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Abstract 
 
Nitroreductase enzymes are a superfamily of bacterial flavoproteins that can catalyze the 
reduction of aromatic nitro groups.  The reduction of an aromatic nitro group, a highly 
electronegative functionality, causes a large electronic shift that can profoundly affect the 
activity of other substituents on the aromatic ring.  For example, upon nitroreduction, 
initially non-toxic compounds known as prodrugs can be converted into a cytotoxic form.  
The ability of nitroreductases to alter the activity of compounds has lead to their 
development as tools for multiple biotechnological applications.  Of particular note is the 
use of nitroreductase enzymes in combination with a nitroaromatic prodrug to study the 
role of specific cell populations in zebrafish (Danio rerio).  Zebrafish are used as model 
organisms to study processes such as embryonic development and tissue regeneration.  
By expressing a nitroreductase enzyme in a specific tissue of a zebrafish, it is possible to 
selectively ablate that tissue upon administration of a prodrug.  The subsequent 
phenotypic change induced by the ablation can provide information on the physiological 
role of the ablated tissue, or of the regenerative processes that can be recruited to repair 
the damage.   
 
The goal of this thesis was to engineer or discover new nitroreductase enzymes that could 
expand the capabilities of cell ablation studies in zebrafish.  In particular, this work 
sought to develop a system that would enable the dual, or multiplexed, ablation of two 
tissues independently within the same organism.  Control over the ablation of two distinct 
tissues could be useful for studying tissue interactions during developmental or 
regenerative processes.   For this to be achievable, two different nitroreductase enzymes, 
each possessing distinct and non-overlapping prodrug selectivities would be required.  
Previous studies in the Ackerley lab had identified NfsA from Escherichia coli 
(NfsA_Ec) and NfsA from Pseudomonas putida (NfsA_Pp) as nitroreductase enzymes 
that were slightly more selective for the prodrug tinidazole compared than metronidazole.  
In contrast the NfsB nitroreductase from Vibrio vulnificus (NfsB_Vv) was substantially 
more selective for metronidazole than tinidazole.  To further improve the tinidazole 
selectivity of the NfsA enzymes, directed evolution was employed as a tool to further 
enhance the substrate selectivity of each enzyme.  The primary outcome of this work was 
the evolution of an NfsA_Ec mutant that was 12 fold more selective for tinidazole over 
metronidazole than wild type NfsA_Ec.   
 
In addition to engineering new enzymes for cell ablation experiments, this work also 
sought to discover new nitroreductase enzymes from unculturable bacteria, a previously 
unplumbed source.  The genes and gene products of unculturable bacteria can be 
identified and studied by expressing fragments of their DNA in a readily culturable host 
such as E. coli.  A variety of different screening methodologies were tested for 
identifying nitroreductase enzymes from eDNA inserts.  The compound 4-nitroimidazole 
was found to be capable of detecting nitroreductase expression at the level of a single 
colony.  While no novel nitroreductase enzymes were discovered in the scope of this 
work, the preliminary results are encouraging that a screening strategy centred on 4-
nitroimidazole in particular could successfully do so in the near future. 
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Chapter 1 Introduction 
!

1.1 Nitroreductase Enzymes 
 

Bacterial nitroreductase enzymes are a superfamily of promiscuous flavoprotein 

oxidoreductases.  Nitroreductases can catalyze the reduction of nitro (NO2) groups to 

amine or hydroxylamine functionalities, of which two classes exist: the Type I (oxygen-

insensitive) and the Type II (oxygen-sensitive).  Type II nitroreductases reduce 

nitroaromatics though two consecutive transfers of a single electron.  The first electron 

transfer, however, generates an unstable radical intermediate that is rapidly reoxidized in 

the presence of oxygen (Peterson et al., 1979; Roldán et al., 2008).  The second electron 

transfer, and therefore full nitroreduction, by the nitroreductase therefore only occurs in 

oxygen-free conditions.  In contrast, Type I nitroreductase enzymes, the class considered 

in this thesis, bypass the unstable intermediate by simultaneously transferring two 

electrons, enabling nitroreduction to occur regardless of oxygen conditions. 

 

Nitroreductase enzymes typically adopt a homodimeric quaternary structure with an 

associated flavin (FMN or FAD) prosthetic group (Roldán et al., 2008).  The reduction of 

nitroaromatic substrates occurs through a ping-pong bi-bi mechanism dependent on 

NADH or NADPH reducing cofactors (de Oliveira et al., 2010a; Roldán et al., 2008).  

The first step occurs when a reduced nicotinic cofactor enters the active site of the 

enzyme and reduces the associated flavin.  Subsequently, the flavin can then transfer its 

electrons to reduce a nitroaromatic when it enters the active site.  While the nitroreductase 

enzymes as described are prominent in prokaryotic species, enzymes with nitroreductase-

like properties are also found in archaic and eukaryotic species (Roldán et al., 2008).   

 

The physiological role of bacterial nitroreductase enzymes has proven difficult to 

elucidate.  As bacteria and fungi naturally produce nitroaromatic compounds, including 

multiple antibiotics (Parry et al., 2010), it is conceivable that nitroreductase enzymes 

evolved as a form of reductive defense against such compounds.  For example, the 

reduced forms of the natural nitroaromatic chloramphenicol have been shown to possess 

lower levels of antimicrobial activity than the unreduced form (Corbett and Chipko, 

1978),   Nitroreduction, however, has not been previously documented as a resistance 
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mechanism.   Additionally, nitroaromatics are a relatively rare functional group to find in 

natural products (Ju and Parales, 2010).  Their scarcity, coupled with a lack of evidence 

that nitroreduction provides a survival advantage in the presence of such compounds, 

suggests it was not a major force driving nitroreductase evolution.  Several 

nitroreductases have been hypothesised to play roles in oxidative defense.  For example, 

expression of the nitroreductase enzyme, NfsA, from Escherichia coli (NfsA_Ec), is 

induced by oxidative stress (Liochev et al., 1999).  Similarly, yeast strains with key 

nitroreductase genes knocked-out have increased sensitivity to oxidative stress (de 

Oliveira et al., 2010b).   

 

Determining a biological role is further complicated by the substrate promiscuity of 

nitroreductase enzymes. In addition to nitroaromatics, nitroreductases have demonstrated 

flavin (Zenno et al., 1998, 1996), chromate (Ackerley et al., 2004; Kwak et al., 2003; 

Robins et al., 2013), quinone (Nivinskas et al., 2002; Rau and Stolz, 2003), iron (Takeda 

et al., 2010), uranium (Barak et al., 2006b) and azo dye (Rafii and Cerniglia, 1995) 

reductase activities.  Several mechanisms have been proposed to account for this 

promiscuity.  For instance, it could be the result of the highly water accessible active site 

typical of nitroreductases, which enables the indirect binding of a range of substrates 

(Haynes et al., 2002).  Additionally/alternatively, it appears nitroreduction is not 

dependent on any substrate-specific enzyme conformational changes, making the active 

site highly accessible to structurally diverse substrates (Pitsawong et al., 2014).  

Regardless of the underlying mechanisms, the substrate promiscuity of nitroreductases 

enzymes has made them excellent tools for reducing synthetic substrates in 

biotechnological applications.    

 

1.2 Applications of Nitroreductase Enzymes 
 

The reduction catalyzed by nitroreductase enzymes can change the properties of the 

substrate.  Changes to substrate toxicity, in particular, are one of the major areas of 

research interest.  Some compounds that are initially toxic are converted into less toxic 

forms upon nitroreduction. The hazardous environmental pollutants trinitrotoluene (TNT) 

and hexavalent chromium, for example, are both converted to less toxic and bioavailable 

forms upon nitroreductase-catalyzed reduction (Smets et al., 2007; Zhitkovich, 2011).  



! '!

The detoxification of these pollutants by nitroreductase enzymes is being developed as a 

bioremediation strategy.  Immobilizing nitroreductases on nanoparticles (Robins et al., 

2013), or expressing them from transgenic plants (Hannink et al., 2001; Kurumata et al., 

2005; van Dillewijn et al., 2008) have both been tested as a possible means to deliver the 

enzymes to contaminated sites for bioremediation purposes.  

 

In contrast to substrate detoxification, some non-toxic nitroaromatic compounds are 

converted (or “activated”) into toxic forms by nitroreduction.  These compounds are 

collectively known as prodrugs, an important example being CB1954 (Figure 1.1).  

 

 

 

 

 
Figure 1.1 – Structure of the dinitrobenzamide prodrug CB1954. 

 

Prior to the reduction of a nitroaromatic prodrug, one or more electronegative NO2 groups 

draw elections out from the aromatic ring, reducing the reactivity of the compound.  

Reduction of the NO2 group to a hydroxylamine or amine returns electron density to the 

aromatic ring restoring reactivity and, in the case of nitroaromatic prodrug, produces a 

toxic compound (Christofferson and Wilkie, 2009).  There is ongoing work developing 

nitroreductase enzymes and prodrug pairs, including CB1954, for a cancer treatment 

called gene-directed enzyme prodrug therapy (GDEPT).    

1.2.1 Gene-Directed Enzyme-Prodrug Therapy 
 

In GDEPT, cancerous tissue is specifically sensitised to a prodrug through targeted 

expression of a prodrug-activating “suicide” gene.  Many different prodrug/suicide gene 

combinations exist (Patterson et al., 2003); nitroreductase enzymes partnered with 

nitroaromatic prodrugs, however, are one of the more developed.  By specifically 

targeting cancerous tissue in this manner, the damaging side effects of chemotherapy 

could be reduced (Patterson et al., 2003).  For the therapy to specifically kill cancerous 

tissue, it is necessary that nitroreductase expression be restricted to cancer cells.  

Biological gene-delivery vectors including viruses (Bai et al., 2007) and bacteria (Liu et 

al., 2008) have both been tested as a means to deliver nitroreductase genes to cancer cells 
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(Figure 1.2).  Viruses and bacteria are promising gene vectors for GDPET as they have a 

natural affinity for cancerous tissue (i.e., they are oncolytic).  The obligate anaerobe 

Clostridium novyi, for example, forms non-infectious spores in oxygenated environments 

(Forbes, 2010).  Only in oxygen-deprived conditions can the spores germinate and grow.  

As oxygen is a characteristic of the well-vascularized human body, C. novyi growth is 

ordinarily restricted.  The typically hypoxic tumour microenvironment, formed through 

disorganized blood vessel formation (Wilson and Hay, 2011), therefore provides an 

unique opportunity for C. novyi growth (Dang et al., 2001).  Alternatively, vectors can be 

engineered by genetic modification to enhance their oncogenic potential.  For example, 

viruses can be modified to transfect cancer cells with a suicide gene via multiple 

mechanisms, such as engineering a dependence on cancer specific proteases or receptors 

for cell entry (Cattaneo et al., 2008;Naik and Russell, 2009).  Bacteria can also be 

engineered to increase their oncolytic potential.  For example, deletion of purine synthesis 

genes from Salmonella typhimurium results in dependence on replicating cancerous tissue 

for purine (Low et al., 2004). 

 

 

 
 

 

 

 

 

 

 

 

 
Figure 1.2 – Nitroreductase gene-directed enzyme prodrug therapy.  An oncolytic vector such as a 
virus is used to deliver a nitroreductase gene into a cancer cell.  Expression of the nitroreductase within the 
cancer cell sensitises it to a nitroaromatic prodrug such as CB1954.  Once expressed, the nitroreductase 
catalyzes the conversion of the initially non-toxic prodrug into a cytotoxic form, killing the host cancer cell.   
 

The limiting factor associated with use of biological gene-delivery vectors is the low 

efficacy of gene transfection.  Unfortunately, the transfection efficiency of a suicide gene 

into a population of cancerous cells, by any vector, regardless of how oncolytic it is, is 

highly unlikely to ever be 100%, indeed unlikely to ever exceed 10% (Dachs et al., 2009).  
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It is therefore important that, once activated, the prodrug demonstrates a “bystander 

effect” and can enter and kill adjacent, untransfected, cells (Figure 1.3).   

 

  

 
 
Figure 1.3 – The GDEPT bystander effect.  In a GDEPT context, the bystander effect is the transport of 
an activated prodrug from the cell where it was converted into adjacent tissues.  A) A tumour cell 
expressing a transfected nitroreductase gene (red nucleus) converts a non-toxic prodrug into a toxic form.  
B) The activated prodrug metabolite can then enter, through active or passive mechanisms, adjacent tumour 
cells.  C) The activated prodrug kills tumour cells that were not expressing a transfected nitroreductase, 
compensating for the incomplete transfection efficiency.    
 

The majority of nitroreductase GDEPT research has been performed using the oxygen-

insensitive NfsB nitroreductase from Escherichia coli (NfsB_Ec) partnered with the 

prodrug CB1954.   

 

1.2.2 NfsB_Ec/CB1954 GDEPT 
 

The prodrug 5-(1-aziridinyl)-2,4-dinitrobenzamide, generically called CB1954, was first 

synthesized in the 1970s (Sheard et al., 1971) (Figure 1.1).  CB1954 contains a 2-NO2 

and a 4-NO2 group of which NfsB_Ec reduces in roughly equal ratios (Knox et al., 1992; 

Race et al., 2007).  The more cytotoxic CB1954 metabolite is the 4-NO2 reduction 

product (Helsby et al., 2003), although the 2-NO2 reduction product possesses a higher 

bystander effect (Helsby et al., 2004).  Following nitroreduction, CB1954 reacts with 

intracellular thioesters, such as acetyl coenzyme A, to form cytotoxic DNA cross-linking 

agents (Knox et al., 1991).  Activated CB1954 induces apoptosis in both dividing and 

quiescent cells in a p53 independent manner (Cui et al., 1999; Weedon et al., 2000).  

Preclinical data was promising, demonstrating that viral transduction of NfsB_Ec into 

human cancer cell lines sensitised them to CB1954 (Bridgewater et al., 1995; Green et al., 

1997; McNeish et al., 1998).  Tumour xenograph experiments in mice subsequently 
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demonstrated that localized nitroreductase expression was also capable of specifically 

sensitising cancerous tissue to CB1954 (Lemmon et al., 1997; Lukashev et al., 2005; 

McNeish et al., 1998; Weedon et al., 2000).  

 

Despite promising preclinical data, when tested in humans NfsB_Ec partnered with 

CB1954 failed to produce substantial therapeutic benefit.  The notable example was a 

phase II prostate cancer trial utilizing CB1954 in combination with the NfsB_Ec-

containing adenoviral vector CTL102 (Patel et al., 2009).  Of the 19 patients that received 

the treatment, 7 demonstrated a 10% reduction in the prostate specific antigen (Patel et 

al., 2009).  A reason for the relatively poor response was likely that CB1954 was a poor 

substrate for NfsB_Ec.  The maximum plasma concentration of CB1954 is around 8 µM 

(Patel et al., 2009), well below even the most modest NfsB_Ec KM measurements of 0.9 

mM (Race et al., 2007) – 3.6 mM (Swe et al., 2012). Other experimental measurements 

having even ranged as high as 17.2 mM (Jarrom et al., 2009).  It was therefore unlikely 

that enough drug could have been physically administered to achieve a therapeutically 

active dose (Dachs et al., 2009).  Nitroreductase GDEPT therefore still has obstacles to 

overcome before clinical success is possible. However, the central premise of GDEPT, 

that nitroreductase expression can sensitise a cell population to a prodrug, has proven 

useful in other fields, namely as a tool to ablate specific tissues in the field of 

developmental biology.   

!

1.2.3 Cell Ablation Tools 
 

Specifically ablating (killing) a cell population in a model organism, typically zebrafish 

(Danio rerio) is one method of studying the physiological role of those same cells.  The 

phenotypic change that arises following the targeted ablation can provide information on 

the normal function of cell population (Curado et al., 2008).  While traditionally used to 

study developmental and regenerative processes, strategic cell ablation can also 

controllably induce disease phenotypes, enabling human diseases to be modeled (Lee et 

al., 1998).  There are two general methods for ablating specific cells: light or chemical-

based strategies (White and Mumm, 2013).        
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1.2.3.1 Light Ablation Technologies  
 

Light-based ablation strategies employ targeted lasers that directly kill a specific cell 

population.  Lasers have been used to specifically ablate cell lineages in C. elegans 

(Bargmann and Avery, 1995), Drosophila (Soustelle et al., 2008) and zebrafish (Roeser 

and Baier, 2003).  An attractive feature of laser ablation is the high level of control and 

precision over which cells are ablated (Soustelle et al., 2008).  Identification of the target 

population of cells can be assisted by transgenic GFP expression (Roeser and Baier, 

2003).  Optimizing a laser ablation methodology, however, can be difficult, potentially 

requiring major investment in expensive optical equipment (White and Mumm, 2013).  

Uniformly performing the same level of tissue damage between organisms can also be 

challenging.   Additionally, each laser ablation is a challenging and highly time-

consuming procedure, making large sample sizes difficult to process (White and Mumm, 

2013).  The alternative to light ablation is chemical ablation.  Unlike laser ablation, 

chemical ablation can rapidly and uniformly ablate tissues from multiple organisms 

simultaneously. 

 

1.2.3.2 Chemical Cell Ablation Technologies  
 

Chemical cell ablation uses compounds that specifically ablate a target cell population 

(White and Mumm, 2013).  The specificity of this strategy can arise either from intrinsic 

properties of the toxins used, or through tissue modifications that specifically sensitise the 

tissue to a compound.  Intrinsically targeted drugs selectively kill a single tissue by 

recognising distinguishing characteristics of that tissue.  Such compounds have 

specifically ablated melanocytes (Yang and Johnson, 2006), ! cells (Soria et al., 2000), 

hair cells (Harris et al., 2003), and olfactory epithelium cells (Iqbal and Byrd-Jacobs, 

2010).  In the case of melanocytes, the protoxin 2-morpholinobutyl)-4-thiophenol 

(MoTP) was converted into a cytotoxic form by the enzyme tyrosinase, an enzyme 

required for melanin synthesis and therefore a specific melanocyte marker gene (Yang 

and Johnson, 2006).  The major limitation of these compounds is that they can only ablate 

a single tissue type.  An alternative, and more flexible approach, is to modify the target 

cell population to selectively express a toxic or indirectly toxic gene.  
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A commonly used toxic gene product used for cell ablation is diphtheria toxin. Diphtheria 

toxin is a cytotoxic protein produced by Corynebacterium diphtheriae that inhibits 

mammalian protein synthesis (Holmes, 2000).  The diphtheria toxin is synthesized as a 

single polypeptide containing two distinct functional units: an A fragment responsible for 

inhibition of nuclear protein synthesis, and a B fragment responsible for cellular entry.  

The two fragments must be proteolytically separated within a cell before fragment A is 

able to inhibit protein synthesis (Collier, 2001).  Diphtheria fragment A is highly toxic, to 

the point where only a single molecule of diphtheria toxin A is required to kill a cell 

(Yamaizumi et al., 1978).  Expression of diphtheria fragment A from tissue-specific 

promoters in transgenic mice has enabled the specific ablation of those tissues (Ivanova et 

al., 2005; Li et al., 1996; Palmiter et al., 1987).  Unfortunately, the high toxicity of 

diphtheria fragment A can also cause unintended cell death and make creation of stable 

transgenic lines difficult (Curado et al., 2007).  Tetracycline-responsive promoters have 

been used in attempt to control expression of diphtheria fragment A (Lee et al., 1998).  

However, the inherent leakiness of even tetracycline promoters meant death still occurred 

prior to gene induction (Keyvani et al., 1999; Paulus et al., 1997).  Such unwanted or 

premature toxicity can be avoided if the transgenic protein is not directly toxic, as in the 

case of diphtheria toxin A, but like a nitroreductase enzyme, specifically sensitises the 

cells to a prodrug cytotoxin.   

 

Cell ablation experiments using nitroreductase enzymes have primarily used NfsB_Ec in 

combination with the GDEPT prodrug CB1954 or the antibiotic metronidazole (White 

and Mumm, 2013).  Tissue specific expression of NfsB_Ec can be achieved through the 

use of tissue-specific promoter sequences.  Transgenic NfsB_Ec expression from tissue-

specific promoters has enabled the ablation of mouse astrocytes (Cui et al., 2001), 

adipocytes (Felmer et al., 2002), luminal cells (Clark et al., 1997), neurons (Isles et al., 

2001), and podocytes (Macary et al., 2010) by CB1954.  Similarly, rat central nervous 

system progenitors expressing NfsB_Ec have also been ablated upon CB1954 

administration (Kwak et al., 2007).  A potential issue with using CB1954 as a cell 

ablation prodrug, however, is its bystander effect.  While a bystander effect is important 

for GDEPT, in cell ablation experiments the spread of toxic metabolites can cause 

unwanted off-target cell death (Curado et al., 2008; Felmer et al., 2002; Felmer and Clark, 

2004).  However, no bystander toxicity was observed when highly vascularized mouse 

tissues were targeted, believed to be a consequence of rapid dilution of the toxic 
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metabolites in the bloodstream (Clark et al., 1997; Isles et al., 2001; Kwak et al., 2007).  

Moreover, a bystander effect could even be beneficial in some cases for modeling broad 

tissue injuries (Mathias et al., 2014).  CB1954 could have more utility as a specific cell 

ablation agent in the future by using NfsB_Ec mutants, or orthologous enzymes, that 

favour production of the 4-NO2 (low bystander) reduction product (Jarrom et al., 2009).  

Concerns over bystander toxicity can be avoided altogether, however, if the activated 

prodrug completely lacks bystander effect.  The antibiotic metronidazole is an example of 

“nil-bystander” nitroaromatic prodrug i.e. its toxic reduction product completely lacks a 

bystander effect, commonly used for cell ablation studies (Lee et al., 2012).  

 

Metronidazole is a 5-nitroimidazole prodrug that is in used clinically as an antibiotic 

(Edwards, 1980) (Figure 1.4).   

 

 

 

 

 
Figure 1.4 – Structure of the 5-nitroimidazole nil-bystander prodrug metronidazole. 

 

Reduction of the nitro group on the imidazole ring irreversibly converts metronidazole 

into a toxic DNA cross-linking agent (Lindmark and Muller, 1976).   Generally, toxicity 

is restricted to invading prokaryotes that express Type I nitroreductase enzymes, or 

anaerobes that express either Type I or Type II nitroreductases.  As human cells tend to 

be well oxygenated and typically lack Type I nitroreductase enzymes, metronidazole has 

low toxicity to patients (Golan et al., 2011).  Once activated, metronidazole is highly cell 

entrapped, meaning it lacks a bystander effect (Bridgewater et al., 1997; Curado et al., 

2008).  Metronidazole in combination with NfsB_Ec has been most widely used to ablate 

cell lineages in zebrafish models of disease (Figure 1.5).   
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Figure 1.5 – Metronidazole Cell Ablation in Zebrafish.  A) A transgenic zebrafish expresses a type I 
nitroreductase in a single tissue through the use of a tissue specific promoter sequence.  When the prodrug 
metronidazole is administered, it is specifically converted into a toxic form in the nitroreductase expressing 
tissue.  B) Phenotypic changes following the ablation can provide information on the physiological role of 
the tissue, or on the function of repair processes.   
 

Zebrafish are particularly useful cell ablation models, as they are physiologically similar 

to humans across a range of attributes, and can even be used to model tissue development 

and regeneration processes (Lieschke and Currie, 2007). Additionally, as zebrafish 

embryos are translucent, developmental process can be directly observed under a 

microscope (Lieschke and Currie, 2007).  Tissue specific expression of NfsB_Ec has 

enabled the metronidazole-mediated ablation of zebrafish podocytes (Zhou and 

Hildebrandt, 2012), male germ cells (Hsu et al., 2010), oocytes (Hu et al., 2010), rod cells 

(Montgomery et al., 2010), bipolar cells (Zhao et al., 2009), beta cells (Pisharath et al., 

2007), and macrophages (Gray et al., 2011).   

 

Despite the flexibility of NfsB_Ec to activate metronidazole multiple tissues, it is not 

without its limitations.  For example, specificity of cell ablation is highly dependent on a 

suitable tissue-specific promoter from which to express the nitroreductase transgene 

(Curado et al., 2008).  Additionally, some tissues are less accessible to metronidazole 

than others, potentially resulting in an incomplete or highly time-delayed ablation 

(Curado et al., 2008).  A larger and more specific problem, with parallels to the 
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unsuccessful CB1954 GDEPT clinical trial (Patel et al., 2009), is that metronidazole is 

also a poor NfsB_Ec substrate (Mathias et al., 2014).  High, near lethal, doses of 

metronidazole are required for cell ablation of NfsB_Ec-expressing cells to occur 

(Mathias et al., 2014).  The standard dosage of metronidazole required for cell ablation is 

10 mM (added directly into the fish tank) (Mathias et al., 2014).  While 10 mM 

metronidazole is not lethal to zebrafish embryos during typical 24 h experiments, over 48 

hours it can cause up to 25% lethality (Mathias et al., 2014).  A 10 mM metronidazole 

dose has also been observed to induce non-specific apoptosis in the superficial 

telencephalon (Pisharath, 2007).  The general toxicity of metronidazole could be 

decreased if a lower prodrug concentration were be used.  A nitroreductase much more 

active with metronidazole than NfsB_Ec could reduce the concentration required for 

targeted ablation to occur, reducing off-target lethality and improve ablation experiments.  

Fortunately, due to the clinical potential of GDEPT, there has been research into 

developing superior nitroreductase enzymes for the activation of prodrugs.     

 

1.3 Next Generation Nitroreductase Enzymes  
 

1.3.1 Nitroreductases from Culturable Bacteria 

 
Developing superior enzymes to NfsB_Ec could be achieved by either engineering or 

discovering new nitroreductase enzymes.  Although GDEPT and cell ablation 

experiments have primarily relied on NfsB_Ec, it is certainly not the only nitroreductase 

present in nature (Prosser et al., 2013, 2010), or even in E. coli.   E. coli possesses 

another, non-homologous, oxygen-insensitive enzyme capable of efficiently activating 

CB1954 called NfsA_Ec (Vass et al., 2009).  Indeed, NfsA_Ec is around 18-fold more 

efficient (kcat/KM) compared to NfsB_Ec (Vass et al., 2009) at activating CB1954.  The 

increase in catalytic efficacy translated to also increased sensitivity of ovarian carcinoma 

SKOV3 cells expressing NfsA_Ec to nitrofuratonin (another nil-bystander prodrug) (Vass 

et al., 2009).   

 

To readily assess and compare nitroreductase enzymes from a range of species, the 

Ackerley lab created a “core” plasmid library of 47 (expanded to 58 post-publication) 

nitroreductase enzymes (Prosser et al., 2013).  The genes were cloned from the genomes 
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of 21 different bacterial species on the basis of sequence similarity to known 

nitroreductases, representing 11 distinct enzyme families.  All genes were then 

transformed into E. coli for heterologous expression (Prosser et al., 2013).  Screening the 

library using CB1954 identified the nitroreductases YcnD from Bacillus subtilis and NfsB 

from Vibrio vulnificus (NfsB_Vv) as possessing superior CB1954 kcat/KM kinetics to 

NfsB_Ec (Prosser et al., 2013).  Another library member, NfsB from Vibrio harveyi 

(NfsB_Vh) was much more active with metronidazole (~20 fold lower bacterial IC50) 

compared to NfsB_Ec (Condon, 2013).  NfsB_Vh also increased metronidazole 

sensitivity compared to NfsB_Ec when expressed from eukaryotic (HCT-116) cells 

(Condon, 2013).  These data suggest that alternative nitroreductase enzymes offer 

promise for improving future GDEPT trials and targeted cell ablation studies.   

 

1.3.2 Metagenomic Discovery of Nitroreductase Enzymes 
 

To date, all nitroreductase enzymes studied have been purified from culturable bacteria.  

This approach is inherently limited, however, as an estimated 99% of all bacteria cannot 

be cultured in a laboratory setting (Torsvik et al., 1990).  The lack of culturability of these 

organisms is likely due to the inability to accurately replicate factors such as the required 

nutrient, pH, temperature, and osmotic conditions (Stewart, 2012).  While technology 

advancements have increased the culturability of some bacteria (Ling et al., 2015), 

metagenomic libraries are the primary method used for studying the genes and gene 

products of unculturable microorganisms.      

 

A metagenomic library is created by first fragmenting all the DNA present in a 

environmental sample (referred to as environmental DNA or eDNA) (Piel, 2011).  

Environmental samples from which the microbial DNA is extracted can include terrestrial 

soil (Brady et al., 2004), mammalian digestive systems (Hess et al., 2011) or faeces (Xu 

et al., 2013), insect guts (Warnecke et al., 2007), and seawater (Chu et al., 2008).  The 

fragmented DNA is then cloned in a vector (plasmid or cosmid typically) and transformed 

into a culturable host such as E. coli (Piel, 2011).   

 

Following metagenomic library creation, two general screening systems exist: functional 

screens and homology screens (Iqbal et al., 2012).  Functional screens detect the 
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expression of target genes from the host, via induced phenotypes such as a colour change.  

In contrast, homology screens use sequence similarity to identify new member of known 

gene families (Piel, 2011).  Screening metagenomic libraries has previously enabled the 

detection of novel phosphopantetheinyl transferase (Owen et al., 2012), xylose isomerase 

(Parachin and Gorwa-Grauslund, 2011), polymerase (Simon et al., 2009), and protease 

(Niehaus et al., 2011) enzymes, to name a few.  The genomes of unculturable 

microorganisms are therefore a promising source for new nitroreductase enzymes in the 

future.  

!

1.4 Engineered Nitroreductase Enzymes 
 

1.4.1 Directed Evolution  
 

An alternative to discovering new nitroreductase enzymes is to engineer existing ones 

using directed evolution.  Directed evolution is the process of generating mutants of a 

given gene, followed by the selection of mutants with improvements in a desired 

enzymatic activity (Tracewell and Arnold, 2009).  Mutations can either be introduced in a 

random or targeted fashion, the latter generally mutating sites known or believed to be 

important for catalytic activity (Jäckel et al., 2008).  Artificial selection pressures i.e., 

pressures not typically encountered by the native enzyme, are then applied to select for 

enzyme variants with desired activities (Cobb et al., 2013).    

 

The starting point for many directed evolution experiments is a promiscuous activity of 

an enzyme.  A promiscuous enzyme activity is one outside the primary activity of the 

enzyme, and unlikely to have been selected for by nature (Khersonsky and Tawfik, 2010).  

Promiscuity can come in several forms, such as environment promiscuity - enzymes with 

activity outside of physiological conditions; substrate promiscuity - enzymes active with a 

broad range of substrates; and catalytic promiscuity - enzymes capable of catalyzing 

several distinct chemical transformations (Hult and Berglund, 2007).  Enzyme 

promiscuity may be important from an evolutionary perspective, providing adaptive 

capabilities to rapid environment changes (Hult and Berglund, 2007).  Supporting this 

view is the observation that promiscuous activities can often be rapidly improved by only 

a few genetic changes without affecting native enzyme function (Aharoni et al., 2005; 

Gould and Tawfik, 2005).  Promiscuous activities could therefore enable enzymes to 
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rapidly adapt to sudden environmental changes without compromising their native, and 

often essential, primary activity (Aharoni et al., 2005).  Furthermore, the activities of 

highly promiscuous enzyme are often easier to alter than the activities of enzymes with 

highly specific functions (Tracewell and Arnold, 2009).  Regardless, the high substrate 

promiscuity of nitroreductase enzymes has made them highly amenable to directed 

evolution. 

