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Abstract

Nanostructures with quantum dots in proximity to superconducting elec-

trodes are an ideal tool to study superconducting correlations in systems with

few degrees of freedom that exhibit strong Coulomb-interaction effects. Such

hybrid superconductor-normal structures show rich physics due to the in-

terplay of superconductivity, Coulomb interaction and non-equilibrium. Su-

perconducting correlations are established on the quantum dot when it is

coupled to a superconductor even in the presence of strong Coulomb repul-

sion and Cooper pairs can tunnel coherently between the quantum dot and

the superconductor.

In this thesis, we investigate theoretically electronic transport through

an interacting quantum dot coupled to normal and superconducting leads.

The presence of the proximity effect can be detected by the dot’s current,

namely the Andreev current. However, current fluctuations might reveal

information on the electronic transport and the internal structure of the

system which is not visible in the mean value of the current. For this reason,

we study the current fluctuations through the proximized quantum dot to get

access to the properties of such a hybrid quantum-dot system. In particular,

we are interested in the finite-frequency fluctuations to unveil the coherent

dynamics underlying the proximity effect in the quantum dot and its internal

time scales.

At first, we present a study of the frequency-dependent current noise for

subgap transport through an interacting single-level quantum dot tunnel-

coupled to normal and superconducting leads. For this purpose, we employ

a non-equilibrium diagrammatic real-time approach to calculate the finite-

frequency current noise. The finite-frequency noise spectrum shows a sharp



dip at a frequency corresponding to the energy splitting of the Andreev bound

states which is a signature of the coherent exchange of Cooper pairs between

the quantum dot and the superconductor. Furthermore, in the high frequency

regime, the so called quantum noise regime, the noise spectrum exhibits steps

at frequencies equal to the excitation energies. These steps can be related to

the effective coupling strength of the excitations.

However, the statistical description of the electron transport does not

stop with the noise. Current cumulants of arbitrary order can be obtained

by means of full counting statistics (FCS). We set up a theory based on

the diagrammatic real-time approach to calculate the finite-time FCS for

quantum transport with a non-Markovian master equation that captures the

initial correlations between system and reservoir. This allows us to fully

describe the current fluctuations of the hybrid quantum-dot system, that is

the noise and all higher order current cumulants.
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Chapter 1

Introduction

1.1 Hybrid superconductor-normal structures

with quantum dots

In the last decades the miniaturization of electronic devices experienced a

substantial progress. Consequently, fundamental building blocks of elec-

tronic devices reduced rapidly in size and have nowadays a dimension at

the nanometer scale. Due to this size, quantum and charging effects play an

important role. The confined electrons of such a small scale device behave

quantum mechanically. Hence, the excitation spectrum consists of discrete

energy levels. Quantum dots, often called artificial atoms [1] due to their

properties, are such quasi-zero dimensional systems. The motion of single

electrons is constricted in all three spatial directions due to the size of the

quantum dot. Recently, nanostructures with quantum dots in proximity

to superconducting electrodes have attracted attention. They are an ideal

playground to study superconducting correlations in systems with few de-

grees of freedom that exhibit strong Coulomb-interaction effects [2, 3]. In

superconductors a pair of electrons bind to so-called Cooper pairs due to a

weak attraction. The Coulomb repulsion between those Cooper pair elec-

trons is usual rather small due to their spatial separation. Hence, fabricating

1



2 Introduction

quantum dots in a hybrid superconductor-normal structure, such that it is

possible to establish superconducting correlations on the quantum dot even

in the presence of a strong Coulomb repulsion, allows the interplay of these

two effects.

Intriguingly, these types of structures are at the heart of recent propos-

als to generate Majorana-fermion excitations in quantum dots [4–7] and to

establish and detect different symmetries of superconducting pairing in a

controllable way [8]. Another line of research has focussed on the possibility

to use double quantum dots, tunnel coupled to superconductors as a source

of entangled electron pairs [9, 10]. It is therefore of vital importance to gain

access to the properties of such hybrid quantum-dot systems.

The formation of Cooper pairs and their condensation into a boson-like

state in superconductors leads to an energy gap in the density of states of

the superconductor. Subgap transport through electronic structures made

of superconductors in contact to normal conducting materials is described

by means of Andreev reflection [11]. At the interface between a normal

conducting material and a superconductor the transport is carried by Cooper

pairs due to Andreev reflection processes and not due to single electrons.

Superconductivity is induced in the normal metal and a energy gap will form

in the density of states of the metal, known as Proximity effect.

The properties and internal dynamics of hybrid quantum-dot systems

can be accessed by studying the electronic transport. The current gives

information on the average number of electrons flowing through a device in

a given time. This has been measured in various experimental studies where

the subgap spectrum of hybrid superconductor-quantum dot devices has been

analyzed by Andreev level spectroscopy [12–22], which allows to measure the

Andreev addition energies and the total line width of the resonances via

the differential conductance. Hence, Andreev level spectroscopy detects the

presence of the proximity effect.

However, the measurement of the current in experiments is accompanied

by fluctuations, which can be quantified by the current noise. These fluctua-
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tions can be of different nature: some arise due to external influences as e.g.

1/f noise or due to vibrations in the measurement setup, while the other

part of fluctuations is of an intrinsic nature. The first type of fluctuations

has a negative impact on the measurement and generally, the aim is to keep

these small. On the other hand the second type of fluctuations, the intrinsic

ones, can be a source of information that is not present in the time average

value of the current. The intrinsic noise, which arises due to the stochastic

nature of the quantum transport in nanoscale conductors, persists even if all

fluctuations due to external influences are eliminated.

The intrinsic noise in mesoscopic devices has different origins. The first

source arises due to the thermal fluctuations of occupation numbers in the

electronic reservoir. The thermal noise in a conductor is an equilibrium phe-

nomenon and gives information on the temperature and the conductance [23].

A second source of intrinsic noise appears due to the randomness in transport

across the nanostructure. To get more useful details out of the noise spec-

trum one has to apply a nonzero voltage, which lets the noise rise above its

equilibrium value and makes the noise frequency dependent. The so called

shot noise occurs due to the discreteness of the electrical charge. Both ther-

mal and shot noise are classical concepts. Additionally, in the high-frequency

regime, so called quantum noise emerges from zero-point fluctuations [24].

However, to obtain further understanding on the electron transport it

might be useful to study not only the current noise but also higher order

cumulants. The extraction of the higher moments directly from the current

fluctuations in experiments is a demanding task and has been achieved only

for the third order cumulant [25]. Alternatively higher moments to arbi-

trary order are directly accessible in terms of the Full Counting Statistics

(FCS) [26, 27]. FCS is nowadays an established concept not only in theo-

retical but also in experimental physics since it became feasible to measure

the FCS in transport through a quantum dot [28]. Current fluctuations and

FCS are usually studied in terms of a long-time measurement. The long-time

limit is equivalent to zero-frequency noise or rather shot-noise for a system
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out of equilibrium.

In order to extract additional information concerning the internal dy-

namics and their characteristic time scales, it is valuable to study the cur-

rent fluctuations for finite times. That is the finite-frequency current noise

and even higher orders of the current correlation function, as well as the

finite-time FCS. Indeed, the non-equilibrium finite-frequency noise of quan-

tum dots in different regimes and setups has previously been at the focus of

various theoretical studies [29–48].

1.2 Objectives and scope

The purpose of this thesis is to study the current fluctuations in hybrid

superconducting-normal structures with quantum dots in the presence of

Coulomb repulsion and superconductivity. The regime in which the tunnel-

coupling rate between the superconductor and the quantum dot is strong

(larger than the coupling to the other normal-conducting leads eventually

present in the device) is considered. In this regime it is possible to estab-

lish a BCS-like state in a single-level quantum dot even in the presence of

strong Coulomb repulsion [49]. Such a state is characterised by a coherent

exchange of Cooper pairs between the dot and the superconducting lead.

In the two-terminal case of a quantum dot, tunnel-coupled to one normal

and one superconducting lead, the proximity effect is established by gener-

ating a non-equilibrium situation by means of an applied transport voltage.

Hence, this system shows rich physics due to the combined effect of Coulomb

interaction, superconductivity and non-equilibrium. In order to reveal the

coherent dynamics underlying the proximity effect, a quantity of high inter-

est to look at is the finite-frequency noise of the Andreev current. Current

noise spectroscopy in mesoscopic systems has become a standard tool to gain

information on the transport processes and internal time scales of mesoscopic

conductors [50–59]. However, there might be even more information on the

transport processes which are not contained in the current noise. A full
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statistical description on the electronic transport can be determined by the

FCS. In particular we want to reveal the internal dynamics and time scales

of the system. Therefore, finite-time FCS [40, 60–63] is a suitable quantity

to fully access the short time behavior of the current fluctuations.

1.3 Research methodology

In order to study electronic transport and in particular the current fluc-

tuations through a quantum dot we make use of a diagrammatic real-time

approach. The diagrammatic-real time transport theory [64–66] is a gen-

eral transport theory used to describe non-equilibrium transport through a

strongly interacting quantum dot weakly coupled to electronic reservoirs. An

expansion in the tunnel coupling to the leads is used, which allows to take into

account the Coulomb interaction on the quantum dot exactly. The system is

described in terms of a reduced density matrix. Based on the diagrammatic

real-time approach we determine the current and the finite-frequency noise

through a quantum dot strongly coupled to a superconductor and weakly

coupled to a normal-conducting lead. The FCS gives a full statistical de-

scription of the electron transfer through the quantum dot. To reveal further

information on the coherent dynamics of the system we set up a theory to

obtain the finite-time FCS.

1.4 Outline

This thesis is organized as follows: In Chapter 2 we present the basic concepts

and motivation underlying this thesis. First, we introduce quantum dots and

the basic concepts of electronic transport through quantum dots. In Sec. 2.4

we give an overview of different types of noise, followed by an introduction

of full counting statistics. Next, in Sec. 2.5 we review the basic principles of

superconductivity like the BCS theory, Andreev reflection and the Josephson

effect. This is followed by a review on experimental achievements in hybrid
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superconductor-quantum dot devices.

Chapter 3 is dedicated to the theories we are using to obtain the results

of this thesis. This chapter can be safely skipped for everyone who is just

interested in the discussion of the results. First we introduce a diagrammatic

real-time theory for transport which will be the basis for the subsequent

sections. In the next section we introduce a method to obtain the current

and the finite-frequency noise. This is followed by a theory to determine the

finite-time FCS based on a non-Markovian master equation. This approach

allows not only to calculate the current and finite-frequency noise, but gives

also a direct access to all higher order current correlation functions. In the

last section of Chapter 3 we extend the formalism of finite-time FCS and

present a theory of multi-time FCS for Markovian processes, which allows to

determine the power spectral density at different frequencies.

In Chapter 4 we present results for the current and frequency-dependent

current noise through an interacting single-level quantum dot tunnel-coupled

to normal and superconducting leads. We only consider a weak coupling to

the normal-conducting lead. For the superconductor we are interested in

the subgap features in transport and restrict ourself to the limit of a large

superconducting gap (∆ → ∞). Throughout this thesis we will work in the

regime of a strong coupling to the superconducting lead, while the normal-

conducting lead is only weakly coupled. Depending on the relation for applied

bias voltage and noise frequency we can access different noise regimes.

Next, in Chapter 5 we apply the theory of finite-time FCS to a single-level

quantum dot tunnel-coupled to one normal and one superconducting lead.

We present results of the finite-time FCS for this system.

Results for the frequency-dependent skewness for unidirectional transport

based on the theory for multi-time FCS introduced in Sec. 3.6 are presented

in Chapter 6.

Finally, the main results of this thesis are summarized in Chapter 7 and

an outlook of future work is given.



Chapter 2

Background and basic concepts

2.1 Quantum dots

A typical quantum dot, made out of semiconducting materials, consists of

about 102 − 109 atoms with length scales ranging in the nanometer to mi-

crometer scale [67].

Experimentally, quantum dots are often realized by semiconductor het-

erostructures, where electrons are confined into a submicrometer regime.

There exist two types of semiconductor quantum dots, lateral [68,69] and ver-

tical quantum dots [70]. Figure 2.1 (a) shows an example for a lateral quan-

tum dot device and (b) for a vertical quantum dot realization. Quantum dots

are quite general mesoscopic systems and there are a lot further realizations

beside semiconductor materials. There have been quantum dots investigated

based on graphene, see for example Ref. [16, 71–73] or carbon nanotubes,

where their natural confinement can be gated to a quantum dot [74–76] or

even molecules [77] and single atoms [78, 79]. Figure 2.1 (c) shows a typical

realization of quantum dots in a nanowire [80,81]. The gate electrodes define

the quantum dot in the nanowire. Fig. 2.1 (d) displays an example of a dou-

ble quantum dot device using a carbon nanotube. Top gates are attached to

the carbon nanotube to create the quantum dot by dragging down its valance

band. This will form a pool of electrons, i.e. a quantum dot in the vicinity

7
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of the gates.

The ability to control the properties of quantum dots as their size or the

spacing of the levels make them attractive for a various range of applica-

tions as nano-electronics [83], quantum computation [84–86] and optics [87].

Numerous properties of quantum dots can be studied by performing an elec-

tronic transport measurement. To study transport through quantum dots,

they have to be connected to source and drain electrodes as well as to a gate,

so that single electrons can tunnel from the electronic reservoir on and off

the quantum dot. A current flows across the junction if a voltage difference

is applied between source and drain electrode. The gate electrode has no

direct electric contact to the quantum dot or one of the transport electrodes.

Varying the gate voltage, controls the number of charge states on the quan-

tum dot and therefore its size. A schematic figure of an electronic transport

measurement with a quantum dot is depicted in Fig. 2.2. Such a setup is

also known as a single-electron transistor. Instead of a quantum dot also a

metallic island can be part of the set-up.

The Coulomb repulsion is the dominant energy scale due to the size of

the device. Therefore it is the ideal device to study interaction effects and

their influence on various transport properties.

In the next section, the basic concepts of quantum transport through a

quantum dot are summarized including the theoretical model to describe a

single-level quantum dot.

2.2 Electronic transport through quantum dots

Under the assumption that the splitting of the energy levels in the quantum

dot is large, i.e. much larger than the other energy scales in the system such

as the temperature or the applied bias voltage, only one single energy level

can be accessed in transport. A simple approach to describe the quantum dot

with only one single orbital level was formulated by P.W. Anderson [88]. The

Anderson model, which was originally introduced for impurities in metals,
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Figure 2.1: (a) Scanning electron micrograph of a lateral quantum dot de-

vice. The lateral quantum dot is defined by Ti/Au gate electrodes indicated

by the white dashed circle, which are lying on top of a GaAs/AlGaAs het-

erostructure. The picture is taken from Ref. [82]. (b) Scanning electron

microscope photograph of a vertical quantum dot (left) and schematic dia-

gram of the device (right). The quantum dot is formed in an In/Ga/As well

layer sandwiched by barriers made of Al/Ga/As. Reprinted from Physica B,

246-247, 83, Copyright 1998, with permission from Elsevier. (c) Scanning

electron microscopy image of an nanowire (InSb) contacted to gates to form

quantum dots. The source and drain contacts are made of Ti/Al. Reprinted

by permission from Macmillan Publishers Ltd: Nature Nanotechnology 8,

170, copyright 2013. (d) Picture of a carbon nanotube double quantum dot

device. The source and drain contacts are made of Pb and the gate electrodes

of Al. Topgates create tunable tunnel barriers to define the quantum dots,

while side gates are used to change the chemical potential of the separate

dots individually. Reprinted by permission of IOP Publishing: Semicond.

Sci. Technol. 21, S52, copyright (2006).
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Figure 2.2: Schematic figure of a quantum dot single electron transistor.

Electron transport from left to right may be influenced by the gate voltage

Vg. The boxes represent tunnel barriers with capacitances CL and CR.

describes the single-level quantum dot by the Hamiltonian

Hdot =
∑
kσi

εσnσ + Un↑n↓ (2.1)

where nσ is the particle number operator nσ = d†σdσ and d
(†)
σ is the annihi-

lation (creation) operator of an electron with spin σ =↑, ↓ in the quantum

dot. The energy level is described by εσ, where the index σ accounts for spin

dependence. The Coulomb interaction on the quantum dot is taken into ac-

count by the charging energy U . The quantum dot has to be coupled to two

electrodes left and right (or rather source and drain electrodes) with chemi-

cal potential VL and VR to drive a current across the device. The electronic

reservoirs are modeled by the lead Hamiltonian,

HL =
∑
kσi

εkc
†
kσickσi (2.2)

with the operators c†kσi and ckσi describing the creation and annihilation of

electrons in the leads i = L,R with momentum k and spin σ. The tunneling

of electrons from the electronic reservoirs on and off the quantum dot is

possible due to tunnel junctions between the dot and the leads. The tunnel

junctions are described by the tunneling Hamiltonian,

HT =
∑
σ

tikσc
†
kσidσ + h.c. (2.3)
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with the tunnel matrix element tikσ. The spin is conserved during the tun-

neling process, since the Hamiltonian HT (Eq. (2.3)) is diagonal in σ. The

full Hamiltonian of a quantum dot coupled to normal conducting leads reads

then H = Hdot+HL+HT. We assume that the electronic reservoirs consist of

a Fermi sea of electrons with the Fermi function f(E) = 1/(1 + e(E−µi)/kBT ),

where T is the temperature with kB the Boltzmann constant and µi the

chemical potential of the lead.

The central object to describe the transport properties of quantum devices

comprising quantum dots is the current operator, which characterizes the

transport properties of such a nanoelectronic device. We are interested in

the non-equilibrium transport properties. A measurable current runs through

the device after it is brought out of equilibrium via the applied bias voltage,

VL−VR. The current operator across the junction can be defined by the rate

change of the number of electrons in the electronic reservoirs,

Îi = −eṄi =
ie

~
[Ni, HT] (2.4)

where Ni =
∑

k,σ c
†
ikσcikσ is the particle number operator for lead i = L,R.

The single-electron transistor, as shown in Fig. 2.2, allows the transfer of elec-

trons one-by-one from the left to the right reservoir. However, the Coulomb

interaction opposes the addition of electrons. A current flows only when the

incoming electrons have enough energy to overcome the Coulomb repulsion.

2.3 Coulomb blockade

The capacitance of a system decreases with its size. Hence, the capacitance

of a quantum dot is small and consequently its charging energy is large. Con-

sidering a small system like a quantum dot or a metallic island the electron-

electron interaction has a significant impact and has to be included into the

theoretical description of quantum transport. In the following we provide a

concept which describes the influence of the Coulomb repulsion on the elec-

tronic transport properties of the quantum dot. The physics of Coulomb
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blockade, which is a classical concept, is an effect of the charge quantization.

The functionality of devices like single-electron transistors (SET) is based

on single charge transport and its behavior is regulated by the electrostatic

energy. A quantum dot or a metallic island can be part of the SET, Fig. 2.2.

While the metallic island hosts a continuum of single-particle energy levels

(the charging energy is much larger than the level spacing), the quantum

dot has a discrete excitation spectrum. Quantum effects may appear due to

the discreteness of the energy levels in the quantum dot, which might have

additional effects on the transport properties. Nevertheless, both types of

SET exhibit the same basic transport properties. We are introducing the

classical concept of single-charge tunneling in the following.

The single electron transistor as displayed in the schematic Fig. 2.4 (a) is

coupled to two electronic reservoirs and capacitively coupled to a gate. The

total capacitance is given by the sum of the different contact capacitances,

C = CL+CR+Cg, with CL, CR capacitances arising from the tunnel couplings

to the reservoirs and Cg is the gate capacitance. To have transport at least

one energy level has to be in the bias window. By adding an electron on

the dot, we are changing its energy. All excess electrons tunneling onto the

quantum dot have to overcome the energy difference between the charging

states. Assume the dot is occupied by N electrons, the charging energy

necessary to change the charging state is given by

Ech(N,N0) = EC(N −N0)2 (2.5)

with EC = e2/2C the charging energy of a single electron. The smaller the

system we consider, the smaller the capacitance and consequently, the larger

is the energy to add an extra electron on the system. The applied bias voltage

induces an external charge eN0 on the dot, which is given by

eN0 = CLVL + CRVR + CgVg . (2.6)

The voltages VL and VR define the chemical potential in source and drain

electrodes and Vg is the gate voltage. Figure 2.3 shows the charging energy
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Ech of the quantum dot as a function of the external charge N0 for different

occupations of the quantum dot.

-1 0 1

N
0
/e

0

1

2

E
c
h
/E

C

0 1-1

Figure 2.3: Charging energy Ech as a function of the external charge eN0 for

different charging states N .

The lowest energies in Fig. 2.3 correspond to the ground state. The en-

ergy, which is necessary to change the number of electrons occupying the dot

by one is maximal if the external charge eN0 is a multiple of the elementary

charge. In these regions the electronic transport through the quantum dot is

blocked. This phenomenon is known as Coulomb blockade. For half-integer

values of N0, namely at the degeneracy points of the parabolas, no energy

is required to change the dot occupation and electron transport is possible

independent of temperature or bias voltage. In order to have a current flow

across the device, the latter situation is the favorable one to allow electron

tunneling on and off the quantum dot.

This behavior from a blocked to a conducting charge state is manifested

in the conductance. The differential conductance (G = ∂I/∂V (V = 0))

as a function of the gate voltage shows a sharp peak structure due to the

Coulomb blockade, as displayed in Fig. 2.4 (b). These so-called Coulomb

oscillations take place at the degeneracy points of the charging energy Ech.

Hence, electrons can freely jump on and off the quantum dot at the peaks,
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Vg

G

(b)

1 2 30

Figure 2.4: (a) Sketch of the energy landscape of the quantum dot. The dot

is capacitively coupled to a gate Vg, which controls the number of electrons

on the dot. The horizontal lines represent the energy levels. The electronic

reservoirs, the Fermi distributions, are shown by the bars. (b) Differential

conductance G as a function of the gate voltage Vg. (c) Schematic plot of

the current as a function of bias voltage V and gate voltage Vg through a

quantum dot. In the white regions, the so-called Coulomb diamonds, the

current is suppressed. The current is positive (I > 0) in the green region and

negative in the red (I < 0).
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while the transport is blocked outside the peaks due to the Coulomb blockade.

The width of the peaks is determined by the temperature kBT . However,

to ensure that thermal fluctuations do not smear out the charging effects,

Ech � kBT has to be fulfilled.

The gate voltage controls the number of electrons on the dot. By varying

the gate voltage we shift the energy level structure up or downwards and

control the external charge, see Fig. 2.4 (a). On the other hand the applied

bias voltage (V = VL − VR) determines the Fermi levels of left and right

reservoir and adjust the transport window, i.e. controls the number of dot

levels which are accessible in transport. Consequently, bias voltage and gate

voltage control whether a finite current flows or if transport is suppressed due

to the Coulomb repulsion. Depending on bias and gate voltage a diamond

structure occurs in the conductance, the so called Coulomb diamonds. Fig.

2.4 (c) displays the schematic sketch of a current measurement through the

quantum dot device as a function of the gate voltage Vg and the bias voltage

V , showing the Coulomb diamonds of the Coulomb blockade [89]. In the

white regions the current is suppressed as a result of the Coulomb blockade.

Each diamond corresponds to a certain fixed number of electrons. Above a

threshold bias voltage, single electron transfer is available. The upper and

lower corner of the diamonds are slightly shifted, which indicates that the

capacitances between left and right reservoir are asymmetric CL 6= CR.

As mentioned at the beginning of this section, the concept we have de-

scribed here is a classical one and also holds for a metallic island instead of

a quantum dot being part of the SET. However, in case of a quantum dot

there are a great number of extra lines in the V − Vg plane, which occur

due to the discreteness of the excitation spectrum. The extra lines manifest

discrete states on the quantum dot, ground and excited states. By measur-

ing and analyzing their position one can identify them and hence perform

a transport spectroscopy. Figure 2.5 shows an example for an experimental

measurement of the differential conductance as a function of bias voltage and

gate voltage. The measurement has been performed for a suspended carbon
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nanotube quantum dot. The device is shown in Fig. 2.5 (a). The carbon

nanotube is attached to source and drain electrodes, while a top gate defines

the quantum dot. The differential conductance Fig. 2.5 (b) shows a series

of Coulomb diamonds as well as a great number of extra lines outside the

diamonds which can be identified as the excited states. In general, the lines

parallel to the diamond edges can be assigned to resonant tunneling and are

the excited states. The energy difference gives information on the energy

spacing of the states. The tunnel spectroscopy might reveal additional lines,

which do not show up in the differential conductance displayed in Fig. 2.5 (b).

For instance, all lines parallel to the bias voltage V indicate a level crossing

inside the dot. In contrast, lines found parallel to the gate voltage axis Vg are

an indication of co-tunneling processes, i.e. second order tunneling processes

and all lines at zero bias indicate the Kondo regime.

In the transport process of a quantum dot coupled to external electrodes

via tunnel junctions, different tunnel processes can arise. In this thesis we

consider only a weak coupling of the quantum dot to the electronic reservoirs.

In this regime sequential tunneling [90] is the dominant process, if the dot

level is within the bias window. In this limit electrons can only enter the

quantum dot one after the other.

In the case that no energy level is within the transport window, sequen-

tial tunneling is exponentially suppressed and the system is in the Coulomb

blockade regime. Tunneling can only occur via a higher order tunnel process

as elastic/inelastic co-tunneling processes, where the dot state is virtually oc-

cupied. Co-tunneling processes briefly violate the energy conservation, which

is allowed by the Heisenberg uncertainty principle.

For a strong coupling, beyond the sequential tunneling regime, the Kondo

effect [91] may arise if the temperature is smaller than some critical temper-

ature, the so-called Kondo temperature T < TK . This happens favorably if

the system is in the singlet state, meaning the dot is occupied with an odd

number of electrons [92, 93] and bias voltage is close to zero. In the case of

a single-level quantum dot, the dot is only occupied with a single electron
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Figure 2.5: (a) Electron microscope micrograph view of a suspended carbon

nanotube with source and drain electrodes. The quantum dot is formed in

the vicinity of the top gate as shown in the schematic figure on the right.

(b) Differential conductance shown as a function of bias voltage and gate

voltage. Reprinted by permission from Macmillan Publishers Ltd: Nature

Physics 5, 327, copyright 2009.
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and is namely in state |σ〉. The quantum dot spin forms a singlet state with

electrons at the Fermi energy of the leads. This leads to a screening of the

quantum dot spin by the reservoir spins, which results in a peak in the zero-

bias conductance [68]. Nevertheless, the Kondo effect is not in the scope of

this thesis. Throughout this thesis we will only consider transport regimes

where the Kondo effect plays no role [94].

