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Abstract 

In patients undergoing tumour resection surgery, assessment of language is vital, given its crucial 

role in everyday social functioning. However, despite the unique neuropathological mechanisms 

in tumours, current literature presents variable results regarding language capabilities in this 

population. In this thesis we have developed a new neuropsychological test battery, the Brief 

Language Assessment for Surgical Tumours (BLAST), to specifically evaluate language in brain 

tumour patients. The BLAST adopts a core skills approach, which identifies and examines 11 

core cognitive skills that have been derived based on current cognitive and psycholinguistic 

theories, and are required for everyday language processing. In this study, we administered the 

BLAST to a cohort of 40 undifferentiated tumour surgery patients, both pre and postoperatively. 

Also tested were 60 healthy controls categorised into three age groups (18-29, 30-50 and 

51+years). We examined various aspects of overall test performance in order to evaluate: 1) the 

overall sensitivity of the test battery at detecting abnormalities in this population; 2) selectivity: 

the relative incidence of impairments across the various subtests; and 3) their sensitivity to 

change following surgery. We also explored the effects of lesion localisation and other lesion 

characteristics (malignancy, oedema and volume) on test performance. Following this, we then 

used participants' test performance to create operationalised measures of our 11 core cognitive 

skills, and evaluated these measures in a similar way to the basic test scores. Finally, we 

used Voxel-Based Lesion Symptom Mapping to determine the specific anatomical predictors for 

each core cognitive skill score. When investigating overall task performance, we found that 94% 

of preoperative patients and 90% of postoperative patients were impaired in at least one task 

within the BLAST. Also, 65% and 68% of patients had impaired scores on at least one core skill 

preoperatively and postoperatively respectively. It was also found that the core skills measures 



 

 

ii 

were effective at discriminating amongst different neurological profiles. Specifically, patients 

with a left posterior tumour had significantly lower scores than other groups on measures 

of accessing semantic knowledge, lexical selection and phonological encoding, either pre or 

postoperatively, or both. Conversely, patients with a left frontal tumour had significantly lower 

scores on measures of articulatory motor planning and verb retrieval. Our Voxel-Lesion-

Symptom-Mapping analysis corroborated these findings.  Lesions within the left superior 

temporal lobe significantly predicted lows scores in accessing semantic knowledge, lexical 

selection and phonological encoding. Conversely, lesions within the left inferior, as well as the 

superior posterior frontal lobe, significantly predicted low scores on goal-driven response 

selection, articulatory-motor planning and verb retrieval. 

We conclude that a core skills approach may be a more effective means of assessing language in 

tumour populations than more conventional tools that emphasise overall task performance. Such 

derived measures are sensitive to impairments in this population, and are less likely to be 

confounded by nonlinguistic impairments that can impact significantly on overall task scores. 

They may also be useful in guiding postoperative rehabilitation. Further, the scores derived here 

are associated with quite specific neural substrates, making them potentially useful in guiding 

surgery and reducing postoperative linguistic deficits. Finally, we conclude that the investigation 

of tumour populations can also provide unique theoretical insights into language processing and 

its neural underpinnings in its own right. 
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Chapter 1: Introduction and Literature Review 

Each year, doctors in the United States diagnose approximately 17,000 new primary brain 

tumours, and 100,000 secondary brain tumours (Porter, McCarthy, Freels, Kim & Davies, 2010). 

According to Cancer New Zealand, approximately 100-120 people are diagnosed with a specific 

malignant brain tumour each year (“Brain Cancer: Glioblastoma multiforme (GBM),” 2013). 

Over the past few decades, there have been significant improvements in outcomes for patients 

with brain tumours. The proliferation of more effective treatment procedures, such as the use of 

new chemotherapy agents and surgical interventions (e.g., awake craniotomy), is increasing life 

expectancy in this population. With the development of these new techniques, surgeons and 

clinicians have been able to shift their attention from acute management towards the 

consideration of quality of life issues, and more specifically how it can be maximised. One 

important goal in this respect has been the preservation of language function during surgical 

intervention, since the ability to communicate is such an essential component of everyday life.  

Effective language assessment is central to this goal. First, effective preoperative 

language assessment can identify candidates for awake craniotomy, a surgical technique that has 

been found to be more effective than standard resective surgery at reducing postoperative 

language deficits (Ali, Fadel, & Abouldahab, 2009; De Benedictis, Moritz-Gasser & Duffau, 

2010; Duffau, 2007; Gupta et al., 2007; Peruzzi, Bergese, Viloria, Puente, Abdel-Rasoul & 

Chiocca, 2011; Sacko et al., 2011). Second, preoperative assessment can also help assist in the 

selection of language tasks for intraoperative testing during awake craniotomy. This can help the 

neurosurgeon identify cortical tissue that is essential to language for each patient, and thereby 

help preserve language function (De Witte & Mariën, 2013). Third, the detection of language 

impairments by postoperative assessment can guide more effective rehabilitation (Davie, 
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Hutcheson, Barringer, Weinberg, & Lewin, 2009). However, before these goals can be met, it is 

imperative that we examine in detail the language capabilities of brain tumour patients generally. 

This thesis aims to carry out such an endeavour. The following section will give a brief overview 

of the characteristics and etiologies of a brain tumour. Following this, we then explore the 

current literature pertaining to the implications of a brain tumour on language functioning.  

Brain Tumours: A Brief Overview 

A brain tumour is a solid abnormal mass of tissue within the brain or the central spinal 

canal. It comes in various shapes, locations and sizes, and exhibits many different types of 

growth patterns (Ricard, Idbaih, Ducray, Lahutte, Hoang-Xuan, & Delattre, 2012). Brain 

tumours are created by abnormal and uncontrolled cell division. They can develop within the 

brain itself (e.g., glial cells: astrocytomas, oligodendroglioma, ependymomas), but also in 

lymphatic tissue (e.g., cerebral lymphoma), in blood vessels (e.g., hemangioblastoma), in the 

cranial nerves (e.g., schwannoma), in the brain meninges (e.g., meningioma), the skull (e.g., 

chondrosarcomas pituitary gland (e.g., pituitary adenoma), or pineal gland (e.g., pineocytoma). 

Tumours that grow in this manner are called primary brain tumours. The most common type of 

primary brain tumours is gliomas (50.4%), followed by meningiomas (20.8%) and then pituitary 

adenomas (15%) (Park, Kim, Sade & Lee, 2009). Brain tumours may also spread from cancers 

primarily located outside the central nervous system; these are called secondary or metastatic 

tumours. The most common source of origin for metastatic tumours derives from carcinomas of 

the breast, lung, and malignant melanoma. Metastatic tumours occur more frequently than 

primary brain tumours (4:1) (Marsh, 2009). 

Currently, no one knows exactly what causes brain tumours, and there have only been a 

few risk factors identified. For example, children who receive radiation to the head have a higher 
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risk of later developing a brain tumour (for review see Pettorini, Park, Caldarelli, & Massimi, 

2008), as do people who have rare genetic conditions (Behin, Hoang-Xuan, Carpentier, Delattre, 

2003). However these cases only represent a fraction of those who are diagnosed with a primary 

brain tumour each year. 

Brain tumours can result in a range of neurological symptoms, and these can be divided 

into three main categories. The first set of symptoms derives from increased intracranial pressure. 

Clinically, this translates into headaches, vomiting, altered state of consciousness, dilation of the 

pupil, and papilledema (swelling of the optic disc, located at the back of the eye). The second 

results directly from damage to the brain by either compression or infiltration of the tumour. Any 

type of focal neurological symptom may occur, such as motor, cognitive, and behavioural 

impairment, and/or personality or emotional changes. The third and final category is irritation. 

This includes such symptoms as abnormal fatigue, weariness, absences, and tremors (see 

especially Arber, Faithfull, Plaskota, Lucas & de Vries, 2010; Cahill, LoBiondo-Wood, 

Bergstrom, & Armstrong, 2012; Davies & Clarke, 2004; Forsyth & Posner, 1993; Gutin & 

Posner 2000; Omuro, Leite, Mokhtari & Delattre, 2006; Squires, 1989;). Importantly, this also 

includes epileptic seizures, which are the most common neurological symptom that will motivate 

a brain tumour patient to seek medical attention. For example, Taphoorn and Klein (2004) 

reported that 80% of brain tumour patients had a seizure prior to diagnosis. 

The neuroanatomical locations, as well as the rate of growth and invasiveness of a brain 

tumour, are key determiners of this symptomology (DeAngelis, 2001). Tumour growth and 

invasiveness are directly related to the histological features of a tumour (Bosman, Carneiro, 

Hruban & Theise, 2010). Broadly speaking, a tumour can either be cancerous (malignant) or 

non-cancerous (benign). More specifically, the World Health Organization (WHO) has 
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developed a malignancy scale, from grade I-IV, to quantify the histological features of brain 

tumours (Kleihues & Sobin, 2000). The specific histologic features used for each grade are 

presented in Table 1.1. Patients with a high-grade brain tumour have a much poorer prognosis 

than lower grade tumours. A high-grade tumour carries a prognosis of 6-18 months, depending 

on age and disability at presentation. A low-grade brain tumour can carry a prognosis of many 

years, but will ultimately transform to a higher grade if there is incomplete surgical resection of 

the tumour (Marsh, 2009). 

Table 1.1 

 The WHO grading of Central Nervous System tumours 

WHO grade 

I 

Lesions with low proliferative potential, a frequently discrete nature, and 

the possibility of cure following surgical resection alone 

WHO grade 

II 

Lesions that are generally infiltrating and low in mitotic activity but 

recur 

WHO grade 

III 

Lesions with histologic evidence of malignancy, generally in the form of 

mitotic activity, clearly expressed infiltrative capabilities, and anaplasia 

WHO grade 

IV 

Lesions that are mitotically active, necrosis-prone, and generally 

associated with rapid preoperative and postoperative evolution of 

disease. 

 

Brain Tumours and Language 

There is consensus in the literature that a brain tumour can have a profound impact on 

cognitive functioning (see especially Klein et al., 2002; Meyers, Hess, Yung & Levin, 2000; 

Murray et al., 2000; Scheibel, Meyers & Levin, 1990; Talacchi, Santini, Savazzi & Gerosa, 

2011; Taphoorn & Klein, 2004; Taylor et al., 1998). One such aspect of cognitive functioning 
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within this domain is language. It has been difficult to establish the exact prevalence of linguistic 

dysfunction in this population, and this is due to a number of pitfalls evident throughout the 

literature. Specifically, these research investigations that have set out to investigate language 

dysfunction in brain tumour patients differ greatly as to the characteristics of the patient sample, 

and type of surgical intervention used. Such studies investigate language function in awake 

craniotomy patients only, a procedure that may be especially indicated for when a tumour is in 

“classical” language areas (e.g., Broca’s and Wernicke’s area). Language dysfunction is likely to 

be more prevalent in this kind of sample than in an undifferentiated sample. Others investigate 

language function only in left hemisphere patients, and often only in cases where the tumour is in 

close proximity to the traditional language areas. Consequently, it is difficult to draw any 

definitive conclusions across these investigations, and very little is therefore known about 

language capability in tumour patients more generally.  

Furthermore, there is huge variation in the testing protocols used throughout these 

investigations. Measures used range from informal self-report measures (e.g., Thomas et al., 

1995) to formal aphasia assessments (e.g., Duffau, Peggy Gatignol, Mandonnet, Capelle & 

Taillandier, 2008; Whittle et al. 1998) through to specific neuropsychological protocols (e.g., 

Bello et al., 2007; Sanai, Mirzadeh, & Berger, 2008). Caution must therefore be used in 

interpreting linguistic deficit rates in this population, and one must always consider the sample of 

brain tumour patients used, as well as the sensitivity of the linguistic assessment methodology. 

With this in mind, from the growing body of research exploring linguistic deficits in 

brain tumour patients, it is clear that language dysfunction occurs in this population. In 

preoperative samples, estimates of the prevalence of language deficits range from 37% to 63% 

(Bello et al., 2007; Haglund, Berger, Shamseldin, Lettich, & Ojemann, 1994; Recht, McCarthy, 
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O’Donnell, Cohen & Drachmann, 1989; Sanai, Mirzadeh, & Berger, 2008; Tandon & Mahapatra, 

1993; Thomas, O’Connor & Ashley, 1995; Whittle, Pringle & Taylor, 1998;). For example, 

Thomas, O’Connor and Ashley (1995) found that in an undifferentiated sample of 116 patients 

with a high-grade glioma, 37% had a “speech deficit” at presentation, according to the report of 

the patients themselves and/or their primary caregivers. Whittle, Pringle and Taylor (1998) found 

that in 40 left hemisphere brain tumour patients about to undergo tumour resection surgery, 

62.5% were classified as dysphasic according to the Western Aphasic Battery (WAB) (Kertesz, 

1982). Finally, Sanai, Mirzadeh, and Berger (2008) also found that of 250 left hemisphere 

glioma patients, 36.4% had a language deficit preoperatively. This was identified by impairment 

on at least one of the following tasks: counting, object naming, single word reading, sentence 

repetition, and writing words and sentences. 

These patterns of linguistic dysfunction occur as a result of the infiltration, displacement, 

and compression of both gray and white matter (subcortical nuclei) within the cerebral cortex. 

Furthermore, it is well know that language abilities rely on the integrity of neural networks 

whose cortical nodes are frequently located within more than one lobe of the left hemisphere 

(sometimes both hemispheres) and are connected by white matter pathways (for review see 

Friederici, 2014). A brain tumour can also impact on language by causing disruption in the 

connectivity of white matter pathways due to deviation, infiltration, edematous and destruction 

(Jellison, Field, Medow, Lazar, Salamat & Alexander, 2004). 

Second, language dysfunction in brain tumour patients may occur as a result of the 

surgery itself. This may occur due to the resection of brain tissue essential for language function 

(known as eloquent cortex), or from postoperative complications such as swelling and 

inflammation (Heimans & Reijneveld, 2012). Discrepancies in the literature again have made it 
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difficult to draw conclusive evidence about the effects of neurosurgery on language processing. 

Some research has found a low incidence of language deficits caused by surgery in postoperative 

brain tumour patients. For example, Duffau and colleagues (2008) assessed a series of 115 left 

hemisphere patients with grade II gliomas on the Boston Diagnostic Aphasia Examination 

(Goodglass, Kaplan & Barresi, 2001) both before and after awake craniotomy surgery, and 

observed new language impairments following surgery in only 2% of patients (Duffau, Peggy 

Gatignol, Mandonnet, Capelle, & Taillandier, 2008). McGirt and colleagues (2009) conducted a 

comprehensive retrospective analysis of 306 undifferentiated patients who had undergone 

resection of glioblastoma. They found that 5% of patients developed an acquired language deficit 

postoperatively (the language assessment protocol used in this investigation was not explicitly 

stated) (McGirt, Mukherjee, Chaichana, Than, Weingart, & Quinones-Hinojosa, 2009).   

However, several other studies have suggested that language impairments induced as a 

result of surgery may be more common. For example, Bello and colleagues (2007) conducted a 

comprehensive language examination in 88 left hemisphere glioma patients who had undergone 

intraoperative mapping of subcortical language tracts during an awake craniotomy. The 

participants performed a range of language tasks, including picture naming, famous face naming, 

action naming, word repetition (real and nonsense words), picture-word matching, and 

letter/category fluency (e.g., “name as many items as you can think of that start with letter ‘F’/ 

belong to the category ‘animals’). In patients whose intraoperative mapping revealed positive 

subcortical language sites (N=52), evaluation of language three days after surgery showed new 

deficits or worsening of existing language deficits in 67.3% of patients (Bello et al., 2007). In 

addition, Ilmberger and colleagues (2008) conducted a prospective longitudinal study to evaluate 

language in 149 patients with a tumour in close proximity to or within language areas (therefore 
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the location of the tumour was confined to the left hemisphere). To achieve this, the Aachen 

Aphasia Test (AAT: Huber, Poeck, & Willmes, 1983) was used. This standardized battery 

consists of five subtests: 1) the token test, which involved pointing to and manipulating 

geometric forms in response to a command; 2) repetition of phonemes, words and sentences; 3) 

written language, consisting of reading and writing single words; 4) naming, involving naming 

visually presented objects, colours and scenes; and 5) comprehension, using the picture word 

matching task. Patients were classified as having a language deficit whenever they showed at 

least mild disturbance in one of the subtests above. Using this classification, it was found that 

within 21 days after surgery 32% of patients without preoperative deficits had a new language 

deficit (Ilmberger, Ruge, Kreth, Briegel, Reulen, & Tonn, 2008). Thus, brain tumour patients 

maybe particularly susceptible to new or worsening of existing language function shortly post-

surgery (for a review of similar findings see Finch & Copland, 2014).  

Within this body of literature, a limited pool of research investigations have suggested 

that the linguistic profiles of brain tumour patients are distinctly different from those observed in 

post-stroke aphasia. First, it has been found that language impairments in brain tumour patients 

are more likely to appear as mild deficits in common aphasic testing protocols. In contrast, 

language impairments evoked by a stroke are more likely to be severe and appear as more 

globalised deficits in common aphasic testing. For example, Anderson, Damasio and Tranel 

(1990) compared a sample of 17 brain tumour participants (eight with a left hemisphere tumour, 

nine with a right hemisphere) with an equal sized sample of unilateral stroke patients. Each 

stroke patient was anatomically matched to one of the tumour patients on the basis of lesion 

location and size. It was specified that lesions in stroke cases could be either as large or smaller 

than the lesion in the matched tumour cases. The Multilingual Aphasia Battery (Benton, 1969) 
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was administered as well as the Boston Diagnostic Aphasia Examination Reading Sentences and 

Paragraphs subtest (Goodglass & Kaplan, 1983). Despite the close matching of the two groups, 

there were major differences in each group’s performance. Of the left hemisphere cases, all of 

those in the stroke group had more severe language deficits than did those in the tumour group, 

despite the fact that the average lesion size was larger in the brain tumour group. The left 

hemisphere stroke subjects showed greater impairment than the tumour group in all subtests of 

the Multilingual Aphasia Examination (Benton, 1969), as well as on the Boston Aphasia 

Examination Reading subtest. Furthermore, Davie, Hutcheson, Barringer, Weinberg, and Lewin 

(2009) used the Western Aphasia Battery (Kertesz, 1982) to evaluate the language performance 

of 65 patients who had recently undergone malignant tumour resection. They found that anomic 

aphasia was the most common type of aphasia in this group (48% of patients), whereas global 

aphasia was the least common (3% of patients). This markedly contrasts with the profile of 

aphasia in stroke patients, where there are higher rates of global aphasia (20-40%) and lower 

rates of anomic aphasia (9-28%) (for similar findings of aphasia profile in stroke, see Kauhanen 

et al., 2000; Kertesz & Sheppard, 1981; Pashek & Holland, 1988; Pedersen et al., 2004).  

There also appears to be differences in the patterns of language recovery observed 

between brain tumour patients postoperatively and in post-stroke aphasia (Shafi & Carozza, 

2012). In post-stroke aphasia, some degree of recovery typically occurs spontaneously within 

eight to 12 weeks, and peaks after one year with only minimal improvements thereafter (see 

Berthier, 2005). In brain tumour patients, studies have shown that the majority of patients who 

experience a decline in language function immediately post surgery, will experience considerable 

recovery of function within three months of surgery (Finch & Copland, 2014; Wu et al., 2011). 

This pattern has been attributed to a number of factors that are more salient in brain tumour 
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compared to stroke. These include resolution of postsurgical oedema, transient retraction injury, 

initial displacement of neural structures, and neuroplastic mechanisms (Bello et al., 2007). 

However, although such a pattern has been argued within the literature, it must be noted here that 

some studies do present a far less promising picture of language recovery in this population. For 

example, Papagno, Casarotti, Comi, Gallucci, Riva, and Bello, (2012) found that at three months 

post surgery, a significant proportion of left hemisphere brain tumour patients were still impaired 

on certain language tasks. Specifically, 48% of left temporal patients who had a low-grade 

glioma were impaired in a naming famous people task1, and 40% of left frontal patients were 

impaired in a letter fluency task. In addition, Ilmberger et al., (2008) used a battery of language 

tasks previously described and found that in a sample of 153 awake craniotomy patients, 17.6% 

of patients had a persistent postoperative language disturbance seven months post surgery.  

The emergence of evidence that indicates that language profiles in tumour patients are 

different to those in stroke patients is perhaps not surprising, given the contrasting pathological 

mechanisms between the two neurological entities. One such difference is that unlike stroke, 

which generally has an acute onset, tumour growth progresses gradually, allowing for the 

possibility of cortical reorganisation (for discussion see Miceli, Capasso, Monti, Santini & 

Talacchi, 2012). Indeed, there is evidence that Broca’s aphasia, which is commonly observed in 

post-stroke aphasia following damage to Broca’s area and surrounding regions, is rarely 

observed when a tumour develops in that region (Plaza, Gatignol, Leroy & Duffau, 2009). This 

observation might well be attributable to the greater opportunities for neuroplasticity phenomena 

to occur in tumour patients (Duffau, 2007). A second difference is that whereas vascular damage 

results directly in neural cell necrosis, tumours grow by infiltrating nonneural cells (e.g., glial 
                                                        
1 The famous person to be named belonged to one of four professional categories (artists/scientist, athletes, actors, politicians) and are 

graded for the period of his/her fame. 
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cells or meningeal tissue), and only begin to impact on neural function when there is significant 

displacement and compression of neural tissue. For that reason, tumour growth may be 

considerably advanced before any functional impairment is observed (Miceli et al., 2012). A 

third difference between vascular and tumour damage concerns the distribution of the lesion. The 

cerebral regions most vulnerable to stroke (particularly ischemia) are those that lie within the 

region supplied by the occluded artery/arteriole, and consequently some regions are consistently 

more vulnerable than others. The cerebral regions impacted by a tumour, on the other hand, can 

be extremely variable, particularly when the tumour involves interstitial tissue. 

Therefore, it is safe to say that the language profiles observed in subjects with brain 

tumours are likely to differ significantly and substantially from those observed in patients with 

aphasia of vascular origin. Consequently, classic test batteries (e.g. the Boston Diagnostic 

Aphasia Examination (BDAE) (Goodglass, Kaplan & Barresi, 2001), or the Western Aphasia 

Battery (WAB) (Kertesz, 1982)) that have been developed primarily for the classification of 

“classical” aphasic syndromes induced by a cerebrovascular accident (Broca’s, Wernicke’s, 

conduction, transcortical etc.), may not be optimal for the detection of language deficits in brain 

tumour patients. Indeed, this is a view that has been espoused previously by a number of 

researchers (De Witte & Mariën, 2013; Meyers & Brown, 2006; Miceli et al. 2012; Påhlson, Ek, 

Ahlström & Smits, 2003; Talacchi, Santini, Savazzi & Gerosa, 2010). 

One recent study serves as a rare example of a neuropsychological assessment tailored 

specifically to tumour patients. The recent Milano-Biocca Battery is designed to investigate the 

performance of tumour patients in three cognitive domains: language, memory and executive 

function (Papagno, Casarotti, Comi, Gallucci, Riva, & Bello, 2012). The entire test battery has 

been administered to 226 tumour patients both pre- and postoperatively, and at three months post 
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surgery. To investigate language, the following tasks were administered: letter and category 

fluency, naming famous persons from photographs, object naming, picture-word matching, 

action naming, naming by description, and real word, nonword and sentence repetition. Although 

only preliminary results have been published, Papagno and colleagues (2012) found that the 

following language tasks were the most sensitive at detecting language impairments before 

surgery and at three-month follow up: naming famous people, action naming, object naming and 

category and letter fluency. In addition, patients were categorised into four groups based on the 

anatomical location of the tumour – left frontal, left temporal, right frontal, and right temporal. It 

was found that tumour localisation was a strong predictor of performance in most of the 

language tasks administered. Specifically, patients in the left temporal group performed more 

poorly than all other groups in naming people and objects, and this was true of all the testing 

points. They were also worse in category fluency at three months post surgery. In contrast, 

patients with a left frontal lesion performed more poorly than all other groups in the letter 

fluency task, and this was true both preoperatively and at three months post surgery (Papagno et 

al., 2012). 

However, comprehensive neuropsychological batteries of this kind take time to 

administer (up to two hours for the Milano-Bicocca), and even then, the number of test results 

that are directly pertinent to language function is relatively small. Here we focus on just one 

cognitive domain – language. This will enable us to test that domain more extensively, and in 

doing so, perhaps identify those measures that are most sensitive at detecting impairment in this 

population. It is interesting to note that in the original study of the Milano-Biocca Battery, only 

five of the 11 language tasks in the original battery were sufficiently sensitive at detecting 

impairment to be considered worthy of reporting by the authors (Papagno et al., 2012). A broader, 
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more exploratory assessment of language, which aims to assess as many aspects of language 

function as possible, as sensitively as possible, may be a useful first step in the development of 

shorter, more carefully tailored assessment protocols for use with a brain tumour population. 

Current cognitive theories of language may provide a particularly useful starting point for 

such an endeavour, because such theories delineate the various core cognitive operations that are 

essential for performing particular language behaviours. Assessments can then be developed 

which target each of these “core skills”. This approach offers a systematic, theory-driven method 

for deciding what tasks should be included in the assessment. Also, if applied effectively, this 

method may help to maximise the range of skills examined (thereby providing better breadth and 

sensitivity), and is likely to offer greater power to discriminate amongst different language 

profiles based on the neurological profile of the patient. The following section reviews cognitive 

and neuropsychological research that is relevant to this objective. It is then followed by a review 

of research that investigates the neural structures associated with each core skill, with a particular 

emphasis on lesion studies.   

Cognitive Theories of Language 

Current cognitive theories of language posit that key language behaviours, such as 

producing words and sentences, understanding spoken words and sentences, and reading, can be 

decomposed into several more elementary cognitive skills. Indeed, impairments to each 

cognitive skill have been found to be associated with a unique neurological and linguistic profile 

(see Table 1.2 for a summary of these skills and their associated neurological profiles). Before 

beginning this review, we acknowledge that within these models there is considerable debate in 

the literature as to the exact cognitive mechanisms associated with certain skills. These debates 

go beyond the aims of this investigation. We have therefore chosen to examine only those 
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cognitive skills for where there is widespread agreement for their existence in the literature. 

Accessing Semantic Knowledge 

If we begin by considering single word production, most psycholinguistic theories start 

with the simple task of naming a pictured object. There is wide agreement in the literature that at 

least four key cognitive skills are required for this task (see Figure 1.2). The first cognitive skill, 

which we will call accessing semantic knowledge, refers to the process of retrieving information 

about the semantic category, function, colour, size, etc., of the item to be named (Friedmann, 

Biran & Dotan, 2013). Many psycholinguistic models suggest that this semantic information is 

organised into a network consisting of an interconnected matrix of nodes, which correspond to 

individual features of the target item. For example, in the case of DOG, the attributes has four 

legs, barks, and chews bones, might all be coded for by different, but interconnected nodes, 

which collectively form the semantic representation for dog (e.g., Masson, 1991, 1995). Once 

partial information about an item is activated, activation spreads to these interconnected nodes, 

making additional information about the item accessible (Collins & Loftus, 1975; Neely 1997).  

Evidence to suggest that accessing semantic knowledge is a distinct entity can be drawn 

from the neuropsychological literature. In a neurodegenerative disorder known as semantic 

dementia (SD), the most prominent early feature and presenting complaint is a difficulty in 

“remembering” the names of people, places and things (e.g., Pijnenburg, Gillissen, Jonker, 

Scheltens, 2004; Thompson, Patterson, & Hodges, 2003). Spontaneous speech retains its normal 

grammatical structure, but there may be frequent pauses as the speaker struggles to find a 

particular word, and some terms may be replaced by commoner, more general terms (e.g., “thing” 

instead of “kettle”, and “doing” instead of “cooking”). Pronunciation and phonological skills are 

usually unaffected (Adlam et al., 2006; Ash, Moore, Antani, McCawley, Work, & Grossman, 
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2006). As the disease progresses, difficulties become evident in tasks involving comprehension. 

For example, when asked to define a word, people with SD may be able to provide only very 

general information (e.g., “Ostrich. Can you say that?” “Yeah, ostrich”; “What is a 

hippopotamus?” “An animal”) or simply absent (“I think I’ve heard of a hippopotamus, but I 

can’t say what it is”)  (Hodges & Patterson, 2007).  

Tasks that are commonly used to examine SD are picture naming, category fluency and 

picture-word matching. On picture naming, individuals with SD may be particularly prone to 

semantic errors, where the target word is replaced by another word from the same semantic 

category (e.g., zebra -> “giraffe”) (Garrard, Perry & Hodges, 1997; Hodges, Graham & Patterson, 

1995; Jefferies & Lambon Ralph, 2006). On category fluency tasks, there is also a notable 

decrease in the number of words that the individuals can generate when given a semantic 

category; in contrast, letter fluency is relatively spared (Bozeat, Lambon Ralph, Patterson, 

Garrard & Hodges, 2000; Graham & Hodges, 1997; Hodges, Patterson, Oxbury & Funnell, 1992; 

Rascovsky, Salmon, Hansen, Thai, & Galasko, 2007;). This is an unusual pattern, in most brain-

damaged patients, letter fluency is disproportionately impaired. Finally, on picture word 

matching tasks, SD patients tend to show confusion between semantically related items. They are 

particularly prone to errors on tasks where they must choose a picture match for a word from 

amongst a number of alternatives from the same semantic category (see esp. Corbett, Jefferies, 

Ehsan & Lambon Ralph, 2009).  

Lexical Selection 

Many theories of single word production also distinguish this general semantic 

processing stage from a subsequent lexical (or lemma) selection stage. This cognitive skill 

involves selecting the appropriate word from the mental lexicon that best matches the semantic 
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concept in mind. In many theories, this stage of processing in conceptualised within a spreading 

activation framework (e.g., Caramazza 1997; Dell, 1986; Levelt, 1999, Rapp & Goldrick, 2000; 

Roelofs, 2004; Ruml, Caramazza, Capasso & Miceli, 2005; Schwartz, Dell, Martin, Gahl & 

Sobel, 2006). For example, according to Dell’s (1986) model, depicted in Figure 1.1, during 

single word production, semantic nodes that represent aspects of the meaning of an item transmit 

activation to their associated lexical units. All units of associated words receive some activation 

(for example, if the target item is a cat, the lexical unit for “dog” will also become activated, 

because dogs possesses some of the same semantic attributes). However, the word that contains 

the greatest number of semantic features will generally receive the most activation. The lexical 

selection step is complete when the most highly activated lexical unit is “selected” for production. 

Support for the existence of this lexical selection process, as distinct from semantic 

access, comes from studies that have demonstrated reduced naming efficiency in normal 

speakers when two or more words “compete” for selection. For example, in the picture-word 

interference task, participants must name a picture, which is accompanied by an irrelevant 

auditory or written word (for example, a picture of a tiger is accompanied by the word “lion”). 

Specifically, when the irrelevant distractor word is semantically related to the target, and is 

presented just before or at the same time as the picture, individuals are substantially slower to 

name the picture than they are when the word is unrelated (Glaser & Düngelhoff, 1984; Roelofs, 

1992; Starreveld & La Heij, 1995, 1996). It has been suggested that this delay is caused by 

competition for selection between the two concurrently activated lexical items – that is, the name 

of the target item, and the distractor word itself.  
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Figure 1.1: The two-stage theory of single word production (adpated from Dell et al. 1997). 

One neuropsychological profile in which this lexical selection stage appears to be 

implicated is classical or pure anomia (Andreetta, Cantagallo & Marini, 2012; Butterworth, 

1992; Lambon Ralph, Sage & Roberts, 2000; McNeil, Odell, & Tseng, 1991). The hallmark 

feature of this disorder is poor picture naming without any accompanying impairment in general 

semantic knowledge (for example, comprehension may be normal; Franklin, Howard & 

Patterson, 1995; Howard, 1995; Gonon, Bruckert & Michel, 1989; Laine, Kujala, Niemi, & 

Uusipaikka, 1992; Raymer et al., 1997). In picture naming tasks, these patients tend to produce a 

mix of errors, including many failures to respond and/or circumlocutions (“They live in the sea 

and they lay eggs on the beach, but I can’t think of the name”). It has been argued that these 

kinds of errors in particular may be a consequence of a failure to retrieve any lexical item from 

the mental lexicon (for review, see Dell, Lawler, Harris & Gordon, 2004). For example, case, 

RBO, who suffered from a ruptured A-V malformation of the left posterior communicating 

artery, failed to provide any response at all to 40% of the items in a large picture naming test 

(Miceli, Amitrano, Capasso & Caramazza, 1996). Individuals with this profile may also produce 
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semantic errors, but in contrast to individuals with SD, they are more likely to recognise their 

errors as incorrect (Lambon Ralph, Sage & Roberts, 2000). One final hallmark of individuals 

with this profile is a marked word frequency effect in naming and similar word production tasks: 

individuals are considerably more prone to errors/omissions on lower frequency words (e.g., case 

AW: Jacobs, Singer & Miozzo, 2004; case FR: Avila, Lambon Ralph, Parcet, Geffner & 

Gonzalez-Darder, 2001). It has been suggested that the lexical representations of high-frequency 

words have higher resting levels of activation or lower selection thresholds than those of lower 

frequency words. Therefore, they require less activation to reach the activation level that is 

critical for selection, so may be less affected by any impairment affecting lexical activation (for 

review see Nickels, 2002).  

Phonological Encoding 

Subsequent to lexical selection, cognitive models of single word production generally 

propose a stage of processing called phonological encoding. This involves retrieving information 

about the selected word’s sound form from the mental lexicon (see especially Dell, 1986; Levelt, 

1999; Rapp & Goldrick, 2000; Schwartz et al., 2006). This abstract sound information then 

forms the primary input for articulatory-motor programming. Some models suggest that the 

phonological encoding process can itself be subdivided into a number of smaller cognitive 

processes. For example, Levelt (1999) proposed that the relevant phonological segments and 

their metrical information (for example, the number of syllables and their stress pattern) are 

retrieved independently and in parallel, and then subsequently combined. 

There is a wealth of evidence for the existence of an aphasic disorder that arises due to a 

selective impairment in the ability to encode phonological information. In conduction aphasia 

individuals speak fluently and with ease, but produce a number of phonological errors in 
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spontaneous speech and on a range of single word production tasks (for example, the person may 

say “pabacco” instead of “tobacco”; see Buchsbaum, et al., 2011). As many as 50% of these 

individuals’ responses may be phonological errors (Kohn & Goodglass, 1985; see also 

Butterworth, 1992; Caplan, Vanier & Baker, 1986; Kohn & Smith, 1993; Pate, Saffran & Martin, 

1987; Pradat-Diehl, Tessier, Vallat, Mailhan, Mazevet & Lauriot-Prevost, 2001; Wilshire & 

McCarthy, 1996). These patients also exhibit a number of other features consistent with a deficit 

in phonological encoding. For example, they tend show a strong length effect in picture naming 

– that is, they are less accurate at producing words that contain multiple syllables (Caplan, 

Vanier, & Baker, 1986; Kohn & Smith, 1993; Pate, Saffran, & Martin 1987; Wilshire & 

McCarthy, 1996; Wilshire, 2002). Most models predict that multisyllabic items will place extra 

demands on phonological encoding, as additional phonemes need to be retrieved and/or inserted 

into the correct metric frame. In addition, they may also produce phonological errors in auditory 

word repetition tasks, particularly on longer words (see esp. Caplan, Vanier & Baker, 1986; 

Caramazza, Basil, Koller & Berndt, 1981; Dell, Schwartz, Martin & Saffran 1997; Strub & 

Gardner, 1974). One of the critical prerequisites for successful performance in this task is likely 

to be the ability to encode the phonological information of the word to be repeated.  

Articulatory-Motor Programming 

According to most theories, the output of the phonological encoding process consists of 

fairly abstract, syllabified phonological words that are then translated into articulatory-motor 

programmes. This final processing stage will be referred to as articulatory-motor programming. 

This process involves constructing a motor plan for the articulatory execution of that utterance 

(see esp. Romani, Olson, Semenza, Granà, 2002; Romani & Galluzzi, 2005; Indefrey & Levelt, 

2004). According to Levelt’s (1999) theory, speakers have access to a repository of syllabic 
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gestures, termed the ‘mental syllabary’, that contains the articulatory scores for at least the most 

common syllables in language (Levelt 1992; Levelt & Wheeldon, 1994). As soon as a syllable 

emerges from the phonological encoding process, the corresponding syllabic articulatory gesture 

will be selected from the repository (Indefrey & Levelt, 2004; see also Dronkers, 1996; Kerzel & 

Bekkering, 2000). 

There is certainly supporting neuropsychological evidence for the existence of a distinct 

articulatory-motor programming stage of processing. Apraxia of speech (AOS) has been 

described as a disorder of motor-speech programming, which leads to errors in sequencing, 

timing, coordination, initiation and vocal tract shaping (Darley, Aronson, & Brown, 1975; Kent 

& Rosenbek, 1983). Hallmark features of patients with AOS are articulatory errors and prosodic 

abnormalities. Articulatory errors are more common on certain kinds of segments than others – 

for example, affricates (e.g., ch and j) and fricatives (e.g., s and z) tend to be particularly error-

prone, and errors are also more common on consonant clusters rather than singleton consonants 

(e.g. ‘strict’ will be more difficult than sit) (for review see Ogar, Slama, Dronkers, Amici, & 

Gorno-Tempini, 2005). Patients with AOS additionally have a markedly reduced rate of speech – 

considerably lower than that of individuals with aphasia that do not have AOS (Canter, Trost & 

Burns, 1985). 
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Figure 1.2: The four key cognitive skills involved in single word production using picture 

naming as a framework (adapted from Wilshire, 2014) 

Sentence-level Planning 

So far, we have considered the production of single words, but within language a crucial 

skill is being able to incorporate these words into a grammatically correct sentence. Cognitive 

theories of sentence-level production vary considerably in the specific cognitive processes they 

propose (see especially Dell, 1986; Garrett, 1975; Levelt, 1989; Levelt, 1999; Stemberger, 1985). 

Some theorists propose a frame-allocation process. That is, the speaker builds an abstract 

representation of a “sentence “frame” which specifies the classes of lexical elements that appear, 

their order, and any necessary grammatical elements. In most models the elements in the frame 

are defined grammatically (noun, verb, etc.). Words that fulfil these grammatical criteria can 

then be inserted, resulting in a fully formed ordered ‘plan’ of the sentence (Garret, 1975, 1976, 

1982). In some models, selection of the appropriate verb is crucial for the development of an 

appropriate sentence frame, as the verb specifies important aspects of the frame, such as the 
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number of arguments (how many direct and indirect objects) the verb can take (e.g. Ahrens, 

2003; Levelt 1989, 1999; Shapiro & Levine, 1990, Shapiro, Zurif, & Grimshaw, 1987; Trueswell 

& Kim, 1998). A rather different view recently espoused is that the sentence “plan” might be 

more like a proposition – that specifies the main entities, their properties and their relations to, or 

actions upon one another (e.g. dog-> agent, cat-> patient chase-> action; Chang, Dell and Bock, 

(2006)). The most salient conceptual element in this proposition wins the competition to initiate 

sentence planning. Sentence order and grammatical structure is then generated by applying a set 

of rote-learned ordering rules. In sum, a number of cognitive skills have been identified that are 

uniquely involved in sentence-level planning. These include grammatical frame insertion, the 

ability to generate verbs, as well as the development of an internally generated sentence level 

plan. For the purpose of the current review we will focus on the latter three cognitive processes, 

as these skills can be examined at the single word level. Assessment of other cognitive processes 

such as grammatical frame insertion needs to be examined at the sentence level, and this will be 

assessed in future investigations. 

