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Abstract 

 

Marine microorganisms generate a wide range of ’bioactive’ compounds that 

can have far-reaching effects on biological and ecological processes. 

Metazoans have developed specialised biochemical pathways that metabolise 

and eliminate potentially toxic chemicals (xenobiotics) from their bodies. The 

vertebrate xenobiotic receptor, pregnane X receptor (PXR), is a ligand-activated 

nuclear receptor transcription factor regulating expression of multiple 

detoxification genes. Ligand-binding domains (LBDs) of vertebrate PXR 

orthologues may have adaptively evolved to bind toxins typically encountered 

by these organisms. Marine invertebrate filter-feeders are exposed to relatively 

high concentrations of xenobiotics associated with their diet. Tunicates (phylum: 

Chordata) are of particular interest as they form the sister clade to the 

Vertebrata. Genomes of the solitary tunicate Ciona intestinalis and the colonial 

tunicate Botryllus schlosseri both encode at least two xenobiotic receptors that 

are orthologues to both the vertebrate vitamin D receptor (VDR) and PXR.  

Pursuing the idea that tunicate xenobiotic receptors (VDR/PXR) may adaptively 

evolve to bind toxic chemicals commonly present in an organism’s environment, 

this thesis aims to identify if: (i) adaptive evolution is acting on putative tunicate 

VDR/PXR orthologues to enhance binding of dietary xenobiotics; (ii) these 

receptors are activated by dietary xenobiotics (e.g. microalgal biotoxins) and; 

(iii) tunicate VDR/PXR LBDs can be used as sensor elements in yeast 

bioassays for the detection of both natural and synthetic bioactive compounds. 

To identify genetic variation and to search for evidence of positive selection, 

next-generation sequencing was performed on three tunicate VDR/PXR 

orthologues genes. Recombinant yeast (Saccharomyces cerevisiae) cell lines 

were developed for the functional characterisation of tunicate VDR/PXR LBDs. 

These tunicate VDR/PXR LBD-based yeast bioassays were utilised to detect 

known microalgal biotoxins, natural bioactive compounds, and environmental 

contaminants. 

Next-generation sequencing revealed both an unusually high genetic diversity 

and strong purifying selection in VDR/PXR orthologues from C. intestinalis and 
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B. schlosseri. Single-base-deletion allelic variants were found in C. intestinalis 

VDR/PXR orthologues resulting in predicted proteins having a DNA-binding 

domain but lacking a LBD. The persistence of these variants may reflect 

constitutive expression of detoxification genes as a selective advantage in the 

marine environment. 

To assess the functional characteristics of tunicate VDR/PXR orthologues, 

recombinant yeast cell lines were developed that express VDR/PXRα LBDs 

from C. intestinalis and B. schlosseri. These chimeric proteins mediate ligand-

dependent expression of a lacZ reporter gene which encodes an easily assayed 

enzyme (β-galactosidase). These yeast bioassays were highly sensitive 

towards both synthetic and natural toxins (coefficients of variance, CV <25%). 

Microalgal biotoxins (okadaic acid and portimine) were two orders of magnitude 

more potent than synthetic chemicals, which was consistent with the hypothesis 

that tunicate xenobiotic receptors can bind marine bioactive compounds 

frequently present in a filter-feeder’s diet. 

Following these functional studies, the yeast bioassays were tested in a more 

applied context by screening the following compounds: (i) natural bioactive 

compounds that represent promising compounds for drug development and; (ii) 

synthetic chemicals that are common environmental pollutants. Of the 34 

compounds tested, 30 were active in the tunicate yeast bioassays. The yeast 

bioassays were particularly sensitive towards a small number (n = 11) of marine 

and terrestrial bioactive compounds (CJ-13-014, CJ-13-104, thysanone and 

naringin) and emerging contaminants such as pharmaceuticals (ketoconazole), 

antifungals (radicicol), preservatives (butylated hydroxtoluene) and surfactants 

(oil dispersants), generating CV values <25%. Activities of the remaining 19 

compounds were highly variable and appeared to depend on several factors, 

such as solvent used, duration of exposure and type of recombinant protein 

expressed (e.g. C. intestinalis versus B. schlosseri VDR/PXRα).  

In conclusion, the yeast bioassay developed in this thesis, with further 

development, may provide a template for novel bioassays that may find 

application in routine microalgal biotoxin testing and environmental monitoring. 

These bioassays may also assist in the identification of marine bioactive 

compounds as drug lead compounds.  
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CHAPTER ONE 

Molecular evolution and functional characterisation of 

tunicate xenobiotic receptors and their use as sensor 

elements in yeast bioassays for bioactive compounds: 

an overview 

 

1.1 Introduction 

 

Bacterial, fungal and microalgal organisms in marine ecosystems collectively 

generate a wide range of ’bioactive’ compounds that can have far-reaching 

effects on biological and ecological processes (e.g. reproduction, species 

interactions, population dynamics) as well as on human health and economies 

(Hay 2009; Landsberg et al. 2009; Mayer 2009). Metazoans have developed 

specialised biochemical pathways that metabolise and eliminate potentially toxic 

chemicals (xenobiotics) from their bodies and therefore minimise any 

associated deleterious effects (Li et al. 2007; Testa et al. 2012; Zanger & 

Schwab 2013). Xenobiotic receptors, a specific group of ligand-activated 

nuclear receptors (NRs), bind a structurally diverse range of xenobiotics and 

then activate genes involved in ligand detoxification (Nakata et al. 2006; Chai et 

al. 2013).  

From an evolutionary perspective, xenobiotic receptors represent a highly-

derived branch of the NR family tree— the root of which lies deep at the base of 

animal phylogeny (Bertrand et al. 2004). Vertebrate xenobiotic receptor proteins 

(pregnane X receptor, PXR) are unusual amongst the NRs as they display 

considerable inter-species sequence variation in the functional domain 

responsible for ligand-binding (ligand-binding domain, LBD; Moore et al. 2002; 

Zhang et al. 2004; Krasowski et al. 2005a, b). Such inter-taxa PXR LBD 

sequence differences may reflect adaptive evolutionary changes which enhance 

PXR binding of dietary bioactives/toxins typically encountered by an organism 
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(Moore et al. 2000; Moore et al. 2002; Krasowski et al. 2005a, b; Krasowski et 

al. 2011a, b). 

Marine invertebrate filter-feeders (e.g. Tunicata, Bivalvia) are exposed to a 

myriad of dietary xenobiotics at relatively high concentrations (Haberkorn et al. 

2011; Echevarria et al. 2012). Tunicates (phylum Chordata, subphylum 

Urochordata; Satoh et al. 2014) are of particular interest because their genomes 

encode putative xenobiotic receptor genes that are orthologues to vertebrate 

PXR (Ekins et al. 2008). Because tunicates accumulate high concentrations of 

dietary xenobiotics, tunicate xenobiotic receptors may have adaptively evolved 

to enhance binding of these compounds (Fidler et al. 2012). Tunicates are the 

closest living relatives of vertebrates as they are members of a sister clade to 

the Vertebrata (Delsuc et al. 2006; Delsuc et al. 2008). Therefore, they are a 

promising group to target for the development of bioassays that could be used 

to detect bioactive chemicals that affect vertebrate physiology.  

The aims of this thesis were to: (i) determine if adaptive evolution is occurring in 

three tunicate putative xenobiotic receptor genes; (ii) characterise the function 

of two tunicate putative xenobiotic receptors using a yeast-based expression 

system and; (iii) develop highly generic recombinant yeast bioassays using 

tunicate xenobiotic receptors as sensor elements, with the goal of using these 

for bioprospecting and to detect harmful environmental contaminants. 

 

1.1.1 Dietary bioactive chemicals 

 

Chemicals in animal diets are often viewed as simply energy sources (e.g. 

carbohydrates, lipids), building blocks (e.g. proteins) or biochemical pathway 

intermediates (e.g. vitamins). However, it is apparent that some dietary 

chemicals can alter animal biochemistry and physiology with biological effects 

ranging from influences on reproduction and development through to acute 

poisoning (Targett & Arnold 2001; Raubenheimer & Simpson 2009; Forbey et 

al. 2013; Ortiz-Ramirez et al. 2013). Some animal taxa exposed to bioactive 

dietary xenobiotics have evolved both behavioural and physiological traits to 

minimise any associated deleterious effects (Dearing et al. 2005). Many animals 
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simply avoid eating plants/prey likely to contain toxins with these avoidance 

behaviours being both instinctual and learnt (Marsh et al. 2006). For example, 

avoidance of toxic/unpalatable prey by coral reef fish is well-documented (Long 

& Hay 2006; Miller & Pawlik 2013). Bivalve molluscs can limit their exposure to 

toxic compounds using behavioural responses such as shell closure and 

restriction of filtration rate (Hegaret et al. 2007; Haberkorn et al. 2011). Despite 

such avoidance behaviours, the diet of many marine organisms, especially 

those of filter-feeding and surface-grazing invertebrates (Figure 1.1) will 

inevitably contain toxic bioactive chemicals that need to be metabolised and 

eliminated from their bodies (Glendinning 2007; Fernandez-Reiriz et al. 2008; 

Manfrin et al. 2012; Sotka & Gantz 2013).  
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Figure 1.1 Examples of filter-feeding and surface-grazing marine invertebrates. 

Schematic diagrams of the digestive tracts (dark grey) of filter-feeding tunicates (A, B), filter-feeding bivalve molluscs (C, D), and grazing 

gastropod molluscs (E, F) are shown. The direction of food movement is indicated by blue arrows. Examples of a filter-feeding tunicate 

(B), Ciona intestinalis, Phylum Chordata; a filter-feeding bivalve mollusc (D), Mytilus edulis, Phylum Mollusca; and a grazing gastropod 

mollusc (F), Amphibola crenata, Phylum Mollusca. Photos were provided by Chris Woods (B; National Institute of Water and Atmospheric 

Research, New Zealand) and Rod Asher (D, F; Cawthron Institute, New Zealand). 
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1.1.2 Detoxification pathways and their transcription level regulation 

 

1.1.2.1 Metazoan detoxification pathways 

 

Metazoan organisms have specialised biochemical pathways to metabolise and 

eliminate potentially toxic chemicals from their body (i.e. xenobiotics; Li et al. 

2007; Testa et al. 2012; Zanger & Schwab 2013). Xenobiotic detoxification is 

accomplished by a number of enzymes with broad substrate specificities that 

are involved in one of the three phases of detoxification: oxidation/reduction 

(Phase I), conjugation (Phase II) and transport/elimination (Phase III; Figure 

1.2; Yang et al. 2010; Testa et al. 2012). 

 

1.1.2.2 Induction of Phase I enzymes— vertebrates 

 

Many detoxification pathway genes can be induced by the xenobiotic(s) that the 

pathway ultimately metabolises (Xu et al. 2005; Yang et al. 2010; Testa et al. 

2012; James & Ambadapadi 2013). Such xenobiotic-mediated induction of 

detoxification gene expression is best characterised for Phase I cytochrome 

P450 (CYP) enzymes, particularly members of CYP sub-families 1–4 that are 

associated with xenobiotic metabolism (Yamazaki 2000; Pavek & Dvorak 2008; 

Zanger & Schwab 2013). For example, levels of human CYP3A4, an enzyme 

responsible for oxidising greater than 50% of medicinal drugs, are induced by a 

range of therapeutic compounds such as rifampicin, tamoxifen and hyperforin 

(Thummel & Wilkinson 1998; Zanger et al. 2008). There exists inter-taxa 

variation in inductive responses to some xenobiotics (Martignoni et al. 2006). 

The steroidal drugs pregnenolone 16α-carbonitrile (PCN) and dexamethasone 

are highly efficacious CYP3A enzyme inducers in rodents, but not in humans 

(Martignoni et al. 2004; Vignati et al. 2004). In contrast, rifampicin is a strong 

inducer of human and dog CYP3A, but not of rodent CYP3A (Kocarek et al. 

1995; Lu & Li 2001). This inter-taxa variation in the response to xenobiotics 

suggests the possibility of adaptive evolution in the genetic elements that 

control expression of detoxification genes. 
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Figure 1.2 Schematic overview of metazoan detoxification pathways. 

Xenobiotic detoxification is mediated via Phase I and II drug metabolising enzymes, and Phase III membrane transporters. Figure was 

modified from Nakata et al. (2006). 
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1.1.2.3 Induction of Phase I enzymes— invertebrates 

 

Xenobiotic-mediated induction of CYP enzyme levels has also been reported in 

several invertebrate phyla, especially in the Arthropoda within the context of 

pesticide resistance (Rewitz et al. 2006; Feyereisen 2011; Schuler & 

Berenbaum 2013). In both dipteran and lepidopteran insect taxa, phenobarbital 

induces CYP enzymatic activity in association with transcription level induction 

of CYP4, CYP6 and CYP9 orthologues (Fisher et al. 2003; Natsuhara et al. 

2004; Morra et al. 2010; Tomita et al. 2010). In the honey bee (Apis mellifera), 

aflatoxin and propolis induce CYP gene expression (Johnson et al. 2012). 

Amongst marine invertebrates, the polychaete Perinereis nuntia (phylum 

Annelida) shows increased levels of some CYP gene transcripts after exposure 

to benzo[α]pyrene (BaP) and polycyclic aromatic hydrocarbons (PAHs; Zheng 

et al. 2013). The marine gastropod Cyphoma gibbosum (phylum Mollusca) is 

suggested to have adapted to feeding exclusively on highly toxic gorgonian 

corals by differential regulation of transcripts encoding two novel CYP enzymes, 

CYP4BK and CYP4BL (Whalen et al. 2010a).  

 

1.1.2.4 Induction of Phase II and III enzymes 

 

While most xenobiotic-mediated gene induction research has focused on Phase 

I CYP genes, Phase II glutathione S-transferases (GSTs) and Phase III multi-

drug resistance-associated proteins (MRPs) have also been reported to be 

inducible by some xenobiotics (Oakley 2011; Bousova & Skalova 2012). For 

example, expression of mouse GSTA1, MRP2 and MRP3 genes is induced by 

both PCN and 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP; Maglich 

et al. 2002). In the marine environment, dietary toxins (e.g. cyclopentenone 

prostaglandins) have been shown to be both inducers and substrates of GST 

enzymes in three marine mollusc taxa (Kuhajek & Schlenk 2003; Whalen et al. 

2008; Whalen et al. 2010b).  
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1.1.3 Xenobiotic receptors 

 

1.1.3.1 Overview of xenobiotic receptors belonging to the nuclear receptor 

super-family 

 

It is likely that xenobiotic-mediated control of detoxification pathway gene 

expression may adaptively evolve in response to the various chemicals that 

different animals are exposed to. Diet is probably the main route of exposure to 

xenobiotics (Targett & Arnold 2001; Raubenheimer & Simpson 2009; Forbey et 

al. 2013). Metazoan genomes encode a range of sensors to detect xenobiotic 

chemicals: for example, G protein-coupled receptors that mediate taste and 

olfaction (Palmer 2007; Kinnamon 2012). Xenobiotic detection pathways 

operating independently of the nervous system are coordinated through 

xenobiotic receptors, a specific group of ligand-activated nuclear receptor (NR) 

transcription factors (Nakata et al. 2006; Chai et al. 2013; Wallace & Redinbo 

2013). 

Metazoan genomes encode at least three xenobiotic receptors that regulate 

detoxification: aryl hydrocarbon receptor (AhR), and the two NRs constitutive 

androstane receptor (CAR; NR notation: NR1I3) and pregnane X receptor 

(PXR; NR notation: NR1I2; Nakata et al. 2006; Chai et al. 2013; Wallace & 

Redinbo 2013). As is typical of NRs, the PXR and CAR protein structures 

consist of several conserved functional domains (Figure 1.3). The most 

conserved one is the DNA-binding domain (DBD), which is responsible for the 

interaction between the NRs and the response elements present in the 

promoter region of their target genes; and the ligand-binding domain (LBD), 

which interacts with the ligands and with co-regulators to control gene 

expression (Gronemeyer et al. 2004; Pascussi et al. 2008). Based on these 

highly conserved domains, seven NR sub-families (NR0–6) were defined using 

phylogenetic analyses (Nuclear Receptors Nomenclature Committee 1999).  
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Figure 1.3 Schematic structure of nuclear receptors.  

The overall structure of ligand-activated nuclear receptors is conserved through 

evolution with five key structural domains: N-terminal transcription activation domain 

(activation function 1, AF-1), DNA-binding domain (DBD), flexible hinge region (Hinge) 

and ligand-binding domain (LBD) which includes a C-terminal activation domain 

(activation function 2, AF-2). Figure was modified from Chai et al. (2013). 

 

Technically, AhR is not a member of the NR super-family and instead belongs 

to the family of basic helix-loop-helix transcription factors (Kewley et al. 2004; 

Fujii-Kuriyama & Kawajiri 2010). This receptor consists of four major domains, 

some of which are similar to that of the canonical domain composition of NRs 

(Figure 1.3), including a DBD and LBD (Fukunaga et al. 1995). Activated by a 

wide range of xenobiotic compounds, AhR is believed to act as a detection 

mechanism, sensing potentially toxic foreign compounds and facilitating their 

eventual metabolism and elimination (Denison & Nagy 2003).  

Pregnane X receptor and CAR are the master xenobiotic sensors that bind a 

variety of ligands including endogenous and exogenous (i.e. xenobiotic) 

chemicals (Chai et al. 2013; Xie & Chiang 2013). Although both CAR and PXR 

modulate a number of drug-metabolising enzymes (Kliewer et al. 2002; 

Kachaylo et al. 2011; Wallace & Redinbo 2013), PXR is better understood with 
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respect to how its LBD structure relates to ligand-binding and subsequent 

transcriptional activation (Chai et al. 2013). Crystallographic studies revealed 

that CAR, although promiscuous, is modulated by a smaller variety of ligands 

compared to the plethora that activate PXR (Wallace & Redinbo 2013). 

 

1.1.3.2 Vertebrate pregnane X receptor 

 

Pregnane X receptor is well characterised within a number of vertebrate taxa 

(Reschly & Krasowski 2006; Bainy et al. 2013; Chai et al. 2013; Xie & Chiang 

2013). Vertebrate PXR was originally identified from genomic sequence data 

and designated as an orphan NR as its ligand(s) were then unknown (Kliewer et 

al. 1998). In 1998, three groups independently reported mammalian PXR 

activation by both steroids and a range of xenobiotics resulting in three 

alternative receptor names with PXR now being the most widely used 

(Bertilsson et al. 1998; Blumberg et al. 1998; Kliewer et al. 1998). Pregnane X 

receptor appears to function much like a standard ligand-activated NR. After 

ligand-binding within the PXR LBD, the activated PXR protein forms a complex 

with retinoid X receptor (RXR) before translocating from the cell cytoplasm into 

the nucleus. The PXR/RXR heterodimer binds to appropriate DNA response 

elements, thereby influencing transcription of adjacent genes (McKenna et al. 

1999; Li & Chiang 2005; Orans et al. 2005; Teotico et al. 2008). Many of the 

PXR-regulated genes are involved in detoxification. Thus, PXR activation, 

following xenobiotic-binding to its LBD, provides a mechanistic link between the 

presence of xenobiotics in a cell and appropriate detoxification gene expression 

(Tolson & Wang 2010). 

Vertebrate PXR ligands include a structurally diverse range of endogenously 

produced molecules; e.g. bile acids, steroid hormones and vitamins along with 

exogenously acquired chemicals; e.g. both synthetic and herbal drugs (Chang & 

Waxman 2006; Staudinger et al. 2006; Manez 2008; Biswas et al. 2009; 

Hernandez et al. 2009; Zhou et al. 2009). Determination of the three 

dimensional structure of the human PXR protein has helped explain its striking 

permissiveness with respect to the differing structures of activating ligands 
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(Wallace & Redinbo 2013; Wu et al. 2013). In the majority of NRs, the LBD 

cavities have well-defined shapes with restricted mobility, thereby ensuring 

specificity of ligand–LBD interactions (Eick et al. 2012; Harms et al. 2013). In 

contrast, the human PXR LBD is larger than is typical of NRs and displays 

significant flexibility during ligand-binding allowing it to accommodate a wider 

range of ligand sizes and structures (Wallace & Redinbo 2013; Wu et al. 2013). 

 

1.1.3.3 Tunicate xenobiotic receptors 

 

Although xenobiotic receptor encoding genes have been identified in a growing 

number of publicly-available invertebrate genomic sequences (Bracken-

Grissom et al. 2014), identification of marine invertebrate xenobiotic receptors is 

limited to a few selected taxa (Dehal et al. 2002; Reitzel & Tarrant 2009; 

Bridgham et al. 2010; Denoeud et al. 2010; Srivastava et al. 2010; Vogeler et al. 

2014). The first putative xenobiotic receptor from a marine invertebrate was 

identified in the genome of the solitary tunicate Ciona intestinalis, which was 

also the first marine invertebrate to have an assembled and annotated genome 

published (Dehal et al. 2002; Satou et al. 2002; Yagi et al. 2003). Analysis of 

the C. intestinalis genomic sequence, in combination with C. intestinalis 

expressed sequence tag (EST) databases, revealed two genes that 

phylogenetic analyses placed as orthologues to vertebrate NR1I genes. These 

two C. intestinalis NR1I-like genes were equally related to the vertebrate PXR, 

CAR and vitamin D receptor (VDR; NR notation: NR1I1) genes, hence denoted 

CiVDR/PXRα (GenBank accession number: NM_001078379) and CiVDR/PXRβ 

(NM_001044366; Dehal et al. 2002; Yagi et al. 2003; Satou et al. 2005). More 

recently, two putative PXR/NR1I orthologues have been detected in the 

genomic sequence of the colonial tunicate Botryllus schlosseri (Voskoboynik et 

al. 2013), while the genome of the pelagic tunicate Oikopleura dioica encodes 

as many as six NR1I clade genes (Denoeud et al. 2010). 

The ligand-binding characteristics of the putative C. intestinalis PXR orthologue 

were subsequently investigated using a mammalian expression system 

(Reschly et al. 2007; Ekins et al. 2008). The CiVDR/PXRα LBD was fused to the 
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DBD of the generic yeast transcription factor GAL4 (GAL4-DBD) and the 

resulting chimeric protein was expressed in a mammalian cell line carrying a 

ligand-dependent luciferase reporter gene (Reschly et al. 2007; Ekins et al. 

2008). Using this bioassay, three synthetic chemicals (6-formylindolo-[3,2-

b]carbazole, n-butyl-p-aminobenzoate and carbamazepine) and two microalgal 

biotoxins (pectenotoxin-2 (PTX-2) and okadaic acid) were identified as 

CiVDR/PXRα LBD agonists (Reschly et al. 2007; Ekins et al. 2008; Fidler et al. 

2012). A common pharmacophore model of CiVDR/PXRα activators was 

tentatively defined. The model consists of a planar structure with at least one 

off-centre hydrogen bond acceptor flanked by two hydrophobic regions (Ekins et 

al. 2008; Fidler et al. 2012). Both microalgal biotoxins (okadaic acid and PTX-2) 

were two to three orders of magnitude more potent than the three synthetic 

ligands. This supports the idea that the natural CiVDR/PXRα receptor is 

activated by exogenous compounds relevant to its marine environment, thus 

playing a similar role in detecting and eliminating xenobiotics as its vertebrate 

orthologue (Sladek 2011; Fidler et al. 2012). This assumption is supported by 

the following observations: (i) putative endogenous ligands (e.g. vitamin D or 

bile salt correlates) have not yet been identified in invertebrates (Reschly et al. 

2007; Ekins et al. 2008) and; (ii) multiple canonical xenobiotic response 

elements are present in the upstream genomic sequence of most CYP1 genes 

(CYP1A- and CYP1B/CYP1C-like) in C. intestinalis (Goldstone et al. 2007). 

 

1.1.4 Suitable expression systems for functional studies of nuclear 

receptors 

 

Several in vitro methods can be used for the functional characterisation of 

orthologues genes from different organisms, outside of the context of a whole, 

intact organism (Jensen et al. 2007). Recombinant proteins can be generated in 

bacteria, in cultured eukaryotic cells or in a cell-free system, and assayed for 

activity of specified substrates. While such in vitro methods tend to be faster 

and cheaper than studies on whole organisms, there might be only an indirect 

connection between in vitro receptor function and organismal phenotypes 

(Jensen et al. 2007). However, using mammalian cell line-based expression 
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systems, NR ligands have been successfully identified and correlated to results 

obtained in vivo (Luo et al. 2002; Sinz et al. 2006; Chu et al. 2009). 

 

1.1.4.1 Mammalian cell lines for functional studies of nuclear receptors 

 

Mammalian cell line-based reporter assays, as described in Section 1.1.3.3, 

have been used extensively for the functional characterisation of PXR, CAR and 

AhR (Raucy & Lasker 2013). The main advantage of mammalian cell lines is 

that they share a similar cellular/biochemical milieu with metazoan cells, which 

is expected to assist correct folding and functioning of NR proteins expressed 

from heterologous genes. Using mammalian cell lines, receptor 

ligands/activators can be identified using ligand-binding assays or cell-based 

transfection assays (Raucy & Lasker 2013).  

One popular approach for reporter assays is to make chimeric receptors 

containing the LBD of the receptor of interest fused to the GAL4-DBD. The 

reporter plasmids are then designed to respond to GAL4 (Stanley et al. 2006). 

This approach identified different compounds as potent activators of both the 

human and mouse PXR; using a GAL4-luciferase reporter construct responding 

to human PXR-LBD/GAL4-DBD or mouse PXR-LBD/GAL4-DBD chimeric 

receptors in HepG2 cells (Vignati et al. 2004). The use of a single reporter 

construct allows for direct comparisons of receptor–ligand interactions. 

However, the use of chimeric receptors means that subtle conformational 

changes and protein–protein interactions mediated by regions other than the 

LBD of the receptor of interest may be lost. For example, TCPOBOP only 

activated the full-length mouse CAR, but not the mouse CAR-LBD/GAL4-DBD 

chimeric protein. This suggests that the full-length receptor constructs represent 

the in vivo situation better than the GAL4-based assay (Moore et al. 2002).  

To overcome these limitations, transactivation of the full-length NRs can be 

assessed in either transient or stable cell lines. In transient cell-lines, the 

transfected genetic material is not integrated into the nuclear genome. Thus, the 

foreign DNA is transiently expressed because it will be degraded or diluted via 

mitosis. In stable cell lines, a fraction of the transfected genetic material is 
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introduced into the genome. The most common method involves transient 

transfection of the receptor and a response element-reporter gene construct. 

With this approach, the full-length human PXR, human CAR or human AhR 

cDNAs are cloned into an expression vector. In addition, chimeric luciferase, β-

lactamase, or chloramphenicol acyl transferase reporter vectors are prepared 

containing the appropriate NR response elements (Stanley et al. 2006). Using 

transient transactivation systems, several studies have identified human PXR 

and AhR activators, and correlated these results to those obtained in vivo (Luo 

et al. 2002; Sinz et al. 2006; Chu et al. 2009). A number of disadvantages are 

associated with transient transfection assays including the inherent variability 

associated with transfection efficiency and the time required to perform these 

assays (Raucy & Lasker 2013). 

 

1.1.4.2 Recombinant yeast strains for functional studies of nuclear 

receptors 

 

A valuable alternative expression system is the well-characterised unicellular 

eukaryotic organism Saccharomyces cerevisiae (common baker’s yeast). Yeast 

is easy to cultivate and there are numerous tools available for its genetic 

manipulation. Due to some common characteristics with mammalian cells, yeast 

has become a popular organism in studying NR functions and ligand affinities 

(Chen et al. 2004; Fox et al. 2008; Balsiger et al. 2010; Miller et al. 2010; Raucy 

& Lasker 2010; Rajasarkka & Virta 2011; Li et al. 2013). Some of the resulting 

yeast strains have found application in screening environmental samples for 

bioactivities — particularly for estrogenic activity (Routledge & Sumpter 1996; 

Collins et al. 1997; Gaido et al. 1997; Chatterjee et al. 2008; Passos et al. 2009; 

Balsiger et al. 2010; Chen et al. 2014). Finally, S. cerevisiae offers the 

possibility of directed evolution of NRs. In vitro mutagenesis can be used to 

generate NR LBD variant sequences, which can be selected for enhancement 

of growth rates in the presence of a cognate ligand (Chen & Zhao 2003). 

Despite the clear advantages of recombinant NR-based yeast bioassays, these 

cell-based bioassays face a number of limitations. Such limitations include the 
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inability to express structurally complex proteins. Members of the growth factor 

beta (TGF-β) super-family, important proteins involved in cell growth, cell 

differentiation, apoptosis and cellular homeostasis, were only expressed 

successfully as recombinant proteins in mammalian expression systems (Kim et 

al. 2002). Limitations intrinsic to all living cells include elimination of potential 

NR ligands/test compounds via yeast export pumps (Liu et al. 1999; Dudley et 

al. 2000). It was shown that by removing such transporters from the yeast 

genome, the sensitivity of yeast bioassays can be improved (Balsiger et al. 

2010). Low permeability of test compounds through the yeast cell wall and 

membrane can limit assay sensitivity (Lyttle et al. 1992), although NR-based 

yeast bioassays were shown to be highly sensitive even with very short 

incubation times (4–12 hours; Bovee et al. 2004).  

A number of yeast systems were developed to detect macromolecular 

interactions: DNA–protein (one-hybrid assay), protein–protein (two-hybrid 

assay) and RNA–protein (three-hybrid assay; Mager & Winderickx 2005; Vidal 

& Legrain 1999). The yeast two-hybrid system represents a powerful approach 

for detecting protein–protein interactions in cells and, more recently, has 

evolved from the original yeast two-hybrid system into a method for identifying 

NR ligands (reviewed in Fox et al. 2008). 

The ‘yeast estrogen screen’ is an elegant example of a modified one-hybrid 

method designed to identify small-molecule compounds that bind to 

heterologous NR proteins expressed in yeast. The human estrogen receptor 

alpha (ERα) is integrated into the main yeast chromosome. The yeast cells also 

contain an expression plasmid carrying the reporter gene lacZ which encodes 

the enzyme β-galactosidase (Figure 1.4A; Routledge & Sumpter 1996; Bovee et 

al. 2004). The ligand-bound ER binds the estrogen receptor response element 

(ERE) inserted on the promoter of the lacZ reporter gene. Then transcriptional 

activation of the lacZ reporter takes place via recruitment of various yeast 

transcription cofactors (e.g. chromatin remodelling complexes or histone 

modification factors; Kennedy 2002).  

In this approach, the native, full-length NR is being used to identify potential NR 

ligands. Thus, both the NR coactivators and the sequences of the cognate DNA 

elements to which the NR DBD binds need to be known. Such specialised 
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knowledge may not be available for some NRs, especially in the case of 

orthologues for invertebrate xenobiotic receptors. Even though putative response 

elements for metazoan xenobiotic receptors have been identified in marine 

invertebrate genomes (Goldstone et al. 2007), these may not function as 

required in S. cerevisiae cells.  

These knowledge gaps can be bypassed by exploiting the highly modular 

structure of NRs (Figure 1.3). A chimeric protein can be generated in which the 

LBD of interest is fused to the GAL4-DBD. These transcription factors contain: 

(i) modular DBDs that bind to specific DNA response elements and; (ii) modular 

transcriptional activation domains (ADs) that interact with the basal transcription 

machinery to increase transcriptional activation (Figure 1.4B; Raucy & Lasker 

2010). The interaction between the NR LBD and a ligand is detected using a 

reporter gene containing well-characterised DNA control elements (e.g. GAL4 

upstream activation sequence, UAS; Young 1998). This removes the need for 

knowledge of the natural heterodimer partners of the NR or the DNA sequence 

elements to which the NR binds through its native DBD. Following binding to a 

well-characterised UAS element, via the GAL4-DBD, the NR’s ligand-dependent 

activation domain (AF-2, Figure 1.3) needs to function within the nuclear milieu 

of yeast cells. As previous studies have shown that the AF-2 domains of some 

vertebrate NRs do not function in yeast cells (Berry et al. 1990; Louvion et al. 

1993), a generic transcription activation domain from the Herpes simplex virion 

protein 16 (VP16-AD) can be added to the C-terminus of the chimeric proteins 

(Louvion et al. 1993). In summary, a fusion gene can be generated encoding a 

chimeric protein that contains the GAL4-DBD, the NR LBD and the VP16-AD, 

with the ligand-binding characteristics of the chimeric protein determined by the 

NR LBD (Figure 1.4B). 
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Figure 1.4 Simplified schematic of modified yeast one-hybrid bioassays.  

(A) In the yeast estrogen assay the native human estrogen receptor alpha (ERα) is 

integrated into the main genome and is expressed in a form capable of binding 

estrogen response elements (ERE) within a hybrid promoter on the expression plasmid 
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encoding the reporter gene. (B) In a modified yeast one-hybrid assay, a yeast host 

strain has a plasmid carrying a chimeric gene encoding a fusion protein containing the 

DNA-binding domain (DBD) of the yeast transcription factor GAL4 (GAL4-DBD), a 

nuclear receptor (NR) ligand-binding domain (LBD) and a generic activation domain 

(AD) from the viral protein VP16 (VP16-AD). Ligand-binding leads to a conformational 

change of the chimeric protein, resulting in binding of the GAL4-DBD to the control 

region in the promoter region of the reporter gene which is integrated in the yeast strain 

genome. The VP16-AD is responsible for recruitment of general yeast transcription 

factors (YTF).  

 

The reporter gene selected to generate the ‘output’ signal from yeast bioassays 

must combine low background with a clear response signal following activation 

of the NR LBD. Three types of NR-dependent reporter gene assays have been 

used in recombinant yeast: the Escherichia coli lacZ gene, encoding the 

enzyme β-galactosidase (de Almeida et al. 2008), yeast-enhanced green 

fluorescence protein (yEGFP; Bovee et al. 2007; Chatterjee et al. 2008; Bovee 

et al. 2011) and the luciferase gene (Nordeen 1988). Although the luciferase 

and yEGFP reporter assays are more sensitive than lacZ (Fan & Wood 2007), 

both have associated complications. Luciferase assays require the use of 

expensive substrates and involve cell lysis (Hancock et al. 2007; de Almeida et 

al. 2008) which can be problematic either due to released cellular proteases (de 

Almeida et al. 2008) or incomplete cell lysis (Hancock et al. 2007). Although 

yEGFP assays do not require the addition of substrates, the assays are 

characterised by a high natural background of green fluorescence (Bovee et al. 

2007). In contrast, lacZ assays are inexpensive and, when based on the 

chromogenic substrate chlorophenol red-β-D-galactopyranoside (CPRG), do not 

require cell lysis (Routledge & Sumpter 1996). Such non-lethal measurements 

of β-galactosidase activity are useful as it means that repeated measurements 

can be taken over time. This is a significant advantage because the time course 

of lacZ gene transcription induction will vary between ligands due to differences 

in parameters such as membrane permeability and solubility in the cytoplasm 

(Norcliffe et al. 2013). 

 



CHAPTER ONE: INTRODUCTION  39 
 

1.2 Thesis structure and research questions 

 

This thesis aims to build on and extend current advances in the molecular 

evolution and function of a specific class of transcription regulating proteins—

the xenobiotic receptors— from marine invertebrates (Tunicata). This thesis is 

divided into two parts. Part one examines the molecular evolution of tunicate 

xenobiotic receptors in response to dietary bioactive compounds (Chapter Two). 

Part two focusses on the functional characterisation of tunicate xenobiotic 

receptors in a yeast expression system and the subsequent application of these 

recombinant yeast bioassays for the detection of bioactive compounds 

(Chapters Three, Four and Five).  

The over-arching aim of this thesis was to understand the fundamental role of 

tunicate orthologues of the pregnane X receptor (PXR) and vitamin D receptor 

(VDR) and their potential application in yeast bioassays for the detection of both 

bioactive compounds and environmental contaminants. This was addressed 

through a series of four research questions: 

(i) Have tunicate VDR/PXR ligand-binding domains (LBDs) adaptively 

evolved to enhance binding of exogenous dietary bioactives/toxins 

typically encountered by these organisms? 

(ii) Are tunicate VDR/PXR LBDs activated by dietary xenobiotics (e.g. 

microalgal biotoxins) and can these receptors be used as sensor 

elements in yeast bioassays for the detection of microalgal biotoxins? 