2.4 Current fluctuations: noise and full count-

ing statistics

As we have discussed in the previous section, an electrical current flows

through a quantum dot contacted to electronic reservoirs when a constant

bias voltage is applied across the device. The stationary current tells us the

average number of electrons which have passed the device per time. The cur-

rent shows a time dependence and undergoes fluctuations around its average

value. Here, we are interested in these current fluctuations, since they can be

a source of information that is not present in the time-averaged value. These

fluctuations are for instance characterized statistically by the variance of the

electron number that has been transported in a given time.

The current fluctuations in a mesoscopic device can have different origins.

Some fluctuations arise due to external influences, which have generally a

negative influence on the measurement. It should be the aim to keep these

small. Another source of fluctuations is of intrinsic nature, which arise due to

the stochastic nature of the quantum transport in nanoscale conductors. The

intrinsic noise, which persists even if all fluctuations due to external influences

are eliminated, might contain information on the transport processes which

cannot be extracted from the average current.

One quantity of high interest is the current noise, that is the variance of

the number of transported electrons through the device. The current noise

in mesoscopic devices has been widely studied in the last two decades, theo-

retically and experimentally [32]. However, the statistical description of the
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electron transport does not stop with the noise. Also higher statistical mo-

ment such as the skewness or the kurtosis might contain further information

on the transport properties. The full counting statistics (FCS) is able to ex-

tract the statistical fluctuations of the current and hence, allows to account

for statistical moments of arbitrary order.

Next, we will introduce different contributions to the intrinsic noise and

its basic concepts. This is followed by an introduction to FCS.

2.4.1 Noise

In general the noise in electrical conductors has many sources, namely ex-

ternal and intrinsic ones. Here, we want to discuss only the intrinsic contri-

butions to the noise, that is the thermal or Johnson-Nyquist noise and the

shot or non-equilibrium noise as well as quantum noise. We will show that

noise is not only the spurious part of a current measurement, but that the

noise can contain further information about the system and the statistics of

electron transport. First we will review the basic properties of thermal and

shot noise, namely the low-frequency contribution. This is followed by an

introduction to noise in the quantum regime (the high-frequency noise).

Thermal and shot noise

As previously mentioned the variance of the current is related to the noise.

The noise is characterized by its spectral density S(ω), which is the Fourier

transform of the autocorrelation function. The finite-frequency noise thus

takes the form of the following spectral density,

S(ω) =

∫ ∞
−∞

dteiωt〈δI(t)δI(0)〉 (2.7)

where δI(t) = I(t) − 〈I〉 describes the time-dependent fluctuations in the

current at a given bias voltage V and temperature kBT . The noise power

introduced in Eq. (2.7) is asymmetric with respect to the frequency. However,

the noise is often defined as the symmetrized version where S(ω) = S(−ω).
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In his pioneering experiment in 1918 Walter Schottky [95] reported that in

a vacuum tube under ideal conditions, i.e. all sources of perturbing noise has

been eliminated, still two types of noise remained in the electrical current,

described by him as thermal and shot noise. The first contribution stems

from the thermal excitations of the electrons at finite temperature known

as Johnson-Nyquist noise [23] or simply thermal noise. This type of noise

occurs in any conductor as long as there is a finite temperature. The Johnson-

Nyquist noise [23] of a conducting system at a certain temperature kBT in

equilibrium is given by

S(ω = 0) = 2kBTG , (2.8)

where G denotes the linear conductance of the system. Hence, the equi-

librium zero-frequency current noise can be directly related to the linear

response of the current.

The second type of intrinsic noise is the so-called shot noise which arises

due to the discreteness of the electron charge, i.e. the electrons arrive at

the reservoir in a quantized fashion. While the thermal noise is dominant at

equilibrium, shot noise is a non-equilibrium phenomenon and becomes the

dominant contribution to the noise, if the energy scale related to the non-

equilibrium is much larger than the temperature kBT . For instance in case of

electron transport due to an applied bias voltage V , the shot-noise becomes

dominant for eV � kBT .

The corresponding spectral density at zero frequency for uncorrelated

events reads,

S(ω = 0) = q〈I〉 (2.9)

with q the charge of the carriers associated to the transport process. The

shot noise Eq. (2.9) is proportional to the average current 〈I〉 flowing through

the system and describes a Poissonian process. The ratio F = S/q〈I〉 called

the Fano factor, named after Ugo Fano’s theory of the statistics of ioniza-

tion [96], allows to measure the unit of transferred charge. For instance, in

case of a superconductor-normal metal junction the charge is added to the

superconductor in Cooper pairs so, correlated one expect a Fano factor of
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F = 2, if we have a Poissonian transfer of Cooper pairs. The doubling of the

noise has been measured experimentally [97].

In case of electrons the Fano factor is F = 1. The Fano factor quanti-

fies also the deviations from the Poissonian value. The deviation from the

Poissonian value F = 1 results in sub-Poissonian F < 1 or super-Poissonian

F > 1 values of the Fano factor. These deviations occur due to statistical

anti-bunching or bunching effects which lead to negative or positive cross-

correlations. In a fermionic system anti-bunching effects, (i.e. the electrons

avoid each other and arrive separately at the detector) usually due to the

Pauli principle, correlate the electrons and yield sub-Poissonian shot noise.

In contrast, in bosonic systems bunching leads to super-Poissonian values of

the Fano factor.

We want to point out that the concept of noise we have introduced here

is a statistical effect and a classical phenomenon. It can be present in any

type of conductor. However, special interest lies in the study of shot noise in

mesoscopic conductors such as a quantum dot coupled to electronic reservoirs.

Prominent examples with simple universal values showing the sub-Poissonian

behavior of the shot noise are a symmetric double barrier (F = 1/2), a

diffusive wire (F = 1/3) or a chaotic cavity (F = 1/4) [32]. While thermal

and shot-noise are zero or rather low-frequency noise phenomena, it might

be of interest to also study the noise at high frequencies.

Noise in the quantum regime

The electrical current noise has been extensively studied at low- and zero-

frequency. However, the high-frequency noise is still quite unexplored.

The so called quantum noise is dominant for high frequencies, namely

when the noise frequency is much larger than temperature and applied bias

voltage, ω � kBT, V . Quantum noise arises from zero-point fluctuations in

a device. In this regime we can understand the current fluctuations as a

exchange of photons of certain energy ω emitted or absorbed between the

source and the detector. Hence, it will allow visualizing of the transport
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processes which are enabled or blocked by energy absorption or emission.

For instance at zero temperature kBT and zero bias voltage V , the system

will not be able to emit energy, but is able to absorb energy. At finite

temperatures the emission of energy is possible up to frequencies ω = kBT ,

before the absorption noise sets in. The noise at negative frequencies is

referred as the emission noise while the noise at positive frequencies is the

absorption noise. Therefore the noise spectrum is asymmetric with respect

to the noise frequency ω. If the system is driven out of equilibrium V > 0,

shot noise is also present in the noise spectrum.

In summary, at low and intermediate frequencies, the noise is dominated

by thermal fluctuations and shot noise. The thermal noise, which stems

from thermal excitations of the electrons, is dominant in the spectrum if

kBT � ω, V . In contrast shot noise dominates in the spectrum if the bias

voltage is the largest energy scale, V � kBT, ω. Quantum noise is dominant

if ω � kBT . In this limit the noise can be interpreted in terms of energy

emission or absorption by the noise source [24], which leads to a strong

asymmetry in the noise spectrum.

Current noise spectroscopy in mesoscopic systems has become a standard

tool to gain information on the transport processes and internal time scales of

mesoscopic conductors [50–59]. In particular, in order to measure quantum

noise it is necessary to measure independently the emission and absorption

noise. Quantum noise has been detected experimentally [52, 56,57,98,99].

2.4.2 Full counting statistics

In the previous subsection we have introduced the noise, which is a measure

of the current fluctuations arounds its mean value. However, there might

be information on the transport which can not be extracted from the noise.

To get a full description of the transport processes through e.g. a quantum

dot, a statistical description of the electronic transport is necessary. If it

is possible to count individual electrons passing the device, analogously to

cars passing a bridge, one can find the probability distribution of the number
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N of electrons that have tunneled through the system during a certain time

span. The full statistical characterization of the tunneling events is described

by the probability distribution P (N, t), which allows to calculate not just

the mean and the variance of the number of transferred electrons, but in

principle an infinite number of moments and cumulants. The knowledge of

P (N, t) constitutes a complete knowledge of the properties of the current

fluctuations and is known as the full counting statistic (FCS) of the current.

FCS started as a theoretical investigation, developed by Levitov and Leso-

vik [26, 27] for non-interacting electrons in the scattering formalism and is

a well established theoretical tool since two decades. Interaction effects have

been included in subsequent works [100, 101]. A widely used approach for

Coulomb blockade systems based on a Markovian master equation has been

introduced by Bagrets and Nazarov in 2003 [102]. More recent developments

on the FCS focus for instance on the inclusion of non-Markovian dynam-

ics [60, 63,103] and finite-frequencies [40, 62,104].

Nowdays there have been several experiments [28, 58, 59, 61, 105–114]

demonstrating that FCS is measureable. In 2006 S. Gustavsson et al. [28] re-

alized the first experiment on counting statistics of single electron transport

in a quantum dot using real-time electron detection techniques. Figure 2.6

shows the device and the result of the measurement presented in Ref. [28].

The device, Fig. 2.6 (a), consists of a quantum dot coupled to source and

drain electrodes. A nearby quantum point contact is used as a charge de-

tector to achieve real-time detection of single electron tunneling on and off

the quantum dot. Gate electrodes tune the number of the electrons on the

dot and the tunnel coupling strength to source and drain electrodes. Across

the quantum dot a large bias voltage is applied to ensure that the electron

transport is unidirectional. Figure 2.6 (b) displays the measured current

through the quantum point contact as a function of real-time. This corre-

sponds to the charge fluctuations of the quantum dot. If an electron jumps

off the quantum dot the current increases and it decreases if another electron

tunnels from the source on the dot. From the measurement of the charge
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fluctuations on the quantum dot the statistical distribution of the number n

of electrons which enter the quantum dot during a given time period can be

extracted. The statistical distribution is shown in Fig. 2.6 (c). The red solid

line represents the theoretical prediction.

2.5 Superconductivity, Proximity effect, An-

dreev transport

Since its discovery over 100 years ago, superconductivity is one of the most

studied phenomena in physics. In 1911 H. Kamerlingh Onnes discovered that

certain materials have zero electrical resistance when they are cooled down

below a critical characteristic temperature [115]. This phenomenon, called

superconductivity, was complemented by Meissner and Ochsenfeld in 1933

by the so-called Meissner Effect [116], the expulsion of a magnetic field from

a superconductor during its transition to the superconducting state. In 1957

Bardeen, Cooper and Schrieffer proposed the well known BCS-theory [117],

the first microscopic theory of superconductivity. By that time there was a

quite complete theoretical picture of superconductivity. With the discovery

of high temperature superconductors in 1986 by Bednorz and Müller [118]

the field of superconductivity got revitalized. In the last decades the theoret-

ical study of superconducting transport in nanoscale devices has experienced

a great development [3]. With the introduction of mesoscopic physics a more

detailed understanding of superconducting transport was developed around

the central phenomenon of coherent Andreev reflection [11,119]. This concept

opened the possibility to study the transport properties of different types of

normal-superconductor structures and superconducting quantum point con-

tacts as well as further aspects such as Andreev bound states or the Joseph-

son effect. Nowdays, with the advances in nano fabrication, the realization

of quantum dot superconductor hybrid structures has become feasible and

attracted huge interest theoretically [3] as well as experimentally [2].
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Figure 2.6: (a) Sample showing a semiconductor quantum dot coupled to

source and drain electrodes. A nearby quantum point contact has the role

to detect the charge fluctuations on the quantum dot. (b) Current measured

through the quantum point contact as a function of time. (c) Statistical

distribution of the number n of electrons entering the dot during a given

time. Each panel corresponds to a different value of the tunneling rate to

source (ΓS) and drain (ΓD) electrode, obtained for different values of the gate

voltage (VG1). Reprinted with permission from S. Gustavsson et al., Phys.

Rev. Lett. 96, 076605, copyright (2006) by the American Physical Society.
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2.5.1 BCS-theory

Superconductivity is one of the most studied phenomena of electronic corre-

lations in low-energy condensed matter physics. The first microscopic the-

ory of superconductivity was developed by Bardeen, Cooper and Schrieffer,

known as BCS-theory [117]. Due to an attractive electron-phonon interac-

tion Cooper pairs, consisting of two electrons with opposite momentum and

spin, are formed. The pairing of the electrons into a boson-like state leads

to an energy gap ∆ in the spectrum of the superconductor. For energies be-

low the gap (so-called subgap regime) transport is carried by Cooper pairs.

To excite a quasiparticle from the ground state one needs at least the gap

energy ∆. If the gap ∆ is larger than all other energy scales, only Cooper

pairs are responsible for the transport properties of the superconductor. A

pure supercurrent, namely a dissipationless current, will flow.

Within the scope of this thesis we are interested in the transport prop-

erties of a hybrid-superconductor-quantum dot structure. Hence, we need a

microscopic theory to be able to calculate the transport properties. In the

following we will briefly introduce the main concepts of the BCS-theory. For

a more detailed introduction we refer to Ref. [120].

The first key result of the BCS-theory has been made by Cooper in 1956,

showing that even a weak attraction can bind two electrons near the Fermi

surface into a bound state [121]. In a metal two electrons close to the Fermi

level with opposite spin and momentum combine into a so called Cooper pair

caused by a weak attraction. The Fermi sea of electrons is unstable against

the formation of at least one bound pair, regardless how weak the electron-

electron interaction is, as long as it is attractive. This is the so called Cooper

instability. Electrons condense to Cooper pairs until an equilibrium point is

reached.

Considering the crucial ingredients of the BCS-theory as the attractive

effective electron-electron interaction near the Fermi-surface and the Cooper

pair instability of the Fermi sea, one can write the superconducting ground-

state in terms of the following variational wave function
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|ψBCS〉 =
∏
k

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉 , (2.10)

where uk, vk are complex expansion coefficients and the index k denotes oc-

cupied states in momentum space. The BCS ground state is a superposition

of states containing an integer number of Cooper pairs. The so-called BCS

Hamiltonian is given by

HBCS =
∑
k,σ

ξkc
†
kσckσ + V

∑
kk′

c†k′↑c
†
−k′↓ck↑c−k↓ + constant. (2.11)

where we already assumed that the pairing potential V is independent of

k,k′, which is chosen to be -V for states below a cut-off energy ~ωc and zero

otherwise. The second term of the BCS Hamiltonain Eq. (2.11) describes

the pairing of two electrons with opposite spin and momenta into a singlet

state, namely a Cooper pair, while the first term represents the quasiparticle

excitations with its energy ξk. Applying a mean-field treatment the BCS

Hamiltonian Eq. (2.11) analogous to Hartree-Fock mean field theory yields,

HMF
BCS =

∑
k,σ

ξkc
†
kσckσ −∆

∑
k

c†k↑c
†
−k↓ −∆∗

∑
k

ck↓c−k↑ (2.12)

with the pair potential ∆ = V
∑
k′〈c−k′↓ck′↑〉. Note, that the mean field

BCS Hamiltonian (Eq. (2.12)) does not conserve the particle number. The

Hamiltonian Eq. (2.12) can be diagonalized by a Bogoliubov transformation.

The Bogoliubov transformation is defined by the following transformation of

the creation and annihilation operators c, c†,(
γk↑

γ†−k↓

)
=

(
u∗k vk
−v∗k uk

)(
ck↑

c†−k↓

)
(2.13)

with the coefficents

|uk|2 =
1

2

(
1 +

ξk
Ek

)
and |vk|2 =

1

2

(
1− ξk

Ek

)
(2.14)

and Ek =
√
ξ2
k + |∆|2. With this transformation we can obtain the following

diagonalized Hamiltonain
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HMF
BCS =

∑
k

Ek

(
γ†k↑γk↑ + γ†k↓γk↓

)
(2.15)

with the new quasiparticle operators, the so-called bogoliubons, γk↑,γk↓ de-

scribed by the number operator γ†k↑γk↑.
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Figure 2.7: Density of states of the superconductor with a gap of 2|∆|. Out-

side the gap quasiparticle excitations are possible.

The BCS quasiparticle density of states is shown in Fig. 2.7 with ρN the

density of states of the normal state. The figure shows that the density of

states has a gap of size 2|∆| around the Fermi level µS. This means there are

no quasiparticle with an excitation energy within this gap and only Cooper

pairs are allowed. For large energies E � |∆| the density of states converges

to the density of states of the normal state.

2.5.2 Andreev reflection

At the interface of a normal-conducting metal in contact with a superconduc-

tor, superconductivity can be induced in the normal metal. This phenomenon
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is known as proximity effect [122]. At the interface between superconductor

and normal metal Cooper pairs can tunnel into the metal if the Fermi level

of the normal metal lies within the gap of the superconductor. Superconduc-

tivity is induced in the normal metal and a gap will appear in the density of

states of the normal-conducting metal.

If the energy E of an electron is inside the gap E < ∆ single particle

tunneling between metal and superconductor is suppressed, since there are no

quasiparticle states in the gap. For energies E > ∆ quasiparticle transport is

possible and single electrons can tunnel between the normal-conducting metal

and the superconductor. At the interface between the normal-conducting

metal and the superconductor an incoming electron will be reflected as a hole

with opposite energy E in the opposite direction retracing the original path

of the electron. This mechanism, known as Andreev reflection [11], transfers

Cooper pairs between a normal-conducting metal and a superconductor in

a coherent way, i.e. the relation between the phase of the electron and the

reflected hole is well defined and depends on the size of the superconducting

gap ∆. Each reflection process is related with a charge transfer of 2e.

In a superconductor - normal metal - superconductor (S-N-S) structure

as depicted in Fig. 2.8 the reflected hole reaches the left superconductor and

will be reflected as an electron with the energy E ′ with respect to the Fermi

energy of the left superconductor. At each junction electrons and holes will

be Andreev reflected, i.e. they cannot get out. The constructive interference

of incident and reflected electron waves leads to discrete sub-gap states, the

so-called Andreev bound states (ABS) [123].

Instead of a normal metal a quantum dot can be part of the superconduct-

ing junction. In that case the orbital levels of the quantum dot are relevant,

rather than the Fermi level of the normal-conducting metal.

2.5.3 Josephson effect

The Josephson effect [124] was predicted by B.D. Josephson in 1962. A su-

percurrent flows without a bias voltage through the Josephson junction, the
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Figure 2.8: Schematic figure of a S-N-S structure. Electrons and holes get

reflected at both junctions leading to Andreev bound states.

so called Josephson effect. A Josephson junction consists of two supercon-

ductors linked by a non-conducting barrier. A finite phase difference between

the two order parameters of the superconductors φ = ϕL − ϕR 6= 0 induces

the flow of the so-called Josephson current.

Josephson predicted the following relations for voltage and current at zero

bias

J = Jc sinφ (2.16)

V =
~
2e

∂φ

∂t
(2.17)

The relations in (2.17) and (2.16) produce the following main effects:

1. The DC Josephson effect

This phenomena is given by the current-phase relation (2.16) and refers

to a direct flow of the current through the insulator. An external cur-

rent smaller than the critical current I < Jc induces a phase difference

between the two superconductor. Hence, a supercurrent due to the tun-

neling Cooper pairs is measurable through the device. If the external
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current is I > Jc the Cooper pairs start to break up and also quasipar-

ticles take part in the transport through the Josephson junction, hence

the current becomes dissipative.

2. The AC Josephson effect

If a constant voltage is applied across the junction, then the phase will

vary linearly in time and the current through the device will be an AC

current with a frequency proportional to the applied voltage as shown

in (2.17). The AC Josephson effect is a perfect voltage to frequency

converter.

As mentioned above the phase difference of the two superconductors induces

the supercurrent J = Jc sinφ. There exists also a second realization of the

DC Josephson effect, namely J = Jc sin (φ+ π) = −Jc sinφ. It is obtained

by a Josephson junction, where the critical current is negative Jc < 0. Such

a Josephson junction is called a π junction. The change of the sign in the

critical current implies that for a given phase difference, the supercurrent

through a π junction is reversed with respect to an ordinary Josephson junc-

tion (0-junction).

For instance, a π junction behavior can occur in a Josephson junction

with a ferromagnetic Josephson barrier, i.e. a superconductor-ferromagnet-

superconductor (SFS) junction. In the ferromagnetic layer the superconduct-

ing order parameter oscillates in the direction perpendicular to the junction

plane. Depending on the thickness of the ferromagnetic layer one can ob-

tain a π Josephson junction. Various ferromagnetic π junctions have been

fabricated [125–128].

The Josephson effect has found wide usage of application in several areas.

The most famous ones are probably SQUIDs (Superconducting Quantum

Interference Devices), used as ultra-sensitive magnetometers that operate

via the Josephson effect.
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2.6 Quantum dots coupled to superconduc-

tors

Instead of a normal-conducting lead a quantum dot can be part of the super-

conducting junction and hence, superconducting correlations can be induced

on quantum dots. Hybrid devices with quantum dots open the possibility

to control single electrons (quantum dots) in the presence of a macroscopic

quantum phenomenon involving large numbers of electrons (superconduc-

tivity). These nanoscale structures are an ideal playground to study su-

perconducting correlations in systems with few degrees of freedom that ex-

hibit strong Coulomb-interaction effects. A variety of hybrid-superconductor-

quantum dot setups have been the scope of different theoretical [3] as well as

experimental studies [2]. In this section we will review some of the prominent

experimental achievements demonstrating the relevance of these systems.

In the last decades with the advances in nano fabrication techniques, it

became possible to couple quantum dots to superconductors [9,10,12–21,129–

139] and to study superconducting correlations in these devices. The first

experimental evidence of superconducting properties in transport through a

hybrid superconductor-quantum dot device has been reported in 1995 [140].

The experiment showed a signature of the superconducting gap and provided

evidence of a modified quasiparticle density of states near the gap. However,

it was not possible to measure a supercurrent, namely a Josephson current,

because the measurement could only be performed in a transport regime

where quasiparticle tunneling is the dominant transport mechanism. The

difficulty was for a long time that due to technical reasons, it was not possi-

ble to enter a regime where Cooper pairs tunnel resonantly across the device

leading to a supercurrent. For instance, oxidation at the interface between

superconductors and conventional semiconductors suppresses the tunneling

of Cooper pairs. Nevertheless with the introduction of new materials for

quantum dots, like carbon nanotubes or semiconducting nanowires, the ev-

idence of a supercurrent became accessible due to strong coupling favoring
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multi particle transport.

The first measurement of a supercurrent in hybrid-superconductor quan-

tum dot device was realised in 2006 by P. Jarillo-Herrero et al., Ref. [133].

The quantum dot was created in a single-walled carbon nanotube with alu-

minum based superconducting leads. The advantage of carbon nanotubes

is their large energy level spacing, which allows for a resonant tunneling

of Cooper pairs across the device. Whenever a dot level is aligned with

the Fermi energy of the superconductors, a resonant supercurrent can flow

and the critical current is maximal. In contrast, the critical current gets

suppressed whenever the Fermi energy lies between two dot levels. Hence,

the critical current as a function of the applied gate voltage shows resonance

peaks every time a level is aligned with the Fermi energy and gets suppressed

elsewhere.

In a subsequent work by van Dam et al. Ref. [139], they show a first mea-

surement of a supercurrent in a transport regime where resonant tunneling

of Cooper pairs is prohibited owing to Coulomb blockade. Even though a

strong Coulomb repulsion on the quantum dot does not allow a simultaneous

occupation of the dot and hence a resonant tunneling of Cooper pairs is sup-

pressed, a supercurrent can still flow due to a subsequent coherent transport

of correlated electrons. Figure 2.9 shows the superconductor-quantum dot

device and the resulting supercurrent. The superconductor quantum dot de-

vice is formed in a superconducting interference device (SQUID), Fig. 2.9 (a).

The Josephson current is flowing from one superconducting junction through

a strongly interacting quantum dot into another superconductor. Each su-

perconducting arm contains a break which is bridged by an InAs nanowire.

Two local gate electrodes are used to define the quantum dot in the top

nanowire. This allows to obtain a tunable coupling to the superconducting

leads. The phase difference between the superconducting arms is controlled

by a magnetic flux in the SQUID. The other nanowire defines a supercon-

ducting weak link, with just one gate to control the strength of the Josephson

coupling. Figure 2.9 (b) shows the critical current of the quantum dot as a
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Figure 2.9: (a) Scanning electron microscope image of a quantum dot coupled

to superconducting leads. (b) (top) Critical supercurrent of the quantum dot

as a function of the gate voltage and (bottom) density plot of the differential

conductance of the gate and bias voltage. Reprinted by permission from

Macmillan Publishers Ltd: Nature 442, 667, copyright 2006.
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function of the gate voltage (top) and the corresponding differential conduc-

tance (bottom). The critical supercurrent can be observed in Fig. 2.9 (b).

The sign change is due to the fact that the supercurrent is caused by co-

herent tunneling of single electrons. Whenever transport occurs through a

single spin-degenerate level filled with one electron, the spin-ordering of the

Cooper pair gets reversed during the transport event. This results in a sign

change in the Cooper pair singlet and hence, gives a negative contribution to

the supercurrent. Changing the occupation of the quantum dot from a even

to an odd occupation by adding single electrons on the quantum dot results

in a transition from a positive to a negative critical current, a so-called 0-π

transition.

The supercurrent which flows through a hybrid superconductor-quantum

dot device is carried by its ABSs, which form when a normal-conducting

region, here a quantum dot, is in contact to a superconductor. In various

experimental studies the subgap structure in superconductor-quantum dot-

superconductor and superconductor-quantum dot- normal metal has been

analyzed by Andreev level spectroscopy [12–22], which permits measurement

of the Andreev addition energies via the differential conductance. Figure 2.10

shows the device and a result of the first measurement detecting the presence

of ABS [15] in the proximzed dot spectrum which clearly modify the physical

properties of the quantum dot. As displayed in Fig. 2.10 (a) the quantum

dot in the first tunneling spectroscopy experiment of individually resolved

ABS has been realized in a carbon nanotube coupled to two superconducting

leads, while a third electrode acts as a tunnel probe. The Andreev level

spectroscopy reveals information about the addition energies, usually called

Andreev levels and the total line width of the resonances. The density of

states of the carbon nanotube, Fig. 2.10 (b), can be extracted form the

differential conductance of the tunnel probe. The excitation energies are

bound on the interval ±∆ and clearly differ from the usual Coulomb diamond

pattern as known from the normal state spectroscopy (see Sec. 2.3).

