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Abstract 

The Chathamiidae are an interesting family of caddisflies, unusual as all of the five known 

species are believed to breed entirely within the marine intertidal, comprising one of very few 

known marine insect groups. Additionally the family approaches almost complete endemicity 

status in New Zealand, and may represent an ancient lineage representative of ancient vicariance 

from Gondwana. However one species, the common and widespread Philanisus plebeius is also 

known to have a disjunct population in New South Wales Australia, hypothesised to represent a 

recent anthropogenic dispersal. This thesis, using DNA information, examined the Chathamiidae at 

varying phylogenetic levels.  

 Firstly the species Philanisus plebeius was incorporated into a thorough intraspecific 

phylogeography, including samples from both New Zealand and Australia. The population as a 

whole was genetically diverse, with the population divisible into two major haplogroups, each 

restricted to discrete geographic areas with no overlap being observed. One of these groups was 

restricted to just two localities in the central eastern North Island, whereas the remainder included 

most remaining samples from both Islands of New Zealand, and also Australia. All Australian 

samples were found to comprise a single haplotype, differing by a single base pair from the most 

common haplotype in New Zealand. It was decided that the Australian population therefore 

represents a recent dispersal event from New Zealand, although unless the Australian haplotype 

remains undiscovered in New Zealand the level of divergence found is not congruent with a human 

introduction. One sequence intermediate between the two major haplogroups was identified from a 

single haplotype from Tauranga. It seemed that much of the population of Philanisus plebeius has 

been affected by recent demographic expansion, likely due to the effects of the last glacial 

maximum (LGM).  

 The five species of the Chathamiidae were then analysed in a phylogeny. It was found that 

the genus Chathamia was polyphyletic, with the species C. integripennis nested within the genus 

Philanisus. The remaining species, C. brevipennis from the Chatham Islands, was basal to all the 

remaining members of the family. A strict molecular clock found a recent Pleistocene age (roughly 

0.5 Ma) for divergence of the Kermadec Island species Philanisus fasciatus, and a Pliocene-

Pleistocene age (roughly 3 Ma) for the Chatham Island species Chathamia brevipennis. For a 

comparison with the species C. brevipennis, the other Chatham Island caddisfly taxa Oecetis 

chathamensis, and Hydrobiosis lindsayi were compared with New Zealand relatives; indicated to 

have late and early Pleistocene ages respectively. A short sequence of the gene COI was amplified 

for the species Philanisus mataua, however this was found to contain two sequences reflecting 

either heteroplasmy or sample contamination, inhibiting confident phylogenetic placement. 

Additionally a larval sample from Sydney was demonstrated to represent C. integripennis, recorded 

outside of Northern New Zealand for the first time. Finally the Chathamiidae was included in a 

higher level phylogeny with related families, and was show to comprise a monophyletic group, 

sister to the Australasian family of the Conoesucidae. A relaxed molecular clock estimated a 

Cretaceous (roughly 90 Ma) age for the Chathamiidae, congruent with a vicariant age in New 

Zealand. 
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Chapter One: General Introduction 

 

1.1 The Chathamiidae, the world’s only marine caddisflies. 

 New Zealand is well known for its unique and apparently ancient biota, and several lineages 

of its flora and fauna have undergone evolutionary trajectories not seen anywhere else in the world. 

One particularly interesting and little known group, are a small family of case-making caddisflies, the 

Chathamiidae. Chathamiid caddisflies are especially unusual as almost uniquely among all insects 

they develop entirely within the intertidal zone of the marine environment, thus representing a rare 

case of a marine insect. Importantly, the Chathamiidae are also one of very few insect families that 

approach endemicity status to New Zealand, and thus potentially represent one of the oldest members 

of the native fauna.  As the assumed antiquity or Gondwanan element of New Zealand‟s biota is now 

being questioned, groups such as this are of particular importance in contemporary debates. Thus this 

group represents an especially unique and interesting case for a study in evolutionary biology in two 

distinct ways. Breeding in seawater, the family is unusually biogeographically and ecologically 

among insects; and also may perhaps represent a small group of significant or even Gondwanan age in 

New Zealand. 

 Chathamiids are medium sized (10-5mm wing length), pale-brown caddisflies. They can be 

recognised by characteristic 5 jointed maxillary palpi and a hairy facial protrusion of the males, and 

also distinctive large ovipositors found on the females (Riek 1976, Ward 1994). To date five species 

of Chathamiid caddisflies have been identified; Chathamia brevipennis, C. integripennis, Philanisus 

fasciatus, P. plebeius and P. mataua (Tillyard 1925, Riek 1976, Ward 1995). All species are native to 

the greater New Zealand region.  However the common species Philanisus plebeius has also been 

known to inhabit the coasts of New South Wales, Australia since identification by Hudson (1904) and 

has been confirmed as the same species from New Zealand (Riek 1970). This is the only known 

incidence of any of New Zealand caddisfly species being also found in Australia (out of over 240 

species); as far as known all remaining species are fully endemic (Collier 1993). This, combined with
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its unusual marine habitat as well as the comparatively localised population in Australia (none are 

known from Victoria or Tasmania for example) has raised the possibility that the Australian 

population is an accidental human introduction (Gibbs 2005), although an Australian origin has also 

been suggested (Winterbourne & Anderson 1980).  

 Philanisus plebeius Walker was first described from Christchurch (Riek 1976) in 1858.  An 

1858 record from the Austrian scientific expedition Novara 1857-9 is presumably the same sample, 

first given separate family status in the Philanisidae by Mosely & Kimmins (1953). Chathamia 

brevipennis was described from a single brachypterous (short-winged) male from Kaingaroa, 

Chatham Island by Tillyard (1925), from which it was assigned to the Rhyacophilidae under the 

subfamily Chathamiinae. C. brevipennis was recognised as sharing characteristics with P. plebeius by 

Wise (1965), who transferred the species to the Philanisidae. Riek (1976) acknowledged insufficient 

difference between the two genera to warrant separate subfamily status. Chathamiidae has 

nomenclatural priority over the Philanisidae. 

A new species of Philanisus; P. fasicatus was identified from Raoul Island of the Kermadecs 

in 1967, morphologically distinct from P. plebeius. Another species was also identified from Northern 

New Zealand, which Riek (1976) described as a new species of Chathamia, C. integripennis, although 

assigning the species to the genus based on a „similarity‟ to C. brevipennis. The most recently 

described taxon; Philanisus mataua, was first recognised from male specimens collected in 1993 

(Ward 1994) and described to species by Ward (1995). Female P. mataua remain unknown and may 

be indistinguishable from P. plebeius. C. brevipennis and P. fasciatus to date are only known from 

Chatham and Raoul Islands respectively, and it is unknown whether they are more broadly distributed 

in their respective island groups. C. integripennis and P. mataua appear restricted to the northern 

North Island (although P. mataua is evidently rarer, and likely frequently confused with the similar 

and much more common P. plebeius). P. plebeius is widely distributed through most of mainland 

New Zealand and offshore islands including the Three Kings Islands, although perhaps absent on the 

South and West Coasts of the South Island, and much of the West coast of the North Island (although 
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this also likely reflects a lack of sampling). In Australia the species is not known to occur North of 

Sydney, nor the coasts of Victoria or Tasmania and thus is not indicated to be widespread there. 

 Marine case-making caddisfly larvae have been identified from Chatham Island and thus 

likely those of C. brevipennis (Riek 1976), otherwise all known Chathamiid larvae and general 

ontogeny (such as ovipostion, larval habitat and pupation) are only known definitively from P. 

plebeius. Larvae of the remaining three species remain undescribed (larval caddisflies are often 

impossible to distinguish to exact species) although are still assumed to be marine in nature based on 

phylogeny and the coastal nature of the adults. Larvae can be found in the intertidal zone towards the 

low tide mark, most abundantly in sheltered, open rock pools on rocky coasts, although they have also 

been associated with seagrass beds in soft sediment, foraging us much as 2 m underwater (Riek 1976). 

This continual existence in full seawater is the highest salinity (35%) tolerated by any caddisfly 

(Kefford et al. 2004, Flint & Giberson 2005). Larvae build cases from nearby material, usually 

coralline algae, and are most commonly associated with the calcareous alga Corallina although they 

are also found on a variety of algal species and seagrass (Allan 1958, Riek 1976, Winterbourne & 

Anderson 1980, Taylor & Cole 1994, Taylor & Steinberg 2005). The diet of the larvae is herbivorous, 

and in spite of a common association with Corallina, gut content has been found to comprise 

primarily of non-calcerous species (Winterbourne & Anderson 1980). Larvae enclose their cases and 

pupate in algae near the shoreline in late spring, completing their entire development in the sea 

(Cowley 1976, Riek 1976). Adults emerge presumably mostly from late Spring to Summer and are 

present year-round, found flying all months of the year except for June-July (Riek 1976, Anderson & 

Lawson-Kerr 1977, Ward et al. 1996).  

 It was discovered that P. plebeius also demonstrate an unsual parasitism on Asterinid starfish, 

first described in Parvalustra (formerly Patiriella) exigua in Australia (Anderson et al. 1976) and 

later described in the related Patiriella regularis in New Zealand (Winterbourne & Anderson 1980), 

both the most common starfish in their respective regions. All Chathamiid female adults possess a 

large and distinct ovipositor (this is not found in any related family), which had been found in P. 

plebeius to forcibly deposit egg masses within the host‟s body cavity. It is assumed the host is largely 
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used as a stable environment for completing embryonic development and the first-instar larvae 

apparently leave with minimal effect (Anderson & Lawson-Kerr 1977). This is almost certainly the 

only echinoderm-insect symbiosis known, and also a very rare case of parasitic behaviour in 

Trichoptera excepting a few known Hydroptilidae which are Parasitoids on other caddisfly larvae 

(Wells 1992, 2005).  

It is currently unknown whether this behaviour is obligate or essential for the caddisfly‟s 

development, or whether this is simply opportunistic or facultative behaviour. Similarly it is not 

known whether this behaviour is typical of other Chathamiidae (although since all species have the 

ovipositor it is certainly plausible), and whether these species are the only starfish exploited. In New 

Zealand Patiriella species are present wherever representatives of Chathamiidae are found including 

P. regularis and P. mortenseni throughout New Zealand and the Chatham Islands (Young 1929, 

McKnight 1968, O‟Loughlin et al. 2002), and P. oliveri in the Kermadec Islands (Pawson 1961), 

suggesting this behaviour may be commonplace. Evidence supporting oviposition amongst Corallina 

in Northern New Zealand was presented by Leader & Bedford (1979), although this may have been 

eggs of C. integripennis (Winterbourne & Anderson 1980). Repeated washes of algae by 

Winterbourne & Anderson (1980) also found very low numbers of eggs although this contrasted with 

the much higher numbers found in starfish, who also found that the hosts apparently ejected 

undeveloped eggs along with larvae during in-vitro trials. It is unclear how an association or 

dependence on a host might affect Chathamiid biogeography, dispersal and abundance patterns. It was 

reasoned by Winterbourne & Anderson (1980), as since Parvalustra exigua in Australia is more 

abundant and lies closer to shore than Patiriella regularis in New Zealand that this behaviour and thus 

the species itself are more likely to have evolved there. This conclusion is unlikely considering that 

most species of the family are restricted to New Zealand, and it is currently more parsimonious to 

assume a non-Australian origin for P. plebeius and certainly for the remaining Chathamiid species. 

 Aside from their unusual ecology, the Chathamiidae are also morphologically distinct and for 

this reason have been given full family status, supported by molecular studies. Riek (1976) suggested 

the family as being closest to the diverse worldwide family Leptoceridae (superfamily Leptoceroidea). 
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Subsequent phylogenies by Kjer et al. (2001, 2002) based on 28S nuclear data however place the 

Chathamiidae within the superfamily Sericostomatoidea, with some trees showing a probable 

relationship to the other Australasian families Calocidae, Helicophidae and Conoesucidae in 

particular. This has been supported by morphology (Frannia & Wiggins 1997, Henderson & Ward 

2007). More recent work on 16S mitochondrial data however indicated the Chathamiidae sharing a 

weakly supported relationship with the Leptoceridae and the Helicopsychidae (Johanson et al. 2009, 

Johanson & Malm 2010). Grimaldi & Engel (2005) also created a phylogenetic tree based on Kjer et 

al. (2001, 2002) and also Frania & Wiggins (1997), and using fossil material as a calibration 

tentatively dated the Chathamiidae lineage originating roughly 140 Ma in the late Cretaceous, 

predating New Zealand‟s rifting by over 60 million years. While this age remains tenacious and may 

well be a considerable overestimate, it nevertheless does demonstrate the possible evolutionary 

importance of this taxon. 

 

1.2 An overview of caddisflies and their biogeography in New Zealand. 

 Caddisflies are generally small, moth like holometabolous insects, which comprise the order 

Trichoptera. Adults are usually drab, short lived, nocturnal, and display very little morphological 

diversity between species, although some species are diurnal and brightly coloured (Holzenthal et al. 

2007). All species with some very rare exceptions (e.g. Anderson 1967, Hayashi et al. 2008) have 

fully aquatic larvae, the best known of which are the typical “caddis-worms” of the Integripalpia 

which use silk to produce a wide variety of portable cases. However throughout the order, larvae 

display number of ecological forms, including free living predators, retreat-dwellers and net-spinners, 

collectively well known as „underwater architects‟ (Wiggins 2004).  Comprising some 13,000 known 

species in 46 described families, caddisflies are among the more ecologically important of all 

freshwater invertebrates, comprising higher species diversity than the other fully aquatic insect orders 

of the Ephemeroptera, Odonata, Plecoptera and Megaloptera combined (de Moor & Ivanov 2006, 
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Holzenthal et al. 2007). Among fully aquatic insect taxa only Culicomorphid flies (Diptera, subclass 

Nematocera) outnumber them (Grimaldi & Engel 2005). 

The Trichoptera is also of some evolutionary importance, whose relationship to the butterfly 

and moth order of the Lepidoptera forming the superorder Amphiesmenoptera, is perhaps among the 

most widely accepted higher taxonomic groupings in entomology (Kristensen 1975, 1991, 1995, 

Wheeler et al. 2001, Whiting 2002). The relationship between the two groups is well supported by a 

number of morphological synapomorphies, including modification of salivary glands into silk 

producing organs in the larvae, heterogametic females, a double looping of the anal veins on the 

forewings, and dense setae on the wings (modified into scales in the Lepidoptera). The two probably 

evolved from the Necrotaulidae, an early Mesozoic insect group known from fossils as early as 

Triassic in age (Willman 1989, Ivanov & Sukatsheva 2002), and the two orders themselves likely 

diverged between the Triassic and Jurassic periods. 

Traditionally the Trichoptera has been divided into at least three suborders, roughly congruent 

with life-history of the larvae. The Annulipalpia is comprised of retreat making and net spinning 

larvae and the Integripalpia comprises all the true case making species. A third group the 

„Spicipalpipa‟ has also been proposed, comprising a number of free living and shelter making 

caddisfly families now recognised as a basal paraphyletic grade of the Integripalpia (Frannia & 

Wiggins 1997, Kjer et al. 2001, 2002). The earliest definitive fossil Trichopteran is of early Jurassic in 

age (180-185 Ma, Ansorge 2002) although some fully modern families, especially the Philopotamidae 

(Annulipalpia) are well represented from the mid Jurassic onwards suggesting the family may have 

diverged earlier still in the Triassic. The earliest fossil larval cases appear in the early to mid-Jurassic 

(Sukatsheva 1985, 1994), although remain rare until an apparent radiation in the Cretaceous, 

comprising a number of taxonomically unidentifiable trace-fossil „ichnospecies‟ (Ivanov & 

Sukatsheva 2002). Few fossil Integripalpia adults or larvae of Mesozoic age are known, although 

specimens up to early cretaceous in age can be assigned to modern families (Sukatsheva & 

Jarzembowski 2001, Ivanov & Sukatsheva 2002, Ivanov 2006, Ponomarenko et al. 2001). In this 

regard the Trichoptera represents a deeply divergent and ancient group, significantly more so than the 
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related Lepidoptera which are not believed to have undergone major radiation until the Late 

Cretaceous (Grimaldi & Engel 2005). 

The old age of the Trichoptera may be represented in their contemporary biogeography, as a 

number of groups are restricted to modern fragments of Laurasia (North America and Eurasia) or 

Gondwana (South America, Antarctica, Australia, Africa, India, Madagascar and New Zealand), 

suggestive of ancient patterns of vicariance. This is perhaps best reflected in the closely related 

„Spicipalpian‟ families of the Rhyacophilidae and the Hydrobiosidae, each almost entirely restricted 

to Laurasian and Gondwanan fragments respectively. This pattern is also particularly well 

demonstrated in the Integripalpia, of the 30 established case making families, 13 are mostly Northern 

in distribution and 14 are mostly Southern (de Moor & Ivanov 2008). Several of these families are 

found between the regions although remain species (and particularily genera) poor far from their 

presumed vicariant landmasses. Only the Leptoceridae, Calamoceratidae and Helicopsychidae are 

well represented in both hemispheres. All Annulipalpian families are essentially found worldwide, 

which may indicate all families were well established by the time of major continental rifting, or that 

the groups have since dispersed widely. 

New Zealand is characterised by a rich diversity of caddisflies, comprising over 240 species 

in 15-16 families (Ward 1967), and all species excepting the marine Philanisus plebeius are believed 

endemic (Collier 1993). A number of normally large or important families are species poor or absent, 

such as the Hydroptilidae which is represented by only 19 species in 3 genera, compared to over 140 

species in 15 genera in Australia (Ward & Henderson 2004). Additionally diversity is unusually 

disproportionate, with one family, the Hydrobiosidae comprising roughly half of all known species 

(over 100 species in ten genera, with several undescribed, and all genera also being endemic). Other 

significant families include the Hydropsychidae, Philopotamidae, Leptoceridae, Coneoesucidae and 

the Oeconesidae although a number of southerly „gondwanan‟ families are present in low diversity 

including the Calocidae, Helicophidae, Philorheithridae, Kokirridae and the Chathamiidae. The 

Chathamiidae and Oeconesidae are of particular interest as both groups have a predominantly New 

Zealand biogeography. Five out of six Oeconesidae genera are endemic to New Zealand, excepting 
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only the monotypic Tascuna from Tasmania (Holzenthal et al. 2007). Family level endemism of 

Trichoptera is demonstrated by two families in Australia, one in South America and four in Africa, 

and may thus also be expected in New Zealand. The Chathamiidae are the only caddisfly family with 

all species present in New Zealand, although also has the unusual dual distinction of containing the 

only caddisfly species shared with Australia. 

 

1.3 Marine insects 

 The insects represent one of evolution‟s major success stories. Estimated to represent literally 

millions of species, no other animal group has radiated to such an extreme degree on land or in fresh 

water (Erwin 1982, Novotny et al. 2002). Although the oceans cover two thirds of the planet, and not 

withstanding over 300 million years of evolution, only a handful of insect groups have colonised any 

marine environment (Cheng 1976, Grimaldi & Engel 2005). Insects are known to be able to cope with 

the evolutionary changes in osmotic potential a saline environment presents; inland saline 

environments even more concentrated than seawater often have thriving insect communities (e.g. 

Moreno et al. 1997, Herbst 2006, Velasco et al. 2006). Why then insects have generally failed to 

establish themselves in the sea is an interesting and important question in evolutionary entomology.  

Many species of insect are found in marine environments and intertidal areas including many 

species of adult Coleoptera and Hemiptera, although most remain terrestrial and few are truly aquatic.  

No species of insect, perhaps with the arguable exception of wingless females of the midges 

Pontomyia and Clunio spend their entire lives within seawater. Estuarine or brackish areas may or 

may not be considered to be marine habitats, however here insects can be highly prevalent. For 

example the larval caddisflies of the genus Limnephilus has been in salt marshes surviving in salinities 

as high as 30% (Flint & Giberson 2005).  

 Only three insect groups have actively colonised the marine environment with any success, 

breeding on or within seawater. The sea skater genus Halobates comprises some forty species of 
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wingless true bugs of the Gerromorpha (Hemiptera) which have a pleustonic ecology living on the 

water surface. All species with one freshwater exception live on marine or estuarine waters, and five 

species have exceptionally colonised even the open ocean (Polhemus 1982, Cheng 1985). In this 

instance an ecological transition from the coast to the open sea may require minimal adaptation, and 

the oceanic lifestyle has evolved at least twice in the genus (Andersen et al. 2000). Halobates contrast 

to other marine insects, as all species have essentially adopted a terrestrial existence on the sea water 

surface. 

The other major lineage can be found amongst Culicomorphid flies. Some mosquito species 

(Culicidae) breed in isolated saline rock pools (Laird 1988) although by far the greatest radiation is 

represented by non-biting midges of the Chironomidae. At least fifteen genera of Chironomids have 

marine representatives which together do not comprise a monophyletic group, having evidently 

invaded the environment several different times in their evolutionary history (Neuman 1976, Colbo 

1996). Although most species are restricted to the intertidal, Chironomids can be abundant; for 

example larvae of the genus Halocladius are estimated to be among the most abundant of all 

macroinvertebrates in some intertidal systems (Grabary et al. 2009). Species of Clunio and Pontomyia 

live in the subtidal, and although being unrelated, both possess a number of analogous similarities 

including minute size (a few mm), sinking egg masses, extremely short adult lifespan (as low as ½ an 

hour), wing reduction in the adult males, and fully wingless larviform adult females (Neumann 1986, 

Soong et al. 1999). As is typical with chironomids, almost all of their ontogeny is spent in the fully 

aquatic larval phase (Cheng & Collins 1980).  

Insects may not be well represented in the seas as a life cycle dominated by a winged adult 

has no competitive advantage in the marine environment (Cheng 1985). The most specialised of all 

marine insects, Halobates, Pontomyia and Clunio have totally or partially lost their wings, and likely 

disperse by means of oceanic diffusion rather than active movement (Ikawa et al. 1998, Anderson et 

al. 2000). Other features such as largely immobile larvae (at least for the majority of holometabolous 

insects), internal fertilisation, and evolution of a watertight cuticle likely only further limit marine 

colonisation for insects as a whole. Other invertebrate taxa, particularily Crustaceans (likely ancestral 
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to Insects), already occupy all available niches otherwise filled by insects in land and freshwater. 

Lacking any competitive potential, it is unlikely insects will re-invade successfully. 

 

1.4 The natural history and biogeography of New Zealand 

 New Zealand represents an ideal region to explore the processes of biogeography. In spite of 

its small size and isolation, the island group is geologically of continental Gondwanan origin, and is 

often referred to in scientific literature as being both reminiscent of a continental landmass and a 

distant oceanic island (Cooper & Millener 1993, Wallis & Trewick 2009). This statement applies 

especially well to the flora and fauna; although a number of plants and animals do appear to reflect 

vicariant (continental or Gondwanan) origins, more consistently groups appear to have more recent 

origins from nearby landmasses, more congruent with long distance dispersal. New Zealand is a large 

landmass, and has an active and complex geology, including processes of mountain building, ice age 

glaciation and volcanism. Additionally New Zealand itself is comprises a vast and diverse 

archipelago, and includes a large number of distant oceanic islands, in turn with their own geological 

and biological histories. The natural history of New Zealand is a vast and highly debated subject, and 

can only be briefly addressed here.  

It is undisputed that New Zealand was once part of the ancient supercontinent Gondwana and 

connected to what is now Antarctica and Australia, as suggested by an ancient terrestrial fossil record 

and also clearly demonstrated by an extinct mid ocean ridge in the central Tasman Sea formed by sea 

floor spreading 85 million years ago and ceasing around 20 million years later (Luyendyk 1995, 

Sutherland 1999 a, Trewick et al. 2007). This period saw the rifting of the subcontinent of „Zealandia‟ 

of which modern New Zealand forms only a portion today. Zealandia today is mostly observable 

under the ocean, forming a mass of underwater rises, ridges and plateaus and taken together with the 

land surface comprises an area of roughly 3 ½ million square kilometres (10 times the size of New 

Zealand). It is now widely believed that this was once all inactive, flat dry land when still part of 
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Gondwana (Campbell & Hutching 2007, Trewick et al. 2007). Due primarily to erosion and literal 

tectonic „stretching‟ of the crust, most had fallen underwater by the time the Tasman had reached 

present size roughly 65-60 million years ago. The remainder existed as number of islands, primarily a 

proto-New Zealand, which continued to sink until the Miocene (23 million years ago), until 

compressive forces along the plate boundary finally began to uplift new land (Sutherland 1999 b). 

Other areas above sea level, such as New Caledonia, Lord Howe Island and New Zealand‟s oceanic 

Islands (such as the Auckland and Chatham Islands) have primarily volcanic origins. 

 It is currently unclear to what degree the biotas of Zealandia and New Zealand are linked, and 

some authors have suggested that the two should now be viewed as entirely separate biogeographic 

entities (Campbell & Hutching 2007, Trewick et al. 2007, Landis et al. 2008). It is known that during 

much of the Oligocene (roughly 35-25 Ma) just prior to active tectonism in the Miocene, that most of 

modern New Zealand was submerged underwater. The event known as the „Oligocene drowning‟ has 

clearly had a considerable effect on the biodiversity of New Zealand, and molecular studies repeatedly 

display lineages suddenly radiating shortly after this period (Cooper & Cooper 1995, Trewick & 

Morgan-Richards 2005). However it is now becoming increasingly argued that submergence was 

total, and for several million years there was no emergent land in the area whatsoever. All New 

Zealand Oligocene sediments are comprised of marine limestone (Campbell & Hutching 2007, Landis 

et al. 2008), and the New Zealand crust is unusually thin and less buoyant than typical continental 

crust, which without ongoing geological activity would quickly sink (Trewick et al. 2007). 

Furthermore, there are no geologically old features whatsoever in New Zealand, all known terrestrial 

geological activity and erosion is Miocene or younger (Campbell & Hutching 2007).  

