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ABSTRACT  

The urban expansion of Lagos continues unabated and calls for urgent concern. This thesis 

explored the use of both the conventional and unconventional techniques for modelling land use 

change. Two conventional methods (ordinary least squares and geographically weighted 

regression) were based on geographic information systems, while four unconventional methods 

(logistic regression, artificial neural networks, and two proposed types of support vector 

machine) were based on cellular automata. These techniques were evaluated using three land use 

epochs: 1963-1978, 1978-1984, and 1984-2000.  

       The conventional methods make quite strong statistical assumptions, some of which are 

shown not to be met by the land use data at hand. Despite this, these methods do exhibit 

substantial agreement between observed and the predicted maps. The non cellular automata and 

cellular automata modelling were then implemented with the logistic regression, artificial neural 

network, support vector machine, and fuzzy support vector machine models, with model 

parameters set by k-fold cross-validation. The cellular automata predicted maps were more 

accurate than those of the non cellular automata.  

       The cellular automata modelling results from the proposed support vector machine and 

fuzzy support vector machine were compared with those from the geographic information 

systems based geographically weighted regression, logistic regression, and artificial neural 

network. The results from the geographic information systems based geographically weighted 

regression were the best, followed by those from the support vector machine and fuzzy support 

vector machine, followed by the artificial neural network, and logistic regression. This research 

demonstrated that the proposed support vector machine and fuzzy support vector machine 

based cellular automata models are promising tools for land use change modelling.  
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1 

Introduction 

 

 

CHAPTER 1 

 

INTRODUCTION 

  

1.1 Research problem 

Changing land use globally is a topical issue of discussion. Land use change generally implies 

urban growth (or urban expansion), deforestation, desertification, change in land cover, soil 

erosion, and soil salination (Richards, 1990). This research focuses on urban expansion. 

Urbanisation is considered a vital social process that has had one of the most profound impacts 

on the local, regional, and global scales of the environment  (Turner et al., 1990).  

        Urbanisation may be the benchmark for measuring economic growth and development, 

however in the case of sprawling cities of developing countries it has been accompanied by 

poverty, unemployment, environmental degradation, decaying infrastructure, and uncontrollable 

growth of informal settlements (Angotti, 1993). It was predicted that most African countries will 

be 54 percent urban by 2025 (United Nations, 2002). Sprawl in most African megacities is mainly 

due to rural-urban migration (Bernstein, 1995). 

        Urban sprawl in Lagos has put profound pressure on housing, infrastructure, and the 

environment (Braimoh & Onishi, 2007), and is generally viewed by most Nigerians as an 

intractable problem (Abiodun, 1974; Gandy, 2006). Urban planning in Lagos is practically 

unregulated (Abiodun, 1977). The use of spatial forecast models is lacking in the planning of 

Lagos. Spatial forecast models are vital for formulating sustainable planning strategies. The social 

and environmental repercussion of loosely planned urban cities like Lagos could be catastrophic 

especially in the present situation in Lagos that has constantly experienced remarkable urban 

expansion in a short period of time. Lagos has maintained an exponential population growth 

such that the population of Lagos is expected to attain 24.4 million people by 2015 (Barredo et  
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al., 2004). Technological methods, such as Geographic Information Systems (GIS), predictive 

models among other requirements for sustainable physical planning, are not presently utilised by 

urban planners in Lagos. Sustainable physical planning will remain a mirage in Lagos unless 

contemporary e-planning techniques are adopted (Oduwaye, 2009). 

        The author's  interview with the Nigerian planning authorities corroborated the assertions 

made by Barredo et al. (2004) and Oduwaye (2009) that contemporary scientific predictive 

models are not being used for formulating planning programmes for Lagos. This planning defect 

has been identified as a problem to be addressed by this thesis. 

         Having identified the enormous gap in the lack of the use of (contemporary) scientific 

predictive tools for planning in Lagos, the next issue will be the search for predictive models 

capable of modelling a complex urban city like Lagos. This issue will be explored in the next 

section. 

 

1.2  Choosing predictive models and reasons for choosing models for Lagos 

Conventional land use change modelling is done with the GIS-based Ordinary Least Squares 

(OLS) and Geographically Weighted Regression (GWR) models. OLS and GWR models are 

both linear regression models which are subject to fundamental statistical assumptions, such as: 

linearity, normality, homoscedasticity, autocorrelation, and normality (Wheeler & Tiefelsdorf, 

2005). The dependent variables of regression models can be represented with categorical 

variables (Menard, 1995); however, the assumptions of linear regression models are likely to be 

violated when categorical variables are used to represent the dependent variables (Pohlmann & 

Dennis, 2003). Based on the above reasons, the conventional GIS-based models cannot be solely 

relied upon for modelling land use change in Lagos.  

         In the search for robust predictive tools for modelling land use change in Lagos, it is 

important to note that urban systems are complex in nature and stochastic in behaviour; these 
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 characteristics make them different from most social systems (Couclelis, 1988). Therefore, 

modelling an unregulated complex urban environment like Lagos may be unyielding without 

employing robust predictive tools that can realistically model their complexity, dynamism, and 

growth (Barredo et al., 2004). In this research, Cellular Automata (CA) have been adopted as the 

most appropriate tool for modelling land use change in Lagos. This is because CA models 

present the necessary structure for modelling complex adaptive systems like land use change 

(Torrens & O'Sullivan, 2001). Apart from the intrinsic ability of CA models to mimic macro 

scale urban environments from innumerable interactions among simple elements, their benefits 

also include: their easy visualisation of modelling results, their simplicity, their flexibility, their 

dynamic technique, as well as their affinity with the GIS and Remote Sensing (RS) (Torrens & 

O'Sullivan, 2001).   

 

1.3  Research questions 

The research problem explained in section 1.1 will be tackled by exploring the conventional GIS-

based methods and unconventional CA-based techniques. Table 1.1 presents a simple framework 

of the modelling methods that have been adopted in this thesis for modelling land use change in 

Lagos. These adopted methods for Lagos are: the GIS-based OLS and GWR; and the CA-based 

Logistic Regression (LR), Artificial Neural Networks (ANN), Support Vector Machine (SVM), and 

Fuzzy Support Vector Machine (FSVM) . The GIS-based OLS and GWR are the conventional 

methods of land use change modelling. The CA-based LR and ANN are common unconventional 

parametric and nonparametric methods respectively, while the CA-based SVM and FSVM are the 

proposed unconventional methods. 
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Table 1.1 Conventional and unconventional land use change models adopted for Lagos 

 

Conventional land use 

change  models 

(GIS-based) 

 

Unconventional land use change  models 

(cellular automata based) 

 

Ordinary Least Squares 

(OLS) & 

Geographically 

Weighted Regression 

(GWR) 

 

Common 

parametric 

model 

Common 

nonparametric 

model 

The proposed nonparametric 

models 

Logistic 

Regression (LR) 

 

Artificial Neural 

Networks 

(ANN) 

 

Support Vector Machines (SVM) &  

Fuzzy Support Vector Machines 

(FSVM) 

 

 

The main questions posed by this thesis in modelling land use change in Lagos are: 

(i) Does the conventional GIS-based GWR model perform better than the proposed SVM 

and FSVM models? 

(ii)  Does the LR-based CA model yield better accuracies than the proposed SVM and 

FSVM models? 

(iii)  Does the ANN-based CA model outperform the proposed SVM and FSVM models? 

(iv) Are the results of the CA based techniques better than those of the non-CA based 

techniques?  

 

   Note that the non-CA modelling mentioned on the list of research questions, is simply the 

classification application of any of the predictive models mentioned in Table 1.1 without 

involving the use of CA. CA modelling is usually implemented after the classification of the 

training data.  
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1.4  Specific research aims and objectives  

The specific aims of this research in predicting land use change in Lagos are:   

 The implementation of the GIS-based OLS and GWR modelling 

 The implementation of the LR-based non-CA and CA modelling 

 The implementation of the ANN-based non-CA and CA modelling 

 The implementation of the proposed SVM-based non-CA and CA modelling 

 The implementation of the proposed FSVM-based non-CA and CA modelling 

 Comparing the results of the GIS-based GWR, LR-based CA, and ANN-based CA with 

the  proposed SVM and FSVM based CA models 

 The comparison of the CA-based results with those of the non-CA based results 

 

The above stated specific aims will be accomplished with the following specific objectives: 

 

(i) GIS-based OLS and GWR modelling:  

 To assess the effectiveness of the independent variables using  the OLS Joint Wald 

Statistic  

 To assess the statistical significance/contribution of each independent variable in the 

model and estimate R2  using the OLS model 

 To investigate how the GIS-based models satisfy traditional statistical assumptions 

 To predicting land use change in Lagos using the GWR model 

 

 To assess the effect of excluding the insignificant independent variables from the  OLS 

and GWR models 

 To assess the effect of excluding each independent variable from the GWR model 
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(ii) LR-based non-CA and CA modelling: 

 To assess the significance of each independent variable in the model 

 To assess the impact of excluding the insignificant variables from the model 

 To assess the impact of excluding each independent variable one at a time, from the 

model  

 To prediction land use change using the non-CA based model 

  To prediction land use change using the CA based model  

 

(iii) ANN-based non-CA and CA modelling: 

 To find an optimal number of neurons  

 To prediction land use change using the non-CA based model 

 To calculate the input weights of the independent variables using a one neuron ANN,  

and compare the calculated one neuron ANN weights to the calculated coefficients  

using the LR model   

 To compare the cross-validation accuracies of the one neuron ANN with that of the LR 

model 

 To prediction land use change using the CA based model  

 

(iv) SVM-based non-CA and CA modelling: 

 To optimise SVM model parameters: penalty value (C), polynomial order (d),   and 

gamma ( ) 

 

 To prediction land use change using the non-CA based model 

 To prediction land use change using the CA based model  
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 To assess the effect of the Moore and von Neumann neighbourhood functions on SVM 

and FSVM based CA modelling  

 To forecast future land use in 2015 and 2030 

 

(v) FSVM-based non-CA and CA modelling: 

 Same as SVM 

 

(vi) To compare the results of the GIS-based GWR, LR-based CA, and ANN-based CA with 

the  proposed SVM and FSVM based CA models: 

 By using the McNemar's test to test whether there are significant differences between the 

GIS-based GWR and SVM/FSVM; LR and SVM/FSVM; and, ANN and SVM/FSVM 

predicted maps 

 By using the t-statistic to test whether there are significant differences between the 

calculated LR and SVM/FSVM; and ANN and SVM/FSVM Area Under Curve (AUC) 

indices 

 

(vii) To compare the CA-based with the non-CA based results:  

 By using the McNemar test to test whether there are significant differences between the 

LR, ANN, SVM, and FSVM non-CA and CA predicted maps 

 

1.5  Thesis domain: the concept of geocomputation 

The domain of this thesis is geocomputation. Geocomputation is a relatively new discipline in 

geography. Geocomputaion is the process of applying computing technology to geographical 

problems (Rees & Turton, 1998, p. 1835). Geocomputation is also defined as the universe of 

computational techniques applicable to spatial problems (Couclelis, 1998, p.18). 
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   Over the years, geographers have discovered the limitations in conventional spatial-based 

computer software and the need to develop their own computer models especially on a small 

scale. An example of the geocomputation effort is the IDRISI1 software.  

   Contemporary sub-geography disciplines like the GIS, Remote Sensing (RS), and 

particularly geocomputation are groundbreaking subjects in the field of geography ‚so 

geography can emerge from its postmodern slumbers in a geocomputational world (Macmillan, 

1998, p. 264). Geocomputaion and GIS complement each other (Longley, 1998). 

Geocomputational outputs can be visualised and analysed in the GIS, while the GIS support  the 

use of geocomputation subroutines to optimise their modelling tasks.    

        Some real-world modelling applications of geocomputation include: land use change 

(Okwuashi et al., 2008; Okwuashi et al., 2009a; Okwuashi et al., 2009b; Fkirin et al., 2009),  fire 

(Li & Magill, 2001), and  hazard (Erener et al., 2010).     

 

1.6 Research contributions 

The main contributions of this research in modelling land use change in Lagos are: 

(i) The application of the GIS-based OLS and GWR modelling 

(ii) The application of the LR-based non-CA and CA modelling 

(iii)  The application of the ANN-based non-CA and CA modelling 

(iv) The application of the SVM-based non-CA and CA modelling 

(v)  The application of the FSVM-based non-CA and CA modelling 

 

 

 

 

                                                
1 IDRISI is a raster-based integrated GIS and RS software that was developed at the Department of Geography, 

Clark University, Worcester, MA, USA. 
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1.7 Structure of thesis 

This thesis consists of eight chapters. Chapter 1 presents a general background of the thesis.             

        Chapter 2 discusses GIS and CA based models used for modelling land use change,  and 

reviews on how these models were applied.  

        Chapter 3 explains the basic concepts of support vector machines including  numerical 

examples.  

        Chapter 4 discusses land use development in Lagos and why the land use divers were 

selected. It also examines pre-independence and post-independence planning in Lagos.    

        Chapter 5 presents the application of the GIS-based OLS and GWR models to land use 

change modelling of Lagos. This chapter illustrates the conventional technique including some 

of their limitations. 

        Chapter 6 presents the application of the LR and ANN based CA and non-CA techniques 

to land use change modelling of Lagos. This chapter elucidates the virtues of using the LR model 

for land use change modelling. It also examines the relationship between a typical LR model and 

a one neuron ANN model. 

        Chapter 7 presents the applications of the proposed SVM and FSVM based CA and non-

CA approaches to land use change modelling of Lagos. It also discusses the influence of the 

neighbourhood functions on SVM and FSVM results; and illustrates how future land use can be 

modelled using the SVM and FSVM models.  

        Chapter 8 presents the statistical comparison of results from the GIS-based GWR, LR, and 

ANN with respect to the proposed SVM and FSVM models. It also presents the statistical 

comparison of the results from CA and non-CA based modelling. This chapter also discusses the 

benefit of the research to Lagos and Nigeria, contribution of the research to science, and 

recommendations for further research. 
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CHAPTER 2 

 

GEOGRAPHIC INFORMATION SYSTEMS AND CELLULAR AUTOMATA 

BASED MODELS 

 

2.1 Preamble 

This chapter presents the basic concepts of the GIS-based models for modelling land use change 

in Lagos, and also the known methods of CA calibration. This chapter will focus on: the basic 

concepts of these models, their merits and demerits, and whether they were considered for 

modelling land use change in Lagos or not. It will also discuss the rationale for integrating GIS 

with CA for land use change modelling.  

 

2.2 Geographic information systems based models  

       2.2.1 Geographic information systems. 

GIS are ‚powerful set of tools for collecting, storing, retrieving, at will, transforming, and 

displaying spatial data from the real world for a particular set of purposes‛ (Burrough & 

McDonnell, 1998, p. 11). A United States based conglomerate, Environmental Systems Research 

Institute (ESRI) is the sole provider of the universal GIS software called ‚ArcGIS.‛ ArcGIS is 

the most widely used GIS software in the world. ArcGIS was designed to handle all geo-based 

real world applications. 

         GIS describe real world data in two ways: (i) graphical/map interface and, (ii) database 

management system. The graphical interface (called layers) is an image representation of the data, 

while the database management system (called attributes) is used to store information about the 

image. GIS can be applied in banking, telecommunication, land use change, sea level rise, oil  
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spill, deforestation, election monitoring, hazards prediction, military, tourism, real estate, and 

agriculture. Spatial features in a GIS are represented as either in vector or raster formats. Vectors 

(called features) are used to represent lines and polygons. For example, a road network will be 

represented as a line, while land parcels are represented as polygons. A raster layer is a pixel-by-

pixel representation of an image. The advantage of images in vector format unlike their raster 

counterpart is that, they can easily be edited on-screen. Raster files are more stable, and are 

usually used for performing numerical analysis. Vector files are less stable and can easily be 

affected by distortion. Remote sensing data and analogue maps are the major primary sources of 

data into the GIS (Ehlers et al., 1989; Lunetta et al., 1991; Burrough & McDonnell, 1998; Lo & 

Yeung, 2007).            

   

        2.2.2 Geographically weighted regression and ordinary least squares. 

Conventional land use change modelling is implemented in the ArcGIS environment using the 

OLS and GWR models. Even though ArcGIS maintains the reputation of being the de facto 

global model for land use change modelling, several local land use models have been developed 

across the globe. These models are adapted to specific areas of application.  An example of a 

local land use model is the Conversion of Land Use and its Effects modelling framework 

(CLUE), specifically developed for applications in Asia and North America. It has been applied 

in China, Indonesia, and Ecuador (Veldkamp & Fresco, 1996; Verburg et al., 1999). Others are, 

the Metropolitan Integrated Land Use System (METROPILUS), which has been applied in the 

United States cities of Chicago, Los Angeles, and Atlanta (Putman, 1992; 1993; 1995); and 

Clarke's urban growth models (UGM and SLEUTH) which have been applied in Chigago, USA 

(Clarke & Gaydos, 1998) and Lisbon in Portugal (Silva & Clarke, 2002).  

      The GWR (Fotheringham et al., 2002) is the local equivalent of the global OLS. OLS and 

GWR are both linear regression models. The global OLS model can be expressed mathematically  
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as, 

 

 
p

iippi xy 0
                                                                                      (2.1) 

 

where iy  are the dependent variables, 0  denotes the intercept, p  are the slope coefficients 

for the p  variable,  ipx  denotes the value for a p th variable for  i  number of observations, and  

i  represents the error parameter. Unlike the GWR model, OLS assumes that p  is stationary 

or homoscedastic. This is a major difference between the OLS and the GWR (Fotheringham et 

al., 2002; Mennis, 2006). The GWR model can be expressed mathematically as, 

 

 
q

iiqiiqiii xvuvuy  ),(),(0
                                                                  (2.2) 

 

where 0  denotes the intercept, , q  represents the slope coefficients for the variable q , iqx  

denotes the value for a q th variable for  i  number of observations, and  i  represents the error 

parameter, and ),( ii vu  stands for the coordinates of the i th location for an i  observations. 

GWR takes the effect of spatial dependency into consideration and assumes that q  is non-

stationary or heteroscedastic. The non-stationarity of q  means that the solutions of q  vary 

across the globe for the same values of iqx . The solution of  q  is affected by the locations 

),( ii vu  where iqx  were actually observed (Fotheringham et al., 2002). 

        The GWR is less affected by spatial autocorrelation (Moran, 1948) than the OLS,  because 

the presence of the local parameter  ),( ii vu  of the study area in the GWR mitigates the effect of 

spatial dependency in the model (Platt, 2004; Windle et al., 2010). OLS assumes that explanatory  
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variables are stationary across space. The GWR is a local linear regression model designed to 

mitigate spatial effects in the data. Unlike the OLS, the GWR assumes spatial non-stationarity 

across space (Brunsdon et al., 1998; Fotheringham et al., 2002). GWR incorporates geographical 

coordinates of observed points (Dormann et al., 2007), such that observed points closer to 

predicted points are assigned more weights than farther points. Comparisons done between 

GWR and OLS have shown that GWR furnishes better results than OLS because it is far less 

compromised by the effect of spatial dependency (Zhang & Gove, 2005; Shi et al., 2006; Kupfer 

& Farris, 2007; Osborne et al., 2007; Kimsey et al., 2008).  

        In spite of the merits of the GWR model over the OLS model, it is still subject to 

fundamental statistical assumptions (just like the OLS), that there is: (i) a normal distribution; (ii) 

a linear relationship between the dependent and independent variable; (iii) no multicollinearity 

between the independent variables or no exact correlation between the independent variable;  

(iv) no spatial autocorrelation; (v) homoscedasticity or that the variance between all the 

independent variables is equal (Leung et al., 2000; Fotheringham et al., 2002; Wheeler & 

Tiefelsdorf, 2005; Farber &  Páez, 2007). The presence of spatial autocorrelation in linear 

regression results is a result of the effect of spatial dependency or the first law of Geography 

(Tobbler, 1970). It is important to determine the presence of spatial autocorrelation in a model 

using the model residuals; which are the discrepancies between the observed and the predicted 

data. The ArcGIS Moran I tool can be used to test for spatial autocorrelation in the data. Three 

inferences are obtained from the autocorrelation test: clustered, dispersed, and random. 

Clustered indicates that the data are close together or concentrated. Dispersed implies that the 

data are far apart. Random means that the data are spatial-autocorrelation free. It is desirable that 

the data be random. Moran I values close to +1 indicate clustered; values close to -1 imply 

dispersed, while values close to zero mean that the data is random. The presence of significant  
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spatial autocorrelation in the data implies that at least one important explanatory variable might 

be missing from the model (Moran, 1948; Lo & Yeung, 2007).   

        The main advantages of the GIS-based OLS and GWR models is that they have 

tremendous explanatory properties, such that the significant contribution of the independent 

variables in the models can be explored, as well as tests for detecting multicollinearity, normality, 

non-honoscadasticity, spatial autocorrelation, and determining R2. Another advantage that they 

have is that they yield high accuracy when used for modelling land use change (Noresah & 

Ruslan, 2009; Thapa & Murayama, 2009).  

        The disadvantage of the OLS and GWR models is that they are based on the principle of 

linear regression, therefore the basic assumptions that govern traditional statistical linear 

regression models must be satisfied before results from the OLS and GWR can be trusted.  If 

these assumptions are not satisfied, the significance tests and estimated standard errors of the 

model parameters may not be valid (Anselin & Griffith, 1998; Fox et al., 2001).          

        In spite of the aforementioned problems with the GIS-based OLS and GWR models;   for 

the purpose of comparison with the SVMs, they were adopted for modelling land use change in 

Lagos being the conventional techniques for modelling land use change. 

        The next section presents the concept of CA models and some of their major applications. 

 

2.3 Cellular automata based models  

       2.3.1 Cellular automata. 

CA are discrete dynamic mathematical systems which were introduced by Ulam (1952) and von 

Neumann (1966) who initially used cellular automata models to study mathematical compatibility 

theory and biological systems (Wolfram, 1983; Wolfram, 2002). The bottom-up simulation 

attribute of CA models makes them invaluable tools for dynamic process modelling. CAs are 

comprised of four basic components: cells, states, neighbourhoods, and transition rules (Webster  
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& Wu, 2001). Conceptually, there are five attributes that characterise CA systems: (i) a uniform 

regular lattice; (ii) a cell; (iii) the state of a cell; (iv) the neighbours of a cell; and (v) the transition 

rules. The uniform regular lattice can be in n-dimensions (O'Sullivan & Torrens, 2000).  

        Common examples are: one and two dimensional cellular automata (see Figures 2.1-2.3).  

 

 

 

Figure 2.1 A hypothetical one-dimensional cellular automata (yellow = urban cells; green cells = 

non-urban cells)     

 

 

  

 

 

Figure 2.2 A hypothetical von Neumann neighbourhood image (is a two-dimensional cellular 

automata; yellow = urban cell; green = non-urban cells; where each cell transition depends on 

four neighbours)           

 

 

 

 

 

 

Figure 2.3 A hypothetical Moore neighbourhood image (is a two-dimensional cellular automata; 

yellow = urban cell; green = non-urban cells; where each cell transition depends on eight 

neighbours)        
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         A cell is the individual unit contained in the uniform regular lattice. For land use, the state 

of each cell can be urban/non-urban or 0, 1, 2, 3, 4, 5, water, vegetation, and road. The 

neighbours of a cell are the cells surrounding each cell in the regular lattice. The von Neumann 

and Moore neighbourhoods are the two universally used two-dimensional cellular automata 

neighbourhoods (Maerivoet & De Moor, 2005). The von Neumann neighbourhood and Moore 

neighbourhood transition systems require four and eight surrounding cells respectively (see 

Figures 2.2 and 2.3).  

         The transition rules are predefined conditions that determine the future state of every cell 

in the lattice.  These rules must be fulfilled before any cell transition is possible. A cellular 

automaton can be expressed mathematically as, 

 

)),(),(()1( Ttqtftq ijijij                                                                                (2.3) 

 

 where )1( tqij  is the state of the cell at the time t+1;  )(tqij  is the state of a cell at the time t 

(e.g. 0)( tqij  may imply non-urban and 1)( tqij  urban);  )(tij  represents the 

neighbourhood influence on a cell; and T  denotes a set of transition rules governing the process 

(O'Sullivan, 2001).   

 

         CA can either be deterministic or nondeterministic. For deterministic CA, the same results 

are obtained given the same starting conditions. The commonest example of the deterministic 

CA is the Game of Life (GOL). GOL is a totalistic2 binary CA based on the Moore 

neighbourhood. Every cell in the lattice has two states: Live (L) or Dead (D). The system is 

basically controlled by two transition rules: (i) Rule 1: any D cell that has 3 L neighbours  

 

                                                
2 A totalistic cellular automata (Wolfram, 1983) is a type of CA whose transition rules are based on the 

neighbourhood influence around each cell. 
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automatically transits to an L cell; and (ii) Rule 2: an L cell can only remain live if it has 2 or 3 

live neighbours (Gardner, 1970; Waldrop, 1992; Batty, 1997; Holland, 1998). 

         Nondeterministic or stochastic CA depends on probabilities or random trials, such that, 

different outcomes are produced given the same starting conditions. The fact that real world 

phenomena are nondeterministic may make nondeterministic CA systems more desirable than 

the deterministic CA. The next section reviews the major models that have so far been applied to 

CA calibration.  

 

        2.3.2 Cellular automata calibration methods. 

               2.3.2.1 Heuristics-based modelling. 

Heuristic CA models are essentially based on trial-and-error (Wu, 2002), using simple and 

flexible transition rules to capture complex real-world behaviours (O'Sullivan, 2001; Batty, 2005; 

Torrens & Benenson, 2005; Benenson, 2007). These rules are mainly IF, THEN, ELSE... (Batty, 

1997). Heuristic CA models do not employ machine learning algorithms. In some cases formulas 

were used to represent real world phenomena (Almeida et al., 2003a; Barredo et al., 2004; 

Caruso, 2005); in other cases weighted probabilities (Sietchiping, 2004) were used.  

        There is no universal formula for representing a heuristic CA model. The commonest 

heuristic approach neither uses formulas nor weighted probabilities, but just simple IF… 

THEN…ELSE transition rules. Urban systems are complex, therefore finding a globally 

accepted formula may be unrealistic (Batty, 1997). 

       The advantage of heuristic CA models is that they can easily be adapted to finding optimal 

procedures to represent complex real-world patterns, through the use of simple rules, which 

makes their use very attractive.  

        But, despite their appealing methodologies, they have the disadvantage of lacking 

computational validity; their assumptions are biased, too flexibly defined, and their results cannot  
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be mathematically validated (Wu, 2002). These reasons make results from heuristic models a 

subject of academic debate. Due to the above reasons this technique was not considered for 

modelling land use change in Lagos.    

 

              2.3.2.2 Agent-based modelling. 

Agent Based Models (ABMs) (Benenson, 1998; Nara & Torrens, 2005; Batty, 2005; Polhill et al., 

2007) are models of autonomous actors involved in an activity. Agents can represent humans, 

robots, as well as real world activities/phenomena. Agents are, (i) autonomous: they do not 

require human intrusion to initiate any action; (ii) interdependent: an agent can mingle with other 

agents; (iii) governed by simple rules: agents explore simple rules to model complex patterns; (iv) 

adaptive: they are inventive, replicating, and capable of imitating or learning (Macy & Willer, 

2002). ABMs are well adapted to cellular automata models. ABMs can be implemented in 

ArcGIS using the Agent Analyst. Other popular agent based models are: StarLogo, SWARM,  

REPAST, NetLogo, and ASCAPE (Nara & Torrens, 2005).  

        ABMs, also known as multi-agent models, are veritable tools for modelling complex 

relationships among actors unlike CA models they are independent of direct human intervention 

and can capture more complex relationships among actors both at micro and macro levels. 

Integrating agent based models with CA means that CA models can account for dynamic 

simulation of space, while agent based models handle decision making and complex relationships 

among agents (White & Engelen, 2000).    

        ABMs are relatively new to land use change modelling (Parker, 2005), the advantage of 

ABMs is that they are highly enriched algorithms that are well suited for modelling complex 

systems like urban systems. 
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        The disadvantage of ABMs is their inability to evaluate model constraints and results, since 

the rules driving the activities of agents are flexible and complicated (O'Sullivan,  2004). For this 

reason ABMs were not considered for modelling land use change in Lagos.   

 

              2.3.2.3 Fractal-based modelling. 

Fractals are used to represent the geometrical characteristics of real world objects; such that an 

object can be broken down or subdivided into several parts at reduced scales. These parts of the 

whole remain self-similar (like the whole), irrespective of the scale. Fractals are: (i) self-similar; (ii) 

irregular or fragmented no matter the scale used for the investigation; (iii) they are iterative; (iv) 

fractionally dimensioned; and (v) over a large range, fractals could contain elements that are 

distinct with varied scales (Mandelbrot, 1967; Mandelbrot, 1982). White and Engelen (1993) 

explained that the integration of CA with fractal models can be used simultaneously to evolve 

order and complexity in urban structure; and that fractal patterns of landforms can be generated 

using simple rules to exhibit complex spatial behaviour. 

         A fractal structure can be investigated by varying the scale and observing changes in the 

object form or by varying the object size while the scale is fixed (Batty & Longley, 1994). A 

fractal dimension can be calculated using either the box-counting or radial analysis method. Shen 

(1997) illustrated how a box counting method can be used to estimate the fractal dimension of 

30 urban transportation networks in conjunction with the correlation between urban population 

and fractal dimension of space. Batty and Longley (1994) used a Diffusion Limited Aggregation 

(DLA) model to explain urban phenomenon. The DLA model was used to generate fractal 

structures that are analogous to real cities. Marske et al. (1998) criticised the DLA model for 

creating just one large cluster rather than several central spatially distributed hierarchical city 

patterns.      
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        The advantage of fractals is that they have the ability to evaluate cellular automata generated 

similarity amid simulated spatial patterns (Yeh & Li, 2001). Another advantage of fractals is their 

ability to represent complexity with simple and coherent patterns (Brown & Witschey, 2003). 

