
Detachable Pairs in

3-Connected Matroids

Alan Williams

A thesis

submitted to Victoria University of Wellington

in fulfilment of the requirements for the degree of

Doctor of Philosophy

in Mathematics.

Victoria University of Wellington

2015



Abstract

The classical tool at the matroid theorist’s disposal when dealing with the

common problem of wanting to remove a single element from a 3-connected

matroid without losing 3-connectivity is Tutte’s Wheels-and-Whirls Theo-

rem. However, situations arise where one wishes to delete or contract a pair

of elements from a 3-connected matroid whilst maintaining 3-connectedness.

The goal of this research was to provide a new tool for making such argu-

ments. Let M be a 3-connected matroid. A detachable pair in M is a pair

x, y ∈ E(M) such that either M\x, y or M/x, y is 3-connected. Naturally,

our aim was to find the necessary conditions on M which guarantee the ex-

istence of a detachable pair. Triangles and triads are an obvious barrier to

overcome, and can be done so by allowing the use of a Δ − Y exchange.

Apart from these matroids with three-element 3-separating sets, the only

other class of matroids that fail to contain a detachable pair for which no

bound can be placed on the size of the ground set is the class of spikes. In

particular, we prove the following result. Let M be a 3-connected matroid

with at least thirteen elements. If M is not a spike, then either M contains

a detachable pair, or there exists a matroid M ′ where M ′ is obtained by per-

forming a single Δ− Y exchange on either M or M∗ such that M ′ contains

a detachable pair. As well as being an important theorem in its own right,

we anticipate that this result will be essential in future attempts to extend

Seymour’s Splitter Theorem in a comparable manner; where the goal would

be to obtain a detachable pair as well as maintaining a 3-connected minor.

As such, much work has been done herein to study the precise configurations

that arise in 3-separating subsets which themselves yield no detachable pair.
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Chapter 1

Introduction

Matroids were originally formalised [21] in an attempt to generalise the con-

cept of independence that occurs in several branches of mathematics; in par-

ticular, the concepts of linear independence in vector spaces, and edge sets

of forests in graph theory. It quickly became clear however that the notion

of independence captured in the definition was far more general than any

one area for which it was first intended. There exist matroids which cannot

be constructed from graphs; taking any field F, there exist matroids which

cannot be constructed from a finite collection of vectors in F; and, indeed,
there exist matroids which cannot be constructed from any field whatsoever

(see [20]). A matroid which can be constructed from a vector space over

some field F is said to be representable over F, and certainly, a given matroid

may be representable over one field but not another. Whether or not it is

possible to represent a matroid over a particular field is a matter which is

essentially decided by two closely related concepts. The underlying geom-

etry of the vector space over the field and the degree of freedom the space

allows in accepting new points, together with the pigeonholing of the raw

combinatorial possibilities that arise from the matroidal definition.

Thus, since its inception, one of the primary areas of research in ma-

troid theory has been in attempting to understand this distinction between
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representable and non-representable matroids. With the class of matroids

representable over a particular field being closed under taking minors, the

predominant approach has been in aiming to classify these various classes ac-

cording to some list of excluded minors. We know from Tutte [18] that there

exists exactly one excluded minor for the class of matroids which are repre-

sentable over the two-element field; in particular, a matroid is representable

over GF(2) if and only if it has no minor isomorphic to U2,4. Next, Bixby [2]

and Seymour [16] proved independently that the class of GF(3)-representable

matroids has exactly three excluded minors. The complete characterisation

for GF(4) in terms of excluded minors was then given by Geelen, Gerards,

and Kapoor [5] in 2000 with seven such matroids. To date, the four-element

field remains the largest field for which such an explicit characterisation has

been arrived at.

In stark contrast to these encouraging results for small fields, such a

concise classification has been shown to be not possible over the real numbers.

Indeed, letting Γ be the class of all real-representable matroids, Mayhew,

Whittle, and Newman [9] have shown that for any real-representable matroid

M , there exists an excluded minor for Γ which itself has M as a minor.

However, in the case of finite fields, it has long been suspected that a finite

classification will always be possible. Formally, Rota [15] conjectured that for

any finite field F, there exists only finitely many excluded minors for the class

of F-representable matroids. Indeed, it has recently been announced [6] that

Rota’s Conjecture has been resolved in the affirmative as a consequence of

the work done in the matroid minor structure theorems of Geelen, Gerards,

and Whittle.

So, whilst Rota’s conjecture has been resolved, the solution we have is

very much one of a qualitative, existential nature. The task of explicitly

finding and listing the particular excluded minors for some given field is es-

sentially another matter altogether. Obtaining such precise classifications

has proven to be difficult to say the least for all but the most simple of fields.

The GF(2) case is trivial, the GF(3) straightforward enough, the GF(4) man-
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ageable, and anything larger; as we have mentioned, remains out of our reach

at this time due to the explosion in complexity as more allowable structure

is able to be captured. One aspect contributing to this lies in the fact that

for larger fields, a given matroid may have many different representations

which are inequivalent in the natural algebraic sense. The fact that this

phenomenon does not occur in the very smallest of fields simplifies matters

greatly. In particular, all matroids representable over GF(2) and GF(3) are

uniquely representable in the sense that every representation is algebraically

equivalent, so that this issue is a non-issue. Over GF(4), the problem with

the existence of inequivalent representations starts to arise. However, ma-

troids representable over GF(4) are uniquely representable provided they are

3-connected and we fix a representation of a U2,4 minor [7]. The matroid U2,4

is said to be a stabilizer [22] for the class of GF(4)-representable matroids in

this sense. The classification of the excluded minors for GF(4) relies crucially

on this notion of a stabilizer, and it is hoped that it will also be of use in

future attempts at classifications of larger fields. As the underlying field is

enlarged, the problem with inequivalent representations only worsens. Ox-

ley, Vertigan, and Whittle [13] showed that 3-connected GF(5)-representable

matroids can have up to six inequivalent representations, and that, for any

larger field, no such bound exists. Nevertheless, it is hoped that by generalis-

ing the techniques implemented in the GF(4) case [5], we may be able to gain

significant traction on the class of matroids representable over GF(5), as well

as the class of 2-regular matroids and the closely related class of matroids

representable over all fields F for which |F| ≥ 4.

A key component of the work done in [5] lies in analysing when one can

remove elements from a 3-connected matroid which has a U2,4 minor with-

out losing 3-connectivity whilst simultaneously maintaining a copy of the

minor. Essentially this boils down to the use of Seymour’s Splitter Theorem

[17], together with some consequences of it in order to bound the size of a

potential excluded minor. Recall that the classical splitter theorem states

that provided our original matroid is not a wheel or a whirl, we are always
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guaranteed the existence of a single element which is either deletable or con-

tractable whilst maintaining 3-connectivity, and, moreover, after doing so will

leave us with a matroid which preserves the property of containing a partic-

ular 3-connected minor of interest. While the splitter theorem has proved

invaluable, there has been growing desire in recent times to find a stronger

analogue to help deal with situations in which we wish to delete a pair of

elements, or contract a pair of elements, all the while keeping 3-connectivity

and a particular 3-connected minor. In such a setting, the original splitter

theorem provides no guarantees as it is only equipped to deal with single

element removals. Indeed, if it turned out to be the case that we could al-

ways delete or contract a pair of elements in this way, it has been noted by

Jim Geelen (private communication) that the proof of the excluded-minor

characterization for GF(4) could be simplified greatly into a short succinct

argument.

Moreover, in recent work of Clark [4], attempts have been made to gener-

alise the techniques of [5] to arbitrary (partial) fields and stabilizers for those

fields. Much of the work done therein requires that precisely such an afore-

mentioned analogue of the splitter theorem be obtainable. In particular, he

has shown that; modulo the acquisition of a 2-element splitter theorem, and

up to Δ− Y equivalence, an excluded minor for the class of P-representable
matroids has its size bounded by the size of a stabilizer N for that class, or

else is a two-element extension or coextension of an N -fragile matroid.

This is certainly an encouraging result, however the splitter theorem re-

quired for it to hold remains a conjecture at this stage. Thus, the search

for such a theorem is certainly well motivated, and was one of our primary

reasons for pursuing the line of enquiry contained in this work. Indeed, ini-

tially in this research project, we attempted to tackle the splitter problem

directly; navigating all potential counterexamples that arose at once. After

some time, it became clear that such a brute force approach was not gaining

a huge amount of traction and was making it difficult to isolate and study

the key problematic structures that arise. We decided that the best way to
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proceed, and, in retrospect, the most natural way to proceed, was to split

the problem into its two essential components. First, there was the issue of

finding a two-element analogue of Tutte’s Wheels-and-Whirls Theorem [19].

In particular, we wanted to know when it was possible to either delete a pair

of elements from a 3-connected matroid whilst maintaining 3-connectivity, or

contract a pair of elements from a 3-connected matroid whilst maintaining

3-connectivity. From there, the goal would be to use what was learnt to

extend this result to a splitter theorem analogue with the added requirement

of maintaining a 3-connected minor.

Our efforts from then on were primarily concentrated on completing such

an appropriate analogue of the Wheels-and-Whirls Theorem. If M is a 3-

connected matroid with x, y ∈ E(M), we say that {x, y} is a detachable pair

if either M\x, y or M/x, y is 3-connected. The main result of this thesis is

the following:

Theorem 1.0.1. Let M be a 3-connected matroid with |E(M)| > 12. If M

is not a spike, then either M contains a detachable pair, or there exists a

matroid M ′ where M ′ is obtained by performing a single Δ− Y exchange on

either M or M∗ such that M ′ contains a detachable pair.

Note that allowing ourselves use of the Δ−Y operation is perfectly safe in

the sense that if M is an excluded minor for a class of matroids representable

over a partial field P, and M ′ is obtained from M via a Δ−Y operation, then

M ′ is also an excluded minor for that class (See [1] and [12]). Our research

into the above Wheels-and-Whirls Theorem analogue has been approached

with a view towards a future splitter theorem extension. To help illuminate

this, consider the situation which occurs when one has a 3-connected matroid

M with a 3-connected minor N of interest. An element e is then removed

from M in such a way that the N minor is retained however a non-trivial

2-separation (X, Y ) is exposed in the process. It is readily deduced that,

apart from perhaps one single plug element, the elements of the matroid N

must lie entirely within X, or else entirely within Y . Returning then to
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our original matroid M , we have an exact 3-separation in which the minor

N ; except at most one plug element, lies entirely on one side. If we then

concentrate our efforts on attempting to remove elements from the side of

the 3-separation which does not contain the minor N , then we can be sure

to retain N in any subsequent removals. In this way, the problem of finding

a two-element splitter theorem analogue is reduced to that of a two-element

Wheels-and-Whirls Theorem analogue in which we are restricted to only

allowing ourselves to remove pairs of elements from one side of a 3-separation.

The work we have done herein reveals precisely when such a task is possible.

Indeed, from here, we anticipate that a splitter theorem extension is not

far off at all, and will for the most part be able to be drawn directly from

the structures studied in this investigation. The only obvious extra obstacle

to overcome at this point is to understand precisely how a potential plug

element interacts with the various possible problematic 3-separating sets.

An interesting related problem to consider would be to study the struc-

tures that arise when one disallows the use of the Δ−Y operation. Much of

the simplicity in the statement of Theorem 1.0.1 would no doubt be lost, as

more classes of counterexamples are possible; the most obvious two of which

being the wheels and the whirls. However, it’s conceivable that such a prob-

lem could be tackled in time. We should also note that while initial impetus

for this research was drawn from other closely related research projects and

the current desire to obtain a two-element extension of the splitter theorem,

the generalisation of Tutte’s Wheels-and-Whirls Theorem contained within

this volume is strong, clean, and most certainly of independent interest for

matroid theory at large. As such, we expect that it will be of use for re-

searchers in the field for some time to come.

1.1 Definitions

We begin by making some definitions which will be used in what follows.

Of utmost importance is the notion of matroid connectivity. Let M be a
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matroid on a groundset E. The connectivity function; denoted λM , which

takes subsets of E to the natural numbers, is defined by

λM(X) = r(X) + r(E −X)− r(M).

A setX or a partition (X,E−X) of E is said to be k-separating if λM(X) < k

and exactly k-separating if λM(X) = k− 1. A k-separating partition (X,E−
X) is furthermore a k-separation whenever |X| ≥ k ≤ |E−X|, and an exact k-

separation in the natural sense. The matroidM is n-connected provided no k-

separations ofM exist for any k < n. We use the term connected in place of 2-

connected. The matroid M is internally 4-connected if it is 3-connected, and,

whenever (X,E−X) is a 3-separation ofM , either |X| = 3 or |E−X| = 3. A

vertical k-separation is a triple (X, {e}, Y ) which partitions E such that both

(X∪{e}, Y ) and (X, Y ∪{e}) are exact k-separations, r(X) ≥ k ≤ r(Y ), and

e ∈ cl(X)∩cl(Y ). A cyclic k-separation is a triple (X, {e}, Y ) which partitions

E such that both (X∪{e}, Y ) and (X, Y ∪{e}) are exact k-separations, both
X and Y contain circuits of M , and e ∈ cl∗(X) ∩ cl∗(Y ). Note that while

elsewhere in the literature a vertical or a cyclic k-separation may refer to

perhaps something slightly different, in this thesis whenever we use these

terms we are explicitly referring to a triple of the aforementioned form. The

local connectivity function, denoted ⊓M , which takes pairs of subsets of E to

the natural numbers, is defined by

⊓M(X, Y ) = r(X) + r(Y )− r(X ∪ Y ).

Intuitively, it can be helpful to think of the local connectivity function as

a measure of the intersection of the closures of the two corresponding sets.

Note that when X and Y partition E, local connectivity essentially reduces

to regular connectivity.

Lemma 1.1.1. Let M be a matroid with X, Y ⊆ E(M). The connectivity

function λM = λ satisfies the following inequality:

λ(X ∩ Y ) + λ(X ∪ Y ) ≤ λ(X) + λ(Y ).
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The above lemma will be used numerous times throughout. In words,

it refers to the fact that the connectivity function is submodular. As such,

whenever applying Lemma 1.1.1, we shall simply use the phrase ‘by sub-

modularity of λ’ or something to that effect. As a direct consequence of

submodularity we also have the following useful result which we will ap-

ply on a number of occasions, using the term ‘by uncrossing’ as opposed to

directly referencing.

Lemma 1.1.2. Let M be a 3-connected matroid, and let X and Y be 3-

separating subsets of E(M). Then the following properties hold:

(i) if |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating, and

(ii) if |E(M)− (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

The following result describing the relationship between vertical and

cyclic 3-separations is straightforward, but should be noted as it is frequently

used implicitly and without reference.

Lemma 1.1.3. Let (X, {e}, Y ) be a partition of a matroid M . Then

(X, {e}, Y ) is a vertical 3-separation of M if and only if it is a cyclic 3-

separation of M∗.

Let M be matroid with an element e such that there exists an exact 3-

separation (X, Y ) of M\e. We say that the element e blocks the 3-separation

(X, Y ), or blocks the exactly 3-separating set X if neither X nor Y is exactly

3-separating in M . The following equivalent definition of a blocking element

is readily checked.

Lemma 1.1.4. A 3-separation (X, Y ) of a matroid M\e is blocked by e in

M if and only if e ∕∈ (cl(X) ∪ cl(Y )).

A subset X of a matroid M is fully closed if cl(X) = X = cl∗(X). The full

closure of a set X; denoted fcl(X), is the intersection of all fully closed sets
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which contain X. We shall write x ∈ cl(∗)(X) to denote that x ∈ cl(X)

or x ∈ cl∗(X). A 3-separating subset X of a matroid M is said to be

sequential if there exists an ordering (x1, . . . , xn) of the elements of X such

that {x1, . . . , xi} is 3-separating for all i where 1 ≤ i ≤ n. In such a situation,

(x1, . . . , xn) is a sequential ordering of X. A matroid M is itself said to be

sequential if E(M) has some sequential ordering. The following result on

sequential orderings is straightforward.

Lemma 1.1.5. Let (x1, . . . , xn) be a sequential ordering of a sequential set

X in a 3-connected matroid M . Then, for i ∈ {3, . . . , n − 2}, one of the

following holds:

(i) i ∈ cl({x1, . . . , xi−1}) ∩ cl(E(M)− {x1, . . . , xi}), or

(ii) i ∈ cl∗({x1, . . . , xi−1}) ∩ cl∗(E(M)− {x1, . . . , xi}).

If outcome (i) of Lemma 1.1.5 holds for a particular element xi of a

sequential set X, then xi is said to be a guts element. In the case that (ii)

holds, xi is a coguts element.

Let M be a matroid with a subset Z ⊆ E(M) where |Z| ≥ 3. The set

Z is a segment if every triple of Z is a triangle. Dually, Z is a cosegment if

every triple of Z is a triad. A subset D of M is a quad if |D| = 4 and D is

both a circuit and a cocircuit.

Definition 1.1.6. Let F = (f1, . . . , fn) be an ordered sequence of distinct

elements of M where n ≥ 3. Then F is a fan if for all i ∈ {1, . . . , n− 2},

(i) {fi, fi+1, fi+2} is a triangle or a triad, and

(ii) whenever {fi, fi+1, fi+2} is a triangle, {fi+1, fi+2, fi+3} is a triad, and,

whenever {fi, fi+1, fi+2} is a triad, {fi+1, fi+2, fi+3} is a triangle.

The fan F = (f1, . . . , fn) is maximal in M provided there does not exist a

fan G = (g1, . . . , gm) such that {g1, . . . , gm} properly contains {f+1, . . . , fn}.
If F = (f1, . . . , fn) is a maximal fan, then f1 and fn are said to be the ends

of the fan. For a proof of the following result, see [14].
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Lemma 1.1.7. Let M be a 3-connected matroid which is not a wheel or a

whirl, and let F be a maximal fan in M containing at least four elements.

If e is an end of F and e is contained in a triangle of M , then M\e is

3-connected.

Definition 1.1.8. Let F = (f1, f2, . . . , fn) be an ordered sequence of distinct

elements of a 3-connected matroid M where n ≥ 4. Then F is a flan of M if

the following hold.

(i) If i is an odd member of {1, . . . , n− 2}, then {fi, fi+1, fi+2} is a triad.

(ii) If i is an even member of {4, . . . , n}, then fi ∈ cl({f1, f2, . . . , fi−1}).

The flan F is maximal if there is no element fn+1 such that

(f1, f2, . . . , fn, fn+1) is a flan. A fan whose ordering begins with a triad

is of course a specific example of a flan. Flans in general are an important

structure encountered throughout this work and we shall take a closer look

at some results related to them in Section 2.4.

Definition 1.1.9. A paddle in a 3-connected matroid M is a partition

(P1, . . . , Pn) of E(M) where n ≥ 3 such that the following hold:

(i) |Pi| ≥ 2 for every i ∈ {1, . . . , n},

(ii) λ(
󰔴

s∈S Ps) ≤ 2 for every subset S of {1, . . . , n}, and

(iii) ⊓(Pi, Pj) = 2 for all distinct i, j ∈ {1, . . . , n}.

Let Δ = {a, b, c} be a triangle of M and consider a copy of M(K4) having

Δ as a triangle with {a′, b′, c′} as the complementary triad labelled such that

{a, b′, c′}, {a′, b, c′} and {a′, b′, c} are triangles. Let PΔ(M,M(K4)) denote

the generalised parallel connection of M with M(K4) across the triangle Δ.

Consider then the matroid PΔ(M,M(K4))\Δ where the elements a′, b′ and

c′ are relabelled as a, b and c respectively. This resulting matroid, denoted

ΔM , is said to be obtained from M via performing a Δ − Y exchange on
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the triangle Δ. Dually, a matroid N is obtained from M via performing a

Y −Δ exchange on the triad {a, b, c} if N∗ is obtained from M∗ via a Δ−Y

exchange on {a, b, c}.

Definition 1.1.10. Let M be a 3-connected matroid with x, y ∈ E(M). The

pair {x, y} is a detachable pair if either M\x, y or M/x, y is 3-connected.

As alluded to in the introduction, the bulk of the work contained in this

thesis is concerned with locating detachable pairs within a specific side of

a 3-separation and studying the structures that arise when such a task is

not possible. Quads are the simplest examples of exactly 3-separating sets

which yield no detachable pair. As shall become clear in the later chapters,

the other troublesome counterexamples can be classified into four specific

subtypes which we capture in the following four definitions.

Definition 1.1.11. Let M be a matroid with a 3-separating subset X. The

set X is a spike-like 3-separator if there exists a partition {X1, . . . , Xn} of X

with n ≥ 3 such that the following properties hold:

(i) |Xi| = 2 for every i ∈ {1, . . . , n}, and

(ii) Xi ∪Xj is a quad for all distinct i, j ∈ {1, . . . , n}.

In such a situation, {X1, . . . , Xn} is said to be the associated partition of the

spike-like 3-separator X. Furthermore, if E(M) is a spike-like 3-separator,

then M itself is a spike.

Definition 1.1.12. Let M be a 3-connected matroid containing a quad P

with q1, q2 ∈ E(M) − P . Then X = P ∪ {q1, q2} is a partial spider-like

3-separator with associated partition {P, {q1, q2}} if there exists a labelling

P = {p1, p2, p3, p4} of P such that:

(i) {p1, p2, q1, q2} and {p3, p4, q1, q2} are circuits, and

(ii) {p1, p3, q1, q2} and {p2, p4, q1, q2} are cocircuits.
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p1
p2

p3
p4

q1

q2

(a) Partial Spider-Like 3-Separator

p1
p2

p3
p4

q1

q3

q2

q4

(b) Spider-Like 3-Separator

Figure 1.1: Geometric Representations of Definitions 1.1.12 and 1.1.13

Definition 1.1.13. Let M be a 3-connected matroid containing disjoint

quads P and Q. Then X = P ∪ Q is a spider-like 3-separator with as-

sociated partition {P,Q} if there exists a labelling P = {p1, p2, p3, p4} and

Q = {q1, q2, q3, q4} of P and Q such that:

(i) {p1, p2, q1, q2}, {p1, p2, q3, q4}, {p3, p4, q1, q2} and {p3, p4, q3, q4} are cir-

cuits, and

(ii) {p1, p3, q1, q3}, {p1, p3, q2, q4}, {p2, p4, q1, q3} and {p2, p4, q2, q4} are cocir-
cuits.

Definition 1.1.14. Let (X, Y ) be an exact 3-separation of the matroid M .

Then X is a twisted 3-separator if |X| = 6 and there exists a labelling

{r1, r2, s1, s2, t1, t2} of the elements of X such that the following hold.

(i) {r1, r2, s2, t1}, {s1, s2, r1, t2} and {t1, t2, s1, r2}, are the circuits of M

contained in X.

(ii) {r1, r2, s1, s2}, {s1, s2, t1, t2} and {t1, t2, r1, r2} are the cocircuits of M

contained in X.
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t2

t1

r1

r2
s1

s2

Figure 1.2: Geometric Representation of Definition 1.1.14

It will become much more clear in Chapter 2 precisely how a twisted 3-

separator is configured and how it can be constructed as an extension of a

flan. With that we conclude our definitions. Anything not explicitly defined

above accords to the conventions and notation as described in [11].

1.2 Further Preliminary Lemmas

We catalogue some important lemmas which will be needed in the following

chapters. First and foremost amongst these is the following fundamental

result which is used extensively throughout.

Lemma 1.2.1. Let M be a matroid. If C is a circuit of M and C∗ a cocircuit

of M , then |C ∩ C∗| ∕= 1.

We shall use the phrase by orthogonality whenever applying Lemma 1.2.1.

The next three results are straightforward and well known. We note them

here as they are used numerous times; all the while implicitly and without

reference.

Lemma 1.2.2. Let e be an element of a matroid M , and let X and Y be
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disjoint sets whose union is E(M) − {e}. Then e ∈ cl(X) if and only if

e ∕∈ cl∗(Y ).

Lemma 1.2.3. Let X be an exactly 3-separating set in a 3-connected matroid

M , and suppose that e ∈ E(M) − X. Then X ∪ {e} is 3-separating if and

only if e ∈ cl(∗)(X).

Lemma 1.2.4. Let (X, Y ) be an exactly 3-separating partition of a 3-

connected matroid M . Suppose |X| ≥ 3 and x ∈ X. Then:

(i) x ∈ cl(∗)(X − {x}); and

(ii) (X − {x}, Y ∪ {x}) is exactly 3-separating if and only if x is in exactly

one of cl(X − {x}) ∩ cl(Y ) and cl∗(X − {x}) ∩ cl∗(Y ).

All of the results mentioned hereafter will be explicitly referenced at the

appropriate time. The next seven lemmas are elementary.

Lemma 1.2.5. Let (P,Q) be a k-separating partition of a matroid M . Then

for any subset X ⊆ E(M), (P ∩X,Q∩X) is a k-separating partition of the

restricted matroid M |X.

Lemma 1.2.6. Let (X, Y ) be a 2-separation in a connected matroid M where

M contains no series or parallel pairs. Then (fcl(X), Y − fcl(X)) is also a

2-separation of M .

Lemma 1.2.7. Let M be a matroid with x ∈ E(M). If Y ⊆ E(M\x) is

fully closed in M\x and x ∈ cl(Y ), then Y ∪ {x} is fully closed in M .

Lemma 1.2.8. Let X be a fully closed subset of a matroid M and x ∈ X.

Then X − {x} is fully closed in both M\x and M/x.

Lemma 1.2.9. Let (S, T, U) be a paddle in a 3-connected matroid M . Then

cl∗(X) = X for each X ∈ {S, T, U}.

Lemma 1.2.10. Let (X, Y ) be an exact 3-separation of a 3-connected ma-

troid M . Then (cl(X) ∩ cl∗(X))−X = ∅.
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Lemma 1.2.11. Let e be an element of a 3-connected matroid M . If si(M/e)

is not 3-connected, then there exists a vertical 3-separation (X, {e}, Y ) of M .

Similarly, if co(M\e) is not 3-connected, there exists a cyclic 3-separation

(P, {e}, Q) of M .

The following two results relating to connectivity under Δ−Y operations

are straightforward and readily deduced. The interested reader should see

for example Chapter 4, Section 3 of [8].

Lemma 1.2.12. Let T be a triangle of a matroid M with some t ∈ T . Let

M ′ denote the matroid obtained by performing a Δ − Y exchange on the

triangle T . Then M\t ∼= M ′/t. In particular, if T = {t, t1, t2}, then M\t is
isomorphic to M ′/t under the map which interchanges t1 and t2 and leaves

every other element fixed.

Lemma 1.2.13. Let M be a 3-connected matroid containing a fan F =

(f1, . . . , fk) where k ≥ 4 and {f1, f2, f3} is a triangle. Let M ′ denote the

matroid obtained by performing a Y − Δ exchange on the triad {f2, f3, f4}.
Then:

(i) if k = 4 and F is maximal, the matroid M ′ is 3-connected up to the

parallel pair {f1, f4},

(ii) if k > 5, the matroid M ′ is 3-connected up to the two distinct parallel

pairs {f1, f4} and {f2, f5}, and

(iii) if k = 5 and F is maximal, provided there does not exist a triangle

in M which contains {f2, f4}, the matroid M ′ is 3-connected up to the

two distinct parallel pairs {f1, f4} and {f2, f5}. In the case that such a

triangle {f2, f4, z} does exist for some z, the matroid M ′ is 3-connected

up to the three distinct parallel pairs {f1, f4}, {f2, f5} and {f3, z}.