 Modern New Zealand clearly does have an unusual and unique biota, and certainly appears to 

have an old if not Gondwanan origin. Jared Diamond (1990) famously quoted it as being “the nearest 

approach to life on another planet”, reflecting the almost universal scientific opinion of life having 

been isolated and evolving in the area for tens of millions of years. Among the best known examples 

include primitive or relicutal taxa representing lineages of probable Mesozoic age, such as the Tuatara 

(Sphenodontia), Acanthisittid wrens, Leiopelmatid frogs, Ratite birds, the New Zealand parrots 



 Chapter One: General Introduction 

 

12 
 

(Strigopidae), Araucarian conifers (only represented by the Kauri Agathis australis in New Zealand) 

and dozens of groups of invertebrates, including insects, crustaceans, arachnids, snails, earthworms 

and the Peripatus (Gibbs 2006). Nevertheless endemicity is almost entirely restricted to the species 

and genus level (totally so in terrestrial plant species) and there are only a few endemic animal 

families (Pole 1994, 2000, Macphail 1997, Gibbs 2006). In many more respects New Zealand has 

biological characteristics more typical of a recently formed oceanic island, and most New Zealand 

species are likely to have arrived from long distance dispersal, mostly from the nearby landmasses of 

Australia and New Caledonia.  

 Contrasting to „Zealandia‟, post-Oligocene New Zealand can be defined as period of dynamic 

geological activity and land-building, and has been the source of much historical biogeographic study. 

New Zealand has a distinctly defined biogeography, with many regions supporting high or low levels 

of local endemism, for example species rich areas in the Southern South Island, North West Nelson, 

and the Northern North Island (Wardle 1963). There are also a number of important biogeographic 

disjunctions for several species largely congruent with these regions, for example the well known 

„beech-gap‟ found in the Central-Western South Island, where a large number of species are absent 

(most obviously the forest forming southern beeches of Nothofagus, but also a number of other plants 

and also animals) in spite of no observable environmental changes (Wardle 1963, Burrows 1965). In 

the absence of an obvious contemporary cause for these patterns, many are believed to be the result of 

prior geological or environmental history. Many distributions have been attributed to the movement of 

the alpine fault since the Miocene, which has had a dramatic effect on the shape and topography of 

New Zealand. North-South movement of the alpine fault  in the South Island has been argued as a 

recent case of geographic vicariance in New Zealand, as a number of species or related taxa are only 

present in disjunct regions of North West Nelson and Southern New Zealand, areas that were in close 

proximity until recently. This pattern is shown in a significant number of species, even in some 

caddisflies such as the genus Rakiura, and has also been proposed as a cause for the beech gap itself 

(Heads 1988). However this case of local vicariance has also been discredited by some research and 

this pattern is more likely to represent more recent local extinctions (Wallis & Trewick 2001).  
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 One major geographic event was an extended oceanic submergence of what is now the 

southern North Island creating the „Manawatu Straight‟, an ancient precursor to the Cook Straight, 

during much of the Pliocene until uplift in the Pleistocene (Lewis et al. 1994, Worthy & Holdaway 

2002) (The modern Cook Strait by contrast is a more recent Pleistocene feature). This period is likely 

to have resulted in an early phase of allopatric speciation between the modern North and South 

Islands and has been proposed as a cause for low biological diversity in the Southern North Island 

(Gibbs 2006). More significantly intensifying plate movement in the Pliocene saw the early formation 

of the Southern Alps as a distinct mountain range. The formation of the Alps created not just a 

formidable geographic boundary for plant and animal dispersal, but also greatly diversified the New 

Zealand region into a distinct series of alpine environments. Since the late Pliocene to Pleistocene 

New Zealand has also been affected by the onset of a number of glacial cycles or „ice ages‟, the last of 

which, the last glacial maximum (LGM) ended only roughly 20 ka before present (Suggate & Almond 

2005, Denton et al. 2010). Coupled with the presence of a new mountain range, these cycles led to a 

significant level of glaciation, a massively increased alpine zone, and considerable changes in weather 

and climate. Particularly during the Pleistocene, ice ages led to massively reduced sea levels, and the 

landmass of New Zealand has repeatedly increased and decreased in size several times over the last 

few thousand years. These fluctuating sea levels have more importantly repeatedly opened and shut 

the Cook and Foveaux Straits, significantly affecting dispersal of both marine and terrestrial species 

(Suggate et al. 1978, Fleming 1979, McGlone 1988, Naish 2005). The environmental changes in New 

Zealand since the Pleistocene in this thesis are especially focal to Chapter Two, and will not be 

discussed further here. 

 Another very important geological aspect in New Zealand is the presence of volcanism. New 

Zealand sits along a plate boundary, which north of the alpine fault comprises an active subduction 

zone, continuing along the Kermadec and Tonga ridges several thousand kilometers northeast into the 

Pacific. This region has been the source of active volcanism for just as long as mountain building in 

the South, since the early Miocene 23 Ma (Graham 2008). The central North Island is considerably 

affected by volcanism, and the Taupo volcano in particular has resulted in some of the largest of all 
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worldwide volcanic eruptions in the past several hundred thousand years (Wilson & Walker 1985, 

Wilson 1993, McDowall 1996, Alloway et al. 2007). Eruptions from the central plateau have been 

implicated in the biogeography of some species in the North Island, and are known to have resulted in 

a number of local extinctions in the past (McDowall 1996, Alloway et al. 2007).  

A second significant result of volcanism in the region has been to produce a number of distant 

oceanic islands, some over 1,000 km from mainland New Zealand. New Zealand is almost completely 

encircled by distant islands, including Norfolk Island and the Kermadec Islands to the North; the 

Chatham Islands to the West; and the Antipodes, Campbell, and Auckland Islands to the South. These 

Islands vary in age and geological origin, although almost all are comprised of volcanic material. The 

Kermadec Islands represent a continuation of the volcanism directly along the Pacific plate boundary, 

and are both among the most recent (likely no more than a few thousand years old) and the most 

active of all New Zealand‟s volcanic islands. The remaining islands vary in age considerably and have 

formed typically from ancient basaltic, intra-plate volcanism. Campbell and Auckland Islands are 

both late Miocene in age (11-7 Ma), Norfolk Pliocene-Miocene (3-2.3 Ma) and the Antipodes late 

Pleistocene (0.25-0.5 Ma) (Jones & McDougall 1973, Graham 2008). The Chatham Islands formed 

mostly from volcanism since the past 6 Ma, however do not appear to have emerged until 2 Ma, 

probably due to tectonic uplift (Campbell & Hutching 2007). All these Islands comprise a number of 

endemic species of plants and animals, and comprise an important aspect of biogeography in New 

Zealand; however New Zealand‟s outer islands are rarely included in contemporary biogeographic 

studies. Two of New Zealand‟s oceanic island groups, the Kermadec and Chatham Islands are a focal 

aspect of Chapter Three of this thesis and are there covered more extensively.  

The biological and geological history of New Zealand is long and complex, and here only 

three areas are to be explored further in any detail in this thesis. The recent Pleistocene glaciations, the 

age of some of New Zealand‟s outer Islands, and also the Gondwanan age of New Zealand itself all 

feature in the Chathamiidae. Thus through use of this small family, this thesis will aim to explore and 

address the biogeography of New Zealand in a much wider perspective.  
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1.5 Aims and structure of this thesis. 

 This thesis aims to focus almost entirely on just a single family of caddisflies, the 

Chathamiidae, and thoroughly examine it at varying phylogenetic levels. This thesis is divisable into 

three major areas, each of which is presented in separate chapters as largely independent studies. Each 

of these three main chapters will also address a theme of a differing biogeographic aspect of the New 

Zealand region. 

 Chapter Two will examine a singular species; Philanisus plebeius, which will form the basis 

of a wide interspecific phylogeography. Samples from around New Zealand and Australia will both be 

used. This chapter will aim to firstly determine the relationship between the New Zealand and 

Australian populations, and secondly analyse the phylogeographic patterns found within New Zealand 

specifically. This chapter being based on a single species will be most sensitive to contemporary or 

very recent historical events. This will include oceanic currents, current geographic boundaries, 

possible human shipping and also climate and geographic effects during the Pleistocene, particularily 

the last glacial maximum (LGM). 

Chapter Three will aim to examine the phylogeny of all Chathamiid species, and will attempt 

to improve the known phylogenetic and taxonomic understanding of the family. As two species here 

are restricted to Islands (the Kermadec and Chatham Islands), this study will also include use of a 

strict molecular clock to develop age estimates for the Island taxa, and also serve to establish new 

evidence for the ages of their respective Island groups. This chapter will also include other caddisfly 

species from the Chatham Islands for use as a comparison with the endemic Chathamiid, Chathamia 

brevipennis. Chapter Four will examine the family level phylogeny of the Chathamiidae and related 

caddisfly species of several related families, both within and outside of New Zealand. Due to the 

endemicity status of the Chathamiidae, this chapter will aim to address the Gondwanan nature of New 

Zealand and the possible vicariant age of this family. Finally Chapter Five will briefly discuss the 

major conclusions and limitations of this thesis, and will also suggest possible future work that may 

be undertaken. 
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Chapter Two: Genetic structure of an intertidal insect: 

phylogeography and cryptic speciation of the marine caddisfly 

Philanisus plebeius (Trichoptera: Chathamiidae) from New 

Zealand and Australia. 

 

2.1 Introduction 

The Chathamiidae are a small family of five species of caddisfly (Trichoptera) restricted to 

the coasts of New Zealand and South Western Australia, unusual as all species known or suspected to 

breed entirely within the marine intertidal and shallow subtidal environments. As a result the family 

has received a degree of scientific interest, and the most common and widespread species Philanisus 

plebeius has been the target of ecological and physiological study (Anderson & Lawson-Ker 1976, 

Anderson et al. 1976, Winterbourne & Anderson 1980). However the species still represents a unique 

opportunity for phylogeographic analysis. The genetic structure of marine insects has been the subject 

of little research in spite of their evolutionary rarity, and representing a unique link between marine 

and terrestrial ecosystems.  

Very few insects are widely accepted as being marine in nature.  A number of species of 

Chironomid midge (Chironomidae) breed in both the intertidal and subtidal, easily representing the 

most successful radiation of marine insects. Fifteen genera of chironomids are have marine 

representatives; most are restricted to brackish or intertidal areas, although tropical species of the 

flightless genus Pontomyia breed well into the subtidal zone as deep as 30 meters in coral reefs 

(Hashitomo 1976, Neumann 1976, Bretschko 1981, Colbo 1994). Although there has been work on 

microsatellite variation in the indertidal genus Clunio (Kaiser & Heckel 2009), there have been no 

phylogeographic studies. Flightless Sea skaters of the genus Halobates by adopting a pleustonic 

lifestyle on the water surface are the only insects to have colonised the open ocean, and have been 

subject to some phylogenetic and phylogeographic study (Anderson et al. 2000, Damgaard et al. 

2000). Chathamiid caddisflies from Australasia arguably represent the only other radiation of fully 

marine insects, however remain perhaps the least well known. 
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New Zealand is an ideal locality in which to explore the processes of biogeography, 

especially regarding the effects of mountain building, volcanism and climate changes since the 

Pliocene (Cooper & Millener 1993, Markgraf et al. 1995, Worthy and Holdaway 2002). Most recently 

climate and geographical changes due to glacial cycles (roughly 20 in total) during the Pleistocene are 

well known to have had a considerable environmental effect in New Zealand, with the last such cycle 

ending 34-18 ka during the last glacial maxiumum (LGM) and modern temperatures appearing around 

12 ka (Suggate & Almond 2005, Denton et al. 2010). During the LGM temperatures dropped up to 

5°C and led to increases of glacial cover and freshwater outwash, principally in the South Island and 

also localised areas in the North Island (Fleming 1979, Suggate 1990, Pillans 1991, Brook et al. 2008, 

Shakun & Carlson 2010). Lower temperatures greatly increased the alpine zone which also fell to 

lower altitudes, and forest cover diminished largely to the upper North Island and small localised 

refugia (McGlone 1988, McGlone et al. 1993, Alloway et al. 2007). Increased ice caps also caused 

sea levels to lower by around 120-130 m connecting most of New Zealand into a single landmass; 

thus marine channels such as Cook and Foveaux Straights were largely closed by land bridges 

dramatically affecting immigration patterns of marine and terrestrial species (e.g. Suggate et al. 1978, 

Fleming 1979, McGlone 1988, Naish 2005).  

The effects of the LGM and past glacial cycles have left a lasting impact still observable in 

the biogeography and genetic structure of native plants and animals; in terrestrial, freshwater and 

marine environments. Genetic studies have been conducted on a wide number of freshwater and 

terrestrial species, finding marked degrees of genetic bottlenecks and postglacial radiations from one 

or more refugia; including freshwater fish (Wallis et al. 2001, King et al. 2003, Waters et al. 2007b, 

Waters & Craw 2008, McDowall 2010), stick insects (Trewick et al. 2005, Buckley et al. 2009, 

O‟Neill et al. 2009), freshwater invertebrates (Neiman & Lively 2004, Smith & Smith 2009), bats 

(Lloyd 2003 a, b), Metrosideros (Gardner et al. 2004), beetles (Leschen et al. 2008, Marske et al. 

2009), cicadas (Marshall et al. 2009), skinks (Hare et al. 2008) and frogs (Fouquet et al. 2010). Most 

of these examples have a South Island focus, North Island studies by contrast often refer to volcanism 

from the central plateau as an important factor (McDowall 1996, Gardner et al. 2004, Smith et al. 
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2006 a, b, Shepherd et al. 2007, McDowall 2010). However in spite of extensive research, most 

studies are focused to those most likely to be sensitive to these environmental changes and are thus 

are usually biased to inland or habitat-specific species, and do not often include both islands. 

The subtidal and intertidal biota of New Zealand has also been the subject of similar study. 

Observed genetic structuring is generally indicative of contemporary geographical or oceanographic 

boundaries, most importantly a North-South divide roughly congruent with the North and South 

Islands (Apte & Gardner 2002, Sponer & Roy 2002, Waters & Roy 2004, Ayers & Waters 2005, 

Goldstein et al. 2006, Jones et al. 2008, Shears et al. 2008, Ross et al. 2009). This is usually argued 

either due to the presence of the Cook Straight since the LGM (Apte & Gardner 2002), or an older 

separation from prolonged upwelling off the North-Eastern coast of the South Island acting as a 

barrier for dispersal (Waters & Roy 2004, Ayers & Waters 2005, Goldstein et al. 2006). Evidence for 

postglacial radiations southwards from northerly refugia have also found been for some marine 

species, presumably due to intolerance of climate, water current or coastline changes associated with 

glacial periods (Stevens & Hogg 2003, Fraser et al. 2009, Hickey et al. 2009). 

 

2.1.1 The study organism: Philanisus plebeius 

The Chathamiidae are of special interest to New Zealand in particular, as the family comes 

close to full endemicity status. Four of the five species of the Chathamiidae are endemic to New 

Zealand and have comparatively restricted distributions; one is restricted to the Kermadec Islands, one 

to the Chatham Islands, and two in the Northern North Island and nearby Islands. The fifth species 

Philanisus plebeius has a wider distribution and is found throughout New Zealand, from the Three 

Kings Islands in the north to Fiordland in the south, and possibly as far south as Northern Stewart 

Island. This species has also been known to exist in New South Wales since 1904 (Hudson 1904), and 

has been confirmed to be the same species as that in New Zealand (Riek 1970). Despite its wide 

range, P. plebeius does have a number of apparent disjunctions in its distribution (see Fig 2.1), and 

has not been collected from large areas of New Zealand‟s coastline, including most of the west and 
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southern coasts of the South Island; the coasts between Canterbury and Dunedin in the South Island, 

from East Cape to Hawke‟s Bay in the North Island, and most of west coast of the North Island (with 

the exception of records from the Taranaki region). There is one record from Stewart Island, a large 

gravid female collected in 1980 and labelled as 100 m altitude far from the coast (Ward 1994). This 

may be a misidentification or a recording error; there are no other records of P. plebeius from the 

Island. The distribution in Australia is less well known; however appears to extend roughly from 

Sydney (roughly equal in latitude for the species northernmost distribution in New Zealand at the 

Three Kings Islands) for about 200km of coastline southward. The species does not appear to occur 

further south in Victoria or Tasmania in spite of these areas being closer to in latitude to most of the 

species‟ distribution in New Zealand, and thus likely suitable for colonisation.  

P. plebeius breeds exclusively in seawater and most commonly in the rocky intertidal 

associated with coralline algae, but can be found in variety of habitats such as the shallow subtidal 

and even in seagrass beds in soft substrate; where the cryptic, herbivorous case-making larvae forage 

underwater as deep as 2 m (Riek 1976).This existence in full seawater is the highest salinity (35%) 

tolerated by any caddisfly (Kefford et al. 2004, Flint & Giberson 2005). Pupation also occurs within 

seawater and the adults emerge late spring early summer, although can be found almost year-round 

indicating a long adult lifespan (Cowley 1976, Riek 1976, Anderson & Lawson-Kerr 1977, Ward et 

al. 1996). The species also demonstrates the extremely unusual behaviour of ovipositing its eggs 

within the coelom of starfish of the genera Patiriella and Parvalustra, whereupon the first instar 

larvae leave shortly after hatching (Anderson et al. 1976, Winterbourn & Anderson 1980). This 

behaviour is likely more commensal than parasitic, and the starfish is believed to provide a stable 

environment in which development takes place, and appears more or less unaffected (Anderson & 

Lawson-Kerr 1977). It is unclear whether this behaviour is obligate (essential for development) or 

facultative (opportunistic). How this symbiosis may affect or restrict biogeography or dispersal of P. 

plebeius is unknown, although species of Patiriella and Parvalustra are abundant and widespread in 

various subtidal and intertidal habitats New Zealand and Australia. 
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The trans-Tasman distribution of P. plebeius is exceptional; so far all remaining species of 

caddisfly in New Zealand are fully endemic (Collier 1993). It has been suggested that the Australian 

population is an accidental human introduction due to shipping (Gibbs 2006), which would make the 

Chathamiidae as a whole naturally endemic to New Zealand. Human shipping is commonly 

implicated in the transportation of otherwise poor dispersing marine species, and has been implicated 

in at least one introduction of a marine chironomid in Western Europe (Brodin & Andersson 2009, 

Raunio et al. 2009). By contrast Winterbourn and Anderson (1980) suggested the Australian 

population is ancestral as the Australian species Parvalustra exigua (formerly Patiriella exigua) are 

more abundant and found closer to shore than Patiriella regularis from New Zealand, and thus a more 

likely candidate for the original host species. However since Philanisus plebeius is more widespread 

in New Zealand and all the remaining species of the Chathamiidae are endemic, it is more 

parsimonious to consider a New Zealand origin for the species. 

Philanisus plebeius has the unique distinction of being an organism found nation-wide with 

the ecological requirements of a marine species and is thus open to passive transport by marine 

processes, including currents, rafting of algal wrack or even human shipping. Being fully flighted at 

adulthood it also behaves as a typical terrestrial insect for a significant portion of its lifespan. Being a 

member of a largely endemic family, this species is also likely to represent a lineage present in New 

Zealand for some time, and fully exposed to historical environmental changes. As a result this species 

has no comparative ecological or biogeographical analogy in New Zealand, and thus presents a unique 

species for phylogeographic study. 

 

2.1.2 Aims 

This study will aim to determine the phylogeography of Philanisus plebeius, with two aims. 

Firstly to establish the genetic relationship between the Australian and New Zealand populations; to 

determine which region was ancestral, and whether the trans-Tasman distribution is due to natural 

dispersal or a recent human introduction. Secondly, phylogeographic structure of the population in in 
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New Zealand will be investigated. Correlations with historical processes, especially Pleistocene 

climate and geographic changes will be tested and compared with patterns found of other species 

representative of the freshwater, marine and terrestrial.  

 

2.2 Materials and Methods 

2.2.1 Sample Collection.  

146 Samples of Philanisus plebeius were used in this study from specimens collected 

specifically for this study from November 2008 to February 2010 from several sites in Australia and 

both main Islands of New Zealand (see Table 2.1). All New Zealand material was collected by the 

Author or Dr Ian Henderson (Massey University), whereas Dr Alice Bell (Australian Biological 

Resources Study, Canberra, Australia) supplied Australian specimens. Adults were primarily collected 

during dusk and night hours during late summer to early autumn by means of a basic UV light trap. 

The trap consisted of a 12 v black light powered by a standard 12 v 7.2Ah battery, suspended over a 

water tray with a few drops of detergent. The trap was situated that it would be visible over a wide 

area of coastline, close to rocky intertidal habitat if possible, and left for typically under an hour. 

Adults were also occasionally collected by hand during daylight when possible. Larval and pupal 

material was also collected year round by hand-searching through quantities of coralline algae from 

the rocky intertidal. Since the larval stages of the Chathamiidae are either unknown or largely 

indistinguishable morphologically, larval material was collected from areas only inhabited by P. 

plebeius (outside of the Northern North Island).  

Samples were placed directly into 70-80% ethanol in the field and then transferred to 95% 

ethanol and refrigerated at 4°C for laboratory work. Adults were identified to species in laboratory, 

with P. plebeius differentiated from the sympatric Philanisus mataua and Chathamia integripennis 

based on descriptions by Riek (1976) and Ward (1994, 1995). Samples of Chathamia integripennis 
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(from Northern New Zealand) and Philanisus fasciatus (Kermadec Islands) were also used as 

outgroups for phylogenetic analysis (Refer to chapter three of thesis further regarding these species). 

 

2.2.2 DNA sequencing and alignment. 

DNA was extracted using a standard phenol-chloroform method, using 1-3 whole legs from 

adults, mature pupae or late-instar larvae. A small fragment of abdominal tissue was used from very 

small, pupating or damaged larvae only. The remainder of specimen was then left intact and stored in 

ethanol for future reference.  

A 618 base pair fragment of the protein-coding mitochondrial gene Cytochrome oxidase I 

(COI) was amplified using the primers LCO1490 and HCO2190 (Folmer et al. 1994, see Table. 2.2). 

Each reaction template was run in a thermocycler for a 95°C hot-start for 5min; 40 cycles of 30s at 

95°C, 30s at 48-50°C and 30s at 72°C; followed by a final extension phase for 10min at 72°C. 

Products were visualised through gel electrophoresis, purified using 0.5μl ExoSAP-IT DNA 

purification kit (Global Science) and sequenced using the primer HCO2198 only.  

Sequences were imported into Clustal X algorithm in MEGA 4.0 (Kumar et al. 2007, 2008) 

and aligned using default parameters. COI sequences of P. plebeius and C. integripennis from 

published studies (Hogg et al. 2009, Johanson et al. 2009) were imported to facilitate alignment and 

confirm mitochondrial origin although were not included for analysis.  

 

2.2.3 Genetic Analyses 

The COI dataset statistics were generated using the MEGA data explorer tool and DnaSP v5 

(Librado & Rozas 2009). TCS 1.21 (Clement et al. 2000) was used to construct a parsimony network, 

sorting the data into observable haplotypes and to visualise the primary phylogenetic structure and 

distance. The analysis grouped the sequences into two major haplogroups (“A”, and “C”) with a third 
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minor, intermediate haplogroup “B” identified from a single sample. All identified haplotypes were 

named firstly by their respective grouping and then numbered respective to total abundance (e.g. 

haplotype “A1”) with “1” representing the most numerous. Pairwise distance statistics were 

performed in DnaSP and used to construct a mismatch distribution chart as to display genetic 

distances and population structure. Tajima‟s D (Tajima 1989) and Fu‟s FS (Fu 1997) statistics were 

calculated in DnaSP for the complete dataset and independently for both of the two major 

haplogroups in order to test for recent demographic expansions. 

Analyses of molecular variance (AMOVA) were performed in Arlequin 3.11 to observe 

genetic relationships at varying geographical hierarchies using data from New Zealand samples of 

haplogroup A only. Analyses were run using a distance matrix model with 10,000 permutations. 

Sequences from Australia were omitted from this analysis as they comprised a single unique 

haplotype, as well as the large geographic distance involved. Also not included were samples from 

Tauranga and New Plymouth which had less than 6 samples and were considered too geographically 

isolated from other collection sites to be grouped together. Groupings were based on assumption of a 

geographic and genetic break South of Kaikora, commonly observed in marine species. Groups from 

the upper North Island through to Kaikoura were assessed independently (using the geographic groups 

“Wellington”, “Wairarapa”, “Auckland” and “Upper South Island”). These groups were then 

combined (Upper New Zealand) and compared to the further groups “Dunedin” and “Christchurch”. 

In order to improve statistical and geographical robustness, areas in close proximity with small sample 

sizes were combined into singular „populations‟ (distinct from the AMOVA groupings), this included 

„Wellington‟ which combined Pukerua Bay (6), Makara (3), Lyall Bay (1), Pauatahanui (3) and 

Breaker Bay (12); and „Auckland‟ which merged Auckland Harbour (14) with Waiwera (3) (see map 

in Fig 2.7).  

Phylogenetic analyses were also performed on the dataset to further explore the relationship 

between the three haplogroups using the software packages MrBayes 3.1 (Heulsenbeck & Ronquist 

2001, Ronquist & Huelsenbeck 2003) and PAUP* 4.0 (Swofford 1999). Model selection was 

implemented with MODELTEST 3.7 (Posada & Crandall 1998). The dataset was reduced into single 
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sequences for each of the identified haplotypes irrespective of locality to minimise computation time. 

Philanisus fasciatus and Chathamia integripennis were used as outgroup taxa. 

Maximum parsimony (MP, Farris 1970) and Maximum Likelihood (ML, Felsenstein 1981) 

trees were estimated using PAUP*. Maximum parsimony analysis was performed using a heuristic 

search model, and bootstrapped using 10,000 replicates. MODELTEST was used to identify the most 

suitable evolutionary model using the Akiake information criterion (AIC), selecting an HKY + I 

model. The same model was then implemented for the ML estimates, which was run using 10,000 

replicates for bootstrap support with a heuristic search model. In addition a Bayesian analysis was run 

in MrBayes, once again using the HKY + I model.  One cold and three heated Markov chains were 

run for a total of 50,000,000 generations sampled every 10,000 to obtain a total of 5,000 trees. The 

first 1,000 trees (25%) were discarded as a burn-in phase, with the last 4,000 trees used to estimate the 

posterior probabilities.   

