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Abstract

The anti-tumour immune response is often not potent enough to prevent or eradicate

disease. Dendritic cells (DCs) are professional antigen-presenting cells that are critical

for the initiation of immune responses. While DCs frequently infiltrate tumours, lack

of activation together with immuno-suppressive factors from the tumour can hamper

an effective anti-tumour immune response.

In this thesis, the ability of microbial stimuli and danger signals to overcome suppres-

sion and re-programme DCs and macrophages to an immuno-stimulatory phenotype

was investigated. Whole live Mycobacterium smegmatis and BCG were used to pro-

vide multiple pathogen-associated molecular patterns. The intracellularly-recognised

toll-like-receptor (TLR) ligands CpG and Poly IC, as well as the extracelullarly recog-

nised TLR ligand LPS, and the danger signal monosodium-urate crystals (MSU) were

also included.

Bone-marrow derived DCs were found to respond to all adjuvants in vitro and DCs

in tumour cell suspensions could be activated ex vivo. To assess the ability of ad-

juvants to enhance anti-tumour responses in vivo, immune-competent mice bearing

established subcutaneous B16F1 melanomas were injected peri-tumorally with the

different adjuvants. In line with previous reports, CpG treatment was effective in

delaying tumour growth and increasing survival. A similar effect was found with

Poly IC, but not with LPS, M. smegmatis, BCG or MSU alone. Combination of

M. smegmatis + MSU, however, significantly delayed tumour growth and prolonged

survival, while combinations of MSU + BCG or LPS were ineffective. Similar results

were obtained using the B16.OVA melanoma and E.G7-OVA thymoma subcutaneous

tumour models. In addition, Poly IC and MSU + M. smegmatis reduced primary

tumour growth as well as lung metastases in the orthotopic 4T1 breast carcinoma

model.
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Both Poly IC and MSU + M. smegmatis elicited an anti-tumour immune response

that required CD8 T cells as well as NK cells. These treatments also resulted in

increased proliferation of CD8 T cells and NK cells in tumour-draining lymph nodes,

augmented infiltration of effector cells into the tumour, as well as enhanced produc-

tion of inflammatory cytokines by effector cells and DCs in tumours. In addition,

MSU + M. smegmatis also stimulated CD4 T cell proliferation, tumour-infiltration

and activation, while at the same time decreasing the frequency of regulatory T cells

in tumours.

Activation of a successful immune response to tumours was associated with early in-

duction of IL-12 and IFNγ, as well as moderate levels of pro-inflammatory cytokines

at the tumour site and systemically. Furthermore, anti-tumour activity correlated

with the induction of inflammatory monocyte-derived DCs in tumour-draining lymph

nodes. These DCs were also observed in adjuvant treated tumours and their ap-

pearance was preceded by accumulation of inflammatory monocytes at the tumour

site.

These findings suggest that specific natural adjuvants can successfully modify the tu-

mour environment and enhance the innate and adaptive anti-tumour immune response

to delay tumour progression and increase survival.
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bearing mice into näıve recipients . . . . . . . . . . . . . . . . 189

Figure 5.11 Adoptive transfer of splenic T cells from adjuvant treated tumour-

bearing mice delays onset of tumour growth . . . . . . . . . . . 191

Figure 5.12 Increasing the numbers of adoptively transferred splenic T cells

from adjuvant treated tumour-bearing mice does not improve

tumour protection in recipients . . . . . . . . . . . . . . . . . . 192

Figure 5.13 The anti-tumour effect of Poly IC and MSU + M. smegmatis

treatment requires adaptive immunity . . . . . . . . . . . . . . 194

Figure 5.14 Depletion of CD4 T cells, CD8 T cells, Tregs and NK cells in

tumour-bearing adjuvant-treated mice . . . . . . . . . . . . . . 196

Figure 5.15 Both CD8 T cells and NK cells are required for the anti-tumour

effect of Poly IC and MSU + M. smegmatis treatment . . . . . 197

Figure 5.16 MSU + M. smegmatis but not Poly IC treatment reduces the

frequency of Tregs in tumours . . . . . . . . . . . . . . . . . . 200

Figure 5.17 MSU + M. smegmatis but not Poly IC treatment induces

CD25+FoxP3- CD4 T cells in tumours . . . . . . . . . . . . . 201

Figure 6.1 Repeated administration increases the anti-tumour effect of

Poly IC and MSU + M. smegmatis treatments . . . . . . . . . 220

Figure 6.2 More frequent or earlier start of adjuvant administration does

not significantly improve anti-tumour activity . . . . . . . . . . 221

Figure 6.3 Live and dead M. smegmatis in combination with MSU are

equally effective at delaying tumour progression . . . . . . . . 223

Figure 6.4 A single treatment with dead M. smegmatis + MSU has the

same effects on intratumoral immune cells as live M. smegmatis

+ MSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Figure 6.5 Dead M. smegmatis + MSU increases the number of inflam-

matory DCs in dLN similar to live M. smegmatis + MSU . . . 225

Figure 6.6 Poly IC must be administered at the tumour site while MSU +

M. smegmatis is effective even if injected into the contralateral

flank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Figure 6.7 MSU + M. smegmatis contralateral treatment requires adap-

tive immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Figure 6.8 A single MSU + M. smegmatis contralateral treatment does

not affect the immune infiltrate in tumours . . . . . . . . . . . 229



xvi

Figure 6.9 A single MSU + M. smegmatis contralateral treatment does

not affect DCs in tumour-draining LN . . . . . . . . . . . . . . 230

Figure 6.10 MSU + M. smegmatis contralateral treatment induces prolif-

eration of tumour specific CD4 and CD8 T cells . . . . . . . . 231

Figure 6.11 Repeated MSU + M. smegmatis contralateral treatment has

similar effects on the composition of the immune infiltrate in

tumours as peri-tumoral administration . . . . . . . . . . . . . 232

Figure 6.12 Adjuvant treatment in a thymoma model is effective at delay-

ing tumour growth . . . . . . . . . . . . . . . . . . . . . . . . . 234

Figure 6.13 Treatments with selected adjuvants delay tumour growth in

an orthotopic breast carcinoma model similar to their effect

against melanoma . . . . . . . . . . . . . . . . . . . . . . . . . 236

Figure 6.14 Treatment with Poly IC or MSU + M. smegmatisreduces metas-

tases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Figure 7.1 Working model of the effects of adjuvant treatments on the

anti-tumour immune response. . . . . . . . . . . . . . . . . . . 251

Figure B.1 B16F1 tumour sizes are consistent with Gaussian distribution. 305

Figure B.2 Infiltration of immune cells into tumours is consistent with

Gaussian distribution. . . . . . . . . . . . . . . . . . . . . . . . 305

Figure B.3 Accumulation of DCs in dLNs is consistent with Gaussian dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Figure D.1 Frequency and number of monocytes in spleens of adjuvant

treated tumour bearing mice. . . . . . . . . . . . . . . . . . . . 311

Figure D.2 Suppression of T cell proliferation by Ly6Chi monocytes. . . . 312

Figure D.3 Suppression of T cell proliferation by Ly6G+ cells. . . . . . . . 313



xvii

List of Tables

Table 2.1 Labware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 2.2 Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 2.3 Isotype Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 2.4 Real-time PCR assays . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.1 Number of mice per treatment group and experiment for B16F1

tumour growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Table A.1 LSR II Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Table A.2 LSR II Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Table C.1 96-well-plate quantitative PCR CT values . . . . . . . . . . . . . 307



xviii

List of Abbreviations

2-ME 2-Mercaptoethanol

ACT Ammonium Chloride Tris

AIDS Acquired immuno-deficieny syndrome

ANOVA Analysis of Variance

AP-1 activator protein 1

APC Antigen presenting cell

APC Allophycocyanin

ATP Adenosine triphosphate

B6 mice B6.SJL-PtprcaPep3b/BoyJArc mice

BCG Mycobacterium bovis Bacillus Calmette-Guérin
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Introduction



2 1 Introduction

Cancer remains a major cause of death world-wide [1]. Depending on location and

grade, cancers can be treated by surgery, chemotherapy or radiation therapy [2].

Surgery that involves removal of the entire tumour mass can be curative. However,

if the tumour is not accessible, has infiltrated the tissue locally or has metastasised

throughout the body, radiation or chemotherapy are commonly used. These treat-

ments rely on damaging the DNA of the quickly proliferating tumour cells to eliminate

them. However, all of these treatments are also carcinogenic Travis, 2002, p48958.

In addition, a small population of tumour cells may be resistant to chemotherapeu-

tic drugs. Therefore, the therapy can select for the resistant cells, which then grow

out and lead to disease recurrence. Targeted therapies against specific tumour mu-

tants have now been developed, which use monoclonal antibodies that bind to a

tumour-specific antigen [3].

Immunotherapy has the potential to complement existing therapies. Immune cells

are highly specific, can directly eliminate their targets and seek out even individual

tumour cells throughout the body [2]. While spontaneous activation of an effective

anti-tumour immune response is rare, it can lead to complete tumour regression [4].

Immunotherapy aims to boost or elicit the anti-cancer immune response. Cell-based

immunotherapy approaches have induced some complete and partial responses in can-

cer patients and the dendritic cell (DC) vaccine provenge has now been approved for

use in prostate cancer by the US Food & Drug Administration [5]. However, clinical

response rates are still low and these treatments are labour intensive and expen-

sive.

Other strategies aim to block tumour-suppressive molecules or activate stimulatory

receptors to improve the anti-tumour response. Ipilimumab and BMS-936558, an-

tibodies against inhibitory molecules on cytotoxic T cells, have shown promising

results in clinical trials [6–8]. The mycobacterium Mycobacterium bovis Bacillus

Calmette-Guérin (BCG) is currently used to activate the immune response in pa-

tients with superficial bladder cancer [9, 10].
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As research on the receptors that the immune system employs to detect pathogens

has progressed, a range of natural and synthetic ligands has been developed. These

structures all activate immune cells and can potentially be used as adjuvants to stim-

ulate the immune response both in vaccination and in a cancer therapy setting. Some

adjuvants, namely oligodeoxynucleotides containing CpG motifs (CpG), Polyinosinic-

polycytidylic acid (Poly IC) and Imiquimod, have shown promising results in animal

models of cancer [11–13]. In clinical trials, the results with CpG have been disap-

pointing [14]. The studies of Poly IC in humans indicate that it has similar effects

to viral vaccines and can increase the efficacy of chemotherapy and radiation therapy

in brain cancer [15, 16]. A topical cream of Imiquimod is currently used to treat

warts and basal cell carcinoma [17]. These studies all show that adjuvants can be

used to activate the anti-tumour immune response. However, the understanding of

their mechanism of action and the immune parameters required to induce a successful

anti-tumour response remain limited.

The aim of this introductory chapter is to review the literature on the current un-

derstanding of the anti-tumour immune response, the activation of immune cells by

adjuvants and their potential for immunotherapy.

1.1 Tumour immune surveillance

The role of the immune system to prevent and eliminate infection with pathogens

such as viruses, bacteria and parasites is well recognised. However, the immune

response is also critical for the prevention of tumours. First, it protects the host from

virus-induced tumours by clearing viral infections. Secondly, the timely elimination of

pathogens limits inflammation, which, especially in a chronic setting, can be conducive

to tumour formation. Thirdly, there is now ample evidence that the immune system

can specifically identify and eliminate tumour cells, thus preventing the outgrowth of

tumours. This third process is termed cancer immune surveillance. The idea that the

immune system can protect the body from malignant disease was already suggested
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by Paul Ehrlich in 1909 [18]. In the 1950s, Burnet and Thomas further advanced this

concept, proposing that immune cells could directly eliminate cancer cells [19], but

conclusive evidence in support has only emerged in the last 15 years [20–22].

1.1.1 Evidence from animal models

One of the first observations of a tumour-protective effect of the immune response was

that administration of interferon (IFN) could increase the survival of tumour-bearing

mice [23]. Later studies found that endogenous IFNγ was required to protect mice

against the growth of transplanted tumours [24]. The importance of IFNγ for tumour

control was further substantiated by studies in IFNγ receptor deficient mice that

showed an increased incidence of both chemically induced and spontaneous tumours

[20], and was also confirmed by independent work on IFNγ knock out mice [25].

Subsequently to the identification of cytokines as important mediators to prevent

tumours, the cells required to mediate the tumour-protective function of the immune

system were characterised. Recombination activating gene (Rag) 2-/- mice that lack

T, B and Natural Killer T (NKT) cells [26] were found to be more susceptible to both

chemically induced and spontaneous tumours [21]. Similar results were obtained in

Rag1-/- and severe combined immuno-deficient (SCID) mice, which are also deficient

in T, B and NKT cells [27], thus demonstrating the tumour-protective function of

host lymphocytes. Furthermore, gene targeted mice lacking NKT cells or depleted of

either T cells or Natural Killer (NK) cells revealed differential roles of both cell types

in tumour immune surveillance [28]. In addition to conventional T cells, γδ T cells

were also shown to play a role in tumour protection [29]. These studies collectively

demonstrate a prominent role of both adaptive and innate immune cells in preventing

tumour growth.

The mechanisms through which immune cells controlled tumour growth, were found to

include both cytokine production and direct elimination of tumour cells. Lymphocyte-
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mediated cytotoxicity was first described as a mechanism of immune control of lym-

phoma by Smyth et al. [22]. Further experiments revealed independent roles of IFNγ

and the cytotoxic molecule perforin in the control of chemically induced sarcomas and

transplantable carcinomas [25]. Thus, there is strong evidence for tumour immune

surveillance in rodent models.

1.1.2 Clinical evidence

In humans, indirect evidence for the importance of the immune system in the control

of cancer comes both from tumour-suppressed patients, as well as from observations of

spontaneous anti-tumour immune responses that correlate with better survival.

Acquired immuno-deficiency syndrome (AIDS) patients have higher rates of some can-

cers [30, 31]. As many of the malignancies that show increased frequencies in AIDS

patients are associated with viral infections, such as lymphomas (Epstein-Barr virus),

Kaposi’s sarcoma (herpes viruses) and cervical cancer (human papilloma viruses), this

has been argued to reflect a reduction in anti-viral immunity rather than impeded tu-

mour immune surveillance. However, patients treated with immuno-suppressive drugs

following organ transplants also have a higher risk of cancer, including non-infectious

colon, lung, renal and pancreatic cancers [32, 33]. In rare cases [34], these tumours

are donor-derived and may arise from the outgrowth of undiagnosed micro-metastases

already present in the organ transplant that develop in the tumour-suppressed recip-

ient. The majority of tumours in transplant recipients develop de novo [34]. The

higher incidence of cancers in immuno-suppressed patients indicates that in healthy

individuals the immune system plays an important role in preventing the formation

or outgrowth of tumours.

Spontaneous regression of tumours, which is sometimes observed in cancer patients,

is probably due to an anti-tumour immune response. William Coley noted that espe-

cially patients that contracted a severe bacterial infection associated with fever had a
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higher rate of spontaneous cancer regression. Between 1880 to 1910 he was the first to

develop an immunotherapy approach based on the injection of a mixture of pyrogenic

bacteria, known as Coley’s toxin, which resulted in complete and permanent regres-

sion of inoperable sarcomas in about 10 % of patients [35]. Subsequently, spontaneous

anti-tumour immune responses were characterised in more detail. Antibody responses

to autologous cancers were first identified in a subset of patients in the 1970s [36].

To date, antibodies to more than 100 tumour-associated antigens (TAAs) have been

described [37]. These studies indicate that the human immune system can recognise

tumour cells and react to them. T cells that are specific for tumour antigens and infil-

trate malignant lesions have also been identified in many patients [38]. The strongest

evidence for anti-tumour T cell responses in humans is probably provided by studies

that report T cell expansion accompanying the spontaneous regression of melanoma

lesions [39, 40].

Even when the immune system cannot fully control the tumour growth, tumour-infiltration

by T cells, Natural Killer (NK) cells, or NKT cells has been shown to be a positive

prognostic factor, predicting better survival in a range of cancers [41–43]. Both the

quality and quantity of infiltrating lymphocytes was correlated with patient survival

in colon and lung cancer and was a more powerful independent prognostic factor than

pathological staging [42–44]. A high ratio of cytotoxic T cells (CTLs) to regulatory

T cells (Tregs) appears correlate better with increased survival [44, 45] than infil-

tration by Tregs alone, which has variably been associated with poor [46] or better

prognosis [47].

1.1.3 Recognition of tumour cells

To enable immune cells to eliminate cancer cells, they need to both recognise the

tumour cells and become sufficiently activated to initiate a response. While tumour

cells arise from normal body cells, they can express new or altered antigens that make

them susceptible to recognition and elimination by T cells or NK cells.
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During the transformation process, tumour cells acquire several mutations and often

show genetic instability and altered chromosomes. This can lead to the expression

of neo-antigens, such as the fusion protein BCR-ABL in human chronic myelogenous

leukaemia, which can be recognised by T cells [48]. In addition, some tumours that

are associated with infection by oncogenic viruses express viral proteins, which are a

foreign target for T cells [49]. Examples include the E6 and E7 proteins of human

papillomavirus in cervical cancer [50] and K1 epitopes of Kaposi’s sarcoma-associated

herpesvirus [51].

In addition, tumour cells can aberrantly express antigens that are normally only

found in immune-privileged sites, such as cancer-testis antigens [52]. Cancer testis

antigens are not normally expressed throughout the body and therefore T cells are

not tolerised against them and can react to their presence on tumour cells. Examples

include the melanoma antigen (MAGE) family proteins, as well as NY-ESO-1 family

proteins, which are expressed by melanomas as well as squamous cell carcinomas and

a proportion of breast cancers [38, 53].

Cancer cells can also over-express differentiation antigens, such as gp100 and Melan-a

in melanoma cells [38, 54], or growth factor receptors such as Her2 in breast and

ovarian carcinomas [55]. As these antigens are also present in normal tissue cells,

they are called tumour associated antigens (TAAs). The abnormally high levels of

TAAs on tumour cells may induce them to be immunogenic, as T cells specific for

TAAs have been described [54, 55].

In addition, tumour cells often display stress-antigens, such as MICA/B (Major Histo-

compatibility Complex (MHC) class I polypeptide-related sequence A/B), which are

ligands for activating NK cell receptors [56]. At the same time, malignant cells often

lose or down-regulate the expression of classical MHC I molecules that would other-

wise inhibit NK cells, thus becoming sensitive to NK cell mediated killing [57].

While these studies demonstrate that there are tumour-specific and associated anti-

gens that can be recognised by T cells, the initiation of anti-tumour T cell responses
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is less well understood. Janeway proposed that the immune system only becomes ac-

tivated after sensing of pathogen associated molecular patterns (PAMPs). However,

this could not explain the rejection of tissue transplants and the occasional sponta-

neous anti-tumour responses. Matzinger then proposed that ’danger signals’ released

from dying cells can also activate the immune response [58]. Classical ’danger signals’

are induced early during tumour development. These include type I IFNs, which

activate DCs and promote the induction of adaptive anti-tumour immune responses

[59–61]. In addition, tumour cells often proliferate more rapidly than their blood

supply develops and therefore the centre of solid tumours becomes necrotic. During

necrotic cell death, cellular components are released. Some of these are recognised

by the immune system as damage-associated molecular patterns (DAMPs). DAMPs

include high mobility group box 1 proteins, adenosine triphosphate (ATP) and uric

acid, which have all been shown to activate immune cells in response to cell death

[62–64]. This can lead to local inflammation, recruitment of immune cells and may

enable the initiation of the anti-tumour immune response [62, 65]. Tumour cell lysis

by innate immune cells such as NK cells and macrophages, may also contribute to

the early release of DAMPs and danger signals that alert the immune system to the

tumour.

Cell death that is accompanied by the release of danger signals and DAMPs has been

termed “immunogenic” cell death to differentiate it from apoptosis which normally

occurs during physiological cell turnover and does not activate an immune response,

thereby avoiding auto-immunity [66]. It has now become clear that radiation therapy

as well as many chemotherapeutic agents induce immunogenic death of tumour cells.

There is mounting evidence that the subsequent activation of DCs and the ensuing

immune response contribute substantially to the success of these therapies in patients

[66].
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1.1.4 Elimination of tumour cells by cytotoxic immune cells

NK cells, T cells and macrophages can all directly kill target cells and several studies

have shown that they can all contribute to anti-tumour immunity. However, the pro-

cess of tumour elimination before the onset of apparent disease has not been directly

visualised in vivo. Rather, it has been inferred from the earlier onset or greater pene-

trance of cancer in animals genetically deficient in or depleted of certain immune cell

subsets, recognition molecules, cytotoxic molecules and cytokines. A deeper under-

standing of the roles of different immune cell types in the anti-tumour response may

enable the design of better strategies to enhance their function.

As described in the previous section, tumours can express ligands that make them

sensitive to lysis by NK cells. A distinct role for NK cells in controlling tumour growth

was demonstrated in NK cell deficient mice by Smyth et al. [28].

T cells have been implicated in tumour control by the increased incidence of chemically

induced tumours in mice lacking B, T and NKT cells [21, 27]. Subsequently, separate

roles for αβ and γδ T cells in the protection from tumours were shown [29]. It has been

demonstrated that CTLs can directly kill tumour cells [67]. The anti-tumour activity

of CD4 T helper (Th) cells was initially mainly attributed to providing help for the

priming of cytotoxic CD8 T cells [68] (see also Chapter 1.3.4). However, subsequent

studies also demonstrated a ’post-licensing’ role for CD4 T cells that were required for

the maintenance and tumour infiltration of CD8 T cells [69, 70]. In addition, in the

specific situation of lymphopenia, CD4 T cells may even develop cytotoxic activity

and directly eliminate tumour cells in vivo [71].

Macrophages often infiltrate both murine and human tumours, but their role is

controversial. They can be either tumoricidal or promote tumour growth, depend-

ing on their activation state [72]. Classically activated macrophages that play a

role in the clearance of infections are generally referred to as M1, while alterna-

tively activated macrophages involved in wound-healing are designated M2. While
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M1-like macrophages are associated with tumour elimination, M2-like macrophages

were linked with tumour progression [73]. Thus, a high density of M1-like compared

to M2-like macrophages infiltrating non-small cell lung cancers was associated with

extended survival of patients [74]. Macrophages can recognise tumour cells through

their altered membrane composition as well as surface carbohydrates [75, 76], and

in some experimental murine tumours macrophages were required for tumour rejec-

tion [77]. Their anti-tumour activity comprises both the direct elimination of cancer

cells via phagocytosis and secretion of cytotoxic factors [76, 78] and the induction of

adaptive immunity and enhancement of the cytotoxic activity of T cells [79]. Their

tumour-promoting functions will be discussed in more detail below.

1.1.5 Mechanisms of direct tumour cell killing

The mechanisms for the elimination of tumour cells depend both on the immune cell

type and on sensitivity of the tumour targets to different death pathways. Target cell

killing can be mediated through the release of cytotoxic molecules such as perforin

and granzymes, or through the interaction of death receptors ligands on effector cells

with death receptors on the targets [80].

Perforin deficient mice have a higher incidence of chemically induced tumours and

show more metastases [25]. In addition, perforin is required by both CTLs and

NK cells to reject injected, chemically induced and virally induced cancers [81]. Al-

though in vivo perforin mediated killing was found to be the dominant mechanism

of tumour cell elimination [82], NK cells and CTLs have also been shown to express

death receptor ligands such as FAS ligand (FASL) and tumour necrosis factor-related

apoptosis-inducing ligand (TRAIL) [83, 84]. Tumours that express the death receptor

FAS can thus be directly killed via FAS-FASL interactions [83, 85]. In addition, a

study using perforin and FASL single and double knock-out T cells showed impaired

killing of B16 melanomas in vivo when the double deficient CTLs were used, compared

to just perforin-/- CTLs [84]. This demonstrates a contribution of FASL to tumour
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cell elimination. TRAIL is also important for the control of tumours, as TRAIL-/-

mice had a higher rate of chemically induced tumours and showed defects in the

NK cell mediated control of metastasis [86, 87]. The relative importance of these dif-

ferent killing mechanisms may depend on the expression of death receptors on tumour

targets, as well as on their level of anti-apoptotic molecules that can impede death

receptor induced apoptosis.

Macrophages can contribute to tumour elimination via secretion of toxic nitric ox-

ide (NO). A study by Miguel et al. demonstrated that macrophages in progressing

murine tumours produced low levels of NO, while macrophages from regressing tu-

mours secreted much higher levels of NO ex vivo. In addition, the inducible nitric oxide

synthase (iNOS) was required for tumour rejection in vivo [79]. Macrophages in the

brain (microglia) were also found to specifically eliminate brain tumour cells via NO,

while sparing normal brain cells [78]. In vitro experiments further suggest that the

balance of iNOS and arginase activity in macrophages determines their tumoricidal

versus tumour-promoting function [88].

1.1.6 Cytokines in the anti-tumour immune response

Many cytokines have been studied in the context of tumour immunology. While some

exclusively affect immune cells, the majority can either be produced by tumour cells

themselves or be sensed by and directly affect cancer cells. This may be part of the

reason why some cytokines have an ambiguous role in tumour immunology and can

both suppress and promote tumour growth, often depending on the exact type of

cancer or even individual tumours.

IFNγ is required for protection against the growth of transplanted, chemically induced

and spontaneous tumours [20, 24, 25]. It has both direct effects on tumour cells and

on the immune response. In some tumours, IFNγ has an anti-proliferative role [89],

and in others it shows direct pro-apoptotic activity [90]. IFNγ is a signature cytokine
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of Th1 CD4 T cells, which promote the induction and licensing of CTLs. At the same

time, IFNγ enhances the immunogenicity of tumour cells by up-regulating expression

of MHC I molecules [21, 24], thereby increasing the sensitivity of tumour cells to CTL

killing [21].

Type I IFN is also tumour protective, as its neutralisation increases the growth of

transplanted tumours [91]. Furthermore, IFNα receptor deficient mice have a higher

incidence of chemically induced sarcomas than IFNα sufficient animals [61]. The

roles of IFNγ and type I IFN partially overlap, as they both have anti-proliferative

activity [89]. However, while IFNγ mainly works through a direct effect on the tumour

cells, the anti-tumour activity of type I IFN is largely mediated by immune cells

[61]. Type I IFN can activate DCs [59, 60], increase the cytotoxicity of NK cells

by up-regulating TRAIL expression [92], and promote the generation and survival of

CTLs by preventing activation induced cell death [93].

Type III IFN (IFNλ) has also been shown to have anti-tumour effects, as its expression

in several murine tumours leads to tumour rejection or growth delay [94, 95]. IFNλ

directly increased tumour cell immunogenicity by up-regulating MHC I expression

[94]. However, the mechanism by which IFNλ enhanced rejection in IFNλ-resistant

tumours remains to be elucidated [94].

The key role of interleukin-12 (IL-12) is the polarisation of Th1 responses, which are

crucial for tumour protection [96]. Mice that lack IL-12 or IL-12 signalling components

have severely reduced levels of IFNγ and a higher incidence of chemically induced

tumours [97, 98]. In contrast, the closely related cytokine IL-23 appears to promote

tumour growth, as IL-23 knock out mice exhibit reduced tumour growth [98].

IL-10 is generally regarded as a regulatory or suppressive cytokine. It is implicated

in the down-regulation of immune responses, induction of regulatory T cells. It also

promotes tolerance via the inhibition of DC activation [99]. In humans, high IL-10

levels correlate with tumour progression [100]. In vitro IL-10 increased the prolif-

eration of human melanoma cells and led to down-regulation of MHC and adhesion
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molecules [101]. Conversely, mice that lack IL-10 are less prone to the development

of chemically induced sarcomas [102]. Moreover, in the murine B16 melanoma model,

IL-10 favours tumour growth by inhibiting macrophage activation, inducing tumour

cell proliferation and promoting angiogenesis [103].

Transforming growth factor β (TGFβ) has been named for its ability to transform

cell lines and was therefore thought to be a tumour-promoting factor. Indeed, it can

be secreted by tumour cells and is associated with poor prognosis and metastasis in

many human cancers [104, 105]. Similarly, TGFβ was required for metastasis in a

murine model of colon cancer [106]. However, tumour suppressor activity of TGFβ

has also been described [107] and several human tumours harbour TGFβ inactivating

mutations [108]. This apparent contradiction may be due to the overlap of signalling

pathways downstream of TGFβ with many known pro-oncogenes. In in vitro and

murine models of metastasis, TGFβ was found to collaborate with Ras [109] and

the mutational state of these oncogenic factors may influence the outcome of TGFβ

signalling.

The role of IL-17 in cancer development and progression is also controversial. IL-17-/-

mice have been shown to be more susceptible to lung melanoma [110]. In this model,

IL-17 was required to provide sufficient inflammation to activate CTLs. However,

IL-17 deficient animals have a lower incidence of chemically induced skin cancer

[111]. Furthermore, IL-17 was found to promote melanoma and bladder cancer

growth in mice via induction of IL-6 [112]. Moreover, in patients with ulcerative

colitis, CD4 T cells that expressed both IL-17 and the Treg marker Forkhead box P3

(FoxP3) were identified [113]. These IL-17+ Tregs both suppressed T cell activation

and induced secretion of pro-inflammatory cytokines [113], suggesting that they may

dampen the immune response while favouring disease-promoting inflammation. These

“cross-over” T cells are in line with previous studies that reported plasticity between

Tregs and Th17 cells [114, 115]. Therefore it appears that IL-17 induces inflamma-

tion that can either be associated with immune activation or suppression, possibly
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depending on other factors in any given microenvironment, and can thereby either

promote or hinder the anti-tumour immune response.

The pro-inflammatory cytokines tumour necrosis factor α (TNFα), IL-6 and IL-1β

likewise have been both implicated in enhancing tumour development and growth, as

well as being required for tumour eradication. Thus, TNFα deficient mice are more

susceptible to chemically induced sarcomas [102], but display increased resistance to

chemically induced skin carcinogenesis [116]. Pro- and anti-tumour activity of TNFα

has even been documented in the same tumour model, depending on the expression

of oncogenic Ras [117]. TNFα is a pleiotropic cytokine with many down-stream

effects. Among its tumour-promoting activities, it can enhance the production of

pro-angiogenic factors from tumour cells [118]. In its function as tumour suppressor,

it has been shown to promote differentiation of immature myeloid cells into M1-like

macrophages and their tumoricidal activity [119].

Elevated levels of IL-6 are reported in cancer patients [100]. Furthermore, IL-6 con-

tributes to progression in ovarian and colorectal cancer and is associated with a higher

risk for liver cancer [120–122]. Its ability to skew CD4 T cells from an anti-tumour

Th1 phenotype towards a tumour-promoting Th2 profile may favour tumour devel-

opment and progression [123]. On the other hand, IL-6 as well as IL-1β and TNFα

levels were consistently found to be elevated in tumours that were successfully con-

trolled by the immune system [124]. In addition, IL-6 has been found to contribute

to up-regulation of MHC expression on tumour cells, inhibit TGFβ and restore the

cytotoxic function of NK cells [125, 126].

A study on the role of IL-1 in tumour development found that IL-1β deficient mice

develop chemically induced sarcomas more slowly, while IL-1β receptor antagonist

deficient mice grow them faster [127]. These experiments clearly demonstrated that

IL-1 favoured tumour initiation. However, IL-1 receptor and the Nucleotide-binding,

leucine-rich-repeat containing receptor P3 (NLRP3), which is required for IL-1 secre-

tion, were necessary for CTL priming in response to dying tumour cells and for the
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effectiveness of chemotherapy [128].

The tumour-promoting as well as suppressing roles of a range of pro-inflammatory

cytokines including TNFα, IL-6 and IL-1β are probably all related to the role of in-

flammation in cancer development, progression and eradication. Acute inflammation

generally precedes the induction of adaptive immunity. However, chronic inflamma-

tion promotes tumorigenesis at all stages by inducing genotoxic stress, cellular pro-

liferation, angiogenesis and invasion [129]. Chemically induced tumour models often

require an inflammatory event for the initiation of tumour growth [102, 122, 127].

However, the same inflammatory factors contribute to tumour protection at later

stages as they facilitate the induction of immunity in response to tumour cell death

[128, 129].

1.2 Tumour immune escape

As discussed in the previous section, there is ample evidence that the immune sys-

tem can recognise and eradicate tumours. However, the pressure of the immune

response on the proliferating, genetically unstable tumour cells can also select for tu-

mour variants that escape the immune response through loss of antigen or resistance

to cell death. Furthermore, tumours can also create and environment that is im-

mune suppressive and can even subvert infiltrating immune cells to promote tumour

progression.

1.2.1 Escape through antigen loss

Correlative evidence from melanoma patients suggests that tumours lose antigens to

escape the immune response as metastatic lesions or tumours progressing after im-

munotherapy express lower levels of several tumour antigens than primary tumours

[130, 131]. In addition, in a patient that had generated CTLs against various au-

tologous tumour antigens, recurring lesions were found to have lost these antigens
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[132].

Genetic instability of tumours and elimination of more immunogenic variants by the

immune response likely result in progressive selection of less immunogenic antigen loss

variants. Antigen loss may result directly from mutations of the epitopes recognised

by CTLs. Studies in mice have found spontaneous point mutations in antigens from

immune escape variants of tumours [133]. In addition, immunotherapy targeted to dif-

ferent domains of a model antigen induced mutations preventing immune recognition

precisely in the targeted portion [134].

Another mechanism of antigen loss is the alteration of MHC molecules presenting

peptide antigens to T cells. After immunotherapy, tumours from several melanoma

patients were found to have lost the β-microglobulin subunit of MHC I, resulting in the

absence of surface antigen [135]. Other human cancers have also been reported to lack

MHC expression [136, 137]. In addition, antigen presentation on tumour cells can also

be impaired by loss of components required for antigen processing and loading onto

MHC I, including the transporter associated with antigen processing (TAP), tapasin

and the immuno-proteasome subunit LMP2 [138]. Failure to respond to IFNγ can

also contribute to low expression of MHC I and thus evasion of immune recognition

[139].

In addition to loss of T cell antigens or antigen presentation, shedding of NK cell

ligands has also been implicated in tumour immune escape. Patients with gastroin-

testinal cancers have elevated levels of the stress molecule MICA in the serum and

proteolytic shedding of MICA from tumour cells appears to lead to internalisation

and inactivation of its receptor on NK cells [140, 141].

1.2.2 Escape through resistance to cell death

A further mechanism of tumour immune escape is the resistance to cell death. This

can be conferred by mutations in death receptors such as TRAIL receptors and FAS
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that render them dysfunctional [142, 143]. Inhibition of cell death in tumours can also

occur through mutations in the signalling cascade following death receptor engagement

[144]. Furthermore, over-expression of anti-apoptotic molecules can counteract death

signals and impair tumour cell killing [145].

1.2.3 Direct suppression of effector T cells by tumour-derived

factors

Tumours frequently express and secrete molecules that directly suppress T cell re-

sponses. Human pulmonary, ovarian and colon carcinomas have been shown to ex-

press high levels of programmed death ligand 1 (PD-L1) [146]. Expression of PD-L1

in murine tumours increases apoptosis of activated, tumour-specific T cells and pro-

motes tumour growth in vivo [146].

In addition, the majority of human tumours express the tryptophan catabolising en-

zyme indoleamine 2,3-dioxygenase (IDO) [147]. When immunogenic murine tumours

were manipulated to express IDO, they failed to be rejected due to a lack of T cell

accumulation [147]. IDO impairs the function of effector cells via causing tryptophan

starvation together with the accumulation of the toxic metabolite L-kynurenine, which

inhibits T cell and NK cell proliferation in vitro [148]. Furthermore, tumour derived

IDO has been shown to mediate conversion of CD4 T cells into Tregs [149].

TGFβ expressed by tumors [105] also has direct inhibitory effect on T cells. It

can limit CD8 T cell expansion [150] and inhibit Th1 differentiation of CD4 T cells

[151]. Moreover, the selective blockade of TGFβ signalling in T cells restored their

anti-tumour activity in a murine cancer model [152].

In addition to directly impeding eradication by T cells, tumour-derived factors also

recruit Tregs and subvert the function of myeloid cells and macrophages to become

immuno-suppressives and tumour-promoting. This indirect inhibition of anti-tumour

immunity is discussed below.
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1.2.4 Immune-suppression via tumour-associated macrophages

Macrophages are generally identified by high expression of CD68 in humans and F4/80

in mice, as well as their distinct morphology in tissue sections [153–155]. In human

cancer, the prevailing role of macrophages is in the promotion of tumour progression,

angiogenesis and metastasis and frequently a high infiltration of macrophages is linked

to poor prognosis [156, 157].

Many tumours actively recruit macrophages to the tumour site via secretion of chemoat-

tractant factors. Thus, macrophage chemoattractant protein-1 (MCP-1) is associated

with a high level of macrophage infiltration in human breast cancer [158] and has

been shown to directly recruit macrophages to the tumour site in a murine tumour

model [159]. Furthermore, macrophages are recruited by tumour-derived vascular

endothelial growth factor (VEGF), which also promotes angiogenesis [160].

While classically activated M1-like macrophages can eliminate tumour cells as dis-

cussed above, M2-like alternatively activated macrophages normally have a role in

wound-healing and can promote cancer by favouring tissue remodelling and angio-

genesis, and suppressing immunity [73]. Tumours can skew macrophages towards a

tumour-promoting M2-like phenotype [154, 161]. This is partly due to the hypoxic

environment in solid tumours, which induces hypoxia inducible factor-α (HIF-1α) in

macrophages [162]. HIF-1α can directly bind to the promotor region of VEGF and

enhance its production [162]. Macrophage expression of HIF-1α is also involved in

T cells suppression and promotion of tumour progression [153]. In addition, Tregs

can also induce M2-like activation of macrophages [155].

Tumour-associated macrophages show up-regulated production of the regulatory cy-

tokines IL-10 and TGFβ, as well as VEGF and several CC chemokine ligand (CCL)

chemokines [154, 161]. In addition, they fail to increase pro-inflammatory cytokines

like IL-1β, IL-6 and TNFα in response to stimulation with bacterial lipopolysac-

caride (LPS) [154]. They also express low levels of MHC and IL-12, and are thus im-
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paired in their ability to activate T cells. Moreover, tumour infiltrating macrophages

up-regulate arginase [154]. Arginase and iNOS share arginine as a common sub-

strate and both have been shown to directly inhibit T cells [163]. This may be

partly due to depletion of the amino-acid arginine. In addition, arginase was found

to inhibit T cell proliferation by irreversibly blocking IL-2 production [163]. Lastly,

tumour-associated macrophages can also recruit Tregs to the tumour site via secretion

of CCL22 [46].

Thus, M2-like tumour-infiltrating macrophages can suppress the immune response via

secretion of regulatory cytokines, direct inhibition of T cells combined with a lack of

T cell stimulation and recruitment of Tregs.

1.2.5 Immune-suppression via regulatory T cells

Murine Tregs are characterised by the expression of the transcription factor FoxP3

[164], which is necessary for their suppressive function [165]. In humans, Tregs are

also FoxP3+, but effector T cells can transiently express low levels of FoxP3 upon

activation [166]. Prior to the discovery of FoxP3, CD25 was widely used as a marker

of Tregs, but as CD25 is also expressed by activated T cells, it cannot be viewed

as a reliable marker of Treg [167]. Tregs are normally induced in the thymus [168],

but TGFβ can convert FoxP3-CD4+ T cells into FoxP3+ Tregs in the periphery

[169].

Tumours frequently show profound infiltration by Tregs [46, 170, 171] and high Treg

infiltration has been associated with poor prognosis in several human cancers [46, 172].

However, Treg infiltration does not always correlate with bad prognosis [47]. Instead

the ratio of Tregs to effector T cells was found to be a more reliable prognostic factor

[44, 45]. Furthermore, depletion of Tregs induces regression of a range of syngeneic

experimental tumours in mice [173]. Tumours can actively recruit Tregs by inducing

macrophages to produce the chemokine CCL22 [46]. In addition, tumour-derived
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TGFβ has been shown to directly convert CD4 T cells into Tregs independent of

proliferation [174, 175].

Tregs can suppress the anti-tumour immune response at several stages. Tregs can

inhibit the activation and proliferation of effector T cells, impair their cytotoxic func-

tion and even directly kill effector cells at the tumour site [176–181]. Interaction with

activated DCs is critical for the initiation of T cell responses, as will be described

in more detail in the next section. Tregs have been shown to inhibit the expression

of activation markers on DCs and to reduce the interaction of effector T cells with

DCs [176, 182]. In tumour-bearing mice, but not in tumour-free animals, Tregs could

also directly kill DCs in tumour-draining lymph nodes (LNs), thus preventing the

initiation of an anti-tumour immune response [183]. Tregs can also secrete adenosine,

TGFβ and IL-10, all of which can inhibit T cell proliferation [184–186]. Furthermore,

Tregs can prevent the transcription of IL-2 by activated CD4 T cells, thus reducing

the levels of this crucial cytokine for T cell proliferation [177, 178].

T cell effector functions can also be blocked by Tregs. They have been shown to inhibit

the release of IFNγ [178] and cytotoxic granules [179, 180]. One study also showed

that the function of CTLs at the tumour site was impaired via Treg suppression of

IFNγ production from CD4 Th cells [187].

Treg induced inhibition of IL-2 may cause effector cell death indirectly by cytokine

deprivation induced apoptosis [188]. It has also been proposed that Tregs can directly

eliminate target cells using GzmB and perforin [189, 190]. This is supported by the

findings of Cao et al., who showed that wild type but not perforin deficient Tregs

correlated with increased apoptosis of CD8 T cells and NK cells in the tumour and

thus promoted tumour growth [181].

An inverse correlation between Treg and NK cell infiltration has also been reported

in human tumours [191]. In mouse models of cancer, Tregs suppressed cytoxicity

of NK cells in a TGFβ dependent manner and depletion of Tregs increased NK cell

dependent tumour growth suppression [191, 192].
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Tregs can therefore potently inhibit the anti-tumour immune response both at the ini-

tiation and the effector stages. In addition, they can impair the cytotoxic anti-tumour

function of innate NK cells as well as adaptive CTLs.

1.2.6 Immune-suppression via myeloid-derived suppressor cells

Myeloid-derived suppressor cell (MDSC) is a term used to describe a heterogenous

population of myeloid cells that accumulate in cancer patients [193, 194] and tumour-bearing

mice [195, 196] and can suppress anti-tumour immunity.

The first report describing an inhibitory function of Gr-1+ myeloid cells on tumour

growth came from Schreiber’s group [197]. Initially, CD11b and Gr-1 were widely

used to identify MDSCs in mice [198]. However, Gr-1 recognises both Ly6C and

Ly6G [199]. When antibodies to distinguish these two molecules became available,

Ly6Chi Ly6G- monocytic and Ly6Clo Ly6G+ granulocytic MDSC subtypes were char-

acterised [195, 196]. However, the expression of CD11b, Gr-1 and Ly6C or Ly6G is not

unique to MDSCs and not all CD11b+ Gr-1+ cells are tumour-suppressive [200, 201].

Therefore, to conclusively identify MDSCs functional studies of suppressive activity

are required. The ability to distinguish the Ly6Chi Ly6G- and Ly6Clo Ly6G+ subsets

has also revealed that the monocytic MDSCs have a higher suppressive capacity com-

pared to the granulocytic subset and are the MDSCs mainly responsible for immune

dysfunction in cancer [195, 196].

It has now become clear that in the absence of tumours CD11b+ Gr-1+ cells reside

mainly in the bone marrow and represent less than 5 % of splenocytes [196, 202].

In addition, these steady-state CD11b+ Gr-1+ cells do not exhibit significant T cell

suppression [198].

Tumours induce the accumulation of MDSCs in the blood and spleen [196, 198, 202,

203]. A multitude of factors have been implicated in the expansion and activation of

MDSCs. Among these, granulocyte-macrophage colony-stimulating factor (GM-CSF)
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[203, 204], VEGF [205, 206], macrophage colony-stimulating factor (M-CSF) [207]

and CCL2 [195, 208] have been identified to mediate expansion and recruitment of

MDSCs to tumour sites in several studies both in mouse models and human cancer.

In addition, it is becoming clear that MDSCs also require activation to exert their

suppressive function. IFNγ [154, 209, 210], IL-4 [163, 210] and IL-13 [210, 211] have

all been described to induce MDSC activation.

MDSCs express the enzymes arginase 1 and iNOS, both of which use arginine as a sub-

strate. Depletion of arginine can lead to T cell suppression via down-regulation of the

CD3ζ-chain of the T cell receptor (TCR) [212] and inhibition of the up-regulation of

the cell-cycle regulators cyclin D3 and cyclin-dependent kinase 4 [213]. NO produced

by iNOS can inhibit IL-2 signalling components in T cells, thereby preventing T cell

proliferation [214]. Furthermore, NO can inhibit MHC II expression in DCs [215],

thus limiting antigen-presentation to T cells. In addition, NO production by MDSCs

can induce apoptosis of T cells [216, 217]. However, as described above, NO can

also induce tumour cell death and thus act as a tumour suppressor. The pro- versus

anti-tumour effect of NO may depend on local interaction with other factors in each

tumour and also during the progression of tumour growth. In addition, the level of

NO may be critical, with high concentrations observed to be tumoricidal, while lower

amounts were tumour-suppressive [79]. Thus, similar to inflammatory cytokines, an

acute burst of high amounts of NO appears to be tumour-suppressive, while chronic

release favours tumour progression through immune-suppressive mechanisms.

Reactive oxygen species (ROS) also play a role in the suppressive activity of MDSCs.

Increased production of ROS by MDSCs has been observed both in patients with

cancer and tumour mouse models [194, 198]. Furthermore, inhibition of ROS in

MDSCs fully restored T cell responses against murine fibrosarcomas [198].

Peroxynitrite, which results from the chemical reaction of NO with the superoxide an-

ion, has also been implicated as a mediator of MDSC immune suppression. Increased

levels of amino-acid nitrosylation linked to peroxynitrites, are associated with poor
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prognosis in a range of cancers [218, 219]. Bronte et al. found that nitrosylation via

peroxynitrites inhibited prostate cancer-infiltrating T cells and that their responsive-

ness could be restored by blocking iNOS and arginase [220]. Moreover, nitrosylation

of tyrosine residues in the TCR complex by MDSC-derived peroxynitrites was shown

to directly inhibit antigen-recognition by tumour-specific CD8 T cells [221].

In addition to directly suppressing T cell activation and function, MDSCs can also

produce tumour-suppressive cytokines such as IL-10 and recruit Tregs to the tumour

site via production of TGFβ [222, 223].

1.3 Dendritic cells

1.3.1 Initiation of adaptive immune responses

DCs are the sentinels of the immune system and play a key role in the induction and

regulation of immune responses [224]. They reside in peripheral tissues in an immature

state and continuously sample the antigenic environment. In the absence of microbial

stimuli or danger signals, DCs spontaneously mature and migrate to the draining

LNs (dLNs) to present the captured antigen to circulating T cells. This results in the

induction of peripheral tolerance in antigen specific T cells [225]. In contrast, DCs that

take up antigen in the context of inflammatory or danger signals become activated,

migrate to the draining LN and present antigen to T cells with additional signals,

leading to T cell activation and differentiation into effector cells [226]. The activation

status of DCs, its impact on the generation of T cell tolerance and activation and the

molecular pathways and cytokines involved in antigen presentation will be discussed

in more detail in section 1.3.3 and 1.34. In addition, DCs can be divided into several

subsets that differ in their ability to respond to activation stimuli and subsequently

to activate immune responses as described in section 1.3.5 and 1.4.



24 1 Introduction

1.3.2 Activation of innate immune responses

While DCs are generally regarded to be critical for the initiation of adaptive immune

responses, they can also activate innate immune cells. Fernandez et al. demonstrated

that activated DCs can enhance NK cell cytotoxicity and IFNγ production, resulting

in the control of tumour growth in mice [227]. The DC-NK cell interaction also has

reciprocal effects on the DCs, which were shown to be more mature and secrete more

IL-12 when they were exposed to NK cells [228]. Furthermore, activated DCs can

recruit NK cells to LNs during inflammation to favour DC-NK cell interactions [229].

Similar reciprocal DC-NK cell activation has been suggested to play a role in the

immune response against human tumours [230].

1.3.3 Activation states of DCs

The nomenclature used to described DCs in different activation states is not consistent

throughout the literature. In this thesis, DCs that are sampling antigen but not pre-

senting it yet are referred to as immature. DCs that have up-regulated co-stimulatory

molecules and acquired the capacity to migrate to dLNs and present antigen to T cells

are termed mature. Mature DCs are further divided into tolerogenic DCs and acti-

vated DCs depending on their function in inducing tolerance or activation in näıve

T cells.

Immature DCs reside in all tissues throughout the body and function to sample the

antigenic environment. They are characterised by low surface expression of MHC II

molecules and co-stimulatory molecules, together with a high capacity to take up anti-

gen [224]. Antigen capture can occur via receptor-mediated endocytosis, for example

through CD205 (DEC205) [231], CD206 (mannose receptor) [232], or Fcγ receptors

(for immune complexes) [233]. DCs also show high rates of phagocytosis [234] and

pinocytosis [232]. This variety of antigen uptake mechanisms contributes to the high

efficiency of DCs in antigen presentation and initiation of immune responses.
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Under steady-state conditions, a small number of tissue DCs that have taken up

self-antigens mature spontaneously. Maturation is accompanied by up-regulation of

surface expression of MHC II and co-stimulatory molecules, as well as LN homing

receptors such as the chemokine (C-C motif) receptor 7 (CCR7), which enables the

DCs to migrate to the dLNs [235]. Näıve T cells that encounter their cognate antigen

presented by these DCs are either deleted, rendered anergic or induced to become

Tregs [236–238]. This process is known as peripheral tolerance and is thought to ensure

the elimination of auto-reactive T lymphocytes that have escaped thymic deletion

[239].

Maturation and activation of DCs occurs in response to danger signals, which are re-

leased from dying cells, conserved pathogen patterns or inflammatory stimuli [64, 240].

Upon activation, DCs express very high levels of surface MHC II and co-stimulatory

molecules [224, 241]. Simultaneously, DCs down-regulate the expression of receptors

involved in antigen capture. Switching in the expression of chemokine receptors from

chemokine (C-X-C motif) receptor 1 (CXCR1) to CXCR4 and CCR7 enables acti-

vated DCs to migrate from the peripheral tissues to the T cell areas of the LNs and

spleen [242]. Thus, phenotypically activated and tolerogenic DCs are very similar,

although the level of MHC II and co-stimulatory molecules differs: activated DCs dis-

play very high surface levels, whereas tolerogenic DCs show intermediate expression

[243]. In addition, activated DCs secrete considerably more IL-12 and other cytokines

that are necessary for the differentiation of CD8 T cells into fully licensed cytotoxic

effector cells [244, 245]. Tolerogenic DCs, in contrast, produce large quantities of the

immune regulatory cytokine IL-10 [246].

Thus, the activation status of DCs determines whether antigen presentation to T cells

results in tolerance or immunity. The degree of stimulation, the pattern of co-stimulatory

molecules expressed and the cytokines secreted by DCs also regulate the type of ef-

fector and memory cells that is induced [247]. Mounting the right type of immune

response in turn is crucial to clear pathogens and control disease [248].
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1.3.4 Antigen presentation to T cells

In lymphoid tissues, DCs are scanned by circulating T cells for their cognate antigens.

The two major classes of T cells are distinguished by their surface expression of either

CD4 or CD8. CD4 and CD8 T cells both recognise antigens that have been processed

by antigen-presenting cells (APCs) into peptides and loaded onto MHC I and MHC II.

CD4 T cells recognise peptide-MHC II complexes and once activated can differentiate

into either Th1, Th2, Th17, T follicular helper or Treg cells [249, 250], whereas CD8 T

cells specifically bind to peptide-MHC I complexes and become CTLs [251].

1.3.4.1 MHC I and II presentation pathways

Distinct pathways lead to the generation of peptide loaded MHC I and MHC II com-

plexes and not all cell types are equally able to use them. Peptides formed by degra-

dation of endogenous proteins in the cytosol are translocated into the endoplasmic

reticulum, where they are loaded onto new MHC I molecules. The associated peptide-

MHC I complexes are then transported to the cell surface via the Golgi apparatus,

where they can be recognised by CD8 T cells [226, 251]. This pathway operates in all

cell types, so that any virus infected cell can present viral antigens on their surface

MHC I complexes.

In contrast, exogenous antigen is taken up and degraded in endomsomes. Fusion of

antigen-rich endosomes and MHC II containing endosomes enables loading of the pep-

tides onto the MHC II molecules, which are then also transported to the cell surface

for recognition by CD4 T cells [252, 253]. Only professional APCs, namely B cells,

macrophages and DCs, are capable of presenting antigen on MHC II, with DCs being

most effective [254]. As a result of this compartmentalisation of antigen presenta-

tion pathways, endogenous antigen is presented on MHC I and exogenous antigen is

presented on MHC II.
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In a situation, in which DCs are not themselves infected with a virus, this strict

separation would impede the efficient initiation of an anti-viral immune response by

DCs [255]. Thus, it is not surprising that a third mechanism has been identified

to enable presentation of exogenous antigen on MHC I. This phenomenon has been

termed cross-presentation and was first described by Michael Bevan in 1976 [256].

To date, several mechanisms for cross-presentation have been found: Some involve

retrograde transport of exogenous protein into the cytosol, where it can then enter

the endogenous MHC I presentation pathway, while others involve only endosomal

compartments and MHC I recycling from the cell surface. Which pathway is most

important in vivo, or if they are used simultaneously or depending on the infection

encountered by the immune system, remains to be elucidated [257]. Also, only few cell

types are capable of cross-presentation. Macrophages can cross-present antigen only at

a very low rate, whereas some DC subsets are extremely effective cross-presenters. In

particular, the CD8+ population of LN resident DCs and the CD103+ population of

the migratory DCs have been shown to specialise in cross-presentation of exogenously

acquired antigen on MHC I (for DC subsets see chapter 1.3.5) [258–260].

