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Abstract

Divisible statistics have been widely used in many areas of statistical anal-

ysis. For example, Pearson’s Chi-square statistic and the log-likelihood ra-

tio statistic are frequently used in goodness of fit (GOF) and categorical

analysis; the maximum likelihood (ML) estimators of the Shannon’s and

Simpson’s diversity indices are often used as measure of diversity; and the

spectral statistic plays a key role in the theory of large number of rare events.

In the classical multinomial model, where the number of disjoint events N

and their probabilities {pi}16i6N are all fixed, limit distributions of many

divisible statistics have gradually been established. However, most of the

results are based on the asymptotic equivalence of these statistics to Pear-

son’s Chi-square statistic and the known limit distribution of the latter. In

fact, with deeper analysis, one can conclude that the key point is not the

asymptotic behavior of the Chi-square statistic, but that of the normalized

frequencies. Based on the asymptotic normality of the normalized frequen-

cies in the classical model, a unified approach to the limit theorems of more

general divisible statistics can be established, of which the case of the Chi-

square statistic is simply a natural corollary.

In many applications, however, the classical multinomial model is not appro-

priate, and an extension to new models becomes necessary. This new type of

model, called “non-classical” multinomial models, considers the case when N

increases and the {pni} change as sample size n increases. As we will see, in
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these non-classical models, both the asymptotic normality of the normalized

frequencies and the asymptotic equivalence of many divisible statistics to the

Chi-square statistic are lost, and the limit theorems established in classical

model are no longer valid in non-classical models.

The extension to non-classical models not only met the demands of many

real world applications, but also opened a new research area in statistical

analysis, which has not been thoroughly investigated so far. Although some

results on the limit distributions of the divisible statistics in non-classical

models have been acquired, e.g., Holst (1972); Morris (1975); Ivchenko and

Levin (1976); Ivchenko and Medvedev (1979), they are far from complete.

Though not yet attracting much attention by many applied statisticians, an-

other advanced approach, introduced by Khmaladze (1984), makes use of

modern martingale theory to establish functional limit theorems of the par-

tial sum processes of divisible statistics successfully. In the main part of this

thesis, we show that this martingale approach can be extended to more gen-

eral situations where both Gaussian and Poissonian frequencies exist, and

further discuss the properties and applications of the limiting processes, es-

pecially in constructing distribution-free statistics.

The last part of the thesis is about the statistical analysis of large number of

rare events (LNRE), which is an important class of non-classical multinomial

models and presented in numerous applications. In LNRE models, most of

the frequencies are very small and it is not immediately clear how consis-

tent and reliable inference can be achieved. Based on the definitions and

key concepts firstly introduced by Khmaladze (1988), we discuss a particular

model with the context of diversity of questionnaires. The advanced statisti-

cal techniques such as large deviation, contiguity and Edgeworth expansion

used in establishing limit theorems underpin the potential of LNRE theory

to become a fruitful research area in future.
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Chapter 1

Introduction

In many applications of statistical analysis, such as the GOF test of finite

discrete distributions (see e.g. Read and Cressie, 1988), inference in cate-

gorical analysis (see e.g. Agresti, 2002) and statistical analysis of diversity

of finite populations (see e.g. Magurran, 2004; Jost and Chao, 2010), the

multinomial model plays the central role.

The multinomial model can also be employed in many other applications, but

often it provides only an approximation to the “real” model. For example,

in Pearson’s Chi-square test applied to a continuous distribution, we have to

partition the support of the distribution into a finite number of intervals; in

the diversity analysis of a population with unseen species, the multinomial

model can only include those species which we have seen. In both cases, when

sample size increases, we would wish to adopt a “closer” approximation to

the real model. In other words, we intend to use a sequence of multinomial

models with an increasing number of disjoint events to approximate the real

model, as the sample size increases.

The introduction of this “non-classical” multinomial model was felt necessary

for applications in GOF tests, categorical analysis and the statistical anal-

ysis of diversity. This extension of the applicability, as we will show later,
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CHAPTER 1. INTRODUCTION 2

is closely associated with the theory of large number of rare events (LNRE)

(see Khmaladze, 1988).

Most statistics involved in these applications, such as various GOF test statis-

tics, the ML estimates of diversity indices and the spectral statistics, can be

classified as belonging to a class of statistics called divisible statistics, and

their asymptotic behavior can be discussed under a unified framework.

In this chapter, we will introduce the definition of classical and non-classical

multinomial models and divisible statistics, give examples of some important

divisible statistics and outline the overall structure of the thesis.

1.1 Multinomial Model

Despite the importance of the multinomial model in applications, the defini-

tion is simple. Disregarding the context in different applications, the classical

multinomial model can be defined as following.

1.1.1 Classical Model

Given a probability space (Ω,F ,P), let A1, . . . , AN be mutually disjoint mea-

surable sets of Ω (disjoint events) with

N∪
i=1

Ai = Ω,

so that A = {Ai}16i6N forms a partition of Ω, and let the probability of each

event be

pi = P(Ai).
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Considering a set of independent samples {ωj}16j6n, the frequencies of the

events can be defined by

νi =
n∑
j=1

I {ωj ∈ Ai} .

In this model, the number of partitions N and the probabilities {pi}16i6N
are fixed - they do not change as the the sample size n changes. However, in

many applications (see Chapter 3), the number of partitions N may increase

as the sample size increases. This requires introducing the non-classical mod-

els, which allow N to increase and {pi}16i6N to change as n increases.

1.1.2 Non-Classical Models

In non-classical models, we consider instead a sequence {An} of partitions

withAn = {Ani}16i6N , where the number of partitions N increases as sample

size n increases. The corresponding probabilities are

pni = P(Ani),

and the frequencies of the events become

νni =
n∑
j=1

I {ωj ∈ Ani} .

It is worth noting that the classical models can be regarded as a special case

of the non-classical models.

1.2 Divisible Statistics

1.2.1 Definitions

According to Kudlaev (1990), the term divisible statistics can be traced back

to Medvedev (1970). In some publications, two synonyms - separable statis-
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tics and decomposable statistics - are also often used.

Definition 1.1. The sum

Dn =
N∑
i=1

gni (νni, pni, n,N) .

with gni being functions of νni, pni, n and N is called a divisible statistic.

The subscript i in gni implies that the functions gni may change over i. Since

npni is the expectation of νni and such quantities play crucial role in the

asymptotic behavior of divisible statistics in non-classical models, it is more

convenient that we adopt the expression

Dn =
N∑
i=1

gni (νni, npni) . (1.1)

In some models, when the expectations npni of the frequencies νni may tend

to infinity, we consider the normalized frequencies

Yni =
νni − npni√

npni

instead of the frequencies νni, and denote divisible statistics as sum of func-

tions hni, i.e.,

Dn =
N∑
i=1

hni (Yni, npni) . (1.2)

Sometime the quantities gni do not involve npni, (1.1) can be reduced to

Dn =
N∑
i=1

gni (νni) . (1.3)

Likewise, in some models, one can reduce (1.2) to

Dn =
N∑
i=1

hni (Yni) . (1.4)
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Symmetric Divisible Statistics

An important class of divisible statistics is symmetric divisible statistics.

Definition 1.2. The statistic

Dn =
N∑
i=1

gn (νni) .

with gn independent of i is called a symmetric divisible statistic.

Note that in the equiprobable multinomial model with pni = 1/N , the divis-

ible statistics with gn (νni, npni) are symmetric divisible statistics.

m-Divisible Statistics

A generalization of divisible statistics which is also of interest in statistical

analysis is m-divisible statistics.

Definition 1.3. The sum of functions

Dn =
N-m∑
i=1

gni (νni, νn,i+1, . . . , νn,i+m)

for m > 1 is called an m-divisible statistic.

Although m-divisible statistics covers a broader range of statistics, we will

limit our discussion to divisible statistics in this thesis.

1.2.2 Traditional Goodness of Fit Statistics

Pearson’s Chi-square Statistic

χ2 =
N∑
i=1

(νni − npni)
2

npni
=

N∑
i=1

Y 2
ni (1.5)
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One of the most frequently used statistics in goodness-of-test and categorical

data analysis is Pearson’s Chi-square statistic which was introduced by Pear-

son (1900). The reason for the popularity of this statistic is that its limit

distribution in the classical model is known and many other GOF statistics

are asymptotically equivalent to it.

Log-likelihood Ratio Statistic

G2 =
N∑
i=1

2νni log
νni
npni

(1.6)

Another popular statistic in goodness-of-fit theory is the log-likelihood ratio

statistic, since the likelihood ratio test is the uniformly most powerful test

or uniformly most powerful unbiased test (see, e.g., p429, Shao, 2003).

1.2.3 Power-divergence Test Statistics

Both Pearson’s Chi-square statistic and the log-likelihood ratio statistic can

be included in a larger class of statistics, which is the Power-divergence test

statistics Iλn introduced by Cressie and Read (1984), with definition:

2nIλn =
2

λ(λ+ 1)

N∑
i=1

νni

((
νni
npni

)λ
− 1

)
for λ ∈ R. (1.7)

Apart from Pearson’s Chi-square statistic (λ = 1) and log-likelihood ratio

statistic (λ = 0), many other well-known statistics such as Freeman-Tukey

statistic (λ = −1/2), Modified likelihood ratio test statistic (λ = −1) and

the Neyman modified Chi-square statistic (λ = −2), all belong to this class.

The power-divergence test statistics “linked the traditional test statistics

through a single-valued parameter, and provides a way to consolidate and

extend the current fragmented literature”(Pardo, 2006). Cressie and Read

(1984) also proposed a new GOF statistic with λ = 2/3, and claimed that it is
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a promising alternative to Pearson’s Chi-square statistic and Log-likelihood

Ratio statistic for some sparse data.

1.2.4 The ϕ-divergence Test Statistics

Another class of statistics, which is highly connected to information theory,

is ϕ-divergence statistics. Since the ML estimates of the probabilities pn =

(pn1, . . . , pnN)
T in multinomial models is

p̂n = (p̂n1, . . . , p̂nN)
T =

(νn1
n
, . . . ,

νnN
n

)T
,

the ϕ-divergence goodness-of-test statistic is just the ϕ-divergence measure

between p̂n and null hypothesis pn.

Tϕ =
2n

ϕ′′(1)

N∑
i=1

ϕ

(
p̂ni
pni

)
pni =

2n

ϕ′′(1)

N∑
i=1

ϕ

(
νni
npni

)
pni, ϕ ∈ Φ∗ (1.8)

where ϕ : (0,∞) → R is twice continuously differentiable function with

ϕ′′(1) ̸= 0. This was introduced simultaneously by Csiszár (1963) and Ali

and Silvey (1966).

The ϕ-divergence statistics include most traditional GOF statistics and power

divergence statistics with λ ∈ R \ (0, 1).

1.2.5 L1-distance

Some other divergence measures such as Lp-distance between p̂n and pn also

belong to the class of divisible statistics. For example, L1-distance

N∑
i=1

∣∣∣νni
n

− pni

∣∣∣ (1.9)

played an important role in investigating the consistency of the estimates p̂n

to pn in LNRE models (Khmaladze, 1988).
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1.2.6 Estimates of Diversity Indices

In addition to GOF statistics, the ML estimates of diversity indices can

also be classified as a divisible statistic. For example, the most widely used

diversity measures include Simpson’s diversity index (Simpson, 1949)

HGS = 1−D = 1−
N∑
i=1

p2ni

and Shannon’s entropy (Shannon, 1948)

H = −
N∑
i=1

pni ln pni,

which is also called Shannon’s diversity index. It is easy to see that the ML

estimates

D̂ =
N∑
i=1

(νni
n

)2
and

Ĥ = −
N∑
i=1

νni
n

ln
(νni
n

)
are both divisible statistics.

1.2.7 Spectral Statistics

Another class of divisible statistics, which plays an important role in LNRE

theory (Khmaladze, 1988), is that of the so-called spectral statistics

µn(m) =
N∑
i=1

I {νni = m}

and vocabulary

µn =
N∑
i=1

I {νni > 0} .
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It is necessary to point out that any symmetric divisible statistic can be

expressed as the linear combination of the spectral statistics:

N∑
i=1

gn(νni) =
n∑

m=1

gn(m)µn(m).

Therefore, the asymptotic properties of symmetric divisible statistic may be

investigated through the spectral statistics.

1.3 Aim and Outline of the Thesis

Divisible statistics have been used in statistical analysis for long time, and

some classes of divisible statistics have been intensively studied, whereas lit-

tle attention has been paid to establishing a unified framework to analyze

divisible statistics. One purpose of this thesis is to attempt to fill this blank,

to construct a general framework for considering divisible statistics, espe-

cially their asymptotic properties and applications.