A proof of the following can be found in [23].
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Lemma 1.2.14. Let M be a 3-connected matroid with r(M) ≥ 4. Suppose

that C∗ is a rank-3 cocircuit of M . If there exists some c ∈ C∗ such that

r(C∗ − {c}) = 3, then co(M\c) is 3-connected.

The next result is known as Bixby’s Lemma [3], and will be referred to

as such whenever used.

Lemma 1.2.15. Let e be an element of a 3-connected matroid M . Then

either si(M/e) or co(M\e) is 3-connected.

The following two well-known results are due to Tutte [19], and will again

be referenced via their standardised names. The first is Tutte’s Triangle

Lemma.

Lemma 1.2.16. Let {a, b, c} be a triangle in a 3-connected matroid M where

|E(M)| ≥ 4. If neither M\a nor M\b is 3-connected, then M has a triad

which contains a and exactly one element from {b, c}.

It’s worth noting that, in practice, the way we will often apply

Lemma 1.2.16 is when examining a triangle which we know cannot be con-

tained in a 4-element fan. In such a situation, Tutte’s Triangle Lemma then

guarantees us that we can always delete at least two elements from that

triangle without exposing a 2-separation. The second of Tutte’s results is

known as Tutte’s Wheels-and-Whirls Theorem. It is of course precisely the

result for which we are seeking a two-element analogue in this thesis.

Lemma 1.2.17. Let M be a 3-connected matroid. Provided M is not a wheel

or a whirl, there exists some element e ∈ E(M) such that either M\e or M/e

is 3-connected.

We round out this introductory chapter with seven results of varying

scope that will be required in what follows.

Lemma 1.2.18. Let M be a 3-connected matroid with A = {a, b, c, d, e} ⊆
E(M) and Z = E(M) − A. Then r(Z) = r(M) − 3 if and only if A is a

coline.
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Proof. The set {a, b, c} is not a triad if and only if it does not contain a

cocircuit; if and only if Z∪{d, e} is spanning; if and only if r(Z) ≥ r(M)−2.

As this applies to every triple of A, it follows that A is itself a coline if and

only if r(Z) = r(M)− 3.

Lemma 1.2.19. Let M be a 3-connected matroid with a pair of disjoint

triads S={s1, s2, s3} and T={t1, t2, t3}. If

(i) {s1, s2, t1, t2} is a circuit of M , and

(ii) s3 is not in a triangle of M ,

then M/s3 is 3-connected.

Proof. Note that ⊓(S, T ) ≥ 1. Suppose that (X, Y ) is a 2-separation in

M/s3 with |X ∩T | ≥ 2. M/s3 contains no series pairs, and, because s3 is not

contained in any triangles, no parallel pairs either. Now by an application

of Lemma 1.2.6 and a potential relabelling, we may assume that X is fully

closed and so T ⊆ X. If ⊓(S, T ) = 2, then {s1, s2} ⊆ clM/s3(T ) ⊆ X,

implying that (X ∪ {s3}, Y ) is a 2-separation of M . Otherwise ⊓(S, T ) = 1.

To avoid the same contradiction, the pair {s1, s2} must cross the 2-separation

(X, Y ), so without loss of generality, s1 ∈ X, s2 ∈ Y . But X is fully closed

in M/s3, contradicting the fact that {s1, s2, t1, t2} is a circuit.

Lemma 1.2.20. Let M be a 3-connected matroid with a pair {p1, p2} of ele-

ments such that there are distinct cocircuits {a1, a2, p1, p2} and {b1, b2, p1, p2}
and M\p1, p2 is 3-connected up to the series pairs {a1, a2} and {b1, b2}. Then
either

(i) there exists x ∈ {a1, a2, b1, b2} such that M/x is 3-connected, or

(ii) up to labelling, {a1, b1, p1} and {a2, b2, p2} are triangles of M .

Proof. We shall assume that no element of {a1, a2, b1, b2} can be con-

tracted from M without losing 3-connectivity. Suppose that a1 is not
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in a triangle and consider M/a1. Because {b1, b2, p1, p2} is a cocircuit

of M , it is also a cocircuit of M/a1 and so neither of p1 or p2 is con-

tained in clM/a1(E(M/a1) − {b1, b2, p1, p2}). As the only 2-separation of

M/a1\p1, p2 is ({b1, b2}, E(M/a1\p1, p2) − {b1, b2}), it now follows that

{p1, p2} ⊆ clM/a1({b1, b2}), implying in turn that {p1, p2} ⊆ clM({b1, b2, a1}),
and that rM({b1, b2, p1, p2}) = 3 with a1 ∈ cl({b1, b2, p1, p2}). Suppose now

that a2 is in a triangle. Then this triangle must contain one of {p1, p2} as

{a1, a2, p1, p2} is a cocircuit, and again by orthogonality, it must also contain

one of {b1, b2}. Now a2 ∈ cl({a1, b1, b2, p1, p2}) which has rank three; giving

a contradiction as r({a1, a2, b1, b2}) = 4. We deduce that a2 cannot be in a

triangle of M . But now we may repeat the above argument with a2 in the

place of a1, leading to the deduction that a2 ∈ cl({b1, b2, p1, p2}), again lead-

ing to the contradiction that r({a1, a2, b1, b2}) = 3. Thus a1 and indeed a2

must be in triangles and by orthogonality and up to a labelling it is readily

checked that these triangles must be {a1, b1, p1} and {a2, b2, p2}.

Lemma 1.2.21. Let M be a 3-connected matroid with a 3-separating set

{a1, a2, a3, a4} such that {a1, a2, a3} is a triad and a4 ∈ cl({a1, a2, a3}). If

i ∈ {1, 2, 3}, and ai is not in a triangle, then M/ai is 3-connected.

Proof. Suppose that a1 is not in a triangle and M/a1 is not 3-connected.

Then neither is si(M/a1), and we have a vertical 3-separation (X, {a1}, Y )

of M . Both X and Y must contain one element of the triad {a1, a2, a3}.
Say a2 ∈ X, a3 ∈ Y . Observe now that the presence of a4 ∈ X implies that

a3 ∈ cl(X∪{a1})∩cl∗(X∪{a1}), which contradicts Lemma 1.2.10. Similarly,

a4 ∈ Y gives a2 ∈ cl(Y ∪ {a1}) ∩ cl∗(Y ∪ {a1}).

Lemma 1.2.22. Let M be a 3-connected matroid. If (X, Y ) is a 3-separation

of M where cl(X) contains no triangles and |X| ≥ 4, then there exists a

3-separating set X ′ ⊆ X with |X ′| ≥ 3 having the property that M/x is

3-connected for all x ∈ X ′.

Proof. Assume that the lemma fails. From the finite collection of counterex-

amples, let (X, Y ) be chosen such that |X| is minimal. There must exist some



1.2. FURTHER PRELIMINARY LEMMAS 19

x ∈ X − cl(Y ) such that M/x is not 3-connected, and as cl(X) contains no

triangles and x ∕∈ cl(Y ) it follows that x cannot be in any triangle of M .

Therefore there exists some vertical 3-separation (P, {x}, Q) of M . Clearly

we cannot have P ⊆ Y or Q ⊆ Y as x ∕∈ cl(Y ). So P ∩ X ∕= ∅ ∕= Q ∩ X.

Suppose also that P ∩ Y ∕= ∅ ∕= Q ∩ Y , so that the vertical 3-separation

(P, {x}, Q) crosses the 3-separation (X, Y ). If |X ∩ P | = 1, then it must be

the case that |X ∩Q| ≥ 2 ≤ |Y ∩P |. Similarly, if |Y ∩Q| = 1, then we must

have |X ∩Q| ≥ 2 ≤ |Y ∩P |. Thus, in any case, we may assume up to an ele-

mentary relabelling that |X∩P | ≥ 2 ≤ |Y ∩Q|. It follows then, by uncrossing

these separations, that X ∩P is exactly 3-separating with x ∈ cl(X ∩P ). As

X contains no triangles, it is now clear that (X ∩P, {x}, Y ∪Q) is a vertical

3-separation of M . Therefore we may assume that whatever the case may

be, there must always exist some vertical 3-separation (U, {x}, V ) of M with

U ⊆ X. Obviously U ∪ {x} ∕= X; as otherwise x ∈ cl(Y ). Therefore U ∪ {x}
is a proper 3-separating subset of X containing at least four elements; a

situation which contradicts our original choice of X.

Lemma 1.2.23. Let (X, Y ) be a 3-separation of a 3-connected matroid M .

If fcl(X) contains no triads or triangles, then there exists a 3-separating set

X ′ ⊆ X with |X ′| ≥ 4 having the property that for all x ∈ X ′, both M\x and

M/x are 3-connected.

Proof. As X contains no triads or triangles we have |X| ≥ 4. By

Lemma 1.2.22 then, X contains a 3-separating subset X ′ ⊆ X with |X ′| ≥ 3

having the property that M/x is 3-connected for all x ∈ X ′. In fact it must

be the case that |X ′| ≥ 4 as X does not have any 3-element 3-separating

subsets. Applying the dual of Lemma 1.2.22 now to the set X ′, we find a

3-separating subset X ′′ ⊆ X ′ ⊆ X with the property that for all x ∈ X ′′,

both M/x and M\x are 3-connected as required.

Lemma 1.2.24. Let Γ be a collection of cocircuits of a matroid M such that

for all C ∈ Γ, the set C−
󰔴

K∈Γ−{C} K is non-empty. Then E(M)−
󰔴

K∈Γ K

is a flat of rank at most r(M)− |Γ|.
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When the Lemma 1.2.24 is used on a collection Γ of cocircuits of a matroid

M , for the sake of readability, we shall simply say ‘E(M)−
󰔴

K∈Γ K is a flat

of rank at most r(M)− |Γ|’, without explicit reference to the lemma. When

doing so, it is implicit that the collection Γ satisfies the conditions of 1.2.24.

The lemma itself follows straightforwardly from the lattice of flats structure

of a matroid. See [11] for details.



Chapter 2

Obstacles

In this chapter we shall study some very precise structures that cause varying

degrees of difficulty when searching for detachable pairs.

2.1 Triangles

The first of these structures is the triangle (and dually, the triad). As one

might expect, certain arrangements of triangles and triads in a matroid can

be troublesome. Wheels and whirls are obviously an issue for a start. We

overcome this triangle (and triad) problem entirely by allowing ourselves use

of the Δ− Y operation.

Theorem 2.1.1. Let M be a 3-connected matroid with |E(M)| > 9. If M

contains a triangle, then either

(i) M contains a detachable pair, or

(ii) there exists a matroid M ′ obtained via a single Δ− Y exchange on M

or M∗ such that M ′ contains a detachable pair.

Proof. Assume that the theorem fails. Suppose to begin with that M con-

tains a fan F with at least 6 elements. Up to duality, we may assume that

21
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F is such that its first three elements f1, f2, f3 form a triangle. Now let M ′

be the matroid obtained via performing a Y − Δ on the triad {f2, f3, f4}.
By Lemma 1.2.13, M ′ is 3-connected up to the two distinct non-trivial par-

allel classes {f1, f4} and {f2, f5} and thus M ′ has a detachable pair. Next,

suppose that M contains a maximal 4-element fan F = (f1, f2, f3, f4). Again

we may assume that F begins with a triangle {f1, f2, f3}. By Lemma 1.2.21,

M/f4 must be 3-connected. Thus if we let M ′ be the matroid obtained

through performing a Y − Δ exchange on the triad {f2, f3, f4}, we see by

Lemma 1.2.12 that M ′\f4 is 3-connected. As F is maximal, it now follows

from Tutte’s Triangle Lemma that either M ′\f1, f4 or M ′\f2, f4 must be 3-

connected. This gives us a detachable pair in M ′. Thus, in the event that

M contains a fan F of at least four elements, the only remaining possibil-

ity is that F = (f1, . . . , f5) and F is maximal. We may again assume that

{f1, f2, f3} is a triangle. It now follows from Lemma 1.2.13 that by letting M ′

denote the matroid obtained via performing a Y −Δ on the triad {f2, f3, f4},
the matroid M ′\f2, f4 is 3-connected unless there exists a triangle {f2, f4, z}
in M for some z ∈ E(M) − F . Since we are under the assumption that M ′

does not contain a detachable pair, we now study the situation where the

triangle {f2, f4, z} is indeed present.

2.1.1.1. There exists f0, f6 ∈ E(M) − F such that (f0, f1, . . . , f5, f6) is a

maximal fan of M\z.

Proof. The matroid M\z is certainly 3-connected. If F is a maximal fan of

M\z, it follows from Lemma 1.1.7 that M has a detachable pair. So F is not

maximal. Suppose that M\z is a wheel or a whirl. Then, as |E(M)| > 9,

there must exist some fan H of M where H ∩ {f2, f3, f4, z} = ∅ and |H| ≥ 6.

But this contradicts our current assumption that the largest fan in M has

5 elements. So M\z is not a wheel or a whirl. The fan F is contained in

some maximal fan G. By Lemma 1.1.7, |G| ≥ 7. If there exists some triad

Γ of M\z such that Γ is a triad of consecutive elements in the fan G where

Γ ∩ F = ∅, then by orthogonality, the element z cannot block Γ and so Γ is
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also a triad of M . Thus, as the fan G = (g1, . . . , gm) must, by Lemma 1.1.7,

be such that both {g1, g2, g3} and {gm−2, gm−1, gm} are triads of M\z, it fol-
lows that if |G| ≥ 8, then at least one of {g1, g2, g3} and {gm−2, gm−1, gm}
is a triad of M which is disjoint from F . Assume without loss of general-

ity that {g1, g2, g3} is a triad of M . As the fan G is maximal in M\z, it
now follows that clM\z({g1, g2, g3}) = clM({g1, g2, g3}) = {g1, g2, g3, g4}. By

Lemma 1.2.21, M/g1 is 3-connected. Thus, letting M ′ denote the matroid

obtained via performing a Y −Δ on the triad {g1, g2, g3}, we see that M ′\g1
is 3-connected and consequently that M ′\g1, z is 3-connected too. This is a

contradiction and so it must be the case that |G| = 7. It is now clear that

there exists f0, f6 such that {f0, f1, f2} and {f4, f5, f6} are triads of M\z and

that (f0, f1, . . . , f5, f6) is a maximal fan as required.

2.1.1.2. The set E(M)− (F ∪ {z}) contains a circuit of M .

Proof. Supposing otherwise, we have that E(M)− (F ∪ {z}) is independent
and exactly 3-separating. Thus E(M)− (F ∪ {z}) is a cosegment containing

at least four elements and taking any r ∈ E(M) − (F ∪ {z}) we have that

M/r is 3-connected. Let Γ be any three element subset of E(M)− (F ∪ {z})
such that r ∈ Γ and let M ′ denote the matroid obtained via performing a

Y −Δ exchange on Γ. Observe that M ′\r is 3-connected and therefore that

M ′\r, z is also 3-connected. We conclude that E(M)−(F∪{z}) must contain

a circuit.

Note that it follows from 2.1.1.2 that E(M)−cl∗M(F∪{d}) is an exactly 3-

separating set which contains a circuit. Therefore we know that for i ∈ {6, 0},
the partition (cl∗M(F ∪ {d}) − {fi}, {fi}, E(M) − cl∗M(F ∪ {d})) is a cyclic

3-separation of M .

2.1.1.3. There exists c ∈ E(M) − cl∗M(F ∪ {z}) such that {c, f0, f6, z} is a

4-element circuit of M .

Proof. As the partitions (cl∗M(F ∪{d})−{fi}, {fi}, E(M)−cl∗M(F ∪{d})) are
cyclic 3-separations of M for i ∈ {6, 0}, it follows from Bixby’s Lemma that
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both si(M/f0) and si(M/f6) are 3-connected. Furthermore, by orthogonality,

neither f0 nor f6 can be in a triangle of M and so both M/f0 and M/f6

must be 3-connected. As M has no detachable pair, it must be that {f0, f6}
is contained in a 4-element circuit C. Clearly there exists some c ∈ E(M)−
cl∗M(F ∪ {z}) such that c ∈ C, and now it follows from orthogonality with

the two cocircuits {f0, f1, f2, z} and {f4, f5, f6, z} that the fourth element of

C must be z as required.

2.1.1.4. There exists w ∈ E(M) − {f0, f1, f2, f3, f4, f5, f6, z} such that

{w, f0, f6} is a closed triad in M .

Proof. Consider the 3-connected matroid M\f5. The sequence

(f6, z, f4, f2, f3, f1) is a fan in M\f5. By Lemma 1.1.7, as M has no

detachable pair, there must exist some w such that (f6, z, f4, f2, f3, f1, w) is

a fan of M\f5. Recall from 2.1.1.3 that {c, f0, f6, z} is a 4-element circuit

of M\f5. By orthogonality with this circuit, it must be that w ∕∈ {f0, f6}.
It follows that {w, f0, f6} must be a triad of M\f5 and therefore a triad of

M . The fact that {w, f0, f6} is a closed in M follows easily from the fact

that {w, f0, f6} cannot be contained in a 4-element circuit of M , together

with the fact that there cannot exist a triangle of M containing exactly two

elements of {w, f0, f6}.

By 2.1.1.4 and Tutte’s Triangle Lemma, there must exist some t ∈
{w, f0, f6} such that M/t is 3-connected. Letting M ′ denote the matroid

obtained via performing a Y −Δ on the triad {w, f0, f6}, we now have that

M ′\t is 3-connected, implying that M ′\t, z is 3-connected as well. This is

a contradiction. Thus, for the remainder of the proof, we may assume that

M contains no 4-element fans. Letting T be some triangle of M , it now

follows from Tutte’s Triangle Lemma that there exists some d ∈ T such that

M\d is 3-connected. If M\d is not a wheel or a whirl, there must exist

some d′ ∈ E(M\d) such that either M\d, d′ is 3-connected or M\d/d′ is 3-
connected. The former case gives a detachable pair as required. In the latter
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case, we know from Lemma 1.2.12 that M ′/d is isomorphic to M\d where

M ′ is the matroid obtained via performing a Δ−Y on the triangle T , and so

it follows that {d, d′} is a detachable pair in M ′ provided d′ ∕∈ T . In the case

that d′ ∈ T , letting d′′ = T − {d, d′}, we have that {d, d′′} is the requisite

detachable pair. The only remaining possibility is that M\d is a wheel or a

whirl. Now, as M cannot have any 4-element fans, d must block every triad

of M\d. This means that d cannot be in the closure of the complement of

any triad of M\d. As every element of M\d is in a triad, it follows that

the triangle T of M containing d must intersect every triple that is a triad

in M\d. This is only possible if M\d is a small wheel or a small whirl; in

particular with |E(M\d)| ≤ 8.

With Theorem 2.1.1 in hand, together with its dual, when searching for a

detachable pair in some 3-connected matroid M , we may henceforth assume

that M contains no 3-element 3-separating sets whatsoever.

2.2 5-Point Planes

In this section we deal with the case where M has a restriction isomorphic

to U3,5.

Lemma 2.2.1. Let M be a 3-connected matroid and let C be a 4-element

cocircuit of M . If there is a pair {c′, c′′} of elements of C such that neither

c′ nor c′′ is contained in a triangle, then C contains an element c such that

M/c is 3-connected.

Proof. Let C = {c1, c2, c3, c4} and suppose that c1 is one of two elements

which are not contained in triangles. If M/c1 is not 3-connected, then we

have a vertical 3-separation (X, {c1}, Y ) of M . We may assume that c2 ∈ X

and c3, c4 ∈ Y . Suppose that c2 is not in a triangle. If X is a triad, then by

Lemma 1.2.21, M/c2 is 3-connected as required. If X is not a triad, then X is

either a cosegment with at least four elements, or else (X−{c2}, Y ∪{c1}) is a
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cyclic 2-separation of M\c2. The first case implies that M/c2 is 3-connected,

and the second case, by Bixby’s Lemma, once again implies that M/c2 is

3-connected. So c2 must belong to some triangle T . As C is a cocircuit,

T∩(C−{c2}) ∕= ∅, so we may assume that c4 is the other element of C which is

not contained in a triangle and that T = {c2, c3, z} for some z ∈ E(M)−C.

As c2 ∕∈ cl(Y ), |T ∩ X| = 2 and we see that (X ∪ {c3}, {c1}, Y − {c3})
is a vertical 3-separation of M . Again, if Y − {c3} is not a triad, then

(X ∪ {c1, c3}, Y − {c3, c4}) is a cyclic 2-separation of M\c4 so that M/c4 is

3-connected by Bixby’s Lemma, while if Y − {c3} is indeed a triad, then

M/c4 is 3-connected by Lemma 1.2.21.

Lemma 2.2.2. Let M be a 3-connected matroid and let P be a set of elements

of M such that M |P ∼= U3,5. Assume that cl(P ) contains no triangles and

that P contains no triads. If there is an element p3 ∈ P such that M\p3 is

not 3-connected, then there is a partition ({p1, p2}, {p4, p5}) of P −{p3} such

that M\pi, pj is 3-connected for all i ∈ {1, 2} and j ∈ {4, 5}.

Proof. We first note that no element of P is in a triad as such a triad would

have to be contained in P by orthogonality with the circuits within. Using

this, together with the fact that cl(P ) contains no triangles, we straight-

forwardly deduce that there is labelling {p1, p2, p3, p4, p5} of P and a path

(A, {p1, p2}, {p3}, {p4, p5}, B) of 3-separations inM such that r(A), r(B) ≥ 3,

p1, p2 ∈ cl(A) and p4, p5 ∈ cl(B). We have symmetry between {p1, p2} and

{p4, p5}, so it suffices to prove that M\p1, p5 is 3-connected. By Bixby’s

Lemma and the fact that p1 is not in a triad of M , we see that M\p1 is 3-

connected. Again by Bixby’s Lemma, we deduce thatM\p1, p5 is 3-connected
unless it contains a series pair, that is, unless M has a 4-element cocircuit C

containing both p1 and p5. By definition C contains nothing in the span of

its complement. Hence C contains at least one element from each of A and

B, as well as at least three elements of P . But this implies that |C| ≥ 5, and

so we conclude that M\{p1, p5} is 3-connected as required.

The conditions that P contains no triangle and that no element of P is in a
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triad eliminate some degenerate outcomes whose analysis is not difficult. For

our purposes the relatively weak conclusion of the next lemma is sufficient.

Lemma 2.2.3. Let M be a 3-connected matroid with a set P such that

M |P ∼= U3,5. If |E(M)| ≥ 6, then there exists distinct p, p′ ∈ P such that

both M\p and M\p′ are 3-connected.

Proof. Say that P contains a triad T . Let {p, p′} = P − T . It is easily

checked that M\p and M\p′ are 3-connected. So assume that P does not

contain a triad. If c ∈ P and M\c is not 3-connected, then we have a cyclic

3-separation (X, {c}, Y ) of M . If r(M) = 3 then the lemma follows readily.

So we may assume that r(X) ≥ 3. Clearly |X ∩ P | = 2 = |Y ∩ P |. Let

X ∩ P = {p1, p2}. Then p2 ∈ cl(Y ∪ {c}) and (X − {p2}, {c}, Y ∪ {p2}) is

exactly 3-separating, so p2 ∈ cl(X − {p2}) hence r(X − {p2}) ≥ 3. Thus it

follows that both (X − {p2}, {p2}, Y ∪ {c}) and (X − {p1}, {p1}, Y ∪ {c}) are
vertical 3-separations of M . By Bixby’s Lemma, both M\p1 and M\p2 are

3-connected.

We omit the easy proof of the next lemma.

Lemma 2.2.4. Let M be a 3-connected matroid with a set P such that

M |P ∼= U3,5. If z ∈ cl(P )− P , then M\z is 3-connected.

Lemma 2.2.5. Let M be a 3-connected matroid with |E(M)| ≥ 7 having a

set P such that M |P ∼= U3,5. Assume that fcl(P ) contains no triangles or

triads. Then fcl(P ) contains a detachable pair.

Proof. Assume for a contradiction that fcl(P ) contains no detachable pair.

It follows from Lemmas 2.2.3 and 2.2.4 that P is closed. By Lemma 2.2.2

M\p is 3-connected for all p ∈ P .

2.2.5.1. The lemma holds if P is 3-separating.

Proof. If P is 3-separating, then P is either a cocircuit or else properly con-

tains a 4-element cocircuit. If P properly contains a 4-element cocircuit C∗,
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let c be some element of this cocircuit, let P − C∗ = {p5}, and note that

(C∗, {p5}, E(M) − P ) is a vertical 3-separation of M . By Bixby’s Lemma,

co(M\c, p5) is 3-connected, so the result holds unless there is some triad

{p, p5, z} in M\c where p ∈ P and z ∈ E(M) − P . In the case where P is

itself a cocircuit, take any p5 ∈ P and let {p1, p2, p3} = P − {c, p5}. Suppose
that there is some 2-separation (X, Y ) of M\c, p5. We may assume that

p1, p2 ∈ X. Now {p1, p2, p3} is a triad of M\c, p5, so provided Y is not a

series pair, (X ∪ {p3}, Y − {p3}) is also a 2-separation of M\c, p5. But then
p5 ∈ clM\c(X ∪ {p3}) so that (X ∪ {p3, p5}, Y − {p3}) is a contradictory 2-

separation of the 3-connected matroid M\c. We are left to conclude that Y is

a series pair and that, as in the case where P contains a 4-element cocircuit,

there is some triad {p, p5, z} in M\c with p ∈ P and z ∈ E(M) − P . We

now deal with both of these cases together. Certainly M/z is 3-connected,

as is M/pi for all pi ∈ (P − {p5}). Because fcl(P ) contains no detach-

able pair nor any triangles, it is readily deduced that M must contain a

4-element circuit C where C = {z, p′, p′′, d} for some p′, p′′ ∈ (P − {p5})
and d ∈ (E(M) − (P ∪ {z})). As fcl(P ) contains no triads nor triangles,

(P ∪ {z}, {d}, E(M)− (P ∪ {z, d})) is a vertical 3-separation of M and M\d
is 3-connected. It now follows from Lemma 2.2.3 that M has a detachable

pair.

Thus we may assume for the remainder of the proof that λ(P ) = 3.

2.2.5.2. One of the following holds.

(i) There are elements u and v of M and a labelling {p1, p2, p3, p4, p5} of

P such that {p1, p2, p3, u} and {p3, p4, p5, v} are cocircuits of M .

(ii) There is an element p ∈ P such that there are two elements of P − {p}
that are not contained in triads of M\p.

Proof. Assume that (i) does not hold. By 2.2.5.1, each 4-element cocircuit

that intersects P contains exactly three elements of P . If there is an element
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p ∈ P that does not belong to any 4-element cocircuit, then M\p clearly sat-

isfies (ii). Assume that every element of P belongs to at least one 4-element

cocircuit. Call the triples of P that are contained in 4-element cocircuits

cocircuit triples. Without loss of generality, {p1, p2, p3} is such a triple. Con-

sider p4. If there is a cocircuit triple containing p4 that also contains p5, then

the claim clearly holds. Thus, we may assume up to labels, that {p2, p3, p4}
is a cocircuit triple. Consider p5. The cocircuit triples containing p5 do not

contain p4. The only possible triple that can be constructed without satisfy-

ing (i) is {p2, p3, p5}. It is easily checked that if there are any more cocircuit

triples, then (i) holds. Now consider M\p1. Neither p4 nor p5 belong to

triads in M\p1, so (ii) holds in this case.