Figure 2.11 shows a recent experiment on a hybrid superconductor- quan-
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Figure 2.10: (a) Scanning electron micrograph of the device used for ABS

spectroscopy. A carbon nanotube (thin vertical line) is connected to two

superconducting contacts (green) with a weakly coupled tunnel electrode

(red) in between. The substrate (purple) acts as a backgate. Schematic figure

on the right shows the formation of the ABS in the system. (b) Result of the

measurement of the density of states in the carbon nanotube. Reprinted by

permission from Macmillan Publishers Ltd: Nature Phys. 6, 965, copyright

2010.
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tum dot device by E. Lee et al. [20]. In particular Fig. 2.11 (a) shows the re-

alization of a quantum dot strongly coupled to a superconductor and weakly

coupled to a normal-conducting lead. The device contains a single shell

nanowire, where the quantum dot is naturally formed due to the device ge-

ometry between the superconducting and normal contact. The quantum dot

formed on the nanowire is tuned by means of three gates. Two bottom elec-

trodes, namely a plunger gate and a barrier gate close to the superconducting

electrode, are used to control the charge on the quantum dot and to control

the coupling strength to the superconductor. The third gate is a back gate

that is used to fine tune the tunnel coupling. The current in such a system for

bias voltages smaller than the superconducting gap ∆ is carried by Andreev

reflection processes. Hence, the result of the tunnel spectroscopy in terms of

the differential conductance (Fig. 2.11 (b)) detects the subgap excitations of

the system, namely the Andreev levels.

Hybrid superconductor-normal structures offer a wide spectrum for novel

devices and applications. For instance quantum dot devices coupled to

two superconducting electrodes are similar to Josephson junctions. Super-

conducting quantum bits, the basic unit of quantum computing, based on

Josephson junctions have been demonstrated in Ref. [141]. Also, ABS are

proposed to be used as quantum bits [142]. Double quantum dots, tunnel

coupled to superconductors have been used as a source of entangled elec-

tron pairs [9, 10]. This could lead to further applications with theses types

of devices to exploit quantum entanglement and to study fundamental as-

pects of quantum mechanics in general. Currently, there is a huge research

interest in the creation and manipulation of Majorana fermions, particles

which are their own antiparticles, in solid-state device [143]. Also hybrid

superconductor-quantum dot devices are at the heart of recent proposals to

generate Majorana-fermion excitations in quantum dots [4–7]. In conclu-

sion, these points demonstrate the huge research effort in the field of hybrid

normal-superconductor nanodevices and also its importance for the devel-

opment of new types of devices for a range of applications. Hence, it is of
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vital importance to get access to the properties of such hybrid quantum-dot

systems.
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Figure 2.11: (a) (right) Scanning electron micrograph of the quantum dot de-

vice coupled a superconductor and a normal-conducting reservoir and (left)

schematic picture of the device. (b) Density plot of the differential conduc-

tance with clearly resolves the subgap excitations, namely the Andreev levels.

Reprinted by permission from Macmillan Publishers Ltd: Nature Nanotech-

nology 9, 79, copyright 2013.
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Chapter 3

Diagrammatic real-time

approach

In this thesis we study the current fluctuations in different setups of single-

level quantum dots coupled to electronic reservoirs, in particular normal and

superconducting leads. We take into account on-site Coulomb interaction of

arbitrary magnitude and non-equilibrium conditions, without resorting to the

linear-response regime. While we are interested in a strong coupling of the

quantum dot to the superconducting lead, leading to strong superconducting

correlations, we assume the coupling to the normal-conducting lead to be

weak. Considering these conditions, we make use of a diagrammatic real-

time perturbation theory in the tunnel-coupling with the normal lead [64,

65] and its extension to a system with superconducting electrodes [49], in

order to derive the current, the finite-frequency current noise and the finite-

time FCS. The formalism to obtain the finite-frequency noise using the real-

time diagrammatic approach has been introduced previously, for the case of

normal-conducting electrodes [144] as well as for the ferromagnetic case [34].

In this chapter we introduce the theory to obtain the current, finite-

frequency noise and the finite-time FCS for non-equilibrium transport through

a strongly interacting quantum dot making use of the diagrammatic real-time

approach.

41
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The diagrammatic-real time transport theory [64–66] is a general trans-

port theory used to describe non-equilibrium transport through a strongly

interacting quantum dot weakly coupled to electronic reservoirs. The basic

idea of the theory is to split the system into non-interacting regions with

many degrees of freedom (the electronic reservoirs) and a strongly interact-

ing region (here a quantum dot) that contains only a small number of degrees

of freedom and to integrate out all reservoir degrees of freedom by means of

Wick’s theorem. The system is described in terms of a reduced density ma-

trix. The advantage of the method is that the on-site Coulomb interaction

on the dot can be taken into account exactly.

This chapter is organized as follows: In Sec. 3.1 we introduce the Hamil-

tonian of the system. In Sec. 3.2 we derive a master equation to determine

the reduced density matrix of the quantum dot. In the subsequent sections,

we present a diagrammatic representation to determine the current, Sec. 3.3

and the finite-frequency noise, Sec. 3.4. Next, in Sec. 3.5, we present a the-

ory to obtain the finite-time FCS for a non-Markovian master equation. In

the last section of this Chapter, Sec. 3.6, we extend the theory presented in

Sec. 3.5 and introduce the multi-time FCS for Markovian processes.

3.1 Model

We consider a single-level quantum dot tunnel-coupled to normal and super-

conducting leads. Figure 3.1 shows a sketch of a single-level quantum dot

coupled to normal-conducting leads, Fig. 3.1 (a) and one normal and one

superconducting lead, Fig. 3.1(b). The Hamiltonian contains three terms,

H = HD +
∑

η=S,N (Hη +Htunn,η), where η = N, S labels the normal (N) and

superconducting (S) lead. When considering normal-conducting leads only,

as shown in Fig. 3.1 (a), we use the notation η = L, R for left and right

reservoir. The quantum dot is described by the Anderson impurity model

with a spin-degenerate level with energy ε and the on-site Coulomb repulsion
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(b) tN tS

μS=0

μN

Figure 3.1: (a) Sketch of a single-level quantum dot with energy level ε

and on-site Coulomb interaction U coupled to normal-conducting leads (tL

and tR). The chemical potential of the leads is given by µη with η = L,R

(b) Sketch of a single-level quantum dot with energy level ε and on-site

Coulomb interaction U , tunnel coupled to one normal lead (tN) and one

superconducting lead (tS).

U ,

HD =
∑
σ

ε n̂σ + Un↑n↓ . (3.1)

Here, n̂σ = d†σdσ is the occupation number of electrons with spin σ on the

dot and dσ(d†σ) is the annihilation (creation) operator for an electron with

spin σ =↑, ↓. The isolated quantum dot has the following eigenstates: |0〉
(empty), |σ〉 = d†σ|0〉 (singly occupied) and |d〉 = d†↑d

†
↓|0〉 (doubly occupied).

The Hamiltonian of the lead η = N, S reads

Hη =
∑
k,σ

εηkc
†
ηkσcηkσ − δη,S∆

∑
k

(cη−k↓cηk↑ + H.c.) , (3.2)

where cηkσ(c†ηkσ) are the lead-electron operators with k being the wave vector

in lead η. We have δη,S = 0 for the normal conducting lead and δη,S = 1

for the superconducting lead; ∆ is the superconducting gap. We choose

the electrochemical potential of the superconductor as a reference, µS = 0.

The normal-conducting lead has an electrochemical potential µN, which in

general differs from zero. For a quantum dot coupled to two normal leads,
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as displayed in Fig. 3.1(a), we have to consider the electrochemical potential

of left (µL) and right reservoir (µR) and we assume a symmetric applied bias

voltage across the device, µL = −µR = V/2, where we have set e = 1.

The tunneling between the dot and the leads is modeled by the tunneling

Hamiltonians

Htunn,η = tη
∑
k,σ

c†ηkσdσ + H.c. (3.3)

We assume the normal conducting density of states ρη of the leads to be con-

stant and tη to be spin- and momentum independent and define the tunnel-

coupling strength as Γη = 2πρη|tη|.

3.1.1 Effective Hamiltonian

Figure 3.2: Sketch of the effective dot-superconductor subsystem coupled to

a normal conducting lead (ΓN) which acts as a bath.

For a quantum dot coupled to superconducting leads we consider the

limit ∆ → ∞, since we are interested in the subgap features of transport.

Quasiparticle transport to the superconductor is suppressed and the effect of

the superconductor can be understood in terms of the proximity effect. This

effect can be cast in an effective Hamiltonian [145],

Heff = HD −
ΓS

2

(
d†↑d
†
↓ + d↓d↑

)
(3.4)
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which includes the coupling between quantum dot and the superconducting

lead and describes the pairing on the dot induced by the proximity effect.

The eigenstates of the isolated quantum dot hence differ from the eigenstates

of the effective Hamiltonian. The effective dot-superconductor subsystem

coupled to a normal conducting lead is sketched in Fig. 3.2. Due to the

tunnel coupling to the superconductor the states |0〉 and |d〉 combine to new

eigenstates, the Andreev bound states (ABS),

|±〉 =
1√
2

√
1∓ δ

2εA
|0〉 ∓ 1√

2

√
1± δ

2εA
|d〉 , (3.5)

with the energies ε± = δ/2 ± εA, the detuning δ = 2ε + U between the

empty and the double occupied state and the splitting between the |+〉 and

|−〉 states, 2εA =
√
δ2 + Γ2

S. The superconducting correlation on the dot is

strongest, if the mixing between the empty |0〉 and doubly occupied state |d〉
is maximal. This is the case for δ ∼ 0, namely when the states |0〉 and |d〉
are nearly degenerate (the proximity effect is on resonance). The excitation

energies of the dot are the so called Andreev addition energies, which are

given by the differences of the eigenenergies of the states whose occupation

numbers differ by one

Eγ′,γ = γ′
U

2
+ γεA (3.6)

with γ′, γ = ±1. The energy of the electron leaving or entering the normal

lead must account for the energy difference between the initial and final

state of the dot-superconductor subsystem, which are the Andreev addition

energies, represented by the energy levels sketched in Fig. 3.2.

At this stage it is useful to introduce effective coupling strengths which

describe the coupling between the electronic reservoir and the dot resonances,

namely the Andreev levels. These effective coupling strengths turn out to be

essential to understand the steps occurring in the finite-frequency noise due

to quantum fluctuations at frequencies equal to the internal energies of the

quantum dot.

The effective tunnel-coupling strengths of the Andreev levels to the nor-

mal conducting lead ΓN corresponding to the excitation |σ〉 to |±〉 are given
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by

Γσ→± =
ΓN

2

(
1± δ

2εA

)
, (3.7)

while the Andreev levels of the excitation from |±〉 to |σ〉 have the effective

coupling strength

Γ±→σ =
ΓN

2

(
1∓ δ

2εA

)
. (3.8)

Throughout the text we use ~ = e = 1.

3.2 Master equation

In this section we present the theory which allows us to investigate electronic

transport through a quantum dot coupled to normal and superconducting

leads. Since we are only interested in the dynamics of the strongly interacting

quantum dot, we integrate out the electronic reservoir degrees of freedom. In

the following we derive a master equation, that describes the time evolution

of the density matrix of the system based on the previously introduced model.

In order to solve the master equation we perform a perturbation expansion

up to first order in the tunnel-coupling strength to the normal conducting

lead. This allows us to take the Coulomb interaction on the quantum dot

into account exactly.

3.2.1 Density matrix

All dynamics of the system can be identified by the time evolution of the

density matrix. Each observable can be determined by the expectation value

of the respective operator. The quantum mechanical expectation value of an

operator A at some time t in terms of the initial density matrix ρ(t0) in the

Heisenberg representation is given by

〈A〉(t) = Tr[A(t)Hρ(t0)] (3.9)

with the initial time t0. Assume that at some initial time t0, the tunnel

coupling between the quantum dot and the electronic reservoir is switched
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on. Hence, the tunneling Hamiltonian vanishes for t ≤ t0 and the quantum

dot is decoupled from the reservoirs. In this case the initial density matrix

ρ(t0) can be factorized into parts of the quantum dot and the lead electrons,

ρ(t0) = ρred(t0)⊗ ρres(t0) (3.10)

where ρres(t0) = Z−1
res

∏
η exp(−βη(Hη − µηN̂η)) is the equilibrium density ma-

trix of the reservoir with the inverse temperature β = 1/kBT , the electro-

chemical potential µη and the number operator of the electrons in lead η,

N̂η =
∑

kη c
†
ηkσcηkσ. The normalization factor Zres can be determined by ful-

filling the condition Trρres(t0) = 1. The degrees of freedom of the quantum

dot are described in terms of a reduced density matrix, which is defined as

P = ρred = Trres(ρ) (3.11)

where the trace over the non-interacting reservoir degrees of freedom is de-

noted by Trres. Since we are not interested in the degrees of freedom of the

reservoir we trace them out, making use of Wick’s theorem. More details are

discussed in the following. The advantage of the reduced system is that we

are left with an effective description of the strongly interacting quantum dot.

The elements of the reduced density matrix are defined by P χ′
χ = 〈χ′|P |χ〉,

where the kets |χ〉,|χ′〉 are the quantum dot states. The diagonal elements of

the reduced density matrix P χ
χ = Pχ are the probabilities to find the quan-

tum dot in state |χ〉. They fulfill the normalization condition
∑

χ Pχ = 1.

Off-diagonal elements in the reduced density matrix, which we refer to as

the coherences, may arise due to the coupling of the quantum dot to the

electronic reservoirs.

3.2.2 Generalized master equation

Our aim is to calculate the transport properties of a strongly interacting

quantum dot out of equilibrium. This problem does not have a known exact

solution. We are interested in the non-equilibrium time evolution of the
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reduced density matrix. We choose to perform a perturbation expansion

in the tunnel coupling (with the tunneling Hamiltonian as a perturbation)

between the strongly interacting quantum dot and the electronic reservoirs.

It is now useful to switch to the interaction picture and to perform the

perturbation expansion formulated in Keldysh time [146], since we want to

treat a strongly interacting system out of equilibrium. The non-equilibrium

time evolution of the reduced density matrix can be depicted on the Keldysh

contour and expressed in terms of a propagator P (t) = Π(t, t′)P (t′). An

example of the Keldysh contour for the calculation of the current is shown

in the sketch in Fig. 3.3 (a). The upper (lower) horizontal time line stands

for the propagation of the individual dot state forward (backward) in real-

time, indicated by arrows. The terms of the tunneling Hamiltonian Eq. (3.3)

are represented by vertices on the Keldysh contour. Each vertex describes

transport of one electron from the quantum dot to the reservoir and vice

versa. Tunneling lines between two vertices take into account contractions

between two lead creation and annihilation operators by means of Wicks’s

theorem. More details on how to calculate the diagrams are summarized

in the following. To formulate propagation along the Keldysh contour in a

more compact form it is convenient to introduce a time ordering operator

TK which orders all following operators with respect to the Keldysh contour

time.

We derive now a time-dependent master equation that describes the non-

equilibrium time evolution of all reduced density matrix elements. Therefore

we need to calculate the expectation value of the projection operator of the

dot states and find for the non-equilibrium density matrix elements

P χ1
χ2

= 〈|χ2〉 〈χ1|(t)〉 = Tr

[
TKexp

(
−i
∫
K

dt′Htunn(t′)I

)
|χ2〉 〈χ1|(t)ρ(t0)

]
.

(3.12)

Using Eq. (3.10) and writing explicitly the trace over the states of the quan-



Master equation 49

Figure 3.3: (a) Example of the time evolution of the reduced density matrix

P(t) for the evaluation of the expectation value of the current in case of a

quantum dot coupled to a normal and superconducting lead. The reduced

system propagates forward in time along the top path from t to t′ at which

the observable I is measured, then the system propagates back to time t. (b)

Diagrammatic representation of the matrix element W
χ1χ′

1

χ2χ′
2
.
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tum dot the matrix elements of the reduced density matrix read,

P χ1
χ2

=
∑
χ′
1,χ

′
2

〈χ′2|Trleads

[
TKexp

(
−i
∫
K

dt′Htunn(t′)I

)
|χ2〉 〈χ1|(t)ρres(t0)

]
×

|χ′1〉P
χ′
1

χ′
2
(t0) .

(3.13)

Now, we are able to introduce the full propagator of the reduced system as

Π
χ1χ′

1

χ2χ′
2
(t, t0) = 〈χ′2|Trleads

[
TKexp

(
−i
∫
K

dt′Htunn(t′)I

)
×

|χ2〉 〈χ1|(t)ρres(t0)] |χ′1〉 .
(3.14)

In terms of the diagrammatic approach the full propagator sums up all dia-

grams with states given at the beginning and end of the forward and back-

ward Keldysh propagators. The non-equilibrium time evolution of the re-

duced density matrix elements, Eq. (3.12) can be written in the compact

form

P χ1
χ2

(t) =
∑
χ′
1,χ

′
2

Π
χ1,χ′

1

χ2,χ′
2
(t, t0)P

χ′
1

χ′
2
(t0) . (3.15)

This equation determines the matrix elements of the reduced density matrix

at time t. Expanding now the time-ordered exponential in Eq. (3.13) in the

tunneling Hamiltonian in terms of a power series yields

TKexp

(
−i
∫
K

dt′Htunn(t′)I

)
=
∞∑
n=0

(−i)n

n!

∫
K

dt1...

∫
K

dtn

TK [Htunn(t1)I ...Htunn(tn)I ] .

(3.16)

Here, Wicks’ theorem can be applied, since the tunneling Hamiltonians are

bilinear in the creation and annihilation operators of the lead electrons. Per-

forming the pairwise contractions of the lead operators yields

〈c†ηkσ(t)cη′k′σ′(t′)〉 = δηη′δkk′δσσ′e
i
~ εηkσ(t−t′)f+

η (εηkσ) (3.17)

〈cηkσ(t′)c†η′k′σ′(t)〉 = δηη′δkk′δσσ′e
i
~ εηkσ(t−t′)f−η (εηkσ) (3.18)
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with the Fermi function in lead η defined as f+
η (ε) = 1/[exp( ε−µη

kBT
) + 1] and

f−η (ε) = 1− f+
η (ε). These pairwise contractions are represented by tunneling

vertices (black dots) along the Keldysh contour connected by tunneling lines.

The vertices are placed at every position where a tunneling Hamiltonian

arises from the expansion. A tunnel event, where an electron hops between

dot and normal-conducting lead, is represented by one tunneling vertex on

the Keldysh contour. The tunneling lines point towards incoming vertices,

i.e. where an electron is created on the quantum dot and away from outgoing

vertices. In particular, each incoming vertex gets a term tηd
†
σcηkσ and every

outgoing vertex tηc
†
ηkσdσ.

The diagram Fig. 3.3 (a), which represents the time evolution of the

reduced density matrix, is broken up in two types of blocks on the Keldysh

contour, irreducible self energy insertions W
χ1χ

′
1

χ2χ
′
2

(t, t′) and free propagation

Π0
χ1χ

′
1

χ2χ
′
2

(t, t′). The free propagation are the blocks which contain only forward

and backward propagation on the Keldysh contour. The irreducible self

energy insertions W
χ1χ

′
1

χ2χ
′
2

(t, t′) symbolize transitions between different matrix

elements, namely P
χ′
1

χ′
2

at time t′ and state P χ1
χ2

at time t.

These blocks arise due to the expansion in the tunneling Hamiltonian

Htunn. Irreducible means that any vertical cut would intersect a tunneling

line. The kernel element W
χ1χ

′
1

χ2χ
′
2

(t, t′) is defined as the sum of all irreducible

diagrams and can be obtained diagrammatically, based on a perturbation

expansion in the tunnel-coupling to the normal-conducting lead as displayed

in Fig 3.3 (b). The number of tunneling lines in a diagram gives the order

in the tunnel coupling strength.

All diagrams, irreducible self energy insertion and free propagation, can

be summed up to yield the full propagator. The full propagator can be
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written in terms of a Dyson equation,

Π
χ1χ′

1

χ2χ′
2
(t, t′) = Π0

χ1χ′
1

χ2χ′
2
(t, t′)

+
∑
χ′′
1χ

′′
2

∫ t

t′
dt2

∫ t2

t′
dt1Π0

χ1χ1
χ2χ2

(t, t2)W
χ1χ′′

1

χ2χ′′
2

(t2, t1)Π
χ′′
1χ

′
1

χ′′
2χ

′
2
(t1, t

′)

(3.19)

with the free propagator defined as

Π0
χ1χ′

1

χ2χ′
2
(t, t′) = e−i(εχ1−εχ2 )(t−t′)δχ1,χ′

1
δχ2,χ′

2
(3.20)

with the energies εχ1 ,εχ2 of the eigenstates. Inserting the Dyson equation

of the full propagator Eq. (3.19) into the equation for the non-equilibrium

time evolution of the reduced density matrix elements Eq. (3.15) and taking

the derivative with respect to time t finally yields an exact master equation

which is valid for arbitrary initial states,

Ṗ χ1
χ2

(t) = −i (εχ1 − εχ2)P
χ1
χ2

(t) +

∫ t

t0

dt′
∑
χ′
1χ

′
2

W
χ1χ′

1

χ2χ′
2
(t, t′)P

χ′
1

χ′
2
(t′) . (3.21)

This is a so-called generalized master equation due to the fact that Eq. (3.21)

also allows the calculation of off-diagonal density matrix elements. The first

term on the right hand side describes the coherent evolution of the reduced

system and the second term the dissipative coupling to the electrodes. The

generalized master equation derived above is non-Markovian, i.e. the time

evolution of the density matrix elements depends on previous times t′. In

the stationary limit, i.e. there is no explicit time dependence in the system,

the kernel elements depend on the time difference t− t′ only and all matrix

elements of the reduced density matrix P are time independent. With the

additional definition of the kernel elements W
χ1χ

′
1

χ2χ
′
2

=
∫ t′
t0
dt′W

χ1χ
′
1

χ2χ
′
2

(t, t′) the

generalized master equation in the stationary state reads

0 = Ṗ χ1
χ2

= −i (εχ1 − εχ2)P
χ1
χ2

+
∑
χ′
1χ

′
2

W
χ1χ′

1

χ2χ′
2
P
χ′
1

χ′
2
. (3.22)
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The kernel elements W
χ1χ

′
1

χ2χ
′
2

can be obtained using diagrammatic rules. Dia-

grammatic rules are given at the end of Sec. 3.4 and in Appendix B we give

some example calculations for diagrams.

3.2.3 Master equation in frequency space

In the next sections we formulate a theory to obtain current and finite-

frequency noise based on the real-time diagrammatic approach. Therefore it

is convenient to formulate the Master equation as introduced in Eq. (3.22)

in frequency space.

The transition into frequency space of the full propagator is performed by

Π(ω) =
∫∞
t0
dtΠ(t−t0)e−i(ω−i0

+)(t−t0) and yields the following Dyson equation,

Π(ω) = Π0(ω) + Π0(ω)W (ω)Π(ω)

=
[
Π0(ω)−1 −W (ω)

]−1
,

(3.23)

with the frequency-dependent free propagator on the Keldysh contour Π0(ω)

and the kernel W (ω) representing the self energy of the Dyson equation due

to coupling to the normal-conducting reservoir. The matrix elements of the

free propagator are given by

Π0(ω)
χ1χ′

1

χ2χ′
2

=
iδχ1χ′

1
δχ2χ′

2

εχ2 − εχ1 − ω + i0+
(3.24)

where χi, χ
′
i denote the different dot states at different times t, t′. The kernel

W is defined as the sum of all irreducible diagrams and can be obtained

diagrammatically, based on a perturbation expansion in the tunnel-coupling

to the normal-conducting lead (see also Fig. 3.3 (b)) and discussed in the

previous subsection. The transformation into frequency space enters the

diagrammatic representation by an additional horizontal bosonic line trans-

porting the energy ω.

From the frequency-dependent Dyson equation a generalized master equa-

tion can be obtained analogously to Eq. (3.22). Simply rewrite Eq. (3.23) as[
Π−1

0 (ω)−W (ω)
]
Π(ω) = 1, multiply both sides with frequency ω and make
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use of the final value theorem, limω→0(iω + 0+)Π(ω) = limt→∞Π(t) = P stat.

Finally, in the stationary limit, the reduced density matrix, P stat, is found

from the solution of a generalized master equation

0 =
[
Π−1

0 (ω = 0)−W (ω = 0)
]
P stat (3.25)

containing the coherent evolution of the reduced system described by the

zero-frequency contribution to the free propagator and the dissipative cou-

pling to the normal-conducting lead described by the zero-frequency contri-

bution to the kernel. With the help of the solution for P stat, we will in the

following be able to determine the expectation values of the current and the

current-current correlator yielding the finite-frequency noise.

In the subsequent chapters when we present our results, we will restrict

ourselves to the weak-coupling regime, performing a perturbation expansion

with respect to the tunnel coupling to the normal lead. In particular, we

consider diagrams with one tunneling line only. The explicit expression for

the kernel can be obtained by using diagrammatic rules summarized at the

end of Sec. 3.4. In the following sections we are going to present how to

determine the current and the finite-frequency noise and the finite-time full

counting statistics using the real-time diagrammatic approach.

3.3 Current

The particle current through the hybridised quantum dot is given by the

operator representing the rate of change of the number of electrons in the

normal lead: Î = i
~

[
N̂ ,H

]
, where N̂ =

∑
k,σ c

†
ηkσcηkσ. When calculating the

time-dependent expectation value of the current operator, the latter acts as

an external vertex on the Keldysh contour.

In order to calculate the expectation value of the charge current, I, the

current operator is placed at the rightmost point of the Keldysh contour,

see Fig. 3.4 (a), and contracted to an internal tunnel vertex via a tunnelling

line. The current can be determined in an analogous way to the generalized
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transition rates presented in Sec. 3.2.2. The derivation of the equation for

the current is very similar to that for the projection operator. Instead of the

projection operator the current operator is inserted in Eq. (3.12). It turns

out that the current can be expressed as

I =
1

2
Tr [W IP stat] . (3.26)

The kernel W I can be obtained from W by replacing one of the inter-

nal tunneling vertices (black dot) by an external current vertex (open cir-

cle) [34,144]. The current kernel W I takes into account whether an electron

enters or leaves the dot through the normal lead. The diagrammatic rules

to compute the kernel W I are summarised in Sec. 3.4 in lowest order in

the tunnel coupling. The particle current through a quantum dot coupled

W W WWΠ Π+ . . .+

Figure 3.4: Diagrammatic representation of (a) the current, (b) the contri-

bution to noise with both current operators in one block and (c) in different

ones separated by the full propagator.

to normal-conducting leads is given by the change of particles in each lead.