Although some attention will be devoted to the classical multinomial model

in showing a unified approach to the asymptotics of divisible statistics, our

special emphasis is on asymptotic properties of divisible statistics in non-

classical models. Unlike the popular treatments, which consider the divisible

statistics only as a whole, we will discuss an advanced approach proposed by

Khmaladze (1984), which focuses on the partial sum processes constructed

by the divisible statistics, and the martingale and compensator components

arising from them. Taking use of modern martingale theory, functional limit

theorems (FLTs) can be established. Apart from describing this martingale

method in detail, we also show that it is possible to extend it to a more

general situation and we show some desirable properties and applications of

the limiting processes.
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Another theme of this thesis is LNRE theory, which was developed by Khmal-

adze in the 1980s. As an important class of non-classical multinomial models,

the LNRE models have many real world applications (see, e.g. Baayen, 2001).

In addition to reviewing the general framework of LNRE theory, we discuss

an interesting model within the context of diversity of questionnaires and

establish limit theorems.

More specifically, the following is the structure of this thesis. In chapter 2,

we summarize the limit theorems and applications of divisible statistics in

the classical model. In chapter 3, we will illustrate the wide applications of

divisible statistics in non-classical multinomial models; introduce some im-

portant objects and discuss their asymptotic probabilities, and show the loss

of some good properties in non-classical models. A functional limit theorem

for partial sum processes will be established in chapter 4. And in chapter

5, we shall discuss the properties and the applications of the limiting pro-

cesses. Finally, in chapter 6, we will discuss LNRE theory and the analysis

of multiple-choice questionnaires.



Chapter 2

Divisible Statistics in Classical

Models

Since the non-classical multinomial models can be regarded as a sequence of

classical models, and many applications of the non-classical model are closely

related to applications of the classical model, a thorough review of the ap-

plication and asymptotic properties of divisible statistics in classical models

becomes a good starting point.

Due to a long history and the wide application of divisible statistics in clas-

sical multinomial model in statistical analysis, the asymptotic properties of

many particular statistics or particular classes of divisible statistics have

been thoroughly studied, and many results appear in classical and contem-

porary books e.g., Rao (1973), Kendall et al. (1987), Read and Cressie (1988),

Agresti (2002), and Pardo (2006) etc.

Most of these results focus on those statistics which are asymptotically chi-

squared distributed. These results essentially take advantage of the fact that

such statistics are asymptotically equivalent to Pearson’s Chi-square statis-

tic, of which the limit distribution is known.

11



CHAPTER 2. DIVISIBLE STATISTICS IN CLASSICAL MODELS 12

However, once we realize that the key to those results is the asymptotic nor-

mality of the normalized frequencies, we do not need to restrict ourselves to

those asymptotically chi-squared distributed statistics. Based on this point,

a unified approach to the limit theorems of more general divisible statistics

can be established, of which the result for the Chi-square statistic is simply

a natural corollary.

In section 2.1, we will first list some typical applications of divisible statistics

in classical models. Then, in section 2.2, we will discuss the exact distribu-

tions of divisible statistics and the motivation for investigating limit theo-

rems. Finally, in section 2.3, we will discuss the limit theorems of divisible

statistics based on a unified approach.

2.1 Applications

2.1.1 GOF Test with Specified Distributions

The GOF test is one of the major areas of applications of divisible statistics,

and tests how well the model fits a set of observations. If the hypothetical

distribution is a finite discrete distribution, i.e.,

H0 : p = p0

with p0 = (p1, . . . , pi, . . . , pN)
T , then this is exactly the classical multinomial

model. A typical example is the so-called “test of discrete uniformity” with

all pi = 1/N .

If the hypothetical distribution is a continuous distribution or infinite discrete

distribution, then the null hypothesis may be expressed as

H0 : F = F 0.
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Although the classical multinomial model is not applicable directly to this

problem, by partitioning or grouping the sample space intoN subsets {Ai}16i6N
(in the case of real line, for example, partitioning the real line into N disjoint

intervals), we can approximate the hypothesis by

H0 : p = p0

with p0 = (p1, . . . , pi, . . . , pN)
T and all pi =

∫
Ai
dF 0.

Various divisible statistics such as described in (1.5-1.8), which measure the

distance between the ML estimates p̂ and the null hypothetical probabilities

p0, are often used here to implement the goodness-of-fit test. These divisible

statistics are usually of the form

Dn =
N∑
i=1

gni (νi, npi) =
N∑
i=1

hni (Yi, npi) .

2.1.2 GOF Test with Parameters Estimated

In some applications, the probabilities are not fully specified. These proba-

bilities are functions of some vector of parameters θ = (θ1, . . . , θs)
T , but the

values of these parameters are not specified. In this case, the null hypothesis

becomes

H0 : p = p0(θ)

with p0(θ) = (p1(θ), . . . , pN(θ))
T .

Since the parameters θ are not specified, the probabilities p0(θ) are also un-

specified. To test the hypothesis, we usually construct test statistics with θ

replaced by some (usually ML) estimates θ̂n, i.e. p̂
0
n(θ) =

(
p1(θ̂n), . . . , pN(θ̂n)

)T
.

The goodness-of-fit test with estimated parameters have broad applications

in goodness-of-fit and categorical analysis. Below we will show some exam-

ples.
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Pearson’s Chi-square Test for Normality

Although there are many other competing alternative approaches to test nor-

mality, Pearson’s Chi-square test for normality is a frequently used one. This

method can be extended to test other family of distribution, such as test of

exponentiality.

Considering a set of independent random variables X1, . . . , Xj, . . . , Xn, and

we want to test if the sample comes from the normal distribution. We can

first estimate µ̂ and σ̂ based on the sample, 1 then partition the whole real

line into N intervals Ai and define

p̂i =

∫
Ai

ϕ

(
x− µ̂

σ̂

)
dx

with ϕ is standard normal density function. We can also find the frequencies,

ν̂i =
n∑
j=1

I{Xj ∈ Ai}

and construct the test statistic

χ̂2 =
N∑
i=1

(νi − np̂i)
2

np̂i
.

The Chi-square statistic is not the only one for conducting this type of test;

other statistics such as log-likelihood ratio, power-divergence (see, e.g. Read

and Cressie, 1988) and ϕ-divergence (see, e.g. Pardo, 2006) test statistics

can be used as well.

1The procedure described here estimate the parameter based on the observations, rather

than multinomial frequencies. This will lead to different asymptotic distribution, which

was discussed in detail in 30.15-30.16 of Kendall et al. (1987). Although we may carry out

the ML estimation based on the multinomial frequencies, “it is almost always difficult”

(p723, Devore and Berk, 2006).
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Test of Independence

The structure of dependence between two random variables is often of great

interest in statistical analysis. If two variables X and Y have both finite dis-

crete distributions (with sample space (1, . . . , I) and (1, . . . , J) respectively),

the structure of dependence can be described by a I × J table with each

entry being the joint probability,

pij = P (X = i, Y = j) .

After introducing the frequencies

νij =
n∑
k=1

I{Xk = i, Yk = j}, 2

based on n observations, a test statistic

Dn =
I∑
i=1

J∑
j=1

gij(νij, npij)

can be constructed to test if the hypothetical structure of dependence is valid.

In this case of testing independence, the null hypothesis is,

H0 : pij = pi·p·j ∀ i, j

with pi· = P (X = i) and p·j = P (Y = j) remaining unspecified. This null

hypothesis is composite and the ML estimator p̂i· =
∑J

j=1 νij/n and p̂·j =∑I
i=1 νij/n are used to construct test statistic

Dn =
I∑
i=1

J∑
j=1

gij(νij, np̂ij).

2The I × J table with entries νij is a two-way contingency table.
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Test of Homogeneity

The test of homogeneity is designed to check if a set of random variables

X1, . . . , XI with common sample space (1,. . . ,J) are all of the same distribu-

tion but with unknown probabilities. Setting the sample sizes of X1, . . . , XI

to be n1, . . . , nI respectively, the test statistic is based on the frequencies

νij =

ni∑
k=1

I{Xik = j}.

The null hypothesis is

H0 : p1 = . . . = pI = p0

with p0 = (p1, . . . , pJ)
T . This is equivalent to

H0 : pij = pj, j ∈ (1, . . . , J)

with pj’s being unspecified.

The ML estimates of pj in this case is p̂j =
(∑I

i=1 νij

)
/n with n =

∑I
i=1 ni

and the test statistic is of the form,

Dn =
I∑
i=1

J∑
j=1

gij(νij, np̂ij).

Test of Symmetry

In the two-way contingency table, when the number of rows I is same as the

number of columns J , it is often interesting to investigate whether there are

symmetric patterns in the data. In terms of null hypothesis, it is

H0 : pij = pji.

This is also a problem of goodness-of-fit with composite null hypothesis and

a similar approach can be used to construct test statistics.
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Strictly speaking, the test statistics discussed above are not divisible statistics

in themselves, but the divisible statistics with estimated parameters, and

usually of the form

Dn =
N∑
i=1

gni (νni, np̂i) =
N∑
i=1

hni

(
Ŷni, np̂i

)
,

with

Ŷni =
νni − np̂ni√

np̂ni
.

2.1.3 Measures of Diversity

The concept of diversity appears in many different research areas and is

a popular topic in some areas such as biology (Magurran, 2004), ecology

(Williams, 1964), genetics, economics, linguistics, etc. Hence a mathematical

model of measure of diversity is often of great interest. Based on Rao (1982),

a general definition of the measure of diversity in multinomial model could

be,

Definition 2.1. Let P be the set of all possible probability vectors p =

(p1, . . . , pN)
T . A function H mapping P into the real line is said to be a

measure of diversity if it satisfies the following conditions:

i H(p) > 0 ∀p ∈ P and H(p) = 0 if and if only p is degenerate.

ii H is a concave function on P.

This definition is far more general than what we are going to discuss. In this

thesis, we consider only a subclass with an extra constraint

H(p) =
N∑
i=1

Hi(pi),

such that it can be a class of divisible statistics.
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This class include Simpson’s and Shannon’s diversity indices and many oth-

ers, such as the diversity index of degree-β

Hβ(p) =


(
1−

∑N
i=1 p

β+1
i

)
/β β > 0

limβ→0

(
1−

∑N
i=1 p

β+1
i

)
/β β = 0

described by Patil and Taillie (1982) and ϕ-entropy measure (Burbea and

Rao, 1982b,a)

Hϕ(p) =
N∑
i=1

ϕ(pi),

where ϕ : (0,∞) → R is a continuous concave function.

Although the definition of measures of diversity is based on the probabilities

pi, this is of less interest in practice, since these probabilities are usually

unknown. Instead, the estimates of the measures of diversity are often used.

Since the natural estimates of pi’s are ML estimates p̂i = νi/n, the estimates

of the measure of diversity

Ĥ (p) = H
(ν
n

)
=

N∑
i=1

Hi

(νi
n

)
are divisible statistics.

In classic model, it is easy to see, by the law of large numbers, that

H
(ν
n

)
a.s.−→ H (p) =

N∑
i=1

Hi (pi) . (2.1)

2.2 Exact Distributions of Divisible Statistics

In principle, since the joint distribution of the frequencies is simply the multi-

nomial,

P{ν = k} =
n!∏N
i=1 ki!

N∏
i=1

pkii , (2.2)
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the exact distribution of the divisible statistics under the null hypothesis can

be calculated.

The comparison between exact distributions and limiting distributions of

Chi-square and exact log-likelihood test, especially in small sample cases,

was a popular topic and many corrections and adjustments were proposed

to improve the accuracy of limiting distributions to exact distributions (see

e.g. Read and Cressie, 1988 for reviews).

However, the procedures of calculating exact distribution are usually compu-

tationally intensive, and hence it is only feasible in some small-sample cases,

where both n and N are not large. In fact, as we can see in figure 2.1, the

approximation of the limiting distribution to the exact distribution is good

enough even when the sample size is not very large. Therefore, the limit

distributions are of more interest.

Another reason of favoring limit distributions is that, in the case of estimated

parameters, the exact distribution is usually not easy to obtain. Moreover,

all exact distributions depend on the hypothetical distributions (probabili-

ties) while the limit distributions are distribution-free.
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Figure 2.1: Comparison of exact and limit distribution of divisible statistics:

n=50, N=10, p=(0.10, 0.06, 0.10, 0.13, 0.12, 0.13, 0.06, 0.10, 0.10, 0.10)
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2.3 Limit Distributions in Classical Models

The limit theorems for some, or some classes of, divisible statistics such

as Chi-square and log-likelihood statistics have been established for long

time. In this section, we discuss the asymptotic behaviour of general divisible

statistics from a different angle.