  

1.4.2 Nitroreductase Directed Evolution  
 

Directed evolution strategies for improving nitroreductase activity with CB1954 have 

ranged from rational, utilizing previously solved protein crystal structures, to random 

mutagenesis approaches.  The earliest example of directed evolution to improve prodrug 

activation by a nitroreductase used the crystal structure of NfsB_Ec to identify the 

substrate-binding pocket of the enzyme (Grove et al., 2003).  Nine amino acid residues 

surrounding the site were individually targeted for NNN codon mutagenesis, producing 

nine separate libraries, each with 64 gene iterations apiece.  For screening purposes the 

libraries were chromosomally integrated into E. coli !nfsB cells using a bacteriophage 

vector. Individual E. coli !nfsB lysogens were replica plated on multiple agar plates 

containing escalating CB1954 concentrations.  E. coli !nfsB cells expressing superior 

NfsB_Ec variants were inviable on lower CB1954 concentrations than a wild-type 

expressing lysogen.  The top mutant (an F142K substitution) sensitised SKOV3 cells to 

around five-fold lower levels of CB1954 than wild-type NfsB_Ec and possessed ~2.4-

fold improvement in kcat/KM (Grove et al., 2003; Race et al., 2007).  Combining F142K 

with N71S, another beneficial single mutation identified in the initial screens, 

synergistically increased the kcat/KM beyond each mutation alone (Race et al., 2007).  

However, the combination of beneficial single mutations did not always synergistically 

improve activity with CB1954 (Jaberipour et al., 2010).  

 

Another directed evolution experiment used the NfsB enzyme FRaseI from the marine 

bioluminescent bacterium Vibrio fischeri.  Unlike its E. coli analogue, FraseI is a highly 

active FMN reductase capable of supplying FMNH2 to the bioluminescence reaction 

(Zenno et al., 1994). FRaseI was selected for directed evolution as it exhibited superior 

CB1954 activity (kcat/KM) compared to NfsB_Ec (Swe et al., 2012).  Site-saturation 
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mutagenesis was performed separately on nine predicted catalytically important codons to 

produce nine mutagenesis libraries, similar to the method used in Grove et al., 2003.  The 

libraries were screened with CB1954, using DNA damage as a quantitative readout of 

prodrug activation (Discussed in Section 3.1.4) to identify superior enzyme variants.  The 

seven top mutants all demonstrated improvements in CB1954 KM compared to wild type 

FRaseI.  The top mutant identified, a F142W substitution, exhibited an 8.2 fold increase 

in CB1954 kcat/KM compared to wild type.  An F142 site substitution was also the top 

NfsB_Ec mutant identified in the Grove et al., 2003 study, demonstrating that 

catalytically important residues can be conserved within the NfsB family.  Also as 

previously observed with NfsB_Ec (Race et al., 2007), the combination of beneficial 

single mutations into FRaseI double mutants synergistically enhanced CB1954 activity 

(Swe et al., 2012).   

 

The DNA damage caused by activated CB1954, like many nitroaromatic prodrugs, 

induces the bacterial SOS response (Dale et al., 1989).  The SOS response is a 

stress/repair pathway induced by genotoxic damage, specifically fragmented single-

stranded DNA (Baharoglu and Mazel, 2014).  In addition to inducing a repair network of 

genes, the SOS response also can also induce chromosomally integrated bacteriophages 

to enter the lytic cycle and exit their host cell.  The SOS-induced lytic cycle was 

previously exploited to evolve NfsB_Ec enzymes superior at activating CB1954 (Guise et 

al., 2007).  An NfsB_Ec mutant library was created with three catalytically important 

codons, out of a possible five, randomized by NNN codon mutagenesis (~1,000,000 

variants).  As before, the mutants were packaged into a bacteriophage and integrated into 

E. coli !nfsB.  When a mixed culture of mutant E. coli !nfsB lysogens was transiently 

challenged with a low dose of CB1954, only the most active NfsB_Ec variants converted 

enough prodrug to induce the phage lytic cycle (Guise et al., 2007).  The released phages, 

containing the nitroreductase mutants, were then collected and subjected to two more 

identical rounds of CB1954 selection.  The top triple mutant identified, 

T41Q/N71S/F124T, had a measured CB1954 kcat/KM that was ~45-fold greater than wild 

type NfsB_Ec (Jarrom et al., 2009).   

 

Nitroreductases evolved for improving GDEPT have also been beneficial for targeted cell 

ablation in zebrafish.  The NfsB_Ec T41Q/N71S/F124T mutant identified in Guise et al 

(2007) also possessed superior metronidazole activation (Mathias et al., 2014).  When 
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expressed from spinal motor neurons, the mutant increased sensitivity to both CB1954 

and metronidazole (Mathias et al., 2014).  Significant levels of apoptosis were now 

achievable using the non-lethal dose and challenge period of 10 mM metronidazole for 4 

h, respectively (Mathias et al., 2014).  However, as the T41Q/N71S/F124T mutant was 

evolved for superior CB1954 activation, there was no assurance it would show 

improvements, or even any activity at all, with other substrates.  That it also demonstrated 

superior metronidazole activation was serendipitous, and will no doubt be useful for 

future ablation experiments.  The crossover of superior enzymatic activity to other 

substrates was also observed with the chromate/nitroreductase YieF from E. coli 

(YieF_Ec).  As mentioned in Section 1.2, nitroreductase enzymes have the potential to be 

used as chromate bioremediation agents.  To enhance its utility as a bioremediation agent, 

YieF_Ec was modified by directed evolution to improved its Cr(VI) reduction activity 

(Park et al., 2001).    However, several of YieF_Ec mutants with superior Cr(VI) 

reduction activity also possessed enhanced activity with CB1954 (Barak et al., 2006a).  In 

ongoing work the Ackerley lab has made similar observations regarding the general 

increase of catalytic activity of nitroreductase mutants with multiple substrates.  For 

example, many nitroreductase mutants selected for improved activity towards the second-

generation prodrug PR-104A (a dinitrobenzamine mustard) are also more active with 

metronidazole (Dr. Janine Copp, Dr. Elsie Williams, unpublished).  Nitroreductase 

enzymes evolved for GDEPT or chromate reduction could therefore serve as valuable 

tools for cell ablation studies using metronidazole, as the T41Q/N71S/F124T mutant 

demonstrated. Relying on mutants selected with GDEPT prodrugs, however, may 

inherently restrict activity maxima for the nil-bystander prodrugs used for cell ablation.   

To date, no directed evolution studies have been performed specifically to improve 

nitroreductase enzymes for targeted cell ablation.  The primary goal of this thesis was to 

address this deficiency by evolving nitroreductases that were specifically optimized for 

cell ablation applications.   

1.3 Aims of this Thesis 
 

There were two major aims of this thesis.  The first was to use directed evolution to 

expand the capabilities of nitroreductase cell ablation studies: Specifically, the 

development of nitroreductase pairs possessing non-overlapping prodrug selectivities.   
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Co-expressing the pair in two different zebrafish tissues would provide temporal control 

over the ablation of each in isolation, or together simultaneously.  The second aim was to 

expand the range of nitroreductases available to future biotechnological applications, by 

discovering new nitroreductases from metagenomic libraries and assessing their potential 

as cell ablation enzymes.   
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Chapter 2 Methods 
 

2.1 Oligonucleotide Primers   
 

2.1.1 Storage of Primers 

 

All primers used in this study were synthesised by Integrated DNA TechnologiesTM (IDT; 

Coralville, IA, USA) and supplied lyophilized.  For long-term storage, primers were 

resuspended in TE buffer (10 mM Tris-Cl pH 8.0, 0.1 mM EDTA) to a final 

concentration of 100 µM and kept at -20 oC..  For working stocks, aliquots were diluted in 

autoclaved, 0.22 #m filter-sterilized, distilled and deionised (ddH2O) water to a final 

concentration of 10 #M.  

2.1.2 Primers Used 

 

Underlined sequences indicate restriction sites used for cloning of amplified PCR 

products. 

 

All primers are written 5’ to 3’. 
 

Nitroreductase-specific primers            

NfsA_Ec_Fw GGCATATGACGCCAACCATTGAAC 

NfsA_Ec_Rv GGGTCGACTTAGCGCGTCGCCCAACCCTG 

AzoR_Ec_Fw GGGGCATATGAGCAAGGTATTAGTTCTT 

AzoR_Ec_Rv GGGGGTCGACTTATGCAGAAACAATGCTGT 

NfsB_Ec_Fw GGGCATATGGATATCATTTCTG 

NfsB_Ec_Rv GGGGAATTCTTACACTTCGGTTAAG 

NfsA_Pp_Fw CCCCCATATGAGCCTTCAAGACGAAG 

NfsA_Pp_Rv CTAGGTCGACTCAGCGCAGGCCGAAAC 

NfsB_Vv_Fw GGGGCATATGACTATTGTTCAAGCT 

NfsB_Vv_Rv GGGGTCGACTTAGATTTCGGTAAAAACAG 
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Gateway Primers            

NfsA_EcGW_Fw GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAA

CCATGGGCACGCCAACCATTGAACT 

NfsA_EcGW_Rv GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAGCGCGTCGCCCA

ACCCTG 

 

Primers used for single site mutagenesis of NfsA_Ec        

F42C_Fw GTGCGACGTCCAGTTCCAGTTGCTTGCAGTGCAGTAGCATT 
F83L_Fw TCTGGGTGTTCTGTGCCGACCTGAACCGCCATTTACAGATC 
K222H_Fw ATATCCGCCGAACAATCATTCATGAAAGCCGCCCATTTAT                             
S224C_Fw GCCGAACAATCATTAAAGAATGCCGCCCATTTATTCTGGAT 

F227I_Rv GGGTCGACTTAGCGCGTCGCCCAACCCTGTTTGTGCAAATAA 

TCCAGAATAATATCCAGAATAA 

F42C_Rv CAACAGTTGTTCCGCCAGG 

F83L_Rv GTCGGCACAGAACACCCAGA 

K222H_Rv AATGATTGTTCGGCGGATAT 

S224H_Rv TTCTTTAATGATTGTTCGGC 

 

Miscellaneous primers           

pMMB_Fw GGCTCGTATAATGTGTGG 

pMMB_Fw GACCGCTTCTGCGTTCTGAT 

T7_promoter TAATACGACTCACTATAGGG 

T7_terminator GCTAGTTATTGCTCAGCGG 

M13_Fw GTAAAACGACGGCCAG 

M13_Rv CAGGAAACAGCTATGAC 
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Table 2.1 – Bacteria strains used in this study 

2.2 Bacteria Strains Used  
 

All bacterial strains used in this study are presented in Table 2.1. 

 
Strain Relevant characteristics  Source 

   

W3110 E. coli K12 F- $- rph-1 IN(rrnD-rrnE)1 Lab stock 

SOS-R2 ADA-510 %nfsA, %nfsB , %azoR %nemA %tolC (Prosser et al., 2013) 

6KO W3110 %nfsA, %nfsB, %yieF, %ycaK, %mdaB, %azoR (Horvat, 2012)  

7KO 6KO %nemA (Williams, 2013) 

7NT 6KO %nemA %tolC (Copp et al., 2014) 

7TL 7NT  $DE3 Rory Little 

SOS-R4 7NT containing pANODuet (GFP SOS plasmid) (Copp et al., 2014) 

BL21  F- ompT gal dcm lon hsdSB (rB
- mB

-) $(DE3) Novagen 

DH5& supE 44 DlacU 169 (Ø80 lacZ DM5) hsdR17 Invitrogen 

 

 

2.3 Plasmids 
 

The plasmids used in this study are presented in Table 2.2.  In addition, plasmid maps of 

the pUCX E. coli expression vector and the 279-V5 mammalian vector are presented in 

Figure 2.1 and Figure 2.2 respectively.  
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Plasmid Relevant characteristics       Source 

   

pUCX Ampr E. coli expression vector. tac 

promoter, lac operator, pET28a(+) 

RBS 

   (Prosser et al., 2010) 

pETDUET-1 Ampr E. coli expression vector for co-

expression of two target ORFs. ColE1 

(pBR322) ori, lacI, T7 promoter 

      Novagen  

pET28a(+)  Kanr expression vector for His6-tagged 

enzyme expression. T7 promoter 

      Novagen 

pRSETB Ampr expression vector for the 

Swedish eDNA library.  T7 promoter 

     (Parachin and Gorwa- 

     Grauslund, 2011) 

pDONR221 Kanr Entry Vector for GatewayTM 

recombination cloning 

      Invitrogen 

279-V5  Ampr, Puror Destination vector for 

Gateway recombination cloning.  

Mammalian Expression Vector  

ACSRC (Prosser et al., 2013) 

 pANODuet  Specr Plasmid containing GFP gene 

under control of an SOS (sulA) 

promoter. 

(Copp et al., 2014) 

 

 
 
 

 

 

Table 2.2 – Plasmids used in this study.   

Figure 2.1 – The E. coli Expression Vector pUCX.  After cloning a nitroreductase gene into 
the pUCX multiple cloning site, this vector was used for heterologous nitroreductase 
expression in E. coli. 
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Figure 2.2 – Mammalian expression vector 279-V5.   All nitroreductase enzymes to be 
transfected into HEK293 cells were cloned between the attR1 and attR2 sites using GatewayTM 
recombination technology. 
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Table 2.3 – Profluorophore used in this study.   

 

2.4 Profluorophores   
 

All nitroroaromatic profluorophores were generously provided by Dr. Jeff Smaill 

(ACSRC; University of Auckland, New Zealand).  Profluorophores were made up from 

powdered stocks in anhydrous DMSO.  Stocks of FSL41, FSL76, and FSL150 were made 

to 10 mM.  Stocks of FSL178 were made to 5 mM.  All profluorophores were stored in 

aliquots at -80 oC.  Profluorophore structures and excitation/emission wavelengths of the 

activated (post-nitroreduction) form are presented in Table 2.3. 

 

Name Structure ex/em wavelengths (nm) 

after nitroreduction 

   

FSL41   

Blue ex 355/em 460 nm 

FSL76  

 

 

 

 

 

Green ex 405/em 585 

 

FSL150 

 

 

Green ex 355/em 535 nm 

FSL178 

 

 

Red ex 645/em 660 nm 
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2.5 Nitroaromatic Compounds  

 

All prodrugs/compounds (Table 2.4) were made up from powdered stocks in anhydrous 

DMSO. Stocks of nitroaromatic compounds were stored in aliquots at  

-80 oC.   

 

Name Structure Description 

   

Metronidazole 

 

5-nitroimidazole nil-

bystander prodrug 

Tinidazole   

 

 

5-nitroimidazole nil-

bystander prodrug 

Niclosamide  Nitroreductase positive 

selection agent 

4-Nitroimidazole  4-nitroimidazole putative 

nil-bystander prodrug 

 
Table 2.4 – Nitroaromatic compounds used in this study. 
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2.6 Growth Media 
 

Bacteria were either grown in liquid or solid media cultures. 

 

2.6.1 Liquid Media  

 

Lysogeny Broth (LB)* 

• 1% Bacterial Peptone (w/v) 

• 0.5% Yeast Extract (w/v) 

• 1% NaCl (w/v) 

 

*Provided as a premix by Duchefa BiochemieTM (Haarlem; The Neatherlands) 

 

LB was made up in ddH2O to a final concentration of 20 g.L-1 before autoclaving (unless 

stated otherwise, all autoclaving was conducted at 121 °C for 30 minutes).  Growth 

supplements were added when the LB had cooled to below 50 °C.      

 

SOC Media* 

• Tryptone 20 g.L-1 

• Yeast extract 5 g.L-1 

• KCl 2.5 mM 

• NaCl 10 mM 

• MgCl2 10 mM**  

• Glucose 20 mM** 

 

*Adjusted to pH 7.0 using NaOH  

**Filter sterilized in ddH2O and added post-autoclave 
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M9 Minimal Media* 

• 2% glucose 

• 1x SigmaTM M9 salts**  

• 2 mM MgSO4 

• 100 µM CaCl2 

 

*Sterilized with a 0.22 µm filter prior to use 

**Provided as a premade mixture (Sigma-Aldrich) consisting of: 

• 33.9 g.L-1 Na2HPO4 

• 15 g.L-1 KH2PO4 

• 5 g.L-1 NH4Cl 

• 2.5g.L-1 NaCl 

2.6.2 Solid Media 
 

Agar plates for growing bacteria were made by supplementing LB with 1.5% (w/v) 

Sigma ScientificTM agar, prior to autoclaving.  Growth supplements were added to the 

molten agar once its temperature had dropped below 50 °C.  The molten agar was poured 

into sterile Petri dishes in a sterilized laminar flow hood and left for 30 min to solidify.  

Small Petri dishes plates (90 mm x 15 mm) were filled with 15-20 mL of the molten agar.  

Large Petri dishes (150 mm x 25 mm) were filled with 40-50 mL molten agar.  Plates 

were stored at 4 °C for up to 3 weeks.  

2.6.3 Antibiotics  

 

All antibiotics were made up in 1000x stock solution in ddH2O and filter-sterilized using 

a 0.22 µm filter.  All antibiotic solutions were stored as aliquots at -20 °C.  Final 

concentrations used are presented in Table 2.5. 

 

 

 

 

 

 



! &/!

Antibiotic Final concentration used 

  

Ampicillin (Amp) 100 #g.mL-1 

Spectinomycin (Spec) 50 #g.mL-1 

Kanamycin (Kan) 50 #g.mL-1 

Puromycin (Puro) 1 – 2 µM  

 

2.6.4 Bacteria Growth Additives  

 

Stock solutions of IPTG and glucose (Table 2.6) were made up in ddH2O and filter-

sterilized using a 0.22 µm filter.  Aliquots of IPTG were stored at -20 °C while aliquots of 

glucose were stored at room temperature.   

 

Additive  Stock concentration  

  

Isopropyl !-D-1-thiogalactopyranoside (IPTG) 100 mg.mL-1 

Glucose 200 mg.mL-1 
Table 2.6 – Common additives to LB

2.7 Growth and Storage of Bacterial Cells 

 

Bacteria were grown in liquid culture at either 30 °C 200 revolutions per minute (rpm) or 

37 °C 200 rpm.  The volume of media used made up no more than 1/5 of the total volume 

of the flask.   

 

Bacteria cultures on agar were grown at 37 °C in a non-shaking incubator.  For long-term 

storage of bacteria strains, cultures were mixed in a 1:1 ratio with autoclaved 80% 

glycerol and stored at -80 oC.  

 

Table 2.5 – Supplements for Bacterial Growth 
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Bacteria were recovered from frozen glycerol stocks by removing a small amount of cells 

using a sterile pipette tip and placing into sterile LB media + appropriate antibiotics.  

Cells were then grown overnight at 30 °C 200 rpm.   

 

2.8 Standard Molecular Biology Protocols 
 

2.8.1 Isolation of Plasmid DNA  

 

All plasmid DNA minipreps were performed using the Geneaid High-Speed Plasmid 

Mini KitTM (Geneaid Biotech Ltd; New Taipei City, Taiwan) as per the manufacturer’s 

instructions.  Plasmid DNA was eluted in 50 µL of ddH2O preheated to 65 oC.  Purified 

DNA samples were stored at -20 oC. 

 

2.8.2 Plasmid DNA Quantification 

 

The purity and concentration of all plasmid minipreps was determined using a 

Thermoscientific NanoDrop ND-1000TM spectrophotometer (Thermo Fisher Scientific; 

Waltham, MA, USA).  Prior to use, the spectrophotometer was blanked with the solvent 

used to elute the DNA (typically ddH2O).    

 

2.8.3 DNA Sequencing 

 

Macrogen Inc. (Seoul, South Korea) performed all Sanger sequencing presented in this 

thesis. Where possible, at least 100 ng.µL-1 of plasmid DNA was sent as a sequencing 

template. 

2.8.4 Agarose Gel Electrophoresis  

 

For size quantification of DNA samples, 5 µL were run on 1% agarose gels (1% w/v 

agarose in TAE buffer) containing 1 µg.mL-1 ethidium bromide.  Set gels were submersed 

in TAE buffer and DNA samples were loaded into each well.  Gels were run at 135 V, 
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400 A, for 30 minutes.  DNA migration was visualized under UV light.  Hyperladder 1 

(Bioline; London, UK) was used as a DNA size standard.   

 

2.8.5 Restriction Digests  
 

The general reaction setup utilized NEBTM (Ipswitch, MA, USA) enzymes and buffers.  

Prior to digestion, plasmids were heated to 65 °C for 20 minutes to relieve supercoiling.  

Reactions were typically set up as shown in Table 2.7. 

 

Component Quantity 

  

10x CutSmartTM Buffer 1/10 final volume 

Purified DNA  1 – 10 #g  

Restriction enzyme(s) 10 U per #g of DNA 

ddH2O To dilute the DNA to 20 ng.#L-1 
Table 2.7– Restriction digest reaction components. 

 

Digests were incubated at 37 °C for 2-3 hours (h) after which restriction enzymes were 

heat inactivated at 65 °C for 20 minutes.  Digested DNA was stored at -20 °C.   

 

2.8.6 DNA Ligation Reactions 
 

DNA sticky ended ligations were carried out using BiolineTM (London, UK) T4 DNA 

ligase.  Reactions were set up as shown in Table 2.8. 

 

Component Quantity 

  

5x BioLineTM ligation buffer 1/5 final volume 

Digested vector DNA  100 ng – 200 ng 

Digested insert DNA 100 ng – 200 ng 

1 U.#L-1 T4 DNA ligase  1U per 200 ng total DNA 

ddH2O To dilute the DNA to 20 ng.#L-1 
Table 2.8 – Components of typical DNA ligase reactions. 
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Digested vector and insert DNA were mixed together to achieve a 1:6 molar ratio.  

Ligation reactions were incubated overnight at 16 °C prior to storage at -20 °C.   

 

2.8.7 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

2.8.7.1 SDS-PAGE Recipe

All SDS-PAGE stocks were made up in ddH2O and autoclaved prior to use. 

 

15 % Loading Gel  

• 14.58% acrylamide (w/v) 

• 0.5% bis-acrylamide (w/v) 

• 0.375 M Tris-Cl pH 8.8 (w/v) 

• 0.1% SDS (w/v) 

 

Added into 10 mL of 15% loading gel 

immediately prior to pouring:  

• 100 µL 10% (w/v) ammonium 

persulfate  

• 6 µL tetramethylethylenediamine 

 

10x SDS Run Buffer  

• 0.144% glycine (w/v) 

• 0.03% Tris base (w/v) 

• 0.01 % SDS (w/v) 

 

Gel Destain Solution  

Final concentrations (ddH2O solvent): 

• 40% drum methanol (w/v) 

• 10% acetic acid (w/v) 

  

5 % Stacking Gel  

• 3.87% acrylamide (w/v) 

• 0.107% bis-acrylamide (w/v) 

• 0.125 M Tris-Cl pH 6.8 (w/v) 

• 0.1% SDS (w/v) 

 

Added into 3 mL of 5% stacking gel 

immediately prior to pouring: 

• 23 µL 10% (w/v) ammonium 

persulflate  

• 3.75 µL 

tetramethylethylenediamine  

 

 

 

Commassie Blue Stain 

• 2.5 g.L-1 Coomassie Brilliant 

Blue 

• 45% absolute ethanol (w/v) 

• 10% acetic acid (w/v) 
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2.8.7.2 SDS-PAGE Protocol 

 

For visualisation of bacterial protein expression, 15% SDS-PAGE gels were cast using a 

Bio-Rad Protean II™ apparatus. Roughly 4 mL of 15% Separating Gel was applied to the 

gel cast, covered with ddH2O and left to set for 1 h.  The water was discarded and the 

remainder of the gel case was then filled with 5% Stacking Gel and a gel comb was 

inserted.  The Stacking Gel was then left to solidify for 20 minutes.  

 

2.8.7.3 Preparing Bacterial Cultures for SDS-PAGE 

 

150 µL of overnight bacterial culture was used to inoculate 3 mL of LB + relevant 

antibiotics.  These cultures were grown at 37 °C, 200 rpm to an OD600 of 0.5 before IPTG 

was added to a final concentration of 0.5 µM.  Cultures were then grown for an additional 

4 h at 37 °C, 200 rpm.   After the growth period, cultures were normalized to a consistent 

OD600 by dilution in additional LB media.   

 

OD600-normalized bacteria cultures were added in a 2:1 ratio to 3x SDS-loading buffer 

and heated at 95 °C for 10 minutes.   An aliquot of ThermoscientificTM (NEB; Ipswich, 

MA, USA) unstained protein ladder and samples were boiled at prior to electrophoresis. 

Gels were run in 1x SDS Run Buffer, at constant voltage (150 V) for approximately 1 h, 

roughly corresponding to the time at which the SDS load buffer ran off the gel.  Protein 

bands were stained by gentle shaking in Coomassie Blue Stain solution for 1 h.  The 

Coomassie Blue Stain was then removed and replaced with Destain Solution until protein 

bands were visible (2-3 h).  
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2.6.8 Creation of Chemically Competent Cells 
 
Solutions required: 

 

TYM  

• 2 % tryptone  

• 0.5 % yeast extract  

• 100 mM NaCl  

• 10 mM MgCl2* 

 

Transforming Buffer I (TFBI) 

• 30 mM potassium acetate 

• 50 mM MnCl2 

• 10 mM CaCl2 

• 15 % glycerol (w/v) 

 

Transforming Buffer II (TFBII) 

• 10 mM NaMOPS (pH 7.0) 

• 75 mM CaCl2 

• KCl 10 mM 

• 15 % glycerol (w/v) 

 

All solutions were made up in ddH2O and autoclaved prior to use.  

*Added post-autoclave 

 

Cell cultures were inoculated overnight at 37 °C 200 rpm in 3 mL of LB + appropriate 

antibiotics.  The following day, 100 µL of the overnight culture was used to inoculate 50 

mL of TYM + relevant antibiotics in a pre-autoclaved 250 mL conical flask.  The culture 

was grown at 37 °C 200 rpm until the OD600 reached 0.3 – 0.4.  The culture was then 

placed on ice for 15 minutes before being transferred to a 50 mL centrifuge tube and 

centrifuged at 2700 g, 2 °C for 10 minutes.  The TYM supernatant was then decanted and 

the cell pellet resuspended in 0.8 x volume of ice-cold TFBI before being placed on ice 

again for 2 h.  The cell suspension was then centrifuged at 2700 g, 2 °C for 10 minutes 

and the supernatant decanted.  The cell pellet was then resuspended in 0.1 x volume of 

ice-cold TFBII.  The chemically competent cells were snap frozen in 50 µL aliquots and 

stored at -80 °C.   
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2.6.9 Heat-shock Plasmid Transformation of Chemically Competent E. coli Cells 
 
Chemically competent cells were defrosted on ice before addition of plasmid DNA (<200 

ng).   The cell/DNA mixture was then incubated on ice for 30 minutes. Heat shock was 

conducted at 43 °C for 90 seconds, followed by addition of 900 µL LB to the cells and 

incubation at 37 °C, 200 rpm for 1 h.  Cells were then pelleted by centrifugation at 17,000 

g for 1 minute before being resuspended in 100 µL LB.  Cells were then plated on LB 

agar plates (supplemented with appropriate antibiotics for selection of the transformed 

plasmid). Agar plates were incubated overnight at 37 °C to promote colony formation.   

 

2.6.10 Creation of Electrocompetent Cells  
 

The E. coli strain to be made electrocompetent was grown overnight in LB + appropriate 

antibiotics.  The following day 1 mL of the overnight culture was grown to an OD600 of 

0.5-0.9 in 400 mL of LB + appropriate antibiotics.  After an OD600 of 0.5 had been 

reached, the 400 mL cell culture was split into 50 mL cultures and placed on ice for 15 

minutes.  Cultures were then spun at 2700 g, 2 °C, for 10 minutes.  The supernatant was 

discarded and cells resuspended in 50 mL ice-cold ddH2O.  The cell cultures were spun 

again at 2700 g, 2 °C, for 10 minutes.  The supernatant was discarded again and the cells 

were resuspended in 25 mL sterile ice cold 10% glycerol (made up in ddH2O and 

autoclaved).  Cell suspensions were combined to fit into four 50 mL tubes. These cultures 

were spun again at 2700 g, 2 °C, for 10 minutes before decanting the supernatant and 

resuspending in 15 mL sterile ice cold 10% glycerol.  Cells were spun again at 2700 g, 2 

°C, for 10 minutes.  The supernatant was carefully removed and cells from each tube 

were resuspended in 150 µL of sterile ice cold 10% glycerol. Cells were snap frozen in 40 

µL aliquots and stored at -80 °C.   

 

 

 

 

 

 
!
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2.6.11 Electroporation of Electrocompetent E. coli Cells 
 

For each transformation, a 40 µL frozen aliquot of electrocompetent E. coli cells was 

defrosted on ice.  Once defrosted, 1-50 ng of purified DNA (eluted in ddH2O) was added 

to the cells.  The DNA and cell mixture was incubated on ice for a further 15 minutes.  

The cells were then transferred to an ice cold 0.2 mm-gap electroporation cuvette.  

Electroporation was performed using a Bio-Rad GenePulser XcellTM (Hercules, CA, 

USA).  Cells were pulsed at 2500 V, 25 #F, 200 ', followed immediately by the addition 

of 460 #L SOC media at room temperature.  Cells were recovered for 1 h at 37 °C, 200 

rpm before plating on an agar containing the appropriate antibiotics. 

 

2.6.12 Standard Polymerase Chain Reaction (PCR) 

 

All standard PCR reactions were carried out using Bioline Biomix RedTM Polymerase 

Mastermix (London, UK) with the following reaction components: 

 

Biomix RedTM 

• 10 µL (2x) Biomix RedTM  

• 8 µL ddH2O 

• 1 µL forward primer (0.5 µM final concentration) 

• 1 µL reverse primer (0.5 µM final concentration) 

• 0.5 µL template DNA (<100 ng.µL-1) 

 

When cells on solid media were used as templates for PCR, a small sample of a colony 

was collected with a sterile pipette tip.   
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The standard PCR amplification protocol is displayed in Table 2.9. 
 

Temperature Time  

95 °C 2 minutes  

95 °C 20 seconds  

56 °C* 20 seconds            30 -35 Repeats 

72 °C 25 seconds per kb amplified  

72 °C 5 minutes   
Table 2.9 – Standard PCR thermal parameters. 
 

*The annealing temperature (TA) was increased or decreased depending on the TM 

(melting temperature) of the primers.  

 

For applications requiring a high-fidelity polymerase enzyme, such as molecular cloning, 

New England BioLabs (NEB) PhusionTM Polymerase was used as per the manufacturer’s 

instructions.  

 

2.6.13 Overlap PCR 
 

 

Mutant NfsA_Ec genes were created using overlap PCR.  For each mutation to be 

introduced, two internal gene primers were designed.  The forward primer contained the 

desired codon mutation flanked on either side by 15-18 nucleotides homologous to the 

gene.  An example of the forward primer used to generate the NfsA_Ec F82L mutant is 

displayed in Figure 2.3.  The internal reverse primer was the reverse compliment 

sequence of the nucleotides upstream of the mutant codon in the forward primer. 
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• F83L Forward Primer 

 

 

              TCTGGGTGTTCTGTGCCGACCTGAACCGCCATTTACAGATC 

 

 

 

• F83L Reverse Primer: 

 

              GTCGGCACAGAACACCCAGA 

 

 

 

 
Figure 2.3 – Examples of overlap PCR primers used for single-site mutagenesis of NfsA_Ec.   

 

Two gene fragments were created using gene-specific primers in 10 µL PhusionTM PCR 

reactions.  The first fragment was generated using the internal forward primer and a gene 

reverse primer, while the second fragment was generated using the internal reverse primer 

and a gene forward primer.  To reduce the chance of wild type plasmid contamination, a 

low amount (~100 pg) was used as a template.  The PCR products were then each treated 

with 5 U of DpnI for 1 h at 37 °C to remove any template plasmid in the solution.  The 

two PCR fragments were purified and mixed together at a 1:1 molar ratio.  A complete 

gene containing the mutant codon was then reconstructed using an overlap PCR protocol 

(Table 2.10). 
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Temperature  Time 

98 °C 2 minutes 

98 °C 10 seconds 

48 °C 30 seconds 

72 °C 20 seconds 

Pause NfsA_Ec specific forward and reverse primers added 

98 °C 10 seconds 

54 °C 30 seconds 

72 °C 20 seconds 

72 °C 5 minutes 

Table 2.10 – Overlap PCR thermal parameters. 

