
GRAFT: A Distributed

Recommendation Framework

by

Ferry Hendrikx

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science.

Victoria University of Wellington

2015

Abstract

Since the earliest human communities, reputation has been used by people to decide

whether they should trust and interact with someone else. Traditionally, reputation was

established through a person’s standing, word of mouth and their associations. How-

ever, with the increasingly widespread use of the Internet, this situation has changed.

In particular, all of the normal cues that help to build reputation are missing. Even the

concept of identity is blurred by the common usage of pseudonyms.

In answer to this problem, many websites on the Internet have developed reputation

systems that allow members to leave feedback about the performance of others in the

execution of their duties. This accumulation of feedback about any individual can be

used to characterise and predict their future behaviour in that context, allowing others

to decide if they want to interact with that individual. Unfortunately, the information in

each instance is limited to the narrow context of the website in which it was generated.

Not only is the reputation information constrained in context, it also limits the poten-

tial scope of what can be determined about an individual. The information that could

be collected about entities includes social, demographic and reputation-based informa-

tion. These are collectively called recommendation information in this thesis. Collecting

this recommendation information from multiple sources and contexts should provide a

wider view by which an entity can be evaluated than reputation alone could produce.

The combination of these multiple sources of recommendation information can be natu-

rally extended in the development of novel applications in areas such as access control

and web service composition.

The GRAFT framework developed in this thesis encapsulates a paradigm shift in the

way that reputation information is handled. It directly supports the collection and distri-

bution goals by building a global distributed recommendation system that can be used

to collect and make available recommendation information about both people and elec-

tronic services. This system can be used as both a drop-in replacement for existing sys-

tems, or it can be used to drive the consumption of recommendation information in novel

new systems.

Recommendation information can be collected from both traditional reputation sources

such as Amazon and eBay, and non-traditional reputation sources such as social net-

works, providing flexibility in what can be collected and subsequently utilised by con-

sumers. The derivation of reputation information from non-reputation sources including

demographic and social information, and the subsequent ability to use this recommen-

dation information in the description and evaluation of policies is unique to GRAFT.

The major contributions of this thesis in the areas of reputation and reputation sys-

tems include the development of a reputation terminology, generalised models of repu-

tation and reputation context, an extensive survey and taxonomy of reputation systems

and a classification of existing reputation systems based on the taxonomy. This thesis also

contributes an architecture for GRAFT, a prototype implementation of GRAFT showing

its usefulness, and an evaluation that includes the results of a large number of simulation

experiments showing how the architecture scales and handles both malicious peers and

churn.

iv

Acknowledgments

This thesis has only been possible with the support of numerous people. I am indebted

to my supervisor Kris Bubendorfer for his insight and guidance. I am deeply grateful to

my wife Radha, who supported me over countless weekends and nights, proofread every

draft of this thesis, provided advice and brought clarity with her editorial expertise.

I would like to thank my examiners, Aaron Chen, Chris Scogings and Peter Komis-

arczuk, for their feedback and questions which have certainly strengthened this thesis. I

would also like to thank Ian Welch for proofreading this thesis just before Christmas and

for his advice; John Hine and Craig Wills, for supporting my application into the PhD

programme; Simon Richardson and Martyn Bain, for many work opportunities (so we

could pay for all of this).

Finally, my deepest appreciation to my parents, whose positive emphasis on edu-

cation set the stage for my adult life; to the many friends who have been there for me

throughout this journey; and especially to my loving children (James, Sienna, Anais and

Niamh) who will no longer have to wait for dad to complete just one more paragraph

before going for a swim or helping with your homework.

My sincere thanks to you all. Without your encouragement and support, none of this

would have been possible.

v

vi

vii

“Damnum appellandum est cum mala fama lucrum.”
“Profit made at the expense of reputation should be called a loss.”

- Publilius Syrus, fl. 46-29 BC.

“Associate yourself with Men of good Quality if you Esteem your own Reputation; for ’tis better
to be alone than in bad Company.”

- George Washington,

Rules of Civility & Decent Behavior in Company & Conversation, ca 1744.

viii

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Overview of GRAFT . 3

1.3 Research Goals . 4

1.4 Contributions . 5

1.5 Scope . 6

1.6 Publications . 7

1.7 Thesis Organisation . 7

2 Related Work 9

2.1 Terminology . 9

2.1.1 Reputation and Trust . 9

2.1.2 Recommendations . 10

2.2 Reference Models . 11

2.2.1 Reputation Systems . 11

2.2.2 Reputation Context . 12

2.3 Reputation Systems Survey . 13

2.3.1 Academic Systems . 13

2.3.2 Commercial Systems . 17

2.4 Reputation Systems Taxonomy . 19

2.4.1 Related Work . 19

2.4.2 Construction Methodology . 20

2.4.3 Taxonomy . 20

2.4.4 Classification of Reputations Systems 29

2.4.5 Analysis . 36

2.5 Related Systems . 38

2.6 Summary . 40

ix

x CONTENTS

3 Architecture 43

3.1 Requirements . 44

3.2 Architecture Overview . 47

3.3 Lightweight Model . 48

3.3.1 Entities . 49

3.3.2 OpenID . 49

3.3.3 OpenRep . 49

3.3.4 Analysis . 50

3.4 Integrated Model . 51

3.5 Collection Layer . 52

3.5.1 Entities . 52

3.5.2 Recommendations . 53

3.5.3 Originating Sources . 54

3.5.4 Recommendation Sources . 55

3.5.5 Analysis . 57

3.6 Integration Layer . 58

3.6.1 Profiles . 59

3.6.2 Concurrency . 60

3.6.3 Overlay Network . 61

3.6.4 Analysis . 61

3.7 Interpretation Layer . 66

3.7.1 Analysis . 66

3.8 Policy Backbone . 67

4 Case Studies 69

4.1 Access Control . 69

4.1.1 Forum . 72

4.1.2 Wiki . 74

4.2 Composition . 77

4.2.1 Travel Planner Service . 77

4.2.2 Meteorological Workflow . 78

4.3 Acquisition . 81

4.3.1 Travel Planner Service . 81

4.3.2 Meteorological Workflow . 82

4.3.3 Social Cloud . 83

5 Implementation 85

5.1 Forum . 86

5.1.1 Source Node . 87

CONTENTS xi

5.1.2 Consumer/Source Node . 88

5.1.3 Policy . 88

5.2 Wiki . 89

5.2.1 Source Nodes . 89

5.2.2 Consumer Node . 91

5.2.3 Policy . 92

5.3 Workflow . 92

5.3.1 Anduril Components . 93

5.3.2 Ranking Service . 94

5.3.3 Anduril Workflow . 94

6 Experimental Results and Evaluation 97

6.1 Experimental Testbed . 98

6.1.1 Prototype Limitations . 99

6.2 Degrees of Co-authorship Calculation . 99

6.2.1 Design . 99

6.2.2 Results . 100

6.3 Degrees of Co-authorship Storage . 101

6.3.1 Design . 102

6.3.2 Results . 102

6.4 Hirsch Index Calculation . 103

6.4.1 Design . 104

6.4.2 Results . 104

6.5 Workflow . 106

6.5.1 Design . 106

6.5.2 Results . 107

6.6 Workflow Simulation . 108

6.6.1 Design and Testbed . 108

6.6.2 Parameters . 109

6.6.3 Simulation . 111

6.6.4 Presentation . 111

6.7 Simulation: Base Case . 111

6.7.1 Single Response Time . 111

6.7.2 Response Inter-arrival Times . 113

6.7.3 Total Time to Reach Threshold . 116

6.8 Simulation: Base Case with Malicious Peers 119

6.8.1 Design . 119

6.8.2 Correct Responses . 120

xii CONTENTS

6.8.3 Trend . 122

6.9 Simulation: Churn . 123

6.9.1 Single Response Time . 123

6.9.2 Response Inter-arrival Times . 123

6.9.3 Total Time to Reach Threshold . 125

6.10 Simulation: Churn with Malicious Peers . 128

6.10.1 Correct Responses . 128

6.10.2 Trend . 130

6.11 Summary . 131

7 Conclusions 133

7.1 Review . 133

7.1.1 Implementation . 134

7.1.2 Experimental Results and Evaluation 135

7.2 Contributions . 135

7.3 Future Work . 137

7.3.1 Architecture . 137

7.3.2 Profiles . 138

7.3.3 DHT . 139

A Background 141

A.1 OpenID . 141

A.1.1 OpenID Discovery . 142

A.2 OpenRep . 144

A.2.1 OpenRep Discovery . 144

A.2.2 OpenRep Authentication Transfer 145

A.2.3 OpenRep Web Interfaces . 145

A.3 Distributed Hash Tables . 145

A.3.1 Kademlia . 146

B Comparison of GRAFT and XACML 147

B.1 Comparison of GRAFT and XACML . 147

C SimGrid 151

C.1 SimGrid . 151

C.1.1 Cluster Platform . 152

C.1.2 Grid5000 Platform . 152

CONTENTS xiii

D Samples 155
D.1 GRAFT Profiles . 155

D.2 GRAFT Policies . 156

D.3 Workflow . 157

D.4 Oversim . 158

Glossary 191

xiv CONTENTS

List of Figures

1.1 Overview of GRAFT, showing how multiple sources continuously feed

recommendation information into GRAFT, and how this is continuously

made available to consumers. 3

2.1 A Reference Model for Reputation Systems that accomodates both real-

world and online approaches to reputation. The trustor is a party that

wants to trust and interact with a target agent or entity, called the trustee.

The trustor may then query 1..n recommenders that may have previously

interacted, or observed an interaction, with the trustee. 11

2.2 A Reference Model for Reputation Context. Starting with the innermost

ring, reputation context can be personal, professional, organisational and

societal. 12

2.3 A Visual Representation of the Taxonomy. 22

3.1 Overview of the major components of the GRAFT framework. At the cen-

tre, GRAFT nodes store all of the recommendation information about enti-

ties in profiles. Every entity has a single profile that may contain multiple

recommendations, each from a different recommendation source. 44

3.2 A sample profile with some recommendation details shown. This profile

contains three recommendations. 48

3.3 OpenID Authentication Sequence [99], augmented with the profile transfer

step. 50

3.4 GRAFT Stack. Every GRAFT node is designed around a modular stack

that comprises three layers, each with its own distinctive functions. A sep-

arate and extensible policy backbone enforces collection, integration and

interpretation policies. 51

xv

xvi LIST OF FIGURES

3.5 Database and Web Scraper raw sources. Two examples of how the collec-

tion layer could be implemented for different originating sources. In the

first example, the source has been granted direct access to the database of

the originating application. In the second example, a web scraper that is

unaffiliated with the application must utilise the publicly available web

interface in order to download appropriate web pages via HTTP or HTTPS. 55

3.6 Recommendation Source Update Sequence. The generalised sequence of

events that a recommendation source must follow in order to update a

recommendation within a profile. 56

3.7 Enveloped Signatures in the GRAFT Profile. A single signature per rec-

ommendation allows a receiver to confirm that a given recommendation is

accurate and has not been modified. 58

3.8 Profile and Recommendations Lifecycle. This figure illustrates the lifecycle

of a profile and the recommendations contained within it. 59

3.9 DHT Structure. Two sources, two providers and two consumers as GRAFT

nodes in the DHT. The source nodes are each the point of origin of a single

item of recommendation information within a profile. 62

4.1 GRAFT enabled Forums. Recommendation information flows from the

source forum to both the GP and the network. 73

4.2 GRAFT enabled Wiki. This figure illustrates how the GRAFT framework is

used to capture recommendation information from two different academic

sources: a bibliographic source and a ranking source. 75

4.3 An example of Web Services Composition for a Travel Planner. 77

4.4 Web Services Selection; GRAFT is used as a clearinghouse for service rec-

ommendations. 79

4.5 A simplified example of Web services composition in the LEAD [117] work-

flow engine augmented with the decision points at which GRAFT recom-

mendations are applied in GE-LEAD. 79

5.1 GRAFT Prototype Framework. The key components in the prototype, in-

cluding the providers and the nodes, are shown in this figure. 85

5.2 GRAFT enabled Drupal Forums. Recommendation information, in the

form of karma scores is generated in the source forum as a component of

normal use. The source node makes this information available in GRAFT

so that it can subsequently be used in the consumer forum. 87

5.3 GRAFT enabled PmWiki. Two sources of recommendation information

feed a single consumer in the form of a wiki. The two sources are the co-

authorship relationship and academic ranking sources. 90

LIST OF FIGURES xvii

5.4 GRAFT enabled Anduril Workflow. GRAFT provides recommendation in-

formation, via a ranking service, to the Anduril workflow framework. . . 93

5.5 The workflow first calls the RankService component in order to get a ranked

list of services matching the given context. The workflow then attempts to

call the best matching service. 95

6.1 Evaluation Testbed. The testbed comprises four dedicated hosts. 98

6.2 Degrees of Co-authorship vs Time in seconds. Only the 2nd, 3rd and 4th

degree co-authorship results are plotted in this graph, because the 1st de-

gree co-authorship results are measured in thousandths of a second and

are not visible at this scale. Error bars for the 95% confidence interval are

also plotted, but are not visible due to their small size. 100

6.3 Degrees of Co-authorship vs Time in seconds, containing only the 2nd and

3rd degree results. The graph shows that the time taken to compute the

1st and 2nd degrees fall well within Nielsen’s 10 second limit (shown as a

horizontal red line). 101

6.4 Profile sizes with degrees of co-authorship stored. Profile sizes increase as

the degree increases. Only the 2nd, 3rd and 4th degree co-authorship re-

sults are plotted in this graph because the 1st degree co-authorship results

are measured in tens of kilobytes and are not visible at this scale. Error

bars for the 95% confidence interval are also plotted. 102

6.5 Profile sizes with degrees of co-authorship stored compressed. Profile sizes

increase as the degree increases. However, in this instance, profile data has

been compressed using gzip. 103

6.6 MAS Average Page Request Time for 28th April 2013. The average page

request time was 8.20 seconds (2 dp), with a standard deviation of 17.20

seconds (2 dp). The error bars show the 95% confidence interval. All

times shown are recorded in EDT (Eastern Daylight Time). The dashed

purple line shows the Chinese working day (0730 CST to 1830 CST), while

the unbroken green line shows the European (including the United King-

dom) working day (0730 CEST to 1830 BST). The greatest variance in the

response time occurs when the Chinese and European working days overlap.104

6.7 MAS Average Page Request Time for 30th April 2013. The average page

request time was 1.69 seconds (2 dp), with a standard deviation of 2.93

seconds (2 dp). The error bars show the 95% confidence interval. 105

6.8 Anduril Workflow Execution times for LAN-based web services 107

6.9 Anduril Workflow Execution times for Internet-based web services 107

xviii LIST OF FIGURES

6.10 Workflow simulation testbed. A composer peer queries a number of peers

in the network to obtain profiles they have stored. When it has received the

profiles, it can then verify them using threshold voting, and decide which

service it is going to utilise. 109

6.11 Workflow simulation testbed within OverSim. OverSim provides the en-

vironment in which the simulation testbed is executed. 110

6.12 Single response time for s = 3. 112

6.13 Single response time for s = 5. 112

6.14 Cumulative frequency graphs for s = 3, p = 5. 113

6.15 Combined cumulative frequency graphs for s = 3, p = 5, 7, 9, 11. 114

6.16 Combined cumulative frequency graphs for s = 5, p = 5, 7, 9, 11. 114

6.17 Response inter-arrival time for s = 3. 115

6.18 Response inter-arrival time for s = 5. 115

6.19 Response inter-arrival time for s = 3 and s = 5. 116

6.20 Total time for s = 3, 1/2 threshold. 117

6.21 Total time for s = 5, 2/3 threshold. 117

6.22 Total time taken versus total number of nodes. The total time required to

reach the threshold number of profiles for network sizes up to one million

nodes using Equation 6.3 is extrapolated. 119

6.23 Correct responses with malicious peers, s = 3, p = 5. A graphical repre-

sentation of Table 6.1. 121

6.24 Correct responses with malicious peers, s = 5, p = 11. A graphical repre-

sentation of Table 6.2. 121

6.25 Combined cumulative frequency graphs for s = 3, p = 5, 7, 9, 11 and churn. 124

6.26 Combined cumulative frequency graphs for s = 5, p = 5, 7, 9, 11 and churn. 124

6.27 Response inter-arrival time for s = 3 with churn. 125

6.28 Response inter-arrival time for s = 5 with churn. 126

6.29 Response inter-arrival time for s = 3 and s = 5 with churn, base case

values are shown here with dashed lines for comparison. 126

6.30 Total time for s = 3 with churn, 1/2 threshold. 127

6.31 Total time for s = 5 with churn, 2/3 threshold. 127

6.32 Correct responses with churn and malicious peers, s = 3, p = 5. A graphi-

cal representation of Table 6.4. 129

6.33 Correct responses with churn and malicious peers, s = 5, p = 11. A graph-

ical representation of Table 6.5. 129

LIST OF FIGURES xix

A.1 OpenID Authentication. A standard OpenID authentication sequence. A

user wishing to obtain a service from an RP must first authenticate itself.

The user presents their OpenID to the RP, and is redirected back to his or

her OP. The OP authenticates the user using a previously agreed method. 142

B.1 A simple attribute-based authorisation architecture. 148

B.2 Comparison of XACML and GRAFT. 149

C.1 Total time for s = 3 on Cluster Platform. 152

C.2 Response inter-arrival time for s = 3 on Cluster Platform. 153

C.3 Total time for s = 3 on Grid’5000 Platform. 153

xx LIST OF FIGURES

List of Tables

2.1 Summary of Academic Reputation Systems 30

2.2 Summary of Commercial Reputation Systems 31

6.1 Correct responses with malicious peers, s = 3, p = 5. The cell colours show

the values that did not reach the 1/2 threshold (8) in orange, while those not

reaching the 2/3 threshold (10) are shown in yellow. 120

6.2 Correct responses with malicious peers, s = 5, p = 11. The cell colours

show the values that did not reach the 1/2 threshold (28) in orange, while

those not reaching the 2/3 threshold (37) are shown in yellow. 122

6.3 Trend analysis for correct responses. This table shows part of the analysis

that was conducted (in this instance the values relate to s = 3). All values

are rounded to 2 decimal places. 122

6.4 Correct responses with churn and malicious peers, s = 3, p = 5. The cell

colours show the values that did not reach the 1/2 threshold (8) in orange,

while those not reaching the 2/3 threshold (10) are shown in yellow. 128

6.5 Correct responses with churn and malicious peers, s = 5, p = 11. The cell

colours show the values that did not reach the 1/2 threshold (28) in orange,

while those not reaching the 2/3 threshold (37) are shown in yellow. 130

6.6 Trend analysis for correct responses when under churn. This table shows

part of the analysis that was conducted (in this instance the values relate

to s = 3). All values are rounded to 2 decimal places. 131

xxi

xxii LIST OF TABLES

Chapter 1

Introduction

1.1 Introduction

Since the earliest human communities, reputation has been used by people to decide

whether they should trust and interact with someone else. Reputation was built up and

maintained by a person’s standing and participation in their local community, their fam-

ily and friends, and their participation at a place of worship [261].

In contrast, retailers relied on their physical presence, longevity of their business,

and word-of-mouth [261, 159, 262] for their reputation. As most retailers usually oper-

ated only in the local market, customers could inspect any goods before purchase [262].

This requires little or no trust between the parties, as poor goods would simply not be

purchased. Further, routine interactions with the same local retailers meant that the cus-

tomers would soon know who was trustworthy, and who was not [262].

However, with the advent of the Internet, this situation has changed. The Internet

provides for cheap, fast and easily accessible communications on a global scale. It is now

possible for a single person to have contact with thousands of other people, potentially

from all over the world. These contacts could be either local or remote, since the factor of

distance is effectively removed. Given the millions of people online [263, 262], it is likely

that a single interaction between two participants is both their first and last [88, 261].

In this electronic environment, the normal cues that help to build and establish repu-

tation, such as social standing and word-of-mouth, are missing [88, 159]. Parties meeting

on the Internet generally have no easy way to determine whether they should trust each

other, or even carry out a transaction. Pseudonyms compound this problem further, espe-

cially considering they often change from website to website [112]. For example, a seller

on an online marketplace may have a completely different name on another website, and

it is possible that neither of these names is linked to a real world identity.

In answer to this problem, many websites on the Internet have developed reputation

systems [261, 263, 104]. Typically, members of the website leave some kind of feedback

1

2 CHAPTER 1. INTRODUCTION

about their transactions with other members. This feedback may be in the form of a

numerical rating, a categorisation such as good or bad[263, 327], a vote, or a connection

between members. Online auction sites are possibly the best known examples of these,

but there are others. For example, Amazon[2] and Epinions[7] both use reputation sys-

tems to promote and sell products. These systems allow members of the website to build

up a reputation that can be viewed by others.

Typically, the reputation of a single member consists of nothing more than an aggre-

gation of all trades or interactions (both those with good and bad outcomes) that the

member has had on the website [222]. In essence, members are able to decide whom

they will trust based on past feedback. With a reputation system, members are more

likely to be honest and well-behaved, as they have an expectation that current behaviour

will impact on their future [88]. Since we are not able to build a long-term relationship

with all other members, we instead rely on the feedback from a series of transactions

that other members have had with the member in question. This series of transactions

approximates some of the attributes of a long-term relationship [261].

Members with a better reputation are more likely to be trustworthy; they have a better

track record, and have more to lose should a transaction go badly. In the case of eBay,

the seller does not take on much risk because if they do not get paid, they do not ship

the goods. However, the buyer must place some level of trust in the seller, by accepting

the ‘risk of prior performance’ [159]. A reputation system ensures that the buyer can be

confident about what he or she is going to buy if the seller has a decent reputation, and

can therefore be trusted. As a result, good reputations can lead to more sales, and higher

potential values for goods being sold [112, 263, 177].

In short, the reputation systems allow us to trust strangers by characterising and pre-

dicting [89, 262, 270] their future actions, based on their past actions. These sites would

not be able to function without their reputation systems. Take eBay [6] as an example. It

has over 4 million active auctions at any time [88, 261, 98]. The majority of the auctions

on eBay are successfully transacted. According to Dellarocas [88] over 89% of the trans-

actions on eBay are one-time only trades. eBay simply would not function if it did not

have a reputation system.

This thesis takes a slightly wider view of reputation, considering all endorsements

(good, neutral and bad) of a target entity to be useful in determining that entity’s likely

future behaviour. These endorsements are called recommendations and could be gener-

ated from a target’s reputation, but also from their affiliations, capabilities and character-

istics. However, discussions about the use of recommendations in this thesis will usually

also refer to reputation.

GRAFT, or Generalised Recommendation Framework, supports the collection and

distribution of recommendation information for both people and electronic services. The

1.2. OVERVIEW OF GRAFT 3

recommendation information is obtained from a variety of traditional and non-traditional

reputation sources, and distributed in structured documents across a peer-to-peer (P2P)

network to remove centralised bottlenecks, and ensure robustness of the overall system.

The remainder of this chapter presents an overview of GRAFT, outlines the research

goals, describes the contributions and scope, and finally, outlines the structure of this

thesis.

1.2 Overview of GRAFT

GRAFT is a distributed framework that enables the collection and distribution of recom-

mendation information about entities. These entities can be either people, or electronic

services such as web services.

GRAFT

ProfilesSources Consumers

Figure 1.1: Overview of GRAFT, showing how multiple sources continuously feed rec-

ommendation information into GRAFT, and how this is continuously made available to

consumers.

As shown in Figure 1.1, multiple sources continuously feed recommendation infor-

mation into GRAFT, and this is continuously made available to consumers. Recommen-

dation information in GRAFT is stored in structured documents called profiles. Every

profile holds one or more recommendations, each from a unique source.

Every source of recommendation information has either explicit, or implicit reputa-

tion information. The feedback about individuals on eBay, for example, are a form of

explicit reputation information, while the networks of professional colleagues formed on

4 CHAPTER 1. INTRODUCTION

LinkedIn [10] are an example of implicit reputation.

The consumers utilise the information obtained from the sources to make decisions

about individual entities. For example, access control decisions made by a recommen-

dation consumer about an individual might be influenced by the recommendations held

by that individual. The exact policy implemented at each consumer is unique and only

limited by the information made available by all of the sources.

All of the sources and consumers are nodes in a single, underlying peer-to-peer net-

work. As part of its membership commitment, each node may be asked to store a number

of profiles for GRAFT. Rather than store each profile in the network only once, they are

each replicated multiple times, across many different nodes. Each profile is always tied

to the identity of the entity it describes. This ensures that the profile can be located again,

and that the profile is always available, even as other nodes join, or leave the network.

Profiles are tied to individual entities using OpenID. All entities within GRAFT there-

fore have an OpenID, which acts as both the entity’s identity, and as a key to locate their

recommendation profile.

1.3 Research Goals

This thesis encapsulates a new paradigm for reputation that combines the derivation

of reputation from multiple sources, including non-reputation sources, the integration

of identity and reputation, and the integration of both human and electronic services

into one framework. In particular, it examines different types of information that can

be used as stand-ins for reputation, called recommendations, and the utilisation of these

recommendations in the description and evaluation of policies. To that end, a number

of research gaps were derived from the construction and subsequent analysis of the rep-

utation systems taxonomy in Section 2.4.5. A subset of these gaps were selected as the

research goals for this thesis and are reproduced here:

G.1 The use of recommendation information derived from non-reputation sources, and

the subsequent usage of this information within a reputation system.

G.2 The integration of human and electronic entities, including the investigation of how

these could be combined into one recommendation system.

G.3 The integration of identity and reputation, with a focus on how reputation informa-

tion could be combined with identity information.

G.4 The use of contextual information within reputation systems. In particular, the abil-

ity to capture and make this information available for use in the evaluation of rec-

ommendations.

1.4. CONTRIBUTIONS 5

G.5 The ability to exchange recommendation information between systems.

1.4 Contributions

This thesis makes a number of contributions in the areas of reputation, reputation sys-

tems and access control. More specifically, this thesis:

1. Defines a terminology for reputation that describes reputation, trust and risk and

then discusses the relationships between them. The term recommendation as it is

used in the context of this thesis is also defined and discussed.

2. Defines a generalised reputation model that can be used to describe reputation in

both online and offline contexts. This model introduces standardised terminology

(based on published research) that is used throughout this thesis.

3. Defines an individual reputation context model that describes all of the contexts

that an individual entity may possess. This model is useful in that it helps to de-

scribe the contextual nature of an individual and makes clear the need for multiple

context support in reputation systems.

4. Provides a survey and taxonomy for reputation systems. The survey, conducted

on both academic and commercial systems, was used to drive the development of

the taxonomy. The taxonomy builds on five commonly accepted dimensions, while

also providing nine new dimensions for those aspects of reputation systems that

had not been covered widely previously, or never considered before. The taxon-

omy is subsequently used to build a classification of existing reputation systems,

generating a large number of research leads.

5. Presents an architecture and prototype for a fully distributed recommendation sys-

tem that supports both human and electronic service entities. The architecture and

prototype encapsulate a paradigm shift in reputation systems and exhibit a number

of unique ideas:

(a) A novel and well-defined three layer architecture stack that underpins the de-

sign and implementation of GRAFT. The stack allows for a modular approach

to building and integrating components into GRAFT, simplifying new design

and development work. In particular, the separation of raw collection from

integration into the peer-to-peer network allows for efficient nodes that only

implement those aspects of the stack they require.

(b) An exploration of identity and reputation integration. All recommendation

information in GRAFT is tied to identity information. Knowing the identity

6 CHAPTER 1. INTRODUCTION

of an entity is sufficient to be able to locate and consume their recommenda-

tion information. Previous systems have treated these two concepts as distinct,

leading to classic two-step authenticate and authorise models. GRAFT instead

considers all information about an entity when granting access, leading to bet-

ter decisions.

(c) The integration of both human and electronic service entities into one reputa-

tion system. These two types of entities are treated identically within GRAFT.

Their integration into one reputation system is possible due to the fact that

identity and recommendation information have been combined using OpenID.

(d) The utilisation of a peer-to-peer network to store and replicate recommenda-

tion information. The peer-to-peer network distributes the load evenly across

the peers that make up the network, whilst also ensuring robustness for pro-

files.

(e) The utilisation of both explicit and implicit reputation information. In par-

ticular, the use of information previously not regarded as being useful when

combined with reputation such as demographic, social and derived informa-

tion.

(f) The ability to retain the context in which reputation information was gener-

ated. Understanding the context of the information allows for it to be utilised

in a meaningful way by a consumer.

(g) The utilisation of recommendation information in policy description and eval-

uation. The ability to combine recommendation information from multiple

sources in the building of policies allows for flexibility that is otherwise not

possible. For example, policies can build on the user’s demographics and their

professional standing, but can also utilise their social relationships.

6. Analysis of the performance of the GRAFT architecture. In particular, the perfor-

mance is measured and significant factors affecting performance are identified us-

ing a series of experiments that utilise both the prototype and large-scale simula-

tions. The simulations consider both the “perfect” state and increasing levels of

churn and malicious peers.

1.5 Scope

This thesis has a dual focus. Firstly, the development of a standard terminology, mod-

els to describe reputation and reputation systems, and the development of a taxonomy

for reputation systems. Secondly, the development, prototyping and evaluation of an ar-

chitecture for the GRAFT distributed recommendation framework as enumerated by the

1.6. PUBLICATIONS 7

research goals in Section 1.3. A number of supporting technologies are utilised to build

the architecture, but are not the focus of this thesis. These technologies are introduced

and further discussed in the appendix. In order to limit the scope of the potential work,

the focus of this thesis is the development and evaluation of those components required

to collect, store and make available recommendations.

1.6 Publications

Two full internationally peer reviewed conference papers, and one ERA A* ranked jour-

nal paper were published during my PhD candidature. These papers were used as a

way to explore and peer review the ideas in this thesis. In particular, Chapter 2 is largely

derived from the following paper that was published in an ERA A* ranked journal:

• F. Hendrikx, K. Bubendorfer, R. Chard, Reputation Systems: A survey and taxon-

omy. Journal of Parallel and Distributed Computing. 2014.

Chapters 3, 4 and 6 are in part derived from the following paper that was presented at an

ERA A ranked conference:

• F. Hendrikx, K. Bubendorfer, Malleable access rights to establish and enable scien-

tific collaboration, in: eScience (eScience), 2013 IEEE 9th International Conference

on, IEEE, Beijing, China, 2013, pp. 334-341.

Similarly, Chapter 4 is also based in part on the following paper:

• F. Hendrikx, K. Bubendorfer, Policy derived access rights in the social cloud, in:

eScience (eScience), 2013 IEEE 9th International Conference on, IEEE, Beijing, China,

2013, pp. 365-368.

1.7 Thesis Organisation

This thesis is organised as follows.

Chapter 2: Related Work discusses related work in reputation systems. In particular,

this section introduces common terminology and provides a survey of existing academic

and commercial reputation systems. A taxonomy is developed and then utilised to clas-

sify a number of reputation systems. This chapter concludes with an analysis of areas of

research that are under-represented, and then considers existing systems which attempt

to address some of these areas.

Chapter 3: Architecture develops a set of requirements based in part on the research

goals. These requirements are then used to develop the GRAFT architecture. The design

8 CHAPTER 1. INTRODUCTION

implications for keeping the profiles secure at each layer of the stack are also discussed.

In particular, weaknesses and some areas for future work are identified here.

Chapter 4: Case Studies presents case studies examining how GRAFT could be utilised

in different situations. In particular, this chapter introduces a number of case studies that

are subsequently utilised in the implementation and evaluation chapters.

Chapter 5: Implementation introduces a prototype implementation of GRAFT, fo-

cusing on a subset of the case studies. The implementation includes the core components

of GRAFT, and three of the case studies presented in Chapter 4.

Chapter 6: Experimental Results and Evaluation presents a series of experimental

results. The experiments consider three key aspects of the architecture: recommendation

sources, the utilisation of the architecture and the ability for the architecture to scale and

efficiently provide profiles to consumers, even when under churn and with malicious

peers.

Chapter 7: Conclusions concludes this thesis by reviewing the design requirements,

contributions and areas for future research.

Chapter 2

Related Work

This chapter1 discusses a standard terminology for reputation systems, a survey of exist-

ing reputation systems, the construction of a taxonomy and finally the use of the taxon-

omy to classify a number of existing systems. The classification is used to find gaps in

the existing research and literature.

The requirement for trust and reputation is evident in many online systems. In online

banking systems for example, the reputation of the service is implicit. In more open

online business systems and electronic markets such as eBay [6], the explicit yet informal

use of reputation through user feedback can be observed.

Building and maintaining a good reputation can be a significant motivation for con-

tributing to online communities, be they scientific, business or socially oriented. It has

been shown that a good reputation leads to more sales, at a higher value than might

otherwise be possible [263]. Existing online reputation models, while diverse, are still in

their infancy and are generally limited in scope, usually focusing on a single context for

their information.

2.1 Terminology

2.1.1 Reputation and Trust

According to the Collins English Dictionary, reputation is “the estimation in which a person
or thing is generally held; opinion”. Every person’s opinion differs from every other person,

making reputation a highly personal and subjective quantity [272]. Reputation is not

what character someone has, but rather what character others think someone has. Mui

et al. [220] define reputation as the “the perception that an agent creates through past actions
about its intentions and norms”; this is the definition that will be used in this thesis.

1The work in this chapter is largely taken from the published paper F. Hendrikx, K. Bubendorfer, R.
Chard, Reputation Systems: A survey and taxonomy. Journal of Parallel and Distributed Computing. 2014.

9

10 CHAPTER 2. RELATED WORK

Reputation and trust (or trustworthiness) are commonly confused [222] and used as

synonyms, even though their meanings are distinctly different. Jøsang et al. [159] define

trust as “the extent to which one party is willing to depend on something or somebody in a given
situation with a feeling of relative security, even though negative consequences are possible”. The

key concepts in this definition are dependence and reliability; these values are measured,

in part, through an agent’s reputation. It can therefore be said that trust can be established

through the use of reputation. Arguably, a better reputation can lead to greater trust.

Risk is often undertaken in the hope of some gain or benefit. Risk can therefore be

viewed as the situation where the outcome of a transaction is important to a party, how-

ever the probability of failure is non-zero [159]. Incorporating the previous notion of trust

into this definition: the amount of risk that a party may be willing to tolerate is directly

proportional to the amount of trust that the party has in the other party.

The main aim of reputation systems is therefore to support the establishment of trust

between unfamiliar parties. Dellarocas [88] states that the aim of eBay’s feedback mech-

anism, and in a generalised sense, all reputation systems, is to “generate sufficient trust

among buyers to persuade them to assume the risk of transacting with complete strangers”.

Despotovic and Aberer [89] talk about “reducing the opportunism” and vulnerability of

the two parties. Using a reputation system, a party may examine the history of another

and decide that it will trust and interact with the other party. This decision is often called

a “trust decision” [183].

Despite the best intentions of reputation systems, it is important to note that reputa-

tion only provides a “hint”, and not clear evidence or proof of an agent’s actual future

intentions. Gaming the system, by generating a series of positive interactions to build up

a good reputation, only to default at the last moment is not unheard of.

2.1.2 Recommendations

Recommendations are endorsements of the target agent by a third party. These endorse-

ments are based on the target’s characteristics, capabilities, affiliations, and reputation.

In the past, letters of recommendation were used, for example, to introduce foreign en-

voys to a new court [315]. These letters were often written by a senior dignitary, and

lent the envoy some of the dignitary’s reputation. In a similar way, modern letters of

recommendation are used to promote the suitability of an agent for a position or task.

Assuming the recommender is of good standing, a recommendation will help to es-

tablish trust between parties, as it might, for example, confirm that the agent is a member

of a given organisation, or provide assurance that they are reliable. Conversely, if a rec-

ommender is not of good standing, a recommendation may carry less weight than if it

came from a more reputable source.

As recommendations are based on information about an agent (for example, their

2.2. REFERENCE MODELS 11

reputation), they must be generated from prior knowledge, or past actions. Although the

word recommendation tends to have a positive inclination, the intended usage through-

out this thesis is such that any actions or information can be used to generate a recom-

mendation. In this way, an agent can get positive, neutral and negative recommenda-

tions.

2.2 Reference Models

2.2.1 Reputation Systems

When discussing reputation systems, it is important to define the parties involved and

their potential interactons. Figure 2.1 illustrates a generalised model of reputation sys-

tems that was designed to accommodate both real-world and online approaches to repu-

tation.

Trustor Trustee

Recommender

Reputation

Information

1 1

1

1..n

1

0..n

interested in

queries

1

0..n

had an interaction with, or

observed an interaction

Reputation

Information

Reputation

Information

0..n

11

replies
Recommendation

0..n

Figure 2.1: A Reference Model for Reputation Systems that accomodates both real-world

and online approaches to reputation. The trustor is a party that wants to trust and in-

teract with a target agent or entity, called the trustee. The trustor may then query 1..n

recommenders that may have previously interacted, or observed an interaction, with the

trustee.

The trustor is a party that wants to trust and interact with a target agent or entity,

called the trustee [89, 183]. In order to make a trust decision about whether to trust

the trustee, the trustor will need to evaluate the trustee’s reputation [182]. It does this

by first consulting its own internal reputation information, to see if it has previously

interacted with the trustee and what the outcome was. However, if there was no previous

12 CHAPTER 2. RELATED WORK

interaction, the trustor will then query 1..n recommenders [274, 270, 183, 193] that may

have previously interacted, or observed an interaction, with the trustee for their opinions.

A recommender may be an entity that provides information from its own history of

transactions, or a system that either observed an interaction between two parties, or col-

lects information from other sources [193]. A recommender with appropriate information

may reply with a recommendation (sometimes also called feedback or a rating). A recom-

mender may have a variety of first and third hand information; this is represented by the

1 : 0..n relationship between the recommender and its internal reputation information.

Using the reputation information obtained from the recommenders, the trustor is able

to make its trust decision. The roles of trustor, trustee and recommender are completely

interchangeable [183]; if the transaction proceeds, both parties will have their own rep-

utation information that may subsequently be made available to other parties making

similar decisions.

2.2.2 Reputation Context

Reputation is context dependent and relies on contextual information to give data mean-

ing [24]. The definition of context with respect to reputation systems is often difficult to

determine and there is no common definition used by researchers.

Societal

Organisational

Professional

Personal

or

Individual

Non-

personal

Figure 2.2: A Reference Model for Reputation Context. Starting with the innermost ring,

reputation context can be personal, professional, organisational and societal.

Reputation systems are often discussed as utilising additional contextual dimensions [272],

facets [130], or attributes [77] to provide greater meaning and usability to the informa-

tion generated during a transaction. In order to unify this concept, the term contextual

attributes has been adopted. Contextual attributes are like metadata, in that they help to

describe the transaction in greater detail. For example, the date, the price, the buyer and

2.3. REPUTATION SYSTEMS SURVEY 13

the seller are all possible attributes of a transaction between two parties.

However, contextual attributes are not the entire picture. For that, a context is re-

quired, which is the domain in which the information was generated. Most reputa-

tion systems employ a single, or personal, context. In other words, most systems con-

sider only the reputation of an entity in the “function” of the system (whether that be

e-commerce, expert advice, or file sharing).

Reputation systems employing more than one context often add additional domains

of information. For example, the addition of a social context to an existing personal repu-

tation context can help to determine if an individual contributes to his or her community,

and therefore if they are more trustworthy.

In an effort to summarise and clarify the relationship between context and reputa-

tion, a reference model based on a psychological framework of personal identity [299]

has been developed. This reference model is presented in Figure 2.2. Starting with the

innermost ring, reputation context can be personal (who), professional (what), organisa-

tional (which/membership) and societal (where).

Most online reputation systems focus only on the personal reputation of a person,

whilst many real-world situations deal with non-personal aspects, such as a user’s pro-

fessional and organisational membership.

2.3 Reputation Systems Survey

In this section a number of academic and commercial reputation systems are examined.

These systems were selected based on their impact or importance. Each reputation sys-

tem has been considered in a systematic way so that comparisons could be drawn be-

tween them. The academic systems are organised in chronological order, while the com-

mercial systems are organised alphabetically.

2.3.1 Academic Systems

The Regret [273, 272] reputation system is designed to operate within an electronic mar-

ketplace setting. The system utilises multiple contextual attributes and classifies informa-

tion as coming from an individual, social, or an ontological dimension. The individual

dimension considers information directly gathered from interactions between two enti-

ties. The information is fine grained and often relates to the frequency of overcharging,

late delivery and quality of the transaction. The social dimension is an addition to the

Regret system, where trust can be extracted from the groups and communities associated

with the target entity. A key benefit of the social dimension is that it allows new and

unproven entities to bootstrap their trustworthiness by belonging to reputable groups.

Alternatively, because the entire group’s reputation is associated with the behavior of its

14 CHAPTER 2. RELATED WORK

members, it is pertinent for a group’s members to moderate the behavior of those associ-

ated with them.

The work also includes an ontological dimension, where reputation collected for

atomic aspects are combined to construct more complex graph structures in order to de-

rive further insight. Ratings, or impressions, are recorded as a value between positive

and negative one. An entity’s reputation is then the aggregation of the result of all trans-

actions they have taken part in. When utilising the ontological dimension, each atomic

aspect is calculated using individual and social dimensions, and then combined through

a weighted graph for more complex evaluation. The computation of the ontological rep-

utation, ORij is achieved through Eq. 2.1. Where each child in the graph is computed

with a weight wxy to establish a score. An example of this computation can be seen in

Eq. 2.2 where the social dimension SRij for each aspect is weighted and used. The Regret

system also employs a degree of reputation decay, called a forget factor, where only the

most recent transactions are considered.

ORij(x) =
∑

y∈children(x)

wxyORij(y) (2.1)

ORij(good seller) = 0.2× SRij(delivery date) +

0.2× SRij(product price) +

0.6× SRij(product quality) (2.2)

Confidant [52] incorporates a reputation system into a Dynamic Source Routing pro-

tocol in mobile Ad-hoc networks. The Confidant protocol is a structured system designed

to identify and isolate misbehaving nodes in the network. The system allows entities to

monitor the behavior of others, regarding their ability to manipulate information and cor-

rectly route, forward and participate in the protocol. Nodes are inherently trusted and

malicious behavior is reported, resulting in a form of punishment.

An alarm message is generated when a node experiences, observes or receives a re-

port of malicious behavior. Observed information is gathered by examining the inter-

actions among neighbors. Alarm messages are then passed on to other nodes in the

network to warn them of the misbehaving node. When an alarm message is received

from another entity, their trustworthiness is considered before passing the alarm on. Rat-

ings are stored as local lists and black lists at each node, and are potentially shared with

friends. Confidant proposes to lessen the effect of false accusations with a reputation

death property and revocation lists, meaning entities are capable of redeeming them-

selves over time as historic actions are removed from the system. No specific aggregation

equations are published.

2.3. REPUTATION SYSTEMS SURVEY 15

XRep [82] is an extension to GNUtella-like peer-to-peer (P2P) networks. XRep al-

lows for the creation and maintenance of reputation for both resources and nodes in the

network. Each node maintains a personal history for both resources and nodes. For re-

sources, a simple binary rating is used, while for nodes a count of the number of success-

ful and unsuccessful downloads is maintained. Reputation messages are piggybacked

on existing connections and allow nodes to select resources based on criteria other than

purely resource based. When deciding where to download a resource, a node first con-

tacts its peers for their advice (using a poll operation), and then evaluates the responses.

Once the node has selected the appropriate resource, it can evaluate potential nodes that

offer the resource and select one based on reputation. Assigning reputation ratings to

both resources and nodes in the network gives XRep a number of advantages. These

include judging new resources by the nodes offering them, load balancing using a re-

source reputation rather than purely the node reputation, and whitewashing avoidance

as changing pseudonyms removes nodes from being selected. A set of extensions to

XRep, called X2Rep [81] were created later and addressed some of the weaknesses in

XRep.

EigenTrust [166] is a peer-to-peer (P2P) reputation framework that allows entities to

decide which others they will trust when it comes to downloading files. It is fully decen-

tralised, and utilises a distributed hash table overlay. Each entity maintains a personal

history for other peers, which is simply the sum of positive and negative interactions they

have experienced with them. These values are normalised between 0 and 1. An entity

calculates the global Trust for another entity, Tij , by using personal histories which are

obtained from others in the network. These histories are weighed by the credibility of the

reporting entity, as seen in Eq. 2.3, where eix denotes a local trust value of entity i for en-

tity x. In essence, the system uses the direct experience of others and a local perception of

the reporting peer to compute trust [144]. To compute trust in a distributed environment,

the aggregation model represented by Eq. 2.4 is used. This is a component-wise method

of computing the global trust of i which aggregates the trust each peer holds in i over a

time period k. Where α is a constant less than 1 and p is used to add trust to new entities

in the network.