2.3.1 Limit Distributions of the Normalized Frequen-

cies

There are several types of limit distributions of divisible statistics which are

of interest. Apart from the limit distribution under the null hypothesis and

with estimated parameters, the limit distributions under the contiguous al-

ternatives are also interesting. Correspondingly, we need to establish the

limit theorems of the vector of normalized frequencies under these three sit-

uations. It is revealed that the limit distributions are all multivariate normal

distribution, but with different mean vector and covariance matrix. The

proofs in this section basically follow the approach of Kendall et al. (1987)

and Rao (1973).

Limit Distributions Under Null Hypothesis

We firstly establish the limit distribution of the normalized frequencies under

null hypothesis.

Theorem 2.1. Define the vector q = (
√
p01, . . . ,

√
p0i , . . . ,

√
p0N)

T . Under

the null hypothesis

H0 : p = p0 = (p01, . . . , p
0
i , . . . , p

0
N)

T

we have

Yn
d−→ Y ∼ N

(
0, I− qqT

)
.
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Proof. It is easy to see that EYn = 0 and the variance-covariance matrix of

Yn is

E
[
(Yn − EYn) (Yn − EYn)

T
]
= C = I− qqT

for any n. By the central limit theorem (CLT) for multivariate random vari-

ables, Yn converges in distribution to a normal vector. Hence, the theorem

is proved.

Limit Distributions Under Contiguous Alternatives

Apart from the limit distribution under the null hypothesis, the limit distri-

butions of divisible statistics under contiguous alternatives are often of great

interest.

Theorem 2.2. Define the vector q = (
√
p01, . . . ,

√
p0i , . . . ,

√
p0N)

T and Q =

diag(q). Consider a sequence of contiguous alternatives to the null hypothesis

as n increases, i.e.

H
(n)
1 : p = pn = (pn1, . . . , pni, . . . , pnN)

T = p0 +
d√
n

with d = (d1, . . . , dN)
T such that

∑N
i=1 di = 0. Under any such alternatives,

we have

Yn
d−→ Y +Q−1d ∼ N

(
Q−1d, I− qqT

)
.

Proof. Let qn = (
√
p0n1, . . . ,

√
p0ni, . . . ,

√
p0nN)

T and Qn = diag(qn). Then

qn → q implies, under H
(n)
1 ,

Ỹn = Q−1
n (νn − npn) /

√
n

d−→ Y ∼ N
(
0, I− qqT

)
.

Since

QnỸn = (νn − npn) /
√
n =

(
νn − np0

)
/
√
n− d = QYn − d

By Slutsky’s theorem, the theorem is proved.
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Limit Distributions With Estimated Parameter

The limit behaviour when parameters are estimated is more complicated.

However, under suitable assumptions, the limit distribution of the normalized

frequencies can be derived.

Theorem 2.3. Consider the composite null hypothesis

H0 : p = p0(θ) = (p1(θ), . . . , pN(θ))
T

with θ = (θ1, . . . , θs)
T and p0 is differentiable at θ. Define the vector q =(√

p1(θ), . . . ,
√
pN(θ)

)T
and matrix Q = diag(q). If the ML estimates θ̂ of

θ is regular3, i.e.,

θ̂ − θ = (AYn + o(1)) /
√
n, (2.3)

with Yn = Q−1 (νn − np0(θ)) /
√
n and some (s×N) matrix A, then

Ŷn = Q̂−1
(
νn − np0(θ̂)

)
/
√
n

d−→
(
I−Q−1BA

)
Y.

Where Q̂ = diag(q̂) with q̂ =

(√
p1(θ̂), . . . ,

√
pN(θ̂)

)T
and B is a (N × s)

matrix with elements

bij =
∂pi(θ)

∂θj

1

pi(θ)
1
2

Proof. We can express

Q̂Ŷn =
(
νn − np0(θ̂)

)
/
√
n = QYn −

√
n
(
p0(θ̂)− p0(θ)

)
.

By a Taylor expansion, and considering (2.3), we have

√
n
(
p0(θ̂)− p0(θ)

)
= Q

[√
nB
(
θ̂ − θ

)
+ op(1)

]
= Q [BAYn + op(1)] .

4

By Slutsky’s theorem,

Ŷn = Q̂−1Q [(I−BA)Yn + op(1)]
d−→ (I−BA)Y.

3See 30.10 of Kendall et al. (1987) for detail.
4We say a sequence of random variables Xn = op(1) if Xn

p→ 0 and Xn = Op(1) if Xn

is bounded in probability.
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According to (30.14, Kendall et al., 1987), if θ̂ is the multinomial ML esti-

mator, we have

BTq = 0 (2.4)

and

A = (BTB)−1BT .

Therefore,

Ŷn
d−→ (I−BA)Y =

(
I−B(BTB)−1BT

)
Y.

2.3.2 Limit Distributions of Divisible Statistics

Based on the limit distributions of the normalized frequency vector, the limit

distributions of divisible statistics can be obtained, which can be expressed

as the distribution of a function of the limiting normal vector.

Theorem 2.4. Consider a divisible statistic

Dn =
N∑
i=1

hi(Yni, npi) =
N∑
i=1

h∗i (Yni, ϵni)

with Yni = (νni − npi) /
√
npi and ϵni = 1/npi. If h∗i are continuous at all

points (y, 0), and

Yn = (Yn1, . . . , Yni, . . . , YnN)
T d−→ Y∗ = (Y ∗

1 , . . . , Y
∗
i , . . . , Y

∗
N)

T

then

Dn
d−→

N∑
i=1

h∗i (Y
∗
i , 0) = h∗(Y∗).

Proof. The proof is easily based on the Mann-Wald theorem (Continuous

mapping theorem) and the fact that all npi → ∞.

Example: For log-likelihood Ratio Statistic

G2 = 2
N∑
i=1

νni log
νni
npni

= 2
N∑
i=1

[
npi

(
1 +

Yni√
npi

)
log

(
1 +

Yni√
npi

)
−√

npiYni

]
,
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we have

h∗i (y, 0) = 2 lim
ϵ→0

(1 + y
√
ϵ) log(1 + y

√
ϵ)− y

√
ϵ

ϵ
= y2

and hence

G2 d−→
N∑
i=1

Y ∗
i
2 = Y∗TY∗.

Note that this theorem applies for general divisible statistics, which are not

necessarily asymptotically chi-square distributed, as shown in Figure 2.2.
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Figure 2.2: Limit distributions of general divisible statistics:
∑N

i=1 |Yni| and∑N
i=1 |Yni|3 with n=20, N=10, p=(0.10, 0.06, 0.10, 0.13, 0.12, 0.13, 0.06, 0.10,

0.10, 0.10). The limit distribution is calculated by Monte Carlo simulation

based on Theorem 2.4. The generation of the multivariate normal vector

uses R MVTNORM package (Genz et al., 2010) .
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Based on this theorem, the limit distributions of divisible statistics under

the null hypothesis, contiguous alternatives or estimated parameters can be

easily acquired, with Y∗ replaced by Y, Y +Q−1d and (I−Q−1BA)Y re-

spectively.

2.3.3 Asymptotic Equivalence to Chi-square Statistic

Recall that, in general, the limit distributions
∑N

i=1 h
∗
i (Yi, 0) of divisible

statistics are not necessarily chi-squared. However, many widely used goodness-

of-fit test statistics are asymptotically equivalent to Chi-square statistics in

the classical multinomial model. Theorem (2.5) shows the conditions of this

asymptotic equivalence.

Theorem 2.5. If the divisible statistic is of the form

Dn =
N∑
i=1

hi

(
νni
npi

)
npi

with hi’s being continuously twice differentiable with hi(1) = 0 and h′′i (1) = 2

then Dn is asymptotically equivalent to Pearson’s Chi-square statistics, i.e.,

Dn
d−→ Y∗TY∗

as Yn
d→ Y∗.

Proof. Since

Dn =
N∑
i=1

hi

(
νni
npi

)
npi =

N∑
i=1

npi

[
hi

(
1 +

Yi√
npi

)
− h′i(1)

Yi√
npi

]
and

lim
ϵ→0

hi(1 + y
√
ϵ)− hi(1)− h′i(1)y

√
ϵ

ϵ
= h′′(1)

y2

2
= y2.

Invoking theorem 2.4, we prove the theorem.
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It is easy to verify that most widely used goodness-of-fit test statistics, such

as the power-divergence statistics and ϕ-divergence statistics, belong to this

class.

2.3.4 Limit Distributions of Chi-square Statistic

Unlike general functions h∗(Y∗), the quadratic form Y∗TY∗ has a closed-

form distribution. Based on the following Lemma, the limit distributions of

divisible statistics, which are asymptotically equivalent to Chi-square Statis-

tics, can be established.

Lemma 2.1. (p63, Ferguson, 1996) Suppose Y is N (µ,Σ). If Σ is idempo-

tent of rank r and Σµ = µ, the distribution of YTY is noncentral chi-square

with r degrees of freedom and noncentrality parameter µTµ.

Corollary 2.1. When Y∗ = Y,

Y∗TY∗ ∼ χ2
N−1(0)

Proof. By theorem 2.1, Σ = I− qqT . Since qTq = 1,

ΣΣ = (I− qqT )(I− qqT ) = I− 2qqT + qqTqqT = I− qqT = Σ,

Σ is idempotent. Then since rank(Σ) = trace(Σ) = N − 1 and µ = 0, the

corollary is proved.

Corollary 2.2. When Y∗ = Y +Q−1d,

Y∗TY∗ ∼ χ2
N−1

(
N∑
i=1

d2i
p0i

)
Proof. By theorem 2.2, Σ = I−qqT is idempotent and of rank N − 1. Since

µ = Q−1d,

µTµ = dT
(
Q−1

)T (
Q−1

)
d =

N∑
i=1

d2i
p0i

the corollary is proved.
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Corollary 2.3. When Y∗ =
(
I−B(BTB)−1BT

)
Y,

Y∗TY∗ ∼ χ2
N−1−s(0)

Proof. By theorem 2.1 and theorem 2.3,

Σ =
(
I−B(BTB)−1BT

) (
I− qqT

) (
I−B(BTB)−1BT

)T
.

Since
(
I−B(BTB)−1BT

)
is idempotent and BTq = 0 by (2.4),

ΣΣ = I− qqT −B(BTB)−1BT .

Since rank(Σ) = trace(Σ) = trace(I−qqT )−trace(B(BTB)−1BT ) = N−1−s
and µ = 0, the corollary is proved.

This alternative establishment of the limit theorems emphasizes the impor-

tant role played by normalized frequencies in asymptotic behaviour of divis-

ible statistics in classical multinomial models.



Chapter 3

Divisible Statistics in

Non-classical Models

As we have shown in chapter 2, the asymptotic properties of divisible statis-

tics essentially rely on the asymptotic normality of the normalized frequen-

cies, which depend on the fact that all npni diverge to infinity and all the

frequencies are asymptotically Gaussian. In particular, the marginal distri-

bution of the normalized frequencies converges to the Gaussian.

However, in non-classical multinomial models, as the sample size increases,

the number of disjoint events also increases. Many probabilities tend to 0

such that some frequencies are asymptotically Poissonian in the sense that

the marginal distribution of the frequencies converge to a Poisson distribu-

tion. Therefore, the asymptotics of divisible statistics in non-classical models

are much more complicated.

In this chapter, we will firstly discuss the asymptotic properties of some

objects which play an important role in non-classical multinomial models.

Then, in section 3.2, we will illustrate with some typical examples. Finally,

we will discuss difficulties in non-classical asymptotics of divisible statistics

in section 3.3.

29
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3.1 Some Objects in Non-classical Models

Although it looks simple, it is necessary to discuss some objects in non-

classical models and their relations before we proceed to further discussion.

3.1.1 Objects

The most important objects in non-classical multinomial models are the vec-

tors of probabilities pn = {pni}16i6N , since they specify the model. The

parameter N(more properly expressed as N(n)) is naturally associated to

pn, and when we are interested in the asymptotic behaviour of individual

event,

fni = Npni

is often of interest. However, when we study the overall properties of the

probability vectors, the distribution function, defined as a partial sum of the

probabilities

Fn(t) =
Nt∑
i=1

pni =

∫ t

0

fn(s)ds, t ∈ [0, 1]

with fn(t) = Npn[Nt], will become one of the key object.

Another interesting parameter is n. In fact, n plays two roles in this scheme.

One is the sample size and another is index of the sequence. As sample size,

npni is simply the expectation of the frequencies νni, and can be expressed

as

λni = npni.

When we focus on the overall properties, the continuous version

λn(t) = npn[Nt]
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are important. Similar to fn(t) and Fn(t), we may define

Λn(t) =
Nt∑
i=1

npni
1

N
=

∫ t

0

λn(s)ds, t ∈ [0, 1]

Since both n and N tend to infinity in non-classical models, the “rate per

cell” dn = n/N is often crucial as a measure of the relative rates of increasing.

