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Abstract

This thesis provides an account of research into a group of diphosphine ligands

with a rigid xanthene backbone and tert-butyl substituents on the phosphorus

atoms. The three ligands have different groups in the bridgehead position of the

backbone (CMe2, SiMe2, or S) which change the natural (calculated) bite-angle

of the ligand. The coordination chemistry of these t-Bu-xantphos ligands with

late-transition metals has been investigated with a focus on metal complexes that

may form in catalytic reactions.

The three t-Bu-xantphos ligands were synthesised by lithiation of the backbone

using sec-butyllithium/TMEDA and treatment with PtBu2Cl. The natural bite-

angles of the Ph-xantphos (111.89–114.18◦) and t-Bu-xantphos (126.80–127.56◦)

ligands were calculated using DFT. The bite-angle of the t-Bu-xantphos ligands

is larger due to the increased steric bulk of the tert-butyl substituents. The elec-

tronic properties of the t-Bu-xantphos ligands were also investigated by synthesis

of their phosphine selenides. The values of 1J PSe (689.1–698.5 Hz) indicate that the

t-Bu-xantphos ligands have a higher basicity than Ph-xantphos between PPh2Me

and PMe3.

The silver complexes, [Ag(t-Bu-xantphos)Cl] and [Ag(t-Bu-xantphos)]BF4 were

synthesised with the t-Bu-xantphos ligands. In contrast to systems with phenyl

phosphines, all species were monomeric. [Rh(t-Bu-xantphos)Cl] complexes were

synthesised, which reacted with H2, forming [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2]

complexes, and with CO, forming [Rh(t-Bu-xantphos)(CO)2Cl] complexes. The

[Rh(t-Bu-xantphos)Cl] species are air-sensitive readily forming [Rh(t-Bu-xant-

phos)Cl(η2-O2)] complexes. The crystal structure of [Rh(t-Bu-xantphos)Cl(η2-O2)],

contained 15% of the dioxygen sites replaced with an oxo ligand. This is the

first crystallographic evidence of a rhodium(III) oxo complex, and only the third

rhodium oxo species reported.

The coordination chemistry of the ligands with platinum(0) and palladium(0)

showed some differences. [Pt(t-Bu-xantphos)(C2H4)] complexes were synthe-



sised for all three ligands. However, reaction with [Pt(nb)3] produced a mixture

of [Pt(t-Bu-xantphos)] and [Pt(t-Bu-xantphos)(nb)] for t-Bu-sixantphos and t-Bu-

thixantphos. Although few examples of isolable [Pt(PP)] complexes with diphos-

phines have been reported [Pt(t-Bu-thixantphos)] was isolated by removal of the

norbornene. t-Bu-Xantphos formed small amounts of [Pt(t-Bu-xantphos)] ini-

tially, which progressed to [Pt(t-Bu-xantphos)H]X. The analogous reactions with

[Pd(nb)3] gave [Pd(t-Bu-xantphos)] and [Pd(t-Bu-xantphos)(nb)] complexes in all

cases. [Pt(t-Bu-thixantphos)(C2H4)] and [M(t-Bu-thixantphos)] (M = Pd, Pt) react

with oxygen forming [Pt(t-Bu-thixantphos)(η2-O2)], which reacts with CO to give

[Pt(t-Bu-thixantphos-H-κ-C,P,P ’)OH] through a series of intermediates.

[M(t-Bu-xantphos)Cl2] (M = Pd, Pt) complexes were synthesised, showing ex-

clusive trans coordination of the diphosphine ligands. The X-ray crystal struc-

ture of [Pt(t-Bu-thixantphos)Cl2] has a bite-angle of 151.722(15)◦. This is the

first [PtCl2(PP)] complex with a bite-angle between 114 and 171◦. In polar sol-

vents a chloride ligand dissociates from the [Pt(t-Bu-xantphos)Cl2] complexes

producing [Pt(t-Bu-xantphos-κP,O,P ’)Cl]+. The analogous [Pd(t-Bu-xantphos-

κP,O,P ’)Cl]+ complexes were formed by reaction of the dichlorides complexes

with NH4PF6. The [Pt(t-Bu-xantphos-κP,O,P ’)Me]+ pincer complexes were the

only product from reaction with [Pt(C6H10)ClMe], with the stronger trans influ-

ence of the methyl ligand promoting loss of the chloride. The formation of the

pincer complexes was further explored using DFT.

The values of J PtC for the methyl carbons in the [Pt(t-Bu-xantphos-κP,O,P ’)Me]+

complexes, and J RhH for the hydride trans to the oxygen atom in the [Rh(t-Bu-

xantphos-κP,O,P ’)Cl(H)2] complexes were largest for t-Bu-sixantphos, then t-Bu-

thixantphos, then t-Bu-xantphos. The trans influence of the t-Bu-xantphos oxy-

gen donor follows the trend t-Bu-sixantphos < t-Bu-thixantphos < t-Bu-xant-

phos.
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5.5 Selected bond distances (Å) and angles (◦) of [Pt(t-Bu-thixantphos)(η2-

O2)] · 2 C6D6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Crystallographic data and structure refinement of [Pt(t-Bu-thixant-

phos)(η2-O2)] · 2 C6D6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Selected bond distances and angles of [Pt(PP)(η2-O2)] . . . . . . . . 124

5.8 Calculated bond lengths and angles for [M(t-Bu-xantphos)] . . . . 134

5.9 Calculated bond lengths and angles for [M(t-Bu-xantphos)(nb)] . . 134

5.10 Calculated bond lengths and angles for M(t-Bu-xantphos)(η2-O2) . 134

5.11 Gibbs free energies calculated for the formation of [M(t-Bu-xant-

phos)(nb)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.12 Gibbs free energies calculated for the formation of [M(t-Bu-xant-

phos)(η2-O2)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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Chapter 1

Introduction

This thesis provides an account of research into a group of diphosphine ligands

with a rigid xanthene backbone and tert-butyl substituents on the phosphorus

atoms. The three ligands have different groups in the bridgehead position of the

backbone (CMe2, SiMe2, or S) which changes the natural bite-angle of the ligand.

The coordination chemistry of these t-Bu-xantphos ligands with late-transition

metals has been investigated with a focus on metal complexes that may form in

catalytic reactions.

1.1 Tertiary Phosphine Ligands

Transition metal complexes have a number of different applications, from use as

homogeneous catalysts, chemotherapeutics, or organic light emitting diodes.1–3

Tertiary phosphine ligands are some of the most ubiquitous in coordination chem-

istry. Phosphines coordinate to transition metals by donation of the lone pair of

electrons on the phosphorus atom forming a σ-bond and π-back-donation into the

P-C anti-bonding σ∗ orbitals which have π symmetry.4 This combination forms

stable coordination complexes with a range of different transition metals and ox-

idation states. A large array of different phosphine ligands are known with a

range of different steric and electronic properties. These allow the phosphines to

impart different physical environments and electron densities on the metal cen-

tre, which can result in different reactivities of the complexes. Due to this, phos-

phine ligands are frequently used as ancillary ligands in a wide range of different

1
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catalytic systems including industrial-scale processes.5–7

1.1.1 Electronic and Steric Properties

As the chemical properties of the metal in a coordination complex are controlled

largely by the coordinated ligands, several studies have quantified the electronic

and steric properties of phosphine ligands.8–14

Investigations of electronic properties of ligands involve the measurement of

the C−−−O stretching frequency in a metal carbonyl complex such as [Ni(CO)3L],

[Mo(CO)5L] or [Rh(CO)ClL2].∗ 8,9,11,14 If a metal with a spin active isotope such as

rhodium or platinum is used, then the value of the one-bond metal-phosphorus

coupling constant can also offer insight into the electronic properties of the phos-

phine ligand.9,11,12,16 The value of the one-bond phosphorus-selenium coupling

constant in a phosphinoselenide has been used as a way to study the electronic

properties of phosphines.17,18 The phosphinoselenides are readily synthesised,

air-stable solids which avoids the need for transition metals or the use of toxic

gases. A comparison of the different techniques used to measure the electronic

properties has shown good correlation between the various series.9

The steric properties of different ligands have also been examined from a quan-

titative perspective. The Tolman cone angle is the angle formed at the apex of a

cone centred at a metal positioned 2.28 Å from the phosphorus atom where the

outer edges of the cone lie at the van der Waals radii of the outer most atom of

the ligand.14 The Tolman cone angle has some limitations: it was originally de-

termined using physical molecular models with idealised bond lengths and van

der Waals radii while actual molecules may vary from these values. In addition,

the Tolman cone angle is a maximum cone angle which works well for approxi-

mately symmetrical spherical substituents such as PMe3 or PtBu3, however when

planar rings, such as phenyl substituents, are present these can rotate readily, re-

sulting in much larger changes to the cone angle than a trialkyl phosphine would

exhibit. The Tolman cone angles for aryl systems tends to be larger than the crys-

tallographically determined cone angle.

An alternative quantification of the steric properties of phosphine ligands is the

∗The nomenclature used in this thesis is in accordance with the Nomenclature of Inorganic

Chemistry - IUPAC Recommendations 2005.15
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percentage buried volume which is defined as the percentage of a sphere that

is occupied by a given ligand.19 This sphere has a metal atom at the centre and

a defined radius to allow for comparison across different ligands. The percent

buried volume for a phosphine ligand is calculated using parameters obtained

from the crystal structure of that ligand with hydrogen atoms omitted. The re-

sulting values generally correlate well with the values of the Tolman cone angle

(R2 = 0.959).20 However, the values of percentage buried volume for phosphite

ligands do not fit the trend, with the correlation giving calculated cone angles of

128 and 155◦ for P(OMe)3 and P(OPh)3 respectively instead of the values from

Tolman’s work of 128 and 155◦.14

1.1.2 Diphosphine Ligands

Diphosphine ligands consist of two tertiary phosphines linked by a backbone. A

selection of diphosphine ligands are shown in Figure 1.1. Most commonly, the

backbone has a carbon skeleton such as an ethane, propane, or xylene group as

found in dppe, dppp, or dbpx. Larger groups can also be used as backbones,

such as the binapthyl ligand BINAP, or the BISBI system. The backbones can

also include heteroatoms such as diop or DPEphos, or transition metals as in

the ferrocene moiety found in dppf. The backbone can also be used to produce

chiral ligands including BINAP, diop or SEGphos, which can be used for asym-

metric catalysis.5,21,22 Diphosphine ligands typically chelate to transition metals,

resulting in enhanced stability through the chelate effect. The chelate effect is

an entropic effect, where a complex with a bidentate ligand is observed to have

increased thermodynamic stability compared to an analogous complex with sim-

ilar monodentate ligands.23 In monophosphine complexes, the monophosphine

must compete with the other components in the reaction mixture as there is no

entropic driver for a second molecule of the monophosphine to coordinate over

any other ligands in the system. Hence the increased thermodynamic stability of

complexes with bidentate chelating ligands compared to the analogous complex

with related monodentate ligands.

The electronic and steric properties of diphosphine ligands can be described us-

ing the techniques developed for monophosphines.8–14 The bite-angle, defined as

the P-M-P angle in a transition-metal complex (Figure 1.2), can also be used to

quantify and compare different diphosphine ligands. The natural bite-angle is
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H
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O

(i) (R)-SEGphos

Figure 1.1: Selection of diphosphine ligands.
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defined as the P-Rh-P angle calculated by molecular modelling using a rhodium

atom with fixed Rh-P distances of 2.315 Å.24 The bite-angle for a given complex

can also be measured from an X-ray crystal structure. The original development

of the natural bite-angle parameter included a comparison of the natural and

crystallographic bite-angles for seven different complexes, showing good corre-

lation between the natural and crystallographic bite-angles.24 A further study

in 1999 showed that, for a range of different diphosphine ligands, the crystal-

lographic bite-angles occur within a very narrow range which correlate well with

the natural bite-angles.25

X

O

R2P PR2

M

Figure 1.2: The bite angle

When used as ancillary ligands in transition metal catalysts, diphosphines can

produce different product distributions compared with the analogous monophos-

phines. The catalytic reaction of ethene and carbon monoxide, in a methanol

solution, produced short chain oligomers when [Pd(MeCN)4](BF4)2 was used as

the precatalyst with an excess of a monophosphine ligand such as triphenylphos-

phine.26 Changing to a stoichiometric amount of a chelating diphosphine with

[Pd(OAc)2] (OAc = CH3COO–), resulted in the co-polymerisation of carbon monox-

ide and ethene giving polyketone, indicating that the rate of chain termination is

faster for monophosphine complexes than in the diphosphine complexes.27 The

bite-angle of the diphosphine was shown to have a significant impact on the rate

of the reaction. When the Ph2P(CH2)nPPh2 (n = 1 - 6) series of ligands was studied,

the highest reaction rate was observed for 1,2-bis(diphenylphosphino)propane

(dppp) (n = 3) with the rate decreasing as the chain length was increased or de-

creased.27 The steric bulk of the ligands is also important, changing the phenyl

substituents on dppp for tert-butyl groups resulted in high selectivity for the

mono-insertion product methyl propionate.28 Introducing further rigidity to the

system by changing to the xylene backbone ligand α,α’-bis(di-t-butylphosphino)-

o-xylene (dbpx) resulted in methyl propionate exclusively.29
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1.1.3 Wide Bite-Angle Diphosphine Ligands

The bite-angle of diphosphine ligands impacts the types of coordination com-

plexes that will form upon reaction with an appropriate metal precursor. Lig-

ands with bite-angles around 90◦ will typically coordinate in a cis geometry in

square-planar and octahedral complexes and occupy axial-equatorial positions in

trigonal bipyramidal complexes. Ligands with natural bite-angles closer to 120◦

can coordinate in a bis-equatorial arrangement in the trigonal bipyramidal com-

plexes.30 Two of the most important catalytic steps are oxidative addition and

reductive elimination, which result in changes to the coordination number and

geometry of the metal centres.31 Altering the bite-angles of the ancillary ligands

can have a significant impact on the selectivity and reactivity of these reactions,

typically with larger bite-angle ligands favouring reductive elimination steps.32

The strain on ligands to coordinate with bite-angles significantly different to their

natural bite-angle, can result in destabilisation of particular intermediates in cat-

alytic cycles leading to increased selectivity.32 A wide-range of diphosphine lig-

ands with large bite-angles have been reported, including dbpx, BISBI, DBFphos

and Ph-xantphos (Figures, 1.1c, 1.1e, 1.3). Diphosphines with extremely large

bite-angles, designed to coordinate in an exclusively trans geometry in square-

planar complexes have been reported, such as TRANSphos, SPANphos, and nor-

phos (Figure 1.4).25,33,34

O

PPh2 PPh2

(a) Ph-xantphos

O

PPh2 PPh2

(b) DBFphos

Figure 1.3: Wide bite-angle diphosphine ligands.

1.2 Pincer Ligands

Diphosphine ligands such as Ph-xantphos with wide bite-angles and a heteroatom

in the centre of the backbone have the potential to act as pincer ligands. Pincer lig-

ands have attracted research attention due to the unique balance of stability and
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PPh2Ph2P

(a) TRANSphos

O

O

PPh2

PPh2

(b) SPANphos

PPh2

PPh2

(c) norphos

Figure 1.4: Selected trans-spanning diphosphine ligands.

reactivity that they impart on transition metal complexes.35 Pincer ligands are tri-

dentate ligands that coordinate to transition metals preferentially in a meridional

fashion.36 The ligands are typically named according to their donor atoms, such

as PCP, POP or NCN (Figure 1.5). If the groups between the donor atoms contain

heteroatoms then these may be included in the naming also, for example POCOP.

The pincer ligands may be anionic (as with PCP ligands) or neutral (PNP and

POP).37,38 Although phosphines are the most common donor groups, amines,39

imines,40 thioethers41 and N-heterocyclic carbenes42 have all been reported.

M

NR2

NR2

O M

PR2

PR2

O

O

M

PR2

PR2

NCN POP POCOP

M

PR2

PR2

PCP

Figure 1.5: Naming of pincer ligands.

Pincer ligands were first reported in 1976 by Shaw43 and Alcock.44 Shaw reported

a tert-butyl PCP ligand (Figure 1.6a) and introduced the naming scheme that

has become commonplace for pincer ligands. When reacted with an appropriate

metal precursor, complexes of the tridentate ligand formed with nickel, palla-

dium, platinum, rhodium, and iridium with chloride, nitrile, hydride, and car-

bon monoxide ligands.43 Alcock reported the first POP pincer ligands together

with their rhodium carbonyl complexes, characterised by X-ray crystallography

(Figure 1.6b).44

The different components of pincer ligands have a significant influence on the

steric and electronic properties and hence their reactivity.39 Altering the central
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PBut
2

PBut
2

(a)

PPh2

O

PPh2

(b)

Figure 1.6: First reported pincer ligands.

donor group, X (Figure 1.7), can lead to changes in electronic effects mostly through

the trans-influence.36 For example, a carbon donor ligand has a greater trans-

influence than an oxygen donor. Thus ligands trans to X in PXP complexes will

be bound more strongly when X = O than X = C.45 The donor group Y controls the

steric environment around the metal centre and the electron density. Changing

the backbone and other remote groups gives control over the electron density on

the metal and can be used to improve solubility properties.36 The tridentate coor-

dination of pincer ligands, typically forming two five-membered metallacycles,

imparts significant stability to metal complexes with pincer ligands.

M

Y

Y

X

Y = Donor group: OR, SR, SeR, NR2, PR2

X = Central donor: C, N, O, P

M = Metal centre

Figure 1.7: General representation of pincer complexes.

Coordination complexes of pincer ligands have a large number of applications.

Platinum complexes of an NCN pincer ligand have been utilised as sensors for the

detection of sulfur dioxide.46–48 Palladium and nickel complexes of a number of

pincer ligands have shown activity in cross-coupling reactions.41,42,49–51 Theoreti-

cal studies have shown potential uses for pincer ligands in water-splitting52 and

nitrogen fixation.53 However, one of the most prominent uses of pincer ligands is

the activation of C-H bonds, typically as dehydrogenation catalysts.36,48,54
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1.3 Xantphos

First reported in 1995 by van Leeuwen et al., the xantphos† class of diphosphine

ligands were designed to investigate the influence of the bite-angle on catalytic

reactions, in particular rhodium catalysed hydroformylation.30 The general struc-

ture and a selection of different xantphos derivatives are given in Figure 1.8. The

first paper on xantphos included derivatives where the CMe2 group in the back-

bone of Ph-xantphos (Figure 1.8d) was replaced by a S (Ph-thixantphos, Figure

1.8f), SiMe2 (Ph-sixantphos, Figure 1.8e), a direct bond between the atoms (DBF-

phos, Figure 1.8c), or removed entirely (DPEphos, Figure 1.8b). Since then a vast

array of derivatives have been reported. The most common position for derivati-

sation is the bridgehead position (occupied by a CMe2 group in Ph-xantphos).

Changes to this position can create changes in the natural bite-angles of the lig-

ands. Another site for derivatisation is the substituents on the phosphorus atoms

which have been changed for cyclic groups, chiral derivatives or alkyl chains in-

cluding methyl, ethyl, isopropyl and tert-butyl groups. The phosphorus donors

have also been replaced with a range of different groups including phosphonites,

amines, imines, arsines, and thioethers.55–58 The third site for derivatisation is the

position meta to the phosphorus atoms on the backbone phenyl rings. In Ph-

xantphos this position is occupied by hydrogen atoms, while in Ph-thixantphos

methyl groups are present. Derivatives with tert-butyl or sulfate groups have

also been reported.59–61‡ These alterations all result in changes to the bite-angle of

the ligand.

The influence of the bite-angle of diphosphine ligands on the selectivity and ac-

tivity of their transition metal complexes in various catalytic process has been in-

vestigated using the xantphos ligands. The hydroformylation of alkenes to give

branched and linear aldehydes is an industrially important reaction with the lin-

†The term xantphos is used in the literature to mean either the general class of ligands or

the specific ligand 9,9-dimethyl-4,6-bis(diphenylphosphino)xanthene. For the purposes of this

thesis the specific ligand will be referred to as Ph-xantphos and the term xantphos will be used to

represent a generic ligand from this class.
‡In the literature two different structures are commonly referred to as t -Bu-xantphos, one with

tert -butyl substituents on the aromatic backbone and one with tert -butyl groups on the phos-

phorus atoms. For the purpose of this thesis the structure with the tert -butyl substituents on

the phosphorus will be named t -Bu-xantphos and the structure with the tert -butyl groups on the

aromatic backbone will be named t -Bu-(Ph-xantphos).
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O

XR R

PY2 PY2

(a) General structure

O

PPh2 PPh2

(b) DPEphos, 102◦

O

PPh2 PPh2

(c) DBFphos, 131◦

O

PPh2 PPh2

(d) Ph-xantphos, 111◦

O

Si

PPh2 PPh2

(e) Ph-sixantphos, 108◦

O

S

PPh2 PPh2

(f) Ph-thixantphos, 110◦

O

PPh2 PPh2

tBu tBu

(g) t -Bu-(Ph-xantphos), 110◦

O

PtBu2 PtBu2

(h) t -Bu-xantphos, 140◦

O

PPh2 PPh2

(i) Benzoxantphos, 120.6◦

O

AsPh2 AsPh2

tBu tBu

(j) Xantarsine, 113◦

O

POP POP
O

P
POP =

(k) POP-xantphos, 123◦

Figure 1.8: Selection of xantphos derivatives with their natural bite-

angles.25,55,61,62
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ear aldehydes typically of higher industrial importance.28 In the hydroformyla-

tion of 1-octene using various xantphos ligands, a linear correlation was observed

between the natural bite-angle of the diphosphine and the percentage of linear

aldehyde product.30 From this and other kinetics studies, the bite-angle has been

determined to have both a steric and electronic component.63,64 In hydroformy-

lation the hydride-migration step determines the regioselectivity of the reaction.

In this case additional steric crowding of the metal centre, resulting from a larger

bite-angle, can lead to a favouring of the less sterically demanding transition state

- that which produces the linear aldehyde.32 Carrying out the hydroformylation

of styrene or 1-octene with a series of thixantphos complexes where the phenyl

substituents on the phosphorus atoms were substituted in the para-position with

various electron donating or electron withdrawing substituents, showed differ-

ences in the turnover frequency (TOF) of each reaction.63 This is thought to be

related to changes in the metal hybridisation, changing the reactivity of the metal

towards reductive elimination.32,65

The xantphos ligands were the first tertiary phosphine ligands to form active hy-

drocyanation catalysts on nickel.66 Using styrene as a substrate, diphosphines

with alkyl backbones, such as 1,2-bis(diphenylphosphino)ethane (dppe), dppp

and 1,2-bis(diphenylphosphino)butane (dppb) gave poor yields (<10%) whereas

the xantphos ligands gave yields ranging from 27-95%, with the highest yield for

Ph-sixantphos. Ligands with bite-angles close to 105◦ resulted in higher yields

and selectivities whilst decreasing the bite-angle to 101◦ or increasing to 110◦ led

to a much lower activity. The bite-angle can influence the selectivity of the re-

action by stabilising preferred reaction intermediates and destabilising inactive

species. In the hydrocyanation reaction a bite-angle close to 109◦ destabilises

square-planar Ni(II) species and stabilises the tetrahedral Ni(0) species, enhanc-

ing the reductive elimination step and resulting in a faster reaction.57 The in-

creased reactivity of xantphos complexes compared to other diphosphines in-

cluding, dppp, BINAP, dppf, and DPEphos has also been observed in a range

of different cross-coupling reactions.67

A search of the Cambridge Structural Database (CSD) indicates that of the crys-

tallographically determined structures, most complexes with xantphos deriva-

tives involve bidentate κP,P ’ coordination.68 Four complexes with a 2-coordinate

metal centre have been reported, all coordinated to gold. Ten 3-coordinate struc-

tures have been published. With 4-coordinate metals, tetrahedral complexes are
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the most common (31 structures), followed by pseudo-trans square-planar com-

plexes (26), then cis square-planar geometries (20). This is particularly interest-

ing as the natural bite-angle of Ph-xantphos ligands is closer to a 90◦ than to

180◦. On pentacoordinate metals 10 complexes have been reported with one

square-pyramidal structure, three axial-equatorial, and six bis-equatorial trigo-

nal bipyramidal complexes found. Six different octahedral complexes have been

reported, all with the xantphos ligand displaying a cis-geometry. The xantphos

ligands can also coordinate in a κP,O,P ’ geometry in addition to the bidentate

κP,P ’ mode. This κP,O,P ’ coordination is more common than the κP,P ’ in octahe-

dral complexes with 24 reported. However, it is much less common in five coordi-

nate complexes with only four κP,O,P ’ complexes and 10 κP,O,P ’ four-coordinate

complexes. A monodentate κP bonding mode is also possible, though it is very

rare, with only one crystal structure reported to date.69

Given the possibility of κP,O,P ’ and κP,P ’ coordination the xantphos ligands also

have the potential for hemilability of the central donor group whereby the oxy-

gen can bind reversibly to the metal centre in order to stabilise catalytic inter-

mediates. This has been utilised in the hydroacylation of alkenes and alkynes

using a rhodium pincer complex, where the oxygen can bind in order to sta-

bilise important intermediates and prevent the competing decarbonylation reac-

tions from occurring.70–72 A range of rhodium complexes with Ph-xantphos or

bis(2-diphenylphosphinophenyl)ether (DPEphos) as ancillary diphosphine lig-

ands were tested for the hydroacylation reaction.70 The DPEphos complexes were

more active than the dppe complex used for comparison, achieving conversions

of 100% after 30 and 90 minutes respectively. However, the Ph-xantphos complex

was completely inactive. The lower reactivity is thought to be a result of the in-

creased rigidity of the Ph-xantphos backbone compared to that of DPEphos.72

1.3.1 Alkyl-Substituted Xantphos Ligands

Despite the large number of xantphos derivatives few examples of xantphos lig-

ands with alkyl substituents on the phosphorus atoms have been reported. The

synthesis and some coordination chemistry of xantphos ligands with methyl,

ethyl, isopropyl, and tert-butyl substituents has been studied. Me-xantphos was

reported in 2002 and investigated for reactivity with [Pd(cod)ClMe] (cod = 1,5-

cyclooctadiene), to produce cis-[PdClMe(Me-xantphos)].73 The cis isomer was
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also formed using Ph-sixantphos. However, using the larger bite-angle ligands

Ph-thixantphos and Ph-xantphos cis-trans isomerism was observed at room tem-

perature. Reaction of the four chloridomethyl complexes with AgSO3CF3 yielded

the pincer complexes [PdMe(xantphos-κP,O,P ’)][SO3CF3] (Scheme 1.1).

O

X

Y2P PY2

RR

Pd

Me

SO3CF3

O

X

Y2P PY2

RR

Pd
Cl Me

AgSO3CF3

Scheme 1.1: Chloride abstraction from [PdClMe(xantphos)] xantphos = Ph-

sixantphos, Ph-thixantphos, Ph-xantphos, and Me-xantphos.

A variant of xantphos with ethyl groups on the phosphorus atoms (Et-xantphos)

was reported in 2004.74,75 Palladium and platinum complexes, [M(Et-xantphos)2],

[M(Et-xantphos)2]2+ and platinum complexes [Pt(Et-xantphos)2H]PF6 and [Pt(Et-

xantphos)2(H)2]2+ have been studied for their electrochemical properties. The X-

ray crystal structures of [M(Et-xantphos)2] (M = Pd, Pt) were obtained and have

a tetrahedral geometry, with average bite-angles of 108.3◦ for both metals. The

palladium(II) complex had two molecules in the asymmetric unit, one closer

to a square-planar geometry (average bite-angle = 139.7◦) and the other closer

to a tetrahedral geometry (average bite-angle = 95.8◦). The pseudo-square pla-

nar [Pd(Et-xantphos)2](BF4)2 complex was also crystallised, and had much larger

bite-angles than any of the other ethyl substituted diphosphines included in the

study (1,2-bis(diethylphosphino)propane (depp), α,α’-bis(diethylphosphino)-o-

xylene (depx) and bis(2-diethylphosphinophenyl)ether (depPE)) indicating the

ability of the xantphos ligands to support metals in unusual geometries.

A xantphos ligand with isopropyl substituents on the phosphorus atoms, i -Pr-

xantphos, was first reported in 2010, together with the osmium complex [OsCl3(i -

Pr-xantphos-κP,O,P ’)], showing the κP,O,P ’ coordination which is common for

xantphos ligands in octahedral complexes.76 The same group, has since reported

the synthesis and reactivity of [MCl2(DMSO-κS )(i -Pr-xantphos-κP,O,P ’)] (M =

Os, Ru) producing a number of different osmium and ruthenium complexes in-

cluding various polyhydrides and bis(alkynyl)vinylidene complexes.77,78
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A study of the reactivity of i -Pr-xantphos towards palladium shows differences

to the Ph-xantphos ligand.79 The [Pd(CF3)Ph(Ph-xantphos)] complex exists in a

cis geometry in the solid state, and as cis and trans isomers in solution, whereas

the analogous i -Pr-xantphos complex shows only a trans configuration. The i -

Pr-xantphos complex was synthesised in a different manner as the Ph-xantphos

ligand was readily displaced by CF3
– from CF3SiMe3/F– while the i -Pr-xantphos

ligand was not, indicating the different chemistry of the two ligands. The differ-

ence in the coordination geometries also meant that the PhCF3 was more readily

lost from the cis-[Pd(CF3)Ph(Ph-xantphos)] than the trans-[Pd(CF3)Ph(i -Pr-xant-

phos)]. A related study investigated nickel complexes of i -Pr-xantphos for the tri-

fluoromethylation of aryl halides.80 The [NiF(1-naphthyl)(i -Pr-xantphos)] com-

plex reacted with CF3SiMe3 forming [Ni(CF3)(1-naphthyl)(i -Pr-xantphos)]. Both

of these complexes were found to have trans-geometries through X-ray crystal-

lography, and showed slow decomposition at 140 ◦C and 120 ◦C respectively,

giving rise to a range of products, with no C-F compounds or 1-trifluoromethyl-

naphthyl formed.

The chemistry of rhodium and iridium complexes with i -Pr-xantphos ligands has

also been studied. Reaction of i -Pr-xantphos with [Rh(coe)2(η2-Cl)]2 (coe = cy-

clooctene) generated the [RhCl(i -Pr-xantphos-κP,O,P ’)] complex cleanly.81 How-

ever, reaction with the iridium analogue resulted in cyclometallation of one of

the isopropyl groups forming [IrClH(i -Pr-xantphos-κ-C,P,O,P’ ]. The chloride lig-

and in [RhCl(i -Pr-xantphos-κP,O,P ’)], was replaced with a hydride, via reaction

with KOiPr, producing KCl and acetone as by-products. The trihydride [Ir(H)3(i -

Pr-xantphos-κP,O,P ’)] was produced by reaction of the metallated iridium com-

plex with KOH and iPrOH. The rhodium chloride complex undergoes oxida-

tive addition of H2 to form [RhCl(H)2(i -Pr-xantphos-κP,O,P ’)]. The analogous

iridium complex was synthesised by reaction of the metallated complex with n-

octane at 90 ◦C. Recent research has shown that the chloride can be removed

from [RhCl(H)2(i -Pr-xantphos-κP,O,P ’)] by reaction with Li[B(C6F5)4]OEt2 form-

ing [Rh(H)2(i -Pr-xantphos-κP,O,P ’)]+.82 Reacting triflic acid with [RhCl(i -Pr-xant-

phos-κP,O,P ’)] or [IrClH(i -Pr-xantphos-κ-C,P,O,P’ ] results in [MCl(H)(OTf)(i -Pr-

xantphos-κP,O,P ’)] (M = Rh, Ir).81 The reactivity of the i -Pr-xantphos complexes

is summarised in Figure 1.2 and 1.3 for rhodium and iridium respectively.

The reactivity of the rhodium and iridium complexes towards silyl compounds

has also been investigated with the results summarised in Scheme 1.4.83 Reac-
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tion of [RhCl(i -Pr-xantphos-κP,O,P ’)] or [IrClH(i -Pr-xantphos-κ-C,P,O,P ’] with

SiH2Ph2 or SiHEt3 resulted in [MCl(H)(i -Pr-xantphos-κP,O,P ’)(SiR3)] (M = Rh,

Ir, SiR3 = SiHPh2, SiEt3). The diphenylsilane complexes were unstable in so-

lution converting to [Rh(SiClPh2)(i -Pr-xantphos-κP,O,P ’)] via loss of molecular

hydrogen and trans-[Ir(SiClPh2)(H)2(i -Pr-xantphos-κP,O,P ’)]. The rhodium com-

plex [RhH(i -Pr-xantphos)] also underwent reaction with SiHEt3 and SiHPh3 ini-

tially forming the dihydride [Rh(H)2(i -Pr-xantphos-κP,O,P ’)(SiR3)] (R = Et, Ph)

which loses molecular hydrogen to form [Rh(i -Pr-xantphos-κP,O,P ’)(SiR3)]. Re-

action of [Rh(SiClPh2)(i -Pr-xantphos-κP,O,P ’)] with Na[BArF
4] in the presence of

water produced [Rh(H)(i -Pr-xantphos-κP,O,P ’)(SiOHPh2)] which was tested as a

catalyst for the alcoholysis of SiH2Ph2 with various alcohols in toluene at 32 ◦C,

forming ROSiHPh2 in isolated yields of 71 - 92% with TOFs of 4000 to 76500 h−1.

1.3.2 t -Bu-Xantphos

This thesis covers an investigation into the coordination chemistry of three differ-

ent xantphos ligands with tert-butyl substituents on the phosphorus atoms. The

three ligands differ in the bridgehead position: t-Bu-xantphos has CMe2, t-Bu-

sixantphos has SiMe2 and t-Bu-thixantphos has a thioether bridge. The first men-

tion of t-Bu-xantphos was in 2002 with the unsuccessful attempts to synthesise t-

Bu-xantphos from either 4,5-dilithio-9,9-(dimethyl)xanthene or 9,9-dimethyl-4,5-

bis(dichlorophosphino)xanthene, the researchers postulated that steric crowding

was the reason for the lack of reactivity.73 A successful synthesis of t-Bu-xantphos

from the dilithiated backbone was reported in 2005 using heptane as a solvent

and heating the reaction mixture to 60 ◦C.84 t-Bu-Xantphos has subsequently been

studied for use as an ancillary ligand in the palladium catalysed cross-coupling of

thiols and aryl bromides or triflates, the iron catalysed sp3-sp3 cross-coupling of

alkyl halides with alkyl Grignard reagents, the platinum catalysed amination of

allylic alcohols and the N-arylation of heterocyclic diamines, all with poor yields,

while higher yields were observed when Ph-xantphos was used.84–87 These stud-

ies have focussed on the addition of t-Bu-xantphos as a component of the catalytic

system. Few complexes of t-Bu-xantphos have been characterised, although the

difference in the catalytic results suggest differences in the coordination chem-

istry of Ph-xantphos and t-Bu-xantphos.

Prior to the start of this research, the only isolated coordination complexes of
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t-Bu-xantphos were [Au(t-Bu-xantphos)][AuX2] (X = Cl, Br, I), formed by reac-

tion of [AuCl(tht)] (tht = tetrahydrothiophene) with t-Bu-xantphos and subse-

quent reaction with KBr or KI.88 The analogous reaction using Ph-xantphos gave

[(AuX)2(Ph-xantphos)] (X = Cl, Br, I) with each phosphorus atom coordinated to

a separate gold centre with a Au-Au interaction.88,89 Subsequent investigations

into the catalytic activity of gold xantphos complexes towards the C-F bond acti-

vation of perfluoroarenes showed turnover numbers (TONs) of 200 for [AuCl(Ph-

xantphos)] and 1000 for [Au(t-Bu-xantphos)][AuCl2].90 Mechanistic studies into

the reaction showed that [Au(xantphos)]+ was an important intermediate and is

in equilibrium with the inactive [Au(xantphos)2]. Due to the size of t-Bu-xant-

phos the equilibrium favours the two-coordinate species while for Ph-xantphos

the four-coordinate complex is preferred, resulting in lower activity.90 This clearly

shows the difference between the two xantphos ligands and suggests that a differ-

ence in the coordination chemistry may be the cause of the observed differences

in catalytic reactivity.

Subsequent to the start of the research presented in this thesis t-Bu-xantphos

has gained increasing attention, likely as a result of the ligand becoming com-

mercially available. In the six years from the first successful synthesis in 2005

to the start of this research in mid-2011, only the four papers discussed above

were published investigating t-Bu-xantphos.§ However, the following three years

showed increasing attention with 9 papers published82,90,93–99 and 10 patent ap-

plications.100–109

Further investigations into the catalytic properties of t-Bu-xantphos have been re-

ported, without investigation into the coordination chemistry. These include the

palladium-catalysed cross-coupling of 2-(4-bromophenyl)-5-chloropyrazine with

a benzimidazole boronic ester and hydroesterification of methyl oleate.97,98 In

both cases little conversion was observed when t-Bu-xantphos was used, though

the Ph-xantphos systems showed significant reactivity. The aminocarbonylation

of aryl bromides was performed with each of Ph-xantphos and t-Bu-xantphos

in an unusual monodentate coordination mode.93 Little reactivity was observed

with t-Bu-xantphos, while the Ph-xantphos system gave the product in 92% iso-

lated yield. In the rhodium catalysed reductive amination of aldehydes t-Bu-

xantphos showed a 59% total conversion with only 19% selectivity for the desired

§Two papers investigating the use of the dioxidised t -Bu-xantphos as a ligand on europium

and samarium were also published in 2011 and 2012.91,92
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product, while Ph-xantphos had an 84% conversion and 93% selectivity.96

In some cases the t-Bu-xantphos system is more active than the Ph-xantphos sys-

tem, such as the palladium catalysed N-alkylation of aniline with benzyl alco-

hol.94 The t-Bu-xantphos system gave near quantitative conversion at 100 ◦C

while the Ph-xantphos system showed only 63% conversion at 110 ◦C. Improved

activity with t-Bu-xantphos compared to Ph-xantphos was also observed in the

palladium catalysed methylation of alkynyl C-H bonds with dimethyl sulfonium

ylides.95 Under the same conditions a yield of 46% was obtained with t-Bu-xant-

phos while only 15% was produced using Ph-xantphos. t-Bu-Xantphos and Ph-

xantphos can also have similar results, such as in the rhodium catalysed hy-

droamidomethylation of 1-pentene with acetamide, Ph-xantphos and t-Bu-xant-

phos showed conversions of 83 and 80% respectively with greater than 99% lin-

earity in both cases.99

Despite the increased interest in t-Bu-xantphos in the last four years, research

has focussed on its use as an ancillary ligand for catalytic reactions, mostly with

the catalyst formed in situ. A crystal structure of trans-[Pd(t-Bu-xantphos)Cl2],

was reported via communication to the CSD in 2011 (CSD-XARXAR), no fur-

ther publication of this complex has followed.68 One paper has reported the co-

ordination behaviour of the t-Bu-xantphos ligand with rhodium.82 Similarly to

the work with i -Pr-xantphos, the t-Bu-xantphos ligand reacts with [Rh(coe)(η2-

Cl)]2 (coe = cyclooctene) to give [Rh(t-Bu-xantphos-κP,O,P ’)Cl]. This Rh(I) chlo-

ride readily undergoes oxidative addition of hydrogen to form a [Rh(t-Bu-xant-

phos-κP,O,P ’)Cl(H)2] complex. The structures of [Rh(t-Bu-xantphos-κP,O,P ’)Cl]

and [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] have been confirmed by X-ray crystal-

lography. Chloride abstraction from [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] using

AgBF4 or AgSbF6, generates the trigonal bipyramidal complex [Rh(t-Bu-xant-

phos-κP,O,P ’)(H)2], with the t-Bu-xantphos ligand retaining the meridional coor-

dination typical of pincer ligands. This dihydride was found to react with ethene

to give ethane and [Rh(t-Bu-xantphos-κP,O,P ’)(C2H4)], however no reaction with

the commonly used hydrogen acceptors, t-butylethylene or norbornene, or with

terminal alkenes was observed. [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] reacts with

KOtBu resulting [Rh(t-Bu-xantphos-κP,O,P ’)H]. Addition of ethene to [Rh(t-Bu-

xantphos)H] resulted in the reversible formation of an ethyl complex. The [Rh(t-

Bu-xantphos)H] complex also showed reactivity in the isomerisation of 1-hexene

with a TON of 2000 after 16 hours.
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The previous work exploring t-Bu-xantphos and Ph-xantphos as ancillary lig-

ands for catalytic processes has shown significant differences in the yields of the

reactions in most cases, though in one case similar activity was reported. Al-

though a number of palladium catalysed reactions have been studied, only two

palladium complexes have been reported (one being only a crystal structure).

The only research into the coordination chemistry of the t-Bu-xantphos ligands is

on gold and rhodium.82,88 The original study into the xantphos ligands focussed

on changing the bridging groups of Ph-xantphos showing the impact that subtle

changes in the bite-angle can have on the catalytic activity of the transition metal

complexes.30 Given the number of studies investigating the catalytic activity of

t-Bu-xantphos without investigating the coordination chemistry, an examination

of the coordination chemistry of a range of subtly different t-Bu-xantphos ligands

with late-transition metals is of particular interest.

1.4 Research Objectives

The xantphos class of ligands has been the subject of a number of studies, with

interesting and varied results. The initial research with Ph-xantphos investigated

the influence of changes in the bite-angle resulting from changing the group in

the bridging position from the CMe2 group found in Ph-xantphos.30,34,110 These

studies have shown that small changes in the bite-angle can have a significant

impact on the catalytic reactivity and selectivity of the system. Recently a large

amount of research has focussed on the development of xantphos derivatives

with alkyl substituents on the phosphorus atoms, particularly the i -Pr-xantphos

and t-Bu-xantphos ligands. Prior to the start of this research only one report in-

vestigating the coordination behaviour of t-Bu-xantphos had been published.88

The other studies all showed much lower activity in catalytic systems than with

the Ph-xantphos ligand.84–86 Together this suggested that the coordination be-

haviour of the t-Bu-xantphos and Ph-xantphos ligands is different and deserved

further attention. The papers published since the inception of this research have

only sought to solidify the objectives, as these have reported several examples

of studies into the use of t-Bu-xantphos in catalytic systems with only one fur-

ther study into the coordination behaviour on rhodium, despite the majority of

the catalytic studies being performed on palladium. Furthermore, despite the
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much larger bite-angle and the electronic differences of t-Bu-xantphos compared

to Ph-xantphos, and the impact small bite-angle changes have on the activity of

Ph-xantphos only two xantphos ligands with tert-butyl substituents on the phos-

phines and CMe2 or C−−CMe2 in the bridgehead position have been published,

and no comparative investigation has been reported.

The over-arching goal of this research is to investigate the synthesis, properties

and coordination chemistry of t-Bu-xantphos and two derivatives in the bridge-

head position (S and SiMe2). The first stage aimed to synthesise the t-Bu-thixant-

phos and t-Bu-sixantphos ligands, and investigate the steric and electronic prop-

erties of all three t-Bu-xantphos ligands by the calculation of their natural bite-

angles and synthesis of non-transition metal derivatives.

Silver is a particularly interesting metal for the synthesis of coordination com-

plexes, showing a distinct propensity to form dimers, trimers, or higher order

structures, with differences dependent upon the steric bulk and flexibility of the

diphosphine ligands used.111 Hence, the initial coordination chemistry of the

three t-Bu-xantphos ligands towards silver was investigated in order to gain

an understanding of their coordination chemistry and gauge the impact of their

large bite-angles on the coordination chemistry, and to allow comparison to the

gold t-Bu-xantphos complexes previously published.

The remainder of the research focussed on transition metals which are commonly

used in homogeneous catalysis. The xantphos class of ligands have been well-

studied for their roles as ancillary ligands in hydroformylation.30,63,112–116 The

aim of this research was not to investigate the catalytic properties of the three

t-Bu-xantphos ligands, but to produce discrete transition metal complexes to

gain insight into the catalytic studies that have already been performed. Hence

the coordination chemistry with rhodium focussed on the synthesis of a simple

rhodium(I) complex and established the reactivity towards small molecules, in-

cluding hydrogen and carbon monoxide, which are the foundation for a number

of different catalytic processes.

The coordination chemistry of the three t-Bu-xantphos ligands towards palla-

dium and platinum in both the 0 and +2 oxidation states was also studied, in

order to gain insight into the differences in the catalytic activity of systems with t-

Bu-xantphos and Ph-xantphos. Palladium is one of the most widely used metals

for homogeneous catalysis and catalytic cycles frequently involve interconver-
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sion between the two oxidation states.31 Platinum complexes were synthesised

prior to the palladium investigation as the presence of an NMR active isotope

(195Pt) coupled with the high stability of platinum complexes was beneficial to

the identification and characterisation of the complexes produced. Although the

coordination chemistry of Ph-xantphos with palladium is well-known, few co-

ordination complexes of Ph-xantphos, and particularly Ph-thixantphos and Ph-

sixantphos with platinum have been reported. This work began with a brief in-

vestigation into the coordination chemistry of Ph-thixantphos with platinum to

assist in identifying any differences in the coordination chemistry that resulted

from changing the phenyl substituents to tert-butyl groups. The coordination

chemistry of the three t-Bu-xantphos ligands with palladium and platinum in

the 0 and +2 oxidation states was subsequently investigated.

Throughout this research nuclear magnetic resonance (NMR) spectroscopy was

used extensively to characterise the products of the reactions and aid in the iden-

tification of any intermediates or dynamic processes that were present. X-ray

crystallography was also an important tool, particularly to compare the bite-

angles and coordination geometries of the t-Bu-xantphos complexes produced

with those previously reported for the Ph-xantphos. Theoretical chemistry using

density functional theory (DFT) was used to gain further insight into reactions or

processes when this was of benefit.
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Ligand Synthesis and Properties

The t-Bu-xantphos ligand was first reported in 2005.84 The original paper and

several since then, have tested t-Bu-xantphos for use as an ancillary ligand in a

range of different catalytic systems with mixed results.82,85–87,90,93–99 Despite the

catalytic attention towards the t-Bu-xantphos ligand very little is known about

the coordination chemistry or reasons for the very different catalytic activity com-

pared to Ph-xantphos. Only one study comparing the coordination chemistry

of the two ligands has been published.88 This study found that t-Bu-xantphos

formed [Au(t-Bu-xantphos)][AuX2] (X = Cl–, Br–, and I–) complexes whereas Ph-

xantphos formed [(AuX)2(Ph-xantphos)]. A trans-[Pd(t-Bu-xantphos)Cl2] com-

plex has been reported to the CSD (CSD-XARXAR), while the analogous complex

with Ph-xantphos is cis , indicating a difference in the coordination chemistry of

the two ligands.68 A series of rhodium complexes with t-Bu-xantphos has been

published,82 though the analogous Ph-xantphos complexes have not been inves-

tigated.

The original study into the Ph-xantphos ligands investigated the effect of chang-

ing the bridging group in the backbone between CMe2, SiMe2, and S.30 Changing

this group subtly changes the natural bite-angle of the ligand and has been shown

to impact the catalytic activity.67 One derivative of t-Bu-xantphos in this position

has been previously published with the CMe2 replaced by a C−−CMe2
117 Given the

much larger bite-angle of the t-Bu-xantphos ligands the impact of small changes

may be very different to those observed with the Ph-xantphos ligands. This chap-

ter presents a study into the synthesis of t-Bu-sixantphos and t-Bu-thixantphos,

and an alternative synthesis of t-Bu-xantphos, followed by calculation of their

23
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natural bite-angles and the synthesis of some non-transition metal derivatives in-

cluding phosphonium salts and phosphine selenides. The goal of this chapter

is to investigate the steric and electronic properties of the three t-Bu-xantphos

ligands to form the foundation of knowledge necessary to understand their coor-

dination chemistry, which will be presented in later chapters.

2.1 Ligand Synthesis

In 2002 van Leeuwen et al. reported their unsuccessful attempts to synthesise

t-Bu-xantphos from either the dilithiated xanthene backbone or starting with

9,9-dimethyl-4,5-bis(dichlorophosphino)xanthene, suggesting that steric crowd-

ing from the presence of two tert-butyl groups on a single phosphorus atom

prevented the successful coupling.73 However, in 2005 a synthesis of t-Bu-xant-

phos from 4,5-dilithio-9,9-(dimethyl)xanthene was reported.84 This synthesis in-

volves lithiation of the xanthene backbone using n-butyllithium and N,N,N’,N’ -

tetramethyl-ethane-1,2-diamine (TMEDA) in heptane, followed by addition of

ClPtBu2 and heating at 60 ◦C for 24 hours, generating the product in 38% iso-

lated yield (Scheme 2.1).

O O

PtBu2 PtBu2

(i), (ii)

Scheme 2.1: Literature synthesis of t-Bu-xantphos in heptane.84 Reagents and

conditions: (i) n-BuLi, TMEDA, 15 h, heptane. (ii): ClPtBu2, 60 ◦C, 24 h.

Attempts to utilise the literature method for the synthesis of t-Bu-xantphos84 to

synthesise t-Bu-thixantphos resulted in a number of unidentifiable products. An

alternative method using a potassium tert-butoxide/n-butyllithium “superbase”

formed a mixture of products from which separation attempts were unsuccess-

ful. This superbase mixture forms significant amounts of organopotassium com-

pounds, which are more active metallating agents than their organolithium coun-

terparts. However, organopotassium compounds are also more active in cleavage
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of ethers.118 Hence the mixture of products may result from cleavage of the ether

or thioether bridges resulting in undesired compounds.

The syntheses of t-Bu-thixantphos, t-Bu-sixantphos and t-Bu-xantphos were suc-

cessfully achieved by adaptation of the reported synthesis of the Ph-xantphos

ligands.30 This method involves the dilithiation of the backbone using sec-butyl-

lithium and TMEDA, followed by reaction with chlorodi-tert-butyl phosphine

(Scheme 2.2). Unlike the Ph-xantphos synthesis which is complete in 16 hours,

the synthesis of the tert-butyl ligands required extended periods. The reactions

were allowed to proceed until no further change was determined by NMR spec-

troscopy (typically seven days). NMR analysis of the crude reaction mixture

showed the presence of both the mono and diphosphine. The diphosphine was

isolated as white crystals by recrystallisation from n-propanol with yields of 14,

85 and 37% for t-Bu-sixantphos, t-Bu-thixantphos and t-Bu-xantphos respectively.

The remaining n-propanol solution of the monophosphine could be reduced to

dryness and then reused for a second lithiation and reaction with chlorodi-tert-

butyl phosphine to produce more of the desired diphosphine.

X

O

R R X

O

R

PtBu2

R

PtBu2

(i), (ii)

Scheme 2.2: Synthesis of t-Bu-xantphos (X = CMe2, R = H), t-Bu-thixantphos (X

= S, R = Me) and t-Bu-sixantphos (X = SiMe2, R = H). Reagents and conditions:

(i) sec-BuLi, Et2O -78 ◦C → RT, 24 hours (ii) ClPtBu2, -78 ◦C → RT, 7 days.

The size of the tert-butyl groups leads to difficulties in the synthesis of the t-Bu-

xantphos ligands. Reaction with one equivalent of chlorodi-tert-butyl phosphine

to form the monophosphine is clean and rapid, occurring overnight. However,

the steric hindrance of the monophosphine results in a much slower second addi-

tion, requiring extended reaction times to achieve significant conversion. When

the reaction is allowed to proceed for longer than one week, no additional con-

version is observed. This is likely due to degradation of either the lithiated

monophosphine or the sec-butyllithium before the second lithiation can occur.

Over extended periods organolithium reagents cleave diethyl ether resulting in
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alkanes, alkenes, and lithium ethoxide (Scheme 2.3).118,119 sec-Butyllithium has

been shown to completely react with diethyl ether in one day.119 Although the re-

action between diethyl ether and phenyllithium is slower (half-time of 100 hours),

the extended reaction periods required for the second phosphine addition mean

that this degradation pathway may limit the yield of the diphosphine.

O Li OLi+ + +

Scheme 2.3: Reaction of n-butyllithium with diethyl ether

In order to promote the dilithiation, three equivalents of a pre-formed sec-butyl-

lithium/TMEDA complex was added to a solution of the backbone. An initial

colour change to yellow (t-Bu-thixantphos and t-Bu-sixantphos) or green (t-Bu-

xantphos) was observed, indicative of monolithiation. After stirring overnight

this changed to red or yellow respectively. This colour change gives a clear in-

dication of successful dilithiation. In order to favour the diphosphine over the

monophosphine, the lithiated backbone was then added slowly to an ethereal

solution of chloro-di-t-butylphosphine. Although a mixture of the mono and

diphosphine was always obtained, this order of addition was found to be more

successful, resulting in increased yields.

The synthesis of these ligands utilises directed ortho metallation as first described

independently by Gilman and Wittig in 1939 and 1940 respectively.120,121 Directed

ortho metallation uses a heteroatom that can coordinate to the organolithium

reagent, thereby directing it to the ortho sites. In the synthesis of the t-Bu-

xantphos ligands the ether linkage can act as a director for the lithiation. Once

lithiated, the electron density on the oxygen stabilises the lithiated site against

degradation. For t-Bu-xantphos and t-Bu-sixantphos the oxygen is the only atom

present with lone pairs of electrons and thus the lithiation occurs exclusively

in the desired positions ortho to the oxygen. However, the precursor to t-Bu-

thixantphos, phenoxathiin, contains both an ether and a thioether group, both

of which can act as ortho-directors.122 Previous research has shown that in the

presence of both ether and thioether groups the lithiation will occur ortho to the

oxygen.123 Once the first lithiation has taken place the oxygen is less likely to con-

tribute significantly to the second lithiation. For t-Bu-xantphos and t-Bu-sixant-

phos the influence of the oxygen is still sufficient for the second lithiation to occur
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in the other ortho position. However, for phenoxathiin the thioether acts as a sec-

ond directing group and the lithiation occurs ortho to the sulfur (Scheme 2.4).

The addition of methyl groups in the positions meta to the thioether prevents the

sulfur atom from acting as a director, resulting in the desired t-Bu-thixantphos

ligand.

O

S

PtBu2

PtBu2

O

SR R

O

S

PtBu2 PtBu2

R = H

R = CH3

(i), (ii)

(i), (ii)

Scheme 2.4: Influence of methyl groups on the synthesis of t-Bu-thixantphos.

Reagents and conditions: (i) sec-BuLi, Et2O, 24 hours, (ii) ClPtBu2, 24 hours.

The t-Bu-xantphos ligand obtained using sec-butyllithium/TMEDA in diethyl

ether had 1H and 13C NMR spectra consistent with the literature (Table 2.1).84

However, the 31P chemical shift differed by 2.2 ppm (10.2 ppm in this study com-

pared to 12.4 ppm). The NMR spectra for the reported and the synthesised sam-

ples were both obtained in CDCl3 and referenced to an external 85% H3PO4 stan-

dard. Hence the reason for this difference is unclear. However, as the remainder

of the NMR and other characterisation data is consistent, it is likely that the two

compounds are identical and a typographical error or otherwise was made in the

preparation of the earlier paper.

The NMR data of the newly reported t-Bu-thixantphos and t-Bu-sixantphos lig-

ands are consistent with expectations (Table 2.1). In both cases a plane of symme-

try reduces the number of signals, showing a single peak in the 31P NMR. The 31P

NMR chemical shifts for the t-Bu-sixantphos and t-Bu-thixantphos ligands are

observed as singlets at 8.4 and 9.5 ppm respectively. The 1H NMR signals for the
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aromatic system are as expected, with two singlets present for t-Bu-thixantphos,

and a doublet, a doublet of doublets and a virtual triplet observed for t-Bu-sixant-

phos and t-Bu-xantphos. The chemical shift of the backbone methyl substituents

differs for each ligand, as expected. In t-Bu-sixantphos the dimethylsilyl group

appears at 0.46 ppm, close to the tetramethylsilane reference. In t-Bu-xantphos

the bridgehead methyls appear at 1.57 ppm, within the typical range for organic

methyl groups. The methyl groups in t-Bu-thixantphos are evident at 2.25 ppm,

consistent with methyl substituents attached to aryl rings.

