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Abstract  

 

Molecular techniques have enhanced our ability to unravel the evolutionary history and 

hidden diversity of species, and to explain how historical events have helped to shape the 

demography and dispersal of populations. Cryptic species are typically defined as two or 

more genetically distinct species that are morphologically indistinguishable. The discovery 

of cryptic diversity has become a challenge for biologists in understanding the species 

concepts and biodiversity patterns. Many current studies have revealed the existence of 

cryptic species, but few studies have focused on their ecological and biological aspects.  

 

Bostrychia, a filamentous red alga, has long been used as a model system for studies of 

evolutionary process and biogeographic history. In the Southern Hemisphere, there are 

four endemic species: B. arbuscula, B. gracilis, B. intricata and B. vaga. Bostrychia 

intricata is widely distributed in the Southern Hemisphere, whereas the other three species 

have more restricted distributions. The aim of this study was to reveal the evolutionary 

history, phylogeographic pattern and eco-physiological trait within B. intricata. 

 

Phylogenetic analysis based on combined data (mitochondrial COI, chloroplast rbcL and 

nuclear 28S) strongly supported the monophyly of the four Southern Hemisphere 

Bostrychia species, with B. vaga as a sister species to the other three. Multigene phylogeny 

and COI-based species delimitation revealed cryptic species diversity within B. intricata 

and B. vaga. Additionally, a COI-based phylogeographic study indicated the existence of 

three cryptic B. intricata species (N2, N4 and N5) in New Zealand. Population analyses 

demonstrated that cryptic species N2 populations recently expanded, possibly after the 

Last Glacial Maximum (LGM), while N4 was more diverse, showing a stable population, 

which possibly persisted during the LGM. The results suggested that the contrasting 

pattern in population structure and demographic histories between cryptic species was 

probably due to the difference in the evolutionary history and survival ability.  

 

Growth experiments clearly showed that cryptic species N4 had a significantly higher 

specific growth rate than other two species, N2 and N5, in different salinities and 

temperature, suggesting physiologically differentiation between these cryptic species. 

Additionally, the small-scale distribution of B. intricata at Moa Point, Wellington of three 
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cryptic species showed that N4 was found at the higher tidal position than species N2 and 

N5. Cryptic species N2 occurred in more wave-exposed areas than other two species. 

These results suggest spatial niche differences between cryptic species, possibly allowing 

them to sympatrically co-exist. This study highlights the fact that cryptic species are 

distinctly different in many biological characteristics, while maintaining identical 

morphologies.  
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Research interests 

 

My PhD research interests center on the biodiversity and evolution of cryptic red algal 

species in New Zealand. Recognitions of cryptic species have recently increased in marine 

macroalgal taxa, but their roles and biological consequences are still ambiguous. This 

study aims to advance our understanding in the nature of cryptic red algal species, with 

respect to evolutionary history, species delimitation, population connectivity and eco-

physiology.  

 

This general introduction chapter consists of three main parts: species concepts, 

phylogeographic studies and the red alga Bostrychia. The first part provides an overview 

of species concepts followed by a review of cryptic algal species. The second section then 

focuses on the context of phylogeography and some studies of this field in marine 

macroalgae in New Zealand. Finally, the third part provides a brief detail of the red alga 

Bostrychia, covering some general biological aspects and scientific findings of this alga, 

and then introduces the model organism in this study, B. intricata, with its latest 

discoveries. 

 

 

Species concepts 

 

A key to understanding evolution and biodiversity 

 

Species are fundamental natural units for biological classification (Mayr 1963, Mishler and 

Brandon 1987). Biologists have extensively debated for over a half-century how to define 

species and criteria used to delimit them (Brookfield 2002, De Queiroz 2007, Leliaert et al. 

2014). Species concepts originate in taxonomy, and basically, taxonomists defined species 

in terms of easily distinguishable morphological features (Howard and Berlocher 1998). 

The morphological species concept (MSC) is the oldest, but still practical, species 

concept, which defines the species based on their phenotypic differences (Cracraft 1983). 

However, morphological characters often vary between individuals and within and among 

populations, and sometimes the discriminating features between two species coincided 
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(Coyne and Orr 2004). Therefore morphological criteria may not accurately reflect 

species.  

 

The biological species concept (BSC) is one of the most influential species concepts. The 

BSC stipulates that species are actually or potentially interbreeding populations isolated 

from other such groups (Mayr 1942, Bush 1975). According to the BSC, biological species 

are established when they are reproductively isolated (Coyne and Orr 2004). Due to the 

different reproductive modes (e.g. asexual reproduction, self-fertilization, or interbreeding) 

among taxa, the BSC offer no universal benchmark to delimit species. Another concept, 

which has been widely used in recent years, is the phylogenetic species concept (PSC). 

The PSC attempts to identify a species based on a group of individuals sharing at least one 

uniquely derived characteristic, recognizing as a monophyletic group within its parental 

pattern of ancestry and descendant (Cracraft 1983, Freeland 2005). This concept is useful 

to avoid the problem of asexual reproduction and to imply the evolutionary history of 

species through molecular data, but can cause a problem with overestimation of the 

number of species (Freeland 2005, White et al. 2007). As no single definition of species 

concept could fit to all organisms, many biologists therefore have decided to use multiple 

species concepts in delineating species (Hey 2006, Bickford et al. 2007, Wilkins 2009).  

 

Molecular biology has revolutionized our understanding of evolution, speciation events 

and diversity of organisms (Barraclough and Nee 2001, Zuccarello et al. 2005, Bickford et 

al. 2007). Many biological systematics studies have demonstrated that morphological 

features combined with molecular data are beneficial for solving taxonomic problems and 

shedding light on the life history of species (Zuccarello and West 2006, Bordie and 

Zuccarello 2007, Fraser et al. 2010, Martin and Zuccarello 2011, Zuccarello et al. 2015).  

 

In marine algae, species classifications are dominated by morphological species concept 

(Phillips et al. 2008, Verbruggen 2014). However, algal species delineation and taxonomy 

are frequently problematic because of the high morphological variability within species 

(Hurd et al. 2014, Leliaert et al. 2014). Therefore, other species concept based on genetic 

data, reproductive isolation and physiological variation have been applied in algal groups. 

Zuccarello and West (2003) showed that genetic data and reproductive isolation could be 

used as important and reliable criteria for defining species boundaries in the Bostrychia 
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radicans (Montagne) Montagne/B. moritziana (Sonder ex Kützing) J. Agardh species 

complex.  

 

Cryptic species 

 

The use of molecular data results in the recognition of many cryptic species, and this 

discovery presents new challenges for species delimitation and an opportunity to study 

important mechanisms of speciation (Zuccarello and West 2003, Bickford et al. 2007, 

Payo et al. 2013). In theory, cryptic species are classified as two or more morphologically 

indistinguishable species, which are genetically divergent (Beheregaray and Caccone 

2007, Bickford et al. 2007). Despite morphological similarities, cryptic species could 

potentially be different in other biological aspects, such as physiology (Chen and Hare, 

2008, Dennis and Hellberg 2010), reproduction (Racey et al. 2007, Xu et al. 2010) and 

biogeographic pattern (Shaw 2001).  

 

In marine macroalgae, since molecular techniques were applied in the field of algal 

evolution and systematics in the late 1980s (e.g. Goff and Coleman 1988, Bhattacharya et 

al. 1990, Freshwater et al. 1994), cryptic species diversity has been continuously detected 

(Zuccarello et al. 1999a, Zuccarello and West 2003, Payo et al. 2013, Fraser et al. 2013, 

Silberfeld et al. 2013, Vieira et al. 2014). The discovery of cryptic species is increasingly 

being observed, especially in red algae, but in all areas of evolutionary history, 

phylogeographic pattern and eco-physiological properties our knowledge is still 

superficial. 

 

 

Phylogeography  

 

Connectivity and dispersal of species and their genes 

 

Phylogeography is the field of study that aims to explain the process of geographical 

distribution of gene lineages within the population (Avise 2000). Mitochondrial DNA 

(mtDNA) sequences are most frequently employed for studying intraspecific 

phylogeography in most animal taxa (Avise 2000), especially cytochrome oxidase I (COI) 
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because of its relatively rapid substitution rate and non-recombining maternal mode of 

inheritance (Freeland 2005). Other genetic markers are also used, most commonly 

chloroplast in plant and algae (Zuccarello and West 2003, Inomato et al. 2009, Zuccarello 

et al. 2011, Fraser et al. 2013) and non-coding nuclear regions in some animals, as well as 

plants and algae (Cho et al. 2007, Mikheyev et al. 2008, Inomato et al. 2009). Numerous 

molecular studies have showed that phylogeographic patterns of marine taxa can be driven 

by a variety of factors, such as vicariance, transoceanic dispersal, climate fluctuation and 

hydrographic features (Fraser et al. 2009a, Macaya and Zuccarello 2010a, Cumming et al. 

2014) 

 

In marine macroalgae, phylogeography and genetic diversity at the population level has 

been explored and increasingly relied on the analysis of a number of molecular markers 

such as the internal transcribed spacer  (Cho et al. 2007), the plastid-encoded RuBisCo 

spacer (Zuccarello et al. 2011) and the COX gene family (Zuccarello et al. 1999a, Macaya 

& Zuccarello 2010a). The last two genes have been reported as reliable molecular markers 

for uncovering species relationship, population structure, and the hidden diversity of algae 

(Zuccarello & West 2003, Fraser et al. 2009b).  

New Zealand has a great geographical diversity that results from different patterns of 

ocean circulation and climate and these factors can influence the distribution, adaptation 

and genetic variation of the marine species (Ross et al. 2009, Wallis and Trewick 2009). In 

New Zealand, intraspecific phylogeographic studies of marine algal species are very 

preliminary. Most phylogeographic studies have been done in brown seaweed (Macaya 

and Zuccarello 2010a, Buchanan and Zuccarello 2012, Fraser et al. 2013). These studies 

showed spatial heterogeneity in genetic diversity among algal species (e.g., Durvillaea 

antarctica (Chamisso) Hariot, Macrocystis pyrifera (Linnaeus) Agardh, Carpophyllum 

maschalocarpum (Turner) Greville) from the North Island, with a transition from the 

bottom of North Island to top of the South Island and subantarctic islands. Evidence also 

strongly shows that seaweed distribution patterns and population connectivity are 

influenced by ocean circulation patterns and climate change (Freser et al. 2009c, Macaya 

and Zuccarello 2010a, Buchanan and Zucarello 2012). However, very little is known about 

the phylogeographic structure and genetic variation of non-buoyant red seaweed.  
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The red alga Bostrychia 

 

Bostrychia is a filamentous red alga, growing either on other algae or on rocks. This alga is 

commonly found in mangrove habitats, but is also reported from cold temperate and 

subantarctic regions (King and Puttock 1989, Zuccarello and West 2011).  Bostrychia 

contains eighteen species, which are widely distributed in tropical to temperate 

environments (King and Puttock 1989, Zuccarello and West 2006, West et al. 2013) and 

has been used as a model system for studies of evolution and speciation (Zuccarello and 

West 2011). Previous studies of molecular phylogeny and phylogeography of Bostrychia 

have revealed the presence of cryptic species. For example, Bostrychia radicans and B. 

moritziana are morphologically indistinguishable and consisted of several non-

interbreeding genealogical lineages (Zuccarello et al. 1999a, Zuccarello and West 2003).  

 

In the Southern Hemisphere, there are four marine endemic Bostrychia species: B. 

arbuscula Harvey, B. gracilis (King & Puttock) Zuccarello & West, B. intricata (Bory de 

Saint-Vincent) Montagne and B. vaga Hooker & Harvey, and these four species are 

commonly found in New Zealand (Fig. 1.1) (King and Puttock 1989, Zuccarello and West 

2008). Among these four species, B. arbuscula  is the largest species, and normally found 

in the South Island,  but has been reported from Cook Strait on the North Island (Adams 

1994, Zuccarello and West 2008). Bostrychia gracilis is only observed from northern New 

Zealand. Bostrychia intricata and B. vaga have wider distribution than the two previous 

species. Bostrychia vaga has been reported from the North and South Islands of New 

Zealand, South Africa, the Falkland Islands and the subantarctic islands (Silva et al. 1996, 

Zuccarello and West 2008). Bostrychia intricata has been found in New Zealand, 

Australia, South Africa, South America and the subantarctic islands, and has been reported 

from northern areas, Indonesia and India (King and Puttock 1989, Adams 1994, Silva et al. 

1996, Zuccarello and West 2008, Fraser et al. 2013), 

 

Morphologically, these four species are distinguished from other Bostrychia species 

distributed in the Southern Hemisphere by having more than two tier cells per axial cell 

(Zuccarello and West 2006). These four species were preliminarily separated into two 

groups based on cortication pattern: (1) distinct cortication: B. arbuscula and B. gracilis 

and (2) ecorticate: B. intricata and B. vaga. Bostrychia arbuscula and B. gracilis are 



 

 7 

distinguished only by the presence of acute tips in B. gracilis. While B. intricata is 

separated from B. vaga by the abundance of lateral branches in B. intricata (King and 

Puttock 1989, Zuccarello and West 2008). As these four species are recognizable based on 

few taxonomic characters (e.g. tip shape and abundance of lateral branch), 

misidentification is likely. 

 

Preliminary molecular phylogenies of Bostrychia species in New Zealand have previously 

used chloroplast, mitochondrial and nuclear DNA sequences (Zuccarello and West 2008, 

Fraser et al 2013). Molecular data indicated that B. arbuscula, B. gracilis and B. vaga are 

closely related species and recognized as the sister group to B. intricata. However, due to 

the low genetic variation, phylogenetic affinities of these four species were not well 

resolved. 
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Figure 1.1: Four endemic Bostrychia species distributed in the Southern Hemisphere. (A) 

B. arbuscula, (B) B. gracilis, (C) B. intricata, (D) B. vaga.  
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Bostrychia intricata, as a good candidate of study 

 

Among these four Bostrychia species, the most widespread species throughout the 

Southern Hemisphere is B. intricata (King and Puttock 1989). It normally grows in the 

upper intertidal on shaded rocks, rock crevasses, or even on logs (Fig. 1.2) (West et al. 

1996, Fraser et al. 2013). This species can be found throughout New Zealand both in the 

North and South Islands; hence, it has the potential for being a good model in studying 

phylogeography of red seaweed in New Zealand. Zuccarello and West (2008) studied the 

phylogenetic diversity and phylogeography of B. intricata from the Southern Hemisphere. 

Genetic data, using the RuBisCo spacer, showed a high degree of genetic variation, 

indicating several lineages within this species that were found locally (Australia, New 

Zealand, South Africa and Falkland Islands), suggesting the possibility of cryptic species 

diversity of B. intricata (Zuccarello and West 2008).  

 

Phylogeographic analyses of B. intricata using COI sequences showed a high level of 

genetic diversity, and four different lineages were observed around the high latitudes of the 

Southern Hemisphere (Fraser et al. 2013). No obvious morphological differences among 

these four lineages of B. intricata were observed. Fraser et al.’s (2013) study also indicated 

that one lineage of B. intricata was observed in several locations, such as New Zealand, 

Chile, Snares Island and Tristan da Cunha, suggesting the ability of B. intricata to disperse 

over long distances. Interestingly, two lineages were found in sympatry from the North 

Island, indicating that even at small spatial scales these lineages co-exist (Fraser et al. 

2013).  

 

Previous physiological studies of B. intricata (as Stictosiphonia hookeri) isolated from 

three locations in cold-temperate Chile and Argentina indicated difference in specific 

growth rate to different salinities and temperatures (Karsten et al. 1996). Additionally, B. 

intricata collected from different locations have demonstrated differences in temperature 

of induction of reproductive development (West et al. 1996). These studies suggest the 

possibility of physiological differences between cryptic algal species of B. intricata.  
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Sympatric occurrence of cryptic algal species 

  

Species coexistence is a major challenge in community ecology, which underlines various 

aspects of community organization from the small-scale, to within-patch dynamics, to 

large-scale, geographic patterns (Tokeshi 1999). Theoretically, it is assumed that the 

coexistence of cryptic species in sympatry could occur when they occupy different 

ecological niches (resource and habitats) (Wines and Graham 2005). Evaluating 

differences in ecological niches may consequently be the key to explain the mechanism 

facilitating the coexistence of sympatric cryptic species.  

 

In intertidal ecosystem, there are several studies that indicate the ecological niche 

difference between algal species allowing them to coexist at small-scales (Benzie et al 

2000, Zardi et al. 2011). For example, in the Canary Island, the brown alga Dictyota 

cymatophila Tronholm, M. Sansón et Afonso-Carrillo frequently occurred in wave-

exposed habitats, whereas D. dichotoma (Huds.) J. V. Lamour was found in less exposed 

areas (Tronholm et al. 2010). 

 

Furthermore, the sympatric occurrences of cryptic algal species have been observed in red 

algae, including B. intricata (Fraser et al. 2013). These findings raise the questions: How 

do cryptic algal species manage to coexist? Do cryptic algal species occupy distinct niches 

in sympatry? However, no studies have previously assessed the sympatric coexistence of 

cryptic algal species in the field; therefore, these questions still remain unaddressed. 
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Figure 1.2: Bostrychia intricata grows in different habitats in New Zealand. (A-B) Plants 

grow in a rock crack on the Kapiti coast, Paraparaumu and Waihau Bay, Bay of Plenty, 

North Island. (C) Plants occur on the exposed areas at Moa Point, Wellington, North 

Island (arrows). (D) Plants attach on driftwood on the shore of Hakahaka Bay, Picton, 

South Island  
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Species diversity and distribution patterns of B. intricata have previously been revealed 

using molecular evidence. However, many aspects of their basic biology remain open, 

such as: what kinds of biological evidence are necessary to demonstrate cryptic species? 

How does speciation of these cryptic species occur? The phylogeographic patterns of these 

cryptic species are likely to be non-random with respect to geographic range and, hence, 

what is the driving force behind such distributional patterns at various spatio-temporal 

scales? Additionally, the physiological difference observed between B. intricata isolates 

may correlate with their distribution, and therefore does distribution, at large and small 

scales, of these cryptic species reflects their physiological performance and ecological 

preference? 
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Thesis aims 

 

The aims of my PhD research were to clarify the evolution, phylogenetic diversity, large- 

and small-scale phylogeographic patterns and eco-physiological performances of cryptic 

B. intricata species. Specific research questions were separately addressed in each chapter.  

 

i) Phylogeny and species delimitation of four endemic Bostrychia species in the 

Southern Hemisphere (Chapter 2) 

 What are the phylogenetic relationships of Southern Hemisphere 

species of Bostrychia (B. arbuscula, B. gracilis, B. intricata and B. 

vaga)? 

 How many cryptic species of B. intricata are there in the Southern 

Hemisphere based on multigene phylogenies and species 

delimitation methods? 

 Do the different genetic markers and species delimitation methods 

yield a similar number of cryptic species? 

 

ii) Phylogeographic patterns and historical demography of cryptic species of B. 

intricata in New Zealand (Chapter 3) 

 How many cryptic species of B. intricata are distributed along the 

coastline of New Zealand? 

 What are the phylogeographic patterns and demographic histories 

of the different cryptic B. intricata species?  

 Is the phylogeographic pattern of cryptic B. intricata species in 

New Zealand influenced by historical processes (e.g. the Last 

Glacial Maximum)? 

 

iii) Physiological response on the growth of different cryptic species of B. intricata in 

various conditions of salinity and temperature (Chapter 4) 

 Do the different cryptic species of B. intricata respond significantly 

differently in different salinities and temperatures? 

 Which cryptic species exhibit a highest specific growth rate in all 

condition tested?   
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 If cryptic B. intricata are physiologically divergent, can the 

physiological differences among cryptic species explain their 

evolutionary history and distribution pattern in New Zealand?  

 

iv) Small-scale distribution of cryptic B. intricata species at Moa Point, Wellington 

(Chapter 5) 

 What are the distribution patterns of cryptic B. intricata in 

sympatry? 

 Do these cryptic species occupy the same spatial ecological niche? 

 Which physical parameters shape the population structure and 

distribution pattern of these cryptic species? 

 

 

Thesis structure 

 

This thesis was written as four inter-related chapters, which we propose to submit to peer-

review journals.  

 

Chapter 2 has been published (Muangmai, N., West, J. A. and Zuccarello G. C. 2014. 

Evolution of four Southern Hemisphere Bostrychia (Rhodomelaceae, Rhodophyta) 

species: phylogeny, species delimitation and divergence times. Phycologia. 53:593–601). I 

carried out all DNA work and data analyses as well as prepared a first draft of the 

manuscript. John West helped with sample collections and commented on the manuscript, 

while my supervisor, Joe Zuccarello, naturally provided constructive guidance and 

comments, and improved the manuscript.  

 

Chapter 3 has been published (Muangmai, N., Fraser, C. I. and Zuccarello, G. C. 2015 

Contrasting patterns of population structure and demographic history in cryptic species of 

Bostrychia intricata (Rhodomelaceae, Rhodophyta) from New Zealand. Journal of 

Phycology. 51:574–585). Joe and I conducted most of the field collection. I completed all 

DNA work and data analyses. I prepared the first draft of the manuscript. Crid Fraser 

helped with samples collections and commented on the manuscript. Joe gave significant 

assistance of polishing up my research idea and developing the manuscript.  
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Chapter 4 has been accepted for publication (Muangmai, N., Preuss, M. and Zuccarello, G. 

C. Comparative physiological studies on the growth of cryptic species of Bostrychia 

intricata (Rhodomelaceae, Rhodophyta) in various salinity and temperature conditions. 

Phycological Research). I established all algal cultures and did the data analyses. I 

completed the first draft of the manuscript. Maren Preuss helped set up the experiments, 

and collect the data. Joe provided considerable suggestions for experimental design and 

constructive feedback on the manuscript.  

 

Chapter 5 has been prepared as a manuscript, but has not been submitted (Muangmai, N., 

von Ammon, U. and Zuccarello, G. C. Cryptic species in sympatry: niche partitioning in 

the cryptic red alga Bostrychia intricata). Ulla Ammon and I conducted most of the field 

collection and DNA work. I did the data analyses and prepared the first draft of the 

manuscript. Joe helped to improve research ideas and experimental design. Also he 

provided suggestions and comments on the manuscript.  

 

All detail and figures of each chapter are mostly similar to the accepted manuscript, 

although there is some additional information or figures, which did not appear in the 

publication. Accordingly, there are some repetitions among the chapters, especially in the 

introduction sections. 

 

Additionally, I have included a single reference list at the end of the thesis, and all 

supplementary material presented in manuscripts are placed as appendices.  
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Abstract 

 

Defining species boundaries is important in order to address evolutionary questions and 

understand true biodiversity in a region. Determining the actual number of species is not 

trivial, and numerous species-delimitation algorithms have been developed and extensively 

applied to a wide range of organisms. The cosmopolitan red-algal genus Bostrychia has 

been used as a model system to study evolutionary processes, yet phylogeny within the 

genus and its true species composition are still unresolved. The four species B. arbuscula, 

B. gracilis, B. intricata and B. vaga represented a distinctive morphotype that was once the 

basis for segregation into the separate genus Stictosiphonia, and all appearred to be 

restricted to the Southern Hemisphere. We sequenced genes from all three genomes 

(plastid: rbcL; mitochondrial: COI; and nuclear: large-subunit rRNA) to examine the 

phylogenetic relationships of the four species and to establish their diacritical features. Our 

phylogenetic analyses from combined datasets strongly supported the monophyly of these 

species, with B. vaga as a sister species to the other three. Results from phylogenetic 

analyses of a combined dataset and species-delimitation methods based on COI data 

demonstrated a congruent pattern of species boundaries, indicating cryptic species 

diversity within presently constituted B. intricata and B. vaga. We also estimated the 

divergence time of these species using substitution rates of combined rbcL and COI 

datasets calibrated from B. calliptera collected around the Isthmus of Panama. Results 

indicated that these four species formed in the middle Oligocene epoch (ca. 30 Mya), 

suggesting a post-Gondwana origin and relatively ancient divergence. We speculate that 

evolution of these species may have been due to transoceanic dispersal that was facilitated 

by the circulation of the Antarctic Circumpolar Current (ACC) and subsequent isolation. 
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Introduction 

 

Speciation is an important biological process by which new species arise (Howard and 

Berlocher 1998, Hey et al. 2003, Coyer and Orr 2004). Species delimitation is important 

for giving insights into speciation processes and for determining the actual biodiversity of 

a given region (Fujita et al. 2012, Carstens et al. 2013). However, speciation is a 

continuous process that often leads to difficulties and disagreements about how particular 

species should be defined (Howard and Berlocher 1998, Coyer and Orr 2004). As a result, 

employing several methods and datasets to delimit species is recommended, and 

subsequently the achievement of congruent results across the methods is likely to prove 

most useful for framing reliably supported species boundaries (Carstens et al. 2013, 

Leliaert et al. 2014).  