Typically, it is assumed that dn → d ∈ (0,∞), and sometimes, one simply

assumes n = N . The models with dn → 0 are called the LNRE models with

very rare events, and the functional limit theorems in these models have been

studied by Mnatsakanov (1986, 1987). In this thesis, we only consider the

cases of dn → ∞ and dn → d ∈ (0,∞).

3.1.2 Limit behavior

The objects introduced above specified the non-classical multinomial mod-

els. In the discussion of asymptotic behaviour of divisible statistics, the limit

behaviours of these objects are of interest.

For instance, when we discuss the asymptotic behaviour of the partial sum

processes in chapter 4 and 5, it is necessary to require that the limits λ(t) =

limλn(t), Λ(t) = limΛn(t), f(t) = lim fn(t), and F (t) = limFn(t) exist for

all t ∈ [0, 1].

For different limit of dn, the relations between λ(t), Λ(t) and f(t), F (t) would

be:

• dn → 0,

Λ(t) = 0 ∀ t ∈ [0, 1]

λ(t)

{
= 0 f(t) <∞
> 0 f(t) = ∞ & lim inf(dnfn[Nt]) > 0
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• dn → d ∈ (0,∞),

Λ(t) = d · F (t)

λ(t) = d · f(t)

• dn → ∞,

Λ(t) = ∞ if F (t) > 0

λ(t)

{
= ∞ f(t) > 0

<∞ f(t) = 0 & lim sup(dnfn[Nt]) <∞

Based on the limit of λn(t) or equivalently λn[Nt], the limiting distribution

of the frequencies and the normalized frequencies can be easily seen as the

following:

• If λn[Nt] → 0,

νn[Nt]
p−→ 0

Yn[Nt]
p−→ 0

• if λn[Nt] → λ(t),

νn[Nt]
d−→ Z(t)

Yn[Nt]
d−→ Y (t) =

Z(t)− λ(t)√
λ(t)

with Z(t) ∼ Poi (λ(t))1.

• If λn[Nt] → ∞,

νn[Nt]
p−→ ∞

Yn[Nt]
d−→ Y (t) = Y

with Y ∼ N (0, 1).

These results imply that the asymptotic normality of the vector of the nor-

malized frequencies has in general been broken in non-classical multinomial

models.

1Note that we do not consider Z(t) and Y (t) as stochastic processes. We simply consider

they are random variables with corresponding parameters.
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3.2 Typical Examples of Non-classical Multi-

nomial Models

3.2.1 GOF Test for Continuous Distributions

One important application of non-classical multinomial models is that of the

goodness of fit test to continuous distributions. The motivation is that for

a continuous hypothetical distribution, many GOF tests are not consistent

against all alternatives. For example, if F 1 is such that all
∫
Ai
dF 1 =

∫
Ai
dF 0,

then the Chi-square test will have no power to test F 0 against F 1(see Figure

3.1).
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F(x)= x
F(x)= sin(x * N * 2 * pi)/(2 * N * pi) + x

Figure 3.1: Loss of Power of GOF Test to Continuous Distribution: N=10,

Ai = [ i−1
N
, i
N
), F 0(x) = x, F 1(x) = sin(2∗N∗π∗x)

2∗N∗π + x.
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“Therefore, it is tempting to allow N to increase with n in order to ob-

tain power against an even broader range of alternatives” (Lehmann and

Romano, 2005). And this leads to non-classical multinomial models with

pni =
∫
Ani

dF 0.

The probabilities pni not only depend on the null hypothetic distribution F 0,

but also rely on the sequence of partitions An = {Ani}16i6N . Hence the limit

of Fn depends on both the underlying distribution F 0 and the sequence of

partitions An.

In particular, when F 0 is concentrated on [0, 1],2 the equipartitions with

Ani = [ i−1
N
, i
N
) are often employed. Under this setting,

Fn(t) =
Nt∑
i=1

pni → F 0(t)

and

fn(t) = Npn[Nt] → f0(t)

if the density f 0 of F 0 exists.

It is worth noting that for general partitions the limits F = limFn and

f = lim fn are not necessarily F 0 and f 0 respectively.

Another important parameter which specifies the asymptotic behaviour of

the non-classical model is dn = n/N . Based on the different limit of dn, the

following typical non-classical multinomial models can be obtained.

2In cases the original distribution G0 is concentrated on a large set, say the whole

real line, we can always use some fixed (absolutely continuous) distribution function Φ to

construct F 0(t) = G0[Φ−1(t)], such that F 0 is concentrated on [0, 1].
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Non-classical Model with Asymptotically Gaussian Frequencies

If dn → ∞, with the further assumption that inft f(t) > δ > 0, we get a

non-classical model with all frequencies being asymptotically Gaussian with

inft npn[Nt] → ∞.

Non-classical Model with Asymptotically Poissonian Frequencies

On the other hand, if dn → d ∈ (0,∞) and supt f(t) <∞, all the frequencies

are asymptotically Poissonian, with all npn[Nt] → d ·f(t) < supt d ·f(t) <∞.

Non-classical Model with Equiprobable Frequencies

If we further choose partitions An such that all pni =
∫
Ani

dF 0 = 1/N , then

this is a non-classical model with all frequencies equiprobable.

3.2.2 Statistical Analysis to Linguistic Data

Statistical linguistics is one of major application areas for the non-classical

multinomial models, in which the word frequencies in corpora (large and

structured set of texts) are the major objects (see, e.g. Baayen, 2001). One

of the notable feature of linguistic data is that, apart from some words with

high frequencies, most of the words are very rare in the sense that the fre-

quencies are very small. The traditional, but improper treatment, was to

group these words. However, these rare words are usually very important

- they constitute the major proportion of the vocabulary. For example, in

table 3.1, 9573 words out of 14715, which is over 65%, have frequencies less

than 10 in a sample of over 1 million words.

This feature of some events being of high frequencies but most being very

rare is the common feature of many statistical data in practice. An advanced

formal approach to analyzing this sort of data is the LNRE theory which will

be discussed in chapter 6.
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No. Word Frequency Frequency Range Number of words

1 THE 70,002 >10000 11

2 BE 44,293 1000-10000 82

…… …… …… 100-1000 1152

721 SON 182 10-100 3897

725 FLOOR 182 1-10 9573

740 SIZE 179

…… …… ……

5,755 BOUNDS 8

9,154 KINETIC 3

9,512 OSLO 3

11,084 QUARTZ 2

14,715 MAYA 1

1,003,116

68

Total

Average

Table 3.1: Word Frequencies of BNC BROWN Corpus.

Non-classical Model with Mixed Frequencies

In table 3.1, many frequencies are very high and should not be treated

as Poissonian frequencies. Hence we consider this as a typical example

of non-classical model with both asymptotically Gaussian and Poissonian

frequencies existing. It worth noting that since the frequencies on all the

words observed in the corpus are at least 1, it is reasonable to consider

infi npni > δ > 0, i.e., the expectation of the frequencies are bounded from

below.

3.2.3 Diversity Analysis of Responses in Questionnaires

Another interesting example came from the study of the diversity of responses

in questionnaires (Khmaladze, 2009).

Consider a questionnaire with q questions with binary (0-1) answers, which
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is completed by n individuals. Obviously, there are N = 2q possible ways

in which to fill out such a questionnaire. Each possible way stands for an

event in multinomial models and can be denoted by a q-dimensional vector

x⃗q = (x1, . . . , xi, . . . , xq) with coordinates 0 or 1. Let ai be the probability of

the answer ”1” to i-th question, then the probabilities pni become p(x⃗q) with

p(x⃗q) =

q∏
i=1

axii (1− ai)
1−xi , (3.1)

in this context.

If the number n of people interviewed is much larger than the number of

possible answers N , then it can be treated as a classical multinomial prob-

lem. However, as is often the case, if many case, n/N is not very large, the

non-classical model is more suitable.

If most of the ai deviate from 1/2, then most of the npni tend to 0, and

the asymptotic behaviour of divisible statistics on this model becomes very

complicated. This was the main theme of Khmaladze (2009), and is highly

relevant to the theory of LNRE.

3.3 Difficulties in Non-Classical Models

3.3.1 Loss of Asymptotic Normality

Figure 3.2 shows the cumulative distribution function (CDF) of two divisible

statistics,
∑N

i=1 |Yni| and
∑N

i=1 |Yni|3, in a non-classical multinomial model

with p = {1/N}. The fact that the simulated CDF deviates from the limit

CDF under the assumption that {Yni} is asymptotically a normal random

vector, implies the loss of asymptotic normality of normalized frequencies in

non-classical models.
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Figure 3.2: Loss of Asymptotic Normality of Normalized Frequencies: n =

N = 200 and p = {1/N}.
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3.3.2 Loss of Asymptotic Equivalence

Figure 3.3 shows the comparison of the CDF of the log-likelihood statistic

and the Freeman-Tukey statistic to that of the Chi-square statistic. It shows

that when n = 20N and the model is close to the classical multinomial model,

the three CDFs are very close. But when n = N , for which the model is non-

classical, the CDF of both the log-likelihood statistic and the Freeman-Tukey

statistic deviate significantly from the CDF of the Chi-square statistic.
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Figure 3.3: Loss of Asymptotic Equivalence to Chi-square Statistic: N = 100

and p={1/N}.





Chapter 4

FLTs for Partial Sum Processes

As we have seen in previous sections, two reasons which make the analysis

of non-classical asymptotics of divisible statistics more complicated are: the

asymptotic normality of the normalized frequencies has been lost; and for

those statistics which are asymptotically equivalent to Pearson’s Chi-square

statistics, this asymptotic equivalence is also lost. There is actually a third

reason which we will show in this chapter: the dependence among the fre-

quencies (or the summands of the divisible statistics) is not asymptotically

negligible.

Some efforts have been dedicated to non-classical asymptotics (see e.g., Holst

(1972); Morris (1975); Ivchenko and Levin (1976); Medvedev (1977, 1978);

Ivchenko and Medvedev (1981); Gyorfi and Vajda (2002), etc.), but they

are neither complete nor systematic. Most of them focused on the divisible

statistic as a whole. However, since the divisible statistics are sums of a

sequence of random variables, it is natural for us to consider the partial sum

process

Xn(t) =
1√
N

Nt∑
i=1

(gni (νni, npni)− E [gni (νni, npni)]) , t ∈ [0, 1] (4.1)

as the main object. With the knowledge of martingale theory, we can de-

compose this partial sum process Xn into a martingale component Wn and

40
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a compensator component Kn.

One advantage of this approach is that the limit distributions of these two

components have a convenient form - both of them are Gaussian processes.

Another advantage is that both components have sensible meanings. Since

the distribution of the limiting process of the martingale component is exactly

the same as that of partial sum process as if all summands were mutually in-

dependent, the compensator component can be considered as the one which

reflects the “dependence” of the summands, while the martingale component

account to the “size” of the summands.

It was in Khmaladze (1984) that the first successful treatment had been

proposed, where Khmaladze introduced a special filtration {F (n)
i }06i6N with

σ-algebras F (n)
i = σ{νnk : k 6 i}, generated by the frequencies νni instead

of that generated by the summands gni (νni, npni). This construction makes

it possible to derive the limiting distributions of the partial sum process and

their components.

Although the approach of Khmaladze (1984) was successful, it covers only

the models where n ∼ N and all npni = Eνni are bounded, which implies

that all the frequencies are asymptotically Poissonian. In many practical

situations, such as the linguistic data we showed in Table 3.1, it is necessary

to consider models with a mixture of asymptotically Gaussian and asymp-

totically Poissonian frequencies. In many other non-classical models with all

frequencies being asymptotically Gaussian, the case of n ≫ N needs to be

considered as well.

In this chapter, we will describe in detail the martingale approach to the

FLTs of the partial sum processes of divisible statistics and show that the

martingale approach can be extended to the non-classical models with a mix-

ture of asymptotically Gaussian and asymptotically Poissonian frequencies.
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The FLTs for this extended class of models will be established, and a com-

parison is made between this class and the one with all Poissonian frequencies.

4.1 Preliminaries

4.1.1 Probability spaces and martingales

The analysis in this chapter relies heavily on martingale theory. There-

fore, it is necessary for us to review some concepts in martingale theory.

The approach here basically follows from Williams (1991); Shiryaev (1995);

Brzezniak and Zastawniak (2000).

Definition 4.1. Let Ω be the set of all possible outcomes. Then Ω is the

sample space.

Definition 4.2. A family F of subsets of a space Ω is called a σ-algebra if

it contains Ω itself and is closed under complements and countable unions,

i.e.,

1. Ω ∈ F

2. A ∈ F implies Ac ∈ F

3. A1, A2, ... ∈ F implies A1 ∪ A2 ∪ .... ∈ F .

The pair (Ω,F) is called a measurable space.