Tij =
∑
k

eixexj (2.3)

Ti
(k+1) = (1− α)(e1iT1(k) + · · ·+ eniTn

(k)) + αpi (2.4)

P-Grid [24] is a peer-to-peer (P2P) platform for distributed information management.

P-Grid is completely decentralised and self-organising. Information is spread across

the environment among peers via a distributed search tree, similarly structured to dis-

tributed hash tables. As is the case with Confidant, entities in P-Grid are considered

16 CHAPTER 2. RELATED WORK

inherently trustworthy, and only malicious behavior is deemed relevant. Entities are able

to forward complaints about transactions to others within the environment. These com-

plaints are distributed in the form of messages to arbitrary entities. P-Grid implements a

binary trust model, where entities are either trustworthy or not. When an entity wishes

to evaluate the trustworthiness of a target, it performs a search for complaints. These are

fed into a trust function such as that shown in Eq. 2.5. The function is used to determine

whether i can trust the entity j. Where Cr denotes complaints received and Cf repre-

sents complaints filed. Criavg and Cfiavg are the aggregate of all observations the entity i

has made over its lifetime. If the equation computes as true, then the entity is considered

trustworthy, otherwise they are not.

Crnormx (j)Cfnormx (j) ≤ (
1

2
+

4√
Cri

avgCfi
avg

)2Cri
avgCfi

avg (2.5)

PeerTrust uses a structured peer-to-peer (P2P) overlay network to host a distributed

implementation of their transaction-based feedback system. The simulation used to demon-

strate PeerTrust utilises P-Grid to distribute feedback scores. The system incorporates a

combination of fundamental reputation sources, such as direct feedback, and the quan-

tity of transactions performed, while weighting feedback with credibility. The work in-

troduces two novel trust metrics, a community context factor and transaction context

factor. The simulation presented in the work has entities generate a rating of either zero

or one.

The trust of an entity i is computed by Eq. 2.6. Given Ni is the total number of trans-

actions entity i has taken part in. Pij denotes the other entity involved in the transaction.

Sij is the normalised level of satisfaction i received from peer Pij from the transaction.

Cr denotes the credibility of the feedback received from the entity Pij . TFij represents

the adaptive transaction context factor for entity i’s jth transaction, and CF denotes the

community context factor for i during a period of time. The normalised weighted factors

α and β are the collective evaluation and the community context factors, respectively.

Ti = α

Ni∑
j=1

SijCr(Pij)TFij + βCF (i) (2.6)

RateWeb [202] is designed to facilitate trust between Web services. RateWeb utilises

a decentralised and unstructured approach. The system’s goal is to provide a method in

which Web services can reliably be used as independent components in a service-oriented

enterprise without the intervention of humans.

When selecting a Web service to accomplish a task, the consuming entity queries the

community for a list of suitable services. A set of eligible Web services are then returned

to the consumer. The response also includes a list of past consumers that possess feed-

back for each service. Rather than acting as a centralised repository of feedback, the

2.3. REPUTATION SYSTEMS SURVEY 17

community acts as a directory of raters. Each entity stores a personal perception of each

Web service it has invoked. The feedback is stored in a vector of values that represent the

promised quality against the delivered quality of an attribute.

The reputation of a service si can be computed by an inquiring consumer through

Eq.2.7. Where L denotes the set of consumers which have interacted with, and rated,

the service si. PerEvalxi represents the personal perception a consuming entity has of

the service si. The credibility Crx of each consuming entity, as viewed by the inquiring

consumer, is within the interval [0, 1]. A reputation fader, or decay factor, Df , is also

incorporated and is a value within [0, 1].

Reputationsi =

∑L
x=1[PerEval

x
iDfCr(x)]∑L

x=1Cr(x)
(2.7)

A credibility-based model is also included within the framework. In this model, each

service contains a set of trusted entities to query when requesting ratings. If none of the

group contain experience with the entity in question, each group member can refer the

request to their own trusted set of entities.

R2Trust [304] is a fully distributed reputation system for large-scale, decentralised

overlay networks. The system is designed to incorporate reputation and risk to pro-

vide trust within an unstructured network. The reputation of an entity in the network

is calculated by examining any direct interactions an entity may have had and obtaining

recommendations from other peers. Recommendations are weighted using local trust

values for the originating peers. The trust value assigned to any given peer is built using

social relationships and considers the risk inherent in those relationships. This allows the

framework to react quickly when the behavior of a given peer changes. R2Trust deter-

mines quality of service as probabilistic ratings between zero and one. These values are

then aggregated and accumulated to give an entity a reputation value. In order to filter

out untrustworthy second-hand opinions, a credibility score is used to weight feedback

during aggregation. A decayed trust value, DTij reduces the significance of feedback

over periods of time, as shown in Eq. 2.8. Where λk = pn−k is the decay factor of time

period k, and 0 < λk < λk+1 ≤ 1, 1 ≤ k < n. etkij denotes a local trust value of entity i for

entity j over the time period tk.

DTij =

∑n
k=1(λke

tk
ij)∑n

k=1 λk
(2.8)

2.3.2 Commercial Systems

Amazon [2] allows its registered users to write reviews on products. A user must first

buy a product from Amazon, however they may then review any product carried by

Amazon using a numeric rank (5 stars). Another Amazon user may then leave a boolean

18 CHAPTER 2. RELATED WORK

feedback rating of either “helpful” or “not helpful” for a product review. Reviews may be

ordered by the number of “helpful” votes they have received. The reputation of a review

author rises with each ’helpful’ vote [193]. Amazon maintains a ranked list of reviewers

based on their reputation, allowing them to apply badges such as “top 10 reviewer” and

“top 500 reviewer” to their reviewers.

When considering online reputation systems, eBay is both well researched and much

written about [261, 263, 262, 147, 213]. eBay is an online auction site, allowing sellers

and buyers to trade goods through an auction process. At the end of a transaction, both

parties to the exchange leave feedback for each other. This allows potential future parties

to examine the reliability of any target party that has had a previous interaction. Feedback

is left in the form of a single overall rating (Good, Neutral and Negative), a series of

numerical ratings (for the following facets: Accuracy, Communication, Shipping Time

and Shipping Charges) and a comment. The comment often provides further information

about the actual quality of the item, shipping or any problems encountered.

Epinions [7] is a consumer products review site, founded in 1999. Users do not have

to purchase anything and may write reviews on any product they chose, although they

are encouraged to focus on new or previously unreviewed products. Good reviews can

earn royalties on sales of the product that was the subject of the review.

Users do not have any visible reputation rating, however badges such as “top re-

viewer” and “popular author” are assigned to active users with good review ratings.

Users are however able to maintain a list of other users that they trust. The number of

users that trust a given user is publicly displayed, and acts as a form of reputation.

Slashdot [13] is a technology news website, founded in 1997. It is one of the earlier

sites to utilise a reputation system. All registered users have an amount of “karma”

that changes over time to reflect their level of activity, which includes the posting of

articles and commenting. Users with a good level of karma are able to become comment

moderators [249].

Stackoverflow is a dedicated Question and Answer site for developers, both “profes-

sional and enthusiast”. Users post questions that may then be answered by other users.

Reputation points are awarded for all tasks (including asking and answering questions).

However, more points are awarded for comprehensive answers as chosen by other users.

As a user gains more points, they are able to access further features on the site, including

the ability to vote up, vote down and act as a moderator (i.e. edit other user’s questions

and answers). A user that votes down a particular answer will lose 1 reputation point.

Presumably this is intended to stop users from voting down too much.

Each user has a profile that features their reputation score, and how they achieved

that score. The reputation score is represented using a discrete value; the more reputation

points a user has, the higher their score.

2.4. REPUTATION SYSTEMS TAXONOMY 19

Turkopticon [17] is an third-party reputation system for crowdsourced workers using

Amazon’s Mechanical Turk (AMT). It allows workers to check the reputation of work

providers when viewing potential jobs. In particular, it allows a worker to view and rate

a work provider on 4 facets of their behavior (Communicativity, Generosity, Fairness and

Promptness).

Turkopticon is integrated into a worker’s experience of AMT using a browser plugin.

The plugin inserts the rating information into the AMT pages as they are rendered on the

user’s browser. Rating information is centrally maintained by Turkopticon, and main-

tained using worker input. Regular software updates improve the worker experience

and resolve technical issues.

2.4 Reputation Systems Taxonomy

2.4.1 Related Work

In Mui et al. [222], the authors present a reputation typology. This typology includes

only a small number of dimensions as it tries to combine reputational literature from a

number of different disciplines.

A set of classification dimensions for trust and reputation models is introduced in

Sabater and Sierra [274]. These are subsequently used to classify a number of well-known

trust and reputation systems.

A taxonomy for peer-to-peer reputation systems is introduced in Marti and Garcia-

Molina [207]. The goal of their paper is to organise existing ideas and work, so that design

and implementation can be better achieved. They have 11 dimensions in three areas of

interest: information gathering, scoring and ranking, and response.

A framework for the comparison of reputation-based trust systems for peer-to-peer

applications is presented in Koutrouli and Tsalgatidou [182]. The authors investigate 14

dimensions, spread across three key areas of interest: information gathering, feedback

aggregation and output. The focus of their paper is on peer-to-peer e-commerce, file

sharing and cooperative applications.

In Wang and Vassileva [327], the authors introduce a classification of trust and reputa-

tion systems based on system structure. Their particular focus is on using trust and rep-

utation information for web-service selection. The three classification criteria discussed

in their paper are each directly related to the underlying architecture of the reputation

system. Although aspects of system structure are identified by this work, other details

are also considered in the classification.

A survey of trust and reputation systems is presented in Jøsang et al. [159]. The au-

thors focus on and thoroughly investigate reputation calculation, and how it is imple-

mented in currently deployed systems.

20 CHAPTER 2. RELATED WORK

In Hoffman et al. [144], the authors present a survey of attack and defense techniques

for reputation systems. An analytical framework for breaking down and comparing rep-

utation systems is introduced in order to identify common issues. This framework con-

siders aspects such as dissemination and calculation of reputation. They also discuss

existing reputation systems in the context of security weaknesses and the defenses that

are employed by these systems.

A taxonomy of attacks for peer-to-peer reputation systems is presented in Koutrouli

and Tsalgatidou [183]. Their taxonomy breaks down reputation attacks into three pri-

mary categories: Unfair recommendations, Inconsistent behavior and Identity manage-

ment attacks. The authors then present a series of defense mechanisms, and conclude

with a roadmap for system designers.

Yao et al. [349] address common vulnerability issues in reputation systems. As part of

their work they present a “decomposition” of reputation systems that examines dissemi-

nation and calculation in a number of systems.

2.4.2 Construction Methodology

The taxonomy was constructed using an iterative approach, as described by Nickerson et

al. [225], where both an “empirical to deductive” and “deductive to empirical” approach

are used. In this overall approach, the primary purpose of the taxonomy is used to drive

the identification of the key dimensions and their characteristics.

Given that the purpose of the taxonomy was to contrast and compare the architec-

ture, organisation and management of different reputation systems, the key dimensions

focus on the structure, design and organisation of these systems. Dimensions in existing

commercial and research reputation systems were examined, and those that related to

the chosen dimensions were included. Further dimensions that are important as regards

reputation systems architecture, organisation and management were then added.

The dimensions and characteristics were then used to classify a diverse set of reputa-

tion systems. The dimensions and characteristics were then further refined by ensuring

that they could fully describe this set of systems. A number of other reputation systems

were then classified. These were used to identify the dimensions and characteristics that

required further work or were not defined clearly enough. This process was repeated

until no further changes were required.

2.4.3 Taxonomy

The reputation taxonomy is given in Figure 2.3. The first level of the taxonomy distin-

guishes between explicit and implicit reputation systems. An implicit reputation mecha-

nism represents systems that have not defined a reputation system, however reputation

2.4. REPUTATION SYSTEMS TAXONOMY 21

information is still employed by its members to assist in making decisions. The oldest

and simplest form of implicit reputation system is the social word of mouth system as

discussed by Dellarocas [88]. These “systems” have little or no structure, and have been

used for centuries to ensure that participants in transactions remain honest, even when

faced with the temptation to cheat the other party for short-term gains.

In more recent times, examples of implicit reputation systems can be found in social

networks such as Facebook or LinkedIn [10]. Entities within a social network can extract

some degree of trust for the information gathered through friends of friends. Although

neither Facebook nor LinkedIn directly implement a reputation system, members of both

systems are able to utilise reputable connections through friends within the environment.

Another well-known implicit reputation system can be demonstrated in Google’s [9]

search engine. The order of the search results represents a ranking of pages, based on

the reputation of each page. The reputation is determined by the number of links that

point at the page, and where the links originate. A link originating at a page with a high

reputation is likely to mean that the target page has some value. Pujol et al. [253], discuss

utilising a similar kind of topology analysis in social networks to determine reputation.

Explicit reputation systems are those that have been purposely implemented to fa-

cilitate estimation of trust between members of an environment. They are typically used

within an environment that relies on frequent interaction with a sufficiently sized, diverse

set of members.

The second level of the taxonomy details the core dimensions of the taxonomy. The

first five of these dimensions represent those aspects of reputation systems that are most

often discussed in the existing literature:

Common Dimensions

1. History.

A user’s history is the set of stored information recording their past interactions

and their outcomes. It is often used to determine the likely outcome of current,

or future transactions, and is therefore central to the concept of reputation. A past

transaction is often recorded in the form of an exchange between two entities, where

each entity leaves feedback about the performance of the other in executing their

duties and obligations. This feedback is often called a rating.

• Personal: personal history is created and maintained using directly collected

or observed information, leading to personal views of other entities. The sub-

jective nature of these views means that others in the system may disagree

with these views. This is sometimes also called localised or subjective history.

22 CHAPTER 2. RELATED WORK

Reputation

System

Online

Offline

7. Presence

Explicit

Implicit

Recent Subset

None

13. Data Filtering

1. History
Personal

Global

2. Context

Single

Multiple

3. Collection

Direct Experience

Indirect Individual

Derived

4. Representation

Binary

Continuous

Discrete

Vector

String

6. Entities
Individual

Group

Partial

8. Governance
Centralized

Distributed

Structured

Unstructured
9. Fabric

Open

Closed
10. Interoperability

11. Control
Incentives

Rules

12. Evaluation
Holistic

Atomistic

Death of Selected

None

14. Data Aging
Decay

Indirect Group

Direct Observation

Selected Subset

Death of Old

5. Aggregation

Counting

Probabilistic

Discrete

Attribute

Fuzzy

Flow

Figure 2.3: A Visual Representation of the Taxonomy.

2.4. REPUTATION SYSTEMS TAXONOMY 23

• Global: global history is created and maintained from information shared by

other members in a system, leading to a consistent, global view of every entity

in the system.

Further discussion on these terms can be found in Mui et al. [222], Casare and Sich-

man [59], Sabater and Sierra [274], Koutrouli and Tsalgatidou [182], Wang and Vas-

sileva [327], Marti and Garcia-Molina [207] and Zhao and Li [358].

2. Context.

Contextual information can give a lot of meaning to data by describing a range of

details regarding how interactions take place [91]. In Section 2.2, it was proposed

that context refer to the domain from which information is generated. In order to

discuss and categorise reputation systems that utilise fine grained and transaction

specific, contextual information, the term contextual attributes has been adopted.

Employing this definition, the majority of reputation systems can be classified as

operating within a single context, as few systems employ information from distinct

domains. However, contextual attributes are frequently used to give additional

meaning to transactions and can greatly increase the usability of reputation infor-

mation. Schlosser et al. [281] discuss contextual attributes when providing an ex-

ample of goods being sold. They explain that not only the price and quality of an

item are important when buying an item, but other information such as the delivery

time and after sales services should also be considered.

In addition to a typical feedback score in which a peer’s behavior in a network is

analysed, Gupta et al. [130] include an explicit capability attribute when building

a peer’s reputation. Peers that provide desired resources to the network, such as,

computing time, are given a greater supplementary reputation than those that pro-

vide few or no resources.

Reputation information can be generated from a vast number of transaction in-

stances which are each accompanied by a significant amount of contextual informa-

tion. Reputation systems have been categorised as either incorporating information

from a single or multiple contexts as well as maintaining contextual attributes.

• Single: a single context is assumed or maintained within the system.

• Multiple: one or more contexts is maintained within the system. Support for

multiple contexts is discussed by Bagheri and Ghorbani [32], Tavakolifard et

al. [301] and Grinshpoun et al. [127].

• Attribute: Contextual attributes are maintained by the system. This property is

sometimes called multi-faceted, dimensional, or attribute-based, and is further

discussed by Gupta et al. [130], Sabater and Sierra [272], and Conner et al. [77].

24 CHAPTER 2. RELATED WORK

Further general discussion on context can be found in Sabater and Sierra [274],

Koutrouli and Tsalgatidou [182] and Wang and Vassileva [327].

3. Collection.

For a reputation system to establish trust the behavioral information of entities

needs to be captured. There are a number of techniques a reputation system can

offer to enable the collection of information on interactions between entities.

• Direct: information is generated explicitly either from an individual’s personal

interactions, or observation of other’s transactions. This term is further dis-

cussed in Sabater and Sierra [274] and Mui et al. [222].

• Indirect: information is obtained from other entities (either individuals or

groups) based on transactions that the querying entity was not privy to. This

is sometimes called witness information. This term is further discussed in

Sabater and Sierra [274] and Mui et al. [222].

• Derived: information is obtained from a source that was not explicitly de-

signed to be used as a reputation source in the current context.

4. Representation.

The format employed to describe, exchange and interpret reputation information.

After investigating a number of frameworks and the method used to symbolise the

information to members, the commonly used types of information are:

• Binary: information is stored using boolean values. This term is discussed by

Kinateder and Rothermel [177], Sabater and Sierra [274], Hoffman et al. [144].

• Discrete: information is stored using discrete integer values. This term was

also used by Hoffman et al. [144].

• Continuous: information is stored as a floating point number. This term is

discussed by Sabater and Sierra [274] and Hoffman et al. [144].

• String: information is stored in textual form, allowing a wide range of data to

be maintained. This term was also used by Kinateder and Rothermel [177] and

Conner et al. [77].

• Vector: information that is either provided by multiple sources or is explicitly

separated for individual use. This term is discussed by Koutrouli and Tsalgati-

dou [182].

5. Aggregation.

Aggregation describes how a reputation score for an entity is computed. The sim-

plest form of reputation aggregation is the summation of all of the positive and

2.4. REPUTATION SYSTEMS TAXONOMY 25

negative ratings for an entity [159]. Each positive rating adds one to the sum, while

each negative rating subtracts one. The final rating can be used to rank all the en-

tities in a system. A slightly improved approach is to average all of the ratings

to produce a single rating for each entity. Averaging is often used in conjunction

with normalisation to evaluate entities on a specific scale. Weighting the ratings

by factors such as, age, reputation of the source or importance of a transaction, can

provide further ways to enhance this approach. Summation, averaging, weighting

and normalisation are common aggregation methods and fall into a single class of

simple computation called counting.

A different approach is to consider reputation as multiple discrete values as op-

posed to continuous values. Abdul-Rahman and Hailes [21] present a model where

an entity is judged to be either ”Very Trustworthy, Trustworthy, Untrustworthy and

Very Untrustworthy“. This is simpler for humans to work with [159], but is not op-

timal during computation, as the discrete rating values must be converted using

look-up tables, weighted and converted back to discrete values.

Another class of aggregation involves fitting prior knowledge about another entity

into a probability model and computing the likelihood of a hypothesis being cor-

rect. The hypothesis often takes the form of “is entity x trustworthy?”. In other

words, knowledge of prior events is used to predict future outcomes.

Aggregation using fuzzy logic is discussed by Song et al. [292]. In their system,

fuzzy rules are used to determine the reputation score for both buyers and sellers.

• Counting: reputation is computed by either summing positive and negative

ratings, or averaging ratings. The ratings may be weighted to provide a bias

towards, for example, recent ratings or those from more reputable sources.

This term was also used by Yao et al. [349].

• Discrete: reputation is computed by converting discrete rating values using

look-up tables. This term is also present in Jøsang et al. [159].

• Probabilistic: ratings are fitted into a probability model and used to predict the

likelihood of a hypothesis being correct. This term is discussed by Ruohomaa

et al. [270], Koutrouli and Tsalgatidou [182], Hoffman et al. [144] and Yao et

al. [349].

• Fuzzy: fuzzy logic is used to process or compute ratings, allowing these sys-

tems to work with a degree of uncertainty. Jøsang et al. [159] and Yao et

al. [349] use this term.

• Flow: reputation is computed by examining the flow of transitive trust. This

term was also used by Jøsang et al. [159] and Yao et al. [349].

26 CHAPTER 2. RELATED WORK

Good general discussions on aggregation can be found in Jøsang et al. [159], Hoff-

man et al. [144] and Yao et al. [349]. Discussions on preserving privacy during

reputation aggregation can be found in Pavlov et al. [243], Steinbrecher [294] and

Gudes et al. [128].

Uncommon Dimensions

In addition to the five common dimensions already presented, further aspects of reputa-

tion systems that are not widely discussed in the existing literature have been identified.

Each of these aspects were captured as dimensions in the taxonomy and each has been

investigated and discussed below:

6. Entities.

Entities are the primary focus, or target of a reputation system. The targets of a

reputation system are typically either people or resources (for example, books or

films) [327]. However, with the expansion of reputation systems there are now

websites that need to cater to both. For example, Amazon allows members to rate

both reviewers and resources, and Damiani et al. [82] talk about combining peer

and resource reputations in peer-to-peer networks. Both people and resources are

typical first class members of a reputation system. They have some similar reputa-

tional requirements, and are therefore not considered distinguishing factors in this

taxonomy. Mui et al. [222] presents a reputation typology that includes the notion

of “individual and group reputation”. Reputation can be collected and accrued for

these two different types of entities. The entities category has been included to pro-

vide a basis to differentiate between systems that operate on individuals and those

that function over groups of entities.

• Individual: these systems are focused on people or specific resources. This

concept is further discussed in Wang and Vassileva [327].

• Group: these systems are focused on groups rather than individuals. Groups

can be both formal and informal in nature, with the former assuming some of

the characteristics of an organisation. Systems that utilise groups are discussed

by Mui et al. [222], Gal-Oz et al. [116] and Tong and Zhang [306].

7. Presence.

Presence describes how closely a reputation is tied to its underlying reputation sys-

tem. In most early reputation systems, an entity’s reputation information was only

available to be fetched or updated by a central server. Later systems distributed the

reputation information, however the entity holding the information is still required

to be online.

2.4. REPUTATION SYSTEMS TAXONOMY 27

• Online: those systems that require the continuous presence of authority in or-

der to be able to distribute reputation information. This is the default position

for most reputation systems.

• Partial: those systems that do not require the continuous presence of authority

in order to be able to distribute reputation information. Initial discussions can

be found in Ismail et al. [154] and Prashant and Dasgupta [90].

• Offline: those systems that do not require the presence of authority in order to

be able to distribute reputation information. This is a logical extension to the

other categories in this dimension. However, it should be noted that there are

not thought to be any systems that could be classified as offline.

8. Governance.

Reputation systems are volatile environments with entities and information chang-

ing frequently. In order for the system to function properly, providing trust within

a community, some level of authority is required. Governance describes that au-

thority, and in particular, how the system is controlled.

• Centralised: a centralised group or organisation manages the system. Most

commercial reputation systems exhibit centralised governance, including Ama-

zon, eBay and ePinions. In each instance, the underlying architecture may well

be distributed, but the management is most likely by a single organisation.

• Distributed: multiple entities working together, often with no centralised man-

agement. Entities within such a system may come and go as they please. Most

recent peer-to-peer systems display distributed governance.

9. Fabric.

Fabric describes how the nodes of the reputation system are organised. The organ-

isation of a reputation system is a fundamental attribute, allowing systems to be

easily categorised and differentiated between.

• Structured: new nodes are assigned a location and a set of neighbors in an

organised fashion when connecting to a network [207]. The topology may be

formed using an overlay and therefore unrelated to the underlying network

[284].

• Unstructured: networks do not exhibit any organised arrangement and gener-

ally allow new nodes to connect randomly [207].

28 CHAPTER 2. RELATED WORK

10. Interoperability.

Interoperability describes the underlying principles by which the system operates

and shares information. At present, most commercial reputation systems are tightly

controlled and the information contained within them is not shared with third par-

ties. This is because they consider their reputation information to be commercial

property. As a result, members with good reputations are typically reluctant to

leave and build up a new reputation with another provider.

• Open: entities may freely access and utilise the reputation information con-

tained within a system using data standards or APIs. Most academic systems

fall into this category.

• Closed: reputation information is proprietary and not usually shared outside

of a system. Most commercial systems would fall into this category.

11. Control.

Control describes the manner in which a reputation system motivates and controls

entities to act in a desired manner, and is a fundamental aspect of any implementa-

tion. Arguably reputation systems are themselves are socially corrective, however

this dimension is only concerned with explicit rules and incentives/disincentives

used within a reputation system in order to get entities to behave in the desired

manner.

• Rules: an entity is forced or limited to act only within a prescribed manner.

• Incentives/Disincentives: an entity is motivated or guided using rewards and

punishments to obtain appropriate behaviors. Incentives are further discussed

in Jurca and Faltings [163], Wongrujira and Seneviratne [331] and Marti and

Garcia-Molina [207].

12. Evaluation.

When obtaining or viewing the available reputation information for a given target

entity (the trustee), reputation systems may provide two different views of previous

transactions.

• Atomistic: a detailed transaction-based view that potentially shows all of the

interactions that the trustee has had. This can be used to window-in on only

one aspect of the available reputation information.

• Holistic: all of an entity’s interactions are considered and weighed to provide

a single, overall view of the trustee to the trustor. No detailed information is

provided, only the summarised information is available for evaluation.

2.4. REPUTATION SYSTEMS TAXONOMY 29

13. Data Filtering.

• None: data provided by the system is not limited or filtered in any way. Trustors

may utilise the full available history for a given trustee.

• Subset: data provided by the system is limited by the application of data fil-

tering. Trustors may utilise only a subset of all available history for a given

trustee. A subset is most usually based on the age of the data, or some manual

selection.

14. Data Aging

Data Aging essentially reduces the confidence of information as time passes and

more information is collected. The decay in value of information allows entities

to distance themselves from historic behavior. Information decay helps prevent

attacks on the reputation system in which entities build a sufficient level of trust

and then begin acting maliciously. As the most recently gathered information is

given the largest weight of confidence, new negative behavior will have the largest

impact when making decisions.

• None: reputation information is retained indefinitely.

• Decay: reduces the confidence and granularity of older reputation information

as time passes. Koutrouli and Tsalgatidou [182] discuss this idea further.

• Death: an extension of decay that allows older reputation information to be

discarded [351]. Information is usually discarded based on age, or a manual

selection.

2.4.4 Classification of Reputations Systems

In this section the reputation taxonomy is used to classify a large number of academic

and commercial reputation systems, see Tables 2.1 and 2.2. In these tables a ’?’ in a cell

indicates that information on the characteristic was not available in the published work.

Multiple entries in a cell indicate that multiple characteristics are supported.

1. History. Only a small number of the reputation systems use personal history, while

the majority utilise global history. As the name implies, personal history is formed

from the personal experiences of a single entity, and is the only type of history that

can be fully relied upon. Lai et al. [187] argue that personal history does not scale

well, as the chance of interacting repeatedly with the same entity is fairly small.

As a result, personal history is less efficient, as other entities are not learning from

your experiences. Jurca and Faltings [163] argue that personal history can be used

30 CHAPTER 2. RELATED WORK

R
eputation

System

01. History
P=Personal
G=Global

02. Context
S=Single
M=Multiple
A=Attribute

03. Collection
DE=Direct Experience
DO=Direct Observation
II=Indirect Individual
IG=Indirect Group
DN=Derived

04. Representation
B=Binary, D=Discrete
C=Continuous
S=String, V=Vector

05. Aggregation
C=Counting, D=Discrete
P=Probabilistic
Z=Fuzzy, F=Flow

06. Entities
I=Individual
G=Group

07. Presence
O=Online
P=Partial
X=Offline

08. Governance
C=Centralised
D=Distributed

09. Fabric
S=Structured
U=Unstructured

10. Interoperability
O=Open
C=Closed

11. Control
I=Incentives/Disincentives
R=Rules

12. Evaluation
H=Holistic
A=Atomistic

13. Data Filtering
N=None
R=Recent Subset
S=Selected Subset

14. Data Aging
N=None, C=Decay
D=Death of Selected
T=Death of Old

H
istos

[351]
P

S
D

E&
II

C
C

I
O

?
?

O
?

H
R

N

Sporas
[351]

G
S

II
C

C
I

O
?

?
O

I
H

N
T

R
egret

[273,272]
G

M
‖A

D
E&

II&
IG

D
&

V
C

I
O

?
U

O
?

H
N

C

P-G
rid

[24]
G

S
D

E&
II

B
C

I
O

D
S

O
I

H
&

A
N

N

Beta
[158]

?
S

?
?

P
?

O
C

U
O

?
?

?
?

C
onfidant

[52]
G

S
D

E&
D

O
&

II
?

?
I

O
D

S
O

I
H

N
T

X
R

ep
[82]

P
S

II
B&

D
‖C

C
I

O
D

U
O

I
H

N
N

EigenTrust
[166]

G
S

D
E&

II
C

F
I

O
D

S
O

I
H

S
N

G
upta

etal.
[130]

G
S‖A

D
E&

II
D

&
C

C
I

O
C

U
O

I
H

N
C

TrustM
e

[289]
G

S
II

?
C

I
O

D
U

O
?

H
N

N

PeerTrust
[335]

G
M
‖A

D
E&

II
C

C
I

O
D

S
O

I
H

R
N

Ism
ailetal.

[154]
G

S
D

E
D

na
I

P
C

U
O

na
H

S
N

Pride
[90]

P
S

D
E

?
?

I
P

D
U

O
I

H
N

N

TrustG
uard

[293]
G

S
II

C
C

I
O

D
S

O
I

H
N

T

FuzzyTrust
[292]

G
S

D
E&

II
?

Z
I

O
D

S
O

?
?

N
C

Travos
[242]

?
S

?
?

P
?

O
D

U
O

?
?

?
?

Pow
erTrust

[364]
G

S
D

E
B&

C
&

V
F

I
O

D
S

O
I

H
S

N

G
al-O

z
etal.

[116]
G

na
D

E&
II

V
C

I&
G

O
?

?
O

I
H

?
C

C
oner

etal.
[77]

G
S‖A

D
E

C
&

S
C

I
O

D
U

O
I

H
&

A
N

N

H
-Trust

[358]
P&

G
S

II
B‖C

C
I&

G
O

D
S

O
?

H
S

C

R
ateW

eb
[202]

G
S

D
E&

II
D

&
C

&
V

C
I

O
?

U
O

I
H

R
N

Tong
and

Z
hang

[306]
G

na
D

E&
D

O
C

C
I&

G
O

?
U

O
I

na
N

N

R
2Trust

[304]
P&

G
S

D
E&

II
C

P
I

O
D

U
O

I
?

?
C

R
eD

S
[29]

G
S

D
E

C
C

I
O

D
S

O
?

?
N

N

Tulungan
[239]

G
S

II
?

?
I

O
C

?
O

I
?

?
?

PerC
ontR

ep
[339]

G
S

D
E

?
C

I
O

C
?

O
?

?
N

C

Table
2.1:Sum

m
ary

ofA
cadem

ic
R

eputation
System

s

2.4. REPUTATION SYSTEMS TAXONOMY 31

R
ep

ut
at

io
n

Sy
st

em
01.History
P=Personal
G=Global

02.Context
S=Single
M=Multiple
A=Attribute

03.Collection
DE=DirectExperience
DO=DirectObservation
II=IndirectIndividual
IG=IndirectGroup
DN=Derived

04.Representation
B=Binary,D=Discrete
C=Continuous
S=String,V=Vector

05.Aggregation
C=Counting,D=Discrete
P=Probabilistic
Z=Fuzzy,F=Flow

06.Entities
I=Individual
G=Group

07.Presence
O=Online
P=Partial
X=Offline

08.Governance
C=Centralised
D=Distributed

09.Fabric
S=Structured
U=Unstructured

10.Interoperability
O=Open
C=Closed

11.Control
I=Incentives/Disincentives
R=Rules

12.Evaluation
H=Holistic
A=Atomistic

13.DataFiltering
N=None
R=RecentSubset
S=SelectedSubset

14.DataAging
N=None,C=Decay
D=DeathofSelected
T=DeathofOld

A
dv

og
at

o
[1

]
G

S
D

E
D

C
I

O
C

?
C

I
H

N
N

A
m

az
on

[2
]

G
S

D
E

B&
D

&
S

C
I

O
C

?
C

I
H

S
N

C
ou

ch
su

rfi
ng

[3
]

G
S

D
E

D
&

S
C

I
O

C
?

C
I

H
&

A
S

N

D
ig

g
[4

]
G

S
D

E&
II

D
C

I
O

C
?

O
I

H
N

N

eB
ay

[6
]

G
S‖

A
D

E
D

&
S

C
I

O
C

?
C

I
H

&
A

S
T

eP
in

io
ns

[7
]

G
S

D
E

D
&

S
C

I
O

C
?

C
I

H
&

A
S

N

M
Tu

rk
[1

1]
G

S‖
A

D
E

D
C

I
O

C
?

C
I

H
&

A
N

N

Pa
ge

R
an

k
(G

oo
gl

e)
[9

]
G

S
D

E
D

&
C

F
I

O
C

?
C

na
H

N
N

R
ed

di
t[

12
]

G
S

D
E

D
C

I
O

C
?

C
I

H
N

N

Sl
as

hD
ot

(K
ar

m
a)

[1
3]

G
S

D
E

D
&

C
C

I
O

C
?

C
I

H
N

N

St
ac

ko
ve

rfl
ow

[1
4]

G
S

D
E&

II
D

C
I

O
C

?
C

I
H

&
A

N
N

Tr
us

te
dS

ou
rc

e
[1

5]
G

S
D

E
D

C
I

O
C

?
C

R
H

&
A

N
C

Tr
us

tr
ib

e
[1

6]
G

S‖
A

D
E&

II
D

&
S

C
I

O
C

?
O

I
H

N
N

Tu
rk

op
ti

co
n

[1
7]

G
S‖

A
D

E
C

&
S

C
I

O
C

?
C

I
H

&
A

N
N

Ye
lp

[1
9]

G
S

D
E

D
&

S
C

I
O

C
?

C
I

H
&

A
S

C

Ta
bl

e
2.

2:
Su

m
m

ar
y

of
C

om
m

er
ci

al
R

ep
ut

at
io

n
Sy

st
em

s

32 CHAPTER 2. RELATED WORK

as a form of competitive advantage in certain circumstances. They suggest that a

payment scheme can be used to incentivise truthful sharing of information with

others.

RateWeb [202] proposes model where history can be fetched from a “rating clique”.

However, the members of these groups still act as individuals.

Global history is available to either everyone, or the members of a selected group.

Lai et al. [187] notes that although global history scales well, it is vulnerable to some

types of malicious attacks. Over time, a global history should give a consistent,

long-term view of an entity that approximates a relationship [261].

2. Context. The majority of reputation systems only employ information from a single

context. The systems that allow information from multiple contexts to be utilised

by members differ substantially.

PeerTrust [335] incorporates two additional forms of contextual information; trans-

actional attributes and a community-based context. The transactional attributes

include the value of the trades being participated in, such that users can establish

which trades are most relevant to their current situation. The community-based

context is used to measure the level of participation within the community, for ex-

ample, whether an entity often provides feedback.

Regret [273] expands on PeerTrust and stores reputation information in the form of

a vector. Individual reputation values are associated with each contextual attribute,

such as the chance to overcharge, deliver late or provide a low quality item. Sabater

and Sierra have also extended the Regret system to include a social context for

reputation information, where trust is extracted from groups and communities (the

professional and organisational rings from the context model) to which an entity

belongs [272].

3. Collection. The majority of systems use some combination of direct experience and

individual indirect. Tong and Zhang [306] argue data is more reliable if collected

directly rather than through a third party. The authors state that inaccuracies and

lying reputation sources are reason enough to promote the direct observation col-

lection technique. Indirect approaches involve information being obtained from

other entities based on transactions that the querying entity was not privy to.

EigenTrust [166] explains that utilising both an individual’s personal experience as

well as other’s indirect experience allows for making better decisions. Third party

entities can be discovered and queried in a variety of ways. However, information

received from others that have been discovered through either single or multiple-

hop transitive trust chains should be more reliable than that discovered by querying

2.4. REPUTATION SYSTEMS TAXONOMY 33

a random entity in the network [343].

RateWeb [202] proposes a collection model that involves a set of trusted entities be-

ing contained within each entity. When making a decision on whether or not to in-

teract with another entity in the environment, the trusted entities are consulted for

their historic actions with the target entity. RateWeb also suggests another method

of indirect collection using groups and communities.

Mui et al. [222] talk about “prior-derived” reputation; however this is reputation

based on prior beliefs and prejudices. As expected, none of the systems surveyed

utilised derived data. Deriving information from an open repository can provide a

unique view of an entity’s disposition in that context. An example of this could be

using an online literature library such as CiteSeer [121], to determine how promi-

nent an entity is in the computer science domain.

4. Representation. Commercial systems mostly favor a representation of the repu-

tation that utilises both a numerical value and textual content. Academic systems

however tend to exhibit a range of representations, although textual content is not

as prevalent as in the commercial systems.

5. Aggregation. Most commercial, and many early academic systems use a simple

counting-based aggregation, either by summing all of the ratings together, or pro-

viding an average. None of the systems surveyed utilised a discrete model of ag-

gregation, probably because of the non-optimal computation aspects of aggregation

with this model.

Beta [158] and Travos [242] both implement a probabilistic approach using the Beta

probability density function, as this is considered suitable for processing binary

ratings [349].

EigenTrust [166] utilises a flow approach to calculating global reputation values.

In particular, global reputation values are calculated using the “left principal eigen-

vector of a matrix of normalised local trust values”. The local, or personal, trust val-

ues in EigenTrust are sums of the positive and negative ratings. PowerTrust [364]

employs a similar approach to EigenTrust, but uses a Bayesian method to calculate

the personal trust values.

A fuzzy approach to aggregation is utilised by FuzzyTrust [292] when aggregating

personal trust ratings.

6. Entities. The concept of group reputation is introduced by Mui et al. [222]. Barring

three exceptions, all reputation systems that were classified in the taxonomy focus

on individuals. These individuals could be either people or specific resources.

34 CHAPTER 2. RELATED WORK

The first exception is the work presented by Gal-Oz et al. [116], where communities

are broken down into smaller sub-communities the authors call “knots”. Knots are

formed from community members who have strong trust relationships amongst

themselves. The reputation information within a knot is therefore more valuable

and is given a higher weighting.

The second exception is the work presented by Tong and Zhang [306]. In their

paper, they propose using direct observation of the size of the group to determine

its reputation. If individual entities are seen to be joining a group, then clearly that

group has a positive reputation, and vice-versa. Although not explicitly stated, they

are in fact looking at the size of the group over a period of time. A simplified view

of group reputation is basically the change in the number of members over time.

The last exception is discussed in Zhao and Li [358], where nodes are able to calcu-

late the reputation of other entities, either individuals or groups, using their own

private history and choice of algorithm.

Finally, although Regret does not support group entities directly, Sabater and Sierra

introduce the idea of a “neighborhood reputation” that is based on the reputation

and relationships of neighboring entities to the target entity. A given entity there-

fore inherits a reputation by default, allowing even entities that are less well known

to have reputation.

7. Presence. Of the systems examined, none is fully offline, and only Ismail et al. [154]

and Pride [90] support a partial presence. The former talks about distributing repu-

tation information to third-parties via certificates. An authority is utilised to create

the certificates, but not needed to distribute and interpret the information contained

within them.

The latter introduces the Pride reputation system which has been constructed for

decentralised peer-to-peer networks. The system enables self-certification of enti-

ties with digital certificates and employs an elicitation storage protocol to distribute

reputation information.

8. Governance. Most commercial reputation systems exhibit centralised governance,

including Amazon, eBay and ePinions. The terms centralised and distributed are

most often used in conjunction with the description of reputation system architec-

ture such as in Wang and Vassileva [327], Jøsang et al. [159], Gupta et al. [130], Dutta

et al. [101] and Wang and Li [321]. However, it is often difficult to establish with any

degree of certainty how a given reputation system is actually implemented, partic-

ularly commercial systems that rarely provide operational details. For example, in

Wang and Vassileva [327] eBay is noted as being centralised, when in reality it may

2.4. REPUTATION SYSTEMS TAXONOMY 35

well be distributed in order to cope with the traffic load. However, it is possible to

say that the system has centralised governance.

9. Fabric. There is a good mix of systems showing both structured and unstructured

characteristics. PowerTrust [364] employs a structured approach to reputation col-

lection and aggregation. The system utilises a trust overlay network to model trans-

actions and nominates trustworthy entities as power nodes, responsible for aggre-

gating global reputation scores.

10. Interoperability. Although reputation information within academic systems is of-

ten freely accessible, none of the systems surveyed had any explicit support for

importing or exporting reputation information.

For a short period of time, Amazon allowed its members to import their feedback

scores from eBay, effectively removing the need to establish a new reputation. How-

ever, once legal action was taken, Amazon was forced to remove this functionality

[261].

11. Control. The control category is often overlooked due to an underlying assump-

tion that trustworthy users are rewarded. The practice of disincentivising entities

in a reputation system is also not trivial. The following examples demonstrate a

disincentive technique to promote good behavior in the environment, however the

environment itself is typically restricted. Confidant [52], for example, utilises the

disincentive principle, by placing consequences on badly-behaved routers. Once

entities are discovered that appear to be acting maliciously, Confidant works to re-

strict the use of that router in future transmissions.

P-Grid [200], is another system that punishes rather than rewards certain behavior.

Entities within the system are assumed to be co-operative, meaning that only mali-

cious behavior has an effect on one’s reputation score. Both of these examples occur

in a system where entities can easily be neglected and avoided. Other environments

that use reputation systems may not be able to enforce such penalties as easily. For

example, in a Grid setting, the process of excluding an entity from joining a virtual

organisation can be extremely costly if they provide a sufficiently limited resource.

12. Evaluation. All systems surveyed for this taxonomy implement a holistic evalua-

tion of the trustee. A small number of the systems also support an atomistic evalu-

ation method, allowing the user to drill-down on particular aspects of the available

information.

13. Data Filtering. Filtering is employed by a few systems. RateWeb [202] uses an

approach where the trustors in the system apply limitations on data to determine

36 CHAPTER 2. RELATED WORK

what is too old to be considered useful. RateWeb includes a method called “repu-

tation fading”. Each rating is time-stamped, allowing newer feedback to be given a

higher weighting when computing reputation scores. This is considered data filter-

ing and not data aging because the data is not discarded, but rather filtered by the

trustor.

14. Data Aging. A number of systems implement Data Aging. The Regret [272] system

provides a time-dependent method to calculate an individual reputation. As infor-

mation gets older, its weight in the calculation diminishes. The authors cite Karlins

and Abelson [170] as support for the feature. Zacharia et al. [351] implements a

method to age and remove information through a “dumping function”. The au-

thors state that larger amounts of feedback increase the accuracy of the reputation

system. Due to entities being able to alter their behavior at will, the authors assert

that it is beneficial to disregard old ratings to move the behavior predicted by the

reputation system closer to an entity’s current performance.

2.4.5 Analysis

The application of the taxonomy to a number of academic and commercial systems in

the previous section has identified several areas of reputation systems that are currently

under-represented in research:

A.1 Contextual information is still largely under-utilised within reputation systems. Rep-

utation information is context dependent, however few reputation systems support

more than a single context. Wider investigation is required into the maintenance

and utilisation of information from multiple contexts. In particular, the aggregation

of contextual rating information into a single value for consumption, or maintaining

distinct values. The importance and procedures behind the exchange of reputation

information between distinct reputation systems is a weak area of the current re-

search.