Fractal modelling is still new to land use change research.  

        The disadvantage of fractal modelling is that they are sometimes very complicated to 

interpret because various spatial structures may be represented by the same fractal dimension 

(White & Engelen, 1993). For the above reason, fractal modelling was not considered for 

modelling land use change in Lagos.  

 

              2.3.2.4 Fuzzy logic based modelling. 

 Fuzzy logic, being a multivalued logic, deviates from the Boolean logic by replacing categorical 

evaluations like true/false and high/low, with continuous evaluations such as: true, fairly true, 

less fairly true, not entirely false, false; and high, fairly high, fairly low, low  respectively (Zadeh, 

1962; 1965; 1971). The idea of fuzzy logic is basically to make computers make decisions like 

humans (Zadeh, 1984). 

 

        According to Zadeh (1965; 1971), a fuzzy set can be expressed as follows:  Let X  represent 

objects whose generic element is in x , therefore  xX  . In that case, a fuzzy set A  in X  can 

be expressed as a set of ordered pairs, 

 

  XxxxA A  |)(,                                                                                       (2.4) 

 

where  )(xA denotes the grade of membership x  in A , where x  is a real number in [0, 1]. 
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        Wu (1996; 1998) modelled urban development using the crisp theory based on fuzzy logic 

controlled transition rules. Liu (2001) criticised the idea of Wu (1996; 1998) which represented 

stages of land use development with sharp boundaries like urban/non-urban; and instead 

continuous boundaries like urban/semi-urban/near-non-urban/urban were introduced. A 

corroborating postulate had earlier been stated by Herbert and Thomas (1997), that urban 

change is a continuous process that trends a logistic curve. Liu (2001) elicited fuzzy logic and 

fuzzy set based CA transition rules, to examine urban development in Sydney, Australia.  Logistic 

regression was used to construct the fuzzy membership function used to describe the categories 

of urban development: very quick development, quick development, slow development, very 

slow development, and extremely slow development. The merit of this technique is its ability to 

determine the stages of land use development using continuous land use boundaries. Another 

merit is the introduction of stochasticity into the model to portray a more realistic random 

pattern of urban development. The challenge of the approach of Liu (2001) is the use of 

heuristics like very quick development, quick development, slow development, very slow 

development, and extremely slow development for determining the transition of non-urban cells 

to urban which may make it difficult to mathematically validate the model. 

        Mantelas et al. (2007; 2008) presented a deterministic method of eliciting CA transition 

rules by using variables consisting of partially overlapping qualitative fuzzy sets. Linguistic 

variables were used to obtain qualitative numerical information which were used to construct 

fuzzy membership functions; and IF... THEN... ELSE rules were then used to obtain various 

stages of urban development. The merit of this work is the use of flexible CA rules to determine 

cell transition. Its demerit is that the use of heuristics and qualitative data mining may produce 

results that overfit the data.    

        Al-Ahmadi et al. (2009) described a nondeterministic technique where two automated 

methods of calibration (genetic algorithm and simulated annealing) were used to mine fuzzy logic  
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driven CA transition rules. Heuristics (IF... THEN... ELSE rules) were used to elicit various 

urban development scenarios of Riyadh in Saudi Arabia. The merits of this technique are that the 

introduction of stochasticity in the calibration will help capture the randomness in real world 

land use development; while the use of machine learning algorithms for calibrating the fuzzy 

logic based model will help improve the validity of the calibration. The demerit of the 

experiment is that the use of heuristics may make the model overfit, and reduce its validity in 

making future predictions. 

        In conclusion, the main virtue of fuzzy logic based CA calibration is its ability to model 

uncertainty in real world data with continuous decision boundaries.  Its major limitation in 

predicting future land use is the use of heuristics, which may produce models that are overfitted. 

Due to the aforementioned issues the fuzzy logic based CA was not considered for modelling 

land use change in Lagos. 

 

              2.3.2.5 Spatial statistics based modelling.                          

                              2.3.2.5.1 Markov chain based modelling.  

For a particular land use change process, a Markov chain model can be expressed as:  

 

Pbb nn 1                                                                                                       (2.5) 

 

P is the transition matrix; it is a stochastic matrix whose elements must be non-negative and 

rows sum up to 1; n  represents discrete time steps; and nb  is a resulting vector that bears the 

final probabilities of the land use distribution at the end of the process. For  0n , 0b  is a 

vector that represents the distribution of land use states at the beginning of the process (1 = 

urban and 0 = nonurban); it is the initial condition.   
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        For example, given a stochastic matrix P derived by observing historical land use change 

and 0b , let us compute 3n : 

 

 00010 b , 





















4.02.035.005.0

3.04.019.011.0

1.02.01.06.0

3.02.04.010.0

P , 

                               3.02.04.01.001  Pbb , 

                               2500.02400.02230.02870.012  Pbb ’ 

                               2804.02480.02702.02014.023  Pbb . 

 

         Markov chain models are compatible with CA models for simulating urban systems (Clarke 

et al., 1997). Antoni (2001) explained that a Markov chain model can be used to generate 

transition and simulation matrices using historical land use data, but such data require the 

integration of CA to determine the land use category of each pixel. In that case, categories of 

land use cells will depend on the neighbouring cells surrounding each cell. Transition rules are 

eventually required to decide the category of each land use cell.  

        Ozah et al. (2010) used a Markov chain driven cellular automata to predict land use change 

in the Lake Chad Basin in Nigeria. Two land use epochs were used to predict land use in 2011 

and 2013. The transition probabilities were obtained by observing the trend in land use using the 

two land use epochs. A deterministic CA model was used to mine Markov chain constrained 

transition rules, by incorporating the influence of neighbouring cells into the model. A similar 

methodology was described by Demirel and Cetin (2010) who predicted land use in 2017 for 

Istanbul, Turkey.  

        The merit of Markov chain models is that they offer the simple use of the observed 

historical change between land use epochs to generate transition probabilities that will represent  
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future land use forms. Another merit of Markov chain models is that they are free from the 

rigour of machine learning since no training examples are required to calibrate the model.  

        The demerit of Markov chain models is that the significance of each land use driver in the 

model cannot be assessed (unlike in OLS and logistic regression models), therefore they lack the 

power to explain the influences/relationships of the causal factors that drive change (Baker, 

1989). Consequently, the Markov chain model was not considered for Lagos due to the above 

mentioned demerits of the model. 

 

                              2.3.2.5.2 Logistic regression based modelling. 

The Logistic Regression (LR) model is the most commonly used parametric model for modelling 

land use change (Verburg et al., 2004). A mathematical illustration of the LR model is presented 

in section 6.2.1. The earliest logistic regression based-CA calibration was done by Wu (2002). Wu 

(2002) extracted land use descriptors from historical land use data to train the logistic regression 

model. The sigmoid function was used to derive land use transition probabilities. Stochasticity 

was introduced into the model to capture the randomness inherent in real world data. The 

neighbourhood influence was used to obtain a binary map of the study area.  Almeida et al. 

(2003b) presented a similar methodology for predicting land use change in Sao Paulo, Brazil.  

       The advantages of LR models are that relationships among land use drivers can be examined 

(McMillen, 1989). They can help identify the contributions of each independent variable in the 

model; they can assess the degree of confidence of each variable; they can  be applied to model 

nonlinear relationships; and unlike OLS models they are not required to satisfy statistical 

assumptions for the model to be: normal, linear, homoscedastic, free of multicollinearity, and 

spatial autocorrelation free (Pohlmann & Dennis,  2003). 

       The disadvantages of LR models are that, unlike OLS models they do not furnish R2 value 

which makes it difficult to validate LR outputs; LR models require large amount of training data  
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to calculate their model coefficients before their results could be trusted (Pohlmann & Dennis,  

2003). 

       Despite the above mentioned problems with the LR model and for the purpose of 

comparison with results from the proposed SVM and FSVM models, the LR model has been 

adopted in this research for modelling land use change in Lagos being the most widely used 

parametric model for modelling land use change (Verburg et al., 2004) and also its ability to 

model nonlinear urban systems.  

 

              2.3.2.6 Artificial neural network based modelling. 

The architecture of Artificial Neural Networks (ANNs) or neural networks consist of three main 

components the input layer, hidden layer, and the output layer (Figure 2.4).  Each neuron in the 

input layer represents a land use variable. The hidden layer is the engine room of the neural 

network; it consists of n neurons (n = 1, 2, 3,...). The output layer consists of just a single neuron 

(Almeida et al., 2008). 
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Figure 2.4 A single output neural network architecture. Adapted from Li and Yeh (2002, p. 328) 

 

         The input data are essentially scaled to keep the output in the range of either [0, 1] or [-1, 

1]. This is done before the input data are fed into the network (Gong, 1996).  The artificial neural 

network has been the most commonly used nonparametric model for CA calibration. The first 

ANN-based CA calibration was done by Li and Yeh (2002)  after Clarke et al. (1997) 

recommended that the nonparametric ANN may offer viable potentials for modelling complex 

urban systems. The feed-forward backpropagation neural network is the most commonly used 

technique for CA calibration.  

        Li and Yeh (2002) introduced a novel approach for calibrating CA using ANN. Land use 

variables were extracted with the GIS and small sized training sets were used to train the 

network. Stochasticity was introduced in the model to reflect the randomness in actual land use 

development. A sigmoid function was used to generate stochastic probabilities of land use 

evolution. Nonlinear CA transition rules were based on probability thresholds that served as  
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benchmarks for determining different scenarios of urban development. This approach was 

replicated by Almeida et al. (2008) in Sao Paulo, Brazil.      

         The advantage of ANNs is that they are highly robust for modelling complex systems like 

urban systems ( Li & Yeh, 2002). Another advantage ANN models have is that they are free 

from satisfying statistical requirements for the model to be: normal; linear; homoscadastic; free 

of multicollinearity; and spatial autocorrelation free (Olden & Jackson, 2001; Guan et al., 2005; 

Zhou & Kang, 2005).  

        Despite the ANN model's ability to handle complex nonlinear spatio-temporal data, they 

have the following disadvantages: (i) they are regarded as black box models: because they lack 

explanatory properties which means that the relationships and contributions of land use 

descriptors are obscured by the model; and (ii) unlike the SVMs, only a few ANN parameters 

can be optimised (Guan et al., 2005; Zhou & Kang, 2005).   

        In spite of these highlighted demerits of the ANN model and for the purpose of 

comparison with the SVMs, the ANN model has been adopted in this research for modelling 

land change in Lagos being the most commonly used nonparametric model for CA calibration; 

and also for its robustness in modelling complex urban systems. 

 

2.4 Integration of geographic information systems and cellular automata models 

As previously explained in chapter one, CA models have been adopted for land use change 

modelling because of their simplicity, dynamic properties, and inventive bottom-up approach 

(Clarke & Gaydos, 1998). Another vital attribute of the CA is their compatibility with remote 

sensing and geographic information systems (Torrens & O'Sullivan). Conventional GIS models 

are not flexible enough (Wagner, 1997). They are not well suited for dynamic modelling like CA 

models; this makes them more or less static in operation (Longley & Batty, 2003). Another  
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limitation of conventional GIS models is their inability to be easily adjusted to perform complex 

numerical analysis (Wagner, 1997; Couclelis, 2002).  

        Coupling GIS and CA models has helped improve dynamic spatial modelling (Park & 

Wagner, 1997), especially in the domain of land use change research. A loose coupling technique 

can be used to synergise the analytical capabilities of CA models and the spatial attributes of the 

GIS (Bivand & Lucas, 2000; Almeida et al., 2002; Sietchiping, 2004; Kocabas & Dragicevic, 

2007). The loose coupling synergy between the GIS and CA models is such that both systems 

can interact freely yet function independently. Couclelis (1997) highlighted that the integration of 

GIS and CA models is such that one of them makes up for the limitations of the other. GIS 

could be used to perform functions such as, data preparation; georeferencing; overlaying; scaling; 

rasterisation; digitisation; Euclidean distance estimation; data storage; data management; data 

retrieval; neighbourhood calculation; and visualization. CA models could perform functions that 

cannot easily be performed with the GIS. Functions such as, weighting of parameters; data 

sampling; training and testing; dynamic calibration; and iteration. Tight coupling GIS and CA 

models is also feasible. Local land use models (Clarke et al., 1997; Wadell, 2002) are based on a 

tight coupling strategy. A tightly coupled GIS and CA model implies that both models are 

embedded in a single system.  

 

2.5 Summary 

This chapter presented the basic concepts and review of the conventional GIS-based OLS and 

GWR models; and also reviewed notable CA calibration techniques. The rationale for the 

integration of GIS and CA systems were also presented. The next section will present the 

mathematic illustrations of the SVM and FSVM models.   
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CHAPTER 3 

 

SUPPORT VECTOR MACHINES 
 

3.1 Preamble 

The aim of this chapter is to create a better understanding of the SVM and FSVM  experiments 

presented in chapter 7.                          

        The concept of the Support Vector Machine (SVM) was introduced by Cortes and Vapnik 

(1995). SVMs constitute an assemblage of supervised learning algorithms initially applied to 

classification problems, but later extended to regression analysis (Vapnik, 1995; Gunn, 1998). 

SVM algorithms are based on statistical learning theory (Vapnik, 1995; Drucker et al., 1999). 

SVMs employ the principle of Structural Risk Minimization (SRM), which makes them robust 

and independent of underlying data distributions (Joachims, 1999).  

            

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Hyperplane with the maximum separation for a linear data. Adapted from Ivanciuc 

(2007,  p. 318)  
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          SVMs are primarily binary classifiers. With reference to Figure 3.1, SVMs seek a unique 

hyperplane that has a maximum margin,  . In reality an infinite number of hyperplanes can be 

used to separate the data. Hyperplane 1H  separates class -1 while 2H separates class +1 

(Ivanciuc, 2007).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.2 The separating linear hyperplanes for a linear data. Adapted from Ivanciuc (2007, p. 

323) 

 

         The three points of -1 and two points of +1 in the rectangles located on hyperplanes 1H  

and 2H  are called ‚support vectors‛ (see Figures 3.1 and 3.2). Looking at Figure 3.2, support 

vectors are the vectors that are nonzero that are defined by either hyperplane  1 bxw i  for  
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support vectors that are in class -1 or hyperplane  1 bxw i  for support vectors that are in 

class +1. The hyperplane H satisfies the linear classifier  

 

0 bxw i . Other correctly classified points of -1 and +1 satisfy 1 bxw i  and 

1 bxw i  respectively. The distance from the origin to hyperplane H is w

b . The maximum 

separation of w
2  is required for a binary separation; b  is a scalar; while w  is a vector (Ivanciuc, 

2007).  

        As mentioned in section 3.1, SVM is based on the principle of SRM; therefore the next 

section explains the principles of the statistical learning theory, SRM, and Vapnik Chervonenkis 

dimension; and the relationships amongst them.  

 

3.2 Statistical learning theory, structural risk minimisation, and Vapnik-

Chervonenkis dimension 

Given observations ),(),...,,(),,( 2211 nn yxyxyx , where N

ix  and }1,1{ iy ; ix  are 

observed descriptors and iy
 represents the target variables or decision space. Let us assume that 

the training data were drawn independently from probability distribution ),( yxP , which is not 

known but fixed. This forms the basic underlying assumption of Statistical Learning Theory 

(SLT). The objective of the statistical learning is therefore to seek a classifier )(xfy   that can 

classify/predict the test dataset that were also generated from ),( yxP (Vapnik, 1995).  

        For a further underlying understanding of the nature of SVMs, it is important at this 

juncture to introduce the concept of Vapnik-Chervonenkis dimension ( VCd ) as it relates to SRM. 

Let us map yx   using a classifier ),( wxf . The goal of Vapnik-Chervonenkis dimension is to 

measure the capacity of ),( wxf to map yx   based on the adjustment of the vector w .  If the 

test and training data are identically distributed with cumulative probability distribution 

),( yxP and drawn independently, the test set will have an expected risk (Vapnik, 2000): 
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  ),(),()(
2
1 yxdPwxfywR                                                                            (3.1) 

 

Note that, conventionally the expected risk is usually replaced with the empirical risk (for a k  

training samples because of the unavailability of ),( yxP in typical cases):  

 





k

i

ikemp wxfwR
1

1 ),()(                                                                                     (3.2) 

 

The objective of machine learning is to minimize the empirical risk, empR . If we rely on just 

minimizing the empirical risk for training the samples, we will end up having a learning machine 

with two much capacity, which will lead to overfitting. The way out of this problem is to 

introduce the principle of SRM. SRM seeks a classifier that finds a middle ground between low 

empirical risk and low capacity; given that 10  , with probability 1 , therefore the 

following bound subsists for the expected risk (Vapnik, 2000): 

 








 


k

dkd
wRwR VCVC

emp

)4/log(]1)/2[log(
)()(


                                        (3.3) 

 

         The right-hand side of equation 3.3 is known as the ‚risk bound‛ and the second term 

is called ‚VC confidence interval‛. If the number of training samples increases the VC 

confidence will decrease; and if the VCd  increases the VC confidence also increases. Therefore, 

the higher the dimensionality of the feature space ( VCd ), the higher the number of training 

points needed for a good classification for a given linear learning machine (Vapnik, 2000).  By 

adopting the principle of SRM, SVMs offer a robust approach for pattern recognition, by 

minimising the problem of overfitting (Gunn, 1998). 
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         In conclusion, two objectives are paramount when classifying a binary data: (i) the chosen 

classifier is the classifier that has the smallest empirical risk: this classifier must completely 

separate any two classes distinctly; and (ii) the ideal classifier should have the smallest VC 

dimension: this condition is realisable with a classifier with the maximum separation margin 

(Ivanciuc, 2007).  

 

3.3 Support vector machine classification 

Given a binary classification problem that belongs to classes -1 and +1 respectively; these two 

classes can be separated with a linear hyperplane (see Figure 3.3). To separate these two sets of 

objects, we need to choose a few training samples. Now, let us assume that our training set has 

n-training samples, that is, ),(),...,,(),,( 2211 nn yxyxyx , where N

ix   is an N dimensional 

vector that belongs to one of classes }1,1{ iy . The stated binary classification problem can 

only be separated using a linear decision function (Vapnik, 2000): 

 

bxwxf )(                                                                                                  (3.4) 

 

where Nw  is a vector that determines the orientation of our desired hyperplane required for 

the separation and b is called the ‚bias.‛  

        We can see from Figure 3.3 that our optimal hyperplanes needed to separate the two 

objects is, 

 

1)(  bxwyi                                                                                                  (3.5) 
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Figure 3.3 Separating non-separable data with linear separable hyperplanes. Adapted from 

Ivanciuc (2007, p. 318)   

 

        As shown in Figure 3.3, some of the objects that belong to the two datasets we are trying to 

classify may end up being misclassified. It is important to account for this misclassification in our 

modelling; in that case, we have to introduce variables 0i ; they are called ‚slack 

variables;‛ they will be used to represent objects that were misclassified. Let us now incorporate 

the slack variable in equation 3.5; which can be revised as: 

 

ii bxwy  1)(                                                                                            (3.6) 

 

We can see from Figure 3.3 that our optimal hyperplane is 0)( xf , which lies between classes 

+1 and -1; it is actually located at the point of maximum separation between classes +1 and -1, 

as well as the point of minimum error in course of the separation. At this point, the solution to  
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this problem can be found by solving the following constrained optimization problem (or primal 

problem) (Vapnik, 2000): 

 

Minimize 



n

i

iCww
12

1
                                                                                  (3.7) 

 

subject to: ii bxwy  1)( , 0i , and for ni ,...,1 ; where C  ,  C0 , is called the 

penalty value or regularization parameter. According to Ivanciuc (2007), C  is a trade-off 

between misclassified points and achieving the maximum margin during the training; it is usually 

chosen by trial-and-error. Though C = 100 is usually assumed to be the standard value for most 

applications; it should not be taken for granted because the appropriate value of C  may vary on 

a case to case basis; therefore it is necessary to carry out a cross-validation technique to 

determine the ideal value of C  for a particular application.     

        According to Vapnik (2000), we can solve the primal problem given in equation 3.7 using 

the Lagrangian function, 

 

  
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i
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i

n

i

iiiiiii bxwyCwwbwL
1 1 1

2

1 )1)((),,,,(                             (3.8) 

 

and parameters ),,,,( bwL must satisfy: 

 







 n

i

iii xyw
w

wL

1

0
),,,(




                                                                      (3.9) 
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The optimization problem or dual form resulting from the application of equations 3.9 – 3.11 

to the primal problem given in equation 3.7 can be expressed as: 

 

Maximize:  
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
n

i

jiji
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i

j

n

j

ii xxyy
1 1 1
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subject to: 



n

i

ii y
1

0 , and, Ci  0 , for ni ,...,1 .  

Therefore, the decision function for the linear case can be given as: 

 

  







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n

i

iii bxxysignxf
1
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where ix  are the training samples; iy  are the target labels of the training samples (such that,  

}1,1{ iy  ); 0

i  are (the Lagrangian multipliers) called ‚support vectors;‛ 0b  is known as  

the ‚bias;‛ while x  denotes the test set.  

       Now we can consider a nonlinearly separable problem; that is a case where a linear 

hyperplane cannot separate the data without error or having some points misclassified. As shown 

in Figure 3.4, a nonlinearly separable problem can be separated using a nonlinearly separable 

hyperplane. Since the use of the linear boundary is inappropriate the SVM maps the input vector 

into a high dimensional space. SVM constructs an optimal hyperplane in the higher dimensional 

space, by choosing a linear mapping a priori (Gunn, 1998). This initiative utilises the work of 

Aizerman et al. (1964) which makes it possible to address the curse of dimensionality (Bellman, 

1961). What actually happens is that points in the input space are mapped onto a higher 

dimensional feature space where these points are separated with a linear separating hyperplane. 
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The result is a nonlinear separation between classes +1 and -1 (see Figure 3.4). This task is done 

by using a nonlinear function   to map the data onto a higher dimensional feature space (see 

Figure 3.4). In that case a kernel function K  is introduced, such that (Vapnik, 2000): 

 

)()(),( j

T

iji xxxxK                                                                                     (3.14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 The process of classifying a nonlinearly separable data. Adapted from Ivanciuc (2007, 

p. 323) 

   

 

         The use of kernel functions in SVMs addresses the problem of curse of dimensionality 

(Gunn, 1998). Separation in the feature space does not require that   be determined explicitly; 

therefore it is more convenient to use the kernel function for our computation. The derivation of  
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),( ji xxK from )()( j

T

i xx   is based on the Mercer's theorem (Mercer, 1909; Cristianini, 2000). 

The optimization problem for the nonlinear case can be derived by replacing ixx   with 

),( ji xxK  in equation 3.12, and we can revise equation 3.12 as, 

Maximize:  
  


n

i

jiji

n

i

j

n

j

ii xxKyy
1 1 1

),(
2

1
                                                     (3.15) 

 

subject to: 



n

i

ii y
1

0 , and, Ci  0 , for ni ,...,1 .  

         The decision function given in equation 3.13 can also be revised by replacing ),( xxi  with 

),( ji xxK ; therefore the decision function for the nonlinear case can be written as, 
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Given two arbitrary support vectors  Ax  class A and Bx  class B, the bias can be evaluated 

as: 
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  (Vapnik, 2000).                                   (3.17) 

 

         The kernel ),( ji xxK  can be any of the following common kernel functions: the linear 

kernel ixx  , polynomial kernel d

ixx )1(  , and Radial Basis Function (RBF) kernel  


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exp),(



ji

ji

xx
xxK   (Vapnik, 2000). The polynomial and RBF are nonlinear kernel 

functions. The parameters: gamma   and polynomial order d  control the shape of the 

separating hyperplane. Kernel functions are extremely important because each of these three  
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kernels functions (linear, polynomial, and RBF) may produce different results for a given 

classification problem. It is therefore crucial for the user to decide which particular kernel will 

best model a particular problem. It is also important that the values of the user defined 

parameters ( d for polynomial function and   for the RBF) usually chosen by trial-and-error, be 

chosen carefully. Different results may be obtained for different values of d  and  . 

 

3.4 Fuzzy support vector machine classification 

FSVM was introduced by Lin and Wang (2002). According to Lin and Wang (2002), FSVM 

simply implies the introduction of the fuzzy membership function into the standard SVM. The 

essence of introducing the fuzzy function into the standard SVM is to help reduce the effect of 

noise usually inherent in real world data and thereby improving the learning surface of the 

standard SVM.   

        Similar to the concise illustration presented in section 3.3 for the SVM classification, let us 

present the FSVM version for a binary classification problem. The data we want to classify can 

be expressed as: ),,(),...,,,(),,,( 222111 nnn syxsyxsyx , where N

ix   belongs to classes 

}1,1{ iy  for Ssi  . Where S denotes a set of fuzzy membership values described by 

10  is . We can construct a fuzzy grade of membership is
 as: 
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where,  
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where m  denotes the mean of class +1; r  represents the radius of  m ; m  denotes the mean 

of class -1; r  represents the radius of m ;   is a constant; and ix  represents land use variables 

(Lin and Wang, 2002). 

        It is unnecessary to repeat all the introductory steps given in section 3.3, which also applies 

to the FSVM. For the linear case the constrained optimization problem can be expressed as (Lin 

and Wang, 2002), 
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subject to: ii bxwy  1)( , 0i , and for ni ,...,1 ; where C  ,  C0  . 

Note that, the classification error i  can now be represented as iis  . The FSVM Lagrangian 

function can be expressed as (Lin and Wang, 2002), 
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and parameters ),,,,( bwL must satisfy the following conditions: 
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The resulting optimization problem can be given as (Lin and Wang, 2002), 

 

Maximize:  
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subject to: 



n

i

ii y
1

0 , and, Csii  0 , for ni ,...,1 .  

The decision rule for the linear case is the same as the SVM (see equation 3.13).  

           For the nonlinear case, the optimization problem is (Lin and Wang, 2002), 
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subject to: 

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1

0 , and, Csii  0 , for ni ,...,1 .  

 

The decision rule for the nonlinear case is the same as that of the SVM (see equation 3.16). The 

same kernel functions used for the SVM also apply to the FSVM.  

 

3.5 Numerical examples  

For a better understanding on how SVM works, let us apply SVM to a few hypothetical data. All 

the experiments in this section were implemented in MATLAB3 using Quadratic Programming 

(QP) (Cortes & Vapnik, 1995;  Vapnik, 1995; Gunn, 1998; Vapnik, 2000). 

 

       3.5.1 Classifying linearly separable data. 

A linearly separable hypothetical data (Table 3.1) can easily be separated with the linear and 

nonlinear kernel functions the polynomial kernel and the RBF kernel.  Since the data in Table 3.1  

                                                
3 MATLAB: Matrix Laboratory 
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can be separated easily with a linear kernel, there is no need to experiment with the nonlinear 

(polynomial and RBF) kernels in this subsection.  

       Table 3.1 consists of 10 training points; 5 points each belonging to classes +1 and -1 

respectively. An additional 10 test points (5 points each belonging to classes +1 and -1 

respectively) (see Table 3.2) were used to test the accuracy of the classification. The training and 

test data are depicted in Figure 3.5. From Figure 3.5, the black squares and the black triangles are 

the training data for classes +1 and -1 respectively, while the red squares and red triangles are the 

test data for classes +1 and -1 respectively. 

 

Table 3.1 2D linearly separable data (training data) 

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

1 8 12 +1 

2 4 9 +1 

3 6 16 +1 

4 5 4 +1 

5 10 0 +1 

6 -1 -13 -1 

7 -6 -7 -1 

8 -3 -16 -1 

9 -7 -5 -1 

10 -9 -1 -1 
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Table 3.2 Test data for a linearly separable classification 

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

1 6 10 +1 

2 10 10 +1 

3 8 15 +1 

4 10 15 +1 

5 10 20 +1 

6 -10 -5 -1 

7 -8 -10 -1 

8 -8 -15 -1 

9 -6 -15 -1 

10 -8 -20 -1 
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Figure 3.5 2D linearly separable data  
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        The classification was implemented using a linear kernel and setting C = 100. The 

classification results (in Table 3.3 and Figure 3.6) show that the linear kernel used 3 support 

vectors for the separation. From Figure 3.6, the black thick dash-line represents the linear 

hyperplane that separates classes +1 and -1. From Table 3.3, the training points with nonzero 

alpha i

 

values are the support vectors. The support vectors are points 4, 6, and 10 with 

coordinates (5, 4), (-1,-13), and (-9, -1) respectively. Another distinguishing characteristic of 

support vectors is that their predicted iy
 for classes +1 and -1, must be +1 and -1 respectively. 

The results in Table 3.3 show that all the training points were correctly predicted by the SVM 

classifier. Also from Figure 3.6, the circled points are the support vectors. From Table 3.4, all the 

test points were accurately classified. The next subsection presents a nonlinearly separable case.  