(iii) Can tunicate VDR/PXR LBD-based yeast bioassays be used to 

detect natural bioactive compounds that represent potential drug lead 

compounds? 

(iv) Can tunicate VDR/PXR LBD-based yeast bioassays be used to 

detect environmental contaminants that negatively affect a wide 

range of metazoan species? 
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Chapter One provides a general overview of the molecular evolution and 

functional characterisation of metazoan PXRs with a focus on marine 

invertebrate PXRs.  

Chapter Two documents the identification of genetic variation within two PXR 

orthologues in the solitary tunicate Ciona intestinalis (designated CiVDR/PXRα 

and β) and one PXR orthologue in the colonial tunicate Botryllus schlosseri 

(BsVDR/PXRα).  

Chapter Three describes the functional expression of two tunicate VDR/PXR 

orthologues genes (CiVDR/PXRα and BsVDR/PXRα) in recombinant yeast 

(Saccharomyces cerevisiae) strains.  

Chapter Four extends the work described in Chapter Three by screening a wide 

range of natural bioactive compounds and relevant analogues for activity in the 

tunicate VDR/PXR LBD-based yeast bioassay.  

Chapter Five discusses the potential application of the tunicate VDR/PXR LBD-

based yeast bioassay in environmental monitoring to detect harmful synthetic 

chemicals that represent emerging contaminants.  

Finally, Chapter Six provides a synthesis of the proceeding chapters and a 

discussion on the general implications of this work and potential future 

research.  
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Ciona intestinalis from Lyttelton Harbour, New Zealand. 

Photograph by Dr Chris Woods, National Institute of Water and Atmospheric 

Research, Christchurch, New Zealand. 

  



 

 

 

Part One 

 

Detection of adaptive evolution in tunicate 

xenobiotic receptors using molecular tools 

 



 

CHAPTER TWO 

Transcripts of tunicate orthologues of the pregnane X 

receptor: characterisation and natural variation 

 

2.1 Introduction 

 

Tunicates feed by filtering small organisms from seawater and therefore can be 

exposed to dietary xenobiotics at relatively high concentrations (Sekiguchi et al. 

2001; Echevarria et al. 2012; Roje-Busatto & Ujević 2014). Dietary xenobiotics 

that are toxic to tunicates (i.e. increase mortality/morbidity and/or reduce 

reproductive output) are likely to act as agents of natural selective pressures. 

Ligand-binding domains (LBDs) of xenobiotic receptors may evolve to include 

these compounds in their repertoire of potential ligands (Fidler et al. 2012). 

Evidence of adaptive evolution has been reported within LBD sequences of 

vertebrate xenobiotic receptors. For example, vertebrate pregnane X receptor 

(PXR) displays greater inter-taxa variation in LBD sequences than is typical of 

nuclear receptors (NRs), along with some evidence of positive selection within 

the LBD (Moore et al. 2002; Zhang et al. 2004; Krasowski et al. 2005a, b). 

Tunicate xenobiotic receptors are orthologues to vertebrate vitamin D receptor 

(VDR), constitutive androstane receptor (CAR) and PXR, hence abbreviated 

VDR/PXR. The LBD of Ciona intestinalis VDR/PXRα has a low sequence 

identity when compared to vertebrate VDR, CAR and PXR (17–27% sequence 

identity). In contrast, the DNA-binding domain (DBD) is more conserved (60–

68% sequence identity; Table 2.1). It has been speculated that such inter-taxa 

PXR LBD sequence differences may reflect adaptive evolutionary changes 

enhancing binding of exogenous dietary xenobiotics typically encountered by an 

organism (Moore et al. 2002; Zhang et al. 2004).  
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Table 2.1 Sequence identities of xenobiotic receptor orthologues.  

Sequence identities of Ciona intestinalis vitamin D receptor/pregnane X 

receptor α (CiVDR/PXRα) compared to the vertebrate pregnane X receptor 

(PXR), the vitamin D receptor (VDR) and constitutive androstane receptor 

(CAR). Table modified from Ekins et al. (2008).  

Receptor % Identity to Ciona intestinalis VDR/PXRα 
  DNA-binding domain Ligand-binding domain 
Human PXR 61.8 22.5 
Mouse PXR 60.3 21.5 
Chicken PXR 63.2 23.7 
Xenopus PXR 64.7 20.3 
Fugu PXR 67.6 19.8 

   Human VDR 67.6 17.1 
Zebrafish VDR 70.6 21.8 
Sea lamprey VDR 73.5 20.8 

   Human CAR 60.3 26.8 
Mouse CAR 55.9 23.2 

 

Characterising the effects of natural selection at the molecular level is one of 

the major challenges of evolutionary genomics. In general, variation at the 

genetic level can affect the function of proteins, which can lead to cellular 

modifications, organismal phenotypes and reduced fitness (Dalziel et al. 2009). 

Thus, protein adaptations are characterised by ‘footprints’ in the genome which 

can be identified in genomic sequence data and analysed using a wide range of 

statistical methods (Biswas & Akey 2006). McDonald and Kreitman (1991) 

suggested to take advantage of the degeneracy of the genetic code: non-

synonymous variation (i.e. amino acid changing) is supposed to reflect the 

action of natural selection, whereas synonymous changes are seen as a neutral 

reference. For coding sequences, comparisons between the number of non-

synonymous substitutions per non-synonymous site (dN) to synonymous 

substitutions per synonymous site (dS) provide a good measure of the strength 

and character of selection (Jensen et al. 2007). Using divergence-based 

maximum likelihood analyses, positive selection was detected in a number of 

highly variable sites in Mu-class glutathione transferases, a class of vertebrate 

detoxification enzymes (Ivarsson et al. 2003). These putatively selected 
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changes were shown to lead to differences in protein function. This is consistent 

with the hypothesis that functional diversification underlies rapid amino acid 

evolution in detoxification genes (Norrgard et al. 2006).  

Previous suggestions of positive selection acting on the LBD coding sequences 

of PXR, and its orthologues, were based on sequence comparisons between 

vertebrate taxa (Zhang et al. 2004; Krasowski et al. 2005a). To date, inter-

species studies have shown significant differences in the xenobiotic response 

between humans and rodents which may be explained by differences in the 

pharmacology of mammalian PXR (Blumberg et al. 1998; Kliewer et al. 1998; 

Jones et al. 2000; LeCluyse 2001; Tirona et al. 2004). The aims of this chapter 

were to investigate intra-species sequence variation in VDR/PXR LBD coding 

sequences of two tunicates, C. intestinalis and Botryllus schlosseri, and to 

identify evidence of both adaptive evolution and functionally significant allelic 

variations.  

 

2.2 Materials and methods 

 

2.2.1 Tunicate collection and tissue sampling 

 

Ciona intestinalis adults (>60 mm length, n = 30) were collected from four New 

Zealand South Island locations: (i) Nelson marina (41°15'32.64"S, 

173°16'55.53"E, n = 18); (ii) Lyttelton Harbour (43°36'38.63"S, 172°42'14.35"E, 

n = 3); (iii) Pelorus Sound (41°12'54.87"S, 173°52'46.91"E, n = 6) and; (iv) 

Queen Charlotte Sound (41°12'31.73"S, 174°17'59.91"E, n = 3). New Zealand 

Botryllus schlosseri colonies (n = 30) were collected from two locations: Nelson 

marina (n = 23) and Lyttelton Harbour (n = 7). Botryllus schlosseri colonies (n = 

10) from the eastern Mediterranean Coast were collected from a single location: 

Michmoret Beach, Ruppin Academic Centre, Israel (32°24'31.85"N, 

34°52'05.37"E). The Botryllus schlosseri colonies were collected >1 m apart to 

reduce the chances of sampling clonally related colonies. Ciona intestinalis 

individuals were kept overnight in sea water with traces of menthol crystals to 
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anesthetise the animals to assist subsequent dissection of tissues (Hanashima 

et al. 2012). Dissected C. intestinalis tissues were frozen on dry ice before 

storage at -70oC. Botryllus schlosseri colonies from New Zealand waters were 

frozen on dry ice before storage at -70oC. Botryllus schlosseri colonies collected 

in the Mediterranean were placed in RNA stabilisation buffer 

(http://sfg.stanford.edu/RNAbuffer.pdf) and transported at ambient temperatures 

to New Zealand before long term storage at -70oC. 

 

2.2.2 Amplification and Sanger sequencing of cDNA sequences 

 

Total RNA was isolated from either dissected C. intestinalis gut tissues or B. 

schlosseri colony fragments using Trizol (Life Technologies, Carlsbad, CA, 

U.S.A.) following the manufacturer’s protocol. First strand cDNAs were 

synthesised from total RNA using random hexamer primers (Transcriptor First 

Strand cDNA Synthesis Kit, Roche Diagnostics, Penzberg, Germany) and then 

used as templates in polymerase chain reactions (PCRs). Primers were 

designed to amplify three tunicate VDR/PXR partial coding sequences. Primers 

flanking the coding sequences for the predicted DBD and LBD domains of C. 

intestinalis VDR/PXRα (CiVDR/PXRα, GenBank acc. no.: NM_001078379) and 

C. intestinalis VDR/PXRβ (CiVDR/PXRβ, NM_001044366) were designed 

directly from the GenBank sequences with the primer sequences shown in 

Appendix 1A. When this work was started, sequencing of the B. schlosseri 

genome was still in progress which complicated PCR primer design. Primers for 

amplifying the B. schlosseri VDR/PXRα coding sequence were developed using 

a combination of alignments of PXR orthologues sequences and B. schlosseri 

expressed sequence tag (EST) sequence data. The predicted DBD protein 

sequences of PXR orthologues from mouse (AF031814), rat (AF151377), rabbit 

(AF188476), human (AF061056), frog (AF305201), chicken (AF276753) and C. 

intestinalis (NM_001078379) were aligned. A conserved peptide sequence, 

CEGCKGFFR, was identified and a redundant forward primer was designed 

from an alignment of the corresponding DNA sequences (Appendix 1A). The 

forward primer was paired with a reverse primer designed directly from two B. 
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schlosseri EST sequences (contig-18161978, contig-18290615, A. 

Voskoboynik, pers. comm.) identified as encoding a VDR/PXRα orthologue 

(Appendix 1A). Polymerase chain reactions were carried out in 20 μl final 

volumes containing: 10 μl of SAHARA™ DNA Polymerase 2x Master Mix 

(Bioline, London, U.K.), forward and reverse primers (both 0.4 μM), 32 µg/ml 

bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, MO, U.S.A.) and 2 μl of 

template cDNA. All three partial coding sequences (CiVDR/PXRα, CiVDR/PXRβ 

and BsVDR/PXRα) were amplified using the following thermocycling conditions: 

94°C/10 min., 1 cycle; 94°C/30 sec., 45°C/30 sec. ramping at 0.2°C/sec. to 

72°C/2 min., 5 cycles; 94°C/30 sec., 55°C/30 sec., 72°C/2 min., 35 cycles; 

72°C/7 min., 1 cycle; 15°C/hold. The resulting PCR products were visualised on 

an agarose gel and purified (Zymoclean™ Gel DNA Recovery Kit, Zymo 

Research, Irvine, CA, U.S.A.). Purified amplicons were ligated into pGEM-T-

Easy (Promega, Madison, WI, U.S.A.), transformed into DH5α Escherichia 

coli, and plasmids purified (High Pure Plasmid Isolation Kit, Roche Diagnostics). 

Plasmid inserts were bi-directionally sequenced by an external contractor using 

a vector encoded primer pair, M13 forward and reverse (Massey Genome 

Service, Massey University, New Zealand). A representative sequence from a 

single cloned haplotype from each of the three genes was deposited in 

GenBank with the following accession numbers: CiVDR/PXRα (1326 bp): 

KC561370, CiVDR/PXRβ (1569 bp): KC561371 and BsVDR/PXRα (1006 bp): 

KC561372. 

 

2.2.3 Protein analysis software 

 

Structural domains of predicted protein sequences were identified using the 

Simple Modular Architecture Research Tool (SMART) software (Letunic et al. 

2012; http://smart.embl-heidelberg.de), the National Center for Biotechnology 

Information (NCBI) Conserved Domain (CD) database (Marchler-Bauer et al. 

2011; http://ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and the Protein Families 

(Pfam) database (Punta et al. 2012; http://pfam.xfam.org). 
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2.2.4 Phylogenetic analysis 

 

DNA-binding and ligand-binding domain sequences from predicted chordate 

NR1I clade proteins were aligned using ClustalW (Thompson et al. 1994) 

implemented in the MEGA5 package (Molecular Evolutionary Genetics Analysis 

software, version 5; Tamura et al. 2011). Phylogenetic analyses were 

performed using MEGA5 with alignment positions containing gaps/missing data 

eliminated from the dataset (complete deletion option). Phylogenies were 

inferred using the neighbour-joining algorithm with maximum composite 

likelihood distances and 1000 bootstrap repetitions. Sequences from domestic 

silkworm (Bombyx mori) ecdysone receptor (AAA87341), tick (Amblyomma 

americanum) ecdysone receptor (AAB94566) and sea urchin 

(Strongylocentrotus purpuratus) ecdysone receptor/farnesoid X receptor 

(NP_001123279) were used as outgroups. 

 

2.2.5 Detection of Ciona intestinalis VDR/PXRα and β gene 

transcripts 

 

Quantitative PCR (qPCR) was used to detect CiVDR/PXRα and β transcripts in 

five regions of the C. intestinalis digestive tract. Total RNA was isolated from 

adult C. intestinalis digestive tract tissues using Trizol® Reagent. cDNA was 

synthesized as described in Section 2.2.2 and quantified using a Qubit® 2.0 

Fluorometer (Life Technologies). A Ciona intestinalis cytoskeletal actin gene 

orthologue (GenBank acc. no.: AJ297725) was used as an internal control for 

cDNA synthesis. All qPCR primer pairs used are listed in Appendix 1B and were 

predicted to flank at least one intron based on a C. intestinalis genomic 

sequence (build 1.1, NCBI). Amplifications were performed in 20 µl reactions 

containing: 0.4 μM of both primers, 10 µl iQ™ SYBR® Green 2x SuperMix 

(BioRad, Hercules, CA, U.S.A.) and 2 µl template cDNA. Negative control 

reactions, in which sterile water replaced the cDNA, were run in parallel. The 

qPCR thermocycling conditions used were as follows: 95°C/2 min., 1 cycle; 

95°C/15 sec., 60°C/1 min., 40 cycles (Rotor-Gene™ 6000, Qiagen, Hilden, 
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Germany). Amplicon homogeneity and absence of primer dimers was confirmed 

by melt curve analysis. Data obtained from triplicate amplifications of each 

template were averaged and expressed in molecules/ng cDNA using the 

appropriate diluted plasmid-based standard curves. Amplicons were cloned into 

a T-tailed vector (pGEM-T-Easy, Promega) to provide quantifiable templates 

for generation of standard curves. Plasmid concentrations were measured using 

a Nano Photometer (Implen, Munich, Germany) and then serially diluted 1:10 in 

water to generate standard curves displaying a linear relationship between the 

cycle threshold values and log10 plasmid molecule number over the range 102–

107 plasmid molecules/reaction (R2 >0.995, M = -3.4, efficiency = 0.9). The data 

were square root transformed and one-way analysis of variance (ANOVA) was 

used to study the association between different tissues and the level of gene 

expression using the Tukey HSD test function in Statistica 9 (StatSoft Inc, 

Tulsa, OK, U.S.A., 2008). Homogeneity of the variances was tested using 

Cochran’s C test and a p value <0.01 was considered significant.  

 

2.2.6 Illumina™ sequencing of pooled amplicons 

 

Tunicate VDR/PXR coding region amplicons were generated from either gut 

cDNA (C. intestinalis) or colony cDNA (B. schlosseri) templates using primers 

listed in Appendix 1A. Amplicons were purified from agarose gels (Zymoclean™ 

Gel DNA Recovery Kit, Zymo Research) and concentrations determined using a 

Nano Photometer (Implen). Amplicons were then pooled on an equimolar basis 

generating separate pooled mixtures for the CiVDR/PXRα, CiVDR/PXRβ and 

BsVDR/PXRα amplicons. The total DNA concentration in each of the amplicon 

mixtures was adjusted to 2 ng/µl (Nano Photometer, Implen). Subsequent 

sequencing of the amplicon pools was carried out by an external contractor 

(New Zealand Genomics Ltd., Massey University, New Zealand). The three 

amplicon mixes were characterised using an Agilent Bioanalyzer DNA 7500 Kit 

(Agilent Technologies, Santa Clara, CA, U.S.A.) and the Quant-iTTM dsDNA HS 

Assay Kit (Life Technologies) before pooling into a single mixture containing all 

three amplicons. The mixture was sheared by nebulisation and sequenced 
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using the Illumina™ TruSeq DNA Library Preparation Kit in combination with the 

Illumina™ MiSeq System (Illumina™, San Diego, CA, U.S.A.) producing paired-

end reads with a mean length of ca. 150 bp. The resulting data was quality 

controlled using conventional procedures: (i) the Burrows-Wheeler Alignment 

(BWA) tool (Li & Durbin 2010) was used to map raw sequence files against the 

PhiX genome and all matching reads were removed; (ii) adapter removal was 

performed using the fastx-clipper programme implemented in the ea-utils suite 

(version 1.1.2-318; Aronesty 2013) and; (iii) to remove any other potential 

contamination the reads were screened against a set of genome sequences 

(e.g. E. coli, Illumina™ adapters and the cloning vector pFosill-2) using 

fastQscreen (Babraham Bioinformatics 2013a). Sequence quality statistics were 

calculated using fastQC (Babraham Bioinformatics 2013b) and SolexaQA (Cox 

et al. 2010). The remaining sequences were aligned against the reference 

sequences for each of the three amplicons in paired-end and single-end mode 

using the BWA tool. 

 

2.2.7 Identification and analysis of polymorphisms in pooled 

amplicon sequence data 

 

The Illumina™ MiSeq generated sequence data for the CiVDR/PXRα, 

CiVDR/PXRβ and BsVDR/PXRα amplicons was examined for variants using 

VarScan (Koboldt et al. 2009) with default settings. Both single nucleotide 

polymorphism (SNP) and indel variant positions were identified for each 

amplicon using minimum ‘cut-off’ frequencies between 0.01–0.2, in increments 

of 0.01. Variants identified at a minimum ‘cut-off’ frequency of 0.02 were 

entered into the NCBI dbSNP database 

(http://ncbi.nlm.nih.gov/SNP/snp_viewTable.cgi?type=contact&handle=CAW_E

T). Specific SNPs can be identified within the reference sequences of each 

gene (CiVDR/PXRα: KC561370, CiVDR/PXRβ: KC561371 and BsVDR/PXRα: 

KC561372) by string searches using 25 nucleotides 5’ and 3’ to each SNP listed 

within the dbSNP database.  
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Numbers of transitions, transversions and the transitional to transversional 

ratios (Ti/Tv) per site were calculated using the Tamura-Nei model as 

implemented in the MEGA 5 software package (Tamura & Nei 1993). Three 

population genetic parameters (Watterson’s θ, Tajima’s D (DT) and π) were 

estimated using the sliding window approach implemented in the PoPoolation 

software (Kofler et al. 2011). Since DT is sensitive to variation in coverage, in 

part due to sequencing errors, DT was estimated by subsampling all reads to 

coverage of 1000 bases using a minimum count of two and a minimum quality 

of 20. This analysis only allows for relative comparison among the study 

populations and not for direct comparisons with other studies because DT 

depends on coverage and window size. Values for all population statistics were 

calculated in non-overlapping 50 bp windows across each gene.  

Non-synonymous and synonymous SNPs identified at a minimum variant 

frequency of 0.02 were mapped onto each of the three reference sequences 

(KC561370–72). Regional pairwise calculations (reference sequence vs. variant 

sequence) were used to calculate dN/dS ratios in a sliding window as 

implemented in JCoDA (Steinway et al. 2010). Using the Yang and Nielsen 

(2000) substitution model, dN/dS ratios were calculated with a window size of 

200 codons and an increment jump of 25 codons. 

 

2.3 Results 

 

2.3.1 Determination of tunicate VDR/PXRα and β partial coding 

sequences 

 

Partial coding sequences from the two C. intestinalis VDR/PXR orthologues 

(CiVDR/PXRα and CiVDR/PXRβ) and the B. schlosseri VDR/PXRα orthologue 

(BsVDR/PXRα) were amplified from appropriate cDNA templates (C. 

intestinalis: gut cDNA; B. schlosseri: total colony cDNA) using the primer pairs 

listed in Appendix 1. 
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The amplified sequences were confirmed as genuine VDR/PXR orthologues 

using: (i) the Basic Local Alignment Search Tool (BLAST) to find annotated 

GenBank entries and; (ii) phylogenetic analyses using alignments of the 

corresponding predicted protein sequences. In nucleotide BLAST searches 

(BLASTN) of GenBank (nucleotide database, no taxonomic restrictions) the 

CiVDR/PXRα sequence (KC561370) displayed 99% identity (E value = 0) with 

coordinates 431–1756 of the previously reported CiVDR/PXRα sequence 

(NM_001078379). This sequence had been derived from the C. intestinalis 

genome sequence, in combination with strong EST support (AB210742; NCBI 

Gene ID: 778791; Ensembl transcript: ENSCINT00000031407). The BLASTN 

searches of GenBank (nucleotide database) using the CiVDR/PXRβ sequence 

(KC561371) as the query revealed high sequence identity with sections of a 

previously reported C. intestinalis VDR/PXRβ sequence (NM_001044366; NCBI 

Gene ID: 751590; Ensembl transcript: ENSCINT00000030933) derived from the 

C. intestinalis genome sequence in combination with some EST support. 

Examination of the KC561371/NM_001044366 alignments revealed regions of 

near identity interspersed with non-aligned regions. The most parsimonious 

interpretation of these alignments is that KC561371 and NM_001044366 are 

derived from splice variant transcripts from the same locus.  

Both BLASTN and translated nucleotide BLAST (TBLASTN) searches of 

GenBank (nucleotide database, no taxonomic restrictions) using the putative 

BsVDR/PXRα partial coding sequence (KC561372) identified CiVDR/PXRα 

(NM_001078379) as the most homologous sequence on the GenBank 

nucleotide database (BLASTN: identity = 70% over coordinates 1214–1477 of 

NM_001078379, E value = 9e-25; TBLASTN: identity = 52%, E value = 3e-94). 

Additionally, BLASTN searches of a B. schlosseri EST database 

(http://octopus.obs-vlfr.fr/public/botryllus/blast_botryllus.php) provided EST 

support for the BsVDR/PXRα (KC561372) sequence (BLASTN: identity = 98% 

over coordinates 783–1788 of Bot_oas_2431, E value = 0.0). 

The orthologous relationships of the three tunicate amplified cDNA sequences 

were also examined by phylogenetic analysis based on alignments of 

conserved sections of protein sequences. Predicted protein sequences were 

derived from KC561370 (421 residues), KC561371 (480 residues) and 
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KC561372 (333 residues). The putative DBD and LBD domains were predicted 

using three different methods (Figure 2.1, Appendix 2). The derived phylogeny 

placed the three tunicate sequences in the same NR clade as the vertebrate 

VDR (NR1I1), PXR (NR1I2) and CAR (NR1I3) genes supporting their 

designation as VDR/PXR orthologues (Figure 2.2). 
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Figure 2.1 Genetic diversity within the primary structures of the predicted tunicate xenobiotic receptor proteins. 
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Figure 2.1 (cont.) (A) Schematic diagram of the generic nuclear receptor structure with 

conserved domains indicated: N-terminal A/B domain (A/B), DNA-binding domain 

(DBD; C), flexible hinge region (D), ligand-binding domain (LBD; E) and C-terminal 

activation domain (F). (B) Schematic primary structures of the predicted Ciona 

intestinalis vitamin D receptor/pregnane X receptor α (CiVDR/PXRα), C. intestinalis 

VDR/PXRβ and Botryllus schlosseri VDR/PXRα proteins with residue/codon numbers 

following the corresponding GenBank entries: CiVDR/PXRα: KC561370; CiVDR/PXRβ: 

KC561371; BsVDR/PXRα: KC561372. The DBDs (dark grey) and LBDs (light grey) 

predicted by the Simple Modular Architecture Research Tool (SMART; Letunic et al. 

2012) are highlighted. Approximate locations of single nucleotide polymorphisms 

(SNPs) in the corresponding nucleotide sequences are indicated by arrows 

(synonymous: black; non-synonymous: grey). Alternative residues associated with non-

synonymous SNPs are indicated above the grey arrows. The approximate locations of 

one base pair indel variants (black triangle) are indicated along with the position of the 

first stop codon generated 3’ to the indel-associated frameshift (dashed line). 
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Figure 2.2 Molecular phylogeny of nuclear receptors including the three 

tunicate xenobiotic receptors investigated in this study. 

Predicted DNA-binding domain (DBD) and ligand-binding domain (LBD) sequences 

from a range of metazoan nuclear receptors (NRs) were aligned and used to generate 

neighbour-joining trees. Bootstrap values were calculated from 1000 replicates. The 

sequence alignment used, along with corresponding GenBank accession numbers, is 

shown in Appendix 3. The three tunicate NR sequences generated in this study are 

indicated in underlined bold text.  
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2.3.2 Detection of VDR/PXRα and β transcripts in the Ciona 

intestinalis digestive tract 

 

Both conventional PCR and quantitative PCR (qPCR) were used to detect 

CiVDR/PXRα and β transcripts in five sections of the C. intestinalis gut (Figure 

2.3). A Ciona intestinalis cytoskeletal actin gene orthologue (GenBank acc. no.: 

AJ297725) was used as an internal control for both RNA integrity and cDNA 

synthesis. For all three C. intestinalis transcripts investigated, PCR primer pairs 

were designed to flank at least one intron sequence to ensure that amplicons 

generated from any contaminating genomic DNA (gDNA) could be distinguished 

from those amplified from cDNA, on the basis of their differing lengths 

(Appendix 1B). Using conventional PCR and amplicon visualisation on agarose 

gels, CiVDR/PXRα, CiVDR/PXRβ and Ciactin transcripts were detected in the 

five regions of the digestive tract with no indication of gDNA contamination as 

indicated by bands of the expected sizes on agarose gels (Appendix 4). Given 

the non-quantitative nature of conventional PCR, qPCR was used to determine 

transcript levels in total RNA extracted from five digestive tract regions. The 

estimated concentrations of the three transcripts (CiVDR/PXRα, CiVDR/PXRβ 

and Ciactin) were calculated as molecules/ng cDNA, based on plasmid 

standards, and grouped into five concentration ranges (Figure 2.3). Although 

transcripts for all three genes were detected in all five sections of the C. 

intestinalis gut, the lower part of the digestive tract appeared to have higher 

transcript levels for all three genes (p <0.01, Figure 2.3, Appendix 5). 
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Figure 2.3 Schematic summary of gene transcripts in gut regions of Ciona intestinalis including two xenobiotic receptors 

investigated in this study.  

Schematic summary of Ciona intestinalis vitamin D receptor/pregnane X receptor α (CiVDR/PXRα), C. intestinalis VDR/PXRβ 

(CiVDR/PXRβ) and C. intestinalis actin (Ciactin) transcript levels in five gut regions as determined using quantitative polymerase chain 

reaction. Estimated numbers of mRNA molecules/ng cDNA were averaged from triplicate amplification reactions. Significant differences (p 

<0.01) in gene expression between tissues are indicated (*). 
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2.3.3 Sequence polymorphisms detected in tunicate VDR/PXR 

amplicons 

 

Allelic variation in the three tunicate VDR/PXR coding sequences was assessed 

by sequencing pooled amplicons derived from 30 individual C. intestinalis 

animals (CiVDR/PXRα and CiVDR/PXRβ) and 30 B. schlosseri colonies 

(BsVDR/PXRα) using the Illumina™ MiSeq System. After filtering and quality 

control, the paired-end sequences were mapped onto the three reference 

sequences (Appendix 6). Sequence coverage at each reference sequence 

nucleotide position was calculated up to a maximum coverage of 40,000 fold. 

The lowest coverage was 19,374 fold at position 127 of CiVDR/PXRα 

(KC561370) and the average coverage was 39,454 fold (Appendix 7). 

The sequence data were examined for sequence polymorphisms. Given the 

significant error rates associated with the Illumina™ MiSeq System 

(Harismendy et al. 2009; Nakamura et al. 2011), consideration was given to the 

minimum variant frequency necessary for a polymorphism to be a genuine 

polymorphism rather than a technical artefact. As expected, the number of 

polymorphisms predicted in all three amplicon sequence pools increased as the 

minimum frequency for acceptance was reduced from 0.2 to 0.01 in 0.01 

decrements (Appendix 8). As the C. intestinalis derived amplicon pools were 

generated from 30 diploid animals, the minimum expected frequency for a 

genuine polymorphism would be 1/60 (ca. 1.7%). Experimental errors inherent 

in the quantification and pooling of amplicons might result in a genuine variant 

being present in the data-set at a frequency <1.7%. Based on these 

assumptions, a value of 0.02 (2%) was selected as the minimum frequency for 

polymorphisms in the amplicon data-set to be considered genuine (Appendix 8). 

Although applying a ‘cut off’ value of 0.02 carries the risk of excluding genuine 

variation, such exclusion was considered preferable to inclusion of false 

variants which may have occurred if the minimum variant frequency was set 

lower. The coordinates of the SNPs and indels identified are shown 

schematically in Figure 2.1, and can be obtained from Appendix 8 and from the 

GenBank dbSNP entries (Section 2.2.7). 
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The estimated SNP numbers were as follows: CiVDR/PXRα (KC561370, 1326 

bp): 28 SNPs, 2.11 SNPs/100 bp; CiVDR/PXRβ (KC561371, 1569 bp): 44 

SNPs, 2.8 SNPs/100 bp and BsVDR/PXRα (KC561372, 1006 bp): 39 SNPs, 

3.88 SNPs/100 bp (Table 2.2). Most SNPs were transitions (Ti): CiVDR/PXRα: 

78%, CiVDR/PXRβ: 71%, BsVDR/PXRα: 80%, with transition/transversion rate 

ratios (Ti/Tv) of 3.7 (CiVDR/PXRα), 2.4 (CiVDR/PXRβ) and 3.9 (BsVDR/PXRα; 

Appendix 9). The majority of SNPs were synonymous: CiVDR/PXRα: 86%, 

CiVDR/PXRβ: 70% and BsVDR/PXRα: 87% (Table 2.2, Figure 2.1). Mean 

nucleotide diversity (π) and expected population mutation rate (Watterson’s 

Theta; θW) were estimated for each of the coding sequences using sliding 

window calculations as outlined in Section 2.2.7. Tajima’s D (DT) values were 

negative for all three coding sequences indicating purifying selection (Table 

2.2). Regional pairwise calculations were performed via sliding window 

calculation of the ratio of non-synonymous substitutions per non-synonymous 

site (dN) to synonymous substitutions per synonymous site (dS) which were <0.2 

across all regions of the three amplicons (Table 2.2). 
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Table 2.2 Summary statistics for polymorphisms detected in tunicate xenobiotic receptor orthologues. 

Polymorphisms are listed for partial coding sequences of the Ciona intestinalis vitamin D receptor/pregnane X receptor α 

(CiVDR/PXRα), C. intestinalis VDR/PXRβ (CiVDR/PXRβ) and Botryllus schlosseri VDR/PXRα (BsVDR/PXRα). Standard 

deviations (SD) are shown in brackets. 

 

 Length 

(bp) 

TSNPs 1 bp 

indel 

fSNPs SynSNPs NonSynSNPs dN/dS π ;± SDͿ θw (± SD) DT (± SD) 

CiVDR/PXRα 1326 28 1 2.11 24 (86%) 4 (14%) 0.055 0.007 (0.006) 0.076 (0.015) -3.481 (0.305) 

CiVDR/PXRβ 1569 44 1 3.19 21 (70%) 9 (30%) 0.083 0.009 (0.007) 0.075 (0.011) -3.343 (0.362) 

BsVDR/PXRα 1006 39  3.87 34 (87%) 5 (13%) 0.105 0.013 (0.009) 0.081 (0.014) -3.176 (0.456) 

Abbreviations: SNP, single nucleotide polymorphism; TSNPs, total SNP number; bp, base pair; fSNPs, SNP frequency (SNP/100 bp); SynSNPs, synonymous 

SNPs; NonSynSNPs, non-synonymous SNPs; dN/dS, rate of non-synonymous substitutions per non-synonymous site (dN) to synonymous substitutions 

per synonymous site (dS) calculated using sliding window analysis (Steinway et al. 2010); π, mean pairwise nucleotide diversity (Nei & Gojobori 1986); 

θw, expected population mutation rate (Watterson 1975); DT, Tajima’s D (Tajima 1989).  
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2.3.4 Frameshift polymorphisms in the Ciona intestinalis VDR/PXR 

coding sequences 

 

Single base indel polymorphisms were identified in both the CiVDR/PXRα (+/- 

coordinate 834 of KC561370) and CiVDR/PXRβ (+/- coordinate 235 of 

KC561371) coding sequences (Figure 2.1, Table 2.2). The frequencies of these 

variants within the pooled amplicon sequence dataset were 8.4% and 2.1%, 

respectively. Alleles carrying these one base pair frameshifts were predicted to 

encode VDR/PXR proteins that consist of a DBD but lacking a LBD (Figure 2.1). 

In support of the reliability of these indel polymorphisms, the CiVDR/PXRα one 

base pair indel was also found in parallel investigations in which amplicons 

were first cloned into pGemT-easy vectors and then sequenced using Sanger 

sequencing (data not shown). No indels were detected in the BsVDR/PXRα 

amplicon pool when applying the minimum variant frequency ‘cut off’ value of 

0.02 (Figure 2.1, Table 2.2, Appendix 8). However, at a ‘cut off’ minimum 

variant frequency of 0.01 additional indels were found in all three tunicate 

VDR/PXR coding sequences and it is possible that some of these are genuine 

(Appendix 8). 

 

2.3.5 Haplotype diversity in two Botryllus schlosseri populations 

from different geographical locations 

 

Haplotype diversity of the B. schlosseri VDR/PXRα partial coding sequence was 

compared between populations in New Zealand (Nelson Marina) and on the 

eastern Mediterranean coast (Michmoret Beach, Israel). To allow complete 

VDR/PXRα haplotype sequences to be identified with confidence, sequences 

were generated from cloned amplicons using Sanger sequencing. Botryllus 

schlosseri VDR/PXRα amplicons were amplified from cDNA templates from ten 

randomly selected colonies from both geographical locations and ligated into a 

T-tailed cloning vector before transformation into E .coli. Plasmids were purified 

from three independent E. coli colonies corresponding to each ligation/amplicon 

and their B. schlosseri VDR/PXRα inserts sequenced. 
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Fifteen distinct haplotypes were found amongst the 30 sequences sampled from 

the Mediterranean population with nine haplotypes found in the 30 sequences 

from the New Zealand population. Consistent with this result, the SNP 

frequency was higher in the Mediterranean population (42 SNPs/1006 bp; 4.17 

SNPs/100 bp) than in the New Zealand population (33 SNPs/1006 bp; 3.28 

SNPs/100 bp, Appendix 10) with this difference being statistically significant 

(two-sample Kolmogorov-Smirnov test, p = 0.01). In the Mediterranean sample, 

24% (10/42) of the SNPs were non-synonymous with 11% (4/33) non-

synonymous in the New Zealand sample (Appendix 10). Most of the SNPs 

(85%) found in New Zealand were also present in the Mediterranean 

population, while 69% of SNPs found in the Mediterranean were also present in 

the New Zealand population (Appendix 10). Despite the shared SNPs, no 

complete haplotypes were shared between the Mediterranean and New 

Zealand populations. 

 

2.4 Discussion 

 

2.4.1 Determination of tunicate VDR/PXRα and β sequences 

 

This chapter confirms the majority of the C. intestinalis VDR/PXRα coding 

sequence previously inferred from combined analyses of C. intestinalis genomic 

and EST sequence data (Dehal et al. 2002; Ekins et al. 2008). In contrast, the 

amplified C. intestinalis VDR/PXRβ sequences had apparent insertions of 21 

and 106 codons when aligned with the C. intestinalis VDR/PXRβ sequence 

(NM_001044366) that was inferred from genomic and EST sequences. Given 

the limited EST support for the NM_001044366 sequence, its accuracy must be 

regarded with caution. The most conservative approach is to regard the 

CiVDR/PXRβ sequence amplified in this chapter (KC561371) and the 

NM_001044366 as splice variants. The closest homologue of BsVDR/PXRα 

was CiVDR/PXRα, suggesting that the VDR/PXRα orthologue is also present in 

B. schlosseri. This is supported by the recent release of the B. schlosseri 
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genome (Voskoboynik et al. 2013), which contains two genomic contigs 

encoding VDR/PXRα. 