A.2 Derived information sources require wider investigation. In particular, the identifi-

cation of derivable reputation sources, the ability to aggregate and utilise the derived

information within a reputation system, and the policies to integrate and embed dis-

tinct sources. The value of including derived information from abstract sources that

were not explicitly designed to generate information for decision making is a rich

area for new research.

A.3 Individual entities are pervasive in current reputation systems. There is little ma-

terial on group entities. Group entities have an important role to play in future

reputation systems. In a virtual organisation, individual and group entities may join

2.4. REPUTATION SYSTEMS TAXONOMY 37

together temporarily to solve a common problem or work on a task. Reputation can

play a key role in such environments.

A.4 Although partial presence is exhibited by two of the systems that were examined,

none of the systems had the ability to distribute reputation information fully-offline.

The ability to operate fully-offline would allow for robust decentralised reputation

systems.

Although not explicitly addressed by either the survey or the taxonomy, the following

gaps were also raised during the analysis of existing reputation systems:

B.1 The integration of human and electronic entities within reputation systems was not

discussed in the taxonomy, however it is an area that requires wider research. In par-

ticular, how human and machine users could be incorporated into a single reputation

system, and any complexities associated with such a merger.

B.2 Implicit support for the import and export of reputation information is another area

for further research. The ability to import and export reputation information be-

comes more complex as the contexts vary. For the base-case of exchanging informa-

tion between systems with similar contexts, we only require a set of standards that

describe how reputation information should be encoded and exchanged. For more

complex cases, where systems have differing contexts, this would require a set of

standards that enumerate the contexts, and a way to generalise reputation values as

they move between these contexts.

B.3 The integration of identity and reputation is not widely considered, and requires

further thought. In particular, storing reputation information along with identity

information would help in the transfer of reputation between different contexts, and

would aid in the bootstrapping of existing users on a new system. Further, the ability

to centralise both identity and reputation information would help to break down

reputation silos and make reputation information more useful in a wider sense.

B.4 The ability to utilise reputation as a service is only just in its infancy. As with any

other service, being able to query and update reputation as a service would be useful

in many environments.

B.5 The ability for a reputation system to support not only reputation, but also recom-

mendations. In particular, the ability to use personal, professional, organisational

and societal contexts would aid in the utilisation of the information by different con-

sumers.

38 CHAPTER 2. RELATED WORK

Research Goals

The research goals for this thesis reframe a number of gaps that have not been adequately

addressed in the existing research and literature:

G.1 The use of recommendation information derived from non-reputation sources, and

the subsequent usage of this information within a reputation system.

G.2 The integration of human and electronic entities, including the investigation of how

these could be combined into one recommendation system.

G.3 The integration of identity and reputation, with a focus on how reputation informa-

tion could be combined with identity information.

G.4 The use of contextual information within reputation systems. In particular, the abil-

ity to capture and make this information available for use in the evaluation of rec-

ommendations.

G.5 The ability to exchange recommendation information between systems.

2.5 Related Systems

This section discusses and examines existing reputation systems that attempt to address

the same issues as the research goals of this thesis. These reputation systems are dis-

cussed in chronological order, starting with the oldest system first.

In [329, 330], Windley et al. introduce Pythia, a reputation-based authorisation sys-

tem. Reputation information is obtained from a number of source applications and stored

in a central repository. Relying Parties (RPs) are then able to query the system and obtain

reputation information about users that has been processed through a rules engine.

The approach presented in Pythia is limited. In particular, the architecture is cen-

tralised, and exhibits strong centralised governance. Relying Parties are presented with a

pre-calculated reputation, limiting the flexibility of the information usage. For example,

knowing that an individual possesses a grade better than 90% of the population is use-

ful in nationwide comparisons, but does not help to determine their individual level of

attainment. It also assumes that reputation values from different applications can be nor-

malised consistently. While this approach makes sense in a small system with a limited

number of applications, it does not scale because it is harder to reconcile reputation val-

ues across increasing numbers of systems. Finally, Pythia is focussed only on reputation-

based models, and does not consider other recommendation information such as a user’s

demographics or their social connections.

2.5. RELATED SYSTEMS 39

Pingel and Steinbrecher [245] introduce a centralised system that collects and makes

available reputation information. However, in this instance the information is collected

from, and distributed to, participating communities. The authors call this “Cross-Community

Reputation”, and argue that reputation information from multiple communities, and

hence sources, is more accurate. Users register a single pseudonym, however in order

to preserve privacy, access to another community is via a credential that only the identity

provider is able to map back to the original pseudonym. While this preserves privacy,

it depends on a single centralised identity provider and reputation manager. This work

is limited by its centralised governance and an underlying assumption that reputation

values from different sources can be normalised. This work also separates identity and

reputation, by storing reputation values in a stand-alone reputation manager.

In [127], Grinshpoun et al. introduce a Cross-Community Reputation (CCR) model.

They also argue that reputation information sourced from multiple communities is more

accurate, and removes the need to bootstrap a new reputation for every new commu-

nity. The model discusses pre-conditions for sharing, reputation conversion and map-

ping of information from one community to another. Reputation information can be

shared amongst different communities. A separate policy controls how much informa-

tion is shared between the communities.

This work is limited in that it only talks about a model for reputation sharing and

does not provide an architecture or discuss implementation experiences. Reputation is

discussed as being an important component of identity, however the model does not pro-

vide any further guidance on these concepts. OpenID is discussed briefly, but not utilised

in any way. The authors note that their model does not deal with time-dependencies such

as decay of older reputation data.

Augo et al. [26] introduce a federated reputation model that focuses on the user trust

problem: once a user is authenticated, how can trust be established between two parties

on the same Relying Party (RP). The approach presented in the paper discusses building

a federated solution that builds upon a single identity provider within a federation of ser-

vices. Reputation is held by a separate reputation manager within the identity provider.

The services provide a snapshot of the user’s reputation to the reputation manager as

the last step in the authentication sequence. Reputation is considered a four-dimensional

vector (“Ego”, “Reward”, “Fear”, “Profit”), and as such values can be compared across

different contexts by considering the different dimensions.

Once again, this work is limited in that there is no actual architecture or implementa-

tion. The federated model works well across a small set of well-defined services, but

does not scale. The separation of the identity provider and the reputation manager

fails to recognise that the models should be combined, while the construction of four-

dimensional vectors is subjective, requiring careful human intervention during construc-

40 CHAPTER 2. RELATED WORK

tion. Finally, there is an underlying assumption that reputation values from all contexts

can be normalised into one consistent representation.

In [205, 307], Marmol et al. discuss enhancements to OpenID to support the collec-

tion of reputation information. The system works by displaying reputation information

about a Relying Party (the service provider) when a user authenticates with their OpenID

Provider (OP). The user can then either elect to proceed or cancel authenication, depend-

ing on what kind of reputation is held by the RP. Assuming the user proceeds to use the

RP, once they are finished with the service, the user is able to provide an evaluation of

the RP which is then stored by their own OP. A subsequent user connecting to the same

RP obtains a list of recent OPs from the RP, each of whom are queried about their users’

feedback. This feedback is aggregated and displayed to the user, allowing them to cancel

the authentication if required.

This approach is limited to only providing reputation information about RPs. Being

able to provide a reputation for users and OPs would be useful, for example, as it would

allow service providers to also avoid malicious users. Further, also being able to provide

reputation for OPs would allow users to determine which OPs provide the best service.

The obvious issue of trusting the RP to provide a list of recent OPs leaves this system

open to malicious behaviour. In particular, an RP could maintain a list of its own OPs

that always provide favourable reputation for the RP, and that it would always return as

being the most recent. Reputation on each of the OPs might overcome a component of

this issue.

The aggregation computation uses a dynamically interchangeable reputation compu-

tation engine. The intention is that the computation engine can be changed for another

when conditions change, for example, as more feedback is available. This leaves the ag-

gregation with the system, rather than the consumer of the information, and limits the

flexibility of how the information could be utilised. If the raw reputation information

were provided to the consumer, it could decide on the best reputation computation, al-

lowing it to tailor the results to its own needs.

2.6 Summary

This chapter introduced a number of aspects that are important to this thesis: a terminol-

ogy for reputation, two standard reputation models, a survey and taxonomy, an analysis

to find research gaps and an examination of existing systems.

The standard reputation terminology and models for both reputation and reputation

context are important as they allow for a consistent discussion of reputation and reputa-

tion systems within this thesis.

The survey of existing reputation systems was used to build and refine the reputation

2.6. SUMMARY 41

systems taxonomy. This taxonomy was used to classify a large number of academic and

commercial reputation systems. The classification was used to find gaps in the existing

research and literature. A subset of these gaps were selected as the research goals for this

thesis.

Finally, a number of reputation systems that attempt to address some of the research

goals were examined. None of the systems addressed all of the research goals.

42 CHAPTER 2. RELATED WORK

Chapter 3

Architecture

GRAFT is an open and distributed framework that collects and makes available recom-

mendation information about entities1. Recommendations about entities may include

reputation, competency and demographic information. There is no centralised gover-

nance, with all participants in the framework required to contribute storage and band-

width resources to a peer-to-peer network (P2P). Entities are typically real-world users,

however they may also include electronic entities such as web services. Every entity in

GRAFT is uniquely identified by their OpenID2.

Figure 3.1 shows an overview of the major components of the GRAFT framework. At

the centre, GRAFT nodes store all of the recommendation information about entities in

profiles. Every entity has a single profile that may contain multiple recommendations

(each from a different recommendation source). These profiles are replicated across a

peer-to-peer network, ensuring that nodes leaving the network do not adversely affect

the availability of profiles. Replication of profiles also limits the impact of malicious

tampering, by making multiple copies available for comparison. A simple threshold vote

can be used by a recommendation consumer to determine the most prevalent copy of a

profile in the network.

Recommendation sources are the origin of recommendation information, both explicit

and implicit. Explicit recommendations are those that were designed with the intent of

representing reputation, such as “karma” and rating scores. Implicit recommendations

are those that can be used as a stand-in for reputation, such as the number of friends

in a social network. Recommendation sources include specialist websites (for example,

auction or expert sites), databases and social networks. These sources push regular up-

dates onto the network about those entities that they know about. The information that

1The work in this chapter is partially based on the published paper F. Hendrikx, K. Bubendorfer, Mal-
leable access rights to establish and enable scientific collaboration, in: 9th International Conference on
eScience, IEEE, Beijing, China, 2013.

2OpenID is further discussed in Section A.1.

43

44 CHAPTER 3. ARCHITECTURE

Recommendation
Consumer

Recommendation
Source

Recommendation Consumer
and Source

GRAFT

Recommendation
Consumer

Recommendation
Source Profile

Node

Figure 3.1: Overview of the major components of the GRAFT framework. At the centre,

GRAFT nodes store all of the recommendation information about entities in profiles. Ev-

ery entity has a single profile that may contain multiple recommendations, each from a

different recommendation source.

is pushed by these sources is in the context of the source system and is not normalised.

Recommendation sources are envisaged as being long-lived nodes, that are present the

majority of the time.

Recommendation consumers utilise the information contained in profiles to make de-

cisions. For example, a decision to continue with a transaction, or grant access to a re-

source. A recommendation consumer will fetch copies of the profiles of those entities

in which it is interested. Policies maintained by the consumer are then utilised to eval-

uate the profiles. Recommendation consumers are intended to comprise nodes that are

both short and long lived. In particular, some consumers may join the network simply to

obtain profiles for the purpose of decision making.

3.1 Requirements

GRAFT was designed with eight requirements in mind. Section 1.3 discusses the key re-

search goals that influenced the requirements. All of the requirements and their impacts

on the design are discussed below. The influence of the research goals on the require-

3.1. REQUIREMENTS 45

ments is also noted where appropriate.

1. Multiple sources of information:

(a) Multiple sources: GRAFT has been designed to allow multiple recommen-

dation sources, some of which may even represent competing interests or

approaches. This approach allows a recommendation consumer to pick the

source that has the best reputation, or best fits its own requirements. For exam-

ple, a recommendation consumer may pick a source based on locality rather

than reputation.

(b) Use of derived sources: GRAFT sources can be either explicit or implicit sources

of reputation information. A number of examples of derived information

sources including a source based on relationship information and a source

that utilises academic-ranking information are presented in this thesis. This
requirement is based on research goal G.1.

2. Support for both humans and electronic entities: GRAFT is designed to treat both

humans and electronic services equally. In particular, the GRAFT profile was con-

structed in such a way as to support recommendation information for both classes

of entities. Using OpenID as the unique identifier further supports this goal by

making access to profiles identical in each instance. Electronic services are easily

identified by their URL, which is the same as their OpenID. This requirement is based
on research goal G.2.

3. Integration of identity and reputation: Every entity in GRAFT has an OpenID and

as a direct result of that, a profile. Every entity can therefore be evaluated based

on their prior feedback, including recommendation sources and consumers. This

allows a recommendation consumer to pick a source from two competing sources

based purely on their recommendations. This requirement is based on research goal
G.3.

4. Context support: GRAFT has been designed to support the storing of contextual in-

formation. In particular, all recommendation information is enhanced with a source

context. This context allows a consumer to determine the usefulness of a piece of

information in relation to its own context. This requirement is based on research goals
G.4 and G.5.

5. Flexible:

(a) Policy-based decision making: Recommendation consumers utilise policies

to process profiles and make decisions. The use of policies has a number of

46 CHAPTER 3. ARCHITECTURE

benefits, including rapid fabrication of new rules, straight-forward changes to

existing rules, ability to share policies and little to no programming knowledge

required to implement policy changes.

(b) Support for a variety of recommendation sources: A wide-range of recom-

mendation sources allow consumers to construct more nuanced policies that

take into account a variety of factors when making decisions. A recommen-

dation source that publishes information about an entity’s occupation may

allow a consumer to maintain, for example, policies that utilise chronological

information to determine whether an entity is allowed access to a particular

resource at a given time.

(c) No normalisation: The information contained in the profiles is not normalised.

This is because normalisation potentially limits the overall flexibility of the

system, as it assumes a standard approach to rating and normalisation across

all possible contexts. A normalised value may not make much sense outside

of the original context, hence reducing its usefulness. This requirement is based
in part on research goals G.4 and G.5.

6. Scalable:

(a) Scalable Architecture: GRAFT has been designed to provide recommenda-

tion information in a number of scenarios. These range from acting as a drop-

in replacement for existing reputation systems, through to providing a global

recommendation system. In order to be able to scale up to the large sizes re-

quired, the architecture has been designed to be decentralised and distributed.

(b) Automated: Profiles are maintained autonomously, requiring no human inter-

vention or management. In particular, recommendation sources push regular

updates to the network, ensuring that the profiles always have recent infor-

mation. New recommendation sources may start operating in the network

without any prior knowledge of existing entities or profiles.

(c) Decentralised: GRAFT does not have any centralised governance or compo-

nents. All participants in the network are members of a single peer-to-peer net-

work, implemented using a Distributed Hash Table (DHT), that allows them

to communicate and share profile information. As a result, bandwidth and

storage are evenly spread and utilised throughout the network.

(d) Minimal resources: A key reason for using a decentralised approach is that

it reduces the infrastructure requirements. Many reputation systems are cen-

tralised and would require significant investment in order to scale them to a

global size. Utilising a distributed approach ensures that bandwidth and stor-

age requirements are evenly spread across participants in the network.

3.2. ARCHITECTURE OVERVIEW 47

7. Secure: Although recommendations provide only a “hint” of an entity’s character,

and should only be used in support of other information, it is still sensible to limit

the potential for fraudulent behaviour. To that end, GRAFT incorporates design

decisions which help secure the recommendation information.

8. Open and Standardised: Where possible, GRAFT leverages existing technical stan-

dards, approaches and protocols in order to maximise interoperability and reduce

cognitive overhead. In particular, GRAFT leverages OpenID to obtain a single,

durable identifier for each entity in the system. GRAFT also extends the existing

OpenID approach to OpenID provider (OP) discovery, and information exchange.

This requirement is based in part on research goals G.3 and G.5.

3.2 Architecture Overview

A key design feature of the architecture is that it is fully distributed, with no centralised

control or management. A consequence of this design decision is that profiles must be

replicated multiple times, thus increasing the chance that a given profile will be avail-

able. The recommendation information in each profile is obtained from multiple sources.

Sources include explicit reputation sources such as auction and forum websites, but may

also include non-explicit sources of reputation, such as social networks.

Each source pushes regular updates about entities to GRAFT. An entity’s OpenID is

used as their key, allowing GRAFT to combine the information from each source into a

single profile per entity. The continuous nature of updates to a profile means that they

are dynamic and act only as a cache for an entity’s recommendation information, and

should therefore also not be thought of as belonging to the entity. For example, although

an entity may own a particular OpenID, the profile that can be located in GRAFT using

this same OpenID should be considered dynamic information that describes the entity at

this point in time.

Figure 3.2 shows a high-level view of a profile with three recommendations. Each

recommendation has a source, target and rating with context. The source is the OpenID

of the source that generated the recommendation. Within a profile the target will always

be the OpenID of the profile owner. The target is always included as this ensures that

recommendations are complete within themselves. The rating is the “reputation score”

for that entity in the context of the source. For example, for a source that represents a

Forum, the rating may be an integer that represents the reputation of the target as a forum

contributor. Access to entity profiles in GRAFT is possible via two distinct models:

1. Lightweight Model: This model extends OpenID and allows an entity to obtain

and update target profiles using a web-services approach, similar to what is found

48 CHAPTER 3. ARCHITECTURE

Recommendation 3
Source: http://scholar.dblp.org/

Target: http://id.example.net/alice/
Rating: 31 in “academic.scholarship”

Recommendation 1
Source: http://www.forum.net/

Target: http://id.example.net/alice/
Rating: 126 in Context “public.forum”

Recommendation 2
Source: http://some.source.com/

Target: http://id.example.net/alice/
Rating: 0.5 in Context “public.other”

Profile

Figure 3.2: A sample profile with some recommendation details shown. This profile

contains three recommendations.

in OpenID itself. The focus of this model is on the distribution of profiles, and as

such it is most suitable for web-based services that would like to augment their

information about an entity with recommendations.

2. Integrated Model: This model includes all of the functionality from the lightweight

model, but also allows an entity to verify target profiles. Profiles are replicated

across a peer-to-peer network, allowing a consumer to determine the authoritative

copy (using threshold voting).

From the perspective of simple, web-based information access, it is sufficient to im-

plement only the lightweight model. However, this model affords no ability to verify a

profile, so all results obtained using this model should be treated with caution. A more

complete approach is presented by the integrated model, which ensures that profiles are

verified prior to their use.

3.3 Lightweight Model

In the lightweight model, GRAFT leverages and extends the existing OpenID infrastruc-

ture to also include recommendation access, storage and retrieval. In particular, GRAFT

3.3. LIGHTWEIGHT MODEL 49

providers (GP) are just like standard OpenID providers (OP), but instead of handling

only OpenID authentication, GPs also handle GRAFT profiles.

3.3.1 Entities

Any entity connected to the Internet, whether human being or electronic service, is given

equal status within GRAFT. Each entity must have an OpenID, and by implication, a

GRAFT provider (GP). The usage of OpenID allows all GRAFT nodes to uniquely identify

an entity, and locate its GP via standard discovery processes that leverage OpenID.

3.3.2 OpenID

With the recent release of OpenID Connect, OAuth 2.0 [133] has become the latest ap-

proach to authentication and authorisation for web-based applications. However, OAuth

is not as interoperable as OpenID, as the specification actually describes a framework,

rather than a protocol. Commercial federated identity offerings like Facebook Connect [366]

are not sufficiently open to meet the design requirements for GRAFT.

OpenID was selected as the base-building block in GRAFT as it is a well documented

and widely supported protocol for decentralised authentication. Key features of OpenID

that enable the GRAFT framework include global uniqueness of each OpenID, the ability

to dereference an OpenID in order to discover more information about an entity, and the

fact that it is widely supported in existing software.

3.3.3 OpenRep

The extensions to OpenID to deal with GRAFT profiles are collectively called OpenRep3.

OpenRep has two approaches to making profiles available for consumption.

In the first approach, a profile is discovered using the OpenID of the target. The profile

can then be fetched using a RESTful [109] interface to the GP. This approach is similar to

that discussed in OpenID, and is useful for obtaining profiles in a web-based context.

This approach could be implemented as a simple way to fetch background information

on an entity.

In the second approach, a profile is sent to a relying-party (RP) as the last step of the

standard OpenID authentication process. Figure 3.3 outlines a typical OpenID authen-

tication sequence [99] which has been augmented to include a GRAFT profile transfer

from the GP to the RP. The profile transfer step (9) ensures that the RP receives a copy

of the authenticating entity’s profile. This copy is obtained using the Attribute eXchange

(AX) extension [134] to OpenID. This extension is widely supported and is often used to

transfer nickname or email address details to the RP. In this instance the AX extension is
3The technology used in OpenRep is discussed in further detail in Section A.2.

50 CHAPTER 3. ARCHITECTURE

RP

(Web App.)

User Agent

(Browser)

GP
(Authentication

Service)

1. OpenID URL

6. Redirect user to RP

with Auth. response
7. Authentication response

OpenID

URL

2. Discovery

(Yadis/HTML)

3. Association (optional)

4. Redirect user to OP with

Authentication request

5. Authentication request

Username + Password

8. Verification (optional)

Profile
Profile
Profile

9. OpenRep Profile Transfer (optional)

Figure 3.3: OpenID Authentication Sequence [99], augmented with the profile transfer

step.

used to transfer a profile with a single recommendation. The recommendation is the one

previously generated by the RP, or one from another site, but in the same context. The

latter case allows the RP to bootstrap an entity’s reputation from a site with a similar con-

text (for example, an expert forum could use an entity’s reputation from another expert

forum).

3.3.4 Analysis

The lightweight model is limited because it does not deal with the verification of profiles.

All profiles are fetched directly from the GP, and because the GP can be self-hosted, the

accuracy of a profile is potentially compromised. This model is therefore only really

useful within limited and contained situations. Two such situations are described below.

In the first situation, a trusted GP makes available recommendation information to

consumers within the same governance. This could be useful in situations where a num-

ber of consumers require the information, but do not want to implement the entire pro-

tocol stack. For example, an organisation that maintains its own GP and has the need to

utilise recommendation information outside of that GP.

In the second situation, the information provided by a GP is useful during a login

sequence. Section 3.3 describes how the current user’s profile is transferred to the RP as

the last step in a login sequence. This information, although not trustworthy, could be

used to provide an initial “snapshot” of the user’s reputation, weighted by the level of

trust that the RP has in the GP. For example, a GP with a low level of trust from the RP’s

perspective could use a low weight such as 0.2, while a GP with a higher level of trust

might have a weight of 0.8 applied to its reputation ratings. The RP could then obtain

3.4. INTEGRATED MODEL 51

a validated profile via the integrated model as a background task, adjusting a user’s

reputation if it differs from the “snapshot” provided during login.

The initial development of GRAFT with the lightweight model supported both fetch

and store operations for profiles held at a GP. The store operation should not be present

for any public system as this provides an easy way to compromise the content of profiles.

3.4 Integrated Model

The integrated model extends the lightweight model, and was designed specifically to

address the issue of profile veracity. By distributing multiple copies of a profile across

a distributed hash table, the effects of malicious profile changes might be minimised or

nullified.

Interpretation

Collection

In
te

rc
h

an
ge

 o
f

p
ro

fi
le

s
w

it
h

 o
th

er
 n

o
d

es
.

Raw information
from Recommendation

Sources.

Integration

P
o

lic
y

Figure 3.4: GRAFT Stack. Every GRAFT node is designed around a modular stack that

comprises three layers, each with its own distinctive functions. A separate and extensible

policy backbone enforces collection, integration and interpretation policies.

Within the integrated model, every application or system that intends to connect to

GRAFT and utilise the profiles to their fullest extent is called a GRAFT node. Every

GRAFT node must implement a minimal set of features from the GRAFT stack in or-

der to be able to communicate with other GRAFT nodes, and provide their share of the

resources required to support the GRAFT framework.

52 CHAPTER 3. ARCHITECTURE

As shown in Figure 3.4, every GRAFT node is designed around a modular stack that

comprises three layers, each with its own distinctive functions. A separate and exten-

sible policy backbone enforces collection, integration and interpretation policies. The

remainder of this chapter presents the three layers of the stack and the policy backbone,

including detailed descriptions of the components and protocols that make up each layer:

1. Collection Layer: This layer ensures that raw information collected from an origi-

nating source is formatted into recommendations, and passed up to the next layer

of the stack.

2. Integration Layer: This layer is responsible for each GRAFT node’s integration into

the overall peer-to-peer network. Recommendations may be received from either

the collection layer, or from other GRAFT nodes. This layer may pass profiles up to

the next layer of the stack.

3. Interpretation Layer: This layer is responsible for the verification, ranking and or-

dering of profiles.

4. Policy Backbone: The policy backbone enforces policies across the collection, inte-

gration and interpretation layers.

3.5 Collection Layer

The collection layer is responsible for obtaining raw information from, for example, an

application, database or web scraper to which it is connected. These are called originating

sources.

The connection to an originating source may be as simple as a database link, or the

output of a process. Every unique originating source of information will require its own

custom collection layer, with the output of this layer always being a recommendation.

In most instances, the collection layer will need to define or generate metadata that de-

scribes the origin and context of the information.

Depending on the source, the raw information may be aggregated or simplified at

this point, however no further interpretation of the information takes place at this layer.

All information is formatted into recommendations and passed up to the next layer of

the stack. The context in which the information was generated is always maintained, as

this allows a recommendation consumer to make sense of the information later.

3.5.1 Entities

In order to allow a custom collection layer to create a valid recommendation for an entity

at a given originating source, the entity must have provided an OpenID to the source, ei-

3.5. COLLECTION LAYER 53

ther by authenticating itself using OpenID, or providing a mapping from its local identity

to its OpenID. Recommendations cannot be generated for entities without an OpenID, as

GRAFT will have no way to uniquely identify that particular entity.

It is expected that entities will be able to turn on and off the export of their recom-

mendation information from a source. For example, in the case of the source being a

website, the entity should be able to login and choose to turn off the exporting of their

recommendation information. However, providing an entity did not authenticate itself

with OpenID, or provide a mapping to the source, this remains an “opt-in” exercise, as

there is no way for a source to obtain this information otherwise.

3.5.2 Recommendations

Every recommendation can be thought of as describing a relationship from a recommen-

dation source to a target entity. Each relationship can, in effect, be good, neutral or bad.

Each recommendation is complete in itself, as individual recommendations may be ex-

changed between the different layers of the GRAFT stack. Every recommendation con-

sists of a source and a target entity, and one or more assertions that describe either the

relationship between the source and target, or an evaluation of the target. In either case,

the assertion is made relative to the perspective and specific context of the source. For ex-

ample, a source for an auction site may provide an assertion that relates to a user’s rating

in buying and selling at auctions. A seller may have additional assertions that indicate

their honesty, level of service and shipping time for goods that they sold, while a buyer

may have assertions that indicate reliability, and speed of payment.

In those cases where a recommendation source operates in more than one context, it

may include multiple assertions, each with a unique context. The context is important

as reputation information is context dependent [222, 325]. As discussed previously, as-

sertions containing rating values will not be normalised. The context is also useful for

bootstrapping the reputation of a target registering itself on a new site. The new site will

be unable to find its own recommendation in the target’s profile, but may instead try to

find a recommendation from another site that is from the same, or similar context4.

Depending on the recommendation source and the type of recommendation, an eval-

uation of a target may be summarised from a number of underlying transactions. The

details of these transactions may also be included in the recommendation. This is useful

in those cases where a component of each of the transactions is relevant to the overall

evaluation of a target. For example, in transactions involving a monetary exchange, the

value of the transaction may play an important part in determining its significance [261].

A transaction with a value of $1000 is more significant than one of $5, and should there-

4The enumeration and construction of a taxonomy of contexts has been left as future work.

54 CHAPTER 3. ARCHITECTURE

fore be weighted more heavily when making decisions5.

3.5.3 Originating Sources

The originating sources from which GRAFT provides recommendations are varied. Rec-

ommendations are formed from raw source information that is collected from applica-

tions, databases and interfaces. These sources range from those with explicit reputation

information, through to implicit and non-traditional sources.

Explicit reputation sources include sites that implement reputation mechanisms us-

ing approaches such as ratings, karma, votes and user feedback. These approaches are

widely implemented on the Internet, with many sites using one or more variants to sup-

port their communities.

Implicit reputation sources include sites that have not defined a formal reputation

system, however reputation information is still utilised by the community to assist them

in making decisions. Social networking sites can be considered to utilise an implicit rep-

utation system, as members can extract a degree of trust from the information obtained

from friends, or friends of friends.

Any corrections to the information obtained from a source should be made by the

originating source. This same approach to information is widely utilised in the real-

world, where corrections must be made at the source of the information. For example,

if the bank generates an incorrect credit score for a given customer, then it is up to that

customer to contact the bank and have this corrected.

Figure 3.5 shows two examples of how the collection layer could be implemented for

different originating sources. In the first example, the source has been granted direct

access to the database of the originating application. The collection layer is able to see

certain tables within the database and is therefore able to query these as required. This

particular collection layer might be implemented as a series of SQL queries by someone

with knowledge of the database. This source would only require minimal maintenance,

as database structures are unlikely to change rapidly. Further, this source will always

have access to all relevant information, and will therefore always be up to date.

In the second example, a web scraper that is unaffiliated with the application must

utilise the publicly available web interface in order to download appropriate web pages

via HTTP or HTTPS. This source is not as efficient as the first, as it requires regular main-

tenance to ensure that updates to the web interface do not adversely impact on its ability

to find content. In addition to maintenance, there are other issues that impact on the

efficiency of this approach. Firstly, the source must consider information recency, as in-

5eBay does not make this distinction however, as all transactions are weighted equally, regardless of their
value. This allows sellers to artificially increase their reputation by selling lots of small value items, and then
defaulting on high value transactions.

3.5. COLLECTION LAYER 55

Storage

Application

Collection Layer Collection Layer

Application

Public GUI

Web ScraperDatabase

HTTP/HTTPSJDBC/ODBC

Figure 3.5: Database and Web Scraper raw sources. Two examples of how the collection

layer could be implemented for different originating sources. In the first example, the

source has been granted direct access to the database of the originating application. In

the second example, a web scraper that is unaffiliated with the application must utilise

the publicly available web interface in order to download appropriate web pages via

HTTP or HTTPS.

formation may change between visits from the web scraper. Secondly, visibility must be

considered, as public access may limit what the source can see. Finally, long-term access

can be problematic, as web scraping is often considered a grey area and may eventually

cause the web scraper to be locked out.

3.5.4 Recommendation Sources

Figure 3.6 shows a generalised sequence of events that a recommendation source must

follow in order to update a recommendation within a profile. After authenticating itself

with the originating source, the source uses the collection layer to fetch the latest infor-

mation for the entity it is currently interested in. At this point the source will form a

new recommendation. The source then fetches all of the profiles for this entity, using

the integration layer. Once all of the profiles have been fetched, a threshold vote in the

interpretation layer is used to determine the best profile. The recommendation that was

formed earlier from the raw information is now inserted into the profile, and the profile

is pushed back into the network.

56 CHAPTER 3. ARCHITECTURE

Figure 3.6: Recommendation Source Update Sequence. The generalised sequence of

events that a recommendation source must follow in order to update a recommendation

within a profile.

3.5. COLLECTION LAYER 57

3.5.5 Analysis

The collection layer deals exclusively with raw information obtained from originating

sources. On initial inspection there are no apparent issues, however it is important to

remember that this layer is responsible for the generation of all recommendations within

GRAFT. To this end, a number of issues must be handled by this layer:

1. Securing the interfaces and applications

2. Securing the recommendations

3. Intent of originating source

Securing the Interfaces and Applications

The security of the originating source interfaces and applications is essential, as a com-

promise in these systems will allow an attacker to control the recommendations that are

generated from the data held by these systems. This particular point cannot be addressed

by a design change in GRAFT, and must be handled during the development, deploy-

ment and ongoing maintenance of the collection layer for an originating source.

Securing the Recommendations

A standard approach to securing the content of a digital object, or in this instance a profile

in the form of an XML document, is to sign it using an XML signature6. As GRAFT dis-

tributes only profiles, any signatures across the profile must form an inherent component

of the profile itself. Further, as each recommendation comes from a unique source, each

source must individually sign its own recommendations, rather than the whole profile.

These design constraints mean that each recommendation is signed by its source us-

ing an enveloped signature (as opposed to an attached signature, which would be dis-

tributed in a separate file). As shown in Figure 3.7, having a single signature per rec-

ommendation allows a receiver to confirm that a given recommendation is accurate and

has not been modified. In particular, XML signature protects signed content against both

simple modifications and attacks where the content and checksum have both modified

in an attempt to hide the changes.

XML signature also provides a receiver with the ability to authenticate the signer.

Since the signer identity within GRAFT is the same as the source identity, it is a simple

matter to confirm that the source and the signer are the same. Confirmation of the source

identity can be achieved by checking the public key of the source against the signature

on the recommendation.
6http://www.w3.org/TR/xmldsig-core/ - last accessed October 2014.

http://www.w3.org/TR/xmldsig-core/

58 CHAPTER 3. ARCHITECTURE

Recommendation 1

Recommendation 2

Recommendation 3

Signature 1

Signature 2

Signature 3

Profile

Figure 3.7: Enveloped Signatures in the GRAFT Profile. A single signature per recom-

mendation allows a receiver to confirm that a given recommendation is accurate and has

not been modified.

Intent of Originating Source

It is assumed that all sources joining GRAFT have good intentions. However, it is possi-

ble that a source may join the network with bad intentions. In particular, a source may

generate false recommendations about individuals, attempt to corrupt profiles by chang-

ing recommendations, or remove some or all recommendations from a profile.

The first case, where a source generates false recommendations, is handled by exam-

ining the other recommendations in a profile, and by examining the recommendation

profile of the source itself. In particular, a source with few, or poor recommendations

should be considered suspect. In the case of profile corruptions, these changes would be

detected using the XML signatures. Finally, in the case of recommendation removals, the

profile would gradually “recover” as sources updated their recommendations over time.

At worst, an entity might have missing recommendations until the majority of sources

had updated their recommendations.

3.6 Integration Layer

The integration layer receives recommendations from the collection layer and profiles

from other GRAFT nodes. Recommendations from the collection layer may be integrated

into new or existing profiles, before being pushed up the stack to the interpretation layer,

3.6. INTEGRATION LAYER 59

or pushed back into the network. This layer is mandatory for all GRAFT nodes, as it

is this layer that permits the exchange of recommendation information between nodes.

In particular, this layer implements a peer-to-peer network (using a Distributed Hash

Table7) that underlies the entire network.

3.6.1 Profiles

Every entity in GRAFT has a single profile potentially made up of multiple recommen-

dations. This profile is constructed using XML, which allows humans to easily read the

profile, and allows for machine parsing. Further, text based formats such as XML can be

easily transferred over HTTP and HTTPS, which is an important consideration given the

potential uses of the GRAFT framework.

A timestamp field can be used to compare two profiles to decide which is newer, while

a counter records the number of recommendations in a profile. Each of the recommen-

dations in a profile is indexed by a unique key. This key is always the recommendation

source’s OpenID. This allows a source to easily find its own recommendation in a profile,

and ensures a one-to-one mapping of sources to recommendations.

n

...

...

0

...

Recomm.
Created

Profile and
Recommendation

Lifecycle

U
p

d
a

te
 P

h
a

se
U

sa
g

e
P

h
a

se

Profile
Fetched Profile

Updated

Profile
Pushed

Figure 3.8: Profile and Recommendations Lifecycle. This figure illustrates the lifecycle of

a profile and the recommendations contained within it.

Figure 3.8 illustrates the lifecycle of a profile and the recommendations contained

7The concept of distributed hash tables is further discussed in Section A.3.

60 CHAPTER 3. ARCHITECTURE

within it. In particular, the lifecycle has two distinct phases: update and usage. In the

update phase, a recommendation is first created by the recommendation source. The

profile is then fetched from the network and updated with the new recommendation. The

profile is then pushed back into the network. In the usage phase, the profile is fetched and

recommendations within it used by consumers. For example, a profile may be fetched

and consumed during login, when a consumer wants to check the recommendations held

by the authenticating entity.

3.6.2 Concurrency

A key assumption of the architecture is that profile updates from every source occur reg-

ularly. However, the time between updates may be measured in days or weeks. In par-

ticular, for those sources that represent many entities, or require intensive computation,

the time between updates may be long.

The architecture does not explicitly consider the impact of concurrency issues on pro-

files, leaving the outcome of simultaneous writes to the same profile entirely to chance.

For example, two sources attemping to update a profile at the same time will lead to

unexpected results in terms of the profiles that are stored in the network.

However, the integrated model provides the architecture with an approach for deal-

ing with the outcome of this situation: threshold voting. By selecting the most preva-

lent copy of a profile, the architecture already has a mechanism to decide which is the

authoritative profile. Unfortunately, churn and malicious nodes reduce the chance that

any profile will reach a threshold. Rather than burdening the threshold voting mecha-

nism with yet more issues, future research needs to consider either the introduction of

a concurrency mechanism, or seek to avoid the issue altogether. These two options are

discussed further below:

Concurrency Mechanism

Concurrency mechanisms come into two essential types: Optimistic and Pessimistic. Op-

timistic mechanisms assume that a transaction can be progressed until it is time to com-

mit, at which time it can be aborted if anything is wrong. For example, in the GRAFT con-

text, a profile could be updated with a new recommendation. However, pushing this pro-

file back to the network could be aborted if another update transaction was found to be

in progress. Pessimistic mechanisms try to avoid these situations by putting safeguards

in place that prevent undesirable outcomes. For example, in the context of GRAFT, a

pessimistic mechanism would seek to lock a profile before an update was allowed to take

place. As a result, pessimistic mechanisms do not perform as well as optimistic mecha-

nisms.

3.6. INTEGRATION LAYER 61

An optimistic mechanism would be much better suited to GRAFT and not hamper its

performance significantly. However, this does require the addition of an approach that

allows a node to detect an “in progress update” to a profile. This exercise is left for future

research.

Avoiding Concurrency Issues

Reducing the granularity of information within GRAFT from profiles down to individual

recommendations would remove the need for any concurrency mechanism. This is be-

cause each recommendation comes from a unique source, and only that source will ever

update its own recommendations, thus allowing simultaneous writes to the profile. This

is clearly a desirable situation, however the larger problem in this instance would be the

ability to efficiently locate recommendations, and use that information in the construction

of a complete profile. This is also left as future work.

3.6.3 Overlay Network

Every GRAFT node belongs to a single peer-to-peer network implemented using the

Kademlia distributed hash table. Kademlia8 was selected as the Distributed Hash Ta-

ble (DHT) implementation because it is well researched and supported in the scientific

community. In addition, many of the widely deployed overlay networks in use on the

Internet are based on Kademlia [41], and it has proven robust against certain types of

attacks.

The DHT provides GRAFT nodes with the ability to store and retrieve key/value

pairs that are distributed over the nodes in the network. This is used by GRAFT to store

multiple profile replicas, using the OpenID of the entity as the key. The built-in Kademlia

key/value pair replication is not used in GRAFT because sources regularly fetch and

write updates to profiles, obviating the need for additional replication. Figure 3.9 shows

two sources, two providers and two consumers as GRAFT nodes in the DHT. The source

nodes are each the point of origin of a single item of recommendation information within

a profile. Each profile will contain entries from many sources.

3.6.4 Analysis

The integration layer implements the distributed hash table upon which much of the

GRAFT functionality depends. A distributed hash table is a form of overlay network, in

that it is built on top of the TCP/IP network that comprises the Internet. Urdaneta et

al. [309] define three key attacks on overlay networks:

8Further information about Kademlia can be found in Section A.3.1.

62 CHAPTER 3. ARCHITECTURE

SourceSource

Provider Node n

Updates

Consumer

Queries

Consumer

Figure 3.9: DHT Structure. Two sources, two providers and two consumers as GRAFT

nodes in the DHT. The source nodes are each the point of origin of a single item of rec-

ommendation information within a profile.

1. Sybil attack: an attacker creates a large number of nodes in the network, until the

attacker controls a fraction of all nodes. The aim of this attack is the introduction of

malicious nodes into the network.

2. Eclipse attack: an attacker tries to isolate a benign node, such that all messages to

or from this node are routed over a malicious node. The aim in this attack is the

isolation of a node, or series of nodes from the main network.

3. Routing and Storage attacks: where malicious nodes subvert routing protocols and

corrupt stored data. The aim of this stack is the modification of node behaviour and

data in the network.

Sybil attack

In a Sybil attack, an attacker attempts to gain an overly large influence over a peer-to-

peer network by creating many nodes. These nodes are all controlled by the attacker

and can act in unison to modify communications, or make changes to information being

routed over part of the overlay. As a peer-to-peer system is distributed, it is easy to

create many new nodes as there is no centralised control over resources. An attacker can

continue to create nodes until they control some fraction of all nodes in the network [41].

Douceur [96] proved that this attack cannot be prevented, but only limited.

In centralised systems a limit might be placed on new nodes by requiring that they

3.6. INTEGRATION LAYER 63

are “bound” to an individual, or that they pay some kind of monetary fee [41]. For

distributed systems, a number of solutions have been presented that attempt to address

this issue. These solutions can be grouped into a number of classes. The following is

loosely based on the classes presented in [309]:

• Centralised certification: New node identifiers are issued by a central authority.

An application for a new identifier is checked by this authority to ensure that the

requestor has not previously obtained an identifier. This makes the central author-

ity a key target for attacks, but potentially also limits the scalability of the network.

A certification system that uses a secure protocol and authentication between nodes

is discussed by Aiello [28]. Similarly, Singh [290] uses cryptographic identifiers.

• Distributed registration: Similar to centralised certification, this approach attempts

to maintain a number of registers. New nodes register themselves with a register,

which tries to limit the number of nodes that may be registered at a given IP ad-

dress. This approach is limited by the fact that it relies on the DHT itself to maintain

the registers and is therefore open to all of the same attacks.

• Physical network characteristics: Physical network characteristics are assumed to

be difficult to fake, and therefore new node identifiers are based on these charac-

teristics, or the characteristics are measured to try and detect multiple nodes from

the same source. Measuring network characteristics is transparent to the nodes,

however the required infrastructure is itself vulnerable to attack. Assigning a new

identifier based on a node’s IP address is attractive, however this limits every host

to a single node and does not deal with NAT.

• Social networks: Yu et al. [345] propose SybilLimit, an approach that utilises social

networks to provide resilience against Sybil attacks. Lesniewski-Laas [190] pro-

poses a similar approach using one-hop networks (where friends are within a single

hop of each other).

• Computational Puzzles: Nodes must periodically validate their identity using a

computational puzzle, with the goal that completing these puzzles requires signif-

icant computational resources and as such an attacker would have trouble main-

taining their multiple identities. This approach does not work as it assumes a ho-

mogeneity in computing resources. A crypto-puzzle approach, along with multiple

disjoint lookup paths is discussed by Baumgart et al. [41].

• Game Theory: As with the centralised approach, this solution requires nodes to pay

a “monetary fee” to join the network. Aside from the difficulties in implementing

such a solution, a distributed currency would potentially be open to the same issues

as the DHT overlay.

64 CHAPTER 3. ARCHITECTURE

• Reputation: This approach promotes the idea that the reputation information al-

ready held in GRAFT could be used to limit the creation of new nodes. This could

be accomplished by linking the creation of new nodes in Kademlia to an OpenID,

and therefore a profile. Profiles with a greater overall reputation should be able to

create more nodes, and each node should receive a share of the overall reputation

of the creator. In other words, the number of new nodes that can be created should

be proportional to the reputation of the creator. Poor behaviour by any of the nodes

that were created would be reflected back on the creator.

As shown by Douceur [96], this attack cannot be prevented, and as such any solution

selected needs to weigh the costs of its implementation against its potential effectiveness.

For example, as GRAFT’s design goals include scalability, restricting node identifiers to

IP addresses would limit its usefulness on the Internet given the prevalence of NAT and

CGN (Carrier Grade NAT). In a similar vein, introducing centralised certification or reg-

istration services simply limits the ability for the architecture to scale.

Given its use of the Kademlia distributed hash table, GRAFT is currently open to Sybil

attacks. As with many peer-to-peer systems, GRAFT relies on the existence of multiple

nodes and data redundancy to ameliorate the effects of malicious nodes [96, 340].