 

In algae, delimitating species is frequently quite difficult, especially when based only on 

morphological and anatomical characters. The main reason is the lack of adequate or 

obvious diagnostic characters and the high degree of morphological plasticity exhibited 

within many populations over time and in different habitats (Fraser et al. 2009b, Leliaert et 

al. 2014, Verbruggen 2014). Since the advent of methods for generating genomic data, 

many taxonomic problems and evolutionary questions have been more clearly resolved 

(Freshwater et al. 1994, Lane et al. 2006, Zuccarello et al. 2011). Algal cryptic diversity 

has also been often uncovered based on genetic data (e.g. Zuccarello et al. 2002, 

Zuccarello and West 2003, Fraser et al. 2013), and DNA-based species-delimitation 

analysis methods are often employed for evaluating true species diversity among genera of 

marine macroalgae (Tronholm et al. 2012, Payo et al. 2013, Siberfeld et al. 2013). The 

General-mixed-Yule-coalescent (GMYC) method, introduced by Pons et al. (2006), is one 

of the most common coalescent-based species-delimitation methods, based on the analysis 

of single-locus data. The GMYC approach emphasizes a transition in the branching pattern 

to indicate different genetic clusters, which are then generally recognized as ‘putative 

species’ within a geographically delimited population (Fujita et al. 2012). The GMYC 

model can also accommodate singletons (a single haplotype for a species only known from 

a single specimen), but a high percentage of singletons may lead to an overestimation of 

species richness (Lim et al. 2011).  
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The mangrove-associated red-algal genus Bostrychia Montagne is widely distributed in 

tropical and warm-temperature habitats of all hemispheres, but it is also found in cold-

temperate and subantarctic regions from which mangroves are absent (King and Puttock 

1989, Zuccarello and West 2011). Bostrychia is a polysiphonous member of the family 

Rhodomelaceae (Zuccarello and West 2006, West et al. 2013) that has been used as a 

model for studies of distribution, evolutionary relationships and speciation processes 

(reviewed in Zuccarello and West 2011). Previous studies of molecular phylogeny and 

phylogeographic patterns of Bostrychia have revealed the frequent presence of cryptic 

species nested within well-known species that have long been regarded as uniformly 

composed (Zuccarello and West 2002, Zuccarello and West 2003). Bostrychia radicans 

(Montagne) Montagne and B. moritziana (Sonder ex Kützing) J. Agardh, for example, both 

consist of several non-interbreeding genealogical lineages (Zuccarello et al. 1999a, 

Zuccarello and West 2003) that do not display distinguishing characters in habit or at the 

light-microscope level in morphology or anatomy. Most studies have involved warm-

temperate or tropical Bostrychia species, and the diversity and phylogenetic relationships 

of both warm- and cool-temperate waters of the Southern Hemisphere are very 

incompletely explored. 

 

Four marine species of Bostrychia, B. arbuscula Hooker & Harvey, B. gracilis (King & 

Puttock) Zuccarello & West, B. intricata (Bory de Saint-Vincent) Montagne and B. vaga 

Hooker & Harvey, are commonly found in the Southern Hemisphere (King and Puttock 

1989, Zuccarello and West 2008). These algal species were once assigned to the genus 

Stictosiphonia (Zuccarello and West 2006). Bostrychia arbuscula and B. gracilis are 

restricted to New Zealand, whereas B. vaga is found in New Zealand, the subantarctic 

Islands, South America and South Africa (King and Puttock 1989, Zuccarello and West 

2008). Bostrychia intricata is a temperate species having the most widespread distribution 

in the Southern Hemisphere, as well as being also recorded in Japan (Yoshida et al. 1990), 

India (Silva et al. 1996) and Indonesia (Post 1936). However, claims that B. intricata 

occurs in the Northern Hemisphere and tropical regions are suspect and records from those 

latitudes should be reassessed (Zuccarello and West 2008). Morphologically, the four 

species under consideration are distinguished from other Bostrychia species distributed in 

the Southern Hemisphere by having pericentral cells that divide into more than two tier 

cells (Zuccarello and West 2006, 2008). Traditionally the taxonomy of these species was 

based on the presence/absence of cortication, which separate them into two informal 
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groups: the corticated B. arbuscula and B. gracilis, and the ecorticate species B. intricata 

and B. vaga. Other taxonomic characters, such as branching pattern or apex shape have 

been applied in identification within these informal groups (Zuccarello and West 2008). In 

addition to morphological distinctions, some studies showed differences in polyol contents 

and low-molecular-weight carbohydrates among these Bostrychia species (reviewed in 

Zuccarello and West 2011). 

 

Preliminary studies on the molecular phylogeny of Bostrychia species in New Zealand 

were undertaken by Zuccarello and West (2008). However, the phylogenetic affinities of 

B. arbuscula, B. gracilis, B. intricata and B. vaga remained poorly resolved. The 

cytochrome c oxidase subunit I (COI) gene was used to explore the dispersal pattern of B. 

intricata, the results indicating high genetic diversity and strong phylogeographic structure 

in this species (Fraser et al. 2013). Moreover, high levels of genetic variation within the 

morphospecies B. intricata revealed multiple cryptic species (Zuccarello and West 2008, 

Fraser et al. 2013). From these results, the genetic diversity within B. intricata was shown 

to be clearly underestimated, indicating that knowledge of speciation and evolutionary 

history in this species was limited. 

 

Our aim in the present study has been to apply molecular data from these Southern 

Hemisphere species of Bostrychia to examine their phylogenetic relationships, explore 

cryptic diversity using species-delimitation analytical methods, estimate the divergence 

rates leading to speciation, and to determine the approximate times of origin of this 

diversification. 
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Materials and Methods 

 

Algal samples were collected from different locations in the Southern Hemisphere (Fig. 

2.1, Appendix 2.1). All samples were preserved in silica gel and then morphologically 

identified to species based on previous publications (e.g. King and Puttock 1989, 

Zuccarello and West 2006, 2008). For molecular analyses, algal samples were cleaned 

with distilled water to remove any sand and dirt, and subsequently the distal parts were 

used for DNA isolation. 

  

Genomic DNA was extracted using a modified Chelex method following Zuccarello et al. 

(1999b). Three different molecular markers were used: ribulose-1,5-bisphosphate 

carboxylase/oxygenase large subunit gene (rbcL, plastid DNA), cytochrome c oxidase 

subunit I gene (COI, mitochondrial DNA) and the Y-fragment of the large-subunit (28S) 

ribosomal RNA gene (LSU, nuclear DNA; see Harper & Saunders 2001). PCR and 

sequencing were performed using different primer combinations: two were rbcLFC and 

R753, and F577 and rbcLRD (Freshwater & Rueness 1994; Nam et al. 2000) for rbcL; two 

were GazF1 and GazR1 (Saunders 2005) or BstCF2 and BstCR2 (Fraser et al. 2013) for 

COI; and one was Y-for and Y-rev (Harper & Saunders 2001) for LSU. PCR procedures 

followed Zuccarello et al. (2002) for rbcL, Saunders (2005) and Fraser et al. (2013) for 

COI, and Zuccarello and West (2006) for LSU. PCR products were confirmed by gel 

electrophoresis in 1% agarose, and then purified using ExoSAP-IT (USB, Cleveland, 

Ohio, USA). Purified PCR products were commercially sequenced (Macrogen Inc., Seoul, 

Korea). 

 

All sequences were edited and assembled using eBioX software  (eBioinformatics, 

http://www.ebioinformatics.org/index.html). Alignments for individual and combined 

datasets were prepared using the MUSCLE algorithm in the Geneious 6.0 software 

package (Biomatters, http://www.geneious.com) and then manually checked by eye. For 

phylogenetic analyses, datasets included some additional sequences of Bostrychia 

retrieved from GenBank (Appendix 2.1). Bostrychia moritziana was selected as the 

outgroup because it is closely related to our Bostrychia species but was located in a 

different clade (“cladohaptera-clade”; Zuccarello and West 2006). All new sequences 
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generated in this study have been submitted to GenBank (accession numbers KM502788 – 

KM502864).  

 

Phylogenetic analyses were performed using both individual and the combined datasets of 

rbcL, COI and LSU sequences by two different methods: maximum likelihood (ML) and 

Bayesian inference (BI). Prior to ML and BI analysis, the best-fit model of DNA 

substitution of each gene was determined with the program Kakusan4 (Tanabe 2011). For 

the protein-coding datasets rbcL and COI, partitioning by codon position and separate 

DNA-substitution models was chosen for each position. ML analyses for all datasets were 

performed using Treefinder software (version March 2011, Jobb et al. 2004) within the 

tool package Phylogear v2.0 (Tanabe 2008), followed by bootstrap analysis conducted 

with 1000 replications. BI analyses were performed with the program MrBayes v3.1.2 

(Ronquist and Huelsenbeck 2003). Two independent analyses, each consisting of four 

Markov chains, were run simultaneously for 2,000,000 generations, sampling every 100 

generations. Log likelihood and parameter values were assessed with Tracers ver. 1.5 

(Rambaut and Drummond 2009). A burn-in of 25% of saved trees was removed, and the 

remaining trees were used to calculate the Bayesian posterior probability (PP) values. ML 

and BI trees were edited with the program FigTree v1.3.1 (Rambaut 2009).  

 

Due to low variation of LSU sequences within species, we used rbcL and COI for 

molecular species-delimitation and divergence-time estimation. DNA-based species 

delimitations were tested using separate datasets of rbcL and COI by three different 

methods: the General-Mixed-Yule-Coalescent model (GMYC); Automatic Barcoding Gap 

Detection (ABGD) (Puillandre et al. 2012); and Statistical Parsimony Network Analysis 

(SP) (Hart and Sunday 2007). Additional GMYC model-based species-delimitation 

analysis was carried out in B. intricata based on combined datasets of COI sequences 

generated in this study and from Fraser et al. (2013). For the GMYC delimitation method, 

an ultrametric tree was constructed in BEAST v2.0.2 (Drummond et al. 2012), relying on 

the uncorrelated lognormal relaxed clock, the GTR + I + G, and a coalescent tree prior. 

Bayesian Markov chain Monte Carlo (MCMC) was run for 20 million generations, and 

trees and parameters sampled every 1000 generations. Log files were visualized in Tracers 

v1.5 (Rambaut and Drummond 2009) for assessing the stationary state of parameters based 

on the value of estimate-effective sample size (ESS). After removing 25% of trees as burn-

in, the remaining trees were used to generate a single summarized tree in TreeAnnotator 
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v2.0.2 (part of the BEAST v2.0.2 package) as an input file for GMYC analyses. The 

GMYC analyses with a single threshold model were performed in R (R Development Core 

Team, http://www.R-project.org) under the “splits” package using ‘gmyc’ function (R-

Forge, http://r-forge.r-project.org/projects/splits/). The ABGD method was tested via a 

web interface (ABGD web,http://wwwabi.snv.jussieu.fr/public/ 

abgd/abgdweb.html). Prior to analysis, the model criteria were set as following: 

intraspecific variability (P) between 0.001 (Pmin) and 0.1 (Pmax), minimum gap width (X) 

of 0.1, Kimura-2-parameters and 50 screening steps. In addition, statistical parsimony 

networks of rbcL and COI datasets were generated in TCS 1.21 (Clement et al. 2000) with 

a maximum connection probability set at 95% statistical confidence.  

 

As there are no fossil records for members of the Rhodomelaceae, we attempted to 

estimate the divergence time of our species by using substitution rates from the separation 

of Bostrychia taxa with respect to the time of the emergence of the Isthmus of Panama. 

Substitution rates of rbcL and COI were estimated based on two samples of Bostrychia 

calliptera (Montagne) Montagne collected from both sides of the Isthmus of Panama-

Atlantic Mexico (C3400.MX) and Pacific Colombia (C3191.CO), as were used in a 

previous study by Zuccarello and West (2002). We accepted the final closure of the 

Isthmus of Panama 2.5-3.0 million years ago (Mya) (Bartoli et al. 2005) as a calibration 

point, and calculation of substitution rates followed Kamiya et al. (2004) (Appendix 2.2). 

Estimation of divergences times was based on the combined dataset of rbcL and COI using 

BEAST v2.0.2 (Drummond et al. 2012). We set the criteria for BEAST analysis as 

following: the same partition and substitution model as used in phylogenetic analyses; 

unlinked site model and clock model with linked trees; and a Yule model as the tree priors. 

The rates used in the clock model were an uncorrelated lognormal relaxed clock for all 

datasets, with means rate of 0.041 substitutions/site/million years and SD = 0.004 for rbcL, 

and 0.14 substitutions/site/million years and SD = 0.01 for COI. We ran the MCMC 

analyses for 40 million generations, sampling every 5000 generations, and then determined 

the distribution and effective sample size (ESS) of parameters using Tracers v1.5 

(Rambaut and Drummond 2009). The initial 25% of saved trees was removed as the burn-

in, and a maximum credibility tree based on the remainder was produced using 

TreeAnnotator v2.0.2 (part of the BEAST v2.0.2 package). The time-calibrated tree with 

95% highest posterior density was visualized and edited in FigTree v1.3.1 (Rambaut 

2009).  
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Figure 2.1: Sampling locations of Bostrychia species in New Zealand, Subantarctic 

Islands (Campbell and Auckland Islands), Australia, Chile and South Africa (see Table S1 

for exact detail of each sample). Letters and numbers in bracket indicate the cryptic 

species based on the congruent results of phylogenetic analyses and COI based-species 

delimitations. ACC: The Antarctic Circumpolar Current.  
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Results 

 

We successfully obtained the partial sequences of three genes, and our final alignments 

comprised 1163 bp of rbcL, 375 bp of COI and 969 bps (including gaps) of LSU for 27 

samples of Bostrychia species, including some published sequences downloaded from 

GenBank (Appendix 2.1). The 1163 bp of rbcL were comprised of 29.5% variable sites, 

the 375 bp of the COI gene of 42.1% variable sites and the 969 bp of partial LSU genes of 

24.7% variable sites. The genetic distances of B. arbuscula, B. gracilis, B. intricata and B. 

vaga are given in Appendix 2.3. Among these three genetic markers, the partial COI gene 

appears to be more variable than rbcL or LSU. 

 

The appropriate DNA substitution models for each gene were calculated (Appendix 2.4). 

Phylogenetic trees obtained from ML and BI analyses were almost completely 

topologically congruent for the three individual markers (rbcL, COI and LSU) 

(Appendices 2.5, 2.6 and 2.7) and the combined dataset. However, only BI tree based on 

the combined dataset is presented (Fig. 2.2). ML and BI trees from the combined dataset 

indicated monophyly of B. arbuscula, B. gracilis, B. intricata and B. vaga, the four major 

clades corresponding to their morphology-based species assignments. Bostrychia vaga was 

recovered as sister to the remaining species, and the clades of B. arbuscula and B. gracilis 

were grouped together (ML = 100 %, BI = 1.00) (Fig. 2.2).  

 

In the clade containing B. intricata, multiple well-supported clades were recognized (Fig. 

2.2, ML > 90%, BI > 0.95), suggesting multiple cryptic species (N1 – N8, Fig. 2.2) within 

that morphospecies as presently circumscribed (King & Puttock 1989). Among these 

cryptic species, three tentative groups were established as follows: group A, which 

consisted of cryptic species N1 from Chile, N3 from the subantarctic islands and N4 from 

New Zealand; group B, which consisted only of cryptic species N6 from South Africa; and 

group C, composed of cryptic species N2 and N5 from New Zealand and cryptic species 

N7 and N8 from southern Australia (Fig. 2.2). Likewise, the clade of B. vaga was split into 

four cryptic species: V1, from Australia; V2, from northern New Zealand; V3, from 

southern New Zealand; and V4, from the Campbell Islands (Fig. 2.2).  
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We employed three different methods for species delimitation (GMYC, ABGD and SP) 

for our samples based on the separate rbcL and COI datasets. All species-delimitation 

methods supported a single species of B. arbuscula and B. gracilis for both markers, and 

indicated multiple species in B. intricata and B. vaga (Fig. 2.2). 

 

Within the B. intricata clade, three different methods using the rbcL dataset yielded 

different numbers of species: six species with GMYC (LGMYC = 135.644 > L0 = 130.363, P 

= 0.01); seven species with ABGD (P = 0.001); and five species with SP, although all 

analyses using the COI dataset consistently resulted in eight species regardless of method 

(Fig. 2.2). Additional GMYC model analyses using all haplotypes of COI available 

(unpublished data) and from Fraser et al. (2013) yielded the same number of eight cryptic 

species in B. intricata (Appendix 2.8). In contrast, all methods applied for B. vaga 

constantly revealed three cryptic species based on the rbcL data, with an additional fourth 

species from the COI data. The results obtained from all species-delimitation methods in B. 

intricata and B. vaga based on COI were completely congruent with cryptic species N1 – 

N8 and V1 – V4, which were recognized from the phylogenetic analyses (Fig. 2.2).  

 

Our data also showed several singletons in our analysis of putative species in B. intricata 

and B. vaga, these singletons were sometimes due to a single specimen collected in our 

sampling but also to a lack of variation in multiple samples (unpublished data). This was 

evident in B. intricata (N5 and N7) and B. vaga (V1 – V4) (Fig. 2.2).   
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Figure. 2.2: Phylogenetic tree inferred from Bayesian-Inference analyses of the combined 

dataset of rbcL, COI and LSU for Bostrychia species. Support values at each node are 

bootstrap values from ML (left) and Bayesian posterior probability (right). Asterisk (*) 

indicates full support (100%, 1.0) in both analyses and hyphen (-) indicates no support. 

The results of three species delimitation methods: GMYC model (column A), the ABGD 

(column B) and statistical parsimony (column C), based on rbcL (black color) and COI 

(grey color) are indicated at the right edge of the tree. The black bars and letters indicate 

the cryptic species obtained from congruent results of phylogenetic analyses and COI 

based-species delimitations.   
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Estimation of divergence time 

 

We inferred the divergence time of our species based on substitution rates of the rbcL and 

COI genes. The rates of rbcL and COI obtained by this study from Bostrychia calliptera 

collected on both sides of the Panama Strait were 3.8 – 4.5 x 10-10 per site per year and 13 

– 15 x 10-10 per site per year, respectively. Divergence time in the phylogeny was 

estimated from combined rbcL and COI datasets (Fig. 2.3). The origins of B. arbuscula, B. 

gracilis, B. intricata and B. vaga occurred between the late Eocene and early Oligocene, 

approximately 31 (26-36) Mya. Diversification of the B. vaga clade was around 19 Mya, 

corresponding to the Early Miocene, whereas the timings of divergences of the B. 

arbuscula and B. gracilis clade and the B. intricata clade were in the Middle Miocene, 

circa 11 and 13 Mya, respectively (Fig. 2.3). Within B. intricata, the diversification of 

group B (N6 from South Africa) occurred around 10 Mya, whereas the cryptic species in 

group A (N1, N3 and N4) and C (N2 and N8, N5 and N7) diverged later, circa 8 Mya. 

Cryptic species N3 and N4 were the most recent radiations within this morphospecies, 

circa 2 Mya (Fig. 2.3). In addition, divergence occurred twice between Australia and New 

Zealand: cryptic species N2 and N8 circa 5 Mya, and cryptic species N5 and N7 circa 3.5 

Mya.  

 

Discussion 

 

Our phylogenetic analyses obtained from combined data of markers for three genomes 

confirmed the monophyly of the four Bostrychia species B. arbuscula, B. gracilis, B. 

intricata and B. vaga (Fig. 2.2). Moreover, our results clearly showed well-resolved 

phylogenetic relationships of these four species, with B. vaga recovered as sister to the rest. 

The close relationship of the corticated species B. arbuscula and B. gracilis was also 

confirmed, and the ecorticate B. intricata also proved to be closely related to these two 

species (Fig. 2.2). The phylogenetic affinities of all four were not fully in accord with the 

relationships inferred from the shared morphological character of either distinct cortication 

and ecortication, as was hypothesized by King and Puttock (1989), which assumed a close 

relationship of the ecorticate species, B. intricata and B. vaga, and the corticated species, B. 

arbuscula and B. gracilis. Global phylogenetic analysis of the genus Bostrychia by 

Zuccarello and West (2006) showed that cortication was randomly distributed in the 
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evolutionary history of Bostrychia species, and we therefore maintain that the 

presence/absence of cortication does not carry any phylogenetic weight, although it does 

consistently characterize species. 

 

Our molecular data indicate that the morphospecies B. arbuscula and B. gracilis fall into 

single clades, whereas the morphospecies B. intricata and B. vaga appeared to be 

composed of numerous distinct and well-supported clades indicative of cryptic species. 

Fraser et al. (2013) have reported four cryptic species of B. intricata, corresponding to N1 

– N4 from our analyses, from Chile (N1, N4), New Zealand (N2, N4), Tristan da Cunha 

(N4), the Falkland Islands (N1), Gough Island (N1), Marion Island (N1) and the 

Subantarctic Islands (N3) based on COI markers, and our expanded sampling covering a 

greater range has discovered four additional lineages from New Zealand (N5), South 

Africa (N6) and Australia (N7, N8). Distribution of each lineage is likely to be 

geographically restricted, except for lineages N1 and N4 that are commonly found in 

several locations (Fraser et al. 2013). Our analyses revealed the close relationship of 

lineages between Australia (N7 and N8) and New Zealand (N2 and N5), which strongly 

supports the proposition that there was historical dispersal and isolation between the 

lineages from Australia and New Zealand. 

 

We have provided the first report of Bostrychia vaga in Australia. Bostrychia vaga has 

four cryptic species based on the combined analysis of rbcL, COI and LSU, and species-

delimitation methods indicate up to four genetic putative species (V1 – V4). Cryptic 

species V1 and V4 were solely found in Australia and the Campbell Islands, respectively, 

whereas lineages V2 and V3 were both found only in New Zealand. Although the 

phylogenic relationships of our B. vaga samples are well supported, we still lack the 

intensive sampling throughout the entire range of the species that will be necessary in 

order to understand fully its speciation processes.  
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Figure 2.3: Bayesian tree for Southern Hemisphere species of Bostrychia reconstructed 

using BEAST under a relaxed clock model of the combined data set of rbcL and COI. Bars 

show 95% highest posterior densities of divergences dates.  Mean dates followed by ± 

standard deviation (above bars) and scale bar are in million years. Black dots at node 

indicate the support of > 95% Bayesian posterior probabilities.   
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Delimiting cryptic Bostrychia species 

 

Our attempt to use two different markers, rbcL and COI, in delimitating Bostrychia 

species by the use of three algorithmic techniques has demonstrated multiple distinct 

lineages within two of them, B. intricata and B. vaga. Delimited species based on COI 

provided a greater number of species than those based on rbcL and yielded similar species 

to those determined based on well-supported clades in the phylogenetic analyses. These 

results support those of Payo et al. (2013) and Silberfeld et al. (2013) in showing 

mitochondrial-gene-based species-delineation and multilocus-based phylogenetic analysis 

of algae to be congruent. In addition, our GMYC method also indicated several singleton 

species in B. intricata (N5 and N7) and B. vaga (V1 – V4) (Fig. 2.2) based on single 

samples collected in the area. The GMYC model-based species delimitation may 

overestimate the species number due to sampling error (i.e. singletons), but it still provides 

an initial hypothesis of the number and extent of species-level groups (Papadopoulou et al. 