Table 2.1: Selected NMR data for t-Bu-xantphos ligands in CDCl3

31P 1H

Diphosphine δ/ppm δ tBu/ppm δ Me/ppm δ Ar/ppm

t -Bu-Xantphos84 12.4 1.21–1.26 1.57 7.02 7.38 7.60

t -Bu-Xantphos (this work) 10.2 1.21–1.25 1.57 7.03 7.38 7.60

t -Bu-Thixantphos 9.5 1.22–1.24 2.25 6.88 7.29

t -Bu-Sixantphos 8.4 1.29 0.46 7.12 7.53 7.87

The 1H NMR data for the t-Bu-xantphos ligands show a complex XAA’X’ spin

system for the tert-butyl protons. In a system where the two A atoms (in this

case the phosphorus atoms) are strongly coupled, this leads to interaction be-

tween the three-bond and five-bond couplings (e.g. when the phosphorus atoms

are in a trans configuration in a metal complex) resulting in a virtual triplet.124

In the t-Bu-xantphos ligands there is no atom between the phosphorus atoms

so we would expect a three-bond and a nine-bond coupling. A nine-bond cou-

pling is an extremely remote coupling which we would expect to be negligible.

Based on previous reports,124,125 this peak shape with two sharp outer lines and a

broad inner peak occurs when the difference between the short- and long-range

couplings is very small but not zero. For this to occur the phosphines must have

some degree of through-space spin-spin coupling through their lone pairs of elec-

trons (for a review of non-bonded spin-spin coupling see Hierso126). This is fur-

ther supported by the difference in the 1H NMR spectra of the three ligands; the

central peak is sharpest for t-Bu-sixantphos followed by t-Bu-thixantphos. For t-

Bu-xantphos some further detail can be seen indicating that this has the weakest

through-space coupling. This trend is consistent with the expected changes in the
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distance between the phosphines upon varying the backbone, which will impact

the degree of through-space coupling that can occur, and therefore the difference

in the short and long-range coupling constants.

2.2 Bite-Angle Calculations

The steric and electronic properties of diphosphine ligands determine their com-

plexation behaviour with transition metals and can influence the reactivity of the

complexes, particularly impacting the activity and selectivity in catalytic trans-

formations.32,67 The xantphos class of ligands were initially investigated for their

consistent electronic properties and steric bulk meaning that the impact of the

bite-angle on rhodium catalysed hydroformylation could be studied exclusively.30

Consequently, a number of studies have investigated the bite-angle impact on a

variety of catalytic conversions (for examples see66,67,127–129). However, it has since

been determined that the bite-angle is a result of both the steric and electronic

properties of the ligand.32

The natural bite-angle (β
n
) was first described by Casey and Whiteker24 as a

theoretically determined parameter to indicate the preferred chelation angle of

diphosphine ligands irrespective of the metal they are coordinating to. These

are determined computationally by optimising the geometry of a complex with a

rhodium atom at 2.315 Å and measuring the resulting P-Rh-P angle. The crys-

tallographic bite-angle for a given complex can be measured from the crystal

structure. The original development of the natural bite-angle parameter included

a comparison of the natural bite-angle for seven different ligands and crystallo-

graphic bite-angles for one transition metal complex of each ligand. The two bite-

angles were found to be correlated in accordance with the equation Θexp = 0.98β
n

+ 2.13 (R = 0.92).24 Another study in 2009 showed that for a range of diphosphines

the crystallographically determined bite-angles have a narrow range, which is

close to the calculated natural bite-angle.25 This study did not however, deter-

mine a correlation between the two.

Despite the ubiquity of the natural bite-angle within diphosphine chemistry, only

two studies have investigated whether the natural bite-angle has proven to be an

apt predictor of the crystallographically determined bite-angle.24,25 One of these

only used one complex for each ligand and the other did not calculate the math-
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ematical relationship between the two. A large number of new crystal structures

have also been reported since the studies were published in the 1990’s.68 In order

to establish whether the natural bite-angle is still an apt predictor of the crystallo-

graphic bite-angle, almost 25 years after the original publication, the relationship

between the two was investigated using data from the 2014 CSD.68 The results

are summarised in Table 2.2 and Figure 2.1. The median crystallographic bite-

angle was used to decrease the influence of outliers on the results. The natural

and experimental bite-angles show a good correlation described by the equation

Θexp = 1.10 β
n
- 5.70 (R2 = 0.92). Some of the experimental and natural bite-angles

that are most relevant to this work show significant differences (for example t-

Bu-xantphos β
n

= 140◦, experimental = 153.317◦, and Ph-sixantphos β
n

= 109◦,

experimental = 99.165◦). This may be due to the low numbers of structures avail-

able for these ligands (four and five respectively) at which point the metals used

will have a significant impact.
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Figure 2.1: Comparison of the natural and crystallographic bite-angles. Trendline

Θexp = 1.10 β
n
- 5.70 (R2 = 0.92).
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Table 2.2: Crystallographic68 and natural bite-angles25,64,67,130 for diphosphine lig-

ands.

Diphosphine Structures P-P /Å Range /◦ Bite-Angle /◦ βn /◦

dppm 384 2.718 62.757–77.706 71.062 73

dppe 1939 3.095 71.073–92.926 83.818 78

dppp 3237 3.308 83.333–105.420 92.181 86

BINAP 146 3.296 85.9820–115.666 91.925 92

dppb 127 3.391 89.447–111.491 94.240 99

DPEphos 101 3.844 96.094–158.531 112.691 102

Ph-Xantphos 65 3.908 98.829–153.134 108.535 111

BISBI 4 4.079 103.533–151.951 124.789 123

Ph-Sixantphos 5 3.691 95.250–152.149 99.165 109

Ph-Thixantphos 3 4.021 109.528–155.050 111.724 110

t -Bu-xantphos 4 4.527 152.302–153.456 153.317 140

dpp-benzene 116 3.101 74.380–92.499 84.900 83

dppn 25 3.176 79.867–93.270 86.864 82

dppx 19 3.569 90.045–106.186 102.636 90

dbpe 109 3.200 83.989–95.949 90.369 87

dbpp 12 3.503 94.556–104.857 99.175 99

dbpx 10 3.634 98.758–107.255 101.881 101

In order to determine the potential differences between the t-Bu-xantphos and

Ph-xantphos ligands, the natural bite-angles of the three t-Bu-xantphos ligands

were calculated. Previously the t-Bu-xantphos bite-angle was calculated using

molecular mechanics, however molecular mechanics has previously been reported

as overestimating the bite-angles for diphosphines with bulky alkyl substituents,

like the tert-butyl groups in the t-Bu-xantphos ligands.25 As the bite-angles of the

t-Bu-xantphos ligands are an integral part of the current study, DFT was utilised

to reduce the likelihood of overestimation. The angles for the Ph-xantphos lig-

ands were also calculated to allow for a comparison between the DFT and molec-

ular mechanics methods. The structures were optimised using the B3LYP func-

tional,131–134 with the def2-TZVP basis set.135,136 using a Rh-P distance of 2.315 Å.

The resulting bite-angles along with those published using molecular mechanics

are given in Table 2.3. The values calculated using DFT and molecular mechanics
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are slightly larger for the Ph-xantphos ligands. The trend is consistent and molec-

ular mechanics techniques can overestimate the impact of π-stacking in molecules

with phenyl rings. The value for t-Bu-xantphos using DFT is much smaller than

the literature value calculated with molecular mechanics. However, molecular

mechanics is known to overestimate the bite-angles of bulky diphosphines which

may account for this difference.25

Table 2.3: Natural bite-angles of xantphos ligands. Molecular mechanics values

taken from the literature.30

Diphosphine Molecular Mechanics (◦) DFT (◦)

Ph-Sixantphos 108.7 111.89

Ph-Thixantphos 109.4 112.65

Ph-Xantphos 111.7 114.18

t -Bu-Sixantphos 126.80

t -Bu-Thixantphos 126.98

t -Bu-Xantphos 140 127.56

The natural bite-angles for the t-Bu-xantphos series of ligands are much larger

than for the Ph-xantphos ligands. Given that the remainder of the ligands are

unchanged, this effect is due to the impact of the tert-butyl groups. Tert-butyl

groups are more electron-donating than the phenyl groups so the phosphorus

atoms will have more electron density resulting in an electrostatic repulsion of

the two phosphorus atoms. The tert-butyl groups also have a larger steric im-

pact than the planar phenyl rings. This would result in a larger bite-angle as the

steric bulk of the tert-butyl substituents pushes the two phosphorus atoms fur-

ther apart. The trend between the two groups is the same with the CMe2 bridged

ligands having the largest bite-angles and the SiMe2 bridged having the smallest.

However, the range for the t-Bu-xantphos ligands (0.76◦) is much smaller than

for the Ph-xantphos ligands (2.3◦). This suggests that the tert-butyl substituents

are the main contributing factor to the bite-angle and the small changes in the

bridging group have a smaller effect because the sterics of the tert-butyl groups

dominates.

The bite-angles of the t-Bu-xantphos ligands are likely to have a significant im-

pact on their coordination chemistry. The phenyl ligands form a range of com-



2.3. Basicity 33

plexes favouring cis-chelation in square-planar and octahedral complexes, al-

though trans square planar complexes have been reported.115 With bite-angles

of 126.8–127.6◦ the t-Bu-xantphos ligands may prefer bis-equatorial positions in

trigonal bipyramidal complexes with angles close to 120◦. However, the bite-

angles are halfway between the cis- and trans-coordination angles for square-

planar complexes, which may result in mixtures of products. Mixtures of cis

and trans isomers have been reported for palladium Ph-xantphos complexes, so

the ratio between the two geometries may favour trans-coordination for the t-Bu-

xantphos ligands.73,115 Diphosphine ligands that exhibit exclusive trans-chelation

have been described in a review as “elusive”.137

2.3 Basicity

Spectroscopic analysis of the t-Bu-xantphos ligands in CDCl3 showed a small

amount of an impurity, characterised by a new peak in the 31P NMR spectra and

an unusual spin system downfield of the aromatic signals in the 1H NMR spec-

tra. The amount of the impurity increased over time, suggesting that the ligands

were reacting with the solvent. Chloroform is known to undergo slow degrada-

tion forming hydrochloric acid.138 Tertiary phosphines can act as Brønsted bases,

forming phosphonium ions that can be used as components in catalytic reac-

tions.139 Hence, the identity of these compounds as phosphonium salts seemed

likely.

The three t-Bu-xantphos ligands react with the strong acids HCPh(SO2CF3)2 (pK a

= 2.0 in DMSO) or H2C(SO2CF3)2 (pK a = 2.4 in DMSO),140 resulting in immediate

formation of a phosphonium salt (Scheme 2.5). These acids are useful as they are

non-hygroscopic solids allowing for accurate stoichiometry. Addition of excess

acid results in the same product; no evidence for an additional protonation was

observed. The NMR data is consistent with the data for the impurity observed in

the synthesis of the t-Bu-xantphos ligands, indicating that the impurity is [(t-Bu-

xantphos)H]+.

Selected NMR data for the phosphonium salts [(t-Bu-xantphos)H]CH(SO2CF3)2

with the three ligands is given in Table 2.4. A broad singlet is present in the 31P

NMR spectra for the three phosphonium ions, shifted slightly downfield from the
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Scheme 2.5: Protonation of the ligands using a strong acid, in C6D6.

free ligand. The 1H and 13C NMR spectra show half the expected number of aro-

matic signals, and only one signal for the tert-butyl protons and the quaternary

and terminal carbons. This indicates that although the expected complex is asym-

metric the system is undergoing a dynamic process such that the two halves of

the molecule are equivalent on the NMR timescale. The most likely process is the

exchange of the proton between the two phosphorus atoms. The 1H NMR spectra

all show a complex spin system of the type XAA’X’ for the phosphonium proton,

which is further evidence for the dynamic exchange of the proton between the

two phosphorus atoms.

Table 2.4: Selected NMR data for the [(t-Bu-xantphos)H]CH(SO2CF3)2 com-

pounds in CDCl3 (∆δ = δ[(diphosphine)H]+ - δdiphosphine).

31P 1H

Diphosphine δ/ppm ∆δ/ppm H+δ/ppm

t -Bu-Sixantphos 14.3 5.9 9.57

t -Bu-Thixantphos 15.8 6.3 8.99

t -Bu-Xantphos 17.4 7.2 8.57

The difference in the rate of exchange of the proton in the three compounds is

clearly shown by their 31P and 1H NMR spectra. The 31P NMR signal is sharpest

for t-Bu-sixantphos followed by t-Bu-thixantphos while t-Bu-xantphos has a very

broad signal. This indicates that the exchange is fastest for t-Bu-sixantphos and

slowest for t-Bu-xantphos. The 1H NMR spectra (Figure 2.2) show an XAA’X’

spin system for the phosphonium proton. The signal appears most like a virtual

triplet for t-Bu-sixantphos, implying very little difference in the coupling con-

stants of the proton with each phosphorus. For t-Bu-thixantphos the central peak
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has broadened slightly, while in t-Bu-xantphos the central peak is very broad,

indicating that the difference in the two coupling constants is increasing. The

chemical shift of the phosphonium proton is different for the three systems (t-

Bu-sixantphos = 9.57, t-Bu-thixantphos = 8.99 and t-Bu-xantphos = 8.57 ppm).

This indicates that the t-Bu-sixantphos proton is less shielded and thus has a

faster rate of exchange, while the t-Bu-xantphos proton is the most shielded and

has the slowest rate of exchange. This trend is consistent with the bite-angles of

the ligands. t-Bu-Sixantphos has the smallest bite-angle, so the two phosphorus

atoms are closer resulting in a lower barrier to exchange, whilst t-Bu-xantphos

has the largest bite-angle and thus the slowest exchange.

�����������������������
��	

��

�

�

Figure 2.2: 1H NMR spectra in CDCl3 at 20 ◦C for [(t-Bu-sixantphos)H]+, [(t-Bu-

thixantphos)H]+, and [(t-Bu-xantphos)H]+ (Si, S and C respectively) showing the

P-H region

The dynamic behaviour of the phosphonium ions was further investigated using

variable temperature 31P and 1H NMR experiments on [(t-Bu-thixantphos)H]CH-

(SO2CF3)2 (Figure 2.3). At room temperature a single peak is present in the 31P
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NMR spectrum. When heated this peak shifts slightly to higher ppm and be-

comes sharper. This single peak indicates that the exchange of the proton between

the two phosphorus atoms is occurring rapidly enough that the two phosphorus

atoms appear to have the same environment on the NMR timescale. Cooling

below room temperature causes the singlet to broaden significantly, with coales-

cence occurring around -40 ◦C. At -60 ◦C two broad signals are present. One of

these signals resolves into a doublet at -80 ◦C, however the other peak is still very

broad ranging from 11–23 ppm. Given that the protonation results in a downfield

shift at room temperature, it is likely that the sharp doublet belongs to the unpro-

tonated phosphorus and the broad peak is the protonated phosphorus.

The variable temperature 1H NMR data for [(t-Bu-thixantphos)H]CH(SO2CF3)2

(Figure 2.3) shows similar changes to the 31P NMR spectra. At low temperature

the proton is static on a single phosphorus atom so we observe a large doublet

due to coupling with the phosphorus. As the temperature increases to -20 ◦C,

a broad signal begins to appear in the centre of the doublet as exchange begins

to occur and the signal changes from a simple doublet to a XAA’X’ spin system.

The intensity of the central peak increases and at 20 ◦C all three peaks begin to

broaden again with coalescence at 50 ◦C. This broadening may be the result of

the proton no longer being isolated on a single molecule but delocalised across

the entire system.

Typically 31P NMR spectra are proton decoupled. However, with very strongly

coupled systems such as phosphonium ions the decoupler is not able to fully

decouple the spin system, resulting in broadening and side bands. To further in-

vestigate the [(t-Bu-thixantphos)H]CH(SO2CF3)2 system, proton-coupled phos-

phorus NMR spectra were obtained at room temperature and -80 ◦C (Figure 2.4).

At room temperature a simple doublet appears, indicating rapid movement of

the proton between the two phosphorus atoms thus coupling with both. When

cooled to -80 ◦C, the 31P{1H} spectrum showed a doublet and a broad singlet. In

the proton-coupled phosphorus spectrum, the doublet is retained with a phos-

phorus-phosphorus coupling constant of 136.9 Hz confirming that this signal is

for the non-protonated phosphorus which couples to the protonated phosphorus

atom. The broad singlet resolves into a doublet of doublets with coupling con-

stants of 481.5 and 136.9 Hz consistent with coupling to the proton and the other

phosphorus. This further confirms that no exchange of the proton is occurring at
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Figure 2.3: Variable temperature 31P (left) and 1H (right) NMR data for [(t-Bu-

thixantphos)H]CH(SO2CF3)2 in CD2Cl2.

low temperature.

Single colourless crystals of [t-Bu-thixantphos(H)]CPh(SO2CF3)2 suitable for X-

ray diffraction were grown from the reaction mixture in benzene. The compound

crystallised with a benzene solvate, as 2[t-Bu-thixantphos(H)]CPh(SO2CF3)2·C6D6

in the monoclinic space group P21/n. Selected bond lengths and angles are sum-

marised in Table 2.5, and crystallographic data is given in Table 2.6. Although



38 Chapter 2. Ligand Synthesis and Properties

��������������
���

�� ��

��� ��

Figure 2.4: Variable-temperature proton coupled 31P NMR data for [(t-Bu-thixant-

phos)H]+ in CD2Cl2.

the cationic portion was well refined, one of the counterions is disordered with

two positions for the SO2CF3 groups. The proton on the phosphonium ion is

exclusively located on a single phosphorus atom. As a result the estimated stan-

dard deviation (esd) on the bond lengths and angles involving this proton are

relatively high. The distances from the proton to the other phosphorus or to the

oxygen atom are both too long to indicate any degree of interaction. The crystal

structure was collected at 284.87 K, and based on the variable temperature NMR

data significant exchange of the proton is expected at this temperature. However,

this is not apparent in the X-ray structure suggesting that the exchange does not

occur in the solid state.

2.4 Selenides

The electronic properties of phosphine ligands can be investigated in a number

of different ways. The most well-known quantification is the Tolman electronic

parameter.14 This involves the measurement of the carbonyl stretching frequency

in a [Ni(CO)3L] complex. Related approaches use [Mo(CO)5L] or [Rh(CO)ClL2]
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Figure 2.5: X-ray crystal structure of 2[(t-Bu-thixantphos)H]CPh(SO2CF3)2· C6D6

(50% probability thermal ellipsoids). Selected hydrogen atoms omitted for clarity.
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Table 2.5: Selected bond distances (Å) and angles (◦) of 2[(t-Bu-thixantphos)-

H]CPh(SO2CF3)2· C6D6.

Bond distances (Å) Bond angles (◦)

P1-H1 1.22(3) P1-H1...P2 160(2)

P2...H1 2.96(3) P1...O1...P2 89.19(6)

P1...P2 4.1290(11) P3-H2...P4 154(2)

O1...H1 2.44(3) P3...O2...P4 86.40(5)

P3-H2 1.22(3) Ring 1...Ring 2 18.28(10)

P4...H2 2.91(3) Ring 3...Ring 4 26.67(10)

P3...P4 4.0372(11)

O2...H2 2.43(3)

complexes.9,11 The value of the phosphorus-metal coupling constants in platinum

or rhodium complexes have also been used to quantify the electronic properties

of phosphine ligands.9,11,12,16 The values of the carbonyl stretching frequency and

the phosphorus-metal coupling constants are dependent on the geometries of the

metal complexes and these can be influenced significantly by steric properties,

such as those imposed by large diphosphine ligands. The 1J PSe spin-spin coupling

constants of phosphine selenides are a convenient and accurate measure of the

electronic properties of tertiary phosphines.17,141,142 In this case the more electron

donating the phosphorus substituents are, the lower the resulting 1J PSe.

The phosphine selenides are air-stable solids that are generally relatively straight-

forward to synthesise by reaction of the phosphine with either elemental sele-

nium or potassium selenocyanide (with or without heating).17,143 The value of
1J PSe, as with all coupling constants, is governed by interactions between the

s-orbitals. According to Bent’s rule “atomic s-character concentrates in orbitals

directed towards electropositive substituents”.144 Thus the greater the value of
1J PSe the more s-character is present in the P-Se bond, indicating a greater degree

of electronegative substituents, and thus the less electron donating the phosphine

ligand will be.

In addition to the use of 1J PSe as a measure of the electronic influence of a phos-

phine, it can also be used to measure the Brønsted basicity of a given phosphine.
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Table 2.6: Crystallographic data and structure refinement of 2[t-Bu-thixant-

phos(H)]CPh(SO2CF3)2·C6D6

Empirical formula C84H110F12O10P4S6

Formula weight 1823.95

Temperature/K 284.87(10)

Crystal system monoclinic

Space group P21/n

a/Å 14.19615(12)

b/Å 39.4563(3)

c/Å 16.35832(15)

α/◦ 90

β/◦ 100.1751(8)

γ/◦ 90

Volume/Å3 9018.64(13)

Z 4

ρcalc mg/mm3 1.343

µ/mm 2.749

F(000) 3832.0

Crystal size/mm 0.49 x 0.16 x 0.14

Radiation CuKα (λ = 1.54184)

2θ range for data collection 5.928 to 147.832◦

Index ranges -17 ≤ h ≤ 17, -48 ≤ k ≤ 48, -20 ≤ l ≤ 20

Reflections collected 69203

Independent reflections 17960 [Rint = 0.0261, Rsigma = 0.0219]

Data/restraints/parameters 17960/291/1221

Goodness-of-fit on F2 1.068

Final R indexes [I>=2σ (I)] R1 = 0.0549, wR2 = 0.1473

Final R indexes [all data] R1 = 0.0623, wR2 = 0.1531

Largest diff. peak/hole / e Å−3 1.11/-0.56
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A correlation between the experimentally measured pK b and the 1J PSe value has

been reported with linear regression: 1J PSe = 7.60 × pK b + 646 (R2 = 0.9492).17

As such, determining the value of 1J PSe allows for calculation of the pK b and has

shown good agreement with the experimentally determined data. One limitation

of this method is the impact that sterically bulky groups can have. For PtBu3 the

correlation suggests a pK b value of 6.0 however the experimentally determined

value is 2.60.17 This is the result of the tert-butyl groups increasing the C-P-C

angles, thus decreasing the s-character of the lone pair of electrons.

The t-Bu-xantphos ligands showed significant resistance to selenation. Reaction

directly with elemental selenium has been reported as preferable to potassium

selenocyanide as the latter reacts slowly and gives lower yields.17 The previously

reported Ph-xantphos diselenide was synthesised by refluxing Ph-xantphos and

red selenium in toluene overnight resulting in diselenation.145 Attempting this

method with the t-Bu-xantphos ligands reported here showed little reaction. At-

tempts were also made using KSeCN similar to those previously reported,143

however these were also unsuccessful. Successful monoselenation was obtained

by refluxing the ligands with a large excess of grey selenium in toluene for three

days (Scheme 2.6). Extending the reaction period did not result in the formation

of any diselenide. This is likely due to the steric restraints of these ligands.

O

XR R

PtBu2 PtBu2

O

XR R

tBu2P PtBu2Se

(i)

Scheme 2.6: Selenation of t-Bu-xantphos ligands, (X = CMe2, R = H), t-Bu-thixant-

phos (X = S, R = Me) and t-Bu-sixantphos (X = SiMe2, R = H). Reagents and

conditions: (i) Se, reflux, toluene, 3 days.

The cleanest reaction was observed between t-Bu-xantphos and selenium, with

a single asymmetric product observed. For t-Bu-thixantphos and t-Bu-sixant-

phos a single major product was observed, also consistent with monoselenation.

Selected NMR data for the selenides is given in Table 2.7. The 31P NMR spec-

tra each show two peaks in a 1:1 ratio. One peak is shifted only slightly (0.4–7.5

ppm) from the starting material while the other peak is shifted significantly (91.7–
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94.3 ppm) upfield. The asymmetry and the change in chemical shift of only one

of the 31P NMR signals indicates the formation of the monoselenide. The 1J PSe

values are similar for the three ligands with a range of 12 Hz. The monosele-

nated t-Bu-thixantphos derivative was found to have 1J PSe = 698.5 Hz, while the

monoselenated t-Bu-xantphos has 1J PSe = 696.3 Hz. These are much lower than

that reported for Ph-xantphos selenide (749 Hz).145 This lower coupling constant

is expected as tert-butyl groups are more electron donating than phenyl sub-

stituents.

Using the correlation reported by Beckmann et al., it is possible to convert the val-

ues of 1J PSe for the t-Bu-xantphos selenides and the previously reported Ph-xant-

phos diselenide into pK b values.145 The pK b values for the t-Bu-xantphos ligands

range between 5.67 and 6.90 which fall between the PPhMe2 and PMe3.17 This is

consistent with expectations as tert-butyl groups are more electron donating than

methyl groups while the phenyl still results in a higher pK b than those for the tri-

alkyl phosphines. The pK b value for Ph-xantphos is 13.55, indicating that the

t-Bu-xantphos ligands are significantly more basic. This significant difference is

expected as tert-butyl groups are strongly electron donating whilst phenyl sub-

stituents are electron withdrawing.8 This effect will dominate any other subtle

effects that may arise due to bite-angle or steric considerations.

The bite-angle may play a role in the value for the 1J PSe coupling constant as

monoselenide diphosphines have shown through space coupling to the other

phosphorus.126 This would result in a lower 1J PSe value than otherwise expected

and the effect would be more pronounced with smaller bite-angles. In this case

t-Bu-sixantphos has the lowest pK b of the three ligands and also the smallest bite-

angle, so a bite-angle effect may be present. However, the differences cannot be

purely the result of the bite-angle as t-Bu-thixantphos has the largest 1J PSe value

but t-Bu-xantphos has the largest bite-angle.

In addition to the influence of the bite-angle on the 1J PSe coupling constant there

must exist another electronic effect contributing to the difference between the

ligands. Both t-Bu-thixantphos and t-Bu-xantphos groups have an ortho ether

and a meta alkyl group, in addition t-Bu-thixantphos has the thioether bridge.

Thioethers are electron donating by resonance, but being in the meta position to

the phosphorus the negative charge that could be generated is unable to inter-

act with the phosphorus atom. With sulfur being slightly more electronegative
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Table 2.7: Selected 31P NMR data for t-Bu-xantphos selenides in 1:1 CDCl3:CD2Cl2 (∆δ = δphosphine selenide - δdiphosphine).

P P=Se

Diphosphine δ/ppm ∆δ/ppm δ/ppm ∆δ/ppm 1JPSe/Hz pK b

t -Bu-Sixantphos 15.9 7.5 102.7 94.3 689.1 5.67

t -Bu-Thixantphos 11.7 2.2 103.7 94.2 698.5 6.90

t -Bu-Xantphos 10.6 0.4 101.9 91.7 697.1 6.72
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than carbon, a thioether is also slightly inductively electron withdrawing, which

would result in the phosphorus being very slightly less basic in the case of t-Bu-

thixantphos when compared to t-Bu-xantphos.

2.5 Summary

Two new t-Bu-xantphos ligands, t-Bu-sixantphos and t-Bu-thixantphos have been

synthesised and an alternate synthesis of t-Bu-xantphos has been reported by

lithiation of the appropriate backbone using sec-butyllithium with TMEDA and

treatment with PtBu2Cl. Although this method requires long reactions times the

only by-product is the mono-phosphine which can undergo the same process

again to generate higher yields. NMR analysis of the three ligands showed a

XAA’X’ spin system for the tert-butyl protons, suggestive of through-space cou-

pling of the two phosphorus atoms.

Natural bite-angles of 126.80, 126.98, and 127.56◦ were calculated using DFT for

the t-Bu-sixantphos, t-Bu-thixantphos, and t-Bu-xantphos respectively. For com-

parative purposes the bite-angles for the Ph-xantphos ligands were also calcu-

lated: Ph-sixantphos (111.89◦), Ph-thixantphos (112.65◦), and Ph-xantphos (114.18◦).

The values for the Ph-xantphos ligands are slightly larger than those calculated

using molecular mechanics, though the value for t-Bu-xantphos is lower than the

previously reported value (140◦) calculated with molecular mechanics. This is

likely due to the molecular mechanics value overestimating the steric impact of

the tert-butyl substituents. A comparison of the natural and median crystallo-

graphic bite-angles for a range of different diphosphine ligands showed a good

correlation between the two, indicating that the natural bite-angles can be excel-

lent predictors of coordination behaviour.

The three t-Bu-xantphos ligands react rapidly with one equivalent of acid to gen-

erate [(t-Bu-xantphos)H]CH(SO3CF3)2. The proton moves between the two phos-

phorus atoms in room temperature solutions. This process was investigated us-

ing proton-coupled 31P NMR spectroscopy and low temperature 1H and 31P NMR

spectroscopy, revealing that the proton is isolated on a single phosphorus below

-40 ◦C. The X-ray crystal structure of [(t-Bu-thixantphos)H]CPh(SO3CF3)2 was

obtained, and the phosphonium proton was able to be located: isolated on a sin-

gle phosphorus.
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The electronic properties of the t-Bu-xantphos ligands were investigated by the

synthesis of phosphine selenides. In all cases the monoselenide formed with no

evidence for a diselenide. The values of 1J PSe ranged from 689.1–698.5 Hz, which

were converted into pK b values of 5.67–6.90. These fall between the values of

PPh2Me and PMe3 which is consistent with the strong electron donation from the

tert-butyl substituents and the electron withdrawing nature of the aryl backbone.

The pK b value for Ph-xantphos is 13.55 showing the difference in the electronic

properties of the t-Bu-xantphos ligands.

Overall this chapter provides an interesting introduction into the chemistry of

the t-Bu-xantphos ligands and suggests that the coordination chemistry may be

different to that of the Ph-xantphos ligands as a result of the much larger natural

bite-angles and more electron-rich phosphorus atoms.
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Coordination Complexes with

Silver

Silver is a precious metal that has been used in coins, jewellery and other or-

namentation at least since 4000 B.C. Silver salts have a wide range of applica-

tions, such as photographic film, wound dressings, and water storage tanks.146

Silver coordination complexes are also biologically active: bis-diphosphine sil-

ver complexes show anti-tumour and anti-fungal activity.147,148 Metallic silver is

used industrially as a catalyst for the conversion of ethene to ethylene glycol, and

silver salts are occasionally used as co-catalysts in cross-coupling reactions.149

Complexes of silver have been used as catalysts in a number of transformations,

including Si-H activation,150 asymmetric aldol conversions151 and allylation of

benzaldehyde.56,152

Silver coordination chemistry is interesting due to the wide range of different ge-

ometries available to the metal, resulting in a high degree of geometrical flexibil-

ity. The bite-angle, electronic influence of the diphosphine, and the coordination

mode of any ancillary ligands can all impact the type of complex formed. Possi-

ble structures formed for an equimolar reaction of a silver salt with a diphosphine

range from the straightforward monometallic complex, to multimetallic clusters

with bridging diphosphines (Figure 3.1). For a detailed overview of silver coor-

dination chemistry see Meijboom et al. 111

Silver complexes with xantphos ligands have been reported previously.56,153 In

all cases the complexes are monometallic, and the majority of these structures

47
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Figure 3.1: Possible structures for 1:1 silver diphosphine complexes, reproduced

from Meijboom et al. 111

are tetrahedral complexes of the type [Ag(xantphos)(NN)]+ where NN represents

a bidentate nitrogen ligand such as 2,2’-bipyridine. These [Ag(xantphos)(NN)]+

complexes have been patented for their luminescent properties.154–156 Other tetra-

hedral complexes with Ph-xantphos include a chelating ligand or two monoden-

tate ligands (Figure 3.2). Only one trigonal silver Ph-xantphos complex has been

reported (Figure 3.2c).157 However, this is likely due to a lack of research rather

than synthetic difficulties, as trigonal silver complexes with a chiral xantphos

derivative have also been reported.56

O

Ph2P PPh2
Ag

O PPh2

(a)

O

Ph2P PPh2
Ag

Br S

HN

(b)

O

Ph2P PPh2
Ag

Br

(c)

Figure 3.2: Tetrahedral and trigonal silver Ph-xantphos complexes.

Crystal structures of [AgBr(Ph-xantphos)] (Figure 3.3) and [AgBr(Ph-xantphos)(S-

pyH)] (py = 2-pyridyl, Figure 3.4) have been reported.157 In the trigonal struc-

ture the P-Ag-P angle is 109.38(7)◦ which increases to 111.507(17)◦ for [AgBr(Ph-

xantphos)(S-pyH)]. The natural bite-angle for Ph-xantphos (111.7◦)67 is very close

to the observed bite-angle. 2-Thiopyridine can act as a bidentate chelating ligand,

however in this case the thione tautomer is formed and monodentate coordina-
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tion through the sulfur is observed. In order for the 2-thiopyridine to chelate, the

P-Ag-P angle would need to decrease significantly. In this instance the rigidity

and steric bulk of Ph-xantphos prevents this from happening.157

(a) (b)

Figure 3.3: X-ray crystal structure of [AgBr(Ph-xantphos)] showing the front (a)

and side (b).157 Hydrogen atoms omitted for clarity.

Silver is an excellent metal for investigating the coordination chemistry of xant-

phos ligands because it forms a wide range of different coordination geometries

and has been shown to coordinate Ph-xantphos close to its natural bite-angle.157

There are also a number of potential applications for silver complexes, such as

catalysis, biological activity, and luminescent membranes. Silver is also espe-

cially suitable for study using 1H, 13C, and 31P NMR spectroscopy as it consists of

two stable spin 1/2 isotopes, 107Ag and 109Ag, with natural abundances of 51.839

and 48.161% respectively. This allows further information to be obtained from the

value of the silver-atom coupling constants. This chapter presents a study of the

reactivity of the t-Bu-sixantphos, t-Bu-thixantphos, and t-Bu-xantphos ligands

with two silver precursors: silver chloride and silver tetrafluoroborate.

3.1 Silver Chloride Complexes

Silver chloride complexes were synthesised by addition of each of the t-Bu-xant-

phos ligands to a suspension of silver chloride in CDCl3 (Scheme 3.1), resulting in
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Figure 3.4: X-ray crystal structure of [Ag(Ph-xantphos)(HpyS)Br].157 Phenyl rings

and hydrogen atom omitted for clarity.

[AgCl(diphosphine)] complexes. In all cases, electrospray ionisation – mass spec-

trometry showed a clear peak for [M−Cl]+ with no peaks observed for dimers or

higher oligomers. The 31P NMR spectra (see Figure 3.5 for an example) showed

the expected pair of doublets in all cases, as summarised in Table 3.1. No re-

lationship was observed between the natural bite-angle and the values of 1JAgP.

However, the change in the phosphorus chemical shift upon coordination (∆δ)

increases with decreasing bite-angle. This indicates that the decrease in shielding

is larger for smaller bite-angles.

The 1H NMR spectra for the [Ag(t-Bu-xantphos)Cl] complexes show half the ex-

pected number of aromatic signals, and one signal for the methyl groups and an-

other for the tert-butyl substituents, indicating a complex with planes of symme-

try in line with the backbone and perpendicular to it, running through the bridg-

ing atoms and the silver (representative spectrum for [Ag(t-Bu-sixantphos)Cl],

Figure 3.5). The tert-butyl protons appear as a second order multiplet of the
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Figure 3.5: 31P, 1H and 13C NMR spectra of [Ag(t-Bu-sixantphos)Cl] in CDCl3.

Arrows indicate impurities, CH2Cl2 indicated in red.



52 Chapter 3. Silver Complexes

O

X

tBu2P PtBu2

RR
O

X

tBu2P PtBu2

RR

Ag

Cl

(i)

Scheme 3.1: Synthesis of [Ag(t-Bu-xantphos)Cl] complexes. Reagents and condi-

tions: (i) AgCl, CDCl3.

Table 3.1: Selected 31P NMR data of [Ag(t-Bu-xantphos)Cl] complexes in CDCl3

(∆δ = δcomplex - δfree ligand).

Compound δ31P/ppm ∆δ/ppm 1J107AgP/Hz 1J109AgP/Hz

t -Bu-Sixantphos 24.2 15.8 408.1 471.1

t -Bu-Thixantphos 21.8 12.3 406.7 469.6

t -Bu-Xantphos 20.7 10.5 409.3 472.2

X18AA’X18’ type, similar to the free ligand. The 13C NMR spectra of the three com-

plexes display some very distinctive signals (representative example, [Ag(t-Bu-

sixantphos)Cl], Figure 3.5, bottom). The ipso phosphorus carbon on the aryl ring

and the quaternary tert-butyl carbon appear as apparent quartets, while the sig-

nal for the terminal tert-butyl carbons is an apparent triplet of doublets. For each

of these signals we would expect a doublet of virtual triplets or virtual triplet of

doublets for each of the silver isotopologues. Owing to this complex spin system,

values for the individual coupling constants were unable to be determined. The

spectroscopic data for the three [Ag(t-Bu-xantphos)Cl] complexes show signifi-

cant similarities, with no major discrepancies, indicating that all three complexes

have the same overall geometries with only subtle differences.

Colourless crystals of [Ag(t-Bu-thixantphos)Cl] suitable for single-crystal X-ray

diffraction were obtained by inwards diffusion of Et2O into a CH2Cl2 solution

of the complex. The crystal structure is shown in Figure 3.6, confirming the

proposed monomeric trigonal structure. Selected bond lengths and angles, and

crystallographic data are given in Tables 3.2 and 3.3 respectively. The [Ag(t-
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Bu-thixantphos)Cl] complex crystallised in the P21 space group, while the sim-

ilar complex [AgBr(Ph-xantphos)] crystallised in the higher symmetry P21/m

space group.157 The P-Ag-P angle of 130.50(7)◦ is larger than the bite-angle for

[AgBr(Ph-xantphos)] (109.37(1)◦). However, both of these angles are very close

to the natural bite-angle of their xantphos ligand. The natural bite-angle of t-Bu-

thixantphos and Ph-xantphos were calculated to be 126.98◦ and 114.18◦ respec-

tively (Section 2.2). This indicates that the natural bite-angle is a significant factor

in determining the resulting P-Ag-P angle in these complexes. The silver oxygen

distance of 3.007(6) Å indicates there no interaction between these atoms.

Figure 3.6: X-ray crystal structure of [Ag(t-Bu-thixantphos)Cl] (50% probability

thermal ellipsoids). Hydrogen atoms omitted for clarity.

A side view of [Ag(t-Bu-thixantphos)Cl] given in Figure 3.7 shows the P-Ag-

Cl angle relative to the ligand backbone. The chloride is not centred, with a

difference in the P-Ag-Cl angles of 3.49◦. This difference is likely the result of

the backbone twisting with the chloride occupying the least sterically hindered

site. The backbone is bent, resulting in two distinct faces of the molecule. In

[Ag(t-Bu-thixantphos)Cl] the chloride sits on the convex face of the ligand while

in [AgBr(Ph-xantphos)] (Figure 3.3) the bromide ligand occupies the concave
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Figure 3.7: X-ray crystal structure of [Ag(t-Bu-thixantphos)Cl], side view (50%

probability thermal ellipsoids). Hydrogen atoms omitted for clarity.

Table 3.2: Selected bond distances (Å) and angles (◦) of [Ag(t-Bu-thixantphos)Cl].

Bond distances (Å) Bond angles (◦)

P1...P2 4.416(3) P1-Ag1-P2 130.50(7)

P1-Ag 2.430(2) P1-Ag1-Cl1 116.46(8)

P2-Ag 2.433(2) P2-Ag1-Cl1 112.95(8)

Ag...O1 3.007(6) Aryl ring 1...Aryl ring 2 35.7(3)

Ag-Cl1 2.491(2)
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Table 3.3: Crystallographic data and structure refinement for [Ag(t-Bu-thixant-

phos)Cl]

Empirical formula C30H46AgClOP2S

Formula weight 659.99

Temperature/K 285.47(10)

Crystal system monoclinic

Space group P21

a/Å 8.6697(3)

b/Å 15.4417(6))

c/Å 11.9482(4)

α/◦ 90

β/◦ 99.700(3)

γ/◦ 90

Volume/Å3 1576.70(10)

Z 2

ρcalc mg/mm3 1.390

µ/mm 7.636

F(000) 688.0

Crystal size/mm 0.3842 x 0.3421 x 0.1062

Radiation CuKα (λ = 1.54184)

2θ range for data collection 7.506 to 147.890◦

Index ranges -10 ≤ h ≤ 10, -19 ≤ k ≤ 16, -14 ≤ l ≤ 14

Reflections collected 12454

Independent reflections 5818 [Rint = 0.0724, Rsigma = 0.0651]

Data/restraints/parameters 5818/1/339

Goodness-of-fit on F2 1.138

Final R indexes [I>=2σ (I)] R1 = 0.0545, wR2 = 0.1579

Final R indexes [all data] R1 = 0.0563, wR2 = 0.1618

Largest diff. peak/hole / e Å−3 0.88/-1.78

Flack parameter -0.016(13)
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face.157 In addition, the C(aryl)-P-Ag-Cl dihedral angles of 159.8(3)◦ and 147.4(3)◦

in [Ag(t-Bu-thixantphos)Cl] are significantly larger then the corresponding dihe-

dral angles in [Ag(Ph-xantphos)Br] of 109.6(4)◦. The difference in the coordina-

tion plane between the two complexes, is likely the result of the steric influence

of the tert-butyl groups compared to the phenyl rings; the chloride sits below

the tert-butyl groups while intercalating with the phenyl rings. The backbone

bending would result in two different sets of tert-butyl groups, which would

have different NMR properties. However, this is not apparent in the NMR spec-

tra of any of the [Ag(t-Bu-xantphos)Cl] complexes (Figure 3.5) indicating that

the backbone is likely inverting rapidly in solution (Scheme 3.2). This inversion

of the xantphos backbone has recently been observed for [Ru(CO)ClH(Ph-xant-

phos)(PPh3)].158
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Scheme 3.2: Inversion of the xantphos backbone in [Ag(t-Bu-xantphos)Cl].

3.2 Reactions with Silver Tetrafluoroborate

Complexes of the type [Ag(t-Bu-xantphos)]BF4 were synthesised in order to in-

vestigate the coordination of the diphosphine ligands in the absence of other lig-

ands. Although tetrafluoroborate can coordinate to silver, it is unusual for it to do

so, and numerous examples exist of silver complexes with free coordination sites

that have a non-coordinated BF4
– counterion (Figure 3.8).159–161 Previous reports

have shown that in the presence of an ether group and a tetrafluoroborate ion a

linear diphosphine complex with mutually trans phosphorus atoms and no other

ligands was synthesised.162 In addition, coordination of the tetrafluoroborate to

the silver will result in a shift of peak in the 19F NMR spectrum.
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Figure 3.8: Examples of silver complexes with free coordination sites and non-

coordinating BF4
– counterions.159–161

The reaction between AgBF4 and the t-Bu-xantphos ligands proceeded at room

temperature in CH2Cl2, going to completion in under one hour (Scheme 3.3).

The resulting [Ag(t-Bu-xantphos)]BF4 complexes are light-sensitive in solution

and in CDCl3 solution completely degraded in 12 hours. For all three diphos-

phine ligands the ESI – mass spectra show a molecular ion peak corresponding

to [Ag(diphosphine)]+. In all cases the 31P NMR spectra (for an example see Fig-

ure 3.9) show the expected pair of doublets, indicating chelation to a single silver

atom. No relationship between the bite-angle and the 1J107AgP or 1J109AgP coupling

constants was observed. The 1J107AgP and 1J109AgP coupling constants are larger

than those for the silver chloride complexes (Table 3.4). This is consistent with

their formulation as two-coordinate silver complexes, as the values of M-P cou-

pling constants for d10 metals generally increase with decreasing coordination

number.16

The 19F NMR spectra of the three [Ag(t-Bu-xantphos)]BF4 complexes show a sin-

gle resonances between -151.3 and -151.9 ppm, indicating non-coordinating BF4
–

counterions. In the 1H NMR spectra the tert-butyl resonances appear as a virtual

triplet. Virtual triplets are commonly observed for XnAA’X’n when A and A’ are

strongly coupled such that J AA’ is very much larger than the difference between

J AX and J AX’.
124 In coordination compounds this condition is typically met if the

two phosphorus atoms are in a trans configuration resulting in strong coupling

of the spin systems.16 In this case as the triplet is not a perfect 1:2:1 triplet it is

likely that the phosphines are not strictly trans and the P-Ag-P angle is less than

180◦.

The [Ag(t-Bu-xantphos)]BF4 complexes show distinctive peaks in their 13C NMR
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Figure 3.9: NMR spectra for [Ag(t-Bu-sixantphos)]BF4 in CDCl3. Arrows indicate

impurities, CH2Cl2 indicated in red.
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O

X
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(i)

Scheme 3.3: Synthesis of [Ag(t-Bu-xantphos)]BF4 complexes. Reactions and con-

ditions: (i) AgBF4, CH2Cl2.

Table 3.4: Selected NMR data of [Ag(t-Bu-xantphos)]BF4 complexes (∆δ = δcomplex

- δfree ligand).

31P 19F

Diphosphine δ/ppm ∆δ/ ppm 1J107AgP/Hz 1J109AgP/Hz δ/ppm

t -Bu-Sixantphos 31.5 23.1 482.9 557.4 -151.9

t -Bu-Thixantphos 28.4 18.9 486.7 562.2 -151.3

t -Bu-Xantphos 27.6 17.4 486.3 561.1 -151.9

spectra (see Figure 3.9 for a representative example), similar to those observed for

the [Ag(t-Bu-xantphos)Cl] complexes (Section 3.1). The most downfield signal is

for the aryl carbon attached to the oxygen atom (the O -ipso carbon). This signal

appears as a virtual triplet, as expected for a XAA’X’ system with strongly cou-

pled phosphorus atoms. The signals for the ipso carbon attached to phosphorus,

and the tert-butyl quaternary and terminal carbons, all appear as triplets of dou-

blets due to coupling to phosphorus and both isotopes of silver. These signals

would be expected to appear as a pair of virtual triplets of doublets; however, if

the two leftmost peaks of one triplet of doublets overlapped with the two cen-

tral peaks of the other triplet of doublets this could result in an apparent triplet

of doublets (assuming that the virtual triplet is not a strict 1:2:1 triplet, which is

likely applicable here as the 1H NMR signal for the tert-butyl protons was not a

1:2:1 triplet).

The [Ag(t-Bu-xantphos)]BF4 complexes have two free coordination sites; how-

ever, there is no evidence for either the ligand oxygen atom or the BF4
– acting as
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another ligand. This is likely due to the steric constraints of the larger bite-angle

ligands and the bulky tert-butyl groups. Attempts were made to react the analo-

gous [Ag(t-Bu-xantphos)]PF6 complexes with ethene, ethyne and carbon monox-

ide, however no reactivity was observed.163

3.2.1 Reactions with LiCCPh

Silver acetylide complexes have gained attention recently due to their lumines-

cent properties.164–166 Silver acetylides supported by phosphine ligands tend to

form cluster complexes with no monomeric structures currently reported in the

CSD.68 Attempts to synthesise a silver acetylide complex by reaction of the [Ag(t-

Bu-xantphos)]BF4 complexes with lithium phenylacetylide were marred by diffi-

culties. The reaction was carried out in freshly distilled THF under argon, in the

dark. After 12 hours the THF was removed in vacuo and the residue was ex-

tracted into a deuterated solvent and analysed by NMR spectroscopy. In CDCl3

or acetone-d6 a significant amount of DCCPh was observed in the 13C NMR spec-

trum, indicating a reaction between the solvent and any acetylide complex that

may have formed, or no reaction had occurred and the solvent was quenching

the lithium acetylide. The 31P NMR spectra showed a pair of doublets with dif-

ferent chemical shift and coupling constants to the starting material suggesting

that a reaction between the [Ag(t-Bu-xantphos)]BF4 complexes and LiCCPh had

indeed occurred.

When the reaction was repeated and extracted into C6D6 the resulting NMR spec-

tra were broad, with a pair of multiplets present in the 31P NMR as would be

expected if a silver cluster was formed. The 1H and 13C NMR spectra were also

broad, however no peaks for free phenyl acetylene were observed, indicating that

reaction had occurred with likely coordination. Unfortunately this complex was

unstable and degraded completely in 24 hours to an insoluble black material.

This material may be a higher order cluster, oligomer or polymeric species which

commonly form with silver acetylide complexes. Further attempts at character-

isation of the intermediate complex or the resulting degradation products were

unsuccessful.
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3.3 Summary

The coordination chemistry of t-Bu-sixantphos, t-Bu-thixantphos, and t-Bu-xant-

phos with silver(I) precursors has been investigated. [Ag(t-Bu-xantphos)Cl] com-

plexes formed upon reaction of the ligands with AgCl. The X-ray crystal structure

of [Ag(t-Bu-thixantphos)Cl] showed a trigonal geometry with a P-Ag-P angle of

130.50(7)◦, which is slightly larger than the natural bite-angle (126.98◦). The bite-

angle in [Ag(t-Bu-thixantphos)Cl] is larger than the previously reported [Ag(Ph-

xantphos)Br] (109.37(1)◦) and chloride sits on the convex face whereas the bro-

mide occupies the concave face. This shows the impact of the tert-butyl groups

on the coordination chemistry. In solution the ligand backbones in the [Ag(t-

Bu-xantphos)Cl] complexes are inverting rapidly, resulting in a single tert-butyl

environment.

[Ag(t-Bu-xantphos)]BF4 complexes were synthesised by reaction of the three t-

Bu-xantphos ligands with AgBF4. The NMR spectroscopy suggested that the P-

Ag-P angle in these complexes was approaching 180◦. Reaction of the [Ag(t-Bu-

xantphos)]BF4 complexes with lithium phenylacetylide in CDCl3 or acetone-d6

formed DCCPh but no change in the [Ag(t-Bu-xantphos)]BF4 complexes. In C6D6

the resulting NMR spectra were broad with no peaks indicative of free phenyl

acetylene. However, the product was unstable and degradation hindered char-

acterisation. All of the characterised complexes in this chapter were monomeric

species, indicating that the t-Bu-xantphos ligands preferentially chelate to a silver

ion rather than bridging to form dimers/oligomers. The absence of any dimers

and oligomers forming from the [Ag(t-Bu-xantphos)]BF4 complexes suggests that

the rigid backbone and bulky tert-butyl groups are able to stabilise electron defi-

cient metal centres.
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Chapter 4

Coordination Complexes with

Rhodium

Rhodium is a very rare element forming only 0.001 ppm of the earth’s crust.167

The majority of the extracted rhodium (81%) is used in catalytic converters in cars

to reduce harmful nitrogen oxides to nitrogen and oxygen.168 Another important

use of rhodium is in thermocouples where a rhodium-platinum alloyed wire is

used, together with a pure platinum wire for use in high-temperature furnaces.167

Rhodium coordination complexes form active catalysts, most commonly for hy-

droformylation and hydrogenation.28,169,170 Wilkinson’s catalyst, [RhCl(PPh3)3], is

one of the most widely known rhodium catalysts, used mainly for the hydrogena-

tion of alkenes, but also for hydroboration of alkenes and selective hydrosilyla-

tion of α,β-unsaturated carbonyl compounds.171–173

The 2001 Nobel Prize in Chemistry was awarded to Knowles,7 Noyori,5 and

Sharpless174 for their work in asymmetric catalysis, including several rhodium

catalysts. A derivative of Wilkinson’s catalyst, where triphenylphosphine was

replaced by the chiral phosphine (−)-PMePhiPr, was reported by Knowles and

Sabacky in 1968.175 This chiral version of Wilkinson’s catalyst was the first asym-

metric hydrogenation catalyst yielding an enantiomeric excess of 15% when hy-

drogenating α,β-unsaturated carbonyls (Scheme 4.1). This was improved by the

development of the CAMP ligand (Figure 4.1), which gives an enantiomeric ex-

cess of 80% in the hydrogenation of dehydroamino acids, a key step in the com-

mercial production of L-DOPA, a drug used in the treatment of Parkinson’s dis-

ease.176 Rhodium complexes containing chiral diphosphines also form active cat-

63
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alysts, for example a [Rh(cod)(S)-BINAP] (Figure 4.1) catalyst is active for the

asymmetric isomerisation of allylic amines, a key step in the industrial synthesis

of (−)-menthol generating over 1000 tons per year.5

OH

O

RhClL3

H2
OH

O

*

P

iPr

Me

Ph

L =

Scheme 4.1: Asymmetric catalytic hydrogenation developed by Knowles.7

P
Me

MeO

PPh2

PPh2

Figure 4.1: Chiral phosphine ligands CAMP (left) and (S)-BINAP (right), used in

asymmetric catalysis.5,176

The xantphos class of ligands were first studied for potential use as ancillary lig-

ands in rhodium-catalysed hydroformylation.30 Small changes in the bite-angle

can result in changes in reactivity and selectivity. For hydroformylation the larger

bite-angle ligand, Ph-xantphos, showed a greater selectivity for the linear alde-

hyde than Ph-sixantphos or Ph-thixantphos. Xantphos ligands have the abil-

ity to coordinate to a metal centre in a number of different modes. The most

common is the diphosphine κPP’ mode. Tridentate κP,O,P ’ complexes of the

xantphos ligands are also relatively common, especially in octahedral complexes.

In this κP,O,P ’ coordination mode, the xantphos ligand typically coordinates to

the metal in a meridional manner, although facial complexes have also been re-

ported.177,178

Subsequent to the research reported in this chapter being performed, one paper

has been published, reporting the coordination chemistry of the t-Bu-xantphos
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ligand with rhodium.82 t-Bu-Xantphos was shown to react with [Rh(coe)(η-Cl)]2

forming a [Rh(t-Bu-xantphos-κP,O,P ’)Cl] complex. This complex readily splits

hydrogen to form a [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] complex. Both of these

complexes were also synthesised as part of the present study and comparison of

the results will be discussed where relevant. Chloride abstraction from [Rh(t-Bu-

xantphos-κP,O,P ’)Cl(H)2] using AgBF4 or AgSbF6 generates the trigonal bipyra-

midal dihydride complex [Rh(t-Bu-xantphos-κP,O,P ’)(H)2]+. This dihydride re-

acts with ethene to give ethane and [Rh(t-Bu-xantphos-κP,O,P ’)(C2H4)], however

no reaction with the commonly used hydrogen acceptors t-butylethylene or nor-

bornene was observed, nor was any reaction with terminal alkenes. [Rh(t-Bu-

xantphos-κP,O,P ’)Cl(H)2] reacts with KOtBu resulting in a four coordinate mono-

hydride species [Rh(t-Bu-xantphos-κP,O,P ’)H]. [Rh(t-Bu-xantphos-κP,O,P ’)H] is

an active catalyst for the isomerisation of 1-hexene, with a TON of 2000 after 16

hours. Addition of ethene to this rhodium(I) hydride resulted in the reversible

formation of an ethyl complex. This paper shows some of the interesting chem-

istry of t-Bu-xantphos with rhodium. However, to date the coordination chem-

istry of t-Bu-sixantphos and t-Bu-thixantphos has not been reported.

This chapter presents research into the coordination chemistry of t-Bu-sixant-

phos, t-Bu-thixantphos, and t-Bu-xantphos with rhodium. The goal was the syn-

thesis and characterisation of complexes that may form as part of catalytic reac-

tions. As such, this work focusses on the reactivity of a simple rhodium(I) com-

plex towards small molecules, particularly the chemistry towards hydrogen and

carbon monoxide, as these are common components of catalytic systems.

4.1 Synthesis of [Rh(κP,O,P ’)Cl] Complexes

Chlorido-bridged rhodium alkene dimers are commonly used starting materials

for the formation of rhodium phosphine complexes. These dimers can react in a

number of different ways depending on the phosphine ligand used (Figure 4.2).