Sentence-level Planning: Verb Production 

First and foremost, in order to produce a sentence, a speaker must be able to successfully 

retrieve all the key lexical content elements, most particularly the main verb (verb retrieval), as it 

imposes powerful constraints on the structure of the sentence to be produced (for example, it 

determines whether a direct or indirect object can be included (see especially, Sloan Berndt et 

al.1997a, 1997b; Webster & Whitworth, 20102). This ability can be disproportionately impaired 

after brain damage (for a review see Mätzig et al., 2009). Black and Chiat (2003) argue that 

nouns and verbs differ at both the conceptual-semantic and the syntactic level. At the conceptual-

semantic level, verbs differ from nouns in their sensory richness and tightness of conceptual-
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semantic fit. Moreover, as several recent authors have pointed out, they contribute to the 

meaning of a sentence in a different way from nouns, because they specify not just the nature of 

an action, but also the entire event involving that action, including the participating roles of the 

entities described in the sentence (Marshall, Chiat, & Pring, 1998). At the syntactic level, verbs 

vary as to the number of arguments they can take, and these impose significant constraints on the 

syntactic structure of the sentence. So for example, the verb “fell” requires an agent argument 

only (e.g. “the clown fell”), whereas “kick” requires a direct and an indirect object (e.g. the horse 

kicked the jockey”), while “send” requires three arguments: an agent, a theme and a goal, as in 

“Dean sent the car to the garage” (Agent is assigned to the subject Dean, Theme is assigned to 

the direct object the car, and Goal is assigned to the indirect object the garage) (Thompson, 

Shapiro, Li & Schendel, 1995). 

Deficits in verb retrieval have long been observed in a range of aphasic syndromes, and 

this most likely reflects the complexity of this linguistic skill. However, it has been reported on 

numerous occasions that patients with nonfluent aphasia (e.g., Broca’s aphasia) have 

significantly greater impairments in verb than noun retrieval (for review see Mätzig, Druks, 

Masterson & Vigliocco, 2009). In nonfluent aphasia, utterances are often reduced to one or two 

words, and are separated by long pauses, even though single word naming can be relatively well 

preserved (e.g., McCarthy & Kartsounis, 2000; Schwartz & Hodgson, 2002; Williams & Canter, 

1982). In a comprehensive review of the literature, Mätzig and colleagues (2009) explored the 

dissociation between verb retrieval as measured by a commonly used action-naming task and an 

object-naming task in 269 aphasia patients. Of the nonfluent aphasics in this sample (N=132), 

three-quarters showed poorer performance in verb naming than object naming. This was the 

highest proportion of dissociation when compared with other aphasic subtypes. In addition, 49 
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aphasics had a dissociation of greater than 30% accuracy in object-naming compared to an 

action-naming task. Of these, 60% of patients were nonfluent aphasics (Mätzig, Druks, 

Masterson & Vigliocco, 2009). Such observations, have led some to argue that deficits in verb 

retrieval can explain the difficulty in producing cohesive sentences in nonfluent aphasia (see 

Marshall, Pring & Chiat, 1998). Specifically, it has been found that deficits in single word action 

naming tasks are associated with further impairments in sentence-level processing. For example, 

Thompson, Lange, Schneider, and Shapiro (1997) found that a group of 10 patients with 

nonfluent aphasia who were disproportionately poor at an action-naming task (when compared to 

object naming) were also disproportionately poor at producing sentences when they contained 

verbs with multiple argument structures; this impairment was much less evident in sentences that 

contained a verb with one argument structure. 

Sentence-level Planning: Goal-Driven Response Selection 

To produce longer utterances, a speaker must also manage their activation levels so that 

no item gets selected before it is supposed to. It has been suggested that there is a dedicated 

mechanism that performs this function, which operates by biasing the flow of activation, either 

enhancing, or inhibiting lexical representations based on the current production goal (see 

especially, January, Trueswell & Thompson-Schill, 2009; Schnur, Schwartz, Brecher, & 

Hodgson, 2006; Scott & Wilshire, 2010; Speer & Wilshire, 2013; Wilshire & McCarthy, 2002). 

It has been suggested that such a mechanism may play a crucial role in managing competition 

between elements planned in the same utterance (see Martin et al., 1999).  

As previously mentioned, patients with nonfluent aphasia have immense difficulty 

producing sentences, despite relatively well preserved single word production. It has been 

suggested that these patients have a deficit in this control system and therefore have difficulties 



 

 

25 

managing competition between conflicting representations (Biegler, Crowther, & Martin, 2008; 

Hamilton & Martin, 2005; January et al., 2009; Schnur et al., 2006; Thompson-Schill, 

D’Esposito, Aguirre & Farah, 1997; Wilshire & McCarthy, 2002). Evidence in support of this 

theory comes from the performance of individuals with nonfluent aphasia on tasks that appear to 

make heavy competition-resolution demands. For example, several individuals with nonfluent 

aphasia have demonstrated prolonged naming latencies in the Stroop task, where a colour name 

is presented and the participant must identify its display colour while ignoring what the word 

actually says (Hamilton & Martin, 2005; Scott & Wilshire, 2010). This task would appear to 

involve inhibiting a potentially competing response – the word name – in order to produce the 

desired response. Such individuals may also exhibit a characteristic pattern of performance in the 

verb generation task, which involves generating an action that is associated with a given noun 

(e.g., scissors -> “cut”). Thompson-Schill and colleagues argue that when the noun offers several 

alternatives (e.g., rope -> “tie”, “knot”, “pull”, “drag”), competition must be resolved between 

these alternatives before a single response can be selected (Thompson-Schill, D’Esposito, 

Aguirre, & Farah, 1997; Thompson-Schill, D’Esposito, & Kan, 1999). Using this task, Cameron-

Jones (2008) found that nonfluent aphasics exhibited a disproportionate difficulty with multiple-

alternative items, when compared to items where one single verb response is dominant (e.g., 

scissors -> “cut”).  

Spontaneous connected speech also differs from simple single word tasks, such as object 

naming, in that it involves coming up with a message intention, which is then used to “drive” 

sentence production. This message intention if sufficiently strongly activated and maintained 

exerts top-down control of the language system, enabling goal-appropriate elements to be 

selected, and inappropriate elements to be rejected. A difficulty with this aspect of spontaneous 
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production may also impact on a person’s communicative abilities. One task that arguably 

involves spontaneously generating a very simple message intention is letter fluency, where the 

participant must generate as many words as they can think of which start with a particular letter. 

This task requires the participant to search through their mental lexicon in order to select 

appropriate lexical items that adhere to goals of the task (for review see Henry & Crawford, 

2004). There is a wealth of evidence to suggest that patients who suffer damage to the left frontal 

region of the brain show specific impairments in this task, (Baldo & Shimamura, 1998; Rogers et 

al., 1998; Schwartz & Baldo, 2001; Stuss et al., 1998) when compared to both patients with 

posterior lesions and controls (Pendleton et al., 1982; Perret, 1974). For example, Robinson, 

Shallice, Bozzali and Cipolotti (2012) found that letter fluency performance in 47 patients with a 

frontal lesion primarily due to stroke was significantly worse than 20 patients with a posterior 

lesion, and also when compared with 35 healthy controls. Additionally, they also found that 

patients with a left frontal lesion performed significantly more poorly in this task, compared to 

patients with a right frontal lesion. Additionally Papagno et al., (2012) also found that patients 

with a left frontal brain tumour were more likely to be impaired on this task than patients with a 

brain tumour in other anatomical regions. 

The two hypothesised processes described here – the management of competition and 

“top-down” language control – may in fact turn out to be aspects of a single common capacity. 

For example, the ability to select the correct word for production when several candidates are 

currently activated may depend crucially on the strength of the “message intention”. A strong 

propositional message intention may provide a conceptual framework that helps the speaker 

ensure that each word selected has the desired function. This in turn may help to minimise direct 

competition between the different elements planned for production in a single sentence. 
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Therefore, for the purposes of this thesis, we will refrain from taking a position on this argument 

and instead refer to these various abilities collectively as “goal-driven response generation”.  

Language Comprehension: Auditory Word Identification 

So far we have considered cognitive skills that are critical for language production – both 

at the level of the single word and the sentence level. We now turn to the question of language 

comprehension. Cognitive theories of auditory language comprehension suggest that this process 

can be broken down in similar ways to those depicted in theories of single word production. 

Firstly, if we consider the simplest example – comprehending a single auditory word – cognitive 

theories make a clear distinction between the auditory word identification process, whereby the 

auditory stimulus is associated with a single known word, and the subsequent meaning retrieval 

process, whereby a semantic description of the stimulus word is generated  (Hickok & Poeppel, 

2007; Marslen-Wilson & Welsh, 1978; McClelland & Elman, 1986; Norris, McQueen, & Cutler, 

2000). Virtually all these theories agree that the former involves identification of the acoustic 

properties of the speech signal, and the subsequent mapping onto the most appropriate word 

representation in the mental lexicon, which we will call auditory word identification. Many 

cognitive theories of auditory word identification argue that spoken words are processed as 

speech unfolds, and in doing so listeners attempt to map incremental segments of the acoustic 

signal onto a representation in the mental lexicon. For example, according to the cohort model, 

first proposed by Marslen-Wilson and Welsh (1978), the first few phonemes of a spoken word 

activate a set or cohort of word candidates that are consistent with that input. These candidates 

then compete with one another for activation. As more acoustic input is analysed, candidates that 

are no longer consistent with the input drop out of the set. This process continues until only one 

word candidate matches the input or the best fitting word may be chosen if no single candidate is 
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a clear winner (e.g. Cole & Jakimik, 1980; Dahan, Magnuson, Tanenhaus, & Hogan, 2001; 

Marslen-Wilson, 1987; Marslen-Wilson & Tyler, 1980; McClelland, Elman, & Diego 1986; 

Norris, McQueen, & Cutler, 2000; Taft & Hambly, 1986; Tyler 1984; Vitevitch & Luce, 1999). 

Neuropsychological studies have found that patients with Wernicke’s Aphasia (WA), as 

well as patients with pure word deafness have profound deficits in auditory word identification 

(e.g. Caplan, Gow & Makris, 1995). WA is an acquired language impairment characterised by 

severely impaired single word comprehension with fluent and discorded speech (Goodglass & 

Kaplan, 1983; Goodglass, Kaplan, & Barresi, 2001). A common task used in the literature to 

examine this deficit is single word repetition, as successful performance in this task relies on the 

ability to identify the acoustic properties of the to-be-repeated word. It has been extensively 

reported that patients with WA demonstrate significantly poor performance on this task. Patients 

with WA have normal articulation; therefore failure on this task cannot be attributed to an 

inability to articulate the word (for review see Robson, Grube, Lambon Ralph, Griffiths & Sage, 

2013). Another task commonly used is phoneme discrimination, in which participants have to 

determine if two spoken words are identical. The pairs are most commonly made to differ by one 

phonemic feature (e.g., “cap-tap”). It has been consistently demonstrated that patients with WA 

have marked difficulties with this task (e.g., Basso, Casati & Vignolo, 1977; Baum, 2002; 

Blumstein, Baker, & Goodglass ,1977; Miceli, Gainotti, Caltagirone & Masullo, 1980; Tallal & 

Newcombe, 1978). In one study, Robson and colleagues (2013) had 11 patients with WA 

complete the phoneme discrimination task. It was found that at a group level these patients were 

significantly worse on this task when compared to a group of 11 age and hearing-matched 

controls (Robson, Grube, Lambon Ralph, Griffiths, & Sage, 2013). 
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Language Comprehension: Verbal Short-Term Memory 

Analogous to sentence production, additional skills may be required during the 

comprehension of connected speech. One of the most important of these is likely to be verbal 

short-term memory, since the lexical elements must be retained online until the relevant 

relational information is extracted (see Caplan & Waters, 1999 for review). In their classic theory 

of working memory, Baddeley, Lewis, and Vallar (1984) proposed the existence of a 

phonological store, a buffer store that can hold phonological information for a few seconds. This 

idea of a specific form of phonological short-term memory plays an important role in language 

comprehension, and possibly also production. It is often measured by the digit span task but 

another task that might also provide a particularly pure measure of phonological short-term 

memory is nonword repetition (Gathercole & Baddeley, 1989; Gathercole, Willis, Emslie & 

Baddeley, 1992). According to this view, repetition of nonwords requires more reliance on the 

temporary storage of phonological representations in short-term memory because of the reduced 

availability of long-term lexical knowledge to support the unfamiliar phonological forms 

(Archibald & Gathercole, 2007). In healthy subjects, performance in nonword repetition it is 

highly correlated with digit span performance  (e.g., Gathercole & Baddeley, 1989; Gathercole, 

Willis, Emslie, & Baddeley, 1992; Gupta, 2003; Gupta, MacWhinney, Feldman & Sacco, 2003).  

In regards to sentence comprehension, it has been suggested that phonological short-term 

memory may be of importance for understanding sentences where the thematic relations amongst 

sentence elements cannot be inferred from the overall context, but must be established on the 

basis of word order and other grammatical cues (e.g., Put the white key in on the red box) 

(Martin & Romani, 1994; Martin & Feher, 1990; Vallar & Baddeley, 1984; Walters, Caplan & 

Hildebrandt, 1991). It has been found that patients with deficits in phonological STM – as 
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defined by poor performance on the digit span task – typically fail to comprehend these 

sentences, and this has been attributed to the absence of a phonological back up. For example, 

Gvion and Friedmann (2012) had patients with deficits in phonological STM comprehend a 

sentence with an ambiguous word, situated in a context that strongly biases its meaning. 

However, this word gets disambiguated toward a different meaning at a later point in the 

sentence (e.g., the toast that the elderly couple had every breakfast was always for happy life and 

for love). Gvion and Friedmann (2012) found that all patients with a deficit in phonological STM 

had severe deficits in comprehending these sentences. 

Reading 

So far, we have considered only spoken language processing. However, another language 

process that is fundamental to everyday language use is reading. Cognitive theories of reading 

are also in agreement that reading can be broken down into a number of more fundamental 

cognitive skills. Many of these cognitive skills overlap with those involved in oral language 

comprehension and production, but there are also some additional unique ones (for review see 

Rayner & Reichle, 2010). There is considerable evidence within the cognitive literature to 

suggest that the process of identifying a written word based on its visual pattern requires a very 

different set of cognitive skills from those used in auditory word recognition (see Dehaene & 

Cohen, 2011). We shall refer to these skills collectively as visual word form identification. In 

general, theories of visual word identification propose that when reading a word, skilled adult 

readers process the component letters of a word in parallel (Harm & Seidenberg, 2004, 1999; 

Plaut, McClelland, Seidenberg & Patterson, 1996; Seidenberg & McClelland, 1989). Evidence 

for this view comes from the fact that readers tend to show very little effect of word length in 

single word reading tasks (for review see Barton, Hanif, Björnström & Hills, 2014). In many 
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such models, visual word recognition is viewed as a cascading process, in which the features of 

the individual letters, such as horizontal lines, diagonal lines, and curves, activate their 

corresponding letter representations in parallel, which in turn activate the representations of 

words that contain those letters in similar positions. The most highly activated word is likely to 

be that which possesses all the required letters in the appropriate position (e.g., Harm & 

Seidenberg, 2004, 1999). 

A specific deficit in this cognitive skill is a hallmark feature of pure alexia, an inability to 

recognise visually presented words, despite preservation of other visual and cognitive abilities 

(e.g. Farah & Wallace, 1991). Pure alexia is characterised by a very slow reading rate, with 

patients often appearing to identify each consecutive letter individually in order to “spell the 

word out” (“letter-by-letter reading”; see Hanley & Kay, 1996). Further evidence for the use of a 

letter-by-letter strategy is that reading time increases incrementally with the number of letters in 

a word (see especially Behrmann, Black & Bub, 1990). Although a number of theories have been 

postulated in the literature to account for this phenomenon, one such account proposes that in 

pure alexia there is a loss in the ability to recognise letters simultaneously (as described above; 

Behrmann, Shomstein, Black & Barton 2001; Farah & Wallace, 1991).  

Once the appropriate visual representation for the word has been identified, dual process 

theories propose two main sets of subsequent processes are needed to actually pronounce the 

word or extract its meaning. One set capitalises on the reader's knowledge of the relationships 

between orthography and phonology, and applying this knowledge to generate a pronunciation of 

the word. This knowledge may consist of a set of correspondence rules reflecting the most 

common pronunciations of each letter or letter unit in a given context (e.g., Coltheart, Curtis, 

Atkins, & Haller, 1993; Coltheart et al., 2001; Perry, Ziegler & Zorzi, 2007; Zorzi, Houghton & 
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Butterworth, 1998), or of knowledge generalised from the pronunciations of similarly spelled 

words (e.g., Plaut et al., 1996; Seidenberg & McClelland, 1989). These processes are therefore 

likely to be sensitive to the sublexical structure of the word, such as the regularity or consistency 

of its spelling and its length in letters. We refer to this set of processes here as orthographic-

phonological mapping. 

The other set of processes capitalises on the reader’s knowledge of the stimulus word’s 

specific identity and/or meaning. For example, in Coltheart and colleagues (2001) model, 

familiar combinations of letters activate an orthographic representation of the word, which in 

turn activates information about its phonological form and meaning (see also Coltheart et al., 

1993; Perry et al., 2007; Zorzi, Houghton & Butterworth,1998). In Harm and Seidenberg’s 

(2004) model, the orthographic representation of the word is mapped directly onto its semantic 

representation (see also Plaut et al., 1996). These processes are therefore likely to be more 

sensitive to word-level properties, such as a word’s frequency of occurrence and its meaning. We 

refer to this set of processes as orthographic-sematic mapping. 

These models eloquently explain the double dissociation that occurs in two reading 

disorders: phonological and surface dyslexia (Coltheart, 1985). Phonological dyslexia is a 

condition in which following brain damage to a previously skilled reader, there is a selective 

deficit in the ability to read nonwords (see Funnell, 1983). Nonwords have no representation 

within the lexicon; consequently to correctly read the words aloud, orthographic-phonological 

manning is required. This disorder is consistent with a selective deficit involving this set of 

processes (Coltheart, et al., 2001; Coltheart, Curtis, Atkins & Haller, 1993; Coltheart & Rastle, 

1994). In surface dyslexia, in which following brain damage to a previously skilled reader, there 

is a specific deficit in the ability to read irregular words (e.g. yacht (Behrmann & Bub, 1992; 
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McCarthy & Warrington, 1984)). Irregular words will be read incorrectly if one conforms to the 

mapping of its grapheme to its phoneme. Consequently, to read these words aloud, the visual 

input must be mapped to its meaning. This disorder has been interpreted as a selective 

impairment to the orthographic-semantic mapping processes (Coltheart, et al., 2001; Jobard, 

Crivello, & Tzourio-Mazoyer, 2003). 

In conclusion, our brief theoretical review of the cognitive literature has identified 11 

distinct language skills that are likely to be critical for various types of language communication 

– including production, comprehension and reading. Furthermore, a deficit in each language skill 

results in a unique neurological profile, providing further confirmation that each skill is a 

separate entity. The list of cognitive skills is by no means exhaustive, but it does identify those 

skills that are agreed upon most in the literature, and for which the most supportive evidence 

exists. 
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Table 1.2 

 A summary of the core cognitive skills identified from cognitive theories of language and a description of the language profile in patients with a 

deficit to each skill 

Cognitive Skill Description Specific Impairments 
In: 

Language Profile 

Accessing Semantic 
Knowledge 

Retrieving the meaning e.g. obtaining 
information about the semantic 

category, function, colour, size, etc. 
of the target item 

Semantic Dementia Production of semantic errors in picture naming, low 
category fluency score relative to letter fluency, 
confusions between semantically related items in 
tasks that involve matching a spoken word to a 

picture 

Lexical Selection Selecting the appropriate word from 
the mental lexicon that best matches 

the semantic concept in mind 

Classical Anomia Strong frequency effect in picture naming and 
disproportionately high production of omission 

errors. Good performance on comprehension tasks 
such as the picture word matching task 

Phonological Encoding Retrieving information about the 
selected word’s sound form from the 

mental lexicon 

Conduction Aphasia Strong length effect in in picture naming and 
disproportionately high production of phonological 
errors. Poor performance in single word repetition 

Articulatory Motor 
Planning 

Constructing a motor plan for the 
articulatory execution of that item 

Apraxia of Speech Impaired rate of speech – both spontaneous and in 
more constrained word and phrase recitation tasks - 

and articulatory errors 

Verb Retrieval The argument structure of a verb is a 
crucial component of sentence 

production, and deficits in the ability 
to retrieve a verb, has a cascading 

impairment on this process 

Nonfluent Aphasia, 
particularly Broca’s 

aphasia 

Deficits in action naming, and specific impairments 
when producing a sentence with multiple argument 

structures 
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Cognitive Skill Description Specific Impairments 

In: 
Language Profile 

Goal Driven Response 
Selection 

Using a sentence plan to drive the 
selection of the correct word to 

incorporate into a sentence, when 
several candidates are activated 

Nonfluent (e.g., Broca’s 
Aphasia) and more 

generally in patients with 
left frontal damage 

Deficits in tasks that require the resolution of conflict 
e.g. verb generation and Stroop; and deficits in tasks 

that require strategic search e.g. letter fluency 

Auditory Word 
Identification 

Identification of the acoustic 
properties of a speech signal, and the 
mapping onto the most appropriate 
word representation in the mental 

lexicon 

Wernicke’s Aphasia 
(specifically, pure word 

deafness) 

Deficits in single word repetition and auditory 
comprehension tasks e.g. picture word matching; and 
difficulties in discriminating between phonological 

auditory stimuli 

Phonological Short Term 
Memory 

The ability to maintain the 
phonological representations of words 

in a temporarily active state over 
short intervals 

Phonological STM 
deficits/conduction 

aphasia 

Reduced digit span. Highly disproportionate deficit 
in nonword repetition relative to real word repetition. 

Visual Word Form 
Identification 

Identifying a written word based on 
its visual pattern 

Pure Alexia Selective disorder of word reading (spoken language 
may be unaffected). Abnormal word length effect, 

characterised by longer word reading times for longer 
words. 

Orthographic-
Phonological Mapping 

The relationships between 
orthography and phonology, and 

applying this knowledge to generate a 
pronunciation of the word 

Phonological Dyslexia Disproportionately poor nonword reading 

Orthographic-Semantic 
Mapping 

Knowledge of the to-be-read word’s 
specific identity and/or meaning 

Surface Dyslexia Disproportionately poor reading of irregular words 
compared to regular words 
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Neuroanatomy of the Core Cognitive Skills 

One of the key advantages of adopting a core skills approach is that it is likely to offer 

greater power to discriminate amongst different language profiles based on the localisation of the 

person’s tumour. Therefore, it is important to be able to demonstrate that each skill is reliably 

associated with a distinct set of neural structures. In order to identify these neural structures, we 

reviewed the literature to identify the cortical structures essential to the cognitive skill in 

question. This was done in two ways. First, we selected a number of tasks/manipulations that are  

arguably highly sensitive at assessing each cognitive skill. Using this information we can then 

select studies that have used neuropsychological methodology to determine what specific brain 

regions are most reliably associated with a deficit in each hypothesised skill. Where possible, we 

selected neuropsychological studies that had clearly operationalised a particular cognitive skill, 

in a manner consistent with conceptualisation of the process in question, as summarised above. 

In order to have consistent evidence across each cognitive skill, emphasis was placed on large-

group lesion mapping studies, and those that used statistical methods to infer lesion-behaviour 

relationships, such as voxel-based lesion symptom mapping (VLSM; Bates et al., 2003) and 

voxel-based morphometry (VBM; Ashburner & Friston, 2000). Second, if no such studies 

existed, we relied on other methodological techniques, such as more descriptive lesion overlap 

analyses and fMRI studies. Table 1.3 presents a comprehensive summary of how conclusions 

were derived regarding the critical neural regions associated with each task/manipulation 

involved in each core skill, and also briefly describes the most important sources of evidence that 

supported these conclusions.  



 

 

37 
Table 1.3 

A summary of the cortical regions associated with each cognitive skill assessed by the BLAST2 

Cognitive Skill Cortical Structures Key Evidence 
Accessing 
Semantic 
Knowledge  

Left temporal pole 
 

Picture word matching and category fluency scores both significantly correlated with the 
amount of cortical atrophy to this region in patients with semantic dementia (SD). Cortical 
atrophy was determined in six patients with SD using VBM (Mummery, Patterson, Price, 
Ashburner, Frackowiak & Hodges, 2000)  
 

 Left anterior temporal lobe 
(specifically left anterior middle 
temporal gyrus), superior temporal 
sulcus, and in white matter tracts deep 
to the sulcus 
 

Regions predictive of the production of semantic errors in picture naming in a large group 
VLSM study of patients with left hemisphere lesions mainly due to stroke (Schwartz et al., 
2009), and in a follow-up study of this population, in which the classification of semantic 
errors was expanded to include mixed errors, related non-nouns and semantic circumlocutions 
(Walker et al., 2011). 
 

 Left temporal lobe: BA 22 (superior 
temporal gyrus), 37 (fusiform gyrus), 
38 (temporopolar area), 41, and 42 
(auditory cortex) 

Regions predicting poor category fluency in a left hemisphere stroke population using VLSM. 
Performance in letter fluency was subtracted from category fluency scores. (Baldo, Schwartz, 
Wilkins & Dronkers, 2006) 
 

Conclusion for Accessing Semantic Knowledge: Left Anterior Temporal Region 
Lexical 
Selection 

Mid to posterior portion of the left 
middle temporal gyrus (MTG), 
with some extension into the white 
matter just medial to left MTG 
 
Left BA37: posterior inferior 
temporal cortex, and posterior 
angular gyrus; borders with middle 
temporal gyrus, 

Regions critically predicting poor performance on the Boston Naming Test, in a left hemisphere 
stroke population after partialling out any effects of articulatory fluency (using examiner’s rating 
of spontaneous speech), and visual recognition (using recognition scores on the BNT) (large 
group VLSM study: Baldo, Arévalo, Patterson, & Dronkers, 2013)  
 
Tissue dysfunction in a large sample of acute stroke patients most strongly correlated with a 
measure of modality-independent lexical access. Operationalised by greater than 10% errors in 
oral naming of pictures, tactile naming and written naming, and less than 10% errors in picture-
word verification (see Deleon et al., 2007)  

Conclusion for Lexical Selection: Left Posterior Temporal Region 
Phonological 
Encoding 

Left: postcentral gyrus, inferior 
portion of the precentral gyrus, and 
supramarginal gyrus, and the white 

Production of phonemic paraphasias (phonological errors) on the Philadelphia naming test (large 
group VLSM study of patients with left hemisphere lesions mainly due to stroke; Schwartz, 
Faseyitan, Kim, & Coslett, 2012) 

                                                        
2 It is important to note that although the majority of studies have identified regions of the left hemisphere, many studies examined left hemisphere patients exclusively. These studies therefore do not allow inferences to be 
made about the degree of right hemisphere involvement 
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Cognitive Skill Cortical Structures Key Evidence 

matter tracts of the arcuate 
fasciculus  
 
Left superior temporal cortex 
(including Heschl’s gyrus) and 
inferior parietal (angular and 
supramarginal gyrus) 
 
Left: supramarginal gyrus, 
postcentral gyrus, precentral gyrus 
and insula 
 
 
 
Left BA39: angular gyrus, superior 
temporal sulcus and inferior 
parietal lobe 
 
 
 
Left superior temporal gyrus, close 
to the border with inferior parietal 
cortex 

 
 
 
Regions predicting performance on word repetition and nonword repetition task. VLSM analysis 
using 84 patients with a left hemisphere stroke (Baldo, Katseff & Dronkers, 2012) 
 
 
 
Regions predicting the low scores of  the p-parameter, a measure of the effectiveness of mapping 
between lexical and phonological representations, as outlined in the Dual Route Two Step Model 
(see Dell et al., 1997), a VLSM study. Predictions made using computational modeling (Dell, 
Schwartz, Nozari, Faseyitan & Branch Coslett, 2013). Participants consisted of a large sample of 
left hemisphere patients used in a previous investigation (Schwartz et al., 2012),  
 
Tissue dysfunction in a large sample of acute stroke patients most strongly correlated with a 
measure of phonological word form encoding. Operationalised using the following criteria: 
greater than 10% errors in tactile naming and oral naming, and less than 10% errors in written 
naming of pictures and semantic errors, and phonological errors, and or circumlocutions in at 
least one of the above tasks (see Deleon et al., 2007) 
 
Regions predicting performance on word repetition task. VLSM analysis using 84 patients with a 
left hemisphere stroke (Baldo, Katseff & Dronkers, 2012) 
 

Conclusion for Phonological Encoding: Left Posterior Temporal-parietal Regions 
Auditory Word 
Identification 

Left posterior superior temporal 
sulcus/gyrus and inferior 
supramarginal gyrus, and inferior 
pre and postcentral gyrus 
 
Left posterior temporal-parietal 
regions, especially the posterior 
superior temporal gyrus 
 
Superior temporal gyrus, planum 
temporale, junction of the parietal 

Regions associated with errors on an auditory discrimination task (ADT) (Martin, Schwartz, & 
Kohen, 2006) (large group VLSM study of patients with left hemisphere lesions mainly due to 
stroke: Schwartz et al., 2012). ADT involved subjects hearing two recorded words in succession 
and indicating whether or not the words were identical 
 
Regions uniquely associated with poor performance in phonological discrimination using the 
PALPA word and nonword minimal pair discrimination task (PALPA 1 & 2:6, Lesser, & 
Coltheart, 1992) in 10 patients with Wernicke’s Aphasia (Robson, Sage & Lambon Ralph, 2012) 
 
Regions predicting the operationalisation of mapping between auditory input and phonological 
representations (nl parameter) using VLSM as outlined in the Dual Route Two Step Model, (see 
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Cognitive Skill Cortical Structures Key Evidence 

and temporal lobes (area SpT), as 
well as supramarginal gyrus and 
postcentral gyrus 

Dell et al., 1997). Predictions made using computational modeling (Dell, Schwartz, Nozari, 
Faseyitan & Branch Coslett, 2013). Participants consisted of a large sample of left hemisphere 
patients used in a previous investigation (Schwartz et al., 2012),   

Conclusion for Auditory Word Identification: Left Posterior Temporal-parietal Regions 
Verbal STM Left posterior MTG and STG and 

inferior parietal cortex (angular and 
supramarginal gyrus) 
 
Large portion of left STG, from the 
superior temporal pole to posterior 
STG as well as Heschl gyrus. Also 
extensions into left MTG and 
angular and supramarginal gyrus 

Regions predicting performance on a non word repetition task. VLSM analysis using 84 patients 
with a left hemisphere stroke (Baldo, Katseff & Dronkers, 2012) 
 
 
Regions predicting performance on Digit and Word Span. VLSM analysis using 84 patients with 
a left hemisphere stroke (Baldo, Katseff & Dronkers, 2012) 
 
 

Conclusion for Verbal STM: Left Posterior Temporal-parietal Regions 
Goal-driven 
response 
selection 

BA 4 (Primary Motor), 6 
(Premotor), 44 (pars opercularis), 
and parietal cortex (1-3 (Primary 
Somatosensory Cortex), 39 
(Angular Gyrus), 40)  
 
Left inferior and middle frontal 
gyrus and the anterior cingulate 
gyrus 
 
Left ventrolateral prefrontal cortex, 
specifically the left inferior frontal 
gyrus, and underlying white matter 
 
Left inferior frontal gyrus 
 
 
Left inferior frontal gyrus 
 

Regions predicting poor letter fluency in a left hemisphere stroke population using voxel lesion 
symptom mapping. Performance in category fluency was subtracted from letter fluency scores 
(Baldo, Schwartz, Wilkins & Dronkers, 2006) 
 
 
 
Meta-analysis of 28 studies with 490 subjects on brain activation using fMRI using letter fluency 
(Wagner, Sebastian, Lieb, Tüscher, & Tadić, 2014) 
 
 
Regions predicting the size of the Stroop effect in reaction times (RT) (incongruent RT- 
congruent RT) in the Stroop task VLSM analyses of 45 patients with a frontal lobe lesion 
(Tsuchida & Fellows, 2012). 
 
Patients with damage to this region had significantly slowed reaction times in the high selection 
demands in a verb generation task (Thompson-Schill, D’Esposito, Aguirre, & Farah, 1997) 
 
Region predicting inhibitory effect of near semantic neighbours in a picture naming task 
(compared picture naming accuracy between items with many and few semantic neighbours). 
VLSM subtraction analysis of large sample of left hemisphere stroke (Mirman & Graziano, 2013) 

Conclusion for Goal Driven Response Selection: Left Inferior Frontal Gyrus 
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Cognitive Skill Cortical Structures Key Evidence 
Articulatory 
Motor 
Programming  

Left: Anterior insula, inferior 
frontal gyrus, as well as the 
adjacent white matter and basal 
ganglia, and the anterior temporal 
areas 
 
Left anterior insular, left frontal 
posterior regions anf left caudate 
 
Left anterior insula 
 
 

Brain regions predicting performance in articulation and prosody subtests of the Aachen Aphasia 
Test in 102 left hemisphere stroke patients using VLSM (Henseler, Regenbrecht & Obrig, 2014) 
 
 
 
 
Slow rate of speech in patients with apraxia of speech was associated with atrophy in this cortical 
regions (Ogar, Dronkers, Brambati, Miller, & Gorno-Tempini, 2007) 
 
Brain region predicting articulation deficits in 25 stroke patients using computerised lesion 
overlap. Articulatory behaviour was assessed by analysing articulatory inconsistencies on 
repeated utterances, rhythm, stress and intonation, effortful trial-and-error, and articulatory 
movements by two specially trained speech-language pathologists (Dronkers, 1996) 

Conclusion for Articulatory Motor Planning: Left Insula and Left Inferior Frontal Regions 
Verb Retrieval Left Inferior frontal area (BA 45, 

47)  
 
Left: BA 44 (pars opercularis), BA 
45 (pars triangularis) 

Regions associated with errors in an action-naming task when compared to an object naming task, 
using VLSM in 16 left hemisphere stroke patients (Piras & Marangolo, 2007)  
 
Regions predicting performance in a verb naming task when compared to an object naming task, 
using VLSM in a sample of 20 left hemisphere stroke patients (Piras & Marangolo, 2010) 

Conclusion for Verb Retrieval: Left Inferior Frontal Regions 
Visual Word  
Recognition 
 

Left fusiform gyrus 
 
 
Left fusiform gyrus 
 
 
 
Left fusiform gyrus and inferior 
occipital gyrus 

Region of lesion overlap in four patient with pure alexia, all of whom displayed a length effect in 
reading tasks (Starrfelt, Habekost & Leff, 2009) 
 
Brain region associated with abnormal length effect slope using reaction times for each word 
length normalised according to overall RT. VLSM analysis of 20 patients with a left posterior 
lesion (Roberts et al., 2012) 
 
Region of overlap in three cases of pure alexia (criteria: length effects in reading, occasionally 
preserved letter naming and backward-spelling reading procedure, and mild or no oral language 
impairment) (Ripamonti et al., 2014) 

Conclusion for Visual Word Identification: Left Fusiform Gyrus 
Orthographic-
Phonological 
Mapping 

Middle and inferior frontal gyrus, 
angular gyrus, middle occipital and 
temporal gyrus, supramarginal 
gyrus and pre and postcentral 

Regions predicting nonword reading performance using VLSM in 331 acute stroke patients, with 
testing within 24hours of assault (Cloutman et al., 2011)  
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Cognitive Skill Cortical Structures Key Evidence 

gyrus; as wells as the superior 
longitudinal and superior fronto-
occipital fasciculi 
 
Left posterior superior temporal 
gyrus, supramarginal gyrus, 
inferior frontal gyrus, precentral 
gyrus and insula 
 
 
Posterior superior and middle 
temporal gyri, fusiform gyrus and 
the inferior parietal lobule 
 
Insula, left inferior frontal gyrus, 
rolandic operculum and precentral 
gyrus 

 
 
 
 
Impaired nonword reading was significantly associated with lesions to these brain regions. VLSM 
analysis of 70 patients with left hemisphere stroke (DeMarco, Rising, Wilson, Rapcsak, & 
Beeson, 2012) 
 
 
 
Nonword word reading accuracy is positively correlated with gray matter volume in these brain 
regions in 56 patients with neurodegenerative disease (Ogar et al., 2009) 
 
 
Regions of overlap in a sample of 33 individuals with phonological dyslexia, defined as 
significantly poorer nonword than real word reading (Ripamonti et al., 2014)) 
 

Conclusion for Orthographic-Phonological Mapping: Left Posterior Temporal-parietal Regions and Left Inferior Frontal Regions 

Orthographic-
Semantic 
Mapping 

Left anterior temporal pole, anterior 
superior and middle temporal gyrus 
and the fusiform gyrus 
 
Left superior temporal gyrus, 
middle temporal gyrus, left inferior 
temporal gyrus, left middle 
occipital gyrus, left insula and left 
inferior occpito-frontal insula. 

Irregular word reading accuracy is positively correlated with gray matter volume in these brain 
regions in 56 patients with neurodegenerative disease (Ogar et al., 2009) 
 
 
Regions of overlap in five patients with surface dyslexia. Participants in this sample spoke Italian, 
a language that has an absence of irregular words. Surface dyslexia was therefore assessed by the 
rate of stress errors in three (or more) syllable words (Ripamonti et al., 2014) 
 

Conclusion for Orthographic-Semantic Mapping: Left Posterior Temporal Regions 
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Chapter 2: Introduction to the Current Study 

This thesis aims to explore the linguistic capabilities of a large cohort of surgical brain 

tumour patients using a newly designed assessment protocol: the Brief Language Assessment for 

Surgical Tumours (BLAST). The BLAST is a theory-driven assessment battery. It aims to assess 

key language skills identified by cognitive theories of language. These skills are viewed as 

fundamental cognitive building blocks for everyday language behaviours. The skills assessed 

have been selected because there is widespread agreement throughout the literature for their 

existence, and converging evidence regarding their specific neural localisation. Specifically, the 

BLAST aims to assess the following cognitive skills crucial for language production (both at a 

single word and sentence level) accessing semantic knowledge, lexical selection, phonological 

encoding, articulatory-motor planning, verb retrieval, goal-driven response selection and verbal 

short-term memory. The BLAST also aims to assess cognitive skills that make a unique 

contribution to language comprehension (both at a single word and sentence level): auditory 

word identification and verbal short-term memory; and to single word reading (at the single word 

level): visual word identification, orthographical-phonological mapping, and orthographical-

semantic mapping. The 11 cognitive skills assessed by the BLAST are presented in Figure 2.1. 

The primary benefit of this approach is that it may prove to be considerably more sensitive at 

detecting mild linguistic deficits, and also likely to be more effective at discriminating between 

different types of functional difficulties associated with different skills and neural structures. 
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Figure 2.1. The set of 11 core language skills derived from current cognitive theories of 

language that are assessed in the BLAST. 

By adopting a core skills approach, the BLAST has the potential to discriminate language 

profiles based on the anatomical localisation of the brain tumour. This is due to the finding that 

each core skill has specific neural underpinnings (see Table 1.3 for a comprehensive review). At 

the broadest level, the cognitive skills assessed by the BLAST can be categorised into the 

following two groups: the anterior group consisting of articulatory motor planning, verb 

retrieval, and goal driven response selection; and the posterior group consisting of: lexical 

selection, accessing semantic knowledge, auditory word identification, verbal short term-

memory, visual word identification and orthographical-semantic mapping (orthographical-

phonological mapping is the only cognitive skill that has not been categorised into a group, due 

to the extensive network of both anterior and posterior cortical regions involved in this skill. 

