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Abstract

This thesis presents a comparison of statistical methodologies for cluster verifica-

tion on ordinal response variables. Methodologies will be applied to a Listening

Strategy dataset collected by the Language Learner Strategies research team at the

National Institute of Education in Singapore. From this listening dataset, eight

clusters suggested by Linguistics theory require verification. The methodologies

undertaken is to find which listening strategies have been formed well.

Methods used includes the proportional odds model, confirmatory factor analysis

and ordinal agreement model. The proportional odds model is used to establish

how well each cluster of questions is built. This is established by checking how

similar questions within clusters are. The confirmatory factor analysis is used to

verify how well the overall listening clusters have been built. This will be compared

to clusters proposed by a statistical method. Lastly, the ordinal agreement model

is applied to see how much agreement there is within each of the listening clusters.

This will be able to show us which clusters is built better than the other clusters

for this listening questionnaire.

Results show that the prediction listening strategy has the highest level of agree-

ment as well as no difference between questions within this cluster. The Socio-

affective listening strategy has the lowest level of agreement and very strong evi-

dence of a difference between questions within the cluster. This suggests that the

prediction cluster has been formed better than the Socio-affective cluster.
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Chapter 1

Introduction

1.1 Background

The Language Learner Strategy Research Team (2009) at the National Institute

of Education (NIE) designed and administered a Listening Strategy Questionnaire.

The questionnaire was administered at six local schools in Singapore in January

2005 amongst students from Grades 4-6. The purpose of the questionnaire under-

taken by NIE was to empower learners, help teachers, and inform policy makers with

detailed information about language learning strategies. Each strategy is formed

from several listening questions from the questionnaire. The aim of this research is

to find out which listening language learner strategies has been formed well.

In the Listening Strategy Questionnaire, there are two sections. The first sec-

tion contains demographic questions about the student. This includes gender, age,

grade, school and ethnicity. Section two contains thirty eight listening strategy

questions. For these listening strategy questions, students can choose an answer

from the scale (never, rarely, sometimes, often, always). This scale has a neutral

middle category and is often called a Likert scale. This type of scale is an ordered

categorical scale and so is called ordinal.

1



2 CHAPTER 1. INTRODUCTION

Ordinal scales are highly used in social sciences for measuring attitudes and opin-

ions. For example, a question administered in the listening questionnaire asked

each student “When I’m free, I find interesting things to listen to in English” using

the categories (never, rarely, sometimes, often, always). It is often that for each

observation, the choice of a category is subjective. To lessen subjectivity, it is help-

ful to provide guidance about what the categories represent.

For ordinal scales, there is a clear ordering of the levels. However, the absolute

distances among them are unknown. Listening questions measured with categories

(never, rarely, sometimes, often, always) is ordinal because, a student who chooses

“often” would have attempted listening to English more than a student who chose

“never”. However, no numerical measure is given to the difference between these

levels. An ordinal variable is quantitative rather than qualitative as each label on

its scale refers to a greater or smaller magnitude of a certain characteristic than

another level.

Researchers often treat ordinal categorical response variables as continuous response

variables. The categorical structure of the response variable is ignored and stan-

dard parametric methods for continuous response variables are used instead. This

approach would include assigning numerical scores to the ordered categories and

then using the method of ordinary least squares (OLS) such as linear regression

and analysis of variance (Agresti 2010).

Linear regression is a simplistic method that is generally used to model ordinal re-

sponse scores by assigning numerical scores. Although this approach can be useful

at identifying variables that clearly affect a response variables, there are limitations.
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Agresti (2010, Ch. 1) listed limitations of treating ordinal categorical response

variables as continuous response variables as follows:

1. There is usually not a clear-cut choice for the scores. This is again due to the

unknown distances between levels in the scale.

2. A particular response outcome is likely to be consistent with a range of values

for some underlying latent variable. An ordinary regression analysis does not

allow for the measurement error that results from replacing such a range by

a single numerical value.

3. Does not yield estimated probabilities for the response categories at fixed

settings of the explanatory variables.

4. Can yield predicted values above the highest category score or below the

lowest category score.

5. Ignores the facts that the variability of the responses is naturally non-constant

for categorical data. For ordinal response variables, there is little variability of

predictor values for which the observations fall mainly in the highest category

or mainly in the lowest category. However, there is considerable variability

of predictor values for which observations tend to be spread among the cate-

gories.

Limitations 2, 4 and 5 described above does not account for “ceiling effects” and

“floor effects” (Agresti 2010, Ch. 1). These occur because of the upper and lower

limits of the ordinal response variable. Such effects can cause ordinary regression

modelling to give misleading results.

For example, Hastie et al. (1989) presented a study of women in South Africa that

modelled an ordinal measurement y of osteoporosis in terms of the explanatory

variable x for age and an indicator variable z for whether women had osteoarthri-

tis. Using OLS, for each osteoarthritis group, the line relating age to the predicted
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osteoporosis score took value at the lowest ordinal level near a relatively low age

level. However, the line for the group with positive osteoporosis had a significantly

greater slope as age increased. When an ordinal model was used on the data in-

stead, they found no evidence of this interaction.

There is still widespread practice of treating ordinal categorical variables as con-

tinuous variables. In the field of Linguistics, researchers analysing data of learning

English surveys, including Zheng (2013), Wu (2014), Souriyavongsa et al. (2013)

and others, have used Likert scales in their surveys and continue to treat the ordi-

nal categorical variables as continuous variables. They have done this by assigning

numerical scores to the ordinal categorical variables. As part of their analysis, they

calculate the mean and standard deviation of these scores. Calculating the mean

relies on the assumption that the distance between scores are known. For example,

the response “never”, “rarely”, “sometimes”, “often” and “always” are assigned

scores “1”, “2”, “3”, “4” and “5”. The distance between “rarely” and “sometimes”

is then the same as the distance between “sometimes” and “often”. However, in

reality, these distances may be different and unknown.

On the other hand, some researchers are treating ordinal categorical variables as

nominal variables. This is done by ignoring their ordering nature. Advantages,

suggested by Agresti (2010, Ch. 1), of treating an ordinal categorical variables as

ordinal rather than nominal are as follows:

• Ordinal data description can use measures that are similar to those used in

ordinary regression and analysis of variance for quantitative variables, such

as correlations and means.

• Ordinal analysis can use a greater variety of models. Those models are more

parsimonious and have simpler interpretations than the standard models for

non-ordered categorical variables.
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• Ordinal methods have greater power for detecting relevant trends or alter-

natives to the null hypothesis of no effect of an explanatory variable on the

response variable.

• Ordinal analysis can give more powerful results than an analysis that ignores

ordinality.

Clustering

The main purpose of this research is to verify that the English listening learner

strategies formed by the questionnaire are appropriate. There might be several

ways to check the adequacy, such as using Linguistics theory. This thesis focuses

on checking whether the questions within each cluster (strategy) are similar or not.

In this section, a discussion on where the clusters came about are described.

Listening strategies are grouped into three categories. They are metacognitive,

cognitive and socioaffective strategies. Metacognitive strategies involve thinking

about the mental processes used in the learning process, monitoring learning while

it takes place, and evaluating learning after it has taken place (O’Malley & Chamot

1990). Overall strategies comprising of metacognitive strategies can include the

following:

• Advance organisers

• Directed attention

• Selective attention

• Self management

• Self monitoring

• Delayed production

• Self evaluation
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Cognitive strategies refer to processes and behaviours used by learners to help

them improve their ability and learn or remember something. They involve active

manipulation of the listening task and can include the following:

• Repetition

• Inference

• Elaboration

• Deduction

• Transfer

• Recombination

Social and affective strategies play important roles in instructional systems de-

signed for second language learners. These strategies entail cooperative teaming,

questioning for clarification and affective control over listening experiences. They

are described as the following:

• Cooperation - working with one or more peers to obtain feedback

• Question for clarification - asking a teacher for repetition, paraphrasing ex-

planation or examples.
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Based on these three types of strategies, the following table shows the eight strate-

gies used in the questionnaire that will be tested and verified.

Table 1.1: Listening Strategies

Strategy Type Strategy Example

Metacognitive Self-initiation
I look for opportunities to listen in En-

glish.

Planning

Before I start listening, I decide if I

need to pay attention to details or to

the main ideas.

Monitoring and Evaluating

If I have a problem in understanding,

I quickly decide whether I should con-

tinue or listen again.

Cognitive Perceptual Processing
If I can’t understand a word or phrase,

I repeat it to myself.

Inferencing

When I don’t understand something, I

use my general knowledge to make a

guess.

Predicting

Before I listen to something, I think

about the main idea of what I am going

to hear.

Utilisation
I try to connect what I heard with my

own experiences.

Social and Affective Socio-affective strategies
When I have a problem in listening, I

ask my teachers for help.



8 CHAPTER 1. INTRODUCTION

The thiry-eight questions given in Appendix A are split into each of the above eight

strategy clusters as follows:

• Self-initiation: Questions 11, 12, 14 and 18

• Planning: Questions 3, 15 and 23

• Monitoring and evaluation: Questions 5, 9, 21, 32 and 36

• Perceptual Processing: Questions 8, 24, 34, and 37

• Inferencing: Questions 1, 4, 17, 26, 27, 31 and 33

• Predicting: Questions 6, 7, 13, 29 and 35

• Utilisation: Questions 16, 19, 20, 22 and 30

• Socio-affective: Questions 2, 10, 25, 28 and 38.

These eight groupings of the listening survey questions will be used in all method-

ologies in this thesis to check that the strategies have been formed well.

1.2 Structure of thesis

Chapter two describes the data, including how it was collected, possible issues and

how the data was cleaned. Chapter two also describes the demographic and ques-

tion characteristics of the sample of students surveyed.

Chapter three introduces the concept of the proportional odds model (McCullagh

1980) with repeated measurements applied to each strategy individually. A clus-

tering method based on proportional odds models (Matechou et al. 2011), called

the fuzzy biclustering method will be described as well. It uses the expectation-

maximisation algorithm to cluster both the rows and columns of the data. Parts of

this clustering will be incorporated in the various approaches. Lastly, the results
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to the application of these approaches will be described.

Chapter four describes the concepts on structural equation models and specifically

the confirmatory factor analysis. The purpose of this method is to see how well

formed the eight listening strategies are. The results to this model will be com-

pared to the results of the five clusters suggested by the fuzzy biclustering method

described in Chapter three. This will show us how well both types of clustering is

formed and whether the listening strategies are better formed.

Chapter five describes the concepts of the ordinal agreement model. The bootstrap-

ping method, will be incorporated to make inferences for the ordinal agreement

model. This chapter will show the application of this analysis to the data and see

how much agreement there is between questions within a strategy.

Chapter six discusses the findings of this research and makes the conclusions.
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1.3 Research objectives

The aim of this research is to verify eight strategy clusters suggested by Linguistic

theory and compare their clusters with the ones suggested by the fuzzy clustering

method. We are able to find whether a strategy has been designed effectively, in

the sense that all questions within the strategy are similar.

There are three key objectives to this research:

1. Establish how well each cluster of questions is built.

2. Verfiy how well the overall listening clusters have been built.

3. How much agreement there is within each of the listening clusters.



Chapter 2

Data description

This chapter describes the data collection procedure, demographic characteristics

of the students surveyed, characteristics of the strategies, coding of the data and

quality issues for the English listening dataset.

2.1 Data collection

At the six Singapore schools where the Language Learner Strategy Research Team

from NIE undertook the English listening questionnaire, guidelines were given to

each teacher involved Gu et al. (2005). The guidelines included what materials were

involved, the procedures to follow and answers to potential questions that students

may have.

The material guidelines included what each teacher should have to successfully ad-

minister the questionnaire, consent forms for themselves and the students, and a

description of what is in the guidelines document.

The procedures guidelines describe in detail what the teachers must do. This in-

cluded a detailed timeline on how to administer the questionnaire with the students.

11
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This would allow consistency between the schools and classrooms with how long

each students spends on answering the questions in the questionnaire.

The potential questions and answers section had examples of questions that stu-

dents may ask and how the teacher could answer. When the questionnaire was

administered, an NIE researcher was present. This was so that if students had fur-

ther questions that the teachers were not sure about, the researcher could answer

for them.

2.2 Data cleaning

In this section we describe the data cleaning that was required to prepare the data

for three statistical analysis which are presented in the next few chapters.

The listening questionnaire was completed by grade 4, 5 and 6 students. For our

analysis, we are going to look at data completed by grade 6 students only, suggested

by the data owner, Dr Peter Gu (School of Linguistics and Applied Language Stud-

ies, Victoria University of Wellington). This is because grade 6 students are older

and would have a better sense and understanding of the questions being asked.

Research has indicated that by 11 years old, childrens ability to remember is not

so different to adults. That at this age, most children are fully able to articulate

their perceptions, opinions and beliefs (Scott 2000). Responses would therefore be

more reliable from grade 6 students.

For data analysis, missing data are often problematic. The methods used in this

thesis to analyse the data are maximum likelihood (ML) and generalised estimat-

ing equations (GEE) (Liang & Zeger 1986) methods. The ML inference has the

advantage of being applicable under weaker assumptions about the missing data

mechanism than GEE inference. In particular, the GEE method requires the data
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to be missing completely at random (MCAR) whereas the ML method only requires

missing at random (MAR).

If data is MCAR then the missing data are a random sample of all observations.

That is, the probability of any observation being missing is independent of the value

of the data, missing or observed (Little & Rubin 2002, p. 12). In modelling ordinal

listening responses as a function of questions, if the probability that the listening

responses is missing is the same for all students regardless of the question and the

response, the data are MCAR.

If data are MAR, then the missingness of the data does not depend on the com-

ponents that are missing (Little & Rubin 2002, p. 12). If the probability that

the listening responses are missing varies between the questions but does not vary

according to the listening response of the students with the same questions, then

the data are MAR.

Due to the simplicity of demonstrating various methods on a clean dataset, stu-

dents with missing values are excluded from the dataset for all analyses. Although

deleting the missing cases is very strong, it is valid under MCAR (Little & Rubin

2002, Little 1988). For this listening dataset, a small proportion of grade 6 students

(14%) were removed.

The following points outline the data cleaning that was applied to the listening

learner questionnaire dataset:

1. Select Grade 6 students only.

2. Remove all rows with missing values.
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Table 2.1 shows the number of students (each record is a student) in the data clean

for each step described above.

Table 2.1: Number of students removed from data cleaning

Step Description Difference Number of Records

Total number of records 3,618

Grade 6 students 2,407 1,211

Remove records with missing values 172 1,039

The remaining 1,039 students were used for all analyses described in later chapters.

2.3 Data characteristics

In this section the population of interest is defined and explored. The character-

istics of the students such as their school, gender, ethnicity and exam scores are

described. The relationship between the demographic characteristics are explored

and the count and proportion of students for each question in each strategy are

then explored. This will establish our expectations about the relationships among

the students’ characteristics and the questions.

Student characteristics

Table 2.2 shows the number and proportion of grade 6 students from each school

that participated in the survey by gender. The largest proportion of students, at

24%, are students of Fuchun Primary School, followed by Junyuan Primary School.

The majority of students are male with 56.5% overall. This is partly due to one of

the schools being an all boys school. Amongst boy students, the highest proportion

of boys are from Catholic High School (27.4%). For all schools, excluding Catholic

High School, the split of boys and girls are approximately fifty-fifty. Jurong West
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Primary School has a slightly higher proportion of girls of 56.6%.

Table 2.2: Number of students by School and Gender

Student Count Column % Row %

School Boy Girl Total Boy Girl Overall Boy Girl

Catholic High School 161 0 161 27.4 0 15.5 100 0

Clementi Primary School 50 49 99 8.5 10.8 9.5 50.5 49.5

Fuchun Primary School 124 127 251 21.1 28.1 24.2 49.4 50.6

Junyuan Primary School 109 114 223 18.6 25.2 21.5 48.9 51.1

Jurong West Primary School 56 73 129 9.5 16.2 12.4 43.4 56.6

Lakeside Primary School 87 89 176 14.8 19.7 16.9 49.4 50.6

Total 587 452 1,039 100 100 100 56.5 43.5

Table 2.3 shows the number and proportion of grade 6 students split by ethnicity

and gender. The majority of students, at 68%, are of Chinese ethnicity, followed by

Malay at 25%. Indian, Eurasian and Other ethnicity make up 6.5% of the students.

Chinese and Malay ethnicities being the largest proportion of students surveyed is

not unexpected as the majority of the Singapore population is 74% Chinese followed

by 13% Malays, as at the end of June 2013 (Department of Statistics Singapore).

The gender split by ethnicity is not as evenly distributed as seen in the school split.

All ethnicities except Malays, has a higher proportion of boys than girls.
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Table 2.3: Number of students by Ethnicity and Gender

Student Count Column % Row %

Ethnicity Boy Girl Total Boy Girl Overall Boy Girl

Chinese 421 290 711 71.7 64.2 68.4 59.2 40.8

Eurasian 4 2 6 0.7 0.4 0.6 66.7 33.3

Indian 26 21 47 4.4 4.6 4.5 55.3 44.7

Malay 126 134 260 21.5 29.6 25.0 48.5 51.5

Other 10 5 15 1.7 1.1 1.4 66.7 33.3

Total 587 452 1,039 100 100 100 56.5 43.5

Table 2.4, 2.5 and 2.6 shows the number and proportion of grade 6 students by

school and ethnicity. The counts for Eurasian, Indian and Other ethnicities are

very small by school. For all schools, the majority of students (over 55%) are of

Chinese ethnicity. At Catholic High School, 98% of students surveyed are of Chi-

nese ethnicity. This could be due to the school being a Catholic religion school.

The remaining schools all have Malay as their second most common ethnicity.

Table 2.4: Number of students by Ethnicity and School

Student Count

School Chinese Eurasians Indian Malay Others Total

Catholic High School 157 1 2 1 0 161

Clementi Primary School 63 2 9 23 2 99

Fuchun Primary School 158 1 19 69 4 251

Junyuan Primary School 137 2 3 79 2 223

Jurong West Primary School 98 0 5 25 1 129

Lakeside Primary School 98 0 9 63 6 176

Total 711 6 47 260 15 1,039
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Table 2.5: Column proportion of students by Ethnicity and School

Column %

School Chinese Eurasians Indian Malay Others

Catholic High School 22.1 16.7 4.3 0.4 0

Clementi Primary School 8.9 33.3 19.1 8.8 13.3

Fuchun Primary School 22.2 16.7 40.4 26.5 26.7

Junyuan Primary School 19.3 33.3 6.4 30.4 13.3

Jurong West Primary School 13.8 0 10.6 9.6 6.7

Lakeside Primary School 13.8 0 19.1 24.2 40.0

Total 100 100 100 100 100

Table 2.6: Row proportion of students by Ethnicity and School

Row %

School Chinese Eurasians Indian Malay Others Total

Catholic High School 97.5 0.6 1.2 0.6 0 100

Clementi Primary School 63.6 2.0 9.1 23.2 2.0 100

Fuchun Primary School 62.9 0.4 7.6 27.5 1.6 100

Junyuan Primary School 61.4 0.9 1.3 35.4 0.9 100

Jurong West Primary School 76.0 0 3.9 19.4 0.8 100

Lakeside Primary School 55.7 0 5.1 35.8 3.4 100
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Figure 2.1 shows the distribution of grade 6 students exam scores. Note that the

students’ exam scores have been standardised separately by each school before

putting the scores together. This is because each school have different tests and so

the exam scores are not comparable between schools.

Figure 2.1: Distribution of Standardised Exam Scores for grade 6 students

The distribution of scores shows a bell-shaped curve around zero, which suggests

the scores may be normally distributed.

Each strategy’s characteristics

For each strategy, the count and proportion of students’ responses for each question

and rating scale are displayed and described. The tables show a rating scale of 1

to 5 where 1 represents “rarely” and 5 represents “always”.

Table 2.7 shows the number and proportion of students’ responses for each question

in the Self-initiation strategy by rating scale. Ratings 1 and 4 have similar propor-

tions of students for each question being approximately 6-9% and 22-25% respec-

tively. The proportion for rating 2 however varies quite a bit by question. Questions
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11 and 12 have similar proportions of 17% and 19% consecutively, whereas ques-

tions 14 and 18 have similar proportions of 12% and 14% consecutively. Between

these two pairs, the proportions appear different. For rating 3, question 18 has a

lower proportion of 26% compared to 32-36% for the other three questions. A sim-

ilar pattern has occured for rating 5 but reversed, where question 18 has a higher

proprotion of 29% compared to 16-21% for the other three questions.