When two equivalents of a monophosphine react with [Rh(coe)2Cl]2, (coe = cy-

clooctene) the phosphine displaces one coe molecule from each rhodium atom

forming a symmetric dimer.179 These complexes are typically unstable. Further

addition of phosphine displaces the remaining two coe molecules, while retain-

ing the chlorido-bridged rhodium core.180 Analogous complexes form when the
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reaction is carried out with diphosphines.181 In some cases, bidentate ligands

can cleave the dimer resulting in a [Rh(LL)(coe)Cl] complex.182 Tridentate lig-

ands are also able to cleave the dimer and result in the mononuclear complexes

[Rh(LLL)Cl].183,184 With negatively charged tridentate ligands, a trigonal bipyra-

midal hydride chloride complex is formed (where the hydride forms via X-H

activation of the central ligating atom).185–187 Alternatively, a hydride can be ab-

stracted from the ligand using a strong base prior to reaction with the rhodium

dimer. Silver salts can also be added to remove the bridging chloride ligands and

form a monomeric complex. In this case the remaining coordination site is oc-

cupied either by the anion from the silver salt, or by a cyclooctene molecule if a

non-coordinating counterion is used.188,189

Reaction between [Rh(coe)2Cl]2 and the three t-Bu-xantphos ligands was car-

ried out on an NMR scale in C6D6. No reaction occurred at room temperature

overnight except in the case of t-Bu-xantphos, which displays a small amount

of conversion, evident from the 1H and 31P NMR spectra. The lack of reactiv-

ity at room temperature may be the result of the poor solubility of [Rh(coe)2Cl]2

in C6D6. Upon heating to 60 ◦C coordination of the t-Bu-xantphos ligands pro-

ceeded, going to completion after 24 hours. For all three t-Bu-xantphos ligands

the product is the expected [Rh(t-Bu-xantphos-κP,O,P ’)Cl] mononuclear complex

(Scheme 4.2). This complex is directly analogous to an i -Pr-xantphos complex re-

ported in 2013,81 which was synthesised in the same manner. The t-Bu-xantphos

ligands have a number of different possible coordination modes. In this case a

meridional κP,O,P ’ pincer coordination is observed. It is likely that the reaction

proceeds by substitution of one cyclooctene ligand with one of the phosphorus

atoms, followed by a second to form a chlorido-bridged dimer. However, as the

t-Bu-xantphos ligands have such large bite-angles and the potentially coordinat-

ing ether bridge, this can readily split the dimer resulting in the desired product.

None of these intermediates were observed, indicating low activation barriers

once the first substitution had occurred.

The 1H, 13C and 31P NMR spectra for the three [Rh(t-Bu-xantphos-κP,O,P ’)Cl]

complexes are consistent with the proposed structures. Representative 1H and
31P NMR spectra for [Rh(t-Bu-xantphos-κP,O,P ’)Cl] are shown in Figure 4.3 and

selected NMR data for all three complexes is given in Table 4.1. In the 31P NMR

spectra the signals shift downfield by 35.8–37.5 ppm upon coordination, with the
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Figure 4.2: Complexes formed by reaction of [Rh(coe)2Cl]2 and phosphine lig-

ands. First row: monophosphines in 2:1 and 4:1 ligand:[Rh(coe)2Cl]2, second row:

bidentate ligands, third row: tridentate ligands in the absence of other reagents,

fourth row: tridentate ligands using lithiated ligand (left) or a silver salt (right).

peaks for the complexes appearing at 44.2–47.7 ppm. The signals for the com-

plexes are doublets with rhodium coupling of 140.0–142.3 Hz. This coupling is

consistent with a rhodium(I) complex and is similar to the coupling constant for

[Rh(i -Pr-xantphos-κP,O,P ’)Cl] (142.4 Hz).81 The 1H and 13C NMR spectra support

the proposed structure, as the tert-butyl proton and carbon signals all appear as

virtual triplets, indicating strongly coupled phosphorus atoms, which typically

occurs in a trans coordination geometry.16,124 In the 13C NMR spectrum the peak
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Scheme 4.2: Reaction of [Rh(coe)2Cl]2 and t-Bu-xantphos ligands. Reagents and

conditions: (i) 0.5eq·[Rh(coe)2Cl]2, C6D6, 60 ◦C, 24 hours.

corresponding to the O -ipso carbon has shifted downfield relative to the free lig-

and, unlike the equivalent [Ag(t-Bu-xantphos)Cl] complexes where the oxygen

is known to be non-coordinating (Table 4.2). This downfield shift is consistent

with a coordinated oxygen. As the oxygen donates electron density to the metal

this will inductively decrease electron density on the O -ipso carbon resulting in

decreased shielding and thus a downfield shift of the NMR signal.
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Figure 4.3: 31P and 1H NMR spectra for [Rh(t-Bu-xantphos)Cl] in C6D6. Blue

arrows indicate displaced coe, asterisks denote impurities.

Subsequent to this work the [Rh(t-Bu-xantphos-κP,O,P ’)Cl] complex and X-ray
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Table 4.1: Selected NMR data of [Rh(t-Bu-xantphos)Cl] complexes in C6D6 (∆δ =

δcomplex - δfree ligand).

31P 1H t -Bu

Compound δ/ppm ∆δ/ppm JRhP/Hz δ/ppm J/Hz

t -Bu-Sixantphos 44.2 35.8 140.0 1.69 13.5

t -Bu-Thixantphos 46.5 37.0 141.5 1.67 13.7

t -Bu-Xantphos 47.7 37.5 142.3 1.68 13.4

crystal structure have been reported in the literature.82 The literature method also

used [Rh(coe)2Cl]2 as the starting material in benzene however, their reaction was

complete in 24 hours at room temperature, which suggests that the heating to 60
◦C is unnecessary. The NMR data reported herein is consistent with the litera-

ture values. The X-ray crystal structure of [Rh(t-Bu-xantphos-κP,O,P ’)Cl] (Figure

4.4) shows a square-planar geometry with a t-Bu-xantphos-κP,O,P ’ coordination

mode.

Figure 4.4: X-ray crystal structure of [Rh(t-Bu-xantphos-κP,O,P ’)Cl]. Hydrogen

atoms omitted for clarity.82
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Table 4.2: Chemical shift and coupling of the O -ipso carbon in the free ligand, [Ag(t-Bu-xantphos)Cl] (CDCl3) and [Rh(t-

Bu-xantphos)Cl] (C6D6) complexes (∆δ = δcomplex - δfree ligand).

Ligand (CDCl3) Ligand (C6D6) [Ag(t -Bu-xantphos)Cl] [Rh(t -Bu-xantphos)Cl]

Ligand δ/ppm δ/ppm δ/ppm ∆δ δ/ppm ∆δ

t -Bu-Sixantphos 164.3 164.5 163.9 -0.4 169.5 5.0

t -Bu-Thixantphos 155.3 155.9 155.5 0.2 157.4 1.5

t -Bu-Xantphos 155.8 156.0 156.5 0.7 158.9 2.9



4.2. Reaction with Hydrogen 71

4.2 Reaction with Hydrogen

Rhodium complexes are well-known as homogeneous hydrogenation and hydro-

formylation catalysts. Both of these processes involve the activation of molecu-

lar hydrogen at the rhodium centre. The catalytic cycle for hydrogenation using

monophosphine ligands (Scheme 4.3) involves the addition of molecular hydro-

gen to [Rh(PR3)2Cl] generating a rhodium dihydride, which then coordinates an

alkene and undergoes hydride-migration followed by reductive elimination to

regenerate the starting rhodium complex and the alkane. In hydroformylation

(Scheme 4.4) the alkene coordinates to an existing rhodium hydride complex.

Hydride migration occurs followed by carbon monoxide coordination and mi-

gratory insertion into the rhodium alkyl bond. This is followed by the oxidative

addition of dihydrogen, generating a rhodium(III) dihydride complex. The cy-

cle concludes by reductive elimination, generating the aldehyde and the starting

rhodium(I) complex. The influence of the bite-angle of Ph-xantphos complexes

on the reactivity and selectivity of catalytic process was first studied for hydro-

formylation.30 Since then hydroformylation has been studied extensively using

a variety of xantphos derivatives.25,32,34,60–62,64,114,116,190–204 Given the importance of

the oxidative addition of molecular hydrogen for both hydrogenation and hy-

droformylation, and to investigate any possible differences of the wide bite-angle

and steric bulk of the t-Bu-xantphos ligands we investigated the reactivity of the

[Rh(t-Bu-xantphos-κP,O,P ’)Cl] complexes with dihydrogen.

The [Rh(t-Bu-xantphos-κP,O,P ’)Cl] complexes react readily with hydrogen, form-

ing octahedral rhodium(III) dihydride complexes (Scheme 4.5). The dihydrogen

undergoes oxidative addition forming two classical hydride ligands with a cis

configuration. The t-Bu-xantphos ligands retain their meridional coordination,

meaning that the hydride ligands are in different environments, one trans to the

chloride and the other trans to the oxygen donor atom. As a result, the two

faces of the t-Bu-xantphos ligands are now different causing two different envi-

ronments for the bridgehead methyls in both t-Bu-sixantphos and t-Bu-xantphos,

and the tert-butyl groups for all three t-Bu-xantphos ligands. However, the plane

of symmetry perpendicular to the t-Bu-xantphos backbone is retained, such that

the methyl substituents of t-Bu-thixantphos are in the same environment.

Two hydride resonances are evident in the 1H NMR spectra of the three [Rh(t-Bu-
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Scheme 4.5: Reaction of the Rh(t-Bu-xantphos)Cl] complexes with hydrogen.

Reagents and conditions: (i) H2, C6D6.

xantphos-κP,O,P ’)Cl(H)2] complexes. The signals appear upfield as well defined

doublets of triplets of doublets, coupling to the rhodium, two phosphorus atoms

and each other (Figure 4.5, Table 4.3). The hydride trans to the chloride ligand

(-16.92 to -17.04 ppm) shows very little difference in either the chemical shift or

coupling constants between the three complexes. The hydride trans to the t-

Bu-xantphos oxygen (-20.51 to -21.12 ppm) shows more variation in the chemical

shift and coupling. The value of J RhH decreases with increasing natural bite-angle,

such that the t-Bu-xantphos complex has the lowest value and t-Bu-sixantphos

the largest. This suggests that the trans influence of the ether bridge is highest

for t-Bu-xantphos and lowest for t-Bu-sixantphos, which may be related to the

amount of strain required for the ligand to achieve tridentate coordination.

The 31P NMR spectra (example in Figure 4.5 for t-Bu-thixantphos) for the [Rh(t-

Bu-xantphos-κP,O,P ’)Cl(H)2] complexes each display a single resonance, down-

field relative to the starting [Rh(t-Bu-xantphos-κP,O,P ’)Cl] complexes, as a dou-

blet of doublets with some further coupling evident. Although 31P NMR is 1H

decoupled, the decoupler is sometimes unable to fully decouple resonances that

are so far outside the typical 1H NMR range (-2 to 15 ppm) resulting in resid-

ual coupling. The values of J RhP in the [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] com-

plexes are 116.1–117.8 Hz, a decrease of 23.7–25.3 Hz from the starting [Rh(t-

Bu-xantphos-κP,O,P ’)Cl] complexes. This decrease is consistent with a change

in the oxidation state from rhodium(I) to rhodium(III).16 Two signals are ob-

served in the 1H NMR spectra for the tert-butyl protons in all three complexes

consistent with the proposed geometry. Both signals are virtual triplets, confirm-

ing the mutually trans coordination of the phosphorus atoms, consistent with

the proposed meridional coordination of the ligands. Two signals were also ob-
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Figure 4.5: NMR spectra for [Rh(t-Bu-thixantphos)Cl(H)2] in C6D6. Impurities

are indicated by asterisks, CH2Cl2 is indicated by a red arrow and cyclooctane by

a blue arrow.
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Table 4.3: Hydride 1H NMR data for Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] complexes in C6D6.

H– trans-Cl– H– trans-O

Diphosphine δ/ppm JRhH/Hz JPH/Hz JHH/Hz δ/ppm JRhH/Hz JPH/Hz JHH/Hz

t -Bu-Sixantphos -16.92 22.7 13.5 9.4 -21.12 30.9 12.1 9.2

t -Bu-Thixantphos -17.00 22.6 13.5 9.4 -21.13 30.5 12.4 9.4

t -Bu-Xantphos -17.04 22.8 13.4 9.4 -20.51 28.8 12.2 9.4
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served in the 1H NMR spectra for the bridgehead methyls in [Rh(t-Bu-xantphos-

κP,O,P ’)Cl(H)2] and [Rh(t-Bu-sixantphos-κP,O,P ’)Cl(H)2], again consistent with

the proposed structure.

The [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] complexes are similar to previously re-

ported rhodium xantphos dihydride complexes, [Rh(H)2(i -Pr-xantphos)X] (X =

Cl, OTf)81 and [Rh(H)2(Ph-xantphos)X]+ (X = P(Cyp)3 Cyp = cyclopentyl, NCMe,

OC(Me3)2, H3BNMe3-κH ).72,177,205 In these cases the hydride trans to the oxygen

atom was located in the 1H NMR between -22.19 and -19.00 ppm with a rhodium

coupling constant of 27.0–33.8 Hz. The 1H NMR signals for the hydride ligands in

the [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] complexes are encompassed within these

ranges (Table 4.3). For the reported t-Bu-xantphos complexes the 31P NMR chem-

ical shift is 77.8–79.0 ppm (J RhP = 116.1–117.8 Hz). In comparison, the literature

complexes appear at 36.9–45.4 ppm (J RhP = 114–121 Hz) for Ph-xantphos and

64.8–67.2 ppm (J RhP = 113–114 Hz) for i -Pr-xantphos. The coupling constants

are consistent for the complexes, and although the absolute chemical shift varies

significantly, the change in chemical shift on reaction with hydrogen from the

[Rh(t-Bu-xantphos)Cl] complexes is consistent (28.7–31.1 ppm for i -Pr-xantphos

compared to 31.3–34.0 ppm for t-Bu-xantphos, [Rh(Ph-xantphos)Cl] has not been

reported in the literature).

The [Rh(H)2(Ph-xantphos)X]+ (X = P(Cyp)3, H3BNMe3-κH ) complexes were re-

portedly only stable under a hydrogen atmosphere.177,205 However, the [Rh(t-

Bu-xantphos)Cl(H)2] complexes were able to be placed under vacuum overnight

with no evidence for loss of hydrogen. This difference is likely the result of the

different electronics between t-Bu-xantphos and Ph-xantphos. The electron do-

nating nature of the tert-butyl groups on t-Bu-xantphos enhances electron do-

nation from the rhodium centre into the σ* orbital of a dihydrogen ligand, thus

favouring oxidative addition and the formation of two discrete hydrides. The

Ph-xantphos ligand is more electron withdrawing than t-Bu-xantphos, due to the

phenyl substituents on the phosphorus atoms. The lower electron donation will

result in less back-bonding from the metal to the dihydrogen ligand and thus the

barrier towards reforming the dihydrogen will be lower.

The synthesis of the [Rh(t-Bu-xantphos-κP,O,P ’)Cl] complexes from [Rh(coe)2Cl]2

generates cyclooctene as a by-product. This reaction mixture was used with-

out further purification to determine the potential for the [Rh(t-Bu-xantphos-
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κP,O,P ’)Cl] complexes to act as hydrogenation catalysts. Hydrogen gas was bub-

bled through a mixture of [Rh(t-Bu-xantphos-κP,O,P ’)Cl] and cyclooctene for 10

minutes before the reaction was sealed and allowed to proceed at room tem-

perature. No evidence for cyclooctene was observed by 1H NMR spectroscopy

in the reaction mixture and a peak for cyclooctane was apparent (Figure 4.5).

While further work to determine the activity of these complexes needs to be per-

formed, this result indicates the potential for the [Rh(t-Bu-xantphos-κP,O,P ’)Cl]

complexes to act as precatalysts for the hydrogenation of alkenes.

The [Rh(t-Bu-xantphos)Cl(H)2] complex and its X-ray crystal structure have sub-

sequently been published by another research group.82 The X-ray crystal struc-

ture confirms the t-Bu-xantphos ligand coordinates in a κP,O,P ’ meridional ge-

ometry with mutually cis hydrides. The spectroscopic data contained herein is

consistent with the published values.

4.3 Rhodium Carbonyl Complexes

Metal carbonyl complexes are some of the most well-studied transition metal

complexes for many reasons. Metal carbonyls are involved in a number of differ-

ent catalytic processes including hydroformylation, hydroesterification and hy-

drocarboxylation to introduce oxygen functionality.28,206,207 These reactions are of

great synthetic importance and numerous industrial examples are known, such

as the conversion of a benzylic alcohol to a carboxylic acid using a palladium cata-

lyst in the synthesis of ibuprofen208 and the hydroformylation of 1,3-butadiene to

adipaldehyde, an intermediate for producing caprolactam and hexamethylene-

1,6-diamine (HMDA), key monomers for nylon-6.6 and nylon-6 manufacture.209

These catalytic processes involve the terminal coordination of the carbonyl to the

metal centre. However, carbonyls can also act as bridging ligands, either solely

through the carbon atom or in a side-on η2 mode involving the π-system.

Transition metal carbonyl complexes have also been studied to investigate the

electronic influence of other ligands. The stretching frequency of the C−−O bond

is a good measure of the electronic environment as carbonyl ligands are strong

π-acceptor ligands, meaning that the metal centre will donate electron density

into the π∗-orbital. This weakens the C−−O bond and results in a shift of the in-

frared C−−O stretch to lower frequency. The degree to which the back-bonding
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occurs is related to the nature of the metal centre and the other ligands. As such,

a number of series exist where this stretch has been used to quantify the elec-

tron donor capabilities of various ligands. These include the well-known Tol-

man Electronic Parameter using [Ni(CO)3L] complexes,8,14 and [Mo(CO)5L] and

[Rh(CO)ClL2] series,9 although other methods are utilised such as the phosphine

selenide coupling constants (see Section 2.4) and the J PtP coupling in cis-[PtCl2P2]

complexes.16

The typical method for producing rhodium phosphine carbonyl complexes is to

react the free phosphine or diphosphine ligand with either the chloro-bridged

dicarbonyl dimer, [Rh(CO)2Cl]2, or by reaction with a chloro-bridged rhodium

alkene dimer such as [Rh(C2H4)2Cl]2 or [Rh(coe)2Cl]2 under an atmosphere of

carbon monoxide. The reaction is then purified either in the air or under inert at-

mosphere and in the majority of cases the product is trans-[Rh(CO)(PP)Cl] where

PP is either two monophosphine ligands or a trans-spanning diphosphine. Using

smaller bite-angle diphosphine ligands results in the cis isomer.

The reactivity of the [Rh(t-Bu-xantphos-κP,O,P ’)Cl] complexes towards carbon

monoxide was investigated on an NMR scale by bubbling CO through a C6D6

solution of the complex for 10 minutes before sealing the NMR tube with a J.

Young tap. An immediate colour change was observed, with the dark brown

starting material changing to yellow (t-Bu-sixantphos) or orange (t-Bu-thixant-

phos and t-Bu-xantphos). NMR analysis of these samples showed the reaction

was complete, forming a single product in under 15 minutes with no evidence of

the starting material. All NMR spectra for these complexes were obtained under

an atmosphere of CO.

The NMR spectra for the three resulting products show some differences. The 1H

and 13C NMR spectra for the reaction of [Rh(t-Bu-thixantphos-κP,O,P ’)Cl] with

CO are broad, while the 31P NMR spectrum shows only slight broadening. This

indicates possible dynamic behaviour. However, the spectra for the reaction of

[Rh(t-Bu-sixantphos-κP,O,P ’)Cl] and [Rh(t-Bu-xantphos-κP,O,P ’)Cl] with CO are

both well resolved (Figure 4.6 shows a selection of the NMR spectra for the t-Bu-

xantphos complex). In all cases the 31P NMR spectrum show a single peak at

69.3–71.6 ppm, split into a doublet by rhodium coupling of 120.0–122.2 Hz (Table

4.4). These are shifted downfield relative to the [Rh(t-Bu-xantphos-κP,O,P ’)Cl]

starting material. The value of J RhP has decreased from the starting [Rh(t-Bu-
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xantphos-κP,O,P ’)Cl] complexes from 140.0–142.3 Hz to 120.0–122.2 Hz.

Table 4.4: Selected NMR data of [Rh(t-Bu-xantphos)(CO)2Cl] complexes in C6D6

(∆δ = δcomplex - δfree ligand).

31P 13C CO

Ligand δ/ppm ∆δ ppm JRhP/Hz δ/ppm JRhC/Hz JPC/Hz

t -Bu-Sixantphos 70.8 26.6 120.0 195.5 84.4 13.0

t -Bu-Thixantphos 69.3 22.8 122.2 not observed

t -Bu-Xantphos 71.6 23.9 120.0 194.9 84.4 12.4

The NMR spectra of the products from the reaction of the [Rh(t-Bu-xantphos)Cl]

complexes with CO, indicate a high level of symmetry in the products. In the
1H NMR spectra a single peak was observed for the tert-butyl groups and a sin-

glet for the methyl groups for each of the three ligands. The number of aromatic

signals in the 1H NMR spectra indicate that two mirror planes exist, parallel to

the backbone of the ligand and perpendicular to it (running through the oxygen

and other bridging atom). For t-Bu-sixantphos and t-Bu-xantphos the tert-butyl

groups appear as a virtual triplet indicating a trans or pseudo trans coordination

geometry. For t-Bu-thixantphos the tert-butyl resonance displays some broaden-

ing, resulting in a singlet.

The number of signals in the 13C NMR spectra is also suggestive of a highly sym-

metric product. Although the peaks were well resolved for the t-Bu-sixantphos

and t-Bu-xantphos complexes, in the t-Bu-thixantphos complex all of the 13C

NMR peaks were broad except two, which can be attributed to the methyl groups

and the aromatic carbon they are attached to, indicating that these carbons are

unaffected by the dynamic process which leads to the broadening in this spectra.

This process may be either exchange of the CO ligand with the uncoordinated

CO, or a change in geometry such as a trigonal bipyramidal to square-planar

equilibrium.

The reaction of the [Rh(t-Bu-xantphos)Cl] complexes with carbon monoxide was

carried out with natural abundance CO. Despite this, a peak was observed for the

coordinated carbonyl in the 13C NMR spectra for the t-Bu-sixantphos and t-Bu-
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Figure 4.6: 31P, 13C and 1H NMR spectra of the reaction of [Rh(t-Bu-sixant-

phos)Cl] with CO in C6D6.
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xantphos products (Table 4.4 and Figure 4.6). This peak occurs at 195.5 ppm for

t-Bu-sixantphos and 194.9 ppm for t-Bu-xantphos as a well resolved doublet of

triplets indicating coupling to rhodium (J RhC = 84.4 Hz for both) and two equiv-

alent phosphorus atoms (J PC = 13.0 and 12.4 Hz for t-Bu-sixantphos and t-Bu-

xantphos respectively). These values are within the expected ranges for rhodium

carbonyl complexes.

There are a number of different possible products for the reaction of the [Rh(t-

Bu-xantphos-κP,O,P ’)Cl] complexes with carbon monoxide, due to the ability of

rhodium(I) to form both square planar and trigonal bipyramidal structures, com-

bined with the potential hemilability of the t-Bu-xantphos oxygen resulting in a

κP,P ’ bonding geometry. In addition, it is possible for either one or two carbonyl

ligands to coordinate, displacing either the oxygen or the chloride ligand. The

number of possibilities is decreased by the inability for the t-Bu-xantphos lig-

ands to coordinate in a cis geometry on square planar centres (See Chapter 6 for

further discussion) thus also eliminating trigonal bipyramidal products with the

t-Bu-xantphos complex coordinated in a κP,P ’ axial-equatorial position. Possible

products from the reaction are outlined in Figure 4.7.

The majority of the possible structures outlined in Figure 4.7 can be discounted as

they do no meet the symmetry requirements determined from the NMR spectra.

The complexes consistent with the NMR spectra are the square planar complexes,

[Rh(t-Bu-xantphos-κP,O,P ’)CO]Cl (B) and [Rh(t-Bu-xantphos-κP,P ’)(CO)2]Cl (C);

and the trigonal bipyramidal complexes, [Rh(t-Bu-xantphos-κP,O,P ’)(CO)2]Cl (D)

and trans-[Rh(t-Bu-xantphos-κP,P ’)(CO)2Cl] (J). The mass spectra of the products

from the reaction of the [Rh(t-Bu-xantphos)Cl] complexes with CO show a sin-

gle major ion cluster. This cluster only differs for the three ligands due to the

differences in the ligand structure. The cluster is consistent with a [Rh(t-Bu-xant-

phos)(CO)]+ ion in both mass/charge ratio and isotopic distribution. While this

supports the formulation of the product as a monocarbonyl entity, this ion clus-

ter could result from any of the possible structures given in Figure 4.7 as mass

spectrometry is performed under high vacuum, which may result in loss of CO

from the dicarbonyl structures, and ionisation by loss of chloride ligands is very

common for coordination complexes.210

As previously discussed (Section 4.1) the position of the O -ipso carbon peak in

the 13C NMR spectra for t-Bu-xantphos complexes can be used as a guide for the
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Figure 4.7: Possible products from reaction of [Rh(t-Bu-xantphos-κP,O,P ’)Cl]

complexes with CO. First row: square planar complexes, second row: trigo-

nal bipyramidal complexes with κP,O,P ’ t-Bu-xantphos, and third row: trigonal

bipyramidal complexes with κP,P ’ t-Bu-xantphos ligands.

bonding mode of the ligand. A peak for the O -ipso carbon that has not shifted

significantly from the O -ipso carbon peak for the free ligand is indicative of a

κP,P ’ coordination, while a peak shifted downfield by more than 2.0 ppm is in-

dicative of a κP,O,P ’ coordination. The products from this reaction show very

little change in the position of the O -ipso peak compared to the free ligand (Table

4.5). Thus indicating that the coordination mode of the three t-Bu-xantphos lig-

ands in these carbonyl complexes is most likely to be a bidentate κP,P ’mode.

The two possible square planar complexes [Rh(t-Bu-xantphos-κP,O,P ’)CO]Cl (B)

and [Rh(t-Bu-xantphos-κP,P ’)(CO)2]Cl (C) and one of the trigonal bipyramidal

structures [Rh(t-Bu-xantphos-κP,O,P ’)(CO)2]Cl (D) are positively charged. As

such, poor solubility in C6D6 would be expected. However, the product of this

reaction remains in a C6D6 solution with no signs of precipitation over a period

of several weeks. This supports the formulation of the product as the trigo-

nal bipyramidal trans-[Rh(t-Bu-xantphos)(CO)2Cl] (J). Rhodium dicarbonyl com-
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Table 4.5: 13C Chemical shift and coupling for the O -ipso carbon in t-Bu-xantphos, [Rh(t-Bu-xantphos-κP,O,P ’)Cl] and

carbonyl complexes (∆δ = δcomplex - δfree ligand).

Free ligand [Rh(t -Bu-xantphos-κP,O,P ’)Cl] [Rh(t -Bu-xantphos)(CO)2Cl]

Ligand δ13C/ppm J/Hz δ13C/ppm ∆δ J/Hz δ13C/ppm ∆δ J/Hz

t -Bu-Sixantphos 164.3 11.3 169.5 5.2 14.4 164.3 0.0 8.1

t -Bu-Thixantphos 155.3 13.0 157.4 2.1 16.8 154.9 -0.4 n.o.

t -Bu-Xantphos 155.8 12.0 158.9 3.1 16.3 155.6 -0.2 10.4
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plexes are typically only stable below room temperature and under an atmo-

sphere of carbon monoxide, readily losing CO under vacuum.211,212 No change

was observed in the 31P or 1H NMR spectra for the complexes in a C6D6 solution

under an argon atmosphere after being under vacuum overnight. Likewise no

change was observed for these samples after several weeks in a C6D6 solution

under argon.

The infrared (IR) spectra of the [Rh(t-Bu-xantphos)(CO)2Cl] complexes were ob-

tained to determine any differences in the electronic properties of the three lig-

ands. The C−−O stretching frequency is sensitive to changes in the electron den-

sity on the metal centre. More electron rich metal centres will enhance the back-

donation from the metal into the π∗-orbital on the carbonyl. As this is an anti-

bonding orbital, increased electron density will result in decreased bond order

observed as a lower C−−O stretching frequency in the IR spectra. The IR spectra

for the three [Rh(t-Bu-xantphos)(CO)2Cl] complexes showed multiple stretches

in the region where C−−O stretches are observed. Indicative of multiple carbonyl

ligands. The major C−−O stretch occurs at 1979 cm−1 for all of the complexes ir-

respective of the t-Bu-xantphos ligand present. This indicates that the ligands

are comparable in their electron donation capabilities in the κP,P ’ coordination

mode.

Previous reports described the formation of trans-[Rh(CO)Cl(diphosphine)] com-

plexes upon reaction of Ph-xantphos and DPEphos with [Rh(CO)2Cl]2.213 These

complexes appeared in the 31P NMR spectra at 27.3 and 22.6 ppm with J RhP = 119.2

and 123.5 Hz for Ph-xantphos and DPEphos respectively. In the 13C NMR spectra

singlets were observed for the carbonyl ligands at 180.9 and 183.3 ppm for Ph-

xantphos and DPEphos respectively. The position of the carbonyl carbon in the t-

Bu-xantphos complexes is at 195.5 or 194.9 ppm, indicating less shielding, which

may be a result of the more electron rich rhodium centre in a five-coordinate

complex. The rhodium chemistry of a more sterically demanding version of Ph-

xantphos where the phenyl rings are replaced with o-tolyl groups has also been

reported.214 Again, this complex forms a trans-[Rh(CO)Cl(diphosphine)] com-

plex. However, the analogous complexes with an iodide replacing the chloride

ligand forms a square pyramidal structure with the oxygen coordinated to the

rhodium. The C−−O stretching frequencies for the t-Bu-xantphos carbonyl com-

plexes (1979 cm−1) occur between those for the trans-[Rh(CO)Cl(Ph-xantphos)]

(1974 cm−1) and trans-[Rh(CO)Cl(DPEphos)] (1985 cm−1). The C−−O stretch is
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similar to [Rh(CO)Cl(PR3)2] with PR3 = PPh3 (1979 cm−1) however, the strongly

electron donating tert-butyl substituents on the t-Bu-xantphos ligands should

result in a lower stretching frequency such as that where PR3 = PPhMe2 (1968

cm−1).9 This is further evidence that the t-Bu-xantphos complexes are not trans-

[Rh(t-Bu-xantphos)(CO)Cl].

Based on this evidence we propose that the reaction of the [Rh(t-Bu-xantphos)Cl]

complexes results in a trigonal bipyramidal structure with the t-Bu-xantphos lig-

and occupying two of the equatorial sites in a κP,P ’ coordination mode. The

remaining equatorial site is occupied by a chloride ligand and carbonyl ligands

take up the two axial positions (Scheme 4.6). Trigonal bipyramidal structures

(particularly those with carbonyl ligands) are known to undergo facile rearrange-

ment to square pyramids.212 This may be the cause of the broadening of the spec-

tra for the t-Bu-thixantphos system, and the multiple peaks observed in the IR

spectra. Ph-xantphos and DPEphos both form trans-[Rh(CO)Cl(diphosphine)],

which would have a larger P-Rh-P angle than the [Rh(t-Bu-xantphos)(CO)2Cl]

complexes. This is counterintuitive as the natural bite-angle is larger for the

t-Bu-xantphos ligands than for Ph-xantphos. However, it is possible that the

trans-[Rh(CO)Cl(diphosphine)] are actually square pyramidal complexes with a

weak interaction of the ether bridge in the diphosphine ligands, thus relieving

the strain of such a wide bite-angle.

O

X

tBu2P PtBu2Rh

Cl

R R

O

X

tBu2P PtBu2

Rh

Cl

R R

CO

CO
(i)

Scheme 4.6: Reaction of [Rh(t-Bu-xantphos)Cl] with carbon monoxide. Reagents

and conditions: (i) 10 mins CO, C6D6, 3 days.

Dicarbonyl complexes have been reported for Ph-xantphos ligands, for example,

Ph-sixantphos, Ph-thixantphos and Ph-xantphos form [Rh(CO)2H(Ph-xantphos)]

complexes.30 The diphosphine ligands coordinate in a bis-equatorial-κP,P ’ mode,

while the hydride occupies an axial site and the two carbonyls are in one equa-
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torial and one axial site. Little difference is observed between the three ligands

with the 31P NMR peaks between 21.1 and 23.4 ppm (J RhP= 123.9–127.9 Hz). Inter-

estingly, although the two carbonyl ligands are inequivalent, only one carbonyl

peak was reported, occurring as a doublet of triplets at 201.1 ppm with J RhC = 65.7

Hz, and J PC= 10.6 Hz for the Ph-xantphos complex. No explanation was given for

this but it may be due to the rapid exchange of one of the carbonyl ligands with

free CO leading to broadening of the second 13C peak.

4.4 Dioxygen and Oxo Complexes

The reaction of rhodium(I) complexes with oxygen is well established with nu-

merous examples published.215,216 Many aspects of the oxidation of Wilkinson’s

complex, [RhCl(PPh3)3], to form a distorted octahedral complex with a side-on η2-

O2 ligand have been reported, including the synthesis,217,218 degradation219 and

use as an oxidation catalyst.220,221 Numerous other rhodium dioxygen complexes

have been reported with monophosphine222–231 and diphosphine232–239 ligands.

Reports of rhodium dioxygen complexes with heterobidentate240–243 and triden-

tate244–250 ligands are also numerous. However, despite the number of rhodium

complexes of Ph-xantphos and other xantphos derivatives, no rhodium dioxygen

complexes of these ligands have been reported. To address this, the reactivity

of the [Rh(t-Bu-xantphos)Cl] and [Rh(t-Bu-xantphos)Cl(H)2] complexes with all

three ligands towards oxygen was investigated.

Bubbling air through a C6D6 solution of each of the [Rh(t-Bu-xantphos-κP,O,P ’)Cl]

complexes resulted in the rapid formation of a new complex as expected (Scheme

4.7). The dihydride complexes, [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2], also reacted

rapidly with air to form the same complexes. The 31P NMR spectra of the re-

sulting [Rh(t-Bu-xantphos)Cl(η2-O2)] complexes showed a single doublet (39.4–

40.5) shifted upfield from the [Rh(t-Bu-xantphos)Cl] complex by between 4.8 and

7.5 ppm (Table 4.6). The value of J RhP decreased by 37.8–41.6 Hz, to 100.7–102.2

Hz. This is consistent with a change in the oxidation state from rhodium(I) to

rhodium(III) and the corresponding decrease in the s-character of the metal hy-

brid orbital, resulting from the change in coordination geometry from square pla-

nar to pseudo-octahedral.
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Table 4.6: Selected NMR data for [Rh(t-Bu-xantphos-κP,O,P ’)Cl(η2-O2)] in C6D6 (∆δ = δcomplex - δfree ligand).

31P 13C O -ipso

Diphosphine δ/ppm ∆δ/ppm JRhP/Hz ∆ JRhP/Hz δ/ppm ∆δ/ppm J/Hz

t -Bu-Sixantphos 39.4 4.8 102.2 37.8 166.7 2.4 9.8

t -Bu-Thixantphos 39.0 7.5 101.5 40.0 155.9 0.6 12.5

t -Bu-Xantphos 40.5 7.2 100.7 41.6 157.3 1.5 11.5
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Scheme 4.7: Reaction of [Rh(t-Bu-xantphos)Cl] complexes with oxygen. Reagents

and conditions: (i) 10 mins Air, C6D6, 24 hours.

The 1H and 13C NMR spectra for the three [Rh(t-Bu-xantphos)Cl(η2-O2)] com-

plexes showed a loss of symmetry compared to the starting [Rh(t-Bu-xantphos)Cl]

complexes. A single peak was observed for the methyl substituents on the aro-

matic rings of the t-Bu-thixantphos. However, two peaks were present for the

methyl substituents on the carbon or silicon bridging atoms in both the t-Bu-

xantphos and t-Bu-sixantphos complexes. In all three complexes, two different

sets of peaks for the tert-butyl groups were observed. Together, this data indi-

cates the presence of a plane of symmetry perpendicular to the backbone through

the bridging atoms, and the absence of a plane of symmetry parallel to the back-

bone. Interestingly, the two methyl groups in the t-Bu-sixantphos and t-Bu-xant-

phos complexes occur in very different positions; one of the methyl groups is

shifted upfield and the other downfield in both the 1H and 13C NMR spectra,

compared to the [Rh(t-Bu-xantphos-κP,O,P ’)Cl] starting material and [Rh(t-Bu-

xantphos-κP,O,P ’)Cl(H)2]. The effect is more pronounced for t-Bu-xantphos than

t-Bu-sixantphos. In addition, one of the tert-butyl groups in each of the three

t-Bu-xantphos ligands is well resolved as a virtual triplet for all the 1H and 13C

NMR environments, while the other tert-butyl group has a well resolved vir-

tual triplet for the quaternary carbon while the terminal carbon and protons are

broad.

In the 13C NMR spectra for the [Rh(t-Bu-xantphos)Cl(η2-O2)] complexes, the shift

in the position of the O -ipso carbon peak from the free ligand was lower than for

the [Rh(t-Bu-xantphos)Cl] complexes (Table 4.6). In particular, the t-Bu-thixant-

phos dioxygen complex exhibited a shift in position of only 0.6 ppm. However,

the effect is typically reduced for the t-Bu-thixantphos ligand system, in fact

for [Rh(t-Bu-thixantphos)Cl(H)2] a shift of only 0.1 ppm was observed despite a
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κP,O,P ’ coordination geometry. This difference may be due to the electron dona-

tion from the methyl groups on the aromatic system of t-Bu-thixantphos, which

may mitigate the loss of electron density in the O-ipso carbon upon oxygen co-

ordination. The shifts for t-Bu-sixantphos and t-Bu-xantphos are both consistent

with κP,O,P ’ coordination in the [Rh(t-Bu-xantphos)Cl(η2-O2)] complexes.

Slow evaporation of a C6D6 solution of [Rh(t-Bu-xantphos-κP,O,P ’)Cl(η2-O2)] pro-

duced dark red crystals suitable for X-ray diffraction. The crystal structure (Fig-

ure 4.8) displayed some substitutional disorder with the dioxygen ligand replaced

in approximately 15% of the sites by an oxo ligand (Figure 4.9). The complexes co-

crystallised in the orthorhombic space group Pbca. Crystallographic data is given

in Table 4.7 and selected bond lengths and angles are given in Table 4.8.

Figure 4.8: X-ray crystal structure of [Rh(t-Bu-xantphos)Cl(η2-O2)] (50% proba-

bility thermal ellipsoids). Hydrogen atoms omitted for clarity.

The O-O bond lengthens upon coordination due to back-bonding from the metal

into the anti-bonding π∗-orbital of the ligand. In the crystal structure of [Rh(t-Bu-

xantphos-κP,O,P ’)Cl(η2-O2)], the O2-O3 bond length is 1.424(5) Å, lengthened by

0.21 Å from the bond length in molecular oxygen of 1.21 Å.251 This length is typ-

ical for rhodium dioxygen complexes with the average O-O bond length being

1.423 Å.68 The Rh-O bond lengths for the dioxygen ligand are different, with the

oxygen trans to chloride having a longer bond by 0.054 Å. The oxygen trans to
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Table 4.7: Crystallographic Data and Structure Refinement of [Rh(t-Bu-xant-

phos)Cl(η2-O2)].

Empirical formula C31H48ClO2.85P2Rh

Formula weight 666.53

Temperature/K 120.01(10)

Crystal system orthorhombic

Space group Pbca

a/Å 11.84223(17)

b/Å 20.2961(3)

c/Å 26.8069(4)

α/◦ 90

β/◦ 90

γ/◦ 90

Volume/Å3 6443.06(17)

Z 8

ρcalc mg/mm3 1.374

µ/mm 6.206

F(000) 2790.0

Crystal size/mm 0.1092 x 0.0738 x 0.0159

Radiation CuKα (λ = 1.54184)

2θ range for data collection 6.594 to 147.8◦

Index ranges -14 ≤ h ≤ 13, -25 ≤ k ≤ 21, -30 ≤ l ≤ 33

Reflections collected 45616

Independent reflections 6481 [Rint = 0.0631, Rsigma = 0.0332]

Data/restraints/parameters 6481/399/367

Goodness-of-fit on F2 1.035

Final R indexes [I>=2σ (I)] R1 = 0.0439, wR2 = 0.1145

Final R indexes [all data] R1 = 0.0550, wR2 = 0.1226

Largest diff. peak/hole / e Å−3 1.40/-0.78
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Figure 4.9: X-ray crystal structure of [Rh(t-Bu-xantphos-κP,O,P ’)Cl(O)] (50%

probability thermal ellipsoids). Hydrogen atoms omitted for clarity.

Table 4.8: Selected bond distances (Å) and angles (◦) of [Rh(t-Bu-xantphos)Cl(η2-

O2)].

Bond distances (Å) Bond angles (◦)

P1-Rh 2.3391(8) P1-Rh-P2 166.01(3)

P2-Rh 2.3237(9) Cl1-Rh-O2 158.18(10)

O1-Rh 2.193(2) Cl1-Rh-O4 161.2(3)

O2-Rh 2.016(3) O1-Rh-O3 161.33(12)

O3-Rh 1.962(3) Ring1-Ring2 26.65(12)

Cl1-Rh 2.3871(9) O1-C(bridge)-CH3 165.9(3)

O2-O3 1.424(5) O1-C(bridge)-CH3 94.73

O4-Rh 1.669(10)



4.4. Dioxygen and Oxo Complexes 93

chloride has a typical Rh-O bond length for rhodium dioxygen complexes (aver-

age = 2.017 Å), while the oxygen trans to the ether bridge is shorter than average

with a length of 1.962(3) Å. This shorter bond results from the low trans-influence

of the ether oxygen.252,253 Only three complexes with shorter Rh-O bonds in a

dioxygen complex have been reported (Figure 4.10).254–256 These complexes have

the dioxygen atoms trans to nitrogen or oxygen donor atoms, which are known

to have low trans-influences.252,253
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Figure 4.10: Rhodium dioxygen complexes with shorter Rh-O bonds than [Rh(t-

Bu-xantphos-κP,O,P ’)Cl(η2-O2)].

The [Rh(t-Bu-xantphos-κP,O,P ’)Cl(η2-O2)] complexes, with t-Bu-sixantphos or t-

Bu-xantphos, show two distinct methyl environments in the 1H and 13C NMR

spectra for the bridgehead methyls. This indicates a loss of symmetry, giving two

distinct faces of the t-Bu-xantphos ligands. From the crystal structure (Figure 4.8)

the chloride ligand sits on the same side as the concave face of the ligand while

the dioxygen ligand occupies the position pseudo-trans to the oxygen bridge of

the ligand. This geometry leaves more space trans to the chloride, resulting in

the curvature of the ligand to occupy this free space and the tipping of the methyl

groups away from the chloride. The angle O1-C(bridge)-CH3 is very different for

the two methyl groups; 165.9(3) and 94.7(3)◦ for the concave and convex methyls,

respectively and dihedral angles to the first C-H in the aromatic ring of 24.8 and

42.8◦. This positioning results in quite different chemical environments for the

two methyl groups, resulting in the different chemical shifts in the NMR spec-

tra.

Although rhodium xantphos complexes are well studied due to their high cat-

alytic activity and selectivity for hydroformylation, to the best of our knowledge,
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no rhodium dioxygen complexes have been reported with any xantphos ligands.

Only one transition metal complex with a xantphos related ligand and an η2-O2

ligand has been reported; [Ru(Ph-xantphos)(PPh3)(η2-O2)H][BArF
4].257 This com-

plex formed by reaction of [Ru(Ph-xantphos)(PPh3)HCl] with Na[BArF
4] followed

by filtration then stirring in the air for 10 minutes. Similarly to the rhodium t-

Bu-xantphos complexes, the mer-κP,O,P ’ coordination is retained upon reaction

with oxygen. The dioxygen ligand occupies the site trans to the hydride, where

the chloride had previously been located.

The X-ray crystal structure of [Rh(t-Bu-xantphos)Cl(η2-O2)] contains substitu-

tional disorder with approximately 15% of the dioxygen molecules replaced by

an oxo ligand (Figure 4.9). The oxo complex shows a slightly distorted square-

based pyramid structure with the ether bridge of the t-Bu-xantphos ligand occu-

pying the apex, and trans coordination of the phosphorus atoms. The rhodium

oxo bond (1.669(10) Å) is much shorter than the rhodium oxygen bond lengths

in [Rh(t-Bu-xantphos)Cl(η2-O2)], consistent with a higher bond order. In addi-

tion, the rhodium oxo bond is the shortest crystallographically determined Rh-O

bond.

To the best of our knowledge, this is the first example of crystallographic evi-

dence for a rhodium(III) oxo complex. Only one previous crystal structure has

been reported for a rhodium oxo complex (Figure 4.11).258 The literature struc-

ture contains a rhodium(V) dimer with each rhodium atom coordinated to two

oxo ligands, a DMSO ligand and an oxygen-nitrogen-sulfur heterotridentate lig-

and. The oxo trans to the DMSO ligand has a bond length of 1.701(5) Å, while the

oxo trans to the nitrogen donor is slightly longer at 1.712(5) Å. Both of these are

slightly longer than the Rh-O bond length in the [Rh(t-Bu-xantphos)Cl(O)] struc-

ture (1.669(10) Å). The average bond length for a transition metal oxo is 1.689

Å with a lower quartile at 1.671 Å.68 This indicates that the bond length for the

rhodium(III) oxo is in the lowest quarter of crystallographically determined bond

lengths for transition metal oxo complexes; however, the bond is well within the

range (1.106–2.956 Å).

Transition metal oxo complexes have long been studied as they have been impli-

cated to have roles in biological systems,259–262 C-H activation263,264 and various

oxidation reactions.219,265,266 A terminal oxo ligand is a very strong π-donor lig-

and, thus the strongest coordination occurs with high oxidation state, early tran-
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Figure 4.11: An X-ray crystal structure for the rhodium(V) oxo complex

[(RhO2)2(C6H4(O)−C(−−S)−N−−N−C(−−S)(O)C6H4)(DMSO)2].258

sition metals.267 A review of transition metal oxo complexes published in 1987

stated that “M=O groups are stabilized at metal centres with an oxidation state of

no less than +4 and no more than four d electrons”.265 This has led to the propo-

sition of an ”oxo-wall,” a barrier between groups 8 and 9 of the periodic table, ex-

plaining the lack of tetragonal oxo complexes for group 9–11 transition metals.268

This effect arises as the orbital splitting in an octahedral oxo complex lowers the

symmetry of the t2g orbitals to b2(dxy) and e(dxz,dyz) and the metal-ligand anti-

bonding eg orbitals to b1(d
x2-y2) and a1(d

z2) with the e(dxx,dyz) and d
z2 , orbitals

destabilised.269 The more d-electrons that are present, the lower the bond order

to the oxo, resulting in decreased stability. The [Rh(t-Bu-xantphos-κP,O,P ’)Cl(O)]

complex is of square pyramidal geometry so does not violate the oxo-wall propo-

sition. The poor electron donation from the central ether bridge may lead to in-

creased stability compared to other square pyramidal structures.

Despite the instability of terminal oxo complexes of the late transition metals,

some examples do exist (Figure 4.12). A platinum(II) complex with a PCN pincer

ligand was reacted with a freshly prepared acetone solution of dioxirane, result-

ing in formation of a platinum(IV) oxo complex.266 This complex degrades over

a period of 7–10 hours via an intramolecular oxygen transfer reaction from the
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platinum to the phosphorus atom. The oxo also readily reacts with water (form-

ing a bishydroxy, aquo complex), hydrogen (liberating water), carbon monoxide

(forming CO2 and a carbonyl complex), potassium hydride (to form a hydroxy

complex) and oxidises triphenyl phosphine. This demonstrates a range of dif-

ferent potential uses for late transition metal oxo complexes. An iridium(V) oxo

complex has also been reported, in this case the oxo complex was synthesised by

reaction of [Ir(mes)3] (mes = mesityl) with trimethylamine oxide (Figure 4.12).270

A rhodium oxo complex was recently reported by Caulton et al. from reaction of

a rhodium(III) hydride complex containing a metalled PNP ligand reacting with

trimethylamine oxide, pyridine N -oxide or N2O.249,271 This complex undergoes

oxo transfer reactions with trimethylphosphine and carbon monoxide.

PtBu2

NMe2

Pt O

BF4

O
Ir

mes

mes
mes

PtBu2

Rh

PtBu2

ON

Me2Si

Me2Si

Figure 4.12: Previously reported late transition metal oxo complexes, mes = 2,4,6-

trimethylphenyl.249,266,271

Given the novelty of the proposed rhodium(III) oxo complex, the synthesis of

[Rh(t-Bu-xantphos-κP,O,P ’)Cl(O)] complexes with all three t-Bu-xantphos lig-

ands was attempted using trimethylamine oxide, as this has been used previously

in the synthesis of late transition metal oxo complexes,270,271 and the by-product

(trimethylamine) should be a poor ligand and result in little reactivity. Reaction

between [Rh(t-Bu-sixantphos-κP,O,P ’)Cl] and trimethylamine oxide resulted in

the immediate formation of the [Rh(t-Bu-sixantphos-κP,O,P ’)Cl(η2-O2)] complex,

together with a small amount of the ligand oxide and uncoordinated t-Bu-sixant-

phos, over time peaks due to the [Rh(t-Bu-sixantphos-κP,O,P ’)Cl] complex began

to reappear. This result may be due to the incomplete dissolution of [Rh(t-Bu-

sixantphos-κP,O,P ’)Cl] in the CD2Cl2 reaction solvent, meaning that the amount

in solution was over-oxidised before the remainder dissolved. Unfortunately, as

[Rh(t-Bu-sixantphos-κP,O,P ’)Cl] is a dark brown colour it is challenging to gauge

full dissolution. After four days at room temperature a small amount of product

was evident in the 31P NMR spectrum at 70.5 ppm (J RhP = 114.1 Hz).
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Reacting [Rh(t-Bu-thixantphos-κP,O,P ’)Cl] and trimethylamine oxide resulted in

a mixture of compounds. Analysis by 31P NMR showed 22.9% free t-Bu-thixant-

phos ligand indicating possible degradation of the rhodium complexes formed,

[Rh(t-Bu-sixantphos-κP,O,P ’)Cl(η2-O2)] (8.6%), [Rh(t-Bu-thixantphos-κP,O,P ’)Cl]

starting material (64.4%), and a new complex at 40.9 ppm (J RhP = 90.4 Hz) (4.1%).

After 10 days no [Rh(t-Bu-thixantphos-κP,O,P ’)Cl] or unidentified complex re-

mained and the reaction mixture was primarily the dioxygen complex and a fur-

ther new complex at 74.1 ppm (J RhP = 116.3 Hz).

The reaction of [Rh(t-Bu-xantphos-κP,O,P ’)Cl] with trimethylamine oxide was

initially carried out at -80 ◦C in order to prevent over-oxidation. However, ini-

tially the slow generation of the dioxygen species was observed with no evidence

for any intermediate or otherwise. The reaction was allowed to warm to room

temperature and after 24 hours a small signal was observed at 42.6 ppm (J RhP

= 90.4 Hz) comprising 4.2% of the reaction mixture. However, around 70.5% of

the reaction mixture was the dioxygen complex and the remainder was the Rh(I)

starting material. Similarly to the t-Bu-thixantphos reaction, this reaction slowly

converted into a species at 75.1 ppm (J RhP = 116.3 Hz).

The initial unknown complexes formed by the oxidation of [Rh(t-Bu-xantphos-

κP,O,P ’)Cl] and [Rh(t-Bu-thixantphos-κP,O,P ’)Cl] had similar NMR spectra. In

the 31P NMR spectra a doublet was observed at 40.9 or 42.6 ppm, slightly down-

field of the dioxygen complex. The values of J RhP were identical with either ligand

(90.4 Hz). The decrease from the values in the rhodium(I) starting materials (142.3

and 140.0 Hz for t-Bu-xantphos and t-Bu-thixantphos respectively) clearly indi-

cates oxidation to a rhodium(III) species. ESI – Mass spectrometry was performed

on the reaction mixtures for all three t-Bu-xantphos ligands. In all cases a molec-

ular ion peak was observed consistent in both mass/charge ratio and isotopic

pattern, indicative of an oxo complex ionising via loss of a chloride ligand.

Late transition metal oxo complexes are generally considered unstable and likely

to undergo further reaction. The reactions of [Rh(t-Bu-xantphos-κP,O,P ’)Cl] with

trimethylamine oxide were performed in CD2Cl2. As previously discussed (see

Section 2.3) halocarbon molecules are not stable for extended periods of time in

the light, undergoing a photo-catalysed degradation forming small amounts of

hydrochloric acid (deuterium chloride in the case of NMR solvents).138 Hereby

we propose that the oxo complex likely reacted with the small amounts of deu-
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Scheme 4.8: Reaction of [Rh(t-Bu-xantphos)Cl] with trimethylamine oxide.

Reagents and conditions: 1eq. ONMe3, CD2Cl2.

terium chloride that formed over time, thus producing a hydroxy ligand (Scheme

4.9). The remaining coordination site on the metal would then likely be occupied

by the chloride ion. The platinum oxo complex reported by Milstein et al. un-

derwent reaction with water to form a bishydroxy complex while the rhodium

oxo reported by Caulton et al. underwent metallation of one of the tert-butyl

substituents on the phosphorus donor also forming a hydroxy ligand.249
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Scheme 4.9: Proposed reaction of [Rh(t-Bu-xantphos)Cl(O)] with DCl.

Unfortunately, due to time constraints, the formation of the rhodium oxo com-

plexes was not studied in more depth.

4.5 Summary

The coordination chemistry of t-Bu-sixantphos, t-Bu-thixantphos, and t-Bu-xant-

phos with rhodium in both the +1 and +3 oxidation states was explored. The three

ligands reacted readily with [Rh(coe)2Cl]2 forming [Rh(t-Bu-xantphos-κP,O,P ’)Cl]
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complexes. These complexes readily split hydrogen to form [Rh(t-Bu-xantphos-

κP,O,P ’)Cl(H)2] complexes with a meridional t-Bu-xantphos ligand and cis hy-

drides. Little difference in the position and coupling constants of the hydride

trans to the chloride was observed in the 1H NMR spectra of the three complexes.

The values of J RhH for the hydride trans to the oxygen donor decreased with in-

creasing bite-angle. Suggesting a trans influence series of t-Bu-xantphos > t-Bu-

thixantphos > t-Bu-sixantphos. This difference may be related to the ease with

which the ligands form wide bite-angle complexes.

The three [Rh(t-Bu-xantphos-κP,O,P ’)Cl] complexes were reactive towards car-

bon monoxide, forming [Rh(t-Bu-xantphosκ-P,P ’)(CO)2Cl]. In contrast, Ph-xant-

phos and DPEphos formed trans-[Rh(CO)Cl(diphosphine)] complexes. The t-Bu-

xantphos ligands were coordinated in a κ-P,P ’ bisequatorial mode with an equa-

torial chloride and two axial carbonyl ligands. This shows a clear difference in the

reactivity of the t-Bu-xantphos ligands when compared with Ph-xantphos.

The rhodium dioxygen complexes, [Rh(t-Bu-xantphos)Cl(η2-O2)] with the t-Bu-

xantphos ligands were synthesised by reaction of [Rh(t-Bu-xantphos-κP,O,P ’)Cl]

with the air. These are the first rhodium dioxygen complexes with xantphos lig-

ands and only the second with any transition-metals. The X-ray crystal struc-

ture of [Rh(t-Bu-xantphos)Cl(η2-O2)] was reported showing a distorted octahe-

dral configuration with a meridional coordination of the t-Bu-xantphos ligand.

The O-O bond length was typical for rhodium dioxygen complexes. The Rh-O

bond length for the oxygen trans to the oxygen donor of the t-Bu-xantphos lig-

and was the fourth shortest Rh-O length for a dioxygen complex that have been

reported, indicating the low trans-influence of the t-Bu-xantphos oxygen.