 

2.3 Results 

2.3.1 Sample Collection 

Light trapping only worked during warm, calm nights and some areas yielded no samples 

(Kaipara Harbour, Muriwai beach, Oamaru, Kaka Point and Curio Bay; see Fig 2.7), or very few 

(New Plymouth, Mt. Maunganui or Tauranga estuary had only 2 samples each). The remainder of the 

localities however yielded a larger number of samples, including from rocky, sandy and estuarine 

beaches. A small number of specimens were also collected from Inland Pukerua Bay, well above sea 

level and almost a km from the coast. All specimens used for sequencing are listed in Table 2.1. 
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2.3.2 Sequence data 

 The dataset comprised 146 sequences of Philanisus plebeius (not including outgroups), with a 

total 22 recognisable haplotypes (see Tables 2.3 and 2.4). Distance analysis strongly indicated a 

divergence into three identifiable haplogroups (A, B & C). Group „A‟ comprised 14 haploytpes, „B‟ 

only one, and „C‟ seven. Haplogroup C was found in only Napier and Mangakuri beach, and 

comprised all sequences from these regions. In total the dataset was 618 base pairs long, 23 sites were 

variable and 14 parsimony informative. Within the two major groupings „A‟ and „C‟, 12 and 6 were 

variable and 2 and 4 were parsimony informative respectively. Base pair frequencies were unequal, 

averaging 40% T, 14.8% C, 32.8% A and 12.4% G across all sequences. 

 

2.3.3 Haplotypic and phylogenetic structure. 

Pairwise distances between haplotypes, and also within and between groups are shown in 

Tables 2.5 and 2.6. The uncorrected pairwise distances were then used for the basis of a mismatch 

distribution chart (Fig 2.2). The mismatch distribution chart shows a distinct bi-modal peaking, 

although this only visibly represented groups A and C, due to the rarity of haplogroup B. The 

relationships between the haplotypes are also explored in a network analysis in Fig 2.3. The majority 

of the dataset fell into the „A‟ grouping, with group „B‟ assigned to just one sample, and a secondary 

major clade „C‟ restricted to just two closely associated localities near Hawkes Bay (Napier and 

Mangakuri Beach). Overall, genetic distance within P. plebeius was high (a mean estimate of 1.04%, 

and a maximum divergence of 1.97%, estimated from the Kimura-2 model), although distances 

between and within the clades varied. Haplogroup A was dominated by a single haplotype (A1) from 

which most remaining haplotypes of this group differed from by a single base pair, including those 

from Australia. Only one (A8) differed by two changes. In contrast the C group showed a more 

complex and divergent haplotype network with a relatively bifurcating structure, with a maximum of 

three base pair changes from the presumed ancestral haplotype (which was not found). Tajima‟s D 

and Fu‟s FS statistics are shown in Table 2.7. Tajima‟s D was significantly negative for haplogroup A, 
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indicating a population expansion; and was non-significant and weakly positive for haplogroup C 

(indicating stability). Fu‟s test by contrast was significantly negative for all cases indicating 

demographic expansion throughout the species, although this was much more pronounced in 

haplogroup A than in C.  

The bayesian, maximum likelihood (ML) and maximum parsimony (MP) analyses were 

roughly consistent in all consensus trees and monophyly of Philanisus plebeius was supported (see 

Figs 2.4-2.6). Group A was monophyletic, weakly suggested to nest with the B haplotype to form a 

sister grouping, although supported only by the MP and ML analyses. However the C haplogroup was 

not strongly supported as monophyletic, at best supported by 65% consensus in the MP analysis, basal 

to the other two groupings. 

 

2.3.4 Phylogeographic Structure 

Haplotypic structure showed some degree of geographical association (see Fig 2.7). The 14 

identified A group haplotypes of P. plebeius constituted by in large the majority of all samples and 

localities from this study, including Australia, most of the North Island and all of the South Island. All 

samples from Australia represented a single haplotype (A3), which although not found in New 

Zealand differed by a single base pair from the widespread A1 haplotype. The A1 haplotype 

dominated most of the genetic structure in populations from Auckland south to Kaikoura, and 

occurred in one sample from Dunedin indicating an almost nationwide distribution. Haplotypic 

structuring was more distinctive in the lower South Island, sites in Dunedin (Portobello) and 

Christchurch (Akaroa) were each dominated (~90%) by haplotypes mostly only found in these areas; 

haplotypes „A2‟ and „A4‟ for Dunedin and Christchurch respectively. Wide genetic connectivity was 

indicated however, haplotype A2 was found in Kaikoura, Akaroa and Wellington and even Auckland 

in small proportions, and haplotype A4 also occurred in Kaikoura. Another common haplotype „A5‟ 

was restricted to New Plymouth and Wellington suggesting South-Western North Island connectivity. 

The remainder of the haplotypes were generally rare and localised with one („A6‟) being found once 
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in three localities in the North Island (Tauranga, Wellington and Akitio on the Wairarapa coast). The 

most divergent „A‟ haplotype (A8) was found only in Tauranga. 

Of the other two haplogroups, the C group was shown to be restricted to just two single 

localities near Hawke‟s bay in the North Island (Napier and Mangakuri beach). Of the seven 

haplotypes found within this group, all showed a degree of geographical association, roughly 

correlated with the pattern found in the network analysis. Of all haplotypes, only one (C2) was found 

in both localities, although evidently more common in Napier (50% of samples as opposed to 12% in 

Mangakuri). Haplotypes C3 and C5 were restricted to Napier and closely related to the other major 

Napier haplotype C2. The remaining haplotypes C1, C4, C6 and C7 were restricted to Mangakuri 

beach, and similarly appear to form a monophyletic grouping. Haplogroup B was found in just a 

single sample from Tauranga, sympatric with A group haplotypes. 

 Analysis of molecular variance (AMOVA) results are shown in Table 2.8. P-values were 

shown to be largely non-significant, suggesting low genetic structuring to be found within New 

Zealand populations of „A‟ type P. plebeius in New Zealand. In the upper New Zealand grouping, 

distance within populations accounted for roughly 95% of the variation found, demonstrating 

geographic structure to be almost entirely absent. Geographic structure was much more evident when 

upper New Zealand (Auckland to Kaikoura) was compared to Akaroa and Portobello, with 51% of the 

variation found between groupings. Overall, clear geographic structuring was not found in haplogroup 

A; all P values were non-significant with the exception of within populations (FCT) in the North-

South grouping. The AMOVA tests did however not include Tauranga, Hawke‟s bay and Australia 

(due to small sample size, or in the case of Australia, extreme distance), areas with a more 

pronounced geographic and genetic structure. 
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2.4 Discussion 

2.4.1 Internal Relationships of Philanisus plebeius 

The most striking result found in this study was the geographic and genetic division of 

Philanisus plebeius into at least two major identifiable groupings. Whereas samples found throughout 

Australia and most of New Zealand were genetically similar (haplogroup A), samples from two 

localities in the central east coast of the North Island (haplogroup C) were found to be hightly 

genetically divergent from the remainder. Neither of these haplogroups was found to occur 

sympatrically in any region, indicative of a „category I‟ phylogegraphic pattern from Avise et al. 

(1987). A further distinctive haplotype „B‟, intermediate between the two major groupings was found 

in a single specimen from Tauranga. The genetic distance between the two major haplogroups is at 

least twice that found within them, approaches that found between P. plebeius and other Chathamiid 

species (see Chapter Three), and is considerably higher than typical interspecific diversity found 

within caddisflies (Hogg et al. 2009). 

A phylogenetic analysis of the data did not develop clear results, with the exception of 

supporting the monophyly of haplogroup A. Haplogroup C was inferred to be basal in the MP and ML 

trees (but this not well supported by the Bayesian tree), with groups A & B forming a sister 

relationship. However haplogroup C was not strongly indicated as being monophyletic in the 

phylogeny, and was left largely as a polytomy, paraphyletic to the remainder of the species (monophly 

was only ever weakly supported in the MP tree). At best then the data is probably best represented in 

an unrooted network as shown in Fig 2.3. The genetic distance within haplogroup C is demonstrated 

significantly higher than within the other clades, with two groupings represented, separated by two 

base pair changes and not joined by an existing intermediate haplotype. Distances between the C 

haplogroup and other haplotypes are considerably higher than within however, and it does seem 

parsimonious to assume a monophyly of all „C‟ haplotypes. Haplogroup A by contrast appears to 

reflect almost entirely a single radiation from just one widespread and common haplotype (A1), from 

which most of the remaining haplotypes differed by a single base pair. One northerly haplotype (A8) 
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uniquely differed by two base pair changes and was closer to the other haplogroups, and therefore 

may be ancestral to A1, via another extant haplotype (either A6 or A13, although A6 seems more 

probable, being comparatively widespread and occurring sympatrically with A8 and also haplotype 

„B‟). 

Also importantly, Haplogroups A & C had strong geographical associations. Haplogroup C 

was found only to occur within just two close localities while haplogroup A apparently constituted the 

large remainder of the entire species‟ distribution. The limited distribution of haplogroup C is also 

surprising when the higher genetic diversity of this grouping is considered. Group C unlike group A 

shows a deep structure not suggestive of a single radiation, despite its much smaller distribution. This 

was also supported by Tajima‟s tests, suggesting a more or less stable demographic structure or 

history of group C, and a bottleneck or a sudden demographic expansion affecting group A. The 

evolutionary history of the two major groupings is thus presumed to be widely different.  

 

2.4.2 Phylogeography of Haplogroup A & B localities and origin of the Australian population. 

 Within all localities, excepting Mangakuri and Napier near Hawke‟s Bay in the North Island, 

there was little observable genetic structuring. Diversity within sites was generally not high, and was 

found to be highest in Wellington (6 haplotypes), the area with the widest collecting (5 closely 

associated localities) and the largest sample size (25). Samples from Auckland to Kaikoura in the 

South Island were dominated by one haplotype (A1), while samples from Australia, Akaroa and 

Portobello were dominated by haplotypes uncommon or absent elsewhere. The observed change 

between Kaikoura and Dunedin is consistent with a number of marine species in New Zealand, likely 

due to a zone of upwelling serving as a barrier for oceanic dispersal (Apte & Gardner 2002, Stevens & 

Hogg 2004, Waters & Roy 2004, Ayers & Waters 2005, Veale 2007, Ross et al. 2009, Sutherland et 

al. 2010). However being a marine pattern, this would not affect the migration of adults. The 

dominant haplotype in Christchurch is also found in Kaikoura, and only 2/14 haplotypes were unique 

to the South Island (none south of Kaikoura). 
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Both New Plymouth samples were of one haplotype (A5) only found elsewhere as a common 

type in Wellington, suggesting a possible South-Western North Island connection. However sampling 

there was low there, and is predicted to contain other haplotypes, notably haplotypes A1 and A2 (New 

Plymouth lies between Auckland and other genetically similar populations which would imply a 

continual connectivity, unless A group haplotypes are able to bypass populations on the east coast). 

Tauranga was also shown to be dominated by rare haplotypes constituting the only known „B‟ 

haplotype, sympatric with „A‟ type samples including the only known location of haplotype A8, and 

also haplotype A6 (both probably close to the ancestry of haplotype A1 and all other A haplotypes). 

The small number of samples from New Plymouth and Tauranga (only 2 and 4 respectively) does 

limit what can be confidently inferred from these observations. The evolutionary diversity exhibited 

within Tauranga was not repeated elsewhere despite much more thorough sampling, suggesting 

possible higher diversity in northern areas.  

 Both Australian localities showed the occurrence of just a single haplotype (A3), with a 

complete absence of genetic variation indicated. This total of 14 samples from two sites 12 km apart 

exhibiting no variation is very different to the situation in New Zealand, where samples over 10 in 

size from a single location typically comprised at least 2-3 haplotypes. Phylogenetically the 

Australian haplotype was typical for its haplogroup, having most likely originated from haplotype A1 

recently. Thus the Australian population is strongly indicated a recent singular dispersal event from 

New Zealand. No evidence for contemporary connectivity between New Zealand and Australia was 

shown. However as the Australian haplotype was not found in New Zealand, a human dispersal within 

the last 100-200 years appears too recent to allow for sufficient genetic drift to have occurred, and 

must be rejected at present. However there remains a strong possibility that A3 does exist in an 

unidentified locality in New Zealand, or has been recently lost due to lineage sorting. 

It is clear that the „A‟ lineage is a radiation event following a very recent genetic bottleneck, 

strongly supported by Tajima‟s D and Fu‟s FS tests. All of haplogroup A with the probable exception 

of the rare northerly haplotypes A6 and A8 appear to have radiated from the A1 haplotype. Estimating 

a divergence of this radiation is complicated by the issue that the ancestral haplotype still occurs 



Chapter Two: Phylogeography Of Philanisus Plebeius  

37 
 

within most localities, although a substitution percentage of 0.16% can be used (1 base pair change). 

Using a molecular clock such as that of Brower (2.3% per mya 1994) gives an age estimation of 

roughly 70 ka, whereas another recent molecular clock of 3.59% for insects (Papadopoulou et al. 

2010) gives a younger age of roughly 45 ka.  

 Brower‟s clock in particular has been known to significantly overestimate the age of 

divergences however, for example giving a similar date for a radiation in the butterfly species 

Parnassius mnemosyne more likely to have occured ~19 ka (Gratton et al. 2008). Estimation of 

divergences for young dates due to inference from very small numbers of substitutions allows for a 

very large margin of error. Additionally as the most likely ancestral haplotype is still dominant 

through most of the distribution, evolution into new haplotypes is still minimal. Thus it seems likely 

that this divergence is no older than roughly 18-20,000 years corresponding with the rough age of the 

end of the last glacial maximum (LGM). 

It is probable that haplogroup A and all of P. plebeius as a whole was reduced to northern 

New Zealand and has thus spread southwards since this time, which may also explain the largely 

northern dominance of haplotype A1, as well as the northern restriction of haplotypes not directly 

linked to the presumed southern expansion (particularily haplotypes A6, A8 and also the single B 

haplotype). This hypothesis is supported as ten of the fourteen „A‟ haplotypes were found only in the 

North Island, and only two to the South Island (and only to areas north of Kaikoura). This inference is 

also supported by the complete absence of other haplogroups, and also other Chathamiid species south 

of the upper North Island. The wide distribution of the other most common haplotype A2 may also 

represent this expansion rather than current connectivity, and its dominance in Dunedin may simply 

represent a stochastic founder event rather than having evolved in situ.  

Outside of New Zealand there have been numerous studies on freshwater trichoptera 

demonstrating Pleistocene contractions of populations, followed by re-dispersal during the 

interglacials from refugia (Wilcock et al. 2001, Baker et al. 2003, Pauls et al. 2006, Murria & Hughes 

2008, Previšić et al. 2009, Lehrian et al. 2009, 2010, Kubow et al. 2010). Postglacial radiations since 
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the LGM are known in New Zealand from a number of marine, freshwater and terrestrial examples. 

More specifically, radiations from northern refugia have been implicated; including fungus beetles 

(Leschen et al. 2008, Marske et al. 2009), cicadas (Marshall et al. 2009), Stick insects (Trewick et al. 

2005, Buckley et al. 2009, Morgan-Richards et al. 2010), bats (Lloyd 2003 a, b), skinks (Hare et al. 

2008), Frogs (Fouquet et al. 2010), the Rātā genus Metrosideros (Gardner et al. 2004) and marine 

tripplefin fish (Hickey et al. 2009). Postglacial radiation has even been demonstrated in the starfish 

Patiriella regularis (Waters & Roy 2004), with which P. plebeius is commensally associated, or even 

dependent, which adds further support to a glacial retraction of P. plebeius. 

Philanisus plebeius does appear to be environmentally sensitive and most of the species‟ 

apparent disjunctions can probably be ascribed to environmental limitations. Much of the west coast 

of both islands seems to be uninhabited by the species, likely due to being fully exposed to the west 

wind drift and thus subjected to high energy wave action and disturbance, and comprises mostly 

unstable gravel or sand substrates (e.g. Heath 1984, Ewans & Kibblewhite 1990, Hart & Bryan 2008, 

King et al. 2009). There are also large amounts of alpine freshwater outflow in the South Island, 

potentially effecting marine communities (Bradford 1983). Other disjunctions appear to be 

temperature dependent. Due to the action of the subtropical convergence belt, cold water at near 

Stewart Island flows up eastern coast of the South Island to near Banks peninsula, thus water 

temperatures on the east coast are lower than similar latitudes on the west (Heath 1982, Greig et al. 

1986, Carter et al. 1998, Barrows & Juggins 2005). These areas are characterised only by one single 

record from Stewart Island, and one confirmed population around Dunedin. Attempted collections on 

the South coast in this study (Kaka Point and Curio Bay on the Catlins coast) and between Dunedin 

and Canterbury in the North (Oamaru) found no samples. The Dunedin population may be exceptional 

as there are no confirmed records outside the Otago harbour. The harbour is likely significantly more 

sheltered than the surrounding coastline, although surface temperatures there are still known to be low 

(Greig et al. 1988).  

It is thus possible to hypothesise the southernmost limit of P. plebeius, likely restricted mostly 

north of the line characterised by 15°C of warmest monthly sea temperature (Barrows & Juggins 
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2005), (which expands to 13C° if Stewart Island and Dunedin are included) (see Fig. 2.7). Warmest 

water temperature is a likely determinant, probably being important for completing development and 

stimulating adult emergence (other annual temperatures still display more or less the same regional 

structure however). Under these assumptions and using data from Barrows & Juggins (2005), P. 

plebeius would have been restricted during the LGM to what is now the upper North Island, a 

contraction significantly more pronounced if modern disjunctions are also assumed. Thus P. plebeius 

can most likely be considered still existing in the genetic aftermath of a postglacial radiation. The 

South Western coast of the South Island and most of Northern New Zealand were not sampled, 

however on the basis of this analysis these are predicted to show low and high genetic diversity 

respectively. 

 

2.4.3 Cryptic diversity in P. plebeius: the origin and identity of haplogroup C. 

The status of haplogroup C is of particular interest due to its significant divergence from 

haplogroups A and B, combined with a discrete geographic restriction including Hawke‟s Bay and 

some of the coastline southwards. Using the molecular clock of Brower (1994), the C group diverged 

from the other groups anywhere between 265-570 ka before present (using the lower divergence 

between haplogroups B and C), and itself radiating perhaps as long ago as 350 ka. As stated earlier, 

these dates are likely considerable overestimates but indicate an origin long before the LGM. 

Phylogeny appears closely correlated with geography, the haplotypes found closely falling within two 

genetic lineages, each mostly distinct to either Mangakuri or Napier suggesting at least two 

reproductively isolated populations. Thus migration even within this small region is shown to be low 

or absent. The populations comprising haplogroup C are suggested as having reached a relative 

genetic equilibrium, or at most, affected only by a minor demographic expansion. 

Even more significantly, haplotypes were shown to switch from type C abruptly to type A 

between samples from Mangakuri and Whangaehu beaches, a transitional break of just 54 km. It is 

unknown whether P. plebeius occurs between the areas; however as coastal morphology and habitat is 
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more or less continuous thus it appears probable. A possible genetic turnover or population gap may 

occur at the outflow of the Porangahau River providing estuarine habitats and sandy subsrate 

unsuitable for breeding. Adult samples were collected in much larger estuaries in this study alone 

(Pauatahanui inlet near Wellington and Tauranga estuary), which does suggest a tolerance of the 

habitat at least for adults. 

Alternatively, a genetic barrier may relate to offshore currents. The circular Wairarapa eddy 

occurs near offshore, and the Southerly flowing East Cape current and the northerly flowing 

Wairarapa coastal current both converge near Hawke‟s bay (Heath 1982, Carter et al. 1998). Both or 

all these may represent a likely considerable barrier for marine coastal species, deflecting immigrants 

and preventing successful emmigration. Largely basal haplotypes from the same region have been 

observed in a reproductive brooding fish species, the seahorse Hippocampus abdominalis (Nickel 

2009). Limpet samples from near Napier were shown to represent an allopatric population of a cryptic 

species, although this taxon had an apparent disjunct distribution being sympatric with a related 

species in two sites in northern New Zealand (Nakano & Spencer 2007). As similar to the genetic 

disjunction in the south Island this once again raises the question of larval over adult dispersal in P. 

plebeius. 

The Northern boundary was not identified in this study but P. plebeius are uncollected from 

the coastline north of Napier through to East Cape. The coastline of this region appears to have 

appropriate habitat, including rocky shores. Therefore this „disjunction‟ may reflect sampling bias, 

and the species may be fully present. However absence in this region is congruent with volcanism 

from the central plateau. Taupo volcano is among the most active rhyolitic volcanoes in existence; 

erupting nearly 30 times in the last 30,000 years with the last such event in 186 AD, and the largest 

(the Oruanui/Kawakawa eruption ~26.5 ka) producing 1200km
3
 of material (Wilson & Walker 1985, 

Wilson 1993, McDowall 1996, Alloway et al. 2007). The outflows from each eruption tend to have 

spread eastwards and centralised tephra layers from the Oruanui/Kawakawa eruption 2m in depth 

have been found as far eastwards as Hawke‟s bay (Wilson 2001, Alloway et al. 2007, Lowe et al. 

2008). Volcanism, including the recent 186 AD eruption has been well evidenced in the current 
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biodiversity of the eastern North Island, especially the freshwater fauna (McDowall 1996). Eastward 

ashflows from the 186 AD eruption in particular fit with the apparent disjunction of P. plebeius in the 

eastern North Island, although the effects of volcanism not been demonstrated as of yet in any marine 

species in this region, and the presence or absence of P. plebieus in this still region requires 

confirmation. 

During the last glacial maximum and previous glaciations, the area including Hawkes Bay 

and immediately southwards may have represented the southernmost distribution of P. plebeius (see 

Fig 2.7). If the East Cape region is assumed to be uninhabited by P. plebeius, due to volcanism or 

otherwise then this area could have represented a fully isolated population, at least during glacial 

cycles. Repeated glacial cycles over time combined with genetic drift may have eventually allowed 

for a high degree of molecular divergence to develop. However if volcanism is implicated as above, 

then events such as the Oruanui/Kawakawa eruption which occurred during the LGM would have 

obliterated populations much further south than the 186 AD eruption, weakening this hypothesis 

somewhat. 

 A hypothetical separation of the ancestral populations of each of the two main haplogroups 

may explain current genetic differentiation, although why gene flow has apparently never resumed, or 

apparent lack of any dispersal whatsoever, is unclear. Geographic relationship between the A and C 

groupings appears peripatric rather than allopatric, and contact between adults seems highly probable. 

Caddisflies of the genus Gumaga in California have been found to represent an apparent cryptic 

species complex, maintaining reproductive isolation from one another in spite of close proximity 

(Jackson & Resh 1998), suggesting this pattern may be widespread. If genetic difference is 

sufficiently high then species are likely to exhibit assortative mating and thus not interbreed. Sex 

pheromones are confirmed to be important in mate recognition in a wide diversity of species in 

trichoptera (e.g. Wood & Resh 1984, Jackson & Resh 1991, Larsson & Hansson 1998) Although 

individuals of each genetic group may appear physically indistinguishable, sex pheromones may 

differ substantially enough to prevent mate recognition; a trait known to occur otherwise physically 
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similar cryptic insect species (Foster et al. 1991, Maingon et al. 2003, Watts et al. 2005, Cáceres et al. 

2009).  

The high genetic distance, as well as possible assortative mating and geographical 

conservatism suggest that haplogroup C may represent an unidentified cryptic species. Morphological 

differences were not clearly observed with the possible exception of decreased wing length (Ian 

Henderson, personal communication). Confirmation of this however requires a thorough analysis of 

wing length and shape, a morphological attribute likely to show a high degree of phenotypic 

plasticity; likely correlated to sex (females are typically larger) and developmental history. More 

thorough sampling to identify the full distribution of the „C‟ haplogroup, or identifiable physical 

features; need to be identified before separate species status is proposed. For the time being at least, it 

seems practical to retain P. plebeius as a singular species, although the possibility of superspecies or 

species complex is indicated by this study. 

 

2.4.4 Inferred molecular ecology of Philanisus plebeius and conclusions. 

From this study it seemed to be probable, at least in some areas, contemporary gene flow and 

overall dispersal and immigration of Philanisus plebeius was fairly low, although this pattern was 

obscured by low genetic diversity through most of the populations. Adult P. plebeius are rare inland; 

in this study occasional samples roughly 1km from the coast were collected, and maximum distances 

up to 3km away have been shown in some records. As is generally typical of caddisflies, adults tend 

not to travel far from suitable breeding habitat and dispersal tends to be along water bodies rather than 

between them (e.g. Kovats et al. 1996, Collier & Smith 1998, Griffith et al. 1998, Peterson et al. 

1999, 2004). As a result, P. plebeius likely disperses almost entirely along the coast, requiring flight 

distances over hundreds of kilometres to link some isolated populations. This seems difficult to accept 

regarding populations in or around the distribution of the „C‟ haplotype grouping, where haplotypes 

are not co-occurring in distances within tens of kilometres, despite the presumed thousands of years 

for gene flow to have occurred.  
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Dispersal capability of adult caddisflies is known to be highly variable, depending on the 

species concerned. Contemporary molecular studies on caddisflies often do demonstrate occasional 

gene flow over widely isolated populations such as between the Canary Islands, demonstrating 

occasional or even regular dispersal over 50-100 km of open ocean (Kelly et al. 2001, 2002, 

Schultheis & Hughes 2005, Wilcock et al. 2007). However smaller scale dispersal, generally under 20 

km has also been indicated and gene flow is suggested more to occur over several generations in other 

species (Wilcock et al. 2003, 2007). In New Zealand, phylogeographic studies on the caddisfly 

Orthopsyche fimbriata have demonstrated little or no contemporary gene flow between populations in 

river catchments over 100 km apart, although more closely associated streams do share haplotypes 

(Smith & Collier 2001, Smith et al. 2006 b, Smith & Smith 2009).  