If 2.2.5.2 (ii) holds, then it follows from the dual of Lemma 2.2.1 that

M must contain a detachable pair. This leaves us to resolve situation (i)

of 2.2.5.2. If u ∈ P , then we see that λ(P ) = 2, contradicting the fact that

λ(P ) = 3. Hence {u, v} ∩ P = ∅. If u = v, then P must again contain a

cocircuit and again we contradict the fact that λ(P ) = 3. So u ∕= v.

2.2.5.3. M/u is 3-connected.

Proof. Say (X, Y ) is a 2-separation of M/u where neither X nor Y is a par-

allel class. We may assume that |P ∩ X| ≥ 3. As u /∈ clM(P ), we see that

(M/u)|P ∼= U3,5. Note that (cl(X), Y − cl(X)) is also a 2-separation of M/u

where neither cl(X) nor Y − cl(X) is a parallel class. Hence we may assume

that X ⊆ P . But u ∈ cl∗M(P ), so (X ∪ {u}, Y ) is a 2-separation of M , con-

tradicting the fact that M is 3-connected. Hence M/u is 3-connected up to

parallel sets. If T is a triangle containing u, then T contains another element

of the cocircuit {p1, p2, p3, u}, that is, T contains at least two elements of

fclM(P ) so that T ⊆ fclM(P ). Hence u does not belong to a triangle and we

conclude that M/u is indeed 3-connected.

2.2.5.4. M\u and M\v are not 3-connected.
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Proof. Assume that M\u is 3-connected. By Lemma 2.2.3, there is an ele-

ment p ∈ P such that M\u, p is 3-connected, contradicting the assumption

that fclM(P ) has no detachable pair.

2.2.5.5. v /∈ clM/u(P ).

Proof. Otherwise, by Lemma 2.2.4 M/u\v is 3-connected. In such a situa-

tion, either M\v is 3-connected or u and v belong to a triad T of M . In the

latter case, as u, v ∈ cl∗(P ) we see that T ⊆ fcl(P ) contradicting the fact

that there are no triads in this set. The former case contradicts 2.2.5.4.

2.2.5.6. M/u, v is 3-connected up to parallel sets.

Proof. Say (X, Y ) is a 2-separation of M/u, v where neither X nor Y is a

parallel class. We may assume that |P ∩ X| ≥ 3 and that X is closed.

By 2.2.5.5, v /∈ clM/u(P ). Hence (M/u, v)|P ∼= U3,5 and P ⊆ X. But

u, v ∈ cl∗M(P ) so that u, v ∈ cl∗M(X). So (X ∪ {u, v}, Y ) is a 2-separation

of M , contradicting the fact that M is 3-connected. Thus M/u, v has no

non-trivial 2-separations and the claim follows.

If M/u, v is 3-connected, then {u, v} is a detachable pair, so we may

assume that M/u, v is not 3-connected. By 2.2.5.6, the element v is in a

triangle T of M/u. The triangle T contains at least two elements of the

cocircuit {p3, p4, p5, v} of M/u. Thus T = {p, v, z} for some p ∈ P . Clearly

T ⊆ fclM(P ). Moreover z /∈ P , as otherwise v ∈ clM/u(P ) contradicting

2.2.5.5. The triangle T is not contained in a 4-element fan of M/u as such a

fan would imply the existence of a triad in fclM(P ). Hence either M/u\v or

M/u\z is 3-connected. As fclM(P ) contains no triads we deduce that M\v or

M\z is 3-connected. We already know that M\v is not 3-connected, but z is

just as problematic for the same reason, as, in this case too we deduce from

Lemma 2.2.3 that there is an element p ∈ P such that M\z, p is 3-connected.

Again this contradicts the assumption that there is no detachable pair in

fclM(P ). The lemma follows from this final contradiction.
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2.3 Specific Triad Situations

The next two lemmas deal with two very specific situations that arise in

our later analysis. These two situations are largely isolated from the bigger

picture contained in subsequent chapters and so we shall deal with them here.

Lemma 2.3.1. Let M be a 3-connected matroid with an element d such that

M\d is 3-connected. Assume that M\d has a set Z = {s1, s2, t1, t2, u} such

that the following hold:

(i) fclM(Z ∪ {d}) contains no triangles or triads,

(ii) Z is closed in M\d,

(iii) λM\d(Z) = 2,

(iv) {s1, s2, u} and {t1, t2, u} are triads of M\d, and

(v) Z contains no 4-element circuits.

Then fclM(Z ∪ {d}) contains a detachable pair.

Proof. Assume that fclM(Z ∪ {d}) does not contain a detachable pair. Let

Y = E(M)− (Z ∪ {d}).

2.3.1.1. If s ∈ {s1, s2} and t ∈ {t1, t2, u}, then M\d/s, t is 3-connected.

Proof. Take any s ∈ {s1, s2}, t ∈ {t1, t2}. The fact thatM\d/s is 3-connected
follows immediately from Lemma 1.2.14. In the same way, M\d/s, t must

now be 3-connected unless t is contained in a triangle of M\d/s. This would
assert the existence of a 4-element circuit C containing {s, t} in the matroid

M\d. By orthogonality with the triads of Z, we must have |C ∩Z| ≥ 3, and

as Z is closed in M\d, we see that C ⊆ Z. This contradicts property (v).

2.3.1.2. d blocks Z.
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Proof. Assume otherwise. Then, d ∈ cl(Z). By 2.3.1.1, the assumption that

Z is closed in M\d and the assumption that fcl(Z ∪ {d}) has no detachable

pair, we see that every element of Z − {s1} is in a triangle with d in M/s1.

These triangles must come from 4-element circuits of M containing d. It

follows that, up to symmetry, there are two cases. Either (a) {s1, d, s2, u} and
{s1, d, t1, t2} are circuits of M or (b) {s1, d,s2, t2} and {s1, d, u, t1} are circuits

of M . Consider case (a). Replacing s1 by s2 we see that there are analogous

4-element circuits containing {s2, d}. We already know that {s1, d, s2, u}
is one, so the other must be {s2, d, t1, t2}. But then s2 ∈ cl({s1, d, t1, t2}).
As there are no triangles in Z ∪ {d}, we see that {s1, s2, t1, t2} is a circuit,

contradicting the assumption that Z contained no 4-element circuits. Case

(b) is essentially the same.

It is now a straightforward consequence of 2.3.1.1, 2.3.1.2 and the as-

sumption that fclM(Z ∪ {d}) contains no detachable pairs that there are

elements v1, v2, v3, w1, w2, w3 ∈ Y ∩ clM(Z ∪ {d}) such that {s1, t1, d, v1},
{s1, t2, d, v2}, {s1, u, d, v3}, {s2, t1, d, w1}, {s2, t2, d, w2}, and {s2, u, d, w3} are

circuits. If vi = vj for some pair of distinct indices, then we obtain the

contradiction that Z contains a 4-element circuit. Thus the elements v1, v2

and v3 are distinct, as are the elements w1, w2 and w3. Say vi = wj for

some i, j ∈ {1, 2, 3}. Then we have a circuit {s1,α, d, vi} and a circuit

{s2, β, d, vi}, where α, β ∈ {t1, t2, u}. But now {s1, s2,α, β, vi} contains a

circuit. But Z is closed in M\d, so vi /∈ cl({s1, s2,α, β}). Hence {s1, s2,α, β}
contains a circuit of M , contradicting the fact that Z contains no circuits

of size 3 or 4. Hence the elements v1, v2, v3, w1, w2, w3 are all distinct. As

Y ∩clM(Z∪{d}) has rank at most 3, we see that M |{v1, v2, v3, w1, w2} ∼= U3,5.

By Lemma 2.2.5, fcl({v1, v2, v3, w1, w2}) contains a detachable pair. But

fcl({v1, v2, v3, w1, w2}) ⊆ fcl(Z) and the lemma follows.

Lemma 2.3.2. Let M be a 3-connected matroid with an element d such that

M\d is 3-connected. Let (S, T, Z) be a paddle in M\d such that the following

hold:
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(a) S and T are triads of M\d,

(b) d blocks both S and T in M ,

(c) fcl(S ∪ T ∪ {d}) contains no triads or triangles, and

(d) fclM\d(S ∪ T ) ∕= E(M\d).

Then either:

(i) there exists c1, c2 ∈ cl∗M\d(S ∪ T ) such that M/c1, c2 is 3-connected, or

(ii) there exists m ∈ clM\d(S) such that M\d,m is 3-connected, or

(iii) there exists s ∈ S, t ∈ T such that M\s, t is 3-connected.

Proof. If there exists some m ∈ (clM\d(S) − S), then by Bixby’s Lemma,

co(M\d,m) is 3-connected. If m is contained in a triad of M\d, then this

triad must meet both S ∪ T and E(M\d) − (S ∪ T ). But such a situation

contradicts property (c) and so M\d,m is 3-connected giving (ii). So assume

henceforth that S, and consequently S ∪ T , is closed. Let M ′ = M\d.
Suppose now that there exists distinct c1, c2 ∈ cl∗M ′(S ∪ T ). By Bixby’s

Lemma and property (c), si(M ′/c1, c2) is 3-connected. If C ′ is a circuit of

M ′ of size at most four containing {c1, c2}, then C ′ must contain exactly one

element of S ∪ T . But then C ′ intersects one of the triads S or T of M ′ at

one point, which contradicts orthogonality. Thus M ′/c1, c2 is 3-connected.

If therefore M/c1, c2 fails to be 3-connected, then M must contain a circuit

C = {c1, c2, d,α}. As S∪{d} is a cocircuit in M , it must be that α ∈ S. But

then C ∩ (T ∪ {d}) = {d}, again contradicting orthogonality. So (i) holds in

this situation. We may assume then that |cl∗M ′(S ∪ T )− (S ∪ T )| ≤ 1.

2.3.2.1. If s ∈ S, then there exists at most one element t ∈ T such that

(S ∪ T )− {s, t} is a circuit in M ′.

Proof. This follows straightforwardly from the fact that S and T are triads

of M ′ with rM ′(S ∪ T ) = 4.
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Let S = {s1, s2, s3} and T = {t1, t2, t3}. By 2.3.2.1 we may assume that

{s2, s3, t2, t3} is independent.

2.3.2.2. M ′\s1, t1 is connected.

Proof. Suppose that (P,Q) is a separation of M ′\s1, t1. As {s2, s3} is a

cocircuit of M ′\s1, t1, we may assume that {s2, s3} ⊆ P . Likewise, we may

assume that {t2, t3} is contained in either P or Q. If then {t2, t3} ⊆ P it

would follow that (P,Q) is a contradictory separation in the 3-connected

matroid M ′ as {s1, t1} ⊆ clM ′({s2, s3, t2, t3}). Therefore we may assume that

{s2, s3} ⊆ P and {t2, t3} ⊆ Q with P ∩ Z ∕= ∅ ∕= Q ∩ Z. Let λ = λM ′\s1,t1 .

By submodularity of λ we have

λ(P ∩ Z) + λ(Q ∩ Z)

≤ λ(P ) + λ(Z)− λ(P ∪ Z) + λ(Q) + λ(Z)− λ(Q ∪ Z)

= λ(Z) + λ(Z)− λ(Q ∪ Z)− λ(P ∪ Z)

= 4− λ({s2, s3})− λ({t2, t3}) = 2.

If either λ(P ∩Z) = 0 or λ(Q∩Z) = 0 then, as {s1, t1} ∈ clM ′({s2, s3, t2, t3}),
we obtain a separation in M ′. Thus λ(P ∩Z) = 1 = λ(Q∩Z). As |Z| ≥ 3, we

may assume without loss of generality that |P ∩ Z| ≥ 2. But now it follows

that (P ∩ Z,E(M ′)− (P ∩ Z)) is a 2-separation in M ′.

Suppose that c ∈ Z ∩ cl∗M ′\s1,t2({s2, s3}) and let Z ′ = Z − {c}.

2.3.2.3. r(Z ′ ∪ {t2, t3}) = r(Z ′) + 1 and r(Z ′ ∪ {s2, s3}) = r(Z ′) + 2.

Proof. The fact that r(Z ′ ∪ {t2, t3}) = r(M) − 2 = r(Z ′) + 1 follows im-

mediately from the fact that {s2, s3, c} is a series class in M ′\s1, t1. If then

r(Z ′ ∪ {s1, s2}) < r(Z ′) + 2, it must be that

r(Z ′ ∪ {s1, s2, t1, t2}) ≤ r(Z ′) + 2 < r(M).

But E(M ′\s1, t1)− (Z ′ ∪ {s1, s2, t1, t2}) = {c} so that c must be a coloop of

M ′\s1, t1. However we know from 2.3.2.2 that M ′\s1, t1 is connected and so

we have a contradiction.
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2.3.2.4. r(Z ′ ∪ {t1, t2}) = r(Z ′ ∪ {t1, t3}) = r(Z ′) + 2.

Proof. Suppose that r(Z ′ ∪ {t1, t2}) = r(Z ′)+ 1. Then t2 ∈ cl(Z ′ ∪ {t1}) and
by 2.3.2.3, r(Z ′∪T ) = r(Z ′)+1. As r(Z ′∪T∪{c}) = r(Z ′)+2, c ∕∈ clM ′(Z ′∪T )
implying that c ∈ cl∗M ′(S). But this contradicts Lemma 1.2.9.

Now combining what we have learned from 2.3.2.1, 2.3.2.3, and 2.3.2.4,

it follows that by potentially relabelling, we may assume henceforth that

{s2, s3, t2, t3} is independent and that neither {s2, s3} nor {t2, t3} is contained
in a three-element 2-separating set in M ′\s1, t1.

2.3.2.5. If (P,Q) is a 2-separation of M ′\s1, t1, then, up to labelling,

{s2, s3} ⊆ P and {t2, t3} ⊆ Q.

Proof. Assume otherwise. Up to labelling we have that either s2 ∈ P and

{s3, t2, t3} ⊆ Q or {s2, t2} ⊆ P and {s3, t3} ⊆ Q. Suppose the former of

these holds. If |P | = 2, then P ∪ {s3} is a three-element series class of

M ′\s1, t1, contradicting what we have just shown. So |P | ≥ 3; giving in

particular that |P ∩Z| ≥ 2. We shall look to show that P ∩Z is 2-separating

in M ′\s1, t1, which in turn would imply that P ∩ Z is 2-separating in the

3-connected matroid M ′ as {s1, t1} ⊆ clM ′({s2, s3, t2, t3}). Let λ′ = λM ′\s1,t1 .

By submodularity of the connectivity function,

λ′(Q ∪ (E(M ′\s1, t1)− Z))

≤ λ′(Q) + λ′({s2, s3, t2, t3})− λ′(Q ∩ (E(M ′\s1, t1)− Z))

≤ 1 + 2− λ′({s3, t2, t3}).

As we have shown, {s3, t2, t3} is not 2-separating in M ′\s1, t1 and so λ′(Q ∪
{s2, s3, t2, t3}) ≤ 1 + 2 − 2 = 1. Equivalently, λ′(P ∩ Z) = 1, and we arrive

at our contradiction. Now suppose that the other possibility holds so that

{s2, t2} ⊆ P and {s3, t3} ⊆ Q. As E(M ′) − (S ∪ T ) is non-sequential,

|Z| ≥ 4, and so we may assume that |P ∩ Z| ≥ 2. It now follows that,

as t2 ∈ cl∗M ′\s1,t1({t3}), the partition (P − {t2}, Q ∪ {t2}) is a 2-separation
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of M ′\s1, t1. But now we are reduced to the previous case. The result

follows.

Suppose that (V,W ) is a 2-separation of M\s1, t1, d with W ∩ Z ∕= ∅.
By 2.3.2.5, {s2, s3} ⊆ V and {t2, t3} ⊆ W . As T ∪{d} is a 4-element cocircuit

in M it follows that {t2, t3, d} is a triad of M\s1, t1. Hence d ∕∈ clM\s1,t1(V ),

and we conclude that (V ∪ {d},W ) is an exactly 3-separating partition of

the matroid M\s1, t1. As (V,W ) was an arbitrarily chosen 2-separation the

result follows.

2.4 Flans

Recall that flans were defined at 1.1.8. Flans arise throughout this work.

They can be considered as underlying structures of problematic 3-separating

sets which yield no detachable pair. In particular, both partial spider-like 3-

separators and twisted 3-separators are single-element extensions of a generic

5-element flan. This fact is elucidated in more detail in Lemma 3.1.3. Our

interest here is in flans that contain no triangles. The following lemma is

immediate.

Lemma 2.4.1. Let F be a flan of the 3-connected matroid M .

(i) If 3 ≤ i ≤ n is odd, then fi ∈ cl∗({f1, f2, . . . , fi−1}).

(ii) F is a sequential 3-separating set with sequential ordering

(f1, f2, . . . , fn).

Lemma 2.4.2. Let F = (f1, f2, . . . , fn) be a maximal flan of the 3-connected

matroid M , where n ≥ 4 and F ∕= E(M). If n is even, then M\fn is

3-connected.

Proof. If E(M) − F = {fn+1} is a singleton, then it follows that

{fn−1, fn, fn+1} is a triad of M , contradicting the maximality of F . So
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|E(M) − F | ≥ 2. If r(E(M) − F ) ≥ 3, then (F − {fn}, {fn}, E(M) − F )

is a vertical 3-separation of M , and so, by Bixby’s Lemma, co(M\fn) is 3-

connected. In this case, M\fn is 3-connected unless fn is contained in a triad

T . But in such a situation, |T ∩ (F −{fn})| = 1 = |T ∩ (E(M)−F )|, and by

the construction of the flan F it follows that (f1, f2, . . . , fn, t) is a flan of M

where {t} = T ∩ (E(M)−F ); again contradicting the maximality of F . Oth-

erwise, r(E(M)−F ) = 2. Now, if |E(M)−F | = 3, then (E(M)−F )∪ {fn}
is a 4-element rank-2 set and M\fn is obviously 3-connected. The only re-

maining possibility is that (E(M) − F ) ∪ {fn} is a triangle. It is clear that

fn cannot belong to any triads of M , and so by Lemma 1.2.14, M\fn must

be 3-connected.

Lemma 2.4.3. Let F = (f1, f2, . . . , fn) be a maximal flan of the 3-connected

matroid M , where F ∕= E(M) and n ≥ 5 is odd. If F contains no triangles

then the following hold.

(i) If i ∈ {1, 3, 5, . . . , n− 2}, then M/fi, fn is 3-connected.

(ii) M/f2, fn is 3-connected.

Proof. Suppose that (F−{fn}, {fn}, E(M)−F ) is not a cyclic 3-separation of

M . If we have |E(M)− F | < 3, it follows that cl(F ) = E(M); contradicting

the maximality of F . So (E(M) − F ) ∪ {fn} is a cosegment containing at

least four elements and so M/fn is 3-connected. It now follows from Bixby’s

Lemma and the fact that cl(F )− F = ∅ that M/fn, fi is 3-connected for all

odd i ∈ {1, . . . , n−2} as well as for f2. Otherwise, (F−{fn}, {fn}, E(M)−F )

is cyclic and so si(M/fn) is 3-connected; again implying that M/fn and

M/fn, fi is 3-connected for all odd i ∈ {1, . . . , n− 2} as well as for f2.

Lemma 2.4.4. Let M be a 3-connected matroid and let d be an element of

M such that M\d is 3-connected. Let F = (f1, f2, . . . , fn) be a maximal flan

of M\d with at least six elements where F ∪ {d} ∕= E(M). Assume that

F ∪ {d} contains no triangles or triads. Then F ∪ {d} contains a detachable

pair.
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Proof. Assume that there is no detachable pair contained in F∪{d}. Suppose
that n is even. Then, by Lemma 2.4.2, M\d, fn is 3-connected provided

M\d is not a wheel or a whirl. In the exceptional case, we contradict our

assumption that (F ∪ {d}) ∕= E(M). Thus {d, fn} is a detachable pair and

so we may assume henceforth that n is odd. By Bixby’s Lemma, M\d/fn
is 3-connected. Now if d is in a parallel pair in M/fn, then, as F ∪ {d}
contains no triangles of M , the other element of this parallel pair belongs

to E(M) − (F ∪ {d}). But then d does not block the triads of F − {fn} in

M/fn. Hence M/fn is 3-connected.

2.4.4.1. There is a set T = {t1, t2, t3} such that {f1, d, t1}, {f2, d, t2} and

{f3, d, t3} are triangles in M/fn.

Proof. By Lemma 2.4.3 M\d/f1, fn, M\d/f2, fn and M\d/f3, fn are all 3-

connected. Also M/fn is 3-connected. If we do not have the triangles of the

claim, then we have a detachable pair in F ∪ {d}.

2.4.4.2. {t1, t2, t3} ⊆ F − {fn}.

Proof. Say t1 /∈ F − {fn}. Then the triad {f3, f4, f5} of M\d/fn is not

blocked by d. Hence t1 ∈ F − {fn}, so that d ∈ clM/fn(F − {fn}). Therefore
we also have {t1, t2, t3} ⊆ (F − {d}).

2.4.4.3. {t1, t2, t3} ∩ {f1, f2, f3} = ∅.

Proof. Suppose otherwise. Then d ∈ clM/fn({f1, f2, f3}). As f5 ∕∈
clM/fn({f1, f2, f3, f4, d}) ⊆ clM/fn({f1, f2, f3}), any triangle of M/fn that

were to contain f5 could contain at most one element from {f1, f2, f3, f4, d}.
We know that d ∕∈ clM/fn(E(M/fn) − {f1, f2, f3}) as d blocks the triad

{f1, f2, f3} in M/fn, and thus any triangle in this matroid containing f5

must be disjoint from {d}. This, together with the fact which follows

from 2.4.3 that M\d/f5, fn is 3-connected, implies that M/f5, fn must be

3-connected.

2.4.4.4. The elements of {t1, t2, t3} are distinct.
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Proof. If ti = tj for some distinct i, j ∈ {1, 2, 3}, then we see that {ti, fi, fj} is
a triangle in M/fn, contradicting the fact established above that M\d/fi, fn
is 3-connected.

2.4.4.5. If i ∕= j, then tj ∈ clM/fn\d({f1, f2, f3, ti}).

Proof. It is easily seen that, as {fi, ti, d} and {fj, tj, d} are triangles,

{fi, fj, ti, tj} is a circuit in M/fn. But {fi, fj, ti} ⊆ {f1, f2, f3, ti} and the

claim follows.

Let l be the least integer such that ti = fl for some i ∈ {1, 2, 3}. Then

{t1, t2, t3}− {ti} ⊆ clM/fn\d({f1, f2, . . . , fl})− {f1, f2, . . . , fl} by 2.4.4.5. But

if l is even, then {f1, f2, . . . , fl} is closed in M/fn\d, while if l is odd, then

clM/fn\d({f1, f2, . . . , fl})− {f1, f2, . . . , fl} = {fl+1}. The lemma follows from

this contradiction.

Lemma 2.4.5. Let M be a 3-connected matroid with |E(M)| > 7 and let d

be an element of M such that M\d is 3-connected with F = (f1, f2, f3, f4, f5)

a maximal flan of M\d. Assume that fclM(F ∪ {d}) contains no triangles

or triads. If F is blocked by d, then M has a detachable pair contained in

clM(F ∪ {d}).

Proof. Assume that the lemma fails. Let H = E(M) − (F ∪ {d}) and G =

clM(F ∪ {d})∩H. By Lemma 2.4.3, we have that M\d/f5, fi is 3-connected
for all i ∈ {1, 2, 3}. As we are working under the assumption that M does not

contain a detachable pair, we must then have triangles {d, f1, g1},{d, f2, g2}
and {d, f3, g3} in M/f5, and, as fclM(F ∪ {d}) contains no triangles, ap-

pending f5 to these three circuits now gives {d, f1, g1, f5},{d, f2, g2, f5} and

{d, f3, g3, f5} as 4-element circuits in the matroid M . Note that if gi ∈ F

for any i ∈ {1, 2, 3}, then d does not block F . It follows routinely from this

that g1, g2 and g3 are distinct. We now proceed to show that there is another

element of M that we can delete in place of d to obtain a related flan.
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2.4.5.1. There exists an element z ∈ E(M) such that the following properties

hold:

(i) (d, f5, f3, g3, z) is a maximal flan in M\f4, and

(ii) z ∈ G− {g1, g2, g3},

Proof. Consider the matroid M\f4. As the triad {f3, f4, f5} of M\d is

blocked by d in M , we have that {d, f5, f3} is a triad in M\f4. As we

have seen, {d, f5, f3, g3} is a circuit in M , and so is also a circuit in M\f4.
So g3 is contained in the closure of the 3-separating set {d, f3, f5} of M\d
and therefore si(M\f4/g3) is not 3-connected. By Bixby’s Lemma then, as

{f4, g3} cannot be a detachable pair, g3 must be contained in some triad Γ of

M\f4. By orthogonality, Γ must meet the circuit {d, f5, f3, g3}. It cannot be
the case that Γ ⊆ {d, f5, f3, g3}, as otherwise λM\f4({d, f5, f3, g3}) = 1. So

|Γ∩{d, f5, f3}| = 1. Recalling that {d, f1, f5, g1} and {d, f2, f5, g2} are circuits
of M\f4, it now follows from orthogonality that Γ∩ {d, f5, f3, g3} = {f3, g3}.
Let z be the remaining element of Γ. Circuit exchange on {d, f1, g1, f5} and

{d, f2, g2, f5} gives a circuit of M\f4 contained in {d, f1, g1, f2, g2}. Orthog-

onality with Γ now implies that z ∕∈ {f1, g1, f2, g2} and consequently that

z ∕∈ F ∪ {g1, g2, g3}. It is now clear that (d, f5, f3, g3, z) is a flan in M\f4.
If this flan is not maximal, then F ∪ {d} contains a detachable pair by

Lemma 2.4.4. This proves (i). By Lemma 2.4.3, M\f4/f3, z is 3-connected.

As M has no detachable pairs, M must therefore contain a 4-element co-

circuit {f4, f3, z, h1} for some h1. We now show that ⊓({f3, f4}, H) = 0. If

f4 ∈ cl(H), then {f3, f4, f5} fails to be a cocircuit of M\d. Similarly, as

{f1, f2, f3} is a triad of M\d, we also see that f3 ∕∈ cl(H ∪ {f4}). Hence

⊓({f3, f4}, H) = 0 as evisioned. Thus any circuit of M containing {f3, f4}
must meet {f1, f2, f5, d}. The circuit {f4, f3, z, h1} previously established is

such a circuit. This shows that h1 ∈ {f5, d, f2, f1} and consequently that

z ∈ clM(F ∪ {d}). This completes the proof of (ii).

We now work towards a proof that M\g1, f2 must be 3-connected.
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2.4.5.2. Every 4-element subset of G is a circuit of M .

Proof. Let J be a 4-element subset of G. If J is independent, then,

as {f1, f2, f3, d} is a cocircuit, we have r(J ∪ {f1}) = 5. Similarly, as

{f3, f4, f5, d} is a cocircuit, we then have r(J ∪ {f1, f3}) = 6. This con-

tradicts the fact that r(cl(F ∪ {d})) = 5.

2.4.5.3. {f1, f2, g1, g2} is coindependent in M .