1.3.4.2 Co-stimulatory molecules and cytokines

Recognition of peptide-MHC complexes alone is not sufficient to generate a T cell

response. On the contrary, it normally induces T cell tolerance. Additional signals

in the form of co-stimulatory molecules and cytokines are required to fully activate

näıve T cells.

CD80 and CD86 are co-stimulatory molecules, which are up-regulated on DCs upon

activation [261]. Binding of CD80 and CD86 to CD28 on T cells promotes T cell

proliferation, survival and cytokine secretion [262, 263]. Intriguingly, both CD80 and

CD86 also bind to the inhibitory receptor cytotoxic T lymphocyte associated antigen 4

(CTLA-4) on T cells [264]. This interaction results in blockage of T cell proliferation
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and cytokine secretion and serves an important role in regulating immune responses

and maintaining T cell homeostasis [264, 265]. Programmed death (PD) is another

inhibitory molecule expressed by T cells and interacts with PD-L1 and PD-L2 on

DCs [266, 267]. The balance of inhibitory PD-1 and co-stimulatory CD80/86-CD28

signalling may determine the threshold between T cell tolerance and T cell activation

[266]. PD-L1 expression is not limited to DCs, and interaction of tissue PD-L1 with

PD-1 on T cells has also been implicated in peripheral tolerance [268]. Furthermore,

PD-1 expression is up-regulated on exhausted T cells and has also been linked to

T cell dysfunction in cancer [269, 270].

CD40 is another co-stimulatory molecule expressed on DCs [271]. Binding of CD40

to its ligand CD40L on activated T cells leads to further activation of DCs. They

up-regulate co-stimulatory molecules and produce the cytokine IL-12, which is impor-

tant for T cell activation and Th1 differentiation [271]. CD40 also enables CD4 T cells

to provide help for activation and licensing of CD8 T cells to become CTLs [272, 273].

Other co-stimulatory molecules have been identified, but will not be a focus of this

thesis.

The types and levels of cytokines produced during T cell activation are important

factors in determining the type of T helper cell that is generated. While a milieu rich

in IL-4 favours a Th2 response, IL-6 and TGFβ induce Th17 cells to develop, and

IL-10 has been implicated in the generation of Tregs [235]. For the generation of fully

licensed CTLs, IL-12 is thought to be indispensable [274]. This is often called the

third signal, in addition to antigen-MHC I complex recognition (signal 1) and binding

of co-stimulatory molecules (signal 2). The main source of IL-12 in vivo are DCs that

have interacted with T helper cells [245, 275].
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1.3.4.3 DC survival

The efficiency of antigen presentation to CD4 and CD8 T cells is also affected by DC

survival. In general, mouse DCs have been shown to have a rapid turnover (half-life

1.5-3 days), with slightly different life spans for different DC subtypes. Exposure of

DCs to some microbial activation signals promotes survival, whereas others enhance

cell death [276]. In addition, immature DCs are sensitive to lysis by NK cells [277]

and antigen-loaded DCs can be killed by CTLs [278]. Studies on the effect of DC

survival via manipulation of the expression of pro- or anti-apopototic proteins have

found that prolonged DC survival was associated with increased CD4 and CD8 T cell

responses and beneficial anti-tumour effects [276, 279, 280].

1.3.5 Subtypes of DCs

DCs form a heterogeneous cell population with many distinct subsets, which differ

both in localisation and function in the immune system [281]. Generally, monocyte-

derived inflammatory DCs, plasmacytoid DCs (pDCs) and conventional DCs (cDCs)

are distinguished. In addition, cDCs can be divided into lymphoid tissue resident and

migratory DCs and further subtypes are defined based on surface markers.

1.3.5.1 Conventional lymphoid tissue resident DCs

Three types of lymphoid tissue resident DCs have been described in mouse spleens.

CD4-CD8α+ (CD8α+ DCs), CD4+CD8α- (CD8α- DCs) and CD4-CD8α- (double

negative (DN) DCs) [282]. To date, no functional role has been attributed to CD4 or

CD8 molecules on DCs [281]. Additional markers used to discriminate between lym-

phoid tissue resident DCs are CD11b and CD205. CD11b is present both on CD8α-

and DN DCs, whereas CD205 is only present on CD8α+ DCs [283]. CD8α+ DCs

are functionally different from CD8α- DCs, as CD8α+ DCs produce more IL-12 and
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are superior at cross-presenting antigen [245, 284, 285]. However, a later study sug-

gests that not all CD8α+ DCs cross-present efficiently but that a subset of langerin+

DCs within the CD8α+ DCs is critical for cross-priming and IL-12 production in

response to systemic antigens [286]. In humans, the CD141+ (BDCA3+) CLEC9A+

(DNGR-1+) DCs have recently been identified independently by several groups to be

the equivalent of mouse CD8α+ both developmentally and for their superior ability

to produce IL-12 and cross-present antigen [287, 288]. Moreover, DC subtypes ex-

press different receptors to recognise microbial products. Toll-like receptor (TLR) 3,

for example, which binds to double-stranded RNA and is thus implicated in recog-

nition of viruses, is only expressed on CD8α+ DCs [289, 290]. On the other hand,

CD8α+ DCs lack TLR5 (binding to bacterial flagellin) and TLR7 (receptor for single

stranded RNA) [291] (The different pathogen recognition receptors (PRRs) are dis-

cussed in more detail in Section 1.4). Distinct profiles of PRRs on DC subsets suggest

that they are specialised to respond to certain types of pathogens and are functionally

diverse.

1.3.5.2 Conventional migratory DCs

Migratory DCs differ according to their tissue of origin. The skin has widely been

used to study DCs in the mouse and has led to the identification of at least three cDC

subsets. Langerhans cells (LC) of the epidermis were the first DCs identified [292].

They sample antigen and upon activation migrate to the dLNs. They are langerin+

CD11b+ CD205hi CD103-. Initially, langerin was used as a marker to distinguish

LCs from dermal DCs, until it became clear that a group of migratory dermal DCs

also expresses langerin [293–295]. However, LC express considerably higher levels of

CD205 compared to dermal DCs, making it possible to identify them in this way.

Two functionally distinct groups of dermal DCs can be characterised based on their

expression of CD11b and CD103 [292]. CD103+CD11b- DCs have been shown to

cross-present viral antigen on MHC I to CD8 T cells, whereas CD103-CD11b+ dermal
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DCs seem to be mainly responsible for antigen presentation on MHC II to CD4 T

cells [260]. In addition to directly presenting antigen to T cells in dLNs, migratory

DCs have also been shown to transfer antigen to LN-resident DC populations for

presentation [296].

1.3.5.3 Plasmacytoid DCs

Human pDCs are identified as CD4+ CD45RA+ IL-3Rα+ ILT3+ ILT1- CD11c-

lineage- cells, whereas mouse pDCs are CD45RA+ CD11clo [297, 298]. Their main

function is the production of large amounts of type-I interferons (IFNs) in response to

viral RNA and DNA, recognised via the receptors TLR7 and TLR9 [299]. Activated

pDCs can also present antigen to T cells, but they do not induce T cell proliferation

and effector differentiation as efficiently as cDCs, probably due to lower surface levels

of MHC II and co-stimulatory molecules [300]. Type I IFNs inhibit virus replica-

tion and activate NK cells, macrophages and cDCs. Thus, pDCs play an important

role in anti-viral responses and provide a link between innate and adaptive immunity

[297, 298].

1.3.5.4 Monocyte-derived inflammatory DCs

It has long been noted that bone marrow (BM) cells can be differentiated into DCs in

the presence of GM-CSF in vitro [301] and many clinical trials have used GM-CSF gen-

erated DCs for the vaccination of cancer patients [302–305]. Such GM-CSF BMDCs

resemble monocyte-derived DCs that arise during inflammation in vivo [306]. In mice,

inflammatory monocyte-derived DCs are characterised by expression of CD11b, Ly6C

and intermediate levels of CD11c [307]. They have been shown to accumulate at

infection sites and to be able to induce functional Th1 responses in vivo [307, 308].

Under inflammatory conditions, they can become the major DC subset to produce

IL-12 and monocyte-derived DCs have been shown to be required for the clearance of
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some infections [307, 309].

1.3.6 Role of DCs in anti-tumour immune responses

DCs are the most potent APCs and are crucial for the initiation of immune re-

sponses [224]. The activation of anti-tumour immune responses also depends on BM-

derived APCs and cannot be achieved by antigen-presentation on tumour cells alone

[310].

DCs have been found to infiltrate both murine and human tumours [311–313]. In

mice, they are mainly comprised of CD11b+ CD8α- B200- cDCs [311], but a small

population of B220+ pDCs has also been observed [311, 314]. Both cDCs and pDCs

have been reported to infiltrate human tumours [312, 313, 315, 316]. As DC subsets

differ in their ability to induce cytotoxic T cell responses as described above, different

DC types can show varying roles in cancer development. In patients with ovarian

or breast cancer, infiltration of pDCs was found to correlate with poor prognosis,

whereas other DC subsets did not affect clinical outcome [312, 316].

The activation state of DCs is critical for the induction of immune-responses versus

tolerance, as described above. In patients with melanoma, increased infiltration by

mature DCs correlated with better prognosis [317]. In addition, a high number of DCs

infiltrating murine melanomas alone was not sufficient to induce tumour regression,

but tumour rejection could be achieved by addition of an adjuvant to activate DCs

[318]. Further evidence for a link between DC activation state and their role in the

anti-tumour immune response comes from a study by Movassagh et al. that identified

activated DCs co-localising with CTLs in regressing melanoma lesions [4], suggesting

that activated DCs can promote anti-tumour immunity.

While tumour-infiltrating DCs have been shown to readily induce proliferation of

antigen-experienced T cells [319], they were unable to prime näıve tumour-specific

T cells ex vivo [314] or to activate CTLs in vivo [320]. In tumour-draining LNs,



1 Introduction 33

they induce anergy leading to tolerance instead of anti-tumour immunity [321]. This

failure of DCs to induce anti-tumour immunity has been suggested to be due to

insufficient activation [314] and could be overcome by addition of DC activating factors

in combination with blocking tumour-suppressive IL-10 [322].

Tumours can actively recruit DCs and even skew DC development to enhance pDC

formation [323]. In the tumour micro-environment, factors like IL-10, TGFβ and

VEGF secreted by the tumour or tumour-infiltrating MDSCs and macrophages can

inhibit DCs [324, 325], rendering them tolerogenic. As described above, tolerogenic

DCs cause T cell deletion, anergy and induction of Tregs [236–238]. Tumours have

been shown to directly stimulate DCs to produce TGFβ and thus favour the expansion

of Tregs [222]. Furthermore, prostaglandin E2 abundant in a range of tumours, can

induce secretion of CD25 as a decoy-IL-2 receptor and production of IDO in DCs,

leading to inhibition of T cell proliferation and cytokine production [326]. Moreover,

tumours can induce DCs to secrete the suppressive factors IL-10, NO and VEGF and

to suppress T cells proliferation via expression of arginase I [325].

Thus, DCs infiltrating tumours can promote either tumour rejection or tumour pro-

gression, depending on their activation status.

1.4 Natural adjuvants

It is crucial for the immune system to only react to pathogens but not to innocuous

substances. Therefore, cells of the innate immune system, such as macrophages and

DCs, express PRRs that can recognise conserved PAMPs [299]. Upon binding of

the corresponding ligands to their receptors, the immune cells become activated and

an immune response appropriate to the recognised type of pathogen is mounted. In

addition, danger signals and DAMPs released from dying cells can also be sensed by

immune cells and lead to activation [58–64]. A range of receptors for PAMPs and

DAMPs, including TLRs, NLRs and RLRs (Rig-I-like receptors) and their ligands
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have been identified and will be discussed in more detail below. Such ligands can be

described as natural adjuvants, as they are natural activators of the immune response.

In contrast, adjuvants used clinically for vaccination, such as aluminium salts and oil-

in-water emulsions, can be considered artificial immune-stimulators.

Adjuvants have long been used in vaccination to stimulate the immune response.

Alum, a mixture of aluminium salts, and complete Freund’s adjuvant (CFA), con-

sisting of a oil-in-water emulsion with heat-killed mycobacteria, were among the first

adjuvants described [327]. It has now become clear that the mycobacteria contained

in CFA stimulate the immune response by activating DCs, as they express multiple

TLR ligands as well as a NLR ligand [328, 329].

1.4.1 TLR ligands

TLRs can be subdivided in receptors expressed on the cell surface with specificity for

extracellular bacterial or protozoan compounds (TLR 1, 2, 4, 5, 6 and 11) and recep-

tors expressed in intracellular vesicles that function to recognise viral pathogens (TLR

3, 7, 8 and 9). Together, they are capable of recognising a wide range of pathogens:

TLR1/TLR2 and TLR2/TLR6 bind to lipoteichoic acid on Gram positive bacteria

[330, 331], TLR4 recognises LPS on Gram negative bacteria [332], TLR5 detects flag-

ellin of motile bacteria [333] and TLR11 binds to profilin of Toxoplasma gondii and

Escherichia coli [334]. Typically, viral replication intermediates are recognised by

intracellular receptors. TLR3 senses double-stranded RNA [335], TLR7 and TLR8

bind to single-stranded RNA [336–338] and TLR9 is a receptor for unmethylated CpG

motifs in DNA [339]. Unmethylated CpG sites are rare in vertebrate DNA, where the

cytosine of the CpG motif is generally methylated, but are common in bacterial and

viral genomes.

All of these TLRs are expressed by macrophages and DCs, and some can also be

expressed by mast cells and B cells [299]. Expression among different DC subsets,
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however, varies. CD8α+ DCs, for example, highly express TLR3, but lack TLR5 and

TLR7 [289–291]. Conversely, pDCs have high levels of TLR7 and TLR9 [291].

Binding of a TLR to its respective ligand initiates signalling cascades that result in

the activation of transcription factors, which are involved in production of inflam-

matory cytokines and up-regulation of co-stimulatory molecules. With the excep-

tion of TLR3, all other TLRs recruit the adaptor molecule myeloid differentiation

primary response protein 88 (MyD88) [340]. TLR3 signals exclusively via TIR-

domain-containing adapter-inducing interferon-β (TRIF), while TLR4 can engage

both MyD88 and TRIF pathways [340]. TRIF signalling results in the activation of

the transcription factor interferon regulatory factor (IRF) 3, which induces IFNs and

IFN inducible genes. In contrast, MyD88 can activate Nuclear factor κ-light-chain-

enhancer of activated B cells (NFκB), activator protein (AP)-1 and IRF7, depending

on its interaction with other signalling components [340].

Following the identification of natural ligands for the different receptors, commer-

cially manufactured TLR ligands became available. These include the TLR2 ligand

Pam3Cys [341], the TLR3 ligand Poly IC [335], the TLR4 ligand monophospholyl lipid

A (MPL) [342], the TLR7 ligand Imiquimod [343] and several oligodeoxynucleotides

containing CpG motifs (CpG) that stimulate TLR9 [344]. A clinical study of CpG

reported that it was well tolerated, but showed little anti-tumour activity [14]. In con-

trast, Poly ICLC (a stabilised form of Poly IC) appeared to induce immune responses

as potent as a viral vaccine in humans [15] and showed promising anti-tumour activity

in mice and a small pilot study in glioma patients [16, 345, 346]. MPL and Imiquimod

are already in clinical use, as MPL is included in the human papillomavirus vaccine

[342], while Imiquimod is applied in topical creams for the eradication of warts and

skin cancer [17]. TLR ligands are therefore promising adjuvants for the use in cancer

immunotherapy.
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1.4.2 NLR ligands

NLRs represent a large family of intracellular receptors that contain a C-terminal

leucine-rich repeat, a central nucleotide-binding oligomerisation domain (NOD) and

one of four possible N-terminal domains [347]. These N-terminal domains can be used

to divide NLRs into sub-families using A for the acidic transactivation domain, B for

the baculoviral inhibitory repeat domain, P for the pyrin domain or C for the caspase

recruitment domain, followed by a number (e.g. NLRP3).

Upon activation, a number of NLRs, including NLRP3, interact with different adaptor

molecules to form multi-protein complexes called inflammasomes. Ultimately, inflam-

masomes form a platform for cleavage of pro-caspase 1 into its active form, caspase

1, which in turn cleaves pro-IL-1β, pro-IL-18 and pro IL-33 into biologically active

IL-1β, IL-18 and IL-33 [348, 349]. These cytokines are then secreted and exert im-

portant pro-inflammatory roles. Inflammasomes have been implicated in detection of

various pathogens and products of pathogens, as well as stress and danger signals.

The NLRC4 inflammasome, for example, is activated in macrophages following infec-

tion with intracellular pathogens such as Salmonella enterica serovar Typhimurium

or Pseudomonas aeruginosa [350, 351]. The most-studied inflammasome, however,

is the NLRP3 inflammasome. It can recognise bacterial pore-forming toxins, ATP,

DNA, bacterial RNA, and crystals such as silica, asbestos, monosodium urate crys-

tals (MSU) and alum [347, 352–354]. The mechanism of NLRP3 activation has only

partly been clarified: NLRP3 inflammasome agonists may either act through lyso-

somal damage or via the generation of mitochondrial-derived ROS, which then in

some way activate NLRP3 [355]. Recently, thioredoxin-interacting protein has been

indicated as the direct ligand for NLRP3 in this signalling pathway [356].

The NLRs NOD1 and NOD2 (NLRC1 & NLRC2, respectively) differ from many other

NLRs, as they do not form inflammasomes, but instead signal via mitogen-activated

protein kinase (MAPK) and NFκB pathways. The transcription factor NFκB in turn
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activates a range of pro-inflammatory genes. One of the best characterised activators

for NOD1 and NOD2 is mycobacterial peptidoglycan, and for NOD2 in particular

its muramyl-dipetide (MDP) component [329, 357]. NOD2 mediated recognition of

bacteria has been shown to be non-redundant with TLR signals [329] and NOD1/2

ligands can activate DCs and enhance cross-priming [358].

While most studies on inflammasome-forming NLRs so far have been performed in

macrophages, they are also expressed in cDCs and monocytes [359]. One NLRP3

ligand, MSU, has recently been suggested for use as a vaccine platform and was found

to be safe for application in humans [360]. One study also showed that uric acid

released from tumour cells activated anti-tumour immunity and that MSU adminis-

tration could promote tumour rejection [361]. However, the possibility to use DAMPs

such as MSU for anti-tumour immunotherapy has not been investigated yet.

1.4.3 RLR ligands

RIG-I -(Retinoic acid incucible gene I protein)-like receptors (RLRs) include RIG-I

and melanoma differentiation associated factor 5 (MDA-5). RIG-I is specific for 5’

triphosphate single stranded (ss) RNA with a double stranded (ds) RNA component,

a form of nucleic acid associated with many negative ssRNA viruses and some dsDNA

viruses [362, 363]. MDA-5 interacts preferentially with long dsRNA, a PAMP occuring

in infections with positive ssRNA viruses [364].

Intracellular virus recognition through RLRs leads to engagement of the shared adap-

tor molecule mitochondrial antiviral signalling protein [365]. In contrast, the other

RNA sensors engage different signalling molecules. TLR3 signals through TRIF and

TLRs 7, 8 and 9 employ MyD88 [340]. All of these signalling cascades ultimately re-

sult in activation of the transcription factors NFκB and IRF, subsequent production

of type I IFNs and other pro-inflammatory and anti-viral cytokines, and induction of

an adaptive immune response [366].
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In addition to being a TLR3 ligand, Poly IC can be recognised by either RIG-I or

MDA-5, depending on its length [367]. Poly IC of > 2kbp length is preferentially

recognised by MDA-5, while Poly IC molecules shorter than 300bp are bound by

RIG-I [367]. Furthermore, activation of monocyte-derived DCs but not steady-state

DCs was found to be partially dependent on MDA-5 [368] and optimal induction of

CTL responses in vivo required both TLR3 and MDA-5 [369]. In addition, MDA-5 is

not limited to immune cells and expression in non-haematopoietic cells can contribute

to successful CTL responses after Poly IC vaccination [370].

1.4.4 Control of adaptive immunity

1.4.4.1 Direction of the type of immune response

Recognition of PAMPs and danger signals by PRRs is important in the initiation

and regulation of the correct type of adaptive immune response. Thus, recognition

of fungal cell wall components such as β-glucan and mannan by PRRs drives Th17

responses, which are required to clear fungal infections of the mucosa [371, 372].

Similarly, different TLRs can trigger Th1, Th2, Th17 and CTL T cell responses via

activation of distinct cytokine profiles in DCs [373, 374]. This capacity is not limited

to surface receptors, as cytosolic RLRs and some NLRs have also been demonstrated

to activate adaptive immune responses [369, 375]. In one study, a cytosolic DNA

sensor pathway was even found to be sufficient to activate Th1 CD4 T cells, cytotoxic

CD8 T cells and antibody responses [376]. For many PRRs the relation between the

type of ligand recognised and the height and type of ensuing immune response is not

yet fully understood and still needs further studies.
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1.4.4.2 Requirement for innate signals

For DCs, direct recognition of pathogens through PRRs seems to be a prerequisite for

the successful activation of T cell responses. As mentioned before, DCs are the most

important cell type to distinguish self from foreign molecules to ensure maintenance

of tolerance to innocuous agents and induction of immunity to harmful pathogens.

To become sufficiently activated to initiate adaptive immune responses, DCs need to

sense PAMPs or DAMPs as they acquire antigen.

In addition, it has been suggested that full activation of DCs may require recogni-

tion of more than one danger signal or PAMP [377]. A combination of ligands that

signal through the different adaptor molecules MyD88 and TRIF was suggested to

provide optimal synergistic stimulation [378]. On the other hand, exposure of DCs

to inflammatory cytokines alone without the delivery of PAMPs or DAMPs leads

to up-regulation of co-stimulatory molecules, but cannot induce cytokine production

[379]. Therefore, DCs matured with cytokine cocktails alone are not as effective at

stimulating immune responses as DCs that encounter pathogens in vivo. One TLR

ligand frequently used to achieve DC maturation is the TLR4 ligand LPS. LPS can

induce very fast and efficient short-term DC activation, but can result in exhaustion,

DC cell death and down-regulation of cytokine production over longer periods of time,

especially at hight doses [380]. Simultaneous recognition of multiple TLRs that trig-

ger synergistic signalling pathways seems to be needed to induce optimal production

of cytokines from DCs. Especially the combination of intrinsically recognised ligands

like the TLR8 ligand imidazoquinoline resiquimod and extrinsic ligands such as LPS

has been found to increase the amounts of IL-12 secreted from DCs [377].

While migratory DCs may readily encounter PAMPs as they take up antigen, the

sensing of PAMPs by lymphoid-tissue resident DCs is much less clear. Nevertheless,

the non-migratory CD8α+ DCs specialise in the induction of effective CTL responses

[258]. Migratory DCs may deliver both antigens and PAMPs to the LN resident DCs
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for recognition and processing [381]. A different theory is that migratory DCs activate

CD4 Th cells which then interact with the LN resident DCs that in turn activate

and license CTLs. According to this model, direct PAMP recognition is replaced by

activation of the appropriate type of CD4 T cells which then deliver information about

the type of pathogen to the lymphoid tissue resident DCs [382].

1.4.4.3 Implication of innate regulation of adaptive responses

Together, studies in recent years have found that the induction of adaptive immune

responses depends largely on innate signals [299]. The detection of PAMPs and dan-

ger signals by DCs and other cell types serves to ensure that immune responses are

only mounted to pathogens, while tolerance is maintained towards host cells. The

recognition of conserved features of groups of similar pathogens through PRRs then

results in signalling cascades which activate production of intracellular and extracel-

lular mediators. Changes in cytokine milieu and expression of surface markers in turn

confer information about the type of immune response that is needed for protection

and interact with other cells of the immune system [374]. A considerable amount of

signals and interplay between pathogens and various cell types of the immune system

have been discovered and the emerging insights may help in the design of effective

adjuvants for vaccines and tumour immunotherapies. Addition of appropriate PAMPs

as adjuvants to the delivered antigens may drive the desired type of immune response,

resulting in long-lasting memory and protection.

1.5 Tumour immunotherapy

Immunotherapy approaches aim at using the power of the host’s immune system to

eradicate disease. Generating anti-tumour responses de novo or enhancing existing

responses holds a huge potential to complement current cancer therapies.

Immune cells are capable of distinguishing healthy from tumour cells, have power-
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ful and highly specific effector functions, can migrate to distant sites and develop

long-lasting memory [383]. Thus, the generation of an effective anti-tumour immune

response should result in the specific and total eradication of all cancerous cells and

protection from recurrence of disease with minimal side effects to the body.

The type of immune response that is desirable for successful immunotherapy may

be inferred from the large amount of studies on tumour immune surveillance and

the occasional reports of spontaneous anti-tumour immune responses in patients. As

described in Chapter 1.1, tumours are variable and the most effective anti-tumour

immune response will depend on the susceptibility of the target cells to different cy-

totoxic pathways. In general, the activation and recruitment of NK cells and CTLs

appears desirable. Furthermore, a Th1 cytokine environment providing substantial

amounts of IFNγ and inducing IL-12 secretion for the induction of CTLs is likely to

be beneficial. Induction of broad, polyclonal responses may limit the possibility of

tumour immune escape via loss of specific antigens. A reduction of the infiltration

of inhibitory immune cells such as Tregs or the dampening of inhibitory factors, in-

cluding IL-10 and IDO may synergise with immune activation to achieve an optimal

anti-tumour effect. The ideal strategy to initiate a beneficial anti-tumour immune

response remains to be determined, but several approaches are outlined below.

1.5.1 Cell based immunotherapy

1.5.1.1 Adoptive T cell transfer

A direct method to increase the amount of tumour-specific CTLs is the adoptive

transfer of tumour-antigen specific T cells, which can lead to tumour regression in

murine cancer models [69, 384, 385].

In the 1980s, Rosenberg first pioneered the adoptive transfer of tumour-infiltrating

lymphocytes as a cancer therapy in melanoma patients [386]. To increase the survival
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of transferred T cells, non-myeloablative conditioning prior to cell transfer or injection

of high-dose IL-2 is often used [386, 387]. It was shown that conditioning dramatically

improved the anti-tumour efficacy of transferred T cells by removing endogenous cells

that act as cytokine sinks [388]. In addition, T cells can also be engineered genetically

to express a tumour-specific T cell receptor [389]. Several studies demonstrated a

clinical benefit of T cell transfer especially in melanoma patients, thus illustrating the

potential of the immune response for cancer therapy [386, 387, 389].

1.5.1.2 Dendritic cell vaccination

Activated and antigen loaded DCs have been used as vaccines against cancer. As

DCs are critical for the initiation of immune responses, this is thought to result in

activation of all appropriate effector cells. Haematopoietic precursors or monocytes

can be isolated from patients’ blood and differentiated into DCs, frequently with

the use of GM-CSF and IL-4 [390]. These GM-CSF generated DCs are thought to

correspond to inflammatory monocyte-derived DCs in vivo [306]. As they differ from

steady-state migratory and LN resident DCs [306], they may not represent the best DC

type for the induction of anti-tumour immune responses. The choice of antigen for DC

vaccination can also be problematic. The use of synthetic peptides is highly specific,

but requires exact knowledge of the expressed tumour antigens and is prone to lead

to tumour evasion through antigen loss [302]. Other methods like the loading of DCs

with tumour lysates [303], fusion of DCs with tumour cells [304], or electroporation

of DCs with tumour RNA [305] have the potential to induce an immune response

against a large spectrum of tumour antigens, but are limited by the availability of

tumour sample.

Furthermore, DCs will induce tolerance instead of immunity if not sufficiently ac-

tivated. Most studies so far have used monocyte conditioned medium and several

cytokines, which leads to up-regulation of co-stimulatory molecules and migration
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in vivo [379], but is probably not suited to induce cytokine production by DCs. In

contrast, DCs exposed to microbial stimuli secrete cytokines, but data about the du-

ration of this cytokine production after transfer in vivo is not yet available. The

frequently used stimulus LPS is a strong short-term DC activator, but seems to cause

exhaustion and down-regulation of cytokine production over longer periods of time

[380]. Moreover, it has been suggested that optimal cytokine production by DCs re-

quires activation of multiple receptors for microbial products, triggering synergistic

signalling pathways [377].

Clinical trials involving DC vaccination have shown improved survival in metastatic

melanoma, prolonged time in remission in patients with follicular lymphoma and in-

creased overall survival in prostate cancer patients [391–393]. Following these results,

the prostate cancer DC vaccine provenge was the first DC vaccine for cancer to gain

US Food & Drug Administration approval [5].

While both T cell transfer and DC vaccination protocols highlight the potential of

immunotherapy of cancer, they still show only limited anti-tumour effects in a small

percentage of patients. In addition, they are labour intensive, require good man-

ufacturing practice approved laboratories and specially trained staff. This renders

cell-based immunotherapies expensive and limits their applicability.

1.5.2 Cell free immunotherapy

Monoclonal antibodies, cytokines and adjuvants can also be used to modulate the

anti-tumour immune response. These cell-free immunotherapy approaches for can-

cer are generally less expensive than cell-based protocols and easily applicable in

patients.
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1.5.2.1 Monoclonal antibodies

Antibodies can be used to block molecules involved in tumour progression, such as

Bevacizumab that blocks VEGF, Cetuximab, which blocks the epidermal growth fac-

tor receptor and Trastuzumab which targets Her2/neu [3]. All of these antibodies

are used clinically to treat colorectal cancer and Trastuzumab is also used in pa-

tients with other Her2+ malignancies. In addition, Rituximab targeting CD20 on

lymphoma and Alemtuzumab specific for CD52 on chronic lymphocytic leukaemia

may exert their anti-tumour functions by inducing antibody-dependent cytotoxicity

[3]. However, most studies on the effect of these antibodies in cancer therapy have

focused on blocking tumour-signalling pathways and much less is known about the

involvement of immune pathways in their effects.

Other antibodies have been developed to block tumour-suppressive molecules and

thereby boost anti-tumour immunity. These include Ipilimumab, which targets CTLA-4

and the anti-PD1 antibody BMS-936558 [6–8]. CTLA-4 is an inhibitory receptor ex-

pressed on T cells which binds to CD80 and CD86 [264]. Anti-CTLA-4 antibody

enhances anti-tumour immunity in mice [394, 395] and patients with melanoma [6, 7].

However, its use in patients is limited by its severe toxicity [6, 7]. PD-1 is also an

inhibitory molecule on T cells and has been linked to exhaustion and dysfunction in

cancer [266, 269, 270]. The results of a phase I clinical study of antibodies against

PD-1 and PD-L1 in patients with a range of different tumours have been promising,

showing >20 % or 6-17 % objective, durable responses, respectively [8, 396].

1.5.2.2 Cytokines that activate the immune response

High-dose IL-2 therapy has long been used to activate anti-tumour immunity in pa-

tients suffering from metastatic melanoma and renal cell carcinoma. High-dose IL-2

is associated with durable long-term responses in 13-15 % of patients [397, 398]. The
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high dose is required to achieve anti-tumour responses, however, the majority of pa-

tients do not benefit from high-dose IL-2 therapy and the treatment is associated with

severe toxicity [399].

Recently, the use of IL-12 injections at the tumour site to boost anti-tumour im-

munity has been evaluated in a phase I trial. In combination with Paclitaxel and

Trastuzumab, IL-12 treatment was safe and showed promising activity in patients

with Her2+ tumours [400]. Further studies will be needed to determine the potential

of IL-12 administration to enhance anti-tumour immunity.

1.5.2.3 Adjuvants

Adjuvants that stimulate the immune response via PRRs are also used to activate

anti-tumour immunity. The attenuated mycobacterium BCG has been used for the

treatment of bladder cancer in patients since 1976 [9]. When repeated instillations are

administered, BCG was even found to be superior to chemotherapy [10]. However,

despite its long use in the clinic, little is known about the mechanism by which BCG

activates the anti-tumour response. Severe local inflammation appears to occur in

the bladder, but its effects on DCs are largely unknown [401]. A very recent study

showed that a single instillation was sufficient to disseminate BCG to the dLNs and

prime IFNγ producing T cells [402]. However, multiple treatments were required to

induce T cell infiltration in the bladder. In addition, this study showed that pre-

existing BCG-specific T cells could accelerate and enhance the response, and such

T cells could be generated by subcutaneous vaccination prior to BCG instillation in

the bladder [402].

The other clinically used adjuvant in the immunotherapy of cancer is Imiquimod.

This TLR7 agonist induces local production of IFNα, IL-12 and TNFα. It has been

shown to recruit pDCs and result in a Th1 response and activation of CTLs [17, 343].

A topical cream containing Imiquimod is used in the treatment of warts, basal cell
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carcinoma and other pre-cancerous and early malignant skin lesions [17].

Other adjuvants, such as Poly IC and CpG have shown very promising results in

murine models of immunotherapy, but yielded varying results in clinical trials for

cancer immunotherapy and are not currently used as standard treatments for cancer

patients [12, 14, 16, 403].
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1.6 Aims of this thesis

DCs have been found to infiltrate most human and murine tumours. However, they

appear to lack sufficient activation to induce potent anti-tumour immunity. The hy-

pothesis of this thesis was that microbial stimuli and danger signals may be able to

overcome immune-suppression in tumours and re-programme DCs and macrophages

to an immuno-stimulatory phenotype. Adjuvants that induce Th1 responses and

CTLs are likely to be the most beneficial stimuli for anti-tumour immunity. There-

fore, adjuvants associated with Th1 induction were chosen for this study. Whole live

Mycobacterium smegmatis and BCG were selected to provide multiple PAMPs. The

intracellularly-recognised TLR ligands CpG and Poly IC, as well as the extracelullarly

recognised TLR ligand LPS, and the danger signal MSU were also included. Both

individual adjuvants and adjuvant combinations were assessed in this study.

The specific aims of this thesis were:

• To investigate which adjuvants or adjuvant combinations could activate DCs in

vitro and in vivo.

• To identify adjuvants that could induce tumour regression or delay of tumour

growth in vivo.

• To elucidate which cytokines, growth factors and DC activation parameters

or subsets were associated with successful adjuvants compared to ineffective

adjuvants.

• To determine, which effector cells mediated a successful adjuvant induced im-

mune response.

• To evaluate whether adjuvants that were effective against primary murine melanomas

could also delay tumour growth in other cancer models or reduce metastases.





Chapter 2

Material and methods
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2.1 Material

2.1.1 Labware

Table 2.1: Labware

Product Supplier/Distributor

Acrodisc
TM

13 mm & 32 mm syringe fil-

ters with 0.2 µm Supor R© membrane

PALL Life Sciences, Cornwall, U.K.

Axygen Micro Tubes 0.6 & 1.7 mL Axygen Scientific Inc., Union City, CA,

USA

Axygen sterile pipet tips 1000, 200 &

10 µL

USA

BD 1 mL Tuberculin syringes & BD

10 mL syringes

BD BioSciences, Bedford, MA, USA

BD Falcon
TM

polystyrene sterile conical

tubes: Blue Max 50 mL & Blue Max Jr.

15 mL

BD Falcon
TM

polystyrene sterile 5 mL

round bottom tubes

BD Falcon
TM

polystyrene sterile tissue

culture dishes 100 x 20 mm

BD Falcon
TM

polystyrene sterile multi-

well tissue culture plates: 6 well, 24 well

& Microtest
TM

U-bottom 96 well plates

BD Falcon
TM

polystyrene sterile tissue

culture flasks: 200 mL & 600 mL

BD Falcon
TM

polystyrene sterile serolog-

ical pipettes (5, 10 & 25 mL)
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Table 1: Labware (continued)

Product Supplier/Distributor

BD Falcon
TM

nylon cell strainers (40 &

70 µm)

BD BioSciences, Bedford, MA, USA

PrecisionGlide
TM

needles: 18, 20, 25 &

27.5 gauge (G)

Ultra-Fine
TM

needle insulin syringes

(29G): 0.3, 0.5 & 1 mL

CellLine CL 1000 two-compartment

bioreactor flasks

INTEGRA Biosciences Corp., Hudson,

NH, USA

Cover Slips 22x22 mm, No. 1 thickness Biolab Ltd., Auckland, NZ

Cryo’s
TM

sterile cryotubes 2 mL Greiner Bio-One, Frickenhausen, Ger-

many

30 µm MACS R© pre-separation filters Miltenyi Biotech GmbH, Germany

MACS R© autoMACS Separation

Columns

Millipore
TM

MX-Plates Millipore Corp., Billercia, MA, USA

µltra Amp 96-well PCR plates Sorensen
TM

Bioscience, Inc., Salt Lake

City, UT, USA

Nylon Gauze (70 µm) NZ Filter Specialists Ltd., Auckland, NZ

Optical Adhesive Covers for Real-time

PCR

Applied Biosystems, Foster City, CA,

USA

PCR 0.2 mL thin wall tubes; 8 strips &

caps

Axygen Scientific Inc., Union City, CA,

USA

Petri dishes, 90 mm diameter Labserv, Auckland, New Zealand

Slide-A-Lyzer Dialysis Cassettes 10,000

MWCO

Thermo Scientific, Portsmouth, NH,

USA
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Table 1: Labware (continued)

Product Supplier/Distributor

Sterile Carbon Steel Surgical Blades

number 10 & 22

Swann-Morton R© Limited, Sheffield,

England

Superfrost R© Plus microscope slides Biolab Ltd., Auckland, NZ

Titertube
TM

Microtubes 0.5 mL Bio-Rad Laboratories, Hercules, CA,

USA

Transfer pipettes (1 mL) Samco Scientific, Mexico

2.1.2 Reagents and buffers

2 Mercaptoethanol (2-ME)

2 ME was purchased from Sigma (St. Louis, MO, USA) as a 55 mM solution in PBS

and stored at 4 ◦C.

6-thioguanine

6-thioguanine powder was purchased from Sigma (St. Louis, MO, USA) and stored

at room temperature.

Acetone

Acetone was purchased from Merck (Darmstadt, Germany) and stored at room tem-

perature.

Agar

Granulated Difco
TM

agar was purchased from BD BioSciences, Bedford, MA, USA.

Agarose

Ultra-Pure
TM

Agarose was purchased from Invitrogen, Auckland, NZ.
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Alsever’s Solution

Dextrose, NaCl and sodium citrate (all from BDH Laboratory Supplies, Poole, Eng-

land) were dissolved in distilled H2O (MilliQ) to give final concentrations of 20.5 mg/mL

dextrose, 4.2 mg/mL NaCl and 8.0 mg/mL sodium citrate. The pH was adjusted to

6.1 with 1 M citric acid (BDH Laboratory Supplies, Poole, England) and the solution

stored at room temperature until used.

Ammonium Chloride Tris (ACT) Lysis Buffer

ACT buffer containing 0.144 M NH4Cl and 0.017 M HCl was prepared by mixing 9

parts of 0.16 M NH4Cl, pH 7.4 (Sigma, St. Louis, Missouri, USA) and 1 part of 0.17 M

Tris-HCl, pH 7.65 (Merck, Darmstadt, Germany) directly before use.

Assay Buffer

Assay Buffer for Multiplex detection of cytokines was prepared by adding 0.1 % BSA,

0.05 % Tween20, 0.005 % NaN3 and 2.5 mM EDTA to CaCl2 and MgCl2 free PBS.

Assay buffer was stored at 4 ◦C.

Bovine Serum Albumin (BSA)

BSA with low endotoxin levels was purchased from ICPbio Ltd. (Henderson, Auck-

land, NZ) in powder form and stored at 4 ◦C.

Brefeldin A

Brefeldin A was purchased from eBioscience (San Diego, CA, USA) at 1000x concen-

tration and stored at 4C. To block cytokine secretion in cell culture, Brefeldin A was

diluted to a 1x concentration in cIMDM.

Carboxyfluorescein Diacetate Succinimidyl Ester (CFDA-SE)

CFDA-SE was purchased as powder from Molecular Probes (San Diego, CA, USA)

and suspended at 10 mM in dimethyl sulfoxide (DMSO; Sigma, St. Louis, Missouri,

USA). Single use aliquots for were stored at −20 ◦C.
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Chromatography Elution Buffer

3.375 g glycine were dissolved in 0.5 L dH2O and the pH was adjusted to pH 2.7. The

buffer was degassed and stored at room temperature.

Chromatography Neutralising Buffer

12.114 g Tris-HCl were dissolved in 100 mL dH2O. The solution was adjusted to pH 9.0,

degassed and stored at room temperature.

Chromatography Wash Buffer

2.84 g Di-sodium-orthophosphate were dissolved in 1 L dH2O and pH was adjusted to

pH 8.0. The buffer was degassed and stored at room temperature.

Collagenase IV

Collagenase IV (260 u/mg) was purchased as lyphilised powder from Worthington

Biochemical Corporation (Lakewood, NJ, USA). The powder was stored at −20 ◦C

and the desired amount of enzyme was diluted in HBSS directly before use.

CpG Oligodeoxynucleotides 1668 (CpG)

Transfection grade CpG ODN 1668 (ODN 1668 (sequence: 5-tccatgacgttcctgatgct-3;

phosphorothionate linkages)) was purchased as lyophilised powder from GeneWorks

(Thebarton, SA, Australia) and stored at 4 ◦C. CpG was dissolved in PBS to give a

stock concentration of 3.2 mg/mL and aliquots were stored at −20 ◦C. In use aliquots

were stored at 4 ◦C for a maximum of 4 weeks.

DEPC-Treated Water

RNase-free, DNase-free, pyrogen-free filtered DEPC treated water was purchased from

Ambion Inc, (Austin, TX, USA).

DNase I

DNase I was purchased as a lyophilised powder from Roche (Mannheim, Germany),

dissolved at 10 mg/mL in IMDM and stored at −20 ◦C until used.
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Dubos Broth

Difco
TM

Dubos Broth Base was purchased from BD BioSciences (Bedford, MA, USA).

The broth powder was dissolved in dH2O and autoclaved to sterilise. 10 % OADC

(oleic albumin dextrose catalase growth) supplement was filter sterilised and added to

the warm medium. Medium was stored at 4 ◦C and used within one month. Sterility

was tested by incubating 10 mL medium at 37 ◦C for 3-5 days.

Elastase

Elastase (4.4 u/mg) was purchased as a lyophilised powder from Worthington Bio-

chemical Corporation (Lakewood, NJ, USA). The powder was stored at −20 ◦C and

the desired amount of enzyme was diluted in HBSS directly before use.

Ethanol

Molecular grade 100 % ethanol was purchased from Carlo Erba Reagents (Milan, Italy)

and stored at room temperature until used.

Ethylendiaminetetraacetic Acid (EDTA)

EDTA was purchased in powder form from Sigma (St. Louis, MO, USA), dissolved

in dH2O at a concentration of 0.5 M and stored at room temperature.

Flow Cytometry (FC) Buffer

EDTA, NaN3 (both from Sigma, St. Louis, MO, USA) and FBS (GIBCO, Invitrogen,

Auckland, NZ) were added to PBS at final concentrations of 10 mM EDTA, 0.01 %

NaN3 and 2 % FBS. FC buffer was stored at 4 ◦C.

Foetal Bovine Serum (FBS)

Mycoplasma and virus screened and performance tested FBS containing 27 EU/mL

was purchased from GIBCO (Invitrogen, Auckland, NZ) and stored in 25 mL aliquots

at −20 ◦C. After thawing, aliquots were stored at 4 ◦C for a maximum of 3 weeks.
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Geneticin R© (G418)

The antibiotic Geneticin R© was purchased from GIBCO (Invitrogen, Auckland, NZ)

and stored in aliquots at −20 ◦C.

Glycerol

100 % Glycerol was purchased from Sigma (St. Louis, MO, USA) and stored at room

temperature.

Hank’s Buffered Salt Solution (HBSS)

HBSS was purchased from GIBCO (Invitrogen, Auckland, NZ) and stored at 4 ◦C.

Intracellular cytokine detection kit

The BD Cytofix/Cytoperm kit was purchased from BD Pharmingen (San Diego, CA,

USA). The kit buffers 1x Cytofix/Cytoperm buffer and 10x Perm/Wash buffer were

stored at 4 ◦C. 10x Perm/Wash buffer was diluted to 1x Perm/Wash buffer with dH2O

(MilliQ) directly prior to use.

Iscove’s Modified Dulbecco’s Medium (IMDM)

IMDM supplemented with GlutaMAX, 25 mM HEPES buffer and 3.024 mg/L NaHCO3

was purchased from GIBCO (Invitrogen, Auckland, NZ) and stored at 4 ◦C until used.

Complete Iscove’s Modified Dulbecco’s Medium (cIMDM)

IMDM was supplemented with 1 % Penicillin-Streptomycin (GIBCO, Invitrogen, Auck-

land, NZ), 55 µM 2 ME and 5 % FBS. Medium was stored at 4 ◦C for a maximum of

3 weeks.

Isopropanol

Analytical grade Isopropanol was purchased from Scharlau Chemie (Barcelona, Spain)

and stored at room temperature until used.



2 Material and methods 57

Liberase TL

Liberase TL was purchased as a lyophilised powder from Roche (Mannheim, Ger-

many), dissolved in injection grade dH2O (2 parts) and IMDM (3 parts) at a concen-

tration of 1 mg/mL and stored in single use aliquots at −20 ◦C.

Lipopolysaccharides (LPS)

LPS from Escherichia coli, serotype 0111:B4, was purchased as a lyophilised powder

from Sigma (St. Louis, MO, USA), dissolved in IMDM at a stock concentration of

1 mg/mL and stored at 4 ◦C.

Luria-Bertani Medium (LB)

Luria-Bertani broth powder (Miller) was purchased from Sigma (St. Louis, MO,

USA), dissolved in dH2O according to the manufacturer’s instructions and autoclaved.

LB medium was stored at 4 ◦C. For LB agar plates, 15 g/L agar (Difco
TM

, BD Bio-

Sciences, Bedford, MA, USA) were added to LB medium. LB agar medium was

autoclaved and dispensed into sterile petri dishes while still warm. Plates were stored

at 4 ◦C.

Magnetic Separation (MACS) Beads

Anti-CD8α, anti-CD4, anti-CD11c, anti-CD45 and anti-biotin MACS Microbeads

were purchased from Miltenyi Biotec GmbH (Bergisch Gladbach, Germany) and

stored at 4 ◦C until used.

Methanol

Analytical grade methanol was purchased from Scharlau Chemie (Barcelona, Spain)

and stored at room temperature until used.

Polymerase Chain Reaction (PCR) reagents 2x Taqman expression master mix and

taqman primers were all from Applied Biosystems, Foster City, CA, USA. The master

mix was stored at 4 ◦C and primer aliquots were stored at −20 ◦C.
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Middlebrook 7H11 Agar

Difco
TM

Middlebrook 7H11 agar powder was purchased from BD BioSciences (Bed-

ford, MA, USA). The 7H11 powder and 0.55 % glycerol were dissolved in dH2O and

autoclaved. When medium had cooled down, 10 % OADC supplement were added

and the 7H11 medium was dispensed into sterile petri dishes. 7H11 agar plates were

stored at 4 ◦C.

Monosodium Urate Crystals (MSU)

MSU was prepared from uric acid as previously described [404]. Briefly, 250 mg uric

acid were dissolved in 50 mL boiling dH2O (MilliQ) and subsequently left to cool

down to 50 ◦C. The solution was filtered through a 0.2 µm filter and reboiled. Crystal

formation was induced by addition of 1 mL 5 M NaCl. 7 days later, MSU crystals

were washed with ethanol and acetone and dried. MSU crystals were 12 µm to 25 µm

in size with needle-like appearance, as determined by light microscopy. Endotoxin

content was assessed by LAL test and found to be 0.288 EU/mg MSU.

Oleic Albumin Dextrose Catalase Growth Supplement, Middlebrook (OADC)

Difco
TM

OADC supplement was purchased from BD BioSciences (Bedford, MA, USA)

and stored at 4 ◦C. For addition to Dubos broth or Middlebrook 7H11 agar, a OADC

was filter sterilised.

Penicillin-Streptomycin

Penicillin-Streptomycin (10 000 U/mL and 10 000 µg/mL, respectively) was purchased

in liquid form from GIBCO (Invitrogen, Auckland, NZ) and stored as single use

aliquots at −20 ◦C until used.

Phosphate Buffered Saline (PBS)

CaCl2 and MgCl2 free PBS was purchased from GIBCO (Invitrogen, Auckland, NZ)

and stored at room temperature. In use PBS was stored at 4 ◦C.
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Polyinosinic-Polycytidylic Acid (Poly IC)

Low molecular weight Poly IC (0.2-1kbp) was purchased as lyohilised powder from

InvivoGen (San Diego, CA, USA) and dissolved in endotoxin-free physiological wa-

ter (containing 1.5 % NaCl) provided by the supplier at a stock concentration of

20 mg/mL. Stock aliquots were stored at −20 ◦C and in use aliquots were stored at

4 ◦C for a maximum of 4 weeks.

Proteinase inhibition buffer

A 25x stock solution was prepared by dissolving one Complete Protease Inhibitor

Tablet (Roche, Mannheim, Germany) in 2 mL PBS. Aliquots were stored at −20 ◦C

for up to three months. Prior to protein extraction, the stock solution was diluted to

a 1x working solution in PBS.

Reverse Transcription Kit

The reverse transcription SuperScript Vilo
TM

kit was purchased from Invitrogen,

Auckland, NZ, and stored at −20 ◦C.

RNA Extraction Kit

The NucleoSpin R© RNA L kit for extraction of RNA from medium-sized tissue sam-

ples was purchased from Macherey-Nagel GmbH & Co. KG, Düren, Germany. The

DNase powder was stored at 4 ◦C, aliquots of DNase solution were stored at −20 ◦C

and the remaining components were stored at room temperature as specified by the

manufacturer.

RPMI Medium 1640 (RPMI)

RPMI supplemented with 4.5 g/L D-glucose, 1.5 g/L Sodium Bicarbonate, 1 mM Sodium

Pyruvate, 10 mM HEPES and 300 mg/L L-Glutamine was purchased from GIBCO

(Invitrogen, Auckland, NZ) and stored at 4 ◦C until used.
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Sodium Azide (NaN3)

NaN3 (Sigma, St. Louis, MO, USA) was purchased in powder form and dissolved in

dH2O to a stock concentration of 5 %. The solution was stored at room temperature

until used.

Sodium Bicarbonate Buffer

NaHCO3 (0.42 g) was dissolved in 50 mL dH2O to yield a 0.1 M solution. Sodium

bicarbonate buffer was prepared immediately prior to use and not stored.

Sodium Chloride (NaCl)

NaCl was purchased in powder form from Sigma (St. Louis, MO, USA), dissolved in

dH2O to a concentration of 1.8 % and stored at room temperature.

Sodium Hydroxide

Sodium hydroxide was purchased from BDH Laboratory Supplies (Poole, England)

in powder form. Different solutions were used to adjust the pH of buffers.

SYBR R© Safe

SYBR R© Safe DNA Gel Stain was purchased from Invitrogen, Auckland, NZ. The dye

was added directly to the agarose-solution before the gels set to visualize nucleic acids.

Tris-acetate-EDTA (TAE) buffer

A 50x stock solution of TAE buffer containing 2 M Tris Acetate and 50 mM EDTA

was purchased from GIBCO (Invitrogen, Auckland, NZ) and diluted to a 1x working

solution using dH2O.

Tris Buffer

Tris buffer was made by diluting 0.5902 g Tris in 50 mL dH2O. The pH was adjusted

to 8.5 and the buffer was stored at room temperature until used.
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Trypsin/EDTA

Trypsin/EDTA solution containing 0.25 % Trypsin and 1 mM EDTA in Hanks’ Bal-

anced Salt Solution was purchased from GIBCO (Invitrogen, Auckland, NZ), and

aliquots were stored at −20 ◦C. In use aliquots were stored at 4 ◦C.

Tween R© 20 and Tween R© 80

Tween 20 and Tween 80 were purchased from Sigma (St. Louis, Missouri, USA) and

stored at room temperature until used.

Uric Acid

Uric acid was purchased in powder form from Sigma (St. Louis, MO, USA) and stored

at room temperature.

Wuerzburger Buffer

Sterile PBS was supplemented with 0.5 M EDTA, 10 mg/mL DNAse I and FBS to

give final concentrations of 5 mM EDTA, 20 µg/mL DNase and 1 % FBS. The buffer

was stored at 4 ◦C until used.

2.1.3 Cytokines and growth factors

Fms-like tyrosine kinase 3 ligand (Flt3L)

Recombinant murine Flt3L was produced using stationary phase cultures of the Chi-

nese Hamster Ovary cell line CHO flagFlk2.cone5, kindly provided by Prof. Nicos

Nicola (WEHI, Melbourne, Australia).

Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)

Recombinant murine GM-CSF was produced using stationary phase cultures of the

murine X63 cell line, modified to secrete the full-length murine GM-CSF protein.

The modified murine X63 cell line was kindly provided by Dr Antonius Rolink (Basel

Institute for Immunology, Basel, Switzerland).
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Interleukin 4 (IL-4)

Recombinant murine IL-4 was produced using stationary phase cultures of a Chinese

Hamster Ovary cell line (CHO), modified to secrete the full length murine IL-4 protein.

The IL-4 producing CHO cell line was kindly provided by Dr Antonius Rolink (Basel

Institute for Immunology, Basel, Switzerland).

Cytokines were collected by growing adherent cells in cIMDM, harvesting the culture

supernatants and filtering through a 0.2 µm serum filter. The cytokines were titrated

using bone-marrow derived DC (BMDC) cultures (GM-CSF and IL-4 or FLt3L, re-

spectively) to determine the optimal amount for good cell recovery and clear separa-

tion of DC subsets (Flt3L). The cytokines were stored as aliquots at −80 ◦C. In use

aliquots were stored at 4 ◦C for up to 2 weeks.