We will define the operator for the current through the dot symmetrized as

Î = (ÎL− ÎR)/2. The symmetrized current can be calculated using Eq. (3.26)

in the same way as the current through the hybridized quantum dot. The

fact that the current is symmetrized will be included into the diagrammatic
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rules to calculate the kernel W I . Note, that for the current itself it is not

important that the current is symmetrized as due to current conservation

we have IL = −IR ≡ I. Experimentally, the current is measured in one of

the leads. At finite-frequencies the charge across the device will accumulate

in time and the measured current will not be equal to the particle current.

Hence, displacement currents have to be considered. Following Ref. [32], dis-

placement currents can be taken into account following the Ramo-Shockley

theorem, Îtot =
(
CRÎL − CLÎR

)
/(CL + CR) with CL, CR the barrier capac-

itances. Assuming equal interface capacity between left and right reservoir

the total current is equal to the symmetrized particle current. Neverthe-

less equal interface capacitances may still allow for an asymmetric tunnel

coupling. Displacement currents are not important for the DC current, but

become crucial for time-dependent and noise measurements.

Analogously, the displacement current for the quantum dot coupled to

normal and superconducting lead can be considered. We consider a simple

capacitive model and denote with CN and CS the capacitances of the tunnel

barriers with the normal and superconducting lead, respectively. The number

of electrons in the dot is n̂ =
∑

σ d
†
σdσ. Within this model the displacement

current in the normal lead is [32]

ÎN,displ = − CN

CN + CS

˙̂n. (3.27)

The total current is simply the sum of the tunnelling current and the dis-

placement current and reads

ÎN,tot = ÎN,tunn −
CN

CN + CS

˙̂n , (3.28)

with the tunneling current given by

ÎN,tunn = − ˙̂
N = − 1

i~
[N̂ ,H]

=
i

~
∑
k,σ

(
tNc
†
Nkσdσ − t

∗
Nd
†
σcNkσ

)
.

(3.29)
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Note, that the tunneling current ÎN,tunn is equal to the current Î introduced

in Sec. 4.3. The current IN is positive when flowing out of the normal lead.

At this stage, it is worth mentioning that if CS � CN, the displacement

current in the normal lead can be neglected. This assumption is consistent

with ΓS � ΓN, the limit we consider throughout this thesis, because the

capacitance is proportional to the inverse of the barrier thickness.

Now, we proceed to evaluate ˙̂n:

˙̂n =
1

i~
[n̂, H] = ÎN,tunn +

1

i~
[n̂, Heff]

= ÎN,tunn + ÎS,tunn,
(3.30)

where the tunnelling current with the superconductor reads

ÎS,tunn =
i

~
ΓS

(
d†↑d
†
↓ − d↓d↑

)
. (3.31)

Putting everything together we obtain the Ramo-Shockley theorem for the

N-dot-S system:

ÎN,tot =
CS

CN + CS

ÎN,tunn −
CN

CN + CS

ÎS,tunn. (3.32)

3.4 Finite-frequency noise

The symmetrized finite-frequency current noise is defined as the Fourier

transform of S(t) = 〈Î(t)Î(0)〉 + 〈Î(0)Î(t)〉 − 2〈Î〉2, namely of the current-

current correlator at different times,

S(ω) =

∫ 0

−∞
dt
[
〈Î(t)Î(0)〉+ 〈Î(0)Î(t)〉

] (
e−iωt + e+iωt

)
− 4πδ(ω)〈Î〉2 .

(3.33)

The current in Eq. (3.33) is the tunneling current introduced in Eq. (3.26)

which turns out to be equal the total current in the limit we consider through-

out this thesis as discussed in the previous section.
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By construction, the finite-frequency current noise Eq. (3.33), also re-

ferred to as the power spectral density, is symmetric with respect to fre-

quency, S(ω) = S(−ω). It represents a real quantity, which can be measured

by a classical detector [31, 147]. A classical detector is not able to distin-

guish between positive and negative frequencies [148] and is hence suitable

to measure the symmetrized noise spectrum.

In order to calculate the current correlator, two current operators at dif-

ferent times have to be placed on the Keldysh contour. Diagrammatically,

this means that two internal tunnelling vertices have to be replaced by ex-

ternal current vertices. The contributions to the current-current correlator

can be grouped into two different classes, as shown in Fig. 3.4 (b) and (c).

Either both current vertices are placed in the same irreducible block or in

two different ones separated by a propagator.

These external operators are connected by additional bosonic (dashed)

lines, carrying the frequency ω of the Fourier transform. The symmetrized

finite-frequency noise can be written as [34]

S(ω) =
1

2
Tr [W II(ω)P stat+ W I<(ω)Π(ω)W I>(ω)P stat]

−2πδ(ω)〈Î〉2 + (ω → −ω) . (3.34)

Here, the kernels W I>(ω) and W I<(ω) are the sum of all diagrams, where

one tunnel vertex (black dot) is replaced by a current vertex (open circle)

and a frequency line ω is attached to the current vertex. The indices > and <

indicate whether the frequency line leaves the diagram to the right or enters

it from the left as shown in Fig 3.4 (c). The kernelW II(ω) contains diagrams

with both current vertices in the same irreducible block (see Fig. 3.4 (b)).

In this last part of the section we summarize the rules to determine di-

agrammatically the different contributions to the kernel and current kernel

as given in Refs. [64, 65] and [34]. We adapt the rules to the system under

investigation, which has only one normal lead. The rules for the kernelW (ω)

are:

1. Draw all topologically different diagrams with n directed tunnelling
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lines connecting pairs of vertices containing lead electron operators.

Assign spin index σ and energy $ to every tunnelling line. Addition-

ally, assign state index χ and the corresponding energy Eχ to each

element of the Keldysh contour connecting two vertices. Also, add an

external horizontal bosonic energy line transporting the energy ω to

each diagram, which results from the Fourier transform.

2. For each time segment between two adjacent vertices write a resolvent

1/(∆E(t) + i0+) with ∆E being the difference between all backward-

going minus forward-going energies, including tunnelling lines trans-

porting the energy z as well as the external line transporting the energy

ω.

3. Each vertex containing a dot operator d
(†)
σ gives rise to a matrix element

〈χ′|d(†)
σ |χ〉 where χ (χ′) is the dot state entering (leaving) the vertex

with respect to the Keldysh contour. Consequently, for each vertex

connecting a doubly-occupied state d to the up state ↑, the diagram

acquires a factor (-1).

4. Each tunnelling line contributes with a factor 1
2π

ΓNfN($) for a backward-

going line with respect to the closed time path and a factor 1
2π

ΓN [1− fN($)]

for a forward-going contribution.

5. Each diagram has an overall prefactor (−i)(−1)b+c, where b is the total

number of vertices on the backward propagator and c is the number of

crossings of tunnelling lines.

6. Finally, sum over the spin σ and integrate over the energies $ of tun-

nelling lines and sum over all diagrams that contribute to the same

kernel element.

As a next step we provide the additional rules to determine the blocks

containing one or two current operators W I(ω) and W II(ω).
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7. Replace one (two) tunnel vertex by a current vertex to calculate di-

agrams contributing to the kernels W I(ω) (W II(ω)). Note, that the

current vertex (open circle) might also be placed on the start or end

point of the diagram.

8. Multiply each diagram by a prefactor, determining the position of the

current vertex inside the diagram: we have to multiply each diagram

by a factor of (−1) for a current vertex on the upper (lower) Keldysh

time branch and a particle tunnelling into (out of) the normal lead. In

the two other cases multiply the diagram with a factor of (+1).

9. The diagrams contributing to W I>(ω), W I<(ω) have open external

frequency lines to the right or left side attached to the current ver-

tex. Diagrams with frequency lines leaving the diagram to the right

contribute to the kernel W I>(ω), while diagrams with with frequency

lines coming from the left contribute to W I<(ω).

The diagrammatic rules introduced above are for the system with only

one normal-conducting lead. When considering a quantum dot with two

normal leads then we have to multiply each diagram by a factor of +1/2 for

a current vertex on the upper (lower) Keldysh time branch, which describes

a particle tunneling into the right (left) lead or out of the left (right) lead. In

the four other cases multiply the diagram with a factor of −1/2. The factor

1/2 takes into account that the total current is symmetrized.

In Appendix B we give examples for the different types of diagrams using

the diagrammatic rules introduced here. Additionally, in Appendix C we

present the kernels contributing to the finite-frequency noise in the unidirec-

tional transport regime for the dot coupled to a normal and a superconduct-

ing lead.
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3.5 Finite-time full counting statistics

In this section we introduce a theory to calculate the finite-time full counting

statistics for transport through a strongly interacting quantum dot and also

the current and the finite-frequency noise.

We are interested in the transport properties of a nanoscale conductor

such as a quantum dot coupled to leads. The system is completely captured

by the time evolution of the reduced density matrix, which we obtain by

tracing out the electronic leads. As introduced in the previous Sec. 3.2 the

time evolution of the reduced density matrix P (t) obeys a generalized master

equation, e.g Eq. (3.21). Here, we aim to formulate a theory which allows

us to study the statistics of the transferred charges. It is therefore advanta-

geous to resolve the reduced density matrix P (t) → P (N, t) in components

corresponding to the number of electrons N that have tunnelled through the

system in the time interval from 0 to t. Summing over all values of N yields

the known reduced density matrix, P (t) =
∑

N P (N, t).

The evolution of the reduced density matrix for transport in a nanoscale

conductor is described by a generalized non-Markovian (NM) master equa-

tion (NMME) of the form [60,149,150]

d

dt
P (N, t) =

∑
N ′

∫ t

0

dt′W (N −N ′, t− t′)P (N ′, t′) + γ(N, t) (3.35)

This NMME allows us in the following to study the statistics of the number

of transferred charges N through a system in a time interval t. We consider

the time evolution of the reduced system from time t = 0 where the counting

begins. The memory kernel W governs the influence of the reservoir on the

dynamics of the system. It depends only on the time difference t− t′ because

we assume that the system is not explicitly driven by any time-varying field.

The second term of the NMME Eq. (3.35) is the inhomogeneous term γ(N, t),

which captures the initial correlation between system and reservoir. This

term describes the system’s memory of its history prior to some time t = 0.

In the long time limit t → ∞ the initial correlations between system and
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reservoir decay, i.e. γ(N, t)→ 0 and can be neglected in the master equation

Eq. (3.35).

However, for finite times it is crucial to include the inhomogeneous term [40,

60, 63]. This allows to fully include NM dynamics. Note, the theory to ob-

tain the finite-frequency noise introduced in Sec. 3.4 captures also NM effects.

The full counting statistics (FCS) of electron transport in nanoscale conduc-

tors reveal fundamental information about the current fluctuations in the

system. The FCS gives complete information of the statistics of the number

of charges N transferred through the system in a given time t, defined as the

probability distribution p(N, t) [26, 27]. The probability distribution p(N, t)

can be expressed in terms of the moment generating function (MGF) defined

as

G(χ, t) =
∑
N

p(N, t)eiNχ (3.36)

where χ is the so-called counting field. The counting field χ is introduced

via a Fourier transformation, f(χ, t) =
∑∞

N=−∞ f(N, t)eiNχ and is the con-

jugated variable to the number of charges N . The derivatives with respect

to the counting field χ give the moments of kth order

< nk(t) >=
∂G(χ, t)

∂(iχ)k

∣∣∣∣
χ→0

. (3.37)

Alternatively, the FCS can be expressed in terms of the cumulant generating

function (CGF) which is defined as

S(χ, t) = ln
∑
N

p(N, t)eiNχ = lnG(χ, t) (3.38)

and the current cumulants are obtained by performing the derivatives with

respect to the counting field χ and sending χ → 0. Furthermore the proba-

bility distribution p(N, t) can be obtained from the reduced density matrix

by taking the trace over the system degrees of freedom

p(N, t) = Tr [P (N, t)] . (3.39)
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The MGF can be expressed in terms of the reduced density matrix as

G(χ, t) = eS(χ,t) = Tr [P (χ, t)] (3.40)

with the χ-dependent density matrix P (χ, t) =
∑

N P (N, t)eiNχ.

The aim is to study the FCS described by the NMME Eq. (3.35) within

the framework of the diagrammatic real-time approach [64, 65]. Introducing

the Laplace transform, f(χ, z) =
∑

N

∫∞
0
dtf(N, t)eiNχ−zt, NMME Eq. (3.35)

reads,

zP (χ, z)− P (χ, t = 0) = W (χ, z)P (χ, z) + γ(χ, z) (3.41)

Rewriting the equation we get

P (χ, z) = Π(χ, z) [P (χ, t = 0) + γ(χ, z)] (3.42)

with Π(χ, z) = [z −W (χ, z)]−1.

To understand the time evolution of the reduced density matrix in χ-space

Eq (3.42) we divide the system into two time intervals, a non-counting in-

terval (χ = 0) prior to some time t = 0 where the counting begins and an

interval where the counting is active. A schematic sketch of the time evo-

lution of the system is shown in Fig. 3.5. At the initial state at t0 system

and reservoir are separable. The system envolves without counting from t0

to t = 0 where the counting begins. At t = 0 system and reservoir are no

longer separable. In the interval from t = 0 to the final time t counting takes

place.

We assume now that the system evolves from the initial state at t0 = −∞
such that the occupation probabilities at t = 0, where the counting begins

have reached the stationary state. Consequently the reduced density matrix

has reached its stationary state at t = 0, namely P (N, t = 0) = δN,t=0P stat.

Taking this assumption into consideration we can write the reduced density

matrix Eq. (3.42) as

P (χ, z) = Π(χ, z) [1 + Γ(χ, z)]P stat (3.43)
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where the stationary density matrix can be obtained by solvingW (χ = 0, z =

0)P stat = 0. The resulting equation for the reduced density matrix Eq. 3.43

Figure 3.5: Schematic picture of the system. The reduced density matrix

evolves forward in time from the initial time t0 to t = 0 where the counting

begins. Solid circles denote tunnel vertices with a finite counting contribution

and open circles denote vertices in the non-counting regime.

contains two different types of self-energy kernels, W (χ, z) and Γ(χ, z). The

kernel Γ(χ, z) represents the inhomogeneity term and contains all diagrams

connecting the counting and non-counting region. We are going to introduce

the inhomogeneity term Γ(χ, z) in detail in the following. We assume the

coupling to the reservoir is weak (Γη � kBT , where kB is the Boltzmann

constant and T is the absolute temperature; η is the lead index). Considering

this condition we make use of the diagrammatic real-time approach in the

pertubative regime for the tunnel coupling to the lead [64, 65] using the

Keldysh formalism as introduced in Sec. 3.2. Hence the kernels, W (χ, z)

and Γ(χ, z), can be determined by using diagrammatic rules, see Sec. 3.4.

The only extension to the diagrammatic appraoch we have to make here is to

incorporate the counting field into the approach. Assume that the counting

in lead η is represented by a counting field χη. The counting in lead η can be

included by adding the counting field χη to the tunneling Hamiltonian Htunn,

where each tunnel event is represented by a vertex on the Keldysh contour.

In practice, the counting field χη can be included through the replacement,

tη → tηe
iχη/2 for a tunneling vertex on the upper Keldysh contour and tη →
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tηe
−iχη/2 on the lower contour, respectively. Here, we have to distinguish

between two types of tunnel vertices, namely between counting and non-

counting vertices. For all vertices describing tunneling processes within the

counting interval, represented by black dots on the Keldysh contour, the

counting field has to be incorporated by the replacement introduced above.

While all vertices in the non-counting interval, depicted as open circles on

the Keldysh contour, are the same sort of tunnel vertices as introduced in

Sec. 3.2.

The kernel W (χ, z) comprises all tunnel processes taking place in the

counting interval, i.e all tunnel vertices are counting-vertices (black dots) on

the Keldysh contour. This kernel is of the same type as the self-energy kernel

introduced in Sec. 3.2 with the extension of incorporating the counting fields

into the tunneling processes. The kernel Γ(χ, z) represents the inhomogeneity

term and involves tunneling processes where vertices between counting and

non-counting interval get contracted. In first order in the tunnel coupling, i.e.

for all diagrams with only one tunneling line, we find for the inhomogeneity

term

Γ(χ, z) =
1

z

[
W̃ (χ, z = 0)− W̃ (χ, z)

]
(3.44)

using the assumption that the system evolves from t0 = −∞ such that the

reduced density matrix P(N, t) has found its stationary state at t = 0 when

the counting begins. The matrix elements of the kernel W̃ (χ, z) are those

diagrams describing contractions between counting and non-counting ver-

tices. Since we only consider first order diagrams, the rightmost vertex is

a tunneling vertex in the counting interval (black dot), while the leftmost

is a non-counting vertex (open circle). Note, when considering also higher

order tunnel processes, i.e beyond the weak coupling regime the expression

Eq. (3.44) becomes more complex and additional terms appear. The explicit

expression for both types of kernel W (χ, z) and Γ(χ, z) can be obtained by

using the diagrammatic rules of Sec. 3.4, with the counting field included as

described above. A concrete example for diagrams contributing to Γ(χ, z)
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can be found in Appendix B.

In Chapter 5 we apply the theory introduced here to our model of a quan-

tum dot strongly coupled to superconductor and weakly to a normal conduct-

ing lead. We restrict ourselves to the case when the temperature is larger than

the tunnel-coupling strength of the normal-conducting lead (kBT � ΓN). In

this particular regime, the Kondo correlations due to the coupling with the

normal lead are negligible and we can treat the tunneling with the normal

lead to the lowest non-vanishing order. Next-to-leading-order corrections in

the tunnel coupling ΓN would mainly yield small quantitative corrections

since the perturbation expansion is performed in a small parameter. For

the subgap transport characteristics of the system, the superconductor can

be described by means of an effective Hamiltonian as introduced in Sec. 3.1,

which becomes exact in the regime of infinite superconducting gap. However,

the effective Hamiltonian still describes well the subgap transport features

even for finite values of the gap as long as the temperature is larger than

the Kondo temperature related to the Kondo screening by the quasiparticle

excitations in the superconductor. A detailed study of the reliability of the

approximations can be found in Ref. [94].

This theory allows to obtain the reduced density matrix for a NMME,

which gives direct access to the frequency depend MGF Eq. (3.40). The

MGF allows in general to determine the current and the finite-frequency

noise directly, as well as the finite-time FCS.

Thus we introduced here an alternative approach to the one presented in

Sec. 3.3 and Sec. 3.4 to determine the current and the finite-frequency noise.

One advantage of the MGF is that we can not only calculate the symmetrized

current and noise, but also its cross- and auto-correlations separately by

taking the derivatives of the MGF with respect to different counting fields of

the different contacts. This enables us to determine also the noise associated

to the charge accumulating on the nanostructure. Beside this, to determine

the MGF one has to calculate only two types of self-energy kernels, W (χ, z)

and W̃ (χ, z). Lastly, the knowledge of the MGF also enables to calculate
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higher order current cumulants.

The non-Markovian theory for finite-time FCS that we have set up here

captures also the quantum noise regime, i.e when the noise frequency is the

largest energy scale, ω > kBT, eV , namely a noise frequency larger than tem-

perature and applied bias voltage. This is different to other non-Markovian

theories for counting statistics found in the literature as in Ref. [60]. The

reason for this is the nature of the counting, i.e. whether the number of

transferred electrons is considered to be a quantum or classical variable. The

difference manifests in the inhomogeneity term. In the classical case the

inhomogeneity term is independent of the counting field χ, i.e contractions

between counting and non-counting field are not taken into account. Hence,

the knowledge of the kernel W (χ, z) is sufficient [60]. In our approach we

consider the number operator counting the transferred charges quantum me-

chanically. Consequently, contractions between counting and non-counting

field arise, which leads to a new type of kernel, W̃ (χ, z) and the inhomo-

geneity term is not independent of the counting field. The difference does

not play a role for the first cumulant, the average current, since memory

effects do not play a role for the stationary limit. A detailed discussion of

the classical and quantum-mechanical counting in NMME can be found in

Ref. [63].

Let us now define all relevant quantities. The average current in Laplace

space is given by

〈I(z)〉 = z〈n(z)〉 = z
∂

∂(iχ)
G(χ, z)

∣∣∣∣
χ→0

. (3.45)

The symmetrized finite-frequency noise can be expressed as in Ref. [60] by

S(ω) = −ω
2

2

∂2

∂(iχ)2
(G(χ, z = iω) + (z = −iω))χ→0 . (3.46)

The current Eq. (3.45) and noise formula Eq. (3.46) coincide with the current

and finite-frequency noise introduced in the previous section Eq. (3.26) and

Eq. (3.34) apart from a factor of two in the definition for the finite-frequency
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noise. Nevertheless, the definition of the noise in Eq. (3.46) is convenient

since in the FCS the Fano factor is defined as F = S/I. This shows that

after having calculated the MGF you have direct access to the current and

finite-frequency noise by simply taking the first and second derivative of the

MGF.

At this stage, we should point out that the above derivation focuses on

particle currents only. As already discussed in section 3.3, displacement cur-

rents have to be considered at finite frequencies, since the current is not con-

served due to charge accumulation in the system. Nevertheless, current con-

servation can be taken into account by the inclusion of the correct counting

fields of the electronic reservoirs following the Ramo-Shockley theorem [32].

For example, in the case of a quantum dot coupled to two leads left and

right the total symmetrized noise can be obtained by taking the derivative

with respect to a total counting field, with χL = −χR = χtot/2 under the

assumption of symmetrized barrier capacitances (CL = CR).

However, the MGF allows us to calculate not only the average current, it

gives also access to the full statistical description of the transferred electrons,

namely the FCS.

The cumulants defining the number of transmitted charges are defined as

the kth derivative of the CGF

〈κ(k)(t)〉 =
∂kS(χ, t)

∂(iχ)k

∣∣∣∣
χ→0

(3.47)

and the kth time averaged current cumulants are defined as

〈Ik(t)〉c =
d

dt
〈κ(k)(t)〉 (3.48)

We are interested in the Fano factor of the cumulants which is defined as

F k = 〈κ(k)(t)〉/〈κ(1)(t)〉 (3.49)

and the time averaged kth order Fano factor as

F k
c = 〈Ik(t)〉c/〈I1(t)〉c , (3.50)
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respectively.

Since the finite-time FCS theory results in the MGF it is reasonable to

express the cumulants Eq. (3.47) in terms of the moments Eq. (3.37).

All cumulants can be calculated recursively in the following way

〈κ(k)(t)〉 = 〈nk(t)〉 −
k−1∑
m=1

(
k − 1

m− 1

)
〈κ(m)(t)〉〈nk−m(t)〉 (3.51)

and we find for the first three cumulants,

〈κ(1)(t)〉 = 〈n1(t)〉 (3.52)

〈κ(2)(t)〉 = 〈n2(t)〉 − 〈κ(1)(t)〉〈n1(t)〉 = 〈n2(t)〉 − 〈n1(t)〉〈n1(t)〉 (3.53)

〈κ(3)(t)〉 = 〈n3(t)〉 −
(
〈κ(1)(t)〉〈n2(t)〉+ 2〈κ(2)(t)〉〈n1(t)〉

)
= 〈n3(t)〉 −

(
〈n1(t)〉〈n2(t)〉+ 2

(
〈n2(t)〉 − 〈n1(t)〉〈n1(t)〉

)
〈n1(t)〉

)
(3.54)

and all other higher order cumulants can be obtained analogously. Note, that

we used here that G(χ = 0, t) = 1 for a normalized density matrix.

3.6 Multi-time full counting statistics

In this section we are going to extend the previously introduced theory to

multi-times. As introduced in the previous Sec. 3.5 the probability distribu-

tion p(N, t) of the transferred charges through the device in a given time gives

complete information on the statistics of the number of charges which have

been transported. The probability distribution can be obtained from the re-

duced density matrix by taking the trace over the system degrees of freedom

Eq. (3.39). In order to obtain the multi-times FCS we can now introduce the

so-called joint probability distribution p(N1, t1;N2, t2; ...;Nk−1, tk−1;Nk, tk)

which contains the correlations at different times.

The distribution p(N1, t1; ....Nk, tk) is the probability that N1 electrons

have been transferred after time t1 and N2 after some time t2 and so on until

Nk electron have been passed after time tk.
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The multi-time FCS presented here has been introduced previously in

Ref. [62, 104]. This allows us to study also the frequency-dependence of

higher-order current correlations as the skewness. For simplicity we consider

only the unidirectional transport regime, i.e we assume that the applied

bias voltage is the largest energy scale in the system and back-tunneling

to the reservoir is suppressed. In this regime the dynamics of the system

are governed by a Markovian master equation. Hence, we can neglect the

inhomogeneity term in Eq. (3.35) and do not need to consider any initial

correlations between system and reservoir.

The aim is to derive a MGF for multi-times. Namely, we are interested

in the current correlations, which correlates the number of electrons that

have been transferred through the device at k different times. The idea is to

divide the time evolution of the system into different time intervals, as shown

in Fig. 3.6. Each time tj is related to a number of electrons N(tj) that have

been passed across the device in that time. Since the number of transferred

electrons is conjugated to a counting field, we associate a different counting

field χi for each propagation. Consequently, more than one counting field

can be active in one time interval. Precisely, if we consider the time interval

∆tk−j = tk−j+1 − tk−j exactly χ̃j =
∑k

i=k+1−j χi counting fields are active.

In χ space the joint probability distribution can be expressed in terms of

the MGF, ∑
N1,N2,...Nk

eiN1χ1+iN2χ2+...+iNkχkp(k) [N , t] = G(k) [χ, t] (3.55)

with N = (N1, ....., Nk)T , t = (t1, ....., tk)T and χ = (χ1, ....., χk)T , where the

superscript k reminds us that we have introduced k different times.