Table 2.7: Self-initiation - number and proportion of students by question and

rating

Student Count %

Question 1 2 3 4 5 1 2 3 4 5

11 89 180 331 251 188 9% 17% 32% 24% 18%

12 65 196 378 229 171 6% 19% 36% 22% 16%

14 66 127 368 258 220 6% 12% 35% 25% 21%

18 73 145 275 241 305 7% 14% 26% 23% 29%

Note the questions for table 2.7 are as follows:

• Q11: To improve my listening in English, I watch English TV programmes.

• Q12: I look for opportunities to listen in English.

• Q14: I try to find out how to improve my listening in English.

• Q18: When I’m free, I find interesting things to listen to in English (for

example, TV, radio, etc).

Table 2.8 shows the number and proportion of students’ responses for each ques-

tion in the Planning strategy by the rating scale. The counts of students across

the rating scale appears similar between the questions. The proportion of counts

make it easier to see that the proportion of students in each category of the scale
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is similar between the questions.

Table 2.8: Planning - number and proportion of students by question and rating

Student Count %

Question 1 2 3 4 5 1 2 3 4 5

13 115 181 357 249 137 11% 17% 34% 24% 13%

15 123 180 310 262 164 12% 17% 30% 25% 16%

23 110 188 342 227 172 11% 18% 33% 22% 17%

Note the questions for table 2.8 are as follows:

• Q13: When I listen, I use what I have already heard to think about what I

will hear next.

• Q15: Before I listen to something, I ask myself whether it is important to me.

• Q23: Before I start listening, I decide if I need to pay attention to details or

to the main idea.

Table 2.9 shows the number and proportion of students’ responses for each question

in the Monitoring and Evaluation strategy by the rating scale. Questions 9 and 36

has the highest proportion of students scoring a rating 2 and 3 compared to the

other questions. This is offset by these same questions having the lowest proportion

of students scoring a rating 4 and 5 compared to the other questions.
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Table 2.9: Monitoring and Evaluation - number and proportion of students by

question and rating

Student Count %

Question 1 2 3 4 5 1 2 3 4 5

5 48 114 336 321 220 5% 11% 32% 31% 21%

9 85 161 350 267 176 8% 15% 34% 26% 17%

21 59 108 287 313 272 6% 10% 28% 30% 26%

32 83 121 324 297 214 8% 12% 31% 29% 21%

36 71 166 371 255 176 7% 16% 36% 25% 17%

Note the questions for table 2.9 are as follows:

• Q5: I compare what I am hearing with what I have already heard to make

sure I understand correctly.

• Q9: During or after listening, I ask myself whether the information is the

same as what I already know.

• Q21: When I have a problem in listening, I decide whether I should pay more

attention to it.

• Q32: If I have a problem in understanding, I quickly decide whether I should

continue or listen again.

• Q36: During or after listening, I check how much I have understood.

Table 2.10 shows the number and proportion of students’ responses for each ques-

tion in the Perceptual Processing strategy by the rating scale. The proportion of

students in each rating category is similar between questions 8, 24 and 34. Question

37 appears to have a different pattern to the other questions. The lower end of the

rating scale (rating 1 and 2) has a low proportion of students (13%) for question

37 compared to the other questions (26%-33%). This has been offset by the upper
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end of the rating scale where 30% of students selected rating 5 compared to the

other questions (12-17%).

Table 2.10: Perceptual Processing - number and proportion of students by question

and rating

Student Count %

Question 1 2 3 4 5 1 2 3 4 5

8 128 223 328 225 135 12% 21% 32% 22% 13%

24 93 173 328 272 173 9% 17% 32% 26% 17%

34 78 187 375 270 129 8% 18% 36% 26% 12%

37 26 166 288 309 310 3% 10% 28% 30% 30%

Note the questions for table 2.10 are as follows:

• Q8: When I listen, I repeat the words or phrases I can understand.

• Q24: If I can’t understand a word or phrase, I repeat it to myself.

• Q34: When I listen, I repeat the pronunciation of the words I have heard.

• Q37: When I listen, I pay attention to every word that is said.

Table 2.11 shows the number and proportion of students’ responses for each ques-

tion in the Inferencing strategy by the rating scale. For question 1 over half of

students (52%) selected rating 3. The other questions on the other hand, had be-

tween 32% and 40% of students selected rating 3. Question 17 and 26 both had

much higher proportions of students with rating 5 of 18% and 21% respectively

compared to the other questions being between 10% and 13%. Question 27 had a

higher proportion of students (42%) with ratings 1 and 2, offset by a lower propor-

tion of students (26%) with ratings 4 and 5. The proportions between ratings for

questions 31 and 33 are similar.
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Table 2.11: Inferencing - number and proportion of students by question and rating

Student Count %

Question 1 2 3 4 5 1 2 3 4 5

1 55 121 539 197 127 5% 12% 52% 19% 12%

4 63 171 395 276 134 6% 16% 38% 27% 13%

17 49 164 380 260 186 5% 16% 37% 25% 18%

26 66 131 333 296 213 6% 13% 32% 28% 21%

27 139 287 341 164 108 13% 28% 33% 16% 10%

31 81 225 415 217 101 8% 22% 40% 21% 10%

33 84 187 410 234 124 8% 18% 39% 23% 12%

Note the questions for table 2.11 are as follows:

• Q1: When I don’t understand something, I use my knowledge about the

English language to guess.

• Q4: When I don’t understand something, I use what I have already heard to

guess it.

• Q17: When I don’t understand something, I make several guesses.

• Q26: When I don’t understand something, I use my general knowledge to

make a guess.

• Q27: When I listen, I use my knowledge about the English language to think

about what I will hear next.

• Q31: When I don’t understand something, I quickly decide whether I should

continue or listen again.

• Q33: When I don’t understand something, I use my knowledge about the

topic to guess.
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Table 2.12 shows the number and proportion of students’ responses for each ques-

tion in the Prediction strategy by the rating scale. For all questions, rating 1 and 5

had very similar proportions of students ranging between 9% and 13%. Ratings 2

and 4 had similar proportion of students between all questions (between 19% and

23%) as well. Question 29 had the highest proportion of students scoring a rating

of 3 at 41%. This is slightly higher than the proportions in the other questions of

this rating.

Table 2.12: Prediction - number and proportion of students by question and rating

Student Count %

Question 1 2 3 4 5 1 2 3 4 5

6 125 206 359 236 113 12% 20% 35% 23% 11%

7 108 218 347 231 135 10% 21% 33% 22% 13%

13 124 197 365 236 117 12% 19% 35% 23% 11%

29 114 195 428 212 90 11% 19% 41% 20% 9%

35 106 244 379 198 112 10% 23% 36% 19% 11%

Note the questions for table 2.12 are as follows:

• Q6: When I listen, I use my knowledge about text type (for example, story,

report, etc) to think about what I will hear next.

• Q7: Before I listen to something, I think about the main idea of what I am

going to hear.

• Q13: When I listen, I use what I have already heard to think about what I

will hear next.

• Q29: When I listen, I use my knowledge about the topic to think about what

I will hear next.

• Q35: When I listen, I use my general knowledge to think about what I will

hear next.
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Table 2.13 shows the number and proportion of students’ responses for the Utili-

sation strategy by rating scale. Question 19 had the lowest proportion of students

with rating 1 and 2 at 4% and 12% respectively. The other questions had propor-

tions ranging between 7% and 11% for rating 1 and between 19% and 21% for rating

2. Question 19 has the highest proportion of students responding with a rating 4

and 5 at 31% and 20% respectively compared to the other questions. Question 20

has the highest proportion of students responding with a rating 3 at 40% compared

to other questions with between 31% and 34%.

Table 2.13: Utilisation - number and proportion of students by question and rating

Student Count %

Question 1 2 3 4 5 1 2 3 4 5

16 113 200 355 240 131 11% 19% 34% 23% 13%

19 45 126 338 323 207 4% 12% 33% 31% 20%

20 70 202 420 238 109 7% 19% 40% 23% 10%

22 101 215 317 251 155 10% 21% 31% 24% 15%

30 79 214 350 278 118 8% 21% 34% 27% 11%

Note the questions for table 2.13 are as follows:

• Q16: I try to find problems with how the speaker presented an idea so that I

can avoid the same problems.

• Q19: When I listen, I try to remember useful words and phrases so that I can

use them.

• Q20: I try to connect what I heard with my own experiences.

• Q22: After I finish listening, I make a summary in my mind about what I

heard.

• Q30: After I finish listening, I use my own words to retell what I heard in my

mind.
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Table 2.14 shows the number and proportion of students’ responses for each ques-

tion in the Socio-affective strategy by rating scale. The proportions between all the

questions within the Socio-affective strategy vary significantly. Question 25 and 38

have the lowest proportion of ratings 1 and 2 of 22% and 19%, respectively, while

they have the highest rating 5 of 23% and 33%, respectively. Question 28 appears

different to the other questions, where it has a higher proportion of students with a

rating of 2 and 3 than the other questions offset by a lower rating 4 and 5 compared

to the other questions.

Table 2.14: Socio-affective - number and proportion of students by question and

rating

Student Count %

Question 1 2 3 4 5 1 2 3 4 5

2 132 238 325 224 120 13% 23% 31% 22% 12%

10 112 207 314 237 169 11% 20% 30% 23% 16%

25 86 143 303 272 235 8% 14% 29% 26% 23%

28 139 287 341 164 108 13% 28% 33% 16% 10%

38 81 113 272 234 339 8% 11% 26% 23% 33%

Note the questions for table 2.14 are as follows:

• Q2: When I have a problem in listening, I ask my family members for help.

• Q10: When I have a problem in listening, I ask my friends for help.

• Q25: I tell myself to enjoy listening to English.

• Q28: When I have a problem in listening, I ask my teachers for help.

• Q38: I tell myself not to worry when I listen in English.
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The eight strategies can be summarised as follows:

• Self-initiation - 3 out of the 4 questions in this strategy show similar propor-

tions for each rating.

• Planning - for all 3 questions in this strategy, the proportions for each rating

is similar between questions.

• Monitoring and Evaluation - questions 9 and 36 show similar proportions for

each rating between the two questions. Same with questions 5, 21 and 32.

Proportions between these two groups of questions appear different.

• Perceptual Processing - questions 8, 24 and 34 shows similar rating propor-

tions between the questions. Proportions across ratings for question 37 appear

different to the other questions in this strategy.

• Inferencing - proportions between questions for each rating appears different.

This is especially the case for question 27 where proportions for ratings 1, 2

and 4 are different from other questions for the same rating.

• Prediction - question 29 shows different rating proportions to the other ques-

tions within this strategy. The remaining four questions have similar rating

proportions between the questions.

• Utilisation - rating proportions for the questions in this strategy are somewhat

different between questions. Question 19 has the lowest proportion in rating

1 and 2, offset by the highest proportion in rating 4 and 5. Question 20 has

the highest proportion in rating 3 compared to other questions. This is offset

by having the lowest proportion in rating 5.

• Socio-affective - rating proportions between questions are different between

all questions.
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In the next three chapters, we discuss three statistical methodologies of ordinal

data. These methods will be applied to the listening strategies dataset to investi-

gate further how well the strategies have been formed.



Chapter 3

Proportional odds model

This chapter discusses proportional odds models. Section 3.1 describes the pro-

portional odds property. Section 3.2 describes the meaning behind the coefficients

of model predictors. Section 3.3 describes the motivation behind the use of the

proportional odds model. Section 3.4 describes various methods for repeated mea-

surements. This includes the marginal approach (e.g., GEE) and subject-specific

approach (e.g., random effect models). In section 3.5, we explore a fuzzy clustering

method. Section 3.6 describes the Wald test and how it can be used for model

selection and model inferencing. Section 3.7 presents the results of the analysis

based on the different approaches of the proportional odds model.

3.1 Proportional odds property

The proportional odds model suggested by McCullagh (1980) is a class of multi-

variate generalised linear models used for the analysis of ordinal data. Let Y be

denoted as the response variable, where it is treated as a ordered categorical vari-

able.

29
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The general form of the model can be written as the following:

log

(
P (Y ≤ j)

1− P (Y ≤ j)

)
= logit[P (Y ≤ j)] = αj − β′x j = 1, ..., c− 1 (3.1)

where the response variable Y has c ordered categories and x is a set of explanatory

variables. The parameters αj are known as cutpoints, where α1 < α2 < ... < αc−1.

This model is called the proportional odds model because, for each of the c − 1

logistic regression model, they simultaneously have the same parameter β. That

is, the effect β is the same for all j.

3.2 Meaning of β

In this section, the meaning of the effect β is discussed where the predictor variable

x is continuous or discrete.

For a continuous predictor variable x and a fixed j, the response curve is a lo-

gistic regression curve for a binary response with outcomes Y ≤ j and Y > j

(Agresti 2012, p. 275). When c is, for example, equal to 4, the response curves for

j = 1, 2, and 3 have the same shape, where they share the same rate of increase or

decrease. This is because the common effect β is included in all three cumulative

logits. The size of |β| determines the gradient of the curve, where the curve would

be flatter for small |β| and steep for large |β|. The only difference is that the curves

are horizontally shifted from each other. Figure 3.1 shows cumulative probabilities

in a proportional odds model when c = 4.
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Figure 3.1: Cumulative probabilities in a proportional odds model

The proportional odds model then satisfies

logit[P (Y ≤ j|x1)]− logit[P (Y ≤ j|x2)]

= (αj − βx1)− (αj − βx2)

= β(x2 − x1)

The odds of making response ≤ j at x = x1 are exp(β(x2 − x1)) times the odds at

x = x2. The log cumulative odds ratio is proportional to the distance between x1

and x2. The same proportionality constant applies to each logit.

When the explanatory variable is a qualitative indicator variable, for example a

categorical variable with r levels, the predictor is then a factor in the model. This

model has the form

logit[P (Y ≤ j)] = αj − (τ1z1 + ...+ τr−1zr−1) j = 1, 2, ..., c− 1,

where zi = 1 for an observation in level i and zi = 0 otherwise. As a result, it

would be redundant to include an indicator variable for the final category. The

effects terms take the form of row effects. We can therefore express the model in

terms of the effect for an observation in level i as

logit[P (Y ≤ j)] = αj − τi j = 1, 2, ..., c− 1, i = 1, . . . , r − 1.
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For comparing levels a and b, the cumulative log odds ratio is

logit[P (Y ≤ j|X = a)]− logit[P (Y ≤ j|X = b)]

= (αj − τa)− (αj − τb)

= τb − τa

The cumulative log odds ratio is the same for the c− 1 possible collapsings of the

response to binary, Y ≤ j and Y > j.

3.3 Motivation of proportional odds models

A proportional odds model can be motivated by a latent continuous variable, of

which will explain why distributions of Y at different settings of explanatory vari-

ables are stochastically ordered (Agresti 2010, chp. 3).

Let Y ∗ denote an underlying latent variable, which is an unobserved continuous

variable assumed to underlie Y (Anderson & Philips 1981). For fixed values of

explanatory variables x, suppose Y ∗ has cumulative distribution function (cdf)

G(y∗− η) where values of y∗ varies around a location parameter η, such as a mean

(Agresti 2012, chp. 7). The location parameter η depends on x through η(x) = β′x

(Agresti 2010, chp. 3). Suppose that −∞ = α0 < α1 < ... < αj =∞ are thresholds

of the continuous scale such that the observed response Y satisfies

Y = j if αj−1 < Y ∗ ≤ αj

This would suggest that Y falls in category j when the latent variable falls in the

jth interval of values and as such has the form

P (Y ≤ j|x) = P (Y ∗ ≤ αj|x) = G(αj − β′x).

The link function, G−1 the inverse of the cdf of Y ∗, can be applied to P (Y ≤ j|x)

to obtain a linear predictor (Agresti 2010, chp. 3). That is,

G−1[P (Y ≤ j|x)] = αj − β′x
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When G is the cdf of the standard logistic distribution, then G−1 is the logit link

function, where G(ε) = expε /(1+expε). This shows that the logistic latent variable

model implies the model for the observed response is,

logit[P (Y ≤ j|x)] = αj − β′x

The proportional odds model is the result of this, where each cumulative probabil-

ity has the same effects.

The latent variable motivation for the proportional odds model explains why distri-

butions of Y at different settings of explanatory variables are stochastically ordered

(Agresti 2010, chp. 3). This model is sensitive to location effects but not to the

effects of the variability of Y as the explanatory variables changes (Agresti 2010,

chp. 3).

3.4 Various models for repeated measurements

Studies often observe many responses within a subject/cluster. In practice, like

the listening questionnaire, there are more than one observation for each subject.

The responses to thirty-eight questions will be treated as repeated observations on

a subject forming a cluster. Analyses of this questionnaire should take the depen-

dency among responses into account, as responses within a student are likely to be

more similar than two responses from different students.

Mainly, there are two types of approaches to model repeated ordinal categorical

data – the marginal and the subject-specific approaches (Agresti 2010). For the

marginal approach, we emphasise on the generalised estimating equations method

(Liang & Zeger 1986). These two types of approaches will be used in an analysis

of the listening clusters in a later section of this chapter.
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3.4.1 Marginal approach

At observation Yt in Y1, Y2, ..., YT on a c-category scale, the marginal response dis-

tribution can be modelled using a c−1 cumulative logits. Let Yit be the multinomial

response for subject i at time t. A model for Yit has the form

logit[P (Yit ≤ j)] = αj + β
′

jxit j = 1, ..., c− 1, t = 1, ..., T, i = 1, ..., n (3.2)

When we replace βj with β, this model takes the proportional odds form. The

marginal model now has the form

logit[P (Yit ≤ j)] = αj − β
′
xit (3.3)

For marginal models, maximum likelihood fitting is computationally cumbersome

and difficult for many datasets. This is especially the case for models with ex-

planatory variables. An alternative to this is to use a multivariate generalisation

of quasi-likelihood (Agresti 2012, chp. 11).

For a univariate response, the quasi-likelihood method specifies a model for µ =

E(Y ) and specifies a variance function v(µ) where var(Y ) depends on µ. This

model applies to the marginal distribution for each Yt.

This method requires a working correlation matrix to be selected for the responses.

The estimates for each parameter via this approach are solutions to equations that

take into account the mean and variance structure (Agresti 2010, chp. 9). These

equations are called generalised estimating equations and this method is known

as the GEE method. When the marginal model holds, the GEE estimates of the

model parameters are valid even if the working correlation structure is misspecified.

A GEE approach for proportional odds models with repeated ordinal responses was

proposed by Lipsitz et al. (1994) and Touloumis et al. (2013). For each pair of out-

come categories, a working correlation matrix is selected for the pairs of repeated
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observations (Agresti 2010, chp. 9).

Assume that MCAR holds (Rubin 1976). For each subject i, each observation Yit

can be denoted by a set of c − 1 indicator variables. The jth indicator variable

shows whether Yit falls in category j, where j = 1, 2, ..., c − 1. This is defined as

Yijt = I(Yit = j) for j = 1, 2, ..., c− 1, where I(A) denotes the indicator function of

the event A Touloumis et al. (2013). Now let yijt = 1 if observation t in subject i has

outcome j, with yijt = 0 otherwise. Let yi be the T (c−1) binary indicator for sub-

ject i for the T observations. The covariance matrix Vi for yi is a T (c−1)×T (c−1)

matrix. The covariance matrix for Vit for the c − 1 indicators for each Yit is a

(c − 1) × (c − 1) matrix block on the main diagonal of Vi. This means that the

covariance matrix Vit for yi1t, yi,c−1,t has entry vijt = P (Yijt = 1)× [1−P (Yijt = 1)]

for the cell on the main diagonal in row j and column j and −P (Yijt = 1)P (Yijt = 1)

for the cell in row h and column j where h 6= j (Agresti 2010, chp. 9).

The elements of Vi that are remaining are Cov(Yiht, Yijs), where s 6= t. These ele-

ments are not determined by the marginal multinomial covariances. For each pair

(h, j) of outcome categories, the GEE approach uses a working correlation matrix

for the pairs (Yis, Yit) of subject observations. The working covariance matrix Vi

for yi specifies a pattern for Corr(Yijt, Yihs) for each pair of outcome categories

(h, j) and each pair (s, t) of observations for a subject (Agresti 2010, chp. 9).

Let µi = E(yi) where this is a function of the model parameters β. The generalised

estimating equations of β are

u(β) =
n∑
i=1

D′iV
−1
i (yi − µi) = 0

where D′i = ∂µi/∂β.

For the covariance matrix, standard errors based on the assumed marginal and joint

structure may not be valid. This can be the case when the actual structure is quite
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different from the working structure. An example of this is when standard errors

based on independence working correlations are strongly biased when the responses

are strongly correlated (Agresti 2010, chp. 9). A more appropriate standard error

results from an adjustment made by the GEE approach when using the empirical

dependencies exhibited by the data. The standard errors based on the working cor-

relation structure are updated using this empirical dependencies to provide more

robust standard errors. These use a sandwich covariance matrix that is based on

the product of three matrices.