2009). Delimiting algal species based on the GMYC model commonly produces species 

based on singletons, as in examples for the red alga Portieria (Payo et al. 2013) and the 

brown alga Padina (Silberfeld et al. 2013). As with all species circumscriptions, these 

conclusions are hypotheses that need to be tested with further research. This will be 

especially important in determining the power of species-delimitation methods to correctly 

detect species based on rare or low diversity ‘species’ (i.e. singletons)(Lim et al. 2011). 

 

Our results also have shown that different species-delimitation methods can provide 

incongruent species boundaries, as found in B. intricata based on rbcL analyses (Fig. 2.2). 

The different results obtained from species-delimitation methods between rbcL and COI 

are likely be influenced by the different mutation rates of these two genetic markers. Our 

substitution rates of rbcL and COI showed that the mitochondrial genes evolved 3-3.5 

times faster than the plastid gene. It is clear that a marker of greater variability (COI) is 

more suitable for detecting the relatively young divergence events in B. intricata and B. 

vaga.  

 

The use of COI for DNA barcoding in resolving problems of species identification and 

addressing red-algal taxonomic questions was proposed by Saunders (2005) and employed 

frequently in studies of marine algae (e.g. Saunders 2009, Sherwood et al. 2010, Yang et al. 
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2013). The genetic divergence of COI among lineages obtained in this study ranged from 

3.7% to 12.7% for B. intricata and 4.2% to 16.2% for B. vaga, which are values that are 

above the threshold generally used to discriminate between species in barcoding studies of 

red seaweeds (Saunders, 2009, Le Gall and Saunders, 2010). Additionally, species 

delimitation based on genetic divergence within and between species (the ABGD method) 

indicated that partition output calculated from COI datasets produced a higher number of 

lineages than rbcL, and this could be explained by the difference of intra- versus inter-

specific genetic variability of these two markers (Appendix 2.3).  

 

Putative species, as discovered by genetic species-delimitation methods, are the first stage 

in reaching a calculation of true species diversity. If the species delimitation is upheld with 

increased sampling, then the cryptic natures of these lineages need to be investigated more 

carefully as it is possible that subtle differences in morphology, at present not detected, can 

be found. Reproductive incompatibility can also be used to support the species’ status 

(Zuccarello and West 2003). Other criteria, including physiological differences (for 

example, polyol contents) may help differentiate these cryptic species (Karsten et al. 1992), 

which, at present can only be identified genetically, and occasionally geographically. New 

collections of B. intricata and B. vaga should be referred to the N1-N8 and V1-V4 clades 

presented here to more carefully assess the species diversity found in new areas. 

 

Divergence of Bostrychia species in the Southern Hemisphere 

 

The divergence time of Bostrychia arbuscula, B. gracilis, B. intricata and B. vaga, as 

calculated from a substitution-rate based on the combined dataset (rbcL and COI), 

revealed that these four species have a most recent common ancestor in the Middle to Late 

Oligocene (circa 30.75 ±5 Mya), indicating that diversification of the Bostrychia species in 

the Southern Hemisphere came after the split up of Gondwana (65–80 Mya, McLoughlin, 

2001). Among these four species, cryptic B. intricata species appeared to be the most 

recent radiations, the most recent divergence between the cryptic species of B. intricata 

having taken place about 2 Mya (cryptic species N3 and N4). These results also indicate 

that the morphological features of these species have been conserved over long periods of 

time, some 25 Mya for the corticated species B. arbuscula and B. gracilis and circa 30 

Mya for the ecorticate species B. intricata and B. vaga. This morphological stability has 

also been noted in other Bostrychia species complexes by Zuccarello and West (2002, 



 

 33 

2003). Our data revealed that the divergence of southern-hemisphere Bostrychia species 

was earlier than that of the southern-hemisphere brown algal species of Durvillaea (15.3 ± 

7 Mya; Fraser et al. 2010) and Lessonia (5 Mya; Martin and Zuccarello 2012), indicating 

that the processes leading to speciation or longevity of species may be different between 

these brown and red algal species.  

 

As the formation of the Southern-Hemisphere Bostrychia species examined in our study 

took place subsequent to the break-up of Gondwana, their present geographical 

distribution may best be explained by transoceanic dispersal followed by allopatric 

speciation, a scenario that has also been purposed for Durvillaea (Fraser et al. 2010). 

Transoceanic distribution, especially for B. intricata and B. vaga, is likely to have been 

achieved through the circulation of Antarctic Circumpolar Current (ACC) that began 

following the opening of the Drake Passage (32-28 Mya; McLoughlin, 2001) and 

Tasmania Seaway (33.5 Mya; Hassold et al. 2009), which conforms closely to the 

divergence time of our monophyletic progenitor of the Bostrychia species that we have 

studied (ca. 30 Mya). Furthermore, two separate divergence events affecting B. intricata 

occurred between Australia and New Zealand, suggesting at least two dispersals across the 

Tasman Sea between 3-7 Mya. This is interesting in light of work showing that floating 

and non-floating algae and associated fauna have dispersed fairly regularly across the 

southern ocean at latitudes corresponding to the distributions of the Bostrychia species 

(Macaya and Zuccarello 2010b, Nikula et al. 2010, Fraser et al. 2013). However, algae at 

lower latitudes (e.g. Northern New Zealand and Southern Australia) do not disperse easily 

as compared to those distributed at higher latitudes that are more directly in contact with 

the ACC (Fraser et al. 2009c). It would seem that in lower-latitudes dispersal is rare (few 

establishments over millions of years) although still important in driving diversity and 

producing species. 

 

In conclusion, our molecular data indicated the monophyletic origin of Bostrychia 

arbuscula, B. gracilis, B. intricata and B. vaga in the Southern Hemisphere, and 

uncovered cryptic diversity in B. intricata and B. vaga. Eight cryptic species of B. intricata 

and four of B. vaga were strongly supported by the phylogenetic analyses, as well as in all 

species-delimitation approaches based on COI data. We suggest that species boundaries, 

especially for cryptic algal species, should be estimated by multiple methods of species 

delimitation, with the different suitable markers combined with phylogenetic analyses. The 
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mitochondrial marker (COI) is very useful for exploring algal diversity, especially for 

recently diverging species. We have also performed a first estimation of timing of 

divergence based on a combined dataset of rbcL and COI, and we have used estimated 

substitution rates determined in a congeneric (B. calliptera) isolated by a well known 

vicariant event. We found that the divergence and distribution of Bostrychia lineages in the 

Southern Hemisphere may be correlated with the circulation of the ACC when the Drakes 

Passage and Tasmanian Seaway opened. 
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Abstract 

 

Spatial patterns of genetic diversity provide insight into the demography and history of 

species. Morphologically similar but genetically distinct ‘cryptic’ species are increasingly 

being recognized in marine organisms through molecular analyses. Such species are, on 

closer inspection, often discovered to display contrasting life histories or occasionally 

minor morphological differences; molecular tools can thus be useful indicators of diversity. 

Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern 

Hemisphere, and comprises many cryptic species. We used mitochondrial COI sequences 

to assess the genetic variation, population genetic structure and demographic history of B. 

intricata in New Zealand. Our results supported the existence of three cryptic species of B. 

intricata (N2, N4 and N5) in New Zealand. Cryptic species N4, which was found 

throughout New Zealand, showed a higher genetic diversity and wider distribution than the 

other two species, which were only found in the North Island and northern South Island. 

Our analyses showed low to moderate genetic differentiation among eastern North Island 

populations for cryptic species N2, but high differentiation among North and South Island 

populations for N4, suggesting different population structure between these cryptic 

species. Data also indicated that N2 has recently undergone population expansion, 

probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 

populations suggests persistence in situ through the LGM. The contrasting population 

structures and inferred demographic histories of these species highlight that life history can 

vary greatly even among morphologically indistinguishable taxa. 
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Introduction 

 

Present-day patterns of genetic diversity can allow inference of dispersal and connectivity 

among marine populations, and can contribute to our understanding of how historical 

climatic events, oceanographic conditions and tectonic processes have influenced the 

evolution and demographic history of marine organisms (Hewitt 2004, Lomolino et al. 

2006, Hemmer-Hansen et al. 2007, Fraser et al. 2012). In the high latitudes of the Southern 

Hemisphere, numerous recent studies have shed light on the diversity, distribution and 

biogeographic patterns of marine populations (reviewed by Allcock and Strugnell 2012, 

Fraser et al. 2012). Phylogeographic studies have provided strong evidence for significant 

population structure in numerous marine organisms (Brante et al. 2012, Le Port and 

Lavery 2012, Fraser et al. 2013). Such structure can be used to infer how species, and 

populations within species, have responded to past processes such as climate change. For 

example, higher genetic diversity in low versus high latitude populations has been 

interpreted to reflect postglacial recolonization of higher latitude areas following recession 

of ice at the LGM (e.g. crustaceans: Nikula et al. 2010; kelp: Fraser et al. 2009c, 2010, 

Macaya and Zuccarello 2010a, b).  

 

New Zealand (NZ) consists of two main islands, the North and South Islands, which have 

striking geological and environmental differences, such as northern volcanoes and 

southern glaciated regions. The complex geographical and oceanographic (Appendix 3.1) 

systems have resulted in phylogeographic structure in both terrestrial and marine taxa 

(Ross et al. 2009, Wallis and Trewick 2009). Several phylogeographic studies of marine 

species have detected deep genetic splits between northern/southern and eastern/western 

geographical regions (Apte and Gardner 2002, Sharyn et al. 2006, Ross et al. 2009, 2012) 

(Appendix 3.1). In contrast, other studies have detected little or no phylogeographic 

structure around New Zealand, indicating broad population connectivity in some groups 

(Smith et al. 2002, Waters and Roy 2003). Inconsistency of phylogeographic patterns 

observed among marine taxa in New Zealand suggests that different species respond in 

different ways, possibly due to species-specific dispersal ability, reproductive strategies or 

species’ and demographic history.    
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The phylogeographic structure of several brown seaweeds, e.g., Carpophyllum 

maschalocarpum (Turner) Greville, Durvillaea antarctica (Chamisso) Hariot, Macrocystis 

pyrifera (Linnaeus) C. Agardh, has previously been investigated in NZ (Fraser et al. 

2009c, Macaya and Zuccarello 2010a, Buchanan and Zuccarello 2012). These studies, 

which relied largely on data from mitochondrial markers, demonstrated spatial 

heterogeneity in genetic diversity among seaweed populations from the North Island, with 

a transition region between the bottom of the North Island and the top of the South Island 

(Fraser et al. 2009c, Buchanan and Zuccarello 2012). In addition, genetic evidence 

indicated that the distribution and population connectivity of these buoyant brown 

seaweeds has been strongly influenced by surface ocean circulation patterns (e.g. Antarctic 

Circumpolar Currents – ACC) and historical events (e.g., the LGM) (Fraser et al. 2009c, 

Macaya and Zuccarello 2010a, Buchanan and Zuccarello 2012, Collins et al. 2010). 

Whereas population structure and dispersal patterns of brown seaweeds in New Zealand 

have been quite well studied, research on other groups of seaweed – especially non-

buoyant taxa with limited dispersal potential – has been relatively uncommon. Although 

non-buoyant taxa should theoretically be less capable of long-distance dispersal than 

robust, buoyant taxa, and might therefore be expected to show stronger phylogeographic 

structure (Fraser et al. 2013), dispersal capacity alone is not always a good predictor of 

population connectivity (Waters et al. 2013). 

 

The genus Bostrychia Montagne is a filamentous red alga of the family Rhodomelaceae, 

order Ceramiales, and currently contains ~19 species, which are widely distributed in 

tropical and temperate regions (King and Puttock 1989, Zuccarello and West 2006). 

Bostrychia has been used as a model system to study evolution, speciation processes, and 

population connectivity (reviewed in Zuccarello and West 2011). For example, studies on 

genetic diversity of Bostrychia radicans (Montagne) Montagne and B. moritziana (Sonder 

ex Kützing) J. Agardh show that these two morphospecies consist of seven non-

interbreeding genealogical lineages, some of which occur in sympatry (Zuccarello and 

West 2003, Zuccarello et al. 2006, Zuccarello et al. 2011), suggesting the presence of 

cryptic species (Zuccarello et al. 1999a; Zuccarello and West 2003). However, while the 

phylogenetic diversity and phylogeography of the warm-temperate Bostrychia species 

have been well studied, diversity and distribution patterns of Bostrychia species endemic 

to the Southern Hemisphere are still poorly documented. 
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The most widespread Bostrychia species throughout the Southern Hemisphere is B. 

intricata (Bory de Saint-Vincent) Montagne (King and Puttock 1989, Zuccarello and West 

2008). This species is normally found in clumps in the upper intertidal either on shaded 

rocks (King & Puttock 1989) or logs (Fraser et al. 2013). Phylogenetic research using 

plastid-encoded Rubisco spacer sequences of B. intricata has indicated high levels of 

genetic diversity within this species, suggesting the presence of multiple cryptic species 

(Zuccarello and West 2008). More recent research on the evolution of Bostrychia species 

endemic to the Southern Hemisphere based on phylogenetic analyses and species 

delimitation methods using three different molecular markers indicated that eight cryptic 

species (N1–N8) should be recognized within B. intricata, three of which (N2, N4 and N5) 

occur in NZ (Chapter 2). Additionally, multigene phylogenetic analyses have previously 

demonstrated that cryptic species N2 and N5 shared a more recent common ancestor than 

cryptic species N4, and these findings are consistent with dating analyses, which indicated 

the diversification of cryptic species N2 and N5 have occurred after N4 (Chapter 2). 

Preliminary studies on the phylogeography of B. intricata from the high latitudes of the 

Southern Hemisphere (New Zealand, southern South America and some sub-Antarctic 

islands) indicated strong phylogeographic structure within this species, although some 

lineages showed evidence of recent long-distance, trans-oceanic dispersal (Fraser et al. 

2013).  

 

Despite the broad-scale studies of phylogenetic diversity and phylogeography of B. 

intricata in the Southern Hemisphere, our knowledge of how much these cryptic species 

differ in aspects of their genetic diversity, connectivity and history are still limited. By 

investigating the phylogeography and population structure of cryptic B. intricata species in 

NZ based on partial COI sequences, we test the hypotheses that (i) different cryptic species 

exhibit significant differences in genetic diversity and demographical history, and (ii) 

phylogeographic patterns in these cryptic species are driven by, and can be linked to, 

historical events and changing environments. 

 

 

 

 

 



 

 40 

Materials and Methods 

  

Algal sampling 

 

Specimens of the morphospecies B. intricata were collected along the coasts of the North 

and South Islands of NZ in 2011–2012. Details of locations and sample sizes for 43 

populations (NZ1–NZ43) are listed in Table 3.1. This morphospecies normally formed 

patches on shaded rocks in the upper intertidal. To avoid collecting the same individual, 

algal samples were randomly collected from patches, which were at least 0.5 m apart. 

Algal specimens were preserved in silica gel in the field. All specimens were identified 

based on previous species descriptions (e.g. King and Puttock 1989, Zuccarello and West 

2008). For DNA analyses, algal samples were rinsed with autoclaved seawater to remove 

any sand and dirt, and then the apical portions were used for DNA isolation.  

 

DNA Extraction, PCR and Sequencing  

 

DNA was extracted using a modified Chelex method (Zuccarello et al. 1999b). We chose 

the short fragment of cytochrome c oxidase subunit I (COI, mitochondrial DNA) as an 

appropriate molecular marker for this population study as it showed the greatest level of 

genetic variation in discriminating cryptic species within B. intricata when compared to 

other markers (Chapter 2). PCR amplification and sequencing of COI was performed using 

either primers GazF1 and GazR2 (Saunders 2005) or BstCF2 and BstCR2 (Fraser et al. 

2013). The PCR reaction profile followed Saunders (2005) or Fraser et al. (2013). PCR 

amplification was checked by electrophoresis on a 1% agarose gel, and PCR products were 

subsequently purified using ExoSAP-IT (USB, Cleveland, OH, USA). Purified PCR 

products were sequenced commercially (Macrogen Inc., Seoul, Korea). 

 

Alignment of DNA sequence and data analyses 

 

All DNA sequences were edited and aligned using Geneious 6.0 software (Biomatters, 

http://www.geneious.com) and then manually checked. For phylogenetic analyses, the data 

set included all haplotypes obtained from this study and additional sequences retrieved 

from GenBank (Appendix 3.2). Phylogenetic relationships were determined using 



 

 41 

Maximum Likelihood (ML) and Bayesian Inference (BI), and two sequences of B. 

arbuscula and B. gracilis were used as outgroups following Muangmai et al. (2014). DNA 

substitution models were determined using Kakusan 4 (Tanabe 2011). ML analyses were 

performed in raxmlGUI v1.3 (Silvestro and Michalak 2012) with the GTR + I + R under 

the option ‘ML + thorough bootstrap’, and bootstrapping values were calculated from 

1,000 pseudoreplicates. BI analyses were conducted with MrBayes v3.2 (Ronquist et al. 

2012) under the best model indicated by BIC (K80 + G to the codon position 1 and 

HKY85 + G to the codon position 2 and 3). Two runs of Markov Chain Monte Carlo 

(MCMC) were performed for 2,000,000 generations, sampling every 100 generations, and 

the first 25% of saved trees were discarded as burn-in. ML and BI trees were edited with 

the program FigTree v1.3.1 (Rambaut 2009).  

 

Haplotype analysis was performed using the data set that included all sequences generated 

in this study and haplotypes from Fraser et al. (2013). The genetic diversity indices, 

including number of haplotypes (H), number of segregating sites (S), haplotype diversity 

(Hd) and nucleotide diversity (π), for each population were assessed using DnaSP v5.10.01 

(Librado and Rozas 2009). Statistical parsimony networks were constructed using TCS 

1.21 (Clement et al. 2000) to observe the relationships among haplotypes.  

 

Cryptic species were defined based on phylogenetic and species delimitation methods 

(Chapter 2), and population structure and demographic history were separately analysed 

for each major lineage. For population genetic analysis, populations with a sample size of 

eight individuals or more were selected (Felsenstein 2006), and two populations from a 

previous study (Fraser et al. 2013) were included (here coded as populations NZ44 from 

Brighton, South Island, and NZ46 from Stewart Island: see Table 3.1). Pairwise fixation 

index (FST) values between populations were calculated using Arlequin v 3.5.1.3 

(Excoffier and Lischer 2010). The significance of FST values was estimated by 1023 

random permutations (Schneider et al. 2000). Population structure was further analysed 

using the SAMOVA algorithm (Dupanloup et al. 2002) to define groups of populations 

based on the combined information between geographic distances and genetic variation, 

implemented in SPADS 1.0 (Dellicour and Mardulyn 2014). The criteria for SAMOVA 

analysis were set as the number of groups (K) ranging from two to 10, and 10,000 runs of 

iterations with 10 repetitions. The optimal number of K was considered based on a 

maximum or plateau of FCT value. Furthermore, populations were partitioned into the 
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biogeographic regions described by Apte and Gardner (2002) and Shears et al. (2008), as 

eastern north, western north, eastern south and western south regions (Appendix 3.1), and 

population differentiation among these four regions was subsequently tested using the 

hierarchical analysis of molecular variance (AMOVA) in Arlequin, with significance 

determined by 10,000 permutations.  

 

Historic population demography was determined using three different methods: statistical 

tests of neutrality, mismatch distribution and the estimation of time to the most recent 

common ancestor. Tajima’s D (Tajima 1989) and Fu’s FS tests were used to test for 

deviation from selective neutrality, and these analyses were carried out using DnaSP. 

Analyses of mismatch distribution were performed in Arlequin with 1000 bootstrap 

replicates. This method can indicate past population expansion by mode shape: unimodal 

for a recent population expansion and multimodal for a stationary population at 

demographic equilibrium (Harpending 1994). The time to most recent common ancestor 

(TMRCA) was assessed using BEAST v2.0.2 (Drummond et al 2012). Mutation rates for 

COI were estimated following Chapter 2 with 0.13 – 0.15 substitutions per site per million 

years. Data were partitioned by codon, and substitution models were set as for the 

phylogenetic analyses. The MCMC analyses were achieved with four independent runs for 

20 million generations under the assumptions of an uncorrelated log-normal relaxed clock 

and a Yule model prior. The initial 25% of saved trees were removed as the burn-in, and a 

maximum credibility tree based on the remainder was produced using TreeAnnotator 

v2.0.2 (part of the BEAST v2.0.2 package). The time-calibrated tree with 95% highest 

posterior density was visualized in FigTree.  
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Table 3.1. Sampling sites of cryptic species N2, N4 and N5 of B. intricata in New Zealand and genetic diversity indices. Code= Population 

code, N= number of samples, H= number of haplotypes, S= number of segregating sites, Hd= haplotype diversity, π= nucleotide diversity. 