2.1.4 Antibodies and fluorophores

Antibodies

Antibodies specific to murine antigens were either purchased from BD Pharmingen

(San Diego, CA, USA), eBioscience (San Diego, CA, USA), Biolegend (San Diego, CA,

USA), AbD Serotec (Morphosys, Kidlington, U.K.) or purified in-house and labelled

with biotin, FITC or Alexa Fluor 647 (see 2.2.1.2 & 2.2.3.1).
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Table 2.2: Antibodies

Specificity Clone Label Source

B220 6B2 Biotin, FITC purified in-house

B220 6B2 Pacific Blue, PerCP BD Pharmingen

CD3e 2C11 APC BD Pharmingen

CD4 GK1.5 Alexa Fluor 647, FITC purified in-house

CD4 GK1.5 Pacific Blue BD Pharmingen

CD8α 2.43 Alexa Fluor 647, Biotin, FITC purified in-house

CD8α 53-6.7 Alexa Fluor 700, APC-H7, PE,

PerCP-Cy5.5

BD Pharmingen

CD11b M1/70 PE, PE-Cy5, PerCP-Cy5.5,

APC-Cy7

BD Pharmingen

CD11c N418 Alexa Fluor 647, Biotin, FITC purified in-house

CD11c HL3 PE, PE-Cy7 BD Pharmingen

CD19 1D3 Biotin BD Pharmingen

CD24 M1/69 FITC Biolegend

CD24 M1/69 PE eBioscience

CD40 3/23 PE BD Pharmingen

CD45 30-F11 FITC, Pacific Blue, PE, Biotin BD Pharmingen

CD45.1 A20 APC, Biotin, PE, PerCP-Cy5.5 BD Pharmingen

CD45.2 104 APC, Biotin, FITC, PE, PE-

Cy5.5

eBioscience

CD80 16-10A1 Biotin, PE BD Pharmingen

CD86 (B7.2) GL1 FITC purified in-house

CD86 (B7.2) GL1 V450 BD Pharmingen

DX5 DX5 Biotin eBioscience

FcγRII/III

(CD32/CD16)

2.4G2 none purified in-house

F4/80 BM8 FITC, PE, PerCP eBioscience
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Table 2: Antibodies (continued)

Specificity Clone Label Source

Gr-1 RB6-8C5 Biotin Biolegned

IFNγ XMG1.2 APC, PE BD Pharmingen

IL-12p40/70 C15.6 PE BD Pharmingen

Ly-6B.2 7/4 FITC AbD Serotec

Ly6C HK1.4 PE-Cy7 Biolegend

Ly6G 1A8 Biotin BD Pharmingen

MHC class II

(I-Ab)

3JP Alexa Fluor 647, FITC purified in-house

MHC class II

(I-A/I-E)

M5/114 FITC, PE BD Pharmingen

NK1.1 PK136 Biotin, FITC, PE eBioscience

Ter119 Ter119 Biotin eBioscience

TNF-α MP6-XT22 FITC, Pacific Blue eBioscience

Vα2 B20.1 Biotin, FITC, PE BD Pharmingen

Vβ5.1/5.2 MR9-4 Biotin, PE BD Pharmingen

To identify positive staining, isotype control antibodies were used for some staining anti-

bodies:

Table 2.3: Isotype Controls

Specificity Isotype Isotype control clone Source

CD11b Rat IgG2bκ A95-1 BD Pharmingen

CD11c Armenian Ham-

ster IgG1 λ

G235-2356 BD Pharmingen

IL-12p40/70 Rat IgG1κ R3-34 BD Pharmingen

IFN-γ Rat IgG1 κ R3-34 BD Pharmingen

F4/80 Rat IgG2a κ R35-95 eBioscience

TNF-α Rat IgG1 κ EBRG1 eBioscience
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Cell viability dyes

4,6-Diamidino-2-Phenylindole Dihydrochloride (DAPI) was purchased as a lyophilised pow-

der from Invitrogen (Auckland, NZ) and dissolved in dH2O to a concentration of 5 mg/mL.

This solution was then further diluted to a stock solution of 200 µg/mL in FC buffer and

stored in aliquots at 4 ◦C until used.

Live/Dead R© fixable dead cell staining kit blue was purchased from Invitrogen (Auckland,

NZ) and stored at −20 ◦C. The lyohilised dye powder was dissolved in 50 µL DMSO per vial

as per manufacturer’s instructions and stored at 4 ◦C for a maximum of 6 weeks.

Streptavidin (SA)-Fluorophore conjugates

SA-Alexa Fluor 555 was purchased from Invitrogen (Auckland, NZ) and stored in aliquots

at −20 ◦C. In use aliquots were stored at 4 ◦C. SA-FITC, SA-PE, SA-PerCP, SA-PETR

and SA-APC were purchased from BD Pharmingen and stored at 4 ◦C.

2.1.5 Mycobacteria

The mycobacterial strains Mycobacterium smegmatis mc2155 and Mycobacterium bovis Bacil-

lus Calmette-Guérin (BCG) Pasteur strain 1173P2 were kindly provided by Ronan O’Toole

(School of Biological Sciences, Victoria University of Wellington, NZ) and AgResearch Wal-

laceville Animal Research Centre (Upper Hutt, NZ).

2.1.6 Tumour cell lines

The B16.OVA melanoma tumour cell line was generated by Drs. Edith Lord and John G.

Frelinger, University of Rochester, Rochester, NY [405] and kindly gifted by Drs. Roslyn

Kemp and Dick Dutton, Trudeau Institute, NY, USA. The parental melanoma tumour cell

line B16.F1 was purchased from American Type Culture Collection (ATCC, Manassas, VA,

USA).
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The E.G7-OVA tumour cell line was derived from the C57BL/6 mouse lymphoma cell line

EL4 [406] and purchased from American Type Culture Collection (access number: CRL-

2113, ATCC, Manassas, VA, USA). E.G7-OVA cells contain one copy of the pAC-neo-OVA

plasmid and constitutively synthesise and secrete OVA.

The breast carcinoma line 4T1 is a 6-thioguanine resistant cell line selected from the 410.4

tumor without mutagen treatment [407]. The 4T1 tumour cells were obtained from ATCC

(access number CRL-2539, ATCC, Manassas, VA, USA).

Tumour cell lines were stored in 90 % FBS, 10 % DMSO at −80 ◦C. Before use in experi-

ments, tumour cells were cultured in cIMDM to obtain cells in exponential growth. OVA

expressing cell lines were cultured in the presence of 0.5 mg/mL Geneticin R© selective an-

tibiotic. Adherent cells were detached by 1 min trypsinisation at 37 ◦C. Proteolysis was

stopped by addition of an equal volume of FBS and cells were washed 3 times in PBS before

use.

2.1.7 Mice

2.1.7.1 Maintenance and ethical approval

All mice were bred and maintained on standard laboratory food and water ad libitum in

the Biomedical Research Unit of the Malaghan Institute of Medical Research. All experi-

mental protocols were approved by the Victoria University Animal Ethics Committee and

all procedures were carried out in accordance with the guidelines of Victoria University of

Wellington.

2.1.7.2 Mouse strains

C57BL/6 and BALB/cJ (BALB/c) breeding pairs were obtained from the Jackson Labora-

tories (Bar Harbour, ME, USA).
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B6.SJL-PtprcaPep3b/BoyJArc (B6) mice were created by backcrossing the inbred strain

SJL, expressing the Ptprca gene (CD45.1), onto the C57BL/6 (CD45.2) background [408].

Therefore, cells from C57BL/6 and B6 congenic mice can be on the basis of CD45.1 and

CD45.2 expression. Breeding pairs were obtained from the Animal Resources Centre (Can-

ning Vale, WA, Australia).

OTI and OTII mice [409, 410] were obtained from Dr. Sarah Hook, School of Pharmacy,

Dunedin, NZ, with the permission of Prof. Frank Carbone, Melbourne University, Australia.

T cells from OTI and OTII mice express Vα2 Vβ5.1/5.2 TCRs specific for OVA257−264

presented on H2-Kb and OVA323−339 presented on I-Ab, respectively. OTII mice were tested

for expression of Vα2 Vβ5.1/5.2 TCRs on peripheral blood CD4 T cells by flow cytometry.

OT-I x B6.SJL-Ptprca mice and OT-II x B6.SJL-Ptprca (OTI congenic and OTII congenic

mice) were bred by crossing OTI or OTII mice (CD45.2) with B6 congenic mice (CD45.1)

at the Malaghan Institute of Medical Research, Wellington, New Zealand.

Foxp3GFP mice carry an in-frame insertion of the enhanced green fluorescent protein

(eGFP) gene into the first coding exon of the Foxp3 gene [411]. These mice produce a

fully functional Foxp3 protein fused to the eGFP protein. Breeding pairs were obtained

from Prof. Alexander Y Rudensky, University of Washington (Seattle, Washington, USA).

V(D)J Recombination Activation Gene RAG-1 deficient mice (RAG1-/- mice) were pur-

chased from the Walter and Eliza Hall Institute (Melbourne, Australia). Rag1-/- mice are

defective in their ability to recombine the T cell receptor (TCR) and B cell receptor (BCR)

and as a consequence have no mature T or B cells [412].

Mouse strains were maintained by mating between siblings. For all experiments mice were

sex matched and 6-8 weeks old at the beginning of the experiments.



68 2 Material and methods

2.2 Methods

2.2.1 Cell culture

All cells were cultured at 37 ◦C with 5 % CO2 and 95 % humidity.

2.2.1.1 Culture of tumour cell lines

E.G7-OVA and B16.OVA cell lines were grown in cIMDM containing 0.5 mg/mL G418.

B16F1 tumour cells were grown in cIMDM without G418. Non-adherent E.G7-OVA tumour

cells were harvested by spinning down cultures. Adherent B16 melanoma cells were detached

from the flask by incubation for 1 min at 37 ◦C in 3 mL Trypsin/EDTA. Proteolysis was

stopped by 3-fold dilution in cIMDM and cells were, washed, counted and replated.

4T1 breast carcinoma cells were cultured in RPMI containing 10 % FBS. Adherent cells were

dissociated by incubation with 1mM EDTA for 10 min at 37 ◦C and collected by centrifuga-

tion. Cells were then washed in pre-warmed medium and counted before reseeding.

All tumour cells were washed 3 times in PBS before injection into mice.

2.2.1.2 Propagation of hybridomas for antibody production

B cell hybridomas stored in liquid N2 were thawed, washed and pre-cultured in IMDM

containing 20 % FBS in 25 mL flasks. When cells had grown up to 30x 106, they were

transferred into the cell compartment of CellLine flasks and IMDM containing 1 % FBS

was added to the nutrient compartment. Cells were harvested twice a week, pelleted by

centrifugation and re-seeded. The supernatant was kept for antibody purification. Nutrient

medium was exchanged once per week.
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2.2.1.3 Generation of dendritic cells from bone marrow pre-

cursors

C57BL/6 mice were euthanised and hind legs were detached at the hips and collected in

IMDM. The muscle and connective tissue was removed, knee joints were separated and the

ends of femurs and tibias cut off to gain access to the BM. The BM was flushed out with

IMDM into a 50 mL tube using a 25-gauge needle attached to a 10 mL syringe. Cell clumps

were disrupted by vigorous pipetting and cells were filtered through 70 µm nylon gauze. Cells

were pelleted by centrifugation at 320 g for 5 min. Red blood cells were lysed by incubation

in 10 mL ACT buffer per mouse for 5 min at 37 ◦C; lysis was stopped by addition of an equal

volume of IMDM. Cells were pelleted again and live cells were identified by trypan blue

(GIBCO, Invitrogen, Auckland, NZ) exclusion and counted using a haemocytometer. Cells

were pelleted, resuspended in cIMDM and plated in 6-well plates.

For GM-CSF/IL-4 derived BMDC, BM cells were plated at 2x106 cells/well containing

10 ng/mL GM-CSF and 20 ng/mL IL-4. Cells were cultured at 37 ◦C for 7 days. Cells

were supplemented with nutrients on day 3 and 5 by replacing 2 mL of medium containing

GM-CSF and IL-4 to again give a final concentration of 10 ng/mL GM-CSF and 20 ng/mL

IL-4.

To generate DCs from BM using the Flt3L culture system, BM cells were plated at 5x106 cell-

s/well containing a pre-determined amount of Flt3L (see 2.1.3). Cells were supplemented

with Flt3L growth factor and nutrients on day 3, 6 and 9 by replacing 2 mL of medium

containing Flt3L to give the same total concentration as on day 1.

To activate BMDCs, different adjuvants were added at the indicated concentrations in the

medium replacement on day 6 (for GM-CSF/IL-4 derived BMDCs) or day 9 (for Flt3L

derived BMDCs) and analysis was performed 20 hours later, unless otherwise stated.
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2.2.1.4 Culture of mycobacteria

M. smegmatis

M. smegmatis was cultured in sterile LB medium containing 0.1 % Tween 80. One frozen

aliquot was thawed, inoculated into 30 mL medium and cultured over night at 37 ◦C and

200 rpm. The culture was then split into two 400 mL cultures and again grown over night.

M. smegmatis was pelleted by centrifugation at 3,115 g for 30 min at 4 ◦C and washed 3 times

in PBS containing 0.05 % Tween 80. Single use aliquots were stored at −80 ◦C.

BCG

BCG was cultured in sterile Dubos Broth supplemented with 10 % OADC. One frozen

aliquot of BCG was inoculated into 10 mL medium. After one week bacteria reached the

logarithmic growth phase and were split 1:10 into fresh medium. BCG was grown up again

and harvested after 5-7 days by centrifugation at 3,115 g for 30 min at 4 ◦C. BCG was

washed 3 times in PBS containing 0.05 % Tween 80 before aliquots were stored at −80 ◦C.

Enumeration of bacterial titer (CFU)

Sterility of samples was tested by culturing one aliquot on blood agar plates for 5 days. To

enumerate colony forming units (CFU), bacteria were thawed, sonicated twice for 20 s and

serial 10-fold dilutions were plated out. M. smegmatis was grown on LB agar plates for

1-2 days, whereas BCG was cultured on Middlebrook 7H11 agar plates for 21 days.

2.2.2 Tissue processing

2.2.2.1 Blood

Blood was collected either from the tail vein (live mice) or the heart (sacrificed mice). For

tail vein bleeding, mice were warmed up with a lamp, put into restrainers and tail veins were

nicked with a sterile scalpel blade. For cardiac puncture, a 1 mL syringe with a 25 gauge

needle was inserted through the skin and ribcage to puncture the heart.
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Blood for flow cytometry analysis was collected in 1.7 mL micro tubes containing at least an

equal volume of Alsever’s Solution. The blood samples were centrifuged at 420 g for 2 min

and the supernatant was discarded. Cell pellets were resuspended in 1 mL ACT buffer and

incubated at 37 ◦C for 10 min to lyse red blood cells. Cells were centrifuged again for 2 min

at 420 g and resuspended in 1 mL FC buffer. If large amounts of red blood cells were

still visible, a second lysis step with dH2O was performed. Cell pellets were resuspended in

0.5 mL dH2O and incubated at room temperature for 30 sec, followed imediately by addition

of 0.5 mL 1.8 %NaCl. Cells were washed twice in FC buffer and stored on ice until fluorescent

labelling.

Blood for serum analysis was collected into empty 1.7 mL micro tubes. Blood samples were

left at 4 ◦C over night to clot. Cells were pelleted by centrifugation at 420 g for 2 min. The

supernatant was transferred to fresh 1.7 mL micro tubes and clarified by centrifugation at

14,000 g for 20 min. Serum samples were stored in 50 µL aliquots in 0.6 mL micro tubes at

−20 ◦C until further analysis.

2.2.2.2 Lymph nodes

LNs were collected from sacrificed mice into 24-well plates containing IMDM. To release

DCs, LNs were broken up using 18 gauge needles and then digested enzymatically in IMDM

containing 0.1 mg/mL Liberase TL and 100 µg/mL DNase for 25 min at 37 ◦C. Digestion

was stopped by addition of EDTA to a final concentration of 10 mM. Subsequently, LNs

were pressed through 70 µm cell strainers using the plunger of a 1 mL syringe. Cells were

washed with either IMDM, FC buffer or Wuerzburger buffer, depending on their further

use. If the release of DCs was not required, LNs were directly processed into single-cell

suspensions by pressing through cell strainers without digestion. Cells were stored on ice

until further use.
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2.2.2.3 Spleens

Spleens were collected into 24-well plates containing IMDM. To release DCs, spleens were

injected with 2 mL of digestion solution containing 0.1 mg/mL Liberase TL and 100 µg/mL

DNase in IMDM. Spleens were digested for 25 min at 37 ◦C. Digestion was stopped by

addition of EDTA to a final concentration of 10 mM. Spleens were then processed into

single-cell suspensions by pressing through a 70 µm cell strainer using the plunger of a 1 mL

syringe. Cells were pelleted by centrifugation at 400 g for 5 min at 4 ◦C. The cell pellet

was resuspended in 10 mL ACT buffer and incubated at 37 ◦C for 10 min to lyse red blood

cells. 5 mL of IMDM were added and spleen cells centrifuged again. Subsequently, spleen

cells were washed in the appropriate buffer of medium for each experiment and stored on

ice until further use.

2.2.2.4 Lungs

Lungs were taken out onto paper towels, kept moist with HBSS and photographed for general

appearance. After weighing, lungs were placed into 6-well plates containing 5 mL HBSS,

washed in fresh HBSS and minced with a sterile scalpel blade. Lung tissue was digested

in HBSS containing 1 mg/mL Collagenase IV and 1.32 mg/mL Elastase for 75 min at 37 ◦C

shaking at 150 rpm. Digested lungs were filtered through 70 µm cell strainers using the tip

of a 10 mL pipette to strain through remaining tissue. Cells were washed 3-times in HBSS,

pelleted at 400 g for 5 min at 4 ◦C and stored on ice.

2.2.2.5 Tumours

For flow cytometry analysis and cell culture, tumours were collected into 6-well plates con-

taining IMDM and broken up with tweezers. Tumours were digested in IMDM containing

0.1 mg/mL Liberase TL and 100 µg/mL DNase for 25 min at 37 ◦C. Digestion was stopped

by addition of EDTA to a final concentration of 10 mM. Tumours were then processed into

single-cell suspensions by pressing through 70 µm cell strainers using the plunger of a 1 mL
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syringe. Cells were pelleted by centrifugation at 320 g for 10 min at 4 ◦C. The cells were

washed once in FC buffer or IMDM, depending on the experiment. Cells were stored on

ice.

For extraction of RNA the NucleoSpin RNA L kit (Macherey-Nagel, Düren, Germany) was

used according to the manufacturer’s instructions, with the exception that 15 mL tubes were

centrifuged at 800 g instead of 4,500 g due to the properties of the centrifuge. Briefly, tu-

mours were placed into lysis buffer containing 2-ME, weighed and processed using a tissue

homogeniser. Tumour lysate was filtered and transferred to 1.7 mL tubes to allow clarifica-

tion by spinning at 4,500 g for 10 min at room temperature. Subsequently, 70 % ethanol was

added and lysates were loaded onto silica columns. Columns were washed, DNA was digested

and columns were washed again. RNA was eluted in water and stored at −80 ◦C.

For analysis of the total tumour protein, tumours were snap frozen in liquid N2 and ground

with a mortar and pestle on dry ice. The powder was transferred into 1.7 mL tubes con-

taining proteinase inhibition buffer. The samples were vortexed for 2 min and clarified by

centrifugation at 14,000 g for 10 min at 4 ◦C. The protein protein content was determined

using the BCA kit (Thermo Scientific, Portsmouth, NH, USA) and samples were stored in

aliquots at −20 ◦C.

2.2.3 Flow cytometry

2.2.3.1 Purification and labelling of antibodies

Supernatants from B-cell hybridomas were spun down at 800 g and filtered to 0.2 µm low

protein binding filters. Antibodies were purified over a protein G-Sepharose column (Phar-

macia Biotech, Uppsala, Sweden) using low pressure chromatography. Briefly, the system

was cleaned with ethanol, water and wash buffer before the sample was loaded. The column

was then washed with wash buffer. Elution buffer was run over the column to elute bound

antibody into tubes prepared with 1/40 volume of neutralising buffer. Antibody concentra-

tion was assessed by spectophotometry as absorption at 280 nm. All fractions containing

>0.3 mg/mL antibody were combined and dialysed over night at 4 ◦C in PBS using dialysis
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cassettes. The final protein concentration was determined and antibody samples were stored

at −80 ◦C until use.

For labelling with biotin, FITC or Alexa dyes, 0.5 mg antibody was centrifuged at 10,000 g

for 30 min at 4 ◦C to remove particles. Subsequently, the antibody was transferred to a

vivaspin (10,000 MWCO) column and washed twice in sodium bicarbonate buffer. Then

the antibody transferred into a 1.7 mL tube at 2.5 mg/mL bicarbonate buffer. Per 100 µg

antibody 10 µg N -Hydroxysulfosuccinimide-biotin (Thermo Scientific, Portsmouth, NH,

USA), FITC or Alexa dye (Molecular Probes, Invitrogen, Auckland, NZ) were added while

vortexing and the mixture was incubated for 8 min at room temperature. Following the

labelling, the antibody was transferred back to the same vivaspin column and washed once

with Tris buffer and twice with PBS. Azide was added at 0.1 % and the labelled antibody

was stored at 4 ◦C.

2.2.3.2 Staining of surface markers

Single cell suspensions were counted and washed once in FC buffer. For staining, 1-3 x 106

cells were dispensed into a 96-well plate. Cells were pelleted by centrifugation at 320 g for

2 min and supernatants were removed by flicking the plate once. Pellets were resuspended

by vortexing the plate at low speed. If fixation of the cells was required before flow cy-

tometry acquisition, staining with live/dead fixable blue was performed by incubating the

cells for 15 min in a 1:500 dilution of the stock solution on ice. Cells were then pelleted and

resuspended again. To block unspecific binding by FcγReceptors II and III, cells were incu-

bated in FC buffer containing 2.4G2 antibody at a predetermined saturating concentration

for 10 min on ice. Fluorescently or biotin-labelled antibodies against the surface markers of

interest were then added at the appropriate dilutions and the cells were incubated a further

10 min to 15 min on ice. Cells were washed once in FC buffer and then incubated with a

fluorochrome-conjugated streptavidin at the appropriate concentration for 10 min on ice,

where required. After labelling, cells were washed twice in FC buffer. Cells were resus-

pended in 200 µL FC buffer and kept on ice. Directly before analysis by flow cytometry, the

cell viability dye DAPI was added at final concentration of 0.003 µg/mL.
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2.2.3.3 Intracellular staining

Cells were labelled with antibodies against surface markers as described in 2.2.3.2. After

washing in FC buffer, cells were fixed in BD Cytofix/Cytoperm solution for 20 min at 4 ◦C.

Cells were then washed twice in BD Perm/Wash buffer and incubated in this buffer for

15 min. Cells were pelleted, resuspended and stained for 30 min on ice with the appropriate

dilutions of antibodies for intracellular markers or isotype controls. Cells were washed

twice in Perm/Wash buffer and incubated another 30 min in Perm/Wash buffer to reduce

background staining. Cells were washed once in FC buffer, resuspended in FC buffer and

stored on ice for up to 2 h or at 4 ◦C over night before flow cytometry analysis.

2.2.3.4 Acquisition and analysis

Data was acquired using a FACScalibur or a LSRII SORP flow cytometer (Beckton-Dickinson,

San Jose, CA, USA) and analysed with FlowJo version 9.3.1 software (Treestar Inc., CA,

USA). For LSRII SORP instrument details, please see Appendix A. Live cells were iden-

tified based on their forward scatter (FSC) and side scatter (SSC) properties as well as

on their ability to exclude the viability dyes live/dead fixable blue or DAPI. Unlabelled

cells were used to adjust channel voltage settings. Cells labelled with a single antibody or

dye and antibody-labelled CompBeads were used to compensate for spectral overlap be-

tween fluorophores. CompBeads were labelled for 10 min at room temperature in FC buffer

containing the same antibody used in the experiment at a 1:10 dilution respective to the

concentration used for cell labelling. Unbound antibody was diluted by excess buffer and

labelled CompBeads were stored up to two weeks at 4 ◦C. In some experiments, matched

isotype control antibodies were used to control for background fluorescence due to non-

specific antibody binding. Where combination of many different fluorophores caused a rise

in background staining or positively stained populations were hard to identify, fluorescence

minus one (FMO) controls were used to determine gate positions.
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2.2.4 Gene expression analysis with real-time PCR

2.2.4.1 Assessment of RNA quality

RNA concentration and quality was determined on a ND-100 spectrophotometer by absorp-

tion at 230, 260, 280 and 340 nm. The 260:280 ratio was generally > 2 and the 260:230 ratio

was > 2.2, indicating that there was little contamination with DNA or protein, respectively.

Absorption at 340 was zero.

A sample of 2 µg of RNA, as determined spectrophotometrically, were also run on a 2 %

agarose gel. Agarose was dissolved in 1x TAE buffer by heating in a microwave and SYBR-

Safe was added to a 1x concentration to label nucleic acids. RNA samples were mixed with

BlueJuice
TM

loading dye (Invitrogen, Auckland, NZ) and loaded onto the gel. A 1 kbp DNA

ladder (Invitrogen, Auckland, NZ) was included as a size marker. Gels were submerged in

1x TAE and electrophoresis was performed at 100 V for 45 min. RNA was imaged in UV-

light using a Biorad Geldoc unit.

2.2.4.2 DNase digestion

Samples that had a 260:280 ratio <2 as measured spectrophotometrically or showed bands

additional to the expected 28S and 18S ribosomal RNA on the agarose gel were purified by

DNase digestion using the Ambion R© DNA-free
TM

kit (Invitrogen, Auckland, NZ). Briefly,

buffer and DNase were added to the samples and DNA was digested at 37 ◦C for 30 min.

Subsequently, DNase inactivation agent was added, mixed and spun down. The RNA-

containing supernatant was transferred to fresh tubes and analysed again for RNA quality

and quantity using spectophotometry and agarose gels.

2.2.4.3 Reverse-Transcription

The Superscript Vilo kit (Invitrogen, Auckland, NZ) was used according to the manufac-

turer’s instructions to synthesise cDNA. Appropriate amounts of reaction mix and enzyme
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were combined with 10 µg of RNA in PCR 8-strips. Controls with DEPC water instead

of enzyme were also included. Reverse transcription was performed for 60 min at 42 ◦C,

followed by enzyme inactivation at 85 ◦C. cDNA samples were stored at −80 ◦C.

2.2.4.4 Real-time PCR

The Taqman 96-well plate inflammatory mouse array, as well as individual taqman assays

were used in conjunction with the Taqman Expression Master Mix for real-time PCR (all

from Applied Biosystems, Foster City, CA, USA). For the plate-based array, samples cor-

responding to 20 ng to 40 ng RNA were placed into the wells that already contained the

lyophilised primers and probes. DEPC water and master mix were added and the plates

were sealed with optical adhesive covers. For individual Taqman assays, stock solutions of

the lyophilised primers and probes were prepared and stored at −20 ◦C. Primers/probes

were combined with the master mix and distributed in 96-well PCR plates. 20 ng to 40 ng

RNA and DEPC water were added to a final volume of 25 µL. Non-reverse-transcribed and

water controls were also included. Real-time PCR was run on an Applied Biosystems 7500

system. Samples were incubated for 2 min at 50 ◦C, followed by 15 min at 95 ◦C and 40

cycles of 15 s at 95 ◦C and 1 min at 60 ◦C. Cycle threshold (CT) values were determined

automatically and ∆∆CT values (normalised to 18S, compared to saline treated controls)

were calculated for all samples.

Table 2.4: Real-time PCR assays

Target Assay

multiple (96) mouse immune response array 4414079

18S ribosomal RNA Mm03928990 g1

CSF2 (GM-CSF) Mm00438328 m1

CSF3 (G-CSF) Mm00438334 m1

IL-6 Mm00446190 m1

IL-10 Mm00439616 m1

NOS2 (iNOS) Mm00440485 m1

CXCL-10 Mm00445235 m1
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2.2.5 Cell purification

2.2.5.1 Magnetic cell separation (MACS)

Magnetic cell separation was performed using MACS Microbeads (Miltenyi Biotec, Ger-

many) according to the manufacturer’s instructions. Single cell suspensions were resus-

pended in 9 µL Wuerzburger buffer per 106 cells and filtered through 70 µm cell strainers

to remove cell clumps. Unspecific binding to FcγReceptors II and III was blocked by incu-

bation with 2.4G2 for 10 min on ice. For direct labelling, 1 µL MACS Microbeads per 106

cells was added and cells were incubated for 15 min at 4 ◦C with slow rotation. For indirect

labelling, cells were first stained with the appropriate dilutions of biotin-labelled antibodies,

washed once in FC buffer and then resuspended in 10 µL Wuerzburger buffer containing

1 µL Streptavidin MACS Microbeads per 106 cells. Labelling was also performed for 15 min

at 4 ◦C with slow rotation. Unbound Microbeads were removed by adding an excess of

Wuerburger buffer and pelleting the cells at 320 g for 4 min. Cells were resuspended at 108

cells/mL for magnetic separation on the AutoMACS instrument (Miltenyi Biotec).

2.2.5.2 OTI and OTII T cell purification from lymph nodes

and spleens

Single cell suspensions were prepared from LNs and spleens without enzymatic digestion

(see 2.2.2.2 & 2.2.2.3). T cells were isolated by depletion of other cell types. The cell sus-

pension was incubated with a cocktail of biotinylated antibodies for Ter119, CD19, B220,

NK1.1, CD11b, CD11c, GR-1, CD49b and MHC II, followed by Streptavidin-MACS Mi-

crobeads (Miltenyi Biotec, see 2.2.5.1). T cells were collected from the negative fraction

after separation on the deplete programme on the AutoMACS. Cell purity was assessed by

flow cytometry for CD4, CD8 and appropriate TCRαβ chains. Purity of combined CD4 T

and CD8 T cells was greater than 90 %.
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2.2.5.3 T cell purification from spleens of adjuvant treated

mice

Single cell suspensions were prepared from spleens without enzymatic digestion (see 2.2.2.3).

T cells were isolated by direct labelling with anti-CD8α (OTI) or anti-CD4 (OTII) MACS

Microbeads (Miltenyi Biotec, see 2.2.5.1). T cells were collected from the positive fraction

after separation on the possel programme on the AutoMACS. Cell purity was assessed by

flow cytometry for CD4, CD8 and appropriate TCRαβ chains. CD4 T cell purity was

generally greater than 85 % and CD8 T cell purity was greater than 80 %.

2.2.6 Tumour models

2.2.6.1 Tumour challenge and growth monitoring

Tumour cells grown in vitro were harvested during their exponential growth phase and

washed thrice in PBS. B16F1, B16F10 or B16.OVA tumour cells were inoculated into the

flank of C57BL/6 mice by subcutaneous (s.c.) injection of 105 cells. EL4 and E.G7-OVA

cells were inoculated by s.c. injection of 5 x 105 cells into the flank of C57BL/6 mice. 4T1

breast cancer cells were injected into the mammary fat pad of female BALB/c mice at 104

cells/mouse. Tumour growth was monitored at least three times a week by palpation for very

small tumours and measuring the bisecting diameters using Mitutoyo callipers for tumours

>3 mm. 1 mm was substracted from each measurement to account for skin thickness. Mice

were euthanised when tumour size exceeded 150 mm2.

2.2.6.2 Adjuvant treatment

Adjuvant treatment was administered by peritumoral injection in a maximal volume of

100 µL PBS for tumours on the flank and 50 µL PBS for tumours in the mammary fat pad.

For tumours >25 mm2, adjuvants were injected on 3 sites around the tumour. Doses were

2 x 106 CFU live BCG, 20 µg CpG, 20 µg LPS, 4 x 106 CFU live M. smegmatis, 500 µg MSU
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crystals, 2 x 106 CFU live M. smegmatis + 250 µg MSU crystals or 50 µg Poly IC, unless

otherwise stated. All adjuvants were diluted freshly in PBS before injection. Bacteria and

MSU crystals were sonicated thrice for 10 sec before usage. All combination treatments were

given in separate injections of the two adjuvants, mainly to avoid clumping of MSU crystals

with mycobacteria. Adjuvant treatment was generally administered after the appearance

of palpable tumours every second day for 4 times total. In some experiments, different

treatment schedules or dosing was used as stated in the figure legends.

2.2.6.3 Adoptive cell transfer

T cells were purified from either TCR transgenic mice or adjuvant treated tumour bearing

mice as described in 2.2.5.2 & 2.2.5.3. In some instances, cells were labelled with CFSE to

assess in vivo proliferation (see 2.2.7.2). Cells were washed thrice in IMDM and injected

intra-venously (i.v.) into the lateral tail vein of the recipient mice.

2.2.6.4 Antibody Depletion of Cells

CD4 T cells, CD8 T cells, NK/NKT cells and Tregs were depleted by intra-peritoneal (i.p.)

injection of purified GK1.5, 2.43, PK136 or PC61 antibody, respectively. On day -1 and 0

with respect to the tumour inoculation, 200 µg GK1.5, 2.43 or PK136 or 100 µg PC61 were

injected. Tumours were inoculated at day 0 and adjuvant treatment was performed from

day 8 to day 14. Cell depletion was assessed by flow cytometry staining of the blood on

days 0, 7 and 15. CD4 T cells were 98 % depleted, CD8 T cells were 99 % depleted, NK1.1+

cells were 97 % depleted and Tregs were 80 % depleted on each of these time points.

2.2.6.5 Metastasis assay

Lungs from 4T1 tumour bearing mice were harvested and processed into single cell suspen-

sions as described in 2.2.2.4. Cells were resuspended in RPMI containing (100 U/mLPenicillin

and 100 µg/mL Streptomycin (GIBCO, Invitrogen, Auckland, NZ), 55 µM 2-ME, 10 % FBS
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and 10 µg/mL 6-thioguanine. Lung cells were then seeded at 10-fold, 100-fold and 1000-fold

dilutions into 10 cm tissue culture plates and incubated at 37 ◦C 5 %CO2 for 14 days. Fol-

lowing incubation, culture medium was discarded and 4T1 colonies were fixed for 5 min in

methanol. Cells were washed in ddH2O, stained with 0.03 % methylene blue solution for

5 min and washed again in ddH2O. Plates were allowed to air dry before photographs were

taken and blue 4T1 colonies were counted.

2.2.7 Assays of cell function

2.2.7.1 Cytokine production

Cytokine production was either analysed by intracellular staining or multiplex bead as-

say of culture supernatant or serum. For intracellular staining, cells were isolated, plated

in cIMDM containing 1 µg/mL GolgiStop (BD, San Diego, CA, USA) and/or Brefeldin A

(eBioscience, San Diego, CA, USA) and incubated for 3-6 hours at 37 ◦C, 5 % CO2. Subse-

quently, cells were harvested by pipetting and stained for intracellular cytokines as described

in 2.2.3.3.

For cytokine detection in culture supernatant or serum, multiplex polystyrene-bead kits

from Invitrogen (Auckland, NZ), Biorad (Hercules, CA, USA) and Millipore (Merck Milli-

pore Corporation, Billerica, MA, USA) were used as per the manufacturer’s instructions.

Briefly, supernatant was clarified by centrifugation at 1,000 g for 10 min. Samples and recon-

stituted standards were added to pre-wet 96-well filter plates (Merck Millipore Corporation,

Billerica, MA, USA) and incubated with a mixture of cytokine detection beads under ag-

itation. Plates were washed and flow-through removed using a vacuum manifold (Biorad,

Hercules, CA, USA). Appropriate biotinylated detection antibodies for the assayed cytokines

were added and the incubated with the samples on a plate shaker. Subsequently, samples

were stained with Streptavidin-PE, washed thrice and resuspended by vigorous shaking.

Samples were then transferred into flat-bottom 96-well plates and read on a Bio-Plex
TM

system (Biorad, Hercules, CA, USA). Cytokine concentrations were calculated against the

commercial standards using the provided software (Bio-plex
TM

manager software, Biorad,
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Hercules, CA, USA).

2.2.7.2 T cell proliferation in vivo

OTI or OTII T cells were enriched from LNs and spleens of OTI and OTII congenic mice

by MACS as described in 2.2.5.2. T cells were resuspended in PBS at 5 x 106 cells/mL.

CFSE was added at a final concentration of 1 µM; cells were immediately vortexed and

incubated for 10 min at 37 ◦C. Equal volumes of FBS and IMDM were added to stop the

CFSE staining reaction.

T cells were washed thrice in IMDM, counted and resuspended in IMDM at 5 to 10 x 106

cells/mL. 1-2 x 106 cells were injected i.v. into the lateral tail vein of C57BL/6 mice in a

total volume of 200 µL. 3-5 days later, tumour-draining LNs were harvested, processed into

single-cell suspensions (see 2.2.2.2) and analysed for T cell proliferation by flow cytometry

(see 2.2.3).

2.2.8 Data analysis

2.2.8.1 Software used for data analysis

FlowJo version 9.3.1 software (Treestar Inc., CA, USA) was used to analyse flow cytometry

data and to create flow cytometry plots and tables with percentages of gated cells. Microsoft

Excel 2008 for Mac OS (Microsoft Corporation, Washington, USA) and GraphPad Prism

version 5.00 for Mac OS X (GraphPad Software, San Diego California, USA) were used to

create tables and graphs and for statistical analysis.

2.2.8.2 Calculation of cell numbers

Viable cells were identified in single cell suspensions from processed organs by trypan-

blue (GIBCO, Invitrogen, Auckland, NZ) exclusion and counted using a haemocytometer.

Numbers of specific cell populations were calculated using the percentage of the cell type
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of interest among live cells obtained by flow cytometry analysis and the live cell counts

obtained by trypan-blue exclusion.

2.2.8.3 Statistical calculations

Data was tested for normality using D’Agostino and Pearson’s omnibus test. The results

showed that tumour sizes in control and adjuvant treated groups as well as percentages

of tumour-infiltrating immune cells and percentages of different cell types in LNs were

consistent with a Gaussian distribution (see Appendix B). If experimental data was from

similar experiments to those found to be consistent with Gaussian distribution, multiple

groups were compared using one-way Analysis of Variance (ANOVA) with Tukey’s post test.

To compare two parameters across multiple groups, two-way ANOVA with Bonferroni’s post

test was used. If data was not consistent with Gaussian distribution or normality could not

be tested due to small samples sizes or few repeats, multiple groups were compared using

the Kruskal-Wallis test with Dunn’s post test that does not assume normal distribution

of the data. Tukey’s post test, Bonferroni’s post test and Dunn’s post test all correct for

errors introduced by comparing multiple groups. Two samples were compared using the non-

parametric two-tailed Mann-Whitney test. Survival analysis was done using the log-rank

(Mantel-Cox) test with Bonferroni’s correction for multiple comparisons, where applicable.

Mean and standard deviation (SD) or standard error (SE) is reported in graphs.
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3.1 Introduction

DCs are crucial for the initiation of immune responses. Activated DCs are the most potent

inducers of T cell priming and are thought to be vital in shaping the immune response. Insuf-

ficiently activated DCs, however, present antigen without the necessary co-stimulatory sig-

nals and cytokines, thereby promoting T cell tolerance. Tumours frequently secrete factors

that inhibit DC activation, thus inducing them to be tolerogenic and leading to inhibition

of the anti-tumour immune response [222, 324, 326].

When DCs are fully activated, they increase their surface levels of MHC II molecules with

bound peptide antigen for presentation. In addition, they up-regulate surface expression

of co-stimulatory molecules, such as CD80, CD86 and CD40 [261, 271]. DCs can then

be licensed to activate CD8 T cells by classic CD4 T cell help or alternatively by NK

and NKT cell help, via CD40-CD40Ligand interaction [273, 413, 414]. This induces DCs

to produce IL-12, a cytokine thought to be required as a third signal (besides antigen

recognition and co-stimulation) to prime CD8 T cells [274, 275]. Furthermore, activated

DCs also produce a range of pro-inflammatory cytokines, including IL-6 and TNFα, as well

as chemokines, such as CCL3, CCL4 and CCL17 to attract näıve T cells [414, 415].

During the initiation of an immune response to an infectious agent, DCs become activated

as they recognise conserved structures on pathogens (PAMPs) via a range of specialised

receptors as discussed in detail in Chapter 1.4. In addition to activating DCs, PAMPs also

confer information to the DCs with respect to which type of immune response (Th1, Th2,

Th17) is needed [341, 371, 373, 374]. Furthermore, DCs also integrate signals of multiple

PAMPs and combination of intracellulary and extracellularly recognised TLRs has been

shown to synergistically enhance IL-12 production from DCs [377]. In addition to microbial

signals, DCs also sense tissue damage through endogenous danger signals such as ATP and

MSU, which also results in DC activation [63, 64].

In vaccination, adjuvants that either contain or mimic PAMPs have long been used to con-

fer activation signals to DCs. Traditionally, mycobacteria that express PAMPs recognised

by multiple DC receptors have been included in complete Freund’s adjuvant [327, 328].

More recently, several ligands for TLRs and other receptors, as well as endogenous dan-
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ger signals have been identified, some of which are currently in clinical trials as adjuvants

[64, 416].

Different types of DCs vary in their expression of pathogen-recognition receptors and there-

fore in their response to specific pathogens [291]. To study the effects of TLRs and other

adjuvants on DCs in detail, culture systems to develop DCs from bone-marrow precursors

(BMDCs) have been established. The cytokines GM-CSF and IL-4 are frequently used to

induce DC differentiation [417] and the resulting GM-CSF/IL-4 BMDCs display phenotypic

and functional characteristics similar to DCs arising during GM-CSF secretion in inflam-

mation in vivo [306]. However, GM-CSF is not necessary for generation of DCs in the

steady-state in vivo [418]. Rather, Fms-like tyrosine kinase-3 ligand (Flt3L) is required for

the formation of DCs from bone-marrow precursors in the absence of inflammation [419].

An in vitro culture system to generate BMDC using Flt3L, developed by Brasel et al., yields

three DC subsets equivalent to plasmacytoid DCs (pDCs), CD8- and CD8+ cDCs in vivo

[420–422].

In a successful anti-tumour immune response, NK cells and cytotoxic T cells (CTLs) can

eradicate tumour cells. IL-12 and a strong Th1 bias are required for the induction of CTLs

[274]. In addition, a Th1 environment favours production of IFN-γ by NK cells and T cells,

which is directly toxic for some tumours and also increases the sensitivity of tumour cells

to T cell killing [21, 24, 89, 90]. Therefore, adjuvants that induce strong Th1 responses

may be useful in activating strong anti-tumour immunity. Combination of intracellulary

and extracellularly recognised adjuvants or microbial and endogenous danger signals may

be superior to individual adjuvants.
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3.2 Aims

The purpose of this chapter was to identify adjuvants for the activation of DCs in tumours.

The hypothesis was that adjuvants that strongly activated DCs in vitro to up-regulate

antigen presentation, express co-stimulatory molecules and secrete Th1-promoting cytokines

may also activate DCs in tumours and thereby induce potent anti-tumour immunity. In

addition to analysing the activation of DCs by adjuvants in vitro, it was necessary to analyse

DC infiltration and activation status in tumours to evaluate whether these DCs may be

activated by adjuvant administration to induce anti-tumour immunity.

The specific aims were:

• To identify adjuvants that could activate BMDCs resembling inflammatory and steady-

state DCs in vitro and induce them to produce Th1-promoting cytokines

• To assess whether combinations of adjuvants were superior to individual adjuvants in

activating DCs

• To investigate whether murine tumours were infiltrated by DCs that may be targeted

by adjuvant administration to induce anti-tumour immunity

• To assess whether DCs from murine tumours could be activated by exposure to adju-

vants ex vivo
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3.3 Results

3.3.1 Different adjuvants induce varying degrees of activation

of GM-CSF/IL-4 BMDCs

To study the activation of DCs by adjuvants and assess their production of Th1-promoting

cytokines, initial experiments were done in vitro. For the first set of experiments, DCs were

generated from murine bone marrow by culture with GM-CSF and IL-4 as described in

Chapter 2.2.1. This well established culture system leads to differentiation of GM-CSF/IL-4

BMDCs that have similar characteristics to DCs arising during inflammation in vivo [306,

417].

To determine the best time point to assess activation of GM-CSF/IL-4 BMDCs, a time

course was done. DCs were incubated with adjuvants and 6 h, 20 h and 30 h later, surface

levels of the antigen-presentation molecule MHC II and the co-stimulatory molecules CD40

and CD86 was analysed by flow cytometry. The majority of cells was identified as live

by DAPI exclusion and expressed the typical GM-CSF/IL-4 BMDCs markers CD11c and

CD11b (Figure 3.1A). LPS activation of DCs for 20 h to 24 h is known to result in substan-

tial up-regulation of surface markers and higher levels of cytokine production compared to

shorter stimulation and therefore the effect of LPS was only analysed at this time point

[423].

MHC II expression was up-regulated in M. smegmatis and MSU + M. smegmatis DCs al-

ready after 6 h (Figure 3.1 B, right panel). However, CD40 and CD86 reached their highest

expression levels only after 20 h and were not further enhanced at 30 h (Figure 3.1 B, left

& middle panels). At 20 h, the extent of activation marker up-regulation was similar for

M. smegmatis, MSU + M. smegmatis and LPS stimulated DCs (Figure 3.1 B). Although

MSU has been reported to activate murine BMDCs [64], only a very slight increase in activa-

tion marker expression was observed with the tested concentrations of this MSU preparation

(Figure 3.1 B). Overall, stimulation of GM-CSF/IL-4 BMDCs for 20 h appeared to result in

the highest levels of activation marker expression and therefore this time point was chosen

for further experiments.
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Next, the ability of a range of adjuvants to activate GM-CSF/IL-4 BMDCs was compared.

In addition to the well-known DC stimulator LPS, the endogenous danger signal MSU,

M. smegmatis as a live Th1-inducing bacterium with multiple PAMPs and the viral RNA-

mimic Poly IC were analysed. Furthermore, several combinations of these adjuvants were

also tested.

In all adjuvant-treated DC cultures, the number of viable cells recovered was slightly de-

creased compared to unstimulated controls (Figure 3.2 A). Analysis of the side scatter (SSC)

profiles of the GM-CSF/IL-4 BMDC revealed an increase in SSC in DCs that had been ex-

posed to 250 µg/mL or 500 µg/mL MSU (Figure 3.2 B). This suggests that these DCs were

taking up MSU crystals.
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Figure 3.1: Time course of GM-CSF/IL-4 BMDC activation by adjuvants in
vitro. DCs were generated from bone marrow of C57BL/6 mice by culture with GM-CSF
and IL-4. On day 7, the indicated adjuvants were added and DC activation was analysed at
6 h, 20 h and 30 h by flow cytometry. (A) Live cells were identified by DAPI exclusion and
examined for the expression of CD11c and CD11b. Representative flow plots are shown.
(B) The expression of CD40, CD86 and MHC II on CD11c+ DCs is shown as Median
Fluorescence Intensity (MFI). MSU 100-500 = 100 µg/mL to 500 µg/mL MSU crystals; M.
smeg = 2.0 x 106 CFU live M. smegmatis per well; MSU + M. smeg = combination of
250 µg/mL MSU crystals and 1.0 x 106 CFU M. smegmatis per well; LPS 100 ng/mL.
Values of individual samples from one experiment are shown.
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As expected from the literature [341] the TLR4 ligand LPS induced up-regulation of CD40,

CD80, CD86 and MHC II on BMDC, whereas the TLR3 ligand Poly IC did not activate

GM-CSF/IL-4 BMDC (Fig. 3.2 C-F). The endogenous danger signal MSU also failed to

induce a significant up-regulation of activation markers. However, M. smegmatis stimulation

increased the surface levels of all activation markers in a dose-dependent manner (Fig. 3.2 C-

F). The effects of LPS, MSU and M. smegmatis on the activation of GM-CSF/IL-4 DCs

confirm the initial results obtained during the activation time course (Figure 3.1).

The combination of M. smegmatis and MSU significantly increased expression of CD40,

CD80, CD86 and MHC II compared to the levels observed with the same dose of M. smeg-

matis alone (Fig. 3.2 C-F). The extent of activation induced by MSU + M. smegmatis was

actually similar to the level induced by a 2-fold higher dose of M. smegmatis. In contrast,

combination of LPS and Poly IC did not enhance the expression of CD40, CD80 and MHC II

more than LPS alone and only slightly increased CD86 expression (Fig. 3.2 C-F).

These data indicate that LPS and M. smegmatis can activate GM-CSF/IL-4 BMDCs.

Poly IC stimulation had little effect on expression of co-stimulatory molecules and MHC II

on GM-CSF/IL-4 BMDCs. Exposure of DCs to MSU also did not increase activation

marker expression, but addition of MSU significantly enhanced DC activation in response

to M. smegmatis.

The supernatant from GM-CSF/IL-4 BMDC cultures was also analysed for the production

of cytokines using a multiplex assay. MSU and Poly IC stimulation caused little cytokine

secretion by GM-CSF/IL-4 BMDCs (Figure 3.3). LPS, LPS + Poly IC, M. smegmatis and

MSU + M. smegmatis, on the other hand, all induced the production of IL-1α, IL-1β,

IL-12p70, IL-6 and TNFα (Figure 3.3). This result is consistent with the effect of these

adjuvants on activation marker expression of GM-CSF/IL-4 BMDCs (Figure 3.2).

The highest levels of all of these cytokines were detected in response to LPS and LPS +

Poly IC. Interestingly, the amount of IL-1α, IL-1β, IL-6 and TNFα secreted by GM-CSF/IL-4

BMDCs after LPS stimulation was not further enhanced by addition of Poly IC, but IL-12p70

levels were more than 5-fold higher in LPS + Poly IC compared to LPS treated cul-

tures (Figure 3.3). In contrast, the combination of 250 µg/mL MSU and 1.0 x 106 CFU
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Figure 3.2: GM-CSF/IL-4 BMDC activation by adjuvants in vitro. GM-CSF/IL-4
BMDCs were generated, stimulated with adjuvants for 20 h and analysed by flow cytometry as
described in Figure 3.1 A. (A) The number of live cells in each culture condition is shown. (B)
The side scatter level is graphed as Median Fluorescence Intensity (MFI). (C-D) The expression
of CD40, CD80, CD86 and MHC II on CD11c+ DCs is shown as MFI. Adjuvant doses were: MSU
100-500 = 100 µg/mL to 500 µg/mL MSU; Poly IC: 50 µg/mL; M. smeg 0.5-2.0 = 0.5-2.0 x 106 CFU
live M. smegmatis per well; MSU+M.smeg 0.5 = 100 µg/mL MSU and 0.5 x 106 CFU M. smegmatis
per well; MSU+M.smeg 1.0 = 250 µg/mL MSU and 1.0 x 106 CFU M. smegmatis per well; LPS
100 ng/mL; LPS + Poly IC: 100 ng/mL LPS and 50 µg/mL Poly IC. *p < 0.05, **p < 0.01 and
***p < 0.001 compared to medium controls as assessed by one-way ANOVA with Tukey’s post test.
The graphs show the mean value +SE from 3 samples per condition. Results are from one of two
independent experiments with similar results.
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Figure 3.3: Cytokine production by GM-CSF/IL-4 BMDC activated by adjuvants in
vitro. The supernatant of GM-CSF/IL-4 BMDCs activated with adjuvants for 20 h as described in
Figure 3.2 was analysed for the production of cytokines. IL-1α, IL-1β, IL-12p70, IL-10, IL-6 and
TNFα were detected in a multiplex bead assay. *p < 0.05, **p < 0.01 and ***p < 0.001 compared
to medium controls as assessed by one-way ANOVA with Tukey’s post test. Bar graphs depict the
mean value from 3 samples per condition +SE. Data are from one out of two similar independent
experiments with comparable results.
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M. smegmatis resulted in considerable production of IL-1α, IL-1β, IL-12p70, IL-6 and

TNFα, while neither 250 µg/mL MSU nor 1.0 x 106 CFU M. smegmatis induced any signif-

icant cytokine secretion (Figure 3.3).

The highest levels of all of these cytokines were detected in response to LPS and LPS +

Poly IC. Interestingly, the amount of IL-1α, IL-1β, IL-6 and TNFα secreted by GM-CSF/IL-4

BMDCs after LPS stimulation was not further enhanced by addition of Poly IC, but IL-12p70

levels were more than 5-fold higher in LPS + Poly IC compared to LPS treated cultures

(Figure 3.3). In contrast, the combination of 250 µg/mL MSU and 1.0 x 106 CFU M. smeg-

matis resulted in considerable production of IL-1α, IL-1β, IL-12p70, IL-6 and TNFα, while

neither 250 µg/mL MSU nor 1.0 x 106 CFU M. smegmatis induced any significant cytokine

secretion (Figure 3.3).

In addition to the induction of pro-inflammatory and Th1 cytokines, M. smegmatis, LPS

and LPS + Poly IC also stimulated the production of the anti-inflammatory cytokine IL-10

(Figure 3.3). In contrast, 250 µg/mL MSU + 1.0 x 106 CFU M. smegmatis induced pro-

inflammatory cytokines and IL-12p70, but did not increase the secretion of IL-10.

In summary, GM-CSF/IL-4 BMDCs showed increased activation marker expression and

cytokine secretion in response to M. smegmatis, LPS, LPS + Poly IC and MSU + M. smeg-

matis, while MSU or Poly IC alone had little effect. The highest levels of pro-inflammatory

cytokines and IL-12p70 was induced by LPS + Poly IC stimulation. However, this adjuvant

combination also increased the production of IL-10. MSU + M. smegmatis also enhanced

the production of pro-inflammatory cytokines without inducing IL-10 secretion.
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3.3.2 Different adjuvants induce varying degrees of activation

of Flt3L BMDCs

It is unclear, whether DCs in tumours resemble inflammatory DCs as modelled in the

GM-CSF/IL-4 culture system or whether they are more similar to any of the steady-state

DC types. Therefore, the effect of different adjuvants on steady-state DCs was investigated

using Flt3L BMDCs. Flt3L cultures generate three DC subsets thought to correspond to

steady-state pDC, CD8α+ and CD8α- cDC in vivo [420–422].