 

Table 3.3 Training results using a linear kernel       

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

 

0b  

 
0

i  

 

iy  

(Predicted) 

 

Remark 

1 8 12 +1 0.1154 0 1.9615 Correct 

2 4 9 +1 ,, 0 1.2692 ,, 

3 6 16 +1 ,, 0 2.0385 ,, 

4 5 4 +1 ,, 0.0096 1.0000 ,, 

5 10 0 +1 ,, 0 1.2692 ,, 

6 -1 -13 -1 ,, 0.0024 -1.0000 ,, 

7 -6 -7 -1 ,, 0 -1.1154 ,, 

8 -3 -16 -1 ,, 0 -1.4615 ,, 

9 -7 -5 -1 ,, 0 -1.0769 ,, 

10 -9 -1 -1 ,, 0.0072 -1.0000 ,, 
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Table 3.4 Test results using a linear kernel  

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

 

iy  

(Predicted) 

 

Remark 

1 6 10 +1 1.5769 Correct 

2 10 10 +1 2.0385 ,, 

3 8 15 +1 2.1923 ,, 

4 10 15 +1 2.4231 ,, 

5 10 20 +1 2.8077 ,, 

6 -10 -5 -1 -1.4231 ,, 

7 -8 -10 -1 -1.5769 ,, 

8 -8 -15 -1 -1.9615 ,, 

9 -6 -15 -1 -1.7308 ,, 

10 -8 -20 -1 -2.3462 ,, 
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    Figure 3.6 Results of classifying a linearly separable data with a linear kernel 
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       3.5.2 Classifying nonlinearly separable data.  

In this section, we will separate points that cannot be separated with a linear classifier without 

errors. The polynomial and RBF nonlinear kernels are used to classify the nonlinear data (see 

Table 3.5). The 10 points given in Table 3.6 will be used to test the accuracy of the classification. 

Figure 3.7 shows nonlinearly separable data, where the black squares and the black triangles are 

the training data for classes +1 and -1 respectively, while the red squares and red triangles are the 

test data for classes +1 and -1 respectively. It can easily be discerned from Figure 3.7 that a linear 

classifier cannot separate classes +1 and -1 without errors.      

 

Table 3.5 2D nonlinearly separable data (training data) 

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

1 3.3 2.7 +1 

2 5.1 5.8 +1 

3 6.6 4.2 +1 

4 5.3 5.4 +1 

5 2.9 4.8 +1 

6 1.8 2 -1 

7 6 0.9 -1 

8 8.4 4.2 -1 

9 5.7 6.3 -1 

10 2.3 6.7 -1 

 

 

 

 

 

 

 



 
47 

Support vector machines 

  

Table 3.6 Test data for a nonlinearly separable classification   

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

1 3.1 3.7 +1 

2 4.8 5.2 +1 

3 5.8 4.2 +1 

4 4.7 3.7 +1 

5 3.5 5.2 +1 

6 6.3 6.4 -1 

7 1.4 0.7 -1 

8 7.6 1.2 -1 

9 1.3 6.8 -1 

10 4.3 6.8 -1 
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Figure 3.7 2D nonlinearly separable data  
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         The experiment with the polynomial kernel was implemented with 3d  and 100C , 

while the RBF kernel experiment was implemented with 5.0  and 100C . From Figure 3.8, 

the points in the red and green circles are the support vectors yielded by the polynomial and the 

RBF  kernels respectively. The thick black dash-line ring/circle is the hyperplane used to separate 

classes +1 and -1. The training and test results of the polynomial and the RBF kernels are given 

in Tables 3.7-3.8 and 3.9-3.10 respectively. From Tables 3.7 and 3.10, the polynomial kernel 

yielded 7 support vectors (points 1, 2, 3, 6, 7, 9, & 10), while the RBF yielded 5 support vectors 

(points 1, 6, 7, 9, & 10). Both the training and test points of the polynomial and RBF kernels 

were correctly classified. The next section will present an illustration on how to optimise SVM 

parameters.   

 

Table 3.7 Training results using a polynomial kernel  

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

 

0b  

 
0

i  

 

iy  

(Predicted) 

 

Remark 

1 3.3 2.7 +1 -9.0949e-013 0.0305 1.0000 Correct 

2 5.1 5.8 +1 ,, 0.5563 1.0000 ,, 

3 6.6 4.2 +1 ,, 0.0247 1.0000 ,, 

4 5.3 5.4 +1 ,, 0 1.4777 ,, 

5 2.9 4.8 +1 ,, 0 1.3026 ,, 

6 1.8 2 -1 ,, 0.6095 -1.0000 ,, 

7 6 0.9 -1 ,, 0.0073 -1.0000 ,, 

8 8.4 4.2 -1 ,, 0 -4.6882 ,, 

9 5.7 6.3 -1 ,, 0.4147 -1.0000 ,, 

10 2.3 6.7 -1 ,, 0.0081 -1.0000 ,, 
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Table 3.8 Test results using a polynomial kernel 

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

 

iy  

(Predicted) 

 

Remark 

1 3.1 3.7 +1 1.4191 Correct 

2 4.8 5.2 +1 2.0366 ,, 

3 5.8 4.2 +1 2.1356 ,, 

4 4.7 3.7 +1 2.5380 ,, 

5 3.5 5.2 +1 1.7201 ,, 

6 6.3 6.4 -1 -2.7357 ,, 

7 1.4 0.7 -1 -1.6207 ,, 

8 7.6 1.2 -1 -2.7458 ,, 

9 1.3 6.8 -1 -2.4249 ,, 

10 4.3 6.8 -1 -0.6033 ,, 

 

Table 3.9 Training results using an RBF kernel  

 

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

 

0b  

 
0

i  

 

iy  

(Predicted) 

 

Remark 

1 3.3 2.7 +1 -8.8818e-016 1.4487 1.0000 Correct 

2 5.1 5.8 +1 ,, 0 9.0916 ,, 

3 6.6 4.2 +1 ,, 0 10.9083 ,, 

4 5.3 5.4 +1 ,, 0 11.046 ,, 

5 2.9 4.8 +1 ,, 0 2.641 ,, 

6 1.8 2 -1 ,, 2.5165 -1.0000 ,, 

7 6 0.9 -1 ,, 0.1107 -1.0000 ,, 

8 8.4 4.2 -1 ,, 0 -31.9733 ,, 

9 5.7 6.3 -1 ,, 0.0069 -1.0000 ,, 

10 2.3 6.7 -1 ,, 0.0116 -1.0000 ,, 
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Table 3.10 Test results using an RBF kernel 

 

Points 

 

1x  

 

2x  

 

iy  

(Actual) 

 

iy  

(Predicted) 

 

Remark 

1 3.1 3.7 +1 1.9003 Correct 

2 4.8 5.2 +1 10.0486 ,, 

3 5.8 4.2 +1 11.3851 ,, 

4 4.7 3.7 +1 6.5386 ,, 

5 3.5 5.2 +1 5.0082 ,, 

6 6.3 6.4 -1 -17.5453 ,, 

7 1.4 0.7 -1 -1.2446 ,, 

8 7.6 1.2 -1 -10.9616 ,, 

9 1.3 6.8 -1 -3.1689 ,, 

10 4.3 6.8 -1 -0.4317 ,, 
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Figure 3.8 Classification result from the polynomial and the RBF kernels (the points in 

the red and green circles are the support vectors yielded by the polynomial and the 

RBF kernels respectively) 
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        3.5.3 Selecting an optimal value for the regularisation parameter C and      

        kernel parameters for SVM classification and computing the accuracy of   

       the SVM. 

Selecting optimal SVM model parameters is usually done by trial-and-error based on a cross-

validation approach (Ivanciuc, 2007). This section applies the k-fold cross-validation technique 

to numerically illustrate how an optimal penalty value C and RBF kernel parameter 
 

can be 

selected in SVM modelling. In the k-fold cross-validation technique, usually a certain amount of 

data is selected from the population and split into k-subsets or k-datasets of equal sample size. 

One of the k-subsets is first used as the test set while the remaining k-1 subsets are assembled 

together to form the training set. The process is repeated k times such that each of the k-subsets 

must at one point be used for both training and testing (see Bhardwaj et al., 2005). 

         In this example, k = 3, meaning that a selected original sample was split into 3 datasets (T1, 

T2, and T3 given in Tables 311-3.13). The training sets T1, T2, and T3 (Tables 311-3.13) which 

consist of 10 points each of equal size were randomly generated for the purpose of illustration. 

The experiment consists of three stages. At each stage of the experiment, two datasets were put 

together and used for training while one dataset was kept for testing or validation. Eventually all 

the three datasets were involved in both training and testing.  

 

 

 

 

 

 

 

 



 
52 

Support vector machines 

  

Table 3.11 T1: training data 1 for a k-fold cross-validation experiment  

 

Points 

 

1x  

 

2x  

 

3x  

 

4x  

 

5x  

 

iy  

1 0.7971 0.6813 0.5603 0.2866 0.4409 +1 

2 0.2852 0.7145 0.8458 0.3548 0.8758 +1 

3 0.0149 0.4598 0.2848 0.5358 0.8650 +1 

4 0.0941 0.9193 0.6633 0.9908 0.3552 +1 

5 0.3287 0.9889 0.6023 0.0282 0.6311 +1 

6 0.3056 0.9326 0.6565 0.7095 0.8645 -1 

7 0.0180 0.4615 0.3099 0.9052 0.0210 -1 

8 0.1622 0.9049 0.3316 0.8658 0.0768 -1 

9 0.4440 0.3865 0.1882 0.1192 0.3767 -1 

10 0.7668 0.6030 0.1007 0.9553 0.1492 -1 

 

Table 3.12 T2: training data 2 for a k-fold cross-validation experiment  

 

Points 

 

1x  

 

2x  

 

3x  

 

4x  

 

5x  

 

iy  

1 0.7437 0.9998 0.5643 0.3090 0.7266 +1 

2 0.3020 0.8643 0.4315 0.9508 0.5297 +1 

3 0.0896 0.0369 0.3378 0.9820 0.8291 +1 

4 0.8260 0.5447 0.7207 0.5136 0.5119 +1 

5 0.3896 0.9976 0.0137 0.9926 0.5520 +1 

6 0.7753 0.5110 0.3741 0.4558 0.2133 -1 

7 0.1794 0.8735 0.9227 0.4260 0.5878 -1 

8 0.1094 0.0702 0.5465 0.2132 0.1428 -1 

9 0.9052 0.9875 0.4739 0.1932 0.0522 -1 

10 0.8764 0.9227 0.4965 0.8328 0.6833 -1 
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Table 3.13 T3: training data 3 for a k-fold cross-validation experiment  

 

Points 

 

1x  

 

2x  

 

3x  

 

4x  

 

5x  

 

iy  

1 0.8184 0.5678 0.7657 0.9744 0.9302 +1 

2 0.5951 0.6518 0.7566 0.7264 0.0047 +1 

3 0.5364 0.4911 0.8433 0.1480 0.6500 +1 

4 0.3309 0.3985 0.7702 0.1479 0.6785 +1 

5 0.4117 0.4775 0.9787 0.7048 0.2536 +1 

6 0.7940 0.0666 0.1114 0.3810 0.8432 -1 

7 0.3432 0.4110 0.3961 0.0764 0.2940 -1 

8 0.4626 0.9691 0.4921 0.4108 0.0269 -1 

9 0.3678 0.7807 0.2581 0.1430 0.0933 -1 

10 0.6796 0.7290 0.0370 0.7989 0.7979 -1 

             

                   The results of the illustration presented in Table 3.14 are the computed overall accuracies 

(overall accuracy is explained in section 5.7.4). From Table 3.14, the designated values of C were: 

10e-03, 10e0, and 10e03 while the designated values of 
 

 were: 5, 8, and 12. Training sets T2 

and T3 were first put together, trained, and validated with training set T1. The process was 

repeated until all the training sets were used for both training and testing (see Table 3.14). From 

Table 3.14, the mean overall accuracy for  =5 is 0.3667,  =8 is 0.4000, and  =12 is 0.4111. 

Therefore the optimal value for gamma   is 12, since it has the highest mean overall accuracy. 

The optimal value of C is 10e03, since it has the highest accuracy (see Table 3.14). The SVM 

model accuracy is 0.3926. 
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 Table 3.14 k-fold cross-validation results for selecting optimal values of C and    

 

 

 

 

 

 

 

 

 

 

3.6 Summary 

This chapter presented the basic concepts of the SVM, and how the FSVM can be derived from 

the standard SVM. Hypothetical numerical data were used to illustrate how SVMs can be 

applied. The next chapter describes land use development in Lagos.  

 

 

 

 

 

 

 

 

 

 Overall accuracy 

 C=10e-03 C=10e0 C=10e03 

  =5  =8  =12  =5  =8  =12  =5  =8  =12 

(T2+T3) tested 

with  T1 

0.3 0.5 0.5 0.3 0.4 0.5 0.3 0.6 0.6 

(T1+T3) tested 

with  T2 

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

(T1+T2) tested 

with  T3 

0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 

Mean accuracy 0.3667 0.4 0.4 0.3667 0.3667 0.4 0.3667 0.4333 0.4333 

Accuracy for 

each C 

 

0.3889 

 

0.3778 

 

0.4111 

Model accuracy  

(0.3889+0.3778+0.4111)/3 =  0.3926 
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CHAPTER 4 

 

LAND USE DEVELOPMENT OF LAGOS 

 

4.1 Preamble 

This chapter presents an overview of the study area. Three land use epochs, 1963-1978,  1978-

1984, and 1984-2000 are used to show land use transition in Lagos from 1963 to 2000. Causal 

factors considered responsible for land use change in Lagos and the reasons for their 

consideration will also be presented. Finally, a review of the urban planning regulations that have 

been applied in Lagos will be discussed.   

4.2 Study area 

Lagos is a littoral environment, has a relatively flat terrain, and an area of about 2910km2 

(Braimoh & Onishi, 2007). Lagos is bounded by coordinates (515000E, 750000N), (568500E, 

750000N), (515000E, 710000N), and (5685000E, 710000N).  

       The rainy (April-October) and dry (November-March) seasons are the two main climatic 

seasons in Lagos. Its mean temperature and relative humidity hovers around 30oC and between 

80-100% respectively (Braimoh & Onishi, 2007).  Lagos was the seat of the Nigerian 

Government until 12th December 1991 when Abuja became the nation's capital.  Lagos was 

originally  Lagos Island, but presently encompasses, Lekki, Apapa, Ikeja, Festac, Ikeja, Ojota, 

Oshodi, Mushin, Yaba, and Iddo (see Figure 4.1); as a result of the creation of Lagos State on 

the 27th of May 1967 based on the need to expand the nation’s capital territory. Despite the 

relocation of the seat of Nigerian Government from Lagos to Abuja, Lagos still maintains the 

reputation as the commercial and industrial nerve centre of Nigeria.  The next section presents 

land use transition in Lagos from 1963 to 2000.  
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Figure 4.1 Lagos in relation to Nigeria 
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4.3 Land use transition in Lagos 

Substantial land use change has occurred in Lagos between 1963 and 2000 (see Figure 4.2). The 

estimated change in land use in km2 (see Table 4.1) indicates a sharp increase in land use  from 

1963 to 2000. The highest change occurred in period 1984-2000, followed by period 1963-1978, 

while the lowest change occurred in period 1978-1984. The highest rate of change occurred in 

period 1978-1984, followed by period 1984-2000, while the lowest rate of change occurred in 

period 1963-1978. Some factors identified as being responsible for land use change in Lagos will 

be discussed in the following section.  
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Figure 4.2 Land use change of Lagos between 1963 and 2000 
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Table 4.1 Estimated land use area, change, and rate of change from 1963 to 2000  

Year Area (km2) Change (km2) Rate of change (km2/yr) 

1963 119.66   

1978 279.50 159.84 (1963-1978) 10.6560 

1984 435.80 156.30 (1978-1984) 26.0500 

2000 667.82 232.02 (1984-2000) 14.5013 

 

4.4 Selecting factors influencing land use development in Lagos, and reasons for 

their consideration  

The selection of the forces driving land use is a crucial aspect of land use change modelling, 

because land use drivers are the main characteristics that can help to understand the processes of 

land use transition (from nonurban to urban). There is no hard-and-fast rule or known global 

formula for selecting land use drivers. The list of land use drivers could be endless. Land use 

drivers are usually chosen on a case-to-case basis. Land use drivers in one environment might 

not apply to another (Baker, 1989).  

       Urban systems are complex systems whose modelling may involve many spatial variables 

(Liu et al., 2007). If the number of training samples is proportionately lower than the number of 

spatial variables, the problem of curse of dimensionality will arise which may lead to the 

overfitting of the training data (Camps-Valls & Bruzzone, 2005). One way of mitigating the 

problem of curse of dimensionality, is by ensuring a reliable approximation of the data which 

requires that the amount of training data points be directly proportional to the exponential of the 

number of variables (Duch & Diercksen, 1995). Another way to mitigate the problem of curse of 

dimensionality is by reducing the dimensionality of the data; that is, by reducing the number of 

variables (Jimenez & Landgrebe, 1997). Therefore, twelve salient land use drivers were selected 

for Lagos. The selected land use drivers influencing land use change in Lagos are: water; 

residential structures; industrial and commercial centres; major roads; railway; Lagos Island; 

international airport; international seaport; University of Lagos; Lagos State University; income  
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potential; and population potential. Statistical methods can be applied to the selected land use 

drivers to determine their level of influence on the dependent variables, as well as their degree of 

confidence with respect to their contribution to the model (Lo & Hu, 2007).  

       The OLS (see chapter 5) and LR (see chapter 6); as well as the one neuron ANN (see  

chapter 6) will be applied to the selected land use drivers to determine their significance in the 

model.  The next subsection describes the selected land use drivers.  

 

       4.4.1 Water.  

Lagos waters encompass the ocean, sea, lagoon, rivers, and inland water ways (see Figure 4.1). 

Fishing is the main occupation of the indigenous people of Lagos. Sand mining is another 

activity done in Lagos waters. The glamorous Lagos beaches have attracted local and 

international tourists. Early civilization and development in Lagos were centred on the coastal 

areas. Shipping activities are also done in Lagos waters. Water is generally seen as the live-wire of 

Lagos. In Lagos, land parcels close to water are more desirable. A popular saying in Lagos is, 

‚the closer you are to water the better.‛ Water is therefore considered an important factor 

controlling development in Lagos.  

 

       4.4.2 Residential structures. 

Residential structures are considered vital determinants for land use change in Lagos;   because a 

new building is more likely to be sited adjacent to an old one than otherwise. For modelling 

convenience, structures such as schools, hospitals, churches, and mosques are considered as 

residential structures.  
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       4.4.3 Industrial and commercial centres. 

The industrial and commercial areas of Lagos include towns like Apapa, Ikeja, Yaba, and Lagos 

Island. The Nigerian oil boom of the seventies and eighties resulted in rapid industrialisation and 

commercialisation in Lagos. Apart from the aforementioned prominent industrial and 

commercial towns, massive industrialisation and commercialisation now pervade remote areas 

such as Ojo, Ikorodu, and Ojota. As a result, these hitherto remote towns have transformed into 

huge urban centres as the sprawling continues unabated. Industrial and commercial centres are 

therefore considered a driving force for urban expansion in Lagos.  

 

       4.4.4 Major roads. 

Lagos has the largest road network in Nigeria. Highly complex road networks that link Lagos 

with the rest of Nigeria and neighbouring African countries criss-cross in and around Lagos. 

Most of these roads were built in the seventies and eighties during the Nigerian oil boom; these 

vast road networks mainly transverse very remote areas of Lagos. Accessibility to major roads is 

a prerequisite that is considered by property-developers. For this reason, settlements are usually 

centred around major-roads. Major roads are therefore catalysts that are very important for 

urban expansion in Lagos.   

 

       4.4.5 Railway. 

Only one railway links Lagos with the rest of the Nigeria. Heavy goods are usually conveyed by 

rail. Most industrial and commercial settlements were sited close to the railway in order to 

facilitate the movement of goods and services. The railway has also attracted dense urban 

settlements around it. Some examples are in towns such as Apapa, Iddo, and Yaba. The  railway 

is therefore considered a propellant for the urban growth of Lagos.   
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       4.4.6 Lagos Island.            

Lagos Island is the central business district and commercial hub of Lagos. Lagos Island was the 

original seat of the Nigerian Federal Government. The majority of the inhabitants of Lagos 

commute to Lagos Island on a daily basis. It is home to administrative headquarters of most big 

corporations in Nigeria including public corporations, banks, and oil companies. Development in 

Lagos is centred on Lagos Island. The proximity of a parcel of land to Lagos Island invariably 

determines its value. For these reasons, Lagos Island was chosen as one of the major drivers of 

urban growth in Lagos.   

 

       4.4.7 International airport. 

Murtala Mohammed International Airport, located in Ikeja is the only international airport in 

Lagos. It is open for business twenty-four hours each day and maintains the reputation as the 

busiest international airport in Nigeria. Since it was opened for operations on the 15th of March 

1979, there has been rapid urban growth around it. On this basis, it was considered an important 

factor for the urban growth of Lagos.  

 

       4.4.8 International seaport. 

Apapa Port was built in 1954. It is the largest and busiest international sea port in Nigeria. Apapa 

Port, or Apapa Quay as it is known, serves as the principal outlet for Nigeria's exports as well as 

imports, and has galvanised urban expansion around it. Apapa town where Apapa Port is located 

is home to one of the biggest industrial settlements in Lagos. These industries mainly serve as 

processing units for exported and imported goods. These reasons make Apapa Port a vital factor 

propelling urban growth in Lagos.    
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       4.4.9 University of Lagos. 

The University of Lagos was founded by the Nigerian government in 1962 in the Yaba area of 

Lagos, shortly after Nigeria's independence from Britain in 1960. It is generally abbreviated as 

UNILAG. UNILAG is located on the mainland and maintains the status as the largest university 

in Lagos. Since its establishment it has attracted huge settlements mainly around Yaba area, 

which is presently a highly cosmopolitan area. UNILAG is therefore considered a driving force 

for urban expansion in Lagos. 

 

       4.4.10 Lagos State University. 

Lagos State University generally abbreviated as LASU is the second largest university in Lagos 

and was founded by the Lagos State government in 1983 in the Ojo area of Lagos. Since its 

establishment, it has attracted massive urban expansion stretching from Festac to Ojo areas. 

LASU is therefore considered as one of the factors responsible for urban expansion in Lagos. 

 

       4.4.11 Income potential. 

There is presently no viable planning control on sprawl in Lagos. Certain parts of Lagos are 

more susceptible to sprawl than others. These more susceptible parts of Lagos are high income 

areas; in the big towns where commercial and industrial activities are prominent. Examples of 

such towns are Lagos Island, Yaba, Ikeja, Apapa, Festac, and Lekki. Places closer to the high 

income areas will be more susceptible to growth than places farther apart. Income potential is 

therefore a determinant for urban growth in Lagos.       
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       4.4.12 Population potential. 

Population is unarguably one of the propelling factors of urban change in Lagos. Table 4.2 

shows that there has been a steady rise in the population of Lagos form 1866 to 2015.  

 

Table 4.2 Estimated population growth rate of Lagos from 1866-2015 (Okude &  Ademiluyi, 

2006, p. 31) 

 

Census 

Year 

Total population 

(Million) 

Annual rate of growth 

(%) 

1866 0.012 - 

1871 0.028 2.70 

1881 0.037 2.40 

1891 0.032 -1.30 

1901 0.042 2.50 

1911 0.074 5.70 

1921 0.100 3.10 

1931 0.126 2.30 

1950 0.354 3.30 

1963 0.952 14.00 

1975 3.300 20.50 

1980 4.390 5.50 

1990 7.740 5.50 

1995 10.290 5.50 

2000 13.400 5.05 

2004 15.000 5.05 

2015 20.200 3.61 

 

        As population increases in an environment, there is a natural propensity for more structures 

to be built in that environment. Highly populated areas of Lagos like Ajagunle, Mushin, Agege, 

and Oshodi have experienced rapid urban expansion; these towns are predominantly informal 

settlement areas, necessitated by the surging urban population. Population is therefore 

considered one of the main factors that determines land use change in Lagos.   
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4.5 Land use planning of Lagos 

Significant factors propelling land use change in Lagos, and the reasons for their adoption were 

presented in the previous section. It is important to review planning regulations that the Nigerian 

Government has implemented in Lagos. This section presents how planning legislations have 

shaped the development of Lagos. Nigeria was administered as a British colony from 1854 to 

1960. Sections 4.5.1 and 4.5.2 discuss pre-independence and post-independence planning 

legislations in Lagos. Pre-independence and post-independence legislations represent planning 

legislations implemented in Lagos from 1854-1960 and 1960-present date respectively.    

 

       4.5.1 Pre-independence planning legislations. 

No significant planning policy was implemented for Lagos until 1873. One of the foremost 

planning legacies of Lagos could be traced to the effort made by the colonial surveyors, whom in 

1873 gazetted that owners of both occupied and unoccupied lands should ensure their properties 

are kept clean. Property owners were also requested to ensure that their streets, roads, and entire 

environs were kept tidy and should be devoid of unwarranted bushes and waste dumps (Aduwo, 

1999).  

        A proactive planning scheme was initiated by Governor MacGregor who established the 

Sanitary Board of Health in 1902. The role of the Board was to advise the Governor primarily on 

the improvement of public health, environmental sanitation, and potable water supply. Under 

Planning Ordinance of 1902 the Governor was mandated to establish European Reservations 

under a sub-board called ‘Local Board of Health.’ The Governor had the responsibility to 

advance the health and sanitary condition of the European Reservations. After the Planning 

Ordinance of 1902 came the Public Health Ordinance, which was promulgated in 1908 as an 

appendage of the Lagos Municipal Board of Health primarily for environmental and health 

monitoring. The Township Ordinance was promulgated in 1917. This legislation body became 
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 the first conventional planning legislation in Nigeria; the primary objectives of this law include: 

the provision of infrastructure; public utilities; health; and environmental sanitation (Oduwaye, 

2009).  

       As the population of Lagos continued to grow, there was a need to keep reviewing the 

planning regulations in order to keep pace with the growing needs of the public. The planning 

Ordinance of 1928 called ‘Lagos Town Planning Ordinance’ was established primarily for 

the Lagos Colony. The Lagos Executive Development Board (LEDB) was established under the 

Lagos Town Planning Ordinance. The roles of the LEDB are: the provision of housing, vetting 

of building plans, and enactment of bye-laws for land use planning; provision of infrastructure 

and public utilities; and land reclamation (Oduwaye, 2009).       

 

       4.5.2 Post-independence planning legislations. 

The LEDB remained the regulatory planning body in Lagos until 1972 when the Lagos State 

Development and Property Corporation (LSDPC) was created. The objectives of the LSDPC 

include: the acquisition, development, holding, selling, leasing, and letting of both mobile and 

immobile properties within Lagos (Oduwaye, 2009).  

       By 1973, the government saw the need to harmonise all the existing planning laws affecting 

Lagos.  This gave rise to the Lagos State Town Country Planning Law of 1973 (popularly called 

‘Cap 133’). The Lagos Local Government (Power) Act of 1959 ( Cap 77), the Lagos Town 

Planning (Compensation) Act of 1964, the Lagos Executive Development Board (Power) Act of 

1964, the Lagos Town Planning (Miscellaneous Provision) Decree of 1967, the Lagos State 

Town Planning (Miscellaneous Provision) Decree of 1967, the Western Region Law No. 41 of 

1969, and the Town Planning Authority (Supervisory Power) Edict of 1971, were all reviewed 

under the Lagos State Town Country Planning Law of 1973. In 1982 came the Town and 

Country Planning (Building Plans) Regulation, which was succeeded by the Town and Country 
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 Planning (Guidelines for Approval of Layouts) of 1983. The Town and Country Planning Edict 

and Town and Country Planning (Building Planning) Regulation were enacted in 1985 and 1986 

respectively (Oduwaye, 2009).  

       In 1998, the Lagos State Urban and Regional Planning Edict No. 2 was enacted because 

there was need to review the subsisting Lagos State planning law to reflect the newly 

promulgated federal law known as ‘Nigerian Urban and Regional Law Decree 88 of 1992.’ 

The consequence of the Nigerian Urban and Regional Law was that it empowered each of the 

three levels of government in Nigeria (federal, state, and local) to make separate laws to meet 

their respective planning objectives in such a manner that the states derive their authority from 

the federal government, while the local governments derive their authority from their respective 

state governments (Oduwaye, 2009). 

        In 2005, a law called ‘Administration of Physical Planning and Development Agencies in 

Lagos State’ came into being (Lagos State Official Gazette, 2005). This new law modified the 

Lagos State Urban and Regional Planning Edict of 1998; first, to make it workable in a 

democracy (since the 1998 law was made by the military); second, to give more powers to the 

ministry in charge of planning rather than concentrating too much powers in the government (as 

was the case during the military regime); third, to bring planning nearer to the less developed 

parts of Lagos (Oduwaye, 2009).        

 

        4.5.3 Appraisal of pre-independence and post-independence planning         

       legislations in Lagos. 

All the planning legislations from pre-independence times until the present were enacted with 

the intention of creating an enabling framework that can facilitate the development of good road 

networks, water supply, social amenities, agriculture, solid waste management, electricity supply, 

and environmental management.  
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        The merit of the pre-independence planning laws of Lagos is that they laid the foundation 

for the building of roads and bridges, preparing Lagos as the capital city of Nigeria, health 

management, and the establishment of schools and other social infrastructure. The merit of post-

independence planning laws is that they provided the enabling framework that opened up 

tremendous development in Lagos, especially in less developed areas. The oil boom of the 

seventies and eighties motivated the Nigerian government to facelift Lagos. The Lagos planning 

departments can be credited for the substantial transformation that has taken place in Lagos 

from the time of independence to the present date.        