Before we introduce the multi-time MGF, we define the Markovian master

equation for one time interval. For only one time interval, the Markovian

master equation describing the time evolution of the reduced density matrix

is given by

P (χ, t) = Π(χ, t− t0)P (χ, t0) (3.56)

where Π is the full propagator. We assume that the counting starts at t0, i.e
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Figure 3.6: Schematic sketch of the time evolution of the system. Each time

interval is related to a number of electrons which have been passed the device

and a counting field respectively.

no electrons have been passed at that time and we write P (χ, t0) = P (t0) =

P stat. In order to solve for the joint probability distribution we have to

partition the reduced density matrix Eq. 3.56 and the full propagator in

terms of different time intervals, since the trace over the reduced density

matrix yields the MGF. The multi-time MGF is given by

G(k)> [χ, t] = Tr [Π(χ̃1,∆t0)Π(χ̃2,∆t1)....Π(χ̃j,∆tk)P stat]

= Tr

[
k∏
j=1

Π(χ̃j,∆tk−j)P stat

]
(3.57)

with χ̃j =
∑k

i=k+1−j χi, ∆tj = tj+1 − tj and > denotes that we assume a

specific time ordering, namely tk > tk−1 > ....t1 > t0. By introducing the

time ordering operator T we can obtain the full MGF as

G(k) [χ, t] = T Tr

[
k∏
j=1

Π(χ̃j,∆tk−j)P stat

]
. (3.58)
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We are interested in the finite-frequency cumulants. Therefore it is useful to

transform Eq. 3.57 to the Laplace space, which yields

G(k)> [χ, z] = Tr

[
k∏
j=1

Π(χ̃j, z̃j)P stat

]
, (3.59)

with z̃j =
∑k

i=k+1−j zi and the frequency-dependent propagator Π(z, χ) =

[z −W (χ)]−1 which can be calculated using the previously introduced di-

agrammatic approach. The kth order moments are given by the derivative

with respect to the respective counting fields as

n(k)>(z) = ∂iχ1∂iχ2 ....∂iχkG
(k)> [χ, z] . (3.60)

In order to obtain the frequency-dependent noise and skewness as well

as higher order current-cumulants, we have to define the averaged current

cumulants Eq. 3.48 in frequency space. The k-time averaged current cumu-

lants in frequency space are defined by the symmetrized version of the power

spectrum as

S(k)(ω1, ..., ωk) =

∫ ∞
−∞

dt1....dtNe
−iω1t1 ....e−iωktkTS〈I(t1)....I(tk)〉 (3.61)

with the symmetrization operator TS , which symmetries over all possible

switches of times or frequencies, respectively. For example, for k = 2 we

get S(2)(ω1, ω2) =
∫∞
−∞ dt1dt2e

−i(ω1t1+ω2t2) [〈I(t1)I(t2)〉+ 〈I(t2)I(t1)〉], which

is the finite-frequency noise as introduced in Eq. (3.33).

We can express the multi-time current cumulants 〈I(t1)...I(tk)〉c in terms

of the CGF S(k) [χ, t]. The current cumulants are defined by 〈Ik(t)〉c =
d
dt
∂kS(χ,t)
∂(iχ)k

∣∣∣
χ→0

(see Eq. (3.48)). In the following derivation we consider only

the ′ >′ part, i.e the unsymmetrized part with respect to the time order-

ing t1 < t2 < .. < tk−1 < tk. Replacing the N-time current cumulants in

terms of the CGF and using the property of a Fourier transform of a deriva-

tive (d
nf(x)
dxn

→ (iω)nF (ω)), we obtain for the averaged current cumulants in
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frequency-space

S(k)>(ω1, ..., ωk) =

∫ ∞
−∞

dt1...dtN e−iω1t1 ...e−iωktk∂t2 ...∂tk∂iχ2 ...∂iχkS
k> [χ, t]

∣∣
χ=0

= (iω1)...(iωk)

∫ ∞
−∞

dt1...dtN e−iω1t1 ...e−iωktk ×

∂iχ2 ...∂iχkS
k> [χ, t]

∣∣
χ=0

.

(3.62)

At this stage we split the integral in order to introduce the Laplace trans-

form (f(z) =
∫∞

0
dte−ztf(t)) and set iω = z, so that the we find for the

polyspectrum [40]

S(k)>(z1, ..., zk) = z1....zk∂iχ2 ....∂iχkS
(k)> [χ, z]

∣∣
χ=0

, (3.63)

with the multi-time CGF

S(k)> [χ, z] = lnG(k)> [χ, z] = lnTr

[
k∏
j=1

Π(χ̃j, z̃j)P stat

]
. (3.64)

It might be advantage to express the multi-time cumulates in terms of the

moments. This can be done recursively as introduced in Eq. (3.51). The

difference here is that we have to account for the different times. For example

for k = 2 we find for the polyspectrum Eq. (3.63),

S(2)>(z1, z2) = z1z2n
(2)(z1, z2)− I(z1)I(z2) (3.65)

and the analog for k = 3

S(3)>(z1, z2, z3) = z1z2z3n
(3)(z1, z2, z3)− z2z3I(z1)n(2)(z2, z3)

− z1z3I(z2)n(2)(z1, z3)− z1z2I(z3)n(2)(z1, z2)

+ 2I(z1)I(z2)I(z3)

(3.66)

with n(1)(z) = zI(z).

In order to symmetrize the spectrum in frequency space, also the part

corresponding to all negative frequencies z has to be added and the sum
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over all possible switchings of frequencies has to be performed. When the

expression is symmetrized with respect to the frequencies S(k) and evaluated

at z = iω, it becomes proportional to the Dirac delta function δ(ω1+....+ωN)

due to frequency conservation implied by time-translational invariance.



Chapter 4

Finite-frequency noise in

transport through a quantum

dot

In this chapter we present results for the finite-frequency current noise in

transport through a quantum dot coupled to normal and superconducting

leads in different transport regimes with respect to the applied bias volt-

age or the noise frequency. In the first section we discuss the current and

finite-frequency noise through a single-level quantum dot coupled to normal

conducting leads obtained using the diagrammatic real-time approach for

noise introduced in Chapter 3. In Sec. 4.2 we come to the actual focus of

this chapter, the finite-frequency noise associated to the current flow through

the hybrid quantum-dot system. The results presented in this chapter are

already published in Reference [151]. Throughout this chapter all figures will

focus on the positive frequency part of the spectrum only, since we consider

a symmetrized noise spectrum.

75
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4.1 Single-level quantum dot coupled to normal-

conducting leads

In this section we present results for the current and the noise through a

single-level quantum dot coupled to two normal-conducting leads. We apply

the diagrammatic real-time approach for noise introduced in Chapter 3 and

consider a non-interacting system as well as finite on-site Coulomb interaction

on the quantum dot.

The finite-frequency noise of a single-level quantum dot coupled to normal-

conducting lead has been studied in Refs. [29,33,36,37,40,43,45] using various

methods. It turns out that the presentation of the known results of the finite-

frequency noise for a single-resonant level, see Refs. [29, 33, 36, 37, 40, 43, 45],

is helpful for the understanding of the more complex results for the inter-

acting proximized dot studied in Sec. 4.2. As we will discuss later in several

cases, the effect of the differently coupled Andreev levels can be mimicked

by considering asymmetric coupling of the dot to the two normal-conducting

leads. Note, in this section we consider the total symmetrized current, namely

(IL− IR)/2 and its noise. While in the next section, when discussing the hy-

brid system of a quantum dot coupled to a normal and a superconducting

lead, we take into account current and noise only in the normal-conducting

lead.

The model of the system has been introduced in Sec. 3.1. The reduced

density matrix of the system has the form

P =


P 0

0 0 0 0

0 P ↑↑ P ↑↓ 0

0 P ↓↑ P ↓↓ 0

0 0 0 P d
d

 (4.1)

where the diagonal elements can be interpreted as the probabilities to find

the dot empty P 0
0 ≡ P0, singly occupied, P σ

σ ≡ Pσ, or doubly occupied, P d
d ≡

Pd. The off-diagonal elements describe the superposition of two eigenstates.

These can be disregarded in the case of a single-level quantum dot coupled
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to normal-conducting leads, because its time evolution decouples from the

one of the diagonal elements due to spin-conserving tunneling.

4.1.1 Non-interacting single-level quantum dot

In this section, we will present results for the finite-frequency noise of a

non-interacting single-level quantum dot. Figure 4.1 shows a energy land-

scape of the system under consideration. The finite-frequency noise of a

non-interacting single-level quantum dot has been calculated by means of

various approaches, see Refs. [29,33,36,37,40,43,45]. In the non-interacting

case the finite-frequency noise spectrum can be obtained exactly using the

scattering matrix approach [32]. The scattering matrix formalism for noise

and results are included in Appendix A. The discussion of the finite-frequency

noise is divided into different bias and frequency regimes. First, we present

results for the unidirectional transport regime, where back tunneling to the

reservoir is blocked due to the applied bias voltage. Next, we discuss the

regime where the bias is such that the level is outside the bias window and

lastly we present the regime of a finite applied bias voltage, where also back

tunneling to the reservoir is allowed. It turns out that in this regime asym-

metric coupling of the dot to the leads shows the weight of the different noise

contributions on the total noise.

Unidirectional transport regime

We assume throughout this section a symmetric bias between left and right

reservoir, namely µL = −µR = V/2. In the unidirectional transport regime,

when the applied bias voltage is such that ε < V/2, the current is given by

Iuni =
2ΓLΓR

Γ
, (4.2)

with Γ = ΓL +ΓR. The finite-frequency noise in this unidirectional transport

regime, when also V > ω is fulfilled, is given by

Suni(ω) = Iuni

[
1 +

(ΓL − ΓR)2

Γ2 + ω2

]
. (4.3)
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Figure 4.1: Sketch of the energy landscape of a noninteracting single-level

quantum dot (with level energy ε) coupled to normal-conducting leads (with

electrochemical potentials µL, µR and µL−µR = V ). The coupling strengths

to the leads are given by ΓL and ΓR.

The noise shows a Lorentzian dependence on the noise frequency ω [32,34].

For a symmetric coupling of the dot to the normal conducting leads ΓL = ΓR,

the noise equals Γ/2 and is hence independent of the noise frequency. In

this case the system has no bottleneck for transport and electrons tunnel

independently on the quantum dot. Hence the noise shows no Lorentzian

dependence.

In the unidirectional transport regime, where the applied bias voltage is

the largest energy scale, we only access the shot noise regime.

Low- and finite-bias regime

In the regime of zero and low-bias, when the energy level of the dot is outside

the bias window and transport is blocked, the dominant noise contribution is

quantum noise, since ω > µN , kBT,Γ. Shot noise is not present and thermal

noise is only contributing for low frequencies and it is cut off at ω = kBT .

Hence, this bias regime is suitable to study quantum noise effects in the noise

spectrum. Quantum noise, which arises from zero point fluctuations in the
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device, gives a direct access to the internal dynamics of the system and makes

new transport channels visible, which lead to steps in the noise spectrum.

This behavior is typical for the high frequency noise of a system where the

transport is blocked. It is a measure of the ability of the system to absorb

or emit a certain energy ω [24].

In order to get an insight into the parameters controlling the height of the

steps occurring in the quantum noise regime, we here analyze the high-

frequency noise spectrum in the regime of low and finite bias, where quantum

noise is dominant. For ω � Γ the noise in the high-frequency regime is found

to be given by

Sfin(ω) =
1

2

Γ2
L

Γ

[
f+

L (ε)f−L (ε+ ω) + f+
L (ε− ω)f−L (ε)

]
+

1

2

Γ2
R

Γ

[
f+

R (ε)f−R (ε+ ω) + f+
R (ε− ω)f−R (ε)

]
+

1

2

ΓLΓR

Γ

[
f+

L (ε+ ω)f−R (ε) + f+
L (ε)f−R (ε− ω)

]
+

1

2

ΓLΓR

Γ

[
f+

R (ε)f−L (ε+ ω) + f+
R (ε− ω)f−L (ε)

]
+ ω → −ω, (4.4)

with the Fermi function f+
α (ω) = 1/(1+e(ω−µα)/kBT ) for the two leads α = L,R

and f−α (ω) = 1 − f+
α (ω). While the first two contributions result from cor-

relations in the same lead, the latter two are related to correlations between

different leads. In the following we will analyse the noise systematically for

the different bias regimes and investigate the effect of an asymmetric cou-

pling to the reservoirs (ΓL 6= ΓR) on the noise spectrum.

1. Zero bias

In the limit of V → 0, shot noise is negligible. Thermal noise, which is

generally cut off at ω = kBT , is here suppressed due to the fact that the

energy of the level is ε 6= 0. This means that the conductance is strongly

suppressed. Hence quantum noise is dominant in this regime.
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Figure 4.2: Finite-frequency noise S(ω) for a quantum dot coupled to normal

leads in units of Γ in the zero-bias regime (V=0) with ΓL = ΓR, ε = 10ΓL,

kBT = 4ΓL.

The noise spectrum, Fig. 4.2, has one step at ω = |ε|. Since at zero bias

all factors in Eq. (4.4) containing Fermi functions are equal, the step height is

given by Γ/2. An asymmetric coupling to the leads does hence not influence

the shape of the noise spectrum.

2. Low bias, ε > V/2

When a finite transport voltage is applied, but the transport level is out-

side the bias window, quantum noise is still the dominant noise contribution

and the noise spectrum exhibits two steps.

For the situation shown in Fig. 4.3, when ε > µL > µR, the quantum dot

is unoccupied in the stationary regime and all factors in Eq. (4.4) containing

f+
α (ε) are zero. Then the first step stems from the contributions of the first

and the third term of Eq. (4.4) for which the factor containing Fermi functions

is equal. It occurs at ω = |ε − µL| when the excitation of the dot from the

left lead becomes visible and it has the height ΓL/2. Analogously, the second

step at ω = |ε−µR| has height ΓR/2. In both places an increase of the noise is

observed as long as the dot level is outside the bias window, because in both
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Figure 4.3: Finite-frequency noise S(ω) for a quantum dot coupled to normal

leads in units of Γ in the low-bias regime for different coupling strengths with

ε = 70ΓL, kBT = 4.5ΓL and V = 100ΓL.

cases the effect of an otherwise blocked transport channel becomes visible.

Fig. 4.3 shows two noise spectra, for a symmetrically coupled quantum dot

ΓL = ΓR (red dashed line) and an asymmetrically coupled dot ΓL > ΓR

(black solid line).

Finite bias, ε < V/2

We finally consider the case, where the energy level lies inside the bias win-

dow and shot noise as well as quantum noise is present. When choosing

asymmetric coupling to the leads, we find a situation which can be com-

pared to the proximized quantum dot with finite detuning as discussed in

Sec. 4.2.

In Fig. 4.4 the noise is displayed for a situation where the left lead is

coupled more strongly to the quantum dot ΓL = 10ΓR. The Lorentzian

behaviour of the low-frequency noise, ω � (µL − ε), is described with the

expression given in Eq. (4.3). Furthermore, steps occur at ω = |µL − ε|
and ω = |µR − ε|. The first step at ω = |µL − ε| increases the noise. At

this frequency back-tunnelling of an electron to the strongly coupled left
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Figure 4.4: Finite-frequency noise S(ω) for a quantum dot coupled to normal

leads in units of Γ in the finite bias regime with asymmetric coupling ΓL =

10ΓR, ε = 20ΓL, kBT = 4ΓL and V = 100ΓL.
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Figure 4.5: Finite-frequency noise S(ω) for a quantum dot coupled to normal

leads in units of Γwith in the finite bias regime with inverted asymmetry

ΓR = 10ΓL, ε = 20ΓR, kBT = 4ΓR and V = 100ΓR.
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lead, emptying the quantum dot, becomes visible. Its height is given by

ΓL(ΓL − ΓR)/2(ΓR + ΓL). The second step at ω = |ε − µR|, which occurs

when an electron can tunnel back onto the dot from the right lead, results

in a decrease of the noise. Its depth is given by −ΓR(ΓR − ΓL)/2(ΓR + ΓL).

The high frequency noise is again given by Γ/2.

Whether a step in the noise leads to an increase or a decrease of the total

noise depends on the coupling strength of the different excitations. The

reason for this is that, in the regime where the level is in the bias window,

the part of the noise stemming from correlations in the same lead increases

at the frequencies equal to the excitation energies with an amount given

by the square of the respective coupling strength, while the noise due to

correlations between different leads decreases by an amount which is always

proportional to ΓLΓR. This can be directly read from Eq. (4.4). The step

changes direction depending on the magnitude of the positive or negative

contribution: Is the positive contribution multiplied by Γ2
α larger the step

increases, while it decreases if the negative contribution multiplied by ΓLΓR

dominates.

Fig. 4.5 shows the noise for the same applied bias voltage but with the

right reservoir coupled stronger than the left reservoir, ΓR = 10ΓL. The

noise spectrum therefore shows a reversed order of the steps with respect to

the result shown in Fig. 4.4, leading to an occurrence of troughs rather than

plateaus in the noise.

Figure 4.6 shows the noise for a symmetrically coupled quantum dot

(ΓL = ΓR) for the case when the parameters have been chosen such that

the probabilities of the dot being empty or singly occupied are equal. The

noise spectrum shows no quantum noise steps at ω = |ε − µL/R| due to an

almost complete compensation of the noise stemming from correlations in

the same lead and correlations between the two leads.

The sum of these contributions to the noise leads to the shallow dip

structure in the symmetrized noise spectrum as displayed in Fig. 4.6. For

frequencies larger than the bias voltage, the noise takes again the value Γ/2.
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Figure 4.6: Finite-frequency noise S(ω) for a quantum dot coupled to normal

leads in units of Γ in the finite bias regime with symmetric coupling ΓL = ΓR,

and ε = 20ΓL, kBT = 4ΓL and V = 100ΓL.

4.1.2 Noise spectrum for a finite on-site Coulomb in-

teraction

The diagrammatic real-time approach for noise also allows the inclusion of

a finite Coulomb repulsion on the dot. If we consider also a finite Coulomb

interaction, the quantum dot has two transport levels with energies ε and

ε+U . Consequently, the noise spectrum will exhibit four steps in the quantum

noise regime, namely at ω = |ε − µL/R| and ω = |ε + U − µL/R|. The

noise spectrum shows a mixture of the features discussed for the U = 0

case depending on the position of the transport levels with respect to the

bias window. Figure 4.7 displays the situation where both addition energies,

ε and ε + U , are within the transport window. Figure 4.7 (a) shows the

finite-frequency noise spectrum for a symmetrically coupled quantum dot

ΓL = ΓR. Analogous to Fig. 4.6 the spectrum shows no quantum noise

steps at ω = |ε − µL/R| and ω = |ε + U − µL/R| due to an almost complete

compensation of the noise stemming from correlations in the same lead and

correlations between the two leads. Figure 4.7 (b) displays the noise spectrum

for the asymmetrically coupled quantum dot (ΓL = 5ΓR) with quantum noise
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steps similar to Fig. 4.4 with two additional steps at ω = |µL − (ε+ U)| and

ω = |ε+U −µR|, respectively. The sign of the steps, whether the total noise

is increasing or decreasing, depends on the coupling strength of the different

excitations.

Figure 4.8 shows the noise spectrum for the case that the transport level

ε+ U lies outside the bias window for (a) a symmetrically coupled quantum

dot (ΓL = ΓR) and (b) for an asymmetric coupling to the normal-conducting

leads (ΓL = 5ΓR). In this case the noise spectrum shows an overlap of the

previously discussed features.
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Figure 4.7: Finite-frequency noise S(ω) in units of Γ for U = 40ΓR, ε = 20ΓR,

kBT = 3ΓR and V = 200ΓR, (a) ΓL = ΓR and (b) ΓL = 5ΓR.
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Figure 4.8: Finite-frequency noise S(ω) in units of Γ for U = 80ΓR, ε = 30ΓR,

kBT = 3ΓR and V = 100ΓR, (a) ΓL = ΓR and (b)ΓL = 5ΓR.
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4.2 Quantum dot tunnel-coupled to normal

and superconducting leads

We come now to the main focus of this Chapter, the discussion of the finite-

frequency noise through a hybrid quantum-dot system. The model has been

introduced in Sec. 3.1 with Fig. 3.2 showing the effective dot-superconductor

subsystem weakly coupled to a normal conducting lead which acts as a bath.

When discussing the results of this section, we will always assume ΓN � ΓS.

The full system is represented by a density matrix describing the normal-

conducting lead (which has many degrees of freedom but is non-interacting)

coupled to the interacting quantum dot proximized by the superconducting

condensate (the latter having just a few degrees of freedom). Since we are

not interested in the degrees of freedom of the normal-conducting reservoir

we trace them out, making use of Wick’s theorem. We are then left with an

effective description by means of the reduced density matrix of the quantum

dot proximized by the superconductor. This reduced density matrix has the

form

P =


P+

+ P+
− 0 0

P−+ P−− 0 0

0 0 P ↑↑ P ↑↓
0 0 P ↓↑ P ↓↓

 , (4.5)

where the diagonal elements are the probabilities to find the dot singly oc-

cupied, P σ
σ ≡ Pσ, or in a BCS-like state, P+

+ ≡ P+ or P−− ≡ P−. The

off-diagonal elements, which we refer to as the coherences, describe coherent

superposition of two eigenstates of the proximized dot. Coherent superposi-

tions of eigenstates with even and odd numbers of electrons are not allowed

due to the univalence superselection rule [152]. These coherences are zero in

the reduced density matrix Eq. (4.5). Importantly, the time evolution of the

coherences between states of single occupation (P ↑↓ and P ↓↑ ) decouples from

the one of the diagonal elements due to spin-conserving tunnelling and these

coherences will hence be disregarded in the following. In contrast, in order
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to fully describe the short-time dynamics of the system, it is necessary to

consider the off-diagonal elements in the reduced density matrix between the

Andreev bound states, P+
− and P−+ . It turns out that these become important

for the finite-frequency noise at frequencies ω ∼ ±(ε+ − ε−).

4.3 Andreev current

Figure 4.9: Density plot of the Andreev current as a function of the detuning

δ and the chemical potential of the normal lead µN both in units of the

Coulomb interaction strength U . The other parameters are ΓS = 0.2U ,

ΓN = 0.002U and kBT = 0.02U .

Before discussing the finite-frequency current noise, we give a brief overview

over the properties of the Andreev current. When a finite bias voltage is

applied across the quantum dot with one superconducting and one normal-

conducting lead, a so called Andreev current flows across the structure, which

is due to Cooper-pair tunnelling between the quantum dot and the super-
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conductor caused by Andreev reflection processes [49,153].

We determine the current through the single-level quantum dot by using

Eq. (3.26), and show the result in Fig. 4.9 as a function of the chemical

potential of the normal lead, µN, and the detuning, δ. The current is largest

when superconducting correlations on the dot are strong and it furthermore

shows features at the Andreev addition energies.

The Andreev addition energies (dashed lines in Fig. 4.9) are symmetric

around zero bias voltage, µN = 0, and with respect to zero detuning, δ = 0.

In the region around zero bias voltage the system is mainly in one of the

singly-occupied states, |σ〉, since the charging energy suppresses transitions

from |σ〉 to the |±〉 states. The Andreev current is thus zero. Only when

the bias voltage is large enough, such that one of the conditions µN & E+−

or µN . E−+ is fulfilled, the quantum dot has a finite probability to be

either empty or doubly occupied and the Andreev current sets in. A further

increase of the Andreev current is observed, when also the other two addition

energies, E++ and E−−, enter the bias window.

Outside the region where the current is suppressed due to the charging

energy, the current is largest for δ ∼ 0, the regime of strongest superconduct-

ing correlation. We obtain a simple analytic result for the Andreev current

in the unidirectional transport regime, namely when µN � E+,+, where the

applied bias voltage to the normal conducting lead is much larger than all

other energy scales in the system apart from the superconducting gap ∆,

Iuni = ΓN
Γ2

S

4ε2A
. (4.6)

As required, this result matches the current displayed in Fig. 4.9, for µN �
E++. Indeed, the current in the unidirectional regime, Eq. (4.6), is maximal

for |δ| � ΓS, namely when 2εA, the splitting between the ABSs, is minimal

and just given by the coupling strength to the superconducting lead ΓS.

In this situation, the empty |0〉 and doubly-occupied state |d〉 are nearly

degenerate and hence the mixing between them is maximal (the proximity

effect is on resonance). If the detuning δ becomes large, i.e. |δ| � ΓS, the
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superconducting correlations on the dot are almost zero (the proximity effect

is off-resonance) and the Andreev current goes to zero as shown in Fig. 4.9.

The value of the Andreev addition energies can however only roughly be

extracted from the current. But we will show in Secs. 4.4.1, 4.4.2 and 4.4.3

that they lead to sharp features in the noise spectrum.

4.4 Results for the finite-frequency noise

This section deals with the key results of this chapter, the finite-frequency

noise associated with the tunnelling current flowing through the hybrid quantum-

dot system, which we calculate based on the diagrammatic real-time ap-

proach introduced in the previous Chapter 3.

The discussion of the finite-frequency noise is divided into three parts:

the unidirectional transport regime, where the applied bias voltage µN is

chosen such that no back tunnelling to the normal lead is allowed, the finite

bias regime, where the applied bias voltage can be of the same order of the

Andreev addition energies and the noise frequency, and the low-bias regime,

where the current through the dot is suppressed. All regimes are shown to

provide direct access to the internal dynamics of the system.

Depending on the applied bias voltage different frequency regimes of the

noise are accessible. Table 4.1 gives an overview of the different types of

noise depending on the characteristic energy scales of the system, the thermal

energy kBT , the energy related to the noise frequency ω, and the applied bias

voltage µN, which we are going to discuss within the different parts of this

section.

In the limit of zero frequency (ω → 0) the noise spectrum exhibits the

information of a long-time measurement. In this frequency range, the equi-

librium thermal noise, due to thermal fluctuations in the occupation number

of the leads, is dominant in the spectrum if kBT � µN, ω. In contrast, the

so-called non-equilibrium shot noise, which is due to charge quantization, is

dominant for µN � kBT, ω.
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aaaaaaaaaaa

Bias

regime

Frequency
Low

Intermediate

High, ω >

µN,kBT,ΓN

Unidirectional,

µN largest en-

ergy scale

ω ≤ ΓN

(shot

noise)

Sec. 4.4.1

ω > ΓN

(shot

noise)

Sec. 4.4.1

N/A

Finite bias ω < µN &

ω ≤
kBT,ΓN

(thermal

& shot

noise)

Sec. 4.4.3

µN > ω &

ω >

kBT,ΓN

(shot

noise)

Sec. 4.4.3

(quantum

noise)

Sec. 4.4.3

Zero and low

bias

ω≤kBT

(thermal

noise)

Sec. 4.4.2 N/A

(quantum

noise)

Sec. 4.4.2

Table 4.1: Table sumarising different noise regimes depending on noise fre-

quency (increasing from left to right) and applied bias voltage (decreasing

from up to down).
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The quantum noise, which arises from zero-point fluctuations in the de-

vice, is dominant for high frequencies ω � kBT, µN. It is a measure of the

ability of the system to absorb or to emit a certain energy ω [24], and will

therefore allow the visualization of transport processes which are enabled or

blocked by energy absorption or emission.