 

Code Sampling site Coordinates N Haplotypes Present H S Hd π 

North Island 

NZ1 Casnell Island, Leigh 
36°29'14.21"S 

174°43'37.24"E 
4 N2 = 2A(4) 1 0 - - 

NZ2 
Sandspit, Snells beach, 

Leigh 

36°24'13.82"S 

174°44'09.76"E 
4 N2 = 2A(4) 1 0 - - 

NZ3 
Waitemata Harbour, 

Auckland 

36°50'28.93"S 

174°43'49.74"E 
10 

N4 = 4E8(4), 4E9(3), 4E10(2), 

4E11(1) 
4 7 0.77 0.0069 

NZ4 
Kaikoura Island, Huaraki 

Gulf 

36°10'29.40"S 

175°19'35.56"E 
1 N4 = 4E8(1) 1 0 - - 

NZ5 
Tekaha, Maraetai Bay, 

East Cape 

37°43'36.19"S 

177°41'27.83"E 
10 N2 = 2A(10) 1 0 - - 

NZ6 Waihau Bay, East Cape 
37°31'11.63"S 

177°55'17.27"E 
10 N2 = 2A(5), 2D(2), 2K(3) 3 2 0.68 0.0021 

NZ7 Lottin Point, East Cape 
37°32'57.05"S 

178°08'03.06"E 
10 N2 = 2A(4), 2G(1), 2K(5) 3 2 0.64 0.0020 

NZ8 
Waipatiki Beach, Hawkes 

Bay 

39°18'01.79"S 

176°58'43.22"E 
10 N4 = 4R(8), 4S(2) 2 1 0.36 0.0009 

NZ9 Porangahua beach, 40°18'02.65"S 10 N2 = 2A(8), 2E(2) 2 1 0.48 0.0012 
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Hawkes Bay 176°40'15.49"E 

NZ10 Castle Point, Wellington 
40°54'05.15"S 

176°13'48.61"E 
10 N2 = 2F(4), 2G(6) 2 3 0.53 0.0042 

NZ11 Cape Palliser, Wellington 
41°36'45.48"S 

175°17'50.83"E 
12 

N2 = 2A(10)  

N4 = 4E1(2) 

N2 = 1  

N4 = 1 

N2 = 0  

N4 = 0 

N2 = -  

N4 = - 

N2 = -  

N4 = - 

NZ12 Moa Point, Wellington 
41°20'40.78"S 

174°48'35.34"E 
19 

N2 = 2A(14)  

N4 = 4E1(3)  

N5 = 5A(2) 

N2 = 1 

N4 = 1 

N5 = 1 

N2 = 0 

N4 = 0 

N5 = 0 

N2 = - 

N4 = - 

N5 = - 

N2 = - 

N4 = - 

N5 = - 

NZ13 
Manukau Harbour, 

Auckland 

36°55'52.43"S 

174°45'18.74"E 
11 N4 = 4E1(7), 4E7(3), 4E8(1) 3 2  0.61 0.0016 

NZ14 New Plymouth, Taranaki 
39°03'21.67"S 

174°03'35.31"E 
6 

N2 = 2A(3)  

N4 = 4E1(3) 

N2 = 1  

N4 = 1 

N2 = 0  

N4 = 0 

N2 = -  

N4 = - 

N2 = - 

N4 = - 

NZ15 Cape Egmont, Taranaki 
39°16'26.79"S 

173°45'09.52"E 
8 

N2 = 2A (1) 

N4 = 4E1(4), 4E5(2), 4E6(1) 

N2 = 1 

N4 = 3  

N2 = 0  

N4 = 2 

N2 = - 

N4 = 

0.66 

N2 = - 

N4 = 0.0023  

NZ16 Kapiti Coast, Wellington 
41°01'21.19"S 

174°54'26.21"E 
6 

N2 = 2A(4)  

N5 = 5A(2) 

N2 = 1 

N5 = 1 

N2 = 0 

N5 = 0 

N2 = - 

N5 = - 

N2 = - 

N5 = -  

NZ17 
Titahi Bay, Porirua 

Wellington 

41°06'20.79"S 

174°49'24.49"E 
10 N4 = 2E1(10) 1 0 - - 

NZ18 Red Rock, Wellington 
41°20'56.38"S 

174°44'27.25"E 
17 N2 = 2A(11), 2J(6) 2 1 0.48 

 

0.0012 
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South Island 

NZ19 Hakahaka Bay, Picton 
41°17'58.22"S 

174°06'50.76"E 
8 

N2 = 2A(2)  

N4 = 4E1(6) 

N2 = 1 

N4 = 1 

N2 = 0  

N4 = 0 

N2 = - 

N4 = - 

N2 = - 

N4 = -  

NZ20 Paparoa Point, Kaikoura 
42°14'10.51"S 

173°50'48.81"E 
4 N4 = 4Q(4) 1 0 - - 

NZ21 Halfmoon Bay, Kaikoura 
42°15'40.11"S 

173°48'39.65"E 
10 N4 = 4Q(10) 1 0 - - 

NZ22 
Port Levy, Banks 

Peninsula 

43°38'52.49"S 

172°49'10.36"E 
6 N4 = 4A (6) 1 0 - - 

NZ23 
Pigeon Bay, Banks 

Peninsula 

43°40'34.11"S 

172°53'27.58"E 
10 N4 = 4A(8), 4E1(2) 2 3 0.36 0.0028 

NZ24 
French Farm Bay, 

Akaroa, Bank Peninsula 

43°46'21.43"S 

172°54'50.99"E 
10 N4 = 4A(5), 4E1(4), 4P(1) 3 7 0.64 0.0064 

NZ25 Dunedin 
45°53'13.70"S 

170°30'44.72"E 
4 N4 = 4A(4) 1 0 - - 

NZ26 Titirangi Bay, Havelock 
41°01'08.73"S 

174°07'57.36"E 
12 

N2 = 2A(8), 2C(2) 

N4 = 4E1(2) 

N2 = 2  

N4 = 1 

N2 = 1 

N4 = 0 

N2 = 0.35 

N4 = - 

N2 = 0.0009 

N4 = - 

NZ27 Kenupuru Bay, Havelock 
41°11'42.31"S 

174°04'28.01"E 
5 

N4 = 4E1(4) 

N5 = 5B(1) 

N4 = 1 

N5 = 1 

N4 = 0 

N5 = 0 

N4 = - 

N5 = - 

N4 = - 

N5 = - 

NZ28 Te Mahia Bay, Havelock 
41°12'57.31"S 

173°58'16.61"E 
1 N4 = 4E1(1) 1 0 - - 

NZ29 Double Cove, 41°14'00.40"S 6 N2 = 2A(3) N2 = 1 N2 = 0 N2 = - N2 = - 
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Marlborough 174°00'55.51"E N4 = 4E1(3) N4 = 1 N4 = 0 N4 = - N4 = - 

NZ30 Okiwi Bay, Marlborough 
41°06'08.72"S 

173°39'30.96"E 
11 

N2 = 2I(1) 

N4 = 4E1(9), 4E3(1) 

N2 = 1 

N4 = 2 

N2 = 0 

N4 = 1 

N2 = - 

N4 = 0.20 

N2 = - 

N4 = 0.0005 

NZ31 Cable Bay, Nelson 
41°09'18.93"S 

173°25'03.61"E 
8 

N2 = 2H(1), 2I(1) 

N4 = 4E1(2), 4E4(1), 4O(1) 

N2 = 2  

N4 = 3 

N2 = 1 

N4 = 10  

N2 = 0.66 

N4 = 0.83 

N2 = 0.0017 

N4 = 0.0139 

NZ32 Burton, Nelson 
41°19'10.52"S 

173°10'28.72"E 
13 

N2 = 2A(1) 

N4 = 4E1(12) 

N2 = 1 

N4 = 1  

N2 = 0  

N4 = 0 

N2 = - 

N4 = - 

N2 = - 

N4 = - 

NZ33 

Astrolabe, Sandy Bay, 

Abel Tasman National 

Park 

40°59'46.93"S 

173°00'40.86"E 
10 N4 = 4E1(10) 1 0 - - 

NZ34 
Coquille Bay, Abel 

Tasman National Park 

40°59'21.04"S 

173°01'49.51"E 
10 N4 = 4E1(10) 1 0 - - 

NZ35 
Tinline Bay, Abel Tasman 

National Park 

40°59'25.25"S 

173°01'40.51"E 
4 N4 = 4E1(4) 1 0 - - 

NZ36 Wainui Bay, Tasman 
40°48'13.01"S 

172°57'11.13"E 
11 N4 = 4E1(11) 1 0 - - 

NZ37 Pohara, Tasman 
40°49'47.53"S 

172°53'32.16"E 
11 N4 = 4E1(10), 4E2(1) 2 1 0.51 0.0013 

NZ38 
Wharariki Beach, 

Puponga 

40°30'02.63"S 

172°40'52.24"E 
10 N4 = 4T(7), 4V(2), 4Y(1) 3 2 0.51 0.0018 

NZ39 Whanganui Inlet, Tasman 
40°34'52.61"S 

172°37'47.46"E 
12 N4 = 4E1(7), 4V(5) 2 9 0.62 0.0132 
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NZ40 
Gentle Annie Seaside, 

Westport 

41°30'21.81"S 

171°56'46.86"E 
10 N4 = 4W(10) 1 0 - - 

NZ41 
Gibson Beach, Cape 

Foulwind, Westport 

41°44'53.13"S 

171°28'16.06"E 
10 N4 = 4V(7), 4X(3) 2 1 0.46 0.0012 

NZ42 Tauranga Bay, Westport 
41°46'25.31"S 

171°27'17.71"E 
10 N4 = 4T(4), 4V(6) 2 1 0.53 0.0014 

NZ43 
Charleston, North of 

Woodpecker Bay 

42°00'01.32"S 

171°23'44.46"E 
10 N4 = 4T(7), 4U(1), 4V(2) 3 3 0.60 0.0023 

South Island – additional data from Fraser et al. (2013)  

NZ44 Brighton, Dunedin 
45°56'54.91"S 

170°20'12.72"E 
9 N4 = 4A(8), 4N(1) 2 8 0.22 0.0048 

NZ45 
Ringaringa, Stewart 

Island 

45°54'09.07"S 

168°08'41.10"E 
7 

N4 = 4A(4), 4B(1), 4C(1), 

4F(1) 
4 3 0.64 0.0023 

NZ46 The Neck, Stewart Island 
45°55'25.37"S 

168°11'26.95"E 
8 N4 = 4A(6), 4B(1), 4C(1) 3 2 0.52 0.0015 
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Results 

 

Genetic diversity and distribution 

 

Partial COI sequences of 376 bps were successfully obtained from 384 samples of 43 

populations of B. intricata around NZ (Fig. 3.1, Table 3.1). Genetic distance among these 

sequences ranged from 0.2% to 12.8%. Phylogenetic trees obtained from ML and BI 

analyses were almost completely topologically congruent, and supported the hypothesis 

that three different cryptic species of B. intricata: N2, N4 and N5, referred to in Muangmai 

et al. (2014), occur in NZ (Appendix 3.3). Of the 384 samples, most of the samples (250) 

were from species N4, while another 128 and six samples belonged to species N2 and N5, 

respectively. A total of 35 different haplotypes were identified (10 for N2, 23 for N4 and 2 

for N5) in this study (Fig. 3.2, Table 3.1). Haplotype and genetic diversity indices of the 

three cryptic species in each population are presented in Table 3.1. Haplotype diversity 

(Hd) ranged from 0.35 to 0.68 for species N2 and from 0.20 to 0.83 for species N4 (Table 

3.1). Nucleotide diversity (π) was relatively low for all species, varying from 0.0009 to 

0.0042 for species N2, and from 0.0005 to 0.0139 for species N4 (Table 3.1).  

 

The most widely distributed cryptic species of B. intricata in NZ was N4, which was 

recorded in 37 populations (Fig. 3.1). In contrast, species N2 and N5 were restricted to the 

North Island and top of the South Island (Fig. 3.1). Species N2 was detected in 19 

populations, whereas species N5 was rare and only found in three populations (NZ16, 

NZ19 and NZ27) around Cook Strait, the strait between the North and South Islands. 

Although two different species were found to coexist at quite a few (12) sites, only one site 

(Moa Point: NZ12) had all three species occurring in sympatry (Fig. 3.1). 

 

Haplotype networks constructed for the partial COI dataset (including NZ haplotypes from 

Fraser et al. 2013) are presented in Fig. 3.2. Species N2 revealed 11 haplotypes (1–4 bp 

differences), and its haplotype network was star-like with a central, common haplotype 2A 

(71% of samples), occurring across nearly all populations where this species was found 

(Fig. 3.2). Haplotypes 2K and 2G were only detected from populations on the east coast of 

the North Island, while haplotype 2I was shared among populations from the top of the 

South Island (Fig. 3.1, Table 3.1). The seven other haplotypes were found only in single 
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populations (Table 1). Cryptic species N4 showed the highest diversity, comprising 28 

haplotypes (1–16 bp difference) with complex relationships (Fig. 3.2). Several common 

haplotypes were detected, for example 4E1, 4A and 4V. 4E1 was the most abundant 

haplotype, which occurred in 22 of 46 populations around NZ, accounting for 44% of the 

samples for this species. Haplotype 4A was commonly found in populations on the east 

coast of the South Island (14%), while haplotype 4V was shared across populations around 

the west coast of the South Island (8%) (Fig.3.1 and Table 3.1). Another eight haplotypes 

of N4 were observed in at least two populations, whereas the remaining 17 haplotypes 

were only found in single populations (Fig. 3.1, Table 3.1). Cryptic species N5 had low 

diversity, containing only two haplotypes, 5A and 5B, (2 bp differences), and far fewer 

samples of this species were found than for the other two species. Haplotype 5A was found 

in populations from the southern North Island (NZ12 and NZ16), while 5B was only found 

in one population, NZ27, from the top of South Island (Fig. 3.1, Table 3.1).  

 

Population structure  

 

Population differentiation was separately analysed for cryptic species N2 (9 populations) 

and N4 (21 populations). Population pairwise FST values indicated significant, but low 

genetic differentiation among some populations of cryptic species N2 (Appendix 3.4). 

Other distant populations were not significantly differentiated (Appendix 3.4). For 

example, the Titirangi Bay population (NZ 26) from the top of the South Island was 

weakly, but significantly genetic differentiated from populations at the bottom of the North 

Island (Red rock (NZ18) and Moa Point (NZ12)), less than 80 kilometers away, but not 

significantly different from more distant populations from the upper eastern North Island 

(Maraetai Bay (NZ5) and Waihau Bay (NZ6), more than 1000 kilometers away) 

(Appendix 3.4). In contrast, species N4 showed highly significant population 

differentiation between some areas (Appendix 3.5). Genetic differentiation between 

proximate populations was also observed on the west coast of the South Island. For 

example, the Gentle Annie population (NZ40) was significantly differentiated from the 

nearby population (less than 40 km away) of Gibson Beach (NZ41) as well as the more 

distant population (more than 900 km away) of Waipatiki Beach (NZ8) (Appendix 3.5).  

 

Population structure analyses based on the SAMOVA algorithm showed that 9 populations 

of cryptic species N2 were clustered into two groups: Castle Point population (group 1; 
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NZ10) and eastern North Island and top of South Island (group 2; NZ5, NZ6, NZ7, NZ9, 

NZ11, NZ12, NZ18 and NZ26) (maximum FCT = 0.336, P < 0.05 at K = 2), whereas 21 

populations of cryptic species N4 were assigned to six differentiated groups (FCT = 0.824, 

P < 0.05 at K = 6) (Fig. 3.3).  The six groups of cryptic species N4 proposed by SAMOVA 

were: west coast of North Island and top of South Island (group 1; NZ3, NZ13, NZ17, 

NZ30, NZ32, NZ33, NZ34, NZ36 and NZ37), east coast of North Island (group 2: NZ8), 

east coast of South Island (group 3: NZ21, and group 4: NZ 23, NZ24, NZ44 and NZ46) 

and west coast of South Island (group 5; NZ41, NZ42 and NZ43 and group 6; NZ38 and 

NZ 39) (Fig. 3.3). Furthermore, AMOVA analysis of species N4 using the grouping 

scheme based on four major biogeographic regions proposed by Apte and Gardner (2002) 

and Shears et al. (2008) (Appendix 3.1) indicated that 67.57% of the genetic variation 

occurred among groups of western and eastern North Island and western and eastern South 

Island (FCT = 0.621, P < 0.01), while lower levels of genetic variation (14.83%) existed 

among populations within groups (FSC = 0.542, P < 0.01) (Appendix 3.6).  

 

Demographic history and dating analyses 

 

The Tajima’s D and Fu neutrality tests were used to observe historical population 

expansions for all populations of cryptic species N2 and N4 of B. intricata. Significantly 

negative values of both Tajima’s D and Fu tests (D = -1.38, P < 0.05; FS= -3.78, P < 0.05) 

were observed for species N2, indicating a recent population expansion. By contrast, the 

positive value of Tajima’s D and Fu tests (D = 0.55, P < 0.05; FS = 1.26, P = 0.41) were 

detected for species N4, suggesting demographically stable populations for this species. 

Similarly, the mismatch distribution for species N2 was unimodal, supporting a hypothesis 

of expanding populations, whereas cryptic species N4 showed a multimodal distribution, 

suggesting more stable populations (Appendix 3.7). Different patterns of historic 

population demography in these two cryptic species of B. intricata were further supported 

by the TMRCA analyses.  

 

Diversification between species was inferred to have occurred in the late Pleistocene (< 0.2 

million years ago) (Appendix 3.8). The diversification of cryptic species N2 appears to 

have occurred between 81,000 – 19,000 years ago, while the diversification of cryptic 

species N4 occurred earlier, around 190,000 – 86,000 years ago (Appendix 3.8). Cryptic 

species N5 seemed to be recently evolved, around 50,000 – 1,300 years ago (Fig. S4). 



 

 51 

Although the dating analyses clearly showed the different divergence times among three 

cryptic species, caution is necessary for cryptic species N5 since only two haplotypes from 

a few locations were used in the analysis.  

 

 

 

Figure 3.1: Distribution of three cryptic Bostrychia intricata species based on COI data in 

NZ. Each pie chart shows the proportion of cryptic species and their haplotypes. Shading 

represent different cryptic species: Grey: species N2; Black: species N4; and White: 

species N5. Population codes and sample sizes (in parentheses) are indicated next to the 

pie charts (see also Table 3.1). 
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Figure 3.2: COI haplotype networks for cryptic Bostrychia intricata species (N2, N4, N5) 

obtained from the TCS analyses. Colors represent the different cryptic species as indicated 

in Fig. 3.1. Solid circles correspond to haplotypes found in this study, and dashed circles 

correspond to haplotypes from Fraser et al. (2013). Small circles represent inferred missing 

or extinct haplotypes.  
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Figure 3.3: Cluster analyses based on SAMOVA for cryptic Bostrychia intricata species 

N2 (A) and N4 (B). Small circles represent the populations sampled in this analysis (see 

Fig 3.1 and Table 3.1). Shaded areas show population grouping designated by K=2 for 

cryptic species N2 (group 1 and 2) and K=6 for cryptic species N4 (group 1 – 6). Solid 

black lines show the separation of the northern and southern biogeographic provinces of 

New Zealand according to Apte and Gardner (2002).  
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Discussion 

 

Our molecular analyses indicated different levels of genetic variation and distribution 

patterns among the three cryptic species of B. intricata in New Zealand, suggesting that 

each has experienced a different demographic history. Our broad-scale analyses, with 

samples from 43 sites around the country, strongly support the occurrence of three cryptic 

species within B. intricata in NZ, as previously indicated in Chapter 2; although this 

earlier study used far fewer samples from NZ. This finding emphasizes that low sample 

sizes may not necessarily impede species delimitation, as the present study using hundreds 

of samples indicated the same number of cryptic species as our previous work with 

considerably fewer samples (Chapter 2). However, large samples are still necessary to 

properly assess the genetic diversity and phylogeographic pattern of algal species 

(Zuccarello et al. 2006, 2011). Cryptic species have been detected in other Bostrychia 

species (Zuccarello and West 2003, 2006,Chapter 2) and in other red algal genera (e.g., 

Porteria hornemannii, Payo et al. 2013 and Spyridia filamentosa, Zuccarello et al. 2002).  

 

 

Many phylogeographic studies of algae in NZ have previously indicated genetic 

differences between northern and southern regions. High levels of genetic variation were 

found in North Island populations of the brown macroalga C. maschalocarpum and D. 

antarctica, whereas relatively low genetic variation was encountered in the South Island 

for C. maschalocarpum, D. antarctica and M. pyrifera (Fraser et al. 2009c, Macaya and 

Zuccarello 2010a, Buchanan and Zuccarello 2012). In rough accordance with these 

findings, we detected three cryptic species (N2, N4 and N5) in northern and central New 

Zealand, whereas only one cryptic species (N4) was found in southern New Zealand (Fig. 

3.2). Nonetheless, considerable genetic diversity was detected within and among 

populations of species N4 in southern New Zealand. High levels of genetic heterogeneity 

have previously been observed in a brown alga, Adenocystis utricularis (Bory) Skottsberg, 

from the eastern coast of the South Island (Fraser et al. 2013), and it has been proposed 

that both A. utricularis and B. intricata may be less susceptible to population decline 

during glacial periods than the larger kelps (Fraser et al. 2013). 
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The distribution of cryptic species N2 and N5 was confined to the North Island and top of 

the South Island, restricted to north of Cape Campbell (east coast) and Golden Bay (west 

coast) of the South Island (Appendix 3.1). Many phylogeographic studies of marine taxa in 

NZ have previously demonstrated that contemporary upwelling or ocean currents around 

Cape Campbell and Golden Bay form a significant biogeographic barrier between the 

northern and southern biogeographic province (Appendix 3.1). This was found, for 

example, in greenshell mussel (Apte and Gardner 2002), seastars (Spocer and Roy 2002, 

Ayers and Waters 2005) and limpets (Goldstien et al. 2006). It is possible that the 

restricted northern distribution observed in B. intricata species N2 and N5 is due to this 

north-south biogeographic break and the inability of these species to traverse this barrier. 

However, previous population studies of NZ seaweed showed no evidence for this north-

south split. For example, the brown alga Carpophyllum maschalocarpum exhibited a 

population disjunction in the middle of the North Island (Buchanan and Zuccarello 2012). 

The observed incongruent pattern of species distribution may be attributable to the 

differences in life history, dispersal and adaptive capacity of the various cryptic species. 

 

Present-day patterns of high levels of genetic diversity can indicate population stability 

(Grant and Bowen 1998). The differences in genetic diversity and distributions between 

cryptic B. intricata species suggests that the three species may have originated and evolved 

at different times in the past. Our dating of diversification indicated that species N4 is 

older than either species N2 or N5. If cryptic species N4 arose early, it would have had 

more time to accumulate mutations than the other cryptic species, and would have had a 

longer time to adapt to conditions around NZ. It may also have benefited from a relative 

absence of competition; assuming that all three cryptic species share similar habitat 

requirements, the later-evolving lineages will have had to compete with existing 

populations of species N4 for resources. 

 

Another non-mutually exclusive possibility is that these cryptic species have responded 

differently to historical events and regional climate change, and this promoted the disparity 

in genetic composition and distribution patterns between them. The LGM is a well-known 

historic event that played an important role in shaping population diversity and 

connectivity of many taxa in the Southern Hemisphere (Fraser et al. 2012), and its main 

impacts were approximately 27,000 – 18,000 years ago (Suggate and Almond 2005). 

Some studies indicated that the LGM had a significant impact on the genetic diversity and 
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structure of algal species. For example, the observed genetic homogeneity of some brown 

seaweeds (Carpophyllum maschalocarpum and Durvillaea antarctica) from low latitude 

populations (South Island of New Zealand and sub-Antarctic Island) suggest that these 

algae may have be removed by ice scouring during the LGM or changes in water 

temperature, subsequently recolonizing these regions post-glacially (Fraser et al. 2009, 

Buchanan and Zuccarello 2012). The LGM could well have driven some of the patterns of 

genetic diversity and distribution within cryptic B. intricata species. Of the three different 

cryptic B. intricata species, we found that the origin of species N4 (190,000 – 86,000 years 

ago) predated the LGM, and this cryptic species seemed to have survived the glacial 

period while retaining its genetic diversity, as indicated by the high-level genetic diversity 

and wide distribution in both North and South Islands. On the other hand, the 

diversifications of cryptic species N2 (81,000 – 19,000 years ago) and N5 (50,000 – 1,300 

years ago) could have occurred during the LGM or have post-dated the LGM. The low 

genetic diversity and more limited distribution observed in cryptic species N2 and N5 

could be explained by two possibilities. Firstly, cryptic species N2 and N5 were eliminated 

from southern areas, and populations in the north contracted, and later were prevented 

from moving southward after the LGM; secondly these two species diversified after the 

LGM and then expanded their populations but were prevented from dispersing past the 

north-south barrier. Both scenarios suggest the influences of climate change after 

glaciation (e.g. warmer seawater in northern New Zealand or rising seawater level at the 

Cook Strait) on their diversifications and distribution. From these observed patterns, we 

also hypothesize that the three cryptic species may have different genetic-physiological 

adaptations and abilities to persistent in changing environments, as found in the red alga, 

Caloglossa ogasawaensis Okamura (Kamiya and West 2014). Further studies on whether 

these cryptic B. intricata species have different eco-physiological responses (e.g. 

temperature, exposure) would help to shed light on the mechanisms facilitating genetic 

differentiation and distribution patterns in Bostrychia and other marine red algae.  

