Knowledge on New Zealand’s P. larvae genetic subgroups could aid in future risk 

assessment and control of American foulbrood. (Loncaric et al., 2009). As P. larvae 

genotypes are linked to the disease’s virulence within hives, understanding the 

possibility of delayed visual detection and spread of the disease could influence the 

control methods provided to the beekeeping community. The different virulence 

reported in ERIC genotypes influences the time taken for an infected hive to collapse. 

As both ERIC I and II have been recorded in New Zealand hives, control strategies 
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may wish to inform the beekeeping community that P. larvae can display different 

‘killing’ times of both larvae and colonies. With the visual symptoms of the disease 

potentially being delayed and/or hidden within capped larvae. The introduction of 

new strategies, such as removing the caps off selected capped larvae to check for 

symptoms, may need to be considered to allow for earlier detection of the disease and 

to reduce the opportunities for spread. It may also prove beneficial to inform the 

beekeeping community that due to possible delayed visual symptoms of P. larvae, by 

the time the disease is detected there is potential for the disease to have spread to 

surrounding hives. More research is perhaps required before these strategies are 

considered. By providing the first insight on the New Zealand’s P. larvae genotypes 

does allow for the opportunity to target management strategies to different the 

genotypes, and inform beekeepers of the different virulence of the disease. 

Since 2004 for hives and 2006 for apiaries, New Zealand has experienced an 

exponential growth of registered hives and apiaries. The current trend of increasing 

registration numbers has surpassed previous peaks. Beekeeper registration trends have 

shown an incline since 2007, but this has not surpassed the previous peaks. The 

increase in hive and apiary registration could be linked to the increasing value of 

Manuka honey or through an increased awareness and accessibility to New Zealand 

registration laws through tools such as the Internet (MPI, 2014; Matherson & Reid, 

2011). It has also been suggested that the growth in hives numbers is attributed to the 

increase in urban and hobbyist beekeepers and the need for honey bees for 

agricultural pollination, especially since varroa mite has decimated feral hive numbers 

(Hanson, 2014). As beekeepers’ numbers are not increasing to the extent of hives and 

apiaries, this might suggest that a few beekeepers are increasing their hive and apiary 
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numbers; rather than an increase in multiple beekeepers with small numbers of hives 

and apiaries (e.g. hobbyists), as suggested. 

In 1998, changes were made to New Zealand’s law on American foulbrood 

management (Biosecurity Order, 1998). Changes to the law included the compulsory 

annual inspection of hives by certified inspectors, and the reporting of infected hives 

within seven days of diagnosis (Biosecurity Order, 1998).  The objectives of AFB 

NPMS were strategised within the Biosecurity law. The primary objective was to 

decrease hive infection reports to below 0.1% by 2007 (Biosecurity Order, 1998). 

This thesis focused on American foulbrood data from 1994 to 2013 in four five-year 

periods (1994-1998; 1999-2003; 2004-2008; 2009-2013), encompassing the most 

recent law changes in 1998. From 1994 to 2013, American foulbrood infection rates 

in New Zealand’s registered hives and apiaries were found to be decreasing overall. 

These findings are similar to those found in Goodwin’s (2006) work. Results also 

reported that two regions, Tauranga and Otago, showed hive infection rates that were 

below 0.1%. This occurred in both regions during years within the 2009-2013 period 

rather than 2007 as aimed for. Conversely, some regions were reported to have 

substantially higher rates of infection trends (e.g. Whangarei), or trends in infection 

appear to be increasing (e.g Canterbury and Palmerston North).  

New Zealand’s American foulbrood trends did show an increase in infection rate 

during 1999-2003, before a sustained decline from 2004 onwards. Three of the seven 

regions also showed an increase in infection rates in hives and apiaries during this 

period. Two of the three regions were located in the North Island: Hamilton and 

Tauranga, with Canterbury the sole South Island region. Whangarei also exhibited an 

increase in infection rates in its hive during this period, but not in its apiaries. During 
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2004-2008, Palmerston North’s hives and apiaries exhibited an increase in infection 

rates and in Blenheim’s hives and apiaries in 2009-2013.  

The infection rate increase that was reported could be in response to the 

introduction of varroa mite (Varroa destructor) into New Zealand (Zhang, 2000). 

Mondet et al.’s (2014) paper detailed the spread of varroa mite in New Zealand from 

2001 to 2014. The year in which varroa mite was first reported within a region was 

the same year that the particular region expressed an increasing trend in American 

foulbrood infection. This was seen in Whangarei, Hamilton, Tauranga, Palmerston 

North, and Blenheim. Canterbury was the sole region not to display this pattern, and 

as varroa mite was first reported in Otago in 2013 data from Otago was not yet 

available for analysis. In 2001, varroa mite was reported in Whangarei, Hamilton, and 

Tauranga. In 2004, varroa mite was reported in Palmerston North (Mondet et al., 

2014). These years fall into the five-year period in which these regions exhibited an 

increase trend in American foulbrood. Initial reports of varroa mite in the 

geographical boundaries of Blenheim were spread across four years from 2006 to 

2010. The latter part of the documented varroa mite spread into Blenheim aligns with 

the regions 2009-2013 infection rate increase. Varroa mite was first reported in Otago 

in 2013 meaning it is too soon to see if American foulbrood infection rates will show 

a relationship with varroa mite in Otago as seen in other regions. Nevertheless, I 

predict that an increase in American foulbrood is likely to occur in Otago after varroa 

mite entry.  