Definition 4.3. Let A be a collection of subsets of Ω. The σ-algebra gen-

erated by A, denoted by σ(A), is the smallest σ-algebra of Ω which contains

A.

Definition 4.4. The Borel σ-algebra of R, denoted by B(R), is the σ-algebra
generated by all open subsets of R.
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Definition 4.5. A real-valued function P defined on a σ-algebra F is a

probability measure if it satisfies the following conditions:

1. 0 ≤ P(A) ≤ 1 for A ∈ F .

2. P(∅) = 0,P(Ω) = 1.

3. If Ai ∈ F is a countable union of disjoint sets, then

P
(∪
i∈I

Ai

)
=
∑
i∈I

P(Ai).

The triple (Ω,F ,P) is called a probability space.

Definition 4.6. If F is a σ-algebra of Ω, then a function X : Ω → R is said

to be F -measurable if

{X ∈ B} = {ω : X(ω) ∈ B} ∈ F for all B ∈ B(R)

If we consider a probability space (Ω,F ,P), then X : Ω → R is a random

variable.

Definition 4.7. The σ-algebra σ(X) generated by a random variable X

consists of all {X ∈ B} with B ∈ B(R).

Definition 4.8. The σ-algebra σ(Xi : i ∈ I) generated by a class of random

variables {Xi : i ∈ I} is defined to be the smallest σ-algbra containing all

events {Xi ∈ B} with B ∈ B(R).

Definition 4.9. A filtration is a sequence {Fi}i>0 of σ-algebras on Ω with

F0 ⊂ F1 ⊂ F2 ⊂ . . .F

Definition 4.10. A sequence {Xi}i>0 of random variables is adapted to a

filtration {Fi}i>0 if Xi is Fi-measurable for all i = 0, 1, 2, . . ..

For a sequence {Xi}i>0 of random variables, let Fi be the σ-algebra generated

by X0, X1, . . . Xi, i.e.,

Fi = σ(X0, X1, . . . Xi);

then {Fi}i>0 forms a filtration and {Xi}i>0 is adapted to F .
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Definition 4.11. A sequence {Xi}i>0 of random variables is a martingale

with respect to a filtration {Fi}i>0 if

• X0, X1, . . . is adapted to {Fi}i>0 ,

• E|Xi| <∞ ∀ i , and

• E(Xi+1|Fi) = Xi a.s. for all i = 0, 1, . . ..

{Xi}i>0 is a submartingale if

• E(Xi+1|Fi) > Xi a.s. for all i = 0, 1, . . ..

Definition 4.12. A sequence {ξi}i>0 of random variables is a martingale-

difference with respect to a filtration {Fi}i>0 if {ξi}i>0 is adapted to {Fi}i>0,

E|ξi| <∞ ∀ i and
E [ξi+1|Fi] = 0 a.s.

For a martingale {Xi}i>0, then the sequence {ξi}i>0 with ξ0 = X0 and

ξi = ∆Xi= Xi −Xi−1, i > 1, is a martingale-difference. On the other hand,

for a martingale-difference {ξi}i>0, the sequence {Xi}i>0 with Xi =
∑i

j=0 ξj

is a martingale.

Lemma 4.1. If {Xi}i>0 is a martingale with respect to a filtration {Fi}i>0,

and g(x) is convex with E |g(Xi)| <∞, ∀ i, then {g(Xi)}i>0 is a submartin-

gale.

Definition 4.13. A sequence {Xi}i>0 of random variables is a predictable

sequence with respect to a filtration {Fi}i>0 if for all i, Xi is Fi−1-measurable

and F−1 = F0.

Theorem 4.1. (Doob) If {Xi}i>0 is a submartingale with respect to a filtra-

tion {Fi}i>0, then there is a martingale {mi}i>0 and a predictable increasing

sequence {Ai}i>0 (compensator) with respect to {Fi}i>0, such that,

Xi = mi + Ai a.s.,
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and the decomposition of this kind is unique. Further

mi = m0 +
i∑

j=1

(Xj − E [Xj|Fj−1]) , (4.2)

and

Ai =
i∑

j=1

(E [Xj|Fj−1]−Xj−1) (4.3)

with m0 = X0 and A0 = 0.

Proof. See Theorem 2, p.482, Shiryaev (1995).

Theorem 4.2. If {Xi}i>0 is adapted to a filtration {Fi}i>0 and all Xi’s are

integrable, i.e., all E|Xi| < ∞, then the decomposition similar to Theorem

4.1 can be established, except that {Ai}i>0 is not necessarily increasing. Such

a decomposition is called a semi-martingale decomposition and {Xi}i>0 is a

semi-martingale with respect to {Fi}i>0.

Proof. See p.121, Williams (1991).

Let M = {Mi}i>0 be a square integrable martingale with respect to {Fi}i>0

with EM2
i <∞ ∀ i. By lemma 4.1, M2 = {M2

i }i>0 is a submartingale. By

theorem 4.1, M2 can be decomposed into a martingale and a compensator

⟨M⟩ = {⟨M⟩i}i>0 with

⟨M⟩i =
i∑

j=1

(
E
[
M2

j |Fj−1

]
−M2

j−1

)
=

i∑
j=1

E
[
(∆Mj)

2|Fj−1

]
Definition 4.14. The sequence ⟨M⟩ is called the predictable quadratic vari-

ation or the quadratic characteristic of M .

Remark 4.1. Since {∆Mi}i>0 is a martingale-difference, E [∆Mj|Fj−1] = 0

and ⟨M⟩i is the sum of the conditional variances of {∆Mj}06j6i.
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In the theory of martingales, another important concept which is often con-

nected to quadratic characteristic is quadratic variation.

Definition 4.15. The quadratic variation of a process X is [X] = {[X]i}i>0

with

[X]i =
i∑

j=0

(∆Xj)
2 .

The quadratic characteristic is actually the compensator part of the quadratic

variation.

4.1.2 Triangular Array and Lindeberg Theorems

In many situations, a sum of many small random variables may be approx-

imately normally distributed and hence a sequence of sums of an increasing

number of small random variables may converge in distribution to a normal

random variable.

Definition 4.16. A double sequence {ξni}n>1,16i6n of random variables, i.e.,

ξ11

ξ21, ξ22

. . . . . . . . .

ξn1, ξn2, . . . . . . . . . , ξnn

is called a triangular array.

Often we are interested in the row sums of the triangular array Sn =
∑n

i=1 ξni.

In the classical central limit theorem, if for any n, {ξni}16i6n is a sequence

of i.i.d. random variables with zero mean and variance σ2/n, then the sum

n∑
i=1

ξni
d→ N (0, σ2)

converges in distribution to a normal random variable.
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However, the “identical” condition is actually not a necessary condition for

normality.

Theorem 4.3 (Lindeberg’s Theorem). Suppose that the elements of each row

of a triangular array are mutually independent, zero-mean random variables

and the condition
n∑
i=1

Eξ2ni → σ2

is satisfied. Then Lindeberg’s condition:

n∑
i=1

E
[
ξ2niI{ξ2ni > ϵ}

]
−→ 0 ∀ϵ > 0, as n→ ∞ (L)

implies Sn
d−→ N (0, σ2).

Proof. See Theorem 2, p334, in Shiryaev (1995); or Feller (1970).

4.1.3 Martingale Central Limit Theorem

A further step to generalize the cental limit theorem is to consider the trian-

gular array with dependent row elements. In particular, it is of great interest

to consider the elements of each row forming a martingale difference with

respect to a sequence of filtrations.

Definition 4.17. In a triangular array, if for each n, {ξni}16i6n is a mar-

tingale difference with respect to the filtration F (n) = {F (n)
i }16i6n, then this

triangular array is called a martingale difference array with respect to F (n).

It is easy to see that the partial sum of each row

Xni =
i∑

j=1

ξnj

is a martingale with respect to F (n). Under certain conditions the FLT for

the partial sum process

Xn(t) =

[nt]∑
i=1

ξni
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can be established. This is formally called the martingale central limit the-

orem, which was establish in the late 1970s (Shiryaev, 1995, Durrett, 2004

etc.).

Theorem 4.4. Consider a martingale difference array {ξni}n>1,16i6n with

respect to F (n) = {F (n)
i }16i6n, for which all elements ξni are square-integrable.

If the quadratic characteristic converges in probability, i.e.,

[nt]∑
i=1

E
[
ξ2ni|Fi−1

] p→ σ2(t)

or the quadratic variation converges in probability, i.e.,

[nt]∑
i=1

ξ2ni
p→ σ2(t);

and the conditional Lindeberg condition

[nt]∑
i=1

E
[
ξ2niI{ξ2ni > ϵ}|Fi−1

] p−→ 0 ∀ϵ > 0 (CL)

is satisfied, then the partial sum process

Xn
d→ W,

where W is a Brownian motion with respect to time σ2(t).

Proof. See Liptser and Shiryayev (1981).

4.2 FLT for Models with Poissonian Frequen-

cies

As we have seen in equation (4.1), the object of interest here is the partial

sum process,

Xn(t) =
1√
N

Nt∑
i=1

(gni (νni, npni)− E [gni (νni, npni)]) .
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The process itself is hard to analyze directly due to the dependence of sum-

mands. However, based on a semi-martingale decomposition, with respect

to a suitable filtration, the partial sum process can be decomposed into a

martingale component

Wn(t) =
1√
N

Nt∑
i=1

(
gni (νni, npni)− E

[
gni (νni, npni) |F (n)

i−1

])
,

and a compensator component

Kn(t) =
1√
N

Nt∑
i=1

(
E
[
gni (νni, npni) |F (n)

i−1

]
− E [gni (νni, npni)]

)
.

The filtration used for this purpose could be the natural filtration {F (n)
i }06i6N ,

with F (n)
i = σ{gnk(νnk, npnk) : k 6 i}, but it is not fine enough to estab-

lish limit theorems. To cope with this deficiency, a special filtration with

F (n)
i = σ{νnk : k 6 i} was introduced by Khmaladze (1984) and we shall

see later that this finer filtration is sufficient to investigate the asymptotic

behaviour of the partial sum processes.

As N → ∞, the number of the summands increases to infinity. It is easy to

see that the effect of an increasing number of summands can be “offset” by

the normalizing coefficient 1/
√
N . Therefore, in discussion of the asymptotic

behaviour of the process, the focus turned to the asymptotic properties of

gni(νni, npni), which is controlled by the frequencies νni and their expectation

npni.

In those models where npni satisfies

lim sup
n

sup
i
(npni) = Λ <∞ (C1)

such that all νni are asymptotically Poissonian frequencies, the summands of

the partial sum processes are uniformly square-integrable, for a large class of

divisible statistics with gni satisfying

|gni(x, λ)| < beax, |gt(x, λ)| < beax (C2)
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and

gn[Nt](x, λ) → gt(x, λ) as n→ ∞

for some positive a and b and for all x, λ and t. According to Khmaladze

(1984), the FLTs of the partial sum processes and its components can be

established for this scheme. The proofs were technical and here we only

illustrate them conceptually.

4.2.1 FLT for Martingale Component

Under Conditions C1 and C2, it can be shown that the conditional Lindeberg

condition CL is satisfied. At the same time, under the additional assumption

f(t) = lim
n→∞

Npn[Nt] for all t∈ [0, 1] (C3)

the quadratic characteristic of Wn converges in probability to some deter-

ministic function τ(t). The martingale limit theorem then implies that the

martingale component converges in distribution to a Brownian motion with

respect to time τ(t).

The original proof of Khmaladze was based on n = N , but it can be easily

generalized to n = d×N for fixed d with 0 < d <∞. Under this setting,

λ(t) = lim
n→∞

npn[Nt] = d× f(t)

and

νn[Nt]
d−→ Z(t) ∼ Poi (λ(t)) .

And the theorem can be formulated as following.

Theorem 4.5 (Khmaladze 1984). Assume the Conditions C1-C3 are sat-

isfied. Let w denote a standard Brownian motion on R+; and let W (t) =

w (τ(t)) with

τ(t) =

∫ t

0

σ2(s)ds, (4.4)
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and σ2(s) being the variance of gs(Z(s), λ(s)). Then

Wn
d→ W.

Note that if the summands of the partial sum process Xn were treated as

being mutually independent, the distribution of the limiting process would

be the same as W .

4.2.2 FLT for Compensator

In order to investigate the limiting behaviour of the compensator component,

one must start from the properties of the frequencies νni.

Marginally, the frequency νni is binomially distributed with parameters n and

pni. Under condition C1, for n large enough, νni is approximately Poisson

distributed with parameter λni = npni, and hence

Egni(νni, npni) ≈ Egni(Zni, λni) =
∞∑
k=0

gni(k, λni)π(k, λni)

with Zni ∼ Poi(λni).