 

In the Southern Hemisphere, phylogeographic research on marine macroalgae have shown 

that the patterns of population differentiation and connectivity have been strongly 

influenced by dispersal potential (Fraser et al. 2009c, Macaya and Zuccarello 2010a), 

habitat availability and density (Montecinos et al. 2012) and the effect of historical events 

and environmental change (Fraser et al. 2009c, Macaya and Zuccarello 2010b, Buchanan 

and Zuccarello 2012). For example, kelp species (e.g. Durvillaea antarctica and 
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Macrocystis pyrifera) with high dispersal potential have demonstrated a higher level of 

population connectivity than other marine algae with low effective dispersal potential (e.g. 

Mazzaella laminarioides) (Fraser et al. 2009c, Macaya and Zuccarello 2010b, Montecinos 

et al. 2012). In B. intricata, we detected low to moderate genetic differentiation among 

populations of cryptic species N2, and high differentiation among populations of N4, 

suggesting different patterns of population structure between the species. These findings 

concur with our haplotype network results, as well as inferred demographic history and 

divergence times, which indicated that cryptic species N2 has expanded more recently than 

species N4. We suggest that the differences observed in these two species could probably 

be explained by the differences in evolutionary history and dispersal ability of species.  

 

Our SAMOVA results support the major biogeographic provinces previously proposed for 

NZ, with northern/southern biogeographic provinces (B. intricata N4 groupings 1, 2, 6 

versus 3, 4, 5) (Apte and Gardner 2002, Sharyn et al. 2006) and a genetic split between 

western/eastern regions, especially on the South Island (B. intricata N4 groupings 5,6 

versus 3, 4) (Jones et al. 2008, Veale & Lavery 2012) (Fig. 3.3). However, SAMOVA 

analyses for cryptic species N2 and N4 suggested that these groupings were partially 

incongruent with the 11 bioregions proposed by Shears et al. (2008), with some groupings 

spanning several of the proposed regions, especially on the North Island. For example, we 

found evidence for connectivity between the northeastern and the Portland regions on the 

North Island for cryptic species N2 (group 1, Fig. 3.3) and the Raglan region and the Abel 

region on the North Island for cryptic species N4 (group 1, Fig. 3.3). Our mitochondrial 

data may not, however, have been able to detect all biogeographic detail; more rapidly-

evolving markers (such as microsatellites) could be used in future studies to assess 

whether fine-scale structure or population connectivity occurs in these regions. 

 

In conclusion, our data clearly show the occurrence of three cryptic species within B. 

intricata (N2, N4 and N5) in NZ. We have been unable to find any morphological 

differences between these species. Bostrychia species have few morphological characters 

that can be used to differentiate species (Zuccarello and West 2003), and can hinder 

description of new taxa identified via molecular approaches. The three cryptic species do, 

however, differ substantially in their levels of genetic diversity, distribution patterns and 

demographic histories. While a single marker may not provide all the evidence of a 

species’ history, variable organellar markers can nonetheless give important insights into 
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the processes driving patterns of diversity, and are commonly used when tools for 

appropriate nuclear markers have not been identified. These findings highlight that 

different patterns of species history can be quite substantial in species that are 

morphologically indistinguishable (cryptic species). Future research including 

physiological analyses should be carried out to assess whether these species differ in non-

morphological features such as timing of reproduction.    
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Abstract  

 

Inter- and intra-specific physiological variations of intertidal macroalgae have been well 

investigated. However, studies on physiological responses of cryptic algal species have 

been poorly documented. Bostrychia intricata is a widespread marine red alga in the 

Southern Hemisphere, and has many cryptic species. We investigated the effect of 

different salinities and temperatures on the specific growth rate of three cryptic species 

(N2, N4 and N5) of B. intricata from New Zealand. Our data indicated that all cryptic 

species grew at the full range of salinities and temperature tested, and exhibited significant 

differences between their specific growth rates. Cryptic species N4 had a higher growth 

rate than the other two cryptic species under all experimental conditions, whereas cryptic 

species N2 occasionally showed a higher growth rate than cryptic species N5 at high 

salinities and lower temperatures. The distinct physiological properties of these cryptic 

species could explain their distributional pattern (a wider distribution of cryptic species N4 

than N2 and N5) in New Zealand. The physiological divergence among the cryptic species 

could be related to their levels of genetic divergence, with more similar physiologies 

among cryptic species with a more recent common ancestor. Our findings underline that 

morphologically indistinguishable cryptic algal species are different in other aspects and 

are independent entities.  
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Introduction 

 

Cryptic species are defined as groups of distinct species, which are difficult or impossible 

to distinguish morphologically (Beheregaray and Caccone 2007). The discovery of cryptic 

species has greatly increased with the advent of molecular techniques and species 

delimitation methods (Bickford et al. 2007, Wiens 2007, Payo et al. 2013, Chapter 2), As a 

rule, cryptic species are genetically distinct, but they can also be physiologically 

differentiated, as found in copepods (Chen and Hare, 2008), marine diatoms (Degerlund et 

al. 2012), rotifers (Leasi et al. 2013) and snails (Dennis and Hellberg 2010). It is feasible 

that genetic changes since they last shared a common ancestor could contribute to the 

physiological differentiation between cryptic species.  

 

Macroalgae are a diverse group of photosynthetic organisms, which are functionally 

important in aquatic ecosystem (Graham et al. 2009). The diversity and taxonomy of 

macroalgae has been studied extensively, and many algal species, especially in red algae, 

exhibited a high number of cryptic species (Zuccarello et al. 2002, Zuccarello and West 

2003, 2006, Payo et al. 2013, Kamiya and West 2014, Chapter 2). Despite the recognition 

that cryptic diversity is relatively common in red algal species, our understanding of the 

eco-physiology and biochemistry within cryptic algal species is still limited.  

 

In the intertidal macroalgae experience a wide range of environmental gradients in wave 

exposure, light intensity, salinity and temperature (Hurd et al. 2014). Among the physico-

chemical environmental components, salinity and temperature are major factors 

influencing macroalgae communities and distribution (Hurd et al. 2014). Many 

physiological studies have previously demonstrated that salinity and temperature affect the 

growth and photosynthetic activity of macroalgae, and several algal species were 

considered well-adapted to a relatively-wide rage of salinity and temperatures, suggesting 

their potential for eco-physiological adaptation (Breeman 1988, Orfanidis et al. 1999, 

Zuccarello et al. 2001, Phooprong et al. 2007, Hayakawa et al. 2012, Watanabe et al. 

2014). Physiological differentiations among different haplotypes within species have also 

been observed in mangrove red algal, Bostrychia Montagne and Caloglossa (Harvey) 

Martens (Karsten et al. 1993, 1994, Zuccarello et al. 2001). However, very few studies 



 

 62 

have examined the physiological distinctions between cryptic algal species, as for example 

in Caloglossa ogasawaraensis Okamura (Kamiya and West 2014). 

 

Bostrychia intricata (Bory de Saint-Vincent) Montagne is a filamentous red alga that is 

commonly found in the cold temperate intertidal around the Southern Hemisphere, and its 

evolution, phylogenetic diversity, phylogeography, physiology and reproduction have been 

studied (Karsten et al. 1996, West et al. 1996, Zuccarello and West 2008, Fraser et al. 

2013, Chapter 2). Recent studies on DNA-based species delimitation showed that B. 

intricata consists of eight cryptic species (N1 – N8), three of which (N2, N4 and N5) are 

found in New Zealand (Chapter 2). In New Zealand, B. intricata species N4 is widely 

distributed in both the North and South Islands, while the other two cryptic species are 

confined to northern regions (north of the top of South island) (Chapter 3). Furthermore, 

the different cryptic species can co-exist in some habitats around Cook Strait, which 

separates the North and South Islands of New Zealand (Chapter 3). Previous physiological 

studies of three B. intricata (as Stictosiphonia hookeri) isolates from Chile indicated 

difference in specific growth rate to different salinities and temperatures. However, these 

isolates were not genetically characterized so it was not confirmed if they are genetically 

distinct (Karsten et al. 1996). Accordingly, whether genetically defined cryptic B. intricata 

species are physiologically different is still unknown.  

 

In this study we determine the effect of differences in salinity and temperature on the 

specific growth rate of three cryptic species of B. intricata collected in the same and 

different locations around New Zealand in order to test two hypotheses: (i) these cryptic 

species have diverged physiologically even though they are morphologically 

indistinguishable and (ii) cryptic species with greater physiological abilities has a larger 

distribution. 

 

 

 

 

 

 

 



 

 63 

Materials and Methods 

 

Algal collection and maintenances  

 

We isolated seven Bostrychia intricata from different localities around New Zealand. 

These isolates were from three cryptic species: N2, N4 and N5, according to Chapter 2. 

The details of location, collection date, reproductive state and genetic composition for each 

isolate were shown in Table 4.1. Each of the B. intricata isolates was grown separately in a 

250 mL sterile plastic container (Magenta LLC, Chicago, IL, USA), containing 150 – 180 

mL autoclaved seawater at approximately 33 psu with half-strength modified Provasoli’s 

enrichment (MPE) medium (5 mL PES per 1 L sterile seawater) (West and McBride 1999) 

(Fig. 4.1). The culture medium was replaced every two to three weeks, and sometimes 

Penicillin G sodium salt  (0.5 – 1 mg) (AMRESCO, Solon, OH, USA) and germanium 

dioxide (0.1 – 0.25 mg/L) were directly added into algal cultures for the control of bacteria 

and diatom contamination (Zuccarello et al. 2001). Algal specimens were cultured in 

laboratory cooled incubators (Sanyo Electric Co. Ltd., Tokyo, Japan) at 15 ± 1 °C under 

the light intensity of 40 ± 5 µmol photons m-2 s-1 provided by cool-white fluorescent tubes. 

The photoperiod was set at a 10-14h light-dark cycle. These culture conditions are very 

similar to other growth studies on these algae (Karsten et al. 1996). All stock cultures were 

maintained for over a year before use in growth experiments.  

 

Growth experiments  

 

We observed the growth rate of all B. intricata isolates under the combination of three 

different levels of salinity: 25, 32 and 40 psu; and temperature: 10, 15 and 20°C. Ranges of 

the two parameters were chosen based on a preliminary physiological study and previous 

research on this species or other Bostrychia species (Karsten et al. 1994a, 1996; West et al. 

1996). Salinity levels were adjusted by diluting sterile seawater with distilled water for the 

salinity 25 experiment, or by adding artificial sea salt (Sigma, St. Louis, MO, USA) for the 

salinity 40 experiment, and subsequently enriched with half-strength MPE medium. The 

three different temperatures were individually operated in separate incubators. The light 

intensity and photoperiod were set at the same condition as in stock culture for all 

treatments.  
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Apical portions of algal samples were cut into small pieces (1 – 1.5 cm), and three 

individual fragments of each isolate were prepared for each treatment. The fragments from 

different isolates were randomly placed in six-well plastic plates (Geriner Bio-One Ltd, 

Frickenhausen, Germany) and each well was filled with 2 mL MPE media, which was 

renewed every two weeks (Fig. 4.1). Six-well plates with test samples were simultaneously 

incubated at different temperature in separate culture chambers. In the chamber, the light 

sources were located on the left and right sides, and to provide the same irradiation to all 

fragments, the plates were repositioned every two days. All experiments were carried out 

for 4 weeks.  

 

Growth rates were measured based on the changes in thallus area, which were calculated 

using digital images (Ryder et al. 1999, Zuccarello et al. 2001). Digital images were 

recorded at the beginning and the end of experiments. All fragments were placed on 

microscope slides, covered by a cover glass, and subsequently photographed under the 

Leica MZ8 stereomicroscope (Leica Microsystems, Wetzlar, Germany) equipped with 

Sony A77 DSLR camera (Sony Corporation, Tokyo, Japan). To capture large thalli, the 

thallus was divided into smaller pieces to avoid overlapping of branches for accurate area 

measurement. The thalli areas on captured images were measured as square pixels using 

ImageJ 1.48 software (http://rsb.info.nih.gov/ij/). Actual thallus area was selected using 

the threshold function, or in the case of unclear images, the area was carefully outlined by 

hand.  

 

Calculation and statistical analysis 

 

Calculation of the specific growth rate (SGR, in % day-1) followed the formula of Ryder et 

al. (1999): SGR= 100(lnAt – lnAi)t
-1, where At = the area at time t, Ai = the area at time = 0. 

All statistical analyses were performed using IBM SPSS Statistics version 21 for Mac 

(IBM Corporation, Chicago, IL, USA). The growth experiment data were analysed using a 

multiple-factor analysis of variance (ANOVA) in order to verify the significant difference 

between treatments and different salinity and temperature combinations among isolates 

(Zuccarello et al. 2001) . In addition, a one way-ANOVA followed by a Tukey's multiple 

range test was used to compare the growth rate among isolates, which cultured in three 

different salinities and temperatures (Zuccarello et al. 2001, Hayakawa et al. 2012)..  



 

 65 

Results 

 

Seven isolates of B. intricata grew in all treatments, and the specific growth rates of these 

isolates were different in the various salinity and temperature conditions (Fig. 4.2). All 

isolates had maximum specific growth rates (SGR > 1% d-1) at salinity of 32 psu and 

temperature of 15 ºC, whereas minimum rates (SGR < 0.7% d-1) were mostly observed at 

increased salinity and temperature (40 psu and 20 ºC), except for isolate M5 (minimum at 

25 psu and 10 ºC) (Fig. 4.2, Appendix 4.1). ANOVA test indicated significant interactions 

between isolates, salinity and temperatures (Table 4.2, P < 0.005), suggesting that the 

combined effect of salinity and temperature on the growth rate differed between the 

isolates.  

 

The Tukey’s test indicated significant differences in specific growth rate between some 

isolates (Fig. 4.2, P < 0.05). In all treatments, all isolates belong to cryptic species N4 

(isolates M4, P4 and C4) grew significantly better than the other isolates of cryptic species 

N2 (isolates M2, C2 and T2) and N5 (isolate M5), with at least 80% higher specific growth 

rates (Fig. 4.2). Isolates M2, C2 and T2 (cryptic species N2) was significantly different 

from isolates M5 (cryptic species N5), with approximately 15% greater specific growth 

rate, in some conditions (10 °C with salinities of 32 and 40 psu). These seven isolates all 

exhibited very low growth rates, of less than 0.7%, under higher temperature (20 °C) in all 

salinity treatments (Fig. 4.2). Differences among isolates of all three cryptic species were 

found at lower temperatures (10 °C) with the two higher salinities (32 and 40 psu) (Fig. 

4.2).  

 

Differences in specific growth rate among isolates within the cryptic species were 

occasionally observed for cryptic species N2 and N4 (Fig. 4.2). In cryptic species N2, 

isolate C2 and T2 showed a higher growth rate than isolate M2 (~ 10% differences) only at 

15 °C and 32 psu (Fig. 4.2). In cryptic species N4, growth rates of isolates M4 and P4 

were significantly lower than isolate C4 (~ 15% differences) under three experimental 

conditions with the different combinations of temperature and salinity: 10 °C - 40 psu, 15 

°C - 25 psu and 20 °C - 32 psu (Fig. 4.2). 
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Table 4.1. Details of isolate codes, collection sites, dates, reproducti 

ve state and cryptic species of Bostrychia intricata used in this growth experiments. Cryptic species and haplotype designations based on 

Chapter 2 and 3. 

 

Isolate code Locality Collection dates Reproductive state Cryptic species Haplotype 

M2 Moa Point, Wellington, North Island 

(41°20'40.78"S 174°48'35.34"E) 

18 April 2012 Vegetative N2 2A 

C2 Castle Point, Wairarapa, North Island 

(40°54'05.15"S 176°13'48.61"E) 

10 May 2012 Vegetative N2 2G 

T2 Titirangi Bay, Havelock, South Island 

(41°01'08.73"S 174°07'57.36"E) 

13 Jan 2013 Tetrasporangial N2 2C 

M4 Moa Point, Wellington, North Island 

(41°20'40.78"S 174°48'35.34"E) 

23 July 2012 Vegetative N4 4E1 

P4 Pohara, Tasman, South Island 

(40°49'47.53"S 172°53'32.16"E) 

2 February 2013 Vegetative N4 4E2 

C4 Charleston, Woodpecker Bay, South Island 

(42°00'01.32"S 171°23'44.46"E) 

3 February 2013 Vegetative N4 4T 

M5 Moa Point, Wellington, North Island 

(41°20'40.78"S 174°48'35.34"E) 

July 23 2012 Vegetative  N5 5A 
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Figure 4.1: (1) Stock culture of B. intricata in 250 mL sterile plastic container filled with 

autoclaved seawater and medium under controlled light and temperature. (2) Fragments of 

B. intricata were randomly placed in six-well plates. 
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Figure 4.2: Mean specific growth rate (± SE) of all Bostrychia intricata isolates belonging 

to three cryptic species, N2 (isolates M2, C2, T2), N4 (M4, P4, C4) and N5 (M5), at three 

salinities and temperatures (n =3). The different letters indicate significant difference (P < 

0.05). 
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Table 4.2. Summary of ANOVA results for the growth experiment data 

 

Source SS df MS F ration P-value 

Isolates 30.133   6 5.022 768.564 <0.0005 

Salinity   9.708   2 4.854 742.806 <0.0005 

Temperature 54.102   2 27.051 4139.690 <0.0005 

Isolates × salinity   0.637  12 0.053 8.119 <0.0005 

Isolates × temperature   5.429  12 0.452 69.235 <0.0005 

Salinity × temperature   5.454   4 1.364 208.672 <0.0005 

Isolates × salinity × temperature   1.466  24 0.061 9.349 <0.0005 

Error   0.823 126 0.007   

SS, sum of squares; df, degree of freedom; MS, mean square. 
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Discussion 

 

The discovery of physiological differences between cryptic species has recently increased 

for marine species (Chen and Hare 2008, Degerlund et al. 2012, Leasi et al. 2013),but less 

so in marine macroalgae (e.g. Cladophora glomerata (Linnaeus) Kützing, Hayakawa et al. 

2012, and Ulva prolifera Müller, Ogawa et al. 2013). In marine red algae, physiological 

distinction between cryptic species has been observed for Caloglossa ogasawaraensis, 

indicating that different cryptic species grow in particular saline environments (Kamiya 

and West 2014). Under our experimental conditions, the data clearly showed that all 

isolates had their optimal growth in these condition at the same salinity and temperatures 

(15°C and salinity of 32) (Fig. 4.2, Appendix 4.1). Cryptic species N4 growth was 

significantly different from cryptic species N2 and N5 showing higher specific growth rate 

in our experimental treatments. While these finding could be attributed to preference to the 

culture conditions for N4, these findings do suggest that physiological differences exist 

and differentiation has occurred among these cryptic B. intricata species. Cryptic species 

N2 and N5 mostly showed a similar growth pattern, but were significantly differed from 

each other at the lower temperature conditions. Global phylogenetic diversity within 

cryptic B. intricata species has previously demonstrated that cryptic species N2 and N5 

evolved from a more recent common ancestor than either did to N4 (Chapter 2). 

Considering these results, it is possible that levels of physiological differentiation among 

these cryptic species have diverged since they shared a most recent common ancestor 

(MRCA) with the similarity maintained, or only marginally diverging, since the MRCA of 

N2 and N5. While the longer history of divergence of N4 is reflected in its greater 

physiological distinctness.  

 

In B. intricata, found in the upper intertidal zone, our preliminary studies showed that this 

species can survive in wider range of salinity conditions, from 15 to 50 psu, but only grew 

significantly between 25 to 40 psu (Muangmai, unpublished data), These results are 

congruent with previous physiological experiments by Karsten et al. (1996), indicating an 

ability for survival in a board salinity range, 5 to 60 psu in this species. Our studies 

showed differences in physiological performance to salinity variations between the three 

cryptic species. Cryptic species N4 had considerably greater growth than species N2 and 

N5 in all salinity levels.  
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All isolates of B. intricata grew in the temperature tested, although showed higher growth 

rate between 10 – 15 °C. Our results are consistent with the physiological studies of B. 

intricata (as Stictosiphonia hookeri) from South America (Karsten et al. 1996), which 

exhibited optimal growth in temperature ranging from 10 to 20 °C. We also detected that 

cryptic species N4 always had a higher specific growth rate than the other two cryptic 

species at all temperatures tested.  

 

It is possible that the increased growth of cryptic species N4, in different temperatures and 

salinities, gives this cryptic species a competitive advantage in some environmental 

situations (e.g. more southern colder climates; higher intertidal environments). Previous 

studies on macroalgal distribution indicated that temperature tolerances were partly 

responsible to pattern of geographic distribution of algal species (Breeman 1998, Orfanidis 

et al. 1999, Hurd et al. 2014). New Zealand exhibited a remarkable variability of sea 

surface temperatures, due to its latitudinal range, ranging from 15 to 18 °C in North Island 

and from 11 to 15 °C in South Island (Uddtrom and Oien 1999). The north-south water 

temperature differences could partially affect the diversity and distribution pattern of some 

marine algae in New Zealand. For example, the distribution and diversity of Carpophyllum 

maschalocarpum (Turner) Greville was suggested to be due partially to sea surface 

temperature changes during and after glacial periods (Buchanan & Zuccarello 2012). 

Phylogeographic studies of New Zealand B. intricata species have shown that cryptic 

species N4 is widely distributed all around New Zealand, whereas cryptic species N2 and 

N5 were only found in northern regions (Chapter 3). Contrasting distribution patterns in 

cryptic species of the New Zealand B. intricata; a wide distribution in cryptic species N4 

versus northern-limited dispersal in cryptic species N2 and N5, could possibly be 

explained by differences between these cryptic species in their ability to grow effectively 

at different temperatures . 

 

Our physiological data are useful in possibly explaining the occurrence of different cryptic 

algal species at the same location. Theoretically, coexistence of sympatric species can take 

place when species have at least slight differences in food resources, reproductive 

strategies, physiological responses or habitats conditions (Gause 1932, Amato et al. 2007, 

Tronholm et al. 2010). A preliminary study in the population structure of B. intricata 

showed that the cryptic species (N2, N4 and N5) could co-occur together at Moa Point, 



 

 72 

Wellington (Chapter 3). In the present study, we found physiological differentiation 

among the three cryptic species collected from Moa Point (isolates M2, M4 and M5), and 

these differences could potentially promote their coexistence at the area. While cryptic 

algal species could sympatrically coexist due to their differential physiological 

adaptations, the distribution pattern of different these cryptic species at small-scales in 

natures are still unknown. Future studies on B. intricata must consider how these cryptic 

species coexist, in relation to the relevant environmental factors (e.g. tidal level, sun 

exposure and wave exposure).   

 

Physiological differentiations among haplotypes of cryptic algal species have been 

observed in Bostrychia and Caloglossa (Karsten et al. 1993, 1994b, Zuccarello et al. 

2001). For example, three haplotypes of Caloglossa vieillardii (Kützing) Setchell (as C. 

leprieurii) from eastern Australia were physiologically different, with haplotype A 

showing a lower growth rate and photosynthetic capacity than haplotypes B and C 

(Zuccarello et al. 2001). We also detected inter-haplotype differences in growth rate for 

cryptic species N2 and N4. For cryptic species N2, haplotype 2A (isolate M2) significantly 

differed from haplotype 2C (isolate T2) and 2G (isolate C2) under one experimental 

condition (15 °C and 32 psu), whereas in cryptic species N4, haplotype 4T (isolate C4) 

have a higher growth rate than the other two haplotypes 4E1 (isolate M4) and 4E2 (isolate 

P4) at some conditions (Fig. 4.2, Table 4.1). Our previous studies on haplotype diversity of 

the mitochondrial gene COI of these cryptic species showed differences of 1 or 2 base pair 

between the haplotypes of N2 (2A, 2C and 2G) and 1 or 11 base pair between the 

haplotypes of N4 (4E1, 4E2 and 4T) (Chapter 3). This suggests that even within cryptic 

species, with very little genetic difference, physiology can vary.  