Classification into one of these groups would therefore be inappropriate).3 The next section will 

                                                        
3 We are aware that some neuropsychological studies found significant cortical structures in both frontal and posterior regions. Categorisation 
was based on cortical structures that were associated with the cognitive skill in all the studies reviewed and/or those that are most strongly 
associated with deficits involving that skill. It is important to note though, that this is just a broad categorisation for anatomical simplicity in order 
to investigate the BLAST’s ability to discriminate language profiles; it is by no means definitive and mutually exclusive. 
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outline the tasks selected to assess the 11 cognitive skills identified above. It will also provide a 

detailed description of the methodology used to operationalise each of these core skills from the 

tasks selected for the battery. 

The Brief Language Assessment for Surgical Tumours (BLAST) 

One of the most important considerations we had in mind whilst selecting tasks for the 

BLAST was to keep the entire battery as quick as possible to administer, but maintain its 

sensitivity. One way of minimising testing time is to assess more than one skill per test, and to 

tease these skills apart by manipulating different types of stimulus properties. These 

manipulations can then be used to derive multiple measures that can then be used to quantify 

each cognitive skill. In order to achieve this we have standardised each measure, allowing for 

multiple measures from different tasks to be combined into a single entity. For example, one of 

our tests selected was a single picture naming task, which was designed in such a way that 

effects of frequency and word length on naming accuracy could be separately assessed 

(frequency is a variable that been associated with the lexical retrieval stage of word production 

(e.g. Nickels & Howard, 2001), whereas word length has been associated with phonological 

encoding (e.g., Levelt, 1999)).  

In order to establish which tests to include in the assessment, and what kinds of 

manipulations to incorporate within them, we modelled language profiles of patients who have 

selective deficits in each of the core cognitive skills (see Table 1.2 for a comprehensive review). 

Wherever possible, we aimed to operationalise the relevant skill by using a conjunction of 

observations across multiple tasks, in order to maximise the selectivity of each measure. Our 

third and final consideration was wherever possible, we designed alternative versions of the tests, 

so as to minimise practice effects between the pre- and postoperative assessment phases. The 
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eight tasks selected for the BLAST that adhere to these considerations are presented in Table 2.1. 

The next section will describe in detail how these eight tasks are used to operationalise the 11 

core cognitive skills assessed by the BLAST. 

Table 2.1  

The eight tests selected for inclusion in BLAST, and where relevant, the variables that were 

manipulated within each. 

Test Description Stimulus Manipulation 

1. Picture Naming 
(Wilshire, 2002) 

Produce the name of a visually 
displayed object, animal or 
person. 

Length (monosyllabic, bisyllabic and 
polysyllabic), Frequency (high, 

medium, low) 

2. Verb 
Generation 

(Thompson-Schill 
et al., 1997) 

View a pictured item, and 
produce the name of an action 
associated with that item 

 Noun-verb association strength; where 
half the items have a strong verb 

associated with the noun (strong), and 
the other half have many verbs 

associated with the noun (weak) 

3. Picture Word 
Verification 

(Breese & Hillis, 
2004) 

View a pictured item, and judge if 
an auditory presented word is the 
correct name for that item  

Semantically related judgements (e.g. 
see horse but hear “deer”) and 

phonological judgements (e.g. see 
cattle hear “cannon”  

4. Repetition 
(Kay, Lesser, & 
Coltheart, 1996) 

Immediately repeat individual 
auditory presented words 

Lexical status (real words and 
nonsense words) 

5. Reading (Kay, 
Lesser, & 

Coltheart, 1996) 

Read aloud individual written 
words 

Length in letters, spelling-sound 
regularity, lexical status (words vs. 

nonsense words) 

6. Stroop (Stroop, 
1935) 

Ignore the identity of a word, and 
name the colour it is presented in 

Congruency; the colour of the word 
matches it’s identity (congruent) or 

does not match 

7. Fluency (Lezak, 
1982) 

Produce as many lexical items as 
possible within one minute 

Letter (F, A, S), Category (animals, 
fruit) 

8. Articulatory 
Agility (Kaplan, 

Goodglass & 
Barresi, 2001) 

Repeat a simple verbal sequence 
as many times as possible within 
five seconds 

- 
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Measurement of the Core Cognitive Skills 

The following section will outline how each of the core cognitive skills are 

operationalised using the BLAST. It will also summarise the key evidence used in 

determining the operationalisation methodology.  

1. Accessing Semantic Knowledge 

The patient group used to operationalise this cognitive skill was semantic dementia, as 

this population exhibits a pattern of performance that is strongly suggestive of a difficulty in 

retrieving semantic knowledge across multiple modalities. This includes word production and 

comprehension, and even in nonverbal picture-picture matching tasks (e.g. Pijnenburg, 

Gillissen, Jonker, Scheltens, 2004; Thompson, Patterson, & Hodges, 2003). It has been 

repeatedly observed that patients with this profile exhibit the following three features: 1) 

semantic errors in picture naming (Garrard, Perry & Hodges, 1997; Hodges, Graham & 

Patterson, 1995; Jefferies & Lambon Ralph, 2006); 2) poor category fluency relative to letter 

fluency (e.g., more difficulty listing animal names than words starting with a specified letter 

(Bozeat, Lambon Ralph, Patterson, Garrard & Hodges, 2000; Garrard, Perry & Hodges, 

1997; Rascovsky, Salmon, Hansen, Thai, & Galasko, 2007;); and 3) disproportionately poor 

performance in picture-word matching tasks when the distractor items are semantically 

related to the target (for example, pointing to a picture that shows “cat” from amongst an 

array of pictures of domestic animals; see esp. Corbett, Jefferies, Ehsan & Lambon Ralph, 

2009). These three criteria formed the basis of our assessment of accessing semantic 

knowledge. However, instead of using a conventional picture-word matching task, we used a 

picture-word verification task. This was motivated by the findings of Breese and Hillis 

(2004) who reported that a picture-word verification task, which assesses each target picture 

in the context of a range of different types of auditory distractors (semantically related, 

phonologically related, and unrelated), was more sensitive at detecting deficits in left 
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hemisphere stroke patients than the picture-word matching task. In our assessment, the 

specific measure we used to assess semantic retrieval was the difference in scores on 

semantically related distractor-target pairs relative to phonologically related pairs. This 

difference score effectively eliminates the phonological (sound processing) component of this 

task, further ensuring that we are selectively assessing the semantic demands of the task. 

2. Lexical Selection for Production 

The aphasia profile most consistent with a selective deficit in lexical selection for 

production is that of patients with pure or “classical” anomia (Andreetta, Cantagallo & 

Marini, 2012; Butterworth, 1992; Lambon Ralph, Sage & Roberts, 2000; McNeil, Odell, & 

Tseng, 1991;). It has been repeatedly observed that patients with this profile exhibit poorer 

performance in naming low frequency items when compared to higher frequency items in a 

picture naming task (e.g., case AW: Jacobs, Singer & Miozzo, 2004; case FR: Avila, Lambon 

Ralph, Parcet, Geffner & Gonzalez-Darder, 2001). Also these patients tend to produce a 

disproportionately high number of both omissions and semantic errors during this task 

(Lambon Ralph, Sage & Roberts, 2000; Miceli, Amitrano, Capasso & Caramazza, 1996). 

Therefore, for the operationalisation of lexical selection, we combined the following 

measures: 1) the slope of the frequency effect in picture naming, 2) the incidence of omission 

errors in picture naming, and 3) incidence of semantic errors in picture naming. It must be 

noted that since patients with pure anomia have relatively good language comprehension 

(Franklin, Howard & Patterson, 1995; Gonon, Bruckert & Michel, 1989; Howard, 1995; 

Laine, Kujala, Niemi, & Uusipaikka, 1992; Raymer et al., 1997), we only looked at poor 

performance in the task/manipulations mentioned above relative to performance in a 

language comprehension task: picture word verification. Specifically, scores for lexical 

selection were only considered if the combined scores for the measures outlined above were 

below the standardised score for picture-word verification.    
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3. Phonological Encoding 

 The patient group used to operationalise this skill was patients with conduction 

aphasia, as this population exhibits a pattern of performance that is strongly suggestive of a 

deficit in the ability to retrieve information about the sound form of a desired lexical item 

(see Buchsbaum, Baldo, Okada, Berman, Dronkers, Esposito & Hickok, 2011). There is a 

wealth of evidence that these patients exhibit the following features: 1) length effects in 

picture naming (Caplan, Vanier, & Baker, 1986; Kohn & Smith, 1993, 1995; Pate et al., 

1987; Wilshire & McCarthy, 1996; Wilshire, 2002), 2) phonological errors in picture naming 

(Kohn & Goodglass, 1985; see also Butterworth, 1992; Caplan, Vanier & Baker; Kohn & 

Smith, 1986; Pate, Saffran & Martin, 1987; Pradat-Diehl et al., 2001; Wilshire & McCarthy, 

1996); and 3) poor performance in word and nonword repetition task (Strub & Gardner, 

1974; Caplan, Vanier & Baker, 1986; Caramazza, Basil, Koller & Berndt, 1981; Dell, 

Schwartz, Martin & Saffran 1997). These criteria formed the basis of our assessment of 

phonological encoding. The inclusion of both words and nonwords in  our repetition task 

enhances the likelihood we are assessing the phonological demands of the task. If only real 

words were included it is possible that poor performance in this task could be a result of 

deficits in mapping of the lexical item to its associated meaning, rather than a pure 

phonological encoding deficit. The inclusion of both stimulus ensures we are assessing the 

phonological demands of the task. In addition, for this measure we used time taken to repeat 

the item (latency) rather than accuracy, as it has been argued that repetition and nonword 

repetition latency is a more sensitive measure of ease of phonological encoding (see Vitevitch 

& Luce, 1998; 2005). For the operationalisation of phonological encoding it is also vital that 

we account for any articulatory deficits that could confound performance in the 

task/manipulations described above. Consequently the average score from the above 
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task/manipulations were subtracted from a measure of articulatory agility, in order to control 

for this possible confound. 

4.  Auditory Word Recognition  

The aphasia profile most consistent with a selective deficit in auditory word 

recognition is that of patients with Wernicke’s or fluent aphasia (e.g. Caplan, Gow & Makris, 

1995). Patients with WA consistently exhibit difficulties in identifying speech sounds, which 

translates to poor performance in single repetition tasks (for review see Robson, Grube, 

Lambon Ralph, Griffiths & Sage, 2013), but also deficits in the ability to discriminate similar 

speech sounds (Basso, Casati & Vignolo, 1977; Baum, 2002; Blumstein, Baker, & Goodglass, 

1977; Miceli, Gainotti, Caltagirone & Masullo, 1980; Tallal & Newcombe, 1978). These 

features were used to operationalise this cognitive skill. Specifically, the first measure used 

was disproportionately poor performance on phonological related distractor-target pairs in 

picture-word verification (relative to semantic judgements). The premise behind the 

subtraction of semantic judgments in this manipulation is to eliminate the mapping of the 

recognised word onto its meaning. This ensures we are selectively assessing the auditory 

recognition component of the task. However, it must be noted that repetition does involve 

other cognitive process unrelated to auditory word recognition. These include mapping the 

heard word onto it’s appropriate meaning, and selecting the item within the mental lexicon 

for subsequent production (see dual-route model of repetition: McCarthy and Warrington 

(1984)). Consequently, we additionally compared performance on repetition to picture 

naming in order to partial out these potential other cognitive skills that are involved in this 

task that could confound performance in repetition. This ensures that we are specifically 

assessing the auditory word recognition component of the task. 
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5. Verb Retrieval 

Researchers have argued that the cognitive processes underlying verb retrieval are 

unique from other linguistic capabilities (see Black & Chiat 2003). It is therefore important 

that this cognitive skill is individually assessed by the BLAST. To operationalise verb 

retrieval we used the verb generation task, as manipulations within this task are used to 

assess other cognitive skills and we aimed to adhere to a brief administration time. A possible 

concern with using the verb generation task to assess this cognitive skill is that it may not be 

as pure a measure of verb retrieval as the commonly used action-naming task. To produce a 

verb associated with a concrete noun, one must also access the meaning of the noun (for 

discussion see Martin & Cheng, 2006). Another problems is that there is no carefully 

matched object naming task with which to compare to. Consequently, for the 

operationalization of verb retrieval using the BLAST we compared patients’ performance in 

verb generation standardised to a z score, to their performance in picture naming, also 

standardised. This ensures that we are eliminating cognitive skills that are associated with 

both tasks, and therefore specifically assessing the demands of verb retrieval. We also only 

used items with a strong verb associate (high selection condition) to further eliminate the 

possible implications that deficits in resolving competition could have on overall verb 

generation performance. 

6. Goal-Driven Response Selection 

The patient group used to operationalise the cognitive skill goal-driven response 

selection, was patients with nonfluent aphasia. It has been proposed that these patients may 

have a deficit in a control system that manages competition between conflicting 

representations (Biegler, Crowther, & Martin, 2008; Hamilton & Martin, 2005; January, 

Trueswell, & Thompson-Schill, 2009; Robinson, Shallice, Bozzali & Cipolotti, 2010; Schnur 

et al., 2006; Thompson-Schill, D’Esposito, Aguirre & Farah, 1997, Thompson-Schill, 
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D’Esposito, & Kan 1999; Wilshire & McCarthy, 2002). Patients with nonfluent aphasia tend 

to perform disproportionately poorly in tasks that appear to involve selecting amongst a 

number of alternative responses, or coming up with a single verbal response when many 

alternatives are possible  (Cameron-Jones 2008; Hamilton & Martin, 2005; Robinson, 

Shallice, Bozzali & Cipolotti 2010; Scott & Wilshire, 2010). For example, they are extremely 

slow to response to incongruent items in the Stroop task (Scott & Wilshire, 2010; Cameron-

Jones, 2008), and they also perform disproportionately poorly in tasks when the stimulus 

affords numerous responses (e.g., rope -> “tie”, “knot”, “pull”, “drag”) (Thompson-Schill, 

D’Esposito, Aguirre, & Farah, 1997; Thompson-Schill, D’Esposito, & Kan, 1999). As noted 

above our measure of goal-driven response selection therefore included both the Stroop and 

the verb generation tasks there is a debate in the literature as to whether the effects seen in 

verb generation reflect a difficulty selecting amongst competing responses or whether they 

reflect a difficulty with more effortful search through the lexicon (see especially Martin & 

Cheng, 2006). We remain neutral on this debate by referring to the skill as “goal-driven 

response selection.”  

The third task/manipulation we used for the operationalization of goal driven 

response selection is directed primarily at the more general idea of internal goal-driven 

responding. We selected letter fluency to assess this. For successful completion of this task 

one must engage in appropriate lexical search through one’s mental lexicon in order to select 

items that adhere to the goal of the task i.e. searching for words that begin with the letter “A” 

(for review see Henry & Crawford, 2004). 

7. Articulatory-Motor Planning 

The patient group used to operationalise this cognitive skill was patients with apraxia 

of speech, as it has been proposed that these patients have a specific deficit in in the ability to 

coordinate speech movements (Frey et al., 1987; Johns & Darley, 1970). These patients 
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consistently demonstrate poor performance in articulatory agility tasks (e.g. Dronkers, 1996). 

To operationalise articulatory-motor planning we used a common measure of verbal agility 

derived from the Boston Diagnostic Aphasic Examination (BDAE: Goodglass, Kaplan and 

Barresi, 2001). In this task, participants repeat a verbal sequence as many times as possible 

within five seconds. The premise behind this task is that the repetition of the same lexical 

item over and over again eliminates the demands on other cognitive skills such as 

phonological encoding and lexical selection. Consequently, the motor demands placed on the 

articulators are necessary for successful performance on this task.  

Supplementary Cognitive Skills 

The tasks used to assess the following cognitive skills were added to the BLAST 

halfway through the testing phase, and scores were only derived for a subset of patients. 

Consequently, these skills have been referred to collectively as supplementary cognitive 

skills.  

8. Verbal Short-Term Memory 

 It has been consistently demonstrated that patients with deficits in verbal short-term 

memory – identified by having a poor digit span – have similarly poor performance in 

nonword repetition (see esp. Gathercole & Baddeley, 1989, 1993). As a result of such 

findings, we operationalised this cognitive skill by calculating accuracy in a nonword 

repetition task. 

9. Reading Skills: Visual Word Recognition, Orthographic-Phonological Mapping, and 

Semantic-Phonological Mapping 

The patient groups used to operationalise the cognitive skills involved in reading 

(visual word recognition, orthographic-phonological mapping and orthographic-semantic 

mapping) was patients with specific reading disorders (pure alexia, phonological dyslexia, 

surface dyslexia). It has been argued that patients with pure alexia have a deficit in visual 
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word recognition (e.g., Farah & Wallace, 1991). Most pure alexic patients retain the ability to 

identify single letters, but adopt a letter-by-letter strategy when reading. Consequently, 

patients with pure alexia usually show a linear relationship between the number of letters in a 

word and the time taken to read it (see esp. Behrmann, Black & Bub, 1990). Therefore the 

manipulation we have used for the operationalisation of visual word recognition was word 

length (effect of number of letters on reading time) effect in single word reading.  

In contrast, phonological dyslexia is a disorder that reflects a selective breakdown in 

the sublexical cognitive processes associated with reading, and specifically the grapheme-

phoneme conversion mechanism (Coltheart et al., 2001; Ellis, 1980; Patterson & Shewell, 

1987; Shallice, 1988). Patients with phonological dyslexia consistently produce 

disproportionate errors in non-word reading compared to read words (Beauvois & Derouesne, 

1979; Coltheart 1996; Henry, Beeson, Stark, & Rapcsak, 2007; Roeltgen, Sevush & Heilman, 

1983; Shallice, 1981). Therefore, the manipulation we have used to operationalise 

orthographical-phonological mapping is performance in a nonword reading task. 

Finally, it has been argued that patients with surface dyslexia have a specific deficit in 

the mapping from orthography to semantics (Coltheart, et al., 2001; Jobard, Crivello, 

Tzourio-Mazoyer, 2003). Patients with surface dyslexia consistently produce more errors in 

reading irregular words, compared to regular words (e.g., Behrmann & Bub, 1992; McCarthy 

& Warrington, 1984). Therefore, the manipulation we used to operationalise orthographical-

semantic mapping is accuracy in reading irregular words relative to regular words.  
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Table 2.2 

Task profiles used to operationalise the core cognitive skills assessed by the BLAST 
 

Core Skill BLAST Task Profile 

Accessing Semantic Knowledge Semantic Confusions in Picture-Word Verification 

 Verbal Fluency: poorer category than letter 

fluency 

 Production of Semantic Errors in Picture Naming 

Lexical Selection Strong frequency effect in Picture Naming 

 Production of Omission Errors in Picture Naming 

 Production of Semantic Errors in Picture Naming 

 Normal Picture Word Verification 

Phonological Encoding Strong Length Effects in Picture Naming 

 Abnormal Latency in Repetition and Nonword 

Repetition 

 Production of Phonological Errors in Picture 

Naming 

 Normal Articulatory Agility 

Auditory Word Recognition Phonological Confusions in Picture Word 

Verification 

 Abnormal latency in Repetition 

 Poor Repetition accuracy relative to Picture 

Naming accuracy 

Goal-Driven Response Selection Abnormal Selection Effect in Verb Generation 

 Abnormal Congruency Effect in Stroop 

 Poor Letter Fluency 

Verb Retrieval Poor Verb Generation in Low Selection Items 

 Relative to Picture Naming 

Articulatory-Motor Planning Poor Articulatory Agility Score 

Verbal STM Poor Nonword Repetition 

Visual Word Recognition Strong Length Effect in Single Word Reading 

Orthographic-Phonological 

Mapping 

Poor Nonword Reading 
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Core Skill BLAST Task Profile 

Orthographic-Semantic 

Mapping 

Poor Reading of Irregular Words Relative to 

Regular Words 

 

Aims and Hypotheses 

In this thesis, we examine the performance of a sample of 40 undifferentiated tumour 

patients on the BLAST preoperatively (the day before surgery) and postoperatively (two to 

three days after surgery). The first aim of the study is to explore the incidence of language 

impairments in our tumour population, both in terms of the overall task performance, and in 

terms of the 11 core cognitive skills. We examine overall performance of each tumour patient, 

on each of the eight tasks that make by the BLAST. We will explore the overall percentage of 

impairment, as well as the incidence of impairment on each task and differences between pre 

and postoperative performance. Then, based on the approach summarised in Table 2.2, we 

will create a measure for each patient for each of the 11 core cognitive skills assessed by the 

BLAST. Three aspects of participants’ scores will then be examined: 

1.  Overall percentage of patients scoring significantly below controls on at least one 

cognitive skill (overall sensitivity). 

2.  The relative incidence of impairments across each cognitive skills (selectivity) 

3.  Any differences in the above measures between preoperative and postoperative 

assessment phase 

The second aim of the study is to explore the relationships between lesion location and 

other lesion characteristics with our language outcome measures, particularly, those related to 

the key cognitive skills. To do this, we will first perform some simple group comparisons to 

examine whether individuals with tumours to different broad brain regions (right frontal, left 

frontal, right posterior, left posterior) and different tumour pathologies show reliably different 

cognitive skill profiles. Our specific hypotheses here are as follows:  
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1. That average scores for those cognitive skills in the anterior group – namely, 

articulatory motor planning, goal driven response selection and verb retrieval 

(as operationalised in Table 2.2) will be significantly lower in the left frontal 

group compared to those with a tumour in other anatomical regions, including 

the left posterior group. 

2. That the average scores for those cognitive skill in the posterior group – namely, 

phonological encoding, lexical selection, accessing semantic knowledge, and 

auditory word recognition (as operationalised in Table 2.2) will be 

significantly lower in the left posterior group compared to those with a tumour 

in other anatomical regions, including the left anterior group. 

We then perform a finer-grained analysis of the relationship between core skills and 

lesion locations using Voxel Symptom Mapping (Bates et al., 2003). Based on our review of 

the literature, we derived a series of more specific hypotheses in regards to the core cognitive 

skills examined by the BLAST, and their neural underpinnings, which are outlined in Table 

2.3. The predictions will be primarily based on preoperative performance, but postoperative 

performance will also be explored. In Table 2.3 the hypotheses pertaining to reading and 

verbal short-term memory are in parentheses; these are to be regarded as tentative, 

exploratory hypotheses only, due to the small number of patients who completed the relevant 

tasks. 

Table 2.3  

Predictions derived for specific brain regions that significantly predict performance in each 

core cognitive skill. 

Cognitive Skill Brain Region 

Accessing Semantic Knowledge Left anterior temporal regions 

Lexical Selection Left posterior temporal region 
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Cognitive Skill Brain Region 

Auditory Word Recognition Left posterior superior temporal lobe 

Goal Driven Response Selection Left inferior frontal gyrus 

Verb retrieval Left inferior frontal regions 

Articulatory Motor Planning. Left inferior frontal regions, including the 
left insula 

(Verbal Short-Term Memory) (left inferior parietal cortex) 

(Visual Word Recognition) (left fusiform gyrus) 

(Orthographical-Phonological Mapping)   (left posterior temporo-parietal regions, and 
the left inferior frontal gyrus) 

(Orthographical-Semantic Mapping) (left posterior temporal regions) 
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Chapter 3: Method 

Participants 

Tumour Participants. 40 patients from the Neurosurgical Ward of Wellington 

Hospital, New Zealand participated in this study from December 2011 to December 2013. 19 

patients were male and 21 were female, with a mean age of 54.40 (range 30-78, SD 13.28). 

The inclusion criterion for recruitment was a cerebral tumour requiring craniotomy for 

debulking or complete resection, irrespective of aetiology, location, and malignancy (see 

Appendix A for a brief case description and MRI scan of each patient tested in the current 

study). Participants were excluded if they had any prominent visual disturbances, English 

was not their native tongue, or had a cerebellar tumour. Of the 40 patients tested 

preoperatively, seven patients did not complete postoperative testing due to one of the 

following: early discharge (four), postoperative complications (two), or declined (one). 

Patient clinical and demographic data is reported in Table 3.2. Patient testing was approved 

by the New Zealand Health and Disability Ethics Committee (reference number: 

CEN/11/07/037). 

Table 3.1 gives a breakdown of the number of patients according to broad lesion sites 

based on presurgical radiology reports. It is important to note that the left posterior and right 

posterior groups contained a very small number of patients. Any inferences made about these 

groups should be tentative. Two patients were not categorized into a group due to their 

multiple tumour presentation, and were therefore excluded from group analysis. Lesion 

overlap maps for the four groups based on normalised MRI images of their lesions are 

presented in Figures 3.1 to 3.4. Each patient’s MRI scan was normalized using methodology 

described in Chapter 6.  
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Table 3.1 

The number of patients in each anatomical group pre and postoperatively based on 

presurgical radiology reports 

Anatomical Group Preoperative Postoperative 

Left Frontal 18 14 

Left Posterior 5 4 

Right Frontal 10 9 

Right Posterior 5 4 

 

 

Figure 3.1. Lesion overlay map for individuals in the left frontal group (N=18). Region 

showing axial slices on a standard template (Rorden, Bonilha, Fridriksson, Bender & Karnath, 

2012) at MNI Coordinates = -22, -12, -2, 3, 8, 19, 28, 38, 48, 58, 68. Red = overlap between 

five individuals; orange = overlap between four individuals; yellow = overlap between three 

individuals; green = overlap between two individuals; blue = no overlap, i.e., lesion is confined 

to one individual. Further details of imaging methods and image preparation are described in 

Chapter 6. 
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Figure 3.2. Lesion overlay map for individuals in the left posterior group. (N=4; note: one 

patient’s MRI scan was unavailable). Region showing axial slices on a standard template 

(Rorden et al., 2012) at MNI Coordinates = -22, -12, -2, 3, 8, 19, 28, 38, 48, 58, 68. Green = 

overlap between two individuals; blue = no overlap, i.e., lesion is confined to one individual. 

Further details of imaging methods and image preparation are described in Chapter 6. 

 

Figure 3.3. Lesion overlay map for individuals in the right frontal group (N=9; one patient’s 

MRI scan was unavailable). Region showing axial slices on a standard template (Rorden et 

al., 2012) at MNI Coordinates = -22, -12, -2, 3, 8, 19, 28, 38, 48, 58, 68. Red = overlap 

between five individuals; orange = overlap between four individuals; yellow = overlap 

between three individuals; green = overlap between two individuals; blue = no overlap, i.e., 
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lesion is confined to one individual. Further details of imaging methods and image 

preparation are described in Chapter 6. 

 

Figure 3.4: Lesion overlay map for individuals in the right posterior group (N=4; one 

patient’s MRI scan was unavailable). Region showing axial slices on a standard template 

(Rorden et al., 2012) at MNI Coordinates = -22, -12, -2, 3, 8, 19, 28, 38, 48, 58, 68. Yellow = 

overlap between three individuals; green = overlap between two individuals; blue = no 

overlap, i.e. lesion is confined to one individual. Further details of imaging methods and 

image preparation are described in Chapter 6. 

Healthy Controls. In addition to the brain tumour patients, 60 healthy controls also 

completed the testing protocol. Controls were recruited via three methods: i) through the 

Victoria University Psychology IPRP programme (this programme allows first year 

psychology students to gain course credit for completing psychological experiments); ii) 

through a pre-existing register of healthy controls that had indicated their willingness to be 

contacted about future studies in the Neuropsychology Laboratory at Victoria University; and 

iii) through community advertising. Testing occurred either at the Victoria University 

Psychology Department or the participant’s home. Participants who were recruited through 

the Victoria University Psychology IPRP programme received course credit. All other 
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participants received monetary compensation: participants that travelled to the university 

received $20, and those visited by the experimenter received $10 (money was available 

through a grant received by the Neurological Foundation of New Zealand). Before 

participating, participants were required to read through an information sheet and sign a 

consent form (see Appendix B), and then complete a Neurological Status Questionnaire (see 

Appendix C). If the participant reported any neurological injury, they were informed that they 

did not meet the criteria to participate in this study, and were thanked for their time. 

 These individuals were then organised into three subgroups comprising 20 

participants each. The “young” group consisted of participants aged between 18 and 29 

(mean 22.35), and comprised 10 males and 10 females. All were first year psychology 

students who participated in return for course credit. As there were no patients in the current 

study within this age group, this group did not act as controls for any of the patient reported 

here. The “intermediate” group were aged between 30 and 50 (mean age 37.85) and 

comprised 7 males and 13 females. 10 of these participants were first year psychology 

students, who completed the study in return for course credit; the remainder were recruited 

through community advertising and received $10 (or $20 if they had travelled to Victoria 

University for testing) as compensation for taking part. These individuals served as a control 

group for patients in the 30-50 age group, whose mean age was 40.63; these two groups did 

not differ significantly in age (t(34)=-1.384, p=.175). And finally, the “mature” group 

consisted of participants aged 51 years or more (mean age 68.9), and comprised seven males 

and 13 females. They were recruited through community advertising, and reimbursed $10 (or 

$20 if they had travelled to Victoria University for testing). These participants served as a 

control group for patients in the 51+ age group, whose mean age was 65.58; these two groups 

did not differ significantly in age (t(42)=1.939, p=.059). The inclusion criterion for 

participation was no reported history of neurological injury or disease, measured by 
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completion of a brief neurological status questionnaire. Participants were also excluded if 

they had a visual impairment and English was not their native tongue. The testing of healthy 

controls was approved by the Victoria University School of Psychology Ethics Committee 

(reference number: RM019226). 
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Table 3.2 

The demographic and clinical information of each patient who completed the BLAST 

Patient (51+ 
Group) Age Gender Tumour 

Specimen 
Anatomical 

Group 
Tumour 

Volume (cm3) Oedema Surgery Type 
Pre and 

Postoperative 
Testing 

SM 51 F 

Cavernous 

haemangioma – 

Cavernoma 

L Frontal 1.9 No 
Awake craniotomy and 

resection 
Yes 

VD 56 F Glioblastoma L Frontal 20.36 No 
Craniotomy for debulking 

and left frontal lesion 
Yes 

RF 65 M Meningioma L Frontal 17.5 Yes Craniotomy and removal Yes 

SO 58 M Glioblastoma L Frontal 15.02 No Craniotomy and debulking Yes 

EMH 75 F 
Unknown but 

metastatic 
L Frontal 7.36 Yes Craniotomy and resection Only Preoperative 

EA 70 F Meningioma L Frontal 14.64 No Craniotomy and resection Yes 

JM 71 F 
Metastatic with 

oedema 
L Frontal 3.55 Yes 

Craniotomy and 

exploration 
Yes 

CR 75 F Meningioma L Frontal 51.57 No Craniotomy and removal Yes 

BCA 56 M 
Recurrent 

glioblastoma 
L Posterior 86.86 Yes Craniotomy and resection Yes 

BD 62 F Meningioma L Posterior 35.97 No Craniotomy and resection Yes 

LA 63 F Glioblastoma R Frontal 3.89 na Craniotomy and resection Yes 

CM 57 M Oligodendroglioma R Frontal 1.67 Yes Craniotomy and excision Yes 

LW 66 F Meningioma R Frontal 6.4 Yes Craniotomy and resection Yes 

ES 78 M Glioblastoma R Frontal 43.75 Yes 
Craniotomy and subtotal 

resection 
Yes 
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Patient (51+ 
Group) 

Age Gender 
Tumour 

Specimen 

Anatomical 
Group 

Tumour 
Volume (cm3) 

Oedema Surgery Type 

Pre and 
Postoperative 

Testing 

RG 58 M Gliosarcoma R Posterior 27.87 na Craniotomy and debulking Yes 

TKH 60 M Glioblastoma R Posterior 47.9 No Craniotomy and debulking Yes 

JAS 55 M Glioma R Posterior 75.25 Yes Craniotomy and resection Only preoperative 

AEK 52 F Glioma R Posterior 39.66 Yes Craniotomy and resection Yes 

PAJ 65 M Glioblastoma 
R Frontal & L 

Posterior 
na No 

Craniotomy and resection 

of R posterior lesion 
Yes 

SMC 63 M Glioblastoma R Frontal 63.29 No Craniotomy and removal Yes 

MRO 60 M Meningioma R Frontal 90.51 No Craniotomy and removal Yes 

RJ 64 F 

Metastatic tumour 

from right lung 

mass 

L Posterior 14.74 Yes No Surgery Only Preoperative 

GP 73 M Meningioma R Frontal 56.98 Yes Craniotomy and resection Yes 

MR 68 F 
Metastatic 

melanoma 
L Frontal 19.24 Yes 

Craniotomy for resection 

of left frontal lesion 
Only Preoperative 

Patient (30-50 
Group) 

Age Gender 
Tumour 

Specimen 
Anatomical 

Group 
Tumour 

Volume (cm3) 
Oedema Surgery Type 

Pre and 
Postoperative 

Testing 

PM 45 M 

Astrocytoma with 

possible 

oligodendroglioma 

component 

L Frontal 0.72 Yes 
Awake craniotomy and 

debulking 
Yes 

DA 33 M Meningioma L Frontal 30.69 No Craniotomy and resection Yes 

EH 39 F Meningioma L Frontal 26.77 Yes Craniotomy and resection Yes 
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Patient (30-50 
Group) 

Age Gender 
Tumour 

Specimen 

Anatomical 
Group 

Tumour 
Volume (cm3) 

Oedema Surgery Type 

Pre and 
Postoperative 

Testing 

LC 43 F Astrocytoma L Frontal 46.75 No 
Awake craniotomy and 

resection 
Yes 

CA 47 F Meningioma L Frontal 83.57 Yes Craniotomy and resection Yes 

CG 46 F na L Frontal 58.92 No Craniotomy and resection Yes 

AVG 42 F Meningioma L Posterior 71.33 No Craniotomy and resection Yes 

AM 38 F Glioblastoma L Posterior 28.8 Yes Craniotomy and resection Yes 

JB 47 F Epidermoid lesion R Posterior 41.11 na Craniotomy and resection Yes 

AE 46 M Haemangioma 
L Frontal & R 

Frontal 
na No 

Craniotomy and removal 

of left frontal lesion 
Yes 

TT 36 F 
Low-grade 

astrocytoma 
R Frontal 11.35 No Craniotomy and resection Yes 

KB 30 F Meningioma R Frontal na na Craniotomy and resection Only Preoperative 

DAP 45 M Astrocytoma L Frontal 31.25 Yes Craniotomy and resection Only Preoperative 

TF 43 F Glioblastoma L Frontal 49.08 Yes Craniotomy and debulking Yes 

TD 30 M Oligodendroglioma L Frontal 151.59 No Craniotomy and debulking Only Preoperative 

DF 40 M Glioma R Frontal 50.36 No Craniotomy and removal Yes 

na- not specified in medical notes 
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The BLAST: Brief Language Assessment for Surgical Tumours 

The BLAST comprises the eight tasks outlined in Table 2.1. Two versions of the test 

battery were created, so as to minimise any carryover effects between preoperative and 

postoperative assessment. Below is a detailed description of each task. In addition, a 

comprehensive list of all stimuli contained in each task and its subsequent manipulation is 

presented in Appendix D. 

1. Picture Naming.  

In this task, participants are required to produce the name of a visually displayed 

object. The to-be-produced items varied in both frequency rating and syllable length. 

1.1 Materials. This task consisted of 120 items drawn from the New Zealand Length 

by Frequency Naming Test (Wilshire, 2002). Pictures in this test produced at least 80% name 

agreement on a previous pilot study which involved 70 normal speakers of varying ages and 

backgrounds. This subset was selected from a pool of 180 items because they varied most 

appropriately in CELEX lemma frequency ratings (Baayen, Piepenbrock & van Rijn, 1993) 

and length in syllables. More specifically, 40 of the items selected depict a low frequency 

noun (with frequency ratings of less than 70; range 4-69, mean 34.92), 40 depict a medium 

frequency noun (with frequency ratings between 70-200; range 72-199; mean 129.32), and 

the remaining 40 depict a high frequency noun (with frequency ratings of 200 or more; range 

205-2441; mean 763.00). Further, each of these frequency groups comprised approximately 

equal numbers of monosyllabic, bisyllabic and polysyllabic items, thus creating nine different 

frequency x length combinations. Both frequency and length were balanced so that there 

were no systematic frequency differences between the monosyllabic, bisyllabic and 

polysyllabic items, and similarly, no length differences between the low, medium and high 

frequency words (for more information, see Wilshire, 2002). Items in each of the nine 

frequency x length combinations were then allocated to one of two versions of the task. Each 
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version consisted of 60 items with 20 items each for the low, medium and high frequency 

manipulations; and 20 each for the mono, bi and polysyllabic manipulations. A one-way 

ANOVA of the log CELEX lemma frequency values (Baayen, Piepenbrock & van Rijn, 

1993) of each item confirmed that there was no significant difference between the high 

frequency (F(2,58)=.162, p=.860), medium frequency (F(2,58)=0.52, p=.608), and low 

frequency (F(2,58)=4.37, p=.648) conditions between the two test versions (see Table 3.3). 

Table 3.3 

The mean log CELEX lemma frequencies for the two versions of the picture naming task 

 Mean CELEX Lemma Frequency 

Version High Medium Low  

1 776.25 128.82 37.15 

2 758.58 134.90 40.74 

 

1.2 Procedure In this task, each individual picture is presented on a laptop screen and 

the participant must produce its name. For each version of the task, a practice picture was 

presented first, so participants were familiarized with the objectives of task. The 60 

experimental items were then presented in a fixed pseudo random order. Before each picture, 

a fixation cross-appeared for 100ms (see Figure 3.5) followed by the presentation of a picture 

and a tone simultaneously.  The tone acted as a marker, facilitating measurement of response 

latency. Participants were given unlimited time to make a response, and if an incorrect 

response was made, no feedback was given. Picture presentation was self-paced; the 

researcher initiated the presentation of the next fixation cross with a key press, after a 

response had been made.   



 

 

69 

 

Figure 3.5. Item presentation on a laptop computer for the picture naming task 

1.3 Response Scoring 

1.3.1 Accuracy. Responses for each target item were scored as correct or incorrect. 

Only the first response made by the participant was scored; if the participant’s first response 

was incorrect but was then changed to a correct response, this was still recorded as incorrect. 

Alternative names for an item, e.g.," spaceman” for the item “astronaut” were also scored as 

incorrect. Incorrect responses were further categorised by error type according to the scheme 

shown in Table 3.4. 

The total number of correct responses for the entire test was calculated and converted 

to a percentage. The overall percentage of correct responses for each frequency and length 

manipulation was then calculated. This was then used to calculate the slope of the length and 

frequency effects using the slope function in EXCEL. For example, if a participant scored 

low frequency = 80%, medium frequency = 90%, high frequency = 100% on the frequency 

manipulation, the frequency effect would the size of the slope of these scores, which is 10. 
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Table 3.4 

 Types of errors coded for in the picture-naming task 

Error Type Definition Example 

Phonological A real word that is phonologically 
related to the target by above definition 

boat -> bake 

 

Semantic A real word that is semantically related 
to the target. Should be from same 

category (e.g., apple, banana).  
Associates (apple-core) don’t count 

boat -> car 

Mixed A real word that is phonologically and 
semantically related to the target. 

carrot -> cabbage 

Unrelated A real word that is not phonologically 
or semantically related to the target 

boat -> rice 

Omission No direct attempt at word  

Alternative A word that is entirely appropriate, but 
not the target 

couch -> sofa 

Other Error Not classifiable as any other error.  