Protein sequences predicted from the three tunicate sequences contained 

distinct DBDs and LBDs (Figure 2.1), thus conforming to the generic NR 

structure (Marchler-Bauer et al. 2011; Letunic et al. 2012; Punta et al. 2012). 

Although all three protein domain prediction programmes returned consistent 

results, these in silico predictions are based on databases consisting of proteins 

with known structural domains/sequences (Schultz et al. 1998; Lubec et al. 

2005; Letunic et al. 2012). In the case of NRs, databases are largely composed 

of typical NRs (e.g. steroid hormone receptors), which have highly selective 

LBDs that bind a structurally limited range of ligands (Zhang et al. 2004; 

Krasowski et al. 2005b). As the LBD of PXR orthologues is expected to be both 

larger and more flexible than is typical of NR LBDs, the predicted tunicate 

VDR/PXR LBDs need to be treated with caution (Watkins et al. 2001; Watkins 

et al. 2003; Chrencik et al. 2005). To better assess the reliability of the 

VDR/PXR LBD software predictions, the predicted human PXR LBD was 

compared with the LBD coordinates that had been determined experimentally. 

Watkins et al. (2001) concluded from empirical crystallography data that the 

human PXR LBD was formed by residues 142–431. In contrast, the human 

PXR (NM_003889) LBD domain was considerably smaller according to 

software-based predictions by SMART (residues 245–404), NCBI CD (residues 

236–428) and Pfam (residues 223–426). All three programmes underestimated 

the size of the human PXR LBD, most noticeably at the N-terminal boundary. 

Applying an N-terminal extension of approximately 100 residues to the SMART 

predicted CiVDR/PXRα and BsVDR/PXRα LBD would place the N-terminal 

boundaries of these LBDs close to their respective DBDs. In contrast, there are 

approximately 250 residues between the SMART predicted CiVDR/PXRβ DBD 

C-terminus and LBD N-terminus. In the absence of functional and/or structural 

information it is not possible to determine if the CiVDR/PXRβ protein has a 

larger LBD than its VDR/PXRα paralogue. Thus, CiVDR/PXRβ may be able to 

bind larger ligands or may simply have an extended linker region separating the 

DBD and LBD. 
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2.4.2 Expression of VDR/PXRα and β transcripts in the Ciona 

intestinalis digestive tract 

 

Ciona intestinalis VDR/PXRα and VDR/PXRβ transcripts were detected 

throughout the digestive tract. These data suggested that VDR/PXRα 

expression levels may be higher in the lower part of the digestive tract. 

However, transcript levels of the internal control (actin) were also elevated 

making interpretation difficult. Nonetheless, detection of VDR/PXRα and 

VDR/PXRβ mRNA in all parts of the C. intestinalis digestive tract is consistent 

with functional roles as xenobiotic receptors— by analogy with the vertebrate 

PXR which is predominantly expressed in liver and intestine, which are both 

sites for xenobiotic metabolism (Xie et al. 2000; Staudinger et al. 2001). 

 

2.4.3 Variation in the tunicate VDR/PXRα and β sequences 

 

The SNP frequencies found in the three tunicate VDR/PXR coding regions 

(approximately 3 SNPs/100 bp) are comparable to rates reported from tunicate 

genome sequencing projects: B. schlosseri, C. intestinalis, Ciona savignyi and 

Oikopleura dioica (Dehal et al. 2002; Small et al. 2007; Caputi et al. 2008; 

Denoeud et al. 2010; Satou et al. 2012; Tsagkogeorga et al. 2012; Voskoboynik 

et al. 2013). Tunicates are known to have a high level of genetic diversity, which 

can be up to ten times higher than in human (1 SNP/1000 bp), zebrafish and 

fugu (4 SNPs/1000 bp; Wang et al. 1998; Aparicio et al. 2002; Guryev et al. 

2006; Wheeler et al. 2008). These high levels of genetic diversity are consistent 

with a large effective population size and a high per-year mutation rate (µ), 

which is two to six times higher in tunicates than in vertebrates due to a short 

generation time (Lambert 2005; Thomas et al. 2010; Tsagkogeorga et al. 2012). 

Among all identified polymorphisms, transitions (Ti) outnumbered transversions 

(Tv) by about three to one in partial coding regions of CiVDR/PXRα, 

CiVDR/PXRβ and BsVDR/PXRα. The average transition/transversion ratios 

(Ti/Tv = 3.3) in the three coding sequences were similar to Ti/Tv ratios reported 
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for C. savignyi (Small et al. 2007). This contrasts with Ti/Tv ratios in mammalian 

coding sequences (Ti/Tv = 2), which can be attributed to larger biases against 

CpG sequences in mammalian coding sequences than in tunicate coding 

sequences (Moriyama & Powell 1996; Cargill et al. 1999; Lindblad-Toh et al. 

2000). 

Although high SNP frequencies were found, the great majority of SNPs in all 

three tunicate VDR/PXR coding sequences were synonymous. Together with 

the negative Tajima’s D values (DT <-3) and low dN/dS ratios (<0.2), the 

sequence variation data indicates that tunicate VDR/PXR coding sequences are 

under strong purifying selection. These findings are consistent with recent 

population genomics analyses of C. intestinalis which reported a very low 

average dN/dS ratio (0.07) in combination with high SNP frequencies 

(approximately 5.7 SNPs/100 bp; Tsagkogeorga et al. 2012). This is consistent 

with tunicates having elevated mutation rates and large effective population 

sizes in combination with strong purifying selection (Kimura 1983; Lynch 2008; 

Tsagkogeorga et al. 2012; Berná & Alvarez-Valin 2014).  

Overall, this interpretation would be the most parsimonious explanation of the 

SNP types, and frequencies, detected in the tunicate VDR/PXR coding 

sequences. However, single amino acid changes can have significant functional 

consequences. Non-synonymous SNPs in the human PXR gene alter PXR 

protein function as measured by basal and/or induced transactivation of CYP3A 

promoters (Hustert et al. 2001). Similarly, two natural human CAR sequence 

variants were shown to alter the receptor’s constitutive (ligand-independent) 

transactivation activity (Ikeda et al. 2005). The effects of single residue 

differences can be extended to inter-taxa difference. For example, differences in 

human and mouse PXR activation by rifampicin can be attributed to differences 

at a single position: human PXR Leu308/rat PXR Phe305 (Tirona et al. 2004).  

 

2.4.4 Frameshift polymorphisms  

 

Both C. intestinalis VDR/PXR genes had at least one allele containing a single-

base deletion resulting in the predicted proteins having a DBD but lacking a 
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LBD. The persistence of such frameshift alleles in natural populations, at low 

but significant frequencies, suggests that they are maintained by some form of 

balancing selection. The corresponding predicted proteins that lack LBDs seem 

likely to mediate constitutive, rather than ligand-activated, gene transcription. In 

support of this interpretation, NR variants lacking a LBD have been shown to 

constitutively activate transcription in vertebrates (e.g. human androgen 

receptor; Tepper et al. 2002; Marcias et al. 2010) and insects (e.g. Knirps; 

Nauber et al. 1988). Similarly, a number of NR splice variants have been 

described that translate into proteins lacking LBDs and which constitutively 

activate target genes (e.g. human estrogen receptor; Chaidarun et al. 1998). To 

date, no equivalent splice variants lacking a LBD have been described for 

vertebrate PXRs (Hustert et al. 2001). In short, the VDR/PXRα and β frameshift 

alleles are likely to activate target gene transcription constitutively which may 

confer advantages over ligand-activated transcription in some contexts. 

 

2.4.5 Haplotype diversity in two Botryllus schlosseri populations 

from different geographical locations 

 

The B. schlosseri population from the eastern Mediterranean coast displayed 

greater VDR/PXRα genetic diversity than the New Zealand population. The 

lower genetic diversity of New Zealand populations, when compared to 

Mediterranean populations, has been noted in previous studies using 

microsatellite loci (Ben-Shlomo et al. 2001; Paz et al. 2003). This observation 

has been intrepreted as reflecting founder effects associated with introduction 

events to New Zealand (Ben-Shlomo et al. 2001). Consistent with this 

interpretation, the majority of VDR/PXRα SNPs found in the New Zealand 

population (>85%) were present in the Mediterranean population, whereas 30% 

of the SNPs in the Mediterranean population were unique to that population. No 

complete haplotype sequences were shared between the two populations. This 

is consistent with the high rates of genetic variation and recombination 

frequencies characteristic of tunicate genomes (Simmen & Bird 2000; Satoh & 

Levine 2005; Caputi et al. 2008; Satou et al. 2012; Tsagkogeorga et al. 2012).  
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2.5 Conclusion 

 

The mRNA sequences of two C. intestinalis and one B. schlosseri VDR/PXR 

orthologues have been characterised. All three corresponding proteins were 

predicted to have the typical NR structure, containing distinct LBDs and DBDs. 

The CiVDR/PXRβ LBD may be larger than the CiVDR/PXRα LBD, suggesting 

that it might accommodate larger ligands. All three transcripts harboured high 

rates of sequence polymorphism with evidence of purifying selection. 

Examination of dN/dS ratios over an entire gene is extremely conservative and is 

unlikely to detect positive selection acting on a few sites (Jensen et al. 2007). It 

is also possible for loci to be under selection without yielding statistically 

significant results in tests for selection (Przeworski et al. 2005; Teshima et al. 

2006). However, allelic variants that contained one base pair frameshift 

polymorphisms were detected in both C. intestinalis VDR/PXR orthologues. The 

resulting proteins were predicted to contain a DBD but lacking a LBD. Such 

VDR/PXR variants may mediate constitutive transcription of target genes. 

Haplotype variation of B. schlosseri VDR/PXRα was found to be higher in a 

population from the Mediterranean than New Zealand, which is consistent with 

founder effects during colonisation. The data presented in this chapter provide a 

foundation for further investigations into the molecular evolution, population 

genetics and function of tunicate NRs thought to be involved in the detection of 

marine bioactive compounds.  
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Botryllus schlosseri colonies from Nelson marina, New Zealand. Photograph 

provided by Prof Baruch Rinkevich, National Institute of Oceanography, Israel. 
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CHAPTER THREE 

Detection of marine microalgal biotoxins using 

bioassays based on functional expression of 

tunicate xenobiotic receptors in yeast 

 

3.1 Introduction 

 

Marine microalgal taxa can produce highly toxic chemicals that can cause 

widespread poisoning within marine ecosystems. These toxic compounds may 

also affect human health, particularly when accumulated in filter-feeding 

shellfish (Wear & Gardner 2001; Wang 2008; MacKenzie et al. 2011; Zhang et 

al. 2013). Over the past two decades, internationally accepted methodologies 

for the detection of such natural marine biotoxins have become increasingly 

based on chemical, rather than biological, assays (Gerssen et al. 2010; Suzuki 

& Quilliam 2011; McNabb et al. 2012). While such chemistry-based detection 

methods are generally reliable and highly specific, they require specialised 

equipment and technically skilled personnel. Detailed structural knowledge 

regarding the targeted biotoxins is also essential, thus unknown marine 

biotoxins cannot be detected (Humpage et al. 2010; Nicolas et al. 2014). 

Although a range of in vitro bioassay tests for microalgal biotoxins has been 

developed (Bovee et al. 2011; Banerjee et al. 2013; Nicolas et al. 2014), the 

most widely-used bioassay remains the unreliable and ethically questionable 

mouse mortality bioassay (Botana et al. 2009; Buckland 2010; Stewart & 

McLeod 2014). There is, therefore, a need for new, ethically-acceptable, simple, 

robust and inexpensive bioassays (Vilarino et al. 2010; Hashimoto et al. 2011; 

Nicolas et al. 2014). 

In Chapter Two, putative xenobiotic receptors that are orthologues to vertebrate 

pregnane X receptor (PXR) and vitamin D receptor (VDR) were successfully 

identified in two tunicate species, Ciona intestinalis and Botryllus schlosseri 

(abbreviated VDR/PXR). Genomic sequence-based analyses are always 
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tentative and functional data are needed for the confident assignment of these 

proteins as a functional xenobiotic receptor. The C. intestinalis VDR/PXRα 

(CiVDR/PXRα) has been characterised in terms of its ligand-binding domain 

(LBD) mediating ligand-dependent luciferase reporter gene expression when 

fused to the generic GAL4 DNA-binding domain (GAL4-DBD) and expressed in 

a mammalian cell line (Ekins et al. 2008). Using this bioassay, three synthetic 

chemicals and two microalgal biotoxins (pectenotoxin-2 (PTX-2) and okadaic 

acid) were identified as CiVDR/PXRα agonists and a common ligand 

pharmacophore was defined (Reschly et al. 2007; Ekins et al. 2008; Fidler et al. 

2012). Collectively, these studies established that the CiVDR/PXRα receptor 

has ligand-binding characteristics consistent with a natural role in detecting 

marine xenobiotics, including microalgal biotoxins. This makes it a potential 

sensor element for use in bioassays (Fidler et al. 2012).  

In this chapter, I report the development of recombinant yeast (Saccharomyces 

cerevisiae) strains that express the C. intestinalis and B. schlosseri VDR/PXRα 

LBD in combination with the GAL4-DBD and a generic transcription activation 

domain (VP16-AD). These recombinant proteins mediate ligand-dependent 

expression of the easily assayed lacZ reporter gene to facilitate detection of 

probable ligands for tunicate VDR/PXRα receptors. The bioassay strains were 

tested with four synthetic toxicants and five natural toxins including three 

microalgal biotoxins (pectenotoxin-11 (PTX-11), okadaic acid and portimine) 

and two freshwater cyanobacterial toxins (anatoxin-A and microcystin-RR).  
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3.2 Materials and methods 

 

3.2.1 Compounds tested in the yeast bioassay 

 

Four synthetic compounds (n-butyl-p-aminobenzoate, carbamazepine, p-

aminobenzoic acid and bisphenol-A) tested in the yeast bioassay were 

purchased from Sigma-Aldrich (St. Louis, MO, U.S.A.; Table 3.1). The algal 

toxin okadaic acid was purchased from Sapphire Bioscience (Waterloo, 

Australia), microcystin-RR from DHI Lab Products (Horsholm, Denmark) and 

anatoxin-A was purchased from the National Research Council Canada 

(Ottawa, Canada). Pectenotoxin-11 (MacKenzie et al. 2013) and portimine 

(Selwood et al. 2013) were sourced from within the Cawthron Institute (Nelson, 

New Zealand; Table 3.2). Chemical structures are given in Figure 3.1. All 

compounds were dissolved in analytical grade ethanol (Merck, Whitehouse 

Station, NJ, U.S.A.) to form stock solutions. Serial dilutions were added to the 

yeast bioassay media at a final ethanol concentration of 1% (v/v; Bovee et al. 

2004). Solubility of test compounds in ethanol was confirmed using the 

PubChem database (http://pubchem.ncbi.nlm.nih.gov/) and ethanol was chosen 

as the preferred standard solvent for consistency across all assays. In some 

cases, due to the limited solubility of some compounds, chemicals were also 

dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich) and tested in the yeast 

bioassays (Appendix 11). 
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Figure 3.1 Structures of four synthetic chemicals and five algal toxins. 

The following chemicals were tested in tunicate VDR/PXRα LBD-based yeast 

bioassays: (A) n-butyl-p-amino-benzoate, (B) carbamazepine, (C) p-aminobenzoic 

acid, (D) bisphenol-A, (E) okadaic acid, (F) pectenotoxin-11, (G) portimine, (H) 

microcystin-RR and (I) anatoxin-A.  



CHAPTER THREE: FUNCTIONAL EXPRESSION 

 

 
 

3.2.2 Media 

 

All media ingredients were purchased from Sigma-Aldrich unless stated 

otherwise. Minimal media (MM) was prepared following Routledge and Sumpter 

(1996) and Beresford et al. (2000). However, three amino acids (L-histidine, L-

tyrosine and L-phenylalanine) were omitted. Minimal media (100 mM KH2PO4, 

15 mM (NH4)2SO4 (Merck), 75 mM KOH, 1.7 mM MgSO4, 0.38 mM L-leucine, 

0.11 mM L-arginine, 0.13 mM L-methionine, 0.23 mM L-isoleucine, 0.16 mM L-

lysine, 0.68 mM L-glutamic acid, 1.3 mM L-valine, 3.6 mM L-serine and 

0.37 mM adenine) had its pH adjusted to 7.1 using 5 M KOH before Fe2(SO4)3 

solution was added to a final concentration of 2 µM. Minimal media was 

autoclaved (121°C, 15 min) and stored at room temperature. Growth media 

(GM) was prepared by supplementing MM as follows: 2% (w/v) D(+) glucose, 

0.89 mM adenine, 0.17 mM uracil, 1.52 mM L-threonine, 0.71 mM L-aspartic 

acid, 1/200 volume of 200x vitamin stock solution (1.7 µM pantothenic acid, 

11 µM myo-inositol, 1.9 µM pyridoxine HCl and 1.2 µM thiamine HCl, 0.082 µM 

biotin, filter-sterilised) and 1/1000 volume of 1000x trace elements solution 

(8.08 µM H3BO3 (Merck), 0.25 µM CuSO4.5H2O (Merck), 0.6 µM KI, 2.64 µM 

MnO4S.4H2O and 0.97 µM Na2MoO4.2H2O, 2.47 µM ZnSO4.7H2O). For 

corresponding solid media, agar was added at 2% (w/v).  

 

3.2.3 Generation of plasmid constructs 

 

All the plasmid constructs used in this study were derived from the 7.3 kilo base 

(kb) yeast expression vector pGBKT7 (Catalogue no. 630443, Clontech 

Laboratories Inc., Mountain View, CA, U.S.A.). The pGBKT7 vector encodes 

147 residues of the GAL4-DBD located 5’ to an adjacent multiple cloning site 

(MCS; Figure 3.2). Transcription of GAL4-DBD fusion genes is initiated from a 

constitutive alcohol dehydrogenase 1 (ADH1) promoter (PADH1) and transcription 

is terminated by an ADH1 transcription termination signal (TADH1). Selection for 

the pGBKT7 plasmid is mediated by kanamycin resistance (KanR) in 

Escherichia coli and by a nutritional marker gene (TRP1) in yeast. All 
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expression plasmids produced in this thesis were generated following the same 

general procedure. Amplicons were generated from appropriate templates, 

either plasmid (pM2-GAL4-CiVDR/PXRα C. intestinalis VDR/PXRα) or cDNA 

(B. schlosseri VDR/PXRα) with the following reaction conditions: (i) 

pGAL4.VP16, pGAL4.CiLBD, pGAL4.CiLBD∆31.VP16 and 

pGAL4.CiLBD.VP16: 1x BioMix (BioLine, London, U.K.); 94°C/2 min., x1 cycle; 

94°C/30 sec., 55°C/30 sec., 72°C/90 sec. x35 cycles; 72°C/5 min., x1 cycle; 

15°C hold and; (ii) pGAL4.BsLBD and pGAL4.BsLBD.VP16: 1x Sahara Mix 

(BioLine); 94°C/10 min., x1 cycle; 94°C/30 sec., 45°C/30 sec., ramp 45°C–72°C 

at 0.2°C/sec., 72°C/2 min., x5 cycles; 94°C/30 sec., 55°C/30 sec., 72°C/2 min., 

x35 cycles; 72°C/7 min., x1 cycle; 15°C hold. Primers used for each construct 

are summarised in Appendix 12 and each included the restriction enzyme 

cleavage sites required for sub-cloning. Because amplicon ends are often 

refractory to restriction enzyme digestion the amplicons were first separated in 

agarose gels. Amplicons were gel-extracted (Zymoclean™ Gel DNA Recovery 

Kit, Zymo Research, Irvine, CA, U.S.A.) and ligated into the T-tailed cloning 

vector pGemT-easy (Promega, Madison, WI, U.S.A.) before transformation into 

competent DH5α E. coli cells. Plasmids were purified using a commercial kit 

(High Pure Plasmid Isolation Kit, Roche Diagnostics, Penzberg, Germany) and 

screened for appropriate inserts by Sanger sequencing (Massey Genome 

Service, Palmerston North, New Zealand). Subsequently, the plasmid inserts 

were removed by digestion with an appropriate pair of restriction enzymes 

(Roche Diagnostics; Appendix 12). The receiving expression plasmid, either 

pGBKT7 or its derivative of pGAL4.VP16 (Appendix 12), was double digested 

with an appropriate pair of restriction enzymes and ligated with the digested 

amplicon using T4 DNA ligase (Roche Diagnostics). Plasmids were transformed 

into DH5α E. coli and transformants selected on luria broth (LB) agar containing 

kanamycin (25 µg/ml). Plasmids were purified and insert identity and junction 

sequences confirmed by using sequencing primers flanking the MCS of 

pGBKT7: 5’–GCCGTCACAGATAGATTGGC–3’ (anneals at coordinates 1077–

1096 of pGBKT7) and 5’–TTCGCCCGGAATTAGCTTGG–3’ (anneals at 

coordinates 1416–1397 of pGBKT7). For many of the plasmid constructs the 

base vector used (pGAL4.VP16) was derived from pGBKT7 and encodes 68 

residues of a generic activation domain from the herpes simplex virus protein 16 
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(VP16; Louvion et al. 1993; Appendix 12 and 13). The fusion proteins encoded 

by the various constructs used in this study are shown schematically in Figure 

3.2 and more details are given in Appendix 13. 

 

 

Figure 3.2 Schematic of fusion genes/chimeric proteins generated in this study. 

The base vector used for expression was pGBKT7 (Catalogue No. 630443, Clontech). 

Constitutive transcription of fusion genes is driven by the alcohol dehydrogenase 1 

(ADH1) promoter (PADH1) and terminated by the ADH1 transcription termination signal 

(TADH1). The pGBKT7 vector replicates autonomously in both Escherichia coli and 

Saccharomyces cerevisiae and carries a kanamycin resistance (KanR) gene for 
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selection in E. coli and the nutritional marker gene TRP1 for selection in trp1 yeast 

strains. The pGBKT7 vector encodes 147 residues of the GAL4 DNA-binding domain 

(GAL4-DBD) adjacent to a multiple cloning site (MCS). The amino acid residue 

numbering for the Ciona intestinalis vitamin D receptor/pregnane X receptor α 

(CiVDR/PXRα) and Botryllus schlosseri VDR/PXRα (BsVDR/PXRα) ligand-binding 

domains (LBDs) corresponds to that of the predicted proteins of NP_001071847 and 

AHB39790, respectively. Some of the plasmid constructs encode 68 residues of a 

generic activation domain (AD) from the herpes simplex virus protein 16 (VP16; 

Louvion et al. 1993). Further details of the cloning procedure used and the 

corresponding chimeric protein sequences are given in Appendix 12 and 13. 

 

3.2.4 Yeast transformation 

 

The S. cerevisiae host strain PJ69-4A (MATa, trp1-901, leu2-3 112, ura3-52, 

his3-200, gal4∆, gal80∆, GAL2-ADE2, LYS2::GAL1-HIS3, met2::GAL7-lacZ; 

James et al. 1996) was transformed using the lithium acetate method (Gietz & 

Schiestl 2007) with tryptophan prototrophic transformants selected on solid 

selection media lacking tryptophan (2% (w/v) agar, 0.67% (w/v) Difco yeast 

nitrogen base without amino acids, 2% (w/v) acid-hydrolysed casamino acids, 

2% (w/v) D(+) glucose, 120 µg/ml adenine, 20 µg/ml uracil, 20 µg/ml L-

methionine and 20 µg/ml L-histidine). Single colony transformants were 

streaked out twice on selective media agar plates to ensure that the 

transformed strains used were clonal. The resulting strains were subsequently 

propagated on GM agar plates. The seven strains used to prepare starter 

stocks corresponded to each of the seven plasmids generated in this work 

(Figure 3.2, Appendix 12 and 13). 

 

3.2.5 Preparation of yeast starter stocks 

 

Yeast strains were grown in 50 ml of liquid GM in 300 ml conical flasks (30°C, 

230 rpm) for 24–48 h until reaching an OD620 of approximately 1 (Nano 

Photometer, Implen, Munich, Germany). Culture aliquots of 0.5 ml were mixed 
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with 0.5 ml of 30% (v/v) sterile glycerol (final glycerol concentration 15% (v/v)) 

and frozen on dry ice before storage at -70°C. 

 

3.2.6 Yeast bioassay procedure 

 

Freshly prepared GM (7 ml in 50 ml centrifuge tubes, CentriStar™, Corning Inc., 

NY, U.S.A.) was inoculated with 1 ml of ‘yeast starter stock’ (Section 3.2.5, final 

glycerol concentration 2.1% (v/v)) and incubated (30°C, 230 rpm) for 24–48 h 

until the OD620 was approximately 1 (Nano Photometer, Implen). The cultures 

were then diluted in GM to OD620 of approximately 0.1 and this mixture was 

termed the seeded assay medium (SAM). A twelve step dilution series of 

chemicals to be tested was prepared in sterile 1.7 ml microcentrifuge tubes 

(Eppendorf AG, Hamburg, Germany) using analytical grade ethanol as the 

solvent (Section 3.2.1). Aliquots (2 μl) of each dilution were pipetted onto the 

floor of the wells of a 96-well microtitre plate (sterile, flat bottom polystyrene 

plates with lid, Corning Inc.). To facilitate inter-plate comparisons, each plate 

contained two columns of control wells (column one, rows A–H: wells containing 

SAM only; column two, rows A–H: containing 2 μl ethanol solvent plus SAM; 

Figure 3.3).  

Based on published mean effective concentrations (EC50 values) and in vivo 

toxicity data, a wide concentration range (0–1 mM) of test compounds was 

selected for the initial bioassays. Each compound was tested at least twice in 

separate assays. These data were then used to identify a concentration range 

that allowed detection of induction of β-galactosidase enzymatic activity in the 

bioassay while being non-toxic to the yeast cells themselves. Using the 

identified concentration range, all yeast bioassays were performed in pseudo-

triplicates (triplicate measurements within the same assay).  

Aliquots of SAM (150 μl) were added to all wells and the plates shaken 

(600 rpm, 2 min., MSI Minishaker, IKA, Hamburg, Germany) before incubation 

(30°C) for 24 h to allow ligand-dependent activation of lacZ gene expression 

(De Boever et al. 2001). After 24 h incubation, chlorophenol red-β-D-
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galactopyranoside (CPRG, Roche Diagnostics) was dissolved in GM and added 

to each well to a final concentration of 0.1 mg/ml. Plates were shaken (600 rpm, 

2 min.) before further incubation (30°C). After 24 h and 48 h the plates were 

sealed with a sterile plate seal (Classic SealPlate® Sealing Film, Excel 

Scientific, Victorville, CA, U.S.A.), shaken (600 rpm, 2 min.), and briefly 

centrifuged (300 rpm, 10 sec., 5810R centrifuge, Eppendorf AG) before OD540 

and OD620 measurements (2300 EnSpire™ Multilabel Reader, Perkin Elmer, 

Turku, Finland) were taken. 

 

 

Figure 3.3 Example of a 96-well plate format used in the tunicate yeast 

bioassays. 

Plate showing induction of β-galactosidase activity in yeast strains exposed to n-butyl-

p-aminobenzoate. Yeast strains expressing plasmids pGAL4.BsLBD.VP16 (rows A–C), 

pGAL4 (rows D–E) and pGAL4.CiLBD.VP16 (rows F–H) were exposed to various 

concentrations (1–400 µM) of n-butyl-p-aminobenzoate (columns 3–12). Column 1 

contains seeded assay medium (SAM) only and column 2 contains 1% ethanol solvent 

plus SAM.  
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3.2.7 Statistics 

 

To correct for variations in cell densities, the raw OD540 values were normalised 

using the equation of Routledge and Sumpter (1996):  ODହସ0 ሺcorrectedሻ = Sample ODହସ0 – (Sample OD଺20 – Blank OD଺20). (1) 

Blank OD620 values correspond to wells containing ethanol solvent and SAM, 

while sample OD540 and sample OD620 values correspond to wells containing 

the test chemicals (Section 3.2.6). Sample OD620 values were used to assess 

general toxicity of test compounds towards yeast cells. The median effective 

concentrations (EC50 values) and 95% confidence intervals (95% CI) were 

determined from four-parameter sigmoidal concentration-response curves using 

GraphPad Prism Version 6.03 (GraphPad Software, La Jolla, CA, U.S.A., 

http://graphpad.com) following Routledge & Sumpter (1996) and Karimullina et 

al. (2012).  

Intra-plate variability was quantified by calculating the coefficient of variance 

(CV, %). For each compound concentration the mean (x,ˉ.) and the standard 

deviation (SD) for the three replicate measurements were determined. The CV 

for each compound concentration was calculated as follows:  

CV = SDx,ˉ.  x ͳͲͲ %. (2) 

The average of the individual CVs is reported as the intra-assay CV for each 

yeast strain (Yang et al. 2014). 

To assess plate-to-plate consistency, inter-plate CVs were calculated using a 

known C. intestinalis VDR/PXRα LBD agonist, n-butyl-p-aminobenzoate (Ekins 

et al. 2008). Assays were run in triplicates on three different plates. The plate 

means for each n-butyl-p-aminobenzoate concentration were calculated and 

then used to calculate the overall mean, SD and CV. The overall CV for each 

concentration was calculated as follows:  
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CV = SD ୭୤ ୮latୣ x,ˉ.x,ˉ. ୭୤ ୮latୣ x,ˉ.  x ͳͲͲ % (3) 

The average of the overall CVs for each compound concentration is reported as 

the inter-assay CV (Yang et al. 2014). 

 

3.3 Results and discussion 

 

3.3.1 Development of the bioassay yeast strains 

 

The objective of this chapter was to develop recombinant yeast bioassays in 

which β-galactosidase enzymatic activity (encoded by lacZ) was induced by 

ligands that activate tunicate xenobiotic receptors. There are two main 

components to the yeast bioassays: the yeast host strain and the plasmid 

constructs transformed into the yeast. 

The yeast (S. cerevisiae) host strain selected for this work was PJ69-4A (MATa, 

trp1-901, leu2-3,112, ura3-52, his3-200, gal4∆, gal80∆, GAL2-ADE2, 

LYS2::GAL1-HIS3, met2::GAL7-lacZ; James et al. 1996). This strain is 

characterised by multiple genotypic features making it a suitable host strain: (i) 

trp1-901: complementation of trp1-901 by the TRP1 gene encoded by pGBKT7-

derived plasmids allows selection for tryptophan prototrophic transformants on 

media lacking tryptophan; (ii) gal4∆, gal80∆: deletion mutations in the GAL4 and 

GAL80 nuclear genes render the endogenous GAL4/GAL80 galactose-sensitive 

induction pathway non-functional (Traven et al. 2006) and; (iii) met2::GAL7-

lacZ: this modification places a lacZ gene under the control of a GAL4-regulated 

promoter. The lacZ reporter gene product, E. coli β-galactosidase enzyme, 

catalyses hydrolysis of the colorimetric substrate CPRG without the need for 

cell lysis, thus allowing repeated, non-lethal measurements of the yeast 

bioassay’s output. 

All seven plasmids generated in this study encode chimeric proteins combining 

one or more of three basic elements: (i) a GAL4-DBD; (ii) a tunicate VDR/PXRα 
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orthologue LBD and; (iii) a VP16-AD, derived from herpes simplex virus protein 

16 (Louvion et al. 1993). While the sequences encoding the GAL4-DBD and 

VP16-AD are well established from previous studies (Louvion et al. 1993), 

determination of the appropriate tunicate VDR/PXRα orthologue LBD 

sequences, to be expressed in this study, required careful consideration. 

Computer prediction programmes (e.g. Simple Modular Architecture Research 

Tool (SMART); Schultz et al. 1998; Lubec et al. 2005; Letunic et al. 2012) 

appeared to underestimate the size of xenobiotic receptor LBDs (Chapter Two, 

Section 2.4.1). To address this problem, the tunicate VDR/PXRα LBD domain 

was defined as comprising residues just C-terminal of the predicted DBD 

through to the C-terminal end of the predicted open reading frame. This is the 

same region used previously for expression of the C. intestinalis VDR/PXRα 

LBD domain in mammalian cell lines (Ekins et al. 2008; Fidler et al. 2012). 

The seven plasmids used in this study were as follows. Plasmid pGAL4 is 

simply the base vector pGBKT7 encoding the GAL4-DBD domain and a short, 

non-functional C-terminal sequence (Figure 3.2, Appendix 13). Plasmid 

pGAL4.VP16 encodes the GAL4-DBD fused to the VP16-AD which has been 

found useful for coupling ligand-activated NRs in yeast to activation of reporter 

genes (Louvion et al. 1993; Figure 3.2, Appendix 12 and 13). Together, pGAL4 

and pGAL4.VP16 are the negative control plasmids that control for reporter 

gene expression changes in the absence of any tunicate VDR/PXRα LBD 

domain sequences. Plasmid pGAL4.CiLBD expresses a fusion protein 

consisting of the GAL4-DBD fused to the C. intestinalis VDR/PXRα LBD 

(residues 221–532 of NP_001071847; Figure 3.2, Appendix 12 and 13). 

Plasmid pGAL4.CiLBD.VP16 encodes the same region of the C. intestinalis 

VDR/PXRα LBD as pGAL4.CiLBD but, in addition, encodes the VP16-AD on the 

C-terminus of the expressed protein (Figure 3.2, Appendix 12 and 13). Plasmid 

pGAL4.CiLBD∆31.VP16 is similar to pGAL4.CiLBD.VP16 but the LBD is 31 

residues shorter with the C-terminal flank of the LBD being that predicted by 

SMART (i.e. residues 221–501 of NP_001071847; Letunic et al. 2012; Figure 

3.2, Appendix 12 and 13). Plasmid pGAL4.BsLBD expresses the B. schlosseri 

VDR/PXRα LBD residues 39–343 of AHB39790 (Figure 3.2, Appendix 12 and 

13). Plasmid pGAL4.BsLBD.VP16 encodes the same region of the B. schlosseri 
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VDR/PXRα LBD as pGAL4.BsLBD but, in addition, has the VP16-AD on the C-

terminus of the expressed fusion protein (Figure 3.2, Appendix 12 and 13). 

In total, five plasmids were generated that encoded chimeric proteins containing 

both the GAL4-DBD and a tunicate VDR/PXRα LBD (Figure 3.2, Appendix 13). 

Two of these plasmids, pGAL4.CiLBD and pGAL4.BsLBD, expressed fusion 

proteins lacking the VP16-AD (Figure 3.2, Appendix 13). For these chimeric 

proteins to function, their native ligand-dependent activation domain (AF-2) 

needs to function within the nuclear milieu of yeast cells. As previous studies 

have shown that the AF-2 domain of at least some vertebrate NRs functions in 

yeast (Pham et al. 1992; vom Baur et al. 1998; Gaudon et al. 1999), the two 

constructs were generated to test if this was also observed in the tunicate 

VDR/PXRα receptors. 

 

3.3.2 Yeast bioassay media optimisation 

 

The permissiveness of vertebrate PXR LBDs with respect to cognate ligand 

structures (Ekins et al. 2008; Fidler et al. 2012) raised concerns that some yeast 

growth media components might act as tunicate VDR/PXRα LBD receptor 

ligands, thereby compromising the yeast bioassay. More specifically, two amino 

acids (L-tyrosine and L-phenylalanine) present in the original yeast media of 

Routledge and Sumpter (1996) and Beresford et al. (2000) had aromatic 

structures suggesting that they might be potential tunicate VDR/PXRα LBD 

ligands. While preliminary experiments established that neither of these amino 

acids induced β-galactosidase enzymatic activity from any of the seven strains 

tested (data not shown), both amino acids were omitted from the yeast growth 

media as a precaution. 