 

2.6.14 Error-Prone PCR 
 

For the creation of random mutagenesis NfsA_Pp libraries, the GeneMorphTM II Random 

Mutagenesis Kit was used.  A purified PhusionTM PCR product was used as the template 

DNA in the PCR reaction.  To achieve a high mutation rate, 10 ng of DNA (9-16 

mutations per kb) was added to the 50 µL reaction mixture shown in Table 2.11.   

 

Component Quantity  

  

10x Mutazyme II reaction buffer 5 µL  

40 mM dNTP mixture 1 µL  

25 #g.µL-1 gene forward primer 0.25 µL  

25 #g.µL-1 gene reverse primer 0.25 µL  

Mutazyme II DNA polymerase 1 µL (2.5 U #L-1)  

Template DNA 10 ng in 1 µL ddH2O 

ddH2O 41.5 µL  
Table 2.11 – Mutazyme PCR reaction components.  

 

PCR amplification was performed for 30 cycles using the standard PCR amplification 

displayed in Table 2.9.   
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The Mutazyme PCR products were cloned into a pUCX vector and transformed into 

electrocompetent SOS-R4 cells for screening.  Five mutants were sequences to determine 

the approximate number of point mutations introduced per gene (from our experience it is 

lower than predicted by the Mutazyme II parameters).   

 

2.6.15 Cleaning and Concentrating PCR Products 
 

PCR products were cleaned and concentrated using ZymoTM Spin Columns as per the 

manufacturer’s instructions, and eluted in 10 µL of sterile ddH2O preheated to 65 °C.   

2.7 Negative Selection Directed Evolution Screening Protocol  
 

Mutant nitroreductase libraries in SOS-R4 were grown overnight from glycerol stocks at 

30 °C, 200 rpm in LB + Amp + Spec + 0.4 % glucose (LBASG).  The following day, 150 

µL of the overnight culture was use to inoculate 3 mL of LB + Amp + Spec + 50 µM 

IPTG + 0.2 % glucose (LBASIG) and grown for 2.5 h at 30 °C, 200 rpm.  250 – 500 µL 

of this day culture was then plated on a large Petri dish (150 mm x 25 mm) of agar 

containing Amp + Spec + 50 µM IPTG and supplemented with niclosamide and 

metronidazole.  Niclosamide was added to the molten agar to a final concentration of 0.5 

µM.  When performing metronidazole negative selection, metronidazole was added to 

molten agar to a final concentration of 800 – 1000 µM. Agar plates were then grown 

overnight at 37 °C.  The following day each colony that formed was picked using a sterile 

pipette tip or toothpick and inoculated into a unique well in a 96 well plate containing 100 

µL of LBASG.  The plate was grown overnight at 30 °C, 200 rpm to made a glycerol 

stock the following day.   

2.8 Fluorescence assays 
 

Cultures of E. coli 7KO cells containing pUCX:nitroreductase plasmids were grown 

overnight at 30 °C, 200 rpm from glycerol stocks in 3 mL LB + Amp + 0.4 % glucose.  

The following day, 18 µL of each overnight culture was added in duplicate to 240 µL of 

filter-sterilized M9 + Amp + 50 #M IPTG (M9AI) in a 96-well plate (outer wells 

excluded).  Cell cultures were then grown for 2.5 h at 37 °C, 200 rpm.  Each duplicate 

was split into 2 x 100 #L volumes, with 100 µL added to 100 µL M9AI media containing 

20 #M profluorophore (thus ensuring a final profluorophore concentration of 10 #M), and 
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100 µL added to M9AI containing an equivalent volume of DMSO.  Cultures were 

incubated at 37 °C 200 rpm for a further hour after which fluorescence and culture 

turbidity (OD600) were recorded on a EnSpire 2300 Multilabel Reader (Perkin Elmer; 

Waltham, MA, USA).  The excitation and emission wavelengths of the activated 

profluorophores used in this study are presented in Table 2.3. The fluorescence each 

culture was divided by its OD600 to normalize by culture turbidity.  Relative fluorescence 

units (RFU) were calculated from the fold difference between the normalized 

fluorescence values of cultures exposed to the profluorophore, and their respective 

unchallenged controls.  As no background fluorescence was detected for FSL178 

cultures, values are presented only as OD600 normalized fluorescence units.    

 

When performing fluorescence assays on E. coli 7TL clones containing metragenomic 

library fragements, screening was perfrormed in a 384 well plate format identical to that 

of SOS GFP assays.  Profluorophore at 2x its final concentration was added in place of 

the prodrug in the challenged wells.  Fluorescnce and OD600 were recorded after 1 h 

incubation at 37 °C 200 rpm. 

 

2.9 Fluorescence Activated Cell Sorting (FACS) of E. coli Cells 
 

Prior to performing FACS, bacetria cultures were prepared as per a fluorescence assay 

(Section 2.8).  After 1 h incubation with a profluorophore (FSL41), 10 µL of the bacteria 

culture was added to 990 µL of M9 media.  Samples were then run through a BD FACS 

Vantage DiVa flow cytometer (Becton Dickinson; San Jose, CA) using the 355 nm laser 

and the 450/50 bandpass with ND1 filter removed from the Forward Scatter Detector.   

 

2.10 GFP SOS Assays  
 

SOS-R4 strains transformed with pUCX:nitroreductase plasmids were individually grown 

overnight in 150 #L LB + Amp + Spec + 0.4 % glucose.  The following day 15 #L of 

each overnight culture was used to inoculate 200 µL of LB + Amp + Spec + 50 µM IPTG 

+ 0.2 % glucose (LBASIG) in 96 well plate format and grown at 30 °C 200 rpm for 2.5 h.  

Following the incubation period, 30 µL of each culture was added in duplicate to 30 #L 

LBASIG media containing 2x the final prodrug concentration, and 30 µL of culture was 
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added in duplicate to LBASIG media containing an equivalent amount of DMSO, all in 

the wells of 384 well plates (outer well excluded).  Cultures were then incubated for 2.5 h 

at 30 °C 200 rpm.  GFP fluorescence (488 ex/510 em) and culture turbidity (OD600) were 

then recorded using EnSpire 2300 Multilabel Reader (Perkin Elmer; Waltham, MA, 

USA).  To calculate GFP fold induction values, the raw GFP value of each well was 

normalized against its OD600 reading.  Fold induction was then calculated from the fold 

difference between the normalized GFP value of each challenged well and its respective 

unchallenged control.  When presented in graphical format, the minimum y-axis value 

was set to 1.0 (representing no difference in GFP production between the challenged and 

unchallenged cultures).    

 

2.11 Bacterial IC50 assays 
 

Nitroreductase-overexpressing SOS-R4 cells were grown overnight as per the SOS GFP 

assay.  The following day 100 µL of each overnight culture was added to 2 mL LB + 

Amp + Spec + 50 µM IPTG + 0.2 % glucose (LBASIG) in separate 15 mL centrifuge 

tubes.  The centrifuge tubes were incubated for 2.5 h at 30 °C, 200 rpm.  Following the 

growth period, 40 #L of each culture was added to duplicate wells of a 384-well (outer 

wells excluded) plate already containing 40 µL of LBASIG media containing a serial 

dilution of compound to be tested, including a 0 #M concentration, at 2x final 

concentration.  Culture turbidity (OD600) was recorded at T0 and the cells incubated at 30 

°C 200 rpm for an additional 4 h.  An OD600 reading was taken after 4 h.  Growth of each 

well was calculated from the difference between the T0 and T4 OD600 values.  Growth 

inhibition caused by prodrug activation was calculated from the difference in growth 

between challenged cultures and the unchallenged (0 #M) control.  IC50 values for each 

nitroreductase-expressing strain (the prodrug concentration at which growth was inhibited 

by 50% relative to the unchallenged control) were calculated using the non-linear 

regression analysis function of GraphPad PrismTM.   For calculating the metronidazole or 

tinidazole IC50 values of wild-type nitroreductases, or the tinidazole IC50 values of 

NfsA_Ec 7SM mutants, serial dilutions from 800 #M were used.  For calculating the 

metronidazole IC50 values of NfsA_Ec 7SM mutants, serial dilutions from 6000 #M were 

used.  
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2.12 Growth Inhibition Assays  
 

SOS-R4 strains transformed with pUCX:nitroreductase plasmids were grown overnight at 

30 °C, 200 rpm in 150 #L LB + Amp + Spec + 0.4% glucose.  The following day, 15 #L 

of each overnight culture was used to inoculate 200 µL of LB + Amp + Spec + 50 µM 

IPTG + 0.2% glucose (LBASIG).  Cultures were then grown for 2.5 h at 30 °C 200 rpm.   

Assays were performed in 384 well plates (outer wells excluded).  Following the 

incubation period, 30 µL of each culture was added in duplicate to 30 #L LBASIG media 

containing 2x the final prodrug concentration and 30 #L LBASIG media containing an 

equivalent volume of DMSO. A T0 OD600 reading was taken.  Cultures were incubated 

for a further 3 h at 30 °C, 200 rpm, and the T3 OD600 reading was taken. Growth of each 

well was calculated from the difference between the T3 and T0 OD600 values.  Growth 

inhibition was calculated from the relative difference in growth between challenged 

cultures and their respective unchallenged controls.   

 

2.13 Cloning Nitroreductase Genes into 279-V5 
  

NfsA_Ec 7SM mutants were cloned into a 279-V5 (ACSRC, New Zealand) vector using 

the Invitrogen GatewayTM system.   Each NfsA_Ec 7SM mutant was first amplified using 

NfsA_Ec GatewayTM primers.  The GatewayTM primers introduced a mammalian Kozak 

consensus sequence and a Shine-Dalgarno bacterial consensus sequence.  They also 

added an additional glycine after each ATG start codon and converted all stop codons to 

TAG.   

 

2.13.1 BP ClonaseTM 
 

Each nitroreductase Gateway PCR product was cloned into the entry vector 

pDONRTM221 (Invitrogen Corporation, Carlsbad, CA, USA).  Recombination was 

achieved by mixing 150 ng of pDONRTM221 with 50 fmol of GatewayTM PCR product.  

The DNA mixture was then added to 1 µL of Gateway BP ClonaseTM II enzyme mix 

(Invitrogen) and TE buffer (pH 8.0) to a final volume of 10 µL. The mixture was 

incubated overnight at 25 °C. After the overnight incubation, 1 µL of proteinase K (2 

#g.µL-1) was added and the reaction mixture incubated at 37 °C for 10 minutes.  5 µL of 
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the BP ClonaseTM DNA mixture was transformed into chemically competent DH5& cells 

and selected on agar plates containing Kan.  Colonies were analyzed for the presence of 

pDONRTM221 vector containing an NfsA_Ec 7SM mutant by PCR reaction using M13 

Fw and NfsA_Ec Rv primers.  Colonies that tested positive were carried forward to the 

LR ClonaseTM step.   

 

2.13.2 LR ClonaseTM 
 

The final step was recombination of the nitroreductase gene from the pDONRTM221 entry 

vector into the 279-V5 destination vector.  The recombination was performed using 

Gateway LR ClonaseTM II enzyme mix (Invitrogen Corporation, Carlsbad, CA, USA).  1 

µL of LR ClonaseTM II enzyme mix was added to 150 ng of pDONRTM221:nitroreductase 

and 150 ng of 279-V5, made up to 10 #L in TE buffer (pH 8.0).  The mixture was 

incubated overnight at 25 °C.  The following day, as with the BP ClonaseTM step, 1 µL of 

proteinase K (2 #g.µL-1) was added and the reaction mixture incubated at 37 °C for 10 

minutes.  5 µL of the mixture was then transformed into chemically competent DH5& 

cells and plated on agar supplemented with Amp.  The following day colonies were 

screened for recombination of the nitroreductase gene into 279-V5 using T7 Fw and 

NfsA_Ec Fw primers.  Colonies that tested positive had their 279-V5 plasmid sequenced 

to confirm the cloning had occurred correctly.   

 

2.14 Mammalian Cell Culture 
 

2.14.1 Growth and Maintenance of HEK293 Cells 
 

All work with HEK293 cells was performed in a laminar flow hood cleaned with 70% 

ethanol and irradiated with ultraviolet light for 15 minutes.  All solutions to come in 

contact with cells were preheated to 37 °C.  Adherent HEK293 cells were generally 

grown in Dubecco’s Modified Eagle Medium (DMEM) containing 4.5 g.L-1 D-glucose, 

L-glutamine, 110 mg.L-1 sodium pyruvate and supplemented with 10% inactivated fetal 

calf serum (FCS), and 1% Penicillin Streptomycin (Pen Strep).  Cells were typically 

grown in 6 mL of DMEM in a T25 tissue culture flask at 37 °C under 5% CO2.  Half the 

DMEM in the flask was replaced with fresh DMEM every few days.  In cases where a 
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high number of dead cells were present, such as after a subculturing, all the media was 

aspirated and replaced.   

 

2.14.2 Subculturing HEK293 Cells 
 

Cells were subcultured once they had reached 75-80% confluency in the culture flask.  

Media was aspirated and cells were washed with Dubecco’s Phosphate Buffered Saline 

heated to 37 °C.  1 mL Trypsin/EDTA (Life Technologies, Carlsbad; CA, USA) was used 

to stop the cells adhering to the bottom of the culture tissue.  After trypsin was added, 

cells were incubated at 37 °C under 5% CO2 for no more than 5 minutes.  Cells were 

viewed under a light microscope at 4x magnification to confirm they had detached from 

the culture flask.  In cases where trypsin had not resulted in full detachment, the culture 

flask was lightly tapped on a solid surface to completely dislodge cells.  To neutralise the 

trypsin, 3 mL of 10% FCS containing DMEM was then added to the culture flask.  The 

cell suspension was collected and spun at 300 g for 5 minutes at room temperature to 

pellet the cells.  The supernatant was decanted and the cell pellet was resuspended in 1 

mL of DMEM.  Cells were counted by mixed equal volume of resuspended cell culture 

with 0.4% trypan blue viability staining solution.  An H2O sealed haemocytometer was 

loaded with 8 µL of mixture and cell density was calculated as per manufacturer’s 

instructions.  Generally, 250,000 – 500,000 live cells were added into a new T25 flask 

containing 6 mL fresh DMEM media.   

 

2.14.3 Freezing HEK293 Cells for Long Term Storage 
 

To freeze cell lines, cells that had reached 75-80% confluence were washed and 

trypsinised as described in Section 2.14.2.  After cells were spun down and the 

supernatant decanted, cell were resuspended in 1 mL of FCS free, Pen Strep free, 

DMEM.  The cells were diluted to 2 x 106 cells mL-1 and 500 µL was added to a cell 

culture BioStorTM cryotube (National Scientific Supply Company Inc; Claremont, CA).  

To the same cryotube, 500 µL of ice cold 2X freeze media was added (unsupplemented 

DMEM containing 40% FCS, 20% DMSO, and 2% Pen Strep).  Cells were mixed with 

the freeze media before the cyrotube was added to an isopropanol containing Thermo 

Scientific Mr. FrostyTM (Thermo Fisher Scientific; Waltham, MA, USA) and placed at -80 
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°C overnight.  The following day the frozen cryotube was transferred to a liquid nitrogen 

Dewar.   

 

2.14.4 Transfecting HEK294 Cells using Lipofectamine 2000TM  

 

To prepare for HEK293 cell transfection, 500,000 cells were added to a 35 mm cell 

culture dish in 2 mL of DMEM media.  To encourage an even distribution of cells, the 

culture dish was left in the laminar flow for 5 minutes before returning to the 37 °C 5% 

CO2 incubator overnight.  For ease of transport, these cell culture dishes were stored in 

standard 90 mm x 15 mm Petri dishes.  Prior to performing the transfection the media was 

aspirated and the cells were washed with 1x PBS.  2 mL of media lacking Pen Strep was 

then added back onto the cells.   

 

All Gateway-cloned nitroreductase 279-V5 vectors were purified in sterile ddH2O and 

quantified prior to transfection.  For each transfection, 2 #g purified 279-V5 was 

incubated with 250 µL of Opti-MemTM reduced serum media for five minutes at room 

temperature.  In parallel, 5 µL of Lipofectamine 2000TM (Thermo Fisher Scientific; 

Waltham, MA, USA) was also incubated in 250 µL of Opti-MemTM for 5 minutes.  The 

two tubes were then combined and incubated together for 20 minutes at room 

temperature.  After this incubation step, the whole mixture was carefully added into the 

dish containing the cells in Pen Strep free media.  The culture dish was then returned to 

the 37 °C 5% CO2 incubator.  Cells were left to recover for several days, changing the 

media regularly to remove dead cells, before being grown in DMEM supplemented with 

1 µM puromycin.  Cells containing the 279-V5 plasmid were selected over multiple 

subculture cycles in escalating concentrations of puromycin (highest concentration used 

was 2 µM) for several weeks.  Once a stable puromycin resistant population had been 

generated, cells were frozen down as described in Section 2.14.3. 

 

2.15 !-Galactosidase SOS-R2 Assays 
 

Stocks of X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) were made up to 

20 mg.mL-1 in anhydrous DMSO and stored at -20 °C away from direct light.   

 



! ()!

When performing !-galactosidase assays using SOS-R2 cells to assess its potential as a 

metagenomic screening method, the following concentrations of X-gal were used 

(Bioline, London, UK).  X-gal was supplemented into agar containing Amp + 0.1 mM 

IPTG, to a final concentration of 20 #g.mL-1.  When included in molten top agarose, X-

gal was added to a final concentration of 270 #g.mL-1.  The top agarose was allowed to 

cool before plates were incubated at 37 °C.   
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2.16 Imaging Nitroreductase Expression from Colonies Using 4-
Nitroimidazole  
 

Solutions required: 

 

Top Agarose 

 

• 5 mg.mL-1 NaCl 

• 0.6% (w/v) agarose  

 

Made up in a suitable volume ddH2O and autoclaved before use 

 

Top agarose containing the prodrug 4-nitroimidazole was used to detect the expression of 

nitroreductase enzymes from single colonies.  Stocks of 500 mM 4- nitroimidazole were 

diluted in molten top agarose to a final concentration of 5 – 20 mM.  An equivalent 

volume of DMSO was also added to increase the solubility of 4-nitorimidazole in the top 

agarose solution.  For large petri dishes (150 mm x 25 mm) 4-nitroimidazole diluted in 10 

mL of molten top agarose was used per dish, whereas for small Petri dishes (90 mm x 15 

mm) 4 mL of top agarose solution was sufficient.  If the cells expressed nitroreductase 

enzymes from pUCX plasmid, 10 #M of IPTG was incorporated into the LB agar prior to 

plating.  An important optimization step throughout this process was the removal of 

tryptone from the top agarose (included in the original recipe).  When tryptone was 

included in the top agarose cells started to grow within the agarose and began to obscure 

colonies.  After the top agarose had cooled, plates were left at room temperature 

overnight before being placed at 4 oC to enhance color development.  Colonies expressing 

a nitroreductase turned a dark purple colour over time.  
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Chapter 3: Enhancing the Tinidazole Selectivity of NfsA_Ec 
using Directed Evolution 
 

3.1 Introduction 

 

3.1.1 Multiplex Cell Ablation  
 

While multiple studies had evolved superior nitroreductase enzymes for GDEPT 

applications (Grove et al., 2003; Guise et al., 2007; Swe et al., 2012), none had optimized 

them specifically for targeted cell ablation.  The goal of this chapter was to address this 

deficiency by developing nitroreductases suitable for a dual, or “multiplex” cell ablation 

system.  Whereas previous cell ablation studies have used nitroreductase enzymes in 

combination with a prodrug to ablate single tissues (discussed in Section 1.2.3.2), a 

multiplex cell ablation system would enable two distinct tissues to be independently 

ablated within the same model organism.  For this to be feasible, two nitroreductase 

enzymes each possessing non-overlapping nil-bystander prodrug specificities would be 

required.  The first nitroreductase of the pair would selectively activate one prodrug, 

while the second would selectively activate another, distinct prodrug.  Expressing each 

nitroreductase in a different zebrafish tissue would enable the independent ablation of 

either tissue in isolation, or, through the administration of both prodrugs, simultaneously 

(Figure 3.1).  Control over the ablation of two tissues would increase the flexibility and 

scope of cell ablation studies.  For example, the same transgenic zebrafish strain could be 

used to model multiple pathologies, depending on which prodrug was administered and 

therefore which tissue was ablated.  Furthermore, temporal control over the ablation of 

multiple tissues could assist in studying the role of tissue interaction during 

developmental and regenerative processes.   
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Figure 3.1 – Nitroreductase Multiplex Ablation System.  1) Two distinct nitroreductase enzymes are 
each expressed in a different tissue in a zebrafish (Danio rerio) using tissue specific promoters. One cell 
population would only express Nitroreductase A (red nuclei), while the other would only express 
Nitroreductase B (green nuclei).  2) Nitroreductase A and Nitroreductase B possess non-overlapping nil-
bystander prodrug specificities, such that the administration of Prodrug A can specifically ablate cells 
expressing Nitroreductase A, but not cells expressing Nitroreductase B.  In contrast, 3) the administration of 
Prodrug B would specifically ablate cells expressing Nitroreductase B but not Nitroreductase A.   
 

Developing a nitroreductase multiplex ablation system has been one of the ongoing goals 

in the Ackerley lab.  The system has become feasible in recent years as more 

nitroreductase enzymes and prodrugs, beyond NfsB_Ec and CB1954/metronidazole, have 

been discovered.  The diverse 58-membered core nitroreductase library of the Ackerley 

lab (Prosser et al., 2013) (discussed in Section 1.3.1) has been particularly useful resource 

for assessing the relative activities of different nitroreductase enzymes with a given 

prodrug.  

 

A previous screen of the core 58 nitroreductase library against a panel of 16 different nil-

bystander prodrugs identified several nitroreductase enzymes possessing a bias towards 

1) 

Transgenic Juvenile Zebrafish 

Cells expressing 
Nitroreductase A 
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activating certain prodrugs over others (Condon, 2013; Horvat, 2012).  Of particular 

promise for a multiplex ablation system was the finding that the NfsA family members 

from E. coli (NfsA_Ec) and Pseudomonas putida (NfsA_Pp) (35% amino acid identity 

with NfsA_Ec) were, on a molar basis, more effective at sensitising E. coli to the nil-

bystander prodrug tinidazole than to metronidazole.  Like metronidazole, tinidazole is a 

member of the nil-bystander 5-nitroimidazole family of compounds prescribed to treat 

both bacterial and parasitic diseases, such as Helicobacter pylori (Berrutti et al., 2008) or 

Giardia lamblia (Golan et al., 2011) infections, respectively (Figure 3.2).  Reduction of 

the NO2 group of either metronidazole or tinidazole gives rise to a cytotoxic DNA 

damaging agent (Armstrong and Wilson, 2010).  In contrast, NfsB from Vibro vulfinicus 

(NfsB_Vv) demonstrated the reverse, possessing on a molar basis greater activity with 

metronidazole than tinidazole (Condon, 2013; Horvat, 2012).  Encouragingly for the use 

of these enzymes in a eukaryotic cell ablation context, NfsA_Pp and NfsB_Vv 

maintained their preferential activation of tinidazole and metronidazole, respectively, 

when expressed from HEK293 cells (Condon, 2013; Horvat, 2012).  While other potential 

nitroreductase enzyme pairs were identified in this initial library screen that exhibited 

differential specificities for other nil-bystander prodrug candidates, e.g. fluorinated 

misonidazole and fluorinated etanidazole, these compounds were not as well 

characterised or readily available as metronidazole and tinidazole (Dr. David Ackerley, 

personal communication).  Metronidazole in particular is favoured by the field due to its 

relative affordability compared to other cell ablation compounds (White and Mumm, 

2013).  As the long-term goal of the study was to develop an effective and immediately 

applicable ablation system, we selected metronidazole and tinidazole as the prodrugs to 

develop a multiplex ablation system around.     
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Figure 3.2 – Structure of the 5-nitroimidazole nil-bystander prodrug tinidazole.   
 

Although the combination of NfsA_Ec/NfsA_Pp and NfsB_Vv was promising, 

NfsA_Ec/NfsA_Pp still possessed metronidazole activity (Condon, 2013; Horvat, 2012).  

Likewise, while NfsB_Vv was primarily a metronidazole selective enzyme, it still was 

also capable of activating tinidazole.  It was therefore deemed highly likely that the native 

NfsA_Ec/NfsA_Pp or NfsB_Vv enzymes might be insufficiently discriminating in their 

substrate preference to enable effective multiplex ablation.  Consideration was therefore 

given into possible methods of further narrowing the prodrug selectivities of these 

enzymes.  Due to its success in altering nitroreductase activity in the past, a directed 

evolution approach was chosen.   

 

3.1.2 Directed Evolution to Evolve Highly Specific Enzymes   
 

The directed evolution experiments considered in Section 1.4.2 were all performed to 

improve enzyme activity with particular substrate, the primary focus being enhancement 

of nitroaromatic prodrug activation by nitroreductase enzymes.   However, while less 

commonly performed, directed evolution can also be used to narrow substrate selectivity, 

converting enzymes possessing a multiple promiscuous activities into highly specific 

ones (Nair and Zhao, 2008; Tracewell and Arnold, 2009).  There are two general directed 

evolution strategies for evolving more specific enzymes: either an undesired activity can 

be negatively selected against, or a desired activity can be continuously selected for 

(Tracewell and Arnold, 2009).  A negative selection pressure can be used to eliminate 

mutants from a library that possess an undesired activity, often requiring a secondary 

screen to determine if the desired activity is still present (Tracewell and Arnold, 2009).  

Negative selection pressures have enabled the evolution of highly selective laccases 

(Bocola et al., 2004), endopeptidases (Varadarajan et al., 2008a, 2008b), and xylose 

reductases (Nair and Zhao, 2008).  In the case of the xylose reductases, the goal was to 

eliminate promiscuous L-arabinose reductase activity.  There, E. coli cells expressing 

xylose reductase mutants were plated on LB agar containing L-arabinose, the reduction 
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product of which L-arabinitol phosphate, was toxic. The growth of mutants that had 

retained L-arabinose reductase activity was therefore inhibited (Nair and Zhao, 2008).  

Rather than selecting against an undesired activity, continuously selecting for a single 

enzyme function can cause the non-selected functions to weaken and disappear 

throughout the evolutionary process (Tracewell and Arnold, 2009).  Using this strategy 

has enabled the evolution of enantioselective cyclohexanone monooxygenases (Reetz et 

al., 2004), lipases (Bocola et al., 2004) and propane monooxygenases (Fasan et al., 2007).  

Of these two strategies, we chose the former, developing a directed evolution screen that 

negatively selected against an unwanted prodrug activity.   

 

To narrow the substrate specificity of nitroreductase enzymes, we hypothesised that the 

conditional toxicity of the prodrugs metronidazole and tinidazole could serve as an 

effective negative selection pressure.   Similar to the xylose reductase evolution discussed 

above (Nair and Zhao, 2008), we envisaged  plating a mutant nitroreductase library in E. 

coli onto LB agar containing metronidazole or tinidazole.  Given that nitroaromatic 

prodrugs only becomes cytotoxic upon reduction by a nitroreductase, we reasoned that 

only the mutants no longer capable of activating the prodrug should be viable in its 

presence, forming readily selectable colonies.  On the other hand, nitroreductase mutants 

still capable of converting the prodrug to a cytotoxic form should inhibit their own 

growth, preventing colony formation.    

 

A consequence of negatively selecting against an enzyme activity can be a general 

reduction in overall catalytic activity (Nair and Zhao, 2008).  Enzymes evolved via this 

method therefore often also require a positive selection step to improve or retain the 

desired activity (Tracewell and Arnold, 2009).  As metronidazole and tinidazole were 

both 5-nitroimidazoles, we considered it likely that each substrate would dock in a similar 

conformation in the active site of a nitroreductase, and that a majority of mutations 

abrogating activity with one substrate would therefore also impair activity with the other, 

or indeed lead to a loss of nitroreductase activity in general.  To prevent the enrichment of 

completely inactive nitroreductase mutants it was clear that a positive selection pressure 

for active nitroreductase enzymes would also be required.  The ideal solution would be to 

utilize positive selection analogues of metronidazole and tinidazole, i.e., compounds that 

interacted with the nitroreductase active site in an identical manner, but in doing so were 

detoxified by nitroreduction, rather than being converted to a cytotoxic form. 
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Unfortunately, no such compounds are currently known.  However, the Ackerley lab 

recently has discovered that the compound niclosamide can be used as a positive selection 

agent for generic nitroreductase activity.   

 

3.1.3 Niclosamide  
 

The nitroaromatic drug N-(2"-chloro-4"-nitrophenyl)-5-chlorosalicylamide, generically 

called niclosamide (Figure 3.3), was first used clinically in the 1960s to kill parasitic 

worms via impairment of oxidative phosphorylation (Frayha et al., 1997; Ofori-Adjei et 

al., 2008).   

 

 
 

Figure 3.3 – Structure of niclosamide.  
 

Researchers in the Ackerley lab have found that niclosamide is selectively toxic to E. coli 

cells that lack the efflux transporter TolC (Condon, 2013).  However, the same toxicity 

was not observed when the E. coli cells were overexpressing a nitroreductase (Condon, 

2013).  Although the exact mechanism was unknown, the protective effect of 

nitroreductase expression was observed across a range of different families, from the 

NfsA and NfsB nitroreductases to the AzoR enzymes (Condon, 2013).  As nitroreductase 

activity is required for niclosamide detoxification, we reasoned that including 

niclosamide in the solid LB agar, along with a 5-nitroimidazole prodrug such as 

metronidazole, would prevent the enrichment of mutants viable in the presence of 

metronidazole because they had lost all nitroreductase activity.  We reasoned that the 

generic nitroreductase activity selected through inclusion of niclosamide would translate, 

in at least some of the mutants, to retention of activity with the other prodrug, tinidazole 

in this example.  If successful, the final product of the evolution would therefore be a 

mutant nitroreductase that had lost activity with metronidazole while having retained 

tinidazole activity, resulting in an enhancement of its tinidazole selectivity (Figure 3.4).  
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Figure 3.4 – Proposed directed evolution screen for enhancing the tinidazole selectivity of a mutant 
nitroreductase library expressed from E. coli.  A) A mutant nitroreductase library expressed from E. coli 
cells is plated on LB agar supplemented with metronidazole and niclosamide.  Metronidazole inhibits the 
growth of mutants still able to activate it, while niclosamide inhibits the growth of mutants that lack all 
nitroreductase activity.  B) Colonies are then picked and counter-screened to identify mutants that have lost 
metronidazole activity but retain some level of tinidazole activity.   
 

The system could also potentially be reversed, i.e. supplementing the agar with tinidazole 

rather than metronidazole, to evolve a complementary mutant enzyme that had lost 

tinidazole activity but retained metronidazole activity.   