 

1.3.2 Response Latency. Response latencies for each correct response were also 

calculated using audacity software (Audacity Team, 2008). Latencies were recorded from the 

start of each tone, to the start of the participant’s first response. Fillers such as “um” and “er” 

were ignored. However if an article or other modifier was produced before the noun (e.g. “a 

tent”), the response latency was measured from the onset of the modifier. The latency data 

was trimmed of outliers (exceedingly long latencies) using a two-step method. First, the data 

was winsorized: the longest response latency was replaced by the second longest response 

latency, and then the second longest response latency replaced by the third longest. Second, 
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any response latencies that lay two and a half standard deviations from the winsorized mean 

was removed. Once this had been done, the average response time for the entire task was 

calculated, as well as for each frequency and length manipulation. Frequency and length 

effects were calculated in the same manner outlined in section 1.3.1. 

2. Verb Generation 

In the verb generation task, participants must produce an action word that is 

associated with a visually displayed concrete noun. 

 2.1 Materials. The verb generation task used was adapted from a task originally 

devised by Cameron Jones (2008). This task comprises 90 picturable nouns, each of which is 

used as a stimulus to elicit a verb describing an action associated with that item (e.g., scissors 

-> “cut”). In this task, half of the 90 items had low selection demands; that is, based on 

previous pilot testing, the commonly elicited one specific verb (the most common response 

was given at least five times more often than the next most popular verb response in a pilot 

study involving normal participants). The remaining half of the items had high selection 

demands (the most commonly elicited verb response was given no more than three times 

more often than the next most popular) (see Cameron Jones, 2008). These two groups of 

items will be referred to as low and high selection demands respectively. In both the high and 

the low selection groups, there were equal numbers of high and low frequency stimulus 

nouns (defined as having CELEX lemma frequency of more than 450 or less than 450, 

respectively). 

In our adaptation, we created two versions of the test, each containing 45 items.  

Version one included 22 high selection items and 23 low selection items, and in each 

condition, there were roughly equal numbers of low and high frequency items. Version two 

included 23 high selection items and 22 low selection items, again, with each condition 

containing roughly equal numbers of low and high frequency items. We further balanced 
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items in the different groups for selection strength ratio, a measure obtained from Cameron 

Jones (2008) and defined as the frequency of the most common response divided by the 

second most common response; a high response strength ratio corresponds to a low selection 

demand and vice versa. We used these selection strength ratios in order to balance the 

selection demands for the high and low conditions across alternative test versions. In 

confirmation of this, an independent samples t-test revealed no significant difference in the 

high (t(45)=-0.553, p=.583) and low t(45)=-0.36, p=.871) conditions between the two 

versions of the task (see Table 3.5). There was also no significant difference in frequency 

ratings (high: t(45)=1.202, p=.236; low: t(45)=-0.143, p=.887). 

Table 3.5 

The average response strength ratio and frequency values for the two versions of the verb 

generation task 

 Selection Strength Demand Frequency (CELEX LEMMA ) 

Version High  Low High Low 

1 1.73 16.42 1828.48 172.14 

2 1.73  16.63 1611.86 177.91 

 

2.2 Procedure. In this task, participants view a pictured item, and had to produce the 

name of an action associated with that item (e.g., scissors -> “cut”). They were instructed to 

say “what the object does, or what is done with the object”. They were then given the 

example of “dog”, to which a person might respond “bark” or “fetch”. 

For each version of the task, a practice item was presented first. Feedback was given 

if the participant made an incorrect response on this item. This was to ensure participants 

were familiar with the task; this item was not included in further analyses. The experimental 
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items were then presented in a fixed, pseudo-randomised order. As shown in Figure 3.6, each 

picture was presented alongside its written name. The target name was also presented aurally, 

simultaneously with the visual stimulus. This was done to reduce the likelihood that the 

participant would name the object, and it also acted as a marker to calculate response 

latencies. Presentation was self-paced; once the participant had made a response, the 

experimenter initiated the presentation of the word: ‘Ready?’ with a key press. This appeared 

for 100ms and then the next experimental item appeared. If the participant made three 

incorrect responses, in which a noun was substituted instead of a verb (e.g., “moon”-> 

“night”), feedback was given from the experimenter (“remember in this task you need to 

name an action associated with the picture you see”). Feedback was only given once 

throughout the task. 

  

Figure 3.6. Item presentation in the verb generation task 

 2.3 Response Scoring.  

2.3.1 Accuracy A response was considered correct if it consisted of a verb or action 

name that was: a) appropriate to the noun; and b) specific to the noun (e.g., ladder, “climb”, 
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is accepted, but ladder “use” was not).  Inflectional forms of the verbs were also scored as 

correct (e.g., “climb” -> “climbed,” or “climbing”). The total percentage of correct responses 

was calculated, as well as for both the selection and frequency manipulations. 

2.3.2 Response Latencies. The procedure used here was the same as that described in 

Section 1.3.2, except in this task latencies were measured from the onset of the auditory 

noun, which accompanied the picture. 

3. Picture-Word Verification  

In this task, participants must determine if an aurally presented word matches a 

visually displayed object.  

3.1 Materials. The 24 items used for this test were derived from a previously 

designed picture-word verification task, which comprised 50 target words (Wilshire, Keall, 

Stuart & O’Donnell, 2007). These items were selected because they belonged to one of four 

semantic categories: animals, food, household objects, and weapons. The pictures used to 

depict these words were coloured line drawings and photographs adapted from the Rossion 

and Pourtois (2004) coloured Snodgrass-like drawings, and other public domain sources. All 

pictures yielded name agreement of 80% or more when piloted on a group of 70 participants 

of varying ages (see Wilshire, Keall, Stuart & O’Donnell, 2007).  

Each picture was presented four times, each time accompanied by a different auditory 

word: an identical word (which matched the picture’s name); a phonologically related word, 

which shared at least the first two phonemes with the target and had the same number of 

syllables and stress pattern (e.g., chair-cheque); a semantically related word, which was from 

the same semantic category as the target word, as narrowly defined as possible (for example, 

horse was matched with deer, rather than simply another animal); or an unrelated word, 

which bore no semantic relationship to the target and shared no phonemes in the same 
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position (e.g., grapes-puzzle). Frequency and length in syllables were balanced across the 

four different conditions (see Table 3.6).  

The picture-word verification task was divided into two versions each consisting of 

12 items. Frequency, semantic category and syllable length were balanced across the two 

versions (see Table 3.6). An independent samples t-test revealed no significant difference 

between syllable length and frequency between the two versions. When each picture was 

paired with each of its respective auditory words, this yielded a total of 48 trials per version. 

Participants were presented all four conditions involving each picture in the same session.  

Table 3.6 

The average frequency (log CELEX frequency) and syllable length for the two versions of the 

picture-word verification task 

 Version 1 Version 2 

Distractor 
Type 

Frequency  Syllable 
Length 

Frequency Syllable 
Length 

Identical 2.86 1.75 2.87 1.75 

Phonological 2.54 1.58 2.49 1.58 

Semantic 2.52 1.42 2.54 1.5 

Unrelated 2.52 1.67 2.54 1.58 

 

3.2 Procedure. In this task, participants were simultaneously presented with a picture 

and an auditory word, and they had to judge if the auditory word matched the picture’s name. 

This task was, therefore, a forced-choice task, where participants could only respond with a  

“yes” or “no”.  
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Each version of the task commenced with two unrelated practice items, which were 

not included in further analyses. If a participant made an incorrect response on any of these 

items, feedback was given by the experimenter. The experimental items were then presented, 

in fixed pseudo-random order. At the beginning of each trial, a fixation cross appeared. Then 

100ms later, the picture appeared, accompanied by a tone (see Figure 3.7). Presentation was 

self-paced; once the participant made a response the researcher initiated the presentation of 

the fixation cross with a key press. 

 

Figure 3.7. Item presentation in the picture-word verification task 

3.3 Response Scoring. Responses were scored as correct or incorrect. In addition, 

response latencies were measured from the onset of the distractor to the onset of the 

participants’ yes-no response, according to the procedures described in section 1.3.2.  
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4. Single Word Repetition  

In this task, participants were required to repeat an aurally presented word. The task 

consisted of two parts; the first consisted of real words that varied in their frequency and 

imageability ratings. The second consisted of a set of nonwords. 

4.1 Materials. The 90 items used in this test consisted of 60 real words and 30 

nonwords drawn from the PALPA word and nonword repetition test (PALPA Test 9: Kay et 

al, 1996). The same items were administered for both versions of the BLAST. The 60 real 

words comprised 30 high imageability and 30 low imageability words, and each of these sets 

was further divided into 15 high frequency and 15 low frequency words. The 30 nonwords 

were also drawn from the same PALPA subtest, each of which differs from one of the real 

words in the test by at least one letter (For example analogy -> atalogy).  

4.2 Procedure. For this test, the experimenter pronounced a single word and 

participants were required to repeat that word immediately. For this task, the experimenter 

was oriented in a way that prevented the participant seeing their lips, in order to prevent lip 

reading. The experimental items were presented in two blocks – real and nonwords – and 

each block was presented in pseudo-random order.  

4.3 Response Scoring. Each word response produced by the participant was scored as 

correct or incorrect. Latencies to initiate each response – measured from stimulus word onset 

to response onset – were also obtained, using the methods outlined in Section 1.3.2.  

5. Word and Nonword Reading.  

In this task, participants are required to read out loud a single word. This task consists 

of two parts; the first comprises of a set of real words that varied in word length and 

regularity. The second part comprises a set of nonwords. 

5.1 Materials. The word reading section of the test comprised 28 real word items, the 

first 12 of which were taken from the PALPA Letter Length Spelling Test (PALPA Test 39; 
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Kay et al., 1996). The first three items of this set had three letters, the next all had four letters, 

then five, and the final three items all had six letters. These blocks of words were presented in 

such a way that, as the test progressed, word length also increased. All items included in this 

section had an imageability rating score over six in the MRC psycholingustic database 

(Coltheart, 1981). This means that when normal (usually undergraduate) participants were 

asked to rate how easily they could visualise an image of the meaning of the word – on a 

scale from 1 to 7 – they rated these words at or above 6 (e.g., highly imageable). In addition, 

the words of differing length were matched for frequency, based on the logged frequency 

values from Kucera (1967) database (see Table 3.7); there were no reliable frequency 

difference amongst words from the four different length groups (F(3,8) = .076, p=.971).  

Table 3.7 

Mean log frequency (Kucera, 1967) and imageability for the four blocks in the first section of 

the reading test 

Block Syllable Length Mean Frequency Mean 
Imageability 

1 1 1.83 6.38 

2 2 1.85 6.17 

3 3 1.86 6.24 

4 4 1.89 6.21 

 

The next 16 real word items in the single word reading task were taken from the 

Reading Word Subtest of the Comprehensive Aphasia Test (Swinburn, Porter & Howard, 

2005). These 16 items consisted of eight high frequency words (with a mean Kucera (1967) 

frequency of 260) and eight low frequency words (with a mean Kucera (1967) frequency of 
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5.0). An independent samples t-test confirmed a statistically significant difference between 

the frequency conditions (t(14)=4.57, p<.001). In each of these frequency groups, four of the 

items were high imageability words and four were low imageability words (high imageability 

words had a mean imageability rating of 6.04, and low imageability words had a mean 

imageability rating of 3.734). An independent samples t-test confirmed a statistically 

significant difference between the imageability conditions (t(14)=15.559, p<.001). Further, 

sound-spelling regularity was balanced across these item groups (there were two regular 

words and two irregular words in each group). All words in this section were two syllables. 

Each word target item was presented on the centre of a laptop computer, in black size 60 font. 

The nonword section of the task comprised 12 items taken from the PALPA Nonword 

Reading Task (Test 36: Kay et al., 1996). Similar to the first 12 words in the real word 

reading task, the first three items all had three letters (e.g., ked), the next all had four letters 

(e.g., shid), then five (e.g., glope) and the final three items all had six letters (e.g., churse). 

5.2 Procedure. The word and nonword stimuli were presented in the centre of a 

computer screen, and participants were instructed to read the word aloud as quickly as 

possible. The task began with a practice item, which was not included in the response 

analysis. Prior to each item, a line of fixation crosses appeared on the screen for 100ms. Each 

word was presented simultaneously with a tone, to facilitate the subsequent recording of 

response latencies. The first 12 items in the reading test were presented in order of increasing 

length, as described in the previous section. The remaining 16 items were then presented in 

pseudo-random order. Once the participant made a response, the researcher initiated the 

presentation of the fixation cross with a key press. 

In the nonword reading part of the task, the procedure was identical except that the 

participant was told the items he/she would see would be nonwords. The nonwords were 

                                                        
4 Imageability ratings were derived from the MRC psycholingustic database (Coltheart, 1981)  
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presented in order according of increasing length, commencing with the three-letter 

nonwords, and concluding with the six-letter nonwords.  

5.3 Response Scoring. Each word response produced by the participant was scored 

as correct or incorrect. Latencies to initiate each response – measured from stimulus word 

onset to response onset – were also obtained, using the methods outlined in Section 1.3.2. 

6. Stroop  

The premise of this task is based on the classical Stroop task formulated by Stroop 

(1935) and others (for review see, Macleod, 1991). Specifically, participants are required to 

ignore the identity of a word, and name the colour the word is presented in. 

6.1 Materials. The stimulus items consisted of 20 single colour name words selected 

randomly from a pool of eight different alternatives: pink, black, red, blue, green, orange, 

yellow and purple. There were two different conditions: congruent and incongruent (Stroop, 

1935). The congruent condition consisted of six items and in this condition, the colour of the 

word matched that of the written word name (e.g., BLUE). The incongruent condition 

consisted of 13 items and in this condition, the colour of the word did not match the written 

word name (e.g., GREEN).  Each word target item was presented on the centre of a laptop 

computer, in size 60 font. 

6.2 Procedure. In this task, participants were required to ignore the identity of the 

word, and simply name the colour it was presented in. Instructions were presented on the 

computer screen and read verbatim by the experimenter. These were: 

“In this task, you will see some words written in different colours. Your job is to name 

the colour that the word is written in. Ignore what the word actually says. All we want is the 

name of its colour. So for example, if you saw this word purple, you would answer “blue.” 

Do you have any questions?” 
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Two practice items were then presented to ensure familiarity with the task. Both items 

were examples from the incongruent condition. If participants got these items wrong, the 

experimenter gave feedback. The experimental items were then presented in a fixed pseudo-

random order. Before each item, a fixation cross appeared for 100ms (see Figure 3.8). Then 

the word was presented simultaneously with a tone. The tone acted as a marker, to facilitate 

measurement of response latency. Once the participant had made a response, the researcher 

initiated the presentation of the next fixation cross with a key press. 

 

Figure 3.8. Item presentation in the Stroop task  

6.3 Response Scoring. Each word response produced by the participant was scored as 

correct or incorrect. Latencies to initiate each response – measured from stimulus word onset 

to response onset – were also obtained, using the methods outlined in Section 1.3.2. 

7. Letter Fluency 

The letter fluency task is based on the oral Verbal Fluency task first developed by 

Arthur Benton more than 40 years ago (Mitrushina, Boone & D’Elia, 1998). In this test, 

participants are provided orally with a letter of the alphabet and are required to say as many 

words as they can that begin with that letter within 60 seconds. 
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7.1. Materials and Procedure. This test was based on standard administration and 

consisted of three phases, each phase involving of a different letter. The first letter was F, 

followed by A, and then S (Spreen, 1998). The experimenter used a stopwatch to record 60 

seconds, the time allocated for each phase. 

The instructions given to participants were derived from Controlled Oral Word 

Association Test (Spreen, 1998). They were as follows: 

“I will say a letter of the alphabet. Then I want you to give me as many words as you 

can that begin with that letter as quickly as you can. For instance, if I say ‘B’, you might give 

me ‘bad’, battle’, ’bed’… I do not want to you to use words that are proper names such as 

‘Boston’ or ‘Bob’. Also, please do not use the same word again with a different ending such 

as ‘eat’ and ‘eating’. Any questions? Begin when I say a letter. The first letter is ‘F’. Go 

ahead.” 

After these instructions were given, the experimenter measured 60 seconds using a 

stopwatch. Once this time had elapsed, the experimenter instructed the participant as follows: 

“Your time is up. You next letter is A (S). Go ahead.”  

7.2 Response Scoring.  All responses made by the participant that began with the 

allocated letter were scored as correct, with the exception of proper names and repetitions of 

or variations of the same word were excluded (e.g., fish, fishes, fishing). The total number of 

correct responses was calculated for each letter. Response latencies were not recorded for this 

task. 

8. Category Fluency 

The category fluency task was also based on standard administration (Spreen 1998), 

but consisted of two phases, each involving a different semantic category. The first category 

was animals, and the second was fruit. 
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8.1 Materials and Procedure.   The procedure for administration was as for the 

Letter Fluency task (Section 7), except for the instructions, which were as follows: 

 “This time I am going to say a category. Then I want you to give me as many words 

as that belong to that category, as quickly as you can. For instance If say countries, you 

might give me Australia, New Zealand etc. Any questions? Begin when I say a category. The 

first category is ‘animals’. Go ahead.” 

After these instructions were given, the experimenter measured 60 seconds using a 

stopwatch. Once this time had elapsed the experimenter instructed the participant as follows: 

“Your time is up. Your next category is fruit. Go ahead.”  

8.2 Response Scoring. Responses were scored in the same way as for the Letter 

Fluency task (Section 7). 

9.  Articulatory Agility Test  

This task is based on the Verbal Agility Subtest of the BDAE (Goodglass, Kaplan & 

Barresi, 2001). In this task, participants are required to repeat a given word as many times as 

they can in a five-second period. 

9.1 Materials and Procedure. The words used were the original seven items from 

the BDAE (Goodglass, Kaplan & Barresi, 2001) subtest: mamma, tip-top, fifty-fifty, thanks, 

huckleberry, baseball player, and caterpillar. The experimenter used a stopwatch to record 

five seconds, the time allocated for each item. Instructions were as follows: 

 “I will say a word and you are required to continually repeat the following word as 

rapidly as you can within five seconds. Once this time is up, I will say another word and your 

job is to repeat that word just like you did before. Any questions?” 

After these instructions were given, the experimenter measured five seconds using a 

stopwatch. Once this time had elapsed the experimenter concluded the trial and presented the 

next word item. 
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9.2 Response Scoring. The total number of words correctly repeated for each item, 

within the designated time period was recorded. Response latencies were not recorded for 

this task.  
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Table 3.8 

Key variables manipulated in each of the tests within the protocol, and, where relevant, mean values for these variables.  

Test Variables Manipulated Values No. of Items per 
Manipulation 

Other Variables Controlled 

Picture Naming Frequencya 

 

High, Medium or Low 

Mean values V1: Hi-2.89; Med-2.11; Lo-1.57 

Mean values V2: Hi-2.88; Med-2.13; Lo-1.61 

 

20  

 Length in syllables Monosyllabic (1 syllable) 

Bisyllabic (2 syllables) 

Polysyllabic (3-4 syllables) 

20  

Verb Generation Selection Strength 
Ratiob (RS) 

Mean values V1: Low-16.42; High-1.73 

Mean values V2: Low-16.63; High-1.73 

22  

  

Frequencya 

Mean values V1: Hi-3.26; Lo-2.23 

Mean values V2: Hi-3.21; Lo-2.25 

 

22 

 

Picture-Word Verification Target-distractor 
Relationship 

Identical (ID) 

Phonologically Related (Phon) 

Semantically Related (Sem) 

Unrelated (UR) 

12 Frequencya of occurrence 

Version 1: ID-2.86; Phon-2.54; Sem-
2.52; UR-2.52 

Version 2: ID-2.87; Phon-2.49; Sem-
2.54; UR-2.54 

Word Repetition 

(from Kay et al., 1996) 

Frequency 

Imageability 

(data not provided) 30 (data not provided) 

Nonword Repetition (Kay et al., 1996) none - 30 - 
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Test Variables Manipulated Values No. of Items per 

Manipulation 
Other Variables Controlled 

Stroop Congruency Incongruent 

Congruent 

7 

13 

 

Fluency Letter F, A, S   

 Category Animals, Fruit   

Articulatory Agility Words  7  

Reading Syllable Length 1, 2, 3, 4 Syllables 3 Frequencyc of occurrence: Mono-
1.83; Bi-1.85; Tri-1.86; Quad-1.89 

 Regularity Regular 

Irregular 

8 Frequencyc of occurrence: Regular-
2.12; Irrgular-2.12 

Nonword Reading none  12  

Lemma Frequency from CELEX database (Baayen, Piepenbrock & van Rijn, 1995); b. Selection strength ratio is the frequency of the most common response divided by the second most 
common response (Cameron Jones, 2008) c. Kucera (1967) frequency database from the English Lexicon Project (Balota et al., 2007) 
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General Procedure 

Healthy Controls 

Testing occurred in one session and took approximately 45 minutes to complete. A 

Macintosh laptop was then set up directly in front of the participant and an audio tape 

recorder was then started to record the testing session. Task administration occurred in the 

following order: Picture naming Version one and two, Verb generation Version one and two, 

Picture-word verification Version one and two, real word and nonword repetition, real word 

and nonword reading, Stroop, letter and category fluency, and articulatory agility. PsyScope 

software (Cohen, MacWhinney, Flatt & Provost, 1993) was used to visually present the 

computerised tasks on the Macintosh computer (picture naming, verb generation, picture 

word verification, reading and Stroop). The remaining two tasks – word/nonword repetition 

and articulatory agility – were administered directly by the experimenter. A stopwatch was 

used for the fluency and articulation tasks. A break was offered to each participant after 

completion of Version two of the picture-word verification. After completion of the test 

battery, participants were given a debrief form and thanked for their time. 

Brain Tumour Patients 

Preoperative Testing. Preoperative testing occurred once the patient had been 

admitted to the neurosurgical ward of Wellington Hospital. In most cases, this occurred the 

day before surgery, but in three cases, preoperative testing occurred the morning before 

surgery. On the surgical ward, the experimenter introduced himself to the patient and their 

family if applicable, and explained the purpose of the study. Before consent was obtained, the 

experimenter went through the information sheet in detail with the patient (see Appendix D), 

and their family and answered any questions they may have had. The participant was 

reminded that involvement in the study was voluntary, and if they declined to participate that 

this would not affect their subsequent treatment and care. Once informed consent was 
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obtained, participants were asked to comment about any visual difficulties they might 

currently be experiencing. If a patient reported severe visual difficulties (for example, blind 

in one eye), preoperative testing was abandoned and they were thanked for their time. The 

experimenter noted on a patient’s consent form, if they reported minor visual disturbances 

(for example: “I am having difficulty making out some objects”). During subsequent testing 

if these patients were notably struggling to elicit a response during a task with a strong visual 

component (e.g., picture naming), the experimenter asked the patient to comment if this was 

due to difficulties seeing the item on the screen. If this was confirmed by the patient, 

subsequent testing was abandoned and the patient was thanked for their time. Finally, each 

patient was also asked to comment on any speech or language difficulties they had 

experienced within the last three months. If the patient reported such an experience, this was 

noted on their consent form.  

Patients were seated in front of a Macintosh laptop computer and an audiotape 

recorder was then started to record the testing session. Before testing was commenced 

patients were told that during testing if they experienced any discomfort or fatigue at any 

point to let the experimenter know straight away. Version one of the BLAST was then 

administered. Task administration occurred in the following order: picture naming, verb 

generation, picture-word verification, real word and nonword repetition, real word and 

nonword reading, Stroop, letter and category fluency, and articulatory agility. Two breaks 

were offered to each patient throughout the testing session. The first one was after completion 

of verb generation and the second after the completion of the Stroop task. All other aspects of 

the administration method were as for the healthy controls, with the following two exceptions. 

First, if the experimenter noticed any discomfort from the patient during the testing session, 

testing was immediately stopped, and a break was initiated. If the patient did not feel 

comfortable to continue testing, the rest of the session was abandoned. Second, during testing, 
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if a medical staff member came to see the patient, testing was stopped and recommenced 

when the patient was available. Once preoperative testing was completed, the experimenter 

reminded the patient that they would be visited two days after their surgery for postoperative 

testing. Any questions the patient or their family had in regards to performance on the battery 

were also answered by the experimenter. 

Postoperative testing. Postoperative testing occurred two-three days after surgery. 

This timing was variable due to individual differences in fatigue and postoperative 

discomfort, which constrained patient’s ability to engage in testing. If a patient reported that 

they felt able to participate in postoperative testing, administration of the battery occurred in 

exactly the same manner as preoperative testing (outlined above). However, during 

postoperative testing, Version two of the BLAST was administered and there were no initial 

screening questions. In addition, if the patient reported discomfort or fatigue, or if the 

experimenter became aware of this, testing was immediately ceased, and resumed the 

following day. Once postoperative testing was completed, the experimenter answered any 

questions the patient or family member may have had in regards to test performance. 
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Chapter 4: Overall Task Performance 

Our first objective was to analyse patients’ overall performance on the BLAST 

irrespective of the within-task manipulations. In order to achieve this, each patient’s overall 

score on each task was compared with the average overall accuracy of the appropriate age 

matched control group using Crawford, Howell and Garthwaite’s (1998) modified t-test. 

Impairment was defined as a significant difference in accuracy between the patient and 

control group, with p< .05. In addition, Chi-Square analysis was used to determine if a 

significant difference existed between a patient’s preoperative and postoperative overall 

accuracy. Each patient’s overall preoperative and postoperative score on each of the tasks 

within the BLAST is shown in Table 4.1. 

Preoperatively, 94.3% of patients scored significantly below their respective control 

group in at least one task contained within the BLAST. In addition, as shown in Figure 4.1, 

preoperatively, these patients were most commonly impaired on one-three tasks within the 

BLAST. Similarly, postoperatively, 90.3% of patients scored significantly below their 

controls in at least one task within the BLAST, and these patients were also most commonly 

impaired on one-three tasks. 
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Table 4.1  

Tumour patients’ overall scores on each task within the BLAST as a percentage both pre- and postoperatively 

  Picture Naming Verb 
Generation 

Picture Word 
Verification 

Repetition 
(Real) 

Repetition 
(Nonwords) 

Reading 
(Real) 

Reading 
(Nonwords) Stroop Letter  Fluency Category 

Fluency Articulation 

   V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 

Control Data (51+) 94 94 93 91 98 98 97 97 84 84 100 100 95 95 95 95 47 47 40 40 53 53 

Name Tumour 
Location Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Pos

t Pre Post Pre Post Pre Post 

SM L Frontal 92 87 62* 78* na na 98 100 na na na na na na 100 100 38 32 25 21 na na 

VD L Frontal 92 75* 60* 60* 98 100 100 100 na na na na na na 90 100 6** 15* 6* 9* 52 65 

RF L Frontal 95 95 67* 80 92* 100 97 100 95 90 100 100 75* 83 100 100 30 31 15 27 46 44 

SO L Frontal 82 82* 67* 64* 94* 98 100 100 100 90 100 100 100 92 95 80 24 40 25 30 28 25* 

EMH L Frontal 88 na 71* na 96 na 97 na 95 na na na na na 90 na 10* na 23 na 53 na 

EA L Frontal 63* 63* 78* 69* 94* 94* 97 100 85 100 100 100 67* 25* 75* 65 15* 14* 25 23 37 37 

JM L Frontal 85 68* 82 67* 96 98 100 100 95 100 100 100 100 100 85 80 16* 8** 21 18 29 31 

CR L Frontal 88.33 95 93 82 100 94 97 100 60** 70** 100 na 92 na 85 na 37 na 25 na 38 0 

BCA L Posterior 40* 42* 63* 77* 90* 73* 100 100 na na na na na na na na 22 23 7* 8* 45 57 

BD L Posterior 87 82* 84 93 98 100 100 100 85 100 100 100 100 100 95 90 34 25 24 25 54 61 

LA R Frontal 92 80* 93 80 92* 98 99 99 na na na na na na 100 100 24 19 23 18 49 46 

CM R Frontal 95 88 73* 71* 96 96* 98 99 na na na na na na 100 100 13* 30 na 30 73 75 

LW R Frontal 93 97 76* 62* 94* 92* 100 100 85 90 100 100 100 100 95 90 20 20 34 33 51 54 

ES R Frontal 72* 70* 78 78 61* na 82* 97 na na na na na na na na 8** 7** 17 19 na na 

RG R Posterior 70* 56* 84 60* 90* 96* 94 96 na na na na na na 75* 100 21 24 25 25 37 36 

TKH R Posterior 65* 67* 78* 80 88* 98 93 97 na na na na na na 85 80 18 20 20 22 45 57 

JAS R Posterior 92 na 51* na 98 na 97 na na na 78.57* na na na na na 10* na 13* na na na 

AEK R Posterior 85 78* 87 69* 98 100 98 95 85 95 100 100 100 92 100 100 33 32 35 37 54 35 

PAJ Multiple 
Lesions 87 83* 64* 67* 96 90* 97 72* 85 na 96.43 100 na 75* na na 3** 12* 7* 9* 51 32 

SMC R Frontal 88 87 93 84 98 100 100 100 95 100 100 100 100 100 75* 90 20 27 29 28 50 47 

MRO R Frontal 95 97 87 80 90* 86* 100 100 100 100 100 100 100 na 95 100 41 57 28 41 na na 

RJ L Posterior 92 na 80 na 96* na 100 na 90 na 100 na 58* na 85 na 18* na 23 na 49 na 

GP R Frontal 73* 77* 87 76* 92* 98 93 100 90 95 100 100 100 100 70* 70* 22 33 25 32 40 49 
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  Picture Naming Verb 
Generation 

Picture Word 
Verification 

Repetition 
(Real) 

Repetition 
(Nonwords) 

Reading 
(Real) 

Reading 
(Nonwords) Stroop Letter  Fluency Category 

Fluency Articulation 

MR L Frontal 83 na 80 na 96 na 100 na 95 Na 100 na 100 na 50* na 10* na 18 na 39 na 

30-50 Patient Group 96 94 94 91 98 100 100 100 98 98 100 100 93 93 99 99 46 46 42 42 60 60 

PM L Frontal 98 87* 82* 62* na na 98 100 na na na na na na 90* 45* 35 1** 32 11* 70 65 

DA L Frontal 90* 78* 80* 87 96 96 100 99 na na na na na na 95* 100 38 23* 35 13* 41 40 

EH L Frontal 100 88* 93 87 83* 100 100 100 na na na na na na 100 100 30 34 11* 27 37* 58 

LC L Frontal 97 77* 91 67* 96 92* 100 100 95 100 na 100 na 100 100 100 34 14* 41 13* 46 46 

CA L Frontal 70* 82* 55* 69* 77* 100 100 100 95 100 100 100 100 100 100 100 15* 27 8* 18 43 36* 

CG L Frontal 95 92 82* 78* 100 100 100 100 100 95 100 100 na na 100 100 38 42 24 40 57 57 

AVG L Posterior 98 98 93 87 96 98 100 100 na na na na na na 100 100 36 29 21 31 77 78 

AM L Posterior  80* 77* 78* 87 98 na 100 99 na na na na na na 95 100 18* 11* 17 13* 50 63 

JB R Posterior 93 97 73* 69* 98 100 100 100 na na na na na na 100 100 44 43 41 42 74 71 

AE Multiple 
Lesions 83* 70* 73* 56* 98 94* 98 100 95 100 92.86* 100 50* 33* 85* 80* 29 29 33 18 47 53 

TT  R Frontal 92 87* 82* 73* 96 94* 100 100 95 100 100 100 91.67 100 95* 90* 32 36 34 42 56 57 

KB R Frontal 88* na 87 na 98 na 100 na 95 na 100 na 100 na 100 na 25 na 27 na 46 na 

DAP L Frontal 95 na 69* na 98 na 100 na 100 na 100 na 100 na 95* na 44 na 39 na 52 na 

TF L Frontal 87* 82** 60* 58* 96 100 92* 88* 80* 60* 100 100 100 92 75* 75* 6* 8* 10* 16 22* 31* 

TD L Frontal 95 na 89 na 96 na 100 Na 90 na 100 na 92* na 100 na 19 na 27 na na na 

DF R Frontal 93 93 84* 84* 94* 100 100 98 100 95 100 100 83* 92* 100 100 17 18 30 24 43 45 

*p<.05 
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Figure 4.1. The proportion of patients who were significantly different to their appropriate 

control group based on the number of tasks within BLAST that were completed both pre and 

postoperatively 

Sensitivity of Specific Tasks 

 Figure 4.2 shows the percentage of patients who scored significantly below their 

controls on each of the BLAST subtasks. Preoperatively, verb generation was the most 

sensitive task. Specifically, 60% of patients were impaired on this task. Other tasks that were 

particularly sensitive preoperatively were picture naming (32.5%), picture-word verification 

(37.5%), Stroop (30.6%), letter fluency (37.5%) and category fluency (22.5%). Real word 

and nonword repetition, as well as real word reading and articulation were the least sensitive 

tasks within BLAST preoperatively, with less than 10% of patients impaired.  

Patients’ postoperative performance in each of the tasks within BLAST were very 

similar to their preoperative performance, with two exceptions: 1) there was a significantly 

higher incidence of impairment in picture naming postoperatively when compared to 

preoperatively (66.67%) (χ2 (1)=8.59, p= .003), and 2) there was a trend towards fewer 
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impairments on the Stroop postoperatively (16.67%); however, this difference was not 

significant (χ2 (1)=1.72, p= .190). 

 

Figure 4.2. The proportion of patients significantly different to their appropriate control 

group for each task within BLAST both pre- and postoperatively 

Effects of Tumour Localisation and Tumour Characteristics  

For those tasks on which more than 25% of patients were impaired, we further broke 

down scores into four groups based on broad lesion localisation: left frontal and posterior, 

and right frontal and posterior (categorisation into these four anatomical groups is outlined in 

Chapter 3). Tasks meeting this criterion were: picture naming, verb generation, picture-word 

verification, Stroop, letter fluency and category fluency. Figure 4.3 shows the relevant results. 

We used logistic regression to investigate if there were any significant differences in the 

incidence of impairment across these different anatomical groups.  
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Preoperatively, the only task that showed reliable anatomical localisation was category 

fluency. Specifically, patients with a left posterior tumour were significantly more impaired on 

this task than all other anatomical groups (χ2 (3)=5.92, p= .0150). In addition, postoperatively, 

patients with a left hemisphere lesion performed significantly more poorly in this task than 

patient with a right hemisphere lesion (χ2 (1)=9.56, p= .0020), but there was no reliable 

posterior/anterior difference at this testing phase. In addition, postoperatively, the incidence of 

letter fluency deficits also differed significantly across the four anatomical groups; patients with 

a left frontal lesion were significantly more impaired on this task than all than all other 

anatomical groups (χ2(3)=18.92, p= .0259). There was no other task postoperatively that showed 

anatomical specificity.  

.
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Figure 4.3. The percentage of patients impaired in the most sensitive tasks within BLAST by tumour localisation both pre- and postoperatively 
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Based on their histological reports, patients were also categorised into three groups: 

low-grade malignancy (pre=10; post=7); high-grade malignancy (pre=14; post=11), and 

meningioma (pre=12; post=11)5. As shown in Table 4.2, there was no significant difference 

in impairment between patients with a high-grade malignant tumour and the other two 

tumour types. However, there was a trend towards patients with a high grade malignant 

tumour performing more poorly in picture naming in both pre and postoperatively. Patients 

with a low grade malignant tumour or a meningioma did not perform significantly more 

poorly on these tasks. 

Table 4.2 

The percentage of patients impaired on each task in the BLAST by tumour type both pre and 

postoperatively 

 Preoperative Postoperative 

Task High Low Meningioma p 
value 

High Low Meningioma p 
value 

Picture 
Naming 

50 0 42 .062 91 57 55 .056 

Verb 
Generation 

57 70 42 .940 75 67 45 .300 

Picture-
Word 

Verification 

57 22 50 .920 18 29 36 .433 

Stroop 33 33 25 .813 9 29 11 .463 

Letter 
Fluency 

50 50 8 .193 36 25 40 .841 

Category 
Fluency 

21 33 8 .967 30 13 30 .627 

 

                                                        
5  Two patients were excluded from this analysis due to the following: no histological report in medical records  (N=1), and a 
cavernoma tumour (N=1) 



 

 

98 

Patients were further categorised into two groups based on the presence of oedema 

surrounding the tumour (Oedema present, N=18; Oedema absent, N= 16)6 .The percentage of 

patients impaired on each of the tasks within the BLAST based on this categorisation is 

presented in Table 4.3. A Chi-Square analysis revealed no significant difference between the 

oedema present and the no oedema present on any task within the BLAST either pre- or 

postoperatively.  

Table 4.3 

The percentage of patients impaired on each task in the BLAST by tumour oedema presence 

both pre and postoperatively 

 Preoperative Postoperative 

Cognitive Skill Yes No p value Yes No p value 

Picture Naming 28 38 .591 69 63 .271 

Verb Generation 67 56 .403 69 63 .851 

Picture-Word Verification 47 40 .406 36 20 .564 

Stroop 33 19 .744 46 29 .643 

Letter Fluency 50 31 .436 33 31 .739 

Category Fluency 27 39 .816 28 31 .519 

 

As shown in Table 4.4, simple regression analysis revealed negative correlations 

between tumour volume and overall task performance on all tasks preoperatively. However, 

none of these correlations reached statistical significance. Due to the considerable changes 

that are likely to occur to tumour voume during surgery, this analysis was not computed 

postoperatively.  

 

                                                        
6 Four patients were excluded from this analysis. This was either because there was no pathological report in their medical records 
or oedema presence/absence was not specified in their medical records 
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Table 4.4 

Correlations coefficient calculated for the relationship between tumour volume and overall 

task performance both pre- and postoperatively 

 Preoperative  

Task Correlation 
Coefficient  

p value 

Picture Naming -0.160 .344 

Verb Generation -0.042 .804 

Picture-Word 
Verification 

-0.106 .544 

Stroop -0.246 .217 

Letter Fluency -0.32 .851 

Category Fluency -0.05 .500 

 

General Comments  

Our first step in exploring our participants’ performance on the BLAST was to 

examine their overall performance on each subtask. We found that a staggering proportion of 

patients were significantly different to their respective control group in at least one task 

within the BLAST (preoperatively = 94%; postoperatively = 90%). Furthermore, patients’ 

impairments were generally quite selective: the majority were impaired on one to three tasks, 

and this was true both pre and postoperatively. With regard to specific task sensitivity, verb 

generation was the most sensitive task. Other sensitive tasks were picture naming, picture-

word verification, Stroop, letter fluency and category fluency. Real word and nonword 

repetition, as well as real word reading and articulation, were the least sensitive tasks. Finally, 

the only subtask where there was a significant change in the incidence of impairment across 

surgical phase was picture naming: the percentage of patients impaired on this task 

significantly increased from the preoperative to the postoperative phase. 
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Our explorations of the effect of broad tumour localisation and tumour characteristics 

(pathology, oedema and volume) revealed few statistically reliable findings. At the broadest 

level the lack of differentiation in task performance between left hemisphere and right 

hemisphere tumours was surprising. This finding suggests that task performance may be 

highly susceptible to nonlingustic factors that could also impact on performance (this issue 

will be discussed in more detail in the general discussion). Although at a more specific level 

we did find evidence for an association of category fluency with the left hemisphere posterior 

tumours preoperatively, and letter fluency with left hemisphere anterior tumours 

postoperatively. Although the number of patients in some of our anatomical groups, 

particularly the posterior groups, was low so the ability to conduct these types of analysis is 

constrained by the limited power evident in our sample. The malignancy of the tumour had 

no significant effect on overall performance, although there was a trend towards patients with 

a high grade tumour performing more poorly in picture naming. Finally, we also found that 

tumour oedema and tumour volume had no significant effect on overall task performance on 

any task within the BLAST either pre- or postoperatively.  