The X-ray crystal structure of [Rh(t-Bu-xantphos)Cl(η2-O2)] was disordered with

the dioxygen ligand replaced in around 15% of sites by an oxo ligand. To the

best of our knowledge this is the first crystallographic evidence of a rhodium(III)

oxo complex. The Rh-O bond length was 1.669(10) Å which is the shortest re-

ported rhodium oxo bond length. The complex is a distorted square pyramid,

so does not violate the “oxo-wall” theory. Attempts to synthesise [Rh(t-Bu-xant-

phos-κP,O,P ’)Cl(O)] by reaction of [Rh(t-Bu-xantphos-κP,O,P ’)Cl] with trimethy-

lamine oxide were promising for t-Bu-thixantphos and t-Bu-xantphos, showing a

new peak in the 31P NMR spectra, which slowly converted into a different species,

and mass spectra consistent with [Rh(t-Bu-xantphos-κP,O,P ’)(O)]+.
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Chapter 5

Coordination Complexes with

Platinum(0) and Palladium(0)

Coordination complexes of palladium and platinum have a range of uses. Per-

haps the most well-known platinum complex is [PtCl2(NH3)2] (cisplatin). Cis-

platin, distributed under the trade name Platinol, is a widely used chemother-

apeutic which is used in conjunction with other therapies for the treatment of

various cancers, most commonly tumours including sarcomas, carcinomas and

lymphomas.2,3 A further two platinum complexes (carboplatin and oxaliplatin)

have been approved for use in chemotherapy worldwide, with other complexes

approved in select countries.3,272

Palladium complexes are some of the most common coordination complexes used

for homogeneous catalysis, with applications in a wide-range of reactions includ-

ing cross-coupling, allylic alkylation and various carbonylation reactions among

many others.6,32,149,273–276 These transformations are highly important for indus-

trial processes and laboratory scale total syntheses.277–279 The high reactivity of

these species can make palladium complexes and their catalytic processes dif-

ficult to study. Platinum complexes are typically more inert than their corre-

sponding palladium analogues to processes such as ligand exchange and redox

changes.280 The spin active isotope platinum-195 (34% abundant) can result in

platinum coupling in the 1H, 13C, and 31P NMR spectra, the coupling constants of

which, can give additional information regarding the geometry and bonding in

the complex. Platinum and palladium are otherwise very similar metals, which

makes the additional insight gained from platinum models valuable when exam-

101
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ining similar chemistry with palladium.

Prior to the start of this work four studies had been published investigating the

catalytic activity of t-Bu-xantphos.84–87 Two of these studies investigated the cat-

alytic activity of t-Bu-xantphos palladium systems and one investigated plat-

inum systems. In all cases little to no reactivity was observed with t-Bu-xant-

phos systems, whereas the corresponding Ph-xantphos reactions gave 40–99%

conversions. This suggests differences in the coordination chemistry of the two

ligands towards palladium and platinum. However, no studies have investigated

the coordination chemistry of t-Bu-xantphos with either palladium or platinum,

in order to explain the different activities. A crystal structure of [Pd(t-Bu-xant-

phos)Cl2] was reported to the CSD in 2011 (CSD-XARXAR).68 The crystal struc-

ture has three molecules in the asymmetric unit with bite-angles of 160.59(4),

161.97(3) and 161.31(4)◦, compared to 100.61(5) and 100.92(7)◦ for [Pd(Ph-xant-

phos)Cl2] with different solvates.68,145,281 The difference in the bite-angles and ge-

ometries of the complexes that form may explain the difference in the catalytic

reactivity of the complexes.

Since the start of this work, five further papers have been published investigating

the catalytic activity of palladium complexes with t-Bu-xantphos.93–95,97,98 In the

palladium-catalysed Suzuki cross-coupling and the hydroesterification of methyl

oleate little activity was observed with t-Bu-xantphos, whereas the Ph-xantphos

complexes gave high yields.97,98 However, in the N -alkylation of amines with pri-

mary and secondary alcohols, the t-Bu-xantphos system was more active than the

Ph-xantphos system, with t-Bu-xantphos showing near quantitative conversion

at 100 ◦C, while the Ph-xantphos system gave only 63% conversion at 110 ◦C. Sim-

ilarly, the methylation of alkynyl C-H bonds with dimethyl sulfonium ylides us-

ing a palladium complex with t-Bu-xantphos went to 46% conversion, while Ph-

xantphos gave only 15%.95 A palladium complex with a monodentate Ph-xant-

phos or t-Bu-xantphos ligand was tested in the aminocarbonylation of hetero-

aryl bromides, and showed no reactivity with t-Bu-xantphos while Ph-xantphos

gave a 92% isolated yield.93 Together these studies support the premise that the

coordination chemistry of t-Bu-xantphos and Ph-xantphos are distinct, likely as

a result of the differences in the bite-angles and steric bulk between the ligands.

However, no research into this area has yet been reported.

The coordination chemistry of Ph-xantphos with palladium has been the subject
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of a number of different studies,73–75,79,115,282,283 though no research into the coordi-

nation chemistry of the t-Bu-xantphos ligands with platinum has been reported.

The main focus of this chapter is the investigation into the coordination chemistry

of the three t-Bu-xantphos ligands with a range of platinum(0) and palladium(0)

precursors. Some reactivity of the resulting complexes towards small molecules

is also presented. A brief investigation into the coordination chemistry of Ph-

thixantphos with platinum(0) will also be presented for comparative purposes.

The subsequent chapter will address the coordination chemistry of the t-Bu-xant-

phos ligands with platinum(II) and palladium(II) starting materials.

5.1 Reactions of Ph-thixantphos with Platinum(0)

Precursors

The 1:1 reaction between [Pt(nb)3] (nb = norbornene, bicyclo[2.2.1]hept-2-ene)

and Ph-thixantphos in C6D6 rapidly formed two products but did not progress

further. The 31P NMR spectrum shows one sharp peak at 20.0 ppm (J PtP = 3470

Hz, 39.6%) and two overlapping broad singlets ranging from 0 to -10 ppm (60.4%).

The platinum-phosphorus coupling constant on the sharp signal is consistent

with a mono-alkene complex such as, [Pt(nb)(Ph-thixantphos)].284 The 1H NMR

spectrum showed a number of aromatic signals together with peaks that can be

ascribed to [Pt(nb)3] and uncoordinated norbornene, as well as new alkyl and

alkene proton signals. This suggests that the complex appearing at 20.0 ppm in

the 31P NMR spectrum is [Pt(nb)(Ph-thixantphos)], while the other complex has

more than one molecule of Ph-thixantphos per platinum atom. Attempts to syn-

thesise [Pt(nb)(Ph-thixantphos)] exclusively were unsuccessful, as were attempts

to isolate the complex from the product mixture. As such, this species was not

characterised fully.

The reaction between Ph-thixantphos and [Pt(nb)3] was repeated using two equiv-

alents of Ph-thixantphos per platinum. In this case only the broad species be-

tween 0 and -10 ppm was observed by 31P NMR spectroscopy. Upon removal of

the displaced norbornene from the system, the 1H NMR spectrum displayed only

aromatic signals. This indicates that the complex formed under these conditions

does not contain an alkene ligand, nor is there any evidence for uncoordinated
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Ph-thixantphos ligand. This is consistent with the formation of [Pt(Ph-thixant-

phos)2] (Scheme 5.1).

O

S

PPh2 PPh2

Pt(nb)3

 nb =

P
Pt

P

P
P

1:1 +

+

Pt
P
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Scheme 5.1: Reaction of Ph-thixantphos with tris(norbornene)platinum.

Yellow crystals of [Pt(Ph-thixantphos)2]·2.5 CH2Cl2 were grown by inwards dif-

fusion of diethyl ether into a dichloromethane solution of the complex. The com-

plex crystallised in the monoclinic space group C2/c with a well-defined main

structure, though some disorder was present in the dichloromethane solvate. The

crystal structure is shown in Figure 5.1, with Figure 5.2 showing the same struc-

ture without the phenyl substituents on the phosphorus atoms. Selected bond

lengths and angles are given in Table 5.1, and crystallographic information is

given in Table 5.2.

The X-ray crystal structure of [Pt(Ph-thixantphos)2] shows a distorted tetrahedral

configuration with angles ranging from 103.741(18) to 119.313(17)◦. This is likely

due to the restrictions caused by having two rigid Ph-xantphos ligands around

a single metal centre. There are two different phosphorus environments present

in the crystal structure, such that each ligand has each of the two environments.

One phosphine on each ligand is nearer to the adjacent ligand backbone whilst

the other phosphine is nearer to the adjacent phenyl substituents. The backbone

is bent away from planarity to allow the ligand to coordinate with bite angles

of 106.377(16) and 108.059(17)◦. These angles are close to the natural bite-angle

calculated for this ligand of 109.4◦ from molecular mechanics and are slightly

smaller than the DFT calculated value of 112.65◦.67

Tetrahedral complexes of platinum with four phosphorus donors are well-known

with numerous crystallographically determined structures.68 One such structure

with a xantphos ligand derivatised with ethyl groups on the phosphorus atoms

was reported in 2004 (Figure 5.3a).74 The [Pt(Et-xantphos)2] complex shows a



5.1. Reactions of Ph-thixantphos with Platinum(0)

Precursors
105

Figure 5.1: X-ray crystal structure of [Pt(Ph-thixantphos)2] (50% probability ther-

mal ellipsoids). Hydrogen atoms and dichloromethane solvate omitted for clarity.

Figure 5.2: X-ray crystal structure of [Pt(Ph-thixantphos)2] (50% probability ther-

mal ellipsoids). Hydrogen atoms, dichloromethane solvate and phenyl rings

omitted for clarity.
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Table 5.1: Selected bond distances (Å) and angles (◦) of [Pt(Ph-thixantphos)2].

Bond distances (Å) Bond angles (◦)

P1-Pt1 2.3325(6) P1-Pt1-P2 108.059(17)

P2-Pt1 2.3209(5) P1-Pt1-P3 105.501(17)

P3-Pt1 2.3242(4) P1-Pt1-P4 119.313(17)

P4-Pt1 2.3249(5) P2-Pt1-P3 114.224(19)

P1...P2 3.7661(7) P2-Pt1-P4 103.741(18)

P1...P3 3.7068(7) P3-Pt1-P4 106.377(16)

P1...P4 4.0194(7) Ring 1-Ring 2 35.57(8)

P2...P3 3.9007(7) Ring 3-Ring 4 45.39(8)

P2...P4 3.6544(7)

P3...P4 3.7221(6)

Pt1...O1 3.4977(14)

Pt1...O2 3.5635(14)

similar structure to [Pt(Ph-thixantphos)2]. The bite-angles for the ethyl complex

are 108.07(7) and 108.44(7)◦, which are close to the Ph-thixantphos complex of

108.059(17) and 106.377(16)◦. The P-Pt bond distances are slightly shorter for

[Pt(Et-xantphos)2] (2.312(2), 2.3119(16), 2.2916(17) and 2.289(2) Å) than for [Pt(Ph-

thixantphos)2] (2.3325(6), 2.3209(5), 2.3242(4) and 2.3249(5) Å) this is likely the

result of the higher electron donation of ethyl substituents compared to phenyl

rings. The bite-angles are also very similar to a [Pd(Ph-xantphos)2] complex (Fig-

ure 5.3b), which has P-Pd-P angles of 106.34(2)◦.285 Given these similarities it is

likely that the geometry of the complexes and the bite-angles of the ligands in

these complexes are controlled primarily by valence angles.

The X-ray crystal structure of [Pt(Ph-thixantphos)2] shows two different phos-

phorus environments for each Ph-thixantphos ligand (Figure 5.2). The backbone

of the Ph-thixantphos ligand is bent resulting in one of the phosphorus atoms on

one of the ligands sitting within the concave face of the other ligand’s backbone

while the other phosphorus atom sits away from the ligand backbone and has

closer contacts with the phenyl substituents than the backbone. This indicates

that while the two ligands are related overall, the two halves of a single ligand

are in quite different spatial environments.
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Table 5.2: Crystallographic data and structure refinement of [Pt(Ph-

thixantphos)2].

Empirical formula C149H114Cl10O4P8Pt2S4

Formula weight 3089.07

Temperature/K 296.0

Crystal system monoclinic

Space group C2/c

a/Å 46.8743(16)

b/Å 13.1000(4)

c/Å 21.7852(7)

α/◦ 90

β/◦ 105.208(2)

γ/◦ 90

Volume/Å3 12908.8(7)

Z 4

ρcalc mg/mm3 1.589

µ/mm 2.594

F(000) 6200.0

Crystal size/mm 0.61 x 0.18 x 0.15

Radiation MoKα (λ = 0.71073)

2θ range for data collection 3.602 to 60.916◦

Index ranges -66 ≤ h ≤ 66, -18 ≤ k ≤ 17, -30 ≤ l ≤ 30

Reflections collected 172570

Independent reflections 19386 [Rint = 0.0370, Rsigma = 0.0207]

Data/restraints/parameters 19386/0/808

Goodness-of-fit on F2 1.232

Final R indexes [I>=2σ (I)] R1 = 0.0219, wR2 = 0.0565

Final R indexes [all data] R1 = 0.0338, wR2 = 0.0716

Largest diff. peak/hole / e Å−3 1.08/-1.07



108 Chapter 5. Platinum(0) and Palladium(0) Complexes

(a) (b)

Figure 5.3: X-ray crystal structures of [Pt(Et-xantphos)2]285 (a) and [Pd(Ph-xant-

phos)2]74 (b).

From the X-ray crystal structure of [Pt(Ph-thixantphos)2], we would expect the
31P NMR spectrum to show two different phosphorus environments. At room

temperature both the 1H and 31P NMR spectra are very broad. While two en-

vironments are observed in the 31P NMR spectrum, no coupling can be readily

discerned, suggesting that a dynamic process is occurring. This behaviour was

investigated using variable temperature 1H and 31P NMR analysis in CD2Cl2 (Fig-

ures 5.4 and 5.5). Lowering the temperature to 0 ◦C causes the 31P NMR spectrum

to sharpen with phosphorus coupling and platinum satellites resolved. The 31P

NMR spectrum continues to sharpen down to around -40 ◦C, below which no

further changes are observed. The low temperature 1H NMR spectra show a sim-

ilar pattern: sharpening upon cooling to 0 ◦C, which continues down to -40 ◦C.

However, unlike the 31P NMR spectra, the 1H NMR spectra at -60 and -80 ◦C

begin to broaden once more.

The xantphos backbones frequently bend in order to achieve the coordination an-

gles desired by the metal. However, while this is seen in the crystal structures

of the complexes, the effects are not observed in the NMR spectra due to rapid
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Figure 5.4: Low temperature 31P NMR spectra of [Pt(Ph-thixantphos)2] in CD2Cl2.
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Figure 5.5: Low temperature 1H NMR spectra of [Pt(Ph-thixantphos)2] in CD2Cl2,

showing the aromatic region.
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inversion of the ligand such that both faces of the backbone are averaged on the

NMR timescale. In the case of [Pt(Ph-thixantphos)2], the X-ray crystal structure

shows two different spatial phosphorus environments, which should result in

different chemical shifts in the 31P NMR spectrum. This system is sufficiently

crowded around the metal centre to reduce the ability of the xantphos system

to invert. As such, cooling to 0 ◦C is sufficient to lock the backbones of [Pt(Ph-

thixantphos)2] in a single configuration, thus allowing the two different 31P en-

vironments to become visible. Even at room temperature two different signals

are apparent, indicating that although the inversion is occurring, the rate is slow

enough compared to the NMR timescale to allow some distinction between the

two phosphorus atoms. The inversion of the xantphos backbones stops, on the

NMR timescale, upon cooling to around -20 ◦C. However, while the 31P NMR

spectrum remains sharp below this temperature, the 1H NMR spectrum begins

to broaden again. This may be the result of restricted rotation of some or all of

the phenyl rings, which may occur due to the steric demands of the system.

The 31P NMR spectrum of [Pt(Ph-thixantphos)2] at -80 ◦C shows some interest-

ing features. Two peaks are observed as triplets at -2.43 and -6.16 ppm with

phosphorus-phosphorus coupling of 55.0 Hz and platinum-phosphorus coupling

of 3976 and 3864 Hz respectively. The value for the phosphorus-phosphorus cou-

pling was slightly larger than that reported for the analogous [Pt(Et-xantphos)2]

complex, which showed two triplets at -6.82 and -19.65 ppm with two-bond

phosphorus-phosphorus coupling of 48 Hz.74 The phosphorus-platinum coupling

constants were also similar between the two complexes. The Ph-thixantphos

complex had coupling constants of 3976 and 3864 Hz, whereas the Et-xantphos

complex J PtP = 4086 and 3602 Hz. However, the 31P NMR spectrum of [Pt(Et-

xantphos)2] was sharp at room temperature in toluene-d8, while the spectrum

for [Pt(Ph-thixantphos)2] did not fully resolve until -40 ◦C, indicating that the

propensity for the ligands in these complexes to undergo inversion differs.74

A useful platinum(0) starting material is [Pt(C2H4)3], as the ethene ligands are

readily displaced by other ligands, although [Pt(C2H4)3] is only stable under an

ethene atmosphere.286,287 Transition metal ethene complexes are important from

an industrial perspective as ethene is a common feedstock used in industrial-

scale syntheses.288,289 The 1:1 reaction between [Pt(C2H4)3] and Ph-thixantphos

was carried out on an NMR scale to allow the identification of any intermedi-

ates that may form. The reaction was rapid and the solution turned orange after
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only 10 minutes at room temperature. The 31P NMR spectrum showed [Pt(Ph-

thixantphos)2] was the major product accounting for 93% of the phosphorus con-

taining species, while the remaining 7% was [Pt(C2H4)(Ph-thixantphos)], analo-

gous to the [Pt(nb)(Ph-thixantphos)] formed in reaction with [Pt(nb)3]. Interest-

ingly, the ratio of the alkene to bis complex formed appears to be dependent on

the alkene used. The small amount of [Pt(C2H4)(Ph-thixantphos)] formed sug-

gests that the free ligand prefers to react with the alkene complex to form [Pt(Ph-

thixantphos)2] rather than react with [Pt(C2H4)3]. This indicates that the initial

coordination of the diphosphine to form [Pt(C2H4)(Ph-thixantphos)] activates the

system to react further with free Ph-thixantphos. However, in the norbornene

case we observe 60.4% [Pt(Ph-thixantphos)2], indicating that while the uncoor-

dinated diphosphine does prefer to react with [Pt(nb)(Ph-thixantphos)] over the

[Pt(nb)3], the effect is not as significant as for the ethene system.

5.2 Reaction of t -Bu-xantphos Ligands with [Pt(nb)3]

The equimolar reaction of [Pt(nb)3] with Ph-thixantphos instantaneously formed

[Pt(Ph-thixantphos)2] and [Pt(nb)(Ph-thixantphos)] as the major and minor prod-

ucts respectively. The same reaction with t-Bu-thixantphos in C6D6 was slower,

requiring heating at 60 ◦C for four days in order to go to completion. In a simi-

lar manner to the reaction with Ph-thixantphos, the reaction of t-Bu-thixantphos

with [Pt(nb)3] also produces two products. One of these products is the same

in both cases, [Pt(nb)(xantphos)] (xantphos = Ph-thixantphos, t-Bu-thixantphos).

However, rather than a bis(diphosphine) complex forming, as observed with

Ph-thixantphos, using t-Bu-thixantphos generated a reactive, 14-electron [Pt(t-

Bu-thixantphos)] complex (60.8%, Scheme 5.2). Although 14-electron complexes

are electron-deficient, several examples have been reported, with [Pt(PPh3)2] first

reported in 1966290 followed by [Pt(PCy3)2],291 [Pt(PtBu3)2], [Pt(PtBu2Ph)2], and

[Pt(PiPr3)2].292

The [Pt(t-Bu-thixantphos)(nb)] complex exhibits a broad resonance at 55.6 ppm

with platinum satellites in the 31P NMR spectrum. The value of J PtP (3612 Hz) is

typical for trigonal platinum alkene complexes.284 The alkene protons appear at

2.37 ppm in the 1H NMR spectrum as a broad singlet with no discernable phos-

phorus coupling but platinum coupling of 67.8 Hz. A similarly broad singlet in



5.2. Reaction of t-Bu-xantphos Ligands with [Pt(nb)3] 113

O

S

tBu2P PtBu2

Pt

O

S

tBu2P PtBu2

Pt

O

S

tBu2P PtBu2

+
(i)

Scheme 5.2: Reaction between tBu-thixantphos and [Pt(nb)3]. Reagents and con-

ditions: (i) [Pt(nb)3], C6D6, 60 ◦C.

the 13C NMR spectrum at 51.9 ppm with J PtC = 343.9 Hz was observed for the

alkene carbons. Half of the expected number of norbornene and t-Bu-thixant-

phos NMR signals are observed indicating a symmetrical complex.

The reaction between t-Bu-sixantphos and [Pt(nb)3] under the same conditions

formed an analogous 14-electron [Pt(t-Bu-sixantphos)] complex as the major prod-

uct after 24 hours at 60 ◦C, appearing in the 31P NMR spectrum at 79.5 ppm (J PtP

= 4827 Hz). Two other products are also observed, appearing at 59.3 ppm (J PtP =

3572 Hz) and 34.7 ppm (J PtP = 2677 Hz). As the complex at 59.3 ppm is similar in

both chemical shift and coupling constant to [Pt(t-Bu-thixantphos)(nb)], it is pro-

posed to be [Pt(t-Bu-sixantphos)(nb)]. The features of the complex at 34.7 ppm

are surprising. The value of J PtP is similar to a number of Pt(II) complexes with

trans phosphorus atoms (for examples see Chapter 6). Unfortunately the com-

plexes could not be separated to gain further insight into their structures.

The major product in the reaction between t-Bu-xantphos and [Pt(nb)3] was dif-

ferent to the other xantphos ligands. A small amount of a complex with a signal

at 78.9 ppm in the 31P NMR spectrum was formed, consistent with a [Pt(t-Bu-

xantphos)] complex (the signal was too weak to observe any platinum coupling).

However, the major product, and the only species present after 24 hours at 60 ◦C

was a complex in the 31P NMR spectrum at 46.7 ppm (J PtP = 3246 Hz). The 1H

NMR spectrum of this complex showed a triplet at -18.49 ppm, with J PH of 13.1

Hz and J PtH of 1107 Hz. The chemical shift of this signal and the value of J PtH are

consistent with a hydride positioned trans to a ligand with a low trans-influence.
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The value of J PH is consistent with a cis arrangement of the hydride with the two

phosphorus atoms. The 1H and 13C NMR signals for the tert-butyl substituents

are broad which may suggest a dynamic process is occurring. The O -ipso car-

bon shows a downfield shift of 2.8 ppm which is consistent with coordination

of the oxygen atom. This suggests a platinum(II) complex of the type [Pt(t-Bu-

xantphos-κP,O,P ’)H]X (Scheme 5.3). However, complexes of this type typically

have platinum-phosphorus coupling constants of between 2300 and 2800 Hz (see

Chapter 6), while the value of J PtP for this complex is higher at 3246 Hz. The

nature of the counterion and the hydride source were not determined.

O
tBu2P PtBu2

Pt

O
tBu2P PtBu2

O
tBu2P PtBu2Pt

H

+

Scheme 5.3: Reaction between t-Bu-xantphos and [Pt(nb)3]· Reagents and condi-

tions: [Pt(nb)3], C6D6, 60 ◦C, 24 hours.

The formation of the proposed [Pt(t-Bu-xantphos-κP,O,P ’)H]X complex likely re-

sults from the [Pt(t-Bu-xantphos)] complex undergoing reaction with another

molecule in the system. Despite the number of [Pt(monophosphine)2] complexes,

isolable [Pt(diphosphine)] complexes are relatively rare as diphosphine ligands

typically provide less protection of the metal centre due to the restrictions of

their bite-angle. Although [Pt(diphosphine)] complexes are frequently proposed

as intermediates, few have been isolated.293–295 [Pt(diphosphine)] complexes will

typically coordinate to any possible ligands that are present. The proposed 14-

electron complex [Pt(dcype)] (dcype = 1,2-bis(dicyclohexylphosphino)ethane) re-

acts with alkenes and alkynes to form [Pt(alkene)(dcype)] or [Pt(alkyne) (dcype)],

and reacts with alkanes to form [Pt(alkyl)(dcype)H] complexes.294 [Pt(dcype)]

also reacts with benzene to form [Pt(C6H5)(dcype)H]. Although in the [Pt(t-Bu-

xantphos-κP,O,P ’)H]X system no evidence of a coordinated alkyl, phenyl or other

fragment was observed, this may explain the formation of the hydride species,

which then loses the other ligand to form a counterion. The hydride is unlikely

to result from water as all solvents that were used were dried over molecular
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sieves prior to use and the water content of solvents dried in this manner is too

small to account for the complete transformation to a hydride complex.296

The [Pt(t-Bu-thixantphos)] complex can be isolated by removal of the norbornene

from the sample, under reduced pressure, while the analogous t-Bu-sixantphos

complex only formed as a mixture and the t-Bu-xantphos complex went on to

form [Pt(t-Bu-xantphos-κP,O,P ’)H] with full conversion after 24 hours prevent-

ing their isolation and full characterisation. The 31P NMR data for the complexes

is given in Table 5.3. The complexes all exhibit a single peak in the 31P NMR spec-

tra shifted downfield from the free ligand by 68–71 ppm (∆δ). A study of the 31P

NMR properties of [Pt(PR3)2] complexes showed that all of the 14-electron com-

plexes of this type that were studied display a downfield shift of the phosphorus

signal by between 48 and 58 ppm upon coordination, with platinum-phosphorus

coupling constants between 4100 and 4600 Hz.12 The change in chemical shift for

the t-Bu-xantphos complexes is larger than that reported for monophosphines.

This may be the result of strain placed on the system to achieve such a large bite-

angle, or the result of a slightly bent complex which may form to allow biden-

tate coordination. The platinum-phosphorus coupling is also larger than those

previously reported, by over 200 Hz. The largest previously reported Pt-P cou-

pling for these complexes is 4592 Hz for [Pt(PtBu2Ph)2], and coupling constants

of between 4370 and 4424 Hz have been reported by our group for substituted

[Pt(PtBu2Bn)2] complexes.297,298 The larger coupling constants for the t-Bu-xant-

phos species likely indicates a distortion of the system from the linearity observed

with monophosphine systems.

Table 5.3: 31P NMR data for [Pt(t-Bu-xantphos)] complexes. J PtP was not observed

for t-Bu-xantphos (∆δ = δcomplex - δfree ligand).

31P

Diphosphine δ/ppm ∆δ/ppm JPtP/Hz

t -Bu-Sixantphos 79.5 71.1 4827

t -Bu-Thixantphos 78.6 69.1 4810

t -Bu-Xantphos 78.9 68.7 n.o.
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5.3 Reaction of t -Bu-thixantphos with [Pt(cod)2]

[Pt(cod)2] (cod = 1,5-cyclooctadiene) is a commonly used starting material for the

formation of platinum(0) phosphine complexes as the cod ligands can be read-

ily displaced by phosphines.291,299 The reaction between t-Bu-thixantphos and

[Pt(cod)2] was carried out on an NMR scale in C6D6. The only phosphorus con-

taining product from the reaction was [Pt(t-Bu-thixantphos)]. However, conver-

sion of only 28% was achieved. After 48 hours at room temperature the reaction

had become black and despite heating no further reaction was observed. Together

with the absence of unreacted [Pt(cod)2] in the 1H NMR spectrum this suggests

that the [Pt(cod)2] was unstable under the reaction conditions. Analysis of the

reaction mixture by 1H and 13C NMR spectroscopy showed the presence of 1,3-

and 1,4-cyclooctadiene in addition to 1,5-cyclooctadiene. A weak signal in the
1H NMR spectrum was observed at -18.2 ppm as a triplet (J PH = 13.7 Hz) with

platinum satellites (J PtH = 1100 Hz). This signal is in a similar position and has

similar coupling constants to the peak in the 1H NMR of [Pt(t-Bu-xantphos)H]X.

This may indicate that the 14-electron [Pt(t-Bu-thixantphos)] complex is able to

catalyse the isomerisation of 1,5-cyclooctadiene. This process may involve the

oxidative addition of an allylic C-H of the cod ligand to the platinum forming

an η3-allyl and a hydride ligand, which could then reductively eliminate to form

1,3-cyclooctadiene. Given the poor reactivity of [Pt(cod)2] with t-Bu-thixantphos

the analogous reactions with t-Bu-sixantphos and t-Bu-xantphos were not at-

tempted.

5.4 Reaction of t -Bu-xantphos Ligands and [Pt(C2H4)3]

Both ethene and norbornene are monodentate alkene ligands whilst cod is a

bidentate ligand which typically chelates to metal centres. Hence, the reactivity

of the t-Bu-xantphos ligands with [Pt(C2H4)3] is expect to be more similar to that

observed with [Pt(nb)3] than that with [Pt(cod)2]. Furthermore ethene is more

readily displaced than norbornene as the coordination of norbornene relieves the

strain associated with the bicyclic system. However, ethene is a smaller ligand

than norbornene. Hence investigating the reactivity of the t-Bu-xantphos ligands

with [Pt(C2H4)3] gives an opportunity to probe the relative importance of elec-
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tronic and steric effects in controlling the coordination of alkene ligands to [Pt(t-

Bu-xantphos)] complexes. The three t-Bu-xantphos ligands were reacted on an

NMR scale in C6D6 with freshly prepared [Pt(C2H4)3], made from [Pt(cod)2] un-

der an ethene atmosphere. All three ligands initially formed a complex of the type

[Pt(t-Bu-xantphos)(C2H4)] (Scheme 5.4). However, while the ethene complex

was the only product for the reaction with t-Bu-thixantphos, the reaction with

t-Bu-xantphos progressed to form [Pt(t-Bu-xantphos)H]X. Again the nature of

the counterion in this species was unable to be determined. The reaction between

t-Bu-sixantphos and [Pt(C2H4)3] showed 11.1% of [Pt(t-Bu-sixantphos)(C2H4)] af-

ter four hours. However, the reaction did not progress further.

O

S

tBu2P PtBu2

Pt

O

S

tBu2P PtBu2

(i)

Scheme 5.4: Reaction between t-Bu-thixantphos and [Pt(C2H4)3]. Reagents and

conditions: (i) [Pt(C2H4)3], C6D6, 48 hours, under C2H4.

Selected NMR data for the [Pt(t-Bu-xantphos)(C2H4)] complexes is given in Table

5.4. In all cases the 31P NMR spectrum showed a singlet between 53.4 and 55.7

ppm, shifted downfield by between 43.2 and 46.2 ppm from the corresponding

free ligand. All of the J PtP values are within the expected range for complexes

of this type.16 [Pt(t-Bu-sixantphos)(C2H4)] has a J PtP value almost 400 Hz lower

than that observed for the corresponding t-Bu-thixantphos and t-Bu-xantphos

complexes. The lower coupling constant may indicate that the ethene ligand is

more strongly coordinated to the platinum centre in [Pt(t-Bu-sixantphos)(C2H4)].

This may be the result of the smaller bite-angle of the t-Bu-sixantphos ligand al-

lowing more room for the ethene ligand to interact with the platinum. The 1H

NMR spectra showed peaks at 2.50 and 2.52 ppm corresponding to the ethene

protons for [Pt(t-Bu-thixantphos)(C2H4)] and [Pt(t-Bu-xantphos)(C2H4)] respec-

tively. The peak corresponding to coordinated ethene was obscured in the 1H

NMR spectrum for the t-Bu-sixantphos complex. The dramatic upfield shift of
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the 1H signal for the ethene ligand is consistent with coordination to a metal cen-

tre such at platinum (uncoordinated ethene appears at 5.25 ppm300). As both the

t-Bu-sixantphos and t-Bu-xantphos ethene complexes reacted further to produce

mixtures, the 13C NMR peak for the ethene ligand was only observed in [Pt(t-Bu-

thixantphos)(C2H4)]. The ethene carbon signal appeared at 34.2 ppm as a broad

singlet with a J PtC value of 223.2 Hz.

Table 5.4: 31P NMR data for [Pt(t-Bu-xantphos)(C2H4)] complexes in C6D6 (∆δ =

δcomplex - δfree ligand).

31P 1H

Diphosphine δ/ppm ∆δ/ppm JPtP/Hz δ/ppm JPtH/Hz

t -Bu-Sixantphos 53.7 45.3 3499

t -Bu-Thixantphos 55.7 46.2 3899 2.50 59.5

t -Bu-Xantphos 53.4 43.2 3878 2.52 58.0

The reaction of t-Bu-thixantphos with the three different platinum alkene com-

plexes showed markedly different properties: [Pt(nb)3] forms an equilibrium be-

tween [Pt(t-Bu-thixantphos)(nb)] and [Pt(t-Bu-thixantphos)]; [Pt(cod)2] forms [Pt

(t-Bu-thixantphos)]; and [Pt(C2H4)3] forms [Pt(t-Bu-thixantphos)(C2H4)]. [Pt(t-

Bu-thixantphos)(nb)] was converted entirely to the [Pt(t-Bu-thixantphos)] com-

plex by placing a sample under vacuum for one hour, while the [Pt(t-Bu-thixant-

phos)(C2H4)] complex showed no change under the same conditions. Bubbling

argon through a solution of [Pt(t-Bu-thixantphos)(C2H4)] for 10 mins, resulted

in the formation of only small amounts of [Pt(t-Bu-thixantphos)]. This indi-

cates that ethene is more strongly coordinated to the platinum centre than nor-

bornene and is less prone to dissociation. In general dialkyl substituted alkenes

coordinate more weakly than ethene, as shown in the straightforward synthe-

sis of [Pt(C2H4)3] from [Pt(cod)2].291,301 However, coordination of norbornene re-

lieves some of the ring-strain which means it coordinates more strongly than

cod. [Pt(nb)3] is an air-stable solid, while [Pt(C2H4)3] degrades if not stored under

ethene, indicating that norbornene coordinates more strongly than ethene.
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5.5 Formation of Platinum Dioxygen Complexes

[Pt(P2)] complexes (P = monophosphine, P2 = diphosphine) are reactive towards

small molecules, particularly those with diphosphine ligands as was observed

in the formation of [Pt(t-Bu-xantphos)H]X.294 The reactivity of [Pt(t-Bu-thixant-

phos)] is lower than the reactivity of the corresponding t-Bu-sixantphos and t-

Bu-xantphos complexes. Both the t-Bu-sixantphos and t-Bu-xantphos complexes

were unstable in solution, while the t-Bu-thixantphos complex was stable in C6D6,

under argon, at room temperature for at least several days. However, [Pt(t-Bu-

thixantphos)] reacts rapidly with oxygen forming [Pt(t-Bu-thixantphos)(η2-O2)]

upon exposure to air (Scheme 5.5). Bubbling air through a sample containing

[Pt(t-Bu-thixantphos)] and [Pt(t-Bu-thixantphos)(nb)] or a sample of [Pt(t-Bu-

thixantphos)(C2H4)] resulted in complete conversion (by 31P NMR spectroscopy)

to [Pt(t-Bu-thixantphos)(η2-O2)]. This reaction is quite common for complexes of

the type [Pt(PR3)2].302,303
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(i)

Scheme 5.5: Reaction of [Pt(alkene)(t-Bu-thixantphos)] and [Pt(t-Bu-thixant-

phos)] with air. Alkene = C2H4 or norbornene. Reagents and conditions: (i) Air,

10 mins, C6D6.

Upon reaction of [Pt(t-Bu-thixantphos)] with oxygen, the 31P NMR signal shifts
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upfield from 78.6 to 38.4 ppm with an associated reduction in the magnitude

of the phosphorus-platinum coupling from 4810 to 4488 Hz. The reduction in

coupling constant is due to the decrease in the s-character of the platinum bond

orbitals upon changing the geometry of the complex.16 The value of the J PtP cou-

pling constant is larger than those previously reported (3930–4112 Hz).297,302 Sim-

ilarly to the NMR data obtained for [Pt(t-Bu-thixantphos)], these values may be

different from the literature data due to the constraints of the diphosphine lig-

and over the monophosphines reported in the literature. The 1H and 13C NMR

spectra of [Pt(t-Bu-thixantphos)(η2-O2)] show doublets for the tert-butyl proton

and carbon environments, rather than the virtual triplets observed for [Pt(t-Bu-

thixantphos)]. This is consistent with the change in geometry as virtual triplets

indicate strongly coupled phosphorus atoms which generally occurs with trans

coordination.124

Colourless single crystals of [Pt(t-Bu-thixantphos)(η2-O2)] were obtained by al-

lowing oxygen to diffuse slowly into a C6D6 solution containing a mixture of

[Pt(t-Bu-thixantphos)(nb)] and [Pt(t-Bu-thixantphos)]. The complex crystallised

in the Pbca space group with two molecules of C6D6 as solvate. The crystal struc-

ture is shown in Figure 5.6 with a side view in Figure 5.7. Selected bond lengths

and angles for the complex are summarised in Table 5.5 and crystallographic data

is given in Table 5.6.

Table 5.5: Selected bond distances (Å) and angles (◦) of [Pt(t-Bu-thixantphos)(η2-

O2)] · 2 C6D6.

Bond distances (Å) Bond angles (◦)

P1-Pt 2.3159(13) P1-Pt-P2 117.26(5)

P2-Pt 2.3056(13) P1-Pt-O2 101.26(14)

O1-Pt 3.383(3) P2-Pt-O3 100.11(13)

O2-Pt 2.024(4) O2-Pt-O3 41.38(18)

O3-Pt 2.022(4) Ring 1 - Ring 2 133.90(18)

O1-O2 1.429(6)

The crystal structure of [Pt(t-Bu-thixantphos)(η2-O2)] shows a planar geometry

around the platinum with the sum of the angles = 360.01◦. The backbone of
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Table 5.6: Crystallographic data and structure refinement of [Pt(t-Bu-thixant-

phos)(η2-O2)] · 2 C6D6.

Empirical formula C42H46D12O3P2PtS

Formula weight 912.04

Temperature/K 120.01(10)

Crystal system orthorhombic

Space group Pbca

a/Å 17.7892(3)

b/Å 15.8129(3)

c/Å 28.4025(5)

α/◦ 90

β/◦ 90

γ/◦ 90

Volume/Å3 7989.6(2)

Z 8

ρcalc mg/mm3 1.516

µ/mm 3.682

F(000) 3664.0

Crystal size/mm 0.21 x 0.16 x 0.15

Radiation MoKα (λ = 0.71073)

2θ range for data collection 5.348 to 65.882◦

Index ranges -27 ≤ h ≤ 26, -22 ≤ k ≤ 24, -43 ≤ l ≤ 40

Reflections collected 118275

Independent reflections 14395 [Rint = 0.0668, Rsigma = 0.0383]

Data/restraints/parameters 14395/0/456

Goodness-of-fit on F2 1.101

Final R indexes [I>=2σ (I)] R1 = 0.0638, wR2 = 0.1563

Final R indexes [all data] R1 = 0.0824, wR2 = 0.1718

Largest diff. peak/hole / e Å−3 7.62/-3.06
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Figure 5.6: [Pt(t-Bu-thixantphos)(η2-O2)] · 2 C6D6 (50% probability thermal ellip-

soids). Hydrogen atoms and solvent molecules omitted for clarity.

the ligand is bent to achieve a bite-angle of 117.26(5)◦, smaller than the calcu-

lated bite-angle of 126.98◦ (Section 2.2). The bite-angle of the t-Bu-thixantphos

ligand in [Pt(t-Bu-thixantphos)(η2-O2)] is similar to the bite-angle in [Ag(t-Bu-

thixantphos)Cl] (116.46(8)◦, Table 3.2). No interaction between the ether-bridge

oxygen and the platinum is observed, with a distance of 3.383(3) Å between the

two atoms. All of the bond lengths and angles have typical values. Surpris-

ingly only four crystal structures of platinum dioxygen complexes have been re-

ported in the CSD, three of which are for [Pt(η2-O2)(PPh3)2] with different sol-

vates, (C6H6, CHCl3 and C7H8).304–306 However, the data quality for the struc-

ture with a toluene solvate was poor.306 The other reported crystal structure is

for [Pt(η2-O2)(PtBu2Ph)2].307 The PtBu2Ph ligand has similar steric and electronic

properties to the t-Bu-xantphos ligands, though the t-Bu-xantphos ligands are re-

stricted by the backbone. The P-Pt-P angle in [Pt(η2-O2)(PtBu2Ph)2] (113.1(2)◦) is

smaller than that observed for [Pt(t-Bu-thixantphos)(η2-O2)], indicating the role

of the rigid backbone in determining the bite-angle of transition metal complexes.

The Pt-O, and O-O bond lengths, and the O-Pt-O angle show little difference
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Figure 5.7: [Pt(t-Bu-thixantphos)(η2-O2)] · 2 C6D6, side view (50% probability

thermal ellipsoids). Hydrogen atoms and solvent molecules omitted for clarity.

between the three reported structures and [Pt(t-Bu-thixantphos)(η2-O2)] (Table

5.7).

The O-O bond length (1.429(6) Å) in [Pt(t-Bu-thixantphos)(η2-O2)] is longer than

the bond length of molecular oxygen (1.21 Å) indicating a reduction in the bond

order upon coordination to the metal centre. Transition metal complexes with O-

O bond lengths of 1.4–1.5 Å are regarded formally as peroxide complexes with an

O2
2– ligand and a platinum(II) centre.308 The O-O bond length is slightly shorter

in [Pt(t-Bu-thixantphos)(η2-O2)] than the analogous PPh3 or PtBu2Ph complexes

(although within error for the PtBu2Ph value).304–307 t-Bu-Thixantphos would be

expected to be more electron-donating than PPh3, and to have similar electronic

properties to PtBu2Ph. A longer O-O bond length is expected if more electron-

donating ligands are used as this would add to the O2 anti-bonding π∗-orbital

through back-donation, which should reduce the bond order and thus increase

the O-O bond length. However, the P-Pt-P angle is larger for t-Bu-thixantphos

than the other ligands. This may indicate that the O-O bond length is restrained

by the sterics of the t-Bu-thixantphos ligand. Hence the O-O bond length in these
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Table 5.7: Selected bond distances (Å) and angles (◦) of [Pt(PP)(η2-O2)].

Bond distances (Å) Bond angles (◦)

Compound O-O Pt-O Pt-O’ O-Pt-O’ P-Pt-P

[Pt(η2-O2)(PtBu2Ph)2)] 1.42(2) 2.02(1) 2.02(1) 41.5(5) 113.1(2)

[Pt(η2-O2)(PPh3)2] · C6H6 1.45(4) 2.01(3) 2.01(2) 43(1) 101.2(4)

[Pt(η2-O2)(PPh3)2] · CHCl3 1.505(16) 2.006(7) 2.006(7) 44.06(40) 101.23(12)

[Pt(t -Bu-thixantphos)(η2-O2)] · 2C6D6 1.429(6) 2.024(4) 2.022(4) 41.38(18) 117.26(5)
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complexes is likely the result of a combination of both steric and electronic ef-

fects.

5.6 Reactions of [Pt(t -Bu-thixantphos)(η2-O2)]

The bond length of the dioxygen molecule increases upon coordination, indicat-

ing a decrease in the bond order and strength. As such, the oxygen molecule

should be activated, and more likely to undergo reactions with small molecules,

with several examples reported in the literature.215,216,231,237,302,309–312 Some exam-

ples of reversible coordination of dioxygen to a palladium centre have also been

reported, with removal of the dioxygen ligand either by vacuum, substitution

or reaction with other ligands.215,307,313 As such the reversibility of the forma-

tion of [Pt(t-Bu-thixantphos)(η2-O2)] was investigated by vacuum and by reac-

tion with C2H4, and the activation of the oxygen ligand was explored by reaction

with various small molecules; C2H2, H2, CO, CO2, NH4PF6 and 1,3,5-triaza-7-

phosphaadamantane (pta).

The [Pd(η2-O2)(PtBu2Ph)2] complex readily loses dioxygen under vacuum, al-

though the dioxygen ligand in [Pt(η2-O2)(PtBu2Ph)2] does not dissociate under

the same conditions.307 Recent work in our group showed that [Pt(η2-O2)(PtBu2Bn)]

can also lose oxygen under vacuum.297,298 The dioxygen ligand in the [Pt(t-Bu-

thixantphos)(η2-O2)] complex was not observed to dissociate despite heating the

reaction under vacuum. This result is not unexpected as the t-Bu-thixantphos

system is more sterically and electronically similar to PtBu2Ph than PtBu2Bn. How-

ever, the larger P-Pt-P angle in the t-Bu-thixantphos complex (117.26(5)◦) com-

pared to the PtBu2Ph complex (113.1(2)◦) may been expected to promote the loss

of the dioxygen ligand.307

[Pt(t-Bu-thixantphos)(η2-O2)] can also be formed through reaction of [Pt(t-Bu-

thixantphos)(C2H4)] with air. However, bubbling ethene through an NMR sam-

ple of [Pt(t-Bu-thixantphos)(η2-O2)] in C6D6 for 10 minutes showed no conver-

sion to the ethene complex. Leaving the sample under an atmosphere of ethene

for a further 48 hours showed no evidence by NMR spectroscopy for conver-

sion to [Pt(t-Bu-thixantphos)(C2H4)], indicating that the reaction is not readily

reversible.
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Complexes [Pd(η2-O2)(PtBu2
nBu)2] and [Pd(η2-O2)(PAd2

nBu)2] (Ad = 1-adamantyl)

have been used as stable precatalysts for palladium catalysed formylations and

alkoxycarbonylations due to their reduction to the 14-electron palladium com-

plexes by reaction with hydrogen (5 bar) at 40 ◦C for 16 hours.313 Reaction of

[Pt(t-Bu-thixantphos)(η2-O2)] with hydrogen gas was attempted by bubbling the

gas through the reaction mixture then sealing under an atmosphere of hydrogen.

No reaction was observed after three days at room temperature, indicating the

stability of the dioxygen complex. However, this cannot be taken as a direct

comparison of stability between [Pt(t-Bu-thixantphos)(η2-O2)] and the [Pd(η2-

O2)(PtBu2
nBu)2] and [Pd(η2-O2)(PAd2

nBu)2] (Ad = 1-adamantyl) complexes, as the

reaction was not attempted at the higher temperatures and pressures used in the

literature method.313

Having established that the reaction of [Pt(t-Bu-thixantphos)] with dioxygen is

not readily reversible, the reactivity of the coordinated dioxygen ligand was in-

vestigated. The platinum dioxygen complexes [Pt(η2-O2)(PR3)2] (PR3 = PCy3,

PiPr3, PtBu2
nBu, PtBu2Me, PPh3) readily react with alkynes showing 1,2-addition

of the dioxygen across the triple bond forming metallacyclic compounds.309 Re-

action of [Pt(t-Bu-thixantphos)(η2-O2)] with ethyne showed no reaction after two

days at room temperature. The absence of any reactivity may be due to the

inactivity of ethyne towards dioxygen complexes (the literature examples used

electron poor alkynes for this reaction), rather than any inherent stability of the

dioxygen complex.

Platinum dioxygen complexes can react with carbon monoxide to form carbon-

ate complexes and with carbon dioxide to form peroxycarbonates.302 No reaction

was observed between [Pt(t-Bu-thixantphos)(η2-O2)] and carbon dioxide, possi-

bly due to the steric demands of the t-Bu-thixantphos ligand. However, the re-

action with carbon monoxide proved to be more complex than those previously

reported, proceeding through several intermediates before forming a single sta-

ble species after seven days at room temperature. In order to assist in identifica-

tion of these intermediates, the reaction was repeated using 13C-enriched CO and

the reaction was followed by 1H, 13C and 31P NMR spectroscopy. However, due

to the complexity of the system, little information could be gained from the 1H

NMR spectra.

The first step in the reaction of [Pt(t-Bu-thixantphos)(η2-O2)] with carbon monox-



5.6. Reactions of [Pt( t-Bu-thixantphos)(η2-O2)] 127

ide results in the expected product, with the carbon monoxide inserting into the

O-O bond to form a κ
2O 1,O 2-carbonate ligand. The 13C NMR spectrum contains

a triplet peak at 167.9 ppm (J PC = 3.9 Hz) with platinum satellites (J PtC = 64.4 Hz).

The 31P NMR spectrum shows an associated peak at 15.6 ppm with J PtP of 4055

Hz. Previously, this reaction has been observed with [Pt(η2-O2)(PtBuPh2)2] and

[Pt(η2-O2)(PtBu2
nBu)2] which experienced upfield shifts of 9.7 and 16.3 ppm, and

a decrease in the value of J PtP by 364 and 330 Hz respectively upon reaction with

CO.302 In the t-Bu-thixantphos reaction an upfield shift of 22.8 ppm and a de-

crease in the value of J PtP of 433 Hz was observed. While the shift is greater than

expected for the t-Bu-thixantphos complex, the chemical shift of [Pt(η2-CO3)(PP)]

complexes with mono, or diphosphines varies substantially (-12.0–58.7 ppm),

and although reported coupling constants (3377–3697 Hz)16,302 are smaller than

for [Pt(t-Bu-thixantphos)(CO3-κ2O 1,O 2)] (4055 Hz) it has been shown through-

out this chapter that the t-Bu-xantphos platinum complexes typically have larger

J PtP values than other complexes of the same type.

The [Pt(t-Bu-thixantphos)(CO3-κ2O 1,O 2)] complex converts over the course of

several days into another intermediate. This intermediate has two different sig-

nals in the 31P NMR spectrum in a 1:1 ratio at 50.5 and -38.7 ppm with platinum

satellites of 1893 and 2854 Hz respectively. This shows a loss of the symmetry

of the t-Bu-thixantphos ligand with the two phosphorus atoms now appearing

in different environments. The large upfield shift (48.2 ppm from the free lig-

and) is typical for formation of a four-membered ring including the phosphorus

atom.314 The phosphorus atom at 50.5 ppm has a coupling constant indicative of

a trans ligand with a high trans-influence such as an alkyl group. From this a cis

arrangement of the phosphorus atoms with metallation of one of the tert-butyl

substituents creating an alkyl group trans to the non-metallated phosphorus can

be proposed. If metallation had occurred via a C-H activation an upfield signal in

the 1H NMR spectrum would be expected indicative of a platinum hydride. No

such peak was observed, instead a strongly downfield 1H signal was observed

at 17.6 ppm indicating the presence of an acidic proton. From this informa-

tion the conversion of the κ
2O 1,O 2-carbonate ligand into a κ

2O 1,O 2-bicarbonate

incorporating the hydrogen from the metallated tert-butyl group is proposed.

Unfortunately this complex is too short-lived to investigate by 13C NMR spec-

troscopy

The final product in the reaction of [Pt(t-Bu-thixantphos)(η2-O2)] with carbon
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monoxide forms by loss of carbon dioxide gas (observed in the 13C NMR spec-

trum) from the [Pt(t-Bu-thixantphos-H-κP,P’,C )(O2COH-κ2O 1,O 2)] complex. The

final product shows two peaks in the 31P NMR spectrum: one at -49.2 ppm (J PtP =

3943 Hz) and the other at 38.2 ppm (J PtP = 1794 Hz). This indicates the retention

of the t-Bu-thixantphos ligand with one metallated tert-butyl group from the bi-

carbonate complex. The platinum-phosphorus coupling constants show that the

non-metallated phosphorus is trans to the metallated tert-butyl group, while the

metallated phosphorus is trans to a ligand with a weak trans influence. This lig-

and is proposed to be a hydroxyl, as this would result from loss of CO2 from a

bicarbonate, and hydroxyl ligands have a low trans influence. The final product

shows a signal in the 13C NMR spectrum for the metallated carbon at 15.7 ppm

as a doublet of doublets with coupling of 81.6 Hz to the trans phosphorus and

35.6 Hz to the cis phosphorus, though no platinum satellites could be observed.

The position of this peak is consistent with other platinum alkyls that occur trans

to phosphorus.315–317 No signal for the hydroxyl proton was observed in the 1H

NMR spectrum, which may indicate exchange with a deuterium from the solvent

(CD2Cl2). The mass spectrum was also unable to confirm the presence of a hy-

droxyl ligand as a peak was observed for [M-OH]+, as transition metal complexes

frequently ionise by loss of weakly coordinated ligands.210 The overall reaction

showing the intermediates is given in Scheme 5.6.

The final two structures in the reaction of [Pt(t-Bu-thixantphos)(η2-O2)] with car-

bon monoxide (Scheme 5.6) are particularly noteworthy due to the cis coordi-

nation of the phosphines. Metallation of i -Pr-xantphos has been reported on

iridium81 with i -Pr-xantphos coordinating in a κP,P’,O,C mode. However, the

present example of [Pt(t-Bu-thixantphos-H-κP,P’,C )OH] is the only example of

κP,P’,C coordination of a xantphos ligand. Sterically bulky ligands show a dis-

tinct preference for trans coordination (discussed further in Chapter 6). The

metallacyclobutane must coordinate in two cis sites. However, the t-Bu-xant-

phos could still maintain a trans coordination. It is plausible that metallation of

the tert-butyl group relieves the steric constraints of the system allowing for cis

chelation of the phosphorus atoms. The P-Pt-C angle in the metallacyclobutane

is also likely to be less than 90◦ resulting in additional room around the platinum

centre.

Despite such unexpected chemistry with CO, [Pt(t-Bu-thixantphos)(η2-O2)] shows
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Scheme 5.6: Reaction between [Pt(t-Bu-thixantphos)(η2-O2)] and CO.

a distinct stability towards other small molecules. No reaction with ammonium

hexafluorophosphate or with methane was observed. However, a straightfor-

ward reaction does occur with pta. Pta is a phosphine ligand with a very small

cone angle making it an ideal choice to react with the sterically encumbered sys-

tem.318 Addition of pta to a solution of [Pt(t-Bu-thixantphos)(η2-O2)] showed im-

mediate changes in the 31P NMR spectrum, with new peaks appearing at 9.5 and

-74.1 ppm (J PtP = 3562 Hz). The peak at 9.5 ppm did not show any coupling to

platinum and is consistent with an uncoordinated t-Bu-thixantphos ligand. The

peak at -74.1 ppm is consistent with the literature reported [Pt(pta)4] complex.319

The 1H and 13C NMR data confirm these assignments. No intermediates were ob-

served due to the speed of the reaction. This suggests that pta is able to displace

both the dioxygen and the t-Bu-thixantphos ligand from the platinum, and thus

is too reactive to gain any insight into the activation of the dioxygen moiety.
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5.7 Reactions with Palladium(0) Precursors

Platinum complexes are frequently synthesised as models for the analogous pal-

ladium species as they are frequently more stable, and the presence of 195Pt allows

for additional information in the NMR spectra, which can be useful in character-

isation. However, palladium complexes are of particular interest due to their

use in a wide range of catalytic processes. These systems often involve both

palladium(0) and palladium(II) complexes. A number of papers regarding the

catalytic activity of palladium t-Bu-xantphos systems have also been reported

though no investigation into the coordination chemistry has been published. As

such, the reactivity of the t-Bu-xantphos ligands towards palladium(0) starting

materials was investigated. All reactions discussed in this section were carried

out on an NMR scale.

Initial investigations focussed on the reactivity of t-Bu-thixantphos towards pal-

ladium(0) precursors commonly used in catalysis. Allyl-(cyclopentadienyl)pal-

ladium(II) [Pd(C3H5)Cp] can react with phosphine ligands to give palladium(0)

complexes. The reaction between t-Bu-thixantphos and [Pd(C3H5)Cp] in C6D6

was slow. After 24 hours at room temperature no changes in the NMR spectra

were observed. After 48 hours at 50 ◦C no unreacted t-Bu-thixantphos was ob-

served in the 31P NMR spectrum. However, the 31P and 1H NMR spectra showed

a number of different products, which were unable to be separated or analysed

further.