In the course of preliminary experiments on media composition, it was noted 

that strains carrying three plasmids (pGAL4.CiLBD.VP16, 

pGAL4.CiLBD∆31.VP16 and pGAL4.BsLBD.VP16) grew faster in the absence 

of L-histidine than strains carrying any of the other four plasmids. To investigate 

this observation, all seven yeast strains were grown in media lacking L-histidine 

or supplemented with L-histidine at one of three concentrations, and cell density 
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(OD620) was measured over time (0–63 h; Figure 3.4). In the absence of L-

histidine in the media, the three strains carrying plasmids that encode a tunicate 

VDR/PXRα LBD combined with the VP16-AD grew much faster than the other 

four strains (Figure 3.4A). With increasing concentrations of exogenously 

supplied L-histidine, the degree of differential growth between the seven strains 

diminished (Figure 3.4B–D). In media containing both 200 and 322 µM L-

histidine there was no observed difference in OD620 values between any of the 

seven strains at 63 h of incubation (Figure 3.4C–D). The observed histidine-

dependent differential growth of the yeast strains can be explained by noting 

that the yeast host strain genotype (MATa, trp1-901, leu2-3,112, ura3-52, his3-

200, gal4∆, gal80∆, GAL2-ADE2, LYS2::GAL1-HIS3, met2::GAL7-lacZ) 

contains both the his3-200 mutant allele and a functional HIS3 gene under the 

control of the GAL4-regulated GAL1 promoter. The three chimeric proteins 

encoded by the plasmids pGAL4.CiLBD.VP16, pGAL4.CiLBD∆31.VP16 and 

pGAL4.BsLBD.VP16 appeared to enhance transcription of the HIS3 gene from 

its GAL4-activated GAL1 promoter, leading to L-histidine biosynthesis and 

enhanced strain growth in L-histidine-limited media (Figure 3.4A, B). This 

induction of the GAL4-activated GAL1 promoter, even in the absence of any 

experimentally added inducing compound(s), suggests low background levels of 

constitutive activity by the three chimeric proteins. Alternatively, the three 

chimeric proteins may be activated by either endogenously synthesised yeast 

compounds or by yeast growth media components. In contrast, the GAL4-

regulated GAL1 promoter of HIS3 was inactive in the four yeast strains carrying 

plasmids pGAL4, pGAL4.VP16, pGAL4.CiLBD and pGAL4.BsLBD leading to 

little or no growth in L-histidine-limited media (Figure 3.4A). 
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Figure 3.4 Media concentrations of L-histidine influence the growth rate of three recombinant yeast strains. 

Yeast strains carrying the pGBKT7-based expression plasmids described in Section 3.3.1 were grown in liquid growth media with differing 

concentrations of L-histidine: (A) 0 µM, (B) 10 µM, (C) 200 µM and (D) 322 µM. Cell density was quantified by OD620 values and 

measured at four time points (0, 21, 39 and 63 h) following culture establishment. Data points represent means of n = 3 replicates. Error 

bars show ± one standard deviation.  
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To explore this interpretation further, β-galactosidase induction by an 

established C. intestinalis VDR/PXRα agonist, n-butyl-p-aminobenzoate (Ekins 

et al. 2008), was measured in media containing four concentrations of L-

histidine (Figure 3.5). The response curves of the three strains showing n-butyl-

p-aminobenzoate-dependent β-galactosidase induction (i.e. carrying plasmids 

pGAL4.CiLBD.VP16, pGAL4.CiLBD∆31.VP16 and pGAL4.BsLBD.VP16) 

became progressively less sigmoidal with increasing concentrations of media-

supplied exogenous L-histidine (Figure 3.5A–D). In addition, the four strains that 

showed no ligand-dependent induction of β-galactosidase activity exhibited 

elevated background levels of β-galactosidase enzymatic activity at higher L-

histidine concentrations (Figure 3.5A–D). As the E.coli β-galactosidase protein 

(http://uniprot.org/uniprot/P00722), encoded by the lacZ reporter gene, contains 

multiple L-histidine residues it appeared that the β-galactosidase enzymatic 

activity induction curves generated in this study are a summation of the ligand-

dependent activation of two GAL4-regulated promoters/genes in the host strain 

genome, specifically GAL7-lacZ and GAL1-HIS3 (Traven et al. 2006). This 

suggests that the yeast bioassay developed measures the ‘output’ of β-

galactosidase enzymatic activity of a single ligand-activated chimeric protein 

controlling two promoters, both reducing background signal and creating a more 

sigmoidal induction response (Figure 3.5A–D). 

To provide a compromise between the need for exogenous L-histidine, 

essential for growth of some yeast strains (pGAL4, pGAL4.VP16, pGAL4.CiLBD 

and pGAL4.BsLBD) and the requirement to minimise the background (i.e. not 

ligand-induced β-galactosidase enzymatic activity), the seven yeast strains 

were first grown in the presence of L-histidine to generate the yeast starter 

stock (Section 3.2.5). The strains carrying plasmids pGAL4, pGAL4.VP16, 

pGAL4.CiLBD and pGAL4.BsLBD were supplied with 322 µM L-histidine and 

strains carrying plasmids pGAL4.CiLBD.VP16, pGAL4.CiLBD∆31.VP16 and 

pGAL4.BsLBD.VP16 were supplied with 10 µM L-histidine. No exogenous L-

histidine was provided in the SAM (Section 3.2.6) which was used for the yeast 

bioassay itself. 
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Figure 3.5 Influence of L-histidine concentrations on background activity of β-galactosidase.  

Yeast strains were exposed to n-butyl-p-aminobenzoate over a range of concentrations (0–300 µM) in growth media containing four 

concentrations of L-histidine: (A) 0 µM, (B) 10 µM, (C) 200 µM and (D) 322 µM. β-galactosidase enzymatic activities, as measured by 

OD540 (corrected) values, were determined as described in Section 3.2.6. Data points represent means of n = 3 replicates. Error bars show ± 

one standard deviation. Dotted lines indicate baseline.  
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3.3.3 Activity of synthetic toxicants in the yeast bioassays 

 

Having optimised the media conditions for the recombinant yeast strains used in 

the bioassays, the ability of n-butyl-p-aminobenzoate and three additional 

synthetic chemicals (carbamazepine, bisphenol-A (BPA) and p-aminobenzoic 

acid) to induce β-galactosidase enzymatic activity were investigated (Table 3.1, 

Figure 3.6). 

Two of the synthetic chemicals tested (n-butyl-p-aminobenzoate and 

carbamazepine) were positive controls for the yeast bioassays because they 

had previously been shown to activate the C. intestinalis VDR/PXRα LBD when 

expressed as a fusion gene in mammalian cell lines (Ekins et al. 2008). N-butyl-

p-aminobenzoate and carbamazepine both induced β-galactosidase enzymatic 

activity from the three yeast strains carrying plasmids encoding a tunicate 

VDR/PXRα LBD fused to the VP16-AD (pGAL4.CiLBD∆31.VP16, 

pGAL4.CiLBD.VP16 and pGAL4.BsLBD.VP16; Figure 3.6A–B, Table 3.1). 

Strains carrying the two negative control plasmids, pGAL4 and pGAL4.VP16, 

showed no evidence of induced β-galactosidase enzymatic activity, nor did the 

two strains encoding GAL4.VDR/PXRα LBD fusion proteins lacking the VP16-

AD (pGAL4.CiLBD, pGAL4.BsLBD; Figure 3.6A–B). For some strains there was 

evidence of reduced β-galactosidase enzymatic activity at higher concentrations 

of both n-butyl-p-aminobenzoate and carbamazepine (Figure 3.6A, B). This 

suppression effect does not appear to be an antagonistic effect mediated 

through the tunicate VDR/PXRα LBD as it is apparent in the negative control 

strains, being most prominent with plasmid pGAL4.VP16 at high concentrations 

of carbamazepine (Figure 3.6B). Examination of the OD620 values from the 

yeast bioassays shows a general toxic effect of n-butyl-p-aminobenzoate and 

carbamazepine towards yeast cells, particularly at high concentrations 

(Appendix 14). The sensitivity of the pGAL4.CiLBD.VP16 yeast bioassay (n-

butyl-p-aminobenzoate: EC50 = 55 µM; carbamazepine: EC50 = 6.2 µM; Table 

3.1) was comparable to that of the mammalian cell line bioassay expressing C. 

intestinalis VDR/PXRα (n-butyl-p-aminobenzoate: EC50 = 16.5 µM; 

carbamazepine: EC50 >10 µM; Ekins et al. 2008). The yeast strain expressing 

the shorter version of the CiVDR/PXRα LBD (pGAL4.CiLBD∆31.VP16) was 
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slightly less sensitive to both n-butyl-p-aminobenzoate and carbamazepine than 

strains expressing the longer version (pGAL4.CiLBD.VP16) as indicated by the 

shape of the inductive response and EC50 values (Figure 3.6A–B, Table 3.1).  

Two additional synthetic chemicals (p-aminobenzoic acid and BPA), with planar 

structures and at least one hydrogen bond acceptor (Figure 3.1), were tested in 

the yeast bioassays (Table 3.1, Figure 3.6C–D). Both induced positive 

responses although these were non-sigmoidal. The B. schlosseri VDR/PXRα 

LBD-based yeast bioassay (pGAL4.BsLBD.VP16) was less sensitive than the 

C. intestinalis VDR/PXRα equivalent (Figure 3.6C, D, Table 3.1). Activity of p-

aminobenzoic acid in the mammalian cell line bioassay expressing 

CiVDR/PXRα had been noted previously although the yeast bioassay appears 

to be more sensitive (p-aminobenzoic acid: yeast EC50 = 3 µM; mammalian 

EC50 = 10–30 µM; M. Krasowski, personal communication). Bisphenol-A, an 

estrogenic endocrine disruptor (Olea et al. 1996; Welshons et al. 2003), has 

been identified as a potent toxicant when tested on tunicate larvae (Mansueto et 

al. 2011; Cangialosi et al. 2013) with low concentrations (3–10 µM) of BPA 

affecting swimming, hatching and normal development of C. intestinalis larvae 

(Matsushima et al. 2013). Given the comparable sensitivities of the 

pGAL4.CiLBD.VP16-based yeast bioassays (EC50 = 9.2 µM; Table 3.1) these 

yeast bioassays may, at least in some contexts, provide cheap and consistent 

proxies for assessing the effects of environmental contaminants on invertebrate 

members of coastal ecosystems (Stewart et al. 2014). To further establish the 

validity of this idea, it would be useful to systematically test synthetic chemicals 

known to be toxic to C. intestinalis and B. schlosseri in the yeast bioassays 

(Bellas et al. 2003). 

The failure of yeast strains carrying plasmids pGAL4.CiLBD and pGAL4.BsLBD 

to display ligand-dependent induction of β-galactosidase enzymatic activity 

indicates that any transcription AF-2 domain within a tunicate VDR/PXRα LBD 

is non-functional in yeast cells (Berry et al. 1990; Louvion et al. 1993). Future 

yeast bioassays based around the template described in this thesis should 

incorporate a C-terminal VP16-AD domain onto any fusion proteins generated.
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Table 3.1 Activation of the tunicate yeast bioassays by four synthetic chemicals. 

Ligand-dependent induction of β-galactosidase enzymatic activity was measured in yeast strains carrying plasmids 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 or pGAL4.BsLBD.VP16. Mean effective concentrations (EC50 values) and 95% 

confidence intervals (95% CI) are given in µM. 95% confidence intervals represent variation within a triplicate measurement (n 

= 3). Coefficients of variance (CV) are given in % for triplicate intra-plate measurements. All compounds were dissolved in 

ethanol. 

 

Abbreviations: EDC, endocrine disrupting chemical. 
a Strains were incubated for 24 hours. 
b Strains were incubated for 48 hours. 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.) EC50 (95% CI) CV EC50 (95% CI) CV EC50 (95% CI) CV 

N-butyl-p-amino-

benzoate a 

Local 

anaesthetic 

Sigma-Aldrich 

(B7753) 

68 (64–74) 16 55 (48–63) 11 57 (47–69) 14 

Carbamazepine b Anticonvulsant Sigma-Aldrich 

(C4024) 

7.1 (4.9–9.9) 18 6.2 (5.3–7.3) 7 7.0 (4.9–9.8) 21 

P-aminobenzoic acid b Supplement Sigma-Aldrich 

(A9878) 

1.8 (1.2–2.9) 14 3.0 (1.1–8.8) 25 ~191 (DNC) 89 

Bisphenol-A b EDC Sigma-Aldrich 

(B1760) 

5.3 (1.8–15.6) 18 9.2 (4.9–17.5) 14 10 (0–4108) 85 



CHAPTER THREE: FUNCTIONAL EXPRESSION 110 

 
 

 

Figure 3.6 Activities of four synthetic chemicals tested in the yeast bioassays.  

Yeast strains carrying seven pGBKT7-based expression vectors were exposed to a range of concentrations of: (A) n-butyl-p-

aminobenzoate, (B) carbamazepine, (C) p-aminobenzoic acid and (D) bisphenol-A. β-galactosidase enzymatic activities, as measured by 

OD540 (corrected) values, were determined after 24 h or 48 h (Table 3.1). Data points represent means of n = 3 replicates. Error bars show ± 

one standard deviation. Dotted lines indicate baseline. 
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3.3.4 Activity of natural microalgal biotoxins in the yeast bioassays 

 

Pursuing the hypothesis that the ecologically relevant ligands of tunicate 

VDR/PXRα receptors include those toxins naturally present in a marine filter-

feeder’s diet, three established microalgal biotoxins (okadaic acid, PTX-11 and 

portimine; Figure 3.1) were tested in the yeast bioassays. All three microalgal 

biotoxins induced β-galactosidase enzymatic activity from those strains carrying 

plasmids encoding a tunicate VDR/PXRα LBD fused to the VP16-AD: 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 and pGAL4.BsLBD.VP16 (Table 

3.2, Figure 3.7A–C). In contrast, the yeast strains carrying the two negative 

control plasmids, pGAL4 and pGAL4.VP16, showed no evidence of induced β-

galactosidase enzymatic activity nor did the two strains encoding 

GAL4.VDR/PXRα LBD fusion proteins lacking a C-terminal VP16-AD domain 

(Figure 3.7A–C). There was no indication of toxicity of microalgal biotoxins 

towards the yeast cells within the concentration ranges tested (Figure 3.7A–C).  

Two freshwater cyanobacterial toxins (microcystin-RR and anatoxin-A) were 

also tested in the yeast bioassays. They were considered to be ‘negative 

controls’ as being of freshwater origin, they would not have been encountered 

by marine tunicates over evolutionary time. As expected both were inactive in 

the yeast bioassays (Table 3.2). 

Identification of portimine as an activator of both tunicate VDR/PXRα LBDs 

tested (Table 3.2) is consistent with its reported toxicity when tested using 

mammalian cells in vitro (LC50 = 2.7 nM) suggesting that portimine may be toxic 

towards a wide range of chordates— including tunicates (Selwood et al. 2013). 

The yeast strain expressing the shorter version of the C. intestinalis VDR/PXRα 

LBD (pGAL4.CiLBD∆31.VP16) was more strongly activated by portimine than 

the strain expressing the longer version (pGAL4.CiLBD.VP16) as indicated by 

the plateau levels of β-galactosidase production (Figure 3.7C). This difference 

was not reflected in EC50 values (Table 3.2). In contrast, the yeast strain 

expressing the shorter version of the C. intestinalis VDR/PXRα LBD was less 

strongly activated by okadaic acid and PTX-11 as reflected in plateau levels of 

β-galactosidase activity (Figure 3.7A–B). The EC50 values for the 

pGAL4.CiLBD∆31.VP16 strain were lower than for the pGAL4.CiLBD.VP16 
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strain for both okadaic acid and PTX-11 (Table 3.2). The EC50 values for 

activation of the full-length C. intestinalis VDR/PXRα LBD by okadaic acid 

(pGAL4.CiLBD.VP16 EC50 = 27 nM; Table 3.2) is comparable with the value 

reported using mammalian cell line CiVDR/PXRα-based bioassays 

(EC50 = 18.2 nM) supporting the validity of the yeast bioassays (Fidler et al. 

2012). 

Two of the microalgal biotoxins that activated the tunicate VDR/PXRα LBDs in 

this study (okadaic acid and PTX-11) are produced by dinoflagellate species 

within the cosmopolitan genus Dinophysis, which can reach cell densities of 

102–105 cells/L in coastal marine waters (Reguera et al. 2012). Thus, it is to be 

expected that filter-feeding marine invertebrates will encounter and accumulate 

such biotoxins through their diet (Sekiguchi et al. 2001; Echevarria et al. 2012; 

Roje-Busatto & Ujević 2014). Although the toxicity of microalgal biotoxins 

towards tunicates, both adult and tadpole, requires more investigation, the yeast 

bioassay data presented in this chapter is consistent with the speculation that 

tunicate VDR/PXRα LBDs have adaptively evolved to bind commonly 

encountered marine biotoxins (Fidler et al. 2012). Further investigations are 

required to assess the toxicity of structurally diverse microalgal biotoxins 

towards tunicates. These studies would be complemented by determination of 

microalgal biotoxin EC50 values using the yeast bioassays described here. 
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Table 3.2 Activation of the tunicate yeast bioassays by five algal toxins. 

Ligand-dependent induction of β-galactosidase enzymatic activity was measured in yeast strains carrying plasmids 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 or pGAL4.BsLBD.VP16. Mean effective concentrations (EC50 values) and 95% 

confidence intervals (95% CI) are given in nM. 95% confidence intervals represent variation within a triplicate measurement (n 

= 3). Coefficients of variance (CV) are given in % for triplicate intra-plate measurements. All compounds were dissolved in 

ethanol. 

 

Abbreviations: DNC, did not compute; NI, no induction of β-galactosidase enzymatic activity. 
a Strains were incubated for 48 hours. 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.) EC50 (95% CI) CV EC50 (95% CI) CV EC50 (95% CI) CV 

Okadaic acid a Microalgal 

biotoxin 

Sapphire Bioscience 

(AB120375) 

19 (1.1–327) 46 27 (15.4–46.4) 8 16 (8.3–30.4) 8 

Pectenotoxin-11 a Microalgal 

biotoxin 

MacKenzie et al. 

2013 

633 (117–3437) 66 883 (134–5834) 35 553 (3.4–90,840) 46 

Portimine a Microalgal 

biotoxin 

Selwood et al. 2013 

 

143 (114–180) 10 130 (105–162) 12 124 (77–202) 7 

Microcystin-RR a Cyanobacterial 

toxin 

DHI Lab Products 

(PPS-MCRR) 

NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

Anatoxin-A a Cyanobacterial 

toxin 

NRC Canada 

(IMB-CRM-ATX) 

NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 
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Figure 3.7 Activities of three microalgal biotoxins tested in the yeast bioassays. 

Yeast strains carrying seven pGBKT7-based expression vectors were exposed to a range of concentrations of (A) okadaic acid, (B) 

pectenotoxin-11 and (C) portimine. β-galactosidase enzymatic activities, as measured by OD540 (corrected) values, were determined after 

48 h. Data points represent means of n = 3 replicates. Error bars show ± one standard deviation. Dotted lines indicate baseline. 
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3.3.5 Characteristics of the yeast bioassays 

 

Precision of the yeast bioassay was determined using the repeatability between 

three replicate assays of n-butyl-p-aminobenzoate reported as inter-plate CVs 

(Section 3.2.7). Coefficients of variance ranged from 4% in positive yeast 

strains to 30% in negative strains (Table 3.3). The low CV reported for three 

yeast strains (pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 and 

pGAL4.BsLBD.VP16; CV <5%) indicates that the yeast bioassay test results are 

consistent and repeatable. The elevated CV values (11–30%) observed in the 

four negative yeast strains (pGAL4, pGAL4.VP16, pGAL4.CiLBD and 

pGAL4.BsLBD) can be explained by the lack of induction of β-galactosidase 

activity in these strains. This causes negative values for some ligand 

concentrations making the CV calculation difficult, since CVs can only be 

computed from non-negative values.  

 

Table 3.3 Inter-plate variability of the tunicate yeast bioassays.  

Yeast strains carrying the seven pGBKT7-based expression plasmids were 

exposed to varying concentrations of n-butyl-p-aminobenzoate (0–200 µM) in 

three separate bioassays. Triplicate measurements were taken within each 

bioassay as described in Section 3.2.7. Results are presented as grand mean, 

standard deviation (SD) and coefficient of variance (CV, %). 

 

Strains Mean (SD) CV 

pGAL4 0.093 (± 0.023) 21 

pGAL4.VP16 0.040 (± 0.012) 30 

pGAL4.CiLBD 0.140 (± 0.015) 11 

pGAL4.BsLBD 0.086 (± 0.010) 12 

pGAL4.CiLBD∆31.VP16 0.268 (± 0.013) 5 

pGAL4.CiLBD.VP16 0.302 (± 0.013) 4 

pGAL4.BsLBD.VP16 0.294 (± 0.016) 5 
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Due to the size of this study, it was necessary to run samples on multiple assay 

plates. Intra-assay CVs were calculated to validate these yeast bioassay results 

for each test compound. Coefficients of variance were <25% for two synthetic 

chemicals, n-butyl-p-aminobenzoate and carbamazepine, used as positive 

controls for the yeast bioassays (Table 3.1). Reliable results for two additional 

synthetic chemicals, p-aminobenzoic acid and BPA, were obtained in yeast 

strains expressing the C. intestinalis VDR/PXRα LBD (pGAL4.CiLBD∆31.VP16 

and pGAL4.CiLBD.VP16; CV <25%). In contrast, induction of β-galactosidase 

by these compounds was highly variable (CV >85%) in yeast strains expressing 

the B. schlosseri VDR/PXRα LBD (Table 3.1). The yeast bioassays were highly 

sensitive towards two microalgal biotoxins, portimine and okadaic acid, as 

indicated by low CV values (CV <25%; Table 3.2). One exception was the yeast 

strain expressing the truncated version of the C. intestinalis VDR/PXRα LBD 

with β-galactosidase activities being highly variable in response to okadaic acid 

(CV = 46%; Table 3.2). Induction of β-galactosidase activity in response to PTX-

11 was very inconsistent in all three positive yeast strains (CV = 35–46%; Table 

3.2).  

Based on the assay variability observed for BPA, p-aminobenzoic acid and 

PTX-11, it appears that the yeast bioassay is not sensitive enough to reliably 

detect these compounds. This may be due to the β-galactosidase concentration 

responses being very low for BPA, p-aminobenzoic acid and PTX-11 (corrected 

OD540 <0.2; Figure 3.6C–D and 3.7B). In comparison, induction of β-

galactosidase activity by portimine was at least three-times greater than for 

PTX-11 (corrected OD540 = 0.6–1.5; Figure 3.7B, C) resulting in very low intra-

assay variability (CV = 7–12%; Table 3.2).  

The observed variability may also be attributed to low or limited solubility of 

some test compounds in ethanol. Thus, all compounds were dissolved in DMSO 

(Section 3.2.1). Of the nine compounds tested, three (n-butyl-p-aminobenzoate, 

BPA and PTX-11) were active in the yeast bioassays (Appendix 11). Although 

the yeast bioassays were more sensitive towards n-butyl-p-aminobenzoate 

when dissolved in DMSO than in ethanol (EC50 = 2.4–9.4 µM; Table 3.1, 

Appendix 11A), the within-assay variability was greater (CV >25%; Table 3.1, 

Appendix 11A). The opposite effect was observed for BPA. When dissolved in 
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DMSO, assay sensitivity decreased by one order of magnitude (EC50 = 58–76 

µM; Appendix 11A), while intra-assay variability improved (CV <17%; Appendix 

11A). It appeared that both solvents have differential effects on assay sensitivity 

for particular compounds within the concentration ranges tested in this study. 

This is consistent with a previous study showing that the yeast estrogen 

receptor (ERα) reporter assay is more sensitive using ethanol as a solvent 

compared to DMSO (Bovee et al. 2004).  

The yeast bioassays showed similar levels of low sensitivity and high variability 

(EC50 = 545–913 nM, CV = 35–66%; Table 3.2; Appendix 11B) to PTX-11 

dissolved in either ethanol or DMSO. These EC50 values are one order of 

magnitude higher than the EC50 value reported for pectenotoxin-2 (PTX-2; EC50 

= 37 nM) in a mammalian cell line (Fidler et al. 2012). It is important to note that 

two different pectenotoxin analogues were used in the two studies. 

Pectenotoxin-11, used in this study, differs slightly from PTX-2 in having an 

additional hydroxyl group at C 34 (Suzuki et al. 2006). This may change its 

affinity for the receptor LBD slightly. Both PTX analogues are well known 

microalgal biotoxins, sharing the same mode of action which can cause 

diarrhetic shellfish poisoning in vertebrates (Dominguez et al. 2010; Reguera et 

al. 2012), thus being likely ligands of tunicate VDR/PXRs. 

A range of additional observations arise from this study that should be 

considered in developing similar/alternative yeast bioassays based on 

VDR/PXR orthologues from tunicate species. Yeast strains producing chimeric 

proteins that have the GAL4-DBD and VDR/PXRα LBD but lacking the VP16-

AD showed no ligand-dependent induction of β-galactosidase enzymatic 

activity. This indicates that the transcription activation domains expected to be 

present within VDR/PXRα LBDs are not functional in yeast cells (Berry et al. 

1990; Louvion et al. 1993). Therefore, any similar/alternative yeast bioassays 

developed in future should include a C-terminal VP16-AD in the chimeric 

proteins designed. The differing responses of yeast strains expressing C. 

intestinalis VDR/PXRα LBDs of varying length highlights a need to consider the 

effect of the expressed LBD region on the yeast bioassay responses to test 

compounds. In general, it appeared that for VDR/PXR proteins it is important to 
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include all sequences C-terminal to the predicted DBD rather than relying upon 

computer programs to delimit the N- and C-terminal boundaries of the LBD. 

 

3.4 Conclusion 

 

Recombinant yeast strains were generated that express two orthologue tunicate 

VDR/PXRα LBDs fused, at their N-termini, with the generic GAL4-DBD and, at 

their C-termini, with a generic transcription activation domain (VP16-AD). These 

chimeric proteins were expressed in a yeast host strain, which encodes a lacZ 

reporter gene adjacent a GAL4-controlled promoter. The resulting strains 

increase β-galactosidase enzymatic activity in a concentration-dependent 

manner in the presence of putative VDR/PXRα LBD ligands. This effect was not 

found in strains transformed with plasmids encoding proteins with the GAL4-

DBD and VP16-AD but lacking a VDR/PXRα LBD, proving that the β-

galactosidase induction effect was mediated through the tunicate VDR/PXRα 

LBDs. 

These yeast bioassays proved useful for the detection of both synthetic 

chemicals and natural microalgal biotoxins. The yeast bioassay was highly 

reliable for repeated detection of a well-known C. intestinalis VDR/PXRα LBD 

agonist, n-butyl-p-aminobenzoate (Ekins et al. 2008). However, assay 

sensitivity varied depending on the type of compounds tested and the organic 

solvent used. These data indicated that both induction of β-galactosidase 

enzymatic activity (measured as corrected OD540 values) greater than 0.2 and 

sigmoidal response curves are important for achieving trustworthy results (CVs 

<25%). Future research should therefore aim to focus on these criteria in order 

to improve assay sensitivity and reliability. This may be achieved by first 

determining the ideal solvent for a particular compound before being tested in 

the yeast bioassay (Bovee et al. 2004). The percentage of the solvent used in 

the final bioassay may also influence sensitivity (Bovee et al. 2004). It may, in 

some cases, be better to use DMSO because this solvent does not evaporate 

as quickly as ethanol, which may minimise assay variability.  
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The β-galactosidase enzymatic activity induction curves that were observed 

were found to be dependent on the histidine concentration in the yeast bioassay 

media. This indicates that induction of β-galactosidase activity is the actual sum 

of activation of two GAL4-DBD-activated co-regulated promoters. While this 

reflects the specific yeast host strain selected, it appears to result in clearer 

ligand-dependent response curves suggesting that the specific host strain used 

in this work has inherent advantages for GAL4-DBD-based yeast bioassays. 

Despite the success of the yeast bioassays for some test chemicals described 

in this chapter, it is important to be aware of a limitation common to all cell-

based assays. The test chemicals must cross the cell membrane, either 

passively or by active transport. They also must be available within the cell 

cytoplasm in a form that can interact with the chimeric fusion protein (Norcliffe 

et al. 2013). In addition, yeast cells possess specific mechanisms for the 

elimination of exogenous toxic compounds, which may reduce the sensitivity of 

the yeast bioassays to such chemicals (Norcliffe et al. 2013). While such 

considerations do not undermine the usefulness and validity of these yeast 

bioassays, they may limit the range of chemicals for which bioactivity can be 

detected. 
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Sampling of Botryllus schlosseri colonies was undertaken from Michmoret 

beach by the Ruppin Academic Centre, Mediterranean Coast, Israel. 

 

 



 
 

CHAPTER FOUR 

Utilising tunicate xenobiotic receptors in yeast 

bioassays for high-throughput screening of bioactive 

compounds 

 

4.1 Introduction 

 

The development of robust high-throughput screening (HTS) assays for natural 

marine bioactive compounds for pharmaceutical purposes is technically 

challenging (Martins et al. 2014). Consequently, despite the enormous number 

of structurally unique bioactive marine natural products that are known, there 

are only eight approved drugs, along with 12 natural marine products (or 

derivatives thereof) in different phases of clinical testing (Mayer et al. 2010; 

Martins et al. 2014). The development of better bioassays is a key factor for 

identifying the activity of bioactive chemicals, because the natural biological 

activities of putative drug compounds influence their potential medical 

applications (Imhoff et al. 2011; Martins et al. 2014). 

A number of nuclear receptors (NRs) have been used successfully during the 

early phases of drug discovery (Shi 2007). Among the HTS assays, ligand-

binding and cell-based NR transactivation assays (Raucy & Lasker 2010, 2013) 

are of particular importance in drug discovery and are being used by a growing 

number of pharmaceutical companies (Chu et al. 2009; Fahmi & Ripp 2010). 

Most of the assays are based on mammalian-derived cell lines and screen for 

compounds that bind to and/or activate pregnane X receptor (PXR), constitutive 

androstane receptor (CAR) and aryl hydrocarbon receptor (AhR; Michelini et al. 

2010; Raucy & Lasker 2013). For example, cell-based (HepG2) transactivation 

luciferase reporter gene assays have been developed to identify both PXR 

ligands and cytochrome P450 enzyme (e.g. CYP3A4) inducers (Herbst et al. 

2009). These assays can be used to identify novel drugs and natural products 
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that modulate PXR activity which may aid the prediction of drug–drug 

interactions and xenobiotic-induced toxicities (Chang & Waxman 2005). 

Despite these applications, mammalian cell lines have significant limitations as 

they require costly and highly specialised culturing facilities and personnel with 

advanced laboratory skills (Balaguer et al. 1999). The typical mammalian cell 

line assays that are used (e.g. MCF-7, HeLa) require several days’ of growth in 

steroid-free serum and 16-hour incubations with test chemicals (Balaguer et al. 

1999). In contrast, baker’s yeast (Saccharomyces cerevisiae) is a well-

established eukaryotic expression system that is robust, cost-effective and 

generally easier/faster to perform than mammalian cell-based assays (Leskinen 

et al. 2005; Balsiger et al. 2010). Additionally, yeast bioassays can be adapted 

to microplate formats and automated making them particularly well-suited for 

HTS (de Almeida et al. 2008).  

In Chapter Three, I reported the development of a generic recombinant yeast 

bioassay capable of detecting marine microalgal biotoxins. These recombinant 

yeast strains expressed chimeric proteins containing the ligand-binding domains 

(LBDs) of two tunicate (Ciona intestinalis and Botryllus schlosseri) genes that 

are orthologues to the vitamin D receptor (VDR) and PXR (VDR/PXRα). These 

chimeric proteins mediate ligand-dependent transcription of a reporter gene 

(lacZ) encoding the easily assayed enzyme β-galactosidase. The aim of this 

chapter was to identify if tunicate VDR/PXR LBDs were activated by marine 

bioactive compounds, or their chemically modified analogues. It was hoped that 

this detection system might be useful for detecting new candidates for drug 

development. Since many drugs used currently are derived from terrestrial 

organisms, a range of fungal metabolites and one plant-derived natural product 

were also tested for their activity in the yeast bioassay.  
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4.2 Materials and methods 

 

4.2.1 Compounds tested in the yeast bioassay 

 

The compounds tested in the yeast bioassay are given in Table 4.1 and their 

structures in Figure 4.1. The following natural products and their analogues 

were provided by Prof Margaret Brimble (University of Auckland): gymnodimine, 

gymnodimine-brominated, gymnodimine-dansylated, gymnodimine-oxidised, 

paecilospirone, CJ-13-015, CJ-13-102, CJ-13-103, CJ-13-104, CJ-13-108, 

spirolaxine, spirolaxine-methyl ether, thysanone, (-)-deoxydihydrokalafungin 

and (+)-deoxykalafungin. Naringin was purchased from Sigma-Aldrich (St. 

Louis, MO, U.S.A.). All chemicals were dissolved in analytical grade ethanol 

(Merck, Whitehouse Station, NJ, U.S.A.) to form stock solutions. Serial dilutions 

were added to the yeast bioassay media at a final ethanol concentration of 1% 

(v/v). 

 

4.2.2 Bioassay procedure 

 

The tunicate VDR/PXRα LBD-based yeast bioassays, data analyses and 

development of recombinant yeast strains were performed as described in 

Chapter Three (Section 3.2.2–3.2.7).  
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Figure 4.1 Structures of 16 natural products and relevant analogues. 

The following chemicals were tested in tunicate VDR/PXRα LBD-based yeast 

bioassays: (A) gymnodimine, (B) gymnodimine-brominated, (C) gymnodimine-

dansylated, (D) gymnodimine-oxidised, (E) paecilospirone, (F) CJ-13-015, (G) CJ-13-

102, (H) CJ-13-103, (I) CJ-13-104, (J) CJ-13-108, (K) spirolaxine, (L) spirolaxine-

methyl ether and (M) thysanone. 
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Figure 4.1 (cont.) Structures of 16 natural products and relevant analogues. 

The following chemicals were tested in tunicate VDR/PXRα LBD-based yeast 

bioassays: (N) (-)-deoxydihydrokalafungin, (O) (+)-deoxykalafungin and (P) naringin. 

 

4.3 Results and discussion 

 

The aim of this study was to test if tunicate VDR/PXRα LBD-based yeast 

bioassays were activated by a range of structurally diverse natural bioactive 

compounds sourced from both marine and terrestrial organisms. Of the 16 

compounds tested, 12 activated both the C. intestinalis and B. schlosseri 

VDR/PXRα LBD-based yeast bioassays generating EC50 values in the low µM 

range. A plant-derived natural product, naringin, was particularly potent (EC50 

values in the nM range), while three fungal metabolites and one microalagal 

biotoxin were inactive (Table 4.1). 
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Table 4.1 Activation of the tunicate yeast bioassays by 16 natural products and relevant analogues. 

Ligand-dependent induction of β-galactosidase enzymatic activity was measured in yeast strains carrying plasmids 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 or pGAL4.BsLBD.VP16. Mean effective concentrations (EC50 values) and 95% 

confidence intervals (95% CI) are given in µM. 95% confidence intervals represent variation within a triplicate measurement (n 

= 3). Coefficients of variance (CV) are given in % for triplicate intra-plate measurements. All compounds were dissolved in 

ethanol. 

 

Chemical name Toxin type pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  EC50 (95% CI) CV EC50 (95% CI) CV EC50 (95% CI) CV 

Gymnodimine b Oral toxicity to mice NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

Gymnodimine-brominated b Oral toxicity to mice 4.8 (2.4–9.5) 26 4.6 (3.5–6.0) 25 3.3 (2.9–3.7) 22 

Gymnodimine-dansylated b Oral toxicity to mice 2.1 (1.9–2.2) 18 2.0 (1.9–2.1) 13 1.9 (1.9–2.1)v 35 

Gymnodimine-oxidised b Oral toxicity to mice 6.1 (2.8–13) 37 6.2 (3.4–11) 22 3.8 (2.0–7.1) 21 

Paecilospirone b Anti-cancer activities 55 (18–170) 3 15 (3.9–55) 4 ~58 (DNC) 46 

CJ-13-015 b Potent antibacterial 6.1 (3.7–10) 23 3.7 (2.7–4.9) 24 3.0 (1.7–5.2) 21 

CJ-13-102 b Potent antibacterial ~6.6 (DNC) 425 4.7 (3.6–6.2) 12 2.4 (0.4–13) 85 

CJ-13-103 a Potent antibacterial 8.5 (5.7–12) 23 15 (9.0–25) 35 2.1 (0.1–42) 40 

CJ-13-104 b Potent antibacterial 8.5 (2.9–24) 8 16 (7.6–33) 10 20 (4.7–82) 6 

CJ-13-108 b Potent antibacterial NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

Spirolaxine a Potent antibacterial ~17 (DNC) 54 18 (14–23) 24 3.3 (0.3–35) 48 
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Table 4.1 (cont.) Activation of the tunicate yeast bioassays by 16 natural products and relevant analogues. 