        The main problem with Lagos pre-independence planning laws is that they did not target 

the development of native settlements in Lagos. This planning defect has led to informal 

settlements or slums that presently pervade native towns in Lagos. The poor workers in Lagos 

who could not afford the high cost of living in developed parts of Lagos find shelter in low 

profile housing in informal settlements (Oduwaye, 2009). Critics have persistently blamed post-

independence planning programmes for the present deteriorating state of infrastructure and 

utilities in Lagos.  

        Most critics have posited that the main shortcomings of post-independence planning 

programmes in Lagos have been:  (i) political instability and lack of continuity: Nigeria has been 

politically unstable since her independence from Britain; from civil war shortly after 

independence to successive military governments such that governments come and go, with 

every new government coming with new planning laws to replace that of the previous 

government; a new administration usually vilifies the previous one in order to justify itself; (ii) 

too  much power concentrated in the government rather than in the planning ministry; (iii) poor 

funding; (iv) mismanagement; (v) the inability of the Nigerian  Government to stem rural–

urban drift by developing other parts of Nigeria aside Lagos; (vi) the neglect of science and 

technological knowhow. This last shortcoming is a very important factor yet and unfortunately  
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the least considered reason for low performance of government's  planning programmes in 

Lagos; this is where this thesis finds relevance, in helping to complement the urban planning of 

Lagos.  

 

4.6 Summary 

Lagos is a mega-city, with a very high population density. Tremendous urbanisation has taken 

place in Lagos since Nigerian independence from Britain in 1960. This can be discerned from 

the significant change in the land use of Lagos (see Figure 4.2).  

       To date, Lagos is still described as a laissez-faire urban society. Informal settlements 

constitute the biggest problem with urban planning in Lagos. The pre-independence and post-

independence planning laws and programmes described in this chapter were intended to equate 

Lagos with cities like London and New York, but poor planning policies have been the major 

setback. In the next chapter, the GIS-based GWR and OLS models will be used to investigate 

the dependence of land use change in Lagos on the twelve selected land use change drivers.  
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CHAPTER 5 

 

CONVENTIONAL METHODS: APPLICATION OF GIS-BASED 

ORDINARY LEAST SQUARES AND GEOGRAPHICALLY WEIGHTED 

REGRESSION MODELS  TO LAND USE CHANGE MODELLING OF 

LAGOS 

 

5.1 Preamble 

This chapter presents the mathematical principles underlying land use change modelling, the 

methods used in acquiring the land use data, and few data constraints that were encountered.  It 

will also describe how the land use data were prepared and extracted and will finally describe the 

application of the GIS-based OLS and GWR models to land use change modelling of Lagos, 

based on periods 1963-1978, 1978-1984, and 1984-2000. 

             

5.2 Mathematical calibration for land use change modelling  

As stated in equation 2.1, a typical (global) linear regression equation for land use change 

modelling can be expressed as,  
p

iippi xy 0 . Let Xxip  and Yyi  ,  such that X  

represents the present year, while Y represents the future year; ipx  are the independent variables 

in the present year X , while iy  are the unknown dependent variables in the future year Y ;  p  

are the slope coefficients; 0  is the intercept; while i  is the error term. In order to map the 

data in X  onto Y ; p , 0 , and i  must be calculated.   

        Empirical measurements are done in the X  system, while corresponding points in the Y 

system are represented with discrete variables. When map X  and Y  are overlaid, for the 

purpose of predicting change between both systems three categories of land use are produced: (i) 

the change region, (ii) the developed region, and (iii) undeveloped region. In linear regression  
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modelling, the three categories of land use can be represented with discrete variables as: (i) 

undeveloped region =1; (ii) change region = 2; and (iii) developed region = 3.  

      The mathematical relationship for predicting land use change between a present year and a 

future year expressed as equation 2.1 shows that only two maps (a present and a future year) are 

actually needed to calibrate the land use change equation. Empirical measurements are based on 

the present year for the purpose of validation a known data representing the future year is used 

for validating the experiment. However, the use of multiple maps for calibration is better than 

just using two maps. The advantages of using multiple maps of different epochs/time-slices 

include: (i) the ability to validate the model at various discrete time slices, and (ii) the historical 

trend of change in land use can be evaluated/captured over time.           

       In this research, four maps (consisting three epochs) will be used for modelling land use 

change in Lagos. Having presented the linear mathematical relationship between the dependent 

and the independent variables the next section briefly illustrates the sources of the land use data 

used in this research. 

 

5.3 Land use data 

The land use data of Lagos consist of two remotely sensed Landsat Thematic Mapper (TM) 

images, acquired in 1984 and 2000 respectively; and two analogue base maps acquired in 1963 

and 1978. The satellite data have a cell size of 100m x 100m. The base maps were sourced from 

the Lagos State Ministry of Lands. The next section explains some data constraints encountered 

in this research.  

 

5.4 Land use data constraints 

The main data constraint experienced in this research is the limited amount of historical data for 

Lagos. The high cost of acquiring both analogue and satellite data makes it extremely difficult for  
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most developing countries (especially African countries) to acquire historical land use data on a 

yearly basis. The author's field investigation in Nigeria revealed that no comprehensive land use 

mapping of Nigeria has been done since independence from Britain in 1960. This is due to the 

high cost of acquiring land use data and significant political instability in Nigeria since 

independence. More pressing issues like housing, road network, education, poverty alleviation, 

and fostering political stability are of highest priority to the Nigerian government. The Nigerian 

government having recently recognised the importance of land use mapping (and to overcome 

the rigour and high cost of using classical methods of mapping) has now launched her own 

satellite programme which is still at the fledgling stage. 

        As explained in section 5.2, only two maps are basically required for land use change 

calibration. Land use change predictions by Wu (2002); Li and Yeh (2002);  Braimoh and Onishi 

(2007); Kocabas and Dragicevic (2007); and (PhD thesis by)   Sietchiping (2004) were all based 

on only two land use maps.  

       High quality remote sensing data for African countries are usually provided by the United 

States owned Landsat programme. Only the 1984 and 2000 high-resolution Landsat satellite 

images of Lagos currently available for civilian use can be reliably used in this research; this is the 

first data constraint in this research. The second data constraint is that   very limited land use 

maps of Lagos have been produced. Only the land use maps produced in 1963 and 1978 are of 

adequate quality for harmonisation with the 1984 and 2000 satellite images. It is vital to 

harmonise the satellite and analogue data. The harmonisation process mainly involves four steps: 

(i) geo-referencing; (ii) overlaying (iii) reclassification; and (iv) editing. These procedures are 

explained in the next section.  
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5.5 Land use data preparation 

The Landsat images acquired in 1984 and 2000 were classified with the k-means algorithm using 

MATLAB 7.8 software. The analogue base maps acquired in 1963 and 1973 were scanned and 

digitised on-screen using ArcGIS 9.3. The analogue and remote sensing data were geo-

referenced to ensure both data were in the same coordinate system. Digitising analogue maps 

reduces their accuracy. It is therefore important to enhance the accuracy of the analogue data to 

ensure they approximate that of the satellite maps.     

        The enhancement of the analogue base maps was done in MATLAB, by first obtaining n-

classifications of the satellite data and overlaying the resulting classified satellite data with the 

digitised base maps. A digital editing procedure was then used to remove errors from the 

digitised maps. The final images for 1963, 1963-1978, 1978-1984, and 1984-2000 are shown in 

Figure 4.2.  

       After the land use data have been prepared, the next step is to extract the land use variables. 

The methods of extracting the land use variables are described in the next section.     

 

5.6 Extraction of land use variables 

This section explains the processes of extracting the land use variables already explained in 

section 4.4. The land use variables (Table 5.1) are grouped into two categories: (i) proximity 

variables, and (ii) weighted variables.   
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  Table 5.1 Extracted land use variables  

 

Land use variables 

 

Proximity variables 
1x : distance to water 

,, 
2x : distance to residential structures 

,, 
3x : distance to industrial and commercial centres 

,, 
4x : distance to major roads 

,, 
5x : distance to railway 

,, 
6x : distance to Lagos Island 

,, 
7x : distance to international airport (1984-2000 only) 

,, 
8x : distance to international seaport 

,, 
9x : distance to University of Lagos

 
,, 

10x :distance to Lagos State University (1984-2000 only)
 

Weighted variables 
11x : income potential 

,, 
12x : population potential 

 

        The proximity variables were extracted in ArcGIS 9.3 using the Spatial Analyst Tools. 

Distance to water was extracted by calculating the Euclidean distance of all locations to the 

nearest water body. Distance to residential structures was extracted by calculating the Euclidean 

distance of cells to the nearest residential structure. Distance to industrial and commercial 

centres was extracted by calculating the Euclidean distance of cells to the nearest industrial and 

commercial centre. Distance to major roads was extracted by calculating the Euclidean distance 

of all locations to the nearest major road. Distance to railway was extracted by calculating the 

Euclidean distance of cells to the nearest railway. Distance to Lagos Island was extracted by 

calculating the Euclidean distance of all cells to Lagos Island. Distance to international airport 

was extracted by calculating the Euclidean distance of cells to the location of the international 

airport. Distance to international seaport was extracted by calculating the Euclidean distance of 

all cells to the location of the international seaport.  Distance to University of Lagos was 

extracted by calculating the Euclidean distance of all cells to the location of University of Lagos.  
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Distance to Lagos State University was extracted by calculating the Euclidean distance of all cells 

to the location of Lagos State University. 

        The weighted variables were derived with MATLAB 7.8. Income disposition in Lagos 

varies from place to place. This variable was estimated by ranking major towns in Lagos, using a 

ranking ir  of a production/service centre ic . The ranking was normalized to weight iw
 using 

the formula ( Braimoh & Onishi, 2007), 

 

 


n

c i

i
i

i

r

r
w

1

                                                                                                                 (5.1) 

 

Therefore the weighted inverse distance formula for calculating the income potential Si  of a 

location S  is given as (Braimoh & Onishi, 2007),   
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where nx ,...,2,1  are settlements in the study area. 

 

       The final ranking was based on government documents, interviews, and personal knowledge 

of the author. The population data were made available by the Lagos State Government. The 

population estimate was obtained using the formula (Braimoh & Onishi, 2007), 
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where, r = intercensal population growth rate; pP = previous population; rP = present 

population; rY  = recent year; and pY  = previous year. An inverse distance weighting formula for 

calculating an unknown population potential Sp , at a given location S , is given as (Braimoh & 

Onishi, 2007), 
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where )( xSP  is the population of a settlement located at S ; nx ,...,2,1  are settlements in the 

study area. 

       Since all the land use variables have now been extracted, the next section will present the use 

of the extracted land use variables for modelling using the GIS-based OLS and GWR models.   

 

5.7 Modelling 

Spatial statisticians consider the OLS model an important tool for understanding the dynamics 

among spatial agents, even though land use data are usually inconsistent with basic underlying 

traditional statistical assumptions (Overmars et al., 2003; Aguiar, 2006).  This section will explore 

the use of the GIS-based GWR and OLS models for predicting land use change in Lagos, and 

also examine how spatial models satisfy some fundamental OLS model assumptions of: 

multicollinearity among the explanatory variables; normality of model residuals; linearity between 
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 the dependent and independent variables; absence of spatial autocorrelation in the model 

residuals; and homoscedasticity or stationarity among explanatory variables. 

       The GIS-based GWR model does not furnish information about the significance of the 

explanatory variables only the OLS model does. The GIS-based OLS and GWR models will 

serve different purposes. The OLS model will be used to assess the significance of the 

explanatory variables and other statistical tests that will be presented in this section. The GWR 

model will be used for the actual prediction, after using the OLS model to assess the significance 

of the explanatory variables and other statistical tests.  

       The land use prediction from 1984-2000 will be based on all the 12 explanatory variables, 

while 10 explanatory variables will be used for periods 1963-1978 and 1978-1984 (see Table 5.1). 

The reason being that, two of the selected land use drivers (international airport and Lagos State 

University) came into being after 1978.  

        The original land use maps (in 1963, 1978, 1984, and 2000) had a cell size of 100m x 100m 

(see Figure 4.2) before they were gridded to increase their cell size to 500m x 500m (see Figure 

5.1). This implies that every 25 pixels in the original map became just a single pixel. Invariably, 

the value of each pixel in the gridded map became the average of every 25 pixels in the original 

map. The matrix size of the original maps were too large with very small cell size, as a result 

could not be modelled with the ArcGIS-based GWR and OLS models. Maps are usually gridded 

before being modelled with the GWR and OLS models (Erener et al., 2010). The maps were 

gridded in order to increase their cell sizes and ultimately reduce the amount of pixels in the 

entire maps. Rescaling may introduce errors but, nonetheless, it is a common phenomenon in 

spatial mapping and modelling usually applied to either increase or decrease the amount of pixels 

in the map.  
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Figure 5.1 Gridded land use maps of Lagos from 1963-2000 
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1978-1984

1963-1978

1963  
/  
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        The GIS-based GWR and OLS models do not need to train the data before the data is used 

for prediction. The amount of pixels after gridding the maps should not be too large. If the 

amount of (gridded) pixels is too large the GIS software will produce an error message. The 

observed data in 1963 were used to predict the 1978 land use; 1978 data were used to predict the 

1984 land use; and the 1984 data were used to predict the 2000 land use. The present year is 

furnished by the independent variables, while the target year is furnished by  the dependent 

variables. Empirical measurements are only done on the present year. The dependent variables 

are represented with discrete variables. The present year and target year maps were overlaid to 

determine the changed regions between the present and target years.  The results of the overlay 

are three categories of land use of the target year: (i) undeveloped region; (ii) change region; and 

(iii) developed region. The resulting overlaid maps form the data for the dependent variable. The 

dependent variable was represented as follows: undeveloped region=1; changed region=2; and 

developed region=3.  

        The original values of the independent variables were scaled to [0, 1] using the 

transformation formula (Gong, 1996; Li & Yeh, 2002), 

 

min)/(maxmin)( 
ii xx                                                                                         (5.5) 

 

 where ix is the scaled land use variable; min is the lowest value in the land use vector;  max is 

the highest value in the land use vector;  and ix  represents the land use variables.  

 

This scaling technique is effective in ensuring that all the independent variables are equally 

weighted (Gong, 1996; Li & Yeh, 2002).   

        Equations 5.6-5.8 and equations 5.9-5.11 are the OLS and GWR equations for periods 

1963-1978, 1978-1984, and 1984-2000 respectively;   
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iLUC 19781963_  , iLUC 19841978_  , and iLUC 20001984_   represent Land Use Change 

(LUC) from 1963-1978, 1978-1984, and 1984-2000 respectively: 

 

ii exxxxxxxxxxLUC  1010998877665544332211019781963_   

(5.6) 

 

ii exxxxxxxxxxLUC  1010998877665544332211019841978_   

(5.7) 

 

ii exxxxxxxxxxxxLUC  121211111010998877665544332211020001984_ 

(5.8) 

 

),(),(),(),(),(),(19781963_ 6666555544443333222211110 vuxvuxvuxvuxvuxvuxLUC i    

ievuxvuxvuxvux  ),(),(),(),( 10101010999988887777                                                       (5.9) 

 

),(),(),(),(),(),(19841978_ 6666555544443333222211110 vuxvuxvuxvuxvuxvuxLUC    

ievuxvuxvuxvux  ),(),(),(),( 10101010999988887777                                                       (5.10) 

 

),(),(),(),(),(),(20001984_ 6666555544443333222211110 vuxvuxvuxvuxvuxvuxLUC i    

ievuxvuxvuxvuxvuxvux  ),(),(),(),(),(),( 121212121111111110101010999988887777   .           (5.11) 

 

The meaning of the explanatory variables ( 1x , 2x , 3x , 4x  5x , 6x , 7x , 8x , 9x  10x , 11x , 12x ) are given in 

Table 5.1.  In equations 5.6-5.11,  0  is the intercept; 121 ,...,  are the coefficients of the 

independent variables; vu,  are the horizontal coordinates; and ie  is the error term. The data were 

prepared in MATLAB, and thereafter imported into ArcGIS 9.3 for modelling. The dependent  
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variables must be shapefiles consisting of discrete variables. The attribute tables of the 

dependent variables (to be predicted) must contain: unique or primary keys, all the attributes of 

the independent variables (explanatory variables), and discrete variables of the dependent 

variables. The dependent variables cannot be represented with continuous variables because the 

resulting map-overlay consists of only three land use types: undeveloped, change, and developed. 

The next subsection will assess the effectiveness of the GIS-based OLS model to estimate the 

regression coefficients.   

 

       5.7.1 Model significance. 

The first stage of the modelling is to assess whether the explanatory variables can effectively 

estimate the regression coefficients. In ArcGIS 9.3, the OLS model furnishes the Joint Wald 

Statistic (see Table 5.2) used to test the overall significance of the model: 

 

H0: the explanatory variables in the model are not effective at the 95% 

Confidence Level (CL) 

H1:  the explanatory variables in the model are effective (reject H0 if p- 

value <0.05) 

 

Table 5.2 Joint Wald Statistic for 1963-1978, 1978-1984, and 1984-2000 (*significant at p<0.05) 

 

 

Periods 

 

Jarque-Bera 

Statistic 

 

Degrees of 

freedom 

 

P-value 

1963-1978 2420.836938 10 0.000000* 

1978-1984 3228.506277 10 0.000000* 

1984-2000 3627.033362 12 0.000000* 
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        If the Koener (BP) Statistic (see Table 5.8) indicates statistical significance (as in this case), 

then the Joint Wald Statistic is used to assess the overall significance of the model. The Joint 

Wald Statistic results (Table 5.2) show that the overall model is significant for periods 1963-1978, 

1978-1984, and 1984-2000. The Joint Wald Statistic significant results imply that the explanatory 

variables can effectively estimate the regression coefficients. The next subsection explores the 

use of the ArcGIS Spatial Statistics Tools to assess the importance of each 

independent/explanatory variable in the model. 

 

         5.7.2 Assessing the significance of each independent variable in the   

       Model. 

The GIS-based OLS model was used to explore the significance of each explanatory variable. 

The results given in Tables 5.3-5.5 are ArcGIS 9.3 statistical outputs that show the significance 

of each explanatory variable in the model. The calculated multiple R2 values for periods 1963-

1978, 1978-1984, and 1984-2000 were 0.318959, 0.360174, and 0.381849 respectively; while the 

calculated adjusted R2 values for periods 1963-1978, 1978-1984, and 1984-2000 were: 0.317984, 

0.359258, and 0.380787 respectively. The hypothesis for assessing the significance of each 

explanatory variable can be stated as follows: 

H0: the coefficients are zero at the 95% CL 

H1:  the coefficients are not zero (reject H0 if p- 

value <5%)  

         The assessment of the explanatory variables was based on the 95% CL. P-values that were 

<5% based on a two-tailed test were considered significant in the model.  The critical value of t 

was 1.96; therefore, t-statistic values >1.96 were considered significant in the model.  
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Table 5.3 Statistical results for assessing the significance of each independent variable in the 

model for 1963-1978 (*significant at p<0.05 or t>1.96) 

 

 

Variable 

 

Coefficient 

 

Std Error 

 

t-statistic 

 

P-value 

 

VIF [1] 

Intercept 0.847101 0.018673 45.363946 0.000000* - -  - - - 

Distance to water -0.117348 0.055944 2.097593 0.035964* 1.509747 

Distance to residential -1.124156 0.050378 22.314590 0.000000* 1.159984 

Distance to industrial 

and commercial 

-0.806965 0.045379 17.782810 0.000000* 1.342798 

Distance to major 

roads 

-0.421015 0.047971 8.776518 0.000000* 1.271059 

Distance to railway -0.716223 0.042507 16.849342 0.000000* 1.194308 

Distance to Lagos 

Island 

-0.397699 0.042050 9.457734 0.000000* 1.325239 

Distance to 

international seaport 

-0.174235 0.039471 4.414274 0.000013* 1.254065 

Distance to University 

of Lagos 

-0.062781 0.041584 1.509759 0.131166 1.274922 

Income potential 0.520350 0.043490 11.964778 0.000000* 1.141347 

Population potential 0.230385 0.035664 6.459927 0.000000* 1.141712 
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Table 5.4 Statistical results for assessing the significance of each independent variable in the 

model for 1978-1984 (*significant at p<0.05 or t>1.96) 

 

 

Variable 

 

Coefficient 

 

Std Error 

 

t-statistic 

 

P-value 

 

VIF [1] 

Intercept 1.092893 0.022225 49.173422 0.000000* - - - - - - - 

Distance to water -0.208187 0.065870 3.160574 0.001597* 1.440754 

Distance to residential -1.919315 0.062447 30.735343 0.000000* 1.244771 

Distance to industrial and  

commercial 

-1.010004 0.059138 17.078679 0.000000* 1.410719 

Distance to major roads -0.927202 0.074672 12.417024 0.000000* 1.086095 

Distance to railway -0.655001 0.052848 12.393995 0.000000* 1.270764 

Distance to Lagos Island -0.308435 0.050105 6.155783 0.000000* 1.321559 

Distance to international 

seaport 

-0.140088 0.047237 2.965640 0.003041* 1.236370 

Distance to University of 

Lagos 

0.137918 0.049860 2.766108 0.005689* 1.261713 

Income potential 0.746732 0.054971 13.584038 0.000000* 1.178389 

Population potential 0.339526 0.057042 5.952223 0.000000* 1.182373 
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Table 5.5 Statistical results for assessing the significance of each independent variable in the 

model for 1984-2000 (*significant at p<0.05 or t>1.96) 

 

 

Variable 

 

Coefficient 

 

Std Error 

 

t-statistic 

 

(P-value)  

 

VIF [1] 

Intercept -2.290807 0.023219 98.658942 0.000000* - - - - - - - 

Distance to water -0.222466 0.075164 2.959756 0.003099* 1.176389 

Distance to residential -2.606189 0.077746 33.522009 0.000000* 1.104094 

Distance to industrial and 

commercial 

-2.113546 0.092167 22.931596 0.000000* 1.137527 

Distance to major roads -1.486506 0.106371 13.974726 0.000000* 1.063784 

Distance to railway -0.910023 0.058224 15.629605 0.000000* 1.050858 

Distance to Lagos Island -0.339675 0.056222 6.041727 0.000000* 1.093061 

Distance to international 

airport 

-0.035236 0.054862 0.642261 0.520725 1.102546 

Distance to international 

seaport 

-0.189215 0.062306 3.036886 0.002412* 1.093976 

Distance to University of 

Lagos 

0.147534 0.060228 2.449619 0.014312* 1.104240 

Distance to Lagos State 

University 

-0.719737 0.058858 12.228258 0.000000* 1.052826 

Income potential 0.721885 0.063363 11.392814 0.000000* 1.154016 

Population potential 0.414852 0.048891 8.485296 0.000000* 1.153289 

 

         The variables with p-values marked * were found to be significant at the 95% CL.   For 

1963-1978 (see Table 5.3), 9 independent variables out of 10 were significant at the 95% CL. 

Only distance to University of Lagos was insignificant at the 95% CL. For 1978-1984 (see Table 

5.4), all the 10 independent variables were significant at the 95% CL.  For 1984-2000 (see Table 

5.5), 11 independent variables out of 12 were significant at the 95% CL. Only distance to 

international airport was insignificant at the 95% CL.   

         The higher the value of the calculated t-statistic of an explanatory variable, the greater its 

influence in the model conversely the smaller the p-value of an explanatory variable, the greater 

its influence in the model. In like manner as the t-statistic, the higher the absolute value of the 

regression coefficient  of an explanatory variable the greater its influence in the model. From  
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Tables 5.3 and 5.4 (that is for both periods 1963-1978 and 1978-1984) distance to residential had 

the highest influence while distance to University of Lagos had the lowest influence. From Table 

5.5, distance to residential had the highest influence while distance to international airport had 

the lowest influence.  

        The signs of the calculated regression coefficients of the independent variables indicate 

their relationship with the predicted dependent variable. An increase in the values of the 

explanatory variables with positive coefficients will increase the number of developed cells in the 

model; while a decrease in the values of the explanatory variables with positive coefficients will 

decrease the number of developed cells in the model. An increase in the values of the 

explanatory variables with negative coefficients will decrease the number of developed cells; 

while a decrease in the values of the explanatory variables with negative coefficients will increase 

the number of developed cells. The last column in Tables 5.3-5.5 explains the effect of 

multicollinearity in the model. Multicollinearity in the model will be explained in section 5.7.3.1. 

The next section examines how the GIS-based linear regression land use change modelling 

conforms to traditional statistical assumptions underlying linear regression modelling.  

 

        5.7.3 Traditional statistical assumptions vis-à-vis GIS-based linear       

       regression land use change modelling. 

This section assesses the spatial GIS-based linear regression OLS model with respect to some 

fundamental traditional statistical assumptions. This section assesses how the GIS-based OLS 

modelling results meet the following traditional statistical criteria: multicollinearity; linearity;  

normality; spatial autocorrelation; and homoscedasticity or stationarity.  
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              5.7.3.1 Multicollinearity.  

Traditional statistics assumes that the linear regression model is devoid of multicollinearity; 

which means that no exact correlation exists between the explanatory variables. In spatial 

statistics, the presence of a significant multicollinearity in the spatial linear regression model 

implies that the offending explanatory variable is redundant in the spatial model, and should be 

removed.  

       In ArcGIS, the Variance Inflation Factor (VIF) (see the last columns of Tables 5.3- 5.5) 

assesses the effect of multicollinearity in the spatial model. Explanatory variables with VIF >7.5 

are considered redundant, and should be excluded from the model. The calculated VIF values 

for all the explanatory variables in the three experiments (1963-1978, 1978-1984, and 1984-2000) 

were <7.5 (see the last columns of Tables 5.3- 5.5). This implies that all the variables were 

important in the prediction, and should be retained in the model. The next section assesses 

whether the land use data meet the linearity criterion for linear regression modelling. 

 

               5.7.3.2 Linearity. 

The scatter plot in Figure 5.2a depicts a typical relationship between a dependent and an 

independent variable in linear regression modelling. Based on empirical land use change data, 

Figure 5.2b is the plot of a dependent variable (1963-1978) against an independent variable 

(distance to water 1963-1978). Figure 5.2b shows that land use change data do not conform to a 

typical linear regression relationship between a dependent and an independent variable shown in 

Figure 5.2a.  

       Figure 5.2b shows that the relationship between the land use dependent variable (y-axis) and 

the independent variable (x-axis) is nonlinear as expected. Using discrete variables to represent 

the dependent variable will definitely produce a nonlinear relationship between the dependent  

 



 
88 

Conventional methods: application of GIS-based ordinary least squares and geographically 

weighted regression models  to land use change modelling of Lagos 

  

and explanatory variables, as in the case of Figure 5.2b. Therefore the land use change data do 

not meet the linearity condition expected of all linear regression modelling.       

 

0 2 4 6
0

2

4

6

8

D
e
p
e
n
d
e
n
t 

v
a
ri
a
b
le

Independent variable

A typical linear relationship 

0 100 200 300
1

1.5

2

2.5

3

D
e
p
e
n
d
e
n
t 

v
a
ri
a
b
le

Distance to water

"Dependent variable" versus "distance to water"

(a)

R-sqaure = 0.9512

Strong

+ve

relationship

(b)

 

                 5.7.3.3 Normality. 

Even though the use of binary or discrete variables to represent the dependent variable is 

synonymous with logistic regression, dependent variables in OLS models can also be represented 

with binary or discrete variables (Menard, 1995), as typical in land use change modelling using 

linear regression. The disadvantage of using discrete variables for the dependent variables is that 

the normality and homoscedasticity assumption of the OLS may be violated; nonetheless the 

results can still be useful for classification and statistical testing (Pohlmann & Dennis, 2003). 

 

 

 

 

 

Figure 5.2 (a) A typical linear regression relationship between a dependent and an 

independent variable; (b) dependent variable plotted against distance to water 
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         The Jarque-Bera Statistic is used for testing whether the model residuals are normal: 

   

H0: the residuals are normally distributed at the 95% CL 

H1:  the residuals are not normally distributed (reject H0 if p- 

value <0.05) 

 

 The results of the ArcGIS Jarque-Bera Statistic are given in Table 5.6. 

 

Table 5.6 Jarque-Bera test for 1963-1978, 1978-1984, and 1984-2000 (*significant at p<0.05) 

 

Periods 

 

Jarque-Bera 

Statistic 

 

Degrees of 

freedom 

 

P-value 

1963-1978 706.116841 10 0.000000* 

1978-1984 392.961529 10 0.000000* 

1984-2000 318.762167 12 0.000000* 

 

        All the calculated p-values for 1963-1978, 1978-1984, and 1984-2000 were <0.05; which 

indicates that the residuals deviate from the normal distribution as expected. The three known 

methods of transforming a nonlinear model to a linear model are: the logarithmic 

( xbay ln ), exponential ( bxaey  ,
 

bxay  lnln ) and power function ( baxy  , 

xbay lnlnln  ). As expected, the relationship in Figure 5.2b remained the same when these 

transformations were applied to the model. If the dependent variables are changed to continuous 

variables, the model will not be able to model the dichotomous land use data (which is either 

developed or undeveloped).  

        A histogram plot was used to further examine the normality of the OLS model residuals. 

The plots for periods 1963-1978, 1978-1984, and 1984-2000 given in Figure 5.3 show that the 

model residuals deviate from a normal distribution. That was the reason why the ArcGIS Jarque-

Bera test was statistically significant for periods 1963-1978, 1978-1984, and 1984-2000. 