Conditional on F (n)
i−1, the frequency νni is again binomially distributed but

with different parameters

ñni = n−
i−1∑
j=1

νnj and p̃ni = pni/(1−
i−1∑
j=1

pnj).

If for any ϵ > 0 and Tn = 1− ϵ/
√
n,

lim
n→∞

√
n [1− F (Tn)] → δ(ϵ) > 0, (C4)

then for any i 6 NT , as n→ ∞

ñnip̃ni ∼ npni
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and ñni is large enough so that the conditional distribution of νni under F (n)
i−1

is approximately Poisson with parameter λ̃ni = ñnip̃ni and

E
[
gni(νni, npni)|F (n)

i−1

]
≈ Egni(Z̃ni, λni) =

∞∑
k=0

gni(k, λni)π(k, λ̃ni)

with Z̃ni ∼ Poi(λ̃ni).

Based on Lemma 2 of Khmaladze (1984), it can be shown that for t < Tn,

the compensator component Kn(t) can be approximated by

Kπ
n(t) =

1√
N

Nt∑
i=1

Egni(Z̃ni, λni)− Egni(Zni, λni)

=
1√
N

Nt∑
i=1

∞∑
k=0

gni (k, λni)
(
π(k, λ̃ni)− π(k, λni)

)
. (4.5)

Then since both λ̃n[Nt] and λn[Nt] converge to λ(t) as n → ∞, Taylor’s ex-

pansion shows that(
π(k, λ̃ni)− π(k, λni)

)
≈ ∂π(k, λ)

∂λ

∣∣∣∣
λ=λni

·
(
λ̃ni − λni

)
=
k − λni
λni

π(k, λni)
(
λ̃ni − λni

)
.

If we let Fn(t) =
∑Nt

i=1 pni be the distribution function defined by {pni},
F̂n(t) = 1

N

∑Nt
i=1 νni be the corresponding empirical distribution function,

and vn(t) =
√
n(F̂n(t)− Fn(t)), then

λ̃ni − λni = λni
Fn
(
i−1
N

)
− F̂n

(
i−1
N

)
1− Fn

(
i−1
N

) = −λni√
n

vn
(
i−1
N

)
1− Fn

(
i−1
N

) ,
and hence the right hand side of equation (4.5) can be approximated by

1√
nN

Nt∑
i=1

E [gni (Zni, λni) (Zni − λni)]

(
−vn

(
i−1
N

)
1− Fn

(
i−1
N

)) . (4.6)
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Since
vn(t)

1− Fn(t)

d→ v(t)

1− F (t)
,

where v is a Brownian bridge with respect to time F = limn→∞ Fn, (4.6) can

be approximated by

K(t) = − 1√
d

∫ t

0

E [gs(Z(s), λ(s))(Z(s)− λ(s))]
v(s)

1− F (s)
ds.

Finally, the the limit theorem for Kn(t) can be formulated as follows.

Theorem 4.6 (Khmaladze 1984). Define the operator

K x(t) = −
∫ t

0

k(s)x(s)ds

with

k(s) =
1√
d
E[gs(Z(s), λ(s))(Z(s)− λ(s))].

If Conditions C1-C4 are satisfied,

Kn
d→ K = K

v

1− F
.

4.3 FLT in Models with Mixed Frequencies

The proofs of FLTs in non-classical models with all asymptotically Poisso-

nian frequencies essentially made use of the fact that both conditional and

unconditional distribution of the frequencies are nearly Poissonian and they

converge to the same limiting distribution if the expectation npni of the fre-

quencies are bounded. However, this fact is not valid any more as soon as
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some of the npni diverge to infinity.

In non-classical models with mixed frequencies, where some frequencies are

asymptotically Gaussian, it is more appropriate to focus on the asymptotic

behaviour of the the normalized frequencies Yni, and express the divisible

statistics by an equivalent expression

Dn =
N∑
i=1

hni(Yni, npni).

Correspondingly, the partial sum process becomes

Xn(t) =
1√
N

Nt∑
i=1

(hni (Yni, npni)− E [hni (Yni, npni)]) .

Consequently, the martingale component is

Wn(t) =
1√
N

Nt∑
i=1

(
hni (Yni, npni)− E

[
hni (Yni, npni) |F (n)

i−1

])
,

and the compensator component becomes,

Kn(t) =
1√
N

Nt∑
i=1

(
E
[
hni (Yni, npni)

∣∣∣F (n)
i−1

]
− E [hni (Yni, npni)]

)
.

Since some npni tend to infinity, the frequency νni is not bounded in prob-

ability, and the summands of the partial sum processes are not necessarily

uniformly square-integrable under condition C2. However, if we replace the

Conditions C1,C2 by

lim inf
n

inf
i
(npni) = δ > 0, (C1*)

and

|hni(y, λ)| < bea|y|, |ht(y, λ)| < bea|y|, (C2*)

hn[Nt](y, λ) → ht(y, λ) as n→ ∞
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for some positive a and b and for all y, λ and t, we can again establish FLTs.

The class describe in C2* is large enough to include most widely used divis-

ible statistics.

For the theorems to be established, it is necessary to assume further that

f(t) = lim
n→∞

Npn[Nt] and λ(t) = lim
n→∞

npn[Nt] (C3*)

exist for t ∈ [0, 1].

4.3.1 Auxiliary Lemmas

Before we formally establish the theorems, we shall review some properties

of the frequencies {νni} and the normalized frequencies {Yni}, and establish

some auxiliary lemmas.

Recall that for λ(t) <∞

Yn[Nt]
d→ Y (t) =

Z(t)− λ(t)√
λ(t)

with Z(t) ∼ Poi(λ(t)) (4.7)

and for λ(t) = ∞ and pn[Nt] → 0,

Yn[Nt]
d→ Y (t) ∼ N (0, 1). (4.8)

The following lemma concerns the tail probability of the normalized frequen-

cies.

Lemma 4.2 (Exponential Inequality). Consider a binomial random variable

ν with parameter n and p. The tail probabilities of the normalized binomial

random variable

Y =
ν − np
√
np
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satisfy

P(Y > y) 6 exp

(
−y

2

2
ψ

(
y

√
np

))
for y > 0, (4.9)

and

P(Y < y) 6 exp

(
−y

2

2
ψ

(
y

√
np

))
for −√

np 6y60, (4.10)

with ψ(λ) = (2/λ2)[(1 + λ) ln(1 + λ)− λ] = (2/λ2)
∫ λ
0
ln(1 + x)dx.

Proof. For y > 0 and t > 0,

P(Y > y) = P
(
etY−ty > 1

)
6 inf

t>0
EetY−ty

= inf
t>0

e−ty−t
√
npEe

t√
np
ν
= inf

t>0
e−ty−t

√
np
(
1− p+ pe

t√
np

)n
= inf

t>0
exp

(
n ln

(
1 + p(e

t√
np − 1)

)
− ty − t

√
np
)

6 inf
t>0

exp
(
np(e

t√
np − 1)− ty − t

√
np
)
.

Letting f(t) = np(e
t√
np − 1)− ty − t

√
np. Then

f ′(t∗) =
√
npe

t∗√
np − y −√

np = 0

implies

exp

(
t∗

√
np

)
= 1 +

y
√
np

and

t∗ =
√
np ln

(
1 +

y
√
np

)
.

Since

f ′′(t∗) = exp

(
t∗

√
np

)
= 1 +

y
√
np

> 0,

we have

inf
t>0

f(t) = f(t∗) = np

[
y

√
np

−
(
1 +

y
√
np

)
ln

(
1 +

y
√
np

)]
= −y

2

2
ψ

(
y

√
np

)
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and hence,

P(Y > y) 6 exp

(
−y

2

2
ψ

(
y

√
np

))
.

On the other hand, for −√
np 6y60 and t > 0,

P(Y < y) = P
(
e−tY+ty > 1

)
6 inf

t>0
Ee−tY+ty

= inf
t>0

ety+t
√
npEe

− t√
np
ν
= inf

t>0
ety+t

√
np
(
1− p+ pe

− t√
np

)n
= inf

t>0
exp

(
n ln

(
1 + p(e

− t√
np − 1)

)
+ ty + t

√
np
)

6 inf
t>0

exp
(
np(e

− t√
np − 1) + ty + t

√
np
)

let f(t) = np(e
− t√

np − 1) + ty + t
√
np, then

f ′(t∗) = −√
npe

− t∗√
np + y +

√
np = 0

implies

exp

(
− t∗
√
np

)
= 1 +

y
√
np

and

t∗ = −√
np ln

(
1 +

y
√
np

)
.

Since

f ′′(t∗) = exp(− t∗
√
np

) = 1 +
y

√
np

> 0,

we have

inf
t>0

f(t) = f(t∗) = np

[
y

√
np

−
(
1 +

y
√
np

)
ln

(
1 +

y
√
np

)]
= −y

2

2
ψ

(
y

√
np

)
and hence,

P(Y < y) 6 exp

(
−y

2

2
ψ

(
y

√
np

))
.

Based on this exponential inequality, a crucial but not so obvious fact can

be revealed in the following lemma.
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Lemma 4.3. Under condition C1*, for any a > 0, there is c0(a, δ) > 0 such

that for c > c0(a, δ),

sup
n,i

E
[
ea|Yni|I {|Yni| > c}

]
6 2(a+ 1)e−c. (4.11)

Proof. By lemma 4.2, for y > 0,

1− FYni
(y) = P(Yni > y) 6 exp

(
−y

2

2
ψ

(
y

√
npni

))
with ψ(λ) = (2/λ2)[(1 + λ) ln(1 + λ)− λ].

Since ψ is decreasing and npni > δ,

ψ

(
y

√
npni

)
> ψ

(
y√
δ

)
and P(Yni > y) 6 e

− y2

2
ψ
(

y√
δ

)
.

Then since λψ(λ) is increasing and limx→0 ψ(x) = 1, if we let c1(a, δ) be the

solution of yψ
(
y/

√
δ
)
/2 = a+ 1,

P(Yni > y) 6 e−(a+1)y

for all y > c1(a, δ). Hence for c > c1(a, δ),∫
y>c

eaydFYni
(y) = eac[1− FYni

(c)] + a

∫ ∞

c

[1− FYni
(y)]eaydy 6 (a+ 1)e−c.

(4.12)

On the other hand, for −√
np 6y < 0

FYni
(y) = P(Yni < y) 6 exp

(
−y

2

2
ψ

(
y

√
npni

))
,

then, since ψ(λ) > 1 for −1 6λ < 0,

−y
2

2
ψ

(
y

√
npni

)
6 −y

2

2
.

Bearing in mind that P(Yni < −√
np) = 0, we have

P(Yni < y) 6 e−
y2

2 .
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If we let c2(a) = 2(a+ 1), then

P(Yni < y) 6 e(a+1)y

for all y < −c2(a). And for c > c2(a),∫
y<−c

e−aydFYni
(y) = eacFYni

(−c)+a
∫ −c

−∞
FYni

(y)e−aydy 6 (a+1)e−c. (4.13)

Combining (4.12) and (4.13), for c > c0(a, δ) = max(c1(a, δ), c2(a)), we have

(4.11).

The immediate consequence of Lemma 4.3 is that {bea|Yni|}n>1, 16i6N is uni-

formly integrable and

sup
n,i

E
[
bea|Yni|

]
6M

for some M , which depends only on a, b and δ.

Now consider the conditional distribution of νni given F (n)
i−1. It is again bi-

nomial, but with sample size ñni = n −
∑i−1

j=1 νnj and probability p̃ni =

pni/(1−
∑i−1

j=1 pnj).

Recall that if we let Fn(t) =
∑Nt

i=1 pni be the distribution function defined

by {pni}, which converges to a continuous distribution function F (t), and

F̂n(t) =
1
n

∑Nt
i=1 νni be the corresponding empirical distribution function, then

vn(t) =
√
n(F̂n(t)− Fn(t)) converges in distribution to the Brownian bridge

v(t) with respect to time F (t).

Consider the ratio

rni =
ñnip̃ni
npni

=
1− F̂n

(
i−1
N

)
1− Fn

(
i−1
N

) .
Then for any T < 1 such that

lim inf
n

(1− Fn(T )) > 0, (4.14)
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by the Kolmogorov-Smirnov theorem, we can easily see that

sup
i6NT

∣∣√n(rni − 1)
∣∣ =sup

i

∣∣∣∣∣ −vn
(
i−1
N

)
1− Fn

(
i−1
N

)∣∣∣∣∣
6

supi
∣∣vn ( i−1

N

)∣∣
lim infn (1− Fn (T ))

= Op(1). (4.15)

Based on these properties, we can establish the uniform integrability of

{bea|Yni|}16i6N in probability under conditional measures.