Although we here consider the symmetrized noise, we refer to the regime

of high frequencies ω � kBT, µN as quantum noise, as discussed e.g. in

Ref. [63].

4.4.1 Noise in the unidirectional transport regime

We start our analysis with the unidirectional transport regime, where we set

the chemical potential of the normal lead µN to be much larger than all rele-

vant energy scales of the system (apart from the superconducting gap ∆). In

particular, since µN � E+,+, all Andreev levels are in the transport window

and sufficiently far away from the chemical potential µN, thus allowing no

back tunnelling from the dot into the normal conducting lead. A sketch of

this situation is shown in Fig. 3.2.

The finite-frequency noise in the unidirectional transport regime is given

by

S(ω)

2Iuni

= 1 +
Γ2

Nδ
2

4ε2A(Γ2
N + ω2)

− 1

2

Γ2
S

4ε2A
×[

Γ2
N

Γ2
N + (ω − 2εA)2

(
1− ω − 2εA

εA

)
+

Γ2
N

Γ2
N + (2εA + ω)2

(
1 +

ω + 2εA
εA

)]
.

(4.7)

Fig. 4.10 shows the finite-frequency noise in units of ΓN as a function of

the noise frequency ω. Two limiting cases are displayed, the one where the

proximity effect on the dot is on resonance, |δ| � ΓS (red dashed line), and

the one where the proximity effect on the dot is off resonance, |δ| � ΓS

(blue solid line). In different frequency regimes, the spectrum shows sharp

features, which depend on the strength of the detuning, δ. In the following
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subsections we discuss first the low-frequency noise, followed by a discussion

of the intermediate-frequency regime.
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Figure 4.10: Finite-frequency noise S(ω) in the unidirectional transport

regime for ΓS = 0.2U , ΓN = 0.002U both for the case where the proxim-

ity effect is on resonance, δ = 0, and off resonance, δ = 0.4U . The peaks and

dips are located at ω = 0 and at ω = ±2εA, the oscillation frequency of the

Cooper pairs.

Low-frequency noise, ω . ΓN

The first part of Eq. (4.7) is the low-frequency contribution to the current

noise,

S(ω) = 2ΓN
Γ2

S

4ε2A

(
1 +

δ2Γ2
N

4ε2A(Γ2
N + ω2)

)
. (4.8)

It is indeed the only contribution to the noise, when the noise frequency is

of the order of the coupling strength to the normal-conducting lead, ω . ΓN.

Note that in the low-frequency noise for unidirectional transport only shot

noise is present.

On resonance (δ ≈ 0), when the Andreev current is maximal in the

high-bias regime, see Fig. 4.9, the noise is frequency independent and is
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given by two times the Andreev current 2Iuni, which in the limit of zero-

detuning discussed here equals 2ΓN. This means that the noise equals the

long-time measurement result (ω → 0) over the whole low-frequency range.

This effect has previously been discussed in Ref. [154]: if the proximity effect

is on resonance, the superconducting correlations on the dot are maximal

and Cooper pairs oscillate rapidly between dot and superconductor. This

oscillation of Cooper pairs is only interrupted by single-electron tunnel events

from the normal conducting lead to the dot. It is these independent charge

injections which give rise to a Poissonian transfer of single electrons.

When the proximity effect is off resonance (|δ| � ΓS), the low-frequency

noise can be approximated by

S(ω) ≈ 2ΓN
Γ2

S

δ2

(
1 +

Γ2
N

Γ2
N + ω2

)
. (4.9)

The noise spectrum shows a Lorentzian dependence on the frequency ω, as

shown by the low-frequency contribution of Fig. 4.10 (solid blue line). This

maximum has a width given by the coupling strength ΓN and a height scaling

with the magnitude of the Andreev current. Except for this maximum, the

noise is overall suppressed with respect to the case on resonance. The reason

for this is that in the unidirectional transport regime if δ � ΓS, the Andreev

current becomes negligibly small with increasing detuning, as depicted in

Fig. 4.9.

This behaviour is similar to the case of a quantum dot with normal

conducting leads only, [32, 34] as presented in the section 4.1.1. In this

purely normal-conducting case the low-frequency noise shows a Lorentzian

behaviour if the coupling to the two leads is asymmetric (similar to what we

observe in the case of finite detuning in the hybrid system). The noise is

frequency-independent, when the coupling to the leads is symmetric. How-

ever the constant is only half as big as in the hybrid case discussed here, due

to the absence of Cooper pairs from the system.
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Intermediate-frequency regime, ω � ΓN

The remaining part of Eq. (4.7) carries the information of the noise in the

intermediate-frequency regime, ω � ΓN, where the noise frequency becomes

larger than the coupling strength to the normal-conducting lead. In this

regime, the noise starts to reveal the internal dynamics of the quantum

dot. Indeed, the finite-frequency noise shows resonance dips, whose posi-

tion and size depend on the splitting of the Andreev bound states (equal to

the frequency of coherent oscillation between the empty and doubly-occupied

dot state [155]), 2εA, and hence on the strength of the proximity effect, see

Fig. 4.10. Such dips are characteristic for the noise spectrum of multilevel

quantum dots [35, 37, 40]. Whenever the noise frequency is close to the dif-

ference between the energies of the dot resonances a dip can be found in the

noise spectrum. Such dips must arise from a destructive interference between

the quantum amplitudes for the transitions involving these resonances due

to the ability of the system to absorb/emit a certain energy ω [35] similarly

to the Fano effect [156]. In the case of a hybrid quantum-dot system stud-

ied here, the dips arise from a coherent destructive interference between the

ABS, leading to features at ω = ±|ε+ − ε−| = ±2εA. In the following we

describe the properties of these dips.

Similar to the noise-enhancing peak in the low-frequency regime, the

shape of these noise-suppressing resonance dips is Lorentzian, see Eq. (4.7),

with a width given by ΓN. The depth of the resonance dip depends on the

strength of the proximity effect and is equal to IuniΓ
2
S/4ε

2
A, the prefactor of

the intermediate-frequency contribution in Eq. (4.7). The resonance dip be-

comes most prominent if the proximity effect is on resonance and its depth is

maximally equal to ΓN for δ ≈ 0. In contrast, the dip vanishes if the detuning

δ becomes much larger than the coupling strength to the superconducting

lead ΓS, namely when the superconducting correlations on the dot are almost

zero, see Fig. 4.10. The resonance dip in the spectrum hence indicates the

strength of the proximity effect. It is a signature of the coherent oscillation

of Cooper pairs between dot and superconductor.
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For even higher frequencies, ω � 2εA, the noise in the unidirectional

transport regime is given by two times the Andreev current, which depends

strongly on the detuning δ, see Figs. 4.9 and 4.10.

In the unidirectional transport regime the noise spectrum can be used

to extract the splitting of the ABS, but not the individual Andreev addi-

tion energies. In order to get the information of the excitation energies and

the effective coupling strengths of the ABSs, back tunnelling to the normal-

conducting lead must also be allowed. Hence, in the next two subsections

we will consider the regime where the electrochemical potential of the nor-

mal lead is not the largest energy scale any more and the frequency can

become larger than the distance between the Andreev addition energies and

the transport voltage, ω > |E±,± − µN|. In this regime quantum noise can

become the dominant contribution to noise.

4.4.2 Zero and low bias regime, µN < E+,−

Zero bias regime

If the transport voltage of the normal lead goes to zero, µN → 0, the dot is

in the singly-occupied state |σ〉, see Fig. 4.11 (a) for a sketch of the energy

landscape of the system. Hence the transport excitation energies E±,± are

outside the bias window and transport is blocked, meaning that the Andreev

current is zero as shown in Fig. 4.9. In this limit shot noise is negligible and

quantum noise is dominant in the spectrum, since ω � kBT , µN. Also the

thermal noise, which is expected to be dominant at zero bias up to a noise

frequency of ω = kBT , is here suppressed, since no dot excitation energy

is close enough to the Fermi energy to allow for thermal excitations of the

system.

We show the finite-frequency noise in this regime in Fig. 4.11 and we

observe that the noise spectrum has steps at frequencies ω = |E±,±| equal to

the Andreev addition energies of the system. This behaviour is typical for the

high-frequency noise of a system in which transport is blocked. At certain
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Figure 4.11: (a) Sketch of the energy landscape of the proximized single-level

quantum dot for µN = 0. (b) Finite-frequency noise S(ω) with ΓN = 0.0002U ,

ΓS = 0.2U , δ = 0, kBT = 0.03U ; the spectrum has quantum noise steps at

ω = E+,− and ω = E+,+ indicated by the green vertical lines.
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noise frequencies the effect of new ”noisy” channels becomes visible, leading

to steps increasing the noise. The steps thus reflect the internal structure

of the energy levels on the quantum dot. Here they occur at frequencies

equal to the Andreev addition energies of the dot-superconductor subsystem

as described in detail in the following. An analogy to the normal-conducting

case with symmetrically and asymmetrically coupled leads can be found in

the previous section 4.1.1.

In the limit µN → 0, the noise is suppressed until the noise frequency

is equal to the energy which is necessary to excite the dot from the singly-

occupied state |σ〉 to the |−〉 state, ω = |E+,−|. Equally, also the inverse

process, namely the excitation from the ABS |−〉 into the singly-occupied

state |σ〉 yields a contribution to the noise. It takes place at ω = |E−,+|.
These excitation energies are however degenerate in the zero-bias limit, see

Fig. 4.11 (a), and consequently only one step occurs at the noise frequency

ω = |E−,+| = |E+,−|. The step height is given by the sum of the respective

effective coupling strengths, see Eqs. (3.7) and (3.8), Γσ→− + Γ−→σ = ΓN. 1

A second step takes place at ω = |E+,+| = |E−,−|, the energy necessary for

the excitation between a singly-occupied state and the ABS |+〉. The height

of the second step is again given by ΓN, the sum of the effective coupling

strengths, Γσ→+ + Γ+→σ = ΓN.

Consequently, when the noise frequency is larger than the energy which

needs to be provided to excite between any of the singly-occupied states and

the ABSs, the noise is constant and given by the sum of all four effective

coupling strengths, 2ΓN [33, 43,45].

Low bias regime, 0 < µN < E+,−

If a small (positive) bias voltage is applied to the normal-conducting lead,

but the bias is still smaller than the energy E+,−, necessary to excite from

1Note that we here consider a symmetrized noise spectrum. Therefore both contribu-

tions, independently on whether the excitation energy of a process is positive or negative,

enter the noise spectrum with equal weight at positive frequencies.
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Figure 4.12: (a) Sketch of the energy landscape of the proximized single-

level quantum dot for µN = 0.2U . (b) Finite-frequency noise S(ω) with

ΓN = 0.0002U , ΓS = 0.2U , δ = 0, kBT = 0.03U .
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Figure 4.13: (a) Sketch of the energy landscape of the proximized single-level

quantum dot for µN = 0.2U and δ = 0.1U . (b) Finite-frequency noise S(ω)

with ΓN = 0.0002U , ΓS = 0.2U , kBT = 0.03U .
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the singly-occupied state |σ〉 into the ABS |−〉, the dot is singly occupied

and the system is hence still in the region where the current is suppressed

(see Figs. 4.12 (a) and 4.13 (a) for the energy landscape of the system and

Fig. 4.9 for the respective behaviour of the current).

In this bias regime the noise spectrum exhibits four steps at noise fre-

quencies ω = |E±,±−µN| as shown in Figs. 4.12 (b) and 4.13 (b). The reason

for this is that a finite transport voltage breaks the degeneracy between the

excitation energies that is present for µN = 0. This is indicated by the dif-

ferent lengths of the green dashed arrows in the energy-landscape sketches

of the system. The height of each of the four steps is given by the respective

effective coupling strength, Eq. (3.7) and (3.8).

In the limit of zero detuning, δ = 0, the effective coupling to all four levels

is equal, Γσ→+ = Γ+→σ = Γσ→− = Γ−→σ = ΓN/2. The step heights shown in

the noise spectrum in Fig. 4.12 (b) are therefore all equal to ΓN/2.

In contrast, if the detuning δ is finite, the effective coupling strengths

differ. For δ > 0, the coupling for the excitation to go from the singly-

occupied state |σ〉 to the |+〉 state and to excite from the |−〉 state into

the singly-occupied state |σ〉 is stronger than for the other two excitations,

Γσ→+ = Γ−→σ > Γσ→− = Γ+→σ. Consequently these first excitations give a

larger contribution to the noise than the latter ones and the noise spectrum

exhibits steps with different heights, see Fig. 4.13 (b).

This behavior holds only as long as the detuning does not become much

larger than the coupling strength to the superconducting lead. As soon as

δ � ΓS, the noise spectrum exhibits again only two steps because the super-

conducting correlations on the quantum dot vanish. The effective coupling

strengths of the Andreev levels corresponding to the excitation from |σ〉 to

|−〉 and from |+〉 to |σ〉 go to zero, Γσ→−,Γ+→σ → 0, while the other two

excitations are coupled with the effective tunnel-coupling strength ΓN for

δ � ΓS, see Eq. (3.7) and (3.8). When setting the bias voltage to 0, we find

the previous result, as shown in Fig. 4.11 (b). This is due to the fact that

the coupling strength is here twice as large as in the case of zero detuning,
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however only half of the excitations contribute to the current and to the noise

when δ � ΓS.

The finite-frequency noise spectrum in this low-bias regime provides a

spectroscopy of the Andreev levels as well as the effective coupling strengths.

Note, that in this case, namely when the Andreev levels are outside the

bias window, the noise steps always lead to an increase of the noise, regardless

of whether the noise step is related to a tunnel process between the reservoir

and a strongly or a weakly coupled dot resonance. The reason for this is

that we here observe features at noise frequencies, which always correspond

to energies necessary to excite otherwise blocked transport channels between

dot resonance and reservoir. This is different if some of the Andreev levels

are in the bias window, as we will discuss in the next section.

4.4.3 Finite-bias regime

We consider in this section two different situations for a finite transport volt-

age applied to the normal-conducting lead: first, the voltage is applied such,

that all Andreev energies are in the bias window (high-bias regime) and sec-

ond, such that part of the excitation energies lie outside the transport window

(intermediate-bias regime). This allows us to study the full noise spectrum

with its different contributions, similar to what we observed separately in the

previous sections, Sec. 4.4.1 and Sec. 4.4.2.

The finite-frequency noise spectrum will be shown to provide a full spec-

troscopy of the system.

High-bias regime, µN > E+,+

We now assume the dot to be in a regime where the bias, µN = 1.5U , is

chosen such that all Andreev energies are in the bias window, see the sketches

in Fig. 4.14, Fig. 4.15 and Fig. 4.16 (a). We consider the case where the

superconducting correlations on the dot are strong, which is realized for the

detuning being smaller than the coupling to the superconductor, δ < ΓS.
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Figure 4.14: (a) Sketch of the energy landscape of the proximized single-level

quantum dot for µN = 1.5U and δ = 0.1U . (b) Finite-frequency noise S(ω)

with µN = 1.5U , ΓN = 0.002U , ΓS = 0.2U , kBT = 0.02U .
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Figure 4.15: (a) Sketch of the energy landscape of the proximized single-level

quantum dot for µN = 1.5U and δ = 0. Finite-frequency noise S(ω) with

µN = 1.5U , ΓN = 0.002U , ΓS = 0.2U , kBT = 0.02U .
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Figure 4.16: (a) Sketch of the energy landscape of the proximized single-level

quantum dot for µN = 1.5U and δ = −0.1U . (b) Finite-frequency noise S(ω)

with µN = 1.5U , ΓN = 0.002U , ΓS = 0.2U , kBT = 0.02U .
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The results for the noise spectrum in this regime are shown in Fig. 4.14 for

δ = 0.1U , δ = 0 in Fig. 4.15 , or δ = −0.1U Fig. 4.16. In this regime the

Andreev current is close to maximal, corresponding to the upper edge of the

density plot in Fig. 4.9.

In the low- and intermediate-frequency regimes, ω < |E+,+ − µN|, the

noise spectrum shows Lorentzian-shaped features, as discussed in Sec. 4.4.1.

These are a peak for a non-zero detuning δ in the low-frequency regime,

ω < ΓN, and dips at a noise frequency equal to the splitting of the ABSs,

ω = |ε+ − ε−| = 2εA, due to a coherent destructive interference of the ABSs.

The high-frequency part of the noise spectrum of Fig. 4.14 and Fig. 4.16

exhibits quantum noise steps at frequencies ω = |E±,±−µN|, similar to what

was discussed in Sec. 4.4.2. However, in contrast to the previous section,

where all steps lead to an increase of the noise, the quantum noise steps found

here show different signs depending on the effective coupling strength. A noise

process related to a strongly coupled Andreev level leads to an increase of the

noise, while a process between the electronic reservoir and a weaker coupled

Andreev level decreases the noise. The steps occurring in the finite-bias

regime at high frequencies can be understood from an analogy to the ones

obtained for a quantum dot coupled to normal-conducting leads. In this case

an asymmetric coupling to the two normal-conducting leads takes the role of

the differently coupled Andreev levels in the hybridised dot. See the previous

section 4.1.1 for a detailed discussion of this simpler case.

From this we deduce that the varying directions of the noise steps origi-

nate from the competition between different noise contributions of opposite

sign. When a certain noise frequency ω is reached, an ensemble of transport

processes becomes visible which can in principle involve different types of

transitions, |σ〉 ↔ |±〉, due to tunneling with the normal lead. The con-

tribution to the noise which stems from correlations of tunnelling processes

involving only one type of transitions tends to increase the noise, while the

noise contribution stemming from correlations of tunnelling processes with

different transitions tends to decrease the noise. Depending on which of these
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contributions has the larger magnitude, the step is positive or negative. The

magnitude of the correlations in turn depends on the coupling strength of

the involved processes. The addition of these two noise contributions hence

yields the noise spectra shown in Fig. 4.14, Fig. 4.15 and Fig. 4.16. In the

following we discuss the implications of this effect for different magnitudes

of the detuning δ.

In Fig. 4.14 (b), we observe a large increase of the noise at the noise

frequency ω = |µN − E+,+|, because the related Andreev level is coupled

strongly to the normal-conducting lead. This noise frequency corresponds to

the energy which an electron on the dot needs to absorb in order to tunnel out

of the dot. The second step at ω = |µN − E+,−| occurs when the the noise

frequency provides the energy for an electron to tunnel out of the weaker

coupled Andreev level E+,−. The noise step stemming from the process with

the weaker coupled Andreev level has a negative sign. In Fig. 4.14 (b) the

noise increases again at ω = |µN − E−,+| and decreases at ω = |µN − E−,−|.
For even higher frequencies, ω � µN, the noise is always given by the sum

of the effective coupling strengths, 2ΓN, since the noise frequency provides

enough energy to excite from the singly-occupied state into either one of the

ABSs and vice versa.

If we invert the order of the excitation energies or the strength of their

effective couplings, the broad maxima are transformed into troughs. This can

for example be achieved by inverting the bias µN → −µN or the detuning

δ → −δ. Figure 4.16 (a) shows the energy landscape and (b) the finite-

frequency noise spectrum for δ = −0.1U . The detuning is reversed compared

to the previously discussed case in Fig. 4.14 (b). Consequently, the noise is

first suppressed, when a process with a weakly coupled Andreev level takes

place, and then enhanced to the value 2ΓN at a noise frequency related to a

strongly coupled Andreev level, see Fig. 4.16 (b).

The quantum steps in the noise spectrum occur only in a regime of in-

termediate detuning δ. If the detuning δ becomes larger than the coupling

to the superconducting lead ΓS, the step structure as shown in Fig. 4.14 and
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Fig. 4.16 gets suppressed, because the superconducting correlations become

weaker.

If the proximity effect is on resonance and the detuning is exactly equal

to zero (δ = 0) the effective coupling strengths to the different Andreev levels

are equal. The finite-frequency noise spectrum for this case is displayed in

Fig. 4.15 (b) with the corresponding energy landscape of the proximized dot,

Fig. 4.15 (a). In this regime, when the probabilities of the dot to be in

one of the ABSs are equal, no steps but only shallow dips appear in the

spectrum due to an almost complete compensation of the different noise

contributions. The high-frequency noise spectrum is given by the sum of the

effective coupling strengths, 2ΓN . Only small features at ω = |µ − E±,±|
remain as shown in the inset of Fig. 4.15 (b).

Intermediate-bias regime, E+,− < µN < E+,+

We finally also address the case of the intermediate bias regime, where only

a part of the levels are in the bias window. In Fig. 4.17 (a), we show the

energy landscape of the dot considered here, with µN = 0.55U and δ =

0.1U , where the excitation energy E+,+ is outside the bias window. The

noise spectrum of the intermediate-bias regime, see Fig. 4.17 (b), shows a

mixture of the previously observed effects in the unidirectional, low-bias and

high-bias regime. We can identify in the spectrum the features discussed in

Sec. 4.4.1, namely the Lorentzian dependence in the low-frequency regime

and the resonance dips at ω = 2εA, which are a signature of the coherent

transfer of Cooper pairs between dot and superconducting lead.

Furthermore, the quantum noise steps show an overlap of the features

discussed in the previous subsections: the steps at ω = |E+,+ − µN| and

ω = |µN − E−,−| both lead to an increase of the noise but with a different

step height due to the fact that the corresponding Andreev levels couple with

different effective coupling strengths to the reservoir. The first of these steps

overlaps with the intermediate-frequency regime, namely where the resonance

dips due to the internal dynamics occur. The spectrum furthermore shows
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two steps at frequencies ω = |µN − E−,+| and ω = |µN − E+,−|, where the

direction of the steps tells us if it is a noise process between the normal

conducting lead and a strongly or weakly coupled Andreev level. Note that

also the resulting trough is here partly found in the intermediate-frequency

regime.

At even higher frequencies, ω � µN, the noise is again given by the sum

of the effective coupling strengths.

4.5 Conclusions

In this Chapter we have presented results for the finite-frequency noise spec-

trum of a system composed of a single-level quantum dot. In the first section

we have calculated the finite-frequency noise through a single-level quantum

dot weakly coupled to normal conducting leads based on the diagrammatic

real-time approach for noise introduced in 3.4. The noise spectrum of this

system has been studied previously in Refs. [29, 33, 36, 37, 40, 43, 45] using

various methods. We discuss the symmetrised current noise for different bias

regimes for the non-interacting quantum dot and also with finite Coulomb

repulsion on the quantum dot. We find that in the quantum noise regime,

when ω > kBT, V , the noise spectrum shows steps at ω = |µR/L − ε|, whose

height can be understood in terms of the coupling strength to the leads. If

the energy level lies within the bias window the steps in the noise spectrum

can have different sign depending if the dot is symmetrically or asymmetri-

cally coupled. Whether a step in the noise spectrum leads to an increase or

a decrease of the total noise depends on the coupling strength of the differ-

ent excitations and the noise stemming from correlations in the same lead

increases at frequencies equal to the excitation energies, while the noise due

to correlations between different leads decreases.

In the second section 4.2 we consider a single-level quantum dot coupled

to a superconductor and a normal-conducting lead. The noise spectrum

reflects the internal spectrum of the proximized dot. In particular, we found
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Figure 4.17: (a) Sketch of the proximized single-level quantum dot for µN =

0.55U and δ = 0.1U . (b) Finite-frequency noise S(ω) with ΓN = 0.002U ,

ΓS = 0.2U , kBT = 0.02U .
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resonance dips occur at a frequency equal to the splitting of the ABSs, ω =

2εA. This feature is a signature of the coherent oscillation of Cooper pairs

between quantum dot and superconductor. The effect is strongest if the

superconducting correlations on the dot are maximal, which happens when

the proximity effect is on resonance, δ = 0.

The high-frequency regime of the noise spectrum shows quantum-noise

steps at frequencies ω = |E±,± − µN|. The quantum-noise steps provide not

only information on the Andreev addition energies of the system, but also on

the effective coupling strength of the Andreev levels to the normal conducting

lead. The height (in the low bias regime) and sign (in the finite-bias regime)

of the steps tell the strength of the effective coupling of each Andreev level

to the reservoir. We found that the steps appearing in the noise spectrum

can be understood from an analogy to the ones obtained for a quantum dot

coupled to normal-conducting leads, Sec. 4.1. In this case an asymmetric

coupling to the two normal-conducting leads takes the role of the differently

coupled Andreev levels in the hybridized dot.

Therefore, we conclude that the finite-frequency noise spectrum provides

a full spectroscopy of the proximized quantum dot.

In order to observe the features of the spectrum experimentally, the mea-

surement of the finite-frequency noise has to be performed in the GHz regime.

For example, in recent experimental realization of such a hybrid-quantum dot

device [14,138] the coupling to the superconductor is ΓS ≈ 50− 250GHz.



Chapter 5

Finite-time full counting

statistics

In Chapter 4 we have presented results for the finite-frequency noise in trans-

port through a quantum dot and demonstrated that the current fluctuations

contain information on the transport properties and the internal time scales

of the system which cannot be extracted from the average current. However,

there might be even more information contained in the current fluctuations

which are not visible in the noise spectrum. A complete statistical description

of the transport processes are captured by the FCS [26,27]. The probability

distribution provides a full statistical characterization of the tunneling events

through the quantum dot. This allows us to calculate moments and cumu-

lants of the current fluctuations of arbitrary order. In the last decade it has

become feasible to measure the higher order cumulants and also the entire

distribution function of tunneling events [25, 28, 58, 59, 61, 105–114]. Hence,

FCS is nowadays an established concept not only in theoretical but also in

experimental physics.

In this chapter we present results for finite-time FCS for subgap trans-

port through a single-level quantum dot tunnel-coupled to a normal and a

superconducting lead based on the theory introduced in Sec. 3.5. We con-

sider strong coupling to the superconductor while the normal lead is only

113
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coupled weakly to the quantum dot. The model of the system has been in-

troduced in Sec. 3.1 and the reduced density matrix in Sec. 4.2. Most studies

about FCS consider the long-time limit, i.e correlation effects are integrated

over a long period of time and important information about characteristic

timescales are not visible. The FCS in the long-time limit for a quantum

dot coupled to a normal and a superconducting lead has been studied previ-

ously in the large gap limit [154] and for a finite superconducting gap [47].