As was done for the GM-CSF/IL-4 BMDCS, first a time course was performed to determine

the best time point for DC activation analysis. Up-regulation of CD80 and MHC II expres-

sion on Flt3L DCs occurred already after 6 h of stimulation with M. smegmatis and MSU +

M. smegmatis (Figure 3.4). Maximal CD40 and CD86 expression, however, was observed

at 20 h and levels decreased slightly at 30 h. Therefore, the 20 h time point was selected for

analysis of DC activation in subsequent experiments.

The second goal of the experiment shown in Figure 3.4 was to evaluate whether MSU

could activate Flt3L BMDCs. Up-regulation of CD40, CD86 and MHC II expression was

observed in a dose-dependent manner at the 20 h time point (Figure 3.4). However, overall

levels of CD40 and CD86 were considerably lower in MSU stimulated compared to LPS or

M. smegmatis treated Flt3L BMDCs (Figure 3.4). For further experiments, the intermediate

concentration of 250 µg/mL MSU and a lower dose of 0.5 x 106 CFU live M. smegmatis

per well were chosen to avoid saturating the level of activation marker expression with

either MSU or M. smegmatis alone and to enable any additive or synergistic effect of the

combination of the two adjuvants to be assessed.

To study the effect of the different adjuvants on the activation of Flt3L DCs in more de-

tail, the three DC populations in these cultures were analysed individually. Figure 3.5 A

illustrates the gating strategy used to identify B220+ pDCs, as well as CD24+ cDCs (cor-

responding to CD8α+ cDCs in vivo) and CD11b+ cDCs (corresponding to CD8α- cDCs in

vivo).

pDCs were strongly activated by stimulation with a combination of mycobacteria (either
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Figure 3.4: Time course and MSU titration for Flt3L BMDC activation by
adjuvants in vitro. DCs were generated from bone marrow of C57BL/6 mice by culture
with Flt3L. On day 10, indicated adjuvants were added and DC activation was analysed
at 6 h, 20 h and 30 h by flow cytometry. DCs were gated on CD11c+ live cells as shown
in Figure 3.1. The expression of CD40, CD86 and MHC II on the whole CD11c+ DC
population is shown as Median Fluorescence Intensity (MFI). Adjuvants were used at the
following concentrations: MSU 100-500 = 100 µg/mL to 500 µg/mL MSU crystals; M. smeg
2.0 = 2.0 x 106 CFU live M. smegmatis per well; MSU + M. smeg = combination of indicated
doses of MSU crystals and 2.0 x 106 CFU live M. smegmatis; LPS 100 ng/mL. Data from
individual samples of one experiment are shown.

BCG or M. smegmatis) and MSU crystals, as judged by surface marker up-regulation (Fig.

3.5 B). To a lesser extent, pDCs also up-regulated activation markers in response to CpG,

while the other tested adjuvants had no effect pDCs (Fig. 3.5 B). In contrast, both CD24+

and CD11b+ cDCs were activated by all adjuvants (Fig. 3.6). However, the degree of

activation marker up-regulation varied for the different markers and among adjuvants. The

effect of MSU was most variable, showing little up-regulation of CD40 and CD86, medium
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levels of CD80 and high levels of MHC II. CpG strongly up-regulated CD40, CD80 and

MHC II, but induced only a limited increase in CD86 levels. Stimulation of DCs with a

combination of two adjuvants did not further increase in expression of MHC II, while CD40,

CD80 and CD86 levels were higher in DC activated with two adjuvants compared to the

single stimuli.

Overall, the activation of CD24+ cDCs compared to CD11b+ cDCs induced by each ad-

juvant was very similar. All adjuvants induced some degree of cDC activation and most

resulted in comparable levels of activation marker up-regulation. In addition to responding

to a broader range of adjuvants, cDCs also showed higher activation marker levels compared

to pDCs.

To further assess the ability of adjuvants to activate Flt3L BMDCs and to polarize them

towards a Th1 inducing phenotype, cytokine secretion in Flt3L BMDC cultures was anal-

ysed. IL-10 levels were below detection threshold in all of the tested samples. Nearly all

adjuvants or combinations induced secretion of IL-12, TNFα and IL-6 (Figure 3.7). No

significant cytokine production was detected in samples exposed to MSU. While Poly IC

stimulation induced secretion of substantial amounts of IL-12, little TNFα or IL-6 and no

IL-1β was detected in these cultures. Combination of adjuvants did not seem to enhance

DC activation substantially. Only Poly IC + LPS stimulation had a marked effect on the

secretion of IL-12 and IL-6, but did not increase the levels of TNFα over those seen with LPS

alone. Interestingly, only stimulation with mycobacteria or a combination of mycobacteria

and MSU crystals resulted in secretion of IL-1β from Flt3L BMDCs.

These data indicate that all adjuvants are capable of activating cDCs and with the exception

of MSU also induce secretion of pro-inflammatory cytokines. However, only mycobacteria

seem to induce activation of pDCs and production of IL-1β.
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Figure 3.5: Activation of Flt3L pDCs by adjuvants in vitro. DCs were gener-
ated from bone marrow of C57BL/6 mice by culture with Flt3L. On day 10, indicated
adjuvants were added and DC activation was analysed 20 h later by flow cytometry. (A)
Representative gating of live cells, CD11c+ DCs, B220+ pDCs and CD11b+ or CD24+
cDCs. (B) The expression of CD40, CD86, CD80 and MHC II on B220+ pDCs is shown as
Median Fluorescence Intensity (MFI). Adjuvants were used at the following concentrations:
LPS 100 ng/mL; Poly IC: 50 µg/mL; CpG: 20 µg/mL; MSU 250 µg/mL; M. smeg = 0.5 x 106

CFU M. smegmatis per well; BCG = 0.5 x 106 CFU BCG per well; BCG+MSU combination
of BCG and MSU; M. smeg+ MSU = combination of M. smegmatis and MSU; Poly IC +
LPS = combination of Poly IC and LPS. *p < 0.05, **p < 0.01 and ***p < 0.001 compared
to medium controls as assessed by one-way ANOVA with Tukey’s post test. Data are shown
as individual samples and mean ±SE and are from one out of two similar experiments that
gave comparable results.
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Figure 3.6: Activation of Flt3L cDC subpopulations by adjuvants in vitro. Acti-
vation marker expression is shown for the CD24+ cDC (A) and the CD11b+ cDC (B) from
the same experiment as in Figure 3.5. *p < 0.05, **p < 0.01 and ***p < 0.001 compared to
medium controls as assessed by one-way ANOVA with Tukey’s post test. Data are shown
as individual samples and mean ±SE and are from one out of two similar experiments that
gave comparable results.
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Figure 3.7: Cytokine production by Flt3L BMDCs activated by adjuvants in
vitro. Supernatants of the same Flt3L DCs shown in Figure 3.5 were analysed for the
production of cytokines. Il-12p70, TNFα and IL-6 were detected in a multiplex bead assay.
IL-1β was detected by sandwich ELISA. Data are depicted as mean +SE from 2 independent
experiments with 3 samples per condition each. *p < 0.05, **p < 0.01 and ***p < 0.001 for
adjuvant compared to medium control as determined by using a Kruskal-Wallis test with
Dunn’s post test.

3.3.3 DCs infiltrate tumours and show a poorly activated

phenotype

In order to evaluate whether tumour-infiltrating DCs could be a valuable target for activation

by adjuvants, the presence of DCs in tumours and their activation status needed to be

assessed. The transplantable B16F1 murine melanoma was chosen for this purpose, as these

tumours grow relatively uniformly and are poorly immunogenic, therefore providing a good

model to develop immunotherapies with potential clinical application. Furthermore, a B16
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Figure 3.8: Identification of DCs in murine melanomas. DCs in B16 tumours of
4 mm to 6 mm diameter and tumour-draining LNs were analysed by flow cytometry. (A)
Representative gating of DCs in dLN and tumours is shown. Cells were pre-gated on singlets
by FSC and SSC and live cells (DAPI-). (B) Expression of the activation markers MHC II,
CD40 and CD86 is shown as median fluorescence intensity (MFI) on CD11b+ DCs in dLN
and tumours. Data are depicted as mean +SE from one experiment with 5 samples. **p <
0.01 as assed by a two-tailed Mann-Whitney test.

line expressing the model antigen OVA is available to enable the study of T cell responses

with transgenic CD4 and CD8 T cells specific for this antigen.

Tumour cells were injected subcutaneously (s.c.) into syngeneic C57BL/6 mice. When

tumours reached 4 mm to 6 mm in diameter, they were analysed for infiltration of DCs

by flow cytometry. The activation status of DCs in the tumour was also compared to

DCs in tumour-draining LN. First, live cells were identified by DAPI exclusion and were

then gated using the common leukocyte marker CD45 to exclude auto-fluorescent tumour

cells. Subsequently, DCs were identified as CD11c+ MHC II+ cells (Figure 3.8 A). Most

tumour-infiltrating DCs expressed CD11b and about 70 % showed very high CD11b levels.
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In dLNs, DCs were identified as live CD11c+MHC II+ cells, without the use of CD45 (Fig-

ure 3.8 A). Approximately 60 % of the DCs in dLNs were found to be CD11b+. Compared

to tumour-infiltrating CD11b+ DCs, CD11b+ DCs in LNs expressed substantially higher

levels of MHCII, CD40 and CD86 (Figure 3.8 A & B).

To further characterise the remaining tumour-infiltrating DC population that did not express

high levels of CD11b, other DC markers were included into the staining panel. Tumours of

10 mm to 15 mm diameter were analysed by flow cytometry, gating on live cells and CD45+

immune cells, followed by identification of DCs as CD11c+ MHC II+ cells (Figure 3.9 A).

Similar to what was observed in the previous experiment, 80 % of the tumour-infiltrating

DCs expressed high levels of CD11b (Figure 3.9 A & B). Only 5 % of tumour-infiltrating

DCs were B220+, indicating that they are pDCs (Figure 3.9 A & B). CD11b+ DCs showed a

more activated phenotype compared to pDCs, as assessed by the levels of MHC II expression

(Figure 3.9 C).
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Figure 3.9: DCs in tumours are mainly CD11b+. CD11b+ and B220+ DCs were
identified in B16 tumours of 10 mm to 15 mm diameter by flow cytometry. (A) Represen-
tative gating of DCs subtypes in tumours. Cells were pre-gated on singlets by FSC and
SSC and live cells (DAPI-). (B) The percentage of the two DC subtypes among the total
tumour-infiltrating DCs is depicted. (C) Expression of the activation marker MHC II on
CD11b+ and B220+ DCs in tumours is shown as median fluorescence intensity (MFI). Data
are combined from two experiments with 8 and 10 mice, respectively, and are expressed as
mean +SD. The p-values were calculated using a two-tailed Mann-Whitney test.
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These data show that DCs infiltrate murine B16 tumours. The majority of tumour-infiltrating

DCs expressed CD11b and low levels of the activation markers CD40, CD86 and MHC II

compared to LN DCs.

3.3.4 The immune infiltrate of murine melanomas consists

mainly of DCs and monocytes

To investigate which other immune cell types infiltrate murine B16 tumours, a more com-

prehensive analysis was undertaken. B16F1 tumour cells were injected s.c. into C57BL/6

mice and left to develop for 15 days. Tumours were then excised, processed into single cell

suspensions and analysed by flow cytometry.

Tumour-infiltrating immune cells were gated as singlet, DAPI-, CD45+ events (Figure 3.10 A).

Subsequently, CD4+ and CD8+ T cells and NK1.1+ NK cells were identified (Figure 3.10 B).

In a separate staining panel, DCs were again gated as CD11c and MHC II expressing im-

mune cells (Figure 3.10 C, left panel). Monocytes newly recruited to an inflammatory site

have previously shown to express low levels of F4/80, whereas tissue-resident macrophages

were F4/80high [424]. Thus, monocytes and macrophages were identified as F4/80intermediate

FSClow and F4/80high FSChigh cells, respectively (Figure 3.10 C, middle panel). Both of

these populations were also CD11b+ (not shown). B220+ MHC II+ B cells were also

observed.

In four separate experiments, the total percentage of infiltrating immune cells among all live

cells (including tumour cells) was found to be 2-7 % (Figure 3.11 A). Immune infiltration

varied both between individual mice and between experiments. This may be due to variation

in tumour size, as smaller tumours were generally found to have a higher percentage of

infiltrating immune cells.

DCs were found to constitute a large proportion of the immune cells in tumours, accounting

for about 30 % of the total infiltrate (Figure 3.11 B). Monocytes were present at a similar per-

centage. In contrast, macrophages, B cells and T cells only constituted a small fraction of the

total immune infiltrate. Notably, CD8+ T cells and NK cells, which can potentially kill tu-

mour cells through direct lysis, each constituted less than 5 % of the immune cells in tumours.



104 3 Identification of adjuvants for the activation of tumour-infiltrating DCs

The analysis of the immune infiltrate in tumours shows that there are few effector cells

present at the tumour site, while the majority of immune cells are DCs and monocytes.

These myeloid cells might favour tumour progression but could possibly be harnessed to

exert anti-tumour functions if appropriately activated by adjuvant treatment.
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Figure 3.10: Representative gating strategy for flow cytometric analysis of the
immune cell infiltrate in B16 tumours. Day 15 B16F1 tumours from C57BL/6 mice
were processed into single cell suspensions, stained with antibodies and analysed by flow
cytometry. Gating strategy is indicated by arrows. (A) Gating for singlets on FSC and
SSC, live cells by DAPI exclusion and CD45+ immune cells. (B) CD45+ immune cells
were subsequently gated on CD4 and CD8 to identify T cells and NK1.1 for NK cells. (C)
In a separate staining panel, CD45+ immune cells were gated on MHCII+CD11c+ DCs,
F4/80high FSChigh macrophages, F4/80int F4/80int monocytes and B220+MHCII+ B cells.
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Figure 3.11: Identification of immune cell types in B16F1 tumours. Day 15
B16F1 tumours from C57BL/6 mice were processed into single cell suspensions, stained with
antibodies and analysed by flow cytometry as shown in Figure 3.10. (A) The percentage of
CD45+ immune cells among live cells is shown for four independent experiments. (B) The
frequency of different immune cell types among the CD45+ immune infiltrate is graphed.
Data are shown as mean ± SD. Each symbol represents 1 mouse. Data in (B) are pooled
from 2 independent experiments with 5 and 10 mice, respectively.

3.3.5 Validation of flow cytometry to analyse immune infil-

trate in tumours

In previous experiments flow cytometry was used to analyse total immune cells and immune

cell subtypes infiltrating murine melanomas. This method allows the concomitant examina-

tion of several cell surface markers to identify immune cell populations as well expression of

activation markers for cell function on a per cell basis and is therefore widely used to study

immune cells. As tumours display a low and variable level of infiltration by immune cells,

it was important to verify that flow cytometric analysis accurately represented the immune

cells in the tumour. In particular, the poor vasculature and occasional bleeding around the

tumour site as tumours were excised from mice led to concerns that flow cytometric analysis

might be skewed by immune cells from the blood contaminating the tumour tissue.

A method for labelling all blood cells by CFDA-SE injection in vivo, developed by Becker
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et al. to study immune cell recruitment to lymphoid tissues or sites of inflammation [425],

was employed to address this concern. Briefly, a stock solution of CFDA-SE was diluted

in ethanol and PBS and injected into the tail vein of tumour bearing mice. Subsequently

organs were removed and analysed by flow cytometry.

Using this method, > 96 % of blood cells were labelled with CFSE (Figure 3.12 A & B left

panels). In accordance with the results obtained by Becker et al., approximately 60 % of

spleen cells and nearly 15 % of LN cells were labelled with CFSE (Figure 3.12 A & B centre

panels). Becker et al. attributed the stronger labelling of immune cells in the spleen both

to labelling of intravascular immune cells in this organ and to leakage of the dye through

the blood vessels.

Tumour samples from CFDA-SE injected mice displayed low levels of CFSE labelling, com-

parable to LNs (Figure 3.12 A & B right panels). This indicates that the majority of CD45+
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Figure 3.12: Blood cells reperesent a small proportion of the tumour immune
infiltrate. C57BL/6 mice bearing 14 day B16F1 tumours were injected i.v. with CFDA-
SE solution or PBS. 25 min later the indicated tissues were removed and stained for flow
cytometry analysis. (A) Representative histograms for CFSE staining of live cells in the
indicated organs. (B) The percentage of CFSE+ cells among live cells is shown as mean
+SD for 5-10 mice per group. Data are pooled from two independent experiments.
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cells in these tumour samples were from the tumour tissue and that the flow cytometric

analysis of the tumour-infiltrating immune cells was only minimally affected by contamina-

tion with CD45+ immune cells residing in the tumour vasculature.
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Figure 3.13: Blood cells do not skew cell type analysis of the tumour immune
infiltrate by flow cytometry. C57BL/6 mice bearing 14 day B16F1 tumours were injected
i.v. with CFDA-SE solution or PBS. 25 min later the indicated tissues were removed and
stained for flow cytometry analysis. (A) Representative histograms for CFSE staining of
the indicated cell types are shown. B and T cells were gated as live (DAPI-) lymphocytes
(by FSC and SSC) and B220+, CD4+ or CD8+, respectively. DCs were gated as live
CD11c+ cells. (B) The percentages of CFSE+ cell populations in the blood are shown.
(C) The frequency of CFSE+ cells of the indicated cell types in tumours is shown. Bar
graphs represent mean +SD for 5-10 mice per group. Data are pooled from two independent
experiments.
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While the small percentage of CFSE labelled immune cells in tumours indicates that immune

cells in the blood did not impact on flow cytometric analysis of the tumour-immune infiltrate,

it was still possible that the few blood cell in these samples consisted predominantly of

selected cell types (such as B cells or T cells) and would therefore skew the analysis of these

cell types in the tumour. To investigate if any cell types were preferentially labelled with

CFSE in tumour samples, B cells, T cells and DCs were analysed individually.

When mice were injected with CFDA-SE, all cell types were found to be labelled equally

in blood (Figure 3.13 A top panels & B). The fraction of CFSE+ cells was much lower

in tumours, but appeared to be similar among all the analysed cell types (Figure 3.13 A

bottom panels & C). Thus, leukocytes residing in the tumour vasculature do not appear to

skew analysis of immune infiltrate in tumours by flow cytometry.

3.3.6 DCs from tumours can be activated by adjuvants ex

vivo

As DCs had been confirmed to infiltrate tumours and a range of adjuvants had been shown

to activate BMDCs in vitro, we next wished to investigate whether DCs from tumours could

respond to adjuvant stimulation ex vivo.

To address this question, total tumour cell suspensions, which included DCs, were incu-

bated with different adjuvants ex vivo. After 24 h, the phenotype of DCs was analysed.

Exposure to adjuvants did not significantly alter the proportion of DCs among the total

cells from the tumour cell suspension compared to controls that were cultured with medium

only (Figure 3.14 A). All adjuvants induced up-regulation of MHC II and CD86 expression

(Figure 3.14 B & D). CD40 levels on DCs also increased after stimulation with all adjuvants

except MSU and Poly IC (Figure 3.14 C).

As observed with BMDCs, MSU appeared to be the weakest adjuvant, as it only resulted in

a small increase in MHC II and CD86 expression and failed to induce CD40 up-regulation

(Figure 3.14 B-D). This was comparable to the effect of Poly IC, although Poly IC stimu-

lation resulted in higher levels of MHC II than MSU exposure (Figure 3.14). LPS alone or
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in combination with Poly IC induced high levels of CD40 and MHC II and resulted in the

most pronounced up-regulation of CD86. CpG, mycobacteria and mycobacteria + MSU also

considerably increased expression of all three activation markers, but the extent of CD86

up-regulation was lower compared to LPS.

Therefore, DCs from tumours appeared to be activated by all tested adjuvants. However,

the combination of stimuli did not enhance activation marker expression further compared

to the individual adjuvants.

To further investigate the potential of adjuvants to activate DCs and other immune cells in

the tumour cell suspensions, cytokines in the culture supernatant were also analysed. Only

very low levels of IL-12p70 were detected and only MSU + M. smegmatis stimulation resulted

in IL-12p70 levels significantly above the assay limit (Figure 3.15A). IL-10 levels were not

significantly different from the detection threshold in any condition tested (Figure 3.15 B).

In contrast, secretion of high amounts of the pro-inflammatory cytokines IL-6 and TNFα

was induced with a range of adjuvants (Figure 3.15 C & D). CpG, M. smegmatis, BCG,

mycobacteria + MSU and Poly IC + LPS induced substantial levels of IL-6 (Figure 3.15 C).

The high cytokine levels observed in response to Poly IC + LPS are especially remarkable,

as the single adjuvants induced no significant IL-6 secretion. The adjuvants that induced

IL-6 release also stimulated secretion of TNFα (Figure 3.15 D). However, high levels of

TNFα were only detected in response to mycobacteria or mycobacteria + MSU.

Taken together, these data indicate that DC in tumours can respond to adjuvant stimulation

as evidenced by surface-marker up-regulation. In addition, the observed production of IL-6

and TNFα in response to adjuvants indicates that DCs and/or other cell types in the

tumour cell suspension were activated to induce a pro-inflammatory milieu. IL-10 could

not be detected either in the absence or in the presence of adjuvants, indicating that IL-10

is not produced at significant levels in B16F1 melanomas. While production of the pro-

inflammatory cytokines IL-6 and TNFα was readily induced by various adjuvants, IL-12 was

not produced in large quantities and could in fact only be detected in samples stimulated

with MSU + M. smegmatis.
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Figure 3.14: DCs from B16F1 tumours can be activated by exposure to ad-
juvants ex vivo. Day 14 B16F1 tumours were excised and processed into single cell
suspension. 5x 106 cells per well were then seeded into 6-well plates and stimulated with
adjuvants. The following concentrations were used: MSU 250 µg/mL; LPS 100 ng/mL; CpG
2 µg/mL; Poly IC 25 µg/mL; M. smegmatis (M. smeg) and BCG 0.33 x 106 CFU/mL. After
24 h culture, cells were harvested and analysed by flow cytometry. DCs were identified as
described in Figure 3.10. (A) The frequency of DCs among all live cells is shown. (B-C)
The expression of MHC II, CD40 and CD86 on the surface of DCs is shown as median fluo-
rescence intensity (MFI). Data from three samples per condition are graphed as mean +SE.
*p < 0.05, **p < 0.01, ***p < 0.001 as assessed by the Kruskal-Wallis test with Dunn’s post
test; n.s. = not significant. Data are from one of two experiments with comparable results.
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Figure 3.15: Adjuvant treatment induces secretion of pro-inflammatory cy-
tokines in B16F1 tumours ex vivo. The supernatants of the B16F1 cell suspensions
stimulated with adjuvants for 24 h ex vivo as described in Figure 3.14 were analysed for the
indicated cytokines using a multiplex bead assay. (A-D) The concentrations of IL-12p70,
TNFα, IL-6 and IL-10 are shown as mean +SE. The dotted line indicates the detection
threshold of the assay. *p < 0.05 and ***p < 0.001 compared to medium control as deter-
mined by Kruskal-Wallis with Dunn’s post test; n.s. = not significant. Data are from one
of two experiments with comparable results.



112 3 Identification of adjuvants for the activation of tumour-infiltrating DCs

3.4 Discussion

The aim of this chapter was to identify adjuvants for the activation of tumour-infiltrating

DCs. To this end, adjuvants were tested for their ability to induce DC activation and polarise

them towards secreting a Th1-inducing cytokine profile. A strong Th1 bias is thought to

be important for the activation and full licencing of CTLs [274] and could also contribute

to anti-tumour immunity by activating NK cells and tumour-infiltrating macrophages to

become highly tumoricidal [426, 427].

Timing of BMDCs activation by adjuvants

In vitro experiments showed that BMDCs up-regulated activation marker expression in re-

sponse to adjuvants. While several published studies have previously assessed BMDC pheno-

type and cytokine production in vitro after 20 h to 24 h of activation [306, 341, 428], different

stimuli have been found to induce DC activation with different kinetics [420]. All the adju-

vants compared in this study, however, induced some activation of both GM-CSF/IL-4 and

Flt3L differentiated DCs already after 6 h of adjuvant stimulation, with maximal expression

of the activation markers CD40 and CD86 observed after 20 h (Figures 3.1 & 3.4). Longer

exposure of BMDCs to adjuvants did not enhance activation marker expression further and

in the case of Flt3L-DCs actually appeared to lead to a slight decrease in CD40 and CD86

levels. In addition, prolonged adjuvant stimulation of DCs has been reported to induce DC

exhaustion, with down-regulation of cytokine production, especially of IL-12, and increased

DC cell death [380, 429]. Therefore, further experiments to compare different adjuvants

were conducted after 20 h stimulation to enable concomitant assessment of surface marker

up-regulation and cytokine production.

Activation of GM-CSF/IL-4 DCs by adjuvants

The ability of adjuvants to induce DC activation as assessed by up-regulation of the expres-

sion of MHC II and the co-stimulatory molecules CD40, CD80 and CD86 varied between
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adjuvants and DC types tested. In addition, some adjuvants only affected the expression of

some surface markers.

GM-CSF/IL-4 DCs showed the highest levels of activation marker expression in response to

LPS, M. smegmatis, MSU + M. smegmatis and LPS + Poly IC. The ability of the TLR4

ligand LPS to activate BMDCs is well established [64, 306, 341, 377, 420]. Mycobacteria

express multiple PAMPs, enabling them to be recognised via TLR2, TLR4, TLR9 and NOD2

[328, 329], and M. smegmatis has previously been reported to activate monocyte-derived

DCs in vitro [430].

The finding that Poly IC did not activate GM-CSF/IL-4 DCs is in line with the limited

expression of its receptor TLR3 in this DC subset [368]. However, while some studies find

that Poly IC fails to activate GM-CSF/IL-4 DCs [341], others report DC activation, which

was dependent on the engagement of the cytosolic receptor MDA-5 rather than TLR3.

[368]. These discrepancies may be due to the length of the Poly IC molecules used, as

Poly IC of > 2kbp length is preferentially recongnised by MDA-5 and may therefore ac-

tivate GM-CSF/IL-4 DCs via this receptor. Shorter Poly IC molecules, such as the low

molecular weight preparation used in this study, bind to RIG-I [367] and not MDA-5, which

may be the reason we did not see activation of GM-CSF/IL-4 DCs in response to Poly IC

stimulation.

MSU also failed to activate GM-CSF/IL-4 DCs, despite a report in the literature showing

that MSU can activate GM-CSF/IL-4 DCs [64]. This does not appear to be due to a lack

of MSU internalisation, as DCs incubated with MSU showed higher SSC profiles, which is

suggestive of the increased granularity following particle uptake. MSU sensing requires the

NLRP3 inflammasome which upon activation recruits and activates caspase-1, which in turn

processes IL-1β to its active form [431]. NLRP3 is highly expressed in macrophages and

monocytes and has also been reported in GM-CSF/IL-4 BMDCs and Flt3L cDCs [359, 431].

In addition, Shi et al. reported CD86 up-regulation on GM-CSF/IL-4 DCs in response to

MSU stimulation [64]. However, they did not state the dose of MSU used in their experiment.

Although three different doses of MSU were used in this study, the highest dose may still

have been insufficient to induce DC activation.
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MSU did, however, enhance GM-CSF/IL-4 DC activation when it was combined with

M. smegmatis at doses at which neither MSU nor M. smegmatis alone had any effect on

BMDC activation. In contrast, LPS + Poly IC did not enhance DC surface marker expres-

sion over the levels seen with LPS alone. As the observed levels of surface markers with

LPS alone were already very high, this lack of further up-regulation with the addition of

Poly IC may be due to the dose of 100 ng/mL LPS saturating the response.

Cytokine production from GM-CSF/IL-4 DCs reflected the levels of DC activation seen by

surface marker expression. The pro-inflammatory cytokines IL-1α, IL-1β, IL-6 and TNFα

as well as the Th1 promoting cytokine IL-12 were mainly induced by M. smegmatis, MSU +

M. smegmatis, LPS and LPS + Poly IC. MSU + M. smegmatis enhanced the levels of all

cytokines over those of the individual adjuvants at the same concentration, while LPS +

Poly IC only increased IL-12 secretion compared to LPS alone. This is in line with data

from Napolitani et al., who showed synergistic triggering of IL-12 production by adjuvant

combinations and also reported induction of IL-1β, IL-6 and TNFα mRNA in response to

LPS [377]. Mycobacteria have previously been reported to induce secretion of small amounts

of IL-1β from BM macrophages [354]. It is well established that macrophages secrete IL-1β

in response to MSU [353]. However, macrophages differentiated in vitro require priming

with TLR ligands to induce formation of pro-IL1β to respond to NLR agonists such as

MSU [432, 433]. The MSU used in this study was tested for endotoxin contamination and

found to be virtually endotoxin-free. It is conceivable that BMDCs require TLR signals

in addition to NLR signals for release of IL-1β and this may be the reason why MSU

stimulation induces IL-1β secretion only in combination with M. smegmatis. In addition to

inducing pro-inflammatory cytokines and IL-12, M. smegmatis, LPS and LPS + Poly IC also

stimulated secretion of considerable amounts of IL-10. In contrast, MSU + M. smegmatis

enhanced only pro-inflammatory cytokines and IL-12 without inducing IL-10. Therefore,

the addition of MSU may suppress IL-10 induction from mycobacteria and lead to a more

pronounced pro-inflammatory cytokine milieu.
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Activation of Flt3L DCs by adjuvants

Flt3L DCs comprise three subsets, namely pDCs, CD24+ cDCs and CD11b+ cDCs [422],

which differ in their responsiveness to different adjuvants. pDCs have been shown to ex-

press high levels of TLR7 and TLR9, but low amounts of TLR2, TLR3, TLR4 and NLRP3

[291, 359]. In line with this receptor expression pattern, they were not activated by the TLR4

agonist LPS, the TLR3 agonist Poly IC or the NLRP3 stimulus MSU, but up-regulated ac-

tivation markers in response to the TLR9 agonist CpG. Mycobacteria, which provide TLR2,

TLR4, TLR9 and NOD2 ligands, failed to activate pDCs [328, 329]. However, the combina-

tion of MSU + M.smegmatis induced strong activation of pDCs and even higher activation

marker expression than CpG. Mycobacteria may provide the TLR signals necessary to enable

cytokine production in response to the NLRP3 stimulus MSU, similar to the requirement

for pre-stimulation of macrophages with TLR to enable NLR responses [432, 433]. In ad-

dition, synergy between TLR and NLR signalling has previously been described for NOD1

and NOD2 ligands and TLRs both in B cells and DCs [357, 434] and synergistic signalling

induced by mycobacterial ligands + MSU may result pDC activation, while the signals

provided by each individual stimulus were not sufficient.

In contrast to Flt3L pDCs, both CD24+ and CD11b+ cDCs responded to all adjuvants

tested with up-regulation of activation markers. MSU led to the lowest level of cDC ac-

tivation overall, but had varied effects on the different activation markers. MSU exposure

resulted in less pronounced up-regulation of CD40 and CD86 than other adjuvants, but

induced CD80 to levels comparable to LPS, Poly IC, CpG and mycobacteria. It also stimu-

lated MHC II expression to very high levels, especially in CD11b+ DCs. All other individual

adjuvants induced considerable up-regulation of all activation markers in both cDC subsets.

This is consistent with expression of the respective TLRs and NLRP3 in cDCs [291, 359] and

reports of responsiveness of Flt3L DCs to LPS, CpG and Poly IC [306, 428]. Cytokines se-

creted by one subset directly responding to adjuvant stimulation may also have contributed

indirectly to the activation of other DCs in the same culture. As the response of the three

DC subsets to the different adjuvants was in line with their reported receptor expression,

indirect activation by cytokines does not appear to be a major factor in these experiments.
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However, to assess the contribution of indirect activation via other DCs in the same culture,

the three Flt3L DC subsets would need to be sorted prior to adjuvant stimulation.

Combination of MSU and mycobacteria enhanced expression of CD40 and CD80, but had

little effect on CD86 and MHC II expression, which were already expressed at very high

levels in response to the individual stimuli. Addition of LPS + Poly IC to DC cultures

somewhat enhanced CD40, CD80 and CD86 expression. However, the increase in activation

marker expression with all combinations was not synergistic, but rather additive.

The induction of cytokine secretion from Flt3L DCs also largely reflected the surface acti-

vation profiles, with all adjuvants apart from MSU and Poly IC inducing secretion of high

levels of TNFα and IL-6. IL-12 was also induced by most stimuli and Poly IC, MSU +

M. smegmatis and LPS + Poly IC activation led to the most significant production of

IL-12. In line with these findings, Brawand et al. examined pDCs and cDCs from Flt3L

cultures separately and found that both subsets produced some IL-12 in response to Poly IC

and CpG, but LPS induced IL-12 mainly from cDCs [428]. IL-12 secretion after combined

stimulation with LPS + Poly IC was increased 2-fold over the single adjuvants, indicating

that this was an additive effect of the higher dose of adjuvant, rather than a synergistic

increase in IL-12 production as reported from adjuvant combinations in GM-CSF/IL-4 DCs

[377]. Alternatively, the increase in IL-12 may be due to production of this cytokine by

different DC subsets in response to LPS and Poly IC. Interestingly, LPS failed to induce

IL-1β production in Flt3L DCs and only mycobacteria alone or in combination with MSU

induced significant amounts of this cytokine.

Overall, the cytokine levels detected in Flt3L cultures were lower compared to what was

observed with GM-CSF/IL-4 DC supernatants. This is likely related to the total number

of DCs in each well, as 8-10 x 105 DCs per well could be recovered from GM-CSF/IL-4

cultures, while Flt3L cultures yielded only 2-3 x 105 DCs per well.

Taken together, the results from in vitro activated BMDCs revealed large differences in

the responsiveness of the different DC types to adjuvants, which were mainly linked to the

differential receptor expression in these cells [291, 359, 420–422]. LPS + Poly IC induced

the highest level of activation marker expression and cytokine production in Flt3L cDCs
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and GM-CSF/IL-4 DCs. MSU + M. smegmatis also induced pronounced activation in both

Flt3L cDCs and pDCs and also activated GM-CSF/IL-4 DCs without inducing secretion of

IL-10. These adjuvant combinations therefore seemed most promising for in vivo experi-

ments.

Characterisation of tumour-infiltrating DCs

DCs are associated with both human and murine tumours [311–313], but the degree of

DC infiltration varies considerably with the type of tumour. Ovarian cancer, for example,

recruits many DCs to the tumour site and in 8-week old tumours DCs constitute 30 % of

the total cell mass [435]. In contrast, prostate tumours in TRAMP mice show very low DC

infiltration [436].

We analysed the infiltration of DCs and their phenotype in murine B16F1 melanomas

to determine whether it would be feasible to target these tumour-infiltrating DCs by in

vivo application of adjuvants. DCs were identified by flow cytometry as CD45+ CD11c+

MHC II+ cells and represented 20-30 % of the tumour-infiltrating immune cells. Some of

the tumour-infiltrating DCs expressed co-stimulatory molecules, but the extent of CD40,

CD86 and MHC II expression was much lower compared to LN DCs. This is not surprising,

as tissue resident DCs generally display a non-activated phenotype compared to LN DCs

[294]. Furthermore, tumours can also secrete cytokines and growth factors that inhibit DCs

and render them immuno-suppressive [324, 437, 438].

When the phenotype of the tumour-infiltrating DCs was examined in more detail, 80 %

were found to be CD11b+ and 5 % were B220+. MHC II expression was much lower on the

B220+ population compared to the CD11b+ DCs. These results are similar to the analysis

of the immune infiltrate of the B16.OVA melanoma model conducted by Stoitzner et al.

[314]. They report that 23 % of the tumour-immune infiltrate consists of CD11c+ DCs,

which are 80 % CD11b+. In addition, they find a small population of B220+ pDCs and

virtually no Langerin+ DCs in these tumours. In the steady-state, pDCs reside mainly in

lymphoid tissues [281]. However, pDCs can be recruited to sites of inflammation [439] and

have previously been reported to infiltrate other tumours [311, 312, 316].
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Although DCs constituted up to 30 % of the immune infiltrate in B16F1 tumours, overall

immune cells accounted for only 5 % of live cells in these tumours, so that the total frequency

of DCs was only 1.5 % of the live cells in tumours. Monocytes also accounted for 30 % of

the immune infiltrate, while macrophages, B cells, T cells and NK cells each represented

only 5-10 % of the immune cells in tumours. While the frequency of B cells and T cells was

comparable to the results of Stoitzner et al., they found 40 % of the immune infiltrate to

be macrophages [314]. This may be mainly due to the identification of macrophages solely

on the basis of F4/80 expression in this study, which also showed 40 % overlap with the

CD11c+ DC population, while in the current analysis only non-DC, F4/80high FSChigh cells

were identified as macrophages.

Validation of flow-cytometry to assess the tumour immune

infiltrate

The unexpected presence of B cells and high infiltration of monocytes raised concerns that

the analysis of tumour-infiltrating immune cells may be skewed by contaminating blood

cells. Protocols for flow cytometric study of other organs such as lung or liver frequently

use perfusion with saline to flush blood cells from these organs and thus exclude them from

the sample [440, 441]. Perfusion of B16F1 tumours, however, was not successful, as tumours

either ruptured or were not properly perfused. This is likely due to the poor vasculature

combined with central necrosis in these tumours [442]. In addition to their generally soft

texture, this makes B16F1 melanomas highly susceptible to breaking apart during perfusion

[442]. Therefore, tumours were prepared for flow cytometry without perfusion.

To assess the degree of contamination by blood leukocytes, mice were injected with CFDA-

SE to label all blood cells with CFSE prior to the excision of tumours. While > 95 % of

blood cells were labelled with CFSE, only 15 % of the leukocytes in tumours were CFSE+.

Furthermore, all assessed cell types were affected equally, thus excluding a skewing of the

analysis of the relative infiltration of different immune cell types in tumours by blood leuko-

cytes. The percentage of CFSE+ cells in tumours was similar to the staining observed

in LNs in this study and also in a published report [425]. Labelling in spleens was much
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higher with 60 % CFSE+ leukocytes. This may be due either to leakage of the dye from

blood vessels into the organ or to trafficking of immune cells from the blood into the organ.

Thus, this method may even overestimate the amount of blood contamination in tumours,

as some staining may be due to leakage or recent infiltration of immune cells from the blood

to the tumour site. These data indicate that blood leukocytes do not affect the analysis

of the tumour immune-infiltrate by flow cytometry and validate this method for further

experiments.

Activation of tumour-infiltrating DCs ex vivo

The DCs in B16F1 tumours expressed low levels of activation markers and the antigen-

presentation molecule MHC II. Previous studies indicate that tumour-infiltrating DCs can

present antigen to activate anti-tumour T cell responses [311, 319]. However, DCs in the

study by Chaux et al. were purified and therefore removed from any suppressive factors made

by the tumour cells before they were assessed for their ability to stimulate T cell proliferation

ex vivo [319]. While Preynat-Seauve and co-workers investigated T cell proliferation in vivo,

they did this using purified, antigen-pulsed tumour-infiltrating DCs that were injected into

tumour-free mice [311], again separating the DCs from any ongoing influence of the tumour.

Another study also reported that DCs only stimulated näıve T cell proliferation ex vivo

when they were loaded with antigen and exposed to powerful activation cocktails (TNFα

+ anti-IL-10 + CpG) [435]. In contrast, stimulation with the TLR4 ligand LPS was not

sufficient to overcome the inability of tumour-infiltrating DCs to stimulate T cell responses

ex vivo [314]. It was therefore important to determine, whether tumour-infiltrating DCs

could still respond to all or selected adjuvants ex vivo in the presence of tumour cells.

Complete tumour cell suspensions cultured with adjuvants for 24 h showed activation of DCs

in response to all tested stimuli, as assessed by activation marker up-regulation. LPS and

LPS + Poly IC induced the highest levels of CD86 and also resulted in increased expression

of CD40 and MHC II. MSU and Poly IC were the weakest adjuvants, as they only induced

an increase in MHC II with limited up-regulation of CD86 and no enhancement of CD40

expression. This response pattern is similar to what was observed upon adjuvant stimulation
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of GM-CSF/IL-4 DCs. Together with the high levels of CD11b expression, this indicates

that tumour-infiltrating DCs may be similar to inflammatory monocyte-derived DCs, as

modelled in the GM-CSF/IL-4 cultures [306]. In addition, these results suggest that DCs in

tumours may still respond to adjuvants. However, as the tissue structure was disrupted in

the ex vivo cultures, interactions between immune and tumour cells may have been altered

and thus the DCs may have been less suppressed than in the intact tumours.

Surface marker expression is not a good correlate of the immuno-stimulatory properties

of DCs, as tolerogenic DCs can also express high levels of these molecules [284]. When

cytokine production was analysed, high levels of IL-6 and TNFα were found in tumour

cell suspensions stimulated with CpG, mycobacteria with or without MSU and Poly IC +

LPS. However, LPS alone, which induced considerable surface marker up-regulation on DCs,

failed to induce any significant cytokine production. IL-12 was generally very low and the

only significant amount was detected in cultures stimulated with MSU + M. smegmatis.

Overall, the detected cytokine levels were about 10-fold lower than what had been observed

in BMDC cultures. This is in line with DCs in tumours representing ca. 30 % of the 5 %

immune infiltrate, and thus total tumour cultures containing about 75,000 DCs as compared

to > 1 million DCs in BMDC cultures. In addition, it is possible that other immune cells

present in these mixed cultures consumed cytokines that were produced by DCs, thus leading

to low or undetectable levels. On the other hand, DCs may not have been the only source of

the detected cytokines, as macrophages and monocytes also express receptors for the tested

adjuvants and may have contributed to the cytokine levels observed in total cultures.

Taken together, these results indicate that DCs and possibly other cell types in tumours re-

tain the ability to respond to adjuvant stimulation by increasing expression of co-stimulatory

molecules and production of pro-inflammatory cytokines. This suggests that adjuvant treat-

ment at the tumour site may be able to overcome DC unresponsiveness and enable them to

initiate successful anti-tumour immune responses.
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Conclusions

All adjuvants assessed in this study activated BMDCs. However, the levels of co-stimulatory

molecules and cytokine production induced varied both among different adjuvants and DC

populations. Combination of adjuvants had additive rather than synergistic effects. LPS +

Poly IC appeared to induce the most potent activation of GM-CSF/IL-4 DCs, while MSU +

M. smegmatis activated all three subsets of steady-state DCs and led to production of pro-

inflammatory cytokines and IL-12 without inducing IL-10.

DCs were found to comprise 30 % of the immune infiltrate in murine B16F1 melanomas,

were mainly CD11b+ and showed low expression of co-stimulatory molecules and MHC II.

Monocytes were also found at a high frequency in these tumours.

Flow cytometry as a method to study tumour-infiltrating immune cells was validated by

CFSE-labelling of all blood cells, showing that blood leukocytes did not affect the analy-

sis.

Lastly, DCs from tumours were found to retain responsiveness to adjuvant stimulation ex

vivo. A range of adjuvants induced activation-marker up-regulation on DCs and production

of pro-inflammatory cytokines from tumour cell suspensions.

In summary, these results indicate that targeting DCs at the tumour site with adjuvants

and polarising them towards an immuno-stimulatory phenotype may be a valuable strategy

to improve anti-tumour immunity.
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4.1 Introduction

DCs have been identified in the immune infiltrate of many murine and human tumours [311–

313]. While some studies found that tumour-infiltrating DCs can present antigen ex vivo

or in vitro to activate anti-tumour T cell responses [311, 319], later research showed that

they are incapable of presenting tumour-derived antigen in the absence of ex vivo antigen

loading [314].

This failure of tumour-infiltrating DCs to activate T cells has been largely attributed to

their insufficient maturation [314]. Tumours can secrete cytokines and growth factors such

as IL-10 and VEGF that inhibit DCs [324], thus inducing DCs to suppress immunity and

thereby to favour tumour growth [222, 326]. However, DCs in regressing tumours express

maturation markers and co-localise with cytotoxic T cells [4]. Furthermore, tumour-induced

inhibition of DCs can be overcome by the addition of maturation factors [322, 443].

Adjuvants are known for their ability to activate and mature DCs [444]. In the previous

chapter, both bone-marrow derived DCs and ex vivo stimulated tumour-infiltrating DCs

were confirmed to respond to adjuvant exposure with up-regulation of activation markers and

production of inflammatory cytokines. However, the response to adjuvant administration

in vivo may differ from in vitro results, as bio-availability, stability and uptake by other

cell types may reduce the exposure of DCs to the adjuvant. This is reflected in different

dosing reported in the literature, where 1 µg/mL CpG was effective in activating DCs in vitro

[341], but 100 µg to 180 µg CpG given in several injections of 100 µL were required to achieve

sufficient DC activation to promote tumour growth inhibition in vivo [403, 445].

While a range of adjuvants had been identified to activate DCs in vitro, fewer have been

examined for their ability to induce anti-tumour responses in vivo. BCG has been used for

the treatment of bladder cancer in patients since 1976 [9] and was even found to be superior

to chemotherapy [10], but little is known about its mechanism of action or its effects on DCs

in vivo [401]. Several reports show anti-tumour effects of CpG administration [11, 403, 445].

In response to CpG increased DC migration to dLNs and up-regulation of activation markers

on DCs is reported [11, 445]. However, the relative contribution of tumour-infiltrating and

LN resident DCs as well as the importance of different DCs subsets, or even other antigen-
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presenting cells such as macrophages, remains to be determined.

DC subtypes show varying and opposing roles in the tumour-response. In ovarian cancer

and breast cancer, pDC infiltration has been linked with poor prognosis, whereas myeloid

DCs did not correlate with disease outcome [312, 316]. In addition, DC subsets differ in their

ability to induce cytotoxic T cell responses to externally acquired antigen and to activate

CD4 T cells [258, 259].

Furthermore, the effect of multiple adjuvant administrations, as necessary to achieve anti-tumour

effects in vivo [403], on DC activation is poorly defined. Repeated adjuvant exposure may

increase DC activation and migration, or it may also cause tolerance via feedback regula-

tion [446]. DC exhaustion, death and down-regulation of cytokine production has also been

reported after prolonged LPS exposure [380].
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4.2 Aims

In Chapter 3, it was established that murine melanomas were infiltrated by DC that could

be activated by adjuvants ex vivo. The purpose of the experiments described in this chapter

was to establish which adjuvants were effective in inhibiting tumour growth in vivo and to

determine whether anti-tumour activity correlated with activation of DCs. The hypothesis

was that adjuvants would activate tumour-infiltrating DCs and induce them to migrate

to the tumour-draining LNs, where the DCs would then initiate the anti-tumour immune

response.

The specific aims were:

• To asses whether peri-tumoral administration of some or all studied adjuvants had

anti-tumour activity in vivo

• To investigate whether adjuvant administration activated antigen-presenting cells, in

particular DCs in tumours

• To assess whether adjuvant treatment increased the number or activation of DCs in

the tumour-draining LNs and which DC subpopulations were affected

• To investigate which systemic or local cytokines were induced by adjuvant treatment

• To determine whether multiple adjuvant treatments had sustained effects on DCs in

tumours or draining LNs
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4.3 Results

4.3.1 Selected adjuvants have anti-tumour activity in vivo

To assess the anti-tumour activity of adjuvants in vivo, the well established transplantable

murine melanoma B16F1 was used. This tumour is derived from a spontaneous melanoma

in immuno-competent mice that grows quickly in syngeneic wild-type hosts and can thus be

considered a poorly immunogenic tumour that has escaped the immune response. This is

similar to the situation in patients with progressing malignancy. B16 tumours therefore are

a good model to develop immunotherapies with potential clinical application. Tumour cells

were injected s.c. into the flank of immuno-competent, syngeneic wild-type C57BL/6 mice

(C57 mice). After tumours had become established to a palpable size, adjuvant treatment

was administered at the tumour site.

Peritumoral administration of CpG has previously been reported to be superior to intra-

venous or distant subcutaneous application [445]. In addition, peritumoral treatment was

chosen over intratumoral injection. The rapid growth of B16 mouse melanomas is associated

with progressively worse vascularisation and increasing central necrosis [442]. In addition,

tumour infiltrate and in particular DCs are mainly localised in the periphery of the tumours

[447]. Therefore, peritumoral adjuvant treatment was deemed best to maximise exposure

of immune cells to the adjuvants while minimising side effects through rupture of tumour

tissue.

Four peritumoral adjuvant injections were administered every second day as several studies

reported a requirement for multiple treatments to reduce tumour growth by adjuvant ad-

ministration in a range of tumour models [11, 12, 403]. As Poly IC doses of 10 µg to 200 µg

have been used for in vivo administrations [12, 345], an intermediate dose of 50 µg per ad-

ministration was chosen. Kunikata et al. found that 6 injections of 10 µg CpG or 3 injections

of 30 µg CpG were effective to reduce B16 melanoma growth [403]. As four administrations

were used in this study, 20 µg CpG were given per administration. Mycobacteria were in-

jected at 2-4x 106 CFU, and LPS was given at 20 µg per administration on the basis of

published literature [448].
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Figure 4.1: Effect of different MSU doses on B16F1 tumour growth. Groups of 5
C57 mice bearing established B16F1 tumours were injected around the tumour with 100 µg,
250 µg or 500 µg MSU on day 7, 9 11 and 13. Tumour growth as measured with callipers
is shown for individual mice. Mean tumour size at day 15 and 16 is significantly different
(**p < 0.01) between mice treated with 500 µg MSU compared to PBS controls as assessed
by two-way ANOVA with Bonferroni’s post test.

MSU crystals, thought to be an endogenous danger signal [64], have not previously been

used as an adjuvant to treat murine tumours. Therefore a titration using 100 µg, 250 µg or

500 µg for each of the four administrations was performed to determine whether MSU had

an anti-tumour effect. 100 µg and 250 µg MSU did not alter the growth of B16F1 tumours

(Figure 4.1). Tumour growth of mice treated with 500 µg MSU per administration was

more variable and in an initial experiment these mice had slightly smaller tumours on day

15 and 16 compared to PBS controls (Figure 4.1). However, when data from 3 experiments

analysing the effect of peri-tumoral treatments with 500 µg MSU were compiled, no difference

in tumour growth was observed between saline controls and MSU treated mice (Figure 4.2 A,

top left panel). This suggests that the slight difference observed in the first experiment
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Table 4.1: Number of mice per treatment group and experiment for B16F1 tumour growth

Experiment number

38 40 50 52 56

PBS 5 5 5 5 5

LPS 5 5

M. smegmatis 5 5

MSU 5 5 5

BCG 4 5

MSU + BCG 5

CpG 5 5

Poly IC 5 5 5

MSU + M. smegmatis 5 5 5 5

Poly IC + LPS 5 5

Poly IC + M. smegmatis 5

Poly IC + MSU 5

may have been due to individual variation between mice rather than representing a true

benefit from MSU treatment. Overall, MSU alone appears to have no effect in the B16F1

tumour model.

Several experiments were performed to compare the effects of saline, MSU, LPS, CpG,

Poly IC, M. smegmatis and BCG on B16F1 tumour growth. As there is increasing evidence

that combination of stimuli can enhance DC activation [377], a range of adjuvant combi-

nations was also tested. The number of mice in each treatment group and experiment is

summarised in Table 4.1. Figure 4.2 shows tumour growth and survival. While tumours

became palpable and treatment was initiated at days 7 to 9, days 0 to 2 were set as day 0 so

that the treatment start day became “day 7” for all experiments for easier comparison.

Peri-tumoral injection of 4x 106 live CFU of M. smegmatis likewise did not affect B16F1 tu-

mour growth (Figure 4.2 A, top left panel). Strikingly, the combination of 2x 106 live CFU of

M. smegmatis and 250 µg MSU significantly delayed tumour growth and prolonged survival

(Figure 4.2 A, top left panel & 4.2 B). This effect was specific to M. smegmatis, as BCG had

no effect either alone or in combination with MSU (Figure 4.2 A, top right panel & 4.2 B).
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Figure 4.2: Some adjuvants delay tumour growth when administered peritu-
morally. C57 mice bearing established B16F1 tumours were injected around the tumour
with the indicated adjuvants on day 7, 9 11 and 13. (A) Tumour growth of 5-25 mice
per group is shown as mean ± SE. Differences between treatment groups as assessed to
two-way ANOVA with Bonferroni’s post test are significant from day 11 and are indicated
by **p < 0.01 *** p < 0.001. (B) Survival of the B16F1 bearing, adjuvant-treated mice in
(A) is depicted. ***p < 0.001 compared to PBS control according to Log-Rank-Test with
Bonferroni’s adjustment for multiple comparisons. Data are pooled from 5 independent
experiments as illustrated in table 4.1.



4 Treatment with specific adjuvants delays tumour growth and activates DCs in vivo 131

In line with reports in the literature [12, 403], 20 µg CpG or 50 µg Poly IC showed anti-tumour

activity, delaying tumour growth and increasing survival to a similar degree as MSU + M. smeg-

matis (Figure 4.2 A, left panels & 4.2 B). Administration of 20 µg LPS per treatment had no

effect on tumour growth or survival (Figure 4.2 A, bottom left panel & 4.2 B). Furthermore,

combinations of 50 µg Poly IC with 250 µg MSU, 20 µg LPS or 2x 106 live CFU of M. smeg-

matis did not improve the tumour growth delay over the effect observed with 50 µg Poly IC

alone (Figure 4.2 A, bottom right panel & 4.2 B).

In summary, none of the adjuvants tested could halt tumour growth or induce tumour

regression of B16F1 melanomas when administered around the established tumours. How-

ever, treatment with Poly IC, CpG or a combination of MSU + M. smegmatis resulted in a

significant delay of tumour growth and prolonged survival.