Lemma 4.4. If Conditions C1* and

sup
i
pni → 0, (C4*)

are satisfied, then for any 0 < λ < 1 and ϵ > 0, there is an nϵ such that for

all n > nϵ and sufficiently large c,

P

(
sup
i

E
[
ea|Yni|I {|Yni| > c} |F (n)

i−1

]
6 2(ã+ 1)eaλ−c̃

)
> 1− ϵ (4.16)

with ã = a
√
1 + λ, δ̃ = (1− λ)δ and c̃ = (c− λ) /

√
1 + λ. Then,

P

(
sup
i

E
[
bea|Yni||F (n)

i−1

]
6 M̃

)
> 1− ϵ (4.17)

for some M̃ which depends only on a, b, δ and λ.

Proof. Let Ỹni = (νni − ñnip̃ni)/
√
ñnip̃ni then

Yni =
√
rniỸni +

√
npni(rni − 1).

Under condition (4.14), the Glivenko-Cantelli theorem implies that

sup
i6NT

|rni − 1| a.s−→ 0. (4.18)

Under C4* and by (4.15), we have

sup
i6NT

|√npni(rni − 1)| 6 sup
i6NT

√
pni sup

i6NT

∣∣√n(rni − 1)
∣∣ = op(1) (4.19)
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For any 0 < λ < 1 and ϵ > 0, (4.18) and (4.19) imply that there exists nϵ

such that for all n > nϵ,

P

(
sup
i6NT

|rni − 1| < λ, sup
i6NT

|√npni(rni − 1)| < λ

)
> 1− ϵ. (4.20)

supi6NT |rni − 1| < λ and supi6NT
∣∣√npni(rni − 1)

∣∣ < λ imply,

ea|Yni| 6 ea(
√
1+λ|Ỹni|+λ) = eaλea

√
1+λ|Ỹni|,

inf
i
(ñnip̃ni) = inf

i
(rninpni) > (1− λ)δ = δ̃ > 0

and

I {|Yni| > c} 6 I
{√

1 + λ|Ỹni|+ λ > c
}
= I

{
|Ỹni| > c̃

}
.

Therefore,

sup
i

E
[
ea|Yni|I {|Yni| > c} |F (n)

i−1

]
6 eaλ sup

i
E
[
eã|Ỹni|I

{
|Ỹni| > c̃

}
|F (n)

i−1

]
.

By applying lemma 4.3, we get (4.16) and hence (4.17).

Another crucial but not well-known fact is presented in the following lemma.

Lemma 4.5. If Conditions C1* and C4* are satisfied, and if

|yni| =
∣∣∣∣k − npni√

npni

∣∣∣∣ 6 cni =
1

√
p
ni

o(1)

with o(1) independent of i, then for all i 6 NT ,

Dni(yni) =
B(k, ñni, p̃ni)

B(k, n, pni)
− 1

=yni
√
npni(rni − 1) + pniOp(1) + y2nipniOp(1) + op

(
1√
n

)
(4.21)

with Op(1) and op

(
1√
n

)
both independent of i.
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Proof. For the sake of simplicity, we use p, p̃, ñ, y, c and r in place of pni, p̃ni,

ñni, yni, cni and rni respectively. It is easy to see that
∣∣∣y√p/n

∣∣∣ = o (1/
√
n).

Let ỹ = (k − ñp̃)/
√
ñp̃. Under Conditions C1* and C4*, (4.15) implies that

|ỹ − y| =
∣∣∣∣( 1√

r
− 1

)
y − 1√

r

√
np(r − 1)

∣∣∣∣ 6 1

δ
op(1) +

√
pOp(1) = op(1).

Since
√
p̃/ñ =

√
p/nOp(1),∣∣∣∣∣ỹ
√
p̃

ñ

∣∣∣∣∣ 6 (|y|+ |ỹ − y|)
√
p̃

ñ
= op

(
1√
n

)
.

Therefore, we have

k

n
= p+ y

√
p

n
= p+ o

(
1√
n

)
and

k

ñ
= p̃+ op

(
1√
n

)
.

Applying Stirling’s formula, we have,

B(k, ñ, p̃)

B(k, n, p)
=

(
ñp̃

np

)k(1− k
n

1− p

)n−k(
1− p̃

1− k
ñ

)ñ−k√
1− k

n

1− k
ñ

(
1 + o

(
1√
n

))
=eA

(
1 + o

(
1√
n

))
with

A = k ln

(
ñp̃

np

)
+(n−k) ln

(
1− k

n

1− p

)
− (ñ−k) ln

(
1− k

ñ

1− p̃

)
+

1

2
ln

(
1− k

n

1− k
ñ

)
.

Let’s consider each term. We have

k ln

(
ñp̃

np

)
=np(r − 1) + y

√
np(r − 1) +

np(r − 1)2

2
+ op

(
1√
n

)
, (4.22)

(n− k) ln

(
1− k

n

1− p

)
= −y√np+ y2p

2(1− p)2
+ o

(
1√
n

)
, (4.23)

(ñ− k) ln

(
1− k

ñ

1− p̃

)
= −ỹ

√
ñp̃+

ỹ2p̃

2(1− p̃)2
+ op

(
1√
n

)
, (4.24)
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and

ln

(
1− k

n

1− k
ñ

)
= ln

(
1 +

k
ñ
− k

n

1− k
ñ

)
= p̃− p+ pop(1) + op

(
1√
n

)
. (4.25)

Since

ỹ
√
ñp̃− y

√
np = np− ñp̃ = −np(r − 1)

(4.22)-(4.25) imply that

A =y
√
np(r − 1) +

np(r − 1)2

2
+

y2p

2(1− p)2
− ỹ2p̃

2(1− p̃)2
+

p̃− p

2
+ p · op(1) + op

(
1√
n

)
=y

√
np(r − 1) + p ·Op(1) + y2p ·Op(1) + op

(
1√
n

)

with Op(1) and op

(
1√
n

)
independent of i. Since A→ 0,

eA − 1 = A+ A2/2 + o(A)

which implies (4.21).

4.3.2 FLT for Martingale Component

Based on the auxiliary lemmas proved in previous section, we can establish

the FLTs. We first establish the limit theorem for the martingale component.

Theorem 4.7. Assume the Conditions C1*-C4* are satisfied and hence

hn[Nt]
(
Yn[Nt], npn[Nt]

) d−→ ξ(t) = ht(Y (t), λ(t)). (4.26)

Let us denote by w a standard Brownian motion on R+, and let W (t) =

w (τ(t)) with

τ(t) =

∫ t

0

σ2(s)ds, (4.27)

with σ2(s) being the variance of ξ(s). Then for t < T ,

Wn
d→ W.
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Proof. Letting ξni = hni (Yni, npni) and ηni = E [ξni|Fi−1], so that Wn is a

martingale with differences (ξni − ηni) /
√
N . According to Theorem 4.4, to

prove the theorem, it is necessary and sufficient to prove that

1

N

N∑
i=1

E
[
(ξni − ηni)

2 I{(ξni − ηni)
2 > ϵN}|F (n)

i−1

]
P−→ 0 ∀ ϵ > 0 (α)

and
1

N

Nt∑
i=1

E
[
(ξni − ηni)

2 |F (n)
i−1

]
P−→ τ(t) (β)

are satisfied.

To verify (α), it is sufficient to show that

sup
i

E
[
(ξni − ηni)

2 I
{
(ξni − ηni)

2 > ϵN
}
|F (n)

i−1

]
P−→ 0. (4.28)

Recall that under condition C2*, |ξni| 6 bea|Yni|. By Lemma 4.4, consider a

fixed 0 < λ < 1; then for any ϵ > 0, there exists nϵ such that for all n > nϵ,

(4.20) holds and

P

(
sup
i

|ηni| 6 sup
i

E
[
|ξni||F (n)

i−1

]
6 M̃

)
> 1− ϵ. (4.29)

with some M̃ <∞ only depending on a, b, δ, λ.

Since |ηni| 6 M̃ implies that

(ξni − ηni)
2 6 2ξ2ni + 2η2ni 6 2ξ2ni + 2M̃2 6 2

(
b2 + M̃2

)
e2a|Yni|

and hence

I
{
(ξni − ηni)

2 > ϵN
}
6 I

{
|Yni| >

1

2a
ln

ϵN

2(b2 + M̃2)
= c

}
,

(4.16) implies that the left side of (4.28) is bounded by

sup
i

E
[
2
(
b2 + M̃2

)
e2a|Yni|I {|Yni| > c} |F (n)

i−1

]
6 4

(
b2 + M̃2

)
(2ã+ 1)e2aλ−c̃,
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with ã and c̃ defined in Lemma 4.4.

For sufficiently large n, N and hence c are large enough and therefore the

right side can be arbitrarily small. Since ϵ is arbitrary, (4.29) holds and (α)

is satisfied.

For (β), consider the step functions

σ2
n(t) = E

[(
ξn[Nt] − ηn[Nt]

)2 |F (n)
[Nt]−1

]
.

Then Lemma 4.4 and (4.26) imply σ2
n(t)

P−→ σ2(t) and

σ2
n(t) 6 E

[
ξ2n[Nt]|F

(n)
[Nt]−1

]
6 sup

t6T
E
[
ξ2n[Nt]|F

(n)
[Nt]−1

]
<∞

in probability. Obviously, supt6T E
[
ξ2n[Nt]|F

(n)
[Nt]−1

]
is integrable with respect

to t ∈ [0, T ]. By the dominated convergence theorem, for t 6 T ,∫ t

0

σ2
n(s)ds

P−→ τ(t).

Hence (β) holds and therefore the theorem is proved.

4.3.3 FLT for the Compensator Component

The limit theorem for the compensator component is established below.

Theorem 4.8. Define the operator

K x(t) = −
∫ t

0

k(s)x(s)ds

with

k(s) = E [ξ(s)Y (s)]
√
f(s) = E [hs(Y (s), λ(s))Y (s)]

√
f(s)

If conditions C1*-C4* are satisfied,

lim sup
n

(Npn[Nt]) < Cf(t) ∀ t < T (C5*)
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for some C <∞ and there is some α > 0 such that(
sup
i
pni

)−1/2+α

− 1

2
lnN → ∞. (C6*)

Then for t < T

Kn
d→ K = K

v

1− F
.

Proof. Instead of Kn(t), we consider the truncated process

Kc
n(t) =

1√
N

Nt∑
i=1

(
E
[
ξniI {|Yni| 6 cni} |F (n)

i−1

]
− E [ξniI {|Yni| 6 cni}]

)
with cni = p

−1/2+α/2
ni = p

−1/2
ni o (1).

It can be shown by Lemma 4.3 and 4.4 that the difference

Kn(t)−Kc
n(t) =

1√
N

Nt∑
i=1

(
E
[
ξniI {|Yni| > cni} |F (n)

i−1

]
− E [ξniI {|Yni| > cni}]

)
is asymptotically negligible.

C6* implies
√
N exp(− infi cni) → 0. By Lemma 4.3, we have∣∣∣∣∣ 1√

N

Nt∑
i=1

E [ξniI {|Yni| > cni}]

∣∣∣∣∣ 6 √
N sup

i
E
[
|ξni|I

{
|Yni| > inf

i
cni

}]
6 b

√
N sup

i
E
[
ea|Yni|I

{
|Yni| > inf

i
cni

}]
6 2b(a+ 1)

√
Ne− infi cni → 0.

Similarly, by Lemma 4.4, for any fixed λ with 0 < λ < 1, and setting

c̃ni = (cni − λ)/
√
1 + λ,

√
N exp(− infi c̃ni) → 0 as well. Then we have∣∣∣∣∣ 1√

N

Nt∑
i=1

E
[
ξniI {|Yni| > cni} |F (n)

i−1

]∣∣∣∣∣ 6 2b(ã+ 1)
√
Neaλ−infi c̃ni → 0
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in probability. Since infi cni = (supi pni)
−1/2+α/2 → ∞,

sup
t6NT

|Kn(t)−Kc
n(t)|

p→ 0. (4.30)

The proof of weak convergence of Kc
n(t) is based on the following equality,

E
[
ξniI {|Yni| 6 cni} |F (n)

i−1

]
− E [ξniI {|Yni| 6 cni}] = E [ξniDni(Yni)I {|Yni| 6 cni}]

with Dni(y) defined in (4.21).

Since

sup
t6NT

∣∣∣∣∣ 1√
N

Nt∑
i=1

E
[
ξniY

2
niI {|Yni| 6 cni}

]
pni

∣∣∣∣∣ p−→ 0

and

sup
t6NT

∣∣∣∣∣ 1√
N

Nt∑
i=1

pni

∣∣∣∣∣ −→ 0,

Lemma 4.5 implies

sup
t6NT

∣∣∣∣∣Kc
n(t)−

1√
N

Nt∑
i=1

E [ξniYniI {|Yni| 6 cni}]
√
npni(rni − 1)

∣∣∣∣∣ = op (1) .