[Pd2(dba)3] (dba = dibenzylideneacetone) is another common palladium(0) com-

plex used as a precatalyst. The reaction between t-Bu-thixantphos and [Pd2(dba)3]

generated a mixture of products. However, a single major product was observed

at 40.0 ppm in the 31P NMR spectrum (C6D6), after heating at 40 ◦C for four days.

The major product integrated for 67% of the 31P containing species while uncoor-

dinated t-Bu-thixantphos accounted for 17% of the reaction mixture. The species

was not [Pd(t-Bu-thixantphos)] (this will be discussed shortly). However, the

product was unable to be isolated from the reaction mixture and the presence of

large amounts of uncoordinated dba hampered the further characterisation of this

species. It is possible that the species was [Pd(t-Bu-thixantphos)(dba)] although

little evidence to support this could be obtained.

Platinum alkene complexes, such as the air-stable solids [Pt(cod)2] and [Pt(nb)3],
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make excellent starting materials for the formation of platinum(0) complexes.291,299

Although [Pt(C2H4)3] is only stable under an ethene atmosphere it is readily syn-

thesised in situ, via reaction of ethene with [Pt(cod)2].320 Unfortunately the cor-

responding palladium complexes are typically unstable at room temperature in

solution and are not practical to be used as starting materials.321 However, given

the slow reactivity of t-Bu-thixantphos with [Pd(C3H5)Cp] and [Pd2(dba)3], cou-

pled with the desire to investigate the analogues of the platinum alkene com-

plexes discussed earlier, the reactivity of t-Bu-thixantphos towards [Pd(nb)3] was

studied. [Pd(nb)3], like other palladium alkene complexes, is unstable in solu-

tion, with significant degradation observed at room temperature.321 However,

the amount of degradation can be reduced by addition of excess norbornene to

the reactions.

Reaction of t-Bu-thixantphos with [Pd(nb)3] was rapid compared to the other

palladium(0) starting materials, going to completion in 72 hours at room temper-

ature. The reaction formed a mixture of [Pd(t-Bu-thixantphos)(nb)] (38.0%) and

[Pd(t-Bu-thixantphos)] (62.0%). As such, the reaction was also carried out with t-

Bu-sixantphos and t-Bu-xantphos. The reaction of t-Bu-xantphos with [Pd(nb)3]

was complete in under one hour forming a mixture including, [Pd(t-Bu-xant-

phos)(nb)] (12.6%) and [Pd(t-Bu-xantphos)] (73.1%). Using t-Bu-sixantphos re-

sulted in only 43.4% product in the 31P NMR spectrum after 24 hours (the remain-

der being free ligand). No further progress in the reaction between t-Bu-sixant-

phos and [Pd(nb)3] was observed by NMR spectroscopy after 48 hours. However,

after five months at room temperature the reaction had progressed to 68% com-

plex indicating that the lack of reactivity was not necessarily due to degradation

of the [Pd(nb)3].

The major products from the reaction of the t-Bu-xantphos ligands with [Pd(nb)3]

appear at 41.9–42.9 ppm in the 31P NMR spectra. Given the similarity in the
31P chemical shift and the inability to isolate the t-Bu-sixantphos and t-Bu-xant-

phos complexes, the t-Bu-thixantphos complex was the only product explored

in depth. Once the product was formed, the norbornene was removed under

vacuum with no degradation of the resulting complex. The complex displays no

resonances in the 1H and 13C NMR spectra apart from those corresponding to

a coordinated t-Bu-thixantphos ligand. The quarternary and terminal tert-butyl

carbon and proton signals appear as virtual triplets, consistent with a trans co-

ordination of phosphorus atoms. Hence, the complexes formed in these three
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reactions are [Pd(t-Bu-xantphos)] species (Scheme 5.7).

O

X

tBu2P PtBu2

RR

Pd

O

X

tBu2P PtBu2

RR

(i)

Scheme 5.7: Formation of the major product in the reaction between the t-Bu-

xantphos ligands and [Pd(nb)3]. Reagents and conditions: (i) [Pd(nb)3], C6D6.

5.7.1 Reaction of [Pd(t -Bu-thixantphos)] with Oxygen

The [Pt(t-Bu-thixantphos)] complex reacts rapidly and irreversibly with dioxy-

gen to form [Pt(t-Bu-thixantphos)(η2-O2)] (Section 5.5). Previous examples have

indicated that the coordination of dioxygen to palladium is frequently reversible

even if the platinum analogue is not.307 Reaction of [Pd(t-Bu-thixantphos)] with

oxygen occurs rapidly forming a green [Pd(t-Bu-thixantphos)(η2-O2)] complex.

The 31P NMR spectrum shows a smaller change in chemical shift than is observed

with the platinum analogue (9.1 compared to 40.2 ppm) and the shift is downfield

rather than upfield as in the platinum case. This is likely due to marked differ-

ences in the 14-electron complexes rather than the dioxygen complexes as the 31P

NMR signal for [Pt(t-Bu-thixantphos)] appears at 78.6 ppm, whereas the signal

for [Pd(t-Bu-thixantphos)] is at 42.9 ppm. The tert-butyl signals in the 1H and 13C

NMR spectra of [Pd(t-Bu-thixantphos)(η2-O2)] appear as doublets indicating the

loss of the trans arrangement of the phosphorus atoms.

The reaction of [Pd(t-Bu-thixantphos)] with dioxygen was observed to be read-

ily reversible. Removal of the solvent from the NMR sample under vacuum for

a few minutes was sufficient for the dioxygen to dissociate and undergo com-

plete reversion to [Pd(t-Bu-thixantphos)]. This is consistent with the literature,

which indicates that coordination of dioxygen to palladium complexes is typi-

cally reversible.307 This may be due to the reduced back-bonding of palladium

compared to platinum, which results in less activation of the O-O bond upon co-

ordination, such that on palladium the dioxygen is more like a neutral O2 ligand,
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whereas on platinum the dioxygen becomes more like a peroxy O2
2–.

5.8 Computational Results

It has been observed throughout this chapter that the differences in the coordina-

tion chemistry of the three t-Bu-xantphos ligands with platinum and palladium is

subtle, often forming mixtures of products and some readily reversible systems.

However, a number of the complexes were unable to be isolated and fully charac-

terised. As such, we have investigated the conversion of the [M(t-Bu-xantphos)]

complexes to [M(t-Bu-xantphos)(nb)] or [M(t-Bu-xantphos)(η2-O2)] (M = Pd, Pt)

using DFT. Structural models of the complexes were optimised and their vibra-

tional frequencies calculated using a B3LYP functional,131–134 with the def2-TZVP

basis set.135,136

Selected bond lengths and angles are given in Tables 5.8, 5.9 and 5.10 for [M(t-Bu-

xantphos)], [M(t-Bu-xantphos)(nb)] and [M(t-Bu-xantphos)(η2-O2)] respectively.

The P-M-P angles are larger in the [M(t-Bu-xantphos)] complexes than in the

[M(t-Bu-xantphos)(nb)] and [M(t-Bu-xantphos)(η2-O2)] as expected. However,

the P-M-P angles in the [M(t-Bu-xantphos)] complexes are smaller than the ide-

alised 180◦ expected for a two-coordination platinum(0) complex. The rigid back-

bone of the t-Bu-xantphos ligands likely prevents larger bite-angles from form-

ing without introducing coordination to the oxygen bridge in the backbone. In

this case the M-O distances are larger than expected for Pt-O or Pd-O bonds,

indicating that no bonding interaction is present. The C=C and O-O distances

for the norbornene in [M(t-Bu-xantphos)(nb)] and the dioxygen in [M(t-Bu-xant-

phos)(η2-O2)] are longer on platinum than palladium, consistent with the higher

π-aciditiy of platinum compared to palladium.280

The Gibbs free energies of the complexes were calculated and the values of ∆G

for the reaction of the [M(t-Bu-xantphos)] (M = Pd, Pt) complexes with nor-

bornene were calculated (Table 5.11). The value of ∆G for the reaction between

the [M(t-Bu-xantphos)] complexes and norbornene is positive, indicating that

the reaction would not occur spontaneously and the 14-electron complex is the

lower energy system. This is consistent with the experimental results for the pal-

ladium complexes. However, in the platinum system mixtures of the norbornene

and the 14-electron complexes were observed for both t-Bu-sixantphos and t-
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Table 5.8: Calculated bond lengths and angles for [M(t-Bu-xantphos)].

Ligand P-Pt-P/◦ P-Pd-P/◦ Pt-O/ Å Pd-O /Å

t -Bu-Sixantphos 152.5 150.2 2.7982 2.7954

t -Bu-Thixantphos 151.8 149.4 2.8290 2.8283

t -Bu-Xantphos 151.5 149.3 2.7791 2.7723

Table 5.9: Calculated bond lengths and angles for [M(t-Bu-xantphos)(nb)].

Ligand P-Pt-P/◦ P-Pd-P/◦ C−−C (Pt) /Å C−−C (Pd) /Å

t -Bu-Sixantphos 114.8 115.4 1.4359 1.4055

t -Bu-Thixantphos 115.6 116.2 1.4353 1.4046

t -Bu-Xantphos 116.0 116.6 1.4355 1.4055

Table 5.10: Calculated bond lengths and angles for [M(t-Bu-xantphos)(η2-O2)].

Ligand P-Pt-P/◦ P-Pd-P/◦ O-O (Pt) /Å O-O (Pd) /Å

t -Bu-Sixantphos 115.3 118.7 1.4083 1.3714

t -Bu-Thixantphos 116.8 118.6 1.4078 1.3710

t -Bu-Xantphos 117.2 119.6 1.4070 1.3705
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Bu-thixantphos. In the case of t-Bu-xantphos, the [Pt(t-Bu-xantphos)] complex

was formed initially but this converted to [Pt(t-Bu-xantphos-κP,O,P ’)H]+. This

hydride complex is likely the result of the 14-electron complex undergoing reac-

tion with another component of the system. Although the [Pt(t-Bu-xantphos)]

complexes are formed as the major products experimentally, an equilibrium with

the norbornene complex is likely present. These calculations do not take into ac-

count the effect of having a large excess of norbornene present in solution, which

may result in an equilibrium between the [Pt(t-Bu-xantphos)] and [Pt(t-Bu-xant-

phos)(nb)] complexes.

The values for the Gibbs free energies of the [M(t-Bu-xantphos)(η2-O2)] (M = Pd,

Pt) complexes were also calculated together with the ∆G values for their forma-

tion from the [M(t-Bu-xantphos)] complexes (Table 5.12). All of the ∆G values

are negative, indicating that the formation of the dioxygen complex is sponta-

neous. The ∆G values for the palladium complexes are more negative than the

platinum ones. This suggests that the palladium complexes should be more stable

than the platinum system to reversibility. However, this was not observed experi-

mentally for the t-Bu-thixantphos system where the platinum dioxygen complex

was very stable and the palladium dioxygen complex readily converted to the

[Pd(t-Bu-thixantphos)] species. From Table 5.10 we can see that the P-M-P angle

is consistently larger in the palladium complexes than the platinum, while the

O-O bond length is smaller for the palladium complexes. This suggests that there

is less back-donation from the metal centre into the oxygen π∗-orbital. Hence, the

dioxygen ligand on palladium is less strongly coordinated than on platinum and

may have a lower activation barrier towards dissociation.

5.9 Summary

Ph-Thixantphos was shown to react with [Pt(nb)3] and [Pt(C2H4)3] forming [Pt(Ph-

thixantphos)2] as the major product in both 1:1 and 2:1 reactions. [Pt(Ph-thixant-

phos)(alkene)] (alkene = nb, C2H4) were present as minor components in the

1:1 reactions. [Pt(Ph-thixantphos)] was characterised by X-ray crystallography

showing a tetrahedral environment around the platinum. The 1H and 31P NMR

spectra of [Pt(Ph-thixantphos)] at room temperature are broad, possibly due to

inversion of the backbone. However, cooling to -40 ◦C resolved a pair of triplets
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Table 5.11: Gibbs free energies calculated for reaction of [M(t-Bu-xantphos)] with norbornene (M = Pd, Pt). All values are

in kJ mol−1, Norbornene G = -715998.2 kJ mol−1.

PP [Pd(PP)] [Pd(PP)(nb)] Pd ∆G [Pt(PP)] [Pt(PP)(nb)] Pt ∆G

t -Bu-Sixantphos -6163451.1 -6879350.9 98.4 -6140995.8 -6856897.4 96.6

t -Bu-Thixantphos -6445645.2 -7161551.4 92.1 -6423187.2 -7139098.3 87.1

t -Bu-Xantphos -5503258.5 -6219169.0 87.8 -5480799.2 -6196709.7 87.7
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Table 5.12: Gibbs free energies calculated for reaction of [M(t-Bu-xantphos)] with oxygen (M = Pd, Pt). All values are in

kJ mol−1 oxygen G = -394857.8 kJ mol−1.

PP [Pd(PP)] [Pd(η-O2)(PP)] Pd ∆G [Pt(PP)] [Pt(η-O2)(t -Bu-xantphos)] Pt ∆G

t -Bu-Sixantphos -6163451.1 -6558323.8 -14.8 -6140995.8 -6535862.4 -8.8

t -Bu-Thixantphos -6445645.2 -6840520.9 -17.8 -6423187.2 -6818062.4 -17.4

t -Bu-Xantphos -5503258.5 -5898134.9 -18.6 -5480799.2 -5875674.2 -17.2
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with platinum satellites.

No evidence for a bis(diphosphine) complex was observed in the reactions of

the t-Bu-xantphos ligands with [Pt(nb)3], [Pt(cod)2],[Pt(C2H4)3], and [Pd(nb)3]

starting materials. Reaction with [Pd(nb)3] formed mixtures with [Pd(t-Bu-xant-

phos)] as the major product. Similarly, reaction of t-Bu-thixantphos with [Pt(nb)3]

formed a mixture of [Pt(t-Bu-thixantphos)] and [Pt(t-Bu-thixantphos)(nb)]. Ana-

logues of these two complexes were also observed in the analogous reaction

with t-Bu-sixantphos, in addition to an unknown complex with a coupling con-

stant indicative of platinum(II). The reaction between [Pt(nb)3] and t-Bu-xant-

phos formed [Pt(t-Bu-xantphos)] as a minor component which converted into

[Pt(t-Bu-xantphos)H]X.

The reactions of the t-Bu-xantphos ligands with [Pt(C2H4)3] resulted in [Pt(t-

Bu-xantphos)(C2H4)] complexes. [Pt(t-Bu-xantphos)(C2H4)] went on to produce

[Pt(t-Bu-xantphos)H]X. Reacting t-Bu-thixantphos with [Pt(cod)2] formed only

[Pt(t-Bu-thixantphos)], though the yield was low due to degradation.

[Pd(t-Bu-thixantphos)], [Pt(t-Bu-thixantphos)], and [Pt(t-Bu-thixantphos)(C2H4)]

all react rapidly with air forming [M(t-Bu-thixantphos)(η2-O2)] (M = Pd, Pt). With

palladium this reaction was readily reversibly in a few minutes under vacuum.

On platinum the coordination of oxygen was not reversible either by vacuum, or

reaction with C2H4 or H2. [Pt(t-Bu-thixantphos)(η2-O2)] was characterised by X-

ray crystallography, displaying a planar molecule with a bent t-Bu-thixantphos

backbone. The bite-angle was 117.26(5), smaller than the natural bite-angle of

(126.98◦), but the largest P-Pt-P angle of the five [Pt(η2-O2)(P2)] complexes that

have been characterised crystallographically.

[Pt(t-Bu-thixantphos)(η2-O2)] was tested for reactivity towards a range of differ-

ent small molecules. No reaction was observed with ethyne, ammonium hexaflu-

orophosphate or carbon dioxide. Reaction with the small phosphine pta produce

uncoordinated t-Bu-thixantphos and [Pt(pta)4], going to completion when four

equivalents of pta were used. Reaction of [Pt(t-Bu-thixantphos)(η2-O2)] with car-

bon monoxide initially formed the expected carbonate complex. However, this

continued to react, undergoing metallation of a tert-butyl methyl to form a bicar-

bonate, which loses carbon dioxide leaving a hydroxyl ligand coordinated to the

platinum centre.
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The [M(t-Bu-xantphos)], [M(t-Bu-xantphos)(nb)], and [M(t-Bu-xantphos)(η2-O2)]

(M = Pd, Pt) complexes were explored computationally. The O-O bond were

longer in the platinum complexes than in the palladium, which may explain the

ready dissociation of the dioxygen from the palladium complex while the plat-

inum complex was not reversible. The ∆G values for the formation of the nor-

bornene and the dioxygen complexes from the 14-electron complexes were also

calculated. The results indicated that the formation of the dioxygen complex is

spontaneous, although the formation of the norbornene complex from the [Pt(t-

Bu-xantphos)] complexes is not. While this does not take into account the effect

of having excess norbornene in solution which may effect the position of the equi-

librium.

Overall this chapter provides an account into the coordination chemistry of t-

Bu-sixantphos, t-Bu-thixantphos, and t-Bu-xantphos with platinum(0) and palla-

dium(0) and the reactivity of Ph-thixantphos towards [Pt(nb)3] and [Pt(C2H4)3].

Several new complexes have been synthesised including two characterised by X-

ray crystallography. In a number of cases the reactivity of the three t-Bu-xantphos

ligands was different, indicating the role of the bite-angle on the coordination

chemistry of these compounds.
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Chapter 6

Coordination Complexes with

Platinum(II) and Palladium(II)

Coordination complexes of palladium are used as catalysts for a wide range of re-

actions including cross-coupling, allylic alkylation and various carbonylation re-

actions, which are important on both laboratory and industrial scales.6,32,149,273–279

The high reactivity of palladium complexes can render them difficult to charac-

terise and study. Platinum and palladium have similar overall reactivity patterns.

However, platinum complexes are typically more inert than their corresponding

palladium analogues to processes such as ligand exchange and redox changes.280

The presence of a spin active isotope 195Pt (34% abundant) can result in coupling

in the NMR spectra, which can give additional information about the nature of

the complexes. This makes platinum a useful model for the chemistry of palla-

dium.

Seven reports have been published investigating the catalytic activity of palla-

dium complexes using t-Bu-xantphos. These include the N-arylation and alky-

lation of amines, cross-coupling of thiols and aryl bromides or triflates, Suzuki

cross-coupling, hydroesterificaton of methyl oleate, aminocarbonylation of het-

ero(aryl) bromides, and the methylation of alkynyl C-H bonds with dimethyl

sulfonium ylides.84,87,93–95,97,98 In the N-arylation of heterocyclic diamines the t-

Bu-xantphos system showed little activity (< 1%), whereas the Ph-xantphos sys-

tem was more successful (40%).87 In the N-alkylation of aniline with benzyl alco-

hol the t-Bu-xantphos system gave 100% conversion at 100 ◦C while the Ph-xant-

phos reaction at 110 ◦C only gave 63%.94 The cross-coupling of butane thiol with

141
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phenyl triflates in xylene at 140 ◦C produced only trace amounts of the product

using t-Bu-xantphos while an 80% yield was obtained with Ph-xantphos.84 The

Ph-xantphos complex was also more reactive in the Suzuki cross-coupling of 2-

(4-bromophenyl)-5-chloropyrazine with a benzimidazole boronic ester giving a

83% yield compared to only 5% with t-Bu-xantphos.97 The same lack of activity

was observed for the hydroesterification of methyl oleate, with no conversion ob-

tained for t-Bu-xantphos compared to 70% for Ph-xantphos. In the methylation

of alkynyl C-H bonds with dimethyl sulfonium ylides, the t-Bu-xantphos ligand

produced a greater yield than the Ph-xantphos ligand (46% compared to 15%).95

Together, these studies suggest differences in the coordination chemistry and re-

activity of the t-Bu-xantphos and Ph-xantphos ligands. However, little research

into the coordination chemistry of t-Bu-xantphos has been performed.

Only two palladium complexes of t-Bu-xantphos have been reported. The X-

ray crystal structure of [Pd(t-Bu-xantphos)Cl2] was reported to the CSD in 2011

(CSD-XARXAR),68 however a research paper including synthetic details has not

been published. The crystal structure (Figure 6.1) has three molecules in the

asymmetric unit each showing a distorted trans geometry with P-Pd-P angles

of 160.59(4), 161.97(3) and 161.31(4)◦. These are larger than the 100.61(5) and

100.92(7)◦ for [Pd(Ph-xantphos)Cl2] with different solvates.68,145,281 The difference

in the bite-angles and geometries of the complexes that form may explain the dif-

ference in the catalytic reactivity of the complexes. The other complex reported

for t-Bu-xantphos showed an unusual monodentate coordination mode (Figure

6.2).93 This is not a common coordination mode for the xantphos ligands and the

same complex was also formed with Ph-xantphos. In an aminocarbonylation re-

action the Ph-xantphos complex gave a 92% isolated yield, while no product was

observed using the t-Bu-xantphos system. The reason for this difference was not

addressed in the publication.

Metal halide complexes are ubiquitous in coordination chemistry. They form a

number of complexes that are active catalysts, and are widely used as starting

points for the synthesis of more complex systems. Platinum halide complexes are

also of interest due to their potential as chemotherapeutics. Complexes such as,

cis-platin [PtCl2(NH3)2] and its derivatives are now an important part of several

treatment protocols and have improved the prognosis for many cancer patients,

for example, the cure rate of testicular cancer has increased from less than 10% to

over 90%.3
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Figure 6.1: X-ray crystal structure of [Pd(t-Bu-xantphos)Cl2] (CSD-XARXAR).68

Hydrogen atoms and solvent of crystallisation omitted for clarity.

NHMe

Pd
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OMs
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Figure 6.2: Previously reported palladium complex with PP = t-Bu-xantphos or

Ph-xantphos.93
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The coordination chemistry of Ph-xantphos on palladium has been the subject of

a number of studies,73–75,79,115,282,283 though few have investigated the coordina-

tion chemistry with platinum. Catalytic systems frequently involve palladium in

both the 0 and +2 oxidation states, hence it is important that both are studied.31

Investigation into the coordination chemistry of the t-Bu-xantphos ligands with

platinum and palladium(0) was reported in Chapter 5. This chapter will present

work on the coordination chemistry of the three t-Bu-xantphos ligands with plat-

inum and palladium(II) in order to investigate the differences and similarities in

the chemistry of the t-Bu-xantphos ligands with the Ph-xantphos ligands.

6.1 Reactions with Platinum Dichloride Starting

Materials

The reactivity of the t-Bu-xantphos ligands towards platinum dichloride start-

ing materials was initially investigated by studying the reaction of t-Bu-thixant-

phos with a range of different starting materials in both cis and trans geome-

tries: [PtCl2(hex)], (hex = hexa-1,5-diene) cis-[PtCl2(SEt2)2], cis-[PtCl2(MeCN)2],

trans-[PtCl2(MeCN)], and trans-[PtCl2(tBuCN)2]. In a number of cases, the re-

action was very slow and protonation of the t-Bu-thixantphos ligand occurred

faster than the formation of a platinum complex. If a platinum complex was pro-

duced, it was the same species irrespective of the starting material or conditions

of the reaction. The most successful result went to completion after 72 hours

in toluene at 50 ◦C using [PtCl2(hex)], which contains a readily displaced diene

ligand. In C6D6 the product appears in the 31P NMR spectrum as a singlet at

32.9 ppm with a J PtP value of 2700 Hz. The value of the one-bond phosphorus-

platinum coupling constant can give important information regarding the geom-

etry of the complex. In particular, the value of J PtP is highly dependent on the

trans-influence of the ligand trans to the phosphorus atom.16 A value of 2700Hz

for J PtP is characteristic of mutually trans phosphorus atoms, rather than phos-

phorus trans to a chloride (J PtP = 3200–3800 Hz).252,253,322 Hence, the product of

the reaction between t-Bu-thixantphos and [PtCl2(hex)] is trans-[Pt(t-Bu-thixant-

phos)Cl2] (Scheme 6.1).

[Pt(t-Bu-thixantphos)Cl2] is dark red in both C6D6 solution and the solid state.
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Scheme 6.1: Synthesis of [Pt(t-Bu-thixantphos)Cl2]. Reagents and conditions: (i)

toluene, 50 ◦C, 3 days.

This is unusual as platinum dichloride complexes are typically pale, or yellow in

colour. Indeed the previously reported [Pt(Ph-xantphos)Cl2] complex is a white

solid.86 This suggests that [Pt(t-Bu-thixantphos)Cl2] is unusual from an electronic

perspective, which may be the result of a strained coordination geometry.

Dark red crystals of [Pt(t-Bu-thixantphos)Cl2] suitable for X-ray diffraction were

grown by inwards diffusion of diethyl ether into a dichloromethane solution of

the complex. The structure is shown in Figure 6.3, with a side-on view in Fig-

ure 6.4. The complex crystallises in the monoclinic crystal system in the space

group P21/c. Selected bond lengths and angles are given in Table 6.1, and the

crystallographic data is given in Table 6.2.

Table 6.1: Selected bond distances (Å) and angles (◦) of [Pt(t-Bu-thixantphos)Cl2].

Bond distances (Å) Bond angles (◦)

P1...P2 4.5037(6) P1-Pt-P2 151.722(15)

P1-Pt 2.3205(4) Cl1-Pt-Cl2 164.235(15)

P2-Pt 2.3239(4) P1-Pt-Cl1 87.11(15)

Pt-Cl1 2.3209(4) P1-Pt-Cl2 95.939(16)

Pt-Cl2 2.3098(4) P2-Pt-Cl1 86.699(14)

Pt...O 2.8016(11) P2-Pt-Cl2 96.917(15)

Ring 1-Ring 2 139.11(6)

The crystal structure of [Pt(t-Bu-thixantphos)Cl2] (Figure 6.3) is distorted from

the square-planar geometry typically observed for Pt(II) complexes. The τ5 pa-
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Figure 6.3: X-ray crystal structure of [Pt(t-Bu-thixantphos)Cl2] (50% probability

thermal ellipsoids). Hydrogen atoms omitted for clarity.

Figure 6.4: X-ray crystal structure of [Pt(t-Bu-thixantphos)Cl2], side view (50%

probability thermal ellipsoids). Hydrogen atoms omitted for clarity.
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Table 6.2: Crystallographic data and structure refinement of [Pt(t-Bu-thixant-

phos)Cl2].

Empirical formula C30H46Cl2OP2PtS

Formula weight 782.66

Temperature/K 284.87(10)

Crystal system monoclinic

Space group P21/c

a/Å 15.26769(8)

b/Å 10.98650(7)

c/Å 19.05134(13)

α/◦ 90

β/◦ 95.2318(5)

γ/◦ 90

Volume/Å3 3182.33(3)

Z 4

ρcalc mg/mm3 1.634

µ/mm 4.766

F(000) 1568.0

Crystal size/mm 0.27 x 0.14 x 0.08

Radiation MoKα (λ = 0.71073)

2θ range for data collection 5.264 to 75.522◦

Index ranges -25 ≤ h ≤ 25, -15 ≤ k ≤ 18, -32 ≤ l ≤ 31

Reflections collected 49341

Independent reflections 16242 [Rint = 0.0277, Rsigma = 0.0333]

Data/restraints/parameters 16242/0/348

Goodness-of-fit on F2 1.076

Final R indexes [I>=2σ (I)] R1 = 0.0240, wR2 = 0.0445

Final R indexes [all data] R1 = 0.0351, wR2 = 0.0486

Largest diff. peak/hole / e Å−3 1.46/-1.27
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rameter has been used for many years to describe the shapes of five-coordinate

complexes.323 In 2007 a related τ4 parameter was introduced to describe the dis-

tortion of four-coordinate copper complexes between the ideal tetrahedral and

square planar geometries.324 The parameter is defined in Equation 6.1 where α

and β are the two largest L-M-L angles in the four-coordinate complex. The value

of τ4 vary between 0 for an ideal square-planar complex to 1 for a tetrahedral

complex. Using the two largest angles for [Pt(t-Bu-thixantphos)Cl2] (P1-Pt-P2 =

151.722 and Cl1-Pt-Cl2 = 164.235) gives a value for τ4 of 0.31. This indicates severe

distortion from the expected square-planar geometry with the structure closest to

a seesaw geometry.

τ4 =
360− (α + β)

141
(6.1)

The bite-angle of the t-Bu-thixantphos ligand is 151.722(15)◦ in [Pt(t-Bu-thixant-

phos)Cl2], which is significantly larger than the natural bite-angle determined by

DFT (126.98◦, Section 2.2). This deviation is likely due to the influence of the

platinum centre, which prefers a coordination geometry close to square-planar.

The bite-angle is unusual for complexes of the type [Pt(PP)Cl2], where PP is ei-

ther two monophosphine ligands or one diphosphine ligand. A search of the

CSD showed that the P-Pt-P angles of these complexes are very bi-modal, show-

ing clear preference for the cis 90◦ or the trans 180◦ (Figure 6.5).68 The t-Bu-

thixantphos angle (151.722(15)◦) is situated between these two regions, with the

closest bis-monophosphine complex at 167.261, and the closest chelating diphos-

phine at 171.9(4)◦. Seven other trans-dichloridoplatinum complexes which have

chelating diphosphines have been reported (Figure 6.6).33,325–330 All of these have

larger P-Pt-P angles than the t-Bu-thixantphos complex (171.9(4)–180.00(0)◦). The

chelate ring size for these molecules (Figure 6.6) ranges from 10–14 atoms, with

the cyclodextrin-derived system having a ring size of 21 atoms (Figure 6.6g). In

contrast, the t-Bu-thixantphos chelate ring contains only 8 atoms. This relatively

small chelation ring size, combined with the rigidity of the backbone is likely the

reason for the distortion around the platinum centre as the trans chelation puts

strain on the t-Bu-thixantphos ligand.

The P-Pt-P angle of [Pt(t-Bu-thixantphos)Cl2] (151.722(15)◦) is much larger than

in the closest cis-[PtCl2(P2)] (P2 = chelating diphosphine) complexes (113.39(3))◦
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Figure 6.5: Distribution of the P-Pt-P angles in crystal structures of [PtCl2(P2)]

where P = tertiary phosphine ligand, P2 = chelating diphosphine ligand.

and 113.43(6)◦). Both of these complexes contain xantphos ligands, indicating

that the rigid xantphos backbone plays a role in forming species with larger

bite-angles.331,332 In addition to the two already mentioned, three other crystal

structures for [PtCl2(xantphos)] complexes have been reported (Figure 6.7).333–335

These complexes have crystallographically determined bite-angles of 99.17(3),

99.64(4) and 100.87(8)◦. Although these are all cis dichloride complexes it can

be seen that the xantphos ligands have access to larger bite-angles than the ideal

90◦ of the square-planar platinum(II) complexes. In [Pt(t-Bu-thixantphos)Cl2] it

is likely that the trans coordination of the chloride ligands is the result of the in-

creased steric demand of the tert-butyl substituents, which results in the larger

observed bite-angle.

The angle of the coordination plane relative to the backbone of the [PtCl2(xant-

phos)] complexes appears to be related to the bite-angle. The three xantphos

complexes with bite-angles of 99–100◦ (Figure 6.8) have a coordination plane



150 Chapter 6. Platinum(II) and Palladium(II) Complexes

(a) 10 atoms, 171.9(4)◦ 33 (b) 14 atoms, 172.25(4)◦ 329

(c) 14 atoms, 173.01(6)◦ 328 (d) 12 atoms, 174.9(3)◦ 327

(e) 12 atoms, 177.1(3)◦ 325 (f) 10 atoms, 177.77(6)◦ 330 (g) 21 atoms, 180.00(0)◦ 326

Figure 6.6: X-ray crystal structures of dichloridoplatinum complexes with trans-

spanning diphosphine ligands. The values given are the P-Pt-P angles.
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(a) 99.17(3)◦ 334 (b) 99.64(4)◦ 333

(c) 100.87(8)◦ 335 (d) 113.39(3)◦ 332

(e) 113.43(6)◦ 331

Figure 6.7: X-ray crystal structures of complexes of the type [PtCl2(xantphos)].

The P-Pt-P angle is indicated.
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that is almost perpendicular to the plane of the xantphos backbone (105.90(12)◦,

74.42(13)◦ and 77.0(4)◦). In contrast, the two xantphos complexes with bite-angles

of 113.39(3) and 113.43(6)◦ show coordination planes that are in-line with the

xantphos backbone (176.9(2)◦ and 178.63(10)◦). This is likely the result of the

cyclic bulky substituents on the phosphorus atoms of these complexes. In con-

trast, the [Pt(t-Bu-thixantphos)Cl2] complex, with a much larger bite-angle of

151.722(15)◦, shows an angle of 140.48(5)◦ between the P-Ar bonds and the Pt co-

ordination plane. This shows the marked difference between the [Pt(t-Bu-thixant-

phos)Cl2] complex and the other [PtCl2(xantphos)] complexes. The change in the

position of the coordination plane relative to the backbone is due to the bulky

tert-butyl-substituents causing a distorted trans coordination geometry. In all of

the xantphos crystal structures the ligand backbone is bent, which is clear in the

side-on view (Figures 6.4 and 6.8). This bending results in a concave face that

is less sterically hindered than the convex face. Hence the coordination plane

tilts such that the chloride on the concave face is closer to the backbone than the

chloride on the convex face.

While the geometry of [Pt(t-Bu-thixantphos)Cl2] is unusual when compared to

other platinum complexes, there are 805 bis-phosphine dichloridopalladium com-

plexes in the CSD, with 18 of these having P-Pd-P angles between 150 and 167◦

(no platinum complexes of this type with a bite-angle in this region have been

reported).68 All of these complexes include diphosphine ligands, indicating the

importance of the ligand in controlling the coordination geometry of the complex.

Of particular interest is the structure of [Pd(t-Bu-xantphos)Cl2].68 This structure

has three distinct molecules of [Pd(t-Bu-xantphos)Cl2] within the unit cell, with

bite-angles of 152.30(4), 152.91(4) and 152.83(4)◦. These are all slightly larger than

the P-Pt-P angle in [Pt(t-Bu-thixantphos)Cl2], which is expected due to the larger

natural bite-angle of t-Bu-xantphos. In other respects the crystal structures are

very similar.

The bond lengths for the coordinating atoms in [Pt(t-Bu-thixantphos)Cl2] are all

close to the average values determined from the Cambridge Crystallographic

Data Centre (Table 6.1). The Pt-O distance is 2.8016(11) Å, significantly longer

than the average reported Pt-O bond length (2.053 Å) indicating that there is no

interaction between the two atoms. However, this is shorter than the five other

complexes with xantphos derived backbones (3.174-3.466 Å) indicating that there

is a relationship between the bite-angle of the diphosphine and the proximity of
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(a) 105.90(12)◦ 334 (b) 74.42(13)◦ 333 (c) 77.0(4)◦ 335

(d) 178.63(10)◦ 332 (e) 176.9(2)◦ 331

Figure 6.8: Side-on view of X-ray crystal structures of complexes of the type

[PtCl2(xantphos)] showing the coordination plane relative to the xantphos back-

bone. The value of the angle between the mean coordination plane and the P-

backbone bond is given beneath each structure.
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the oxygen atom.

The 1H and 13C NMR spectra of trans-[Pt(t-Bu-thixantphos)Cl2] in C6D6 show

two different sets of tert-butyl carbon and proton resonances. One of the sets

appears as clearly resolved virtual triplets for both carbon environments and the

proton environment. The other set has a well resolved virtual triplet for the qua-

ternary carbon, whereas the other carbon and the proton signal are broad sin-

glets. The reason for the appearance of two different tert-butyl environments is

apparent from the solid-state structure (Figures 6.3 and 6.4). The backbone of the

t-Bu-thixantphos ligand is bent, resulting in a concave and a convex side. If the

ligand is not inverting in solution then this will result in two different tert-butyl

environments: the two on the concave side, and the two on the convex side. The

broadness that is observed for the methyl groups in one of the sets may be due to

the steric constraints of this structure.

The trans-[Pt(t-Bu-thixantphos)Cl2] complex showed a solvent dependent NMR

spectrum. In C6D6 a single sharp peak was observed at 32.9 ppm (J PtP= 2700 Hz)

in the 31P NMR spectrum. However, in acetone-d6 this peak became very broad,

at 35 ppm, while in CD2Cl2 or CDCl3 the peak shifted to 46.4 ppm. The colour

of the complex changes dramatically depending on the solvent. In the solid state

the crystals have been determined to be trans-[Pt(t-Bu-thixantphos)Cl2] without

any solvent of crystallisation and are deep red in colour. Benzene and toluene

solutions retain this colour. However, acetone solutions are orange, while in

chloroform or dichloromethane the solution is yellow. Although colour changes

for systems with solvent interactions or strong intermolecular interactions are

well-known this is unlikely to be the case here. Instead it is likely that solvent-

dependent coordination is occurring. In non-polar solvents such as benzene and

toluene [Pt(t-Bu-thixantphos)Cl2] is present. However, polar solvents like ace-

tone or chloroform are more likely than benzene or toluene to stabilise charged

species. Hence, in polar solvents it is proposed that one of the chloride lig-

ands dissociates and the ether oxygen associates to form [Pt(t-Bu-thixantphos-

κP,O,P ’)Cl]Cl (Scheme 6.2). In acetone the broadness of the spectrum combined

with the intermediate colour likely indicates the rapid interconversion of the com-

plexes.

To test the chloride dissociation theory, the [Pt(t-Bu-thixantphos)Cl2] complex

was dissolved in acetone and reacted with ammonium hexafluorophosphate. The
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Scheme 6.2: Equilibrium between [Pt(t-Bu-thixantphos)Cl2] and Pt(t-Bu-thixant-

phos)Cl]Cl.

solution changed colour over 30 minutes from deep orange to yellow, and a pre-

cipitate of ammonium chloride formed. The product appeared at 46.4 ppm (J PtP=

2347 Hz) in the 31P NMR spectrum with an associated septet at -144.5 (J PF = 710.6)

ppm indicative of PF6. The value of J PtP had decreased from the dichloride com-

plex by 353 Hz, which may be the result of changes in the coordination geometry

of the platinum centre. A shift of the signal in the 13C NMR spectrum for the

O-ipso carbon occurred from 155.8 ppm to 157.4 ppm, indicative of the oxygen

coordinating to the metal centre.

6.1.1 Reactions of [PtCl2(hex)] with t -Bu-sixantphos and t -Bu-

xantphos

Several starting materials were investigated for the synthesis of trans-[Pt(t-Bu-

thixantphos)Cl2]. The best results occurred using [PtCl2(hex)], which proceeded

in C6D6 at 40 ◦C showing 75% conversion after 72 hours, or in toluene at 50 ◦C

with 100% conversion in the same time. Due to the success of these conditions

over other choices of starting material, temperature, and solvent, the synthesis

of analogous trans-[PtCl2P2] complexes with t-Bu-sixantphos and t-Bu-xantphos

was attempted using [PtCl2(hex)], in toluene at 50 ◦C.

The reaction between t-Bu-xantphos and [PtCl2(hex)] proceeded as expected. Af-

ter 72 hours at 50 ◦C in toluene an orange solid was isolated which was fur-

ther purified by recrystallisation, via inwards diffusion of diethyl ether into a

dichloromethane solution of the product. The 31P NMR spectrum showed one

major product at 32.4 ppm (J PtP = 2721 Hz, C6D6). The downfield shift of the peak
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in the 31P NMR spectrum is indicative of complexation. The value of 2721 Hz

is consistent with a phosphorus trans to another phosphorus donor, rather than

trans to a chloride ligand.252,253,322 The position of the peak and the value of the

one-bond platinum-phosphorus coupling constant are very similar to those for

trans-[Pt(t-Bu-thixantphos)Cl2] (32.9 ppm, J PtP = 2700 Hz), suggesting the forma-

tion of an analogous product, trans-[Pt(t-Bu-xantphos)Cl2].

The reaction between t-Bu-sixantphos and [PtCl2(hex)] was not straightforward.

After 72 hours at 50 ◦C the reaction contained unreacted t-Bu-sixantphos (53.4%),

[(t-Bu-sixantphos)H]+ (22.8%), and a platinum complex. Although the proto-

nation of t-Bu-thixantphos did occur in a number of the reactions with various

different [PtCl2L2] starting materials, this side-reaction was only observed when

chlorinated solvents were used. Hence the formation of [(t-Bu-thixantphos)H]+

can be attributed to the formation of small amounts of hydrochloric acid due

to the UV-catalysed degradation of chlorinated solvents. However, the forma-

tion of [(t-Bu-sixantphos)H]+ also occurred in toluene and C6D6. There are two

possible proton sources, either small amounts of water which may have entered

the reaction, or reaction with the surface of the glassware. The solvents were

all degassed and dried over molecular sieves in accordance with Armarego and

Chai.336 This should result in a water concentration of 0.9 ppm for toluene, which

is insufficient to account for the conversion.296 Furthermore, the t-Bu-sixantphos

ligand synthesis involves a dichloromethane/water liquid/liquid separation and

no protonation was evident in the 1H or 31P NMR spectra of the t-Bu-sixantphos

ligand after this step. This makes it unlikely that water is the proton source in

this reaction.

Analysis of the t-Bu-xantphos selenides (Section 2.4) showed that t-Bu-sixant-

phos is the most basic of all of the ligands with a pK b of 5.67 compared to 6.90

and 6.72 for t-Bu-thixantphos and t-Bu-xantphos respectively. Hence the t-Bu-

sixantphos ligand is significantly more susceptible to protonation, leading to the

observed difficulties. The t-Bu-sixantphos ligand has the smallest calculated bite-

angle of the three ligands (Section 2.2) which would result in additional strain

when forming the trans-[Pt(t-Bu-sixantphos)Cl2] complex compared to the other

two ligands. The reaction with t-Bu-thixantphos requires 72 hours at 50 ◦C to

reach completion. It is likely that the reaction with t-Bu-sixantphos would require

additional time or harsher conditions to go to completion. Hence the formation of

trans-[Pt(t-Bu-sixantphos)Cl2] has a larger activation barrier compared with the
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t-Bu-thixantphos or t-Bu-xantphos ligands, making the alternative protonation

reaction more likely to occur.

Despite the significant amounts of [(t-Bu-sixantphos)H]+ that formed, one species

that displays platinum coupling in the 31P NMR spectrum is formed. This species

was not isolated and due to the complexity of the 1H and 13C NMR spectra for

the reaction mixture these were unable to be fully assigned. The peak for the

platinum containing species appears in the 31P NMR spectrum at 34.7 ppm (J PtP

= 2686 Hz, C6D6). The value of J PtP is indicative of a trans arrangement of phos-

phorus atoms.252,253,322 The position of the 31P NMR signal and the value of J PtP

are similar to the trans-[Pt(t-Bu-thixantphos)Cl2] complex which appears at 32.9

ppm (J PtP = 2700 Hz, C6D6). Based on this evidence the product of the reaction

between t-Bu-sixantphos and [PtCl2(hex)] is trans-[Pt(t-Bu-sixantphos)Cl2]. The

mass spectrum shows a peak with a consistent mass and isotopic distribution for

[C30H48ClOP2PtSi]+, which could result from loss of a chloride from trans-[Pt(t-

Bu-sixantphos)Cl2].210

[PtCl2(xantphos)] complexes have been reported for Ph-sixantphos, Ph-thixant-

phos and Ph-xantphos.337 Unlike the trans-[Pt(t-Bu-xantphos)Cl2] complexes the

Ph-xantphos complexes form cis-[Pt(Ph-xantphos)Cl2] with J PtP values over 3600

Hz (Table 6.3), indicative of phosphorus trans to a chloride ligand. The J PtP values

for the trans-[Pt(t-Bu-xantphos)Cl2] complexes are almost 1000 Hz lower, indica-

tive of trans coordination of the phosphorus atoms. The cis geometries of the

Ph-xantphos complexes have been confirmed by X-ray crystallography of cis-

[Pt(Ph-sixantphos)Cl2]334 and cis-[Pt(Ph-xantphos)Cl2].335 The pseudo-trans ge-

ometry of trans-[Pt(t-Bu-thixantphos)Cl2] has been determined crystallographi-

cally (Figure 6.3).

The 1H and 13C NMR spectra for all three trans-[Pt(t-Bu-xantphos)Cl2] complexes

display broad signals for the tert-butyl proton and carbon environments. The

NMR spectra of trans-[Pt(t-Bu-thixantphos)Cl2] showed two different sets of tert-

butyl peaks. Based on the crystal structure these were determined to be on the

concave or convex side of the bent backbone. For the t-Bu-xantphos complex the

backbone may be inverting on a similar timescale to the NMR spectroscopy. This

results in a single signal for the tert-butyl groups but broadened due to the sim-

ilar timescale to the NMR analysis. The 13C NMR signals for the O -ipso carbon

shifted very slightly upon coordination (less than 1.1 ppm), which indicates that
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the oxygen atom is not coordinated to the metal centre, consistent with the crystal

structure of trans-[Pt(t-Bu-thixantphos)Cl2].

Table 6.3: Selected NMR data for [Pt(xantphos)Cl2] complexes. Values for Ph-

xantphos complexes are in CDCl3
110 and values for t-Bu-xantphos complexes are

in C6D6. 13C data for the Ph-xantphos complexes was not reported (∆δ = δcomplex

- δfree ligand).

31P 13C O -ipso

Diphosphine δ/ppm ∆δ/ppm JPtP δ/ppm ∆δ/ppm

Ph-Sixantphos 7.6 25.2 3663

Ph-Thixantphos 8.4 25.7 3641

Ph-Xantphos 6.6 24.1 3695

t -Bu-Sixantphos 34.7 26.3 2686

t -Bu-Thixantphos 32.9 23.4 2700 155.8 -0.1

t -Bu-Xantphos 32.4 22.2 2721 157.1 1.1

The solvent-dependent coordination that was observed in the synthesis of [Pt(t-

Bu-thixantphos)Cl2] was also observed for [Pt(t-Bu-xantphos)Cl2], and was stud-

ied in more depth for this complex. Selected NMR data for [Pt(t-Bu-xantphos)Cl2]

dissolved in CDCl3, CD2Cl2 and C6D6 are given in Table 6.4. The complex was

also analysed in acetone-d6 however the 1H, 13C and 31P NMR spectra were very

broad likely indicating the rapid interconversion between [Pt(t-Bu-xantphos)Cl2]

and [Pt(t-Bu-xantphos-κP,O,P ’)Cl]Cl. The peak in the 31P NMR spectrum shifts

by around 15 ppm upon changing the solvent from C6D6 to CDCl3 or CD2Cl2.

The value of J PtP is lower by more than 370 Hz, consistent with coordination of

the oxygen to the metal centre. The pseudo-trans geometry of the trans-[Pt(t-

Bu-xantphos)Cl2] complexes results in significant strain in the t-Bu-xantphos lig-

ands. Coordination of the oxygen to the metal centre can relieve the strain and

allow much larger P-M-P angles to form. With a larger P-Pt-P angle the phos-

phorus atoms are closer to a mutually trans configuration. The closer to trans the

atoms become, the greater the influence of the other phosphorus atom and thus

the value of J PtP.

The 1H and 13C NMR data for [Pt(t-Bu-xantphos)Cl2] and [Pt(t-Bu-xantphos)Cl]Cl

all show virtual triplet peaks for the tert-butyl protons and carbons. This indi-
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Table 6.4: Selected NMR data for [Pt(t-Bu-xantphos)Cl2] and [Pt(t-Bu-xant-

phos)Cl]Cl (∆δ = δcomplex - δfree ligand).

31P 13C O -ipso

Solvent Complex δ/ppm ∆δ/ppm JPtP δ/ppm ∆δ/ppm

C6D6 [Pt(t -Bu-xantphos)Cl2] 32.4 22.2 2721.0 157.1 1.1

CDCl3 [Pt(t -Bu-xantphos)Cl]Cl 47.7 37.5 2349.6 158.5 2.7

CD2Cl2 [Pt(t -Bu-xantphos)Cl]Cl 47.8 37.6 2345.3 158.8 3.0

cates strongly coupled phosphorus atoms, which typically occurs with mutually

trans phosphorus atoms. However, the 13C peak for the O -ipso carbon in the

t-Bu-xantphos ligand shows a shift of only 1.1 ppm (from the free ligand) when

in C6D6, but a shift (∆δ) of 2.7 or 3.0 ppm in CDCl3 and CD2Cl2 respectively. This

shift has been observed for a number of rhodium complexes with the t-Bu-xant-

phos ligands coordinated as tridentate κP,O,P ’ pincer ligands (Chapter 4). The

downfield shift upon coordination of the oxygen is due to the oxygen donating

electron density to the metal, which inductively decreases the electron density on

the adjacent carbon atoms, resulting in decreased shielding.

The solvent dependent formation of [Pt(t-Bu-xantphos)Cl]Cl complexes was con-

firmed by reaction of [Pt(t-Bu-xantphos)Cl]Cl and [Pt(t-Bu-thixantphos)Cl]Cl with

NH4PF6. [Pt(t-Bu-sixantphos)Cl2] could not be isolated and therefore was not in-

vestigated for this reaction. The two complexes react visibly with NH4PF6, chang-

ing a dichloromethane solution from orange/red to yellow over a one hour pe-

riod. The excess NH4PF6 and NH4Cl by-product are readily removed by concen-

tration of the solution and filteration through a plug of alumina. Selected NMR

data is given in Table 6.5. The 31P NMR spectra clearly show the presence of the

PF6 counterion appearing as a septet at -144.5 ppm (J PF = 710.5 Hz) for both t-Bu-

thixantphos and t-Bu-xantphos. The 19F NMR spectra further confirms this with

a clear doublet at -73.4 ppm (J PF = 710.6 Hz).

The 1H and 13C NMR spectra for the [Pt(t-Bu-xantphos-κP,O,P ’)Cl]PF6 complexes

show virtual triplet peaks for all of the tert-butyl environments, indicative of

trans coordination of the phosphorus atoms. The position of the O -ipso carbon

has also shifted relative to both the free ligand and the [Pt(t-Bu-xantphos)Cl2]
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Table 6.5: Selected NMR data for [Pt(t-Bu-xantphos)Cl]X complexes (X = Cl, PF6) in CD2Cl2 (∆δ = δcomplex - δfree ligand).

31P 13C O -ipso

Complex δ/ppm ∆δ/ppm JPtP/Hz δ/ppm JPF/Hz δ/ppm ∆δ/ppm

[Pt(t -Bu-thixantphos)Cl]PF6 46.4 36.9 2347 -144.5 710.5 157.4 2.1

[Pt(t -Bu-xantphos)Cl]PF6 47.8 37.6 2350 -144.5 710.4 158.8 3.0

[Pt(t -Bu-xantphos)Cl]Cl 47.8 37.6 2345 N/A N/A 158.8 3.0
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complexes (Table 6.5). The shift from the free ligand is in excess of 2.0 ppm,

indicative of the decreased shielding of the O -ipso carbon that occurs upon coor-

dination of the oxygen to a transition metal.

6.2 Reactions with [Pd(cod)Cl2]

Palladium dichloride complexes are ubiquitous in coordination chemistry, the

CSD contains over 3000 X-ray crystal structures of palladium dichlorides.68 The

interest in these complexes is due to their relative ease of synthesis and high reac-

tivity, which enables their wide use as pre-catalysts in a range of different catalytic

processes such as the many palladium catalysed cross-coupling reactions.31

The reactivity of the t-Bu-xantphos ligands with palladium(II) was explored with

a common palladium(II) starting material, [Pd(cod)Cl2] (cod = 1,5-cyclooctadiene).

This complex is very similar to the [PtCl2(hex)] that was used to explore the

analogous chemistry with platinum; hexa-1,5-diene and cod are both readily dis-

placed by phosphine ligands. The reactions between the t-Bu-xantphos ligands

and [Pd(cod)Cl2] were straightforward, producing only one product in all cases,

determined to be the trans-[Pd(t-Bu-xantphos)Cl2] complex (Figure 6.3).

O

X RR

tBu2P PtBu2Pd

Cl

ClO

X RR

tBu2P PtBu2

(i)

Scheme 6.3: Synthesis of [Pd(t-Bu-xantphos)Cl2] complexes. Reagents and con-

ditions: (i) [Pd(cod)Cl2], toluene, 40 ◦C, 3 days.

Selected NMR data for the trans-[Pd(t-Bu-xantphos)Cl2] complexes is given in

Table 6.6. The 31P NMR spectra each show one singlet, while the 1H and 13C NMR

spectra display half the total expected number of peaks indicating the presence of

a plane of symmetry. The chemical shift of the 31P signal varies between 30.5 and

43.9 ppm for the three complexes. A downfield shift of this magnitude is con-

sistent with coordination to a transition metal.16 In [Pd(t-Bu-xantphos)Cl2] both
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of the tert-butyl carbon signals and the proton signal appear as virtual triplets,

consistent with a trans coordination. However, the complexes with t-Bu-sixant-

phos and t-Bu-thixantphos both have resolved virtual triplets for the tert-butyl

protons and quaternary carbon environments, while the terminal carbon signals

display some broadening. The position of the O -ipso carbon can be indicative of

tridentate coordination of the xantphos ligands. In this case the shift upon coordi-

nation ranges from -0.2 to 1.1 ppm. These are all smaller than would be expected

if a chloride had dissociated and a pincer complex had formed.

Table 6.6: Selected NMR data for [Pd(t-Bu-xantphos)Cl2] complexes in CD2Cl2

(∆δ = δcomplex - δfree ligand).

31P 13C O -ipso

Diphosphine δ/ppm ∆δ/ppm δ/ppm ∆δ/ppm

t -Bu-Sixantphos 46.7 38.3 165.4 1.1

t -Bu-Thixantphos 40.0 30.5 155.1 -0.2

t -Bu-Xantphos 54.1 43.9 156.6 0.8

Unlike the [Pt(t-Bu-xantphos)Cl2] complexes, the [Pd(t-Bu-xantphos)Cl2] com-

plexes do not display solvent dependent coordination. NMR spectroscopy of the

complexes in CDCl3, CD2Cl2, and C6D6 showed no substantial changes in either

the chemical shift of the 31P NMR signal or the O -ipso carbon. Selected NMR

data for t-Bu-sixantphos in different solvents is given in Table 6.7.

Table 6.7: Selected NMR data for [Pt(t-Bu-sixantphos)Cl2] in different solvents

(∆δ = δcomplex - δfree ligand).

31P 13C O -ipso

Solvent δ/ppm ∆δ/ppm δ/ppm ∆δ/ppm

C6D6 42.0 33.6 164.9 0.4

CDCl3 45.7 37.3 165.1 0.8

CD2Cl2 46.7 38.3 165.4 1.1
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6.2.1 Formation of [Pd(t -Bu-xantphos-κP,O,P ’)Cl]PF6 Complexes

The [Pt(t-Bu-xantphos)Cl2] complexes displayed solvent dependent dissociation

of one of the chloride ligands. The pincer complex [Pt(t-Bu-xantphos-κP,O,P ’)Cl]+

was trapped by counterion exchange with NH4PF6. Although the [Pd(t-Bu-xant-

phos)Cl2] complexes do not display the same solvent dependent coordination,

reaction with NH4PF6 resulted in the analogous [Pd(t-Bu-xantphos)Cl]PF6 com-

plexes (Scheme 6.4). An associated colour change from the deep red dichloride

complexes to bright yellow pincer species was observed for all three of the lig-

ands.

O

X

tBu2P PtBu2

RR

Pd

Cl

Cl
O

S

tBu2P PtBu2

RR

Pd

Cl

PF6

(i)

Scheme 6.4: Synthesis of [Pd(t-Bu-xantphos-κP,O,P ’)Cl]PF6. Reagents and condi-

tions: (i) NH4PF6, CH2Cl2, 24 hours.