Proof. We already know that each of C1 = {f1, f2, f3, d}, C2 = {f3, f4, f5, d}
and C3 = {f3, g3, z, f4} are cocircuits ofM . Suppose that C4 = {f1, f2, g1, g2}
is also a cocircuit. Then E(M)− (C1∪C2∪C3∪C4) is a flat of rank at most

r(M)−4. But by 2.4.5.1 (ii), (C1∪C2∪C3∪C4) ⊆ cl(F∪{d}); which has rank

5. Thus (C1 ∪ C2 ∪ C3 ∪ C4) = F ∪ {d} ∪ {g1, g2, g3, z} is 2-separating. This

implies the existence of a contradictory 2-separation in M unless |M | = 11

with {h} = E(M) − (C1 ∪ C2 ∪ C3 ∪ C4). In the exceptional situation, it

must be that h ∈ G with G = {g1, g2, g3, z, h}. By 2.4.5.2, M now has a

restriction isomorphic to U3,5. As M does not contain a detachable pair, this

contradicts Lemma 2.2.5. Thus {f1, f2, g1, g2} must be coindependent.

2.4.5.4. M has no 4-element cocircuit containing {g1, f2}.

Proof. Suppose that C is a cocircuit with g1, f2 ∈ C. By 2.4.5.3, this cocircuit

cannot be {f1, f2, g1, g2}. This; together with the fact that {f1, g1, d, f5} and

{f2, g2, d, f5} are circuits of M , implies by orthogonality that C∩{d, f5} ∕= ∅.
The set {f1, f2, f3, f4} is also a circuit of M and so C∩{f1, f3, f4} ∕= ∅ as well.

By 2.4.5.2, {g1, g2, g3, z} is another circuit of M , and again, by orthogonality,

we have C ∩ {g2, g3, z} ∕= ∅. But now C is a 4-element cocircuit with at least

five distinct elements.

It follows from 2.4.5.4 that M\g1, f2 contains no series pairs. Suppose

then that (P,Q) is a 2-separation in M\g1, f2. The set {f1, f3, d} is a

triad of M\g1, f2, and without loss of generality, |P ∩ {f1, f3, d}| ≥ 2. By
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Lemma 1.2.6, we may now assume that P is fully closed. So {f1, f3, d} ⊆ P .

If f4 ∈ P also, then it follows that f5 ∈ P as f5 ∈ cl∗M({f3, f4, d}). But

then P spans ((F ∪ G ∪ {d}) − {g1, f2}) which implies that P ∪ {g1, f2}
is 2-separating in M . Hence we are forced to have f4 ∈ Q and, similarly,

f5 ∈ Q. It must then be the case that g3 ∈ Q also as {f3, f5, g3, d} is a

circuit. Consider now the cocircuit {z, f3, g3, f4}. Suppose that z ∈ Q. Then

taking the full closure of Q we see that f3 ∈ fcl(Q). But then d ∈ fcl(Q)

also as {d, f3, g3, f5} is a circuit, and, consequently f1 ∈ fcl(Q) too. But

now fcl(Q) spans ((F ∪ G ∪ {d}) − {g1, f2}) and we have a 2-separation

(P − fcl(Q), fcl(Q) ∪ {g1, f2}) in M . Therefore we are forced to have z ∈ P .

Recalling from 2.4.5.1 that (d, f5, f3, g3, z) is a maximal flan of M\f4, ob-
serve that f1 ∕∈ clM\g1,f2({f3, d, z}). So {f1, f3, d, z} ⊆ P is independent,

while r({f4, f5, g3}) ≥ 3. Let R = {f1, f3, f4, f5, g3, d, z}. In the restriction

M |R we now have r(P ∩ R) + r(Q ∩ R)− r(R) ≥ 4 + 3− 5 = 2. That is to

say, (P ∩ R) fails to be 2-separating in M |R. This contradicts Lemma 1.2.5

and completes the proof of the lemma.



Chapter 3

Global Structure in a Minor

Suppose that M is a 3-connected matroid with an element d such that M\d
is 3-connected. Naturally, the approach we take in an attempt to find a

detachable pair in M is to study the minor M\d. In some situations, the

minor is particularly highly structured and in this chapter we deal with two

potential general configurations that can arise.

3.1 Sequential Minor

In the event that M\d is sequential, we are guaranteed a detachable pair in

M as follows.

Lemma 3.1.1. Let M be a 3-connected matroid with |E(M)| > 9 containing

no triangles or triads, and with an element d such that M\d is 3-connected.

If M\d is sequential, then M contains a detachable pair.

Proof. Suppose that (x1, . . . , xn) is a sequential ordering of E(M\d). As

M contains no triangles, {x1, x2, x3} and {xn−2, xn−1, xn} must be triads of

M\d. Assume that M has no detachable pair.

3.1.1.1. M does not contain a rank-3 set having 5 elements.

43
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Proof. As M does not contain any triangles, any such set must be isomorphic

to U3,5. This contradicts Lemma 2.2.5.

3.1.1.2. If xi ∈ {x1, x2, x3} and xj ∈ {xn−2, xn−1, xn}, then M\d/xi, xj is

3-connected unless xi and xj are contained in a 4-element circuit C with

|{x1, x2, x3} ∩ C| = 2 = |{xn−2, xn−1, xn} ∩ C|.

Proof. By Lemma 1.2.21, M\d/xi is 3-connected for each i ∈ {1, 2, 3}. If

there is no 4-element circuit containing exactly two elements of {x1, x2, x3}
and two elements of {xn−2, xn−1, xn}, then no element of {xn−2, xn−1, xn}
can be in a triangle of M\d/xi for i ∈ {1, 2, 3}, and the result follows from

another application of Lemma 1.2.21.

3.1.1.3. There exists at most one 4-element circuit C such that |{x1, x2, x3}∩
C| = 2 = |{xn−2, xn−1, xn} ∩ C|.

Proof. If there exists two distinct such circuits, then it follows that

⊓M\d({x1, x2, x3}, {xn−2, xn−1, xn}) = 2 so that |E(M)| ≤ 9.

Note that if xk is a guts element in the sequential ordering (x1, . . . , xn)

of M\d, then by Bixby’s Lemma, co(M\d, xk) is 3-connected. Therefore in

order then for {d, xk} to fail to be a detachable pair, xk must be contained in

a triad Γk of M\d with Γk ∩ {x1, . . . , xk−1} ∕= ∅ ∕= Γk ∩ {xk+1, . . . , xn}. As d
blocks each of these triads in M , Γk ∪ {d} is a 4-element cocircuit for each k.

If L is a 4-element coline of M\d, then, again, as d blocks every triad of M\d,
it must be that M∗|(L∪{d}) ∼= U3,5. Therefore by Lemma 2.2.5, M contains

a detachable pair. So x4 is certainly not within the coclosure of {x1, x2, x3}.
Thus x4 ∈ cl({x1, x2, x3}), and similarly, xn−3 ∈ cl({xn−2, xn−1, xn}). As

the labelling of the elements of {x1, x2, x3} is arbitrary with respect to the

sequential ordering of M\d, we may assume that x3 ∈ Γ4. Similarly, we may

assume that xn−2 ∈ Γn−3.

3.1.1.4. M\d/x3, xj and M\d/xn−2, xi are 3-connected for all i ∈ {1, 2, 3},
j ∈ {n− 2, n− 1, n}.
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Proof. As x3 ∈ Γ4, it follows that x3 ∕∈ clM\d({x1, x2, xn−2, xn−1, xn}) and so

by 3.1.1.2, M\d/x3, xj is 3-connected for j ∈ {n − 2, n − 1, n}. Similarly

M\d/xn−2, xi is 3-connected for i ∈ {1, 2, 3}.

3.1.1.5. x4 and xn−3 are the only guts elements in the sequential ordering

(x1, . . . , xn) of M\d.

Proof. Suppose that cl({x1, x2, x3}) − {x1, x2, x3, x4} is non-empty; con-

taining an element x5. Now x3 ∈ cl∗(E(M\d) − {x1, x2, x3, x5}) so that

x3 ∕∈ cl({x1, x2, x5}). But this implies that {x1, x2, x5} is a contradic-

tory triangle in M\d. Thus cl({x1, x2, x3}) = {x1, x2, x3, x4}. Similarly,

cl({xn, xn−1, xn−2}) = {xn, xn−1, xn−2, xn−3}. Suppose now that there exists

some other guts element xp in the sequential ordering. Then Γp must be

disjoint from both {x1, x2, x3} and {xn, xn−1, xn−2}. If M does not contain a

detachable pair, there must thus exist 4-element circuits {d, x3, xn−1,α} and

{d, x3, xn, β} in M . Now both Γn−3 ∪ {d} and Γp ∪ {d} are cocircuits of M .

By orthogonality, it must be that α, β ∈ Γn−3 ∪ {d} and α, β ∈ Γp ∪ {d},
and consequently that α = β. But now it follows that {x3, d,α, xn−1, xn} is

a rank-3 set of M with 5 elements. This is a contradiction to 3.1.1.1 and as

such, the element xp cannot exist.

3.1.1.6. |cl∗M\d({x1, x2, x3, x4})− {x1, x2, x3, x4}| = 1.

Proof. Suppose otherwise, letting

G∗ = cl∗M\d({x1, x2, x3, x4})− {x1, x2, x3, x4}.

We know that G∗ ∕= ∅ because, as we have seen

⊓({x1, x2, x3}, {xn, xn−1, xn−2}) ∕= 2.

So G∗ ≥ 2. Note that by 3.1.1.5, we also have the equality

G∗ = cl∗M\d({xn, xn−1, xn−2, xn−3})− {xn, xn−1, xn−2, xn−3}.
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Now r(M\d) = 4 + |G∗| ≥ 6. It follows from this that

rM\d({x1, x2, x3, xn, xn−1, xn−2}) = 6.

Equivalently, ⊓({x1, x2, x3}, {xn, xn−1, xn−2}) = 0. Now, by 3.1.1.2,

M\d/xi, xj is 3-connected for all xi ∈ {x1, x2, x3}, xj ∈ {xn, xn−1, xn−2}.
Consider the circuit C1 = {x1, xn, d,α} of M . By orthogonality, it must be

that α ∈ Γ4 ∩ Γn−3. Similarly, C2 = {x2, xn, d, β} is a circuit of M and

by orthogonality, β ∈ Γ4 ∩ Γn−3. It follows that α = β. But this contra-

dicts 3.1.1.1.

The only remaining possibility is that E(M\d) = {x1, . . . , x9}. Here

Γ4 = {x3, x4, x5} and Γ6 = {x5, x6, x7} are triads of M\d and consequently,

as r(M\d) = 5, {x1, x2, x8, x9} must be a circuit. Consider the circuits

{x3, d, x9,α} and {x3, d, x8, β} of M . It follows from 3.1.1.1 that α ∕= β,

and we know from orthogonality that α, β ∈ Γ6. Thus {α, β} ∩ {x6, x7} ∕=
∅. Therefore, in the matroid M/x3, d is contained in a triangle T with

T ∩ {x6, x7} ∕= ∅ ∕= T ∩ {x8, x9}. Assume for the moment that x8 ∈ T .

In M/x3, the element d now lies within clM/x3({x7, x8, x9}). Thus d is also

contained in a second triangle T ′ with x9 ∈ T and T ∩ {x6, x7} ∕= ∅. As

M/x3 cannot contain a 4-point line, it must be that T ∩ T ′ = {d}. We have

symmetry between x8 and x9, and so we may assume then that {x8, d, x6} and
{x9, d, x7} are the aforementioned triangles in M/x3. These triangles then

extend to circuits {x3, d, x6, x8} and {x3, d, x7, x9} in M . Now examining the

matroid M/x7 and repeating these arguments, we find that there must exist

circuits {x7, d, x1, xm} and {x7, d, x2, xn} where {xm, xn} = {x3, x4}. But

now, regardless of whether xm = x3 or xm = x4, we now have a five-element

set with rank three. The result now follows from this final contradiction

of 3.1.1.1.

In the next two lemmas we use the above result on sequential minors to

extend our results from section 2.4
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Lemma 3.1.2. Let M be a 3-connected matroid where |E(M)| ≥ 9 with an

element d such that M\d is 3-connected. Let X be a sequential 3-separating

set of M\d. Assume that fclM(X∪{d}) contains no triangles or triads. Then

either

(i) X is a fully closed triad of M\d and X ∪ {d} is a cocircuit in M , or

(ii) fclM\d(X) is a 5-element set that can be ordered as a maximal flan in

M\d where d ∈ clM(X) and fclM\d(X) ∪ {d} is fully closed in M , or

(iii) fclM(X ∪ {d}) contains a detachable pair.

Proof. We shall assume that (iii) does not hold and show that this forces (i)

or (ii) to apply. By Lemma 3.1.1, we may assume that M\d is not sequen-

tial. Let (f1, . . . , fn) be a sequential ordering of fclM\d(X) where {f1, f2, f3}
is a triad in M\d. If n = 3, then (i) holds. So assume that this is not

the case. If f4 ∈ cl∗M\d({f1, f2, f3}), then {f1, f2, f3, f4} is a coseqment of

M\d. As d must block each triad of this cosegment in M , we find our-

selves in a situation in which M∗ has a minor isomorphic to U3,5. This

contradicts Lemma 2.2.5. Therefore f4 ∈ clM\d({f1, f2, f3}). By Bixby’s

Lemma, co(M\d, f4) is 3-connected, and so f4 must be contained in a triad

Γ which meets both {f1, f2, f3} and E(M\d)− {f1, f2, f3, f4}. Without loss

of generality, we may assume that Γ = {f3, f4, f5}. We now have a 5-

element flan in M\d. It follows from Lemma 2.4.4 that this flan must be

maximal. Suppose that {f1, f2, f3, f4, f5} fails to be fully closed in M\d.
Then f6 ∈ cl∗M\d({f1, f2, f3, f4, f5}) = cl∗M\d({f1, f2, f3, f4}). Note also that

if fn ∈ clM\d({f1, . . . , fn−1}), then co(M\d, fn) is 3-connected and so ei-

ther M contains a detachable pair, or fn is contained in a triad Γn of M\d
where (fclM\d(X) − {fn}) ∩ Γn ∕= ∅ ∕= Γn ∩ (E(M\d) − fclM\d(X)). The

second possibility contradicts the fact that (f1, . . . , fn) is fully closed. So

fn ∈ cl∗M\d({f1, . . . , fn−1}). By repeated use of Lemma 1.2.10, together with

the fact that E(M\d)− fclM\d(X) cannot be independent in M\d, we deduce
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that (fclM\d(X)−{fn}, {fn}, E(M\d)− fclM\d(X)) is a cyclic 3-separation of

M\d. By Bixby’s Lemma then, we know that M\d/fn must be 3-connected.

3.1.2.1. M\d/fn, fk is 3-connected for each k ∈ {5, 1, 2, 3}.

Proof. Certainly, ({f1, f2, f3, f4}, {f5}, E(M\d) − {f1, f2, f3, f4, f5, fn}) is a

cyclic 3-separation of M\d/fn. Hence si(M\d/fn, f5) is 3-connected and

consequently, M\d/fn, f5 is 3-connected unless there exists a 4-element cir-

cuit C of M\d with {f5, fn} ⊆ C. By orthogonality, the circuit C must

contain at least two elements from the triad {f3, f4, f5}. The remaining el-

ement of C may or may not be contained in E(M\d) − fclM\d(X). In the

first instance, fclM\d(X) fails to be fully closed, while in the second we con-

tradict the fact that fn ∈ cl∗M\d(E(M\d) − fclM\d(X)). Thus M\d/fn, f5
must be 3-connected. For the remaining cases, we know from Lemma 1.2.21

that si(M\d/fn, fi) is 3-connected for each i ∈ {1, 2, 3}. The proof that

M\d/fn, fi contains no parallel pairs for i ∈ {1, 2, 3} now proceeds similarly

to the M\d/fn, f5 case.

With 3.1.2.1 in hand, we are left to deduce that d must be together in a

triangle with each element from {f5, f1, f2, f3} in M/fn. Using orthogonality

with the two cocircuits {f1, f2, f3, d} and {f3, f4, f5, d}, a straightforward

check of the possible configurations shows that this is not feasible. Thus

we conclude that {f1, f2, f3, f4, f5} = fclM\d(X). From Lemma 2.4.5, we

know that d ∈ clM({f1, f2, f3, f4, f5}), and finally from Lemma 1.2.7 that

fclM\d(X) ∪ {d} is fully closed in M . Part (ii) is satisfied and the proof of

the lemma is complete.

The next result refines the outcome from the previous result in the case

where our sequential 3-separating set is more substantial than a single triad.

Lemma 3.1.3. Let M be a 3-connected matroid with |E(M)| ≥ 9 and let

d be an element of M such that M\d is 3-connected. Let X be a sequential

3-separating set of M\d with |X| ≥ 4. Assume that fclM(X ∪ {d}) contains
no triangles or triads. Then either
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(i) fcl(X ∪ {d}) contains a detachable pair, or

(ii) fclM\d(X) ∪ {d} is a fully closed twisted 3-separator of M , or

(iii) fclM\d(X) ∪ {d} is a fully closed partial spider-like 3-separator of M .

Proof. We shall assume that (i) fails. By Lemma 3.1.2 then, fclM\d(X) can

be ordered as a 5-element flan which is maximal in M\d with d ∈ clM(X)

and where fclM\d(X) ∪ {d} is fully closed in M . Let F = (f1, . . . , f5) be the

natural labelling of the elements of the flan fclM\d(X). We certainly have

cocircuits {f1, f2, f3, d} and {f3, f4, f5, d} in M as d must block any triad

of M\d. From Lemma 2.4.3, we deduce the existence of 4-element circuits

{f1, f5, d,α},{f2, f5, d, β} and {f3, f5, d, γ} in M , where {α, β, γ} ⊆ F , along

with the circuit {f1, f2, f3, f4}.

3.1.3.1. If C1 ⊆ F ∪ {d} and C2 ⊆ F ∪ {d} are distinct 4-element cocircuits

of M , then F ∪ {d} ⊆ C1 ∪C2. Similarly, if C1 ⊆ F ∪ {d} and C2 ⊆ F ∪ {d}
are distinct 4-element circuits of M , then F ∪ {d} ⊆ C1 ∪ C2.

Proof. The set F ∪ {d} is exactly 3-separating in M with rM(F ∪ {d}) =

r∗M(F ∪ {d}) = 4 and so r(E(M) − (F ∪ {d})) = r(M) − 2. Suppose that

C1 ⊆ (F ∪ {d}) and C2 ⊆ (F ∪ {d}) are distinct 4-element cocircuits of

M . Then E(M) − (C1 ∪ C2) must be a flat of rank r(M) − 2. Thus, if

x ∈ ((F ∪ {d})− (C1 ∪C2)), it follows that x ∈ clM(E(M)− (F ∪ {d})). But
this contradicts the fact that every element of F ∪{d} is contained in a some

cocircuit which is itself contained in F ∪ {d}. The proof of the dual result

follows in the same manner due to the fact that rM(F∪{d}) = r∗M(F∪{d}) =
4.

3.1.3.2. M/f1\f2, f5 is 3-connected.

Proof. Consider the 3-connected matroid M/f1. The set {f3, f4, f5, d} is a

rank-3 cocircuit in this matroid, and so by Lemma 1.2.14, co(M/f1\f5), and
indeed M/f1\f5 must be 3-connected. Now by Bixby’s Lemma, M/f1\f2, f5
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is 3-connected unless f2 is contained in a triad of M/f1\f5 which meets both

{f3, f4, d} and E(M/f1\f5) − (F ∪ {d}). But as F ∪ {d} is fully closed in

M , it follows from Lemma 1.2.8 that {f2, f3, f4, d} is fully closed in M/f1\f5.
Thus M/f1\f2, f5 must be 3-connected as required.

From 3.1.3.2, we now deduce the existence of a 4-element cocircuit

{f1, f2, f5, z} where; as F ∪ {d} is fully closed in M , z ∈ {f3, f4}. With

our previous knowledge that {f1, f2, f3, d} and {f3, f4, f5, d} are cocircuits

in M , we can now conclude with the use of 3.1.3.1 that {f1, f2, f4, f5} must

be our cocircuit in question. All that remains is to examine the poten-

tial configurations of our 4-element circuits {f1, f5, d,α},{f2, f5, d, β} and

{f3, f5, d, γ}; each of which is contained in F ∪ {d}. If α = f3, we are forced

by 3.1.3.1 to have γ = f3 and β = f4. In such a situation, it is easily checked

against the definition by relabelling the ordered sequence (f1, f2, f3, f4, f5, d)

as (r1, r2, s2, t1, t2, s1) that F ∪ {d} is a twisted 3-separator of M so that

(ii) holds. Similarly, if α = f4, we obtain a twisted 3-separator in the

same manner; which can be readily checked by setting (f1, f2, f3, f4, f5, d)

as (s1, s2, r1, t2, t1, r2). The final possibility arises when α = f2. In this

case, 3.1.3.1 forces β = f1 and γ = f4. It is clear that F ∪ {d} is now a par-

tial spider-like 3-separator with associated partition {{f3, f4, f5, d}, {f1, f2}}
giving (iii). The combinatorics is complete and we conclude the proof of the

lemma.

3.2 Internally 4-Connected Minor

Whenever the matroid M\d is internally 4-connected and has more than ten

elements, we can also deduce the existence of a detachable pair in M , as is

shown in the following.

Lemma 3.2.1. Let M be a 3-connected matroid with |E(M)| > 10. If M

contains no triangles or triads and d ∈ E(M) is such that M\d is internally

4-connected, then M contains a detachable pair.
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Proof. Assume that M does not contain a detachable pair.

3.2.1.1. Every element of M\d is in a triad.

Proof. If x ∈ E(M\d) is not in a triad, then as co(M\d, x) is not 3-connected,
there must exist a cyclic 3-separation (R, {x}, S) of M\d. As M\d is inter-

nally 4-connected, at least one of R and S is a triad. But both R and S must

by definition contain a circuit. Therefore we contradict the fact that M\d is

3-connected.

3.2.1.2. M\d contains at least four distinct triads.

Proof. This follows immediately from 3.2.1.1 and our assumption that

|E(M\d)| ≥ 10.

3.2.1.3. For all x ∈ E(M\d), the matroid M\d/x is 3-connected.

Proof. If M\d/x fails to be 3-connected for some x ∈ E(M\d), then

by 1.2.11, there exists a vertical 3-separation (P, {x}, Q) of M\d. But then it

is clear that both P and Q must be triads for M\d is internally 4-connected.

This contradicts our assumption that |E(M)| > 10.

3.2.1.4. If S and T are disjoint triads of M\d, then for all s ∈ S, there

exists some t ∈ T such that M\d/s, t is 3-connected.

Proof. If T is closed in M\d/s, then the result follows immediately from

Tutte’s Triangle Lemma. So assume that this is not the case. Note that if

z ∈ (clM\d/s(T ) − T ), it follows that z ∈ S, for otherwise T ∪ {z} would

be exactly 3-separating in M\d. Suppose that s1, s2 are distinct elements of

clM\d/s(T )−T . Then λM\d/s(T∪{s1, s2}) = 2, implying that λM\d(T∪S) = 2.

But, as |E(M)| > 10, this now contradicts the fact that M\d is internally

4-connected. Thus we may assume that |clM\d/s(T )| = 4. There must now

exist some t ∈ T which is not contained in any triangle of M\d/s. Applying
Lemma 1.2.21 we see that M\d/s, t is 3-connected as required.
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3.2.1.5. If S and T are distinct triads of M\d, then |S ∩ T | ∈ {0, 1}.

Proof. If |S ∩ T | = 2, then λM\d(S ∪ T ) = 2, which, as |E(M)| > 10, again

contradicts the fact that M\d is internally 4-connected.

3.2.1.6. Let S = {s1, s2,α} and T = {t1, t2,α} be intersecting triads of

M\d. Then for each i ∈ {1, 2}, there exists j ∈ {1, 2} such that M\d/si, tj
is 3-connected.

Proof. Consider M\d/s1. If T is closed in this matroid, the result follows

from Tutte’s Triangle Lemma. Otherwise, s2 ∈ clM\d/s1(T ). But then, as s1 ∈
cl∗M\d(T ∪ {s2}), we get that λM\d(S ∪ T ) = 2, which is a contradiction.

3.2.1.7. No element of M\d is contained in four distinct triads.

Proof. Suppose to begin with that α is an element which is contained in

four distinct triads {r1, r2,α}, {s1, s2,α}, {t1, t2,α} and {u1, u2,α} of M\d.
By 3.2.1.6, M must have a 4-element circuit which contains {r1, s1, d}, and
by orthogonality with the cocircuits {t1, t2, d,α} and {u1, u2, d,α} of M ,

it is clear that this circuit must be {r1, s1, d,α}. Similarly, M must have

some 4-element circuit which contains {r1, t1, d}, and this circuit must be

{r1, t1, d,α}. But now M has a minor isomorphic to U3,5, which contradicts

Lemma 2.2.5.

3.2.1.8. M\d does not contain three pairwise disjoint triads.

Proof. Suppose that Γ1,Γ2 and Γ3 are pairwise disjoint triads. As E(M\d)
has at least ten elements, there must exist some α not contained in any

of these triads. This α must be in some triad Γα of M\d. Without loss of

generality, we may assume that Γα∩Γ1 = ∅. Now by 3.2.1.4, there must exist

some 4-element circuit C in M which contains d, α and at least one point

from Γ1. But now at least one of Γ2∪{d} and Γ3∪{d} is a 4-element cocircuit

of M whose intersection with the circuit C is {d}. This is a contradiction by

orthogonality.
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3.2.1.9. Each element of M\d is contained in at most two distinct triads.

Proof. By 3.2.1.7 above, we know that each element of M\d is contained in

at most three distinct triads. Suppose that α is indeed contained in three

distinct triads Γr = {r1, r2,α}, Γs = {s1, s2,α} and Γt = {t1, t2,α}. Suppose
that Γ is some triad of M\d which is distinct from each of Γr,Γs and Γt. If

|Γ ∩ (Γr ∪ Γs ∪ Γt)| ∈ {0, 1}, then we may assume up to an arbitrary choice

of labelling that Γ∩ {r1, s1, s2} = ∅. By 3.2.1.6, there must exist a 4-element

circuit C which contains r1, d and at least one element from {s1, s2}. Now as

C cannot contain both an element from both Γ and Γt, we inevitably arrive

at a contradiction by orthogonality in the matroid M .

Thus any triad of M\d other than Γr, Γs and Γt must intersect Γr∪Γs∪Γt

at exactly two points. As |E(M)| > 10, there exists at least three other

points δ, µ and ζ; none of which is contained in Γr ∪ Γs ∪ Γt, and each of

which is contained in such a corresponding triad Γδ,Γµ and Γζ . Supppose

now that α is the only element of M\d which is contained in three triads.

We know from 3.2.1.7 that α is contained in exactly three triads, and a quick

check reveals that the only potentially allowable configuration that remains

is where each element from Γr ∪ Γs ∪ Γt apart from α is contained in exactly

two triads of M\d. However in this situation the three triads Γδ,Γµ and Γζ

are pairwise disjoint and this contradicts 3.2.1.8.

Therefore some element of {r1, r2, s1, s2, t1, t2} must also be contained in

exactly three triads of M\d. Our labelling maintains arbitrarity at this point

and so we may assume without loss of generality that s1 is such an element.

Up to symmetry, there are now two possible situations to examine. Either

{s1, r1, δ} and {s1, r2, µ} are triads, or {s1, r1, δ} and {s1, t1, µ} are triads. In

the first instance, we know from 3.2.1.6 that either {s2, r1, d} or {s2, r2, d}
is contained in a 4-element circuit C of M , but then at least one of Γδ,Γµ

and Γt would be disjoint from C, which is a contradiction by orthogonality.