Of all marine insects, the Chathamiidae appear to be perhaps the least specialised. Flight is 

assumed to be a major factor in the success of insects on land allowing dispersal between 

discontinuous habitats, but likely to have no competitive advantage in the marine environment (Cheng 

1985). Concerning the most specialised marine insects; all species of Halobates are completely 

wingless, and only the short-lived males of the marine midge genera Clunio and Pontomyia still 

possess wings, used for gliding short distances or as literal „oars‟ for pleustonic movement during 

reproductive mass-emergences (Neuman 1976, Cheng & Collins 1980, Cheng 1985). As active 

movement of caddisly larvae is presumed to be low, distribution in the intertidal is likely restricted to 

where the larvae emerged from their starfish hosts. It seems probable as with some marine 

chironomids, the distribution of P. plebeius in the intertidal is likely „clumped‟ or localised (Garbary 

et al. 2005). As also suggested by close relationships within populations, recruitment of larvae is 

probably almost entirely from the source adult population.  

However some haplotypes were found distributed widely throughout New Zealand, in spite of 

some of the massive distances between populations, and some genetic breaks do appear to roughly 

correlate with marine patterns. This suggests a significant amount of migration may in occur in the 

passive movement of marine larvae instead of active flight by adults. „Drift‟ of dislodged caddisfly 

larvae is common in stream environments, although similar transport by currents in the sea would 
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almost invariably be fatal for an intertidal species. Nevertheless passive dispersal seems to be a 

significant source of dispersal for other marine insect species; for example Schärer and Epler (2007) 

demonstrated the unusual transport mechanism of Pontomyia on the shells of hawksbill turtles as part 

of the epibiota. Adults of Pontomyia and are largely flightless (completely in females) and have 

lifespans restricted to a few hours (Neuman 1986, Soong et al. 1999), and are thus likely completely 

dependent on dispersal of larvae and egg masses for long distance dispersal. Likewise dispersal of 

Halobates is believed to be largely passive, and mostly relates to oceanic „diffusion‟ by water motion 

than active movement of individuals (Ikawa et al. 1998, Anderson et al. 2000). 

P. plebeius are associated with a large number of algal types, including seagrass in soft 

sediment (Riek 1976, Taylor & Cole 1994, Taylor & Steinberg 2005). Dispersal or rafting of algal 

rafts and the associated invertebrate communities is becoming increasingly appreciated as an 

important vector of rapid dispersal for marine organisms over hundreds of kilometers (Waters 2008, 

Fraser et al. 2009, 2010). Small numbers of P. plebeius, especially if in a dormant pupal phase (which 

also then would directly lead to adulthood, not requiring landfall on suitable habitat), could thus easily 

thus be transported by rafting. Additionally host starfish containing eggs or larvae may provide a 

robust refuge within which such rafting may occur (and also would themselves actively seek 

appropriate habitats). Human shipping may also provide a recent vector for dispersal, for both larvae 

and adults, which may explain some of the structure observed as it would allow for a bypass of certain 

geographic areas. Although not definitively demonstrated in P. plebieus, human shipping has been 

implicated in the dispersal of marine chironomids in Europe (Brodin & Andersson 2009, Raunio et al. 

2009).  

Overall it is proposed here that P. plebeius is a poor active disperser, and phylogeographic 

structure can be plausibly explained by marine processes. It is assumed that climatic and 

environmental changes had a profound impact on the species, and re-dispersal to distant localities has 

since the LGM has been primarily due to passive dispersal of larvae rather than active flight of adults, 

although stochastic long-distance dispersal of adults also seems likely. Possible important factors 

implicating the results found in this study do have to be considered. An important limitation was the 
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use of a single mitochondrial gene. Mitochondria (with very rare exceptions) are maternally inherited, 

and since no nuclear genes were used paternal inheritance was completely ignored. Male P. plebeius 

are smaller and presumably more active and prone to migration, constituting the majority of adult 

samples in most localities in this study and also in Winterbourne & Anderson (1980). Additionally 

some geographically significant areas, in particular Northern New Zealand and the South-Western 

South Island were especially under sampled. More sampling may reveal new localities of haplogroups 

B and C, and may yield more cryptic diversity not shown here. Thus the conclusions drawn here may 

be confidently confirmed or disproven with some further research. Nevertheless the prospect of P. 

plebieus as a new model organism for phylogeographic exploration in New Zealand is well 

demonstrated in this study. 
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2.5  Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2.1) Collection records of Philanisus plebeius taken direct from the New Zealand trichoptera collection database 

(http://nzcaddis.massey.ac.nz/). Note apparent disjunctions on the eastern North Island, the South Eastern South Island, and 

most of the West Coast of both Islands. The collection from Stewart Island is anomalous and possibly an error 

(unconfirmed). This does not include the Australian distribution of the species (New South Wales only). 
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TABLE 2.1) List of all samples used for sequencing in this study, and collection details. Brackets in locality designate “greater locality” used due to close association of sites and/or low sample 

numbers. Note repetitions of localities due to multiple collections. 

Species Specimen Code Number Ontogeny Collector Locality Coordinates Collection Date 

Philanisus plebeius K3 11 Adult Ian Henderson Akaroa 43°48'06 S, 172°58'06 E 1/02/2009 

Philanisus plebeius L4 12 Adult Ian Henderson AkitioBeach 40°36'21 S, 176°25'14 E 21/02/2010 

Philanisus plebeius B6, B9 14 Adult Alex Boast Auckland Harbour (Auckland) 36°50'30 S, 174°51'48 E 6/03/2009 

Philanisus plebeius K10 6 Adult Alice Wells Bawley Point (New South Wales) 35°30'50 S, 150°24'03 E 21/11/2008 

Philanisus plebeius L1 1 Larva Alice Wells Bawley Point (New South Wales) 35°30'50 S, 150°24'03 E 21/11/2008 

Philanisus plebeius A5, A6 12 Adult Alex Boast Breaker Bay (Wellington) 41°20'38 S, 174°49'19 E 12/01/2009 

Philanisus plebeius K1 10 Adult Ian Henderson Kaikoura 42°24'50 S, 173°41'07 E 31/01/2009 

Philanisus plebeius K2 1 Adult Ian Henderson Kaikoura 42°24'50 S, 173°41'07 E 31/01/2009 

Philanisus plebeius A4 1 Adult Alex Boast Lyall Bay (Wellington) 41°20'43 S, 174°47'35 E 8/01/2009 

Philanisus plebeius C1 3 Larvae Alex Boast Makara (Wellington) 41°12'55 S, 174°42'15 E 21/07/2009 

Philanisus plebeius B4, B5 4 Adult Alex Boast Mangakuri Beach 39°57‟59 S, 176°55‟14 E 28/02/2009 

Philanisus plebeius B2, B3 7 Adult Alex Boast Mangakuri Beach 39°57‟59 S, 176°55‟14 E 27/02/2009 

Philanisus plebeius C2 6 Adult Alex Boast Mangakuri Beach 39°57‟59 S, 176°55‟14 E 21/07/2009 

Philanisus plebeius L2 6 Adult Ian Henderson Te Rua Bay, Marlborough Sounds 41°14‟25 S, 174°16‟14 E 30/12/2008 

Philanisus plebeius B1 2 Adult Alex Boast Mount Maunganui (Tauranga) 37°37‟30 S, 174°10‟29 E 17/02/2009 

Philanisus plebeius A7 6 Adult Alex Boast Napier 39°28'39 S, 176°54'31 E 15/01/2009 

Philanisus plebeius K6 2 Adult Ian Henderson New Plymouth 39°03'21 S, 174°01'47 E 25/11/2008 

Philanisus plebeius A9 3 Adult Alex Boast Pauatahanui Inlet (Wellington) 41°05'50 S, 174°54'33 E 21/01/2009 

Philanisus plebeius K7, K8 7 Larva / Pupae Alice Wells Pebbly Beach (New South Wales) 35°36'33 S, 150°20'09 E 22/11/2008 

Philanisus plebeius K4 9 Adult Ian Henderson Portobello 45°50'23 S , 170°39'02 E 3/02/2009 

Philanisus plebeius K5 1 Adult Ian Henderson Portobello 45°50'23 S , 170°39'02 E 4/02/2009 

Philanisus plebeius A3 1 Adult Alex Boast Pukerua Bay (Wellington) 41°01'39 S, 174°53'15 E 26/12/2008 

Philanisus plebeius A8 4 Adult Alex Boast Pukerua Bay (Wellington) 41°01'39 S, 174°53'15 E 21/01/2009 

Philanisus plebeius B10 1 Adult Alex Boast Pukerua Bay (Wellington) 41°02'18 S, 174°53'22 E 15/04/2009 

Philanisus plebeius A10 2 Adult Alex Boast Tauranga estuary (Tauranga) 37°42‟29 S, 174°53‟15 E 16/02/2009 
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TABLE 2.1) Continued. 

Species Specimen Code Number Ontogeny Collector Locality Coordinates Collection Date 

Philanisus plebeius B7, B8 3 Adult Alex Boast Waiwera (Auckland) 36°32‟56 S, 174°42‟32 E 8/03/2009 

Philanisus plebeius L3 11 Adult Ian Henderson Whangaehu Beach 40°23'54 S, 176°38'05 E 11/12/2009 

Philanisus fasciatus PF101 1 Adult Karen Baird Raoul Island 29°14‟56 S, 177°55‟14 E 20/10/2009 

Chathamia integripennis CI1 1 Adult Alex Boast Waiwera 36°32‟56 S, 174°42‟32 E 8/03/2009 

 

 

 

TABLE 2.2) Primers used for amplification and sequencing.  

Gene Primer Name Primer sequences (5' - 3') Reference 

COI HCO2198 TAAACTTCAGGGTGACCAAAAAATCA Folmeret al. 1994 

COI LCO1490 GGTCAACAAATCATAAAGATATTGG Folmeret al. 1994 
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TABLE 2.3) All haplotypes found in this study and frequency in each locality. Specific locality is here used.  

Haplotype A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 B C1 C2 C3 C4 C5 C6 C7 N 

Akaroa 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 

Akitio 9 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 12 

Auckland 12 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 

Bawley Point 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 

Kaikora 9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 

Lyall Bay 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Makara 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Mangakuri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 2 0 2 0 1 1 17 

Marlborough Sounds 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 6 

Moa Point 7 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 12 

Mount Maunganui 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

Napier 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 1 0 0 6 

New Plymouth 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

Pauatahanui 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Pebbly Beach 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 

Portobello 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 

Pukerua Bay 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 

Tauranga 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 

Waiwera 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Whangaehu 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 11 

N 60 16 14 11 8 3 2 2 1 1 1 1 1 1 1 11 5 2 2 1 1 1 146 
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TABLE 2.4) List of all haplotypes found in this study and base pair composition at all 23 variable sites. Site number corresponds to position on the 618 base pair fragment. 

Site 16 49 59 118 184 217 235 271 337 340 343 364 433 448 454 478 484 505 532 538 549 562 586 

A1 C C T C A A T G A T T T G T T A G C C G T T T 

A2 . . . . . . . . . . C . . . . . . . . . . . . 

A3 . . . . . . . . . . . . . . . . . . . A . . . 

A4 . . . . . . . . . . . . . . . . A . . . . . . 

A5 . . . . . . . . . . . . A . . . . . . . . . . 

A6 . . . . . . . A . . . . . . . . . . . . . . . 

A7 . T . . . . . . . . . . . . . . . . . . . . . 

A8 . . . . . . C A . . . . . . . . . . . . . . . 

A9 . . . . G . . . . . . . . . . . . . . . . . . 

A10 . . . . . . . . G . . . . . . . . . . . . . . 

A11 . . . . . . . . . . . . . . . G . . . . . . . 

A12 . . . . . . . . . . . . . . . . . . . . A . . 

A13 . . . . . . C . . . . . . . . . . . . . . . . 

A14 . . . . . . . . . . . . . . . . . . . . . . G 

B T . . . . . C A . C C . . . . . . T T . . A . 

C1 T . . . . G . . . C C . A C . . . T T . . A . 

C2 T . . . . . . . . C C C A C . . . T T . . A . 

C3 T . . T . . . . . C C C A C . . . T T . . A . 

C4 T . . . . G . . . C C . A C C . . T T . . A . 

C5 T . . T . . . . . C C C A C . . . T T . . A . 

C6 T . G . . G . . . C C . A C . . . T T . . A . 

C7 T . G . . G . . . C C . A C C . . T T . . A . 
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TABLE 2.5) Pairwise distances between all Philanisus plebeius haplotypes (lower left) and standard error (upper right).Calculated in MEGA v 4 with 10,000 replicates using the Kimura-2 parameter model. 

 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 

1) A1  0.0016 0.0015 0.0015 0.0016 0.0015 0.0016 0.0023 0.0016 0.0015 0.0016 0.0016 0.0016 0.0016 0.0045 0.0047 0.0047 0.0049 0.0049 0.0044 0.005 0.0053 

2) A2 0.0016  0.0022 0.0022 0.0022 0.0022 0.0022 0.0028 0.0022 0.0022 0.0023 0.0021 0.0023 0.0023 0.0043 0.0044 0.0044 0.0047 0.0046 0.0041 0.0047 0.005 

3) A3 0.0016 0.0032  0.0021 0.0022 0.0021 0.0022 0.0027 0.0022 0.0021 0.0023 0.0022 0.0023 0.0021 0.0048 0.005 0.0050 0.0053 0.0052 0.0047 0.0053 0.0055 

4) A4 0.0016 0.0032 0.0032  0.0021 0.0021 0.0022 0.0027 0.0022 0.0022 0.0022 0.0021 0.0022 0.0022 0.0048 0.0049 0.0049 0.0052 0.0052 0.0047 0.0052 0.0055 

5) A5 0.0016 0.0032 0.0032 0.0032  0.0022 0.0022 0.0028 0.0021 0.0022 0.0022 0.0022 0.0024 0.0022 0.0049 0.0044 0.0044 0.0047 0.0046 0.0041 0.0047 0.0050 

6) A6 0.0016 0.0032 0.0032 0.0032 0.0032  0.0023 0.0016 0.0022 0.0022 0.0022 0.0021 0.0023 0.0021 0.0042 0.0050 0.0050 0.0052 0.0052 0.0047 0.0052 0.0055 

7) A7 0.0016 0.0032 0.0032 0.0032 0.0032 0.0032  0.0028 0.0023 0.0022 0.0023 0.0023 0.0023 0.0022 0.0048 0.005 0.0049 0.0051 0.0052 0.0046 0.0052 0.0055 

8) A8 0.0032 0.0049 0.0049 0.0049 0.0049 0.0016 0.0049  0.0028 0.0027 0.0028 0.0027 0.0015 0.0027 0.0038 0.0053 0.0053 0.0056 0.0055 0.0051 0.0056 0.0058 

9) A9 0.0016 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0049  0.0022 0.0022 0.0023 0.0023 0.0022 0.0048 0.0049 0.0049 0.0051 0.0051 0.0046 0.0052 0.0054 

10) A10 0.0016 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0049 0.0032  0.0021 0.0021 0.0022 0.0022 0.0048 0.0050 0.0050 0.0052 0.0052 0.0047 0.0052 0.0055 

11) A11 0.0016 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0049 0.0032 0.0032  0.0022 0.0023 0.0022 0.0048 0.0049 0.0049 0.0052 0.0052 0.0047 0.0052 0.0055 

12) A12 0.0016 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0049 0.0032 0.0032 0.0032  0.0023 0.0023 0.0048 0.0049 0.0049 0.0051 0.0052 0.0046 0.0052 0.0055 

13) A13 0.0016 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0016 0.0032 0.0032 0.0032 0.0032  0.0023 0.0042 0.005 0.005 0.0053 0.0053 0.0048 0.0053 0.0056 

14) A14 0.0016 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0049 0.0032 0.0032 0.0032 0.0032 0.0032  0.0049 0.005 0.0051 0.0053 0.0053 0.0048 0.0053 0.0056 

15) B 0.0131 0.0114 0.0148 0.0148 0.0148 0.0114 0.0148 0.0098 0.0148 0.0148 0.0148 0.0147 0.0114 0.0147  0.0035 0.0035 0.0039 0.0039 0.0038 0.0039 0.0043 

16) C1 0.0148 0.0131 0.0164 0.0164 0.0131 0.0164 0.0164 0.0181 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0082  0.0022 0.0027 0.0015 0.0027 0.0015 0.0023 

17) C2 0.0148 0.0131 0.0164 0.0164 0.0131 0.0164 0.0164 0.0181 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0082 0.0032  0.0016 0.0027 0.0016 0.0027 0.0032 

18) C3 0.0164 0.0148 0.0181 0.0181 0.0148 0.0181 0.0181 0.0198 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0098 0.0049 0.0016  0.0032 0.0023 0.0031 0.0036 

19) C4 0.0164 0.0148 0.0181 0.0181 0.0148 0.0181 0.0181 0.0198 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0098 0.0016 0.0049 0.0065  0.0031 0.0023 0.0015 

20) C5 0.0131 0.0115 0.0148 0.0148 0.0115 0.0148 0.0148 0.0164 0.0148 0.0148 0.0148 0.0148 0.0148 0.0148 0.0098 0.0049 0.0016 0.0032 0.0065  0.0031 0.0035 

21) C6 0.0164 0.0147 0.0181 0.0181 0.0147 0.0181 0.0181 0.0197 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0098 0.0016 0.0049 0.0065 0.0032 0.0065  0.0015 

22) C7 0.0181 0.0164 0.0197 0.0197 0.0164 0.0197 0.0197 0.0214 0.0197 0.0197 0.0197 0.0197 0.0197 0.0197 0.0114 0.0032 0.0065 0.0081 0.0016 0.0081 0.0016  
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TABLE 2.6) Mean distances between and within groups, and within all of Philanisus plebeius. Calculated in MEGA v 4 

with 10,000 replicates using the Kimura-2 parameter model 

Grouping Between/Within Groups D  SE  

Philanisus plebeius Within 0.01 0.002 

Group A Within 0.003 0.001 

Group C Within 0.009 0.002 

Group A-B Between 0.014 0.004 

Group A-C Between 0.019 0.003 

Group B-C Between 0.011 0.011 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2.2) Mismatch distribution chart of P. plebeius using all 146 sequences. Distance (Pairwise estimate) shown with 

observed frequency. Expected frequency calculated in DNAsp represents that expected in a stable population. 
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TABLE 2.7) List of sequence statistics calculated for between haplotype groupings. * indicates a significant P value. 

 

 

 

 

 

TABLE 2.8) List of all AMOVA statistics calculated in Arequin. * indicates a significant P value 

Source of Variation df Sum of Squares Variance components Percentage Variation P 

      

Upper North Island Groupings      

Among Groups (a) 3 1.557 0.02056 8.54809 0.10129 

Among Populations within Groups (b) 2 0.299 -0.00816 -3.39024 0.5797 

Within Populations (c) 76 17.339 0.22814 94.84215 0.02376 

Total  19.195 0.24055   

      

North-South Groupings      

Among Groups (a) 2 8.113 0.20963 51.29439 0.1199 

Among Populations within Groups (b) 6 1.885 0.01093 2.67518 0.03931 

Within Populations (c) 97 18.248 0.18812 46.03044 < 0.01 

Total  28.245 0.40869   

Grouping Tajimas D P Value Fu's Fs P value 

AllHaplotypes -0.15097 > 0.10 -20.236 < 0.01* 

Haplogroup A only -1.91810 < 0.05* -18.404 < 0.01* 

Haplogroup B only  0.45159 > 0.10 -4.774 < 0.01* 
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FIG 2.3) Network analysis of full dataset as calculated in TCS, showing all observed haplotypes, number of site changes and locality. Circle size proportionate to sample size. Blue boxes designate genetic 

scope of each haplogroup
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FIG 2.4) Bootstrap consensus Maximum Parsimony (MP) tree of all Philanisus plebieus haplotypes (10,000 replicates, Heuristic search 

logarithm) as inferred in PAUP*. Bootstrap values (%) are shown. 
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FIG 2.5) Bootstrap consensus Maximum likelihood (ML) tree of all Philanisus plebeius haplotypes (10,000 replicates, Heuristic search 

logarithm) as inferred in PAUP*. Bootstrap values (%) are shown.  
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FIG 2.6) Bayesian analysis tree of all Philanisus plebeius haplotypes as analysed through MrBayes. Posterior Bayesian probability indices 

are shown. 
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FIG 2.7) Map showing all collection sites and proportion of observed haplotypes. Legend shows haplotype codes. Sample size shown. Sites 

with* designate combined localities (refer to Table 2.1 for more detail). Circles show areas used for AMOVA analyses (first top four used 

for first AMOVA only, then combined and compared with the bottom two for the second analysis). Green points show areas where light-

trapping was attempted but no samples successfully collected (evidence for population absences in these regions). 
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FIG 2.8) Inferred modern and past distributions of Philanisus plebeius in New Zealand. Present shows distribution as inferred from collection records, and the past map shows estimated distribution during the 

last glacial maximum. Bars show sea surface temperature (warmest month) inferred from Barrows & Juggins (2005) and estimated positions during the LGM. Orange represents confirmed or likely distribution, 

blue equivocal (unconfirmed records, within lower temperature limitation estimates and/or within modern disjunctions). Modern known distribution of haplogroup C shown. Note increased land area during the 

LGM.
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Chapter Three: Phylogeny of the Chathamiidae and origins of the 

species Hydrobiosis lindsayi and Oecetis chathamensis (Insecta: 

Trichoptera) with regard to the formation of the Kermadec and 

Chatham Islands. 

 

3.1 Introduction:  

Aside from the main islands, New Zealand biogeographic region consists of several groups of 

isolated oceanic islands as far afield as the Kermadec, Chatham, Auckland, Antipodes and Campbell 

Islands, comprising an area spanning over 20   of latitude from the subantarctic to the subtropics. All 

these groups share close biological links with New Zealand and to each other in spite of being as far 

from the main islands as 1,000 km. However, although the biogeographic understanding of New 

Zealand‟s mainland is now particularly well documented, New Zealand‟s oceanic islands are usually 

ignored in contemporary molecular studies (Heenan et al. 2010).  

The Chathamiidae are an unusual family of caddisflies that breed in the marine intertidal 

zone, and are one of a handful of invertebrate families that are often thought of as endemic to New 

Zealand (Gibbs 2006). Although all five species and two genera are found in New Zealand, uniquely 

the most common species Philanisus plebeius has been found to be resident in New South Wales 

Australia since 1904 (Hudson 1904, Riek 1970). This is currently the only known New Zealand 

caddisfly species that is not fully endemic (Collier 1993), although the Australian population is almost 

certainly a recent dispersal event from New Zealand within the last few thousand years (Refer to 

Chapter Two of thesis). The family also has the ecological requirements of a marine invertebrate 

species and therefore does not require any established terrestrial ecology to flourish, yet can disperse 

as an airbourne winged phase at adulthood. It therefore follows that the Chathamiidae represents a 

group of evolutionary and biogeographic interest.  

 There are five established species all having been described in detail by Riek (1976) and 

Ward (1994, 1995) distributed throughout New Zealand (see Fig 3.1). The abundant and well-studied 
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Philanisus plebeius is found throughout New Zealand and New South Wales, P. mataua is restricted 

to a few sites in the upper North Island including the three Kings Islands, P. fasciatus to the 

Kermadec Islands, Chathamia intergripennis to the upper North Island, and C. brevipennis to the 

Chatham Islands. The island endemic species (C. brevipennis and P. fasciatus) have only been 

collected in the largest of the islands in their archipelagos (Chatham Island and Raoul Island 

respectively) and it is unknown whether they are more widely distributed.  

Only the common Chathamiid species Philanisus plebeius and Chathamia integripennis have 

been included in any phylogenetic studies to date; although the family is shown to be genetically 

distinct and monophyly is supported (Kjer et al. 2001, 2002, Hogg et al. 2009, Johanson et al. 2009, 

Johanson & Malm 2010). In spite of both species being placed in separate genera the genetic distance 

between the two has been shown to be surprisingly small (a base pair difference of 3.2% for COI, 

Hogg et al. 2009), a distance for caddisflies typically found within genera and smaller than found 

even within some established species (Hogg et al. 2009, Pauls et al. 2009, Lehrian et al. 2010, Zhou 

et al. 2010). In addition the monophyly of Chathamia is unclear, with C. integripennis placed in the 

same genus as the initially described C. brevipennis based on „similarity‟ with no typical „Chathamia‟ 

features having been discussed (Riek 1976). It is indicated that the taxonomy of the family may need 

revision, and as a result any new genetic information should provide important data for resolving the 

taxonomy of this group. 

Both the endemicity status of the family as well as the small number of species, easily allows 

for a complete phylogenetic analysis. Also importantly the group‟s archipelagic distribution would 

mean a phylogeny would also have a significant biogeographic application. P. fasciatus for example 

is likely to have begun diverging since its isolation on the Kermadec Islands. However the island 

chain is volcanic and has had a dynamic history making a prior estimation of the age of the group, and 

thus P. fasciatus, almost impossible. Although the major islands are estimated a few tens of thousands 

of years old, the age of continuous land in the island chain itself remains largely unknown (Smith et 

al. 2006). The Chatham Island group has been relatively stable much longer since the early 

Pleistocene 2Ma and perhaps even earlier (Campbell 1998, Paterson et al. 2006, Campbell et al. 2006, 
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Campbell & Hutching 2007, Campbell et al. 2008), a characteristic that may be reflected by the 

relatively divergent morphology of C. brevipennis, including brachyptery (wing reduction) in the 

adults. It is plausible that C. brevipennis has been resident on the Chatham Islands shortly since 

emergence. 

 Aside from C. brevipennis at least four to five other species of Trichoptera are found on the 

Chatham Islands. Hydrobiosis lindsayi (Hydrobiosidae) and Oecetis chathamensis (Leptoceridae) are 

endemic to Chatham Island, although very similar to related species in New Zealand (Tillyard 1925). 

Two „micro-caddisfly‟ species (Hydroptilidae), Oxyethira albiceps and Paraoxyethira hendersonsi 

also inhabit the Chathams; however are minute, adaptable and extremely common species also found 

throughout New Zealand and its subantarctic islands (Wise 1964, 1972, Neboiss 1986, Marris 2000). 