By substituting µ̂i from the model fit in Di and Vi, and replacing Cov(Yi) by

the empirical covariance matrix of yi, the empirical adjusted sandwich covariance

matrix for the GEE estimator β̂ can be estimated. This is estimated by

[
n∑
i=1

D′iV
−1
i Di]

−1[
n∑
i=1

D′iV
−1
i Cov(Yi)V

−1
i Di][

n∑
i=1

D′iV
−1
i Di]

−1

Due to the computational simplicity of the GEE method compared to the maximum

likelihood, it is often a more appealing method to use. However, as this approach

does not completely specify a joint distribution, it does not have a likelihood func-

tion (Agresti 2012, chp. 11). As likelihood based methods are not available for

inferencing, a Wald statistic can be used instead. A Wald statistic is constructed

with the asymptotic normality of the estimators as well as their estimated covari-

ance matrix (Agresti 2012, chp. 11). The Wald statistic is used in the Wald test

for both model selection and model inferencing. This will be described in a later

section of this chapter.

3.4.2 Subject-specific approach

An alternative approach to the marginal approach for clustered ordinal data is a

subject-specific approach. For this approach, the linear predictor of a model con-

tains subject effects terms.
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Let Yit denote the response for subject i at time t. The extension of equation (3.3)

then has the form

logit[P (Yit ≤ j|ui)] = ui − αj − β
′
xit (3.4)

where ui is the subject effects term. The subject effects term is unobserved and

so is unknown. It takes the same value for each observation in a subject/cluster,

but takes a different value for different clusters (Agresti 2012, chp. 12). Usually

the assumption for ui is that it varies from cluster to cluster according to a normal

distribution with variance σ2
u. The model is a type of random effect models.

When response variables are continuous (assumed to be normal distributed), we can

treat the subject effect terms as either fixed or random in a general linear model.

For binary responses, if the subject effect terms are treated as fixed in a logistic

regression model, the unconditional maximum likelihood estimators for β are not

consistent (Ghosh 1995). It happens whenever the number of parameters grows at

the same rate as the sample size (Neyman & Scott 1948). A similar problem occurs

for proportional odds models (Liu & Agresti 1996). Because of it, we only consider

random effect models in the subject-specific approach.

The overall intercept term is of the form ui−αj. This allows the subjectivity of the

choices of subjects for outcome categories by allowing the ordinal scale cutpoints

to vary amongst the subjects (Wolfe & Firth 2002).

Parameter interpretations for a subject-specific model is different to a marginal

model (Agresti 2012, chp. 12). A subject-specific model has conditional interpreta-

tions. There are two types of conditional interpretations, within-cluster effect and

between-cluster effect.

The effect of an explanatory variable is a within-cluster effect when the coefficient of
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the explanatory variable refers to the effect on the response from a subject (Agresti

2010, chp. 10). An example of this is in a study when comparing T treatments,

treatment varies from observation to observation in the T many clusters of obser-

vations.

A between-cluster effect is when the coefficient of an explanatory variable is a con-

sistent value among the observations in a cluster (Agresti 2010, chp. 10). For

example, when each subject is a cluster, and the subjects gender may be the ex-

planatory variable. The gender coefficient is the same for all observations for each

subject, however, between clusters, the gender coefficient varies.

It is due to these two cluster effects that the random effects model are conditional

models. Both the within-clusters and the between-clusters effects apply condi-

tionally on the random effect value. This is different to the interpretation of the

marginal model described previously, where the effects are averaged over all clusters.



3.5. FUZZY BICLUSTERING METHOD 39

3.5 Fuzzy biclustering method

Suppose we are not aware of the eight clusters described by Linguistics theory and

just have the thiry-eight questions. We could use a fuzzy biclustering method based

on proportional odds models to find the clusters for questions and for students si-

multaneously. That is, we can identify the groups of students or questions with

similar responses.

Many cluster analysis methods for ordinal data use matrix decomposition and eigen-

values for dimension reduction which incorrectly treats the ordinal data as a con-

tinuous measurement (Kaufman & Rousseeuw 1990, Lewis et al. 2003). There are

model based clustering methods as well. Majority of model based clustering meth-

ods deal with one-dimensional groupings and focus on responses that are either

continuous or categorical with no ordering nature (Melnykov 2003).

To group the thirty eight listening questions and students, a cluster method pro-

posed by Matechou et al. (2011) and Pledger & Arnold (2013) is used. We call

the method the fuzzy biclustering method. This method is purely based on model

fitting and uses the proportional odds model to simultaneously cluster the rows

(e.g., students) and columns (e.g., questions) of ordered categorical response data.

Suppose that the rows come from a finite mixture with R row groups and the

columns come from a finite mixture with G column groups. If cell i, k belongs to

row group r and column group g, then under the proportional odds model

logit[P (Yik ≤ j)] = αj − µi − βk

where αj is the jth cut-off point, with α1 < α2 < ... < αc−1 and µi, βk are the effect

of row i and column k, respectively, the model becomes

logit[P (Yik ≤ j)] = αj − µr − βg
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However, row and column group memberships are latent unobserved variables. We

therefore define Zir and Xkg, indicator variables for group membership of row i in

row group r are column k in column group g, respectively. The posterior probability

that row i belongs to row group r is

E(Zir) = zir,
R∑
r=1

zir = 1 ∀i

The posterior probability that column k belongs to column group g is

E(Xkg) = xkg,
G∑
g=1

xkg = 1 ∀k

zir and xkg are obtained during the E-step of the Expectation-Maximisation (EM)

algorithm as follows

ẑir =

π̂r
p∏

k=1

G∑
g=1

κ̂g
q∑
j−1

θ̂
I(yik=j)
rgj

R∑
a=1

π̂a
p∏

k=1

G∑
b=1

κ̂b
q∑
j−1

θ̂
I(yik=j)
abj

and

x̂kg =

κ̂g
n∏
i=1

R∑
r=1

π̂r
q∑
j−1

θ̂
I(yik=j)
rgj

G∑
b=1

κ̂b
n∏
i=1

R∑
a=1

π̂a
q∑
j−1

θ̂
I(yik=j)
abj

where π̂r and κ̂g correspond to the estimated proportion of rows that belong to

row group r and the estimated proportion of columns that belong to column group

g, respectively,
R∑
r=1

π̂r =
G∑
r=1

κ̂g = 1. These proportions are estimated during the

M-step of the algorithm by

π̂r =
n∑
i=1

ẑir/n

and

κ̂g =

p∑
k=1

x̂kg/p

The fuzzy biclustering method was fitted to the listening questionnaire data with

responses from 1,039 students and thirty eight questions. Each student represented

a row and each question a column. We fitted various models with R = 3, 4, 5 and
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G = 4, 5, 6 using the R programme provided by Matechou et al. (2011). Using the

model selection criterion AIC (Akaike information criterion), the model with R = 4

and G = 5 is the best. Because the detail of the analysis is beyond the focus of this

thesis, we only report the result from the model with R = 4 and G = 5. This means

that 1,039 students can be divided into 4 row clusters, where the students within

each row cluster are more similar than students in other row clusters. The same

goes for the five column clusters, where the questions within each column cluster

are more similar than the questions in the other column clusters.

The columns are split into five clusters and they consist of the following questions:

1. Questions 5, 18 snd 19

2. Questions 21, 37 and 38

3. Questions 14, 17, 25, 26 and 32

4. Questions 2, 6, 7, 8, 13, 16, 27, 28, 29, 31 and 35

5. Questions 1, 3, 4, 9, 10, 11, 12, 15, 20, 22, 23, 24, 30, 33, 34 and 36.

The rows are split into four clusters where cluster one consists of 105 students, clus-

ter two consists of 381 students, cluster three consists of 104 students and cluster

four consists of 449 students.
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3.6 Wald test

As the GEE method is not a likelihood-based method, we cannot use the likeli-

hood ratio test for the model effects. In this section, we will review and describe

the Wald test that will be used for model selection and to make inferences about

the questions in each strategy. The Wald test is used to test the significance and

difference of an explanatory variable in a statistical model.

If for a particular explanatory variable, or a group of explanatory variables, the

Wald test is significant, then we would concluded that the parameter associated

with these variables is not zero (Agresti 2012). This would mean that the variable

should be included in the model. If the Wald test is not significant, this suggests

that the parameter associated with these variables is zero. We can conclude from

this that the explanatory variable can be omitted from the model.

We will first illustrate the Wald test with a single parameter. Let γ denote an

arbitrary parameter, that has null hypothesis of H0 : γ = γ0. Let γ̂ denote the

estimator, and SE be the standard error of γ̂. When H0 is true, the test statistic

z = (γ̂ − γ0)/SE

has approximately a standard normal distribution and z2 has approximately a chi-

squared distribution with df = 1 (Agresti 2007, p. 11). This test statistic is called

the Wald statistic.

The multivariate extension for the Wald test, which will be used for model selection

and inferencing, has test statistic

Z2 = (γ̂ − γ0)
T [cov(γ)]−1(γ̂ − γ0) (3.5)

Since γ̂ has asymptotic multivariate normal distribution, this implies an asymp-

totic chi-squared distribution for Z. The df equals the rank of cov(γ̂), which is the
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number of non-redundant parameters in γ (Agresti 2012, p. 11).

The Wald test will be used for the proportional odds repeated measures models in

the backward elimination model selection.

Model Selection

Model selection methods aim at determining submodels with parameters that fit

the data adequately. We can do the Backward elimination model. This method

starts with the full model, where it contains all explanatory variables, and then

gets tested against a submodel. The submodel is obtained by removing param-

eters associated with certain variables. At each stage of the selection, it selects

the parameter for which its removal has the least damaging effect on the model.

This procedure is stopped when any further removal of a term leads to significantly

poorer fit (Agresti 2012, p. 214).

Statistical significance should not be the only criterion for including a term in a

model. It is reasonable to include a variable that is the main focus of the study and

report its estimated effects, even if it is not statistically significant (Agresti 2012,

p. 214).

For each of the eight strategies, the main focus is on testing whether the quesitons

within the strategy are significantly different by controlling other factors. For each

models, the question, the primary school, gender and ethnicity of the students are

used as explanatory variables. As all three factor interactions for our data are not

significant, we demonstrate the backward elimination model selection starting from

a model with two factor interactions containing the question term. Consider the

model with Q+C +G+H +Q : C +Q : G+Q : H, where Q is the question term,

C is the ethnicity term, G is the gender term and H is the school term.
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For model selection, the highest order terms for each variable will be tested first. It

would not be appropriate to remove a main effect term if the model has interactions

with that term (Agresti 2012, p. 214).

For all our models, we first test to remove a two factor interaction from the complex

model. Each removal of a term is tested until further deletion of a term leads to a

significantly poorer fit or the question term is the last term in the model to test.

Because the question effects within each strategy are the main focus of this research,

if they are not statistically significant, they will still remain a part of the final model.

We will use the Self-initiation strategy as an example of model selection for the

model Q+ C +G+H +Q : C +Q : G+Q : H.

The full model for the GEE method to the proportional odds model has the form

logit[P (Yit ≤ j)] = αj−β′QxQt −β′CxCi −β′GxGi +β′HxHi −β′QCxQCit −β′QGxQGit −β′QHxQHit

where αj are the cutpoints and j = 1, 2, 3, 4. Let xQt denote the questions within the

Self-initiation strategy, xCi denote the ethnicity for student i, xGi denote the gender

for student i and xHi denote the school for student i. The full model includes the

interaction terms between the question and ethnicity, question and gender, and

question and school. When this model is fitted, the Wald test is used to see which

of the explanatory variables are necessary for the model to fit well.
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Table 3.1: Stages of model selection for Self-initiation strategy using the GEE

approach

Stage Terms Wald Statistic df P-value

1 Q×G 3.8 3 0.29

Q× C 1.1 3 0.78

Q×H 0.82 15 1.0

2 Q×G 6.1 3 0.11

Q× C 2.6 3 0.46

H 5.3 5 0.38

3 Q×G 6.8 3 0.08

C 6.8 1 0.009

H 5.3 5 0.38

4 Q×G 6.6 3 0.09

C 16.3 1 < 0.0001

5 G 2.1 1 0.15

C 16.3 1 < 0.0001

6 C 17.5 1 < 0.0001

Table 3.1 shows the explanatory terms at each stage of model selection for the GEE

approach. At stage 1, the interaction term between the questions and school, Q : H,

show the highest level of no evidence against the null hypothesis. This suggests the

interaction term may be removed from the model. At each stage, a term is removed

with the least evidence (highest p-value), until all terms are significant at the 5%

level. Exception is given to the question term Q. At the end of this process, the

ethnicity term is the only term that shows significant evidence against the null

hypothesis of a difference. The model best fitted to the data for the Self-initiation

strategy has the form

logit[P (Yit ≤ j)] = αj − β′QxQt − β′CxCi

where the gender, school and interaction terms are not included.
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The same method of model selection is used for the subject-specific (random effects)

approach to the proportional odds model. The full model for this approach has the

form

logit[P (Yit ≤ j)|ui] = ui−αj−β′QxQt −β′CxCi −β′GxGi +β′HxHi −β′QCxQCit −β′QGxQGit −β′QHxQHit

where i is the ith student and ui is the student random effects term.
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3.7 Analysis

Techniques and methods have been discussed in Section 3.4 to check whether the

questions within strategies suggested by Linguistics theory are similar. It they are

similar, there should be no differences between questions by controlling on other

possible factors. The results in applying these techniques are discussed in this

section. Subsection 3.7.1 describes how the dataset was coded to be able to ap-

ply the approaches described in section 3.4 to the data. Subsection 3.7.2 looks at

differences between questions within strategies using the marginal approach (GEE

method) and the subject-specific approach (random effect models) applied to pro-

portional odds models.

These approaches dicussed in this section are fitted using the statistical software, R.

Appendix B shows how to use the ordLORgee function (Touloumis 2013, Touloumis

et al. 2013) for the GEE method in the marginal approach and clmm function

(Christensen 2013) for the subject-specific approach.

3.7.1 Data coding

The following steps describe how the data were coded to allow the application of

the different approaches of the proportional odds model to the data.

1. Every student is allocated an ID number (1 to 1,039).

2. Each ID number is replicated thirty eight times. This is because there are

thirty eight questions in the questionnaire. This will give a total of 39,482

rows.

3. The response variables are computed where each student’s responses to the

questions are transposed. This is so all of the answers are in one column.

Each ID number will therefore have thirty eight responses.
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4. Eight columns are computed to represent the questions for the eight listening

strategies. For example, a column was created for the Self-initiation strategy

questions. This strategy has four questions. For each student, responses for

questions 11, 12, 14 and 18 are allocated a value 1, 2, 3 and 4 respectively.

All other questions are allocated a zero. This is done for the remaining seven

strategies.

5. The gender, ethnicity and school of the student is then added to the dataset.

Due to few observations for Malay and Indian students, we only consider two

ethnicity groups. The first group includes Chinese and Eurasian ethnicity,

and will be called ‘Chinese’ as majority of the students in this group are

of Chinese ethnicity. The second group includes Malay, Indian and Other

ethnicity, and will be called ‘Other’. The school has 8 levels, representing 8

schools.

3.7.2 Linguistics listening strategies

The Self-initiation strategy has four questions:

Q11: To improve my listening in English, I watch English TV programmes.

Q12: I look for opportunities to listen in English.

Q14: I try to find out how to improve my listening in English.

Q18: When I’m free, I find interesting things to listen to in English (for example,

TV, radio, etc).

The best fit model for the Self-initiation strategy using the backward elimination

model selection, includes the question, gender and ethnicity terms. There are no

significant interactions between question and gender (Q : G); question and school

(Q : H); and question and ethnicity (Q : C). Table 3.2 shows how similar the ques-

tions are within the strategy for two appraoches. There is strong evidence against
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the null hypothesis of no difference. This means there are strong differences be-

tween questions within this strategy.

Table 3.2: Self-initiation strategy

Model Wald Statistic Degree of Freedom P-value

GEE approach 14.31 3 0.0025

Subject-specific approach 13.62 3 0.0035

The Planning strategy has three questions:

Q13: When I listen, I use what I have already heard to think about what I will

hear next.

Q15: Before I listen to something, I ask myself whether it is important to me.

Q23: Before I start listening, I decide if I need to pay attention to details or to the

main idea.

Table 3.3 shows the question effects for the Planning strategy. Both the GEE ap-

proach and subject-specific approach shows no evidence to reject the null hypothesis

of no difference between questions. This suggests there are no significant differences

between the questions within this strategy.

Table 3.3: Planning strategy

Model Wald Statistic Degree of Freedom P-value

GEE approach 1.62 2 0.4439

Subject-specific approach 1.41 2 0.4944

The Monitoring and Evaluation strategy has five questions:

Q5: I compare what I am hearing with what I have already heard to make sure I

understand correctly.
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Q9: During or after listening, I ask myself whether the information is the same as

what I already know.

Q21: When I have a problem in listening, I decide whether I should pay more

attention to it.

Q32: If I have a problem in understanding, I quickly decide whether I should con-

tinue or listen again.

Q36: During or after listening, I check how much I have understood.

Table 3.4: Monitoring and Evaluation strategy

Model Interaction Wald Statistic Degree of Freedom P-value

GEE approach Chinese 15.98 4 0.0031

Other 42.71 4 < 0.0001

Subject-specific approach Chinese 15.50 4 0.0038

Other 44.38 4 < 0.0001

Table 3.4 shows the question effects for the Monitoring and Evaluation strategy.

The GEE approach and subject-specific approach had the Q : E interaction term

significant and so there is a difference between the two ethnicity groups for the

question effects. Both approaches shows significant evidence to reject the null hy-

pothesis of no difference between questions for both ethnicity groups. This suggests

there are significant differences between the questions within the strategy.

The Perceptual Processing strategy has four questions:

Q8: When I listen, I repeat the words or phrases I can understand.

Q24: If I can’t understand a word or a phrase, I repeat it to myself.

Q34: When I listen, I repeat the pronunciation of the words I have heard.

Q37: When I listen, I pay attention to every word that is said.
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Table 3.5: Perceptual Processing strategy

Model Wald Statistic Degree of Freedom P-value

GEE approach 110.13 3 < 0.0001

Subject-specific approach 109.07 3 < 0.0001

Table 3.5 shows the question effects for the Perceptual Processing strategy. Both

the GEE approach and subject-specific approach shows significant evidence to re-

ject the null hypothesis of no difference between questions. This suggests there are

significant differences between the questions within the strategy.

The Inferencing strategy has seven questions:

Q1: When I don’t understand something, I use my knowledge about the English

language to guess.

Q4: When I don’t understand something, I use what I have already heard to guess

it.

Q17: When I don’t understand something, I make several guesses.

Q26: When I don’t understand somthing, I use my general knowledge to make a

guess.

Q27: When I listen, I use my knowledge about the English language to think about

what I will hear next.

Q31: When I don’t understand something, I quickly decide whether I should con-

tinue or listen again.

Q33: When I don’t understand something, I use my knowledge about the topic to

guess.
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Table 3.6: Inferencing strategy

Model Wald Statistic Degree of Freedom P-value

GEE approach 1.31 6 0.9709

Subject-specific approach 1.51 6 0.9587

Table 3.6 shows the question effects for the Inferencing strategy. Both the GEE

approach and subject-specific approach shows no evidence to reject the null hy-

pothesis of no difference between questions. This suggests there are no significant

differences between the questions within this strategy.

The Prediction strategy has five questions:

Q6: When I listen, I use my knowledge about text type (for example, story, report,

etc) to think about what I will hear next.

Q7: Before I listen to something, I think about the main idea of what I am going

to hear.

Q13: When I listen, I use what I have already heard to think about what I will

hear next.

Q29: When I listen, I use my knowledge about the topic to think about what I will

hear next.

Q35: When I listen, I use my general knowledge to think about what I will hear

next.

Table 3.7: Prediction strategy

Model Wald Statistic Degree of Freedom P-value

GEE approach 0.01 4 1.0

Subject-specific approach 0.04 4 0.9998
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Table 3.7 shows the question effects for the Prediction strategy. Both the GEE

approach and subject-specific approach shows no evidence to reject the null hy-

pothesis of no difference between questions. This suggests there are no significant

differences between the questions within this strategy.

The Utilisation strategy has five questions:

Q16: I try to find problems with how the speaker presented an idea so that I can

avoid the same problems.

Q19: When I listen, I try to remember useful words and phrases so that I can use

them.

Q20: I try to connect what I heard with my own experience.