 

3.1.4 SOS GFP and Growth Inhibition/IC50 Assays 
 

In order to determine if the substrate selectivities had changed as a result of the evolution, 

the metronidazole and tinidazole activities of the recovered nitroreductase mutants would 

need to be measured.  Fortunately, the Ackerley lab has developed multiple methods of 

rapidly measuring nitroreductase activity with a prodrug substrate.  Prominent among 

these is the use of the E. coli SOS-R4 strain that contains a GFP reporter gene under 

transcriptional control of an DNA damage responsive (SOS) promoter (Copp et al., 

2014).  To lower background levels of prodrug activation, the E. coli SOS-R4 strain also 

contained seven genomic nitroreductase gene deletions (Copp et al., 2014).  Transforming 

a pUCX plasmid containing a candidate nitroreductase gene into the E. coli SOS-R4 

strain enables its activity with a nitroaromatic prodrug to be measured. The levels of GFP 

induction, a product induced by the genotoxic damage caused by an activated prodrug, 

Mutant nitroreductase library in E. coli 

LB agar containing metronidazole and 
niclosamide 

Mutant nitroreductase gene 
Viable mutant clones 

Metronidazole 

Tinidazole 

A) B) 
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provides a measure of nitroreductase activity with the prodrug (Figure 3.5).  

Nitroreductases highly active with a prodrug will therefore induce higher levels of GFP 

expression than those only weakly active.    

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
Figure 3.5 – Quantification of prodrug-induced DNA damage using the SOS GFP assay.  The E. coli 
SOS-R4 strain (Copp et al., 2014) has had seven endogenous nitroreductase genes deleted from the 
chromosome.  Two plasmids, each containing a unique antibiotic marker, are present within the E. coli 
SOS-R4 strain.  The first is an expression plasmid containing a candidate nitroreductase gene (red plasmid). 
The second plasmid contains a copy of the GFP gene under the control of a DNA-damage inducible SOS 
promoter (pSOS).  The DNA damage caused by prodrug activation induces expression of GFP from the 
SOS promoter.  A non-lethal prodrug dose is used to prevent decay of the GFP signal due to cell death.  The 
stronger the GFP signal produced, the more active the nitroreductase is with the prodrug.   
 
 

Subsequently, as a slower but more definitive method of confirming nitroreductase 

activity, E. coli SOS-R4 cells overexpressing a candidate nitroreductase gene can be 

cultured in the presence of a range of concentrations of a prodrug.  The extent to which 

cell growth is inhibited at each concentration relative to an unchallenged control can also 

provide a measure the nitroreductase activity with the prodrug.  From growth inhibition 

data, an IC50 value can be calculated.  An IC50 value is the concentration of prodrug 

required to inhibit the growth of a strain by 50% relative to unchallenged controls.  In the 

case of nitroreductase overexpressing strains, the more effective the nitroreductase is at 

activating a prodrug, the lower the strain’s IC50 value with that prodrug will be.  In 

contrast, IC50 values with prodrugs that are poorer nitroreductase substrates will be larger 

Prodrug activation DNA damage 

GFP 

pSOS-GFP plasmid 

Nitroreductase 
enzyme 

Nitroreductase plasmid 
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in comparison.  Collectively, all of these assays were tool used throughout this thesis for 

measuring the metronidazole and tinidazole activities of nitroreductase enzymes.      

 

3.2 Chapter 3 Results  
 

3.2.1 Activity of Wild Type Nitroreductase Enzymes with Metronidazole and 
Tinidazole 
 

Prior to developing a directed evolution screen to enhance nitroreductase substrate 

selectivity, the relative activities of wild type NfsA_Pp, NfsB_Vv, and NfsA_Ec with 

metronidazole and tinidazole were determined using E. coli SOS-R4 growth inhibition 

assays.  The results from the experiments are presented in Figure 3.6 and reflected 

previous observations (Condon, 2013; Horvat, 2012), where tinidazole was superior than 

metronidazole at inhibiting the growth of NfsA_Ec and NfsA_Pp overexpressing strains. 

In contrast, also as previously documented (Condon, 2013; Horvat, 2012), metronidazole 

was superior to tinidazole at inhibiting the growth of NfsB_Vv expressing strains.   
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Figure 3.6 – Metronidazole and tinidazole growth inhibition assays of E. coli SOS-R4 nitroreductase 
overexpressing strains.   Cultures of E. coli SOS-R4 overexpressing either NfsA_Ec, NfsA_Pp, NfsB_Vv 
from pUCX plasmids or carrying an empty pUCX plasmid control, were challenged in 384 well plates with 
serial dilutions of A) Metronidazole or B) Tinidazole for 4 h.  Growth was measured as the difference in 
culture turbidity (OD600) between pre (t = 0 h) and post (t = 4 h) drug challenged cultures.  For each strain, 
growth inhibition was measured as the percentage decrease between challenged cultures and its respective 
unchallenged control.  Data are representative of five independent experiments ± SEM for the 
metronidazole and tinidazole pUCX and NfsB_Vv assays.   Data are representative of ten independent 
experiments ± SEM for the metronidazole NfsA_Ec assay.   Data are representative of ten independent 
experiments ± SEM for the tinidazole NfsA_Pp assay.  Data are representative of seven independent 
experiments ± SEM for the metronidazole NfsA_Pp assay.   
 

To provide a measure of substrate selectivity that mutant nitroreductases could be 

subsequently compared against, IC50 values were calculated from the growth inhibition 

data of each wild type enzyme from Figure 3.6.  Metronidazole and tinidazole IC50 values 

for E. coli SOS-R4 cells overexpressing NfsA_Ec, NfsA_Pp, and NfsB_Vv are presented 

in Table 3.1.   

 

 

 

 

 

 

A) B) 

2!

&2!

(2!

.2!

02!

%22!

2! &22! (22! .22! 022!

!"
##%
A)
,4
)#)
-=
%BC

?%

5"-(.*)/,6.#"%BD5?%

2!

&2!

(2!

.2!

02!

%22!

2! &22! (22! .22! 022!

!"
##%
A)
,4
)#)
-=
%BC

?%

7)*)/,6.#"%BD5?%

HN-O!

=GA*PQ>!

=GA,PR#!

=GA*PMH!

S"7"96T8?@!3@5F87"96T8?@!



! )/!

 
Enzyme Tinidazole IC50 ("M) Metronidazole IC50 ("M) Tinidazole Selectivity (Metronidazole IC50 / 

Tinidazole IC50)   
NfsA_Ec 30 ± 2 55 ± 3 2 

NfsA_Pp 80 ± 6 240 ± 23 3 

   Metronidazole Selectivity  (Tinidazole IC50  / 

Metronidazole IC50 

NfsB_Vv 380 ± 29 29 ± 2 13 

 
Table 3.1 – Wild Type Nitroreductase Metronidazole and Tinidazole IC50 Values.  GraphPad Prism 
6TM was used to calculate metronidazole and tinidazole IC50 values for NfsA_Ec, NfsA_Pp and NfsB_Vv 
using non-linear regression analysis from the growth inhibition data of Figure 3.6.  Fold difference between 
IC50 values was determined from the quotient of the two values.  Data are average of at least five 
independent experiments ± SEM.  
 

The results demonstrated that on a molar basis, NfsA_Pp had a 3 fold lower IC50 value for 

tinidazole relative to metronidazole, while the same ratio for NfsA_Ec was only two fold 

lower (Table 3.1).  In contrast, on a molar basis, NfsB_Vv was far more metronidazole 

selective, possessing a 13 fold lower IC50 with metronidazole than with tinidazole. For a 

multiplex ablation system to be possible, however, two highly selective nitroreductase 

enzymes are required.  Given the larger initial substrate selectivity demonstrated by 

NfsB_Vv (Tinidazole IC50 = 380 ± 29 #M, Metronidazole IC50 = 29 ± 2), the NfsA family 

enzymes were targeted first targeted to improve their tinidazole selectivity using directed 

evolution.  NfsA_Ec and NfsA_Pp were both evolved in parallel to be more 

discriminating against metronidazole.  While NfsA_Ec was not as intrinsically as 

tinidazole selective as NfsA_Pp, a high diversity site-saturation mutant library (NfsA_Ec 

7SM) had previously been generated for another ongoing project within the Ackerley lab, 

and was available to this research, providing a validated high quality mutant library as an 

excellent starting point for directed evolution.  

 

3.2.2 Positive Selection of Active NfsA_Ec 7SM Mutants using Niclosamide 
 

Dr. Janine Copp, Dr. Elsie Williams, and Dr. David Ackerley (unpublished) created the 

NfsA_Ec 7SM library in a semi-rational manner by targeting seven codons corresponding 

to amino acid residues within the active site of the enzyme.  Each of the sites was 

replaced with an NDT codon (with the exception of codon 83, which was targeted with an 
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NNK codon), allowing twelve different amino acids, covering all major functional groups 

(i.e., acidic, basic, small hydrophobic, etc), to be represented at the position.  Five of the 

sites were selected empirically based on previous observations that amino acid changes at 

those sites had increased enzyme activity with the prodrug PR-104A and/or the PET 

imaging agent EF5.  The remaining two sites were identified using the bioinformatics tool 

HotSpot Wizard (www.loschmidt.chemi.muni.cz/hotspotwizard/) based on the location 

and evolutionary conservation of each site.  Targeting these seven residues produced a 

possible 95 million different NfsA_Ec variants, all cloned into pUCX plasmids.  Before 

any library screening could commence, however, the directed evolution screen was 

optimized.     

 

An important premise of the proposed directed evolution screen was that niclosamide 

would be capable of imposing a positive selection for active nitroreductase mutants while 

inhibiting the growth of those that had lost all nitroreductase activity.  Given the high 

active site mutation rate of the NfsA_Ec 7SM library, we predicted the majority of 

mutants would no longer be catalytically functional.  Previous empirical testing by the 

Ackerley lab had determined that LB agar containing 0.5 #M niclosamide was capable of 

inhibiting the growth of E. coli SOS-R4 cells lacking nitroreductase expression 

(containing an empty pUCX plasmid), but not overexpressing NfsA_Ec (Dr. Elsie 

Williams, Dr Janine Copp, Unpublished).  The same selection for E. coli SOS-R4 cells 

expressing NfsA_Ec was observed when LB agar containing 0.5 #M niclosamide was 

tested in this thesis (Figure 3.7).    
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Figure 3.7 – Viability of E. coli SOS-R4 cells overexpressing NfsA_Ec on niclosamide.  Mid-
exponential phase E. coli SOS-R4 cultures expressing NfsA_Ec from pUCX or containing an empty pUCX 
plasmid were replica plated on either unsupplemented LB agar niclosamide (-) or LB agar containing 0.5 
#M niclosamide (+).  The LB agar plates were then incubated overnight to promote cell growth on the solid 
media.  These replica plating results were equivalent to those observed at an individual colony level when 
the day cultures were each spread on LB agar plates containing the same compound concentrations. 
 

However, as niclosamide possessed quite a different structure to metronidazole and 

tinidazole, the effects of niclosamide selection on activities with these prodrugs within a 

mutant nitroreductase library were unknown.  In particular, we wanted to determine that 

selecting nitroreductase mutants on the basis of viability on niclosamide was not 

detrimental to tinidazole activity.  To test this, E. coli SOS-R4 cells expressing random 

NfsA_Ec 7SM library plasmids were plated on either unamended LB agar or LB agar 

containing 0.5 #M niclosamide.  A random selection of colonies, 57 from the 0.5 #M 

niclosamide LB agar plate and 57 from the control plate, were then picked and grown as 

individual liquid cultures.  Tinidazole and metronidazole SOS assays were then 

performed on each NfsA_Ec 7SM mutant liquid culture to determine their activity with 

each prodrug (Figure 3.8A and Figure 3.8B).  The results demonstrated that all of the 

NfsA_Ec 7SM mutants collected from LB agar plates containing 0.5 #M niclosamide 

were active with both metronidazole and tinidazole, with the majority of mutants even 

demonstrated higher levels of activity than wild type NfsA_Ec.  
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Figure 3.8 – Metronidazole and tinidazole induced GFP SOS response in E. coli SOS-R4 
overexpressing NfsA_Ec 7SM mutants preselected on niclosamide. A total of 57 NfsA_Ec 7SM mutant 
colonies were randomly selected from LB agar containing 0.5 !M niclosamide and challenged using either 
metronidazole or tinidazole in replicate GFP SOS assays.  Mid-exponential cultures from each of the 57 
colonies were challenged in 384 well plates with either A) 5 !M metronidazole or B) 5 !M tinidazole for 3 
hours, after which GFP fluorescence (488 ex/510 em) and culture turbidity (OD600) were recorded.  A 
DMSO control (unchallenged) was also included for each of the 57 7SM mutants.  The raw GFP value of 
each culture was normalized by its OD600.  GFP fold induction was then calculated from the difference 
between the normalized GFP values of each challenged culture, and its respective unchallenged control.  E. 
coli SOS-R4 cells expressing wild type pUCX NfsA_Ec is highlighted in black.  pUCX represents E. coli 
SOS-R4 cells containing an empty pUCX plasmid.  Data are representative of three independent 
experiments ± SEM.   
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Figure 3.9 – GFP SOS response induced by metronidazole or tinidazole in randomly selected E. coli 
SOS-R4 overexpressing NfsA_Ec 7SM mutants in the absence of niclosamide preselection.  A total of 
57 NfsA_Ec 7SM mutant colonies were randomly selected from unsupplemented LB agar and challenged 
using metronidazole and tinidazole in GFP SOS assays.  Mid-exponential cultures from each of the 57 
colonies were challenged in 384 well plates with either A) 5 µM metronidazole or B) 5 µM tinidazole for 3 
hours, after which GFP fluorescence (488 ex/510 em) and culture turbidity (OD600) were recorded.  A 
DMSO control (unchallenged) was also included for each of the 57 7SM mutants.  The raw GFP value of 
each culture was normalized by its OD600.  GFP fold induction was then calculated from the difference 
between the normalized GFP values of each challenged culture, and its respective unchallenged control.  E. 
coli SOS-R4 cells expressing wild type pUCX NfsA_Ec is highlighted in black.  pUCX represents E. coli 
SOS-R4 cells containing an empty pUCX plasmid.  Data are representative of three independent 
experiments ± SEM.   
 
To confirm the activity changes observed in the SOS assays of Figure 3.8 growth 

inhibition assays using 50 #M of either prodrug were performed on the same sets of 57 
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NfsA_Ec 7SM mutants.  The results, (presented in Appendix Figure 8.1) were consistent 

with the SOS data, indicating that the majority of NfsA_Ec 7SM mutants selected using 

niclosamide were more active with metronidazole and tinidazole than wild type NfsA_Ec.  

Also consistent with the SOS data in Figure 3.9, the growth of NfsA_Ec 7SM mutants 

lacking 0.5 #M niclosamide were generally uninhibited 50 #M metronidazole or 

tinidazole, indicating a loss of activity with these prodrugs (Appendix Figure 8.2).     

 

Collectively, the results demonstrated that niclosamide selection was capable of enriching 

for nitroreductase mutants active with both metronidazole and tinidazole.  As no obvious 

bias against either of the prodrugs was observed (the retention of tinidazole activity being 

particularly important for the evolution of tinidazole selective NfsA_Ec mutants) we 

concluded niclosamide could be used as a positive selection agent for nitroreductase 

enzymes in the directed evolution screen.  The next component of the directed evolution 

screen that required optimization was the concentration of metronidazole needed to select 

against NfsA_Ec 7SM mutants possessing metronidazole activity.   

 

3.2.3 Optimization of Metronidazole Concentrations for Negative Selection 
 

To select against NfsA_Ec mutants possessing substantially less metronidazole activity 

than wild type NfsA_Ec, it was necessary that the metronidazole concentration used 

inhibit NfsA_Ec 7SM mutant clones possessing similar levels of metronidazole activity.  

During these experiments the azoreductase enzyme from E. coli (AzoR_Ec) provided a 

valuable control.  Azoreductases are FMN-dependent enzymes able to catalyze the 

cleavage of azo groups (-N=N-) (Nakanishi et al., 2001).  Additionally, some AzoR 

enzymes have also demonstrated nitroreductase activity (Prosser et al., 2013, 2010).  

Here, AzoR_Ec was useful because previous testing had indicated that it lacked activity 

with metronidazole, but was still able to confer protection against niclosamide (Condon, 

2013).  We reasoned that AzoR_Ec could therefore be used as a surrogate for an 

NfsA_Ec 7SM mutant that had lost metronidazole activity but not all nitroreductase 

activity (i.e. the target of the evolution).     

 

To confirm this previous observation, niclosamide, metronidazole, and tinidazole growth 

inhibition assays were performed using E. coli SOS-R4 expressing either AzoR_Ec or 
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NfsA_Ec from a pUCX plasmid, or containing an empty pUCX plasmid (Figure 3.10).  

These experiments confirmed E. coli SOS-R4 expressing AzoR_Ec from pUCX cells 

were essentially as resistant to metronidazole and tinidazole as the empty plasmid control 

strain (metronidazole and tinidazole IC50 values >800 #M) (Figure 3.10B and Figure 

3.10C).  However, similar to NfsA_Ec, AzoR_Ec expressing clones remained viable in 

the presence of niclosamide (Figure 3.10A) indicating they still possessed nitroreductase 

activity.  As also observed in Figure 3.7, E. coli SOS-R4 clones lacking functional 

nitroreductase expression (containing an empty pUCX plasmid) were strongly inhibited 

by low levels (160 nM) of niclosamide (Figure 3.10A). 
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Figure 3.10 – Niclosamide, metronidazole and tinidazole growth inhibition assays of E. coli SOS-R4 
nitroreductase overexpressing strains.  Mid-exponential E. coli SOS-R4 cultures expressing either 
NfsA_Ec or AzoR_Ec from pUCX, or containing an empty pUCX plasmid  were challenged in 384 well 
plates with serial dilutions of A) Niclosamide, B) Metronidazole or C) Tinidazole for 4 h.  Growth was 
measured as the difference in culture turbidity (OD600) between pre (t = 0 h) and post (t = 4 h) drug 
challenged cultures.  For each strain, growth inhibition was measured as the percentage decrease in growth 
between each challenged culture and its respective unchallenged control.  Data are representative of three 
independent experiments ± SEM for the niclosamide growth inhibition assays.  Data are representative of 
five independent experiments ± SEM for the metronidazole and tinidazole growth inhibition assays.   
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From these results, we reasoned that finding metronidazole and niclosamide LB agar 

concentrations that inhibited the growth of E. coli SOS-R4 NfsA_Ec and pUCX clones, 

but not AzoR_Ec clones, would identify appropriate concentrations for screening the 

NfsA_Ec 7SM library.  In combination with the validated 0.5 µM niclosamide 

concentration (Figure 3.7), a range of different metronidazole concentrations was tested 

to identify such a concentration.  For each condition tested, protein expression was 

induced in day cultures of E. coli SOS-R4 cells expressing AzoR_Ec or NfsA_Ec from 

pUCX, or containing an pUCX empty plasmid.  Each day culture was then plated on a 

separate agar plate containing 0.5 #M niclosamide and a metronidazole concentration 

from 0.2 mM to 1 mM.  LB agar containing 1 mM metronidazole and 0.5 #M 

niclosamide was found to inhibit the growth of the NfsA_Ec and pUCX control strains, 

whereas SOS-R4 cells expressing AzoR_Ec remained viable (Figure 3.11).   

 

 

 

 

 

 

 

 

 

 
Figure 3.11 – Replica plating of E. coli SOS-R4 nitroreductase overexpressing strains on 
metronidazole and tinidazole.  Mid-exponential phase nitroreductase E. coli SOS-R4 expressing 
AzoR_Ec or NfsA_Ec from pUCX, or containing an pUCX empty plasmid were replica plated either on 
unsupplemented LB agar (metronidazole (-), niclosamide (-)) or LB agar containing 1 mM metronidazole 
and 0.5 #M niclosamide (metronidazole (+), niclosamide (+)).  The LB agar plates were then incubated 
overnight to promote growth on the solid media.  These replica plating results were equivalent to those 
observed at an individual colony level when the day cultures were each spread on LB agar plates containing 
the same compound concentrations.  Colonies of E. coli SOS-R4 pUCX were viable on LB agar containing 
1 mM metronidazole alone, indicating niclosamide was responsible for their lack of viability (not shown). 
 
Before library screening was performed, a mock directed evolution experiment was 

performed to further validate the preferred (1 mM) metronidazole and niclosamide (0.5 

µM) concentrations.  

 

Metronidazole (-)  
Niclosamide (-)  
  

Metronidazole (+)  
Niclosamide (+)  

pUCX  AzoR_Ec  NfsA_Ec 
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3.2.4 Preliminary Testing of Directed Evolution Parameters  
 

A highly diverse collection of mutants such as the 7SM NfsA_Ec library would likely 

contain nitroreductase mutants possessing a range of activities, from mutants that were no 

longer functional nitroreductase (highly likely), to mutants possessing wild type levels of 

activity, and - our initial target - mutants possessing decreased levels of metronidazole 

activity still able to detoxify niclosamide.  The capacity for enrichment of small initial 

concentrations of the latter clones was tested by creating a mixed culture of E. coli SOS-

R4 pUCX nfsA_Ec, pUCX empty, and pUCX azoR_Ec cells, in doing so imitating the 

range of activities predicted to be present in the NfsA_Ec 7SM library.  In this context, as 

discussed in Section 3.2.3, AzoR_Ec could serve as a surrogate for active nitroreductase 

mutants that had lost activity with metronidazole.  Similarly, pUCX could be a surrogate 

for a nitroreductase mutant possessing no function nitroreductase activity.  NfsA_Ec, on 

the other hand, could represent NfsA_Ec 7SM mutants possessing wild type levels of 

metronidazole activity.  To test the AzoR_Ec enrichment capacity of our directed 

evolution screen, a mixed culture of E. coli SOS-R4 cells was established comprising 

49.9% pUCX clones, 49.9% pUCX nfsA_Ec, and 0.2% pUCX azoR_Ec cells.  This cell 

mixture was then plated on LB agar containing 1 mM metronidazole and 0.5 #M 

niclosamide.  Twenty-four of the colonies that subsequently formed were randomly 

screened using PCR to determine whether they contained an nfsA_Ec, azoR_Ec, or empty 

pUCX plasmid.  The results from the PCR screening revealed that upon plating on 

metronidazole and niclosamide, 100% of colonies screened contained AzoR_Ec plasmids 

(Figure 3.12). 
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 Colonies picked from 1 mM metronidazole and 0.5 "M niclosamide supplemented LB agar 
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Figure 3.12 – PCR screening of individual colonies from a mixed culture of E. coli SOS-R4 pUCX 
empty (49.9%), NfsA_Ec (49.9%) and AzoR_Ec (0.2%) cells plated on LB agar supplemented with 
metronidazole and niclosamide.  E. coli SOS-R4 cells containing azoR_Ec, nfsA_Ec, or empty pUCX 
plasmids were combined (after OD600 values had been normalized) in a mixed culture where pUCX 
nfsA_Ec and pUCX empty cells each made up 49.9% and pUCX azoR_Ec cells comprised 0.2% of the total 
culture.  The mixture was plated on LB agar supplemented with 1 mM metronidazole and 0.5 µM 
niclosamide. After colony formation, 24 colonies were screened at random using a pUCX specific forward 
primer and an azoR_Ec specific reverse primer.  PCR products were run on a 1% (w/v) agarose gel stained 
with ethidium bromide to identify PCR amplification (azoR_Ec = 606 bp).  M = DNA size standards.  (+) = 
PCR from purified pUCX AzoR_Ec plasmid.  (-) = Template free negative control. The same 24 colonies 
were also counter-screened with nfsA_Ec and pUCX empty specific primers, confirming they did not 
contain either of these plasmids (not shown).  
 
 

In contrast, no AzoR_Ec enrichment was observed when the same E. coli SOS-R4 culture 

mixture was plated on LB agar lacking both metronidazole and niclosamide (Figure 

3.13). 
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Figure 3.13 – PCR screening of individual colonies from a mixed culture of E. coli SOS-R4 
pUCX_Empty (49.9%), NfsA_Ec (49.9%) and AzoR_Ec (0.2%) cells plated on unsupplemented LB 
agar.  E. coli SOS-R4 cells containing azoR_Ec, nfsA_Ec, or empty pUCX plasmids were combined (after 
OD600 values had been normalized) in a mixed culture where pUCX nfsA_Ec and pUCX empty cells each 
made up 49.9% and pUCX azoR_Ec cells comprised 0.2% of the total culture.  The mixture was plated on 
LB agar lacking metronidazole and niclosamide.  After colony formation, 24 colonies were screened at 
random using a pUCX specific forward primer and an azoR_Ec specific reverse primer.  PCR products 
were run on a 1% (w/v) agarose gel stained with ethidium bromide to identify PCR amplification (azoR_Ec 
= 606 bp).  M = DNA size standards.  (+) = PCR from purified pUCX AzoR_Ec plasmid.  (-) = Template 
free negative control.  Subsequent PCR screening of these colonies revealed the majority of colonies 
contained pUCX empty plasmids.   
 
 

These results demonstrated that LB agar supplemented with 1 mM metronidazole and 0.5 

#M niclosamide was capable of enriching for E. coli SOS-R4 cells expressing AzoR_Ec, 

even when these cells made up only a small fraction of the total population.  Collectively, 

these results suggested that the directed evolution screen should enrich for any NfsA_Ec 

7SM mutants lacking metronidazole activity, but retaining the ability to detoxify 

niclosamide, present in the NfsA_Ec 7SM library.  With the evolution parameters 

optimized and validated library screening could now commence.     

3.2.5 NfsA_Ec 7SM Library Screening using Metronidazole and Niclosamide 
Supplemented LB agar 
 

The majority of library screening was performed using the 1 mM metronidazole 

concentration validated in Section 3.2.3 and Section 3.2.4.  However, the metronidazole 

concentration of 800 #M was also tested for several of the library plates, as it was also 
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found to inhibit the growth of E. coli SOS-R4 cells expressing NfsA_Ec.  Both 

concentrations were tested in case the higher metronidazole concentration (1 mM) 

selected too strongly against metronidazole activity, modifying the active site such that all 

5-nitroimidazole activity was lost.  However, no noticeable difference in outcome 

between the two concentrations was observed in this work.   

 

E. coli SOS-R4 cells containing the NfsA_Ec 7SM library were plated on LB agar 

containing 0.5 #M niclosamide and 1 mM metronidazole. NfsA_Ec 7SM Mutants that 

formed colonies on the LB agar were picked and grown as liquid cultures.  SOS GFP 

assays were then performed to determine their relative levels of metronidazole and 

tinidazole activity post metronidazole and niclosamide selection.  A total of 500 colonies 

picked from metronidazole and niclosamide supplemented LB agar plates were screened 

in this manner.  An example of metronidazole and tinidazole SOS GFP assays run on a 

subset (55) of the selected NfsA_Ec 7SM colonies is displayed in Figure 3.14.   
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Figure 3.14 – Metronidazole and tinidazole induced SOS GFP response in E. coli SOS-R4 overexpressing niclosamide and metronidazole preselected 
nitroreductase clones.  Mid-exponential cultures of 55 NfsA_Ec 7SM mutants selected on LB agar containing 800 µM metronidazole and 0.5 µM niclosamide were 
challenged in 384 well plates containing either 5 µM metronidazole or 5 µM tinidazole for 3 hours, after which GFP fluorescence (488 ex/510 em) and culture turbidity 
(OD600) were recorded.  A DMSO control (unchallenged) was also included for each strain.  The raw GFP values of each challenged culture and their respective 
unchallenged control were normalized by OD600.  GFP fold induction was then calculated from the difference between the normalized GFP values of each challenged 
culture and its respective unchallenged control.  E. coli SOS-R4 clones expressing the wild type NfsA_Ec from pUCX was included for the purposes of comparison.  
pUCX represents E. coli SOS-R4 cells containing an empty pUCX plasmid.    Data are representative of three ± SEM independent experiments for the metronidazole 
SOS assay using cultures of the same NfsA_Ec 7SM mutants.  Data are representative of six independent experiments ± SEM for tinidazole using cultures of the same 
NfsA_Ec 7SM mutants.    
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All of the NfsA_Ec 7SM colonies screened in Figure 3.14 had lower metronidazole 

SOS responses than wild type NfsA_Ec. While some mutants had also lost all 

tinidazole activity too, others had retained tinidazole activity and were clearly more 

tinidazole selective than NfsA_Ec.     

 

For the sake of comparison, metronidazole and tinidazole SOS assays performed on 

NfsA_Ec 7SM clones that had only received niclosamide selection, as opposed to 

both niclosamide and metronidazole selection (as in Figure 3.14) is displayed in 

Appendix Figure 8.3 The results demonstrate that when NfsA_Ec 7SM mutants were 

only selected using niclosamide, their metronidazole and tinidazole SOS responses 

tended to parallel each other, either both increasing or decreasing.  Taken together 

these observations demonstrated that the presence of metronidazole in the LB agar 

was indeed necessary to recover NfsA_Ec 7SM mutants that had diminished 

metronidazole activity.   

 

The nine most promising mutants identified over the course of the library screening 

were taken forward for further analysis.  These mutants were selected because they 

induced lower metronidazole SOS responses than NfsA_Ec, but retained comparable, 

albeit slightly lower, tinidazole SOS responses.  To ensure the changes in prodrug 

selectivity were driven by mutations in the NfsA_Ec gene, and not due to acquired 

genomic mutations (a phenomenon previously observed by the Ackerley lab), the 

pUCX plasmids containing each mutant were isolated and retransformed into fresh E. 

coli SOS-R4 cells.  To demonstrate the tinidazole selectivity of these retransformed 

mutants relative to NfsA_Ec, the metronidazole and tinidazole SOS responses of each 

of the selected mutants are presented in Figure 3.15.   

!
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Figure 3.15 – Metronidazole and tinidazole GFP SOS assays of the top 7SM mutants selected with 
metronidazole and niclosamide.  SOS-R4 cells expressing the nine top tinidazole selective NfsA_Ec 7SM 
mutants strains were challenged with 5 !M metronidazole or 5 !M tinidazole for 3 hours, after which GFP 
fluorescence (488 ex/510 em) and culture turbidity (OD600) were recorded.  Unchallenged DMSO (vehicle) 
controls were also included for each of the E. coli SOS-R4 strains.  The raw GFP values of each challenged 
culture and their respective unchallenged control were normalized by OD600.  GFP fold induction was then 
calculated from the difference between the normalized GFP values of each challenged culture and its 
respective unchallenged control.  pUCX represents E. coli SOS-R4 cells containing an empty pUCX 
plasmid.  E. coli SOS-R4 cells expressing NfsA_Ec and NfsA_Pp from pUCX plasmids were included as 
tinidazole selective control.  E. coli SOS-R4 cells expressing NfsB_Vv from a pUCX plasmid were 
included as a metronidazole selective control.  Data are representative of three independent experiments ± 
SEM. 
 
 
On the basis of the relative metronidazole and tinidazole SOS values, all of the NfsA_Ec 

7SM mutants appeared more tinidazole selective than NfsA_Ec and NfsA_Pp.  The 

NfsA_Ec 7SM mutant 5_B9 looked particularly promising as it demonstrated the largest 

relative decrease in metronidazole SOS compared to its tinidazole SOS response.  Also 

notable, the process of retransformation had decreased the tinidazole SOS response of 

NfsA_Ec 7SM mutant 1_F8 from that previous observed (where it was similar to that of 

the other eight mutants in Figure 3.15).   

 
Overall these experiments demonstrated that LB agar containing niclosamide and 

metronidazole was a successful directed evolution strategy for eliminating nitroreductase 

metronidazole activity, thereby enhancing tinidazole selectivity.  Furthermore, as 

illustrated by comparing Figure 3.14 and Appendix Figure 8.2, the loss of 
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metronidazole activity was the directed result of negative selection using metronidazole, 

rather than being directly promoted by the niclosamide positive selection.   

 

Sequence analysis of Top NfsA_Ec 7SM mutants 

 

We next sought to determine if the shared improvements in tinidazole selectivity 

demonstrated by the nine top NfsA_Ec 7SM mutants selection (those displayed in Figure 

3.15) were reflected by common amino acid changes.  This was achieved by sequencing 

the each of the nine NfsA_Ec 7SM mutants. The amino acid changes present at each of 

the seven sites are presented in in Table 3.2. 
 