So we may assume that we are in the second instance where {s1, r1, δ} and

{s1, t1, µ} are triads. Recalling once more from 3.2.1.8 that no three triads
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may be pairwise disjoint, we note that there are two possibilities for the

location of Γζ . Either Γζ = {r1, t1, ζ}, or Γζ = {r2, t2, ζ}. We shall use this

fact shortly.

Consider the matroid M\d/s2, ζ. If this matroid is 3-connected, then M

must have a 4-element circuit which contains {d, s2, ζ}. But this contradicts
orthogonality as whatever Γζ may be, there always exists a triad of M\d
which is disjoint from C. Hence M\d/s2, ζ must have some 2-separation

(P,Q). A quick check of orthogonality against the triads of M\d reveals

that M\d cannot contain any 4-element circuits that contain s2 and ζ and

so M\d/s2, ζ cannot contain any parallel pairs, and we may freely apply

Lemma 1.2.6 to this 2-separation. Therefore we may assume that Γt ⊆ P .

This forces s1 ∈ Q, as otherwise (P ∪ {s2}, Q) would be a 2-separation in

M\d/ζ thereby contradicting 3.2.1.3. Now if {r1, r2} ⊆ Q, then we may

relabel to another 2-separation in which α ∈ Q, s1 ∈ Q. But then (P,Q ∪
{s2}) would be a contradictory 2-separation in M\d/ζ. So at least one

element from {r1, r2} must be in P , and, taking the coclosure of P , we

may assume that {r1, r2} ⊆ P . So we have a 2-separation (P,Q) in which

{r1, r2, t1, t2} ⊆ P . But recall that either {r1, t1, ζ} or {r2, t2, ζ} is a triad

of M\d/s2. Thus (P ∪ {ζ}, Q) is a 2-separation in the 3-connected matroid

M\d/s2. The result follows from this final contradiction.

To clean up the remainder of the analysis in this section we shall make

the following definition. A trident of a matroid is a five-element set which

consists of two triads meeting at a point. This terminology is convenient for

our immediate purposes and its use is restricted to this section.

3.2.1.10. Let Ψ1 and Ψ2 be two tridents of M\d. Then Ψ1 ∩Ψ2 ∕= ∅.

Proof. Assume otherwise. Suppose that there exists some x ∈ (E(M\d) −
(Ψ1 ∪ Ψ2)). By 3.2.1.1, x is contained in some triad Γx. If Γx is disjoint

from Ψ1 ∪Ψ2, then M\d contains three pairwise disjoint triads and we con-

tradict 3.2.1.8. Similarly, if Γx meets both Ψ1 and Ψ2, there must be three
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pairwise disjoint triads, and if |Γx ∩ (Ψ1 ∪ Ψ2)| = 1 we again get the same

contradiction with the use of 3.2.1.9. The only other situation to consider is

when |Γx ∩ (Ψ1 ∪ Ψ2)| = 2, and where, up to an arbitrary labelling of the

tridents, Γx ⊆ Ψ1 ∪ {x}. By 3.2.1.4, there exists a 4-element circuit C in M

which contains d as well as two elements from Ψ2. But then, at least one

of the triads contained in Ψ1 ∪ {x} is disjoint from C and so we arrive a

contradiction by orthogonality in the matroid M . Consequently we may now

assume that E(M\d) = Ψ1 ∪Ψ2. If r
∗(M\d) ≥ 4, then

λ(Ψ1) ≤ r∗M\d(Ψ1) + r∗M\d(Ψ2)− 4 = 2

which contradicts the fact that M\d is internally 4-connected. Therefore

it must be the case that r∗(M\d) = 3. Let Ψ1 = {x1, x2,α, y1, y2} where

{x1, x2,α} and {y1, y2,α} are triads, and consider the matroid M\d/x1, x2.

By virtue of the fact that r∗(M\d) = 3, any potential 2-separation (P,Q) of

M\d/x1, x2 must have the property that {x1, x2} ⊆ cl∗M\d(P ) or {x1, x2} ⊆
cl∗M\d(Q). But this contradicts the fact that M\d is 3-connected. So

M\d/x1, x2 is 3-connected and there exists a 4-element circuit C in M with

{x1, x2, d} ⊆ C. If Ψ2 ∩C = ∅ then we get a contradiction by orthogonality.

So Ψ2 ∩C is a singleton. But now {y1, y2,α} is a triad of M\d which is dis-

joint from C in M , again providing a contradiction by orthogonality between

the circuit C and the cocircuit {y1, y2,α, d} of M .

3.2.1.11. Let Ψ1 and Ψ2 be two tridents of M\d. Then |Ψ1 ∩Ψ2| ∕= 1.

Proof. Assume otherwise. By 3.2.1.9 we know that no element of M\d is

contained in more than two triads, and so we may assume that Ψ1 ∪ Ψ2 =

{t1, . . . , t9} where {t1, t2, t3}, {t3, t4, t5}, {t5, t6, t7} and {t7, t8, t9} are triads.

As |E(M)| > 10, there exists some x ∈ E(M\d)− (Ψ1 ∪Ψ2) where x is con-

tained in a triad Γx. If Γx is disjoint from Ψ1∪Ψ2, then we contradict 3.2.1.8.

If |Γx ∩ (Ψ1 ∪Ψ2)| = 1, we contradict 3.2.1.10. So |Γx ∩ (Ψ1 ∪Ψ2)| = 2 and

we may assume up to an arbitrary choice of labelling that Γx = {x, t1, t9}. If
E(M\d)−(Ψ1∪Ψ2∪{x}) is non-empty, thenM\dmust contain another triad.
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But no more triads can be placed relative to our already identified structure

without giving either three disjoint triads, two disjoint tridents or an element

contained in three distinct triads. So E(M\d) = Ψ1 ∪ Ψ2 ∪ {x}. Consider

the matroid M\d/t4, t6. If we can show that this matroid is 3-connected,

then M must contain a 4-element circuit C which itself contains {t4, t6, d},
which would give the now-more-than-familiar contradiction to orthogonal-

ity in the matroid M . So, suppose that (P,Q) is indeed a 2-separation of

M\d/t4, t6. A quick check of orthogonality against the various triads of M\d
reveals that M\d cannot possibly contain any 4-element circuits which con-

tain both t4 and t6. So M\d/t4, t6 is free from parallel pairs and we may

freely apply Lemma 1.2.6 to the 2-separation (P,Q). Without loss of gener-

ality, t5 ∈ Q. As t4 ∈ cl∗M\d/t6({t3, t5}) and M\d/t6 is 3-connected, we are

forced to have t3 ∈ P . Similarly, it must be that t7 ∈ P . Consequently, the

triads {t1, t2, t3} and {t7, t8, t9} must both have at least two elements in P ,

and taking the coclosure of P , we may assume that {t1, t2, t3, t7, t8, t9} ⊆ P .

But now Q ⊆ {t5, x} and we contradict the fact that (P,Q) is a 2-separation

in a matroid which contains no non-trivial parallel or series classes. Thus

M\d/t4, t6 must be 3-connected and the result follows.

3.2.1.12. Let Ψ1 and Ψ2 be two tridents of M\d. Then |Ψ1 ∩Ψ2| ∕= 3.

Proof. Assume otherwise. From 3.2.1.9, each element of M\d is in at most

two triads, and it follows that Ψ1∩Ψ2 must itself be a triad. As |E(M)| > 10,

there exists at least three more elements δ, µ and ζ ∈ E(M\d) each contained

in a corresponding triad Γδ,Γµ and Γζ . By 3.2.1.8 none of these triads are

disjoint from Ψ1∪Ψ2. Combining this fact with 3.2.1.9 and 3.2.1.11, it follows

that each of Γδ,Γµ and Γζ meets both Ψ1−Ψ2 and Ψ2−Ψ1. But this implies

that some element of Ψ1 ∪ Ψ2 is contained in at least three triads, which

contradicts 3.2.1.9.

3.2.1.13. Let Ψ1 and Ψ2 be two tridents of M\d. Then |Ψ1 ∩Ψ2| ∕= 4.

Proof. Assume otherwise. As no point of M\d is in three triads and
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|E(M\d)| ≥ 10, there must exist a triad Γ1 which is disjoint from Ψ1 ∪ Ψ2,

and again, as |E(M\d)| ≥ 10, there exists yet another triad Γ2. If Γ2 is also

disjoint from Ψ1∪Ψ2, then we would either have two disjoint tridents or three

disjoint triads, both of which are contradictory. So |Γ2 ∩ (Ψ1 ∪Ψ2)| ∈ {1, 2}.
In such a situation we once again obtain the contradiction that M\d contains

3 disjoint triads unless |Γ2∩(Ψ1∪Ψ2)| = 1 and |Γ2∩Γ1| = 1. The exceptional

case contradicts Lemma 3.2.1.11.

The matroid M\d must contain at least four distinct triads by 3.2.1.2.

By 3.2.1.5 and 3.2.1.8 then, M\d must contain a trident Ψ1. If Ψ1 is the

only trident in M\d, then every triad not contained in Ψ1 must be disjoint

from every other triad of M\d. But from the size of the ground set of

M\d, we know that there are at least two other such triads, and so such a

situation contradicts 3.2.1.8. Therefore there must exist a second trident Ψ2.

Combining the preceeding four results 3.2.1.10, 3.2.1.11, 3.2.1.12 and 3.2.1.13

we are forced into a situation where |Ψ1∩Ψ2| = 2. But by 3.2.1.9, no element

can be in three distinct triads and an elementary check of the remaining

possible permutations reveals that by considering an alternate labelling of the

elements, Ψ1∪Ψ2 is now the union of two distinct tridents whose intersection

has size three. This final contradiction completes the proof of 3.2.1 and our

arguments in this section.
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Chapter 4

Troublesome 3-Separating Sets

Now we are prepared to commence our detailed examination into the exact

nature of 3-separating sets which themselves yield no detachable pair.

4.1 To a More Structured 3-Separating Set

We begin by identifying a specific substructure that troublesome 3-separating

sets necessarily adhere to. This structure will in turn give us information

about precisely what is preventing detachable pairs from existing.

Lemma 4.1.1. Let M be a 3-connected matroid with an element d such that

M\d is 3-connected. Let (Y,E(M\d)− Y ) be an exact 3-separation of M\d
such that |Y | ≥ 4. Assume that fclM(Y ∪{d}) contains no triangles or triads

and contains no detachable pair. Then there is a subset X of Y having the

following properties.

(i) |X| ≥ 4 and λM\d(X) = 2.

(ii) M\d, x is 3-connected up to series pairs for all x ∈ X.

(iii) M\d/x is 3-connected for all x ∈ X.

59
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Proof. Assume that the lemma fails. Choose X ⊆ Y that is minimal with

respect to the properties that |X| ≥ 4 and λM\d(X) = 2. LetW = E(M\d)−
X. We prove that the claims of the lemma hold for X. By definition, (i) is

satisfied. We next prove that X satisfies property (ii). Assume otherwise.

Let x be an element of X such that M\d, x is not 3-connected up to series

pairs. Let (P, {x}, Q) be a cyclic 3-separation of M\d.

4.1.1.1. P ∩W ∕= ∅ ∕= Q ∩W

Proof. Suppose that Q ∩ W = ∅. Then Q ∪ {x} ⊆ X. But then, by the

minimality of X, we must have Q ∪ {x} = X as Q is exactly 3-separating.

As Q must contain a circuit, this now implies that X−{x} is a contradictory

triangle. So Q ∩W ∕= ∅ and similarly, P ∩W ∕= ∅.

Without loss of generality we may assume that |W ∩ P | ≥ 2.

4.1.1.2. We may assume that |X ∩Q| = 2.

Proof. As |W ∩ P | ≥ 2, we have λM\d(X ∩ Q) ≤ 2. If |X ∩ Q| = 1, then

|W ∩Q| ≥ 2, so that λM\d(X ∩ P ) = 2 and |X ∩ P | ≥ 2. It follows that, by

perhaps switching labels we may assume that |X ∩Q| ≥ 2.

If |X ∩Q| > 2, then the set (X ∩Q) ∪ {x} contradicts the minimality of

the choice of X. Hence |X ∩Q| = 2.

4.1.1.3. |X ∩ P | = 2.

Proof. Note that if |W ∩Q| = 1 then Q is a triangle in M\d. So |W ∩Q| ≥ 2

and, by uncrossing, λ(X ∩ P ) ≤ 2. Suppose now that |X ∩ P | = 1 with

X ∩ P = {t}. Then, as M\d/t is 3-connected, it must be that t ∈ cl∗((X ∩
Q) ∪ {x}). This, together with the fact that (X ∩ Q) ∪ {x} is a triad of

M\d, gives X as a 4-element cosegment in M\d. As fcl(Y ∪ {d}) contains

no triads, d must block every triad in X. But then M∗|(X ∪ {d}) ∼= U3,5 and

by Lemma 2.2.5, fcl(Y ∪ {d}) contains a detachable pair. So we may assume

that |X ∩ P | > 1. If |X ∩ P | > 2, the set (X ∩ P ) ∪ {x} contradicts the

minimality of X.
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Let X ∩ P = {p1, p2} and X ∩Q = {q1, q2}.

4.1.1.4. X is closed in M\d.

Proof. Suppose c ∈ cl(X) − X. By symmetry we can assume that c ∈ P .

As (P, {x}, Q) is cyclic, and fcl(Y ∪ {d}) contains no triangles, we have

|W ∩Q| ≥ 2. Thus |E(M)−(X∪P )| ≥ |E(M)−((X∪{c})∪P )| ≥ 2 and so,

by uncrossing, λ(X∩P ) = λ((X∩P )∪{c}) = 2. It follows that c ∈ cl(X∩P );

contradicting the fact that fclM(Y ∪ {d}) contains no triangles.

4.1.1.5. X contains no 4-element circuits.

Proof. Assume otherwise. Up to symmetry there are two possibilities. Say

{p1, p2, x, q1} is a circuit. Then, as {p1, p2, x} and {x, q1, q2} are triads in

M\d, it follows that (p1, p2, x, q1, q2) is a flan. Certainly {p1, p2, x, q1, q2, d}
is not a flan, and so by Lemma 2.4.5, fclM({p1, p2, x, q1, q2, d}) contains a

contradictory detachable pair. The other possibility is that {p1, p2, q1, q2} is

a circuit. Evidently r(X) = 4 and it follows easily that ({p1, p2, q1, q2},W ∪
{x}) is a 3-separation of M . But then the 3-separating set {p1, p2, q1, q2}
contradicts the minimality of the choice of X.

It now follows from 4.1.1.5 and Lemma 2.3.1, that fcl(Y ∪ {d}) contains
a detachable pair, contradicting the assumption that no such pair exists. We

conclude that property (ii) holds. Finally, we consider (iii). Suppose x ∈ X

is such that M\d/x is not 3-connected. Let (P, {x}, Q) be a 3-separation

of M\d with x ∈ cl(P ) ∩ cl(Q). Assume without loss of generality that

|W ∩ P | ≥ 2. Then λM\d(X ∩ Q) ≤ 2. If |X ∩ Q| = 2, then (X ∩ Q) ∪ {x}
is either a triangle or a triad of M\d. By hypothesis, (X ∩ Q) ∪ {x} is not

a triangle. Also x ∈ cl(P ) and P ⊆ E(M\d) − ((X ∩ Q) ∪ {x}). Hence

(X ∩Q) ∪ {x} is not a triad. Therefore |X ∩Q| ∕= 2 so that |X ∩Q| = 1. If

|W ∩ Q| = 1, then similar arguments show that Q ∪ {x} is a triangle, and,

as two elements of this triangle are contained in X, the triangle is certainly

in the full closure of Y ∪ {d}; contradicting the hypothesis that there are no
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such triangles. Hence |W ∩Q| ≥ 2. We may now apply the earlier argument

to deduce that |X ∩ P | = 1. Hence |X| = 3, contradicting the assumption

that |X| ≥ 4. We have established (iii) and the lemma is complete.
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4.2 The Triad Case

The previous section gives us a 3-separating set inM\d that has some reason-

ably strong structure. The 3-separating set X that we found either contains

a triad or not. In this section we examine in more detail the case where X

does indeed contain a triad. To simplify the organisation we call the main

result a theorem.

Theorem 4.2.1. Let M be a 3-connected matroid with an element d such

that M\d is 3-connected. Let X be a 3-separating set of M\d with |X| ≥ 4

having the following properties:

(i) co(M\d, x) is 3-connected for all x ∈ X,

(ii) M\d/x is 3-connected for all x ∈ X,

(iii) fclM(X ∪ {d}) contains no triads or triangles,

(iv) E(M\d)−X is non-sequential in M\d, and

(v) X contains a triad.

Then either:

(a) fcl(X ∪ {d}) contains a detachable pair, or

(b) fclM\d(X) ∪ {d} is a fully closed twisted 3-separator of M , or

(c) fclM\d(X) ∪ {d} is a fully closed partial spider-like 3-separator of M ,

or

(d) fclM\d(X) ∪ {d} is a fully closed spike-like 3-separator of M .

Throughout this section we assume that we are under the hypotheses of

Theorem 4.2.1. We also assume that the theorem fails, so that fclM(X∪{d})
does not contain a detachable pair, and the set fclM\d(X)∪ {d} is not a fully

closed twisted 3-separator of M , a fully closed partial spider-like 3-separator

of M , or a fully closed spike-like 3-separator of M .
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Lemma 4.2.2. Any triad of M\d contained in X is fully closed.

Proof. Say Γ is a triad of M\d contained in X. If x ∈ clM\d(Γ), then, x is in

a triad {x, y, z}, as otherwise {d, x} is a detachable pair. Evidently we may

assume y ∈ Γ and it now follows that Γ ∪ {x, z} is a 5-element set which

can be ordered as a maximal flan in M\d. But now applying Lemma 3.1.3,

one of (a), (b) or (c) must hold. Thus Γ is closed. Say x ∈ cl∗(Γ). Then d

blocks every triad of the coline Γ∪ {x} so that M∗|(Γ∪ {x, d}) ∼= U3,5. This

contradicts Lemma 2.2.5.

Lemma 4.2.3. X is fully closed in M\d.

Proof. Assume otherwise. Then there is a set Y containingX and an element

z such that Y and Y ∪ {z} are 3-separating in M\d and Y ∪ {z} is fully

closed. Let W = E(M\d) − (Y ∪ {z}). We know that W is non-empty

as E(M\d) − X is non-sequential. The element z is either in clM\d(Y ) or

cl∗M\d(Y ). In the former case M\d, z is 3-connected unless z is in a triad.

But a triad containing z must meet both Y and W . This implies that Y

is not fully closed. So in this first case, we either find a detachable pair in

Y ∪ {z} or contradict the assumption that Y ∪ {z} is fully closed. Assume

that the latter case holds; that is, assume that z ∈ cl∗(Y ).

4.2.3.1. M\d/z, x is 3-connected for all x ∈ X.

Proof. Take any x ∈ X. We know that M\d/x is 3-connected. By Bixby’s

Lemma, M\d/z, x is 3-connected up to parallel pairs. Thus, if M\d/z, x
is not 3-connected there is a 4-element circuit C of M\d containing x and

z. As M\d/x is 3-connected, x ∕∈ cl(E(M\d) − X), and so it must be that

|C ∩ X| ≥ 2. Similarly, z ∈ cl∗M\d(W ) so that |C ∩ W | = 1. But now we

contradict the fact that Y ∪ {z} is fully closed.

It follows from 4.2.3.1 that every element of X is in a triangle with d

in M/z, as otherwise {z, x} is a detachable pair for some x ∈ X. Let

T = {t1, t2, t3} ⊆ X be a triad of M\d. This is fully closed in M\d by
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Lemma 4.2.2. It is now clear that there are distinct elements s1, s2, s3 with

{s1, s2, s3} ∩ {t1, t2, t3} = ∅ such that {d, t1, s1}, {d, t2, s2} and {d, t3, s3} are

triangles of M/z. As every triangle of M/z containing d meets T by virtue

of the fact that T ∪ {d} is a cocircuit in M/z, these are the only triangles

containing d. Thus X ⊆ {t1, t2, t3, s1, s2, s3}. As T is fully closed in M\d,
at least two elements of {s1, s2, s3} belong to X. So we may now assume

without loss of generality that {s1, s2} ⊆ X.

4.2.3.2. There are distinct elements u1, u2, /∈ {s1, s2, s3, t1, t2, t3} such that

{s1, t1, u1} and {s2, t2, u2} are triads of M\d.

Proof. Consider s1. Certainly s1 is in a triad S1 of M\d, as otherwise

{d, s1} is a detachable pair. Note that if {t1, t2, s1, s2} were independent

in M\d, then, as {t1, t2, s1, s2, d, z} has rank 4 in M , this would imply that

z ∈ clM\d({t1, t2, s1, s2}); contradicting the fact that z ∈ cl∗M\d(W ). Thus

{t1, t2, s1, s2} is a circuit in M\d. Similarly {t2, t3, s2, s3} and {t1, t3, s1, s3}
are circuits. We use orthogonality of the triad S1 with these circuits fre-

quently in what follows. By Lemma 2.3.2, we may assume that {s1, s2, s3}
is not a triad. Suppose that s2 ∈ S1. Then, by orthogonality and the fact

that {s1, s2, s3} is not a triad, it must be the case that {s1, s2, t3} is a triad.

But then {s1, s2, t1, t2} is 2-separating in M\d, t3. But t3 ∈ X and we have

contradicted the fact that this matroid is 3-connected up to series pairs. Sim-

ilarly, s3 ∕∈ S1. If |S1∩T | = 2, then S1∪T is a cosegment of M\d, all of whose
triads are blocked by d. This does not happen by the dual of Lemma 2.2.5.

The only remaining way to meet the requirements imposed by orthogonality

is to have S1 ∩ T = {t1}. The fact that there exists u1 ∕∈ {s1, s2, s3, t1, t2, t3}
such that {s1, t1, u1} is a triad of M\d follows immediately. Similarly, s2 is

contained in such a triad {s2, t2, u2}. We need to prove that u1 ∕= u2. As-

sume otherwise. Then {s1, s2, t1, t2} contains a cocircuit of M\d. But this

set is also a circuit. Hence λM\d({s1, s2, t1, t2}) = 2. But t3 ∈ cl∗M\d({t1, t2})
and hence t3 ∈ cl∗M\d({s1, s2, t1, t2}). Thus {s1, s2, t1, t2} is 2-separating in

M\d, t3 contradicting the fact that M\d, t3 is 3-connected up to series pairs.
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It follows that u1 and u2 are distinct.

By 4.2.3.2 we may assume that u1 ∕= z. We have u1 ∈ cl∗M\d(X), so that

co(M/z\d, u1) has a 2-separation. Hence by Bixby’s Lemma, M\d/z, u1 is 3-

connected up to parallel pairs. Now the argument of 4.2.3.1 may be repeated

to prove that M\d/z, u1 is 3-connected. But, as we have seen, the only

triangles of M/z which contain d are {d, s1, t1}, {d, s2, t2}, and {d, s3, t3}. As
u1 ∕∈ {s1, s2, s3, t1, t2, t3}, it follows that d cannot go into parallel with any

element in M/z, u1 and thus that M/z, u1 is 3-connected, giving a detachable

pair in fclM(X ∪ {d}). The lemma follows from this contradiction.

Lemma 4.2.4. Every triad of M\d that meets X is contained within X.

Proof. Let S = {s1, s2, s3} be a triad of M\d with s1 ∈ X. By Lemma 4.2.3,

|S ∩X| ∕= 2. Suppose that S ∩X = {s1}. Now if X is independent in M\d,
then either X contains triads of M , or X ∪ {d} is a coline of M containing

at least five elements. Both of these situations are contradictory, and so we

may assume that X contains a circuit. As s1 ∈ cl∗(E(M\d) − X), X itself

cannot be a circuit, so that X − {s1} must contain a circuit. This implies

that (X − {s1}, E(M\d)−X) is a 2-separation in co(M\d, s1).

Lemma 4.2.5. Let S ⊆ X, T ⊆ X be triads of M\d where S ∕= T and

S ∩ T ∕= ∅. Then |S ∩ T | = 1, rM\d(S△T ) = 4, and λM\d(S ∪ T ) > 2.

Proof. If |S ∩ T | = 2, then S ∪ T is a coline of M\d. As d blocks every

triad, it follows that M∗|(S ∪ T ∪ {d}) ∼= U3,5, and, by Lemma 2.2.5, that

M contains a detachable pair. So S ∩ T is a singleton. Let {u} = S ∩ T . If

rM\d(S△T ) = 3, then co(M\d, u) has a 2-separation, contrary to property

(i). Thus rM\d(S△T ) = 4 Finally, suppose that λM\d(S ∪ T ) = 2. If S ∪ T

contains a circuit of size four, then as rM\d(S△T ) = 4, this circuit must

contain either S or T . But then either S or T is not closed, and this is a

contradiction to Lemma 4.2.2. Otherwise, no such circuit exists. The fact

that S∪T is closed inM\d follows from the fact that both S and T are closed,
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and so now by Lemma 2.3.1, M must contain a contradictory detachable pair.

Thus we deduce that λM\d(S ∪ T ) > 2.

Lemma 4.2.6. Let R ⊆ X, S ⊆ X, and T ⊆ X be distinct triads of M\d.
Then at least one element of {S ∩ T, S ∩R,R ∩ T} is non-empty.

Proof. Assume that R = {r1, r2, r3}, S = {s1, s2, s3} and T = {t1, t2, t3}
are pairwise disjoint. By Lemma 4.2.2, S is fully closed in M\d. So if

S were to be contained in a 4-element fan of M/r1, then, up to labelling,

{r1, r2, s1, s2}must be a circuit ofM\d. However, by Lemma 2.3.2, ⊓(R, S) =

1, and so S is not contained in a 4-element fan of M/r3. Thus, up to a

potential relabelling of the elements of R, the triad S is not contained in a 4-

element fan in M/r1. Now by Tutte’s Triangle Lemma, we may assume that

both M\d/r1, s1 and M\d/r1, s2 are 3-connected, and so there exist triangles

{d, s1,α} and {d, s2, β} in M/r1. It must be that α, β ∈ T , as otherwise T

would be a triad in M/r1 and hence in M . So we may assume that {d, s1, t1}
and {d, s2, t2} are triangles in M/r1. It follows that {s1, s2, t1, t2} is a circuit,

and, as ⊓(S, T ) = 1; a fact which follows again from Lemma 2.3.2, we have

r(S ∪ T ) = 5, implying that t3 cannot be in a triangle with d. Applying

Lemma 1.2.19, we see that M/r1, s3 must be 3-connected.

Lemma 4.2.7. Let R ⊆ X, S ⊆ X and T ⊆ X be triads of M\d where

|S ∩ T | = 1. Then R ∩ (S ∪ T ) ∕= ∅.

Proof. Let S = {s1, s2, u} and T = {t1, t2, u}. Assume that R ∩ S = ∅ =

R ∩ T , and let Z = E(M\d)− (S ∪ T ).

4.2.7.1. ⊓(Z, S) = ⊓(Z, {s1, s2}) = 1 = ⊓(Z, T ) = ⊓(Z, {t1, t2})

Proof. If r(Z) = r(M)− 3, then by Lemma 1.2.18, S ∪ T is a 5-point coline.

As d blocks every triad of M\d, it follows that M∗|(S ∪ T ∪ {d}) ∼= U3,6,

which yields a contradiction to Lemma 2.2.5. Hence r(Z) = r(M)− 2 and it
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follows from the definition of local connectivity that

⊓(Z, S) = r(Z) + r(S)− r(Z ∪ S)

= (r(M)− 2) + 3− r(M) = 1 = ⊓(Z, {s1, s2}).