4.3.2 Effect of one treatment with adjuvants on tumour-

infiltrating APCs

Poly IC and MSU + M. smegmatis, which were effective in delaying tumour growth, as

well as the ineffective adjuvants LPS, M. smegmatis and MSU were chosen for analysis of

their effects on the immune system in vivo. We compared the immune responses elicited by

effective and ineffective adjuvants to dissect required responses from unnecessary or even

detrimental effects of the adjuvants. CpG was excluded from further study, as its success

in clinical trials has been reported to be very limited [14] and the expression of its receptor

TLR9 differs considerably between mouse and human DC subpopulations [291, 449].

To investigate whether adjuvants activated DCs or other APCs in the tumour, the compo-

sition of the immune infiltrate and activation marker expression following a single adjuvant

administration was analysed by flow cytometry. A common gating strategy was used in

all staining panels to identify CD45+ immune cells in the tumour cell suspensions (Fig-

ure 4.3 A). First, singlet events were gated on FSC and SSC area versus height (Figure 4.3 A,

left panels). Subsequently, live cells in tumours were gated on the basis of viability-dye ex-

clusion (DAPI-) and immune cells were identified as CD45 positive (Figure 4.3 A, right

panels).
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Figure 4.3: Representative gating of lymphoid and myeloid immune cells in
tumours. C57 mice bearing established B16F1 tumours were injected around the tumour
with the indicated adjuvants on day 7. 24 h later tumours were analysed by multicolour flow
cytometry. (A) Singlets were gated on the basis of FSC and SSC area (-A) versus height
(-H). Subsequently, live cells were identified on the basis of viability dye (DAPI) exclusion
and immune cells were gated as CD45+. (B) In one multicolour panel, lymphocytes were
gated on the basis of FSC-A and SSC-A and further divided into CD3+CD4+ T cells,
CD3+CD8+ T cells, CD3+NK1.1+ NKT cells and CD3-NK1.1+ NK cells. (C) Myeloid
populations were analysed in a separate staining panel. DCs were identified as CD11c+
MHCII+. All cells outside the DC gate were further gated on CD11b expression, followed
by F4/80 and FSChi for macrophages and 7/4 and Ly6C for two populations of monocytes.
In some experiments, additional antibodies to evaluate cell activation status or cytokine
production were included (shown in relevant figures)
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Two separate staining panels were then used to analyse either CD4 T cells, CD8 T cells

and NK cells (Figure 4.3 B) or DCs, monocytes and macrophages (Figure 4.3 C). Within

the CD45+ population, DCs were gated as CD11c+ MHC II+ cells. About 60 % of the

remaining CD45+ CD11c- cells expressed the myeloid marker CD11b. Macrophages were

then identified within the CD45+ CD11c- CD11b+ population as F4/80high FSC-Ahigh cells.

CD45+ CD11c- CD11b+ cells also comprised two populations of 7/4+ monocytes, which

expressed either high or intermediate levels of Ly6C (Figure 4.3 C).

In response to a single adjuvant administration, the frequency of immune cells in the tu-

mours tended to increase (Figure 4.4 A). This was highly significant for tumours treated

with M. smegmatis or MSU+ M. smegmatis, where the proportion of CD45+ cells doubled

(Figure 4.4 A). In line with the results obtained for large, untreated B16F1 tumours with

a different staining panel shown in Figure 3.11, the majority of tumour-infiltrating immune

cells were monocytes and DCs (Figure 4.4 B). This general pattern was not altered in re-

sponse to adjuvant treatment.
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Figure 4.4: Some adjuvants affect immune infiltrate in tumours after a single
adjuvant treatment. C57 mice bearing established B16F1 tumours were injected around
the tumour with the indicated adjuvants on day 7. 24 h later tumours were analysed by
flow cytometry. All cell types were identified as shown in figure 4.3. (A) The percentage
of CD45+ immune infiltrate among the total cells including tumour cells is shown. (B)
Proportions of the different immune cell types that comprise the immune infiltrate are shown.
Data are expressed as mean + SE and are combined from two independent experiments with
5 mice per group each. Statistical difference is indicated by ***p < 0.001 according to one-
way ANOVA with Tukey’s post test.
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However, the total proportion of monocytes among the CD45+ cells increased in response

to M. smegmatis, MSU + M. smegmatis and Poly IC treatment (Figure 4.4 B). Subdividing

the monocytes into the Ly6Cint and Ly6Chi populations revealed that while M. smegmatis

alone or in combination with MSU lead to a considerable increase in the frequency of Ly6Cint

monocytes in the CD45+ population, Poly IC treatment tripled the frequency of Ly6Chi

monocytes (Figure 4.4 B).

Overall, after a single adjuvant treatment, there was no correlation between the increase in

CD45+ cells in the tumours (Figure 4.4 A) or the increase in monocytes among immune cells

(Figure 4.4 B) with the activity of adjuvants to delay tumour growth (Figure 4.2).

To account for the overall increase in immune infiltration in some treatment groups and

prevent the considerable changes in monocyte infiltration from masking the effects of ad-

juvants on the other tumour-infiltrating immune cells, all populations were also plotted as

a percentage of all live cells (Figures for myeloid cells are shown below; Figures for T cells

and NK cells are included in Chapter 5).

When the frequencies of the two monocyte populations were plotted as percentage of

live cells, the increase of monocytes in response to M. smegmatis, MSU+ M. smegmatis

and Poly IC became even more clear (Figure 4.5 A). In addition to M. smegmatis and

MSU+ M. smegmatis, LPS also led to an increase in the tumour-infiltrating Ly6Cint mono-

cytes, although this was less pronounced (Figure 4.5 A, left panel). Ly6Chi monocytes were

indeed only affected by Poly IC administration (Figure 4.5 A, right panel). Of note, a pro-

portion of both monocyte populations expressed low levels of the DC marker CD11c, but

not MHC II (Figure 4.5 B and compare monocyte gating in Figure 4.3 C).

This suggests that peri-tumoral administration of M. smegmatis with or without MSU and

Poly IC attracts inflammatory monocytes to the tumour site, which may then up-regulate

CD11c and MHC II expression and differentiate into DCs.

white
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Figure 4.5: Some adjuvants increase monocyte infiltrate in tumours after a
single treatment]. C57 mice bearing established B16F1 tumours were injected around
the tumour with the indicated adjuvants on day 7. 24 h later tumours were analysed by flow
cytometry. CD11b+ 7/4+ Ly6Chi and CD11b+ 7/4+ Ly6Cint monocytes were identified
as shown in figure 4.3. (A) The percentage of monocyte populations among total live cells
is shown. (B) Expression of the DC marker CD11c on the two monocyte populations is
illustrated in representative flow plots and the frequency of CD11c+ monocytes is graphed.
Bar graphs show means + SE and are combined from two independent experiments with 5
mice per group each. Statistical significance as assessed by to one-way ANOVA with Tukey’s
post test is indicated by *p < 0.05 and ***p < 0.001.
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Figure 4.6: Macrophages in tumours remain largely unaffected by one adjuvant
treatment. C57 mice bearing established B16F1 tumours were injected around the tumour
with the indicated adjuvants on day 7. 24 h after the last treatment, tumours were excised
and analysed by flow cytometry. Macrophages were identified as shown in Figure 4.3 C.
(A) The percentage of macrophages in tumours is graphed. (B) Representative flow plot
of MHC II and CD86 expression on macrophages. (C) The levels of the activation markers
MHC II and CD86 on macrophages are quantified as median flourescence intensity (MFI).
Data in bar graphs are shown as mean + SE and are combined from two independent
experiments with 5 mice per group each. Statistical significance is indicated by *p < 0.05
and **p < 0.01 as assessed to one-way ANOVA with Tukey’s post test. n.s. = not significant.
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Both DCs and macrophages express receptors for the studied adjuvants and may act as

APCs if they become sufficiently activated. The frequency of macrophages among live

cells was not significantly changed in any of the adjuvant-treated groups, apart from the

MSU treated group, in which more macrophages were present (Figure 4.6 A). In addition,

adjuvant treatment did not increase the activation of macrophages in tumours, as assessed

by their expression of the activation markers MHC II and CD86 (Figure 4.6 B & C). MHC II

expression was even reduced in response to LPS administration (Figure 4.6 C, left panel).

This suggests that macrophages were neither attracted to the tumour site, nor activated to

become effective APCs by adjuvant treatment.

The effect of a single adjuvant treatment on tumour-infiltrating DCs was also investi-

gated. The frequency of DCs among live cells increased slightly in response to MSU, MSU

+ M. smegmatis and Poly IC, but this trend was not statistically significant (Figure 4.7 A).

Analysis of the surface phenotype of the tumour-infiltrating DCs showed that about a third

of them expressed considerable levels of the activation markers CD86 and MHC II even

in saline treated mice (Figure 4.7 B, left panel). However, as judged by these markers,

tumour-infiltrating DCs were not activated by adjuvant treatment (Figure 4.7 C). To inves-

tigate whether adjuvant administration induced a change in the types of DCs found in the

tumour, expression of CD11b, Ly6C and 7/4 was analysed. Nealry all tumour-infiltrating

DCs expressed CD11b and the frequency of CD11b+ DCs was not affected by adjuvant treat-

ment (Figure 4.7 B, middle panel & 4.7 C, left panel). About 15 % of DCs also co-expressed

the monocyte markers 7/4 and Ly6C, suggesting that they had recently differentiated from

monocytes (Figure 4.7 D, right panel). Although the frequency of monocyte-derived DCs

appeared to be increased in the Poly IC treated tumours, this was not statistically significant

(Figure 4.7 D, right panel).

In summary, adjuvants did not increase the frequency or activation of DCs or macrophages

in tumours 24 h after the first treatment. However, M. smegmatis, MSU + M. smegmatis

and Poly IC administration resulted in a higher frequency of monocytes within the tumours.

Some monocytes were found to express the DC marker CD11c, while some DC expressed

the monocyte markers 7/4 and Ly6C. This suggests that monocytes may be differentiating

into DCs in the tumour.
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Figure 4.7: DCs in tumours are not activated after a single adjuvant treatment.
C57 mice bearing established B16F1 tumours were injected around the tumour with the
indicated adjuvants on day 7. 24 h later DCs in tumours were analysed by flow cytometry.
DCs were identified as described in Figure 4.3. (A) The percentage of DCs among total live
cells in tumours is shown. (B) Representative flow plots illustrate the surface expression of
CD86, MHC II, CD11b, 7/4 and Ly6C on DCs in a saline treated tumour. (C) Expression of
the activation markers CD86 and MHC II on DCs is graphed as mean fluorescence intensity
(MFI). (D) The frequency of CD11b+ (left panel) and 7/4+Ly6C+ DCs (right panel) is
shown. Data in bar graphs are shown as mean + SE and are combined from two independent
experiments with 5 mice per group each. MFI values are normalized to the PBS control in
each experiment. *p < 0.05 and ***p < 0.001 as assessed by one-way ANOVA with Tukey’s
post test. n.s. = not significant.
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4.3.3 A single adjuvant administration affects DCs in

tumour-draining LNs

Several reports have demonstrated that bone marrow-derived DCs cross-present tumor anti-

gen to CD8 T cells in the lymph node [310, 450]. While there was no difference in DC

frequency or activation in the tumours 1 day after adjuvant treatment, DCs from tumours

may already have migrated to the dLNs by that time to present antigen to T cells and

initiate the anti-tumour response.

To investigate the effect of adjuvants on DCs in tumour-draining LNs, LNs were excised

one day after a single adjuvant administration and DCs were analysed by flow cytometry.

Singlet live cells were gated similar to the strategy shown in Figure 4.3. Subsequently, DCs

were gated as CD11chi MHC IIhi cells and DC subpopulations were identified on the basis

of CD11b, CD8, B220 and Ly6C 7/4 expression (Figure 4.8 A).

After a single administration of MSU + M. smegmatis, Poly IC or LPS, LNs were doubled in

size compared to PBS controls (Figure 4.8 B). While the frequency of DCs was significantly

increased only in response to Poly IC treatment (Figure 4.8 C), a slight increase in DC

percentage together with considerably larger LNs resulted in significantly higher numbers

of DCs in the dLNs of Poly IC, MSU + M. smegmatis and LPS treated animals (Fig-

ure 4.8 D). When the different DC sub-populations were examined individually, CD11b+

DCs were significantly increased in these groups (p<0.05), with a corresponding decrease

in the percentage of CD8+ DCs (Figure 4.8 E). The frequency of B220+ pDCs was not

significantly altered (Figure 4.8 E).

The increase in the number of total DCs and the percentage of CD11b+ DCs was seen both

with the effective adjuvants Poly IC and MSU + M. smegmatis and also with the ineffective

LPS treatment. Thus, there was no correlation of DC numbers or frequency of CD11b+

DCs with treatment benefit.

As some adjuvants attracted monocytes to the tumour site that seemed to differentiate

into DCs, we investigated whether these adjuvants induced monocyte-derived inflammatory

DCs to appear in the dLNs. In näıve mice or saline treated controls, less than 3 % of DCs
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Figure 4.8: DC numbers and subsets in dLN change after a single adjuvant treat-
ment. C57 mice bearing established B16F1 tumours were injected around the tumour with
the indicated adjuvants on day 7. 24 h later DCs in dLNs were analysed by flow cytometry.
Gating on singlets and live cells was performed as described in Figure 4.3. Subsequently,
CD11c+MHCII+ DCs and CD11b+, CD8+, B220+ and Ly6C+7/4+ DC subtypes were
identified as shown in representative flow plots in (A). (B) The total number of live cells in
combined tumour-draining inguinal and axillary LNs as determined by trypan-blue exclu-
sion on a haemocytometer is graphed. (C & D) The percentage and number of DCs in dLN
is shown. (E)Total DCs comprise CD11b+7/4-Ly6C- (CD11b+), CD8+CD11b- (CD8+),
B220+CD11b- (B220+) and CD11b+7/4+Ly6C+ (7/4+Ly6C+) DCs. (F) The frequency
and number of inflammatory DCs (CD11b+7/4+Ly6C+) is shown. Data in bar graphs are
shown as mean + SE and are combined from two independent experiments with 5 mice per
group each. *p < 0.05, **p < 0.01 and ***p < 0.001 as assessed by one-way ANOVA with
Tukey’s post test.
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expressed the inflammatory DC markers 7/4 and Ly6C (Figure 4.8 E & F, left panel).

Poly IC and MSU + M. smegmatis treatments significantly increased both the percentage

and numbers of inflammatory monocyte-derived DCs in dLNs (Figure 4.8 F). Although

LPS and M. smegmatis had also increased the frequency of monocytes in the tumours

(Figure 4.5 A), these adjuvants did not significantly affect inflammatory monocyte-derived

DCs in dLN (Figure 4.8 F).

Thus, the ability of adjuvants to delay tumour growth in vivo correlated with an increase in

inflammatory DCs in the tumour-draining LNs after a single adjuvant administration.

Next, we examined the expression of activation markers on the DCs in tumour-draining

LNs. Poly IC induced up-regulation of MHC II, CD40 and CD86 on the total DC popu-

lation (Figure 4.9 A). However, LPS administration resulted in a similar increase in CD40

and CD86 levels, while MSU + M. smegmatis did not alter activation marker expression

(Figure 4.9 A).
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Figure 4.9: Some adjuvants activate DCs in dLN after a single administration.
Data refer to the same experiment described in Figure 4.8. Expression of the activation
markers MHC II, CD40 and CD86 is shown as median fluorescence intensity (MFI) on all
DCs (A) or on inflammatory 7/4+Ly6C+CD11b+ DCs (B). Data are shown as mean + SE
and are combined from two independent experiments with 5 mice per group each. *p < 0.05
and ***p < 0.001 as assessed by one-way ANOVA with Tukey’s post test.
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As the inflammatory monocyte-derived DCs that correlated with treatment benefit only

represented a small proportion of the total DCs, they were analysed separately for activation

marker up-regulation. Inflammatory monocyte-derived DCs expressed lower levels of all

activation markers examined compared to the total DC population (Figure 4.9, compare

B to A). Adjuvant treatment did not lead to significant changes in the expression of any

activation marker on inflammatory DCs (Figure 4.9 B).

In addition to high levels of peptide antigen presented on MHC molecules and co-stimulatory

signals delivered via CD80 and CD86, cytokine production by DCs is also critical to activate

potent T cell responses. In particular, IL-12 is required for the successful induction of a Th1

profile and cytotoxic CD8 T cells [451–453]. Therefore, the ability of peri-tumoral adjuvant

administration to stimulate the ability of LN DCs to produce cytokines was investigated.

24 h after adjuvant administration, LNs were processed into single cell suspensions and

cultured for 6 h in the presence of Golgi-Stop without re-stimulation. Golgi-Stop blocks the

secretion of cytokines, which increases their detectability by intracellular staining. FMO

staining controls and representative flow plots are shown in Figure 4.10 A.

DCs were found to either co-express IL-12 and TNF-α or to express TNF-α alone (Fig-

ure 4.10 A & B). Treatment with CpG or MSU + M. smegmatis significantly increased the

percentage of cytokine producing DCs (Figure 4.10 B).

In summary, DCs in tumour-draining LNs were already affected by a single administration of

adjuvant. However, while MSU + M. smegmatis, Poly IC and LPS treatments all resulted

in higher DC numbers (Figure 4.8) and Poly IC and LPS also increased DC activation

(Figure 4.9), these readouts did not correlate with the anti-tumour activity of adjuvants. In

contrast, only the adjuvants that delayed tumour growth were found to induce accumulation

of inflammatory monocyte-derived DCs in dLNs (Figure 4.8 F) and they also increased the

capacity of LN DCs to produce IL-12 and TNF-α (Figure 4.10).
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Figure 4.10: DC in dLN increase their capacity to produce cytokines after a
single adjuvant treatment. C57 mice bearing established B16F1 tumours were injected
around the tumour with the indicated adjuvants on day 7. 24 h later dLNs were excised
and cultured for 6 h with Golgi-Stop, followed by intracellular cytokine staining for IL-12
and TNF-α. FMO are staining controls using the same antibodies as in the stained samples
but replacing the cytokine antibody with the appropriate isotype control. (A) DCs were
gated on live singlets and then on CD11c+MHC II+ cells. Cytokine gating including staining
controls and representative samples from indicated treatment groups are shown. (B) Scatter
plots represent the frequency of single (IL-12 or TNFα) or double positive (IL-12+TNFα+)
cells among all DCs. Data are shown as mean + SE and are from one representative
experiment out of two independent experiments with 5 and 3 mice per group, respectively.
***p < 0.001 as assessed to one-way ANOVA with Tukey’s post test.
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4.3.4 A single peri-tumoral adjuvant treatment induces sys-

temic cytokine release

To further investigate the early response to adjuvant administration, the systemic release of

cytokines was analysed in the serum.

As the kinetics of cytokine levels in the serum may vary for different cytokines or adjuvants,

cytokine levels were analysed at 1 h, 3 h and 24 h after the first adjuvant administration in

tumour bearing mice. Saline treated, tumour-bearing mice and näıve controls had low or

undetectable levels of all cytokines apart from IL-1α, which showed considerable constitutive

expression in all mice (Figure 4.11).

IFN-γ is known to be important for the anti-tumour response to B16F1 melanomas and can

be released by T cells or NK cells [454]. Only Poly IC and MSU + M. smegmatis induced

significant levels of IFN-γ at 3 h and 1 h, respectively (Figure 4.11, top left panel). This

rapid spike of IFN-γ suggests that it was released through activation of effector cells rather

than induced de novo.

GM-CSF is involved in the generation of granulocytes and monocytes from the bone-marrow.

Its role in tumour immunology is ambiguous, with both tumour-promoting and tumour-

inhibitory effects described in the literature [455], sometimes in a dose-dependent manner

[456]. In response to a single peri-tumoral adjuvant treatment, serum GM-CSF was only

elevated in some mice and GM-CSF induction was not significant for any adjuvant and time

point analysed (Figure 4.11, top right panel).

The serum levels of the pro-inflammatory cytokines IL-1α, IL-1β, IL-6 and TNFα were

also examined. IL-1α was constitutively present in all mice and its level was not altered in

response to adjuvant treatment (Figure 4.11, left upper middle panel). In contrast, IL-1β

was very low in control mice and increased in response to MSU + M. smegmatis at the

1 h time point (Figure 4.11, right upper middle panel). A number of Poly IC treated mice

also had elevated serum levels of IL-1β at 1 h and 3 h after the adjuvant treatment, but the

response was more variable and not significant.
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Figure 4.11: Peri-tumoral administration of some adjuvants increases serum
cytokine concentrations. C57 mice bearing established B16F1 tumours were injected
around the tumour with the indicated adjuvants on day 7. 1 h, 3 h and 24 h later, serum
samples were taken from mice and were analysed for the indicated cytokines using a mul-
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A moderate increase in IL-6 and TNFα was observed in response to Poly IC and MSU

+ M. smegmatis, while peri-tumoral LPS treatment resulted in more than 10-fold higher

levels of these cytokines (Figure 4.11, lower middle panels). In addition, LPS induced IL-6

and TNFα levels were still elevated at 3 h, and dropped back to baseline at 24 h.

Interestingly, the anti-inflammatory cytokine IL-10 followed a very similar pattern com-

pared to IL-6 and TNFα (Figure 4.11, lower left panel). Poly IC induced moderate IL-10

release at 1 h, with levels down to baseline at 3 h. Again, LPS induced very large amounts

of IL-10 already at 1 h, dropping somewhat at 3 h and returning to baseline levels again

at 24 h. This indicates that effective adjuvants only induce moderate amounts of pro-

and anti-inflammatory cytokines, while ineffective adjuvants either induce neither (MSU,

M. smegmatis) or large amounts of both (LPS).

Lastly, IL-12p70 induction was analysed. This cytokine is critical for the induction of a Th1

profile and the licensing of cytotoxic CD8 T cells [451–453]. IL-12p70 serum levels were

significantly elevated at 1 h in response to MSU + M. smegmatis and at 3 h after Poly IC

administration (Figure 4.11, lower right panel). Other adjuvants did not affect IL-12p70

levels at the studied time points.

In summary, only effective adjuvants induced a significant increase in the serum levels of

IFN-γ and IL-12p70. Poly IC and MSU + M. smegmatis were also associated with a mod-

erate elevation of pro-inflammatory cytokines, while M. smegmatis or MSU did not induce

any serum cytokines. In contrast, LPS induced large amounts of both pro-inflammatory

cytokines and anti-inflammatory IL-10.
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4.3.5 Local induction of cytokines by one peri-tumoral adju-

vant administration

The release of pro-inflammatory factors is tightly controlled and many cytokines, chemokines

and enzymes involved in inflammation and host defense are only released locally. Therefore,

the expression of a large panel of inflammatory factors in response to MSU + M. smegmatis,

Poly IC or LPS treatment was analysed on a RNA level using a 96-well-plate quantitative

real-time PCR array (see Appendix C). The results from these experiments showed that

many genes were expressed at low levels and did not change more than 2-fold in response to

adjuvant administration. G-CSF, CCL3, IL-1α, IL-1β, IL-6 and iNOS were among the genes

that showed the highest induction in response to MSU + M. smegmatis treatment. Poly IC

also substantially up-regulated IL-6 expression, but had a lower impact on G-CSF, CCL3,

IL-1α, IL-1β and iNOS. Instead Poly IC induced considerable expression of the chemokines

CXCL-10 and CXCL-11. Strikingly, LPS induced even higher up-regulation of nearly all

studied factors than MSU + M. smegmatis or Poly IC. However, it also increased GM-CSF

and IL-10 expression to very high levels.

To validate the initial gene expression data, at least three biological replicates, non-reverse

transcribed controls and water controls were necessary. In addition, a comparison between

saline, MSU, M. smegmatis, MSU + M. smegmatis, Poly IC and LPS treated tumours at sev-

eral time points after adjuvant administration was desirable. To enable the analysis of all of

these samples, a few targets from the 96-well array were chosen for individual qPCR assays.

Genes that were highly expressed, highly up-regulated or differentially affected by the tested

adjuvants were selected. The growth factor G-CSF and the pro-inflammatory cytokine IL-6

showed the biggest increase in expression in the data obtained from the 96-well assay and

both were also differentially regulated in response to the different adjuvants. GM-CSF was

highly expressed already at baseline and also showed different kinetics of up-regulation be-

tween MSU + M. smegmatis and LPS. IL-10 was chosen as an anti-inflammatory factor,

iNOS was included as a marker of classical macrophage activation and CXCL10 was selected

as a representative T cell attracting chemokine. Moreover, IL-10, iNOS and CXCL10 all

exhibited differential expression in response to adjuvant treatment in the 96-well assay.



148 4 Treatment with specific adjuvants delays tumour growth and activates DCs in vivo

The data obtained with individual qPCR analyses was largely in line with the previous

array-based results. The 18S samples of all conditions had CT values of 8-12, whereas

reactions with non-reverse transcribed RNA samples and water had CT values >30. For all

target transcripts, water controls and reactions performed with non-reverse transcribed RNA

samples remained blank (CT > 40), indicating that there was no significant contamination

of reagents or genomic DNA present in samples.

GM-CSF was up-regulated in response to MSU, M. smegmatis or MSU + M. smegmatis

(Figure 4.12, top left panel). However, at 24 h, MSU + M. smegmatis induced GM-CSF

levels had dropped down to baseline again. Poly IC did not affect GM-CSF expression. In

contrast, LPS treatment led to a large increase in GM-CSF expression that kept increasing

at 24 h.

G-CSF showed a similar pattern to GM-CSF, with Poly IC only initially inducing some

up-regulation and initial induction by MSU + M. smegmatis slowly declining over time

(Figure 4.12, top right panel). Again, the induction of gene expression was highest for LPS

and continued to increase at 24 h.

The kinetics of IL-10 expression were more varied, either showing an initial induction fol-

lowed by a decrease in response to MSU, induction with a drop at the 6 h time point after

M. smegmatis or MSU + M. smegmatis treatment, or a peak at 6 h in response to Poly IC

or LPS (Figure 4.12, left middle panel). Consistent with serum cytokine levels, LPS induced

the highest and most persistent increase in IL-10 RNA.

IL-6 expression also reflected the serum cytokine data, with LPS causing a more than 100-

fold increase in RNA levels, while the other adjuvant only showed a up to 10-fold induction

with varied kinetics (Figure 4.12, right middle panel).

Interestingly, iNOS levels were initially down-regulated by MSU and M. smegmatis and

only increased at 24 h in response to mycobacteria, while an 8-fold induction of iNOS was

observed at all time points following MSU + M. smegmatis administration (Figure 4.12, left

bottom panel). Once again, LPS induced the biggest increase in expression levels.
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Figure 4.12: Changes in the expression of immune-related molecules in tumours
after one adjuvant treatment. C57 mice bearing established B16F1 tumours were
injected around the tumour with the indicated adjuvants on day 7. 1 h, 6 h and 24 h later,
tumours were excised and RNA was extracted. Following reverse transcription, expression
of the indicated transcripts was analysed by real-time PCR. Data were normalized to 18S
and compared to the PBS treated groups (∆∆CT). Relative expression levels from 3 mice
per condition are shown as mean + SE.
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Unlike all of the other targets, CXCL10 was not up-regulated to a considerably higher

extent by LPS, but instead Poly IC and LPS induced similar levels (Figure 4.12, right

bottom panel). Both adjuvants up-regulated CXCL10 expression 15-fold, whereas MSU

+ M. smegmatis induced a much smaller, but sustained increase in CXCL10.

Altogether, the effective adjuvants Poly IC and MSU + M. smegmatis resulted in a moderate

local up-regulation of the pro-inflammatory cytokine IL-6. The growth factors GM-CSF

and G-CSF showed an initial spike in induction with MSU + M. smegmatis, which declined

over time, while Poly IC only induced some G-CSF at the 2 h time point. Furthermore,

both effective adjuvants induced low levels of IL-10. The induction of iNOS was largely

limited to MSU + M. smegmatis, while CXCL10 was mainly induced by Poly IC. LPS, in

contrast, induced much higher levels of the pro-inflammatory IL-6 and iNOS, as well as the

growth factors G-CSF and GM-CSF, but also up-regulated IL-10 to a greater extent than

the other adjuvants. Thus, a moderate amount of pro-inflammatory mediators and growth

factors coupled with lower levels of IL-10 appears to be beneficial for the induction of an

anti-tumour response by adjuvant treatment.

4.3.6 Changes in DCs in tumour-draining LNs are sustained

after repeated adjuvant administration

Multiple adjuvant administrations may promote further activation of DCs and even higher

numbers of inflammatory monocyte-derived DCs. However, repeated adjuvant exposure

may also have the opposite effect, making DCs refractory to further adjuvant activation and

reducing the induction of inflammatory cell types via feedback regulation [446, 457].

To examine the effect of repeated adjuvant administration, DCs in tumour-draining LNs

were analysed one day after the 4th peri-tumoral adjuvant treatment. LNs were still enlarged

in Poly IC and MSU + M. smegmatis treated animals (Figure 4.13 A & Figure 4.8 B).

After 4 administrations, M. smegmatis treatment also induced an increase in LN size, while

the initial LN enlargement in response to LPS was not sustained after 4 administrations

(Figure 4.13 A & Figure 4.8 B). After 4 adjuvant treatments, the frequency of DCs was

similar in all groups (Figure 4.13 B), but due to the overall LN hyperplasia, a larger number
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of DCs was present in M. smegmatis, MSU + M. smegmatis and Poly IC treated groups

(Figure 4.13 C).

Inflammatory monocyte-derived DCs remained increased after 4 administrations of Poly IC

and MSU + M. smegmatis compared to saline treated controls (Figure 4.13 D, right panel).

In fact, their frequency rose from 6 % of DCs after one adjuvant treatment to 10-15 % of

all DCs following 4 adjuvant administrations (Figure 4.13 D & Figure 4.8 F). While a

single M. smegmatis dose had not altered DC numbers or induced inflammatory monocyte-

derived DCs, after 4 administrations its effect was similar to the response induced by MSU

+ M. smegmatis (Figure 4.13 D & Figure 4.8 F). The higher percentage of inflammatory

A. B.

D.

PBS
MSU

M.sm
eg

MSU+M.sm
eg

Poly 
IC LPS

0

20

40

60
******
**

Nu
m

be
r o

f D
Cs

 
in

 d
LN

 (x
10

4 )

PBS
MSU

M.sm
eg

MSU+M.sm
eg

Poly 
IC LPS

0

20

40

60

80 **

%
 C

D1
1b

+ 
7/

4-
 

(o
f D

Cs
)

PBS
MSU

M.sm
eg

MSU+M.sm
eg

Poly 
IC LPS

0

5

10

15

20 ******
**

%
 C

D8
+ 

(o
f D

Cs
)

PBS
MSU

M.sm
eg

MSU+M.sm
eg

Poly 
IC LPS

0

5

10

15

20
******
*

%
 7

/4
+L

y6
C+

CD
11

b+
(o

f D
Cs

)
PBS

MSU

M.sm
eg

MSU+M.sm
eg

Poly 
IC LPS

0.0
0.5
1.0
1.5
2.0
2.5

%
 D

Cs
 o

f l
iv

e 
ce

lls n.s.

PBS
MSU

M.sm
eg

MSU+M
.sm

eg

Poly 
IC LPS

0

10

20

30

Nu
m

be
r o

f l
iv

e 
ce

lls
 in

 d
LN

 (x
10

6 ) ******
***

C.Percentage of DCs Number of DCsNumber of live cells

Figure 4.13: MSU + M. smegmatis and Poly IC continue to induce inflamma-
tory DCs in dLNs after 4 treatments. C57 mice bearing established B16F1 tumours
were injected around the tumour with the indicated adjuvants on day 7, 9, 11 and 13. One
day after the last treatment DCs in dLNs were analysed by flow cytometry. DCs were
identified as CD11c+MHCII+ live cells as shown in Figure 4.8. (A) The total number of
live cells as determined by trypan-blue exclusion on a haemocytometer in pooled inguinal
and axillary dLN is graphed. The percentages (B) and numbers (C) of DCs in dLNs are
shown. (D) Bar graphs depict the percemtages of CD8+CD11b- (CD8+), CD11b+7/4-
Ly6C- (CD11b+) and CD11b+7/4+Ly6C+ (7/4+Ly6C+) DCs among total DCs. Data
are shown as mean + SE and are combined from two independent experiments with 5 mice
per group each. *p < 0.05, **p < 0.01 and ***p < 0.001 as assessed by one-way ANOVA
with Tukey’s post test.
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monocyte-derived DCs in M. smegmatis, MSU + M. smegmatis and Poly IC treated groups

was accompanied by a decrease in the frequency of CD8+ DCs, whereas the CD11b+ 7/4-

Ly6C- population was largely unaffected (Figure 4.13 D).

To further evaluate whether repeated adjuvant exposure had activating or tolerising effects

on the DCs in tumour-draining LNs, their expression of activation markers was also analysed.

When the whole DC population was examined, no change in MHC II expression was observed

(Figure 4.14 A, left panel). Only Poly IC induced up-regulation of CD86 (Figure 4.14 A,

middle panel). In addition, a slight increase in CD40 expression occurred after M. smegmatis

treatment (Figure 4.14 A, right panel). Although a single LPS administration had induced

substantial up-regulation of CD86 and CD40 expression on DCs, 4 LPS treatments did not

appear to activate DCs and even led to slightly reduced CD40 levels compared to saline

treated controls (Figure 4.14 A & Figure 4.9 A).

While inflammatory DCs were already detectable in dLNs after a single administration of

Poly IC or MSU + M. smegmatis, they did not display a more activated phenotype than

the few inflammatory DCs found in saline treated mice (Figure 4.9 B). Repeated adjuvant

administration still did not alter MHC II expression by inflammatory DCs (Figure 4.14 B,

left panel). However, 4 doses of Poly IC induced significant up-regulation of CD86 on

inflammatory DCs, while M. smegmatis alone or in combination with MSU increased the

expression of CD40 (Figure 4.14 B, middle and right panels & Figure 4.14 C).

These data suggest that one dose of Poly IC and MSU + M. smegmatis was sufficient to

induce inflammatory monocyte-derived DCs in tumour-draining LNs, but not to activate

them. Repeated administration continued to promote monocyte-derived inflammatory DC

formation and migration to the dLNs. In addition, 4 treatments with Poly IC and MSU

+ M. smegmatis enhanced the activation state of inflammatory monocyte-derived DCs in

dLNs. In contrast, LPS strongly increased DC numbers and activation in dLNs only after

a single administration, but did not affect DCs when given repeatedly.

Overall, repeated LPS administration appears to abrogate its ability to activate DCs, while

multiple treatments with Poly IC and MSU + M. smegmatis resulted in even higher numbers

and increased activation of inflammatory monocyte-derived DCs.
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Figure 4.14: Inflammatory DCs in dLN are activated by some adjuvants after 4
treatments. C57 mice bearing established B16F1 tumours were injected around the tumour
with the indicated adjuvants on day 7, 9, 11 and 13. One day after the last treatment DCs
in dLNs were analysed by flow cytometry. All DCs were identified as CD11c+MHCII+ live
cells and inflammatory DCs were identified as CD11b+7/4+Ly6C+. See Figure 4.8 for a
representative gating strategy. Levels of the activation markers MHC II, CD86 and CD40
on the surface of DCs are depicted as median fluorescence intensity (MFI) on total DCs
(A) and inflammatory DCs (B). For selected treatment groups, representative histograms
for expression of CD86 and CD40 on inflammatory DCs are given. Data in bar graphs are
shown as mean + SE and are combined from two independent experiments with 5 mice per
group each. Statistical difference is indicated by *p < 0.05, **p < 0.01 and ***p < 0.001
according to one-way ANOVA with Tukey’s post test.



154 4 Treatment with specific adjuvants delays tumour growth and activates DCs in vivo

4.3.7 Impact of repeated adjuvant administration on mono-

cytes and DCs in tumours

The most likely origin of the monocyte-derived DCs observed in dLNs after multiple admin-

istrations of Poly IC and MSU + M. smegmatis is the adjuvant-treated tumour site. These

adjuvants were found to induce inflammatory factors in the tumour and increase tumour-

infiltration of monocytes already after one adjuvant administration. Repeated adjuvant

injection to the tumour site may continue to attract immune cells.
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Figure 4.15: Number of immune cells in tumours. C57 mice bearing established
B16F1 tumours were injected around the tumour with the indicated adjuvants on day 7 or
on day 7, 9, 11 and 13. One day after the last treatment, tumours were measured, excised
and processed into single cell suspension. Live cells were counted on a hemocytometer by
trypan-blue exclusion. CD45+ immune cells were identified by flow cytometry as described
in Figure 4.3. (A) The total number of CD45+ immune cells in each tumour was calculated.
(B) The immune infiltrate is expressed relative to tumour volume (million CD45+ cells per
mm3 tumour mass). Bar graphs show means + SE and are combined from two independent
experiments with 5 mice per group each. *p < 0.05, **p < 0.01 and ***p < 0.001 as assessed
by to one-way ANOVA with Tukey’s post test.
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To compare the total numbers of tumour-infiltrating immune cells in B16F1 tumours after

one and four adjuvant treatments, tumour cell suspensions were again analysed by flow

cytometry and live cells were counted by trypan-blue exclusion. Small tumours one day

after the first adjuvant treatment were associated with 2 million immune cells. Similar to

the result obtained for the percentage of CD45+ immune cells among live cells (Figure 4.4),

both M. smegmatis and MSU + M. smegmatis increased the total number of immune cells

in each tumour (Figure 4.15 A, left panel). As tumours were all of similar size, the same

pattern was seen when the immune cell infiltrate was expressed in relation to tumour volume

(Figure 4.15 B, left panel).

After 4 adjuvant administrations, the tumour sizes were more varied, with tumours treated

with Poly IC or MSU + M. smegmatis being considerably smaller than the tumours in other

treatment groups (Figure 4.2). The total number of immune cells per tumour at day 14 was

not significantly different between treatment groups (Figure 4.15 A, right panel). However,

compared to the total amount of immune cells present at the tumour site at day 8, there was

a 3-fold increase in the immune infiltrate in saline treated controls at day 14 (Figure 4.15 A).

In the mycobacteria treated groups that had already experienced an influx of immune cells at

day 8, the effect was less pronounced. The density of the immune infiltrate in small tumours

was about 3 million per mm3 in saline controls, but decreased to 0.3 million per mm3 as

the tumours progressed (Figure 4.15 B). This indicates that while immune cells continued

to infiltrate the tumours between days 8 and 14, the tumour cells outgrew the immune

infiltrate. This still occurred in Poly IC and MSU + M. smegmatis treated tumours, but

to a lesser degree, as the density of immune cells on day 14 was 1 million per mm3, 3-fold

higher than in saline controls (Figure 4.15 B, right panel).

Monocytes accounted for a major portion of the tumour immune-infiltrate (Figure 4.4).

A single administration of M. smegmatis, MSU + M. smegmatis or LPS increased the

frequency of Ly6Cint monocytes in tumours (Figure 4.5). After 4 adjuvant administrations,

only combination treatment with MSU + M. smegmatis enhanced recruitment of Ly6Cint

monocytes to the tumour (Figure 4.16 A, left panel).

MSU + M. smegmatis and LPS also increased the percentage of Ly6Chi monocytes in

tumours (Figure 4.16 A, right panel). In contrast to the significant increase in tumour
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Figure 4.16: Inflammatory monocytes remain increased after 4 MSU + M. smeg-
matis treatments. C57 mice bearing established B16F1 tumours were injected around the
tumour with the indicated adjuvants on day 7, 9, 11 and 13. One day after the last treat-
ment monocytes in tumours were analysed by flow cytometry. Monocytes were identified
as described in Figure 4.3 and CD11c expression was analysed as shown in Figure 4.5. (A)
The percentage of CD11b+ 7/4+ Ly6Cint and CD11b+ 7/4+ Ly6Chi monocytes among live
cells in tumours is shown. (B) A fraction of both monocyte populations expresses the DC
marker CD11c but not MHC II. Data are graphed as mean + SE and are combined from
two independent experiments with 5 mice per group each. **p < 0.01 and ***p < 0.001 as
assessed by one-way ANOVA with Tukey’s post test.

infiltration of Ly6Chi monocytes after a single Poly IC dose, repeated Poly IC administration

did not affect monocyte infiltrate (Figure 4.16 A).

A proportion of both monocyte populations was positive for the DC marker CD11c, but did

not express MHC II (Figure4.16 B). CD11c expression of monocytes was generally higher in

day 14 tumours than in small tumours on day 8 (Figure 4.16 B & Figure 4.5 B). Similar to

what was observed after one treatment, the percentage of monocytes that expressed CD11c

was not altered by adjuvant treatment.
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Overall, after 4 adjuvant treatments, monocyte infiltration into tumours was mainly in-

creased in response to MSU + M. smegmatis, but not to Poly IC. Therefore, monocyte

infiltration after repeated adjuvant administration did not correlate with anti-tumour ac-

tivity of the adjuvants.

Similar to the effect on monocytes, after four adjuvant treatments the percentage and num-

ber of DCs in tumours was only increased by MSU + M. smegmatis (Figure 4.17 A). In ad-

dition, tumour-infiltrating DCs did not display enhanced activation in response to repeated

adjuvant exposure (Figure 4.17 B). In line with the data obtained after a single adjuvant

treatment, more than 80 % of the DCs in saline treated tumours expressed CD11b and

about 20 % of DCs were 7/4+Ly6C+CD11b+ (Figure 4.17 C). The frequency of CD11b+

DCs was neither affected by one nor by multiple adjuvant treatments (Figure 4.17 C, left

panel & Figure 4.7 D, left panel). In contrast, repeated exposure to all adjuvants apart from

MSU resulted in a significant increase in the percentage of monocyte-derived inflammatory

(7/4+Ly6C+) DCs in tumours (Figure 4.17 A).

This suggests that repeated administration of all adjuvants apart from MSU created a suffi-

ciently inflammatory milieu at the tumour site to enhance the differentiation of monocytes

into DCs. However, only Poly IC and MSU + M. smegmatis treatment induced early accu-

mulation of monocyte-derived DCs in the dLNs, where they may activate the anti-tumour

T cell response.

To investigate the ability of tumour-infiltrating DCs to produce TNFα and IL-12, tumour

cell suspensions were cultured for 6 h with Golgi-Stop, followed by intracellular cytokine

staining and flow cytometry analysis. In saline treated controls, less than 1 % of DCs

produced TNFα or IL-12 (Figure 4.18). TNFα production was significantly enhanced after

4 administrations of MSU + M. smegmatis, but was not altered by any of the other adjuvants

(Figure 4.18 A & B). In response to MSU + M. smegmatis treatments, DCs also expressed

higher levels of TNFα as illustrated by the increased staining intensity (Figure 4.18 A,

histogram).

In contrast, repeated administration of MSU + M. smegmatis, Poly IC and LPS all resulted

in a higher frequency of IL-12+ DCs, but none of the adjuvants increased the IL-12+



158 4 Treatment with specific adjuvants delays tumour growth and activates DCs in vivo

A.

PBS
MSU

M. s
meg

MSU + M
. s

meg

Poly 
IC LPS

0

500

1000

1500

CD
86

 M
FI

 o
n 

DC
s

n.s.

PBS
MSU

M. s
meg

MSU + M
. s

meg

Poly 
IC LPS

0

5000

10000

15000
M

HC
 II

 M
FI

 o
n 

DC
s

***
*

PBS
MSU

M. s
meg

MSU + M
. s

meg

Poly 
IC LPS

0
20
40
60
80

100

%
 C

D1
1b

 o
f D

Cs

PBS
MSU

M. s
meg

MSU + M
. s

meg

Poly 
IC LPS

0

20

40

60 **
***
*

**

%
 7

/4
+ 

Ly
6C

+ 
of

 D
Cs

PBS
MSU

M. s
meg

MSU + M
. s

meg

Poly 
IC LPS

0.0

0.5

1.0

1.5

2.0 ***
%

 D
Cs

 o
f l

iv
e 

ce
lls

B.

C.

PBS
MSU

M. s
meg

MSU + M
. s

meg

Poly 
IC LPS

0.0

0.1

0.2

0.3

0.4

Nu
m

be
r o

f  
DC

s
(x

10
4  /m

m
3  tu

m
ou

r) ***

Figure 4.17: Inflammatory DCs are increased in tumours after 4 adjuvant treat-
ments. C57 mice bearing established B16F1 tumours were injected around the tumour with
the indicated adjuvants on day 7, 9, 11 and 13. One day after the last treatment DCs in
tumours were analysed by flow cytometry. DCs were identified as described in Figure 4.3
and the 7/4+Ly6C+ population was gated as shown in Figure 4.8. (A) The percentage of
DCs among live cells and the number of DCs per tumour volume is shown. (B) Expres-
sion levels of the activation markers CD86 and MHC II on DCs are depicted as median
fluorescence intensity (MFI). (C) The frequency of CD11b+7/4-Ly6C- (CD11b+) DCs and
CD11b+7/4+Ly6C+ (7/4+Ly6C+) DCs is shown. Data are expressed as mean + SE and
are combined from two independent experiments with 5 mice per group each. *p < 0.05,
**p < 0.01 and ***p < 0.001 as assessed by one-way ANOVA with Tukey’s post test. n.s.
= not significant.
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Figure 4.18: Effective adjuvants increase the capacity of tumour-DCs to pro-
duce pro-inflammatory cytokines. C57 mice bearing established B16F1 tumours were
injected around the tumour with the indicated adjuvants on day 7, 9, 11 and 13. One day af-
ter the last treatment tumours were excised and cultured for 6 h with Golgi-Stop. Cytokine
production capacity was analysed by intracellular cytokine staining for IL-12 and TNFα.
DCs were identified as described in Figure 4.3. In staining controls the same antibodies as in
the stained samples were used but the cytokine antibody was replaced with the appropriate
isotype control. (A) and (C) show representative flow plots and a histogram for TNFα
staining and IL-12 staining in DCs, respectively (B) The percentage of TNFα+ DCs and
(D) IL-12 + DCs is shown as mean + SE. Data are combined from two independent exper-
iments with 5 mice per group each. *p < 0.05, **p < 0.01 and ***p < 0.001 as assessed by
one-way ANOVA with Tukey’s post test.



160 4 Treatment with specific adjuvants delays tumour growth and activates DCs in vivo

fraction over 5 % (Figure 4.18 C & D). Poly IC and MSU + M. smegmatis treatments also

enhanced the level of IL-12 produced in each DC, as seen by the increase in IL-12 staining

intensity (Figure 4.18 C, histogram).

In summary, multiple administrations of the effective adjuvants Poly IC and MSU + M. smeg-

matis resulted in increased density of immune infiltrate in smaller tumours, indicating that

the recruited immune cells were partially controlling tumour growth. While monocyte and

DC infiltration continued to be enhanced by repeated exposure MSU + M. smegmatis,

neither cell type was affected by repeated Poly IC administration. However, both effective

adjuvants induced higher frequencies of inflammatory monocyte-derived DCs in tumours and

tumour-draining LNs and increased cytokine production in tumour-infiltrating DCs.

This suggests that effective adjuvants induce an inflammatory milieu at the tumour site that

attracts monocyte infiltration, promotes differentiation of monocytes into DCs and induces

activation and migration of monocyte-derived inflammatory DCs to dLNs, where they may

initiate the anti-tumour T cell response.

4.4 Discussion

Effects of adjuvant treatment on tumour growth

The aim of the experiments described in this chapter was to assess the ability of different

adjuvants to activate DCs in vivo and induce a successful anti-tumour immune response. The

in vitro experiments with BMDCs and tumour-infiltrating DCs had shown that Poly IC +

LPS and MSU + M. smegmatis were superior to other adjuvants in activating DCs and

inducing Th1 cytokines. While both of these combinations showed anti-tumour activity in

vivo, Poly IC + LPS was not superior to Poly IC treatment by itself and LPS did not affect

tumour growth. In addition, MSU only exhibited anti-tumour activity in combination with

M. smegmatis, but not with BCG, while both adjuvant combinations were equally effective

in vitro. Therefore the activity of adjuvants in vitro and in vivo differed in several aspects.

This may be due to the interaction of adjuvants with other cell types not present in the in

vitro culture systems, the effects of repeated administration and possible feedback regulation
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mechanisms, and different bioavailability of adjuvants due to solubility, metabolism and

uptake by various cell types in the animals.

The combination of MSU + M. smegmtis was not previously described in a tumour-immuno-

therapy setting. However, individually MSU and M. smegmatis have been reported to show

anti-tumour activity in the E.G7-OVA model in separate studies [361, 458]. This tumour

is highly immunogenic and spontaneous regression was observed in a considerable fraction

of mice in the study by Hu et al., which could be enhanced by injection of a mixture of

soluble uric acid and crystalline MSU. However, MSU was ineffective against the parental

EL4 tumour line that lacks the foreign OVA protein and is therefore less immunogenic. This

is in line with the findings in this chapter that MSU alone has little activity against the

poorly immunogenic B16F1 tumour and also correlated with low levels of DC activation

induced by MSU. Likewise, M. smegmatis alone showed no anti-tumour effect in the B16F1

model, although it was able to induce BMDC activation in vitro. However, the level of

BMDC activation in vitro with M. smegmatis alone was lower compared to the combination

of M. smegmatis + MSU and this may not be sufficient to induce a successful response

against the aggressive B16F1 tumour.

It is intriguing that MSU + M. smegmatis and MSU + BCG had very comparable effects

on BMDCs in vitro, but MSU + BCG completely lacked anti-tumour activity in vivo. This

may be due to BCG being derived from a pathogen and therefore having evolved strategies

to avoid the immune response. In human monocyte-derived DCs, BCG has been shown to

suppress IL-12 production and instead induced high amounts of IL-10 [459]. Furthermore,

BCG is preferentially taken up by neutrophils at the injection site [460] and the anti-BCG

T cell response is only initiated one week after s.c. injection of BCG, peaking at three weeks

[461]. This indicates that DCs may not initially encounter BCG and only become sufficiently

exposed to activate antigen-specific T cells after prolonged periods of time. Moreover, a

recent publication showed that BCG was only effective against a murine orthotopic bladder

cancer if either three weekly instillations were given, or BCG-specific T cells were present

prior to intravesical BCG therapy [402]. Therefore, with the regimen used in the B16F1

model BCG + MSU may activate the anti-tumour immune response too late to induce a

discernible effect on tumour growth.
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LPS administration also failed to induce an effective anti-tumour response in the B16F1

model. LPS injection at the tumour site has been variously reported to achieve tumour

regression in murine and rat gliomas [462, 463], to have no effect on tumour growth in 3LL

lung cancer model [464] and even to enhance tumour progression of murine fibrosarcomas

[448]. This discrepancy may be caused by different responsiveness of various tumour models

to LPS treatment. In addition, the studies that reported tumour regression used very

high doses of 0.3 mg to 2.0 mg LPS per injection, which are similar to the amounts used

to induce endotoxic shock [465]. The lower dose of LPS chosen in this study to avoid

potentially harmful systemic inflammation apparently was insufficient to activate successful

anti-tumour immunity, despite the observed activation of BMDCs in vitro and DCs in dLNs

in vivo. Possible reasons for this will be discussed below.

Poly IC and CpG both activated BMDCs in vitro and exhibited good anti-tumour activity

in the B16F1 model. Kawarada et al. reported similar anti-tumour effetcs for CpG in a

range of tumour models, including a B16 melanoma [11]. Intratumoral injections of Poly IC

were previously reported to delay the tumour growth in a murine mesothelioma model [12].

Both studies found that the adjuvant effect depended on CD8 T cells and in the case of

CpG also on NK cells. However, the exact mechanism by which the immune response was

activated has only partially been elucidated. As mentioned above, CpG was not pursued

in this study, as its receptor TLR9 is expressed differently in humans and mice and clinical

trials have been disappointing [14, 291, 449].

The effects of Poly IC, LPS, MSU + M. smegmatis combination and individual agonists

on DC activation in vivo were investigated in more detail, to elucidate how some adjuvants

successfully activated the anti-tumour immune response, while others failed, as discussed

below.

Effects of adjuvant treatment on DCs in vivo

Contrary to our expectations, none of the adjuvants induced activation of DCs at the tumour

site as assessed by surface marker up-regulation. It has been shown that skin-resident DCs

become activated and start to appear in the dLNs as early as 8 h post infection or adjuvant
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application [296]. It is therefore likely that 2 days after adjuvant treatment, when DC

activation was analysed, any DCs activated at the tumour site had already migrated to the

dLNs. However, DC activation in the dLNs did not correlate with treatment success, as LPS

administration activated DCs to a similar extent as Poly IC, but MSU + M. smegmatis did

not induce up-regulation of surface markers on LN DCs. A single treatment with Poly IC,

MSU + M. smegmatis or LPS led to LN enlargement, indicating that the immune cells

in dLNs reacted to these adjuvants. This resulted in an higher numbers of all cell types,

including DCs.

Repeated administration of Poly IC and MSU + M. smegmatis resulted in a further increase

in LN size, whereas the initial LN hyperplasia was not sustained after four treatments with

LPS. In addition, the activation marker profile of DCs in repeatedly LPS treated LNs was

similar to DCs in PBS controls. This indicates that the DC activation and LN reactivity

induced by LPS administration is transient and not sustained after several treatments.

