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Abstract

In this thesis we investigate the magnetic properties of NdN and SmN, mem-

bers of the rare-earth nitrides, a series of intrinsic ferromagnetic semiconduc-

tors. In rare-earth systems, the strong spin-orbit coupling of the partially filled

4f shell ensures that there is a substantial orbital contribution to the ferro-

magnetic moment, in contrast to many transition metal systems where the

orbital moment is usually quenched. In SmN and NdN the orbital moment

actually exceeds the spin moment, and the resulting orbital dominant mag-

netization allows for the fabrication of a magnetic heterostructures showing

novel behavior.

We report a new theoretical study of the magnetic properties on both

SmN and NdN by considering the atomic-like 4f electrons. These calculations

incorporate spin-orbit coupling, the exchange interaction in a self-consistent

mean-field approach, and crystal field interactions in an arbitrary-multiplet

point-charge model. Our findings show excellent agreement with the experi-

mentally measured ferromagnetic moments of SmN and NdN, representing an

advance from previous theoretical studies.

We also report an experimental study on SmN/GdN heterostructures using

the element-resolved method of x-ray magnetic circular dichroism (XMCD) to

probe the magnetism. The competition between the orbital-dominant Zeeman

coupling in SmN and the ferromagnetic spin-based interface exchange with

GdN, which has purely a spin moment, results in a twisted magnetization

profile. The depth profile of the magnetization derived from XMCD measure-

ments showed good agreement with an analytical model developed to describe

the competing interactions.

In a second study, a superlattice of NdN/GdN was investigated via XMCD
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and standard magnetometry techniques. A twisted magnetization was shown

to be present due to the same mechanism as in the SmN/GdN system. By vary-

ing the maximum applied field and temperature, twisted phases were shown

to develop in both GdN and NdN layers. These twisted phases in orbital-

dominant ferromagnetic semiconductors represent a departure from previously

explored spin-dominant metallic systems displaying similar twisted phases.
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“The time has come,” the Walrus said,

“To talk of many things:

Of shoes–and ships–and sealing-wax–

Of cabbages–and kings–

And why the sea is boiling hot–

And whether pigs have wings.”

– Lewis Carroll, from “The Walrus and the Carpenter”
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Chapter 1

Introduction

Research into rare-earth nitrides (RENs) has experienced a surge of interest

over the past ten years, spurred by the theoretical prediction [1] that some of

the RENs are half-metallic ferromagnets, which suggested the application of

RENs in spin-filters. Subsequent experimental investigations have found that

a majority of the RENs are in fact intrinsic ferromagnetic semiconductors

[2–8]. This makes the RENs quite distinct from the more well known dilute

magnetic semiconductors (DMS) such as (Ga,Mn)As [9]. In DMS systems,

the host semiconductor is doped with magnetic impurity ions to achieve both

ferromagnetism and semiconducting behavior. The Curie temperature and

conductivity are thus strongly dependent on the spatial distribution of these

impurity ions, which is difficult to control. The difficulty in independently

manipulating the magnetic and electronic degrees of freedom is thus a large

drawback in DMS systems.

The RENs derive their magnetic properties from the partially filled 4f shell

of the rare-earth elements, which consists of 14 distinct single-electron states,

resulting in widely varying magnetic properties as the occupation increases

across the series. The magnetic order is largely insensitive to the number of

free carriers arising from nitrogen vacancy defects for a wide range of concen-

trations [10]. This is due to the localized exchange mechanism responsible for

ferromagnetic ordering, in contrast to longer range carrier-mediated exchange

commonly found in metallic rare-earth systems [11–13]. This localized ex-

change in the RENs also leads to rather low ordering temperatures compared
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Chapter 1 Introduction

to metallic rare-earth systems, requiring liquid He temperatures. But most im-

portantly, semiconducting and ferromagnetic behavior coincide, and electronic

structure calculations show spin-polarized bands with conduction and valence

band edges of the majority spin [14].

These properties have led to the integration of the rare-earth nitrides in

spintronic devices, with GdN incorporated as a barrier layer in a spin-filter

Josephson junction [15], and DyN as a barrier layer in a magnetic tunnel

junction [16]. Incorporating various RENs into semiconducting magnetic tun-

nel junctions for use in magnetoresistive random access memory elements

(MRAM) [17] is also an intriguing possibility due to the large spin polarizations

and semiconducting nature of the RENs.

While the device implications of the rare-earth nitrides are one important

motivation for studying them, fundamental physical questions about the RENs

are not yet resolved. GdN is the most thoroughly investigated of the series,

with numerous theoretical and experimental studies into the electronic and

magnetic structure, however for the other RENs there are far fewer reports.

Indeed, for the majority of the RENs there is only one recent band structure

calculation which also provides a calculation of magnetic moments [14].

Understanding the magnetic moment is non-trivial, as an unquenched or-

bital contribution to the magnetization may result in a net magnetization

parallel to the orbital moment and antiparallel to the spin moment in the first

half of the rare-earth series. The presence of unquenched, orbital-dominant

moments then complicates the study of magnetic heterostructures composed

of RENs. In this thesis we calculate the magnetic moments of SmN and NdN

within crystal-field theory in order to better understand the interplay between

orbital and spin contributions to the magnetization. The crystal field calcu-

lations represent an alternative approach to the existing density functional

theory calculations carried out on SmN and NdN [14, 18]. We find good agree-

ment with experimental data within this crystal field approach.

The primary experimental work on RENs so far has been on homogeneous

RENs, with only two publications on REN heterostructures, by Anton et al.

[19] and McNulty et al. [20], the latter of which is part of this thesis (Chapter

5). The study of these heterostructures is a necessary step for exploring poten-
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1.1 Outline

tial device applications, but more fundamentally allows us to probe unexplored

interface effects in REN-based heterostructures. In this thesis we carried out

magnetic studies using element specific x-ray techniques as well as more com-

mon magnetization measurements in heterostructures composed of SmN/GdN

and NdN/GdN layers. In these heterostructures we demonstrate the exis-

tence of a “twisted” or inhomogeneous magnetic phase occurring at interfaces.

These twisted phases are shown to be a consequence of the unique rare-earth

magnetism, specifically the orbital-dominant magnetism of NdN and SmN in

combination with the spin-only magnetic moment of GdN. These experimen-

tal studies, together with the new calculations of the SmN and NdN magnetic

moments provide the first detailed description of REN-based heterostructures.

1.1 Outline

This thesis is organized as follows. Chapter 2 contains the theoretical back-

ground reviewing the relevant electronic structure of rare-earth ions, and in-

troduces magnetism in the RENs, including an overview of the crystal field

calculations. Chapter 3 introduces the primary experimental technique used

in this thesis, x-ray magnetic circular dichroism (XMCD), and the sample

preparation techniques used. In Chapter 4, the calculation of the magnetic

moments of SmN and NdN is presented with comparisons to recent and pub-

lished experimental data. Chapter 5 reports on x-ray magnetic circular dichro-

ism experiments on a SmN/GdN superlattice as well as bilayers of SmN/GdN

and SmN/LaN/GdN. Chapter 6 is a study of a NdN/GdN superlattice using

x-ray magnetic circular dichroism and SQUID based magnetometry. And fi-

nally, Chapter 7 summarizes the conclusions from this thesis and provides an

outlook for future research.

1.2 Attribution

Much of the experimental work was done in collaboration with others:

• SmN/GdN L-edge XMCD: This data is presented in

3



Chapter 1 Introduction

Chapter 5. Measurements were carried out by E.-M. Anton, B. J. Ruck,

C. Meyer, H. J. Trodahl, F. Wilhelm, A. Rogalev at the European syn-

chrotron radiation facility (ESRF) in Grenoble, France. Samples were

grown by H. Warring and F. Natali.

• M-edge XMCD: Presented in Chapter 5. These measurements were

carried out by myself and E. -M. Anton, B. J. Ruck, H. J. Trodahl,

M. Medeiros-Soares, N. B. Brookes at the ESRF. I prepared all of the

samples for these experiments.

• Nd/Gd L-edge XMCD: Presented in Chapter 6. The L-edge measure-

ments were performed by myself and E.-M. Anton, H. J. Trodahl, T. Ya-

mada, M. Suzuki, and M. Mizumaki at the SPring 8 Synchrotron facility

in Japan. The NdN/GdN superlattice was grown by E.-M. Anton and

myself, while the NdN sample was prepared by E.-M. Anton.

• SQUID Measurements: NdN magnetization measurements were carried

out by E.-M Anton. Magnetization measurements on the NdN/GdN

superlattice, SmN/GdN, and SmN/LaN/GdN samples were carried out

by myself. Many of these measurements benefited from the assistance of

Simon Granville and Shen Chong.

• Calculations: The calculations in Chapter 4 were programmed in Python

by myself, as were the calculations in Chapter 5.

1.3 Publications

1. J. F. McNulty, E. -M. Anton, B. J. Ruck, F. Natali, H. Warring, F. Wil-

hem, A. Rogalev, M. Madeiros-Soares, N. Brookes, and H. J. Trodahl.

Twisted magnetization in the orbital-dominant ferromagnet SmN

in GdN/SmN heterostructures. Phys. Rev. B 91, 174426 (2015).

2. B. Chen, J. Laverock, D. Newby Jr, J. F. McNulty, K. E. Smith, P-

A. Glans, J-H. Guo, R-M. Qiao, W.-L. Yang, M.R. Lees, L. D. Tung,
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1.3 Publications

R. P. Singh, and G. Balakrishnan. Effects of rare-earth size on the elec-

tronic structure of La1−xLuxVO3. J. Phys.: Condens. Matter 27 105503

(2015).

3. H. Warring, B. J. Ruck, J. F. McNulty, E. -M. Anton, S. Granville,

A. Koo, B. Cowie, and H. J. Trodahl. YbN: An intrinsic semiconductor

with antiferromagnetic exchange. Phys. Rev. B. 245206 (2014).

4. J. Laverock, L. F. J. Piper, A. R. H. Preston, B. Chen, J. F. McNulty,

K. E. Smith, S. Kittiwatanakul, J. W. Lu, S. A. Wolf, P. -A. Glans,

J. -H Guo. Strain dependence of bonding and hybridization across the

metal-insulator transition of VO2. Phys. Rev. B 85 081104(R) (2012).

5. D. J. Payne, M. D. M. Robinson, R. G. Egdell, A. Walsh, J. F. McNulty,

K. E. Smith, and L. F. J. Piper. The nature of electron lone pairs in

BiVO4. Appl. Phys. Lett. 98, 212110 (2011)

6. J. Laverock, A. R. H. Preston, B. Chen, J. F. McNulty, K. E. Smith,

L. F. J. Piper, P. -A. Glans, and J. -H Guo. Orbital anisotropy and low-

energy excitations of the quasi one-dimensional conductor β-Sr0.17V2O5.

Phys. Rev. B. 84, 155103 (2011)

7. J. H. Richter, B. J. Ruck, M. Simpson, F. Natali, N. O. V. Plank,

M. Azeem, H. J. Trodahl, A. R. H. Preston, B. Chen, J. F. McNulty,

K. E. Smith, A. Tadich, B. Cowie, A. Svane, M. van Schilfgaarde,

W. R. L. Lambrecht. Electronic structure of EuN: Growth, spectroscopy,

and theory. Phys. Rev. B. 84, 235120 (2011)

Patents

1. B. J. Ruck, H. J. Trodahl, E. -M. Anton, F. Natali, J. F. McNulty,

S. Granville. Magnetic materials and devices comprising rare-earth ni-

trides. N.Z. Patent 623343, 2014.
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Chapter 2

Theoretical Background

2.1 Electronic Structure

In order to understand the magnetic properties of the rare-earth nitrides, we

must first understand the electronic configuration of the partially filled 4f

shell, which is the origin of the magnetism in rare-earth systems. To do this

we proceed by examining the Hamiltonian of the 4f electrons. Later we will see

that the magnetic properties of the RENs can to a large degree be understood

by an atomic picture of the 4f shell.

We begin by considering a single 4f electron in a rare-earth ion with wave

function ψi. In the potential field of the ion, the electron can described by the

time-independent Schrödinger equation, Hiψi = Eiψi, where

Hi = − ~2

2me

∇2
i + V (ri), (2.1)

with ri = |ri| is the position vector of the electron and me is the electron mass.

V (ri) = −Z∗e/ri represents the Coulomb potential energy between the i-th 4f

electron in the ion, and Z∗ represents the effective charge of the ion, including

the filled electronic shells. The rare-earth elements are most commonly found

in the trivalent (3+) state, and this is found to be the case in most of the

RENs. The Schrödinger equation in this form does not adequately describe

the 4f electrons, however, as relativistic effects must be included. Beginning

with atoms having atomic number Z = 10, binding energies require relativistic

7



Chapter 2 Theoretical Background

corrections, and for wave functions relativistic corrections must be considered

for atoms heavier than Z = 30 [21]. Therefore, from the outset we must

consider relativistic effects, as the rare-earth elements start with Lanthanum,

with Z = 57.

We can obtain the correct description by considering the relativistic Dirac

equation, but for our purposes it is much easier to use only the lowest or-

der terms from the expansion of the Dirac equation in powers of v/c. The

Hamiltonian obtained from this expansion is given by [21]:

Hi = − ~2

2me

∇2
i + V (ri)−

α2

4

(
~

2me

∇2
i

)2

− α2

4

(
dV (ri)

dr

)
∂

∂r

+
α2

2

1

ri

(
dV (ri)

dr

)
li · si,

(2.2)

where α = e2/~c ≈ 1/137 is the fine structure constant. This equation is the

same as the Schrödinger equation 2.1 but with three additional terms. The

third and fourth terms only give a rigid shift to the absolute energy levels,

which is not important for our purposes. The last term contains li · si, which

represent the orbital and spin angular momentum operators of the ith 4f

electron. This term is known as the spin-orbit coupling term and plays a

major role in the electronic configuration in the rare-earths. The coefficient

λ(ri) =
α2

2

1

ri

(
dV (ri)

dr

)
(2.3)

is the spin-orbit coupling parameter. This parameter is large for tightly bound

orbitals with small radii, such as the 4f electrons, due to the dependence of

V (r) on r−1. Figure 2.1 shows the expectation value 〈r〉 for various orbitals as

a function of atomic number Z. The 4f radii can be seen to be smaller than all

orbitals with principal quantum number n > 5, which includes the completely

filled 5s and 5p shells, as well as valence 6s and 5d states in the rare-earths.

These larger orbitals keep the 4f orbitals shielded from surrounding ions, so

that they remain atomic-like even in a solid [2].

To consider all the electrons in the 4f shell, we must add together each

single electron Hamiltonian, and in addition we must also include the Coulomb

8



2.1 Electronic Structure

Atomic number 

Figure 2.1: Expectation values of r for various atomic orbitals as a function
of atomic number Z, calculated within a Hartree-Fock scheme with relativistic
corrections, taken from Cowan [21].

interaction between pairs of electrons.1 The total Hamiltonian for the partially

filled 4f shell is then

H4f = − ~2

2me

∑
i

∇2
i −

∑
i

V (ri) +
1

2

∑
i 6=j

e2

|rj − ri|
+
∑
i

λ(ri)li · si. (2.4)

The first two terms are the same for all the electrons in the same shell, and just

provide an overall rigid shift to the energy levels. The effective Hamiltonian

for the 4f shell can finally be reduced to

H4f =
1

2

∑
i 6=j

e2

|rj − ri|
+
∑
i

λ(ri)li · si, (2.5)

where the first term is the electron-electron interaction (He−e), and the last

term is the total spin-orbit interaction (HSO). These two terms determine

the relative energies of different electron configurations of the partially filled

1Here we neglect terms si · sj, and li · lj , which are much smaller than the spin-orbit
interaction term [21, 22]

9



Chapter 2 Theoretical Background

4f shell. The electron-electron interaction term He−e makes the Hamilto-

nian impossible to solve in general, thus various approximation schemes must

be used, such as Hartree-Fock [23]. Depending on which term is larger, two

coupling schemes for the angular momenta are used to describe the Hamilto-

nian. We note that He−e commutes with the operators L =
∑

i li, S =
∑

i si,

J = L + S and their z components Lz, Sz and Jz, while HSO commutes with

J and ji = li + si, but not L or S.

When He−e is larger than the spin-orbit term, then to a good approx-

imation the stationary states of the full Hamiltonian are the eigenstates of

L2,S2,J2 and Jz, with eigenvalues L(L + 1), S(S + 1), J(J + 1) and MJ , re-

spectively. This is known as the LS-coupling or Russell-Saunders coupling.

The quantum numbers describing the states are then L, S, J,MJ .

The second coupling scheme is known as jj-coupling, used when HSO �
He−e, so that the full Hamiltonian is close to diagonal when written in terms

of ji and jzi . For atoms lighter than Pb (Z = 82), He−e dominates, and so the

rare-earth 4f shell then falls into the LS coupling regime.

In LS coupling, HSO can be rewritten in terms of L and S as

HSO = ΛL · S, (LS-coupling) (2.6)

where Λ is the total spin-orbit coupling parameter for the 4f shell.2 In the

LS coupling regime, the relative energy of an electron configuration depends

only on the quantum numbers J, L, and S, often represented by a term symbol
2S+1LJ . The energy of a configuration with a term symbol 2S+1LJ is

ELSJ =
〈

2S+1LJ
∣∣He−e + HSO

∣∣2S+1LJ
〉
. (2.7)

In the absence of spin-orbit coupling, all configurations would have the same

energy, with (2L+1)(2S+1)-fold degeneracy. The spin-orbit coupling partially

reduces this degeneracy. The energy levels are split based on the J value, each

with degeneracy 2J + 1.

Fortunately, for LS coupling there exist empirical rules which specify the

2This assumes that the quantum numbers L and S are fixed, and higher values of L or
S are far off in energy.

10



2.2 Hund’s Rules

ground state configuration, known as Hund’s rules. These rules accurately

give the ground state configuration (L, S, J) of all the rare-earth ions [2]. The

ground state is of most interest for us for the magnetic and spectroscopy ap-

plications we will use later on.

2.2 Hund’s Rules

Hund’s rules can be heuristically argued by trying to minimize the energy of

the atomic Hamiltonian H = He−e + HSO. The rules should be applied in

the following order:

1. Maximize S

2. Given the maximum S, maximize L,

3. J = |L− S| for a less than half-filled shell, J = |L+ S| for a more than

half-filled shell.

The first rule arises from the Pauli exclusion principle, where parallel spins

are farther apart, reducing the Coulomb repulsion. Maximizing L follows the

same reasoning; for large L the spatial wave function has more nodes and the

probability of finding electrons close together is reduced. The third rule comes

from considering the spin-orbit coupling. For less than half-filled shells, Λ > 0,

so minimizing the magnitude of J will reduce HSO. For a more than half-filled

shell, Λ < 0, and thus a maximum value of J reduces HSO.

For example, Sm3+ has five 4f electrons out of the 2(2l + 1) = 14 possible

states in the 4f shell. The largest value S can have is given by the maximum

value of the z component, MS. Since there are only five electrons, they each

have the same z component of the spin ms, and MS =
∑
ms = 5/2, and so

S = 5/2. The maximum orbital moment is then found by ML =
∑
ml =

3 + 2 + 1 + 0 − 1 = 5, thus L = 5. Because the shell is less than half filled,

J = |L− S| = 5/2.

The term symbol 2S+1LJ is unfortunately written using spectroscopic no-

tation for L, with 0, 1, 2, 3, . . . = S, P,D, F . . ., thus Sm3+ has the term symbol

11
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Figure 2.2: Hund’s rule ground state values of S, L, and J for the triply
ionized rare-earth ions.

6H5/2.3 The Hund’s rules ground state values of J, L and S for the trivalent

rare-earth ions are shown in Figure 2.2. We note that in the first half of the

series, where J = |L− S|, L exceeds both S and J in some cases, which gives

rise to orbital dominant magnetism.

In the following sections, we discuss how the Hund’s rule ground state

values of J, L and S, determine the magnetic properties of rare-earth ions.

2.3 Rare-earth Magnetism

In this section we discuss rare-earth magnetism, which will provide crucial

background for later sections. In general rare-earth based materials have quite

different magnetic properties compared to itinerant d electron systems. This

comes primarily from the fact that the 4f wave functions are spatially localized

and atomic-like, which has some important consequences:

• The spin-orbit coupling of the 4f electrons is large compared to crys-

tal field and Zeeman energies, so that usually only the ground-state J-

multiplet is important.

3In this thesis we do not use the term symbols, but instead write out J, L, S explicitly.

12



2.3 Rare-earth Magnetism

• The orbital moments are not necessarily quenched,4 as is often the case

in light transition metal systems.

• The magnetic moments reside mainly in the localized 4f shell, with only

small contributions from band magnetism.

• The inter-ion exchange producing ferromagnetism cannot arise from di-

rect exchange between 4f orbitals, as the inter-ionic 4f wave functions

do not appreciably overlap.

• Carrier mediated exchange mechanisms typical of rare-earth metals are

not as important in the rare-earth nitrides, which are semiconductors.

These features will play a key role in later Chapters. Now we proceed to outline

in more detail the basic magnetic features of the rare-earth ions, including more

in-depth discussion of the above points.

2.3.1 Atomic magnetism

We start by examining a quantum mechanical model of atomic magnetism. We

define H with magnitude |H| = H, as the uniform applied magnetic field.5 The

effect of H on a single electron is twofold. First, the momentum of the electron

is modified by pi → pi+
|e|
c
Ai where Ai is the vector potential associated with

H. Second, the interaction of the electron spin si with H must be accounted

for by adding |e|~
mc

H · si to the Hamiltonian.6

This means that the Hamiltonian for the partially filled 4f shell described

previously, He−e + HSO, then acquires additional terms. By choosing the

vector potential as A = 1
2
H× r, the inclusion of these two effects yields

H4f = H 0
4f +

|e|
2mec

H ·
∑
i

ri × pi +
e2

8mec2

∑
i

(H× ri)
2 +
|e|~
mec

H · S, (2.8)

4Quenching of the orbital moment occurs when 〈Lz〉 = 0
5We use the cgs unit Oe for H, though in some chapters µ0H which has units of Tesla is

used.
6This can be derived by an expansion of the Dirac equation [24, 25].
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Chapter 2 Theoretical Background

where H 0
4f = He−e + HSO is the Hamiltonian in the absence of H. We can

simplify this expression by using the definition of the total orbital momentum

operator ~L =
∑

i ri × pi, to replace the second term above, and define the

Bohr magneton as µB = |e|~/mec:

H4f = H 0
4f + µB(L + 2S) ·H +

e2

8mec2

∑
i

(H× ri)
2. (2.9)

The last term is responsible for diamagnetism, and is much smaller compared

to the first term, and so we may ignore it in the following discussion [23].

The term linear in H is known as the Zeeman term, and the prefactor of H

is the magnetic moment operator,7 which we denote m = −µB(L + 2S). The

expectation value of m is what is measured experimentally, and with the choice

of H in the z-direction, the magnetic moment is given by

m = −µB 〈Lz + 2Sz〉 . magnetic moment (2.10)

Often we will speak of the spin and orbital contribution to the total moment,

given by

mL = −µB 〈Lz〉 orbital moment,

mS = −2µB 〈Sz〉 spin moment.
(2.11)

The magnetic moment is present even in the absence of a field, and is only

non-zero for partially filled shells.

We haven’t precisely defined the meaning of the expectation values 〈· · · 〉
used above. In general, to calculate the expectation value of m at a tem-

perature T , we must use an ensemble or “thermodynamic” average. For an

arbitrary quantum mechanical operatorO, the thermodynamic average is given

by

〈O〉T =
1

Z
∑
n

〈n| O |n〉 e−βEn , (2.12)

7This is analogous to the classical magnetic dipole moment, with energy E = −m ·H
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2.3 Rare-earth Magnetism

where β = (kBT )−1 with kB Boltzmann’s constant. The |n〉 are eigenstates of

H with associated energy En: H |n〉 = En |n〉. The partition function Z is

given by

Z =
∑
n

e−βEn . (2.13)

If the system is in its ground state at T = 0, then 〈O〉T = 〈0| O |0〉 where |0〉
is the ground state. In this thesis, 〈· · · 〉 should be taken as the ground state

expectation value if the states are not explicitly indicated.

As we shall later see, the magnetic moment can be calculated for the free-ion

case of the rare-earth elements relatively easily. In a crystalline environment

however, the presence of neighboring ions makes calculation of the magnetic

moment and other related quantities more complex.

We next turn to the magnetic properties of a collection of N ions in the

presence of a magnetic field.

2.3.2 Paramagnetism

We follow a general approach for discussing paramagnetism, as outlined in

Nolting & Ramakanth [22]. The aim is to gain a good understanding of how the

strong spin-orbit coupling of the rare-earths, in combination with the Zeeman

coupling, influences the paramagnetic response. We start by considering a

system of N identical, non-interacting ions in a magnetic field H. In this case,

the Hamiltonian is just the sum of the effective Hamiltonian for a single ion:

H =
N∑
i=1

H i
e−e + H i

SO + H i
Z , (2.14)

where the sum is over N ions and HZ = −m ·H is the Zeeman term. The

average magnetic moment of this system is called the magnetization M, related

to the magnetic moment of a single ion by

M =
N

V
〈m〉 , (2.15)
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Chapter 2 Theoretical Background

where V is the volume of the system. We will calculate M for a rare-earth

ion, but first it helps to make the connection to thermodynamics. For a

Hamiltonian H which has eigenvalues En, the free energy F is defined as

e−βF =
∑

n e
−βEn = Z , or equivalently F = − 1

β
lnZ, where Z is the partition

function. The magnetization can then be written

M(T,H) = − 1

V

∂F

∂H

∣∣∣∣
T

=
1

βV

(
∂

∂H
lnZ

)
T

.

(2.16)

We can also define the volume susceptibility χ, which links the response of the

system (the magnetization) to the applied magnetic field. In general it is a

tensor,

χαβ =
∂Mα

∂Hβ

= − 1

V

(
∂2F

∂Hα∂Hβ

)
T

,

(2.17)

where α, β = x, y, z label the Cartesian components. In this thesis we are

usually mostly interested in one component and take H in the z direction, so

we do not use explicit subscripts for the components. Thus M = (0, 0,M),

and χ(T ) = ∂M/∂H, without explicit subscript.

To calculate the magnetization, we note that the partition function of N

ions factorizes as Z = (Z0)N , where Z0 is the single-ion partition function

Z0 =
∑
n

〈n| e−β(He−e+HSO+HZ) |n〉 . (2.18)

The magnetization can then be calculated by

M = −N
V
kBT

∂ lnZ0

∂H
. (2.19)

To calculate Z0 we must define the states {|n〉}. In LS coupling, the basis

states are given by {|LSJMJ〉}, but when a magnetic field is present an-

other basis labeled by {|LSMSML〉} is sometimes convenient. As we saw
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2.3 Rare-earth Magnetism

earlier, He−e does not depend on J, L or S, and just sets an energy scale:

〈n|He−e|n〉 = E0. The choice of basis now depends on whether the spin-orbit

term or Zeeman term is larger. In the rare-earths, the spin-orbit term is always

larger than the Zeeman term for typical laboratory magnetic fields, and the

resulting magnetization is sometimes referred to as the “weak-field Zeeman

effect”. Recall that in LS-coupling the spin-orbit term then takes the form

HSO = ΛL · S, (2.20)

however this is not diagonal in the basis {|LSMSML〉}, but only in the basis

{|JMJLS〉} ≡ {|JMJ〉}.8 This can be seen by noting L ·S = 1
2
(J2−L2−S2),

which has the eigenvalue of 1
2
[J(J + 1)−L(L+ 1)− S(S + 1)] when acting on

|JMJ〉. The expectation value of HSO is then

〈JMJ |HSO |JMJ〉 =
1

2
Λ(J(J + 1)− L(L+ 1)− S(S + 1)). (2.21)

We now determine the Zeeman term in this basis. If the field is in the z

direction the Zeeman term takes the form

HZ = −m ·H = µB(Lz + 2Sz)H = µB(Jz + Sz)H. (2.22)

However, HZ is not diagonal in the JMJ basis because of the presence of Sz,

so HSO and HZ do not share the same eigenstates. We note that [Sz, Jz] = 0,

so if we are restricted to only the ground state J-multiplet, HZ is diagonal

with respect to MJ within this J-multiplet. Only with inclusions of higher J

multiplets does Sz cause off-diagonal terms.

The expectation value of HZ within the ground state J-multiplet can be

calculated with the help of the Wigner-Eckart Theorem [23],9 which states that

the matrix elements of any vector operator in the 2J + 1 dimensional space of

8We refer to {|JMJLS〉} ≡ {|JMJ〉} as the JMJ basis because L and S are fixed,
depending only on the rare-earth ion, while all other quantum numbers J,MJ ,ML,MS are
not necessarily fixed.