Our exploration of overall task performance has revealed that the picture naming task 

has relatively high sensitivity. Not only was this task able to detect a high incidence of 

impairments in our sample, but it was also the only task that found a significant difference in 

the incidence of impairment due to surgical phase and tumour malignancy. The picture 

naming task arguably recruits a range of different language skills that likely involve an 

extensive network of cortical structures involving the left frontal and posterior regions (see 

esp. Baldo, Arévalo, Patterson & Dronkers, 2013; Damasio et al 1996, 2004; Hillis et al., 

2006). As a result, the picture naming task may be more likely detect a language impairment 

adherent in our sample due to the range of language skills involved in the task. However, at 

the current point we are unable to determine what specific language skill or skills is driving 
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this impairment. Our next step therefore is to specifically assess these language skills, by 

deriving a measure based on current cognitive and neuropsychological theories of language. 
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Chapter 5: Examination of Core Cognitive Skills 

In order to further investigate the language capabilities of surgical brain tumour 

patients, each patient’s performance on the BLAST was further used to generate estimates of 

their ability with respect to the 11 core cognitive skills identified in Figure 2.1. To do this, we 

used patients’ pattern of performance across the various tasks and manipulations to derive 

key performance measures. These measures were then combined in various ways in order to 

establish an overall quantified value for each core cognitive skill. Table 5.1 outlines each 

cognitive skill and the key performance measures that were contributed to its 

operationalisation. 

Each key performance measure listed in Table 5.1 was first obtained for each 

participant. It was then converted to a Z score using the mean and SD of the relevant control 

group, using the following formula:  

             Z = (Individual Score – Control Group Mean) 
                         Control Group Standard Deviation 

Key performance measures (see Table 5.1), expressed as Z scores were then 

combined in various ways in order to derive a total score for each of the core cognitive skills. 

Table 5.2 outlines the specific equations used to calculate each of these skills. Finally, each 

patient’s cognitive skill expressed as a Z score using the measures for the relevant control 

group, was converted to a T score for ease of interpretation using the following formula:  

T Score = (Z Score x 10) + 50 

For previous studies that have used T scores to present aggregate neuropsychological 

measures, see Miller and Rohling (2001). 
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Table 5.1 

Summary of the task profiles associated with each of the 11 core cognitive skills assessed by the BLAST 
 
Cognitive Skill BLAST Profile Key Performance Measures Abbreviation 

Accessing Semantic 
Knowledge 

1. Semantic confusions in picture word 
verification 

 
 

2. Verbal fluency: poorer category than letter 
fluency 

 
3. Production of semantic errors in picture 

naming 

1. Semantic confusion accuracy minus 
phonological confusion accuracy in picture- 

word verification 
 

2. Average category fluency score minus average 
letter fluency score 

 
 

3. Total semantic errors 
in picture naming 

1. PicWrdSem 
 
 
 

2. CatFlu 
 
 

3. PicNamSemEr 

Lexical Selection 4. Strong frequency effect in picture naming 
 
 

5. Production of omission errors in picture 
naming 

 
6. Production of semantic errors in picture 

naming 
 

7. Normal picture word verification 

4. Accuracy in low frequency items in picture 
naming compared to medium and high frequency 

items 
 

5. Total omission errors in picture naming 
 
 

6. Total semantic errors in picture naming 
 

7. Total accuracy in picture word verification 

4. PicNamFreq 
 
 
 

5. PicNamOmisEr 
 
 

6. PicNamSemEr 
 

7. PicWrd 
Phonological 

Encoding 
8. Strong length effects in picture naming 

 
 

9. Abnormal latency in single word repetition 
 

10. Abnormal latency in single word 
repetition 

 
11. Production of phonological errors in picture 

naming 
 

8. Accuracy in polysyllabic items in picture naming 
compared to bisyllabic and monosyllabic items 

 
9. Average latency in real word repetition 

 
10. Average latency in real word repetition 

 
 

11. Total phonological errors in picture naming 
 
 

8. PicNamLeng 
 

 
9.ReptLat 

 
10.NonReptLat 

 
 

11.PicNamPhonErr 
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Cognitive Skill BLAST Profile Key Performance Measures Abbreviation 

12. Normal articulatory agility 12. Total score in articulatory agility 12. ArticAgil 
Auditory Word 

Recognition 
13. Phonological confusions in picture word 

verification 
 

14. Abnormal latency in repetition 
 

15. Poor repetition accuracy relative to picture 
naming accuracy 

13. Phonological confusions accuracy minus 
semantic confusion in picture word verification 

 
14. Average latency in real word repetition 

 
15. Repetition accuracy minus picture naming 

accuracy 

13. PicWrdPhon 
 

 
14.ReptLat 

 
15. ReptAcc - 

PicNam 
Goal-Driven Response 

Selection 
16. Abnormal selection effect in verb generation 

 
 

17. Abnormal congruency effect in Stroop 
 
 

18. Poor letter fluency 

16. Accuracy in low selection items compared to 
high selection items 

 
 

17. Accuracy in incongruent items compared to 
congruent items 

 
18.  Overall letter fluency score 

16. VerbSelection 
 
 
 

17. Stroop 
 
 

18.LettFlu 
Verb Retrieval 19. Poor verb generation in low selection items 

relative to picture naming 
19. Accuracy in verb generation high selection 

minus accuracy in picture naming 
19. Verb - PicNam 

Verbal STM 20. Poor nonword repetition 20. Nonword repetition accuracy 20. NonReptAcc 
Visual Word 
Recognition 

21. Strong length effect in single word readings 
 

21. Response latency to read single words as word 
length increases (length effect) 

21. ReadLengEff 

Orthographic-
Phonological 

Mapping 
 

Orthographic-
Semantic Mapping 

 

22. Poor nonword readings 
 
 

 
23. Poor reading of irregular words relative to 

regular words 

22. Accuracy in nonword reading 
 
 

 
23.Accuracy in irregular word reading relative to 

regular word reading 

22. NonRead 
 
 

 
23. IrrRead – 

RegRead 

Articulatory-Motor 
Planning 

24. Poor articulatory agility score 
 

24. Total score in articulatory agility 24. ArticAgil 
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Table 5.2 

Formulae used to calculate each cognitive skill using the key performance measures outlined 

in Table 5.1. Notes that also calculations utilised the standardised Z-scores for each 

performance measure 

Cognitive Skill Formula used to Operationalise  

Accessing Semantic Knowledge = Mean (PicWrdSem + CatFlu + 

PicNamSemErr) 

Lexical Selection = Mean (PicNamFreq +PicNamOmisEr+ 

PicNamSemErr) - PicWrd7 

Phonological Encoding = Mean (PicNamLeng + ReptLat + 

NonRepLat + PicNamPhonErr) - 

ArticAgil 

Auditory Word Recognition = Mean (PicWrdPhon + ReptLat+ 

(ReptAcc – PicNam)) 

Goal-Driven Response Selection = Mean (VerbSelection + Stroop 

+LettFlu) 

Verb Retrieval = (Verb – PicNam) 

Verbal Short Term Memory = NonReptAcc 

                                                        
7 For this measure we only wanted to consider scores where the patients frequency effect in picture naming (4) and their omission 

(5) and semantic errors (3) was larger than what would be expected based on their performance in picture-word verification. 

Therefore a patient’s score for lexical selection was only calculated when the Mean score of (PicNamFreq +PicNamOmisEr+ 

PicNamSemErr) was lower than PicWrd. If a patient had a score of 6 that was larger than the mean score of (4+5+3), these were 

scored as the respective control group’s score for lexical selection. 
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Cognitive Skill Formula used to Operationalise  

Visual Word Recognition 

Orthographic-Phonological Mapping 

Orthographic-Semantic Mapping 

Articulatory-Motor Planning 

= ReadLengEff 

= NonRead 

= IrrRead – RegRead 

= ArticAgil 
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Overall Cognitive Skill Profile 

 Each patient’s score on the 11 core cognitive skills was compared with the mean core cognitive skill of their age matched control group 

using the Crawford, Howell, and Garthwaite (1998) modified t-test. Impairment was defined as a significant difference in performance between 

the patient’s and control group’s core skill scores, with p< .05. Individual patient’s preoperative and positive core cognitive skill scores are 

presented in Table 5.3.  

Table 5.3 
 
 The scores derived for each cognitive skill for each patient who completed the BLAST both pre and postoperatively 

  

Accessing 
Semantic 

Knowledge 
Lexical Selection Phonological 

Encoding 
Goal Driven 

Response 
Selection 

Verb Retrieval Auditory Word 
Identification Verbal STM Articulatory 

Motor Planning 
Visual Word 
Identification 

Orthographic-
Phonological 

Mapping 

Orthographic-
Semantic 
Mapping 

  V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 

Controls (51+) 50.00 50.00 45.67 46.92 53.01 53.01 52.63 55.50 50.00 50.00 48.84 54.79 48.84 54.79 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 

Name Location Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

SM L Frontal 38.19 44.9 43.60 34.34 51.55 54.76 41.94 30.27 18.04* 50.13 53.83 62.18           

VD L Frontal 47.44 38.79 38.83 17.74* 43.89 70.98 25.78* 9.62* 5.52* 48.19 55.52 63.89   49.58 51.10       

RF L Frontal 45.11 53.2 45.67 46.92 68.73 71.46 39.74 40.25 18.76* 45.83 58.55 56.7 56.67 53.72 45.05 43.54 54.48 46.20 22.23* 34.13 52.36 52.36 

SO L Frontal 30.60 37.12 45.67 46.92 64.52 68.33 44.85 33.29 31.13* 41.11 63.07 63.32 59.61 53.72 31.46* 29.19* 48.33 40.10 57.94 46.04 52.36 52.36 

EMH L Frontal 52.11  45.67  43.04  29.72  28.15*  52.41  56.67  45.05        

EA L Frontal 40.9 64.82 45.67 46.92 40.34 53.27 27.36 25.12* 43.86 57.38 60.68 63.06 50.78 59.61 38.26 38.26 14.96* 35.02 10.33* -49.2* 52.36 9.93 

JM L Frontal 39.4 34.46 41.41 20.29* 67.42 53.27 41.44 29.42 39.18 51.57 59.03 67.23 56.67 59.61 32.21* 33.72 32.96 20.00* 57.94 57.94 52.36 52.36 

CR L Frontal 44.4 51.10 38.61 46.92 58.26 47.22 45.06  57.17 40.79 50.98 50.68 36.05 41.94 39.01  38.35  46.04    

BCA L Posterior -20.9* -19.1* -9.10* 46.92 65.36 -
45.60* 34.81 34.44 82.98 70.54 90.67 116.43   44.3 53.36       

BD L Posterior 36.4 39.94 43.69 13.02* 51.30 42.83 42.62 44.06 46.99 66.36 60.98 62.71 50.78 59.61 51.1 56.38 46.26 53.00 57.94 57.94 52.36 52.36 
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Accessing 
Semantic 

Knowledge 
Lexical Selection Phonological 

Encoding 
Goal Driven 

Response 
Selection 

Verb Retrieval Auditory Word 
Identification Verbal STM Articulatory 

Motor Planning 
Visual Word 
Identification 

Orthographic-
Phonological 

Mapping 

Orthographic-
Semantic 
Mapping 

LA R Frontal 43.6 50.00 45.67 39.92 61.79 60.33 45.36 33.83 52.46 57.87 57.84 57.91   47.32 45.05       

CM R Frontal 46.75 57.59 45.68 46.92 42.71 43.47 32.98 44.63 18.76* 33.41 59.27 55.64   65.45 66.96       

LW R Frontal 53.52 72.80 45.67 46.92 51.78 49.01 44.75 47.09 27.51* 8.55* 54.86 45.26 50.78 53.72 48.83 51.10 37.05 70.93 57.94 57.94 52.36 52.36 

ES R Frontal 32.43 42.08 45.67 42.67 36.41 36.42 35.32 23.00* 59.41 69.83 54.39 62.17           

RG R Posterior 42.08 45.61 45.67 27.62* 67.98 43.09 58.22 38.68 66.76 62.75 78.29 76.55   38.26 37.5       

TKH R Posterior 35.31 38.87 45.67 40.08 46.24 37.17 39.31 38.68 73.82 78.73 74.17 64.22   44.3 53.36       

JAS R Posterior 50.70  43.95  40.73  46.79  14.92*  46.62      -357*    -8.25  

AEK R Posterior 42.95 47.30 45.67 46.92 58.18 70.10 43.39 39.28 64.85 50.05 60.55 58.91 50.78 56.67 51.10 41.28 38.26 35.64 57.94 46.04 52.36 52.36 

PAJ Multiple 
Lesions 48.00 60.7 45.67 46.92 57.07 73.02 11.91* 7.97* 54.35 50.78 58.12 33.99* 50.78  48.83 34.48 36.39 29.41*   9.93 52.36 

SMC R Frontal 46.51 51.4 45.67 29.90* 61.26 55.9 49.35 44.7 66.56 50.46 60 58.7 56.67 59.61 48.07 45.81 47.94 40.80 57.94  52.36 52.36 

MRO R Frontal 35.67 46.58 45.67 46.92 56.41 53.52 46.26 43.77 44.37 38.85 60.89 70.19 59.61 59.61   45.52 40.75 57.94  52.36 52.36 

RJ L Posterior 50.60  45.67  58.03  44.61  29.85*  51.77  53.72  47.32  51.85  
-

1.59**  52.36  

GP R Frontal 49.42 37.40 45.67 46.92 45.7 47.19 39.18 38.76 68.48 46.93 60.95 59.51 53.72 56.67 40.52 47.32 -11.9* 56.46 57.94 57.94 52.36 52.36 

MR L Frontal 46.82  45.67  59.56  34.74  45.86  54.34  56.67  39.77  35.34  57.94  52.36  

Controls (30-50) 50.5 52.46 47.85 46.57 50.04 50.99 49.10 50.9 50.00 50.00 49.59 49.61 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 

PM L Frontal 46.8 29.4* 47.85 26.29* 51.54 35.29 51.5 -44.4* 28.58* 31.42* 46.56 52.31   60.66 55.36       

DA L Frontal 30.7* 35.85 40.61 46.57 34.97 66.49 43.65 25.07* 34.61 68.74 65.27 70.42   29.94 28.88       

EH L Frontal 38.82 38.53 47.85 40.04 83.86 57.64 15.44* 23.95* 37.2 56.8 56.42 60.24   25.7 47.94       

LC L Frontal 46.00 49.00 47.85 46.57 65.37 65.25 42.4 28.12* 48.22 41.86 56.09 62.42   35.23 35.23  64.26  57.58  52.36 

CA L Frontal 24.86* 39.44 47.85 31.50 19.99* 39.84 -5.3* 43.79 23.67* 24.95* 79.85 46.28 41.23 55.56 32.06 24.64 8.26* 15.13* 57.58 57.58 52.36 52.36 

CG L Frontal 50.82 49.10 38.87 46.57 42.14 56.2 39.16 44.54 36.72 34.07 45.78 52.96 41.23 55.56 46.89 46.89 52.91 50.35   52.36 52.36 

AVG L Posterior 37.3 34.38 47.85 46.57 43.56 31.85* 46.25 40.29 42.36 36.27 54.83 49.55   68.07 69.13       
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Accessing 
Semantic 

Knowledge 
Lexical Selection Phonological 

Encoding 
Goal Driven 

Response 
Selection 

Verb Retrieval Auditory Word 
Identification Verbal STM Articulatory 

Motor Planning 
Visual Word 
Identification 

Orthographic-
Phonological 

Mapping 

Orthographic-
Semantic 
Mapping 

AM L Posterior 25.4* 25.08* 4.28* 13.90* 52.13 24.89* 34.42 29.41* 45.88 68.69 59.27 59.89 55.56 41.23 39.47 53.24       

JB R Posterior 47.7 53.4 47.85 46.57 48.14 42.35 46.37 44.15 18.18* 22.53* 58.31 49.22   64.89 61.72       

AE Multiple 
Lesions 28.00* 19.00* 28.68* 43.82 75.17 58.2 26.05 1.37** 40.72 55.46 66.56 76.48 41.23 55.56 36.29 42.65 41.80 47.46 2.94* -

15.20* 52.36 9.93* 

TT R Frontal 43.72 40.31 47.85 43.89 62.21 49.88 46.15 33.36 34.84 45.62 65.55 56.61 41.23 55.56 45.83 46.89 50.06 20.93* 48.48 57.58 52.36 52.36 

KB R Frontal 43.20  47.85  57.78  40.5  61.16  59.03  41.23  35.23  82.77  57.58  52.36  

DAP L Frontal 50.81  47.85  54.06  3.00*  40.36 42.77 53.23  41.23  41.59  50.74  57.58  52.36  

TF L Frontal 35.91 35.88 47.85 34.51 66.48 50.9 -115* -20.5* 36.59 30.32* 37.75 43.84 -1.75* 59.05 9.81* 19.34* 52.18 25.71* 57.58 48.48 52.36 52.36 

TD L Frontal 51.68  47.85  55.38  50.05  37.77  54.56  26.91*    51.63  48.48  52.36  

DF R Frontal 54.46 49.11 47.85 32.96 60.87 36.93 26.3 29.51* 15.59*  41.3 42.5 55.56 41.23 32.06 34.17 48.15 66.71 39.37 48.48 52.36  

*p<.05 
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Preoperatively, 65% of patients were significantly different to their respective control 

group in at least one cognitive skill assessed by the BLAST. Furthermore, these patients were 

more likely to be impaired on one to two cognitive skills than three to five cognitive skills, 

and no patient was impaired in more than five cognitive skills preoperatively. Specifically (as 

shown in Figure 5.1), preoperatively 32.5% of patients were impaired in one cognitive skill, 

20% in two cognitive skills, and 5% in three, and 2.5% in four and five cognitive skills.  

Postoperatively, 66.7% of patients were significantly different to controls in at least 

one cognitive skill assessed by the BLAST. Similar to preoperative performance patients 

were also most likely to be impaired on one cognitive skill, and there were no patients 

impaired on more than four cognitive skills. However, postoperatively, patients were less 

likely to be impaired on two cognitive skills and there was a slight increase in impairment in 

three and four cognitive skills. Specifically, 39.4% were impaired on one cognitive skill, 

12.1% on two cognitive skills, 9.1% on three cognitive and four cognitive skills. 

Postoperatively, there were no patients with impairment in more than four cognitive skills 

(see Figure 5.1). 
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Figure 5.1. The numbers of cognitive skills within the BLAST that patients were 

significantly different to their respective controls groups on both pre and postoperatively  

Specific Cognitive Skill Integrity  

As shown in Figure 5.2, preoperatively, verb retrieval was the cognitive skill most 

commonly impaired in our tumour sample preoperatively. Specifically, 32.5% of patients 

were impaired on this task preoperatively. The other cognitive skills were less sensitive 

preoperatively: accessing semantic knowledge (12.5%), lexical selection (7.5%), goal-driven 

response selection (15%), and articulatory-motor planning (8%). There were no patients 

impaired in phonological encoding and auditory word recognition preoperatively.   

Postoperatively, there was a substantial increase in patients impaired on goal-driven 

response selection (37.5%) (χ2 (1)=4.80, p= .028). There was also an increase in patients 

impaired in phonological encoding (9%) and lexical selection (21.2%). However, these 

differences were not statistically significant (χ2 (1)=3.79, p= .051; χ2 (1)=3.26, p= .071 

respectively). Conversely, there was actually a decrease in the percentage of patients 
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impaired in verb retrieval (15.1%), although again, this difference was not statistically 

significant (χ2 (1)=2.93, p= .087). The percentage of patients impaired in accessing semantic 

knowledge, auditory word recognition and articulatory-motor planning did not change 

substantially postoperatively (see Figure 5.2). 

Although it appears from Figure 5.2 that visual word identification and 

orthographical-phonological mapping are particularly likely to be impaired both pre- and 

postoperatively, inferences drawn in regards to these cognitive skills should be tentative. This 

is due to the relatively small number of patients that completed the tasks that measure these 

cognitive skills. This is also true for verbal short-term memory and orthographic-semantic 

mapping. For this reason, we have decided to not compare performance on these cognitive 

skills with the other cognitive skills mentioned above, and they have therefore been excluded 

from further analysis. 

Figure 5.2 The percentage of patients impaired on each cognitive skills assessed by the 

BLAST both pre and postoperatively  
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Cognitive Skill Score by Tumour Neuroanatomy  

Performance on the cognitive skills was further broken down according to the broad 

anatomical location of the lesion for each patient– left frontal, left posterior, right frontal and 

right posterior. Visual word recognition, orthographical-phonological mapping, 

orthographical-semantic mapping, and verbal short-term memory were excluded from this 

analysis due to the relatively small number of patients who completed the tasks used to derive 

these cognitive skill scores.  

To begin we took a very general approach to the exploration of the implications of 

tumour localization on cognitive skill performance. To do this we calculated the percentage 

of patients who were significantly different to their respective control group for each of the 

four broad anatomical regions. As shown in Figure 5.3, preoperatively, patients with a left 

posterior lesion were more likely than all other anatomical groups to be impaired on lexical 

selection and accessing semantic knowledge. In contrast, patients with a left frontal lesion 

were more likely than all other anatomical groups to be impaired in goal-driven response 

selection and articulatory-motor planning. This pattern of anatomical specificity persisted 

postoperatively, plus patients with a left posterior lesion were now more likely to be impaired 

in phonological encoding than all other anatomical groups. However, caution must be noted 

in the interpretation of these results due to the small number of patients in the posterior 

groups. 
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Figure 5.3. The percentage of patients significantly different to their respective control group on each cognitive skill both pre- and 

postoperatively 
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We then conducted an additional analysis by calculating the mean cognitive skill 

scores for each of the four broad anatomical regions (see Figures 5.4 and 5.5). For these 

figures, scores were collapsed across the two groups, as there was no significant difference 

between cognitive skill scores for the two healthy control groups (see Table 5.3). As shown 

in Figure 5.4, patients with a right frontal and right posterior tumour scored similarly to 

controls in all cognitive skills examined in BLAST both pre and postoperatively, except for 

goal-driven response selection. Postoperatively, patients with a right hemisphere lesion 

(collapsed across other anterior and posterior groups) scored significantly more poorly in this 

core cognitive skill than controls (F(2,52)=7.889, p=.001).  

Group differences were more evident for the left hemisphere lesion groups (Figure 

5.5). Preoperatively, a one-way analysis of variance examining the effect of lesion group (left 

frontal, right frontal, left posterior, right posterior) on core skill measures revealed a 

significant effect of lesion group on scores for lexical selection (F(3,34)=5.719, p=.003), 

accessing semantic knowledge (F(3,34)=6.750, p=.001), verb retrieval (F(3,34)=3.281, 

p=.033), and articulatory motor planning (F(3,34)=6.750, p=.001). Planned comparisons 

revealed that lexical selection scores were significantly lower for patients with a left posterior 

tumour relative to all other groups (t(34)=-3.920, p<.001), and possibly also scores for 

accessing semantic knowledge (t(34)=1.700, p=.050).  Conversely, scores on verb retrieval 

and articulatory-motor planning were significantly lower for patients with a left frontal 

lesion than in all other anatomical groups,(t(34)=3.089, p=.002), and (t(28)=7.780, p=.005) 

respectively. There were no significant effects of group on phonological encoding 

(F(3,34)=0.052, p=.984), auditory word recognition F(3,34)=1.354, p=.273), or goal driven 

response selection (F(3,34)=1.460, p=.243).  

Postoperatively, a one-way analysis of variance examining the effect of lesion group 

(left frontal, right frontal, left posterior, right posterior) on cognitive skill measures revealed a 
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significant affect of anatomical group on lexical selection (F(3,28)=2.979, p=.048), accessing 

semantic knowledge (F(3,28)=6.396, p=.003), phonological encoding (F(3,28)=6.464, 

p=.002),  and articulatory motor planning (F(3,28)=6.396, p=.002). A planned comparison 

analysis found that patients with a left posterior tumour continued to score significantly lower 

than all other anatomical groups on accessing semantic knowledge (t(28)=2.636, p=.0075) 

and phonological encoding (t(28)=-4.062, p<.001). For lexical selection, this difference was 

now approaching significance (t(28)=-1.685, p =.0502). Similarly, those with a left frontal 

lesion continued to score significantly lower than the other anatomical groups on articulatory 

motor planning (t(23)=.4109, p<.001).  Postoperatively, there was now no significant effect 

of anatomical group on scores for verb retrieval (F(3,28)=1.433, p=.255), and auditory word 

recognition (F(3,28)=1.533, p=.229). Although it appears from Figure 5.4 that patients with a 

left frontal lesion had lower scores on goal-driven response selection, there was still not 

effect of anatomical group on scores for this cognitive skill (F(3,28)=2.356, p=.096) (similar 

to those obtained preoperatively). 

Phonological encoding was the only cognitive skill where there was a significant 

interaction between tumour group and surgical phase (F(3,68)=4.837, p=.004). Specifically, 

patients with a left posterior tumour had significantly lower scores in phonological encoding 

compared to all other anatomical groups, but only postoperatively.
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Figure 5.4 The mean T Score for each core cognitive skill for the control group and the right anterior and right posterior group both pre and postoperatively. 

Error bars represent standard error of the mean. 
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 Figure 5.5. The mean T Score for each core cognitive skill for the control group and the left anterior and left posterior group both pre and postoperatively. 

Error bars represent standard error of the mean.
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Cognitive Skill Score by Tumour Characteristic 

The average scores for high malignant, low malignant tumours and meningiomas, on 

each of the cognitive skills examined by the BLAST are presented in Table 5.4. One-way 

ANOVA revealed that there were no significant differences between the these groups on any 

of the core cognitive skills scores operationalised using the BLAST, neither pre- nor 

postoperatively.  

Table 5.4  

The mean T scores for each cognitive skill for high and low malignant tumours, and 

meningiomas both pre and postoperatively 

  Preoperative  Postoperative 

Cognitive 
Skill 

High Low Meningioma p 
value 

High Low Meningioma p 
value  

Accessing 
Semantic 

Knowledge 

40.32 47.41 35.84 .114 39.92 45.07 42.31 .802 

Lexical 
Selection 

38.41 46.81 45.22 .154 32.79 41.59 41.96 .107 

Phonological 
Encoding 

56.72 55.76 49.52 .288 47.95 47.95 51.63 .582 

Auditory 
Word 

Recognition 

60.61 54.24 60.24 .259 66.74 52.63 57.89 .103 

Verb 
Retrieval 

42.53 43.71 37.67 .794 54.43 46.13 41.41 .701 

Goal-Driven 
Response 
Selection 

29.46 35.18 36.89 .716 29.18 24.28 35.71 .170 

Articulatory 
Motor 

Planning 

41.67 45.90 40.96 .682 43.75 47.71 42.33 .671 

 

In addition, the average scores for tumour with oedema and tumour without oedema 

were calculated for each cognitive skill examined by the BLAST (see Table 5.5). 
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Independent samples t-tests revealed no significant differences between these two groups on 

any of the core cognitive skills neither pre- nor postoperatively.  

Table 5.5 

 Average T Scores of the core cognitive skills assessed by the BLAST by oedema presence 

both pre- and postoperatively 

 Preoperative Postoperative 

Cognitive Skill Yes No p value Yes No p value 

Accessing Semantic Knowledge 43.10 37.82 .262 43.33 40.11 .598 

Lexical Selection 44.56 39.30 .152 40.73 37.72 .123 

Phonological Encoding 52.62 53.55 .831 42.00 52.20 .228 

Auditory Word Recognition 57.56 59.41 .960 60.51 59.41 .835 

Verb Retrieval 37.13 37.23 .224 43.74 47.53 .704 

Goal-Driven Response Selection 26.55 38.73 .987 28.06 31.21 .524 

Articulatory-Motor Planning 42.53 41.63 .478 44.53 42.62 .595 

  

Finally, to assess the effect of tumour volume on each cognitive skill, we analysed 

correlations between volume (cm3) and cognitive skill scores. As shown in Table 5.6, the 

correlations between tumour volume and cognitive skill were negative for all skills examined 

by the BLAST preoperatively, however these did not reach statistical significance. Due to the 

considerable changes that are likely to occur to tumour voume during surgery, this analysis 

was not computed postoperatively. 

 

 



 

 

121 

Table 5.6 

Correlations between tumour volume and cognitive skill performance both preoperatively 

 Preoperative  

Task Correlation 
Coefficient  

p value 

Accessing Semantic 
Knowledge 

-0.217 .197 

Lexical Selection -0.151 .340 

Phonological 
Encoding 

-0.149 .378 

Auditory Word 
Recognition 

-0.143 .397 

Goal Driven Response 
Selection 

-0.036 .833 

Verb Retrieval -0.280 .093 

Articulatory Motor 
Planning 

-0.147 .429 

 

General Comments: Cognitive Skills 

In this analysis of the core language skill scores, we found that a large proportion of 

brain tumour patients scored significantly below healthy controls on at least one core 

cognitive skill and this was the case both pre- and postoperatively. It is interesting to note that 

67.5% of individuals scored reliably below normal levels on at least one skill measure; this is 

a much smaller percentage than the 94% that were found to perform below normal levels on 

at least one task. One possibility is that overall task performance may be more susceptible to 

nonlinguistic factors such as fatigue, whereas a core skills measure which are to a large 

extent measures of the relative performance across different stimulus properties, may be less 

contaminated by such effects (this issue will be discussed in more detail in the General 

Discussion). Preoperatively, the most sensitive cognitive skill was verb retrieval, whereas 
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postoperatively this was goal-driven response selection. Similar to overall task performance, 

brain tumour patients were more likely to have a specific cognitive skill deficit, than a more 

global impairment (i.e. be impaired on one cognitive skill than a number of cognitive skills) 

both pre and postoperatively. 

Consistent with our hypotheses, patients with a left frontal lesion scored significantly 

more poorly than all other anatomical groups (left posterior, right anterior and right posterior) 

on verb retrieval and articulatory motor planning both pre and postoperatively. However, 

scores on verb retrieval were significantly lower in this group only in the preoperative phase. 

Interestingly, we also found that patients with a right hemisphere tumour scored significantly 

lower than controls on goal-driven response selection. There are two possible explanations 

for this unexpected finding. First, it may be the case that this cognitive skill is less lateralised 

than the other cognitive skills assessed by the BLAST; or second, the measures that we used 

to operationalise this cognitive skill may recruit more generalised cognitive processes that 

extend beyond those specifically involved in language (the issue of language specificity will 

be discussed later in the General Discussion).  

We also hypothesised that patients with a left posterior lesion would score 

significantly more poorly on the posterior cognitive skills lexical selection, phonological 

encoding, accessing semantic knowledge and auditory word recognition. Although we had a 

relatively small number of patients within this group, we found partial support for this 

hypothesis. Patients with a left posterior tumour performed significantly more poorly than all 

other anatomical groups in lexical selection preoperatively (postoperatively, this effect only 

approached significance), accessing semantic knowledge (both pre- and postoperatively), and 

phonological encoding but only postoperatively. However, this anatomical specificity was 

not evident for phonological encoding preoperatively. Inconsistent with our hypothesis, there 

was no effect of tumour localisation on auditory word recognition. There was a low 
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incidence of impairment in this cognitive skill in any individual both pre- and 

postoperatively; hence no group differences could be identified. This may be due to poor 

sensitivity in the measures used to operationalise this cognitive skill, and this will be 

discussed later in the General Discussion. Additionally, it may also be the case that this 

simple four-way division of patients into groups is insufficiently sensitive to identify some 

brain-behaviour relationships, especially those that occur only when a particular key portion 

of the anatomical region in question is damaged. More fine-grained, voxel levels analyses 

may be more effective at teasing part brain behaviour relationships in this situation. We also 

found no significant effect of tumour malignancy or the presence of tumour oedema on any 

cognitive skill assessed by the BLAST either pre- or postoperatively. Also there was no 

significant association between tumour volume and cognitive skill score in any other 

cognitive skill assessed by the BLAST either preoperatively.  

Unfortunately, we could not fully investigate the effect of tumour localisation and 

characteristics on verbal short-term memory, visual word identification and orthographic-

phonological mapping, due to the limited number of patients assessed on these cognitive 

skills. Fortunately though, data collection for this project is still ongoing, and it may be 

possible to do this, once sufficient numbers of patients have been assessed. 

Finally, there was very little difference in cognitive skill scores across surgical phases. 

However there were two exceptions. First, there were significantly more patients impaired on 

goal-driven response selection postoperatively, compared to preoperatively. It may be the 

case that this cognitive skill is requiring more controlled language behaviour which is 

particularly more susceptible to generalised postsurgical effects, such as inflammation or the 

effects of medication. Second, patients with a left posterior tumour had significantly lower 

scores on phonological encoding compared to all other anatomical groups postoperatively, 

but this difference was not evident preoperatively. However, the findings concerning the left 
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posterior group in particular need to be treated with caution, due to the small number of 

patients in the left posterior group. 

It should be noted that this cognitive skill assessment constitutes a first attempt at 

operationalising such skills that will very likely need to be further refined. In order to 

combine multiple measures into a single entity, we first created standard scores for each 

individual on each measure, using data from the relevant control group. This method is 

problematic for measures where controls were at or near ceiling and had very little variation. 

In this situation, minor variations in performance from a patient compared to controls can 

result in excessively low Z scores. The use of multiple measures to operationalise a cognitive 

skill would hopefully reduce the impact of any particular extreme Z-score measures on the 

overall cognitive skill score, but would not totally eradicate it. This is particularly salient for 

tasks such as picture-word verification and repetition where controls perform at or near 

ceiling.   

 There are two possible ways that this could be overcome in future. First, a more 

exhaustive cohort of healthy controls would establish a more representative measure of the 

variation in scores on each measure. Second, a surgical population could also act as a further 

control group, for example using a cohort of spinal surgical patients. These patients’ scores 

may be more varied due to nonlinguistic factors that impact on task. We are aware of no 

studies that have used such a control group to standardise scores. However, it would be 

extremely interesting to evaluate the validity of this approach in future investigations. 

Another concern with the way we have quantified cognitive skills here concerns the 

methods used to combine multiple standard scores to create a single measure of the skill in 

question. For example, if we consider the picture-word verification task, accessing semantic 

knowledge was quantified by subtracting the number of phonological confusions from the 

number of semantic confusions. The limitation of this approach becomes particularly evident 
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when a person performs poorly in one of these conditions but performs similarly to controls 

in the other condition. An individual with no semantic confusions but a large number of 

phonological confusions will therefore score above zero on this measure – that is 

paradoxically, above normal. The rationale behind manipulating the same measure in 

different ways to assess different cognitive skills was to keep administration time as short as 

possible. For instances where we have operationalised a cognitive skill in this manner, future 

research may need to consider independent measures in order to overcome this limitation.  

For this analysis, we have taken a very broad categorisation of anatomical localisation. 

In the next section a fine-grain voxel lesion symptom mapping analysis is conducted to 

further elucidate the anatomical underpinnings of the various types of core skill deficits.  
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Chapter 6: Voxel-Based Lesion Symptom Mapping Analysis 

As part of our exploration of brain tumour patients’ linguistic capabilities, one of our 

objectives was to investigate the BLAST’s ability to detect different linguistic profiles based 

on different neurological profiles. One of the key determinants of this was the localisation of 

the tumour. Our previous analyses have explored this using a very broad anatomical 

differentiation (e.g., classification into left frontal, left posterior, right frontal, and right 

posterior). In order to further explore the effects of tumour localisation on cognitive skill 

performance, but at a much finer anatomical level, this chapter will report the results of a 

voxel lesion symptom mapping (VLSM) analysis. VLSM analyses the strength of 

contribution of each lesioned voxel (the smallest element that can be defined in a three-

dimensional MRI space) to a specific behaviour of interest, and identifies voxels in which 

damage is significantly associated with poor scores on the measured behaviour (Baldo, 

Wilson, & Dronkers 2012). For each voxel, a statistical test determines whether damage to 

this particular voxel is associated with significantly poorer scores on the relevant behavioural 

outcome measure (Bates et al. 2003). 

Voxel Lesion Symptom Mapping Method 
Participants 

The participant group in this study consisted of all the individuals with a brain tumour 

who had completed the BLAST preoperatively, except for patients BD and AEK, whose MRI 

scans were unavailable. In addition, patients with multiple lesions were not included in this 

study. Therefore, the preoperative and postoperative analyses contained 36, and 29 patients 

respectively. 

Imaging Methods 

Imaging Acquisition. All patients whose MRI scans were available had undergone a 

magnetic resonance imaging scan upon admission to the Neurosurgical Ward of Wellington 

Hospital, prior to their surgery. Whole brain T1-weighted with inversion recovery (FLAIR), 
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as well as, in most cases, T2-weighted structural scans were collected at 1.5 Tesla (T1 3D 

FFE: TR = 25 ms, TE = 4.6 ms, FOV = 252mm x 238mm, slice thickness = 1mm; Sagittal 

3D FLAIR: TR = 4800ms, TE = 329ms, TI = 1660ms, FOV = 252mm x a250mm, slice 

thickness = 1mm). While T1-weighted images provide high structural definition, T2-

weighted FLAIR scans are particularly useful for identifying older infarctions and scarred 

tissue. 

Image preparation. For each individual, the lesion was manually drawn onto the 

participant’s own T1-weighted structural preoperative image using MRIcron (Rorden, 

Karnath, & Bonilha, 2007; http://www.mccauslandcenter.sc.edu/mricro/mricron/index.html), 

while, where possible, consulting the T2-weighted FLAIR image as additional guidance. If 

any uncertainty arouse regarding the exact localization of the tumour boundary, we took a 

more inclusive approach. This is due to the strong likelihood that a tumour may affect 

surrounding tissue but lack visualisation to be detected on the MRI scan. Following this, the 

scans and the lesions were spatially normalised using the segmentation and normalization 

toolbox in SPM8 (Ashburner et al., 2000; see also http://www.fil.ion.ucl.ac.uk/spm/), 

implemented in MatLab 8.0 (The Mathworks Inc, Natick, MA). The resultant lesion masks 

were then overlaid onto a standard template based on healthy elderly individuals (with a 

mean age of 65 years; Rorden, Bonilha, Fridriksson, Bender, & Karnath, 2012). 

Image Analysis 

 Lesion Overlap Analysis. First, to identify brain regions that were commonly 

damaged in this sample, MRIcron (Rorden, et al., 2007) was used to create a lesion overlay 

map for all brain tumour patients. This is an important first step because voxels that are never 

damaged in our population (or only rarely damaged) cannot be assessed at all. In other words, 

the lesion overlap map provides a rough map of the regions of cortex whose functions can 

reasonably be assessed using VLSM. 
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VLSM Analysis. Two VLSM analyses were run for preoperative and postoperative 

performance on the BLAST due to differences in sample size. Shallice and colleague’s argue 

that the postsurgical effects salient in postoperative MRI scans, such as swelling and oedma, 

as well as the difficulties distinguishing between residual tumour and resective tissue sites, 

makes postoperative MRI scans problematic for interpretation and should be avoided (Buiatti, 

Skrap & Shallice, 2012; Buiatti, Mussoni, Toraldo, Skrap & Shallice, 2011; Campanella, 

Mondani, Skrap, & Shallice, 2009; Shallice, Mussoni, D’Agostino & Skrap, 2010). In 

support of this, we found these problems particularly evident during an initial pilot test using 

postoperative MRI scans. We therefore used patients preoperative MRI scans for analyses of 

both pre- and postoperative scores. 