When the DC populations in dLNs were examined in more detail, a subset of DCs expressing

Ly6C and 7/4 was found to increase in dLNs of Poly IC and MSU + M. smegmatis treated

animals. The expression of Ly6C, 7/4, CD11c and MHC II on these cells is consistent with

inflammatory monocyte-derived DCs [466, 467]. Poly IC and MSU + M. smegmatis also

induced an accumulation of inflammatory monocytes at the tumour site already after a

single administration. The frequency and numbers of inflammatory DCs remained elevated

in dLNs in response to Poly IC and MSU + M. smegmatis and these DCs also showed

enhanced activation after several treatments. This indicates that successful adjuvants in-

duced inflammation at the tumour site that resulted in the recruitment of inflammatory

monocytes. Some of these tumour-infiltrating monocytes expressed low levels of the DC

marker CD11c, indicating that they may be in the process of differentiating into inflamma-

tory DCs. In addition, Poly IC and MSU + M. smegmatis treated tumours had elevated

numbers of inflammatory DCs after four adjuvant applications and inflammatory DCs were

increased in the dLNs both after one and several adjuvant treatments. Inflammatory DCs

have previously been shown to mediate the initiation of T cell responses against Leishma-

nia major [307] and can cross-prime CD8 T cells in response to administration of antigen

with adjuvant at skin and mucosal sites [468]. In addition, inflammatory monocyte-derived
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DCs accumulate in dLNs in response to successful M. smegmatis treatment of E.G7-OVA

tumours, albeit only 8 days after the initiation of M. smegmatis treatment [458]. This sug-

gests that M. smegmatis can induce inflammatory monocyte-derived DCs similar to MSU +

M. smegmatis, but that the response takes longer to develop.

LPS treatment, in contrast, only seemed to induce part of this response. LPS induced

sustained accumulation of monocytes and after several applications also of inflammatory

DCs at the tumour site. However, inflammatory DCs never increased in the dLNs in response

to LPS, indicating that LPS failed to induce full differentiation of monocytes into DCs and

their migration to dLN. This finding is in line with a report by Rotta et al., who find

that LPS injection together with particulate antigens blocks the conversion of monocytes to

migratory DCs and consequently results in very weak T cell responses [469].

Adjuvant-induced monocyte recruitment to the tumour site

As discussed above, it is likely that the monocytes recruited to the tumour tissue differ-

entiate into DCs and thereby promote the anti-tumour immune response. However, their

surface phenotype is also consistent with them being myeloid-derived suppressor cells (MD-

SCs) [196]. Without analysis of their functional capacity, this possibility cannot be fully

excluded. The highest level of monocyte-accumulation was found in MSU + M. smegma-

tis treated tumours and Poly IC likewise induced a considerable influx of monocytes into

tumours. These adjuvant treatments successfully delayed tumour growth and correlated

with the accumulation of monocyte-derived inflammatory DCs in dLNs, indicating that

the recruited monocytes were not suppressing the immune response. Several reports have

described the induction of MDSCs in the spleens of tumour-bearing mice [470]. In a compar-

ative analysis by Youn et al., EL4 thymomas resulted in MDSCs accounting for over 20 % of

all splenocytes, whereas B16F10 melanomas only induced about 4 % MDSCs [196]. In the

present study, both the frequencies and numbers of monocytic and granulocytic monocytes

were similar between näıve and tumour bearing, saline-treated mice (see Appendix D). This

indicated that the B16F1 melanomas were not inducing MDSCs in the spleen. Moreover,

when spleen monocytes were purified and assessed for their ability to suppress polycolonal
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T cell expansion in vitro in a well established assay of MDSC function [196, 471, 472], no

difference in the suppressive ability of moncytes from näıve, saline-treated tumour bearing

and adjuvant-treated tumour bearing animals was found (see Appendix D). This further

supports that neither the tumour nor any of the adjuvant treatments induced MDSCs in

the spleens. In addition, the adjuvant treatments that led to monocyte recruitment to

the tumours (MSU + M. smegmatis, Poly IC and LPS) resulted in even lower numbers of

monocytes in the spleens. It was previously thought that monocytes were recruited to sites

of inflammation mainly from the blood and that emergency haematopoiesis in response to

inflammation increased their availability. However, a recent publication by Swirski et al.

demonstrated that the spleen is a main reservoir for monocytes that are recruited to inflam-

matory sites in a CCR2-independent, angiotensin II driven manner [473]. As the decrease

in monocyte-numbers in the spleen corresponds to the increase of monocytes at the tumour

site after adjuvant treatment, the spleen appears to be the major source of these cells.

Systemic and local induction of cytokines

To elucidate further how MSU + M. smegmatis and Poly IC successfully activated DCs to

induce an anti-tumour immune response in vivo, while LPS only transiently activated DCs

and failed to achieve a subsequent anti-tumour effect, cytokines and growth factors produced

systemically and locally in response to adjuvant administration were analysed.

Rapid systemic release of IFNγ and IL-12 were observed only in response to the successful

treatments Poly IC and MSU + M. smegmatis. IFNγ can be produced by NK cells and

activated T cells with NK cells producing high levels early during the course of infection

[474]. Therefore, NK cells and T cells are likely to be the source of the observed IFNγ in the

serum of adjuvant treated mice. While T cells have been reported to express TLRs [475],

their functional role remains controversial [476]. A study by Caramalho et al. described LPS

activating Tregs via TLR4 [475], while later reports found Treg activation was due to TLR2

and not mediated by TLR4 activation [477]. In addition, non-Treg CD4 T cells express low

amounts of TLR mRNA and and mRNA content does not always correlate with receptor

expression, as TLR expression is tightly regulated at a protein level [478]. Furthermore,
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T cells and NK cells do not express NLRP3, while DCs and macrophages highly express both

TLRs and NLRs [291, 359]. IFNγ induction in NK cells and T cells is generally mediated

by Stat4 signalling in response to IL-12 [479, 480]. Both IL-12 and TNFα production

was increased in LN DCs in response to CpG and MSU + M. smegmatis treatment. It

is therefore likely that NK cells and T cells do not directly respond to adjuvants, but are

instead activated to release IFNγ by IL-12, which is secreted from DCs in response to

adjuvant treatment.

IL-1β was significantly elevated only in response to MSU + M. smegmatis, which also

induced some secretion of IL-6. Poly IC induced higher levels of IL-6 in serum than MSU +

M. smegmatis and also systemically increased TNFα. While IL-1β is mainly produced by

DCs and macrophages, TNFα and IL-6 can be secreted a range of cell types [481, 482]. In

response to LPS, about 10-fold higher levels of the pro-inflammatory cytokines IL-6 and

TNFα were detected, compared to Poly IC. At the same time, LPS treatment resulted in

very high serum concentrations of the regulatory cytokine IL-10. This pronounced systemic

induction of IL-6 and IL-10 also correlated with a local increase in IL-6 and IL-10 mRNA

in LPS treated tumours. Together, these findings indicate that successful adjuvants such

as Poly IC and MSU + M. smegmatis induce a limited release of pro-inflammatory factors,

while LPS induces very strong inflammation coupled with feedback regulation and and

overall suppression of the immune response. This hypothesis is supported by previous

reports that LPS stimulates high levels of IL-10 production in macrophages and DCs [483,

484] and induces IL-10 producing Tregs [485]. Furthermore, LPS induced IL-10 can lead to

unresponsiveness to further stimulation with LPS and even other TLR ligands, partly via

degradation of the signalling molecule MyD88 [446, 486].

The growth factors GM-CSF and G-CSF are both involved in hematopoiesis and can be re-

leased from a range of cells in response to inflammation [487]. While G-CSF mainly mobilises

neutrophils from the BM, GM-CSF induces the release of myeloid cells from the BM, but

has also been implicated in activation and survival of myeloid cells and maturation of DCs.

In response to adjuvant treatments, GM-CSF was not significantly elevated in the serum.

However, GM-CSF mRNA was transiently up-regulated at the tumour site by MSU +

M. smegmatis treatment. LPS administration led to much higher expression of GM-CSF
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mRNA compared to the other adjuvants, which continued to increase at 24 hours. The

substantial induction of GM-CSF mRNA at the tumour site without detection of GM-CSF

protein in the serum may reflect generally higher levels of this growth factor in inflamed or

stressed tissues compared to serum [488].

The role of GM-CSF in tumour immunity remains unclear, with reports from the literature

showing anti-tumour, as well as pro-tumour effects. When B16F10 melanoma cells were

engineered to secrete GM-CSF, DC recruitment to the tumour site and tumour rejection

were observed [489]. Several clinical trials that used tumour cells transduced to secreted

GM-CSF or vaccination with tumour peptides and GM-CSF reported increased anti-tumour

immunity [490–493]. However, some of these studies did not compare the GM-CSF effect

to the vaccine without GM-CSF [492]. Furthermore, when the vaccines with and without

GM-CSF were compared, some trials reported an inhibitory effect of GM-CSF [494, 495].

Suppressive effects of high-dose GM-CSF were found to be due to induction of MDSCs

[204] and a shift from NO to arginase I and urea production [496, 497]. Together, these

studies indicate that high levels of GM-CSF may favour tumour progression, whereas low

levels of GM-CSF may activate anti-tumour activity. Therefore, the low levels of GM-CSF

and G-CSF induction observed in response to Poly IC and MSU + M. smegmatis may be

beneficial, while the levels induced by LPS may be too high to stimulate the anti-tumour

immune response.

While a lack of NO production is associated with the inhibitory function of MDSCs [496],

the production of NO and ROS from macrophages in tumours has been shown to be tumori-

cidal and enhance anti-tumour immunity [498]. Intratumoral IL-12 therapy is also reported

to induce NO production and to increase the expression of the NO producing enzyme iNOS.

However, this negatively regulated the anti-tumour immune response and inhibition of iNOS

activity increased the anti-tumour effect of IL-12 [499]. The role of iNOS in the anti-tumour

immune response therefore remains controversial. In the B16F1 tumours, Poly IC only in-

duced iNOS mRNA transiently at 2 hours and at 24 hours resulted in a substantial decrease.

MSU + M. smegmatis treatment led to a sustained 8-fold increase of iNOS, whereas LPS

induced a progressive over 30-fold increase in iNOS mRNA. This indicates that iNOS may

either not be critical for the response to adjuvant treatment or that low or transient in-
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duction may be sufficient or even more beneficial, than the high levels associated with LPS

treatment.

The analysis of CXCL10 expression revealed a limited increase with MSU + M. smegmatis

treatment and a transient induction with Poly IC and LPS. CXCL10 has been implicated

in the recruitment of activated T cells to sites of inflammation and tumours [346, 500].

Therefore, induction of CXCL10 at the tumour site may enable the infiltration of activated

CD8 T cells and enhance anti-tumour immunity.

In summary, the analysis of cytokine induction in response to adjuvant treatment showed

that both Poly IC and MSU + M. smegmatis increased IL-12 and IFNγ production. IL-12

is critical for the activation of Th1 responses and CTLs [451–453] and enhances IFNγ pro-

duction from NK cells and T cells [479, 480]. IFNγ can activate macrophages to become

tumoricidal [498] and has been shown to be critical for the control of B16 melanomas [501].

Both Poly IC and MSU + M. smegmatis induced limited secretion of pro-inflammatory

cytokines and hematopoietic growth factors. In contrast, LPS administration resulted in

very high levels of pro-inflammatory mediators, coupled with equally high levels of the reg-

ulatory cytokine IL-10. This suggests that moderate inflammation may be beneficial for the

induction of anti-tumour immunity, while a very high level of inflammatory mediators may

result in feedback regulation with the induction of suppressive cytokines and may thus fail

to stimulate the anti-tumour immune response.
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Conclusions

Repeated peri-tumoral administration of Poly IC, CpG and MSU + M. smegmatis delayed

the growth of B16F1 tumours. In contrast, MSU, M. smegmatis, LPS, BCG or MSU +

BCG had no effect on tumour growth. Combination of Poly IC with LPS, M. smegmatis or

MSU did not lead to further tumour growth delay compared to Poly IC alone.

None of the adjuvants showed activation of DCs at the tumour site and while up-regulation

of activation markers on DCs in dLNs was observed in response to Poly IC and LPS, this

did not correlate with treatment success. Rather, accumulation of inflammatory monocyte-

derived DCs in dLNs and tumours was associated with adjuvants that delayed tumour

growth. These DCs may have differentiated from monocytes that were recruited to the

tumour site already after a single adjuvant administration.

Poly IC and MSU + M. smegmatis adjuvants also induced systemic release of the Th1

inducing cytokine IL-12 and the Th1 effector cytokine IFNγ, indicating that these adjuvants

induced Th1 polarisation. Induction of a limited amount of the pro-inflammatory cytokines

IL-1β, IL-6 and TNFα was also observed, whereas LPS induced very high levels of both

pro-inflammatory cytokines and anti-inflammatory IL-10.

Taken together, successful adjuvants appear to induce limited inflammation coupled with

the release of Th1 cytokines. They recruit monocytes to the tumour site and may induce

them to differentiate into mature DCs. Inflammatory monocyte-derived DCs then migrate

to the tumour-draining LNs, where they can initiate the anti-tumour response.

Repeated adjuvant administration enhanced or sustained the effects of Poly IC and MSU +

M. smegmatis on the induction and activation of monocyte-derived inflammatory DCs,

while DC activation in response to LPS was transient and repeated LPS treatment seemed

to decrease DC activation in dLNs.





Chapter 5

Effective adjuvants activate both

innate and adaptive effector cells
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5.1 Introduction

Both CD8 T cells and NK cells are cytotoxic and have the capacity to directly eliminate

tumour cells as discussed in more detail in the general introduction. Studies that all used

the same adjuvant, CpG, in different murine tumour models reported that the anti-tumour

immune response was mediated either solely by CD8 T cells [502], solely by NK cells [503]

or dependent on both CD8 T cells and NK cells [11, 504]. Another group using Poly IC

administration at the tumour site in a mesothelioma model concluded that CD8 T cells,

but not NK cells, were critical for the anti-tumour response [12]. The importance of CD8 T

cells and NK cells in the anti-tumour effect of local Poly IC treatment in B16 melanoma has

not been established yet. As the combination of MSU + M. smegmatis has not previously

been used as an adjuvant in tumour immunotherapy, the requirement for different effector

cell types in this treatment also remains to be determined.

Several different ways in which adjuvant treatment can improve effector cell activity have

been described. Adjuvant treatment can activate DCs in tumours and tumour-draining

LNs, enabling them to prime tumour-specific CD8 T cells [318]. DC activation can be

further enhanced by anti-IL10 receptor treatment, which results in a potent CD8 T cell and

CD4 T cell dependent anti-tumour response [322]. Increased recruitment of CD8 T cells

and NK cells to the tumour site frequently contributes to the beneficial effect of adjuvant

treatment [345, 503, 504]. Despite this, effector cell recruitment is not altered by adjuvant

administration in a study by Currie et al., but cytokine production and lytic activity of

effector cells already present at the tumour site prior to adjuvant treatment are improved

instead [12]. The different effects of adjuvants on immune effector cells are not mutually

exclusive, and enhanced effector cell function, such as increased target cell lysis, can be

observed in conjunction with increased effector cell recruitment [503].

While the requirement for CD8 T cells and NK cells is readily examined in murine tumour

models, the assessment of the role of CD4 T cells in the adjuvant induced anti-tumour

response is more complex. In studies that used depletion of the total CD4 T cell population

to assess their importance for an adjuvant-induced anti-tumour effect, CD4 T cells were

either found to be required [322], or to be dispensable [12]. CD4 T helper cells have been
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shown to improve anti-tumour responses [505], as they can enhance the priming of cytotoxic

CD8 T cells via ’licensing’ of DCs [272, 273]. In addition, CD4 T cells have been implicated

in increasing CD8 T cell recruitment to the tumour and enhancing their effector function

in situ [506]. Recent work by Quezada et al. suggests that CD4 T cells may even become

cytotoxic and directly eliminate tumour cells [71]. However, the CD4 T cell population

consists not only of effector cells but also comprises Tregs. Tregs are known to suppress

anti-tumour immune responses as evidenced by the correlation of high Treg numbers with

worse disease outcome in tumour-bearing individuals [45, 46, 172]. In addition, numerous

studies have shown that depletion of Tregs in mice [173, 507] and humans [508] enhances

the anti-tumour immune response.
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5.2 Aims

The purpose of the experiments described in this chapter was to establish which effects

adjuvant treatment had on CD4 T cells, CD8 T cells and NK cells. The hypothesis was that

CD8 T cells and/or NK cells would be required for the elimination of tumour cells, and that

adjuvant treatment with Poly IC and MSU + M. smegmatis would increase their priming,

function or recruitment into tumours. Furthermore, CD4 T helper cells would probably be

required to provide help for the initiation of CD8 T cell responses, but CD4 Tregs might

suppress the anti-tumour functions of effector cells.

The specific aims were:

• To asses whether treatment of B16OVA tumours with effective adjuvants increased

the proliferation of OVA-specific CD8 and CD4 T cells in vivo

• To investigate whether effective adjuvants increased recruitment of CD4 T cells, CD8

T cells and NK cells to the tumour, or changed their expression of activation markers,

or cytokine production capacity

• To determine whether CD8 T cells from animals treated with effective adjuvants were

sufficient to confer tumour protection when transferred to näıve recipients

• To determine which effector cell types were necessary for the anti-tumour effect in

vivo

• To assess whether combination of adjuvant treatment with Treg depletion could be

used to enhance the anti-tumour effect
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5.3 Results

5.3.1 Effect of adjuvant treatment on in vivo T cell

proliferation

To investigate if adjuvant treatment could increase priming of CD8 and CD4 T cells, an OVA

expressing B16 melanoma was used in conjunction with adoptive transfer of OVA-specific

OTI or OTII T cells. In order to track CD8 T cell proliferation in vivo, näıve CD8 T cells

from OTI congenic donors were purified and labelled with CFSE. This resulted in > 95 %

pure OTI cells (Figure 5.1 A), which were then transferred into B16.OVA bearing animals.

Three days after a single adjuvant administration at the tumour site, OTI T cell proliferation

was assessed by CFSE dilution in tumour-draining and non-draining LNs (Figure 5.1 B).

Representative proliferation histograms for the different adjuvant treatments are shown in

Figure 5.1 C.

Nearly half of the OTI cells had divided at least once in response to the OVA-expressing

tumour, even in the absence of adjuvant treatment (Figure 5.1 C and 5.2 B). Proliferation

and proportion of OTI cells among CD8 T cells were much lower in LNs contralateral to the

tumour site compared to tumour-draining LNs, indicating that the presence of antigen was

required for OTI proliferation and that the observed proliferation was tumour-dependent

(Figure 5.2 A & B).

The proliferation of OTI cells was slightly enhanced by adjuvants, but only MSU + M. smeg-

matis treatment resulted in a significant increase in the frequency of OTI among CD8 T

cells and in the proportion of divided OTI (Figure 5.2 A & B). As the tumour-draining

LNs were considerably larger in adjuvant treated animals, especially in response to MSU +

M. smegmatis and Poly IC (Figure 4.8), the number of total OTI T cells as well as divided

OTI cells was substantially increased in these groups (Figure 5.2 C & D). This may be

due to augmented retention of all T cells, including antigen-specific CD8 T cells, in the

tumour-draining LNs under the local inflammatory conditions established by Poly IC and

MSU + M. smegmatis treatment.
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Figure 5.1: Adjuvant treatment enhances tumour-antigen specific CD8 T cell
proliferation. CD8 T cells were purified from LNs and spleens of OTI congenic mice
by magnetic sorting, labelled with CFSE and adoptively transferred into C57 mice bear-
ing established B16.OVA tumours (day 8). One day later, mice were given a single ad-
juvant injection around the tumour. OTI proliferation was assessed by CFSE dilution in
tumour-draining and contralateral LNs three days after adjuvant treatment. (A) The pu-
rity of OTI T cells before transfer into C57 mice is illustrated by flow plots. (B) The flow
cytometry gating strategy identifying OTI T cells as singlet live CD8+CD45.1+Vα2+ cells
and divided cells based on CFSE dilution is shown. (C) Representative CFSE dilution
profiles for the different adjuvant treatments in dLNs are depicted.

The increased proliferation together with the higher numbers of OTI T cells observed in

tumour-draining LNs of Poly IC and MSU + M. smegmatis treated mice indicate that

these adjuvants increase recruitment and priming of antigen-specific CD8 T cells in the

tumour-draining LNs.

CD4 T cell proliferation was assessed using a similar experimental strategy as for CD8 T

cells. CD4 T cells were purified from OTII congenic mice (Figure 5.3 A) and transferred into

mice bearing subcutaneous B16.OVA tumours. Five days after a single adjuvant administra-
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Figure 5.2: Successful adjuvants result in increased numbers of tumour-specific
CD8 T cells in dLN. OTI T cell proliferation was assessed as described in Figure 5.1. The
frequency (A) and number (C) of OTI T cells after the indicated adjuvant treatments is
shown. The proportion (B) and number (D) of divided OTI T cells in response to adjuvant
administration is depicted. Data are shown as mean +SE and are pooled from 2 independent
experiments, with 5 mice per group each.
dLN = tumour-draining LNs; contra LN = LNs contralateral to the tumour. * p < 0.05,
*** p < 0.001 according to one-way ANOVA with Tukey’s post test.

tion, OTII proliferation was analysed by CFSE dilution (Figure 5.3 B). In the absence of ad-

juvant treatment, no proliferation of OTII T cells was observed (Figure 5.3 C & 5.4 B). MSU,

M. smegmatis, LPS, and Poly IC all failed to induce OTII proliferation (Figure 5.3 C & 5.4 B)

and in fact the frequency and number of OTII cells was similar in tumour-draining and

non-draining LNs in some of these groupsd (Figure 5.4 A & C). MSU + M. smegmatis,

by contrast, induced substantial OTII proliferation, with up to 35 % of OTII cells in dLNs

having divided (Figure 5.3 C & 5.4 B). This significant level of OTII proliferation in the

MSU + M. smegmatis treated mice was also reflected in a large increase in the number
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Figure 5.3: Only MSU + M. smegmatis treatment stimulates proliferation of
tumour-antigen specific CD4 T cells in dLN. CD4 T cells were purified from LNs
and spleens of OTII congenic mice by magnetic sorting, labelled with CFSE and adoptively
transferred into C57 mice bearing established B16.OVA tumours (day 8). One day later,
mice were given a single adjuvant injection around the tumour. OTII proliferation was
assessed by CFSE dilution in tumour-draining and contralateral LNs five days after adjuvant
treatment. (A) The purity of OTII T cells before transfer into C57 mice is illustrated by
flow plots. (B) The flow cytometry gating strategy identifying OTII T cells as singlet
live CD4+CD45.1+Vα2+ cells and divided cells based on CFSE dilution is shown. (C)
Representative CFSE dilution profiles for the different adjuvant treatments in dLNs are
depicted.

of total and divided OTII cells (Figure 5.4 C & D). Despite this, the frequency of OTII

cells among all CD4 T cells was not increased in dLNs of MSU + M. smegmatis treated

animals (Figure 5.4 A). This could be caused by proliferation of endogenous CD4 T cells in

response to other tumour antigens or general retention of T cells in the dLNs, which would

result in an increase in all CD4 T cells in dLN, thereby masking the OTII expansion. This

would be in line with the overall increase in LN size in response to MSU + M. smegmatis

treatment. It is unlikely that OTII T cells proliferating in MSU + M. smegmatis treated

animals were responding directly to any antigen of M. smegmatis that could be cross-reactive
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Figure 5.4: MSU + M. smegmatis treatment increases tumour-specific CD4
T cell proliferation and numbers in dLN. OTII T cell proliferation was assessed as
described in Figure 5.3. The frequency (A) and number (C) of OTII T cells after the
indicated adjuvant treatments is shown. The proportion (B) and number (D) of divided
OTII T cells in response to adjuvant administration is depicted. Data are shown as mean
+SE and are pooled from 2 independent experiments with 5 mice per group each.
dLN = tumour-draining LNs; contra LN = LNs contralateral to the tumour. *** p < 0.001
according to one-way ANOVA with Tukey’s post test.

to OVA, as the response only occurred after MSU + M. smegmatis treatment and not in

response to M. smegmatis alone.

These data indicate that adjuvant treatment can induce proliferation of CD4 T cells specific

for a model antigen expressed in tumours. However, the response was limited to MSU +

M. smegmatis and not observed in any other adjuvant treated group, including Poly IC

treated mice. Therefore only MSU + M. smegmatis treatment induced tumour-specific

CD4 T cell priming, while both MSU + M. smegmatis and Poly IC augmented CD8 T cell

priming.
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5.3.2 A single adjuvant treatment has a minor impact on

effector cell numbers and phenotype in tumours

In addition to enhancing T cells priming via increased DC activation, adjuvants can also

induce local inflammation, thus attracting effector cells to the tumour site. As shown in Fig-

ure 4.12, Poly IC, MSU + M. smegmatis and also LPS induced expression of pro-inflammatory

cytokines and chemokines in the tumour. To determine if this led to recruitment of effector

cells to the tumour site, the infiltration of CD4 T cells, CD8 T cells and NK cells was

analysed after a single adjuvant administration.

While there was a trend towards a higher proportion of CD4 T cells and CD8 T cells in

response to MSU + M. smegmatis treatment, this was not statistically significant (Fig. 5.5 A

left and middle panels). However, a single MSU + M. smegmatis administration induced a

significant increase in the frequency of NK cells (Fig. 5.5 A right panel). Separate treatments

with either MSU or M. smegmatis resulted in a slightly smaller, not statistically significant

increase in NK cell frequency. In contrast, Poly IC did not change the proportion of any

of the effector cells analysed (Fig. 5.5 A), but instead led to up-regulation of the early

activation marker CD69 on CD8 T cells and NK cells (Fig. 5.5 B middle and right panels).

A similar increase in CD69 levels on NK cells was observed in response to LPS (Fig. 5.5 B,

right panel). On CD4 T cells, a minor up-regulation of CD69 levels was seen with MSU +

M. smegmatis treatment (Fig. 5.5 B left panel).

Overall, a single adjuvant treatment did not cause major changes in effector cell recruitment

or activation in tumours. MSU + M. smegmatis resulted in increased NK cell infiltration,

while Poly IC led to enhanced activation of intra-tumoral CD8 T cells and NK cells. How-

ever, MSU and M. smegmatis alone attracted nearly as many NK cells as MSU + M. smeg-

matis. Furthermore, LPS activated NK cells to a similar degree as Poly IC, but none of

these adjuvants were effective in delaying tumour growth (Figure 4.2). Therefore, these

early changes in tumour-infiltrating effector cell populations do not seem to be sufficient to

achieve the observed anti-tumour growth effect.
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Figure 5.5: A single adjuvant treatment leads to minor changes in intratumoral
effector cells. C57 mice bearing B16F1 tumours were injected peri-tumorally with the
indicated adjuvants on day 7. One day later, effector cells in tumours were analysed by
flow cytometry and gated as in Figure 4.3. (A) Frequency of CD4 T cells, CD8 T cells and
NK cells among live cells is shown. (B) The expression of CD69 on these cells is shown as
median fluorescence intensity (MFI). Data are shown as mean +SE and are pooled from two
independent experiments with 5 mice per group each. *p < 0.05, ** p < 0.01 as assessed by
one-way ANOVA with Tukey’s post test.
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5.3.3 Repeated adjuvant treatment increases infiltration and

activation of effector cells in tumours

The changes observed in effector cell populations in tumours after a single adjuvant treat-

ment had been minor and didn’t show a clear correlation with the capacity of each adjuvant

to induce a delay in tumour-growth. T cells are known to require several days of expansion

in LNs and only begin to exit the LN and migrate to the effector tissue 48 h after antigen

encounter [509]. In mice treated with Poly IC or MSU +M. smegmatis, increased priming

of CD8 T cells had been observed in dLN 3 days after treatment (Figure 5.1). Therefore,

T cells primed in response to adjuvant treatment may only become apparent in the tumours

at later time points. In addition, repeated adjuvant administration and consequently sus-

tained release of pro-inflammatory and chemoattractant factors may be required for optimal

attraction of T cells and NK cells to the tumours.

Thus, the tumour-infiltrating immune cells were analysed after four adjuvant administra-

tions. Tumours from Poly IC and MSU +M. smegmatis treated mice showed an increase in

total immune cells (Figure 5.6 A). The overall composition of the immune infiltrate was also

altered, with more monocytes infiltrating M. smegmatis, MSU + M. smegmatis and LPS

treated tumours (Figure 5.6 B). Poly IC treated tumours showed quite a marked increase

in the frequency of NK cells and CD8 T cells among all immune cells (Figure 5.6 B). To

take the overall increase in immune infiltrate into account, the infiltration of effector cells

is also shown as a fraction of all live cells, including tumour cells (Figure 5.7 A). MSU +

M. smegmatis treatment more than doubled the infiltration of CD4 T cells, CD8 T cells

and NK cells. A similar effect was seen after Poly IC administration, although the increase

in CD4 T cells was less pronounced and not statistically significant (Figure 5.7 A).

Taken together, these results show a greater infiltration of immune cells in tumours treated

4 times with adjuvants that delayed tumour growth. CD8 T cells and NK cells were

markedly increased after Poly IC or MSU + M. smegmatis administration and more CD4

T cells were observed in MSU + M. smegmatis treated tumours.

In addition to increased recruitment of immune cells to the tumour site, adjuvants may also
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Figure 5.6: Repeated treatment with effective adjuvants substantially increases
immune infiltrate in tumours and alters its composition. C57 mice bearing estab-
lished B16F1 tumours were injected around the tumour with the indicated adjuvants on
day 7, 9, 11 and 14. One day after the last treatment, tumours were analysed by flow
cytometry. All cell types were identified as shown in Figure 4.3. (A) Percentage of CD45+
immune infiltrate among the total cells including tumour cells is shown. (B) Proportions
of the different immune cell types that comprise the immune infiltrate are shown. Data are
expressed as mean + SE and are combined from two independent experiments with 5 mice
per group each. Statistical difference is indicated by **p < 0.01 and ***p < 0.001 according
to one-way ANOVA with Tukey’s post test.

exert their anti-tumour effects via increasing the activation of effector cells in the tumour.

Therefore, we investigated the expression levels of the early activation marker CD69 and

the exhaustion marker PD-1 on T cells and NK cells in tumours. MSU + M. smegmatis

treatment resulted in up-regulation of CD69 on both CD4 and CD8 T cells, but not on

NK cells (Figure 5.7 B). All other treatments did not significantly alter CD69 expression

on any of the studied cell types (Figure 5.7 B). PD-1 expression was generally very low on

NK cells and did not change in response to adjuvant administration (Figure 5.7 C right

panel). Similarly, CD4 T cell expression of PD-1 were not affected (Figure 5.7 C left panel).

CD8 T cells, however, showed a down-regulation of PD-1 in MSU, M. smegmatis or MSU +

M. smegmatis treated tumours, which was highly significant in the group that received

the combined adjuvant treatment (Figure 5.7 C, middle panel). In contrast, expression of

PD-1 seemed to be increased after Poly IC administration, although this change was not

statistically significant (Figure 5.7 C, middle panel). The surface marker expression profiles

therefore indicate that only MSU + M. smegmatis treatment increased CD4 and CD8 T cell

activation and at the same time reduced CD8 T cell exhaustion.
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In summary, both Poly IC and MSU + M. smegmatis administration increased effector cell

infiltration in tumours after 4 treatments (Figure 5.6 & 5.7). Only MSU + M. smegmatis

up-regulated expression of the activation marker CD69 and at the same time down-regulated

the exhaustion marker PD-1 on CD8 T cells (Figure 5.7).

5.3.4 Repeated adjuvant treatment increases the capacity of

effector cells in tumours to produce pro-inflammatory

cytokines

To further determine the function of the tumour-infiltrating effector cells in response to

adjuvant treatment, their capacity to produce pro-inflammatory cytokines was investigated.

To this end, tumour cell suspensions were incubated with Golgi-Stop ex vivo without res-

timulation, followed by intracellular staining for IFNγ and TNFα. T cells and NK cells

were identified as previously described (see Figure 4.3) and appropriate staining controls

were used to designate cytokine-positive cells.

In the absence of adjuvant treatment, less than 2 % of CD8 T cells in tumours showed

intracellular staining for IFNγ or TNFα. MSU + M. smegmatis, Poly IC and LPS were

found to increase the percentage of IFNγ positive CD8 T cells up to 4-fold (Fig.5.8 A & B). In

addition, the intensity of the IFNγ staining was markedly higher in CD8 T cells from MSU +

M. smegmatis and Poly IC treated tumours (Figure 5.8 A histogram), indicating that each

cell was also producing higher amounts of this cytokine. TNFα producing CD8 T cells were

also increased 5-fold by MSU + M. smegmatis treatment (Figure 5.8 C & D) and showed

higher TNFα staining intensity (Figure 5.8 C histogram). All other adjuvants did not have

a significant effect on TNFα production by CD8 T cells (Figure 5.8 C & D).

As observed for CD8 T cells, MSU + M. smegmatis and Poly IC treatments also increased

the percentage of NK cells producing IFNγ (Figure 5.9 A & B). The intensity of IFNγ

staining was also considerably higher after MSU + M. smegmatis administration and slightly

enhanced with Poly IC (Figure 5.9 A histogram). Conversely to their effect on TNFα

production in CD8 T cells, MSU + M. smegmatis didn’t alter the percentage or intensity
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Figure 5.7: Repeated treatment with effective adjuvants substantially increases
the percentage of intratumoral effector cells and changes their phenotype. C57
mice bearing established B16F1 tumours were injected around the tumour with the indicated
adjuvants on day 7, 9, 11 and 14. One day after the last treatment, tumours were analysed
by flow cytometry. All cell types were identified as shown in Figure 4.3. (A) Percentage of
CD4 T cells, CD8 T cells and NK cells among all live cells in tumours is shown. (B & C)
Expression level of the activation marker CD69 (B) and the exhaustion marker PD-1 (C)
on CD4 T cells, CD8 T cells and NK cells is shown as median fluorescence intensity (MFI).
Data are expressed as mean + SE and are combined from two independent experiments
with 5 mice per group each. *p < 0.05, **p < 0.01 and ***p < 0.001 as assessed by the
Kruskal-Wallis test with Dunn’s post test; n.s. = not significant.
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Figure 5.8: Repeated treatment with effective adjuvants increases the capacity
of intra-tumoral CD8 T cells to produce pro-inflammatory cytokines. C57 mice
bearing established B16F1 tumours were injected around the tumour with the indicated
adjuvants on day 7, 9, 11 and 14. One day after the last treatment, tumours were excised and
cell suspensions were incubated for 6 h with Golgi-Stop. Intracellular staining for cytokines
and surface staining was performed and analysed by flow cytometry. CD8 T cells were
identified as shown in Figure 4.3. (A & C) Representative flow plots show the percentage
of IFNγ and TNFα positive CD8 T cells, while histograms depict the intensity of cytokine
staining. Staining controls are FMOs with isotype antibody for the analysed cytokine. (B
& D) Cytokine producing cells are shown as percentage of CD8 T cells in tumours. Data
are expressed as mean + SE and are combined from two independent experiments with 5
mice per group each. *p < 0.05, **p < 0.01 and ***p < 0.001 as assessed by one-way
ANOVA with Tukey’s post test.
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Figure 5.9: Repeated treatment with effective adjuvants enhances the capacity
of intra-tumoral NK cells to produce pro-inflammatory cytokines. Data refer to
the same experiment shown in Figure 5.8. NK cells were identified as shown in Figure 4.3.
(A & C) Representative flow plots show the percentage of IFNγ and TNFα positive NK cells
and histograms depict the intensity of cytokine staining. Staining controls are FMOs with
isotype antibody for the analysed cytokine. (B & D) Cytokine producing cells are shown
as percentage of NK cells in tumours. Data are expressed as mean + SE and are combined
from two independent experiments with 5 mice per group each. *p < 0.05, **p < 0.01 and
***p < 0.001 according to one-way ANOVA with Tukey’s post test.
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of TNFα positive NK cells, while Poly IC treatment resulted in a moderate increase in the

amount of TNFα producing NK cells Figure 5.9 B & D).

Altogether, the analysis of intracellular cytokine staining showed that IFNγ from CD8 T cells

as well as NK cells was enhanced by both Poly IC and MSU + M. smegmatis administration

(Figure 5.8 & 5.9). MSU + M. smegmatis treatment also resulted in substantially greater

TNFα production form CD8 T cells, while Poly IC increased the percentage of TNFα

positive NK cells (Figure 5.8 & 5.9).

Thus, Poly IC and MSU + M. smegmatis may exert their anti-tumour effects by improving

effector cell function through a combination of greater priming in dLNs (see Section 5.3.1),

increased recruitment to the tumour site (see Section 5.3.3), as well as enhancing functional

activity, such as pro-inflammatory cytokine production.

5.3.5 T cells from adjuvant-treated mice delay onset of tu-

mour growth in näıve recipients

As described in Chapter 1.1.4 & 1.1.5 CD8 T cells have the capacity to directly elimi-

nate tumour cells [22, 510]. The main anti-tumour functions of CD4 T cells are thought

to be the provision of help to enhance CD8 T cell priming [511] and the production of

pro-inflammatory cytokines, especially those with direct anti-tumour activity such as IFNγ

and TNFα [498, 512]. In addition, recent reports indicate that CD4 T cells may also have

the capacity to directly kill tumour cells [71]. To assess if T cells activated through adjuvant

administration were sufficient to confer tumour-protection, total T cells were isolated from

spleens of adjuvant-treated animals and transferred into näıve recipients.

In line with previous results (Figure 4.2), Poly IC and MSU + M. smegmatis treated tumours

were smaller than saline treated controls or tumours treated with MSU or M. smegmatis

alone (Figure 5.10 A). Magnetic enrichment of splenic T cells by depletion of other cell types

yielded greater than 80 % pure T cells, with about 40 % CD8 T cells and 60 % CD4 T cells

(Figure 5.10 B). After i.v. transfer, these cells could be readily identified in the blood of

recipient mice by flow cytometry analysis by gating on CD3 and the congenic marker CD45.2
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Figure 5.10: Adoptive transfer of splenic T cells from adjuvant treated tumour-
bearing mice into näıve recipients. C57 mice bearing established B16F1 tumours were
injected around the tumour with the indicated adjuvants on day 9, 11, 13 and 15. On day 16
total T cells from their spleens were enriched by depletion of other cells types with magnetic
beads as described in section 2.2.5.1 and 7x 106 cells were injected i.v. into B6 recipients.
One day later, recipients or näıve mice were challenged with 1x 105 B16F1 tumours cells s.c.
into the flank. (A) Tumour growth of 5 donor mice per group is shown as mean ± SE. (B)
Flow plots depict the percentage of CD4 and CD8 T cells before transfer into recipients. (C)
Representative gating for the identification of transferred T cells in the blood of recipients
is shown. (D) The percentage of transferred T cells in the blood of recipients 1, 7, and 14
days after transfer is shown as mean +SE for 5 mice per group.

(Figure 5.10 C). The ratio of CD4 to CD8 T cells was maintained one day after adoptive

transfer (Figure 5.10 C). The percentage of transferred T cells in the blood of recipient mice

was initially just below 1 % in all groups (Figure 5.10 D). However, with time the transferred

T cells decreased to 0.5-0.7 % of live cells in the blood of all recipient mice. T cells from

Poly IC and MSU + M. smegmatis were slightly more abundant one and two weeks after
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transfer compared with T cells from näıve or saline treated tumour-bearing donors.

Mice that had received no T cells or 7x 106 T cells from näıve mice or saline-treated tumour-

bearing donors all developed palpable tumours by day 6 (Figure 5.11 A). This is in line with

tumour appearance in other experiments (see Figure 4.2). Mice that had received T cells

from adjuvant treated donors experienced a delay in the onset of tumour growth, with mice

receiving T cells from Poly IC or MSU + M. smegmatis treated donors developing tumours

only at day 8-10 (Figure 5.11 A). This was a significant benefit in tumour-free survival. In

addition, tumour growth rates were slightly slower in mice that had received T cells from

adjuvant treated mice, showing the same pattern in recipients as in donors (Figure 5.11 B).

However, the transferred T cells were not sufficient to confer tumour protection and once

tumours became apparent, they all grew progressively (Figure 5.11).

The delay in tumour onset and slower growth in mice that received T cells from adjuvant

treated, tumour-bearing donors indicates that these T cells exert some anti-tumour func-

tion. The lack of protection in all mice despite transfer of 7x 106 T cells illustrates the

aggressiveness of the B16F1 melanoma. As no selection for tumour-specific T cells was pos-

sible in the current model, it is possible that the number of tumour-specific T cells isolated

from donor spleens was still too low to achieve tumour protection.

To investigate the potential of higher T cell numbers to confer tumour-protection, another

T cell transfer experiment was performed. Graded numbers of T cells from MSU + M. smeg-

matis treated mice were compared to T cells from saline treated control animals or no T cells.

T cell donor mice treated by peri-tumoral adjuvant injection had significantly smaller tu-

mours than saline treated control animals (Figure 5.12 A). After magnetic depletion of other

cells, T cells from saline and MSU + M. smegmatis treated mice were 88.3 % and 83.0 %

pure, respectively (Figure 5.12 B). 20 million T cells from saline treated donors and 10, 20

and 40million T cells from MSU + M. smegmatis treated mice were transferred into recipi-

ents by i.v. injection. The numbers of transferred T cells were reflected in their percentage

among live cells in the blood of recipients, with 10 million transferred cells resulting in 1 %,

20 million resulting in 2 % and 40 million leading to 3.7 % of donor cells among live cells

(Figure 5.12 C). In the course of 2 weeks, the T cell percentages in blood declined in all

recipients to roughly half the initial amount, which is similar to the decrease observed in
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Figure 5.11: Adoptive transfer of splenic T cells from adjuvant treated tumour-
bearing mice delays onset of tumour growth. The recipients of T cells from the
mice shown in Figure 5.10 were monitored for tumour growth. (A) The time until the
first palpable tumour was detected in each mouse is graphed as percentage of tumour-free
survival. n.s. = not significant, *p < 0.05 as compared by Log-Rank-Test with Bonferroni’s
adjustment for multiple comparisons. (B) Mean tumour sizes ± SE for 5 recipients per
group are shown. n.s. = not significant, ***p < 0.001 as compared by two-way ANOVA
with Bonferroni’s post test.

the previous experiment.

As observed in the previous experiment, mice that received T cells from adjuvant treated

donors showed a delayed onset of tumour growth (Figure 5.12 D & E). However, despite the

higher numbers of transferred T cells, complete tumour protection was not achieved and

all mice still developed tumours (Figure 5.12 D & E). Moreover, while tumour growth was

again slower in mice that had received T cells from adjuvant treated donors, the growth

rates did not differ between mice receiving increasing numbers of T cells (Figure 5.12 D).

In addition, the delay in the onset of tumour growth was similar in all groups that received
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Figure 5.12: Increasing the numbers of adoptively transferred splenic T cells
from adjuvant treated tumour-bearing mice does not improve tumour protec-
tion in recipients. B6 mice bearing established B16F1 tumours were injected around the
tumour with the indicated adjuvants on day 9, 11, 13, 15, 17 and 19. On day 20 total T cells
from their spleens were enriched by depletion of other cells types with magnetic beads as
described in section 2.2.5.1 and graded numbers of T cells were injected i.v. into C57 recip-
ients. One day later, recipients or näıve mice were challenged with 1x 105 B16F1 tumours
cells s.c. into the flank. (A) Tumour growth in groups of 5 donor mice in the PBS and 15
mice in the MSU + M. smegmatis group is shown as mean ± SE. (B) Flow plots depict
the percentage of CD4 and CD8 T cells before transfer into recipients. (C) The percentage
of transferred T cells in the blood of recipients 2, 9, and 16 days after transfer is shown as
mean +SE for 5 mice per group. (D) The tumour sizes of 5 recipients per group are shown
as mean ± SE. (E) Time to the appearance of palpable tumours is graphed as percentage of
tumour-free survival. Numbers 10, 20 and 40 indicate million transferred cells. ***p < 0.001
by two-way ANOVA with Bonferroni’s post test for tumour growth and Log-Rank-Test with
Bonferroni’s adjustment for multiple comparisons for tumour-free survival.
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T cells from MSU + M. smegmatis treated donors and could not be improved by transferring

higher numbers of T cells (Figure 5.12 E).

These data indicate that total T cells from the spleens of adjuvant treated mice do have

anti-tumour function, as they significantly delayed onset of tumour growth. However,

they are not sufficient to confer tumour protection. This may be due to low numbers

of tumour-antigen-specific T cells in spleens. Alternatively, dLN or tumours themselves

may be a more appropriate source of donor T cells. Furthermore, T cells alone may not

be sufficient to confer tumour protection, but may need to act in concert with other ef-

fector cells, such as NK cells. In addition, T cells in recipients may not migrate to the

tumour site at high rates, but local inflammation after adjuvant treatment may be needed

to induce T cell recruitment. Lastly, T cell preparations used for transfer experiments con-

tained both CD4 and CD8 T cells. CD4 T cells were included to potentially provide help to

CD8 T cells or contribute to the anti-tumour effect through cytokine production. However,

the CD4 T cell fraction may also have contained Tregs, which may have counteracted the

anti-tumour activity of CD8 T cells. Further experiments will be required to address these

possibilities.

5.3.6 Adaptive immune cells are required for the anti-tumour

effect of adjuvants

The data presented in the previous section indicate that T cells play a role in the anti-tumour

response induced by successful adjuvants. However, they are not sufficient to induce com-

plete tumour protection. To address the question of whether T cells are required for the

anti-tumour effect in response to adjuvant treatment, experiments were carried out in knock-

out mice lacking adaptive immune cells.

In the absence of treatment, B16F1 tumours in Rag1-/- mice, which lack B and T cells, grew

similar to tumours in C57 wild-type animals (Figure 5.13). However, in Rag1-/- mice, the

delay in tumour growth in response to peritumoral injection and survival benefit in response

to MSU + M. smegmatis treatment was completely abolished (Figure 5.13 A & B). The

effect of Poly IC administration was also diminished in the Rag1-/- animals, but treated mice
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still experienced a significant delay in tumour growth compared to saline treated controls

(Figure 5.13 A). This translated into a slight survival benefit for Rag1-/- mice treated with

Poly IC compared to saline controls (Figure 5.13 B).
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Figure 5.13: The anti-tumour effect of Poly IC and MSU + M. smegmatis treat-
ment requires adaptive immunity. C57 mice or Rag1-/- mice bearing established B16F1
tumours were injected around the tumour with the indicated adjuvants on day 9, 11, 13 and
15. (A) Tumour growth of 10 mice per group is shown as mean ± SE. Significant differ-
ences between treatment groups according to two-way ANOVA with Bonferroni’s post test
starting from day 11 are indicated by *** p < 0.001; n.s. = not significant. (B) Survival of
the B16F1 bearing mice treated with adjuvants is depicted. Statistical significance between
treatment groups is indicated by *p < 0.05, ***p < 0.001 as assessed by the Log-Rank-Test
with Bonferroni’s adjustment for multiple comparisons; n.s. = not significant. Data are
pooled from 2 independent experiments with 5 mice per group each.
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These data indicate that the tumour growth delay in response to MSU + M. smegmatis

treatment is completely dependent on adaptive immunity. Poly IC also requires adaptive

immune cells to exhibit its full anti-tumour effect, but some activity is retained in the

absence of these cells. This could be due to effects on innate immune cells, which are not

affected by Rag1 deletion, such as NK cells.

5.3.7 Both adaptive and innate immune cells are necessary

for the anti-tumour effect of adjuvants

The required adaptive cells most likely mediating the anti-tumour effect are T cells, and in

particular CD8 T cells. To further investigate the relative contribution of CD4 T cells,

CD8 T cells and NK cells to the anti-tumour response induced by Poly IC and MSU

+ M. smegmatis treatment, C57 wild-type mice were depleted of these cell types by an-

tibody administration. In addition, the role of Tregs was investigated via depletion of

CD25 positive cells. Prior to the tumour injection, mice were given i.p. injections with

antibodies against CD4, CD8, NK1.1 or CD25 and depletion of the target cell types was

monitored in blood throughout the tumour experiment as shown in Figure 5.14. Depletion

of CD8 T cells, CD4 T cells and NK cells was nearly complete and was maintained for

two weeks (Figure 5.14 B, C & E). T cells were presumed to be depleted instead of simply

having down-regulated or masked their CD4 or CD8 antigen, as nearly all CD3+ T cells in

the CD8 depleted mice were CD4+ and conversely most CD3+ T cells in the CD4 depleted

mice were CD8+ (Figure 5.14 B & C). In the blood of NK1.1-depleted mice, no substantial

increase in DX5+NK1.1- cells was observed, indicating that NK cells were also depleted

and not just NK1.1 low (Figure 5.14 E). Tregs were depleted using the well-established

anti-CD25 clone PC61 [513] and were monitored in blood using the anti-CD25 clone 7D4 to

prevent underestimating the frequency of Tregs through masking of CD25 by bound PC61.

With this method, Tregs were found to be strongly reduced and their low frequency was

maintained throughout the experiment (Figure 5.14 D).

DCs were only minimally affected by anti-CD4 or anti-CD8 antibody treatment. In a

control experiment, CD4+ and CD8α+ DCs were transiently reduced in spleens and LNs
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Figure 5.14: Depletion of CD4 T cells, CD8 T cells, Tregs and NK cells in
tumour-bearing adjuvant-treated mice. C57 mice were depleted of CD8 T cells,
CD4 T cells, Tregs and NK cells by i.p. injection of 250 µg of 2.43, GK1.5, PC61 or PK136
antibody, respectively, on day -2 and -1. On day 0 mice were injected with 105 B16F1
tumour cells. Cell depletion was monitored in the blood of treated mice by flow cytometry.
(A) Live cells were identified by DAPI exclusion, followed by gating on CD3- to identify
NK cells or CD3+ T cells. (B-E) Representative flow plots of one mouse treated with
control rat IgG and one mouse that received depleting antibody are shown with the gating
for (B) CD8 T cells, (C) CD4 T cells, (D) Tregs and (E) NK cells. Graphs on the right
depict the frequency of the cell type of interest in the different groups on days -1, 7 and 15
as mean ±SD.
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Figure 5.15: Both CD8 T cells and NK cells are required for the anti-tumour
effect of Poly IC and MSU + M. smegmatis treatment. C57 mice depleted of the
indicated cell types as shown in Figure 5.14 on day -2 and -1 were injected s.c with 105

B16F1 tumour cells on day 0. On day 7, 9, 11 and 13, mice were treated with PBS, Poly IC
or MSU + M. smegmatis. (A) Tumour sizes and mean +SE are shown on day 15 when
control mice had large tumours. *** p < 0.001 as assessed by one-way ANOVA with Tukey’s
post test; n.s. = not significant. Data are pooled from two independent experiments with
5 mice per group. (B) Tumour growth of mice injected with control antibody or PC61 to
deplete Tregs and treated with PBS, Poly IC or MSU + M. smegmatis is shown as mean
±SE. *** p < 0.001 from day 9 and * p < 0.05 from day 16 as assessed by two-way ANOVA
with Bonferroni’s post test; n.s. = not significant. Data are from one experiment with 5
mice per group.
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one day after antibody administration, but their numbers were restored to the same level

as in control-antibody treated mice at day 7 (data not shown). Thus there is no significant

change in DC populations of CD4 and CD8 T cell depleted mice at the time of adjuvant

treatment.

The absence of NK1.1+ cells or CD8 T cells completely abrogated the effect of Poly IC

and MSU + M. smegmatis treatment on tumour growth and after two weeks all mice had

large tumours similar in size to non-adjuvant-treated, non-depleted controls (Figure 5.15 A).

When CD4 T cells were depleted, even control mice that had only received saline treatment

had smaller tumours and there was no further improvement with adjuvant treatment (Fig-

ure 5.15 A). This may be due to the depletion of Tregs when the whole CD4 T cell population

is targeted.

Therefore, the effect of Treg depletion on B16F1 tumour growth with adjuvant treatment

was examined. In line with previous findings [447], depletion of Tregs without any ad-

ditional adjuvant treatment reduced tumour growth (Figure 5.15 B). Adjuvant treatment

with Poly IC and MSU + M. smegmatis was effective in Treg-depleted mice and delayed

tumour growth compared to non-treated, Treg-depleted controls (Figure 5.15 B). However,

MSU + M. smegmatis treatment in conjunction with Treg depletion did not show any ad-

ditional benefit over MSU + M. smegmatis treatment alone (Figure 5.15 B). In contrast,

Poly IC treated mice that were also depleted of Tregs experienced an additional slight delay

in tumour growth over Poly IC administration alone (Figure 5.15 B).

The results of the antibody depletion experiments show that both CD8+ and NK1.1+ cells

are required for the anti-tumour effect of Poly IC and MSU + M. smegmatis treatment. As

tumour growth was still delayed by adjuvant treatment in mice that had Tregs depleted but

not in mice in which all CD4 T cells were depleted, this may suggest that CD4 T cells are also

involved in the adjuvant-induced anti-tumour response. The observation that Treg depletion

conferred additional anti-tumour benefits only to Poly IC but not MSU + M. smegmatis

treated mice indicates that if these adjuvant treatments were to be used in the clinic, only

Poly IC would benefit from use in combination with Treg depletion. MSU + M. smegmatis

treatment, on the other hand, may have a direct effect on Tregs, so that depletion of Tregs

does not enhance the anti-tumour response.
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5.3.8 MSU + M. smegmatis reduces Tregs and induces CD4

T cell activation in tumours

To study the effect of MSU + M. smegmatis treatment on Tregs, mice that express GFP

under the FoxP3 promoter were injected with B16F1 tumours and treated with Poly IC or

MSU + M. smegmatis. After 4 adjuvant treatments, CD45+ immune cells in tumours were

gated as shown in Figure 4.3. Subsequently, Tregs were identified as CD4+ Foxp3-GFP+

immune cells (Figure 5.16 A). C57 mice were used as GFP negative controls. The frequency

of Tregs among the tumour-infiltrating immune cells was similar between PBS and Poly IC

treated mice, but was reduced following MSU + M. smegmatis treatment (Figure 5.16 B).

To account for the increased infiltration of CD45+ immune cells found in Poly IC and MSU

+ M. smegmatis treated tumours, the frequency of Tregs was also graphed as percentage of

all live cells (Figure 5.16 C).