Future research needs to consider the function and operation of GRAFT. In particular,

using the reputation information available within GRAFT to limit the effectiveness of

attacks needs to be considered. As noted above, it might be possible to use the reputation

of an entity to limit the number of new nodes that it may create. Further, as GRAFT may

have a number of long-lived nodes in the form of the source nodes, adopting an approach

that uses the long-lived nodes to control a form of distributed registration may also work

for GRAFT.

Eclipse attack

In an Eclipse attack, the attacker attempts to control a sufficiently large proportion of

nodes such that any target nodes are “eclipsed”, or cut-off from the rest of the net-

work [103]. In effect, all information to and from the target nodes must transition over an

attacker’s nodes. This attack, also known as route-table poisoning [309], is related to the

Sybil attack, but is possible even in cases where the Sybil attack has been prevented [290].

A number of solutions have been proposed. The following approaches are loosely based

on the solutions presented in [309]:

• Induced churn: Subsets of nodes are assigned new identifiers once per “period”,

making it harder for attackers. This introduces a lot of additional overhead into the

system, and depends heavily on a centralised “randomness” server.

3.6. INTEGRATION LAYER 65

• Region-based routing tables and induced churn: New nodes are assigned identi-

fiers based on consensus, further, all nodes in that “region” of the identifier space

must leave and rejoin with new identifiers.

• Constrained routing tables: Strong constraints are imposed upon a second routing

table that only contains verified information [62].

• Connectivity Auditing: Nodes anonymously audit each other’s connectivity. Nodes

found to have a significantly higher “in-degree” than the average may be mounting

an attack and should thus be avoided by other nodes [290].

Urdaneta et al. [309] discuss how there is no single best approach to securing a DHT,

and note that the exact approach selected to security is best determined by the needs of

the application using the DHT. For example, PlanetLab uses OpenDHT, which because it

does not generally need to be concerned with NATs uses hashed IP addresses for node

identifiers. Similar to the previous section, GRAFT is open to eclipse attacks because of

its use of the Kademlia DHT. Eclipse attacks are often mitigated using replication and

“self-authenticated content” [290]. The solutions presented in the previous section may

help to mitigate some of the effect of eclipse attacks, however further research is required.

Routing and Storage attacks

After the creation of malicious nodes using the sybil attack, and the isolation of target

nodes using an eclipse attack, routing and storage attacks can proceed to damage the

DHT. In routing attacks, the goal is for malicious nodes to disrupt routing in the network

by, for example, failing to forward a lookup request, or forwarding a request incorrectly.

Storage attacks are similar, however the focus is on providing tainted responses, for ex-

ample, a malicious node may pretend to be responsible for a given key when it is not.

According to Urdaneta et al. [309], defences against storage and routing attacks are based

on two approaches:

• Redundant storage: Data replication is used to achieve storage redundancy. Multi-

ple copies of the data are stored in the network, either at locations that are numeri-

cally close to the original key, or spread over the identifier space.

• Redundant routing: Messages to nodes are sent over multiple routes, or sent to

multiple nodes simultaneously.

Unlike the previous sections describing sybil and eclipse attacks, GRAFT is not open

to routing and storage attacks because Kademlia implements some features that are hard

to attack. In particular, the routing table in a Kademlia node is hard to attack as the proto-

col tries to keep only highly available peers in the table [309]. Additionally, node lookup

66 CHAPTER 3. ARCHITECTURE

in Kademlia uses redundant routing, and GRAFT implements a form of redundant stor-

age when storing profiles.

3.7 Interpretation Layer

The interpretation layer supports consumer decision making by ensuring that profiles

have been fetched and verified, and that these are ranked and ordered in a meaningful

way. Although fetching profiles is handled by the integration layer, the verification of

these profiles is handled by the interpretation layer.

Profile verification is accomplished by conducting a threshold vote. Each profile

should have at least p copies in the network. If m of p copies are the same, such that

m ≥ t, where t is the threshold, then we can be confident that the given profile is most

prevalent in the network. The natural value for the threshold is just over 1/2, however

using a higher value such as 2/3 could be used to increase confidence in the result as more

copies must be in agreement.

This layer is typically only implemented by recommendation consumers such as rank-

ing or reporting services, however an interpretation layer may also be used by service

providers to evaluate the reputation of a service consumer. This allows service providers

to avoid some types of denial of service attacks, by avoiding those consumers that have

poor recommendations.

3.7.1 Analysis

Profile Replication

As discussed in Chapter 3, profiles are replicated across the peer-to-peer network. For

each profile, p different hash functions are applied to the OpenID, allowing GRAFT to

store and retrieve p profile copies, but using only a single OpenID as the key. When

fetching a profile, a GRAFT node simply hashes the OpenID in the same p ways, and

is then able to access all of the copies stored in the peer-to-peer network. The selected

hashing algorithms must be able to distribute the keys in a uniform way, and generate

160-bit hash values, as these match the default SHA algorithm used in Kademlia. Given

the random distribution of profiles across the network, there is little chance of duplicity.

However, threshold voting may be used to verify any given profile.

Threshold Voting

It was previously discussed how threshold voting can be used to determine the most

prevalent copy of the profile in the network. The digital signing of recommendations

at the collection layer prevents modifications to the individual recommendations, and

3.8. POLICY BACKBONE 67

threshold voting ensures that attempts to add or remove recommendations are detected.

This is important, for example, as a GP has full access to modify the profiles of any entities

registered with it. As an entity can host their own GP, it has the ability to whitewash its

own profile by removing certain recommendations.

3.8 Policy Backbone

The policy backbone is common to all three layers of the stack and is used to enforce pol-

icy at each of these layers. Policies guide decisions, and help to drive consistent decision

making.

Within the collection layer, the policy backbone enforces how information is collected

from a source. In particular, policies at this level control the frequency of collection up-

dates, the age and granularity of the information collected and stored in a recommen-

dation, and if any summarisation should take place. The policies at this layer are also

responsible for enforcing an entity’s privacy; it is assumed that every entity wishing to

participate has an OpenID and has set a flag that announces their willingness to have

their recommendation information exported from a particular site.

At the integration layer, policy is used to enforce which GRAFT nodes the current

node may connect to. However, policy also enforces the reverse situation, where a GRAFT

node may reject incoming connections. This allows a GRAFT node to avoid those other

GRAFT nodes that are deemed to have a poor reputation.

Within the interpretation layer, policy is used to control profile verification using

threshold voting. The number of profile copies p is determined by a global GRAFT set-

ting, however the number that are actually fetched, and the threshold value t are both

controlled by policies. The number of profile copies fetched is defined as an integer,

while the threshold t is defined as either a ratio or percentage of profiles that must match

in order for a profile to be seen as being correct.

68 CHAPTER 3. ARCHITECTURE

Chapter 4

Case Studies

This chapter examines a number of case studies that explore how the GRAFT framework

might be used. The case studies are organised into three sections: Access Control1, Com-

position and Acquisition2. Each is explained in further detail below.

• Access Control: the process that either allows or denies access to a resource based

on the recommendations held by an access seeker.

• Composition: the process used to compose a higher-level web service from a num-

ber of lower-level services, using the recommendation information for each service.

• Acquisition: the process used by an access seeker to acquire the rights to utilise a

web service.

4.1 Access Control

The Internet has seen significant growth over the past decade [232, 76], and even the

more modest growth rates seen recently [75] point to an increasing number of partici-

pants and usage. Since the advent of Web 2.0, the trend is towards using collaborative

systems to meet, organise, discuss and cooperate. Within an organisation this improves

communications and decision making, and reduces both time and cost [31] as it allows

an organisation to apply the best people to any given situation. Collaborative computing

(hence collaborative systems) encompass “the use of computers to support coordination

1The work in this section is largely taken from the published paper F. Hendrikx, K. Bubendorfer, Mal-
leable access rights to establish and enable scientific collaboration, in: 9th International Conference on
eScience, IEEE, Beijing, China, 2013.

2Some of the work in this section is taken from the published paper F. Hendrikx, K. Bubendorfer, Policy
derived access rights in the social cloud, in: 9th International Conference on eScience, IEEE, Beijing, China,
2013.

69

70 CHAPTER 4. CASE STUDIES

and cooperation of two or more people who attempt to perform a task or solve a problem

together” [31].

As with any computer system, collaborative systems require access control (and au-

diting) to prevent unauthorised access and change. Access control is defined in [275] as

a process that requires “every access to a system and its resources be controlled and that

all and only authorised accesses can take place”. Access control policies can be classified

into four groups: Discretionary, Mandatory, Role-Based [275, 276] and Attribute-Based.

• Discretionary Access Control (DAC) policies restrict access to an object based on

the identity of the current user and a set of rules [276]. These systems typically

assume that all objects have an “owner” [107], and users may reassign their privi-

leges to others [275]. Privileges to an object are assigned to users when they create

an object, and can be changed or revoked by an administrator.

• Mandatory Access Control (MAC) policies restrict access to objects using a global

policy. The policy is centrally controlled by an administrator, and cannot be changed

by the users. Every user and object is given a security classification. Users must

have the same or higher security in order to read an object with a given security

classification [276].

• Role-Based Access Control (RBAC) policies are based on the concept that access to

an object is limited to certain roles that have been defined within an organisation.

The responsibilities and qualifications of any particular user determine the roles

that are assigned to them [275, 107, 276] and hence which objects they may access.

• Attribute-Based Access Control (ABAC) offers an approach that is well suited to

service-oriented environments. In ABAC, all access decisions are based on char-

acteristics of three elements: the requestor, the resource being requested and the

environment [348, 323, 252]. Despite this, it should be noted that there is no widely

accepted model for ABAC and only initial work in that direction [156].

A number of collaborative services are defined by Bafoutsou and Mentzas [31]. This

section will examine and utilise two of those services: Forums (called Bulletin boards in

the original paper) and File and document sharing.

• Forums allow for online discussions and interactions between participants with a

similar interest. The main drive for a forum is the exchange of ideas, whether it be

for problem solving, discussing politics or collaborative work between academics.

All posts to a forum are effectively read-only, with each participant adding new

content to the discussion. Off-topic posts can be ignored, while offensive ones can

simply be removed by a moderator. Forum access controls are often based on a

4.1. ACCESS CONTROL 71

simple RBAC scheme: users acquire a participant role, which allows them to take

part in the forum. A separate administator role is assigned to the forum owner,

who maintains the forum. This user may promote other users by assigning them a

moderator role.

• At its most basic, File and document sharing allows for the simple sharing of files

between users. The users work with the files on their own equipment [31]. At its

most complex, file and document sharing may be implemented using collaborative

authoring system like a wiki. A wiki is an “interactive website” that allows users

to view and edit their document content as pages [254]. All pages in a wiki are

theoretically editable by any authenticated user [181]. All changes to a document

build upon previous changes, allowing users to rapidly increase and enhance their

content. Wiki access controls are usually based on a simple RBAC scheme, similar

to forums: users acquire a participant role, which allows them to edit pages in the

wiki. A separate administator role is assigned to the wiki maintainers.

There are a number of issues that may be identified in these collaborative systems,

whether they use DAC, MAC, RBAC or ABAC access control policies. Some of these

issues are:

• Costly role analysis and definition. RBAC requires a costly initial phase to identify

and define an appropriate set of roles [310]. The definition of roles and permissions

can sometimes lead to what has been called “role explosion” [185].

• Maintenance of users, objects, roles and attributes. DAC, MAC, RBAC and ABAC

all require regular and ongoing maintenance of users, objects, roles and attributes.

• Low level of flexibility. DAC policies typically implement only a coarse level of

access to objects, restricting what is possible. RBAC systems are slow to adapt

in fast changing environments, and may not support policies that have dynamic

components such as the time of day [185].

• Tight coupling of access control to systems. Access control is often hard-coded

into systems, limiting both their flexibility and extensibility.

• Standardisation. In order to be useful, access control models must be well un-

derstood and standardised. Although implementations and standards do exist for

ABAC, it has been argued that there is no consensus on what features ABAC should

have and what the model should look like [156].

As discussed, these approaches all require ongoing administration and maintenance.

In the case of RBAC, a costly initial analysis is required when starting with a new system,

72 CHAPTER 4. CASE STUDIES

while DAC and MAC both offer limited flexibility to their organisations. Further, tight

coupling of access control to systems limits their overall flexibility and extensibility.

In this section the case studies propose a new approach based on the user’s demo-

graphics and behaviour, rather than simply their identity. Information derived from an

entity’s attributes and past actions are utilised by access control policies for decision mak-

ing. At the simplest level, a user’s rating from one website can be used at another, while

a more complex case study involves obtaining information about a user from multiple

sources and combining these. Since the information about the users is automatically de-

rived from one or more sources external to the consumer, any changes to the user at these

sources is made available to the consumer and reflected in the access control decisions

that are made. This obviates the need for regular maintenance.

4.1.1 Forum

Web-based forums are a standard way for interest groups to communicate and exchange

information on the Internet. In most cases, the forums are broken into multiple sub-

forums, each with a number of discussions called threads. A thread may contain a num-

ber of messages in response to the initial message which started the thread.

A common feature present in many web-based forums is the ability to “vote up”

a given message. A vote may increase the visibility of the message, or confer additional

“karma” on the author of the message. A good example of this approach is SlashDot [13],

where authors strive to maintain “good karma”, by posting insightful or meaningful mes-

sages in the threads. In those instances where additional karma is conferred on the au-

thor, the amount of karma, or karma score, held by that author may, for example, give

his or her new messages a higher default visibility, or grant the author additional rights

within the forum. The latter approach is used within Stackoverflow [14], where users

obtain further privileges as they gain reputation. Examples of additional rights include

the ability to comment on postings, or the ability to vote on the relevancy of postings.

In this case study, the GRAFT framework re-implements the karma feature found in

many forums. GRAFT is used to capture recommendation information from a web-based

source forum, and make it available to a web-based consumer forum. In the simplest im-

plementation, a single forum could be both the source and consumer of the recommen-

dation information. However, in this case study it is considered from the perspective of

two separate forums, with the consumer forum using GRAFT to store and bootstrap its

karma scores. The goals of the case study are twofold: show how GRAFT can automate

the maintenance of user profiles and access control policies, and how it can be used to

implement existing features such as the karma scores used on SlashDot.

In the source forum, participants use a local pseudonym, but are authenticated using

their OpenID. Assuming they have opted into using GRAFT, the collection layer is able

4.1. ACCESS CONTROL 73

Source

Provider

Forum

Updates

Consumer

Queries

Forum

...

Node 0

Node n

Figure 4.1: GRAFT enabled Forums. Recommendation information flows from the source

forum to both the GP and the network.

to obtain their current karma score from the local database, and export this information

to GRAFT. As shown in Figure 4.1, recommendation information flows from the source

forum to both the GP and the network.

At a more detailed level, the source is able to map the local pseudonym to an OpenID,

either because an OpenID was used for authentication, or because a mapping was pro-

vided by the user. The source uses the OpenID to retrieve the profile for the participant

from GRAFT. The source then updates the profile to include a recommendation from it-

self. This recommendation contains the karma score of the participant, and the context

for the source forum. The modified profile is then pushed back into the network.

Upon authentication of a participant, the consumer forum will be able to use either

the lightweight model to receive a profile, or the integrated model to receive a verified

profile. Assuming it was able to receive a profile, it will then search for a recommenda-

tion that has its own OpenID as the key. Recommendations are found within a profile

using a unique key, which is always the OpenID of the source. In the case of a new par-

ticipant it will be unable to find this recommendation, and may therefore choose to look

for another recommendation, but in the same context as itself. This last feature allows a

new participant to bootstrap their karma score at the consumer forum from the source

forum, assuming they share the same context and that the consumer forum is willing to

74 CHAPTER 4. CASE STUDIES

trust the source of the recommendation. The consumer forum could determine this by

examining the profile of the source forum.

Policy

The policies in the consumer forum grant additional access rights to participants based

on their recommendations. As described earlier, the karma rating stored within an ap-

propriate recommendation could be used by the consumer forum to grant access to a

feature, but only if it exceeds a given threshold.

r ≥ t (4.1)

Equation 4.1 describes this threshold relationship. If the rating r exceeds threshold t, then

access will be granted to the feature or resource.

4.1.2 Wiki

The current situation faced by scientists is one in which they are required by funding

bodies and the changes to endemic scientific practice to share and preserve their data.

Kaye et al. [173] state that “Funding bodies have recently introduced a requirement that

data sharing must be a consideration of all funding applications in genomics. As with all

new developments this condition has had an impact on scientific practice, particularly in

the area of publishing and in the conduct of research”.

Tenopir et al. [302], carry out a survey of 1329 scientists across a wide range of sci-

ences and institutions, including, medicine, biology, environmental sciences etc., and

concluded that “Barriers to effective data sharing and preservation are deeply rooted in

the practices and culture of the research process as well as the researchers themselves”.

The authors also state that most researchers “agree they are willing to share their data” if

“certain conditions are met”. Significantly, scientists report “insufficient time and lack of

funding” [302] as barriers to scientific data sharing and preservation.

The goal of this case study is to simplify the management of access control to a set

of resources, with a particular focus on the ease of sharing in an academic context. In

a traditional approach, explicit access control policies for a given resource and a set of

users are written, and are then maintained by adding and removing users as, for example,

relationships or employment situations change.

The approach advocated in this case study allows for the writing of a policy that

adapts to these changes in the environment. In particular, user eligibility changes over

time, but these changes are captured automatically. Figure 4.2 illustrates how the GRAFT

framework is used to capture recommendation information from two different academic

4.1. ACCESS CONTROL 75

Source

Provider

Updates

Consumer

Queries

Wiki

Node 0

Node n

Ranking
Source

Source

Bibliographic
Source

Figure 4.2: GRAFT enabled Wiki. This figure illustrates how the GRAFT framework is

used to capture recommendation information from two different academic sources: a

bibliographic source and a ranking source.

sources: a bibliographic source and a ranking source. These sources and the information

obtained from each is described below:

• The bibliographic source provides information about academic papers and their

authors. In particular, this source can be used to derive information about co-author

relationships. This allows the creation of chains of co-authors, such that it is possi-

ble to determine co-authorship relationships separated by several degrees. This is

called “degrees of co-authorship”, and can be expressed as a number, such that the

first degree represents all the authors a target author has worked with, while the

second degree is all the authors that the 1st degree authors have worked with, and

so on.

• The ranking source provides information about the academic standing of authors.

An academic rating based on the number of papers and citations for a given author

is provided by this source. A metric that is often used in this space is the Hirsch

Index (H-index) [142]. The H-index value is computed from the number of publi-

cations and citations per publication for an author. It is worth noting that H-index

values are not consistent across disciplines [142] and as such the examples given

76 CHAPTER 4. CASE STUDIES

below use only relative values.

The information that each source provides can be used to complement the other, and

together they provide a more complete picture of a target author. In this case study, the

type of access control made possible by these two sources utilises a two-tier approach,

where access to a given wiki page is controlled by the degrees of co-authorship relation-

ship to the page owner, and subsequent editorial rights to the page are controlled by the

academic standing of the access seeker. For example, a wiki page created by Alice may

have a policy attached that states that her co-authors (1st degree) have access, and that

those with a medium academic rating may have the ability to comment, while those with

a good academic rating may have edit access. If Bob publishes a paper with Alice, then

he automatically gets access to the wiki page, and his academic rating controls the level

of editorial access that he has within the page. If Bob is a junior researcher, then he may

get read-only access, while a more seasoned researcher gets the ability to comment and

those producing influential works are given edit access.

Policy

The policies in the wiki grant access rights to participants based on their academic mem-

berships and standing.

x ∈ S (4.2)

Equation 4.2 describes a policy that uses set membership to control access to a resource.

If an entity x is in set S, then access will be granted. In this case study, S represents a

“degree of co-authorship” to the page owner to which an access seeker must belong in

order to be granted access to a particular wiki page.

(x ∈ S) ∧ (r ≥ t) (4.3)

Building on the previous policy, Equation 4.3 combines both set membership and a thresh-

old check. If the entity x in question belongs to set S, and their academic rating r exceeds

threshold t, then access will be granted. In this case study, S represents a “degree of

co-authorship” to the page owner to which an access seeker must belong in order to be

granted access, while t represents a threshold that controls a particular editorial right

the access seeker is able to obtain. The thresholds, and the features made available by

reaching each one are specific to each site.

4.2. COMPOSITION 77

4.2 Composition

Service Oriented Architecture (SOA) is an approach that utilises software services as

“fundamental elements for developing applications/solutions” [240]. Services are im-

plemented using standard protocols [347, 66] and can represent any level of functionality,

from simple request/response through to complex processes [240].

Web services are an implementation of SOA that utilise XML-based standards [353]

to deliver services that are loosely coupled, interoperable [240, 363, 361] and location in-

dependent [240]. The wide availability of standardised web services makes it possible to

build new functionality by composing multiple web services together [353]. The ability to

compose new functionality by combining existing web services from different providers

is a key concept in service-oriented computing [240, 308]. However, there is some com-

plexity in the composition of web services, in part due to the large number of offerings

available [255].

In this section, GRAFT is utilised in the composition of services. In the first instance,

GRAFT provides recommendations to a composing service. These recommendations al-

low the service to determine the best possible service to select in each instance where

there are multiple choices. In the second instance, GRAFT is utilised to provide recom-

mendations for sources of information, and for selecting services from multiple choices.

4.2.1 Travel Planner Service

Consider a “Travel Planner”, based on that given in Zeng et al. [353]. In this example

a composite travel planning web service is created from the aggregation of a number of

specialised services: flight booking, hotel booking, attraction search, driving-time calcu-

lation, bike rental and car rental, see Figure 4.3 for an overview.

Flight

Booking

Service

Hotel

Booking

Service

Attraction

Search

Service

Local

Transport

Service

Composing

Service

Train

Booking

Service

Can Rental

Service

Bike Rental

Service

GRAFT

Figure 4.3: An example of Web Services Composition for a Travel Planner.

In a typical Travel Planner interaction, a client submits their travel request and their

78 CHAPTER 4. CASE STUDIES

personal search criteria (e.g. cost vs time, day of travel, etc.) to a selected Composing ser-

vice, which in turn submits the various aspects of the user’s request to the encapsulated

services. However, some of these services may have alternatives or substitutes available

from different providers. The number of alternatives available for a given service may

be large and constantly changing [352]. Therefore, when composing the new service,

the question arises: which instances of these specialised services should be used in the

new service? Both the client’s search criteria and the requirements of the composing ser-

vice can impact the choice of encapsulated service, in which case, such selections need

to be made dynamically. The criteria of the composing service may include: price, rep-

utation and quality of service (QoS) parameters such as availability and reliability [353].

The exact balance of these QoS parameters and the client’s criteria are determined by the

composing service.

Figure 4.4 illustrates how GRAFT is used as a clearinghouse of recommendation in-

formation for use in the ranking of, and reporting on, the components of the composing

travel service. The composing service queries a ranking service for the services it needs

to fulfil the client’s request and supplies its own ranking preferences with the client’s

criteria as a modifier. The ranking service, in turn, encapsulates a discovery service that

returns matching candidate services and then ranks them by obtaining the GRAFT profile

for each returned match. The ranked set of profiles are then returned to the composing

service which makes the final selection. Multiple ranked services are returned, as po-

tentially some services may be unavailable or semantically incompatible [208]. Once the

encapsulated services are selected by the composing service, the client’s query is pro-

cessed and the performance of the encapsulated services are reported back to GRAFT via

a reporting service.

A similar sequence of events may occur at different levels, such as, the client initially

selecting the travel planner, the ranking service selecting the discovery service, and so

on.

4.2.2 Meteorological Workflow

Linked Environments for Atmospheric Discovery (LEAD), Gannon et al. [117], is an ideal

scenario in which to consider how a recommendation mechanism such as GRAFT might

be integrated into a workflow. To clearly distinguish LEAD from the speculative exten-

sion described in this section, it will be referred to as GRAFT Enabled LEAD (GE-LEAD).

LEAD is a project that focuses on the capture, storage, analysis and visualisation of atmo-

spheric data, with the goal of increasing the accuracy and timeliness of predictions related

to hurricanes and tornadoes. Weather prediction is traditionally broken into four phases:

data collection, data assimilation, prediction and generation of visualisations. LEAD’s

approach to this problem is to introduce flexibility into each of these four phases. In

4.2. COMPOSITION 79

Composing

Service

Composing

Service

Rating

Service

Rating

Service

Composing

Service

Web

Service

Reporting

Service

1. Web service

profiles obtained

2. Web service chosen

and utilised

3. Reporting service chosen

and rating provided

4. Web service

profile updated

GRAFT

1:n

1:n

n:n

Rating

Service

Rating

Service

Ranking

Service

n:n

Figure 4.4: Web Services Selection; GRAFT is used as a clearinghouse for service recom-

mendations.

particular, LEAD utilises a portal that allows users to create, manage, and monitor work-

flows as they are executed. The high level relationship between LEAD and GE-LEAD is

illustrated in Figure 4.5.

Data
Collection

Data
Assimilation

Prediction
Workflows

Visualisation

Service
Pre-processor

Service Service
Analysis
Service Service

Forecast
Service

Doppler data
from Radar

Geostationary
Satellites

Balloon-borne
Instruments

Aviation
Weather Reports

Forecast Model
data

GRAFT BGRAFT A

Figure 4.5: A simplified example of Web services composition in the LEAD [117] work-

flow engine augmented with the decision points at which GRAFT recommendations are

applied in GE-LEAD.

LEAD is built using Service Oriented Architecture, with web services organised into

a three tier model. The first tier represents basic services such as authentication. The

second tier provides data management and workflow execution, while the final tier rep-

resents applications “wrapped” as web services so that they can be utilised by LEAD.

LEAD employs a Resource Catalogue that describes available services and their param-

eters. These descriptions are referenced by the workflow composer and allow scientists

to compose new workflows based on the service descriptions. A key feature of work-

80 CHAPTER 4. CASE STUDIES

flows in LEAD is that they may be modified by external events. In particular, new data

may start a workflow, or change the execution of an already in-progress workflow. It

is this feature that is extended in GE-LEAD, in particular there are two opportunities

within LEAD for the application of GRAFT recommendations. Firstly, in the selection of

the workflow (which occurs prior to workflow execution, see GRAFT A, Figure 4.5) and

secondly during composition of workflow services (which occurs dynamically during

execution, see GRAFT B, Figure 4.5).

Dynamic Workflow Selection

In the case of dynamic workflow selection (GRAFT A), GRAFT provides recommenda-

tion information about data sources. For example, when the GE-LEAD workflow engine

receives notification of a new data input, it would first query a ranking service for a rec-

ommendation on the expected quality of the source of the data. Depending on the result,

the GE-LEAD workflow engine can process each data source differently. In the case of

high quality data, a workflow with no cleansing component can be executed. Where the

data is of lower quality, a workflow with a rigorous cleanser may be chosen. In the case of

poor quality data sources, GE-LEAD might choose to await a corroborating data source.

In the extreme case of a malfunctioning data source, the data may be discarded. The

rankings formulated by the ranking service from the GRAFT data can include contextual

aspects such as institution, hardware specification, location and QoS (Quality of Service)

measures on past performance.

Dynamic Service Selection

In the case of dynamic service selection (GRAFT B), GRAFT provides recommendation

information about web services to the workflow engine. A scientist building a work-

flow can utilise the recommendations in the initial composition of a workflow, or the

recommendations can be used dynamically by the workflow engine, to select appropri-

ate (possibly alternative) services at execution time.

Consider a meteorologist at the U.S. National Weather Service (NWS). In creating an

initial workflow, she may exhibit a preference for services created or used by immediate

colleagues and collaborators, or those from other well known institutions. In addition,

she may also only select services for which she has been previously given credentials, and

those credentials must still be valid at execution time. In the case of alternative services

which may be substituted at runtime when the preferred service is not available, she

may well wish to apply a ranking that encodes her implicit trust model and experience.

This can be set out in a policy and embedded into the GE-LEAD workflow for reference

during execution.

4.3. ACQUISITION 81

For example, such a set of policies are shown in Equation 4.4, where her first pref-

erence is for services from her organisation, followed by those by co-authors and their

immediate co-authors (degree of separation of 2) and then by established researchers at

top ranked universities (using the Hirsch index [142]). In this sample, m is the member

and c is the country. S represents a “degree of co-authorship” to the scientist, while T is

the set of top ranked universities. r is the H-index value that must exceed 20.

((m = ’NWS’) ∧ (c = ’US’)) ∨ ((x ∈ S) ∨ ((x ∈ T) ∧ (r ≥ 20))) (4.4)

Once the workflow engine has made the selection, the execution of the workflow contin-

ues. The workflow engine later makes a report on the performance of the selected service

to the reporting service. This can be done immediately after the service has been used, or

towards the end of the workflow as this reporting is not time critical.

4.3 Acquisition

The acquisition of web services components is an important consideration in the utili-

sation of web services. In particular, as web services become more ubiquitous, access

control becomes an important issue that must be addressed [336]. As web services are by

their nature distributed, any approach to this problem must be automated and scalable.

There are two phases in the construction of a composite web service or workflow. The

first is the selection of web services that will make up the final composite entity, while

the second is the acquisition of those web services, that is, the demonstration of the right

to access and use those services.

Access to a service could be controlled by authentication, however using recommen-

dations allows a service to be more flexible and descriptive as to who may utilise the ser-

vice. Attributes of the access seeker such as organisation, location and prior behaviour

are useful in the aquisition phase.

4.3.1 Travel Planner Service

In the Travel Planner presented in Section 4.2.1, multiple web services are composed into

a single web service without reflecting on their actual acquisition. A point to note is

that the acquisition decision flows in the opposite direction to the composition decision.

In the composition decision, the composer, using recommendations determined which

services to use to satisfy a client’s request. In the acquisition decision, the selected service

determines if the client or the composer is permitted to use the service.

Considering what it would mean to exclude or limit access to services in the travel

planner and why it might be useful to limit access, even if the encapsulated service in

82 CHAPTER 4. CASE STUDIES

question was free and public. If the Travel Planner repeatedly sent malformed requests,

or overloaded this or other services with impulse loading (which makes it difficult for the

service to manage its own resource requirements) then the service might wish to reject the

travel planner’s requests. In this situation the service itself can request a GRAFT profile

for the travel planner to determine if access should be granted. Only once the service

has granted access is it possible to say that the service has been acquired by the Travel

Planner.

If services are pay-per-use or account based, financial criteria should also be consid-

ered, such as credit rating, past payment performance etc. There may also be wider access

control considerations, for example, some services may require some form of credential,

even if there is no payment. For example, in the travel planner example, access to a flight

booking service may only be open to registered travel agents, or made unavailable to

direct or co-located competitors.

4.3.2 Meteorological Workflow

In the LEAD workflow scenario described earlier, access to the services that make up a

workflow are assumed to be either open, or restricted using OGSA-DAI authentication.

As an alternative, it is now worth considering the application of GRAFT malleable access

rights [136] in the acquisition phase of the LEAD workflow (applied during GRAFT(b),

Figure 4.5). GRAFT malleable access rights permit more flexible and richer access policies

to be defined in a GE-LEAD scenario. In addition they are not only easier for a provider

of a service (in this case most often a professional scientist, not a software developer)

to maintain, as they do not require exhaustive lists of access permissions, but rather en-

courage a more natural, or perhaps humanistic, set of descriptive access principles to be

defined.

Returning to the example of the meteorologist at the National Weather Service. She

wishes to use a new forecast service in her workflow, unfortunately the service is only

available at Indiana University where the prototype was developed and she is not known

to the author. The author of the service, is not yet ready to make it public, as it is critical

to his own research and not provisioned for large scale use. At present the meteorolo-

gist’s only recourse would be to approach the author of the service and request explicit

permission to use the service. This would involve considerable overhead in the creation

of new credentials and the consequent time delay incurred during this process.

Consider instead, the same situation with GRAFT, in which the author of the service

has defined a set of access policies that will permit fellow researchers to experiment with

the new forecasting service, while retaining significant control over access. One way to

limit access would be for our author to only give access to collaborators and recognised

researchers at top institutions, as these are the people that he is most interested in ob-

4.3. ACQUISITION 83

taining feedback and data from. The approach taken earlier in this chapter was to utilise

degrees of co-authorship or H-index measures to determine the set of collaborators.

4.3.3 Social Cloud

The Social Cloud [68] is another scenario in which GRAFT can be used for service acqui-

sition. The Social Cloud endeavours to utilise Social Networking for the construction of a

distributed resource sharing infrastructures. Social networks have seen massive change

and growth since the launch of SixDegrees [48], for example, Facebook now has over 1.1

billion users3, with 50% of social network users checking their pages 3 times a day or

more [86].

Boyd [48] provides a number of definitions for social networks, including that social

networks allow users to articulate a list of other users with whom they share a connection. This

feature of social networks is leveraged by Social Clouds to allow the sharing of resources.

In particular, the Social Cloud uses existing relationships established in social networks

to control sharing of resources. Although controlling access via social constructs, such

as “circles”, is a trivial task when the number of friends is small, it quickly becomes

problematic as the number of friends increases. Indeed, studies have shown that the

mean number of friends exceeds 240 people [320].

One approach to this problem is to enhance the friend relationship data that is held

in the social network with additional metadata. This approach has been called a socio-

technical adapter [64], and can be provided by GRAFT to help enrich the friendship data

held in social networks.

The simplest form of a Social Cloud is a photo storage service [69], if this were ex-

tended to permit sharing of photos amongst friends, then an access policy in which fam-

ily and close friends are given access to photos is shown in Equation 4.5. Close friends are

defined in this policy as those with a direct friendship relationship (no friends of friends)

who have regularly kept in touch (more than 100 interactions). Work colleagues (presum-

ably also excluding the employer) are explicitly excluded. This policy is determined (as

in the other examples) by the owner of the photos. In this sample policy, F represents the

set of family members, while R represents the “degree of friendship” relationship and W

the set of co-workers.

(x ∈ F) ∨ ((x ∈ R) ∧ ((i ≥ 100) ∧ (x /∈W))) (4.5)

In a Social Compute Cloud [51], the requirements are very different, and indeed more

closely align with the policies presented in the LEAD case study in Section 4.2.2. When

considering technical services, such as compute, users are more likely to prefer to provide

3https://newsroom.fb.com/Key-Facts - last accessed November 2013.

https://newsroom.fb.com/Key-Facts

84 CHAPTER 4. CASE STUDIES

resources to colleagues and collaborators. However, a close relationship with the resource

requestor is not required, it is sufficient to develop a loose metric for competence to avoid

misuse.

(x ∈ C) ∧ (x ∈ S) (4.6)

Equation 4.6 presents one such example, from the point of view of a researcher in Com-

puter Science. In this example the Computer Scientist prefers to grant access to fellow

computer scientists, whom she feels are more likely to be reliable, but places a limitation

on social distance by requiring a maximum degree of separation based on co-authorship

(so that social pressure can still be realistically applied in a case of misuse). In this sample,

C represents the community, while S represents the “degree of co-authorship”.

Chapter 5

Implementation

This chapter discusses the prototype implementation of the GRAFT framework, includ-

ing implementations of the forum, wiki and workflow case studies presented in Chap-

ter 4. The prototype implements two GRAFT providers (GP), a number of generic nodes,

and a series of source and consumer nodes as appropriate for each case study. The nodes

in the prototype are spread equally across two hosts. The prototype implements the inte-

grated approach for profile retrieval, allowing recommendation consumers two ways to

access profiles.

Node 0

Provider

Node n

Application

Provider

...

...

API API

APIAPI

OpenIDOpenID

Application

OpenRepOpenRep

Figure 5.1: GRAFT Prototype Framework. The key components in the prototype, includ-

ing the providers and the nodes, are shown in this figure.

Figure 5.1 illustrates the key components in the prototype, including the providers

85

86 CHAPTER 5. IMPLEMENTATION

and the nodes. The underlying Kademlia network is implemented using the Python

Entangled library1. This library implements a fully functional Kademlia-based DHT.

• The providers are based on SimpleID2 which implements a complete OpenID provider

in PHP. This package has been extended with OpenRep support3, including the

ability to maintain a single profile per registered entity.

• The nodes in the network were authored in the assumption that source and con-

sumer applications will not have full GRAFT integration, or that they are written in

a language other than Python. To this end, each node implements a TCP API that

allows it to communicate with their respective source or consumer applications and

query or update profiles. In an ideal scenario, a library would be available for all

popular languages, allowing the application to participate in the network directly.

5.1 Forum

A standard feature of many web based forums is the ability for participants to confer

“karma” on authors of particularly relevant messages by “up voting” those messages.

This karma is summed and the resulting karma score can then be used to obtain ad-

ditional rights or privileges within the forum. A good example of this approach is the

technology forum SlashDot [13], where authors with good karma obtain better default

visibility for their messages.

This section discusses the implementation of a consumer forum that utilises GRAFT

to implement karma scores. This implementation is in fact a re-implementation of the

karma feature found on many forums, and is based on the Web-based forum case study

discussed in Section 4.1.1. As in the case study, there is both a source and a consumer

forum, with GRAFT acting as the intermediary between the two.

Recommendation information, in the form of karma scores is generated in the source

forum as a component of normal use. The source node makes this information available

in GRAFT so that it can subsequently be used in the consumer forum. Participants in the

consumer forum can use the recommendation information to bootstrap their karma score

at the consumer forum when they are newly registered users, or use it to augment their

karma score if they are existing users.

Figure 5.2 demonstrates the architecture of this two forum implementation. It should

be noted that this figure illustrates only the key information flows. All users are regis-

tered at one of the two providers, and use their OpenIDs to authenticate to the source

1http://entangled.sourceforge.net/ - last accessed October 2014.
2http://simpleid.sourceforge.net/ - last accessed October 2014.
3OpenRep is further discussed in Section A.2

http://entangled.sourceforge.net/
http://simpleid.sourceforge.net/

5.1. FORUM 87

Source

Provider

Drupal

Updates

Consumer/
Source

Queries

Drupal

...

Node 0

Node n

Updates

Figure 5.2: GRAFT enabled Drupal Forums. Recommendation information, in the form

of karma scores is generated in the source forum as a component of normal use. The

source node makes this information available in GRAFT so that it can subsequently be

used in the consumer forum.

and consumer forums. Both of the forums are instances of the Drupal4 framework. This

framework was selected for this implementation as it comes with integrated OpenID

authentication, and allows for the installation of additional functionality in the form of

modules. In this instance the forum, userpoints and userpoints karma modules were also

installed. Together, these modules add a highly configurable forum, with user karma

functionality, to the base Drupal installation. The two Drupal instances and their respec-

tive MySQL databases are installed on separate hosts. The source and consumer nodes

are implemented in PHP, as this allows for integration with Drupal, and have read/write

access to the underlying Drupal databases.

5.1.1 Source Node

In this implementation the source node implements only limited functionality: the export

of recommendation information from the source forum. It is a genuine source-only node,

in that it does not use profiles for its own purposes. The source node is integrated directly

with the Drupal database, and regularly exports every user’s karma score. For every

4http://drupal.org/ - last accessed October 2014.

http://drupal.org/

88 CHAPTER 5. IMPLEMENTATION

user, a single SQL JOIN query combines the user’s details with their karma score. This

information is used to generate a recommendation from itself (that is, the source forum).

Using the user’s OpenID, the source node is able to fetch the user’s profile from GRAFT,

amend the profile with the new recommendation, and finally push the profile back to

GRAFT5. For this prototype implementation, a relatively short delay of 60 minutes was

set between update cycles.

5.1.2 Consumer/Source Node

The consumer/source node is so named because in this instance it both consumes rec-

ommendation information from another source, and because it is the source for recom-

mendations about its users. The consumer/source node is integrated directly into Dru-

pal. Upon user authentication to the forum, the node fetches a profile for the user from

GRAFT. There are two possible scenarios at this point: either this is a returning user, or

this is a new user. If the user is a returning user, then the node will be able to find a

recommendation from itself, and this is subsequently used to establish the user’s karma

score. If the user is new to the forum, then the profile will not contain a recommenda-

tion with itself as the source, and instead it searches for a recommendation from another

source that has the same context as itself. This value can be used as the karma score for

the user in the consumer forum if it trusts the source of the recommendation. This trust

could be established by examining the profile of the source, although that step has not

been implemented for the consumer node.

In using the karma score from the source node, the consumer node may apply a

weighting. If the level of trust it places on the source forum is high, then it may put

additional weighting on the karma score, and conversely, if the trust is low then a lower

weighting is appropriate. In this instance the weighting was set to 0.8 (high level of trust)

as trust evaluation was not implemented.

Finally, upon logout, or at a regular interval, the consumer node will generate a rec-

ommendation (with itself as the source) that will be placed in the user’s profile. This

recommendation will be present in the profile the next time the user authenticates to the

consumer forum.

5.1.3 Policy

On the consumer forum, policy is enforced using Ruler6, a stateless rules engine for PHP.

The following equations describe two common situations in the forum. In Equation 5.1,

read access is restricted to a given sub-forum or thread, based on the user’s karma score

5A sample profile can be found in Section D.1
6https://github.com/bobthecow/Ruler - last accessed October 2014.

https://github.com/bobthecow/Ruler

5.2. WIKI 89

and administrative status.

(rating ≤ 10) ∨ (administrator = false) (5.1)

In a similar fashion, Equation 5.2 is used to grant the moderator role to users that exceed

a karma score of 100, and are not in the “administrator chat” sub-forum.

(rating ≥ 100) ∧ (forum 6= “administrator chat”) (5.2)

5.2 Wiki

In a survey carried out by Tenopir et al. [302], scientists were “willing to share their data”,

however a lack of time and funding was an impediement for many. Access control is an

important component of data sharing, traditionally requiring the ongoing maintenance

of access control policies and user lists. This maintenance can become particularly time-

consuming as the number of users grows.

This section discusses the implementation of a wiki that leverages GRAFT to simplify

the management of access control. In particular, an access control policy is authored

once, with regular updates from GRAFT obviating the need to maintain user lists. This

implementation is based on the Wiki first introduced in Section 4.1.2. Similarly to the case

study, two academic sources provide the recommendations used to drive access control

in the wiki.

Figure 5.3 illustrates the architecture of this implementation. There are two sources

of recommendation information, and a single consumer in the form of a wiki. The two

sources are the co-authorship relationship and academic ranking sources. The Wiki is an

instance of the highly flexible PmWiki7 application written in PHP. The GRAFT consumer

node is integrated directly into the Wiki.

5.2.1 Source Nodes

This implementation uses two recommendation sources: a bibliographic source and a

ranking source. Both of these sources are source-only nodes, as the nodes do not consume

the profiles, other than in the creation of recommendations that are subsequently placed

into the profiles. Both sources are described below.

Bibliographic Source

This recommendation source provides information about academic papers and their au-

thors. In particular, this source is used to generate “degrees of co-authorship” as this

7http://www.pmwiki.org/ - last accessed October 2014.

http://www.pmwiki.org/

90 CHAPTER 5. IMPLEMENTATION

Source

Provider

Updates

Consumer

Queries

PmWiki

Node 0

Node n

MAS

Source

DBLP

Figure 5.3: GRAFT enabled PmWiki. Two sources of recommendation information feed a

single consumer in the form of a wiki. The two sources are the co-authorship relationship

and academic ranking sources.

information is not readily fetchable from the Internet.

DBLP8 was selected for this implementation as its main database is published un-

der the Open Data Commons Attribution License (ODC-BY 1.0)9, and is available for

download in XML format10. DBLP provides an online bibliography of a large number of

computer science journals and conferences. The information it makes available for each

published item includes a list of the authors, which can be used to construct the degrees

of co-authorship relationships described in the original case study.

The downloaded bibliographic database was converted from XML and written to a

PostgreSQL database. This database provides the source with the ability to query the

publications belonging to a given author, and from each of the results extract the co-

authors. This provides a first degree relationship. The second degree relationship, co-

authors of co-authors, is subsequently extracted by querying each of the co-authors, and

so forth. It should be noted that the prototype implementation does not differentiate

between two authors with the exact same name.

8http://www.dblp.org/ - last accessed October 2014.
9http://opendatacommons.org/licenses/by/summary/ - last accessed October 2014.

10http://dblp.uni-trier.de/xml/ - last accessed October 2014.

http://www.dblp.org/
http://opendatacommons.org/licenses/by/summary/
http://dblp.uni-trier.de/xml/

5.2. WIKI 91

As with other GRAFT sources, this source puts its degrees of co-authorship informa-

tion directly into the relevant profiles. A key difference in this instance though is the fact

that co-authorship information is more verbose than simple integer ratings, as it consists

of lists of OpenIDs for each “degree”. This information is stored in a hash of arrays in

JSON format and compressed in order to bring the size down.