Selected NMR data of the [Pd(t-Bu-xantphos-κP,O,P ’)Cl]PF6 complexes is given

in Table 6.8. The PF6
– counterion is clearly apparent as a septet in the 31P NMR

spectrum at -144.5 ppm and a doublet in the 19F NMR spectrum at -73.4 ppm,

indicating a non-coordinating counterion. The 31P NMR signals for the t-Bu-xant-

phos ligands have all shifted downfield. The tert-butyl 1H and 13C environments

for all three complexes now appear as well-resolved virtual triplets indicating

trans chelation of the phosphorus atoms. A reaction has occurred in all cases

indicated by a shift in the 31P NMR spectrum and the changes of other peaks in

the 1H and 13C NMR spectra. Although the change in the chemical shift of the O -

ipso carbon of t-Bu-sixantphos from the uncoordinated ligand (∆δ) is indicative

of oxygen coordination, the values for t-Bu-thixantphos and t-Bu-xantphos are

not. This may mean that the oxygen is only very weakly coordinating to the

palladium centre and in solution a T-shaped palladium complex is present, or

that the complex may be stabilised by other interactions such as weak agostic

interactions with the tert-butyl methyl groups or between the palladium atom



164 Chapter 6. Platinum(II) and Palladium(II) Complexes

and the PF6 counterion.

Table 6.8: Selected NMR data for [Pd(t-Bu-xantphos)Cl]PF6 in CD2Cl2 (∆δ =

δcomplex - δfree ligand).

31P 13C

Ligand δ/ppm ∆δ/ppm δ/ppm JPF/Hz δ/ppm ∆δ/ppm

t -Bu-Sixantphos 52.4 5.7 -144.5 710.3 168.4 4.1

t -Bu-Thixantphos 56.4 16.4 -144.5 710.5 154.9 -0.4

t -Bu-Xantphos 58.3 4.2 -144.5 710.4 156.7 0.9

6.3 Computational Results

The [Pt(t-Bu-xantphos)Cl2] complexes displayed solvent dependent coordination

forming [Pt(t-Bu-xantphos-κP,O,P ’)Cl]Cl. This pincer complex was trapped by

the exchange of the counterion using ammonium hexafluorophosphate. The pal-

ladium analogue did not display the same solvent-induced dissociation, although

the [Pd(t-Bu-xantphos-κP,O,P ’)Cl]Cl complexes could be readily synthesised by

reaction with ammonium hexafluorophosphate. This reactivity, particularly the

solvent dependent exchange was investigated further using density functional

theory. The geometries of all structures were optimised and frequencies were

calculated using a B3LYP functional,131–134 with the def2-TZVP basis set.135,136

The energies of the systems were then calculated with incorporation of a solvent

model (SMD).

Structures were optimised for the complexes [M(t-Bu-xantphos)Cl2] and [M(t-

Bu-xantphos-κP,O,P ’)Cl]+ (M = Pd, Pt) with the three different t-Bu-xantphos

ligands. The change in energy for the dissociation of a chloride ligand was cal-

culated and the results for each of these reactions are summarised in Figure 6.9.

Typical DFT calculations are performed for molecules in the gas phase. However,

this is not always an appropriate description of the system, particularly when

conversions between uncharged and charged species are involved as solvent sta-

bilisation can become important. This is apparent for the dichloride to pincer

conversion. In the gas phase, the systems show that the pincer complexes are
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around 400 kJ mol−1 higher in energy than the corresponding dichloride com-

plex. This indicates that the reaction would be highly endothermic, although it

may still be favoured entropically.

Figure 6.9: Energy change on conversion from the [M(t-Bu-xantphos)Cl2] to [M(t-

Bu-xantphos)Cl]Cl.

[Pt(diphosphine)Cl2]→ [Pt(POP)Cl] + Cl–

∆E, kJ mol−1

Ligand Solvent Free (CH3)2CO C6H6 CHCl3 CH2Cl2

t -Bu-sixantphos 393.5 -2.2 150.7 59.0 20.4

t -Bu-thixantphos 400.2 4.3 157.9 66.0 27.3

t -Bu-xantphos 384.5 -14.6 140.1 47.7 8.6

[Pd(diphosphine)Cl2]→ [Pd(POP)Cl] + Cl–

∆E, kJ mol−1

Ligand Solvent Free (CH3)2CO C6H6 CHCl3 CH2Cl2

t -Bu-sixantphos 397.4 0.8 155.0 62.7 23.7

t -Bu-thixantphos 405.3 7.9 163.1 70.3 31.4

t -Bu-xantphos 391.7 -7.9 83.2 55.0 15.6

Single point energy calculations for the [M(t-Bu-xantphos)Cl2] and [M(t-Bu-xant-

phos-κP,O,P ’)Cl]+ in a range of solvents were performed on the structures that

had been optimised in the gas phase (Figure 6.9). The results show that the intro-

duction of any solvent reduces the energy required by more than half. For both

the platinum and palladium complexes, the reaction in benzene requires the most

energy of any of the solvents studied. This is consistent with the experimental

results, as the platinum complexes are present as [Pt(t-Bu-xantphos)Cl2] in ben-

zene. For the platinum complexes conversion to [Pt(t-Bu-xantphos-κP,O,P ’)Cl]Cl

was observed experimentally in chloroform and dichloromethane and the spec-

trum in acetone was broad, likely indicating some conversion. Interestingly, the

computational results indicate that the lowest energy change occurs for the reac-

tion in acetone, as these values are either close to zero or even negative, while

the dichloromethane values are 8.6–27.3 kJ mol−1 and the chloroform values are
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higher still 47.7–66.0 kJ mol−1. These values do not include entropic effects which

are likely to be significant as the disorder is increased. Although the calculations

suggest that the chloride dissociation is an endothermic process, the reactions

may be spontaneous due to entropy.

The results for the palladium complexes show similar overall trends to the plat-

inum complexes (Figure 6.9). However, most of the palladium reactions require

slightly more energy than the platinum complexes. This is consistent with the

observation that the reaction is spontaneous for platinum (under certain condi-

tions) while it is not for palladium. The energy for the palladium complexes in

dichloromethane are lower than the energy for the platinum reaction in chloro-

form, which was observed to be spontaneous experimentally, again indicating

that entropy is likely playing a significant role for this reaction.

6.4 Reactions with Platinum Dimethyl Starting

Materials

Transition metal alkyl complexes are among the most important organometal-

lic complexes as they can be intermediates in a wide range of catalytic transfor-

mations, including polymerisation and carbonylation reactions.113,338 The synthe-

sis of isolatable transition metal alkyl complexes is important, as studying their

chemistry can give insight into the reactions occurring in catalytic systems.339

Methyl complexes have gained attention in recent years, as protonation of a rho-

dium methyl complex led to a σ-methane complex which was characterised by

NMR spectroscopy.340 Platinum methyl complexes were investigated as part of

this study as the stronger σ-donor character of the methyl ligand may lead to

different reactivity than that of the platinum dichloride complexes.252

The reactivity of the t-Bu-xantphos ligands with [Pt(hex)Me2)] was first stud-

ied using the t-Bu-thixantphos ligand. t-Bu-Thixantphos was combined with

[Pt(hex)Me2] in an NMR tube in C6D6 under argon to enable the progress to

be followed by NMR spectroscopy. After 24 hours at room temperature no re-

action was observed, so the sample was heated to 60 ◦C. The progress of the

sample was monitored at regular intervals. However, after 28 days at 60 ◦C no

changes were observed. The 31P NMR spectrum showed a single peak indicative
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of uncoordinated t-Bu-thixantphos, and the 1H NMR spectrum showed a mix-

ture with [Pt(hex)Me2]. This indicates that the lack of reactivity was not the result

of degradation of either the platinum starting material or the t-Bu-thixantphos

ligand.

One equivalent of the strong acid CHPh(SO2CF3)2 was added to the mixture of

t-Bu-thixantphos and [Pt(hex)Me2] in an attempt to protonate the platinum com-

plex and remove one of the methyl ligands as methane, thus forming a free coor-

dination site to promote reaction with the t-Bu-thixantphos. As discussed in Sec-

tion 2.3, the t-Bu-xantphos ligands can act as Brønsted bases and have pK b values

of 5.67–6.90. As such, the t-Bu-thixantphos ligand reacted with the acid quickly

and completely forming [(t-Bu-thixantphos)H]CPh(SO2CF3)2 (Scheme 6.5). Al-

though the mixture was subsequently followed for several days by NMR spec-

troscopy, no reaction was observed between the protonated t-Bu-thixantphos lig-

and and the [Pt(hex)Me2] complex.

O

S

PtBu2 PtBu2

Pt
CH3

CH3
+

O

S

tBu2P PtBu2
H

CPh(SO2CF3)2

Pt
CH3

CH3
+

(i)

(ii)

Scheme 6.5: Attempted reaction of [Pt(hex)Me2] and t-Bu-thixantphos. Reagents

and conditions: (i) C6D6, 60 ◦C, (ii) HCPh(SO2CF3)2.

When the t-Bu-xantphos ligands were reacted with [PtCl2L2] complexes (L =

SEt2, MeCN, t-BuCN, L2 = 1,5-hexadiene) no cis products were observed regard-

less of the starting material, and the reaction was fastest when the cis complex

[PtCl2(hex)] was used due to the lability of the diene. Due to the steric bulk of the
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tert-butyl substituents on the phosphorus atoms and the rigidity of the t-Bu-xant-

phos backbone these ligands would be expected to act as trans-spanning diphos-

phines or tridentate κP,O,P ’ pincer ligands rather than forming cis chelates. Thus,

in order for a reaction to occur between t-Bu-xantphos and [Pt(hex)Me2] the sys-

tem must undergo a cis-trans isomerism process. For the dichlorides this is easily

facilitated by loss of one of the chloride ligands followed by re-coordination in a

trans configuration. However, methyl ligands are strong σ-donors and coordi-

nate very strongly to Pt(II).252 The first step of the reaction likely proceeds with

one of the phosphorus donors displacing one half of the diene (Scheme 6.6). From

this position the other phosphorus needs to displace the alkene forming a cis-t-

Bu-xantphos complex. This could then undergo cis-trans isomerism; or the com-

plex could isomerise first and then the phosphine could displace the alkene. In

the first case, the cis-t-Bu-xantphos complex would be highly disfavoured due to

the very large natural bite-angle of these ligands. In either case, for the cis-trans

isomerism to occur, the complex must lose a methyl ligand and these are too

strongly coordinated for this to occur, especially combined with the low trans-

influence of the hexa-1,5-diene ligand and the moderate trans-influence of the

phosphorus donors.252,253,322

Pt
CH3

CH3

P P+
PP

Pt
CH3

CH3

Scheme 6.6: Proposed reaction between [Pt(hex)Me2] and a t-Bu-xantphos

diphosphine ligand (PP).

6.5 Reactions with [PtCl(hex)Me]

Chloridomethylplatinum complexes are interesting due to the different proper-

ties of the chloride and methyl ligands. The methyl ligand is a much stronger σ-

donor than a chloride ligand, meaning that the methyl imparts a much stronger

trans-influence.252,253,322 The difference in the donor properties of the chloride

and methyl ligands can result in asymmetric reactivity as the chloride will un-

dergo substitution more readily than the methyl ligand. If a cis-[PtClMe(PP)]
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complex was formed, the two phosphorus atoms would be in different environ-

ments, which could lead to asymmetric reactions of the diphosphine. In the

more likely scenario for the t-Bu-xantphos ligand system, that trans-[Pt(t-Bu-

xantphos)ClMe] complex forms, then the strong trans-influence of the methyl

group may promote the dissociation of the chloride ligand

[PtCl(hex)Me] was chosen as the starting material due to the success of the reac-

tions of the t-Bu-xantphos ligands with [PtCl2(hex)]. Reaction between the t-Bu-

xantphos ligands and [PtCl(hex)Me] was performed on an NMR-scale in C6D6

to allow the reactions to be studied as they progressed and identify any inter-

mediates that may form. As the reaction progressed the product precipitated

out as an off-white solid. This solid was insoluble in most common solvents ex-

cept acetone-d6. The t-Bu-xantphos ligands and [PtCl(hex)Me] are insoluble in

acetone, meaning that this was not suitable as the reaction solvent. In all cases,

the solution was decanted from the precipitate and the solid was dissolved in

acetone-d6, where only one species, ([Pt(t-Bu-xantphos)Me]Cl) was observed, in-

dicating complete reaction (Scheme 6.7).

O

X

tBu2P PtBu2

RR

O

X

tBu2P PtBu2

RR

Pt

Me

Cl

(i)

Scheme 6.7: Reaction between [PtCl(hex)Me] and t-Bu-xantphos ligands.

Reagents and conditions: (i) [PtCl(hex)Me], 24 hours, room temperature (50 ◦C

t-Bu-sixantphos).

The speed of the reaction varied between the three ligands. With t-Bu-xantphos

the reaction was fastest, reaching completion in 48 hours at room temperature. t-

Bu-Thixantphos reacted slightly more slowly, with completion observed after 72

hours. t-Bu-Sixantphos was the slowest of the three systems; little reaction was

observed after 72 hours at room temperature, however after 24 hrs of heating at

50 ◦C the reaction was complete by NMR spectroscopy. This difference in reac-

tivity is likely the result of the bite-angle of the ligand and the amount of energy
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required to achieve a trans-geometry. With the larger calculated bite-angle of the

t-Bu-xantphos ligand the amount of energy required to achieve a pincer geom-

etry would be lower than that for the other ligands. Similarly t-Bu-sixantphos,

with the smallest of the three natural bite-angles, would require more energy in

order to achieve the coordination geometry of the product.

Selected NMR data for the three [Pt(t-Bu-xantphos)Me]Cl complexes is sum-

marised in Table 6.9. In the 31P NMR spectra only one signal is observed for each

of the complexes, indicating identical environments for both phosphorus atoms

which implies symmetrical complexes. Given that [PtCl(hex)Me] is asymmetrical

and a symmetrical complex is formed, this is evidence for trans-coordination of

the t-Bu-xantphos ligands. The 31P NMR signal has shifted downfield by around

40 ppm to 48.7, 50.5, or 51.0 ppm for t-Bu-sixantphos, t-Bu-thixantphos and t-Bu-

xantphos, respectively. The peak for each complex is a singlet with J PtP coupling

ranging from 2763 to 2793 Hz. If the phosphorus atom was trans to a chloride

we would typically expect coupling constants larger than 3000 Hz, while if it

was trans to a methyl ligand we would expect values below 2000 Hz. A cou-

pling constant of around 2800 Hz is generally indicative of phosphorus trans to

an atom with a similar trans-influence, in this case another phosphorus. Fur-

thermore this coupling is of similar magnitude to the coupling constant observed

for the [Pt(t-Bu-xantphos)Cl2] complexes (2686–2721 Hz). Both of these points

strongly indicate a trans-coordination geometry for the complex.

The position of the O -ipso carbon in the 13C NMR spectrum can be indicative

of coordination of the oxygen to a metal centre. In this particular case the peak

for t-Bu-sixantphos moves 3.0 ppm downfield from the uncoordinated ligand,

while the peak for t-Bu-xantphos shifts by only 0.3 ppm downfield and the peak

for t-Bu-thixantphos shifts 1.5 ppm upfield comparing the free ligand with the

[Pt(t-Bu-xantphos)Me]Cl complexes. This is no clear indication of whether the

oxygen is coordinated to the metal centre or not. One of the reasons for this in-

consistency is the insolubility of the free ligand in acetone, meaning that we are

comparing the data for the free ligand in CDCl3 with the complex in acetone-d6.

Peaks frequently shift depending on the solvent, meaning that no conclusions

can be drawn from the position of the O -ipso 13C NMR signal in this case. The

solubility of the complex is indicative of the chloride dissociating from the metal

centre. The [Pt(t-Bu-xantphos)Me]Cl complexes are insoluble in the non-polar

C6D6, whereas they are very soluble in polar acetone-d6. This is consistent with a
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Table 6.9: Selected NMR Data for [Pt(t-Bu-xantphos)Me]Cl complexes in acetone-d6 Values for the J PtX coupling constants

are given in brackets (∆δ = δcomplex - δfree ligand).

31P 1H 13C

Diphosphine δ/ppm ∆δ/ppm Pt−CH3 δ/ppm Pt−CH3 δ/ppm ∆δ C-O /ppm

t -Bu-Sixantphos 48.7 (2763) 40.3 2.01 (98.6) -22.7 (780.5) 3.0

t -Bu-Thixantphos 50.5 (2793) 41.0 1.94 (97.4) -23.8 (777.2) -1.5

t -Bu-Xantphos 51.0 (2788) 40.8 1.92 (97.4) -23.9 (774.6) 0.3
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charged species forming in solution which could result from the loss of the chlo-

ride ligand. Furthermore, in the [Pt(t-Bu-xantphos)Cl2] complexes the chloride

was observed to dissociate readily. In this case the high trans-influence character

of the methyl ligand would promote the loss of the chloride ligand. In addi-

tion, the strong σ-donor ability of the methyl ligand would mean that the oxygen

atom would be coordinated in an extremely weak fashion and would donate less

electron density when in [Pt(t-Bu-xantphos)Me]Cl compared with [Pt(t-Bu-xant-

phos)Cl]Cl.

The peaks for the methyl ligand in the 1H and the 13C NMR spectra can give ad-

ditional information about the nature of the complex. In the 1H NMR spectrum

the peak appears between 1.92 and 2.01 ppm as a triplet with platinum satellites.

Coupling to two phosphorus atoms in the same environment generates the triplet

with a three-bond J PH coupling constant of 5.4–5.5 Hz, indicative of a cis relation-

ship between the phosphorus atoms and the methyl ligand, consistent with a

trans-spanning diphosphine ligand. The value of the two-bond platinum-proton

coupling constant on the methyl ligand ranges from 97.4 Hz for both t-Bu-xant-

phos and t-Bu-thixantphos, to 98.6 Hz for t-Bu-sixantphos. This is a very large

coupling constant for a platinum methyl ligand and is indicative of a ligand trans

to the methyl which has a very low trans-influence. This is also reflected in the 13C

NMR spectrum where the methyl ligands appear at between -22.7 and -23.9 ppm

with coupling constants of 774.6–780.5 Hz. The large upfield shift of the methyl

ligand from the typical position of an organic methyl substituent (5-30 ppm341)

arises from the additional electron density as a result of coordination. The chem-

ical shift of the methyl carbon, together with the value of J PC is largely the result

of the ligand in the trans position. Previous work both in our group315,316 and

by others342 has shown that methyl ligands trans to a moderate σ donor such as

a phosphorus appear at 5–15 ppm in the 13C NMR spectrum, with a platinum-

carbon coupling constant of around 700 Hz. In contrast, when the methyl is trans

to a weak σ-donor ligand such as a nitrogen donor the methyl shifts upfield to

around -10– -25 ppm with larger coupling constants of around 800 Hz. In this

case values of -22.7 to -23.9 for the 13C chemical shift and values of J PtC between

774.6–780.5 Hz clearly indicate that the methyl ligand is trans to a weak σ-donor

such as a chloride or an oxygen. The value of J PtC is lowest for t-Bu-xantphos and

highest for t-Bu-sixantphos suggesting a series of O-trans influence for the three

ligands of t-Bu-sixantphos < t-Bu-thixantphos < t-Bu-xantphos.
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Based on the relative reactivity of the t-Bu-xantphos ligands with [PtCl(hex)Me]

and the NMR data, [Pt(t-Bu-xantphos)Me]Cl is proposed as the product. How-

ever, the coordination of the oxygen has not been established conclusively. Two

related complexes have been reported: [PdMe(PtBu3)2]+ and [PtMe(PiPr3)2]+, the

solid state structures of which have been determined by X-ray crystallography

(Figure 6.10).343,344 Both complexes are stabilised in the solid-state by an agostic

interaction from one of the isopropyl or tert-butyl methyl substituents, although

they were synthesised in the presence of coordinating solvents. The NMR spec-

tra of each showed symmetrical molecules with no evidence for an agostic in-

teraction, even down to -80 ◦C, indicating rapid exchange of the agostic interac-

tion between the numerous C-H bonds available. Low temperature 1H and 31P

NMR analysis of [Pt(t-Bu-sixantphos)Me] was carried out from 20 to -80 ◦C. No

changes in the spectra were observed, except for a slight broadening of the signals

due to precipitation. This indicates that if an agostic-bond is present, the presence

of 12 different tert-butyl CH3 groups (i.e. 36 different agostic possibilities) means

there is ample opportunity for exchange, resulting in the apparent symmetry at

room temperature.

(a) [PtMe(PiPr3)2]
+ (b) [PdMe(PtBu3)2]

+

Figure 6.10: X-ray crystal structures of [PtMe(PiPr3)2]
+ 343 and [PdMe(PtBu3)2]

+.344

Counterions omitted for clarity.

On the basis of the spectroscopic analysis and the structures of similar com-

pounds there are three plausible structures for the product from reaction between

[PtCl(hex)Me] and the t-Bu-xantphos ligands; all contain the t-Bu-xantphos lig-

and in a trans-configuration and a methyl group. The fourth coordination site

on the platinum could either be occupied by a chloride ligand, an agostic inter-

action from one of the many tert-butyl C-H bonds, or by a very weak interaction
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with the oxygen in the backbone of the t-Bu-xantphos ligands. The absence of

the chloride ligand was confirmed by reaction between [Pt(t-Bu-xantphos)Me]Cl

and NH4PF6 on an NMR-scale. Over the course of several days no change was

observed in the 1H, 13C or 31P NMR spectra except for the appearance of a septet

in the 31P NMR spectrum and a doublet in the 19F NMR spectrum indicative of

a non-coordinating PF6
– counterion (NH4PF6 is insoluble in acetone-d6). As no

change was observed in the NMR spectra upon cooling to -80 ◦C, the fourth coor-

dination site could be occupied either a rapidly exchanging agostic interaction or

the oxygen in the backbone (Scheme 6.8).

O

X

tBuP PtBu2

RR

Pt

Me
O

X

tBu2P PtBu2

RR

Pt

Me
HH

H

++

Scheme 6.8: Equilibrium between [Pt(t-Bu-xantphos)Me] and [Pt(t-Bu-xantphos-

κP,O,P ’)Me].

6.5.1 Computational Results

Computational modelling was used to determine whether the three [Pt(t-Bu-

xantphos)Me]X complexes take the form of a pincer complex [Pt(t-Bu-xantphos-

κP,O,P ’)Me]+, or whether an agostic interaction from the tert-butyl groups is

formed instead. Structural models of both of these isomers were optimised and

their vibrational frequencies were calculated using density functional theory us-

ing a B3LYP functional131–134 with the def2-TZVP basis set.135,136 Selected bond

lengths and angles are given in Table 6.10 and 6.11 for the agostic and pincer

complexes respectively.

Little variation is present in the bond lengths and bite-angles for the three ligands

in either the pincer or the agostic complex. The platinum-methyl bond length

varies by only 0.001 Å between the three agostic and the three pincer complexes,
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Table 6.10: Selected bond lengths and angles calculated for the agostic complexes

[Pt(t-Bu-xantphos)Me]+.

Ligand Pt-Me /Å Pt-H /Å P-Pt-P /◦

t -Bu-Sixantphos 2.051 2.763 153.9

t -Bu-Thixantphos 2.052 2.828 153.7

t -Bu-Xantphos 2.051 2.868 153.2

Table 6.11: Selected bond lengths and angles calculated for the pincer complexes

[Pt(t-Bu-xantphos-κP,O,P ’)Me]+.

Ligand Pt-Me /Å Pt-O /Å P-Pt-P /◦

t -Bu-Sixantphos 2.052 2.323 165.7

t -Bu-Thixantphos 2.053 2.277 164.4

t -Bu-Xantphos 2.053 2.256 164.4
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and by only 0.002 Å across all six of the structures. Similarly, the bite-angles

show little difference among the complexes despite the difference in the natural

bite-angles for the ligands. The platinum-oxygen bond length for the pincer com-

plex shows a decrease with the increasing natural bite-angle of the ligand such

that the t-Bu-sixantphos complex has the longest Pt-O bond. A similar trend is

present for the Pt-H bond length in the agostic complexes, where the longest Pt-

H distance is for the t-Bu-sixantphos system and the shortest Pt-H distance is for

the t-Bu-xantphos complex. These are consistent with the observed changes in

the 13C NMR spectrum for the methyl ligand, whereby the t-Bu-sixantphos com-

plex has the largest value of J PtC and t-Bu-xantphos has the smallest. Decreasing

the Pt-O or Pt-H bond lengths will increase the trans influence of the ligand as a

result of increased σ donation from the ligand to the platinum, leading to a lower

platinum-carbon coupling constant.

The Gibbs free energy for the each of the complexes was also calculated (Table

6.12). The agostic complexes were consistently higher in energy than the pincer

complexes, indicating that conversion from the agostic to the pincer is an exother-

mic process generating 106, 111, or 122 kJ mol−1 of energy. This suggests that the

pincer complex is likely the thermodynamically favoured product in the reaction

between [PtCl(hex)Me] and the three t-Bu-xantphos ligands (Scheme 6.8). The

value for ∆G appears to be correlated with the natural bite-angle of the ligands.

This indicates that although the three diphosphine ligands produce complexes

with similar bite-angles, the natural bite-angle of the ligand can impact the sta-

bility of the starting and final complexes.

Table 6.12: Gibbs free energies calculated for the agostic and pincer complexes

[Pt(t-Bu-xantphos-κP,O,P ’)Me]+. All values are in kJ mol−1

Ligand Agostic G Pincer G ∆G

t -Bu-Sixantphos -6245006 -6245113 -106

t -Bu-Thixantphos -6527190 -6527301 -111

t -Bu-Xantphos -5584828 -5584950 -122

While the relative thermodynamic preference between the pincer and the agos-

tic has been established, the reaction occurring is actually dissociation of a chlo-
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ride from the [Pt(t-Bu-xantphos)ClMe] complexes forming either the pincer or

the agostic complex. The energy changes for these reactions are given in Tables

6.13 and 6.14. In this case we see that under standard gas-phase DFT conditions,

neither the pincer nor the agostic complex is lower in energy than the [Pt(t-Bu-

xantphos)ClMe] starting material. However, significantly less energy is required

for the conversion to the pincer than to the agostic.

Table 6.13: Energy change for the conversion of the [Pt(t-Bu-xantphos)ClMe] to

the pincer complex.

[Pt(t-Bu-xantphos)ClMe] → [Pt(t-Bu-xantphos-κP,O,P ’)Me] + Cl–

∆E, kJ mol−1

Ligand Solvent Free (CH3)2CO C6H6 CHCl3 CH2Cl2

t -Bu-sixantphos 341.2 -45.6 100.4 11.7 -24.7

t -Bu-thixantphos 349.7 -38.3 109.2 20.0 -17.0

t -Bu-xantphos 337.5 -52.7 97.2 7.4 -30.4

Table 6.14: Energy change for the conversion of the [Pt(t-Bu-xantphos)ClMe] to

the agostic complex [Pt(t-Bu-xantphos)Me]+.

[Pt(t-Bu-xantphos)ClMe] → [Pt(t-Bu-xantphos)Me]+ + Cl–

∆E, kJ mol−1

Ligand Solvent Free (CH3)2CO C6H6 CHCl3 CH2Cl2

t -Bu-sixantphos 454.2 54.9 210.0 117.0 78.2

t -Bu-thixantphos 462.4 59.8 217.6 123.8 84.1

t -Bu-xantphos 462.7 60.4 218.9 124.9 84.8

Typical DFT computations are carried out for single molecules in the gas phase.

While this is applicable to a range of applications, when dealing with conversions

between uncharged and charged molecules the solvent can have a significant im-

pact on the thermodynamics of the reaction. It has been observed experimentally

with the platinum and palladium dichloride complexes that the solvent can also

play a role in the formation of the pincer complexes. As such, single-point energy

calculations with a solvent correction were performed for the conversion of [Pt(t-

Bu-xantphos)ClMe] into the pincer or the agostic complexes. The energy changes
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are summarised in Tables 6.13 and 6.14 for the pincer and the agostic respectively.

The inclusion of any of the solvents drastically decreases the amount of energy

required to form the product, thus indicating that the solvent is important for

these reactions. Under experimental conditions the reaction is performed in ben-

zene from which the product precipitates as a white solid that is only soluble in

acetone (of the solvents examined).

The energy change for conversion of the [Pt(t-Bu-xantphos)ClMe] complexes into

the pincer is much lower than that required to form the agostic complex, regard-

less of solvent. This indicates that the pincer is thermodynamically preferred over

the agostic complex. Interestingly, for the pincer complex the reaction in benzene

requires the most energy, whereas the reaction in chloroform, although still an

overall positive ∆E value, only requires at most 20.0 kJ mol−1. Based on the com-

putational results the proposed product in the reaction between the t-Bu-xant-

phos ligands and [PtCl(hex)Me] is the pincer [Pt(t-Bu-xantphos-κP,O,P ’)Me]Cl

complex.

The reaction of a number of xantphos ligands with [Pd(cod)ClMe] has previ-

ously been studied experimentally.73 Me-xantphos is a xantphos derivative with

methyl substituents on the phosphorus atoms. Reaction of [Pd(cod)ClMe] with

Me-xantphos produces exclusively cis-[PdClMe(Me-xantphos)]. All of the Ph-

xantphos ligands formed [PdClMe(Ph-xantphos)] complexes that displayed cis-

trans-isomerism at room temperature. At low temperature both the cis and trans

isomers were observed for Ph-thixantphos and Ph-xantphos, while only the cis

complex was observed for Ph-xantphos. Reaction of the [PdClMe(xantphos)]

complexes with AgSO3CF3 produces the pincer complexes [PdClMe(xantphos-

κP,O,P ’)][SO3CF3] with all four ligands that were studied. The difference in the

coordination behaviour of these ligands and the t-Bu-xantphos complexes indi-

cates that the direct formation of the [Pt(t-Bu-xantphos)Me]Cl complexes is most

likely the result of the higher steric demands of the t-Bu-xantphos ligands com-

pared to the Ph-xantphos or Me-xantphos ligands.

6.6 Summary

t-Bu-Xantphos and t-Bu-thixantphos were shown to react with [PtCl2(hex)] form-

ing exclusively trans-[Pt(t-Bu-xantphos)Cl2] complexes, unlike the Ph-xantphos
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ligands which form exclusively cis dichlorides. The same reaction with t-Bu-

sixantphos produced the trans-[Pt(t-Bu-sixantphos)Cl2] complex together with

t-Bu-sixantphosH+, even in toluene and benzene, possibly due to reaction with

the glass. All of the dichloride complexes were dark red in colour, although

most platinum dichloride complexes are pale or yellow. This colour is possi-

bly due to the unusual coordination geometry of the platinum, shown by X-ray

crystallography of [Pt(t-Bu-thixantphos)Cl2]. The complex has a bite-angle of

151.722(15)◦ and the sum of the angles around the platinum is 499.006◦ show-

ing significant distortion from the ideal square-planar geometry typically ob-

served for platinum(II). Analogous [Pd(t-Bu-xantphos)Cl2] complexes were syn-

thesised for t-Bu-sixantphos, t-Bu-thixantphos, and t-Bu-xantphos by reaction

with [Pd(cod)Cl2].

The [Pt(t-Bu-xantphos)Cl2] and [Pt(t-Bu-thixantphos)Cl2] complexes showed dis-

sociation of a chloride ligand, forming [Pt(t-Bu-xantphos-κP,O,P ’)Cl]Cl in CDCl3

and CD2Cl2. The same behaviour was not observed for the palladium analogues.

The pincer complexes [M(t-Bu-xantphos-κP,O,P ’)Cl]+ could be formed for both

platinum and palladium by counterion exchange with NH4PF6. Computational

investigation into the chloride dissociation showed that although the formation

of the pincer complexes is endothermic in almost all cases, the presence of any

solvent more than halved the required energy and the reactions in chloroform

and dichloromethane were less endothermic than in benzene. The reactions in

acetone were close to neutral energy requirements with some exothermic results.

The palladium reactions required slightly more energy in all cases, consistent

with the experimental results. The calculations do not include entropy which

is likely to be significantly in favour of the pincer complexes.

The pincer complexes [Pt(t-Bu-xantphos-κP,O,P ’)Me]Cl were observed to form as

the sole product from reaction of the t-Bu-xantphos ligands with [PtCl(hex)Me].

The NMR data was unclear regarding the coordination of the oxygen atom to

the platinum and previous literature suggested that the platinum centre may be

stabilised by an agostic interaction with one of the tert-butyl C-H bonds. Compu-

tational investigation showed that for all three t-Bu-xantphos ligands the pincer

complex is lower in energy suggesting that this the fourth coordination site on

the platinum is occupied by the backbone oxygen. From the values of J PC for the

methyl ligand the t-Bu-sixantphos ligand has the weakest trans influence and

the t-Bu-xantphos ligand has the strongest. This suggests that although compu-
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tationally the bite-angles of the three ligands are the same, the natural bite-angle

can predict the donor properties of the backbone oxygen.

This chapter has presented a number of new platinum and palladium complexes

with the t-Bu-sixantphos, t-Bu-thixantphos, and t-Bu-xantphos. No cis com-

plexes were observed at any point, indicating the influence of tert-butyl groups

on the coordination modes of the ligands. The trans complexes have the smallest

observed bite-angles for square-planar complexes with trans-spanning diphos-

phine ligands. A number of t-Bu-xantphos pincer complexes were also reported,

with [Pt(t-Bu-xantphos)Cl]+ and [Pt(t-Bu-xantphos)Me]Cl forming spontaneously

with appropriate solvent choice.
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Conclusion

The t-Bu-xantphos ligand has been tested in a number of catalytic reactions with

varying results.84–87,90,93,96–98 The conversions are typically very different to those

obtained with Ph-xantphos suggesting differences in their coordination behaviour.

However, few studies had investigated the coordination chemistry of the t-Bu-

xantphos ligand. This thesis aimed to address that deficit by synthesising two

new t-Bu-xantphos ligands, and investigating the properties and coordination

chemistry of the three ligands, with a particular focus on transition metals used

in catalysis.

Two new t-Bu-xantphos ligands with a SiMe2 (t-Bu-sixantphos) or a sulfur atom

(t-Bu-thixantphos) in place of the CMe2 bridging group in t-Bu-xantphos were

synthesised. The synthetic method for t-Bu-sixantphos and t-Bu-thixantphos

was also used successfully to synthesise t-Bu-xantphos. This synthesis is ad-

vantageous as the only by-products are the monophosphines, which can be re-

used in a further cycle to produce additional diphosphine. The bite-angles of

the t-Bu-xantphos and Ph-xantphos were calculated using DFT methods with

the t-Bu-xantphos ligands found to have larger bite-angles (126.80–127.56◦) than

the Ph-xantphos ligands (111.89–114.18◦). The values calculated for the Ph-xant-

phos ligands using DFT are consistent with the literature values calculated using

molecular mechanics.

The t-Bu-xantphos ligands are both Brønsted and Lewis bases. The three ligands

reacted rapidly with strong acids forming (t-Bu-xantphos)H+ with a single pro-

ton that exchanged rapidly between the two phosphorus atoms at room temper-

181
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ature. This process has a coalescense temperature of around -40 ◦C in solution.

Synthesis of the t-Bu-xantphos selenides and analysis of their 1J PSe values gave

pK b values of 5.67 for t-Bu-sixantphos, 6.90 for t-Bu-thixantphos, and 6.72 for

t-Bu-xantphos. These are much lower than the value for Ph-xantphos of 13.55, as

expected due to greater electron density on the phosphorus atoms in t-Bu-xant-

phos resulting from the tert-butyl substituents.

The coordination chemistry of the t-Bu-xantphos ligands was investigated with

silver, rhodium, platinum, and palladium. Two types of silver complexes were re-

ported, [Ag(t-Bu-xantphos)Cl] and [Ag(t-Bu-xantphos)]BF4. Both are monomeric

despite the free-coordination site in [Ag(t-Bu-xantphos)]BF4. The t-Bu-thixant-

phos ligand in the x-ray crystal structure of [Ag(t-Bu-thixantphos)Cl] had a bite-

angle of 130.50(7)◦, which is larger than the bite-angle in the previously reported

[Ag(Ph-xantphos)Br] complex (109.37(1)◦). Both of these are close to the nat-

ural bite-angle of the xantphos ligand, indicating that the coordination geom-

etry around the silver is controlled by the diphosphine ligand. Although the

crystal structure of [Ag(t-Bu-thixantphos)Cl] suggested that the tert-butyl sub-

stituents should have different NMR signals, this was not observed spectroscop-

ically, likely due to the rapid inversion of the xantphos backbone.

Rhodium complexes are used as catalysts for hydrogenation and hydroformyla-

tion which are performed under hydrogen or a mixed hydrogen/carbon monox-

ide atmosphere. [Rh(t-Bu-xantphos-κP,O,P ’)Cl] complexes were formed for all

three t-Bu-xantphos ligands. The reactivity of these complexes towards H2, CO,

and O2 was investigated, forming [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2], [Rh(t-Bu-

xantphos)(CO)2Cl], and [Rh(t-Bu-xantphos-κP,O,P ’)Cl(η2-O2)] complexes. The

value of the J RhH coupling constant for the hydride trans to the oxygen atom in

the [Rh(t-Bu-xantphos-κP,O,P ’)Cl(H)2] complexes was largest for the t-Bu-sixant-

phos complex, followed by t-Bu-thixantphos then t-Bu-xantphos. This shows

that the ligands have differing trans influences; t-Bu-sixantphos < t-Bu-thixant-

phos < t-Bu-xantphos. The X-ray crystal structure of [Rh(t-Bu-xantphos-κP,O,P ’)

Cl(η2-O2)] was disordered with the dioxygen ligand replaced in 15% of the sites

by an oxo. This is the first crystallographic evidence for a rhodium(III) oxo com-

plex, and only the third rhodium oxo complex that has been reported. Attempts

to synthesis the oxo complex directly were promising, with a new peak present in

the 31P NMR spectrum for a short-lived species. However, further research and

characterisation is necessary.
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Upon reaction of Ph-thixantphos with [Pt(nb)3] or [Pt(C2H4)3] the major prod-

uct was [Pt(Ph-thixantphos)2]; this was the only product observed in a 2:1 re-

action, and was characterised crystallographically. The coordination chemistry

with platinum(0) and palladium(0) showed some differences between the three

t-Bu-xantphos ligands. t-Bu-Thixantphos reacts with [Pt(nb)3] to form a mix-

ture of [Pt(t-Bu-thixantphos)] and [Pt(t-Bu-thixantphos)(nb)]. Analogues of these

complexes were formed in the reaction between [Pt(nb)3] and t-Bu-sixantphos.

However, over time a complex with NMR data consistent with platinum(II) is

observed. Using t-Bu-xantphos small amounts of [Pt(t-Bu-xantphos)] forms, but

the final product is [Pt(t-Bu-xantphos)H]X, possibly through reaction of the 14-

electron complex with a component of the reaction mixture. The ability to isolate

[Pt(t-Bu-thixantphos)], indicates the protection that the wide bite-angle and size

of the tert-butyl substituents can impart to a metal centre. Isolable complexes

of the type [Pt(diphosphine)] are rare, although examples with monophosphines

are known. Reaction of the t-Bu-xantphos ligands with [Pd(nb)3] formed [Pd(t-

Bu-xantphos)] and [Pd(t-Bu-xantphos)(nb)] complexes for all three ligands. [Pt(t-

Bu-xantphos)(C2H4)] complexes via reaction with [Pt(C2H4)3]. [Pd(t-Bu-thixant-

phos)], [Pt(t-Bu-thixantphos)], and [Pt(t-Bu-thixantphos)(C2H4)] all react with

oxygen. On palladium the oxygen is readily removed in vacuo, whereas the plat-

inum complex does not lose oxygen under vacuum. [Pt(t-Bu-thixantphos)(η2-

O2)] is unreactive towards C2H2, H2, CO2, NH4PF6 and pta. However, CO can in-

sert into the O-O bond forming a carbonate, complex which progresses through

two intermediates resulting in [Pt(t-Bu-thixantphos-H-κ-C,P,P ’)OH]. This reac-

tivity is unprecedented in the literature.

The coordination chemistry of the t-Bu-xantphos ligands with platinum(II) and

palladium(II) starting materials was also explored. Regardless of the geometry of

the starting material exclusively trans-[M(t-Bu-xantphos)Cl2] (M = Pd, Pt) com-

plexes were formed. The reaction of t-Bu-sixantphos with [PtCl2(hex)] was hin-

dered due to the competing protonation of the ligand due to the higher basic-

ity of t-Bu-sixantphos compared to t-Bu-thixantphos and t-Bu-xantphos. The X-

ray crystal structure of [Pt(t-Bu-xantphos)Cl2] is unique among [PtCl2(PP)] com-

plexes, with a P-Pt-P angle of 151.722(15)◦, with no similar angles reported in the

CSD. The platinum dichloride complexes underwent solvent-dependent dissoci-

ation of a chloride ligand, forming [Pt(t-Bu-xantphos-κP,O,P ’)Cl]+ in CDCl3 and

CD2Cl2. The solvent-dependent behaviour was not observed for the palladium
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complexes. Computational investigations showed that, although the pincer com-

plexes are consistently higher in energy than the dichloride complexes, the en-

ergy difference is much lower in polar solvents. Entropy would also promote the

dissociation of the chloride ligand leading to the experimentally observed spon-

taneity. No reaction occurred between t-Bu-thixantphos and [Pt(hex)Me2], likely

due to the stronger coordination of the methyl ligands. The reactions of the t-Bu-

xantphos ligands with [PtCl(hex)Me] formed only [Pt(t-Bu-xantphos)Me]+ pin-

cer complexes with no chlorido-methyl species observed. This is likely the result

of the high trans-influence of the methyl ligand promoting loss of the chloride.

Computational investigation showed that the fourth coordination site is occu-

pied by the oxygen in the backbone of the t-Bu-xantphos ligands. The value of

the J PtC coupling constant is largest for t-Bu-sixantphos, then t-Bu-thixantphos,

then t-Bu-xantphos consistent with the O-trans influence series observed in the

rhodium complexes; t-Bu-sixantphos < t-Bu-thixantphos < t-Bu-xantphos.

Overall this thesis provides an account into the synthesis, properties and coordi-

nation chemistry of t-Bu-sixantphos, t-Bu-thixantphos, and t-Bu-xantphos with

four late-transition metals; silver, rhodium, platinum, and palladium. The lig-

ands showed: formation of monomeric silver complexes with κ-P,P ’ coordina-

tion; rhodium complexes with meridional κP,O,P ’ coordination in square-planar,

octahedral and trigonal bipyramidal complexes, and κ-P,P ’ coordination in trig-

onal bipyramidal species; platinum(0) and palladium(0) complexes with κ-P,P ’

coordination in the presence and absence of other ligands and; exclusive trans-κ-

P,P ’coordination to platinum(II) and palladium(II) and κP,O,P ’ bonding modes.

The final mode observed was the metallation of the tert-butyl group on platinum

to form a κ-C,P,P ’ ligand. X-ray crystallography showed that the t-Bu-thixant-

phos ligand can achieve κ-P,P ’ coordination with bite-angles ranging from 117–

151◦.
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Experimental

8.1 General Procedures

All reactions and manipulation of products and reagents were carried out un-

der an inert nitrogen or argon atmosphere using standard Schlenk line tech-

niques unless stated otherwise. All reactions using silver compounds were per-

formed in the dark. Unless otherwise stated the starting materials used in this

work were obtained from Sigma-Aldrich, Merck Chemical Companies, Thermo

Fisher Scientific, and BOC Industrial Gases, and used without further purifica-

tion. Analytical grade reagents and high purity solvents were degassed and

purged with argon before use, and dried over molecular sieves. Diethyl ether

and tetrahydrofuran were distilled under an argon atmosphere from sodium ben-

zophenone ketyl immediately prior to use. 1,3,5-triaza-7-phosphaadamantane,345

sec-Butyllithium,346 2,8-dimethylphenoxathiin,347 10,10-dimethylphenoxasilin,30

CH2(SO2CF3)2,348 [Pt(nb)3],349 [Rh(coe)2Cl]2,350 [Pt(C2H4)3],320 [PtCl2(NCMe)2],351

[Pt(cod)2],352 [Pt(C6H10)Cl2],353 [PtCl2(SEt2)2],46 [PtCl2(tBuCN)2],354 [Pd(nb)3],321

[Pt(C6H10)ClMe],355 [Pd(cod)Cl2], and [Pt(C6H10)Me2],349 were prepared accord-

ing to literature procedures.

NMR spectra were recorded using a Varian Unity Inova 300 (300 MHz for 1H,

75 MHz for 13C, 121 MHz for 31P and 282 MHz for 19F), a Varian Unity Inova 500

(500 MHz for 1H and 125 MHz for 13C), or a Varian DirectDrive 600 (600 MHz for
1H and 150 MHz for 13C) spectrometer. The 600 MHz instrument was equipped

with a Varian inverse-detected triple-resonance HCN cold probe operating at

185
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25 K. All direct-detected 1H and 13C chemical shifts were referenced to the resid-

ual solvent peak.300 NMR samples were prepared under an inert nitrogen or ar-

gon atmosphere unless otherwise stated, using C6D6, CDCl3, CD2Cl2, acetone-d6

and toluene-d8. Variable temperature NMR spectroscopy was carried out using a

Varian Unity Inova 300 MHz NMR spectrometer. Infrared spectra were recorded

with a PerkinElmer Spectrum One FT-IR spectrophotometer in absorbance mode.

Electrospray ionisation mass spectrometry was recorded using an Agilent 6530 Q-

TOF mass spectrometer, or performed by the Carbohydrate Chemistry Group at

Industrial Research Limited, Lower Hutt, using a Waters Q-TOF Premier Tandem

mass spectrometer.

Single crystal X-ray diffraction data was solved using the Superflip program356

(except for [Ag(t-Bu-thixantphos)Cl] which was solved using the SHELX pro-

gram) and refined using the SHELX program357 with OLEX2 (version 1.2.5)358 as a

front-end. Unless stated otherwise the hydrogen atoms were placed in calculated

positions. Crystallographic data was collected by the X-ray Crystallography Lab-

oratory at the University of Canterbury, using either a Bruker SMART APEX-II

CCD diffractometer or an Agilent SuperNova (Dual Source) CCD diffractometer.

Data were reduced using Bruker SAINT or Agilent CrysAlisPro software. Ab-

sorption correction was performed using SADABS or SCALE3 ABSPACK. The-

oretical calculations were performed using the Gaussian 09 Revision B.01 pro-

gram359,360 running on the Victoria University of Wellington School of Chemical

and Physical Sciences Heisenberg cluster, consisting of sixteen processing nodes

with two 2.53 GHz Xeon X3440 quad-core processors per node and 1 GB of mem-

ory per core. All searches of the Cambridge Structural Databank used version

5.35 (November 2013).68

8.2 Ligands and Non-Transition Metal Derivatives

2,8-Dimethyl-4,6-bis(di-tert -butylphosphino)phenoxathiin

(t -Bu-thixantphos)

sec-Butyllithium (5.32 mL, 1.2 M in cyclohexane) was added dropwise to a stirred

solution of 2,8-dimethylphenoxathiin (0.71 g, 3.1 mmol) and TMEDA (0.92 mL,

6.2 mmol) in diethyl ether (30 mL) at -78 ◦C. The resulting yellow solution was al-
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lowed to warm to room temperature and stirred for a further 16 hours over which

time a dark red colour developed. The reaction was cooled to -78 ◦C and chlorodi-

t-butylphosphine (1.18 mL, 6.2 mmol) was added dropwise. The reaction mixture

was stirred for a further seven days resulting in a yellow solution with a white

precipitate of lithium chloride. The solvent was removed in vacuo giving an or-

ange oil. This oil was dissolved in dichloromethane (25 mL) and washed with

water (3 x 15 mL). The organic layer was passed through a column of magne-

sium sulfate and solvent was removed in vacuo. The product was recrystallised

from n-propanol giving small white crystals (1.36 g, 85%). This compound can

be handled in the air for short periods however, should be stored under an in-

ert atmosphere. 31P NMR (121 MHz, CDCl3): δ 9.5 (s). 1H NMR (500 MHz,

CDCl3): δ 7.29 (s, PC(Ar)CH ), 6.88 (s, SCCH ), 2.25 (s, C(Ar)CH3), 1.22-1.24 (m,

PC(CH3)3). 13C NMR (125 MHz, CDCl3): δ 155.3 (vt, J PC = 13.0 Hz, PCCO), 134.6

(s, PC(Ar)CH), 131.9 (s, C (Ar)CH3), 128.0 (dd, J = 22.5, 17.7 Hz, PC (Ar)), 127.4 (s,

SCCH), 120.1 (vt, J PC = 2.4 Hz, SCCH), 32.9 (dd, J = 15.8, 13.4 Hz, PC (CH3)3), 30.8

(vt, J PC = 18.2 Hz, PC(CH3)3), 20.9 (s, C(Ar)CH3). HRMS calcd for C30H47OP2S

[M+H]+ m/z = 517.2817; found = 517.2819.

4,6-Bis(di-tert -butylphosphino)-10,10-dimethylphenoxasilin

(t -Bu-sixantphos)

This compound was prepared similarly to t-Bu-thixantphos using 10,10-dimethyl-

phenoxasilin (0.40 g, 1.8 mmol) giving the title compound as white crystals (0.127

g, 14%).

31P NMR (121 MHz, CD2Cl2): δ 8.4 (s, 4J PSi = 4.8 Hz). 1H NMR (500 MHz, CD2Cl2):

δ 7.87 (d, J = 7.4 Hz, PC(Ar)CH ), 7.53 (d, J = 7.1 Hz, SiCCH ), 7.12 (t, J = 7.5 Hz,

PCCCH ), 1.29 (vt, J PH = 5.6 Hz, PC(CH3)3), 0.46 (s, Si(CH3) 2), 13C NMR (125 MHz,

CD2Cl2): δ 164.3 (vt, J PC = 11.3 Hz, PCCO), 138.5 (s, PC(Ar)CH), 134.8 (s, SiCCH),

128.0 (s, PC (Ar)), 121.4 (s, PCCCH), 119.4 (s, SiCCH), 33.2 (dd, J PC = 16.3, 13.9 Hz,

PC (CH3)3), 31.0 (vt, J PC = 9.6 Hz, PC(CH3)3), -0.09 (s, Si(CH3)2). HRMS calcd for

C30H49OP2Si [M + H]+ m/z = 515.3022; found = 515.3021.



188 Chapter 8. Experimental

9,9-Dimethyl-4,6-bis(diphenylphosphino)xanthene

(t -Bu-xantphos)

9,9-dimethylxanthene (0.50 g, 2.38 mmol) and TMEDA (1.07 mL, 7.13 mmol) were

dissolved in diethyl ether (20 mL). Added s-BuLi dropwise causing the reaction

to change to yellow then a deep red. After stirring for 24 hours chlorodi(tert-

butyl)phosphine (1.36 mL, 7.13 mmol) was added dropwise. After six days of

stirring a white precipitate had formed and a pale yellow solution remained.

The solvent was removed in vacuo and the resulting yellow oil was taken up in

dichloromethane (20 mL) and washed with degassed water (10 mL). The aqueous

layer was further extracted with dichloromethane (20 mL) and the combined or-

ganic layers were washed with water (3 x 10 mL). The organic layers were dried

over magnesium sulfate and the solvent was removed in vacuo. The resulting

pale yellow solid was recrystallised from n-propanol yielding the title compound

as fine white needles (0.44 g, 37%).

The 1H and 13C NMR data are consistent with the literature values.84 However,

the literature reported 31P chemical shift is 12.4 ppm. Due to this discrepancy full

characterisation data for this compound is given below.

31P NMR (121 MHz, CDCl3): δ 10.2 (s), 1H NMR (500 MHz, CDCl3): δ 7.60 (d,

J = 7.6 Hz, PC(Ar)CH ), 7.38 (dd, 7.8, 1.5 Hz, C(bridge)CCH ), 7.03 (t, J = 7.6 Hz,

PCCCH ), 1.57 (s, C(bridge)(CH3)2), 1.21-1.25 (m, PC(CH3)3). 13C NMR (125 MHz,

CDCl3): δ 155.8 (vt, J PC = 12.0 Hz, PCCO), 133.7 (bs, PC(Ar)CH), 130.7 (vt,

J PC = 2.0 Hz, C(bridge)CCH), 126.6 (dd, J PC = 21.6, 15.4 Hz, PC (Ar)), 125.5 (s,

C(bridge)CCH), 121.5 (s, PCCCH), 35.0 (bs, C (bridge)), 32.7 (dd, J PC = 16.1,

12.7 Hz, PC (CH3)3), 31.1 (s, C(bridge)(CH3)2), 30.8 (vt, J PC = 18.8 Hz, PC(CH3)3).

HRMS calcd for C31H49OP2 [M+H]+ m/z = 499.3253; found = 499.3241.

2,6-bis(di-tert -butylphosphino)phenoxathiin

O

S

tBu2P

PtBu2
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Phenoxathiin (0.20 g, 1.00 mmol) and TMEDA (0.43 mL, 2.27 mmol) were dis-

solved in heptane (6 mL). A solution of sec-butyllithium (1.0 M in cyclohexane,

2.27 mL) was added dropwise. The mixture was stirred for 24 hours resulting

in a yellow solution with a white precipitate. PtBu2Cl (0.55 mL, 2.90 mmol) was

added dropwise to the reaction and the resulting mixture was heated at 60 ◦C

for 24 hours. The solvent was removed under reduced pressure and the resulting

yellow oil was taken up in dichloromethane (10 mL) and washed with degassed

water (2 x 10 mL). The organic layer was dried by passing through a plug of

MgSO4 before removed the solvent in vacuo. The resulting oil was recrystallised

from hot n-propanol yielding the title compound as a yellow microcrystalline

solid (0.316 g, 65%).

31P NMR (121 MHz, CDCl3): δ 17.7 (d, J = 2.2 Hz, PCCO) 11.7 (d, J = 2.3 Hz,

PCCS) 1H NMR (500 MHz, CDCl3): δ 7.49 (d, J= 7.6 Hz, 1H, Ar), 7.40 (d, J= 7.3

Hz, 1H, Ar), 7.17 (dd, J= 7.7 Hz, 1.3 Hz, 1H, Ar), 7.13 (d, J= 7.6 Hz, 1H, Ar), 7.07 (t,

J= 7.7 Hz, 1H, Ar), 6.94 (t, J= 7.6 Hz, 1H, Ar), 1.21 (d, J= 12.3 Hz, 18H, PC(CH3)3),

1.20 (d, J= 12.0 Hz, 18H, PC(CH3)3). 13C NMR (150 MHz, CDCl3): δ 156.4 (d, J PC=

17.9 Hz, 1C, Ar), 151.6 (d, J PC= 10.4 Hz, 1C, Ar), 134.1 (s, 1C, Ar), 134.0 (s, 1C,

Ar), 133.8 (s, 1C, Ar), 130.5 (d, J PC= 3.4 Hz, 1C, Ar), 127.9 (s, 1C, Ar), 126.2 (d,

J PC= 31.8 Hz, 1C, Ar), 125.6 (d, J PC= 7.0 Hz, 1C, Ar), 122.8 (s, 1C, Ar), 122.3 (d,

J PC= 17.9 Hz, 1C, Ar), 119.4 (s, 1C, Ar) 33.1 (d, J PC= 21.4 Hz, PC (CH3)3), 32.4 (d,

J PC= 23.7 Hz, PC (CH3)3), 30.7 (d, J PC= 15.1 Hz, PC(CH3)3), 30.4 (d, J PC= 14.4 Hz,

PC(CH3)3).

Synthesis of [(t -Bu-xantphos)H]CH(SO2CF3)

A solution of CH2(SO2CF3)2 (0.009 g, 0.032 mmol) in CDCl3 (0.5 mL) was added

to t-Bu-xantphos (0.016 g, 0.032 mmol) in an NMR tube. The reaction was in-

stantaneous and quantitative conversion was observed by NMR spectroscopy.

Removal of the solvent in vacuo gave the product as a white solid in quantitative

yield.