Even though the infiltration of total CD4 T cells was higher in response to MSU + M. smeg-

matis administration (Figure 5.7 A), the frequency of Tregs was reduced (Figure 5.16 C).

Furthermore, the expression of CD25 and FoxP3 on CD4 T cells was analysed as shown in

Figure 5.17. In PBS and Poly IC treated mice, the majority of CD4 T cells in tumours that

expressed CD25 were also FoxP3-GFP positive and conversely, most FoxP3-GFP positive

cells were also CD25 positive (Figure 5.17 B).

In MSU + M. smegmatis treated tumours, however, a population of CD25 positive FoxP3-

GFP negative CD4 T cells was observed (Figure 5.17 B). The frequency of this cell pop-

ulation was variable in individual mice but was significantly higher than in saline treated

controls (Figure 5.17 C). CD25 is expressed both on Tregs and on activated T cells [514].

Therefore this CD25+FoxP3-GFP- population may represent activated CD4 T cells.

Taken together, these results indicate that MSU + M. smegmatis reduced the infiltration

of Tregs into tumours. At the same time, a population of CD25+FoxP3-GFP+ CD4 T cells

was induced. Those effects were specific to MSU + M. smegmatis adjuvant treatment and

not observed in response to Poly IC.
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Figure 5.16: MSU + M. smegmatis but not Poly IC treatment reduces the
frequency of Tregs in tumours. C57 and FoxP3-GFP mice bearing established B16F1
tumours were injected around the tumour with PBS, Poly IC or MSU + M. smegmatis on
day 7, 9 11 and 13. On day 14, tumours were excised and analysed by flow cytometry. (A)
CD45+ immune cells were gated as in Figure 4.3 and subsequently Tregs were identified
as CD4+FoxP3-GFP+. Representative flow plots from control and adjuvant treated mice
are shown. (B) The frequency of Treg among CD45+ immune cells is graphed with mean
±SE. (C) The percentage of Tregs among all live cells in tumours is shown with mean ±SE.
**p < 0.01 as assessed by one-way ANOVA with Tukey’s post test. Data are pooled from 2
independent experiments with 3-5 mice per group.
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Figure 5.17: MSU + M. smegmatis but not Poly IC treatment induces
CD25+FoxP3- CD4 T cells in tumours. In the same experiment described in Fig-
ure 5.16, CD25 and FoxP3 expression on tumour-infiltrating CD4 T cells was analysed.
(A) Live singlet cells were gated as in Figure 4.3 and subsequently CD45+ CD4+ cells
were identified and analysed for CD25 and FoxP3-GFP expression. (B) Representative flow
plots for CD25 and FoxP3-GFP on CD4 T cells from control and adjuvant treated mice are
shown. (C) The percentage of CD25+FoxP3-GFP- among CD4 T cells in tumours is shown
with mean ±SE. *p < 0.05 as assessed by one-way ANOVA with Tukey’s post test. Data
are pooled from 2 independent experiments with 3-5 mice per group.
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5.4 Discussion

The results described in Chapter 4 show that treatments with Poly IC and MSU + M. smeg-

matis can delay tumour growth and induce the accumulation of inflammatory monocyte-

derived DCs in dLNs. The aim of the experiments described in this chapter was to determine

the different effector cell types involved in the anti-tumour response elicited by these adju-

vants and investigate how the proliferation, recruitment and function of T cells and NK cells

was affected.

Effects of adjuvant treatment on T cell proliferation in vivo

Few studies have analysed the effect of adjuvant treatment at the tumour site on T cell

proliferation. One report by VanOosten et al. found that CpG enhanced the proliferation of

tumour-antigen specific CD8 T cells, as well as slightly improved their in vivo cytotoxicity

[515]. When our study examined the proliferation of OTI T cells in dLNs of adjuvant

treated B16.OVA tumours, a slight increase in the total percentage of OTI cells as well as

of divided OTI cells was seen only in response to MSU + M. smegmatis. However, both

MSU + M. smegmatis and Poly IC treatment led to significantly higher numbers of OTI

and divided OTI cells in dLNs. This correlated with an overall enlargement of dLNs in these

groups. As the adjuvant treatment given did not include any tumour-antigens, but instead

aimed at activating DCs presenting endogenous tumour antigen, it is possible that other

CD8 T cells were also proliferating in the dLNs. This would result in an overall increase in

the numbers of CD8 T cells with a range of tumour-specific TCRs, but the percentages of

T cells with different specificity would remain largely unaffected.

MSU + M. smegmatis treatment was the only adjuvant examined that induced CD4 T cell

proliferation. Similar to what was observed for CD8 T cells, the percentage of OTII cells

among all CD4 T cells in the dLNs of adjuvant treated B16.OVA tumours remained un-

changed. The numbers of OTII cells, as well as the numbers and frequency of divided OTII

cells increased considerably in response to MSU + M. smegmatis. If adjuvant treatment

induced a polyclonal CD4 T cell response, other CD4 T cells besides OTII cells may also
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be proliferating in dLNs, thereby masking any expansion of OTII cells in the CD4 popula-

tion.

A lack of OTII proliferation in the dLNs of mice bearing OVA-expressing tumours including

the colon carcinomas CMT93 and MC38, the T-cell lymphoma EL-4, and several transfected

B16 melanomas was previously described [321, 447]. At the same time, some CD8 T cell

proliferation was always detectable. Furthermore, the lack of CD4 T cell activation could not

be overcome by inducing tumour cell death with chemotherapeutic agents or FasL. Moreover,

intra-tumoral injection of LPS + CD40 ligand, TNFα, CFA and even a cocktail of LPS,

CpG, Poly IC, Peptidoglycan and Lipoteichoic acid failed to induce CD4 T cell proliferation

[321]. These findings are in line with the lack of OTII cell proliferation in response to LPS,

Poly IC or mycobacteria observed in this study and make the ability of the combination of

MSU + M. smegmatis to stimulate OTII proliferation very remarkable.

The increased proliferation of tumour-antigen specific T cells in dLNs after Poly IC and

MSU + M. smegmatis treatment indicates that these adjuvants enhanced the capacity of

DCs to activate tumour-specific T cells. However, proliferation of T cells does not always

result in the successful generation of an effector response. Instead, the proliferation can

be abortive, followed by the establishment of T cell tolerance [516]. This is characterised

by the failure of these T cells to acquire effector functions such as cytotoxicity and cy-

tokine production, followed by deletion [237]. Phenotypically, T cells undergoing tolerance

up-regulate CD69 and CD44 in a similar manner to T cells becoming effector cells, but only

partially down-regulate CD62L [237]. As the proliferating T cells in this study showed clear

down-regulation of CD62L, they are likely to be differentiating into effector cells.

Accumulation of effector cells in adjuvant-treated tumours

Adjuvant administration appeared to cause some inflammation at the tumour site as evi-

denced by the induction of pro-inflammatory cytokines such as TNFα and IL-6. Inflamma-

tion is known to lead to increased expression of adhesion molecules on the endothelial cells of

blood vessels, as well as cytokines in the inflamed tissue that promote the influx of immune

cells from the blood [517]. Therefore, the recruitment of NK cells and T cells to the tumour
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site in response to adjuvant administration was analysed. A single adjuvant administration

only had a minor impact on the percentage of effector cells as well as their activation state.

Poly IC and MSU + M. smegmatis enhanced CD8 T cell proliferation 3 days after the first

adjuvant administration. If T cells needed to be activated de novo and expand in the dLNs

they would be expected to migrate to the tumour site at the earliest 3-5 days after priming

and would not be detectable 2 days after the first adjuvant treatment. Alternatively, more

sustained inflammation may be required for the recruitment of effector cells to the tumour

site.

After four adjuvant treatments, the frequency of CD8 T cells was doubled and that of

NK cells tripled in MSU + M. smegmatis and Poly IC treated tumours, compared to saline

controls. CD4 T cell infiltration was only significantly increased in response to MSU +

M. smegmatis. The total numbers of CD45+ immune cells in these groups also increased

compared to the earlier time point (see Chapter 4) and the percentages of effector cells among

the immune infiltrate remained constant or increased as well. This indicates that T cells and

NK cells are actively recruited to the tumour site and not just less outgrown by the melanoma

mass in the smaller, Poly IC and MSU + M. smegmatis treated tumours. The increase in

tumour-infiltrating CD4 T cells only in the MSU + M. smegmatis treated tumours is in line

with the previous result that only this adjuvant combination elicited CD4 T cell proliferation.

Studies of the adjuvant effect of CpG administration have previously reported an increase in

CD8 and CD4 T cell infiltration at the tumour site, which was implicated in the anti-tumour

effect [403, 504]. However, Currie et al. found that Poly IC did not enhance CD8 T cell

accumulation at the tumour site, despite the requirement for CD8 T cells in its anti-tumour

function [12]. The discrepancy between the data of Currie et al. with the data obtained

in this study may be due to the different tumour models employed. Furthermore, Currie

et al. analysed the immune infiltrate 3 days after initiation of adjuvant treatment. This is

more similar to the early time point of analysis after one adjuvant treatment in this study,

at which no significant increase in CD8 T cell infiltration was observed either.

While the delay in recruitment of T cells is likely due to the time they needed to expand in

dLNs, the concurrent delay in NK cell infiltration appears to suggest that prolonged adju-

vant stimulation was generally needed to promote access of effector cells to the tumour site.
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NK cells are called ”natural” as they do not require priming to exert their effector functions.

Rather, the integration of signals from activating and inhibitory surface receptors on the

NK cell determines its action [518]. However, it has now become clear that NK cells can also

interact with DCs. This cross-talk leads to increased production of IFNγ from NK cells,

enhanced target cell lysis and improved anti-tumour activity [227]. Furthermore, in viral

infections NK cells have been found to proliferate, with the Ly49H+ subset peaking at day

6 after infection [519]. Thus, it is possible that NK cells also need to be activated by DCs

and maybe even proliferate before they infiltrate the tumour site and that this leads to the

observed delay in DC recruitment. However, a need for sustained local adjuvant stimula-

tion to increase inflammation, chemokine secretion and endothelial adhesion molecules to

promote access of effector cells to the tumour site may also contribute to the late increase

in NK cell and T cell infiltration.

In addition to proliferation and recruitment of effector cells to the tumour site, their ac-

tivation state as assessed by the expression of surface activation and inhibitory markers

was also analysed. Repeated administration of MSU + M. smegmatis slightly increased the

expression of CD69 on tumour-infiltrating T cells. In addition, M. smegmatis and MSU +

M. smegmatis both resulted in down-regulation of PD-1 on CD8 T cells in tumours. In

contrast, Poly IC did not induce any significant change in CD69 or PD-1 levels. PD-1 is

an inhibitory molecule expressed on T cells that is normally involved in the maintenance

of peripheral tolerance by blocking the TCR-driven motility arrest and subsequent T cell

activation [520]. The corresponding ligand, PD-L1, is not detectable in normal tissues, but

is highly expressed in tumour cells, including melanoma [146]a. PD-1 ligation on T cells

leads to T cell apoptosis and PD-L1+ tumours grow more aggressively in vivo [146]. There-

fore, blocking antibodies against PD-1 or PD-L1 have been tested in immunotherapy models

and were shown to increase the anti-tumour effect of CpG administration, as well as DC

vaccination combined with adoptive T cell transfer [521, 522]. The down-regulation of PD-1

on CD8 T cells in response to M. smegmatis and MSU + M. smegmatis suggests that these

T cells may be less susceptible to suppression by the tumour and therefore may have superior

anti-tumour activity.
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Cytokine production by effector cells in the tumour

The production of IFNγ and TNFα by tumour-infiltrating CD8 T cells and NK cell was

examined by intra-cellular cytokine staining. In the absence of adjuvant treatment, very

few cells produced any of these cytokines. The frequency and level of TNFα production

was increased in response to MSU + M. smegmatis, while Poly IC treatment augmented

the percentage of TNFα+ NK cells. This suggests that MSU + M. smegmatis had a more

profound impact on T cells, while Poly IC preferentially activated NK cells. Both adjuvants

enhanced the capacity of effector cells to secrete TNFα, suggesting that these effector cells

were more activated than in saline treated controls.

The frequency and level of IFNγ production in both CD8 T cells and NK cells was increased

to a similar extent after four administrations of Poly IC or MSU + M. smegmatis. IFNγ was

shown to be critical for the control of spontaneous and chemically induced tumours, as well

as transplantable B16 melanomas [20, 501]. The anti-tumour effect of IFNγ is thought to be

due to up-regulation of MHC I on the tumour cells, which renders them more immunogenic

and susceptible to CD8 T cell mediated killing [20]. Increased IFNγ production in T cells has

previously been reported in response to CpG adjuvant treatment [523]. Furthermore, the

increase in IFNγ production by CD8 T cells in response to Poly IC is in line with data from

Currie et al., who find that enhanced cytoxicity of CD8 T cells coupled with an increase in

MHC I expression in adjuvant-treated tumours, probably due to enhanced IFNγ secretion,

is the main mechanism of tumour rejection in response to Poly IC treatment [12].

Tumour-protective capacity of adoptively transferred T cells

from adjuvant treated mice

Several studies have used adoptive transfer of T cells from treated tumour-bearing mice

into näıve hosts to dissect their protective function against tumour challenge [12, 403, 524].

All reports used T cells purified from the spleens of treated animals and transferred high

numbers (5 x 106 -5 x 107) T cells i.v. into recipients.

Kunikata et al. reported that the full protection potential was only achieved when both
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CD8 T cells and CD4 T cells were co-transferred [403]. In addition, a different group

investigating the anti-tumour potential of adoptively transferred, antigen-specific T cells

reported that co-transfer of CD4 T cells with CD8 T cells was dispensable for CD8 T cell

cytotoxicity, but required for the maintenance of CD8 T cells and anti-tumour activity [69].

Furthermore, in a viral infection model of mucosal sites, CD4 T cell help was critical for the

access of CD8 T cells to the infected tissue [500].

In light of those studies, CD4 and CD8 T cells were purified from spleens of adjuvant treated

animals and transferred into näıve, CD45 congenic hosts. Subsequent tumour challenge

revealed that T cells from all adjuvant treated mice mediated a slight delay in tumour onset,

but only T cells from Poly IC and MSU + M. smegmatis treated donors conferred a slight

survival benefit. However, none of the recipient mice was protected from tumour growth.

As T cells could not be selected for tumour-specificity prior to transfer, the number of

tumour-specific T cells within the 7 x 106 transferred T cells may have been too low to achieve

tumour protection. In a subsequent experiment, graded numbers of 10, 20 and 40 x 106

T cells from MSU + M. smegmatis treated donors were transferred. While the relative

numbers of transferred T cells were reflected in the percentage of CD45 congenic T cells

detected in the blood of recipient mice, this increase in numbers still resulted in a similar

delay in onset of tumour growth in all recipients of MSU + M. smegmatis T cells.

Several factors could be causing this lack of tumour protection. Firstly, the spleen may not

be the ideal source of tumour-specific T cells in the adjuvant treated mice. Proliferation of

T cells was observed in tumour-draining but not contra-lateral LNs and increased infiltration

of T cells to the tumour site also occurred in response to adjuvant administration. Therefore,

most tumour-specific T cells may be recruited to the tumour site and dLNs and few may

be circulating or resident in the spleens.

Secondly, the number of transferred T cells may be too low to confer tumour protection.

In a gp33 expressing B16 melanoma model, a study by Perret et al. showed that 1-2 x 107

in vitro activated, antigen-specific CD8 T cells were required to confer tumour protection,

while 1-3 x 106 cells only resulted in a variable degree of delay of the onset of tumour growth

[385]. For p-mel CD8 T cells, which recognise the endogenous tumour-antigen gp100 and

have a lower avidity than OVA or gp33 specific T cells, even 107 activated T cells were not
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sufficient to prevent the growth of B16 melanomas [384]. Instead, additional vaccination with

antigen plus adjuvant and IL-2 delivery was required to achieve tumour protection [384].

These publications suggest that the transfer of 7-40 x 106 splenic T cell from adjuvant-

treated donors may indeed be insufficient for anti-tumour activity in the B16 melanoma

model.

Thirdly, the transfer of total T cells is likely to have included Tregs within the CD4+

population. These may have counteracted the anti-tumour activity of effector CD4 and

CD8 T cells in the recipient mice. At the same time, NK cells were excluded by depletion of

NK1.1+ cells prior to transfer. As both T cell and NK cell infiltrate increased in Poly IC and

MSU + M. smegmatis treated tumours, these effector cell populations may work together to

exert their anti-tumour activity and T cells may be less effective in the absence of activated

NK cells.

Lastly, even with co-transfer of CD4 and CD8 T cells, access of T cells to the tumour may

have been limited in the absence of local adjuvant administration and inflammation. A

similar restriction was described by Currie et al., who report that 5.5 x 106 transferred

T cells from Poly IC treated donors only delayed tumour growth in recipients with small

established tumours when Poly IC was also administered intra-tumorally in the recipients

[12]. Even adjacent tumours that shared dLNs but did not receive Poly IC injections were

unaffected by the transferred T cells.

Together, these results suggest that a relatively low number of transferred T cells in com-

bination with the lack of local adjuvant stimulation in the recipients was likely to be the

main reason that transferred T cells only conferred a delay in the onset of tumour growth

and no tumour protection. In addition, the small but significant effect indicates that the

transferred T cells do have some anti-tumour activity.
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Requirement of T cells and NK cells for adjuvant-induced

tumour-growth delay

To further investigate the requirement for adaptive immune cells, as well as examine the

contribution of CD4 T cells, CD8 T cells and NK cells in more detail, tumour growth exper-

iments were performed in Rag1-/- mice and C57BL/6 mice depleted of these cell subsets.

MSU + M. smegmatis treatment did not delay tumour growth at all in Rag1-/- mice, as

well as CD8 T cell and NK cell depleted animals. Likewise, the effect of Poly IC treat-

ment was largely abolished in Rag1-/- mice and completely abolished in the absence of

CD8 T cells and NK cells. This indicates that both CD8 T cells and NK cells were required

for Poly IC and MSU + M. smegmatis to exert their adjuvant activity. The slight delay of

tumour growth in Rag1-/- mice in response to Poly IC administration is likely mediated by

NK cells, which are not affected by the absence of Rag1. In CD8 T cell depleted animals,

Poly IC may still have activated NK cells, but at the same time Tregs are present in these

mice and can suppress anti-tumour activity.

The tumour growth in CD4 T cells depleted adjuvant treated mice is more difficult to

interpret, as CD4 T cell depletion already slowed tumour growth to a similar extent as

adjuvant treatment. This may be due to the depletion of Tregs within the CD4 population.

CD4+CD25+ Tregs have previously been associated with more aggressive growth of B16

melanomas [447]. If the only effect of the CD4 T cell population in the adjuvant treated

tumours was the suppression of the immune response, an even improved outcome with

adjuvant treatment that activated anti-tumour CD8 T cells and NK cells would be expected.

As no further delay in tumour growth was observed with Poly IC and MSU + M. smegmatis

treatment in CD4 depleted animals, this suggests that CD4 T cells may also be required to

contribute to the anti-tumour effects of these adjuvants. While Currie et al. reported that

the anti-tumour effect of Poly IC was solely dependent on CD8 T cells and independent of

CD4 T cells, they had not included controls of tumour-bearing, cell depleted mice without

adjuvant treatment [12]. As CD4 depleted mice already showed similar tumour growth as

adjuvant treated mice, the omission of this control may mask the possible role of CD4 T cells.

The different requirement for NK cells, on the other hand, may rather be due to the different
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tumour models in this study and the work by Currie et al.. Studies investigating the

requirement of CD8 T cells and NK cells in response to CpG treatment have variably

reported tumour elimination solely by CD8 T cells [502], solely by NK cells [503] or by

both CD8 T cells and NK cells [11, 504]. The tumour models employed in those studies all

differed and may be differentially susceptible to NK cell mediated and CD8 T cell mediated

recognition and killing.

Role of Tregs in the adjuvant-induced anti-tumour response

The role of Tregs in the adjuvant treated tumours was investigated in more detail. Treg

depletion using the anti-CD25 antibody PC61 resulted in delayed tumour growth without

additional adjuvant treatment. However, tumour development in these mice was still faster

than in CD4 T cell depleted animals. This may be due to the the incomplete depletion of

Tregs by the PC61 antibody. 80 % of CD25+CD4+ T cells remained depleted throughout

the experiment, leaving ca. 20 % unaffected. In addition, not all CD4+ Tregs express CD25

and approximately 12 % of FoxP3+CD4+ Tregs were shown to be CD25- [411]. More-

over, activated T cells also express CD25 [167] and while anti-CD25 antibody was given

one week prior to adjuvant treatment a minimal impact on activated T cells cannot be en-

tirely excluded. Nevertheless, when CD25 depleted mice were given peri-tumoral adjuvant

injections, Poly IC and MSU + M. smegmatis treated tumours grew slower compared to

saline treated, CD25 depleted tumours. Furthermore, the anti-tumour effect of Poly IC

combined with CD25 depletion was significantly better than Poly IC administration on its

own. This indicates that Poly IC treatment does not modulate the function of Tregs but can

be further improved by depleting Tregs. In contrast, MSU + M. smegmatis treated, CD25

depleted tumours developed precisely as non-CD25 depleted MSU + M. smegmatis treated

B16 melanomas. This result suggested that MSU + M. smegmatis may directly affect Tregs

in some way and therefore not gain additional benefit from Treg depletion.

FoxP3-GFP mice were employed to study Tregs in tumours in more detail. FoxP3 expression

has been shown to strictly correlate with the suppressive function of Tregs, irrespective of

CD25 expression [411]. Using FoxP3-GFP mice, a small fraction (2 %) of tumour-infiltrating
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immune cells were identified to be Tregs in saline controls. The percentage of Tregs was

unaltered in Poly IC treated tumours, but reduced by nearly half in response to MSU +

M. smegmatis administration. In addition, the majority of Tregs in PBS or Poly IC treated

tumours co-expressed CD25 and FoxP3. In MSU + M. smegmatis tumours, a significant

fraction of CD4 T cells was found to be CD25+ but FoxP3-. The percentage of these

cells varied from 5-15 % of all tumour-infiltrating CD4 T cells. Their lack of FoxP3-GFP

indicates that they are not Tregs, but rather activated CD4 T cells, which also express high

levels of CD25. Thus, MSU + M. smegmatis appears to considerably increase the ratio of

activated CD4 T cells to Tregs. Few other immunotherapies, such as the combination of

cyclophosphamide with IL-12 and a synthetic bacterial lipoprotein (TLR1/TLR2 agonist)

have previously been shown to increase the infiltration of effector T cells while at the same

time reducing Tregs [525, 526]. In patients with ovarian cancer as well as hepatocellular

carcinoma, a high effector cell to Treg ratio has been associated with a more favourable

prognosis [44, 527]. Thus, the ability of an adjuvant treatment to skew the effector cell : Treg

ratio to favour tumour rejection may be clinically relevant.
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Conclusions

Both Poly IC and MSU + M. smegmatis treatment required CD8 T cells and NK cells to

exhibit anti-tumour activity. CD4 T cells may also be involved in the anti-tumour response

to adjuvant treatment.

The activation of effector cells appeared to occur at several levels. The numbers of tumour-specific

CD8 T cells that proliferated in tumour-dLNs were increased with Poly IC and MSU +

M. smegmatis treatment. In addition, the infiltration of immune cells, especially of CD8 T cells

and NK cells in tumours was enhanced after 4 adjuvant applications. The capacity of

tumour-infiltrating effector cells to produce IFNγ and TNFα was also augmented by both

adjuvant treatments.

While CD8 T cells were required for anti-tumour activity in response to Poly IC and MSU +

M. smegmatis adjvuant treatment, adoptively transferred T cells from treated donors were

not sufficient to confer tumour protection to recipients. However, a significant delay in the

onset of tumour growth suggests that these T cells exert some anti-tumour function.

CD4 T cells were only significantly affected by MSU + M. smegmatis treatment. The

percentage and number of proliferating, tumour-antigen specific CD4 T cells increased. In

addition, a higher frequency of CD4 T cells was observed to infiltrate MSU + M. smegmatis

treated B16 melanomas. At the same time, the infiltration of Tregs was decreased and a

population of CD25+ FoxP3- activated CD4 T cells accumulated in tumours in response to

MSU + M. smegmatis administration.

Thus, Poly IC and MSU + M. smegmatis both require innate as well as adaptive effector

cells to delay tumour growth. Their effects on CD8 T cells and NK cells are comparable,

whereas only MSU + M. smegmatis alters CD4 T cell proliferation, infiltration and effector

to Treg ratio.
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6.1 Introduction

Several studies have demonstrated a requirement for multiple adjuvant administrations to

elicit potent anti-tumour effects [11, 12, 403]. While a single exposure to adjuvant-activated

DCs is sufficient to induce T cell responses in näıve mice, persistent adjuvant signals are

required to break established T cell tolerance and induce anti-tumour immunity [528].

Repeated exposure to adjuvants can boost the immune responses, but it can also induce feed-

back regulation and tolerance to future activation by the same and even different adjuvants,

as shown for LPS and Poly IC [446, 529, 530]. The induction of immune activation as op-

posed to tolerance to repeated administrations depends on the adjuvant dose, with super-low

doses (0.05 ng/mL to 0.5 ng/mL LPS) enhancing activation, low doses (>100 ng/mL LPS in

vitro; 50 µg Poly IC i.p. weekly) inducing tolerance and high doses (1 ng/mL to 100 ng/mL

LPS in vitro; 20 µg Poly IC i.p. weekly) favouring immune activation [529, 530]. In addi-

tion, the adjuvant dose encountered by immune cells is also likely to vary according to the

administration route and the persistence of individual adjuvants at the injection site.

It has also been reported that the tolerance to a secondary adjuvant administration is tran-

sient [457]. Therefore treatment schedules that allow for rest days between the adjuvant

administrations have widely been employed [11, 403, 531]. However, a study directly com-

paring the effect of different treatment regimens with Poly IC found that a higher frequency

of Poly IC administrations was superior to treatments at 3-day intervals [12].

In addition to eliciting the maximal anti-tumour effect in vivo, adjuvants also need to be

safe for clinical application. While Poly IC and MSU have already been used in clinical

trials without major side effects [15, 360], live mycobacteria are more problematic. Live

BCG instillation has been successfully used in the treatment of superficial bladder cancer

for decades [10]. However, a moderate level of toxicity with local severe inflammation is

associated with the treatment, and a number of patients subsequently develop systemic BCG

infection with granuloma formation [532, 533]. While M. smegmatis is a non-pathogenic

mycobacterium [534], heat-killed preparations may still be preferable over live organisms

provided that effectiveness is retained.
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In the previous chapter, both Poly IC and MSU + M. smegmatis treatments were found

to have considerable anti-tumour activity against the B16F1 melanoma when given peri-

tumorally (Figure 4.2). In addition, a report comparing different administration routes for

CpG clearly demonstrated that peri-tumoral injection is the most effective way of adjuvant

delivery [445]. However, in a clinical setting, the tumor mass is not always accessible for

adjuvant injection. Therefore, most clinical trials have injected adjuvants such as BCG sub-

cutaneously [535, 536], albeit with limited success compared to initial reports of intralesional

application [537]. The anti-tumour activity of Poly IC and MSU + M. smegmatis applied

at a site distant from the tumour remains to be determined.

Death of cancer patients is rarely caused by the primary tumour, and in breast cancer

patients more than 90 % of deaths are due to metastases [538]. Metastatic tumours are

often not accessible to surgery and fail to respond to therapies that were initially success-

ful in halting primary tumour progression [538]. It is now clear that metatstatic cancer

cells cells differ from primary tumor cells in their protein expression profiles, as well as in

their response to therapeutic agents [539, 540]. Immunotherapy may be a viable strategy

to target metastases, as immune cells can migrate to all sites in the body to seek out and

eliminate metastatic tumour cells. Indeed, CpG and Poly IC immunotherapy has previ-

ously been shown to control experimental metastases in mice via activated T cells [403]

or NK cells [541], respectively. CpG administration could also prevent spontaneous brain

metastasis from orthotopic breast carcinomas [542], while the effect of Poly IC and MSU

+ M. smegmatis treatment on spontaneous metastases from orthotopic tumours remains to

be established.
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6.2 Aims

Results described in Chapter 4 showed that four peri-tumoral administrations of Poly IC or

MSU + M. smegmatis delayed the growth of B16F1 tumours. The experiments described in

this chapter were conducted to optimise the administration of these two effective adjuvants

to achieve the best possible anti-tumour effect. In addition, it was evaluated whether dead

M. smegmatis could be used instead of live bacteria to increase safety. Furthermore, their

effect on primary growth and metastasis formation in other tumour models was investigated.

As the anti-tumour activity of these adjuvants was mediated by innate and adaptive immune

effector cells (Chapter 5), we hypothesized that they would have similar anti-tumour activity

in different tumour models. Metastasis formation may either be reduced by immune effector

cells activated in response to Poly IC and MSU + M. smegmatis treatment or may be

increased by the inflammation induced by adjuvant administration.

The specific aims of the work described in this chapter were:

• To identify the optimal number of adjuvant administrations and the best treatment

schedule to achieve the maximal anti-tumour effect

• To determine whether heat-killed M. smegmatis in combination with MSU could delay

tumour growth and activate immune cells in a manner similar to live M. smegmatis

+ MSU

• To assess whether the adjuvant treatment had to be administered at the tumour site

to induce an anti-tumour response

• To investigate whether peri-tumoral adjuvant treatments were effective in reducing

primary tumour growth in other tumour models

• To assess whether Poly IC and MSU + M. smegmatis treatment enhanced or reduced

the formation of lung metastases in the 4T1 orthotopic breast carcinoma model
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6.3 Results

6.3.1 Optimisation of the number and frequency of treat-

ments with Poly IC and MSU + M. smegmatis

Results presented in previous chapters have shown that four peri-tumoral administrations of

Poly IC and MSU + M. smegmatis effective in delaying tumour growth. To identify, whether

this number of treatments was required and to establish whether more than four treatments

could improve the effect, mice bearing B16F1 melanomas were treated with each adjuvant

1-6 times and tumour growth was recorded. The results are shown in Figure 6.1.

Poly IC required at least two administrations to show any anti-tumour activity (Figure 6.1 A).

The more treatments were given, the more tumour growth was delayed. However, the dif-

ferences between 3-6 treatments were small, and no significant improvement was observed

by increasing the number of treatments from 4 to 6. MSU + M. smegmatis elicited a

small delay in tumour growth already after a single administration (Figure 6.1 B). There

was a marked improvement in the anti-tumour activity if 4 treatments were given, but no

significant further enhancement with 4-6 administrations.

These results indicate that both Poly IC and MSU + M. smegmatis treatments require

multiple administrations to reach their maximal anti-tumour activity and that increasing

the number of treatments is beneficial for the anti-tumour effect. In addition, there was no

evidence of a tolerising effect of repeated adjuvant administration.

Different treatment schedules were also evaluated for their potential to enhance the anti-tumour

activity of Poly IC and MSU + M. smegmatis (Figure 6.2). Daily treatment of established

tumours with Poly IC for two weeks did not further delay tumour growth compared to 4

treatments every second day (Figure 6.2 B). Commencing Poly IC treatment before tumours

became palpable (day 3) did not significantly reduce tumour growth overall compared to

4 treatments (Figure 6.2 B). However, from day 15 to day 19, mice treated earlier had

significantly smaller tumours, indicating that there was a transient enhancement of the

anti-tumour response.
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Figure 6.1: Repeated administration increases the anti-tumour effect of Poly IC
and MSU + M. smegmatis treatments. C57 mice bearing small B16F1 tumours were
injected around the tumour with Poly IC (A) or MSU + M. smegmatis (B) 1 to 6 times (1x
to 6x) starting from day 5. For multiple treatments, adjuvants were injected every second
day as indicated by the arrows. Tumour size is shown as mean ± SE. *p < 0.05 and ***
p < 0.001 from day 9 (Poly IC) or day 13 (MSU + M. smegmatis) as assessed by two-way
ANOVA with Bonferroni’s post test; n.s. = not significant. Data are from one experiment
with 5 mice per group.
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Figure 6.2: More frequent or earlier start of adjuvant administration does not
significantly improve anit-tumour activity. C57 mice were injected with 105 B16F1
tumour cells s.c. Poly IC or MSU + M. smegmatis treatments were given as illustrated in the
schematic in (A). Tumour growth in Poly IC treated mice (B) and MSU + M. smegmatis
treated animals (C) is shown as mean ± SE. *p < 0.05 and *** p < 0.001 from day
11 (Poly IC) or day 15 (MSU + M. smegmatis) as assessed by two-way ANOVA with
Bonferroni’s post test; n.s. = not significant. Data are from one experiment with 5 mice
per group.



222 6 Optimisation of adjuvant administration to delay tumour growth and reduce metastases

Earlier or more frequent application of MSU + M. smegmatis treatment did not alter tumour

growth compared to the schedule of 4 treatments every second day also used in previous

experiments (Figure 6.2 C).

Overall, the results from these experiments indicate that a higher number of adjuvant

treatments (4-6) can boost their anti-tumour activity and does not appear to induce toler-

ance. However, increasing the frequency of dosing to daily applications didn’t improve the

anti-tumour effect and earlier start of adjuvant treatment was only found to have a transient

benefit for Poly IC but not for MSU + M. smegmatis adjuvant treatment.

6.3.2 Heat-killed and live M. smegmatis + MSU both

activate anti-tumour immunity

To improve the safety of MSU + M. smegmatis adjuvant treatment for potential application

in a clinical setting, it would be desirable to use dead mycobacteria or extracts from my-

cobacteria to avoid the possibility of infections in immune-compromised patients. Therefore,

the effect of MSU + dead M. smegmatis was compared to MSU + live M. smegmatis.

When four adjuvant treatments were given peri-tumorally after palpable B16F1 tumours

had developed, dead M. smegmatis + MSU showed the same anti-tumour activity as live

M. smegmatis + MSU (Figure 6.3). Both the delay in tumour growth and increase in

survival were very similar in the two groups.

The effects of dead M. smegmatis + MSU and live M. smegmatis + MSU on the immune

system were also compared. A single administration of dead M. smegmatis + MSU resulted

in similar recruitment of CD45+ immune cells to the tumour site as with live M. smegmatis

+ MSU treatment (Figure 6.4 A). The relative percentages of the different immune cell

populations infiltrating the tumour were also affected in a similar manner with live and

dead M. smegmatis + MSU (Figure 6.4 B). Both monocyte populations increased at this

early time point relative to other immune cells in tumours. Combined with the overall

higher percentage of CD45+ immune cells at the tumour site, this translated into a similar

increase in Ly6Chi and Ly6Cint monoctyes at the tumour site in response to both live and
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dead M. smegmatis + MSU (Figure 6.4 C & D).

Dead and live M. smegmatis + MSU also resulted in similar immune activation, as measured

by the increase in dLN size and accordingly in DC numbers in dLNs after a single adjuvant

treatment (Figure 6.5 A). Moreover, dead M. smegmatis + MSU also induced inflammatory

monocyte-derived DCs in dLNs similar to live M. smegmatis + MSU (Figure 6.5 B).

A.

B.

7 9 11 13 15 17 19 21 23
0

20

40

60

80

100

120
PBS
MSU + M. smeg live
MSU + M. smeg dead

n.s.

***

Days post tumour injection

Pe
rc

en
t s

ur
vi

va
l

1 3 5 7 9 11 13 15 17 19 21 23
0

25
50
75

100
125
150
175

PBS
MSU + M. smeg live
MSU + M. smeg dead

n.s.

***

Days post tumour injection

Tu
m

ou
r s

iz
e 

(m
m

2 )

Figure 6.3: Live and dead M. smegmatis in combination with MSU are equally
effective at delaying tumour progression. C57 mice bearing established B16F1 tu-
mours were injected around the tumour with MSU + live M. smegmatis or MSU + M. smeg-
matis that had been heat killed for 60 min at 70 ◦C (MSU + M. smeg dead) on day 7, 9
11 and 13. (A) Tumour growth is shown as mean ± SE. Significant differences between
treatment groups according to two-way ANOVA with Bonferroni’s post test starting from
day 11 are indicated by *** p < 0.001. (B) Survival of the B16F1 bearing mice treated
with adjuvants in (A) is depicted. ***p < 0.001 as assessed by Log-Rank-Test with Bonfer-
roni’s adjustment for multiple comparisons. n.s. = not significant. Data are pooled from 2
independent experiments with 5 mice per group each.
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Thus, dead M. smegmatis + MSU had the same capacity to delay tumour growth, pro-

long survival, increase monocyte infiltration at the tumour site and induce inflammatory

monocyte-derived DCs in the dLNs as live M. smegmatis + MSU. This indicates that MSU

+ M. smegmatis treatment activates the anti-tumour immune response regardless of the

viability of the mycobacteria.
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Figure 6.4: A single treatment with dead M. smegmatis + MSU has the same
effects on intratumoral immune cells as live M. smegmatis + MSU. C57 mice
bearing established B16F1 tumours were injected once around the tumour with either live
M. smegmatis + MSU (MSU + M. smeg) or dead M. smegmatis + MSU (MSU + M. smeg
dead). One day later, immune cells in tumours were analysed by flow cytometry as described
in Figure 4.3. (A) The frequency of CD45+ cells in tumours is shown. (B) The percentages
of different immune cell types among the total CD45+ immune infiltrate is graphed. (C) &
(D) The frequencies of Ly6Chi and Ly6Cint monocytes among all live cells in tumours are
shown. All data are presented as mean ± SE. *p < 0.05 **p < 0.01 as assessed by one-way
ANOVA with Tukey’s post test. Data are from 1 experiment with 5 mice per group.
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Figure 6.5: Heat killed M. smegmatis + MSU increases the number of inflam-
matory DCs in dLN similar to live M. smegmatis + MSU. Data are from the
same experiment described in Figure 6.4. DCs in dLNs were analysed by flow cytometry as
described in Figure 4.8. The total numbers of DCs (A) and the numbers of inflammatory
monocyte-derived DCs (7/4+Ly6C+) (B) in pooled axillary and inguinal dLNs are shown
as mean ± SE. *p < 0.05 **p < 0.01 as assessed by one-way ANOVA with Tukey’s post
test. Data are from 1 experiment with 5 mice per group.

6.3.3 Effect of Poly IC and MSU + M. smegmatis treatment

contralateral to the tumour site

As Poly IC and MSU + M. smegmatis injections activated the anti-tumour immune response

without the inclusion of any tumour antigens in the treatment, we hypothesized that they

needed to be administered at the tumour site to be effective. To test this hypothesis, both

adjuvant treatments were either given peri-tumorally, or injected on the flank contralateral

to the tumour site.

Poly IC and MSU + M. smegmatis treatment around the tumours delayed tumour growth

and prolonged survival of mice as observed in previous experiments (Figure 6.6 & Figures 4.2,

6.1, 6.2). Poly IC had very little anti-tumour activity when it was administered s.c. con-

tralateral to the tumour (Figure 6.6). In contrast, MSU + M. smegmatis treatment on the

contralateral flank elicited a similar anti-tumour effect as peri-tumoral MSU + M. smeg-

matis administration (Figure 6.6). This result was unexpected and the phenomenon was

investigated further in the following experiments.
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Figure 6.6: Poly IC must be administered at the tumour site while MSU +
M. smegmatis is effective even if injected into the contralateral flank. C57 mice
bearing established B16F1 tumours were treated with Poly IC or MSU + M. smegmatis
either around the tumour or s.c. on the contralateral flank (contra) on day 7, 9 11 and
13. (A) Tumour growth is shown as mean ± SE. Significant differences between treatment
groups according to two-way ANOVA with Bonferroni’s post test starting from day 13 are
indicated by *p < 0.05 and *** p < 0.001. (B) The survival of the treated mice is depicted.
***p < 0.001 as assessed by the Log-Rank-Test with Bonferroni’s adjustment for multiple
comparisons. n.s. = not significant. Data are pooled from 2 independent experiments with
5 mice per group each.
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6.3.4 Contralateral MSU + M. smegmatis treatment re-

quires adaptive immmunity

To assess if the anti-tumour effect of contralateral MSU + M. smegmatis treatment required

adaptive immunity like the response to peri-tumoral MSU + M. smegmatis administration,

tumour growth experiments were conducted in Rag1-/- mice that lack adaptive immune cells.
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Figure 6.7: MSU + M. smegmatis contralateral treatment requires adaptive
immunity. C57 mice or Rag1-/- mice bearing established B16F1 tumours were treated with
MSU + M. smegmatis either around the tumour or s.c. on the contralateral flank on day 7,
9 11 and 13. (A) Tumour growth is shown as mean tumour size ± SE. Significant differences
between treatment groups according to two-way ANOVA with Bonferroni’s post test starting
from day 11 are indicated by *** p < 0.001. (B) The survival of the treated mice is graphed.
***p < 0.001 as assessed by the Log-Rank-Test with Bonferroni’s adjustment for multiple
comparisons. n.s. = not significant. Data are pooled from 2 independent experiments with
5 mice per group each.
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In line with the result from the previous experiment, contralateral MSU + M. smegmatis

treatment delayed tumour growth just like peri-tumoral MSU + M. smegmatis treatment in

C57 wild type mice (Figure 6.7). Furthermore, the adjuvant effect was completely abolished

in Rag1-/- mice in both treatment groups (Figure 6.7). These data show that contralat-

eral MSU + M. smegmatis treatment also requires adaptive immune cells to induce its

anti-tumour effect and suggests that the two treatments engage similar immune effector

mechanisms.

6.3.5 Differential immune response to contralateral and peri-

tumoral MSU + M. smegmatis treatment

A single administration of contralateral or peri-tumoral MSU + M. smegmatis adjuvant

had distinct effects on the tumour immune infiltrate. Contralateral administration did not

induce the marked influx of immune cells to the tumour site (Figure 6.8 A). The recruitment

of Ly6Chi and Ly6Cint monocytes likewise did not occur in response to contralateral MSU +

M. smegmatis treatment (Figure 6.8 C & D). Therefore, the relative percentages of different

immune cells in the tumours of mice that had received contralateral MSU + M. smegmatis

administration more closely resembled those found in saline treated controls than those in

peri-tumorally treated tumours (Figure 6.8 B).

The analysis of the LNs draining the tumour site furthermore showed that they were only

slightly enlarged after contralateral MSU + M. smegmatis treatment (Figure 6.9 A). Corre-

spondingly, the number of total DC, as well as inflammatory monocyte-derived DCs was not

significantly increased in tumour-draining LNs, although there was a trend towards higher

numbers of inflammatory monocyte-derived DCs (Figure 6.9 B & C). However, LNs con-

tralateral to the tumour site but draining the area of contralateral MSU + M. smegmatis

administration clearly reacted to the presence of adjuvant becoming enlarged (Figure 6.9 A).

The DC populations in the contralateral LNs were not analysed.

To assess the capacity of DCs in LNs draining either the tumour or the adjuvant admin-

istration site to induce proliferation of tumour-antigen specific T cells, B16 tumours ex-

pressing the model antigen OVA in combination with adoptive transfer of CFSE-labelled,
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Figure 6.8: A single MSU + M. smegmatis contralateral treatment does not
affect the immune infiltrate in tumours. C57 mice bearing established B16F1 tumours
were injected once either around the tumour or s.c. on the contralateral flank with MSU
+ M. smegmatis. One day later, immune cells in tumours were analysed by flow cytometry
as described in Figure 4.3. (A) The frequency of CD45+ cells in tumours is shown. (B)
The percentages of different immune cell types among the total CD45+ immune infiltrate is
graphed. (C) & (D) The frequencies of Ly6Chi and Ly6Cint monocytes among all live cells
in tumours are shown. All data are presented as mean ± SE. *p < 0.05, **p < 0.01 and
***p < 0.001 as assessed by one-way ANOVA with Tukey’s post test; n.s. not significant.
Data are from 1 experiment with 5 mice per group.

OVA-specific CD8 T cells (OTI) or CD4 T cells (OTII) were used.

Although contralateral MSU + M. smegmatis administration had not significantly increased

DC numbers in tumour-draining LNs, the proliferation of OTI cells in these LNs was en-

hanced (Figure 6.10 A, left panel). The numbers of divided and total OTI cells in tumour-

draining LNs in response to contralateral MSU + M. smegmatis treatment were also higher

compared to PBS treated controls, but still considerably lower than in mice treated with

peri-tumoral MSU + M. smegmatis (Figure 6.10 A, middle & right panels). A significant
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Figure 6.9: A single MSU + M. smegmatis contralateral treatment does not
affect DCs in tumour-draining LN. Data are from the same experiment described in
Figure 6.8. DCs in dLNs were analysed by flow cytometry as described in Figure 4.8. (A)
The number of live cells in pooled axillary and inguinal tumour-draining and contralateral
LNs is shown. (B) & (C) The numbers of total DCs and the numbers of inflammatory
monocyte-derived DCs (7/4+Ly6C+) in tumour-draining LNs are shown as mean ± SE.
*p < 0.05, **p < 0.01 and ***p < 0.001 as assessed by one-way ANOVA with Tukey’s post
test. Data are from 1 experiment with 5 mice per group.

number of total and divided OTI cells was also observed in the contralateral LNs draining

the MSU + M. smegmatis administration site (Figure 6.10 A, middle & right panels).

The percentage of divided OTII cells in tumour-draining LNs was also significantly en-

hanced by contralateral MSU + M. smegmatis treatment (Figure 6.10 B, left panel),

but total numbers and numbers of divided OTII were not elevated in tumour-draining

LNs of contralaterally treated compared to PBS injected mice (Figure 6.10 B, middle & right

panels). However, a substantial proportion of OTII cells in contralateral LNs was found to

be divided after contralateral MSU + M. smegmatis administration (Figure 6.10 B, left

panel). In line with the enlargement of contralateral LNs in response to contralateral MSU

+ M. smegmatis treatment (Figure 6.9 A, right panel), this translated into significantly

higher numbers of total OTII cells and divided OTII cells in these LNs (Figure 6.10 B,

middle & right panels).
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Figure 6.10: MSU + M. smegmatis contralateral treatment induces proliferation
of tumour specific CD4 and CD8 T cells. CD4 T cells and CD8 T cells were purified
by magnetic sorting from LNs and spleens of OTII or OTI congenic mice, respectively, and
labelled with CFSE. OTI cells were > 95 % CD8+Vα2+Vβ5+ and OTII cells were > 90 %
CD4+Vα2+Vβ5+ as assessed by flow cytometry. Labelled T cells were then adoptively
transferred into C57 mice bearing established B16.OVA tumours (day 8). One day later,
mice were given a single MSU + M. smegmatis injection either around the tumour or s.c.
on the contralateral flank. (A) OTI proliferation was assessed by CFSE dilution in tumour-
draining and contralateral LNs 3 days after adjuvant treatment. The percentage and number
of divided OTI cells and the total number of OTI cells is shown. (B) OTII proliferation was
assessed 5 days after adjuvant treatment. The percentage and number of divided OTII cells
and the total number of OTII cells is graphed. *p < 0.05 and *** p < 0.001 as assessed by
one-way ANOVA with Tukey’s post test. Data are pooled from 2 independent experiments
with 5 mice per group each.

These data indicate that a single contralateral administration of MSU + M. smegma-

tis induces both CD4 and CD8 T cells specific for tumour antigens to proliferate in the

tumour-draining LNs. However, a large number of divided CD4 T cells was also observed

in contralateral LNs.

w
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Figure 6.11: Repeated MSU + M. smegmatis contralateral treatment has sim-
ilar effects on the composition of the immune infiltrate in tumours as peri-
tumoral administration. C57 mice bearing established B16F1 tumours were injected
either around the tumour or s.c. on the contralateral flank with MSU + M. smegmatis on
days 7, 9, 11 and 13. One day later, immune cells in tumours were analysed by flow cytome-
try as described in Figure 4.3. (A) The frequency of CD45+ cells in tumours is shown. (B)
The percentages of different immune cell types among the total CD45+ immune infiltrate is
graphed. (C) & (D) The frequencies of Ly6Chi and Ly6Cint monocytes among all live cells
in tumours are shown. All data are presented as mean ± SE. *p < 0.05, **p < 0.01 and
***p < 0.001 as assessed by one-way ANOVA with Tukey’s post test; n.s. not significant.
Data are combined from 2 experiments with 5 mice per group each.

The effect of four treatments with MSU + M. smegmatis, either around the tumour or on

the contralateral flank, on the immune infiltrate in tumours was analysed by flow cytometry.

Contralateral administration of MSU + M. smegmatis induced only a slight, non-significant

increase in the overall infiltration of immune cells into the tumours (Figure 6.11 A). The

recruitment of Ly6Chi and Ly6Cint monocytes was observed both after peri-tumoral and

after contralateral treatment, albeit to a lesser extent in the contralaterally treated group
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(Figure 6.11 C & D). After multiple adjuvant administrations, the overall composition of

the immune infiltrate in mice that received contralateral MSU + M. smegmatis resem-

bled more closely that of peri-tumorally treated mice than that of saline treated controls

(Figure 6.11 B).

Overall these results show that contralateral and peri-tumoral administration of MSU + M. smeg-

matis differ in their early effects on tumour infiltrate and DCs in tumour-draining LNs.

However, both application routes induce the proliferation of tumour-specific T cells and

lead to similar infiltration of monocytes in tumours at later time points.

6.3.6 The capacity of adjuvants delay primary tumour growth

is similar in melanoma, thymoma and breast carcinoma

models

To investigate whether the use of Poly IC and MSU + M. smegmatis adjuvants was also

applicable to other solid tumours in mice, the impact of adjuvant treatment on the growth of

the subcutaneous murine thymoma E.G7-OVA in C57 mice, and of the orthotopic breast car-

cinoma 4T1 in BALB/c mice, was evaluated. To this end, established tumours were treated

every second day by peri-tumoral adjuvant injection as for the B16F1 model. E.G7-OVA

tumours were treated 6-times, as an increased number of administrations had appeared to

be beneficial in the B16F1 model (Figure 6.1).

In the E.G7-OVA model, Poly IC and MSU + M. smegmatis administration resulted

in a significant delay of tumour growth and prolonged survival of tumour bearing mice

(Figure 6.12). This was in line with the results obtained in the murine B16F1 melanoma

(Figure 4.2). Furthermore, LPS had no significant effect on tumour growth or survival in

either model (Figure 6.12 and Figure 4.2). However, treatments with M. smegmatis or MSU

alone were effective in delaying tumour growth and increasing survival in the E.G7-OVA

thymoma bearing mice (Figure 6.12). This contrasts with their lack of anti-tumour activity

against B16F1 melanomas. The combination of MSU with M. smegmatis was still superior

in delaying tumour growth and especially in prolonging survival compared to the individual
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Figure 6.12: Adjuvant treatment in a thymoma model is effective at delaying
tumour growth. C57 mice bearing established s.c. E.G7-OVA tumours were injected
around the tumour with the indicated adjuvants on day 6, 8, 10, 12, 14 and 16. Tumour
growth was measured with callipers and is graphed as mean ± SE in (A). Significant
differences between treatment groups as assessed by two-way ANOVA with Bonferroni’s
post test starting from day 10 are indicated by *** p < 0.001. (B) Survival of the adjuvant
treated mice is shown. ***p < 0.001 as assessed by the Log-Rank-Test with Bonferroni’s
adjustment for multiple comparisons. Data are pooled from 2 independent experiments with
5 mice per group.
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adjuvants (Figure 6.12).

To extend this study to an orthotopic tumour model and investigate the adjuvant effects

in a different mouse strain, BALB/c mice were injected with 4T1 breast carcinoma cells

into the mammary fat pad. After tumours became palpable, they were treated with peri-

tumoral adjuvant injections. As the mammary fat pad can only tolerate lower injection

volumes without tissue disruption, adjuvants were twice as concentrated in half the volume,

and were administered only 4-times.

As observed in the melanoma and thymoma models, Poly IC and MSU + M. smegmatis

showed potent anti-tumour activity, significantly reducing tumour growth and increasing

survival by more than 10 days (Figure 6.13). Futhermore, LPS and M. smegmatis were

ineffective (Figure 6.13). Administration of MSU alone delayed growth of the 4T1 tumours,

but did not have a significant impact on survival (Figure 6.13).

In summary, the effect of the peri-tumoral adjuvant treatments on tumour growth was simi-

lar in the melanoma, thymoma and breast carcinoma models. Poly IC and MSU + M. smeg-

matis consistently induced the most pronounced delay in tumour growth and significantly

prolonged the survival of animals in all tumour models. LPS treatment failed to elicit any

significant anti-tumour effect in all models. Separate treatments with M. smegmatis or MSU

showed some activity against the E.G7-OVA thymoma, while only MSU had a slight effect

on 4T1 tumour growth and neither of these treatments was effective against the B16F1

melanoma.
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Figure 6.13: Treatments with selected adjuvants delay tumour growth in an
orthotopic breast carcinoma model similar to their effect against melanoma.
BALB/c mice were injected with 4T1 breast carcinoma cells into the mammary fat pad
and tumours were left to establish a palpable mass. On day 7, 9, 11 and 13 the indicated
adjuvants were administered peri-tumorally. (A) Tumour growth as measured with callipers
is shown as mean ± SE. Significant differences between treatment groups as assessed by two-
way ANOVA with Bonferroni’s post test starting from day 11 are indicated by *** p < 0.001.
(B) Survival of the adjuvant treated, tumour-bearing mice is graphed. *p < 0.05 as assessed
by the Log-Rank-Test with Bonferroni’s adjustment for multiple comparisons. Data are
pooled from 1 experiment with 5 mice per group.
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6.3.7 Peri-tumoral Poly IC and MSU + M. smegmatis treat-

ments reduce metastases

Both Poly IC and MSU + M. smegmatis cause some inflammation as evidenced by the induc-

tion of pro-inflammatory cytokines, recruitment of monocytes and appearance of monocyte-

derived inflammatory DCs at the tumour site. As inflammation has been shown to enhance

metastasis formation [543], it was important to determine the effect of these adjuvants on

the metastatic load.