As the OpenIDs for all possible authors were not known, the source created dummy

OpenIDs to represent most authors, while key authors were replaced with valid OpenIDs

so that they could be resolved to profiles.

Ranking Source

This recommendation source provides ranking information for academic authors. As in

the original case study, the Hirsch Index (H-index) metric was used as a rating value. This

value cannot be fetched for every potential author because not every author has a profile

on an academic website, but also because some search engines block robots. Instead, it is

computed from an academic source by examining all the articles, and the number of cites

that each article has.

In this implementation, Microsoft Academic Search (MAS)11 was used as the aca-

demic source, because it provides a well-documented and usable API to registered users.

The API returns results to the requestor in either JSON or SOAP formats. JSON was

used in this instance as this is consistent with the approach taken in other parts of the

implementation.

A random selection of authors was used to “seed” the ranking source. For each of the

authors, the source needs to know the author’s name, and a mapping to their OpenID.

The source queries MAS for their publications, with the results sorted by citation count.

As each result page is limited to 100 results, pages are fetched from MAS on a page-by-

page basis until there are no further results. The H-index value is then computed. As

with other sources, the profile for each author is fetched, updated and pushed back into

the network. There is an underlying assumption in this implementation that H-index

values are best computed non-interactively. This needs to be experimentally confirmed.

5.2.2 Consumer Node

The consumer node in this implementation is a genuine consumer-only node, as the wiki

does not maintain its own karma or rating scores. The consumer node is integrated into

the PmWiki application as a separate module that is included for every page load. Im-

mediately after login, the user’s profile is fetched, analysed and the ranking score stored

with other session variables such as username in the session cookie. The degrees of co-

11http://academic.research.microsoft.com/ - last accessed October 2014.

http://academic.research.microsoft.com/

92 CHAPTER 5. IMPLEMENTATION

authorship information (in JSON format) was deemed too large to store this way and

was written to disk. In order to speed up testing, all degree values that were requested

during policy evaluation were cached. This ensured that later requests using the same

two authors were faster in second and subsequent runs.

Access to each wiki page is controlled by two-tier policy that first examines the co-

authorship degree between the page creator and the current user. If the two users are

within the number of degrees specified by the policy, then the second tier is used to

compute the level of access the user may have to the page. In this case study, users could

obtain read, write and moderator access to a page based on their H-index. Similarly to

Stackoverflow, the levels were set to 1 (read), 20 (write), and 50 (moderator) respectively.

5.2.3 Policy

On the consumer wiki, policy is again enforced using Ruler. The following equations

describe two policies that can be used to limit access to a wiki page based on both the

academic standing of an individual and their degree of co-authorship to the page creator.

In Equation 5.3, read access is granted to a page based on the user being within three

degrees of co-authorship to the page creator, and having a single cited work.

(degree ≥ 0 ∧ degree ≤ 3) ∧ hindex ≥ 1 (5.3)

Equation 5.4 is used to grant write access to a wiki page. This policy is more restrictive

than the previous policy, in that the set of individuals has been limited to two degrees

of co-authorship. In addition, the H-index requirement has been raised to a significant

number of published and cited works.

(degree ≥ 0 ∧ degree ≤ 2) ∧ hindex ≥ 20 (5.4)

5.3 Workflow

In the workflow case study presented in Section 4.2.2, an example of dynamic service

selection was presented. Dynamic service selection allows a workflow author to build

workflows where web services are selected at runtime, rather than being encoded in the

workflow. This implementation demonstrates a standard workflow engine that has been

augmented with the ability to dynamically select a web service based on their recommen-

dation information.

As shown in Figure 5.4, GRAFT provides recommendation information, via a ranking

service, to the Anduril workflow framework. The Anduril12 workflow framework [236]

12http://www.anduril.org/ - last accessed October 2014.

http://www.anduril.org/

5.3. WORKFLOW 93

Provider

...

Web
Service A

Web
Service B

Ranking
Service

Node n

Workflow
Queries

Node 0 ...

Components

Anduril Framework

Response:

1. Web Service B

2. Web Service A

3. Web Service C

Query:

Best Web Services

in context X?

Web
Service C

12 3

Figure 5.4: GRAFT enabled Anduril Workflow. GRAFT provides recommendation infor-

mation, via a ranking service, to the Anduril workflow framework.

was developed to provide a component-based approach to scientific workflows, with a

particular focus on those in biomedical research.

Within Anduril, each workflow consists of a number of commands, and each com-

mand is defined by an Anduril component. Some components are provided by the core

engine, however additional components can be authored in a variety of languages. All

of these components are loaded by Anduril upon start-up, and utilised by the workflow

engine as required.

The implementation in this section delivers two additional components for Anduril,

and a ranking service for GRAFT. The two new components for Anduril provide it with

the ability to call a web service, and the ability to call the GRAFT ranking service.

5.3.1 Anduril Components

The first new component, called CallService, takes a list of URLs and a data file as pa-

rameters. The list of URLs are tried in order, using HTTP, until one succeeds within a

pre-defined number of retries. The contents of the data file, if it exists, are passed along

with the call, and the results from the web service are returned to the workflow engine.

The second new component RankService takes only a context as a parameter. It calls

the GRAFT ranking service with the context and returns a list of matching web services,

in the form of a URL list, to the workflow engine. This list can subsequently be passed to

the CallService component. For ease of implementation this component only knows the

location of a single ranking service.

94 CHAPTER 5. IMPLEMENTATION

5.3.2 Ranking Service

The ranking service is a prototype web service that provides a ranked list of services that

match a requested context. Upon request, the ranking service returns an ordered list of

URLs that match the given context. Each URL is also the OpenID of the web service.

In a real-world implementation, the ranking service would provide ranked lists of

services to requestors, and accept feedback on the performance of services it had pre-

viously recommended. Accepting feedback would allow it to track the performance of

services over time, allowing it to adjust its internal rankings as the situation changes.

In this prototype implementation, the ranking service has a number of deficiencies.

The first is that the ranking service has no ability to accept feedback on its previous rec-

ommendations. Secondly, the ranking service is aware of only a fixed number of contexts.

Each context is represented by a string that designates the name of the context. For each

context, the ranking service maintains a list of OpenIDs, sorted according to their rating.

Finally, the act of fetching and ranking the profiles only occurs once, during initiation

of the service. The profiles are ranked by the ranking service recommendation found in

each profile.

5.3.3 Anduril Workflow

As shown in Figure 5.5, the workflow first calls the RankService component in order to

get a ranked list of services matching the given context. The workflow then attempts to

call the best matching service. As noted above, a fall-back mechanism in the CallService

component ensures that failures are handled gracefully, by trying the next best match

when the first fails13.

13Sample Anduril workflows are provided in Section D.3.

5.3. WORKFLOW 95

Ranking ServiceWorkflow Web Service

Start

RankServic
e

CallService

End

Find
matching
services

Return
profiles

Function

Service
context

Figure 5.5: The workflow first calls the RankService component in order to get a ranked

list of services matching the given context. The workflow then attempts to call the best

matching service.

96 CHAPTER 5. IMPLEMENTATION

Chapter 6

Experimental Results and Evaluation

This chapter describes the experiments that were conducted on the GRAFT framework

prototype which was introduced in Chapter 5. There are three important aspects of the

framework which require experimental validation.

Firstly, sources of recommendation information are critical to the architecture as with-

out these, recommendation consumers do not have any information to consider when

making decisions. Section 6.21 and Section 6.31 describe experiments conducted for the

“degrees of co-authorship” source, which show it is a feasible source for non-interactive

profile updates, while Section 6.41 discusses an experiment that analyses Hirsch Index

calculations using Microsoft Academic Search (MAS). This experiment also shows the

feasibility of this source for non-interactive profile updates.

Secondly, recommendation consumers must be able to efficiently utilise the architec-

ture to provide services, but without incurring significant overheads. Section 6.5 dis-

cusses an experiment with the prototype workflow implementation that examines the

performance of the ranking service implemented in Chapter 5. This experiment shows

that the ranking service adds only a small overhead when choosing web services in a

dynamic workflow environment.

Lastly, the architecture must be able to scale and efficiently provide profiles to con-

sumers, even when under churn and in the presence of malicious peers. A key aspect of

this includes the ability for consumers to be able to verify the profiles they have received.

Section 6.6 builds a simulation of the ranking service that is scaled up to thousands of

nodes. This experiment validates the distributed architecture at a large scale, and shows

its usefulness in time-critical applications up to approximately 400,000 nodes.

The application and execution of policies were considered a component of the imple-

mentation discussed in Chapter 5, and are not further addressed here.

1The work in this section is largely taken from the published paper F. Hendrikx, K. Bubendorfer, Mal-
leable access rights to establish and enable scientific collaboration, in: 9th International Conference on
eSciece, IEEE, Beijing, China, 2013

97

98 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

6.1 Experimental Testbed

Consumer

NodeNode

SourceSource

Node n

ProviderProvider

Web Service Web Service Web Service

Consumer

Host 1 Host 2 Host 3 Host 4

NodeNodeNode n

Figure 6.1: Evaluation Testbed. The testbed comprises four dedicated hosts.

All of the experiments presented in this chapter, except for the simulation work, were

conducted on a single testbed that is spread over four dedicated hosts. Figure 6.1 is a

high-level view of the experimental architecture. Each host is further described below.

• Host 1: AMD Athlon 64 3200+, 4 GB RAM, Debian/GNU Linux 7.4

• Host 2: Intel Core i7 2.0 GHz, 8 GB RAM, Windows 7

• Host 3: Intel Core 2 Duo 3.0 GHz, 4 GB RAM, Debian/GNU Linux 7.4

• Host 4: Intel Xeon E5640 2.67 GHz, 8 GB RAM, Debian/GNU Linux 7.4

Hosts 1 and 2 reside on the same local LAN, while Host 3 is within the same top level

country domain, with an average latency of 50ms from hosts 1 and 2. Finally, host 4 is

approximately 18,500km away and has an average latency of about 350ms from hosts 1

and 2. All four of the hosts were dedicated to the experiments, with non-essential services

shutdown before proceeding with any measurements.

Each experiment was conducted on between 1 and 4 of the hosts in the testbed, de-

pending on the exact nature and requirements of the experiment. The experiments de-

6.2. DEGREES OF CO-AUTHORSHIP CALCULATION 99

scribed in Section 6.2, Section 6.3 and Section 6.4 utilised host 3 (as this was the first host

acquired for the evaluation), while those in Section 6.5 utilised all of the hosts.

All performance measurements are taken from either the perspective of the consumer

or the service provider, depending on the requirements of the experiment. Consumers

log all actions taken, including when requests are made and when responses are received.

Similarly, service providers log incoming requests and when responses to those requests

are sent out again.

6.1.1 Prototype Limitations

The prototype discussed in Chapter 5 had a number of limitations that could affect the

experimental results presented in this chapter.

In particular, the prototype was a “proof of concept” that used a distributed network

implemented in one language, while the core logic was written in another. Communica-

tion between these components was achieved through TCP sockets, potentially adding

unnecessary delays. Further, the extensive use of interpreted languages in the imple-

mentation of GRAFT (such as PHP and BASH) may cause additional slowness when

compared to faster C or C++ implementations.

The slower execution caused by the choice of languages is likely to have had an effect

on the results presented in this chapter. In particular, the evaluations discussed in Sec-

tion 6.2: Degrees of Co-authorship Calculation, Section 6.4: Hirsch Index Calculation and

Section 6.5: Workflow are likely to be slower than they might have been if they have been

implemented in another language. As such, the results presented should be considered

worst-case scenario.

6.2 Degrees of Co-authorship Calculation

In Section 5.2, a bibliographic source and a ranking source were implemented for the

Wiki case-study. The bibliographic source was used to generate degrees of co-authorship

information from a DBLP database, and allowed a page creator to give access to his or

her co-authors, or co-authors of co-authors.

6.2.1 Design

On his website, usability expert Jakob Nielsen talks about website responsiveness [226].

In particular, Nielsen notes that humans do not perform well when they have to wait for

a result, as this taxes our attention and short term memory. Humans also like to feel in

control, and a long wait leaves us feeling at the mercy of a computer. Nielsen proposes

three response time-limits for web usability (June 2010). The first limit is 0.1 seconds,

100 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

where a response feels instantaneous, and as a result, the user experiences a sense of

direct manipulation. The second limit is 1 second, where the user’s thoughts remain

uninterrupted, and hence they retain a feeling of control, despite the slight delay. Users

will tolerate longer delays; however, at 10 seconds (the final limit) the user’s attention

span limit has been reached. Users experiencing this level of delay will often leave a

website immediately.

This experiment considers the time required to fetch and compute increasing degrees

of co-authorship. In particular, this experiment was intended to be run until the time

taken to compute any single degree was clearly no longer suitable for an interactive ap-

plication. According to Nielsen, this would limit the time to 10 seconds at most.

Degrees of co-authorship were calculated using a local copy of the DBLP database

running on PostgreSQL. A sample of twenty computer science authors was selected us-

ing the number of publications they each had, ensuring that the sample included authors

with both small and large numbers of publications. For each author, their actual publica-

tions were determined, and from that their set of unique co-authors. The set of co-authors

were then used to determine their publications and co-authors, and so on for each addi-

tional degree.

6.2.2 Results

Figure 6.2: Degrees of Co-authorship vs Time in seconds. Only the 2nd, 3rd and 4th de-

gree co-authorship results are plotted in this graph, because the 1st degree co-authorship

results are measured in thousandths of a second and are not visible at this scale. Error

bars for the 95% confidence interval are also plotted, but are not visible due to their small

size.

6.3. DEGREES OF CO-AUTHORSHIP STORAGE 101

Figure 6.3: Degrees of Co-authorship vs Time in seconds, containing only the 2nd and 3rd

degree results. The graph shows that the time taken to compute the 1st and 2nd degrees

fall well within Nielsen’s 10 second limit (shown as a horizontal red line).

The original implementation was written in PHP, but the results were heavily skewed

by memory allocation artefacts. The final implementation was therefore written in Perl.

The overall results can be seen in Figure 6.2. Only the 2nd, 3rd and 4th degree co-

authorship results are plotted in this graph, because the 1st degree co-authorship results

are measured in thousandths of a second and are not visible at this scale. Error bars for

the 95% confidence interval are also plotted, but are not visible due to their small size.

A version of the same graph, but showing only the 2nd and 3rd degree results can

be seen in Figure 6.3. The graph shows that the time taken to compute the 1st and 2nd

degrees fall well within Nielsen’s 10 second limit (shown as a horizontal red line on the

graph). However, the 3rd and fourth degrees are clearly outside this limit. Based on

these results, any policies requiring more than the 2nd “degree of co-authorship” should

consider using more powerful hardware, or pre-calculating the results and caching them

in the author’s profile.

6.3 Degrees of Co-authorship Storage

Given the results in Figure 6.2, a sensible conclusion is that the degrees of co-authorship

should be pre-computed and stored for each individual author, rather than generated

on demand. As co-author relationships will only change slowly over time, this should

constitute a reasonable approach.

102 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

6.3.1 Design

This experiment considers the storage space required to store complete co-author rela-

tionships for increasing degrees of co-authorship. The goal of this experiment was to be

able to store entire degrees for an author, without making the profile larger than 3 MB.

This value was selected because this is a size that can be easily transferred over a 100

Mbit link in under a second. This bandwidth is typical for a LAN.

The degrees of co-authorship computation described previously was re-executed, and

the information obtained was stored in a profile. This experiment ignores the fact that the

profile could contain other information, as the co-author information would most likely

make up the bulk of the profile.

6.3.2 Results

Figure 6.4: Profile sizes with degrees of co-authorship stored. Profile sizes increase as the

degree increases. Only the 2nd, 3rd and 4th degree co-authorship results are plotted in

this graph because the 1st degree co-authorship results are measured in tens of kilobytes

and are not visible at this scale. Error bars for the 95% confidence interval are also plotted.

Figure 6.4 shows how profile sizes increase as the degree increases. Only the 2nd,

3rd and 4th degree co-authorship results are plotted in this graph because the 1st degree

co-authorship results are measured in tens of kilobytes and are not visible at this scale.

Error bars for the 95% confidence interval are also plotted, which show a large variance

6.4. HIRSCH INDEX CALCULATION 103

in the profile sizes for each degree. Profile sizes exceed 3 MB at the third “degree of co-

authorship”, meaning that only the 1st and 2nd degree could be cached before becoming

too large. Given that the 1st and 2nd degree can be computed with ease, this result is not

useful.

Figure 6.5: Profile sizes with degrees of co-authorship stored compressed. Profile sizes

increase as the degree increases. However, in this instance, profile data has been com-

pressed using gzip.

Compressing the degrees of co-authorship was considered next. As with the previous

figure, Figure 6.5 shows how profile sizes increase as the degree increases. However, in

this instance, profile data has been compressed using gzip. These results show that pre-

computing and caching up to the 3rd degree in a profile is feasible, if the degrees of

co-authorship information is first compressed. The 4th degree could also be considered

feasible for storage in a profile, but only if the 3 MB limit was raised to 4.5 MB.

6.4 Hirsch Index Calculation

In Section 5.2, a bibliographic source and a ranking source were implemented for the Wiki

case-study. The ranking source provided academic ranking information for individuals.

In particular, this source generated Hirsch Index (H-index) [142] values using Microsoft

Academic Search (MAS). This section examines the performance of the ranking source,

in order to evaluate its usefulness in on-demand applications.

104 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

6.4.1 Design

This experiment considers the average time taken to fetch a page from MAS, as this de-

termines the time to calculate the H-index value for a given author. The implementation

discussed in Chapter 5 assumed that H-index values would be computed and stored in a

profile, but it is useful to consider how quickly a H-index value could be computed for a

given author, and if it falls within the 10 second upper limit given by Nielsen.

As discussed previously in Section 5.2, H-index values were calculated by searching

for an author using MAS and downloading each result page. The JSON2 interface to MAS

was utilised because it is consistent with the RESTful approach used in the remainder of

this work.

A simple program that requests only a single result for an author search was written,

effectively giving a simple “ping” for the MAS API. This program was run every 5 min-

utes using the CRON scheduler, and fed the name of a random author from the sample

list of 20 that was selected for the previous experiment.

6.4.2 Results

Figure 6.6: MAS Average Page Request Time for 28th April 2013. The average page

request time was 8.20 seconds (2 dp), with a standard deviation of 17.20 seconds (2 dp).

The error bars show the 95% confidence interval. All times shown are recorded in EDT

(Eastern Daylight Time). The dashed purple line shows the Chinese working day (0730

CST to 1830 CST), while the unbroken green line shows the European (including the

United Kingdom) working day (0730 CEST to 1830 BST). The greatest variance in the

response time occurs when the Chinese and European working days overlap.

2JavaScript Object Notation, a human readable format used to transfer key/value pairs between a client
and server.

6.4. HIRSCH INDEX CALCULATION 105

Figure 6.7: MAS Average Page Request Time for 30th April 2013. The average page

request time was 1.69 seconds (2 dp), with a standard deviation of 2.93 seconds (2 dp).

The error bars show the 95% confidence interval.

Figure 6.6 shows the average time for page requests to the MAS API for Sunday 28th

April 2013. All requests were grouped into hourly results and plotted against the average

time taken to request and retrieve the result from the MAS API. The error bars show the

95% confidence interval. All times shown are recorded in EDT (Eastern Daylight Time).

The dashed purple line shows the Chinese working day (0730 CST to 1830 CST), while

the unbroken green line shows the European (including the United Kingdom) working

day (0730 CEST to 1830 BST). The greatest variance in the response time occurs when the

Chinese and European working days overlap.

For this graph, the average page request time was 8.20 seconds (2 dp), with a standard

deviation of 17.20 seconds (2 dp). At 2 standard deviations from the mean, this gives a

42.6 second (2 dp) page response time. This time is clearly outside of Nielsen’s limits,

especially when considering that some authors have multiple result pages.

Figure 6.7 shows the average time for page requests to the MAS API for Tuesday

30th April 2013. The average page request time was 1.69 seconds (2 dp), with a standard

deviation of 2.93 seconds (2 dp). At 2 standard deviations from the mean, this gives a

7.55 second (2 dp) page response time. This is within Nielsen’s limits, but once again,

would fall outside of the limits in situations where multiple result pages would need

to be fetched. This graph exhibits much less variance than the previous graph. One

possible reason for this difference could be explained by the timing of the United States

spring exams (approximately from 29th April 2013 through to 10th May 2013).

The average single page request time for both days is large, considering the sub-

second times normally experienced when fetching a page from a web server. Based on

these results, it would be impractical to calculate H-index values on-demand when using

106 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

MAS.

These numbers also provide an average upper bound (or worst-case scenario) for

calculating a H-index value when using MAS. Given that MAS only allows a maximum

of 10 result pages per search, the upper bound on any search can be considered to be 10×
42.6 = 426 seconds (with a 95% confidence). As noted previously, this makes interactive

use of this interface impractical, and strongly favours caching this information in profiles.

6.5 Workflow

A prototype workflow implementation using a ranking service was described in Sec-

tion 5.3. This prototype implementation utilises the Anduril workflow engine. It was

installed into the testbed, and the performance was measured in order to gain an under-

standing of real-world execution times, with a particular focus on the ranking service.

6.5.1 Design

The goal of this experiment was to understand the impact of the ranking service on over-

all performance of a workflow. Introducing a ranking service for dynamically determin-

ing an appropriate web service during workflow execution is only useful if it does not

greatly impact the overall time. Understanding the overheads incurred by using a rank-

ing service is crucial for a developer considering the cost-benefit trade off in using the

proposed framework, and is especially important if an interactive user is waiting for the

results of the workflow.

Three different Anduril workflows were measured in this experiment: base, call and

rank. Base represents the simplest “no-op” Anduril workflow and gives a base-case for

workflow execution times. Call uses the “CallService” component to call a web service,

while rank calls the GRAFT ranking service, via “RankService”, and then calls the highest

ranked web service. Each of the three candidate web services is an “echo” service, that

responds with a copy of the input. 4 KB of data was fed to the web service in each

instance.

Each workflow was executed 41 times, with the initial result discarded to ensure that

the effects of caching by the operating system were treated equally across all experiments.

This is important when measuring results from Anudril because it is file-based and, as

such, after the first execution, it has been cached. Measurements were taken with both

local LAN-based and Internet-based web services.

6.5. WORKFLOW 107

Figure 6.8: Anduril Workflow Execution times for LAN-based web services

6.5.2 Results

Figure 6.8 shows the execution times for the three different workflows using the LAN-

based web services. The workflows and ranking service were on host 1, while the web

services called by the workflows were all on host 2 (on the local LAN). The error bars

show the 95% confidence interval. The overhead of calling a web service is approximately

0.25 seconds, while calling both the ranking service and the highest ranked web service

is approximately 0.5 seconds.

Figure 6.9: Anduril Workflow Execution times for Internet-based web services

Although the overhead of calling the ranking service should not change if it is called

for a local or remote service, this is worth verifying experimentally to identify any errors

in design or implementation. Figure 6.9 shows the same three Anduril workflows, but

with all of the web services on host 3. The overhead of calling a web service from Anduril

when calling the Internet-based version is approximately a second. Similarly, calling the

ranking service and the highest ranked web service adds just over a second, with the

108 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

majority of that time taken by the call to the highest ranked web service.

In both the local LAN and Internet versions, the average overhead of calling the rank-

ing service is approximately 0.25 seconds. This was expected because the ranking service

resides on host 1, and therefore has a relatively low latency overhead.

6.6 Workflow Simulation

OverSim [40] is a peer-to-peer (P2P) simulator written in C++, which builds on the OM-

NeT++3 simulation environment. OMNeT++ is a discrete simulation environment built

to simulate communications networks. Modules written in C++ are tied together using

a high-level language called NED, allowing the re-use of the components as required.

OverSim4 builds on this infrastructure to deliver an environment that allows for the sim-

ulation of peer-to-peer networks, particularly overlay protocols such as Kademlia.

An initial simulation was built using the SimGrid [58] simulation software. However,

the results from the simulations were inconsistent and, after careful consideration, it was

decided to re-implement the simulation using OverSim. A description of the SimGrid

simulation work and the inconsistencies that were found is available in Section C.1.

6.6.1 Design and Testbed

There were a number of goals for these experiments. Firstly, to measure the effect of

churn and malicious peers on the architecture’s ability to provide profiles to consumers.

Secondly, to ensure that consumers can verify the profiles they have received, even with

an increasing number of malicious peers. Finally, to consider the scalability of the archi-

tecture.

The simulation takes elements from the experiment described in Section 6.5, but does

not replicate it entirely. In particular, there is no ranking service, as this would hide the

effect of churn and malicious peers from the results.

Figure 6.10 illustrates the key components of the simulation testbed. A composer peer

queries a number of peers in the network to obtain profiles they have stored. When it has

received the profiles, it can then verify them using threshold voting, and decide which

service it is going to utilise. This simulation does not incorporate a separate ranking

service, but instead implements the same functionality in the composer peer itself.

The existing Kademlia overlay that comes bundled with OverSim was utilised, with

the addition of two new custom node types, both written in C++. The first of these is

a GRAFT composer peer that attempts to fetch in parallel the profiles for the services in

which it is interested, verify them and then select one service. The second of these new

3http://www.omnetpp.org/ - last accessed October 2014
4http://www.oversim.org/ - last accessed October 2014

http://www.omnetpp.org/
http://www.oversim.org/

6.6. WORKFLOW SIMULATION 109

queries ...Composer

Node n-1

...

...

Node n

P
er

fo
rm

an
ce

 S
ta

ti
st

ic
s

Se
rv

ic
e

Se
le

ct
io

n
 C

ri
te

ri
a

Node 1

Node 0

Figure 6.10: Workflow simulation testbed. A composer peer queries a number of peers in

the network to obtain profiles they have stored. When it has received the profiles, it can

then verify them using threshold voting, and decide which service it is going to utilise.

nodes represents a generic peer node that waits for incoming queries and replies with

the appropriate dummy profile. For these experiments, the dummy profiles were set to

be 4KB in size. As with the implementation, there was no Kademlia replication between

nodes.

All simulations using OverSim were run on an Intel Xeon E5-1650 v2 3.50 GHz, 64 GB

RAM, running Arch Linux 2014.02.01.

6.6.2 Parameters

All experiments were run for 9000 seconds simulated time, and were repeated 40 times.

The node creation interval time was set to 0.01 seconds, ensuring that all of the nodes

required for an experiment were running within 100 seconds, and stable within 1000

seconds simulated time. OverSim provides a feature that allows the parameterisation of

key variables, including the seed set used for each experiment. A series of experiments

can thus be entirely automated and repeated, with all variables that were used for a

particular experiment recorded in the log file5.

Depending on the experiment, the total number of peers n in the network were varied

between 1000 and 9000 peers, in increments of 1000. 9000 peers were selected as an upper

5A sample OverSim configuration file that was used in some of the experiments is provided in Section D.4

110 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

queries ...Composer

Node n-1

...

...

Node n

Node 1

Node 0

OMNeT++

OverSim

C
o
n
fi
gu
ra
ti
o
n

R
es
u
lt
s

Figure 6.11: Workflow simulation testbed within OverSim. OverSim provides the envi-

ronment in which the simulation testbed is executed.

limit to the network size, as this meant that a single simulation could run within a few

hours. The number of services s in which the composer node was interested was set to

either 3 or 5. These were selected as they represent good “multiple choice” situations.

In a similar way, the number of peers p that were queried for profiles was always

set to 5, 7, 9 or 11. Having an odd number of peers means that in perfect situations

(that is, those with a 100% response rate) the number of responses is always over, or

under, exactly half. This ensures that a deadlock situation is avoided when performing a

threshold vote, as the vote either succeeds or fails.

The total queries q issued in an experiment is always p×s. A threshold is implemented

so that although p peers are queried, the lookup of a service profile is considered complete

when a threshold t profile query responses are in agreement. A larger threshold will give

more assurance because a greater number of profiles must be in agreement. However,

this will also take longer, as more profiles must be received by the composer node.

Two different threshold t proportions were used during the experiments. The first,

shown in Equation 6.1 represents the “half” threshold. This threshold succeeds when just

over half of the responses are in agreement, and is termed 1/2 threshold in the following

sections. The second, shown in Equation 6.2 represents the “two-thirds” threshold. This

threshold succeeds when just over two-thirds of the responses are in agreement. This is

termed 2/3 threshold in the following sections.

t =

⌊
q + 1

2

⌋
(6.1)

6.7. SIMULATION: BASE CASE 111

t =

⌊
q + 1

3
× 2

⌋
(6.2)

6.6.3 Simulation

New nodes are added to the Kademlia network by OverSim until all the required nodes

are present. The composer peer waits for 8000 seconds in simulated time, and then issues

profile queries to p peers for each service s in which it is interested, resulting in a total

of q profile queries being sent. These queries are sent in parallel, with the composer peer

recording the exact time at which each query was sent, and when a matching response

was received. The number of services s and peers p is varied for each experiment. The

peers p for each run are randomly selected from the available peers before the simulation.

The simulation finishes at 9000 seconds.

6.6.4 Presentation

It should be noted that the tables and graphs shown in the following sections often only

correspond to the smallest and largest combinations of s and p. Information generated

from other variations is often utilised and described, but not always shown. Showing all

of the information generated by the simulations was deemed excessive.

6.7 Simulation: Base Case

This section presents the results from the base case simulations. These simulations do not

implement any churn or malicious peers and simulate a perfect state. These simulations

are intended to provide a base case for later comparisons. In particular, the base case

examines three key metrics. The first is the single query response time. The second is the

inter-arrival time for responses, while the final is the total time taken to reach a threshold.

6.7.1 Single Response Time

The single response time experiment records the average time taken to send a query for a

profile and receive a response. All query response times measured during the simulations

were used to compile the graphs shown here.

Figure 6.12 and Figure 6.13 show the average time taken for a single query and re-

sponse for 3 and 5 services. The variables p (peers queried per service) and n (total num-

ber of peers) are plotted against the time taken to receive a response. These graphs both

have an average single query and response time of 0.62 seconds (2 dp) for 5 peers, rising

to 0.63 (2 dp) seconds for 11 peers. This is as expected, because the number of services

should not influence the total average single query and response time.

112 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

Figure 6.12: Single response time for s = 3.

Figure 6.13: Single response time for s = 5.

6.7. SIMULATION: BASE CASE 113

Figure 6.14: Cumulative frequency graphs for s = 3, p = 5.

Another way to examine this information is to consider it using a cumulative fre-

quency graph. Figure 6.14 shows the nine cumulative frequency graphs (one for each

n, from 1000 through to 9000) that make up the set for s = 3, p = 5. On the whole, the

graphs within the set exhibit similar properties and have been combined together in all

later cumulative frequency graphs.

Figure 6.15 shows the cumulative frequency graphs for s = 3, p = 5, 7, 9, 11. As can

be seen from these graphs, they are essentially the same. However, there is a small trend

towards later arriving responses as the value of p increases. A slight shift in the time

taken to reach the 90% cumulative percentage is also apparent when going from p = 5 to

p = 11. However, this cannot be seen on the graphs presented here.

6.7.2 Response Inter-arrival Times

The response inter-arrival time experiments record the time between subsequent responses

arriving at the composer node. As all queries for profiles in the network are generated

in parallel, the inter-arrival times should decrease as more queries are generated. This is

because increasing the number of queries increases the number of responses received.

Figure 6.17 and Figure 6.18 show the inter-arrival times for query responses arriving

at the composer node. As expected, the inter-arrival times decrease as more peers are

queried. In other words, as q increases, either through increasing p or s, the inter-arrival

time decreases. As 5 services require a larger number of queries than 3 services, it exhibits

114 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

Figure 6.15: Combined cumulative frequency graphs for s = 3, p = 5, 7, 9, 11.

Figure 6.16: Combined cumulative frequency graphs for s = 5, p = 5, 7, 9, 11.

6.7. SIMULATION: BASE CASE 115

Figure 6.17: Response inter-arrival time for s = 3.

Figure 6.18: Response inter-arrival time for s = 5.

116 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

smaller inter-arrival times than the 3 services graph.

Figure 6.19: Response inter-arrival time for s = 3 and s = 5.

Figure 6.19 compares the inter-arrival times for s = 3 and s = 5. This graph verifies

the earlier stated finding that increasing q decreases the inter-arrival time. This inter-

arrival time graph is useful because it sets an approximate upper bound on the time

between subsequent responses and hence determines a minimum performance require-

ment on any software that implements this approach. Inter-arrival times could also be

used to determine the likely time to receive a given number of responses.

6.7.3 Total Time to Reach Threshold

The total time experiments record the total time taken to reach the 1/2 and 2/3 thresholds.

Since there are no malicious peers, nor any churn, this is simply the time taken to return

the first t responses out of the total q responses.

Figure 6.20 shows the total time taken to reach the threshold number of profiles for

3 services, with a threshold of 1/2. In terms of the number of peers queried p, the total

time increases from an average of 0.597 seconds (3 dp) for 5 peers, to an average of 0.602

seconds (3 dp) for 11 peers. When considering the total number of peers n, the total time

ranges from an average of 0.56 seconds (2 dp) for 1000 peers through to 0.58 seconds (2

dp) for 9000 peers. On average, it can be said that the total time required to fetch all of

the profiles increases as the number of peers queried p increases, and as the total number

of peers n in the network increases.

Figure 6.21 shows the total time taken to reach the threshold number of profiles for

5 services, with a threshold of 2/3. This graph exhibits the same behaviour as the graph

for 3 services, but with the exception that the overall time has increased slightly as the

6.7. SIMULATION: BASE CASE 117

Figure 6.20: Total time for s = 3, 1/2 threshold.

Figure 6.21: Total time for s = 5, 2/3 threshold.

118 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

number of services s has increased from 3 to 5. In terms of the number of peers queried

p, the total time taken increases from an average of 0.699 seconds (3 dp) for 5 peers, to

an average of 0.719 seconds (3 dp) for 11 peers. Similarly, when considering the total

number of peers n, the total time ranges from an average of 0.62 seconds (2 dp) for 1000

peers through to 0.79 seconds (2 dp) for 9000 peers.

Using this information and creating an average from the 3 and 5 service total times,

Equation 6.3 describes a rule of thumb that can be used to estimate the total time, given

the fraction f describing the threshold (for example, f = 0.5 when the threshold is 1/2),

and the total number of peers n.

time ≈ 0.000022fn+ 0.60 (6.3)

In 2001, Ripeanu et al. [265] explored the then dominant GNUtella network. They

discovered that at certain times, the GNUtella network contained almost 50,000 nodes.

By 2004, file sharing via DHTs had become popular, and Kutzner et al. [186] found that

the Overnet network had a maximum of approximately 265,000 concurrent nodes online.

More recent estimates place the size of the mainline DHT that supports the BitTorrent

network at about 15-27 million nodes online at any given time [322].

Figure 6.22 extrapolates the total time required to reach the threshold number of pro-

files for network sizes up to one million nodes using Equation 6.3. This size has been

taken as a maximum as further extrapolation is likely to be increasingly inaccurate.

Section 6.2 discussed Nielsen’s three web usability time limits. If Nielsen’s 1 second

limit were taken, then the GRAFT framework would be limited to approximately 60,000

nodes when using 1/2 as the threshold. While this forms a useful baseline, it is not in

itself helpful, as this limit would be impractical in most modern distributed networks.

Therefore, the goal for an interactive session should be to return results to the user within

the 10 second limit set by Nielsen. Rather than aiming for this limit, 5 seconds (being the

halfway point between 1 and 10 seconds) will be used as the limit for any results returned

to an interactive user. This limit is shown on the graph as a horizontal red line with two

intersection points.

What this graph clearly shows is that for interactive sessions, networks over approx-

imately 400,000 nodes (with a 1/2 threshold) and 300,000 nodes (with a 2/3 threshold)

become impractical as the total time taken exceeds 5 seconds. However, it should be

noted that users will tolerate much longer delays if they are kept informed. In particular,

Nah [223] shows that users will, on average, tolerate delays of up to 38 seconds if they

are provided feedback while waiting (2004). Therefore, increasing the time limit to 15

seconds and providing the users with feedback would allow GRAFT to exceed a million

nodes. Further, the time limits discussed do not remove the overall usefulness for non-

interactive systems where waiting time is not important, or where results can be cached

6.8. SIMULATION: BASE CASE WITH MALICIOUS PEERS 119

Figure 6.22: Total time taken versus total number of nodes. The total time required to

reach the threshold number of profiles for network sizes up to one million nodes using

Equation 6.3 is extrapolated.

ahead of time-sensitive operations.

While 400,000 or even a million nodes seem paltry when compared with those of the

mainline DHT, there are a number of approaches that can be used to scale GRAFT further.

These will be discussed in Section 6.11.

The work up to this point has assumed that the 1/2 threshold will continue to be effec-

tive, even when under churn and with malicious nodes. These aspects will be considered

in the following sections.

6.8 Simulation: Base Case with Malicious Peers

The same experiments were run again, but with increasing rates of malicious peers. Ma-

licious peers in these experiments return “corrupted” profiles, and so their responses do

not match the responses from other peers. Threshold voting should eliminate these cor-

rupted profiles, so it is useful to measure how well this mechanism works with malicious

peers.

6.8.1 Design

In this experiment thresholds were ignored in the collection of the data, allowing for a

complete view of the cross-over points between threshold voting succeeding and failing.

120 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

A goal of successful threshold voting with up to 30% malicious peers was set. In existing

literature, values for malicious peers range between 0% and 70%, with typical default

values being 10%, 20% and 30% [335, 364, 358, 61, 194, 290, 309]. Please note that these

experiments do not consider collusive behaviour. This is left as future work.

6.8.2 Correct Responses

For these experiments, rate r controls the probability that any given peer is malicious.

Values used for r in these experiments ranged from 0 through to 0.5. The maximum rate

of 0.5 was used because rates higher than this always result in failure for the 1/2 threshold

(as it is impossible to get sufficient profile copies that are correct). The measure c counts

the number of correct profiles that were received. For threshold voting to be successful,

the number of correct profiles must be greater than or equal to the threshold, c ≥ t.

Nodes Malicious rate

0 0.1 0.2 0.3 0.4 0.5

1000 15 14 12 11 9 8

2000 15 14 13 11 10 8

3000 15 14 12 11 9 8

4000 15 14 13 12 10 9

5000 15 14 12 11 9 8

6000 15 14 12 10 9 7

7000 15 14 12 10 8 7

8000 15 14 12 10 9 7

9000 15 14 13 11 9 7

Table 6.1: Correct responses with malicious peers, s = 3, p = 5. The cell colours show the

values that did not reach the 1/2 threshold (8) in orange, while those not reaching the 2/3

threshold (10) are shown in yellow.

Table 6.1 shows the number of correct responses for both thresholds, for 3 services.

The integer floor value is shown in each instance, as it is not possible to have partial

profiles. The cell colours show the values that did not reach the 1/2 threshold (8) in or-

ange, while those not reaching the 2/3 threshold (10) are shown in yellow. Figure 6.23

is a graphical representation of the same information, with variables n (total number of

peers), r (rate of malicious peers) and c (correct responses) shown as axes on the graph.

Table 6.2 shows the number of correct responses for both thresholds, for 5 services.

The cell colours show the values that did not reach the 1/2 threshold (28) in orange, while

those not reaching the 2/3 threshold (37) are shown in yellow. Figure 6.24 is a graphical

6.8. SIMULATION: BASE CASE WITH MALICIOUS PEERS 121

Figure 6.23: Correct responses with malicious peers, s = 3, p = 5. A graphical represen-

tation of Table 6.1.

Figure 6.24: Correct responses with malicious peers, s = 5, p = 11. A graphical represen-

tation of Table 6.2.

122 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

Nodes Malicious rate

nodes 0 0.1 0.2 0.3 0.4 0.5

1000 55 50 45 39 34 28

2000 55 50 44 39 33 28

3000 55 50 44 40 34 28

4000 55 50 44 38 33 27

5000 55 50 44 38 32 27

6000 55 50 44 38 32 27

7000 55 50 45 39 34 28

8000 55 50 45 40 33 28

9000 55 50 43 39 33 28

Table 6.2: Correct responses with malicious peers, s = 5, p = 11. The cell colours show

the values that did not reach the 1/2 threshold (28) in orange, while those not reaching the
2/3 threshold (37) are shown in yellow.

representation of the same information.

In the perfect situation described by the base case, the tables show that threshold

voting works with a malicious rate of up to 40% with the 1/2 threshold, while the 2/3

threshold works well up to a malicious rate of 30%. Both of the graphs show a similar

trend, with a decreasing number of correct responses c as the rate r of malicious peers

increases.

6.8.3 Trend

s p q t Equation

03 05 15 08 c = -15.84r + 16

03 07 21 11 c = -21.72r + 22

03 09 27 14 c = -27.78r + 28

03 11 33 17 c = -33.66r + 34

Table 6.3: Trend analysis for correct responses. This table shows part of the analysis that

was conducted (in this instance the values relate to s = 3). All values are rounded to 2

decimal places.

When examining all of the correct response results for variations in s and p, a trend

became apparent. The trend is linear, and in general, the coefficient of the equation is

approaching the total queries q. Table 6.3 shows part of the analysis that was conducted

6.9. SIMULATION: CHURN 123

(in this instance the values relate to s = 3). All values are rounded to 2 decimal places.

Equation 6.4 describes a rule of thumb that can be used to estimate the number of

correct responses c when given the total queries q and the malicious rate r. Building on

this, Equation 6.5 describes a rule of thumb that can be used to determine the boolean

result b: “given c, will the threshold t will be met or exceeded?”.

c ≈ bq − rqc (6.4)

b =

true if t ≥ c

false otherwise
(6.5)

6.9 Simulation: Churn

Churn is generated using a Pareto function, with the mean session time set to 100 seconds.

A Pareto function was selected because this mimics real-world measurements taken on

the BitTorrent network [146], while 100 seconds was selected as Rhea et al. [264] observed

mean session times ranging from one minute up to one hour. Measuring churn using

smaller session time means that the experiments will capture the worst-case behaviour.

In particular, Herrera et al. [140] discuss how increasing membership fluctuations in a

DHT lead to decreasing performance. All other parameters are left unchanged from pre-

vious experiments. As with previous experiments, each experiment ran for 9000 seconds

simulated time, and was repeated 40 times.

6.9.1 Single Response Time

In the same way as the single response time experiment in the base case, this experiment

records the average time taken to send a query for a profile and receive a response.

Figure 6.25 shows the cumulative frequency graphs for s = 3, p = 5, 7, 9, 11, while

Figure 6.26 shows the cumulative frequency graphs for s = 5, p = 5, 7, 9, 11. Compared to

the earlier combined cumulative frequency graphs in Figure 6.15 and Figure 6.16, these

graphs cover a time-period that is more than twice as long (9 seconds instead of the

previous 4 seconds). However, it should be noted that once again, 90% of the responses

have arrived by approximately 1 second. The key difference is the number of responses

that arrive much later than in the earlier experiments.

6.9.2 Response Inter-arrival Times

As with the base case, this experiment records the time between subsequent responses

arriving at the composer node. Since the composer issues queries in parallel, the inter-

124 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

Figure 6.25: Combined cumulative frequency graphs for s = 3, p = 5, 7, 9, 11 and churn.

Figure 6.26: Combined cumulative frequency graphs for s = 5, p = 5, 7, 9, 11 and churn.

6.9. SIMULATION: CHURN 125

arrival times should decrease as more queries are generated.

Figure 6.27: Response inter-arrival time for s = 3 with churn.

Figure 6.29 compares the inter-arrival times for s = 3 and s = 5 when under churn.

This graph verifies the earlier stated finding that increasing q decreases the inter-arrival

time even when under churn. It is worth noting that the inter-arrival times in this graph

are approximately double the values present in Figure 6.19.

6.9.3 Total Time to Reach Threshold

Similar to the total time experiment in the base case, this experiment records the total

time taken to reach the threshold. As churn may affect the number of responses, a 5

second time limit exists to ensure that the composer node is not left waiting indefinitely.

In those instances where a threshold number of responses was not received with the time

limit, then the total time to reach the threshold has been recorded as 5 seconds. This is

because after hitting the time limit, the composer does not have sufficient responses to

reach a valid conclusion.