31P NMR (121 MHz, CDCl3): δ 17.4 (bs). 1H NMR (600 MHz, CDCl3): δ 9.05 -

8.09 (m, PH ), 7.67-7.74 (m, 4H, Ar), 7.39 (bs, 2H, Ar), 4.06 (bs, CH (SO2CF3)2),

1.65 (s, C(bridge)(CH3)2), 1.37-1.43 (m, PC(CH3)3). 19F NMR (282 MHz, CDCl3):

δ -80.9 (s, CF 3) 13C NMR (150 MHz, CDCl3): δ 153.6-153.8 (m, PCCO), 132.5
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(bs), 130.3 (bs), 125.0 (bs), 121.0 (quartet, J CF = 317.9 Hz, CH(SO2CF3)2), 54.1 (s,

CH(SO2CF3)2), 35.5 (s, C (bridge)), 34.0 (bs, PC (CH3)3), 30.8 (s, C(bridge)(CH3)2),

29.4 (bs, PC(CH3)3). HRMS calcd for C31H49OP2 [M]+ m/z = 499.3253; found =

499.3254.

Synthesis of [(t -Bu-thixantphos)H]CH(SO2CF3)

This product was synthesised similarly to [t-Bu-xantphos(H)]CH(SO2CF3)2 using

t-Bu-thixantphos (0.041 g, 0.079 mmol) giving the title compound in quantitative

yield as a pale yield solid. X-ray quality crystals were grown by performing the

reaction in C6D6 and allowing the solvent to slowly evaporate.

31P NMR (121 MHz, CD2Cl2): δ 15.8 (s) 1H NMR (500 MHz, CD2Cl2): δ 8.99 (m,

PH ), 7.29 (s, SCCH ), 7.22 (s, PC(Ar)CH ), 3.83 (s, CH(SO2CF3)), 2.36 (s, C(Ar)CH3),

1.41-1.44 (m, PC(CH3)3). 13C NMR (125 MHz, CD2Cl2): δ 152.9 (s, PCCO), 136.2 (s,

C (Ar)CH3), 132.5 (s, SCCH), 131.8 (s, PC(Ar)CH), 122.2 (s, SCCH), 121.5 (quartet,

J CF = 325.6 Hz, CF3), 115.3 (s, PC (Ar)), 34.4 (s, PC (CH3)3), 29.5 (s, PC(CH3)3). One

peak (CH(SO2CF3)) obscured by solvent. HRMS calcd for C30H47OP2S [M]+ m/z

= 517.2817; found = 517.2817.

Synthesis of [(t -Bu-sixantphos)H]CH(SO2CF3)

[t-Bu-Sixantphos(H)]CH(SO2CF3)2 was synthesised in a similar manner to [t-

Bu-xantphos(H)]CH(SO2CF3) using t-Bu-sixantphos (0.020 g, 0.039 mmol). The

product was produced as a white solid in quantitative yield.

31P NMR (121 MHz, CDCl3): δ 14.3 (s) 1H NMR (500 MHz, CDCl3): δ 9.57 (m,

PH ), 7.85-7.87 (m, PC(Ar)CH ), 7.79 (d, 6.6 Hz, SiCCH ), 7.41 (t, 7.5 Hz, PCCCH ),

4.06 (bs, CH (SO2CF3)2), 1.43 (vt, J PH = 7.5 Hz, PC(CH3)3), 0.53 (s, Si(CH3) 2).
19F NMR (282 MHz, CDCl3): δ -80.8 (s, CF 3) 13C NMR (125 MHz, CDCl3): δ

161.5 (vt, J PC = 5.3 Hz, PCCO), 139.1 (s, SiCCH), 136.9 (s, PC(Ar)CH), 124.0

(vt, J PC = 2.4 Hz, PCCCH), 121.1 (s, SiCCH), 121.1 (quartet, J CF = 327.2 Hz,

CH(SO2CF3)2), 115.0 (bs, PC (Ar)), 53.6 (s, CH(SO2CF3)2), 34.2 (vt, J PC = 3.9 Hz,

PC (CH3)3), 29.5 (vt, J PC = 4.3 Hz, PC(CH3)3), -0.4 (s, Si(CH3)2). HRMS calcd for

C30H49OP2Si [M]+ m/z = 515.3022; found = 515.3023.
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t -Bu-SixantphosSe

A solution of t-Bu-xantphos (0.031 g, 0.060 mmol) in toluene (5 mL) was added to

grey selenium (0.095 g, 1.20 mmol) in toluene (5 mL). The reaction was heated to

reflux with stirring for 3 days. The resulting yellow solution was allowed to cool,

filtered and reduced in vacuo to give a pale yellow solid (0.036 g, 100%).

31P NMR (121 MHz, 1:1, CDCl3:CD2Cl2): δ 15.9 (s, P), 102.7 (s, 1J PSe = 689.1 Hz,

P−−Se). 1H NMR (300 MHz, 1:1, CDCl3:CD2Cl2): δ 9.13 (bs, 1H, Ar), 7.81 (d, J =

7.5 Hz, 1H, Ar), 7.66-7.16 (m, 4H, Ar), 1.61 (d, J = 22.5 Hz, P(−−Se)C(CH3)3), 1.10

(d, J = 11.5 Hz, PC(CH3)3), 0.36 (s, Si(CH3) 2), 0.07 (s, Si(CH3) 2). HRMS calcd for

C30H49OP2SeSi [M+H]+ m/z = 595.2190; found = 595.2172.

t -Bu-ThixantphosSe

A solution of t-Bu-thixantphos (0.042 g, 0.081 mmol) in toluene (5 mL) was added

to grey selenium (0.128 g, 1.62 mmol) in toluene (5 mL). The reaction was heated

to reflux with stirring for 3 days. The resulting yellow solution was allowed to

cool, filtered and reduced in vacuo to give the title compound as a yellow solid

(0.047 g, 98%).

31P NMR (121 MHz, CDCl3): δ 11.7 (s, P), 101.9 (s, 1J PSe = 698.5 Hz, P−−Se). 1H

NMR (300 MHz, CDCl3): δ 8.85 (d, J = 16.2 Hz, P(−−Se)CCH ), 7.26 (s, 1H, Ar),

6.96 (s, 1H, Ar), 6.89 (s, 1H, Ar), 2.27 (s, 3H, C(Ar)CH3), 2.25 (s, 3H, C(Ar)CH3),

1.62 (d, J = 16.6 Hz, 18H, P(−−Se)C(CH3)3), 1.15 (d, J = 11.9 Hz, 18H, PC(CH3)3).

HRMS calcd for C31H49OP2SSe [M+H]+ m/z = 597.1984; found = 597.1919.

t -Bu-XantphosSe

A solution of t-Bu-xantphos (0.041 g, 0.082 mmol) in toluene (5 mL) was added to

grey selenium (0.130 g, 1.65 mmol) in toluene (5 mL). The reaction was heated to

reflux with stirring for 3 days. The resulting yellow solution was allowed to cool,

filtered and reduced in vacuo to give a pale yellow solid (0.038 g, 80%).

31P NMR (121 MHz, 1:1, CDCl3:CD2Cl2): δ 10.6 (s, P), 101.9 (s, 1J PSe =

697.1 Hz, P−−Se). 1H NMR (500 MHz, 1:1, CDCl3:CD2Cl2): δ 9.26 (dd, 17.4,
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7.8 Hz, P(=Se)CCH ), 7.67 (d, J = 7.6 Hz, PC(Ar)CH ), 7.60 (d, J = 7.5 Hz,

P(=Se)CCCCH ), 7.50 (d, J = 7.5 Hz, PCCCCH ), 7.24 (t, J = 7.8 Hz, P(=Se)CCCH ),

7.19 (t, J = 7.6 Hz, PCCCH ), 1.66 (d, J = 16.6 Hz, P(−−Se)C(CH3)3), 1.57 (s,

C(bridge)(CH3)2), 1.19 (d, J = 11.8 Hz, PC(CH3)3). 13C NMR (125 MHz, 1:1

CDCl3:CD2Cl2): δ 157.0 (d, J PC = 21.1 Hz, PCCO), 154.2 (s, P(=Se)CCO), 143.5 (d,

J PC = 11.6 Hz, P(=Se)CCH), 136.0 (s, PC(Ar)CH), 132.8 (s, PCCCC(bridge)), 132.0

(d, J PC = 4.8 Hz, P(=Se)CCCC(bridge)), 129.2 (d, J PC = 2.4 Hz, P(=Se)CCCCH),

126.3 (s, PCCCCH), 125.3 (d, J PC = 35 Hz, PC (Ar)), 123.2 (s, 2C, P(=Se)CCCH,

PCCCH), 115.4 (d, J PC = 39.8 Hz, P(=Se)C (Ar)), 39.2 (d, J PC = 34.6 Hz,

P(=Se)C (CH3)3), 35.3 (s, C (bridge)), 33.5 (d, J PC = 26.9 Hz, PC (CH3)3), 31.2

(d, J PC = 15.4 Hz, PC(CH3)3), 30.9 (dd, 7.7, 2.0 Hz, P(=Se)C(CH3)3). 30.8 (s,

C(bridge)CH3). HRMS calcd for C31H49OP2Se [M+H]+ m/z = 579.2421; found

= 579.2381.

8.3 Silver Complexes

[Ag(t -Bu-thixantphos)Cl]

This reaction was carried out in the dark. t-Bu-Thixantphos (88 mg, 0.17 mmol)

and silver chloride (24 mg, 0.17 mmol) were combined CH2Cl2 (4 mL) in a Schlenk

tube. After 5 days stirring the solution was passed through a plug of alumina,

washing with dichloromethane (4 x 1 mL). The solvent was removed in vacuo

giving a cloudy oil. The oil was triturated with hexane (2 mL) yielding the title

compound as a white powder (94 mg, 84%). The resulting silver complex is light

sensitive and care should be taken to exclude light.

31P NMR (121 MHz, CDCl3): δ 21.81 (d, 1J107AgP = 406.7 Hz, d, 1J109AgP = 469.6 Hz).
1H NMR (600 MHz, CDCl3): δ 7.39 (d, J PH = 1.0 Hz, PC(Ar)CH ), 7.11 (d,

J PH = 1.6 Hz, SCCH ), 2.31 (s, C(Ar)CH3) 1.41 (m, PC(CH3)3). 13C NMR (150 MHz,

CDCl3): δ 155.5 (vt, J PC = 6.6 Hz, PCCO), 134.8 (d, J PC = 4.9 Hz, PC(Ar)CH), 133.1

(d, J PC = 1.5 Hz, C (Ar)CH3), 130.3 (s, SCCH), 122.8 (vt, J PC = 3.0 Hz, SCCH),

120.9 (m, PC (Ar)) 35.3 (m, PC (CH3)3) 30.9 (vt, J PC = 5.6 Hz, PC(CH3)3), 20.8 (s,

C(Ar)CH3). HRMS calcd for C30H46OP2SAg [M-Cl]+ m/z = 623.1796; found =

623.1805.
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[Ag(t -Bu-sixantphos)Cl]

This reaction was carried out in the dark. t-Bu-Sixantphos and silver chloride

were combined in an NMR tube, dissolved in CDCl3, and sonicated for 5 mins.

After four days the reaction was sonicated for 6 x 5 mins. The solution was de-

canted and the resulting solid was washed with dichloromethane (3 x 1 mL). The

solvent was removed in vacuo yielding the title compound as a white solid (31

mg, 97%). The resulting silver complex is light sensitive and care should be taken

to exclude light.

31P NMR (121 MHz, CDCl3): δ 24.2 (d, 1J107AgP = 408.1 Hz, d, 1J109AgP = 471.1 Hz)
1H NMR (600 MHz, CDCl3): δ 7.88 (m, PC(Ar)CH ), 7.61 (dd, 7.0, 1.8 Hz, SiCCH ),

7.21 (t, 7.3 Hz, PCCCH ), 1.42 (m, PC(CH3)3), 0.46 (s, Si(CH3) 2). 13C NMR (150

MHz, CDCl3): δ 163.9 (vt, J PC = 5.2 Hz, PCCO), 138.2 (d, J PC = 4.4 Hz, PC(Ar)CH),

136.3 (s, SiCCH), 122.2 (s, SiCCH), 122.1 (s, PCCCH), 120.5 (m, PC (Ar)) 35.5 (m,

PC (CH3)3) 31.0 (vt, J PC = 5.6 Hz, PC(CH3)3), -1.3 (s, C(Ar)CH3). HRMS calcd for

C30H48OP2Ag [M-Cl]+ m/z = 621.2001; found = 621.2021.

[Ag(t -Bu-xantphos)Cl]

This reaction was carried out in the dark. t-Bu-Xantphos (0.017 g, 0.034 mmol)

and silver chloride (0.005 g, 0.035 mmol) were combined in an NMR tube and dis-

solved in CDCl3. After 48 hours the reaction mixture was sonicated 10 x 5 mins.

The solution was decanted and the resulting solid was dried under reduced pres-

sure leaving the title compound as a white powder (0.017 g, 78%). The resulting

silver complex is light sensitive and care should be taken to exclude light.

31P NMR (121 MHz, CDCl3): δ 20.7 (d, 1J107AgP = 409.3 Hz, d, 1J109AgP = 472.2 Hz)
1H NMR (500 MHz, CDCl3): δ 7.68 (d, J PH = 6.9 Hz, PC(Ar)CH ), 7.53 (dd, 7.6,

1.2 Hz, C(bridge)CCH ), 7.19 (t, 7.7 Hz, PCCCH ), 1.56 (s, C(bridge)(CH3)2), 1.40-

1.43 (m, PC(CH3)3). 13C NMR (125 MHz, CDCl3): δ 156.5 (vt, J PC = 6.5 Hz, PCCO),

133.7 (m, PC(Ar)CH), 130.7 (s, C(bridge)CCH), 126.8 (s, C(bridge)CCH), 122.7 (s,

PCCCH), 119.3 (m, PC (Ar)), 35.6 (m, C (bridge)), 35.1 (m, PC (CH3)3), 30.8 (vt,

J PC = 5.6 Hz, PC(CH3)3), 28.5 (s, C(bridge)(CH3)2). HRMS calcd for C31H48OP2Ag

[M-Cl]+ m/z = 605.2226; found = 605.2163.
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[Ag(t -Bu-sixantphos)]BF4

This reaction was carried out in the dark. t-Bu-Sixantphos (0.027 g, 0.052 mmol)

and silver tetrafluoroborate (0.010, 0.052 mmol) were combined in an NMR tube

and dissolved in CDCl3. After 3 days the reaction was complete by NMR spec-

troscopy. The solution was removed under reduced pressure yielding the title

compound as a white solid (0.024 g, 0.034 mmol, 64%).

31P NMR (121 MHz, CDCl3): δ 31.5 (d, 1J107AgP = 482.9 Hz, d, 1J109AgP = 557.4 Hz).
1H NMR (500 MHz, CDCl3): δ 7.84 (bs, PC(Ar)CH ), 7.73 (d, 6.8 Hz, SiCCH ), 7.34

(t, 7.3 Hz, PCCCH ), 1.40 (vt, J PH = 15.9 Hz, PC(CH3)3), 0.49 (s, Si(CH3) 2). 13C

NMR (125 MHz, CDCl3): δ 162.3 (vt, J PC = 8.7 Hz, PCCO), 138.2 (s, SiCCH), 138.1

(d, J PC = 6.7 Hz, PC(Ar)CH), 123.1 (d, J PC = 1.9 Hz, PCCCH), 122.1 (s, SiCCH),

118.4 (m, PC (Ar)), 35.7 (m, PC (CH3)3), 30.9 (m, PC(CH3)3), -0.6 (s, Si(CH3)2). 19F

NMR (282 MHz, CDCl3): δ -151.9 (s, BF4
–). HRMS calcd for C30H48OP2AgSi [M-

BF4
–]+ m/z = 621.2001; found = 621.2032.

[Ag(t -Bu-thixantphos)]BF4

This reaction was carried out in the dark. A solution of t-Bu-thixantphos (0.026

g, 0.050 mmol) in 0.5 mL of CDCl3 was added to silver tetrafluoroborate (0.010

g, 0.051 mmol) in an NMR tube. After 3 days the reaction NMR showed com-

plete conversion into the title complex. The solvent was removed under reduced

pressure yielding the product as a white solid (0.030 g, 0.042 mmol, 84%).

31P NMR (121 MHz, CDCl3): δ 28.4 (d, 1J107AgP = 486.7 Hz, d, 1J109AgP = 562.2 Hz).
1H NMR (500 MHz, CDCl3): δ 7.32 (s, PC(Ar)CH ), 7.16 (s, SCCH ), 2.33 (s,

C(Ar)CH3), 1.40 (vt, J PH = 15.8 Hz, PC(CH3)3). 13C NMR (125 MHz, CDCl3): δ

153.9 (vt, J PC = 11.0 Hz, PCCO), 134.4 (d, J PC = 1.7 Hz, C (Ar)CH3), 134.2 (d,

J PC = 6.30 Hz, PC(Ar)CH), 131.1 (s, SCCH), 122.3 (s, SCCH), 119.4 (m, PC (Ar)),

35.5 (m, PC (CH3)3), 30.8 (m, PC(CH3)3), 20.7 (s, C(Ar)CH3). 19F NMR (282 MHz,

CDCl3): δ 151.3 (s, BF4
–). HRMS calcd for C30H46OP2SAg [M-BF4

–]+ m/z =

623.1796; found = 623.1826.
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[Ag(t -Bu-xantphos)]BF4

This reaction was carried out in the dark as silver compounds are typically light

sensitive. t-Bu-Xantphos (0.017 g, 0.034 mmol) and silver tetrafluoroborate (0.008

g, 0.041 mmol) were combined in an NMR tube and dissolved in CDCl3. After 48

hours the reaction was complete by NMR spectroscopy. The solvent was removed

under reduced pressed yielding a white solid in quantitative yield.

31P NMR (121 MHz, CDCl3): δ 27.6 (d, 1J107AgP = 486.3 Hz, d, 1J109AgP = 561.1 Hz)
1H NMR (500 MHz, CDCl3): δ 7.63-7.67 (m, C(bridge)CCH, PC(Ar)CH ), 7.29 (t,

7.7 Hz, PCCCH ), 1.59 (s, C(bridge)(CH3)2), 1.39-1.42 (m, PC(CH3)3). 13C NMR

(125 MHz, CDCl3): δ 154.9 (vt, J PC = 5.6 Hz, PCCO), 133.5 (vt, J PC = 1.9 Hz,

PC(Ar)CH), 133.5 (d, J PC = 5.8 Hz, C(bridge)CCH), 128.4 (s, C(bridge)CCH),

123.8 (s, PCCCH), 117.8 (s, PC (Ar)), 35.6 (vtd, J PC = 5.3, 2.4 Hz, C (bridge)),

35.3 (m, PC (CH3)3), 30.6 (m, PC(CH3)3), 29.4 (s, C(bridge)(CH3)2). 19F NMR (282

MHz, CDCl3): δ -151.9 (s, BF4
–) HRMS calcd for C31H48OP2Ag [M-BF4

–]+ m/z =

605.2226; found = 605.2217.

Reaction of [Ag(t -Bu-sixantphos)]BF4 with LiCCPh

A solution of n-butyllithium in cyclohexanes (1.6 M 0.12 mL) was added to a

solution of phenylacetylene (0.021 mL) in THF (40 mL). The mixture was stirred

for 10 minutes, then a solution of [Ag(t-Bu-sixantphos)]BF4 (0.34 g) in THF (2.0

mL) was added. The reaction mixture was stirred in the dark for 2 hours. The

solvent was removed in vacuo and the residue taken up in acetone-d6 for NMR

analysis.

31P NMR (121 MHz, acetone−d6): δ 26.4 (d, 1J107AgP = 418.5 Hz, d,
1J109AgP = 482.9 Hz) 1H NMR (500 MHz, acetone−d6): δ 8.06 (m, 2H, Ar), 7.86

(dd, J = 7.1, 1.5 Hz, 2H, Ar), 7.41 (t, J = 7.4 Hz, PCCCH ), 1.47-1.45 (m, PC(CH3)3),

0.51 (s, Si(CH3) 2). 19F NMR (282 MHz, acetone−d6): δ -152.3 (s, BF4
–).

Reaction of [Ag(t -Bu-thixantphos)]BF4 with LiCCPh

A solution of n-butyllithium in cyclohexanes (1.6 M 0.11 mL) was added to a

solution of phenylacetylene (0.020 mL) in THF (40 mL). The mixture was stirred
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for 10 minutes, then 17 mL of the solution was added to a solution of [Ag(t-Bu-

thixantphos)]BF4 in (0.055 g) in THF (3.0 mL). The reaction mixture was stirred in

the dark for 12 hours. The solvent was removed in vacuo and the residue taken

up in acetone-d6 or C6D6 for NMR analysis.

31P NMR (121 MHz, C6D6): δ 23.4, (bs) 19.9, (bs) 1H NMR (300 MHz, C6D6): δ

7.7-6.8 (m, 6H, Ar), 1.96 (bs, C(Ar)CH3), 1.42 (bs, PC(CH3)3). 19F NMR (282 MHz,

C6D6): δ -156.9 (s, BF4
–)

31P NMR (121 MHz, acetone−d6): δ 23.1 (d, 1J107AgP = 410.3 Hz, d,
1J109AgP = 474.1 Hz). 1H NMR (300 MHz, acetone−d6): δ 7.61 (s, 2H, Ar) 7.36 (s, 2H,

Ar) 2.39 (s, C(Ar)CH3), 1.51-1.46 (m, PC(CH3)3). 19F NMR (282 MHz, acetone−d6):

δ -152.1 (s, BF4
–).

Reaction of [Ag(t -Bu-xantphos)]BF4 with LiCCPh

A solution of n-butyllithium in cyclohexanes (1.6 M 0.11 mL) was added to a

solution of phenylacetylene (0.020 mL) in THF (40 mL). The mixture was stirred

for 10 minutes, then 16.2 mL of the solution was added to a solution of [Ag(t-Bu-

xantphos)]BF4 in (0.051 g) in THF (3.0 mL). The reaction mixture was stirred in

the dark for 12 hours. The solvent was removed in vacuo and the residue taken

up in acetone-d6 for NMR analysis.

31P NMR (121 MHz, acetone−d6): δ 20.7 (d, 1J107AgP = 407.4 Hz, d,
1J109AgP = 471.1 Hz). 1H NMR (500 MHz, acetone−d6): δ 7.86 (d, J = 7.5 Hz,

2H, Ar), 7.76 (dd, J = 7.6, 0.9 Hz, 2H, Ar), 7.37 (t, J = 7.6 Hz, PCCCH ), 1.61 (s,

C(bridge)(CH3)2), 1.46-1.44 (m, PC(CH3)3). 19F NMR (282 MHz, acetone−d6): δ

-152.6 (s, BF4
–).

8.4 Rhodium Complexes

[Rh(t -Bu-sixantphos-κP,O,P ’)Cl]

A solution of t-Bu-sixantphos (0.032 g, 0.062 mmol) in C6D6 was added to solid

[Rh(coe)2Cl]n (0.027 g, 0.075 mmol, 1.2 eq. of Rh) in a Young’s tap NMR tube. The

tube was sealed under argon and heated to 60 ◦C for 24 hours. The solution was
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decanted and the solvent removed in vacuo to yield the title compound as a dark

red solid in quantitative yield (0.041 g, 0.062 mmol, 100%).

31P NMR (121 MHz, C6D6): δ 44.2 (d, J RhP = 140.0 Hz). 1H NMR (600 MHz, C6D6):

δ 8.05 (m, PC(Ar)CH ), 7.13 (dd, J = 6.8, 1.8 Hz, SiCCH ), 6.84 (t, J = 7.2 Hz,

PCCCH ), 1.69 (vt, J PH = 13.5 Hz, PC(CH3)3), 0.07 (s, Si(CH3) 2). 13C NMR (125

MHz, C6D6): δ 169.5 (PCCO, J PC = , Hz, ) (s, 138.4)PC(Ar)CH, 136.0 (s, SiCCH),

127.0 (m, PC (Ar)), 122.8 (s, PCCCH), 121.5 (SiCCH, J PC = , Hz, ) (37.7, J PC = vt Hz,

9.9)PC (CH3)3, 31.0 (vt, J PC = 8.1 Hz, PC(CH3)3), -0.7 (s, Si(CH3)2). HRMS calcd

for C30H48OP2RhSi [M-Cl]+ m/z = 617.1999; found = 617.1998.

[Rh(t -Bu-thixantphos-κP,O,P ’)Cl]

This compound was synthesised similarly to [Rh(t-Bu-sixantphos)Cl] using, t-

Bu-thixantphos (0.025 g, 0.048 mmol) and [Rh(coe)2Cl]n (0.021 g, 0.059 mmol).

The title compound was obtained as an air-sensitive brown solid in quantitative

yield (0.032 g, 0.048 mmol, 100%).

31P NMR (121 MHz, C6D6): δ 46.5 (d, J RhP = 141.5 Hz) 1H NMR (600 MHz, C6D6):

δ 7.43 (d, J = 1.5 Hz, PC(Ar)CH ), 6.39 (s, SCCH ), 1.81 (s, C(Ar)CH3), 1.67 (vt,

J = 13.6 Hz, PC(CH3)3). 13C NMR (150 MHz, C6D6): δ 157.4 (vt, J PC = 16.8 Hz,

PCCO), 134.0 (vt, J PC = 3.6 Hz, C (Ar)CH3), 133.7 (s, PC(Ar)CH), 128.5 (s, SCCH),

127.4 (vt, J PC = 8.1 Hz, SCCH), 117.9 (vt, J PC = 7.6 Hz, PC (Ar)), 37.7 (vt, J PC = 9.2 Hz,

PC (CH3)3), 30.9 (vt, J PC = 7.5 Hz, PC(CH3)3), 19.8 (s, C(Ar)CH3). HRMS calcd for

C30H46OP2RhS [M-Cl]+ m/z = 619.1794; found = 619.1795.

[Rh(t -Bu-xantphos-κP,O,P ’)Cl]

The compound was synthesised similarly to [Rh(t-Bu-sixantphos)Cl] using t-Bu-

xantphos (0.019 g, 0.038 mmol) and [Rh(coe)2Cl]n (0.016 g, 0.038 mmol). A dark

red solid was obtained in quantitative yield (0.024 g, 0.038 mmol, 98.9%).

31P NMR (121 MHz, C6D6): δ 47.7 (d, J RhP = 142.3 Hz) 1H NMR (500 MHz, C6D6):

δ 7.78 (d, J = 7.3 Hz, PC(Ar)CH ), 7.01 (d, J = 7.6 Hz, C(bridge)CCH ), 6.80 (t,

J = 7.7 Hz, PCCCH ), 1.68 (vt, J PH = 13.4 Hz, PC(CH3)3), 1.16 (s, C(bridge)(CH3)2).
13C NMR (125 MHz, C6D6): δ 158.9 (vt, J PC = 16.3 Hz, PCCO), 133.6 (s, PC(Ar)CH),
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131.3 (vt, J PC = 6.23 Hz, C(bridge)CCH), 127.7 (s, C(bridge)CCH), 125.7 (vt,

J PC = 12.0 Hz, PC (Ar)), 123.8 (s, PCCCH), 37.6 (vt, J PC = 10.1 Hz, PC (CH3)3),

32.5 (s, C (bridge)), 33.8 (s, C(bridge)(CH3)2), 30.8 (vt, J PC = 7.7 Hz, PC(CH3)3).

HRMS calcd for C31H48OP2Rh [M-Cl]+ m/z = 601.2230; found = 601.2222.

(OC -6-43)-[Rh(t -Bu-sixantphos-κP,O,P ’)Cl(H)2]

C6D6 (0.5 mL) was stirred vigorously under hydrogen for 10 mins, before using

to dissolve [Rh(t-Bu-sixantphos)Cl] (0.037 g, 0.057 mmol) in a Young’s tap NMR

tube. Hydrogen was bubbled through the solution for 10 mins before sealing the

tube under hydrogen. After 48 hours removal of the solvent in vacuo yielded the

title compound as a brown solid in quantitative yield (0.037 g, 0.056 mmol).

31P NMR (121 MHz, C6D6): δ 78.2 (ddd, J RhP = 116.1, J PH = 12.1, 2.7 Hz). 1H

NMR (600 MHz, C6D6): δ 7.71 (m, PC(Ar)CH ), 7.23 (dd, J = 7.1, 1.7 Hz, SiCCH ),

6.93 (t, J = 7.4 Hz, PCCCH ), 1.75 (vt, J = 14.7 Hz, PC(CH3)3), 1.29 (vt, J = 13.7 Hz,

PC(CH3)3), 0.17 (s, Si(CH3) 2), 0.10 (s, Si(CH3) 2), -16.92 (dtd, J RhH = 22.7, J PH = 13.5,

J HH 9.4, H– trans Cl–), -21.12 (dtd, J RhH = 30.9, J PH = 12.1, J HH 9.2, H– trans O). 13C

NMR (150 MHz, C6D6): δ 165.6 (vt, J = 11.0 Hz, PCCO), 137.5 (s, PC(Ar)CH),

136.4 (s, SiCCH), 126.5 (vt, J = 15.0 Hz, PC (Ar)), 122.6 (vt, J = 4.6 Hz, PCCCH),

122.0 (s, SiCCH), 38.4 (vt, J = 10.9 Hz, PC (CH3)3), 36.7 (vtt, J = 20.8, 2.8 Hz,

PC (CH3)3), 33.5 (vt, J = 8.5 Hz, PC(CH3)3), 30.0 (bs, PC(CH3)3), -0.7 (s, Si(CH3)2),

-0.9 (s, Si(CH3)2). HRMS calcd for C30H50OP2RhSi [M-Cl]+ m/z = 619.2156; found

= 619.2137.

(OC -6-43)-[Rh(t -Bu-thixantphos-κP,O,P ’)Cl(H)2]

The reaction was performed using the same method as the synthesis of [Rh(t-Bu-

sixantphos)Cl(H)2], using t-Bu-thixantphos (0.034 g, 0.052 mmol). NMR analysis

after 48 hours showed the title compound as the only product. The solvent was

removed under reduced pressure, yielding the title compound as a brown solid

in quantitative yield (0.034 g).

31P NMR (121 MHz, C6D6): δ 77.8 (ddd, J RhP = 117.8, J PH = 11.9, 3.7). 1H NMR (600

MHz, C6D6): δ 7.15 (d, J = 2.1 Hz, PC(Ar)CH ), 6.51 (s, SCCH ), 1.85 (s, C(Ar)CH3),

1.75 (vt, J = 14.6 Hz, PC(CH3)3), 1.29 (vt, J = 13.9 Hz, PC(CH3)3), -17.00 (dtd, J RhH
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= 22.6, J PH = 13.5, J HH 9.4, H– trans Cl–), -21.13 (dtd, J RhH = 30.5, J PH = 12.4, J HH

9.4, H– trans O). 13C NMR (150 MHz, C6D6): δ 155.4 (vt, J = 13.8 Hz, PCCO),

133.8 (vt, J = 4.6 Hz, C (Ar)CH3), 133.1 (s, PC(Ar)CH), 129.1 (s, SCCH), 126.7

(vt, J = 16.2 Hz, SCCH), 120.2 (vt, J = 6.9 Hz, PC (Ar)), 38.3 (vt, J = 10.9 Hz,

PC (CH3)3), 36.5 (vtt, J = 19.1, 2.5 Hz, PC (CH3)3), 33.2 (vt, J = 8.1 Hz, PC(CH3)3),

30.1 (bs, PC(CH3)3), 20.1 (s, C(Ar)CH3).

(OC -6-43)-[Rh(t -Bu-xantphos-κP,O,P ’)Cl(H)2]

This reaction was performed using the same method as the synthesis of [Rh(t-Bu-

sixantphos)Cl(H)2], using [Rh(t-Bu-xantphos)Cl] (0.023 g, 0.036 mmol). After 48

hours the solvent was removed in vacuo yielding the title compound as a brown

solid in quantitative yield (0.023 g).

31P NMR (121 MHz, C6D6): δ 79.0 (ddd, J RhP = 117.0, J PH = 11.9, 5.2). 1H NMR

(600 MHz, C6D6): δ 7.48 (m, PC(Ar)CH ), 7.08 (d, J = 7.5 Hz, C(bridge)CCH ), 6.88

(t, J = 7.6 Hz, PCCCH ), 1.77 (vt, J = 14.8 Hz, PC(CH3)3), 1.30 (vt, J = 13.7 Hz,

PC(CH3)3), 1.25 (s, C(bridge)(CH3)2), 1.22 (s, C(bridge)(CH3)2), -17.04 (dtd, J RhH =

22.8, J PH = 13.4, J HH 9.4, H– trans Cl–), -20.51 (dtd, J RhH = 28.8, J PH = 12.2, J HH 9.4,

H– trans O). 13C NMR (150 MHz, C6D6): δ 156.2 (vt, J = 13.3 Hz, PCCO), 132.9

(s, C(bridge)CCH), 132.4 (vt, J = 5.2 Hz, C(bridge)CCH) 127.8 (vt, J = 8.1 Hz,

PC(Ar)CH), 125.1 (vt, J = 17.9 Hz, PC (Ar)), 123.5 (vt, J = 4.6 Hz, PCCCH), 38.1 (vt,

J = 11.6 Hz, PC (CH3)3), 36.5 (vtt, J = 19.1 Hz, PC (CH3)3), 34.8 (s, C (bridge)), 33.5

(vt, J = 7.5 Hz, PC(CH3)3), 32.4 (s, C(bridge)(CH3)2), 30.4 (s, C(bridge)(CH3)2),

30.0 (bs, PC(CH3)3).

(TBPY -5-33)-[Rh(t -Bu-sixantphos-κ2-P,P ’)(CO)2Cl]

[Rh(t-Bu-sixantphos)Cl] (0.041 g, 0.063 mmol) was dissolved in C6D6 (0.5 mL) in a

Young’s tap NMR tube, under an argon atmosphere. Carbon monoxide was bub-

ble through the solution for 10 mins, before the tube was sealed under a carbon

monoxide atmosphere. After three days the reaction was complete by 31P NMR

spectroscopy. The orange solution was decanted and the solvent was removed

under reduced pressure, yielding the title complex as an orange solid (0.027 g,

0.038 mmol, 60%).
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31P NMR (121 MHz, C6D6): δ 70.8 (d, J RhP = 120.0 Hz). 1H NMR (600 MHz,

C6D6): δ 7.69 (m, PC(Ar)CH ), 7.32 (d, J = 6.8 Hz, SiCCH ), 7.02 (t, J = 7.2 Hz,

PCCCH ), 1.53 (vt, J = 14.0 Hz, PC(CH3)3), 0.18 (s, Si(CH3) 2). 13C NMR (150 MHz,

C6D6): δ 195.5 (dt, J = 84.4, 13.0 Hz, RhCO) 164.3 (vt, J = 8.1 Hz, PCCO), 138.1 (s,

PC(Ar)CH), 136.5 (s, SiCCH), 124.9 (vt, J = 24.2 Hz, PC (Ar)), 123.2 (s, SiCCH),

122.4 (s, PCCCH), 38.4 (vt, J = 13.9 Hz, PC (CH3)3), 31.5 (bs, PC(CH3)3), -1.5 (bs,

Si(CH3)2). HRMS calcd for C31H48O2P2RhSi [M-COCl]+ m/z = 645.1948; found =

645.1959.

(TBPY -5-33)-[Rh(t -Bu-thixantphos-κ2-P,P ’)(CO)2Cl]

This compound was synthesised similarly to [Rh(t-Bu-sixantphos)(CO)2Cl], us-

ing [Rh(t-Bu-thixantphos)Cl] (0.032 g, 0.049 mmol) generating [Rh(t-Bu-thixant-

phos)(CO)2Cl] as a yellow solid, (0.025 g, 0.035 mmol, 72%).

31P NMR (121 MHz, C6D6): δ 69.3 (d, J RhP = 122.2 Hz) 1H NMR (600 MHz, C6D6):

δ 7.15 (s, Ar), 6.88 (bs, Ar), 1.88 (s, C(Ar)CH3), 1.52 (bs, PC(CH3)3). 13C NMR (150

MHz, C6D6): δ 154.9 (bs, PCCO), 134.1 (s, Ar), 132.5 (bs, Ar), 129.5 (bs, Ar), 125.6

(bs, Ar), 121.7 (bs, Ar), 38.2 (bs, C(bridge)(CH3)2), 31.5 (bs, PC (CH3)3), 20.3 (s,

C (bridge)). HRMS calcd for C31H46O2P2RhS [M-COCl]+ m/z = 647.1743; found

= 647.1754.

(TBPY -5-33)-[Rh(t -Bu-thixantphos-κ2-P,P ’)(CO)2Cl]

This compound was synthesised similarly to [Rh(t-Bu-sixantphos)(CO)2Cl], us-

ing [Rh(t-Bu-xantphos)Cl] (0.024 g, 0.038 mmol) generating the title compound

as a yellow solid, (0.018 g, 0.026 mmol, 67%).

31P NMR (121 MHz, C6D6): δ 71.6 (d, J RhP = 120.0 Hz). 1H NMR (600 MHz,

C6D6): δ 7.46 (m, PC(Ar)CH ), 7.15 (partially obscured by residual solvent peak,

C(bridge)CCH ), 6.94 (t, J = 7.6 Hz, PCCCH ), 1.54 (vt, J = 13.8 Hz, PC(CH3)3), 1.24

(s, C(bridge)(CH3)2). 13C NMR (150 MHz, C6D6): δ 194.9 (dt, J = 84.4, 12.4 Hz,

RhCO), 155.6 (vt, J = 10.4 Hz, PCCO), 133.4 (vt, J = 4.6 Hz, C(bridge)CCH), 133.3

(s, PC(Ar)CH), 127.0 (s, C(bridge)CCH), 123.9 (vt, J = 25.4 Hz, PC (Ar)), 122.7

(vt, J = 5.3 Hz, PCCCH), 38.1 (vt, J = 13.9 Hz, PC (CH3)3), 35.3 (s, C (bridge)),
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31.4 (bs, PC(CH3)3), 29.5 (bs, C(bridge)(CH3)2). HRMS calcd for C32H48O2P2Rh

[M-COCl]+ m/z = 629.2179; found = 629.2186.

[Rh(t -Bu-sixantphos)Cl(η2-O2)]

Air was bubbled through an NMR sample of [Rh(t-Bu-sixantphos)Cl] (0.050 g)

in C6D6 for 10 mins. After 24 hours at room temperature, NMR spectroscopy

showed quantitative conversion to [Rh(t-Bu-sixantphos)Cl(η2-O2)].

31P NMR (121 MHz, C6D6): δ 39.4 (d, J RhP = 102.2 Hz). 1H NMR (600 MHz,

C6D6): δ 7.62 (m, PC(Ar)CH ), 7.18 (dd, J = 7.0, 1.6 Hz, SiCCH ), 6.89 (t, J = 7.2 Hz,

PCCCH ), 1.87 (vt, J = 14.4 Hz, PC(CH3)3), 1.40 (bs, PC(CH3)3), 0.19 (s, Si(CH3) 2),

0.01 (s, Si(CH3) 2). 13C NMR (150 MHz, C6D6): δ 166.7 (vt, J = 9.8 Hz, PCCO),

138.7 (s, PC(Ar)CH), 136.5 (s, SiCCH), 124.6 (vt, J = 20.8 Hz, PC (Ar)), 123.2 (s,

SiCCH), 122.9 (vt, J = 4.7 Hz, PCCCH), 39.1 (vt, J = 10.4 Hz, PC (CH3)3), 38.9 (vt,

J = 13.8 Hz, PC (CH3)3), 33.4 (vt, J = 5.8 Hz, PC(CH3)3), 29.5 (bs, PC(CH3)3), 0.8

(s, Si(CH3)2), -4.2 (s, Si(CH3)2), HRMS calcd for C30H48O3P2RhSi [M-Cl]+ m/z =

649.1898; found = 649.1917.

[Rh(t -Bu-thixantphos)Cl(η2-O2)]

This compound was synthesised as for [Rh(t-Bu-sixantphos)Cl(η2-O2)] using [Rh(t-

Bu-thixantphos)Cl] (0.050 g).

31P NMR (121 MHz, C6D6): δ 39.0 (d, J RhP = 101.5 Hz). 1H NMR (500 MHz,

C6D6): δ 7.07 (d, J PH = 2.2 Hz, PC(Ar)CH ), 6.50 (s, SCCH ), 1.83 (vt, J = 14.5 Hz,

PC(CH3)3), 1.79 (s, C(Ar)CH3), 1.44 (bs, PC(CH3)3). 13C NMR (125 MHz, C6D6):

δ 155.9 (vt, J = 12.5 Hz, PCCO), 134.6 (s, PC(Ar)CH), 134.0 (vt, J = 5.3 Hz,

C (Ar)CH3), 129.8 (s, SCCH), 125.2 (vt, J = 19.7 Hz, PC (Ar)), 119.9 (vt, J = 7.2 Hz,

SCCH), 39.1 (vt, J = 10.6 Hz, PC (CH3)3), 38.9 (vt, J = 13.5 Hz, PC (CH3)3), 33.2 (vt,

J = 5.5 Hz, PC(CH3)3), 28.9 (bs, PC(CH3)3), 19.9 (s, C(Ar)CH3). HRMS calcd for

C30H46O3P2Rh [M-Cl]+ m/z = 651.1692; found = 651.1695.
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[Rh(t -Bu-xantphos)Cl(η2-O2)]

This compound was synthesised as for [Rh(t-Bu-sixantphos)Cl(η2-O2)] using [Rh(t-

Bu-xantphos)Cl] (0.050 g).

31P NMR (121 MHz, C6D6): δ 40.5 (d, J RhP = 100.7 Hz) 1H NMR (600 MHz,

C6D6): δ 7.40 (m, PC(Ar)CH ), 7.08 (d, J = 7.5 Hz, C(bridge)CCH ), 6.87 (t,

J = 7.7 Hz, PCCCH ), 1.83 (vt, J = 14.4 Hz, PC(CH3)3), 1.43 (bs, PC(CH3)3),

1.32 (s, C(bridge)(CH3)2), 1.00 (s, C(bridge)(CH3)2). 13C NMR (150 MHz, C6D6):

δ 157.3 (vt, J = 11.5 Hz, PCCO), 133.9 (s, PC(Ar)CH), 133.1 (vt, J = 5.8 Hz,

C(bridge)CCH), 127.4 (s, C(bridge)CCH), 123.9 (vt, J = 4.7 Hz, PCCCH), 123.3

(vt, J = 21.6 Hz, PC (Ar)), 38.9 (vt, J = 11.0 Hz, PC (CH3)3), 38.7 (vt, J = 14.0 Hz,

PC (CH3)3), 35.5 (s, C(bridge)(CH3)2), 34.7 (s, C (bridge)), 33.3 (vt, J = 5.8 Hz,

PC(CH3)3), 29.0 (bs, PC(CH3)3), 24.2 (s, C(bridge)(CH3)2). HRMS calcd for

C31H48O3P2Rh [M-Cl]+ m/z = 633.2128; found = 633.2140.

Reaction of [Rh(t -Bu-sixantphos)Cl] with ONMe3

In a glovebox, solid ONMe3 (0.004 g, 0.05 mmol) was added to an NMR tube

containing a CD2Cl2 solution of [Rh(t-Bu-sixantphos)Cl] (0.035 g, 0.05 mmol).

The NMR tube was sealed with a J. Young tap. By 31P NMR spectroscopy the

mixture contained uncoordinated t-Bu-sixantphos (18.6%), t-Bu-sixantphos ox-

ide (12.5%) and [Rh(t-Bu-sixantphos)Cl(η2-O2)] (68.9%). After four days the re-

action contained uncoordinated t-Bu-sixantphos (6.1%), t-Bu-sixantphos oxide

(5.3%), [Rh(t-Bu-sixantphos)Cl(η2-O2)] (36.7%), [Rh(t-Bu-sixantphos)Cl] (46.2%)

and an unidentified species possibly [Rh(t-Bu-sixantphos)Cl2(OH)] (5.8%).

[Rh(t-Bu-sixantphos)Cl2(OH)]

31P NMR (121 MHz, CD2Cl2): δ 70.5 (d, J RhP = 114.1 Hz)

Reaction of [Rh(t -Bu-thixantphos)Cl] with ONMe3

In a glovebox, solid ONMe3 (0.008 g, 0.11 mmol) was added to an NMR tube

containing a C6D6 solution of [Rh(t-Bu-thixantphos)Cl] (0.066 g, 0.10 mmol).
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The NMR tube was sealed with a J. Young tap. Solid was evident in the NMR

tube so the solvent was removed in vacuo and replaced with CD2Cl2. By 31P

NMR the mixture contained uncoordinated t-Bu-thixantphos (22.9%), [Rh(t-Bu-

thixantphos-κP,O,P ’)Cl(η2-O2)] (8.6%), [Rh(t-Bu-thixantphos-κP,O,P ’)Cl] (64.4%)

and a new compound proposed as [Rh(t-Bu-thixantphos-κP,O,P ’)Cl(O)] (7.1%).

[Rh(t-Bu-thixantphos-κP,O,P ’)Cl(O)]

31P NMR (121 MHz, CD2Cl2): δ 40.9 (d, J RhP = 90.4 Hz).

After 10 days no starting material remained and the reaction mixture contained

[Rh(t-Bu-thixantphos-κP,O,P ’)Cl(η2-O2)] (66.7%), [(t-Bu-thixantphos)H]+ (14.2%),

t-Bu-thixantphos (5.3%) and a new complex proposed as [Rh(t-Bu-thixantphos)-

Cl2(OH)].

[Rh(t-Bu-thixantphos)Cl2(OH)]

31P NMR (121 MHz, CD2Cl2): δ 74.1 (d, J RhP = 116.3 Hz).

Reaction of [Rh(t -Bu-xantphos)Cl] with ONMe3

Solid ONMe3 (0.007 g, 0.088 mmol) was added to a solution of [Rh(t-Bu-xant-

phos)Cl] (0.056 g, 0.088 mmol) in CD2Cl2 at -78 ◦C. The NMR tube was sealed

with a J. Young tap, and immediately transferred to an NMR spectrometer at -

80 ◦C. The reaction contained unreacted [Rh(t-Bu-xantphos)Cl] (85.7%) and [Rh(t-

Bu-xantphos)Cl(η2-O2)] (14.3%). Upon warming to room temperature over 24

hours the reaction mixture contained [Rh(t-Bu-xantphos)Cl] (25.4%), [Rh(t-Bu-

xantphos)Cl(η2-O2)] (70.5%), and a new set of peaks proposed as [Rh(t-Bu-xant-

phos)Cl(O)] (4.2%).

[Rh(t-Bu-xantphos)Cl(O)]

31P NMR (121 MHz, CD2Cl2): δ 42.6 (d, J RhP = 90.4 Hz).
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After 14 days at room temperature the reaction mixture contained [Rh(t-Bu-xant-

phos)Cl(O)] (42.8%), [Rh(t-Bu-xantphos)Cl(η2-O2)] (49.9%) and a new complex

proposed as [Rh(t-Bu-xantphos)Cl2(OH)] (7.3%).

[Rh(t-Bu-xantphos)Cl2(OH)]

31P NMR (121 MHz, CD2Cl2): δ 75.1 (d, J RhP = 116.3 Hz)

8.5 Platinum Complexes

1:1 Reaction of Ph-thixantphos with [Pt(nb)3]

A solution of Ph-thixantphos (0.020 g, 0.035 mmol) in C6D6 was added to an NMR

tube containing tris(norbornene)platinum (0.017 g, 0.035 mmol). Immediate 1H

and 31P NMR spectroscopy showed [Pt(nb)(Ph-thixantphos)] (39.6%) and [Pt(Ph-

thixantphos)2] (60.4%). No change was observed in the ratio over 7 days.

[Pt(Ph-thixantphos)(nb)]

31P NMR (121 MHz, C6D6): δ 20.0 (s, J PtP = 3470 Hz).

[Pt(Ph-thixantphos)2]

A solution of Ph-thixantphos (0.200 g, 0.35 mmol) in toluene (5 mL) was added to

tris(norbornene)platinum (0.084 g, 0.18 mmol) in toluene (5 mL). The reaction was

stirred for one hour before removing the solvent under reduced pressure. The

yellow powder was purified by recrystallisation from a mixture of toluene and

diethyl ether yielding the title compound as a yellow microcrystalline solid (0.066

g, 14%). Single X-ray quality crystals were grown by inwards diffusion of diethyl

ether into a dichloromethane solution of the complex over three days.

Data at -80 ◦C: 31P NMR (121 MHz, CD2Cl2): δ -2.4 (t, J = 55.0, J PtP = 3976 Hz, ),

-6.2 (t, J = 55.0, J PtP = 3864 Hz, ). 1H NMR (300 MHz, CD2Cl2): δ 5.7-7.4 (m, Ar).

HRMS calcd for C72H52O2P4S2Pt [M]+ m/z = 1330.2002; found = 1330.1986.



8.5. Platinum Complexes 205

Reaction of Ph-thixantphos with [Pt(C2H4)3]

A solution of Ph-thixantphos (0.017 g, 0.029 mmol) in C6D6 was added to an NMR

tube containing tris(ethene)platinum (0.008 g, 0.029 mmol). The reaction became

orange after 10 minutes. By 31P NMR analysis [Pt(Ph-thixantphos)2] was the ma-

jor product (93 %) with a small amount of [Pt(C2H4)(Ph-thixantphos)] (7%) as a

minor component.

[Pt(C2H4)(Ph-thixantphos)]

31P NMR (121 MHz, C6D6): δ 20.9 (s, J PtP = 3659 Hz). 1H NMR (300 MHz, C6D6):

δ 2.29 (s, J PtH = 61.0 Hz, C−−C−H).

Reaction of t -Bu-thixantphos with [Pt(nb)3]

In a glovebox, t-Bu-thixantphos (0.057 g, 0.110 mmol) in C6D6 (0.5 mL) was added

to a J. Young’s tap NMR tube containing [Pt(nb)3] (0.053 g, 0.110 mmol). The

NMR tube was closed under a nitrogen atmosphere and the reaction was heated

to 60 ◦C until the reaction was deemed complete by the absence of t-Bu-thixant-

phos from the 31P and 1H NMR spectra (4-6 days). At this stage, 1H, 13C and 31P

NMR analysis was carried out to characterise [Pt(t-Bu-thixantphos)(nb)] complex

(39.2%). The solution was filtered through a plug of diatomaceous earth washing

through with toluene (2 x 1 mL). The solvent was removed under reduced pres-

sure for one hour leaving [Pt(t-Bu-thixantphos)] as a brown expanded oil (0.073

g, 93%).

O

S

tBu2P PtBu2

Pt
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31P NMR (121 MHz, C6D6): δ 55.6 (s, J PtP = 3612 Hz) 1H NMR (600 MHz, C6D6): δ

7.61 (s, PC(Ar)CH ), 6.95 (s, SCCH ), 3.12 (s, nb CH), 2.37 (bs, 1J PtH = 67.8 Hz, nb

=CH ), 1.96 (s, C(Ar)CH3), 1.93 (obscured, assigned by COSY correlation, 2H, nb

CH 2), 1.42-1.56 (m, PC(CH3)3), 1.32 (obscured, assigned by COSY correlation, 3H,

nb CH 2, bridge CH2), 0.62 (d, 15.3 Hz, 1H, nb bridge CH2). 13C NMR (150 MHz,

C6D6): δ 158.9 (vt, J PC = 9.8 Hz, PCCO), 135.4 (s, 2J PtC = 26.6 Hz, PC(Ar)CH),

130.9 (bs, C (Ar)CH3), 130.7 (bs, SCCH), 127.6 (vt, J PC = 5.8 Hz, SCCH), 125.9 (bs,

PC (Ar)), 51.9 (bs, 1J PtC = 343.9 Hz, nb =CH), 44.9 (s, nb CH), 38.5 (m, PC (CH3)3),

38.0-38.5 (obscured, assigned by HSQC correlation, nb bridge CH2), 31.7 (bs,

PC(CH3)3), 31.4 (bs, 3J PtC = 61.4 Hz, nb CH2), 20.7 (s, C(Ar)CH3).

O

S

tBu2P PtBu2

Pt

31P NMR (121 MHz, C6D6): δ 78.6 (s, J PtP = 4809.5 Hz) 1H NMR (600 MHz,

C6D6): δ 7.32 (d, J PH = 1.8 Hz, PC(Ar)CH ), 6.87 (s, SCCH ), 1.95 (s, C(Ar)CH3),

1.52 (vt, J PH = 13.8 Hz, PC(CH3)3). 13C NMR (150 MHz, C6D6): δ 155.9 (vt,

J PC = 10.4 Hz, PCCO), 133.3 (s, PC(Ar)CH), 132.1 (vt, J PC = 5.2 Hz, C (Ar)CH3),

128.8 (s, SCCH), 126.6 (vt, J PC = 28.9 Hz, PC (Ar)), 126.1 (vt, J PC = 5.8 Hz, SCCH),

37.8 (vt, J PC = 15 Hz, PC (CH3)3), 31.7 (vt, J PC = 10.4 Hz, PC(CH3)3), 20.5 (s,

C(Ar)CH3). HRMS calcd for C30H47OP2PtS [M+H]+ m/z = 711.2438; found =

711.2450.

Reaction of t -Bu-sixantphos with [Pt(nb)3]

A solution of t-Bu-sixantphos (0.19 g, 0.37 mmol) in C6D6 (0.5 mL) was added

to [Pt(nb)3] (0.018 g, 0.37 mmol) in a J. Young’s tap NMR tube. After 24 hours

at 60 ◦C the 31P NMR spectrum showed a mixture of unreacted t-Bu-sixantphos

(75.0%), [Pt(t-Bu-sixantphos)] (15.8%), and [Pt(t-Bu-sixantphos)(nb)] (9.2%). Af-

ter five days at 60 ◦C the reaction mixture contained unreacted t-Bu-sixantphos

(11.1%), [Pt(t-Bu-sixantphos)] (32.5%), [Pt(t-Bu-sixantphos)(nb)] (24.1%) and an

unidentified Pt(II) species (18.2%).
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[Pt(t-Bu-sixantphos)]

31P NMR (121 MHz, C6D6): δ 79.5 (s, J PtP = 4826.6 Hz)

[Pt(t-Bu-sixantphos)(nb)]

31P NMR (121 MHz, C6D6): δ 59.3 (s, J PtP = 3571.8 Hz)

Pt(II) t-Bu-sixantphos species

31P NMR (121 MHz, C6D6): δ 34.7 (s, J PtP = 2676.9 Hz)

[Pt(t -Bu-xantphos)H]X

A solution of t-Bu-xantphos (0.016 g, 0.032 mmol) in C6D6 (0.5 mL) was added

to tris-(norbornene)-platinum (0.015 g, 0.032 mmol) in an Young’s tap NMR tube.

The tube was closed under argon and heated to 60 ◦C overnight. After 24 hours

no free ligand remained and the major product is proposed as [Pt(t-Bu-xantphos-

κP,O,P ’)H]X. After 7 days at room temperature small yellow crystals had formed.

The solution was decanted and the product was isolated (0.020 g).

31P NMR (121 MHz, C6D6): δ 46.7 (s, J PtP = 3246 Hz) 1H NMR (600 MHz,

C6D6): δ 7.43 (m, PC(Ar)CH ), 7.11 (d, J = 7.5 Hz, C(bridge)CCH ), 6.84 (t,

J = 7.6 Hz, PCCCH ), 1.7 (bs, C(bridge)(CH3)2), 1.5 (bs, PC(CH3)3), -18.49 (t, 13.1

Hz, 1J PtH = 1107 Hz, Pt−H). 13C NMR (150 MHz, C6D6): δ 158.6 (vt, J = 8.0 Hz,

PCCO), 138.4 (vt, J = 4.1 Hz, C(bridge)CCH), 132.1 (s, PC(Ar)CH), 124.8 (vtd,

J = 39.3, 2.9 Hz, PC (Ar)), 125.8 (s, C(bridge)CCH), 121.8 (vt, J = 5.7 Hz, PCCCH),

38.0 (vt, J = 17.5 Hz, PC (CH3)3), 36.7 (s, C (bridge)), 30.7 (bs, PC(CH3)3). HRMS

calcd for C31H49OP2Pt [M−X]+ m/z = 689.2858; found = 689.2864.