The behavioural measures used for each analysis were the T scores derived for each 

cognitive skill, as outlined in Table 5.1. Since the behavioural measures were continuous 

rather than binary, inter-individual differences in the magnitude of the behaviour of interest 

were maintained, and statistical power maximised (Baldo et al., 2012). In the current VLSM 

analysis, we used the non-parametric Brunner-Munzel rank order test (Rorden, et al., 2007) 

provided in NPM (implemented in MRIcron; 

http://www.mccauslandcenter.sc.edu/mricro/npm/). Further, the analysis was set to discount 

any voxels damaged in a single participant.  

When using VLSM, there is a general risk of increased Type I error, since this method 

will conduct as many statistical tests as there are voxels in the image. Several studies have 

recommended the use of False Discovery Rate (FDR) to correct for multiple comparisons 

over the more conservative Bonferroni correction (e.g., Rorden & Karnath, 2004), because 

the latter dramatically increases the probability for Type II errors (Kimberg, Coslett, & 

Schwartz, 2007). However, FDR does not control for familywise error rates, so it may be 

advisable to consider both types of corrections. In the current study, measures are reported 
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using both types of corrections. In addition, problems in computing accurate values for small 

samples have been reported for the Brunner-Munzel rank order test (Medina, Kimberg, 

Chatterjee, & Coslett, 2010). In order to account for this, we followed recommendations 

outlined by Medina, Kimberg, Chatterjee, and Coslett, (2010), and used permutation 

generated test scores for the Brunner-Munzel test (and a permutation threshold of 1000). 

Permutation testing involves the random assignment of each participant’s behavioural score 

across each individual voxel. Critical values are calculated for each permutation, “thereby 

creating a simulation of how extreme observations would be generated under the null 

hypothesis of no association between lesion site and behavioural score” (Baldo et al., 2012, p. 

7). This ensures accurate Z scores are created, even when the sample size is small and the 

distribution of the data is skewed (Kimberg et al., 2007). 

One danger in performing VLSM analyses across a small sample is the lack of 

statistical power. Therefore, we also present a statistical power map indicating the probability 

of detecting damage to voxels in different brain regions (the map corresponds to Rudrauf et 

al.’s (2008) “effective coverage map,” which takes the spatial distribution of the lesions in 

the sample into account. However, the map presented here is based on the Wilcoxon-Mann-

Whitney probability due to the continuous nature of the behavioural data). 

Finally, for the overlap images, power map and the VLSM analysis, the resulting 

lesion maps were examined using the Automated Anatomy Template implemented in 

MRIcron (Rorden et al., 2007). This template provides the percentage of each specific brain 

region that is covered by the lesion map, and also the percentage of the lesion map associated 

with each significant brain region. 

 

 

 



 

 

130 

Preoperative Results 

Lesion Overlap Analysis and Power Map 

Figure 6.1 displays the lesion overlap maps and Figure 6.2, displays the lesion power 

maps for all preoperative tumour patients (separate overlay and lesion maps were conducted 

pre- and postoperatively due to differences in sample size). Table 6.1 outlines the specific 

anatomical regions with sufficient power to detect a significant effect at the p<.05  false 

discovery rate. There was insufficient power to detect a significant effect at the familywise 

p<.05 threshold. 

 

Figure 6.1. Overall Lesion overlap map for tumour patients showing axial slices on a 

standard Template (Rorden et al. 2012) at MNI Z coordinates =-32, -22, -12, -2, 8, 18, 28, 38, 

48, 58, 68. Red = overlap between six individuals; orange = overlap between five individuals; 

yellow = overalp between four; green = overlap between three individuals; blue = overlap 

between two individuals; purple = no overlap, lesion is specific to only one individual. 
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Figure 6.2. Power map for preoperative tumour patients showing axial slices on a standard 

Template (Rorden et al., 2012) at MNI Z coordinates =-32, -22, -12, -2, 8, 18, 28, 38, 48, 58, 

68. Red = brain regions with sufficient power to detect a significant effect at FDR p<.05. 

Table 6.1 

The percentage of gyri with significant power to detect an effect at the FDR p<.05  

FDR 
Threshold 

Hemisphere Percentage 
of Gyri 

Covered 

Brain Region 

p<.05 Left <100% Anterior cingulate; middle cingulate 

  <60% Pre and post central gyrus; SMA; superior 
parietal, and inferior temporal gyrus 

  <30% Middle, and inferior frontal gyrus; 
supramarginal gyrus; inferior occipital and 
middle temporal gyrus 

  <10% Angular gyrus; fusiform gyrus; middle 
occipital, and inferior temporal gyrus 

p<.05 Right <100% Insula; anterior cingulate 

  <60% Fusiform gyrus; inferior temporal 

  <30% Middle, and inferior frontal; middle cingulate 

  <10% Precentral; SMA; superior frontal gyrus; 
superior, and middle temporal gyrus 

SMA = Supplementary Motor Area 
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VLSM Results 

Figure 6.3 displays the VLSM maps of significant voxels for preoperative 

performance in the accessing semantic knowledge, lexical selection, verb retrieval, goal- 

driven response selection, and articulatory-motor planning. There was no significant brain 

region associated with behaviour at the family wise permutation level. However a number of 

significant brain regions were found at the .05 false discovery rate threshold. Table 6.2 

provides a detailed description of the percentage of significant lesion map/voxels at each 

specific brain regions detected at this threshold. A number of left posterior brain regions were 

significantly associated with performance on accessing semantic knowledge and lexical 

selection preoperatively. Most notably these were the middle and inferior temporal gyrus. 

In contrast, a number of left frontal brain regions were significantly associated with 

performance on verb retrieval, goal-driven response selection and articulatory-motor 

planning preoperatively. Most notably, verb retrieval was significantly associated with the 

left middle cingulate, and the left postcentral gyrus; goal-driven response selection with the 

left insula and the left middle frontal gyrus; and articulatory-motor planning with the left 

superior frontal gyrus and left the anterior cingulate. There were no significant voxels at the 

FDR threshold for preoperative performance on phonological encoding, and auditory word 

identification. 
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Table 6.2 

The percentage of significant voxels at each significant brain region at the FDR p<.05 

threshold for preoperative performance  

Cognitive Skill FDR p<.05 Number of Significant 
Voxels 

Accessing Semantic 
Knowledge 

L Middle Temporal  

L Inferior Temporal 

L Inferior Occipital  

L Middle Occipital  

L Fusiform  

37520 

16720 

11380 

10770 

625 

Lexical Selection L Middle Temporal  

L Inferior Temporal 

L Inferior Occipital  

L Middle Occipital  

L Fusiform  

37520 

16720 

11380 

10770 

625 

Verb Retrieval L Middle Cingulate  

L Postcentral Gyrus 

L Precentral Gyrus  

635 

111 

50 

Goal Driven Response 
Selection 

L Insula  

L Middle Frontal  

L Inferior Frontal   

329 

7 

6 

Articulatory Motor 
Planning 

L Middle Frontal  

L Superior Frontal 

L Anterior Cingulate 

L Middle Cingulate  

L Supplementary Motor Area 

L Inferior Frontal Gyrus  

L Insula 

43410 

33410 

13780 

892 

508 

360 

380 
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Figure 6.3. VLSM analysis for preoperative performance on accessing semantic knowledge, lexical selection, goal-driven response selection, verb retrieval, 

and articulatory-motor planning showing axial slices on a standard Template (Rorden et al., 2012) at MNI Z coordinates =-32, -22, -12, -2, 8, 18, 28, 38, 48,58, 

68. Blue = brain regions with sufficient power to detect a significant effect at FDR p<.05. There were no significant brain regions at the FDR p<.01 threshold.
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Postoperative Results 

Lesion Overlap Analysis and Power Map 

Figure 6.4 displays the lesion overlap maps, and Figure 6.5, displays the lesion power 

maps for all postoperative tumour patients (separate overlay and lesion maps were conducted 

pre- and postoperatively due to differences in sample size).Table 6.3 outlines the specific 

anatomical regions with sufficient power to detect a significant effect at the p<.05  false 

discovery rate. There was insufficient power to detect a significant effect at the family wise 

p<.05 threshold. 

 

Figure 6.4 Overall Lesion overlap map for tumour patients showing axial slices on a standard 

Template (Rorden et al. 2012) at MNI Z coordinates =-32, -22, -12, -2, 8, 18, 28, 38, 48, 58, 

68. Red = overlap between six individuals; orange = overlap between five individuals; yellow 

= overalp between four; green = overlap between three individuals; blue = overlap between 

two individuals; purple = no overlap, lesion is specific to only one individual. 
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Figure 6.5.Power map for postoperative tumour patients showing axial slices on a standard 

Template (Rorden et al., 2012) at MNI Z coordinates =-32, -22, -12, -2, 8, 18, 28, 38, 48,58, 

68. Red = brain regions with sufficient power to detect a significant effect at FDR p<.05. 

Table 6.3 

The percentage of gyri with significant power to detect an effect at the FDR p<.05  

FDR 
Threshold 

Hemisphere Percentage 
of Gryi 

Covered 

Brain Region 

p<.05 Left <100% Anterior cingulate 

  <60% Precentral gyrus; inferior parietal gyrus; 
superior frontal gyrus; middle cingulate 

  <30% SMA; insula; inferior occipital; postcentral; L 
superior parietal; supramarginal gyrus; middle 
temporal gyrus 

  <10% Middle frontal gyrus; middle occipital gyrus, 
fusiform gyrus; angular; gyrus inferior 
temporal gyrus 

p<.05 Right <100% Insula 

  <60% Anterior cingulate 

  <30% Middle, and inferior frontal gyrus; inferior 
temporal gyrus 
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FDR 
Threshold 

Hemisphere Percentage 
of Gryi 

Covered 

Brain Region 

  <10% Precentral gyrus; SMA; superior, and middle 
frontal gyrus; middle cingulate; superior, and 
middle temporal gyrus 

SMA = Supplementary Motor Area 

VLSM Results 

Figure 6.6 displays the VLSM maps of significant voxels for postoperative 

performance in the accessing semantic knowledge, phonological encoding, goal-driven 

response selection, and articulatory-motor planning. There was no significant brain region 

associated with behaviour at the family wise permutation level. However a number of 

significant brain regions were found at the false discovery rate threshold (p<.01 and p<.05).  

Table 6.4 provides a detailed description of the percentage of significant lesion map/voxels at 

each specific brain regions detected at this threshold.. A number of left posterior brain regions 

were significantly associated with performance on accessing semantic knowledge, and 

phonological encoding. Most notably the middle and inferior temporal gyrus were 

significantly associated with performance on phonological encoding at the p<.01 FDR 

threshold. These brain regions were also associated with accessing semantic knowledge but at 

the p<.05 FDR threshold. 

In contrast, a number of left frontal brain regions were significantly associated with 

performance in goal-driven response selection and articulatory motor planning. Most notably, 

the left superior frontal and left anterior cingulate were significantly associated with 

performance in goal-driven response selection, but at the p<.01 FDR threshold. Also the most 

notable brain regions significantly associated with articulatory-motor planning were the left 

superior frontal gyrus and the left middle frontal gyrus, but at the p<.05 FDR threshold. There 

were no significant voxels found at the FDR threshold for postoperative performance on verb 

retrieval, lexical selection and auditory word recognition. 
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Table 6.4  

The percentage of significant voxels at each significant brain region at the FDR p<.05 

threshold for preoperative performance  

Cognitive Skill FDR p<.05 Number of 
Significant 

Voxels 

 FDR p<.01 

 

Number of 
Significant 

Voxels 

Accessing 
Semantic 

Knowledge 

L Middle Temporal  

L Inferior Temporal  

L Inferior Occipital  

L Middle Occipital  

L Fusiform  

43460 

16720 

11380 

10780 

625 

  

Phonological 
Encoding 

  L Middle Temporal  

L Inferior Temporal  

L Inferior Occipital  

L Middle Occipital  

L Fusiform  

37520 

16720 

11380 

10770 

625 

Goal-Driven  
Response 
Selection 

  L Anterior Cingulate  

L Superior Frontal  

L Middle Frontal  

17280 

362 

9 

Articulatory- 
Motor Planning 

  L Insula 

L Inferior Frontal 

L Middle Frontal 

235 

90 

10 
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Figure 6.6. VLSM analysis for preoperative performance on accessing semantic knowledge, goal-driven response selection, verb retrieval and articulatory-motor 

planning showing axial slices on a standard Template (Rorden et al., 2012) at MNI Z coordinates =-32, -22, -12, -2, 8, 18, 28, 38, 48,58, 68. Green = brain regions 

significant at FDR p<.01; blue = brain regions significant at FDR p<.05 
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General Comments: Voxel Lesion Symptom Mapping 

Before discussing the results of the VLSM analysis, it is important to note that we are 

extremely limited by power when conducting this type of analysis (for discussion see 

Kimberg, Coslett & Schwartz, 2007). Only at voxels with high lesion overlap will there be 

sufficient power to possibly detect a significant association with a behaviour (see Figures 6.2 

and 6.5 for power maps). Our sample size is relatively small when compared with VLSM 

analyses in the literature. Moreover, power maybe further limited by the tremendous 

variability in the localisation of lesions associated with tumour invasion – most likely 

considerably more so than with other aetiologies such as stroke or closed head injury, where 

localisation is constrained by more global factors associated with the aetiology (e.g., 

distribution of the vascular territory, susceptibility of different brain areas to damage 

associated with impact). Brain regions with high lesion overlap may therefore be even rarer 

than in other aetiologies. Any inconsistencies found between our findings and those of the 

literature should therefore be treated with caution, as this may be due to failure to find a 

result, rather than no result existing. As previously mentioned, data collection for this project 

is still ongoing and with a more appropriate sample size to reflect sufficient power, we hope 

to draw more conclusive inferences about the relationship between specific brain regions and 

the cognitive skills assessed by the BLAST.  

So to summarise, the tentative results obtained from our VLSM analysis support the 

behavioural results regarding the broad anatomical specialisation of our core cognitive skills. 

Firstly, in partial support of our first hypothesis that left frontal lesions will be associated 

with lower scores in goal-driven response selection, articulatory-motor planning and verb 

retrieval, we found that the voxels significantly associated with these skills were confined to 

the left frontal lobe (with the exception of verb retrieval tested preoperatively, which failed to 

yield any significant voxels). In partial support of our second hypothesis that left posterior 
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lesions will be associated with lower scores in accessing semantic knowledge, lexical 

selection and phonological encoding, we found that the voxels significantly associated with 

these skills were confined to the left temporal and posterior parietal lobes (these effects 

reached significance preoperatively for accessing semantic knowledge, and lexical selection, 

and postoperatively for accessing semantic knowledge and phonological encoding ).  

Based on our review of the neuropsychological literature, we made some additional 

more precise predictions regarding the specific brain regions associated with performance on 

each of the cognitive skills assessed by the BLAST. Our tentative VLSM results do in fact 

support some of these predictions. Specifically, analyses of preoperative performance showed 

that low scores in: 1)  lexical selection were associated with voxels in the left inferior 

temporal region; 2) goal-driven response selection in the left inferior frontal gyrus; and 3) 

articulatory-motor planning in the insula and precentral gyrus. 

However, we also found a number of results that were inconsistent with our specific 

anatomical predictions. For one of our core skills, auditory word recognition, we failed to 

identify any voxels significantly associated with this skill, either pre- or postoperatively. 

Such a finding could possibly be due to the poor sensitivity of the measures used to 

operationalise this cognitive skill. Alternatively, a failure to find an effect for this cognitive 

skill could be a result of insufficient tumour invasion to the areas associated with this 

cognitive skill. Further, for several skills, voxels were identified outside the brain areas 

hypothesised to be associated with that skill. First, accessing semantic knowledge and 

phonological encoding were associated with significant voxels within the left inferior and 

middle temporal gyrus, left fusiform gyrus, and the left inferior and middle occipital gyrus 

(although for phonological encoding, significant effects were only obtained postoperatively). 

Verb retrieval was associated superior and posterior left frontal regions (including the middle 

cingulate gyrus, pre- and postcentral gyrus). And finally, in the postoperative analyses goal-
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driven response selection was associated with the left anterior cingulate, and the left middle 

and superior frontal gyrus.  

These inconsistent findings may be a direct reflection of the small size of our sample. 

More specifically, one or two specific individuals who have large lesions, and who failed on 

multiple tasks, may create the impression that a large, undifferentiated region of the brain is 

critical for all those tasks (this is certainly evident in our left posterior group which only 

contained four patients, and of these patients, two had a relatively large tumour volume). 

With a larger and more diverse sample, such conflated effects may be differentiated. This 

further highlights the limits of this methodology when using the current sample and the 

importance of treating these results tentatively.  

In this study, we used the patients’ preoperative scans to identify the voxels impaired, 

but we examined both pre- and postoperative performance. In line with previous researchers 

(e.g., Buiatti, Skrap & Shallice 2012), we found that postoperative scans were extremely 

difficult to read as a result of the impact of the surgical procedure. The marking of a lesion 

site using these scans would lead to high inaccuracies, and consequently the use of these 

scans may be potentially problematic. Nevertheless, it is important to note the limitations 

inherent in the use of preoperative scans for examining postoperative performance. 

Postoperative lesion sites may be larger, due to the resection of tissue that surrounds the 

tumour border. Consequently, critical lesion sites that have a direct impact on language 

functioning could be missed by using only preoperative scans to examine postoperative 

performance. Finally, it is also important to note that there were differences in power 

between the preoperative and postoperative analyses. Therefore, it is not possible to directly 

compare the results of analyses for these two surgical phases. However, despite the power 

difference results were in fact evident only postoperatively. For example, only significant 

voxels were detected for phonological encoding during this surgical phase. This finding may 
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be due to postsurgical complications adherent postoperatively that impact specially on certain 

cognitive skills e.g., from tissue resection. This does highlight the importance of conducting 

postoperative analysis, but caution is needed when deriving conclusions as a result of the 

surgical phase. 

Finally, these results highlight some additional considerations that need to be taken 

into account when conducting this type of analysis on a brain tumour population. Brain 

regions will only have significant voxels if they are invaded by the foreign mass and are 

therefore highlighted during the VLSM. However, this is not to say that the brain tumour 

does not affect surrounding brain regions. Specifically, a brain tumour can cause compression 

and displacement on these regions, which can result in a loss of functionality over time. 

Despite the fact these brain regions lie outside the area identified as lesioned using our 

method. This may mean that we need to take a more liberal approach when highlighting a 

brain tumour for a lesion analysis. More extensive research would need to be conducted to 

determine a standardised approach in order to ensure consistency across future investigations 

that adopt this methodology.  
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Chapter 7: General Discussion 

The objective of this study was to explore the linguistic capabilities of brain tumour 

patients using a newly developed assessment protocol (the BLAST). A sample of 

undifferentiated surgical brain tumour patients completed the protocol both pre- and 

postoperatively. First, we investigated patients’ overall performance on each language task 

within the BLAST; and second, we used their patterns of performance to assess the integrity 

of a set of core cognitive language skills, derived from current cognitive theories of language. 

It was found that a substantial proportion of brain tumour patients failed on at least one 

language task. Further, a large proportion were also significantly impaired in at least one core 

cognitive skill, suggesting that language deficits are perhaps more prevalent in this 

population than has previously been assumed. Importantly, there was also a high degree of 

selectively in patients’ performance across tasks: individuals were more likely to be impaired 

on one or two tasks and core cognitive skills, than to demonstrate a more globalised 

impairment. Finally, and consistent with the neuropsychological literature, lesion analysis – 

both simple group based analyses and more complex voxel lesion symptom mapping 

(VLSM) – revealed that the anatomical location of their tumour was a key determiner of how 

a patient performed on most of the cognitive skills assessed by the BLAST. 

The particular approach taken here, of using performance patterns to calculate scores 

on a set of core cognitive skills, had a number of advantages over more conventional, task-

based assessments. First, the methodology used to operationalise each cognitive skill – which 

frequently involved comparisons amongst tasks or amongst conditions within the same task – 

reduced the likelihood that performance would be confounded by nonlinguistic factors (e.g., 

fatigue), which would be expected to impact on all aspects of performance across the board. 

Second, a core skills approach appeared to be particularly effective at discriminating patients 

with different neurological profiles. A broad group analyses based on localisation of the 
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lesion found that a number of core cognitive skills were associated with a specific anatomical 

region. In contrast, such a specialisation was rarely evident when only considering overall 

task performance. And third, this approach provides a rich linguistic profile whilst adhering 

to a brief administration time. A brief sensitive language assessment tool such as the BLAST 

could have potential clinical applications. When administered preoperatively, it can be used 

to guide surgery possibly lead to fewer postoperative linguistic complications. It can also aid 

in more specialised and effective postoperative rehabilitation, and in doing so, maximise the 

person’s quality of life. Of course, at an individual level, the BLAST only provides the 

briefest glimpse of their possible linguistic disability. We hope, however that this work will 

catalyse additional investigations into language in this population, with the overall objective 

of designing the most effective language assessment protocol. The following discussion will 

outline in detail each of the major findings of this investigation, and consider the implications 

of these from both a clinical and theoretical viewpoint.  

The Incidence of Language Impairment in a Brain Tumour Population 

An important feature of this study is that, rather than selecting a subgroup of tumour 

patients with lesions in regions known to be associated with language, we assessed an 

undifferentiated sample of tumour surgery patients. The rationale behind this was based on 

neuropsychological evidence that has implicated an extensive network of cortical regions 

involved in language (e.g., Damasio et al., 2004; Foundas, 2001; Spitsyna et al., 2006). This 

aspect of our methodology also enabled us to obtain an estimate of the incidence and profile 

of impairment in this population more generally. In fact, given the nature of our sample, the 

incidence of impairments was surprising. Considering first their overall performance on the 

BLAST subtasks, 94% and 90% of preoperative and postoperative patients respectively, were 

significantly different to their respective healthy control group in at least one task. These 

rates are similar to, or higher than, those previously reported for test batteries that considered 
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a much broader range of cognitive functions. For example, using a standardised psychometric 

testing procedure that measured various aspects of memory, attention, language and 

executive function, Tucha and colleagues (2000) found that 91% of patients with a frontal or 

temporal tumour were impaired in at least one of these cognitive domains (Tucha, Smely, 

Preier, & Lange, 2000). Similarly, using a broad neuropsychological test battery which 

assessed intellectual function, executive function, memory, language, praxis, and gnosis, 

Talacchi, Santini, Savazzi and Gerosa (2011) found that 79% of glioma patients had a deficit 

in at least one task preoperatively, and 76% showed a deficit in at least one task 

postoperatively. 

If we consider those studies that have focused just on language function, the reported 

prevalence of linguistic impairments in previous studies varies widely from study to study; 

this is due to differences in the definitions of language impairments used, and also the way 

patients were sampled and/or assessed. Studies that have defined language impairment 

according to the criteria set out in standard aphasia assessments have reported incidences 

ranging from 32% to 63% in samples of left hemisphere tumour patients (Davie, Hutcheson, 

Barringer, Weinberg, & Lewin, 2009; Ilmberger et al., 2008; Recht, McCarthy, O’Donnell, 

Cohen & Drachmann, 1989; Whittle, Pringle Taylor, 1998). Those that have defined 

language impairment based on patient self reports, have reported an incidence rate of 37% in 

an undifferentiated sample of high grade gliomas (Thomas, O’Connor & Ashley, 1995). And 

finally, those that have defined language impairment as below-normal performance on one or 

more language tasks within a broader neuropsychological assessment battery have reported, 

incidence rates ranging from 36 to 67%, in left hemisphere tumour samples (Papagno et al., 

2012; Sanai, Mirzadeh & Berger 2008; Thomas, O’Connor & Ashley 1995). The approach in 

the current study was similar to that of the latter neuropsychological studies, we defined a 

language impairment as significantly impaired performance relative to healthy controls in at 
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least one language task. This is a more liberal definition of language impairment and may 

explain our higher prevalence rates over studies that required a diagnosis of aphasia. 

Interestingly though, considering our sample of undifferentiated tumour surgery patients, our 

incidence rate of language impairment is still higher than studies that have used a similar 

definition (Papagno et al., 2012; Sanai, Mirzadeh & Berger 2008; Thomas, O’Connor & 

Ashley 1995). The higher incidence of impairment could be due to the BLAST’s 

effectiveness at detecting specific language impairments evident in this population. Each task 

contained in the BLAST was selected based on its sensitivity at assessing a set of core 

cognitive skills  – skills that are likely to be necessary for everyday language function. 

Failure in a language task within the BLAST could therefore reflect a fundamental 

breakdown in at least one core language skill. In support of this, we also found a high 

incidence of impairment in at least one of the cognitive skills measured by the BLAST. 

Specifically, we found that preoperatively 65% of preoperative brain tumour patients, and 

67% of postoperative brain tumour patients were significantly different to their respective 

control groups in at least one core cognitive skill. 

Our current findings add to a growing body of evidence that there is a surprisingly 

high incidence of language impairment in this population. Although, this finding may not be 

that surprising, when we consider the pathological mechanisms of tumours compared with 

other lesions. Tumours are space-occupying lesions and therefore cause 

compression/displacement of surrounding neural tissue. For that reason, even though a 

tumour may not be encompassing a “language area”, cortical regions crucial for effective 

language processing may lose their functionality due to the continual growth and subsequent 

compression effects elicited by the foreign mass nearby (Miceli et al., 2012). This contrasts to 

the pathological mechanisms of stroke in which neural tissue dysfunction is largely confined 

to brain regions supplied by the obstructed artery, whilst sparing other cortical regions.  
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Our approach to the assessment of language differs from that taken in several 

previous studies, which have used more conventional aphasia assessments (for review see De 

White & Mariën, 2013). These batteries are designed to diagnose language disorders as a 

result of cerebrovascular accidents, and mainly in the context of more “naturalistic” tasks, 

such as describing pictures or responding to simple commands or questions. Such an 

approach may not be optimal for assessing language in brain tumour patients. Consistent with 

the findings of Davie et al., (2009), as well as Anderson, Damasio, and Tranel (1990), our 

findings also support the view that language deficits in brain tumour patients are likely to be 

highly selective, affecting just one or two key cognitive skills, rather than the more globalised 

impairments that are more common in other aetiologies such as stroke. Conventional aphasia 

assessments evaluate a range of language skills at once, making it difficult to detect these 

more selective impairments, which may not, on their own, be sufficient to reduce 

performance significantly below the level of controls. Indeed, we are not the first researchers 

to find that more comprehensive neuropsychological test batteries are more effective at 

identifying language difficulties in this population than conventional aphasia assessments  

(see Miceli et al., 2012; Påhlson, Ek, Ahlström & Smits, 2003). We have designed a test 

battery that assesses specific language skills that are derived from current cognitive theory, 

but additionally have been found to associated with very specific neural coordinates. This 

may be more advantageous over conventional aphasia assessments, as it will maximise the 

likelihood of detecting specific language impairments that appear to be evident in brain 

tumour patients. The use of various manipulations to specifically assess each cognitive skill 

may have the further advantage of limiting the patient’s ability to behaviourally compensate 

for the skill in question, an ability that may be highly developed in pathologies involving a 

slow gradual onset, such as a tumour. 

Interestingly, it is relatively uncommon for a patient with a brain tumour to present in 
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a clinical setting with a language complaint, even despite their prevalence in this population. 

Our results suggest that this may not necessarily mean that language function is unaffected. 

Indeed, patients’ awareness of their own cognitive function does not always align with 

performance measures. For example, Påhlson, Ek, Ahlstrom and Smits (2003) evaluated the 

difference between 24 low-grade glioma patients’ self reports and their performance in a 

comprehensive neuropsychological assessment. They found a number of significant 

differences between patients’ self-awareness of their cognitive abilities and their actual 

performance on this assessment. Further, even though the language deficits in tumour 

patients may be relatively selective, when compared with those of stroke patients, they are 

nonetheless likely to significantly impact on the patient’s everyday functioning. For example, 

even a highly selective impairment in lexical selection could be responsible for a significant 

amount of word finding difficulty in everyday speech, and consequently, immense frustration. 

In fact, there is evidence that even mild linguistic deficits in tumour patients may have 

significant consequences for their everyday social functioning. In an interesting investigation, 

Maritz-Gasser, Herbet, Maldonado and Duffau (2012) found that lexical access latency 

(reaction times using the Boston Naming task) was significantly associated with the ability to 

return to previous professional activity. Specifically, in patients who had undergone glioma 

resection, it was found that naming times significantly increased in patients who were unable 

to return to work, compared to those who had returned to work following surgery. Of course, 

it may be that in at least some cases, a deficit in picture naming latency reflects a more 

generalised cognitive slowing, which may impact upon skills beyond language. However, the 

point still holds though that even very subtle abnormalities on highly specific measures of 

language function can have real life implications. 

Although a high incidence of language impairments was detected in our sample, an 

alternative explanation could be that at least some of these impair 
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ents may reflect a more generalised cognitive impairment, rather than one specific to 

language functioning. This is important because a number of tasks within the BLAST may 

recruit additional cognitive resources, not just language. For example, Davidson, Gao, 

Mason, Winocur and Anderson (2008) argue “one cannot know for certain whether a patient 

did poorly on verbal fluency because of trouble sustaining attention to the task, poor 

strategizing, or faulty search of the lexicon, among other reasons” (pp.28). Other examples of 

cognitive processes that may play a general role in language task performance include 

response monitoring, sustained attention, and more controversially, the ability to maintain a 

representation of an internal goal (Bunge, Kahn, Wallis, Miller, & Wagner, 2003; Crosson et 

al., 2001; MacPherson, Turner, Bozzali, Cipolotti & Shallice, 2010; Myachykov & Posner, 

2005; Novick, Kan, Trueswell & Thompson-Schill, 2009; Shaywitz et al., 2001). In addition, 

the overall performance of tumour surgery patients may also be affected by a number of 

further nonlingustic factors: medication, fatigue, psychological stress, postsurgical 

complications such as inflammation, as well as the generalised compression of brain tissue 

from the tumour. In the preoperative phase in particular, a patient may be experiencing high 

levels of anxiety and emotional distress, due to their recent diagnosis and the prospect of a 

surgical intervention, with its associated risks. Postoperatively, fatigue is likely to be 

exacerbated, as well as the transient neurological complications associated with the surgery, 

such as postsurgical oedema/inflammation, transient retraction injury, initial displacement of 

neural structures, and neuroplastic mechanisms (Bello et al., 2007). 

Fortunately though, our approach of operationalising core cognitive skills may 

actually mitigate the effects of some of these generalised factors on performance. This is 

because many of the operationalised cognitive skills compare performance across two or 

more tasks or between different stimulus properties within a task, thereby factoring out some 

of the more generalised effects. In support of this, we found that the incidence of impairment 
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was lower for the core cognitive skills than for overall task performance (cognitive skills: 

preoperatively 65%, and postoperatively 67%; overall task performance: preoperatively 94% 

and postoperatively 90%). The finding that a number of cognitive skills are associated with 

specific anatomical correlates adds weight to our argument that a core skills approach may be 

more effective than an overall task performance at specifically assessing language 

capabilities in brain tumour patients.  

When considering the issue of how general cognitive factors impact upon language 

performance, the question arises as to what constitutes “language” function in the first place. 

Our assessment protocol could be criticised in that it measures skills not conventionally 

considered to be part of language function – such as those measured on the Stroop task. We 

would argue that the traditional dichotomy between language and non-language skills may 

itself need revising. Evidence has emerged recently that skills traditionally thought of as 

outside the domain of language function, such as working memory, are likely to be emergent 

proprieties of the language functioning system itself (Buchsbaum & D’Esposito, 2008; 

Buchsbaum, Olsen, Koch & Berman, 2005; Buchsbaum, et al., 2005; Martin & Saffran, 

1997; Martin & Gupta, 2004). That is, rather than needing working memory to complete 

language tasks it might be the case that language supports effective working memory. For 

example, Martin and Saffran (1997) propose a framework in which the mental lexicon is 

conceptualized as a network containing layers of nodes representing different types of units 

(e.g. semantics, lexical, and phonological). It is proposed that the constant upward and 

downward flow of activation between these units can ‘refresh’ that activation, enabling 

representations to be mainlined for short periods (see also Martin & Ayala, 2004; Martin & 

Gupta, 2004). According to this theory, this bidirectional flow of activation within the lexical 

network plays an important role in verbal working memory tasks (see Buchsbaum & 

D’Esposito, 2008; Buchsbaum, Olsen, Koch & Berman, 2005; Buchsbaum, et al., 2005 for an 
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alternative proposal that also views verbal working memory as an emergent property of the 

language system).  

Furthermore, it has also been argued that rather than considering cognitive domains 

such as executive control and language, as distinct entities, it may be the case that there are 

domain-specific cognitive control processes which operate primarily on language (see Badre, 

2008; Badre & D'Esposito, 2007; Badre, Poldrack, Paré-Blagoev, Insler, & Wagner, 2005; 

Badre & Wagner, 2007; Hamilton & Martin 2005). For example, Hamilton and Martin (2005) 

provide evidence that impairments on Stroop-like inhibitory control tasks can be highly 

material-specific – for example, an individual can fail on the conventional Stroop but perform 

completely normally on the nonverbal antisaccade task. They argue that this dissociation 

provides evidence that there is a distinct component within “executive function” that may be 

specifically involved in language. 

Nevertheless, it is to some extent an empirical question whether the types of skills 

measured in the BLAST – particularly those associated with anterior cortex – reflect 

processes that are genuinely specific to language, or whether they reflect the integrity of more 

domain-general cognitive functions. We aim to address this in a follow-up study, which is 

currently underway. Brain tumour patients in this study will complete the BLAST, as well as 

a more extensive neuropsychological assessment, at least three months post surgery. Patients’ 

performance on key BLAST subtasks will be compared with  that on a nonverbal analogue of 

that task (e.g., performance on the Stroop is compared with that an anti-saccade task). We 

hope that this type of investigation will better determine associations between specific 

language skills and other more general cognitive processes. 
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Effects of Tumour Location and Other Tumour Properties on Performance 

As well as exploring the linguistic capabilities of brain tumour patients generally, we 

further investigated the effects of tumour location, as well as the characteristics of the tumour 

(malignancy, the presence of oedema and tumour volume). Interestingly, when considering 

overall scores on each of our tasks across different subgroups of patients, we found few 

significant relationships between tumour characteristics (malignancy, oedema and size) and 

performance. The anatomical location of the tumour only had a significant effect on 

performance in letter and category fluency. Specifically we found that left posterior patients 

performed significantly more poorly preoperatively on the category fluency task than all 

other anatomical groups (but this difference failed to reach significance postoperatively). 

Conversely, postoperatively, patients with a left frontal lesion performed significantly more 

poorly on the letter fluency task than all other groups (this difference failed to reach 

significance preoperatively). These findings are consistent with those of Papagno and 

colleagues (2012), who found that patients with a left frontal tumour performed more poorly 

in letter fluency than those with tumours in other regions, both preoperatively and three 

months postsurgery. Patients with a left temporal tumour also performed more poorly in 

category fluency than all anatomical groups at least 3 months post surgery (Papagno, 

Casarotti, Comi, Gallucci, Riva, & Bello, 2012). These were the only tasks within the 

BLAST that were found to have anatomical specificity.  

Nevertheless, when we consider our cognitive skill measures, greater anatomical 

specificity emerged. The key results are summarised in Table 7.1. Specifically, both group-

based and VLSM analysis supported an association between left posterior tumours and 

phonological encoding, lexical selection, and accessing semantic knowledge either pre- or 

postoperatively, or both. A similar association was found between left frontal tumours and 

verb retrieval and articulatory-motor planning, and goal-driven response selection, either 
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pre- or postoperatively or both. These results are encouraging considering the low power of 

the anatomical groups in this study. First, they confirm, to some extent, the validity of the 

measures we used to operationalise these cognitive skills. Second, these results indicate 

considerable promise for future investigations that adopt this methodology using a more 

exhaustive sample of brain tumour patients. This is important as studies that use a large 

sample size will be able to provide complementary data to other lesion modalities. And third, 

at a clinical level, a test battery that is sensitive to the localisation of the tumour will be 

advantageous during an awake craniotomy in order to monitor language function most 

appropriately.  

Table 7.1 

 Key behavioural and VLSM findings from the anatomical localisation analysis of the core 

cognitive skills both pre- and postoperatively  

 Preoperative Postoperative 
Skill Group Effect VLSM* Group Effect VLSM* 

Accessing 
Semantic 

Knowledge 

Left Posterior Middle and 
inferior 

temporal gyrus 
Inferior and 

middle occipital 
gyrus 

Fusiform gyrus 
 

Left Posterior Middle and 
inferior 

temporal gyrus 
Inferior and 

middle occipital 
gyrus 

Fusiform gyrus 

Lexical 
Selection 

Left Posterior Middle and 
inferior 

temporal gyrus 
Inferior and 

middle occipital 
gyrus 

Fusiform gyrus 

Left Posterior No significant 
voxels found 

Phonological 
Encoding 

No significant 
group effect 

No significant 
voxels found 

Left Posterior Middle and 
inferior 

temporal gyrus 
Inferior and 

middle occipital 
gyrus 

Fusiform gyrus 
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* All brain regions are confined to the left hemisphere 

Advantages, Limitations, and Suggestions for Future Research 

The findings of this study hold considerable promise for the methodology we have 

adopted for the operationalisation of these cognitive skills. By adopting a cognitively 

motivated assessment protocol for the exploration of language in brain tumour patients, we 

hope to more effectively establish the prevalence and profile of language capabilities in this 

population. However, we need to ensure firstly that we are appropriately measuring each core 

Preoperative Postoperative 
Skill Group Effect VLSM* Skill Group Effect 

Auditory Word 
Identification 

No significant 
group effect 

No significant 
voxels found 

No significant 
group effect 

No significant 
voxels found 

 
Goal-Driven 

Response 
Selection 

No significant 
group effect but 
higher incidence 
of impairment 

for the left 
frontal group 

 

Middle and 
inferior frontal 

gyrus and insula 

No significant 
group effect but 
higher incidence 
of impairment 

for the left 
frontal group 

Superior and 
middle frontal, 

anterior 
cingulate 

 
 

Verb Retrieval 

 
 

Left frontal 

 
 

Superior frontal, 
pre and 

postcentral 
gyrus, middle 
cingulate and 

superior parietal 
 

 
 

No significant 
effect of group 

 
 

No significant 
voxels found 

Articulatory- 
Motor Planning 

Left frontal Superior, middle 
and inferior 

frontal gyrus, 
middle 

cingulate, 
supplementary 

motor area, 
insula 

Left frontal Superior, middle 
and inferior 

frontal gyrus, 
middle 

cingulate, 
supplementary 

motor area, 
insula 

Accessing 
Semantic 

Knowledge 

Left Posterior Middle and 
inferior 

temporal gyrus 
Inferior and 

middle occipital 
gyrus 

Fusiform gyrus 
 

Left Posterior Middle and 
inferior 

temporal gyrus 
Inferior and 

middle occipital 
gyrus 

Fusiform gyrus 
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cognitive skill. These cognitive skills are hypothetical entities, and in order to quantify each 

skill, we needed to draw upon evidence from a range sources. This is the first investigation 

that we are aware of that has embarked upon this endeavor, and it is imperative that we 

validate the methodology. The anatomical correlates of each of our skills provide just one 

source of validation. Other sources of cross validation would be to give the BLAST to stroke 

patients with known selective deficits, and to systematically compare our cognitive skills 

with alternate measures that arguably reflect the same cognitive skill. For example, we could 

compare scores on our measure of auditory word recognition with those on a phoneme 

discrimination task or an auditory lexical decision task (Blumstein, Baker & Goodglass, 

1977; Franklin 1989). If performance on these measures are consistent with those of our 

measure, and our cognitive skill is associated with anatomical regions consistent with the 

literature, this holds considerable promise that we are in fact measuring the skill most 

appropriately.  