9See Appendix A for a more general discussion of the Wigner-Eckart theorem.
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J and Jz is proportional to the matrix elements of J, thus we can write

〈JMJ | Jz + Sz |JMJ〉 = gJ 〈JMJ | Jz |JMJ〉 = gJMJ (2.23)

where gJ is the constant of proportionality known as the Landé g-factor :

gJ =
3

2
+

1

2

[
S(S + 1)− L(L+ 1)

J(J + 1)

]
. (2.24)

The Zeeman energy is thus given by 〈JMJ |HZ |JMJ〉 = gJMJµBH. We can

now show that in the JMJ basis the Hamiltonian takes the expectation value

〈H 〉 = E0 +
1

2
Λ[J(J + 1)− L(L+ 1)− S(S + 1)]︸ ︷︷ ︸

E0
LSJ

+gJMJµBH. (2.25)

Figure 2.3 shows a sketch of the energy levels for SmN where Λ ≈ 430 K,10

and so the separation between the J = 5/2 ground state and J = 7/2 state

is about 1500 K. Sm3+ has the second smallest separation between ground

and the first excited multiplet among the rare-earths after Eu3+, which has a

separation 500 K, while for Nd3+ the separation increases to 2750 K and for

Yb3+ it goes to 14, 800 K [26].

The partition function can now be written as

Z0 =

J=|L+S|∑
J=|L−S|

(
e−βE

0
LSJ

J∑
MJ=−J

e−βgJMJµBH

)
. (2.26)

Because Λ is large in the rare-earths compared to the temperatures of interest

(less than 300 K), we only need to consider the Hund’s ground state value of

J , which simplifies Z0 to

Z0 = e−βE
0
LSJ

J∑
MJ=−J

e−βgJMJµBH (2.27)

10We frequently use Kelvins to denote energies, however Boltzmann’s constant kB must
be included to convert to an actual energy unit, e.g. kB300 K ≈ 25 meV.
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4f5
E0

spin-orbit 

J = 5/2

J = 7/2

J = 9/2

J = 15/2

Zeeman

E

Sm3+

Figure 2.3: The energy levels of Sm3+ (4f 5) free-ion, where the electron-
electron interaction and all other atomic terms have been incorporated into E0.
The spin orbit term orders states by J values, with separation EJ+1 − EJ =
Λ(J + 1). The Zeeman term breaks the degeneracy among MJ values. The
higher J-multiplets are also split by the Zeeman term, though not shown here.

The sum can be written in terms of hyperbolic functions,

Z0 = e−βE
0
LSJ

sinh(βgJµBH(J + 1
2
))

sinh(1
2
βgJµBH)

, (2.28)

and by calculating the magnetization as M = −N
V
kBT

∂ lnZ0

∂H
, we find

M =
N

V
JgJµBBJ(βgJJµBH) (2.29)

where BJ is the Brillouin function [23]. When the field H becomes large,

BJ(x)→ 1 and the magnetization is the saturation magnetization

M =
N

V
JgJµB, (2.30)

here the susceptibility ∂M/∂H is zero. This corresponds to the saturation

moment of gJJµB for a single ion. We can also calculate the susceptibility

in the high temperature limit where kBT � µBH. Then BJ(x) → J+1
3J
x and

19



Chapter 2 Theoretical Background

χ = ∂M/∂H gives us Curie’s law for a free ion:

χ =
N

V
µ2
B

g2
JJ(J + 1)

3kBT
. (2.31)

Often this will be written in terms of the effective paramagnetic moment

meff = gJ
√
J(J + 1)µB. As we shall see Equation (2.31) can be modified

in a solid due to crystal field effects, in which case meff takes on a different

value from the free-ion value.

We emphasize that this form of Curie’s law was derived on the basis that

the spin-orbit coupling is larger than both the Zeeman splitting (Λ � µBH)

and the thermal energy (Λ � kBT ), while the thermal energy is larger than

the Zeeman splitting (kBT � µBH).

2.3.3 Van Vleck paramagnetism

A subtle correction to Curie’s law occurs if at a given temperature, the spac-

ing between J-multiplets is not very large (Λ & kBT ). In the rare-earths,

Eu3+ and Sm3+ are most strongly affected by this due to their small multiplet

separations. The Eu3+ ion, with 4f 6, has a J = 0 ground state which is non-

magnetic. However, the van Vleck contribution allows for paramagnetism due

to the presence of higher multiplets. In Sm3+, the van Vleck contribution is

not as large, but is still appreciable.

The derivation of the van Vleck term comes from the consideration of higher

J-multiplets in the partition function, thus one has to calculate

Z0 = e−βE
0
LS

|L+S|∑
J=|L−S|

J∑
MJ=−J

e−β(HSO+HZ). (2.32)

The calculation is shown in Nolting & Ramakanth [22]. For the light rare-

earths where J = |L−S|, and if only the first excited J multiplet contributes,

the resulting van Vleck susceptibility is

χV V =
N

V

(
J(J + 1)

3kBT
g2
Jµ

2
B + µ2

B

2(L+ 1)S

3(J + 1)∆

)
, (2.33)
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where ∆ = EJ+1 −EJ . The origin of this correction is due to the operator Sz

in HZ , which is non-diagonal in the JMJ basis. Because it is not diagonal, it

creates transitions between J-multiplets, which manifest in the temperature-

independent term. This term is present even when only the ground state

multiplet is thermally occupied. For Sm3+ the ratio of the van Vleck term to

the Curie term is

χV V
χC

= 12
kBT

∆
= 0.008 T K−1, (2.34)

where ∆ = 1500 K. Thus at 125 K the two contributions have equal magnitude,

with being χV V dominant above 125 K. While this situation is altered to some

degree in a solid due to the effects of exchange and crystal field interactions,

the van Vleck contribution is still significant. This indicates that the J mixing

from the excited J = 7/2 should be taken into account in any quantitative

calculation involving the magnetic moment in trivalent Sm systems like SmN.

2.3.4 Ferromagnetism

Ferromagnetism arises due to the exchange interaction between ions which

tends to align the spins. This can be understood from the Pauli exclusion prin-

ciple, which states that a multi-electron wave-function must be antisymmetric

with respect to switching any two coordinates. For a two electron system this

means ψ(r1σ1, r2σ2) = −ψ(r2σ2, r1σ1) where σi is the spin of the i-th electron.

For an N -electron system the multi-electron wave function Ψ(r1σ1, . . . , rNσN)

can in general be written as a sum of Slater determinants to satisfy the Pauli

principle [23]. In the Hartree-Fock approximation, the many body state is

taken as single Slater determinant, and we use this approximation here. If

we calculate the expectation value of electron-electron interaction term He−e

using Ψ(r1σ1, . . . , rNσN), we find

〈Ψ|He−e|Ψ〉 =
1

2

∑
i,j

(
Uij − δσi,σjJij

)
(2.35)
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where the sums are over the occupied electronic states and δσi,σj is the delta

function between spins. The “direct” term Uij is given by

Uij =

∫
dr dr′ |ψi(r)|2 e2

|r− r′|
|ψj(r′)|2, (2.36)

and the “exchange term” Jij is given by

Jij =

∫
dr dr′ ψ∗i (r)ψ∗j (r

′)
e2

|r− r′|
ψi(r

′)ψj(r), (2.37)

The direct term is the analogue to the classical Coulomb repulsion between

electrons, independent of their spin. Due to the delta function, the exchange

term is only present when two spins have the same value. Because the sign in

front of Jij is negative in Eq. (2.35), this means that the two electrons with

the same spin will have a lower energy. This results in a tendency for the spins

to align themselves,11 and is the basis of ferromagnetism.

Mean-field approximation

Calculating the exchange integrals is extremely difficult in solids, so usually

an effective theory is preferred. The Heisenberg Hamiltonian is the most well

known effective theory of exchange, where the exchange integral is replaced

with an exchange constant Ji,j, which might be obtained empirically. The

Heisenberg Hamiltonian is given by

H = −
∑
i 6=j

Ji,jSi · Sj, (2.38)

where the sum is over all pairs of spins Si and Sj (i, j = 1, . . . , N). We note

that for parallel spins, the energy is at a minimum (assuming Ji,j is positive,

for ferromagnetic behavior). The Heisenberg model is an approximation best

suited for localized moments, which is the case in the rare-earths with tightly

bound 4f shells. Furthermore, we assume the exchange Ji,j is isotropic. The

study of this Hamiltonian encompasses a vast body of literature, and here we

11While the Coulomb energy may be reduced, the kinetic energy may increase enough to
make ferromagnetism unfavorable, depending on the band structure.
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review one of the basic results, known as the mean-field or molecular field

approximation.12

In the mean-field approximation, the Heisenberg Hamiltonian can be rewrit-

ten as13

Hex =− 2Jex

N∑
i=1

S i
z 〈Sz〉 , (2.39)

where fluctuations from the thermodynamic average have been ignored, and

the quantization axis is taken along z. Translational symmetry is assumed

(i.e. 〈Siz〉 ≡ 〈Sz〉), and the sum is over N spins. Equation (2.39) treats the

exchange by assuming each spin Siz feels an average exchange due to all the

other spins in the system. When an applied field is present, the Zeeman term

gJµBH
∑

i J
i
z can be added. Note the presence of total angular momentum

Jz, and not Sz in the Zeeman term.14 It is more convenient to use Jz in the

exchange term, so we make use of the Wigner Eckart theorem, and note that

within a single multiplet Sz = (gJ − 1)Jz, so we can write the Hamiltonian

including the Zeeman term as

H = gJµB

(
H − 2Jex(gJ − 1)2

gJµB
〈Jz〉

)∑
i

J iz. (2.40)

Written this way it is clear that the exchange acts as an effective magnetic

field Heff , given by

Heff = −2Jex(gJ − 1)2

gJµB
〈Jz〉 . (2.41)

If we use the definition of the magnetization as M = −N
V
gJµB 〈Jz〉, we link

12See for example Nolting & Ramakanth [22].
13Only one component of S is non-zero within the approximation, chosen as the z com-

ponent
14It is often not emphasized in textbooks that in general, Sz 6= Jz when discussing the

exchange interaction. For the rare-earths, it is crucial to consider the orbital contribution.
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Heff and M :

Heff =
2Jex(gJ − 1)2

(N/V )(gJµB)2
M = λM. (2.42)

Thus the effect of exchange is to modify the applied field, with the modified

field given by H̃ = H + λM = H(1 + λχ). This also implies that the mean-

field approximation must be self-consistent in the sense that magnetization is

a function of itself. This can be seen by using the result for the magnetization

(Eq. 2.29) found before, except now in terms of H̃:

M(T ) =
N

V
gJµBJBJ (βgJµB(H + λM(T )) . (2.43)

The susceptibility can be calculated directly from Eq. 2.43, but alternatively

we note that

χ =
∂M

∂H
= (1 + λχ)χ0. (2.44)

where χ0 = ∂M/∂H̃ = ∂M/∂H|λ=0 is the susceptibility in the absence of

exchange. This can be written in the form [27]:

1

χ
=

1

χ0

− λ. (2.45)

If we take χ0 as the Curie law susceptibility derived in the previous section,

the susceptibility including exchange is

χ =
C

T − Cλ
where C =

N

V

g2
Jµ

2
BJ(J + 1)

3kB
. (2.46)

We note that when T = Cλ ≡ θp, the susceptibility diverges. This is the

paramagnetic Curie temperature. Below θp the system is in the ferromagnetic

phase where a spontaneous magnetization may occur even if H = 0. Above

θp, in the paramagnetic phase, the magnetization is only non-zero when a field
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is applied. In this approximation θp is explicitly given by

θp =
2Jex(gJ − 1)2J(J + 1)

3kB
. (2.47)

We note that this estimation of θp considers only the ground state J-multiplet,

and assumed T was large compared to µBH. For this reason we call θp the

high-temperature paramagnetic Curie temperature. In general this does not

coincide with the actual ordering point, TC , though often it is relatively close

if the assumptions given in the derivation hold. A more common version

of this relationship is usually given when there is no orbital moment: θp =

2JexS(S + 1)/3kB. This is appropriate for Gd3+, which has L = 0, but is not

in general applicable to the other rare-earths.

Equation (2.47) allows us to estimate the strength of the exchange interac-

tion from the experimentally measured susceptibility, which we will make use

of in later chapters. We note that the origin of the exchange in the rare-earth

nitrides is not fully understood,15 though various models have been put forth

[2, 28]. A contribution to exchange from conduction electrons which plays an

important role in rare-earth metals (the so-called Ruderman-Kittel-Kasuya-

Yosida (RKKY) interaction [22]) is not as important in the non-metallic rare-

earth nitrides. This is the reason for the much lower Curie temperatures found

in the RENs compared to metallic rare-earth systems [28]. For example metal-

lic SmZn, SmCd, and SmAl2 have ordering temperatures of about 128, 195,

and 125 K, while SmN orders around 27 K [29, 30].

Due to the localized nature of the 4f electrons the direct 4f -4f inter-ion

exchange interaction is negligible, so the exchange interaction must proceed

indirectly through superexchange mechanisms, which involve unoccupied 5d

states. It is commonly assumed that through intra-ion 4f -5d exchange, ferro-

magnetic exchange exists between nearest neighbor (nn) rare-earth ions via the

4f -5d-5d-4f chain. Another exchange channel is antiferromagnetic superex-

change via the N 2p states: 4f -5d-N2p-5d-4f (next nearest neighbor, nnn). In

this picture there are then two contributions to the overall exchange energy,

15We have only considered an effective exchange so far, ignoring the underlying states
responsible.
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and thus to the ordering temperature, with TC ∼ (Jnn + Jnnn)/kB, where Jnn

is the ferromagnetic and Jnnn the antiferromagnetic exchange. These contri-

butions through p and d states mean the exchange is not isotropic, as we have

assumed in the mean-field theory. Experimentally however, it is not always

possible through magnetization measurements to distinguish different contri-

butions to TC (or θp), and one can only extract a single isotropic effective

exchange constant, Jex.

2.3.5 The crystal field

We have so far ignored the effect of the nitrogen ions on the magnetic prop-

erties of the RENs. In principle, it is possible to consider these effects within

density functional theory techniques, though there have been very few of these

studies on the rare-earth nitrides with the exception of GdN. Instead, an ap-

proach originally due to Bethe [31] can be used which treats the N anions as

electric point charges. This so-called crystal field can then be incorporated as

a potential energy term in the Hamiltonian of the magnetic ion.

For the rare-earths, the crystal field energy is smaller than the spin-orbit

interaction because the 4f orbital cloud is tightly bound, and shielded by the

filled 5s and 5p shells, only weakly feeling the influence of the crystal field. The

crystal field can then be considered as a perturbation to the spin-orbit coupling

energy. The situation is reversed for light transition metal systems however,

where the d orbitals are delocalized enough to strongly feel the crystal field.

In the transition metal case, the spin-orbit coupling acts as a perturbation

on the crystal field Hamiltonian. For heavy transition metal systems and the

actinides, where the 4d, 5d and 5f shells are partially filled, the situation

is somewhere in between, and the spin-orbit and crystal field energies lie on

nearly equal footing.

One important consequence of the crystal field interaction is quenching

of the orbital moment, where the expectation value of the orbital moment

vanishes (i.e. 〈Lz〉 = 0). In this case the magnetic moment then resides only

in the spin moment. Full quenching usually only occurs in systems where the

spin-orbit coupling is small, such as the 3d transition metals.

26



2.3 Rare-earth Magnetism

One way to see this is to note that the crystal field potential is a real

function of the coordinates (as we shall see), and if the ground state ψ0 is

non-degenerate, then ψ0 may be chosen to be real; ψ∗0 = ψ0. In this case, the

expectation value of Lz = −i~ ∂
∂φ

can be calculated as

〈ψ|Lz |ψ〉 = −i~
∫
dφ d(cos θ)ψ∗(θ, φ)

∂

∂φ
ψ(θ, φ). (2.48)

= i× constant (2.49)

The result is thus an imaginary number for the expectation value 〈Lz〉, however

all observable operators must have real eigenvalues. Thus 〈Lz〉 ≡ 0 for real,

non-degenerate wave functions, and the orbital angular momentum is said

to be quenched.16 For a degenerate ground state, the orbital moment is not

necessarily fully quenched, but will be partially quenched, depending on the

symmetry properties of the degenerate states [33].

In contrast, the spin-orbit coupling tries to maximize the orbital moment

given that a spin-moment is present. This is because the energy of the spin-

orbit term ΛL·S is minimized by having a large orbital moment, either parallel

or antiparallel to S, depending on the sign of Λ. The competition between HSO

and the crystal field term, HCF , then determines the degree of quenching.

Thus the light 3d systems, where 〈HSO〉 � 〈HCF 〉, are nearly fully quenched,

while the rare-earths experience much less quenching. Any quenching that does

occur in the rare-earths however, is also transferred to S due to the spin-orbit

coupling. This is also the origin of the large magnetocrystalline anisotropy

in rare-earths. We note that the effective paramagnetic moment of the light

transition metals is often given by meff = gµB
√
S(S + 1) because the crystal

field effectively sets L = 0 [23], while for the rare-earths J is still a good

quantum number at large enough temperatures.

16This can also be shown to be a consequence of time-reversal invariance of the Hamilto-
nian, if the ground state is non-degenerate [32].
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Crystal field calculations

While crystal field effects are generally smaller in the rare-earths than in tran-

sition metal systems, they are not negligible (except for the Gd3+ ion, with

L = 0). Thus, in order to quantify the effects of the crystal field on SmN

and NdN we carry out crystal field calculations in Chapter 4. Here we give an

overview of the crystal field theory most applicable to rare-earth ions in cubic

environments, which is outlined in detail by Hutchings when only the ground

state J-multiplet is included [34]. A review by De Wijn et al. [35] extends the

crystal field model for rare-earth ions to arbitrary multiplets; here we mostly

follow their notation. Chapter 3 will describe further details for calculations

within arbitrary multiplets, while here we present the basic theory.

The effect of the crystal field on a rare-earth ion can be written as an

additional term in the rare-earth ion Hamiltonian corresponding to the electric

potential energy;

HCF =
∑
i

∑
j

Zje
2

|Rj − ri|
, (2.50)

where −Zj|e| is the ligand charge at position Rj (N in the rare-earth nitride

case) and ri is the position of the ith 4f electron. Because the 4f orbital ra-

dius, 〈r〉4f ≈ 0.5 Å (approximately equal to the Bohr radius aB = 0.53 Å)17, is

smaller than the Re-N separation of about 2.5 Å, an expansion of the denom-

inator is justified. Strictly speaking, this electrostatic approach is not fully

justified (see discussion in, e.g. [36]), however for the ground state properties,

the electrostatic approximation produces good agreement with experiment and

is far more straightforward to apply compared to quantum-mechanical ab-inito

techniques. This expansion is well known in electrostatics, and is usually car-

ried out in either Cartesian coordinates, Legendre polynomials, or normalized

spherical harmonics, Y q
k (θ, φ). Here, we carry out the expansion using tesseral

harmonics fkq, which are purely real functions, and are related to the spherical

17The Re-N separation is given by a/2 where a is the lattice constant. Experimental and
theoretical lattice constants for the RENs are given in Ref. [2]
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harmonics by

fkq =
rk√
2ckq

[Y −qk + (−1)qY q
k ], (2.51)

where ckq are normalization constants. For example, f40 is given by

f40(r) = 35z4 − 30z2r2 + 2r2. (2.52)

Other tesseral harmonics are given in Ref. [34]. For a single point charge at

position Rj and a single 4f electron at ri we can write the expansion as

1

|Rj − ri|
=
∞∑
k=0

1

R2k+1
j

[
k∑
q=0

c2
kq

4π

2k + 1
fkq(Rj) fkq(ri)

]
, (2.53)

which is valid for ri < Rj. The total contribution to HCF is the sum of

Eq. 2.53 over the i 4f electrons and j N-ion point charges coordinating the

rare-earth ion, leading to

HCF =
6∑

k=0

k∑
q=0

Aqk
∑
i

fkq(ri). (2.54)

The sum over k can be shown to be non-zero only for even values of k 6 6 for

the 4f shell electrons, determined by the orthogonality properties of tesseral

(or spherical) harmonics. The Aqk are constants describing the strength of the

crystal field

Aqk = e2 4π

2k + 1
c2
kq

∑
j

Zj
fkq(Rj)

R2k+1
j

, (2.55)

where terms with k = 4, 6 describe the fourth and sixth order contributions

to the crystal field. Often, instead of calculating the Aqk explicitly, it is easier

to factor out the q dependence by making use of the point symmetry of the

ligand atoms, so that Aqk = AkBq, where Bq is a geometric scaling factor that

takes into account all the q dependence. We then use the Ak to parametrize

the crystal field strength. For cubic symmetry, as in the RENs, HCF with the
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z axis along the [001] direction is given by

HCF = A4

∑
i

[f40(ri) + 5f44(ri)] + A6

∑
i

[f60(ri)− 21f64(ri)] . (2.56)

Only fourth and sixth order contributions are present in cubic symmetry. The

crystal field parameters can be calculated in the point-charge model for octa-

hedral coordination (six nearest Re neighbors) of the rare-earth ion as

A4 =
7

16

Ze2

R5
, A6 =

3

64

Ze2

R7
, (2.57)

where R is the Re-N distance. These parameters are depend on the coordina-

tion number of the magnetic ion, which can be 4,6, or 8 in cubic symmetry.

As we will see in Chapter 3, the excited J-multiplets are important to

consider, because, depending on the size of the crystal field parameters, off-

diagonal matrix elements of HCF can cause significant mixing between J-

multiplets. This is especially important for SmN, and to a lesser degree for

NdN. In addition to the crystal field, the spin-orbit coupling and exchange

may be considered, and so the Hamiltonian of a rare-earth ion is given by

H = ΛL · S− 2Jex 〈Sz〉Sz + HCF , (2.58)

where the exchange is included via self-consistent mean-field theory. The ex-

change constant Jex is estimated from the paramagnetic susceptibility, as dis-

cussed earlier. This Hamiltonian will allow us to calculate the ground state

magnetic moment as well as the temperature dependent susceptibility.

We remark that when only the ground state multiplet is considered, the

effect of a cubic crystal field on the rare-earth ions is to remove some the

degeneracy present in the MJ levels in the absence of a field. This is sketched

in Figure 2.4 for the Sm3+ ion, where the J = 5/2 ground state (with 2J+1 = 6

degenerate levels) is split into a doubly degenerate state (doublet) labelled Γ7

and a quadruply degenerate state (quartet) labelled Γ8. The number and

degeneracy of these crystal field states can be predicted on the basis of group

theory [31, 37] with knowledge of the symmetry of the crystal field and the J
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4f5
E0

Spin-orbit
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J = 5/2

J = 7/2
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Zeeman
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Sm3+
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Crystal 
field

Sm3+
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Figure 2.4: A sketch of the energy levels of Sm3+ in a cubic crystal field
with octahedral coordination. The crystal field splits the ground state J = 5/2
multiplet into a Γ7 doublet and a Γ8 quartet. Not shown are the crystal field
and Zeeman splittings of the higher J-multiplets.

value of the ion. When an exchange or Zeeman term is present, these crystal

field levels split again, though these splittings are small compared to the crystal

field levels.

2.4 Exchange Springs

In this section we include a discussion of conventional exchange-spring sys-

tems, which are related to the topics discussed in Chapters 4 and 5. The first

exchange-spring system was reported by by Goto et al. [38], who studied the

magnetization of bilayer thin films composed of hard (large anisotropy) and

soft (small anisotropy) ferromagnets. The study found that with a large field

H0 applied in-plane, both layers were magnetized in the x-direction. When a

small field H1 was subsequently applied in the −x direction, a rotation of the

soft layer magnetization formed for a large enough value of |H1| (see Figure

2.5).

This was shown to be due to competing interactions within the soft fer-

romagnetic layer. Because the hard ferromagnetic is layer insensitive to the
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H0 H1

soft layer 
magnetization

hard layer 
magnetization

(a) (b)

z
θ

x

Figure 2.5: A sketch of a conventional exchange-spring system. (a) Both
layers are magnetized in the x-direction with a large field H0. (b) A small
field H1 begins to reverse the soft layer magnetization, while the hard layer
remains fixed and pins the soft-layer magnetization at the interface, with an
exchange spring forming in the soft layer.

smaller field in the −x direction, it acted as a rigid layer which pinned the soft

layer magnetization at the interface through ferromagnetic exchange coupling.

Away from this interface, the Zeeman coupling of the soft layer caused the

magnetic moment of ions to align with the field. The exchange interaction

with the soft layer then mediated these two competing interactions, resulting

in a gradual rotation of the spins. The term exchange-spring is used because

of the analogy between a mechanical system made in the original paper, where

the exchange coupling between the films is viewed as a spring.

The basic physics can be understood by treating the spins in a one dimen-

sional model where each atomic plane in the soft layer rotates uniformly, while

the hard layer is fixed. In this case, the magnetic free energy can be described

in a micromagnetic approach [39].

Using the geometry of Figure 2.5, we can calculate the free energy per unit

area of the soft layer, integrated of the thickness L of the layer. In the simplest
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case, where various anisotropies can be ignored, the free energy is given by

E =

∫ L

0

dz

[
A

(
dθ(z)

dz

)2

−M ·H

]
, (2.59)

where A is a constant describing the strength of the exchange, and θ(z) is the

azimuthal angle as shown in Fig. 2.5. The first term represents the energy cost

associated with the magnetization of neighboring spins deviating from parallel.

It can be derived by noting that the exchange energy between spins is Eex ∼
Jex cos ∆θ, where ∆θ is the angle between spins. This can be approximated for

small angular displacements as ∆θ ≈ adθ
dz

where a is the separation between

spins, and z is the position in the film depth. Expanding the cosine leads to

Equation 2.59 with A = 2JexS
2/a3, where S is the spin. The second term is

just the Zeeman term, which tries to align the spins with the field.

The form of θ(z) which minimizes the free energy can be found in this case

analytically using the calculus of variations, as was calculated by Goto. It gives

the magnetization as M(z) = M(cos θ(z), sin θ(z), 0), and results in the Bloch-

wall like behavior shown in Figure 2.5. We note that the two requirements for

this model are are 1) a hard layer magnetization which is rigidly fixed, and 2)

the magnetic field must reverse from its original direction, such that there is

competition between interface exchange and the Zeeman coupling.

This domain-wall like magnetization phase is part of a more general set of

competing interactions in magnetic systems. These “twisted phases” as we call

them here, can be due to a variety of interactions. Interface exchange, bulk and

surface anisotropies, and anisotropic or chiral exchange interactions can lead

to diverse types of twisted phases. But all of these twisted magnetic observed

so far have been in “conventional” spin-dominant, metallic systems. The light

rare-earth nitrides provide the ability to host novel twisted phases due to their

unconventional orbital-dominant magnetism and non-metallic conductivity. In

Chapters 4 and 5 we will investigate magnetic heterostructures involving SmN,

NdN and GdN, and provide evidence for the existence of these twisted phases.
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Chapter 3

Experimental Techniques

3.1 Synchrotron Techniques

The main experimental tool used in this thesis is x-ray magnetic circular

dichroism (XMCD). It is one of the most powerful tools for studying mag-

netism, providing the ability to measure element-resolved magnetization as

well as distinguish spin and orbital contributions to the magnetization. The

technique has only been in use since the mid 1980s, with the introduction

of elliptically polarized x-rays at undulator beamlines in synchrotron facili-

ties [40]. The development of the XMCD sum rules in the early 1990s has

made it possible to extract the spin and orbital magnetic moments directly

from the experimental spectra.

Synchrotron radiation is a specific type of radiation which occurs when

ultra-relativistic1 charged particles are accelerated in circular orbits by mag-

netic fields. In this energy regime, the emitted radiation from the particle has

a much narrower angular and spatial divergence compared to a non-relativistic

particle. The main advantage of using a synchrotron is its range of energies,

spanning from about 10 eV to 50,000 eV, and the high brilliance compared

to lab based sources. Modern undulator beamlines now provide elliptically

polarized light over a wide range of x-ray energies. In this work, we con-

sider the soft and hard X-ray regimes, in the range of 200-1500 eV and over

1500 eV, respectively. These two ranges contain the binding energies of the

1i.e. γ = 1√
1−v2/c2

� 1

35



Chapter 3 Experimental Techniques

Figure 3.1: Mass attenuation coefficient µ/ρ = σtot/mA for elemental Sm
and Nd, where ρ is the density, mA is the mass, and σtot is the total absorption
cross section. Data from NIST.

rare-earth 3d and 2p shells we are interested in. XMCD is a type of x-ray

absorption spectroscopy (XAS), and so we begin with a discussion of XAS in

the rare-earths.