 
 

 
Table 3.2 – Amino acid changes present in the top tinidazole selective NfsA_Ec 7SM mutants.  
The table presents the amino acid present at each of the codon mutagenesis positions targeted in the 
NfsA_Ec 7SM library.  The amino acids present at these same sites in NfsA_Ec are included for 
comparison.  Amino acids present in the NfsA_Ec 7SM mutants identical to wild type are underlined. 
 
 

 

 

 

NfsA_Ec 

7SM Mutant 

Amino Acid Change at Mutated Codon Site 

 41 42 83 222 224 225 227 

        

5_B9 Y C L H C G I 

1_F8 R H R E G R R 

1_F2 Y Y R K L N Y 

1_F7 Y C L R L S I 

1_G9 Y C L R L S I 

1_B7 Y I F R G V I 

1_G7 F C L R R Y F 

7_B8 F C L R V Y H 

7_D2 H C L V L H V 

        

NfsA_Ec S F F K S R F 
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The results from the sequencing revealed each of the selected 7SM NfsA_Ec mutants 

contained a unique set of seven codon changes, although several common changes were 

present.  The transition from a serine at position 41 to a hydrophobic/aromatic amino acid 

such as tyrosine, phenylalanine, or histidine was present in all mutants sequenced.  The 

amino acid changes such as F42C and F83L were also common, found in six out the nine 

mutants.  Overall, however, more mutant sequences and a comprehensive investigation of 

structure-activity relationships would be required to determine the underlying reasons for 

the observed changes in substrate selectivity.     

 

3.2.7 Metronidazole and Tinidazole IC50 values of top 7SM mutants  
 

To validate the SOS data (Figure 3.15), which indicated that the selected NfsA_Ec 7SM 

mutants had improved tinidazole selectivity, metronidazole and tinidazole IC50 values 

were calculated for SOS-R4 cells expressing each of the top nine mutants Table 3.3.     
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Enzyme Metronidazole IC50  

(!M) 
Tinidazole IC50 

(!M) 
Tinidazole Selectivity 
(Metronidazole 
IC50/Tinidazole IC50) 

Fold Increase in 
Metronidazole IC50  

Relative to NfsA_Ec  

Fold Increase in Tinidazole 
IC50  Relative to NfsA_Ec 

Fold Increase in Tinidazole 
Selectivity Relative to 
NfsA_Ec 

Wild type       
       
NfsA_Ec 55 ± 3 30 ± 2 2 - - - 
NfsA_Pp 240 ± 23 80 ± 6 3 5 3 2 
NfsB_Vv 29 ± 2 380 ± 29 0.1   0.5 13 - 
    
7SM 
Mutants 

      

       
5_B9 1700 ± 150 80 ± 8  21 31 3 12 
1_F8 3900  ± 280 590 ± 68 7 71 20 4 
1_F2 1800 ± 54 110 ± 12 16 32 4 9 
1_F7 1000 ± 53 120 ± 8 9 19 4 5 
1_G9 1000 ± 140 100 ± 8 10 18 3 6 
1_B7 680 ± 20 74 ± 7 9 12 3 5 
7_B8 2800 ± 130 140 ± 14 20 50 5 11 
1_G7 1700 ± 71 200 ± 19 8 30 7 4 
7_D2 1400 ± 200 170 ± 19 9 26 6 5 
       
pUCX >6000  µM   >800 µM        
!

Table 3.3 – Metronidazole and tinidazole IC50 assays of E. coli SOS-R4 nitroreductase overexpressing strains.  SOS-R4 cells containing top nine NfsA_Ec 
7SM clones were challenged in 384 well plates across serial dilutions of metronidazole and tinidazole for 4 h.  Growth was measured as the difference in culture 
turbidity (OD600) between pre (t = 0 h) and post (t = 4 h) drug challenged cultures.  For each strain, growth inhibition was measured as the percentage decrease 
between challenged cultures and its respective unchallenged control.  Data are the average of at least three independent experiments ± SEM.  GraphPad Prism 6TM 
non-linear regression analysis was used to calculate metronidazole and tinidazole IC50 values for each SOS_R4 strain.  
!
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The results demonstrated that while the tinidazole IC50 value for each mutant had 

increased relative to NfsA_Ec, indicating a decrease in activity, in each case the 

metronidazole IC50 had increased by a greater extent. All of NfsA_Ec 7SM mutants were 

more tinidazole selective (metronidazole IC50/tinidazole IC50) than either NfsA_Ec or 

NfsA_Pp.  Consistent with the previous SOS data (Figure 3.15), the most tinidazole 

selective (metronidazole IC50 / tinidazole IC50) mutant was NfsA_Ec 7SM mutant 5_B9.  

From the IC50 data, 7SM mutant 5_B9 was ca. 12 fold more selective for tinidazole than 

metronidazole compared to NfsA_Ec.  An added advantage of this mutant in particular 

was it possessed one of the lowest tinidazole IC50 values of the selected mutants (only 3 

fold larger than that of NfsA_Ec).  To more clearly visualize the increased tinidazole 

selectivity of 7SM mutant 5_B9 relative to its wild type progenitor NfsA_Ec, as well as 

its potential partner for multiplex ablation assays, NfsB_Vv, metronidazole and tinidazole 

growth data for each enzyme is presented in Figure 3.16.  Whereas the growth of E. coli 

SOS-R4 clones expressing NfsA_Ec was almost completely inhibited by 400 µM (Figure 

3.16B) metronidazole, E. coli SOS-R4 clones expressing the 7SM mutant 5_B9 still grew 

to 80% the cell turbidity of the unchallenged cell culture (Figure 3.16A).   7SM mutant 

5_B9 had therefore clearly lost metronidazole activity compared to NfsA_Ec.  However, 

while 800 µM tinidazole was sufficient to completely inhibit the growth of NfsA_Ec, 

7SM_B9 clones grew to 15% the turbidity of the unchallenged control, indicating a slight 

decrease in tinidazole activity.  As Figure 3.16C demonstrated, however, while 7SM 

mutant 5_B9 may rival NfsB_Vv in terms of its prodrug selectivity, in terms of raw 

activity NfsB_Vv was more active with metronidazole than is 7SM 5_B9 with tinidazole.   
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Figure 3.16 – Metronidazole and tinidazole growth inhibition assays of E. coli SOS-R4 nitroreductase 
overexpressing strains.  Cultures of E. coli SOS-R4 overexpressing either A) lead 7SM mutant 5_B9, B) 
its progenitor NfsA_Ec or C) NfsB_Vv from pUCX plasmids were challenged in 384 well plates with serial 
dilutions of either metronidazole or tinidazole for 4 h.  Growth was measured as the difference in culture 
turbidity (OD600) between pre (t = 0 h) and post (t = 4 h) drug challenged cultures.  For each strain, growth 
inhibition was measured as the percentage decrease between challenged cultures and its respective 
unchallenged control.  For NfsA_Ec 5_B9 tinidazole growth inhibition data are representative of seven 
independent experiments ± SEM.  For mutant 5_B9 metronidazole growth inhibition data are representative 
of four independent experiments ± SEM.  For NfsA_Ec and NfsB_Vv metronidazole and tinidazole growth 
inhibition data are representative of five independent experiments ± SEM.  
 

3.2.8 Expression Levels of the Top NfsA_Ec Mutants 
 

It was possible that some of differences in metronidazole and tinidazole IC50 values 

between the top nine NfsA_Ec 7SM mutants (Table 3.3) were caused by changes in 

protein expression, rather than changes in catalytic activity.  While changes to protein 

expression should not affect the relative difference between the metronidazole and 

tinidazole IC50 of a 7SM mutant, as the two should scale accordingly, it could possibly 

account for mutants such as NfsA_Ec 7SM 1_F8 that possessed higher metronidazole and 

tinidazole IC50 values (i.e. lowest levels of activity) than any of the other mutants.  To test 

this, an SDS-PAGE gel was run to measure the relative levels of protein expression 

between the top nine NfsA_Ec 7SM mutants (Figure 3.17). 
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  5_B9       1_G9      1_F2     1_B7     7_D2       1_F8       7_D8     1_F7      pUCX   NfsA_Ec 
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Figure 3.17 – SDS-PAGE Gel showing relative levels of protein expression of 7SM mutants.  
Overnight E. coli SOS-R4 cultures of each mutant strain were inoculated into fresh media and grown to an 
OD600 of 0.5 before protein expression was induced by addition of 0.5 mM IPTG.  Cultures were induced 
for 4 hours before collection.  All cultures were normalized by OD600 prior to loading into a 15% SDS-
PAGE cell, although some small variation in loadings is evident from the variation in levels of the 
background E. coli proteins.  E. coli SOS-R4 cells containing a pUCX plasmid were included as a negative 
control.  NfsA_Ec = 26.8 kDa.  SDS-PAGE gel is representative of two independent experiments.   
 

From the SDS-PAGE gel, relative levels of NfsA_Ec 7SM protein expression were 

determined using ImageJTM densitometry analysis.  After correcting for the total protein 

present in each lane, none of the NfsA_Ec 7SM mutants demonstrated notable decreases 

in expression relative to NfsA_Ec (all within 85% of wild type expression levels).  From 

these data it was concluded that the changes in metronidazole and tinidazole IC50 values 

of the selected 7SM mutants relative to NfsA_Ec primarily reflect changes in NfsA_Ec 

catalytic activity, rather than expression level.   

 

3.2.9 Single Mutant Analysis of NfsA_Ec 7SM 5_B9  
 

We next sought to better understand the underlying structural reasons for the observed 

catalytic changes in substrate selectivity; in particular, if one or several of amino acid 

changes were primarily responsible for the improved tinidazole selectivity.  By extension, 

amino acids that did not contribute to the improvement in tinidazole selectivity, or were 

even detrimental to it, could also be identified.  Understanding substrate selectivity at the 

!"#$%&'()*+(+,-./-(
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level of amino acid changes could guide the mutations introduced or avoided in future 

directed evolution experiments.   

 

To determine the influence of a single codon change on tinidazole selectivity, each of the 

seven codon changes present in a tinidazole selective NfsA_Ec 7SM mutant was tested in 

isolation.  Given the time constraints of this study, only the codon changes present in the 

most tinidazole selective NfsA_Ec 7SM mutant, 5_B9, were tested (Summarised in Table 

3.4).  
 

 

 

 

 

 

 

 

 

Fortuitously, from previous work Dr. Elsie Williams had already created NfsA_Ec single 

mutants containing the equivalent S41Y or R225G changes.  The rest were created in this 

study using overlap PCR site-directed mutagenesis.  To determine the effect each of each 

single mutation on tinidazole selectivity, metronidazole and tinidazole growth inhibition 

experiments were performed using E. coli SOS-R4 cells containing a pUCX plasmid 

expressing each one of the single mutants in turn.  Results from the growth inhibition 

assays are presented in Figure 3.18A and Figure 3.18B.   While several amino acid 

changes clearly affected both metronidazole and tinidazole activity, such as F83L, none 

were exclusively responsible for the large increase in tinidazole selectivity observed in 

NfsA_Ec 7SM 5_B9.  Collectively, the results indicated that the increase in tinidazole 

selectivity was caused by a synergistic interaction between some or all of the amino acid 

changes, rather than one in particular.   

 

 

 

 

 

NfsA_Ec  

7SM Mutant 

Mutated 7SM Codon Position  

 41 42 83 222 224 225 227 

        

5_B9 Y C L H C G I 

NfsA_Ec S F F K S R F 

Table 3.4 – Codon changes present in NfsA_Ec 7SM mutant 5_B9. 
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Each codon change in the most tinidazole selective NfsA_Ec 7SM mutanidentified, 5_B9 

were tested to determine their influence on   

 
Figure 3.18 – Metronidazole and tinidazole growth inhibition assays of E. coli SOS-R4 NfsA_Ec 
single mutant overexpressing strains. E. coli SOS-R4 cultures containing either pUCX (empty plasmid 
control), pUCX nfsA_Ec, pUCX NfsA_Ec 7SM 5_B9, or pUCX nfsA_Ec containing one of the seven codon 
changes present in 7SM 5_B9 mutant, were challenged in 384 well plates with serial dilutions of A) 
Metronidazole or B) Tinidazole for 4 h.  Growth was measured as the difference in culture turbidity (OD600) 
between pre (t = 0 h) and post (t = 4 h) drug challenged cultures.  For each strain, growth inhibition was 
measured as the percentage decrease in growth between each challenged culture and its respective 
unchallenged control. For each prodrug, data are representative of three independent experiments ± SEM.   
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3.2.10 Multiplex Imaging and Ablation 
 
A potential extension of a multiplex ablation system was to also incorporate a multiplex 

imaging component.  Analogous to prodrugs, profluorophores are a class of nitroaromatic 

compounds that, upon nitroreduction, can fluoresce at visible wavelengths.  A wide range 

of nitroaromatic profluorophores have been developed, possessing emission wavelengths 

ranging from blue (Prosser et al., 2013; Su et al., 2013), to green (Bai et al., 2007; Cui et 

al., 2011), to red (Lee et al., 2013; Thorne et al., 2009), to near infrared (Bhaumik et al., 

2012; Guo et al., 2013; Shi et al., 2013).   

 

Imaging cell death caused by a prodrug is often an important component of zebrafish cell 

ablation experiments (Curado et al., 2008). Nitroreductase expression has been previously 

imaged by fusing the nitroreductase enzyme to a fluorescent protein (Curado et al., 2007; 

Hsu et al., 2010), or by fluorescent protein co-expression from a bicistronic promoter 

(Lee et al., 2012; Li et al., 2012).  There is some evidence, however, that profluorophores 

could be superior to fluorescent proteins for detecting nitroreductase expression.  For 

example, when compared to GFP transgene imaging, the near-infrared profluorophore 

CytoCy5S demonstrated greater detection, sensitivity and resolution of cancerous tissue 

expressing NfsB_Ec in mice (McCormack et al., 2013).  Profluorophores are starting to 

be used in zebrafish studies as well, with a red-emitting profluorophore recently being 

used to detect nitroreductase expression in zebrafish embryos (Li et al., 2015).  Adopting 

profluorophores in place of fluorescent proteins could therefore improve the imaging of 

transgenically expressed nitroreductase proteins in future cell ablation experiments.        

 

Profluorophores offer an additional opportunity compared to fluorescent proteins arising 

from the fact that, like prodrugs, they are nitroreductase substrates.  Just as nitroreductase 

enzymes demonstrate a bias towards activating certain prodrugs, so too can they 

demonstrate a bias for one profluorophore over another (Condon, 2013; Horvat, 2012).  

Our Auckland Cancer Society Research Centre collaborators have provided a library of 

54 nitroaromatic profluorophores (referred to as the ACSRC library), capable of emitting 

blue, green, or red wavelengths, to the Ackerley lab (Figure 3.19). 
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Figure 3.19 – Representation of some of profluorophores available in the ACSRC library.   
A broad wavelength transilluminator was used to excite a range of different colour profluorophores post-
activation (i.e., after reduction of the nitro group).  Photo credit:  Dr. Jeff Smaill (ACSRC), reproduced with 
permission.   
 

 

To characterise the profluorophore activity profiles of the 58 core nitroreductase library, 

previous Ackerley lab PhD student Claire Horvat tested the activity of each with the 

profluorophore present in the ACSRC library (Horvat, 2012).  One of motivations of that 

research was to identify pairs of nitroreductase enzymes possessing non-overlapping 

profluorophore and prodrug selectivities. Discovering such a pair could enable the 

development of a combined imaging and ablation multiplex system (Figure 3.20).  As 

each nitroreductase would have unique and non-overlapping profluorophore and prodrug 

activities, expression from two different tissues would enable them each be independently 

imaged and ablated.   
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Figure 3.20 – Multiplex imaging and ablation system.  1) Two different tissues in a transgenic zebrafish 
each express a distinct nitroreductase enzyme possessing non-overlapping profluorophore and prodrug 
specificities, such that: 2) the administration of Profluorophore A enables specific imaging of cells 
expressing Nitroreductase A, or 3) administration of Profluorophore B enables specific imaging of cells 
expressing Nitroreductase B.  Following profluorophore administration and nitroreductase imaging, 4) the 
administration of Prodrug A can specifically ablate cells expressing Nitroreductase A.  5) Alternatively, 
administration of Prodrug B can specifically ablate tissues expressing Nitroreductase B. Co-administration 
of both profluorophores could enable the simultaneous imaging of both nitroreductase-expressing tissues.   
 

Transgenic Zebrafish 

Cells expressing 
Nitroreductase A 



! "#!

N

OO
Cl

Cl
N

N
NO2

Of particular relevance to the work performed in this thesis was the finding that NfsB_Vv 

(our leading metronidazole selective nitroreductase candidate) demonstrated a higher 

selectivity towards the red profluorophore FSL178 than to the green profluorophores 

FSL76 and FSL150 (Claire Horvat, 2012, Sarah Condon, 2013).  Conversely, NfsA_Ec 

(the progenitor for the NfsA_Ec 7SM library) demonstrated a higher selectivity towards 

the green profluorophores FSL76 and FSL150 than to FSL178 (Claire Horvat, 2012, 

Sarah Condon, 2013).  Structures of these profluorophores are presented in Figure 3.21. 

 

 

 

 

 

 

 
 

Figure 3.21 – Structures of the nitroaromatic profluorophores FSL76, FSL150, and FSL178.  Upon 
nitroreduction each of these compounds can become excited and subsequently emit visible light.  FSL76 
and FSL150 are green profluorophores, which, once reduced, can be excited and fluoresce green light.  
FSL178, on the other hand is a red profluorophore that once activated by a nitroreductase can be excited 
and fluoresce red light.  The activation of FSL178 occurs via a cleavage of the 2-nitroimidazole group upon 
nitroreducion in a bioreductive trigger mechanism.     
  

Based on these previous findings, we tested if the top tinidazole selective mutants 

identified in the previous chapter (those in Table 3.3) could still activate FSL76 and 

FSL150 like their progenitor NfsA_Ec.  If this were the case, then tissues expressing 

these NfsA_Ec 7SM mutants could be specifically imaged using FSL76 or FSL150, 

followed by specific ablation using tinidazole. Alternatively, neighboring tissues 

expressing NfsB_Vv could be specifically imaged using FSL178 and ablated using 

metronidazole.  To test whether the top NfsA_Ec 7SM mutants could still activate FSL76 

and 150, whole cell fluorescence assays were run using each profluorophore.  To be 

consistent with previous fluorescence assays performed by the Ackerley lab, the E. coli 

7KO strain (seven endogenous nitroreductase chromosomal gene deletions) was selected 

for these assays.  Results from the fluorescence assays performed using the NfsA_Ec-

selective green profluorophores, FSL76 and FSL150, are presented in Figure 3.22.  

While the NfsA_Ec/NfsB_Vv profluorophore activities were as previous observed, the 

top tinidazole-selective NfsA_Ec 7SM mutants had lost essentially all activity with both 
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FSL76 and FSL150 relative to NfsA_Ec, and in most cases were even less active than 

NfsB_Vv with these compounds.  From these data we concluded that neither of these 

profluorophores could therefore be used to specifically image the expression of these 

mutants in a multiplex imaging and ablation context. 
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Figure 3.22 – FSL76 and FSL150 fluorescence assay with E. coli 7KO cells overexpressing 
metronidazole-insensitive 7SM NfsA_Ec mutant nitroreductases.   Mid-exponential phase E. coli 7KO 
strains expressing the nine top tinidazole-selective NfsA_Ec 7SM mutants identified were exposed to A) 10 
µM FSL76 or B) 10 µM FSL150, or to a DMSO control, for 1 h.  After the incubation period, green 
fluorescence (FSL76 ex 405/em 585 nm, FSL150 ex 355/em 535 nm) and culture turbidity (OD600) were 
recorded for each mutant strain.  The fluorescence values of cultures exposed to profluorophore and their 
respective DMSO controls were normalized for OD600.  Fold difference between the normalized 
profluorophore and DMSO controls was calculated to generate relative fluorescence units (RFU) for each 
7KO strain.  The wild type enzymes NfsA_Ec and NfsB_Vv, expressed from pUCX in 7KO cells, were 
included as controls.  pUCX represents 7KO cells containing an empty pUCX plasmid (lacking 
nitroreductase expression).  FSL76 data are representative of five independent experiments ± SEM.  
FSL150 data are representative of six independent experiments ± SEM.   
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Running a fluorescence assay using the red, NfsB_Vv-selective, profluorophore FSL178 

revealed that the NfsA_Ec 7SM mutants had also lost activity with this profluorophore 

relative to wild type NfsA_Ec (Figure 3.23). 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.23 – FSL76 and FSL150 fluorescence assay with E. coli 7KO cells overexpressing 
metronidazole-insensitive 7SM NfsA_Ec mutant nitroreductases.   Mid-exponential phase E. coli 7KO 
strains expressing the nine top tinidazole-selective NfsA_Ec 7SM mutants identified were exposed to A) 10 
!M FSL178 or a DMSO control, for 1 h.  After the incubation period, red fluorescence (ex 645/em 660 nm) 
and culture turbidity (OD600) was recorded for each mutant strain.  The fluorescence values of cultures 
exposed to profluorophore and their DMSO controls were normalized for OD600.  As the unchallenged 
controls gave fluorescence readings of 0, fold induction could not be calculated.  Data is therefore presented 
as OD600 normalized relative fluorescence units (660 nm RFU).  The wild type enzymes NfsA_Ec and 
NfsB_Vv expressed from pUCX in E. coli 7KO cells were included as controls.  pUCX represents E. coli 
7KO cells containing an empty pUCX plasmid (lacked nitroreductase expression).  Data are representative 
of three independent experiments ± SEM.  
 

Interestingly, the decrease in activity with FSL76, FSL150, and FSL178 demonstrated by 

the selected NfsA_Ec 7SM mutants was not observed with all profluorophores tested.  

Unlike FSL76/150 and FSL178, which are preferentially activated by NfsA or NfsB 

family enzymes, respectively, the blue profluorophore FSL41 is broadly active with 

enzymes from both families (Horvat, 2012).  Relative to NfsA_Ec, none of the selected 

NfsA_Ec 7SM mutants had been substantially impaired in their abilities to activate 

FSL41 (Figure 3.24A and Figure 3.24B).  However, as NfsB_Vv was also highly active 

with FSL41, this profluorophore could not be used to specifically image these NfsA_Ec 

7SM mutants in a multiplex imaging setting.   
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Figure 3.24 – FSL41 fluorescence assay and UV transillumination of E. coli 7KO cells overexpressing 
metronidazole-insensitive 7SM NfsA_Ec mutant nitroreductases.  A) Mid-exponential phase E. coli 
7KO strains expressing the top nine tinidazole-selective NfsA_Ec 7SM mutants identified were exposed to 
A) 10 µM FSL41, or a DMSO control, for 1 h.   After the incubation period, blue fluorescence (ex 355/em 
460 nm) and culture turbidity (OD600) was recorded for each mutant strain.  The fluorescence values of 
cultures exposed to profluorophore and their DMSO controls were normalized for OD600.  Fold difference 
between the normalized profluorophore and DMSO was calculated to generate relative fluorescence units 
(RFU) for each 7SM mutant.  The wild type enzymes NfsA_Ec and NfsB_Vv expressed from pUCX in 
7KO cells were included as controls.  pUCX represents 7KO cells containing an empty pUCX plasmid. 
Data are representative of four independent experiments ± SEM. B) UV transillumination image 
demonstrating the activation of FSL41 by the NfsA_Ec 7SM mutant overexpressing strains.  After reading 
the blue fluorescence of one (ex 355/em 460 nm) of the independent experiments, the 96 well plate in 
which the assay was performed was exposed to UV light (capable of exciting activated FSL41) in a 
transilluminator.  Row 1, from left to right, duplicate wells containing: 7KO NfsA_Ec 7SM 5_B9, 1_F8, 
1_F2, 1_F7 or 1_G9 cultures containing 10 !M FSL41.  Row 2, from left to right, duplicate wells 
containing: 7KO NfsA_Ec 7SM 1_B7, 1_G7, 7_B8, or 7_D2 cultures containing 10 !M FSL41.  Row 3, 
from left to right, duplicate wells containing: 7KO pUCX empty, NfsB_Vv, or NfsA_Ec cultures containing 
10 !M FSL41.  Row 4, Identical layout to row 1, except an equivalent volume of DMSO present rather than 
10 !M FSL41.  Row 5 identical layout to row 2, except an equivalent volume of DMSO present rather than 
10 !M FSL41.   Row 6, Identical layout to row 3, except an equivalent volume of DMSO present rather 
than 10 !M FSL41. 
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Collectively, these experiments demonstrated that decreasing the metronidazole activity 

of NfsA_Ec using directed evolution had also been detrimental to activity with 

nitroaromatic substrates other than 5-nitroimidazoles.  Enzyme activity was not affected 

with all substrates tested, however, as demonstrated by the activity of the selected 

NfsA_Ec 7SM mutants with FSL41.  On this basis, it appeared that the activation of 

FSL41 by these mutants would provide a useful marker for their expression in a 

eukaryotic cell context, explored in the following section.    

 

3.2.11 Preparation for Eukaryotic IC50 analysis of the Selected NfsA_Ec 7SM 
mutants  
 
Full validation for the top tinidazole-selective NfsA_Ec 7SM mutants evolved in this 

research would require their expression in zebrafish and demonstrating their decreased 

metronidazole ablation capacity relative to NfsA_Ec.  As zebrafish facilities were not 

readily available, however, we decided to perform preliminary validation experiments by 

expressing several of the NfsA_Ec 7SM mutants in eukaryotic cell cultures – HEK293 

cells in this case.  HEK293 cells were selected because, in addition to being amenable to 

plasmid transfection and heterologous protein expression (Thomas and Smart, 2005), they 

had previously been successfully stably transfected with nfsA_Pp and nfsB_Vv genes 

(Condon, 2013).  Consistent with the bacterial IC50 data, the HEK293 cells expressing 

NfsB_Vv were more sensitive to metronidazole than HEK293 cells expressing NfsA_Pp, 

which were more tinidazole sensitive (Condon, 2013; Horvat, 2012). 

 

The mammalian expression plasmid 279-V5 was used to transfect HEK293 cells, having 

previously been created for the heterologous expression of nitroreductase genes in HCT-

116 and HEK293 cells (Condon, 2013; Horvat, 2012; Prosser et al., 2013; Williams, 

2013).  The NfsA_Ec 7SM mutants 5_B9, 1_G9, 1_B7 and 1_F2 were selected for 

cloning into the mammalian expression vector 279-V5. These mutants were selected 

because, in addition to all possessing higher bacterial metronidazole IC50 values than 

NfsA_Ec, their tinidazole IC50 values were the most similar to wild type NfsA_Ec 

(summarised in Table 3.5). 

 

 



! "#!

NfsA_Ec 7SM Mutants selected 

for 279-V5 cloning 

Metronidazole IC50  (!M) Tinidazole IC50 (!M) 

   

1_G9 1000 ± 140 100 ± 8 

1_B7 680 ± 20 74 ± 7 

1_F2 1800 ± 54 110 ± 12 

5_B9 1700 ± 150 80 ± 8  

   

Wild Type   

NfsA_Ec 55 ± 3 30 ± 2 

Table 3.5 – NfsA_Ec 7SM mutants selected for transfection into HEK293 cells. (Data taken from Table 

3.1)  

 

All four NfsA_Ec 7SM mutants were successfully cloned into the 279-V5 vector using 

GatewayTM (Invitrogen) recombination.  In addition, a 279-V5 vector containing 

NfsA_Ec was already available from previous studies. In separate experiments, HEK293 

cells were transfected with each of these five vectors, and cell cultures were grown in the 

presence of puromycin to select for those cells transfected with a plasmid (which can only 

be maintained in these cells via genomic integration).   

 

Stably puromycin-resistant HEK293 cell lines were successfully created for the wild type 

NfsA_Ec and the NfsA_Ec 7SM mutants 1_B7, 1_G9, and 1_F2. While a stably 

puromycin resistant HEK293 population was created from transfecting NfsA_Ec 7SM 

5_B9, contamination issues in the tissue culture facility meant the cells unfortunately 

needed to be destroyed.  Moreover, due to time constraints it was not possible to 

definitively confirm expression of any of these gene variants via FSL41 fluorescence 

assays, nor to initiate any prodrug sensitivity testing.  However, the transfected HEK293 

cell lines should be a useful resource for future experiments.   

 

3.3 Chapter 3 Discussion  
 

The goal of this chapter was to improve the tinidazole selectivity of NfsA_Ec using 

directed evolution.  For multiplex cell ablation to be possible, two nitroreductase 

enzymes, each possessing non-overlapping prodrug selectivities, are required. Previous 

work had identified several promising nitroreductase pairs demonstrating a!!
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of non-overlapping selectivities for the prodrugs metronidazole and tinidazole (Condon, 

2013; Horvat, 2012).  In particular, NfsB_Vv was identified as a highly metronidazole 

selective nitroreductase, while NfsA_Ec was identified as weakly tinidazole selective 

(Condon, 2013; Horvat, 2012).  Before incorporating these enzymes into a multiplex 

ablation system, we anticipated that the substrate selectivity of one or both would require 

further narrowing.  Given its success in altering the activity of nitroreductase enzymes in 

the past (discussed in Section 1.4.2), we chose to use directed evolution to enhance 

nitroreductase substrate selectivity.    

 

Consistent with previous reports (Condon, 2013) metronidazole and tinidazole IC50 assays 

of E. coli SOS-R4 cells overexpressing NfsA_Ec demonstrated it was active with both 

prodrugs, possessing a slight (2 fold) tinidazole activation bias (Table 3.1).  Also 

consistent with previous studies (Condon, 2013; Horvat, 2012), the metronidazole and 

tinidazole IC50 values NfsB_Vv indicated it was considerably (13 fold) more 

metronidazole selective.  As two highly prodrug selective nitroreductase enzymes would 

be required for a multiplex ablation system, we chose to focus on enhancing the 

tinidazole selectivity of NfsA_Ec to make it more complementary to the metronidazole 

selective NfsB_Vv.   

 

From previous research in the Ackerley lab, the highly diverse NfsA_Ec 7SM mutant 

library was available for screening (described in Section 3.2.2).  To improve the 

tinidazole selectivity of NfsA_Ec, a directed evolution screen was developed where 

NfsA_Ec mutants were simultaneously exposed to metronidazole and niclosamide, 

negative and positive nitroreductase selection agents, respectively.  The rationale was that 

NfsA_Ec 7SM mutants highly active with metronidazole, as wild type NfsA_Ec was, 

would convert it into the cytotoxic form and inhibit their own growth.  Niclosamide, on 

the other hand, was used as a positive selection agent to ensure the reason the mutants 

were viable in the presence of metronidazole was not because they had lost all 

nitroreductase activity.  As demonstrated in Figure 3.7, LB agar containing 0.5 !M 

niclosamide was toxic to E. coli SOS-R4 cells lacking nitroreductase expression, whereas 

E. coli SOS-R4 cells expressing NfsA_Ec from pUCX remained viable.  To determine if 

using niclosamide would detrimentally affect the tinidazole activity of the selected 

NfsA_Ec 7SM mutants, the library was selected using niclosamide alone.  The results 

demonstrated that, in contrast, the majority of mutants selected using niclosamide were 
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more active than wild type NfsA_Ec with both tinidazole and metronidazole Figure 3.8.  

Outside of the evolution performed in this thesis, niclosamide could therefore have 

applications as a direct positive selection to improve nitroreductase activity with 5-

nitroimidazole prodrugs.  As nitroreductase enzymes possessing superior metronidazole 

activation kinetics are starting to be utilized in zebrafish cell ablation studies (Chen et al., 

2011; Mathias et al., 2014), niclosamide could assist the evolution of more such enzymes.   