The BLAST was designed primarily as a research tool for examining the incidence of 

specific cognitively defined language impairments in this population. Because of its brevity, 

it has the potential to be part of a clinical assessment, perhaps embedded within a more 

general neuropsychological protocol that examines other aspects of cognitive functioning, 

such as attention, memory, etc. The finding that a core skills approach is able to determine 

unique language profiles based on the localisation of the lesion, allows for the possibility of 

selecting and administering tasks/manipulations that meet the neurological profile of the 

patient. This is the first step in the development of such an assessment protocol for use with 

brain tumour patients. We hope that the BLAST will catalyse the development of additional 

assessments that focus specifically on other cognitive domains e.g. memory, attention or 

executive functioning. By testing one cognitive domain extensively (in a similar manner to 

the methodology adopted in this thesis), future researchers may be able to identify those 
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measures that are most sensitive at detecting impairment in brain tumour patients, and more 

specifically based on the localisation of the tumour.  

A further potention advantage of an assessment tool of the kind we have developed 

here, is that it has the capacity to offer new terminology in the diagnosis of language 

impairment in this population. As previously discussed, the contrasting pathological 

differences between stroke and tumour lead to very different linguistic profiles. The use of 

similar labels to encapsulate language impairments across different aetiologies may not 

accurately capture the linguistic deficits in brain tumour patients. A new conceptualisation of 

language impairments in brain tumour patients seems needed. This study offers some 

suggestions as to how we might go about developing such a scheme. For example, if a patient 

had an impairment on one cognitive skill, then this could translate to a “selective tumour-

induced language impairment”. The use of consistent and ‘tumour specific terminology’ 

could aid in the effective assessment of language throughout all surgical phases, and could 

further be used to help guide selection of patients for awake craniotomy, and referral for 

neuropsychological rehabilitation postoperatively. In addition, the use of common 

terminology in research could help enhance consistency across differing investigations, 

which may help draw more definitive conclusions surrounding language capabilities and 

prevalence in this population. 

Finally, although the BLAST was designed specifically for the assessment of 

language in brain tumour patients, the promising results of the current study provides a 

rationale to examine the BLAST on other etiologies. The assessment of stroke patients at an 

acute phase, but also those with chronic aphasia would be ideal candidates. If the BLAST 

were also able to detect specific deficits in core linguistic skills, this would provide a 

valuable source of information to aid in the most effective rehabilitation for this population. 

Also from a theoretical viewpoint, the specificity of the BLAST could allow for a better 
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understanding of possible differences in linguistic profiles between stroke and brain tumours. 

However, there are a number of limitations to the current study, as well as a number 

of results that were inconsistent with our predictions, which warrant further discussion. 

An important limitation of the BLAST concerns those functions and abilities that it does not 

measure. One of the big challenges with neuropsychological assessments in brain tumour 

patients is establishing the balance between brevity and comprehensiveness. In an ideal world, 

the best approach would be a comprehensive neuropsychological assessment that assesses 

multiple cognitive domains, followed by an extensive language assessment including both 

very specific and more naturalistic language tasks. However, this approach is unlikely to be 

feasible in most settings. In the current study, participants were tested in the context of a very 

busy and stressful three to four night stay in an acute hospital, so a longer assessment was not 

only practically difficult, but also arguably ethically inappropriate. We were unable to assess 

neuropsychological function more generally, nor were we able to administer a comprehensive 

aphasia assessment. Limitations of this kind are unlikely to be unique to our particular setting. 

All assessments need to be designed in order to gather the most important data within the 

briefest possible time frame. However, it is important to consider the specific consequences 

of the particular trade-offs we made between brevity and comprehensiveness in the context of 

the present study. 

Furthermore, caution must be noted in the interpretation of language impairments 

postoperatively. This is due to the array of possible post surgical effects that could 

temporarily maintain or even exacerbate the incidence of language impairments. This 

includes postsurgical oedema, transient retraction injury, initial displacement of neural 

structures, and neuroplastic mechanisms (Bello et al., 2007). In fact there is a growing debate 

within the literature concerning whether or not postoperative linguistic impairments are in 

fact transient and are mostly recovered within 3 months (Finch & Copland, 2014; Wu et al., 
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2011), or that the sensitivity of assessment protocol is not accurately detecting these 

impairments (Ilmberger et al., 2008; Papagno et al., 2012). We are unable to comment on this 

debate based on the current study. However, in a follow up study we are investigating 

whether or not a patient’s postoperative performance on the BLAST is predictive of their 

performance at least 3 months post surgery. Our current study provides the springboard in 

order to enable this future analysis to be performed.   

An important concern that could be raised about the BLAST is that it restricts itself to 

the single word level. Although we assess cognitive skills often considered to be critical for 

sentence-level processing (e.g., verb retrieval, goal-driven response selection, verbal short 

term memory), there are currently no stimuli within the BLAST that utilise whole sentences. 

This may limit its ability to accurately assess some skills specifically involved in sentence 

level-processing. However, this limitation might not be as critical as it first appears. In fact, 

recent evidence has emerged that some deficits that appear to selectively affect sentence-level 

processing are evident in the individual’s pattern of performance even in single word tasks 

 (Biegler et al., 2008; Freedman et al., 2004; Hamilton & Martin, 2005; Raymer & Kohen, 

2006; Schnur et al., 2009; Scott & Wilshire, 2010; Wilshire & McCarthy, 2002). For example, 

Scott and Wilshire (2010) report the case of JHM a nonfluent aphasia with severe sentence 

level processing deficits, who exhibited significant impairments in the Stroop task. Further 

both types of deficits appear to have common lesion correlates – most notably, left inferior 

frontal gyrus (Borovsky, Saygin, Bates & Dronkers, 2007; Kling 2007; Schnur et al., 2009). 

We aim to address the precise relationship between performance on our assessment and 

sentence-level processing in a follow-up study currently underway. In this study, brain 

tumour patients are assessed using the BLAST at least three months post surgery, and at this 

time their sentence production and comprehension are assessed using the QPA (Berndt, 2000) 

the TROG test (Bishop, 2003) respectively. This will allow us to determine if an individual’s 
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profile on the BLAST is indeed predictive of their sentence-level processing abilities.  

Language tasks within the BLAST also rely heavily on concrete stimuli. For that 

reason, a further limitation is that the BLAST does not contain any task that assesses the 

processing of more abstract conceptual material. The aphasia literature shows that some 

patients have specific deficits in the processing of abstract words, but show intact 

performance in tasks with concrete stimuli (see Franklin, Howard & Patterson, 1994; 1995; 

Tyler, Moss & Jennings, 1995). For that reason, the failure of the BLAST to assess this 

domain may mean that patients with a specific deficit in processing abstract concepts are 

missed. Further, Crutch and Warrington (2004) propose a dissociation in the semantic 

representation of abstract and concrete words. More specifically, the authors suggest that 

abstract concepts are organised by association (e.g., salute, army, general, respect), whereas 

concrete words have a categorical organisation (e.g., fruit: apple, strawberry, banana, etc. For 

further discussion see Shallice & Cooper, 2013). Although these arguments do not amount to 

support for a separate and distinct cognitive skill being associated with the processing of 

these word types – which was the criterion for selection of the skills for the present protocol – 

this issue is nonetheless one worth exploring in future investigations.  

It is also important to note that we assessed verb production in a rather 

unconventional manner. Rather than using action-naming tasks, and comparing performance 

with that on a set of frequency and age of acquisition matched stimuli in an object-naming 

task, we used a verb generation task. This decision was made in order to minimise the 

number of tasks in the protocol; we considered that relevant information about verb 

production could be learned indirectly from performance on the high-response selection items 

in this task. However, this task does make rather different cognitive demands. For example, 

the stimulus noun might “cue” the appropriate verb response, making it much more readily 

retrievable than in the absence of such a cue (for example, when the stimulus is a pictured 
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activity only). Also, there is no carefully matched object-production control task against 

which to directly compare verb production scores. The relative integrity of noun vs. verb 

production can only be inferred indirectly, using Z-scores based on control performance on 

the verb generation and picture object naming tasks, which are not equated in all other 

relevant respects. 

Other potential limitations of our protocol concern the manner in which our various 

cores skills were operationalised. The core skills we measured in this study were those for 

which there is considerable supporting evidence in the literature and relatively high 

agreement concerning their existence. Nevertheless, we made certain arbitrary decisions 

regarding which aspects of performance we took into account when creating measures of 

these skills. This issue is particularly salient when considering the complex cognitive 

processes associated with anterior cortical areas. For example, there is debate within the 

literature as to whether anterior regions such as the left inferior frontal gyrus operate 

primarily to drive the lexical retrieval process in line with the current communication goal (a 

form of “effortful search”), or whether their primary role is to resolve competition (for 

discussion see Martin & Cheng, 2006; Thompson-Schill & Botvinick, 2006). One emerging 

view is that these processes may be two sides of the same coin (Novick et al., 2009; Novick, 

Trueswell & Thompson-Schill, 2005; Novick, Trueswell & Thompson-Schill, 2010; 

Thompson-Schill, Bedny & Goldberg, 2005). Motivated by the latter argument, we 

operationalised a measure we called goal-driven response selection by combining measures 

that appear to assess effortful search (letter fluency), and those involved that appear to 

involve resolution of competition (e.g., congruency effect in the Stroop task). Both sets of 

cognitive processes have previously been associated with the left inferior frontal gyrus 

(Baldo, Schwartz, Wilkins & Dronkers, 2006; Mirman & Graziano, 2013; Thompson-Schill, 

D’Esposito, Aguirre, & Farah, 1997; Tsuchida & Fellows, 2012; Wagner, Sebastian, Lieb, 
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Tüscher, & Tadić, 2014;).  

However, we also found that patients with a right hemisphere tumour also score 

poorly on goal-driven response selection. It is possible that our decision to combine this wide 

range of skills into a single score may have reduced the specificity of targeting the core 

cognitive process specifically involved in language. One way to address this potential 

problem in future studies is to separate our measures of selection and effortful search, and to 

determine if their neural correlates are the same or different. If common brain structures were 

found to be associated with each skill, then this would support our original operationalisation 

that they both reflect a common cognitive process. 

Other potential limitations have arisen not within the theoretical characterisation of 

the various skills, but rather in the specific tasks that were chosen to measure them. For 

example, one of the main measures we used to operationalise auditory word identification 

was accuracy in single word repetition. When considering overall task performance, this task 

showed poor sensitivity. Given that single word repetition accuracy was at ceiling in most 

individuals, including the measure might have washed out the lower scores obtained on other 

measures, such as nonword repetition and picture-word verification involving phonological 

distractors. This issue of differences in the variability within each of the measures used to 

operationalize each core skills is a limitation that will need to be addressed, as it can also 

have a converse effect to that described above. That is, a measure with little variance can led 

to a large z score, even when patients have minor variations in performance. This could lead 

to an inaccurate reduction in the overall core skill measure. A way to overcome this in future 

would be to adjust the contribution that each measure has to the overall core skill; at present 

all measures have an equal weighting. Also as mentioned earlier, we strongly advocate that 

each of our measures is appropriately validated with other sorts of tasks that also assess these 

cognitive skills. This will not only ensure that we have appropriately conceptualized the skill 
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at a theoretical level, but also that the measures we have used to operationalise the skill 

accurately depict the skill in question. 

The final limitation that warrants some consideration arises from the unique 

difficulties associated with neuroanatomy in brain tumour populations. A debate has recently 

emerged within the literature concerning whether we can infer brain-behaviour relationships 

from brain tumour patients. Karnath and Steinbeck (2011) argued that using MRI techniques 

to infer the representation of human brain functions in tumour patients is “highly problematic” 

(pp. 1005). First, the authors argued that it is incorrect to treat brain regions as intact simply 

because they lie outside the tumour border. Evidence to support this view comes from studies 

suggesting that the diffuse spread of a tumour occurs beyond those areas visualised in an 

MRI (Burger et al., 1998; Kleihues et al., 2007; as cited in Karnath & Steinbeck, 2011). 

Second, or reversely neural function may well be preserved within the tissue that has been 

infiltrated by a tumour or displaced from that region by the tumour. One final concern raised 

by these authors is that the brains of individuals with slow growing tumours may be 

qualitatively different from those of healthy brains as a consequence of functional 

reorganisation. In reply to these concerns, Shallice and Skrap (2011), acknowledged that 

many of these criticisms are not limited to the study of brain tumours. For example, the 

functional localisation of lesions in stroke patients is commonly reported based on standard 

MRI techniques, which may also fail to detect functional abnormalities in border regions. 

Instead, Shallice and Skrap (2011) argued that to make a convincing case against the use of 

tumours for the determinant of brain-behaviour relationships, quantitative evidence would be 

needed to show that the arguments proposed by Karnath and Steinbeck, (2011) are in an 

order of magnitude more serious than stroke populations.  

We agree that at present there are limitations in using MRI techniques to infer brain-

behaviour relationships. All results obtained through this analysis must be treated with 
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caution. However, we would argue that despite its potential difficulties, evidence from 

tumour patients offers a unique insight into human brain functioning. In particular, tumours 

have a very heterogeneous localisation, and unlike strokes are not confined to regions 

supplied by the vascular network. They therefore offer a source of evidence that 

complements other existing sources. Also by examining a range of aetiologies, this in itself 

may help us to become better aware of the limitations of each, and consequently provide a 

richer understanding of the language system. 

Conclusion  

In conclusion, this study assessed language capabilities in an undifferentiated cohort 

of surgical brain tumour patients using a novel, cognitively motivated ‘core skills’ approach. 

This approach enables the researcher to identify and measure a number of key cognitive 

abilities that are likely to be necessary for effective language use, while keeping testing time 

to a minimum. The way in which the core skills were measured makes it unlikely that poor 

scores were simply due to more general cognitive deficits (such as cognitive slowing, etc.). 

This investigation found a high incidence of relatively selective language impairments in 

brain tumour patients both pre- and postoperatively, suggesting that language deficits are 

perhaps more prevalent in this population than has previously been assumed. It is therefore 

imperative that we have an effective language assessment tool that is accessible and can be 

used for this population. Moreover, the various different types of core skills impairments 

evident in our sample were also associated with distinct neuroanatomical correlates. This not 

only provides some independent evidence of the conceptual integrity of the core skills 

approach, but also suggests it may have some value in assessing ‘at risk’ language skills prior 

to surgery, and also those possibly impacted by the surgery itself. 

Given the brevity and potential neuroanatomical selectively offered by the BLAST, 

this type of assessment approach has promise as a clinical tool, particularly in preoperative 
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clinical assessment, where a brief tool for assessing neuroanatomically specific aspects of 

language may be of particular value, e.g., identifying candidates for awake craniotomy. This 

assessment approach also has the potential to be used postoperatively in order to guide 

cognitive rehabilitation within a time frame where improvements can be maximised. This is 

the first step in the development of a specific language assessment for brain tumour patients 

using a cognitively motivated approach. Our next steps are extending our patient pool and 

further exploring the integrity and validity of the various measures obtained by the BLAST, 

for example, by comparing them with those obtained using more conventional 

neuropsychological/aphasia assessments. This initial investigation has provided a useful 

insight into the linguistic functioning of brain tumour patients, and we hope this can be used 

to aid in more effective language assessment for this population.  

 

 

 

 

 

 

 

 



 

 

168 

List of Appendix Tables 

Table D.1……………………………………………………………………………………203  

Frequency and length of items in version 1 of the picture-naming task in order of appearance  

Table D.2……………………………………………………………………………………204 

Frequency and length of items in version 2 of the picture-naming task in order of appearance  

Table D.3……………………………………………………………………………………206 

Frequency and length of items in version 3 of the picture-naming task in order of appearance  

Table D.4……………………………………………………………………………………207 

 Selection strength ratios and frequencies for items in version 1 of the verb generation task in 

order of appearance  

Table D.5……………………………………………………………………………………208 

 Selection strength ratios and frequencies for items in version 2 of the verb generation task in 

order of appearance  

Table D.6…………………………………………………………………………………...210 

Frequencies and syllable length for version 1 of the picture-word interference task in order 

of appearance 

Table D.7…………………………………………………………………………………..211 

Frequencies and syllable length for version 2 of the picture-word interference task in order 

of appearance 

Table D.8………………………………………………………………………………….212 

Frequencies and imageability of the single word repetition task in order of appearance 

Table D.9………………………………………………………………………………….214 

List of items in the nonword repetition task, and their associated actual word in order of 

appearance. 

 



 

 

169 

Table D.10…………………………………………………………………………………214 

Items, their associated colours and condition in the Stroop task in order of appearance 

Table D.11………………………………………………………………………………...215 

Items presented in order of appearance in the Articulatory Agility test 

Table D.12…………………………………………………………………………………215 

Frequency and imageability for section 1 of the reading test in order of appearance  

Table D.13…………………………………………………………………………………216 

Frequency, imageability and regularity of section 2 of the reading task in order of 

appearance  

Table D.14…………………………………………………………………………………217 

Items presented in order of appearance for the nonword reading task 

 

 

 

 

 

 

 



 

 

170 

List of Appendix Figures 

Figure A.1. MRI scan of patient SM………………….……………………………………173 

Figure A.2. MRI scan of patient PM…………………….…………………………………173 

Figure A.3. MRI scan of patient VD……….………………………………………………174 

Figure A.4. MRI scan of patient DA……………….………………………………………174 

Figure A.5 MRI scan of EH……………….………………………………………….……175 

Figure A.6. MRI scan of patient RF………………………………………………………..176 

Figure A.7. MRI scan of patient SO…………………….…………………………….……176 

Figure A.8. MRI scan of patient CG…………………….…………………………………177 

Figure A.9. MRI scan of patient EMH…………………….……………………………….177 

Figure A.10. MRI scan of patient EA…………………….………………………………...178 

Figure A.11. MRI scan of patient CA…………………….……………………………..….178 

Figure A.12. MRI scan of patient JM…………………….………………………...………179 

Figure A.13. MRI scan of patient CR…………………….……………………………..….179 

Figure A.14. MRI scan of patient LC…………………….…………………………...……180 

Figure A.15. MRI scan of patient DAP…………………………………………………….181 

Figure A.16. MRI Scan of patient MR…………………….………………………….……181 

Figure A.17. MRI scan of patient TD..…………………….……………………………….182 

Figure A.18. MRI scan of patient TF…………………….……………………...………….182 

Figure A.19. MRI scan of patient AVG…………………….………………………...…….183 

Figure A.20. MRI scan of patient BCA…………………….………………………………184 

Figure A.21. MRI scan of patient AM…………………….…………………………….….185 

Figure A.22. MRI scan of patient RJ…………………….…………………………………185 

Figure A.23. MRI scan of patient LA…………………….…………………………..…….186 

Figure A.24. MRI scan of patient CM…………………….…………………………..……186 



 

 

171 

Figure A.24. MRI Scan of patient LW…………………….………………………….…….187 

Figure A.25. MRI scan of patient ES…………………….……………………………...….188 

Figure A.26. MRI scan of patient TT…………………….…………………………...…….188 

Figure A.27. MRI scan of patient SMC…………………….……………………...……….189 

Figure A.28. MRI scan of patient DF…………………….……………………...………….189 

Figure A.29. MRI scan of patient GP…………………….………………………...……….190 

Figure A.30. MRI scan of patient MRO…………………….………………………...…….190 

Figure A.31. MRI scan of patient RG…………………….…………………………..…….191 

Figure A.32. MRI scan of patient TKH…………………….…………………………..…..191 

Figure A.33. MRI scan of patient JAS…………………….……………………….……….192 

Figure A.34. MRI scan of patient AEK…………………….………………………………192 

Figure A.35 MRI scan of patient JB…………………….………………………….……….193 

 



 

 

172 

Appendix A: Brain Tumour Patients’ Case Descriptions 

The following appendix provides a brief case description for each brain tumour 

patient who participated in this study. The case descriptions have been categorised into the 

four broad anatomical categories used throughout this thesis. If a patient’s MRI scan was 

available, they are presented here on a standard MRI template (Rorden, et al. 2012) at MNI 

coordinates = -22, -12, -2, 3, 8, 19, 28, 38, 48, 58, 68. 

Left Frontal Group 

SM 

SM is a 49-year-old right-handed woman from a large rural town in the North Island. 

SM had a history of seizures. Her medical records showed that she experienced her first 

seizure at the age of 32, immediately following the birth of her first daughter. Seizures 

persisted for 10 years, stopping at the age 42, and leading to cessation of medication for 

seven years. In July 2009 SM began to experience episodes of a right-sided numbness in her 

right leg about once a week, and later developed similar episodes of numbness in her face and 

lips, as well as some confusion and word finding difficulties. A neurological examination in 

July 2009 found a reduced sensation for light touch in her right arm and leg, but not her face. 

There was no evidence of motor deficits, and the level of deep tendon reflexes was 

symmetrical. An MRI conducted at that time revealed a 1cm paracentral parasaggital 

cavernoma in her left hemisphere. The paracentral lobule is located in the distal part of the 

superior frontal gyrus. SM presented with no significant language deficits. However, she did 

complain to a speech language therapist of minor word finding difficulties. SM underwent 

awake craniotomy for the removal of the cavernoma in August 2011. 
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Figure A.1. MRI scan of patient SM 

PM 

PM is a 45-year-old right-handed male from suburban Wellington. Medical records 

show that PM experienced complex partial seizures in of August 2011, and was admitted to 

the Hutt Hospital Emergency Department. The seizures were described as starting with a 

funny sensation, following which the patient made strange noises, becoming stiff, biting his 

tongue and shaking his limbs. These seizures resolved spontaneously. Later the same month, 

PM was admitted to the Neurosurgery Unit for four days to achieve seizure control. During 

his stay, PM had four more simple partial seizures. A CT scan of the head demonstrated a 

hypodense left-sided frontal lesion in the region of the supplementary motor cortex. A further 

MRI investigation confirmed this as an oligodendroglioma. CT scans are presented in Figure 

X and MRI scans in Figure X. PM underwent awake craniotomy for debulking of the tumour 

in October 2011. 

 

Figure A.2. MRI scan of patient PM 

VD 

VD is a 56-year-old female from a small rural town in the South Island. In August 

2011 she complained of seizures and headaches, and a CT scan showed a large left parietal 

lesion and another smaller frontal lesion, consistent with cerebral metastases. A CT scan of 

the chest, abdomen and pelvis showed no evidence of malignant disease. VD underwent a 
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macroscopic complete excision of the parietal lesion shortly after. The frontal lesion was not 

resected. VD made a good recovery postoperatively. On March 2012, VD presented with 

confusion and hemiparesis, which was relieved by steroids. A frontal craniotomy was 

subsequently performed to debulk the left frontal glioblastoma in March 2012. 

 

Figure A.3. MRI scan of patient VD 

DA 

DA is a 33-year-old male from Wellington. In February 2012 DA was examined by 

neurosurgeon Mr Andrew Parker, who established that there was no neurological deficit. He 

had no papilloedema or any new cognitive symptoms or changes in limb function. DA 

reported no symptoms of headache or disturbances of vision, and regarded himself as being 

normally well. He is an insulin-treated diabetic with low testosterone. DA had a history of 

leukaemia at age five with a relapse at age eight, where he developed a transient hemiparesis. 

This required total body radiation and a bone marrow transplant. An MRI performed at this 

time revealed a relatively large left frontal parasagittal meningioma. Surgery to debulk the 

tumour was undertaken in April 2012.  

 

Figure A.4. MRI scan of patient DA 
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EH 

EH is a 39-year-old female from a small rural town in the North Island. When seen at 

her local hospital in November 2011, EH complained of frequent seizures during the past 

three months. EH indicated that overall she had suffered from five grand mal seizures, the 

last of these being approximately four weeks prior (there was a decrease in the frequency of 

these seizures, which coincided with Epilim administration). EH also complained of a left 

retro-occipital headache, which had been present for several months. There was no particular 

pattern to this pain, which could come on at almost any time. Neurological examination by 

Mr Andrew Parker revealed that her vision, cognitive function and motor function were all 

normal. A CT scan and subsequent MRI demonstrated an enhancing extra-axial left frontal 

lesion attached to the convexity dura and extending into the falx. There appeared to be some 

erosion of the frontal bone, but the tumour margins did not overlap with the frontal sinus. 

There also appeared to be significant sinus disease both in the frontal and maxillary sinuses, 

more prominent on the left. There was also thickened dural tail – all appearances consistent 

with a 3cm meningioma. The tumour was diagnosed not long after EH had given birth, so it 

was decided to defer EH’s surgery until her child had grown and was a little more robust. 

Resection of the meningioma occurred in May 2012.  

 

Figure A.5. MRI scan of EH 

RF 

RF is a 65-year-old male from a small costal town in the South Island. RF was 

admitted to Wellington Hospital in July 2012, two weeks after he had experienced a partial 

seizure at home that caused a loss of consciousness. Subsequent medical examination 
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revealed that RF had a mass in the left parafalcine, posterior frontal lobe that was consistent 

with a meningioma. RF’s surgery was performed in early July 2012.  

 

Figure A.6. MRI scan of patient RF 

SO 

SO is a 58-year-old man from suburban Wellington. He had experienced a three-week 

history of deteriorating right upper limb function. An MRI scan in August revealed an 

irregular heterogeneously enhancing tumour just right to the anterior motor strip in the left 

hemisphere. Craniotomy for debulking the tumour occurred in late August 2012.  

 

Figure A.7. MRI scan of patient SO 

CG 

CG is a 46-year-old female from a small rural town in the North Island. CG had a 

history of breast cancer three years ago, including a bilateral mastectomy, and sustained a left 

frontoparietal haemorrhage. At that point, she presented with a dense right-sided hemiplegia, 

but this was improving. Of note she also had a previous lung lesion that was 1.4cm in size, 

which had increased to 6cm in size. Initially it was planned to perform serial MRI scans for 

her whilst at the rural hospital, but unfortunately she sustained another large left 

posterior/frontal haemorrhage including intraventricular extension with a dense right-sided 

hemiplegia. She was subsequently transferred to Wellington Hospital for surgery for 
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resection of the clot underlying the posterior/frontal tumour. Surgery occurred in November 

2012. 

 

Figure A.8. MRI scan of patient CG 

EMH 

EMH is a 75-year-old female from a large rural town in the North Island. In 

December 2012, EMH presented at her local hospital complaining of slurred speech, facial 

droop and headaches. A CT scan revealed a small ring-enhancing lesion in the left 

posterior/frontal cortex. An MRI scan demonstrated that lesion to be 2.3cm by 2.1cm. EMH 

had a background of lung cancer that had been treated with chemotherapy and radiation. A 

CT of her chest, abdomen and pelvis showed radiation related pneumonitis (inflammation of 

lung tissue) with no obvious tumour. On the 12th of December, 2012, EMH underwent left 

frontal craniotomy and complete resection of sub central gyrus metastasis. Unfortunately, 

EMH was discharged from Wellington Hospital before postoperative testing could 

commence.  

 

Figure A.9. MRI scan of patient EMH 

EA 

EA is a 70-year-old female from suburban Wellington. In January 2013 she was 

admitted to the Neurosurgery Department of Wellington Hospital with an incidentally 
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discovered left frontal convexity meningioma. An MRI revealed that the mass measured 

approximately 3cm in maximum AP diameter by 2.6cm transversely. There was a small dural 

tail and slight mass effect on the anterior falx. EA underwent craniotomy in January 2013. 

 

Figure A.10. MRI scan of patient EA 

CA 

CA is a 47-year-old female from a suburban town in the North Island. In February 

2013 she presented at her local hospital with symptoms of headache and deteriorating 

cognitive function. Imaging demonstrated a large left sphenoid wing meningioma causing 

considerable midline shift and extensive central oedema. She was commenced on 

Dexamethasone, and improved rapidly. CA underwent craniotomy and tumour resection in 

early March 2013.  

 

Figure A.11. MRI scan of patient CA 

JM 

JM is a 71-year-old female from a small rural town in the North Island. She presented 

in the Neurosurgical Ward in February with a three-to-four-week history of difficulty finding 

words, as well as poor comprehension. The dysphasia was resolved with Dexamethasone. 

She had no other focal neurological deficit and had no headaches. A CT and subsequent MRI 

report confirmed an irregular ring-enhancing left inferior frontal lesion and surrounding 
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oedema. The appearance was consistent with a metastatic disease. JM also had a functional 

MRI to show the area of motor speech. This was due to the fact that the lesion was in 

eloquent brain and there was a moderate risk of postoperative speech disturbance. JM 

underwent craniotomy and exploration in March 2013.  

 

Figure A.12. MRI scan of patient JM 

CR 

CR is a 75-year-old female from suburban Wellington. She presented with difficulty 

writing and holding objects due to weakness of her right hand. She has intermittent episodes 

where there was tightness under the chin and a stiff mouth, which sometimes lasted for 10 

minutes. There was no loss of awareness or loss of consciousness. She mostly had trouble 

writing and using the keyboard and mouse on a computer. There had been occasional 

dribbling on the right side. There had been no disturbance of speech, expression or 

compression. These symptoms improved once commencing Levetiracetam. An MRI scan in 

April showed a 4.5cm left posterior frontal tumour with homogenous enhancement 

suggestive of a meningioma. Craniotomy occurred in May 2013. 

 

Figure A.13. MRI scan of patient CR 
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LC 

LC is a 43-year-old female from central Wellington. She presented with radicular pain, 

which had been presented over the last few months. On admission into the Neurosurgical 

Ward in September 2013, she remained asymptomatic expect for occasional headaches. Her 

neurological examination was normal expect for reduced sensation on her right foot. She was 

still experiencing radicular pain in her right leg. An MRI scan on admission revealed a low-

grade astrocytoma in the left posterior frontal lobe. Awake craniotomy was performed for 

resection of the tumour.  

 

Figure A.14. MRI scan of patient LC 

DAP 

DAP is a 45-year-old male from a small rural town in the North Island. He presented 

at his local hospital a month before surgical admission due to a single epileptic fit. He also 

reported progressive deterioration in right leg function and headaches. An MRI revealed a 

tumour in the left parietal lobe adjacent to the motor strip. This had the characteristics of a 

low-grade glioma in the process of transforming to a higher-grade tumour. Craniotomy and 

resection occurred in September 2013. DAP had a seizure postoperatively, and consequently 

postoperative testing was not conducted.  
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Figure A.15. MRI scan of patient DAP 

MR 

MR is a 68-year-old female from a small rural town in the North Island. 

Approximately 12 years ago she underwent resection of a cutaneous malignant melanoma. 

She had remained well since. However, in the weeks prior to her hospital admission, she had 

developed a profound affective disorder with very low mood. A CT scan was performed, 

demonstrating a left frontal and right thalamic enhancing lesion (in the right basal ganglia 

and marked compresses in the right frontal horn). Craniotomy occurred for resection of the 

left frontal lesion in September 2013. MR declined to participate in postoperative testing.  

 

Figure A.16. MRI Scan of patient MR 

TD 

TD is a 30-year-old male from central Wellington. He was referred with a three-

month history of right-sided focal seizures. An MRI scan revealed a large generally non-

enhancing mass in the left frontal region extending across the corpus callosum. The 

appearance was suggestive of an oligdendroglioma. Craniotomy occurred for debulking of 

the tumour in September 2013. 
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Figure A.17. MRI scan of patient TD  

TF 

TF is a 40-year-old female from a small rural town in the North Island. She presented 

with a gradual decline over the last few months with worsening headaches and personality 

change. On further questioning to her sister-in-law, they felt that her decline may have been 

going on for the last two years or so. She had had a strange sensation in her right leg, which 

she was unable to describe. Her behaviour became quite erratic, to a degree where she was 

admitted to hospital. She also had a few episodes of falls. Her CT and subsequent MRI scan 

showed a left frontal tumour. It was suggested that this tumour could either be a lymphoma or 

glioma. Craniotomy occurred for debulking in October 2013. 

 

Figure A.18. MRI scan of patient TF 

Left Posterior Group 

AVG 

AVG is a 42-year-old female from suburban Wellington. On the 21st of March she 

presented with sudden deterioration in her right hand function and a degree of dysphasia. 

AVG also reported some difficulties with word finding and hand coordination over recent 

months, but was not 100% certain of this. Examination by Mr Andrew Parker revealed that 

she was fully conscious and oriented. Her cranial nerves appeared normal, she had no 

pronator drift, her speech has fluent and her gait was normal. A CT and MRI scan confirmed 
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the presence of a large durally based mass in the left convexity. Bony changes surrounding 

the lesion were suggestive of a meningioma. Further investigation into AVG’s acute 

dysphasia by the primary investigator revealed that she experienced sudden reading 

difficulties. During her interview with the primary investigator, she complained of reading 

difficulties; she explained that she could see individual letters within a word but could not 

decipher the overall word. This was relieved with Dexamethasone. Surgery was performed 

ten days later to remove the bulk of the tumour. 

 

Figure A.19. MRI scan of patient AVG 

BCA 

BCA is a 56-year-old male from Wellington. BCA presented at the Neurosurgery 

Clinic at Wellington Hospital in April 2012. BCA underwent debulking of a left occipital 

glioblastoma in April 2011, which was followed by radiation. He remained relatively well 

until early 2012, when he complained of increasing forgetfulness, difficulties with reading 

and intermittent episodes of dysphasia. He also reported recent headaches, which became 

worse after lying down for a nap. There was no nausea, vomiting or seizure. BCA was seen 

by Mr Andrew Parker in February 2012. He presented with a right homonymous hemianopia, 

probably dating from the time of his surgery, but the acuity in his reaming visual fields had 

remained intact. An MRI scan performed at that time revealed a recurrence of the 

glioblastoma around the site of his previous surgery with oedema extending into the left 

temporal lobe. Surgery was performed in April 2012, in order to attempt further debulking. 
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Figure A.20. MRI scan of patient BCA 

BD 

BD is a 62-year-old female from a small rural town in the North Island. She presented 

at the Neurosurgery Ward in March 2013. Here she described symptoms of discomfort in the 

proximal right lower limb. These had been present for over a year, and she increasingly 

seemed to drag this leg. She had longstanding numbness over the lateral aspect of the left calf. 

Her balance had been subtly affected. She also described a “full feeling” in her head that had 

been present since at least September 2012. She also reported intermittent numbness over the 

left side of her face and occasional headaches. Her husband reported some subtle changes in 

her mood, that she was sleeping far more than she used to, and subtle lapses in memory. On 

examination, cranial nerves where normal with the exception of early papilledema in the left 

eye. She exhibited normal tone, power and co-ordination of all her limbs. Her CT scan 

demonstrated a 3 x 4cm meningioma arising from the superior sagittal sinus. Craniotomy and 

resection occurred in March 2013. Unfortunately, BD’s MRI scan was unavailable. 

AM 

AM is a 38-year-old female from Wellington. In May 2012, AM presented at 

Wellington Hospital complaining of a sudden inability to read and spell certain words, and 

word finding difficulties. She also exhibited right lower facial weakness. A CT scan revealed 

an irregular mass lesion measuring up to 33mm in diameter in the posterior left parietal lobe, 

suggestive of a glioblastoma. Surgery was performed in late May 2012.  
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Figure A.21. MRI scan of patient AM 

RJ 

RJ is a 64-year-old female from a small rural town in the North Island. She presented 

with a fall and right leg weakness. She experienced a four-to-five-week history of episodic 

twitching in her arms. A CT scan showed a left parietal lobe tumour (most likely metastasis 

from a mass in her right lung). Upon admission to the Neurosurgical Ward, she declined 

surgery, and therefore no postoperative testing was conducted. 

 

Figure A.22. MRI scan of patient RJ 

Right Frontal Group 

LA 

LA is a 63-year-old female from a rural town in the North Island. Due to the fact that 

all of LA’s consultations occurred in her hometown, there was no medical history available at 

Wellington Hospital. However, her neurologist described one week of progressive left arm 

weakness that resolved with steroids. A CT and MRI scan performed at Wellington Hospital 

in April 2012 revealed a right frontal tumour, suggestive of a glioblastoma. Craniotomy was 

performed the following day. 
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Figure A.23. MRI scan of patient LA 
 

CM 

CM is a 57-year-old male from Wellington. When seen in March 2011, CM described 

a possible seizure, which occurred the previous March whilst he was cycling around the bays. 

He was picked up by an ambulance. He was apparently seen by the security monitors near the 

tunnel at the sound end of the airport, and seen to wobble and fall to the ground. CM also 

reported an episode of sudden severe pain in his head about a year and a half ago, lasting 60 

seconds. Recently he had also experienced two episodes of hot flushes. A CT performed at 

that time, and an MRI performed the following May, showed an ill-defined enhancing mass 

within the anterior right frontal lobe in a parafalcine location. Surrounding the mass there was 

a modest degree of vasogenic oedema within the right frontal lobe, which extended towards 

the corpus callosum but did not cross through into the left hemisphere. This presentation 

suggested a primary tumour, most likely an oligodendroglioma. Surgery was performed in 

June 2012. 

 

Figure A.24. MRI scan of patient CM 
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LW 

LW is a 66-year-old female from Hastings. Since October 2011 she has suffered from 

right-sided headache, which was initially severe but had reduces to manageable levels. In 

July 2012, LW was examined by Mr Parker. On examination, she presented as alert and 

orientated. She was slightly short of breath on minimal exertion. No focal neurological 

defects were detected. An MRI performed in June 2012 showed an extra axial durally based 

lesion in the right posterior frontal convexity region. It had a well-defined border but a 

somewhat lobulated appearance. There was a small amount of associated oedema. Diagnostic 

possibilities included meningioma or possible dural metastasis. Excision of the tumour was 

performed in August 2012.  

 
Figure A.25. MRI Scan of patient LW 

KB 

KB is a 30-year-old female from a suburban town in the North Island. KB presented 

at her local hospital with a seven-month history of headache and associated periorbital pain 

and slight proptosis. This was associated with blurred vision and diplopia in particular on 

upward gaze. CT and MRI reports confirmed a sphenoid wing meningioma on the right side 

with mass effect on the hemisphere and midline shift. There was an associated hyperostosis 

of the roof and lateral wall of the right orbit, causing mild proptosis. Craniotomy and tumour 

resection occurred on the 14th of March. Unfortunately, post surgery KB had eyelid oedema, 

and she was only able to open her eyes for a short period of time. Consequently, 

postoperative testing was cancelled. The MRI scan for patient KB was unavailable. 
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ES 

ES is a 78-year-old male from a small rural town in the North Island. He presented 

with a two-week history of progressively worsening confusion and unsteadiness of gait. A 

CT and MRI scan of his brain demonstrated a right frontal heterogeneously enhancing lesion 

on the periphery with central hypointense region suggestive of neurosis with focal and 

generalised mass effect. Craniotomy for resection occurred in December 2012. 