A final species, Hudsenoma species „X‟ (Leptoceridae), has been collected on at least two occasions, 

however remains undescribed as a species. These species present further opportunity for further 

exploration of caddisfly colonisation and evolution between Chatham Islands and New Zealand and 

serve as a comparison for any analysis of C. brevipennis.  

 

3.1.1 The Chatham Islands 

The Chatham Islands are of particular interest due to the large size of the islands (996 km
2
) as 

well as their isolation (roughly 800 km East of New Zealand). The islands are the only emergent 

region of the extensive continental Chatham rise east of New Zealand, and are known to have once 

formed part of continental Gondwana;  clearly demonstrated for example by dinosaur fossils from the 

Cretaceous (Stilwell et al. 2006, Campbell & Hutching 2007). Ancient vicariance has been 

hypothesised to explain the origin of the Chatham biota as having a Gondwanan origin (Craw 1988), 

however the area is now known have remained underwater since the submergence of Zealandia in the 

Cenozoic (Wood et al. 1989, Campbell et al. 1994, Trewick et al. 2007). The geological foundations 

of most of the modern Island group itself only formed from Pliocene-Miocene intra-plate basaltic 

volcanism dating roughly 6-4 Ma. Despite this, there is evidence suggesting that the region 
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nevertheless remained submerged and the modern islands only finally emerged due to uplift in the 

Pleistocene, roughly 2 Ma (Campbell 1998, Paterson et al. 2006, Campbell et al. 2006, 2008, 

Campbell & Hutching 2007). Estimating the age of the islands is additionally complicated by the 

known existence of an emergent volcano now forming Mangere Island (the „Mangere Volcano‟) 6-4 

Ma, and the modern Island has remains of fossils and a freshwater lake from this period (Campbell & 

Hutching 2007). However geological evidence indicates the Volcano fully submerged in the mid 

Pliocene, and there is believed to have been no land in the Chatham region 4-2 Ma. Any of the old 

„Mangere biota‟ is generally assumed long extinct. 

The modern Islands today comprises a single large landmass (Chatham Island) and several 

smaller islands and islets; however during lower sea levels during Pleistocene ice ages the archipelago 

would have been considerably larger and fully interconnected (Hay et al. 1970). The biota of the 

Chatham Islands is characterised by a high level of endemicity, although is believed entirely of recent 

New Zealand origin via oceanic dispersal. The endemic biota has been thoroughly investigated 

through a large number of molecular studies which almost universally point to young Pleistocene 

origins; in insects (Trewick, Arensburger et al. 2004, Chinn & Gemmell 2004, Trewick et al. 2005, 

Nolan et al. 2007, Marshall et al. 2008), freshwater crustaceans (Stevens & Hogg 2004, McGaughran 

et al. 2006), Plants (Wagstaff & Garnock-Jones 1998, Heenan et al. 2010), Spiders (Vink & Paterson 

2003) Galaxiid fish (Waters & McDowall 2005) and Birds (Trewick 1997, Boon et al. 2000, Kennedy 

et al. 2000, 2001, Chambers et al. 2001, Miller & Lambert 2006, Banks & Paterson 2007). However 

this general pattern is not always consistent; Pliocene-Micoene ages up to 6 Ma have been inferred in 

some unusual cases; Geodorcus stag beetles (Trewick 2000), Skinks (Liggins et al. 2008) and at least 

four plant species (Heenan et al. 2010). Although in the minority, such studies may therefore 

potentially indicate a link between the modern „Chatham‟ and the old „Mangere‟ biotas (Heenan et al. 

2010). 
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3.1.2 The Kermadec Islands 

The Kermadecs comprise a widely separated chain of six islands, all the peaks of large 

submarine stratovolcanoes 800-1,100 km North-East of New Zealand, terminating with the 

northernmost Raoul Island, roughly 900 km south of Tonga. Much smaller than the Chatham Islands, 

the island group only comprises a total of 33 km
2
, most of which is comprised of Raoul (29.32 km

2
) 

and Macauley (3 km
2
) Islands which also contain most of the biodiversity. Raoul volcano itself is 

highly active with a complex stratigraphy dating back roughly a million years; however most of the 

geology indicates submarine formation (such as the old boat cove pillow lavas from 0.6-1.4 Ma). By 

contrast the modern dacitic caldera dates only from the past 3.7 ka and an age as young as 2 ka has 

been suggested for the emergent island itself (Brothers & Searle 1970, Kaplin 1981, Smith et al. 2006, 

2010). The offshore submarine Denham caldera, significantly larger than the emergent Raoul caldera, 

has a similar age (2.2 ka Worthington et al. 1999).  

 The other main island; the smaller and currently inactive Macauley over 100 km to the 

South-West of Raoul, is known to have been considerably larger in the past until a major eruptive and 

caldera collapse event dated 6,310 years ago (producing the sandy bay tephra, SBT), prior to which it 

apparently approached or even exceeded modern Raoul in size (Brothers & Martin 1970, Lloyd et al. 

1996, Smith et al. 2003 a). Today the caldera remains almost entirely submerged, excepting the small 

island itself. Curtis Island is the only other island aside from Raoul still showing residual activity, 

although the island is small, eroded and evidently becoming dormant (Smith et al. 1988). None of the 

other smaller, southerly islands (Cheeseman Island, L‟Esperance rock, and L‟Havre rock – only 

exposed during low tide) have been studied nearly as extensively and their ages are unknown, 

although are dormant and relatively eroded (Smith et al. 2006). Due to the dynamic nature of the 

islands it is currently very difficult estimating the age of the islands as emergent land from geology 

alone. 

The island group does contain a number of endemic plant and animal taxa including intertidal 

and terrestrial plants, birds and invertebrates, although diversity is low and most species are shared 
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with Tonga or New Zealand (Dugdale 1973, Watt 1975, Arensburger et al. 2004, Barkla et al. 2010). 

Molecular analysis of the endemic Kermadec pohutukawa (Metrosideros kermadecensis) suggests a 

New Zealand dispersal origin dating into the Pleistocene as much as 0.5-1 Ma before present (Wright 

et al. 2000, 2003). Molecular studies of Kermadec cicadas (Kikihia cutora exulis) show extremely 

close relationships to relatives in New Zealand, although molecular distances estimate a similar 

Pleistocene origin of 0.55±0.16 Ma (Arensburger et al. 2004). From biological evidence it is indicated 

that there has been habitable land in the region for as much as 0.5 Ma, although much more molecular 

information is currently needed. 

 

3.1.3 Aims 

This chapter aims to use DNA sequences to construct a phylogeny of the Chathamiidae, and 

by using a rough molecular clock, to understand the evolution of marine caddisfly species in the 

Kermadec and Chatham Islands. These dates can then also be used as supportive information in 

estimations of the island groups themselves. The evolutionary origin of other caddisfly species from 

the Chatham Islands will also be investigated for comparison with the species C. brevipennis.  

 

3.2  Materials and Methods 

3.2.1  Sample collection 

Samples of P. plebeius and C. integripennis were collected from around New Zealand and 

Australia from November 2008 to February 2010 (see Chapter two of thesis). Philanisus fasciatus 

were collected by Karen Baird from Raoul Island in May 2010. Specimens of C. brevipennis, 

Hydrobiosisis lindsayi and Oecetis chathamensis were collected from localities in Chatham Island. 

Samples of Oecetis unicolor collected from mainland New Zealand was also used for outgroup 

analysis. Methodology of collection was largely that as described in Chapter two and included the 
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collection of larvae, adults and pupae. Adults were collected from near appropriate habitat either 

being coasts, lakes or streams; either by light-trapping or collected by hand when possible. All larvae 

or pupae were collected by searching manually through substrate of the rocky intertidal or small 

running streams, for marine or freshwater species respectively. No samples of P. mataua were 

successfully collected, however a single museum specimen was generously provided for this study. 

Collection and specimen details are listed in Fig 3.1. 

 

3.2.2  DNA sequencing and alignment 

DNA was extracted using a standard phenol-chloroform methodology (refer to Chapter two of 

thesis), using leg material from a number of specimens (3-5 individuals) of Oecetis chathamensis, O. 

unicolor, Hydrobiosis lindsayi, Chathamia brevipennis, C. integripennis, Philanisus plebeius, and P. 

fasciatus. For P. plebeius only 3 individuals were used; one to represent each of the three genetic 

haplogroups identified in Chapter Two. Also included was an unidentified larva from near Sydney, 

originally identified as P. plebeius.  

A 618 bp fragment of the mitochondrial gene cytochrome oxdidase I (COI) was amplified 

using the primers HCO2198 and LCO1490 (Folmer et al. 1994). Additionally for each of the 

Chathamiidae species (except P. mataua) and each of the three haplogroups of P. plebeius; a fragment 

of the mitochondrial gene 16S was amplified using the primers 16SBRH and 16SARL (Palumbi et al. 

1991). In the case of the older P. mataua specimen, LCO1490 was paired with the primer ChatP12r 

(new to this study), and was amplified and sequenced twice to counter for possible mis-priming. All 

primers are listed in Table 3.2. The concentrations and parameters for the PCR template, 

thermocycler, purification and sequencing have been presented in Chapter Two. All DNA sequencing 

used one primer only; HCO2198 for COI and 16SBRH for 16S. Also used were a large number of 

sequences from Genbank from a number of related studies. All sequences are listed with specimen 

details in Table. 3.1. 
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 Chromatograms were visualised using Chromas software V. 145 (Technelysium Pty Ltd; 

http://www.technelysium.com.http://au/chromas.html). All sequences were loaded into the Clustal X 

algorithm in MEGA 4.0 (Kumar et al. 2007, 2008). Both COI and 16S were aligned using default 

parameters, with finer scale editing of 16S by eye. 

 

3.2.3  Genetic analysis and phylogenetic reconstruction 

The COI dataset was explored and had sequence statistics determined using the MEGA data 

explorer tool and DNAsp v 5 (Librado & Rozas 2009). Several separate datasets were used for 

phylogenetic reconstruction. A dataset of COI for the Chathamiidae was used using all obtained 

sequences of P. fasciatus, C. brevipennis and C. integripennis with a single sequence used from each 

of the three haplogroups of P. plebeius identified in Chapter Two. A smaller dataset using 16S data 

was analysed separately. For outgroup taxa, sequences of Olinga feredayi and Zelolessica cheira were 

used to represent the Conoesucidae and Helicophidae respectively; two of the closest families to the 

Chathamiidae (Kjer et al. 2001, 2002, Johanson & Keijsner 2008, Johanson et al. 2009, Johanson & 

Malm 2010, also refer to Chapter four of thesis).  

Additionally another dataset comprised entirely of COI was used to explore the origin of the 

Chatham Island species Hydrobiosis lindsayi and the phylogeny of the endemic New Zealand genus 

Hydrobiosis as a whole, with all sequences other than H. lindsayi imported from Genbank, 

constituting over half of all described species (13 out of 24). Additionally another New Zealand 

genus, Edpercivalia, was also included as a possible subtaxon of Hydrobiosis as evidenced in another 

study (Hogg et al. 2009). Only two species of Edpercivalia were used (out of 12 described species), 

however if nested within Hydrobiosis the genus likely forms a monophyletic crown group. For 

outgroups, representatives of related Hydrobiosid caddisflies with the Hydrobiosinae were included, 

using a genetic data from every genus sequenced so far available online. The species Apsilochorema 

hwangi (subfamily Apsilochoreminae) was used as a basal taxon to root the tree. 
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All Oecetis sequences formed yet another, smaller dataset. The only other New Zealand 

species of Oecetis; O. iti, was not included, however is known only from few sites in the central South 

Island and the upper North Island and is unlikely to be important in the ancestry of O. chathamensis 

(contrast to O. unicolor which is widespread). No close relatives to serve as approptiate outgroups 

were obtainable for this analysis (which would likely be closely related species from Australia). Due 

to only two taxa being used, the Oecetis dataset was left unrooted, and explored using only a simple 

neighbour-joining analysis in MEGA (10,000 bootstrap replicates, default assumptions: maximum 

composite likelihood, homogenous pattern among lineages, uniform rate among sites).  

 For the remaining datasets, phylogenetic analyses were performed using the software 

packages MrBayes 3.1 (Heulsenbeck & Ronquist 2001, Ronquist & Huelsenbeck 2003) and PAUP* 

4.0 (Swofford 1999).The program MODELTEST 3.7 (Posada & Crandall 1998) was implemented through 

PAUP* to identify the most likely suitable evolutionary model using the Akiake information (AIC), 

selecting a GTR+I+G modelfor both COI datasets (Chathamiidae and Hydrobiosidae) and selecting a 

GTR+I model for 16s. 

Maximum parsimony (MP, Farris 1970) and Maximum Likelihood (ML, Felsenstein 1981) 

analyses were estimated using PAUP* on the COI dataset for the Chathamiidae. Maximum parsimony 

was performed using a heuristic search model, and bootstrapped using 10,000 replicates. Maximum 

likelihood was run using the model selected by MODELTEST and run under a heuristic search criterion 

using 10,000 replicates for bootstrap support. 

Bayesian analyses were implemented in MrBayes 3.1, again using the closest model possible 

as suggested by MODELTEST, and run for all datasets. For each dataset one cold and three heated 

Markov chains were run for a total of either 10,000,000 generations sampled every 1,000 to obtain a 

total of 1,000 trees (for both Chathamiidae sets) or 20,000,000 generations for a sample of 2,000 trees 

(for the Hydrobiosidae). The first 25% of trees were discarded as a burn-in phase, with the remaining 

trees used to estimate the posterior probabilities. 
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3.2.4 Estimating divergences and molecular clock 

In order to infer the ages of the species a molecular clock was attempted on the dataset. The 

prospect by which an independent clock can be used in this study is limited however. Helicophidae 

from the purbeck beds of England (154.8-137.2 Ma, Sukatsheva & Jarzembowski 2001), and two 

fossil taxa with affinites to the Calocidae, Helicophidae and Conoesucidae have been identified from 

Baltic Amber (85-74 Ma, Botosaneanu & Wichard 1983), although one has since been ascribed to the 

Northern family Sericostomatidae (Wietchat & Wichard 1998), neither of which therefore suitable as 

reliable estimates for a recent common ancestor. Excepting perhaps the probable Pleistocene age of 

the Chatham Islands, no fossil or geological dates can be used here with any confidence. 

A divergence rate was estimated using two strict molecular clocks used from Brower 1994 

(2.3% per Ma) and Papadopoulou et al. 2010 (3.54 / 2.69% for COI / COI+16s). Pairwise distances 

used for calibration were estimated in MEGA, using corrected (between mean) group distances, with 

each species analysed with its assumed nearest sister taxon as inferred by estimated phylogeny and/or 

genetic distance. The species Philanisus fasciatus and Chathamia integripennis are assumed to form 

sister taxa based on molecular distance. Also as the phylogeny of Hydrobiosis remained largely 

unresolved (see results, fig 3.8), distances were estimated between H. lindsayi and the mean 

divergence from the closest remaining „Umbripennis‟ Hydrobiosis species (H. copis, H. budgei, H. 

umbripennis, H. parumbripennis, H. johnsi, H. styracine and H. falcis), Standard error was calculated 

with in MEGA with 10,000 replicates with use of the Kimura-2 parameter model.  

 

3.3 Results 

3.3.1 Sample collection 

Most target species were successfully collected from Chatham Island. Only larvae and pupae 

of Chathamia brevipennis were found, all from near Kaingaroa township in the North-West of the 

Island amongst coralline algae, in spite of repeated light trapping for adults in near Port Hutt, 
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Waitangi and Owenga. No Hudsonema were collected from the island although a possible abandoned 

larval case was found in Awatotara creek, near the southern end of Chatham Island, indicating a 

breeding population, although this may have been of Oecetis chathamensis. Adults of O. 

chathamensis by contrast were common and easily collected in number throughout the island 

including from Te Whanga lagoon, lakes and streams. Hydrobiosis lindsayi were readily collectable 

as larvae, pupae and adults from or near any clean running stream.  From the remainder of New 

Zealand samples of adult Oecetis unicolor, P. plebeius, P. fasciatus and C. integripennis were readily 

obtained, although no P. mataua were collected. 

Also in addition, large numbers of the microcaddisfly genera Paraoxyethira and Oxyethira 

were collected from both New Zealand and Chatham Islands. However as the species on the 

Chathams are the same from New Zealand and other distant islands; an in-depth phylogeographic 

analysis would be needed for each species, which would be logistically difficult as Hydroptilid 

caddisflies are among the most common and ubiquitous insects in New Zealand. Whilst in the 

duration of this study it was eventually decided not to analyse these species. 

 

3.3.2 Sequences and sequence statistics 

The Philanisus mataua sequence had a number of sites shown in chromatograms with twin 

peaking, taken to be the presence of two mitochondrial sequences within the same individual. This 

species was thus analysed separately (see methods). The COI dataset for the Chathamiidae (omitting 

P. mataua and outgroups) constituted 618 base pairs, with 70 variable sites and 66 parsimony 

informative sites. The Hydrobiosidae dataset constituted 620 base pairs, which within Hydrobiosis 

and Edpercivalia alone 200 of which were variable and 158 parsimony informative. The Oecetis 

dataset was 633 base pairs, with 30 variable sites and 21 parsimony informative sites. The 16S dataset 

(only Chathamiidae) was 418 base pairs with 44 variable; however only 3 were parsimony 

informative – likely due to the extreme singular divergence of C. brevipennis for this gene (see Fig. 

3.5). Nucleotide compositions were generally consistent across all lineages; 32.6-40.8% T, 13.8-
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19.4% C, 29.4-33.5% A, 11.8-17.4% G for COI,  and 40.40-40.6% T, 7.1-7.2% C, 39.7-40.1% A, 

12.2-12.6 G% for 16s. However the Chathamiidae were generally more A-T rich, and the 

Hydrobiosidae more G-C rich for COI. 

Pairwise divergences from within groups and between groups means are shown in Tables 3.4-

3.6 (also see Table 3.7 for Oecetis). Distance analysis alone strongly indicates a high divergence for 

C. brevipennis, and confirming separate species status for Oecetis chathamenis and Hydrobiosis 

lindsayi. High interspecific divergences (>1%) are indicated for P. plebeius and O. unicolor, and little 

or no variation for C. brevipennis, P. fasciatus or H. lindsayi. Additionally no variation was found 

within 16s for Philanisus plebeius (not shown in figures).  

 

3.3.3 Phylogeny of the Chathamiidae 

 Maximum likelihood, Maximum parsimony and Bayesian trees of COI & 16S data all 

Chathamiidae species, excepting P. mataua, are shown in figs 3.3-3.6. Monophyly of either genus 

was not supported. C. brevipennis was established as a relatively distant sister taxon to P. plebeius, P. 

fasciatus and C. integripennis which form a closely related monophyletic group (the „Philanisid 

clade‟) strongly supported by both 16s and COI data. Within the „Philanisid‟ group relationships were 

unclear, although Bayesian analyses indicated a C. integripennis-P. fasciatus sister relationship for 

COI and a C.integripennis-P.plebeius sister relationship for 16s.   

 C. integripennis was the most widely sampled taxon (not including P. plebeius from Chapter 

Two) and displayed the most genetic variation (0.6%). The „Sydney Chathamiid‟, a larva previously 

assumed to be P. plebeius based on location is indicated unusually to be a C. integripennis occurring 

in Australia, closely related to one haplotype in particular from New Zealand (“05” – Hogg et al. 

2009, 1 base pair difference). 
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3.3.4 Phylogenetic placement of Philanisus mataua 

 The short sequence obtained from the single sample of P. mataua was highly ambiguous, and 

chromatograms consistently confirmed the presence of two separate mitochondrial sequences (the 

region was amplified and sequenced twice, and in both cases chromatograms showed the same 

results).  Within the region of COI sequenced for P. mataua (418 base pairs), there were 20 variable 

sites within the Philanisid clade, 7 of which were heterogeneous for P. mataua. In addition no site 

changes were unique to this sequence; all variable sites fell within variation for either P. plebeius or 

C. integripennis. Uncorrected pairwise distances (not including ambiguous regions) were identical 

between the P. mataua sequence and either the „Sydney Chathamiid‟ (see above) or a New Zealand C. 

integrippenis sequence (“05”) imported from Hogg et al. (2009), both indistinguishable at the COI 

region concerned (the two ultimately differ elsewhere however). 3 singleton sites (4 if P. fasicatus is 

excluded) unique to these C. integripennis sequences converged with heterogeneous base pair regions 

within the P. mataua sequence, indicating one sequence to match the C. integripennis haplotype. 

 If the phasing is assumed to be the same as with the C. integripennis sequence, then was 

possible to form a hypothetical counter-sequence (P. mataua „A‟ and „B‟; with „A‟ identical to C. 

integripennis). The B sequence was found to fall within variation exhibited within P. plebeius, 

although divergent and unrelated to any known haplotype. Uncorrected divergence distances between 

P. mataua „B‟ and P. plebeius ranged from 0.79-1.49%, (only 0.79-0.99% to P. plebeius clade A). 

Neighbour-joining trees for the unmodified and modified P. mataua sequence/s and all available 

Philanisus data (including C. integripennis) are shown in Figs 3.9-3.10. 

 

3.3.5 Phylogeny of Hydrobiosis and Oecetis 

Oecetis chathamensis was found to be distinct from O. unicolor supporting separate species 

status (see Fig 3.7) However genetic diversity was considerably higher within O. unicolor (1.5% vs 

0.5), approaching levels found between species. The dataset of the Hydrobiosidae generally showed 

varying levels of Bayesian support. Edpercivalia was weakly suggested to be nested within 
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Hydrobiosis sister to the species H. charadraea, however at the very least is indicated to form the 

sister taxon followed by the genus Costachorema. The inner phylogeny of Hydrobiosis itself was less 

clear although monophyly of the „Umbripennis‟ group was well supported, with H. gollanis basal to 

the other species (including H. lindsayi), in turn shown to be closely related.  

 

3.3.6 Divergences and Age assumptions 

 Mean corrected pairwise divergences for each taxon of interest with hypothesised divergence 

ages are shown in Table 3.6. Chathamia brevipennis is indicated to represent the oldest lineage 

analysed at 4.91-2.46 Ma in age, followed by at Hydrobiosis lindsayi at 4-2.1 Ma. The remainder of 

the Chathamiidae are indicated to have diverged more recently during the Pleistocene 1.39-0.56 Ma, 

the most recent split being with Chathamia integripennis and Philanisus fasciatus 0.92-0.34 Ma. 

Oecetis chathamensis and O. unicolor are suggested to have diverged 1.78-0.79 Ma. The molecular 

models had a high margin of error (using two clocks), however C. brevipennis was indicated to show 

largely congruent ages using each clock and gene (roughly ~4 Ma), with the exception of the 3.59% 

clock from Papadopoulou et al. (2010) for COI. 

 

3.4 Discussion 

3.4.1 Phylogeny and taxonomy of the Chathamiidae 

As clearly shown by both COI and 16S data, both Chathamia and Philanisus are polyphletic 

taxa with the species C. integripennis nested within Philanisus (related to P. fasciatus in particular) 

together comprising a a „Philanisid‟ clade. The only other species of Chathamia, C. brevipennis, by 

contrast formed a remote sister taxon to this grouping. This relationship is also supported by 

biogeographic inference as the northerly-distributed C. integripennis makes a poor candidate to be 

close to the ancestry of the Chatham Island C. brevipennis. As C. brevipennis is the type species of 

Chathamia, this can be easily resolved by transferring C. integripennis to Philanisus (creating the new 
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species name Philanisus integripennis), rendering both genera monophyletic and leaving Chathamia 

monotypic and endemic to the Chatham Islands.  

The high genetic distance between C. brevipennis and the remainder of the family also 

supports the retention of the genus Chathamia as distinct from Philanisus, although distances 

suggestive of subfamily status were not supported in agreement with Riek (1976). Any morphological 

features identified by Riek between Chathamia integripennis and C. brevipennis are considered to be 

analogous convergences, or alternatively plesiomorphic features (however this would indicate the 

species to have been the basal „Philanisid‟ in regard to the probable singular evolution of „Philanisus’ 

features, which was never supported – the basal Philanisid was likely either P. plebeius or P. 

fasciatus). The extant representatives of the Chathamiidae are indicated to have begun radiation in the 

Pliocene to early Pleistocene (with C. brevipennis), with the Philanisid group diverging in the late 

Pleistocene, roughly 1 Ma. 

Another significant result was the identification of a larval C. integripennis to be found in 

Sydney New South Wales. Possible error was accounted for as the specimen was re-extracted and 

sequenced again, confirming the result. This is the first time this species has been found outside of 

Northern New Zealand, and joins P. plebeius as the only New Zealand caddisfly species to be also 

found in Australia. The sample also being larval clearly demonstrates a breeding population (as 

opposed to a rare adult vagrant). However the sample was identified very close to one NZ haplotype 

(1 base pair difference) indicating a very recent origin or possibly a human introduction (however the 

NZ sequence was not from this study and the collection locality remains unknown).  The singular pair 

difference is also congruent with that found between the New Zealand and Australian populations of 

Philanisus plebeius, (see Chapter Two) although sampling in this species was much more thorough.  

Philanisus mataua raised the most issue with phylogenetic placement, with sequenced data 

showing two mitochondrial sequences. This was considered not to reflect degeneration due to the age 

of the sample (a 17 year old museum specimen) as the heterogenous sites occurred only in areas 

variable in Philanisus (including C. integripennis), and either represents contamination or 
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heteroplasmy. The two P.mataua sequences were considerably different (7/20 variable „Philanisid‟ 

sites differed between them). Naturally occurring and divergent heteroplasmic sequences are 

generally the result non-maternal mitochondrial transmission, or „paternal leakage‟ (Lansman et al. 

1983). In insects, paternal leakage of mitochondrial DNA has been documented in species of bee 

(Meusel & Moritz 1993, Magnacca & Brown 2010 a, b), Drosophila (Satta et al. 1988, Kondo et al. 