Similarly, we obtain ⊓(Z, T ) = ⊓(Z, {t1, t2}) = 1.

4.2.7.2. Suppose z ∈ Z. If S is not closed in M\d/z, then M\d/z has a

triangle containing {s1, s2}. Similarly, if T is not closed in M\d/z, then

M\d/z has a triangle containing {t1, t2}.

Proof. This is a straightforward consequence of 4.2.7.1.

Let R = {r1, r2, r3}.

4.2.7.3. We may assume that S is closed in M\d/r1.

Proof. If T is closed, we may simply switch the labels of S and T . So suppose

that neither S nor T is closed in M\d/r1. Then it follows from 4.2.7.2 that

M\d/r1 contains triangles {t1, t2, r2} and {s1, s2, r3} up to labelling. Observe

now that {s1, s2} is not contained in a triangle in M\d/r2. By switching the

labels on r1 and r2, we may now assume that S is closed in M\d/r1 as

required.

Note that S∪{d} and T∪{d} are cocircuits in the matroidM/r1, and S is

a closed triad inM\d/r1. By Tutte’s Triangle Lemma, there are two elements

from {s1, s2, u} that can be contracted from M\d/r1 whilst maintaining 3-

connectivity. Suppose to begin with that M\d/r1, s1 and M\d/r1, s2 are

3-connected. As M contains no detachable pair, M/r1 must contain two

triangles, one containing {s1, d}, the other containing {s2, d}. As T ∪ {d} is

a cocircuit, each of these triangles must meet T . If {s1, d, t1} and {s2, d, t2}
are triangles, we obtain the contradiction that rM/r1(s1, s2, t1, t2) = 3. So

without loss of generality, {s1, d, u} and {s2, d, t1} are triangles. But then we

have the contradiction that r({s1, s2, u, t1}) = 3. The other possibility up to



4.2. THE TRIAD CASE 69

symmetry is that M\d/r1, s1 and M\d/r1, u are 3-connected. Here M/r1 has

a triangle containing {d, s1} and another containing {d, u}. By orthogonality,

the triangle containing d and s1 must intersect the set {t1, t2, u}. If this point
of intersection is u, then these two triangles are identical, and it follows that

{s1, s2, d, u} is exactly 3-separating in M/r1. But now co(M/r1\s2) is not 3-
connected, so that by Bixby’s Lemma, M/r1, s2 is 3-connected up to parallel

pairs. By 4.2.7.3, this matroid cannot contain parallel pairs, implying that

{r1, s2} is a contradictory detachable pair. So we may assume without loss

of generality that {d, s1, t1} is a triangle. Applying Lemma 1.2.20, s2 must

also be in a triangle which meets both {d, u} and {t1, t2}, but all possible

permutations of this triangle give rM/r1({s1, s2, u, t1, t2}) = 4, implying that

S∪T is 3-separating in M\d; an implication which contradicts Lemma 4.2.5.

Lemma 4.2.8. Let R ⊆ X, S ⊆ X and T ⊆ X be triads of M\d where

S ∩ T = {u}. Then R ∩ (S ∪ T ) ∕= {u}.

Proof. Suppose contrary to the claim of the lemma that R = {r1, r2, u}
where S = {s1, s2, u} and T = {t1, t2, u}. Consider M\u, d/t1. This ma-

troid is 3-connected up to series pairs; a fact which follows from our un-

derlying assumption that M\u, d is. Both u and d must block the series

pairs of M\u, d/t1, and we have that {r1, r2, u, d} and {s1, s2, u, d} are cocir-

cuits of M/t1. If there exists a series pair P of M\u, d/t1 which is neither

{r1, r2} nor {s1, s2}, then it follows that either X ∪ {d} is a spike-like 3-

separator, or else, up to an arbitrary choice of labelling, there exists some

α ∈ E(M\d) − (R ∪ S ∪ T ) such that {α, r2, s2} is a triad. The first pos-

sibility contradicts our assumption that (d) doesn’t hold, while the second

possibility contradicts Lemma 4.2.7. Thus we may assume that M\u, d/t1
is 3-connected up to the series pairs {r1, r2} and {s1, s2}. Now applying

Lemma 1.2.20, M/t1 has triangles {r1, s1, u} and {r2, s2, d}, giving circuits

{r1, s1, t1, u} and {r2, s2, t1, d} in M .

4.2.8.1. The set {r1, r2, s1, s2, t1, t2} is either a circuit or independent in M .
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Proof. If {r2, s2, t2} is a triangle in co(M\u, d) then {r1, r2, s1, s2, t1, t2} is a

circuit in M . Otherwise, {r1, r2, s1, s2, t1, t2} must be independent.

Consider now the matroidM\u, d/t2. Once more applying Lemma 1.2.20,

we see that M contains circuits {t2, u, ri, sj} and {t2, d, ri′ , sj′}, where {i′} =

{1, 2}− {i} and {j′} = {1, 2}− {j}. We identify the first of these circuits.

4.2.8.2. {t2, u, r2, s2} is a circuit.

Proof. Suppose j = 1. Then either {t2, u, r1, s1} or {t2, u, r2, s1} is a cir-

cuit. In either of these cases we have {t1, t2} ⊆ cl({r1, r2, s1, u}), thus

r({t1, t2, r1, r2, s1}) ≤ 4, which contradicts 4.2.8.1. Similarly i = 1 and so

{t2, u, r2, s2} is a circuit.

It now follows that {t2, d, r1, s1} is the second of the aforementioned cir-

cuits. Now consider the matroid M/r1. Applying Lemma 1.2.20, we arrive

at the conclusion that M/r1, s2 is 3-connected unless s2 is in a triangle with

exactly one element from each of {d, u} and {t1, t2}. But the existence of this
triangle implies that s2 ∈ clM/r1({s1, d, u, t1, t2}) meaning in particular that

rM/r1(s1, s2, t1, t2) = 3 when we know that {s1, s2, t1, t2} is independent.

Lemma 4.2.9. Let R ⊆ X, S ⊆ X and T ⊆ X be distinct triads of M\d
where S ∩ T = {t3}. Then S ∩R ∕= ∅ ∕= T ∩R.

Proof. Suppose the lemma fails. We may assume then that T ∩ R = ∅ so

that by Lemma 4.2.7, |S ∩ R| = 1. Thus we have triads T = {t1, t2, t3},
R = {r1, r2, r3} and S = {s, r3, t3}. We begin by showing that X consists of

no more than these three triads.

4.2.9.1. X = R ∪ S ∪ T .

Proof. Suppose that z ∈ X − (R ∪ S ∪ T ). Certainly z must be in a triad

Γ ⊆ X of M\d by Lemma 4.2.4. Note that as M\d does not contain a 4-

point coline, Γ intersects each of the triads R, S and T at no more than a
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single point. By Lemma 4.2.8 then, we have that {r3, t3} ∩ Γ = ∅. Suppose

that |Γ ∩ (R ∪ S ∪ T )| = 1. If Γ ∩ (R ∪ S ∪ T ) = {s}, then Γ, R and

T are disjoint, contradicting Lemma 4.2.6. Otherwise we again contradict

Lemma 4.2.7. So |Γ ∩ (R ∪ S ∪ T )| = 2. It now follows from this together

with another application of Lemma 4.2.7 that s ∕∈ Γ, as otherwise either R or

T would be disjoint from Γ. Thus we may assume without loss of generality

that Γ = {z, r2, t2}. If there exists some other z′ ∈ X − (R ∪ S ∪ T ∪ {z}),
with corresponding triad Γ′ ⊆ X, then again we have Γ′ ∩ S = ∅. But now

we are forced into a contradiction at the hands of either Lemma 4.2.6 or

Lemma 4.2.7. Therefore X = R ∪ S ∪ T ∪ {z}.

4.2.9.1.1. S is closed in M\d/z.

Proof. Assume otherwise. By Lemma 1.2.8 and Lemma 4.2.3, cl∗M∗/d\z(S) ⊆
X. Without loss of generality, t2 ∈ cl∗M∗/d\z(S). By orthogonality with the

triangle R of M∗/d\z, the set S ∪ {t2} is not a cocircuit in M∗/d\z and so

{s, t2, t3} must be a triad in this matroid. Therefore

t1 ∈ clM∗/d\z(E(M∗/d\z)− (S ∪ {t2}))

and thus if S ∪ {t2} is not coclosed in M∗/d\z, we may assume without loss

of generality that r2 ∈ cl∗M∗/d\z(S ∪ {t2}). But now we have another triad

{s, r2, r3} in M∗/d\z, and this implies that

E(M∗/d\z)− ({s, r2, r3} ∪ {s, t2, t3})
= (E(M∗/d\z)−X) ∪ {r1, t1}

is a flat of rank at most r(M∗/d\z)− 2. However E(M∗/d\z)−X is exactly

3-separating in M∗/d\z and has rank r(M∗/d\z)− 2. Thus

{r1, t1} ⊆ clM∗/d\z(E(M∗/d\z)−X)

⊆ clM∗/d(E(M∗/d)−X).

But t1 is not in a triangle with every element of X in M∗/d, and consequently

(X − {t1}, E(M∗/d) − X) is a non-trivial 2-separation in the 3-connected

matroid si(M∗/d, t1) = co(M\d, t1). So S∪{t2} must be coclosed in M∗/d\z.
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We now proceed to show thatM∗/d\z, r1 andM∗/d\z, r2 are 3-connected.
Suppose that (P,Q) is a 2-separation of M∗/d\z, r2. By orthogonality, any

triad of M∗/d\z which contains r2 must also contain two elements from S.

Such a situation contradicts the fact we have just established that S∪{t2} is

coclosed in M∗/d\z. Therefore M∗/d\z, r2 does not contain any series pairs

and so by Lemma 1.2.6, we may freely apply the full closure operator on the

2-separation (P,Q). Without loss of generality, we may assume that S ⊆ P .

As t2 ∈ cl∗M∗/d\z(S), we may also assume that t2 ∈ P , and consequently that

t1 ∈ P also. So we have S ∪ T ⊆ P . But both S ∪ T and X − {r2, z}
are exactly 3-separating in M∗/d\r2, z, while their symmetric difference is

{r1}. This implies that r1 ∈ cl
(∗)
M∗/d\r2,z(S ∪ T ) and so we may also assume

that r1 ∈ P . But then r2 ∈ clM∗/d\z(P ) which implies the existence of a

2-separation in the 3-connected matroid M∗/d\z. Thus M∗/d\r2, z must be

3-connected. An almost identical argument shows that M∗/d\r1, z is also

3-connected.

As M does not contain any detachable pairs, M∗ must have a 4-element

cocircuit which contains the set {r1, z, d} as well as a 4-element cocircuit

which contains the set {r2, z, d}. By orthogonality with the circuits S ∪ {d}
and T ∪ {d} of M∗, the only viable possibility is that both {r1, z, d, t3} and

{r2, z, d, t3} are cocircuits of M∗. But now M has a restriction isomorphic

to U3,5 and we contradict Lemma 2.2.5. We are left to conclude that S must

be closed in M\d/z as required.

Combining 4.2.9.1.1 with Tutte’s Triangle Lemma and using symmetry

between r3 and t3 we now have two possible scenarios. Either both of

M\d/z, r3 andM\d/z, t3 are 3-connected, or both ofM\d/z, s andM\d/z, t3
are 3-connected. Assume for the moment that the first of these possibilities

holds. Then M/z must contain triangles {d, r3,α} and {d, t3, β}.

It is possible that these two triangles are equal, where α = t3 and β = r3.

Suppose that this is the case. Every triad of M/z\d is blocked by d in

M/z and so the element s is certainly not in any triad in M/z. Now the
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triangle {r3, t3, d} is 2-separating inM/z and thus by Bixby’s Lemma, M/z, s

must be 3-connected up to parallel pairs. However by 4.2.9.1.1, s cannot

be in a triangle in M/z and thus M/z, s must be 3-connected; giving a

detachable pair in M . Therefore we may assume that the triangles {d, r3,α}
and {d, t3, β} of M/z are distinct.

This now gives a cocircuit {r3, t3,α, β} in M∗/d\z. By orthogonality with

the two triangles R and T of M∗/d\z, we may then assume without loss of

generality that this cocircuit is {r3, t3, r2, t2}. Consider now the matroid

M∗/d\z, s. By 4.2.9.1.1, S is coclosed in M∗/d\z and so s cannot be in any

triad of M∗/d\z as any such triad would necessarily contain two elements

from S. Therefore we know that M∗/d\z, s does not have any series pairs.

Suppose however that it does have some 2-separation (P,Q). Note that we

may apply Lemma 1.2.6 freely. We may assume that r3 ∈ P and t3 ∈ Q,

for otherwise we would have s ∈ clM∗/d\z(P ) or s ∈ clM∗/d\z(Q) which would

clearly be a contradictory situation within the 3-connected matroid M∗/d\z.
For precisely the same reasons, we then must have R ⊆ P and T ⊆ Q. Let

Y = E(M∗/d\z, s) −X. As |Y | ≥ 3, we may assume that |P ∩ Y | ≥ 2. By

submodularity of the connectivity function we have

λM∗/d\z,s(P ∩ Y ) + λM∗/d\z,s(P ∪ Y )

≤λM∗/d\z,s(P ) + λM∗/d\z,s(Y ) ≤ 1 + 2 = 3.

So either P ∩ Y or P ∪ Y must be 2-separating in M∗/d\z, s. The

first possibility implies that (X − {z, s}) ∪ Q is 2-separating, but since

s ∈ clM∗/d\z(X − {z, s}), this gives a 2-separation in the 3-connected ma-

troid M∗/d\z by virtue of the fact that |P ∩ Y | ≥ 2. So P ∪ Y must be

2-separating in M∗/d\z, s. Now rM∗/d\z,s(Y ) = r(M)− 2 and we know that

r1 ∕∈ clM∗/d\z,s(Y ), for otherwise si(M∗/d, r1) would fail to be 3-connected.

So rM∗/d\z,s(Y ∪ {r1}) = r(M) − 1. As r2 is an element of the cocircuit

{r2, t2, r3, t3} of M∗/d\z and this cocircuit is disjoint from Y ∪ {r1}, it then
follows that rM∗/d\z,s(Y ∪ {r1, r2}) = r(M). So Y ∪ {r1, r2} spans M∗/d\z
and thus s ∈ clM∗/d\z(P ∪ Y ), which again exposes a 2-separation in the
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3-connected matroid M∗/d\z. We are left to conclude that M∗/d\z, s must

be 3-connected.

Returning to our application of Tutte’s Triangle Lemma, we may now

safely assume that both M∗/d\z, s and M∗/d\z, t3 are 3-connected. This

gives triangles {d, s,α} and {d, t3, β} in M/z. Just as argued previously, if

these two triangles are identical, then we find that M/z, r3 is 3-connected.

So the triangles are distinct, and this leads us to the existence of a 4-element

cocircuit {s, t3,α, β} in M∗/d\z. Checking orthogonality against triangles

R, S and T readily shows that this cocircuit must be {s, t3, t2, t1}. However

now T is a 2-separating triangle inM∗/d\z, s, a matroid which we know to be

3-connected. This final contradiction completes the proof of the lemma.

With 4.2.9.1 in hand, we henceforth assume that X = R ∪ S ∪ T . The

next step is to show that the triad S of M\d has the following property:

4.2.9.2. For all z ∈ {r1, r2, t1, t2}, the triad S is not closed in M\d/z.

Proof. Suppose that S is closed inM\d/t2. Then by Tutte’s Triangle Lemma

and using symmetry between s and t3, we either have that both of M\d/t2, r3
and M\d/t2, t3 are 3-connected, or both of M\d/t2, s and M\d/t2, t3 are 3-

connected.

4.2.9.2.1. The element d is not in a triangle of M/t2 with two elements from

S.

Proof. If d is indeed in such a triangle, let q be the element from S which

is not contained in this triangle, and note that M/t2\q is not 3-connected

up to series pairs. By Bixby’s Lemma, M/t2, q must be 3-connected up to

parallel pairs, but the existence of a parallel pair would imply that S ∪ {d}
is not closed in M/t2, and hence that S is not closed in M\d/t2.

4.2.9.2.2. We may assume that {d, t3, r1} is a triangle in M/t2.



4.2. THE TRIAD CASE 75

Proof. We know for sure that M\d/t2, t3 is 3-connected, and so there must

exist a triangle {t3, d,α} in M/t2. As d blocks the triad R of M\d, the set

R∪{d} is a cocircuit in M/t2, and so by orthogonality, it follows that α ∈ R.

By 4.2.9.2.1, α ∕= r3, and so up labelling, we may assume that {d, t3, r1} is a

triangle in M/t2.

We now know that λM/t2((X ∪ {d})− {t2}) = 2. Let W = E(M)− (X ∪
{d}). The following result eliminates one of the possibilities that arose from

our application of Tutte’s Triangle Lemma.

4.2.9.2.3. {d, s} is not contained in a triangle in M/t2.

Proof. If it is, then as per the argument of 4.2.9.2.2, we have that {d, s,α} is

a triangle inM/t2 where α ∈ {r1, r2}. By 4.2.9.2.1, α ∕= r1 and this triangle is

{d, s, r2}; which gives a circuit {r1, r2, s, t3} in M/t2. As S and R are triads

of M/t2\d, it follows that rM/t2\d(W ∪ {t1}) ≤ r(M/t2\d) − 2. But now

rM/t2\r3(W ∪ {t1}) ≤ r(M/t2\r3) − 2 so that λM/t2\r3({r1, r2, s, t3, d}) = 1.

By Bixby’s Lemma, M/t2, r3 must be 3-connected up to parallel pairs, hence

r3 must be contained in some triangle of M/t2. As both R∪{d} and S ∪{d}
are cocircuits of M/t2, it must be that d is also contained in this triangle.

The triangle cannot be a subset of {r1, r2, r3, s, t3, d}, and so must either

contain t1 or meet W . We know from Lemma 4.2.3 that X is fully closed in

M\d. Hence by Lemma 1.2.7, X ∪ {d} is fully closed in M . Therefore the

triangle in question cannot meet W , so the triangle must be {d, r3, t1}.

Note now that both W and W ∪ {t1} are exactly 3-separating in M/t2,

and thus t1 ∈ clM/t2(X ∪ {d}) ∩ clM/t2(W ). Suppose that M/t2\r2 is

not 3-connected. Then, as M/t2 has no series pairs, M/t2\r2 has a non-

trivial 2-separation (P,Q). By Lemma 1.2.6, we may assume that the

triad {d, r1, r3} ⊆ P . As {d, t3, r1} is a triangle in M/t2\r2, we may as-

sume that t3 ∈ P , and, as S ∪ {d} is a cocircuit, that s ∈ P also.

But r2 ∈ clM/t2({s, d}) and so then (P ∪ {r2}, Q) is a 2-separation in

the 3-connected matroid M/t2. So M/t2\r2 must be 3-connected. By



76 CHAPTER 4. TROUBLESOME 3-SEPARATING SETS

Bixby’s Lemma, M/t2\r1, t1 is now 3-connected unless t1 is in a triad Γ

of M/t2\r2 with Γ ∩ W ∕= ∅ ∕= Γ ∩ {r1, r3, d, s, t3}. This would imply that

(X ∪ {d}) − {t2, r2} is not fully closed in M/t2\r2. But as we have seen,

X ∪ {d} is fully closed in M , and thus (X ∪ {d})− {r2, t2} must certainly be

fully closed in M/t2\r2. Therefore M/t2\r2, t1 is 3-connected.

It now follows that M has a cocircuit C∗ = {t1, t2, r2,α}. As X ∪ {d} is

fully closed inM , α ∈ {r1, r3, s, t3, d}. Recall that CT = T∪{d}, CR = R∪{d}
and CS = S ∪ {d} are cocircuits in M . If α ∈ CS, then r1 ∕∈ C∗ ∪ CS ∪ CT

so that E(M)− (C∗ ∪ CS ∪ CT ∪ CR) is a flat of rank at most r(M)− 4. If

α ∕∈ Cs, then α = r1, which gives s ∕∈ C∗ ∪ CR ∪ CT ; again implying that

E(M) − (C∗ ∪ CS ∪ CT ∪ CR) = W is a flat of rank at most r(M) − 4.

But W is exactly 3-separating in M and so we contradict the fact that M is

3-connected.

With 4.2.9.2.3 in hand, we know that M\d/t2, s cannot be 3-connected.

Therefore M\d/t2, r3 must be 3-connected. It follows that there exists a

triangle {r3, d, γ} in M/t2.

4.2.9.2.4. {r2, r3, d} is not a triangle in M/t2.

Proof. Assume otherwise. Then {r1, r2, r3, t3} is a circuit of M/t2

by 4.2.9.2.2. The set R ∪ {d} is a rank-3 cocircuit of M/t2 with t3 ∈
clM/t2(R∪{d}). So R∪{d, t3} is exactly 3-separating in M/t2. Suppose that

rM/t2({r1, r2, s, t3}) = 4. Then s ∈ (cl∗M/t2(R ∪ {d, t3})− clM/t2(R ∪ {d, t3})).
Hence

s ∈ (cl∗M/t2(W ∪ {t1})− clM/t2(W ∪ {t1}))

which gives λM/t2\s(R ∪ {d, t3}) = 1. By Bixby’s Lemma, si(M/t2, s) must

be 3-connected. As M does not contain a detachable pair, s must be in a

triangle {α, s, β} of M/t2 with α ∈ (X ∪ {d, t3}) and β ∈ (W ∪ {t1}). As

R ∪ {d} and S ∪ {d} are cocircuits, we are forced by orthogonality to have
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α = d. This contradicts 4.2.9.2.3. We may now assume that {r1, r2, s, t3} is

a circuit in M/t2. Here rM/t2(R ∪ S ∪ {d}) = 3. But now

λM/t2(R ∪ S ∪ {d})
=rM/t2(R ∪ S ∪ {d}) + r∗M/t2(R ∪ S ∪ {d})− |R ∪ S ∪ {d}| = 1

and we contradict the fact that M/t2 is 3-connected.

Now γ ∕∈ {r1, t3} as M/t2 cannot contain a 4-point line by Lemma 2.2.5.

Therefore the only possibility that does not contradict the fact that X−{t2}
is fully closed inM\d/t2 is that γ = t1. Note that rM/t2((X−{t2})∪{d}) = 4.

4.2.9.2.5. If s is contained in a triangle Ts of M/t2, then Ts = {s, t1, t3}.

Proof. Suppose that Ts is a triangle containing s. By 4.2.9.2.3, d ∕∈ Ts. The

triangle Ts lifts up to a circuit Ts ∪ {t2} of M , while T ∪ {d} = {t1, t2, t3, d}
is a cocircuit of M . Therefore Ts ∩ {t1, t3} ∕= ∅ by orthogonality. Similarly,

as {r3, s, t3, d} is a cocircuit, Ts ∩ {r3, t3} ∕= ∅. So t3 ∈ Ts. Now, as X − {t2}
is fully closed in M/t2, the only possibility that does not contradict the fact

that R ∪ {d} is a cocircuit is that Ts = {s, t1, t3}.

4.2.9.2.6. {r1, r2, s, t3} is a circuit of M/t2.

Proof. Assume that {r1, r2, s, t3} is independent in M/t2. Suppose that s is

in a triangle Ts of M/t2. Then by 4.2.9.2.5, Ts = {s, t1, t3}. Suppose also

that r2 is in a triangle Tr2 of M/t2. By Lemma 1.2.7, (X − {t2}) ∪ {d} is

fully closed in M/t2, so that Tr2 ⊆ (X − {t2})∪ {d}. By 4.2.9.2.5, s ∕∈ Tr2 . If

d ∈ Tr2 , then it now follows that M/t2 contains a 4-point line, contradicting

Lemma 2.2.5. As Tr2 ∪ {t2} is a circuit in M and T ∪ {d} a cocircuit in

M , it must be that Tr2 ∩ {t1, t3} ∕= ∅. Also, as R ∪ {d} is a cocircuit,

Tr2 ∩ {r1, r3} ∕= ∅. The only possibilities that do not give a contradictory

4-point line in M/t2 are that Tr2 = {r2, r1, t1} or Tr2 = {r2, r3, t3}. But both
of these cases contradict our assumption that rM/t2({r1, r2, s, t3}) = 4. Thus

if {r1, r2, s, t3} is to be independent in M/t2, then at least one of s and r2
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is not in a triangle of M/t2. Assume without loss of generality that s is

not contained in a triangle. Consider M/t2, s. This matroid must now have

a non-trivial 2-separation (P,Q). We may freely apply Lemma 1.2.6 here.

Hence we may assume that the triangle {d, t3, r1} ⊆ P . It now cannot be

that r3 ∈ P as otherwise s ∈ cl∗M/t2(P ), which would give a 2-separation

(P ∪ {s}, Q) in M/t2. So r3 ∈ Q and thus t1, r2 ∈ Q also as {d, r3, t1}
is a triangle and R ∪ {d} is a cocircuit. But now d ∈ clM/t2,s(Q), hence

r1 ∈ cl∗M/t2,s(Q ∪ {d}), and thus (X − {t2, s}) ⊆ fclM/t2,s(Q) so that we may

switch to a 2-separation (P ′, Q′) of M/t2, s in which (X−{t2, s})∪{d} ⊆ P ′.

But now s ∈ cl∗M/t2(P
′) and (P ′∪{s}, Q′) is a 2-separation in the 3-connected

matroid M/t2. We conclude that {r1, r2, s, t3} is a circuit as required.

If s is in a triangle of M/t2, then by 4.2.9.2.5, this triangle is {s, t1, t3}.
But then {t1, r3, d} ⊆ clM/t2({r1, r2, s, t3}) and by 4.2.9.2.6 we contradict the

fact that rM/t2((X − {t2}) ∪ {d}) = 4. So s is not in such a triangle, and

as M does not contain a detachable pair, M/t2, s must have a non-trivial

2-separation (P,Q). The set {t3, r1, r2, d} is a 4-point line in M/t2, s, so we

may assume that {t3, r1, r2, d} ⊆ P . By Lemma 1.2.6, we may also assume

that r3 ∈ P , and consequently that t1 ∈ P as R∪{d} is a cocircuit of M/t2, s,

while {d, r3, t1} is a triangle. But now s ∈ cl∗M/t2(P ) giving a 2-separation

(P ∪ {s}, Q) in M/t2. We conclude that S cannot be closed in M\d/t2. As

our choice of t2 ∈ {r1, r2, t1, t2} was arbitrary, the claim now follows.

We require the following result in what follows.

4.2.9.3. If C1 ⊆ X and C2 ⊆ X are distinct cocircuits of M∗/d, then X ⊆
C1 ∪ C2.

Proof. Let C1 and C2 be such cocircuits. Note that rM∗/d(E(M∗/d)−X) =

r(M∗/d) − 2 as X is an exactly 3-separating set with rank 4. The set

E(M∗/d) − (C1 ∪ C2) must now be a flat of rank r(M∗/d) − 2. Thus if

x ∈ X − (C1 ∪ C2) for some x, then x ∈ clM∗/d(E(M∗/d) − X). But this

implies that X − {x} is 2-separating in si(M∗/d, x); a contradiction.
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As X is fully closed in M\d, we know now from 4.2.9.2 that clM\d/t2(S)∩
{r1, r2, t1} ∕= ∅. Similarly, clM\d/r2(S) ∩ {r1, t1, t2} ∕= ∅. Our next result

specifies precisely the contents of these intersections.

4.2.9.4. We may assume that both S ∪ {r1, t1} and S ∪ {r2, t2} contain co-

circuits of M∗/d.