If the increase in American foulbrood infection rates is related to the introduction 

of varroa mite into the region, then the reported increases may have occurred for three 

reasons.  
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Firstly, perhaps American foulbrood infection rates increased as attention was 

directed towards varroa mite, with information on and the control of American 

foulbrood being neglected. Evidence to support this hypothesis is seen with the New 

Zealand beekeepers journal failing to publish an annual American foulbrood review in 

2000, the year varroa mite was introduced. Also in 2000, the journal was mostly 

dedicated to publishing information on the varroa mite. The greatest American 

foulbrood infection rate increase trend was recorded in 1999-2003, the same time 

period in which varroa mite was introduction to New Zealand. Time periods post 

1999-2003 had less severe increases in infection rates. This may suggest that as varroa 

mite spread throughout New Zealand beekeepers became more aware of its 

occurrence and controls for the mite, redirecting attention towards American 

foulbrood again.  

Secondly, American foulbrood infection rates may have increased as attention 

towards varroa mite directed beekeepers attention toward honey bee diseases and hive 

health in general. Thus by proxy, American foulbrood was detected more frequently. 

This effect may explain the increase in American foulbrood infection rates in 1999-

2003.  This would also explain the increase in infection rates in Canterbury, as 

beekeepers could have been checking hives for varroa mite and detected other hive 

diseases while during so.  

Another possible explanation for the increased infection rates recorded in 1999-

2003 is the new laws and strategies on the American foulbrood control, implemented 

in 1998. This may have lead to an increase in the awareness and action by beekeepers 

towards American foulbrood, resulting in a raise in the disease’s detection. Increasing 

the awareness towards American foulbrood, the implementing of laws, and the use of 

inspectors has been linked to the decrease in American foulbrood reports in England 
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and Wales (Wilkins et al., 2007). If so, the applying of the new laws and strategies 

could be used to explain the increase in American foulbrood reports in Canterbury, 

Hamilton, Tauranga, and Whangarei, and in the New Zealand average. 

Results showed a shared trend between hive and apiary infection rates, suggesting 

that infections occur in few hives in multiple apiaries rather then being condensed to 

one apiary with multiple hives. My results suggest that American foulbrood infections 

are ‘balanced’ in distribution rather then disproportionately infecting only a few 

apiaries heavily. This result proposes that beekeepers are noting the disease within 

their apiaries and are limiting the spread to other hives through fast treatment of the 

disease. It might also indicate that the treatment of burning hives limits the spread of 

the disease within an apiary. The ‘balanced’ distribution also suggests that the disease 

is spreading between apiaries, with apiaries not infected with American foulbrood 

coming into contact with infected hives. American foulbrood appears to be infecting 

hives without causing collapse sufficiently long enough to allow for the disease to 

spread to nearby apiaries, yet not long enough to devastate an apiary. Lindstrom et al. 

(2008b) found that uninfected hives within 1km of infected hives could successfully 

become infected with American foulbrood through horizontal transmission. This 

demonstrates that transmission of American foulbrood can be a natural occurrence 

rather than being spread through beekeepers (e.g. infected equipment). Yet, as 

previous studies have reported that artificial transmission through a beekeeper is a 

variable method to spread of the disease, it cannot be ruled out (Berenyi et al., 2006; 

Genersch, 2008). Geographic mapping of infected hives’ apiary locations could give 

an understanding to whether or not the disease’s spread is occurring due to the 

proximity of infected hives to uninfected hives or through beekeeper-mediated 

transmission.   
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American foulbrood in New Zealand appears to be decreasing, even with the 

number of registered hives and apiaries reported increasing. This result suggests that 

the control of American foulbrood is not achieved by a decreasing the honey bee 

population but rather by other means of control. If this trend continues, American 

foulbrood disease control will not have to implement new strategies aiming at 

population control as a method. This differs from other bacterial diseases’ control 

methods. For example, the bacteria species Brucella causes spontaneous abortions in 

Yellowstone bison and cattle. The bacteria’s spread was found to be reliant on the 

population threshold of bison; by decreasing the bison’s population to below 200 the 

pathogen does not spread to the neighbouring cattle population (Dobson & Meagher, 

1996). Such findings on American foulbrood are beneficial to the apiculture industry 

as it infers that limiting transmission routes, rather than the host’s population size, 

could be a successful method for controlling the disease. 