X-ray absorption spectroscopy (XAS)

XAS can be most simply described as an absorption process where we measure

the transmitted X-ray intensity before (I0) and after (I(E, d)) passing through

a sample of thickness d. The relationship is given by

I(E, d) = I0e
−µ(E)d, (3.1)

where µ(E) is the linear absorption coefficient, which depends on the energy

E of the X-ray photons. The absorption coefficient is related to the X-ray

absorption cross-section σabs through µ(E) = ρAσ
abs(E), where ρA is the num-

ber of atoms per unit volume. If the X-ray energy is resonant with an atomic

transition between two states, i.e. E = Ef − Ei, then σabs(E) increases dra-

matically at this resonance, known as the absorption edge. The change in σabs

from right before this absorption threshold to immediately after is known as
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Edge Nd Sm Gd
L2 2p1/2 → 5d 6,722 eV 7,312 eV 7,930 eV
L3 2p3/2 → 5d 6,208 eV 6,459 eV 7,243 eV
M4 3d3/2 → 4f 1,003 eV 1,111 eV 1,222 eV
M5 3d5/2 → 4f 980 eV 1,083 eV 1,190 eV

Table 3.1: Rare-earth absorption edges

the absorption edge-jump (Figure 3.1 shows edge-jumps for elemental Sm and

Nd). Each atom has a specific energy for the absorption edge corresponding

to the electronic transition.

This demonstrates the usefulness of synchrotron radiation, which provides

the ability of tuning the X-ray energy E to specific absorption edges. This

means different elements can be selected, as well as different absorption edges

of the same element. The edges are labelled by the principal quantum number

n = 0, 1, 2 . . . = K,L,M . . . with a subscript to distinguish spin-orbit split

states according to l ± s.
In this work we examine four of the rare-earth absorption edges. In the

soft x-ray regime are the M4 and M5 edges, corresponding to transitions from

3d3/2 → 4f and 3d5/2 → 4f , where the core level 3d states are spin-orbit split

according to j = 2 ± 1/2. In general we will refer to the two edges together

as the M-edge. In the hard X-ray regime are the L2 and L3 edges (or L-edge

for both), which correspond to transitions from 2p1/2 → 5d and 2p3/2 → 5d,

respectively. Table 3.1 lists the x-ray energies at which the absorption edges

occur.

To gain a more fundamental insight, we can look at a more detailed quan-

tum mechanical picture (for a full account, see e.g. Stohr [41] or de Groot &

Kotani [42]). The cross-section for absorption is proportional to the probabil-

ity of an electron in an initial state |ψi〉 going to a final state |ψf〉 due to an

incident X-ray photon. This probability Pfi is given in first order by Fermi’s

golden rule,

Pfi =
2π

~
| 〈ψf |T |ψi〉 |2δ(Ef − Ei − ~ω)ρ(Ef ), (3.2)

where the Dirac delta function preserves conservation of energy, ~ω is the
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photon energy, and ρ(Ef ) is the density of final states. If there are multiple

final states, a sum over each final state must be included. Here T represents

the transition operator for the photon, which is given by

T =
e

me

p · εeik·r, (3.3)

where ε is the polarization of the photon, k is its wavevector, and p the elec-

tron momentum operator. If |k · r| � 1, then we approximate the exponential

as exp(ik · r) ≈ 1. This is known as the dipole approximation and is well

justified at the rare-earth M-edge. For the rare-earths the atomic radii are

approximately 〈r〉3d ≈ 0.15 Å, and the typical M-edge energy of 1 keV corre-

sponds to k = E/~c ≈ 5× 109 m−1, thus k · r ≈ 0.0008. At the L-edge, where

E ∼ 7 keV and 〈r〉2p ≈ 5× 10−12 m, we find k · r ≈ 0.002.

The absorption cross section σabs is proportional to Pfi, and is given by

σabs = 4π2α~ω |〈ψf | r · ε |ψi〉|2 δ(Ef − Ei − ~ω)ρ(Ef ), (3.4)

where α ≈ 1/137 is the fine structure constant. The polarization in the matrix

element 〈ψf | r · ε |ψi〉 plays an important role. For example, the photon po-

larization tensor has three components εqz corresponding to linear polarization

(q = 0), and both right (q = +1) and left (q = −1) circular polarizations. In

terms of position basis vectors given by êi (i = x, y, z), we have ε0
z = êz, and

ε±1
z = (êx ± iêy)/

√
2. The dipole operator can then be written

r · ε0
z = z = r cos θ = r

√
4π

3
Y1,0(θ, φ) (3.5)

r · ε±1
z = ∓ 1√

2
(x+ iy) = ∓r 1√

2
sin θe±iφ = r

√
4π

3
Y1,±1(θ, φ) (3.6)

Where the Yl,m(θ, φ) are spherical harmonics and the angles θ, φ correspond to

the usual definition of spherical coordinates.2 The presence of these spherical

2For circular polarization, if the photon wavevector k is in the z direction, then E is in
the x−y plane. For linear polarization, E must again be perpendicular to k = kêz, e.g. the
x or y direction. But to retain the convention that Jz is diagonal in the {|JMJ〉} basis, we
can rotate the coordinate system so that k = kêx and E (and thus ε0) is in the z direction,
giving the correct selection rule for linear polarization.
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harmonics is responsible for polarization-dependent selection rules, which only

allow certain transitions to take place. Because the states involved in the

transition are products of radial and angular wave functions, according to

|ψi〉 = |Ri
n〉 |JMJ〉, we see that Yl,m(θ, φ) acts only on the angular wave function

and r on the radial wave function. Thus the absorption cross-section depends

on the polarization by

σabs ∝ |〈J ′MJ ′ | εqz |JMJ〉|2 . (3.7)

The result is that 〈J ′MJ ′ | εqz |JMJ〉 is only non-zero if the following relations

are satisfied:

∆M = MJ ′ −MJ = q (3.8)

∆J = J ′ − J = ±1, 0 (3.9)

∆S = 0, ∆L = ±1, (3.10)

however ∆J = 0 transitions are allowed only if J 6= 0. The selection rule

∆S = 0 means no spin flips are allowed in the transition. In the normal XAS

measurement, the polarization is linear (q = 0), so there are no transitions

between different MJ states. On the other hand, for circularly polarized light

∆M = ±1 for right (+) and left (-) polarizations. As we shall see later, these

transitions between values of MJ are the basis of XMCD.

3.1.1 M-edge absorption

At the rare-earth M-edge, an electron in the 3d shell is excited to one of

the empty 4f levels. This creates a hole in the core 3d states which can

interact with the 4f electrons due to 3d-4f overlap. Because of this, the

single electron picture of the absorption process is no longer valid, and the

multi-electron initial and final states (labeled by the total S, L, J quantum

numbers) must be considered. We denote this configuration dependent process

by 4fn → 3d94fn+1, where n is the number of 4f electrons in the ground

state. The 3d hole then couples to the fn+1 electrons so that the total angular

momentum of the final state results in a variety of multiplets with different
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Figure 3.2: Calculated Sm3+ XAS spectra. Vertical bars represent dipole
allowed transitions and their strength, the curves simulate broadening effects
due to instrumental and lifetime effects, calculated using the program Missing
[44].

term symbols 2S+1LJ . There can be a large number of multiplets, for example

Sm3+ has 2,725 different multiplets in the final state 3d9f 6 configuration. The

dipole selection rule ∆J = 0,±1 reduces the actual number of final states which

are accessible to 946 for Sm3+ [43]. For this reason, the resulting absorption

spectrum reflects the many possible final states; they can be included in σabs

by a sum over the final states;

σabs = 4π2~ω
∑
f

|〈ψf | r · ε |ψi〉|2 δ(Ef − Ei − ~ω)ρ(Ef ). (3.11)

Figure 3.2 shows a simulated absorption spectrum at the M-edge of Sm3+ for

the three different dipole allowed transitions. The spectrum is composed of

hundreds of closely spaced transitions, due to the hundreds of matrix elements

〈ψf | r ·ε |ψi〉. The density of states factor ρ(Ef ) in the cross section only serves

to broaden each line, however. The transitions are concentrated around the
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two edges, the lower energy M5 corresponding to the hole with J = 5/2 and

the M4 corresponding to the 3d hole with J = 3/2. The rare-earth M-edge

can be simulated using Cowans code [21], which is based on atomic multiplet

calculations [45].

3.1.2 L-edge absorption

At the L-edge the 2p6 → 2p55d1 transition is not dominated by multiplet

effects, so the single electron picture of a core 2p electron transitioning into

the band-like 5d states describes the absorption process. This is because the

overlap between the 2p core hole and 5d states is small compared to the strong

core-hole-4f interaction at the M-edge. The result is that the absorption cross-

section measures the unoccupied partial density of states (PDOS) ρ(Ef ) of the

5d level;3

σabs ∝Mρ(Ef ), (3.12)

where M = | 〈ψf | r · ε |ψi〉 |2 is approximately constant over the energy range

of the absorption edge. Because of the band-like nature of the 5d states, band

structure calculations are needed to simulate the PDOS. In the RENs the

strong electron correlations from the 4f states have to be accounted for when

calculating the PDOS, which makes band structure calculations difficult [14,

46].

3.1.3 Detection methods

At the M and L edges, indirect methods of measuring the absorption are used

instead the transmission mode, where I = I0e
−µ(E). Once the absorption pro-

cess takes place, the core hole can decay via radiative and non-radiative decay

channels. The non-radiative channel is via Auger and Coster-Konig processes.

The number of such secondary electrons produced is then proportional to the

X-ray absorption cross section σabs, this is known as the total electron yield

(TEY). The electrons are usually measured by the drain current or by using a

3The selection rules prevent transitions into the full unoccupied density of states.
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channeltron electron multiplier. The resulting intensity is then normalized to

the incident beam. For an electron mean-free path λe and the X-ray photon

absorption length λx (i.e. the inverse of the absorption coefficient, µ = λ−1
x )

the absorption intensity is

ITEY = I0G
λe

λe + λx cos θ
, (3.13)

where θ is the measured angle relative to the surface normal, I0 is the incident

beam intensity, and G is the electron gain factor. As long as λx cos θ � λe the

measured signal is proportional to the absorption coefficient, ITEY ∝ µ(E).

Typically λe ≈ 1-3 nm, while λx is generally of order 100 nm, though λx may

decrease significantly at the absorption edge in rare-earths [45]. However even

at the absorption edge λx > λe. In grazing incidence measurements λx may

become comparable to λe and the spectrum can become distorted. [41, 47].

These effects must be corrected for when applying the sum rules, however for

temperature or magnetic field dependent measurements these effects are less

important.

When radiative decay occurs, the emitted X-rays can be measured via a

channeltron electron multiplier. The photon flux is called total fluorescence

yield (TFY). In the limit that the λx is larger than both the emitted fluores-

cence absorption length, λx′ , and background fluorescence absorption length,

λB,

ITFY = c1 + c2µ, (3.14)

where c1 represents a constant background due to e.g. a capping layer or

substrate [48]. Saturation effects are more common in the TFY mode due to

the similar length scales of λx and λx′ , and generally the sum rules are not

applicable.

A variant of the TFY mode is the partial fluorescence yield (PFY), where

specific fluorescence decay channels are measured with an energy selective spec-

trometer. For instance, at the rare-earth L3 edge the most prominent radiative

decay channel occurs when the 2p3/2 hole is filled with an electron transition
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Figure 3.3: Electronic transitions corresponding to various emission lines,
taken from [40]. The spectroscopic notation is used, where K,L,M . . . =
0, 1, 2 . . . refers to s, p, d-states.

from a 3d5/2 state with the Lα1 emission line at 5,230 eV. Similarly, at the L2

edge the Lβ1 emission line at 5,722 eV is the most prominent radiative decay

channel (see Figure 3.3 for emission lines). This method has the advantage

of removing unwanted background signals from different atomic species which

have absorption edges close by, for instance in multilayers. Even if there are no

nearby absorption edges, higher order harmonics in the X-ray beam can excite

edges far away in energy resulting in unwanted spectral features, making PFY

a very useful tool.

3.1.4 XMCD

The description of XAS in the preceding sections will simplify our discussion

of XMCD, which is essentially an application of XAS. The XMCD signal ∆I

can be defined as

∆I = I+(H)− I−(H), (3.15)

where I± is the XAS spectrum taken with positive (q = +1) or negative

(q = −1) helicity photons, and the magnetic field H = (0, 0,−H) is in the
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−ẑ direction. The photon momentum direction and spin quantization axis are

taken in the +ẑ direction.4 This can equivalently be written as

∆I = I−(−H)− I+(−H), (3.16)

when the field is reversed. This definition corresponds to the difference between

antiparallel and parallel arrangements of the spin and magnetic field.5 We will

generally keep H fixed, so use the simpler notation I± to refer to the absorption

spectra taken with different polarizations. I0 refers to the absorption spectra

with linear polarization parallel to ẑ.

3.1.5 The two-step XMCD model

The basic picture of XMCD is often described in a two step model [41], usually

for transition metal systems. This standard view is not strictly applicable

to the rare-earths, but nevertheless provides a useful intuitive picture of the

XMCD process, and so we review XMCD in transition metal systems before

describing the XMCD process in the rare-earths.

We consider XMCD at the L2 and L3 edge 2p→ 3d transitions which occur

in the 3d transition metals. In the first step, a polarized photon excites an

electron from the 2p state. The spin-orbit splitting of the 2p state means at the

L2 edge, where j = l−s = 1/2, the spin and orbital momentum are antiparallel,

and at the L3 edge, where j = 3/2, the spin and orbital moments are parallel.

Photons of positive helicity q = +1 will have a higher transition probability

of exciting spin-up electrons, and negative helicity photons (q = −1) will

preferentially excite spin-down electrons (see Figure 3.4). This is because the

matrix elements are largest for parallel helicity, spin, and orbital momentum.6

The second step of the process occurs when the spin-polarized photoelec-

trons transition into the unoccupied 3d states. If the bands are spin-polarized

due to exchange splitting, the majority (spin-down in this case) and minority

4The helicity is defined as the projection of the photon spin onto its momentum vector
(p̂ · S)

5The spin-moment is antiparallel to the expectation value of the spin : mS = −2µBS.
6Because the dipole operator r · ε does not act on spin, but only on orbital angular

momentum, the spin-orbit coupling of the core level is responsible for the spin polarization.

44



3.1 Synchrotron Techniques
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H
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Figure 3.4: A sketch of the XMCD process, showing only the dominant
transitions into the unoccupied exchange-split d states. The asymmetry in
absorption between x-rays with q = ±1 polarization results in the dichroic
signal.

(spin-up) bands form. The excited 2p photoelectrons cannot change their spin

due to the selection rule ∆S = 0, so the unoccupied d states act as a spin

detector. The imbalance in occupation is proportional to the magnetization

(|m| ∝ ρ↑(E)−ρ↓(E)), and thus the imbalance in I± is proportional to the mag-

netic moment per atom projected on the quantization axis; ∆I ∝ |m| cosϕ,

where ϕ is the angle between the magnetic field and quantization axis. Because

the exchange splitting ε is small compared to the overall bandwidth, we can

write ρ↑(E) = ρ↓(E + ε), and expanding to first order find ∆I ∝ dρ↓(E)
dE

. The

XMCD signal is thus proportional to the derivative of the density of states of

the final d levels. This is observed experimentally in Chapters 5 and 6 at the

rare-earth L-edge where the XMCD has a dispersive lineshape.

To summarize, circular dichroism at a spin-orbit split edge originates from

two effects: the spin-orbit splitting of the core levels and the exchange-splitting

of the unoccupied final states. The process is of course element specific, which

gives XMCD a major advantage over standard magnetometry methods which

cannot distinguish individual elemental contributions to the magnetization.
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Figure 3.5: Calculated atomic Gd 5d radial wave functions with spin up
and spin down, showing the spin-up wave function pulled slightly closer to the
nucleus, from Ref. [49].

3.1.6 Rare-earth L-edge XMCD

The rare-earth L-edge probes 2p → 5d transitions. As we saw in Chapter 2,

the unoccupied 5d states mediate exchange between ions in a superexchange

process. The 5d XMCD signal is thus a measure of this indirect exchange

mechanism. A further difference from the transition metal case is that the

matrix elements of the transition are spin-dependent.

In the RENs, the 5d bands are exchange-split into majority and minority

bands. These bands overlap with the 4f states enough that there is an ex-

change interaction between the 5d and 4f majority spin bands. Because the

exchange energy is negative, the 5d majority band then contracts towards the

nucleus, which increases the overlap with the 4f band and lowers the energy.

This can be seen in Figure 3.5, where a calculation for atomic Gd shows the

contraction of the Gd 5d spin-up radial wavefunction.

The contracted 5d majority band then overlaps more strongly with the 2p

orbitals, leading to an enhancement in transitions through the majority spin

channel, resulting in the spin dependence of the 2p→ 5d transition matrix ele-

ments. This spin-dependence of the matrix elements leads to a large branching

ratio between the L2 and L3 edges, with L2/L3 ∼ 10 for the light rare-earths,
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while the ratio is reversed for the heavy rare-earths. This makes direct appli-

cation of the sum rules impossible at the rare-earth L-edge, giving the wrong

sign and magnitude of the 5d spin and orbital moments [50–53].

Additionally, an electric quadrupole transition (2p → 4f) is also visible

in the XMCD spectrum of the light rare-earths due to relatively weak dipole

transition contributions [53], allowing a direct probing of the 4f magnetism.

The quadrupole feature is usually much weaker than the dipole transitions but

is often still visible. In Chapter 5 we shall see that the 2p → 4f quadrupole

transition at the Sm L3 edge is visible.

3.1.7 Rare-earth M-edge XMCD
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Figure 3.6: The initial J = 7/2 (f 13 configuration) and final state J = 5/2
(d9f 14 configuration) multiplet of Yb3+. When T = 0, only the J = M = 7/2
ground state is occupied, and there is only one transition (bold) to the J ′ =
M ′ = 5/2 final state. After Goedkoop et al. [54]

In M-edge XMCD of the rare-earths, the single-electron band picture we

described previously is complicated by the multiplet structure. In this case, it is
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easier to view the two-step XMCD process from an atomic point of view instead

of the energy band point of view, though the two pictures are equivalent. We

give an example of the rare-earth XMCD process in the simplest case of Yb3+,

with a ground state f 13 multiplet given by S = 1/2, L = 3, J = 7/2 [54]. The

same principles apply to the other rare-earths, which have much larger number

of dipole-allowed transitions.

We start with the Hunds’ rule ground state multiplet, in the presence of

a magnetic field. The presence of H lifts the 2J + 1 degeneracy of the J

multiplet, and the sublevels are split according to M = −J,−J + 1, . . . , J (see

Figure 3.6). In the ground state, only the lowest energy M level is occupied,

given by M = 7/2 when H is in the −ẑ direction. From this J = M = 7/2

level the dipole selection rule states that ∆J = 0,±1, and depending on the

photon helicity, ∆M = ±1.

If we examine the possible final states, we see there is only one, 3d9f 14,

which is equivalent to a single 3d hole with quantum numbers S = 1/2, L =

2, J = 5/2. This means that there is only one allowed transition with ∆J = −1

and ∆M = −1 to the final state J = M = 5/2 level. Thus photons with

q = +1 excite no photoelectrons and there is no absorption for I+. The

XMCD spectrum is just ∆I = −I− and consists of one transition (Figure 3.6).

The same reasoning determines the transitions from Sm3+, with a ground state

labeled by J = M = 5/2 in a magnetic field. However there are 946 final states,

with varying strengths, making the XMCD spectrum far more complex than

for Yb3+. For example, atomic multiplet calculations of the XMCD spectra

for Gd3+ and Sm3+ are shown in Figure 3.7, showing the three separate ∆J

contributions to the total XMCD signal at the M-edge.

3.1.8 XMCD sum rules

The resulting XMCD spectrum ∆I can be related to the spin (mS = −2µB 〈Sz〉)
and orbital (mL = −µB 〈Lz〉) moments of the occupied states via the sum rules

developed by Thole et al. [55] and Carra et al. [56]. We write them specifically

for the rare-earth M-edge for simplicity, though they can be written similarly

for any edge. In the case of the M-edge, the moments obtained from the sum
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Figure 3.7: Atomic multiplet calculations of Gd3+ and Sm3+ XMCD spectra
including simulated lifetime broadening and instrumental resolution broaden-
ing. The dipole-allowed transitions to the final states with ∆J = 0,±1 are
shown, with the sum over all these final states representing the XMCD spec-
trum. Calculated using Missing [44].

rules refer to the occupied 4f states only. The isotropic absorption can be

written as IS = I+ + I− + I0, and

A4,5 =

∫
M4,M5

dE IS, ∆A4,5 =

∫
M4,M5

dE ∆I, (3.17)

are the integrals of IS and ∆I over either the M4 or M5 edge energies. The

orbital sum rule is given by

〈Lz〉 = nh
∆A4 + ∆A4

A4 + A5

(3.18)

where nh = 14− n is the number of 4f shell holes in the initial state (denoted

4fn). The spin sum rule is slightly more complex and is given by

〈Sz〉 = nh
∆A5 − 3

2
∆A4

A4 + A5

+ 6 〈Tz〉 , (3.19)

where Tz is the magnetic dipole operator which is related to the asphericity of

the charge distribution. For the rare-earths this term is significant and must

49



Chapter 3 Experimental Techniques

be calculated in order to apply the sum rules. In 3d transition metal systems

the magnetic dipole contribution is very small and often ignored. There are

many limitations to applying the sum rules, as outlined in de Groot & Kotani

[42], however they provide the theoretical link between the XMCD spectra and

the orbital and spin moments. In the RENs information on the overall sign

of 〈Lz + 2Sz〉 can be determined from XMCD. This is especially important in

the case of SmN, where the the spin and orbital moments are nearly equal in

magnitude but have opposite signs. By looking at the overall sign of the ∆I

spectrum can tell if mL or mS is larger.

3.2 Thin Film Growth

The growth of rare-earth nitride samples is a challenge due to the propensity

for the rare-earth elements to oxidize when in atmosphere, which is especially

strong in the light rare-earths. In order to prevent oxidation of samples special

preparation conditions must be in place. The methods of growing high quality

rare-earth nitride thin films have recently been established in the laboratory

at Victoria University, and are reviewed in detail by Natali et al. [2]. The

most successful methods used include molecular beam epitaxy, pulsed-laser

deposition, and dc/rf magnetron sputtering. The benefits of these methods

are the use of high and ultra-high vacuum systems as inert gas environments

which prevent contaminants in the growth process. In this thesis, we use a

molecular beam epitaxy technique (MBE).

In the MBE growth of REN thin films, an ultra-high vacuum chamber with

a base pressure of ≤ 10−8 Torr is used to minimize contaminants and prevent

oxidation of the highly reactive rare earths. The basic operating principle can

be summarized in the following way. High purity rare-earth metals are heated

to the point of evaporation with either an electron gun or by using a thermal

evaporator (a boron nitride crucible heated with tungsten filaments). At the

same time ultra-high purity N2 gas is released into the chamber at a pressure

between 10−5 and 10−4 Torr (another variant uses an NH3 nitrogen precursor

[13]). A crystalline substrate is then mounted on a rotating platform and the

REN forms on the surface of the substrate. The evaporation rate of the RE
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metal is measured using a quartz crystal balance. The temperature of the sub-

strate, N2 pressure, and evaporation rate all must be carefully controlled to

achieve high quality films. Epitaxial REN films are achieved at higher growth

temperatures, while room temperature growth generally leads to textured poly-

crystalline films [57]. The number of nitrogen vacancies also depends on the

growth parameters, and thus strongly affect the electric transport properties,

while the magnetic properties are affected to a lesser degree. For GdN, the

Curie temperature is seen to vary from 50 K with low carrier concentration

(< 1018 cm−3) to 70 K for concentrations greater than 3 × 1020 cm−3. The

mechanism is thought to be due to the formation of magnetic polarons, and

not an RKKY exchange mechanism [12, 13].

For ex-situ study, however, a passivating capping layer must be used to

prevent oxidation of the film. Typical choices are insulating GaN or AlN films,

grown with the same technique as the REN films. Low energy ions from a

Kaufman type ion source are used for the growth of GaN and AlN films, as

well as EuN.

The choice of substrates plays an important role in the REN film growth.

The rocksalt structure of the RENs suggests the use of substrates with cubic

structure, however MgO and ytrria stabilized zirconia (YSZ) have shown the

propensity for oxygen contamination due to oxygen diffusing into the REN film

during high temperature growths. Non-cubic crystal structure substrates may

also be used. High quality epitaxial REN films have been demonstrated on

commercially available single crystal c-plane GaN and AlN buffer layers (100

nm thick) on sapphire substrates, while sapphire substrates may also be used

to produce highly textured polycrystalline samples. The six-fold hexagonal

symmetry results in a [111] oriented growth direction for the rocksalt structure

RENs.

In this thesis, the specific growth conditions of each sample are listed in

the experimental details section of the corresponding Chapter.
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Chapter 4

SmN and NdN Magnetism

4.1 Introduction

In this chapter we investigate the ferromagnetic state of SmN and NdN using

atomic calculations and compare with experimental data. These calculations

consider only the 4f states, ignoring other possible contributions such as con-

duction electron polarization to the magnetic moment. In the calculations we

explore the results when excited J multiplets and crystal field interactions are

incorporated. We employ methods developed by Buschow, Dewijn et al. [35,

58–60] for Sm systems, which allows for calculation of crystal fields within

arbitrary multiplets. We also use a self-consistent method to deal with the

exchange interaction [29, 61] and carry out the first detailed study on SmN

and NdN using this method.

The motivation for this endeavor is twofold. First, we would like to compare

these crystal field calculations to band-structure calculations previously carried

out on the RENs. Only a few such band-structure calculations exist for the

RENs, and the calculated magnetic properties contradict experimental results

in some cases. Second, a better understanding of how the spin and orbital

moments contribute to the net moment in SmN and NdN will be useful for the

XMCD study of SmN/GdN and NdN/SmN superlattices in Chapters 5 and 6.

There are relatively few theoretical studies of NdN and SmN, compared

to GdN. This is perhaps because GdN is in some ways simpler, having the

S = J = 7/2, L = 0 Hund’s rule ground state. This L = 0 state means that
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there is no spin-orbit coupling, thus the orbital wave function is spherical,

leading to nearly zero interaction with the crystal field.1 In comparison the

other RENs have L 6= 0 orbital wave functions, and in addition strong spin-

orbit coupling means that any effects from the crystal field are felt by both

orbital and spin moments.

For SmN and NdN then, the coupling of the orbital moment to the lat-

tice (crystal field interaction) and the spin-orbit coupling may have significant

effects on the resulting magnetic properties in both ferromagnetic and param-

agnetic phases. Our aim then, is to determine the degree to which the crystal

field arising from the N ions influences the 4f magnetic moments.

The calculations in the following were all carried out with original code

written in Python by the author.

4.2 SmN Magnetism

4.2.1 Experimental background

Before proceeding to the calculations, we review some experimental SmN data.

The most careful examination of SmN magnetization in thin films was carried

out by Meyer et al. [30], who demonstrated that SmN has a ferromagnetic

ground state with an ordered moment of m = 0.035 µB per Sm3+ below the

Curie temperature of 27± 3 K. Some of the low temperature hysteresis curves

are shown in Figure 4.1. We note that this moment is considerably smaller

than the free-ion moment of µBgJJ = 0.74 µB. The paramagnetic susceptibil-

ity follows a Curie-Weiss law with a temperature independent van Vleck con-

tribution, with an effective paramagnetic moment of 0.45 µB per ion, smaller

than the paramagnetic µBgJ
√
J(J + 1) = 0.85 µB free-ion value. These find-

ings agreed well with an earlier study of SmN that found an ordered moment

of less than 0.1 µB per ion and observed semiconducting behavior over the

measured temperature range [5].

The paramagnetic moment in Ref. [30] was interpreted within a crystal

1In this case the small magnetic anisotropy is mainly due to dipolar interactions between
ions.
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field model assuming that the cubic crystal field in SmN splits the ground state

J = 5/2 level into a doubly degenerate Γ7 state and a four-fold degenerate Γ8

state. Assuming only the Γ7 doublet was occupied at temperatures just above

the ordering temperature, the effective paramagnetic moment was calculated

as 0.41 µB, using first order perturbation theory to calculate the susceptibility.

The calculation was equivalent to restricting the sum over the Zeeman sub-

states used in the derivation of the free-ion paramagnetic moment (Chapter

2). The good agreement with this calculated paramagnetic moment and the

observed value suggests that the crystal field is significant and should be taken

into account when calculating the ground state magnetic moment.

In an effort to separate the spin and orbital contributions to the magneti-

zation, an XMCD study was carried out on a homogeneous SmN sample [19].

This study found that the orbital moment in SmN is parallel to the net magne-

tization, making SmN an orbital-dominant ferromagnet. Other Sm3+ systems

do not necessarily share this orbital-dominant feature, which depends on the

bonding environment of the ion and the contribution of conduction electrons.

SmAl2 is known to be an orbital dominant ferromagnet, with a moment of

0.26 µB, while SmZn and SmCd have their net magnetization antiparallel to

the orbital moment [29]. However, we note that in distinction to SmN, all

these systems are metallic, and the effects of conduction electron polarization

and screening are quite different in SmN.