Q22: After I finish listening, I make a summary in my mind about what I heard.

Q30: After I finish listening, I use my own words to retell what I heard in my mind.

Table 3.8: Utilisation strategy

Model Wald Statistic Degree of Freedom P-value

GEE approach 17.89 4 0.0013

Subject-specific approach 19.87 4 0.0005

Table 3.8 shows the question effects for the Utilisation strategy. Both approaches

shows significant evidence to reject the null hypothesis of no difference between

questions. This suggests there are significant differences between the questions

within the strategy.

Lastly, the Socio-affective strategy has five questions:

Q2: When I have a problem in listening, I ask my family members for help.

Q10: When I have a problem in listening, I ask my friends for help.
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Q25: I tell myself to enjoy listening to English.

Q28: When I have a problem in listening, I ask my teachers for help.

Q38: I tell myself not to worry when I listen to English.

Table 3.9: Socio-affective strategy

Model Wald Statistic Degree of Freedom P-value

GEE approach 63.66 4 < 0.0001

Subject-specific approach 56.66 4 < 0.0001

Table 3.9 shows the question effects for the Socio-affective strategy. Both ap-

proaches shows significant evidence to reject the null hypothesis of no difference

between questions. This suggests there are significant differences between the ques-

tions within the strategy.

For Self-initiation, Utilisation, Monitoring and Evaluation, Perceptual Processing

and Socio-affective strategies, there is significant evidence of a difference between

questions. The following tables (Tables 3.10 - 3.15) will explore further showing

which questions, if any, amongst these strategies is similar to one another.
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Table 3.10 shows the pairwise question effects within the Self-initiation strategy for

the different approaches to the proportional odds model. Following the notations

in Model (3.6), the table shows βQk − β
Q
k′ for k 6= k′ = 11, 12, 14, 18. Notice that

βQ11 = 0, because level 1 is the reference level in the R output (shown in Appendix

B). For both approaches there appears to be no evidence of a difference between

questions 11 and 12. Question 11 and 12 ask students about the opportunities

taken to improve listening in English. It is reasonable for there to be no evidence

of a difference between these two questions, as both are asking a similar question.

All other pairwise questions have significant evidence that the pairwise questions

are different.

Table 3.10: Self-initiation strategy question effects
GEE approach

11 12 14 18

11 - 0.0527 -0.2356(***) -0.4409(***)

12 - - -0.2883(***) -0.4936(***)

14 - - - -0.2053(***)

18 - - - -

Subject-specific approach

11 12 14 18

11 - 0.0718 -0.2954(***) -0.5145(***)

12 - - -0.3672(***) -0.5863(***)

14 - - - -0.2191(***)

18 - - - -

1

1∗ ∗ ∗ : significant at the 0.1% level
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Table 3.11 shows the pairwise question effects for the Utilisation strategy from the

proportional odds model with random effects and GEE model. Following the no-

tations in Model (3.6), the table shows βQk − β
Q
k′ for k 6= k′ = 6, 7, 13, 29, 35.

Table 3.11: Utilisation strategy question effects
Subject-specific approach

6 7 13 29 35

6 - 0.8524(***) 0.0570 0.1260 0.1281

7 - - -0.7954(***) -0.7264(***) -0.7243(***)

13 - - - 0.0690 0.0711

29 - - - - 0.0021

35 - - - - -

GEE approach

6 7 13 29 35

6 - -0.6804(***) -0.0462 -0.1004 -0.0981

7 - - 0.6342(***) 0.5800(***) 0.5823(***)

13 - - - -0.0542 -0.0519

29 - - - - 0.0023

35 - - - - -

Both approaches show there is no evidence of a difference between questions:

• 6 and 13,

• 6 and 29,

• 6 and 35,

• 13 and 29,

• 13 and 35, and

• 29 and 35.
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The remaining pairwise questions show extremely strong evidence that there is a

difference between them.

Table 3.12: Monitoring and Evaluation strategy question effects for Chinese stu-

dents
GEE approach

5 9 21 32 36

5 - 0.1821(*) 0.0129 0.3778(***) 0.4569(***)

9 - - -0.1692(*) 0.1957(*) 0.2748(***)

21 - - - 0.3649(***) 0.4440(***)

32 - - - - 0.0791

36 - - - - -

Subject-specific approach

5 9 21 32 36

5 - -0.2392(*) -0.0045 -0.4476(***) -0.5332(***)

9 - - 0.2347(*) -0.2084(*) -0.2940(***)

21 - - - -0.4431(***) -0.5287(***)

32 - - - - -0.0856

36 - - - - -

2

For the Monitoring and Evaluation strategy, there are significant interaction effects

between the question and ethnicity. That is, for the Chinese group, the difference

between questions is not the same as the one for the Other group.

Table 3.12 shows the pairwise question effects for the Monitoring and Evaluation

strategy from the GEE approach and subject-specific approach to the proportional

odds model for Chinese group. Following the notations in Model (3.6), the table

shows (βQk − β
Q
k′) with k 6= k′ = 5, 9, 21, 32, 36 for the Chinese group. Notice that

2∗ : significant at the 5% level
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the level 1 (Chinese) is the reference level. Similarly, βQ5 = 0. Both models show

no evidence of a difference between pairwise questions 5 and 21, and 32 and 36. All

other pairwise questions show evidence of a difference between them.

Table 3.13: Monitoring and Evaluation strategy question effects for Other students
GEE approach

5 9 21 32 36

5 - 0.5638(***) 0.4504(***) 0.9141(***) 0.7153(***)

9 - - -0.1134 0.3503(***) 0.1515

21 - - - 0.4637(***) 0.2649(***)

32 - - - - -0.1988(**)

36 - - - - -

Subject-specific approach

5 9 21 32 36

5 - -0.6968(***) -0.5321(***) -1.0935(***) -0.8600(***)

9 - - 0.1647(*) -0.3967(***) -0.1632(*)

21 - - - -0.5614(***) -0.3279(***)

32 - - - - 0.2335(**)

36 - - - - -

3

Table 3.13 shows the pairwise question effects for the Monitoring and Evaluation

strategy for the Other ethnicity group from the GEE approach and subject-specific

approach to the proportional odds model. Following the notations in Model (3.6),

the table shows (βQk −β
Q
k′)+(βQCk −β

QC
k′ ) with k 6= k′ = 5, 9, 21, 32, 36 for the Other

group. These two models show different results. The subject-specific approach

shows that all pairwise question effects have evidence of a difference between the

questions. There are no pairwise questions that are similar to each other. The GEE

approach shows that there is no evidence of a difference between pairwise questions

3∗∗ : significant at the 1% level
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9 and 21, and 9 and 36. The remaining pairwise questions all show strong evidence

of a difference between the questions.

Table 3.14: Perceptual Processing strategy question effects
GEE approach

8 24 34 37

8 - -0.3683(***) -0.2520(***) -1.1427(***)

24 - - 0.1163 -0.7744(***)

34 - - - -0.8907(***)

37 - - - -

Subject-specific approach

8 24 34 37

8 - 0.4371(***) 0.2988(***) 1.3786(***)

24 - - -0.1383 0.9415(***)

34 - - - 1.0798(***)

37 - - - -

Table 3.14 shows the pairwise question effects for the Perceptual Processing strat-

egy for both approaches to the proportional odds model. Following the notations

in Model (3.6), the table shows βQk − β
Q
k′ for k 6= k′ = 8, 24, 34, 37. They show the

same result where there is no significant evidence of a difference between pairwise

questions 24 and 34. All other pairwise question effects show extremely strong ev-

idence of a difference between questions.
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Table 3.15: Socio-affective strategy question effects
GEE approach

2 10 25 28 38

2 - -0.2492(***) 0.2141(***) -0.6648(***) -0.9856(***)

10 - - 0.4633(***) -0.4156(***) -0.7364(***)

25 - - - -0.8789(***) -1.1997(***)

28 - - - - -0.3208(***)

38 - - - - -

Subject-specific approach

2 10 25 28 38

2 - 0.2762(***) -0.2550(***) 0.7502(***) 1.1269(***)

10 - - -0.5312(***) 0.4740(***) 0.8507(***)

25 - - - 1.0052(***) 1.3819(***)

28 - - - - 0.3767(***)

38 - - - - -

Table 3.15 shows the pairwise question effects for the Socio-affective strategy for

both approaches to the proportional odds model. Following the notations in Model

(3.6), the table shows βQk − β
Q
k′ for k 6= k′ = 2, 10, 25, 28, 38. All pairwise question

effects have extremely strong evidence of a difference. No pairwise questions appear

similar.



Chapter 4

Structural equation models

4.1 Structural equation models

Structural equation models (SEM) is a method that takes a hypothesis testing ap-

proach to the analysis of a structural theory. The structural theory is generally

based on some principle and represents “causal” processes that generate observa-

tions on multiple variables (Bentler 1988). Two important attributes of this method

is that (a) the causal processes under study are represented by a series of structural

equations and (b) that these structural relations can be modelled as a diagram to

allow a clearer concept of the theory that is being studied (Byrne 2006, chp. 1).

To determine to what extent the hypothesised model is consistent with the data, it

can be tested in a simultaneous analysis of the system of variables. If the goodness-

of-fit of the model is adequate, it suggests that the assumed relations among the

variables is plausible. Otherwise, if it is not adequate, plausibility of such relation-

ships is rejected (Byrne 2006, chp. 1).

61
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Key aspects of SEM can be summarised as the following (Byrne 2006, chp .1):

• Takes a confirmatory (hypothesis driven) approach to data analysis

• Provides explicit estimates of error variance parameters

• Incorporates both latent and observed variables

• Allows the modelling of multivariate relations, estimating point and/or inter-

val indirect effects.

Before describing SEM models, concepts associated with the method are explained

in more detail.

4.2 Basic concepts used in structural equation

models

In this section, concepts associated with the SEM model are described. Concepts

include latent and observed variables, exogenous and endogenous latent variables,

factor analytic models, ordinal variables and polychoric correlation.

4.2.1 Latent and observed variables

Researchers are often interested in studying theoretical concepts that cannot be

observed directly. These concepts are known as latent variables or factors. An

example of latent variables are the eight listening strategies being analysed in this

thesis.

As latent variables are not observed directly, they cannot be measured directly.

As a result, the latent variables must be defined in terms of the behaviour the

researcher believes represents it. As such an observed variable is linked to the la-

tent variable. They serve as indicators of the underlying concepts that they are
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presumed to represent. This enables the measurement of the unobserved variable

possible (Byrne 2006, chp. 1).

In the data that we are analysing, the thirty eight questions answered in the survey

are the observed variables and the eight listening strategies are the unobserved

latent variables.

4.2.2 Exogenous and endogenous latent variables

Here we distinguish between latent variables that are exogenous and endogenous.

Exogenous latent variables are the same as independent variables. They can cause

variation in the values of the other latent variables in the model. These variations

are not explained by the model. Rather, they are considered to be influenced by

other factors external to the model (Byrne 2006, chp.1). Variables such as gender

and age are examples of these external factors.

Endogenous latent variables are the same as dependent variables. They are influ-

enced by the exogenous latent variables in the model, either directly or indirectly.

The variations in the values of endogenous variables are said to be explained by

the model. This is because all of the latent variables that influence the endogenous

variables are included in the model specification (Byrne 2006, chp. 1).

4.2.3 The factor analytic model

Factor analysis is a well known statistical procedure for investigating relationships

between sets of observed and unobserved variables. This procedure allows the

examination of the covariance among a set of observed variables. This enables in-

formation to be gathered on their underlying latent concepts.

There are two basic types of factor analytic models: exploratory factor analysis

(EFA) and confirmatory factor analysis (CFA). Both these models concentrate on
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how and to what extent the observed variables are linked to their underlying latent

variables. In this thesis we will concentrate on the CFA model.

4.2.4 Ordinal variables

Let y1, y2, ..., yp be p ordinal variables. It is assumed that there is a continuous vari-

able y∗i underlying the ordinal variable yi (Muthén 1984, Lee et al. 1990, Jöreskog

1990). This continuous variable y∗i represents the attitude underlying the ordered

responses to yi and is assumed to have a range from −∞ to +∞ (Yang-Wallentin

et al. 2010). Notice that the notations used in this section are slightly different from

the notations in the proportional odds model. Because this chapter illustrates a

different approach, we decided to use the notations consistent with Yang-Wallentin

et al. (2010).

The underlying variable y∗i is unobservable and the ordinal variable yi is observed.

For an ordinal variable yi with mi categories, the association between the ordinal

variable yi and the underlying variable y∗i is

yi = c ⇐⇒ τ
(i)
c−1 < y∗i < τ (i)c c = 1, 2, ...,mi

where

τ
(i)
0 = −∞, τ

(i)
1 < τ

(i)
2 < ... < τ

(i)
mi−1, τ (i)mi

= +∞

are the threshold parameters. For variable yi with mi categories, there are mi − 1

strictly increasing threshold parameters τ
(i)
1 , τ

(i)
2 , ..., τ

(i)
mi−1 (Yang-Wallentin et al.

2010).

As the only ordinal information available is from yi, the distribution of y∗i is de-

termined only up to a monotonic transformation. Let y∗i have a standard normal

distribution with density function ψ(.) and distribution function Ψ(.). Then the
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probability , πic, of the response, yi, being in category c is

π(i)
c = Pr[yi = c] = Pr[τ

(i)
c−1 < y∗i < τ (i)c ] =

∫ τ
(i)
c

τ
(i)
c−1

ψ(u)du = Ψ(τ (i)c )−Ψ(τ
(i)
c−1)

for c = 1, 2, ...,mi−1, so that

τ (i)c = Ψ−1(π
(i)
1 + π

(i)
2 + ...+ π(i)

c )

where Ψ−1 is the inverse of the standard normal distribution function. The quantity

(π
(i)
1 + π

(i)
2 + ...+ π

(i)
c ) is the probability of a response being in category c or lower

(Yang-Wallentin et al. 2010).

The probabilities π
(i)
c are unknown population quantities, but can be estimated by

the corresponding proportions p
(i)
c of responses in category c on variable yi. Thus,

estimates of the thresholds can be obtained as

τ (i)c = Ψ−1(p
(i)
1 + p

(i)
2 + ...+ p(i)c ) c = 1, 2, ...,mi−1 (4.1)

The quantity (p
(i)
1 + p

(i)
2 + ... + p

(i)
c ) is the proportion of observations in the data

responding in category c or lower on variable yi (Yang-Wallentin et al. 2010).

4.2.5 Polychoric correlation

The polychoric correlation coefficient matrix is largely used to replace the covari-

ance matrix. This helps with the estimation of the structural equation model

parameters. The matrix estimates the linear relationship between two unobserved

continuous variables underlying two ordinal variables (Flora & Curran 2004).

Let yi and yj be two ordinal variables with mi and mj categories respectively. Their

marginal distribution in the data is represented by a contingency table
n
(ij)
11 n

(ij)
12 · · · n

(ij)
1mj

n
(ij)
21 n

(ij)
22 · · · n

(ij)
2mj

...
...

. . .
...

n
(ij)
mi1

n
(ij)
mi2

· · · n
(ij)
mimj


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where nijab is the number of observations in the data in category a on variable yi

and in category b on variable yj. The underlying variable y∗i and y∗j are assumed

to be bivariate normal with zero means, unit variance and with correlation ρij, the

polychoric correlation (Yang-Wallentin et al. 2010).

Let τ
(i)
1 , τ

(i)
2 , ..., τ

(i)
mi−1 be the thresholds (as described in section 4.2.4) for variable

y∗i and let τ
(j)
1 , τ

(j)
2 , ..., τ

(j)
mi−1 be the thresholds for variable y∗j . The polychoric cor-

relations can be estimated by maximising the log-likelihood of the multinomial dis-

tribution (see Olsson (1979) for more detail). Maximising the log-likelihood gives

the sample polychoric correlation denoted as rij.

The polychoric correlation can be estimated by a two step procedure (Olsson 1979).

In the first step, the thresholds are estimated from the univariate marginal distri-

butions by equation 4.1. The second step involves the estimation of the polychoric

correlations from the bivariate mardinal distributions by maximising log-likelihood

for given thresholds (Yang-Wallentin et al. 2010).
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4.3 Confirmatory factor analysis with ordinal vari-

ables

Confirmatory factor analysis (CFA) is a theory or hypothesis driven method. It is

often used when there is some knowledge of the underlying latent variable struc-

ture. This can be based on knowledge of theory or empirical research. Using this

knowledge, relationships between the observed measures and the underlying factors

can be tested. As this method is solely based on the link between factors (latent

variables) and their observed variables, it represents what is termed a measurement

model (Byrne 2006, chp .1).

The main task in model testing, is to establish the goodness-of-fit between the

hypothesised model and the sample data. As such, the structure of the hypothesised

model is fitted to the sample data and then tested to see how well the observed

data fit the constrained structure. The likelihood that the hypothesised structure

will be a perfect fit to the observed data is highly unlikely. As a result, there is

a differential between the two that is known as the residual (Byrne 2006, chp. 1).

The model fitting process is summarised as follows:

Data = Model +Residual

where:

• Data is the score measurements related to the observed variables.

• Model is the hypothesised structure linking the observed variables to the

latent unobserved variables.

• Residual is the difference between the hypothesised model and the observed

data.

The model can be expressed diagrammatically and mathematically through a set

of equations. Both shows how the observed and unobserved latent variables are
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related to each other. Once the structure of the model is specified, the plausability

of the model is tested based on the sample data that contains all observed variables

in the model (Byrne 2006, chp. 1).

In the next two subsections, we will describe the structure of the hypothesised

model pictorially (path diagrams) and describe the structure of the hypothesised

model mathematically (matrix form).

4.3.1 CFA model represented diagrammatically

CFA models can be represented diagrammatically by using path diagrams. Path

diagrams allow the structure of the hypothesised model to be displayed visually. It

allows the relationship between the observed and unobserved latent variables being

reviewed to be portrayed pictorally.

Before we display the structure of a hypothesised model, we will first describe the

different symbols used in the diagram followed by the different components of the

diagram.

Symbols

The hypothesised model is schematically represented using four particular geometric

symbols. This includes:

• circles (or ellipses)

• squares (or rectangles)

• single headed arrows

• double headed arrows
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The circles (or ellipses) represent the unobserved latent variables. The squares

represent the observed variables. The single headed arrows represent the impact of

one variable on another and the double headed arrows represent the covariances or

correlations between pairs of variables (Byrne 2006, chp. 1).

Components

In addition to the four symbols, there are also four important components in this

process. Figure 4.1 shows the general structure of a path diagram for a CFA

model with three unobserved latent variables and nine observed variables, which

depicts the four components. The letters on this figure represent these important

components of the process. They are described as the following (Byrne 2006, chp.

1):

a. single headed arrow from a circle to a square is a path coefficient for regression

of an observed variable onto an unobserved latent variable.

b. single or double headed arrow from a circle to a circle depicts a path coefficient

for regression of one unobserved variable onto another unobserved variable.

c. single headed arrow to a square is the measurement error associated with the

observed variable.

d. single headed arrow to a circle is the residual error in the prediction of an

unobserved latent variable.
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Figure 4.1: A general structure of a CFA model

This model (figure 4.1) shows that there are three unobserved latent variables F1,

F2 and F3, and nine observed variables where three are considered to measure each

latent variable. These nine observed variables function as indicators of their re-

spective latent unobserved variables (Byrne 2006, chp. 1).

Associated with each observed variable is an error term (label c), and with each

latent variable a residual term (label d). There is a distinction between these two

error terms. An error associated with the observed variables represents measure-

ment error which reflects on their adequacy in measuring the related underlying

variables (F1, F2 and F3) (Byrne 2006, chp.1). Residual terms represent error in

the prediction of dependent variables from independent variables, for example, the

error in the prediction of F1, F2 and F3 (Byrne 2006, chp.1).
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The one-way arrows (label a) represent structural regression coefficients where they

indicate the impact of one variable to another. In figure 4.1, for example, the one-

way arrow leading from F1 to each of the three observed variables (y1, y2 and y3)

suggest that each of these are influenced by their respective underlying latent vari-

ables. As such, these path coefficients represent the magnitude of expected change

in the observed variables for every change in the related latent variable.

The one-way arrows pointing from the nine error terms (label c) indicates the im-

pact of measurement error on the observed variables, the residual and the impact

of the error in the prediction of each latent unobserved variable (F1, F2 and F3)

(Byrne 2006, chp. 1).

A path diagram, such as figure 4.1, depicting a particular CFA model is the graph-

ical equivalent of its mathematical representation. This is where a set of equations

relates dependent variables to their explanatory variables.