Here, we focus on the finite-time FCS to reveal the internal dynamics of the

system on the short-time scale. Based on a non-Markovian master equation

(NMME) we determine the generalized Fano factor as a function of time for

current cumulant up to order k = 5.

We discuss in Sec. 5.1 the unidirectional transport regime. In a first step

we recover the FCS for the system in the long-time limit 5.1.1 while we also

consider the coherences, i.e. the coherent superposition between the doubly

occupied and empty state. In Sec. 5.2 we summarize and conclude the results

of this chapter.

5.1 Unidirectional transport regime

We start with presenting results in the unidirectional transport regime, where

the applied bias voltage is larger than all other energy scales except the su-

perconducting gap ∆, ensuring that the electron transport is unidirectional

and all Andreev levels are within the bias window (µ� E+,+). In the unidi-

rectional transport regime the NMME Eq. (3.43) simplifies to the Markovian

limit. Since we consider only the first order in the tunnel coupling strength,

the inhomogeneous term vanishes, Γ(χ, z) = 0 and the self-energy kernel W

becomes independent of frequency z.
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5.1.1 Long-time limit

In a first step, we review the FCS in the long-time limit (t→∞) by also con-

sidering the coherences in the reduced density matrix. In the long-time limit

we have to consider only the zero-frequency limit of the Laplace transform

of the self-energy kernel W (χ). The long-time behavior can be determined

by the eigenvalue of the kernel W (χ) with the smallest absolute value of the

real part [103,157]. In the long-time limit the CGF is given by

S(t, χN) = t

−ΓN +

√
Γ2
N − 4ε2A +

√
4(e−2iχN − 1)Γ2

NΓ2
N + (Γ2

N + 4ε2A)2

√
2


(5.1)

which simplifies for ΓN � ΓS to the CGF represented in Ref. [154]. The

counting field of the normal conducting lead is represented by χN. For the

system under consideration the total current is approximately given by the

particle current coming from the normal conducting lead, since we consider

a strong coupling to the superconductor, ΓS � ΓN. This has been discussed

in the context of displacement currents in Sec. 3.3.

Throughout this section we study the generalized Fano factor F k, which

has been defined in Sec. 3.5 as F k = 〈κk(t)〉/〈κ1(t)〉, where κk(t) is the kth

order cumulant.

Figure 5.1 shows the generalized Fano factor in the long-time limit as a

function of the detuning δ up to an order of k = 7. In the long-time limit the

generalized Fano factor is independent of the time t. This is obvious, since

the CGF, Eq. 5.1, is linear in time t. The generalized Fano factor Fig. 5.1

shows a transition from F k = 1 at δ = 0, where the proximity effect is on

resonance and the superconducting correlation on the dot is maximal, to

F k ≈ 2k−1 for a large detuning δ (δ � ΓS). In the latter case the proximity

effect is off-resonance and the BCS-like correlation on the dot is almost zero,

as discussed in Ref. [154].

As depicted in Fig. 5.1 starting from order k = 5 the transition from a

Fano factor 1 to 2k−1 is not monotonic anymore and the generalized Fano
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factor starts to oscillate as a function of the detuning δ. The generalized Fano

factor grows factorially in magnitude with order k as well as its oscillation.

This behavior is universal and independent of the system [60,61].
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Figure 5.1: Generalized Fano factor F k as a function of δ in the long-time

limit. The other parameters are ΓS = 0.2U and ΓN = 0.002U .

5.1.2 Finite-time regime

Now, we turn our attention to the the main purpose of the present chapter,

namely the finite-time FCS. The theory has been introduced in Sec. 3.5.

The central object of the theory is the MGF G(χ, z) which is given by the

trace over the reduced density matrix of the system. The first derivative

and the second derivative of the MGF gives direct access to the current and

the finite-frequency noise. Both the current and the finite-frequency noise of

a quantum dot coupled to a normal and a superconducting lead have been

discussed in the previous Chapter 4 and are not the scope of the present

discussion. Here, we like to present results for the FCS in terms of the Fano

factor F k for orders k ≥ 2. In particular, we are interested in the short-time

regime of higher orders and the generalized Fano factor as a function of real

time t.
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Figure 5.2: Generalized Fano factor F k in the unidirectional transport

regime as a function of time t. The other parameters are ΓS = 0.2U , ΓN =

0.002U and (a) δ = 0.1U and (b) δ = 0.4U .
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Figure 5.2 shows the generalized Fano factor as a function of time t up

to an order k = 5 for (a) a detuning of δ = ΓS/2 and (b) δ = 2ΓS. In the

first case δ = ΓS/2 (Fig. 5.2 (a)) the proximity effect is on resonance, i.e the

Andreev current is in the region where its largest. Remember, the Andreev

current is maximal if the detuning is minimal, δ ≈ 0. The generalized Fano

factor as displayed in Fig. 5.2 (a) shows a monotonic transition up to an

order k = 3 from 1 at t = 0 to the long-time limit. Starting from order

k = 5 the generalized Fano factor has a minimum for short times and starts

to oscillate.

Figure 5.2 (b) shows the generalized Fano factor as a function of t, when

the proximity effect is off-resonance δ � ΓS, namely the regime where the

Andreev current is suppressed and BCS-like correlations on the quantum dot

are almost zero. Again, we show the generalized Fano factor up to an order

of k = 5. We observe that the generalized Fano factor retains the monotonic

transition to the long-time limit to higher orders compared to Fig. 5.2 (a)

and hence, the oscillatory behavior starts for higher orders. Additionally,

the Fano factor grows to higher values with increasing order compared to

Fig. 5.2 (a). The increase of the magnitude of the generalized Fano factor

with increasing detuning δ is in agreement with the result for the long-time

limit, Fig. 5.1.

In general Fig. 5.2 as well as Fig. 5.1 for the long-time limit show a generic

behavior of higher order cumulants for transport through a Coulomb block-

ade nanostructure such as a quantum dot. Both show that the higher order

cumulants grow factorially in magnitude with cumulant order and oscillate

as a function of essentially any parameter. This oscillatory behavior of the

higher order cumulants is universal for any system [61, 158] and has been

shown experimentally as well [61, 113]. The universality of the oscillations

stems from general mathematical properties of the CGF and higher-order

derivatives [159]. Even though the results for the generalized Fano Factor

F k(t) as a function of time show a generic behavior, we find a difference de-

pending on the detuning δ or the strength of the superconducting correlation
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on the quantum dot, respectively.

Short-time behavior

We now focus on the short-time range of the generalized Fano factor. We

find that at the short-time scale the Fano factor F k(t) oscillates as shown

in Fig. 5.3. The oscillation depends on the strength of the detuning δ. The

oscillatory behavior becomes most prominent when the proximity effect is

on resonance δ = 0 (see Fig. 5.3 (a)). On resonance the superconducting

correlations on the dot are maximal and Cooper pairs oscillate rapidly be-

tween the quantum dot and the superconductor. With increasing detuning δ

the oscillation gets suppressed Fig. 5.3 (c) and vanishes when the detuning δ

becomes larger than the coupling to the superconductor ΓS, see Fig. 5.3 (c).

The reason for this is that for δ � ΓS the superconducting correlations on

the dot are almost zero and the resulting short time behavior is similar to the

case of a quantum dot with normal-conducting leads only. The oscillation

frequency is given by 2εA, the splitting between the ABS. The visibility of

the oscillation increases with order k.

The oscillation frequency ω = 2εA is equal the oscillation frequency of

Cooper pairs which tunnel back and forth between dot and superconductor.

The oscillatory behavior at short times is a signature of the coherent trans-

fer of Cooper pairs between superconducting lead and quantum dot. This

information on the coherent dynamics of the system and its characteristic

time scale can be found also in the finite-frequency noise spectrum as dis-

cussed in Chapter 4, where it appears as a noise-suppressing resonance dip

at frequency ω = 2εA.

Furthermore, these coherent dynamics underlying the proximity effect in

the dot show also up in the waiting time distribution of transport events in

the normal lead, which exhibits an oscillatory behavior [155] similar to the

short-time behavior found here.
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Figure 5.3: Generalized Fano factor F k in the unidirectional transport regime

as a function of time t. The other parameters are ΓS = 0.2U , ΓN = 0.002U

and (a) δ = 0U , (b) δ = 0.1U and (c) δ = 0.4U .
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5.2 Conclusions

In this chapter we have presented a calculation of the finite-time FCS based

on the theory presented in Sec. 3.5 of a system composed by a single-level

quantum dot tunnel-coupled to a superconductor and a normal-conducting

lead. We found that the FCS reflects the coherent dynamics underlying the

proximity effect. For short times, the generalized Fano factor oscillates with a

frequency equal to the splitting of the ABS, ω = 2εA. This short time behav-

ior is a signature of the coherent transfer of Cooper pairs between quantum

dot and superconductor. The magnitude of the oscillation increases with

increasing cumulant order k. The oscillatory behavior vanishes for a large

detuning δ � ΓS, when the superconducting correlations on the quantum

dot is almost zero.

Beyond the short-time regime the generalized Fano factor grows in magni-

tude and starts to oscillate with increasing cumulant order. These oscillations

occur as function of essentially any parameter of the system. This behavior

of the higher order cumulants is universal for any system [61, 158] and has

been shown experimentally as well [61,113].

The results of this chapter consider the unidirectional transport regime

only. Hence, the presented results are Markovian, since we consider a weak-

coupling to the normal-conducting lead. However the theory set up in Sec. 3.5

allows also the inclusion of non-Markovian dynamics. A complete study of

the system’s finite-time FCS in terms of different bias regimes, which allow

the inclusion of non-Markovian effects, has still to be done.
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Chapter 6

Finite-frequency skewness

In this chapter we present results for the frequency-dependent skewness for

transport through a single-level quantum dot weakly coupled to a normal

and strongly to a superconducting lead. The model has been introduced in

Sec. 3.1. The finite-frequency skewness is defined as the third order of the

power spectrum

S(ω1, ω2, ω3) =

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3e
−i(ω1t1+ω2t2+ω3t3)×

T 〈I(t1)I(t2)I(t3)〉
(6.1)

where T is the symmetrization operator that sums over all possible time

switches.

We consider the unidirectional transport regime, where the applied bias

voltage is larger than all other energy scales of the system except the su-

perconducting gap ∆ to prevent that electrons can tunnel in the opposite

direction of the mean current. In Chapter 4 we have derived and discussed

the finite-frequency noise and demonstrated that the frequency-dependent

noise spectrum gives information on characteristic time scales of the system,

which are not visible in the zero-frequency limit. It has been shown theo-

retically [160, 161] that also the frequency-dependent skewness may contain

further information on the internal time scales and the correlations.
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Here, we apply the theory of multi-time FCS presented in Sec. 3.6 to

derive results for the finite-frequency skewness. For a complete characteri-

zation of the transport processes of the system it is necessary to investigate

the current fluctuations at all time and frequency scales.

The finite-frequency noise in the unidirectional transport regime as dis-

cussed in Sec. 4.4.1 results in a Lorentzian peak in the low-frequency regime

and features a resonance dip at ω = 2εA for intermediate frequencies. How-

ever, the noise is a one-frequency quantity and does not reflect correlations

between different spectral components of the current.

In order to study higher-order current correlations, i.e. correlations be-

tween different counting intervals (see Sec. 3.6), we have to consider the

polyspectrum S(k)(ω1, ..., ωk−1), Eq. 3.61. The polyspectrum S(k) is defined

as the k-time averaged current cumulants in frequency space. As presented

in Sec. 3.6 the polyspectrum can be obtained from the frequency-dependent

FCS. In particular, for k = 2 we get the known finite-frequency noise, while

for k = 3 we obtain the bispectrum, namely the finite-frequency skewness.

The spectral density for k = 3 depends on two frequencies. Here, we will

study the frequency-dependent skewness determined from the multi-time

FCS introduced in Chapter 3. In principle, the formalism allows also to

extract current cumulants of higher orders.

6.1 Low-frequency regime

In a first step, we derive the low-frequency contribution of the skewness

S
(3)
low(ω,Ω), where the relevant frequencies are of the order of the coupling

strength to the normal-conducting lead. We obtain for k = 3 the following

Fano factor (F (k) = S(k)/I) in the low-frequency regime,

F
(3)
low(ω,Ω) =

S
(3)
low(ω,Ω)

I
= 1+

4ε2A
∏2

j=1 2ΓNδεA (γj + ω2 − ωΩ + Ω2)∏3
i=1 4ε2A(v2

i + Γ2
N)

(6.2)
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with γ1 = 3Γ2
N and γ2 = Γ2

Nδ
2/4ε2A as well as the frequencies v1 = ω, v2 = Ω

and v3 = ω − Ω. Analogously to the second order Fano factor Eq. (4.7), the

expression Eq. (6.2) takes the value F (3) = 1 related to a Poissonan transfer,

if the proximity effect is on-resonance, i.e the superconducting correlation on

the quantum dot is maximal. In the limit δ � ΓS, when the proximity effect

is off-resonance and the superconducting correlation on the dot is almost

zero, the third order Fano factor behaves similarly to the case of a single-

resonant level coupled to two normal leads as presented in Ref. [58,104]. As

discussed in Sec. 4.4.1 the low-frequency noise shows a Lorentzian depen-

dence on the frequency ω with a width given by the coupling strength to

the normal conducting lead ΓN. However, the frequency-dependent skewness

S
(3)
low(ω,Ω) (Eq. (6.2)) is not just a simple Lorentzian shaped function. In

Fig. 6.1 and 6.2 contour plots of the third order Fano factor F
(3)
low(ω,Ω) are

displayed for different values of the detuning. Figure 6.1 shows F
(3)
low(ω,Ω) for

a detuning δ = ΓS/2 = 0.1U , when the superconducting correlation on the

dot is still strong. In Figure 6.2 the detuning is chosen such that the prox-

imity effect is off-resonance, namely δ = 2ΓS = 0.4U and the influence of the

superconductor is strongly suppressed. Both cases show that the frequency-

dependent skewness or the Fano factor respectively, fulfills the symmetry

F
(3)
low(ω,Ω) = F

(3)
low(Ω, ω) = F

(3)
low(ω, ω − Ω) = F

(3)
low(Ω − ω,Ω) = F

(3)
low(−ω,−Ω)

as a consequence of the time symmetrization of the polyspectrum. In the

case when the superconducting correlation on the quantum dot is strong, the

maximum in F
(3)
low(ω,Ω) is not centered at ω = Ω = 0 as it is the case for

the finite-frequency noise (see Fig. 4.10). In contrast, when the proximity

effect is off-resonance ΓS � δ, Fig. 6.2, the maximum is centered around

zero-frequency. Along the symmetry lines Ω = 0, ω = Ω and ω = 0 away

from the center the skewness gets suppressed in both cases.
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Figure 6.1: Third order Fano factor F
(3)
low(ω,Ω) in the low-frequency regime

for the quantum dot coupled to one normal and one superconducting lead

for ΓN = 0.002U , ΓS = 0.2U and δ = 0.1U .
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Figure 6.2: Third order Fano factor F
(3)
low(ω,Ω) in the low-frequency regime

for the quantum dot coupled to one normal and one superconducting lead

for ΓN = 0.002U , ΓS = 0.2U and δ = 0.4U .



128 Finite-frequency skewness

6.2 Intermediate-frequency regime

Now we turn to the intermediate-frequency regime of the skewness, vi � ΓN,

where the noise frequencies become larger than the coupling strength to

the normal-conducting lead. As we know from the previous discussion of the

finite-frequency noise in Chapter 4, the spectrum starts to reveal the internal

dynamics of the quantum dot in this regime. We find for the frequency

dependent skewness in the case of strong coupling to the superconductor

(ΓN � ΓS),

S(3)(ω,Ω)

I
≈ S

(3)
low(ω,Ω)

I
− 1

2

Γ2
S

4ε2A

3∑
i=1

[
Γ2

N

Γ2
N + (vi − 2εA)2

(
1− vi − 2εA

εA

)
+

Γ2
N

Γ2
N + (2εA + vi)2

(
1 +

vi + 2εA
εA

)]
(6.3)

with v1 = ω, v2 = Ω, and v3 = ω − Ω. The first part of Eq. (6.3) is the low-

frequency contribution which has been discussed in the previous section. The

remaining part carriers the information of the skewness in the intermediate

frequency regime. This result has a similar structure as the finite-frequency

noise in the unidirectional transport regime Eq. (4.7). The difference is that

in the case of the skewness three noise frequencies are of relevance. The

skewness gets suppressed when one of the frequencies is equal to the splitting

of the ABSs, vi = 2εA.

For instance, if we set v2 = Ω = 0, the spectrum F (3)(ω, 0) exhibits one

resonance dip at ω = 2εA as in the finite-frequency noise spectrum. However,

the resonance dip scales with a prefactor Γ2
S/4ε

2
A, that is double the size of the

resonance dip found in the noise spectrum. This is due to the fact that for

v2 = Ω = 0, the remaining frequencies are equal v1 = v3 = 2εA. Hence, due

to the degeneracy of the frequencies the feature, which indicates the strength

of the proximity effect, is enhanced. The same can be found for v1 = ω = 0.

Now, if we choose the frequencies such that v2 = −v1, the spectrum

exhibits two resonance dips, namely at ω = 2εA and ω = εA. Figures 6.3
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Figure 6.3: Third order Fano factor F (3)(ω,−ω) ad a function of ω with

ΓN = 0.002U , ΓS = 0.2U and δ = 0.

and 6.4 show results for the third order Fano Factor F (3)(ω,−ω) for different

values of the detuning δ. Figure 6.3 shows the Fano factor for δ = 0, when

the proximity effect is on-resonace and the resonance dips have its maximal

depth. The resonance dip at ω = εA scales with Γ2
N/8ε

2
A and the second dip

at ω = 2εA with Γ2
N/4ε

2
A. This can be read off the prefactor in Eq. (6.3).

Figure 6.4 shows F (3)(ω,−ω) for different values of the detuning δ. The

Fano factor behaves as expected from the knowledge of the previous results:

the resonance dips become smaller with increasing δ. Hence, they indicate

the strength of the induced superconducting correlation on the quantum dot.

However, for this choice of the frequencies the feature at ω = 2εA is enhanced

in the spectrum of the skewness in contrast to the noise. Consequently, an

evidence of the induced superconducting correlation on the quantum dot can

be detected even at a rather large detuning δ.

If the frequencies are chosen such that no degeneracy occurs between

them, the spectrum has three resonance dip, each with a prefactor Γ2
N/8ε

2
A.

For example, if we choose v2 = Ω = −ω/2, the spectrum F (3)(ω,−ω/2)

exhibits three resonance dips which appear at ω = 2εA, ω = 4εA and ω = 4
3
εA.
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Figure 6.4: Third order Fano factor F (3)(ω,−ω) ad a function of ω with

ΓN = 0.002U , ΓS = 0.2U and (a) δ = 0.1U , (b) δ = 0.2U and (c) δ = 0.4U .
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This case is displayed in Figure 6.5 for δ = 0.
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Figure 6.5: Third order Fano factor F (3)(ω,−ω/2) ad a function of ω with

ΓN = 0.002U , ΓS = 0.2U and δ = 0.

6.3 Conclusions

We have calculated the frequency-dependent skewness of a quantum dot

weakly coupled to a normal-conducting lead and strongly to a supercon-

ductor lead in the unidirectional transport regime. Whenever one of the

frequencies vi is equal the energy which is necessary for a coherent destruc-

tive interference of the ABSs, namely vi = 2εA, a resonance dip occurs in

the spectrum of the frequency-dependent skewness. These features are a sig-

nature of the coherent exchange of Cooper pairs between quantum dot and

superconductor. Position and size of the dips depend on the splitting of the

ABSs and hence on the strength of the proximity effect. This is in analogy

to the finite-frequency noise, where one dip occurs at ω = 2εA. However,

the magnitude of the dips can be enhanced if the frequencies are degenerate.

This leads to a better visibility of the feature in the spectrum.
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Chapter 7

Summary and outlook

In this thesis we have investigated electronic transport out of equilibrium

through a nanostructure composed by an interacting single-level quantum dot

tunnel-coupled to a superconductor and a normal-conducting lead. In par-

ticular, we have studied the current fluctuations, namely the finite-frequency

noise and the finite-time FCS in order to reveal the internal dynamics of the

system and its characteristic time scales, which are not accessible via An-

dreev level spectroscopy. We were interested in the subgap-transport regime

and considered a strong coupling between the quantum dot and the super-

conductor, while the dot is only weakly coupled to the normal-conducting

lead. For the subgap-transport characteristics of the system, the supercon-

ductor can be described by means of an effective Hamiltonian which becomes

exact in the limit of an infinite superconducting gap. The effective Hamilto-

nian still describes well the subgap transport features even for finite values

of the gap as long as the temperature is larger than the Kondo tempera-

ture related to the Kondo screening by the quasiparticle excitations in the

superconductor [94].

In Chapter 3 we have presented a diagrammatic real-time technique which

allows us to describe non-equilibrium transport through interacting quantum

dots coupled to electronic reservoirs. We have made use of the diagrammatic-

real time approach to derive the current and finite-frequency noise through
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the system. In this framework we have set up a theory which allows to

obtain the finite-time FCS for non-Markovian processes. This approach en-

ables to calculate current cumulants of arbitrary order beyond the noise.

Furthermore, it offers an alternative way to determine the finite-frequency

noise, while it also permits to calculate the cross- and autocorrelation func-

tions separately. Lastly, we have introduced multi-time FCS for Markovian

systems [62,104] based on the finite-time FCS.

In the main part of Chapter 4 we have presented results for the finite-

frequency noise of a quantum dot strongly coupled to a superconductor and

weakly coupled to a normal conducting lead. We have studied the finite-

frequency noise in different bias and frequency regimes. We found that the

finite-frequency noise spectrum reveals the coherent dynamics of the system

underlying the proximity effect in the dot, that is the coherent tunneling of

Cooper pairs between dot and superconductor. In particular, we identified

a resonant feature in the noise spectrum at the frequency of the coherent

oscillations of Cooper pairs between dot and superconductor. The magni-

tude of this feature (a sharp dip in the spectrum) is directly related to the

pair amplitude in the dot. Furthermore, in the quantum noise regime the

noise spectrum exhibits steps at frequencies equal to the Andreev addition

energies, while the height of the steps yields information on the relative cou-

pling of different BCS-like states to the normal lead. The sign and height

of these steps can be understood from an analogy to the noise spectrum of

a single-level quantum dot coupled to normal leads. The finite-frequency

noise spectrum of a single-level quantum dot coupled to normal-conducting

leads has also been presented in Chapter 4. Whether a step in the noise

spectrum leads to an increase or a decrease of the total noise depends on

the coupling strength of the different excitations: the noise stemming from

correlations in the same lead increases at frequencies equal to the excitation

energies, while the noise due to correlations between different leads decreases.

The analogy is between the correlations between different leads coupled to a

single-level quantum dot and correlations between different channels arising
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due to the effectively coupled Andreev levels. Beyond the knowledge of the

Andreev addition energies, which can also be obtained from Andreev level

spectroscopy by means of a differential conductance measurement [12–22],

the finite-frequency noise additionally provides information on the coherent

dynamics of the system and its characteristic time scales, and the effective

coupling strengths of the different Andreev levels. Hence, the finite-frequency

noise spectrum provides a full spectroscopy of the system.

In Chapter 5 we have analyzed the finite-time FCS in terms of a general-

ized Fano factor for higher order cumulants beyond the noise. We observed

that the generalized Fano factor follows a universal behavior independent of

the system. The Fano factor F k(t) grows in magnitude and starts to oscillate

with increasing cumulant order k, before it approaches the long-time limit.

However, the magnitude of the Fano factor and the oscillatory characteris-

tics depend on the proximity effect on the dot, namely if the superconducting

correlations on the dot are strong or negligible. In the short-time regime, we

discovered an oscillatory behavior of the generalized Fano factor with an os-

cillation frequency equal the splitting of the ABSs. These oscillations become

more prominent with increasing cumulant order and depend on the strength

of the proximity effect. Hence, also the finite-time FCS elucidate the coher-

ent dynamics underlying the proximity effect, namely the coherent tunneling

of Cooper pairs between dot and superconductor.

In Chapter 6 we have investigated the frequency dependent skewness in

the high bias regime derived form the theory for multi-time FCS. We found

that the bispectrum reveals resonant features whenever one of the frequencies

is equal the splitting of the ABSs, vi = 2εA analogously to the finite-frequency

noise. We discovered that the magnitude of the resonant feature in the

spectrum of the frequency-dependent skewness can be enhanced depending

on the choice of the frequencies.

The results obtained in this thesis show the importance of time-dependent

current correlations to gain information on the transport processes and eluci-

date the internal dynamics of a mesoscopic conductor. However, most works
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of noise or FCS, theoretically and experimentally, focus on the long-time limit

only. Here we have demonstrated the importance of finite times to reveal the

short time dynamics of the system, which carry information on the coherent

dynamics.

An experimental realization of a finite-frequency noise measurement as

well as the detection of the finite-time FCS is possible with present-day tech-

niques. Current noise spectroscopy in mesoscopic systems has become a

standard tool to gain information on the transport processes and internal

time scales of mesoscopic conductors [50–59]. In oder to observe the effects

in the finite-frequency noise spectrum discussed in this thesis experimentally,

the measurement has to be performed in the GHz frequency range. For ex-

ample, in recent experiments [14, 138] the coupling to the superconductor is

ΓS ≈ 50 − 250 GHz. Here, we also derived higher order cumulants in terms

of finite-time FCS. Higher order cumulants in counting statistics have been

measured experimentally for a quantum dot coupled to normal leads by us-

ing a quantum point contact as noninvasive charge detector with fast time

response [61, 113, 114]. Even the measurement of the frequency-dependent

skewness for transport through a quantum dot has been recently realized [58].

Our results can have important ramifications for the study of hybrid

superconducting-normal structure with quantum dots in the future and might

motivate the measurement of finite-frequency noise and the higher order cu-

mulants in hybrid systems.

The logical continuation would be to study the current fluctuations in

more complex hybrid-superconductor normal structures as for example a

double quantum dot. Here, it might be interesting to see how parameters

like the intra-dot interaction or coupling influence the internal dynamics of

the system. Also an inclusion of spin-orbit coupling and a magnetic field is

possible, since we consider two orbital levels.