4.2.2 SmN calculations

Many of the properties of SmN are dictated by the Sm3+ ion, which has been

studied in a number of compounds in the past, including metallic Laves-phase

compounds such as SmAl2, Sm1−xGdxAl2, and Sm1−xNdxAl2 [35, 58, 60, 62–

65], CsCl-type structure SmZn and SmCd [29], and Sm metal [61]. One con-

clusion to be drawn from these studies is that the magnetic properties of Sm3+

ions in various compounds are influenced to a significant degree by the first

excited J = 7/2 states, in addition to the ground J = 5/2 state. There are

two reasons for this, 1) the exchange and Zeeman terms along with the crystal

field of the surrounding N ions cause admixtures of the ground and excited
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Figure 4.1: Plots taken from Meyer et al. [30] showing magnetization mea-
surements of SmN. a) Susceptibility shows a fit to Curie-Weiss with temper-
ature independent van Vleck contribution. b)–d) Hysteresis curves with field
cooling in 6 T (white squares) and with zero field cooling (red circles). The
coercive field at 2 K is greater than 6 T, preventing significant hysteresis, how-
ever the shift in the field cooled loop at 2 K shows that ferromagnetic order is
present.
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states, and 2) the small ground state g factor of 2/7 for Sm3+ means the ma-

trix elements within the J = 5/2 state are small compared to matrix elements

between the ground and excited states. We shall demonstrate these statements

explicitly in the following.

For SmN we are interested in understanding the origin of the small ferro-

magnetic moment of about 0.035 µB. Calculations carried out by Larson et

al. [14] using density functional theory calculations in the LSDA+U approxi-

mation found the same magnitude ferromagnetic moment, however they found

that the net moment was parallel to the 4f spin moment, in contradiction to

experimental results [19]. The 4f orbital and spin moments were calculated

to be m4f
L = −4.85 µB and m4f

S = 4.91 µB. Small contributions were also

found to the Sm 5d states (0.105 µB parallel to m4f
S ) and from the N 2p states

(0.136 µB parallel to m4f
L ). It is interesting to note that these moments were

calculated by assuming a “modified” Hund’s rule ground state as a starting

point for the calculation2, assuming not that L is a maximum (Hund’s second

rule, as in Chapter 2) but that Lz should be a maximum in the ferromagnetic

phase. In this case they a priori assume the z components of the 4f moments

are at the maximum, and let the calculation run until convergence. However,

it is not clear that this is a good starting point. To gain some insight into we

turn to the atomic 4f Hamiltonian.

4.2.3 Calculation procedure

To calculate the spontaneous ferromagnetic moment of SmN effects, we con-

sider the single ion Hamiltonian

H = HSO + Hex + HCF, (4.1)

where the terms correspond to contributions from the 4f spin-orbit coupling,

exchange coupling, and crystal field interaction. In the Sm3+ ion, the J = 5/2

ground state is separated by about 1500 K from the first excited J = 7/2 state

2They found that a guess of the initial state following the modified Hund’s rules symme-
try yielded a lower energy solution compared to an initial state which obeyed strict cubic
symmetry.
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[29, 30]. This seems to be large enough a separation to ignore any contribution

from the J = 7/2 state when considering that the ferromagnetic phase of SmN

occurs below 30 K. However, in the Sm3+ ion the inclusion of this state is known

to be important[29, 35]. We begin by examining the simplest case, where there

is no external field or crystal field. The Hamiltonian (4.1) including only spin-

orbit coupling and exchange can then be written as

H = ΛL · S + Hex · S, (4.2)

The spin-orbit coupling constant Λ is approximately Λ = 430 K, calculated

from a knowledge of the energy splittings between J multiplets, which is ex-

pressed as ∆E = EJ+1 − EJ = Λ(J + 1), where ∆E = 1500 K, [29, 30].

The second term represents the effect of inter-ion exchange through an

exchange field Hex which is defined by Hex = −2Jex 〈Sz〉, where Jex is the ex-

change energy and 〈Sz〉 is the expectation value of the spin operator. This is

just the mean-field approximation discussed in Chapter 2. We note that while

the mean-field approximation is often written with the molecular field propor-

tional to the magnetization, this is only true if there is no orbital moment.

The exchange acts only on the spin.

The constant Jex = 7.9 K is estimated from the SmN θp ≈ 27 K using

the mean-field approximation (Chapter 2).3 However, we note that the mean-

field theory we derived in Chapter 2 only considered θp in the case of a single

multiplet. For Sm3+, there is a temperature independent contribution to the

susceptibility χV V . In this case, the mean-field relationship described in Chap-

ter 2 is modified by the van Vleck susceptibility χV V :

1

χ
=

1

χ0

− λ =
1

χCW + χV V
− λ, (4.3)

where λ = (V/N)2Jex(gJ − 1)2/(gJµB)2. This changes the relationship θp =

2Jex(gJ − 1)2J(J + 1)/3kB slightly, and thus our estimate of Jex. Solving for

3In this chapter Kelvins are the most convenient unit to represent the exchange constant,
where kB 300 K ≈ 25 meV.
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Jex gives

Jex =
3

2

kBθp
(gJ − 1)2J(J + 1)

[
1

1 + 12kBθp/∆E

]
. (4.4)

where ∆E = 1500 K. The term in brackets is the correction due to the van

Vleck contribution, which can be viewed as a first order correction to the

exchange constant due to the first excited J multiplet. Only for Sm and Eu is

this correction large enough to be considered, and in the case of Sm3+ it gives

a correction factor of [1+12kBθp/∆E]−1 = 0.83, yielding Jex = 7.9 K. We note

that using the data from Meyer, the estimate of θp was within uncertainty equal

to TC . While the correction here does not significantly change the results of

the following calculations, we include it demonstrate how excited J-multiplets

can influence the exchange constant.

In order to diagonalize H , we need to consider two things; 1) an initial

value of 〈Sz〉, and 2) the basis states to include. The first issue can be ad-

dressed by adopting a self-consistent routine where an initial guess of 〈Sz〉
is made. Then H can be diagonalized, yielding the energy eigenvalues and

eigenstates from which we can then calculate the expectation value 〈Sz〉. This

value is then put back into H and the process repeated until the calculated

expectation value differs from the initial by | 〈Sz〉out − 〈Sz〉in | < ε, where ε is

some sufficiently small number. The expectation values can then be used to

calculate the total ferromagnetic moment

m = −µB 〈Lz + 2Sz〉 . (4.5)

The next question is which basis states to use. There are two choices,

the so-called JM -basis or MLMS-basis (as discussed in Chapter 2). Both are

bases are complete, however we use the JM basis for convenience, primarily

because crystal field calculations are simplified in this basis. This is the normal

scheme used for rare-earths because HSO is diagonal in this basis, and is

generally much larger than exchange, Zeeman, and crystal field energies. In

transition metal systems where the Zeeman contribution is dominant, it is more

59



Chapter 4 SmN and NdN Magnetism

convenient to use the MLMS basis. If we consider only a single4 J multiplet,

the matrix elements of the angular momentum operators can be derived via

the Wigner-Eckart theorem [23, 32]:

〈J ′MJ ′|L · S |JMJ〉 =
1

2

[
J2 − (L2 + S2)

]
δMJ′ ,MJ

=
1

2
[J(J + 1)− (L(L+ 1) + S(S + 1))] δMJ′ ,MJ

(4.6)

〈J ′MJ ′|Sz |JMJ〉 = (gJ − 1)MJ δMJ′ ,MJ
(4.7)

〈J ′MJ ′ |Lz |JMJ〉 = (2− gJ)MJ δMJ′ ,MJ
(4.8)

〈J ′MJ ′ |Lz + 2Sz |JMJ〉 = gJMJ δMJ′ ,MJ
, (4.9)

where the delta functions δMJ ,MJ′
show that the matrix elements are diagonal

with respect to MJ .

We are interested in the ground state ferromagnetic moment as T → 0,

which we can compare with low temperature experimental data. This means

we diagonalize H and calculate expectation values within the ground state

only, without any thermal averaging. If we restrict to only the J = 5/2

multiplet, the Hamiltonian (4.5) is already diagonal, and the ground state

magnetic moment is simply given by Equation (4.9),

m = −µB 〈JMJ |Lz + 2Sz |JMJ〉 = −µBgJMJ ≈ 0.714 µB, (4.10)

where the ground state is denoted by J = 5/2 and MJ = −5/2. This is just the

saturation moment gJµBJ , which is 20 times larger than the experimentally

observed 0.035 µB per ion. This is because we have neglected higher multiplets

and crystal field effects. We note that the inclusion of the exchange term has

4When considering excited J multiplets, there is no simple relationship linking 〈Lz + 2Sz〉
and 〈Sz〉, and the ratio 〈Lz〉 and 〈Sz〉 is no longer fixed, but depends on the parameters of
the Hamiltonian.
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4.2 SmN Magnetism

no effect on the ground state if only a single multiplet is considered.

4.2.4 Excited states

If we now include the J = 7/2 and higher multiplets, the Hamiltonian ac-

quires off-diagonal terms. The exchange term, proportional to Sz, has matrix

elements connecting states with J differing by 1, and with the same M value.

In fact, we find that the matrix elements of the total moment 〈Sz + 2Lz〉,
within the J = 5/2 multiplet (which are of order gJ) are smaller than the

matrix elements connecting the J = 5/2 and J = 7/2 multiplets. We first

show how to calculate the matrix elements for arbitrary J using the algebraic

techniques originally developed by Racah [66]. In particular we follow the ap-

proach of Buschow, Dewijn et al.[35, 58–60], who have shown how to carry out

crystal field calculations within arbitrary multiplets (See Appendix A for the

derivation). In this approach we can calculate the matrix elements of Sz and

Lz as:

〈JM |Sz |J ′M ′〉 = (−1)J−M+L+S+J ′+1
√

(2J + 1)(2J ′ + 1)

×

(
J 1 J ′

−M 0 M ′

){
S S 1

J J ′ L

}√
S(S + 1)(2S + 1),

(4.11)

and

〈JM |Lz |J ′M ′〉 = (−1)J−M+L+S+J ′+1
√

(2J + 1)(2J ′ + 1)

×

(
J 1 J ′

−M 0 M ′

){
L L 1

J J ′ S

}√
L(L+ 1)(2L+ 1),

(4.12)

where the term in parenthesis is the Wigner 3j symbol, proportional to a

Clebsch-Gordan coefficient:(
J1 J2 J3

M1 M2 M3

)
=

(−1)J1−J2−M3

√
2J3 + 1

〈J1M1J2M2| J3 −M3〉. (4.13)

The term in braces is the Wigner 6j symbol, which is equal to a sum over

products of Wigner 3j symbols (see, e.g. Cowan [21] for various properties of
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Chapter 4 SmN and NdN Magnetism

the Wigner symbols). Values of the symbols can be found in tables [21], how-

ever algorithms for calculating them are available, e.g., in the SymPy Wigner

package [67], written in Python.

The properties of the 3j and 6j symbols result in the selection rules ∆J =

J ′ − J = 0,±1 and M = M ′. The matrix representation Sz or Lz will then

be composed of pseudo-diagonal submatrices. For example, if we consider the

lowest three multiplets (J = 5/2, 7/2, 9/2) of Sm3+, then the matrix represen-

tation of Sz has the following structure:

[Sz]24×24 =

 [J = 5/2]6×6 [∆J = ±1]6×8 [0]6×10

[∆J = ±1]8×6 [J = 7/2]8×8 [∆J = ±1]8×10

[0]10×6 [∆J = ±1]10×8 [J = 9/2]10×10

 , (4.14)

where each of the nine submatrices is diagonal with respect to M . The subma-

trices corresponding to the same J are square matrices, while the off diagonal

submatrices (∆J = ±1) involving transitions between multiplets have dimen-

sion (2J + 1) × (2J ′ + 1). The ∆J = ±2 matrix elements are all zero by the

properties of the 3j and 6j symbols.

Figure 4.2 shows the sign and magnitude of all the matrix elements of Sz,

Lz and Mz within the J = 5/2, 7/2, 9/2 multiplets. In this figure one can

observe the matrix elements of Lz + 2Sz connecting the J = 5/2 and J = 7/2

states are larger than the matrix elements with the J = 5/2 state. This is due

to the small g factor of the J = 5/2 state, and is one reason why incorporating

higher multiplets is necessary when dealing with the Sm3+ ion.

Now that we have the tools to evaluate all the matrix elements, we can find

the eigenstates and eigenvalues of the Hamiltonian (4.1) in the representation

which includes excited states. Like in the previous section, we calculate only

the ground state expectation value of Lz + 2Sz. We label the eigenstates of

H as |ψi〉 with associated eigenvalues Ei, which satisfy

H |ψi〉 = Ei |ψi〉 . (4.15)

These eigenstates can be written as a linear combination of the basis states
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Figure 4.2: The matrix elements of Sz, Lz and Lz + 2Sz with for the lowest
three multiplets, J = 5/2, 7/2, 9/2.
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J multiplets 〈Sz〉 〈Lz〉 〈Lz + 2Sz〉
5/2 -1.786 4.286 0.714
5/2, 7/2 -1.852 4.352 0.648
5/2, 7/2, 9/2 -1.852 4.352 0.648

Table 4.1: Expectation values based on number of multiplets included.

|JMJ〉;

|ψi〉 =

9/2∑
J=5/2

J∑
MJ=−J

Ci
J,MJ
|JMJ〉 . (4.16)

where the Ci
J,MJ

are the coefficients found in the diagonalization process. We

are interested in the ground state |ψ0〉 which has the lowest energy eigenvalue,

E0. In this case the expectation value of Sz can be calculated as

〈ψ0|Sz |ψ0〉 =

9/2∑
J=5/2

J∑
MJ=−J

9/2∑
J ′=5/2

J ′∑
MJ′=−J ′

C∗0J,MJ
C0
J ′,MJ′

× (−1)J−MJ+L+S+J ′+1
√

(2J + 1)(2J ′ + 1)

×

(
J 1 J ′

−MJ 0 MJ ′

){
S S 1

J J ′ L

}√
S(S + 1)(2S + 1)

× δJ,J ′±1, δMJ ,MJ′
.

(4.17)

The properties of the 3j symbol make the matrix element zero unlessMJ = MJ ′

and J ′ = J ± 1, this has been incorporated explicitly via the delta functions.

Calculating the expectation values of Lz and Lz + 2Sz follows similarly.

After carrying out the self-consistent calculation, we find that by including

the J = 7/2 and J = 9/2 states in addition to the ground state, we obtain

〈ψ0|Lz+2Sz |ψ0〉 = 0.648, which is about 10% smaller than the saturation value

of 0.714. This is primarily due to the influence of the J = 7/2 multiplet, as to

the quoted precision 〈ψ0|Lz + 2Sz |ψ0〉 = 0.648 is returned without inclusion

of the J = 9/2 multiplet, as shown in Table 4.1.

We can see that there is some reduction of the ground state magnetic

moment due to the exchange interaction mixing in contributions from the
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4.2 SmN Magnetism

J = 7/2 multiplet. However, there is no further reduction in the moment

by inclusion of the higher multiplets, so a simple exchange mechanism is not

enough to explain the small ferromagnetic moment of the SmN. However, we

have so far neglected the effects of the crystal field, which are known to be

important in rare-earth elements, and which we will explore in the next section.

We note that if the spin orbit coupling is very small, and acts only as a

perturbation to the exchange term, then the moment is reduced to zero when

higher multiplets are included. This is because for small spin-orbit coupling,

Lz and Sz take on fixed values of ML and MS (i.e Lz |ψ〉 = ML |ψ〉 and Sz |ψ〉 =

MS |ψ〉), and the ground state then has ML = 5 and MS = −5/2, which gives

zero net moment. This seems to be equivalent to the modified Hund’s rules

given in Larson et al [14], where they assume that |Lz| should be a maximum

in the ferromagnetic state.

4.2.5 SmN crystal field

In this section we incorporate the crystal field terms following the discussion in

Chapter 2. The crystal field further mixes the J = 5/2 ground state with the

higher multiplets due to off-diagonal terms in the Hamiltonian. We choose the

z axis to be along the [111] direction, which is the easy axis if the anisotropy is

only due to the single-ion anisotropy.5 The crystal field Hamiltonian is given

by [34, 35]

HCF =− 2

3
A4

∑
i

(
f40(ri)− 20

√
2f43(ri)

)
+

16

9
A6

∑
i

(
f60(ri) +

35
√

2

4
f63(ri) +

77

8
f66(ri)

)
,

(4.18)

where the Tesseral harmonics fkq(ri) described in Chapter 2 are tabulated in

Hutchings [34], and A4 and A5 are the crystal field parameters. The sum

is over the five 4f electrons. To calculate the matrix elements of HCF we

5This was reported in [58] for some Sm systems with similar parameters, and here we
also found that choosing z parallel to [001] gave a higher ground state energy. This gave
moments differing by no more than 15 %, which is not large given experimental uncertainties
and the neglect of other contributions to the net moment.
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Chapter 4 SmN and NdN Magnetism

must consider the r-dependence, which means that the radial part of the 4f

wave function, which we denote by Ψ(4fn), must be included. For example,

in Chapter 2 we saw that fkq(ri) ∝ rk[Y −qk (θ, φ) + (−1)qY q
k (θ, φ)], so a typical

matrix element to be calculated is given by

〈Ψ(4fn)JM |
∑
i

rki Y
q
k (θi, φi)|Ψ(4fn)J ′MJ ′〉 =

(−1)J−M+L+S+J+k
√

(2J + 1)(2J ′ + 1)×

(
J k J ′

−M q M ′

)

×

{
L L k

J J ′ S

}
〈Ψ(4fn)L||

∑
i

rki Yk||Ψ(4fn)L〉.

(4.19)

where the reduced matrix element Rk,n = 〈Ψ(4fn)L||
∑

i r
k
i Yk||Ψ(4fn)L〉 is

independent of q but does depend on the number n of 4f electrons (n = 5

for Sm3+). It has been calculated for all of the rare-earths in [35] as Rk,n =

constant×
〈
rk
〉
. Appendix A discusses the evaluation of Rk,n and lists the Rk,n

values for Sm3+ and Nd3+. The selection rules from the 3j and 6j symbols

tell us that q = M −M ′, |J − J |′ 6 k 6 J + J ′, and k 6 2L. We are now

in a position to calculate the matrix elements of Equation (4.18). However,

we have not calculated the radial integrals
〈
rk
〉
, and instead factor them out

along with the constants Ak. In this way an arbitrary matrix element of HCF

has the form

〈JM |HCF |J ′MJ ′〉 = aA4

〈
r4
〉

+ bA6

〈
r6
〉
, (4.20)

where a, b are real numbers. By doing this, we leave A4 〈r4〉 and A6 〈r6〉 being

adjustable parameters that don’t depend on the validity of the radial integral

calculations, which are calculated within various approximations. Our aim is

to determine the expectation value of 〈Lz + 2Sz〉 for a range of crystal field

parameters A4 〈r4〉 and A6 〈r6〉.
We now have all the tools to diagonalize the full Hamiltonian using the

self-consistent scheme for 〈Sz〉:

H = ΛL · S− 2Jex 〈Sz〉Sz + HCF . (4.21)
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Figure 4.3: Plot of 〈Lz + 2Sz〉 for values of A4 〈r4〉 and A6 〈r6〉 which in-
cludes the three lowest J multiplets. The symbols correspond to the value of
〈Lz + 2Sz〉 calculated using the crystal field parameters derived from a point
charge model using an effective charge Z. The area to the right of the grey
curve corresponds to the Γ7 ground state.

The result for a parameter range of A4 〈r4〉 , A6 〈r6〉 ∈ [−350 K,+350 K] is

given in Figure 4.3. We see contours of constant 〈Lz + 2Sz〉 plotted, with the

experimental moment of 0.035 µB shown with a dashed line.

We recall the discussion of Chapter 2, in which we noted that in a cubic

crystal field the J = 5/2 ground state splits into a twofold degenerate Γ7

(doublet) state and fourfold degenerate Γ8 (quartet) state. Depending on

the crystal field parameters, either the doublet or quartet state is lower. By

examining the eigenvalues of HCF it becomes clear that the states to the right

of the grey line all have the Γ7 doublet as the ground state, while to the left

of the grey area the quartet is the ground level.
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From the results of Meyer [30] it was determined from the magnitude of

the paramagnetic moment, that the Γ7 doublet has the lower energy in the

J = 5/2 manifold. We can thus restrict our attention to this area, and see to

return a ferromagnetic moment of 0.035 µB there is a single line of possible

crystal field values. We can compare these values with the point-charge model

for comparison.

In the point charge-model, the coefficients A4, and A6 can be calculated in

the following way, assuming that the rare-earth ion has octahedral coordination

[68]:

A4 =
7

16

Ze2

R5
, A6 =

3

64

Ze2

R5
, (4.22)

where −Z|e| is the effective charge of each N ligand, and R is the separation

between the Sm ion and N. The radial integrals
〈
rk
〉

can be calculated in

various approaches. Here we use the non-relativistic Hartree-Fock values from

Freeman and Watson [69], with 〈r4〉 = 1.897 a4
0 and 〈r6〉 = 8.775 a6

0, where

a0 = 0.529 Å is the Bohr radius. This leads to

A4

〈
r4
〉

= 335 K, A6

〈
r6
〉

= 7.4 K, (Z = 3) (4.23)

for Z = 3, the value we might expect for the trivalent N. From these values one

can calculate a moment of −0.039 µB, which is about the same magnitude as

the experimental moment, however here it is negative because the spin moment

is larger than the orbital moment. If we calculate for say Z = 2 the parameters

returned are

A4

〈
r4
〉

= 222 K, A6

〈
r6
〉

= 4.9 K, (Z = 2) (4.24)

for which a moment of 0.080 µB is returned, only about twice as large as the

experimental moment, but with the correct orbital dominant sign. We find

that using Z = 2.4 gives the crystal field parameters A4 〈r4〉 = 267 K and

A6 〈r6〉 = 5.9 K which return the experimental moment. We note that if only

the J = 5/2 multiplet is included in the calculation, the moment returned is

0.28 µB, nearly an order of magnitude larger.
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J = 5/2, 7/2, 9/2 included
Jex Z 〈Sz〉 〈Lz〉 〈Lz + 2Sz〉

7.9 K 3 −1.00 1.95 −0.039
7.9 K 2.4 −0.98 2.00 0.032
7.9 K 2 −0.98 2.05 0.081

J = 5/2 only
Jex Z 〈Sz〉 〈Lz〉 〈Lz + 2Sz〉

7.9 K 2.4 −0.70 1.69 0.28

Table 4.2: Expectation values of magnetic moments in SmN with crystal field
parameters calculated in the point charge model, where −Z|e| is the charge of
the N ions.

The parameter Z (or rather −Z|e|) is essentially an empirical fitting pa-

rameter, and a value less than 3, expected for trivalent nitrogen in the ionic

limit, indicates that the point charge model breaks down. The view of point-

like charges is clearly an oversimplification as the nitrogen orbitals overlap with

the rare-earth valence shell and screening reduces the effective charge felt by

the rare-earth ion. Furthermore, calculation of the radial integrals depends on

the method used to some degree, with relativistic calculations giving slightly

different values.

Nevertheless, while the point charge model cannot explain the crystal field

parameters in terms of wave functions, we still see excellent agreement between

the experimental moment and the point charge model with Z between 2 and

3. Aside from just the magnitude of the moment, the correct orbital dominant

sign is returned. And finally, the Γ7 doublet ground state observed in the

paramagnetic phase is in agreement with the ferromagnetic moment.

We note that another mechanism for the moment reduction is conduction

electron polarization, which has a contribution of mCE = −2J ρ(Ef ) 〈Sz〉µB,

where J is the exchange integral between the 4f and conduction electrons,

and ρ(EF ) is the density of states at the Fermi level [29]. Because mCE ∝ mS,

the effect of the conduction electron polarization is to reduce the net mo-

ment in the current case. If this contribution is large enough, mS + mCE can

even exceed mL and the net moment will be spin-dominant. Because this
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spin-dominance is not observed in SmN, we can conclude that the conduction

electron polarization does not play a dominant role, as it does in some metal-

lic Sm systems [29]. This is not surprising as it appears SmN is not metallic

but semiconducting [5], though nitrogen vacancies provide some donor doping.

We can make a rough estimate of the contribution of nitrogen vacancies to

the magnetic moment. If each vacancy contributes 1-3 electrons (1 µB per

vacancy), then if 1% of the N sites are vacant the contribution to the conduc-

tion electron moment is only about 0.01µB. This 1% nitrogen vacancy leads

to a carrier concentration of about (0.3-1) × 1021 cm−3 which is common in

the RENs, with even lower values found in GdN [12]. This is a much smaller

effect than the crystal field even for a large number of vacancies.

The contributions to the net moment from N 2p and Sm 5d states are

unknown, due to the inapplicability of the XMCD sum rules at the N K-edge

and the rare-earth L-edge. N K-edge XMCD has been observed in GdN for

example [3], and is likely present in SmN as well. The results of Larson indicate

that these contributions are around 0.1 µB (though of opposite sign, cancelling

to a large degree).

Band structure calculations are necessary to fully understand the picture in

SmN by taking into account the overlap and hybridization effects between the

various rare-earth and N orbitals. However, only two published band-structure

calculations are available for SmN, made by Larson et al. [14] and Morari et

al. [18] who both used the LSDA+U method. In both cases the calculations

found that the spin moment is larger than the orbital moment, and find values

m4f
S and m4f

L close to 5 µB. This is at odds with the experimental finding

of an orbital dominant moment in SmN [19], and the present calculations,

where the spin moment of SmN is shown to be antiparallel to the net moment.

Furthermore, the current calculations show that both spin and orbital moments

have magnitudes close to 2 µB, signalling partial quenching of the moments.

This partial quenching is in agreement with recent studies of some heavy rare-

earth nitrides, ErN, HoN, and DyN [6, 70].
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4.3 NdN Magnetism

NdN, another light rare-earth nitride, is interesting to study alongside SmN as

it also shares an orbital dominant moment. The Hund’s rule ground state of

Nd3+ is given by L = 6, S = 3/2, and J = 9/2. Unlike the near cancellation

between spin and orbital moments in ferromagnetic SmN, in NdN the orbital

moment should exceed the spin moment considerably, and indeed leads to

sizable moments. A handful of magnetic studies on NdN were carried out in

1960s and 1970s on powder samples, with experimental ferromagnetic moments

reported in the range 1.8 to 3.1 µB, along with Curie temperatures of 28–35 K

(see table 33.9 in Ref. [71] and references therein). The 3.1 µB ferromagnetic

moment (from Ref. [72]) should not be taken seriously, as the moment was

calculated from neutron diffraction data measured at 80 K and 290 K, well

into the paramagnetic regime where the occupation of crystal field levels is

different from the ground state. In particular, an analysis of the magnetization

by Schumacher and Wallace [73] found a paramagnetic moment of 3.70 µB at

296 K, but an ordered moment of 2.15 µB at 2.5 K. The paramagnetic Curie

temperature was found to be θp = 15 K, with TC = 35 K (See Figure 4.4).

For comparison, in the NdN J = 9/2 ground state, with gJ = 8/11, the

saturation magnetization is µBgJJ = 3.27 µB, much larger than any of the

reported ordered moments, while the effective paramagnetic moment can be

calculated as µBgJ
√
J(J + 1) = 3.62 µB, close to the value obtained by Schu-

macher and others [71].

Other Nd pnictides (P, As, Sb, Bi), which order antiferromagnetically, are

known to undergo a small tetragonal distortion around the Néel tempera-

ture TN [71, 74], with the octahedron of N anions compressed along one axis.

There are also a single reference to the same effect occuring in a study of

Nd1−xOxN1−x with x = 0.02±0.01. [75]. In this case they also found values of

the paramagnetic and ordered moments similar to Schumacher. The indication

from the Nd pnictides is that the structural transition occurs at, or slightly

above the magnetic ordering temperature [72, 76, 77].

We present here magnetization measurements on a thin film NdN sample in

order to compare to previous NdN measurements. The MBE method of growth
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Figure 4.4: Inverse susceptibility of the bulk NdN sample of Schumacher
[73], and the thin-film NdN sample, which was measured with H = 250 Oe
and in-plane.

was used, outlined in Chapter 3. The NdN film was grown on a c-plane sapphire

(Al2O3) substrate with an AlN capping layer to prevent oxidation. The film

was grown at a rate of 0.1-0.2 Å/s at 390◦ C. The 120 nm thickness of the

film was determined via x-ray reflectivity measurements. While this particular

sample was not measured with XRD, similar NdN films grown on sapphire

substrates have shown [100] texturing when grown at room temperature while

higher temperature growths show an additional [111] reflection.

In Figure 4.4 we present a plot of the inverse susceptibility taken from Ref.