 

A concern with using niclosamide was that the ability of an NfsA_Ec 7SM mutant to 

detoxify it, and its ability to activate metronidazole or tinidazole, might not be mutually 

inclusive attributes.  In which case, niclosamide could be killing desirable NfsA_Ec 7SM 

mutants that were highly tinidazole selective.  As approximately only 4% of the NfsA_Ec 

7SM library (~95 million mutants in totals) can detoxify niclosamide (Michelle Rich, 

unpublished), using niclosamide massively lowered the mutational diversity present for 

screening.  Furthermore, it was unknown whether the minimal set of mutations required 

for the detoxification of niclosamide might ultimately restrict the maximum tinidazole 

selectivity achievable.  While these were potential problems associated with niclosamide, 

its ability to select against mutants lacking metronidazole and tinidazole activity was 

highly valuable in this study. As Figure 3.9 demonstrated, in the absence of niclosamide 

selection, the majority of NfsA_Ec 7SM mutants had lost activity with both 

metronidazole and tinidazole.  Thus, if niclosamide were left out of the LB agar during 

NfsA_Ec 7SM library screen, the number of mutants that would need to be screened to 

identify those few with activity would be much larger.  Especially when considering the 

low throughput nature of the directed evolution screen, i.e. the need to select and grow 

individual mutants in liquid culture to measure metronidazole and tinidazole activity, the 

practicality of niclosamide selection was clear.   

In the future, if niclosamide selection was found to inhibit maximum tinidazole 

selectivity, higher throughput methods such as FACS could be used to screen a non-

niclosamide selected NfsA_Ec 7SM library.  The induction of GFP expression in E. coli 

SOS-R4 cells expressing a nitroreductase in response to a prodrug has previously enabled 

their collection using FACS (Copp et al., 2014).  E. coli SOS-R4 cells containing the full 

NfsA_Ec 7SM library could be challenged using tinidazole, followed by FACS collection 

of the most GFP positive cells.  The collected population could then be challenged using 

metronidazole to sort the least GFP positive cells.  If successful, the end result would be 
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the enrichment of highly tinidazole selective NfsA_Ec mutants from the entire NfsA_Ec 

7SM library, rather than just the minority viable in the presence of niclosamide.  

 

In addition to niclosamide, the other component of the directed evolution screen was a 

negative selection agent: the nil-bystander prodrug metronidazole.  The unique activity 

profile of AzoR_Ec (lacking metronidazole activity but capable of detoxifying 

niclosamide) resulted in it being a very valuable control to optimize the concentration of 

metronidazole used in directed evolution screen (Figure 3.10, Figure 3.11, and Figure 

3.12).  A metronidazole concentration was identified that, in combination with 

niclosamide, inhibited the growth of E. coli SOS-R4 cells that either lacked all 

nitroreductase activity (i.e., contained pUCX empty) or possessed wild type levels of 

activity (i.e., expressing NfsA_Ec from pUCX), while still enabling the survival of 

AzoR_Ec clones.  In addition to AzoR and orthologues thereof, the Ackerley lab have 

identified several other “minor” nitroreductase families, typified by E. coli NemA 

(Prosser et al, 2010), E. coli MdaB (Prosser et al, 2013) and Pseudomonas aeruginosa 

MsuE (Green et al, 2013), that only seem to have activity with a minority of nitroaromatic 

substrates.  It is possible that some of these other nitroreductase enzymes could similarly 

provide useful controls for other future directed evolution experiments.  Thus, the use of 

AzoR_Ec in this work also demonstrated the usefulness of characterizing new 

nitroreductase enzymes, even if their application is unclear at the time of discovery.   

 

After the directed evolution screen had been optimized, the NfsA_Ec 7SM library was 

screened.  The results indicated that the screen successfully yielded NfsA_Ec mutants that 

possessed improved levels of tinidazole selectivity compared to NfsA_Ec (Figure 3.14).  

While the top 7SM NfsA_Ec mutants identified had increased metronidazole IC50 values, 

they were also increased, albeit to a lesser extent, in their tinidazole IC50 relative to 

NfsA_Ec (Table 3.3).  These findings were consistent with a previous study where 

negatively selecting against enzyme activity with one substrate, was also detrimental to 

enzyme activity with other substrates (Nair and Zhao, 2008).  Here, the loss of activity 

with both prodrugs could reflect that, as they were both 5-nitroimidazole prodrugs, 

enzymatic changes that affected activity with one were extremely likely to affect activity 

with the other.   

 



! "#!

The NfsA_Ec 7SM mutant demonstrating the largest improvement in tinidazole 

selectivity,5_B9, was 12 fold more tinidazole selective than wild type NfsA_Ec (Table 

3.3).  Furthermore, measuring the protein expression levels of the mutants using SDS-

PAGE (Figure 3.17) suggested that catalytic changes, rather than expression changes, 

were responsible for the increase in tinidazole selectivity.  One anomaly observed during 

the library screen was that upon retransformation into SOS-R4 cells, the tinidazole GFP 

values of NfsA_Ec 7SM 1_F8 had decreased from that observed pre-retransformation.  

The low metronidazole and tinidazole GFP responses of this mutant (Table 3.3) 

translated into the highest (i.e., worst) metronidazole and tinidazole IC50 values recorded 

for any of the selected mutants.  Overall, the high metronidazole and tinidazole IC50 value 

of NfsA_Ec 7SM 1_F8 provided further evidence of the importance of retransforming 

promising mutant plasmids prior to conducting further analysis. 

 

Measuring the Michaelis-Menten kinetic parameters (KM and kcat) for metronidazole and 

tinidazole would be a more robust measure of substrate selectivity than bacterial IC50 

values.  Unfortunately, calculating enzyme kinetic constants using metronidazole and 

tinidazole has proven difficult in the past due to the intrinsic NAD(P)H oxidase activity 

of nitroreductase enzymes, in particular members of the NfsA family. NAD(P)H oxidase 

activity has been observed in multiple nitroreductase enzymes (Cortial et al., 2010; 

Olekhnovich et al., 2009) and results in the consumption of NAD(P)H elections by 

molecular oxygen rather than the substrate under evaluation.  In the case of NfsA_Ec, the 

consumption of NAD(P)H by NAD(P)H oxidase activity occurs so rapidly relative to 

reduction of the intended substrate as to preclude the measurement of metronidazole and 

tinidazole reduction kinetics.  Previous studies overcame this problem via addition of 

oxygen scavenging enzymes, such as glucose oxidase, to the reaction mix (Olekhnovich 

et al., 2009).  The Ackerley lab has recently acquired a hypoxic chamber that should 

enable kinetic measurements to be made in an entirely oxygen free environment.  In 

anticipation, although not reported in the Results, the top tinidazole selective NfsA_Ec 

7SM mutants (Table 3.3) were all cloned into the polyhistidine-tag protein purification 

vector pET-28a+.  Metronidazole and tinidazole kinetic data of these mutants should 

therefore be readily measurable in the near future.   

 

To determine if increases in tinidazole selectivity were associated with a similar series of 

amino acid substitutions, each of the top NfsA_Ec 7SM mutants from Table 3.3 were 
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sequenced (Table 3.2).  While several common amino acid motifs were present, it was 

difficult to determine any definitive relationships without obtaining the sequences of 

additional mutants.  It would be interesting to test a S41Y/F, F42C, F83L triple mutant 

improved tinidazole selectivity; as these changes were present in five of the nine mutants 

sequenced.  To identify if a key substitution was responsible for the observed increase in 

tinidazole selectivity, seven NfsA_Ec single mutants, each possessing a single amino acid 

change present in the tinidazole selective NfsA_Ec 7SM 5_B9 mutant were tested.  

Metronidazole and tinidazole growth inhibition assays were performed on E. coli SOS-R4 

cells containing one of these single mutants to determine their relative activity with each 

prodrug (Figure 3.18).  The results indicated that no single amino acid change was 

exclusively responsible for the improved tinidazole selectivity of NfsA_Ec 7SM 5_B9, 

indicating the synergistic influences of multiple amino acid changes were responsible.  

Alternative methods could be used to study the relationship between structure and activity 

in the future.  For instance, variants of mutant NfsA_Ec 7SM 5_B9 could be created 

where each of the altered codons was, one at a time, reverted to its wild type identity.  If 

codon reversion eliminated the improved selectivity of the enzyme it would implicate it 

as important for the change in enzyme substrate selectivity.  This technique was 

previously used to identify minimal set of amino acid changes required for the altered 

substrate selectivity of aspartate aminotransferase mutants (Yano et al., 1998).  

Identifying the amino acid(s) most important for tinidazole selectivity over metronidazole 

selectivity could assist future improvement by directed evolution.  For example, any 

codons identified as important for tinidazole selectivity could be mutated again, this time 

using an NNK codon degeneracy that provides access to all twenty possible residues, 

(rather than NDT, which only provides access to twelve), to determine if a full codon 

repertoire could further enhance selectivity.   

 

In Section 3.2.10 we tested whether the top tinidazole selective NfsA_Ec 7SM mutants 

could be specifically imaged in a multiplex imaging and ablation system including 

NfsB_Vv (as depicted in Figure 3.20).  The activities of the wild type enzymes NfsA_Ec 

and NfsB_Vv with the profluorophores tested were consistent with those observed in 

previous studies (Condon, 2013; Horvat, 2012)..  NfsA_Ec selectively activated 

FSL76/FSL150, whereas NfsB_Vv was only weakly active with these profluorophores.  

Also consistent, NfsB_Vv was more active with the red profluorophore FSL178 than 

NfsA_Ec (Condon, 2013; Horvat, 2012).  When tested, however, the top tinidazole 
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selective NfsA_Ec 7SM mutants had lost activity with FSL76, FSL150, and FSL178 

relative to wild type NfsA_Ec (Figures 3.22A and Figure 3.22B).  The loss of FSL76 

and FSL150 activity suggested that none of the mutants would be suitable for a multiplex 

imaging system containing NfsB_Vv, unless additional rounds of directed evolution 

could restore activity with one or both of these substrates.  However, that all of the 

NfsA_Ec 7SM mutants tested were active with the blue profluorophore FSL41, offered 

promise that non-specific imaging capabilities would be possible to report on expression 

and activity of the evolved nitroreductase variants post-transfection into a eukaryotic cell 

line.   

 

Time constraints unfortunately precluded the validation of the tinidazole selective 

NfsA_Ec 7SM mutants identified in this chapter in a model eukaryotic system.   Some 

previous studies have indicated that the performance of a nitroreductase in a bacterial 

system frequently translates well to eukaryotic systems (Grove et al., 2003; Guise et al., 

2007; Mathias et al., 2014; Swe et al., 2012).  Particularly relevant to this project was the 

example where improvements in prodrug activation in a bacterial system (Guise et al., 

2007), translated into improvements in prodrug activation in transgenic zebrafish tissue 

(Mathias et al., 2014).  However, as effective expression of bacterial nitroreductases (and 

translation of their activities) in eukaryotic cells, has not always been achieved (Prosser et 

al., 2013), it will be important to validate the NfsA_Ec 7SM mutants in eukaryotic system 

in the near future.  Our collaborators at the ACSRC have also encountered difficulties 

where a subset of transfected nitroreductase mutants express poorly in mammalian cells, 

even when the wild type expresses well (Williams, 2013).  That stably puromycin-

resistance observed in cell lines were produced using several of the transfected NfsA_Ec 

7SM mutants therefore provides no feedback on the stability of nitroreductase expression.  

The activation of FSL41 should, however, be a useful tool to measure the uniformity of 

nitroreductase expression within a population of transfected mammalian cells, either 

using confocal microscopy or flow cytometry.  Alternatively, expression levels of the 

transfected nitroreductase mutants could also be assessed in future using Western blot 

analysis.  The 279-V5 vector is capable (via an inducible translational readthrough 

system) of incorporating a V5 epitope tag to the expressed protein, enabling primary 

antibody binding and Western blot detection (Prosser et al., 2013).  Using FSL41 

activation or Western blotting, the expression levels of the transfected mutants should be 

readily measurable in the near future. 
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For the development of a successful multiplex cell ablation system, absolute enzyme 

selectivity is not the only factor that needs to be considered.  A suitable therapeutic 

window is required, such that the administration of metronidazole only ablates NfsB_Vv 

expressing cells, whereas the administration of tinidazole only ablates cells expressing 

NfsA_Ec 7SM 5_B9.  Comparing metronidazole and tinidazole growth inhibition graphs 

in Figure 3.16, the tinidazole selectivity of mutant 5_B9 does not look strong enough for 

a sufficiently large therapeutic window between NfsB_Vv and NfsA_Ec 7SM 5_B9 cell 

ablation.  Addition evolution is therefore required to further increase the tinidazole 

selectivity of NfsA_Ec 7SM 5_B9.  Several strategies could be tested in the future to 

achieve this.  To decrease metronidazole activity even further, the concentration of 

metronidazole added to the LB agar could be increased beyond 1 mM during the 

additional rounds of mutagenesis, proving an even greater selective pressure against 

mutants that possess metronidazole activity.  Alternatively, if increasing metronidazole 

negative selection was found to be too detrimental for tinidazole activity, continuously 

selecting for mutants that demonstrate an increase in tinidazole activity could be more 

successful. If the metronidazole selectivity of NfsB_Vv was found to be insufficient in a 

zebrafish context, there is also potential for using directed evolution to enhance the 

metronidazole selectivity of NfsB_Vv.  A mutant NfsB_Vv library could be plated LB 

agar containing tinidazole (rather than metronidazole as used for NfsA_Ec evolution) to 

select for NfsB_Vv mutants that possessed lower levels of tinidazole activity.   
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Chapter 4: Enhancing the Tinidazole Selectivity of NfsA_Pp 
using Directed Evolution 
 

4.1 Introduction 
 

A parallel approach taken to evolve a highly tinidazole-selective nitroreductase for a 

multiplex ablation system was via randomly mutagenesis of NfsA_Pp.  As discussed in 

the Chapter 3 introduction, NfsA_Pp was first identified as a promising tinidazole-

selective nitroreductase when the activity of 16 different nil-bystander prodrugs, 

including metronidazole and tinidazole, was measured for each member of the 58 core 

nitroreductase library (Condon, 2013).  When measured in this study, NfsA_Pp 

demonstrated a three fold lower tinidazole IC50 than metronidazole IC50, making it 

roughly two fold more tinidazole selective than NfsA_Ec (summarised in Table 4.1).  We 

reasoned its larger initial tinidazole selectivity might translate to larger increases in 

selectivity being achievable using directed evolution than would be possible for 

NfsA_Ec, an enzyme with less intrinsic tinidazole selectivity.  

 
Enzyme Tinidazole IC50 (!M) Metronidazole IC50 (!M) Tinidazole Selectivity (Metronidazole 

IC50 / Tinidazole IC50)   
NfsA_Ec 30 ± 2 55 ± 3 2 

NfsA_Pp 80 ± 6 240 ± 23 3.0 

Table 4.1 – Metronidazole and tinidazole IC50 assays of E. coli SOS-R4 strains overexpressing either 

NfsA_Ec or NfsA_Pp.  (Data taken from Table 3.1) 

 

Unfortunately, no site saturation mutagenesis library, such as the NfsA_Ec 7SM, was 

available for NfsA_Pp. A random mutagenesis approach, using an error-prone DNA 

polymerase to randomly mutate nucleotides throughout the gene, was therefore chosen.  

Once created, as performed in Chapter 3 the library of NfsA_Pp mutants was plated on 

LB agar plates containing metronidazole and niclosamide to select against mutants 

possessing substantial metronidazole activity.  

 

 

 
!
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4.2 Chapter 4 Results  
 

4.2.1 Optimization of Directed Evolution Screen for NfsA_Pp 
 

Equivalent optimization experiments to those in Section 3.2.3 using E. coli SOS-R4 cells 

expressing azoR_Ec, nfsA_Pp, or empty pUCX plasmids were performed.  Like 

NfsA_Ec, SOS-R4 cells expressing NfsA_Pp were capable of detoxifying niclosamide to 

a similar extent to AzoR_Ec (Figure 4.1).  AzoR_Ec was therefore again selected as a 

control, in this case as a surrogate for an NfsA_Pp mutant that had lost metronidazole 

activity but could still detoxify niclosamide.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 – Niclosamide growth inhibition assays of E. coli SOS-R4 nitroreductase overexpressing 
strains. E. coli SOS-R4 cultures containing expressing either NfsA_Pp or AzoR_Ec from a pUCX plasmid, 
or containing an empty pUCX control, were challenged in 384 well plates with serial dilutions of 
niclosamide for 4 h.  Growth was measured as the difference in culture turbidity (OD600) between pre (t = 0 
h) and post (t = 4 h) drug challenged cultures.  For each strain, growth inhibition was measured as the 
percentage decrease in growth between each challenged culture and its respective unchallenged control.  
Data are representative of three independent experiments ± SEM.   
 

After testing a range of metronidazole concentrations from 0.2 mM – 1 mM, LB agar 

supplemented with 1 mM metronidazole and 0.5 µM niclosamide was again selected as it 

inhibited the growth of E. coli SOS-R4 cells expressing NfsA_Pp from pUCX or 

containing an empty pUCX plasmid, but not cells expressing AzoR_Ec from pUCX.  

These concentrations were used in screening a random mutagenesis library of NfsA_Pp.  
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4.2.2 Preliminary Screening of a Random Mutagenesis NfsA_Pp Mutant Library 
 

To create a mutant library of NfsA_Pp, its gene was amplified using the error-prone DNA 

polymerase Mutazyme II (Stratagene).  Error-prone polymerases lack the fidelity and 

proof reading capabilities of more conventional DNA polymerase, resulting in the 

introduction of base substitutions as the amplification progresses.  Once created and 

transformed into E. coli SOS-R4 cells, the library was plated onto niclosamide-containing 

LB agar to remove nitroreductases that had lost all activity.  Around 9% of the mutant 

library was viable on niclosamide, representing 6000 mutant clones in total.  Subsequent 

sequence analysis revealed an average of 4-5 mutations had been introduced by the error-

prone polymerase per niclosamide-resistant nfsA_Pp mutant.  Niclosamide selection was 

once again capable of selecting for nitroreductase mutants active with both metronidazole 

(Figure 4.2A) and tinidazole (Figure 4.2B).  In contrast with the previous 7SM targeted 

mutagenesis library however, in which the active site of the target (NfsA_Ec) 

nitroreductase had been dramatically restructured, the point mutations introduced by error 

prone PCR (epPCR) were more likely to slightly diminish overall nitroreductase activity; 

that is, a much lower proportion of the clones that were still able to defend against 

niclosamide were expected to be improved relative to wild type in their reduction of the 

5-nitroimidazole prodrugs.  
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Figure 4.2 – Metronidazole and tinidazole induced GFP SOS response in niclosamide preselected E. 
coli SOS-R4 overexpressing NfsA_Pp mutants.  A total of 46 NfsA_Pp mutants were randomly selected 
from LB agar supplemented with 0.5 µM niclosamide, and then challenged using either metronidazole or 
tinidazole in SOS GFP assays.  Mid-exponential cultures from each of the 46 colonies were challenged in 
384 well plates with either A) 5 µM metronidazole or B) 5 µM tinidazole for 3 hours, after which GFP 
fluorescence (488 ex/510 em) and culture turbidity (OD600) were recorded.  A DMSO control 
(unchallenged) was also included for each of the NfsA_Pp mutants.  The raw GFP value for each culture 
was normalized by its OD600.  GFP fold induction was then calculated from the difference between the 
normalized GFP values of each challenged culture, and its respective unchallenged control.  E. coli SOS-R4 
clones expressing the wild type NfsA_Pp from pUCX were included for the purposes of comparison.  
pUCX represents E. coli SOS-R4 cells containing an empty pUCX plasmid.  Data are representative of 
three independent experiments ± SEM.   
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4.2.3 Mutant NfsA_Pp Library Screening  
 

To select for NfsA_Pp mutants that had lost metronidazole activity, the library was plated 

on LB agar containing 1 mM metronidazole and 0.5 µM niclosamide.  Due to time 

constraints, library screening was not as comprehensive as that performed in Chapter 3.  

Of the colonies that formed in the presence of metronidazole and niclosamide, 114 were 

selected to run metronidazole and tinidazole SOS GFP assays.  Metronidazole and 

tinidazole SOS GFP data for a subset (57) of the colonies screened is presented in Figure 

4.3.   
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Figure 4.3 – Metronidazole and tinidazole induced GFP SOS response in E. coli SOS-R4 overexpressing NfsA_Pp mutant clones preselected with niclosamide and 
metronidazole.  Mid-exponential cultures of 57 NfsA_Pp mutants selected on LB agar containing 1 mM metronidazole and 0.5 µM niclosamide were challenged in 384 well 
plates containing either A) 5 µM metronidazole or B) 5 µM tinidazole for 3 hours, after which GFP fluorescence (488 ex/510 em) and culture turbidity (OD600) were recorded.  
A DMSO control (unchallenged) was also included for each strain.  The raw GFP values of each challenged culture and its respective unchallenged control were normalized 
by OD600.  GFP fold induction was then calculated as the difference between the normalized GFP values of each challenged culture and its respective unchallenged control.  
E. coli SOS-R4 clones expressing the wild type NfsA_Pp from pUCX were included for the purposes of comparison.  pUCX represents SOS-R4 cells containing an empty 
pUCX plasmid control.  Data are representative of three independent experiments ± SEM.  
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All of the NfsA_Pp mutants presented in Figure 4.3 had lost metronidazole activity 

relative to wild type NfsA_Pp, demonstrating the metronidazole negative selection had 

been successful.  However, tinidazole activity had also been greatly decreased, to a far 

greater extent than observed when screening the NfsA_Ec 7SM library (Figure 3.14).  

The only mutant possessing notable levels of tinidazole activity was mutant Pp_G5, 

although from the SOS data it was difficult to determine if tinidazole selectivity had been 

enhanced.  This mutant was therefore selected for further analysis to better characterise 

its change in activity. 

 

4.2.4 Sequence and Growth Inhibition Analysis of the top NfsA_Pp Mutant  
 

After retransforming the plasmid containing the Pp_G5 mutant back into E. coli SOS-R4 

(as discussed in Section 3.2.5), it was sequenced to determine the mutations present.  

Four point mutations were present and presented in Table 4.2, two of which were 

missense, resulted in amino acid changes from the wild type (Q33K and V185A).   

 
Nucleotide Position/Change Amino Acid Position/Change 
  
T94C transversion L32 silent mutation 
C97A transversion Q33K missense mutation 
G243A transversion A81 silent mutation 
T554C transversion V185A missense mutation 
Table 4.2 – Mutations identified in the NfsA_Pp mutant gene Pp_G5.  
 
 
Predicting the possible catalytic consequences of these mutations was made difficult by 

the absence of a crystal structure.  However, the E. coli homologue of NfsA_Pp, 

NfsA_Ec had been crystalised (Kobori et al., 2001), enabling a very perfunctory analysis 

to be performed.  Aligning the sequence of Pp_G5 and NfsA_Ec revealed that the Q33K 

mutation was four amino acids distance away from the R38 codon, which is the NfsA_Pp 

equivalent of the R15 codon of NfsA_Ec - one of the amino acids whose side chain is 

present in the active site (Figure 4.4).  Additionally, the V185A amino acid change is 

seven residues away from an equivalent NfsA_Ec amino acid, D163, which forms part of 

the NfsA_Ec active site.  Obviously, additional experimental analysis is required to 

conclusively determine which mutation(s) account for the change in metronidazole and 

tinidazole activity observed. 

!
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NfsA_Ec      -----------------------MTPTIELICGHRSIRHFTDEPISEAQREAIINSARAT 37 
Pp_G5        MSLQDEALKAWQARYGEPANLPAADTVIAQMLKHRSVRAYSDLPVDEQMLSWAIAAAQSA 60 
                                       .*  :  ***:* ::* *:.*   .  * :*::: 
 
NfsA_Ec      SSSSFLQCSSIIRITDKALREELVTLTGGQKHVAQAAEFWVFCADFNRHLQI-----CPD 92 
Pp_G5        STSSNLQAWSVLAVRDRERLARLARLSGNQRHVEQAPLFLVWLVDWSRLRRLARTLQAPT 120 
             *:** **. *:: : *:    .*. *:* *:** **  * *: .*:.*  ::     .*  
 
NfsA_Ec      AQLGLAEQLLLGVVDTAMMAQNALIAAESLGLGGVYIGGLRNNIEAVTKLLKLPQHVLPL 152 
Pp_G5        AGIDYLESYTVGVVDAALAAQNAALAFEAQGLGIVYIGGMRNHPEAMSEELGLPNDTFAV 180 
             * :   *.  :****:*: **** :* *: *** *****:**. **::: * **:..: : 
 
NfsA_Ec      FGLCLGWPA--DNPDLKPRLPASILVHENSYQPLDKGA--LAQYDEQLAEYYLTRGSNNR 208 
Pp_G5        FGMCAGHPDPAQPAEIKPRLAQSVVLHRERYEATEAEAVSVAAYDRRMSDFQHRQQR--E 238 
             **:*:* *   :  ::****  *:::*.: *:  :  *  :* **.:::::   :    . 
 
NfsA_Ec      RDTWSDHIRRTIIK----ESRPFILDYLHKQGWATR 240 
Pp_G5        NRSWSSQAVERVKGADSLSGRHRLRDALNTLGFGLR 274 
             . :**.:  . :      ..*  : * *.. *:. * 

 
 
Figure 4.4 – Protein sequence alignment of NfsA_Ec and the NfsA_Pp mutant Pp_G5.  The multiple 
sequence alignment tool ClustalOmega (www.ebi.ac.uk/Tools/msa/clustalo/) was used to align the 
protein sequences of NfsA_Ec and the NfsA_Pp mutant Pp_G5.  The Q33K mutation and the V185A 
mutations present in the Pp_G5 mutant are highlighted in red.  For each NfsA_Pp mutation, the closest 
NfsA_Ec amino acid whose side chain forms part of the active site (determined by Kobori et al., 2001) are 
highlighted in grey.  Conserved amino acid residues are marked with an asterisk (*).  Loci with amino acids 
with highly similar properties (e.g. H and R) are marked with a colon (:). Loci with amino acids with 
weakly similar properties (e.g. Q and H) are marked with a period (.). 
 

To validate the reduction in metronidazole and tinidazole SOS activity of NfsA_Pp 

mutant Pp_G5, (Figure 4.3), growth inhibition assays were performed using both 

prodrugs (Figure 4.5A).  Identical growth inhibition assays were performed using SOS-

R4 cells expressing wild type NfsA_Pp to enable comparison (Figure 4.5B).  

Unfortunately, time constraints prevented the measurement of accurate metronidazole and 

tinidazole IC50 values.  The results still demonstrated, however, that while the 

metronidazole activity had decreased compared to wild type NfsA_Pp, so had its 

tinidazole activity, to the point where the mutant was not noticeably more tinidazole 

selective than wild type NfsA_Pp.  Addition evolution may therefore be necessary before 

the tinidazole selectivity of this NfsA_Pp mutant can be improved.   
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Figure 4.5 – Metronidazole and tinidazole growth inhibition assays of E. coli SOS-R4 overexpressing 
either NfsA_Pp or mutated NfsA_Pp enzyme.  Cultures of E. coli SOS-R4 overexpressing either A) 
NfsA_Pp mutant Pp_G5 or B) Wild NfsA_Pp from pUCX were challenged in 384 well plates with separate 
serial dilutions of metronidazole and tinidazole for 4 h.  Growth was measured as the difference in culture 
turbidity (OD600) between pre (t = 0 h) and post (t = 4 h) drug challenged cultures.  For each strain, growth 
inhibition was measured as the percentage decrease between challenged cultures and its respective 
unchallenged control.  For each prodrug, data are representative of three independent repeats ± SEM.  
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4.3 Chapter 4 Discussion  
 

The goal of the research described in this chapter was to improve the tinidazole 

selectivity of NfsA_Pp using directed evolution.  This work was intended as a parallel 

strategy to the evolution of NfsA_Ec described in the previous chapter.  The goal of both 

strategies was to enhance the tinidazole selectivity of NfsA enzymes to complement the 

highly metronidazole selective NfsB_Vv in a multiplex ablation system.  Owing to the 

early success of the NfsA_Ec 7SM strategy, and the fact that NfsA_Pp is less active 

overall with tinidazole, greater focus was given to the former work than to epPCR 

mutagenesis of NfsA_Pp.   

 

Nonetheless, it was demonstrated that niclosamide was again an effective positive 

selection agent for selecting for active nitroreductase mutants, in this case NfsA_Pp 

mutants generated using error prone PCR, that were active with metronidazole and 

tinidazole (Figure 4.2).  In contrast to the 7SM NfsA_Ec mutants in Figure 3.8, none of 

the NfsA_Pp mutants selected using niclosamide were considerably more metronidazole 

or tinidazole active than wild type NfsA_Pp.  The reason for this difference is likely due 

to the NfsA_Pp mutants containing far few active site mutations (average of 4-5 DNA 

mutations in total, randomly dispersed across the full length of each gene) than the 

NfsA_Ec 7SM library (seven targeted codon changes per gene, each in or near the active 

site), making radical changes to enzyme activity less likely.  

 

As observed with the NfsA_Ec 7SM library in Figure 3.14, negative selection using 

metronidazole selected against NfsA_Pp mutants possessing wild type levels of 

metronidazole activity (Figure 4.3).  While many of the mutants had retained comparable 

higher levels of tinidazole activity, none were as obviously as tinidazole selective as the 

NfsA_Ec 7SM mutants evolved in Chapter 3.  The one NfsA_Pp mutant sequenced, 

Pp_G5, contained two amino acid changes (Table 4.2).  A more rigorous analysis, such 

modeling the Pp_G5 amino acid sequence against the NfsA_Ec crystal structure, or a 

crystal structure of Pp_G5 itself would be required to draw conclusions about the 

catalytic role of either of the amino acid changes present.    

 

Metronidazole and tinidazole growth inhibition analysis of NfsA_Pp mutant Pp_G5, also 

demonstrated it was not notably more tinidazole selective than wild type NfsA_Pp, rather 
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demonstrated similarly reduced activity with both prodrugs.  Calculating IC50 values 

would be beneficial in the future to better characterise the changes in metronidazole and 

tinidazole selectivity of this mutant.  Collectively, these findings are consistent with the 

observation that the “smart library” approach of targeting key residues using saturation 

mutagenesis codons (as done to create the NfsA_Ec 7SM library) can often yield superior 

outputs faster than a purely random mutagenesis approach (Chica et al., 2005).  

Identifying and targeting key NfsA_Pp catalytic amino acid codons for saturation 

mutagenesis, as done for NfsA_Ec, could therefore be a promising approach for 

improving tinidazole substrate selectivity in the future.   

 

The NfsA_Ec single mutant assays performed in Section 3.2.9 indicated that single 

amino acid changes alone, even those or near the active site, were unable to enhance 

tinidazole selectively. While NfsA_Pp mutant Pp_G5 contained two amino acid changes, 

these were still insufficient for a substantial improvement in tinidazole selectivity.  

Additional rounds of mutagenesis and selection are therefore likely required before 

improvement in tinidazole selectivity will be possible.  Furthermore, identifying the 

minimum set of amino acid changes required for improving the tinidazole selectivity of 

the NfsA_Ec 7SM mutants in Chapter 3 could assist with the evolution of NfsA_Pp.  For 

instance, once identified, the codons of the equivalent amino acids in NfsA_Pp could be 

targeted for site-saturation mutagenesis.   