4.3.2 CFA model represented mathematically

CFA models can also be represented mathematically by a series of regression equa-

tions. This is because:

(a) Regression equations can represent the influence of one or more variables.

(b) Each equation summarises the impact of all relevant variables in the model

(observed and unobserved) on one specific variable (observed or unobserved).

Therefore one relatively simple approach to express these equations is to note each

variable that has one or more arrows (from path diagrams) pointing towards it and

then record the total of all influences for each of those dependent variables.
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A series of regression equations can be displayed in a matrix. So let y be a vector

of order p × 1 observed variables. Let the vector ξ of order k × 1 represent the

latent unobserved variables and δ be a vector of residuals of order p×1. Therefore,

a CFA model has the form:

y = Λξ + δ (4.2)

where Λ of order p×k contains the factor loadings λij (these are associated with the

latent unobserved variables). To make sure the model is identified, some elements

of Λ may be fixed at zero (Yang-Wallentin et al. 2010).

For the path diagram (shown in figure 4.1), the CFA model has matrix form as

follows: 

y1

y2

y3

y4

y5

y6

y7

y8

y9



=



λ11 0 0

λ21 0 0

λ31 0 0

0 λ42 0

0 λ52 0

0 λ62 0

0 0 λ73

0 0 λ83

0 0 λ93




ξ1

ξ2

ξ3

+



δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9


For the special case of ordinal variables, the CFA model is estimated by:

y∗ = Λξ + δ (4.3)

where y∗ is a vector of p × 1 of underlying variables corresponding to the p × 1

vector of the observed ordinal variable y, as defined above.

For the unknown values in the regression equations that form the CFA model to

be estimated, there are several estimation methods that can be used.
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4.3.3 Estimation methods

For continuous variables, various least square methods are available for estimating

CFA models. These methods cannot be used directly with ordinal data, however

they can be used in a modified form.

The hypothesis for the equation system is that the covariance matrix of the ob-

served variables is a function of a set of parameters that if the model was correct

and the parameters are known, the population covariance matrix would be exactly

produced. This is represented formally as∑
(θ) =

∑
(4.4)

where
∑

denotes the population covariance matrix of a set of observed variables

and
∑

(θ) denotes the population covariance matrix implied by θ, a vector of model

parameters.

From equation 4.3, let Ψ and Θε be the covariance matrices of ξ and δ respectively.

We assume the latent unobserved variables are uncorrelated, which means that Θε

is a diagonal matrix. The covariance matrix of y∗ is then∑
(Λ,Ψ) = ΛΨΛ′ + Θε (4.5)

where Λ is a matrix of factor loadings λij.

For the special case of ordinal variables, let us assume that Ψ is a correlation matrix

with ones on the diagonal. As the underlying variable y∗i have variances equal to

one, it follows from equation 4.5 that

Θε = I − diag(ΛΨΛ′) (4.6)

so that ∑
(Λ,Ψ) = ΛΨΛ′ + I − diag(ΛΨΛ′) (4.7)
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This is the correlation matrix implied by the model that is to be fitted to the matrix

of polychoric correlations R (Yang-Wallentin et al. 2010).

To estimate the model, there are several methods that can be applied. Popular

methods used include maximum likelihood, unweighted least squares (ULS), diag-

onally weighted least squares (DWLS) and weighted least squares (WLS).

When the observed variables are continuous data, the maximum likelihood and least

squares methods are used (Luo 2011). The maximum likelihood estimator does not

perform well when the observed variables are ordinal, especially when the number

of observed variables is small (for example five or fewer) (Flora & Curran 2004).

The chi-square statistic tends to be inflated (Babakus et al. 1987, Green et al. 1997,

Hutchinson & Olmos 1998, Muthen & Kaplan 1992), parameters underestimated

(Babakus et al. 1987, Muthen & Kaplan 1992) and standard error estimates tend to

be biased (Muthén & Kaplan 1985, Muthen & Kaplan 1992). When the observed

variables are ordinal data, least squares methods can be used for estimation after

being slightly adjusted (Luo 2011).

All three least squares methods are carried out in two steps. In the first step, the

polychoric correlations r and their asymptotic covariance matrix W are estimated.

Note that r = (r21, r31, r32, ..., rp,p−1)
′ is a vector of the polychoric correlations below

the diagonal of the polychoric correlation matrix R. Both r and W are estimated

using the sample data without the use of the model. The matrix W contains the

elements of the estimated N × ACov(rgh, rij) arranged to correspond to r (Yang-

Wallentin et al. 2010).

In the second step, a least squares function can be used based on r by minimising the

fit function F. The minimisation procedure of the least squares function F depends
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on the choice of the weight matrix V̂ . The weight matrix can be represented as

WLS : V̂ = Ŵ−1 (4.8)

DWLS : V̂ = (diag(Ŵ ))−1 (4.9)

ULS : V̂ = I (4.10)

A number of studies have addressed the performance of these estimators. It is

well established that WLS performs poorly unless the sample size is large and the

model size is small (Flora & Curran 2004, Muthen & Kaplan 1992). Both DWLS

and ULS perform well. DWLS generally outperforms ULS in convergence rates but

is outperformed by ULS in estimation accuracy (Forero et al. 2009). Even though

the WLS estimator performs poorer than the other two least squares estimators,

we will still include the results WLS in the output.
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4.4 Goodness-of-fit

In this section, we describe tests that are used for measuring how well the CFA

model fits the observed data.

A chi-squared goodness-of-fit test can be constructed to determine the overall model

fit where the null hypothesis is the population covariance matrix
∑

satisfies the

model

H0 : there exists a θ0 such that
∑

=
∑

(θ0)

(Browne & Cudeck 1993). A large χ2 and rejection of the null hypothesis means

that the model estimates do not sufficiently produce sample covariance. On the

other hand, a small χ2 and failure to reject the null hypothesis means a good model

fit (Albright & Park 2009). However, the χ2 test is widely recognised to be prob-

lematic (Jöreskog 1967).

As there are drawbacks of the χ2 statistic, alternative fit statistics have been de-

veloped, each with their own advantages and disadvantages. There are two groups

of model fit indices: comparative and absolute. In this section, two comparative

indices of fit and one absolute index of fit will be described. Comparative indices

of fit that will be described includes the Comparative Fit Index (CFI) and Tucker-

Lewis Fit Index (TLI). The absolute index of fit that will be described is the Root

Mean Square Error of Approximation (RMSEA).
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4.4.1 Comparative fit index and Tucker-Lewis fit index

Both the CFI and TLI measure the proportionate improvement in model fit. This

is done by comparing the hypothesised model, which imposes the structure, to the

baseline model. They both focus on the comparison of nested models.

CFI

With CFI, the inputs are standardised so the test statistic will range from zero to

one. A test statistic close to one is indicative of a well fitting model. A rule-of-

thumb for this value, is that values > 0.95 indicates a well fitting model (Hu &

Bentler 1999). CFI is calculated as follows (Byrne 2012)

CFI = 1− χ2
H − dfH
χ2
B − dfB

where χ2
H and χ2

B are chi-square values for the hypothesised model and baseline

model respectively, and dfH and dfB are the degrees of freedom for the hypothesised

model and baseline model respectively.

TLI

TLI on the otherhand has inputs that are not standardised and so the test statistic is

not restricted to being between zero and one. The interpretation of TLI is however

the same as for CFI where the values close to one indicates a well fitting model.

TLI is calculated as follows (Byrne 2012)

TLI = (
χ2
B

dfB
− χ2

H

dfH
)− (

χ2
B

dfB
− 1)
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4.4.2 Root mean square error of approximation

The RMSEA depends only on how well the hypothesised model fits the sample

data. The closer the index is to zero, the better the model fits. In other words, this

type of absolute fit index decrease as goodness-of-fit improves.

Cutpoints for measuring goodness-of-fit include (Browne & Cudeck 1993, Steiger

1989, Browne & Mels 1990, MacCallum et al. 1996)

• < 0.05 indicates good model fit

• values up to 0.08 indicate reasonable errors of approximation in the population

• 0.08− 0.10 indicates mediocre fit and

• > 0.10 indicates poor fit

RMSEA is calculated as follows (Byrne 2012)

RMSEA =

√
δH
dfH

where

δH = (χ2
H − dfH)/N

To assess the precision of the RMSEA estimates, confidence intervals are used. A

small RMSEA, but a wide confidence interval would indicate that the estimated

value is quite imprecise. This disproves any possibility to determine accurately

the degree of fit in the population. On the other hand, if the confidence interval

was narrow, the RMSEA value would be argued as good precision in reflecting the

model’s fit to the population (MacCallum et al. 1996).
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4.5 Confirmatory factor analysis application

CFA will be used to test how well the eight strategy structure, based on linguistics

theory, fits. The five cluster structure suggested by the fuzzy biclustering method

will also be tested using CFA. The goodness-of-fit of both structures will be com-

pared.

The two structures are fitted using the statistical software R. Appendix C shows

how to use the cfa function (Rosseel 2012) to find the CFA result for the two

hypothesised structures.

4.5.1 Eight strategy structure based on linguistics theory

The first model, based on Linguistics theory, postulates a priori that English lis-

tening is an eight factor structure composed of Self-initiation, Planning, Monitor-

ing and Evaluation, Perceptual Processing, Inferencing, Predicting, Utilisation and

Socio-affective. The CFA model hypothesizes a priori that

• English listening can be explained by eight factors: Self-initiation, Planning,

Monitoring and Evaluation, Perceptual Processing, Inferencing, Predicting,

Utilisation and Socio-affective;

• each item-pair measure has a non-zero loading on the English listening factor

that it was designed to measure and a zero loading on all other factors;

• the eight English listening factors are correlated; and

• residual errors associated with each measure are uncorrelated.

As indicated in Figure 4.2, we have a model that is hypothesised to have eight fac-

tors.1 As indicated by the configuration of the thirty eight rectangles, each factor

(latent variable) is measured by four to eight observed variables. All variables, la-

tent or observed, are either dependent or independent. Observed variables, in this

1Please note this figure has been simplified for illustrative purposes.
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case the thirty eight questions, are dependent variables and the eight strategies are

independent variables.

Figure 4.2: Linguistics hypothesised eight factor model
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Table 4.1 and 4.2 shows the chi-square estimation of the hypothesised model and

baseline model, respectively, for all three least squares methods. All three esti-

mators show significant evidence against the null hypothesis that the population

covariance matrix is equivalent to the observed sample covariance matrix.

Table 4.1: Chi-square estimation for Linguistics hypothesised model

Fit Estimate WLS DWLS ULS

χ2 6228.22 2318.36 1818.79

degrees of freedom 637 637 637

P-value (chi-square) 0 0 0

Table 4.2: Chi-square estimation for Linguistics baseline model

Fit Estimate WLS DWLS ULS

χ2 26533.94 56232.06 72954.87

degrees of freedom 703 703 703

P-value (chi-square) 0 0 0

Table 4.3 shows the fit indices for all three least squares methods for Linguistics

hypothesised model.

Table 4.3: Fit indices for Linguistics hypothesised model

Fit Indices WLS DWLS ULS

CFI 0.783 0.977 0.979

TFI 0.761 0.974 0.977

RMSEA 0.092 0.050 0.042

(90 Percent CI) (0.090, 0.094) (0.048, 0.053) (0.040, 0.045)

For both DWLS and ULS, the CFI and TFI are greater than 0.95. This suggests

that the model fits well. RMSEA for the same two least squares methods is approx-

imately 0.05 or less. This again indicates the model fits well. The 90% confidence
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interval for DWLS contains the 0.05 threshold for a good fit model, but only slightly.

The WLS for all three of these fit indices shows a different story, where CFI is less

than 0.95, TFI is further away from 1.0 and RMSEA is closer to 0.10. Using WLS

indicates a poorer model fit than when using DWLS and ULS. This is expected as

described earlier.

4.5.2 Five cluster structure based on the fuzzy biclustering

method

In the listening questionnaire data, each student represented a row and each ques-

tion a column. The fuzzy biclustering method (Chapter 3.5) suggested that the

1,039 students are grouped into R = 4 clusters and the thirty eight questions are

grouped into C = 5 clusters. The five column clusters are

1. Questions 5, 18 and 19

2. Questions 21, 37 and 38

3. Questions 14, 17, 25, 26 and 32

4. Questions 2, 6, 7, 8, 13, 16, 27, 28, 29, 31 and 35

5. Questions 1, 3, 4, 9, 10, 11, 12, 15, 20, 22, 23, 24, 30, 33, 34 and 36.

This model postulates a priori that English listening is a five factor structure. This

CFA model, presented in Figure 4.3, hypothesizes a priori that

• English listening can be explained by five factors;

• each item-pair measure has a non-zero loading on the English listening factor

that it was designed to measure and a zero loading on all other factors;

• the five English listening factors are correlated; and

• residual errors associated with each measure are uncorrelated.
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Figure 4.3: Statistical hypothesised five factor model
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Table 4.4 and 4.5 shows the chi-square estimation for the hypothesised model and

baseline model, respectively, for all three least squares methods. All three esti-

mators show significant evidence against the null hypothesis that the population

covariance matrix is equivalent to the observed sample covariance matrix.

Table 4.4: Chi-square estimation for five factor hypothesised model

Fit Estimate WLS DWLS ULS

χ2 6854.63 3188.64 2443.05

degrees of freedom 655 655 655

P-value (chi-square) 0 0 0

Table 4.5: Chi-square estimation for five factor baseline model

Fit Estimate WLS DWLS ULS

χ2 26523.94 72954.89 56232.06

degrees of freedom 703 703 703

P-value (chi-square) 0 0 0

Table 4.6 shows the fit indices for all three least squares measures. For both DWLS

and ULS methods, the fit indices CFI and TFI, are greater than 0.95. This suggests

the model fits well. The RMSEA for the same two least square methods are 0.061

and 0.051 respectively. These values suggest that the fit of the model is reasonable

to well fit. With the ULS method, it appears to have a better model fit because

RMSEA 90% confidence interval contains 0.05. In other words, the RMSEA for

ULS method suggests a good model fit, where as DWLS measure suggests a rea-

sonable model fit.
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Table 4.6: Fit indices for five cluster hypothesised model

Fit Indices WLS DWLS ULS

CFI 0.760 0.965 0.968

TLI 0.742 0.962 0.965

RMSEA 0.095 0.061 0.051

90 Percent CI (0.095, 0.097) (0.059, 0.063) (0.049, 0.053)

Overall the fit indices, CFI and TFI suggest both the Linguistics eight cluster model

and the five cluster model suggest a well fit. The CFI and TFI indices are slightly

lower for the five cluster model than the ones for the Linguistics eight cluster model.

This would suggest that the Linguistics model performs slightly better than the the

five cluster model. However, there is a small gain by adding three additional clus-

ters to describe the thirty eight questions. Although the overall fitting for the five

cluster model might be adequate, the grouping information does not have theorec-

tical meanings in the Linguistics area.



Chapter 5

Ordinal agreement model

In this chapter we will evaluate the amount of agreement between each of the ques-

tions within the listening strategies. We start with providing a description of what

agreement between questions is, followed by a description of the ordinal agreement

model and agreement between multiple questions. We then describe the bootstrap

method and the incorporation of the ordinal agreement model to make inferences.

The application of this model is then presented and described at the end of this

chapter.

5.1 Agreement between questions

Consider two questions, A and B. Let πij denote the probability that question A is

answered with category i and question B with category j. Their ratings of a partic-

ular question ‘agree’ if their classifications are in the same category. Therefore, in a

square table, the main diagonal i = j represents question agreement. Hence,
∑
i

πii

is the total probability of agreement. Perfect agreement occurs when
∑
i

πii = 1.

Let’s consider two questions only from the listening data. In a squared contingency

table, the rows are ordinal response categories for question one and the columns

86
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are ordinal response categories for question two. For our example, there are five

response categories, and so we have a 5× 5 contingency table. We illustrate this in

table 5.1 for questions 11 and 12 from the Self-initiation strategy. The categories

in the rating scales are (1) never, (2) rarely, (3) sometimes, (4) often and (5) always.

Table 5.1: Question 11 versus Question 12

Question 12

Question 11 1 2 3 4 5 Total

1 17 22 28 10 12 89

2 24 53 61 27 15 180

3 11 69 136 86 29 331

4 8 31 99 59 54 251

5 5 21 54 47 61 188

Total 65 196 378 229 171 1,039

This square contingency table can be used to display joint ratings of the two ques-

tions. With this table, one can analyse differences in the marginal distributions and

the frequency of main-diagonal occurrence within the joint distribution of the rat-

ings (Agresti 2010, p. 248). A cell-by-cell comparison of the observed and estimated

expected frequencies can help show this. Haberman (1973) suggested a standard-

ised Pearson residual that is asymptotically standard normal. This is calculated

as

nij − µ̂ij
[µ̂ij(1− pi+)(1− pj+)]1/2

where nij is the observed frequency, µ̂ij =
ni+n+j

n
is the expected frequency, pi+ is

the row proportion and p+j is the column proportion.
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Table 5.2: Standardised Pearson Residuals

Question 12

Question 11 1 2 3 4 5

1 5.2 1.5 -1.0 -2.6 -0.8

2 4.3 4.0 -0.8 -2.5 -3.2

3 -2.7 1.1 2.2 2.1 -4.6

4 -2.3 -3.0 1.2 0.6 2.5

5 -2.2 -3.0 -2.4 1.1 6.5

Table 5.2 shows the standardised Pearson residuals for the same two questions in

table 5.1. The main diagonal has larger positive residuals, indicating agreement

for each rating is greater than expected by chance, especially for the first and last

rating. The off-diagonal is primarily negative residuals indicating disagreement

has occurred less than expected under independence, although evidence of this is

weaker for ratings closer together. The most common disagreement are if students

choose rating 3 on question 11 then they are unlikely to choose rating 5 on question

12.

5.2 Ordinal agreement model

The ordinal agreement model is used to describe agreement between questions which

classifies a sample on a subjective ordinal scale. Many ordinal scales are quite sub-

jective, such as the scale used in this study (never, rarely, sometimes, often and

always). There rarely is perfect agreement that occurs between questions for such

scales. This is partly because of differing perceptions about the meanings of the

category labels, and partly because of factors such as intra-question variability

(Agresti 1988).

For the Listening Strategy Questionnaire, each strategy contains several questions.
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If all questions within strategies are similar, the responses from these questions

should have a high level of agreement. The agreement model was originally used

to describe agreement between raters. We will be using the same type of model to

describe agreement between questions for each strategies.

Suppose each of the n students assigns a response rating separately for two ques-

tions, A and B. Let mij = nπij denote the expected frequency for the ith row and

jth column in the contingency table. When each question has the same ordered

ratings, the ordinal agreement model has the form:

logmij = λ+ λAi + λBj + βµivj + δI(i = j) (5.1)

where µi is the score for the ith row and vj is the score for the jth column. In the

model, δ is used to describe beyond-chance agreement on the main diagonal and

the parameter β to describe association and correlation off that diagonal for the

chosen scores (Agresti 2010, chp. 8).

When equation (5.1) holds, the null hypothesis of independence between the rat-

ings H0 : β = δ = 0 is true. The null hypothesis of no extra agreement beyond

that due to the baseline association between ratings is H0 : δ = 0 (H1 : δ ≥ 0).

The null hypothesis of no extra association beyond that due to exact agreement is

H0 : β = 0 (H1 : β > 0) (Agresti 1988).

The independence model (β = δ = 0), implies that all ratings, i and j, are indis-

tinguishable. When β > 0 and δ ≥ 0, the degree of distinguishability increases as

the distance between the ratings increases (Agresti 1988).

The ordinal agreement model has two key components, δ and β. The relative influ-

ences of these two components is the variation of the response categories (ratings).

Equal interval scores, for example (1, 2, 3, 4, 5), for a five category variable, give
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the simplest interpretations and are a common reasonable choice in scores. This

is unless there is a more natural scoring. When the model fits well, the distances

between the estimated scores can be used in describing distinguishability of ratings.

Overall, the ordinal agreement model has several positive features, as described by

Agresti (1988). These include:

• It utilises the ordering of the response categories.

• Given that questions disagree, it does not assume that the ratings are inde-

pendent.

• It is unsaturated on the main diagonal.

• The baseline association and extra agreement parameters are easily inter-

preted.

5.3 Agreement among multiple questions

With several questions, the description of agreement and association between two

questions is conditional on the ratings by the other students. It is usually more

relevant to study agreement marginally, without conditioning on the other ratings.

Furthermore, simultaneously modelling the pairwise agreement structure requires

modelling all the two-way marginal tables of the joining table for all the questions

(Becker & Agresti 1992).