[73], along with the recently measured thin film NdN inverse susceptibility

for comparison. We have fit the susceptibilities according to a Curie-Weiss

approach

χ =
A

T − θp
+B, (4.25)

with the parameter A given by nµ0µ
2
Bm

2
eff/3kB where n, meff, and θp are the

theoretical Nd ion density, effective moment, and paramagnetic Curie tem-

perature, respectively. The temperature independent contribution for the thin

film sample B includes large diamagnetic contributions from both the sapphire

substrate and AlN capping layer, which have been removed in Figure 4.4. In

this case the thin film data represents (χ−B)−1. This substrate/capping layer
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4.3 NdN Magnetism

background signal is the source of the noise in the thin film sample above

100 K. In principle a van Vleck contribution should also be present for NdN,

though even at 300 K it is less than 3 % of the Curie-Weiss contribution.

For the NdN thin film sample, the fit from Equation (4.25) in the region

90–300 K returns the parameters meff = 3.5 ± 0.1 µB, with θp = 4 ± 5 K.

This agrees well with the free-ion effective paramagnetic moment of 3.62 µB.

The paramagnetic Curie temperature θp returned from the fit is however much

smaller than the actual ordering temperature TC where the inverse susceptibil-

ity intercepts the horizontal axis, at about 42 K. Within the uncertainty limits

θp is at least a factor of four smaller than TC . The Schumacher data, on the

other hand, has an effective moment of meff = 3.6± 0.1 µB (which agrees with

their quoted value of 3.7 µB at 296 K.) The high temperature Curie tempera-

ture is θp = 15 K, with a TC ≈ 30 to 35 K. Thus θp is about a factor of two

smaller than the TC .

It is interesting to compare the two susceptibilities. In the high temperature

regime, the effective moments are about the same within uncertainty, while

the values of θp differ within the uncertainties between 4–20 K. The lower

temperature regime however quite clearly indicates different values of TC . The

uncertainty in estimates of θp make it difficult to conclude much about the

different values between samples, so whether θp is intrinsically different between

samples is not clear.

We can furthermore compare the ordered moments of the samples. The

data from Schumacher reports a moment of 2.1 µB at 2.5 K. To estimate the

moment in the thin film sample we turn to Figure 4.5, which shows a hysteresis

loop measured at 5 K, with the diamagnetic background subtracted. The

high field value corresponds to 0.86 µB/Nd3+, which is small compared to the

theoretical saturation value of µBgJJ = 3.2 µB. The remanent magnetization

is MR = 0.74 µB, which can also be used to estimate the spontaneous moment.

If the easy axis lies along one of the high symmetry directions, then in a

polycrystalline sample, at remanence the moments will lie distributed within

a cone of half-angle 54.7◦ around the magnetic field direction. MR is then

reduced from the saturation value by about 15% [78], leading to an estimate

of MS = 0.86 µB for the spontaneous moment, which is in perfect agreement
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Figure 4.5: Thin-film NdN hysteresis loop measured at T = 5 K with field
in-plane.

with the high field value.

The small ordered moment of the thin-film sample, coupled with the larger

TC compared to the data of Schumacher suggest that the ferromagnetic ground

state is somehow different between the samples. One possibility is that the thin

film is strained due to the substrate, which could change the symmetry of the

ground state. Differences in contributions from conduction electrons could

play a role as well. Because of the uncertainties in values of θp (proportional

to the exchange in the mean-field approach), no conclusion can be made as to

whether the exchange mechanism is intrinsically different. In the next section

we explore the effects of the crystal field on NdN, in an attempt to gain insight

into the magnetic properties discussed so far.

4.3.1 Magnetic moment calculation

We have already presented the machinery of crystal field calculations in the

previous section on SmN, and here we apply the same technique to NdN,

with some modifications. We begin by exploring the effects of exchange and

additional multiplets. We can estimate the exchange energy from θp in the
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4.3 NdN Magnetism

J multiplets 〈Sz〉 〈Lz〉 〈Lz + 2Sz〉
9/2 -1.23 5.73 3.27
9/2, 11/2 -1.24 5.74 3.26
9/2, 11/2, 13/2 -1.24 5.74 3.26

Table 4.3: Expectation values based on number of multiplets included

mean-field approximation:

Jex =
3

2

kBθp
(gJ − 1)2J(J + 1)

= 8.5 K. (4.26)

for θp = 10 K, on the high end of the uncertainty. If we instead use TC = 42 K,

the exchange constant is 34 K. We will revisit the estimate of the exchange

later. For now, we can estimate the spin and orbital expectation values by

diagonalizing H = HSO + Hex with different multiplets. For the J = 9/2

ground state H is a 10× 10 matrix, while if we include the first excited state,

H grows to a 24 × 24 matrix. The results are displayed in Table 4.3. We

see that the inclusion of the J = 11/2 multiplet reduces 〈Lz + 2Sz〉 by only

0.3%, and including the J = 13/2 multiplet has even less effect. Of course,

the inclusion of crystal field terms may cause more significant mixing between

J multiplets. We also note that these values are the same for either exchange

parameter used.

4.3.2 NdN crystal field

We now consider the crystal field of NdN, and choose the z axis along the [001]

direction,6 which is given in Refs. [34, 35]:

HCF = A4

∑
i

[f40(ri) + 5f44(ri)] + A6

∑
i

[f60(ri)− 21f64(ri)] . (4.27)

In the absence of a Zeeman or crystal field contribution, the J = 9/2 ground

state,
∣∣∣ψ9/2

0

〉
, is ten-fold degenerate, however a cubic crystal field splits the

6The energy eigenvalues are slightly lower that when calculated in the [111] direction,
agreeing with some previous experimental studies finding a [001] easy axis in Nd pnictides
[71].
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Figure 4.6: A sketch of the tetragonal distortion which occurs in some of
the Nd pnictides, though not necessarily NdN. The Nd pnictides have been
observed to have a compressive distortion, with ε < 0.

ground state into three distinct eigenstates of the crystal field Hamiltonian:∣∣∣ψ9/2
0

〉
→ |Γ6〉+ 2 |Γ8〉 , (4.28)

where the Γ6 state is a doublet, and there are two quartets labelled Γ
(1)
8 and

Γ
(2)
8 . The ordering of these states depends on the crystal field parameters

A4 〈r4〉 and A6 〈r6〉. There are reports claiming both Γ6 (Schumacher [79]),

and Γ
(2)
8 [71, 72] ground states in NdN, however the latter was only inferred

from 80 K data and is not a reliable measure of the ordered state.

The tetragonal distortion of some of the rare-earth pnictides, including

NdSb was studied via temperature dependent X-ray diffraction by Lévy [74],

who also derived the crystal field Hamiltonian for a small tetragonal distortion

along one axis. For example Figure 4.6 shows a tetragonal distortion of an

octahedrally coordinated ion, where the unit cell is compressed or stretched

along one axis. The Hamiltonian for the tetragonal distortion is given by Lévy
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as

HCF = A2

∑
i

f20(ri)+A4

∑
i

[(
1− 10

7
ε

)
f40(ri) + 5f44(ri)

]
+A6

∑
i

[(
1− 28

3
ε

)
f60(ri)− 21f64(ri)

]
.

(4.29)

for a displacement of ε = ∆R/R, where R is the Nd-N separation and ∆R

the distortion. This is nearly the same as the cubic crystal field Hamiltonian,

except for the term ∝ A2 and the factors in parentheses.

We may employ this Hamiltonian, in addition to the cubic version used

previously, to investigate the possibility of a tetragonal phase. As there is no

data available for the value of ε, we estimate it is of similar size as in the

other Nd pnictides. For example NdSb has ε = −0.003, corresponding to a

compression along one axis. For NdN0.94O0.06 it was found ε = −0.004 [75].

For these small displacements, the effect of rescaling the f40 and f60 is small

enough to be ignored: for ε = −0.003 the prefactors yield 1.004 and 1.028 for

f40 and f60. The point charge model coefficients A4 and A6 are calculated as

was shown for SmN, while A2 in the tetragonal phase is given by

A2 = −3
Ze2

R3
ε. (4.30)

So for small ε we only need to add the term proportional to A2 to the cubic

HCF . The radial integrals 〈rn〉 for Nd3+ are again taken from [69], with

〈r2〉 = 1.001 a2
0, 〈r4〉 = 2.401 a4

0, and 〈r6〉 = 12.396 a6
0, where a0 is the Bohr

radius.

We now calculate the ground state ordered moment in either cubic or

tetragonal phases, as a function of the crystal field parameters. We begin

with the point charge estimates, which were shown to be reasonable for SmN.

Table 4.4 shows the results of the calculated ground-state expectation values,

calculated within the lowest two multiplets, with varying values of Jex and

Z, for both cubic and tetragonal crystal fields. The variety of exchange pa-

rameters include Jex = 8.5, estimated from the θp value, while Jex = 34 K is

estimated from the large value of TC . Other values are shown to see how the

77



Chapter 4 SmN and NdN Magnetism

exchange modifies the ground state moment. If we use Jex = 34 K, the value

of 〈Lz + 2Sz〉 is not very sensitive to Z when varied between 2 and 3. We note

that when only the ground state multiplet is considered, the resulting expec-

tation values differ by more than 15 % from the expectation values calculated

within the J = 9/2 and 11/2 multiplets. This is because the crystal field in

NdN is large enough to cause significant J mixing. Inclusion of the J = 13/2

multiplet has negligible effect.

The results from the cubic crystal field Hamiltonian in Table 4.4 (a) show

that for small exchange constants, a significant reduction in the moments can

be found. In particular, for Jex = 12 K (which corresponds to θp ≈ 15 K)

we find a moment between 2.3 and 2.7 µB, which is reasonably close to the

ordered moment of Schumacher, who measured 2.1 µB [73]. However, the

thin-film NdN ordered moment of 0.86 µB is not close to any of the values,

and only for zero exchange do we begin to approach 1 µB, and this seems an

unreasonable exchange constant given the clear indications of ferromagnetism.

For the tetragonal phase, Table 4.4 (b) expectation values for various values

of Jex, Z, and ε are shown. Positive values of ε denote stretching the unit cell

along one axis, while negative values represent compression. We see that small

moments close to 0.85 µB can be obtained only by a stretching of the cell:

for Z = 3 and ε = 0.003 we obtain good agreement with the ferromagnetic

moment. However, this disagrees with the other Nd pnictides, which have a

compression of the unit cell. The negative values of ε tend to only give net

moments of over 2.4 µB.

The crystal field parameters used are shown in Table 4.4 (c). To check the

reasonableness of these parameters, we extend the calculation of the moments

to the paramagnetic phase, where we use the same self-consistent method,

except in this case the expectation values must include Boltzmann averaging.

We diagonalize the full Hamiltonian now including the Zeeman interaction:

H = HSO + HCF + Hex + HZeeman, (4.31)
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(a) Cubic crystal field
Jex Z 〈Sz〉 〈Lz〉 〈Lz + 2Sz〉

34 K 2 −1.26 5.69 3.16
34 K 3 −1.26 5.62 3.10
12 K 2 −1.05 4.80 2.69
12 K 3 −0.91 4.15 2.32

8.5 K 2 −0.88 4.03 2.27
8.5 K 2.4 −0.82 3.76 2.11
8.5 K 3 −0.75 3.44 1.93

10−3 K 2 −0.50 2.33 1.33
10−3 K 3 −0.50 2.33 1.33

(b) Tetragonal crystal field
Jex Z ε× 103 〈Sz〉 〈Lz〉 〈Lz + 2Sz〉

34 K 3 3 −1.21 5.41 2.99
34 K 3 −3 −1.13 5.09 2.83
8.5 K 2 1 −0.66 3.04 1.72
8.5 K 3 1 −0.53 2.45 1.39

8.5 K 2 3 −0.31 1.48 0.85
8.5 K 3 3 −0.26 1.26 0.74

8.5 K 3 −1 −0.94 4.27 2.39
8.5 K 3 −3 −1.13 5.08 2.83
8.5 K 3 −5 −1.22 5.49 3.04

(c) Point-charge crystal field parameters for NdN
Z A2 (K) A4 (K) A6 (K)

2 49.9 247.1 5.8
2.4 59.8 296.5 7.0
3 74.8 370.6 8.7

Table 4.4: Ground state expectation values for cubic (a) and tetragonal
(b) crystal fields, with varying effective charge Z, and with varying tetragonal
distortion parameter ε. The two lowest J multiplets were included. (c) The
crystal field parameters Ak are given for NdN in the point-charge model for
various values of Z.
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and calculate the expectation values as

m = −µB 〈Lz + 2Sz〉T = −µB
∑

n 〈ψn|Lz + 2Sz |ψn〉 e−βEn∑
nEne

−βEn
, (4.32)

where |ψn〉 are eigenstates of the full Hamiltonian in Equation (4.31). The

susceptibility can then be calculated as χ = mn/H, where n = 4/a3 is the Nd

ion density determined from the lattice constant a. The results are shown in

Figure 4.7 alongside the experimental susceptibilities. Very good agreement

is found between the Schumacher data and the calculated susceptibility when

using Jex = 12 K and the cubic crystal field parameters calculated with Z = 3.

The thin film NdN sample does not agree with the tetragonal crystal field

parameters with ε = 0.003, Jex = 8.5 K and crystal field parameters calculated

using Z = 2, which returned a moment of 0.85 µB in the ordered phase. No

satisfactory agreement for the NdN thin film susceptibility could be found

after exhausting all reasonable combinations of cubic and tetragonal crystal

field parameters and Jex.

We note that the tetragonal phase is not expected to persist in above the

magnetic transition, so it is not surprising to find no agreement when the

susceptibility is calculated with tetragonal parameters. More puzzling is the

lack of agreement of the thin-film data with the cubic crystal field calculations.

This suggests the possibility of lattice strain in both phases which modifies the

crystal field below and above TC . A [100] textured film might be expected to

have a tetragonal distortion, while a film with [111] texturing could have an

orthorhombic distortion due to the lattice mismatch with the substrate which

is 24% for c-plane sapphire. More structural data is thus necessary to carry

detailed calculations which include the correct crystal field symmetry.

We note that the experimental moments are much less than the theoretical

saturation value of µBgJ = 3.2 µB and much less than the moments from

the LSDA+U calculations of Larson et al. [14], which give a net moment of

m = 2.9 µB, with m4f
L = 5.88 µB, and m4f

S = −2.96. The calculated moment

best agreeing with the Schumacher data in the ferromagnetic and paramagnetic

phases gives a net moment of 2.3 µB, with mS = −1.8 µB and mL = 4.15 µB

which indicates that partial quenching takes place.
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Figure 4.7: NdN Susceptibility. Cubic crystal field calculation parameters:
Jex = 12 K, Z = 3. Tetragonal crystal field calculation parameters: Jex = 8.5,
Z = 2.

We then conclude that the thin film sample shows quite distinct magnetic

properties as compared to the bulk data of Schumacher et al. [73] and cannot

be interpreted within cubic or tetragonal crystal field models. The Schumacher

data fit very well to calculations within a cubic crystal field using the exchange

parameter estimated from θp and point charge calculations for Z = 3. The thin

film then is likely strained, presumably due to the c-plane Al2O3 substrate.

It is usually found that the RENs grow with [111] texturing on hexagonal

substrates [2], in this case the substrate has a lattice constant of 4.79 Å versus

the Re-Re separation of 3.76 Å, leading to a large lattice mismatch. In the

case of [111] oriented NdN, it is possible that the substrate could introduce

an orthorhombic distortion. In that case the crystal field would have to be

modified, and could possibly explain the thin film magnetic data. Information

on the low temperature lattice constant and any distortions would allow for

calculation of these effects, though the cubic field Hamiltonian would have to

be generalized.

Furthermore, the contribution from conduction electrons due to nitrogen

vacancies could play a role, as it is likely the samples have different carrier
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concentrations. It is doubtful that conduction electrons alone could explain

the difference in the ground state ordered moment, as to account for a 1 µB

smaller moment in the thin film would require a high carrier concentration

(and metallic conductivity), while the resistivity data from this sample sug-

gest doped semiconductor behavior with a resistivity of 0.6 mΩ-cm at 300 K

increasing to 1 mΩ-cm at low temperature. We however note that GdN has

been shown to have a TC of 50 K for low carrier concentrations, increasing

to 70 K for carrier concentrations above ≈ 1020 cm−3. This enhancement in

TC was shown to be due to the formation of magnetic polarons at nitrogen

vacancies, as opposed to an RKKY-type effect [12, 13]. A similar magnetic

polaron scenario in NdN might explain the rather large TC in the thin film

sample compared to the Schumacher data, however more detailed studies will

need to be carried out.

4.3.3 Effects of the crystal field on TC

Finally, we conclude the chapter with a discussion of the exchange parameter

Jex. It is not a priori clear how the crystal field affects the relationships

between the ordering temperature, TC , the high temperature paramagnetic

Curie temperature θp and exchange parameter Jex. In order to clarify the

situation, and justify the estimation of Jex from θp, we again examine the

paramagnetic regime within the crystal field theory.

We are mostly interested in a qualitative understanding, and so carry out

an analysis of the susceptibility in second order perturbation theory (see, e.g.

[27, 32]) where we treat the Zeeman term as a perturbation to the spin-orbit

and crystal field Hamiltonian. The exchange interaction is then incorporated

in a self-consistent mean-field approach, as described in Chapter 2. We can

simplify by only considering the ground state J multiplet7, noting that this

is not strictly justified, as the J = 11/2 multiplet had a significant effect on

ground state ferromagnetic moment.

7The second order susceptibility for arbitrary multiplets is described in [35, 61], though
its complexity makes direct diagonalization of the full Hamiltonian a better option.
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In the zeroth order, the Hamiltonian has eigenstates |nk〉 that obey

(HSO + HCF ) |nk〉 = En |nk〉 , (4.33)

where n indexes the energy level En and k indexes the various degenerate states

sharing the same En (for example the |nk〉 could be the doubly degenerate

|Γ6〉 state). We now use these eigenstates to calculate the susceptibility in the

absence of any exchange interaction, denoted χ0. This is given by [27, 80]:

χ0 =
N

V

∑
n

(
g2µ2

B

kBT

∑
k,k′

| 〈nk| Jz |nk′〉 |2 + 2µ2
B

∑
m6=n

∑
k,k′

| 〈nk| Jz |mk′〉 |2

Em − En

)
e−βEn

Z
,

(4.34)

where Z =
∑

n ωne
−βEn is the partition function, and ωn is the degeneracy

of the eigenstate |nk〉. Here Jz is the total angular momentum operator, and

En are the unperturbed energies found in Equation 4.33. The first term is the

T−1 “Curie” term, while the second term is sometimes called the van Vleck

contribution, though it is not the same as the van Vleck contribution from the

higher multiplets. If the temperature is low enough, then only the ground state

will be occupied and only the first term contributes. However, if there is a close

by excited state and the separation ∆ = En−Em is small, then the second term

becomes relevant. In the analysis of the ferromagnetic moment of NdN above,

in the cubic crystal field the separation between the ground and first excited

crystal field states is ∆ ≈ 40 K, depending on the parameters. Therefore in

the paramagnetic phase we must consider both states when calculating χ. If

we assume only these two lowest states contribute at low temperatures (less

than 100 K) then the susceptibility simplifies to

χ0 =
N

V

g2µ2
B

ω0 + ω1e−β∆

(
1

kBT

∑
k,k′

(
| 〈Jz〉kk

′

00 |
2 + | 〈Jz〉kk

′

11 |
2e−β∆

)
+2
∑
k,k′

| 〈Jz〉kk
′

01 |2

∆
(1− e−β∆)

)
,

(4.35)

where we have used the notation 〈Jz〉kk
′

nm ≡ 〈nk| Jz |mk′〉 and ∆ = E1 − E0.
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This has the form

χ0 =
A(T )

T
+B(T ) (4.36)

where A(T ) and B(T ) vary exponentially with temperature. The susceptibility

in the presence of exchange χ can be incorporated now by using the self-

consistent mean-field approximation, as was done in Chapter 2:

χ =
χ0

1− λχ0

where λ = 2Jex
(g − 1)2

(N/V )(gµB)2
. (4.37)

We can now write χ in a form which incorporates exchange and crystal field

effects:

χ =
Ā+ B̄T

T − λĀ
, (4.38)

where Ā = A(T )/(1−λB(T )) and B̄ = B(T )/(1−λB(T )). We can check that

in the limit B(T ) → 0 (equivalent to a large separation ∆ between levels, or

T → 0) we arrive at Curie-Weiss behavior:

χ =
A(0)

T − λA(0)
. for ∆→∞ (4.39)

This limit is not useful for NdN however, since the ordering point, 35 K to

42 K, is roughly equal to the splitting between the ground and first excited

states. Returning to Equation 4.38, we see that the exchange parameter and

crystal field modify both TC and the effective moment. The susceptibility can

be seen to diverge at an effective ordering temperature

TF
C = λĀ =

λA(T )

1− λB(T )
. (4.40)

So it is clear that the ordering temperature depends not only on the exchange,

via the molecular field λ, but also on the crystal field through both A(T ) and

B(T ) terms. Figure 4.8 shows TF
C calculated with point charge parameters for

Z = 3 and Jex = 12.5 K. This value of Jex roughly corresponds to Schumacher’s

value of θp = 15 K. When TF
C = T , the maximum value of TF

C is reached; TF
C >
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Figure 4.8: TF
C calculated with Jex = 12.5 K and a cubic crystal field using

point charge parameters for Z = 3. λ0 corresponds to the molecular field
constant for the ground state multiplet λ0 = (N/V )2Jex(g − 1)2/(g2µ2

B).

T has no physical significance. Using λ for the ground state multiplet (Eq 4.37),

we see that maximum value of TF is only about 17 K, just slightly increased

from θp. However, we have neglected the effects of excited multiplets, and so

the disagreement with the Schumacher data is not surprising. If we try to

account for this by scaling λ by 1.5, we good agreement with the experimental

TC . We note that the full calculation of χ, shown in Figure 4.7 reproduces the

difference in θp and TC very well.

To summarize, Figure 4.8 illustrates that as the occupation of the crystal

field changes with temperature, for the given parameters, the ordering tem-

perature increases from that expected from exchange only. This may change

dramatically depending on the separation between crystal field states and the

size of the matrix elements. We can conclude that when considering the size of

the exchange constant, Jex, one should estimate it from the high temperature

susceptibility. In fact, this is not surprising, as Curie’s law is derived under

the assumption that the temperature is large enough that all of the MJ lev-

els within a J multiplet are occupied. At lower temperatures, the occupation
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changes due to splitting of the crystal field, and the factor (g − 1)2J(J + 1)

does not reflect the actual spin contribution to the moment. Thus using the

actual ordering temperature to estimate Jex overestimates the exchange, in

some cases by more than a factor of two, as for NdN. A Similar effect can be

seen in ErN [6], though it is smaller than in NdN.

4.4 Conclusion

In conclusion, we have shown that the small SmN moment is very well ex-

plained by the incorporation of higher multiplets and crystal field with pa-

rameters estimated within the point-charge model. The Γ7 ground state is in

accord with a calculation of the effective paramagnetic moment if only the Γ7

state is occupied, as demonstrated in Meyer et al [30].

We also found that the bulk NdN data of Schumacher was well described

by a cubic crystal field calculation of both the ground state ordered moment

and paramagnetic susceptibility. The thin-film NdN sample could not be ad-

equately explained within a cubic or tetragonal crystal field however. The

indication is that strain may play an important role in the thin film, modify-

ing the crystal field in some way. Nitrogen vacancies may also play a role in

producing different values of TC and ordered moments in the samples. The

exchange energy was shown to be best estimated from the high temperature

susceptibility, and the ordering temperature was shown to have a strong crystal

field dependence.

Finally, we note that the resulting spin and orbital moments calculated for

SmN and NdN are partially quenched, in agreement with experimental data,

and in contrast to LSDA+U calculations [14, 18] which found nearly maximum

values of m4f
L and m4f

S . Recent neutron reflectivity experiments on DyN,ErN,

and HoN found much smaller ordered moments at 5 K than the free ion µBgJJ

values [70]. The authors pointed out the disagreement with the LSDA+U

calculations and proposed that the ordered moments could be explained by a

fully quenched (L = 0) ground state moment, however full quenching of L is

unlikely. It is more likely that partial quenching of the orbital moment occurs,

and via the spin-orbit coupling the spin moment mS is quenched to a similar
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degree, which is exactly what the crystal field calculations predict.
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Chapter 5

Twisted Magnetization in

SmN/GdN

5.1 Introduction

As we have seen for SmN and NdN, the strong spin-orbit interaction of the

4f shell results in a dominant orbital contribution to the ferromagnetic mo-

ment. This is in contrast to more familiar transition metal systems, where

the orbital moment is usually quenched. In this chapter we show how this

orbital-dominant feature facilitates the fabrication of a novel class of mag-

netic heterostructures. In particular we describe an investigation of interfaces

between GdN and SmN using XMCD.

Twisted, or inhomogeneous ordering of the magnetization occurs in some

magnetic systems due to competing interactions which favor opposing align-

ments of the magnetization. Competing interactions may arise from a number

of sources, including surface or bulk anisotropies, interface exchange, Zeeman

coupling, or chiral interactions [81, 82]. These twisted phases can be viewed

as types of engineered domain walls, and thus have important implications for

spintronics applications, where current-driven domain wall motion is an ac-

tive area of research [83–86]. So far, twisted phases are known to manifest in

diverse magnetic systems [38, 81, 82, 87–91], however these all fall under the

conventional spin-dominant paradigm of magnetism where the orbital moment

plays no significant role. Competing interactions in the presence of a dominant
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Figure 5.1: (a) A sketch of a single atomic layer of a spin-dominant ferro-
magnet (e.g. GdN) and a cross section of multiple atomic planes of an orbital-
dominant (SmN) ferromagnet. (b) Cross-section of an interface between spin
and orbital-dominant ferromagnets. A twisted phase develops in the orbital-
dominant magnet due to exchange-Zeeman competition which occurs if the
spin-dominant layer remains fixed due to its large Zeeman coupling.

orbital moment have so far remained unexplored, yet the opportunity exists

within the rare-earth nitride series, where orbital-dominant magnetism is pos-

sible in the first half of the series due to strong spin-orbit coupling of the 4f

electrons.

GdN, with the Gd3+ ion, has a half-filled 4f shell, for which Hund’s rules

state that the seven electrons fill all of the orbital states with spin-up electrons;

L = 0 and S = J = 7/2. It thus has a purely spin moment of 7 µB. The indirect

exchange interaction aligns the spins below a Curie temperature of about 50 K,

rising to 70 K under heavy donor doping [12], but the spherical symmetry of

the L = 0 shell interacts very weakly with the crystalline environment, leading

to a coercive field smaller than 100 Oe.[92]

This is in stark contrast to SmN, which is not only orbital-dominant with

a near-zero moment, but has a coercive field of over 6 T at 2 K due to the

non-spherical orbital wave function and weak Zeeman interaction associated

with the small magnetic moment.

In the following we exploit the contrasting properties of GdN and SmN in

SmN/GdN thin film heterostructures, and observe a twisted phase arising from
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a novel competition between spin and orbital magnetism. The spin-dominant

GdN is fixed parallel to an external magnetic field, and its much larger Zeeman

interaction ensures that it provides a rigid layer which pins the SmN spin at

the SmN-GdN interface. The pinning of the SmN, with its 200-fold weaker

Zeeman coupling, takes place through ferromagnetic exchange coupling with

the GdN, resulting in a SmN spin-moment parallel to that of the GdN, while

the orbital-moment is antiparallel. This interface pinning is opposed by the

orbital-dominant Zeeman alignment of the bulk SmN, which tends to align

the SmN magnetization in the opposite sense, and thus drives the rotation

of the magnetization across the SmN layer. Figure 5.1 sketches the effects of

exchange coupling between spin and orbital dominant ferromagnets.

It is important to note that the GdN/SmN system is fundamentally dif-

ferent from the conventional spin-dominant ferromagnetic systems displaying

twisted phases, as was mentioned in Chapter 2. The most common exchange

spring systems, composed of hard and soft ferromagnetic layers, are first mag-

netized in one direction, and when the field is reversed the hard material

remains fixed while an exchange spiral is formed in the soft material [38, 93].

In another manifestation, metallic Gd/Fe systems displaying twisted phases

rely on antiferromagnetic coupling between spins at the interface [88, 94–98].

With the SmN/GdN system, however, the interlayer Sm-Gd exchange is ferro-

magnetic, and the usual hard/soft contrast is of no interest; indeed the fixed

layer (GdN) has a coercive field three orders of magnitude smaller than SmN.

It is the much stronger Zeeman interaction in GdN than in SmN that effec-

tively locks the GdN magnetization. Furthermore, the spin-dominant, metallic

systems lack the novel combination of electronic and magnetic properties of

SmN and GdN, which allow the facility of controlling the concentration and

sign of charge carriers without disturbing the ferromagnetic ordered state, and

band structure results also show electron and hole channels of majority spin

[14].