Figure 6.30 shows the total time taken to reach the threshold number of profiles for

3 services, with a threshold of 1/2. In terms of the number of peers queried p, the total

time decreases from an average of 0.763 seconds (3 dp) for 5 peers, to an average of 0.672

seconds (3 dp) for 11 peers. When considering the total number of peers n, the total time

ranges from an average of 0.60 seconds (2 dp) for 1000 peers through to 0.73 seconds (2

dp) for 9000 peers. On average, it can be said that the total time required to fetch all of

the profiles increases as the number of peers queried p increases, and as the total number

of peers n in the network increases.

126 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

Figure 6.28: Response inter-arrival time for s = 5 with churn.

Figure 6.29: Response inter-arrival time for s = 3 and s = 5 with churn, base case values

are shown here with dashed lines for comparison.

6.9. SIMULATION: CHURN 127

Figure 6.30: Total time for s = 3 with churn, 1/2 threshold.

Figure 6.31: Total time for s = 5 with churn, 2/3 threshold.

128 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

Figure 6.31 shows the total time taken to reach the threshold number of profiles for

5 services, with a threshold of 2/3. This graph exhibits the same behaviour as the graph

for 3 services, but with the exception that the overall time has increased slightly as the

number of services s has increased from 3 to 5. In terms of the number of peers queried

p, the total time taken decreases from an average of 1.349 seconds (3 dp) for 5 peers, to

an average of 1.099 seconds (3 dp) for 11 peers. Similarly, when considering the total

number of peers n, the total time ranges from an average of 1.06 seconds (2 dp) for 1000

peers through to 1.17 seconds (2 dp) for 9000 peers.

6.10 Simulation: Churn with Malicious Peers

The same churn experiments were run again, but with increasing rates of malicious peers.

6.10.1 Correct Responses

As in Section 6.8, the rate r controls the probability that any given peer is malicious, while

t is the threshold. c counts the number of correct profiles received. A successful threshold

vote occurs only when c ≥ t.

Nodes Malicious rate

0 0.1 0.2 0.3 0.4 0.5

1000 12 11 10 9 7 6

2000 13 12 11 10 8 6

3000 13 12 10 9 8 7

4000 12 11 10 9 8 7

5000 12 11 10 8 7 6

6000 13 11 10 8 7 6

7000 12 11 9 7 6 5

8000 12 11 9 8 7 5

9000 12 11 10 9 7 5

Table 6.4: Correct responses with churn and malicious peers, s = 3, p = 5. The cell

colours show the values that did not reach the 1/2 threshold (8) in orange, while those not

reaching the 2/3 threshold (10) are shown in yellow.

Table 6.4 shows the number of correct responses for both thresholds, for 3 services.

All values have been rounded down, as it is not possible to have partial profiles. The

cell colours show the values that did not reach the 1/2 threshold (8) in orange, while

6.10. SIMULATION: CHURN WITH MALICIOUS PEERS 129

Figure 6.32: Correct responses with churn and malicious peers, s = 3, p = 5. A graphical

representation of Table 6.4.

Figure 6.33: Correct responses with churn and malicious peers, s = 5, p = 11. A graphical

representation of Table 6.5.

130 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

Nodes Malicious rate

0 0.1 0.2 0.3 0.4 0.5

1000 43 38 34 30 26 21

2000 44 40 36 31 26 22

3000 44 39 35 31 27 22

4000 44 39 34 30 25 21

5000 43 39 35 30 25 21

6000 43 39 35 30 25 21

7000 42 38 34 30 26 22

8000 45 41 37 32 27 23

9000 43 38 33 29 25 21

Table 6.5: Correct responses with churn and malicious peers, s = 5, p = 11. The cell

colours show the values that did not reach the 1/2 threshold (28) in orange, while those

not reaching the 2/3 threshold (37) are shown in yellow.

those not reaching the 2/3 threshold (10) are shown in yellow. Figure 6.32 is a graphical

representation of the same information.

Table 6.5 shows the number of correct responses for both thresholds, for 5 services.

The cell colours show the values that did not reach the 1/2 threshold (28) in orange, while

those not reaching the 2/3 threshold (37) are shown in yellow. Figure 6.33 is a graphical

representation of the same information.

As in Section 6.8, the tables show that threshold voting is working. However, the ad-

dition of churn to these experiments has reduced the overall effectiveness of the thresh-

old voting. The 1/2 threshold is now effective up to a malicious rate of 30%, while the
2/3 threshold is now only effective up to a malicious rate of 10%. The latter suggests that

the 2/3 threshold is not practical in real-world situations, leaving only the 1/2 threshold.

Alternatively, both thresholds could be used, with the 1/2 acting as an absolute cut-off,

leaving the other threshold acting only as an untrusted “benchmark”.

6.10.2 Trend

Similarly to Section 6.8, a trend was apparent when examining all of the correct response

results for variations in s and p. An analysis showed that the trend was linear, and that

the coefficient of the equation was a multiple of q. Table 6.6 shows part of the analysis

that was conducted (in this instance the values relate to s = 3). All values are rounded to

2 decimal places.

In the table, the coefficient expresses a value of approximately 0.85q (2 dp). To this

6.11. SUMMARY 131

s p q t Equation

03 05 15 08 c = -12.80r + 12.85

03 07 21 11 c = -17.06r + 17.28

03 09 27 14 c = -22.12r + 22.43

03 11 33 17 c = -26.66r + 27.02

Table 6.6: Trend analysis for correct responses when under churn. This table shows part

of the analysis that was conducted (in this instance the values relate to s = 3). All values

are rounded to 2 decimal places.

end, Equation 6.6 describes a rule of thumb that can be used to estimate the number of

correct responses c when under churn, and given the total queries q and the malicious

rate r.

c ≈ b0.85q − rqc (6.6)

6.11 Summary

The experiments conducted in this chapter show that the architecture is robust and per-

forms as designed. The introduction to this chapter considered the evaluation as con-

taining three distinct aspects: the performance of recommendation sources; the ability to

utilise the architecture to provide services; and finally, the ability to scale the architecture

and efficiently provide and verify profiles.

The operation and performance of the source nodes is critical to the architecture. The

experiments show that the source nodes are feasible, but only for non-interactive usage.

In particular, the recommendation source based on co-authorship relationships takes too

long to fetch and compute those relationships. Pre-computing and storing the co-author

relationship information is feasible up to the 3rd degree when using profile compression.

This clearly favours a non-interactive approach to generating and storing the informa-

tion in profiles. Similarly, the H-index source experienced poor worst-case performance.

Based on these results, a non-interactive approach also makes sense for this source. The

usage of a non-interactive approach matches the original design intent of the architec-

ture. Of particular note is that the non-realtime nature of these updates does not affect

the ability for their respective sources to generate regular updates to profiles.

The ability to utilise the architecture to provide services without significant overheads

being introduced was also important. The experiments used a ranking service example

to demonstrate that the overhead of utilising such a service was minimal.

Finally, the experiments show that the architecture handles both churn and malicious

132 CHAPTER 6. EXPERIMENTAL RESULTS AND EVALUATION

peers, and that it can scale with some limitations. The 1/2 threshold has been shown to

work with up to 30% malicious peers while under churn. The simulations also show that

the 2/3 threshold is impractical in real-world situations, as it can only handle a maximum

10% malicious peer rate when churn is present. Extrapolation from the simulation results

show that when limited to a maximum of 5 seconds, and noting that the experiments are

targetted at worst-case performance, the network can scale up to 400,000 nodes using the
1/2 threshold. Increasing the time limit to 15 seconds will allow the network to grow to a

million nodes.

With modern networks scaling to millions of nodes online concurrently, a maximum

of one million nodes is potentially limiting. However, scaling the network to accom-

modate millions of clients can be accomplished without changing the architecture of the

framework.

Firstly, removing all of Nielsen’s user experience time-limits would allow the network

to grow much larger, as has already been demonstrated when increasing the time-limit

from 5 to 15 seconds. As discussed in Nah [223], user experience design will go a long

way towards ameliorating user frustration in waiting for results.

Secondly, the widespread use of agent nodes that act on behalf of non-GRAFT clients

would allow the network to grow significantly. Exactly like the ranking service described

in Section 4.2.1, these agent nodes would provide recommendation services to the com-

munity. Given that any one agent could service a large number of clients, this would

allow the network to scale significantly, also without any design changes. Assuming a

1:100 ratio of agents to clients, the “core” network could reasonably scale to handle over

a 100 million clients.

Thirdly, one of the use cases for GRAFT is in the bootstrapping of new users. For

example, in modern forums, the user registration process often results in an email con-

firmation being sent to validate the email address before granting full access. This regis-

tration can sometimes take anywhere from a few minutes to a few hours, as users often

need to wait for the verification email to arrive. Using this time to fetch and verify a

user’s profile in parallel would obviate any waiting time for that user.

Finally, extensive use of profile caching in services (such as agents), as demonstrated

again by the ranking service, would also remove some of the the waiting time. In partic-

ular, many services are not time critical, or the results can be pre-fetched and cached for

later use.

In summary, the source nodes are feasible as originally intended and designed. Adopt-

ing the GRAFT framework within a service is feasible because using GRAFT does not im-

pose significant performance overheads. Finally, although the “core” network is limited,

this does not impact on the ability for the architecture to service millions of clients.

Chapter 7

Conclusions

This thesis has discussed the design, prototype implementation and evaluation of the

GRAFT framework. GRAFT was designed to meet five clear goals. These goals are re-

stated here from Section 1.3.

G.1 The use of recommendation information derived from non-reputation sources, and

the subsequent usage of this information within a reputation system.

G.2 The integration of human and electronic entities, including the investigation of how

these could be combined into one recommendation system.

G.3 The integration of identity and reputation, with a focus on how reputation informa-

tion could be combined with identity information.

G.4 The use of contextual information within reputation systems. In particular, the abil-

ity to capture and make this information available for use in the evaluation of rec-

ommendations.

G.5 The ability to exchange recommendation information between systems.

The architecture for GRAFT achieves all of the stated requirements. This chapter reviews

the goals, discusses contributions made by this thesis and presents possible future work.

7.1 Review

GRAFT is a generalised framework that supports the collection and distribution of rec-

ommendation information for both people and electronic service entities. The recommen-

dation information is obtained from multiple sources, and fed continuously into GRAFT.

This is then made available to consumers. Recommendation information in GRAFT is

stored in structured documents called profiles, with every profile holding one or more

133

134 CHAPTER 7. CONCLUSIONS

recommendations, each from a unique source. The recommendations that make up a

profile support multiple contexts, and contextual attributes.

A profile is located using the OpenID of an entity. All entities within GRAFT have an

OpenID, which acts as both the entity’s identity, and as a key to locate their recommen-

dation profile. In the lightweight model, the location of the profile is discovered using

the OpenID of the user, while in the integrated model, additional copies of the profile are

located by using the OpenID as a key within a Kademlia DHT.

Each source of recommendation information is made up of either explicit, or implicit,

reputation information. A number of different sources of recommendation are discussed

in this thesis, including two sources derived from non-reputation information. In partic-

ular, a source that utilises Hirsch Index (H-index) information and a source that builds

upon co-author relationship information. However, there are no explicit limits on the

types of information that could be fed into GRAFT profiles.

The consumers utilise the information obtained from the sources to either make deci-

sions (using policies) about individual entities, or to pass the information on to a third-

party consumer, such as in the case of the ranking service. The exact policy implemented

by each consumer may be unique and is only limited by the information made avail-

able by the sources. All of the sources and consumers are nodes in a single Kademlia

DHT. Each node may be asked to store a number of profiles for GRAFT. Rather than store

each profile in the network only once, they are each replicated multiple times for both

reliability and resilience against malicious nodes.

7.1.1 Implementation

The GRAFT proof of concept prototype introduced in Chapter 5 includes functional im-

plementations of all of the major components of the framework. To demonstrate the

versatility of the GRAFT framework, three of the case studies presented in Chapter 4

were implemented. These included a forum, a wiki and a workflow implementation.

In the forum implementation, recommendation information from one forum was fed

to another in order to augment a user’s reputation or bootstrap it where the user was

new. This case study demonstrated that GRAFT could be used to transfer recommen-

dation information from one system to another, and that it could also be used to cache

recommendation information for a single consumer/source system.

The wiki implementation used the H-index and co-author relationship sources to im-

plement access control on wiki pages. This allowed the page creator to limit access to

a page based on both the “degrees of co-authorship” relationship to the user and their

academic standing as measured using H-index.

Finally, the workflow implementation added a ranking service and two additional

components to the Anduril workflow engine. The two components allowed a workflow

7.2. CONTRIBUTIONS 135

to request a list of web services (matching a given context) from the ranking service, and

get back a sorted list of applicable web services. The workflow was then able to call the

highest ranked web service.

7.1.2 Experimental Results and Evaluation

The experimental results and evaluation presented in Chapter 6 show that the GRAFT

framework is robust and performs as designed. Three distinct aspects of the architecture

were evaluated.

Firstly, the two novel recommendation sources were evaluated for their performance.

The evaluation showed that both sources can take significant periods of time to compute

a result and as such are suited only to non-interactive profile updates. However, this

aligns exactly with the original design intent of the architecture.

Secondly, the ability to utilise the framework without introducing significant over-

heads was measured. The evaluation showed that a basic ranking service implementa-

tion added only minimal overhead.

Finally, the third aspect considered the effects of both churn and malicious peers upon

the peer-to-peer network and the ability for the architecture to scale. The architecture was

able to handle both churn and up to 30% malicious peers. A user experience time limit

meant that the network could only scale to 400,000 nodes. However, removing that limit

and adopting some optimisations would allow the architecture to scale successfully to

handle over a 100 million clients.

7.2 Contributions

This thesis makes a number of contributions in the areas of reputation, reputation sys-

tems and access control. The following contributions are re-stated here from Section 1.4.

This thesis:

1. Defines a terminology for reputation that describes reputation, trust and risk and

then discusses the relationships between them. The term recommendation as it is

used in the context of this thesis is also defined and discussed. This contribution

can be found in Section 2.1.

2. Defines a generalised reputation model that can be used to describe reputation in

both online and offline contexts. This model introduces standardised terminology

(based on published research) that is used throughout this thesis. This contribution

can be found in Section 2.2.

136 CHAPTER 7. CONCLUSIONS

3. Defines an individual reputation context model that describes all of the contexts

that an individual entity may possess. This model is useful in that it helps to de-

scribe the contextual nature of an individual and makes clear the need for multi-

ple context support in reputation systems. This contribution can be found in Sec-

tion 2.2.

4. Provides a survey and taxonomy for reputation systems. The survey, conducted

on both academic and commercial systems, was used to drive the development of

the taxonomy. The taxonomy builds on five commonly accepted dimensions, while

also providing nine new dimensions for those aspects of reputation systems that

had not been covered widely previously, or never considered before. The taxon-

omy is subsequently used to build a classification of existing reputation systems,

generating a large number of research leads. These contributions can be found in

Section 2.3.

5. Presents an architecture (Chapter 3) and prototype (Chapter 5) of a fully distributed

recommendation system that supports both human and electronic service entities.

The architecture and prototype encapsulate a paradigm shift in reputation systems

and exhibit a number of unique ideas:

(a) A novel and well-defined three layer architecture stack that underpins the de-

sign and implementation of GRAFT. The stack allows for a modular approach

to building and integrating components into GRAFT, simplifying new design

and development work. In particular, the separation of raw collection from

integration into the peer-to-peer network allows for efficient nodes that only

implement those aspects of the stack they require.

(b) An exploration of identity and reputation integration. All recommendation

information in GRAFT is tied to identity information. Knowing the identity

of an entity is sufficient to be able to locate and consume their recommenda-

tion information. Previous systems have treated these two concepts as distinct,

leading to classic two-step authenticate and authorise models. GRAFT instead

considers all information about an entity when granting access, leading to bet-

ter decisions.

(c) The integration of both human and electronic service entities into one reputa-

tion system. These two types of entities are treated identically within GRAFT.

Their integration into one reputation system is possible due to the fact that

identity and recommendation information have been combined using OpenID.

(d) The utilisation of a peer-to-peer network to store and replicate recommenda-

tion information. The peer-to-peer network distributes the load evenly across

7.3. FUTURE WORK 137

the peers that make up the network, whilst also ensuring robustness for pro-

files.

(e) The utilisation of both explicit and implicit reputation information. In par-

ticular, the use of information previously not regarded as being useful when

combined with reputation such as demographic, social and derived informa-

tion.

(f) The ability to retain the context in which reputation information was gener-

ated. Understanding the context of the information allows for it to be utilised

in a meaningful way by a consumer.

(g) The utilisation of recommendation information in policy description and eval-

uation. The ability to combine recommendation information from multiple

sources in the building of policies allows for flexibility that is otherwise not

possible. For example, policies can build on the user’s demographics and their

professional standing, but can also utilise their social relationships.

6. Analysis of the performance of the GRAFT architecture. In particular, the perfor-

mance is measured and significant factors affecting performance are identified us-

ing a series of experiments that utilise both the prototype and large-scale simula-

tions. The simulations consider both the “perfect” state and increasing levels of

churn and malicious peers. These contributions can be found in Chapter 6.

7.3 Future Work

The goals and scope stated in Chapter 1 purposely limited the work that would be ad-

dressed in this thesis. However, a number of areas for future work were identified during

the writing of this thesis and are documented here.

7.3.1 Architecture

Agent nodes

Given the limitations of the architecture, further research should consider the widespread

use of “agents”. Agent nodes would be fully integrated into the network, but act on

behalf of requestors. Much like the ranking service described in Section 4.2.1, these agents

would provide recommendation services to the community. Given that an agent could

service a large number of clients, this would allow the network to scale significantly.

Research is required to determine the scability of agents, and how profile caching affects

both their performance and the accuracy of their results.

138 CHAPTER 7. CONCLUSIONS

Alternative Frameworks

One of the key requirements that drove the GRAFT design was that it was open and

based on existing standards. OpenID is an open and standard approach to distributed

identity on the Internet. As a key component of the framework, OpenID was critical to

ensuring that identity and reputation could be tied together. An aspect that was not con-

sidered or explored was the use of identity frameworks other than OpenID. Commercial

frameworks were ruled out because of their closed nature. However, there may be other

frameworks that could be used which may confer additional advantages. Further work

is required to establish if other identity frameworks could be used, and if these would

behave in a similar fashion to OpenID, or if compromises would be required.

7.3.2 Profiles

Validation

Within this thesis, profile validation was performed using threshold voting. Further work

is required to determine if other approaches would work when validating profiles, and if

these might be more efficient. For example, it might be possible to store only checksums,

and use these to validate a profile, rather than storing entire replicas. Alternatively, the

use of some kind of homomorphic encryption might radically change the architecture.

Granularity

Although sources generate recommendations, the effective unit of data exchange within

GRAFT is the profile. Further research is required to determine if using recommenda-

tions as the most granular unit would be more efficient, or provide benefits that are not

possible when using profiles as the most granular unit (for example, the avoidance of

concurrency issues). In particular, it might be possible to use some form of indirection to

more efficiently distribute and store profiles within GRAFT.

Context Enumeration

While GRAFT supports multiple contexts, no research has been undertaken to identify

and classify all of the possible contexts. This is useful research because without it, source

and consumer entities will not be able to recognise and compare contexts. In particu-

lar, a classification of contexts will support the exchange of recommendations between

different entities, but also the generalisation of recommendations. The latter allows for

the decomposition of a recommendation generated in a specific context to a more generic

context. For example, a recommendation generated in the “auctioneering” context might

be generalised to the more general “buying and selling” context.

7.3. FUTURE WORK 139

7.3.3 DHT

Attacks

The GRAFT framework utilises a distributed hash table. It was noted in Chapter 3 that

this leaves GRAFT open to both Sybil and Eclipse attacks. Research is required to eval-

uate possible mitigations against these attacks, and how they affect the network and its

performance. In particular, as GRAFT can carry reputation information about electronic

entities, being able to utilise this information during the normal operation of the network

may help to counter some attacks. The proposed defence would utilise the reputation

information carried by GRAFT during the creation of new nodes. The number of new

nodes that an entity would be allowed to create would be proportional to their repu-

tation. As a component of this work, the ability to map a node ID to an OpenID will

need to be considered. Further, as GRAFT may have a number of long-lived nodes, using

these to moderate new node registrations may also help to play an important role in the

mitigation of Sybil attacks.

Concurrency

The current architecture does not explicitly handle concurrency issues. An optimistic

mechanism seems most appropriate for GRAFT. However, further work is required to

determine how a node might determine that an update was in progress and abort its

own update.

Protocol

This thesis makes extensive use of key/value pair storage within the Kademlia distributed

hash table for storing profiles. Further research is required on minor protocol changes

that would make the fetching and storing of profiles more efficient. In particular, and

as mentioned above, reducing the granularity of the information stored within GRAFT

might make for further efficiency.

Replication

The work in this thesis avoids using Kademlia replication. Further research is required to

determine whether the performance of the distributed hash table could be improved by

enabling replication, and how this might affect the current approach to profile verification

using threshold voting.

140 CHAPTER 7. CONCLUSIONS

Appendix A

Background

This chapter provides an introduction and overview to some of the key technologies that

GRAFT builds upon. This chapter is not intended to provide a detailed introduction,

but instead focuses on those aspects that are necessary to understanding the work in this

thesis.

A.1 OpenID

OpenID [258] is a decentralised authentication protocol that allows a user to maintain a

single digital identity. This identity can be registered with many sites. Each site, also

known as a Relying-Party (RP), stores only the user’s OpenID and any locally required

state. The RP does not need to implement any authentication mechanisms, or store any

authentication related information. Instead, authentication is only ever performed by the

OpenID Provider (OP) where the OpenID is registered.

Figure A.1 shows a standard OpenID authentication sequence. A user wishing to ob-

tain a service from an RP must first authenticate itself. The user presents their OpenID to

the RP, and is redirected back to his or her OP. The OP authenticates the user using a pre-

viously agreed method. The actual authentication method is unspecified in the OpenID

standard1, however in most instances username and password authentication is used.

Once authenticated, the user is redirected back to the RP with a cryptogrphic token gen-

erated by the OP. The token is verified by the RP by establishing a private connection

with the OP. Once verified, the RP can provide the requested service to the user.

An extension to the OpenID protocol called Attribute eXchange (AX) [134] allows the

relying party to request a set of attributes that further describe the authenticating user.

These attributes usually include information such as the full name, email address and

gender of the user. However, an OP may refuse to provide any or all of the requested

1http://openid.net/specs/openid-authentication-2_0.html - last accessed October 2014.

141

http://openid.net/specs/openid-authentication-2_0.html

142 APPENDIX A. BACKGROUND

User Agent
(Browser)

Relying
Party (RP)

OpenID
Provider (OP)

Present OpenID

Redirect to OP

Redirect to RP

Establish session

Redirect to OP

Redirect to RP

A
u

th
en

ti
ca

te
 a

n
d

C

h
ec

k
P

er
m

is
si

o
n

s.

D
is

co
ve

r
O

P
A

u
th

en
ti

ca
ti

o
n

C

o
m

p
le

te

Figure A.1: OpenID Authentication. A standard OpenID authentication sequence. A user

wishing to obtain a service from an RP must first authenticate itself. The user presents

their OpenID to the RP, and is redirected back to his or her OP. The OP authenticates the

user using a previously agreed method.

attributes, depending on the user’s privacy preferences.

A.1.1 OpenID Discovery

In order for the RP to automatically find the OP during authentication, it uses something

called endpoint discovery. Endpoint discovery allows the RP to find a URL where it can

obtain service from the OP.

The exact type of endpoint discovery used depends on the type of OpenID used. The

two possible types are URL and XRI-based, however only URL-based OpenID will be

discussed. The OpenID specification states that endpoint discovery will be attempted

using two mechanisms, the Yadis Protocol and the HTML-Discovery Protocol. The Yadis

Protocol is always attempted first, followed by the HTML-Discovery Protocol if that fails.

By preference, the discovery protocol should yield a service descriptor (in the form of an

XRDS file), or simply a URL.

XRDS document

XRDS is an XML-based file format that allows for the discovery of metadata about a

resource. The XRDS document often resides at a web location associated with the re-

source. An XRDS often contains a number of service descriptors, each which describe

a service type and a location where this service can be found. Listing A.1 shows an

example XRDS document that contains two service descriptors. The first describes an

A.1. OPENID 143

OpenID service (http://specs.openid.net/auth/2.0/signon), while the second describes

an OpenRep service (http://specs.open-rep.net/rx/1.0/).

<?xml version="1.0" encoding="UTF-8"?>

<xrds:XRDS xmlns:xrds="xri://\$xrds" xmlns="xri://\$xrd*(\$v*2.0)">

<XRD>

<Service priority="10">

<Type>http://specs.openid.net/auth/2.0/signon</Type>

<URI>https://provider.org/endpoint/</URI>

</Service>

<Service priority="50">

<Type>http://specs.open-rep.net/rx/1.0/</Type>

<URI>http://provider.com/endpoint/</URI>

</Service>

</XRD>

</xrds:XRDS>

Listing A.1: Example of an XRDS document

The Yadis Protocol

The Yadis protocol2 attempts to obtain one or more relevant service descriptors from an

XRDS document. In many instances the OpenID will itself point directly at an XRDS

document. The XRDS document will contain one or more service descriptors that tell

the discoverer where to find services for that OpenID. The example service descriptor in

Listing A.2 shows an OpenID2 endpoint. The URI field tells the discoverer where the OP

for the current endpoint can be found.

<Service priority="40">

<Type>http://specs.openid.net/auth/2.0/signon</Type>

<URI>https://provider.org/endpoint/</URI>

</Service>

Listing A.2: Example of an XRDS service descriptor

In some instances the OpenID may point to a HTML document. In these cases, an X-
XRDS-Location meta tag in the HTML header may be provided. The URL within this

meta tag, if it exists, will point to an XRDS document. Listing A.3 shows an example of

such a meta tag.

<meta http-equiv="X-XRDS-Location" content="http://forum.com/?q=xrds" />

Listing A.3: Example of a HTML meta tag

2http://yadis.org/ - last accessed January 2013.

http://yadis.org/

144 APPENDIX A. BACKGROUND

HTML-Discovery Protocol

If the Yadis Protocol failed to resolve to a meaningful XRDS document, or the XRDS doc-

ument did not contain any relevant service descriptors, the HTML-Discovery protocol

will be used. This protocol requires the discoverer to search for OpenID2 link tags within

the HTML header of the document found at the endpoint. Listing A.4 shows the URL of

an OpenID2 endpoint within a HTML link tag.

<link rel="openid2.provider" href="http://provider.org/endpoint/" />

Listing A.4: Example of a HTML link tag

A.2 OpenRep

OpenRep is the collective name for the GRAFT OpenID extensions. OpenRep has three

major components:

• OpenRep discovery

• OpenRep authentication transfer

• OpenRep web interfaces

These components are described in the following sections.

A.2.1 OpenRep Discovery

As with OpenID, a GP can be discovered using OpenID endpoint discovery. The URL

discovered in an XRDS document or in the HTML document at the endpoint will point

to a GRAFT provider. This provider will maintain the entity’s “default” profile copy. In

Listing A.5, the target has made available an XRDS document at the OpenID Identifier

endpoint. The XRDS document has one service entry for the target’s provider.

<Service priority="50">

<Type>http://specs.open-rep.net/rx/1.0/</Type>

<URI>http://provider.com/endpoint/</URI>

</Service>

Listing A.5: Service descriptor for GRAFT provider

In those cases where an OpenID endpoint does not have an XRDS document, HTML

discovery may yield appropriate meta tags in the HTML document. Listing A.6 shows

the same provider link as the previous example.

<link rel="openrep.provider" href="http://provider.com/endpoint/" />

Listing A.6: HTML link tag for GRAFT provider

A.3. DISTRIBUTED HASH TABLES 145

A.2.2 OpenRep Authentication Transfer

As discussed in Section 3.3, the last step of the OpenID authentication sequence includes

a profile transfer from the GP. This copy is obtained using the Attribute eXchange (AX)

extension to OpenID. This extension is widely supported and is often used to transfer

nickname or email address details to the RP. In this instance the AX extension is used to

transfer a profile with a single recommendation. The recommendation is the one gener-

ated by the RP, or one from another site, but in the same context.

A.2.3 OpenRep Web Interfaces

Once located, the GP maintains a RESTful interface [109] implemented using HTTP.

Aside from the standard OpenID functions, each GP is able to fetch and store profiles,

using the target entity’s OpenID as a key. The profile for a given entity can be retrieved

using HTTP GET with the following URL syntax:

http://provider.com/?openrep.ns=http://specs.open-rep.net/rx/1.0/&openrep.mode=

fetch&openrep.identity=openid

Listing A.7: OpenRep HTTP Fetch

If the resulting HTTP status code is 200, the response body will contain a valid profile.

Otherwise, the response body will contain an error message. Profiles can be updated

using HTTP PUT with the following URL syntax:

http://provider.com/?openrep.ns=http://specs.open-rep.net/rx/1.0/&openrep.mode=

store&openrep.identity=openid

Listing A.8: OpenRep HTTP Store

The profile for the user should be in plain ASCII and contained in the body of the PUT

operation. If the resulting HTTP status code is 200, the profile was stored correctly. Oth-

erwise, the response body will contain an error message. Providers may reject profiles

where the “updated” element is earlier than the one it already has.

A.3 Distributed Hash Tables

A distributed hash table (DHT) is a distributed approach to the classic hash table. Keys

and their associated values (often called key/value pairs) are stored in the nodes that

comprise the system. Any participating node can retrieve a value using only its key. In

theory, a DHT can locate any given key within O(logN) hops on average, where N is the

total number of peers [198].

Nodes joining the system are assigned an ID, often randomly generated or based on

their IP address [298, 247]. In a DHT that is structured as a ring of N nodes, each node

146 APPENDIX A. BACKGROUND

will then get responsibility for 1/N of the total key space. When a new key/value pair is

introduced into the system, it is routed towards the nodes whose ID are most similar to

the key. In many cases, the key is simply a hash of the value that is being stored. SHA1

is used as the hashing algorithm in both Chord [298] and Kademlia [211]. Replicas of

values could be maintained in a distributed hash table by associating multiple hashes

with a single value.

In general, the mapping of keys to nodes is done in such a way as to minimise the

impact on the system of any nodes joining or leaving. Consistent Hashing [169] is one

such approach. Consistent hashing works by assigning keys to nodes in such as way that

when a node joins or leaves, it only affects a small number of keys. In theory, only K/N

keys are affected, where K is the total number of keys and N is the total number of peers

[298].

As a direct result of both the O(logN) key lookup performance and consistent hash-

ing, DHTs are able to scale to large numbers of nodes and perform well even under churn.

A.3.1 Kademlia

Kademlia is a distributed hash table implementation that was designed by Maymounkov

and Mazières [211].

Nodes joining the network are assigned a 160-bit identifier, generated using the SHA-

1 hash function across a random number [103]. This same identifier is also used by the

Kademlia protocol to locate keys that are stored in the network. The distance between

any two nodes in Kademlia is based on the exclusive OR (XOR) operation. Nodes in the

network are structured into a binary tree, where every node is effectively a leaf in the

tree. The shortest unique prefix of the node’s identifier controls a node’s location in the

tree. The XOR distance metric means that the distance from node x to y is the same as

the distance from node y to x. This last part is an important property of Kademlia as

other DHTs need to implement a stabilization protocol in order to compensate for the

asymmetric nature of the overlay [41].

Appendix B

Comparison of GRAFT and XACML

B.1 Comparison of GRAFT and XACML

The XML Access Control Mark-up Language (XACML) [123] is “standard that describes

both a policy language and an access control decision request/response language”1.

XACML is primarily an Attribute-Based Access Control system (ABAC), where all

access decisions are based on characteristics of three elements: the requestor, the resource

being requested and the environment. The characteristics of any of these elements are

called attributes, and are used during policy evaluation to decide if the requestor should

have access.

The policy language in XACML is used to define access control requirements, while

the request/response language allows a policy enforcement point to query if an action

should be allowed and understand the result of that query.

XACML operates using the three attribute elements identified above, plus an addi-

tional “action” attribute element:

• Subject Attributes. A subject represents an entity such as a user or electronic ser-

vice [348, 252, 123]. Every subject has a set of attributes that help to identify and

define the subject. Common attributes for subjects include name, title, role and

organisation.

• Resource Attributes. A resource, sometimes called an object, has an action per-

formed on it by a subject. Resources include information, services or hardware.

Common attributes for resources include name, owner, creation and/or last changed

dates. Resource attributes are sometimes extracted from the metadata associated

with the resource [348, 252], for example the dimension metadata might be ex-

tracted from an image resource.
1https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_

to_XACML.html - last accessed October 2014.

147

https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

148 APPENDIX B. COMPARISON OF GRAFT AND XACML

• Action Attributes. An action is an operation on a resource [123].

• Environment Attributes. Environmental attributes are those that define the context

of the environment in which the subject and resource reside. These attributes are

independent of the subject, resource or action [123]. Typical examples include the

time and date, operational state and resource availability.

While GRAFT is geared towards providing up to date attributes for both subjects

and resources, it does not explicitly consider separate action or environmental attributes.

These types of information are typically handled via variables in the policy language.

Determining which policies apply when using XACML is handled using dynamic bind-

ing. In GRAFT, it is the situation that determines which policies are executed. If the user

is seeking access to a particular resource, it is the attributes of the subject and resource,

along with the access request that cause a GRAFT client to evaluate a particular policy.

This makes it simple to determine which policy is evaluated when.

Subject PEP Resource

PIP

PAP

PDP
Attributes

PIP
PIP

Policy Store

Figure B.1: A simple attribute-based authorisation architecture.

Figure B.1 shows a simple attribute-based authorisation architecture. Using the terminol-

ogy promogulated by [314] (with the exception of the Policy Administration Point), the

key components of this architecture can be described as:

• Policy Enforcement Point. The PEP intercepts the subject’s request to access the

resource, and asks the PDP to make a decision about the request. The PEP acts on

the decision received from the PDP by either allowing or denying the request.

• Policy Decision Point. The PDP is responsible for evaluating the stored policies

against access requests received from the PEP [252]. Any subject or resource at-

tributes required during policy evaluation are obtained from the PIPs.

• Policy Information Point. PIPs are the source of subject, resource and environ-

mental attribute values. Although a PIP is not necessarily the originator of these

B.1. COMPARISON OF GRAFT AND XACML 149

attribute values, it is nevertheless responsible for obtaining the attributes and en-

suring that they are matched to the right subjects, resources and environments.

• Policy Administration Point. The PAP manages the stored policies. Policies typi-

cally consist of rules for accessing resources. The rules may consist of conditional

statements involving attributes related to the subject, resource, action or environ-

ment.

Subject PEP Resource

PIP

PAP

PDP

Policy Store

Subject PEP Resource

PIP

PAP

PDP

Policy Store

XACML Request/

Response Protocol

Implementation

Specific

XACML

Policy Language

XACML Model GRAFT Model

Optional

Attributes Attributes

OpenRep

Recomm. Protocol

PIPPIP PIPPIP

Figure B.2: Comparison of XACML and GRAFT.

In XACML, the policy language is used to define access control rules and conditions.

Many rules can be combined into one policy, which in turn can be combined to form a

policy set. XACML depends on the PAP to author appropriate policies and on the PIPs to

create and maintain attributes for subjects, resources and environments. These policies

and attributes are often created manually. The potential number of attributes on subjects

and resources (the NSA agreed to 13 subject attributes for use within the US Department

of Defense [171]), can lead to significant work.

In GRAFT however, the PAP is optional, as it is up to each individual PDP to decide

how it will manage its access control policies. The examples in this paper have used a

PHP-based rules engine, however a PDP could equally have implemented its policies us-

ing XACML. GRAFT sources can be seen as dynamic PIPs, collecting and making avail-

able attributes for subjects and resources. As mentioned previously, GRAFT does not

handle attributes for actions and environments, these are handled as part of the access

control decision.

Likewise, in GRAFT, there is no explicit requirement for a separate access control

request/response language as each policy decision point can implement their access con-

trol policies as they desire. In fact, the XACML Request/Response language could be

utilised if desired.

150 APPENDIX B. COMPARISON OF GRAFT AND XACML

Appendix C

SimGrid

A simulation using the SimGrid [58] simulation software was built initially. The exper-

imental work using this simulation software was stopped at the base case because of

unexpected and unexplainable results. This section documents some of those results.

C.1 SimGrid

SimGrid1 is a tool designed to study large-scale, distributed systems. SimGrid provides

a library of routines that a simulation is linked against, giving us an API for the control

of processes and messages.

All SimGrid simulations require a platform file that describes the networks and hosts

that simulated peers will run on. All of the experiments were based on two platform

files. The first, called “Cluster”, described a single large cluster that contained all of

the hosts. The second, called “Grid5000”, described a modified Grid’5000 environment2.

The structure of the autonomous systems (AS) and the routing between them was not

changed for the experiments. However, clusters within each AS were modified to hold

the same number of hosts, so that a uniform distribution of hosts was possible.

Similarly, every SimGrid simulation also requires a deployment file that controls how

the simulated peers are deployed across the hosts specified in the platform file. In each

simulation, peers are deployed to hosts either randomly, or in a uniform fashion such

that clusters are filled evenly.

The simulation, based in part on sample code provided as part of the SimGrid distri-

bution, implements a Kademlia DHT with n identical peers and a single service composer

peer. Each peer joins the network, and then answers “find node” and “profile queries”.

The composer peer waits until after the network has stabilised, and then issues profile

queries to p peers for each service s that it is interested in, resulting in a total of q profile

1http://simgrid.gforge.inria.fr/ - last accessed April 2014.
2https://www.grid5000.fr/ - last accessed April 2014.

151

http://simgrid.gforge.inria.fr/
https://www.grid5000.fr/

152 APPENDIX C. SIMGRID

queries being sent. The number of services s and peers p is varied as required. The p

peers for each run are randomly selected from the available peers before the simulation.

A simple threshold was implemented so that although p peers are queried, the lookup

of a profile was considered complete when a threshold of t profile query responses is in

agreement. The threshold value is set to 3/4 of the queried peers. For example, if there are

11 peers, the threshold value will be 8 profile query responses.

C.1.1 Cluster Platform

Figure C.1: Total time for s = 3 on Cluster Platform.

As can be seen from Figure C.1, the average total time to receive t profiles increased

linearly with the number of peers queried p for each service and with the total number of

peers n. In contrast to the graphs presented in Chapter 6, the slope on the graph changes

noticeably at two points. The first of these is at around 800 nodes, and the second at

around 2000 nodes.

The inter-arrival time for profiles is shown in Figure C.2. This graph shows a trend to-

ward decreasing inter-arrival times with increasing queries q, however the slope changes

at 800 and 2000 nodes are again visible. There is nothing apparent in the configuration or

simulated environment that would allow an explanation for these inflexion points.

C.1.2 Grid5000 Platform

The average total time to receive t profiles is shown in Figure C.3. This figure shows the

same linear increase in time as Figure C.1, however there is an unexpected increase in

time at 800 nodes, and another change in trend at 2000 nodes. The increase at 800 nodes

represents approximately 0.3 seconds.

C.1. SIMGRID 153

Figure C.2: Response inter-arrival time for s = 3 on Cluster Platform.

Figure C.3: Total time for s = 3 on Grid’5000 Platform.

Given that the entire platform and deployment model for the nodes in this simulation

have changed, the issues at 800 and 2000 nodes are unexplained from a simulation per-

spective. A reasonable, but unproven, explanation for these issues is that the simulator

implementation has a number of internal limits, and once these are reached, it changes

the overall time taken to process the simulation.

154 APPENDIX C. SIMGRID

Appendix D

Samples

This chapter provides sample listings for some of the key components developed in

Chapter 5: Implementation.

D.1 GRAFT Profiles

The fictional profile given in Listing D.1 contains two recommendations. The subject, or

target, of both recommendations is Alice. The first recommendation, from a forum site,

describes a simple membership relationship, with a rating score of 126. This recommen-

dation may be useful to other sites that operate within the same context, which in this

instance is enumerated as “public.forum”. The second recommendation, from a fictional

DBLP source evaluates Alice in an academic context. This recommendation source has

assigned Alice a H-index score of 31.

<?xml version="1.0"?>

<container xmlns="http://specs.open-rep.net/rx/1.0/">

<recommendations count="2">

<recommendation id="http://www.forum.net/">

<target type="openid">http://id.example.net/alice/</target>

<source type="openid">http://www.forum.net/</source>

<assert type="member" context="public.forum"/>

<assert type="rating" context="public.forum">126</assert>

<updated>2013-07-16T03:23:45+00:00</updated>

</recommendation>

<recommendation id="http://scholar.dblp.org/">

<target type="openid">http://id.example.net/alice/</target>

<source type="openid">http://scholar.dblp.org/</source>

<assert type="hindex" context="academic.scholarship">31</assert>

<updated>2013-07-18T08:11:59+00:00</updated>

</recommendation>

</recommendations>

155

156 APPENDIX D. SAMPLES

</container>

Listing D.1: Sample of a profile

In the sample profile in listing D.2, Alice has nominated Bob as her delegate in the “pub-

lic.forum” context. This means that Bob may temporarily utilise Alice’s permissions in

that given context. If Alice does not have any permissions in the system in question, then

Bob is not able to obtain them through Alice.

<?xml version="1.0"?>

<container xmlns="http://specs.open-rep.net/rx/1.0/">

<recommendations count="1">

<recommendation id="http://provider.com/endpoint/">

<target type="openid">http://id.example.net/alice/</target>

<source type="openid">http://provider.com/endpoint/</source>

<delegate context="public.forum" type="openid">http://id.example.net/bob/

</delegate>

<updated>2013-07-19T12:51:10+00:00</updated>

</recommendation>

</recommendations>

</container>

Listing D.2: Sample of a profile with delegation

D.2 GRAFT Policies

In the implementation described in Chapter 5, GRAFT polices were written using the

PHP-based rules engine Ruler. The following sample policies were utilised in the im-

plementation. Equations 5.1 and 5.2 describe common situations in the forum scenario

described in Section 5.1, and are implemented in Ruler by the following code fragments.

$rb->logicalOr(

$rb[’rating’]->lessThan(10),

$rb[’admin’]->equalTo(null)

)

Listing D.3: Sample Ruler policy for Equation 5.1

$rb->logicalAnd(

$rb[’rating’]->greaterThanOrEqualTo(100),

$rb[’forum’]->notEqualTo(’administration’)

)

Listing D.4: Sample Ruler policy for Equation 5.2

In a similar fashion, Section 5.2 describes the implementation of a GRAFT-enabled wiki.

Equations 5.3 and 5.4 describe common situations in a wiki scenario, and are imple-

mented in Ruler by the following code fragments.

D.3. WORKFLOW 157

$rb->logicalAnd(

$rb[’hindex’]->greaterThanOrEqualTo(1),

$rb->logicalAnd(

$rb[’degree’]->greaterThanOrEqualTo(0),

$rb[’degree’]->lessThanOrEqualTo(3)

)

)

Listing D.5: Sample Ruler policy for Equation 5.3

$rb->logicalAnd(

$rb[’hindex’]->greaterThanOrEqualTo(20),

$rb->logicalAnd(

$rb[’degree’]->greaterThanOrEqualTo(0),

$rb[’degree’]->lessThanOrEqualTo(2)

)

)

Listing D.6: Sample Ruler policy for Equation 5.4

D.3 Workflow

The Anduril workflow given in Listing D.7 illustrates the use of the “CallService” com-

ponent that was written for GRAFT. This component calls one or more web services with

the given input data. The first parameter passed to the component is a list of URLs that

represent web services. These are tried in order, until one succeeds. Any data pased to

the component as the second parameter is passed to the web service. Data returned from

the call is made available to the workflow engine via the output of the component.

data = INPUT(path="data.txt")

list = INPUT(path="list.csv")

output = CallService(list, data)

OUTPUT(output)

Listing D.7: Sample workflow with CallService

The Anduril workflow in Listing D.8 is almost identical to the previous listing, with the

exception that the “RankService” component is initially called to generate a list of web

services. This component is passed only a single parameter, the “category”, that controls

the context of the web services that are returned.

data = INPUT(path="data.txt")

list = RankService(category="public.services")

output = CallService(list, data)

158 APPENDIX D. SAMPLES

OUTPUT(list)

OUTPUT(output)

Listing D.8: Sample workflow with RankService

D.4 Oversim

The OverSim configuration given in Listing D.9 was used for the churn experiments dis-

cussed in Section 6.9.