 

In conclusion, our data clearly show variations in SGR among three cryptic species of B. 

intricata at different salinities and temperatures. Cryptic species N4 has a greater tolerance 

to a wide range of salinities and temperatures than cryptic species N2 and N5, and these 

physiological properties could contribute in their greater distribution in New Zealand. Our 

findings provide concrete evidence that morphologically indistinguishable cryptic algal 

species can be physiologically divergent. Due to a high cryptic diversity of B. intricata 

(Chapter 2), we suggest that further physiological studies, including other cryptic species 

from different regions, for example, Australia (N7 and N8), subantarctic island (N3) or 

South Africa (N6), can be beneficial to gain more understanding of the genetic-
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physiological diversity and evolution within morpho-cryptic algal species, and possibly 

explain the geographic distribution of the different cryptic species of B. intricata in the 

Southern Hemisphere. In addition, future research should focus on other physiological 

characters (e.g. photosynthetic capacity at different levels of desiccation and light intensity) 

among cryptic B. intricata species. This will increase our knowledge of physiological 

properties and adaptations in cryptic algal species. 
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Abstract  

 

Niche partitioning is an important ecological mechanism, which allow competing species 

to occupy a certain resource or habitat, consequently creating their stable coexistence in 

the area. Sympatric coexistences of cryptic species, indistinguishable morphological taxa, 

have increasingly been detected based on molecular data, and this discovery raises the 

interesting question of how cryptic species, which could be hypothesized to need identical 

ecological resources, can coexist. The red alga Bostrychia intricata is commonly found 

along the shore of New Zealand. Previous studies indicated several cryptic species within 

this morphospecies and that some are sympatric. This study aimed to determine whether 

cryptic B. intricata do coexist at a small-scale by occupying distinct niches. Along the 

shore of Moa Point, Wellington, we conducted intensive sampling of B. intricata in 

different habitats with respect to tidal position, wave and sun exposure levels. Our genetic 

data clearly showed the coexistence of three cryptic species of B. intricata: N2, N4 and 

N5. Multiple samples from individual algal patches indicated that the patch was made of 

the same ramet. The distribution of these cryptic species was not random and varied 

significantly. Cryptic species N4 was found at a higher tidal position than species N2 and 

N5, whereas cryptic species N2 occurred in more wave-exposed areas than the other 

species. Discriminant analysis indicated that tidal height strongly influenced the 

distribution pattern among cryptic species. Our observations demonstrate that different 

cryptic algal species partition intertidal habitats (niches), which may facilitate their 

coexistence in sympatry. 
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Introduction 

 

In community ecology, the niche is often defined as a specific resource, behavior or 

environmental circumstance of one species, which is generally influenced by biotic and 

abiotic factors, such as inter- and intra-specific interactions, gradients of light and 

temperature or seawater chemistry (Odum 1959, Silvertown 2004, Levinton 2013). In 

intertidal ecosystems, many studies have demonstrated temporal and spatial niche 

differentiations (e.g., reproductive timing, tidal position and exposure level) among 

competing taxa allowing them to coexist at small-scales (Benzie et al. 2000, De Troch et 

al. 2003, Sampayo et al. 2007, Tronholm et al. 2010, Lai et al. 2011, Zardi et al. 2011). For 

example, within mid-intertidal pools along the northern Gulf of California, the brown alga 

Sargussum johnstonii Setchell & Gardner grew at a shallower depth than S. sinicola subsp. 

camouii (Dawson) Norris & Yensen in pools (McCourt 1984). 

 

Recently, molecular data have been used to solve taxonomic problems in marine species 

and uncovered hidden diversity (Knowlton 2000, Zuccarello and West, 2003, 2006, 

Lindstrom 2008, Tronholm et al. 2010). Cryptic species are a group of two or more 

morphologically indistinguishable species, which are genetically divergent (Bickford et al. 

2007). In marine red algae, the incidence of cryptic species is relatively common 

(Zuccarello et al. 2002, Zuccarello and West 2003, Payo et al. 2013, Chapter 3). While 

morphologically identical, cryptic red algal species can be distinctly different in other 

aspects of their biology: e.g. distribution patterns, mating systems and physiological 

performance (Kamiya et al. 1998, Zuccarello and West 2003, Kamiya and West 2014, 

Chapter 2 and 3). 

 

Competitive exclusion principle was originally proposed by Gause (1934) to explain 

competition of different species for the same ecological niches (resources and habitats) and 

leading one species to exclude the other (Hardin 1960). Several studies in animal and plant 

communities have demonstrated that in the same area, competing species could stably 

coexist by occupying different niches (Tokeshi 1999, Silvertown 2004, Zhang et al. 2004). 

Discovering the coexistence of cryptic algal species challenges this classical concept of 

competition (Zuccarello et al. 2003, Fraser et al. 2013, Chapter 3). The shared morphology 

of cryptic algal species would suggest that they need similar, or even identical, ecological 
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niches and would compete with each other. Therefore, the species that has a competitive 

advantage would eliminate its competitors from the area, and coexistence would be 

unlikely. Recently, several studies have shown that cryptic algal species are eco-

physiologically distinct (Škaloud and Rindi 2013, Kamiya and West 2014), suggesting that 

these cryptic species may have specialized on the particular resource or habitat (niche) and 

this would allow them to coexist.  

 

Bostrychia intricata (Bory de Saint-Vincent) Montagne is a common intertidal red alga 

occurring in the Southern Hemisphere (Chapter 2). This species has been studied in 

various biological aspects, including taxonomy, evolution, phylogeography, reproduction 

and physiology (Karsten et al. 1996, West et al. 1996, Zuccarello and West 2008, Fraser et 

al. 2013, Chapter 2 and 3). Global phylogenetic diversity plus species delimitation 

analyses indicated eight cryptic species within this morphospecies, three of which are 

found in New Zealand (N2, N4 and N5) (Chapter 2). Phylogeographic studies of New 

Zealand B. intircata indicated the coexistence of different cryptic species in some 

populations around Cook Strait (Chapter 3).  

 

There are at least two possible explanations for the coexistence of sympatric cryptic 

species of B. intricata. First, is that different cryptic species occupy different niches. Our 

growth experiments of three sympatric cryptic species of B. intricata (N2, N4 and N5) 

from Moa Point (Cook Strait, North Island) have previously indicated physiological 

differences among these cryptic species (Chapter 4). It is possible that the physiological 

differentiation seen in culture among B. intricata species, could lead to the species 

inhabiting different ecological niches and allow the coexistence of these cryptic species. 

Another possibility of coexisting is a vacant niche space filling process on a ‘first-come, 

first-served’ basis (Sale 1982, Brokaw and Busing 2000, Gillespie and Roderick, 2002). 

This concept emphasizes that the first species to arrive has a better chance to occupy the 

space and establish their population than later arrivals. It is a random process as to which 

species could fill the open ecological niches regardless of species-specific niches 

preferences, and this likely fits with the situation of large communities when competitive 

exclusion occurs slowly (Silvertown and Law 1987, Brokaw and Busing 2000). However, 

clear evidence to clarify how the coexistence of cryptic B. intricata species occurs in the 

microhabitat is still needed.  
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This study aims to test the hypothesis that the cryptic algal species can coexist in sympatry 

when they occupy different intertidal habitat (niches partitioning), with respect to physical 

environmental factors. We surveyed the distribution of cryptic species of B. intricata in a 

population at Moa Point, Wellington with reference to physical factors: tidal position, 

wave and sun exposure. We firstly examined whether the coexistence of these cryptic 

species is likely to be facilitate by niche partitioning or just a random selection 

mechanism. Secondly, we would like to see which physical factors play a more significant 

role in promoting the microhabitat distribution pattern of cryptic B. intricata species.  

 

 

Materials and Methods 

 

Sampling 

 

Samples of B. intricata were collected at Moa Point, Wellington (41°20'40.78"S 

174°48'35.34"E). Due to the patchy distribution of these species, we sampled 1 – 2 patches 

from each rock approximately every 2 meters. To test if patches were composed of single 

or multiple genets (identical genetic made-up), we sampled 2 – 3 ramets per patch. We 

recorded three physical factors for each patch: (1) tidal height, (2) sun exposure and (3) 

wave exposure. To estimate the tidal level, we used a theodolite to measure the height of 

each algal patch above the sea surface calibrated to the predicted low tide for that day 

(Meteorological Service of New Zealand: http://metservice.com/marine/tides/wellington). 

The degree of exposure to sun and wave was measured following Lewis (1964) and 

Schneider and Helmuth (2007) with some modifications. We classified sun exposure based 

on algal position: “sun-protected” habitat if the algae was found in a rock crevasse or on 

the underside of a rock; and “sun-exposed” in other areas. We classified wave exposure 

based on the direction the alga faced: “wave-exposed” if the alga was facing the open 

coast and “wave-protected” if the alga faced the shore. 

 

All algal samples were placed in silica gel in the field. Algal specimens were identified 

based on previous species descriptions (e.g. King and Puttock 1989, Zuccarello and West 

2008). For DNA analyses, algal samples were rinsed in autoclaved seawater to remove any 

sand and dirt, and then the apical portions were used for DNA isolation.  
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Molecular analyses 

 

Due to the large number of samples, we applied single-stranded conformation 

polymorphism (SSCP) analysis to screen the genetic variation within the population. DNA 

was isolated using a modified Chelex method (Zuccarello et al. 1999a). The short fragment 

of mitochondrial cytochrome c oxidase subunit I gene (COI) (~ 200 bp) was selected as an 

appropriate molecular marker for PCR amplification (Chapter 2 and 3). PCR amplification 

was performed using primers (BiCOI_168F: 5’-GGAGCYGCRGTAGAYTTAGCRA 

TTT-3’ and BiCOI_372R: 5’-TYGTAATTGCTCCRGCTAAAAC-3’) designed from 

previous COI sequences (Chapter 3). The PCR reactions followed Fraser et al. (2013). 

  

For SSCP analysis, we prepared a gel, 225 mm long and 0.75 mm thick (BioRad, 

Hercules, CA, USA), by combining 20% (37.5:1) acrylamide/bis-acrylamide solution 

(Sigma Aldrich, St Louis, MO, USA), 0.5x TBE buffer, 0.5% ammonium persulphate and 

0.05% tetramethylethylenediamine (Biorad, Herecule, CA, USA). Three µL of PCR 

product were mixed with 9 µL of loading dye (98% formamide, 0.025% bromophenol, 

0.025% xylene cyanol and 10 mM NaOH). Mixed PCR products were denatured at 95 – 

100 °C for 5 minutes and then snap cooled on ice before loading. Vertical acrylamide gel 

electrophoresis was run in 0.5x TBE buffer at 12 volts for 5 – 6 hours at 4 °C. The gel was 

stained used silver-staining (Bassam et al. 1991) and banding patterns were analysed by 

eye. In each gel, one or more samples with different or ambiguous SSCP banding profiles 

were sequenced. For sequencing, PCR products were purified using ExoSAP-IT (USB, 

Cleveland, OH, USA), and sequenced commercially (Macrogen Inc., Korea). Cryptic 

species and haplotype were defined based on previous studies (Chapter 2 and 3).  

 

Data analyses 

 

The relationship between the distribution pattern of the cryptic species and the three 

physical factors was tested statistically. All statistical analyses were carried out using IBM 

SPSS Statistics version 21 for Mac (IBM Corporation, Chicago, IL, USA). Three physical 

factors were preliminarily defined as two different types of variables: (1) categorical 

variable for sun and wave exposure and (2) continuous variable for tidal height. For sun 

and wave exposure, the association between these two parameters and cryptic species 

distribution was analysed by the Pearson’s chi-square test. Tidal height data were initially 
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tested for normality and homogeneity. Due to non-normal distribution of the data, the 

difference between the tidal heights of each cryptic species was tested using the Kruskal-

Wallis non-parametric analysis of variance (ANOVA), following Dunn-Bonferroni post 

hoc tests. Additionally, discriminant function analysis was applied in determining which 

physical parameters could influence the distribution patterns of the cryptic species 

(McGarigal et al. 2000). 

 

 

Results 

 

A total of 392 samples of B. intricata were collected at Moa Point, and genetically 

classified, based on SSCP analysis and DNA sequence, into three cryptic species: N2, N4 

and N5. Genetic analyses showed that only one COI haplotype was identified from each 

algal patch, indicating genetic homogeneity within a patch (patch is a genet), and therefore, 

we used only one genotype representing each patch for statistical analysis (n=126). The 

occurrences of different cryptic species (distinct algal patch) on the same rock were 

occasionally observed. Cryptic species N2 was the most abundant species, accounting for 

approximately 64% of total samples, followed by cryptic species N4 (26%) and N5 (10%). 

Higher genetic diversity was observed in cryptic species N2, with three haplotype 

recognized (2A, 2L and 2M), whereas lower variation was found in cryptic species N4 

with two (haplotype 4E1 and 4E12) and N5 with one (haplotype 5A) (Table 5.1). 

Haplotypes 2L and 2M of cryptic species N2 and haplotype 4E12 of cryptic species N4 

were newly reported in this study. Within cryptic species N2, haplotype 2A was relatively 

common (67%), comparing to other two haplotype: 2L (25%) and 2M (8%). The 

abundance of the two haplotypes of cryptic species N4 were only slightly different in this 

area (56% for 4E1 and 54% for 4E12). Additionally, cryptic species N2 was widely 

distributed around Moa Point, but the other two cryptic species were restricted to the top 

and east side of the point (Fig. 5.1).  

 

Pearson’s chi-square tests showed a significant association between the distribution of 

cryptic B. intricata species and sun and wave exposure. The occurrence of these cryptic 

species was significantly associated with wave exposure (χ2 = 28.712, df = 5, P < 0.0005). 

Cryptic species N2 was more frequently observed in wave-exposed areas than the other 
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species (~ 70% for all haplotypes), whereas cryptic species N4 was more likely to be 

found in wave-protected areas (~70% for both haplotypes) (Table 5.1). On the other hand, 

the distribution of cryptic species was non-significantly related to sun exposure (χ2 = 3.756, 

df = 5, P = 0.585). Cryptic species N2 (haplotype 2M), N4 and N5 were likely to be 

symmetrically dispersed in either sun-exposed or sun-protected areas (Table 5.1). In 

contrast, two haplotypes of cryptic species N2 (2A and 2L) were unevenly found between 

sun-exposed and sun-protected areas, being more common in sun-exposed sites (Table 5.1). 

For tidal position, the Dunn-Bonferroni post hoc tests indicated significant differences in 

average mean tidal heights among these cryptic species (P < 0.05) (Fig. 5.2). Cryptic 

species N4 was distributed at a higher tidal position, ranging from 1.5 – 3.4 m., than the 

other two species: N2 (0.8 – 1.75 m.) and N5 (1.3 – 1.6 m.) (Table 5.1).   

 

Discriminant analysis (Wilk’s lambda test) indicated a significant difference in the 

distribution of cryptic B. intricata species (P < 0.05 in all functions, Appendix 5.1). In this 

analysis, the first two discrimination functions (DF) accounted for 99.5% of variance 

between groups (DF1 90.8% and DF2 8.7%). Two-dimension plot (DF1 and DF2) of the 

discriminant analysis of three physical factors clearly showed differentiation between 

cryptic species (Fig. 5.3). Cryptic species N4 was clearly separated from the other two 

species, whereas species N2 was intermingled with N5 (Fig. 5.3). Within group 

correlations between the three physical parameters and discriminant functions, tidal 

position contributed dominantly to DF1, whereas wave exposure contributed more than 

other factors to DF2 (Appendix 5.2) implying that tidal position most strongly influenced 

the distribution pattern of these cryptic species, and followed by wave exposure. 
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Figure 5.1: Distribution of three cryptic species of B. intricata (N2, N4 and N5) around 

Moa Point, Wellington. Shading represent different cryptic species: Grey: species N2; 

Black: species N4; and White: species N5. Each pie chart represents the number of patches 

sampled in several rocks in the area (N).  
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Table 5.1. Summary of the B. intricata at Moa Point: cryptic species, COI haplotype, number of patches, percentage in wave and sun exposure 

area and tidal position range (above 0 m tidal height). 

 

Cryptic 

species 

COI 

haplotype 

Number of 

patches 

Wave exposure Sun exposure Tidal position 

range (meters)  wave-exposed wave-protected sun-exposed  sun-protected  

N2 2A 55 76.3% 23.7% 72.7% 27.3% 1.15 – 1.75 

N2 2L 21 80.9% 19.1% 66.7% 33.3% 0.80 – 1.70 

N2 2M 5 100% 0 60% 40% 1.00 – 1.67 

N5 5A 13 46.1% 53.9% 61.5% 39.5% 1.30 – 1.60  

N4 4E1 18 33.3% 66.7% 50% 50% 1.50 – 3.40  

N4 4E12 14 21.4% 78.6% 57% 53% 1.65 – 3.00 
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Fig. 5.2: Average mean tidal heights (± SE) above 0 m tidal height of each cryptic B. 

intricata species (all haplotypes) found at Moa Point. The different letters indicate 

significant difference (P < 0.05). 
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Fig. 5.3: Discriminant analysis plot for three physical parameters (tidal height, wave 

exposure and sun exposure) of each cryptic B. intricata species (all haplotypes) collected 

from Moa Point. Shape and shading represent each haplotypes of B. intricata: White 

rhombus: haplotype 2A (N2); Dark grey rhombus: haplotype 2L (N2); Light grey 

rhombus: haplotype 2M (N2); White triangle: haplotype 5A (N5); White circle: haplotype 

4E1 (N4); Grey circle: haplotype 4E12 (N4) and White square: group centroid of each 

haplotype. 
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Discussion 

 

Our intensive survey, with collection of nearly 400 samples, clearly shows that cryptic B. 

intricata species N2, N4 and N5 grow sympatrically, even on the same rock, along a 

shoreline of approximately 700 m at Moa Point, this indicating high levels of cryptic 

species diversity at a micro-geographic scale. Three additional haplotypes for cryptic 

species N2 and N4 were also observed in this study. At similar small-area levels within the 

New Zealand shore, similar patterns of high species-level diversity has been observed in 

the red alga, Pyropia at Brighton Beach from the South Island (as Porphyra, Schweikert et 

al. 2012). Many studies on phylogenetic diversity and biogeography have demonstrated 

the sympatric occurrence of different cryptic algal species within a confined space, 

especially in red algae, for example Bostrychia radicans (Montagne) Montagne/B. 

moritziana (Sonder ex Kützing) J. Agardh (Zuccarello and West 2003), Portieria 

hornemannii (Lyngbye) P. C. Silva (Payo et al. 2013) and Pyropia yezoensis (Ueda) M. S. 

Hwang & H. G. Choi (Niwa et al. 2014). As a result, we emphasize the importance of 

small-scale studies, incorporating intensive sampling, to provide more detail about the 

diversity pattern and abundance of cryptic algal species at all scales.  

 

Our data also suggested that each patch is made up of only one genet. More variable 

markers (microsatellites) may indicate that the patches are composed of multiple genets 

but at present each patch appears to be a clone. Our data indicated a non-random 

distribution pattern of cryptic B. intricata species at Moa Point. Instead, clear evidence of 

different distribution pattern was found among cryptic algal species. Cryptic species N4 

grew higher on the intertidal shore than other two cryptic species N2 and N5, and cryptic 

species N2 were more frequently observed in wave-exposed areas than the other species. 

These substantial contrasts in small-scale distribution between the cryptic species are very 

likely strongly influenced and possibly due to the interaction of tide height and wave 

exposure (wave-exposed vs. wave-protected habitats). This observed pattern indicates 

spatial niche differentiation between cryptic species of B. intricata at Moa Point. 

Ecological differences between cryptic algal species have previously been observed in the 

green alga Klebsormidium flaccidum (Kützing) Silva, Mattox & Blackwell, which 

indicated that different lineages could be found in different habitats (water, artificial 

substrate or natural substrate)(Škaloud and Rindi 2013). Here, we were able to 
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quantitatively demonstrate niche partitioning among sympatric cryptic algal species in the 

field. 

 

In intertidal communities, tidal height plays a significant role in shaping the population 

structure and distribution pattern of sessile marine organisms, including macroalgae 

(Underwood and Jernakoff 1984, Harley and Helmuth 2003, Hurd et al. 2014). We found 

that the distributions of three cryptic species of B. intricata were mostly segregated 

between high and middle intertidal shores. Several studies have focused on the vertical 

distribution along the intertidal of different, or within, algal species. Two closely related 

brown algae of the genus Fucus, F. vesiculosus L. and F. spiralis L., were shown to 

inhabit different tidal positions on the coastline of France and Portugal (Zardi et al. 2011). 

In the red alga Chondrus crispus Stackhouse, genetic differentiations were found between 

high and low shore populations (Krueger-Hadfield et al. 2013). Few studies have shown a 

clear correlation between physiological properties of algal species and distribution pattern 

in facilitating zonation. The upper shore F. spiralis had more desiccation tolerance than 

lower shore F. vesiculosus (Zardi et al. (2011). Additionally, the physiological 

performance of different genotypes of the red alga Caloglossa vieillardii (Kützing) 

Setchell (as C. leprieuri (Montagne) J. Agardh) was correlated with their abundance and 

was suggested to be a reason for these differences in abundance in a population in eastern 

Australia (Zuccarello et al. 2001). It is possible that the distribution pattern of different 

cryptic B. intricata species across intertidal gradients would reflect their different 

physiological traits.  

 

Intertidal ecological studies have shown that the high intertidal zone is an extreme 

environment (e.g. high temperature, decreased salinity, long period of desiccation), and 

only a few well-adaptive algal taxa maintain their populations in this area (Zardi et al. 

2011, Hurd et al. 2014). We found that cryptic species N4 was normally found high on the 

shore, approximately +1.7 to +2.5 m tidal height, but could be up to +3.5 m, close to the 

upper limit of any alga in this area (personal observations) while the other two species, N2 

and N5, occur lower down, approx. +1 – 1.5 m. Laboratory experiments clearly showed 

that when comparing the specific growth rate of the three cryptic B. intricata species to 

various salinities and temperatures, cryptic species N4 grew more rapidly than N2 and N5 

in all conditions tested (Chapter 4). Comparative physiological study also suggested that 

cryptic species N4 could grow over a wider range of salinities and temperatures than other 
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species N2 and N5 (Chapter 4). The population of cryptic species N4, which could adapt 

to a broad salinity-temperature range, mostly occupied the upper intertidal shore, whereas 

the other two cryptic species were likely to be confined to lower shore, possibly due to 

their limited physiological adaptations. It is likely that differences in physiological 

response to various culture conditions of the three cryptic species could partially influence 

their specific distribution along the intertidal gradient at Moa Point. In addition, the less 

abundant cryptic species N5 (10% of total samples) correlated well with its lower 

performance in physiological experiments compared to the other cryptic species (Chapter 

4). These results confirms that differences in the pattern of vertical distribution and 

abundance between cryptic algal species could be due to physiological differences and are 

adaptations that allow coexistence in the same location. 

 

Different levels of wave exposure also influence the occurrence of intertidal macroalgal 

species (Scrosati and Mudge 2004, Hurd et al. 2014). For example, in the Canary Island, 

the brown alga Dictyota cymatophila Tronholm, M. Sansón & Afonso-Carrillo more 

frequently occurred in wave-exposed habitats, whereas D. dichotoma (Huds.) J. V. Lamour 

was found in less exposed areas (Tronholm et al. 2010). Additionally, physical conditions 

related to wave exposure limit the horizontal distribution of marine macroalgae, as found 

in the intertidal kelp, Postelsia palmaeformis Ruprecht from the northeast Pacific (Nielsen 

et al. 2006). Our study clearly indicated the different spatial distribution of three cryptic B. 

intricata species with respect to wave exposure (wave-exposed vs. wave-sheltered 

habitats). While our measures of wave exposure are very crude, and absolute measures of 

wave exposure are very difficult to quantify (Airoldi and Virgilio 1998, Knox 2001), we 

believe we have captured some pattern associated with intensity of wave exposure.  