1990, 1992, Matsuura et al. 1991, Sherengul et al. 2006), mosquitoes (Paduan & Ribolla 2008), moths 

(Arunkumar et al. 2006) and cicadas (Fonataine et al. 2007). 

If the two sequences represent heteroplasmy then P. mataua appears to represent a hybrid 

between P. plebeius and C. integripennis (see Figs 3.9 & 3.10). This is biogeographically plausible; P. 

mataua is rare and occurs sympatrically with both P. plebeius and C. integripennis over most of its 

distribution (in the upper North Island see fig 3.1). Natural intraspecific hybridisation is not well 

documented in Trichoptera although is evidenced to occur in a number of studies (Blahnik 1995, 

Leese 2004, Pauls 2004, Wells 2006, Pauls et al. 2009, 2010). Heteroplasmy is also more frequent in 

hybrids; it has been suggested that intra-specific hybridisation leads to frequent heteroplasmy as 

oocyte enzymes are less likely to recognise and counter unrelated mitochondria (Kondo et al. 1990, 

Kaneda et al. 1995, Kvist et al. 2003, Ballard et al. 2004). Heteroplasmy does not seem to be 

commonly inherited (Gyllensten 1991) indicating this sample would likely be a direct hybrid. 

 However even among intraspecific hybrids heteroplasmy is generally uncommon (Kondo et 

al. 1990, Gyllensten 1991); thus the likelihood of one sample to be heteroplasmic is unlikely. It is also 

is unclear what extent the morphology of P. mataua is intermediate between C. integripennis and P. 

plebeius; several morphological features are distinct to the species (Ward 1994, 1995). Additionally 

C. integripennis is not recorded from the Three Kings Islands; an apparent stronghold of P. mataua 

(5/12 of all collection records, and 8 of about 20 known specimens). It is perhaps more probable the 

sample is simply contaminated by C. integripennis DNA, made only more likely as most of the 

sample was used for DNA extraction. Cannibalism is known to occur in normally herbivorous 

caddisfly larvae (Mecom 1972, Wissinger et al. 1996, 2004) and is known in P. plebeius (Leader 

1976), although it seems unlikely consumed material as a larva would transmit through to adulthood. 
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Contamination is probably the most parsimonious explanation although new P. mataua sequences are 

necessary to confirm either hypothesis.  

Overall the taxonomy of the family needs some revising. It is proposed that Chathamia 

integripennis be transferred to the genus Philanisus. This would leave Chathamia a monotypic 

Chatham Island taxon, and Philanisus comprising all of the four species found in mainland New 

Zealand, the Kermadecs and Australia. Additionally new molecular data should be collected for P. 

mataua in order to test for its phylogenetic status. It cannot be ignored that possible hybridisation and 

molecular introgression may have considerable implications inferring the phylogeny of the 

Chathamiidae, especially as only mitochondrial markers were used in this study and that heteroplasmy 

is indicated (Posada & Crandall 2002, Sackton et al. 2003, Piganeau et al. 2004). 

 

3.4.2 Phylogenetic placement of Hydrobiosis lindsayi and Oecetis chathamensis 

The placement of Edpercivalia as a subtaxon of Hydrobiosis was not well supported in this 

study. Morphological data supports the close relationship of Edpercivalia and Hydrobiosis, although 

Edpercivalia shares a number of presumably pleisomorphic features with Costachorema and separate 

genus status seems likely (Ward et al. 2004). Separate species status of H. lindsayi was supported, as 

is the placement of H. lindsayi within the Umbripennis group of Hydrobiosis (Schmid 1989, Smith 

1998). Molecular divergence suggests the divergence of H. lindsayi from the remaining Hydrobiosis 

4-2.1Ma, not fully congruent with a Pleistocene date for the origin of the Chatham Islands.  

Oecetis chathamensis was also supported as distinct from O. unicolor, supporting 

morphological differences such as „turquoise‟ coloured larvae unique to the taxon (Champion & 

Clayton 2004), both diverging 1.78-0.79 Ma. The younger age of O. chathamensis (Leptoceridae) 

contrast to H. lindsayi (Hydrobiosidae) is likely expected. Although the Hydrobiosidae is the most 

diverse caddisfly family in New Zealand (roughly half of described species), Hydrobiosids are 

apparently poor long-distance dispersers with all native genera entirely endemic and globally have a 

largely southern Gondwanan biogeography (Schmid 1989, de Moor & Ivanov 2008), although two 
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have dispersed from New Zealand and are endemic to the Auckland Islands (Wise 1976, Schmid 

1989, Micheaux &Leschen 2004). Leptocerids are by contrast among the most widespread of 

Trichoptera and are among the few families to commonly inhabit oceanic islands (e.g. Malicky 1992, 

Smithers 2000, Wells 2004). In addition O. chathamensis and O. unicolor closely resembles the 

species O. umbra from Tasmania, and the whole New Zealand lineage is likely a recent Australian 

dispersal (Neboiss 1979, Wells 2004). 

 

3.4.3 Philanisus fasciatus and the Kermadec Islands. 

 P. fasicatus was shown to form a distinct taxon, although closely related to the species P. 

plebeius, P. mataua and C. integripennis (the „Philanisid‟ clade). Nevertheless, the species is 

indicated by COI data to have diverged from C. integripennis between 0.34-0.92 Ma, well into the 

early to mid Pleistocene. The date compares with the only other molecular study of a Kermadec 

insect; that found for Kermadec cicadas (0.39-0.71 Ma, Arensburger et al. 2004). The lineage that 

constitutes the Kermadec pohutukawa (Metrosideros kermadecensis) is believed to have dispersed out 

of New Zealand 0.5-1 Ma, although includes a number of Pacific species as far north as Hawaii (the 

„excelsa‟ lineage) and some gene flow between M. kermadecensis and the New Zealand M. excelsa 

has been indicated (Wright et al. 2000, 2001, Gardner et al. 2004). No other molecular studies have 

been undertaken including any of the endemic Kermadec fauna or flora with the exception of two 

species of limpet (Wood & Gardner 2007), however this only discussed local connectivity and no 

molecular clock was used. 

 From the current genetic evidence however it can be proposed that there has been continuous 

land in the Kermadec region suitable for terrestrial inhabitation >0.3 Ma and possibly considerably 

longer, also supported by the general existence of other species and subspecies endemic to the Islands. 

Using geological records to estimate an age of the islands is difficult, as being the tops of active 

volcanoes they are likely to have had an ephemeral history having risen and fallen numerous times in 

the past. The two largest islands (Raoul and Macauley Islands) are both closely linked to massive, 
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near-surfacing submarine calderas both representing recent eruptive collapse events. Macauley Island 

was likely over 10 times its current size before the SBT eruption 6 ka (Brothers & Martin 1970, Lloyd 

et al. 1996, Smith et al. 2003 a), and even the comparatively large Raoul was probably more massive 

until the collapse of Denham caldera 2.2 ka (Worthington et al. 1999). Such events would have had a 

catastrophic effect on the biodiversity; for example the eruption 2.2 Ka on Denham caldera is 

estimated to be comparable in volume to the 1883 Krakatau eruption (Worthington et al. 1999), and 

the SBT eruption is possibly one of the largest eruptions in the entire Holocene (Latter et al. 1992, 

Lloyd et al. 1996). If recent Holocene ages of Raoul and Macauley islands is assumed it is probable 

that there must have been sufficient continuous land elsewhere in the region long enough for some 

unique biota to form. 

 As is known with Macauley (Brothers & Martin 1970, Lloyd et al. 1996, Smith et al. 2003 a), 

some or even all of the smaller islands (and their volcano bodies) were likely once much larger prior 

to caldera collapse and erosion. All islands would have also been considerably more massive during 

lower sea levels in the Pleistocene as recently as the last glacial maximum (~20 ka). In addition the 

Kermadec chain also constitutes at least 26 major volcanic centres comprising numbers of submarine 

volcanoes and seamounts, some (such as the Giggenbach volcano) are high enough to have formed 

islands over 50 m high during this period (Wright 1994, Ballace et al. 1999, Smith et al. 2003 b, 

Wright et al. 2006). Collapse and re-eruption is common in the Kermadec-Tonga arc (Ballance et al. 

1999, Wright et al. 2008), and thus there have likely been a number of islands, now long submerged. 

As a result of these factors the emergent areas of the Kermadec region have likely been under a period 

of considerable flux.  

Therefore in spite of a volatile history it seems plausible there has been continuous land 

suitable to support terrestrial animal and plant life in the Kermadec region since the early-mid 

Pleistocene 0.3-0.5 Ma and perhaps earlier. However the Kermadec biota can therefore probably be 

assumed to have undergone a series of historical „island-hopping‟ episodes and repeatedly subjected 

to regular local extinctions or volcanic „sterilisations‟ with the current restriction of most species to 

Raoul and Macauley Islands untypical. Species such as P. fasciatus being largely intertidal, and M. 
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kermadecensis able to colonise fresh lava flows (Clarkson 1990), may have been better suited for 

prolonged survival in this environment. This may also explain why overall diversity in the islands is 

low, although many more molecular studies are still needed. 

 

3.4.4 Chathamia brevipennis, Oecetis chathamensis, Hydrobiosis lindsayi and the Chatham 

Islands. 

 C. brevipennis was indicated conclusively by both COI and 16s to be highly divergent from 

the remainder of the Chathamiidae and that Chathamia should be rendered a monotypic genus 

endemic to the island group (Chathamia integripennis being unrelated and nested within Philanisus). 

This may be significant as although endemicity in the Chatham Islands is high, levels only very rarely 

reach above the species or sub-species level (Emberson 1995, 1998 Heenan et al. 2010). For age 

estimates, Chathamia brevipennis diverged from the remaining Chathamiidae 2.46-4.91 Ma ago, 

supporting a Pliocene origin of the species. The genetic divergence (~10% for COI and 16s) and the 

age (>2.4 Ma) are among the highest found for any Chatham Island species. Additionally Hydrobiosis 

lindsayi was also indicated a possibly old taxon 4-2.1 Ma in age, although the lower estimates are 

congruent with geological records. Oecetis chathamensis was indicated conclusively to be a recent 

Pleistocene dispersal roughly 1 Ma in age, typical of most Chatham species. 

However these dates should perhaps be considered carefully, Brower‟s substitution rate in 

particular has been known to considerably overestimate probable divergence times in Lepidoptera 

(Gratton et al. 2008). However such rates invariably differ between lineages, and other subsequent 

studies on insects using independent clock models have inferred a wide variety of divergence rates 

(Papadopoulo et al. 2010). In addition strict models assume a constant rate of divergence; however 

rates are known to be non-linear, rapidly decreasing with age as nucleotide saturation and selection 

pressures begin to play an increasing role (Brown et al. 1979, 1982, Arbogast et al. 2002). 

 Relaxed molecular clocks allow rates to differ and have been used in caddisflies finding 

substitution rates as high as 5-6% per Ma for recently diverged taxa (less than 1Ma), with rates 
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rapidly decreasing with apparent age (Espeland & Johanson 2010 a, b). Divergences over 10% in 

these studies are suggested to reflect ages well in excess of 5 Ma, for example divergences under 12% 

have been proposed as roughly 20 Ma in age in the genus Agmina (Espeland & Johanson b). 

Additionally, 16s shows an unusually high level of divergence between C. brevipennis and the 

remaining Chathamiidae, roughly the same found in COI despite the slower evolution rate of 16s (~3x 

slower in Papadopoulou et al. 2010). This may suggest further mutation of COI has slowed due to 

negative selection; further supporting a Pliocene age for C. brevipennis (a minimum age of 3.12 Ma is 

suggested when both genes are combined). 

Thus an ultimate minimum age of 2.46 Ma is probably conservative and potentially much 

higher. If the divergence and the speciation of C. brevipennis is directly related to the allopatric event 

of dispersal to the Chatham islands, then the divergence must directly relate to continuous land in the 

region since the assumed time (additionally the lineage need not reflect the whole age of the island 

group). Alternatively C. brevipennis can be hypothesised as having originated from a now-extinct 

lineage from New Zealand and thus not directly related to the remaining Chathamiidae. This argument 

will always remain a possibility; as the in spite of their presumed antiquity (thus reaching family 

status) the Chathamiidae have a remarkably low diversity and are likely to have passed through a 

recent evolutionary bottleneck. An island group such as the Chathams may have provided a refuge for 

an older lineage of Chathamiids, only now recently extinct in New Zealand. 

 Two species flightless stag beetle from the Chatham Islands (Geodorcus spp.) were aged at 

~6 Ma (Trewick 2000), although it was decided in the particular study the closest mainland relative 

was not included. Only three Geodorcus species (just one from the mainland) were analysed out of a 

described 17 (Holloway 1996, 2007) making this inference likley. All other divergences (see 

introduction section for full review) for Chatham Island invertebrates, including spiders, damselflies, 

cicadas, stick insects, cockroaches, isopods and amphipods show much more recent ~1-2 Ma arrivals 

within New Zealand. Similarly the endemic Chatham mudfish and the majority of the flora show a 

recent origin. No bird taxa are found to be any more recent than the mid-early Pleistocene; the entirety 

of the endemic Chatham avifauna is restricted to species or subspecies level. However three extinct 
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monotypic bird genera; Pachyanas, Cabalus and Diaphorapteryx (Chatham Island duck, and Chatham 

and Hawkin‟s rails) were endemic to the islands and may have older origins (Holdaway et al. 2001).   

High distances have however been found for at least four plant taxa (6.18-10.97 Ma, Heenan 

et al. 2008) and for the Chatham skink (5.86-7.29 Ma, Oligosoma nigiriplantare nigiriplantare, 

Liggins et al. 2008), although the closest mainland relatives to the Chatham skink may have not been 

sampled. For a hypothetical explanation regarding the old age of some plant taxa, Heenan et al. 

discussed the confirmed Miocene-Pliocene emergence of the Mangere volcano (Campbell & Hutching 

2007) and also cited the evidence of fossiliferous and palynological records of Opoitian (5.28-3.6 Ma) 

and Waipipian-Mangapanian (3.6-2.4 Ma) age, apparently carrying though to present (Mildenhall 

1994). Also discussed was one Pliocene bone indistinguishable from the modern Chatham Pigeon 

(Hemiphaga chathamensis, Eagle et al. 2005), although this is now believed a recent Holocene 

intrusion (Worthy et al. 2009).  

If the Mangere-volcano hypothesis is considered, there has been continuous land in the wider 

Chatham region for up to 6 Ma, as much as 4 Ma longer than has been suggested by recent geological 

studies. It is possible that some of the Rangitihi Volcanics (the most recent of all the Chatham 

volcanoes) were emergent earlier, or that there was emergent land elsewhere in the Chatham Rise 

allowing for a tenacious evolutionary connection between the „Mangere‟ and „Chatham‟ biotas 

(Campbell et al. 1988, Heenan et al. 2010). Intertidal Chathamiids may have fared better than most 

terrestrial invertebrates and the skink O. nigiriplantare can survive on small rock stacks (McCann 

1955), so both animals may have persisted through a geographical bottleneck. This explanation is 

purely conjectural and may be based off overestimated ages, however does explain why some of the 

Chatham biota appear to have Pliocene or even Miocene origins whilst the vast majority is evidently 

much younger. With this indicated more molecular studies should be undertaken of select taxa linking 

the Chatham Islands to New Zealand, and some taxa such as Geodorcus should be re-investigated. In 

addition the geological possibility of a Plio-Pleistocene link 2-4 Ma between Mangere volcano and 

the modern Chathams should perhaps be more seriously considered. 
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3.5 Figures 

 

FIG 3.1) Estimated distribution of the Chathamiidae in New Zealand as inferred from collection records at the New Zealand 

trichoptera database (http://http://nzcaddis.massey.ac.nz/). As follows Yellow = Philanisus plebeius, Red = Chathamia 

integripennis, Orange = Philanisus plebeius / Chathamia integripennis, Blue = Chathamia brevipennis, Green = Philanisus 

fasciatus. White arrows designate the localities where Philanisus mataua has been collected. Not shown is the Australian 

distribution of Philanisus plebeius (Roughly 40km of coastline  from Sydney Southwards), and also one dubious record from 

Stewart Island. Distribution disjunctions, especially in the South Island and the eastern North Island may reflect sampling bias.  

http://nzcaddis.massey.ac.nz/
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TABLE 3.1) Full list of taxa, specimens and sequences included (including Chathamiidae + outgroups, Hydrobiosidae and Oecetis). Where possible collection details are shown. Source if not this study 

shows reference and genbank accession numbers. References: 1; Johanson (2007), 2; Johanson & Keijsner (2008), 3; Hogg et al. (2009), 4; Espeland et al. 2008, 5;Johanson et al. (2009), 6; Johanson & 

Espeland (2010), 7; Shan et al. (unpublished). 

*Distribution of whole species, specific sample collection site unknown. ** Unidentified prior to sequencing. 

          

Species Gene Specimen No. Ontogeny No. Source Collector Locality Coordinates Date 

Philanisus plebeius "A" COI & 16s L201 Adult 1 This study Ian Henderson Marbourough Sounds 41°14‟25 S, 174°16‟14 E 30/12/2008 

Philanisus plebeius "B" COI & 16s A1002 Adult 1 This study Alex Boast Tauranga 37°42‟29 S, 174°53‟15 E 16/02/2009 

Philanisus plebeius "C" COI & 16s B303 Adult 1 This study Alex Boast Mangakuri Beach 39°57‟59 S, 176°55‟14 E 27/02/2009 

Philanisus mataua COI PM2 Adult 1 This study John Ward Whangapaparoa 36°35‟35 S, 174°49‟40 E 24/01/1993 

Philanisus fasciatus COI & 16s PF101 Adult 1 This study Karen Baird Raoul Island 29°14‟56 S, 177°55‟14 E 20/10/2009 

Philanisus fasciatus COI PF102-3, 301-3 Adult 2 This study Karen Baird Raoul Island 29°14‟56 S, 177°55‟14 E 20/10/2009 

Chathamia integripennis COI CI1 Adult 1 This study Alex Boast Waiwera 36°32‟56 S, 174°42‟32 E 8/03/2009 

Chathamia integripennis COI CI201-2,301-2 Adults 4 This study Alex Boast Mt. Maunganui 37°37‟30 S, 174°10‟29 E 17/02/2009 

Chathamia integripennis COI "05" - 1 3 GU263323 - New Zealand* - - 

Chathamiia integripennis COI DP2 - 1 5 FJ263238 - New Zealand* - - 

Chathamia integripennis ** COI K901 Larva 1 This study Alice Wells Sydney 33°49‟25 S, 151°16‟37 E 22/08/2008 

Chathamia brevipennis COI & 16s CB1 Larva 5 This study Alex Boast Kaingaroa, Chat. Is. 43°43‟49 S, 176°16‟07 E 14/02/2010 

Chathamia brevipennis COI CB2-5 Larvae/Pupae 4 This study Alex Boast Kaingaroa, Chat. Is. 43°43‟49 S, 176°16‟07 E 14/02/2010 

Olinga feredayi COI & 16s BM5 - 1 2 EF395045-4980 - New Zealand* - - 

Zelolessica cheira COI & 16s BP4 - 1 2EF395047-4982 - New Zealand* - - 

Hydrobiosis lindsayi COI HB101-201 Larva/Pupa 2 This study Alex Boast Awatotara Ck., Chat. Is. 44°03‟34 S, 176°37‟12 E 15/02/2010 

Hydrobiosis lindsayi COI HB301 Adult 1 This study Alex Boast Makara R. Chat. Is. 43°59‟19 S, 176°27‟13 E 16/02/2010 

Hydrobiosis budgei COI "59" - 1 3 GU263339 - New Zealand* - - 

Hydrobiosis chardraea COI "47" - 1 3 GU263340 - New Zealand* - - 

Hydrobiosis copis COI "23" - 1 3 GU263344 - New Zealand* - - 

Hydrobiosis falcis COI "44" - 1 3 GU263345 - New Zealand* - - 

Hydrobiosis gollanis COI "09" - 1 3 GU263346 - New Zealand* - - 

Hydrobiosis harpidiosa COI "42" - 1 3 GU263347 - New Zealand* - - 

Hydrobiosis johnsi COI "39" - 1 3 GU263348 - New Zealand* - - 
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TABLE 3.1) Continued. 

          

Species Gene Specimen No. Ontogeny No. Source Collector Locality Coordinates Date 

Hydrobiosis parumbripennis COI "22" - 1 3 GU263349 - New Zealand* - - 

Hydrobiosis soror COI "14" - 1 3 GU263352 - New Zealand* - - 

Hydrobiosis spatulata COI "08" - 1 3 GU263353 - New Zealand* - - 

Hydrobiosis styracine COI "21" - 1 3 GU263354 - New Zealand* - - 

Hydrobiosis umbripennis COI "60" - 1 3 GU263355 - New Zealand* - - 

Edpercivalia cassicola COI "43" - 1 3 GU263334 - New Zealand* - - 

Edpercivalia thomasoni COI "19" - 1 3 GU263335 - New Zealand* - - 

Atrachorema mangu COI "30" - 1 3 GU263321 - New Zealand* - - 

Costachorema callistum COI "45" - 1 3 GU263326 - New Zealand* - - 

Costachorema hecton COI "26" - 1 3 GU263327 - New Zealand* - - 

Costachorema xanthopterum COI "28" - 1 3 GU263330 - New Zealand* - - 

Neurochorema armstrongi COI "52" - 1 3 GU263358 - New Zealand* - - 

Neurochorema confusum COI "57" - 1 3 GU263361 - New Zealand* - - 

Psilochorema leptoharpax COI AO1 - 1 4 AM902790 - New Zealand* - - 

Psilochorema mimicum COI "18" - 1 3 GU263391 - New Zealand* - - 

Xanthochorema bifurcatum COI W2 - 1 1 DQ485522 - New Caledonia* - - 

Moruya charadra COI DC6 - 1 6 FN179076 - Australia* - - 

Tiphobiosis cowiei COI "66" - 1 3 GU263407 - New Zealand* - - 

Tiphobiosis kleinpastei COI "72" - 1 3 GU263409 - New Zealand* - - 

Tiphobiosis veniflex COI "50" - 1 3 GU263410 - New Zealand* - - 

Synchorema zygoneura COI BY5 - 1 4 AM902799 - New Zealand* - - 

Apsilochorema hwangi COI ? - 1 7 AY490798 - China* - - 

Oecetis chathamensis COI OC201 Adult 1 This study Alex Boast Henga L., Chat. Is.  43°51‟60 S, 176°33.12 E 12/02/2010 

Oecetis chathamensis COI OC601 Adult 1 This study Alex Boast Te Whanga L., Chat. Is 43°49‟59 S, 176°30.19 E 14/02/2010 

Oecetis chathamensis COI OC701 Adult 1 This study Alex Boast Makara R., Chat. Is. 43°59‟19 S, 176°27‟13 E 16/02/2010 

Oecetis unicolor COI OC8-9 Adult 2 This study Alex Boast St Arnaud 41°48‟12 S, 172°50.44 E  27/02/2010 

Oecetis unicolor COI OC11 Adult 1 This study Alex Boast MangakuriBeach 39°57‟59 S, 176°55‟14 E 5/12/2009 
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TABLE 3.2) List of primers used for amplification and sequencing. 

    

Gene Primer Name Primer sequences (5' - 3') Reference 

COI HCO2198 TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. 1994 

COI LCO1490 GGTCAACAAATCATAAAGATATTGG Folmer et al. 1994 

COI ChatP12 GAAATACCAGCTAAATGTAAAG This study 

16s 16sARL CGCCTGTTTATCAAAAACAT Palumbi (1996) 

16s 16sBRH CCGGTCTGAACTCAGATCACGT Palumbi (1996) 
 

TABLE 3.3) Interspecific divergence means (d) for COI for all species sequenced for this study (except P. mataua), with 

standard error (S.E.). Calculated in MEGA v 4 with 10,000 replicates using the Kimura-2 parameter model. 

   

Species d S.E. 

Philanisus plebeius 0.013 0.004 

Philanisus fasciatus 0.001 0.001 

Chathamia integripennis 0.006 0.002 

Chathamia brevipennis 0 0 

Hydrobiosis lindsayi 0 0 

Oecetis chathamensis 0.005 0.002 

Oecetis unicolor 0.015 0.004 
 

TABLE 3.4 ) Intraspecific pairwise divergence means for COI (bottom-left) between species of the Chathamiidae and outgroups 

with standard error (top-right). Calculated in MEGA v 4 with 10,000 replicates using the Kimura-2 parameter model. 

Species 1) 2) 3) 4) 5) 6) 

1) Philanisus plebeius  0.006 0.006 0.013 0.018 0.017 

2) Philanisus fasciatus 0.027  0.005 0.014 0.017 0.018 

3) Chathamia integripennis 0.026 0.016  0.013 0.017 0.018 

4) Chathamia brevipennis 0.102 0.100 0.099  0.019 0.018 

5) Olinga feredayi 0.179 0.170 0.167 0.198  0.019 

6) Zelolessica cheira 0.167 0.171 0.175 0.176 0.196  
 

TABLE 3.5) Intraspecific pairwise divergence means for 16S (bottom-left) between species of the Chathamiidae and outgroups 

with standard error (top-right). Calculated in MEGA v 4 with 10,000 replicates using the Kimura-2 parameter model. 

Species 1) 2) 3) 4) 5) 6) 

1) Philanisus plebeius  0.005 0.003 0.015 0.021 0.020 

2) Philanisus fasciatus 0.010  0.005 0.015 0.021 0.020 

3) Chathamia integripennis 0.005 0.010  0.015 0.021 0.020 

4) Chathamia brevipennis 0.081 0.079 0.081  0.020 0.021 

5) Olinga feredayi 0.163 0.160 0.163 0.154  0.020 

6) Zelolessica cheira 0.148 0.142 0.148 0.166 0.154  
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TABLE 3.6) Intraspecific pairwise divergences between all Hydrobiosis and Epdercivalia sequences (down-right), with standard error (up-left). This study is concerned primarily with 

Hydrobiosis lindsayi only so other Hydrobiosidae were omitted from this analysis. Calculated in MEGA v 4 with 10,000 replicates using the Kimura-2 parameter model. 