 
90 

Conventional methods: application of GIS-based ordinary least squares and geographically 

weighted regression models  to land use change modelling of Lagos 

  

-2 0 2 4
0

500

1000

1500

2000

Residuals

F
re

q
u
e
n
c
y

Plot of OLS residuals for 1963-1978

-2 0 2 4
0

500

1000

1500

2000

Residuals

F
re

q
u
e
n
c
y

Plot of OLS residuals for 1978-1984

-2 0 2 4
0

500

1000

1500

2000

Residuals

F
re

q
u
e
n
c
y

Plot of OLS residuals for 1984-2000

 

Figure 5.3 Plots for OLS residuals for periods 1963-1978, 1978-1984, and 1984-2000 

 

              5.7.3.4 Autocorrelation/spatial autocorrelation. 

Traditional statisticians and spatial statisticians have divergent views on the issue of 

autocorrelation in the model. In spatial statistics, autocorrelation is called ‘spatial 

autocorrelation.’ Spatial autocorrelation informs geographers on how spatial variables are 

interacting with their environment. A spatial variable is said to be spatially autocorrelated if there 

is a systematic pattern in the spatial distribution of the model residuals (the residual is the 

difference between the observed and predicted quantity). If a variable is influenced by nearby 

areas, then it is positively spatially autocorrelated. A variable is negatively autocorrelated if it is 

influenced by farther areas in the environment. When no positive or negative spatial 

autocorrelation exists in the model residual, then the pattern is said to be random. 
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         For spatial data to conform to the requirement of traditional statistics, land use data should 

be autocorrelation free or random. Spatial statistics assumes that the presence of significant 

spatial autocorrelation in the data implies the absence of key explanatory variables from the 

model (Fotheringham et al. 2002). The ArcGIS GWR model is robust to spatial autocorrelation 

effect. The ArcGIS Spatial Autocorrelation Moran's I Tool is used to test for the presence of 

spatial autocorrelation in the model using the model residuals. As explained in section 2.2.2, 

Moran I values close to +1 indicate positive spatial autocorrelation; values close to -1 indicate 

negative spatial autocorrelation; while values close to zero indicate that the model residuals are 

random. The Moran's I tests (see Table 5.7) for 1963-1978, 1978-1984, and 1984-2000 yielded 

values close to zero. These results indicate that the model residuals were not spatially 

autocorrelated.  

 

Table 5.7 OLS modelling: spatial autocorrelation test for 1963-1978, 1978-1984, and 1984-2000 

using ArcGIS Moran's I tool 

 

 

Periods 

 

Moran’s I index 

For OLS 

1963-1978 0.081073 

1978-1984 0.073943 

1984-2000 0.069293 

 

               5.7.3.5  Homoscedasticity or stationarity. 

Traditional statisticians assume that homoscedasticity or variance between the explanatory 

variables in a linear regression model is equal. On the other hand spatial statisticians assume that 

the global OLS model does not account for the variation in space; and as a result cannot deal 

with the problem of non-stationarity.  Spatial statisticians have developed the GWR model to 
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 deal with the spatial variations when estimating model coefficients (Fotheringham et al. 2002). 

In ArcGIS, the Koenker (BP) Statistic is used for testing for non-stationarity: 

 

H0: the model is stationary at the 95% CL 

H1: the model is non-stationary (reject H0 if p-value <0.05) 

 

The GIS-based OLS model estimates for the Koenker (BP) Statistic are given in Table 5.8.  

 

Table 5.8 Koenker (BP) Statistic for 1963-1978, 1978-1984, and 1984-2000 (*significant at 

p<0.05) 

 

 

Periods 

 

Koener (BP) 

Statistic 

 

Degrees of 

freedom 

 

P-value 

1963-1978 1237.735416 10 0.000000* 

1978-1984 532.003124 10 0.000000* 

1984-2000 74.834390 12 0.000000* 

 

All the three results for periods 1963-1978, 1978-1984, and 1984-2000 indicate significant non-

stationarity. This implies that the model is not homoscedastic and therefore violates traditional 

statistical requirements that expect OLS models to be homoscedastic. In ArcGIS, the GWR 

model becomes a veritable option for the prediction when the OLS results indicate significant 

non-stationarity.  

 

       5.7.4 Prediction. 

Spatial dependency in land use data makes them violate basic OLS model assumptions (Tang & 

Choy, 2000). The OLS model is a global model that does not consider the effect of variation in 

space or non-stationarity. OLS assumes homoscedasticity of the independent variables across 

 



 
93 

Conventional methods: application of GIS-based ordinary least squares and geographically 

weighted regression models  to land use change modelling of Lagos 

  

 space; which means that the variance of the independent variables is constant across space. This 

assumption does not subsist with spatial data. 

        In spatial statistics, non-stationarity does not invalidate the result of the OLS model; the 

GWR model was specifically designed to mitigate this problem (Fotheringham et al. 2002, Platt 

2004). As already mentioned in section 2.2.2, note that the GWR (just like the OLS) is still 

subject to the fundamental statistical assumptions being investigated in this chapter.  

        In the course of the prediction, it is important to assess the performances of both the 

global OLS model and the local GWR model even though it has been experimentally proven that 

the GWR model is more accurate (Fotheringham et al. 2002). Akaike's  Information Criterion 

(AIC) measures model performance between or among regression models. The model that has a 

lower AIC value is considered better.  The ArcGIS 9.3 AIC results (Table 5.9) show that the 

GWR model provided a better fit for the dependent variables, since its values were significantly 

lower than those of the OLS model.  

 

Table 5.9 Calculated AIC values for GIS-based OLS and GWR regression models 

 

 

Periods 

 

AIC values 

for 

OLS 

 

AIC values 

for 

GWR 

1963-1978 12123.468750 4745.185736 

1978-1984 14737.540971 7122.286379 

1984-2000 15197.338192 8392.552088 

 

        The remaining parts of the prediction were based on the GWR model, since our goal from 

this point is to find the best fit for the dependent variables. Let us now assess the goodness-of-fit 

of the land use change prediction. The R2 was used to assess the goodness-of-fit for predicting 

land use change in the three periods (1963-1978, 1978-1984, and 1984-2000). The resulting high  
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R2 and R2 adjusted values (Table 5.10) show that the GWR predictions for the three periods 

(1963-1978, 1978-1984, and 1984-2000) were highly accurate.  

 

Table 5.10 GWR modelling: calculated R2 values for 1963-1978, 1978-1984, and 1984-2000 

 

Periods 

 

R2 

 

R2 Adjusted 

1963-1978 0.843159 0.792102 

1978-1984 0.846021 0.805692 

1984-2000 0.853782 0.799722 

 

        This result is an indication that the GWR model was able to mitigate the effects of non-

stationarity and autocorrelation that usually compromise the goodness-of-fit of the dependent 

variable as in the case of the OLS model (the calculated R2 and adjusted R2 for the OLS model is 

given in section 5.7.2).  

        The GWR model predicted maps for 1963-1978, 1978-1984, and 1984-2000 (Figure 5.4) 

were evaluated with the kappa statistic (also known as kappa coefficient) and the overall accuracy 

methods of evaluations.  
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        Kappa statistic and overall accuracy are calculated from the confusion matrix also known as 

error matrix. The cell-by-cell comparison of the GWR predicted maps and the reference data in 

1978, 1984, and 2000 are given in the confusion matrices in Tables 5.11- 5.13.  
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Figure 5.4 Predicted GWR maps for 1963-1978, 1978-1984, and 1984-2000 
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        A confusion matrix or error matrix is a square array of values usually used to express 

classification results. Conventionally, the rows of the matrix represent the values of the predicted 

data while the columns of the matrix represent the reference data (Lo & Yeung, 2007). Tables 

5.11-5.13 are 2 x 2 matrices representing classification results. A confusion matrix is basically a 

tabular comparison of the predicted map with the actual or reference map. The confusion matrix 

is a data visualisation tool that facilitates the analysis of results.  

 

Table 5.11 GIS-based GWR modelling: confusion matrix for period 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1669 (TP) 185 (FP) 

Undeveloped 123 (FN) 5023 (TN) 

 

Table 5.12 GIS-based GWR modelling: confusion matrix for period 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2369 (TP) 399 (FP) 

Undeveloped 139 (FN) 4093 (TN) 

 

Table 5.13 GIS-based GWR modelling: confusion matrix for period 1984-2000 

 Reference data 2000  

 Developed Undeveloped 

Predicted data 2000   

Developed 3282 (TP) 266 (FP) 

Undeveloped 150 (FN) 3302 (TN) 
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        The 2 x 2 confusion matrices (Tables 5.11-5.13) consist four elements: TP, FP, FN, and 

TN. Their meanings are:   

 

TN (True Negative) = Undeveloped cells that were correctly predicted as undeveloped cells 

FP (False Positive) = Undeveloped cells that were wrongly predicted as developed cells 

FN (True Negative) = Developed cells that were wrongly predicted as undeveloped cells 

TP (False Positive) = Developed cells that were correctly predicted as developed cells 

 

Thus, overall accuracy is calculated from the error matrix as ‚the sum of the diagonal values 

divided by the total number of sample locations‛ (Lo & Yeung, 2007, p. 120). That is:  

 

Overall accuracy = the sum of the diagonal elements  (TP + TN) ÷ the sum of all the elements 

in the matrix (TP + FP + FN + TN). 

 

Kappa statistic (k) or kappa coefficient was introduced by Cohen (1960). Kappa statistic can be 

expressed mathematically as (Ma & Redmond, 1995; Lo & Yeung, 2007):  

 

c
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where,  

oP  = the proportion of agreement between the reference and sample 

iin  = the total number of correctly classified points by class along the diagonal of the  

        error matrix 

N  = the total number of points checked (sampled) 

iiP  = the proportion of correctly classified sample points by class at the diagonal of  

         the error matrix (i.e. Nnii / ) 

iP  = the marginal distribution of the sample data ( Nni /  where in  is the row sum  

         by class) 

iP  = the marginal distribution of the reference data ( Nn i /  where in  is the column  

         sum of class) 

m  = the total number of classes 

 

        The kappa statistic is a more reliable measure than the overall accuracy because it has the 

ability to evaluate the actual agreement and chance agreement (Fung & LeDrew, 1988).  The 

kappa statistic estimates are usually lower than those of the overall accuracy (see Table 5.14). The 

calculated kappa statistic and overall accuracies from the GWR predicted maps are given in 

Table 5.14. The calculated kappa statistic estimates reveal (Table 5.14) that there was substantial 

agreement between the observed and predicted maps.  
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Table 5.14 Calculated kappa statistic estimates for 1963-1978, 1978-1984, and 1984-2000 

 

Periods 

 

Kappa statistic 

 

Overall accuracy 

1963-1978 0.8858 0.9560 

1978-1984 0.8366 0.9231 

1984-2000 0.8812 0.9406 

            

        It is desired that the standard residuals (that is under and over prediction) be randomly 

distributed. The standard residuals for the three periods shown in Figure 5.5 indicate that the 

residuals were random. This is an indication that no key independent variable was omitted from 

the model (Thapa & Murayama, 2009).  

        High local R2 values (Figure 5.5) indicate areas on the map where the GWR model 

predicted well while low local R2 values indicate areas on the map that were less well predicted by 

the GWR model. 

        Cond denotes condition number. Cond assesses local collinearity in the model. The results 

from cells with Cond values greater than 30 may not be reliable. All the predicted Cond maps for 

periods 1963-1978, 1978-1984, and 1984-2000 (Figure 5.6) yielded Cond  values  below 30.   This 

indicates that the results from this prediction can be trusted. 
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1963-1978

StdResid

< -2.5 Std. Dev.

-2.5 - -1.5 Std. Dev.

-1.5 - -0.5 Std. Dev. 

-0.5 - 0.5 Std. Dev.

0.5 - 1.5 Std. Dev.

1.5 - 2.5 Std. Dev.

> 2.5 Std. Dev.  

 

1963-1978

LocalR2

0.000000 - 0.051997

0.051998 - 0.136320

0.136321 - 0.221902

0.221903 - 0.317179

0.317180 - 0.437439

0.437440 - 0.581147

0.581148 - 0.760945 

 

1978-1984

StdResid

< -2.5 Std. Dev.

-2.5 - -1.5 Std. Dev.

-1.5 - -0.5 Std. Dev. 

-0.5 - 0.5 Std. Dev.

0.5 - 1.5 Std. Dev.

1.5 - 2.5 Std. Dev.

> 2.5 Std. Dev.  

 

1978-1984

LocalR2

0.000000 - 0.071405

0.071406 - 0.152905

0.152906 - 0.243233

0.243234 - 0.349957

0.349958 - 0.468067

0.468068 - 0.572240

0.572241 - 0.711029 

 

1984-2000

StdResid

< -2.5 Std. Dev.

-2.5 - -1.5 Std. Dev.

-1.5 - -0.5 Std. Dev. 

-0.5 - 0.5 Std. Dev.

0.5 - 1.5 Std. Dev.

1.5 - 2.5 Std. Dev.

> 2.5 Std. Dev.  

 

1984-2000

LocalR2

0.000000 - 0.077658

0.077659 - 0.162827

0.162828 - 0.253379

0.253380 - 0.349259

0.349260 - 0.454171

0.454172 - 0.569116

0.569117 - 0.734357 

Figure 5.5 Estimated GWR standard residuals and local R2 for 1963-1978, 1978-1984, and 

1984-2000       
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        In ArcGIS, unlike the OLS model, the GWR model does not furnish the Jarque-Bera 

Statistic. Therefore, the only way to investigate the normality of the GWR model residuals will be 

to examine them graphically by plotting them. The histogram plot was used to assess the 

normality of the GWR model residuals. The plots (Figure 5.7) show that the residuals deviated 

slightly from a normal distribution. The GWR normal plots were more normally distributed than 

those of the OLS model displayed in Figure 5.3. The normality plot also showed that the GWR 

model was able to enhance the normality of the model when compared with the normal plots 

from the OLS model.  A further test was done with the GWR model residuals, to investigate the 

presence of spatial autocorrelation in the data; even though the standard residual maps (see 

Figure 5.5) indicate that the model residuals were random.  

 

1963-1978

Cond

9.603290 - 11.805569

11.805570 - 13.205946

13.205947 - 14.399716

14.399717 - 15.514525

15.514526 - 16.722243

16.722244 - 18.150355

18.150356 - 22.964431 

 

1978-1984

Cond

8.282103 - 10.756597

10.756598 - 12.400196

12.400197 - 13.726617

13.726618 - 14.971081

14.971082 - 16.257461

16.257462 - 17.816251

17.816252 - 22.183198 

 

1984-2000

Cond

8.190969 - 9.997748

9.997749 - 11.417674

11.417675 - 12.530261

12.530262 - 13.420643

13.420644 - 14.413756

14.413757 - 15.922118

15.922119 - 22.282116  

Figure 5.6 Estimated GWR model condition numbers for 1963-1978, 1978-1984, and 

1984-2000 
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Figure 5.7 Normality plot for GWR model residuals for periods 1963-1978, 1978-1984, and 

1984-2000 

  

         The ArcGIS Moran's I indices for 1963-1978, 1978-1984, and 1984-2000 (see Table 5.15) 

indicate that the model residuals were random or autocorrelation free because the Moran's I 

indices were close to zero. These results indicate that the GWR model reduced autocorrelation 

effect in the model when compared with results from the OLS model, since its results were 

closer to zero (see Table 5.7).    
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Table 5.15 GWR modelling: spatial autocorrelation test for 1963-1978, 1978-1984, and 1984-

2000 using ArcGIS Moran's I  

 

Periods 

 

Moran's I index 

for 

GWR 

1963-1978 0.004824 

1978-1984 0.005082 

1984-2000 0.006313 

 

        5.7.5 Assessing the impact of excluding the insignificant variable from   

       the  OLS and GWR modelling results. 

All the independent variables in period 1978-1984 were significant in the model at the 95% CL 

(see Table 5.4) but each of the variables in periods 1963-1978 and 1984-2000 was not significant 

at the 95% CL (see Tables 5.3 and 5.5). This experiment aims at assessing the effect of excluding 

the insignificant variables from the GWR model.   

       The results of the experiment were as follows: for 1963-1978, OLS multiple R2 = 0.318737; 

adjusted R2 = 0.317860; and AIC = 12123.751337.  GWR:  R2 = 0.8396; R2 adjusted = 0.7934; 

and AIC = 4580.4994. For 1984-2000, OLS: multiple R2 = 0.381812; R2 adjusted = 0.380839; 

and AIC = 15195.751446.  GWR:  R2 = 0.855443; R2 adjusted = 0.803408; and AIC = 

8230.301948.   

        For 1963-1978, using the OLS model, the previous multiple R2,  adjusted R2 , and AIC 

results obtained with all the independent variables were better (see previously obtained  multiple 

R2 , adjusted R2, and AIC values using all the independent variables in section 5.7.2; and Table 

5.9, respectively). This implies that the independent variable that was insignificant at the 95% CL 

slightly aided the performance of the OLS model. Using the GWR model, the previous R2,  R2 

adjusted, and AIC results obtained with all the independent variables were better for the R2 value, 

but worse for the R2 adjusted and the AIC estimates (see the AIC, R2,  and R2 adjusted values  
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obtained with all the independent variables in Tables 5.9 and 5.10 respectively). This implies that 

the independent variable that were insignificant at the 95% CL slightly aided the performance of 

the GWR model with respect to the R2 estimate and conversely slightly hindered the GWR 

model with respect to the adjusted R2 and AIC estimations. The difference between the results 

using all the independent variable and only the significant variables is very negligible. 

        From Table 5.4, there was no insignificant independent variable resulting from period 1978-

1984.         

        For 1984-2000, using the OLS model, the previous R2 obtained with all the independent 

variables was better but worse for the  adjusted R2, and AIC estimates. This implies that the 

independent variable slightly aided the OLS performance with respect to the  calculated R2 

estimate but slightly hindered the OLS model with respect to the adjusted R2, and AIC estimates. 

For the GWR model, the computed AIC, R2, and R2 adjusted values were all better than the 

previous results obtained by using all the explanatory variables. This implies that the insignificant 

variable slighted hindered the performance of the GWR model.  

 

        5.7.6 The effect of excluding each independent variable from the GWR   

      model. 

Figure 5.8-5.10 depict the GWR model AIC and R2 results when each independent variable was 

excluded from the model one after the other.  

        From Figure 5.8, 1963-1978; 1=distance to water; 2=distance to residential; 3=distance to 

industrial and commercial; 4=distance to major roads; 5=distance to railway; 6=distance to 

Lagos Island; 7=distance to international seaport; 8=distance to University of Lagos; 9=income 

potential; and 10=population potential. The result in Figure 5.8 indicates that the performance of 

the GWR model was lowest when distance to residential structures was excluded from the 

model. This implies that distance to residential structures had the highest impact in the  
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prediction. Note that the lower the AIC value the better the performance of the model.  The 

GWR model performance was highest when distance to railway was excluded from the model. 

This implies that distance to railway had the least impact in the prediction.   

         From Figure 5.9, 1978-1984, the independent variables 1 to 10 are the same as in Figure 

5.8. The distance to residential structures had the highest impact on the performance of the 

model since the accuracy of the prediction was lowest when distance to residential structures was 

excluded from the model. The distance to international seaport had the lowest impact on the 

performance of the prediction since the model yielded the highest AIC and R2 values when 

distance to international seaport was excluded from the model.   

         From Figure 5.10, 1984-2000; 2=distance to water; 3=distance to residential; 4=distance to 

industrial and commercial; 5=distance to major roads; 6=distance to railway; 7=distance to 

Lagos Island; 8= distance to international airport; 9=distance to international seaport; 

10=distance to University of Lagos; 11= distance to Lagos State University; 12=income 

potential; and 13=population potential. The distance to residential structures had the highest 

impact in the performance of model since the accuracies of the prediction were  lowest when 

distance to residential structures was excluded from the model. The distance to railway had the 

lowest impact in the performance of model because the computed accuracies of the prediction 

were highest when distance to railway was excluded from the model.      
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Figure 5.8 The effect of excluding each variable on the GWR estimated AIC and r-square results 

for 1963-1978 
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Figure 5.9 The effect of excluding each variable on the GWR estimated AIC and r-square results 

for 1978-1984 
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Figure 5.10 The effect of excluding each variable on the GWR estimated AIC and r-square 

results for 1984-2000 

 

         The results obtained by excluding each independent variable one at a time corroborate  the 

OLS modelling results presented in Tables 5.3-5.5. The actual prediction was implemented using 

all the independent variables, due to the fact that all the independent variables had influence on 

the model based on the OLS results in Tables 5.3-5.5. For an  unbiased comparison of the GIS-

based results with those from the LR, ANN, SVM, and FSVM results, all the independent 

variables will be used for the LR, ANN, SVM, and FSVM based CA modelling.   

 

5.8 Summary 

The R2 estimates and kappa statistic of the GWR model were satisfactory. Nonetheless, the 

results from the GIS-based regression modelling indicate that only the multicollinearity and 

spatial autocorrelation criteria for linear regression models were fulfilled. Normality, linearity, 

and homoscedasticity conditions were not met. The next section explores the application of the 

unconventional LR and ANN based CA calibrations.  
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CHAPTER 6 

 

COMMON UNCONVENTIONAL METHODS: APPLICATION OF 

LOGISTIC REGRESSION AND ARTIFICIAL NEURAL NETWORK 

BASED CELLULAR AUTOMATA MODELS TO LAND USE CHANGE 

MODELLING OF LAGOS 

 

6.1 Preamble  

This chapter explores the use of Logistic Regression (LR) and Artificial Neural Network (ANN) 

models for land use change modelling of Lagos. Two simulation approaches will be applied to 

both models: the non-CA and the CA-based simulations.  

 

6.2 LR-based CA modelling   

  

       6.2.1 LR-based CA calibration. 

This section presents a brief mathematical illustration of how an LR-based CA model can be 

derived. Logistic Regression (LR) is the linear regression model usually used in cases where the 

dependent variable is dichotomous [0, 1].  In this experiment, developed cells = 1, while 

undeveloped cell = 0. Given a linear function,  
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where q  is a binary dependent variable, i ,...0  are logistic regression coefficients to be 

estimated, while ix are independent variables. A logistic regression model can therefore be  
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expressed as: 
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       (Pohlmann & Dennis, 2003)               (6.3) 

 

        Equation 6.3 is the LR-based non-CA model; and P  is the development probability. By 

introducing the Moore neighbourhood function 33  (Wu, 2002), a coefficient Q , constraints 

contributions  ijcons , and a stochastic function   )ln(1   (White &  Engelen, 1993), 

equation 6.3 can be revised to derive the final development probability (Liu & Li, 2006;  Liu et 

al., 2007):   
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where   is a uniform random variable within the range of [0, 1];   is a constant that controls 

the magnitude of the perturbation; 1

33



 t

 is an updated function that determines the values of t

ijP  

in each iteration; Q
 
is a coefficient that ensures the values of t

ijP  are confined to [0, 1]; and  
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


m

i

ijcons
1

 are the immutable cells that are not affected by the simulation (water and developed 

cells are considered immutable).  

         Equation 6.4 is the LR-based CA model. A threshold probability value ( ) is set as a 

benchmark for determining undeveloped cells that are eligible to transit to developed cells:  

 



 

dundevelopeOtherwise

developedP t

ij 
                                                                                           (6.5) 

 

Q
 
can also be used to regulate the value of t

ijP  with respect to  , in order to either decrease or 

increase the number of iterations required for the simulation. The next sub-section presents a 

brief description of the data used in the modelling and how they were prepared.   

 

       6.2.2 Data and methodology. 

The same data (see section 5.3) used in the GIS-based modelling in chapter 5 were used in this 

chapter. How the land use data were prepared was described in section 5.5 of chapter 5. This 

sub-section describes the basic procedures that were undertaken in the course of the modelling 

(see Figure 6.1).      
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Figure 6.1 Flowchart for LR modelling 

 

        All the land use independent variables were prepared in the GIS using ArcGIS 9.3  before 

being imported into MATLAB.  The coefficients of the land use variables were first determined. 

The LR and the OLS (described in chapter 5) can furnish information regarding both the 

coefficients of the explanatory variables and their significance in the prediction. Unlike the OLS, 
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 LR model does not furnish information on multicollinearity; that is whether the explanatory 

variables were redundant or not in the simulation.  As stated in section 6.1, two stages of land 

use development were used to assess the evolution of land use: (i) land use change modelling 

without the use of CA, and (ii) land use change modelling using CA. These two techniques were 

run through a land use transition module that finally determined the future state of the 

undeveloped cells. Only undeveloped cells can change their state to developed. The developed 

cells are immutable in the simulation.  

       The land use change module without CA is non-iterative while the land use change model 

using CA is iterative. For the non-CA modelling, the transition probability from undeveloped to 

developed is when undeveloped cells have development probabilities greater than 0.5 (P>0.5). 

For CA modelling, cells with probabilities greater or equal to the threshold probability became 

developed cells while cells with probabilities below the threshold probability were re-admitted 

into the land use processing module (see Figure 6.1). The final land use maps were visualised in 

the GIS.   

 

       6.2.3 Non-CA modelling. 

Unlike the OLS, LR model does not furnish R2 values (Pohlmann & Dennis, 2003); therefore the 

overall accuracy and kappa statistic are used as yardsticks for assessing the calibration. This sub-

section describes the modelling of land use change between 1963-1978, 1978-1984, and 1984-

2000. Dummy variables were used to represent the land use dependent variables. The dependent 

variable is dichotomous (1=developed and 0=undeveloped). The independent variables consist 

of the explanatory variables for periods 1963-1978, 1978-1984, and 1984-2000 given in Table 5.1. 

As explained in section 5.7, all the data for the three periods 1963-1978, 1978-1984, and 1984-

2000 were scaled to [0, 1].   
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        Each pair of land use map was overlaid to determine the changed regions. The reasons for 

overlaying these maps were to: (i) extract all the developed and undeveloped points that are 

common to each pair, and (ii) ensure that the data from the change region were excluded from 

the training data. The extracted points formed the training data that were used to calculate the 

LR coefficients for periods 1963-1978, 1978-1984, and 1984-2000 respectively. The calculated 

LR coefficients for 1963-1978, 1978-1984, and 1984-2000 are presented in Tables 6.1-6.3. Using 

a two-tailed test, the significance of the explanatory variables was evaluated at 95% CL; p-values 

<0.05 or  t  > 1.960 were considered significant in model. The hypothesis is: 

 

H0: the logistic regression coefficients are zero at 95% CL 

H1: the logistic regression coefficients are not zero (reject H0 if p- 

value<0.05) 

 

 Table 6.1 Logistic regression results for 1963-1978 (* significant at <0.05; criticalt  =  1.960) 

 

Variable 

 

Coefficient 

 

Std Error 

 

t-statistic 

 

P-value 

 

Intercept 3.707823 0.2647 14.00863 1.3800e-044* 

Distance to water -2.12069 0.7090 -2.99116 0.0028* 

Distance to residential -49.4663 3.8374 -12.8905 5.0900e-038* 

Distance to industrial and 

commercial -9.12891 0.7985 -11.4323 2.8800e-030* 

Distance to major roads -6.30084 1.4556 -4.32865 1.5000e-005* 

Distance to railway -15.4482 1.2007 -12.8663 6.9600e-038* 

Distance to Lagos Island -3.09282 0.5029 -6.14938 7.7800e-010* 

Distance to international seaport -0.88752 0.4315 -2.05701 0.0397* 

Distance to University of Lagos -1.51889 0.4622 -3.2859 0.0010* 

Income potential 0.64486 0.4115 1.567077 0.1171 

Population potential 0.191304 0.3566 0.536451 0.5916 
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 Table 6.2 Logistic regression results for 1978-1984 (* significant at <0.05; criticalt  =  1.960) 

 

Variable 

 

Coefficient 

 

Std Error 

 

t-statistic 

 

P-value 

 

Intercept 4.1945 0.2718 15.4301 1.0300e-053* 

Distance to water -2.2895 0.5830 -3.9269 8.6000e-005* 

Distance to residential -197.2990 9.3164 -21.1775 1.5400e-099* 

Distance to industrial and 

commercial -4.2734 0.5908 -7.2334 4.7100e-013* 

Distance to major roads -2.2110 0.9224 -2.3969 0.0165* 

Distance to railway -2.5068 0.5290 -4.7371 2.1700e-006* 

Distance to Lagos Island -0.3284 0.4578 -0.7173 0.4732 

Distance to international seaport -0.7065 0.4010 -1.7618 0.0781 

Distance to University of Lagos 0.0976 0.4180 0.2334 0.8155 

Income potential 1.2384 0.4720 2.6251 0.0087* 

Population Potential -0.5500 0.5180 -1.0622 0.2881 

 

 Table 6.3 Logistic regression results for 1984-2000 (* significant at <0.05; criticalt  =  1.960) 

 

Variable 

 

Coefficient 

 

Std Error 

 

t-statistic 

 

P-value 

 

Intercept 3.9982 0.1983 20.2000 2.0281e-090* 

Distance to water -1.4906 0.4360 -3.4200 6.2950e-004* 

Distance to residential -95.4014 4.1323 -23.1000 6.3240e-118* 

Distance to industrial and 

commercial -15.1512 0.9895 -15.3000 6.3821e-053* 

Distance to major roads -5.6384 1.0141 -5.5602 2.6948e-008* 

Distance to railway -3.9565 0.3715 -10.6501 1.7422e-026* 

Distance to Lagos Island -1.3604 0.3485 -3.9035 9.4807e-005* 

Distance to international airport -0.5005 0.3218 -1.5553 0.1199 

Distance to international seaport -0.9869 0.3717 -2.6552 0.0079* 

Distance to University of Lagos -0.2014 0.3650 -0.5517 0.5812 

Distance to Lagos State University -3.1174 0.4002 -7.7888 6.7631e-015* 

Income potential 0.5985 0.4134 1.4479 0.1477 

Population potential 0.3483 0.3191 1.0913 0.2751 

 

 



 
115 

Common unconventional methods: application of logistic regression and artificial neural 

network based cellular automata models to land use change modelling of Lagos 

  

         For 1963-1978, only income potential and population potential were not-significant at 95% 

CL. For 1978-1984, distance to Lagos Island, distance to international seaport, distance to 

University of Lagos, and population potential were not-significant at 95% CL. For 1984-2000, 

income potential and population potential were not-significant at 95% CL. Just like in the case of 

the OLS described in chapter 5, an increase in the values of the explanatory variables with 

positive coefficients will increase the number of developed cells; while a decrease in the values of 

the explanatory variables with positive coefficients will decrease the number of developed cells in 

the model; and vice versa. Figure 6.2 depicts the calculated probabilities from the LR modelling 

results given in Tables 6.1-6.3.   
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Figure 6.2 Calculated LR probabilities for 1963-1978, 1978-1984, and 1984-2000 
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        From Tables 6.1-6.3, not all the independent variables were significant at the 95% CL 

therefore the leave-one-pair-out holdout model evaluation method (see Bhardwaj et al., 2005) 

was used to assess the effect of excluding any independent variable from the model.  In this 

experiment, one thousand sample size data were selected, and split into two equal sizes, 500 

points as the training data and the other 500 points as the test data. For 1963-1978, using all the 

independent variables, the calculated kappa coefficient was 0.8320, and the overall accuracy was 

91.60%. Using only the significant variables, the calculated kappa coefficient was 0.8240, while 

the overall accuracy was 91.20%. This implies that the insignificant variables aided the accuracy 

of the model. For 1978-1984, using all the independent variables, the calculated kappa coefficient 

was 0.8880, and the overall accuracy was 94.40%. Using only the significant variables, the 

calculated kappa coefficient was 0.9000, while the overall accuracy was 95.00%. This implies that 

the insignificant variables compromised the accuracy of the model. For 1984-2000, using all the 

independent variables, the calculated kappa coefficient was 0.7920, and the overall accuracy was 

89.60%. Using only the significant variables, the calculated kappa coefficient was 0.7720, while 

the overall accuracy was 88.60%. This implies that the insignificant variables compromised the 

accuracy of the model. 