 

Our findings provide evidence of spatial niche separation between cryptic B. intricata 

species, which can account for their coexistence. We also indicate that the abundance and 

distribution pattern of cryptic algal species could be driven by both biotic (e.g. genetic 

composition and physiological performance) and abiotic (e.g. coastal geography and 

hydrographic pattern) factors. However, these results were obvious only for the differences 

between cryptic species N4 and other species, but are still equivocal between cryptic 

species N2 and N5. If distinct niches exist between cryptic species N2 and N5, this could 

probably be related to other non-measured differences, e.g. mating period or seasonal 

abundance, as found in sibling species of Dictyota (Tronholm et al. 2010). Further studies 
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of cryptic species of B. intricata in sympatry should considered other factors, e.g. temporal 

distribution, reproductive timing and abundance of different life phase that could 

contribute toward the comprehensive understanding of how cryptic algal species coexist at 

small scale.  
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My PhD research provides a significant contribution to our knowledge of cryptic species 

diversity in algae. By using the red alga Bostrychia intricata as a model study, this current 

project presents five main findings: 1) a monophyletic relationship of four Southern 

Hemisphere Bostrychia species: B. arbuscula, B. gracilis, B. intricata and B. vaga, which 

formed in the middle Oligocene epoch (~ 30 million years ago), suggesting a post-

Gondwana origin; 2) cryptic diversity within a single morphospecies of B. intricata and B. 

vaga, which was consistent with results of multigene phylogeny and DNA-based species 

delimitation methods; 3) contrasting pattern of distribution and demographic history 

among three cryptic species of B. intricata (N2, N4 and N5) in New Zealand, with respect 

to historical events (e.g. the Last Glacial Maximum and sea surface warming), showing 

that these cryptic algal species have diversified and dispersed at different times; 4) 

differences in physiological performances among three cryptic species of B. intricata (N2, 

N4 and N5) in New Zealand, as revealed by different specific growth rates in culture 

experiments and 5) different cryptic B. intricata species (N2, N4 and N5) seemed to be 

distributed unevenly in particular intertidal habitats (ecological niches), which could 

facilitate their sympatric coexistence at small-scales.  

 

The current research clearly demonstrates that cryptic algal species could be distinct in 

many biological aspects, such as evolutionary history, phylogeographic pattern and eco-

physiological performance, while maintaining identical morphological features, suggesting 

that morphologically indistinguishable cryptic algal species should be recognized as 

independent entities. Although, this study does not attempt to provide comprehensive 

morphological data, I have found some morphological features, which overlap among 

cryptic species of B. intricata. I suggest that a proper morphological study (e.g. 

discriminant analysis of morphometric characters) of these cryptic algal species should be 

undertaken, but interpretations should be done cautiously as morphological variation has 

often been reported within cryptic algal species (Zuccarello and West 2006, Verbruggen 

2014). 

 

This study also adds to the knowledge of delineation of cryptic species. Due to 

morphologically similar, delimitating cryptic species must be mainly achieved by 

molecular data. Differences in molecular markers and species-delimitation methods have 

been applied for estimating the true number of cryptic species, which are subject to 

congruency of results across the markers and methods. However, incongruences among 
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the results from different markers and methods have also been reported in several studies, 

including this current PhD project (Chapter 2), and this uncertainity of delineation of 

cryptic species strongly affects our understanding of their diversity and evolutionary 

histories. A possible solution is to delimit species using whole genomic data, but this could 

impact of delaying the analyses or of consuming resources and budget. Another possibility 

is to incorporate genetic characteristics with other criteria, for example, phylogenetic data 

as I have used in chapter 2. In addition to phylogenetic analyses, a biological species 

concept is one of the most powerful criteria to delineate species, and has been extensively 

used in several researches on cryptic species (Lee 2000, Zuccarello and West 2003, Xu et 

al. 2010). In this study, I have done some crossing experiments between different cryptic 

species and it showed reproductive incompatibility among them (see details below, 

Appendix 6.1). Furthermore, different eco-physiological performances were observed 

between cryptic species in this study as indicated in Chapter 4 and 5, suggesting that 

cryptic species are potentially seperable with eco-physiological data. I recommend that the 

use of combining genetic data with other traits (e.g. phylogenetic, reproductive isolation 

and eco-physiology) is beneficial to delimit cryptic species and could helps us to 

understand more about the nature of cryptic species.  

 

Diversity and evolution of cryptic algal species 

 

The increasing use of molecular techniques has revealed the existence of cryptic species in 

many groups of organisms (Bickford et al. 2007, Liu et al. 2011, Westram et al. 2013). 

Even though multiple cryptic species complexes have been abundantly detected in marine 

macroalgae, (Zuccarello et al. 2003, Payo et al. 2013, Vieira et al 2014), this current 

project clearly shows different evolutionary histories of cryptic algal species, by using 

combined results from different genetic markers and analysis approaches, such as 

multigene phylogenies, sequences-based species delimitation methods and divergence time 

estimation based on a molecular clock of combined molecular markers (chloroplast rbcL 

gene and mitochondrial COI gene).  

 

Multigene phylogenies indicated monophyly of the four Bostrychia species endemic to the 

Southern Hemisphere, and their formation ~ 30 Mya (Chapter 2). These four Bostrychia 

species apparently have a more ancient divergence than other similarly distributed algae in 
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this hemisphere (Fraser et al. 2010, Martin and Zuccarello 2012). It is obvious that 

speciation of these Bostrychia’s occurred in the Southern Hemisphere, and possibly 

centered in New Zealand, as some species (B. arbuscula, B. gracilis and some cryptic 

species of B. vaga) seem to be restricted to New Zealand. However, more sampling 

covering all species ranges of these algae are needed to clarify the origin of these four 

Bostrychia species, and this would lead to a significant advance in the understanding of 

speciation and evolution of Bostrychia species as well as other marine algal taxa in the 

Southern Hemisphere. 

 

Congruent results form multigene phylogenies and species delimitation methods based on 

mitochondrial COI indicated higher levels of genetic diversity of B. intricata (8 cryptic 

species) and B. vaga (4 cryptic species) than previous discoveries (Zuccarello and West 

2008, Fraser at al. 2013). The occurrence of some cryptic species are likely to be confined 

to particular geographical region, for example, cryptic B. intricata species N6 was only 

observed from South Africa, while cryptic species N3 was restricted to the subantarctic 

islands.  

 

Species delimitations using morphological data combined with DNA have recently been 

applied in algal taxonomy and systematics (Leliaert t al. 2014, Vieira et al. 2014, 

Zuccarello et al. 2015). In this study, I examined some morphological characters between 

cryptic species of B. intricata and B. vaga and found that their morphology varied 

considerably. For example, number of tier cell ranged from 4 – 6 cells between and within 

cryptic B. intricata species, suggesting that species delimitation based morphological 

features is unlikely for these cryptic species. Therefore species boundaries of these two 

cryptic species were mainly based on genetic composition. Numbers of recognized species 

in both B. intricata and B. vaga were slightly different when using either different genetic 

markers (rbcL and COI) or species delimitation methods (GMYC model, ABGD and 

statistical parsimony). These contrasts are probably due to either the different mutation 

rates of the two markers, as found in chapter 2, showing that COI evolved faster than rbcL, 

or different algorithm in species delimitation methods (branching pattern of gene tree for 

GMYC model vs. intra- versus inter-specific genetic distances for AGBD method). This 

suggests that species boundaries, especially cryptic algal species, should be estimated 

carefully when using only one marker or species delimitation method. Consequently, I 

recommend that multiple species delimitation methods with various genetic markers, 
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incorporated with phylogenetic analyses should be applied for studying algal diversity, 

especially cryptic algal species. 

  

Dating analyses clearly showed that cryptic species of B. intricata and B. vaga have 

diverged at different times. In particular, diversification of cryptic species B. intricata 

appeared to be relatively recent, for example, 81,000 – 19,000 years ago for species N2, or 

50,000 – 1,300 years ago for species N5 (Chapter 3). The origin of these cryptic algal 

species has occurred after the split of Gondwana (~180 mya) as well as after the breaking 

up of New Zealand-Australia continent (~ 80 – 60 mya) (Short and Woodroffe 2009). This 

finding, combined with distinct geographic distributions, except for cryptic species N1 and 

N4 of B. intricata (Fraser et al. 2013), suggests that speciation of these cryptic species 

likely occurred in allopatry, probably due to oceanographic barriers. I assume that the 

allopatric origin of these cryptic algal species could be related with transoceanic dispersal 

facilitating by the start of the Antarctic Circumpolar Current (ACC) (~ 32 – 28 mya; 

McLoughlin 2001) and then isolated geographically.  

 

This current study estimates the diversification timing of macroalgae by using combined 

substitution rates of different gene: chloroplast rbcL and mitochondrial COI. Apparent 

mutation rates vary between species and different regions throughout the genome (Lynch 

2010). Therefore, the combined mutation rate from different genetic region could generate 

more accurate estimation of divergence time than using only one genetic marker (Parfrey 

et al. 2011, Smith et al. 2013). 

 

Additional sampling of these cryptic algal species from different locations (e.g. Australia 

and South Africa for B. intricata, and Australia and subantarctic islands for B. vaga) are 

needed to clarify the biodiversity and geographic distribution pattern of these algae in the 

Southern Hemisphere. Another possibility is to seek other criteria to delineate these cryptic 

algal species, such as reproduction isolation. Reproductive isolation has been used as one 

of the characters to delimit species (the biological species concept), and there are a few 

studies that accessed whether different cryptic algal lineages are reproductively 

incompatible, mostly in the red algae (e.g. Zuccarello and West 2003, Kamiya 2004, 

Zuccarello et al. 2011). Reproductive incompatibility was found between, but also within 

algal lineages, such as Bostrychia moritziana/B. radicans complex (Zuccarello and West 

2003), Are different cryptic species of B. intricata and B. vaga reproductively isolated? I 
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have done the preliminary study of hybridization between three cryptic species of B. 

intricata (N2, N4 and N5). Results indicated the reproductive incompatibility between the 

isolates of three cryptic species, except for the cross of isolates C2 (N2) and M5 (N5), 

which was compatible, but female isolated (C2) produced pseudocystocarps (pericarp 

forming without mature carposporophyte) (Appendix 6.1). These results suggest the 

possibility of being independent evolutionary units for these cryptic species of B. intricata. 

Further hybridization studies between other different cryptic species of B. intricata and B. 

vaga could help to expand our understanding of species concept in cryptic algal species.  

 

 

Phylogeographic contrasts of cryptic algal species in New Zealand 

 

Few studies have determined the population connectivity and demographic history of 

different cryptic red algal species in the Southern Hemisphere, despite many well-defined 

cryptic algal species in this region (Fraser et al. 2013, Boo et al. 2014, Vieira et al. 2014). 

This current research, using partial COI sequences, distinctly indicated the three cryptic 

species of B. intricata (N2, N4 and N5) occurred in New Zealand, and they exhibited 

different patterns of distribution and historical demography. Concordant with previous 

evidences of different level of genetic diversity along geographic gradients in New 

Zealand (Fraser et al. 2009c, Macaya and Zuccarello 2010a, Buchanan and Zuccarello 

2012), the current study demonstrated that genetic diversity was higher in the northern 

than southern regions. In particular, all three cryptic B. intricata species was found in 

northern New Zealand (North Island and top of the South Island), whereas cryptic species 

N4 was only encountered in southern areas. This distribution contrast among three cryptic 

algal species revealed a biogeographic break between northern and southern regions of 

New Zealand, which separated in top of the South Island (Cape Campbell of east coast and 

Golden Bay of west coast), and this break was found in some population studies of marine 

taxa in New Zealand (Apte and Gardner 2002, Goldstein et al. 2006). 

 

The Last Glacial Maximum (LGM) has been found to have a significant impact on the 

distribution pattern of marine taxa, including macroalgae, in the Southern Hemisphere, as 

revealed by the reduction of genetic diversity or near homogeneity of genetic composition 

(Fraser et al. 2009,c 2012, Macaya and Zuccarello 2010b, Buchanan and Zuccarello 2012). 
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Differences in distribution pattern and population structure of cryptic B. intricata species 

(N4 vs. N2 and N5) has likely been shaped by the effect of LGM, as evidenced by low 

genetic diversity in southern New Zealand and different divergence time observed between 

these cryptic species. Concordant with dating analyses, the high genetic diversity and 

population differentiation (west and east coast) observed in South Island for cryptic 

species N4 suggest that this cryptic species may have persisted in this region throughout 

the LGM. 

 

Disparity among population structure and demographic history of cryptic B. intricata 

species N2 and N4 have been confirmed by different analyses, for example, haplotype 

network (star-like shaped network of N2 vs. complicated network of N4), SAMOVA 

algorithm (2 groups of N2 vs. 6 groups of N4), mismatch distribution (unimodal of N2 vs. 

multimodal of N4) and dating analyses (more recent diversification of N2 than N4). This 

finding clearly showed that cryptic species N4 has arrived and dispersed in New Zealand 

before species N2, suggesting different life histories between cryptic B. intricata species 

N2 and N4.  

 

Further research could study the phylogeographic pattern of cryptic B. intricata species 

from other geographic region in the Southern Hemisphere. For example, two cryptic 

species of B. intricata (N7 and N8) were discovered in southern Australia (Chapter 2). It is 

interesting to test whether cryptic species N7 and N8 exhibited phylogeographic 

differentiation as found in New Zealand species, and this would enable us to have a better 

understanding of distribution and demographic partitioning of cryptic B. intricata species 

in different areas.  

 

Recently, microsatellite have been developed and extensively used for studying population 

genetic and phylogeographic structure of marine algae (Wang et al. 2008, Guillemin et al. 

2014) as these markers have potential to provide more detail about recent historical events 

related to distribution pattern of species (Madesis et al. 2013). Due to the likely speciation 

process of cryptic B. intricata being recent, another possibility is to develop microsatellite 

markers for B. intricata to precisely assess the level of genetic structure and estimate the 

migration rate within cryptic species. This could help to explain more clearly the 

population history and the pathways of spread of cryptic algal species in the Southern 

Hemisphere. 
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Eco-physiological performance correlate with distribution pattern of 

cryptic algal species  

 

Eco-physiological performances have been extensively studied in intertidal macroalgae, 

and most results revealed distinct eco-physiological responses between or within algal 

species, and these differences may correlate to their distribution and proportional 

occurrences in the field (Orfanidis et al. 1999, Zuccarello et al. 2001, Zardi et al 2011, 

Hayakawa et al. 2012, Watanabe et al. 2014). For example, Caloglossa leprieurii 

haplotype B and C, which had a higher growth rate than haplotype A in all culture 

conditions tested, were also more abundant than haplotype A (~ 10% of total samples) in 

the field (Zuccarello et al. 2001). The current research aimed to assess whether different 

cryptic species of B. intricata distributed in New Zealand are physiologically different 

(Chapter 4). Culture experiment of three main cryptic species (N2, N4 and N5) in various 

salinities and temperatures clearly indicated a significant difference of specific growth rate 

among cryptic species. Cryptic species N4 had the highest growth rate in all conditions 

tested, followed by N2 and then N5. This finding implies that different allelic 

combinations produce a different range of physiological responses, but probably not for 

morphological features, in cryptic algal species. 

 

New Zealand has a north-south gradient in environmental conditions, including a warmer 

sea surface temperature in northern than southern regions. The contrasting physiological 

performance between cryptic species observed in growth experiments (Chapter 4) possibly 

explains the different distributional pattern of cryptic B. intricata species along the New 

Zealand coastline found in Chapter 3. Wide distribution throughout New Zealand of 

cryptic species N4 could possibly be due to its ability to tolerate a broader range of 

temperatures and salinities than the other two cryptic species N2 and N5, which were 

confined to northern regions of New Zealand.  

 

The sympatric occurrences of different cryptic species of B. intricata have been found in 

some populations around Cook Strait, the central seaway between North and South Islands 

(Chapter 3). The observed pattern of cryptic algal species led to the interesting question of 

how these cryptic algal species, which are supposed to need identical ecological resources, 

manage to sympatrically coexist. To address this question, I intensively sampled cryptic 
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species of B. intricata in different habitats with respect to tidal height, wave-exposure and 

sun-exposure around Moa Point, Wellington. I showed that the three cryptic species of B. 

intricata, N2, N4 and N5, coexist at the small scale, and they exhibited different 

distribution patterns in the area. Cryptic species N4 was mostly found in the higher 

intertidal shore than species N2 and N5, whereas cryptic species N2 was more often found 

at wave-exposed area than the other two species. This is evidence for ecological 

differences between these cryptic B. intricata species suggest that cryptic algal species 

could sympatrically coexist by occupying distinct spatial niches.   

 

Many studies have previously demonstrated that differences in physiological performance 

could promote algal zonation and abundance in the intertidal (Zuccarello et al. 2001, 

Tronholm et al. 2010, Zardi et al 2011, Krueger-Hadfield et al. 2013). Distribution pattern 

and relative abundance of the three cryptic species B. intricata observed at Moa Point 

could be explained by this physiological differentiation (Chapter 4). For example, cryptic 

species N4, which could tolerate a broad salinity-temperature range, mostly occupied the 

upper intertidal shore, where more extreme environmental fluctuations occur. In contrast, 

the other two cryptic species N2 and N5 was often observed to middle to lower shore, 

possibly due to their limited physiological adaptations (Chapter 5). Additionally, cryptic 

species N5 grew more slowly and had lower growth rate than other cryptic species, as seen 

in the culture experiment (Chapter 4), reflecting its small proportion of total number of 

samples (~10 %) in the area (Chapter 5). This current research was not only to clearly 

show eco-physiological differences between cryptic algal species, but also revealed the 

possibility of distinct physiology and ecological niches in promoting small- (sympatric 

coexistence) and large-scale distribution (Chapter 2) of cryptic algal species.  

 

Further research should be focused on the physiological performance of other cryptic B. 

intricata species from other geographic range, for example, cryptic species N3 from 

subantarctic island, and species N7 and N8 from Australia, and to assess whether the 

physiological performance correlates with their geographic distribution. Additional 

projects could measure other physiological characters (e.g. photosynthetic capacity in 

different levels of desiccation and light intensity) among cryptic B. intricata, and this 

could help to improve the knowledge of physiological properties in cryptic algal species. 

Another possibility is to conduct a study of gene expression on genes that are supposed to 

be involved in physiological performance in different cryptic species of B. intricata. For 
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example, two small heat shock protein-encoding genes (sHSPs) are involving in 

mechanism of heat resistance in unicellular red alga Cyanidioschyzon merolae Luca, 

Taddei & Varano (Kobayashi et al. 2014). This study could help to better understand how 

genetic and physiological regulatory mechanisms contribute to the distribution and 

adaptation of cryptic algal species. 

 

Sympatric occurrence of cryptic species of B. intricata was found in several populations in 

central New Zealand, and therefore another possibility could be to test whether the 

distribution of cryptic B. intricata species at different nearby locations exhibited the same 

pattern observed at Moa Point. Results of the study could advance our understanding of 

ecological phenomenon of sympatric coexistence of cryptic algal species at the small scale.  
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Appendix 2.1. Samples used in this study, including location, collection number, Genbank accession numbers 

 

 

Species 

 

Location 

 

Collection No. 

GenBank accession numbers 

rbcL COI LSU 

Bostrychia arbuscula Harvey  Brighton Beach, South Island, New Zealand D335  AY920845 KM502795 AY920894 

B. arbuscula Pohara Beach, South Island, New Zealand P01 KM502822 KM502797 KM502847 

B. arbuscula Moa Point, North Island, New Zealand M084 KM502821 KM502796 KM502846 

B. calliptera (Montagne) Montage Sontecomapan, Vera Cruz, Mexico C4300.MX KM502840 KM502815 - 

B. calliptera Cali, Columbia  C3191.CO KM502841 KM592816 - 

B. gracilis (King & Puttock) 

Zuccarello & West  

Taranaki, North Island, New Zealand T01 KM502824 KM502798 KM502849 

B. gracilis Maraehako Bay, North Island, New Zealand Mtk055 KM502823 KM502797 KM502848 

B. intricata (Bory de Saint – 

Vincent) Montagne  

Kommetjie, Cap Province, South Africa 2875 KM502825 KM502799 KM502850 

B. intricata Kommetjie, Cap Province, South Africa  2876 KM502826 KM502800 KM502851 

B. intricata Umhlanga Rocks KwaZulu Natal, South Africa 4557 KM502827 KM502801 KM502852 

B. intricata Concepción, Bío Bío, Chile Chl008 KM502834 KM502808 KM502859 

B. intricata Concepción, Bío Bío, Chile Chl009 KM502835 KM502809 KM502860 

B. intricata Auckland Island W01 KM502836 KM502810 KM502861 

B. intricata Campbell Island Cab011 KM502837 KM502811 KM502862 

B. intricata Whiskey Bay, Victoria, Australia 3472 KM502831 KM502805 KM502856 

B. intricata Narooma, New South Wales, Australia Anr589 KM502832 KM502806 KM502857 
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B. intricata Batemans, New South Wales, Australia Abt598 KM502833 KM502807 KM502858 

B. intricata Manukua Harbor, North Island, New Zealand Mnu165 KM502838 KM502812 KM502863 

B. intricata Pohara Beach, South Island, New Zealand Phr411 KM502839 KM502813 KM502864 

B. intricata Castle Point, North Island, New Zealand Cas026 KM502828 KM502802 KM502853 

B. intricata Kapiti Coast, North Island, New Zealand Kap144 KM502829 KM502803 KM502854 

B. intricata Moa Point, North Island, New Zealand Moa011 KM502830 KM502804 KM502855 

B. moritziana (Sonder ex Kützing) 

J. Agardh 

Farasan Island, Saudi Arabia Sab4069  AY920816 KM502788 AY920867 

B. simpliciuscula Harvey ex J. 

Agardh 

Forster, New South Wales, Australia 3562 AY920827 KM502789 AY920877 

B. tenella (Lamouroux) J.Agardh Mangrove Trail, Broome, Western Australia 3743 AY920838 KM502790 AY920888 

B. vaga Hooker & Harvey Millers Landing, Victoria, Australia 3781 KM502819 KM502793 KM502844 

B. vaga Campbell Island Cab010 KM502817 KM502791 KM502842 

B. vaga Auckland, North Island, New Zealand Auc01 KM502820 KM502794 KM502845 

B. vaga Gentle Annie Beach, South Island, New Zealand  Gta527 KM502818 KM502792 KM502843 
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Appendix 2.2. Substitution rate calculated between an Atlantic (C3400.MX) and a Pacific (C3191.CO) isolate of B. calliptera using the 

calibration time of the estimated final closure of the Isthmus of Panama (2.5 – 3.0 Mya). 