This thesis’s study period of 1994 to 2013 encompasses the implementation of the 

AFB NPSM strategy and the 1998 Biosecurity Order law changes to American 

foulbrood control in New Zealand. Temporal and geographic changes to the American 

foulbrood infection rates were analysed nationally and regionally. This gave insight to 

American foulbrood infection rates in New Zealand’s hives and apiaries after the law 

and management changes. Though the strategy was not considered successful, as it 

did not achieve its main aim of New Zealand’s average infection rate being lowered to 

below 0.1% by 2007, nationally, New Zealand was found to have experienced a 

significant decline in the infection rates. Based on these results one could argue that 

the current AFB NPSM strategy is succeeding. Four of the seven regions were 

reported to be experiencing significant decline in infection rates during this study 

period (Hamilton, Tauranga, Blenheim, and Otago). However, three of the seven 
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regions were reported to be increasing in infection rate (Whangarei, Palmerston 

North, and Canterbury). The reasons for increased rates may be due to misapplication 

of American foulbrood control methods or the transmission routes of the disease 

becoming more accessible within these regions. For example, apiaries may be within 

a closer proximity to each other in regions experiencing an increase in infection rates 

compared with regions that are not. Another possibility for increasing infection rates 

could be the presence of unregistered hives and apiaries in these regions, as 

unregistered hives and apiaries have been suggested to help facilitate the persistence 

and spread of the honey bee diseases (Sanson, 2007). An additional explanation is 

there may be a higher number of hobbyist within these regions, as hobbyist have been 

linked to aiding in the dispersing of other devastating honey bee diseases such as 

Nosema ceranae (Klee et al., 2007). Supplementary research will need to be 

conducted within these regions to further understand reasons for the increasing 

infection rate.  

Seasonality is a major driving force of infectious diseases’ dynamics (Stone et al., 

2007). The analysis of monthly American foulbrood infection reports in New Zealand 

showed a primary peak in the number of hives and apiaries infected in September and 

October, and a secondary peak in March and April. These two peaks fall into New 

Zealand’s spring and autumn seasons respectively. During September and October, 

beekeepers are recommended to check brood frames for American foulbrood 

(Matherson & Reid, 2011). If not certified themselves, beekeepers must under law 

employ a certified inspector to inspect their hives during August to November each 

year (Biosecurity Order, 1998). Beekeepers are also recommended to check hives for 

American foulbrood in April, in preparation for wintering hives (Matherson & Reid, 

2011). If the peaks in American foulbrood reports are in response to beekeepers 
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implementing American foulbrood control and recommendations, it may suggest that 

the most recent long-term AFB NPSM strategies are successful. Beekeepers are also 

recommended to check hives in November and February, yet there is no peak in 

American foulbrood reports during these months (Matherson & Reid, 2011). 

Moreover, in March there is no recommendation to inspect hives for American 

foulbrood, yet a peak is recorded (Matherson & Reid, 2011). This suggests peaks in 

reports must not purely be based on beekeepers inspecting hives during recommended 

months. 

The peaks of infection reports could instead or additionally be a result of 

American foulbrood unambiguously exhibiting visual symptoms, rather then 

beekeepers’ diligence to laws. One possible explanation could be the temporal 

dynamics of the diseases’ genotypes in hives, with the seasonal peaks in infection 

reports a response to the genotypes present in a hive. For example, hive robbing, or 

the robbing of weaker hives by stronger ones, occurs predominately in late summer 

and occasionally in spring and is indicated to be a major transmission route for 

American foulbrood (Lindstrom et al., 2008b). This begs the question of whether the 

peaks in infection reports during the spring months of September and October could 

be due to the presence of ERIC II, with its high larval level virulence causing the 

display of visual symptoms soon after robbing has occurred? Are the peaks in the 

autumn months of March and April a result of the late summer hive robbing 

transmitting ERIC I into the hive, meaning visual symptoms are delayed until 

autumn? Additional research would be needed to answer these questions. Such 

research could be as the previously mentioned ‘visual virulence’ where the time taken 

for a genotype to display visually diagnosable symptoms is recorded. Another 
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research option is a survey which asks beekeepers their rational behind inspecting 

hives for American foulbrood, if any.  

In summary, by providing the most recent and comprehensive epidemiological 

study of American foulbrood, this thesis provides the ‘next step’ in the study of the 

disease in New Zealand. The global distribution and devastating effect of the disease 

on honey bee colonies had led to international studies on the genotypes and 

distribution of American foulbrood. The genetic analysis conducted in this thesis is a 

first for New Zealand. Through using a well-established methodology, New Zealand 

can now contribute and draw information from the ever-increasing international 

knowledge on American foulbrood. Understanding the genetic subgroups and 

genotypes present in New Zealand allows the opportunity for future strategies to 

consider the different virulence of the disease’s genotypes, and the repercussions this 

may have in regards to the diseases’ spread and diagnosis. The statistical analysis 

provides an up to date insight to American foulbrood infection rates in registered 

hives and apiaries both nationally and regionally. The mapping of 20 years of 

American foulbrood spread and distribution shows the temporal and geographic 

dynamics of the disease and also encompasses the most recent legislative changes on 

the disease’s control. By understanding the variation between regions, strategies on 

American foulbrood control can become more accurate and aid in increasing the 

efficiency of the management strategies of the disease. It is hoped that the findings in 

this thesis are able to contribute to both the scientific and beekeeping community.  
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