Reaction of t -Bu-thixantphos with [Pt(cod)2]

A solution of t-Bu-thixantphos (0.026 g, 0.050 mmol) in C6D6 (0.3 mL) was added

to a solution of bis-(1,5-cyclooctadiene)platinum (0.020 g, 0.050 mmol) in C6D6

(0.3 mL). The NMR tube was closed with a septum and the reaction was followed
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by 1H and 31P NMR spectroscopy. After 48 hrs at room temperature the reaction

had become black and contained 72 % unreacted t-Bu-thixantphos with the re-

mainder being [Pt(t-Bu-thixantphos)]. The reaction was heated to 40 ◦C for 24

hours, then 60 ◦C for 24 hours, but no further reaction was observed.

Reaction of t -Bu-sixantphos with [Pt(C2H4)3]

C6D6 (0.5 mL) which had been previously dried and degassed then stored under

Ar, was sparged by bubbling ethene through the liquid for 10 mins, then stirring

vigorously under an ethene atmosphere for a further 10 mins. [Pt(cod)2] (0.026

g, 0.063 mmol) was placed under ethene and 0.03 mL of the C6D6 was added.

The solution was stirred vigorously for 30 mins to ensure complete conversion to

[Pt(C2H4)3]. t-Bu-Sixantphos(0.032 g, 0.063 mmol) was placed in a Young’s tap

NMR tube under an ethene atmosphere and dissolved in the remaining C6D6.

The [Pt(C2H4)3] solution was added to the NMR tube, which was closed under

ethene and shaken to ensure mixing of the solutions. After four hours at room

temperature [Pt(t-Bu-sixantphos)(C2H4)] (11.1%) had been produced. The reac-

tion did not proceed further.

31P NMR (121 MHz, C6D6): δ 53.7 (s, J PtP = 3499 Hz).

[Pt(t -Bu-thixantphos)(C2H4)]

C6D6 (0.5 mL) which had been previously dried and degassed then stored un-

der Ar, was sparged by bubbling ethene through the liquid for 10 mins, then

stirring vigorously under an ethene atmosphere for a further 10 mins. Bis-(1,5-

cyclooctadiene)platinum (0.032 g, 0.078 mmol) was placed under ethene and 0.03

mL of the C6D6 was added. The solution was stirred vigorously for 30 mins to en-

sure complete conversion to [Pt(C2H4)3]. t-Bu-Thixantphos(0.040 g, 0.077 mmol)

was placed in a Young’s tap NMR tube under an ethene atmosphere and dis-

solved in the remaining C6D6. The [Pt(C2H4)3] solution was added to the NMR

tube, which was closed under ethene and shaken to ensure mixing of the solu-

tions. After 48 hours at room temperature the only product was [Pt(t-Bu-thixant-

phos)(C2H4)] (100 % by NMR).
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31P NMR (121 MHz, C6D6): δ 55.7 (s, J PtP = 3899 Hz) 1H NMR (600 MHz, C6D6):

δ 7.63 (s, PC(Ar)CH ), 6.96 (s, SCCH ), 2.50 (bs, 2J PtH = 59.5 Hz, C−−CH2), 1.97

(s, C(Ar)CH3), 1.38-1.40 (m, PC(CH3)3). 13C NMR (150 MHz, C6D6): δ 158.7 (bs,

PCCO), 135.3 (s, 4J PtC = 29.5 Hz, PC(Ar)CH), 131.0 (bs, C (Ar)CH3), 130.5 (bs,

SCCH), 128.5 (vt, J PC = 5.8 Hz, SCCH), 125.7 (bs, PC (Ar)), 38.7 (m, PC (CH3)3),

34.2 (bs, 1J PtC = 223.2 Hz, C−−C) 31.6 (bs, PC(CH3)3), 20.7 (s, C(Ar)CH3).

Reaction of t -Bu-xantphos with [Pt(C2H4)3]

C6D6 (0.5 mL) which had been previously dried and degassed then stored under

Ar, was sparged by bubbling ethene through the liquid for 10 mins, then stirring

vigorously under an ethene atmosphere for a further 10 mins. [Pt(cod)2] (0.015

g, 0.036 mmol) was placed under ethene and 0.03 mL of the C6D6 was added.

The solution was stirred vigorously for 30 mins to ensure complete conversion

to [Pt(C2H4)3]. t-Bu-Xantphos(0.018 g, 0.036 mmol) was placed in a Young’s tap

NMR tube under an ethene atmosphere and dissolved in the remaining C6D6. The

[Pt(C2H4)3] solution was added to the NMR tube, which was closed under ethene

and shaken to ensure mixing of the solutions. Both [Pt(t-Bu-xantphos)(C2H4)]

(41.7%) and [Pt(t-Bu-xantphos)H]X (8.6%)) were evident after four hours at room

temperature. After five days [Pt(t-Bu-xantphos)H]X was the only phosphorus

containing compound in solution.

[Pt(t-Bu-xantphos)(C2H4)]

31P NMR (121 MHz, C6D6): δ 53.4 (s, J PtP = 3878 Hz) 1H NMR (600 MHz, C6D6): δ

7.79 (d, J = 6.8 Hz, PC(Ar)CH ), 7.09 (dd, J = 7.6, 1.1 Hz, C(bridge)CCH ), 6.87 (t,

J = 7.7 Hz, PCCCH ), 2.52 (bs, 2J PtH = 58.0 Hz, C−−CH2), 1.43 (s, C(bridge)(CH3)2),

1.42 (d, J = 13.0 Hz, PC(CH3)3). 13C NMR (150 MHz, C6D6): δ 161.0 (m,

PCCO), 138.4 (s, C(bridge)CCH), 133.6 (s, 4J PtC = 28.1 Hz, PC(Ar)CH), 124.6 (s,

C(bridge)CCH), 124.1 (m, PC (Ar)), 121.2 (s, PCCCH), 38.4 (vt, J = 18.5, 2J PtC=

34.1 Hz, PC (CH3)3), 37.4 (s, C (bridge)), 31.6 (vt, J = 8.1, 3J PtC= 17.3 Hz, PC(CH3)3)

25.6 (s, C(bridge)(CH3)2).
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[Pt(t -Bu-thixantphos)(η2-O2)]

A solution of t-Bu-thixantphos (0.117 g, 0.23 mmol) in toluene (1 mL) was added

to a Schlenk tube containing tris-(norbornene)platinum (0.108 g, 0.023 mmol) in

toluene (3 mL). The reaction was stirred at 40 ◦C for 3 days. The solvent was

reduced in vacuo and the reaction mixture was placed under air. The title com-

pound was isolated by cooling the reaction mixture for two weeks at -20 ◦C

forming [Pt(t-Bu-thixantphos)(η2-O2)] as a pale peach solid (0.109 g, 65%). X-

ray quality crystals were grown by slow diffusion of air into a C6D6 solution of

[Pt(t-Bu-thixantphos)].

31P NMR (121 MHz, CD2Cl2): δ 38.4 (s, J PtP = 4488 Hz) 1H NMR (600 MHz,

CD2Cl2): δ 7.59 (dd, J = 5.9, 1.0 Hz, a), 7.32 (s, c), 2.34 (s, g), 1.43 (d, J PH = 14.4 Hz,

C(Ar)CH3). 13C NMR (125 MHz, CD2Cl2): δ 156.6 (bs, CO), 133.8 (s, 2J PtC = 37.9 Hz,

PC(Ar)CH), 133.1 (d, J PC = 5.3 Hz, C (Ar)CH3), 131.7 (bs, SCCC (CH3)), 128.5

(s, CS), 119.3 (d, J PC = 27.8 Hz, PC (Ar)), 39.3 (d, J PC = 23.5 Hz, PCCH3), 31.2

(d, J PC = 5.3 Hz, PCCH3), 21.2 (s, C(Ar)CH3). HRMS calcd for C30H47O3P2PtS

[M+H]+ m/z = 743.2326; found = 743.2291.

Reaction of [Pt(t -Bu-thixantphos)(C2H4)] with Air

Air was bubbled through a solution of [Pt(t-Bu-thixantphos)(C2H4)] (0.020 g,

0.027 mmol) in C6D6 (0.4 mL) for a total of 10 mins. The sample was sealed under

air with a septum and analysed by NMR spectroscopy immediately. [Pt(t-Bu-

thixantphos)(η2-O2)] was produced in quantitative yield by NMR spectroscopy.

Reaction of [Pt(t -Bu-thixantphos)(C2H4)] with argon

Argon was bubbled through a solution of [Pt(t-Bu-thixantphos)(C2H4)] (0.020 g,

0.027 mmol) in C6D6 (0.4 mL) for 10 mins. The sample was sealed under argon

and NMR analysis showed slight conversion to [Pt(t-Bu-thixantphos)].
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Reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with CO

Carbon monoxide was bubbled through a solution of [Pt(t-Bu-thixantphos)(η2-

O2)] (0.032 g, 0.043 mmol) in CD2Cl2 (0.4 mL) for 10 mins. The reaction was

followed by NMR spectroscopy and no further changes were observed after 7

days. The solution was passed through an alumina plug (washing with 3 x 1 mL

CH2Cl2) and the solvent removed in vacuo to give the metallated complex shown

below as a brown solid (0.010 g, 32%).

Reaction with 13CO: [Pt(t-Bu-thixantphos)(η2-O2)] (0.030 g, 0.040 mmol) was dis-

solved in CD2Cl2 and transferred to an NMR tube and sealed with a septum. The

sample was frozen in liquid nitrogen and attached by cannula to a solid potas-

sium hydroxide trap, which in turn was attached to a sample vial containing 13C-

sodium formate. The system was placed under vacuum, using syringes attached

to both the NMR tube and the sample vial. The system was closed under vacuum

and the NMR tube was transferred to a dry ice/acetone bath and allowed to melt.

The vacuum syringe on the NMR tube was replaced with a gas-tight syringe to

collect any excess carbon monoxide that may be produced. Conc. sulfuric acid

(1 mL) was added dropwise into the sample vial containing sodium formate pro-

ducing rapid bubbling. The set-up was left until the bubbling had mostly abated

(approx. 10 mins). All syringes and the cannula were removed from the sample

vial and the septum was secured with Parafilm. No unexpected differences were

observed in the NMR spectra.

O

S

P P

Pt
HO

a1

b2

c2
d2

e2

f2

g2 a1

b1

c1
d1

e1

f1

g1

h1 i1h2i2

h3

i3

j k

lm

31P NMR (121 MHz, CD2Cl2): δ 38.2 (s, J PtP = 1794 Hz, P-tBu2), −49.6 (s, J PtP = 3943 Hz,

PCCPt). 1H NMR (600 MHz, CD2Cl2): δ 7.60 (d, J PH = 3.8 Hz, c2), 7.25 (s, a1), 7.16

(s, a2), 6.95 (d, J PH = 6.5 Hz, c1), 2.34 (s, g1), 2.32 (s, g2), 1.71 (d, J PH = 12.9 Hz, i3),

1.41 (d, J = 15.9 Hz, k), 1.36 (d, J = 14.9 Hz, l), 1.34 (d, J PH = 13.2 Hz, i2), 1.2-1.5,

obscured (m, m), 1.03 (d, J PH = 15.0 Hz, i1). 13C NMR (150 MHz, CD2Cl2): δ, 157.1

(d, J PC = 9.0 Hz, e2), 153.9 (d, J PC = 4.3 Hz, e1), 134.2 (d, J PC = 3.2 Hz, c2), 133.8 (d,
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J PC = 6.3 Hz, b1), 133.4 (d, J PC = 3.2 Hz, b2), 132.8 (s, c1), 130.5 (d, J PC = 1.6 Hz, a1),

129.6 (d, J PC = 1.6 Hz, a2), 128.5 (dd, J PC = 4.2, 1.6 Hz, f1), 124.0 (d, J PC = 4.3 Hz, f2),

121.3 (d, J PC = 13.8 Hz, d2), 116.6 (dd, J PC = 30.7, 1.6 Hz, d1), 46.7 (d, J PC = 37.6 Hz,

j) 40.8 (d, J PC = 10.1 Hz, h2), 36.8 (d, J PC = 8.0 Hz, h3), 36.0 (d, J PC = 22.3 Hz,

h1), 33.2 (d, J PC = 5.8 Hz, i3), 32.6 (s, l), 32.1 (dd, J PC = 10.1, 3.7 Hz, k), 31.3 (d,

J PC = 5.3 Hz, i2), 28.8 (bs, i1), 21.3 (s, g2), 21.0 (s, g1), 15.7 (dd, J = 81.6, 35.5 Hz,

m).

Attempted reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with CO2

Carbon dioxide was bubbled through a solution of [Pt(t-Bu-thixantphos)(η2-O2)]

(0.030 g, 0.040 mmol) in CD2Cl2 (0.4 mL) for 10 mins. The NMR tube was sealed

under carbon dioxide with a septum and the reaction was followed by 1H, 13C and
31P NMR. No reaction was observed after four days at room temperature.

Attempted reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with CH4

Methane was bubbled through a solution of [Pt(t-Bu-thixantphos)(η2-O2)] (0.015

g, 0.020 mmol) in C6D6 (0.5 mL) for 10 mins. The NMR tube was sealed under

methane with a septum and the reaction was followed by 1H, 13C and 31P NMR.

No reaction was observed after 14 days at room temperature.

Attempted reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with C2H2

Ethyne was bubbled through a solution of [Pt(t-Bu-thixantphos)(η2-O2)] (0.037

g, 0.050 mmol) in C6D6 (0.5 mL) for 10 mins. The NMR tube was sealed under

ethyne with a septum and the reaction was followed by 1H and 31P NMR spec-

troscopy. No reaction was observed after 48 hours.

Attempted reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with C2H4

Ethene was bubbled through a solution of [Pt(t-Bu-thixantphos)(η2-O2)] (0.037

g, 0.050 mmol) in C6D6 (0.5 mL) for 10 mins. The NMR tube was sealed under
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ethene with a septum and the reaction was followed by 1H and 31P NMR spec-

troscopy. No reaction was observed after 48 hours.

Attempted reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with NH4PF6

A solution of NH4PF6 (0.007 g, 0.043 mmol) in THF (2 mL) was added to a sus-

pension of [Pt(t-Bu-thixantphos)(η2-O2)] (0.029 g, 0.039 mmol) in THF (3 mL).

The reaction was stirred at room temperature for 24 hours. The solvent was re-

moved under reduced pressure and the brown solid was taken up in d6−acetone

for NMR. No reaction was observed so the sample was heated to 40 ◦C for four

days. No evidence of reaction was present.

Attempted reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with H2

Hydrogen gas was bubbled through a solution of [Pt(t-Bu-thixantphos)(η2-O2)]

(0.032 g, 0.043 mmol) in C6D6 (0.5 mL) for 10 mins. The NMR tube was sealed

under hydrogen with a septum and the reaction was followed by 1H and 31P

NMR spectroscopy. No reaction was observed after three days.

1:1 reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with pta

1,3,5-triaza-7-phosphaadamantane (0.003 g, 0.020 mmol) was added to a solu-

tion of [Pt(t-Bu-thixantphos)(η2-O2)] (0.015 g, 0.020 mmol) in CDCl3. The 31P

NMR spectrum showed peaks indicative of 75% starting material and uncoor-

dinated t-Bu-thixantphos (25 % of the t-Bu-thixantphos signals). There was also

a complex at -74.1 ppm (J PtP= 3562 Hz) consistent with literature precedence for

[Pt(pta)4].319

1:4 reaction of [Pt(t -Bu-thixantphos)(η2-O2)] with pta

1,3,5-triaza-7-phosphaadamantane (0.019 g, 0.120 mmol) was added to a solu-

tion of [Pt(t-Bu-thixantphos)(η2-O2)] (0.022 g, 0.030 mmol) in CDCl3. The 31P

NMR spectrum showed the presence of uncoordinated t-Bu-thixantphos and

[Pt(pta)4].319
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Reaction of t -Bu-thixantphos with [Pt(C6H10)Cl2] in C6D6

[Pt(C6H10)Cl2] (0.007 g, 0.020 mmol) was weighed into an NMR tube and placed

under argon. A solution of t-Bu-thixantphos (0.010 g, 0.019 mmol) in C6D6 (0.4

mL) was added to the NMR tube and the top was closed with a septum and

parafilm. The reaction mixture was gently shaken to promote dissolution of the

sparingly soluble [Pt(C6H10)Cl2]. The reaction was kept at room temperature for

four hours, after which time no change was observed by NMR spectroscopy. The

reaction was then heated for 72 hours at 40 ◦C, with intermediary monitoring by

NMR spectroscopy, during which time the colourless solution became dark red.

After 72 hours the reaction showed 75 % conversion (by 31P NMR spectroscopy)

to trans-[Pt(t-Bu-xantphos)Cl2].

Attempted reaction of t -Bu-thixantphos with [Pt(C6H10)Cl2] in

CH2Cl2

[Pt(C6H10)Cl2] (0.136 g, 0.39 mmol) was added to a Schlenk tube containing a

solution of t-Bu-thixantphos (0.202 g, 0.39 mmol) in CH2Cl2 (10 mL). The reac-

tion was stirred overnight generating a yellow solution. The solvent was re-

moved under reduced pressure leaving a yellow solid. NMR analysis of this solid

in C6D6 showed a mixture of unreacted t-Bu-thixantphos (43.5%), t-Bu-thixant-

phosH+ (32.5%) and trans-[Pt(t-Bu-thixantphos)Cl2] (24.0%, yields based on 31P

NMR spectroscopy).

Attempted reaction of t -Bu-thixantphos with [PtCl2(SEt2)2]

t-Bu-Thixantphos (0.012 g, 0.023 mmol) in C6D6 (0.4 mL) was added to an NMR

tube containing [PtCl2(SEt2)2] (0.012 g, 0.025 mmol). The top was sealed with a

septum and wrapped with parafilm. The reaction was kept at room temperature

for 24 hours then analysed by 1H and 31P NMR spectroscopy. No change was ob-

served in either spectrum. The reaction was heated to 40 ◦C for 7 days then anal-

ysed again displaying unreacted t-Bu-thixantphos (99.6%) and trans-[PtCl2(t-Bu-

thixantphos)] (0.4% based on 31P NMR spectroscopy). The reaction was heated

to 60 ◦C for a further 4 days at which time the reaction had progressed to 3.1 %
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trans-[PtCl2(t-Bu-thixantphos)]. Heating at 60 ◦C was continued to give a total

of 28 days at this temperature. NMR spectroscopy showed 6.7% trans-[PtCl2(t-

Bu-thixantphos)] with unreacted t-Bu-thixantphos accounting for the remaining

92.4%.

Attempted reaction of t -Bu-thixantphos with cis-[PtCl2(NCMe)2]

t-Bu-Thixantphos (0.014 g, 0.027 mmol) was dissolved in CD2Cl2 (0.2 mL) and

added to a solution of cis-[PtCl2(NCMe)2] (0.009, 0.026 mmol) in CD2Cl2 (0.2 mL)

in an NMR tube. The tube was sealed with a septum wrapped in parafilm. The re-

action was followed by 1H and 31P NMR spectroscopy. After 72 hours the reaction

mixture contained unreacted t-Bu-thixantphos (83.8 %) and t-Bu-thixantphos H+

(16.2%) by 31P NMR spectroscopy.

Attempted reaction of t -Bu-thixantphos with trans-[PtCl2(NCMe)2]

t-Bu-Thixantphos (0.012, 0.023 mmol) was dissolved in CDCl3 (0.2 mL) and added

to an NMR tube containing a solution of trans-[PtCl2(NCMe)2] (0.010 g, 0.029

mmol) in CDCl3 (0.2 mL). The tube was sealed with a septum and the reaction

was followed by 1H and 31P NMR spectroscopy. After 24 hours at room temper-

ature no changes were observed in the NMR spectrum. The reaction was heated

to 50 ◦C for 7 days. At this stage the reaction showed unreacted t-Bu-thixant-

phos (66.7%) and t-Bu-thixantphosH+ (33.3%) based on the 31P NMR spectrum.

After a total of 21 days heating at 50 ◦C the reaction contained unreacted t-Bu-

thixantphos (43.0%), t-Bu-thixantphosH+ (31.7%) and trans-[PtCl2(t-Bu-thixant-

phos)] (25.3%).

Attempted reaction of t -Bu-thixantphos with trans-[PtCl2(NCt -

Bu)2]

t-Bu-Thixantphos (0.024 g, 0.046 mmol) was dissolved in CDCl3 (0.4 mL) and

added to an NMR tube containing a solution of trans-[PtCl2(NCt-Bu)2] (0.020

g, 0.046 mmol) in CDCl3 (0.4 mL). The reaction was sealed with a septum and

followed by 1H and 31P NMR spectroscopy. After 24 hours at room temperature
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the reaction showed unreacted t-Bu-thixantphos (91.1%) and t-Bu-thixantphosH+

(8.9%). The reaction was heated to 50 ◦C for 24 hours upon which the amount

of t-Bu-thixantphosH+ had increased to 24.4%. After 7 days at 50 ◦C the reaction

contained unreacted t-Bu-thixantphos (49.3%), t-Bu-thixantphosH+ (32.5%) and

trans-[PtCl2(t-Bu-thixantphos)] (18.2%). After 21 days at 50 ◦C only 7.4% un-

reacted t-Bu-thixantphos remained, with 50.7% t-Bu-thixantphosH+ and 41.9%

trans-[PtCl2(t-Bu-thixantphos)].

trans-[Pt(t -Bu-thixantphos)Cl2]

t-Bu-Thixantphos (0.198 g, 0.38 mmol) and [Pt(C6H10)Cl2] (0.133 g, 0.38 mmol)

were dissolved in toluene (10 mL) and heated to 50 ◦C for three days, resulting

in an orange solution. The solvent was removed in vacuo and the resulting solid

was dissolved in a minimum of dichloromethane. Diethyl ether was added until

a small amount of oily residue became evident. The sample was cooled to -14 ◦C,

resulting the title compound as red crystals (0.199 g, 66%).

31P NMR (121 MHz, C6D6): δ 32.9 (s, J PtP = 2700 Hz) 1H NMR (500 MHz, C6D6):

δ 7.11 (s, PC(Ar)CH ), 6.98 (s, SCCH ), 1.86 (s, C(Ar)CH3), 1.71 (vt, J PH = 7.3 Hz,

PCCH 3), 1.56 (bs, PCCH 3), 13C NMR (125 MHz, C6D6): δ 155.8 (vt, J PC = 6.3 Hz,

CO), 134.3 (s, PC(Ar)CH), 131.0 (vt, J PC = 3.4 Hz, C (Ar)CH3), 129.9 (s, SCCC(CH3)),

124.0 (vt, J = 18.5 Hz, PC (Ar)), 124.5 (vt, J = 6.7 Hz, CS), 20.3 (s, C(Ar)CH3), 39.7

(vt, J PC = 11.6 Hz, PCCH3), 38.8 (vt, J PC = 11.1 Hz, PCCH3), 32.8 (vt, J PC = 3.9 Hz,

PCCH3), 30.2 (bs, PCCH3), HRMS calcd for C30H46OP2SClPt [M-Cl]+ m/z =

745.2060; found = 745.2052.

trans-[Pt(t -Bu-sixantphos)Cl2]

A solution of t-Bu-sixantphos (0.051 g, 0.10 mmol) in toluene (5 mL) was added

to a suspension of [Pt(C6H10)Cl2] (0.035 g, 0.10 mmol) in toluene (5 mL). The re-

action mixture was stirred at 50 ◦C for 72 hours. The solvent was removed under

reduced pressure and the solid was taken up in C6D6 for NMR analysis. The reac-

tion showed a mixture of unreacted t-Bu-sixantphos (53.4%), t-Bu-sixantphosH+

(22.8%) and trans-[Pt(t-Bu-sixantphos)Cl2] (23.8%). The NMR sample was heated

at 50 ◦C for a further 11 days. At this stage no [Pt(C6H10)Cl2] was observed in the
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1H NMR spectrum and no change in the ratio of the compounds in the 31P NMR

spectrum was observed over a period of 24 hours. The final ratio of the com-

pounds was 63.8% t-Bu-sixantphosH+, and 36.2% trans-[Pt(t-Bu-sixantphos)Cl2].

Attempts to isolate trans-[Pt(t-Bu-sixantphos)Cl2] were unsuccessful. Due to the

complex nature of the 1H and 13C NMR spectra for this system the product trans-

[Pt(t-Bu-sixantphos)Cl2] is proposed based on the similarities of the 31P NMR

spectrum with those for trans-[Pt(t-Bu-thixantphos)Cl2] and trans-[Pt(t-Bu-xant-

phos)Cl2] which were formed via the same reaction conditions.

31P NMR (121 MHz, C6D6): δ 34.7 (s, J PtP = 2686 Hz). HRMS calcd for

C30H48ClOP2PtSi [M-Cl]+ m/z = 739.2237; found = 739.2178.

Reaction of t -Bu-xantphos with [Pt(C6H10)Cl2]

A solution of t-Bu-xantphos (0.063 g, 0.126 mmol) in toluene (5 mL) was added

to a suspension of [Pt(C6H10)Cl2] (0.044 g, 0.126) in toluene (5 mL). The reaction

mixture was stirred at 50 ◦C for 72 hours. The solvent was removed in vacuo

leaving an orange solid. The solid was recrystallised by inwards diffusion of

diethyl ether into a dichloromethane solution of the complex, yielding the title

complex as a yellow solid (0.027 g, 28%). The complex was analysed by NMR

spectroscopy in C6D6, CDCl3, CD2Cl2 and d6−acetone. In C6D6 the complex is for-

mulated as trans-[Pt(t-Bu-xantphos)Cl2] while in CDCl3 and CD2Cl2 the complex

is thought to lose a chloride ligand resulting in [Pt(t-Bu-xantphos-κP,O,P ’)Cl]Cl.

In d6−acetone the 31P NMR spectrum appears as a broad singlet at 46 ppm. The

full NMR characterisation in the other solvents is given below.

trans-[Pt(t-Bu-xantphos)Cl2]

31P NMR (121 MHz, C6D6): δ 32.4 (s, J PtP = 2721.4 Hz). 1H NMR (500 MHz,

C6D6): δ 7.36 (m, PC(Ar)CH ), 7.14 (d, J = 7.8 Hz, C(bridge)CCH ), 6.89 (t,

J = 7.0 Hz, PCCCH ), 1.67 (bs, PC(CH3)3), 1.37 (s, C(bridge)(CH3)2), 1.40 (s,

C(bridge)(CH3)2). 13C NMR (125 MHz, C6D6): δ 157.1 (vt, J = 6.3 Hz, PCCO), 136.0

(vt, J = 4.8 Hz, C(bridge)CCH), 132.9 (s, PC(Ar)CH), 126.0 (s, C(bridge)CCH),

122.5 (vt, J = 38.9 Hz, PC (Ar)), 122.1 (vt, J = 6.3 Hz, PCCCH), 39.2 (bs, PC (CH3)3),

36.5 (m, C(bridge)(CH3)2), 32.8 (bs, PC(CH3)3), 27.5 (s, C(bridge)(CH3)2).
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[Pt(t-Bu-xantphos-κP,O,P ’)Cl]Cl

31P NMR (121 MHz, CDCl3): δ 47.7 (s, J PtP = 2349.6 Hz) 1H NMR (500 MHz,

CDCl3): δ 7.96 (d, J = 7.9 Hz, C(bridge)CCH ), 7.93 (bs, PC(Ar)CH ), 7.70

(t, J = 7.3 Hz, PCCCH ), 1.80 (s, C(bridge)(CH3)2), 1.57 (vt, J PH = 15.6 Hz,

PC(CH3)3). 13C NMR (125 MHz, CDCl3): δ 158.5 (vt, J PC = 11.0 Hz, PCCO),

134.7 (s, PC(Ar)CH), 133.8 (s, C(bridge)CCH), 132.5 (s, C(bridge)CCH), 128.6 (vt,

J PC = 6.8 Hz, PCCCH), 117.2 (vt, J PC = 33.2 Hz, PC (Ar)), 39.6 (vt, J PC = 21.1 Hz,

PC (CH3)3), 34.1 (s, C(bridge)(CH3)2), 30.1 (vt, J PC = 4.3 Hz, PC(CH3)3), 27.1 (s,

C (bridge)).

31P NMR (121 MHz, CD2Cl2): δ 47.8 (s, J PtP = 2345.3 Hz) 1H NMR (500 MHz,

CD2Cl2): δ 7.93 (m, PC(Ar)CH ), 7.78 (dd, J = 7.7, 1.2 Hz, C(bridge)CCH ), 7.60 (t,

J = 7.8 Hz, PCCCH ), 1.78 (s, C(bridge)(CH3)2), 1.57 (vt, J = 16.1 Hz, PC(CH3)3).
13C NMR (125 MHz, CD2Cl2): δ 158.8 (vt, J = 11.1 Hz, PCCO), 135.0 (s, PC(Ar)CH),

133.72 (s, C(bridge)CCH), 132.7 (s, C(bridge)CCH) 128.3 (vt, J = 6.7 Hz, PCCCH),

117.8 (vt, J = 33.1 Hz, PC (Ar)), 39.8 (vt, J = 21.1 Hz, PC (CH3)3), 34.5 (s, C (bridge)),

34.1 (s, C(bridge)(CH3)2), 30.0 (vt, J = 4.8 Hz, PC(CH3)3).

HRMS calcd for C31H48ClOP2Pt [M-Cl]+ m/z = 723.2468; found = 723.2455.

[Pt(t -Bu-thixantphos-κP,O,P ’)Cl]PF6

Dissolved (tert-butyl-Thixantphos)platinum dichloride (0.035 g, 0.045 mmol) in

dichloromethane (2 mL) and added ammonium hexafluorophosphate (0.015 g,

0.090 mmol). After 1 hour of stirring the red solution had become yellow with

a white precipitate. The solution was filtered through a plug of alumina and the

solvent removed in vacuo yielding the title compound as a yellow solid (0.030g,

75%).

31P NMR (121 MHz, CD2Cl2): δ 46.4 (s, J PtP = 2347 Hz) -144.5 (septet, J PF = 710.5 Hz,

PF6) 1H NMR (500 MHz, CD2Cl2): δ 7.41 (s, PC(Ar)CH ), 7.11 (s, SCCH ), 2.38 (s,

C(Ar)CH3), 1.55 (vt, J PH = 8.0 Hz, PC(CH3)3), 13C NMR (125 MHz, C6D6): δ 157.4

(m, PCCO), 138.9 (s, C (Ar)CH3), 134.4 (s, PC(Ar)CH), 132.6 (s, SCCH), 119.8 (m,

PC (Ar)), 119.1 (m, SCCH), 40.0 (vt, J PC = 10.4 Hz, PC (CH3)3), 30.1 (s, PC(CH3)3),

20.4 (s, C(Ar)CH3), 19F NMR (282 MHz, CD2Cl2): δ -73.4 (d, J PF = 710.6 Hz, PF 6)

HRMS calcd for C30H46ClOP2PtS [M-PF6]+ m/z = 741.2032; found = 741.2069.
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[Pt(t -Bu-xantphos-κP,O,P ’)Cl]PF6

A solution of t-Bu-xantphos (0.014 g, 0.018 mmol) in dichloromethane (2.0 mL)

was added to solid ammonium hexafluorophosphate (0.006 g, 0.037 mmol) in a

Schlenk tube. The reaction mixture was stirred for 1 hour before filtering through

a plug of alumina. The solvent was removed in vacuo yielding the title com-

pound as a yellow solid (0.008 g, 50%).

31P NMR (121 MHz, CD2Cl2): δ 47.8 (s, J PtP = 2350.3 Hz), -144.5 (septet, J PF

= 710.4 Hz, PF6). 1H NMR (600 MHz, CD2Cl2): δ 7.92 (m, PC(Ar)CH ), 7.82

(dd, J = 7.7, 1.5 Hz, C(bridge)CCH ), 7.53 (t, J = 7.7 Hz, PCCCH ), 1.75 (s,

C(bridge)(CH3)2), 1.57 (vt, J = 15.9 Hz, PC(CH3)3). 13C NMR (150 MHz, CD2Cl2):

δ 158.8 (vt, J = 9.4 Hz, PCCO), 135.0 (s, PC(Ar)CH), 133.4 (s, C(bridge)CCH),

132.6 (vt, J = 5.8 Hz, C(bridge)CCH), 128.1 (vt, J = 6.4 Hz, PCCCH), 118.0 (vt,

J = 32.9 Hz, PC (Ar)), 39.8 (vt, J = 21.4 Hz, PC (CH3)3), 34.5 (s, C (bridge)), 33.9 (s,

C(bridge)(CH3)2), 30.0 (vt, J = 4.6 Hz, PC(CH3)3). HRMS calcd for C31H48OP2Pt

[M-PF6]+ m/z = 723.2468; found = 723.2513.

Attempted reaction of t -Bu-thixantphos with [Pt(C6H10)Me2]

A solution of t-Bu-thixantphos (0.020 g, 0.039 mmol) in C6D6 (0.5 mL) was added

to an NMR tube containing [Pt(C6H10)Me2]. No reaction was observed after 24

hours at room temperature. The reaction was heated to 60 ◦C. After 28 days

no conversion was evident by 31P or 1H NMR spectroscopy. CH2(SO2CF3)2 (1 eq.)

was added, resulting in the immediate formation of [(t-Bu-thixantphos)H]+.

[Pt(t -Bu-thixantphos-κP,O,P ’)Me]Cl

A solution of t-Bu-thixantphos (0.043 g, 0.083 mmol) in toluene (1.0 mL) was

added to solid [Pt(C6H10)ClMe] (0.027 g, 0.083 mmol) in a Schlenk tube. The

reaction mixture was stirred for 24 hours at room temperature, during which,

an off-white precipitate formed. The solution was decanted and the solid dried

under vacuum, giving [Pt(t-Bu-thixantphos)Me]Cl as an off-white powder (0.057

g, 90%).
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31P NMR (121 MHz, acetone−d6): δ 50.5 (s, J PtP = 2793.3 Hz) 1H NMR (600

MHz, acetone−d6): δ 7.69 (d, J PH = 1.8 Hz, PC(Ar)CH ), 7.34 (d, J PH = 1.2 Hz,

SCCH ), 2.42 (s, C(Ar)CH3), 1.56 (vt, J PH = 15.6 Hz, PC(CH3)3), 1.94 (t, J PH = 5.5,
2J PtP = 97.4 Hz, Pt-CH 3), 13C NMR (150 MHz, acetone−d6): δ 153.8 (vt,

J PC = 10.3 Hz, PCCO), 137.1 (vt, J PC = 6.3 Hz, C (Ar)CH3), 134.4 (s, PC(Ar)CH),

131.4 (s, SCCH), 120.8 (vt, J PC = 31.8 Hz, PC (Ar)), 118.2 (vt, J PC = 7.2 Hz, SCCH),

38.8 (vt, J PC = 20.6 Hz, PC (CH3)3), 29.6 (obscured, assigned by HSQC correlation,

PC(CH3)3), 19.2 (s, C(Ar)CH3), -23.8 (t, J PC = 5.6, 1J PtC = 777.2 Hz, Pt-CH3) HRMS

calcd for C31H49OP2PtS [M-Cl]+ m/z = 721.2579; found = 721.2602.

[Pt(t -Bu-xantphos)Me]Cl

A solution of t-Bu-xantphos (0.024 g, 0.048 mmol) in toluene (0.5 mL) was added

to solid [Pt(C6H10)ClMe] (0.016 g, 0.048 mmol) in a Schlenk tube. The reaction

mixture was stirred for 24 hours at room temperature, during which, an off-white

precipitate formed. The solution was decanted and the solid dried under vac-

uum, giving the title compound as an off-white powder (0.028 g, 78%).

31P NMR (121 MHz, acetone−d6): δ 51.0 (s, J PtP = 2788.2 Hz) 1H NMR (500

MHz, acetone−d6): δ 8.15 (dt, J = 7.5, 3.7 Hz, PC(Ar)CH ), 8.07 (d, J = 7.8 Hz,

C(bridge)CCH ), 7.63 (t, J = 7.9 Hz, PCCCH ), 1.92 (t, J PH = 5.4, 2J PtP = 97.4 Hz, Pt-

CH 3), 1.78 (s, C(bridge)(CH3)2) 1.55 (vt, J PH = 15.4 Hz, PC(CH3)3) 13C NMR (125

MHz, acetone−d6): δ 156.1 (vt, J PC = 10.2 Hz, PCCO), 135.9 (s, PC(Ar)CH), 133.2

(s, C(bridge)CCH), 132.7 (s, C(bridge)CCH), 127.4 (vt, J PC = 6.6 Hz, PCCCH),

119.7 (vt, J PC = 34.1 Hz, PC (Ar)), 39.5 (vt, J PC = 21.4, 2J PtC = 43.3 Hz, PC (CH3)3),

35.0 (s, C (bridge)), 33.7 (s, C(bridge)(CH3)2), 30.4 (vt, J PC = 6.1 Hz, PC(CH3)3).

-23.9 (t, J PC = 5.6, 1J PtC = 774.6 Hz, Pt-CH3) HRMS calcd for C32H51OP2Pt [M-Cl]+

m/z = 703.3014; found = 703.2987.

[Pt(t -Bu-sixantphos)Me]Cl

A solution of t-Bu-sixantphos (0.026 g, 0.051 mmol) in C6D6 was added to an

NMR tube containing [Pt(C6H10)ClMe] (0.017 g, 0.051 mmol). After 72 hours at

room temperature little reaction was observed, so the solution was heated to 50 ◦C

for 24 hours during which time a white precipitate formed. NMR spectroscopy
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showed no unreacted t-Bu-sixantphos was evident in the 1H or 31P NMR spec-

tra. The solution was decanted and the title compound was dried under vacuum

(0.014 g, 36%).

31P NMR (121 MHz, acetone−d6): δ 48.7 (s, J PtP = 2762.9 Hz) 1H NMR (500

MHz, acetone−d6): δ 8.39-8.36 (m, PC(Ar)CH ), 8.11 (dd, 7.1, 1.7 Hz, SiCCH ),

7.65 (t, J = 7.4 Hz, PCCCH ), 2.01 (t, J = 5.5 2J PtP = 98.6 Hz, Pt-CH 3), 1.55 (vt,

J = 15.2 Hz, PC(CH3)3), 0.59 (s, Si(CH3) 2). 13C NMR (125 MHz, acetone−d6): δ

167.3 (vt, J PC = 8.2 Hz, PCCO), 140.72 (s, PC(Ar)CH), 140.67 (s, SiCCH), 126.1 (vt,

J PC = 6.1 Hz, PCCCH), 123.5 (s, SiCCH), 121.2 (vt, J PC = 32.4 Hz, PC (Ar)), 39.7 (vt,

J PC = 21.8 Hz, PC (CH3)3), 30.6 (vt, J PC = 5.6 Hz, PC(CH3)3), -0.5 (s, Si(CH3)2), -22.7

(t, J PC = 5.6, 1J PtC = 780.5 Hz, Pt-CH3). HRMS calcd for C31H51OP2PtSi [M-Cl]+

m/z = 724.2829; found = 724.2760.

8.6 Palladium Complexes

Reaction of t -Bu-thixantphos with [Pd(nb)3]

A solution of t-Bu-thixantphos (0.051 g, 0.10 mmol) in C6D6 (0.5 mL) was added

to an NMR tube containing [Pd(nb)3] (0.038 g, 0.10 mmol) and a small crys-

tal of norbornene. The NMR tube was sealed with a J. Young’s tap. After 72

hours at room temperature no t-Bu-thixantphos was present by 31P NMR spec-

troscopy. The mixture contained [Pd(t-Bu-thixantphos)] (62.0%) and [Pd(t-Bu-

thixantphos)(nb)] (38.0%).

[Pd(t-Bu-thixantphos)(nb)]

31P NMR (121 MHz, C6D6): δ 33.6 (s)

[Pd(t-Bu-thixantphos)]

A solution of t-Bu-thixantphos (0.056 g, 0.11 mmol) in toluene (1.0 mL) was

added to a Schlenk tube containing [Pd(nb)3] (0.042 g, 0.11 mmol) and a small

crystal of norbornene (0.012 g). The reaction was stirred overnight. The solvent
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was removed in vacuo leaving [Pd(t-Bu-thixantphos)] as a oily brown solid (0.061

g, 90%).

31P NMR (121 MHz, C6D6): δ 42.9 (s) 1H NMR (500 MHz, C6D6): δ 7.35

(s, PC(Ar)CH ), 6.83 (s, SCCH ), 1.95 (s, C(Ar)CH3), 1.46 (vt, J PH = 13.7 Hz,

PC(CH3)3), 13C NMR (125 MHz, C6D6): δ 155.9 (vt, J PC = 14.0 Hz, PCCO), 133.6

(s, PC(Ar)CH), 131.9 (s, C (Ar)CH3), 128.8 (s, SCCH) 127.8 (vt, J PC = 8.2 Hz,

PC (Ar)), 124.6 (vt, J PC = 5.3 Hz, SCCH), 35.7 (vt, J PC = 3.8 Hz, PC (CH3)3), 31.9 (s,

PC(CH3)3), 20.4 (s, C(Ar)CH3)

Reaction of t -Bu-xantphos with [Pd(nb)3]

A solution of t-Bu-xantphos (0.046 g, 0.092 mmol) in C6D6 (0.5 mL) was added

to an NMR tube containing [Pd(nb)3] (0.036 g, 0.092 mmol) and a small crystal

of norbornene. The NMR tube was sealed with a J. Young’s tap. The NMR after

one hour showed a mixture with no uncoordinated t-Bu-xantphos and multiplet

products. The mixture contained [Pd(t-Bu-xantphos)] (73.1%) and [Pd(t-Bu-xant-

phos)(nb)] (12.6%), as well as several other unidentified phosphorus containing

compounds.

[Pd(t-Bu-xantphos)(nb)]

31P NMR (121 MHz, C6D6): δ 32.6 (s)

[Pd(t-Bu-xantphos)]

31P NMR (121 MHz, C6D6): δ 42.6 (s)

[Pd(t -Bu-sixantphos)]

A solution of t-Bu-sixantphos (0.040 g, 0.078 mmol) in C6D6 (0.5 mL) was added

to a J. Young’s tap NMR tube containing [Pd(nb))3] (0.030 g, 0.078 mmol) and

norbornene (0.010 g). The tube was sealed under argon and the reaction was

followed by NMR spectroscopy. After 48 hours at room temperature a mixture
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of uncoordination t-Bu-sixantphos (56.9%) and [Pd(t-Bu-sixantphos)] (43.1%) is

present by 31P NMR. After 24 hours no progress was observed. However, after

six months, the mixture contained t-Bu-sixantphos (32.0%) and [Pd(t-Bu-sixant-

phos)] (68%).

31P NMR (121 MHz, C6D6): δ 41.9 (s) 1H NMR (300 MHz, C6D6): δ 7.51 (m,

PC(Ar)CH ), 7.30 (dd, J = 7.1, 1.5 Hz, SiCCH), 6.92 (t, J = 7.4 Hz, PCCCH), 1.63

(bs, PC(CH3)3), 0.23 (s, Si(CH3) 2).

[Pd(t -Bu-thixantphos)(η2-O2)]

Air was bubbled through a solution of [Pd(t-Bu-thixantphos)] (0.058 g, 0.093

mmol) in C6D6 (0.5 mL) for 10 minutes. The solution turned green immediately.

The sample was filtered through a plug of alumina and reduced to dryness giving

the title compound as a green solid (0.052 g, 90%).

31P NMR (121 MHz, CDCl3): δ 52.0 (s) 1H NMR (500 MHz, CDCl3): δ 7.49 (s, 2H,

Ar), 7.23 (s, 2H, Ar), 2.32 (s, C(Ar)CH3), 1.50 (d, J = 13.7 Hz, PC(CH3)3).

trans-[Pd(t -Bu-sixantphos)Cl2]

Combined t-Bu-sixantphos (0.015 g, 0.029 mmol) and [Pd(cod)Cl2] (0.008 g, 0.029

mmol) in an sealed tube and stirred at 60 ◦C for hours then 35 ◦C. The solvent was

removed in vacuo yielding the title compound as a red solid (0.018 g, 89%).

31P NMR (121 MHz, CDCl3): δ 45.7 (s) 1H NMR (500 MHz, CDCl3): δ 7.71

(m, PC(Ar)CH ), 7.68 (d, 7.1 Hz, SiCCH ), 7.33 (t, 7.3 Hz, PCCCH ), 1.60 (vt,

J PH = 7.3 Hz, PC(CH3)3), 0.52 (s, Si(CH3) 2). 13C NMR (125 MHz, CDCl3): δ

165.1 (vt, J PC = 6.8 Hz, PCCO), 137.6 (s, PC(Ar)CH), 136.9 (s, SiCCH), 124.9 (s,

SiCCH), 123.1 (s, PCCCH), 121.8 (vt, J PC = 13.4 Hz, PC (Ar)), 39.6 (vt, J PC = 6.3 Hz,

PC (CH3)3), 31.1 (vt, J PC = 2.7 Hz, PC(CH3)3), -2.0 (s, Si(CH3)2).

31P NMR (121 MHz, CD2Cl2): δ 46.7 (s) 1H NMR (600 MHz, CD2Cl2): δ 7.72-7.74

(m, 2H, SiCCH, PC(Ar)CH ), 7.35 (t, J = 7.2 Hz, PCCCH ), 1.59 (vt, J = 15.0 Hz,

PC(CH3)3), 0.53 (s, Si(CH3) 2). 13C NMR (150 MHz, CD2Cl2): δ 165.4 (bs, PCCO),

137.9 (s, PC(Ar)CH), 137.2 (s, SiCCH), 125.2 (s, SiCCH), 123.2 (s, PCCCH), 122.0
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(vt, J = 25.4 Hz, PC (Ar)), 39.7 (vt, J = 12.8 Hz, PC (CH3)3), 31.1 (bs, PC(CH3)3),

-2.2 (s, Si(CH3)2).

31P NMR (121 MHz, C6D6): δ 42.0 (s) 1H NMR (500 MHz, C6D6): δ 7.51 (dtd,

J = 7.7, 3.9, 1.8 Hz, PC(Ar)CH ), 7.30 (dd, J = 7.0, 1.6 Hz, SiCCH ), 6.92 (t, J = 7.3 Hz,

PCCCH ), 1.64 (bs, PC(CH3)3), 0.23 (s, Si(CH3) 2). 13C NMR (125 MHz, C6D6): δ

164.9 (vt, J = 6.2 Hz, PCCO), 137.2 (s, PC(Ar)CH), 135.5 (s, SiCCH), 125.4 (vt,

J = 3.0 Hz, SiCCH), 124.1 (vt, J = 26.9 Hz, PC (Ar)), 121.9 (vt, J = 4.8 Hz, PCCCH),

39.4 (vt, J = 11.5 Hz, PC (CH3)3), 31.6 (bs, PC(CH3)3), -3.1 (bs, Si(CH3)2).

HRMS calcd for C30H48OP2SiPdCl [M-Cl]+ m/z = 655.1676; found =

655.1663.

trans-[Pd(t -Bu-thixantphos)Cl2]

t-Bu-Thixantphos (0.197 g, 0.38 mmol) and [Pd(cod)Cl2] (0.108 g, 0.38 mmol) were

dissolved in toluene then heated to 40 ◦C for three days. The solvent was removed

in vacuo yielding the title compound as an orange solid (0.265 g, 100%).

31P NMR (121 MHz, CD2Cl2): δ 40.0 (s) 1H NMR (600 MHz, CD2Cl2): δ 7.16 (s,

SCCH ), 7.15 (s, PC(Ar)CH ), 2.33 (s, C(Ar)CH3), 1.59 (vt, J = 13.6 Hz, PC(CH3)3),
13C NMR (150 MHz, CD2Cl2): δ 155.1 (vt, J = 8.7 Hz, PCCO), 134.4 (s, SCCH),

133.1 (vt, J = 5.8 Hz, C (Ar)CH3), 130.2 (s, PC(Ar)CH), 123.8 (vt, J = 26.1 Hz,

PC (Ar)), 123.3 (vt, J = 6.3 Hz, SCCH), 39.5 (vt, J = 12.1 Hz, PC (CH3)3), 31.3 (bs,

PC(CH3)3), 20.7 (s, C(Ar)CH3). HRMS calcd for C30H46OP2SPdCl [M-Cl]+ m/z =

657.1468; found = 657.1446.

trans-[Pd(t -Bu-xantphos)Cl2]

t-Bu-Xantphos (0.021 g, 0.042 mmol) and [Pd(cod)Cl2] (0.012 g, 0.042 mmol) were

dissolved in C6D6 in an NMR tube then heated to 40 ◦C for three days. The solvent

was removed in vacuo and the residue was washed with pentane yielding the

title compound as an orange solid (0.015 g, 53%).

31P NMR (121 MHz, C6D6): δ 40.0 (s) 1H NMR (600 MHz, C6D6): δ 7.33 (dtd,

J = 8.1, 3.4, 1.5 Hz, PC(Ar)CH ), 7.13 (dd, J = 7.7, 1.2 Hz, C(bridge)CCH ),

6.87 (t, J = 7.7 Hz, PCCCH ), 1.65 (bs, PC(CH3)3), 1.32 (bs, C(bridge)(CH3)2).
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13C NMR (150 MHz, C6D6): δ 156.9 (vt, J = 8.7 Hz, PCCO), 135.4 (vt,

J = 4.6 Hz, C(bridge)CCH), 132.8 (s, PC(Ar)CH), 126.2 (s, C(bridge)CCH),

123.0 (vt, J = 27.7 Hz, PC (Ar)), 122.2 (vt, J = 5.3 Hz, PCCCH), 39.1 (vt,

J = 12.1 Hz, PC (CH3)3), 36.2 (s, C (bridge)), 31.5 (bs, PC(CH3)3), 24.9 (s,

C(bridge)(CH3)2).

31P NMR (121 MHz, CD2Cl2): δ 54.1 (s) 1H NMR (600 MHz, CD2Cl2): δ 7.87 (d,

J = 7.6 Hz, C(bridge)CCH ), 7.76 (m, PC(Ar)CH ), 7.52 (t, J = 7.7 Hz, PCCCH ),

1.75 (s, C(bridge)(CH3)2), 1.59 (vt, J = 15.5 Hz, PC(CH3)3), 13C NMR (150 MHz,

CD2Cl2): δ 156.6 (vt, J = 11.6 Hz, PCCO), 134.6 (s, C(bridge)CCH) 132.0 (s,

PC(Ar)CH), 126.5 (s, C(bridge)CCH), 118.1 (vt, J = 24.3 Hz, PC (Ar)), 117.6

(s, PCCCH), 39.8 (vt, J = 13.8 Hz, PC (CH3)3), 32.6 (s, C (bridge)), 31.4 (s,

C(bridge)(CH3)2), 30.3 (vt, J = 5.8 Hz, PC(CH3)3).

HRMS calcd for C31H48OP2PdCl [M-Cl]+ m/z = 635.1925; found = 635.1966.

[Pd(t -Bu-thixantphos-κP,O,P ’)Cl]PF6

NH4PF6 (0.052 g, 0.32 mmol) and trans-[Pd(t-Bu-thixantphos)Cl2] (0.050, 0.061

mmol) were combined in an Schlenk tube and suspended in CH2Cl2 (10 mL). The

reaction mixture was stirred overnight and the volume was reduced by half. The

solution was filtered through a plug of alumina and reduced to dryness giving

the title compound as a yellow solid (0.039 g, 68%).

31P NMR (121 MHz, CD2Cl2): δ 56.4 (s) -144.5 (septet, J PF = 710.5 Hz, PF6) 1H NMR

(500 MHz, CD2Cl2): δ 7.36 (d, J PH = 2.0 Hz, PC(Ar)CH ), 7.15 (s, SCCH ), 2.38 (s,

C(Ar)CH3), 1.58 (vt, J PH = 8.2 Hz, PC(CH3)3), 13C NMR (125 MHz, C6D6): δ 154.86

(vt, J PC = 6.5 Hz, PCCO), 138.3 (vt, J PC = 5.8 Hz, C (Ar)CH3), 134.6 (s, PC(Ar)CH),

132.6 (s, SCCH), 119.1 (s, SCCH), 118.7 (vt, J PC = 10.8 Hz, PC (Ar)), 40.2 (vt,

J PC = 7.2 Hz, PC (CH3)3), 30.1 (s, PC(CH3)3), 20.4 (s, C(Ar)CH3) 19F NMR (282

MHz, CD2Cl2): δ -73.4 (d, J PF = 710.6 Hz, PF 6) HRMS calcd for C30H46ClOP2PdS

[M-PF6]+ m/z = 653.1489; found = 653.1527.
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[Pd(t -Bu-sixantphos-κP,O,P ’)Cl]PF6

This compound was synthesised as for [Pd(t-Bu-thixantphos-κP,O,P ’)Cl]PF6 us-

ing trans-[Pd(t-Bu-sixantphos)Cl2] (0.018 g, 0.026 mmol) and NH4PF6 (0.005 g,

0.030 mmol) giving the title compound as a yellow solid (0.020 g, 96%).

31P NMR (121 MHz, CD2Cl2): δ 52.4 (s, t-Bu-sixantphos) -144.5 (septet,

J PF = 710.3 Hz, PF6) 1H NMR (500 MHz, CD2Cl2): δ 8.07 (m, PC(Ar)CH ), 7.91

(dd, J = 7.0, 1/9 Hz, SiCCH ), 7.56 (t, J = 7.4 Hz, PCCCH ), 1.59 (vt, J = 16.1 Hz,

PC(CH3)3), 0.60 (s, Si(CH3) 2). 13C NMR (125 MHz, CD2Cl2): δ 168.4 (vt,

J = 10.6 Hz, PCCO), 140.9 (s, SiCCH), 139.7 (s, PC(Ar)CH), 126.1 (vt, J = 5.3 Hz,

PCCCH), 124.1 (s, SiCCH) 118.0 (vt, J = 22.1 Hz, PC (Ar)), 40.2 (vt, J = 15.4 Hz,

PC (CH3)3), 30.2 (vt, J = 5.3 Hz, PC(CH3)3), -0.4 (s, Si(CH3)2). 19F NMR (282 MHz,

CD2Cl2): δ -73.4 (d, J = -706.6 Hz, PF6) HRMS calcd for C30H48ClOP2PdSi [M-PF6]+

m/z = 651.1694; found = 651.1717.

[Pd(t -Bu-xantphos-κP,O,P ’)Cl]PF6

This compound was synthesised as for [Pd(t-Bu-thixantphos-κP,O,P ’)Cl]PF6 us-

ing trans-[Pd(t-Bu-xantphos)Cl2] (0.020 g, 0.030 mmol) and NH4PF6 (0.005 g,

0.030 mmol) giving the title compound as a yellow solid (0.020 g, 86%).

31P NMR (121 MHz, CD2Cl2): δ 58.3 (s, t-Bu-xantphos), -144.5 (septet,

J PF = 710.4 Hz, PF6) 1H NMR (500 MHz, CD2Cl2): δ 7.87 (dd, J = 7.7, 1.6 Hz,

PC(Ar)CH ), 7.84 (m, C(bridge)CCH ), 7.53 (t, J = 7.9 Hz, PCCCH ), 1.76 (s,

C(bridge)(CH3)2), 1.59 (vt, J = 16.1 Hz, C(bridge)(CH3)2) 13C NMR (125 MHz,

CD2Cl2): δ 156.7 (vt, J = 11.6 Hz, PCCO), 135.1 (s, PC(Ar)CH), 133.4 (s,

C(bridge)CCH), 132.7 (bs, C(bridge)CCH), 127.4 (vt, J = 6.6 Hz, PCCCH), 117.1

(vt, J = 24.0 Hz, PC (Ar)), 40.1 (vt, J = 14.9 Hz, PC (CH3)3), 34.5 (s, C (bridge)),

34.0 (s, C(bridge)(CH3)2), 30.0 (vt, J = 7.3 Hz, PC(CH3)3). 19F NMR (282 MHz,

CD2Cl2): δ -73.5 (d, J = -709.6 Hz, PF6) HRMS calcd for C31H48ClOP2Pd [M-PF6]+

m/z = 635.1925; found = 635.1959.
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