[Config GRAFT]

description = GRAFT

repeat = 40

seed-set = ${runnumber}

**.transitionTime = 500s

**.measurementTime = 9000s

**.churnGeneratorTypes = "oversim.common.NoChurn oversim.common.ParetoChurn"

**.churnGenerator[0].targetOverlayTerminalNum = 1

**-0[*].overlayType = "oversim.overlay.kademlia.KademliaModules"

**-0[*].tier1Type = "oversim.applications.graft.GCompModules"

**.churnGenerator[1].targetOverlayTerminalNum = ${N=1000, 2000, 3000, 4000,

5000, 6000, 7000, 8000, 9000}

**-1[*].overlayType = "oversim.overlay.kademlia.KademliaModules"

**-1[*].tier1Type = "oversim.applications.graft.GNodeModules"

**-1[*].lifetimeMean = 100s

**-1[*].deadtimeMean = 100s

**.initPhaseCreationInterval = 0.01s

**.sampPeriod = 1000s

**.waitPeriod = 8000s

**.numServices = ${S=3, 5}

**.numPeers = ${P=5, 7, 9, 11}

**.numQueries = ${Q=($S)*($P)}

**.overlay.kademlia.lookupRedundantNodes = 16

**.overlay.kademlia.s = 8

**.overlay.kademlia.k = 16

**.overlay.kademlia.lookupMerge = true

**.overlay.kademlia.lookupParallelPaths = 1

**.overlay.kademlia.lookupParallelRpcs = 1

Listing D.9: Sample OverSim Configuration

Bibliography

[1] Advogato. http://www.advogato.org/. Last accessed 2014-04-07.

[2] Amazon. http://www.amazon.com/. Last accessed 2014-04-07.

[3] Couchsurfing. http://www.couchsurfing.org/. Last accessed 2014-04-07.

[4] Digg. http://digg.com/. Last accessed 2014-04-07.

[5] Dropbox. http://www.dropbox.com/. Last accessed 2014-04-07.

[6] eBay. http://www.ebay.com/. Last accessed 2014-04-07.

[7] ePinions. http://www.epinions.com/. Last accessed 2014-04-07.

[8] Facebook. http://www.facebook.com/. Last accessed 2014-04-07.

[9] Google. http://www.google.com/. Last accessed 2014-04-07.

[10] LinkedIn. http://www.linkedin.com/. Last accessed 2014-04-07.

[11] MTurk. http://www.mturk.com/. Last accessed 2014-04-07.

[12] Reddit. http://www.reddit.com/. Last accessed 2014-04-07.

[13] Slashdot. http://slashdot.org/. Last accessed 2014-04-07.

[14] Stackoverflow. http://stackoverflow.com/. Last accessed 2014-04-07.

[15] TrustedSource. http://www.trustedsource.org/. Last accessed 2014-04-07.

[16] Trustribe. http://www.trustribe.com/. Last accessed 2014-04-07.

[17] Turkopticon. http://turkopticon.differenceengines.com/. Last ac-

cessed 2014-04-07.

[18] Wikipedia. http://www.wikipedia.org/. Last accessed 2014-04-07.

[19] Yelp. http://www.yelp.com/. Last accessed 2014-04-07.

159

http://www.advogato.org/
http://www.amazon.com/
http://www.couchsurfing.org/
http://digg.com/
http://www.dropbox.com/
http://www.ebay.com/
http://www.epinions.com/
http://www.facebook.com/
http://www.google.com/
http://www.linkedin.com/
http://www.mturk.com/
http://www.reddit.com/
http://slashdot.org/
http://stackoverflow.com/
http://www.trustedsource.org/
http://www.trustribe.com/
http://turkopticon.differenceengines.com/
http://www.wikipedia.org/
http://www.yelp.com/

160 BIBLIOGRAPHY

[20] ABDUL-RAHMAN, A., AND HAILES, S. A distributed trust model. In Proceedings of
the 1997 workshop on New security paradigms (1998), ACM, pp. 48–60.

[21] ABDUL-RAHMAN, A., AND HAILES, S. Supporting trust in virtual communities. In

System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference
on (2000), IEEE, pp. 9–pp.

[22] ABERER, K. P-Grid: A Self-Organizing Access Structure for P2P Information Sys-

tems. In Cooperative Information Systems, C. Batini, F. Giunchiglia, P. Giorgini, and

M. Mecella, Eds., vol. 2172 of Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2001, pp. 179–194.

[23] ABERER, K., CUDRÉ-MAUROUX, P., DATTA, A., DESPOTOVIC, Z., HAUSWIRTH,

M., PUNCEVA, M., AND SCHMIDT, R. P-Grid: A Self-Organizing Structured P2P

System. SIGMOD Rec. 32 (September 2003), 29–33.

[24] ABERER, K., AND DESPOTOVIC, Z. Managing Trust in a Peer-2-Peer Information

System. In Proceedings of International Conference on Information Knowledge Manage-
ment (2001), CIKM, ACM.

[25] ABERER, K., AND DESPOTOVIC, Z. Managing trust in a peer-2-peer information

system. In CIKM ’01: Proceedings of the tenth international conference on Information
and knowledge management (New York, NY, USA, 2001), ACM, pp. 310–317.

[26] AGUDO, I., FERNANDEZ-GAGO, C., AND LOPEZ, J. A Multidimensional Rep-

utation Scheme for Identity Federations. In Public Key Infrastructures, Services and
Applications, F. Martinelli and B. Preneel, Eds., vol. 6391 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, pp. 225–238.

[27] AGUDO, I., FERNANDEZ-GAGO, C., AND LOPEZ, J. A multidimensional reputa-

tion scheme for identity federations. In Public Key Infrastructures, Services and Ap-
plications, F. Martinelli and B. Preneel, Eds., vol. 6391 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2010, pp. 225–238.

[28] AIELLO, L. M., MILANESIO, M., RUFFO, G., AND SCHIFANELLA, R. Tempering

kademlia with a robust identity based system. In Peer-to-Peer Computing, 2008.
P2P’08. Eighth International Conference on (2008), IEEE, pp. 30–39.

[29] AKAVIPAT, R., AL-AMEEN, M., KAPADIA, A., RAHMAN, Z., SCHLEGEL, R., AND

WRIGHT, M. ReDS: A Framework for Reputation-Enhanced DHTs. Parallel and
Distributed Systems, IEEE Transactions on 25, 2 (Feb 2014), 321–331.

[30] ALBRECHT, W. S., ALBRECHT, C. O., ALBRECHT, C. C., AND ZIMBELMAN, M. F.

Fraud Examination, 4th ed. South-Western College Publications, 2011.

BIBLIOGRAPHY 161

[31] BAFOUTSOU, G., AND MENTZAS, G. Review and functional classification of collab-

orative systems. International journal of information management 22, 4 (2002), 281–305.

[32] BAGHERI, E., AND GHORBANI, A. A. Behavior Analysis through Reputation Prop-

agation in a Multi-context Environment. In PST ’06: Proceedings of the 2006 Inter-
national Conference on Privacy, Security and Trust (New York, NY, USA, 2006), ACM,

pp. 1–7.

[33] BAGHERI, E., ZAFARANI, R., AND BAROUNI-EBRAHIMI, M. Can reputation mi-

grate? on the propagation of reputation in multi-context communities. Knowledge-
Based Systems 22, 6 (2009), 410 – 420.

[34] BAILEY, K. D. Typologies and Taxonomies: An Introduction to Classification Techniques.

Sage, 1994.

[35] BAKKER, A., AMADE, E., BALLINTIJN, G., KUZ, I., VERKAIK, P., VAN DER WIJK,

I., VAN STEEN, M., AND TANENBAUM, A. S. The Globe Distribution Network.

In Proceedings of FREENIX Track: 2000 USENIX Annual Technical Conference (June

2000).

[36] BALAKRISHNAN, H., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA,

I. Looking up data in P2P systems. Communications of the ACM 46 (February 2003),

43–48.

[37] BALASUBRAMANIAN, V., AND BASHIAN, A. Document Management and Web

technologies: Alice marries the Mad Hatter. Communications of the ACM 41, 7 (1998),

107–115.

[38] BALLINTIJN, G., VAN STEEN, M., AND TANENBAUM, A. S. Scalable naming in

global middleware. In Proceedings of the 13th International Conference on Parallel and
Distributed Computing Systems (August 2000), PDCS-2000, pp. 624–631.

[39] BASNEY, J. Credential wallets. Tech. rep., National Center for Supercomputing

Applications, University of Illinois, USA, 2001.

[40] BAUMGART, I., HEEP, B., AND KRAUSE, S. OverSim: A Flexible Overlay Net-

work Simulation Framework. In Proceedings of 10th IEEE Global Internet Symposium
(GI ’07) in conjunction with IEEE INFOCOM 2007, Anchorage, AK, USA (May 2007),

pp. 79–84.

[41] BAUMGART, I., AND MIES, S. S/Kademlia: A practicable approach towards secure

key-based routing. In Parallel and Distributed Systems, 2007 International Conference
on (2007), vol. 2, IEEE, pp. 1–8.

162 BIBLIOGRAPHY

[42] BEVERLY YANG, B., AND GARCIA-MOLINA, H. Designing a super-peer network.

In Data Engineering, 2003. Proceedings. 19th International Conference on (2003), IEEE,

pp. 49–60.

[43] BHAGWAN, R., MOORE, D., SAVAGE, S., AND VOELKER, G. Replication strategies

for highly available peer-to-peer storage. Future directions in distributed computing
(2003), 153–158.

[44] BHAGWAN, R., SAVAGE, S., AND VOELKER, G. Understanding availability. Peer-
to-Peer Systems II (2003), 256–267.

[45] BHATTI, R., BERTINO, E., AND GHAFOOR, A. A trust-based context-aware access

control model for web-services. In Web Services, 2004. Proceedings. IEEE International
Conference on (2004), IEEE, pp. 184–191.

[46] BIGHAM, J. P., AND LADNER, R. E. What the disability community can teach us

about interactive crowdsourcing. interactions 18, 4 (2011), 78–81.

[47] BLAZE, M., FEIGENBAUM, J., AND LACY, J. Decentralized Trust Management. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy (1996), IEEE Com-

puter Society Press, pp. 164–173.

[48] BOYD, D. M., AND ELLISON, N. B. Social Network Sites: Definition, History, and

Scholarship. Journal of Computer-Mediated Communication 13, 1 (2007), 210–230.

[49] BRABHAM, D. C. Crowdsourcing as a model for problem solving an introduction

and cases. Convergence: The International Journal of Research into New Media Technolo-
gies 14, 1 (2008), 75–90.

[50] BRODER, A., MITZENMACHER, M., AND MITZENMACHER, A. B. I. M. Network

applications of bloom filters: A survey. In Internet Mathematics (2002), pp. 636–646.

[51] BUBENDORFER, K., CHARD, K., JOHN, K., AND THAUFEEG, A. M. eScience in the

Social Cloud. Future Generation Computer Systems 29, 8 (2013), 2143–2156.

[52] BUCHEGGER, S., AND BOUDEC, J.-Y. L. Performance analysis of the CONFIDANT

protocol. In Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing (2002), ACM, pp. 226–236.

[53] BUCHEGGER, S., AND BOUDEC, J. Y. L. A robust reputation system for mobile

ad-hoc networks. In Proceedings of P2PEcon (2003).

[54] BUTLER, R., WELCH, V., ENGERT, D., FOSTER, I., TUECKE, S., VOLMER, J., AND

KESSELMAN, C. A national-scale authentication infrastructure. Computer 33, 12

(dec 2000), 60 – 66.

BIBLIOGRAPHY 163

[55] CALLAGHAN, S., MAECHLING, P., DEELMAN, E., VAHI, K., MEHTA, G., JUVE,

G., MILNER, K., GRAVES, R., FIELD, E., OKAYA, D., ET AL. Reducing Time-to-

Solution using Distributed High-Throughput Mega-Workflows - Experiences from

SCEC CyberShake. In eScience, 2008. eScience’08. IEEE Fourth International Confer-
ence on (2008), IEEE, pp. 151–158.

[56] CAPON, N. Credit Scoring Systems: A Critical Analysis. The Journal of Marketing
(1982), 82–91.

[57] CARMINATI, B., FERRARI, E., AND PEREGO, A. Enforcing access control in web-

based social networks. ACM Transactions on Information and System Security (TIS-
SEC) 13, 1 (2009), 6.

[58] CASANOVA, H., LEGRAND, A., AND QUINSON, M. SimGrid: a Generic Frame-

work for Large-Scale Distributed Experiments. In Proceedings of the Tenth Interna-
tional Conference on Computer Modeling and Simulation (Washington, DC, USA, 2008),

UKSIM ’08, IEEE Computer Society, pp. 126–131.

[59] CASARE, S., AND SICHMAN, J. Towards a Functional Ontology of Reputation.

In AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems (New York, NY, USA, 2005), ACM, pp. 505–511.

[60] CASATI, F., ILNICKI, S., JIN, L., KRISHNAMOORTHY, V., AND SHAN, M.-C. Adap-

tive and Dynamic Service Composition in eFlow. In Advanced Information Systems
Engineering, B. Wangler and L. Bergman, Eds., vol. 1789 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2000, pp. 13–31.

[61] CASCELLA, R. Enabling fast bootstrp of reputation in P2P mobile networks. In

Advanced Information Networking and Applications (2009), AINA ’09, IEEE Computer

Society, pp. 371–378.

[62] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A., AND WALLACH, D. S.

Secure Routing for Structured Peer-to-Peer Overlay Networks. ACM SIGOPS Op-
erating Systems Review 36, SI (2002), 299–314.

[63] CATON, S., DUKAT, C., GRENZ, T., HAAS, C., PFADENHAUER, M., AND WEIN-

HARDT, C. Foundations of trust: Contextualising trust in social clouds. In Cloud
and Green Computing (CGC), 2012 Second International Conference on (2012), IEEE,

pp. 424–429.

[64] CATON, S., HAAS, C., CHARD, K., BUBENDORFER, K., AND RANA, O. A Social

Compute Cloud: Allocating and Sharing Infrastructure Resources via Social Net-

works. IEEE Transactions on Services Computing (2014).

164 BIBLIOGRAPHY

[65] CHADWICK, D. W. Operational models for reputation servers. In Trust Manage-
ment, P. Herrmann, V. Issarny, and S. Shiu, Eds., vol. 3477 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2005, pp. 9–23.

[66] CHAN, P. P.-W., AND LYU, M. R. Dynamic web service composition: A new ap-

proach in building reliable web service. In Advanced Information Networking and
Applications, 2008. AINA 2008. 22nd International Conference on (2008), IEEE, pp. 20–

25.

[67] CHANG, E., HUSSAIN, F. K., AND DILLON, T. Reputation Ontology for Reputation

Systems. Lecture Notes in Computer Science 3762 (2005), 957–966.

[68] CHARD, K., BUBENDORFER, K., CATON, S., AND RANA, O. Social cloud comput-

ing: A vision for socially motivated resource sharing. IEEE Transactions on Services
Computing 5, 4 (2012), 551–563.

[69] CHARD, K., CATON, S., RANA, O., AND BUBENDORFER, K. Social Cloud: Cloud

Computing in Social Networks. In Cloud Computing (CLOUD), 2010 IEEE 3rd Inter-
national Conference on (2010), IEEE, pp. 99–106.

[70] CHARD, R. Reputation description and interpretation. Master’s thesis, Victoria

University of Wellingon, New Zealand, 2011.

[71] CHEN, B., AND ROSCOE, A. Social networks for importing and exporting security.

In Large-Scale Complex IT Systems. Development, Operation and Management. Springer,

2012, pp. 132–147.

[72] CHEN, M., AND SINGH, J. P. Computing and using reputations for internet ratings.

In Proceedings of the 3rd ACM conference on Electronic Commerce (New York, NY, USA,

2001), EC ’01, ACM, pp. 154–162.

[73] CHEN, R., AND YEAGER, W. Poblano: A Distributed Trust Model for Peer-to-Peer

Networks. Tech. rep., Sun Microsystems, 2001.

[74] CHOW, R., GOLLE, P., JAKOBSSON, M., SHI, E., STADDON, J., MASUOKA, R.,

AND MOLINA, J. Controlling data in the cloud: outsourcing computation without

outsourcing control. In Proceedings of the 2009 ACM workshop on Cloud computing
security (2009), ACM, pp. 85–90.

[75] CISCO SYSTEMS INC. Cisco Visual Networking Index: Forecast and Methodol-

ogy, 2010-2015. http://www.cisco.com/en/US/solutions/collateral/

ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf, June

2011. Last accessed 2014-04-07.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

BIBLIOGRAPHY 165

[76] COFFMAN, K. G., AND ODLYZKO, A. M. Internet growth: Is there a “Moore’s

Law” for data traffic? Handbook of massive data sets 142 (2001).

[77] CONNER, W., IYENGAR, A., MIKALSEN, T., ROUVELLOU, I., AND NAHRSTEDT,

K. A Trust Management Framework for Service-oriented Environments. In WWW
’09: Proceedings of the 18th international conference on World wide web (New York, NY,

USA, 2009), ACM, pp. 891–900.

[78] CONRAD, M., AND HOF, H.-J. A generic, self-organizing, and distributed boot-

strap service for peer-to-peer networks. In Self-Organizing Systems, D. Hutchison

and R. Katz, Eds., vol. 4725 of Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2007, pp. 59–72.

[79] CRAINICEANU, A., LINGA, P., MACHANAVAJJHALA, A., GEHRKE, J., AND SHAN-

MUGASUNDARAM, J. P-Ring: an Efficient and Robust P2P Range Index Structure.

In Proceedings of the 2007 ACM SIGMOD international conference on Management of
data (New York, NY, USA, 2007), SIGMOD ’07, ACM, pp. 223–234.

[80] CRAMER, C., KUTZNER, K., AND FUHRMANN, T. Bootstrapping locality-aware

P2P networks. In ICON 2004: 12th IEEE International Conference on Networks
(November 2004), vol. 1, pp. 357 – 361.

[81] CURTIS, N., SAFAVI-NAINI, R., AND SUSILO, W. X2Rep: Enhanced Trust Seman-

tics for the XRep Protocol. Lecture Notes in Computer Science 3089 (2004), 205–219.

[82] DAMIANI, E., DI VIMERCATI, D. C., PARABOSCHI, S., SAMARATI, P., AND VI-

OLANTE, F. A reputation-based approach for choosing reliable resources in peer-

to-peer networks. In Proceedings of the 9th ACM conference on Computer and commu-
nications security (New York, NY, USA, 2002), CCS ’02, ACM, pp. 207–216.

[83] DAMIANI, E., DI VIMERCATI, S. D. C., PARABOSCHI, S., AND SAMARATI, P. Man-

aging and Sharing Servents’ Reputations in P2P. IEEE Transactions on Data and
Knowledge Engineering 15 (2003), 840–854.

[84] DANEZIS, G., AND DIAZ, C. A survey of anonymous communication channels.

Journal of Privacy Technology (2008).

[85] DE ROURE, D., GOBLE, C., AND STEVENS, R. The design and realisation of the my-

Experiment virtual research environment for social sharing of workflows. Future
Generation Computer Systems 25 (2009), 561–567.

[86] DEBATIN, B., LOVEJOY, J. P., HORN, A.-K., AND HUGHES, B. N. Facebook and

online privacy: Attitudes, behaviors, and unintended consequences. Journal of
Computer-Mediated Communication 15, 1 (2009), 83–108.

166 BIBLIOGRAPHY

[87] DEELMAN, E., GANNON, D., SHIELDS, M., AND TAYLOR, I. Workflows and e-

Science: An Overview of Workflow System Features and Capabilities. Future Gen-
eration Computer Systems 25, 5 (2009), 528–540.

[88] DELLAROCAS, C. The Digitization of Word of Mouth: Promise and Challenges of

Online Feedback Mechanisms. Management Science 49 (2003), 1407–1424.

[89] DESPOTOVIC, Z., AND ABERER, K. Possibilities for Managing Trust in P2P Net-

works. Tech. rep., Swiss Federal Institute of Technology, Zurich, Switzerland, 2004.

[90] DEWAN, P., AND DASGUPTA, P. PRIDE: Peer-to-Peer Reputation Infrastructure for

Decentralized Environments. In WWW Alt. ’04: Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters (New York, NY, USA,

2004), ACM, pp. 480–481.

[91] DEY, A. K., AND ABOWD, G. D. Towards a Better Understanding of Context and

Context-awareness. In HUC ’99: Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing (1999), Springer-Verlag, pp. 304–307.

[92] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Reputation in privacy

enhancing technologies. In Proceedings of the 12th annual conference on Computers,
freedom and privacy (2002), ACM, pp. 1–6.

[93] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Reputation in P2P

anonymity systems. In Proceedings of Workshop on Economics of Peer-to-Peer Systems,
June (2003), Citeseer.

[94] DOAN, A., RAMAKRISHNAN, R., AND HALEVY, A. Y. Crowdsourcing systems on

the world-wide web. Commun. ACM 54 (April 2011), 86–96.

[95] DONAHOE, J. eBay annual report 2010. http://investor.ebayinc.

com/common/dar/dar.cfm?DocumentID=2932&CompanyID=ebay&zid=

576ea96c, January 2011. Last accessed 2014-04-07.

[96] DOUCEUR, J. The sybil attack. Peer-to-peer Systems (2002), 251–260.

[97] DOWLATSHAHI, M., MACLARTY, G., AND FRY, M. A scalable and efficient archi-

tecture for service discovery. In The 11th IEEE International Conference on Networks
(September 2003), ICON2003, pp. 51 – 56.

[98] DUH, R. R., JAMAL, K., AND SUNDER, S. Control and assurance in e-commerce:

privacy, integrity and security at eBay. Taiwan Accounting Review 3, 1 (2002), 1–27.

http://investor.ebayinc.com/common/dar/dar.cfm?DocumentID=2932&CompanyID=ebay&zid=576ea96c
http://investor.ebayinc.com/common/dar/dar.cfm?DocumentID=2932&CompanyID=ebay&zid=576ea96c
http://investor.ebayinc.com/common/dar/dar.cfm?DocumentID=2932&CompanyID=ebay&zid=576ea96c

BIBLIOGRAPHY 167

[99] DURAND, J. Experimental OpenID Service for DOEGrids. http://www.

doegrids.org/OpenID/OpenID%20Presentation-1.ppt, June 2008. Last

accessed 2014-08-17.

[100] DUSTDAR, S., AND SCHREINER, W. A survey on web services composition. Inter-
national Journal of Web and Grid Services 1, 1 (2005), 1–30.

[101] DUTTA, D., GOEL, A., GOVINDAN, R., AND ZHANG, H. The Design of A Dis-

tributed Rating Scheme for Peer-to-Peer Systems. In The 1st Workshop on Economics
of Peer-to-Peer Systems (2003).

[102] FÄHNRICH, S., OBREITER, P., AND KÖNIG-RIES, B. The buddy system: A dis-

tributed reputation system based on social structure. Tech. rep., 2004.

[103] FANTACCI, R., MACCARI, L., ROSI, M., CHISCI, L., AIELLO, L. M., AND MILANE-

SIO, M. Avoiding eclipse attacks on kad/kademlia: an identity based approach. In

Proceedings of the 2009 IEEE international conference on Communications (2009), IEEE

Press, pp. 983–987.

[104] FARMER, F. R., AND GLASS, B. Building Web Reputation Systems, 1st ed. O’Reilly

Media, Inc., 2010.

[105] FEDOTOVA, N., AND VELTRI, L. Reputation management algorithms for DHT-

based peer-to-peer environment. Computer Communications 32, 12 (2009), 1400 –

1409. Special Issue of Computer Communications on Heterogeneous Networking

for Quality, Reliability, Security, and Robustness Part II.

[106] FELSTINER, A. Working the crowd: Employment and labor law in the crowdsourc-

ing industry. Berkeley J. Emp. & Lab. L. 32 (2011), 143–143.

[107] FERRAIOLO, D., CUGINI, J., AND KUHN, D. R. Role-based access control (RBAC):

Features and motivations. In Proceedings of 11th Annual Computer Security Applica-
tion Conference (1995), sn, pp. 241–48.

[108] FERREIRA, W. Crowdsourcing @ IBM. Presentation given at CrowdNet 2012: 2nd

Workshop on Cloud Labor and Human Computation, January 2012.

[109] FIELDING, R. T. Architectural styles and the design of network-based software architec-
tures. PhD thesis, University of California, 2000.

[110] FOSTER, I. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

Lecture Notes in Computer Science (2001), 1–4.

[111] FRANKLIN, M., KOSSMANN, D., KRASKA, T., RAMESH, S., AND XIN, R. CrowdDB

answering queries with crowdsourcing. Proceedings of SIGMOD 2011 (2011), 61–72.

http://www.doegrids.org/OpenID/OpenID%20Presentation-1.ppt
http://www.doegrids.org/OpenID/OpenID%20Presentation-1.ppt

168 BIBLIOGRAPHY

[112] FRIEDMAN, E., AND RESNICK, P. The Social Cost of Cheap Pseudonyms. Journal
of Economics and Management Strategy 10 (2001), 173–199.

[113] GAL-OZ, N., GRINSHPOUN, T., AND GUDES, E. Privacy issues with sharing

and computing reputation across communities. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications 1, 4 (2010), 16–34.

[114] GAL-OZ, N., GRINSHPOUN, T., AND GUDES, E. Privacy Issues with Sharing Rep-

utation across Virtual Communities. In Proceedings of the 4th International Workshop
on Privacy and Anonymity in the Information Society (2011), ACM, p. 3.

[115] GAL-OZ, N., GRINSHPOUN, T., GUDES, E., AND MEISELS, A. Cross-community

reputation: Policies and alternatives. In Proceedings of the IADIS International Con-
ference on Web Based Communities, Amsterdam, The Netherlands (2008), pp. 197–201.

[116] GAL-OZ, N., GUDES, E., AND HENDLER, D. A Robust and Knot-Aware Trust-

Based Reputation Model. In Trust Management II, Y. Karabulut, J. Mitchell, P. Her-

rmann, and C. Jensen, Eds., vol. 263 of IFIP The International Federation for Informa-
tion Processing. Springer US, 2008, pp. 167–182.

[117] GANNON, D., PLALE, B., MARRU, S., KANDASWAMY, G., SIMMHAN, Y., AND

SHIRASUNA, S. Workflows for e-Science: Scientific Workflows for Grids. Springer, 2006,

ch. Dynamic, Adaptive Workflows for Mesoscale Meteorology.

[118] GARG, A., MONTRESOR, A., AND BATTITI, R. Reputation lending for virtual com-

munities. 22nd International Conference on Data Engineering Workshops 0 (2006), 22.

[119] GEIGER, D., SEEDORF, S., AND SCHADER, M. Managing the crowd: Towards a

taxonomy of crowdsourcing processes. In Proceedings of the Seventeenth Americas
Conference on Information Systems (2011).

[120] GHAFFARINEJAD, A., AND AKBARI, M. K. An incentive compatible and dis-

tributed reputation mechanism based on context similarity for service oriented sys-

tems. Future Generation Computer Systems 29, 3 (2013), 863 – 875. Special Section:

Recent Developments in High Performance Computing and Security.

[121] GILES, C. L., BOLLACKER, K. D., AND LAWRENCE, S. Citeseer: an automatic

citation indexing system. In International Conference on Digital Libraries (1998), ACM

Press, pp. 89–98.

[122] GIROIRE, F., MONTEIRO, J., AND PERENNES, S. P2P storage systems: How much

locality can they tolerate? In IEEE 34th Conference on Local Computer Networks, 2009
(October 2009), LCN 2009, pp. 320 – 323.

BIBLIOGRAPHY 169

[123] GODIK, S., ANDERSON, A., PARDUCCI, B., HUMENN, P., AND VAJJHALA, S. OA-

SIS eXtensible Access Control Markup Language (XACML). Tech. rep., Tech. rep.,

OASIS, 2002.

[124] GOECKS, J., AND MYNATT, E. Enabling privacy management in ubiquitous com-

puting environments through trust and reputation systems. In Proceedings of the
2002 ACM Conference on Computer Supported Cooperative Work, New Orleans, LA, USA
(2002).

[125] GOYAL, V., PANDEY, O., SAHAI, A., AND WATERS, B. Attribute-based encryption

for fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security (2006), ACM, pp. 89–98.

[126] GRAVES, R., JORDAN, T. H., CALLAGHAN, S., DEELMAN, E., FIELD, E., JUVE, G.,

KESSELMAN, C., MAECHLING, P., MEHTA, G., MILNER, K., ET AL. CyberShake:

A physics-based seismic hazard model for southern California. Pure and Applied
Geophysics 168, 3-4 (2011), 367–381.

[127] GRINSHPOUN, T., GAL-OZ, N., MEISELS, A., AND GUDES, E. CCR: A model for

sharing reputation knowledge across virtual communities. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent
Technology - Volume 01 (Washington, DC, USA, 2009), WI-IAT ’09, IEEE Computer

Society, pp. 34–41.

[128] GUDES, E., GAL-OZ, N., AND GRUBSHTEIN, A. Methods for Computing Trust

and Reputation While Preserving Privacy. In Data and Applications Security XXIII.
Springer, 2009, pp. 291–298.

[129] GUDES, E., GAL-OZ, N., AND GRUBSHTEIN, A. Methods for computing trust and

reputation while preserving privacy. Data and Applications Security XXIII (2009),

291–298.

[130] GUPTA, M., JUDGE, P., AND AMMAR, M. A Reputation System for Peer-to-Peer

Networks. In NOSSDAV ’03: Proceedings of the 13th international workshop on Net-
work and operating systems support for digital audio and video (New York, NY, USA,

2003), ACM, pp. 144–152.

[131] HAN, P., XIE, B., YANG, F., AND SHEN, R. A scalable P2P recommender system

based on distributed collaborative filtering. Expert Systems with Applications 27, 2

(2004), 203 – 210.

170 BIBLIOGRAPHY

[132] HARCHOL-BALTER, M., AND DOWNEY, A. B. Exploiting process lifetime distribu-

tions for dynamic load balancing. ACM Transactions on Computer Systems (TOCS)
15, 3 (1997), 253–285.

[133] HARDT, D. The OAuth 2.0 Authorization Framework. http://www.ietf.org/

rfc/rfc6749.txt, Oct 2012. Last accessed 2014-07-14.

[134] HARDT, D., BUFU, J., AND HOYT, J. OpenID Attribute Exchange 1.0-

final. http://openid.net/specs/openid-attribute-exchange-1_0.

html, Dec 2007. Last accessed 2014-08-17.

[135] HARVEY, N. J. A., JONES, M. B., SAROIU, S., THEIMER, M., AND WOLMAN, A.

Skipnet: a scalable overlay network with practical locality properties. In Proceedings
of the 4th conference on USENIX Symposium on Internet Technologies and Systems -
Volume 4 (Berkeley, CA, USA, 2003), USITS’03, USENIX Association, pp. 9–9.

[136] HENDRIKX, F., AND BUBENDORFER, K. Malleable Access Rights to Establish and

Enable Scientific Collaboration. In eScience (eScience), 2013 IEEE 9th International
Conference on (Beijing, China, October 2013), IEEE, pp. 334–341.

[137] HENDRIKX, F., AND BUBENDORFER, K. Policy Derived Access Rights in the So-

cial Cloud. In eScience (eScience), 2013 IEEE 9th International Conference on (Beijing,

China, October 2013), IEEE, pp. 365–368.

[138] HENDRIKX, F., BUBENDORFER, K., AND CHARD, R. Reputation systems: A survey

and taxonomy. Journal of Parallel and Distributed Computing (2014).

[139] HERLOCKER, J. L., KONSTAN, J. A., TERVEEN, L. G., AND RIEDL, J. T. Evaluat-

ing collaborative filtering recommender systems. ACM Transactions on Information
Systems (TOIS) 22, 1 (2004), 5–53.

[140] HERRERA, O., AND ZNATI, T. Modeling churn in P2P networks. In Simulation
Symposium, 2007. ANSS’07. 40th Annual (2007), IEEE, pp. 33–40.

[141] HILLEBRAND, C., AND COETZEE, M. Towards Reputation-as-a-Service. In Infor-
mation Security for South Africa, 2013 (Aug 2013), pp. 1–8.

[142] HIRSCH, J. E. An Index to Quantify an Individual’s Scientific Research Output.

Proceedings of the National Academy of Sciences of the United states of America 102, 46

(2005), 16569.

[143] HOFFMAN, D. L., NOVAK, T. P., AND PERALTA, M. Building consumer trust on-

line. Communications of the ACM 42, 4 (1999), 80–85.

http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html

BIBLIOGRAPHY 171

[144] HOFFMAN, K., ZAGE, D., AND NITA-ROTARU, C. A Survey of Attack and Defense

Techniques for Reputation Systems. ACM Computing Surveys 42, 1 (2009), 1–31.

[145] HORTON, J. J., AND CHILTON, L. B. The labor economics of paid crowdsourcing.

In Proceedings of the 11th ACM conference on Electronic commerce (New York, NY,

USA, 2010), EC ’10, ACM, pp. 209–218.

[146] HOSSFELD, T., LEHRIEDER, F., HOCK, D., OECHSNER, S., DESPOTOVIC, Z.,

KELLERER, W., AND MICHEL, M. Characterization of BitTorrent swarms and their

distribution in the Internet. Computer Networks 55, 5 (2011), 1197–1215.

[147] HOUSER, D., AND WOODERS, J. Reputation in auctions: Theory, and evidence

from eBay. Journal of Economics & Management Strategy 15, 2 (2006), 353–369.

[148] HOWE, J. Crowdsourcing: A definition. http://crowdsourcing.typepad.

com/cs/2006/06/crowdsourcing_a.html, June 2006. Last accessed 2014-04-

07.

[149] HOWE, J. The rise of crowdsourcing. Wired magazine 14, 14 (2006), 1–5.

[150] HU, Y. C., RODNEY, D. A., AND DRUSCHEL, P. Design and scalability of nls, a scal-

able naming and location service. In INFOCOM 2002. Proceedings of the Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies (2002),

vol. 3, pp. 1218–1227.

[151] HUYNH, T. D., JENNINGS, N. R., AND SHADBOLT, N. Fire: An integrated trust

and reputation model for open multi-agent systems. In ECAI (2004), vol. 16, p. 18.

[152] HUYNH, T. D., JENNINGS, N. R., AND SHADBOLT, N. R. Developing an integrated

trust and reputation model for open multi-agent systems. In Proceedings of the 7th
international workshop on trust in agent societies (2004), pp. 65–74.

[153] IPEIROTIS, P. Demographics of mechanical turk. Center for Digital Economy Research,
NYU Stern School of Business, Working paper (2010).

[154] ISMAIL, R., BOYD, C., JØSANG, A., AND RUSSELL, S. An Efficient Off-Line Rep-

utation Scheme Using Articulated Certificates. In WOSIS-2004: Proceedings of the
Second International Workshop on Security in Information Systems (2004), pp. 53–62.

[155] JERAGH, M., ALQURAISHI, E., AND ALDWAISAN, E. A twitter-based weighted

reputation system. Procedia Computer Science 10, 0 (2012), 902 – 908. ¡ce:title¿ANT

2012 and MobiWIS 2012¡/ce:title¿.

http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html

172 BIBLIOGRAPHY

[156] JIN, X., KRISHNAN, R., AND SANDHU, R. A unified attribute-based access control

model covering DAC, MAC and RBAC. In Data and applications security and privacy
XXVI. Springer, 2012, pp. 41–55.

[157] JOHN, K., BUBENDORFER, K., AND CHARD, K. A Social Cloud for Public eRe-

search. In E-Science (e-Science), 2011 IEEE 7th International Conference on (2011), IEEE,

pp. 363–370.

[158] JØSANG, A., AND ISMAIL, R. The Beta Reputation System. In Proceedings of the
15th bled electronic commerce conference (Jun 2002), pp. 41–55.

[159] JØSANG, A., ISMAIL, R., AND BOYD, C. A Survey of Trust and Reputation Systems

for Online Service Provision. Decision Support Systems 43, 2 (2007), 618–644.

[160] JØSANG, A., LUO, X., AND CHEN, X. Continuous ratings in discrete bayesian

reputation systems. In Trust Management II. Springer, 2008, pp. 151–166.

[161] JOSUTTIS, N. SOA in Practice. O’Reilly, 2007.

[162] JR, R. H. S. Electronic document management: Challenges and opportunities for

information systems managers. MIS Quarterly (1995), 29–49.

[163] JURCA, R., AND FALTINGS, B. An incentive compatible reputation mechanism.

E-Commerce Technology, IEEE International Conference on 0 (2003), 285.

[164] JURCA, R., AND FALTINGS, B. Reputation-based Pricing of P2P Services. In

P2PECON ’05: Proceedings of the 2005 ACM SIGCOMM workshop on Economics of
peer-to-peer systems (New York, NY, USA, 2005), ACM, pp. 144–149.

[165] JURCA, R., AND FALTINGS, B. Minimum payments that reward honest reputation

feedback. In EC ’06: Proceedings of the 7th ACM conference on Electronic commerce
(New York, NY, USA, 2006), ACM, pp. 190–199.

[166] KAMVAR, S. D., SCHLOSSER, M. T., AND GARCIA-MOLINA, H. The EigenTrust

Algorithm for Reputation Management in P2P Networks. In Proceedings of the 12th
International World Wide Web Conference (New York, NY, USA, 2003), ACM, pp. 640–

651.

[167] KANG, M. H., PARK, J. S., AND FROSCHER, J. N. Access Control Mechanisms for

Inter-Organizational Workflow. In Proceedings of the sixth ACM symposium on Access
control models and technologies (2001), ACM, pp. 66–74.

[168] KANT, K., IYER, R., AND TEWARI, V. A framework for classifying peer-to-peer

technologies. In 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid (May 2002), p. 368.

BIBLIOGRAPHY 173

[169] KARGER, D., LEHMAN, E., LEIGHTON, T., PANIGRAHY, R., LEVINE, M., AND

LEWIN, D. Consistent hashing and random trees: Distributed caching protocols

for relieving hot spots on the world wide web. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing (1997), ACM, pp. 654–663.

[170] KARLINS, M., AND ABELSON, H. Persuasion, how opinion and attitudes are

changed, 1970.

[171] KARP, A. H., HAURY, H., AND DAVIS, M. H. From ABAC to ZBAC: the evolution

of access control models. Hewlett-Packard Development Company, LP 21 (2009).

[172] KAUFMANN, N., SCHULZE, T., AND VEIT, D. More than fun and money. worker

motivation in crowdsourcing - a study on mechanical turk. In Proceedings of the
Seventeenth Americas Conference on Information Systems (2011).

[173] KAYE, J., HEENEY, C., HAWKINS, N., DE VRIES, J., AND BODDINGTON, P. Data

Sharing in Genomics - Re-shaping Scientific Practice. Nature Reviews Genetics 10, 5

(2009), 331–335.

[174] KELEHER, P., BHATTACHARJEE, B., AND SILAGHI, B. Are virtualized overlay net-

works too much of a good thing? In Peer-to-Peer Systems, P. Druschel, F. Kaashoek,

and A. Rowstron, Eds., vol. 2429 of Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2002, pp. 225–231.

[175] KERSCHBAUM, F., HALLER, J., KARABULUT, Y., AND ROBINSON, P. Pathtrust: A

trust-based reputation service for virtual organization formation. In Trust Manage-
ment, K. Stølen, W. Winsborough, F. Martinelli, and F. Massacci, Eds., vol. 3986 of

Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2006, pp. 193–205.

[176] KINATEDER, M., AND PEARSON, S. A Privacy-Enhanced Peer-to-Peer Reputation

System. In E-Commerce and Web Technologies, vol. 2738 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2003, pp. 206–215.

[177] KINATEDER, M., AND ROTHERMEL, K. Architecture and Algorithms for a Dis-

tributed Reputation System. In Proceedings of the First International Conference on
Trust Management (2003), Springer-Verlag, pp. 1–16.

[178] KITTUR, A., CHI, E. H., AND SUH, B. Crowdsourcing user studies with mechani-

cal turk. In Proceedings of the twenty-sixth annual SIGCHI conference on Human factors
in computing systems (2008), ACM, pp. 453–456.

[179] KLEEMANN, F., VOSS, G. G., AND RIEDER, K. Un(der) paid innovators: The com-

mercial utilization of consumer work through crowdsourcing. Science, Technology
& Innovation Studies 4, 1 (2008), PP–5.

174 BIBLIOGRAPHY

[180] KOBSA, A. Privacy-enhanced web personalization. In The adaptive web (2007),

Springer-Verlag, pp. 628–670.

[181] KORSGAARD, T. R., AND JENSEN, C. D. Reengineering the wikipedia for reputa-

tion. Electronic Notes in Theoretical Computer Science 244, 0 (2009), 81 – 94. Proceed-

ings of the 4th International Workshop on Security and Trust Management (STM

2008).

[182] KOUTROULI, E., AND TSALGATIDOU, A. Reputation-based trust systems for P2P

applications: design issues and comparison framework. Trust and Privacy in Digital
Business (2006), 152–161.

[183] KOUTROULI, E., AND TSALGATIDOU, A. Taxonomy of Attacks and Defense Mech-

anisms in P2P Reputation Systems - Lessons for reputation system designers. Com-
puter Science Review 6, 2 (2012), 47–70.

[184] KRUKOW, K., NIELSEN, M., AND SASSONE, V. A framework for concrete

reputation-systems with applications to history-based access control. In Proceed-
ings of the 12th ACM conference on Computer and communications security (New York,

NY, USA, 2005), CCS ’05, ACM, pp. 260–269.

[185] KUHN, D. R., COYNE, E. J., AND WEIL, T. R. Adding attributes to role-based

access control. Computer 43, 6 (2010), 79–81.

[186] KUTZNER, K., AND FUHRMANN, T. Measuring Large Overlay Networks The

Overnet Example. In Kommunikation in Verteilten Systemen (KiVS), P. Mller,

R. Gotzhein, and J. Schmitt, Eds., Informatik aktuell. Springer Berlin Heidelberg,

2005, pp. 193–204.

[187] LAI, K., FELDMAN, M., STOICA, I., AND CHUANG, J. Incentives for cooperation

in peer-to-peer networks, 2003.

[188] LAPLANTE, P. A., ZHANG, J., AND VOAS, J. Distinguishing between Software

Oriented Architecture and Software as a Service: What’s in a Name? IEEE IT
Professional 10, 3 (2008), 46–50.

[189] LEISERSON, C. E. Fat-trees: University networks for hardware-efficient supercom-

puting. IEEE Transactions on Computers 34 (1985), 892–901.

[190] LESNIEWSKI-LAAS, C. A Sybil-proof one-hop DHT. In Proceedings of the 1st work-
shop on Social network systems (2008), ACM, pp. 19–24.

[191] LIANG, AND CRAMPTON, J. Set covering problems in role-based access control. In

Computer Security–ESORICS 2009. Springer, 2009, pp. 689–704.

BIBLIOGRAPHY 175

[192] LIAU, C., ZHOU, X., BRESSAN, S., AND TAN, K. Efficient distributed reputation

scheme for peer-to-peer systems. Web and Communication Technologies and Internet-
Related Social Issues.HSI 2003 (2003), 172–172.

[193] LIU, L., AND MUNRO, M. Systematic analysis of centralized online reputation

systems. Decision Support Systems 52, 2 (2012), 438 – 449.

[194] LIU, X., AND XIAO, L. hiREP: Hierarchical Reputation Management for Peer-to-

Peer Systems. International Conference on Parallel Processing 0 (2006), 289–296.

[195] LIU, Z., LIU, Y., AND HE, Y. A two-layered P2P model for semantic service dis-

covery. In New Trends in Information Science and Service Science (NISS), 2010 4th
International Conference on (May 2010), pp. 41 –46.

[196] LOPEZ, M., VUKOVIC, M., AND LAREDO, J. PeopleCloud service for enterprise

crowdsourcing. In Services Computing (SCC), 2010 IEEE International Conference on
(july 2010), pp. 538 –545.

[197] LORCH, M., PROCTOR, S., LEPRO, R., KAFURA, D., AND SHAH, S. First experi-

ences using XACML for access control in distributed systems. In Proceedings of the
2003 ACM Workshop on XML Security (NEw York, NY, USA, 2003), XMLSEC ’03,

ACM, pp. 25–37.