An alternative simpler approach is to take the average pairwise measure of agree-

ment over all possible pairs of questions (Agresti 2010, chp. 8).
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5.4 Bootstrap method with the ordinal agreement

model

Bootstrapping methods are used to make inferences for comparing multiple pairs of

questions in ordinal agreement models. We investigate how much agreement there

is between questions within each strategy. This is so we can test whether questions

within each strategy are more similar to each other than questions between strate-

gies.

Bootstrapping is a resampling method to estimate standard errors for parameter

estimators and to construct confidence intervals for parameters.

In this section we will first provide a general description of the bootstrap method

and then describe the procedure taken to bootstrap the ordinal agreement model.

Finally, a description on how the bootstrap method is used to summarise the agree-

ment question combinations within strategies.

5.4.1 General description of the bootstrap method

Suppose there is a sample of size n and we want to estimate a parameter, determine

the standard errors or a confidence interval for the parameter. To do this, we look

at the sample and consider the empirical distribution. The empirical distribution

is the probability distribution that has probability 1/n assigned to each sample

value. The bootstrap idea is to replace the unknown population distribution with

the known empirical distribution.

From the bootstrap sampling, a Monte Carlo approximation of the bootstrap esti-

mate is obtained. The procedure is as follows

1. Generate a sample with replacement from the empirical distribution
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2. Compute θ to the values of θ̂ obtained by using the bootstrap sample in place

of the original sample

3. Repeat steps 1 and 2 s many times.

By repeating steps 1 and 2 s many times, a Monte Carlo approximation to the

distribution of θ̂ is obtained.

5.4.2 Bootstrapping the ordinal agreement model

For the dataset of grade 6 students, steps are undertaken to get an estimate of the

parameter β from the ordinal agreement model for each bootstrap sample. We then

summarise the pairwise information to estimate the overall agreement parameter

and its associated confidence interval within a strategy.

The following steps describe how bootstrap samples β̂ of the ordinal agreement

model is undertaken:

1. Sample 1,039 students of the grade 6 dataset with replacement. A sample

with replacement means that the results for a student can occur more than

once. A sample of 1,039 is taken from the population of 1,039 students.

2. Build the ordinal agreement model for each pairwise combination of the ques-

tions within each strategy. For example, the Self-initiation strategy has four

questions. This means that there are six pairwise combinations and so six

ordinal agreement models are built.

3. From each orginal agreement model built, the Maximum Likelihood estimate

β̂ is extracted .

4. Steps 1 to 3 are repeated s (= 1, 000) times to get 1, 000 β̂ for every pairwise

combination within each strategy.
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Table 5.3 shows the bootstrap sample structure of parameter β created for the Self-

initiation strategy. It has six rows, each representing a pairwise combination of the

questions in the strategy, and s = 1, 000 columns representing the 1,000 bootstrap

samples taken from the original grade 6 data set.

Table 5.3: Bootstrap sample structure for Self-initiation strategy

Sample

Pairwise combinations 1 2 3 ... s− 1 s

Q11 vs Q12 β1
11,12 β2

11,12 β3
11,12 ... βs−111,12 βs11,12

Q11 vs Q14 β1
11,14 β2

11,14 β3
11,14 ... βs−111,14 βs11,14

Q11 vs Q18 β1
11,18 β2

11,18 β3
11,18 ... βs−111,18 βs11,18

Q12 vs Q14 β1
12,14 β2

12,14 β3
12,14 ... βs−112,14 βs12,14

Q12 vs Q18 β1
12,18 β2

12,18 β3
12,18 ... βs−112,18 βs12,18

Q14 vs Q18 β1
14,18 β2

14,18 β3
14,18 ... βs−114,18 βs14,18

The R-code used to implement the bootstrap method for the ordinal agreement

model can be found in the Appendix D.

5.4.3 Summary of the overall agreement β̂

After the bootstrap samples of the grade 6 data are completed, all pairwise com-

binations of questions and their parameter estimates can be found for each strategy.

Several steps are undertaken to calculate the overall agreement β̂ across different

pairwise combinations of questions within strategies. The steps are illustrated using

the Self-initiation strategy questions where there are six pairwise combinations. The

steps are as follows:

1. Given the estimates for each pairwise combinations, take the mean across
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pairwise combinations:

β̂i =
β̂i11,12 + β̂i11,14 + β̂i11,18 + β̂i12,14 + β̂i12,18 + β̂i14,18

q

where i = 1, 2, ..., s and q is the number of pairwise combinations. Figure

5.1 shows the distribution of {β̂i, i = 1, . . . , s}. The distribution appears

normally distributed.

Figure 5.1: Distribution of {β̂i, i = 1, . . . , s} for Self-initiation strategy

2. The next step is to calculate the mean of {β̂i, i = 1, . . . , s}. This gives us the

summary of agreement parameter estimate for the strategy Self-initiation.

β̂ =

s∑
i=1

β̂i

s

3. The standard error of β̂ of the strategy is then calculated using the formula:

SE =

√√√√√ s∑
i=1

(β̂i − β̂)2

s− 1
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4. With the standard error, the 95% confidence interval can be calculated using

the formula: β̂ ± 1.96× SE.

5. Repeat steps 1 to 4 for the other seven strategies.

The bootstrap inference can also be applied to check whether the agreement pa-

rameters are the same for two strategies. For example, we can conduct a 95%

bootstrap confidence interval of βPrediction − βUtilisation. If the interval contains 0,

it implies that the agreement level for the strategy Prediction is not significantly

different from that for the strategy Utilisation.

5.4.4 Estimation of pairwise agreement

This section describes the bootstrap inference for the pairwise agreement between

two questions. Self-initation strategy is again used as an example.

The Self-initation strategy has four questions and so six pairwise combinations.

Figure 5.2 shows the distribution of β̂j,j′ over 1, 000 (= s) bootstrap samples

for the six pairwise (j, j′) combinations for the Self-initiation strategy, where

j < j′ = 11, 12, 14, 18.
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Figure 5.2: Distribution of β̂j,j′ for all pairwise combinations for Self-initiation

strategy

The steps of making bootstrap inferences for pairwise agreement parameters {βj,j′ , j <

j′ = 11, 12, 14, 18} are as follows:

1. The β̂j,j′ is calculated by taking the mean of each pairwise combination as

follows:

β̂j,j′ =

s∑
i=1

β̂ij,j′

s
j < j′ = 11, 12, 14, 18,

where j and j′ are the questions and s is the number of bootstrap samples

(1,000).

2. The standard error for β̂j,j′ (six in the case of the Self-initiation strategy) is
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then calculated as follows:

SEj,j′ =

√√√√√ s∑
i=1

(β̂ij,j′ − β̂j,j′)2

s− 1
j < j′ = 11, 12, 14, 18.

3. The 95% confidence interval using the mean β̂j,j′ and standard error can now

be calculated for every pairwise combination.
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5.5 Ordinal agreement model application

This section describes the coding of the data and the results of overall agreement

within strategies and pairwise agreement based on ordinal agreement models using

the bootstrap method. This model is fitted using the the statistical software R.

Appendix D shows how to use the glm function (R Core Team (2013)) to fit the

agreement model.

5.5.1 Data coding

This subsection describes how the data were coded to allow us to apply the ordinal

agreement model.

The dataset has 1,039 rows (as described earlier in Chapter 2) where each row is

a student and their answers to the thirty eight questions. There are three ordinal

agreement models applied to each pairwise combination. The difference between

each model is the 5-point scale that is used to represent the ordered responses of

the questions. These are:

1. (1, 2, 3, 4, 5)

2. (1, 2, 4, 5, 6)

3. (1, 3, 4, 5, 7)

These three 5-point scales are used as each one has different spacing between each

point in the scale. The first scale has equal spacing between all points. The second

scale has two spacings between “rarely” and “sometimes” and finally the third scale

is where the extreme points in the scale are further away from the centre points.
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5.5.2 Results

The results for the three scales (1, 2, 3, 4, 5), (1, 2, 4, 5, 6), and (1, 3, 4, 5, 7) are

shown in tables 5.4, 5.5 and 5.6 respectively.

Table 5.4: Scale (1, 2, 3, 4, 5)

Strategy β̂ Confidence Interval of β̂

Self-initiation 0.19 (0.16, 0.23)

Planning 0.19 (0.15, 0.23)

Monitoring and Evaluation 0.18 (0.15, 0.21)

Perceptual Processing 0.15 (0.12, 0.18)

Inferencing 0.22 (0.19, 0.25)

Prediction 0.31 (0.27, 0.35)

Utilisation 0.24 (0.21, 0.27)

Socio-affective 0.12 (0.10, 0.14)

For scale (1, 2, 3, 4, 5), the Prediction strategy has the largest amount of agreement

between questions. This strategy’s level of agreement appears to be significantly

different to the other seven strategies. The Inferencing and Utilisation strategies

have the next highest level of agreement. The strategy with the least amount of

agreement between questions is the Socio-affective strategy and Perceptual Pro-

cessing strategy.
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Table 5.5: Scale (1, 2, 4, 5, 6)

Strategy β̂ Confidence Interval of β̂

Self-initiation 0.1096 (0.0912, 0.1281)

Planning 0.1027 (0.0820, 0.1235)

Monitoring and Evaluation 0.0991 (0.0824, 0.1235)

Perceptual Processing 0.0991 (0.0824, 0.1235)

Inferencing 0.1151 (0.0994, 0.1308)

Prediction 0.1635 (0.1445, 0.1825)

Utilisation 0.1255 (0.1085, 0.1426)

Socio-affective 0.0609 (0.0478, 0.0739)

The same pattern can be seen in table 5.5 as in table 5.4. The Prediction strategy

has the highest amount of agreement of all the strategies and the Socio-affective

strategy has the least amount of agreement of all the strategies.

Table 5.6: Scale (1, 3, 4, 5, 7)

Strategy β̂ Confidence Interval of β̂

Self-initiation 0.0974 (0.0796, 0.1151)

Planning 0.0900 (0.0669, 0.1130)

Monitoring and Evaluation 0.0871 (0.0704, 0.1038)

Perceptual Processing 0.0746 (0.5773, 0.0915)

Inferencing 0.1108 (0.0934, 0.1282)

Prediction 0.1567 (0.1345, 0.1790)

Utilisation 0.1223 (0.1036, 0.1411)

Socio-affective 0.0625 (0.0490, 0.0759)

As in the previous two tables, the Prediction strategy has the highest level of agree-

ment and the Socio-affective strategy has the lowest level of agreement. Tables 5.7

and 5.9 shows the amount of agreement between questions within the Prediction
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strategy and Socio-affective strategy along with the corresponding 95% confidence

intervals, respectively, for scale (1, 2, 3, 4, 5). Because the three scales have similar

results, we only report the result from the scale (1, 2, 3, 4, 5).

Table 5.7: Agreement between questions for Prediction strategy

6 7 13 29 35

6 - 0.31 (0.24, 0.38) 0.28 (0.21, 0.35) 0.31 (0.23, 0.39) 0.32 (0.25, 0.40)

7 - - 0.26 (0.19, 0.33) 0.25 (0.18, 0.32) 0.29 (0.22, 0.36)

13 - - - 0.35 (0.26, 0.44) 0.34 (0.26, 0.41)

29 - - - - 0.41 (0.31, 0.51)

35 - - - - -

Amongst the questions within the Prediction strategy, the level of agreement be-

tween questions 29 and 35 is the highest at an average of 0.41. However, this is not

significantly different from the rest of the pairwise level of agreement within the

Prediction strategy. Questions 29 and 35 were:

• Q29: When I listen, I use my knowledge about the topic to think about what

I will hear next.

• Q35: When I listen, I use my general knowledge to think about what I will

hear next.

Both these questions are very similar in what they are asking the student. It ap-

pears sensible that the answers to these two questions by the students would highly

agree with each other.
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If we now look at the standardised Pearson residuals (described in section 5.1) be-

tween question 29 and 35 using the results of the questionnaire (no bootstrapping),

we can see that on the main diagonal there are large positive residuals, with the

end points being the largest of 16.2 and 10.4 (shown in table 5.8). This indicates

for each of these categories, agreement on the diagonal is greater than expected.

The off-diagonal is primarily negative residuals, where the most negative is -5.6.

This indicates that disagreement occurred less than expected under independence,

although evidence of this is weaker for categories close to ratings 4 and 5. With

disagreement occurring much less than expected, this would generally give us a

higher β and so a higher level of agreement.

Table 5.8: Standardised Pearson residuals for Prediction strategy

Question 35

Question 29 1 2 3 4 5

1 16.2 -1.1 -3.6 -4.0 -3.6

2 -1.0 10.7 -2.5 -5.5 -2.8

3 -5.6 -0.7 8.0 -1.4 -4.3

4 -3.7 -5.0 -2.5 8.5 3.5

5 -1.5 -5.2 -2.9 2.2 10.4
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Now looking at the Socio-affective strategy, the highest pairwise level of agreement

is between questions 2 and 28 of 0.20. This is significantly lower than the highest

pairwise agreement in the Prediction strategy.

Table 5.9: Agreement between questions for Socio-affective strategy

2 10 25 28 38

2 - 0.12 (0.07, 0.17) 0.13 (0.08, 0.18) 0.20 (0.14, 0.25) 0.10 (0.05, 0.14)

10 - - 0.05 (-0.001, 0.09) 0.18 (0.12, 0.23) 0.02 (-0.02, 0.07)

25 - - - 0.10 (0.05, 0.15) 0.18 (0.12, 0.23)

28 - - - - 0.12 (0.07, 0.17)

38 - - - - -

Within the Socio-affective strategy, there are two pairwise questions where their

95% confidence interval includes zero. This suggests that there is little evidence

against the null hypothesis of there being no agreement between the questions.

The pairwise questions are questions 10 and 25, and questions 10 and 38. These

questions in the questionnaire were:

• Q10: When I have a problem in listening, I ask my friends for help.

• Q25: I tell myself to enjoy listening to English.

• Q38: I tell myself not to worry when I listen in English.

What these questions are asking is not very similar. Question 10 asks about how

students would ask for help; question 25 is about a students enjoyment of listening

to English and; question 38 is about how students cope when listening to English.

The topics of these questions appear different.
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We will now look at the standardised Pearson residuals for the Socio-affective strat-

egy using the results of the questionnaire. Table 5.10 shows the standardised Pear-

son residuals for question 10 versus question 25, and table 5.11 question 10 versus

question 38. These two pairwise questions had the lowest agreement between ques-

tions.

Table 5.10: Standardised Pearson residuals for Socio-affective strategy - Question

10 versus Question 25

Question 25

Question 10 1 2 3 4 5

1 4.3 -0.4 -1.0 -1.4 0.2

2 0.2 1.5 -0.7 0.7 -1.3

3 -1.2 0.3 2.1 -0.2 -1.6

4 -1.5 -1.6 1.3 0.7 0.2

5 -0.6 0.2 -2.5 0.0 3.0

In table 5.10, the residuals on the main diagonal are all positive, where the highest

is on the far ends of the diagonal. These residuals are much smaller than those

shown in table 5.8 for one pairwise question of the Prediction strategy. The off

diagonal is primarily negative residuals, however 8 of the possible 20 off diagonal

residuals are positive. Disagreement occurred less than expected for majority of

the ratings, but disagreement on 8 residuals occurred more than expected. This

would give a lower β in the modelling.
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Table 5.11: Standardised Pearson residuals for Socio-affective strategy - Question

10 versus Question 38

Question 38

Question 10 1 2 3 4 5

1 3.1 0.9 -1.4 -1.5 0.3

2 0.5 -0.6 0.0 1.0 -0.8

3 -2.1 1.9 1.7 -0.8 -0.9

4 -1.0 -0.9 0.3 1.7 -0.7

5 0.6 -1.5 -1.2 -0.8 2.5

In table 5.11, the residuals on the main diagonal are mostly positive. Where both

ratings is 2, we have a residual of -0.6. This suggests that agreement for this cat-

egory is less than expected. The highest main diagonal residual is at the far ends

again with residuals of 3.1 and 2.5 (much smaller residuals than the same ratings in

the Prediction strategy). The off diagonal is primarily negative residuals, however

again 8 of the possible 20 off diagonal residuals are positive. Disagreement occurred

less than expected for majority of the ratings, but disagreement on 8 residuals oc-

curred more than expected. This would give a lower β in the modelling.



Chapter 6

Discussion

In this thesis, several methods have been applied to analyse ordered categorical

data from the listening questionnaire. A range of categorical ordinal methods are

used to demonstrate how well the eight Linguistic clusters perform. This analysis

has established a picture of which clusters contain questions similar to each other as

well as which pairwise questions within a cluster are similar. It has also shown how

well the overall eight cluster model performs. The work itself is useful as the fo-

cus is on treating the categorical ordinal variables as ordinal rather than continuous.

Ordered categorical data are often treated as continuous data because of the sim-

plicity of the analysis, but there are many drawbacks using this naive approach

mentioned in Chapter 1. By treating ordered responses as ranking data, correla-

tion coefficients can show the associations between questions. These preliminary

results are consistent with the findings from proportional odds models and ordinal

agreement models. For example, the Prediction strategy had the highest range of

correlations between questions, ranging between 0.36 and 0.54. The Socio-affective

strategy had the lowest range of correlations between questions, ranging between

0.07 and 0.34. This suggests the questions within the Prediction strategy have

a strong relationship and the questions within the Socio-affective strategy have a

weak relationship. However, it is difficult to make proper inferences for the pairwise
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correlation coefficients by taking all possible variables into account.

The different approaches to the proportional odds model showed that the Planning,

Inferencing and Prediction strategies had no difference between questions. This

suggests that student responses for these strategies are similar. The Self-initiation,

Utilisation, Monitoring and Evaluation, Preceptual Processing and Socio-affective

strategies showed a difference between questions. That the student responses to

the questions within each strategy are not similar to each other. There are however

pairwise questions within these strategies that are similar to each other.

The Self-initiation strategy had only one pairwise questions that showed no differ-

ence between them, questions 11 and 12. The Utilisation strategy had six pairwise

questions that showed no difference. The remaining four pairwise questions showed

very strong significance of a difference, where the common question in each pair

was question 7. For the Monitoring and Evaluation strategy, there were signifi-

cant ethnicity and question interactions. For the Chinese students, there was no

difference between questions 32 and 36, and questions 5 and 21. For the other

ethnicity students, the results were different. The subject-specific approach showed

that there was a difference between all pairwise questions, while the GEE approach

showed no difference between questions 9 and 21, and questions 9 and 36. The

Perceptual Processing strategy showed no difference between questions 24 and 34

only. Finally, in the Socio-affective strategy, there were no pairwise questions that

were similar to each other.

In the Ordinal Agreement model, the Prediction strategy had the highest level

of agreement followed by the Utilisation strategy. On the other hand, the Socio-

affective strategy had the lowest level of agreement between questions in the cluster

followed by Perceptual Processing strategy. In the Socio-affective strategy, the low-

est pairwise questions were questions 10 and 25, and questions 10 and 38. This
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is different to the proportional odds model, where the pairwise questions with the

largest difference were questions 25 and 28, questions 2 and 38, and questions 25

and 38.

The Confirmatory Factor analysis method showed how well the eight linguistic clus-

ters fit the ordinal data. This method showed that the eight clusters fit the data

well, where all the fit indices that were measured were better than the threshold of

a good fit. The fuzzy biclustering method grouped the thirty eight questions into

five clusters that had a higher likelihood than the eight linguistic clusters. The CFA

showed a reasonable model fit for the five clusters where all fit indices were slightly

lower than that of the eight linguistic clusters. The main disadvantage of the five

cluster structure is that the meaning of each clusters is not clear in Linguistic field.

There are similarities between the three models described in this thesis. This in-

cludes:

• The proportional odds model and CFA both have an underlying latent vari-

able of an unobserved continuous variable.

• All methods take the ordering nature into account.

• Both proportional odds and ordinal agreement models allow to include many

explanatory variables to control possible confounding variables.

There are differences between the three models described as well, which include:

• CFA evaluates the model structure considering all eight listening strategies

together, while the other two can find the differences between questions and

strategies.

• For the proportional odds model, the marginal approach focuses on the marginal

distribution of the responses for the various observations. The effect β is

population-averaged. The subject-specific approach allows probabilities to
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vary by subject. The effect β is defined conditional on the subject. The mag-

nitude of β might be different between these two approaches, but often the

significance of an effect is similar (Agresti 2012, p. 497).

• The proportional odds model and the ordinal agreement model have different

focuses. The proportional odds model focuses on the underlying response dis-

tribution of each questions. The agreement parameter in an ordinal agreement

model describes whether the response on Question A goes up as the response

on Question B goes up. For example, suppose the response on Question B

is always one level higher than the response on Question A for all students.