        Each independent variable was then excluded from the model one at a time to assess the 

effect the exclusion of each independent variable will have on the accuracy of the LR model. The 

results of the exclusion of each independent variable from the LR are presented in Figures 6.3-

6.5.  
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Figure 6.3 Showing the effect of excluding each variable from the model for 1963-1978  
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Figure 6.4 Showing the effect of excluding each variable from the model for 1978-1984 
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Figure 6.5 Showing the effect of excluding each variable from the model for 1984-2000 

 

        From Figure 6.3, 1963-1978; 1=distance to water; 2=distance to residential; 3=distance to 

industrial and commercial; 4=distance to major roads; 5=distance to railway; 6=distance to 

Lagos Island; 7=distance to international seaport; 8=distance to University of Lagos; 9=income 

potential; and 10=population potential. The calculated kappa coefficient and overall accuracy 

were lowest in the model when distance to industrial and commercial was excluded from the 

model; this implies that distance to industrial and commercial had the highest influence in the 

prediction. Figure 6.3 shows that distance to international seaport had the lowest influence on 

the model.  

       From Figure 6.4, 1978-1984; the independent variables 1 to 10 are the same as in Figure 6.3. 

The calculated kappa coefficient and overall accuracy were lowest in the model when distance to 

residential structures was excluded from the model; this implies that distance to residential 

structures had the highest influence in the prediction. Population potential had the lowest  
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influence on the model, because the model yielded its highest kappa coefficient and overall 

accuracy estimates when the population potential variable was excluded from the model.  

       From Figure 6.5, 1984-2000; 2=distance to water; 3=distance to residential; 4=distance to 

industrial and commercial; 5=distance to major roads; 6=distance to railway; 7=distance to 

Lagos Island; 8= distance to international airport; 9=distance to international seaport; 

10=distance to University of Lagos; 11= distance to Lagos State University; 12=income 

potential; and 13=population potential. The calculated kappa coefficient and overall accuracy 

were lowest in the model when distance to residential structures was excluded from the model; 

this implies that distance to residential structures had the highest influence in the prediction. The 

highest kappa coefficient and overall accuracy estimates were obtained when distance to water 

was excluded from the model; which suggests that distance to water may have one of the lowest 

influences on the prediction. The findings in this experiment are not totally consistent with the 

LR test of hypothesis results presented in Tables 6.1-6.3. 

       From Tables 6.1-6.3, the variables with higher t  values are more significant in the LR 

model than the variables with lower t  values. The conclusion from the leave-one-pair-out 

holdout evaluation experiment results presented in Figures 6.3-6.5 is that the independent 

variables that were insignificant at the 95% CL are important in the LR model; this is because, 

distance to University of Lagos yielded the lowest t  value in test of hypothesis experiment for 

period 1984-2000 given in Table 6.3; but the result presented in Figure  6.5 for period 1984-2000 

indicated that distance to water had the lowest influence on the LR model. A reason for 

obtaining a relatively inconsistent result with the holdout experiment could be because all the 

calculated t  values given in Table 6.3 are close, apart from the t  value for distance to 

residential and distance to industrial and commercial that yielded high estimates of t . 
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       All the calculated p-values presented in Tables 6.1-6.3 were all far from the maximum 

probability of 1.0000, therefore it can be deduced that all the explanatory variables contributed to 

the model, even though few of the explanatory variables were not significant at 95% CL. For the 

purpose of comparing the LR results with the GIS-based, ANN, SVM, and FSVM models all the 

independent variables were used for the GWR, LR, ANN, SVM, and FSVM models.  

        The non-CA modelling experiment is a classification experiment. The outcome of the 

classification is either developed or undeveloped. Cells with probabilities >0.5 are classified as 

developed while cells with probabilities <0.5 are classified as undeveloped. To predict the non-

CA maps for periods 1963-1978, 1978-1984, and 1984-2000, the stratified random sampling 

approach was used to extract 1000 training points from each combination of periods 1963-1978, 

1978-1984, and 1984-2000.  

        The two objectives of this modelling are to: (i) predict land use change between the periods, 

and (ii) evaluate the accuracy of the LR model in predicting land use change for periods 1963-

1978, 1978-1984, and 1984-2000. The selected 1000 points were split into 10 equal datasets. 

Each dataset had a sample size of 100. Each dataset consists of 50 developed cells/points and 50 

undeveloped cells/points. As usual, the developed cells were labelled +1 while the undeveloped 

cells were labelled 0. Note that, all the data for periods 1963-1978, 1978-1984, and 1984-2000 

were scaled to [0, 1] (see section 5.7). The k-fold cross-validation technique (see section 3.5.3) 

(where k=10) was used to evaluate the accuracy of the LR model in the prediction. The model 

was trained by putting together 9 subsets (k-1) out of the 10 datasets while 1 subset was used to 

test the accuracy of the prediction. The experiment was repeated in 10 folds by eventually using 

all the 10 datasets for both training and testing.  The kappa coefficient and overall accuracy were 

computed for each k dataset (see Figures 6.6-6.8).  
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       The LR model invokes the land use change between periods 1963 and 1978, 1978 and 1984, 

and 1984 and 2000, based on training samples only selected from the regions/points common to 

1963 and 1978, 1978 and 1984, and 1984 and 2000.  The training data must not be extracted 

from the regions where change occurred between the three periods. This is the reason why the 

two land use maps between each of the three periods must be overlaid in order to detect the 

changed regions. 
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Figure 6.6 LR modelling results for 1963-1978 
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Figure 6.7 LR modelling results for 1978-1984 
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Figure 6.8 LR modelling results for 1984-2000 

 

         Using equation 6.3, development probabilities >0.5 were classified as developed cells, while 

probabilities <0.5 were classified as undeveloped cells. The kappa and overall accuracy results  
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shown in Figures 6.6-6.8 can help evaluate the strength of the model; it can perhaps be likened 

to the R2 value in the OLS modelling described in chapter 5.  

         The LR model accuracy was calculated by computing the mean accuracies from the kappa 

coefficients of all the datasets presented in Figures 6.6-6.8. The calculated model accuracies for 

periods 1963-1978, 1978-1984, and 1984-2000 were 0.8944, 0.9213, and 0.8479 respectively. The 

calculated accuracies for the three periods show that the highest kappa coefficient estimate was 

obtained with period 1978-1984 while the lowest kappa coefficient estimate was obtained with 

period 1984-2000.    

        The best maps yielded by the prediction for periods 1963-1978, 1978-1984, and 1984-2000 

are given in Figure 6.9; and their computed confusion matrices are presented in Tables 6.4-6.6. 

The calculated kappa coefficients for the predicted maps given in Figure 6.9 were determined by 

comparing/validating the predicted maps with the actual maps in 1978, 1984, and 2000.  The 

calculated kappa coefficients were 0.5057, 0.5525, and 0.5080 for periods 1963-1978, 1978-1984, 

and 1984-2000 respectively. The next subsection examines the bottom-up simulation results 

from the LR-based CA simulation. 
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 Figure 6.9 LR predicted maps for periods 1963-1978, 1978-1984, and 1984-2000    
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Table 6.4 LR-based non-CA: confusion matrix for period 1963-1978  

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1578 1387 

Undeveloped 214 3821 

         

Table 6.5 LR-based non-CA: Confusion matrix for period 1978-1984     

 Reference data 1984 

 

 Developed Undeveloped 

Predicted data 1984   

Developed 2224 1283 

Undeveloped 284 3209 

 

Table 6.6 LR-based non-CA: Confusion matrix for period 1984-2000     

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 3019 1317 

Undeveloped 413 2251 

                               

       6.2.4 CA modelling.  

The basic difference between the CA model and the non-CA model is simply the incorporation 

of the Moore neighbourhood function 33  into the LR model (see equation 6.4). CA models 

simply use the neighbourhood influence of the initial state of the observed object and the 

independent variables to predict the future state of the target object. The bottom up approach of 

CA models makes their predictions highly accurate (Torrens & O'Sullivan, 2001).  
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        There is no training of data in the CA modelling, the LR model has already been trained in 

the previous section. Only the neighbourhood function is updated to determine the conversion 

of undeveloped cells to develop. CA are iterative systems; for example, to predict from 1963-

1978, the starting point of the simulation will be the 1963 data/map (that is iteration=0 is 1963), 

while the target map 1978 is used to validate the prediction. At iteration>0, the neighbourhood 

function 1

33



 t  calculates the number of developed cells  surrounding each undeveloped cell in 

the 1963 map. This process is repeated in each iteration.  

        Two hundred iterations were run to simulate the maps from periods 1963-1978, 1978-1984, 

and 1984-2000 (see Figure 6.11). There are no rules that guide the number of iterations needed 

for a simulation, but 100 to 200 iterations are common in most applications (Wu, 2002; Li & 

Yeh, 2004). Figure 6.10 depicts the mean kappa coefficients and standard deviations for 

10,20,30,...,200 designated iteration thresholds, calculated by running each threshold ten times 

and comparing the simulated maps with the actual maps for periods 1963-1978, 1978-1984, and 

1984-2000. 

         From Figure 6.10, at iteration=10 the mean kappa coefficients for 1963-1978, 1978-1984, 

and 1984-2000 were low, but gradually increased as the number of iterations increased.  The 

highest mean kappa coefficients were found from 90 to 140 iterations. The  mean kappa 

coefficients decreased beyond 140 iterations until the 200th iteration. The final maps for periods 

1963-1978, 1978-1984, and 1984-2000 shown in Figure 6.11 were obtained from 90th to 170th 

iterations. The calculated kappa coefficients from the confusion matrices given in Tables 6.7-6.9 

for the predicted maps for periods 1963-1978, 1978-1984, and 1984-2000 were 0.5847, 0.7543, 

and 0.7101. The highest kappa statistic estimate was obtained with 1978-1984 while the lowest 

was obtained with 1963-1978.  
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Figure 6.10 LR modelling result: computed overall mean kappa and standard deviations for 200 

designated iteration thresholds  
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Figure 6.11 LR-based CA predicted maps for 1963-1978, 1978-1984, and 1984-

2000         
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Table 6.7 LR-based CA: confusion matrix for period 1963-1978  

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1566 1048 

Undeveloped 226 4160 

         

Table 6.8 LR-based CA: confusion matrix for period 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2280 588 

Undeveloped 228 3904 

 

Table 6.9 LR-based CA: confusion matrix for period 1984-2000     

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2889 471 

Undeveloped 543 3091 

 

         Evaluating the performance of the CA model can be intricate. The Receiver Operating 

Characteristics (ROC) was used to assess the performance of the LR-based CA model. The ROC 

is the plot of sensitivity against 1-specificity. Sensitivity is calculated by dividing the number of 

the true positive matches by the sum of the true positive and false negative matches; while 

specificity is calculated by dividing the number of the true negative matches by the sum of the 

true negative and false positive matches. The Area Under Curve (AUC) determines the result of 

the plot. Experiments that yield AUC indices <0.5 are usually regarded as worthless. Figure 6.12 

depicts the plot of mean sensitivity against mean 1-specificity, and their respective standard  
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deviations calculated from 10 ROC curves sampled at fixed 1-specificity points: 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, and 0.9 (see Fawcett, 2004). The mean sensitivity and mean 1-specificity was 

calculated by comparing the simulated maps with the actual maps. The calculated AUC for 1963-

1978, 1978-1984, and 1984-2000 were 0.7354   0.0295, 0.7549   0.0267, 0.7451   0.0298. The 

calculated ROC results corroborate the results from the CA predicted maps because the order of 

best fit of the target maps were still: 1978-1984, 1984-2000, and 1963-1978 respectively.  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-specificity

S
e
n
s
it
iv

it
y

LR: mean sensitivity versus 1 - specificity

 

 

1963-1978

Standard deviation (1963-1978)

1978-1984

Standard deviation (1978-1984)

1984-2000

Standard deviation (1984-2000)

 

Figure 6.12 LR: plotted mean sensitivity versus 1-specificity and standard deviations for periods 

1963-1978, 1978-1984, and 1984-2000 

 

6.3 ANN-based CA modelling   

       6.3.1 ANN-based CA calibration. 

A brief introduction on the ANN architecture is presented in section 2.3.2.6. A signal from 

neuron i

 
of the first input layer of a cell x , at time t  received by a neuron j  of the hidden layer 

can be expressed as,  
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
j

ijij txSWtxnet ),(),( '

,

                                                                

                             (6.6) 

where ),(' txS i  denotes the site attributes given by variable (neuron) i ; jiW ,  is the weight of the 

input from neuron i  to neuron j ; ),( txnet j  is the signal received for neuron j  of  cell x  at 

time t . The activation of the hidden layer of the signal is: 
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The probability can be expressed as: 
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where, P  is the development probability; as in case of the LR model given in equation 6.3. The 

final development probability can be written  as,  
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Equation 6.9 is the ANN-based CA model. The formula for land use transition from 

undeveloped to developed cells given in equation 6.5 (in the case of the LR-based CA model) is 

the same for the ANN-based CA model.  
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       6.3.2 Data and methodology. 

The procedure adopted in this section is virtually the same as that of the LR model described in 

section 6.2.2. The ANN experiment was implemented in MATLAB with the method of 

backpropagation (Rumelhart et al., 1986) using a two-layer feed-forward neural network. 

         The backpropagation algorithm is one of the most commonly used ANN methods 

(Asmadi et al., 2009). A backpropagation network has an input layer, an output layer, and one or 

two hidden layers; however, there is no limit to the number of hidden layers (Anderson, 1995; 

Chauvin & Rumelhart, 1995). It is very important to first choose the random seed number and 

the required number of neurons in the hidden layer (see Figure 6.13). 

         A neural network is initialised with initial weights; hence different results are always 

obtained every time the ANN model is run. To ensure the results remain the same at every run 

of the neural network the random seed number must be set. The random seed number is an 

arbitrary constant chosen by trial-and-error. After the random seed number is set, the ANN 

neurons then remain the only parameter that can be adjusted to vary the simulation results of the 

ANN. There seems to be no-hard-and-fast rule for determining the required number of neurons 

in the hidden layer to train a neural network (Almeida et al, 2008). A 12 n  neurons may be 

required to produce a good fit of the neural network, where n  is the number of neurons in the 

input layer (Li & Yeh, 2002);  3/2n  may produce a similar fit as the 12 n , with lesser 

computer processing time (n represents the number of independent variables that are input into 

the network through the input layer). The training of the neural network is simply the adjustment 

of the number of neurons in the hidden layer in order to minimise the training error. The 

training error is the discrepancy between the predicted and the actual value. The adjustment of 

the number of neurons is sustained until a training error that falls below a pre-determined 

threshold is found (Wang, 1994).    
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       As in the case of the LR, two categories of land use development will be used for the 

modelling: (i) simulation without using CA, and (ii) simulation using CA. The transition  

 

module (see Figure 6.13) determines the final land use state of undeveloped cells. All the final 

simulated maps were visualised in the GIS. The next sub-section describes the ANN modelling 

without the use of CA.   
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Choosing ANN random 
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Figure 6.13 Flowchart for ANN modelling 
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       6.3.3 CA modelling. 

The same 1000 training points selected for each of periods 1963-1978, 1978-1984, and 1984-

2000, were used in the ANN experiment. Just like the case of the LR modelling the experiment 

was implemented with the k-fold cross-validation procedure. Since there is no precise technique 

for selecting an optimal number of neuron required for training the network (or optimising the 

number of neurons in the hidden layer), 14 designated number of neurons: 1, 2, 3, 4, 5, 10, 15, 

20, 25, 30, 35, 40, 45, and 50 were used for optimising the number of neurons in the hidden 

layer. The dependent variables were represented with developed= +1, and undeveloped= -1.  

        In this experiment the ‘random seed number’ was set at 3558583436. Each of the 

designated neurons was used to compute the kappa coefficient for the ANN model with respect 

to periods 1963-1978, 1978-1984, and 1984-2000 (see Figures 6.14-6.16). The mean kappa 

coefficient computed for each designated neuron computed from Figures 6.14-6.16 is given in 

Figure 6.17.  

       From Figure 6.14, period 1963-1978, 3 neurons yielded the highest overall mean kappa 

coefficient while 50 neurons yielded the lowest. For 1978-1984, 2 neurons yielded the highest 

overall mean kappa coefficient while 50 neurons yielded the lowest. For 1984-2000, 1 neuron 

yielded the highest overall mean kappa coefficient while 50 neurons yielded the lowest.  

       The ANN model accuracy was determined by calculating the average of the mean kappa 

coefficients for periods 1963-1978, 1978-1984 from the mean kappa coefficients for each 

designated number of neurons given in Figure 6.18. The calculated model accuracies for periods 

1963-1978, 1978-1984, and 1984-2000 were 0.8186, 0.8611, and 0.7354 respectively.   

       The number of neurons with the highest mean kappa coefficient (resulting from Figure 

6.17) was used to predict the land use change for periods 1963-1978, 1978-1984, and 1984-2000 

(see Figure 6.18). The computed confusion matrices for the predicted maps are given in Tables  
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6.10-6.12. The calculated kappa coefficients for the predicted maps given in Figure 6.18 were 

0.5165, 0.5701, and 0.5149 for periods 1963-1978, 1978-1984, and 1984-2000 respectively.  
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Figure 6.14 Computed mean kappa for each dataset based on designated ANN neurons (1963-

1978) 
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Cross-validation result for selecting an optimal "number of neurons" for 1978-1984

 

 

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Dataset 6

Dataset 7

Dataset 8

Dataset 9

Dataset 10

 

Figure 6.15 Computed mean kappa for each dataset based on designated ANN neurons (1978-

1984) 
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Figure 6.16 Computed mean kappa for each dataset based on designated ANN neurons (1984-

2000)  

 

 



 
135 

Common unconventional methods: application of logistic regression and artificial neural 

network based cellular automata models to land use change modelling of Lagos 

 

1 2 3 4 5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

Number of neurons

M
e
a
n
 k

a
p
p
a
 c

o
e
ff

ic
ie

n
t

Cross-validation result: mean kappa for each designated "number of neurons"

 

 

1963-1978

1978-1984

1984-2000

 
 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

Figure 6.17 The ANN overall mean kappa for 1963-1978, 1978-1984, and 1984-2000 

based on the designated neurons  
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Figure 6.18 ANN non-CA predicted maps 
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Table 6.10 ANN-based non-CA: confusion matrix for period 1963-1978  

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1429 1100 

Undeveloped 363 4108 

         

Table 6.11 ANN-based non-CA: confusion matrix for period 1978-1984     

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 1806 679 

Undeveloped 702 3813 

 

Table 6.12 ANN-based non-CA: confusion matrix for period 1984-2000  

     Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2407 669 

Undeveloped 1025 2899 

               

        In another experiment, the results of the input weights from a one neuron ANN (see Table 

6.13) was compared with the  derived LR coefficients  given in Tables 6.1-6.3. Note that, a one 

neuron ANN network is not a black-box because its input weights can be equated with the LR 

coefficients. A comparison of the one neuron ANN input weights (see Table 6.13) and the LR 

coefficients (see Tables 6.1-6.3) shows that both results are basically the same.  The LR 

coefficients are about 4 times higher than those of the one neuron ANN.  
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       Unlike the LR, the one neuron ANN did not yield the expected negative values for the 

proximity variables and positive values for the weighted variables for period 1984-2000. 

However, the result of the one neuron ANN is correct because the designated values for the 

output layer for the experiment was [-1, +1]. This is the reason why the opposite signs were 

outputted rather than the usual signs.  

 

Table 6.13 Input weights from a one neuron neural network for periods 1963-1978, 1978-1984, 

and 1984-2000   

  

1963-1978 

 

 

1978-1984 

 

 

1984-2000 

 Input weights Input weights Input weights 

Distance to water -0.9023 -0.4545 0.13579 

Distance to residential -10.5806 -35.6294 20.3025 

Distance to industrial and commercial -2.5625 -0.8232 3.2947 

Distance to major roads -4.0632 -0.6593 1.04639 

Distance to railway -4.8828 -0.2645 0.6693 

Distance to Lagos Island -0.5946 -0.0060 0.1587 

Distance to international airport Not applicable Not applicable 0.0745 

Distance to international seaport -0.2302 -0.1045 0.1877 

Distance to University of Lagos -0.4228 0.0577 0.0308 

Distance to Lagos State University Not applicable Not applicable 0.5797 

Income potential 0.2682 0.2062 -0.0791 

Population potential 0.1141 0.0034 -0.0206 

    

Input weight bias -21.8324 -36.3103 25.0515 

Model bias 0.0396 0.0765 0.1394 

 

        In another experiment using the LR and the one neuron ANN, the results from the k-fold 

cross-validation (computed from Figures 6.6-6.8 and Figure 6.17) given in Figure 6.19 indicate 

that but for period 1984-2000, that the computed mean kappa coefficients for the LR was higher 

than the those of the one neuron ANN for periods 1963-1978 and 1978-1984. Nonetheless, the  
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difference in the results from both methods is marginal. Therefore, it can be deduced that a one 

neuron ANN is an equivalent of the LR.  
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Figure 6.19 Computed mean kappa coefficients from the cross-validation results from the LR 

and a one neuron ANN 

 

       6.3.4 CA modelling.  

Both the predicted non-CA and CA maps were predicted with the optimal number of neurons 

selected with the k-fold cross-validation procedure. CA modelling is therefore implemented by 

introducing the Moore neighbourhood function  1

33



 t   into the neural network.  

         Two hundred iterations were run to simulate the maps from periods 1963-1978, 1978-

1984, and 1984-2000 (see Figure 6.21). Figure 6.20 depicts the mean kappa coefficients and 

standard deviations for 10,20,30,...,200 designated iteration thresholds, calculated by running 

each iteration threshold ten times and comparing the simulated maps with the actual maps for 

periods 1963-1978, 1978-1984, and 1984-2000. For 1978-1984 and 1984-2000, the highest mean 

kappa coefficients were yielded at the 130th iterations, while for 1963-1978, the highest mean 

kappa coefficient was yielded at the 120th iterations.  
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        The predicted maps given in Figure 6.21 were obtained near thresholds with the highest 

mean kappa coefficient.  The calculated kappa coefficients computed from the confusion 

matrices given in Tables 6.14-6.16 for the predicted maps for periods 1963-1978, 1978-1984, and 

1984-2000 were: 0.5900, 0.7825, and 0.7161 respectively.  

         Figure 6.22 presents the ROC plot for periods 1963-1978, 1978-1984, and 1984-2000. The 

calculated AUC and their respective standard deviations were 0.7574   0.0304, 0.7850   

0.0308, and 0.7613   0.0288, for 1963-1978, 1978-1984, and 1984-2000 respectively. The 

calculated AUC estimates indicate that the order of best fit of the observed data was: periods 

1978-1984, 1984-2000, and 1963-1978. The computed ROC results corroborate the kappa 

coefficient results of the CA-based predicted maps.  
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Figure 6.20 ANN result: overall mean kappa and standard deviations for 200 designated iteration 

thresholds  
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Table 6.14 ANN-based CA: confusion matrix for period 1963-1978  

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1609 1092 

Undeveloped 183 4116 

         

Table 6.15 ANN-based CA: confusion matrix for period 1978-1984     

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2232 434 

Undeveloped 276 4058 
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 Figure 6.21 ANN based CA predicted maps for 1963-1978, 1978-1984, and 1984-

2000 
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Table 6.16 ANN-based CA: confusion matrix for period 1984-2000   

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2996 558 

Undeveloped 436 3010 
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Figure 6.22 ANN-based CA ROC analysis: plotted mean sensitivity versus 1-specificity and 

standard deviations for 1963-1978, 1978-1984, and 1984-2000 

 

6.4 Summary 

The ANN kappa coefficients for both the non-CA and CA modelling were slightly higher than 

those of the LR model.  The calculated AUC estimates for the ANN model were also moderately 

higher than those of the LR model.  These results imply that the ANN model was fairly more 

robust to the Lagos data than the LR model.   
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        The non-CA modelling accuracies from the LR and ANN models may not be an unbiased 

standard for assessing the accuracies of the LR and ANN models. This is because for the case of 

the ANN model, fourteen designated neurons were used to optimise the number of neurons in 

the hidden layer of the ANN model. This process may reduce the model accuracy of the ANN 

model since all the calculated kappa coefficients from all the designated neurons were averaged 

to determine the model accuracy. The calculated kappa coefficients of some of the designated 

neurons were relatively low and therefore reduced the overall model accuracy of the ANN model 

since the kappa coefficients from those neurons were used to calculate the model accuracy of the 

ANN model. The LR model does not have any parameter that must be optimised. Due to these 

reasons, the model accuracies from both the LR and ANN models were considered of no 

consequence in evaluating their accuracy.  
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CHAPTER 7 
 

 

PROPOSED UNCONVENTIONAL METHODS: APPLICATION OF 

SUPPORT VECTOR MACHINE AND FUZZY SUPPORT VECTOR 

MACHINE BASED CELLULAR AUTOMATA MODELS TO LAND USE 

CHANGE MODELLING OF LAGOS 

 

7.1 Preamble  

This chapter presents the use of the SVM and FSVM based CA models for modelling land use 

change in Lagos. As was in the case of the LR and ANN, the modelling is implemented in two 

stages: the non-CA and the CA based.  

 

7.2 SVM-based modelling 

       7.2.1 SVM-based CA calibration.   

From chapter 3, SVM output   
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section 3.3 can be mapped into probabilities using a sigmoid function (Platt, 1999). Therefore, 

SVM-based land use development probability can be expressed as, 

 

])),([(

1

00

1

1










n

i

iii bxxKysign

e

P


                                                                                         (7.1) 

 

         By introducing the Moore neighbourhood function 33  (Wu, 2002), a coefficient Q , 

constraints contributions  ijcons , and a stochastic function  )ln(1   (White & Engelen,  
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1993), equation 7.1 can be revised as the final development probability (Okwuashi et al.,  2008; 

Okwuashi et al., 2009a; Okwuashi et al., 2009b), 
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The equation for the conversion of cells from undeveloped to developed is the same as equation 

6.5. Equation 3.16 is the SVM-based non-CA model, while equation 7.2 is the SVM-based CA 

model.  

 

       7.2.2 Data and methodology. 

The first stage of the experiment is the preparation of data. The second stage is modelling in 

MATLAB; and the third stage is the visualisation of results in the GIS. The flowchart given in 

Figure 7.1 illustrates the processes of the modelling. The extracted land use variables for 1963-

1978, 1978-1984, and 1984-2000 were described in section 5.6. The land use variables were 

prepared in the GIS.   

         Similar to the ANN, the SVM model is a black-box (Cristianini & Shawe-Taylor, 2000). 

Unlike the LR and OLS models, SVM models do not furnish information about the significance 

or contributions of respective independent variables used in the model.   

         The training data consist of developed and undeveloped cells. Developed cells were 

labelled +1 while undeveloped cells were labelled -1. The polynomial, RBF, and linear kernels 

were used for all the experiments. The SVM parameters (regularisation parameter C , polynomial 

kernel degree d, and RBF kernel gamma  ) were first optimised (or selected) using a k-fold 

cross-validation procedure (where k=10). The training data were classified, by determining the 

solutions of alpha i  using the optimisation equations 3.12 and 3.15. The simulation was  
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enhanced by varying the kernel parameters of the RBF and  polynomial kernels. The 

optimisation equations were solved using Quadratic Programming (QP) (Gunn, 1998; Vapnik, 

2000).  