 

Chemical name Toxin type pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  EC50 (95% CI) CV EC50 (95% CI) CV EC50 (95% CI) CV 

Spirolaxine-methyl ether a Potent antibacterial 33 (23–48) 40 16 (0.5–475) 55 21 (15–28) 65 

Thysanone b 3C protease inhibitor 3.3 (2.6–4.1) 13 3.0 (2.6–3.4) 4 2.1 (1.7–2.6) 5 

(-)-Deoxydihydrokalafungin a 3C protease inhibitor 9.7 (8.3–11) DNC NI (DNC) DNC NI (DNC) DNC 

(+)-Deoxykalafungin a 3C protease inhibitor NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

Naringin b CYP inhibitor 108 (56–208) c 25 67 (47–93) c 9 140 (92–211) c 25 

Abbreviations: DNC, did not compute; NI, no induction of β-galactosidase enzymatic activity; CYP, cytochrome P450. 
a Strains were incubated for 24 hours. 
b Strains were incubated for 48 hours. 
c EC50 and 95% CI values for naringin are given in nM. 
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4.3.1 Activity of microalgal biotoxins in the yeast bioassays 

 

Gymnodimine, produced by the dinoflagellate Karenia selliformis, did not induce 

β-galactosidase activity in any of the yeast bioassays (Table 4.1, Figure 4.2A). 

The inactivity of gymnodimine is consistent with a study showing inactivity of 

gymnodimine in mammalian cell lines expressing the C. intestinalis VDR/PXRα 

LBD (Fidler et al. 2012). The chemically similar gymnodimine analogues 

(gymnodimine-brominated, -dansylated and -oxidised) induced a response in 

yeast strains carrying plasmids pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 

and pGAL4.BsLBD.VP16 (Table 4.1, Figure 4.2B–D) suggesting that structural 

changes alter activation of the tunicate VDR/PXRα LBD. The coefficients of 

variance (CV) for these four compounds ranged from 13–37% (Table 4.1). The 

increased assay variability (CVs >25%) can be attributed to shallow 

concentration-dependent response curves as indicated by the β-galactosidase 

plateau levels (Figure 4.2B–D).  

The response of tunicate VDR/PXRα LBD-based yeast bioassays to different 

microalgal biotoxins may be due to changes in the physicochemical properties 

of these compounds. The dansylated gymnodimine analogue, which carries a 

large dansyl amide side chain (Figure 4.1C), was more potent than the 

oxidised- and brominated-gymnodimine analogues as indicated by the plateau 

levels of β-galactosidase production (Figure 4.2B–D). Previous pharmacophore 

modelling indicated that there were differences in hydrophobicity, molecular 

weight and the number of hydrogen bond acceptors/donors between microalgal 

biotoxins that activate the C. intestinalis VDR/PXRα LBD (e.g. pectenotoxin-2 

and okadaic acid) and those that are inactive (e.g. gymnodimine and 

yessotoxin; Fidler et al. 2012).  

The differential activation of the yeast bioassay by the four gymnodimine 

analogues is in contrast to a previous study reporting that gymnodimine and its 

chemically modified analogues (gymnodimine-acetate, gymnodimine-methyl 

carbonate and gymnodamine) have the same effect on cellular viability of 

Neuro2a neuroblastoma cell lines (Dragunow et al. 2005). This difference may 

be attributed to the different mechanisms the bioassays use to measure a 

response. While a lethal endpoint is measured in the Neuro2a neuroblastoma 
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cell line assay, the tunicate VDR/PXRα LBD yeast bioassay measures PXR-

ligand interaction through a physiological process. The inactivity of 

gymnodimine in the yeast bioassay may be explained by the inability of 

gymnodimine to bind to PXR orthologues in general, since it was also inactive in 

mammalian cell line assays expressing human PXR, zebrafish PXR, C. 

intestinalis FXR and C. intestinalis LXR (Fidler et al. 2012). This highlights the 

potential of using PXR LBD-based yeast bioassays, such as the tunicate 

VDR/PXRα yeast bioassay, to detect bioactive compounds that represent 

precursors (e.g. gymnodimine analogues) of the active toxin (e.g. gymnodimine; 

Dragunow et al. 2005). 
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Figure 4.2 Activities of gymnodimine and related analogues tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression vectors during exposure to a range of 

concentrations of: (A) gymnodimine, (B) gymnodimine-brominated, (C) gymnodimine-dansylated and (D) gymnodimine-oxidised. β-

galactosidase enzymatic activities, as measured by OD540 (corrected) values, were determined after 48 h (Table 4.1). Data points represent 

means of n = 3 replicates. Error bars show ± one standard deviation. Dotted lines indicate baseline. 
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4.3.2 Activity of fungal metabolites in the yeast bioassays 

 

The marine fungal metabolite, paecilospirone, was tested in the yeast bioassay 

to assess whether tunicate VDR/PXRα LBDs were activated by marine natural 

products other than microalgal biotoxins. Paecilospirone, a [5,6]-

bisbenzannulated spiroacetal, was first isolated from a marine-derived fungus 

(Paecilomyces sp.) collected in tropical and sub-tropical coral reef environments 

(Namikoshi et al. 2000a, b). The yeast strain carrying plasmid 

pGAL4.CiLBD.VP16 showed sigmoidal concentration-dependent β-

galactosidase activity, while responses for strains carrying plasmids 

pGAL4.CiLBD∆31.VP16 and pGAL4.BsLBD.VP16 were non-sigmoidal (Figure 

4.3A). The strain expressing the C. intestinalis VDR/PXRα LBD, 

pGAL4.CiLBD.VP16, was more strongly activated by paecilospirone than the 

strain expressing the B. schlosseri VDR/PXRα LBD which showed high 

variability (Table 4.1, Figure 4.3A). Since paecilospirone is a promising lead 

compound for the development of chemotherapeutic drugs due to its anti-

cancer properties (Sun et al. 2011), these data indicate that tunicate VDR/PXRα 

LBDs could be used as sensor elements in yeast bioassays for identifying other 

compounds with similar activities.  

In addition to marine fungal metabolites, natural products derived from 

terrestrial fungi have been an excellent source of pharmaceuticals, for example 

antibacterial penicillin, cholesterol-lowering lovastatin, antifungal echinocandin 

B and immunosuppressive cyclosporin A (Evidente et al. 2014). A small group 

of bioactive fungal metabolites (CJ-13-015, CJ-13-102, CJ-13-103, CJ-13-104, 

CJ-13-108, spirolaxine and spirolaxine-methyl ether) has been examined 

previously for their inhibitory activity against the microaerophilic Gram-negative 

bacterium Helicobacter pylori (Dekker et al. 1997; Radcliff et al. 2008). Over 

50% of the human population are infected by H. pylori, which has been 

associated with increased risk of developing gastric cancer (Montecucco & de 

Bernard 2003). Four CJ-13 analogues (CJ-13-015, -102, -103 and -104) 

activated the tunicate VDR/PXRα LBDs (Table 4.1, Figure 4.3B–E) suggesting 

that the yeast bioassay could be useful for identifying other compounds with 

antibacterial activity. The B. schlosseri VDR/PXRα LBD-based yeast bioassay 



CHAPTER FOUR: ACTIVITIES OF BIOACTIVE COMPOUNDS 

 
 

(pGAL4.BsLBD.VP16) was less sensitive than the C. intestinalis VDR/PXRα 

equivalent as indicated by the plateau levels of β-galactosidase production 

(Figure 4.3D–E). However, this difference was not reflected in the EC50 values 

(Table 4.1). In contrast, CJ-13-108, was inactive in the yeast bioassay (Table 

4.1, Figure 4.3F), which may be attributed to its limited solubility in organic 

solvents (Radcliff et al. 2008).  

Yeast strains expressing the full-length LBD of the C. intestinalis and B. 

schlosseri VDR/PXRα receptors were activated by spirolaxine, while the 

response of yeast strains expressing the truncated C. intestinalis receptor 

(pGAL4.CiLBD∆31.VP16) were highly variable (Table 4.1, Figure 4.3G). The 

chemically similar spirolaxine-methyl ether gave positive responses in all three 

yeast strains, although they were non-sigmoidal and the 95% confidence 

interval (95% CI) for strain pGAL4.CiLBD.VP16 was very wide (Table 4.1, 

Figure 4.3H).  

Yeast strains carrying plasmids pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16, 

or pGAL4.BsLBD.VP16 showed sigmoidal concentration-dependent response 

curves when tested with the clinically important fungal metabolite, thysanone 

(Table 4.1, Figure 4.3I). The B. schlosseri VDR/PXRα LBD-based yeast 

bioassay (pGAL4.BsLBD.VP16) was less sensitive than the two C. intestinalis 

VDR/PXRα LBD-based yeast bioassays (pGAL4.CiLBD∆31.VP16 and 

pGAL4.CiLBD.VP16; Figure 4.3I). This effect was not reflected in EC50 values 

(EC50 = 2.1–3.3 µM; Table 4.1) and these were lower than those reported for 

the inhibition of the human rhinovirus (HRV) 3C protease in a small peptide 

screening assay (IC50 = 47 µM; Singh et al. 1991). Screening and identification 

of lead structures as therapeutic agents against HRVs represents an important 

area of future research, because HRVs are responsible for causing 50–80% of 

common colds in humans (Simancas-Racines et al. 2013).  

Both (+)-deoxykalafungin and (-)-deoxydihydrokalafungin, chemical analogues 

of the closely related fungal natural products kalafungin and dihydrokalafungin, 

showed almost no ligand-dependent induction of β-galactosidase activity in the 

tunicate yeast bioassays (Figure 4.3J–K). One exception was a strain 

expressing the shorter version of the C. intestinalis VDR/PXRα LBD 

(pGAL4.CiLBD∆31.VP16) that generated an EC50 value of 9.7 µM. However, 
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concentration-response curves indicated reduced β-galactosidase enzymatic 

activity at higher concentrations of both (-)-deoxydihydrokalafungin and (+)-

deoxykalafungin (Figure 4.3J–K). This suppression effect appeared to be an 

antagonistic effect mediated through the tunicate VDR/PXRα LBD as it is 

apparent in the other two test strains carrying plasmids pGAL4.CiLBD.VP16 

and pGAL4.BsLBD.VP16 and to a lesser degree in negative control strains 

(Figure 4.3J). The lack of a response from (+)-deoxykalafungin and (-)-

deoxydihydrokalafungin could be due to their general toxicity to yeast cells. 

However, the OD620 values from the yeast bioassays did not support this 

hypothesis for (-)-deoxydihydrokalafungin (Appendix 15A). In contrast, 

suppression observed at high concentrations of (+)-deoxykalafungin (Figure 

4.3K) may be toxicity induced effects as the OD620 values were lower (Appendix 

15B).  

A fluorescence resonance energy transfer (FRET) bioassay found that 

deoxykalafungin inhibited protein kinase B (AKT), a member of the protein 

kinase A, G and C families (Korwar et al. 2014). The reported IC50 value (0.28 

μM) from the FRET bioassay is up to two orders of magnitude lower than the 

EC50 values obtained in the yeast bioassay for the range of fungal natural 

product analogues tested (1.9–33 μM; Table 4.1). Thus, it appears that the 

yeast bioassay is less sensitive at detecting some compounds when compared 

with bioassays that do not require reporter cell lines (De et al. 2005). This 

limitation is intrinsic to all assays relying on living cells (and is a major 

weakness of cell-based bioassays) since test compounds need to cross the cell 

wall and/or membrane (Lyttle et al. 1992).  
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Figure 4.3 Activities of fungal metabolites tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression vectors during exposure to a range of 

concentrations of: (A) paecilospirone, (B) CJ-13-015, (C) CJ-13-102 and (D) CJ-13-103. β-galactosidase enzymatic activities, as 

measured by OD540 (corrected) values, were determined after 24 h or 48 h (Table 4.1). Data points represent means of n = 3 replicates. Error 

bars show ± one standard deviation. Dotted lines indicate baseline. 
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Figure 4.3 (cont.) Activities of fungal metabolites tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression vectors during exposure to a range of 

concentrations of: (E) CJ-13-104, (F) CJ-13-108, (G) spirolaxine and (H) spirolaxine-methyl ether.  
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Figure 4.3 (cont.) Activities of fungal metabolites tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression 

vectors during exposure to a range of concentrations of (I) thysanone, (J) (-)-

deoxydihydrokalafungin and (K) (+)-deoxykalafungin.  

4.3.3 Activity of plant-derived bioactive compounds in the yeast 

bioassays 

 

Terrestrial plants produce a plethora of bioactive compounds which are used for 

drug development (Newman et al. 2003; Cragg et al. 2005; McChesney et al. 

2007). The plant-derived flavanone naringin was found to be a potent activator 

of tunicate VDR/PXRα LBDs expressed in recombinant yeast strains 

(pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 and pGAL4.BsLBD.VP16; 

Figure 4.4) generating EC50 values in the low nM range (Table 4.1). Both B. 

schlosseri and C. intestinalis VDR/PXRα LBD-based yeast bioassays showed 

similar levels of β-galactosidase enzymatic activity, while the shorter version of 

the C. intestinalis VDR/PXRα LBD (pGAL4.CiLBD∆31.VP16) showed a lower 
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response as indicated by the plateau levels of β-galactosidase activity (Figure 

4.4). Interestingly, the EC50 values indicated that naringin was two to three 

orders of magnitude more potent than the other bioactives and derivatives that 

were tested during this study (Table 4.1). This may be due to structural 

similarities between flavonoids (e.g. naringin; Figure 4.1P) and the common 

pharmacophore of C. intestinalis VDR/PXRα ligands. Both compounds consist 

of a planar aromatic structure with hydrophobic regions and multiple hydroxyl 

groups (Hodek et al. 2002; Ekins et al. 2008; Fidler et al. 2012).  

Naringin, the major flavonoid naturally occurring in grapefruit juice, is of 

particular interest since it exhibits inhibitory effects on the activity of a number of 

xenobiotic metabolising enzymes (e.g. CYP1A2 and CYP3A4) in vivo (Fuhr 

1998; Moon et al. 2006). This inhibitory effect can increase the plasma half-life 

of many clinically important drugs (Fuhr 1998), which can lead to dangerous 

drug-drug interactions; such as fatal interactions of azole antifungals with 

cardiovascular agents (Bates & Yu 2003; Cascorbi 2012). However, the actual 

inhibitory effect on a wide range of detoxification enzymes (e.g. CYPs) is not 

mediated through naringin but through its metabolite, naringenin (Selma et al. 

2009), which was not tested during this study. This highlights a limitation of the 

yeast bioassay. While the tunicate VDR/PXRα yeast bioassay can detect 

dietary bioactive compounds that are likely to perturb normal physiological 

functions through interaction with PXR (Dybdahl et al. 2012), metabolic by-

products of these compounds cannot be detected. This is an important short-

coming of all screening assays. They are limited by the compounds tested in 

these assays, but cannot be used to detect metabolic by-products which are 

likely to modulate animal biochemistry and physiology differently (Saad et al. 

2012).  
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Figure 4.4 Activity of naringin tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression 

vectors during exposure to a range of concentrations of naringin. β-galactosidase 

enzymatic activities, as measured by OD540 (corrected) values, were determined after 48 h 

(Table 4.1). Data points represent means of n = 3 replicates. Error bars show ± one 

standard deviation. Dotted lines indicate baseline. 

 

4.4 Conclusion 

 

Recombinant yeast strains expressing orthologues of VDR/PXR LBDs from two 

temperate tunicate species, C. intestinalis and B. schlosseri, were utilised for 

the detection of bioactive compounds. These yeast bioassays were activated by 

a range of marine natural compounds including microalgal biotoxin analogues 

and fungal metabolites. Terrestrial fungal bioactive compounds and chemically 

modified analogues were also successfully detected. Since these compounds 

provide a rich source of drug leads for pharmaceutical purposes (Molinski et al. 

2009; Imhoff et al. 2011), tunicate VDR/PXRα LBDs may represent promising 

sensor elements for detecting both marine and terrestrial bioactive compounds 

for drug development. Additionally, the plant-derived flavonoid naringin which 

can cause dangerous herb-drug interactions in humans (Fuhr 1998) was a 

potent activator in the tunicate yeast bioassay. 
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In this study pure compounds were analysed in the yeast bioassays. This 

highlights the feasibility of using tunicate VDR/PXRα LBD-based yeast 

bioassays for detecting bioactive compounds from chemical libraries. Future 

research should aim to identify medically and/or physiologically active 

compounds from more complex matrices such as chemical extracts or 

environmental samples.  

Further development of the yeast bioassay into a HTS assay format is 

particularly important, since this is the most widely used approach for the 

identification of novel drug lead compounds (Hughes et al. 2011; Martins et al. 

2014). The yeast bioassay developed here is particularly well-suited for HTS as 

it is user-friendly and robust. This is due to the reporter gene lacZ which 

encodes the enzyme β-galactosidase. Enzymatic activity can be measured 

without the need for cell lysis and requires minimal hands-on time. Additionally, 

assay miniaturisation, one of the main requirements in HTS development, is 

possible since the nutrient requirements of yeast are easily met in 96-well plate 

formats (Wolcke & Ullmann 2001; Hontzeas et al. 2007; Norcliffe et al. 2013). 

For example, yeast-based luciferase reporter assays for human estrogens, 

androgens and xenobiotics have been miniaturised from the standard 96-well 

plate format to high throughput 384- and 1536-well plate formats (Rajasarkka & 

Virta 2011).  
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Microalgal bloom observed in Cook Strait, New Zealand. 25th October 2009  

Image source: National Aeronautics and Space Administration, U.S.A. 

 



 
 

CHAPTER FIVE 

Utilising tunicate xenobiotic receptors in yeast 

bioassays for detection of environmental pollutants 

 

5.1 Introduction 

 

Rapid industrial and urban development in the second half of the 20th century 

has resulted in the emergence of thousands of persistent anthropogenic 

chemicals (Stewart et al. 2014). These include industrial chemical contaminants 

which are of environmental concern; i.e. heavy metals (especially zinc, copper 

and lead), polycyclic aromatic hydrocarbons (PAHs) and pesticides (Järup 

2003; Karami-Mohajeri & Abdollahi 2011; Ball & Truskewycz 2013). Recently, a 

new class of non-regulated environmental pollutants, termed emerging 

contaminants (ECs), has captured scientific and public attention because it may 

pose a health risk to many organisms, including humans (Gavrilescu et al. 

2015). Emerging contaminants are continuously released into the aquatic 

environment through products such as pharmaceuticals, personal-care products 

and surfactants (Gavrilescu et al. 2015) and are considered to be ‘pseudo-

persistent’ (Daughton 2002). Emerging contaminants generally occur in surface 

and ground waters as mixtures at concentrations which are far below those 

thought to be harmful (e.g. ng/L to µg/L; Daughton & Ternes 1999). However, 

the possibility exists that chronic exposures to these low levels may elicit 

ecotoxicological effects in many taxa (Fent et al. 2006; Vasquez et al. 2014).  

Surfactants are an important class of ECs which have recently been recognised 

as priority contaminants of concern under the European Commission Water 

Framework Directive (European Commission 2008). These detergent-like 

compounds (e.g. dioctyl sodium sulfosuccinate) are the key component of oil 

dispersants which are used frequently in response to oil spills (Fiocco & Lewis 

1999). Although the acute effects of oil dispersants are low compared to crude 

oil (Fuller et al. 2004), the large amounts of dispersants used in response to oil 
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spills (e.g. approximately 10–100 ppb was used in the Deepwater Horizon oil 

spill in the Gulf of Mexico) pose significant health risks to a wide range of 

marine organisms (Kujawinski et al. 2011; Wise & Wise 2011; Goodbody-

Gringley et al. 2013; Almeda et al. 2014). 

The recent development of integrated bioanalytical approaches using in vitro 

bioassays has become a powerful tool to detect and identify bioactive 

compounds within complex environmental samples (Eggen & Segner 2003). In 

vitro reporter gene bioassays based on the mechanism of action for chemicals 

(e.g. hormone receptor activation) are now commonly used as screening tools 

for sensitive and specific detection of xenobiotic-like activities in complex 

samples (Kinani et al. 2010). To date, most attention has been directed towards 

identifying endocrine-disrupting chemicals (EDCs), because these compounds 

can disturb the endocrine system via interaction with steroid hormone receptors 

(Kojima et al. 2010; De Coster & van Larebeke 2012), such as the estrogen 

(ER) and androgen receptors (Thomas et al. 2002; Kinani et al. 2010; Colosi & 

Kney 2011). Other key nuclear receptors (NRs) such as pregnane X receptor 

(PXR; Timsit & Negishi 2007), peroxisome proliferator-activated receptor (Grun 

& Blumberg 2009) or glucocorticoid receptor (Odermatt et al. 2006), are also 

known to be directly activated by environmental contaminants, and have 

potential to be used as xenobiotic sensors for environmental bioanalytical 

purposes.  

Pregnane X receptor is of high interest since it is activated by a diverse range of 

environmental ligands including steroids, pharmaceutical drugs, pesticides and 

polybromodiethylethers (Jacobs et al. 2005; Lemaire et al. 2006; Sinz et al. 

2006). Reporter gene bioassays, based on cultured HeLa cells that permanently 

express the luciferase reporter gene under the control of a chimeric human 

PXR, have been developed for the detection of several pesticides (Lemaire et 

al. 2006), as well as numerous environmental chemicals (i.e. alkylphenols, 

hormones, pharmaceuticals, pesticides, polychlorinated biphenyls and 

bisphenol A) in aquatic samples (Creusot et al. 2010; Mnif et al. 2011; Creusot 

et al. 2013). Due to the extreme number of organic pollutants present in the 

environment, in silico models (e.g. quantitative structure–activity relationship, 

QSAR) based on human PXR and other NRs have been developed (Vedani et 
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al. 2009; Dybdahl et al. 2012). These models are used for initial screening of 

compounds before selecting a smaller set of potentially harmful candidates for 

future in vitro reporter assays. Similar QSAR in silico models are available for 

various aquatic taxa, although these models are based on experimentally 

measured in vivo toxicities (Agatonovic-Kustrin et al. 2014; Golbamaki et al. 

2014; Singh et al. 2014). 

The aim of this chapter was to explore the use of the tunicate VDR/PXRα yeast 

bioassay (Chapter Three) for the detection of anthropogenic chemicals of 

environmental relevance. This in vitro bioassay is based on recombinant yeast 

(Saccharomyces cerevisiae) strains that express chimeric proteins containing 

the ligand-binding domains (LBDs) of two tunicate PXR orthologues (Ciona 

intestinalis and Botryllus schlosseri VDR/PXRα) which mediate ligand-

dependent transcription of a reporter gene (lacZ). Thirteen synthetic chemicals 

were tested in the yeast bioassays. These compounds were selected based on 

(i) their aromatic, planar structures and hydrophobic features (Ekins et al. 2008) 

and (ii) their classification as ECs (e.g. pesticides, pharmaceutical drugs and 

preservatives). In addition, five complex chemical mixtures that are frequently 

used to mitigate marine oil spills were analysed. The tunicate VDR/PXRα yeast 

bioassay may provide a reliable and inexpensive tool for environmental 

monitoring of anthropogenic pollutants. 

 

5.2 Materials and methods 

 

5.2.1 Compounds tested in the yeast bioassay 

 

The synthetic compounds tested in the yeast bioassay are given in Table 5.1 

and their structures in Figure 5.1. All synthetic compounds were purchased from 

Sigma-Aldrich (St. Louis, MO, U.S.A.) with the following exceptions: 

ketoconazole (EMD Chemicals, Gibbstown, NJ, U.S.A.), 2-phenylphenol (Acros 

Organics, Geel, Belgium), radicicol (Cayman Chemical, Ann Arbor, MI, U.S.A) 

and n,n-diethyl-m-toluamide (DEET; Fluka, St. Louis, MO, U.S.A.). All 
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compounds were dissolved in analytical grade ethanol (Merck, Whitehouse 

Station, NJ, U.S.A.; Table 5.1) or dimethyl sulfoxide (DMSO; Sigma-Aldrich; 

Appendix 16) to form stock solutions (Bovee et al. 2004). Commercial oil 

dispersants were sourced from within the Cawthron Institute (Dr Louis 

Tremblay) and were diluted in ethanol only (Table 5.2). Serial dilutions were 

added to the yeast bioassay media at a final solvent concentration of 1% (v/v). 

 

5.2.2 Yeast bioassay procedure 

 

The tunicate VDR/PXRα LBD-based yeast bioassays, data analyses and 

development of recombinant yeast strains were performed as described in 

Chapter Three (Section 3.2.2–3.2.7).  

Based on published EC50 values and in vivo toxicity data, a wide concentration 

range (0–1 mM) was selected for initial analyses of test compounds in the 

bioassays. Each compound was tested at least twice in separate assays. These 

data were then used to identify a concentration range that induced β-

galactosidase enzymatic activity in the bioassay while being non-toxic to the 

yeast cells themselves. Using the identified concentration range, all yeast 

bioassays were performed in pseudo-triplicates (triplicate measurements within 

the same assay). Solvents, ethanol or DMSO (final concentration 1% (v/v); 

Bovee et al. 2004), were tested alongside each test compound in each assay. 

To facilitate intra-plate comparisons, the coefficient of variance (CV) was 

calculated for each test compound as described in Chapter Three (Section 

3.2.7).  
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Figure 5.1 Structures of 13 emerging contaminants tested in the yeast bioassays. 

The emerging contaminants tested in tunicate VDR/PXRα LBD-based yeast bioassays were: (A) butylated hydroxytoluene, (B) 4-chloro-

3,5-dimethylphenol, (C) 2-phenoxyethanol, (D) propyl-4-hydroxybenzoate, (E) 4-methylbenzylidene camphor, (F) octyl methoxycinnamate, 

(G) triclosan, (H) benzophenone and (I) ketoconazole. 
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Figure 5.1 (cont.) Structures of 13 emerging contaminants tested in the yeast 

bioassays. 

The emerging contaminants tested in tunicate VDR/PXRα LBD-based yeast bioassays 

were: (J) 2-phenylphenol, (K) radicicol, (L) diclofenac sodium salt and (M) n,n-diethyl-

m-toluamide (DEET). 
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5.3 Results and discussion 

 

5.3.1 Activity of synthetic chemicals in the tunicate yeast bioassays 

 

The first aim of this study was to explore the potential use of the tunicate 

VDR/PXRα LBD-based yeast bioassay (Chapter Three) for the detection of 

synthetic chemicals (e.g. pharmaceuticals, pesticides and fungicides) classified 

as ECs (Figure 5.1). Of the 13 compounds tested, nine activated both the C. 

intestinalis and B. schlosseri VDR/PXRα LBD-based yeast bioassays 

generating EC50 values in the µM range (Table 5.1).  

 

5.3.1.1 Activity of synthetic preservatives 

 

The four structurally simple synthetic chemicals, 2-phenoxyethanol, 4-chloro-

3,5-dimethylphenol, propyl-4-hydroxybenzoate and butylated hydroxytoluene 

(Figure 5.1A–D), are frequently used as preservatives in foods, drugs and 

cosmetics (Soni et al. 2001; Meyer et al. 2007) and these were active in the 

yeast bioassays (Table 5.1, Figure 5.2A–D). However, only the antioxidant 

butylated hydroxytoluene exhibited sigmoidal concentration-response curves 

(Figure 5.2A) which were consistent across assays (CV <20%; Table 5.1). 

Identification of butylated hydroxytoluene as an activator of both tunicate 

VDR/PXRα LBDs tested (EC50 = 15–30 µM; Table 5.1) was reasonably 

consistent with its reported in vivo toxicity towards the colonial tunicate B. 

schlosseri at concentrations <68 µM (Voskoboynik et al. 2002).  
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Table 5.1 Activation of the tunicate yeast bioassays by 13 emerging contaminants. 

Ligand-dependent induction of β-galactosidase enzymatic activity was measured in yeast strains carrying plasmids 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 or pGAL4.BsLBD.VP16. Mean effective concentrations (EC50 values) and 95% 

confidence intervals (95% CI) are given in µM. 95% confidence intervals represent variation within a triplicate measurement (n 

= 3). Coefficients of variance (CV) are given in % for triplicate intra-plate measurements. All compounds were dissolved in 

ethanol. 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.) EC50  (95% CI) CV EC50  (95% CI) CV EC50  (95% CI) CV 

Butylated 

hydroxytoluene a 

Antioxidant Sigma-Aldrich  

(B1378) 

30 (21–42) 20 22 (20–24) 4 15 (11–21) 11 

4-chloro-3,5-

dimethylphenol b 

Antimicrobial Sigma-Aldrich  

(C-4394) 

~50 (DNC) 77 62 (26–147) 55 25 (2.2–286) 41 

2-phenoxyethanol b Antimicrobial Sigma-Aldrich (77699) NI (DNC) DNC 130 (1.2–13,907) 117 97 (49–193) 154 

Propyl-4-hydroxy- 

benzoate b 

Antimicrobial Sigma-Aldrich  

(P53357) 

~388 (DNC) DNC NI (NI) DNC ~979 (DNC) DNC 

4-methyl-benzylidene 

camphor b 

EDC Sigma-Aldrich  

(78551) 

140 (103–189) 33 ~125 (DNC) DNC 107 (84–137) 6 

Octyl methoxy-

cinnamate b 

EDC Sigma-Aldrich (78848) 20 (4.6–87) 30 55 (5.4–561) 51 46 (37–58) 19 
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Table 5.1 (cont.) Activation of the tunicate yeast bioassays by 13 emerging contaminants. 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.) EC50  (95% CI) CV EC50  (95% CI) CV EC50  (95% CI) CV 

Triclosan a EDC Sigma-Aldrich (72779) 318 (241–422) 35 242 (195–299) 11 NI (DNC) DNC 

Benzophenone b EDC Sigma-Aldrich (B9300) 221 (194–253) DNC 63 (38–108) 30 NI (DNC) DNC 

Ketoconazole a Antifungal EMD Chemicals 

(420600) 

337 (303–375)c 5 400 (341–470)c 18 ~400 (DNC)c DNC 

2-phenylphenol b Antifungal Acros Organics 

(130760050) 

NI (DNC) DNC 79 (57–112) 37 26 (19–35) 18 

Radicicol b Antifungal Cayman Chemical 

(13089) 

13 (9.1–20) 17 11 (10–12) 9 9.5 (8.5–11) 9 

DEET b Insecticide Fluka (36542) 99 (52–191) 29 54 (32–89) 34 NI (NI) DNC 

Diclofenac sodium 

salt b 

Anti-

inflammatory 

Sigma-Aldrich  

(06899) 

91 (68–121) 41 55 (26–121) 44 11 (0.7–151) 38 

Abbreviations: DEET, n,n-diethyl-m-toluamide; DNC, did not compute; EDC, endocrine disrupting chemical; NI, no induction of β-galactosidase 

enzymatic activity. 
a Strains were incubated for 24 hours. 
b Strains were incubated for 48 hours. 
c EC50 and CI values for ketoconazole are given in nM. 
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Both 2-phenoxyethanol and 4-chloro-3,5-dimethylphenol activated strains 

carrying plasmids pGAL4.CiLBD.VP16 and pGAL4.BsLBD.VP16 although the 

responses were non-sigmoidal and inconsistent as indicated by very wide 95% 

confidence intervals (95% CI) and CVs >25% (Figure 5.2B, C, Table 5.1). It 

appeared that 2-phenoxyethanol was two orders of magnitude more potent in 

the tunicate VDR/PXRα LBD-based yeast bioassays (EC50 = 97–130 µM; Table 

5.1) when compared to the frog (Xenopus laevis) embryo teratogenesis 

bioassay (EC50 = 2.5 mM; Vrskova & Modra 2012). However, this comparison is 

highly tentative due to the considerable variability of β-galactosidase induction 

by 2-phenoxyethanol (CV = 117–154%). Activation of both tunicate yeast 

bioassays by 4-chloro-3,5-dimethylphenol (EC50 = 25–62 µM; Table 5.1) was 

also highly variable (CV = 41–554%) but the values were consistent with 

previous studies which showed that concentrations >50 µM were highly toxic to 

fish (Houtman et al. 2004a).  

Paraben (propyl-4-hydroxybenzoate) activated strains carrying plasmids 

pGAL4.CiLBD∆31.VP16 and pGAL4.BsLBD.VP16, but there was high variability 

(Table 5.1). The concentration-response curves were non-sigmoidal and 

showed a negative effect on the induction of β-galactosidase activity. This 

suppression effect was observed in strains carrying the plasmids 

pGAL4.CiLBD∆31.VP16 and pGAL4.BsLBD.VP16, but not in the negative 

control strains (Figure 5.2D). Examination of OD620 values suggests a general 

toxicity of propyl-4-hydroxybenzoate towards yeast cells (Appendix 17A). In 

strains carrying plasmids pGAL4.CiLBD∆31.VP16 and pGAL4.BsLBD.VP16 this 

toxic effect was most apparent within a concentration range of 50–350 µM. At 

concentrations <350 µM the toxic effect decreased which coincided with an 

increase in β-galactosidase activity at higher concentrations (Figure 5.2D, 

Appendix 17A). In contrast, a suppression effect was obtained at high 

concentrations (350–500 µM) in strains carrying plasmid 

pGAL4.CiLBD∆31.VP16 (Appendix 17A), with these strains showing no ligand-

dependent β-galactosidase enzymatic activity (Figure 5.2D). Despite the 

considerable assay inconsistencies (Table 5.1), the C. intestinalis EC50 value 

reported in this study (388 µM) was comparable to those obtained using acute 

immobilisation assays with Daphnia magna (EC50 = 127 µM; Terasaki et al. 

2009).  
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Collectively, the data from the in vitro yeast bioassay and previous in vivo 

studies (Voskoboynik et al. 2002; Houtman et al. 2004a; Vrskova & Modra 

2012) highlight the high toxicity of these synthetic chemicals towards a wide 

range of aquatic organisms. This is of particular concern since these 

compounds are being detected with increasing frequency in aquatic 

environments (Daughton & Ternes 1999; Kolpin et al. 2004; Kasprzyk-Hordern 

et al. 2008; Kimura et al. 2014). 2-phenoxyethanol can cause serious 

immunogenic and toxic side-effects in humans (Bis & Mallela 2014), whilst 4-

chloro-3,5-dimethylphenol, butylated hydroxytoluene and propyl-4-

hydroxybenzoate are practically non-toxic to mammals including humans (Soni 

et al. 2001; Houtman et al. 2004a). However, some of these compounds were 

shown to have weak estrogenic activity when tested in yeast estrogen reporter 

gene assays and may therefore interrupt normal endocrine functions in animals 

(Routledge et al. 1998; Miller et al. 2001).  
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Figure 5.2 Activities of synthetic preservatives tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression vectors during exposure to a range of 

concentrations of: (A) butylated hydroxytoluene, (B) 4-chloro-3,5-dimethylphenol, (C) 2-phenoxyethanol and (D) propyl-4-

hydroxybenzoate. β-galactosidase enzymatic activities, as measured by OD540 (corrected) values, were determined after 24 h or 48 h (Table 

5.1). Data points represent means of n = 3 replicates. Error bars show ± one standard deviation. Dotted lines indicate baseline.  
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5.3.1.2 Activity of endocrine disrupting chemicals 

 

Endocrine disrupting chemicals (EDCs) are of particular concern since they can 

interfere with hormonal regulation and the normal endocrine system (Kojima et 

al. 2010; De Coster & van Larebeke 2012). It is well-known that most EDCs 

disrupt normal endocrine functions via interaction with sex steroid hormone 

receptors such as ERα (Routledge & Sumpter 1996; Houtman et al. 2004b; Hill 

et al. 2010). Some EDCs may also affect sex steroid hormone receptors 

indirectly by induction of metabolic enzymes via PXR, leading to disturbance of 

the endocrine system (Mikamo et al. 2003; Jacobs et al. 2005). 