 

 Number of 

base pairs 

Number of difference 

between sequences 

p Distance % Divergence Substitutions 

(site-1 year -1) 

% Divergence   

(Mya-1) 

rbcL 1,163 3 0.00228 0.228 3.8 – 4.5 X 10-10 0.038 – 0.045 

COI 638 5 0.0078 0.78 13 – 15 X 10-10 0.13 – 0.15 
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Appendix 2.3. Genetic distance (%) within and between lineages recognized by phylogenetic analyses and species delimitation approach of 

Bostrychia arbuscula, B. gracilis, B.intricata and B. vaga 

 

rbcL BA BG N1 N2 N3 N4 N5 N6 N7 N8 V1 V2 V3 V4 

B. arbuscula (BA) 0 – 0.08              

B. gracilis (BG) 4.0 – 4.1 0 – 0.1             

B.intricata N1 6.7 – 6.9  5.8 – 6.9 0.3            

B.intricata N2 6.9 – 8  6.3 – 8  3.9 – 4.5 0           

B.intricata N3 7.2 – 7.4  6.6 – 7.4 2.6 – 3 3.8 – 4  0.3          

B.intricata N4 7.3 – 7.4 6.8 – 7.5 2.9 – 3.2 4.2 0.1 – 0.5 0         

B.intricata N5 7.8 – 7.9  6.1 – 7.8 4.1 – 4.2 1 4.2 – 4.4 4.7 0        

B.intricata N6 6.7 – 7.8  6.6 – 7.7 3.3 – 3.6 4 – 4.5 3.6 – 3.8 3.7 - 4 4.2 – 4.7 0.5 – 0.7       

B.intricata N7 6.2 5.8 – 6.2 3.6 – 3.7  2.4 3.8 – 4 4.2 1.8 4.5 – 4.9 0      

B.intricata N8 7.7 – 7.8  6.4 – 7.7 4.3 – 4.4 1.2 4.5 4.7 2.2 4.5 – 4.9 2.4 0     

B. vaga V1 9.2 – 9.3  7.7 – 8.6  8.2 – 8.3 7.8 – 8.7 8.9 9 8.5 8.3 – 8.6 7.3 8.9 0    

B. vaga V2 5.6 – 5.7 5.6 – 5.7 5.8 – 5.9 4.4 – 5.5 5.8 6.3 5.5 5.9 – 5.2  4.3 5.8 0.4 0   

B. vaga V3 9.7 – 9.9 8.3 – 9.2 9.2 – 9.3 8.7 – 9.8 10 10 9.5 8.9 – 9.6 8.4 10 4 2 0  

B. vaga V4 8.2 – 8.3 6.9 – 7.9  7.6 – 7.7 7.4 – 8.3 8.4 8.2 8.1 7.5 – 8.2 7.3 8.4 6.3 3.6 7.1 0 

COI               

B. arbuscula (BA) 0 – 0.2              

B. gracilis (BG) 8.7 – 9.3 0.2             

B.intricata N1 12.4 – 13 13 – 13.6 0.2             

B.intricata N2 14 – 14.6 15.1 – 15.6 9.6 – 10.1 0.2           

B.intricata N3 13 – 13.3 13.6 – 13.8 6.3 – 6.6 9.6 – 9.8  0          

B.intricata N4 14 – 14.6  13.8 – 14.3 7.2 – 8.2 9 – 9.8 3.7 – 4.2  1         

B.intricata N5 14.6 – 14.9  15.6 – 15.9  8.7 – 9  12.5 – 12.7 12.5 – 12.7 10.1 – 10.6 0        

B.intricata N6 10.6 – 13.3 11.4 – 15.1 7.2 – 9.8  8.7 – 11.7 7.7 – 9.8  8.9 – 11.2 9.8 – 11.9  0 – 0.2       

B.intricata N7 14 – 14.3 15.1 – 15.4  8.5 11.7 – 11.9 11.7 – 11.9  10.6 – 11.1 4.2 8.9 – 11.2 0      

B.intricata N8 12.7 – 13  13.3 – 13.6  7.2 – 7.4 9.3 – 9.6 9 – 9.1  10.1 – 10.6  11.1 7.4 – 10.1 9.3 0     
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B. vaga V1 18 – 18.3  19.2 – 20.2 14.8 – 15.5 17.8 – 18.1 15.6 16.1 – 15.9 16.4 15.5 – 17.5 15.4 16.4 0    

B. vaga V2 18.3 – 18.6 20.2 – 20.5  15.4 – 15.9 18.3 – 18.6  16.7 17.2 – 17.5 18 15.1 – 18.3 15.6 16.4 4.2 0   

B. vaga V3 16.1 – 16.4 17 – 17.2 12.5 – 12.7 16.1 – 16.4 14 14 – 14.3 13.8 12.2 – 15.5 14 14.3 10.9 11.7 0  

B. vaga V4 15.1 – 14.8  14 – 14.3 14.8 – 15.5 15.1 – 15.4 15.1 15.1 – 15.6 14.3 13 – 16.4 14 13.6 16.2 15.6 13.3 0 

LSU               

B. arbuscula (BA) 0.1 – 0.8               

B. gracilis (BG) 2.3 – 2.7 0.2             

B.intricata N1 2.8 – 3.2  2.1 0            

B.intricata N2 3 – 3.4 1.8 – 1.9  1.1 0           

B.intricata N3 2.8 – 3.2 2.1 – 2.2 0 – 0.5  1.1 0.5          

B.intricata N4 2.8 – 3.3 2.1  0 1.2 – 1.3 0 – 0.5 0.1          

B.intricata N5 3 – 3.4 1.7 1.2  0.8   1.3 – 1.4  1.3 – 1.4  0        

B.intricata N6 1.7 – 4.5  1.2 – 3.5  1.1 – 2.6 1.1 – 2.7  1.1 – 2.7  1.1 – 2.5  1.1 – 2.8  0.2 – 0.3       

B.intricata N7 2.9 – 3.3 1.7 1.2 0.9 1.2 – 1.4  1.2 – 1.3 0.1 1 – 2.8  0      

B.intricata N8 3 – 3.5 1.9 – 2.2 1.3 – 1.5 0.6 – 0.8 1.3 – 1.7  1.3 – 1.6  0.8 – 1  1 – 3  0.7 – 0.9  0.2     

B. vaga V1 3.8 – 4.1 3.1 3 2.6 3 – 3.2  3 3.1 1.3 – 3.7  3 2.9 – 3.1  0    

B. vaga V2 3.6 – 4  2.9 2.8 2.7 2.8 – 3  2.8 3.2 1.3 – 3.6  3.2 2.8 – 3  0.2  0   

B. vaga V3 4.3 – 4.6  3.6 3.2 3.2 3.3 – 3.4 3.3 – 3.4 3.4 1.5 – 3.8  3.6 3.3 – 3.5  1.1 1.4 0  

B. vaga V4 3.6 – 4 3.1 2.8 3 2.8 – 3  2.8 3 1.5 – 3.9 2.9 2.7 – 2.8  1.6 1.6 1.6 0 
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Appendix 2.4. The appropriate DNA substitution models calculated through Kakusan 4 

for rbcL, COI and LSU (without codon partition).  

 

  

 1st position 2nd position 3rd position 

AIC model selection    

rbcL GTR + G HKY85 + G GTR + G 

COI HKY85 + G K80 + G HKY85 + G 

LSU  GTR + G 

BIC model selection    

rbcL GTR + G HKY85 + G K80 + G 

COI K80 + G HKY85 + G HKY85 + G 

LSU GTR + G 
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Appendix 2.5. Phylogenetic tree inferred from Bayesian Inference analyses of rbcL data 

set for our Bostrychia species. Support values at each node are bootstrap values from ML 

(left) and Bayesian posterior probability (right). Asterisk (*) indicates full support (100%, 

1.0) in both analyses and hyphen (-) indicates no support. 
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Appendix 2.6. Phylogenetic tree inferred from Bayesian Inference analyses of COI data 

set for our Bostrychia species. Support values at each node are bootstrap values from ML 

(left) and Bayesian posterior probability (right). Asterisk (*) indicates full support (100%, 

1.0) in both analyses and hyphen (-) indicates no support. 
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Appendix 2.7. Phylogenetic tree inferred from Bayesian Inference analyses of LSU data 

set for our Bostrychia species. Support values at each node are bootstrap values from ML 

(left) and Bayesian posterior probability (right). Asterisk (*) indicates full support (100%, 

1.0) in both analyses and hyphen (-) indicates no support. 
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Appendix 2.8. GMYC-based species delimitation based on all COI haplotypes from this 

study and Fracer et al. (2013). The black bars and letters indicate the cryptic species 

obtained from this species delimitations method. 
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Appendix 3.1. Map of New Zealand showing regional hydrographic conditions. The 

north/south and west/east splits described by Apte & Gardner (2002) and Shears et al. 

(2008) are separated by dashed line; western NI, western SI, eastern NI and eastern SI. 

CC: Cape Campbell; GOL: Golden Bay; NI: North Island and SI: South Island. 
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Appendix 3.2. Samples used for the phylogenetic analysis, and haplotype network, 

including location of sample, COI haplotype designation and Genbank Accession Number. 

Bold letters indicate new sequence generated in this study.  

 

Taxon Location Haplotype Accession 

Number 

Bostrychia intricata Falkland Island 1A JN881519 

 Gough Island 1B JN881518 

 Gough Island 1C JN881517 

 Tristan da Cunha 1D JN881516 

 Casnell Island, Leigh, North Island, New 

Zealand 

2A KP791809 

 Moa Point, Wellington, North Island, 

New Zealand 

2B JN881543 

 Titirangi Bay, Havelock, South Island, 

New Zealand 

2C KP791810 

 Waihau Bay, East Cape, North Island, 

New Zealand 

2D KP791811 

 Porangahua Beach, Hawke Bay, North 

Island, New Zealand 

2E KP791812 

 Castle Point, North Island, New Zealand 2F KP791813 

 Castle Point, North Island, New Zealand 2G KP791814 

 Cabel Bay, Nelson, South Island, New 

Zealand 

2H KP791815 

 Cabel Bay, Nelson, South Island, New 

Zealand 

2I KP791816 

 Red Rock, Wellington, North Island, New 

Zealand 

2J KP791817 

 Waihau Bay, East Cape, North Island, 

New Zealand 

2K KP791818 

 Campbell Island 3A JN881535 

 Auckland Island 3B JN881533 

 Auckland Island 3C JN881534 

 Auckland Island 3D JN881532 

 Canpbell Island 3E JN881539 
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 Campbell Island 3F JN881537 

 Campbell Island 3G JN881536 

 New Zealand 4A JN881529 

 New Zealand 4B JN881526 

 New Zealand 4C JN881527 

 New Zealand 4D JN881528 

 Manukau Harbor, Auckland, North Island, 

New Zealand  

4E1 KP791819 

 Pohara, Tasman, South Island, New 

Zealand 

4E2 KP791820 

 Okiwi Bay, Marlborough, South Island, 

New Zealand 

4E3 KP791821 

 Cable Bay, Nelson, South Island, New 

Zealand 

4E4 KP791822 

 Cape Egmont, North Island, New Zealand 4E5 KP791823 

 Cape Egmont, North Island, New Zealand 4E6 KP791824 

 Manukau Harbor, Auckland, North Island, 

New Zealand 

4E7 KM502813 

 Huaraki Gulf, Kaikoura Island, New 

Zealand 

4E8 KP791825 

 Waitemata Harbor, Auckland, North 

Island, New Zealand 

4E9 KP791826 

 Waitemata Harbor, Auckland, North 

Island, New Zealand 

4E10 KP791827 

 Waitemata Harbor, Auckland, North 

Island, New Zealand 

4E11 KP791828 

 New Zealand 4F JN881525 

 Snares Island 4G JN881523 

 Snares Island 4H JN881522 

 Tristan da Cunha 4I JN881521 

 Chile 4J JN881530 

 Chile 4K JN881541 

 Chile 4L JN881531 

 Chile 4M JN881540 

 New Zealand 4N JN881520 

 Cable Bay, Nelson, South Island, New 4O KP791829 
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Zealand 

 French Farm Bay, Akaroa, Bank 

Peninsula, South Island, New Zealand 

4P KP791830 

 Paparoa Point, Kaikoura, South Island, 

New Zealand 

4Q KP791831 

 Waipatiki Beach, Hawke Bay, North 

Island, New Zealand 

4R KP791832 

 Waipatiki Beach, Hawke Bay, North 

Island, New Zealand 

4S KP791833 

 Charleston, Westport, South Island, New 

Zealand  

4T KP791834 

 Charleston, Westport, South Island, New 

Zealand  

4U KP791835 

 Charleston, Westport, South Island, New 

Zealand  

4V KP791836 

 Gentle Antie seaside, Westport, South 

Island, New Zealand 

4W KP791837 

 Gibson Beach, Cape Foulwind, Westport, 

South Island, New Zealand 

4X KP791838 

 Wharariki Beach, Puponga, South Island, 

New Zealand 

4Y KP791834 

 Moa Point, Wellington, North Island, 

New Zealand 

5A KM502804 

 Kenupuru Bay, Haverock, South Island, 

New Zealand 

5B KP791808 

 Kommetjie, Cap Province, South Africa 6A KM502799 

 Kommetjie, Cap Province, South Africa 6B KM502800 

 Umhlanga Rocks KwaZulu Natal, South 

Africa 

6C KM502801 

 Whiskey Bay, Victoria, Australia 7A KM502805 

 Narooma, New South Wales, Australia 8A KM502806 

Bostrychia gracilis Taranaki, North Island, New Zealand  KM502798 

Bostrychia arbuscula Brighton Beach, South Island, New 

Zealand 

 KM502795 

Bostrychia vaga Auckland, North Island, New Zealand  KM502794 
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Appendix 3.3. Phylogenetic tree inferred from Bayesian Inference analyses of COI data 

set for Bostrychia intricata. Support values at each node are bootstrap values from ML 

bootstrap (left) and Bayesian Posterior Probability (right). Asterisk (*) indicates full 

support (100%, 1.0) in both analyses and a hyphen (-) indicates no support. Bold letters at 

each branch tip refer to haplotypes found in this study. H: Haplotype; NZ: New Zealand. 
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Appendix 3.4. Population pairwise Fst values estimated from COI sequences of B. intricata species N2. Statistical significance (P < 0.05) 

indicated by bold type.  For population codes refer to Table 3.1- Figure 3.1. 

   

 North Island South Island 

 NZ5 NZ6 NZ7 NZ9 NZ10 NZ11 NZ12 NZ18 NZ26 

NZ5           

NZ6 0.178         

NZ7 0.370 0.013        

NZ9 0.111 0.159 0.306       

NZ10 0.429 0.362 0.374 0.389      

NZ11 0 0.179 0.370 0.111 0.429     

NZ12 0 0.231 0.430 0.159 0.488 0    

NZ18 0.243 0.253 0.367 0.228 0.453 0.243 0.285   

NZ26 0.111 0.159 0.305 0.111 0.389 0.111 0.159 0.228  
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Appendix 3.5. Population pairwise Fst values estimated from COI sequences of B. intricata species N 4. Statistical significance (P < 0.05) 

indicated by bold type. Population codes refer to Table S1- Figure 1. NI= North Island; SI: South Island. 

 

  
 Eastern NI Western NI Eastern SI Western SI 

 NZ3 NZ8 NZ13 NZ17 NZ30 NZ32 NZ33 NZ34 NZ36 NZ37 NZ21 NZ23 NZ24 NZ44 NZ46 NZ38 NZ39 NZ40 NZ41 NZ42 NZ43 

NZ3                      

NZ8 0.850                     

NZ13 0.370 0.948                    

NZ17 0.437 0.981 0.136                   

NZ30 0.396 0.949 0.082 0                  

NZ32 0.468 0.983 0.162 0 0.019                 

NZ33 0.436 0.981 0.137 0 0 0                

NZ34 0.436 0.981 0.137 0 0 0 0               

NZ36 0.453 0.982 0.150 0 0.100 0 0 0              

NZ37 0.433 0.954 0.225 0.285 0.166 0.314 0.284 0.285 0.300             

NZ21 0.723 0.978 0.904 1 0.909 1 1 1 1 0.920            

NZ23 0.591 0.915 0.698 0.778 0.909 0.796 0.777 0.777 0.787 0.719 0.257           

NZ24 0.417 0.828 0.386 0.417 0.370 0.448 0.416 0.433 0.433 0.412 0.433 0.006          

NZ44 0.611 0.879 0.715 0.769 0.706 0.789 0.769 0.769 0.779 0.729 0.566 0.018 0.116         

NZ46 0.618 0.912 0.753 0.828 0.748 0.845 0.828 0.828 0.837 0.771 0.418 0.051 0.111 0.021        

NZ38 0.826 0.956 0.926 0.960 0.927 0.960 0.960 0.960 0.962 0.933 0.955 0.878 0.784 0.817 0.825       

NZ39 0.436 0.736 0.412 0.417 0.395 0.417 0.417 0.417 0.432 0.424 0.521 0.326 0.240 0.356 0.654 0.369      

NZ40 0.873 0.984 0.968 1 0.971 1 1 1 1 0.974 1 0.929 0.840 0.875 0.924 0.814 0.535     

NZ41 0.846 0.967 0.943 0.975 0.944 0.975 0.975 0.974 0.976 0.949 0.972 0.889 0.798 0.881 0.821 0.484 0.427 0.821    

NZ42 0.834 0.962 0.935 0.969 0.936 0.969 0.969 0.968 0.971 0.941 0.965 0.883 0.788 0.822 0.871 0.062 0.375 0.810 0.286   

NZ43 0.818 0.947 0.916 0.949 0.917 0.945 0.949 0.949 0.952 0.923 0/942 0.866 0.775 0.802 0.855 0.064 0.362 0.771 0.444 0.054  



 

 141 

Appendix 3.6. Analysis of molecular variance (AMOVA) of cryptic species N4 of B. 

intircata from COI sequences. Groups were defined according to four biogeographic 

regions in NZ, as eastern North Island, western North Island, eastern South Island and 

western South Island (Appendix 3.5). d.f.: degree of freedom. SS: sum of squares. 

Asterisk: significant value P < 0.01. 

 

Source of Variation d.f. SS Variance 

components 

% 

Variation 

Fixation indices 

Among groups 3 343.729    2.16704    67.57 FCT = 0.67579* 

Among populations 17 91.839    0.47585    14.83 FSC = 0.54230* 

Within Populations 193 105.839    0.56380    17.58 FST = 0.85161* 

Total 213 541.463    3.20669   
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Appendix 3.7. Mismatch distribution of cryptic Bostrychia intricata species N2 (A) and 

N4 (B) based on COI sequences. Dashed lines indicate the expected distributions under a 

recent expansion model, and solid lines indicates the observed distributions. Bold letters at 

each branch tip refer to haplotypes found in this study. H: Haplotype. 
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Appendix 3.8. Bayesian tree for Bostrychia intricata reconstructed using BEAST under a 

relaxed clock model of the COI sequences. Bars show 95% highest posterior densities of 

divergences dates and scale bar are in million years. Black dots at node indicate the 

support of > 95% Bayesian posterior probabilities. 
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Appendix 4.1.Average specific growth rate (% day-1) of all B. intricata isolates in various conditions of temperature and salinity. Number and 

letter in brackets after each isolates indicates the COI haplotypes (Muangmai et al. 2014, 2015). Bold indicates the greatest growth rate of each 

isolate. 

 

Temperature 10 ºC 15 ºC 20 ºC 

Salinity  25 psu 32 psu 40 psu 25 psu 32 psu 40 psu 10 psu 32 psu 40 psu 

M2 (2A) 0.10  ± 0.01 0.69  ± 0.15 0.21 ± 0.03 0.68  ± 0.06 1.28  ± 0.21 1.01  ± 0.10 0.13  ± 0.03 0.21 ± 0.01 0.12 ± 0.02  

C2 (2G) 0.09  ± 0.01 0.57  ± 0.03 0.28  ± 0.05 0.82  ± 0.05 1.65  ± 0.20 1.05  ± 0.22 0.15  ± 0.02 0.13 ± 0.01 0.11 ± 0.05 

T2 (2C) 0.13  ± 0.04 0.59  ± 0.04 0.32  ± 0.04 0.77  ± 0.04 1.83  ± 0.09 1.03  ± 0.11 0.11  ± 0.01 0.19 ± 0.01 0.09 ± 0.01 

N2 0.11 ± 0.02 0.62 ± 0.09 0.24 ± 0.07 0.76 ± 0.07 1.59 ± 0.28 1.03 ± 0.13 0.13 ± 0.02 0.17 ± 0.03 0.11 ± 0.03 

M4 (4E1) 1.20  ± 0.02 1.56  ± 0.14 0.91  ± 0.04 1.41  ± 0.16 2.92  ± 0.03 2.02  ± 0.05 0.38  ± 0.04 0.53 ± 0.01 0.41 ± 0.05 

P4 (4E2) 1.23  ± 0.11 1.57  ± 0.05 0.92  ± 0.02 1.42  ± 0.04 2.87  ± 0.16 2.11  ± 0.07 0.36  ± 0.01 0.52 ± 0.05 0.49 ± 0.04 

C4 (4T) 1.26  ± 0.04 1.59  ± 0.04 1.09  ± 0.08 1.73  ± 0.13 3.07  ± 0.06 2.11  ± 0.05 0.38  ± 0.04 0.68 ± 0.05 0.51 ± 0.01 

N4 1.23 ± 0.06 1.57 ± 0.07 0.97 ± 0.09 1.52 ± 0.19 2.96 ± 0.12 2.08 ± 0.06 0.37 ± 0.05 0. 58 ± 0.08 0.47 ± 0.03 

M5 (5A) 0.05 ± 0.01 0.26 ± 0.06 0.08 ± 0.01 0.76 ± 0.11 1.48 ± 0.12 0.84 ± 0.03 0.11 ± 0.01 0.18 ± 0.01 0.12 ± 0.01 
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Appendix 5.1. The Wilks’ lambda tests of the discriminant function analysis (function 1 

through 3) of three cryptic species of B. intricata collected from Moa Point, Wellington (df 

= degree of freedom; Sig. = significance probability). 

Test of Functions (s) Wilks’ lambda test Chi-square df Sig. 

1 through 2 .379 116.864 15 .000 

2 through 3 .914   10.841 8 .014 

3 .993    0.860 3 .021 
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Appendix 5.2. Contribution to discriminant functions (DFs) of three physical parameters 

in three cryptic species of B. intricata collected from Moa Point, Wellington. Asterisk (*) 

indicates largest absolute correlation between each variable and any discriminant function.  

Physical 

parameters 

 Functions  

DF1 [90.8%] DF2 [8.7%] DF [0.5%] 

Tidal height .992* -.353 -.155 

Wave exposure .398  .908*  .128 

Sun exposure .130  .010  .992* 
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Appendix 6.1. Preliminary results of crossing experiment between three cryptic species of 

B. intricata (N2, N4 and N5) isolated from New Zealand. Female isolates on horizontal 

and male isolates on vertical axis. Detail of each isolate referred to Table 4.1 of Chapter 4. 

+ = positive cross, producing carpospores; – = negative cross; a = pseudocystocarps formed 

(pericarp forming without mature carposporophyte); b = germinating carpospores of 

hybrid.  

 

For crossing experiments the following procedures were used: one male plant and one 

female plant, each about 1 cm long, were combined in 75 ml PES/2 medium in 50 x 

70mm Pyrex™ No. 3140 crystallizing dishes with polycarbonate covers. Culture dishes 

were placed 15 °C, 12:12h LD cycle, at 30-40 µmol photons m -2 s -1 produced by cool 

white fluorescent lighting. Control female plants were also maintained separately to 

check for development of male structures and carposporophytes. Self-crossing (crosses 

of males and females from same tetrasporophyte) of individual isolates were also 

performed at the same time as outcrosses as a control for carposporophyte formation. 

Crosses were checked every 7 days for growth and reproduction to determine whether 

females were developing normal procarps with trichogynes and males were developing 

normal spermatangial stichidia that released spermatia. Crosses were considered 

positive only if carpospores were discharged from two or more carposporophytes and 

these carpospores germinated in a normal bipolar manner.  

 

 M2 (N2) C2 (N2) M4 (N4) P4 (N4) M5 (N5) 

M2 (N2) + b + – – – 

C2 (N2) + + – – – 

M4 (N4) – – + b –  

P4 (N4) – – + + b – 

M5 (N5) – + a – – + 

 

 