 

Figure A.25. MRI scan of patient ES 

TT 

TT is a 36-year-old female from suburban Wellington. She presented with slow 

recurrence of her posterior frontal diffuse astrocytoma (grade 2). This was previously 

resected in September 2006. She had been under surveillance with slow increase in the bulk 

in the right posterior frontal region. There had been an increase in seizures over the past six 

months. In particular over the last two months she has had seizures up to once a week. An 

MRI scan in February 2013 showed the increase in bulk of the tumour with a hint of 

enhancement, which was confirmed on the stealth MRI. Craniotomy and macroscopic 

resection occurred in May 2013.   

 
Figure A.26. MRI scan of patient TT 
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SMC 

SMC is a 63-year-old male from a small rural town in the South Island. He presented 

with personality changes and impaired memory over the past few weeks. Investigations with 

MRI showed a large right frontal cystic mass with rim enhancement causing mass effect 

consistent with a cystic glioblastoma. Craniotomy and tumour removal occurred in 

September 2013. 

 
Figure A.27. MRI scan of patient SMC 

DF 

DF is a 40-year-old male from central Wellington. He had a history of several focal 

seizures where he had sat up shaking, but there was no loss of consciousness. An MRI in 

May 2013 revealed a low-grade astrocytoma in the opercular, frontal and temporal region 

extending into the insular cortex, just shy of the external capsule. Craniotomy occurred for 

debulking in November 2013. 

 

Figure A.28. MRI scan of patient DF 

GP 

GP is a 73-year-old male from a small rural town in the North Island. Eighteen years 

ago he underwent resection of a right frontal meningioma. He presented in November 2013 

with a several-month history of lethargy, disturbed gait and impaired coordination. His 
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imaging demonstrated a large right frontal tumour with considerable oedema and associated 

midline shift. Appearances were consistent with a large recurrent meningioma. Craniotomy 

occurred one week later for resection of the meningioma.   

 
Figure A.29. MRI scan of patient GP 

MRO 

MR is a 60-year-old male from a small rural town in the north of the South Island. He 

had a two-year history of weakness of his left foot and increased difficulty walking over the 

last six months with foot drop, and associated with headaches. CT and MRI scan confirmed a 

large frontoparietal convexity parasagittal tumour with homogeneous enhancement consistent 

with probable meningioma. There was a mass effect on the right lateral ventricle with midline 

shift. Craniotomy for removal of the meningioma occurred in September 2013. 

 

Figure A.30. MRI scan of patient MRO 

Right Posterior Group 

RG 

RG is a 56-year-old male from a rural town in the North Island. In March 2011, RG 

underwent surgery for debulking of a right gliosarcoma in his right occipital lobe. This was 

further treated by radiation therapy, which was completed in early June 2011, and adjuvant 
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Temozolomide for six cycles, which was completed in November 2011. RG had an MRI scan 

in January 2012. In addition to the expected postsurgical changes, it showed there was 

evidence that the tumour had not been completely removed. Surgery was performed to 

debulk the tumour in June 2012. 

 
Figure A.31. MRI scan of patient RG 

TKH 

TKH is a 60-year-old male from a large town in the North Island. He was seen in 

August 2012. He had complained of severe headaches over the past few weeks. Neurological 

examination revealed no major neurological deficit, although there was some suggestion that 

his vision may have deteriorated subtly. An MRI revealed a tumour in the right temporal lobe 

consistent with glioblastoma. Surgery was conducted in late August 2012.  

 

Figure A.32. MRI scan of patient RG 

JAS 

JAS is a 55-year-old male from a large rural town in the North Island. In September 

2012, at his local hospital, he complained of headaches to vertex lasting 30 minutes, which 

had increased over the past week in severity and frequency, and now included nausea and 

visual disturbances lasting 15 minutes. A radiologist revealed that JAS had a right temporal 
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tumour with mass effect on the temporal horn, lateral ventricle and midline, as well as on the 

brain stem which is compressed to the left. Surgery occurred on the 20th of September. 

Unfortunately, JAS was discharged from Wellington Hospital before postoperative 

assessment could occur. 

 

Figure A.33. MRI scan of patient JAS 

AEK 

AEK is a 52-year-old female from central Wellington. She presented at Wellington 

Hospital with left facial drop. She had minimal headaches but complained of lethargy for the 

last few months. A CT and subsequent MRI revealed a right posterior temporal tumour 

suggestive of malignant glioma. AEK underwent craniotomy and resection of the right 

fusiform gyrus malignant glioma in March 2013. 

 

Figure A.34. MRI scan of patient AEK 

JB 

JB is a 47-year-old female from a large rural town in the North Island. JB was 

referred from Masterton Medical centre, and consequently there was no medical records. 

Personal correspondence with neurosurgeon Mr Andrew Parker revealed that JB had a right 

temporal epidermoid lesion, and this was confirmed with her MRI scan. Her surgery was 

conducted in May 2012. 
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Figure A.35 MRI scan of patient JB 

Multiple Lesions 

PAJ 

PAJ is a 65-year-old male from Wellington. In early July he complained of word-

finding difficulties extending back around two months, and facial spasms accompanied by 

slurred speech and left facial weakness, which occurred more recently. These facial spasms 

were suggestive of seizures. An MRI scan of PAJ’s head showed a right posterior inferior 

frontal tumour in the area of the pars opercularis/subcentral gyrus (histology confirmed a 

glioblastoma) and a posterior left temporal ring-enhancing lesion. Two surgeries were 

performed in July 2012: one to resect the frontal lesion, and another one week later to resect 

the left temporal tumour. Preoperative and postoperative testing was conducted for the first 

surgery only. 

AE 

AE is a 46-year-old man from central Wellington. He presented with complex partial 

seizures. An EG showed focus at the left temporal region. He was known to have multiple 

intracranial cavernous haemangiomas. There was also a right posterior frontal meningioma. 

A left posterofrontal lesion had increased in size, and was therefore removed by craniotomy 

in April 2013. 
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Appendix B: Information Sheet for Healthy Controls 

 

Information Sheet 

Study: A New Test Battery for Examining Language in Individuals Undergoing 
Neurosurgery 

Josh Faulkner 
PhD Candidate 
joshua.faulkner@vuw.ac.nz 
027 424 0624 

Dr Carolyn Wilshire, PhD 
Supervisor 
Carolyn.wilshire@vuw.ac.nz 
(04)463 6036 

 

What is the purpose of this research? 

x This research will allow us to assess the effectiveness of different kinds of language tasks 
for assessing language before, and after neurosurgery for the removal of a brain tumour. 
The results obtained may help clinicians to assess language more effectively in this 
context. In order to determine the effectiveness of these tests we also need to examine test 
performance in individuals with no neurological impairments. These results can then be 
compared with individuals undergoing neurosurgery to determine the extent of their 
possible language deficits. 

 

Who is conducting the research? 

x We are researchers in the School of Psychology at Victoria University of Wellington. Dr 
Wilshire is supervising the project. This research has been approved by the School of 
Psychology Human Ethics Committee under delegated authority of Victoria University of 
Wellington’s Human Ethics Committee. 

 

What is involved if you agree to participate? 

x If you agree to participate in this study you will partake in one testing sessions. During 
each session, you’ll be asked to do a range of simple language tasks that aim to test a 
range of language abilities.  

x The language tests will involve you naming pictures, giving a list of words that start with 
a particular letter of the alphabet and category, repeating words presented by the 
examiner, giving an action word that is associated with an object, determining if a heard 
word matches that of a picture and naming the colour of written words. 

x We anticipate that your total involvement will take no more than one hour. 
x During the research, you are free to withdraw at any point before your data has been 

collected. You may participate in any or all testing phases: it’s up to you. 

mailto:joshua.faulkner@vuw.ac.nz
mailto:Carolyn.wilshire@vuw.ac.nz
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Privacy and Confidentiality 

x We will keep your consent forms and data until the research project has been completed 
and the findings are published. 

x You will never be identified in this research project or in any other presentation or 
publication. The information you provide will be coded by number or initials. 

x In accordance with the requirements of some scientific journals and organizations, your 
coded data may be shared with other competent researchers. 

x Your coded data may be used in other, related studies.  
x A copy of the coded data will remain in the custody of Dr Wilshire. 
 

What happens to the information that you provide? 

x The data you provide may be used for one or more of the following purposes: 
• The overall findings may be submitted for publication in a scientific journal, or 
presented at scientific conferences. 

• The overall findings will form part of a PhD thesis, which, will be submitted for 
assessment.  

 

If you would like to know the results of this study, they will be available approximately in 
December 2012 from the following sources: 

x Information posted/emailed to you upon request 
 

If you have any further questions regarding this study please contact any one of us above.
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Statement of Consent 

I have read the information about this research and any questions I wanted to ask have been 
answered to my satisfaction. 

I agree to participate in this research. I understand that I can withdraw my consent at any time, 
prior to the end of my participation.  

Name:  __________________________________ 

Signature: __________________________________ 

Date:  __________________________________ 

 

I would like to receive a copy of the results: Yes � No � 

 

Email:  __________________________________ 

 

Copy to:  

              [a] participant,  

             [b] researcher (initial both copies below) 
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Appendix C: Neurological Status Questionnaire 

Neurological Status Questionnaire 
Study: A New Test Battery for Examining Language in Individuals Undergoing 

Neurosurgery 

Principal Investigator: Josh Faulkner, School of Psychology 

It would help us with our research if you were able to provide the following additional 
information. Please note that completion of the following questions is entirely optional and 
confidential. 

Age:                               Sex: M/F                              Handedness: L/R 

Highest level of education obtained:  

 

 

Have you ever suffered from any visual and/or hearing impairments? (please specify) 

 

 

 

 

 

 

Have you ever experienced a neurological event such as a stroke, or other brain injury? 
(please specify)  
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Appendix D: Information and Consent Form for Brain Tumour Patients 

 

Information Sheet 

Study: The assessment of language before, and after neurosurgery. 

Josh Faulkner 
PhD Candidate 
joshua.faulkner@vuw.ac.nz 
027 424 0624 

Dr Carolyn Wilshire, PhD 
Primary Supervisor 
carolyn.wilshire@vuw.ac.nz 
(04) 463 6036 

Kay Cunningham, MA, DipClinPsyc 
Clinical Supervisor 
kay.cunningham@xtra.co.nz 

 

You are invited to take part in a research project for Victoria University of Wellington. 
Please take your time to read through the information sheet. Your participation is entirely 
voluntary (your choice). You do not have to take part in this study, and if you choose not to 
take part you will receive the standard treatment/care available. Participation in this study 
will be stopped should any harmful effect appear or if the doctor feels it is not in your best 
interest to continue 

What is the purpose of this research? 

x This research will allow us to assess the effectiveness of various different kinds of 
language tasks for assessing language before, and after neurosurgery for the removal of a 
brain tumor. The results obtained may help clinicians to assess language more effectively 
in this context. The information we gain may also provide us with useful insights into 
human language and the way it is organised in the brain.  
 

Who is selected for the study? 

x All patients undertaking neurosurgery for the removal of a brain tumor in Wellington 
hospital are invited to participate in this study 

x  
Where will the study take place? 

x Testing before and after will take place at the Neurology department in Wellington 
hospital. Participants may also be asked if they would be willing to participate in a 
follow-up visit at their homes 6-8 weeks following surgery. 

 
What is involved if you agree to participate? 

x If you agree to participate in this study you will partake in two testing sessions; before 
surgery, and after surgery. During each session, you’ll be asked to do a range of simple 
language tasks that aim to test a range of language abilities.  

mailto:carolyn.wilshire@vuw.ac.nz
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x The language tests will involve you naming pictures, giving a list of words that start with 
a particular letter of the alphabet and category, repeating words presented by the 
examiner, giving an action word that is associated with an object and reading coloured 
words whilst ignoring their colour. 

x For the before- and after-surgery testing, we will visit you in your hospital ward at a time 
that suits you. 

x We anticipate that your total involvement will take no more than one hour per session. 
x During the research, you are free to withdraw at any point before your data has been 

collected. You may participate in any or all testing phases, it’s up to you. 
 

Who is conducting the research? 

x Josh Faulkner is a PhD student at Victoria University and is undertaking this research as 
part of his doctorate thesis. Ms Cunningham, a registered Clinical Neuropsychologist may 
assist in administering language tests. Dr. Wilshire, a Senior Lecturer at the School of 
Psychology at Victoria University of Wellington is the primary supervisor for this project.  
 

Privacy and Confidentiality 

x We will keep your consent forms and data until the research project has been completed 
and the findings are published. 

x You will never be identified in this research project or in any other presentation or 
publication. The information you provide will be coded by number or initials. 

x In accordance with the requirements of some scientific journals and organizations, your 
coded data may be shared with other competent researchers. 

x Your coded data may be used in other, related studies.  
x A copy of the coded data will remain in the custody of Dr. Wilshire. 

 
What happens to the information that you provide? 

x The data you provide may be used for one or more of the following purposes: 
• The overall findings may be submitted for publication in a scientific journal, or 
presented at scientific conferences. 

• The overall findings will form part of PhD thesis, that will be submitted for assessment.  

What are the benefits of this study? 

x This study will allow participants to obtain detailed feedback about their specific 
strengths and weaknesses 

x Given that the language evaluation will be more extensive than is normally given in these 
cases, the information we gain may be more useful for other health practitioners 

 

What are the risks of this study? 

x Participants may be experiencing fatigue and possible distress during testing before and 
after brain surgery. To minimize any potential harm, testing sessions are kept as short as 
possible and remember, you are free to stop at any time for any reason. 
 



 

 

200 

What are the inclusion and exclusion criteria for this study? 

x People invited to participate in this study will be those who: 
x Have been admitted to Wellington Hospital for neurosurgery 
x Are at least 18 years of age 
x Whose surgery will focus on a key brain region involved in language 

x Those not eligible are: 
x Those whose native language is not English 
x Anyone who, in the opinion of the individual’s surgical team, may find the testing 

unduly stressful.  
 

Results 

x If you would like to know the results of this study, they will be available approximately 
in December 2015 from the following sources: 
x Information posted/emailed to you upon request 

 

Statement of Approval 

x This study has received ethical approval from The New Zealand Health and Disability 
Ethics Committee, ethics reference number CEN/11/07/037 

 

If you have any queries or concerns regarding your rights as a participant in this study, you 
may wish to contact an independent health and disability advocate: 

                                                             Free phone: 0800 555 050 

                                                             Free fax: 0800 2 SUPPORT (0800 2787 7678) 

                                                             Email: advocacy@hdc.org.nz 

 

 

If you have any further questions regarding this study please contact any one of us above. 
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Consent Form 

Study: The assessment of language before and after neurosurgery. 
 

I have read and I understand the information sheeted dated ________________ for volunteers 
taking part in the study designed to test specific language functioning before and after 
neurosurgery. 

I have had the opportunity use whānau support or a friend to help me ask questions and 
understand the study. 

I understand that taking part in this study is voluntary (my choice) and that I may withdraw 
from the study at any time, and this will in no way affect my future health care and academic 
progress. 

I understand that my participation in this study is confidential and that no material that could 
identify me will be used in any reports on this study. 

I have had time to consider whether to take part in the study 

I know whom to contact if I have side-effects from the study 

I know whom to contact if I have any questions about the study in general 

 

I consent to my interview being audiotaped                                            

 

I wish to receive a copy of the results……………………. 

  

 

I ______________________ hereby consent to take part in this study 

 

 

  No Yes 

Yes   No 
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Date:  
  
Signature:  
  
Full names of researchers:  
  
Contact phone number for researchers:  
  
Project explained by:  
  
Project role:  
  
Signature:  
  
Date:  
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Appendix E: List of BLAST Stimuli 

Table D.1  

Frequency and Length of Items in Version 1 of the picture naming task in order of 

appearance  

Item CELEX Lemma 
Frequency 

Frequency 
Category 

Syllable Length 

watch 710 hi mono 
camel 449 hi mono 

hamburger 86 med poly 
dinosaur 93 med poly 

apple 546 hi mono 
strawberry 115 med poly 

Kilt 34 lo mono 
Saw 62 lo mono 

monkey 324 hi bi 
carrot 144 med bi 

balloon 112 med bi 
parachute 7 lo poly 

ladder 287 hi bi 
hospital 2300 hi poly 
clown 65 lo mono 
Nest 304 hi mono 

cucumber 85 med poly 
butter 490 hi bi 

wheelbarrow 22 lo poly 
pyramid 123 med poly 

binoculars 93 med poly 
hoof 137 med mono 
guitar 119 med bi 
shark 357 hi mono 

scarecrow 18 lo bi 
cigarette 1274 hi poly 
astronaut 50 lo poly 

crutch 73 lo mono 
vegetables 1050 hi poly 

tongs 29 lo mono 
Crab 170 med mono 

lipstick 129 med bi 
chicken 734 hi bi 
apron 164 med bi 

caterpillar 58 lo poly 
Owl 128 med mono 

coconut 51 lo poly 
finger 2212 hi bi 
genie 16 lo bi 

telescope 142 med poly 
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Item CELEX Lemma 
Frequency 

Frequency 
Category 

Syllable Length 

whale 199 med mono 
tomatoes 255 hi poly 

cake 610 hi mono 
drill 141 med mono 

sandwich 247 hi bi 
reins 13 lo mono 

hippopotamus 24 lo poly 
envelope 439 hi poly 

Raft 69 lo mono 
banjo 8 lo bi 
well 165 med mono 

submarine 311 hi poly 
lighthouse 50 lo bi 
necklace 71 lo bi 

chair 2441 hi mono 
rhinoceros 30 lo poly 

cannon 109 med bi 
skirt 522 hi mono 
goat 506 hi mono 
igloo 14 lo bi 

 

Table D.2 

Frequency and length of items in version 2 of the picture-naming task in order of appearance  

Item CELEX Lemma 
Frequency 

Frequency 
Category 

Syllable Length 

flower 1674 hi bi 
pocket 1343 hi bi 
pillow 344 hi bi 
stilts 18 lo mono 

potato 639 hi poly 
Waterfall* 137 med poly 
refrigerator 187 med poly 
typewritter 2300 hi poly 
elephant 429 hi poly 

pear 112 med mono 
penguin 90 med bi 

ambulance 162 med poly 
library 1113 hi poly 
pipe 558 hi mono 

hammer 197 med bi 
scissors 79 med bi 
pencil 332 hi bi 

volcano 102 med poly 
wreath 63 lo mono 
bottle 2079 hi bi 
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Item CELEX Lemma 
Frequency 

Frequency 
Category 

Syllable Length 

cauliflower 43 lo poly 
pumpkin 38 lo bi 
jockey 95 med bi 

veil 166 med mono 
comb 159 med mono 

stethoscope 16 lo poly 
hammock 19 lo bi 

swan 134 med mono 
magnet 52 lo bi 

sink 892 hi mono 
funnel 40 lo bi 

accordion 18 lo poly 
sling 63 lo mono 

microscope 135 med poly 
ball 1996 hi mono 

button 468 hi bi 
earring 59 lo bi 
desk 1633 hi mono 
nun 187 med mono 

banana 151 med poly 
handkerchief 351 hi poly 

dolphin 54 lo bi 
flag 461 hi mono 

calendar 151 med poly 
helicopter 281 hi poly 

snake 412 hi mono 
whistle 165 med bi 
buoy 12 hi mono 
zip 32 lo mono 

spider 126 med bi 
asparagus 38 lo poly 
octopus 27 lo poly 

pendulum 71 lo poly 
mop 49 lo mono 
tusk 33 lo mono 

handcuffs 34 lo bi 
peg 71 med mono 

triangle 131 med poly 
mushroom 227 hi bi 

vase 127 med mono 
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Table D. 3 

Frequency and length of items in version 3 of the picture-naming task in order of appearance  

Item CELEX Lemma 
Frequency 

Frequency 
Category 

Syllable Length 

castle 485 hi bi 
butcher 112 med bi 

tent 785 hi mono 
thermometer 116 med poly 

net 290 hi mono 
barrel 379 hi bi 
giraffe 28 lo bi 
cork 98 med mono 

furniture 696 hi poly 
butterfly 183 med poly 

scarf 219 hi mono 
pyjamas 146 med poly 
buckle 34 lo bi 
stool 222 hi mono 

glasses 571 hi bi 
trumpet 140 med bi 

microphone 152 med poly 
anchor 102 med bi 

tail 640 hi mono 
peacock 69 lo bi 

tambourine 13 lo poly 
spaghetti 82 med poly 

mirror 880 hi bi 
harp 50 lo mono 

escalator 30 lo poly 
zebra 34 lo bi 
corn 434 hi mono 

platypus 22 lo poly 
reflection 450 hi poly 

frog 168 med mono 
calculator 89 med poly 

dice 38 lo mono 
umbrella 245 hi poly 

star 1804 hi mono 
feather 379 hi bi 

skeleton 210 hi poly 
turtle 67 lo bi 
hose 72 lo mono 

computer 1683 hi poly 
newspaper 2176 hi poly 

canoe 101 med bi 
tripod 25 lo bi 

shadow 929 hi bi 
windmill 159 med bi 
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Item CELEX Lemma 
Frequency 

Frequency 
Category 

Syllable Length 

rake 33 lo mono 
cherry 132 med bi 
Eskimo 31 lo poly 
saddle 177 med bi 
dart 57 lo mono 

pineapple 53 lo poly 
ostrich 48 lo bi 
snail 80 med mono 

television 2043 hi poly 
skunk 4 lo mono 
gorilla 54 lo poly 
plug 170 med mono 

kangaroo 48 lo poly 
safe 127 med mono 
kite 83 med mono 
hood 106 med mono 

 

Table D.4 

 Selection strength ratios and frequencies for items in version 1 of the verb generation task in 

order of appearance  

Item Selection 
Strength Ratio 

Selection 
Strength 
Category 

LEMMA 
Frequency 

Value 

Frequency 
Category 

barbeque 1.38 weak 39 lo 
van 10 strong 1034 hi 

crane 10 strong 71 lo 
tail 2.17 weak 640 hi 

razor 1.8 weak 156 lo 
stethoscope 6.4 strong 16 lo 

penny 2 weak 476 hi 
curtains 2 weak 784 hi 

baby 1.6 weak 4620 hi 
heart 2.43 weak 2937 hi 
ice 1.21 weak 944 hi 
nun 41 strong 187 lo 
bed 10.33 strong 4831 hi 

shark 1.21 weak 357 lo 
axe 1.05 weak 153 lo 

yacht 18.5 strong 108 lo 
mosquito 7.75 strong 96 lo 

wool 11 strong 384 lo 
piano 40 strong 488 hi 
ladder 40 strong 287 lo 

stomach 5.4 strong 769 hi 
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Item Selection 
Strength Ratio 

Selection 
Strength 
Category 

LEMMA 
Frequency 

Value 

Frequency 
Category 

duck 2.17 weak 248 lo 
hinge 2.67 weak 64 lo 
ear 2.07 weak 1570 hi 

worm 2.8 weak 302 lo 
lion 39 strong 454 hi 
boat 1.38 weak 1386 hi 
fire 8 strong 2905 hi 
ball 4.6 strong 1996 hi 
pool 13.5 strong 733 hi 
towel 40 strong 392 lo 

trapeze 5 strong 9 lo 
tongue 1.44 weak 715 hi 
airplane 12.67 strong 102 lo 

bell 11.67 strong 745 hi 
fence 1.2 weak 537 hi 

sparrow 1.5 weak 79 lo 
kettle 19.5 strong 216 lo 
sugar 6.75 strong 1015 hi 
crab 1.11 weak 170 lo 
chair 11.33 strong 2441 hi 

picture 5.2 strong 3113 hi 
feet 1.73 weak 5857 hi 

caravan 1.8 weak 179 lo 
leg 1.36 weak 3140 hi 

radio 1.64 weak 1582 hi 
 

Table D.5 

Selection strength ratios and frequencies for items in version 2 of the verb generation task in 

order of appearance  

Item Selection 
Strength Ratio 

Selection 
Strength 
Category 

LEMMA 
Frequency 

Value 

Frequency 
Category 

elbow 17.5 strong 466 hi 
church 10 strong 3287 hi 
arrow 12 strong 264 lo 

telephone 18 strong 1876 hi 
scissors 100% response 

agreement 
strong 79 lo 

pills 1.21 weak 507 hi 
stove 19.5 strong 364 lo 
road 1.14 weak 4458 hi 
daisy 1.23 weak 568 hi 
watch 1.86 weak 710 hi 
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Item Selection 
Strength Ratio 

Selection 
Strength 
Category 

LEMMA 
Frequency 

Value 

Frequency 
Category 

basket 13 strong 428 lo 
key 1.5 weak 1544 hi 
sun 9.67 strong 2728 hi 
rope 5.2 strong 745 hi 
pipe 20 strong 558 hi 

alligator 2.78 weak 28 lo 
shovel 100% response 

agreement 
strong 76 lo 

dice 6.8 strong 16 lo 
binoculars 2.1 weak 9 lo 

can 11 strong 166 lo 
teeth 18 strong 56 lo 
pan 2.78 strong 489 hi 

hawk 5.25 strong 109 lo 
scales 6.4 strong 1479 hi 
frog 1 weak 8 lo 

cigarette 2.89 weak 1274 hi 
package 1.14 weak 357 lo 
needle 1.83 weak 294 lo 
tiger 2.5 weak 214 lo 
horse 7.33 strong 2372 hi 
straw 1.8 weak 461 hi 

envelope 1.1 weak 83 lo 
ghost 5.75 strong 554 hi 
broom 13 strong 140 lo 
seesaw 1.8 weak 12 lo 
soldier 1.15 weak 1488 hi 
candle 1.38 weak 294 lo 

lips 1.78 weak 1401 hi 
towel 40 strong 392 lo 
moon 2.57 weak 1058 hi 
priest 17.5 strong 873 hi 

carnation 2.13 weak 28 lo 
snow 6.5 strong 1102 hi 
basin 9 strong 341 lo 

suitcase 1.5 weak 334 lo 
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Table D.6 

Frequencies and syllable length for version 1 of the picture-word verification task in order of 

appearance 

Target Distractor Distractor 
Type 

Frequency 
(Log CELEX 

lemma 
frequencies) 

Syllable Length 

scissors curler UR 0.78 2 
cannon cattle Phon 2.83 2 
bread toast Sem 3.23 1 

scissors scissors Rel 2.53 2 
cat can Phon 5.43 1 

spider spiral Phon 1.96 2 
cannon cannon Rel 2.65 2 
spoon file UR 3.35 1 
rabbit cradle UR 2.16 2 
salad satin Phon 2.13 2 
pencil pencil Rel 2.70 2 
salad vessel UR 2.68 2 

candle  whisker UR 1.15 2 
spoon spear Phon 2.37 1 
drum drip Phon 2.42 1 
pencil chalk Sem 2.26 1 
cannon pistol Sem 2.71 2 
drum corn UR 2.86 1 
bread bread Rel 3.16 1 
candle  torch Sem 4.98 1 
rabbit rabbit Rel 3.01 2 
spider gherkin UR 0.70 2 

scissors dagger Sem 4.92 2 
pencil pendant Phon 1.67 2 
pizza peeler Phon 1.20 2 
spoon mug Sem 6.54 1 
drum bass Sem 2.59 1 
bread form UR 3.34 1 

cannon chin UR 2.81 1 
cat cat Rel 3.53 1 

spider spider Rel 2.71 2 
candle  canvas Phon 2.34 2 
rabbit beaver Sem 2.39 2 
salad pasta Sem 2.34 2 
pizza burger Sem 2.72 2 
pencil drama UR 3.01 2 

cat frost UR 2.39 1 
bread brain Phon 3.59 1 
pizza gecko UR 1.3 2 
rabbit rabbi Phon 2.54 1 
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Target Distractor Distractor 
Type 

Frequency 
(Log CELEX 

lemma 
frequencies) 

Syllable Length 

salad salad Rel 2.94 2 
spoon spoon Rel 2.59 1 
drum drum Rel 2.64 1 

scissors syrup Phon 5.1 2 
spider cockroach Sem 2.24 2 
pizza pizza Rel 3.23 1 
candle candle Rel 2.61 2 

cat lamb Sem 2.73 1 
 

Table D.7 

Frequencies and syllable length for version 2 of the picture-word verification task in order of 

appearance 

Target Distractor Distractor 
Type 

Frequency 
(Log CELEX 

lemma 
frequencies 

Syllable Length 

trumpet violin Sem 2.39 2 
grapes grease Phon 2.55 1 

hammer pearl UR 2.90 1 
knife limb UR 2.38 1 

trumpet truffle Phon 1.38 2 
horse deer Sem 2.65 1 
chair stool Sem 2.26 1 
lemon leather Phon 2.84 2 
grapes  puzzle UR 2.57 2 
razor perfume UR 2.77 2 
turkey turkey Rel 3.06 2 
knife fork Sem 2.65 1 
carrot  spinach Sem 2.12 2 

monkey monkey Rel 3.23 2 
lemon lemon Rel 2.79 2 

trumpet denim  UR 1.53 2 
carrot carrot Rel 2.29 2 

trumpet trumpet Rel 2.32 2 
horse linen UR 2.18 2 
arrow torch UR 2.41 1 
chair chair Rel 3.40 1 
razor radar Phon 3.26 2 

monkey emerald UR 2.12 3 
arrow Arab Phon 2.24 1 
chair nickel UR 2.64 2 

turkey star UR 3.62 1 
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Target Distractor Distractor 
Type 

Frequency 
(Log CELEX 

lemma 
frequencies 

Syllable Length 

grapes peach Sem 2.51 1 
horse horse Rel 3.68 1 
lemon  scarf UR 2.38 1 

monkey panda Sem 2.04 2 
razor razor Rel 2.54 2 
arrow arrow Rel 2.60 2 

hammer axe Sem 2.4 1 
chair check Phon 4.15 1 

monkey mustard Phon 2.52 2 
turkey duck Sem 3.1 1 
knife knife Rel 3.38 1 
turkey turban Phon 1.83 2 
lemon orange Sem 3.06 2 
knife nine Phon 3.54 1 

grapes grapes Rel 2.31 1 
hammer hamlet Phon 2.37 2 
arrow pipe UR 3.00 1 
carrot chasm Phon 1.28 1 
horse  haunt Phon 2.26 1 

hammer hammer Rel 2.80 2 
 

Table D.8 

Frequencies and imageability of the single word repetition task in order of appearance 

Item Freq_KF LogFreq_KF Freq 
Category 

Imageability Imageability 
Category 

episode 12 1.08 Lo 370 Lo 
theory 129 2.11 Hi 317 Lo 
potato 15 1.18 Lo 617 Hi 
church 348 2.54 Hi 616 Hi 
folly 10 1.00 Lo 326 Lo 
irony 12 1.08 Lo 293 Lo 
battle 87 1.94 Hi 597 Hi 

concept 85 1.93 Hi 258 Lo 
spider 2 0.30 Lo 597 Hi 
village 72 1.86 Hi 578 Hi 
deed 8 0.90 Lo 390 Lo 
gravy 4 0.60 Lo 594 Hi 
dogma 4 0.60 Lo 327 Lo 
alcohol 13 1.11 Lo 598 Hi 
picture 162 2.21 Hi 581 Hi 
radio 120 2.08 Hi 613 Hi 
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Item Freq_KF LogFreq_KF Freq 
Category 

Imageability Imageability 
Category 

onion 15 1.18 Lo 617 Hi 
purpose 149 2.17 Hi 280 Lo 
quality 114 2.06 Hi 349 Lo 
school 492 2.69 Hi 599 Hi 
system 416 2.62 Hi 340 Lo 

elephant 7 0.85 Lo 616 Hi 
pig 8 0.90 Lo 635 Hi 

night 411 2.61 Hi 607 Hi 
marriage 95 1.98 Hi 556 Hi 

thing 333 2.52 Hi 358 Lo 
bonus 2 0.30 Lo 397 Lo 

opinion 96 1.98 Hi 359 Lo 
analogy 13 1.11 Lo 267 Lo 

hand 431 2.63 Hi 598 Hi 
woe 5 0.70 Lo 348 Lo 

character 118 2.07 Hi 372 Lo 
wheat 9 0.95 Lo 577 Hi 
effort 145 2.16 Hi 367 Lo 
tribute 24 1.38 Lo 386 Lo 

fact 447 2.65 Hi 302 Lo 
valour N/A - Lo - Lo 
idea 195 2.29 Hi 319 Lo 
axe 6 0.78 Hi 597 Hi 

funnel 1 0.00 Lo - Hi 
tractor 24 1.38 Lo 585 Hi 
length 116 2.06 Hi 395 Lo 
plea 11 1.04 Lo 347 Lo 

monkey 9 0.95 Lo 588 Hi 
manner 124 2.09 Hi 342 Lo 
satire 9 0.95 Lo 370 Lo 
drum 11 1.04 Lo 599 Hi 
cart 5 0.70 Lo 597 Hi 

miracle 16 1.20 Lo 367 Lo 
hospital 110 2.04 Hi 60 Hi 
audience 115 2.06 Hi 555 Hi 
attitude 8 0.90 Lo 321 Lo 
letter 145 2.16 Hi 595 Hi 

tobacco 19 1.28 Lo 601 Hi 
principle 109 2.04 Hi 305 Lo 

plane 114 2.06 Hi 556 Hi 
moment 246 2.39 Hi 334 Lo 
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Item Freq_KF LogFreq_KF Freq 
Category 

Imageability Imageability 
Category 

summer 134 2.13 Hi 618 Hi 
feather 6 0.78 Lo - Hi 

pact 5 0.70 Lo 364 Lo 
 

Table D.9 

List of items in the nonword repetition task and their associated actual word, in order of 

appearance. 

Nonword Associated Word 
biffle battle 
ragio radio 
clee deed 
otion onion 
drim drum 
sping thing 
slurch student 
plen plea 

atalogy analogy 
parpise purpose 
loment moment 
lutter letter 
hend hand 

trantor tractor 
voe woe 

merly mercy 
baranter character 

affort effort 
gramy gravy 

spunder spider 
 
Table D.10 

Items, their associated colours and condition in the Stroop task in order of appearance 

Item Colour Condition 

pink pink Congruent 

brown grey Incongruent 

red red Congruent 

purple yellow Incongruent 

green orange Incongruent 

blue purple Incongruent 
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Item Colour Condition 

orange orange Congruent 

yellow blue Incongruent 

purple red Incongruent 

blue blue Congruent 

red green Incongruent 

green yellow Incongruent 

blue green Incongruent 

orange purple Incongruent 

yellow yellow Congruent 

red blue Incongruent 

purple purple Congruent 

orange red Incongruent 

green green Congruent 

yellow orange Incongruent 

 

Table D.11 

Items presented in order of appearance in the Articulatory Agility test 

Item 
mamma 
tip-top 

fifty-fifty 
thanks 

huckleberry 
baseball player 

caterpillar 
 

Table D.12 

Frequency and imageability for section 1 of the reading test in order of appearance  

Item Block LogFreq_KF Imageability 
key 1 2.44 6.39 
fox 1 1.11 6.27 
car 1 1.94 6.49 
ship 2 1.91 6.35 
book 2 1.91 6.35 
bird 2 2.14 6.00 
dress 3 1.83 6.08 
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Item Block LogFreq_KF Imageability 
smoke 3 1.53 6.41 
heart 3 2.24 6.24 

bridge 4 1.99 6.14 
letter 4 2.16 6.35 

square 4 1.52 6.16 
 

Table D.13 

Frequency, imageability and regularity of section 2 of the reading task in order of 

appearance  

Item Frequency Freq_KF Imageability Imageability 
Rating 

Regularity 

worm lo 4 hi 578 Irregular 

fraud lo 5 lo 381 Regular 

yacht lo 4 hi 624 Irregular 

hand hi 431 hi 598 Regular 

horse hi 117 hi 624 Regular 

trout lo 4 hi 617 Regular 

break hi 88 lo 398 Irregular 

vest lo 4 hi 581 Regular 

cause hi 130 lo 282 Regular 

side hi 380 lo 386 Regular 

give hi 391 lo 383 Irregular 

plead lo 5 lo 393 Regular 

head hi 424 hi 593 Irregular 

shone lo 5 lo 384 Irregular 

dread lo 9 lo 378 Irregular 

blood hi 121 hi 620 Irregular 
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Table D.14 

Items Presented in Order of Appearance for the Nonword Reading Task 

Item 

ked 

nar 

fon 

shid 

doop 

dusp 

snite 

hoach 

glope 

dringe 

churse 

shoave 
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	RJ is a 64-year-old female from a small rural town in the North Island. She presented with a fall and right leg weakness. She experienced a four-to-five-week history of episodic twitching in her arms. A CT scan showed a left parietal lobe tumour (most...
	LA
	LA is a 63-year-old female from a rural town in the North Island. Due to the fact that all of LA’s consultations occurred in her hometown, there was no medical history available at Wellington Hospital. However, her neurologist described one week of pr...
	CM
	CM is a 57-year-old male from Wellington. When seen in March 2011, CM described a possible seizure, which occurred the previous March whilst he was cycling around the bays. He was picked up by an ambulance. He was apparently seen by the security monit...
	LW
	LW is a 66-year-old female from Hastings. Since October 2011 she has suffered from right-sided headache, which was initially severe but had reduces to manageable levels. In July 2012, LW was examined by Mr Parker. On examination, she presented as aler...
	KB
	KB is a 30-year-old female from a suburban town in the North Island. KB presented at her local hospital with a seven-month history of headache and associated periorbital pain and slight proptosis. This was associated with blurred vision and diplopia i...
	ES
	ES is a 78-year-old male from a small rural town in the North Island. He presented with a two-week history of progressively worsening confusion and unsteadiness of gait. A CT and MRI scan of his brain demonstrated a right frontal heterogeneously enhan...
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	TT is a 36-year-old female from suburban Wellington. She presented with slow recurrence of her posterior frontal diffuse astrocytoma (grade 2). This was previously resected in September 2006. She had been under surveillance with slow increase in the b...
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	SMC is a 63-year-old male from a small rural town in the South Island. He presented with personality changes and impaired memory over the past few weeks. Investigations with MRI showed a large right frontal cystic mass with rim enhancement causing mas...
	DF
	DF is a 40-year-old male from central Wellington. He had a history of several focal seizures where he had sat up shaking, but there was no loss of consciousness. An MRI in May 2013 revealed a low-grade astrocytoma in the opercular, frontal and tempora...
	RG
	RG is a 56-year-old male from a rural town in the North Island. In March 2011, RG underwent surgery for debulking of a right gliosarcoma in his right occipital lobe. This was further treated by radiation therapy, which was completed in early June 2011...
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	TKH is a 60-year-old male from a large town in the North Island. He was seen in August 2012. He had complained of severe headaches over the past few weeks . Neurological examination revealed no major neurological deficit, although there was some sugge...
	JAS
	JAS is a 55-year-old male from a large rural town in the North Island. In September 2012, at his local hospital, he complained of headaches to vertex lasting 30 minutes, which had increased over the past week  in severity and frequency, and now includ...
	AEK
	AEK is a 52-year-old female from central Wellington. She presented at Wellington Hospital with left facial drop. She had minimal headaches but complained of lethargy for the last few months . A CT and subsequent MRI revealed a right posterior temporal...
	JB
	JB is a 47-year-old female from a large rural town in the North Island. JB was referred from Masterton Medical centre, and consequently there was no medical records. Personal correspondence with neurosurgeon Mr Andrew Parker revealed that JB had a rig...
	PAJ
	PAJ is a 65-year-old male from Wellington. In early July  he complained of word-finding difficulties extending back around two months, and facial spasms accompanied by slurred speech and left facial weakness, which occurred more recently. These facial...
	AE
	AE is a 46-year-old man from central Wellington. He presented with complex partial seizures. An EG showed focus at the left temporal region. He was known to have multiple intracranial cavernous haemangiomas. There was also a right posterior frontal me...