Beside this, a double quantum dot is an ideal tool to generate all types

of superconducting correlations in a single device via bias, gate voltage and

inhomogeneous magnetic fields [8]. Different types of superconducting cor-
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relations can be defined in terms of order parameters, namely for even-/odd

frequency singlet/triplet correlations. Due to the small number of degrees of

freedom this system is an ideal tool to exhibit unconventional pairing and

hence gain fundamental insight in unconventional pairing via Josephson or

Andreev spectroscopy. However, it might be of importance to study the

finite-frequency noise to reveal the internal dynamics of the system and to

gain further information on the unconventional superconducting correlations.
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Appendix A

Scattering approach for

finite-frequency noise

A.1 Scattering formalism

The scattering approach is a very powerful tool to address the transport

properties of a mesoscopic system knowing its scattering properties. The

system can be either at equilibrium or out-of-equilibrium. However, the

scattering formalism allows only to obtain the transport properties of non-

interacting systems. Nevertheless, its an established method to extract the

transport properties of a mesoscopic conductor like a quantum dot [32]. Here,

we like to present the scattering formalism for a non-interacting single level

quantum dot coupled to two normal conducting leads and how to determine

the finite-frequency noise by using the scattering formalism. This has been

accomplished in Ref. [36,37].

Results for the symmetrized finite-frequency noise for a single-level quan-

tum dot coupled to normal-conducting leads are discussed in Chapter 4. The

basic idea of the scattering approach is to examine a small region contacted to

some reservoirs. The transport properties of such a system are then defined

by a scattering matrix S which gives the amplitudes of electron scattering

between different channels in different reservoirs.
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In the simple model of a dot coupled to normal leads the scattering matrix

takes the form

S(E) = −1 + ig(E)

(
ΓL

√
ΓLΓR√

ΓLΓR ΓR

)
(A.1)

where g(E) is the Breit-Wigner resonance formed by the dot,

g(E) =
1

E − ε+ iΓ/2
. (A.2)

The scattering matrix S(E) is a function of the energy of the scattered elec-

tron. In order to find the expression for the symmetrized finite-frequency

noise spectrum we define first the non-symmetrized noise in the single reser-

voir as

Cαα′(ω) =

∫ ∞
−∞

dteiωt〈δÎα(t)δÎα′(0)〉 (A.3)

where α and α′ denote the leads which transport the current between the

electronic reservoirs and the system and δÎα = Îα − 〈Îα〉 with the current

operator Îα. The time-dependent current operator is a function of creation

and annihilation operators of the electrons in reservoir α, namely â
(†)
α . The

general expression of the current operator is given by

Îα(t) =
e

h

∑
γ,γ′

∫
dEdE ′ei(E−E

′)t/~Aγγ′(α;E,E ′)â†γ(E)âγ′(E
′) (A.4)

with

Aγγ′(α;E,E ′) = δγγ′δαγ − S∗αγ(E)Sαγ′(E
′) (A.5)

the elements of the scattering matrix of the system. In the case of a quantum

dot coupled to two leads, α = L,R, we can distinguish between two types

of correlation functions Eq. (A.3). For α = α′ we denote CLL and CRR as

auto-correlation functions. If α 6= α′ we are left with the so-called cross-

correlation functions CLR and CRL. Considering the net current through the

device, Î = (ÎL − ÎR)/2, one can write the finite-frequency noise as

C(ω) =
1

4
(CLL(ω) + CRR(ω)− CLR(ω)− CRL(ω)) . (A.6)
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The symmetrized version of the noise spectrum is determined by, Csym
αα′ (ω) =

(Cαα′(ω) + Cαα′(−ω)) /2. The non-symmetrized noise (A.3) can be written

in terms of the scattering matrix elements and yields

Cαα′(ω) =
e2

2π

∫
dE
∑
γγ′

Fαα′

γγ′ (E,ω)fγ(E + ω) (1− fγ′(E)) (A.7)

where fγ′(E) = 1/1+e(E−µγ)/kBT is the Fermi distribution in reservoir γ held

at the chemical potential µγ and Fαα′

γγ′ = Aγγ′(α;E+ω,E)Aγ′γ(α
′;E,E+ω).

The correlation functions contributing to the current noise Eq. (A.7) are

each given as a sum of four processes, namely the inter-lead contributions and

the intra-lead ones. Taking this into consideration the symmetrized current

noise spectrum can be determined by

C(ω) =

∫ ∞
−∞

dE

4π

∑
γγ′

Fγγ′(E,ω)fγ(E + ω)[1− fγ′(E)] + (ω → −ω) (A.8)

where

FLL(E,ω) = |1− S∗LL(E + ω)SLL(E) + S∗RL(E + ω)SRL(E)|2

FLR(E,ω) = |S∗LL(E + ω)SLR(E) + S∗RL(E + ω)SRR(E)|2 .

The other correlations FRR(E,ω) and FRL(E,ω) are obtained by interchang-

ing L↔ R in the expressions above.

A.2 Results

In this section we present analytic results for the current and finite-frequency

noise through a non-interacting single-level quantum dot coupled to normal-

conducting leads obtained by the scattering formalism introduced above.

The current through a non-interacting single level quantum dot with

normal-conducting leads leads yields

I =
2ΓLΓR

(
f+

L (ε)f−R (ε)− f+
R (ε)f−L (ε)

)
ΓL + ΓR

(A.9)
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with the total tunnel coupling strength Γ = ΓL +ΓR and f−(ε) = (1−f+(ε)).

In the unidirectional transport regime, namely when the applied bias voltage

V (µL = V/2 = −µR) is the largest energy scale in the system, the Fermi

functions can be approximated by f+
L = 1 and f+

R = 0. The current in the

unidirectional transport regime is given by

I =
2ΓLΓR

ΓL + ΓR

. (A.10)

The finite-frequency noise can be obtained by Eq. (A.8). In particular, one

has to find first solutions for the correlations Fγγ′ . In the zero-frequency limit

ω = 0 the symmetrized current noise is given by

C(ω = 0) =
8Γ2

LΓ2
R

Γ3

(
f+

L (ε)f−L (ε) + f+
R (ε)f−R (ε)

)
+

4Γ3
LΓR + 4Γ3

RΓL

Γ3

(
f+

L (ε)f−R (ε) + f+
R (ε)f−L (ε)

)
.

(A.11)

The noise in the low-frequency regime results in

Clow(ω) =
[(

8Γ2
LΓ2

R + 2ω2Γ2
L

)
f+

L (ε)f−L (ε) +
(
8Γ2

LΓ2
R + 2ω2Γ2

R

)
f+

R (ε)f−R (ε)+(
4Γ3

LΓR + 4ΓLΓ3
R + 2ΓLΓRω

2
)
f+

L (ε)f−R (ε)+(
4Γ3

LΓR + 4ΓLΓ3
R + 2ΓRΓLω

2
)
f+

R (ε)f−L (ε)
]
/
(
Γ3 + ω2Γ

)
.

(A.12)

In the high-frequency regime we find

Chigh(ω) =
1

2

Γ2
L

Γ

[
f+

L (ε)f−L (ε− ω) + f+
L (ε+ ω)f−L (ε)

]
+

1

2

Γ2
R

Γ

[
f+

R (ε)f−R (ε− ω) + f+
R (ε+ ω)f−R (ε)

]
+

1

2

ΓLΓR

Γ

[
f+

L (ε)f−R (ε− ω) + f+
L (ε+ ω)f−R (ε)

]
+

1

2

ΓLΓR

Γ

[
f+

R (ε)f−L (ε− ω) + f+
R (ε+ ω)f−L (ε)

]
+ (ω → −ω) .

(A.13)



Appendix B

Examples for diagrams

In this part of the Appendix we present practical examples on how to ob-

tain diagrams contributing to the different types of self-energy kernels using

diagrammatic rules introduced in Chapter 3 for the finite-frequency noise,

Sec. 3.4 and the finite-time FCS, section 3.5.

B.1 Diagrams contributing to the

finite-frequency noise

In this section we show how to obtain the elementsW
χ1χ

′
1

χ2χ
′
2

(ω) of the frequency-

dependent kernels contributing to the finite-frequency noise on the example of

the transition |σ〉 → |+〉. The contributing diagrams to the element W+σ
+σ (ω)

are displayed in Fig. B.1. Note, that we have to take into account that the

states |±〉 are a superposition of the empty |0〉 and doubly |d〉 occupied state

and hence, 4 diagrams contribute to the kernel element W+σ
+σ (ω). Apply-

ing the diagrammatic rules introduced in Sec. 3.4, we obtain the following
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integral expression for the kernel element W+,σ
+,σ (ω),

W+σ
+σ (ω) = (−i)(−1)

∫
d$

2π

1

2

(
1− δ

2εA

)
ΓN

2
f−($)×[

1

$ − (Eσ − E+)− ω + i0+
+

1

−$ + (Eσ − E+)− ω + i0+

]
+ (−i)(−1)

∫
d$

2π

1

2

(
1 +

δ

2εA

)
ΓN

2
f+($)×[

1

$ − (E+ − Eσ)− ω + i0+
+

1

−$ + (E+ − Eσ)− ω + i0+

]
with the Fermi function f+($) = [1 + eβ($−µ)]−1 and f−($) = (1− f+($)).

At this stage it is useful to use the relation,

1

x+ i0+
=
P

x
− iπδ(x)

which decomposes the fraction in terms of the Cauchy principle value P and

a delta function. Introducing this relation, the integral yields

⇒ W+σ
+σ (ω) = i

∫
d$

2π

1

2

(
1− δ

2εA

)
ΓN

2
f−($)×[

P

$ − (E−,− + ω)
− P

$ − (E−,− − ω)
−

iπ (δ($ − (E−,− + ω)) + iδ($ − (E+,+ − ω)))]

+ i

∫
d$

2π

1

2

(
1 +

δ

2εA

)
ΓN

2
f+($)×[

P

$ − (E+,+ + ω)
− P

$ − (E+,+ − ω)
−

iπ (δ($ − (E+,+ + ω)) + δ($ − (E+,+ − ω)))] .

While the terms with the delta function can be solved immediately, we have

to calculate the principle value separately. In particular, we have to solve an

integral of type,
∫ f($−µ)

$−ε d$. This integral can be evaluated in terms of a

contour integral under consideration of the residue theorem. The final result

yields,∫
f($ − µ)

$ − ε
d$ = <

(
Ψ

(
1

2
+
iβ

2π
(ε− µ)

))
−Ψ

(
1

2
+
βEC

2π

)
(B.1)
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with the digamma function Ψ and EC is a cutoff energy introduced to secure

that the integral converges. The digamma function Ψ(z) can be computed

in the complex plane,

Ψ(z) = −γ +
∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
(B.2)

and hold the relations

Ψ(x)−Ψ(y) =
∞∑
n=0

(
−1

n+ x
+

1

n+ y

)
(B.3)

and

Ψ(z) = Ψ(z) . (B.4)

Further details about the digamma function and its properties can be found

in Ref. [162]. Taking into account Eq. (B.1), we get,

⇒ W+σ
+σ (ω) =

ΓN

4

(
1− δ

2εA

)[
f−(E−,− + ω) + f−(E−,− − ω)

− i
π

(
<
(

Ψ

(
1

2
+
iβ

2π
(E−,− + ω)

))
−

<
(

Ψ

(
1

2
+
iβ

2π
(E−,− − ω)

)))]
+

ΓN

4

(
1 +

δ

2εA

)[
f+(E+,+ + ω) + f+(E+,+ − ω)+

i

π

(
<
(

Ψ

(
1

2
+
iβ

2π
(E+,+ + ω)

))
−

<
(

Ψ

(
1

2
+
iβ

2π
(E+,+ − ω)

)))]
.

Including also the bias by shifting the energies, the final expression for the

self-energy kernel element W+σ
+σ (ω) results in
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W+σ
+σ (ω) =

ΓN

4

(
1− δ

2εA

)[
f−(E−,− + ω − µ) + f−(E−,− − ω − µ)

− i
π

(
<
(

Ψ

(
1

2
+
iβ

2π
(E−,− + ω − µ)

))
−<

(
Ψ

(
1

2
+
iβ

2π
(E−,− − ω − µ)

)))]
+

ΓN

4

(
1 +

δ

2εA

)[
f+(E+,+ + ω − µ) + f+(E+,+ − ω − µ)

+
i

π

(
<
(

Ψ

(
1

2
+
iβ

2π
(E+,+ + ω − µ)

))
−

<
(

Ψ(

(
1

2
+
iβ

2π
(E+,+ − ω − µ)

)))]
.

(B.5)

Figure B.1: Diagrams contributing to the kernel element W+σ
+σ (ω).

The next type of diagrams are these contributing to the current ker-

nels. To calculate the current kernels in first order we have to replace

one tunnel vertex by a current vertex, sum over all possible realizations

of replacement and use the rules introduced in Sec. 3.4. As introduced in

Sec. 3.4 there are two different types of current vertices at finite-frequencies,

namely W
χ1χ

′
1

I>χ2χ
′
2

(ω) and W
χ1χ

′
1

I<χ2χ
′
2

(ω). In the limit of zero-frequencies, the

relation W I>(ω = 0) = W I<(ω = 0) = W I(ω = 0) holds. Figure B.2 (a)

shows the diagrams contributing to the kernel element W
χ1χ

′
1

I>χ2χ
′
2

(ω) and (b)

to W
χ1χ

′
1

I<χ2χ
′
2

(ω). Finally, using the diagrammatic rules and the result of the
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Figure B.2: (a) Diagrams contributing to the kernel element W +σ
I>+σ (ω) and

(b) all diagrams contributing to the kernel element W +σ
I<+σ (ω).
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integral expression Eq. (B.1) we obtain for the kernel element W
χ1χ

′
1

I>χ2χ
′
2

(ω), .

W +σ
I>+σ (ω) = −ΓN

4

(
1− δ

2εA

)[
f−(E−,− + ω − µ) + f−(E−,− − ω − µ)

+2f−(E−,− − µ)− i

π

(
<
(

1

2
+
iβ

2π
(E−,− + ω − µ)

)
−<

(
1

2
+
iβ

2π
(E−,− − ω − µ)

))]
+

ΓN

4

(
1 +

δ

2εA

)[
f+(E+,+ + ω − µ) + f+(E+,+ − ω − µ)

+
i

π

(
<
(

1

2
+
iβ

2π
(E+,+ + ω − µ)

)
−<

(
1

2
+
iβ

2π
(E+,+ − ω − µ)

))]
.

(B.6)

Analogously, we can calculate the element W +σ
I<+σ (ω) and find that they are

equal

W +σ
I<+σ (ω) = W +σ

I>+σ (ω) . (B.7)

Note, that this result is not universal and does not hold for all kernel elements.

Finally, we also need to calculate the contribution, where both current oper-

ators are in the same block. Therefore we need to replace two tunnel vertices

by two current vertices and connect them with an external line transporting

the energy ω. For the particular system we find for the example

W +σ
II+σ (ω) = W+σ

+σ (ω) (B.8)

In the same way as shown for this example all contributing kernel elements

can be evaluated, including the transition rates that involve off-diagonal re-

duced density matrix elements.
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B.2 Diagrams contributing to the finite-time

FCS

Here, we want to provide one example on how to obtain the kernel elements

for the kernel Γ(χ, z) introduced in Sec. 3.5. We choose as in the previous

examples the transition |σ〉 → |+〉. In first order in the tunnel coupling

strength the kernel element is given by

zΓ+σ
+σ(χN, z) = W̃+σ

+σ (χN, z = 0)− W̃+σ
+σ (χN, z) (B.9)

with the kernel W̃ representing these diagrams where one tunnel vertex in

the counting interval (χ 6= 0) gets contracted with a vertex in the non-

counting interval (χ = 0). The diagrams contributing to the kernel element

W̃+σ
+σ (χN, z) are shown in Fig. B.3. After applying diagrammatic rules the

kernel element W̃+σ
+σ (χN, z) yields

W̃+σ
+σ (χN, z) =

ΓNe
iχN/2

4

(
1 +

δ

2εA

)[
f+(E+,+ + iz − µ) + f+(E+,+ − iz − µ)

+
i

π

(
<
(

1

2
+
iβ

2π
(E+,+ − iz − µ)

)
−<

(
1

2
+
iβ

2π
(E+,+ + iz − µ)

))]
+

ΓNe
−iχN/2

4

(
1− δ

2εA

)[
f−(E−,− + iz − µ) + f−(E−,− − iz − µ)

− i
π

(
<
(

1

2
+
iβ

2π
(E−,− − iz − µ)

)
−<

(
1

2
+
iβ

2π
(E−,− + iz − µ)

))]
(B.10)

and W̃+σ
+σ (χN, z = 0) can be obtained by simply set z → 0.
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Figure B.3: Diagrams contributing to the kernel element W̃+σ
+σ (ω). All ver-

tices taking place in the non-counting interval are represented by open circle.

These are getting contracted with vertices in the counting interval (black

dots). All counting vertices get a prefactor which includes the counting field

χN . Every vertex on the upper keldysh contour gets a factor eiχN/2 and a

vertex on the lower contour e−iχN/2, respectively. Note, that for every vertex

where the tunneling line leaves the factor gets complex conjugated.



Appendix C

Finite-frequency noise in the

unidirectional transport regime

In the following we provide analytic expressions for the self-energy kernels

and the full propagator in the unidirectional transport contributing to the

finite-frequency noise for a quantum dot coupled to one normal and one

superconducting lead. The results are presented and discussed in Chapter 4.

The diagrammatic approach for noise has been introduced in Sec. 3.4. In

the unidirectional transport regime, the applied bias voltage to the normal

conducting µN is assumed to be much larger than all other energy scales

except the superconducting gap ∆. Hence, all Fermi functions f(E±,± −
µN) (E±,± are the Andreev addition energies) can be approximated by 1.

Therefore all transition rates simplify and all kernels in Eq. 3.34 become

frequency independent.

The reduced density matrix of the system is is given by

Pstat =


P+

+ P+
− 0 0

P−+ P−− 0 0

0 0 P ↑↑ 0

0 0 0 P ↓↓

 (C.1)

where the diagonal elements are the occupation probabilities to find the dot

singly occupied |σ〉 or in one of the BCS-like states |±〉. The off-diagonal
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elements describe the coherent superposition of the states with different par-

ticle numbers. The elements of the reduced density matrix can be obtained

by the master equation, W (ω = 0)P stat = 0.

The free propagator of the system, defined in Eq. 3.24 is given by

Π0(ω) =



i
−ω+i0+

0 0 0 0 0

0 i
−ω+i0+

0 0 0 0

0 0 i
−ω+i0+

0 0 0

0 0 0 i
−ω+i0+

0 0

0 0 0 0 i
−2εA−ω+i0+

0

0 0 0 0 0 i
2εA−ω+i0+


(C.2)

Note, that for technical reason it is convenient to express the density

matrix as a vector P stat =
(
P+

+ , P
−
− , P

↑
↑ , P

↓
↓ , P

+
− , P

−
+

)T
. We find for the the

self-energy kernel W in the high bias regime,

W =



−ΓN

(
1− δ

2εA

)
0 ΓN

2

(
1 + δ

2εA

)
ΓN
2

(
1 + δ

2εA

)
−ΓNΓS

4εA
−ΓNΓS

4εA

0 −ΓN

(
1 + δ

2εA

)
ΓN
2

(
1− δ

2εA

)
ΓN
2

(
1− δ

2εA

)
−ΓNΓS

4εA
−ΓNΓS

4εA
ΓN
2

(
1− δ

2εA

)
ΓN
2

(
1 + δ

2εA

)
−ΓN 0 ΓNΓS

4εA
ΓNΓS
4εA

ΓN
2

(
1− δ

2εA

)
ΓN
2

(
1 + δ

2εA

)
0 −ΓN

ΓNΓS
4εA

ΓNΓS
4εA

−ΓNΓS
4εA

−ΓNΓS
4εA

−ΓNΓS
4εA

−ΓNΓS
4εA

−ΓN 0

−ΓNΓS
4εA

−ΓNΓS
4εA

−ΓNΓS
4εA

−ΓNΓS
4εA

0 −ΓN


(C.3)

Using the master equation, W (ω = 0)P stat = 0, we calculate the following

elements of the reduced density matrix,

P+
+ =

1

16

(
(δ + 2εA)2

ε2A
+

Γ2
NΓ2

S

Γ2
Nε

2
A + 4ε2A

)
(C.4)

P−− =
1

16

(
(δ − 2εA)2

ε2A
+

Γ2
NΓ2

S

Γ2
Nε

2
A + 4ε2A

)
(C.5)

P σ
σ =

1

16

(
4− δ2 + Γ2

S

ε2A
+

4Γ2
S

Γ2
N + 4ε2A

)
(C.6)
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P+
− = − ΓNΓS

4ΓNεA + i8ε2A
(C.7)

P−+ = − ΓNΓS

4ΓNεA − i8ε2A
(C.8)

In order to derive the finite-frequency noise we have to consider diagrams

where one or two tunneling vertices are replaced by a current vertex. The

kernel WI sums up all diagrams, where note tunnel vertex is replaced by a

current vertex and is given by

WI =



0 0 ΓN

(
1 + δ

2εA

)
ΓN

(
1 + δ

2εA

)
0 0

0 0 ΓN

(
1− δ

2εA

)
ΓN

(
1− δ

2εA

)
0 0

ΓN

(
1− δ

2εA

)
ΓN

(
1 + δ

2εA

)
0 0 ΓNΓS

2εA
ΓNΓS
2εA

ΓN

(
1− δ

2εA

)
ΓN

(
1 + δ

2εA

)
0 0 ΓNΓS

2εA
ΓNΓS
2εA

0 0 −ΓNΓS
2εA

−ΓNΓS
2εA

0 0

0 0 −ΓNΓS
2εA

−ΓNΓS
2εA

0 0


(C.9)

The kernel WI contains all diagrams with both current vertices in the same

irreducible block and we derive

WII =



ΓN

(
1− δ

2εA

)
0 ΓN

2

(
1 + δ

2εA

)
ΓN
2

(
1 + δ

2εA

)
ΓNΓS
4εA

ΓNΓS
4εA

0 ΓN

(
1 + δ

2εA

)
ΓN
2

(
1− δ

2εA

)
ΓN
2

(
1− δ

2εA

)
ΓNΓS
4εA

ΓNΓS
4εA

ΓN
2

(
1− δ

2εA

)
ΓN
2

(
1 + δ

2εA

)
ΓN 0 ΓNΓS

4εA
ΓNΓS
4εA

ΓN
2

(
1− δ

2εA

)
ΓN
2

(
1 + δ

2εA

)
0 ΓN

ΓNΓS
4εA

ΓNΓS
4εA

ΓNΓS
4εA

ΓNΓS
4εA

−ΓNΓS
4εA

−ΓNΓS
4εA

ΓN 0
ΓNΓS
4εA

ΓNΓS
4εA

−ΓNΓS
4εA

−ΓNΓS
4εA

0 ΓN


(C.10)

Now we are able to calculate the current and the current noise by using Eq.

(3.26) and (3.34). The current in the high bias limit yields

I = ΓN −
ΓN(Γ2

S + δ2)

4ε2A
+

ΓNΓ2
S

Γ2
N + 4ε2A

(C.11)
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Since we consider a strong coupling to the superconductor ΓS � ΓN, the

expression simplifies to

Iuni = ΓN
Γ2

S

4ε2A
. (C.12)

and we find for the Fano factor in the unidirectional transport regime for

ΓS � ΓN,

S(ω)

2Iuni

= 1 +
Γ2

Nδ
2

4ε2A(Γ2
N + ω2)

−

1

2

Γ2
S

4ε2A

[
Γ2

N

Γ2
N + (ω − 2εA)2

(
1− ω − 2εA

εA

)
+

Γ2
N

Γ2
N + (2εA + ω)2

(
1 +

ω + 2εA
εA

)]
.

(C.13)
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[18] J.-D. Pillet, P. Joyez, R. Žitko, and M. Goffman, Phys. Rev. B 88,

045101 (2013).

[19] W. Chang, V. E. Manucharyan, T. Jespersen, J. Nyg̊ard, and C. Mar-

cus, Phys. Rev. Lett. 110, 217005 (2013).

[20] E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M. Lieber, and

S. De Franceschi, Nature Nanotechnology 9, 79 (2014).

[21] A. Kumar, M. Gaim, D. Steininger, A. L. Yeyati, A. Martin-Rodero,
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P. Lindelof, Phys. Rev. Lett. 96, 207003 (2006).

[135] K. Grove-Rasmussen, H. I. Jørgensen, and P. E. Lindelof, New. J. Phys.

9, 124 (2007).



Bibliography 169

[136] H. I. Jørgensen, T. Novotny, K. Grove-Rasmussen, K. Flensberg, and

P. E. Lindelof, Nano Letters 7, 2441 (2007).

[137] A. Eichler, R. Deblock, M. Weiss, C. Karrasch, V. Meden, C. Schönen-

berger, and H. Bouchiat, Phys. Rev. B 79, 161407 (2009).

[138] R. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K. Yoshida, K. Shibata,

K. Hirakawa, and S. Tarucha, Phys. Rev. B 81, 121308 (2010).

[139] J. A. van Dam, Y. V. Nazarov, E. P. A. M. Bakkers, S. De Franceschi,

and L. P. Kouwenhoven, Nature 442, 667 (2006).

[140] D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 74, 3241

(1995).

[141] J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008).

[142] A. Zazunov, V. S. Shumeiko, E. N. Bratus’, J. Lantz, and G. Wendin,

Phys. Rev. Lett. 90, 087003 (2003).

[143] C. W. J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113 (2013).

[144] A. Thielmann, M. H. Hettler, J. König, and G. Schön, Phys. Rev. B

68, 115105 (2003).

[145] A. V. Rozhkov and D. P. Arovas, Phys. Rev. B 62, 6687 (2000).

[146] L. V. Keldysh, JETP, 20, 1018 (1965).

[147] U. Gavish, Y. Levinson, and Y. Imry, Phys. Rev. B 62, R10637 (2000).

[148] Y. V. Nazarov and Y. Blanter, ‘Quantum Transport, Cambridge Uni-

versity Press (2009).

[149] R. Zwanzig, ‘Nonequilibrium statistical mechanics, Oxford University

Press (2001).



170 Bibliography

[150] G. Schön, Y. Makhlin, and A. Shnirman, Rev. Mod. Phys. 73, 357

(2001).

[151] S. Droste, J. Splettstoesser, and M. Governale, Phys. Rev. B 91, 125401

(2015).

[152] A. S. Wightman, Il Nuovo Cimento B (1971-1996) 110, 751 (1995).

[153] M. G. Pala, M. Governale, and J. König, New. J. Phys. 9, 278 (2007).

[154] A. Braggio, M. Governale, M. G. Pala, and J. König, Solid State

Comm. 151, 155 (2011).
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