 

Like NfsA_Ec, the native NfsA_Pp enzyme is also more selective for the green 

profluorophores FSL76 and FSL150 than the red profluorophore FSL178 (Condon, 2013; 

Horvat, 2012).  In previous validation studies, a mixed population HEK293 cells 

expressing either NfsA_Pp or NfsB_Vv were capable of being differentiated by co-

culturing with FSL76 and FSL178, respectively (Condon, 2013).  As observed in Section 

3.2.10, however, evolving NfsA_Ec to be more tinidazole selective was highly 

detrimental to its activity with FSL76 and FSL150.  It will therefore be important to 

measure the FSL76/FSL150 activity of any promising tinidazole selective NfsA_Pp 

mutants evolved in future to determine their multiplex imaging potential.   
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Chapter 5: Metagenomic Discovery of New Nitroreductases 
 
 

The goal of this chapter was to discover new nitroreductase enzymes from metagenomic 

libraries and assess their potential for targeted cell ablation.  Rather than focus on the 

genomes of culturable bacteria, as had been done previously (Prosser et al., 2013), we 

chose to focus on the genomes of unculturable bacteria, a previously neglected source.  

Mounting evidence suggests that culturable bacteria make up a very small minority of 

those present in the environment (Stewart, 2012; Torsvik et al., 2002).  The genomes of 

unculturable bacteria, although more difficult to study, are therefore a potentially rich 

resource for new nitroreductase enzymes.  As discussed in Section 1.3.2, studying the 

genes and gene products of unculturable microorganisms requires methods that 

circumvent the need to culture them directly.  Creating and screening metagenomic 

libraries, created from environmental DNA (eDNA) samples, in heterologous hosts is the 

primary method to achieve this.   

 

The two main metagenomic screening strategies are functional and homology-based 

screens.  Functional screening techniques detect target eDNA genes on the basis of a 

detectable phenotypic change associated with their expression (Piel, 2011).  The 

alternative to functional screening, homology-based screening, in contrast, detects target 

genes within metagenomic libraries on the basis of their homology to known members of 

the same gene family.  A limitation of homology screens is that, due to their dependence 

on sequence similarity, they are restricted to finding new members of already 

characterised gene families, whereas functional screens can potentially discover entirely 

new enzyme families (Piel, 2011).  To avoid expanding our collection of nitroreductases 

according to preconceived biases as to which were generally the most active i.e. the NfsA 

and NfsB family enzymes, we therefore chose to focus on the development of functional 

metagenomic screens for nitroreductase enzymes.   

 

Function based metagenomic screening and directed evolution actually parallel each other 

in a number of ways.  Both involve screening libraries of mostly useless stretches of 

DNA trying to find the few that possess a desired activity.  Furthermore, for either 

process to be possible, both require methods of detecting the desired enzymatic activity.  

It is therefore unsurprising that directed evolution methods and function-based 
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metagenomic techniques can overlap to some degree, a point that will be expanded later 

in this chapter.       

 

Two different metagenomic libraries were available for screening in this research.  The 

first, referred to as the Swedish library, was created from the DNA extracted from a 

sample of garden compost (Parachin and Gorwa-Grauslund, 2011).  The Swedish library 

contained approximately 1.26 x 105   eDNA fragments with an average size of 

approximately 4 kb, each present within the plasmid pRSETB (Parachin and Gorwa-

Grauslund, 2011).  The other metagenomic library available, referred to as the New 

Zealand (NZ) library, was created by the Ackerley lab from a sample of garden soil and 

present in pETDUET plasmids (Owen et al., 2012).  Both libraries had been transformed 

into E. coli host cells and successfully screened to identify novel PPTase enzymes and 

their associated biosynthetic gene clusters (Owen et al., 2012).   

 

5.1 Metagenomic Screening using Profluorophore Molecules  
 

The first functional screening technique attempted utilized nitroaromatic profluorophores 

to detect the expression of nitroreductases from eDNA inserts.  As demonstrated in 

Section 3.2.10, the activation of a profluorophore by a nitroreductase can result in the 

emission of visible light.  We hypothesised that profluorophore activation could used to 

detect the expression of a nitroreductase within an eDNA insert.  To enable high 

throughput screening, we envisaged incubating E. coli cells containing metagenomic 

libraries to a profluorophore prior to collecting the most fluorescent cells i.e. those 

expressing a nitroreductase and thus capable of activating the fluorophore, using FACS.   

 

Of the 54 different profluorophore molecules available in the ACSRC library, the 

profluorophore FSL41 (structure presented in Figure 3.24) was selected.  FSL41 was 

chosen because it had previously been validated as a means of detecting E. coli cells 

overexpressing a nitroreductase enzyme in a flow cytometer (Horvat, 2012).  

Additionally, unlike most other profluorophores in the ACSRC library, a range of 

different nitroreductase enzymes were active with FSL41, increasing the chances of 

detecting activation by an eDNA nitroreductase (Horvat, 2012).  Moreover FSL41 

remained cell entrapped once activated (Horvat, 2012), which we believed could prevent 
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activated profluorophore diffusing into neighboring, non-fluorescent cells, potentially 

resulting in the FACS machine falsely identifying them as positive events.  

 

5.1.1 Activation of FSL41 by E. coli W3110 Cells 
 

Prior to library screening, the FACS approach was validated and optimized.  While the 

ability of overexpressed nitroreductase enzymes to activate profluorophores was well 

established (Condon, 2013; Horvat, 2012), it was unknown whether lower levels of 

nitroreductase expression, such as might be expected from a metagenomic insert, were 

also detectable.  Expression levels of eDNA can often be low due to the heterologous host 

(E. coli in this case) being inefficient in their ability to express the foreign DNA (Gabor et 

al., 2004). 

 

Lacking a pre-recovered nitroreductase within a large eDNA insert, which would be the 

ideal positive control for this work, we instead chose to test if wild type E. coli (W3110) 

cells could activate FSL41.  While W3110 cells expresses at least two enzymes known to 

be active with FSL41, NfsA_Ec and NfsB_Ec (Horvat, 2012; Prosser et al., 2013), here 

both of these enzymes would be expressed at physiological levels, rather than 

overexpressed from a pUCX plasmid.  We reasoned that if W3110 cells were unable to 

noticeably activate FSL41, there would be little chance that single nitroreductase 

expressed from a metagenomic insert could either.  As a negative control, the 

nitroreductase knockout strain E. coli 7TL, used for the expression of metagenomic 

libraries (discussed in the following section), was used.  Results from the FSL41 assay 

comparing FSL41 fluorescence of W3110 cells to E. coli 7TL cells are displayed in 

Figure 5.1.  W3110 cells incubated with 10 µM FSL41 were seven fold more fluorescent 

than those exposed only to the DMSO vehicle.  In contrast, E. coli 7TL cells incubated 

with 10 µM FSL41 were no more fluorescent than the same cells incubated with an 

equivalent volume of DMSO.  Collectively, these results demonstrated that nitroreductase 

overexpression was not required for the detectable activation of FSL41, proving 

reassurance that the detection of nitroreductases expressed from eDNA inserts could 

indeed be possible.  Furthermore, this experiment demonstrated the benefit of using the E. 

coli 7TL strain as the heterologous host strain.  As E. coli 7TL cells lacked the 

background level of FSL41 activation observed in W3110 cells, low levels of 
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profluorophore activation by an eDNA nitroreductase could potentially be more 

pronounced, i.e. less likely to be swamped by endogenous FSL41 activation.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 – FSL41 fluorescence assay on W3110 and E. coli 7TL cells.   Mid-exponential phase 
cultures of W3110 and E. coli 7TL cells were exposed to 10 µM FSL41, or to an equivalent amount of 
DMSO, for 1 h.  Fluorescence of the activated (nitro-reduced) FSL41 (ex 355/em 460 nm) and culture 
turbidity (OD600) were then measured.  The raw blue fluorescence values of each culture were normalized 
by their respective OD600 values.  460 nm relative fluorescence units (RFU) were then calculated by the fold 
difference in fluorescence between each culture exposed to FSL41 and its respective DMSO control.  Data 
are representative of three independent experiments ± SEM.   
 

5.1.2 Increased Expression of pETDUET Plasmids in the E. coli 7TL Strain   
 

In addition to lacking background levels of FSL41 activation, E. coli 7TL strain was also 

selected because, unlike the other available nitroreductase knockout strains, it contained 

an IPTG-inducible T7 RNA polymerase gene.  As the eDNA fragments of both the 

Swedish and New Zealand had been cloned adjacent to a T7 promoter sequences in their 

respective plasmid vectors (Owen et al., 2012; Parachin and Gorwa-Grauslund, 2011), the 

presence of T7 RNA polymerase could increase the level of eDNA gene expression, 

thereby increasing the chances of detection (Ahmad et al., 2011; Gabor et al., 2004).  A 

proof-of-concept experiment was performed to demonstrate the higher levels of 

pETDUET (the vector the NZ library was cloned into) expression in E. coli 7TL cells 

relative to a control strain lacking T7 RNA polymerase.  To model a nitroreductase within 
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a pETDUET eDNA insert, the nitroreductase NfsB_Ec gene was cloned into a pETDUET 

plasmid.    While a nitroreductase within an eDNA insert was unlikely to be immediately 

adjacent to the T7 promoter, provided it was not separated by a transcriptional terminator 

sequence then T7 promoter-driven expression might still be possible (Gabor et al., 2004).  

pETDUET_NfsB was then transformed into either E. coli 7TL cells, or E. coli 7NT cells 

(the latter being identical to E. coli 7TL in terms of chromosomal nitroreductase 

deletions, but lacking T7 RNA polymerase).  Expression of NfsB_Ec, as determined by 

SDS-PAGE, was only detected in E. coli 7TL cells containing a pETDUET_NfsB_Ec 

plasmid when T7 RNA polymerase expression had been induced (Figure 5.2).  From 

these data we concluded that the E. coli 7TL strain was capable of increasing expression 

of nitroreductase genes adjacent to the T7 promoter of pETDUET.  Using it as the host 

strain could therefore increase the chances of expressing an eDNA nitroreductase at 

levels detected by the activation of FSL41. 
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Figure 5.2 – SDS-PAGE gel demonstrating induced expression of pETDUET_NfsB_Ec from E. coli 
7TL cells.  Overnight cultures of each strain (either E. coli 7TL containing a T7 RNA polymerase gene, or 
E. coli 7NT lacking a T7 RNA polymerase gene) were inoculated into fresh media in duplicate and grown 
to an OD600 of 0.5.  IPTG was then added to one of the duplicates to a final concentration of 0.5 mM 
before all cell cultures were grown for an additional 4 hours.  Cell cultures were normalized by OD600 prior 
to loading into a 15% SDS-PAGE cell to visualise protein expression.  M = protein size standard.  NfsB_Ec 
= 25.7 kDa in size.   
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5.1.3 Proof of Concept FACS Enrichment of Nitroreductase Overexpressing Cells 
 

For FACS to be an effective metagenomic screening strategy, it was necessary that it 

detect and sort fluorescent nitroreductase expressing cells against the rest of the larger, 

non-fluorescent, metagenomic library.  To model this, E. coli 7TL cells containing 

pETDUET_NfsB_Ec were diluted into a culture of E. coli 7TL cells containing an empty 

pETDUET plasmid at a 1:999 ratio.  The mixed culture was incubated with 50 µM 

FSL41, the concentration previously found to be successful in detecting FSL41 activation 

via flow cytometry using a 488 nm laser and a 450/50 bandpass filter (Horvat, 2012).  An 

identical population of cells that had not been exposed to FSL41 was run though the flow 

cytometer first to establish background levels of fluorescence.  The mixed 1:999 cells 

population that had been incubated with FSL41 was then run through the FACS machine.  

Although exact proportions were unfortunately not recorded, only approximately 1% of 

these cells appeared more fluorescent than the cells that had not been incubated with 

FSL41.  The top 10% of this fluorescent population was collected (10,000 events in total).  

For purposes of comparison, the bottom 10% of cells in the whole population that gave 

the least fluorescence signal was also sorted (also 10,000 events in total).  Each sorted 

cell population was then plated on LB agar to obtain single colonies.  From population, 

114 individual colonies were picked and exposed to FSL41 to determine if FACS had 

successfully enriched for the fluorescent E. coli 7TL cells expressing 

pETDUET_NfsB_Ec.  A representative subset (57) of the colonies of each population 

screened using FSL41 is displayed in Figure 5.3.  
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Figure 5.3 – FSL41 fluorescence assay of post-FACS population of E. coli 7TL pETDUET_NfsB_Ec 
cells diluted into a culture of E. coli 7TL pETDUET empty cells at a 1:999 ratio.  After being 
normalized for culture turbidity (OD600), mid-exponential phase E. coli 7TL pETDUET_NfsB_Ec cells 
were diluted into mid-exponential phase E. coli 7TL pETDUET cells at a 1:999 ratio.  The cell mixture was 
then incubated with 50 !M FSL41 for 1 h before being run through a FACS machine using a 488 nm laser 
and a 450/50 bandpass filter.  The top 10% of the subset of fluorescent cells (this subset being 
approximately 1% of the total pool) were collected and the bottom 10% of least fluorescent cells in the 
whole cell population were collected.  Each of the sorted populations was then plated on LB agar to form 
single colonies.  From each sorted population, 57 random colonies were picked and grown as liquid cultures 
from which to run 10 !M FSL41 fluorescence assays.  After 1 h incubation period with 10 !M FSL41, blue 
fluorescence was recorded (em 420 nm/ ex 460 nm).  A) FSL41 fluorescence assays run on single colonies 
collected by FACS sorting the top 10% of the subset of fluorescent events in the mixed population B) 
FSL41 fluorescence assays run on single colonies collected by FACS sorting the bottom 10% of the least 
fluorescent events in the whole mixed population. E. coli 7TL cells expressing pETDUET_NfsB_Ec was 
included as a positive fluorescence control.  E. coli 7TL cells containing an empty pETDUET plasmid were 
included as a negative fluorescence control.  Data are representative of one experiment.   
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The colonies randomly screened from each of the sorted populations resembled each 

other exactly in the FSL41 fluorescence assays.  None of the colonies screened from 

either population were more fluorescent than the empty pETDUET negative control, 

indicating they did not contain a pETDUET_NfsB_Ec plasmid.  The 

pETDUET_NfsB_Ec positive control was highly distinguishable by its activation of 

FSL41, demonstrating that had FACS enriched for fluorescent pETDUET_NfsB_Ec cells, 

they would have been readily detectable.  It was therefore concluded that FACS was 

unable to enrich for fluorescent pETDUET_NfsB_Ec cells when diluted at a 1:999 ratio 

in E. coli 7TL empty pETDUET cells.  During the FSL41 optimization experiments 

performed prior to FACS, no difference in culture turbidity (OD600) was observed 

between E. coli 7TL expressing pETDUET_NfsB_Ec incubated with 50 !M FSL41 for 1 

h (the pre-FACS incubation time), verses the same cells incubated with an equivalent 

volume of DMSO.  This result indicated that toxicity of FSL41 to E. coli 7TL expressing 

pETDUET_NfsB_Ec resulting in cell death was unlikely to be the reason for the lack of 

enrichment.   

 

Given that the average insert size of the Swedish and NZ libraries was ~4-7 kb, and the 

average bacterial gene length is ~1 kb, several genes could be present per eDNA insert.  

Screening 1000 eDNA clones could therefore represent around 3000-4000 intact eDNA 

genes.  However, only 40% of these would be likely to express in E. coli (Gabor et al., 

2004), and only a subset of encoded nitroreductase enzymes are likely to be active with 

FSL41.  Making the conservative estimates of an average environmental bacterial 

genome size of 5 Mbp (slightly larger than E. coli (Blattner et al., 1997)) and only one or 

two FSL41-active nitroreductase per genome, it can reasonably be assumed that 

detectable eDNA nitroreductase enzymes would be present in our libraries at lower ratio 

than 1:999.  Furthermore, those nitroreductase enzymes are very likely to be expressed at 

lower levels than pETDUET_NfsB_Ec.  From these data we concluded that FACS would 

be unlikely to enrich for E. coli 7TL cells containing eDNA nitroreductases.  Rather than 

continue to devote time and resources into optimizing the FACS procedure, we decided to 

try alternative metagenomic screening strategies.  The first of which explored the use of 

niclosamide as a positive selection for nitroreductases expressed within eDNA inserts.   

!
!
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5.2 Niclosamide Metagenomic Screening 
 

As the directed evolution experiments Chapter 3 and Chapter 4 demonstrated, 

niclosamide could select for E. coli clones expressing active nitroreductases, inhibiting 

the growth of those lacking nitroreductase expression (provided they also lack the TolC 

exporter).  From these data, we tested if plating a metagenomic library on LB agar 

supplemented with niclosamide, selected for metagenomic clones expressing eDNA 

nitroreductases.   

 

Using niclosamide as a metagenomic screening strategy had actually previously been 

tested in a one-off experiment by Dr. Janine Copp and myself (unpublished).  When we 

attempted this strategy, of the twenty sequenced E. coli 7TL clones identified as viable on 

niclosamide, all were found to express eDNA cellular efflux transporters, complementing 

the deleted tolC gene.  Reasoning that nitroreductases might be being recovered at low 

levels in amongst a preponderance of tolC genes, we sought to introduce a secondary 

screening step to identify any metagenomic clones expressing nitroreductase enzymes. 

We tested whether the profluorophore FSL41 could differentiate clones expressing eDNA 

nitroreductase enzymes from those expressing eDNA efflux pumps.  To test this, E. coli 

7TL cells transformed with the Swedish or NZ Library were plated on LB agar containing 

0.5 !M niclosamide.  While multiple niclosamide concentrations were tested, to allow for 

the possibility that due to lower expression levels eDNA nitroreductases might be less 

capable to detoxify niclosamide (than a nitroreductase overexpressed in pUCX), 0.5 µM 

was ultimately selected again because it reliably inhibited the growth of E. coli 7TL 

negative control cells.   

 

After colony formation had occurred, 228 colonies of the Swedish library and 228 

colonies of the NZ library were grown as liquid cultures to perform FSL41 fluorescence 

assays.  In the results of these assays, none of the niclosamide-selected eDNA clones 

from either library were any more fluorescent than background levels.  It was therefore 

concluded that the vast majority of metagenomic clones viable on niclosamide were not 

nitroreductase enzymes, but more likely cellular efflux pumps as previously seen (Janine 

Copp, Rory Little, unpublished).  These data suggested that efflux pumps conferred a 

more substantial resistance to niclosamide than nitroreductases did, such that even very 

low-level expression of an efflux pump enabled a transformed E. coli 7TL cell to form a 
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colony, whereas high-level expression of a nitroreductase might be required for the same 

effect.   

 

While we still believed niclosamide could select for eDNA nitroreductases if they were 

expressed at high enough levels, a limiting factor in their identification could have been 

the relatively low throughput nature of the FSL41 counter-screen.  If niclosamide-

resistant metagenomic clones could be counter-screened in a higher throughput manner, 

then a clone expressing a nitroreductase enzyme would have a greater chance of being 

identified.  We therefore directed our focus toward developing high throughput colony-

level screens to detect nitroreductase expression.     

 

5.3 SOS/!-Galactosidase Metagenomic Screening  
 

The first high-throughput nitroreductase detection screen we explored involved use of the 

DNA-damage inducible genomic lacZ construct of the E. coli SOS-R2 strain.  Prior to 

creation of the SOS-R4 GFP strain (Copp et al., 2014), the Ackerley lab used induction of 

!-galactosidase from a lacZ gene under the control of an SOS promoter (pSOS_lacZ) as 

their primary method to measure the DNA damage induced by an activated prodrug 

(Prosser et al., 2010; Swe et al., 2012).  In these assays, !-galactosidase expression was 

quantified using the colourimetric lactose analogue, ONPG, which was converted into a 

yellow product by !-galactosidase metabolism.  However, !-galactosidase can also 

metabolize the lactose analogue, X-gal, to produce a blue pigment.  The metabolism of X-

gal by !-galactosidase is commonly used in the pUC family of cloning vectors for 

detecting the insertional disruption of lacZ, indicating a successful ligation event in 

blue/white colony screening.   

 

Given that X-gal metabolism was a well-established marker for colonies expressing !-

galactosidase, and that the SOS-R2 strain expressed !-galactosidase in response to DNA 

damage, we sought to combine the two for the detection of metagenomic clones that 

expressed nitroreductase enzymes.  Our rationale was that, in the presence of a prodrug, a 

metagenomic clone expressing a nitroreductase should induce the expression of !-

galactosidase from the SOS promoter, whereas clones lacking nitroreductase expression 

should not.  Staining the colonies using X-gal could then be used to identify the 
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nitroreductase expressing colonies by turning them blue. If successful, this strategy would 

increase the throughput of library screening, as colonies would not need to be picked and 

grown as liquid cultures (as was required with profluorophore metagenomic screening 

(Section 5.1.3).  Rather, a single large Petri dish containing thousands of colonies could 

be screened simultaneously for !-galactosidase expression.   

 

One concern was that leaky expression of !-galactosidase from SOS-R2 cells might turn 

all colonies blue, even those not expressing a nitroreductase, thus preventing the 

identification of colonies that were actually expressing an eDNA nitroreductase enzyme.  

To test whether this would be the case, SOS-R2 cells lacking nitroreductase expression 

(containing an empty pUCX plasmid) were plated on LB agar containing X-gal.  After 

overnight incubation, all colonies had indeed turned blue, confirming that the basal level 

of !-galactosidase expression from SOS-R2 was sufficient to metabolize X-gal.   

 

We next tested whether colonies expressing nitroreductase would turn blue faster than 

colonies lacking nitroreductase expression if exposed to a prodrug and X-gal 

simultaneously. LB agar plates containing colonies of either SOS-R2 cells expressing 

NfsA_Ec from a pUCX plasmid, or SOS-R2 cells containing an empty pUCX plasmid 

were exposed to 270 "g.mL-1 X-gal and 5 µM metronidazole in a molten top agarose 

solution.  It was observed that colour change occurred very rapidly for both strains, and 

after 20 minutes both the pUCX nfsA_Ec and pUCX empty plasmid colonies had turned 

an indistinguishable blue.  Overall these results suggested that using SOS/!-galactosidase 

for metagenomic screening would be unlikely to succeed. Even when overexpressed from 

a pUCX plasmid, NfsA_Ec was not distinguishable from an empty pUCX plasmid control 

in the presence of the prodrug metronidazole.  As a nitroreductase present in a 

metagenomic insert would to be expressed at lower levels, its detection would be even 

more unlikely.  Although unsuccessful, the central premise of the SOS/!-galactosidase 

detection system, the rapid detection of nitroreductase expression at the level of a colony, 

inspired the work performed in the next section using the nitroaromatic compound 4-

nitroimidaoze.  
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5.4 Metagenomic Screening Using 4-Nitroimidazole 
 

5.4.1 4-Nitroimidazole can Detect the Expression of Nitroreductase Enzymes at a 
Colony level 
 

The final metagenomic screening technique tested utilized the compound 4-

nitroimidazole.  4-nitroimidazole (Figure 5.4) is a chemical intermediate used 

industrially in synthesis of the explosive 1-Methyl-2,4,5-trinitro imidazole (Jadhav et al., 

2013).  

 

 

 

 

 
 

Figure 5.4 – Structure of the prodrug candidate 4-nitroimidazole. 

 

It is also the chemical backbone of several nitro-quenched pET probes of interest to the 

Ackerley lab for the in vivo imaging of tumour-localised nitroreductase expression.  The 

idea of using 4-nitroimidazole as a metagenomic screening agent originated from a 

chance observation made by Dr. Elsie Williams, a postdoc in the Ackerley lab.  While 

performing 4-nitroimidazole growth inhibition assays on E. coli expressing NfsA_Ec 

from pUCX, Dr. Williams noted that liquid cultures containing 4-nitroimidazole turned a 

dark purple colour.  The colour change was not observed, however, in identical cultures 

of cells containing a pUCX empty plasmid, indicating nitroreductase expression was 

driving this colour change.  While the mechanism behind this colour change was 

unknown, we hypothesized that it could be used to detect the expression of eDNA 

nitroreductase genes.   

 

To avoid the cumbersome process of growing individual colonies as liquid cultures, as 

required for FSL41 fluorescence assays in Section 5.2, we tested whether the colour 

change of 4-nitroimidazole could used to directly detect nitroreductase expression at a 

colony level.  However, Dr. Williams had also demonstrated that 4-nitroimidazole was 

converted into a cytotoxin upon nitroreduction (unpublished). Incorporating 4-
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nitroimidazole directly into agar would therefore pose a risk of inhibiting the colony 

formation of any eDNA nitroreductase clones.  To avoid this scenario, we chose to 

administer 4-nitroimidazole after colonies had already formed, via addition in a molten 

top agarose solution, as described in Section 5.2.  Pilot tests compared colonies of 

nitroreductase knockout E. coli cells (7KO) expressing either pUCX NfsA_Ec or 

containing an empty pUCX plasmid on separate LB agar plates.  Molten top agarose 

supplemented with 5 mM of 4-nitroimidazole was carefully poured over the colonies 

present on each of the plates.  Within 30 minutes at room temperature the NfsA_Ec 

colonies had turned dark purple (Figure 5.5A), whereas, even after several days, the 

pUCX colonies had not (Figure 5.5B).  From these data we concluded that 4-

nitroimidazole had great potential to detect single colonies overexpressing a 

nitroreductase. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 5.5 – Reduction of 4-nitroimidazole by nitroreductase overexpressing E. coli 7KO colonies 
produces a dark purple pigment.  E. coli 7KO cells containing A) pUCX NfsA_Ec, or B) an empty 
pUCX plasmid, were plated on LB agar to form colonies.  After colony formation, molten top agarose 
containing 5 mM 4-nitroimidazole was poured over the colonies and allowed to cool.  Plates were incubated 
at room temperature for around 30 minutes, over which time the E. coli 7KO NfsA_Ec colonies turned a 
dark purple colour.  Photo is representative of all colonies present on each LB agar plate. 
 

A potential concern was whether the reduced form of 4-nitroimidazole might be 

sufficiently toxic as to prevent subsequent colony recovery in liquid culture.  However, 

individually picking and growing 60 of the E. coli 7KO NfsA_Ec dark purple colonies in 

A) B) 

7KO NfsA_Ec 7KO pUCX 
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LB + Amp demonstrated that the recovery of these cells was still possible.  The toxicity 

associated with exposing cells to 4-nitroimidazole using was therefore unlikely to affect 

recovery and sequencing of any metagenomic clones identified.     

 

We next tested whether lower levels of expression, such as might be expected from an 

eDNA insert, could also be detected using 4-nitroimidazole.  As done previously (Section 

5.1.1), we used W3110 cells as a positive control for low-level nitroreductase expression 

to observe whether the endogenous expression of nitroreductase enzymes from W3110 

cells could cause a 4-nitroimidazole colour change.   The nitroreductase knockout strain 

E. coli 7TL cells was used as a negative control in this experiment, as it was the 

heterologous host used for metagenomic library screening.  Previous data had 

demonstrated that, of the seven endogenous nitroreductases present in W3110, only 

NfsA_Ec was notably active with 4-nitroimidazole (Condon, 2013).  Here, pilot tests (not 

shown) indicated that 4-nitroimidazole metabolism occurred much more slowly in 

W3110 cells than in E. coli 7TL cells overexpressing a nitroreductase, resulting in a less 

pronounced colour change.  The translucent growth medium M9 agar was also tested in 

an attempt to improve the contrast of the coloured colonies, but was ultimately found to 

make little difference compared to LB agar, and colony formation was much slower on 

this medium.  Greater contrast was observed when the concentration of 4-nitroimidazole 

was increased to 20 mM and the LB agar plates were incubated at room temperature 

overnight Figure 5.6. 
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Figure 5.6 – Reduction of 4-nitroimidazole by W3110 colonies produces a dark purple pigment.   A) 
W3110 cells or B) E. coli 7TL cells (which lacked seven endogenous nitroreductase genes) were plated on 
LB agar to form colonies.  After colony formation, molten top agarose containing 20 mM 4-nitroimidazole 
was poured over the colonies and allowed to cool.  Plates were incubated at room temperature overnight, 
over which time the W3110 colonies turned a dark purple colour.  No colour change was observed in E. coli 
7TL cells, even after incubation for seven days.   
 

The overexpression of a nitroreductase from a pUCX plasmid was therefore not required 

for its detection using 4-nitroimidazole.  Collectively, these results provided 

encouragement that lower levels of nitroreductase expression, such as might be present in 

an eDNA clone, could also be identified by 4-nitroimidazole.   

 

5.4.2 Successful Detection of W3110 Cells within a Higher Background of E. coli 
7TL cells 
 

As discussed in Section 5.1.3 with the likelihood that only a very low proportion of 

eDNA inserts would contain a nitroreductase gene, it was necessary that 4-nitroimidazole 

be able to identify these clones against a larger background of insensitive (i.e., pale) 

clones. To model this scenario, W3110 cells were diluted ten-fold in a culture of E. coli 

7TL cells and the cell mixture was plated on LB agar to allow colony formation.  Molten 

top agarose containing 20 mM 4-nitroimazole was then poured over the colonies.  

Twenty-one colonies that appeared darker than the rest (numbered in Figure 5.7A) were 

PCR screened to determine if they were W3110 cells, as the colour change suggested.  

Twenty-one adjacent pale colonies i.e. those that should not be W3110 cells, were also 

7TL 

A) B) 

W3110 



! "#$!

PCR screened.  nfsA_Ec primers were selected for determining colony identity, as these 

would amplify the nfsA gene that is present in the genome of W3110, but was absent in E. 

coli 7TL.  All twenty-one of the selected dark colonies contained a full-length nfsA_Ec 

gene (Figure 5.7B) indicating they had been correctly identified using 4-nitroimidazole.  

In contrast, none of the pale colonies selected tested positive for NfsA_Ec (Figure 5.7C). 
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Figure 5.7 – Detection of W3110 colonies from a mixed population of 10% W3110 and 90% 7TL 
colonies using 4-nitroimidazole.  A) A liquid culture comprising of 10% W3110 cells and 90% 7TL cells 
was plated on LB agar to form colonies.  Top agarose containing 20 mM 4-nitroimdazole was poured over 
these colonies to detect the nitroreductase expression of W3110 cells.  A) Twenty-one dark purple colonies 
(numbered) were selected at random and screened by PCR using nfsA_Ec primers.  B) The PCR products 
generated off each of these colonies were run on a corresponding numbered lane on an agarose gel.  C) 
Twenty-one colonies that did not appear to have changed colour were also screened using NfsA_Ec primers 
and the PCR products were run on another agarose gel.  (-) = Template free negative control for both B) and 
C).  (+) = W3110 positive control for both B) and C).  

  M   1    2    3     4     5    6     7    8     9   10  11   12  13  14  15  16   17  18   19  20  21 

Dark colonies numbered in picture above  

  M   *    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *   *     *     *   *   (-)  (+) 

21 randomly selected pale colonies 
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From these data, it was concluded that 4-nitroimidazole was capable of detecting colonies 

with low levels of nitroreductase expression against a higher background of colonies 

lacking any nitroreductase expression, therefore making it a promising tool for the high 

throughput screening of metagenomic libraries to detect eDNA nitroreductase enzymes.  

Unfortunately, however, time constraints precluded screening either metagenomic library 

using this method. 

!
5.5 Chapter 5 Discussion 
 

This chapter explored different functional metagenomic screening techniques to discover 

novel nitroreductase enzymes.  We first tested if the activation of FSL41 could be used to 

detect nitroreductases within eDNA inserts.  We envisaged incubating E. coli 7TL 

containing a metagenomic library in the presence of the profluorophore FSL41, then 

using FACS to collect the most fluorescent cells; i.e. those that had activated the most 

profluorophore and therefore potentially contained a nitroreductase.   

 

It was found that activation of the profluorophore FSL41 by the endogenous levels of 

nitroreductase expression of W3110 cells was sufficient to distinguish them nil-

nitroreductase strain E. coli 7TL (Figure 5.1).  However, this did not necessarily mean an 

eDNA nitroreductase would also be detectable.  The physiological expression levels of 

NfsA_Ec and NfsB_Ec (the nitroreductase enzymes with the most FSL41 activity) in 

W3110 cells might still be substantially higher than that of an eDNA nitroreductase.  