 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 

1) Hydrobiosis umbripennis  0.014 0.016 0.011 0.011 0.011 0.011 0.017 0.008 0.01 0.015 0.018 0.011 0.018 0.018 

2) Hydrobiosis soror 0.121  0.016 0.016 0.016 0.015 0.016 0.016 0.015 0.016 0.015 0.016 0.016 0.017 0.017 

3) Hydrobiosis spatulata 0.140 0.136  0.016 0.017 0.017 0.017 0.016 0.015 0.016 0.017 0.017 0.016 0.018 0.018 

4) Hydrobiosis styracine 0.077 0.152 0.156  0.012 0.011 0.006 0.018 0.012 0.012 0.016 0.019 0.012 0.018 0.02 

5) Hydrobiosis budgei 0.081 0.152 0.170 0.099  0.011 0.012 0.016 0.012 0.014 0.016 0.018 0.012 0.019 0.019 

6) Hyrobiosis copis 0.081 0.137 0.150 0.082 0.072  0.011 0.017 0.011 0.012 0.015 0.018 0.012 0.017 0.019 

7) Hydrobiosis falcis 0.083 0.155 0.162 0.023 0.092 0.081  0.018 0.012 0.011 0.015 0.018 0.012 0.018 0.020 

8) Hydrobiosis harpidiosa 0.156 0.133 0.152 0.176 0.163 0.165 0.181  0.017 0.017 0.017 0.018 0.017 0.020 0.018 

9) Hydrobiosis parumbripennis 0.040 0.127 0.136 0.089 0.086 0.077 0.091 0.167  0.011 0.016 0.017 0.012 0.018 0.018 

10) Hydrobiosis johnsi 0.066 0.141 0.146 0.081 0.111 0.087 0.079 0.163 0.072  0.016 0.017 0.013 0.019 0.019 

11) Hydrobiosis gollanis 0.128 0.131 0.153 0.131 0.133 0.130 0.125 0.159 0.142 0.148  0.019 0.015 0.019 0.019 

12) Hydrobiosis charadraea 0.161 0.134 0.147 0.179 0.173 0.173 0.169 0.165 0.154 0.16 0.177  0.019 0.018 0.018 

13) Hydrobiosis lindsayi 0.072 0.141 0.154 0.09 0.086 0.085 0.087 0.161 0.081 0.094 0.126 0.184  0.018 0.019 

14) Edpercivalia cassicola 0.168 0.152 0.168 0.176 0.186 0.161 0.172 0.189 0.174 0.184 0.178 0.152 0.168  0.017 

15) Edpercivalia thomasoni 0.174 0.154 0.162 0.197 0.189 0.19 0.95 0.172 0.172 0.192 0.178 0.166 0.188 0.158  
 

 

 

 

 

 

 

FIGURE 3.2) Sample region of the Philanisus mataua COI sequence chromatogram as viewed in Chromas V. 145, showing clear twin peaking (3/7 such sites), indicating contamination or 

heteroplasmy. All such regions coincided with variable sites indicative either of Philanisus plebieus or Chathamia integripennis. 
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FIG 3.3) Bootstrap consensus Maximum likelihood (ML) tree of the Chathamiidae (10,000,000 replicates, Heuristic search 

logarithm) as inferred in PAUP* through COI data. Bootstrap values (%) are shown.  
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FIG 3.4) Bootstrap consensus Maximum Parsimony (MP) tree of the Chathamiidae (10,000,000 replicates, Heuristic search 

logarithm) as inferred in PAUP* through COI data. Bootstrap values (%) are shown. 
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FIG 3.5) Bayesian analysis tree of the Chathamiidae as inferred by COI data and analysed through MrBayes. Posterior Bayesian 

probability indices are shown. 
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FIG 3.6) Bayesian analysis tree of the Chathamiidae as inferred by 16s data and analysed through MrBayes. Posterior Bayesian 

probability indices are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3.7) Unrooted neighbor joining tree of Oecetis chathamensis and O. unicolor as calculated in MEGA v 4. Separate species 

status is here supported.Bootstrap values shown from 10,000 replicates using maximum composite likelihood model(Tamura-

Nei). 
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FIG 3.8) Bayesian analysis tree of the Hydrobiosidae primarily to infer the phylogenetic placement of the species Hydrobiosis 

lindsayi, as inferred by COI data and analysed through MrBayes. Posterior Bayesian probability indices are shown. 
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FIGS 3.9 & 3.10) Neighbour joining bootstrap consensus trees of COI inferred through MEGA v 4 software, exploring the Phylogenetic position of Philanisus mataua in the Philanisus complex, 

indicated as to have two mitochondrial sequences. Figure 3.9 (left) explores the uncorrected sequence with ambiguous regions included, wheras Figure 3.10 (right) explores the two most likely 

sequences („A‟ & „B‟) and their independent phylogenetic placements. Bootstrap values based on 10,000 replicates, maxiumum composite likelihood model (Tamura - Nei). 
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TABLE 3.7) Estimated age divergences in Ma as inferred through varying rough molecular clocks. Corrected (mean) 

pairwise divergence of each species to closest sister group (see methods for more detail) ± Standard error; analysed for 

separately if possible for both COI and COI + 16s combined, calculated in MEGA v 4 with 10,000 replicates using the 

Kimura-2 parameter model. Clock 1 uses a 2.3% mitochondrial DNA divergence rate of 2.3% per Ma from Brower et al. 

(1994). Clock 2 uses the more recent divergences from Papadopoulou et al. (2010), with separate divergence estimates for 

COI (3.54% per Ma) and COI+16s combined (2.69% per Ma). 

   Age estimate (Ma)  

Species Gene Corrected Divergence Clock 1 (2.3%) 

Clock 2 

(3.54/2.69%) 

Chathamia brevipennis COI 0.100 ± 0.013 4.35 ± 0.56 2.83 ± 0.37 

 COI + 16s 0.093 ± 0.009 4.04 ± 0.39 3.46 ± 0.34 

Philanisus plebeius COI 0.027 ± 0.005 1.17 ± 0.22 0.76 ± 0.14 

 COI + 16s 0.019 ± 0.004 0.83 ± 0.17  0.71 ± 0.15 

Philanisus fasciatus COI 0.016 ± 0.005 0.70 ± 0.22 0.45 ± 0.14 

 COI + 16s 0.012 ± 0.003 0.52 ± 0.13 0.45 ± 0.11 

Chathamia integripennis COI 0.016 ± 0.005 0.70 ± 0.22 0.45 ± 0.14 

 COI + 16s 0.012 ± 0.003 0.52 ± 0.13 0.45 ± 0.11 

Hydrobiosis lindsayi COI 0.083 ± 0.009 3.61 ± 0.39 2.35 ± 0.25 

Oecetis chathamensis COI 0.034 ± 0.006 1.48 ± 0.30 0.96 ± 0.17 
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Chapter Four: Are New Zealand’s marine caddisflies a ‘Ghost of 

Gondwana’? Phylogenetic placement of the Chathamiidae. 

 

4.1 Introduction 

New Zealand biogeographically has characteristics of both a continental landmass and also an 

oceanic island (Cooper & Millener 1993, Wallis & Trewick 2009). Having broken from Gondwana 

over 80 million years ago the ancient subcontinent Zealandia today remains largely submerged with 

the major exception of modern New Zealand. New Zealand itself is often referred to as a literal 

„Moa‟s ark‟ (Bellamy et al. 1990), host to ancient plants and animals argued to be of a Gondwanan or 

vicariant origin (e.g Fleming 1962, 1967, Stevens et al. 1988). However New Zealand is also 

characterised as being „naturally depauperate but secondarily rich‟ (Daugherty et al. 1993) containing 

an unbalanced biota predominantly more indicative of long distance dispersal (Pole 1994, McGlone 

2005, McDowall 2008, Goldberg et al. 2008). Although levels of endemicity are among the highest in 

the world; the number of endemic groups of family status or higher is much lower than would be 

expected of a continental landmass (Pole 1994, 2000, Macphail 1997, Gibbs 2006). It is now 

increasingly argued that a marine submergence during the Oligocene (roughly 23 Ma) known to have 

reduced New Zealand to at most a few islands (Fleming 1962, Cooper & Cooper 1995), may have 

been total (Trewick et al. 2007, Landis et al. 2008). This raises the biogeographic concept of „New 

Zealand‟ as a fully modern entity, biologically separate from „Zealandia‟ (Campbell & Hutching 

2007, Trewick et al. 2007, Landis et al. 2008). Numerous taxa do however appear to be congruent 

with Gondwanan origins, for example Ratite birds, Leiopelmatid frogs, Tuatara, and and various 

plants and invertebrates; all now central to the debate of inferring the ancient history of New Zealand. 

The five species and two genera of case-making caddisfly that comprise the Chathamiidae are 

among the more unusual aspects of New Zealand‟s fauna, being some of very few insects in the world 

that breeds in the marine environment. Additionally, they are one of only three insect families often 

considered endemic to New Zealand (Gibbs 1979, 2006, Gleeson et al. 2000, Wiegman et al. 2002, 
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Kutty et al. 2010). At least two Chathamiid species are found in a small region of New South Wales, 

Australia, although these are both likely due to singular dispersal events from New Zealand less 

20,000 years ago (Refer to Chapters Two and Three). On an evolutionary timescale, the Chathamiidae 

can be considered a group unique to New Zealand. The freshwater fauna of New Zealand includes 

many likely candidates for a vicariant Gondwanan origin, as most species are poor dispersers and 

many are unable to survive prolonged exposure to seawater inhibiting long distance dispersal (Gibbs 

2006). Chathamiid caddisflies have the unusual distinction of being marine, although are evolved 

from freshwater species, thus the biogeographic inference of these groups still has relevance. 

A possible ancient vicariant origin of many of freshwater groups is supported by their global 

distributions; many found only on the Gondwanan fragments of South America, Australia and New 

Zealand, which with Antarctica comprised the late Gondwanan remnant of „Australis‟ (Gibbs 2006); 

New Zealand being the first to rift roughly 80-85 Ma (Luyendyk 1995, Sutherland 1999). A complete 

„Australis‟ distribution is represented by four caddisfly families (de Moor & Ivanov) four Mayfly 

families (Barber-James et al. 2008), four stonefly families (Fochetti & de Figueroa 2008), the 

dobsonfly genus Archichauliodes (Cover & Resh 2008), the scorpionfly family Nannochoristidae 

(Ferrington 2008), the dragonfly family Austropetaliidae (Kalkman et al. 2008), four genera of 

craneflies (de Jong et al. 2008), the dipteran subfamily Ceratomerinae (Plant 1991, Wagner et al. 

2008), two families of syncarid „shrimps‟ (Camacho & Valdecasas 2008), crayfish of the Parastacidae 

(Crandall & Buhay 2008) and the freshwater mussel family Hyriidae (Bogan 2008), all with 

representatives in New Zealand. As of yet very few of these groups have been subjected to molecular 

analysis, vicariant origins in New Zealand being supported for two mayfly families, and Hyriid 

mussels, and unsupported for one mayfly family  (Ogden & Whiting 2005, Fenwick 2006).  

The caddisfly families Hydrobiosidae, Kokiriidae, Philorheithridae, Helicophidae; the 

subfamily Triplectidinae (Leptoceridae), and also two families not found in New Zealand; the 

Atriplectididae and the Tasimiidae, have distributions demonstrating an Australis pattern (Ross 1967, 

de Moor & Ivanov 2008). The phylogeny of the Helicophidae was analysed by Johanson & Keijsner 

(2008), who found a tree topology inconsistent with Gondwanan vicariance, with New Zealand‟s 
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species polyphyletic; sister to species either from South America or Australia. The phylogeny of the 

Hydrobiosidae, represented by over at least 87 species in 10 genera endemic to New Zealand, has 

been subject of morphology-based taxonomy (Neboiss 1977, Ward et al. 2004), which similarly 

indicated a complex history difficult to assign to vicariance or dispersal alone. 

 Other families with possible Gondwanan roots in New Zealand include those restricted to 

Australasia, although some oceanic dispersal in these groups seems probable. In the trichoptera this 

comprises four families, the Calocidae, Conoesucidae, Oeconesidae and the Chathamiidae. Both the 

Calocidae and the Conoesucidae have been subject to phylogenetic analysis (Johanson et al. 2009, 

Johanson & Malm 2010). Basal New Zealand relationships have been indicated in both cases possibly 

supporting vicariance, although at least one trans-Tasman dispersal event is demonstrated in the 

Conoesucidae. Five of six genera of the Oeconesidae excepting the monotypic Tascuna from 

Tasmania, are endemic to New Zealand. Two other taxa are also of special note. The endemic genus 

Alloecentrella has been of taxonomic interest, being transferred between the Bereaidae, Helicophidae 

and the Calocidae (Ward 1999), although the original placement in the Helicophidae is now supported 

(Henderson & Ward 2007, Johanson & Keijsner 2008, Johanson & Malm 2010). One other endemic 

genus, the monotypic Rakiura is known from a disjunct distribution in North West Nelson and 

Stewart Island (Michaelis 1973).  Rakiura vernale has importance as is the most basal member of the 

Helicopsychidae (the „spiral-cased‟ caddisflies), the remainder of which is comprised entirely of over 

192 described species of Helicopsyche with highest diversity in Australia, South-East Asia and South 

America, although the genus has a global distribution (de Moor & Ivanov 2008).  

 Of all New Zealand‟s aquatic invertebrate families, only the Chathamiidae come so close to 

full endemic status, although the exact evolutionary relationships of the group itself remain unclear. 

Riek (1976) first suggested a relationship with the large and widespread family Leptoceridae 

(superfamily Leptoceroidea). More modern revisions of the taxonomy of the Trichoptera now place 

the Chathamiidae within the superfamily Sericostomatoidea, the sister grouping to the Leptoceroidea 

which together comprise the Brevitentoria (Weaver 1984, 1992, Frannia & Wiggins 1997). 

Morphological studies have supported various topologies although a relationship between the 
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Southern Sericostomatoidean families of the Calocidae, Chathamiidae, Conoesucidae and the 

Helicophidae is commonly suggested (Scott & de Moor 1993, Henderson & Ward 2007). The 

comprehensive phyogenies of Kjer et al. (2000, 2001) using 28S ribosomal DNA as a conservative 

marker have also supported this relationship. However recent phylogenies using 16S have instead 

indicated a possible relationship of the Chathamiidae with the Helicopsychidae and Leptoceridae in 

spite of the placement of the latter in a different superfamily (Johanson et al. 2009, Johanson & Malm 

2010).  The status of the Leptoceroidea as a monophyletic group, although supported by Kjer et al. 

(2000, 2001), has also been discredited in some recent phylogenies (Frannia & Wiggins 1997, Morse 

1997, Johanson et al. 2009, Johanson & Malm 2010).  

In spite of its unclear relations, separate family status and monophyly of the Chathamiidae has 

been consistently supported. The Chathamiidae as revised in this Thesis comprise four species of 

Philanisus (one of which is currently placed in Chathamia, see Chapter 3), and the monotypic 

Chathamia endemic to the Chatham Islands. One molecular clock based on fossil calibrations 

suggests an early Cretaceous origin for the family roughly 140 Ma in age (Grimaldi & Engel 2005); 

predating New Zealand‟s continental rifting by some 60 million years. This is almost certainly an 

overestimate, being partly based on a dubious early cretaceous record of a Helicophid from the 

purbeck beds of England (Ivanov & Jarzembowski 2001). A Mesozoic age of origin alone does not 

fully support a vicariant origin however; as any taxon may have dispersed recently only become 

recently extinct elsewhere (Waters & Craw 2006). Additionally the family is comprised of only five 

closely related species suggested to have diverged in the Pliocene roughly 4-3 Ma, an over 40-fold 

difference in age if an early Cretaceous origin is accepted (refer to Chapter Three of thesis). The 

family appears fully capable of oceanic dispersal having crossed the Tasman at least twice, and two 

species are found in of New Zealand‟s outermost island groups; the Kermadec and Chatham Islands 

(Riek 1976). Thus the Chathamiidae are congruent both with an ancient Gondwanan lineage, and also 

as a more typical recent dispersal taxon. 

Although in some respects the phylogenetic placement of the Chathamiidae is well studied 

there is need for improved resolution. To date all phylogenetic studies have focused only on a single 
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conserved marker (either 28S or 16S), supported by a number of faster evolving sequences (including 

COI among others). By combining data from a number of studies, and with the addition of new taxa 

this study aims to test the effectiveness of phylogenetic reconstruction in the Trichoptera using 

conserved ribosomal sequences only. Additionally, by including the basal C. brevipennis, this is the 

first time that the full evolutionary diversity of the Chathamiidae has been included in such a 

phylogeny. This will aim to help understand the phylogenetic placement of the Chathamiidae, and 

with the addition of fossil data this can be expanded to incorporate a relaxed molecular clock to test 

the hypothesis of a vicariant age for the family (> 80 Ma). As this analysis will explore a number of 

taxa, this study will also address other questions of interest, including the age and phylogenetic 

relationships of taxa such as Alloecentrella and Rakiura; and the relationships between the 

Leptoceroidea and Sericostomatoidea superfamilies. 

 

4.2 Materials and Methods 

4.2.1 Taxon sampling 

 This study constructed a phylogeny of the Chathamiidae and related caddisfly families using 

two regions (D1 and D3) of the nuclear ribosomal gene 28S, and also the mitochondrial ribosomal 

gene 16S. For this analysis a number of new sequences were developed from both marine and 

freshwater species collected from a number of sites around New Zealand, which included all New 

Zealand case-making genera with the exception of Triplectidina (Leptoceridae); Kokiria (Kokiriidae), 

Periwinkla (Conoesucidae); and Pseudoeconesus and Tarapsyche (Oeconesidae). Species were 

collected by a number of methods, including using a UV light trap or net sweeping for adults, or use 

of a surber net or hand searching in substrate for larvae. All specimens used in the final analysis are 

listed in Table 4.1   

This study also incorporated sequences from a number of previous studies (Kjer et al. 2001, 

2002, Johanson & Keijsner 2008, Johanson et al. 2009, Johanson & Malm 2010), which included both 
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16S and 28S sequences for the New Zealand species Philanisus plebeius (Chathamiidae); and 

Pycnocentrodes aureolus and Olinga feredayi (Conoesucidae). Both sequences were present for many 

overseas genera, (although congeneric species had to be combined in some cases) of Sericostoma spp. 

(Sericostomatidae), Austreithrus spp. (Philorheithridae), Limnocentropus insolitus 

(Limnocentropodidae), Molanna spp. (Molannidae); and Caenota plicata and Caloca saneva 

(Calocidae).   

DNA was extracted using a standard-phenol chloroform method, and regions of the 

mitochondrial genes COI and 16S, and also two regions (D1 and D3) of the nuclear gene 28S were 

amplified using a total of nine different primers (see Table 4.2). The COI region was amplified first 

and used as a DNA „barcode‟ to confirm species status for some specimens, compared with data 

available on GenBank. The parameters for amplification have been presented in Chapter Two. DNA 

sequencing generally used one primer only; HCO2198 for COI, 28SD1f for 28SD1, 28SD3f for 

28SD3, and 16BRH for 16S although some were sequenced from both sides if retrieved data needed 

improved resolution. Some species were never successfully amplified in all regions and were 

eventually omitted from further analysis including Zelolessica (Helicophidae), Hudsonema and 

Oecetis (Leptoceridae), Confluens (Oeconesidae) and Pycnocentrella (Calocidae). Representatives 

from each family still remained in the analysis however, and these omissions were not considered 

significant. 

All sequences used are listed in Table 4.3. For the Chathamiidae the species Philanisus 

plebeius and Chathamia brevipennis were used to represent both genera and the Chathamiidae as a 

whole. Together this dataset comprised six of the families of the Sericostomatoidea. However this 

excluded the Bereaidae, Anomalopsychidae, Antipodoeciidae, Barbarochthonidae, Hydrosalpingidae 

and the Petrothrincidae as none of these families are found in New Zealand and data for both genetic 

regions was not available. Some phylogenetic studies have placed almost all these families near the 

Chathamiidae at some point, including the Southern African Hydrosaplingidae (Scott & de Moor 

1993), the Southern African and Madagascan Petrothrincidae (Henderson & Ward 2007), the 

Northern hemisphere Bereaidae (Henderson & Ward 2007), and the South American 
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Anomalopsychidae (Kjer et al. 2001); although none of these relationships are well supported. The 

Antipodoeciidae, represented only by the species Antipodoecia turneri from Southern Australia, have 

not been included in any molecular study to date although morphology does not suggest a close 

relationship to the Chathamiidae (Ross 1967, de Moor & Scott 1993, Henderson & Ward 2007, 

Holzenthal et al. 2007). The analysis also included three families of the Leptoceroidea (the 

Molannidae, Leptoceridae and the Limnocentropodidae), and finally one family of the Plenitentoria 

(the Oeconesidae) for use as an outgroup taxon. 

 

4.2.2 Alignment, phylogenetic analysis and molecular clock. 

Sequences were aligned in CLUSTALX algorithm in MEGA V 4 (Kumar et al. 2007, 2008), 

using default parameters and with finer scale editing by eye. All sequences had large number of 

insertions, thus some regions could not be aligned with certainty and were removed from analysis. 

Each of the three regions were analysed separately and concatenated using the model selection 

software jMODELTEST (Posada 2008), selecting a GTR + G (General time reversal model + 

Gamma) in all cases. The dataset was run in the phylogenetic software MrBayes 3.1 (Heulsenbeck & 

Ronquist 2001, Ronquist & Huelsenbeck 2003) using a total of 10,000,000 generations sampled every 

10,000 to gain a total of 1,000 trees. The first 25% of the trees were discarded as a burn-in phase and 

the remainder used to estimate the posterior probabilities. 

To test for a clock-like evolution of the gene sequences and possible gene saturation, the 

dataset was analysed using the phylogenetic software DAMBE (Data Analysis in Molecular Biology 

and Evolution, Xia 2001, Xia & Xie 2001). The likelihood ratio test used a base tree generated by 

neighbour-joining with use of a GTR model and the Oeconesidae as an outgroup.  Taxa were sampled 

for use in a Relative Rates test, which included two sister species and their nearest outgroup as 

inferred by the Bayesian analysis, and was repeated using random sequences throughout the tree. To 

further test for saturation, a false test of substitution saturation was also run (Xia et al. 2003, Xia & 

Lemey 2009).  
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The software BEAST v1.6.1. (Drummond & Rambaut 2007) was used to implement a 

molecular clock on the data. Parameters were set using a GTR + G model and a Yule speciation 

model. A molecular clock was run using a relaxed uncorrelated lognormal estimate, with prior age 

estimates given normal distributions ± standard deviation (see below for calibrations used). The 

Bayesian analysis was run using 10,000,000 generations with a sample frequency of 10,000, with the 

first 25% discarded as a burn-in phase. The log file was then also reviewed in Tracer v. 1.5. 

For calibration points a fossil identified as being from the Helicophidae from the Purbeck 

beds of England (140 Ma) was used (Shukatsheva & Jarzembowski 2001). However the association 

with the Helicophidae is dubious as the family is otherwise known only from the Southern 

Hemisphere, and other Northern hemisphere fossils of the family have since been ascribed to the 

extant northern hemisphere family Sericostomatidae (Wietchat & Wichard 1998). This point was 

therefore used as a node calibration for the origin of the Seriocostomatoidea, assumed as representing 

the oldest known record of a caddisfly from this group. For a second calibration point a Cretaceous 

fossil of a larval Leptoceridae from the Baissa deposit of Siberia was used, dated at roughly 135 Ma 

(Grimaldi & Engel 2005, Ivanov 2006). This age was used as the estimate for most recent common 

ancestor of the Leptoceridae and its nearest sister taxon as inferred from the prior bayesian phylogeny. 

The geological age of the Leptocerid fossil source strata is less certain than that of the „Helicophid‟ 

(Rasnitystn & Zherikhin 2002) therefore these groups were given normal distribution prior estimates 

with standard deviations of 20 and 5 million years respectively. Also due to the taxonomic uncertainty 

of the Helicophid fossil, the analysis was also run using the Leptocerid fossil only. A smaller 

deviation of only 10 million years was used in this instance, here being the only calibration point 

available. Although the possible „correct‟ sister taxon to the Leptoceridae was not included (such as 

the Calamoceratidae), this would presumably only allow for an underestimation of the age of the last 

common ancestor. 
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4.3 Results 

4.3.1 Phylogenetic Analysis 

 The final Bayesian tree is shown in Fig 1.1. Here monophyly of the Chathamiidae was 

supported, and was strongly indicated to be sister group to a monophyletic Conoesucidae (99.999% 

Bayesian posterior support). This in turn was shown likely to be related to the Helicophidae and the 

Calocidae together comprising a clade. However this group was also suggested to contain the 

Molannidae, a Leptoceroidean family.  Placement of Alloecentrella in the Helicophidae and Rakiura 

in the Helicopsychidae were supported. The Sericostomatidae was suggested as basal to other 

Sericostomatoidean families, and the Leptoceridae and the Philorheithridae were suggested sister taxa 

(the common ancestor of the latter group were used for fossil calibration). Basal position of the 

Oeconesidae, shown to comprise a closely related monophyletic group, was also supported.  

 

4.3.2 Molecular Clock & Saturation Tests 

 The likelihood ratio test found a non-significant result (P = 0.0613, > 0.01), thus all taxa are 

assumed an equidistance from the root of the tree, congruent with a constant evolutionary rate. All 

relative rates test consistently returned non-significant P-values also supporting this result. The false 

test of substitution saturation returned a significant P-value (< 0.01) and showed an ISS value of 

0.1016 and an ISSC of 0.7285. The ISS < ISSC relationship with the significant P-value indicated 

little saturation, and indicated a genetic sequence useful for phylogenetic purposes. 