Proof. Suppose that t1 ∈ clM\d/t2(S). Then S ∪ {t1} contains a circuit in

M\d/t2. As r3 ∈ cl∗M\d/t2({r1, r2}), the triple {t1, t3, s} must be a triangle in

M\d/t2. Hence {t1, t2, t3, s} is a circuit of M\d. But now T is both a circuit

and a cocircuit of M\d/s and we contradict the fact that this matroid is 3-

connected. So t1 ∕∈ clM\d/t2(S) and we may assume up to a choice of labelling

that r2 ∈ clM\d/t2(S). Hence S∪{r2} contains a cocircuit of M∗/d\t2 so that

rM∗/d\t2(E(M∗/d\t2)− (S ∪ {r2}))
≤ r(M∗/d\t2)− 1.

If r1 ∈ clM\d/t2(S) also, then

r1 ∕∈ clM∗/d\t2(E(M∗/d\t2)− (S ∪ {r1, r2})).

Thus,

rM∗/d\t2(E(M/d\t2)− (S ∪ {r1, r2})) ≤ r(M/d\t2)− 2.

But rM/d\t2(S ∪ {r1, r2}) = 3, implying that S ∪ {r1, r2} is 2-separating in

the 3-connected matroid M∗/d\t2. Therefore clM\d/t2(S) = S ∪ {r2} and so

S ∪{r2, t2} contains a cocircuit C2 of M
∗/d as required. Similarly, we obtain

clM\d/t1(S) = S∪{rk} for some k ∈ {1, 2}, and thus we have a cocircuit C1 of

M∗/d contained in S∪{t1, rk}. Suppose that C1 = C2. Then by orthogonality

with the triangle T of M∗/d, it must be that C1 = C2 = {r2, r3, s}. But this
contradicts the fact M contains no triangles. Hence C1 and C2 must be

distinct. By 4.2.9.3 it follows that k = 1 so that S ∪ {r1, t1} also contains a

cocircuit of M∗/d.
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It now follows from 4.2.9.3 and 4.2.9.4 that both {r1, r3, t1, t3} and

{r2, r3, t2, t3} are cocircuits in the matroid M∗/d\s.

4.2.9.5. S ∪ {d}, {r1, t1, s, d} and {r2, t2, s, d} are cocircuits of M∗.

Proof. Note that if Γ is a triad of M∗/d\s that meets X − {s}, then it

follows that Γ ⊆ X − {s}. But neither R nor T can be a triad as such a

triad would be 2-separating. So either |T ∩ Γ| = 1 or |R ∩ Γ| = 1, but now

we have a contradiction by orthogonality. Hence M∗/d\s must be without

such triads and so for each x ∈ X − {s}, we know that M∗/d\s, x has no

series pairs. Consider M∗/d\s, t2 and suppose that it is not 3-connected.

Then it has a non-trivial 2-separation (P,Q). Lemma 1.2.6 will be used

freely. We may assume that the triangle R ⊆ P . It must now be that

t3 ∈ Q as otherwise (P ∪ {s}, Q) would be 2-separating in M∗/d\t2, and
to avoid a similar contradiction we must have t1 ∈ Q as {t1, t3, r1, r3} is

a cocircuit in M∗/d\s, t2. But now t2 ∈ clM∗/d\s(Q) and (P,Q ∪ {t2}) is 2-

separating in M∗/d\s. Therefore M∗/d\s, t2 must be 3-connected. Similarly,

each of M∗/d\s, t1, M∗/d\s, r1 and M∗/d\s, r2 are 3-connected. A virtually

identical argument also gives that both M∗/d\s, r3 and M∗/d\s, t3 are 3-

connected. Thus we find that d must be in some triangle with every element

from X − {s} in the matroid M/s. As both {r1, t1, r3, t3} and {r2, t2, r3, t3}
are circuits in M/s, it is readily deduced that the only possible arrangement

is that where {r1, t1, d}, {r2, t2, d} and {r3, t3, d} are triangles of M/s. The

result follows.

Observe that S ∪ {d} is both a circuit and a cocircuit of M .

4.2.9.6. ⊓M∗({r3, t3}, E(M)− (X ∪ {d})) = 1.

Proof. By 4.2.9.5, {r1, t1, s, d} and {r2, t2, s, d} are both cocircuits of M∗.

Therefore E(M∗) − {r1, r2, t1, t2, d, s} is a flat of M∗ with rank at most

r(M∗)− 2. We know that rM∗(X ∪ {d}) = 5. Thus if

r3 ∕∈ clM∗(E(M∗)− {r1, r2, r3, t1, t2, d, s}),
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then rM∗(E(M∗)− (X ∪ {d})) ≤ r(M∗)− 4, and we contradict the fact that

M∗ is 3-connected.

Consider the 3-connected matroid M∗/r3 and suppose that {r1, r2, s} is

not a triangle in this matroid. Let (P,Q) be a 2-separation of M∗/r1, r3 and

note that we may freely apply Lemma 1.2.6 to this separation as M∗/r3, r1

has no series nor parallel pairs. We may assume that the triangle {d, s, t3}
is contained in P . As {d, s, r1, t1} is a cocircuit of M∗/r3, we must then

have t1 ∈ Q, for otherwise (P ∪ {r1}, Q) would be 2-separating in M∗/r3.

Furthermore, as we are forced to have t1 ∈ Q, we must also have t2 ∈ Q

as t1 ∈ clM∗/r1,r3({t2, d}). This necessitates that r2 ∈ Q as well because

{d, s, r2, t2} is a cocircuit of M∗/r3. However we are now left with a sit-

uation in which d ∈ clM∗/r3(Q) and consequently r1 ∈ cl∗M∗/r3(clM∗/r3(Q))

which gives (P,Q ∪ {d, r3}) as a 2-separation in the 3-connected matroid

M∗/r3. We are left to conclude that {r1, r2, s} must be a triangle of M∗/r3

and {r1, r2, r3, s} a circuit of M∗. A corresponding argument shows that

{t1, t2, t3, s} is also a circuit of M∗. By definition,

⊓M∗(S ∪ {d}, E(M∗)− (X ∪ {d}))
= 3 + rM∗(E(M∗)− (X ∪ {d}))− rM∗(S ∪ {d} ∪ (E(M∗)− (X ∪ {d}))).

We have

rM∗((E(M∗)− (X ∪ {d})) ∪ {r3})
= rM∗(E(M∗)− (X ∪ {d})) + 1,

and, because {r1, t1, s, d} is a cocircuit, we then have

rM∗(E(M∗)− (X ∪ {d}) ∪ {r3, d})
= rM∗(E(M∗)− (X ∪ {d})) + 2.

This shows that

rM∗((E(M∗)− (X ∪ {d})) ∪ S ∪ {d})
= rM∗(E(M∗)− (X ∪ {d})) + 2,
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and therefore that ⊓M∗(S ∪ {d}, E(M∗) − (X ∪ {d})) = 1. By perform-

ing cocircuit exchange on the cocircuits {r1, t1, s, d} and {r2, t2, s, d} in the

matroid M∗, we see that {r1, r2, t1, t2, s} must contain a cocircuit, and by

orthogonality with the quad S ∪ {d}, this cocircuit must be {r1, r2, t1, t2}. It
follows from this that

⊓M∗/t1(S ∪ {d}, E(M∗)− (X ∪ {d})) = 1.

But t2 ∈ clM∗/t1(S ∪ {d}) and r1 ∈ clM∗/t1(E(M∗/t1)− (X ∪ {d})). Hence

⊓M∗/t1(S ∪ {d, t2}, {r1} ∪ (E(M∗/t1)− (X ∪ {d}))) = 1.

Now if either r2 ∈ clM∗/t1(S∪{d}) or r2 ∈ clM∗/t1(E(M∗/t1)−(X∪{d})), then
si(M∗/d, t1) fails to be 3-connected. Therefore r2 must block this potential

2-separation and it follows from Bixby’s Lemma together with the fact that

r2 is not in a triangle of M∗/t1 that M∗/t1, r2 must be 3-connected. This

completes the proof of the lemma.

Lemma 4.2.10. Let R ⊆ X, S ⊆ X and T ⊆ X be distinct triads of M\d
where S ∩ T = {t3}. Then |R ∩ (S ∪ T )| ∕= 2.

Proof. Assume otherwise. By Lemma 4.2.9 above, R must intersect both S

and T . As we have seen, ifM\d contains a 4-point coline, thenM∗ must have

a restriction isomorphic to U3,5, which contradicts Lemma 2.2.5. So no such

coline arises and it follows easily from this fact that t3 ∕∈ R. Thus we have

an arrangement of the triads S, T and R of M\d such that S = {s1, s2, t3},
T = {t1, t2, t3} and R = {s1, t1, r}.

4.2.10.1. X = R ∪ S ∪ T .

Proof. Suppose x ∈ X − (R ∪ S ∪ T ). As co(M\x, d) is 3-connected, x must

be contained in a triad Γ ⊆ X. By Lemma 4.2.9, Γ must intersect each

of R, S and T . As M\d cannot contain a 4-point coline, the only way this

configuration can arise is if Γ ∈ {{x, t3, r}, {x, s1, t2}, {x, t1, s2}}. Each of

these possibilities contradicts Lemma 4.2.8.
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4.2.10.2. For each x ∈ X, no element of X − {x} is in a triad of M∗/d\x.

Proof. Suppose that for some x ∈ X, Γ is a triad of M∗/d\x which meets

X − {x}. Then Γ lifts to a 4-element cocircuit C of M∗/d. By orthogonality

with the triangles in X, we certainly must now have |C∩X| ≥ 3. If |C∩X| =
3, then X fails to be coclosed in M∗/d, contradicting Lemma 4.2.3, while if

C ⊆ X, then there must exist some z ∈ X such that z ∈ clM∗/d(E(M∗/d)−
X); implying that si(M∗/d, z) = co(M\d, z) has a contradictory non-trivial

2-separation.

Combining 4.2.10.2 with Lemma 1.2.14, we now deduce that M∗/d\xi, xj

is 3-connected for any xi, xj ∈ X. Thus for any such xi, xj, the triple

{d, xi, xj} is contained in a 4-element cocircuit of M∗. The cocircuit C1

containing {t1, t2, d} must have its fourth element in {s1, s2, t3} by or-

thogonality with the circuit {s1, s2, t3, d}. Similarly, the cocircuit C2 con-

taining {t1, r, d} has its fourth element in {s1, s2, t3}. At least one ele-

ment from {s1, s2, t3} is in neither C1 nor C2. It matters not which ele-

ment for our purposes, and we may assume without loss of generality that

t3 ∕∈ (C1∪C2). But then E(M∗)−(C1∪C2) is a flat of rank r(M∗)−2 and so

rM∗/d(E(M∗/d)− (C1 ∪C2)) = r(M∗/d)− 1. As t3 ∕∈ (C1 ∪C2), this implies

that t3 ∈ clM∗/d(E(M∗/d)−X), which contradicts the fact that M∗/d, t3 is

3-connected up to parallel pairs.

Proof of Theorem 4.2.1. Let T ⊆ X be a triad. As |X| ≥ 4, there exists some

x ∈ X − T . By Lemma 4.2.4, x is contained in some triad S = {s1, s2, s3} ⊆
X. Suppose that the triads S and T intersect. Then by Lemma 4.2.5, we

have |S∩T | = 1 and λM\d(S∪T ) > 2. As X is 3-separating, there must exist

some r ∈ (X − (S ∪ T )). Of course co(M\d, r) is 3-connected and applying

Lemma 4.2.4 we uncover the triad R ⊆ X. By Lemma 4.2.9, R must intersect

both S and T . As M\d cannot, as we have seen, contain a 4-element coline,

it must be the case that |R ∩ S| = |R ∩ T | = 1. Lemma 4.2.8 together

with Lemma 4.2.10 shows that this is impossible. We are left to conclude
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that S and T are disjoint. If X − (S ∪ T ) is still non-empty, Lemma 4.2.4

now implies that X must contain three pairwise disjoint triads, but this

contradicts Lemma 4.2.6. The only remaining possibility is that X = S ∪ T .

In particular, S ∪ T is 3-separating and the only triads contained in X are

precisely S and T . By Lemma 2.3.2, ⊓(S, T ) ∕= 2. If ⊓(S, T ) = 0, then S ∪T

is independent and thus is a coline, contradicting the fact that S and T are

the only triads of S ∪ T . So ⊓(S, T ) = 1. Let Z = E(M\d)− (S ∪ T ).

4.2.10.3. For all {s′, s′′} ⊆ S and all {t′, t′′} ⊆ T , ⊓({s′, s′′}, T ) =

⊓({s′, s′′}, Z) = ⊓({t′, t′′}, S) = ⊓({t′, t′′}, Z) = 0.

Proof. Suppose ⊓({s′, s′′}, T ) = 1 and let s′′′ = S − {s′, s′′}. Then r(T ∪
{s′, s′′}) = 4 and r(Z ∪ {s′′′}) = r(Z) + 1 so that Z ∪ {s′′′} is 3-separating,

implying that s′′′ ∈ cl∗(Z). But then (T ∪ {s′, s′′}, Z) is a 2-separation of

M\d, s′′′, contradicting our assumption that this matroid is 3-connected up

to series pairs. So ⊓({s′, s′′}, T ) = 0. Essentially the same argument shows

that ⊓({s′, s′′}, Z) = 0 and by symmetry we also obtain ⊓({t′, t′′}, S) =

⊓({t′, t′′}, Z) = 0.

By Lemma 4.2.2, T is closed in M\d, and, by 4.2.10.3, it is also closed

in M\d/s1. So T cannot be contained in a 4-element fan and by Tutte’s

Triangle Lemma, we may assume that M\d/s1, t1 and M\d/s1, t2 are 3-

connected. As M contains no detachable pairs, we therefore have trian-

gles {d, t1,α} and {d, t2, β} and thus a circuit {t1, t1,α, β} in M/s1 so that

⊓M/s1({t1, t2}, {α, β}) = 1.

4.2.10.4. {α, β} ∩ (S ∪ T ) ∕= ∅ and {α, β} ∕= {s2, s3}.

Proof. If {α, β} ⊆ Z, then ⊓M({t1, t2}, {α, β}) = 1, and so ⊓({t1, t2}, Z) ≥ 1,

contradicting 4.2.10.3. If {α, β} = {s2, s3}, then ⊓(S, {t1, t2} ≥ 1; again a

contradiction to 4.2.10.3.
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By 4.2.10.4, we may assume that α ∈ {s2, s3} and β ∈ Z. But now

β ∈ clM\d/s1(T ∪ {s2, s3}), so that β ∈ clM\d(S ∪ T ), contradicting the fact

established in Lemma 4.2.3 that S ∪ T = X is fully closed.

This final contradiction completes the proof of Theorem 4.2.1.
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4.3 The Non-Triad Case

In this section we deal with the case that our structured 3-separating set X

as identified in Lemma 4.1.1 does not contain a triad. As in the previous

section, we shall refer to the main result as a theorem for the sake of clarity.

Theorem 4.3.1. Let M be a 3-connected matroid with an element d such

that M\d is 3-connected and non-sequential. Let X be a 3-separating set of

M\d with |X| ≥ 4, having the following properties:

(a) co(M\d, x) is 3-connected for all x ∈ X,

(b) M\d/x is 3-connected for all x ∈ X,

(c) fclM(X ∪ {d}) contains no triads or triangles,

(d) E(M\d)−X is non-sequential in M\d, and

(e) X contains no triads of M\d

Then either:

(i) fclM\d(X) ∪ {d} contains a detachable pair,

(ii) |X| = 4 and cl(X ∪ {d}) contains a detachable pair,

(iii) there exists c ∈ E(M)−(X∪{d}) such that fclM\d(X)∪{d} = X∪{c, d}
is a spike-like 3-separator,

(iv) there exists c ∈ E(M)−(X∪{d}) such that fclM\d(X)∪{d} = X∪{c, d}
is a partial spider-like 3-separator with associated partition {X, {c, d}},
or

(v) there exists a set Y ⊆ E(M)−X with d ∈ Y such that fclM\d(X)∪{d} =

X ∪ Y is a spider-like 3-separator with associated partition {X, Y }.
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We shall assume for the remainder of this section that we are under the

hypotheses of Theorem 4.3.1 and that fclM\d(X) ∪ {d} does not contain a

detachable pair.

Lemma 4.3.2. E(M\d)−X is fully closed.

Proof. If E(M\d)−X is not closed, then there must exist some x ∈ X such

that M\d/x fails to be 3-connected. As X contains no triads, it must contain

a circuit of M\d. Suppose x ∈ X ∩ cl∗(E(M\d) − X). Then X cannot be

a circuit and so X − {x} contains a circuit of M\d. But this implies that

co(M\d, x) has a 2-separation (X − {x}, E(M\d)−X).

Lemma 4.3.3. In M\d, every element of X is in a triad, and every triad

that meets X contains exactly one element of E(M\d)−X.

Proof. It is clear that every element of X is in a triad, as otherwise M would

contain a detachable pair. Let T be a triad that contains some x ∈ X. If

{x} = T∩X, then x ∈ cl∗(E(M\d)−X), which contradicts Lemma 4.3.2.

Let T be a triad that meets X and let {c} = T−X. The remainder of our

arguments in this section are divided into two cases depending on whether

the set X ∪ {c} is fully closed in M\d or not. We begin by analysing the

situation when X ∪ {c} is indeed fully closed.

Lemma 4.3.4. If X ∪ {c} is fully closed in M\d, then X ∪ {c, d} is either

a spike-like 3-separator or a partial spider-like 3-separator with associated

partition {X, {c, d}}.

Proof. Assume that fclM\d(X ∪ {c}) = X ∪ {c}. By Lemma 4.3.3, each

element of X is contained in a triad with c and exactly one other element of

X. As X does not contain any triad, it follows from this that |X| must be

even, and, in particular, that there is a partition of X into pairs {xi, x
′
i} such

that {xi, x
′
i, c} is a triad. The element d blocks each of these triads in M ,

and so this partition of X extends to a collection of cocircuits {xi, x
′
i, c, d} of
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M . From this partition of X into pairs, we also readily deduce that for all

i ∕= j, the set {xi, x
′
i, xj, x

′
j} is a cocircuit in M\d.

4.3.4.1. For each x ∈ X, {x, c, d} is contained in a 4-element circuit Cx of

M .

Proof. M\d/x is 3-connected for all x ∈ X. So, by Bixby’s Lemma, M\d/x, c
is 3-connected for all x ∈ X unless c is in a triangle of M\d/x. But such a

triangle would imply that X ∪{c} is not fully closed in M\d. Thus M\d/x, c
is 3-connected for all x ∈ X. The absence of a detachable pair in M means

that M/x, c cannot be 3-connected for any x ∈ X, and so d must therefore

be in a triangle with every element of X in M/c. Thus for all x ∈ X, {x, c, d}
is contained in a 4-element circuit Cx of M .

4.3.4.2. If {a, b} is contained in a 4-element cocircuit of M∗/d for a ∈
{xi, x

′
i}, b ∈ {xj, x

′
j} where i ∕= j, then this cocircuit is {xi, x

′
i, xj, x

′
j}.

Proof. Suppose a ∈ {x1, x
′
1}, b ∈ {x2, x

′
2} and that {a, b} is contained in a

4-element cocircuit of M∗/d which is not {x1, x
′
1, x2, x

′
2}. It follows from

orthogonality that this cocircuit must contain c, and consequently, one of

{x3, x
′
3} also. But now we contradict the fact that c ∈ clM∗/d(E(M∗/d) −

(X ∪ {c})).

4.3.4.3. If |X| = 6, then r∗M\d(X) = 4.

Proof. Clearly X = {x1, x
′
1, x2, x

′
2, x3, x

′
3} and rM∗/d(X) ∈ {3, 4}. Assume

that rM∗/d(X) = 3. If both {x1, x
′
1, x2, x

′
2} and {x2, x

′
2, x3, x

′
3} are cocircuits

of M∗/d, then E(M∗/d)−X must be a flat M∗/d of rank at most r(M∗/d)−
2. But then λM∗/d(X) = 1; a contradiction. So we may assume without

loss of generality that {x1, x
′
1, x2, x

′
2} is not a cocircuit in M∗/d. Take any

a ∈ {x1, x
′
1}, b ∈ {x2, x

′
2}. As rM∗/d(X) = 3, it is easily verified that the

matroid M∗/d\a, b cannot contain a non-trivial 2-separation. By 4.3.4.2,

M∗/d\a, b also cannot contain a series pair. Thus M∗/d\a, b is 3-connected
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for each a ∈ {x1, x
′
1}, b ∈ {x2, x

′
2}, and it follows that there exists a 4-

element cocircuit Cab of M
∗ containing {a, b, d} for each such a, b. Consider

Cx1x2 . This cocircuit meets the circuit {c, d, x3, x
′
3}, and so by orthogonality,

it must be that Cx1x2 ⊆ X ∪ {c, d} with Cx1x2 ∩ {x1, x
′
1, x2, x

′
2} = {x1, x2}.

Similarly, Cx1x′
2
⊆ X ∪ {c, d} with Cx1x′

2
∩ {x1, x

′
1, x2, x

′
2} = {x1, x

′
2} and

Cx′
1x2 ⊆ X ∪ {c, d} with Cx′

1x2 ∩ {x1, x
′
1, x2, x

′
2} = {x′

1, x2}. Now

E(M∗)− (Cx1x2 ∪ Cx1x′
2
∪ Cx′

1x2)

is a flat of rank at most r(M∗)− 3, and so

rM∗(E(M∗)− (X ∪ {c, d})) ≤ r(M∗)− 3.

But then λ(X∪{c, d}) ≤ rM∗(X∪{c, d})−3 = 1, contradicting the fact that

M is 3-connected. We conclude that r∗M\d(X) ∕= 3 and so r∗M\d(X) = 4.

4.3.4.4. {xi, x
′
i, xj, x

′
j} is a circuit of M\d for each i ∕= j.

Proof. If |X| = 4, then the claim follows immediately. Suppose |X| = 6 and

that {x1, x
′
1, x2, x

′
2} is independent. Then x3 ∈ clM\d({x1, x

′
1, x2, x

′
2}) because

rM\d(X) = 4, a fact which follows from 4.3.4.3. But this contradicts the fact

that {x3, x
′
3, c} is a triad in M\d. So the result holds in the case that |X| = 6

and we may assume that |X| ≥ 8. Again suppose that {x1, x
′
1, x2, x

′
2} is

independent in M\d. By 4.3.4.2, we know that for a ∈ {x1, x
′
1}, b ∈ {x2, x

′
2},

the pair {a, b} cannot be contained in a 4-element cocircuit of M∗/d. Thus

the matroid M∗/d\x1 contains no triads and so by Tutte’s Triangle Lemma,

either M∗/d\x1, x2 or M∗/d\x1, x
′
2 is 3-connected. Assume without loss of

generality that M∗/d\x1, x2 is 3-connected. As {x1, x2} is not a detachable

pair, M∗ must have a 4-element cocircuit {x1, x2, d,α} for some α. The set

{c, d, x3, x
′
3} is a circuit of M∗, so by orthogonality, α ∈ {c, x3, x

′
3}. The

circuit {c, d, x4, x
′
4} then confirms that α = c so that C1 = {c, d, x1, x2} is

a cocircuit of M∗. Similarly we obtain another cocircuit C1′ of M
∗ which

must be either {c, d, x′
1, x2} or {c, d, x′

1, x
′
2}. From the existence of these two
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cocircuits we deduce that rM∗(E(M∗)− (C1 ∪ C1′)) ≤ r(M∗)− 2. Thus

rM∗/d(E(M∗/d)− {x1, x
′
1, x2, x

′
2, c}) ≤ r(M∗/d)− 1,

and, as c ∈ clM∗/d(E(M∗/d)− {x1, x
′
1, x2, x

′
2}), this implies that

rM∗/d(E(M∗/d)− {x1, x
′
1, x2, x

′
2}) ≤ r(M∗/d)− 1.

As M∗/d is 3-connected, it must now be the case that {x1, x
′
1, x2, x

′
2} is

exactly 3-separating and thus contains a cocircuit ofM∗/d. As {x1, x1, x2, x
′
2}

is not itself a cocircuit, this now implies the existence of a triad in M∗/d,

contradicting the fact that M contains no triangles.

4.3.4.5. If |X| ≥ 6, then X ∪ {c, d} is a spike-like 3-separator of M .

Proof. By 4.3.4.1, {x, c, d} is contained in a 4-element circuit of M for each

x ∈ X. Suppose that the 4-element circuit of M containing {x1, c, d} has

as its fourth element α ∈ E(M) − (X ∪ {c, d}). Then by orthogonality,

{x2, x
′
2, x3, x

′
3, d} cannot be a cocircuit in M , so that {x2, x

′
2, x3, x

′
3} must be

a cocircuit of M . Similarly, {x1, x
′
1, x2, x

′
2, d} is forced to be a cocircuit. We

also have a 4-element circuit containing {x3, c, d}, and by orthogonality with

these two cocircuits, we deduce, up to labelling, that {x2, x3, c, d} is a circuit

of M . But now d ∈ cl(X ∪ {c}), implying that α ∈ clM\d(X ∪ {c}) when

X ∪ {c} is fully closed in M\d. Thus, the four-element circuits containing

{x, c, d} for each x ∈ X must be themselves contained in X, and it follows

that d ∈ cl(X ∪ {c}) and λ(X ∪ {c, d}) = 2. Now, considering the matroid

M/c, we see that d must be in a triangle with every element of X, with this

triangle being a subset of X ∪ {d}. As rM/c(X) = |X|
2

+ 1 and |X| ≥ 6, it is

readily verified that the only allowable configuration of triangles in M/c is

where {d, xi, x
′
i} is a triangle for each i. Hence {c, d, xi, x

′
i} is a circuit in M

for each i and it follows that {xi, x
′
i, xj, x

′
j} is a cocircuit in M for i ∕= j. We

conclude that X ∪ {c, d} is a spike-like 3-separator.

We now turn to the case where |X| = 4. Here X is both a circuit and a

cocircuit of M\d.
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4.3.4.6. If |X| = 4, then for each x ∈ X, {x, c, d} is contained within a

4-element circuit Cx ⊆ X ∪ {c, d}.

Proof. For each x ∈ X, {x, c, d} is contained in a 4-element circuit of M

by 4.3.4.1. Suppose that the 4-element circuit {c, d, x1,α} is such that

α ∈ E(M)− (X ∪ {c, d}). Then, as X ∪ {c} is fully closed in M\d, it follows
that d ∕∈ cl(X ∪ {c}) and thus that each of the four circuits Cx must meet

E(M)− (X ∪ {c, d}). Furthermore, each of these points of intersection must

be distinct, and so we have circuits {c, d, x1, y1}, {c, d, x′
1, y

′
1}, {c, d, x2, y2}

and {c, d, x′
2, y

′
2}, together with a circuit {y1, y′1, y2, y′2}. Suppose now

that M\x1, y
′
1 does not contain a series pair. Then by Lemma 1.2.6,

it has a 2-separation (F,G) with the triad {x′
1, c, d} ⊆ F . But then

y′1 ∈ clM\x1(F ) giving a 2-separation (F ∪ {y′1}, G) in the 3-connected

matroid M\x1. Thus M\x1, y
′
1 must contain a series pair which ex-

tends to a 4-element cocircuit of M . By orthogonality with the circuits

{x1, x
′
1, x2, x

′
2}, {y1, y′1, y2, y′2}, {c, d, x1, y1} and {c, d, x′

1, y
′
1}, we observe that

the only allowable such cocircuit is C1 = {x1, x
′
1, y1, y

′
1}. By an identical

argument, we also uncover the cocircuit C2 = {x2, x
′
2, y2, y

′
2}. Consider now

the matroid M\x1, y2. If C3 = {x1, y1, x2, y2} is a cocircuit of M , then

E(M)− (C1 ∪ C2 ∪ C3 ∪ {c, d, x1, x
′
1})

= E(M)− (X ∪ {c, d})

is a flat of rank at most r(M) − 4, implying that it must be 2-separating.