        The exitflag value informs whether the result of the training is acceptable or not. Exitflag 

values other than 1 are unacceptable. The non-CA and the CA models were evaluated upon 

satisfactory training accuracy based on the support vectors furnished by i . In cases where 

unacceptable accuracies were obtained, the process was repeated by readjusting the model 

parameters until desirable results were yielded. All the predicted maps were visualised in the GIS.     
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Figure 7.1 Flowchart for SVM and FSVM models  
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       7.2.3 Non-CA modelling. 

The SVM-based land use change modelling work by Xie (2006) was a classification experiment 

or non-CA experiment. It is important to implement the non-CA technique in this chapter, so 

that its results can be compared with that of the CA technique. 

        Numerical examples using SVM models are given in section 3.5. Apart from the polynomial 

and RBF kernels, the linear kernel does not have parameter/s that can be optimised.  The results 

of the polynomial and RBF can be varied with the polynomial degree d and gamma   

respectively. 

         The first task in this modelling was to optimise the penalty value C,  polynomial degree d, 

and gamma  . Optimal SVM parameter values could vary for different datasets. These values 

are usually determined through trial-and-error (Vapnik, 2000; Ivanciuc, 2007). Ten designated  

C   values,  log10(10e0),  log10(10e1),    log10(10e2),    log10(10e3),    log10(10e4),    log10(10e5),    

log10(10e6),    log10(10e7),    log10(10e8),    and log10(10e9), were  used to perform a k-fold 

cross-validation (where k=10) just as in the case of the LR and ANN models.  The training data 

were split into 10 equal datasets. Nine datasets out of the 10 datasets were put together to train 

the model, while the remaining one dataset was used to validate the model. The process was 

repeated until all the 10 datasets were used as both training and test sets.  

         The designated values for the determination of an optimal values for   and d were 1, 2, 3, 

4, 5, 6, 7, 8, 9, and 10. Before these designated values were adopted, trial experiments were run 

to determine the most probable range of values of C,  , and d that can be optimised.  

         The cross-validation results for C with respect to the RBF, polynomial, and linear kernels 

are given in Figures 7.2-7.5. The cross-validation results for determining optimal values for   

and d are depicted in Figure 7.6.  
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Polynomial kernel: cross-validation result for selecting an optimal C value for 1963-1978
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RBF kernel: cross-validation result for selecting an optimal C value for 1963-1978
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Linear kernel: cross-validation result for selecting an optimal C value for 1963-1978

 

 

 

Figure 7.2 SVM-based non-CA: polynomial, RBF, and linear kernels cross-validation  

results for 1963-1978 
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Polynomial kernel: cross-validation result for selecting an optimal C value for 1978-1984
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RBF kernel: cross-validation result for selecting an optimal C value for 1978-1984
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Linear kernel: cross-validation result for selecting an optimal C value for 1978-1984

 

 

 

Figure 7.3 SVM-based non-CA: polynomial, RBF, and linear kernels cross-validation  

results for 1978-1984 
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Polynomial kernel: cross-validation result for selecting an optimal C value for 1984-2000
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RBF kernel: cross-validation result for selecting an optimal C value for 1984-2000
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Linear kernel: cross-validation result for selecting an optimal C value for 1984-2000

 

 

 

Figure 7.4 SVM-based non-CA: polynomial, RBF, and linear kernels cross-validation  

results for 1984-2000 
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Figure 7.5 SVM-based non-CA: selecting an optimal C value for periods 1963-1978, 1978-1984, 

and 1984-2000 (C1=log10(10e0),  C2=log10(10e1), C3=log10(10e2), C4=log10(10e3), 

C5=log10(10e4), C6= log10(10e5), C7=log10(10e6), C8=   log10(10e7),    C9=log10(10e8),    

and C10=log10(10e9) ) 
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         From Figure 7.5, 1963-1978, the optimal C  values using polynomial, RBF, and linear 

kernels were log10(10e0), log10(10e5), and log10(10e1) respectively. For 1978-1984, the optimal 

C  values for the polynomial, RBF, and linear kernels were log10(10e7), log10 (10e4), and 

log10(10e2) respectively. For 1984-2000, the optimal C  values for polynomial, RBF, and linear 

kernels were log10(10e0), log10(10e7), and log10(10e3) respectively. From Figure 7.6, the 

optimal values of d was found to be 7 for the three periods 1963-1978, 1978-1984, and 1984-

2000; while the optimal value for   was found to be 4 for periods 1963-1978 and 1978-1984. 

The optimal gamma   value for period 1984-2000 was 2.  

        The computed mean kappa statistic from Figure 7.5, given in Figure 7.7, shows the RBF 

yielded the highest overall mean kappa statistic from all the three predicted periods while the 

linear kernel yielded the lowest.  

 

 

 

Figure 7.6 SVM-based non-CA: cross-validation results for obtaining optimal values for 

d and gamma 
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Figure 7.7 Overall model accuracy for periods 1963-1978, 1978-1984, and 1984-2000 

 

       The optimal values of C,   ,  and d that were obtained using the k-fold cross-validation 

were used to predict the land use maps for 1978, 1984, and 2000 given in Figure 7.8. The 

calculated kappa coefficients from the confusion matrices given in Tables 7.1-7.9 for the 

predicted maps using the polynomial, RBF, and the linear kernels for periods 1963-1978, 1978-

1984, and 1984-2000 were: 0.5002, 0.5326, and 0.4756; 0.5436, 0.5789, and 0.5209; and, 0.4802, 

0.5171, and 0.3545, respectively.   
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    Polynomial 2000                           RBF 2000                                 Linear 2000  
               

 Figure 7.8 SVM-based non-CA predicted maps for 1963-1978, 1978-1984, 

and 1984-2000 using the polynomial, RBF, and Linear kernels  
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Table 7.1 SVM-based non-CA: confusion matrix for polynomial 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1095 616 

Undeveloped 697 4592 

         

Table 7.2 SVM-based non-CA: confusion matrix for RBF 1963-1978         

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1114 536 

Undeveloped 678 4672 

 

Table 7.3 SVM-based non-CA: confusion matrix for linear 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 809 220 

Undeveloped 983 4988 

 

Table 7.4 SVM-based non-CA:  confusion matrix for polynomial 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 1531 420 

Undeveloped 977 4072 
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Table 7.5 SVM-based non-CA:  confusion matrix for RBF 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 1721 539 

Undeveloped 787 3953 

 

Table 7.6 SVM-based non-CA:  confusion matrix for linear 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 1542 515 

Undeveloped 966 3977 

 

Table 7.7 SVM-based non-CA: confusion matrix for polynomial 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2106 484 

Undeveloped 1326 3084 

         

Table 7.8 SVM-based non-CA: confusion matrix for RBF 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2237 488 

Undeveloped 1195 3080 
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Table 7.9 SVM-based non-CA: confusion matrix for linear 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 3076 1922 

Undeveloped 356 1646 

 

       7.2.4 CA modelling.  

As mentioned in chapter 6, no training of data is done in this section. In the pervious section, 

the selected C, d, and  
 

were used to train the SVM model. After training the model (already 

done in the previous sub-section), the neighbourhood function is used in conjunction with the 

independent variables for the CA modelling.  

         Two hundred iterations were run to determine the best predictions for periods 1963-1978, 

1978-1984, and 1984-2000. Figures 7.9 shows the plotted mean kappa coefficients for periods 

1963-1978, 1978-1984, and 1984-2000; obtained by running the CA model 10 times at each 20 

designated iteration thresholds. For 1963-1978, the highest mean kappa coefficients for the 

polynomial, RBF, and linear kernels were obtained at the 100th, 120th, and 140th iterations 

respectively. For 1978-1984, the highest mean kappa coefficients for the polynomial, RBF, and 

linear kernels were obtained at the 90th, 70th, and 120th iterations respectively. For 1984-2000, the 

highest mean kappa coefficients for the polynomial, RBF, and linear kernels were obtained at the 

90th, 140th, and 120th iterations respectively.              

         The derived optimal C values were used to predict the target maps in 1978, 1984, and 2000 

(see Figure 7.10). The calculated kappa coefficients computed from the confusion matrices given 

in Tables 7.10-7.18 for the predicted maps using the polynomial, RBF, and the linear kernels for 

periods 1963-1978, 1978-1984, and 1984-2000 were: 0.5870, 0.6000, and 0.5467; 0.7848, 0.7919, 

and 0.7527; and, 0.7102, 0.7170, and 0.7054, respectively.   
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 Figure 7.9 SVM-based non-CA: computed overall mean kappa and standard deviations for 200 

designated iteration thresholds  
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Figure 7.10 SVM-based CA predicted maps for periods 1963-1978, 1978-1984,  

and 1984-2000 
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Table 7.10 SVM-based CA: confusion matrix for polynomial 1963-1978                

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1556 1024 

Undeveloped 236 4184 

         

Table 7.11 SVM-based CA: confusion matrix for RBF 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1598 1037 

Undeveloped 194 4171 

 

Table 7.12 SVM-based CA: confusion matrix for linear 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1690 1392 

Undeveloped 102 3816 

 

Table 7.13 SVM-based CA: confusion matrix for polynomial 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2250 446 

Undeveloped 258 4046 
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Table 7.14 SVM-based CA: confusion matrix for RBF 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2263 436 

Undeveloped 245 4056 

 

Table 7.15 SVM-based CA: confusion matrix for linear 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2316 635 

Undeveloped 192 3857 

 

Table 7.16 SVM-based CA: confusion matrix for polynomial 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 3020 603 

Undeveloped 412 2965 

         

Table 7.17 SVM-based CA: confusion matrix for RBF 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 3004 563 

Undeveloped 428 3005 
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Table 7.18 SVM-based CA: confusion matrix for linear 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 3019 619 

Undeveloped 413 2949 

                

        In order to assess the simulation, the model accuracy was computed by repeatedly running 

two hundred iterations ten times. The model accuracy was computed by finding the average of 

all the resulting kappa coefficients. The computed model accuracies for the polynomial, RBF, 

and linear kernels are presented in Figure 7.11. The RBF kernel yielded the highest computed 

mean kappa while the linear kernel yielded the lowest. 

       The ROC plot was used to assess the strength of the SVM-based CA model. The ROC plots 

for periods 1963-1978, 1978-1984, and 1984-2000 given in Figures 7.12-7.14 were derived by 

running 200 iterations. The calculated AUC, 1963-1978, for polynomial, RBF, and linear kernels 

were: 0.7629 
 
0.0270, 0.7863 

 
0.0273, 0.7464 

 
0.0287 respectively; for 1978-1984, were 

0.8003 
 
0.0300, 0.8139 

 
0.0248, 0.7673 

 
0.0214 respectively; and for periods 1984-2000, 

0.7804 
 
0.0316, 0.7939 

 
0.0290, 0.7714 

 
0.0255 respectively. All the results indicate that 

the RBF kernel yielded the highest AUC index for the three periods 1963-1978, 1978-1984, and 

1984-2000, while the linear kernel yielded the lowest.  
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Figure 7.11 SVM based CA: model accuracy for periods 1963-1978, 1978-1984, and 1984-2000 
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ROC plot for SVM, 1963-1978: polynomial, RBF, & linear kernels
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Figure 7.12 SVM based CA: ROC plot for 1963-1978 
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ROC plot for SVM, 1978-1984: polynomial, RBF, & linear kernels
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ROC plot for SVM, 1984-2000: polynomial, RBF, & linear kernels
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Figure 7.14 SVM based CA: ROC plot for 1984-2000  
 

Figure 7.13 SVM based CA: ROC plot for 1978-1984 
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7.3 FSVM-based modelling 

       7.3.1 FSVM-based CA calibration. 

From section 3.4, unlike in the standard SVM model case explained in section 3.3, the 

optimisation problems given in equations 3.24 and 3.25 are subject to: 



n

i

ii y
1

0 , and, 
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and   







 



n

i

iii bxxKysignxf
1

00 ,)(  (Lin & Wang, 2002).  

In the same manner described in section 7.2.1 for the SVM-based CA case, FSVM outputs 

furnished by )(xf  given in equations 3.24 and 3.25 can be mapped into probabilities using the 

sigmoid function (Platt, 1999).  Note that, the remaining procedures are same as the SVM (see 

section 7.2.1).  

        The development probability is furnished by equation 7.1 and the final development 

probability by equation 7.2. The land use transition of undeveloped cells to develop is the same 

as equation 6.5.  

 

       7.3.2 Data and methodology. 

The procedures for the SVM model case described in section 7.2.2 and the FSVM model are 

basically the same (see Figure 7.1). The FSVM model only differs from the SVM-based model by 

the incorporation of the fuzzy membership function is  into the optimisation equations given in 

equations 3.4 and 3.5. The FSVM model accuracy can be enhanced by adjusting the constant   

(see equation 3.18). The remaining procedures are the same as the SVM-based model illustrated 

in section 7.2.2.      
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        7.3.3 Non-CA modelling. 

The same data and k-fold cross-validation procedure used in the case of the SVM was used in 

this section. Same as the SVM modelling, the designated values for the determination of an 

optimal value for C were log10(10e0),  log10(10e1),    log10(10e2),    log10(10e3),    log10(10e4),    

log10(10e5),    log10(10e6),    log10(10e7),    log10(10e8),    and log10(10e9); and   and d were 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

         The cross-validation results for C with respect to the RBF, polynomial, and linear kernels 

are given in Figures 7.15-7.18. The cross-validation results for the determining optimal values for 

  and d are depicted in Figure 7.19.  
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Polynomial kernel: cross-validation result for selecting an optimal C value for 1963-1978
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RBF kernel: cross-validation result for selecting an optimal C value for 1963-1978
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Linear kernel: cross-validation result for selecting an optimal C value for 1963-1978
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Figure 7.15 FSVM-based non-CA polynomial, RBF, and linear kernels cross-validation results 

for 1963-1978 
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Polynomial kernel: cross-validation result for selecting an optimal C value for 1978-1984
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RBF kernel: cross-validation result for selecting an optimal C value for 1978-1984

 

 

log10(10e0)

log10(10e1)

log10(10e2)

log10(10e3)

log10(10e4)

log10(10e5)

log10(10e6)

log10(10e7)

log10(10e8)

log10(10e9)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Datasets

K
a
p
p
a
 c

o
e
ff

ic
ie

n
t

Linear kernel: cross-validation result for selecting an optimal C value for 1978-1984

 

 

 

Figure 7.16 FSVM-based non-CA polynomial, RBF, and linear kernels cross-validation results 

for 1978-1984 
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Polynomial kernel: cross-validation result for selecting an optimal C value for 1984-2000
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RBF kernel: cross-validation result for selecting an optimal C value for 1984-2000
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Linear kernel: cross-validation result for selecting an optimal C value for 1984-2000

 

 

 

Figure 7.17 FSVM-based non-CA polynomial, RBF, and linear kernels cross-validation results 

for 1984-2000 
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Figure 7.18 FSVM-based non-CA: selecting an optimal C value for periods 1963-1978, 1978-

1984, and 1984-2000 

 

         From Figure 7.18, 1963-1978, the optimal C  values using polynomial, RBF, and linear 

kernels were log10 (10e1), log10 (10e2), and log10 (10e9) respectively. For 1978-1984, the 

optimal C  values for the polynomial, RBF, and linear kernels were log10 (10e0), log10 (10e7), 

and log10 (10e0) respectively. For 1984-2000, the optimal C  values for polynomial, RBF, and 

linear kernels were log10 (10e8), log10 (10e1), and log10 (10e9) respectively. From Figure 7.19, 

the optimal value of d  was 7 for periods 1963-1978 and 1978-1984; while period 1984-2000 was 

8. The optimal value for   for periods 1963-1978 and 1978-1984 was 4; while 1984-2000 was 2. 
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          From Figure 7.20, the computed overall model accuracies for periods 1963-1978, 1978-

1984, and 1984-2000 indicate that the RBF yielded the highest overall mean kappa statistic for all 

the three predicted periods while the linear kernel yielded the lowest.  
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Figure 7.19 FSVM-based non-CA: cross-validation results for obtaining an optimal value 

for d and gamma 

 

Figure 7.20 FSVM-based non-CA: overall model accuracies for periods 1963-1978, 

1978-1984, and 1984-2000 

 



 
172 

Proposed unconventional methods: application of support vector machine and fuzzy  

support vector machine based cellular automata models to land use change modelling of Lagos 

  

        The optimal values of C,  , and d were used to predict the land use maps for 1978, 1984, 

and 2000 given in Figure 7.21. The calculated kappa coefficients computed from the  confusion 

matrices given in Tables 7.19-7.27 using the polynomial, RBF, and the linear kernels for periods 

1963-1978, 1978-1984, and 1984-2000 were: 0.5339, 0.5559, and 0.5142; 0.5641, 0.6660, and 

0.5534; and 0.5293, 0.5307, and 0.4404, respectively.   
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Figure 7.21 FSVM-based non-CA predicted maps for 1963-1978, 1978-1984, 

and 1984-2000 
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Table 7.19 FSVM-based non-CA: confusion matrix for polynomial 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1259 762 

Undeveloped 533 4446 

         

Table 7.20 FSVM-based non-CA: confusion matrix for RBF 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1028 325 

Undeveloped 764 4883 

 

Table 7.21 FSVM-based non-CA: confusion matrix for linear 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1115 600 

Undeveloped 677 4608 

 

Table 7.22 FSVM-based non-CA: confusion matrix for polynomial 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 1785 674 

Undeveloped 723 3818 
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Table 7.23 FSVM-based non-CA: confusion matrix for RBF 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2138 740 

Undeveloped 370 3752 

 

Table 7.24 FSVM-based non-CA: confusion matrix for linear 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2226 1282 

Undeveloped 282 3210 

 

Table 7.25 FSVM-based non-CA: confusion matrix for polynomial 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2728 945 

Undeveloped 704 2623 

 

Table 7.26 FSVM-based non-CA: confusion matrix for RBF 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2234 437 

Undeveloped 1198 3131 
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Table 7.27 FSVM-based non-CA: confusion matrix for linear 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 3093 1633 

Undeveloped 339 1935 

 

       7.3.4 CA modelling.  

The FSVM modelling in this section is the same as the SVM already described in section 7.2.4. 

Same as the SVM two hundred iterations were run to determine the best predictions for periods 

1963-1978, 1978-1984, and 1984-2000. Figure 7.22 shows the plotted overall mean kappa 

coefficients for periods 1963-1978, 1978-1984, and 1984-2000; obtained by running the CA 

model 10 times at each 20 designated iteration thresholds. For 1963-1978, the highest mean 

kappa coefficients for the polynomial, RBF, and the linear kernels were obtained at the 130th, 

110th, and 100th iterations, respectively. For 1978-1984, the highest mean kappa coefficients for 

the polynomial, RBF, and the linear kernels were obtained at the 120th, 110th, and 100th iterations, 

respectively. For 1984-2000, the highest mean kappa coefficients for the polynomial, RBF, and 

the linear kernels were obtained at the 120th, 110th, and 130th iterations, respectively.              
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Figure 7.22 FSVM-based CA: computed overall mean kappa and standard deviations for 200 

designated iteration thresholds  
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         The predicted maps in 1978, 1984, and 2000 (see Figure 7.23) were based on the optimised 

model parameters (C, d, and  ) which was used to train the model. The calculated kappa 

coefficients computed from the  confusion matrices given in Tables 7.28-7.36 using the 

polynomial, RBF, and the linear kernels for periods 1963-1978, 1978-1984, and 1984-2000 were: 

0.6062, 0.6257, and 0.5911; 0.7896, 0.8031, and 0.7543; and, 0.7197, 0.7266, and 0.7190, 

respectively.   
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Figure 7.23 FSVM-based CA predicted maps for periods 1963-1978, 1978-1984,  

and 1984-2000 
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Table 7.28 FSVM-based CA: confusion matrix for polynomial 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1580 987 

Undeveloped 212 4221 
         

Table 7.29 FSVM-based CA: confusion matrix for RBF 1963-1978   

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1590 929 

Undeveloped 202 4279 

 

Table 7.30 FSVM-based CA: confusion matrix for linear 1963-1978 

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1571 1031 

Undeveloped 221 4177 

 

Table 7.31 FSVM-based CA: confusion matrix for polynomial 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2247 426 

Undeveloped 261 4066 
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Table 7.32 FSVM-based CA: confusion matrix for RBF 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2236 367 

Undeveloped 272 4125 

 

Table 7.33 FSVM-based CA: Confusion matrix for linear 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2320 634 

Undeveloped 188 3858 

 

Table 7.34 FSVM-based CA: confusion matrix for polynomial 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2974 523 

Undeveloped 458 3045 

         

Table 7.35 FSVM-based CA: confusion matrix for RBF 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 2982 507 

Undeveloped 450 3061 
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Table 7.36 FSVM-based CA: confusion matrix for linear 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   

Developed 3014 566 

Undeveloped 418 3002 

    

       Just like the SVM, the FSVM-based CA model accuracy was obtained by repeatedly running 

two hundred iterations ten times. The computed model accuracies for the polynomial, RBF, and 

linear kernels are given in Figure 7.24. The RBF kernel yielded the highest mean kappa 

coefficient while the linear kernel yielded the lowest.  

       The ROC results derived by running 200 iterations for periods 1963-1978, 1978-1984, and 

1984-2000 are depicted in Figures 7.25-7.27.  The calculated AUC, 1963-1978, for polynomial, 

RBF, and linear kernels were: 0.7856 
 
0.0290, 0.7934 

 
0.0278, 0.7736 

 
0.0247 respectively; 

for 1978-1984, were 0.8139 
 
0.0153, 0.8219 

 
0.0094, 0.8049 

 
0.0153 respectively; and for 

periods 1984-2000, 0.7879 
 
0.0191, 0.8037 

 
0.0205, 0.7739 

 
0.0262 respectively. The RBF 

kernel yielded the highest AUC estimate, followed by the polynomial and linear kernels 

respectively. The computed ROC results corroborate the kappa coefficient results of the CA-

based predicted maps. The order of high performance of the three kernel functions was: RBF, 

polynomial, and linear.  
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Figure 7.24 FSVM-based CA model accuracy 
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Figure 7.25 FSVM-based CA: ROC plot for period 1963-1978 



 
184 

Proposed unconventional methods: application of support vector machine and fuzzy  

support vector machine based cellular automata models to land use change modelling of Lagos 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-specificity

S
e
n
s
it
iv

it
y

ROC plot for FSVM, 1978-1984: polynomial, RBF, & linear kernels

 

 

Polynomial

Standard deviation (polynomial)

RBF

Standard deviation (RBF)

Linear

Standard deviation (linear)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-specificity

S
e
n
s
it
iv

it
y

ROC plot for FSVM, 1984-2000: polynomial, RBF, & linear kernels

 

 

Polynomial

Standard deviation (polynomial)

RBF

Standard deviation (RBF)

Linear

Standard deviation (linear)

 
Figure 7.27 FSVM-based CA: ROC plot for period 1984-2000 

 

Figure 7.26 FSVM-based CA: ROC plot for period 1978-1984 
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7.4 The effect of the neighbourhood function on SVM and FSVM based CA 

modelling  

The von Neumann neighbourhood function is based on the influence of the four neighbours 

within a cell; while the Moore neighbourhood is evaluated using eight surrounding neighbours 

within a cell (see Figures 2.2 and 2.3). The SVM and FSVM simulation results depicted in Figure 

7.28 show that the Moore neighbourhood function performed better than the von Neumann 

neighbourhood function. Most land use change experiments are based on the Moore 

neighbourhood function. The FSVM mean kappa coefficients were slightly higher than those of 

the SVM. Of the three kernel functions used in this experiment, the RBF kernel yielded the 

highest mean kappa coefficient while the linear kernel yielded the lowest.  
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Figure 7.28 The effect of the Moore and von Neumann neighbourhood functions on the SVM 

and FSVM based CA modelling 
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7.5 Predicting future land use using SVM and FSVM based CA 

The land use historical trend from 1963-1978, 1978-1984, and 1984-2000 was evaluated and used 

to forecast the most probable land use maps in 2015 and 2030. Shapefiles for 2015 and 2030 

were created in the GIS, based on the evaluation of the most probable land use forms in 2015 

and 2030. The GIS shapefiles were converted from vector to raster format and imported into 

MATLAB for modelling. The resulting shapefiles for 2015 and 2030 were both binary land use 

maps (that is the maps only consisted of developed and undeveloped pixels/cells; developed 

cells = +1, and undeveped cells = -1).  

       The 2015 and 2030 shapefiles were overlaid with a known land use map in 2000, to 

determine the changed regions from 2000-2015 and 2000-2030. The same land use variables 

used for 1984-2000 subsist for the 2000-2015 and 2000-2030 predictions. Note that, empirical 

measurements were only done in 2000, since it is the known data. Training points must not be 

taken from the change regions from periods 2000-2015 and 2000-2030 since those change 

regions are not common to both overlaid maps. The same CA bottom-up technique described in 

6.2.4 applies to all the CA experiments implemented in this research.  

         Future land use in 2015 and 2030 were derived by running the SVM and FSVM based CA 

models iteratively. The predicted maps in 2015 and 2030 using the SVM and FSVM with the 

polynomial, RBF, and linear kernels are depicted in Figure 7.29. The forecasted maps in 2015 

and 2030 cannot be validated since their actual land use forms can only be known in the future.  
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Figure 7.29 Predicted land use maps in 2015 and 2030  
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7.6 Summary  

The FSVM performed slightly better than the SVM. The next chapter is the concluding chapter, 

where the results from all the models will be analysed.    
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CHAPTER 8 

 

CONCLUSION 

 

8.1 Appraisal of modelling results  

Section 8.1.1 compares the results from the GIS-based GWR, the LR and ANN based non-CA 

and CA modelling, with those of the proposed SVM and FSVM based non-CA and  CA 

modelling. Section 8.1.2 compares the results from the LR, ANN, SVM and FSVM based non-

CA modelling with those from the LR, ANN, SVM and FSVM based CA modelling. 

 

        8.1.1 GIS-based GWR, LR, and ANN versus the proposed SVM and  

       FSVM.  

 

              8.1.1.1 GIS-based GWR versus SVM and FSVM. 

Since the SVM and FSVM do not furnish R2 values, the comparison of the GWR and the 

proposed models (SVM and FSVM) will be based on the calculated kappa coefficients of the 

simulated maps.  

        Table 8.1 contains kappa coefficients for the GWR, SVM, and FSVM predicted maps. 

From Table 8.1 for periods 1963-1978 and 1984-2000, the GIS-based GWR kappa coefficient 

for 1963-1978 and 1984-2000 were higher than all kernel results from the SVM and FSVM. For 

1978-1984, the GWR kappa statistic was lower than the SVM and FSVM polynomial and RBF 

results, except for the linear kernels.  
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Table 8.1 Calculated kappa coefficients for the GWR, SVM, and FSVM simulated maps  

 GWR SVM FSVM 

  Polynomial RBF Linear Polynomial RBF Linear 

 

1963-1978 

 

0.8858 0.5870 0.6000 0.5467 0.6062 0.6257 0.5911 

 

1978-1984 

 

0.8366 0.7848 0.7919 0.7527 0.7896 0.8031 0.7543 

 

1984-2000 

 

0.8812 0.7102 0.7170 0.7054 0.7197 0.7266 0.7190 

 

        The significance of the difference in the kappa coefficients of the GWR and SVM/FSVM 

presented in Table 8.1 can be assessed using the McNemar's test (Bradley, 1968; Agresti, 1996). 

The McNemar's test is used to assess the statistical significance of two related samples (Bradley, 

1968; Agesti, 1996; Foody, 2004; Huang et al., 2010). The McNemar's test is based on the 

elements in a confusion matrix. Therefore, McNemar's test in this test is based on the confusion 

matrices that yielded the kappa coefficients given in Table 8.1. According to Foody (2004), the 

McNemar's test evaluates the z-score from a standardised normal test statistic, 

 

2112

2112

ff

ff
z




                                                                                                               (8.1) 

 

where 12f  and 12f  are the sum of incorrectly classified pixels resulting from a 2-class problem 

(see Table 8.2).  
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Table 8.2 A typical 2-class confusion matrix 

 Map 1 

 Correct Incorrect 

Map 2   

Correct 
11f  12f  

Incorrect 
21f  22f  

 

        In this test, let the GWR predicted maps be map 1 while SVM/FSVM predicted maps be 

map 2. The analysis was done by comparing the GWR and SVM/FSVM predicted maps. The 

respective values of 12f  and 12f  were used to compute the respective z-scores using equation 

8.1. The statement of hypothesis can be written as, 

 

H0: there is no significant difference between the two predicted maps at 95% CL 

H1: there is a significant difference between the two predicted maps (reject H0  if p-value<0.05 ) 

 

Using a two-tailed test, the null hypothesis is rejected at 5% significant level that is when 

96.1z . The computed confusion matrices, calculated z-scores, and p-values are respectively 

presented in Table 8.3. 
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Table 8.3 Computed confusion matrices, z-scores, and p-values respectively for the GWR versus 

SVM/FSVM simulated maps (*significant at 05.0p  or 96.1z )  

 

 GWR versus 

polynomial 

SVM 

GWR versus 

RBF SVM 

GWR versus 

linear SVM 

GWR versus 

polynomial 

FSVM 

GWR versus 

RBF FSVM 

GWR versus 

linear FSVM 

1963

-

1978 










4231915

2021652

-21.3335 

(0.0000*) 

 










4303843

1781676

-20.8118 

(0.0000*) 

 










4178968

2201634

-21.7017 

(0.0000*) 

 










4180966

1851669

-23.0204 

(0.0000*) 

 










4193953

2271627

-21.1347 

(0.0000*) 

 










38221324

961758

-32.5877 

(0.0000*) 

 

1978

-

1984 










3975257

3292439

2.9743 

(0.0029*) 

 










3971261

3302438

2.8383 

(0.0045*) 

 










3826406

2232545

-7.2967 

(0.0000*) 

 










4025207

3722396

6.8572 

(0.0000*) 

 










3987245

3402428

3.9278 

(8.4000e-05*) 

 










3833399

2132555

-7.5186 

(0.0000*) 

 

1984

-

2000 










3034428

4793069

1.6934 

(0.0904) 

 










2970482

4503098

-1.0482 

(0.2945) 

 










3034418

4773071

1.9722 

(0.0486*) 

 










2930522

4473101

-2.4093 

(0.0160*) 

 










2988464

4453103

-0.6302 

(0.5286) 

 










2935517

4273121

-2.9293 

(0.0034*) 

 

 

        The results from the McNemar's test indicate that the accuracy of the GWR predicted maps 

for 1963-1978 and 1978-1984 were significantly better than those of all the SVM and FSVM 

predicted maps using the polynomial, RBF, and the linear kernels. For period 1984-2000, but for 

the polynomial SVM, RBF SVM, and RBF FSVM the McNemar's test shows that the accuracy 

of the GWR predicted maps were significantly better than those of the linear SVM, polynomial 

FSVM, and linear FSVM. 