 Of the two Bayesian trees inferred in BEAST, the tree using both calibration dates (see 

methods) showed younger (and more conservative) ages than that using only the Leptoceridae which 

were both older and also more variable. Therefore the tree using both calibrations was used, shown in 

Fig. 4.2. As inferred in Tracer, the Chathamiidae diverged from the Conoesucidae roughly 93.5 Ma 

(95% HPD range of 73-119.5 Ma), and Chathamia and Philanisus are inferred to have diverged 30 

Ma (95% HPD range of 13-53 Ma). Other ages include a divergence of the Conoesucidae at 65 Ma 
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(95% HPD range of 41-83 Ma), a divergence of Helicopsyche and Rakiura at 80 Ma (95% HPD range 

of 56-108 Ma), a divergence of the Helicophidae and Calocidae at 80 Ma (95% HPD range of 57-105 

Ma), and a divergence of Philorheithrus and Austreithrus at 64 Ma (95% HPD range of 34-91 Ma). 

 

4.4 Discussion   

 The phylogeny found in this study generally showed robust Bayesian support and is 

consistent with previous genetic and morphological based phylogenies. The only feature that stood 

out as unusual was the placement of the Molannidae well within the Sericostomatoidea. This is almost 

certainly an artefact of long-branch attraction or issues with DNA alignment, as the Molannidae are 

known to be closely related to the Leptoceridae, strongly demonstrated both by morphological and 

genetic evidence (eg. Scott & de Moor 1993, Kjer et al. 2001, 2002, Johanson & Malm 2010). 

Placement of Alloecentrella and Rakiura within the Helicophidae and Helicopsychidae respectively 

was supported. Most relevant to this study in particular was the strongly supported relationship 

(Bayesian support of almost 100%) between the Conoesucidae and the Chathamiidae. This group in 

turn (if the Molannidae are then excluded) was sister to clade containing the Helicophide and the 

Calocidae. Using the characters listed by Henderson & Ward (2007), the Conoesucidae and 

Chathamiidae share some larval morphological features not found in the Helicophidae and Calocidae. 

These include the presence of branched abdominal gills and a quadrangular ventral apotome 

(sclerotized plates under the head); opposed to simple or absent gills, and a triangular apotome in the 

Helicophidae and Calocidae. Other common features, including those of the adults are generally 

shared between all four families.  

A probable close relationship of these families has been indicated in the past; however this 

particular topology is new to this study. For example a basal Helicophidae and a Conoesucidae-

Calocidae relationship (Johanson & Keijsner 2008, Johanson et al. 2009, Johanson & Malm 2010), a 

basal Conoesucidae and a Chathamiidae-Helicophidae relationship (Henderson & Ward 2007), and a 
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Chathamiidae-Calocidae relationship (Scott & de Moor 1993) have been demonstrated. None have 

demonstrated monophyly per se however; the clade containing these four families has also been 

inferred to include the Sericostomatidae, Petrothrincidae and Anomalopsychidae among others, 

although a close relationship to any other specific family has not been repeatedly supported. However 

as several families were not included in this phylogeny, the implications of a more thorough 

phylogeny to the topology found here must be considered. Other points in the tree include the basal 

position of the Sericostomatidae, followed by the Helicopsychidae, and also a sister grouping of the 

Philorheithridae and the Leptoceridae. 

The molecular clock found an age of the Chathamiidae consistent with a vicariant origin, with 

the age of the last common ancestor of the Chathamiidae and the Coneoseucidae dated at roughly 94 

Ma (mean age, total distance of 73-113 Ma). The molecular clock also estimated a wide range of ages 

for the divergence of Philanisus and Chathamia, between 53-13 Ma (mean 30 Ma). This has 

implications considering the endemicity status of Chathamia to the Chatham Islands which are likely 

no older than Pleistocene in age, and conflicts with the assumed Pliocene age of the taxon (~3Ma) 

estimated in Chapter Three. It may be that Chathamia represents an old taxon now extinct in mainland 

New Zealand, the clock is wholly innacurate, or that the molecular clock used here is inappropriate 

for estimating more recent divergences. 

Although the age of the Chathamiidae may seem to agree with New Zealand‟s rifting from 

Australia, is important to note that the inferred closest taxon to the Chathamiidae, the Coneosucidae, 

is well represented in New Zealand. A prior phylogeny of the Conoesucidae indicated at least three 

clades, one wholly New Zealand, one wholly Australian and one found in both regions (Johansen et 

al. 2009). This study included taxa representative of all these groupings, and although a Cretaceous 

divergence of extant taxa was indicated, an age of these diversions congruent with vicariance was not 

well supported (83-43 Ma, mean 65 Ma). New Zealand or Australian origins for the Conoesucidae 

both remain possibilities, although Johansen et al. (2009) assumed a New Zealand origin to be more 

parsimonious as the arrangement of the clades weakly suggested New Zealand‟s species to form an 

ancestral paraphyly, also supported here. If the Conoesucidae and the Chathamiidae comprise a clade 
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of New Zealand origin, this may have implications as the inferred age of this group diverging from 

the Calocidae and Helicophidae is indicated 133-89 Ma in age (mean 114 Ma), predating New 

Zealand‟s continental age somewhat (although the lower estimates are compatible). 

It is possible that the fossil calibrations in this study were overestimates. The fossil used to 

date the node of the Sericostomatoidea was based on some incomplete fossilised wings from near the 

Jurassic-Cretaceous boundary, and may represent an unrelated taxon. However, a late Jurassic origin 

of the Sericostomatoidea may have to be expected if the group‟s biogeography is inferred to reflect 

continental drift. All families, perhaps excepting the cosmopolitan Helicopsychidae are restricted 

either to Africa and Madagascar (Barbarochthonidae, Petrothrincidae, Hydrosalpingidae); 

Eurasia(Beraeidae, Sericostomatidae); or the „Australis‟ regions of Australia, South America, New 

Zealand and New Caledonia (Anomalopsychidae, Antipodoeciidae, Calocidae, Chathamiidae, 

Conoesucidae, Helicophidae). Pangea and Gondwana (then including Africa) did not fully separate 

until the late Jurassic, followed by Africa then separating in the Mid-Cretaceous opening the South 

Atlantic (Golonka & Bocharova 2000, Jokat et al. 2003). Although biogeography may suggest 

continental vicariance, monophyly of each geographic grouping is currently equivocal, although 

weakly indicated in some cases (e.g. Kjer et al. 2002).  

 An alternative possibility is that Gondwanan India may have transported the 

Sericostomatidae and Beraeidae into Eurasia, by which the Sericostomatoidea may have reached its 

present distribution more recently. However this seems unlikely as a fossil attributed to the 

Sericostomatidae is described from Baltic amber roughly late Creatceous in age (Botosaneanu & 

Wichard 1983, Wietchat & Wichard 1998) and India did not reach Eurasia until the late Cenozoic (Ali 

et al. 2008). Additionally the role of extinction cannot be discredited, as many contemporary 

„Gondwanan‟ taxa are well represented by Mesozoic fossils in Laurasia, such as the conifer genus 

Araucaria (Kunzmann 2007). Mesozoic fossils with affinities to the Calocidae, Helicophidae and 

Coneoesucidae are known from Europe, although their placement within any of these families is 

dubious (Botosaneanu & Wichard 1983). The historical biogeography of the Sericostomatoidea is an 

exciting prospect for further research, however is not within the scope of this particular study. 



Chapter Four: Phylogenetic placement of the Chathamiidae 

 

127 

Other ages include the divergence of Austreithrus and Philorheithrus as roughly Paleocene in 

age (~60 Ma). The Philorheithridae have a current distribution indicative of Gondwanan continental 

drift, restricted to Australia, New Zealand, South America and also possibly Madagascar (Weaver et 

al. 2008). However the age here suggests that New Zealand‟s lineage is unlikely to reflect vicariance, 

although this prospect cannot be rejected (a maximum age of 92 Ma was suggested). However, only 

two genera of the total nine were used. Various morphological features shared between Philorheithrus 

and other members of the family are absent in Austreithrus, thus the two genera are unlikely to be 

closely related (Henderson & Ward 2006), in which case an even more recent age of Philorheithrus 

would be demonstrated. 

By contrast, a vicariant age of New Zealand‟s endemic Rakiura was supported (56-108 Ma in 

age, with mean age of 80 Ma). Rakiura is almost certainly the most basal member of the 

Helicopsycidae or the „snail-cased‟ caddisflies. The only other genus, Helicopsyche, is found 

worldwide and comprises roughly 250 known species including seven in New Zealand (Johanson 

2001, Holzenthal et al. 2007). Helicopsyche contains a total of six subgenera, one restricted to 

Australasia (Saotrichia) one to South America (Cochilopsyche), one to Madagascar and the 

Seychelles (Petrotricia), one to the Americas (Feropsyche), and two (Galopsyche and Helicopsyche) 

to the Palearctic and Oriental regions (Johanson 1998). Helicopsyche attributable to Feropsyche are 

known from Dominican amber (Johanson & Wichard 1996, Weaver 2007), indicating by roughly 20- 

25 Ma all subgenera were well established (Poinar & Poinar 1999). It is plausible the common 

ancestor of Rakiura and Helicopsyche was found on Gondwanan „Australis‟, with Helicopsyche 

evolving on South America and Australia and later dispersing elsewhere, including to New Zealand. 

However this argument may be weakened as the Helicopsychidae is possibly more closely related to 

the Northern Sericostomatidae and Beraeidae than the other supposedly „Gondwanan‟ families (Scott 

& de Moor 1993, Kjer et al. 2002), although not evidenced in this study. Again, considerable further 

study is needed. 

 This study set out to explore the phylogenetic affiliations of the Chathamiidae and to test if its 

evolutionary age was congruent with a Gondwanan origin in New Zealand. Here a Chathamiidae 
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Conoesucidae sister relationship was well supported. Molecular clock estimates did find an age close 

to the geological rifting in New Zealand, however the possibility of the taxon to have gone extinct 

elsewhere, as with many of New Zealand‟s other ancient plants and animals, will always remain a 

distinct possibility (Waters & Craw 2006). Overall the Chathamiidae and indeed many closely related 

caddisflies represent a fascinating, largely untapped group for extensive historical biogeographical 

study, in New Zealand and worldwide. It is concluded here that the evidence supports the 

Chathamiidae representing a taxon of a vicariant Gondwanan origin, and significantly predates the 

Oligocene submergence of New Zealand. 



Chapter Four: Phylogenetic placement of the Chathamiidae 

 

129 

4.5 Figures 

TABLE 4.1) List of all specimens used in this study for use of new sequences. 

Species Family Code Collector Ontogeny Location Date Coordinates 

Oeconesus maori  Oeconesusidae OEC2 Alex Boast Adult Pukerua Bay 26/03/2009 41°02'15 S, 174°53'12 E 

Zelandopsyche ingens Oeconesusidae ZE101 Ian Henderson Larva - 15/01/2008 - 

Zepsyche acinaces Oeconesusidae ZP101 Ian Henderson Adult Tangarakau Gorge - - 

Triplectides dolichos Leptoceridae LE202 Ian Henderson Adult Mauatotara Falls 9/02/2008 - 

Philorheithrus sp. Philorheithridae PS101 Alex Boast Larva St. Arnaud Ranges - 41°51'15 S, 172°52'60 E 

Chathamia brevipennis Chathamiidae CB3 Alex Boast Larva Chatham Island 14/02/2010 43°43‟49 S, 176°16‟07 E 

Alloecentrella magnicornis Helicophidae AL2 Ian Henderson Adult Tangarakau Gorge 29/01/2010 - 

Bereaoptera roria Conoesucidae BE201 Alex Boast Larva Ohakune 2/09/2009 39°24;09 S, 175°24'41 E 

Pycnocentria evecta Conoesucidae PC6 Alex Boast Larva Ohakune 1/09/2009 39°25'19 S, 175°24'47 E 

Helicopsyche albecens Helicopsychidae HE201 Alex Boast Larva Ohakune 2/09/2009 39°24;09 S, 175°24'41 E 

Rakiura vernale Helicopsychidae RV101 Alex Boast Larva Westhaven 25/02/2010 40°36'43 S, 172°34'37 E 

 

TABLE 4.2) List of all primers used for amplification and sequencing. 

Gene/Region Primer Name Primer sequences (5' - 3') Reference  

COI HCO2198 TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. 1994 

COI LCO1490 GGTCAACAAATCATAAAGATATTGG Folmer et al. 1994 

16s 16sARL CGCCTGTTTATCAAAAACAT Palumbi 1996 

16s 16sBRH CCGGTCTGAACTCAGATCACGT Palumbi 1996 

28S D1 28SD1f GGAGGAAAAGAAACTAACAAGGATT Kjer et al. 2002 

28S D1 28SD1r CAACTTTCCCTTACGGTACT Kjer et al. 2002 

28S D3 28SD3f ACCCGTCTTGAAACACGGAC Kjer et al. 2002 

28S D3 28SD3r1 ATTCCCCTGACTTCGACCTGA Kjer et al. 2002 

28S D3 28SD3r2 CTATCCTGAGGGAAACTTCGGA Kjer et al. 2002 
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TABLE 4.3) List of all sequences used in this study. References: 1 Kjer et al. (2001), 2 Hayashi et al. (2008), 3 Johanson et al. (2009), Johanson & Keijsner (2008), 5 

Johanson & Malm (2010) 

   Source   

Genus/Species Family Biogeography 16S 28SD1 28SD3 

Oeconesus maori Oeconesidae New Zealand This study 1 AF436174  1 AF436295 

Zelandopsyche ingens Oeconesidae New Zealand This study This study This study 

Zepsyche acinaces Oeconesidae New Zealand This study This study This study 

Triplectides dolichos Leptoceridae New Zealand This study This study This study 

Limnocentropus insolitus Limnocentropodidae Japan 2 AB365798 1 AF436175 1 AF436296 

Molanna angustata/uniophila Molannidae Europe 3 FJ263197 1 AF436201 1 AF436321 

Austrheithrus glyma/ronewa Philorheithridae Australia 3 FJ263221 1 AF436207 1 AF436327 

Philorheithrus sp. Philorheithridae New Zealand This study This study This study 

Alloecentrella magnicornis Helicophidae New Zealnad 4 EF394983 This study This study 

Caenota plicata Calocidae Australia 4 EF395003 1 AF436191 1 AF436311 

Caloca saneva Calocidae Australia 5 FN257670 1 AF436195 1 AF436315 

Chathamia brevipennis Chathamiidae Chatham Island This study This study This study 

Philanisus plebeius Chathamiidae Australasia 3 FJ263205 1 AF436196 1 AF436316 

Bereaoptera roria Conoesucidae New Zealand 3 FJ263202 This study This study 

Costora delora Conoesucidae Australia 4 EF395004 1 AF436192 1 AF436312 

Olinga feredayi Conoesucidae New Zealand 4 EF394980 1 AF436194 1 AF436314 

Pycnocentria evecta Conoesucidae New Zealand 3 FJ263199 This study This study 

Pycnocentrodes aureolus Conoesucidae New Zealand 3 FJ263198 1 AF436193 1 AF436313 

Alloecella grisea Helicophidae Australia 4 EF395006 1 AF436181 1 AF436302 

Helicopsyche albecens Helicopsychidae New Zealand 4 EF394986 This study This study 

Rakiura vernale Helicopsychidae New Zealand 4 EF394976 This study This study 

Sericostoma clypeatum / sp. Sericostomatidae Europe 3 FJ263207 1 AF436185 1 AF436306 

 

 



Chapter Four: Phylogenetic placement of the Chathamiidae 

 

131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 4.1) Bayesian analysis tree as inferred through MrBayes. Posterior Bayesian probability indices are shown. 
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FIG 4.2) Bayesian analysis as run through BEAST with molecular clock estimates shown. Posterior probabilites shown on left of nodes, and estimated age in bold (in Ma). Bars show 95% 

HPD. 
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Chapter Five: General Discussion and Conclusions. 

 

5.1 Major results of this study.  

In this thesis, the evolutionary history of New Zealand‟s marine caddisflies, the 

Chathamiidae, was examined through the use of a thorough genetic analysis. Firstly an analysis was 

performed on the common and widespread species Philanisus plebeius from samples throughout New 

Zealand and also New South Wales Australia, to investigate the phylogeographic structure of this 

species in New Zealand and also to determine the origin of the population in Australia. Secondly, the 

inner phylogeny of the Chathamiidae was examined with a special emphasis on the island species 

Philanisus fasciatus from the Kermadec Islands, and Chathamia brevipennis from the Chatham 

Islands. In addition, two other species of caddisfly; Oecetis chathamensis and Hydrobiosis lindsayi 

from Chatham Island were also used as a comparison for C. brevipennis. Finally a family level 

phylogeny of the Chathamiidae and related families was undertaken, using both sequences new to this 

study and also drawing on data from a number of previous studies. This thesis found a number of new 

and interesting results in each of these chapters. 

 The first chapter discussing results (Chapter Two) focused entirely on Philanisus plebeius. It 

was found that the New Zealand population of P. plebeius comprised almost all of the genetic 

diversity found within the species; a total of 21 haplotypes in 3 identifiable haplogroups. By contrast 

all Australian sequences shared just one haplotype not found in New Zealand, although this differed 

from the dominant New Zealand haplotype by only a single base pair, and nested within one of the 

haplogroups identified.  Based on the available genetic information, a human introduction to Australia 

is not supported although a recent dispersal from New Zealand since the LGM (~20 ka ago) is largely 

conclusive. However a human introduction would be very strongly supported should the Australian 

haplotype be discovered to be resident in a New Zealand population.  
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 The trans-Tasman nature of the Chathamiidae was also found to be more complex than 

previously thought, as whilst studying P. plebeius samples from Australia a single larval sample from 

Sydney was found to be that of Chathamia integripennis. This again differed from a New Zealand 

haplotype of the species by a single base pair. The species C. integripennis was previously thought 

entirely endemic to New Zealand, and to the upper North Island in particular, so this result was 

wholly unexpected. It was decided that this particular result fell outside of the scope of Chapter Two 

and was instead discussed in the following chapter. 

In New Zealand itself there was a distinct cryptic population structure found in two closely 

associated sites in the central eastern North Island, just south of Hawke‟s bay (comprising the entirety 

of one of the haplogroups described above), evolutionarily distinct from the remainder of the species. 

The northern boundary of this cryptic group was not identified, but there was found to be a discrete 

genetic switch of the genetic groups between Mangakuri and Whangaehu beaches, a geographic 

distance of just 52 km. A number of possible hypotheses for this break were proposed, including 

oceanic currents, volcanism and Pleistocene climate change, however none were considered 

conclusive. The reasoning for this structure is still considered largely unknown, although similar 

patterns have been found in some marine studies (Nakano & Spencer 2007, Nickel 2009).  Overall 

this was the major result of this particular Chapter, and together these observations raise the 

possibility for this population to represent a previously unidentified cryptic species.  

 The remainder of Philanisus plebeius was shown to contain little genetic diversity, almost all 

fell within the other major haplogroup, and in turn most of these differing by only one base pair from 

the most common haplotype which was found throughout New Zealand. It seems probable that this 

haplogroup represents a radiation following the last glacial maximum, and only this grouping has 

successfully re-dispersed throughout the remainder of New Zealand. It seems likely that during the 

glacial cycles, environmental limitations restricted the species largely to the North of New Zealand 

although more evidence from this region is needed to support this fully. This radiation event also 

included the single haplotype found in Australia. There was a single sample that was found to be 

genetically intermediate between the two major groupings (comprising a third and final haplogroup), 
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and remains somewhat enigmatic. The distribution of this haplogroup remains largely unknown, 

although is likely restricted to Northern New Zealand (the sequence came from one sample collected 

in Tauranga estuary).  

 The next main chapter (Chapter Three) analysed the phylogeny of the Chathamiidae and also 

investigated two other unrelated caddisfly species from the Chatham Islands. It was found that the 

Chathamiid species Chathamia integripennis from the upper North Island (and also evidently 

Australia, see above), was nested within the genus Philanisus. The type (and only remaining) species 

of Chathamia, C. brevipennis, instead formed a distant sister taxon to all the remaining Chathamiidae. 

It was suggested that C. integripennis be transferred to Philanisus, an inference that would leave 

Chathamia a monotypic genus endemic to the Chatham Islands.  

Age estimates using strict substitution rates from Brower (1994) and Papadopoulou et al. 

(2010) suggested an age of roughly 3-500,000 years for the lineage represented by P. fasciatus 

evidencing that land has been present in the Kermadec region since the mid Pleistocene. A Pliocene 

age of roughly three million years for the species C. brevipennis was also found. However the age for 

C. brevipennis by relaxed molecular clock using fossil calibrations in the final main chapter (Chapter 

Four) suggested a minimum age of 12 million years (with a mean of 30 million years). It is unknown 

which clock is more accurate. However the possibility for C. brevipennis to represent a taxon of 

Pliocene age or older seems likely, possibly significant as the modern Chathams are generally 

considered no older than Pleistocene in age (Campbell & Hutching 2007). This may indicate that the 

C. brevipennis lineage has since gone extinct in New Zealand, or that there has been continuous land 

in the region longer than current geological estimates suggest. There are a number of studies that do 

suggest Pliocene ages for at least some Chatham Island taxa (e.g. Liggins et al. 2008, Heenan et al. 

2010), congruent with this finding. This study also demonstrated an early Pleistocene age for the 

species Hydrobiosis lindsayi, and a mid-late Pleistocene age for the species Oecetis chathamensis.  

 In this study only a small fragment of the gene COI was ever sequenced from the species 

Philanisus mataua. This sample was a museum specimen roughly 17 years in age (collected in 1993), 
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and had been stored in 70% ethanol at room temperature since this time. Amplification of this 

sequence involved numerous attempts over several weeks, and was only successful using one new 

primer developed in this study (paired with the universal primer LCO1490). Another primer was 

developed to be paired with the universal primer HCO1498 to comprise the remainder of the sequence 

however was never successful. Eventually the region was successfully amplified and sequenced twice, 

and the data received demonstrated both times two DNA sequences within each sample (thus either 

contamination or a heteroplasmic sample). This comprised a total of seven such heterogenous sites, all 

corresponding exactly with regions either indicative with haplotypes of Philanisus plebeius or 

Chathamia integripennis. It is considered that P. mataua may therefore be a hybrid between these two 

species, or represents a close relative of P. plebeius and the data was contaminated by C. integripennis 

DNA (the reconstructed P. plebeius sample was divergent from any known P. plebieus haplotype, 

although still fell within the diversity exhibited by this species). New sequences of P. mataua are of 

some interest here, to see which (if either) hypothesis is correct.     

 The final chapter (Chapter Four) addressed the phylogenetic position of the Chathamiidae 

among related families and also used a relaxed molecular clock. This particular phylogeny was the 

first in caddisflies to combine the two ribosomal DNA sequences 28S and 16S in a single analysis. 

However the number of taxa was limited. Time constraints and amplification issues resulted in a 

number of taxa being omitted, in spite of having been successfully collected. Additionally families not 

found in New Zealand were poorly represented, as these were limited to what had been sequenced in 

past studies. Only by chance some genera therefore had sequences of both regions available (as 

opposed to species, as this phylogeny was forced to combine different congeneric species into single 

sequences). However the tree topology found was robust, and strongly suggested the Chathamiidae to 

form a sister taxon to the Australasian family Conoesucidae, in turn related to the other mostly 

Australasian families of the Calocidae and the Helicophidae. A molecular clock was used based on 

fossil calibrations, and is considered to be conservative and the dates found are thus unlikely to 

represent overestimates. In this case a late Cretaceous origin of the Chathamiidae was found, 
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consistent with a Gondwanan origin in New Zealand. The potential of 28S and 16S used together to 

construct a robust phylogeny using a larger number of taxa is well supported. 

 

5.2 Limitations of this study and future research 

 The limitations of this study were in most part, logistical. The phylogeography of P. plebeius 

did not include many sites in the upper North Island excepting from around Auckland and a few 

samples from Tauranga. No sites from the west coast of the South Island were used, and a number of 

geographically isolated regions (especially New Plymouth) were limited to very few samples. 

Additionally the use of only mitochondrial genes can lead to a biased perspective of gene flow in 

populations due to lineage sorting (Moore 1995). As a result future study of the phylogeographic 

structure of P. plebeius using nuclear genes would be of particular interest. Future research should 

include a large number of sites in the upper North Island, hypothesised in this study to provide the 

glacial refuge of the species and thus likely to represent most of the evolutionary diversity. Samples 

from the western South Island would also be of some interest although are predicted here to show 

very low genetic diversity, and are unlikely to possess any unique hapotypes. Wider sampling to also 

test for the possible gaps in the species‟ distribution (such as the North Eastern North Island and 

Stewart Island) may need to be undertaken, and also the use of a nuclear gene (such as EF-1a) should 

perhaps be considered. P. plebeius was well demonstrated, in spite of the limitations here, to have a 

high degree of interesting genetic features, and should be of interest for a much more thorough 

analysis. More sampling in New South Wales should also be of interest, especially to confirm or 

identify the distribution of C. integripennis there. 

 It is considered here that the phylogenetic relationship between the species of the 

Chathamiidae was robustly tested, excepting the species Philanisus mataua, from which new 

complete sequences are critically needed. Again no nuclear genes were used however, ignoring the 

effects of possible prior introgression events misleading the results, such as for example the observed 
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placement of C. integripennis within Philanisus (Posada & Crandall 2002). The family level 

phylogeny although finding arguably the most robust phylogenetic placement of the Chathamiidae to 

date, was nonetheless limited by its use of only half of the families of the Sericostomatoidea, and the 

use of only a few species per family. A larger scale phylogeny of case making caddisflies, or at the 

very least the Sericostomatoidea, incorporating several conservative genes and all families and also 

using a molecular clock would provide a fascinating biogeographic study regarding the presumed 

radiation of this group in the Mesozoic. It is also argued in this study that many more studies on the 

biotas of New Zealand‟s outermost islands are urgently needed, especially the Kermadec Islands, and 

also the sub-Antarctic Islands which have been subject of no phylogeographic studies to date. It is 

also suggested here that some of the species endemic to the Chatham Islands be selected to further 

provide evidence for, or against, a pre-Pleistocene age of the Chatham biota. 
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