In our investigation of the interface exchange coupling in GdN/SmN mul-

tilayers we have used the element selectivity of XMCD at the Sm L2,3 and

M4,5 edges. We first demonstrate that the SmN is ferromagnetically exchange

coupled to GdN through investigation of a SmN/GdN superlattice. We then
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demonstrate that a twisted, or rotating, magnetization develops in ultrathin

SmN films coupled to GdN due to interface pinning in the SmN, short-range

interionic rare-earth exchange, and the extremely weak Zeeman coupling of

SmN. The observed depth dependence of the magnetization is fully consistent

with an analytical model based on these competing interactions.

5.2 Experimental Details

The attenuation lengths of hard L-edge and soft M-edge X-rays dictated that

quite different structures were used for the two investigations. At the L-edge

the full thickness of a superlattice of 12×(1.5 nm SmN/9 nm GdN) was probed

through a 100 nm passivating AlN cap. For the much more surface sensitive

M-edge we investigated two samples. The first was a bilayer of 100 nm GdN/

5.5 nm SmN, and the second, a trilayer of 100 nm GdN/ 6 nm LaN/ 5.5 nm

SmN. The non-magnetic LaN layer between the GdN and SmN was included

to block the Gd-Sm exchange interaction in the trilayer. Both of the M-edge

samples were passivated with 25 nm of GaN to prevent sample oxidation.

Samples were grown in a Thermionics ultra-high vacuum system with a base

pressure of 1×10−8 Torr. High purity Gd metal was evaporated at a rate of 0.2

Å/s with a N2 partial pressure of 4.5×10−4 Torr. Sm metal was evaporated at a

rate of 0.3 Å/s under the same N2 pressure. The superlattice was grown on an

MgO(111) substrate, while the bi- and trilayers were grown on c-plane Al2O3

substrates. All the substrates were outgassed for 1 hour at 700 ◦C, and heated

to 600 ◦C during growth. The GaN and AlN capping layers were grown at room

temperature with the metal evaporated at a rate of 0.1 Å/s with an ion source

activating the N2. Thicknesses were determined via quartz crystal balances

calibrated for SmN, GdN, AlN, and GaN via scanning electron microscope

and Rutherford backscattering measurements. The SmN/GdN superlattice

was characterized ex situ by XRD, and showed the lattice constant of GdN;

as expected the in-plane lattice constant was dominated by the thicker GdN

layers in all cases.

Figure 5.2 shows magnetization measurements that were carried out via a

Quantum Design SQUID with the field oriented in-plane. Because the much
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Figure 5.2: SQUID data from bilayer, trilayer, and superlattice all with
field in-plane. (a) Temperature dependent magnetization curves (circles denote
field-cooled measurements, and dashed lines zero-field cooled) and Curie-Weiss
fit to the inverse susceptibility. (b) Hysteresis curves taken at 10 K.

larger magnetic moment of GdN drowns out the signal from SmN, SQUID

measurements probe only the GdN magnetization. Curie-Weiss fits to the

inverse susceptibility yielded paramagnetic Curie temperatures of 69 K, 68 K

and 66 K for the superlattice, trilayer, and bilayer, respectively. Hysteresis

loops measured at 5 K saturated at 7 µB per Gd3+ ion. The superlattice and

bilayer displayed a coercive field of 120 Oe at 5 K while the trilayer had a

coercive field of 90 Oe, all within the range reported for polycrystalline GdN

films. [92, 99]

XMCD measurements were performed at temperatures down to 15 K and

fields up to 6 T at the Sm and Gd L2,3 edges on beam line ID12 at the European

Synchrotron Radiation Facility (ESRF) in Grenoble. M4,5 edge XMCD was

measured at the soft X-ray line ID08 of the ESRF, at temperatures down to

10 K and in fields up to 4 T. Measurements at the M-edge were necessarily

performed only at normal incidence to limit attenuation by a passivating cap.

For all of the L-edge XMCD measurements the field and incident beam were

directed at 10◦ from grazing incidence, in which geometry the very large shape

anisotropy (4πM ≈ 2.5 T, were M is the magnetization) of GdN ensured that

the magnetization lay in the plane of the film. At both edges the applied

magnetic field was along the X-ray propagation direction.
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The XMCD spectra were obtained by taking the difference of two XAS

spectra with the X-ray helicity reversed while the magnetic field was held fixed.

This corresponds to the difference between antiparallel and parallel alignments

of the helicity and magnetization. XAS spectra have been normalized to the

incident photon intensity. XMCD spectra were normalized to the XAS white

line intensity at the M-edge and to the edge-jump at the L-edge.

XMCD at the Sm L2 edge is the signal of choice for following magnetic

hysteresis, for it is stronger than the L3 edge signal. In the superlattice that

feature was obscured by magnetic EXAFS (extended X-ray absorption fine

structure) from the Gd L3 edge, necessitating the use of the Sm L3 XMCD in

the superlattice. There was a similar interference in the soft X-ray measure-

ments, where the capping-layer Ga L2,3 edge introduced a large and variable

background in the Gd M4,5-edge XAS.

Our investigation relies on the use of two common schemes for measuring

the X-ray absorption and XMCD spectra, based on the emission of fluores-

cence (total fluorescence yield, TFY) or electrons (TEY). Below we exploit

the differing probing depths of these two schemes in our soft X-ray M4,5 edges,

where TFY probes the full 5.5 nm of the SmN layers while TEY data probe a

depth of ∼ 2 nm. Saturation effects distorted the TFY mode at the Sm M4,5

edges, but nonetheless provide relative comparisons between different samples.

5.3 L-edge XMCD Results

We first discuss the hard X-ray results from the SmN/GdN superlattice and the

homogeneous SmN sample. Figure 5.3 shows XMCD data from the superlattice

at the Sm L3 edge, compared to the Sm L3 in homogeneous SmN. These spectra

primarily show the dipole transitions from 2p to empty 5d orbitals, with weaker

quadrupolar excitations to the 4f shell, and thus signal the strength and sign of

the spin and orbital alignments of the 5d, and less quantifiably, the 4f shells.

The 5d states participate in the ordering through 4f -5d exchange, though

the exchange mechanism between 5d states is not well understood [28]. The

XMCD sign reversal shown in Fig. 5.3 between homogeneous SmN and thin

SmN layers embedded in GdN immediately indicates that Sm-Gd interface
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Figure 5.3: XMCD at the Sm L3 edge in a SmN/GdN superlattice (SL) and
a homogeneous SmN film taken at 15 K and a field of 6 T. The signal above
6715 eV is predominantly due to electric dipole (ED) transitions into the 5d
shell, and below that the signal is due to electric quadrupole transitions (EQ)
into the empty 4f orbitals.

exchange determines the Sm spin alignment, dominating the weak Zeeman

interaction that aligns the net, orbital-dominated, moment in homogeneous

SmN.

The data displayed in Figure 5.4(a) compares the hysteresis between ho-

mogeneous SmN and SmN in the superlattice, further demonstrating that the

SmN coercive field in the superlattice is reduced to ∼ 0.01 T, emphasizing

that the SmN magnetization is firmly coupled to the GdN by the exchange

interaction across the GdN/SmN interfaces. The inset shows the ∼ 0.01 T

coercive field measured at the Gd L2 edge. There is an intrinsic sign difference

between the most prominent XMCD features at the Sm L2 and L3 edges, so we

have scaled the L3 derived hysteresis by -1 in Figure 5.4(a) in order to indicate

the antiparallel spin/orbit alignment between samples, which is clear from the

direct L3 edge comparison in Figure 5.3. Examples of the XMCD spectra used

to produce Figure 5.4 (a) are shown in Figure 5.4 (b)-(d), along with the XAS

spectra.

We now turn to the temperature dependence of the GdN L3 and SmN L3
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Figure 5.4: (a) XMCD-derived hysteresis taken at 15 K and 6 T and mea-
sured at the Sm L2 edge for the superlattice (squares) and at the Sm L3-edge
for the bulk SmN film (circles). The superlattice spectrum was scaled by -1.
The inset shows the Gd L2 edge hysteresis taken at 15 K. Typical XMCD
spectra from which the hysteresis curves shown in (a) are derived are shown in
(b)-(d) along with the XAS spectra measured at 6 T. The black arrows show
the XMCD peaks followed to determine the XMCD hysteresis in (a).
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Figure 5.5: (a) Temperature dependence of Gd L3 and Sm L3 peaks in a
field of 2.5 T for the SmN/GdN superlattice. (b) Superlattice Gd L3-edge XAS
and XMCD spectra taken at 15 K and 6 T.

XMCD, which is shown in Figure 5.5, with an applied field of 2.5 T. The

Sm moments in interface-adjacent ions are again aligned to the GdN moments

across the interface at temperatures above the 27 K Curie temperature of SmN.

However, at lower temperatures the Sm moment continues to rise faster than

does the rapidly saturating GdN, as the Sm ions deeper in the SmN layer align

by the Sm-Sm exchange interaction. At first approximation the SmN alignment

follows the GdN at the interface, with Sm deeper in the SmN layers aligned

only well below 27 K. Those inner ions would then not align fully until be-

low the 17 K minimum temperature in the data. The strong interface coupling

between GdN and SmN spin-moments prevails over the orbital-dominated Zee-

man coupling in the SmN layers.

We may also use the results of Chapter 4 to derive more quantitative con-

clusions about the interface coupling. In Chapter 4 we saw that the experimen-

tally observed SmN magnetic moment of 0.035 µB per Sm ion could be repro-

duced within the point charge model with Z = 2.4 when excited J-multiplets

are included. The exchange parameter was estimated from the paramagnetic

Curie temperature of 27 K. In the superlattice interface exchange clearly mod-

ifies this parameter.

If we assume that the effective SmN exchange is proportional to the 5d spin

polarization, then the electric dipole signal at the Sm L3 edge is a measure of
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Exchange parameter 〈Sz〉 〈Lz〉 〈Lz + 2Sz〉
Jex = 7.9 K −0.982 1.996 0.033
JSLex = 3Jex −1.48 3.11 0.16

Table 5.1: Expectation values of Sm3+ in a cubic crystal field with Z = 2.4
(See Chapter 4). The exchange constant is estimated to be three times larger
in the superlattice, resulting in a 50% larger value of 〈Sz〉.

the exchange strength in SmN. In particular, it represents the average value of

the exchange strength (and spin polarization) through the film, which varies

with distance from the GdN/SmN interfaces. In the superlattice the electric

dipole signal is a factor of ≈ 3 larger than in homogeneous SmN, thus JSLex ≈
3Jex where Jex is 7.9 K, as estimated from the SmN Curie temperature. Using

JSLex in the calculation of the 4f magnetic moments results in a value of 〈Sz〉
increased by 50% compared to the homogeneous SmN (see Table 5.1). This

value can be compared to the electric quadrupole (EQ) transitions in Figure

5.3, which represent the transitions to the 4f states. The EQ XMCD is thus

proportional to the 4f spin (or orbital) moment. The amplitude of the EQ

signal increases by a factor of 60% in the superlattice as compared to the

homogeneous SmN, in good agreement with the calculation.

These increased amplitudes relate only to the average over the SmN layer

thickness. The thin 1.5 nm SmN layers consist of 5 atomic planes of Sm ions,

thus ≈ 40% of the Sm ions are interfacial. If only these GdN-adjacent layers

experience interface exchange they require an increase in the 5d polarization

by a factor of 7.5 to explain the 3-fold enhancement of the EQ XMCD signal

above. This seems plausible given the large spin value of GdN, which has a

moment of 7 µB, seven times the homogeneous SmN spin moment calculated

in Chapter 4.

5.4 M-edge XMCD Results

We access the magnetic alignment of SmN more directly by turning to the

soft X-ray M4,5 edges, which represent 3d→ 4f transitions and thus signal the

spin and orbital alignment in the 4f shell. Figure 5.6(a) sketches the geometry

98



5.4 M-edge XMCD Results

of the M-edge measurements, with the magnetic field and X-rays parallel to

the surface normal. Figure 5.6(b) shows the XAS spectra for the bilayer and

trilayer sample in both TEY and TFY modes. The spectra show the features

associated with the multiplet structure of the Sm3+ as shown in Chapter 3.

Figure 5.6(c) shows the Sm M4,5-edges XMCD in both TEY and TFY

modes for the two samples. For the trilayer, the TFY and TEY spectra in the

SmN layer are in excellent agreement, establishing that SmN 4f alignment in

the near-surface region and the bulk average are of the same sign, suggesting

the SmN is effectively decoupled from the GdN. In contrast, both TFY and

TEY signals are substantially weaker in the bilayer, and the TFY signal is

even inverted. The latter is a signature of SmN that is strongly coupled to the

GdN by exchange across the GdN/SmN interface.

To quantify the differences in XMCD between samples we curve fit the

spectra to each other over both M4 and M5 edges, instead of simply comparing

the intensity at the maximum XMCD signal at ∼ 1077 eV. This is to reduce

the effects of noise, especially for the bilayer sample. This fitting is reasonable

because the strong spin-orbit coupling of the 4f electrons keeps spin and orbital

moments firmly aligned relative to each other [65, 100], and so the XMCD

sum rules [55, 56] imply that the XMCD spectral shape should remain the

same between the samples, though with an overall scaling factor. This scaling

factor is a measure of how the depth averaged XMCD is different between

samples, and thus how the spin/orbital alignment of the 4f magnetic moment

varies through the depth. Figure 5.7 shows XMCD spectra which represent

the average of multiple measurements and least-squares fits to them.

Fitting of the spectra yields spin/orbital-alignment ratios of bilayer-to-

trilayer of RTEY = 0.20± 0.07 and RTFY = −0.12± 0.02. For the bilayer then,

the alignment in the surface ∼ 2 nm probed by TEY is Zeeman-dominated

(i.e., bulk-like SmN) but the average through the film is of opposite sign, as

was found also in the very thin SmN layers in the superlattice of the L2,3-

edge study above. We interpret this inhomogeneous alignment in the bilayer

as a rotation of the spin and orbital moments through the depth of the film,

similar to a domain wall. The distinction is that this rotating or twisted state

originates from the interface exchange-Zeeman competition.
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Figure 5.6: (a) Sketch of sample geometry, with magnetic field and X-rays
along the surface normal. (b) XAS spectra taken at the Sm M4,5 edges for
both the bilayer and trilayer in TEY and TFY modes. The spectra reveal the
expected Sm3+ character present in SmN. (c) XMCD for bilayer and trilayer
in TEY and TFY modes, taken with a field of 4 T and 10 K. (d) Hysteresis
derived from a fit of the bilayer TFY spectra. Black line represents a smooth
average as a guide to the eye, inset arrows show spin and orbital rotations.
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Figure 5.7: Averaged XMCD spectra at the Sm M4,5 edges. The bilayer
spectra have been fit to the trilayer in TEY and TFY modes. The bilayer
least-squares (LS) fit (blue circles) represents the bilayer spectra scaled by the
fit factor RTXY for TEY and TFY modes.

Figure 5.6(d) shows an unusual hysteresis curve extracted from the bulk

sensitive TFY measurement of the bilayer, where SmN is deposited directly

on GdN. The same fitting procedure mentioned above was used to extract the

hysteresis. The Sm 4f alignment in this case shows the same sign inversion seen

in the L2,3-edge data in Figures 5.3 and 5.4, but with diminishing alignment

with increasing fields larger than ≈ 1.5 T. It is important to note that in the

field-normal configuration, the shape anisotropy of GdN prevents a saturated

magnetization in applied fields smaller than ≈ 2.5 T. Its magnetization rises

approximately linearly with weaker applied fields, but for larger fields the GdN

is saturated; between 2 and 4 T the 4f spins are fully aligned and exert the

full Gd-Sm exchange on the SmN 4f spin-moment at the interface. In this

region the increasing field has the effect of modifying the exchange-Zeeman

competition which in turn reduces the bulk averaged XMCD signal as the 4f

spin and orbital moments rotate through the film. In the following section we

pursue deeper insight into the nature of the twisting, or rotating magnetization.
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5.5 Analysis and Discussion

In this section we relate the measured TEY and TFY XMCD results in the

bilayer to a model of the twisting SmN magnetization. We consider a one

dimensional model of the SmN magnetization in the bilayer, in which the

resulting magnetization profile is determined by the balance among (i) the

Sm-Sm exchange energy acting on Sm spin moments, (ii) the Zeeman energy

acting on the SmN net moment, and (iii) the demagnetization field of SmN.

Our description of the magnetization follows that of Goto et al. [38] and

Thiaville & Fert [81] (briefly discussed in Chapter 2), which treats atomic

planes parallel to the SmN surface as each having a uniform magnetization,

such that the problem is reduced to a one dimensional model where each atomic

plane is treated as a single effective magnetic moment. In the continuum limit,

the magnetic free energy per unit area (at T = 0), integrated along the depth

L of the SmN film can then be written as

E =

∫ L

0

dz

[
A

(
dθ(z)

dz

)2

−Ms ·H−
1

2
Ms ·Hd + Eanis

]
. (5.1)

where A is the exchange stiffness, Ms is the saturation magnetization of the

SmN, H = H ẑ is the applied field, and L = 5.5 nm is the thickness of the

SmN film. θ(z) is the depth-varying angle between H and the spin-moment

mS (see Figure 5.8(a)) We note that for the thin film geometry with the

field perpendicular to the plane the demagnetization field is given by Hd =

−4πMs = −0.01 T which can be neglected in comparison with the Zeeman

energy in the large (4 T) fields we consider here. The Eanis term corresponds

to magnetocrystalline anisotropy, however there are no studies of its effects in

SmN [30] and our results suggest it is only a weak correction. Out of plane

rotation (i.e. the plane formed by H and the magnetization) can be ignored

as this creates a static field which tends to only increase the energy.

Simplifying Equation (5.1) we arrive at

E =

∫ L

0

dz

[
A

(
dθ(z)

dz

)2

−Ms ·H

]
. (5.2)
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This equation is formally identical to that used in exchange spring-systems

when anisotropy is negligible (Chapter 2) [38, 93]. The crucial distinction is

that the Zeeman term adopts the opposite sign as found in conventional spin-

dominant systems, due to the fact that the net moment is antiparallel to the

mS, hence −Ms ·H = MsH cos θ(z). The Zeeman energy is thus minimized

when θ(z) = π. The exchange stiffness A = 4JexS
2/na∗ involves the exchange

constant Jex estimated from the experimental Curie temperature of SmN and

the number n of nearest Sm ion neighbors. The nearest neighbor Sm3+ distance

is a∗, related to the SmN lattice constant by a∗ = a/
√

2.

Equation (5.2) can be minimized analytically (see Appendix B for details)

to yield the most energetically favorable configuration, as carried out by Goto

et al. [38] for an exchange-spring system, yielding the following expression for

θ(z):

θ(z) = 2 arcsin
[
K−1 (αL) sn (αz)

]
, (5.3)

where α =
√
HMS/2A, and the functions K−1 and sn are the inverse of the

complete elliptic function of the first kind and the Jacobi elliptic function of

the first kind, respectively. The boundary conditions were chosen such that

θ(L) = 0 (Sm spin is aligned with the Gd spin at the SmN-GdN interface) and

dθ(z)/dz|z=0 = 0 (SmN free surface). These boundary conditions account for

the magnetically soft GdN being rigidly fixed parallel to the applied field due

to its large Zeeman interaction. This fixed GdN then acts as the rigid pinning

layer for the SmN at the interface.

A twisted phase develops on a scale of ` = π/2
√

2A/HMS; below this

thickness a uniform magnetization (θ(z) ≡ 0) is the only solution to Equation

(5.3) In an applied field of 4 T this corresponds to ` ≈ 4 nm, on the order of

the SmN film thickness. Figure 5.8(b) shows the calculation of the net moment

and spin-moment projected on the z-axis (i.e., m cos θ(z) and mS cos θ(z)), as

a function of the depth z in the 4 T field. The scale of the twist increases in

a field of 2 T as the Zeeman energy weakens, illustrated in Fig. 5.8(a). In this

plot we have assumed that the spin moment mS is the fully polarized value of

2.5 µB, which according to the calculation in Chapter 4 is reduced to around

1 µB per Sm ion. However, in the following we show that the value of mS does
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not affect the comparison with experiment.

The resulting depth profile of the net SmN moment projected along the z-

axis, m cos θ(z), can be compared to the XMCD spectra by accounting for the

depth-averaging of the XMCD measurement, in combination with the effective

sampling depth in the TXY (TEY or TFY) measurement schemes, λTXY. The

finite sampling depth λTXY in the TXY mode results in a detection efficiency

wTXY = e−z/λTXY from a depth z [41]. Thus we can approximate the depth

averaged XMCD measurement as returning an effective net moment of

〈m〉TXY =
1

L

∫ L

0

dz m cos θ(z)e−z/λTXY . (5.4)

Absolute values of mS and the orbital moment mL can in principle be

extracted by applying the XMCD sum rules, however they require much greater

signal-to-noise ratios than available with the present data. Instead we note

that mS and mL in both samples are fixed antiparallel by the strong spin-orbit

coupling, and the XMCD spectra remain proportional. The ratios of 〈m〉TXY

between the bilayer and trilayer are thus expressions for the experimentally
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determined ratios, which simply reflects the depth-average of cos θ(z) within

the bilayer. The calculated ratio RTXY = 〈m〉bilayer
TXY /〈m〉trilayer

TXY in the TFY mode

gives RTFY = −0.11, in excellent agreement with the measured ratio of −0.12±
0.02. RTFY is insensitive to the precise value of λTXY (≈ 100 nm), as d� λTFY;

the fluorescence is effectively unattenuated. The TEY-channel ratio depends

more strongly on λTEY; the experimental value of RTEY = 0.20 is returned

for an electron escape depth of λTEY = 2.15 nm, which is consistent with the

expected range [41, 45]. The resulting spin-moment depth profiles calculated

using Jex = 7.9 K are shown in Fig. 5.9, where mS cos θ(z)exp(−z/λTXY ) is

plotted as a function of depth for the various λTXY values, along with the actual

spin moment profile, mS(z) cos θ(z). The excellent agreement of this analytical

model with the experimentally measured spectra thus strongly supports the

mechanism of exchange-Zeeman competition driving the twisted magnetization

in the SmN layer coupled to GdN.

The effect of the enhanced interface exchange observed in the SmN/GdN

superlattice has been ignored in this analysis, as is not expected to qualita-

tively alter the main results. The much thicker SmN in the bilayer compared

to the superlattice contains approximately 15 atomic planes of Sm ions, and

means that the enhanced exchange at the interface layer would have only a

small effect. The agreement achieved by using only experimental parameters

and reasonable values of λTXY is encouraging and indicates that other effects,

including bulk and surface anisotropies are only weak corrections to the ex-

change and Zeeman dominated contributions. We add that the continuum

approximation leading to Eq. (5.2) has been shown to be in good agreement

with more exact treatment using a discretized version of the model, even down

to a few monolayers [101].

5.6 Conclusion and Outlook

In summary, we have observed a novel twisted magnetization phase in a

SmN/GdN bilayer by exploiting the depth dependence of the electron-yield

and fluorescence-yield detection modes at the rare-earth M-edge XMCD. Re-

markably, it is in fact the hard magnetic SmN layer which develops the twisted
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phase, while the soft GdN film remains fixed parallel to the field. The inter-

facial pinning of the SmN moment to GdN was also clearly demonstrated in

the L-edge XMCD measurements, showing that the ferromagnetic GdN-SmN

exchange coupling is responsible for the pinning. The crystal field calculations

of Chapter 4 provided an explanation of how the interface-exchange altered

the SmN 4f spin and orbital moment alignments, in good agreement with

experiment.

The relatively simple model used to describe the SmN magnetization is just

a starting point for exploring these twisted phases. Acquiring XMCD data at

the M-edge with higher signal-to-noise ratios would allow for the application

of more sophisticated modelling, however experiments are difficult to perform

on this system for a few reasons. One is the extremely small moment of SmN

which leads to intrinsically weak dichroism, while the necessity for a capping

layer leads to a low signal-to-noise ratio. The in-situ sample growth possible

at a few XMCD beamlines in synchrotrons around the world would remove

the need for a capping layer during measurements, allowing for much higher

signal-to-noise ratios to be obtained.

The decoupling of the SmN and GdN magnetization in the SmN/LaN/GdN

structure points towards magnetic tunnel junctions, especially attractive within

the RENs owing to their epitaxial compatibility across the series. The appear-

ance of a twisted phase in the SmN/GdN system also holds intriguing possi-

bilities for spintronic applications, owing to the semiconducting nature of the

pair coupled with the orbital-dominant magnetism of SmN. For example, the

tuning of the twisted phase length scale ` ∼
√
A/HMs for given fields can be

achieved through doping, or replacement, with other rare-earth elements, thus

modifying the exchange A and the saturation magnetization Ms [62]. The abil-

ity to control the scale of what is effectively a domain-wall width in intrinsic

ferromagnetic semiconductor heterostructures also allows for the opportunity

to explore spin-orbit torques in a novel system.
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Chapter 6

Twisted Magnetization in a

NdN/GdN Superlattice

6.1 Introduction

In this chapter, we pursue the study of NdN/GdN superlattices, a system which

shares some similarities to the SmN/GdN system investigated in Chapter 5.

NdN, like SmN, is an orbital-dominant ferromagnet, making it a good candi-

date to explore twisted phases relying on exchange-Zeeman competition. The

Nd3+ ion is an f 3 system, and Hund’s rules yield an L = 6 orbital and S = 3/2

spin contribution to the total angular momentum, which has the ground state

value J = |L − S| = 9/2. In contrast to the near-zero ferromagnetic moment

of SmN, NdN yields a much larger orbital-dominant moment between 0.9 -

2.1 µB per ion in the ferromagnetic phase, as we saw in Chapter 4. The net

NdN moment has a magnitude of 15 - 30 % of the GdN moment.

With this sizable NdN moment we can expect that the GdN is influenced

by exchange at the interface with NdN, and we may expect that twisted mag-

netizations will form in both NdN and GdN layers. This is in contrast to the

case of the SmN/GdN interface, where the small Zeeman coupling of the SmN

meant that the GdN was aligned solely by its Zeeman interaction, which kept

it rigidly aligned parallel to the field.

This large NdN moment has another important effect. While the GdN

signal dominates the overall magnetization of a NdN/GdN superlattice, the
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NdN contribution is still observable, in contrast to the SmN/GdN system. This

means that it is possible to see clear signals of the NdN in standard lab-based

magnetometry techniques. As we shall see, magnetometry, coupled with the

element-specific probe of XMCD provides us a detailed picture of a remarkable

system in which a twisted magnetization forms due to the presence of a large

orbital-dominant moment. This investigation also serves as a confirmation for

the mechanism of the orbital-driven twisted phase observed in the SmN/GdN

systems.

In this chapter we focus on a single NdN/GdN superlattice, outlining the

sample preparation and characterization, and then continue to a study of the

magnetic properties. First we discuss results from magnetometry, which in-

vestigates the temperature and field dependence of the sample. Next we turn

to an XMCD study of the superlattice, measured at the Nd L2,3 edges, which

probes the Nd 5d states which participate in mediating the exchange. In both

magnetization and XMCD studies we present clear evidence of a twisted mag-

netization phase in the NdN and GdN layers.

6.2 Experimental Details

The sample investigated in this chapter is a 10× (10nm NdN/10 nm GdN) su-

perlattice grown on a GaN(0001) buffer layer with a sapphire (0001) substrate.

The general procedure was the same as used in Chapter 5 and discussed in

Chapter 2. Growth took place in a N2 pressure of 2×10−4 Torr, NdN and GdN

were evaporated with an electron gun at a rate of 0.1 to 0.2 Å/s. The sub-

strate was outgassed for one hour at 600◦ C, while the temperature was kept at

390◦ C during the growth. A GaN capping layer of approximately 50 nm was

grown at room temperature at a rate of 0.1 Å/s with a plasma source exciting

the N2 in a pressure of 2 × 10−4 Torr. Figure 6.1 shows a 2θ XRD scan of

the superlattice and from a substrate for comparison. The reflection at 31◦

corresponds to overlapping GdN and NdN [111] reflections. Also visible is the

GdN/NdN [220] reflection at 53◦, indicating that the film is polycrystalline.

Magnetization measurements were carried out via a Quantum Design SQUID

and vibrating sample magnetometer (VSM). These measurements were all car-
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Figure 6.1: XRD pattern from the NdN/GdN superlattice with substrate,
a GaN(0001) buffer layer on Al2O3 (0001).

ried out with the field in-plane.

6.3 Magnetization Results

We begin by examining the “global” magnetization of the superlattice, which

is a sum of contributions from the individual GdN and NdN layers. Figure

6.2 displays the zero-field cooled (ZFC) and field cooled (FC) magnetization

curves. In the ZFC measurement, the sample is cooled from room temperature

to 5 K in zero field; the magnetization is then measured as the temperature is

increased in an applied field of 250 Oe. In the FC process, the magnetization

is measured with decreasing temperature in a field of 250 Oe.