The two organic ultraviolet absorbing chemicals, 4-methylbenzylidene camphor 

and octyl methoxycinnamate, tested in this study are used widely in personal 

care products (e.g. sunscreens) and are known to have estrogenic activity 

(Miller et al. 2001). Both compounds were active in yeast strains carrying 

plasmids pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 and 

pGAL4.BsLBD.VP16 (Figure 5.3A–B) although the 95% CIs and CVs of the 

EC50 values were very high (Table 5.1). 4-methylbenzylidene camphor has 

previously been shown to be highly toxic to D. magna using an acute toxicity 

test, with a reported LC50 value of 2.2 µM (Fent et al. 2010) being two orders of 

magnitude lower than the EC50 values observed in this study (EC50 = 107–140 

µM; Table 5.1). Identification of 4-methylbenzylidene camphor and octyl 

methoxycinnamate as activators of both tunicate VDR/PXRα LBDs (Table 5.1) 

is consistent with their previously reported anti-estrogenic activities (4-

methylbenzylidene camphor, IC50 = 87.3 µM; octyl methoxycinnamate, IC50 = 

4.3 mM) and anti-androgenic activities (4-methylbenzylidene camphor, IC50 = 

11.8 µM; octyl methoxycinnamate, IC50 = 312 µM) using a human ERα yeast 

transactivation assay (Gomez et al. 2005; Kunz & Fent 2006).  

Two additional synthetic EDCs (triclosan and benzophenon), with planar 

structures and at least one hydrogen bond acceptor, were tested in this study 

(Table 5.1, Figure 5.1G, H). Triclosan was identified as an activator of yeast 

strains expressing the C. intestinalis VDR/PXRα LBD (pGAL4.CiLBD∆31.VP16 

and pGAL4.CiLBD.VP16), although this activation was relatively weak as 

indicated by the plateau levels of β-galactosidase production (Figure 5.3C). In 
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strains that express the B. schlosseri VDR/PXRα LBD, reduced β-galactosidase 

enzymatic activity at higher concentrations was observed (Figure 5.3C). This 

suppression appeared to be an antagonistic effect mediated through the 

tunicate VDR/PXRα LBD as it was apparent in all strains that carry a tunicate 

VDR/PXRα LBD but not in any of the negative control strains (Appendix 17B). 

Activation of tunicate VDR/PXR orthologues by triclosan (EC50 = 242–318 µM; 

Table 5.1) is consistent with that reported by Jacobs et al. (2005) who showed 

that triclosan moderately activates human PXR (46.2% activity relative to the 

prototypical inducer rifampicin) when transiently transfected into HuH7 cell lines. 

Benzophenone activated yeast strains carrying plasmids 

pGAL4.CiLBD∆31.VP16 and pGAL4.CiLBD.VP16 (Table 5.1). However, 

negative control strains also showed induced β-galactosidase activity (Figure 

5.3D). These results suggest that β-galactosidase activity is induced by a 

process that is not dependant on binding of benzophenone to the tunicate 

VDR/PXRα LBD. In addition, two positive strains (pGAL4.CiLBD∆31.VP16 and 

pGAL4.BsLBD.VP16) showed concentration-dependent reduction of β-

galactosidase activity (Figure 5.3D). Examination of OD620 values indicated a 

toxic effect towards yeast cells only in one strain (pGAL4.BsLBD.VP16), while 

all other strains showed normal growth rates at high concentrations of 

benzophenone (Appendix 17C). The EC50 values obtained from two of the 

strains (pGAL4.CiLBD∆31.VP16 and pGAL4.CiLBD.VP16) need to be treated 

with caution as they may reflect a ligand-independent activation (Table 5.1). 

Identification of benzophenone as a C. intestinalis VDR/PXRα ligand is 

consistent with previous research which showed that benzophenone interacts 

with vertebrate PXR LBDs (e.g. rat PXR) when using a yeast-two hybrid assay 

(Mikamo et al. 2003). 

Collectively, these results suggest the potential of EDCs to interact with tunicate 

PXR orthologues. Endocrine disrupting chemicals such as benzophenone, 

triclosan and 4-methylbenzylidene camphor are important environmental 

pollutants which are frequently detected in rivers, lakes and coastal areas 

(Kolpin et al. 2002; Lindstrom et al. 2002; Langford & Thomas 2008). These 

environmental contaminants can exhibit their endocrine disruptor activities by 

altering PXR-regulated steroid hormone metabolism. Therefore, yeast 
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bioassays utilising PXR LBDs may represent a valuable tool to detect EDCs 

with PXR-like activities in the environment (Mikamo et al. 2003). Further 

research is required to validate the data presented here due to the high 

variability and limited assay sensitivity to some EDC compounds. 
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Figure 5.3 Activities of endocrine disrupting chemicals tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression vectors during exposure to a range of 

concentrations of: (A) 4-methylbenzylidene camphor, (B) octyl-methoxycinnamate, (C) triclosan and (D) benzophenone. β-galactosidase 

enzymatic activities, as measured by OD540 (corrected) values, were determined after 24 h or 48 h (Table 5.1). Data points represent means of 

n = 3 replicates. Error bars show ± one standard deviation. Dotted lines indicate baseline. 
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5.3.1.3 Activity of fungicides 

 

Antifungals are commonly used as pesticides and pharmaceuticals and can 

pose a significant risk to terrestrial and aquatic organisms (Kookana et al. 1998; 

Komarek et al. 2010; Peng et al. 2012). Among the three antifungal chemicals 

tested in this study (Figure 5.4), ketoconazole, an antifungal agent used in 

human and veterinary pharmaceuticals (Zarn et al. 2003), was the most potent 

activator of both tunicate VDR/PXRα yeast bioassays generating EC50 values in 

the mid nM range (Table 5.1). Yeast strains expressing the C. intestinalis 

VDR/PXRα LBD were consistently activated by ketoconazole (EC50 = 337–400 

µM, CV = 5–18%; Table 5.1). These results are comparable to in vivo studies 

showing acute toxicity of ketoconazole towards D. magna neonates (EC50 = 2.8 

µM; Haeba et al. 2008). In contrast, the human PXR LBD was not activated by 

ketoconazole when tested in a transactivation assay using HepG2 cell lines 

(Sinz et al. 2006). This may be attributed to the fact that ketoconazole acts as a 

general inhibitor of human PXR by disrupting the interaction of human PXR with 

the co-activator, steroid receptor co-activator-1 (SRC-1; Huang et al. 2007). A 

SRC-1 orthologue could not be identified in the C. intestinalis genome 

sequence (A. Fidler, unpublished) which may allow activation of the tunicate 

VDR/PXRα LBD yeast bioassays by ketoconazole. These data suggest that the 

yeast bioassay may be used to detect pharmaceutical drugs that cannot be 

detected in mammalian cell lines expressing human PXR (Sinz et al. 2006). 

Detection of ketoconazole and other pharmaceutical compounds in the aquatic 

environment is of increasing importance because they can be relatively 

persistent leading to bioaccumulation in surface and waste waters (Kahle et al. 

2008; Lindberg et al. 2010; Peng et al. 2012). Long-term consumption of these 

environmental pollutants can cause adverse health effects in most organisms, 

including humans (Oros et al. 2003). For example, ketoconazole has been 

implicated in affecting the endocrine systems of aquatic vertebrates since they 

interact with several cytochrome P-450 enzymes such as CYP19 which takes 

part in hormone communication pathways (Zarn et al. 2003; Hasselberg et al. 

2008). 
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The agricultural fungicide 2-phenylphenol was also active in yeast bioassays 

carrying the C. intestinalis and B. schlosseri VDR/PXRα LBD 

(pGAL4.CiLBD.VP16, EC50 = 79 µM; pGAL4.BsLBD.VP16, EC50 = 26 µM; Table 

5.1). The responses were sigmoidal (Figure 5.4B) and relatively consistent (CV 

= 18–37%; Table 5.1). Similarly, human PXR has been shown to be activated 

by 2-phenylphenol in a transactivation assay using COS-7 simian kidney cells 

which was slightly more sensitive than the yeast bioassay (EC20 = 9.8 µM; 

Kojima et al. 2011). 

The fungal antibiotic radicicol, a potent and selective inhibitor of heat shock 

protein 90 (HSP90; Feldman et al. 2009), reliably induced β-galactosidase 

enzymatic activity in strains carrying plasmids pGAL4.CiLBD∆31.VP16, 

pGAL4.CiLBD.VP16 and pGAL4.BsLBD.VP16 (CV = 9–17%; Table 5.1, Figure 

5.4C). Identification of radicicol as an activator of both tunicate VDR/PXRα 

LBDs tested (EC50 = 9.5–13 µM; Table 5.1) was consistent with its reported 

toxicity using tunicate larval metamorphosis bioassays (Ciona savignyi IC99 = 

2.2 µM, Boltenia villosa IC99 = 2.5 µM) suggesting that it may be toxic towards a 

wide range of chordates, including tunicates (Bishop et al. 2002; Cahill et al. 

2012). These data indicate that the yeast bioassay may be a useful tool for 

monitoring these potent toxicants in the marine environment. 
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Figure 5.4 Activities of fungicides tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression 

vectors during exposure to a range of concentrations of: (A) ketoconazole, (B) 2-

phenylphenol and (C) radicicol. β-galactosidase enzymatic activities, as measured by 

OD540 (corrected) values, were determined after 24 h or 48 h (Table 5.1). Data points 

represent means of n = 3 replicates. Error bars show ± one standard deviation. Dotted 

lines indicate baseline. 
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5.3.1.4 Activity of insecticide 

 

One of the most commonly used active ingredients in insect repellents, n,n-

diethyl-m-toluamide (DEET), was tested for its ability to activate the tunicate 

yeast bioassays. Yeast strains expressing the C. intestinalis VDR/PXRα LBD 

(pGAL4.CiLBD∆31.VP16 and pGAL4.CiLBD.VP16) showed concentration-

dependent induction of β-galactosidase activity (Table 5.1, Figure 5.5A). In 

contrast, a negative effect on β-galactosidase induction was observed in strains 

expressing the B. schlosseri VDR/PXRα LBD (pGAL4.BsLBD.VP16; Figure 

5.5A). This suppression effect was also apparent in reduced OD620 values at 

high concentrations of DEET, suggesting a general toxicity towards this 

particular yeast strain (Appendix 17D). The EC50 values observed in this in vitro 

yeast bioassay (54–99 µM; Table 5.1) were comparable to previously reported 

toxicity measures towards D. magna (EC50 = 177–836 µM; Seo et al. 2005; 

Weeks et al. 2012), the green alga Pseudokirchnierella subcapitata (EC50 = 21 

µM; Harada et al. 2008) and the marine luminescent bacterium Photobacterium 

phosphoreum (EC50 = 355 µM; Kaiser & Palabrica 1991) using in vivo acute 

toxicity bioassays. Although DEET is present in the aquatic environment world-

wide (e.g. drinking water, streams, open seawater, groundwater and treated 

effluent), concentrations in surface waters are several hundreds of times lower 

than those toxic to aquatic organisms, and the probability for adverse effects to 

aquatic species is low (Costanzo et al. 2007; Weeks et al. 2012). However, 

identification of DEET as an activator of the C. intestinalis VDR/PXR LBD 

suggests that it may interact with invertebrate PXR orthologues. Due to the 

close phylogenetic relationship of tunicates and vertebrates (Delsuc et al. 

2008), it could have adverse effects on vertebrate physiology via interaction 

with PXR.  
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5.3.1.5 Activity of pharmaceutical drugs 

 

Interest in the presence of pharmaceutical drugs in the environment has 

increased significantly over the last decade because hundreds of tonnes of 

these compounds are dispensed every year. For example, diclofenac sodium 

salt (diclofenac) is one of the most abundant pharmaceutically active 

compounds present in the water cycle (Heberer et al. 2002). Diclofenac induced 

β-galactosidase enzymatic activity in strains carrying plasmids 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 and pGAL4.BsLBD.VP16 (Table 

5.1, Figure 5.5B) albeit with high variability (CV = 38–44%; Table 5.1). The 

yeast strain expressing the B. schlosseri VDR/PXRα LBD, pGAL4.BsLBD.VP16, 

was more strongly activated by diclofenac than the strain expressing the C. 

intestinalis VDR/PXRα LBD, as indicated by the plateau levels of β-

galactosidase production and EC50 values (Figure 5.5A, Table 5.1). The EC50 

values observed in this study (11–91 µM; Table 5.1) were in the same range as 

those previously reported for zebrafish (Danio rerio) using embryo toxicity tests 

(EC50 = 17 µM), D. magna using acute immobilisation tests (EC50 = 213 µM) 

and planktonic green alga (Desmodesmus subspicatus) using growth inhibition 

tests (EC50 = 226 µM; van den Brandhof & Montforts 2010). Since these 

concentrations are classified as being potentially harmful to aquatic organisms 

(Cleuvers 2004), the yeast bioassay may provide an alternative method of 

detecting pharmaceuticals and harmful synthetic chemicals in the environment.  
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Figure 5.5 Activities of n,n-diethyl-m-toluamide (DEET) and diclofenac sodium 

salt tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression 

vectors during exposure to a range of concentrations of (A) n,n-diethyl-m-toluamide 

(DEET) and (B) diclofenac sodium salt. β-galactosidase enzymatic activities, as 

measured by OD540 (corrected) values, were determined after 48 h (Table 5.1). Data points 

represent means of n = 3 replicates. Error bars show ± one standard deviation. Dotted 

lines indicate baseline. 
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5.3.2 Activity of commercial oil dispersants in the tunicate yeast 

bioassays 

 

Based on the findings that synthetic chemicals (e.g. pharmaceuticals, 

pesticides, etc.) can be detected using the yeast bioassay, five complex 

chemical mixtures that are frequently used to mitigate marine oil spills were 

analysed (Table 5.2). Three of the tested dispersants showed complete 

sigmoidal concentration-response curves in the tunicate yeast bioassays (Table 

5.2, Figure 5.6A–C). Dispersant D only activated the C. intestinalis VDR/PXRα 

LBD-based yeast bioassay but not the B. schlosseri VDR/PXRα equivalent 

(Figure 5.6D). Dispersant E showed no ligand-dependent induction of β-

galactosidase activity in any of the yeast strains tested (Figure 5.6E). The CVs 

of the EC50 values for oil dispersants that induced β-galactosidase activity in 

yeast strains were within the acceptable range of 6–19% (Table 5.2). These 

data (EC50 = 67–207 mg/L) were comparable to previous in vivo studies using 

the marine rotifer Brachionus plicatilis (LC50 = 0.5–40 mg/L; Kujawinski et al. 

2011) indicating that oil dispersants are highly toxic towards micro-zooplankton. 

In addition, it has been shown that oil dispersants are also toxic towards a wide 

range of marine organisms including anemones, corals, crustaceans, starfish, 

molluscs, fish, and sperm whale (Wise & Wise 2011; Goodbody-Gringley et al. 

2013; Almeda et al. 2014). In addition, three commercially available dispersants 

have been shown to increase cytotoxicity in vitro (LC50 = 250–400 mg/L) using 

HepG2 cells in a hepatotoxicity screening assay suggesting that dispersants 

can also cause adverse health effects in humans (Bandele et al. 2012; 

D'Andrea & Reddy 2013). Further research is needed before clear conclusions 

can be drawn regarding the toxicity of dispersants towards marine organisms. 

However, efficient monitoring tools that allow early detection of these 

environmental contaminants are required to assist in mitigating the 

environmental impact and long-term consequences of these surfactants.  
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Table 5.2 Activation of the tunicate yeast bioassays by five commercial oil dispersants. 

Ligand-dependent induction of β-galactosidase enzymatic activity was measured in yeast strains carrying plasmids 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 or pGAL4.BsLBD.VP16. Mean effective concentrations (EC50 values) and 95% 

confidence intervals (95% CI) are given in mg/L. 95% confidence intervals represent variation within a triplicate measurement 

(n = 3). Coefficients of variance (CV) are given in % for triplicate intra-plate measurements. All oil dispersants were dissolved 

in ethanol. 

 

Oil dispersant Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

   EC50  (95% CI) CV EC50  (95% CI) CV EC50  (95% CI) CV 

Dispersant A a Surfactant Dr Tremblay 101 (88–117) 11 67 (53–83)  10 118 (21–660) 6 

Dispersant B a Surfactant Dr  Tremblay 163 (138–193) 13 151 (120–191) 16 169 (107–266l) 6 

Dispersant C a Surfactant Dr Tremblay 137 (105–179) 11 126 (104–152) 19 207 (161–266) 12 

Dispersant D a Surfactant Dr Tremblay 92 (63–135) 14 146 (123–174) 10 NI (NI) DNC 

Dispersant E a Surfactant Dr Tremblay NI (DNC) DNC NI (DNC) DNC ~11 (DNC) 30 

Abbreviations: DNC, did not compute; NI, no induction of β-galactosidase enzymatic activity. 
a Strains were incubated for 48 hours. 
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Figure 5.6 Activities of oil dispersants tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression vectors during exposure to a range of 

concentrations of: (A) dispersant A, (B) dispersant B, (C) dispersant C and (D) dispersant D. β-galactosidase enzymatic activities, as 

measured by OD540 (corrected) values, were determined after 48 h (Table 5.2). Data points represent means of n = 3 replicates. Error bars 

show ± one standard deviation. Dotted lines indicate baseline. 
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Figure 5.6 (cont.) Activities of oil dispersants tested in the yeast bioassays. 

Responses of yeast strains carrying one of seven different pGBKT7-based expression 

vectors during exposure to a range of concentrations of (E) dispersant E. β-

galactosidase enzymatic activities, as measured by OD540 (corrected) values, were 

determined after 48 h (Table 5.2). Data points represent means of n = 3 replicates. 

Error bars show ± one standard deviation. Dotted lines indicate baseline. 

 

5.3.3 Characteristics of the yeast bioassays 

 

Although the yeast bioassays were activated by a wide range of synthetic 

chemicals, there was considerable variation of activity between different test 

compounds (Table 5.1). This may be due to structural differences between the 

chemicals analysed, which are likely to affect the receptor-binding affinity. As 

has been previously reported for a C. intestinalis VDR/PXRα LBD-based 

mammalian cell line assay (Fidler et al. 2012; Chapter Three), the tunicate 

VDR/PXRα LBD-based yeast bioassay appeared to be more sensitive towards 

structurally complex chemicals (e.g. ketoconazole, radicicol; Figure 5.1I&K and 

5.4A&C) Among the remaining compounds, a clear correlation between assay 

sensitivity and compound structure could not be identified. For example, yeast 

bioassays were highly sensitive towards butylated hydroxytoluene but were less 

sensitive towards the structurally similar 2-phenoxyethanol (Figure 5.1A&C and 

5.2A&C, Table 5.1). Another possible explanation for the high assay variability 

is the solubility of the test compounds in ethanol. 2-phenylphenol, 4-chloro-3,5-
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dimethylphenol and triclosan are practically insoluble in ethanol. Consequently, 

follow-up studies were undertaken where all 13 synthetic chemicals were 

dissolved in DMSO and retested in the yeast bioassays. Compounds that were 

dissolved in DMSO generally showed reduced sensitivity (higher EC50 values) 

but with increased variability (greater CV) when compared to data generated 

from compounds dissolved in ethanol (Appendix 16). It also appeared that the 

high assay variability was more evident with the low level β-galactosidase 

enzymatic activities (corrected OD540 <0.2) as indicated by shallow log-dose 

response curves (Table 5.1, Figures 5.2–5.5).  

To overcome these differences in sensitivity, additional organic solvents (e.g. 

acetone) should be considered in future bioassays as it is likely to result in 

improved assay sensitivity and consistency for certain compounds. In addition, 

an increase in replicate numbers (e.g. five replicates) and robotic liquid handling 

may improve reliability and repeatability of the bioassay as high intra-assay 

variability often reflects issues arising from pipetting very small volumes 

(Schultheiss & Stanton 2009). 

The data from this chapter shows that tunicate yeast bioassays represent an 

accurate, sensitive and reliable alternative to traditional in vivo toxicity screening 

assays for some of the compounds tested (e.g. butylated hydroxytoluene, 

ketoconazole and radicicol). Based on biologically relevant receptors, the 

tunicate VDR/PXRα LBD-based yeast bioassay may provide consistent proxies 

for assessing the effects of environmental contaminants on invertebrate 

members of coastal ecosystems (Stewart et al. 2014).  

One of the main advantages of the yeast bioassay over in vivo assays is the 

ability to assess the toxicity of complex mixtures rather than single, well-

characterised pure compounds. Analysis of complex mixtures is particularly 

important when assessing toxicity of environmental pollutants because the 

additive interaction of these compounds in mixtures can cause different 

biological effects compared to pure compounds (Kinani et al. 2010; Bandele et 

al. 2012). Additive mixture effects have been demonstrated in vitro for anti-

androgenic pesticides, for compounds with estrogenic properties, and for 

compounds tested in vivo (Payne et al. 2000; Birkhoj et al. 2004). Low exposure 

to multiple EDCs with similar modes of action has also been shown to deliver a 



CHAPTER FIVE: ACTIVITIES OF EMERGING CONTAMINANTS 

 
 

toxicological response, even though the effect of the individual compounds was 

below the limit of detection (Silva et al. 2002; Christiansen et al. 2008). The 

tunicate yeast bioassay may provide an alternative method to fill this gap. 

 

5.4 Conclusion 

 

The tunicate VDR/PXRα LBD-based yeast bioassays tested in this study were 

activated by a wide range of structurally diverse synthetic chemicals. These 

chemicals included bioactive compounds frequently used as preservatives in; 

foods, drugs and cosmetics, as UV-filters in personal care products, and as 

antifungal agents in pesticides and pharmaceuticals. This is of particular 

importance because many of these chemicals are frequently discharged into the 

environment, and can disrupt normal physiological functions (Oros et al. 2003; 

Kinani et al. 2010; Stewart et al. 2014).  

This chapter highlights the feasibility of using tunicate VDR/PXRα LBD-based 

yeast bioassays for detecting anthropogenic chemicals. Future research should 

focus on testing mixtures, formulations and environmental samples in the yeast 

bioassays. Combining these in vitro yeast bioassays with detailed chemical 

analyses will provide a powerful tool to detect and identify bioactive compounds 

within complex samples (Eggen & Segner 2003). An important aspect to be 

considered when developing the tunicate yeast bioassay into an environmental 

monitoring tool is the extreme permissiveness of the tunicate VDR/PXRα LBD 

towards a wide range of ligands (Watkins et al. 2001; Watkins et al. 2003; 

Chrencik et al. 2005). It is likely that the yeast bioassay is less sensitive towards 

certain classes of pollutants (e.g. EDCs) when compared to other NR-reporter 

assays (e.g. ERα reporter assay), which use highly selective NR LBDs that bind 

a structurally limited range of ligands (Routledge & Sumpter 1996; Zhang et al. 

2004; Krasowski et al. 2005). However, the ability to detect a wide range of 

structurally diverse bioactive chemicals makes the tunicate yeast bioassay a 

valuable tool for high-throughput screening of environmental samples. 
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Coastal monitoring buoy used to remotely collect environmental data on the 

water quality of Tasman Bay, New Zealand.  
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CHAPTER SIX 

Conclusions 

 

6.1 Thesis synthesis 

 

Detailed discussions are provided at the end of each chapter of this thesis. The 

purpose of this section is to collate and summarise the major conclusions 

arising from the key findings and recommend areas for further research. 

The research outcomes from this thesis demonstrate that a specific group of 

ligand-activated transcription factors, namely tunicate xenobiotic receptors, may 

provide a source of sensor elements that have been pre-moulded by natural 

selection for detecting bioactive chemicals. High intra-taxa genetic diversity 

within tunicate xenobiotic receptor genes, orthologues to vertebrate vitamin D 

receptor (VDR) and pregnane X receptor (PXR), was reported in Chapter Two. 

These data supported the notion that tunicate VDR/PXR receptors might 

enhance binding of dietary exogenous bioactives/toxins typically encountered 

by these organisms. This provided the foundation for the development of a 

generic bioassay for assessing the activity of these biological compounds 

(Chapter Three). Recombinant yeast strains were developed in which ligand-

dependent activation of tunicate VDR/PXRs was transduced into easily 

quantifiable phenotypic changes in the yeast strains. In this thesis, I showed 

that tunicate yeast bioassays have the potential for detecting microalgal 

biotoxins (Chapter Three), bioactive compounds that may provide templates for 

drug development (Chapter Four) and environmental contaminants (Chapter 

Five). 

Previously, sequence comparisons between vertebrate taxa have suggested 

positive selection is acting on ligand-binding domain (LBD) coding sequences of 

PXR and its orthologues (Zhang et al. 2004; Krasowski et al. 2005). In Chapter 

Two, high intra-species sequence variation in VDR/PXR LBD coding sequences 

of two tunicates, Ciona intestinalis and Botryllus schlosseri, was reported. To 
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characterise the effect of natural selection at the molecular level, non-

synonymous variation (i.e. amino acid changing) was compared to synonymous 

changes (McDonald & Kreitman 1991) which indicated a strong purifying 

selection process. While this result was unexpected, recent studies have 

suggested that multiple evolutionary forces can affect amino acid substitution 

rates (Bromham 2009; Lourenco et al. 2013), with one critical factor being 

mutation. An elevated per-year mutation rate, due to a large effective population 

size and a short generation time, may explain the extremely highly levels of 

genetic diversity within tunicates (Kimura 1983; Lynch 2008; Tsagkogeorga et 

al. 2012; Berná & Alvarez-Valin 2014). In addition, the rate of environmental 

change and dimensionality of the phenotypic space (organism complexity) can 

affect adaptive rates in some species (Lourenco et al. 2013). While it is difficult 

to evaluate how these factors translate to changes in fitness, it is assumed that 

fast evolving tunicates are able to adapt rapidly to environmental challenges 

(Tsagkogeorga et al. 2012). Adaptive genetic signatures (e.g. mutation rates 

over time) of tunicates can be very informative of changes to our marine 

environment because the influence of environmental factors can lead to 

accumulation of genetic variation (Dalziel et al. 2009; Barrett & Hoekstra 2011). 

One such factor is climate change which imposes novel selection pressures on 

organisms by altering the abiotic and biotic environmental conditions. Although 

studies demonstrating genetic adaptation to climate change-mediated selection 

are still scarce (Merila 2012; Merila & Hendry 2014), the frequencies of some 

well-characterised genetic polymorphisms in Drosophila species have been 

shown to shift with climate change (Umina et al. 2005; Balanya et al. 2006). 

Alternatively, a selective advantage in the marine environment may be 

facilitated through different processes. Ciona intestinalis VDR/PXR protein 

variants consisting of a DNA-binding domain (DBD) but lacking a LBD were 

identified in this study. The persistence of these variants may indicate 

constitutive expression of detoxification genes, thus providing a biochemical 

protection mechanism in a ligand-independent manner. In addition, tunicate 

genomes encode multiple VDR/PXR paralogues, with each subtype potentially 

binding a differing range of ligand structures (Dehal et al. 2002; Denoeud et al. 

2010; Voskoboynik et al. 2013). 
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In previous studies, Fidler et al. (2012) demonstrated that LBDs from a tunicate 

xenobiotic receptor can be activated by microalgal biotoxins when expressed in 

mammalian cell lines. In Chapter Three, C. intestinalis and B. schlosseri 

VDR/PXRα LBDs were functionally expressed in recombinant yeast 

(Saccharomyces cerevisiae) strains as chimeric proteins. Three biotoxins, 

produced by microalgae that are expected to be part of the tunicate diet, were 

identified as putative VDR/PXRα LBD ligands. This supported the idea that the 

natural tunicate VDR/PXRα receptor may be activated by exogenous 

compounds relevant to its marine environment. The sensitivity of the yeast 

bioassay towards both microalgal biotoxins and synthetic compounds appeared 

to depend on several factors, such as the organic solvent used, duration of 

exposure and type of recombinant protein expressed (e.g. C. intestinalis verses 

B. schlosseri VDR/PXRα). This implies that assay sensitivity can be improved 

by changing or varying these factors (Eichbaum et al. 2014). Assay sensitivity 

may also be improved by using a different type of reporter gene. For example, 

yeast-enhanced green fluorescence protein and luciferase reporter assays are 

more sensitive than lacZ (Fan & Wood 2007) and these could be investigated in 

the future for this bioassay.  

The development of robust high-throughput screening (HTS) assays for 

identifying natural marine bioactive compounds for pharmaceutical purposes is 

technically challenging (Martins et al. 2014). Chapter Four, showed that the 

yeast bioassays were highly sensitive towards a small number of marine and 

terrestrial bioactive compounds. These yeast bioassays have a number of 

characteristics that may be beneficial for pharmaceutical screening. The 

orthology of the tunicate VDR/PXRα with vertebrate PXR (Ekins et al. 2008) 

suggests that compounds active in the yeast bioassay may also affect 

vertebrate physiology. This is an important consideration when developing 

bioassays for drug discovery, because the natural biological activities of 

putative drug compounds influence their potential medical applications (Imhoff 

et al. 2011; Martins et al. 2014). The yeast bioassays are also well-suited for 

HTS, which is the most widely used screening approach for the identification of 

novel drug lead compounds (Hughes et al. 2011; Martins et al. 2014). 

Therefore, if sensitivity and reliability of yeast bioassays can be improved in 

future, these assays may provide a template for the development of cost-
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effective methods for the detection of bioactive compounds during the early 

phases of drug discovery.  

Recently, a new class of environmental pollutants, termed emerging 

contaminants (ECs), has received scientific and public interest because they 

may pose a health risk to many organisms, including humans (Gavrilescu et al. 

2015). In Chapter Five, a wide range of synthetic chemicals, such as pesticides, 

pharmaceuticals and surfactants, were shown to activate the tunicate yeast 

bioassays. Although the responses for some of the aforementioned compounds 

were highly variable, the in vitro bioassay has the potential to be a reliable and 

inexpensive tool for monitoring chemical mixtures such as surfactants (e.g. oil 

dispersants; Bandele et al. 2012). By evaluating data generated in the yeast in 

vitro bioassay, it may be possible to predict the effects of environmental 

surfactants on coastal invertebrates, especially when combined with in vivo 

toxicity studies. This is of particular importance since most in vitro bioassays 

focus on assessing the physiological effects that environmental contaminants 

can cause in humans, while overlooking the far-reaching impacts on aquatic 

organisms.  

 

6.2 Future research  

 

The data presented in this thesis provide a foundation for further investigations 

into the molecular evolution, population genetics and function of tunicate 

xenobiotic receptors thought to be involved in the detection of marine bioactive 

compounds. If dietary bioactive xenobiotics act as selective agents in shaping 

the structure of tunicate VDR/PXR LBDs, then it is reasonable to expect that 

exposure to different dietary toxins in species occupying different ecological 

niches will be reflected in intra-species sequence variation in VDR/PXR 

orthologues. This is supported by the fact that geographical location and 

exposure to toxic compounds can generate different mutational variants of a 

species (Whitehead et al. 2003). Genetic analysis of tunicate VDR/PXR 

orthologues from populations from different geographical locations and 

ecological niches may allow identification of targets of adaptive natural selection 
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(Li et al. 2008). Another possible approach could involve measuring differences 

in gene expression between taxa, by considering the hypothesis that at least 

some differences in the pattern or level of transcript abundance represent 

phenotypic traits contributing to adaptation (Ranz & Machado 2006).  

The role of VDR/PXR orthologues in intact, living tunicates has not been 

determined and the toxicity of microalgal biotoxins towards tunicates is currently 

unknown. The development of a tunicate in vivo bioassay, using C. intestinalis 

adults, would assist in addressing these knowledge gaps. These assays would 

complement current in vivo bioassays used to investigate toxicological effects of 

chemicals on metamorphosis and larval development (Bellas et al. 2003; Cahill 

et al. 2012). Another interesting approach for studying the functional role of 

tunicate xenobiotic receptors could involve selective breeding of C. intestinalis 

adults that are homozygous for the VDR/PXR allelic variants that produce 

VDR/PXR proteins lacking a LBD. Exposure of these organisms to a range of 

known xenobiotics, including microalgal biotoxins, may reveal if VDR/PXR 

target genes are constitutively transcribed providing an advantage over ligand-

activated transcription.  

The tunicate yeast bioassay developed in this study represents a promising 

template for the development of a broad-spectrum screening tool which could 

be used for routine microalgal biotoxin detection and bioprospecting. To assess 

the bioassay’s reliability, extracts of toxic shellfish should be tested for presence 

of microalgal biotoxins. It would be particularly useful to compare these in vitro 

data with detailed chemical liquid chromatography–mass spectrometry analyses 

to confirm the yeast bioassay’s value in an applied context. If this can be 

achieved, then the yeast bioassay has the potential to significantly reduce the 

costs associated with current chemistry-based methods and may assist in the 

detection of unknown toxins (Humpage et al. 2010; Nicolas et al. 2014). This 

novel method may also be used by those with little expertise and who have only 

minimal capital to invest in equipment (i.e. developing countries). 

To test the reliability of the yeast bioassay for bioprospecting, libraries of natural 

products and environmental extracts should be analysed for bioactive 

compounds and the resulting data compared with established ligand-binding 

assays used during drug discovery (Pinne & Raucy 2014). Compound libraries 
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are usually composed of crude extracts, simplified extract fractions and pure 

compounds for a well-balanced drug discovery programme (Kingston 2011). 

Crude extracts are complex mixtures of several compounds that may have 

synergistic interaction causing false negative read-outs (Parker et al. 2010). 

Due to the broad-spectrum activity of xenobiotic receptors, interference of other 

compounds that bind to the receptor is likely to cause false positives. Screening 

pre-fractionated libraries would be an effective strategy to avoid these problems 

(Carter 2011). To be applied in bioprospecting, the yeast bioassay needs to be 

amenable to HTS formats (Hughes et al. 2011). All yeast bioassay experiments 

conducted in this thesis were performed in 96-well plate formats which have the 

potential to be miniaturised to high-throughput 1536-well microplate formats 

(Rajasarkka & Virta 2011). The yeast bioassay could easily be adapted to 

robotic liquid handling, one of the main requirements for HTS. Assay 

miniaturisation and robotic liquid handling would likely reduce inter-plate 

variability, thus increasing the over-all reliability of the yeast bioassay. In 

addition, the S. cerevisiae host strain allows for refinements in the detection 

specificities and sensitivities of the yeast bioassay using laboratory-based in 

vitro mutagenesis and directed evolution (Chen & Zhao 2003). Using this 

approach VDR/PXR LBD variant sequences, generated by in vitro mutagenesis, 

can be selected for enhancement of growth rates in the presence of a cognate 

ligand. For example, Chen & Zhao (2003) used random in vitro mutagenesis 

combined with directed evolution to generate novel variants of the human 

estrogen receptor (ERα) LBD that had significantly modified ligand-binding 

properties. 

To be used in environmental monitoring, it is crucial that the yeast bioassays 

meet analytical goals and/or regulatory guidelines. Most ECs generally occur in 

surface and ground waters at very low concentrations (e.g. ng/L to µg/L; 

Stewart et al. 2014). Thus, the relatively low sensitivity and reliability of the 

tunicate yeast bioassays towards a wide range of environmental contaminants 

is currently the major limitation. These limitations could be overcome by 

developing biosensors that are based on tunicate VDR/PXR receptors 

(Rodriguez-Mozaz et al. 2006; Holdgate et al. 2010; Senveli & Tigli 2013). The 

main advantage of biosensors is their cell-free nature, thereby removing the 

limitations associated with cell-based bioassays, such as the need for test 
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compounds to cross cell membranes (Norcliffe et al. 2013). Biosensors typically 

consist of a macromolecule immobilised on a surface via either covalent or 

strong non-covalent bonds (Fechner et al. 2010). An important consideration is 

that such attachments should not significantly influence the natural structure of 

the macromolecule or change its functionality in unpredictable ways (Fechner et 

al. 2010). A wide range of techniques exist to detect and quantify interactions 

between the immobilised macromolecules and potential ligands including; 

calorimetric, acoustic, electrical, magnetic and optical sensing techniques 

(Senveli & Tigli 2013). Development of such biosensor techniques utilising 

tunicate VDR/PXRα receptors as the sensor element may result in a more 

universal and generic detection system compared to yeast-based bioassays. 