[198] LUA, K., CROWCROFT, J., PIAS, M., SHARMA, R., AND LIM, S. A survey and

comparison of peer-to-peer overlay network schemes. Communications Surveys and
Tutorials 2 (2005), 72–93.

[199] LV, Q., CAO, P., COHEN, E., LI, K., AND SHENKER, S. Search and replication in

unstructured peer-to-peer networks. In Proceedings of the 16th international confer-
ence on Supercomputing (New York, NY, USA, 2002), ICS ’02, ACM, pp. 84–95.

[200] MA, H., ZHOU, D., LIU, C., LYU, M. R., AND KING, I. Recommender systems

with Social Regularization. In Proceedings of the Fourth ACM International Confer-
ence on Web Search and Data Mining (New York, NY, USA, 2011), WSDM ’11, ACM,

pp. 287–296.

[201] MAHLER, T., AND OLSEN, T. Reputation systems and data protection law. eAdop-
tion and the Knowledge Economy: Issues, Applications, Case Studies (2004), 180–187.

[202] MALIK, Z., AND BOUGUETTAYA, A. RATEWeb: Reputation Assessment for Trust

Establishment among Web Services. The VLDB Journal 18, 4 (2009), 885–911.

[203] MALY, R. J., MISCHKE, J., KURTANSKY, P., AND STILLER, B. Comparison of cen-

tralized (client-server) and decentralized (peer-to-peer) networking. Tech. rep.,

Swiss Federal Institute of Technology, Zurich, Switzerland, 2003.

176 BIBLIOGRAPHY

[204] MANE, S., MOPURU, S., MEHRA, K., AND SRIVASTAVA, J. Network size estimation

in a peer-to-peer network, September 2005.

[205] MÁRMOL, F. G., KUHNEN, M. Q., AND PÉREZ, G. M. Enhancing OpenID through

a Reputation Framework. In Autonomic and Trusted Computing, J. Calero, L. Yang,

F. Mármol, L. G. Villalba, A. Li, and Y. Wang, Eds., vol. 6906 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2011, pp. 1–18.

[206] MÁRMOL, F. G., AND PÉREZ, G. M. Towards pre-standardization of trust and

reputation models for distributed and heterogeneous systems. Computer Standards
& Interfaces 32, 4 (2010), 185–196.

[207] MARTI, S., AND GARCIA-MOLINA, H. Taxonomy of Trust: Categorizing P2P Rep-

utation Systems. Computer Networks 50, 4 (2006), 472–484.

[208] MARTIN, D., BURSTEIN, M., MCDERMOTT, D., MCILRAITH, S., PAOLUCCI, M.,

SYCARA, K., MCGUINNESS, D. L., SIRIN, E., AND SRINIVASAN, N. Bringing Se-

mantics to Web Services with OWL-S. World Wide Web 10, 3 (2007), 243–277.

[209] MATSUNAGA, A., THOMPSON, A., FIGUEIREDO, R. J., GERMAIN-AUBREY, C. C.,

COLLINS, M., BEAMAN, R. S., MACFADDEN, B. J., RICCARDI, G., SOLTIS, P. S.,

PAGE, L. M., AND FORTES, J. A. A Computational and Storage-Cloud for Integra-

tion of Biodiversity Collections. In Proceedings of the 9th IEEE International Conference
on eScience (eScience 2013) (Beijing, China, October 2013), IEEE.

[210] MAXIMILIEN, E. M., AND SINGH, M. P. Toward autonomic web services trust

and selection. In Proceedings of the 2nd international conference on Service oriented
computing (2004), ACM, pp. 212–221.

[211] MAYMOUNKOV, P., AND MAZIÈRES, D. Kademlia: A peer-to-peer information

system based on the XOR metric. Peer-to-Peer Systems (2002), 53–65.

[212] MCILRAITH, S. A., SON, T. C., AND ZENG, H. Semantic Web Services. Intelligent
Systems, IEEE 16, 2 (2001), 46–53.

[213] MELNIK, M. I., AND ALM, J. Does a Seller’s eCommerce Reputation Matter? Evi-

dence from eBay Auctions. The journal of industrial economics 50, 3 (2002), 337–349.

[214] MENASCE, D. A. Composing web services: A QoS view. Internet Computing, IEEE
8, 6 (november-december 2004), 88 – 90.

[215] MESTER, L. J. What’s the Point of Credit Scoring? Business review 3 (1997), 3–16.

[216] MICCIANCIO, D. A first glimpse of cryptography’s holy grail. Commun. ACM 53
(March 2010), 96–96.

BIBLIOGRAPHY 177

[217] MIN WANG, C., AND TURNER, D. Extending the wiki paradigm for use in the

classroom. In Information Technology: Coding and Computing, 2004. Proceedings. ITCC
2004. International Conference on (2004), vol. 1, IEEE, pp. 255–259.

[218] MOHAISEN, A., TRAN, H., CHANDRA, A., AND KIM, Y. Socialcloud: Us-

ing social networks for building distributed computing services. arXiv preprint
arXiv:1112.2254 (2011).

[219] MORI, J., SUGIYAMA, T., AND MATSUO, Y. Real-world oriented information shar-

ing using social networks. In Proceedings of the 2005 international ACM SIGGROUP
conference on Supporting group work (2005), ACM, pp. 81–84.

[220] MUI, L., MOHTASHEMI, M., AND HALBERSTADT, A. A Computational Model of

Trust and Reputation. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on (Jan 2002), IEEE, pp. 2431–2439.

[221] MUI, L., MOHTASHEMI, M., AND HALBERSTADT, A. A Computational Model of

Trust and Reputation. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on (Jan 2002), pp. 2431–2439.

[222] MUI, L., MOHTASHEMI, M., AND HALBERSTADT, A. Notions of Reputation in

Multi-Agent Systems: A Review. In Proceedings of the first international joint confer-
ence on Autonomous agents and multiagent systems (New York, NY, USA, 2002), ACM,

pp. 280–287.

[223] NAH, F. F.-H. A study on tolerable waiting time: how long are web users willing

to wait? Behaviour & Information Technology 23, 3 (2004), 153–163.

[224] NGUYEN, H. T., ZHAO, W., AND YANG, J. A trust and reputation model based on

bayesian network for web services. In Web Services (ICWS), 2010 IEEE International
Conference on (2010), IEEE, pp. 251–258.

[225] NICKERSON, R., MUNTERMANN, J., VARSHNEY, U., AND ISAAC, H. Taxonomy

development in information systems: Developing a taxonomy of mobile applica-

tions. In Proceedings of the European Conference on Information Systems (2009).

[226] NIELSEN, J. Website Response Times. http://www.nngroup.com/articles/

website-response-times/, June 2010. Last accessed 2014-10-03.

[227] NIELSON, S., CROSBY, S., AND WALLACH, D. A taxonomy of rational attacks.

Peer-to-Peer Systems IV (2005), 36–46.

[228] NOVAK, D., AND ZEZULA, P. M-Chord: a Scalable Distributed Similarity Search

Structure. In Proceedings of the 1st International conference on Scalable information sys-
tems (New York, NY, USA, 2006), InfoScale ’06, ACM.

http://www.nngroup.com/articles/website-response-times/
http://www.nngroup.com/articles/website-response-times/

178 BIBLIOGRAPHY

[229] NOVOTNY, J., TUECKE, S., AND WELCH, V. An online credential repository for

the grid: Myproxy. In Proceedings of the 10th IEEE International Symposium on High
Performance Distributed Computing, 2001. (2001), pp. 104–111.

[230] OBREITER, P., AND NIMIS, J. A taxonomy of incentive patterns. In Agents and
Peer-to-Peer Computing, G. Moro, C. Sartori, and M. Singh, Eds., vol. 2872 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2005, pp. 89–100.

[231] O’BRIEN, L., MERSON, P., AND BASS, L. Quality attributes for service-oriented

architectures. In Proceedings of the international Workshop on Systems Development in
SOA Environments (2007), IEEE Computer Society, p. 3.

[232] ODLYZKO, A. M. Internet growth: Myth and reality, use and abuse. Journal of
Computer Resource Management 102 (2001), 23–27.

[233] O’HARA, K., ALANI, H., KALFOGLOU, Y., AND SHADBOLT, N. Trust strategies for

the semantic web. In Proceedings of the Trust, Security and Reputation Workshop at the
ISWC04 (2004), pp. 78–85.

[234] OINN, T., GREENWOOD, M., ADDIS, M., ALPDEMIR, M. N., FERRIS, J., GLOVER,

K., GOBLE, C., GODERIS, A., HULL, D., MARVIN, D., ET AL. Taverna: Lessons in

creating a workflow environment for the life sciences. Concurrency and Computation:
Practice and Experience 18, 10 (2006), 1067–1100.

[235] OOI, B., LIAU, C., AND TAN, K.-L. Managing Trust in Peer-to-Peer Systems Us-

ing Reputation-Based Techniques. In Advances in Web-Age Information Management,
vol. 2762 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2003,

pp. 2–12.

[236] OVASKA, K., LAAKSO, M., HAAPA-PAANANEN, S., LOUHIMO, R., CHEN, P., AIT-

TOMÄKI, V., VALO, E., NÚÑEZ-FONTARNAU, J., RANTANEN, V., KARINEN, S.,

ET AL. Large-scale data integration framework provides a comprehensive view on

glioblastoma multiforme. Genome Medicine 2, 9 (2010), 65.

[237] PALLIS, G. Cloud computing: The new frontier of internet computing. Internet
Computing, IEEE 14, 5 (2010), 70–73.

[238] PALMER, B., BUBENDORFER, K., AND WELCH, I. A protocol for verification of an

auction without revealing bid values. Procedia Computer Science 1, 1 (2010), 2649–

2658.

[239] PANTOLA, A., PANCHO-FESTIN, S., AND SALVADOR, F. TULUNGAN: A Self-

Promoting-Resistant Reputation System for Collaborative Web Filtering Systems.

BIBLIOGRAPHY 179

In The Second International Conference on Cyber Security, Cyber Peacefare and Digi-
tal Forensic (CyberSec2013) (2013), The Society of Digital Information and Wireless

Communication, pp. 281–292.

[240] PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S., AND LEYMANN, F. Service-

Oriented Computing: State of the Art and Research Challenges. Computer 40, 11

(2007), 38–45.

[241] PARK, J. S., SANDHU, R., AND AHN, G.-J. Role-Based Access Control on the Web.

ACM Transactions on Information and System Security (TISSEC) 4, 1 (2001), 37–71.

[242] PATEL, J., TEACY, W. L., JENNINGS, N. R., AND LUCK, M. A Probabilistic Trust

Model for Handling Inaccurate Reputation Sources. In Trust Management. Springer,

2005, pp. 193–209.

[243] PAVLOV, E., ROSENSCHEIN, J. S., AND TOPOL, Z. Supporting privacy in decen-

tralized additive reputation systems. Trust Management (2004), 108–119.

[244] PFITZMANN, A., AND KÖHNTOPP, M. Anonymity, unobservability, and

pseudonymity - a proposal for terminology. In Designing privacy enhancing tech-
nologies (2001), pp. 1–9.

[245] PINGEL, F., AND STEINBRECHER, S. Multilateral Secure Cross-Community Repu-

tation Systems for Internet Communities. In Trust, Privacy and Security in Digital
Business, S. Furnell, S. Katsikas, and A. Lioy, Eds., vol. 5185 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2008, pp. 69–78.

[246] PITOURA, E., AND SAMARAS, G. Locating objects in mobile computing. IEEE
Transactions on Knowledge and Data Engineering 13 (2001), 571–592.

[247] PLACEK, M., AND BUYYA, R. A Taxonomy of Distributed Storage Systems. Tech.

rep., University of Melbourne, Melbourne, Australia, 2006.

[248] PONNEKANTI, S. R., AND FOX, A. SWORD: A Developer Toolkit for Web Service

Composition. In 11th World Wide Web Conference (Web Engineering Track) (2002),

pp. 7–11.

[249] POOR, N. Mechanisms of an online public sphere: The website slashdot. Journal of
Computer-Mediated Communication 10, 2 (2005), 00–00.

[250] POUWELSE, J., GARBACKI, P., EPEMA, D., AND SIPS, H. The bittorrent p2p file-

sharing system: Measurements and analysis. Peer-to-Peer Systems IV (2005), 205–

216.

180 BIBLIOGRAPHY

[251] PRÊTRE, B. Attacks on peer-to-peer networks. Tech. rep., Swiss Federal Institute of

Technology, Zurich, Switzerland, 2005.

[252] PRIEBE, T., DOBMEIER, W., AND KAMPRATH, N. Supporting attribute-based ac-

cess control with ontologies. In Availability, Reliability and Security, 2006. ARES 2006.
The First International Conference on (2006), IEEE, pp. 8–pp.

[253] PUJOL, J. M., SANGÜESA, R., AND DELGADO, J. Extracting reputation in multi

agent systems by means of social network topology. In Proceedings of the first in-
ternational joint conference on Autonomous agents and multiagent systems: part 1 (New

York, NY, USA, 2002), AAMAS ’02, ACM, pp. 467–474.

[254] RAITMAN, R., AUGAR, N., AND ZHOU, W. Employing wikis for online collab-

oration in the e-learning environment: Case study. In Information Technology and
Applications, 2005. ICITA 2005. Third International Conference on (2005), vol. 2, IEEE,

pp. 142–146.

[255] RAO, J., AND SU, X. A Survey of Automated Web Service Composition Methods.

In Semantic Web Services and Web Process Composition, J. Cardoso and A. Sheth, Eds.,

vol. 3387 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005,

pp. 43–54.

[256] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. A

Scalable Content-Addressable Network. In Proceedings of ACM SIGCOMM 2001
(2001), pp. 161–172.

[257] REBAHI, Y., MUJICA, V., AND SISALEM, D. A reputation-based trust mechanism

for ad hoc networks. In Proceedings of the 10th IEEE Symposium on Computers and
Communications (Washington, DC, USA, 2005), ISCC ’05, IEEE Computer Society,

pp. 37–42.

[258] RECORDON, D., AND REED, D. OpenID 2.0: a platform for user-centric identity

management. In Proceedings of the second ACM workshop on Digital identity manage-
ment (New York, NY, USA, 2006), DIM ’06, ACM, pp. 11–16.

[259] REICH, C., BUBENDORFER, K., BANHOLZER, M., AND BUYYA, R. SLA-Oriented

management of containers for hosting stateful web services. In Proceedings of the
3rd IEEE International Conference on e-Science and Grid Computing (2007).

[260] REN, Y., LI, M., CUI, Y., GUO, C., AND SAKURAI, K. Enhancing Cooperative

Behavior for Online Reputation Systems by Group Selection. In UIC-ATC ’09: Pro-
ceedings of the 2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted
Computing (Washington, DC, USA, 2009), IEEE Computer Society, pp. 568–573.

BIBLIOGRAPHY 181

[261] RESNICK, P., KUWABARA, K., ZECKHAUSER, R., AND FRIEDMAN, E. Reputation

Systems. Communications of the ACM 43 (December 2000), 45–48.

[262] RESNICK, P., AND ZECKHAUSER, R. Trust among Strangers in Internet Transac-

tions: Empirical Analysis of eBay’s Reputation System. Advances in Micoeconomics:
A Research Annual 11 (2002), 127–157.

[263] RESNICK, P., ZECKHAUSER, R., SWANSON, J., AND LOCKWOOD, K. The Value of

Reputation on eBay: A Controlled Experiment. Experimental Economics 9 (2003),

79–101.

[264] RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J. Handling churn in a

DHT. In Proceedings of the USENIX Annual Technical Conference (2004), Boston, MA,

USA, pp. 127–140.

[265] RIPEANU, M., FOSTER, I., AND IAMNITCHI, A. Mapping the gnutella network:

Properties of large-scale peer-to-peer systems and implications for system design.

arXiv preprint cs/0209028 (2002).

[266] ROSEN, J. The Web Means the End of Forgetting. http://www.nytimes.com/

2010/07/25/magazine/25privacy-t2.html?pagewanted=all, July 2010.

Last accessed 2014-04-07.

[267] ROUSE, A. C. A preliminary taxonomy of crowdsourcing. In ACIS 2010 Proceedings
(2010).

[268] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems. Middleware (2001), 329–350.

[269] ROZSENICH, C. Challenges of paid crowdsourcing. Presentation given at Crowd-

Net 2012: 2nd Workshop on Cloud Labor and Human Computation, January 2012.

[270] RUOHOMAA, S., KUTVONEN, L., AND KOUTROULI, E. Reputation Management

Survey. In The Second International Conference on Availability, Reliability and Security
(April 2007), ARES 2007, pp. 103–111.

[271] RUSSELLO, G., DONG, C., AND DULAY, N. A Workflow-based Access Control

Framework for e-Health Applications. In Advanced Information Networking and
Applications-Workshops, 2008. AINAW 2008. 22nd International Conference on (2008),

IEEE, pp. 111–120.

[272] SABATER, J., AND SIERRA, C. REGRET: Reputation in Gregarious Societies. In

Proceedings of the fifth international conference on Autonomous agents (New York, NY,

USA, 2001), AGENTS ’01, ACM, pp. 194–195.

http://www.nytimes.com/2010/07/25/magazine/25privacy-t2.html?pagewanted=all
http://www.nytimes.com/2010/07/25/magazine/25privacy-t2.html?pagewanted=all

182 BIBLIOGRAPHY

[273] SABATER, J., AND SIERRA, C. Social ReGreT, a Reputation Model based on Social

Relations. SIGecom Exch. 3 (December 2001), 44–56.

[274] SABATER, J., AND SIERRA, C. Review on Computational Trust and Reputation

Models. Artificial Intelligence Review 24 (2005), 33–60.

[275] SAMARATI, P., AND DE VIMERCATI, S. C. Access control: Policies, models, and

mechanisms. In Foundations of Security Analysis and Design. Springer, 2001, pp. 137–

196.

[276] SANDHU, R. S., AND SAMARATI, P. Access control: principle and practice. Com-
munications Magazine, IEEE 32, 9 (1994), 40–48.

[277] SARMADY, S. A Survey on Peer-to-Peer and DHT. Tech. rep., School of Computer

Science, Universiti Sains Malaysia, 2010.

[278] SAROIU, S., GUMMADI, K. P., DUNN, R. J., GRIBBLE, S. D., AND LEVY, H. M. An

analysis of internet content delivery systems. SIGOPS Oper. Syst. Rev. 36 (December

2002), 315–327.

[279] SCHENK, E., AND GUITTARD, C. Crowdsourcing: What can be outsourced to the

crowd, and why ? In Workshop on Open Source Innovation, Strasbourg, France (2009).

[280] SCHENK, E., AND GUITTARD, C. Towards a characterization of crowdsourcing

practices. Journal of Innovation Economics, 1 (2011), 93–107.

[281] SCHLOSSER, A., VOSS, M., AND BRÜCKNER, L. On the simulation of global repu-

tation systems. Journal of Artificial Societies and Social Simulation 9 (2005), 1.

[282] SCHLOSSER, M., SINTEK, M., DECKER, S., AND NEJDL, W. A scalable and

ontology-based P2P infrastructure for semantic web services. In Proceedings of the
Second International Conference on Peer-to-Peer Computing (2002), P2P 2002, pp. 104 –

111.

[283] SEGAL, D. A Bully Finds a Pulpit on the Web. http://www.nytimes.com/

2010/11/28/business/28borker.html?_r=3&pagewanted=all, Novem-

ber 2010. Last accessed 2014-04-07.

[284] SELVARAJ, C., AND ANAND, S. A survey on Security Issues of Reputation Man-

agement Systems for Peer-to-Peer Networks. Computer Science Review 6, 4 (2012),

145 – 160.

[285] SEN, S., AND WANG, J. Analyzing peer-to-peer traffic across large networks.

IEEE/ACM Transactions on Networking (ToN) 12, 2 (2004), 219–232.

http://www.nytimes.com/2010/11/28/business/28borker.html?_r=3&pagewanted=all
http://www.nytimes.com/2010/11/28/business/28borker.html?_r=3&pagewanted=all

BIBLIOGRAPHY 183

[286] SHEEHAN, K. B. Toward a typology of internet users and online privacy concerns.

The Information Society 18, 1 (2002), 21–32.

[287] SILBERMAN, M. S., ROSS, J., IRANI, L., AND TOMLINSON, B. Seller’s problems

in human computation markets. In Proceedings of the ACM SIGKDD Workshop on
Human Computation (2010), ACM, pp. 18–21.

[288] SIMMHAN, Y. L., PLALE, B., AND GANNON, D. Karma2: Provenance management

for data-driven workflows. International Journal of Web Services Research (IJWSR) 5,

2 (2008), 1–22.

[289] SINGH, A., AND LIU, L. TrustMe: Anonymous Management of Trust Relationships

in Decentralized P2P Systems. In Proceedings of the third international conference on
Peer-to-Peer Computing (2003), P2P 2003, pp. 142–149.

[290] SINGH, A., NGAN, T., DRUSCHEL, P., AND WALLACH, D. S. Eclipse attacks on

overlay networks: Threats and defenses. In IEEE INFOCOM (2006).

[291] SINGHAL, A. Being Bad to your Customers is Bad for

Business. http://googleblog.blogspot.com/2010/12/

being-bad-to-your-customers-is-bad-for.html, December 2010.

Last accessed 2014-04-07.

[292] SONG, S., HWANG, K., ZHOU, R., AND KWOK, Y.-K. Trusted P2P Transactions

with Fuzzy Reputation Aggregation. Internet Computing, IEEE 9, 6 (2005), 24–34.

[293] SRIVATSA, M., XIONG, L., AND LUI, L. TrustGuard: Countering Vulnerabilities in

Reputation Management for Decentralized Overlay Networks. In Proceedings of the
14th international conference on World Wide Web (New York, NY, USA, 2005), WWW

’05, ACM, pp. 422–431.

[294] STEINBRECHER, S. Design options for privacy-respecting reputation systems

within centralised internet communities. In Security and Privacy in Dynamic En-
vironments, S. Fischer-Hübner, K. Rannenberg, L. Yngström, and S. Lindskog, Eds.,

vol. 201 of IFIP International Federation for Information Processing. Springer Boston,

2006, pp. 123–134.

[295] STEINBRECHER, S. Privacy-respecting reputation system for future internet com-

munities. In Proceedings of the European e-Identity Conference on Managing Employee,
Citizen & Private Identities (2008), Citeseer.

[296] STEINBRECHER, S. The need for interoperable reputation systems. In Open Research
Problems in Network Security, J. Camenisch, V. Kisimov, and M. Dubovitskaya, Eds.,

http://googleblog.blogspot.com/2010/12/being-bad-to-your-customers-is-bad-for.html
http://googleblog.blogspot.com/2010/12/being-bad-to-your-customers-is-bad-for.html

184 BIBLIOGRAPHY

vol. 6555 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2011,

pp. 159–169.

[297] STEINBRECHER, S., GRO, S., AND MEICHAU, M. Jason: A scalable reputation sys-

tem for the semantic web. In Emerging Challenges for Security, Privacy and Trust,
D. Gritzalis and J. Lopez, Eds., vol. 297 of IFIP Advances in Information and Commu-
nication Technology. Springer Boston, 2009, pp. 421–431.

[298] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN,

H. Chord: A Scalable peer-to-peer lookup service for internet applications. ACM
SIGCOMM Computer Communication Review 31, 4 (2001), 149–160.

[299] SUE, D. W. Multidimensional facets of cultural competence. The Counseling Psy-
chologist 29, 6 (2001), 790–821.

[300] SUN, P.-L., AND KU, C.-Y. Review of threats on trust and reputation models.

Industrial Management & Data Systems 114, 3 (2014), 8–8.

[301] TAVAKOLIFARD, M., KNAPSKOG, S. J., AND HERRMANN, P. Trust Transferability

among Similar Contexts. In Q2SWinet ’08: Proceedings of the 4th ACM symposium on
QoS and security for wireless and mobile networks (New York, NY, USA, 2008), ACM,

pp. 91–97.

[302] TENOPIR, C., ALLARD, S., DOUGLASS, K. L., AYDINOGLU, A. U., WU, L., READ,

E., MANOFF, M., AND FRAME, M. Data Sharing by Scientists: Practices and Per-

ceptions. PLoS One 6, 6 (2011).

[303] THAUFEEG, A. M., BUBENDORFER, K., AND CHARD, K. Collaborative eResearch

in a Social Cloud. In E-Science (e-Science), 2011 IEEE 7th International Conference on
(2011), IEEE, pp. 224–231.

[304] TIAN, C., AND YANG, B. R2trust, a reputation and risk based trust management

framework for large-scale, fully decentralized overlay networks. Future Generation
Computer Systems 27, 8 (2011), 1135 – 1141.

[305] TONG, S. T., VAN DER HEIDE, B., LANGWELL, L., AND WALTHER, J. B. Too Much

of a Good Thing? The Relationship Between Number of Friends and Interpersonal

Impressions on Facebook. Journal of Computer-Mediated Communication 13, 3 (2008),

531–549.

[306] TONG, X., AND ZHANG, W. Group Trust and Group Reputation. In ICNC ’09:
Proceedings of the 2009 Fifth International Conference on Natural Computation (Wash-

ington, DC, USA, 2009), IEEE Computer Society, pp. 561–565.

BIBLIOGRAPHY 185

[307] TORMO, G. D., MÁRMOL, F. G., AND PÉREZ, G. M. Towards the integration of

reputation management in OpenID. Computer Standards & Interfaces 36, 3 (2014),

438 – 453.

[308] TURNER, M., BUDGEN, D., AND BRERETON, P. Turning software into a service.

Computer 36, 10 (2003), 38–44.

[309] URDANETA, G., PIERRE, G., AND STEEN, M. V. A survey of DHT security tech-

niques. ACM Computing Surveys (CSUR) 43, 2 (2011), 8.

[310] VAIDYA, J., ATLURI, V., AND GUO, Q. The role mining problem: finding a minimal

descriptive set of roles. In Proceedings of the 12th ACM symposium on Access control
models and technologies (2007), ACM, pp. 175–184.

[311] VAN STEEN, M., HAUCK, F. J., BALLINTIJN, G., AND TANENBAUM, A. S. Algo-

rithmic design of the globe wide-area location service. The Computer Journal 41, 5

(1998), 297.

[312] VAN STEEN, M., HOMBURG, P., AND TANENBAUM, A. S. The architectural design

of Globe: A wide-area distributed system. Tech. rep., Technical Report IR-422,

Department of Mathematics and Computer Science, Vrije Universiteit, 1997.

[313] VAN STEEN, M., HOMBURG, P., AND TANENBAUM, A. S. Globe: a wide area

distributed system. IEEE Concurrency 7, 1 (1999), 70–78.

[314] VOLLBRECHT, J., CALHOUN, P., FARRELL, S., GOMMANS, L., GROSS, G.,

DE BRUIJN, B., DE LAAT, C., HOLDREGE, M., AND SPENCE, D. AAA Authorization

Framework. http://www.ietf.org/rfc/rfc2904.txt, August 2000. Last

accessed 2014-07-14.

[315] VON DER TRENCK, F. F. The life of baron Frederick Trenck, containing his adventures, his
cruel and excessive sufferings during ten years’ imprisonment at the fortress of Magdeburg,
by command of the late king of Prussia. Timothy Bedlington, No. 31, Washington

Street, Boston, 1828.

[316] VOSS, M., HEINEMANN, A., AND MUHLHAUSER, M. A privacy preserving repu-

tation system for mobile information dissemination networks. In First International
Conference on Security and Privacy for Emerging Areas in Communications Networks
(2005), SECURECOMM ’05, IEEE Computer Society, pp. 171–181.

[317] VU, L.-H., HAUSWIRTH, M., AND ABERER, K. QoS-Based Service Selection and

Ranking with Trust and Reputation Management. In On the Move to Meaningful
Internet Systems 2005: CoopIS, DOA, and ODBASE, R. Meersman and Z. Tari, Eds.,

http://www.ietf.org/rfc/rfc2904.txt

186 BIBLIOGRAPHY

vol. 3760 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005,

pp. 466–483.

[318] VUKOVIC, M. Crowdsourcing for enterprises. In 2009 World Conference on Services
(july 2009), pp. 686 –692.

[319] WALKER, I. Reputation scraper - social media. Master’s thesis, Victoria University

of Wellington, 2013.

[320] WALTHER, J. B., VAN DER HEIDE, B., KIM, S.-Y., WESTERMAN, D., AND TONG,

S. T. The Role of Friends’ Appearance and Behavior on Evaluations of Individuals

on Facebook: Are We Known by the Company We Keep? Human Communication
Research 34, 1 (2008), 28–49.

[321] WANG, C., AND LI, B. Peer-to-Peer Overlay Networks: A Survey. Tech. rep., The

Hong Kong University of Science and Technology, 2003.

[322] WANG, L., AND KANGASHARJU, J. Measuring large-scale distributed systems:

case of bittorrent mainline dht. In Peer-to-Peer Computing (P2P), 2013 IEEE Thir-
teenth International Conference on (2013), IEEE, pp. 1–10.

[323] WANG, L., WIJESEKERA, D., AND JAJODIA, S. A logic-based framework for at-

tribute based access control. In Proceedings of the 2004 ACM workshop on Formal
methods in security engineering (2004), ACM, pp. 45–55.

[324] WANG, Y., AND NAKAO, A. Poisonedwater: An improved approach for accu-

rate reputation ranking in P2P networks. Future Generation Computer Systems 26, 8

(2010), 1317 – 1326.

[325] WANG, Y., AND VASSILEVA, J. Trust and reputation model in peer-to-peer net-

works. In Proceedings of the 2003 third International Conference on Peer-to-Peer Com-
puting (P2P 2003). (2003), IEEE, pp. 150–157.

[326] WANG, Y., AND VASSILEVA, J. A review on trust and reputation for web service

selection. In Distributed Computing Systems Workshops, 2007. ICDCSW’07. 27th Inter-
national Conference on (2007), IEEE, pp. 25–25.

[327] WANG, Y., AND VASSILEVA, J. Toward Trust and Reputation Based Web Service

Selection: A Survey. International Transactions on Systems Science and Applications 3,

2 (2007), 118–132.

[328] WILLIAMS, C., HUIBONHOA, P., HOLLIDAY, J., HOSPODOR, A., AND SCHWARZ,

T. Redundancy management for P2P storage. In Seventh IEEE International Sympo-
sium on Cluster Computing and the Grid (May 2007), CCGRID 2007, pp. 15 – 22.

BIBLIOGRAPHY 187

[329] WINDLEY, P. J., DALEY, D., CUTLER, B., AND TEW, K. Using reputation to aug-

ment explicit authorization. In Proceedings of the 2007 ACM workshop on Digital
identity management (New York, NY, USA, 2007), DIM ’07, ACM, pp. 72–81.

[330] WINDLEY, P. J., TEW, K., AND DALEY, D. A framework for building reputation

systems. WWW 2007 (2007), 8–12.

[331] WONGRUJIRA, K., AND SENEVIRATNE, A. Monetary incentive with reputation

for virtual market-place based P2P. In CoNEXT ’05: Proceedings of the 2005 ACM
conference on Emerging network experiment and technology (New York, NY, USA, 2005),

ACM, pp. 135–145.

[332] WU, S., SHETH, A., MILLER, J., AND LUO, Z. Authorization and access control of

application data in workflow systems. Journal of Intelligent Information Systems 18,

1 (2002), 71–94.

[333] WU, X., HE, J., AND XU, F. A Group-Based Reputation Mechanism for Mobile P2P

Networks. In GPC ’09: Proceedings of the 4th International Conference on Advances in
Grid and Pervasive Computing (Berlin, Heidelberg, 2009), Springer-Verlag, pp. 410–

421.

[334] WU, Y., YAN, C., DING, Z., LIU, G., WANG, P., JIANG, C., AND ZHOU, M. A novel

method for calculating service reputation. Automation Science and Engineering, IEEE
Transactions on 10, 3 (July 2013), 634–642.

[335] XIONG, L., AND LIU, L. PeerTrust: Supporting Reputation-Based Trust for Peer-to-

Peer Electronic Communities. IEEE Transactions on Knowledge and Data Engineering
16, 7 (2004), 843–857.

[336] YAGUE, M., MANA, A., LOPEZ, J., AND TROYA, J. Applying the semantic web lay-

ers to access control. In Database and Expert Systems Applications, 2003. Proceedings.
14th International Workshop on (2003), pp. 622–626.

[337] YAGÜE, M. I., MANA, A., AND LOPEZ, J. A metadata-based access control model

for web services. Internet Research 15, 1 (2005), 99–116.

[338] YAN, Z., CHEN, Y., AND SHEN, Y. A practical reputation system for pervasive

social chatting. Journal of Computer and System Sciences 79, 5 (2013), 556–572.

[339] YAN, Z., CHEN, Y., AND SHEN, Y. PerContRep: a Practical Reputation System for

Pervasive Content Services. The Journal of Supercomputing (2014), 1–24.

[340] YANG, B., ZHENG-DING, L., BAO-HUA, H., RUI-XUAN, L., HE-PING, H., AND

SONG-FENG, L. Quorum-based optimistic concurrency control in replicated DHTs.

188 BIBLIOGRAPHY

In Information Engineering and Electronic Commerce, 2009. IEEC’09. International Sym-
posium on (2009), IEEE, pp. 40–45.

[341] YOU, W., LIU, L., XIA, M., AND LV, C. Reputation inflation detection in a Chinese

C2C market. Electronic Commerce Research and Applications 10, 5 (2011), 510 – 519.

[342] YU, A. P., AND VUONG, S. T. MOPAR: a Mobile Peer-to-Peer Overlay Architecture

for Interest Management of Massively Multiplayer Online Games. In Proceedings
of the international workshop on Network and operating systems support for digital audio
and video (New York, NY, USA, 2005), NOSSDAV ’05, ACM, pp. 99–104.

[343] YU, B., AND SINGH, M. P. A social mechanism of reputation management in elec-

tronic communities. In Proceedings of Fourth International Workshop on Cooperative
Information Agents (2000), pp. 154–165.

[344] YU, B., AND SINGH, M. P. Incentive mechanisms for peer-to-peer systems. In

Proceedings of the Second International Workshop on Agents and Peer-to-Peer Computing
(2003), pp. 77–88.

[345] YU, H., GIBBONS, P. B., KAMINSKY, M., AND XIAO, F. SybilLimit: A Near-Optimal

Social Network Defense against Sybil Attacks. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on (2008), IEEE, pp. 3–17.

[346] YU, S., WANG, C., REN, K., AND LOU, W. Achieving secure, scalable, and fine-

grained data access control in cloud computing. In INFOCOM, 2010 Proceedings
IEEE (2010), IEEE, pp. 1–9.

[347] YU, T., ZHANG, Y., AND LIN, K.-J. Efficient Algorithms for Web Services Selection

with End-to-End QoS Constraints. ACM Trans. Web 1 (May 2007).

[348] YUAN, E., AND TONG, J. Attributed based access control (ABAC) for web services.

In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Conference on
(2005), IEEE.

[349] YUAN, Y., RUOHOMAA, S., AND XU, F. Addressing common vulnerabilities of rep-

utation systems for electronic commerce. Journal of theoretical and applied electronic
commerce research 7, 1 (2012), 1–20.

[350] YURCIK, W. J., BONILLA, R. F., STAGELL, A., AND BASNEY, J. Credential wallets:

A classification of credential repositories highlighting myproxy.

[351] ZACHARIA, G., MOUKAS, A., AND MAES, P. Collaborative reputation mechanisms

for electronic marketplaces. Decision Support Systems 29, 4 (2000), 371 – 388.

BIBLIOGRAPHY 189

[352] ZENG, L., BENATALLAH, B., DUMAS, M., KALAGNANAM, J., AND SHENG, Q. Z.

Quality Driven Web Services Composition. In Proceedings of the 12th international
conference on World Wide Web (2003), ACM, pp. 411–421.

[353] ZENG, L., BENATALLAH, B., NGU, A. H. H., DUMAS, M., KALAGNANAM, J.,

AND CHANG, H. QoS-Aware middleware for web services composition. IEEE
Transactions on Software Engineering 30, 5 (2004), 311–327.

[354] ZENG, L., BENATALLAH, B., NGUYEN, P., AND NGU, A. H. AgFlow: Agent-

based Cross-Enterprise Workflow Management System. In Proceedings of the 27th
International Conference on Very Large Data Bases (San Francisco, CA, USA, 2001),

VLDB ’01, Morgan Kaufmann Publishers Inc., pp. 697–698.

[355] ZHANG, H., WU, W., AND LI, Z. Open Social based Group Access Control Frame-

work for e-Science Data Infrastructure. In E-Science (e-Science), 2012 IEEE 8th Inter-
national Conference on (2012), pp. 1–8.

[356] ZHANG, Z., SHI, S.-M., AND ZHU, J. SOMO: Self-Organized Metadata Overlay for

Resource Management in P2P DHT. In Peer-to-Peer Systems II, vol. 2735 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2003, pp. 170–182.

[357] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH, A. D., AND KUBIA-

TOWICZ, J. D. Tapestry: A Resilient Global-scale Overlay for Service Deployment.

IEEE Journal on Selected Areas in Communications 22 (2004), 41–53.

[358] ZHAO, H., AND LI, X. H-Trust: A Group Trust Management System for Peer-to-

Peer Desktop Grid. Journal of Computer Science and Technology 24 (2009), 833–843.

[359] ZHAO, H., YANG, X., AND LI, X. An incentive mechanism to reinforce truthful

reports in reputation systems. Journal of Network and Computer Applications 35, 3

(2012), 951 – 961. ¡ce:title¿Special Issue on Trusted Computing and Communica-

tions¡/ce:title¿.

[360] ZHAO, Y., AND ZHU, Q. Evaluation on crowdsourcing research: Current status

and future direction. Information Systems Frontiers (2012), 1–18.

[361] ZHENG, Z., AND LYU, M. R. WS-DREAM: A Distributed Reliability Assessment

Mechanism for Web Services. In Dependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008. IEEE International Conference on (2008), IEEE, pp. 392–397.

[362] ZHENG, Z., AND LYU, M. R. A QoS-Aware Fault Tolerant Middleware for Depend-

able Service Composition. In Dependable Systems Networks, 2009. DSN’09. IEEE/IFIP
International Conference on (2009), IEEE, pp. 239–248.

190 BIBLIOGRAPHY

[363] ZHENG, Z., MA, H., LYU, M. R., AND KING, I. WSrec: A collaborative Filtering

Based Web Service Recommender System. In Web Services, 2009. ICWS 2009. IEEE
International Conference on (2009), IEEE, pp. 437–444.

[364] ZHOU, R., AND HWANG, K. PowerTrust: A Robust and Scalable Reputation Sys-

tem for Trusted Peer-to-Peer Computing. IEEE Transactions on Parallel and Dis-
tributed Systems 18 (2007), 460–473.

[365] ZITTRAIN, J. Ubiquitous human computing. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 366, 1881 (2008), 3813–

3821.

[366] ZUCKERBERG, M. Facebook across the Web. https://www.facebook.com/

notes/facebook/facebook-across-the-web/41735647130, December

2008. Last accessed 2014-04-07.

https://www.facebook.com/notes/facebook/facebook-across-the-web/41735647130
https://www.facebook.com/notes/facebook/facebook-across-the-web/41735647130

Glossary

Churn The rate at which peers enter and leave a network.

Co-authorship The state of two (or more) authors having worked together on a single

manuscript. For example, if Alice and Bob write a manuscript together, they are

considered co-authors.

Context The domain in which information was generated. Most reputation systems em-

ploy a single, or personal, context.

Contextual attributes Data that provides additional information about the context in

which reputation was generated.

DBLP The DBLP Computer Science Bibliography. An online bibliography of computer

science journals and conferences. DBLP makes available its database of authors and

papers, allowing the derivation of co-authorship information.

DHT Distributed Hash Table. This concept is further discussed in Section A.3.

Entity An entity describes an independent agent. Both people and machines (or services)

are considered to be entities in this thesis.

GP A GRAFT Provider. This means an OpenID Provider (OP) combined with GRAFT

profile storage.

GRAFT Generalised Recommendation Framework. The framework that is developed

and evaluated in this thesis.

Kademlia An implementation of a DHT, discussed further in Section A.3.1.

Malicious peers Peers that try to subvert the network for their own gain.

MAS Microsoft Academic Search.

OpenID A decentralised authentication protocol that allows an entity to maintain a sin-

gle digital identity. OpenID is further discussed in Section A.1.

191

192 GLOSSARY

OpenRep GRAFT OpenID extensions that support discovery and exchange of recom-

mendation profiles. Please see Section A.2 for more information.

OP An OpenID Provider. An OP authenticates the entities that are registered with it.

Please see Section A.1 for more information.

Peer A single participant in a network of peers. Each peer is equal to every other peer

and may act as both a client and a server to other peers.

P2P Peer-to-Peer. A distributed network of peers where resources are coordinated amongst

peers, without any centralised control.

PostgreSQL An opensource database compliant with SQL standards.

Recommendation Recommendations are endorsements of the target agent by a third

party. These endorsements are based on the target’s characteristics, capabilities,

affiliations, and reputation.

Reputation According to the Collins English Dictionary, reputation is “the estimation in
which a person or thing is generally held; opinion”. Reputation is discussed in depth in

Chapter 2.

RP A Relying-Party provides services to entities. An RP will authenticate entities with

their OPs (or GPs) using the OpenID protocol. Please see Section A.1 for more

information.

XRDS XML-based document that allows for the discovery of web-based resources. Utilised

by the OpenID protocol to enumerate authentication service locations. Please see

Section A.1 for more information.

193

This thesis was written using a 1989 IBM Model M keyboard.

	Introduction
	Introduction
	Overview of GRAFT
	Research Goals
	Contributions
	Scope
	Publications
	Thesis Organisation

	Related Work
	Terminology
	Reputation and Trust
	Recommendations

	Reference Models
	Reputation Systems
	Reputation Context

	Reputation Systems Survey
	Academic Systems
	Commercial Systems

	Reputation Systems Taxonomy
	Related Work
	Construction Methodology
	Taxonomy
	Classification of Reputations Systems
	Analysis

	Related Systems
	Summary

	Architecture
	Requirements
	Architecture Overview
	Lightweight Model
	Entities
	OpenID
	OpenRep
	Analysis

	Integrated Model
	Collection Layer
	Entities
	Recommendations
	Originating Sources
	Recommendation Sources
	Analysis

	Integration Layer
	Profiles
	Concurrency
	Overlay Network
	Analysis

	Interpretation Layer
	Analysis

	Policy Backbone

	Case Studies
	Access Control
	Forum
	Wiki

	Composition
	Travel Planner Service
	Meteorological Workflow

	Acquisition
	Travel Planner Service
	Meteorological Workflow
	Social Cloud

	Implementation
	Forum
	Source Node
	Consumer/Source Node
	Policy

	Wiki
	Source Nodes
	Consumer Node
	Policy

	Workflow
	Anduril Components
	Ranking Service
	Anduril Workflow

	Experimental Results and Evaluation
	Experimental Testbed
	Prototype Limitations

	Degrees of Co-authorship Calculation
	Design
	Results

	Degrees of Co-authorship Storage
	Design
	Results

	Hirsch Index Calculation
	Design
	Results

	Workflow
	Design
	Results

	Workflow Simulation
	Design and Testbed
	Parameters
	Simulation
	Presentation

	Simulation: Base Case
	Single Response Time
	Response Inter-arrival Times
	Total Time to Reach Threshold

	Simulation: Base Case with Malicious Peers
	Design
	Correct Responses
	Trend

	Simulation: Churn
	Single Response Time
	Response Inter-arrival Times
	Total Time to Reach Threshold

	Simulation: Churn with Malicious Peers
	Correct Responses
	Trend

	Summary

	Conclusions
	Review
	Implementation
	Experimental Results and Evaluation

	Contributions
	Future Work
	Architecture
	Profiles
	DHT

	Background
	OpenID
	OpenID Discovery

	OpenRep
	OpenRep Discovery
	OpenRep Authentication Transfer
	OpenRep Web Interfaces

	Distributed Hash Tables
	Kademlia

	Comparison of GRAFT and XACML
	Comparison of GRAFT and XACML

	SimGrid
	SimGrid
	Cluster Platform
	Gridâ•Ž5000 Platform

	Samples
	GRAFT Profiles
	GRAFT Policies
	Workflow
	Oversim

	Glossary