So {x1, y1, x2, y2} cannot be a cocircuit, and it follows that M\x1, y2 does

not contain a series pair. By Lemma 1.2.6, M\x1, y2 has a 2-separation

(P,Q) in which {c, d, x′
1} ⊆ P . Freely applying Lemma 1.2.6, we may as-

sume that y′1 ∈ P and y1 ∈ P by virtue of the circuit {c, d, x′
1, y

′
1} and the

triad {y1, y′1, x′
1}. Certainly y′2 ∈ Q, as otherwise (P ∪ {y2}, Q) would be a

2-separation of M\x1, and it must be that x2 ∈ Q for the same reason. Tak-

ing coclosure, we may then assume that the triad {x2, x
′
2, y

′
2} is contained

in Q. Let Y = {y1, y′1, y2, y′2}. Now if rM\x1,y2({c, d, x′
1, y1, y

′
1}) = 3, then
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{y1, y′1, x′
1, d} is a circuit which meets the cocircuit {c, d, x2, x

′
2} at exactly

one point; a contradiction. Thus

rM\x1,y2(P ∩ (X ∪ Y ∪ {c, d})) = 4

and rM\x1,y2(Q ∩ (X ∪ Y ∪ {c, d})) = 3.

By Lemma 1.2.5, (P ∩ (X ∪ Y ∪ {c, d}), Q∩ (X ∪ Y ∪ {c, d})) is 2-separating
in (M\x1, y2)|(X ∪ Y ∪ {c, d}). But as we have seen, in this restriction,

r(M\x1,y2)|(X∪Y ∪{c,d})(P ) + r(M\x1,y2)|(X∪Y ∪{c,d})(Q)

−r(M\x1,y2)|(X∪Y ∪{c,d})(P ∪Q)

= λ(M\x1,y2)|(X∪Y ∪{c,d})(P ) = 2,

and we arrive at a contradiction.

4.3.4.7. If |X| = 4, then each element of {x1, x
′
1} is contained in a 4-element

cocircuit Cx of M with Cx ⊆ X ∪ {c, d} and Cx ∩ {x2, x
′
2} ∕= ∅.

Proof. Assume that no series pair exists within {c, d, x′
1, x

′
2} in the matroid

M\x1, x2. As X ∪ {c} is fully closed in M\d, it follows from 4.3.4.6 and

Lemma 1.2.7 that X ∪{c, d} is fully closed in M . Thus, if M\x1, x2 contains

some series pair which meets E(M)−(X∪{c, d}), then this series pair must be

fully contained in E(M)−(X∪{c, d}). So either M has a 4-element cocircuit

whose intersection with X ∪ {c, d} is {x1, x2} or M\x1, x2 has a non-trivial

2-separation (P,Q). In the former case, x1 ∈ cl∗(E(M) − {c, d, x′
1, x

′
2}),

implying that x1 ∕∈ cl({c, d, x′
1, x

′
2}), so that {c, d, x′

1, x
′
2} must be a circuit.

In the latter case, as {c, d, x′
1} is a triad of M\x1, x2, we may assume by

Lemma 1.2.6 that {c, d, x′
1} ⊆ P . If x1 or x2 is in cl(P ), we now obtain

a contradictory 2-separation in one of the 3-connected matroids M\x2 or

M\x1. By 4.3.4.6 we conclude that, as in the previous case, {c, d, x′
1, x

′
2}

must be a circuit of M . Suppose now that M\x1, x
′
2 does not contain a

series pair within {c, d, x′
1, x2}. If (P ′, Q′) is a non-trivial 2-separation of

M\x1, x
′
2, we may as before assume by Lemma 1.2.6 that {c, d, x′

1} ⊆ P ′.

But {c, d, x′
1, x

′
2} is a circuit in M\x1, implying that (P ′ ∪ {x′

2}, Q) is a
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2-separation of the 3-connected matroid M\x1. Hence co(M\x1, x
′
2) must

be 3-connected and M must have a 4-element cocircuit whose intersection

with X ∪ {c, d} is {x1, x
′
2}. As argued above, this shows that {c, d, x′

1, x2}
is a circuit in M . But both {c, d, x′

1, x
′
2} and X are also circuits and so we

contradict the fact that r(X ∪ {c, d}) = 4. We can conclude that at least

one of M\x1, x2 and M\x1, x
′
2 must contain a series pair which is contained

in {c, d, x′
1, x2, x

′
2}. Thus x1 is in some 4-element cocircuit Cx of M with

Cx ∩ {x2, x
′
2} ∕= ∅ and Cx ⊆ X ∪ {c, d}. The same argument shows that this

also holds for x′
1.

Suppose that the 4-element cocircuit Cx1 containing x1 obtained

from 4.3.4.7 is such that |Cx1 ∩ X| = 3. Then, as both {c, d, x1, x
′
1} and

{c, d, x2, x
′
2} are cocircuits of M , we have that X ∪ {c, d} ⊆ cl∗(Cx1). This

contradicts the fact that r∗(X ∪ {c, d}) = 4. Suppose next that there exists

cocircuits Cx1 = {c, d, x1,α} and Cx′
1
= {c, d, x′

1, β} where α, β ∈ {x2, x
′
2}.

Then α ∕= β as r∗(X ∪ {c, d, }) ∕= 3. But now

E(M)− ({c, d, x1, x
′
1} ∪ Cx1 ∪ Cx′

1
)

= E(M)− (X ∪ {c, d})

is a flat of rank at most r(M)−3, which contradicts the fact that X∪{c, d} is

exactly 3-separating in M . The only remaining possibility is that X itself is a

cocircuit in M , and in particular, that X is the unique cocircuit of M which

meets both of {x1, x
′
1} and {x2, x

′
2}. Recall from 4.3.4.1 that for each x ∈ X,

there exists a 4-element circuit {c, d, x,α} of M where α ∈ X. If {c, d, x1, x
′
1}

is a circuit, then {c, d, x2, x
′
2} must also be a circuit because r(X ∪{c, d, }) =

4. In this situation X∪{c, d} is a spike-like 3-separator. Otherwise X∪{c, d}
is a partial spider-like 3-separator with associated partition {X, {c, d}}.

With the completion of Lemma 4.3.4, we now turn our attention to the

case where X ∪ {c} fails to be fully closed in M\d.
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Lemma 4.3.5. If X ∪ {c} is not fully closed in M\d, then there exists a set

Y ⊆ E(M)−X with d ∈ Y such that X ∪Y is a spider-like 3-separator with

associated partition {X, Y }.

Proof. Assume that X ∪ {c} is not fully closed in M\d. Then there exists

a sequence (s1, . . . , sn) such that X ∪ {c, s1, . . . , sn} is a fully closed proper

3-separating subset of M\d where

sn ∈ cl(∗)(X ∪ {c, s1, . . . , sn−1}) ∩ cl(∗)(E(M\d)− (X ∪ {s1, . . . , sn})).

If sn ∈ cl(X ∪ {c, s1, . . . , sn−1}), then, as M\d, sn cannot be 3-connected, sn

must be contained in some triad of M\d. But such a triad must intersect

both X∪{c, s1, . . . , cn−1} and E(M)−(X∪{c, s1, . . . , cn}), which contradicts

the fact that X ∪ {c, s1, . . . , sn} is fully closed in M\d. So

sn ∈ cl∗(X ∪ {c, s1, . . . , sn−1}) ∩ cl∗(E(M\d)− (X ∪ {c, s1, . . . , sn})).

Let c′ = sn.

4.3.5.1. M\d/c, c′ is 3-connected, as is M\d/x, c′ for all x ∈ X.

Proof. The absence of triangles in fclM(X ∪ {d}) implies the absence of tri-

angles in fclM\d(X), and so by Bixby’s Lemma, M\d/c is 3-connected. If

M\d/c, c′ fails to be 3-connected, there must be some 4-element circuit C

of M\d with {c, c′} ⊆ C. As c is in a triad with two elements from X in

M\d, we must have C ∩X ∕= ∅. One possibility for the location of the fourth

element of C is within X ∪ {s1, . . . , sn−1}, but this contradicts the fact that

c′ ∈ cl∗(E(M\d)− (X ∪ {c, s1, . . . , c′})).

Therefore C must meet E(M\d)−(X∪{c, s1, . . . , c′}), contradicting the fact

that X ∪ {c, s1, . . . , c′} is fully closed in M\d. The proof that M\d/x, c′ is
3-connected for all x ∈ X proceeds similarly.
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As M\d/c, c′ is 3-connected and fcl(X ∪ {d}) does not contain a de-

tachable pair, M/c′ must contain a triangle {c, d,α}. Similarly, every el-

ement of x must be in a triangle with d in M/c′. Suppose to begin with

that α ∈ X. Note that for all x ∈ X − {α}, it must be the case that

x ∕∈ cl({c, d,α}). This is because the existence of a 4-point line in M/c′

would, as clM\d/c′(X ∪ {c}) = clM\d(X ∪ {c}), imply the existence of a 4-

point line in M , giving a contradictory triangle in M\d. Let x1, x2, x3 be

distinct elements of X − {α}. Then there are triangles {d, x1, g1}, {d, x2, g2}
and {d, x3, g3} in M/c′. If d ∈ clM/c′(X), then c ∈ clM/c′(X), contradict-

ing the fact that c ∈ cl∗M\d/c′(E(M\d/c′) − X). So d ∕∈ clM/c′(X) and the

elements g1, g2, g3 must be distinct with

{g1, g2, g3} ⊆ (clM/c′(X ∪ {c})− (X ∪ {c, d})).

But now {g1, g2, g3} is a triangle inM/c′, and therefore, as clM\d/c′(X∪{c}) =
clM\d(X ∪ {c}), a triangle in M . We may now assume that α ∕∈ X. Here

d ∈ clM/c′(E(M/c′)−X).

4.3.5.2. For each x ∈ X, {d, x} is contained in a triangle Tx of M/c′ where

|Tx ∩X| = 2.

Proof. Every element of X is certainly in a triangle with d in M/c′ by 4.3.5.1.

By 4.3.2, X∩(clM\d/c′(E(M\d/c′)−X)) = ∅. As d ∈ clM/c′(E(M/c′)−X), it

follows that X ∩ clM/c′(E(M/c′)−X) = ∅, and thus the triangles containing

d and x for each x ∈ X must have two points in X.

From 4.3.5.2 it follows that α ∈ clM\d/c′(X ∪ {c}), and as

(M\d/c′)|(X ∪ {c, s1, . . . , sn−1}) = (M\d)|(X ∪ {c, s1, . . . , sn−1}),

we have that α ∈ clM\d(X ∪ {c}). We may thus assume that α = s1.

4.3.5.3. {s1, . . . , sn}={α, c′}.
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Proof. Suppose that n > 2. Then si(M/c′, s2) is 3-connected, so s2 must be

in a triangle T ′ of M/c′. Now T ′ must meet E(M) − (X ∪ {c, d,α, s2}) so

that T ′ is a triangle of M\d unless T ′ ∩ (X ∪ {d, c,α}) = {d}. But then

d ∕∈ cl∗M(X ∪ {c}) implying that T is a contradictory triad in M .

4.3.5.4. {c,α, c′, d} is a circuit and a cocircuit of M .

Proof. The set {c,α, c′} is a triad in M\d, for otherwise, M\d,α is 3-

connected. The element d must block this triad in M and so {c,α, c′, d}
is a cocircuit of M . As {c, d,α} is a triangle of M/c′, the set {c,α, c′, d} is

also a circuit of M .

Note that

α ∈ clM\d(E(M\d)− (X ∪ {c,α}))
−clM\d(E(M\d)− (X ∪ {c,α, c′})),

so that c′ ∈ clM\d(E(M\d) − (X ∪ {c, c′}). Therefore each of the triads of

M\d obtained from 4.3.3 must contain c. Consider such a triad Γ. By 4.3.5.2,

there exists a number of triangles in M/c′; each of which contains d as well as

two elements fromX. Suppose that T ′ is such a triangle where T ′∩X∩Γ = ∅.
Then (T ′∩X)∪{c,α} is a 4-element circuit of M whose intersection with the

cocircuit Γ ∪ {d} is {c}; a contradiction by orthogonality. This now implies

that X is both a circuit and a cocircuit with |X| = 4. In particular, labelling

X as {x1, x2, x3, x4} where {x1, x2, d} and {x3, x4, d} are triangles of M/c′,

we have that up to our choice of labelling, {x1, x3, c, d} and {x2, x4, c, d} are

cocircuits of M . Now

E(M)− ({x1, x3, c, d} ∪ {x1, x2, x3, x4} ∪ {c, d, c′,α})

is a flat of rank at most r(M)−3. This implies that r(X∪{c, d, c′,α}) = 5 as

X∪{c, d, c′,α} is exactly 3-separating, and therefore that ⊓(X, {c, d, c′,α}) =
1. Consider M/α. Certainly this matroid is 3-connected as {c, d, c′,α} is a
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closed quad. Now the set X is a quad of M/α and so si(M/α, x) is 3-

connected for all x ∈ X. If we are not to have a detachable pair, every element

ofX must be in a triangle ofM/α and thus in a 4-element circuit with α inM .

Checking orthogonality with the cocircuits {x1, x3, c, d} and {x2, x4, c, d}, the
only possibility is that {x1, x2, c,α} and {x3, x4, c,α} are the circuits in ques-

tion. All that remains now is to show that {x1, x3, c
′,α} and {x2, x4, c

′,α} are
cocircuits. The matroid M/α is 3-connected and co(M/α, x) is 3-connected

by virtue of the fact that X is a quad in M/α. Thus {α, x} is contained in

a 4-element cocircuit Cx for each x ∈ X. These cocircuits have two elements

in X and two in {c, d, c′,α} by orthogonality. Suppose that for some x ∈ X,

c′ ∕∈ Cx. Then

E(M)− (Cx ∪ {x1, x3, c, d} ∪ {x1, x2, x3, x4} ∪ {c, d, c′,α})

must be a flat of rank at most r(M) − 4. This contradicts the previously

established fact that r(E(M) − (X ∪ {c, d, c′,α})) = r(M) − 3. So c′ ∈ Cx

for each x ∈ X. A virtually identical argument shows that we must have

x3 ∈ Cx1 and x4 ∈ Cx2 . Now X ∪ {c, d, c′,α} is now a spider-like 3-separator

with associated partition (X, {c, d, c′,α}) as required.

With that, the proof of Theorem 4.3.1 is complete.
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Chapter 5

Putting the Pieces Together

The groundwork that has been laid down in Chapter 3 and Chapter 4 will be

brought together into a much more digestible form in Theorem 5.2.1. From

that point, our main result, Theorem 1.0.1, is a straightforward extension.

Before arriving at that stage however, we still need to prove a few more

preparatory lemmas.

5.1 Further Lemmas

Lemma 5.1.1. Let M be a 3-connected matroid which contains no triangles

or triads. If M contains a vertical 3-separation, then there exists a vertical

3-separation (P, {r}, Q) of either M or M∗ where P ∪ {r} is fully closed.

Proof. Suppose that (X, {e}, Y ) is a vertical 3-separation ofM whereX∪{e}
is not fully closed. As M does not contain any triangles or triads, M is

certainly non-sequential. As such, we may assume that Y has no sequen-

tial ordering. Therefore there must exist some sequence (y1, . . . , yn) of el-

ements of Y such that X ∪ {e, y1, . . . , yn} is fully closed. Setting P as

X∪{e, y1, . . . , yn−1}, setting r as yn, and settingQ as Y−{y1, . . . , yn}, we note
that both P and Q have rank three or more and each must contain circuits

99
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by virtue of the fact that Y does not have a sequential ordering. Therefore

(P, {r}, Q) is either a vertical 3-separation of M or a cyclic 3-separation of

M , according to whether r ∈ cl(P ) or r ∈ cl∗(P ) respectively.

Lemma 5.1.2. Let M be a 3-connected matroid which contains no triangles

or triads where |E(M)| > 9. If M contains a vertical 3-separation, then M

contains a detachable pair.

Proof. Suppose that M has some vertical 3-separation. By Lemma 5.1.1,

there exists a vertical 3-separation (P, {r}, Q) of either M or M∗ where P ∪
{r} is fully closed. As shall become clear, the distinction is irrelevant for our

purposes, but for the sake of completeness, let M ′ be the element of {M,M∗}
for which (P, {r}, Q) is vertical. Certainly M ′\r is 3-connected by Bixby’s

Lemma and the fact that M ′ contains no triads. By Lemma 1.2.8, P is fully

closed in M ′\r. It follows from this observation that P cannot contain any

triads of M ′\r, as r would need to block any such triad in M ′; giving the

contradiction that r ∈ cl∗M ′(P ) when we know that r ∈ clM ′(Q). Applying

Lemma 1.2.23 to the 3-separation (P,Q), we conclude that there exists some

p ∈ P such that M ′\r, p is 3-connected, giving a detachable pair in M .

Lemma 5.1.3. Let M be a 3-connected matroid with |E(M)| > 9 such that

M contains no triangles or triads. Then either M contains a detachable pair,

or, for all e ∈ E(M), both M\e and M/e are 3-connected.

Proof. By Lemma 5.1.2 together with its dual, if M does not have a de-

tachable pair, then M cannot contain any vertical or cyclic 3-separations. It

now follows from Lemma 1.2.11 together with the fact that M contains no

triangles or triads that both M\e and M/e must be 3-connected for every

e ∈ E(M).

Lemma 5.1.4. Let M be a 3-connected matroid with the property that both

M\e and M/e are 3-connected for every e ∈ E(M). Let (X, Y ) be an exact

3-separation of M where both X and Y are fully closed. Then either M

contains a detachable pair, or else for every x ∈ X and every y ∈ Y , there
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exists a 4-element circuit C in M with {x, y} ⊆ C, as well as a 4-element

cocircuit C∗ in M with {x, y} ⊆ C∗.

Proof. Assume that M contains no detachable pair and take any x ∈ X,

y ∈ Y .

5.1.4.1. If Z ⊆ X − {x} or Z ⊆ Y − {y}, and |Z| ≥ 2, then λM/x,y(Z) ∕=
1 ∕= λM\x,y(Z).

Proof. Suppose that Z ⊆ X − {x} where |Z| ≥ 2 and λM\x,y(Z) = 1. We

know that the matroid M\x is 3-connected. Therefore, as |Z| ≥ 2, it must be

that Z is exactly 3-separating in M\x. As λM\x(Z) = rM\x(Z) + r∗M\x(Z)−
|Z| = 2, this now implies that y ∈ cl∗M\x(Z). However, Z ⊆ X − {x} and

X − {x} is fully closed in M\x by Lemma 1.2.8, and so we arrive at a

contradiction. Thus, whenever Z ⊆ X − {x} and |Z| ≥ 2 it must be that

λM\x,y(Z) ∕= 1, and, similarly, λM/x,y(Z) ∕= 1. Essentially the same argument

shows that this also holds for any Z ⊆ Y − {y}.

Let (P,Q) be a 2-separation of M/x, y. By 5.1.4.1, (P,Q) must cross

(X − {x}, Y − {y}), giving four non-empty intersections P ∩ (X − {x}), P ∩
(Y − {y}), Q ∩ (X − {x}) and Q ∩ (Y − {y}). As both X and Y are fully

closed in M , we certainly know that both |X−{x}| and |Y −{y}| exceed two.

Therefore we may assume that |P ∩ (X − {x})| ≥ 2. By submodularity of

the connectivity function, together with the fact, which follows from 5.1.4.1,

that λM/x,y(X − {x}) = 2, we have

λM/x,y(P ∩ (X − {x})) + λM/x,y(P ∪ (X − {x}))
≤ λM/x,y(P ) + λM/x,y(X − {x}).

Thus

λM/x,y(P ∩ (X − {x})) + λM/x,y(P ∪ (X − {x})) ≤ 3,

so that

λM/x,y(P ∩ (X − {x})) + λM/x,y(Q ∩ (Y − {y})) ≤ 3.
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Therefore at least one of P ∩ (X − {x}) and Q ∩ (Y − {y}) must be 2-

separating in M/x, y. By 5.1.4.1, P ∩ (X − {x}) cannot be 2-separating,

and so Q ∩ (Y − {y}) must be. Thus, again using 5.1.4.1, we see that

Q ∩ (Y − {y}) must be a singleton. Consequently, |P ∩ (Y − {y})| ≥ 2, and

repeating the same submodularity argument as above, we are forced into a

situation where at least one of P∩(Y −{y}) and Q∩(X−{x}) is 2-separating
in M/x, y. Once again, the only possibility that does not contradict 5.1.4.1

is that |Q ∩ (X − {x})| = 1. Thus |Q| = 2 so that Q is a parallel pair of

M/x, y. The matroid M obviously does not contain any triangles and so Q

must be lifted in such a way that Q ∪ {x, y} is a 4-element circuit of the

matroid M as required. The fact that {x, y} is also contained in a 4-element

cocircuit of M follows in the same manner simply by examining the matroid

M\x, y as opposed to M/x, y.

5.2 Proof of Main Theorem

We approach a proof of Theorem 1.0.1.

Theorem 5.2.1. Let M be a 3-connected matroid which contains no triangles

or triads where |E(M)| > 10. If M does not contain a detachable pair, then

M contains a fully closed exactly 3-separating set X such that either:

(i) X is a twisted 3-separator,

(ii) X is a partial spider-like 3-separator,

(iii) X is a spider-like 3-separator, or

(iv) X is a spike-like 3-separator.

Proof. Assume that M does not contain a detachable pair, and let d be any

element of E(M). By Lemma 5.1.3, the matroid M\d is 3-connected. We

know from Lemma 3.1.1 that M\d cannot be sequential, and, furthermore,
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from Lemma 3.2.1 that M\d is not internally 4-connected. Thus there must

exist some 3-separation (P,Q) ofM\d such that |P | ≥ 4 and |Q| ≥ 4 where P

has no possible sequential ordering. Consider now the 3-separating set Q and

apply Lemma 4.1.1. We deduce the existence of a 3-separating set Q′ ⊆ Q of

M\d with the properties that |Q′| ≥ 4, and that the matroids M\d/q′ and
co(M\d, q′) are 3-connected for all q′ ∈ Q′. The set Q′ either contains a triad

of M\d or it does not. In the former case, Theorem 4.2.1 shows that (i), (ii)

or (iv) must hold. In the latter case, Theorem 4.3.1 implies that (ii), (iii) or

(iv) holds. With that we conclude the proof of the theorem.

Lemma 5.2.2. Let M be a 3-connected matroid which contains no triangles

or triads where |E(M)| > 12. If M does not contain a detachable pair, then

M is a spike.

Proof. Assume that M does not contain any detachable pair. By Theo-

rem 5.2.1, there exists a fully closed exactly 3-separating set X which is one

of four possible types given by outcomes (i)-(iv). Note that in each of the

four cases, every element from X is contained in a four-element circuit C

with C ⊆ X as well as a four-element cocircuit C∗ with C∗ ⊆ X. It follows

from this that both X and Y = E(M)−X are fully closed in M . Equipped

with this fact, and combining it with Lemma 5.1.3, we are now free to use

Lemma 5.1.4 to put necessary constraints on the configuration of points in

Y .

Suppose to begin with that 5.2.1 (ii) holds so that X is a partial spider-

like 3-separator. Let {{p1, p2, p3, p4}, {q1, q2}} be the associated partition of

X. Let y1 be any element of Y . By Lemma 5.1.4, there must exist some

4-element circuit C1 which contains both y1 and q1. As both {q1, q2, p1, p3}
and {q1, q2, p2, p4} are cocircuits of M , it follows from orthogonality and the

fact that X is closed that C1 ∩ X = {q1, q2}. Let {y2} = C1 ∩ (Y − {y1}).
Now again apply Lemma 5.1.4, this time with respect to the points y1 and p1.

Using the same argument, we find that there exists some y3 ∈ Y − {y1, y2}
such that C2 = {y1, y3, p1, p3} is a circuit. Repeating this process a third time
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then gives the existence of a y4 ∈ Y −{y1, y2, y3} such that {y3, y4, q1, q2} is a

circuit, as are {y2, y4, p1, p3} and {y2, y4, p2, p4}. Indeed, it is easily seen that

{y1, y2, y3, y4} is a quad of M , and, in fact, that P ∪{y1, y2, y3, y4} is a spider-

like 3-separator. We have currently identified ten elements in the matroid M .

By assumption there exists another element α ∈ Y . Using the now familiar

argument of Lemma 5.1.4 with respect to α and the element p1 ∈ X, we

deduce the existence of a 4-element circuit Cα where {α, p1, p3} ⊆ Cα. As M

contains no triangles, nor any restriction isomorphic to U3,5, it follows that

the fourth element β of Cα is such that β ∕∈ X ∪ {y1, y2, y3, y4,α}. However,
by applying Lemma 5.1.4 with respect to the elements p1 and y1, we can

readily deduce that C∗
1 = {p1, p2, y1, y2} must be a cocircuit of M . But now

|Cα ∩ C∗
1 | = 1 and we arrive at a contradiction. The matroid M cannot be

extended beyond its current construction which consists of ten points as is

required by our hypothesis.

Suppose instead then that (iii) of Theorem 5.2.1 holds, giving X as a

spider-like 3-separator. Let {P,Q} be the associated partition of X. The

argument now proceeds precisely as in the partial spider-like case. We locate

the appropriate circuits and cocircuits of M using Lemma 5.1.4 and once

again end up with a maximal-sized matroid which does not exceed twelve

elements. We omit the details. In this case, a maximal matroid has exactly

twelve elements. Once more, Y is necessarily a quad, and the matroid M we

obtain is such that both Y ∪P and Y ∪Q are spider-like 3-separators. In the

case that (i) of Theorem 5.2.1 holds, and that X is a twisted 3-separator, one

can once again readily produce an analogous argument. A maximal matroid

is constructed that contains ten elements where Y is again a quad attached

to X in such a manner as to give the appropriate circuits and cocircuits as

necessitated by Lemma 5.1.4.

The only possibility that remains is that X is a spike-like 3-separator

with associated partition {X1, . . . , Xn}. Again, using the strategy of imple-

menting Lemma 5.1.4, we find that, as M contains no triangles nor any U3,5

restrictions, for each Xi ∈ {X1, . . . , Xn}, there exists a pair {yi, y′i} = Yi ⊆ Y
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such that Xi∪Yi is both a 4-element circuit, as well as a 4-element cocircuit.

The matroid M is thus a spike and our proof is complete.

Note that the maximal ten and twelve element matroids constructed in

the non-spike cases in the proof of the above result all reduce to a very small

class of matroids where the ground-set can be partitioned into an exact 3-

separation (X, Y ) where Y is a quad and X is either spider-like, partial

spider-like, or twisted. See [10] for a complete survey of this collection of

sporadic matroids. We are now ready to prove our main theorem.

Proof of Theorem 1.0.1. If the matroidM contains a triangle or a triad, then

by Theorem 2.1.1, the result holds. Otherwise, the theorem follows directly

from Lemma 5.2.2.
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