Numerous nuclear receptor (NR) LBD-based biosensors have been developed 

for use in environmental monitoring (Dutta et al. 2007) and drug development 

(Fechner et al. 2010; Raucy & Lasker 2013). Among the established xenobiotic 

receptors, the human PXR LBD has been used successfully as the sensor 

element in a number of differing biosensor formats (Moore et al. 2000; Hill et al. 

2011; Lin et al. 2014). These biosensors have confirmed a number of human 

PXR ligands such as; hyperforin, clotrimazole, ginkgolide A, SR12813 and 5b-

pregnane-3,20-dione (Jones et al. 2000; Moore et al. 2000; Lin et al. 2014). The 

successful development of human PXR LBD-based biosensors supports the 

theoretical feasibility of using tunicate VDR/PXR LBDs in biosensor formats to 

screen for bioactive compounds. If routine production of correctly folded and 

soluble tunicate VDR/PXR LBDs can be achieved, they could be used in affinity 

chromatography to identify and isolate novel VDR/PXR ligands, as has recently 

been reported for the human PXR LBD (Dagnino et al. 2014). 

Determining the three dimensional structure of the C. intestinalis and B. 

schlosseri VDR/PXRα receptor represents another important area of future 

research. Crystallisation of the VDR/PXR LBD in complex with a putative ligand 

may provide important insights into the permissiveness of these receptors as 

has been reported for vertebrate PXR (Wallace & Redinbo 2013; Wu et al. 

2013). Previous studies suggested that the C. intestinalis VDR/PXR LBD may 

have narrower ligand selectivity when compared to vertebrate, particularly 

human, PXRs (Ekins et al. 2008; Fidler et al. 2012). While only structural data 

can address these questions, it would be interesting to study the function of the 
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second C. intestinalis VDR/PXR orthologue (VDR/PXRβ) using the recombinant 

yeast strains developed in this study. This gene had a higher genetic diversity 

than VDR/PXRα, and the predicted protein sequence suggested a larger LBD 

than its VDR/PXRα paralogue. Therefore, the VDR/PXRβ LBD may be able to 

bind larger compounds or a complete different set of ligands.  

Due to the highly modular structure of the tunicate yeast bioassay, the 

VDR/PXR LBDs could be exchanged with virtually any suitable PXR 

orthologues from species other than C. intestinalis and B. schlosseri. By 

selecting, on the basis of taxonomy and ecology, the organism to source PXR 

LBDs from, it may be possible to tailor bioassays to search for bioactive 

compounds from differing sources. Ligand binding-domains of potential PXR 

orthologues have been identified in the genomes of other tunicates (e.g. six 

VDR/PXR-like genes were identified in Oikopleura diocia; Denoeud et al. 2010). 

There is no a priori reason why taxon selection should be restricted to the 

tunicates. For example, filter-feeding bivalves use a somewhat different 

mechanism for filtering seawater than tunicates. Therefore, these two groups 

ingest different profiles/size-ranges of marine microorganisms, thus being 

exposed to different toxins (Roje-Busatto & Ujević 2014). Some bioactive 

chemicals may be produced by marine organisms that adhere to hard surfaces. 

Benthic microalgae, such as the dinoflagellate Gambierdiscus toxicus can 

produce highly toxic compounds (e.g. ciguatera-associated toxins; Parsons et 

al. 2011). To detect such toxins, PXR LBDs from surface-grazing animals are 

likely to be more suitable for the yeast bioassay (Richter & Fidler 2014).  
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Aquaculture buoys in Brightlands Bay, Tawhitinui Reach, Marlborough Sounds, 

New Zealand. Photograph provided by Cawthron Institute. 
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APPENDIX ONE 

 

Appendix 1 Primers used for amplification of tunicate xenobiotic receptor orthologues. 

(A) Primers used for the amplification of Ciona intestinalis vitamin D receptor/pregnane X receptor α (CiVDR/PXRα), C. 

intestinalis VDR/PXRβ (CiVDR/PXRβ), C. intestinalis actin (Ciactin) and Botryllus schlosseri VDR/PXRα (BsVDR/PXRα) 

partial coding sequences in polymerase chain reactions (PCRs). (B) Primers used for quantitative polymerase chain reactions 

(qPCR). 

 

A      

Gene GenBank acc. no.  Primer sequence (5’–3’) Amplicon (bp)
a
  

CiVDR/PXRα NM_001078379 Forward AAGTATTTCTGATCCATCGCTGG 1326  

  Reverse GTGGGTTGAACTTCTTTAACAAGAGG   

CiVDR/PXRβ NM_001044366 Forward ATGTCAAATCCTCAAGGCCCATC 1569b  

  Reverse CATGATGTTTTGAGCGAATAGC   

BsVDR/PXRα Not available Forward TGCGARGGCTGYAAAGGITTYTTCAG 1006  

  Reverse CACGTTGGGCATACATTCAAATAC   

Ciactin AJ297725 Forward CTTAGGCAGTTTTAATGCAAGCG 1454  

  Reverse TAGCAGCTGAAGCCGGTTTAGGAA   
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Appendix 1 (cont.) Primers used for amplification of tunicate xenobiotic receptor orthologues. 

 

B 

Transcript GenBank acc. no.  Primer sequence (5’–3’) Amplicon (bp)
a
 Reference 

CiVDR/PXRα NM_001078379 Forward GTTCACTTCACCGACATTATGGAG 103 This study 

  Reverse CGCGATTTGATCTTTTAGGTCC   

CiVDR/PXRβ NM_001044366 Forward GCTAAACAACTTTTCCAACATTTC 100 This study 

  Reverse GGATAGTTGGACAAACTGTGGTA   

Ci actin AJ297725 Forward CTTCCTGACGGACAGGTTATCACC 213 Kulman, et al. 2006 

  Reverse TAGCAGCTGAAGCCGGTTTAGGAA  Kulman, et al. 2006 

Abbreviations: Ci, Ciona intestinalis; Bs, Botryllus schlosseri. 
a Predicted amplicon size in base pair (bp). 
b PCR generated a longer CiVDR/PXRβ amplicon than predicted by the primer positions in the reference sequence (NM_001044366). 
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APPENDIX TWO 

 

Appendix 2 Conserved domain predictions in three tunicate xenobiotic receptor 

protein sequences generated in this study. Predicted locations of DNA-binding 

domain (DBD) and ligand-binding domain (LBD) within the Ciona intestinalis 

vitamin D receptor/pregnane X receptor (CiVDR/PXRα, KC561370), C. 

intestinalis VDR/PXRβ (CiVDR/PXRβ, KC561371) and Botryllus schlosseri 

VDR/PXRα (BsVDR/PXRα, KC561372) conceptual proteins using the Simple 

Modular Architecture Research Tool (SMART; Letunic et al. 2012), the National 

Center for Biotechnology Information (NCBI) Conserved Domain (CD) database 

(NCBI CD; Marchler-Bauer et al. 2011) and the Protein Families database 

(Pfam; Punta et al. 2012). 

 

 SMART NCBI CD Pfam 

 DBD LBD DBD LBD DBD LBD 

CiVDR/PXRα  56–127 244–402 59–130 238–409 57–126 223–414 

CiVDR/PXRβ  1–59 320–480 2–88 312–480 1–58 305–480 

BsVDR/PXRα  2–42 153–311 1–44 145–311 1–40 135–325 
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APPENDIX THREE 

 

  DBD          LBD 
 

                                        10        20        30        40        50        60        70        80        90       100 

VDR_human                      RICGVCGDRATGFHFNAMTCEGCKGFFRR--SMKRKALFTCPFNG-DCRITKDNRRHCQACRLKRCVDIGMMKDQIVLLKSSAIEVIMLRSNESFTMDDM  
VDR_mouse                      RICGVCGDRATGFHFNAMTCEGCKGFFRR--SMKRKALFTCPFNG-DCRITKDNRRHCQACRLKRCVDIGMMKDQIVLLKSSAIEVIMLRSNQSFTLDDM  
VDR_rhesus                     RICGVCGDRATGFHFNAMTCEGCKGFFRR--SMKRKALFTCPFNG-DCRITKDNRRHCQACRLKRCVDIGMMKDQIVLLKSSAIEVIMLRSNESFTMDDM  
VDR_chimpanzee                 RICGVCGDRATGFHFNAMTCEGCKGFFRR--SMKRKALFTCPFNG-DCRITKDNRRHCQACRLKRCVDIGMMKDQIVLLKSSAIEVIMLRSNESFTMDDM  
VDR_cow                        RICGVCGDRATGFHFNAMTCEGCKGFFRR--SMKRKALFTCPFNG-DCRITKDNRRHCQACRLKRCIDIGMMKDQIVLLKSSAIEVIMLRSNQSFTLDDM  
VDR_rat                        RICGVCGDRATGFHFNAMTCEGCKGFFRR--SMKRKALFTCPFNG-DCRITKDNRRHCQACRLKRCVDIGMMKDQIVLLKSSAIEVIMLRSNQSFTMDDM  
VDR_xenopus_laevis             RICGVCGDKATGFHFNAMTCEGCKGFFRR--SMKRKAMFTCPFNG-DCRITKDNRRHCQSCRLKRCVDIGMMKDQIALLKSSVIEVIMLRSNQSFSLDDM  
VDR_stickleback                RICGVCGDKATGFHFNAMTCEGCKGFFRR--SMKRKAAFTCPFNG-SCTITKDNRRHCQACRLKRCVDIGMMKDQIALLKSSAIEIIMLRSNQSFSLEDM  
VDR_medaka                     RICGVCGDKATGFHFNAMTCEGCKGFFRRRRSMKRKASFTCPFNG-SCNITKDNRRHCQACRLKRCIDIGMMKDQIALLKSSAIEIIMLRSNQSFSLEDM  
VDR_zebrafish                  PICGVCGDKATGFHFNAMTCEGCKGFFRR--SMKRKASFTCPFNG-NCTITKDNRRHCQACRLKRCIDIGMMKDQIALLKSSAIEIIMLRSNQSFSLEDM  
VDR_lamprey                    KVCGVCGDKATGYHFNAMTCEGCKGFFRR--SMKRSASFTCPFEG-KCNITKDNRRHCQACRLKRCRDIGMMKDQISLLKASAIEIIILRSNESFTMEDN  
VDR_quail                      RICGVCGDRATGFHFNAMTCEGCKGFFRR--SMKRKAMFTCPFSG-DCKITKDNRRHCQACRLKRCVDIGMMKDQIALLKSSAIEVIMLRSNQSFTMEDM  
VDR_halibut                    RICGVCGDKATGFHFNAMTCEGCKGFFRR--SMKRKASFTCPFNG-SCTITKDNRRHCQACRLKRCIDIGMMKDQIALLKSSAIEIIMLRSNQSFSLEDM  
VDR_salmon                     RICGVCGDKATGFHFNAMTCEGCKGFFRR--SMKRKASFTCPFNG-SCTITKDNRRHCQACRLKRCVDIGMMKDQTALLKSSAIEIIMLRSNQSFNPEDM  
PXR_human                      QICRVCGDKATGYHFNVMTCEGCKGFFRR--AMKRNARLRCPFRKGACEITRKTRRQCQACRLRKCLESGMKKDQISLLKGAAFELCQLRFNTVFNAETG  
PXR_mouse                      QICRVCGDKANGYHFNVMTCEGCKGFFRR--AMKRNVRLRCPFRKGTCEITRKTRRQCQACRLRKCLESGMKKDQISLLKGATFEMCILRFNTMFDTETG  
PXR_rat                        QICRVCGDKANGYHFNVMTCEGCKGFFRR--AMKRNVRLRCPFRKGTCEITRKTRRQCQACRLRKCLESGM--DQISLLKGATFEMCILRFNTMFDTETG  
PXR_rabbit                     QTCRVCGDKANGYHFNVLTCEGCKGFFRR--TVKRNARLRCPFRKGACEITRKTRRQCQACRLRKCLESGM--DQISLLKGATLELCLLRFNTVFNAETG  
PXR_chicken                    KVCAVCGDRATGYHFHVMSCEGCKGFFRR--SILKGVHFTCPFTR-SCPITKAKRRQCQACRLQKCLDVGM--DQISLLKGATLGICQIQFNTVFNEETN  
PXR_rhesus                     QICRVCGDKATGYHFNVMTCEGCKGFFRR--AMKRNARLRCPFRKGACEITRKTRRQCQACRLRKCLESGMKKDQISLLKGATFELCQLRFNTVFNAETG  
PXR_medaka                     KACGVCGDLAKGYHFNALTCEGCKGFFRR--AIKRSSELQCPFLN-NCTITKSNRRSCQACRFQKCQAIGMRSDQISLLKGAAFEMMQIRFNIVFDTATN  
PXR_xenopus_tropicalis         KICRACGDRATGYHFNAMTCEGCKGFFRR--AMKRKLQLSCPFQN-SCVINKSNRRHCQACRLKKCLDIGMRKDQIALLKGSVVEVCVIRFNTMFVPETN  
BXRa_xenopus                   KICRACGDRATGYHFNAMTCEGCKGFFRR--AMKRNLRLSCPFQN-SCVINKSNRRHCQACRLKKCLDIGMRKDQIALLKGSVAEVSVIRFNTVFNPDTN  
BXRb_xenopus                   KICRACGDRATGYHFNAMTCEGCKGFFRR--AMKRNLRLSCPFQN-SCVINKNNRRHCQACRLKKCLDIGMRKDQIALLKGSVLEVCVIRFNRMFNPKTN  
PXR_zebrafish                  KICQVCGDKSTGYHFNAMTCEGCKGFCRR--AMKRPAQLCCPFQS-ACVITKSNRRQCQSCRLQKCLSIGM--DQISLLKGATFEIILIHFNMFFNEVTG  
PXR_opossum                    -----------------MTCEGCKGFFRR--VMKRNVRLRCPFRKGACEITQKTRRQCQACRLRKCLDSGMRKDQISLLKGATFELCLLRFNTVFNAETG  
PXR_cow                        QICRVCGDKATGYHFNVMTCEGCKGFFRR--AMKRNAQPRCPFRKGTCEITQKTRRQCQACRLRKCLESGMRKDQISLLKGAAFELCQLRFNTVFNAETR  
PXR_chimpanzee                 -----------------MTCEGCKGFFRR--AMKRNARLRCPFRKGACEITRKTRRQCQACRLRKCLESGMKKDQIALLKGAAFELCQLRFNTVFNAETG  
VDR/PXRa_ciona_(NP_001071847)  KVCGVCNDKATGYHFNALTCEGCKGFFRR--SVKNSKTFTCTYNN-QCSITKSNRRQCQACRLRKCIQIGMKRDQIALLKSGCTEILFIKANYTYDLEKK  
VDR/PXRb_ciona_(NP_001037831)  ------------MHFGAITCEGCKGFFRR--SVKKNASFSCAFEK-KCEINKNNRKHCQACRFNACLAAGMNSDQIVLLRGGCLEMLVLRSYFAFSCNEN  
VDR/PXRa_ciona_(KC561370)      KVCGVCNDKATGYHFNALTCEGCKGFFRR--SVKNSKTFTCTYNN-QCSITKSNRRQCQACRLRKCIQIGMKRDQIALLKSGCTEILFIKANYTYDLEKK  
VDR/PXRb_ciona_(KC561371)      KICVVCNDKATGMHFGAITCEGCKGFFRR--SVKKNASFSCAFEK-KCEINKNNRKHCQACGFNACLAAGMNSDQIVLLRGGCLEMLVLRSYFAFSCNEN  
VDR/PXRa_botrullus_(KC561372)  ----------------------------R--SMKNGKNFTCPYTG-NCQITKSNRRQCQACRLQKCLRIGMKKDQITLLKSGCTEILFIKANYTYDREQN  
CAR_human                      RNCVVCGDQATGYHFNALTCEGCKGFFRR--TVSKSIGPTCPFAG-SCEVSKTQRRHCPACRLQKCLDAGMRKDQISLLKGAAVEICHIVLNTTFCLQTQ  
CAR_mouse                      RNCVVCGDRATGYHFHALTCEGCKGFFRR--TVSKTIGPICPFAG-RCEVSKAQRRHCPACRLQKCLNVGMRKDQISLLKGAAVEILHISLNTTFCLQTE  
CAR_rat                        RNCVVCGDRATGYHFHALTCEGCKGFFRR--TVSKTIGPICPFAG-RCEVSKAQRRHCPACRLQKCLNVGMRKDQISLLKGAAVEILHISLNTTFCLQTQ  
CAR_rhesus                     RNCVVCGDQATGYHFNALTCEGCKGFFRR--TVSKSIGPTCPFAG-SCEVSKIQRRHCPACRLQKCLDAGMRKDQISLLKGAAVEICHIVLNTTFCLQTQ  
CAR_chimpanzee                 RNCVVCGDQATGYHFNALTCEGCKGFFRR--TVSKSIGPTCPFAG-SCEVSKTQRRHCPACRLQKCLDAGMRKDQISLLKGAAVEICHIVLNTTFCLQTQ  
CAR_cow                        RNCAVCGDRATGYHFHALTCEGCKGFFRR--TVNKSTSLTCPFAG-SCEVNKAQRRHCPACRLQKCLDAGMKKDQISLLKGAAIEICHIALNTTFCLQTQ  
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CAR_opossum                    RSCVVCGDRATGYHFHALTCEGCKGFFRR--TINKGMGLTCPFDQ-CCEVSKNQRRHCPACRLQKCLDVGMKKDQISLLKGAALEICHIELNTIFCPQSQ  
CAR_fur_seal                   RSCMVCGDRATGYHFHALTCEGCKGFFRR--TVSKNTGLTCPFAG-NCKVNKAQRRHCPACRLQKCLDAGMKKDQISLLKGAAVEICHIALNTTFCLQTR  
CAR_baikal_seal                RSCMVCGDRATGYHFHALTCEGCKGFFRR--TVSKNTGLTCPFAG-SCKVNKAQRRHCPACRLQKCLDAGMKKDQISLLKGAAVEICHIALNTTFCLQTR  
CAR_dog                        RNCMVCGDRATGYHFHALTCEGCKGFFRR--TVSKSTGLTCPFAG-SCKVNKAQRRHCPACRLQKCLDAGMRKDQISLLKGAAVEICHIALNTTFCLQTR  
CAR_pig                        RNCAVCGDRATGYHFHALTCEGCKGFFRR--TVNKSTSLICPFAG-SCKVNKAQRRHCPACRLQKCLDAGMKKDQISLLKGAAVEICQIVLNTTFCLQTQ  
EcR_tick                       ELCLVCGDRASGYHYNALTCEGCKGFFRR--SITKNAVYQCKYGN-NCDIDMYMRRKCQECRLKKCLSVGMRPDQITLLKACSSEVMMLRGARKYDVKTD  
EcR_silkworm                   ELCLVCGDRASGYHYNALTCEGCKGFFRR--SVTKNAVYICKFGH-ACEMDMYMRRKCQECRLKKCLAVGMRPDQITLLKASSSEVMMLRVARRYDAASD  
EcR/FXR_sea_urchin             ELCLVCGDRASGFHYNALSCEGCKGFFRR--SITKNAKYNCTRGG-NCEMDMYMRRKCQECRLRKCREVGMLADQILLLKGSAIEVIMLRVALRYDRELD  
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VDR_human                      SWTCGN-QDYKYRVSDVTK----AGHSLELIEPLIKFQVGLKKLNLHEEEHVLLMAICIVSPDRPGVQDAALIEAIQDRLSNTLQTYIRCRHP-PP----  
VDR_mouse                      SWDCGS-QDYKYDITDVSR----AGHTLELIEPLIKFQVGLKKLNLHEEEHVLLMAICIVSPDRPGVQDAKLVEAIQDRLSNTLQTYIRCRHP-PP----  
VDR_rhesus                     SWTCGN-QDYKYRVSDVTK----AGHNLELIEPLIKFQVGLKKLNLHEEEHVLLMAICIVSPDRPGVQDAALIEAIQDRLSNTLQTYIRCRHP-PP----  
VDR_chimpanzee                 SWTCGN-QDYKYRVSDVTK----AGHSLELIEPLIKFQVGLKKLNLHEEEHVLLMAICIVSPDRPGVQDAALIEAIQDRLSNTLQTYIRCRHP-PP----  
VDR_cow                        SWTCGS-PDYKYQVSDVTR----AGHSLELIEPLIKFQVGLKKLNLHEEEHVLLMAICIVSPDRPGVQDAALVEAIQDRLSNTLQTYIRCRHP-PP----  
VDR_rat                        SWDCGS-QDYKYDVTDVSK----AGHTLELIEPLIKFQVGLKKLNLHEEEHVLLMAICIVSPDRPGVQDAKLVEAIQDRLSNTLQTYIRCRHP-PP----  
VDR_xenopus_laevis             SWTCGS-EDFKYKVDDVTQ----AGHNMELLEPLVKFQVGLKKLDLHEEEHVLLMAICILSPDRPGLQDKALVESIQDRLSSTLQTYILCKHP-PP----  
VDR_stickleback                SWSCGG-PDFKYCINDVTK----AGHTLDLLEPLVKFQVGLKKLNLHEEEHVLLMAICLLSPDRPGVQDHGRVEQLQDHLSETLQAYIQVNHP-------  
VDR_medaka                     SWSCGG-PDFKYCVNDVTK----AGHTLELLEPLVKFQVGLKKLNLHEEEHVLLMAICLLSPDRPGVQDHARIEQLQDRLSEALQAYIRVNHP-------  
VDR_zebrafish                  SWSCGG-PDFKYCINDVTK----AGHTLELLEPLVKFQVGLKKLKLHEEEHVLLMAICLLSPDRPGVQDHVRIEALQDRLCDVLQAYIRIQHP-------  
VDR_lamprey                    SWTCGS-NEFKYQIGDVMQ----AGHKLELLEPLVKFQVNMKKLDLHEAEHVLLMAICLFSPDRPGVQDRCRVEEVQEHLTETLRAYIACRHP-LS----  
VDR_quail                      SWTCGS-NDFKYKVSDVTQ----AGHSMDLLEPLVKFQVGLKKLNLHEEEHVLLMAICILSPDRPGVQDTSLVESIQDRLSDTLQTYIRCRHP-PP----  
VDR_halibut                    SWSCGG-PDFKYCINDVTK----AGHTLELLEPLVKFQVGLKKLNLHEEEHVLLMGICLLSPDRPGVQDHARVEQLQDRLPEALQAYIRINHP-------  
VDR_salmon                     SWSCGGGPDFKYCVNDVTK----AGHTLDLLEPLVKFQVGLKKLKLHEEEHVLFMAICLLSPDRPGVQDHAKIEVPQDRLSEVLQAYIRVNHP-------  
PXR_human                      TWECGR---LSYCLED-TA----GGFQQLLLEPMLKFHYMLKKLQLHEEEYVLMQAISLFSPDRPGVLQHRVVDQLQEQFAITLKSYIECNRP-QP----  
PXR_mouse                      TWECGR---LAYCFED-PN----GGFQKLLLDPLMKFHCMLKKLQLHKEEYVLMQAISLFSPDRPGVVQRSVVDQLQERFALTLKAYIECSRP-YP----  
PXR_rat                        TWECGR---LAYCFED-PN----GGFQKLLLDPLMKFHCMLKKLQLREEEYVLMQAISLFSPDRPGVVQRSVVDQLQERFALTLKAYIECSRP-YP----  
PXR_rabbit                     TWECGR---LSYCVED-PE----GGFQQLLVDPLLKFHYMLKKLQLHKEEYVLMQAISLFSPDRPGVVQREVVDQLQERFAITLKAYIECSRP-QP----  
PXR_chicken                    AWECGQ---HCFTIKDGAL----AGFQQIYLEPLLKFHISLKKLRLHEAEYVLLVAMLLFSPDHASVTQRDFIDQLQEKVALTLKSYIDHRHP-MP----  
PXR_rhesus                     TWECGR---LSYCLED-PA----GGFQQLLLEPMLKFHYMLKKLQLHEEEYVLMQAISLFSPDRPGVVQHRVVDQLQEQYAITLKSYIECNRP-QP----  
PXR_medaka                     QWKCGS---INYCIHDAFR----AGFQPFLLDPLFKFHHTLRKLGLGEEEYALIQALSLFSPDRPGVQEHQVIDKIHEKMALALKTWIDCRRT-GP----  
PXR_xenopus_tropicalis         SWECGP---ITYNTEDMTM----AGFRQLFLEPLLRMHRMMRKLNLHNEEYALMAAMALFASDRPGVQDCKKIQNLQEHIALMLKRYIECQRPLSP----  
BXRa_xenopus                   TWECGP---FTYDTEDMFL----AGFRQLFLEPLVRIHRMMRKLNLQSEEYAMMAALSIFASDRPGVCDWEKIQKLQEHIALTLKDFIDSQRPPSL----  
BXRb_xenopus                   TWECGA---FTYNADDMTM----AGFSQQFLEPLLRIHCMMTKLNLESEAYALMATMALFSSDRPGVSDCEKIQNLQEHIALMLKAFIESHRPPSP----  
PXR_zebrafish                  IWECGP---LQYCMDDAFR----AGFQHHLLDPMMNFHYTLRKLRLHEEEYVLMQALSLFSPDRPGVTDHKVIDRNQETLALTLKTYIEAKRN-GP----  
PXR_opossum                    SWECGR---LSYYLD--PE----GALQQLLLEPVLKFHYMLKKLQLHSEEYVLMQAISLFSPDRPGVVQRRVVGQLQERFTVALKAYIECKRP-QP----  
PXR_cow                        TWECGR---LSYCVED-PA----GGFQQLLLEPVLKFHYMLKKLQLHKEEYVLMQAISLFSPDRPGVVQRLVVDQLQERFAMTLKAYIEFNRP-QP----  
PXR_chimpanzee                 TWECGR---LSYCLED-TA----GGFQQLLLEPMLKFHYMLKKLQLHEEEYVLMQAISLFSPDRPGVVQHRVVDQLQEKFAITLKSYIECNRP-QP----  
VDR/PXRa_ciona_(NP_001071847)  ALTLGP--DILYTRDSFLQG----GMSVEYTDNYLKFHEDLSALQLDDVEMSSLSAIALFSADRADLVDQQRVENQQEALALCLQAYSESSWK-------  
VDR/PXRb_ciona_(NP_001037831)  KYMSDK---FQYKPSDFLQ----AGGNKEFVEKYNSLHIRMRKMKLQVEEICLLLALVLFSPDRPGLEDQAKVEQMQDCVANTLQAYEYTHKPPNESSFL  
VDR/PXRa_ciona_(KC561370)      ALTLGP--DILYTRDSFLQG----GMSVEYTDNYLKFHEDLSALQLDDVEMSSLSAIALFSADRADLVDQQRVENQQEALALCLQAYSESSWK-------  
VDR/PXRb_ciona_(KC561371)      KYMSDK---FQYKPSDFLQ----AGGNKEFVEKYNSLHIRMRKMKLQVEEICLLLALVLFSPDRPGLEDQAKVEQMQDCVANTLQAYEYTHKPPNE----  
VDR/PXRa_botrullus_(KC561372)  ALMCGP--GKYYTRDSFILG----GMSEEYTDCYLQFHHDLSHMLLDESELACMCATSLFSGDRDGLENRSLVEEVQERITVALQSYTETIYH-------  
CAR_human                      NFLCGP---LRYTIEDGAR----VGFQVEFLELLFHFHGTLRKLQLQEPEYVLLAAMALFSPDRPGVTQRDEIDQLQEEMALTLQSYIKGQQR-RP----  
CAR_mouse                      NFFCGP---LCYKMEDAVH----AGFQYEFLESILHFHKNLKGLHLQEPEYVLMAATALFSPDRPGVTQREEIDQLQEEMALILNNHIMEQQS-RL----  
CAR_rat                        NFFCGP---LCYKMEDAVH----VGFQYEFLELIIHFHKTLKRLQLQEPEYALMAAMALFSPDRPGVTQREEIDQLQEEVALILNNHIMEQQS-RL----  
CAR_rhesus                     NFLCGP---LRYTIEDAARVSPAVGFQVEFLELLFHFHGTLRKLQLQEPEYVLLAAMALFSPDRPGVTQRHEIDQLQEEMALTLQSYIKGQQQ-RP----  
CAR_chimpanzee                 NFLCGP---LRYTIEDGAR----VGFQVEFLELLFHFHGTLRKLQLQEPEYVLLAAMALFSPDRPGVTQRDEIDQLQEEMALTLQSYIKGQQR-RP----  
CAR_cow                        NFLCGP---LRYTIEDAAQ----AGFQEEFLEFLFGFHRTLRQLQLQEPEYVLMAAMALFSPDRPGITCREEIDQLQEEMALTLQNYIQGQQP-RP----  
CAR_opossum                    TFLCGP---LRYTFQDGAH----VGFQEHFLELLLRFHMTLRRLKLQEPEYVLMAALALFSPDRPGVTQREQIDQFQEEMALTLQNYIRSQQA-RP----  
CAR_fur_seal                   NFLCGP---LCYALEDGVH----VGFQEEFLELLFRFHATLRRLQLQEPEYVLMAAMALFSPDRPGVTRREEIDRLQEVTALTLQSYIKGQPP-RP----  
CAR_baikal_seal                NFLCGP---LRYTLEDGVH----VGFQEEFLELLFRFHATLRRFQLQEPEYVLMAAMALFSPDRPGVTQKEEIDRLQEMMALTLQSYIKGQPP-RH----  
CAR_dog                        HFLCGP---LRYTMEDGVHGLSPAGFQEEFLELLFRFHGTLKRLQLQEPEYVLLAAMALFSPDRPGVTRREEIDHLQEVMALTLQSYIRGQQP-RP----  
CAR_pig                        KFLCGP---LRYTIEDGAH----VGFQEEFLELLFGFHKTLRRLQLQEPEYVLMVAVALFSPDRPGVTQRKEIDQLQEEMALTLQSYIKGQQP-SL----  
EcR_tick                       SIVFAN--NQPYTRDNYRS-----ASVGDSADALFRFCRKMCQLRVDNAEYALLTAIVIFS-ERPSLVDPHKVERIQEYYIETLRMYSENHRPPGK----  
EcR_silkworm                   SVLFAN--NKAYTRDNYRQ-----GGMAYVIEDLLHFCRCMFAMGMDNVHFALLTAIVIFS-DRPGLEQPSLVEEIQRYYLNTLRIYIINQNSASSR---  
EcR/FXR_sea_urchin             AIMFGN--EMPYTRKQLLE-----GGIGDLVDPMYNFAKSMSELDLDYAEFILLMAITILSPDRPAINERERVEQMQETYLDMLRSYLKLRRPHEV----  
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VDR_human                      GSHLLYAKMIQKLADLRSLNEEHSKQYRCLSFQPECSMKLTPLVLEV  
VDR_mouse                      GSHQLYAKMIQKLADLRSLNEEHSKQYRSLSFQPENSMKLTPLVLEV  
VDR_rhesus                     GSHLLYAKMIQKLADLRSLNEEHSKQYRCLSFQPECSMKLTPLVLEV  
VDR_chimpanzee                 GSHLLYAKMI-------------------------------------  
VDR_cow                        GSHLLYAKMIQKLADLRSLNEEHSKQYRCLSFQPESSMKLTPLLFEV  
VDR_rat                        GSHQLYAKMIQKLADLRSLNEEHSKQYRSLSFQPENSMKLTPLVLEV  
VDR_xenopus_laevis             GSRLLYAKMIQKLADLRSLNEEHSKQYRSISFLPEHSMKLTPLMLEV  
VDR_stickleback                GGRLLYAKMIQKLADLRSLNEEHSKQYRSLSFQPEHSMQLTPLVLEV  
VDR_medaka                     GGRLLYAKMIQKLADLRSLNEEHSKQYRSLSFQPEHSMQLTPLVLEV  
VDR_zebrafish                  GGRLLYAKMIQKLADLRSLNEEHSKQYRSLSFQPEHSMQLTPLVLEV  
VDR_lamprey                    CKHMLYTKMVEKLTELRSLNEEHSKQYLQISQDAVNKEDLPPLLLEV  
VDR_quail                      GSRLLYAKMIQKLADLRSLNEEHSKQYRCLSFQPEHSMQLTPLVLEV  
VDR_halibut                    GGRLLYAKMIQKLADLRSLNEEHSKQYRSLSFQPEHSMQLTPLVLEV  
VDR_salmon                     GGRLLYARMIQKLADLRSLNEEHSKQYRSLSFQPEHSMQLTPLVLEV  
PXR_human                      AHRFLFLKIMAMLTELRSINAQHTQRLLRIQDIHP---FATPLMQEL  
PXR_mouse                      AHRFLFLKIMAVLTELRSINAQQTQQLLRIQDSHP---FATPLMQEL  
PXR_rat                        AHRFLFLKIMAVLTELRSINAQQTQQLLRIQDTHP---FATPLMQEL  
PXR_rabbit                     THRFLFLKIMAVLTELRTINAQHTQRLLRIQDTHP---FATPLMREL  
PXR_chicken                    EGRFLYAKLLLLLTELQTLKMENTRQILHIQDLSS----MTPLLSEI  
PXR_rhesus                     AHRFLFLKIMAMLTELRSINAQHTQRLLRIQDIHP---FATPLMQEL  
PXR_medaka                     GKHLLYPKIIACLTELRSMSEEHSKQILQIQDIQPD--TITPLLMEV  
PXR_xenopus_tropicalis         QNRLLYPKIMECLTELRTVNDIHSKQLLEIWDIQP---DATPLLREV  
BXRa_xenopus                   QNRLLYPKIMECLTELRTVNDIHSKQLLEIWDIQP---DATPLMREV  
BXRb_xenopus                   QNRLLYPKIMECLTELRTINDIHSKQLMEIWDIQP---DVTPLMREV  
PXR_zebrafish                  EKHLLFPKIMGCLTEMRSMNEEYTKQVLKIQDMQP---EVSPLWLEI  
PXR_opossum                    AHRFLFLKIIAILTELRTINAQHTKRLLQIEDIHP---FATPLMREL  
PXR_cow                        AHRFLFLKIMAILTELRSLSAEHTQQLLRIHDVHP---FATPLMQEL  
PXR_chimpanzee                 AHRFLFLKIMAMLTELRSINAQHTQRLLRIQDIHP---FATPLMQEL  
VDR/PXRa_ciona_(NP_001071847)  -VRNRFAIIMSFLPRLRTLNSLCTTAFSQVK-KQFGE-EIRPLVKEV  
VDR/PXRb_ciona_(NP_001037831)  QARTMYCELLLILPILRTINMLFAQNIMSLKQTNEK--DMNPLILEV  
VDR/PXRa_ciona_(KC561370)      -IRNRFAIIMSFLPRLRTLNSLCTTAFSQVK-KQFGE-EIR------  
VDR/PXRb_ciona_(KC561371)      -ARTMYCELLLILPILRTIN---------------------------  
VDR/PXRa_botrullus_(KC561372)  -SRVRFPKIMAYLTRLRTLNWHISKTLDRIQSTSEAN-DIKPL----  
CAR_human                      RDRFLYAKLLGLLAELRSINEAYGYQIQHIQGLSA----MMPLLQEI  
CAR_mouse                      QSRFLYAKLMGLLADLRSINNAYSYELQRLEELSA----MTPLLGEI  
CAR_rat                        QSRFLYAKLMGLLAELRSINSAYSYEIHRIQGLSA----MMPLLGEI  
CAR_rhesus                     RDRFLYAKLLGLLAELRSINEAYGYQIQHIQGLSA----MMPLLQEI  
CAR_chimpanzee                 RDRFLYAKLLGLLAELRSINEAYGYQIQHIQGLSA----MMPLLQEI  
CAR_cow                        RDRFLYAKLLGLLADLRSIHDAFWYQIQNIQGLST----MMPLLQEI  
CAR_opossum                    QGRFLYAKMLGLLAELRSLSTEYGRQLQRIQELSA----LMPLLQEI  
CAR_fur_seal                   RDRFLYAKLLGLLAELRSIDNAYGYQIQHIQGLSA----MMPLLQEI  
CAR_baikal_seal                RDRFLYAKLLGLLAELRSINNAYGYQIQHIQGLSA----MMPLLQEI  
CAR_dog                        RDRFLYAKLLGLLAELRSINNAYGHQIQHIQGLSA----MMPLLQEI  
CAR_pig                        RDRFLYAKLLGLLAELRSINKEYWYQIQNIQGLST----MMPLLQEI  
EcR_tick                       ---NYFARLLSILTELRTLGNMNAEMCFSLKVQNK---KLPPFLAEI  
EcR_silkworm                   -CAVIYGRILSVLTELRTLGTQNSNMCISLKLKNR---KLPPFLEEI  
EcR/FXR_sea_urchin             ---LLLPKVLMKLTELRSLNNSHSELLFQLKVKDQ---KIPPLLQEI  
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Appendix 3 Alignment of predicted DNA-binding domains (DBDs) and ligand-binding domains (LBDs) from pregnane X 

receptor (PXR)-related proteins from vertebrates, invertebrate chordates and protostome taxa. GenBank accession numbers 

are as follows: human (Homo sapiens) VDR [NM_00376], rhesus monkey (Macaca mulatta) VDR [Ensembl: 

ENSMMUT00000009414], cow (Bos primigenius) VDR [Ensembl: ENSBTAT00000021832], mouse (Mus musculus) VDR 

[NM_008504], rat (Rattus norvegicus) VDR [NM_009504], Xenopus laevis VDR [U91849], zebrafish (Danio rerio) VDR 

[AF164512], medaka (Oryzias latipes) VDR [Ensembl: ENSORLT00000001311], stickleback fish (Gastrosteus aculeatus) VDR 

[Ensembl: ENSGACT00000006308], sea lamprey (Petromyzon marinus) VDR [AY249863], quail (Coturnix japonica) VDR 

[AAA56725], halibut (Paralichthys olivaceus) VDR [BAA95016], salmon (Salmo salar) VDR [CAG47089], Ciona intestinalis 

VDR/PXRα [NP_001071847 and KC561370], Ciona intestinalis VDR/PXRβ [NP_001037831 and KC561371], Botryllus 

schlosseri VDR/PXRα [KC561372], human PXR [AF061056], rhesus monkey PXR [AF454671], mouse PXR [NP_035066], rat 

PXR [AF151377], rabbit (Oryctolagus cuniculus) PXR [AF31165], chicken (Gallus gallus) PXR [AF276753], Xenopus laevis 

BXRα [BC041187], Xenopus laevis BXRβ [AF305201], Xenopus tropicalis PXR [Ensembl: ENSXETT00000039109], medaka 

PXR [Ensembl: ENSORLT00000022473], zebrafish PXR [AF454674], opossum PXR [Ensembl: ENSMODT00000023109], 

cow (Bos taurus) PXR [Ensembl: ENSBTAT00000026059], chimpanzee (Pan troglodytes) PXR [Ensembl: 

ENSPTRT00000028510], human CAR [NP_005113], mouse CAR [NP_033933], rat CAR [NP_075230], rhesus monkey CAR 

[AAM76230], chimpanzee CAR [NP_001129087], cow CAR [NP_001073236], opossum CAR [Ensembl: 

ENSMODT00000006393], fur seal (Callorhinus ursinus) CAR [BAD00039], Baikal seal (Phoca sibirica) CAR [BAD00038], dog 

(Canis sp.) CAR [Ensembl: ENSCAFT00000020528], pig (Sus scrofa) CAR [BAE54304], domestic silkworm (Bombyx mori) 

EcR [AAA87341], tick (Amblyomma americanum) EcR [AAB94566] and sea urchin (Strongylocentrotus purpuratus) EcR/FXR 

[NP_001123279]. Alignment was modified from Ekins et al. (2008). 
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APPENDIX FOUR 

 

 

Appendix 4 Amplification of Ciona intestinalis vitamin D receptor/pregnane X 

receptor α (VDR/PXRα), VDR/PXRβ and actin partial coding sequences in five 

tissues using end-point polymerase chain reaction (PCR). Primers used for 

amplification are listed in Appendix 1B. Abbreviations: bp, base pair. 
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APPENDIX FIVE 

 

Appendix 5 Approximate probabilities (p) of Cochran’s C Test (A) and Tukey 

HSD Post Hoc Test (B) for the expression of Ciona intestinalis vitamin D 

receptor/pregnane X receptor α (CiVDR/PXRα), C. intestinalis VDR/PXRβ 

(CiVDR/PXRβ) and C. intestinalis actin (Ciactin) in various gut tissues. (A) 

Homogeneous data (non-significant Cochran C) is shown in black numbers and 

non-homogeneous data (significant Cochran C) is highlighted in red numbers. 