Furthermore, FSL41 was likely being activated by both of these enzymes, rather than just 

the one which would be expected in an eDNA insert.  A better control would perhaps 

have been a W3110 strain where all nitroreductases other than either NfsA_Ec or 

NfsB_Ec had been deleted from the chromosome.  Overall though, the experiment 

demonstrated that nitroreductase overexpression was not required for detectable levels of 

FSL41 activation, providing support that it could be used to detect the expression of 

eDNA nitroreductases.     

 

The E. coli 7TL strain used was widely throughout this chapter for the expression of 

metagenomic libraries.  In addition to lacking seven nitroreductase genes, eliminating all 

background levels of FSL41 activation compared to W3110 cells (Figure 5.1), E. coli 

7TL had been modified by lysogenization to express T7 RNA polymerase.  As both of the 
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metagenomic libraries available had been cloned into plasmids containing T7 promoter 

sequences (Owen et al., 2012; Parachin and Gorwa-Grauslund, 2011), the presence of T7 

RNA polymerase could increase the chances of expressing eDNA nitroreductases at 

detectable levels.  A proof of concept experiment demonstrated the increased expression 

of pETDUET_NfsB_Ec in the E. coli 7TL cells relative to the unlysogenized E. coli 7NT 

control (Figure 5.2).  The increased expression of pETDUET_NfsB_Ec was an idealized 

scenario, however.  It was unlikely a nitroreductase within an eDNA insert (typical size 

range 4-7 kb) would be directly adjacent to the T7 promoter sequence as was the case 

with pETDUET_NfsB_Ec.  Furthermore, expression could be prevented if a 

transcriptional terminator sequence separated an eDNA nitroreductase from the T7 

promoter (Gabor et al., 2004).  From this experiment we concluded that T7 RNA 

polymerase could at least increase the expression of eDNA nitroreductase genes adjacent 

to a T7 promoter sequence, potentially enabling their detection.   

 

We next tested if FSL41 could be used to recover E. coli 7TL cells expressing 

pETDUET_NfsB_Ec via FACS.  However, from the results of the control experiments 

(Figure 5.3) there was no evidence of enrichment of pETDUET_NfsB_Ec.  Further 

optimization would therefore be required for this approach to be feasible as a 

metagenomic screening technique.  A reason for the lack of E. coli 7TL pETDUET 

NfsB_Ec enrichment could be cell death.  While 50 !M FSL41 was not a toxic dose to E. 

coli 7TL pETDUET NfsB_Ec in liquid culture, it was possible that, factoring in the 

additional stress of FACS, these cells were being killed.  In which case lower 

concentrations of FSL41 could be tested in attempt to improve pETDUET NfsB_Ec 

recovery.  Alternatively, FSL41 may not be as cell entrapped as previously observed 

(Horvat, 2012), resulting in its gradual dissipation from the cell it was activated in and 

thus preventing detection by FACS.  A different cell entrapped profluorophore, such as 

FSL76, could therefore be tested in the future. Given the time constraints of this work, 

however, we decided to explore the use of niclosamide as an alternative screening 

strategy.   

 

As demonstrated in Chapter 3 and Chapter 4, E. coli !tolC clones overexpressing a 

nitroreductase enzyme were selectively viable in the presence of niclosamide.  On the 

other hand, cells lacking endogenous nitroreductase expression were highly sensitive to 

niclosamide.  We reasoned that E. coli 7TL cells expressing an eDNA nitroreductase 
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could therefore be selectively viable when plated on agar containing niclosamide.  

However, when this technique was tested in the past (Janine Copp, Rory Little, 

unpublished), the detection of eDNA nitroreductase enzymes was complicated by a high 

recovery of clones expressing eDNA cellular efflux pumps.  We chose to use FSL41 as a 

counter screen to differentiate niclosamide-resistant eDNA clones expressing 

nitroreductase enzymes from those expressing cellular efflux pumps.  Unfortunately, no 

eDNA nitroreductase enzymes were detected using FSL41 as a counter-screen for 

niclosamide-resistant colonies.  It is possible that an eDNA nitroreductase capable of 

detoxifying niclosamide and activating FSL41 is a rare occurrence, simply requiring 

additional library screening.  A range of different profluorophores could also be used for 

the counter-screening, increasing the chances an eDNA nitroreductase could activate one 

and be detected.     

 

Alternatively, methods to actively reduce the recovery of eDNA efflux pumps could be 

tested in the future.   For example, LB agar could be amended with broad-spectrum efflux 

pump inhibitors such as PA!N (Lomovskaya et al., 2001) or pimozide (Bohnert et al., 

2013), counteracting efflux pump niclosamide resistance. In addition to reducing the 

recovery of clones expressing eDNA efflux pumps, other methods could be tested to 

specifically increase the expression of eDNA nitroreductase enzymes.  For example, the 

expression of NfsA_Ec, implemented in bacterial oxidative stress defense, can be induced 

by the ROS generator paraquat (Liochev et al., 1999).  Oxidative stress could therefore be 

explored as a method to increase the expression of eDNA nitroreductase enzymes, at least 

those with a similar biological role to NfsA_Ec.   

 

A limiting factor of both fluorescence and niclosamide-based metagenomic screens was 

their low throughput nature.  Colonies needed to be individually picked in order to run the 

secondary FSL41 validation assays.  We therefore directed our focus to developing high-

throughput detection methods of nitroreductase enzymes.  The production of !-

galactosidase in response to DNA-damage in the E. coli SOS-R2 strain was briefly 

considered as a high-throughput metagenomic screening strategy.  If successful, 

thousands of colonies could be screened simultaneously on LB agar plates.  The results 

demonstrated, however, that the basal level of !-galactosidase expression in SOS-R2 cells 

was too high for the specific detection of cells expressing a nitroreductase enzyme.  

Unless basal expression from the SOS promoter could be more tightly controlled, such 



! "#"!

that !-galactosidase was only expressed in response to a genotoxic prodrug, this screening 

strategy was unlikely to be successful.  As directed evolution had previously reduced the 

leakiness of genetic control elements (Gatti-Lafranconi et al., 2013), it could also 

potentially be used reduce leaky expression from the SOS promoter in the future.  

Regardless, although the SOS-R2/!-galactosidase system was ultimately unsuccessful, 

the detection of nitroreductase expression at the level of a single colony was an attractive 

screening prospect.  This goal was achieved upon the serendipitous discovery that the 

reduction of 4-nitroimidazole produces a dark purple colour.   

 

In the final section of this chapter, the capabilities of 4-nitroimidazole to detect 

nitroreductase expression at a single colony level, and therefore serve as a metagenomic 

screening agent, were tested.  The dark purple colour change of 4-nitroimidazole in the 

presence of E. coli clones overexpressing a nitroreductase occurred rapidly, only 

requiring around 30 minutes of room temperature incubation; whereas no colour change 

was observed in E. coli cells lacking nitroreductase expression (Figure 5.5).  The lower 

levels of nitroreductase expression from the endogenous nitroreductases present in 

W3110 cells were also detectable (Figure 5.6) indicating that nitroreductase 

overexpression was not required for the colour change.   

 

Colony level detection of nitroreductase expression using a similar colour change had 

been observed previously, albeit through a different mechanism (Rafil et al., 1991).  In 

that study, the compounds 1-nitropyrene or 6-nitrochrysene were supplemented into LB 

agar before an intestinal sample of bacteria was added to the plates.  Colonies were then 

exposed to distilled water containing N-(1-Naphthyl)ethylenediamine dihydrochloride 

(NEDD).  Under acidic conditions, the reduced forms 1-nitropyrene or 6-nitrochrysene 

generated by nitroreductase activity reacted with NEDD to form a red/purple azo dye, the 

formation of which was detectable as change in colony colour (Rafil et al., 1991).  The 4-

nitroimidazole detection method developed in this study has the benefit of only requiring 

a single step – exposure of colonies to the compound in top agarose – for the colour 

change to occur.  However, both methods could be concurrently tested to determine if one 

were more sensitive than the other and therefore better suited for metagenomic screening.  

It would also be interesting to determine the underlying mechanism responsible for the 

colour change of 4-nitroimidazole, especially since no colour change was observed in the 

presence of purified NfsA_Ec alone (Michelle Rich, unpublished), suggesting further 
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reactive steps.  Furthermore, the same study demonstrated that when bacteria were plated 

on LB agar containing 1-nitropyrene (a yellow compound), zones of 1-nitropyrene 

clearance were observed if the bacteria were expressing a nitroreductase enzyme (Rafil et 

al., 1991).  Plating a metagenomic library LB agar containing 1-nitropyrene to observe 

zones of clearance could therefore also be tested as a metagenomic screening strategy in 

future.   

 

Although not possible due to the time constraints of this research, the ultimate validation 

of 4-nitroimidazole as a metagenomic screening tool would require it be used to discover 

an eDNA nitroreductase enzyme.  Previous metagenomic screens utilizing changes in 

colony colour as a positive marker for an enzyme of interest were, encouragingly, 

successful (Owen et al., 2012; Wang et al., 2010).  Much will depend on whether the 

nitroreductases present within a metagenomic library are capable of activating 4-

nitroimidazole.  As members of the NfsA family are generally the most active with 4-

nitroimidazole (Condon, 2013), using it to screen metagenomic libraries could introduce a 

selection bias towards NfsA enzymes.  However, as NfsA family enzymes are among the 

most active with nil-bystander prodrugs such as metronidazole, specifically finding new 

members of this family could be particularly beneficial for future zebrafish cell ablation 

studies.  In additional work by Dr. Elsie Williams (unpublished), colonies overexpressing 

NfsA_Ec were found to turn green in the presence of the metronidazole analogue 2-

methyl-5-nitroimidazole.  As some nitroreductase enzymes within eDNA inserts may not 

activate 4-nitroimidazole, but could potentially activate 2-methyl-5-nitroimidazole, 

simultaneously exposing  metagenomic libraries to both prodrugs could increase the 

chances of discovery.  There are examples of such nitroreductases in our own 58 core 

nitroreductase library, such as YwrO from Listeria innocua (Condon, 2013).  

Collectively, the results in this chapter were supportive that 4-nitroimidazole could be 

successfully used to find nitroreductases in metagenomic libraries in the near future.   
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Chapter 6 Research Motivation, Key Findings, and Future 

Directions 
 

6.1 Research motivation 

 

The primary motivation behind this research was to engineer and discover new 

nitroreductase enzymes to improve targeted cell ablation studies in zebrafish.  While 

research has been conducted to engineer (Grove et al., 2003; Guise et al., 2007; Swe et 

al., 2012) and discover (Prosser et al., 2013, 2010) superior nitroreductases for GDEPT, 

the same is not true for targeted cell ablation studies.  Indeed, the one example where an 

engineered nitroreductase was expressed in zebrafish for targeted cell ablation, the 

enzyme had originally been evolved for a GDEPT application (Mathias et al., 2014).  As 

targeted cell ablation in zebrafish is an important tool for studying regenerative processes 

(Slanchev et al., 2005; White and Mumm, 2013) and modeling human diseases (Pisharath 

et al., 2007; Zhou and Hildebrandt, 2012), we were motivated to develop new 

nitroreductase enzymes tailored to such studies.   

 

We directed our focus to developing a cell ablation system with multiplex capabilities, 

providing temporal control over the independent ablation of two distinct tissues within 

the same organism.  A multiplex ablation system could be useful for studying the 

interaction between different tissues during physiological processes such as embryonic 

development.  Furthermore, as nitroreductase enzymes can activate nitroaromatic 

profluorophore molecules, the system also potentially had intrinsic imaging capabilities.  

For multiplex ablation to be possible, two nitroreductase enzymes, each possessing non-

overlapping prodrug selectivities were required.  Previous findings by the Ackerley lab 

had identified pairs of nitroreductase enzymes demonstrating a limited degree of non-

overlapping selectivity for the prodrugs metronidazole and tinidazole. The goal of this 

work was to expand upon these previous findings and use directed evolution to further 

enhance the prodrug selectivity of these enzymes, thus making them better suited for a 

multiplex cell ablation system.  As an alternative to engineering novel nitroreductases for 

cell ablation studies, techniques to discover novel nitroreductase enzymes within 

metagenomic libraries were also explored.     
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6.2 Key Findings 
 

The first directed evolution experiment performed (Chapter 3) was to increase the 

tinidazole selectivity of NfsA_Ec.  NfsA_Ec initially only possessed a very slight bias 

towards tinidazole activiation compared to metronidazole activation.  It would therefore 

be not be suitable for inclusion in a multiplex ablation system opposite our lead 

metronidazole selective candidate, NfsB_Vv.  We chose to use directed evolution to 

improve the tinidazole selectivity of NfsA_Ec.  

 

The directed evolution screen developed consisted of challenging the NfsA_Ec 7SM 

library using niclosamide and metronidazole in combination.  Niclosamide was found to 

be an effective positive selection agent for catalytically active NfsA_Ec 7SM mutants.  In 

contrast, metronidazole could be used to select against NfsA mutants possessing wild 

type levels of metronidazole activity.  The enzyme AzoR_Ec was a valuable control for 

optimizing the concentrations of niclosamide and metronidazole ultimately used for 

library screening.   

 

Plating SOS-R4 E. coli cells containing the NfsA_Ec 7SM library on LB agar containing 

metronidazole and niclosamide enabled the successful evolution of NfsA_Ec enzymes 

that had improved tinidazole selectivity.  Of the nine NfsA_Ec 7SM mutants analyzed, 

the fold increases in metronidazole IC50 relative to wild type NfsA_Ec ranged from 12-71 

(mean = 32), while the fold increases in tinidazole IC50 ranged from 3-20 (mean = 6).  

Measuring protein expression of these mutants relative to NfsA_Ec indicated that 

catalytic changes, rather than changes in expression level, were likely responsible for the 

altered prodrug selectivity.  The most promising mutant recovered, NfsA_Ec 7SM 5_B9, 

had a 31 fold higher metronidazole IC50 than NfsA_Ec, while only a 3 fold higher 

tinidazole IC50, overall making it ca. 12 fold more tinidazole selective.    

 

Testing each codon change present in the NfsA_Ec 7SM 5_B9 mutant in isolation 

indicated that no single amino acid change was responsible for the increase in tinidazole 

selectivity.  The change in selectivity was therefore likely representative of synergistic 

effects between the multiple amino acid changes.    

 



! "#$!

Unfortunately, all of the top tinidazole selective NfsA_Ec 7SM mutants had also lost 

activity with the profluorophores FSL76 and FSL150, meaning multiplex imaging in 

combination with the metronidazole selective NfsB_Vv was unlikely to be possible.   

 

A second directed evolution experiment was performed (Chapter 4) to increase the 

tinidazole selectivity of NfsA_Pp.  NfsA_Pp was selected because it was one of the most 

intrinsically tinidazole selective enzymes present in the 58 core nitroreductase library 

(Condon, 2013).  From the IC50 data measured in this thesis, NfsA_Pp was two fold more 

tinidazole selective than NfsA_Ec. A library of NfsA_Pp mutants was created using error 

prone PCR and screened by plating on LB agar containing metronidazole and 

niclosamide.  While the screen successfully selected against metronidazole activity, 

tinidazole activity was also greatly decreased compared to wild type NfsA_Pp.  Overall 

none of NfsA_Pp mutants identified were notable more tinidazole selective than wild 

type NfsA_Pp.   

 

The goal of the research described in the final chapter of this thesis (Chapter 5) was to 

discover new nitroreductase enzymes from within metagenomic libraries.  Several 

different nitroreductase metagenomic screening techniques were developed and tested.  

Unfortunately, the approaches using the profluorophore FSL41, niclosamide, or !-

galactosidase expression from the E. coli SOS-R2 strain were all ultimately unsuccessful.  

The most promising discovery made in this chapter was that the compound 4-

nitroimidazole could detect nitroreductase expression at the level of a single colony.  

While timing constraints prevented a large-scale library screen, preliminary results were 

supportive that 4-nitroimidazole could be used for discovering metagenomic 

nitroreductase genes in the near future. 

!
!
!
!
!
!
!
!
!
!
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6.3 Future directions 

 

6.3.1 Alternative Prodrug Multiplex Ablation Systems 

 

As discussed in Chapter 3, metronidazole and tinidazole were chosen to develop a 

multiplex ablation system around because they are both affordable and well-characterized 

nitroaromatic prodrugs.   Metronidazole was also the standard prodrug used in cell 

ablation studies, meaning it would be familiar to members of the field.  Despite these 

attractive practical considerations, it could be that alternative prodrug pairings would be 

better suited for a multiplex ablation system.  Given that metronidazole and tinidazole 

were both 5-nitroimidazole prodrugs, it is conceivable that they interacted with the active 

site of a nitroreductase in a similar fashion.  The common 5-nitroimidazole scaffold of the 

two prodrugs could therefore potentially restrict the upper limit of selectivity a 

nitroreductase could possess for either of them.  In contrast, a nitroreductase might 

activate two nil-bystander prodrugs that have completely different structures with a much 

higher level of discrimination.  Previous results from the Ackerley lab support this 

scenario.  For example, the metronidazole selective NfsB_Vv was even less active with 

the 2-nitroimidazole fluorinated misonidazole (F-Miso) than it was with tinidazole 

(Condon, 2013).  Future studies to evolve nitroreductase enzymes for multiplex ablation 

may therefore be more successful if the prodrugs used differed greatly from one another.  

However, this would require comprehensive validation of both prodrugs for effective 

targeted cellular ablation, and this has not yet been obtained for fluorinated misonidazole. 

 

Prodrugs could even be foregone in future systems, replaced with nitroreductase-caged 

circularized morpholino oligonucleotides.  Morpholino oligonucleotides are synthetic 

single-stranded nuclease-resistant nucleic acid analogues that can prevent  translation of a 

specific zebrafish gene by hybridizing to its mRNA (Bill et al., 2009).  In a recent study, 

morpholinos were inactivated by circularization using a nitrobenzyl linker (Yamazoe et 

al., 2014).  Reduction of the linker by the nitroreductase enzyme NfsB_Ec resulted in 

decircularization of the morpholino, and subsequent gene knockdown in zebrafish.  The 

creation of alternative nitroaromatic linker groups (e.g., based on the 2-nitroimidazole 

linker used to quench the fluorescence of FSL178; see structure, Figure 3.21), could 

potentially enable the creation of a multiplex gene knockdown system, where one 
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nitroreductase expressed from one tissue would specifically decircularize one 

morpholino, and one expressed from another tissue would specifically decircularize 

another.  Such a system would provide temporal control over the knockdown of two 

specific genes in two distinct tissues of the same organism.  If achievable, this system 

could be used to study genetic interactions (such as synthetic lethality) in zebrafish model 

organisms, an area of interest to the field   (Hajeri and Amatruda, 2012). 

!
6.3.2 Future Directed Evolution Experiments to Enhance Substrate Selectivity 

 

The results from Chapter 3 demonstrated that using metronidazole as a negative 

selection agent against the NfsA_Ec 7SM mutant library was far more detrimental to 

metronidazole activity than to tinidazole activity.  This raises the question as to whether 

negative selection could be used to select against multiple prodrug activities 

simultaneously.  For example, the NfsA_Ec 7SM library could be plated on agar 

supplemented with metronidazole and another prodrug, such as fluorinated misonidazole, 

in addition to niclosamide.  Ultimately, such an approach might lead to development of 

three different nitroreductase enzymes each having unique and non-overlapping prodrug 

selectivities, that could be employed in a three-way multiplex ablation system.  While 

speculating about the degree to which substrate selectivity could be narrowed (what about 

selecting against three prodrug activities?  How about four or five?) is exciting from 

enzyme engineer’s perspective, it is important to keep an application in mind.  

Ultimately, the enzymes evolved need to be of practical use to the field of targeted cell 

ablation.  Only time will tell if larger and more complex multiplex ablation systems 

would be useful to the field.    

7.3.3 Exploring the Mechanistic Basis Behind Substrate Selectivity 

 

The relative metronidazole and tinidazole selectivities of the nitroreductase enzymes 

considered in this thesis were all based on empirical data.  The underlying mechanistic 

reasons why enzymes such as NfsB_Vv demonstrate greater activity with metronidazole 

compared to tinidazole, despite them being structurally similar 5-nitroimidazole prodrugs, 

was unknown.  These questions could be answered by co-crystallizing a nitroreductase 

with either metronidazole or tinidazole.  Analyzing such crystals could provide a 

structural and thermodynamic basis to explain why one prodrug is preferentially activated 
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by one nitroreductase enzyme and not another.  In ongoing work, Ackerley lab PhD 

student Abby Sharrock plans to answer some of these questions by further engineering, 

and ultimately crystallization, of the tinidazole selective NfsA_Ec 7SM mutants 

generated in this thesis.  A potential outcome from this research could be the 

identification of key amino acids that dictate nitroreductase 5-nitroimidazole selectivity.  

These amino acids could then be specifically targeted for mutagenesis in future evolution 

experiments to potentially yield even greater gains in substrate selectivity.     

 

6.3.4 Multiplex Imaging using Fluorescent Proteins  

 

The concept of a multiplex imaging and ablation system was considered in Section 3.2.10 

of this thesis.  Bacterial fluorescence assays revealed that the top tinidazole selective 

NfsA_Ec 7SM mutants had all lost activity with the (generally NfsA selective) 

profluorophores FSL76 and FSL150.  While multiplex imaging may not be achievable 

using these profluorophores, it could possibly be achieved using fluorescent proteins.  

Nitroreductase enzymes have been successfully fused to multiple fluorescent proteins, 

such as CFP (Curado et al., 2007) and GFP (Hsu et al., 2010).  Methodologies also exist 

for simultaneously imaging two district zebrafish tissues expressing different fluorescent 

protein markers (Ariga et al., 2010).  For example, NfsB_Vv could be fused to GFP while 

a tinidazole selective NfsA_Ec mutant could be fused to CFP, enabling the specific 

imaging of each.  Alternatively, if the creation of a fusion protein was detrimental to 

nitroreductase activity, each nitroreductase could be co-expressed along with a distinct 

fluorescent protein from a bicistronic promoter.     

6.3.5 Metagenomic Screening using Chloramphenicol  

 
In regards to the metagenomic discovery aim of this project, nitroreductase positive 

selection agents other than niclosamide could be tested in the future.  Ideally, these 

positive selection agents would not be dependent on the absence of TolC for toxicity, 

preventing the unwanted recovery of eDNA efflux pumps.  Preliminary data collected by 

Dr. Elsie Williams (unpublished) has indicated that the antibiotic chloramphenicol can 

also be a positive selection agent of cell expressing nitroreductase enzymes.  The 

reduction of the nitro group of chloramphenicol can decrease its antimicrobial activity 

(Corbett and Chipko, 1978), providing a possible explanation for its positive selection 
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activity.  Encouragingly, the positive selection effect of chloramphenicol was still 

observed when a functional TolC transporter was present in the host E. coli cell.  

Chloramphenicol could therefore be tested in the future as an alternative metagenomic 

screening tool to niclosamide.   

6.3.7 Metagenomic Screening using Degenerate Nitroreductase Primers 
 

An alternative to the functional-based metagenomic screens developed in this thesis could 

be a homology-based approach using degenerate PCR primers.  Degenerate PCR primers 

are broadly specific for a given gene family by targeting conserved sequence domains.  

Their broadly specific nature enables them to be used to screen metagenomic libraries for 

new members of the same gene family.  An advantage of a degenerate primer approach 

over functional screens is that eDNA gene expression is not required for detection (Piel, 

2011). Degenerate primers have previously been successfully used to identify new 

members of the dehalosgenase (Chae et al., 2008), chitinase (Cottrell et al., 2000), 

protease (Niehaus et al., 2011), and xylose isomerase (Parachin and Gorwa-Grauslund, 

2011) gene families.  In previous work, degenerate nfsB primers were designed that were 

capable of detecting nfsB genes from eight different bacterial species (Rory Little and 

David Ackerley, unpublished).  These primers could therefore be used to screen 

metagenomic libraries for novel nfsB genes in the future.   

!
6.3.7 Using 4-Nitroimidazole as a Directed Evolution Tool 

 

While this thesis only considered the prodrug 4-nitroimidazole in a metagenomic 

screening context, it could also be a useful tool for directed evolution studies.  The 4-

nitroimidazole-induced colour change of an E. coli colony expressing a nitroreductase 

could be used to rapidly detect nitroreductase mutants that had either lost or gained 

activity with 4-nitroimidazole.  Such a screening technique could be useful for evolving 

alternative pairs of multiplex ablation nitroreductase enzymes.  For example, as 

successfully demonstrated in this thesis, metronidazole could be used as a negative 

selection agent to select against mutants possessing metronidazole activity.  These same 

mutants could then be rapidly counter-screened to identify those that retained activity 

with 4-nitroimidazole.  The reverse could then be done, supplementing agar with 

inhibitory levels of 4-nitroimidazole to eliminate mutants capable of activating it.  The 
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metronidazole activity of these 4-nitroimidazole inactive mutants could then be assessed 

by metronidazole SOS GFP assays.  The end result would be two enzymes with non-

overlapping 4-nitroimidazole and metronidazole activities.   

 

The colour change of 4-nitroimidazole could also enable it to be used as a neutral drift 

evolution tool.  Neutral drift evolution is useful when the desired activity of the enzyme is 

not amenable to direct screening.  In these cases, mutant enzymes can be selected on the 

basis that they have retained functionality with a different substrate, i.e. all mutations that 

abrogated enzyme function altogether have been eliminated from the pool.  Successive 

rounds of evolution selecting enzymes for one functionality can inadvertently result in 

improvements in a different desired, but difficult to detect, activity (Bershtein and 

Tawfik, 2008).  Thus, 4-nitroimidazole may have value in selecting for enzymes that are 

active with entirely different prodrug substrates, akin to the use of niclosamide in this 

thesis.  Moreover, 4-nitroimidazole may have more direct value as an analogue of 

compounds that possess a core 4-nitroimidazole scaffold. Another project in the Ackerley 

lab has focused on developing methods to detect the expression of a nitroreductase 

protein, delivered by an oncolytic virus or bacteria, in the cancerous tissue of a GDEPT 

patient.  The ability to verify that nitroreductase expression is restricted to cancerous 

tissue prior to administration of a prodrug is an important regulatory hurdle for GDEPT 

(Williams, 2013).  A promising method for achieving this is positron emission 

tomography (PET), using radioactively labelled nitroaromatic probes that, upon 

nitroreduction, become cell entrapped.  Dr Ackerley’s collaborators at the ACSRC have 

synthesized a range of PET-capable probes based on nitroimidazole scaffolds.  In ongoing 

work, directed evolution has been performed on nitroreductase enzymes to enhance their 

activity with these PET probes.  Unfortunately, while these PET probes can inhibit 

bacterial growth, many do not induce an SOS response, making screening for improved 

mutants difficult.  Growth inhibition assays are often not practical for large-scale 

screening due to the high costs and low availability of these bespoke preclinical 

compounds.  However, as several of the most promising GDEPT PET probes contain core 

4-nitroimidazole scaffolds, the colour change of 4-nitroimidazole could be used to select 

for mutants possessing at least some level of generic 4-nitroimidazole activity.  A mutant 

nitroreductase library could therefore be screened to identify the mutants best able to 

reduce 4-nitroimidazole.  These mutants could then be subjected to further rounds of 
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mutagenesis and selection; likely to ultimately result in the enrichment of mutants better 

at activating the 4-nitroimidazole PET probes.    

6.4 Concluding Remarks 

 

This work built off previous studies demonstrating that different nitroreductase enzymes 

can selectively activate some prodrugs over others (Condon, 2013; Horvat, 2012).  A key 

goal of this study was to determine if directed evolution could be performed to further 

enhance this selectivity.  The approach that was developed in this thesis successfully 

enabled the evolution of an NfsA_Ec mutant possessing decreased levels of 

metronidazole activity and therefore enhanced tinidazole selectivity, the first example of 

its kind.  To fully validate these evolved enzymes as useful multiplex ablation tools, 

however, they will need to be expressed in the tissues of the intended model organisms, 

zebrafish in particular.  The bacterial data collected in this thesis is nonetheless 

supportive that engineered nitroreductases could be used to expand the capabilities of 

future cell ablation studies.  Towards the other goal of this thesis – the discovery of 

nitroreductase enzymes in metagenomic libraries – the compound 4-nitroimidazole also 

offers promise that novel nitroreductase enzymes from metagenomic libraries will be 

discoverable in the future.   

 

Overall, this thesis expanded our knowledge on the nitroreductase activity changes 

achievable using directed evolution and methods that could be used to detect novel 

nitroreductase enzymes in metagenomic libraries.   

 

!
!
!
!
!
!
!
!
!
!
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Appendix Figure 8.1 – Metronidazole and tinidazole induced growth inhibition response in E. coli 
SOS-R4 overexpressing NfsA_Ec 7SM mutants preselected on niclosamide. A total of 57 NfsA_Ec 
7SM mutant colonies were randomly selected from LB agar supplemented with 0.5 !M niclosamide and 
challenged with either metronidazole or tinidazole in replicate growth inhibition assays.  Mid-exponential 
cultures from each of the 57 colonies were challenged in 384 well plates with either A) 50 !M 
metronidazole or B) 50 !M tinidazole for 3 hours.  Growth was measured as the difference in culture 
turbidity (OD600) between pre (t = 0 h) and post (t = 3 h) drug challenged cultures.  A DMSO control 
(unchallenged) was also included for each of the 57 7SM mutants.  For each strain, growth inhibition was 
measured as the percentage decrease in growth between each challenged culture and its respective 
unchallenged control.  Data are representative of three independent experiments ± SEM. 
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Appendix Figure 8.2 – Metronidazole and tinidazole induced growth inhibition response in E. coli 
SOS-R4 overexpressing NfsA_Ec 7SM mutants lacking niclosamide selection. A total of 57 
NfsA_Ec 7SM mutant colonies were randomly selected from LB agar supplemented with 0.5 !M 
niclosamide and challenged with either metronidazole or tinidazole in replicate growth inhibition 
assays.  Mid-exponential cultures from each of the 57 colonies were challenged in 384 well plates with 
either A) 50 !M metronidazole or B) 50 !M tinidazole for 3 hours.  Growth was measured as the 
difference in culture turbidity (OD600) between pre (t = 0 h) and post (t = 3 h) drug challenged cultures.  
A DMSO control (unchallenged) was also included for each of the 57 7SM mutants.  For each strain, 
growth inhibition was measured as the percentage decrease in growth between each challenged culture 
and its respective unchallenged control.  Data are representative of three independent experiments ± 
SEM. 
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Appendix Figure 8.3 – Metronidazole and tinidazole induced GFP SOS response in E. coli SOS-R4 overexpressing niclosamide and metronidazole preselected 
nitroreductase clones.  Mid-exponential cultures of 57 NfsA_Ec 7SM mutants selected on agar containing 0.5 µM niclosamide were challenged in 384 well plates containing 
either 5 µM metronidazole or 5 µM tinidazole for 3 hours, after which GFP fluorescence (488 ex/510 em) and culture turbidity (OD600) were recorded.  A DMSO control 
(unchallenged) was also included for each of the 53 colony cultures.  The raw GFP values of each challenged culture and their respective unchallenged control were normalized 
by OD600.  GFP fold induction was then calculated from the difference between the normalized GFP values of each challenged culture and its respective unchallenged control.  
SOS-R4 clones expressing NfsB_Vv, NfsA_Pp, and NfsA_Ec are included as controls.  pUCX represents SOS-R4 cells containing an empty pUCX plasmid.  Data are 
representative of three independent experiments ± SEM using cultures of the same 7SM NfsA_Ec mutants.     
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