It would result in a large value for the agreement parameter in an ordinal

agreement model. Therefore, the two questions are very similar. However,

the underlying response distribution for Question A would be different from

that for Question B. Thus, the proportional odds model might suggest that

there is a difference between these two questions.

Future work based on this research could involve an improvement of the methods

used for the full consideration of the missing data. A small proportion of students

were removed for the GEE approach issue where the data is missing completely

at random. Future research will incorporate the GEE method with missing data

(Twisk & de Vente 2002) for proportional odds models.
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Appendix A

Listening questionnaire

In this part, all thirty eight questions used in the analyses in this thesis will be

listed out. The answers for all questions has the scale (never, rarely, sometimes,

often, always).

1. When I don’t understand something, I use my knowledge about the English

language to guess.

2. When I have a problem in listening, I ask my family members for help.

3. Before I listen to something important, I ask myself what I already know

about the topic.

4. When I don’t undertand something, I use what I have already heard to guess

it.

5. I compare what I am hearing with what I have already heard to make sure I

understnad correctly.

6. When I listen, I use my knowledge about text type (for example, story, report,

etc) to think about what I will hear next.

7. Before I listen to something, I think about the main idea of what I am going

to hear.
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8. When I listen, I repeat the words or phrases I can understand.

9. During or after listening, I ask myself whether the information is the same as

what I already know.

10. When I have a problem in listening, I ask my friends for help.

11. To improve my listening in English, I watch English TV programmes.

12. I look for opportunities to listen in English.

13. When I listen, I use what I have already heard to think about what I will

hear next.

14. I try to find out how to improve my listening in English.

15. Before I listen to something, I ask myself whether it is important to me.

16. I try to find problems with how the speaker presented an idea so that I can

avoid the same problems.

17. When I don’t understand something, I make several guesses.

18. When I’m free, I find interesting things to listen to in English (for example,

TV, radio, etc).

19. When I listen, I try to remember useful words and phrases so that I can use

them.

20. I try to connect what I heard with my own experiences.

21. When I have a problem in listening, I decide whether I should pay more

attention to it.

22. After I finish listening, I make a summary in my mind about what I heard.

23. Before I start listening, I decide if I need to pay attention to details or to the

main idea.
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24. If I can’t understand a word or phrase, I repeat it to myself.

25. I tell myself to enjoy listening to English.

26. When I don’t undersntad something, I use my general knowledge to make a

guess.

27. When I listen, I use my knowledge about the English language to think about

what I will hear next.

28. When I have a problem in listening, I ask my teachers for help.

29. When I listen, I use my knowledge about the topic to think about what I will

next.

30. After I finish listening, I use my own words to retell what I heard in my mind.

31. When I don’t understand something, I use my knowledge about text type (for

example, story, report, etc.) to help me understand.

32. If I have a problem in understanding, I quickly decide whether I should con-

tinue or listen again.

33. When I don’t understand something, I use my knowledge about the topic to

guess.

34. When I listen, I repeat the pronunciation of the words I have heard.

35. When I listen, I use my general knowledge to think about what I will hear

next.

36. During or after listening, I check how much I have understood.

37. When I listen, I pay attention to every word that is said.

38. I tell myself not to worry when I listen in English.
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Proportional odds models

The R-code below goes through how the data were coded so that the proportional

odds model with the GEE method could be applied. Comments about the R-code

starts with ##.

library(MASS)

library(car)

library(cluster)

library(AER)

LinguisticsCluster = factor(rep(c(rep(1,4),rep(2,3),rep(3,5),rep(4,4),rep(5,7),

rep(6,5),rep(7,5),rep(8,5)),dim(Year6)[1]))

## LinguisticsCluster - A column of eight strategies where each strategy is repeated

by the number of questions in the strategy. For example, Self-initiation

is strategy 1. It has four questions in the strategy and so "1" is repeated four

times. The same goes with all other strategies.

Student = rep(1:dim(Year6)[1],each=38)

## Student - a column of students each repeated thirty eight times.
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S1 = rep(c(rep(1:4,each=1),rep(0,38-4)),dim(Year6)[1])

S2 = rep(c(rep(0,4),rep(1:3,each=1),rep(0,38-7)),dim(Year6)[1])

S3 = rep(c(rep(0,7),rep(1:5,each=1),rep(0,38-12)),dim(Year6)[1])

S4 = rep(c(rep(0,12),rep(1:4,each=1),rep(0,38-16)),dim(Year6)[1])

S5 = rep(c(rep(0,16),rep(1:7,each=1),rep(0,38-23)),dim(Year6)[1])

S6 = rep(c(rep(0,23),rep(1:5,each=1),rep(0,38-28)),dim(Year6)[1])

S7 = rep(c(rep(0,28),rep(1:5,each=1),rep(0,38-33)),dim(Year6)[1])

S8 = rep(c(rep(0,33),rep(1:5,each=1)),dim(Year6)[1])

## S1-S8 : a column of 1’s and 0’s where 1 indicates the row/question is part of

the strategy and 0 indicates the row/question is not part of the strategy.

Questions = Year6[,7:44]

QuestionsNewOrder = cbind(Questions[,11],Questions[,12],Questions[,14],

Questions[,18],Questions[,3],Questions[,15],Questions[,23],

Questions[,21],Questions[,32],Questions[,5],Questions[,9],Questions[,36],

Questions[,8],Questions[,24],Questions[,34],Questions[,37],Questions[,1],

Questions[,4],Questions[,17],Questions[,26],Questions[,31],Questions[,27],

Questions[,33],Questions[,6],Questions[,7],Questions[,13],Questions[,29],

Questions[,35],Questions[,16],Questions[,19],Questions[,20],Questions[,22],

Questions[,30],Questions[,2],Questions[,10],Questions[,28],Questions[,25],

Questions[,38])

## Questions - the columns of questions in the original dataset is re-ordered into

strategies. Self-initiation questions are first followed by Planning questions etc.

Response = as.vector(append(t(QuestionsNewOrder[1,]),t(QuestionsNewOrder[2,])))

for(i in 3:dim(QuestionsNewOrder)[1])

{

Response = append(Response,t(QuestionsNewOrder[i,]))
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}

## Transposes the first two questions in the Questions matrix and appends them

together. Each column is appended to the previous column until all columns are

combined into one column.

Response.fac = factor(Response)

Questions.fac = factor(Question)

##Response.fac and Questions.fac - changes the numeric column "Response" and

"Questions" into factors.

Gender = rep(Year6$V4,each=38)

Chinese = rep(Year6$V5,each=38)

School = rep(Year6$V46,each=38)

## Gender/Chinese/School - repeat the Gender/Ethnicity/School column from

the dataset thirty eight times.

levels(Chinese) = list("Chinese"=c("Chinese","Eurasian"),

"Other"=c("Malay","Others","Indian"))

## This changes the different levels of the Ethnicity into two groups, Chinese

and Other.

newdata = as.data.frame(cbind(Response,Response.fac,Student,Gender,Chinese,

School,RowCluster,Questions.fac,LinguisticsCluster,

S1,S2,S3,S4,S5,S6,S7,S8))

## newdata - combine each column created above into one dataset.
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newdata$S1.fac = factor(newdata$S1)

newdata$S2.fac = factor(newdata$S2)

newdata$S3.fac = factor(newdata$S3)

newdata$S4.fac = factor(newdata$S4)

newdata$S5.fac = factor(newdata$S5)

newdata$S6.fac = factor(newdata$S6)

newdata$S7.fac = factor(newdata$S7)

newdata$S8.fac = factor(newdata$S8)

newdata$Student.fac = factor(Student)

newdata$Gender.fac = factor(Gender)

newdata$Chinese.fac = factor(Chinese)

newdata$School.fac = factor(School)

## The "factor" function used above changes all the above columns from

numeric to factors.

This dataset created can now be used for the different approaches of the propor-

tional odds model.
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B.1 Approaches to proportional odds model

This section goes through how a proportional odds model is applied to the data. It

goes through the process of model selection and the application of the Wald test to

see if there are any question effects. Only R-code for Self-initiation and planning

strategy is shown.

B.1.1 GEE approach

library(geepack)

library(multgee)

gee_table=newdata[with(newdata, order(Student)), ]

## The code above orders the dataset created in the previous section by Student.

#Model selection for Self-initiation strategy

## S1.gee is the full model, as described in Chapter 3 section 3.6. The full model

is submitted.

## L is a vector of 0’s and 1’s, where 1 is associated with the explanatory

variable we want to test in the Wald test.

## S1.gee.2 - S1.gee.5 are models using the backward elimination method of model

selection. At each stage the highest non-significant variable is removed.

S1.gee = ordLORgee(ordered(Response.fac)~ factor(S1) + Gender.fac

+ Chinese.fac + School.fac + factor(S1)*Gender.fac

+ factor(S1)*Chinese.fac + factor(S1)*School.fac, id=Student.fac,

repeated=S1, data=subset(gee_table,LinguisticsCluster==1))

summary(S1.gee)$coefficients

L=matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

nrow=1)
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Wald.S1.gee = t(L%*%S1.gee$coef)%*%solve(L%*%S1.gee$robust.variance%*%t(L))

%*%(L%*%S1.gee$coef)

Wald.S1.gee

1 - pchisq(Wald.S1.gee,3)

S1.gee.1 = ordLORgee(ordered(Response.fac)~ factor(S1) + Gender.fac

+ Chinese.fac + School.fac + factor(S1)*Gender.fac

+ factor(S1)*Chinese.fac, id=Student.fac, repeated=S1,

data=subset(gee_table,LinguisticsCluster==1))

summary(S1.gee.1)$coefficients

L=matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0),nrow=1)

Wald.S1.gee = t(L%*%S1.gee.1$coef)%*%solve(L%*%S1.gee.1$robust.variance%*%t(L))

%*%(L%*%S1.gee.1$coef)

Wald.S1.gee

1 - pchisq(Wald.S1.gee,3)

S1.gee.2 = ordLORgee(ordered(Response.fac)~ factor(S1) + Gender.fac

+ Chinese.fac + School.fac + factor(S1)*Gender.fac, id=Student.fac,

repeated=S1, data=subset(gee_table,LinguisticsCluster==1))

summary(S1.gee.2)$coefficients

L=matrix(c(0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0),nrow=1)

Wald.S1.gee = t(L%*%S1.gee.2$coef)%*%solve(L%*%S1.gee.2$robust.variance%*%t(L))

%*%(L%*%S1.gee.2$coef)

Wald.S1.gee

1 - pchisq(Wald.S1.gee,5)

S1.gee.3 = ordLORgee(ordered(Response.fac)~ factor(S1) + Gender.fac

+ Chinese.fac + factor(S1)*Gender.fac, id=Student.fac,

repeated=S1, data=subset(gee_table,LinguisticsCluster==1))

summary(S1.gee.3)$coefficients

L=matrix(c(0,0,0,0,0,0,0,0,0,1,1,1),nrow=1)
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Wald.S1.gee = t(L%*%S1.gee.3$coef)%*%solve(L%*%S1.gee.3$robust.variance%*%t(L))

%*%(L%*%S1.gee.3$coef)

Wald.S1.gee

1 - pchisq(Wald.S1.gee,3)

S1.gee.4 = ordLORgee(ordered(Response.fac)~ factor(S1) + Gender.fac

+ Chinese.fac, id=Student.fac, repeated=S1,

data=subset(gee_table,LinguisticsCluster==1))

summary(S1.gee.4)$coefficients

L=matrix(c(0,0,0,0,0,0,0,1,0),nrow=1)

Wald.S1.gee = t(L%*%S1.gee.4$coef)%*%solve(L%*%S1.gee.4$robust.variance%*%t(L))

%*%(L%*%S1.gee.4$coef)

Wald.S1.gee

1 - pchisq(Wald.S1.gee,1)

S1.gee.5 = ordLORgee(ordered(Response.fac)~ factor(S1) + Chinese.fac,

id=Student.fac, repeated=S1, data=subset(gee_table,LinguisticsCluster==1))

summary(S1.gee.5)$coefficients

L=matrix(c(0,0,0,0,0,0,0,1),nrow=1)

Wald.S1.gee = t(L%*%S1.gee.5$coef)%*%solve(L%*%S1.gee.5$robust.variance%*%t(L))

%*%(L%*%S1.gee.5$coef)

Wald.S1.gee

1 - pchisq(Wald.S1.gee,1)

#Model inference for Self-initiation strategy

## Final model where only the Chinese variable is significant.

## Inference of the strategy variables is calculated and the results of the

Wald test is displayed.

S1.gee.5 = ordLORgee(ordered(Response.fac)~ factor(S1) + Chinese.fac,

id=Student.fac, repeated=S1, data=subset(gee_table,LinguisticsCluster==1))
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summary(S1.gee.5)$coefficients

L=matrix(c(0,0,0,0,1,1,1,0),nrow=1)

Wald.S1.gee = t(L%*%S1.gee.5$coef)%*%solve(L%*%S1.gee.5$robust.variance%*%t(L))

%*%(L%*%S1.gee.5$coef)

Wald.S1.gee

1 - pchisq(Wald.S1.gee,3)

#Model inference output from R

> summary(S1.gee.5)$coefficients

Estimate san.se san.z Pr(>|san.z|)

beta01 -2.35038 0.09213 -25.51238 0.00000

beta02 -0.99220 0.06865 -14.45248 0.00000

beta03 0.46133 0.06333 7.28460 0.00000

beta04 1.57719 0.07040 22.40196 0.00000

factor(S1)2 0.05267 0.06461 0.81529 0.41491

factor(S1)3 -0.23558 0.07082 -3.32640 0.00088

factor(S1)4 -0.44089 0.06466 -6.81910 0.00000

Chinese.facOther -0.33209 0.07940 -4.18276 0.00003

> L=matrix(c(0,0,0,0,1,1,1,0),nrow=1)

> Wald.S1.gee = t(L%*%S1.gee.5$coef)%*%solve(L%*%S1.gee.5$robust.variance

%*%t(L))%*%(L%*%S1.gee.5$coef)

> Wald.S1.gee

[,1]

[1,] 14.31322

> 1 - pchisq(Wald.S1.gee,3)

[,1]

[1,] 0.002508379

##This value at the end is the p-value for the Self-initiation strategy variable.

It suggests there is very strong evidence against the null hypothesis of no

difference.
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B.1.2 Subject-specific approach

library(ordinal)

#Model selection for Self-initiation strategy

## Full model as described in Chapter 3, section 3.6.

## Wald test to test for significance of the explanatory

variable.

## L and L1 is a vector of 0’s and 1’s, where 1 is associated with the explanatory

## S1.SS.1 - S1.SS.6 are models used for the backward elimination method of

model selection. At each stage the highest non-significant variable is removed.

S1.SS=clmm(as.factor(Response.fac)~ S1.fac + (1|Student.fac) + Gender.fac

+ Chinese.fac + School.fac + S1.fac*Gender.fac + S1.fac*Chinese.fac

+ S1.fac*School.fac, data=subset(standard.newdata,LinguisticsCluster==1),

link="logit",Hess=TRUE)

summary(S1.SS)

L=matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0),nrow=1)

L1=matrix(c(0,0,0,0,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0),nrow=1)

Wald.S1.SS = t(L%*%as.vector(summary(S1.SS)$coefficients[,1]))%*%

solve(L1%*%vcov(S1.SS)%*%t(L1))%*%

(L%*%as.vector(summary(S1.SS)$coefficients[,1]))

Wald.S1.SS

1 - pchisq(Wald.S1.SS,3)

S1.SS.1=clmm(as.factor(Response.fac)~ S1.fac + (1|Student.fac) + Gender.fac

+ Chinese.fac + School.fac + S1.fac*Gender.fac + S1.fac*Chinese.fac,

data=subset(standard.newdata,LinguisticsCluster==1),link="logit",Hess=TRUE)

summary(S1.SS.1)

L=matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0),nrow=1
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L1=matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0),nrow=1)

Wald.S1.SS = t(L%*%as.vector(summary(S1.SS.1)$coefficients[,1]))

%*%solve(L1%*%vcov(S1.SS.1)%*%t(L1))%*%

(L%*%as.vector(summary(S1.SS.1)$coefficients[,1]))

Wald.S1.SS

1 - pchisq(Wald.S1.SS,3)

S1.SS.2=clmm(as.factor(Response.fac)~ S1.fac + (1|Student.fac) + Gender.fac

+ Chinese.fac + S1.fac*Gender.fac + S1.fac*Chinese.fac,

data=subset(standard.newdata,LinguisticsCluster==1),link="logit",Hess=TRUE)

summary(S1.SS.2)

L=matrix(c(0,0,0,0,0,0,0,0,0,1,1,1,0,0,0),nrow=1)

L1=matrix(c(0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0),nrow=1)

Wald.S1.SS = t(L%*%as.vector(summary(S1.SS.2)$coefficients[,1]))

%*%solve(L1%*%vcov(S1.SS.2)%*%t(L1))%*%

(L%*%as.vector(summary(S1.SS.2)$coefficients[,1]))

Wald.S1.SS

1 - pchisq(Wald.S1.SS,3)

S1.SS.3=clmm(as.factor(Response.fac)~ S1.fac + (1|Student.fac) + Gender.fac

+ Chinese.fac + S1.fac*Gender.fac,

data=subset(standard.newdata,LinguisticsCluster==1),link="logit",Hess=TRUE)

summary(S1.SS.3)

L=matrix(c(0,0,0,0,0,0,0,0,0,1,1,1),nrow=1)

L1=matrix(c(0,0,0,0,0,0,0,0,0,1,1,1,0),nrow=1)

Wald.S1.SS = t(L%*%as.vector(summary(S1.SS.3)$coefficients[,1]))

%*%solve(L1%*%vcov(S1.SS.3)%*%t(L1))%*%

(L%*%as.vector(summary(S1.SS.3)$coefficients[,1]))

Wald.S1.SS

1 - pchisq(Wald.S1.SS,3)
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S1.SS.4=clmm(as.factor(Response.fac)~ S1.fac + (1|Student.fac) + Gender.fac

+ Chinese.fac, data=subset(standard.newdata,LinguisticsCluster==1),

link="logit",Hess=TRUE)

summary(S1.SS.4)

L=matrix(c(0,0,0,0,0,0,0,0,1),nrow=1)

L1=matrix(c(0,0,0,0,0,0,0,0,1,0),nrow=1)

Wald.S1.SS = t(L%*%as.vector(summary(S1.SS.4)$coefficients[,1]))

%*%solve(L1%*%vcov(S1.SS.4)%*%t(L1))%*%

(L%*%as.vector(summary(S1.SS.4)$coefficients[,1]))

Wald.S1.SS

1 - pchisq(Wald.S1.SS,3)

S1.SS.5=clmm(as.factor(Response.fac)~ S1.fac + (1|Student.fac) + Gender.fac

+ Chinese.fac, data=subset(standard.newdata,LinguisticsCluster==1),

link="logit",Hess=TRUE)

summary(S1.SS.5)

L=matrix(c(0,0,0,0,0,0,0,0,1),nrow=1)

L1=matrix(c(0,0,0,0,0,0,0,0,1,0),nrow=1)

Wald.S1.SS = t(L%*%as.vector(summary(S1.SS.5)$coefficients[,1]))

%*%solve(L1%*%vcov(S1.SS.5)%*%t(L1))%*%

(L%*%as.vector(summary(S1.SS.5)$coefficients[,1]))

Wald.S1.SS

1 - pchisq(Wald.S1.SS,1)

S1.SS.6=clmm(as.factor(Response.fac)~ S1.fac + (1|Student.fac) + Chinese.fac,

data=subset(standard.newdata,LinguisticsCluster==1),link="logit",Hess=TRUE)

summary(S1.SS.6)

L=matrix(c(0,0,0,0,0,0,0,1),nrow=1)

L1=matrix(c(0,0,0,0,0,0,0,1,0),nrow=1)

Wald.S1.SS = t(L%*%as.vector(summary(S1.SS.6)$coefficients[,1]))

%*%solve(L1%*%vcov(S1.SS.6)%*%t(L1))%*%



130 APPENDIX B. PROPORTIONAL ODDS MODELS

(L%*%as.vector(summary(S1.SS.6)$coefficients[,1]))

Wald.S1.SS

1 - pchisq(Wald.S1.SS,1)

##Model inference of Self-initiation strategy

## Final model where only the Chinese variable is significant.

### Inference of the strategy variable is calculated and results of the Wald

test is displayed.