We see that in both curves, as the temperature is decreased, the magne-

tization increases rapidly starting at about 70 K until approximately 50 K,

corresponding to the onset of ferromagnetism in the GdN layers. The region

above ≈ 70 K corresponds to the paramagnetic phases of GdN and NdN. We

use a Curie-Weiss approach to fit the susceptibility, assuming that the GdN
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Figure 6.2: Temperature dependent magnetization of the NdN/GdN super-
lattice in a 250 Oe field, showing both field-cooled (FC) and zero-field cooled
(ZFC) measurements. Inset shows Curie-Weiss behavior in the inverse suscep-
tibility taken from the FC measurement.

dominates the paramagnetic response. In this case χ is given by

χ = M/H =
A

T − θp
+ χ0, (6.1)

and χ0 is a temperature independent background primarily due to the dia-

magnetic signal from the substrate. After removing the background signal χ0,

we may then plot χ−1, which should be proportional to T − θp in the high

temperature region above the TC of both NdN and GdN, shown in the inset

of Figure 6.2. The linear behavior is clearly visible, yielding a θp = 65± 1 K,

expected for polycrystalline GdN [12, 57, 92]. One might expect a contri-

bution from the NdN layers in this approach, however it would be strongly

suppressed due to the smaller moment and lower TC . As an estimate, in the

Curie-Weiss theory the constant A in Equation 6.1 is proportional to m2
eff,

where meff = gJµB
√
J(J + 1) is the effective paramagnetic moment. This

value is roughly 5 times larger in GdN, and at 85 K the factor of (T − θp)−1

is about 3 times larger in GdN than for NdN, so the overall NdN signal at

85 K should be about 15 times weaker for NdN, explaining the Curie-Weiss

behavior with the θp of GdN.
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Below the GdN TC , the rapidly increasing magnetization continues until

around 50 K. In the range of 30-40 K the NdN should become ferromagnetic,

and indeed we see a change in slope in both curves in this temperature range.

It is difficult to pinpoint the precise TC of NdN in the superlattice, however we

assume that it corresponds approximately to the values discussed in Chapter

4, which ranged from ≈ 35 to 42 K. The ZFC magnetization has different

behavior in the low temperature region due to the random orientation of the

domains in the ZFC process, which reduces the magnetization compared to

the FC measurement. We note that the low temperature behavior of the FC

magnetization differs from that in homogeneous GdN samples [10, 12] which

approach saturation as a ferromagnetic Brillouin function. This appears to

be due to the ferromagnetic NdN influencing the net magnetization of the

superlattice. To further elucidate the interplay between ferromagnetic NdN

and GdN, we turn to field-dependent magnetization measurements.

Figure 6.3 shows the superlattice M − H loop taken at 5 K. The sample

was first zero-field cooled to 5 K, with the magnetization then increased to 6 T.

The blue curve represents the subsequent measurement as the field is decreased

from 6 T, while the red curve was measured for increasing field. Examining

the blue curve, upon decreasing from 6 T and reaching H = 0 (see inset), we

clearly see that the remanent magnetization MR = −0.3 × 102 emu/cm3 is

negative. The coercive field, HC = −0.02 T, is negative as well in this case.

The negative sign for HC and MR indicates that the net magnetization of the

superlattice switches sign before H does. Furthermore, as the field decreases,

there is a change in slope between −2 T and −4 T, which cannot be ascribed

to bulk GdN or NdN behavior, which each have coercive fields well below 2 T

in magnitude.

The negative remanent and coercive fields point to complex behavior in

the superlattice, and indicate that the hysteresis curve cannot be interpreted

within a model of two non-interacting ferromagnets, in which the global magne-

tization is simply the sum of individual layers having bulk-like magnetization.

Exchange bias systems where ferromagnetic films are coupled to antiferromag-

netic films may also exhibit complex hysteresis loops [102], however, they are

qualitatively different systems, and can be viewed as ferromagnetic systems
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where the origin of the hysteresis is shifted by some exchange-bias field HEB.

How can we explain the negative remanent field MR? We first of all assume

at that 5 K and µ0H = 6 T the moments are close to their saturation values,

approximately 7 µB per ion for GdN and 0.9 - 2.1 µB per ion for NdN. In

this case the NdN moment is only 16 - 30% of the GdN moment. The only

reasonable explanation for the negative magnetization at remanence is for the

GdN, with its much larger moment, to have its magnetization direction par-

tially reversed when H = 0. The reversal of the GdN can then be explained

if ferromagnetic exchange coupling between NdN and GdN spins is present at

the interfaces. Because NdN is an orbital dominant ferromagnet, this FM ex-

change coupling mimics antiferromagnetic exchange coupling: when the spin

moments are aligned the net magnetizations are antiparallel. The NdN, with

its large (≈ 1.5 T in bulk NdN) coercive field at 5 K, is unlikely to switch due

to its large anisotropy energy, and therefore the interface exchange causes the

GdN to reverse while the NdN remains fixed, acting as a hard anchoring layer.

This situation is sketched in Figure 6.3, where both the NdN and GdN layers

have their magnetization sketched in configurations corresponding to points on

the blue (decreasing field) part of the M -H curve. In the following we discuss

the magnetization configurations in more detail.

Starting in configuration (1) in Figure 6.3, at 6 T, the GdN and NdN layers

have their magnetization aligned fully along the field. Upon decreasing the field

to configuration (2), the interface-adjacent GdN layers begin to be aligned by

ferromagnetic exchange with the NdN, and thus reverse their direction. The

NdN layer is rigid due to its large anisotropy compared to GdN. Upon reaching

zero field (3), the NdN maintains its alignment, while the GdN alignment is

dominated by interface exchange. The GdN magnetization reversal nucleates

from the interfaces and a twisted magnetization is formed such that the net

magnetization of the GdN is negative, and large enough to make the global

superlattice magnetization negative. As the field becomes negative in (4), the

GdN is now fully aligned with the field, while the innermost NdN layers begin

to reverse their magnetization due to the large Zeeman coupling, forming a

twisted magnetization. Finally, when the field reaches −6 T in configuration

(5), the NdN magnetization and GdN are both fully aligned by the field. The
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Figure 6.4: Superlattice hysteresis loops measured at (a) T = 35 K, which
shows positive MR and HC and at (b) T = 50 K which shows the hysteresis
resembling a homogeneous GdN film.

process is symmetric upon increasing the field from this point.

We summarize the process described in Figure 6.3 as taking part in two

steps. The first step is the GdN layers form a twisted magnetization phase as

the field is decreased from 6 T, eventually fully reversing at some small negative

field. This results in the negative MR. The second step occurs between about

−1 and −4 T, where the NdN forms a twisted phase and slowly reverses,

resulting in the “hump” in the blue magnetization curve between −4 and

−1 T. These two processes are due to the competition between the Zeeman

coupling, interface coupling, and anisotropy.

Figure 6.4 shows additional hysteresis loops measured at T = 35 K (with

fields up to 8 T, via VSM measurements) and 50 K. At 35 K, we notice that

MR is positive, signalling that the average GdN alignment does not reverse

until after the field changes sign. There is again a “hump” feature in the

magnetization, occurring between −1.5 and −0.3 T when the field is decreased.

This suggests the NdN is undergoing magnetization reversal via a twisted phase

in this region. At 35 K it is clear that the NdN has a reduced anisotropy and

magnetization and is not able to effectively pin the GdN through interface

exchange, but is still influenced by the interface exchange with GdN. Figure

6.4(b) shows the M -H loop at 50 K, above the NdN TC . It resembles the

hysteresis loop of a homogeneous GdN film.
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Figure 6.5: (a) Temperature dependent remanent magnetization after field-
cooling in +6 T. (b) Coercive field HC versus temperature for the superlattice.

These hysteresis measurements show that with increasing temperature the

NdN anisotropy will vary strongly as T approaches 40 K, and the NdN will not

be able to act as a rigid pinning layer for the GdN. To better understand this

temperature dependence, we turn to new temperature dependent magnetiza-

tion measurements. Figure 6.5(a) shows the temperature dependent remanent

magnetization of the superlattice. The curve was obtained by field-cooing in a

6 T field in order to fully saturate the magnetization of both layers. After the

field cooling process, the field was reduced to zero. The curve thus represents

the remanent magnetization as a function of increasing temperature.

One immediately recognizes that the magnetization in Figure 6.5(a) is neg-

ative at 5 K, which is at first sight surprising, however this agrees with the

negative value of MR in Figure 6.3 when the field is decreasing. In the large

6 T field, the GdN and NdN should be fully saturated, and when the field

is reduced to zero, the NdN should remain largely aligned due to its large

coercive field. The GdN layer magnetization, on the other hand, with a two

orders-of-magnitude smaller coercive field, begins to reverse due to interface

exchange with the rigid NdN layers.

The decreasing magnetization as the temperature rises from 5 to 20 K is a

result of the inner GdN magnetization reversing as the GdN anisotropy energy

diminishes. From 20 K to 40 K the flat slope implies that the GdN magneti-

zation is largely aligned by interface exchange, as there is no Zeeman coupling

competing with the interface exchange. At about 40 K the bulk NdN is no
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longer in the ordered phase, while the GdN however remains ferromagnetic.

Above 40 K the negative magnetization rapidly approaches zero as thermal

fluctuations reduce the GdN alignment until the GdN TC is reached. This is

clear evidence that the GdN is responsible for the negative remanent field in

Figure 6.3.

We also plot HC as a function of temperature, shown in Figure 6.5(b),

where the data has been extracted from additional hysteresis measurements.

Here the transition from a negative to positive HC occurs between 20 and 35 K,

coinciding with the temperature of the sign change of MR. The negative HC is

of course a consequence of the GdN being reversed, thus above 35 K the GdN

is aligned parallel to the field. At 50 K, above the NdN TC , we see that the

small ≈ 6 mT coercive field is close to that expected from GdN alone, while

the maximum 40 mT coercive field occurs at 35 K, while the NdN is still in

an ordered phase.

Based on this magnetization data it is clear that the large NdN anisotropy,

orbital dominant moment, and the ferromagnetic exchange coupling together

result in a complex magnetic system where both NdN and GdN layers form

twisted phases. At small fields, the GdN magnetization is dominated by in-

terface exchange which reverses it before the field changes sign. The NdN

is however prevented from reversing at its typical bulk HC value due to this

interface exchange, and only reverse very gradually via a twisted phase, fully

reversing only in fields over 5 T. In the next section we explore the NdN and

GdN layer magnetization separately via the element specific XMCD technique,

which will give us indispensable insight into this complex magnetic system.

6.4 XMCD Investigation

In this section we make use of the element specific nature of XMCD to shed

light on the individual behavior of the GdN and NdN layers in the superlattice.

The XMCD is measured at the Nd L2 and Gd L2,3 edges, which is in the hard

X-ray regime, with energies exceeding 7 keV. At these energies, the absorption

cross section is relatively low, precluding the possibility of studying single

interfaces. Superlattice structures are then necessary to increase the signal by
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effectively multiplying the number of interfaces. Here we measure the same

superlattice sample which was measured in the previous section, allowing for

direct comparisons to be made.

6.4.1 XMCD experimental details

The XMCD was measured at beamline 39XU at the SPring-8 synchrotron in

Japan. The spectra were taken with the X-rays and the magnetic field co-linear

and at an angle of 18◦ from grazing incidence. The experiment took place in

fields of up to 1.2 T, and temperatures down to 16 K, though most measure-

ments took place at 30 K. The XMCD was measured at a fixed magnetic field

while the x-ray polarization was switched. The dichroic signal is then given by

the difference between antiparallel and parallel alignments of the helicity and

magnetic field. The detection scheme was partial fluorescence yield (PFY) as

discussed in Chapter 3. In the PFY scheme, the Lα1 fluorescence is measured

when probing the Nd or Gd L3 edge, while the Lβ1 emission line is measured

at the Nd or Gd L2 edge. This method however eliminates the possibility of

observing quadrupole transitions (2p→ 4f) which directly probe the 4f elec-

trons, as the Lα1,β1 emission lines involve the 3d states and not the 4f . Because

fluorescence has a long mean free path of well over 1000 nm at these emission

line energies, the measured XMCD represents the average signal from all the

superlattice layers of one composition.

The XMCD spectra were normalized to the edge-jump measured from the

XAS. A correction to the XMCD spectra was necessary at the Nd and Gd

edges to account for a small imbalance between the degree of left and right

circular polarization of the incident X-rays. To account for this, samples were

field cooled from room temperature down to 16 K in both ±1.2 T. The sum

of these two XMCD spectra should in principle yield zero for equal amounts

of left and right polarized X-rays, however a small signal proportional to the

absorption spectrum was present. This small background is then subtracted

from the XMCD spectra. Figure 6.6 shows the raw and corrected spectra as

well as the background signal, proportional to the XAS at the Gd L2 and Nd

L2 edges. The GdN L2 edge requires only a small correction due to the large
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Figure 6.6: XMCD signal correction at the Gd L2 edge (a) and Nd L2 edge
(b). XMCD spectra were measured at 16 K after field-cooling in ±1.2 T.
The background signal is proportional to the XAS signal, and is subtracted to
reveal the actual XMCD signal.

amplitude of the XMCD, while the NdN L2 is significantly distorted before

correction.

6.4.2 Gd L2,3 and Nd L2 edges

We first look at the superlattice Gd L2 and L3 edges, shown in Figure 6.7, which

shows the XAS and XMCD spectra, taken in a field of 1.2 T at 16 K, with a

30 K spectra also measured at the L2 edge. The sign of the XMCD spectra

agree with those in studies on GdN carried out by Leuenberger et al. [103],

and agree with the results of the SmN/GdN superlattice in Chapter 5. This

Gd XMCD sign means that the GdN magnetic moment (i.e. spin moment) is

aligned parallel to the field. This is expected, as the large 7 µB/Gd3+ moment

leads to a strong Zeeman coupling. At 30 K the Gd L2 maintains its alignment,

with slightly reduced magnitude.

We check the NdN alignment by turning to the NdN L2 edge, shown in

Figure 6.8. This figure shows the L2 XAS and XMCD for the NdN/GdN

superlattice and for the homogeneous NdN sample as well, for comparison.

The L3 for the superlattice is not shown as it is too weak to clearly resolve

any structure. In the figure we observe that the Nd L2 is of the same sign for

the superlattice and homogeneous sample, though the intensity is a factor of
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Figure 6.7: XAS and XMCD spectra from the NdN/GdN superlattice at (a)
the Gd L3 edge with T = 16 K, and (b) the Gd L2 edge with T = 16 & 30 K.
The spectra were measured after field cooling in 1.2 T.

6.70 6.71 6.72 6.73 6.74 6.75
Energy (keV)

0.2

0.0

0.2

0.4

0.6

X
A
S
(a
rb
.
u
n
it
s)

Superlattice
Nd L2

4

2

0

2

4

6

8

%
X
M
C
D
(a
rb
.
u
n
it
s)

16 K

30 K

6.70 6.71 6.72 6.73 6.74 6.75
Energy (keV)

0.4

0.2

0.0

0.2

0.4

0.6

X
A
S
(a
rb
.
u
n
it
s)

NdN
Nd L2

5

0

5

10

%
X
M
C
D
(a
rb
.
u
n
it
s)

Figure 6.8: Nd L2 edge XAS and XMCD spectra for (a) the NdN/GdN
superlattice at 16 K and 30 K and (b) the homogeneous NdN sample at 16 K,
both after field cooling and measuring in 1.2 T.

two smaller in the superlattice. The sign of the Nd L2 XMCD in both samples

agrees with that of the Sm L2 XMCD in homogeneous SmN shown in Chapter

5. This sign of the Sm L2 XMCD was shown to correspond to the orbital

dominant magnetization in Ref. [19]. The sign difference between the Nd L2

and Gd L2 edge XMCD also confirms the orbital dominant NdN moment.

We can then conclude that the superlattice NdN layers have their average

magnetization parallel to the field at 15 K and 1.2 T. This is in contrast to
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the SmN/GdN superlattice in Chapter 5, which showed the SmN layers had

their magnetization antiparallel to the external field due to the exchange cou-

pling with GdN. The difference can be explained by 1) the much large Zeeman

coupling of NdN and 2) the thicker NdN layers (10 nm NdN layers versus 1.5

nm SmN layers). The reduction in the Nd L2 signal by a factor of two in the

superlattice suggests that the inner Nd ions in the NdN layers are Zeeman dom-

inated, while the interface adjacent layers have their magnetization reversed

by exchange with GdN. The result is a reduction in the average magnetization

in the NdN superlattice layers compared to bulk NdN.

To gain insight more into the magnetic alignment of the GdN and NdN

layers we turn to field-dependent XMCD measurements in the following sec-

tion.
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6.4.3 XMCD hysteresis

In this section we examine the field dependence of the XMCD at the Gd L2

and Nd L2 edges in the superlattice, shown in Figure 6.9. The temperature

was fixed at 30 K for these measurements, and the applied field extended to

µ0H = ±1.2 T. The hysteresis loops were determined by fitting each spectrum

to the XMCD spectrum measured at 1.2 T. The sign of the hysteresis was

chosen to follow that of the magnetization: while the most prominent peak

in the Gd L2 XMCD is negative at 1.2 T, the magnetization is positive, thus

the Gd L2 hysteresis was scaled by −1. For the NdN the sign of the most

prominent L2 peak is positive at 1.2 T, thus it does not require scaling by

−1. At the Gd L2 edge only half a hysteresis loop was measured for increasing

field (red), while the blue curve was obtained by inverting the red curve along

both axes. A full NdN hysteresis curve was measured for both increasing and

decreasing fields.

We first look at the GdN hysteresis and note both the remanent magneti-

zation and coercive field are positive, in accordance with Figure 6.5(b), which

shows that the net coercive field of the superlattice changes from negative

to positive between 20 and 35 K. From the XMCD it is clear that the GdN

magnetization is aligned parallel to the field at 1.2 T, and remains aligned at

remanence, in contrast to the magnetization data taken at 5 K, where the GdN

magnetization changes sign before the field reaches zero. In the magnetization

data at 5 K, it is the GdN-NdN exchange which causes the GdN magnetization

to invert its sign. This implies that in the current situation, the positive GdN

at zero field can be explained by the GdN being only weakly influenced by the

NdN-GdN interface exchange.

It is also clear that the GdN hysteresis loop self-intersects at approximately

±0.1 T and ±0.6 T. This is a signature of exchange coupling with NdN. As

the field is decreased from 1.2 T, the Zeeman coupling of the GdN weakens

and the NdN exchange exerts some influence, however not enough to invert the

GdN completely. One however notices that in contrast to the low temperature

magnetization data of Figure 6.3, the magnetization with decreasing field (blue
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curve) is lower in the XMCD hysteresis. The shape of the Gd L2 hysteresis

makes it clear that it behaves largely as a homogeneous GdN sample would,

with perturbations from this behavior due to the NdN exchange coupling.

We now turn to the NdN hysteresis, following the Nd alignment as the

field is decreased from 1.2 T. As the field decrease, we see that the Nd signal

decreases as well, becoming zero at 0.5 T. This signals that as the NdN Zeeman

coupling weakens, a twisted magnetization arising from interface exchange-

Zeeman competition nucleates from the interfaces deeper into NdN layers. The

decreasing field increases the twist length scale, which according to the model

of Chapter 5 varies as ` ∝ 1/
√
|H|. The periodic boundary conditions of the

superlattice mean that the twist is symmetric about the center of the NdN

layers, and when H = 0.5 T the average alignment of the NdN in the plane of

the film is zero. Below 0.5 T the NdN magnetization is dominated by interface

exchange, resulting in a negative magnetization alignment with respect to the

field. When the field reaches 0.1 T the NdN spin-moment is strongly coupled to

the GdN by interface exchange, and the magnetization rigidly follows the GdN

in the low field region where there is vanishing Zeeman coupling. The NdN

reversal continues until −0.2 T, when the Zeeman coupling of the NdN is large

enough to compete with the NdN-GdN exchange. A twisted phase begins

to nucleate in the inner NdN layers as the NdN Zeeman coupling becomes

stronger. The average NdN alignment passes through zero at −0.5 T and then

arrives in the Zeeman dominated regime where the orbital moment is parallel

to H.

This situation is shown in the sketches in Figure 6.9, which show the spin

and orbital moments of the GdN and NdN layers assuming periodic boundary

conditions. The sketches are idealized to some degree, as the effect of incom-

plete saturation of the NdN and GdN layers have been ignored. The shape

anisotropy in the thin film geometry should keep the magnetization of the film

in plane, thus we have only considered rotations of the magnetization in the

plane of the film, similar to a Bloch domain wall.

Figure 6.10 shows an additional 16 K hysteresis loop extracted from XMCD

at the Nd L2 edge (with the 30 K data also shown for comparison. The 16 K

data shows the same characteristics as the 30 K measurement, though with a
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Figure 6.10: Comparison of the Nd L2 hysteresis from the NdN/GdN super-
lattice measured at 16 K and 30 K. Red and blue curves denote measurements
with H increasing and decreasing, respectively.

larger amplitude expected at lower temperature.

6.5 Discussion

The preceding sections have clearly demonstrated that in the NdN/GdN su-

perlattice the unique interface exchange coupling produces complex magnetic

structures. The twisted phase due to exchange-Zeeman competition manifests

in two ways: in the low temperature SQUID magnetization data we saw that

the GdN magnetization switched first, while the NdN magnetization reversed

fully in very large negative fields. In contrast, the XMCD hysteresis showed

that the NdN magnetization reverses first, followed by the GdN only after the

field reverses. This suggests categorization of the twisted phases as follows:

a “soft phase” where the soft GdN layers pass through a twisted phase and

reverse before the field does, and a “hard phase” where the hard NdN layers

enter a twisted phase and reverse before the field reaches zero. The boundary

between these phases depends on both temperature and the maximum applied
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Figure 6.11: A proposed phase diagram of the twisted magnetic phases in
the NdN/GdN superlattice. Hsat represents the approximate field required to
saturate the magnetization in bulk NdN. HC is the coercive field of NdN.

field.

The origin of these two phases is related to the magnetic anisotropy of the

NdN layers. At 5 K the coercive field is about 1.5 T, while in GdN it is of order

0.01 T. Because of the rather low TC of NdN, the anisotropy energy decreases

significantly as the temperature is increased. For the XMCD measurements at

16 and 30 K, the NdN anisotropy is relatively small, and the NdN is dominated

by the interface exchange coupling with GdN. In the 5 K SQUID measurements

however, the 6 T field is large enough to fully align the NdN layers, which then

remain fixed due to the large anisotropy, while the GdN layers enter a twisted

phase.

Figure 6.11 shows a phase diagram taken from all available magnetization

and XMCD measurements, with temperature plotted along the horizontal axis

and the maximum applied field (µ0Hmax) along the vertical axis. The soft

phase, in which the GdN enters a twisted phase, is located in the upper left

quadrant, with the maximum applied field at 6 T. The three data points (blue

stars) all have MR < 0, signalling the GdN layers reverse their magnetization
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before H reaches zero. The grey hexagon at 35 K represents the hysteresis in

Figure 6.11, and which shows that MR > 0, though it is only 25% of the satu-

ration magnetization at high field. At this temperature and maximum applied

field, the GdN may still enter a twisted phase, but the interface-exchange is

not strong enough to produce a negative magnetization in the GdN layer. This

point is then possibly in the soft phase.

The two XMCD measurements at 16 K and 30 K (red diamonds) in the hard

phase are separated from the soft phase by the line Hsat which represents the

saturation field of bulk NdN, and corresponds approximately to the boundary

between the soft and hard phase. It seems that a field of at least Hsat must

be applied to align the NdN magnetization to a sufficient degree for producing

a rigid pinning layer for the GdN layers to develop a twisted phase. If the

maximum applied field is much less than Hsat, the NdN magnetization is more

disordered and the interface exchange coupling will decrease in energy. The

GdN magnetization will consequently be dominated by Zeeman coupling.

Finally, the green triangles represent SQUID measurements which show no

apparent evidence of a twisted phase. Below the NdN TC , this is most likely

because the maximum applied field is not large enough to align the NdN layers

to any significant degree. Above the NdN TC , the GdN is responsible for the

ordering. Interface exchange may take place with the GdN, but above the

NdN TC there is no intra-layer NdN exchange to support any twisted phase,

even in large fields. In this case one expects only the atomic layers adjacent

to the GdN to be exchange coupled.

6.6 Conclusion and Outlook

The combination of lab based magnetization measurements and the element

specific tool of XMCD paint a complex picture of the NdN/GdN system, which

we have explored for the first time. There are two primary conclusions we make

in regards to the NdN/GdN system. First, there is the appearance of two dif-

ferent kinds of twisted phases. The soft phase where the GdN enters a twisted

phase upon decreasing the field from saturation, and the hard phase where the

NdN layers enter a twisted phase when decreasing the field from saturation,
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Figure 6.12: XMCD at the Dy and Y L3 edge in a DyFe2/YFe2 superlattice,
from Dumesnil et al., Ref. [104]. YFe2 is a weak ferrimagnet and DyFe2 is a
hard ferrimagnet. (a) The hard phase XMCD derived hysteresis at 100 K, (b)
soft phase XMCD derived hysteresis at 200 K.

while the GdN layers behave in a more usual manner. The second conclusion

is that this NdN/GdN system confirms our model of an orbital-driven twisted

phase described in Chapter 5 for the SmN/GdN system. The orbital-dominant

magnetization of SmN and NdN make this unusual asymmetry between fer-

romagnetic interface exchange and Zeeman coupling possible, and drives the

competition resulting in the twisted phases.

Further work is needed to better understand the NdN/GdN system. In

particular, XMCD experiments with large fields and lower temperatures are

necessary to better compare with the lab based magnetometry. The sketches

of the GdN and NdN magnetizations may have more complex behavior than

we have sketched above. To obtain a better picture of the magnetic structure

detailed calculations will need to be made.

We note there exist similar types of twisted phases in the metallic exchange-

spring DyFe2/YFe2, where the DyFe2 is a hard ferrimagnet with the Dy mo-

ment dominant, and YFe2 is a weak ferrimagnet with the Fe moment dominant

[104, 105]. Dy, as a heavy rare-earth, has the spin and orbital moments paral-

lel. In this case, there is ferromagnetic Fe-Fe exchange, however this exchange

results in an antiferromagnetic coupling of the net magnetizations. This leads

to similar hard and soft twisted phases as in the NdN/GdN superlattice sys-
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tem, shown in Figure 6.12 for a DyFe2/YFe2 superlattice (From Dumesnil et

al [104]. The figures show Dy and Y L3 edge XMCD derived hysteresis loops.

The soft phase (Fig. 6.12(b)) shows very similar behavior to the 16 K XMCD

data in Figure 6.9.

The accrued knowledge from the study of the complex behavior of DyFe2/YFe2

will doubtless aid in future investigations of NdN/GdN and SmN/GdN het-

erostructures. However we note again the important distinction: the rare-earth

nitride superlattices are intrinsic ferromagnetic semiconductors. The strong

spin-orbit coupling keeps the spin and orbital moments fixed relative to each

other even when strong exchange fields are present, as was shown in the calcula-

tions of Chapter 4 and 5. It may be interesting to study the magnetoresistance

of REN heterostructures with twisted phases. There are some reports of giant

magnetoresistance due to twisted phases in conventional exchange spring sys-

tems such as DyFe2/YFe3 [106]. The effect of such an unconventional “domain

wall” in the REN superlattice may yield interesting results.
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Conclusions and Outlook

7.1 Results

In this thesis we have investigated the magnetic properties of SmN and NdN

in detail, and advanced our understanding of these materials in two major

ways. We first investigated the fundamental quantity of the magnetic mo-

ment in SmN and NdN. We showed that crystal field calculations, when prop-

erly carried out by including excited J-multiplets, lead to good agreement

with experimental data. Our results differ from previous band-structure cal-

culations using advanced density-functional theory methods, which predicted

nearly maximal values of the orbital and spin moments in NdN and SmN,

while our results showed that the crystal field effects in SmN and NdN cause

significant quenching of the orbital and spin moments. This partial quenching

has also been observed in some heavy rare-earth nitrides such as DyN, ErN,

and HoN, adding support to our finding that quenching plays an important

role in the RENs, in contrast to previous calculations.

In NdN, good agreement was found with the published NdN data from

Schumacher et al. and the crystal field calculations, however the ordered mo-

ment and larger TC of thin-film NdN could not be adequately explained. Likely

causes of the smaller ordered moment and larger TC in the NdN thin-film are

substrate-induced strain and the effects of doping due to nitrogen vacancies.

The effect of nitrogen vacancies are known to modify the Curie temperature

in GdN due to the formation of magnetic polarons, suggesting the possibility
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of a similar effect occurring in NdN.

The second major result is the observation of unconventional twisted mag-

netization phases in SmN and NdN films when coupled to GdN. These twisted

phases were shown to arise from competition between ferromagnetic interface

exchange (acting only on spin) and the orbital-dominant Zeeman coupling of

SmN and NdN. When SmN is exchange coupled to GdN (with a purely spin

moment) an external field keeps GdN fixed while the Zeeman coupling tends to

rotate the SmN magnetization, this competition results in the twisted phase.