To investigate the effect of adjuvant treatment on spontaneous metastases from an orthotopic

tumour, the 4T1 breast carcinoma model was used. Primary 4T1 tumours spontaneously

metastasize to lymph nodes, brain, bone, liver and lung [544, 545]. BALB/c mice bearing

established 4T1 tumours in their mammary fat pads were treated by peri-tumoral admin-

istration of Poly IC or MSU + M. smegmatis. When the tumours of the saline treated

control animals reached the maximal ethical tumour size, mice in all treatment groups were

sacrificed and their lungs were analysed for the presence of metastases.

Primary tumour growth was reduced in mice that received Poly IC or MSU + M. smegmatis

treatment (Figure 6.14 A). The total counts of metastatic lung colonies in PBS treated

control mice were quite variable and ranged from 2,000 to 20,000 per mouse (Figure 6.14 B).

The total number of metastases was reduced by both Poly IC and MSU +M. smegmatis

treatment (Figure 6.14 B). To account for any differences in total lung size, metastases

were also expressed as counts per lung weight, showing a similar reduction in response

to adjuvant treatment as total metastases counts (Figure 6.14 C). To establish whether

the reduced size of the primary tumours in Poly IC or MSU + M. smegmatis treated

groups alone led to the lower lung metastatic load observed, the correlation between tumour

weight and total lung colony counts was analysed in saline-treated controls. Mice with very

similar tumour sizes showed a large spread of metastatic load (Figure 6.14 A & B) and

no correlation between tumour size and metastasis counts was evident (R2 = 0.07). In

addition, Pulaski et al. show that in the 4T1 model, lung metastases formation is a very

early even that already occurs in tumours of 2 mm to 3 mm diameter [546]. This suggests
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Figure 6.14: Treatment with Poly IC or MSU + M. smegmatisreduces metas-
tases. BALB/c mice bearing established 4T1 breast carcinomas in the mammary fat pad
were treated by peri-tumoral injection of the indicated adjuvants on day 7, 9, 11 and 13. Tu-
mour size was measured with callipers and mice were sacrificed when saline treated controls
developed large tumours. Lung metastases were analysed by culturing lung cell suspensions
for two weeks in the presence of 6-thioguanine. Subsequently, 4T1 tumour cell colonies were
stained and counted. (A) Tumour growth is shown as mean ± SE. Significant differences be-
tween treatment groups as assessed by two-way ANOVA with Bonferroni’s post test starting
from day 11 are indicated by *** p < 0.001. (B-D) Metastatic lung colonies are shown as
total counts (B), counts per lung weight (C) or counts per tumour weight (D). Individual
values and means ± SE are shown for each group. **p < 0.01 and ***p < 0.001 as assessed
by the Kruskal-Wallis test with Dunn’s post test. Data are pooled from 2 independent
experiments with 6 and 8 mice per group, respectively.

that lung metastases form relatively independently of primary tumour size. Furthermore,

even when the number of metastases per tumour weight were calculated, Poly IC and MSU

+ M. smegmatis treated mice still have significantly lower metastasis counts compared to

saline treated controls (Figure 6.14 D).
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Together, these data indicate that Poly IC and MSU + M. smegmatis do not increase the

formation of metastases. In contrast, both adjuvant treatments appeared to reduce the

metastatic load in lungs even when the smaller size of primary tumours in these groups was

taken into account.

6.4 Discussion

The aim of the experiments described in this chapter was to optimise the treatment schedule

and route for adjuvant administration. In addition, it was evaluated whether live M. smeg-

matis could be replaced with dead M. smegmatis in the MSU combination treatment to

improve safety. The study was also extended to other tumour models, including the assess-

ment of the effect of adjuvant treatment on metastases.

Requirement for several adjuvant treatments for tumour growth

delay

At least two administrations of Poly IC, and 4 administrations of MSU + M. smegmatis,

were required to delay growth of the B16F1 melanoma and increasing the number of Poly IC

and MSU + M. smegmatis treatments improved the anti-tumour effect. When more than

4 doses were given, there was still a trend towards further benefit, however this was not

statistically significant. These results are in line with studies on CpG and Poly IC that

reported the requirement of repeated administration for adjuvants to exhibit significant

anti-tumour activity [11, 12, 403]. Furthermore, this result suggests that multiple doses of

Poly IC and MSU + M. smegmatis boost the anti-tumour immune response. Moreover,

they do not appear to induce feedback regulation that inhibits their activity.

The kinetics of the anti-tumour effect of Poly IC and MSU + M. smegmatis differed. Poly IC

inhibited tumour progression directly after the first application and tumours started to

grow out as soon as treatment was stopped. In MSU + M. smegmatis treated mice, an

anti-tumour effect only became apparent several days after the first adjuvant administration,

but tumours still grew at a slower rate even after treatment was ceased. This may be due to
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different retention and availability of these adjuvants. Poly IC is a small, soluble molecule.

This may allow Poly IC to be rapidly taken up and bind to its intracellular sensors TLR3

and RIG-I, thus activating downstream responses quickly after administration. In contrast,

MSU and M. smegmatis are both comparably large, particulate adjuvants, and it may take

longer for them to be taken up and processed to expose their TLR and NOD ligands. On

the other hand, these adjuvants both accumulated at the treatment site. This may lead to

small tumours with MSU and M. smegmatis build-up appearing bigger than they actually

are when measured with callipers. The persistence of MSU and M. smegmatis at the tumour

site may also provide a more sustained stimulus that keeps activating immune cells locally

even after treatment has stopped. Currie et al. also observed that Poly IC only showed

anti-tumour activity during the adjuvant treatment schedule and that tumours grew out as

soon as treatment stopped [12]. In addition, Yang et al. have shown that persistent TLR

signals were required for reversal of Treg mediated CD8 T cell tolerance, and for anti-tumour

immunity in a lymphoma model [528]. These findings all indicate that repeated stimulation

with PAMPs or DAMPs may be required to break tolerance and promote the anti-tumour

response.

The different treatment schedules tested in this study did not differ significantly in their

ability to slow B16F1 melanoma growth. While MSU + M. smegmatis did not appear to be

more effective when treatment was started earlier or given more often, smaller tumour size

may have been masked by accumulation of the adjuvant around the B16F1 tumours. With

Poly IC administration, a trend was observed that earlier start of the adjuvant treatment

may improve its anti-tumour effect. This is in line with previously published work in a

mesothelioma model [12]. Other immunotherapy approaches using adoptive transfer of

tumour-specific T cells, also reported a greater anti-tumour effect when the T cells were

transferred into tumour-bearing mice early [547]. This highlights that early intervention

appears generally to be preferable to achieve the best anti-tumour response.



6 Optimisation of adjuvant administration to delay tumour growth and reduce metastases 241

Comparable anti-tumour activity of dead and live M. smeg-

matis + MSU

In experiments in previous chapters, live M. smegmatis was used in combination with MSU

to induce anti-tumour immunity. The live mycobacteria BCG are currently used in patients

with superficial bladder cancer with considerable success [10, 548]. However, about 3 % of

bladder cancer patients treated with BCG developed systemic mycobacterial infection with

granuloma formation [533]. This raises safety concerns for the use of live M. smegmatis.

While M. smegmatis is not derived from a pathogen and may therefore pose a lower risk

for infection than BCG, it may still be desirable to use heat-killed preparations instead

of live bacteria. Therefore, the use of dead M. smegmatis + MSU for the treatment of

murine B16F1 melanoma was investigated. Tumour growth delay and survival benefit were

similar irrespective of the viability of M. smegmatis. In addition, the early recruitment of

immune cells to the tumour, and in particular of monocytes, as well as the accumulation

of inflammatory monocyte-derived DCs in dLNs were comparable between dead and live

M. smegmatis + MSU. A previous study by Martino et al. has also shown that human

monocytes were activated in a similar manner by live and heat-killed M. smegmatis [430].

Furthermore, M. smegmatis provides multiple PAMPs, including TLRs, Dectin-1 ligands

and NOD2 ligands, which can activate the immune system [549–551]. Together, this indi-

cates that the immuno-stimulatory properties of M. smegmatis do not depend on its viability

and that dead M. smegmatis can be used to replace live M. smegmatis to enhance adjuvant

safety.

Other studies have used extracts from mycobacteria to stimulate the anti-tumour immune

response [552, 553]. While it may be possible to purify the components of M. smegmatis that

act as immuno-stimulators in this study, the use of whole mycobacteria may be superior.

Intact mycobacteria present a particulate source of multiple PAMPs at once. Particulate

substances are preferentially taken up by DCs and shuttled to the dLNs as opposed to soluble

compounds, which are mainly found in neutrophils [554]. Moreover, the immune-stimulatory

properties of adjuvants such as alum have been attributed to their ability to form a depot,

leading to slow, prolonged release of antigen [555]. Thus, whole M. smegmatis, which was
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observed to persist at the injection site, may provide a sustained activation stimulus that

is preferentially detected by DCs. Furthermore, concomitant triggering of multiple PRRs

within the same DC by multiple mycobacterial PAMPs may provide synergistic signals and

thereby increase DC activation [377].

Effectiveness of contra-lateral treatment with MSU + M. smeg-

matis but not Poly IC

Previous studies on CpG have shown that administration of adjuvant at the tumour site

was superior to i.v., i.p., or distant s.c. injection [445, 556]. However, in cancer patients, the

tumour site is not always accessible for adjuvant treatment. It would therefore be desirable

for adjuvants to exhibit anti-tumour activity even when they are applied to a distant site.

In this study, Poly IC delayed B16F1 tumour growth when administered peri-tumorally,

but not when given on the contralateral flank. Other reports of Poly IC adjuvant treatment

have reported activity against a s.c. tumour with intra-tumoral injection [12], as well as

i.p. and i.v. administration when high doses were used [557]. This indicates that Poly IC

can be effective when given at the tumour site, i.v. or i.p. but not when administered at

a distant s.c. location. In contrast to Poly IC, MSU + M. smegmatis treatment showed

similar anti-tumour activity both with peri-tumoral and contralateral application routes.

It may therefore be feasible to activate the anti-tumour immune response with MSU +

M. smegmatis in cases where tumours are not accessible for adjuvant injection.

The pronounced anti-tumour effect of contra-laterally administered MSU + M. smegmatis

was unexpected and the underlying activation of immune cells was investigated in more

detail. As for peri-tumoral MSU + M. smegmatis administration, contra-lateral treatment

required adaptive immune cells to delay tumour growth. However, in contrast to peri-

tumoral MSU + M. smegmatis there was no marked influx of CD45+ immune cells to the

tumour site after a single dose of contra-lateral adjuvant injection, and the composition of

immune infiltrate at that time point rather resembled the situation in PBS-treated controls.

Furthermore, the contra-lateral LNs showed a more pronounced increase in size than the

tumour-draining LNs in response to contra-lateral MSU + M. smegmatis treatment. In-
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creased proliferation of tumour-antigen specific CD8 and CD4 T cells was observed both

after peri-tumoral and contra-lateral MSU + M. smegmatis treatment. After 4 adjuvant

treatments, the percentage of CD45+ immune cells in tumours was still lower in the contra-

lateral compared to the peri-tumoral treatment group, but the composition was similar in

both groups, with a significant increase in inflammatory monocytes. This suggests that

while the initial response differs depending on the site of adjuvant administration, repeated

administrations activate tumour-specific T cells that are required to control tumour growth

in either case.

At this stage, the exact mechanism by which contra-lateral MSU + M. smegmatis treatment

activates tumour-specific T cells is not clear. As the treatment-draining LNs show a more

profound increase in size than the tumour-draining LNs, MSU + M. smegmatis appears

to induce some local, tumour-independent immune activation. However, CD8 T cells pro-

liferation specific for tumour-model-antigen OVA was mainly observed in tumour-draining

LNs even when MSU + M. smegmatis was given on the contra-lateral flank. Divided OVA-

specific CD4 T cells (OTII) were detected both in the tumour-draining and the contra-lateral

LNs. One possibility would be that M. smegmatis cross-reacts with the CD4 T cell epitope

of OVA and that this antigen induces OTII cell proliferation. This appears unlikely, as the

same treatment effect was observed in B16F1 tumours that do not express OVA. However,

tumour-specific CD4 T cell proliferation could not be assessed in this situation and therefore

the possibility of antigenic mimicry between M. smegmatis and OVA cannot be excluded.

As the percentage and number of divided, OTII cells was also higher in tumour-draining

LNs of mice that received contra-lateral MSU + M. smegmatis compared to saline con-

trols, OTII T cells may have proliferated in tumour-draining LNs and subsequently been

attracted to the inflamed treatment-draining LNs. This effect may be more profound with

OTII compared to OTI T cells, as they were assessed 2 days later, allowing for a longer

period of egress from the LN where proliferation had occurred. If this scenario were true,

it would suggest that MSU + M. smegmatis systemically activates the immune system to

favour the anti-tumour response. MSU + M. smegmatis increased the serum levels of IL-12,

IFNγ, IL-1β and IL-6, as described in Chapter 4. A systemic induction of pro-inflammatory

and Th1 cytokines may be a potential mechanism by which MSU + M. smegmatis could



244 6 Optimisation of adjuvant administration to delay tumour growth and reduce metastases

promote the induction of anti-tumour immunity even at distant sites.

Effectiveness of MSU + M. smegmatis and Poly IC in other

tumour models

Adjuvant treatment was also effective in a s.c. model of murine thymoma and an ortho-

topic model breast carcinoma model. In both of these tumour models, as well as in the

murine melanoma model, Poly IC and MSU + M. smegmatis induced the most profound

tumour growth delay and the best survival benefit compared to other adjuvants. LPS was

not effective against any of the studied tumours. The response to M. smegmatis or MSU

administration was more varied. Neither adjuvant delayed tumour growth in the B16F1

model (as described in Chapter 4), whereas both adjuvants moderately delayed the growth

of the E.G7-OVA thymoma. MSU also slightly slowed the growth of 4T1 breast carcinomas

but failed to increase survival of 4T1 bearing mice. These results suggest that effective

adjuvants activate the anti-tumour response in a range of models and therefore may be

applicable to a broad range of different solid tumours. According to the literature, CpG

similarly activates anti-tumour immunity in many different tumour models [11, 403, 504].

While the ensuing immune response after CpG treatment may be similar, the relative im-

portance of the activation of innate and adaptive effector cells appears to differ depending

on the studied tumour model, as differential requirements for either only CD8 T cells [502],

only NK cells [503] or both CD8 T cells and NK cells [11, 504] have been reported.

Inherent properties of the different tumour models may also account for the observed

anti-tumour activity of M. smegmatis treatment and MSU administration against the E.G7-

OVA tumours, whereas these adjuvants were not effective in the melanoma model. In line

with the results in this study, E.G7-OVA has previously been reported to respond to adju-

vant treatment with M. smegmatis [458] and MSU [361]. E.G7-OVA appears to be more

immunogenic than the B16.OVA melanoma, as E.G7-OVA tumour cells constitutively se-

crete high amounts of the foreign OVA protein and also express high levels of MHC I [406],

compared to low levels of OVA and MHC I expression by B16.OVA tumour cells [558].

Furthermore, 100-fold lower numbers of adoptively transferred OTI T cells were required
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to prevent tumour growth of s.c. injected E.G7-OVA compared to B16.OVA tumour cells

[385, 559]. The ability of M. smegmatis alone to induce an anti-tumour response in the

E.G7-OVA model indicates that M. smegmatis can activate anti-tumour immunity. How-

ever, in the more aggressive B16 melanoma model, only the combination of M. smegmatis

and MSU was effective. Together with the later accumulation of inflammatory monocyte-

derived DCs in the dLNs of mice treated with M. smegmatis alone compared to animals

that received MSU + M. smegmatis, these results suggest that MSU somehow accelerates

the immune-stimulatory effects of M. smegmatis.

Reduction of metastatic load with MSU + M. smegmatis and

Poly IC treatment

The 4T1 breast carcinoma model also enabled the assessment of spontaneous lung metastases

from the primary tumour. Both Poly IC and MSU + M. smegmatis reduced the metastatic

load, even when the readout was adjusted for the smaller tumour size in the adjuvant

treated mice. Due to constraints in mouse availability, a direct comparison of metastases in

saline and adjuvant treated tumours left to develop to the same size could not be carried

out. These experiments would help clarify whether Poly IC and MSU + M. smegmatis can

reduce the metastatic burden irrespective of primary tumour size.

Previous reports also showed a role for adjuvant treatment in preventing lung metastases.

However, these studies used lung colonies after i.v. injection of tumour cells as an exper-

imental model of metastasis. While these experiments do not model the egress of tumour

cells from the primary site, they model the seeding of metastatic cells in distant tissues.

Using such an i.v. model of metastases, Kunikata et al. have shown that CpG adminis-

tration at a s.c. tumour site can inhibit lung colonisation by identical tumour cells [403].

This protection could be transmitted to näıve recipients when both CD4 and CD8 T cells

were adoptively transferred. In a similar approach, Lee et al. found fewer lung colonies of

a mammary tumour cell line when Poly IC was injected i.p. repeatedly over a period of

several weeks [560]. The elimination of tumour cells in response to Poly IC was at least

partially NK cell dependent. These studies highlight that adjuvants can inhibit seeding
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of metastatic cells at distant sites and that this control may involve both NK cells and

T cells. As Poly IC and MSU + M. smegmatis were found to activate both T cells and

NK cells in this study, both effector populations may be involved in the observed reduction

of pulmonary metastases.

A more recent report using an orthotopic model of breast carcinoma also showed that CpG

administration at the primary breast tumour site could prevent new formation of brain

metastases and slow progression of very small implanted brain tumours [542]. However,

CpG treatment did not alter the growth of more established brain tumours in this model,

despite T cell infiltration. In this study, a reduction of metastatic load was found in re-

sponse to treatment of established primary tumours with Poly IC and MSU + M. smeg-

matis. It is likely that some metastases were already present at the start of the adjuvant

treatment, as metastatic spread of the breast carcinoma cells occurs already when tumours

are 2 mm to 3 mm in diameter [546]. A number of mice that received Poly IC or MSU +

M. smegmatis treatment had no detectable metastatic lung colonies three weeks after tumour

inoculation. This suggests that adjuvant treatment with Poly IC and MSU + M. smegma-

tis may have prevented further formation of metastases, and possibly also reduced micro-

metastases already established in the lung at the start of adjuvant treatment. Enumeration

of the lung colonies before the start of adjuvant treatment would help clarify whether Poly IC

and MSU + M. smegmatis can indeed reduce already established metastases. While further

experiments are required to investigate the precise mechanism of action, the reduction of

the metastatic load in Poly IC and MSU + M. smegmatis treated mice suggests that these

adjuvants may be beneficial for use both in primary and metastatic malignancies.

Conclusions

Increasing the number of Poly IC and MSU + M. smegmatis administrations improved

tumour growth delay. However, after 4-6 doses the treatment effect appeared to plateau

and did not significantly improve further. Altering the treatment schedule to start adjuvant

administration earlier, or give adjuvant injections daily instead of every second day, did

not significantly alter tumour growth compared to the original schedule of 4 treatments
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every other day. A trend towards better treatment effect with earlier administration was

observed. Overall these results suggest that repeated adjuvant administration improves the

anti-tumour effect and that early treatment start may be beneficial.

Heat-killed M. smegmatis + MSU had the same effect on tumour growth, survival, early

immune infiltration into the tumour and DCs in dLNs as live M. smegmatis + MSU. This

indicates that active infection of cells by M. smegmatis or production of compounds by

viable bacteria is not necessary for its immuno-stimulatory activity. Therefore, the safer

dead mycobacterial preparation may be used to develop the MSU + M. smegmatis adjuvant

further for an application in the clinic.

Contra-lateral administration of Poly IC was ineffective, whereas contra-lateral treatment

with MSU + M. smegmatis delayed tumour growth similar to peri-tumoral administration.

This appeared to be likely due to systemic activation of the immune response. Tumour-

antigen specific T cell proliferation was observed and the anti-tumour activity was depen-

dent on adaptive immune cells. These findings suggest that MSU + M. smegmatis may

be a suitable adjuvant in situations where tumours are not accessible for direct adjuvant

treatment.

Adjuvant treatment was also found to be effective in a murine thymoma model, as well as an

orthotopic breast carcinoma model, in addition to the murine melanoma model investigated

in detail throughout this study. Poly IC and MSU + M. smegmatis were the most effective

adjuvants in delaying tumour growth and prolonging survival in all of these models. In the

breast carcinoma model, spontaneous metastases to the lung were also reduced by these

adjuvants.

Collectively these findings show that Poly IC and MSU + M. smegmatis are promising

adjuvants that may be broadly applicable against a range of solid tumours and even in

metastatic disease.





Chapter 7

General discussion
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The aim of this thesis was to investigate the use of natural adjuvants to stimulate the

anti-tumour immune response. All tested adjuvants could activate BMDCs in vitro. Murine

melanomas were found to be infiltrated by DCs, which were capable to respond to adjuvant

stimulation ex vivo. When the different adjuvants were tested for their ability to affect

tumour growth in vivo, peri-tumoral administration of CpG, Poly IC and MSU + M. smeg-

matis delayed tumour growth. In contrast, LPS, M. smegmatis, BCG, MSU and MSU +

BCG did not alter tumour growth. We investigated the effects of the successful adjuvants

Poly IC and MSU + M. smegmatis on the immune cells in the tumour and the dLN in more

detail and compared them to the ineffective treatments with individually administered MSU

or M. smegmatis, as well as LPS. A working model of how these adjuvants affect immune

cells is shown in Figure 7.1.

7.1 Cytokines induced by adjuvant treatment

All adjuvants up-regulated pro-inflammatory cytokine expression at the tumour site within

24 h of administration. However, only Poly IC, MSU + M. smegmatis and LPS treatment

resulted in a systemic increase of cytokine levels in the blood. IFNγ and IL-12 were only

significantly elevated in response to Poly IC and MSU + M. smegmatis. LPS, on the other

hand, induced much higher levels of pro-inflammatory cytokines such as IL-6 and TNFα

both at the tumour site and systemically. At the same time, LPS also induced very high

levels of the regulatory cytokine IL-10, whereas the other adjuvants only moderately up-

regulated IL-10. These findings suggest that M. smegmatis and MSU individually fail to

cause sufficient inflammation, whereas LPS increases pro-inflammatory factors so much that

regulatory mechanisms become activated that result in production of IL-10 and subsequent

dampening of the inflammatory response. This is in line with the response of dLN DCs to

LPS. dLN DCs transiently up-regulated activation markers after 1 treatment but appeared

even less activated than saline controls after 4 doses of LPS. Short-term activation followed

by depletion of splenic DCs 48 h after LPS administration was previously described [285]. A

reduction of the dose of LPS may be able to overcome these effects, but it may be difficult

to find a dose at which the immuno-stimulatory and regulatory properties of LPS can be

separated.
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While previous publications have established the importance of IL-12 and IFNγ in the con-

trol of tumour growth [20, 561], the relative importance of these and other cytokines for the

anti-tumour effect of the adjuvants used in this study remains to be determined. Cytokine

or cytokine-receptor deficient mice, as well as administration of blocking antibodies for dif-

ferent factors could be used to establish which cytokines are required for the anti-tumour

response elicited by the different adjuvants. However, pro-inflammatory cytokines such as

IL-6, TNFα and IL-1β partly overlap in their functions and in the transcription factors

and down-stream responses they induce. Therefore deficiency or blocking of only one of

these molecules may not show a detectable phenotype and simultaneous inhibition of two

or all of them may be required to abrogate the anti-tumour effect of Poly IC and MSU +

M. smegmatis.

DCs and macrophages are likely to be the main source of TNFα, IL-6, IL-1β, IL-10 and

IL-12 in response to adjuvant treatment. They express the PRRs required to detect LPS,

Poly IC, MSU and M. smegmatis [291, 359] and both have the capacity to produce these

cytokines. T cells and NK cells may contribute to the secretion of TNFα and IFNγ, probably

in response to the inflammatory milieu created by adjuvants treatment or interaction with

activated DCs and macrophages. They are not expected to respond to the adjuvants directly,

as they only express low levels of TLRs and no NLRP3 [359, 478].

Intracellular cytokine staining of tumour-infiltrating leukocytes after 4 adjuvant adminis-

trations showed that MSU + M. smegmatis increased the production of TNFα in DCs and

CD8 T cells, while Poly IC enhanced TNFα levels in NK cells. In addition, MSU + M. smeg-

matis, Poly IC and LPS increased IL-12p40 staining in DCs and IFNγ in CD8 T cells.

MSU + M. smegmatis and Poly IC also increased IFNγ levels in NK cells. As the cells

were not re-stimulated before staining, these results are likely to reflect the actual cytokine

production by these cells in the tumour. To confirm that cytokines were also secreted, it

may be possible to isolate the various tumour-infiltrating immune cell types by fluorescence-

activated cell sorting (FACS) and assess their cytokine production in cell culture supernatant

ex vivo. However, as the anti-tumour response induced by adjuvants is probably polyclonal,

it would not be possible to re-stimulate the cells with a specific antigen and thus cytokine

levels may be very low. Furthermore, the FACS procedure subjects cells to mechanical
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stress, which has been shown to activate DCs [562] and may therefore alter their cytokine

production profiles. Therefore, we chose not to pursue these experiments, as they would

require many mice to obtain sufficient numbers of tumour-infiltrating immune cells and may

provide limited additional information on their cytokine secretion capacity.

7.2 Accumulation of monocytes and monocyte-derived DCs

in response to adjuvants

Treatment with all adjuvants apart from MSU resulted in recruitment of monocytes to the

tumour site, which was already observed at 48 h after the first adjuvant administration.

Under inflammatory conditions, monocytes can be mobilised from the BM [563]. However,

a recent report also identified a major reservoir of monocytes in the spleen, which was

released to migrate to tissues upon injury [473]. The percentage and number of Ly6Chi and

Ly6Cint monocytes in spleens was decreased after 4 peri-tumoral treatments with MSU +

M. smegmatis, Poly IC and LPS. Administration of M. smegmatis also resulted in a lower

frequency of Ly6Cint, but not Ly6Chi monocytes. This may suggest that the monocytes

recruited to the tumour site by adjuvant treatments were mobilised from the spleen. It

would be interesting to investigate whether monocytes were also decreased in the BM after

adjuvant treatment. Furthermore, experiments on splenectomised animals could confirm

whether the spleen was the source of the monocytes recruited to tumours.

Monocytes that enter tissues can differentiate into macrophages or DCs [564]. After 4 ad-

ministrations of these adjuvants, an increased frequency of CD11c+MHCII+7/4+Ly6C+

cells, consistent with inflammatory monocyte derived DCs [466, 467], was observed in tu-

mours. Monocyte-derived DCs may take up tumour-antigen, migrate to dLNs and stimulate

anti-tumour T cell responses. The antigen-specific CD8 T cell response to OVA + Poly IC

and other adjuvants has previously been shown to be partly dependent on monocyte-derived

DCs [468]. Moreover, inflammatory monocyte-derived DCs have previously been shown to

mediate the initiation of T cell responses against Leishmania major [307]. Thus, inflam-

matory monocyte-derived DCs can prime functional CD8 T cell responses in vaccination

and infection models. In this study, inflammatory monocyte-derived DCs accumulated in
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tumour-dLNs already after one administration of Poly IC and MSU + M. smegmatis. On

its own, M. smegmatis elevated their frequency in dLNs after 4 administrations, whereas

they were never observed in dLNs in response to LPS. This suggests that Poly IC and

MSU + M. smegmatis effectively and rapidly induced inflammatory monocyte-derived DCs

to migrate to the dLNs. This response was delayed when M. smegmatis was used alone.

In contrast, LPS resulted in the appearance of inflammatory monocyte-derived DCs at the

tumour site but not in the dLNs. This may be due to a failure of LPS to induce migration

of inflammatory monocyte-derived DCs to the dLNs or limited survival of these DCs in

dLNs. As intradermal injection of LPS doses > 1 µg have previously been shown to block

the conversion of monocytes into fully migratory DCs [469], a lack of migration after LPS

treatment appears more likely.

As the observation of monocyte-derived inflammatory DCs at the tumour site and dLNs is

only correlative, there is a possibility that the inflammatory DCs in dLNs did not migrate

from tumours but were instead recruited to dLNs directly from the blood, as previously

shown in a viral infection model [308]. To investigate their origin, it may be possible to use

a tumour transfected to express a fluorescent protein, such as GFP. If inflammatory DCs

migrate from the tumour to stimulate the T cell response in dLNs, they would be expected

to carry tumour antigen and therefore be GFP+ in such a model. Such a result could not

rule out the possibility of antigen-transfer to these DCs in the dLNs, but would support their

migration from the tumour site. Furthermore the requirement of DCs for the anti-tumour

effect could be established using CD11c-DTR BM chimeric mice, in which CD11c+ DCs

that bear the human diphteria toxin receptor (DTR) can be depleted long-term by repeated

administration of diphteria toxin [565, 566].

The role of monocytes has frequently been investigated by depletion with an antibody

against Ly6C/Ly6G (anti-Gr-1, clone RB6-8C5) [567, 568]. However, this antibody also

depletes neutrophils [199]. Furthermore, a recent publication suggests that it does not

actually deplete monocytes but rather masks the Ly6C/Ly6G epitope in vivo and alters cell

function [569]. Therefore, the anti-Gr-1 antibody may not be suitable to assess the impact

of monocytes in adjuvant induced anti-tumour immune responses. Another antibody that

specifically targets only Ly6C, clone AL-21, has been developed for flow cytometry, but has
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not previously been reported for cell depletion. If AL-21 proved suitable to deplete Ly6C+

cells in vivo, it may be useful to study the role of Ly6Chi monocytes. In addition, monocytes

use chemokine receptors for entry at the site of inflammation. CCR2, CCR5 and CX3CR1

have all been implicated in their recruitment [570], with CX3CR1 attributed a crucial role in

the recruitment of monocytes that turn into inflammatory DCs [571]. Therefore, chemokine

receptor deficient mice may be useful to establish the importance of monocyte infiltration

at the tumour site for the adjuvant induced anti-tumour response.

7.3 Potential of tumour-infiltrating monocytes to function as

MDSCs

It is important to address the role of monocytes in this model in more detail, as the surface

phenotype of the CD11b+7/4+Ly6C+ monocytes identified in this study is also consistent

with MDSCs [196, 470]. Most studies of MDSCs focus on the spleen, where these cells accu-

mulate in tumour-bearing animals [196]. However, MDSCs are variably induced by different

tumours, and B16F10 melanoma was found to only moderately increase MDSCs from 2 %

to about 5 % of spleen cells [196]. In contrast, EL4 thymomas, CT26 colon carcinomas and

4T1 breast carcinomas resulted in MDSCs comprising 20-30 % of all live cells in spleens

[196]. Using the B16F1 melanoma, no significant increase in Ly6ChiLy6G- monocytic and

Ly6CloLy6Ghi granulocytic CD11b+ cells was found in the spleen of saline treated tumour-

bearing compared to näıve mice. In mice treated with MSU + M. smegmatis, Poly IC

and LPS, the number of both subsets was even significantly decreased. Furthermore, the

presence of tumours has been reported to increase the suppressive ability of splenic MDSCs

[572, 573]. However, as shown in Appendix D of this study, enriched Ly6ChiLy6G-CD11b+

and Ly6CloLy6Ghi CD11b+ cells from näıve and B16F1 tumour bearing mice had a similar,

moderate capacity to suppress T cell proliferation in vitro. This suggests that neither the

tumour itself nor adjuvant treatment induced MDSCs in the spleen. Moreover, the highest

infiltration of Ly6ChiCD11b+ and Ly6CintCD11b+ cells was seen in MSU + M. smeg-

matis treated tumours and was associated with a significant delay in their progression.

MSU + M. smegmatis and Poly IC were also the most successful adjuvants in delaying
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tumour growth and increasing survival in the E.G7-OVA and 4T1 tumour models, which

are both known to induce high amounts of MDSCs [196]. This further supports the hypoth-

esis that the observed myeloid cells infiltrating MSU + M. smegmatis and Poly IC treated

tumours were not suppressive MDSCs but rather inflammatory monocytes that could dif-

ferentiate into immuno-stimulatory inflammatory DCs and possibly M1-like macrophages.

A previous study on a nano-particulated adjuvant also reported accumulation of cells with

MDSC phenotype that lacked suppressive function [574]. Although the numbers of tumour-

infiltrating immune cells are relatively low, it may be possible to isolate the Ly6ChiCD11b+

and Ly6CintCD11b+ cells by FACS from pooled, treated B16.OVA tumours and assess their

ability to suppress or induce näıve OVA-specific T cell proliferation. This assay would de-

termine if the tumour-infiltrating monocytes preferentially exert suppressive or stimulatory

functions.

7.4 Activation of adaptive and innate effector cells by adju-

vant treatment

The accumulation of inflammatory monocyte-derived DCs in dLNs of tumours treated once

with Poly IC or MSU + M. smegmatis also correlated with an increase in the number of

divided tumour-antigen specific CD8 T cells. This suggests that both of these adjuvants

enhanced CD8 T cell proliferation. MSU + M. smegmatis also enhanced CD4 T cell prolif-

eration. In addition, the dLNs in these groups were enlarged already after a single adjuvant

application and dLNs remained large after 4 adjuvant treatments. This indicates sustained

reactivity of the dLNs in response to Poly IC and MSU + M. smegmatis. NK cells have

also been reported to interact with DCs in LNs and DCs and NK cells can reciprocally

activate each other [230, 575, 576]. While DC-NK interaction was not investigated in this

study, increased production of IFNγ and TNFα by NK cells in tumours indicated that

NK cells were more activated in response to adjuvant treatment. Furthermore, Poly IC

and MSU + M. smegmatis enhanced infiltration of NK cells and CD8 T cells into B16F1

tumours. In addition, CD8 T cell production of cytokines was also augmented by both

adjuvants. MSU + M. smegmatis also significantly increased CD4 T cell infiltration, while
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at the same time reducing Tregs. Studies in Rag1 deficient and cell-depleted mice revealed

that both NK cells and CD8 T cells were required for the anti-tumour effect of Poly IC and

MSU + M. smegmatis. The results for CD4 T cells were less conclusive, but suggested that

CD4 T cells may also play a role in adjuvant-induced anti-tumour immunity. Collectively,

these data indicate that increased T cell activation and proliferation in dLNs, together with

enhanced infiltration of T cells and NK cells as well as augmented cytokine production by

these effector cells results is sufficient to delay tumour growth. Most likely, CD8 T cells and

NK cells kill tumour cells directly by exocytosis of cytotoxic granules and death-receptor

pathways [577]. Tumours that are sensitive to TNFα or IFNγ may also be eliminated via

secretion of these cytokines by CD8 T cells and NK cells [24, 117]. However, CD8 T cells

especially may need several days to proliferate and then migrate to the tumour, which may

allow the aggressive B16F1 tumours to progress. A previous study of adoptively transferred

tumour-specific T cell has shown elegantly that small tumours can be eliminated even in

the presence of large tumours, but that large tumour masses cannot be controlled [547].

Therefore, tumour cells may grow faster than the immune response can eliminate them, re-

sulting in the observed delay in tumour progression by adjuvant treatment, but not tumour

regression or eradication. To improve the outcome of adjuvant-induced immunotherapy, it

would therefore need to be combined with treatments that debulk large tumour masses, such

as surgery or chemotherapy. For combination with chemotherapeuty, it will be important

to avoid agents that induce immuno-suppression, and instead select drugs that can enhance

anti-tumour immunity [578].

7.5 Implications of the findings of this thesis

7.5.1 Tumour-infiltrating monocytes may exert suppressive

or stimulating functions

The outcome of the functional assessment of Ly6ChiCD11b+ and Ly6CintCD11b+ cells has

important implications for the assessment of MDSCs as well as the applicability of adjuvant

treatments in the clinic. If these cells were found to have no effect on T cell proliferation or
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were even stimulatory, the results of studies assessing MDSC solely by surface staining may

need to be re-assessed. Furthermore, it would make “less-suppressive” MDSC a common

feature of successful adjuvants. CpG has previously been reported to partly restore T cell

proliferation in the presence of MDSC and to increase expression of CD11c and MHC II on

MDSCs [472]. This suggests that MDSCs have a considerable level of plasticity and can be

harnessed for anti-tumour immunotherapy if activated with the appropriate stimuli.

On the other hand, if Ly6ChiCD11b+ and Ly6CintCD11b+ cells were suppressive MDSCs,

adjuvant treatments with Poly IC or MSU + M. smegmatis would benefit from combina-

tion with a therapy that depletes MDSCs or inhibits their function. A study by Serafini

et al. indicates that Phosphodiesterase-5 inhibitors, such as Sildenafil, Tadalafil and Var-

denafil, which are clinically used to treat erectile dysfunction, blocked MDSC function by

down-regulating arginase 1 and nitric oxide synthase 2 [579]. A synthetic triterpenoid,

bardoxolone-methyl, was also found to inhibit MDSC function, delay tumour growth in

mice and restore T cell proliferation of cancer patients, via reduction of ROS from MDSCs

[580]. It may be beneficial to combine therapies that inhibit MDSC function with antibod-

ies that block T cell inhibition to release tumour-specific effector cells from all suppressive

influences. Blocking antibodies against inhibitory molecules on T cells are already in clinical

use and show promising anti-tumour activity.

7.5.2 Monocyte-derived DCs in tumour immunotherapy

In the current study, DC activation as assessed by up-regulation of surface markers was not

detected in tumours after adjuvant treatment. Only production of IL-12 and TNFα could

be somewhat enhanced by Poly IC and MSU + M. smegmatis. However, DC numbers in

dLNs were increased and especially the rapid accumulation of monocyte-derived inflamma-

tory DCs in dLNs correlated with a delay in tumour growth. This suggests that it may

not be possible to activate tumour-resident DCs by adjuvant application in situ, and in-

duce them to migrate to the dLNs and stimulate the anti-tumour response. Rather, newly

differentiated, monocyte-derived DCs may have the capacity to fulfil this function. While

further work is needed to confirm this hypothesis as outlined above, if it were true, it would
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have consequences for future studies on DC activation in tumours. Inflammatory monocyte-

derived DCs may be a better correlate of successful activation of the immune response than

global up-regulation of activation markers on LN DCs. It might therefore be interesting

to study these inflammatory DCs in more detail also in other tumour-immunotherapy ap-

proaches. In addition, several molecules expressed by DCs are being investigated to target

antigens to specific DC populations to increase vaccine efficiency [581]. If monocyte-derived

inflammatory DCs are really particularly suited to induce anti-tumour immunity in a milieu

of tumour-immune-suppression and tolerance, they may be a viable target for vaccine-based

tumour-immunotherapy. However, more research would be needed to identify unique surface

molecules of these cells suitable for specific targeting.

7.5.3 Potential for the combination of adjuvant treatment

with blockade of immuno-suppression

Therapies combining immune stimulation with the blockade of immuno-suppressive mecha-

nisms are promising strategies to break tolerance and increase anti-tumour immunity. While

methods to inhibit MDSCs have started to be developed, Tregs have already been targeted

in several clinical trials. Antibodies to the inhibitory molecule CTLA-4 on T cells can en-

hance anti-tumour immunity in mice [394, 395]. And the human anti-CTLA-4 antibody

Ipilimumab has been used in several clinical trials and was approved by the FDA in 2011

[6, 7]. While some complete responses were observed, mainly in melanoma patients, Ipili-

mumab has been associated with severe autoimmune side effects, which frequently require

treatment with steroids or TNFα blockade, and may limit its use [6, 7]. PD-1 is another

inhibitory molecule expressed by T cells [520] that has been linked to T cell tolerance and

CD8 T cell exhaustion [269, 582]. PD-1+ T cells from melanoma patients have found to

be dysfunctional [270], probably due to expression of PD-L1 by the melanoma cells [583]

and could be rescued by PD-1 blockade [270]. An antibody for use in humans has been de-

veloped and a phase I trial involving 296 patients has just been completed [8]. The results

of this trial were very promising, with 20-25 % of patients with diverse types of tumours

showing objective, durable responses. In patients with PD-L1+ tumours, the response rate
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was even as high as 36 %. While some patients experienced grade III/IV toxicities, the au-

thors conclude that these could be managed and would not preclude clinical use. Phase II

studies are currently underway and phase III trials are planned. In mice, combination of

anti-PD-1 or anti-CTLA-4 therapy with CpG adjuvant therapy led to tumour eradication

and increased survival [521]. Therefore, combination of Poly IC or MSU + M. smegma-

tis with anti-CTLA-4 antibody may enhance the anti-tumour effect. However, MSU +

M. smegmatis may not benefit from combination with anti-PD-1 antibody, as the percent-

age of PD-1+ CD8 T cells in B16F1 melanomas was already reduced by treatment with

MSU + M. smegmatis. In contrast, CD8 T cells in Poly IC treated tumours were PD-1+

and their function may be enhanced with anti-PD-1 blocking antibody.

7.6 Summary and conclusions

Peri-tumoral treatments with Poly IC and MSU + M. smegmatis delayed tumour growth

and increased the survival of tumour bearing mice. The effects of adjuvant treatment on the

immune system are summarised in Figure 7.1. Poly IC and MSU + M. smegmatis caused

systemic release of IL-12 and IFNγ within hours of administration and also induced local

up-regulation of cytokines at the tumour site. In contrast, ineffective adjuvants either failed

to induce cytokines (MSU, M. smegmatis) or induced very high levels of pro-inflammatory

cytokines accompanied by substantial levels of IL-10 (LPS). In addition, the induction of

successful anti-tumour immunity by Poly IC and MSU + M. smegmatis correlated with the

infiltration of Ly6C+ monocytes into the adjuvant-treated tumours and accumulation of

monocyte-derived inflammatory DCs in dLNs. These findings suggest that moderate levels

of inflammation may be needed to stimulate anti-tumour immunity. Furthermore, rather

than activating DCs already present in the tumour, the adjuvants used in this thesis appear

to act via recruiting monocytes to the tumour site and inducing their differentiation into

DCs that can initiate anti-tumour responses in dLNs.

Poly IC and MSU + M. smegmatis treatment increased T cell proliferation, infiltration of

T cells and NK cells into tumours and cytokine production by effector cells. The activation

of both innate and adaptive effector cells is advantageous, as NK cells and T cells may
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cooperate in rejecting tumours with different levels of MHC I expression. In addition, the

adaptive anti-tumour immune response resulting from adjuvant treatment is likely to be

polyclonal, limiting tumour immune escape via loss of antigen expression.

The strong combined innate and adaptive response induced by Poly IC and MSU + M. smeg-

matis delayed the growth of several different murine tumours in two different mouse strains.

Furthermore, not only primary tumour growth but also metastatic load was reduced by

adjuvant treatment. Therefore Poly IC and MSU + M. smegmatis may be effective against

a wide range of cancers, including aggressive tumours with low immunogenicity, and may

even be beneficial in the treatment of metastatic disease.

The advantage of using adjuvants like Poly IC or MSU + M. smegmatis as anti-cancer

therapy is that these treatments should be cheap, easy to administer and do not require

special expertise or intensive labour in manufacturing. Adjuvants are already in clinical use

for the treatment of specific cancers. Creams containing the TLR7 agonist Imiquimod are

applied topically to treat skin cancers including squamous cell carcinoma and superficial

malignant melanoma. Superficial bladder cancer can be treated by intravesical instillations

of BCG, which was found to be superior to other treatments including chemotherapy. Thus,

adjuvants can be used for successful cancer-immunotherapy.

However, both Imiquimod and BCG show activity only in selected malignancies. One pos-

sibility for the effectiveness of BCG against bladder cancer but not melanoma may be that

urine contains uric acid, which can form MSU crystals. Thus, BCG may act together with

MSU to stimulate anti-tumour immunity in the bladder, but may fail to activate the immune

system in other sites that lack uric acid. Both BCG and Imiquimod also need to be applied

at the tumour site to be effective. In contrast, MSU + M. smegmatis showed considerable

anti-tumour activity even when given s.c. at a site distant from the tumour. This suggests

that MSU + M. smegmatis treatment may not be limited by the accessibility of tumours

for direct injection and may thus be applicable in a wide range of patients.

The safety of Poly IC and MSU administration has already been established in clinical trials.

While M. smegmatis is not currently used in the clinic, the related mycobacterium BCG

is a standard therapy for superficial bladder cancer. In contrast to BCG, M. smegmatis is
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not derived from a pathogen and should therefore pose an even smaller risk for patients.

Moreover, heat-killed M. smegmatis was found to be as effective as live M. smegmatis in the

combination treatment with MSU and the use of heat-killed preparations would eliminate

any risk of infection.

While further work is required to elucidate the role of monocytes and monocyte-derived DCs

in the anti-tumour response induced by Poly IC and MSU + M. smegmatis, these adjuvants

are promising candidates for the development of successful immunotherapy regimens in pa-

tients. In addition, the findings of this thesis provide insights into the factors involved in

the generation of a successful anti-tumour immune response by adjuvant treatment. Under-

standing this process in more detail will help to select and develop the treatments that are

most effective in stimulating anti-tumour immunity.

7.7 Future directions

This thesis has characterised a range of cytokines and changes in monocyte- and DC pop-

ulations that accompany the activation of NK cells and T cells that exert anti-tumour

function. However, further work is needed to clarify which of these factors are required

for the anti-tumour response and how they contribute to anti-tumour immunity. Several

suggestions for experiments to address these questions are briefly outlined below:

I) Which cytokines are required and which cell types produce them?

Knock-out mice and blocking antibodies against a range of cytokines, including IFNγ, IL-12,

TNFα and IL-1β have been described. Cytokine deficient mice could be used to determine

which cytokines are required for the adjuvant-induced anti-tumour response, while blocking

antibodies could be employed to determine at which time points these cytokines were nec-

essary. Simultaneous blocking or knock-out of several cytokines may be required to reveal

the importance of cytokines that share overlapping functions, such as the pro-inflammatory

TNFα and IL-1β. Studies in reporter mice that express fluorescent proteins concomitantly

with cytokines may help to determine which cells produce each cytokine in the course of the

anti-tumour response.
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Are DCs required and which subset migrates from tumours and presents antigen in dLNs?

DCs can be depleted long- or short-term using CD11c-DTR BM-chimeras to establish

whether DCs are required for the anti-tumour immune response throughout treatment

or only at specific stages. Furthermore, adjuvant treated mice bearing GFP-expressing

tumours could be used to assess antigen-uptake by different DC subsets and to confirm

antigen-transport to dLNs. To establish which DC subset presents antigen and is capable

of activating tumour-specific T cells in dLNs, DC subsets from dLNs of adjuvant-treated

OVA-expressing tumours could be sorted by FACS and analysed for their ability to induce

OTI and OTII T cells proliferation ex vivo.

Are tumour-infiltrating monocytes immuno-suppressive or stimulatory?

All methods for the abrogation of monocytes to assess their function have limitations.

Anti-Gr-1 antibodies deplete neutrophils in addition to monocytes. The chemokine re-

ceptors CCR2 and CX3CR1 are crucial for monocyte recruitment during inflammation and

CX3CR1 in particular was required for the influx of monocytes that differentiate into in-

flammatory DCs. Therefore, experiments in CCR2 and CX3CR1 deficient mice may help to

clarify the role of monocyte infiltration at the tumour site. The effect of tumour-infiltrating

monocytes on T cells could also be directly assessed by FACS purification of the monocytes

and analysis of their capacity to induce T cell suppression or proliferation ex vivo.

Adjuvant treatment in vivo has a multitude of direct and indirect effects on many immune

cells. The observation that LPS induces many of the cytokines seen with Poly IC and

MSU + M. smegmatis administration and considerable transient DC activation in dLNs,

but fails to delay tumour growth, highlights the need to understand the adjuvant induced

immune response in more detail. The dissection of beneficial, neutral and detrimental

effects of adjuvant administration on the immune system will greatly aid the development

of successful adjuvant-based cancer immunotherapy.
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A LSRII specifications

Table A.1: LSR II Lasers

Number Wavelength Power and Type

1 355nm 20mW solid state (UV)

2 488nm 100mW solid state (blue)

3 532nm 150mW Pulsed diode (green)

4 405nm 50mW CUBE diode laser (violet)

5 640nm 40mW CUBE diode laser (red)

Table A.2: LSR II Detectors

Name Laser Wavelength

range

Dyes

U670LP 1 ≤ 670 nm Hoechst Red

U450/50 1 425-475 nm DAPI, Live/Dead Fixable Blue

B685/35 2 667-702 nm PerCP, PE-Cy5.5

B515/20 2 505-525 nm AlexaFluor488, GFP, CFSE, FITC

B488/10 2 478-498 nm SSC

G780/60 3 750-810 nm PE-Cy7

G695/40 3 675-715 nm PerCP-Cy5.5, PE-Alexa Fluor700, PE-Cy5.5

G660/40 3 640-680 nm PE-Cy5, PE-Alexa Fluor 647

G610/20 3 600-620 nm PI, PE-Texas Red

G575/25 3 562-580 nm PE

V705/70 4 670-740 nm Qdot 705

V660/20 4 650-670 nm Qdot 655

V605/40 4 585-625 nm Qdot 605

V560/40 4 540-580 nm Pacific Orange

V525/50 4 500-550 nm AmCyan

V450/50 4 425-475 nm Pacific Blue, HorizonV450

R780/60 5 750-810 nm APC-Cy7

R710//50 5 685-735 nm Alexa Fluor 700

R670/14 5 663-677 nm APC, AlexaFluor 647
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B Distribution of cell frequencies and tumour sizes
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Figure B.1: B16F1 tumour sizes are consistent with Gaussian distribution. C57
mice bearing established B16F1 tumours were injected around the tumour with the indicated
adjuvants on day 7, 9, 11 and 13. Tumour sizes at day 13 and 15 are shown as mean +
SE and are pooled from 2-3 experiments with 5 mice per group. The D’Agostino Pearson
test for normality was performed and p values are reported on the top line. p > 0.05 is
considered to be consistent with Gaussian distribution.
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Figure B.2: Infiltration of immune cells into tumours is consistent with Gaussian
distribution. The immune infiltrate of B16F1 tumours from C57 mice was analysed as
described in Figure 3.11. The D’Agostino Pearson test for normality was performed and p
values are reported on the top line. p > 0.05 is considered to be consistent with Gaussian
distribution.
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Figure B.3: Accumulation of DCs in dLNs is consistent with Gaussian distri-
bution. The DCs in dLNs of B16F1 tumours treated once with the indicated adjuvants
was analysed as described in Figure 4.8. The D’Agostino Pearson test for normality was
performed and p values are reported on the top line. p > 0.05 is considered to be consistent
with Gaussian distribution.
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D Spleen monocytes frequency, numbers and suppressive func-

tion

Naiv
e

PBS
MSU

M. s
meg

mati
s

MSU + M
. s

meg

Poly 
IC LPS

0.0

0.5

1.0

1.5

%
 o

f a
ll 

ce
lls

Ly6C hi
Ly6C int

*** *** ***

*

*** *** ***
*

Naiv
e

PBS
MSU

M. s
meg

mati
s

MSU + M
. s

meg

Poly 
IC LPS

0
1
2
3

20

40

60

80

Ce
ll 

nu
m

be
r (

x 
10

5 )

Ly6C hi
Ly6C int

***
*** ***

** ** **

A. B.

Figure D.1: Frequency and number of monocytes in spleens of adjuvant treated
tumour bearing mice. C57 mice bearing established B16F1 tumours were injected around
the tumour with the indicated adjuvants on day 7, 9, 11 and 14. 24 h after the last treatment,
spleens were analysed by flow cytometry. Ly6Chi monocytes were identified as live CD11b+
Ly6Chi Ly6G- cells and Ly6Cint monocytes were identified as live CD11b+ Ly6Cint Ly6G+
cells. (A) The percentages of both monocyte populations in spleens of näıve and adjuvant
treated tumour bearing mice is shown. (B) The total numbers of both monocyte populations
in spleens are graphed. Data are expressed as mean + SE and are from one experiment
with 5 mice per group. The analysis of spleen monocytes has been performed by Lisa Shaw.
*p < 0.05, **p < 0.01 and ***p < 0.001 according to 1-way-ANOVA with Tukey’s post test.
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Figure D.2: Suppression of T cell proliferation by Ly6Chi monocytes. Data are
from the same experiment as Figure D.1. After red blood cell lysis, spleen cells were sepa-
rated through a lympholyte centrifugation. Cells from the buffy layer were then magnetically
depleted of Ly6G+, CD3+ and B220+ cells, followed by positive magnetic selection for Gr-
1+ cells. Ly6Chi monocytes were enriched to 7-10 %, with the remaining cells consisting
mainly of B cells and T cells. Ly6Chi monocytes were plated at the indicated ratios with
näıve CFSE labelled LN cells stimulated with anti-CD3 and anti-CD28. After 3 days T cell
proliferation was assessed by CFSE dilution using flow cytometry. Data are expressed as
mean + SE and are from one experiment with 5 mice per group. The analysis of spleen
monocytes has been performed by Lisa Shaw.
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Figure D.3: Suppression of T cell proliferation by Ly6G+ cells. Data are from
the same experiment as Figure D.1. After red blood cell lysis, spleen cells were separated
through a lympholyte centrifugation. Cells from the pellet were then magnetically depleted
of Ly6C+, CD3+ and B220+ cells. Ly6G+ cells were enriched to 40-50 %, with the remain-
ing cells consisting mainly of B cells and T cells. Ly6G+ cells were plated at the indicated
ratios with näıve CFSE labelled LN cells stimulated with anti-CD3 and anti-CD28. After
3 days T cell proliferation was assessed by CFSE dilution using flow cytometry. Data are
expressed as mean + SE and are from one experiment with 5 mice per group. The analysis
of spleen monocytes has been performed by Lisa Shaw.
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