S1.SS.final=clmm(as.factor(Response.fac)~ S1.fac + (1|Student.fac) + Chinese.fac,

data=subset(standard.newdata,LinguisticsCluster==1),

link="logit",Hess=TRUE)

summary(S1.SS.final)

L=matrix(c(0,0,0,0,1,1,1,0),nrow=1)

L1=matrix(c(0,0,0,0,1,1,1,0,0),nrow=1)

Wald.S1.SS = t(L%*%as.vector(summary(S1.SS.final)$coefficients[,1]))

%*%solve(L1%*%vcov(S1.SS.final)%*%t(L1))%*%

(L%*%as.vector(summary(S1.SS.final)$coefficients[,1]))

Wald.S1.SS

1 - pchisq(Wald.S1.SS,3)

#Model inference output

> summary(S1.SS.final)

Cumulative Link Mixed Model fitted with the Laplace approximation

formula: as.factor(Response.fac) ~ S1.fac + (1 | Student.fac) + Chinese.fac

data: subset(standard.newdata, LinguisticsCluster == 1)

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 4156 -6025.25 12068.50 771(3067) 4.83e-03 4.8e+01
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Random effects:

Groups Name Variance Std.Dev.

Student.fac (Intercept) 1.505 1.227

Number of groups: Student.fac 1039

Coefficients:

Estimate Std. Error z value Pr(>|z|)

S1.fac2 -0.07177 0.08057 -0.891 0.373024

S1.fac3 0.29540 0.08175 3.613 0.000302 ***

S1.fac4 0.51449 0.08288 6.208 5.37e-10 ***

Chinese.facOther 0.42638 0.10399 4.100 4.13e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -2.90268 0.09990 -29.055

2|3 -1.26993 0.08233 -15.425

3|4 0.59441 0.07947 7.479

4|5 2.00660 0.08605 23.319

> Wald.S1.SS

[,1]

[1,] 13.62346

> 1 - pchisq(Wald.S1.SS,3)

[,1]

[1,] 0.003465181

##This value at the end is the p-value for the Self-initiation strategy variable.

It suggests there is very strong evidence against the null hypothesis of no

difference.
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Confirmatory factor analysis

C.1 Linguistic strategies

The R-code in this appendix goes through how CFA is run. Comments about the

R-code starts with ##.

library(sem)

library(semPlot)

library(lavaan)

library(tikzDevice)

## Structure of the eight Linguistics strategies (hypothesised model structure) to be

used in through the CFA function.

v.model = ’ selfinitiation =~ Q11 + Q12 + Q14 + Q18

planning =~ Q3 + Q15 + Q23

monitoring =~ Q21 + Q32 + Q5 + Q9 + Q36

perceptualrproc =~ Q8 + Q24 + Q34 + Q37

inferencing =~ Q1 + Q4 + Q17 + Q26 + Q31 + Q27 + Q33

prediction =~ Q6 + Q7 + Q13 + Q29 + Q35

utilisation =~ Q16 + Q19 + Q20 + Q22 + Q30

132
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socioaffective =~ Q2 + Q10 + Q28 + Q25 + Q38 ’

## The next three cfa functions fits the hypothesised model structure using the

three least squares methods - weighted least squares, diagonal weighted

least squares and uniform least squares.

## Important note for this function is to make sure the ratings for each

question is ordered. This is by including the ‘ordered’ statement in the function.

fit.WLS = cfa(v.model,data = data_Year6,std.lv=TRUE,estimator="WLS",

mimic="Mplus",ordered=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9",

"Q10","Q11","Q12","Q13","Q14","Q15","Q16","Q17","Q18","Q19","Q20",

"Q21","Q22","Q23","Q24","Q25","Q26","Q27","Q28","Q29","Q30","Q31",

"Q32","Q33","Q34","Q35","Q36","Q37","Q38"))

fit.ULS = cfa(v.model,data = data_Year6,std.lv=TRUE,estimator="ULS",

mimic="Mplus",ordered=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9",

"Q10","Q11","Q12","Q13","Q14","Q15","Q16","Q17","Q18","Q19","Q20",

"Q21","Q22","Q23","Q24","Q25","Q26","Q27","Q28","Q29","Q30","Q31",

"Q32","Q33","Q34","Q35","Q36","Q37","Q38"))

fit.DWLS = cfa(v.model,data = data_Year6,std.lv=TRUE,estimator="DWLS",

mimic="Mplus",ordered=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9",

"Q10","Q11","Q12","Q13","Q14","Q15","Q16","Q17","Q18","Q19","Q20",

"Q21","Q22","Q23","Q24","Q25","Q26","Q27","Q28","Q29","Q30","Q31",

"Q32","Q33","Q34","Q35","Q36","Q37","Q38"))
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## Summary output for DWLS estimator.

> summary(fit.DWLS, fit.measures = T)

lavaan (0.5-16) converged normally after 46 iterations

Number of observations 1039

Estimator DWLS

Minimum Function Test Statistic 2318.352

Degrees of freedom 637

P-value (Chi-square) 0.000

Model test baseline model:

Minimum Function Test Statistic 72954.886

Degrees of freedom 703

P-value 0.000

User model versus baseline model:

Comparative Fit Index (CFI) 0.977

Tucker-Lewis Index (TLI) 0.974

Root Mean Square Error of Approximation:

RMSEA 0.050

90 Percent Confidence Interval 0.048 0.053

P-value RMSEA <= 0.05 0.371
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C.2 Fuzzy biclustering clusters

## Structure of the five fuzzy biclustering clusters (hypothesised model

structure) to be put through the CFA function.

ideal.model = ’ F1 =~ Q5 + Q18 + Q19

F2 =~ Q21 + Q37 + Q38

F3 =~ Q14 + Q17 + Q25 + Q26 + Q32

F4 =~ Q2 + Q6 + Q7 + Q8 + Q13 + Q16 + Q27 + Q28 + Q29 + Q31 + Q35

F5 =~ Q1 + Q3 + Q4 + Q9 + Q10 + Q11 + Q12 + Q15 + Q20 + Q22 + Q23 + Q24

+ Q30 + Q33 + Q34 + Q36 ’

## The next three cfa functions fits the hypothesised model using the

three least squares methods - weighted least squares, diagonal weighted

least squares and uniform least squares.

## Important note for this function is to make sure the ratings for each

question is ordered. This is by including the ‘ordered’ statement in the

function.

ideal.WLS = cfa(ideal.model,data = data_Year6,std.lv=TRUE,estimator="WLS",

mimic="Mplus",ordered=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9",

"Q10","Q11","Q12","Q13","Q14","Q15","Q16","Q17","Q18","Q19","Q20",

"Q21","Q22","Q23","Q24","Q25","Q26","Q27","Q28","Q29","Q30","Q31",

"Q32","Q33","Q34","Q35","Q36","Q37","Q38"))

ideal.ULS = cfa(ideal.model,data = data_Year6,std.lv=TRUE,estimator="ULS",

mimic="Mplus",ordered=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9",

"Q10","Q11","Q12","Q13","Q14","Q15","Q16","Q17","Q18","Q19","Q20",

"Q21","Q22","Q23","Q24","Q25","Q26","Q27","Q28","Q29","Q30","Q31",

"Q32","Q33","Q34","Q35","Q36","Q37","Q38"))
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ideal.DWLS = lavaan(ideal.model,data = data_Year6,std.lv=TRUE,estimator="DWLS",

mimic="Mplus",ordered=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9",

"Q10","Q11","Q12","Q13","Q14","Q15","Q16","Q17","Q18","Q19","Q20",

"Q21","Q22","Q23","Q24","Q25","Q26","Q27","Q28","Q29","Q30","Q31",

"Q32","Q33","Q34","Q35","Q36","Q37","Q38"))

## Summary output for DWLS estimators.

> summary(ideal.DWLS, fit.measures = T)

lavaan (0.5-16) converged normally after 48 iterations

Number of observations 1039

Estimator DWLS

Minimum Function Test Statistic 3189.063

Degrees of freedom 655

P-value (Chi-square) 0.000

Model test baseline model:

Minimum Function Test Statistic 72954.886

Degrees of freedom 703

P-value 0.000

User model versus baseline model:

Comparative Fit Index (CFI) 0.965

Tucker-Lewis Index (TLI) 0.962
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Root Mean Square Error of Approximation:

RMSEA 0.061

90 Percent Confidence Interval 0.059 0.063

P-value RMSEA <= 0.05 0.000



Appendix D

Ordinal agreement model

D.1 Ordinal agreement model function

The following is R-code to build an ordinal agreement model. The pieces of code

with # in front, is used when the scale of the ratings is changed. Comments about

the R-code starts with ##.

## A function called ‘ordinal’ is created here. This is used to create an ordinal

agreement model between two questions. The output of this function is the term

β.

## Columns u and v (as described in Chapter 5, section 5.2) are created from the

rating values (1-5).

## Column uv is also created by multiplying the u and v columns together.

## The column ’delta’ is a column of 0’s and 1’s, where 1 is where u = v and 0’s

else where.

ordinal = function(Q1,Q2)

{

table.survey=data.frame(table(Q1,Q2))

colnames(table.survey)=c("Var1","Var2","count")

table.survey$Var1.fac=factor(table.survey$Var1)

138
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table.survey$Var2.fac=factor(table.survey$Var2)

# table.survey$Var1.u = ifelse(table.survey$Var1==1,1,

ifelse(table.survey$Var1==2,3,ifelse(table.survey$Var1==3,4,

ifelse(table.survey$Var1==4,5,7))))

# table.survey$Var2.v = ifelse(table.survey$Var2==1,1,

ifelse(table.survey$Var2==2,3,ifelse(table.survey$Var2==3,4,

ifelse(table.survey$Var2==4,5,7))))

# table.survey$Var1.u.fac = factor(table.survey$Var1.u)

# table.survey$Var2.v.fac = factor(table.survey$Var2.v)

table.survey$uv = as.numeric(table.survey$Var1)*as.numeric(table.survey$Var2)

# table.survey$uv.2 = as.numeric(table.survey$Var1.u)*as.numeric(table.survey$Var2.v)

table.survey$delta = c(1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1)

linear.log = glm(count~Var1.fac+Var2.fac+uv+delta,family=poisson,data=table.survey)

# linear.log = glm(count~Var1.u.fac+Var2.v.fac+uv.2+delta,family=poisson,

data=table.survey)

beta=summary(linear.log)$coef[10,1]

output = data.frame(beta)

output

}

D.2 Bootstrapping of ordinal agreement model

## Number of repetitions to be used for bootstrap method.

n = 1000

## Creates a matrix for each strategy where it has q columns and n rows,

where q is the number of pairwise questions and n is the number of repetitions.

self_initiation = matrix(NA,nrow=n,ncol=6)

planning = matrix(NA,nrow=n,ncol=3)

MandE = matrix(NA,nrow=n,ncol=10)
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pp = matrix(NA,nrow=n,ncol=6)

inferencing = matrix(NA,nrow=n,ncol=21)

prediction = matrix(NA,nrow=n,ncol=10)

utilisation = matrix(NA,nrow=n,ncol=10)

socioaffective = matrix(NA,nrow=n,ncol=10)

## A loop that runs n times. Creates a sample of the 1,039 students, with replacement.

Runs each pairwise question through the ‘ordinal’ function created previously and

adding each beta output into the appropriate strategy matrix created above.

At the end of the loop, there would be, for example, 6 columns and 1,000 rows

of beta values for the Self-initiation strategy.

for (i in 1:n)

{

sample_year = data_Year6[sample(nrow(data_Year6),dim(data_Year6)[1],replace=TRUE),]

#Self initiation

self_initiation[i,1] = ordinal(sample_year$V17,sample_year$V18)[,1]

self_initiation[i,2] = ordinal(sample_year$V17,sample_year$V20)[,1]

self_initiation[i,3] = ordinal(sample_year$V17,sample_year$V24)[,1]

self_initiation[i,4] = ordinal(sample_year$V18,sample_year$V20)[,1]

self_initiation[i,5] = ordinal(sample_year$V18,sample_year$V24)[,1]

self_initiation[i,6] = ordinal(sample_year$V20,sample_year$V24)[,1]

#Planning

planning[i,1] = ordinal(sample_year$V9,sample_year$V21)[,1]

planning[i,2] = ordinal(sample_year$V9,sample_year$V29)[,1]

planning[i,3] = ordinal(sample_year$V21,sample_year$V29)[,1]

#Monitoring and Evaluating

MandE[i,1] = ordinal(sample_year$V11,sample_year$V15)[,1]
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MandE[i,2] = ordinal(sample_year$V11,sample_year$V27)[,1]

MandE[i,3] = ordinal(sample_year$V11,sample_year$V38)[,1]

MandE[i,4] = ordinal(sample_year$V11,sample_year$V42)[,1]

MandE[i,5] = ordinal(sample_year$V15,sample_year$V27)[,1]

MandE[i,6] = ordinal(sample_year$V15,sample_year$V38)[,1]

MandE[i,7] = ordinal(sample_year$V15,sample_year$V42)[,1]

MandE[i,8] = ordinal(sample_year$V27,sample_year$V38)[,1]

MandE[i,9] = ordinal(sample_year$V27,sample_year$V42)[,1]

MandE[i,10] = ordinal(sample_year$V38,sample_year$V42)[,1]

#Perceptual Processing

pp[i,1] = ordinal(sample_year$V14,sample_year$V28)[,1]

pp[i,2] = ordinal(sample_year$V14,sample_year$V38)[,1]

pp[i,3] = ordinal(sample_year$V14,sample_year$V43)[,1]

pp[i,4] = ordinal(sample_year$V28,sample_year$V38)[,1]

pp[i,5] = ordinal(sample_year$V28,sample_year$V43)[,1]

pp[i,6] = ordinal(sample_year$V38,sample_year$V43)[,1]

#Inferencing

inferencing[i,1] = ordinal(sample_year$V7,sample_year$V10)[,1]

inferencing[i,2] = ordinal(sample_year$V7,sample_year$V23)[,1]

inferencing[i,3] = ordinal(sample_year$V7,sample_year$V32)[,1]

inferencing[i,4] = ordinal(sample_year$V7,sample_year$V33)[,1]

inferencing[i,5] = ordinal(sample_year$V7,sample_year$V37)[,1]

inferencing[i,6] = ordinal(sample_year$V7,sample_year$V39)[,1]

inferencing[i,7] = ordinal(sample_year$V10,sample_year$V23)[,1]

inferencing[i,8] = ordinal(sample_year$V10,sample_year$V32)[,1]

inferencing[i,9] = ordinal(sample_year$V10,sample_year$V33)[,1]

inferencing[i,10] = ordinal(sample_year$V10,sample_year$V37)[,1]

inferencing[i,11] = ordinal(sample_year$V10,sample_year$V39)[,1]

inferencing[i,12] = ordinal(sample_year$V23,sample_year$V32)[,1]
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inferencing[i,13] = ordinal(sample_year$V23,sample_year$V33)[,1]

inferencing[i,14] = ordinal(sample_year$V23,sample_year$V37)[,1]

inferencing[i,15] = ordinal(sample_year$V23,sample_year$V39)[,1]

inferencing[i,16] = ordinal(sample_year$V32,sample_year$V33)[,1]

inferencing[i,17] = ordinal(sample_year$V32,sample_year$V37)[,1]

inferencing[i,18] = ordinal(sample_year$V32,sample_year$V39)[,1]

inferencing[i,19] = ordinal(sample_year$V33,sample_year$V37)[,1]

inferencing[i,20] = ordinal(sample_year$V33,sample_year$V39)[,1]

inferencing[i,21] = ordinal(sample_year$V37,sample_year$V39)[,1]

#Prediction

prediction[i,1] = ordinal(sample_year$V12,sample_year$V13)[,1]

prediction[i,2] = ordinal(sample_year$V12,sample_year$V19)[,1]

prediction[i,3] = ordinal(sample_year$V12,sample_year$V35)[,1]

prediction[i,4] = ordinal(sample_year$V12,sample_year$V41)[,1]

prediction[i,5] = ordinal(sample_year$V13,sample_year$V19)[,1]

prediction[i,6] = ordinal(sample_year$V13,sample_year$V35)[,1]

prediction[i,7] = ordinal(sample_year$V13,sample_year$V41)[,1]

prediction[i,8] = ordinal(sample_year$V19,sample_year$V35)[,1]

prediction[i,9] = ordinal(sample_year$V19,sample_year$V41)[,1]

prediction[i,10] = ordinal(sample_year$V35,sample_year$V41)[,1]

#Utilisation

utilisation[i,1] = ordinal(sample_year$V22,sample_year$V25)[,1]

utilisation[i,2] = ordinal(sample_year$V22,sample_year$V26)[,1]

utilisation[i,3] = ordinal(sample_year$V22,sample_year$V28)[,1]

utilisation[i,4] = ordinal(sample_year$V22,sample_year$V36)[,1]

utilisation[i,5] = ordinal(sample_year$V25,sample_year$V26)[,1]

utilisation[i,6] = ordinal(sample_year$V25,sample_year$V28)[,1]

utilisation[i,7] = ordinal(sample_year$V25,sample_year$V36)[,1]

utilisation[i,8] = ordinal(sample_year$V26,sample_year$V28)[,1]
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utilisation[i,9] = ordinal(sample_year$V26,sample_year$V36)[,1]

utilisation[i,10] = ordinal(sample_year$V28,sample_year$V36)[,1]

#Socio-affective

socioaffective[i,1] = ordinal(sample_year$V8,sample_year$V16)[,1]

socioaffective[i,2] = ordinal(sample_year$V8,sample_year$V31)[,1]

socioaffective[i,3] = ordinal(sample_year$V8,sample_year$V34)[,1]

socioaffective[i,4] = ordinal(sample_year$V8,sample_year$V44)[,1]

socioaffective[i,5] = ordinal(sample_year$V16,sample_year$V31)[,1]

socioaffective[i,6] = ordinal(sample_year$V16,sample_year$V34)[,1]

socioaffective[i,7] = ordinal(sample_year$V16,sample_year$V44)[,1]

socioaffective[i,8] = ordinal(sample_year$V31,sample_year$V34)[,1]

socioaffective[i,9] = ordinal(sample_year$V31,sample_year$V44)[,1]

socioaffective[i,10] = ordinal(sample_year$V34,sample_year$V44)[,1]

}
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D.3 Summary of overall agreement β̂

This section shows how to calculate a vector of β̂ used in the estimation of pairwise

agreement.

## Creates eight variables that has the value 0.

mean_self_initiation = numeric(0)

mean_planning = numeric(0)

mean_MandE = numeric(0)

mean_pp = numeric(0)

mean_inferencing = numeric(0)

mean_prediction = numeric(0)

mean_utilisation = numeric(0)

mean_socioaffective = numeric(0)

## A loop that runs through each row of the eight Linguistic strategy dataset

of beta’s. For each strategy, the mean of each row is taken. So, for example,

the Self-initiation strategy has a matrix of 6 columns and 1,000 rows of beta

values. The mean of each row is taken, so that the new vector has 1 column

and 1,000 rows.

for (j in 1:n)

{ mean_self_initiation[j] = mean(self_initiation[j,])

mean_planning[j] = mean(planning[j,])

mean_MandE[j] = mean(MandE[j,])

mean_pp[j] = mean(pp[j,])

mean_inferencing[j] = mean(inferencing[j,])

mean_prediction[j] = mean(prediction[j,])

mean_utilisation[j] = mean(utilisation[j,])

mean_socioaffective[j] = mean(socioaffective[j,]) }
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D.4 Estimation of pairwise agreement

This section shows how the β̂ and β̂j,j′ of each pairwise combination for each strategy

is calculated.

## A function called Conf.Int is created here. This function calculates several

values including the mean value of a column, lower and upper 95% confidence interval

for the mean value.

Conf.Int = function(data)

{

x = numeric(0)

for (i in 1:length(data))

{

x[i]= (data[i]-mean(data))^2

}

se = sqrt(sum(x)/(length(x)-1))

ci=numeric(0)

ci[1]=mean(data)

ci[2]=mean(data)-qnorm(0.975)*se

ci[3]=mean(data)+qnorm(0.975)*se

ci

}
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## Calls the Conf.Int function for each of the strategy vectors created previously.

Here the strategy mean beta is calculated.

Conf.Int(mean_self_initiation)

Conf.Int(mean_planning)

Conf.Int(mean_MandE)

Conf.Int(mean_pp)

Conf.Int(mean_inferencing)

Conf.Int(mean_prediction)

Conf.Int(mean_utilisation)

Conf.Int(mean_socioaffective)

## Calls the Conf.Int function for the Self-initiation strategy for each column

in the Self-initiation matrix that was created first, to give the pairwise mean

beta’s. This function is also called for all the other strategies and the

columns in those matrices.

Conf.Int(self_initiation[,1])

Conf.Int(self_initiation[,2])

Conf.Int(self_initiation[,3])

Conf.Int(self_initiation[,4])

Conf.Int(self_initiation[,5])

Conf.Int(self_initiation[,6])