        Even though the accuracies of the GIS-based OLS and GWR models were satisfactory for 

modelling land use change, they do not satisfy basic statistical assumptions required for all linear 

regression models when used for land use change modelling. The statistical validity of GIS- 

based OLS and GWR models when applied to land use change modelling has been the main 

rationale why researchers have continued to crave alternative methods to the conventional GIS-

based OLS and GWR models.   
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              8.1.1.2 LR versus SVM and FSVM. 

Table 8.4 presents the non-CA kappa coefficients of the LR, SVM, and FSVM predicted maps 

for 1963-1978, 1978-1984, and 1984-2000. From Table 8.4, for periods 1963-1978 and 1978-984, 

but for the polynomial SVM and linear SVM, the LR kappa coefficient was lower than those of 

the RBF SVM, polynomial FSVM, RBF FSVM, and linear FSVM. For 1984-2000, but for the 

polynomial SVM, linear SVM, and linear FSVM, the LR kappa coefficient was lower than those 

of the RBF SVM, polynomial FSVM, and RBF FSVM.  

 

Table 8.4 Non-CA modelling results: calculated kappa coefficients for the LR, SVM, and FSVM 

simulated maps  

 

 LR SVM FSVM 

  Polynomial RBF Linear Polynomial RBF Linear 

 

1963-1978 

 

 

0.5057 0.5002 0.5326 0.4756 0.5339 0.5559 0.5142 

 

1978-1984 

 

 

0.5525 0.5436 0.5789 0.5209 0.5641 0.6660 0.5534 

 

1984-2000 

 

 

0.5080 0.4802 0.5171 0.3545 0.5293 0.5307 0.4404 

 

 

        Table 8.5 presents the CA kappa coefficients of the LR, SVM, and FSVM predicted maps 

for 1963-1978, 1978-1984, and 1984-2000. From Table 8.5, for all the three periods, 1963-1978, 

1978-1984, and 1984-2000 but for the linear SVM, the LR  kappa coefficient was lower than the 

kappa coefficients of all the SVM and FSVM kernel functions.   
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Table 8.5 CA modelling results: calculated kappa coefficients for the LR, SVM and FSVM 

simulated maps 

 LR SVM FSVM 

  Polynomial RBF Linear Polynomial RBF Linear 

 

1963-1978 

 

 

0.5847 0.5870 0.6000 0.5467 0.6062 0.6257 0.5911 

 

1978-1984 

 

 

0.7543 0.7848 0.7919 0.7527 0.7896 0.8031 0.7543 

 

1984-2000 

 

 

0.7101 0.7102 0.7170 0.7054 0.7197 0.7266 0.7190 

 

        The McNemar's test (equation 8.1) was used to assess whether the kappa results from the 

non-CA and CA simulations presented in Tables 8.4 and 8.5 were significantly different at 5% 

significant level.  

        The calculated z-scores and p-values for the non-CA results (see Table 8.6) indicate that for 

LR versus linear FSVM 1978-1984 that there was a significant difference  between the LR and 

the SVM and FSVM predictions for all the three periods.  
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Table 8.6 Non-CA modelling: computed confusion matrices, z-scores, and p-values respectively 

for the LR versus SVM/FSVM simulated maps (*significant at 05.0p  or 96.1z )  

 LR versus 

polynomial 

SVM 

LR versus 

RBF SVM 

LR versus 

linear SVM 

LR versus 

polynomial 

FSVM 

LR versus 

RBF FSVM 

LR versus 

linear FSVM 

1963

-

1978 










3893142

13961569

31.9756 

(0.0000*) 

 










3917118

14331532

33.3903 

(0.0000*) 

 










402114

19501015

43.6852 

(0.0000*) 

 










3856179

11231842

26.1617 

(0.0000*) 

 










3914121

13711594

32.3613 

(0.0000*) 

 










40269

16211344

39.9274 

(0.0000*) 

 

1978

-

1984 










344449

12962211

34.0021 

(0.0000*) 

 










343558

16141893

38.0532 

(0.0000*) 

 










3322171

16211886

34.2530 

(0.0000*) 

 










34930

6292878

25.0799 

(0.0000*) 

 










3347146

11942313

28.6292 

(0.0000*) 

 










3356137

1363371

-0.0605 

(0.9518) 

 

1984

-

2000 










257787

16982638

38.1308 

(0.0000*) 

 










1835829

1674169

-20.9763 

(0.0000*) 

 










259074

18202516

40.1194 

(0.0000*) 

 










2260404

144322

-19.0755 

(0.0000*) 

 










2523141

8043532

21.5674 

(0.0000*) 

 










260064

17292607

39.3210 

(0.0000*) 

 

         For the CA modelling (see Table 8.7) but for the  LR versus polynomial SVM/RBF 

SVM/polynomial FSVM/linear FSVM the calculated z-scores and p-values indicate that there 

was a significant difference  between the LR and the SVM and FSVM predictions for all the 

three periods.  
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Table 8.7 CA modelling: computed confusion matrices, z-scores, and p-values respectively for 

the LR versus SVM/FSVM simulated maps (*significant at 05.0p  or 96.1z )  

 LR versus 

polynomial 

SVM 

LR versus 

RBF SVM 

LR versus 

linear SVM 

LR versus 

polynomial 

FSVM 

LR versus 

RBF FSVM 

LR versus 

linear FSVM 

1963

-

1978 










3947439

4512163

0.4022 

(0.6875) 

 










4058328

3752239

1.7726 

(0.0763) 

 










4210176

2712343

4.4933 

(8.0000e-06*) 

 










3967419

4532161

1.1514 

(0.2496) 

 










3780606

1382476

-17.1577 

(0.0000*) 

 










3963423

4022212

-0.7311 

(0.4647) 

 

1978

-

1984 










3965167

3392529

7.6463 

(0.0000*) 

 










403498

2672601

8.8459 

(0.0000*) 

 










3824308

2252643

-3.5951 

(3.2400e-04*) 

 










3952180

3752493

8.2773 

(0.0000*) 

 










3999133

3982470

11.5000 

(0.0000*) 

 










3822310

2242644

-3.7216 

(1.9800e-04*) 

 

1984

-

2000 










3372268

1313229

-6.8586 

(0.0000*) 

 










3214426

2063154

-8.7511 

(0.0000*) 

 










3286354

2253135

-5.3611 

(8.2573e-08*) 

 










3192448

1853175

-10.4533 

(0.0000*) 

 










3164476

1983162

-10.7082 

(0.0000*) 

 










3240400

1933167

-8.5005 

(0.0000*) 

 

 

         A further validation of the CA modelling was done with the ROC analysis. Table 8.8 

presents the calculated AUC and standard deviations for the LR, SVM, and FSVM models. The 

computed AUC given in Table 8.8 indicate that the AUC for the LR model was lower  than 

those of all the SVM and FSVM kernel results for periods 1963-1978, 1978-1984, and 1984-2000 

with the  exception of the SVM linear kernel. Now, we can test statistically whether the 

calculated AUC for the LR and the SVMs (that is, SVM and FSVM) differ significantly at 95% 

CL.  
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Table 8.8 ROC analysis: calculated mean AUC and their respective standard deviations for LR 

versus SVM/FSVM simulated maps 
 

 

        

Tsai 

and 

Chen 

(2004) 

present

ed a technique for testing the significance of the AUC estimates obtained from ROC plots. 

According to Tsai and Chen (2004), ROC indices from two samples with unequal variance can 

be assessed using the t-statistic, 

 

2

2

1

2 nSnS

yy
T

itic

icit

i




                                                                                               (8.2) 

 

where  ity  and icy are the means of sample 1 and sample 2; 2

itS  and 2

icS  are the variances of 

sample 1 and sample 2 ; and, 1n  and 2n  are the sizes of samples 1 and 2, all respectively. The 

hypothesis can be stated as, 

 

H0: there is no significant difference between samples 1 and 2 at 95% CL 

H1: there is a significant difference between samples 1 and 2 (reject H0  if p-value<0.05  ) 

 

         The AUC and their respective standard deviations given in Table 8.8 were derived by 

computing the mean of running 200 iterations 10 times. Therefore, 1021  nn . Then, degrees 

of freedom (df) = 221  nn =18. Using equation 8.2 based on a two-tailed test, the t-statistics 

 LR SVM FSVM 

  Polynomial RBF Linear Polynomial RBF Linear 

 

1963-

1978 

0.7354  

0.0295 

0.7629  

0.0270 

0.7863  

0.0273 

0.7464  

0.0287 

0.7856   

0.0292 

0.7934 

  
0.0278 

0.7736  

0.0247 

 

1978-

1984 

0.7549  

0.0267 

0.8003  

0.0300 

0.8139  

0.0248 

0.7673  

0.0214 

0.8139  

0.0153 

0.8219  

0.0094 

0.8049  

0.0153 

 

1984-

2000 

0.7451  

0.0298 

0.7804  

0.0316 

0.7939  

0.0290 

0.7714  

0.0255 

0.7879  

0.0191 

0.8037  

0.0205 

0.7739  

0.0262 
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and their respective p-values were calculated using the calculated AUC in Table 8.8. The test 

results given in Table 8.9 show that the performance of the LR model was  significantly less than 

the polynomial  SVM,  RBF SVM, polynomial  FSVM,  RBF FSVM, and  linear FSVM in all the  

three periods. The test also indicated that there was no difference between the performances of 

the LR and the linear SVM in all the three periods.  

 

Table 8.9 Calculated t-statistic and p-values (in parenthesis) for LR versus SVM/FSVM 

simulated maps (*significant at p<0.05 or 96.1t ) 

 SVM FSVM 

 LR versus 

polynomial 

SVM 

LR versus 

RBF SVM 

LR versus 

linear SVM 

LR versus 

polynomial 

FSVM 

LR versus 

RBF FSVM 

LR versus 

linear FSVM 

 

1963-1978 

2.17458 

(0.04330*) 

4.0046 

(0.00083*) 

0.84517 

(0.40920) 

3.8245024 

(0.00124*) 

4.52478 

(0.00026*) 

3.139668 

(0.00567*) 

 

1978-1984 

3.57481 

(0.00217*) 

5.11993 

(0.00007*) 

1.14596 

(0.26721) 

6.06292 

(0.00001*) 

7.484988 

(0.000001*) 

5.13807 

(0.00007*) 

 

1984-2000 

2.57001 

(0.01928*) 

3.71123 

(0.00160*) 

2.120498 

(0.04816* ) 

3.82379 

(0.00125*) 

5.12325 

(0.000071*) 

2.29522 

(0.03397*) 

 

 

               8.1.1.3 ANN versus SVM and FSVM. 

Table 8.10 presents the non-CA kappa coefficients of the ANN, SVM, and FSVM predicted 

maps for 1963-1978, 1978-1984, and 1984-2000. From Table 8.10, for periods 1963-1978,  but 

for the polynomial SVM, linear SVM, and linear FSVM the ANN kappa coefficient was lower 

than the RBF SVM, polynomial FSVM, and RBF FSVM. For 1978-1984, but for the RBF SVM 

and RBF FSVM the ANN kappa coefficient was higher than the polynomial SVM, linear SVM, 

polynomial FSVM, and linear FSVM. For 1984-2000, but for the polynomial SVM, linear SVM, 

and linear FSVM the ANN kappa coefficient was lower than the RBF SVM, polynomial FSVM, 

and RBF FSVM. 
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Table 8.10 Non-CA modelling: calculated kappa coefficients for the ANN, SVM, and FSVM 

simulated maps  

 ANN SVM FSVM 

  Polynomial RBF Linear Polynomial RBF Linear 

 

1963-1978 0.5165 0.5002 0.5326 0.4756 0.5339 0.5559 0.5142 

 

1978-1984 0.5701 0.5436 0.5789 0.5209 0.5641 0.6660 0.5534 

 

1984-2000 0.5149 0.4802 0.5171 0.3545 0.5293 0.5307 0.4404 

 

        Table 8.11 presents the CA kappa coefficients of the ANN, SVM, and FSVM predicted 

maps for 1963-1978, 1978-1984, and 1984-2000. From Figure 8.11, 1963-1978, but for the 

polynomial SVM and linear SVM the ANN kappa coefficient was lower than those of the RBF 

SVM, polynomial FSVM, RBF FSVM, and linear FSVM. For 1978-1984, but for the linear SVM 

and linear FSVM the ANN kappa coefficient was lower than those of the polynomial SVM, RBF 

SVM, polynomial FSVM, and RBF FSVM. For 1984-2000, but for the polynomial SVM and 

linear SVM the ANN kappa coefficient was lower than those of the RBF SVM, polynomial 

FSVM, RBF FSVM, and linear FSVM. 

 

Table 8.11 CA modelling: calculated kappa coefficients for the ANN, SVM, and FSVM 

simulated maps  

 ANN SVM FSVM 

  Polynomial RBF Linear Polynomial RBF Linear 

 

1963-1978 0.5900 0.5870 0.6000 0.5467 0.6062 0.6257 0.5911 

 

1978-1984 

 

 

0.7825 0.7848 0.7919 0.7527 0.7896 0.8031 0.7543 

 

1984-2000 0.7161 0.7102 0.7170 0.7054 0.7197 0.7266 0.7190 
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        The McNemar's test statistic (equation 8.3) was used to test whether there was a significant 

difference between the ANN and SVMs kappa coefficients for the non-CA and CA modelling 

given in Tables 8.10 and 8.11 respectively. From Tables 8.12, the computed z-scores and p-

values indicate that but for the  polynomial FSVM in period 1978-1984, there was a significant 

difference between the ANN and all the SVM and FSVM predictions.  

 

Table 8.12 Non-CA modelling: computed confusion matrices, z-scores, and p-values respectively 

for the ANN versus SVM/FSVM simulated maps (*significant at 05.0p  or 96.1z )  

 ANN versus 

polynomial 

SVM 

ANN versus 

RBF SVM 

ANN versus 

linear SVM 

ANN versus 

polynomial 

FSVM 

ANN versus 

RBF FSVM 

ANN versus 

linear FSVM 

1963

-

1978 










4178293

11111418

21.8308 

(0.0000*) 

 










4164307

11861343

22.7488 

(0.0000*) 

 










44674

15041025

38.6270 

(0.0000*) 

 










4181290

11041425

-21.8018 

(0.0000*) 

 










438487

12631266

32.0067 

(0.0000*) 

 










4019452

9601569

13.5191 

(0.0000*) 

 

1978

-

1984 










3910424

10331633

15.9547 

(0.0000*) 

 










3905429

8351831

11.4196 

(0.0000*) 

 










3996338

10531613

19.1709 

(0.0000*) 

 










4004511

5371948

0.8031 

(0.4219) 

 










34451070

472438

-30.6090 

(0.0000*) 

 










3834681

2882197

-12.6250 

(0.0000*) 

 

1984

-

2000 










3527397

8832193

31.5841 

(0.0000*) 

 










3451473

8242252

9.7462 

(0.0000*) 

 










19142010

882988

-41.9615 

(0.0000*) 

 










3605319

7242352

12.5404 

(0.0000*) 

 










3097827

2302846

-18.3627 

(0.0000*) 

 










22601664

143062

-40.2799 

(0.0000*) 

 

 

         From Table 8.13,  the  McNemar's test statistic indicated that for period 1963-1978, aside 

the polynomial SVM, RBF SVM, polynomial FSVM that there was a significant difference 

between the ANN result and those of the linear SVM, RBF FSVM, and linear FSVM. For 1978-

1984, aside the polynomial SVM, RBF SVM, and the polynomial FSVM there was a significant 

difference between the ANN result and those of the linear SVM, RBF FSVM, and linear FSVM. 

For 1984-2000, aside the RBF SVM and linear FSVM there was a significant difference between 



 
202 

Conclusion 

 

the ANN result and those of the polynomial SVM, linear SVM, polynomial FSVM, and RBF 

FSVM.   

 

Table 8.13 CA modelling: computed confusion matrices, z-scores, and p-values respectively for 

the ANN versus SVM/FSVM simulated maps (*significant at 05.0p  or 96.1z )  

 ANN versus 

polynomial 

SVM 

ANN versus 

RBF SVM 

ANN versus 

linear SVM 

ANN versus 

polynomial 

FSVM 

ANN versus 

RBF FSVM 

ANN versus 

linear FSVM 

1963

-

1978 










3863436

5352166

3.1771 

(0.0015*) 

 










3947352

4862215

4.6290 

(4.0000e-06*) 

 










4073226

4082293

7.2281 

(0.0000*) 

 










3898401

5222179

3.9828 

(6.8000e-05*) 

 










3709590

2092492

-13.4788 

(0.0000*) 

 










3852447

5132188

2.1301 

(0.0332*) 

 

1978

-

1984 










4050284

2542412

-1.2934 

(0.1959) 

 










4101233

2002466

-1.5859 

(0.1128) 

 










3891443

1582508

-11.6254 

(0.0000*) 

 










4095239

2322434

-0.3225 

(0.7471) 

 










4121213

2762390

2.8490 

(0.0044*) 

 










3886448

1602506

-11.6799 

(0.0000*) 

 

1984

-

2000 










3089357

4143140

2.0528 

(0.0401*) 

 










3065381

3553199

-0.9584 

(0.3379) 

 










3108338

4033151

2.3878 

(0.0170*) 

 










3034412

3433211

-2.5112 

(0.0120*) 

 










3010436

3523202

-2.9924 

(0.0028*) 

 










3069377

3643190

-0.4776 

(0.9552) 

 

 

        The AUC indices given in Table 8.14 show that the performance of the ANN was less than 

that of the SVM and FSVM for all three periods (1963-1978, 1978-1984, and 1984-2000). The t-

statistic given in equation 8.4 was used to compare AUC values from the ANN, SVM, and 

FSVM simulations. The calculated t-statistic and p-values (see Table 8.15) indicate that there 

were significant differences between the performances of the ANN and the RBF SVM, 

polynomial FSVM, and RBF FSVM but there were no significant differences between the 

performances of the ANN and those of the polynomial SVM, linear SVM, and linear FSVM.  
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Table 8.14 ROC results for the ANN, SVM, and FSVM simulated maps  

 ANN SVM FSVM 

  Polynomial RBF Linear Polynomial RBF Linear 

 

1963-

1978 

0.7574  

0.0304 

0.7629  

0.0270 

0.7863  

0.0273 

0.7464  

0.0287 

0.7856   

0.0292 

0.7934 

  
0.0278 

0.7736  

0.0247 

 

1978-

1984 

0.7850  

0.0308 

0.8003  

0.0300 

0.8139  

0.0248 

0.7673  

0.0214 

0.8139  

0.0153 

0.8219  

0.0094 

0.8049  

0.0153 

 

1984-

2000 

0.7613  

0.0288 

0.7804  

0.0316 

0.7939  

0.0290 

0.7714  

0.0255 

0.7879  

0.0191 

0.8037  

0.0205 

0.7739  

0.0262 

 

Table 8.15 Calculated t-statistics and p-values (in parenthesis) for ANN versus SVM/FSVM 

simulated maps (*significant at p<0.05 or 96.1t ) 

 SVM FSVM 

 ANN 

versus 

polynomial 

SVM 

ANN 

versus RBF 

SVM 

ANN 

versus linear 

SVM 

ANN 

versus 

polynomial 

FSVM 

ANN versus 

RBF FSVM 

ANN versus 

linear FSVM 

 

1963-1978 

0.42776 

(0.67394) 

 

2.23672 

(0.03820*) 

 

0.832033 

(0.41631) 

 

2.11558 

(0.04859*) 

 

2.76351 

(0.01280*) 

 

1.30788 

(0.20740) 

 

 

1978-1984 

1.12529 

(0.27529) 

 

2.31113 

(0.03288*) 

 

1.492409 

(0.15291) 

 

2.65739 

(0.01604*) 

 

3.62357 

(0.00194*) 

 

1.82983 

(0.08389) 

 

 

1984-2000 

1.41268 

(0.17483) 

 

2.52233 

(0.02130*) 

 

0.8303 

(0.41725) 

 

2.43408 

(0.02557*) 

 

3.79284 

(0.00133*) 

 

1.02338 

(0.31972) 
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          8.1.2 A comparison of the non-CA and CA predicted maps for LR,   

       ANN, SVM, and FSVM models. 

The McNemar's test described in section 8.1.1.1 was also used to statistically assess the whether 

there are significant differences between the non-CA and CA predicted maps from LR, ANN, 

SVM, and FSVM models. The computed confusion matrices, calculated z-scores,  and p-values 

by comparing the predicted LR, ANN, SVM, and FSVM non-CA and CA maps are presented in 

Tables 8.16-8.19. 

        The calculated z-scores and p-values indicate that the predicted non-CA and CA maps for 

all the three periods (1963-1978, 1978-1984, and 1984-2000) were significantly different at the 

95% CL.  

 

Table 8.16 LR: computed confusion matrices, z-scores, and p-values respectively (*significant at 

p<0.05 or z >1.96) 

  

LR: non-CA versus CA 

 

 

1963-1978 








3696690

3392275

 

-10.9421 (0.0000*) 

 

 

1978-1984 








3349783

1442724

 

-20.9875 (0.0000*) 

 

 

1984-2000 








24451195

2193141

 

-25.9552 (0.0000*) 
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Table 8.17 ANN: computed confusion matrices, z-scores, and p-values respectively (*significant 

at p<0.05 or z >1.96) 

  

ANN: non-CA versus CA 

 

 

1963-1978 
 










25631908

1012428

 

-40.3151 (0.0000*) 

 

1978-1984 
    










3798536

7171949

 

5.1133 (3.1671e-07*) 

 

1984-2000 








2888558

10362518

 

11.9725 (0.0000*) 

 

Table 8.18 SVM: computed confusion matrices, z-scores, and p-values respectively (*significant 

at p<0.05 or z >1.96) 

  

Polynomial SVM 

 

 

 

RBF SVM 

 

Linear SVM 

 

1963-

1978 










4178255

11721395

 
24.2749 

(0.0000*) 










4026372

12631339
 

22.0353 

(0.0000*) 

 










441269

1559960
 

36.9283 

(0.0000*) 

 

 

1978-

1984 










3698351

10421909

 
18.5141 

(0.0000*) 

 










3981323

10681628

 
19.9753 

(0.0000*) 

 










3900401

10431656
 

16.8947 

(0.0000*) 

 

 

1984-

2000 










3119301

11562424

 
22.3994 

(0.0000*) 

 










3189322

12212268
 

22.8864 

(0.0000*) 

 










17661737

2363261

 
-33.7923 

(0.0000*) 
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Table 8.19 FSVM: computed confusion matrices, z-scores, and p-values respectively (*significant 

at p<0.05 or z >1.96) 

  

Polynomial FSVM 

 

 

 

RBF FSVM 

 

Linear FSVM 

 

1963-

1978 










3943422

10361599

 
16.0801 

(0.0000*) 










4143277

11421438
 

22.9628 

(0.0000*) 

 










386949

17781304
 

40.4507 

(0.0000*) 

 

 

1978-

1984 










3626420

4962458

 
2.5111 

(0.0120*) 

 










3850547

6911912

 
4.0926 

(4.2000e-05*) 

 










33021025

1902483
 

-23.9551 

(0.0000*) 

 

 

1984-

2000 










3128249

12012422

 
25.0007 

(0.0000*) 

 










2789644

5383029
 

-3.0832 

(0.0020*) 

 










20761286

1983440

 
-28.2431 

(0.0000*) 

 

8.2 Overview 

       8.2.1 Research questions and answers. 

A recap of the research questions posed in section 1.3 of chapter one are: 

 

(i) Did the conventional GIS-based GWR model perform 

better than the proposed SVM and FSVM based CA 

models? 

 

(ii)  Did the LR-based CA model yield better accuracies than 

the proposed SVM and FSVM based CA models? 
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(iii) Did the ANN-based CA model outperform the  proposed 

SVM and FSVM based CA models?  

 

(iv) Were the results of the CA based techniques better than 

those of the non-CA based techniques?  

 

        Answers to the above questions: From section 8.1.1.1, the calculated kappa coefficients 

from the predicted GWR, SVM, and FSVM maps indicate that the GWR performed better than 

the SVM and FSVM. The statistical test also validates that the GWR results were better than the 

SVM and FSVM. From sections 8.1.1.1 and 8.1.1.3, the tests show that the SVM and FSVM 

results were better than those of the LR and ANN. The tests done in section 8.1.2 indicate that 

the CA results were better than those of the non-CA.  

 

         8.2.2 The pros and cons of the proposed SVM and FSVM models. 

One of the weaknesses of the SVM and FSVM was that, unlike the GIS-based OLS/GWR, LR, 

and one neuron neural network models, they could not be used to assess the contribution of 

each independent variable. Another shortcoming that they had was the rigour of optimising their 

kernel parameters (that is, finding their optimal parameters) before implementation. The 

advantages achieved with the SVM and FSVM models include: (i) the use of kernel functions to 

overcoming the problem of curse of dimensionality, (ii)  the realisation of various simulation 

outputs as a result of using different kernel functions, (iii) that, with the exception of the GIS-

based model, the predicted SVM and FSVM results were better than those of the other 

unconventional methods.  
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8.3 The benefit of the thesis to Lagos and Nigeria  

Lagos is the largest and the most congested city in Nigeria; and as a result, poses the greatest 

planning burden to the Nigerian government. As explained in section 1.1, the use of predictive 

models for planning is presently lacking in Lagos and Nigeria. Incorporating predictive models 

into planning will transform the present prevailing spontaneous planning to proactive and 

sustainable planning.  

      This CA-based research will assist urban planners in forecasting urban expansion in Lagos, as 

well as other sprawling cities in Nigeria. As an academic in one of Nigerian government owned 

universities, I will make this research freely available to the Nigerian planning authorities 

including the academia where I belong.  The SVMs employ several kernel functions that can be 

used to derive multiple scenarios of urban disposition in a complex urban environment like 

Lagos.  

 

8.4 The scientific benefit of the thesis  

CA-based models have been found very attractive to researchers because of their simplicity and 

bottom-up approach based on very simple rules (O'Sullivan & Torrens, 2000). The LR model 

was first explored by Wu (2002) for CA model calibration while the ANN model was first 

explored by Li and Yeh (2002).  

        In order to enhance the level of accuracy in predicting urban systems researchers have 

continued to seek new mathematical models that can effectively model urban systems. This 

research explored for the first time the use of the SVM-based and FSVM-based models to 

calibrate a CA model. This research has found that the SVM and FSVM models are very 

satisfactory for calibrating CA models for land use change prediction. The proposed models can 

be applied to cities that share similar characteristics as Lagos. This research has been peer-
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reviewed and presented in three significant international conferences4; and has also been 

accepted for publication in the Journal of Land Use Science5. The satisfactory results from the 

SVM and the FSVM models have showed that SVMs remain promising tools for modelling land 

use change.   

 

8.5 Recommendations for further research 

Mathematical models such as Gaussian Processes (GP), K nearest Neighbour (KNN), Gaussian 

Mixture Model (GMM), Maximum Likelihood Classifier (MLC), and Situation  Theory (ST) are 

among notable machine learning algorithms that have not been explored for CA modelling. The 

aforementioned mathematical models are recommended for further research into CA modelling.  

                                                
4 Okwuashi, O., McConchie, J., Nwilo, P., & Eyo, E. (2008). Fuzzy support machine constrained GIS-based cellular 

automata for urban change simulation. Paper presented at the 24th New Zealand Geographical Conference: 

Inequality, Sustainability, Policy; Across the Divide,  Wellington, New Zealand, July 2nd – 5th.  

 

Okwuashi, O., McConchie, J., Nwilo, P., & Eyo, E. (2009a). Enhancing a GIS cellular automata model of land use 

change using support vector machine. Proceedings of the 17th International Conference on Geoinformatics, 

August 12th – 14th, Fairfax, VA: IEEE Xplore.   

 

Okwuashi, O., McConchie, J., Nwilo, P., & Eyo, E. (2009b). Stochastic GIS cellular automata for land use change 

simulation: Application of a kernel based model. In B. G. Lees & S. W. Laffan (Eds.), 10th International 

Conference on Geocomputation (pp. 203-209). UNSW, Sydney, 30th November – 2nd  December.  

 
5 Accepted for publication on 19th August 2010 
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