Using the element-specific technique of XMCD, we observed a twisted SmN

magnetization in a SmN/GdN bilayer. An analytical model was developed to

explain the XMCD at the M-edge in a natural way. We furthermore showed

that the crystal-field calculations could explain the enhanced spin and orbital

alignment at the interface SmN layers, lending further support to the tech-

nique. In a NdN/GdN superlattice magnetization and XMCD measurements

unambiguously revealed twisted phases occurring in both NdN and GdN, de-

pending on the temperature and maximum applied field. The observation of

the twisted phase in the NdN/GdN system also confirms the findings in the

SmN/GdN system, establishing that the orbital-dominant Zeeman coupling

competes with ferromagnetic interface exchange with GdN to drive the phase.

Systems exhibiting similar twisted phases either rely on large anisotropy

differences between materials, or have antiferromagnetic exchange coupling at

interfaces to produce competition interactions resulting in a twisted phase.

All of these systems are 1) metallic and 2) spin-dominant, establishing that

twisted phases in rare-earth nitride heterostructures are quite unconventional.

7.2 Future Outlook

The good agreement between the crystal field calculations and experiment for

SmN and NdN suggest that calculations could be applied to other RENs to

good effect. The next to study would be the latter half of the REN series,

where DyN, ErN, and HoN have detailed experimental studies of their mag-

netic properties [6, 70]. It would be useful to determine any trends in the

crystal field parameters across the series. Ultimately, a knowledge of the spin
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and orbital moments would benefit other theoretical calculations that depend

on these values. Another useful effort would be to revisit band structure cal-

culations in the RENs in light of the findings in this thesis. More accurate

predictions of the band structures and the resulting spin and orbital moments

would greatly aid in the interpretation of a vast range of experiments. Finally,

it would be interesting to see if advanced band structure calculations could

provide some insight into the crystal field model in the RENs, and perhaps

some correspondence between the two approaches could be made.

There are many possible directions to take in studying twisted phases in

REN heterostructures. The obvious next steps are to conduct more XMCD

experiments on the SmN/GdN and NdN/GdN systems. In-situ growth at an

M-edge XMCD beamline would allow for more detailed depth-dependent stud-

ies. Further L-edge XMCD studies in larger fields and lower temperatures are

already being planned for NdN/GdN superlattices. Depth sensitive neutron re-

flectivity measurements should also provide more detailed information. These

additional measurements in a variety of temperatures, fields, and geometries

should provide a better picture of the twisted structure. Measurements to de-

termine the anisotropy contributions would also be useful and aid in modelling

these phases.

The ability to substitute rare-earth ions may also lead to interesting results.

Substituting Gd ions in SmN and NdN should reduce the overall magnetization

while also modifying the exchange, which could allow the ability to tune the

length scales of the twisted phases independently of the applied field. These

twisted phases can thus be viewed as engineered domain-walls with tunable

domain-wall widths. Current-driven domain wall motion is an active field, so

it may be interesting to explore this area in the RENs. An open question is the

transport characteristics through these twisted phases, which may show some

interesting behavior. There have been reports of giant magnetoresistance in

metallic exchange-spring systems [106] for example, so it seems worth pursuing

similar experiments in the RENs, in addition to tunneling magnetoresistance.

Because the RENs can be doped to achieve a wide range of carrier concen-

trations, the conductivity can be tuned to the desired application, while the

magnetic properties are relatively unaffected. There are thus many unexplored
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avenues worth pursuing in REN heterostructures.
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Appendix A

Matrix Elements of Irreducible

Tensor Operators

A.1 Irreducible Tensor Operators

The Wigner-Eckart theorem provides a useful relationship for matrix ele-

ments of tensor operators with respect to total angular moment eigenstates

{|LSJMJ〉} (see, e.g. Refs [32, 107, 108]). An irreducible tensor operator is

fully defined by its commutation relations with components of the total angu-

lar moment operator J. First we define the following angular moment “ladder”

operators:

J± = Jx ± iJy. (A.1)

These operators have the following commutation relations (the commutator is

[A,B] = AB −BA):

[J±, J∓] = ±2Jz and [Jz, J±] = ±J±. (A.2)

An irreducible tensor operator can now be defined as an object T (k)
q which

satisfies the following commutation relations:

[
Jz, T (k)

q

]
= qT (k)

q (A.3)[
J±, T (k)

q

]
=
√
k(k + 1)− q(q ± 1)T (k)

q±1, (A.4)
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where the rank k, of the operator refers to the number of independent compo-

nents, equal to 2k + 1, and q indexes these components, with q = −k,−k +

1, . . . , k − 1, k. For example k = 0 corresponds to a scalar operator (one com-

ponent), k = 1 a vector operator with components q = −1, 0, 1, and k > 2

corresponds to tensor operators.

The term “irreducible” corresponds to the fact that T (k)
q transforms under

rotations as a spherical harmonic of rank k, and cannot be decomposed into

a sum of lower rank operators (in contrast, Cartesian tensor operators are not

necessarily irreducible).

A.2 The Wigner-Eckart Theorem

The statement of the Wigner-Eckart theorem is made for angular momentum

eigenstates |α, JM〉 where α indicates other quantum numbers (such as L, S,

and the radial quantum number n). The theorem tells us how to calculate

matrix elements of an irreducible tensor operator T (k)
q :

〈αJM |T (k)
q |α′J ′M ′〉 = (−1)J−M

(
J k J ′

−M q M ′

)
〈αJ ||T (k)||α′J ′〉 (A.5)

where the large parentheses denotes the Wigner-3j symbol and the reduced

matrix element 〈αJ ||T (k)||α′J ′〉 is independent of M and M ′. The 3j symbol

is defined in terms of the Clebsch-Gordan coefficient by(
j1 j2 J

m1 m2 −M

)
= (−1)M+j1−j2 〈j1j2m1m2|j1j2 : JM〉√

2j + 1
, (A.6)

where j1 + j2 = J and m1 + m2 = M . The Clebsch-Gordan coefficients form

the unitary transformation between the {|j1j2m1m2〉} basis and {|j1j2 : JM〉}
basis. For example,

|j1j2 : JM〉 =
∑
m1

∑
m2

〈j1j2m1m2|j1j2 : JM〉 |j1j2m1m2〉 . (A.7)
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In terms of Clebsch-Gordan coefficients the Wigner-Eckart theorem reads

〈αJM |T (k)
q |α′J ′M ′〉 =

〈J ′kM ′q|JM〉√
2J + 1

〈
α, J ||T (k)||α′, J ′

〉
. (A.8)

The meaning of the Wigner-Eckart theorem (A.5) is that it separates the

geometrical factors (depending on M,M ′) out from the part describing the

physical operator, which is described by the reduced matrix element. For

vector operators k = 1, if J ′ = J , the Wigner-Eckart reduces to the simplified

projection theorem:

〈α, JM |Tq|α′, JM ′〉 =
〈α, JM |T · J|α′, JM〉

J(J + 1)
〈JM |Jq|JM ′〉 . (A.9)

For example, setting T = L, for Lz = L0 the projection theorem gives

〈α, JM |Lz|α′, JM ′〉 =

〈
α, JM |L2 + 1

2
(J2 − L2 − S2)|α′, JM ′〉
J(J + 1)

〈JM |Jz|JM ′〉

=
1

2
+

1

2

L(L+ 1)− S(S + 1)

J(J + 1)
〈JM |Jz|JM ′〉 .

(A.10)

Similarly for Sz = S0,

〈α, JM |Sz|α′, JM ′〉 =

〈
α, JM |S2 + 1

2
(J2 − L2 − S2)|α′, JM ′〉
J(J + 1)

〈JM |Jz|JM ′〉

=
1

2
− 1

2

L(L+ 1)− S(S + 1)

J(J + 1)
〈JM |Jz|JM ′〉 .

(A.11)

Thus the operator Mz = Lz + 2Sz can be seen to be

〈α, JM |Lz + 2Sz|α′, JM ′〉 =
3

2
− 1

2

L(L+ 1)− S(S + 1)

J(J + 1)
〈JM |Jz|JM ′〉

= gJ 〈JM |Jz|JM ′〉 ,
(A.12)

where we have defined the Landé gJ -factor. From this definition it is easy to
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show that

〈α, JM |Sz|α′, JM ′〉 = (gJ − 1) 〈JM |Jz|JM ′〉 (A.13)

〈α, JM |Lz|α′, JM ′〉 = (2− gJ) 〈JM |Jz|JM ′〉 , (A.14)

which were given in Chapter 4. A simpler alternative for deriving the relation

between Lz + 2Sz and Jz exists using purely geometrical considerations, and

is found in many introductory quantum mechanics textbooks. The Wigner-

Eckart and projection theorems allow for the use of algebraic methods without

resorting to geometrical considerations.

Consequences of the Wigner-Eckart Theorem

An important consequence of the Wigner-Eckart theorem is that matrix ele-

ments of tensor operators within a fixed J-multiplet (i.e. J ′ = J) are propor-

tional to each other. Given tensor operators T (k)
q and O(k)

q , we have〈
α, JM ′|T (k)

q |α′, JM ′
〉

〈
α, JM ′|O(k)

q |α′, JM ′
〉 =

〈
α, J ||T (k)||α′, J

〉
〈α, J ||O(k)||α′, J〉

, (A.15)

which shows that the ratio of these operators does not depend on the geometry

of the system through M,M ′.

More generally, given a Hamiltonian H which depends on parameters such

as Λ, Jex, A4, A6, if only the lowest J-multiplet is considered an eigenstates of

H can be written as

|ψi〉 =
∑
M

ciM |α, JM〉 , (A.16)

where the coefficients depend on the parameters of the Hamiltonian. In this

case the expectation value of a tensor operator within the state |ψi〉 is given
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by

〈
ψi|T (k)

q |ψi
〉

=
∑
M,M ′

c∗iMc
i
M ′

〈
α, JM |T (k)

q |α′, JM ′〉 (A.17)

=

(∑
M,M ′

c∗iMc
i
M ′(−1)J−M

(
J k J

−M q M ′

))〈
αJ ||T (k)||α′J ′

〉
(A.18)

= Uk,q(J)
〈
αJ ||T (k)||α′J ′

〉
. (A.19)

Thus the matrix elements of the q-th component of every tensor operator of

rank k within a single J multiplet are proportional to Uk,q(J). The ratio of

reduced matrix elements give the proportionality constants between operators.

Varying the parameters of the Hamiltonian changes Uk,q(J), but not the ratio

of tensor operators. Thus within a single J-multiplet the ratio of the matrix

elements of any two tensor operators remains fixed.

If higher J-multiplets are considered, then the ratio of the matrix elements

of tensor operators depend on the coefficients ciM , and thus the parameters in

the Hamiltonian. In this case〈
ψi|T (k)

q |ψi
〉

〈
ψi|O(k)

q |ψi
〉 =

Uk,q(J)
〈
αJ ||T (k)||α′J ′

〉
+ Uk,q(J, J + 1)

〈
αJ ||T (k)||α′J + 1

〉
+ . . .

Uk,q(J) 〈αJ ||O(k)||α′J ′〉+ Uk,q(J, J + 1) 〈αJ ||O(k)||α′J + 1〉+ . . .
.

(A.20)

This is an important consideration for Sm3+, where the spin and orbital mo-

ments are antiparallel and nearly equal and magnitude, so small changes in

the ratio of 〈Lz〉 / 〈Sz〉 can change the net moment considerably.

A.3 Matrix Elements Between Arbitrary Mul-

tiplets

Here we derive the matrix elements for arbitrary J-multiplets given in Chapter

4. We first derive Equations 4.12, the matrix element 〈JM |Lz|J ′M ′〉. We first
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apply the Wigner-Eckart Theorem to separate out the M dependence, using

the notation Lz = L
(1)
0 :

〈
LSJM |L(1)

0 |LSJ ′M ′
〉

= (−1)J−M

(
J k J ′

−M q M ′

)〈
LSJ ||L(1)||LSJ ′

〉
(A.21)

The calculation of
〈
LSJ ||L(1)||LSJ ′

〉
is more involved because L(1) is acting on

only one part of a coupled system of angular momentum vectors. The deriva-

tion of this matrix element uses the Clebsch-Gordan decomposition multiple

times to recouple the angular moment states, along with repeated use of the

Wigner-Eckart theorem. The result involves a double sum over four Clebsch-

Gordan coefficients (or 3j symbols), which more compactly expressed by a

Wigner 6j-symbol. For a coupled system with j1 + j2 = J , and an operator

T (k)(1) acting on j1, the reduced matrix element in general is given by〈
α, j1j2J ||T (k)(1)||α′, j′1j′2J ′

〉
= δj2,j′2(−1)j1+j2+J ′+k

×
√
J(J + 1)J ′(J ′ + 1)

{
J k J ′

j′1 j2 j1

}
×
〈
α, j1||T (1)||α′, j′1

〉
,

(A.22)

where the braces represent the Wigner 6j symbol (see, e.g. Ref. [107] for a

derivation of (A.22) and general recursion relations and special cases of the 6j

symbol). In our case, with k = 1, j1 = j′1 = L and j2 = j′2 = S, Equation

(A.21) reduces to〈
LSJMJ |L(1)

0 |LSJ ′M ′
〉

= (−1)J−M+L+S+J ′+1 ×
√
J(J + 1)J ′(J ′ + 1)

×

(
J k J ′

−M q M ′

){
J 1 J ′

L S L

}
×
〈
L||L(1)||L

〉
.

(A.23)
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The calculation of the final reduced matrix element can now be done explicitly.

By the Wigner-Eckart theorem we have

〈
LML|L(1)

0 |LM ′
L

〉
= (−1)L−ML

(
L 1 L

ML 0 M ′
L

)〈
L||L(1)||L

〉
. (A.24)

If we choose ML = M ′
L, we can calculate both the matrix element on the left

of Eq. (A.24) and 3j symbol explicitly using the formula [107](
a a 1

β −β 0

)
= (−1)a−β

β

[a(a+ 1)(2a+ 1)]1/2
. (A.25)

The 3j symbol is invariant under even permutations of the columns, thus

we can put Eq. (A.24) into the form of Eq. (A.25). Plugging in values of

ML = ML′ we find

〈
LML|L(1)

0 |LML

〉
= ML =

(
L L 1

ML −ML 0

)〈
L||L(1)||L

〉
, (A.26)

where we have used the fact that Lz |LML〉 = ML |LML〉. We can thus solve

for the reduced matrix element:

〈
L||L(1)||L

〉
=
√
L(L+ 1)(2L+ 1). (A.27)

The final matrix element can now be expressed using the fact that the 6j

symbol is invariant under any permutation of the columns, and invariant under

permutations of upper and lower arguments in any two columns:〈
LSJMJ |L(1)

0 |LSJ ′M ′
J

〉
= (−1)J−M+L+S+J ′+1 ×

√
J(J + 1)J ′(J ′ + 1)

×

(
J k J ′

−M q M ′

){
L L 1

J J ′ S

}√
L(L+ 1)(2L+ 1).

(A.28)

This is the same as Equation 4.12. The same procedure can be used to calculate

the matrix elements of Sz, given in equation 4.11.
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For the calculation of the crystal field matrix elements (Equation 4.19) a

slightly more complicated reduced matrix element must be calculated. It is

given by

〈Ψ(4fn)L||
∑
i

rki Y
k||Ψ(4fn)L〉 = 〈4f |rk|4f〉〈fnL||

∑
i

Y k(θi, φi)||fnL〉,

(A.29)

where in Chapter 4 we used the notation
〈
rk
〉

=
〈
4f |rk|4f

〉
. The difficulty

in this case is that
∑

i Y
k(θi, φi) acts on single particle states, so the multi-

electron state |fnL〉 must be expanded into single particle states consistent

with antisymmetry under interchange of any two electrons. This expansion is

done using coefficients of fractional parentage (cfp), describe in detail in Cowan

[21]. However, because calculations using cfp are tedious, the matrix elements

of the form (A.29) have been tabulated for all p, d and f shell configurations

in Ref. [109]. The calculations of such reduced matrix elements are given in

terms of a unit tensor operator

U (k) ≡
∑
i=1

u(k)(i), (A.30)

related to spherical harmonics by

Y k
q =

〈
l||Y k||l′

〉
u(k)
q , (A.31)

and with the property
〈
l||u(k)||l′

〉
= 1 (here l refers to a single particle orbital

quantum number, with l = 3 for the 4f shell). In this way the reduced matrix

elements may be determined by

〈Ψ(4fn)L||
∑
i

rki Y
k||Ψ(4fn)L〉 = 〈4f |rk|4f〉

〈
L||U (k)||L

〉 〈
f ||Y k||f

〉
, (A.32)

Each separate expectation value can then be found in tables. As noted in

Chapter 4, the radial integrals
〈
4f |rk|4f

〉
have been calculated in Hartree-

Fock and Dirac-Fock schemes [69, 110]. Values of
〈
l||Ck||l′

〉
(where Ck =

[4π/(2k + 1)]1/2Y k) are tabulated in Cowan [21]. The matrix elements of

Equation (A.29) have conveniently been calculated in [35] for the Hund’s rules
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Values of
〈
(4f)nL||

∑
k r

k
i Y

K ||(4f)nL
〉

in units of
〈
rk
〉

k Nd3+ Sm3+

2 -
(

5
4π

23·7·13
32·5·11

)1/2 (
5

4π
23·11·13

33·5

)1/2

4 -
(

9
16π

28·7·13·17
32·113

)1/2 (
9

16π
29·13
32·11

)1/2

6 -
(

13
32π

210·54·17·19
32·113·13

)1/2

-
(

13
32π

210·53·17
33·11·13

)1/2

Table A.1: Reduced matrix elements for Sm3+ and Nd3+ ions, taken from
Ref. [35]

ground states of all the rare-earths, and are tabulated (in terms of
〈
rk
〉
),

reproduced in Table A.1 for Sm3+ and Nd3+.
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Appendix B

Free Energy Minimization

Here we derive the twisted magnetization profile of Chapter 5 by minimizing

the free energy. The solution to the formally equivalent case of the exchange-

spring was given by Goto et al. [38], however no proof was given. Here we show

how to determine the function θ(z) which minimizes the free energy using the

calculus of variations. The basic methods of the calculus of variations can

be found in, e.g. Refs. [111, 112]. We first present the general method of

minimizing a functional with mixed boundary conditions.

B.1 Extremizing a Functional

The archetypal example of the calculus of variations involves finding the func-

tion u(x) which minimizes (or extremizes) the functional J [u]. Here a func-

tional is a map from the space of functions to a scalar in R.

We assume J is given by the following:

J [u] =

∫ b

a

dx L(x, u, u′), (B.1)

with the boundary conditions u(a) = α and u(b) = β. The first order variation

of u is given by uε(x) = u(x) + εw(x). If we force the variation to satisfy

the boundary conditions (i.e. “fixed” boundary conditions) uε(a) = α and

uε(b) = β, we have w(a) = w(b) = 0. Carrying out the minimization (or

extremization) procedure by setting the functional derivative equal to zero, we

149



Appendix B Free Energy Minimization

find

0 =
d

dε
J [u+ εw]

∣∣∣∣
ε=0

, (B.2)

=

∫ b

a

dx w(x)

(
∂L

∂u
− d

dx

∂L

∂u′

)
+

[
w(x)

∂L

∂u′

]b
a

, (B.3)

=

∫ a

b

dx w(x)

(
∂L

∂u
− d

dx

∂L

∂u′

)
+ w(b)

∂L

∂u′

∣∣∣∣∣
x=b

− w(a)
∂L

∂u′

∣∣∣∣∣
x=a

. (B.4)

The last two terms are zero because w(a) = w(b) = 0 and we recover the

Euler-Lagrange equations:

∂L

∂u
− d

dx

∂L

∂u′
= 0. (B.5)

When one boundary is left free, i.e. we allow variations of w(x) that don’t

vanish at x = b (in addition to those that vanish at a and b), the term

w(b)∂L/∂u′|x=b vanishes for arbitrary w only if

∂L

∂u′

∣∣∣∣∣
x=b

= 0. (B.6)

In situation of Chapter 5, the functional to be minimized is

E[θ] =

∫ L

0

dz

[
A

(
dθ(z)

dz

)2

+MsH cos θ(z)

]
. (B.7)

Using the variations θε(z) = θ(z) + εw(z) we have the boundary conditions

θ(0) = 0 and we allow arbitrary variations at z = L, i.e. θ(L) is left free to

be whatever minimizes E. Thus, in addition to satisfying the Euler-Lagrange

equations, θ(z) must also satisfy the additional boundary condition

∂L

∂θ′

∣∣∣∣
L

= 2A
dθ(z)

dz

∣∣∣∣
L

= 0 (B.8)

=⇒ dθ(z)

dz

∣∣∣∣
L

= 0. (B.9)
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However, because ∂L/∂z = 0 (a translational invariance symmetry), Noether’s

theorem guarantees there is a conserved quantity. The conserved quantity is

given by

θ′
∂L

∂θ′
− L = const. (B.10)

This reduces the order of the differential equation in θ(z) by one, and thus

provides a simpler method of solution compared to solving the Euler-Lagrange

equations directly.

B.2 Explicit Solution for the Twisted Phase

Making use of the conserved quantity of Eq. (B.10), we see that for the form

of L given in Eq. (B.7), we have

(θ′)
2 − λ2 cos θ(z) = const., (B.11)

where λ2 = MsH/A. Using the boundary condition θ′(L) = 0 immediately

identifies the constant as −λ2 cos θ(L) ≡ −λ2 cos θ0. After some algebra and

integration, we find

zλ =

∫ θ(z)

0

dθ̃√
cos θ̃ − cos θ0

. (B.12)

Using the identity cosφ = 1−2 sin2(φ/2) and defining k = sin(θ0/2), we arrive

at

zλ =
1√
2

∫ θ(z)

0

dθ̃√
k2 − sin2(θ̃/2)

. (B.13)

Finally, we make the substitution ξ = k−1 sin2(θ̃/2) and find

zα =

∫ k−1 sin(θ(z)/2)

0

dξ√
(1− ξ2)(1− k2ξ2)

, (B.14)

where α = λ/
√

2 =
√
MsH/2A. This integral is an incomplete elliptic function

of the first kind. It can be inverted by the use of the Jacobi elliptic function
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sn in the following way:

sn(zα) =
sin θ(z)

2

k
=

sin θ(z)
2

sin θ(L)
2

. (B.15)

When z = L, we find

Lα =

∫ 1

0

dξ√
(1− ξ2)(1− k2ξ2)

= K(k), (B.16)

where K(k) is the complete elliptic function of the first kind, with module k

(see, e.g., Abramowitz & Stegun [113] for properties of elliptic functions and

Jacobi elliptic functions). We note that K(k) > π/2 for |k| 6 1, and so in

order to obtain a non-trivial solution, we must have L
√
MsH/2A > π/2 for a

twisted phase to exist. The explicit solution of θ(z) is given by

θ(z) = 2 sin−1
(
K−1(αL)sn(zα)

)
α =

√
MsH

2A
, (B.17)

where K−1 is the inverse of the complete elliptic function of the first kind.

While complete elliptic functions are found in standard computational pack-

ages, K−1 is generally not among the built-in function. In this thesis we

inverted K(k) by using the Newton-Raphson method to find the roots k∗ of

K(k) − αL = 0, where successive approximations of the roots are made by

k∗n+1 = k∗n −K(kn)/K ′(kn), until suitable convergence is reached. The deriva-

tive of K(k) is given by

K ′(k) =
dK

dk
=

E(k)

k(1− k2)
− K(k)

k
, (B.18)

where E(k) is the complete elliptic function of the second kind, defined by

E(k) =

∫ 1

0

dξ

√
1− k2ξ2√
1− ξ2

. (B.19)

Numerical schemes for calculating the functions (K(k), E(k), sn(u)) can be

found in Ref. [113], and are also found as built-in functions for many compu-
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tational packages.
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47. Nakajima, R., Stöhr, J. & Idzerda, Y. Electron-yield saturation effects

in L-edge x-ray magnetic circular dichroism spectra of Fe, Co, and Ni.

Phys. Rev. B 59, 6421–6429 (1999).

158



REFERENCES

48. Van der Laan, G. & Figueroa, A. I. X-ray magnetic circular dichroismA

versatile tool to study magnetism. Coord. Chem. Rev. (2014).

49. Harmon, B. N. & Freeman, A. J. Spin-polarized energy-band structure,

conduction-electron polarization, spin densities, and the neutron mag-

netic form factor of ferromagnetic gadolinium. Phys. Rev. B 10, 1979–

1993 (1974).

50. Jo, T. & Imada, S. 4f -5d Exchange Interaction and Magnetic Circular

Dichroism in L2,3 Absorption for Ferromagnetic Rare Earths. J. Phys.

Soc. Jpn. 62, 3721–3727 (1993).

51. Matsuyama, H., Harada, I. & Kotani, A. Roles of 4f -5d Exchange Inter-

actions in Magnetic Circular X-Ray Dichroism at the Rare-Earth L2,3

Edges. J. Phys. Soc. Jpn. 66, 337–340 (1997).

52. Van Veenendaal, M., Goedkoop, J. B. & Thole, B. T. Branching Ratios

of the Circular Dichroism at Rare Earth L23 Edges. Phys. Rev. Lett. 78,

1162–1165 (1997).

53. Parlebas, J., Asakura, K., Fujiwara, A., et al. X-ray magnetic circular

dichroism at rare-earth L2,3 absorption edges in various compounds and

alloys. Physics Reports 431, 1 –38 (2006).

54. Goedkoop, J. B., Thole, B. T., van der Laan, G., et al. Calculations

of magnetic x-ray dichroism in the 3d absorption spectra of rare-earth

compounds. Phys. Rev. B 37, 2086–2093 (1988).

55. Thole, B. T., Carra, P., Sette, F. & van der Laan, G. X-ray circular

dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–

1946 (1992).

56. Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichro-

ism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993).

57. Natali, F., Ludbrook, B., Galipaud, J., et al. Epitaxial growth and prop-

erties of GdN, EuN and SmN thin films. Phys. Status Solidi (C) 9, 605–

608 (2012).

159



REFERENCES

58. Buschow, K. H. J., van Diepen, A. M. & de Wijn, H. W. Moment Re-

duction in Magnetically Ordered Samarium Intermetallics. Phys. Rev.

B 8, 5134–5138 (1973).

59. De Wijn, H. W., van Diepen, A. M. & Buschow, K. H. J. Effect of

Crystal Fields on the Magnetic Properties of Samarium Intermetallic

Compounds. Phys. Rev. B 7, 524–533 (1973).

60. Van Diepen, A. M., de Wijn, H. W. & Buschow, K. H. J. Temperature

Dependence of the Crystal-Field-Induced Anisotropy in SmFe2. Phys.

Rev. B 8, 1125–1129 (1973).

61. Adachi, H., Ino, H. & Miwa, H. Effect of conduction-electron polariza-

tion on the magnetism of hcp samarium metal. Phys. Rev. B 56, 349–

354 (1997).

62. Adachi, H & Ino, H. A ferromagnet having no net magnetic moment.

Nature 401, 148–150 (1999).

63. Adachi, H., Kawata, H., Hashimoto, H., et al. Zero-Magnetization Fer-

romagnet Proven by Helicity-Switching Compton Scattering. Phys. Rev.

Lett. 87, 127202 (2001).

64. Qiao, S., Kimura, A., Adachi, H., et al. Direct evidence of ferromag-

netism without net magnetization observed by x-ray magnetic circular

dichroism. Phys. Rev. B 70, 134418 (2004).

65. Dhesi, S. S., van der Laan, G., Bencok, P., et al. Spin- and orbital-

moment compensation in the zero-moment ferromagnet Sm0.974Gd0.026Al2.

Phys. Rev. B 82, 180402 (2010).

66. Racah, G. Theory of Complex Spectra. II. Phys. Rev. 62, 438–462

(1942).

67. SymPy Development Team. SymPy: Python library for symbolic math-

ematics (2014).

68. Lea, K., Leask, M. & Wolf, W. The raising of angular momentum de-

generacy of f -electron terms by cubic crystal fields. Journal of Physics

and Chemistry of Solids 23, 1381–1405 (1962).

160



REFERENCES

69. Freeman, A. J. & Watson, R. E. Theoretical Investigation of Some Mag-

netic and Spectroscopic Properties of Rare-Earth Ions. Phys. Rev. 127,

2058–2075 (1962).

70. Cortie, D. L., Brown, J. D., Brück, S., et al. Intrinsic reduction of the

ordered 4f magnetic moments in semiconducting rare-earth nitride thin

films: DyN, ErN, and HoN. Phys. Rev. B 89, 064424 (2014).

71. Hulliger, F. Rare earth pnictides. Handbook on the physics and chemistry

of rare earths 4, 153–236 (1979).

72. Furrer, A. & Halg, W. Crystal-field splittings of NdN and HoN. J. Phys.

C: Solid State Phys. 9, 3499 (1976).

73. Schumacher, D. P. & Wallace, W. E. Magnetic Characteristics of Some

Lanthanide Nitrides. Inorg. Chem. 5, 1563–1567 (1966).
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