(B) P-values with p <0.01 were considered statistically significant (red 

numbers). 

 

A  
Hartley  
F-max 

Cochran  
C 

Bartlett 
Chi-Sq. 

df p 

 CiVDR/PXRα 21.62 0.63 5.14 4 0.273 
 CiVDR/PXRβ 1312 0.91 21.8 4 0.001 
 Ciactin 35.36 0.51 5.08 4 0.278 
       

       

       

B 
CiVDR/PXRα 

Upper 
Branchial 
Sac 

Lower 
Branchial 
Sac 

Upper 
Gut 

Middle  
Gut 

Lower 
Gut 

 Upper Branchial Sac       
 Lower Branchial Sac 0.42      
 Upper Gut 0.01 0.01     
 Middle Gut 0.01 0.01 0.01    
 Lower Gut 0.01 0.01 0.01 0.01   
 

CiVDR/PXRβ 
  

 
 
   

 Upper Branchial Sac       
 Lower Branchial Sac 0.92     
 Upper Gut 0.37 0.80     
 Middle Gut 0.02 0.07 0.37    
 Lower Gut 0.01 0.00 0.01 0.01   
 

Ciactin 
  

 
 
   

 Upper Branchial Sac       
 Lower Branchial Sac 1.00     
 Upper Gut 0.01 0.01     
 Middle Gut 0.01 0.01 0.01    
 Lower Gut 0.01 0.01 0.01 0.01   
Abbreviations: Ci, Ciona intestinalis; Bs, Botryllus schlosseri; df, degrees of freedom. 
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APPENDIX SIX 

 

Appendix 6 Illumina™ sequencing read mapping statistics for Ciona intestinalis 

vitamin D receptor/pregnane X receptor α (CiVDR/PXRα, KC561370), C. 

intestinalis VDR/PXRβ (CiVDR/PXRβ, KC561371) and Botryllus schlosseri 

VDR/PXRα (BsVDR/PXRα, KC561372). 

 

 Reads mapping to reference sequences 

 Pair end Single end read 1 Single end read 2 

CiVDR/PXRα 2,795,419 (36%) 1,380,943 (35%) 1,376,933 (35%) 

CiVDR/PXRβ 1,923,917 (24%) 944,154 (24%) 940,214 (24%) 

BsVDR/PXRα 2,892,225 (37%) 1,334,773 (35%) 1,363,318 (34%) 

Unmapped 262,741 (3%) 277,283 (6%) 256,688 (7%) 

Total 7,874,302 3,937,153 3,937,153 
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APPENDIX SEVEN 

 

 

Appendix 7 Coverage by position for Ciona intestinalis vitamin D 

receptor/pregnane X receptor α (CiVDR/PXRα, KC561370), C. intestinalis 

VDR/PXRβ (CiVDR/PXRβ, KC561371) and Botryllus schlosseri VDR/PXRα 

(BsVDR/PXRα, KC561372) using a maximum coverage of 40,000. 
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APPENDIX EIGHT 

 

Appendix 8 Nucleotide polymorphisms detected in Ciona intestinalis vitamin D 

receptor/pregnane X receptor α (CiVDR/PXRα, 1326 base pairs, bp), C. 

intestinalis VDR/PXRβ (CiVDR/PXRβ, 1569 bp) and Botryllus schlosseri 

VDR/PXRα (BsVDR/PXRα, 1006 bp) using Illumina™ sequencing. Number of 

single nucleotide polymorphisms (SNPs) and indels are given for various 

minimum variant frequencies (fmin var). Shaded area indicates the minimum 

variant frequency ‘cut-off’ value (0.02) used in subsequent analyses.  

 

 CiVDR/PXRα CiVDR/PXRβ BsVDR/PXRα Total  

fmin var TSNPs fSNPs Tindel TSNPs fSNPs Tindel TSNPs fSNPs Tindel TSNPs Tindel 

0.01 28 2.11 2 53 3.38 5 42 4.17 1 42 3 
0.02 28 2.11 1 44 2.81 1 39 3.88  38 1 
0.03 26 1.96 1 43 2.74  38 3.78  36 1 
0.04 26 1.96 1 40 2.55  37 3.68  35 1 
0.05 25 1.88 1 39 2.48  37 3.68  34 1 
0.06 25 1.88 1 38 2.55  37 3.68  34 1 
0.07 21 1.58 1 36 2.42  37 3.68  32 1 
0.08 19 1.43 1 34 2.29  36 3.58  30 1 
0.09 17 1.28  32 2.17  36 3.58  29  
0.1 16 1.21  31 1.97  35 3.48  28  
0.11 16 1.21  30 1.91  34 3.38  27  
0.12 16 1.21  29 1.85  34 3.38  27  
0.13 16 1.21  29 1.85  34 3.38  27  
0.14 15 1.13  26 1.66  34 3.38  26  
0.15 15 1.13  26 1.66  31 3.08  25  
0.16 15 1.13  24 1.53  31 3.08  24  
0.17 15 1.13  24 1.53  30 2.98  24  
0.18 15 1.13  22 1.40  29 2.88  23  
0.19 14 1.06  19 1.21  27 2.68  21  
0.2 14 1.06  19 1.21  27 2.68  21  
Abbreviations: fmin var, minimum variant frequency ‘cut-off’ values; TSNPs, total SNPs; fSNPs, SNP 

frequency (SNP/100 bp); Tindel, total one base pair indels. 
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APPENDIX NINE 

 

Appendix 9 Estimated transition/transversion rate ratios (Ti/Tv) for Ciona intestinalis vitamin D receptor/pregnane X receptor 

α (CiVDR/PXRα, 1326 base pairs, bp), C. intestinalis VDR/PXRβ (CiVDR/PXRβ, 1569 bp) and Botryllus schlosseri VDR/PXRα 

(BsVDR/PXRα, 1006 bp) using the Tamura-Nei model as implemented in the MEGA 5 software package.  

 

Substi- Counts Percent of total counts Rate of individual event 

tution CiVDR/PXRα CiVDR/PXRβ BsVDR/PXRα CiVDR/PXRα CiVDR/PXRβ BsVDR/PXRα CiVDR/PXRα CiVDR/PXRβ BsVDR/PXRα 

Transitions         

All 22 31 31 78 71 80 0.017 0.022 0.032 

A -> G 9 14 17 32 32 44    

T -> C 13 17 14 46 39 36    

 

 

         

Transversions         

All 6 13 8 22 29 20 0.005 0.009 0.008 

A -> T 1 4 6 3.5 9 15    

A -> C 2 3 1 7.5 7 2.5    

T -> G 2 4 1 7.5 9 2.5    

C -> G 1 2 0 3.5 4 0    

Ti/Tv ratios      3.7 2.4 3.9 
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APPENDIX TEN 

 

Appendix 10 Nucleotide polymorphisms detected in Botryllus schlosseri vitamin 

D receptor/pregnane X receptor α (BsVDR/PXRα, 1006 base pairs, bp) 

populations from Nelson Marina (New Zealand) and the eastern Mediterranean 

Coast (Michmoret Beach, Israel). One sequence from each population was 

selected as a reference sequence. Shaded areas indicate single nucleotide 

polymorphisms (SNPs) that were detected in a minimum of two sequences from 

independent amplification reactions. 

 

Position BsVDR/PXRα Nelson Marina  Position BsVDR/PXRα Israel 

(bp) Ref Var aa subst.  (bp) Ref Var aa subst. 

9 T C M -> T  8 A G M -> V 
11 G A K -> E  14 A G N -> D 
32 T C C -> R  31 T A  
40 T C    40 C T   
41 A G T -> A  49 T C  
59 A G T -> A  57 T C I -> T 
61 G A    60 C T T -> M 
76 A G    61 G A   
80 T C C -> R  65 A G S -> G 
82 T C    76 A G   
86 G A A -> T  82 C T   
94 G A    85 A G  
95 T C    95 C T   
108 T C L -> P  106 C T   
115 T C    115 C T   
130 G A    134 A G I -> V 
135 C T I -> T  144 A G H -> R 
144 G A H -> R  145 C T  
148 G A    148 A G   
154 T C   152 A G I -> V 
162 A G K -> R  169 T C  
181 C T   180 A G N -> S 
194 C G R -> G  197 A T S -> C 
197 T A S -> C  199 T C S -> C 
199 T C    213 A G K -> R 
209 T  C W -> R  252 C T T -> M 
218 T C   260 T C S -> P 
246 T C L -> P  271 C T   
252 C T T -> M  281 A G N -> D 
259 C A   289 T A   
271 T C    303 A G E -> G 
281 A G N -> D  305 G A E -> K 
303 A G E -> G  309 A G D -> G 
352 G A   333 G T R -> I 
361 A G    349 C T   
405 T G I -> S  361 A G   
421 G A    369 G A G -> E 
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Appendix 10 (cont.) Nucleotide polymorphisms detected in Botryllus schlosseri 

vitamin D receptor/pregnane X receptor α (BsVDR/PXRα, 1006 base pairs, bp) 

populations from Nelson Marina (New Zealand) and the eastern Mediterranean 

Coast (Michmoret Beach, Israel). 

 

Position BsVDR/PXRα Nelson Marina  Position BsVDR/PXRα Israel 

(bp) Ref Var (bp)  (bp) Ref Var aa subst. 

424 A G    374 T C S -> P 
456 A G H -> R  387 A G N -> S 
460 T C    404 A G   
489 A G E -> G  405 T C I -> V or T 
517 T C   406 C T   
553 G A    409 A G   
576 A G E -> G  421 G A   
580 A C    424 G A   
607 C T    426 C T P -> L 
625 A T    443 T C S -> P 
643 G A   447 A G H -> R 
658 G A   465 C T A -> V 
661 A T D -> E  475 G A  
667 T C    491 T C  
686 G A E -> K  536 T C  
689 G A E -> K  553 G A   
703 C T    569 T C C -> R 
709 G A   573 C T T -> M 
733 T  C    580 C A   
734 A G M -> V  619 G A  
742 T C    625 T A   
748 A G    627 T C L -> S 
760 G T    661 T A D -> E 
763 C T    667 C T   
774 C T T -> I  669 T C I -> T 
775 A G    673 A G  
781 G A    680 A G M -> V 
815 A T S -> T  687 A G E -> G 
822 T C V -> A  703 C T   
865 C T    715 T C  
896 T C F -> L  726 T C L -> P 
903 A G K -> R  733 T C   
913 G A   737 C T  
919 G A    748 G A   
945 A G H -> R  760 T G   
953 A G K -> E  763 T C   
954 A G   765 T C M -> T 
999 A G K -> R  772 C T   
1000 G A    775 G A   
     781 G A   
     787 T C  
     800 G - G   
     819 T C L -> P 
     826 A G   
     835 G C Q -> H 
     837 A G E -> G 
     853 T C  
     865 C T   
     896 T C F -> L 
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Appendix 10 (cont.) Nucleotide polymorphisms detected in Botryllus schlosseri 

vitamin D receptor/pregnane X receptor α (BsVDR/PXRα, 1006 base pairs, bp) 

populations from Nelson Marina (New Zealand) and the eastern Mediterranean 

Coast (Michmoret Beach, Israel). 

 

Abbreviations: aa subst., amino acid substitution caused by SNP in variant sequence; bp, base 
pair; fSNPs, SNP frequency (SNP/100 bp); Ref, reference sequence; TSNPs, total SNPs; Var, 
variant sequence. 

 

Position BsVDR/PXRα Nelson Marina  Position BsVDR/PXRα Israel 

(bp) Ref Var (bp)  (bp) Ref Var aa subst. 

     919 G A   
     931 A G  
     991 C T  
     1000 A G   
TSNPs 76 34 (44%)    89 42 (47%) 
fSNPs 7.55 3.38    8.85 3.97 
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APPENDIX ELEVEN 

 

Appendix 11 Activation of the tunicate yeast bioassays by four synthetic chemicals (A) and five algal toxins (B). 

Ligand-dependent induction of β-galactosidase enzymatic activity was measured in yeast strains carrying plasmids 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 or pGAL4.BsLBD.VP16. Mean effective concentrations (EC50 values) and 95% 

confidence intervals (95% CI) are given in µM for synthetic chemicals (A) and in nM for algal toxins (B). 95% confidence 

intervals represent variation within a triplicate measurement (n = 3). Coefficients of variance (CV) are given in % for triplicate 

intra-plate measurements. All compounds were dissolved in dimethyl sulfoxide (DMSO). 

 

A 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.) EC50 (95% CI) CV EC50 (95% CI) CV EC50 (95% CI) CV 

N-butyl-p-amino-

benzoate a 

Local 

anaesthetic 

Sigma-Aldrich 

(B7753) 

9.4 (7.8–11) 25 6.1 (4.9–7.5) 10 2.4 (0.5–12) 28 

Carbamazepine b Anti-depressant Sigma-Aldrich 

(C4024) 

NI (NI) DNC NI (NI) DNC NI (NI) DNC 

P-aminobenzoic acid b Supplement Sigma-Aldrich 

(A9878) 

NI (NI) DNC NI (NI) DNC NI (NI) DNC 

Bisphenol-A (BPA) b EDC Sigma-Aldrich 

(B1760) 

76 (67–85) 11 66 (59–73) 17 58 (48–69) 16 
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Appendix 11 (cont.) Activation of the tunicate yeast bioassays by four synthetic chemicals (A) and five algal toxins (B). 

 

B 

Abbreviations: BPA, bisphenol-A; DNC, did not compute; EDC, endocrine disrupting chemical; NI, no induction of β-galactosidase enzymatic activity. 
a Strains were incubated for 24 hours. 
b Strains were incubated for 48 hours. 

 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.)  EC50 (95% CI) CV EC50 (95% CI) CV EC50 (95% CI) CV 

Okadaic acid b Microalgal 

biotoxin 

Sapphire Bioscience 

(AB120375) 

NI (NI) DNC NI (NI) DNC NI (NI) DNC 

Pectenotoxin-11 b Microalgal 

biotoxin 

MacKenzie et al. 

2013 

913 (238–3506) 154 545 (150–1985)) 63 NI (NI) DNC 

Portimine b Microalgal 

biotoxin 

Selwood et al. 2013 

 

NI (NI) DNC NI (NI) DNC NI (NI) DNC 

Microcystin-RR b Cyanobac-terial 

toxin 

DHI Lab Products 

(PPS-MCRR) 

NI (NI) DNC NI (NI) DNC NI (NI) DNC 

Anatoxin-A b Cyanobac-terial 

toxin 

NRC Canada 

(IMB-CRM-ATX) 

NI (NI) DNC NI (NI) DNC NI (NI) DNC 
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APPENDIX TWELVE 

 

Appendix 12 Summary of the templates, primers and restriction enzymes used to generate the plasmids used in this study. 

Sites for restriction enzymes encoded within the primer sequences are underlined and regions annealing to target genes are 

indicated in grey. The base vector pGAL4 was obtained from Clontech (Clontech Laboratories Inc., Catalogue No. 630443). 

 

Plasmid Template Primers Region amplified Enzymes Base vector 

pGAL4 N/A N/A N/A N/A pGBKT7  

pGAL4.VP16 pHCA/GAL4(1–

93).ER.VP16 a 

forward:  

5’–CCGGATCCGTGAGCTCCACTTAGACGGCGAGGAC–3’ 

reverse:  

5’–CCCTGCAGCTACCCACCGTACTCGTCAATTC–3’ 

103,274–103,480 
of HM585511 

BamHI/ 

PstI 

pGBKT7  

pGAL4.CiLBD pM2-GAL4-

CiVDR/PXRα b 

forward:  

5’–CCCCATGGAGGGAATGAAGCGCGAATGTATCATGTCA–3’ 

reverse:  

5’–CCGGATCCCATTCAAGCGTTTTCCACGG–3’ 

860–1798 of 
NM_001078379 

NcoI/ 

BamHI 

pGBKT7  

pGAL4.CiLBD

.VP16 

pM2-GAL4-

CiVDR/PXRα b 

forward: 

5’–CCCCATGGAGGGAATGAAGCGCGAATGTATCATGTCA–3’ 

reverse: 

5’–CCGGATCCCAGCGTTTTCCACGGTGGGTTGAAC–3’ 

860–1795 of 
NM_001078379 

NcoI/ 

BamHI 

GAL4.VP16 
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Appendix 12 (cont.) Summary of the templates, primers and restriction enzymes used to generate the plasmids used in this 

study. 

 

Plasmid Template Primers Region amplified Enzymes Base vector 

pGAL4.CiLBD

∆31.VP16 

pM2-GAL4-

CiVDR/PXRα b 

forward:  

5’–CCCCATGGAGGGAATGAAGCGCGAATGTATCATGTCA–3’ 

reverse: 

5’–CCGGATCCCACTGTTGAGGGTTCTCAGCCTTGG–3’ 

860–1702 of 
NM_001078379 

NcoI/ 

BamHI 

GAL4.VP16 

pGAL4.BsLBD

.VP16 

Botryllus 

schlosseri cDNA 

forward:  

5’–CCCCATGGAGGGCATGAAGAAAGAGTGCATCATG–3’ 

reverse:  

5’–CCGGATCCCCACGTTGGGCATACATTCAAATAC–3’ 

116–1006 c of 
KC561372 

NcoI/ 

BamHI 

GAL4.VP16 

pGAL4.BsLBD Botryllus 

schlosseri cDNA 

forward:  

5’–CCCCATGGAGGGCATGAAGAAAGAGTGCATCATG–3’ 

reverse:  

5’–CCGGATCCTCATTACACGTTGGGCATACATTCAAATAC–3’ 

116–1006 c of 
KC561372 

NcoI/ 

BamHI 

GAL4.VP16 

Abbreviations: N/A, not available. 
a Plasmid pHCA/GAL4(1–93).ER.VP16 was generously provided by Prof Didier Picard, University of Geneva, Switzerland (Louvion et al. 1993). 
b Plasmid pM2-GAL4-CiVDR/PXRα was generously provided by Prof Matthew Krasowski, University of Iowa, U.S.A. (Reschly et al. 2007; Ekins et al. 

2008; Fidler et al. 2012).  
c Reverse primer positioned immediately 3’ to the KC561372 sequence. 



222 

 
 

APPENDIX THIRTEEN 

 

Appendix 13 Summary of the predicted proteins encoded by the seven plasmids used in this study. Stop codons are indicated 

(*). 

 

Plasmid name GAL4-DBD sequence  

(147 residues) 

Linker 

sequence 

LBD sequence C-terminal/ 

VP16 sequence 

pGAL4 MKLLSSIEQACDICRLKKLKCSKEK
PKCAKCLKNNWECRYSPKTKRSPL
TRAHLTEVESRLERLEQLFLLIFPRE
DLDMILKMDSLQDIKALLTGLFVQD
NVNKDAVTDRLASVETDMPLTLRQ
HRISATSSSEESSNKGQRQLTVS 

PEFVIRLTI
GRAAIMEE
QKLISEED
LHMAME 

N/A AEFPGIRRPAA
AA* 

pGAL4.VP16 MKLLSSIEQACDICRLKKLKCSKEK
PKCAKCLKNNWECRYSPKTKRSPL
TRAHLTEVESRLERLEQLFLLIFPRE
DLDMILKMDSLQDIKALLTGLFVQD
NVNKDAVTDRLASVETDMPLTLRQ
HRISATSSSEESSNKGQRQLTVS 

PEFVIRLTI
GRAAIMEE
QKLISEED
LHMAMEA
EFP 

N/A GIRELHLDGED
VAMAHADALD
DFDLDMLGDG
DSPGPGFTPH
DSAPYGALDM
ADFEFEQMFT
DALGIDEYGG* 

pGAL4.CiLBD MKLLSSIEQACDICRLKKLKCSKEK
PKCAKCLKNNWECRYSPKTKRSPL
TRAHLTEVESRLERLEQLFLLIFPRE
DLDMILKMDSLQDIKALLTGLFVQD
NVNKDAVTDRLASVETDMPLTLRQ
HRISATSSSEESSNKGQRQLTVS 

PEFVIRLTI
GRAAIMEE
QKLISEED
LHMAME 

GMKRECIMSPDEIQMKKTLVLSNRIKRATMQWVPMELTN
DQKILLDTICSAFIQSNNLPEKGVIRGGEEVRQDADKGSP
CSSPSSSSNNSNFLELIKRIANDIAARTPSNMTNPAHVVHF
TDIMEFSIKEIIKFCKKIPTFMDLDLKDQIALLKSGCTEILFIK
ANYTYDLEKKALTLGPDILYTRDSFLQGGMSVEYTDNYLK
FHEDLSALQLDDVEMSSLSAIALFSADRADLVDQQRVEN
QQEALALCLQAYSESSWKVRNRFAIIMSFLPRLRTLNSLC
TTAFSQVKKQFGEEIRPLVKEVQPTVENA* 

N/A 
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Appendix 13 (cont.) Summary of the predicted proteins encoded by the seven plasmids used in this study. 

pGAL4.CiLBD.VP16 MKLLSSIEQACDICRLKKLKCSKE
KPKCAKCLKNNWECRYSPKTKRS
PLTRAHLTEVESRLERLEQLFLLIF
PREDLDMILKMDSLQDIKALLTGL
FVQDNVNKDAVTDRLASVETDMP
LTLRQHRISATSSSEESSNKGQR
QLTVS 

PEFVIR
LTIGRA
AIMEE
QKLISE
EDLHM
AME 

GMKRECIMSPDEIQMKKTLVLSNRIKRATMQWVPMELTND
QKILLDTICSAFIQSNNLPEKGVIRGGEEVRQDADKGSPCS
SPSSSSNNSNFLELIKRIANDIAARTPSNMTNPAHVVHFTDI
MEFSIKEIIKFCKKIPTFMDLDLKDQIALLKSGCTEILFIKANYT
YDLEKKALTLGPDILYTRDSFLQGGMSVEYTDNYLKFHEDL
SALQLDDVEMSSLSAIALFSADRADLVDQQRVENQQEALA
LCLQAYSESSWKVRNRFAIIMSFLPRLRTLNSLCTTAFSQV
KKQFGEEIRPLVKEVQPTVENA 

GIRELHLDGED
VAMAHADALD
DFDLDMLGDG
DSPGPGFTPH
DSAPYGALDM
ADFEFEQMFT
DALGIDEYGG* 

pGAL4.CiLBD∆31.VP16 MKLLSSIEQACDICRLKKLKCSKE
KPKCAKCLKNNWECRYSPKTKRS
PLTRAHLTEVESRLERLEQLFLLIF
PREDLDMILKMDSLQDIKALLTGL
FVQDNVNKDAVTDRLASVETDMP
LTLRQHRISATSSSEESSNKGQR
QLTVS 

PEFVIR
LTIGRA
AIMEE
QKLISE
EDLHM
AME 

GMKRECIMSPDEIQMKKTLVLSNRIKRATMQWVPMELTND
QKILLDTICSAFIQSNNLPEKGVIRGGEEVRQDADKGSPCS
SPSSSSNNSNFLELIKRIANDIAARTPSNMTNPAHVVHFTDI
MEFSIKEIIKFCKKIPTFMDLDLKDQIALLKSGCTEILFIKANYT
YDLEKKALTLGPDILYTRDSFLQGGMSVEYTDNYLKFHEDL
SALQLDDVEMSSLSAIALFSADRADLVDQQRVENQQEALA
LCLQAYSESSWKVRNRFAIIMSFLPRLRTLNS 

GIRELHLDGED
VAMAHADALD
DFDLDMLGDG
DSPGPGFTPH
DSAPYGALDM
ADFEFEQMFT
DALGIDEYGG* 

pGAL4.BsLBD MKLLSSIEQACDICRLKKLKCSKE
KPKCAKCLKNNWECRYSPKTKRS
PLTRAHLTEVESRLERLEQLFLLIF
PREDLDMILKMDSLQDIKALLTGL
FVQDNVNKDAVTDRLASVETDMP
LTLRQHRISATSSSEESSNKGQR
QLTVS 

PEFVIR
LTIGRA
AIMEE
QKLISE
EDLHM
AME 

GMKKECIMSHTEIQMKKNLMLNNKIKRSVMEWKPLEYSAE
RRQLVTLISESHTQTNGPPDIREEDGMLTIRSRDPGASPAS
TSSGFSDLINQMTQDIVATAPGPSNPSKSHLRHFSAIMEFSI
KEIIKFCKKIPSFTSLSLKDQITLLKSGCTEILFIKANYTYDRE
QNALMCGPGKYYTRDSFILGGMSEEYTDCYLQFHHDLSH
MLLDESELACMCATSLFSGDRDGLENRSLVEEVQERITVAL
QSYTETIYHSRVRFPKIMAYLTRLRTLNWHISKTLDRIQSTS
EANDIKPLVFECMPNV** 

N/A 

pGAL4.BsLBD.VP16 MKLLSSIEQACDICRLKKLKCSKE
KPKCAKCLKNNWECRYSPKTKRS
PLTRAHLTEVESRLERLEQLFLLIF
PREDLDMILKMDSLQDIKALLTGL
FVQDNVNKDAVTDRLASVETDMP
LTLRQHRISATSSSEESSNKGQR
QLTVS 

PEFVIR
LTIGRA
AIMEE
QKLISE
EDLHM
AME 

GMKKECIMSHTEIQMKKNLMLNNKIKRSVMEWKPLEYSAE
RRQLVTLISESHTQTNGPPDIREEDGMLTIRSRDPGASPAS
TSSGFSDLINQMTQDIVATAPGPSNPSKSHLRHFSAIMEFSI
KEIIKFCKKIPSFTSLSLKDQITLLKSGCTEILFIKANYTYDRE
QNALMCGPGKYYTRDSFILGGMSEEYTDCYLQFHHDLSH
MLLDESELACMCATSLFSGDRDGLENRSLVEEVQERITVAL
QSYTETIYHSRVRFPKIMAYLTRLRTLNWHISKTLDRIQSTS
EANDIKPLVFECMPNV 

GIRELHLDGED
VAMAHADALD
DFDLDMLGDG
DSPGPGFTPH
DSAPYGALDM
ADFEFEQMFT
DALGIDEYGG* 

Abbreviations: N/A, not available. 
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APPENDIX FOURTEEN 

 

 

Appendix 14 Suppression of growth of recombinant yeast strains by: (A) n-

butyl-p-aminobenzoate and (B) carbamazepine. Cell densities were quantified 

by OD620 values. Growth suppression (i.e. toxic) effects were detected by 

changes in OD620 values over time (∆OD620 = OD620 after 48 h – OD620 after 

16 h). Data points represent means of n = 3 replicates. Error bars show ± one 

standard deviation. Strains carrying plasmids pGAL4.CiLBD∆31.VP16, 

pGAL4.CiLBD.VP16 and pGAL4.BsLBD.VP16 were omitted from this analysis 

because the media colouration arising from hydrolysis of chlorophenol red-β-D-

galactopyranoside (CPRG) interfered with OD620 measurements.  
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APPENDIX FIFTEEN 

 

 

Appendix 15 Suppression of growth of recombinant yeast strains by: (A) (-)-

deoxydihydrokalafungin and (B) (+)-deoxykalafungin. Cell densities were 

quantified by OD620 values. Growth suppression (i.e. toxic) effects were 

detected by changes in OD620 values over time (∆OD620 = OD620 after 24 h – 

OD620 after 16 h). Data points represent means of n = 3 replicates. Error bars 

show ± one standard deviation. 
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APPENDIX SIXTEEN 

 

Appendix 16 Activation of the yeast bioassays by 13 emerging contaminants. 

Ligand-dependent induction of β-galactosidase enzymatic activity was measured in yeast strains carrying plasmids 

pGAL4.CiLBD∆31.VP16, pGAL4.CiLBD.VP16 or pGAL4.BsLBD.VP16. Mean effective concentrations (EC50 values) and 95% 

confidence intervals (95% CI) are given in µM. 95% confidence intervals represent variation within a triplicate measurement (n 

= 3). Coefficients of variance (CV) are given in % for triplicate intra-plate measurements. All compounds were dissolved in 

dimethyl sulfoxide (DMSO). 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.) EC50  (95% CI) CV EC50  (95% CI) CV EC50  (95% CI) CV 

Butylated 

hydroxytoluene a 

Antioxidant Sigma-Aldrich  

(B1378) 

7.1 (2.3–22) 37 7.2 (3.1–17) 41 NI (DNC) DNC 

4-chloro-3,5-

dimethylphenol b 

Antimicrobial Sigma-Aldrich  

(C-4394) 

15 (4.8–43) 39 61 (37–98) 41 29 (16–50) 25 

2-phenoxyethanol b Antimicrobial Sigma-Aldrich  

(77699) 

NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

Propyl-4-hydroxy-

benzoate b 

Antimicrobial Sigma-Aldrich  

(P53357) 

237 (132–425) 34 115 (DNC) 39 NI (DNC) DNC 
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Appendix 16 (cont.) Activation of the yeast bioassays by 13 emerging contaminants. 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.) EC50  (95% CI) CV EC50  (95% CI) CV EC50  (95% CI) CV 

4-methyl-benzylidene 

camphor b 

EDC Sigma-Aldrich  

(78551) 

NI (DNC) DNC 101 (78–131) 34 103 (75–141) 36 

Octyl methoxy-

cinnamate b 

EDC Sigma-Aldrich  

(78848) 

37 (20–67) 17 44 (13–151) 10 377 (2.4–60,283) 123 

Triclosan a EDC Sigma-Aldrich  

(72779) 

NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

Benzophenone b EDC Sigma-Aldrich  

(B9300) 

~382 (DNC) DNC 348 (312–388) 23 NI (DNC) DNC 

Ketoconazole a Antifungal EMD Chemicals 

(420600) 

~596 (DNC)c DNC 509 (455–570)c 13 582 (391–865)c 18 

2-phenylphenol b Antifungal Acros Organics 

(130760050) 

NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

Radicicol b Antifungal Cayman Chemical 

(13089) 

NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

DEET b Insecticide Fluka  

(36542) 

NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 
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Appendix 16 (cont.) Activation of the yeast bioassays by 13 emerging contaminants. 

 

Chemical name Toxin type Supplier pGAL4.CiLBD∆31.VP16 pGAL4.CiLBD.VP16 pGAL4.BsLBD.VP16 

  (Catalogue No.) EC50  (95% CI) CV EC50  (95% CI) CV EC50  (95% CI) CV 

Diclofenac sodium  

salt b 

Anti-

inflammatory 

Sigma-Aldrich  

(06899) 

NI (DNC) DNC NI (DNC) DNC NI (DNC) DNC 

Abbreviations: DEET, n,n-diethyl-m-toluamide; DNC, did not compute; EDC, endocrine disrupting chemical; NI, no induction of β-galactosidase 

enzymatic activity; PAH, polycyclic aromatic hydrocarbon. 
a Strains were incubated for 24 hours. 
b Strains were incubated for 48 hours. 
c EC50 and CI values for ketoconazole are given in nM. 
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APPENDIX SEVENTEEN 

 

 

Appendix 17 Suppression of growth of recombinant yeast strains by: (A) 

propyl-4-hydroxybenzoate and (B) triclosan. Cell densities were quantified by 

OD620 values. Growth suppression (i.e. toxic) effects were detected by changes 

in OD620 values over time (∆OD620 = OD620 after 48 h – OD620 after 0 h). Data 

points represent means of n = 3 replicates. Error bars show ± one standard 

deviation. Dotted lines indicate baseline. 
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Appendix 17 (cont.) Suppression of growth of recombinant yeast strains by: 

(C) benzophenone and (D) n,n-diethyl-m-toluamide (DEET). Cell densities were 

quantified by OD620 values. Growth suppression (i.e. toxic) effects were 

detected by changes in OD620 values over time (∆OD620 = OD620 after 48 h – 

OD620 after 0 h). Data points represent means of n = 3 replicates. Error bars 

show ± one standard deviation. Dotted lines indicate baseline. 
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