(4.31)

Let

kcn(t) = E
[
ξn[Nt]Yn[Nt]I

(
|Yn[Nt]| 6 cn[Nt]

)]√
Npn[Nt]

and
√
n(rn[Nt] − 1) = − vn(t)

(1− Fn(t))
.

Then (4.30) and (4.31) imply

sup
t6NT

∣∣∣∣Kn(t) +

∫ t

0

kcn(s)
vn(s)

1− Fn(s)
ds

∣∣∣∣ = op(1).

Since supt
∣∣E [ξn[Nt]Yn[Nt]I (|Yn[Nt]| 6 cn[Nt]

)]∣∣ is bounded in probability, un-

der condition C5*, kcn(t) is integrable. Further since kcn(t) → k(t) for all

t < T ,

sup
t6NT

∣∣∣∣∫ t

0

kcn(s)
vn(s)

1− Fn(s)
ds−

∫ t

0

k(s)
vn(s)

1− Fn(s)
ds

∣∣∣∣ = op(1).
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Since the operator K ∗ is continuous and for t < T ,

vn(t)

1− Fn(t)

d−→ v(t)

1− F (t)
,

the theorem is proved.

4.3.4 Alternative Proof to FLT of Compensator of Chi-

square Process

The FLTs established in Sections 4.2.2 and 4.3.3 are for partial sum processes

of general divisible statistic and the proof was very technical. However, for

the Chi-square process

Xn(t) =
1√
N

Nt∑
i=1

(
Y 2
ni − E

[
Y 2
ni

])
=

1√
N

Nt∑
i=1

(
Y 2
ni − (1− pni)

)
a simpler alternative proof can be acquired. The consistency of the results

from both methods illustrate the power of the theorems we have established.

Let

Ỹni =
νni − ñp̃ni√

ñp̃ni
,

then

Y 2
ni =

(νni − npni)
2

npni
=

(
√
ñp̃niỸni + ñp̃ni − npni)

2

npni

= Ỹ 2
ni

ñp̃ni
npni

+ 2Ỹni

√
ñp̃ni(ñp̃ni − npni)

npni
+

(ñp̃ni − npni)
2

npni
.

Since E(Ỹ 2
ni | Fi−1) = 1− p̃ni, EYni = 0 = E(Ỹni | F (n)

i−1) and

ñp̃ni − npni = npni

[
1− F̂n

(
i−1
N

)
1− Fn

(
i−1
N

) − 1

]

= −npni
F̂n(

i−1
N
)− Fn(

i−1
N
)

1− Fn(
i−1
N
)

= −
√
n

pni

1− Fn(
i−1
N
)
vn

(
i− 1

N

)
,
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we have

E(Y 2
ni | F

(n)
i−1) = (1− p̃ni)

ñp̃ni
npni

+ pni

(
vn(

i−1
N
)

1− Fn(
i−1
N
)

)2

.

Then since EY 2
ni = 1− pni,

E(Y 2
ni | F

(n)
i−1)− EY 2

ni

=(1− p̃ni)
ñp̃ni
npni

+ pni

(
vn(

i−1
N
)

1− Fn(
i−1
N
)

)2

− (1− pni)

=(1− p̃ni)

(
ñp̃ni
npni

− 1

)
+ (pni − p̃ni) + pni

(
vn(

i−1
N
)

1− Fn(
i−1
N
)

)2

=− 1√
n
(1− p̃ni)

vn(
i−1
N
)

1− Fn(
i−1
N
)
−

Fn(
i−1
N
)pni

1− Fn(
i−1
N
)
+ pni

(
vn(

i−1
N
)

1− Fn(
i−1
N
)

)2

.

Next, for 1− Fn(T ) > δ > 0 and i 6 NT ,∣∣∣∣∣− 1√
N

Nt∑
i=1

Fn(
i−1
N
)pni

1− Fn(
i−1
N
)

∣∣∣∣∣ 6 Fn(T )√
N(1− Fn(T ))

→ 0.

Since P
(
supi

∣∣vn( i−1
N
)
∣∣ > λ

)
< 58 exp (−2λ2) (Dvoretzky, Kiefer, Wolfwitz;

see p354, Shorack and Wellner, 1986),

1√
N

Nt∑
i=1

(
pni

(
vn(

i−1
N
)

1− Fn(
i−1
N
)

)2
)

6 1

(1− Fn(T ))2
sup

vn(
i−1
N
)2

√
N

p−→ 0.

Similarly, we have∣∣∣∣∣ 1√
nN

Nt∑
i=1

(
p̃ni

vn(
i−1
N
)

1− Fn(
i−1
N
)

)∣∣∣∣∣ 6 1

(1− Fn(T ))2
sup

∣∣vn( i−1
N
)
∣∣

√
nN

p−→ 0.

Therefore, we have

1√
N

Nt∑
i=1

(
E(Y 2

ni | Fi−1)− EY 2
ni

)
= − 1√

nN

Nt∑
i=1

(
vn(

i−1
N
)

1− Fn(
i−1
N
)

)
+ op(1).
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And finally,

Kn(t)
d−→ − 1√

d

∫ t

0

v(s)

1− F (s)
ds. (4.32)

We will show in chapter 5 that for the Chi-square process, k(s) = 1/
√
d, and

the consistency of (4.32) on the one hand, and the results of Theorems 4.6

and 4.8 on the other hand, is obvious.

4.4 FLT for Partial Sum Processes

The separate limit processes W and K of the martingale and compensator

components are not sufficient to describe the limiting behaviour of the partial

sum process Xn, unless we find the correlation structure of the two limit pro-

cesses. Khmaladze (1984) has revealed this correlation structure for models

with asymptotically Poissonian frequencies in the following theorem.

Let (v, w) be a two-dimensional Gaussian process adapted to the flow of σ-

algebra generated by the process v, where the correlation function of v is

F (t∧ s)−F (t)F (s), the correlation function of w is τ(t∧ s) and the mutual

correlation function of v and w is

Ev(t)w(s) = [1− F (t)]

∫ t∧s

0

k(y)

1− F (y)
dy, (4.33)

where k is as defined in theorem 4.6.

Based on this correlation structure between v and w, the convergence of Xn

is then described in the following theorem.

Theorem 4.9 (Khmaladze (1984)). Suppose the conditions (C1-C4) hold.

Then

Xn
d→ X as n→ ∞
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where

X(t) = −
∫ t

0

k(s)
v(s)

1− F (s)
ds+ w(t).

Proof. See Khmaladze (1984).

Remark 4.2. The FLTs established in Theorems 4.5 and 4.6 for models

with Poissonian frequencies and Theorems 4.7 and 4.8 for models with mixed

frequencies are of the same structure, where σ2(s) and k(s) play the same

roles the two schemes. Since the establishment of the correlation function

(4.33) and the proof of Theorem 4.9 are irrelevant to the specific form of

σ2(s) and k(s), both (4.33) and Theorem 4.9 apply to the new scheme with

the models for mixed frequencies.

4.5 FLTs under Contiguous Alternatives

The limit theorems established in previous sections were under the null hy-

pothesis. However, it is also important to consider the asymptotic behaviour

of the processes under the alternative hypotheses, i.e., the “true” probabili-

ties are not pn = {pni}16i6N but p̄n = {p̄ni}16i6N . In particular, it is often

interesting to consider p̄n as a sequence of probability measures contiguous

to pn in the following form.

Condition 4.1. Let p̄n = {p̄ni}16i6N be a sequence of probabilities with

p̄ni = pni (1 + cni/
√
n); and suppose there exists a function c(t) such that∫ 1

0

c2(t)f(t)dt <∞ and

∫ 1

0

(
cn[Nt] − c(t)

)2
f(t)dt→ 0,

where f(t) = lim fn(t) = lim(Npn[Nt]).

Under this sequence of contiguous alternatives, (C1*-C6*) hold if (C1*-C6*)
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hold under the null hypothesis. Therefore, if we define

X̄n(t) =
1√
N

Nt∑
i=1

(
hni
(
Ȳni, np̄ni

)
− Ē

[
hni
(
Ȳni, np̄ni

)])
,

W̄n(t) =
1√
N

Nt∑
i=1

(
hni
(
Ȳni, np̄ni

)
− Ē

[
hni
(
Ȳni, np̄ni

)
|F (n)

i−1

])
,

and

K̄n(t) =
1√
N

Nt∑
i=1

(
Ē
[
hni
(
Ȳni, np̄ni

) ∣∣∣F (n)
i−1

]
− Ē

[
hni
(
Ȳni, np̄ni

)])
,

with Ȳni = (νni−np̄ni)/
√
np̄ni and Ē being expectation under the alternative,

then W̄n
d→ W , K̄n

d→ K and X̄n
d→ X under the alternative.

Now we introduce the definitions of some shift processes:

mn(t) =
1√
N

Nt∑
i=1

(
Ē [hni (Yni, npni)]− E [hni (Yni, npni)]

)
,

ln(t) =
1√
N

Nt∑
i=1

(
Ē
[
hni (Yni, npni) |F (n)

i−1

]
− E

[
hni (Yni, npni) |F (n)

i−1

])
,

and

qn = mn − ln.

Then for all t < 1,

Wn(t)− W̄n(t)− ln(t) =
1√
N

Nt∑
i=1

((
hni (Yni, npni)− hni

(
Ȳni, np̄ni

))
− Ē

[
hni (Yni, npni)− hni

(
Ȳni, np̄ni

)
|F (n)

i−1

])
, (4.34)
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Xn(t)− X̄n(t)−mn(t) =
1√
N

Nt∑
i=1

((
hni (Yni, npni)− hni

(
Ȳni, np̄ni

))
− Ē

[
hni (Yni, npni)− hni

(
Ȳni, np̄ni

)])
, (4.35)

and

Kn(t)− K̄n(t)− qn(t) =
1√
N

Nt∑
i=1

(
Ē
[
hni
(
Ȳni, np̄ni

)
− hni (Yni, npni)

]
− Ē

[
hni
(
Ȳni, np̄ni

)
− hni (Yni, npni)

∣∣∣F (n)
i−1

])
(4.36)

Next, considering functions g∗ni such that

g∗ni(νni,
√
npni) = hni(Yni, npni) = gni(νni, npni),

we can introduce

g#ni(νni, npni) =
∂g∗ni(νni,

√
npni)

∂
√
npni

and

h#ni(Yni, npni) = g#ni(νni, npni),

from which the following lemma can be established.

Lemma 4.6. If conditions (C1*-C6*) hold and

h#ni satisfies C2*, (C7*)

then for all t < T with T satisfying (4.14),

∥Wn − W̄n − ln∥
p→ 0, 1

∥Xn − X̄n −mn∥
p→ 0,

and

∥Kn − K̄n − qn∥
p→ 0.

1Since p̄n are contiguous to pn, the convergence in probability to 0 under p̄n is equiv-

alent to that under pn, and we do not distinguish them here.
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Proof. Since

√
np̄ni −

√
npni =

√
npni

(√
1 +

cni√
n
− 1

)
= O(

√
pni) → 0,

we have

hni (Yni, npni)− hni
(
Ȳni, np̄ni

)
= h#ni

(
Ȳni, np̄ni

)
O(

√
p̄ni),

and

1√
N

N∑
i=1

(
hni (Yni, npni)− hni

(
Ȳni, np̄ni

))
=O

(√
sup
i
p̄ni

)
1√
N

N∑
i=1

h#ni
(
Ȳni, np̄ni

)
.

Since h#ni satisfies C2*, then theorems 4.7 and 4.8 imply that

X̄#
n (t) =

1√
N

Nt∑
i=1

(
h#ni
(
Ȳni, np̄ni

)
− Ē

[
h#ni
(
Ȳni, np̄ni

)])
,

W̄#
n (t) =

1√
N

Nt∑
i=1

(
h#ni
(
Ȳni, np̄ni

)
− Ē

[
h#ni
(
Ȳni, np̄ni

)
|F (n)

i−1

])
,

and

K̄#
n (t) =

1√
N

Nt∑
i=1

(
Ē
[
h#ni
(
Ȳni, np̄ni

) ∣∣∣F (n)
i−1

]
− Ē

[
h#ni
(
Ȳni, np̄ni

)])
,

converge in distribution to X#, W# and K# respectively. Hence ∥X̄#
n ∥ =

Op(1), ∥W̄#
n ∥ = Op(1) and ∥K̄#

n ∥ = Op(1) for t < T and ∥Wn − W̄n − ln∥,
∥Xn − X̄n −mn∥ and ∥Kn − K̄n − qn∥ are all Op (

√
sup p̄ni) for t < T . Since

sup p̄ni → 0 by C4*, the lemma is established.

Based on this lemma, the focus can turn to the limit theorems of the shifts

mn, ln and qn.
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Theorem 4.10. If the conditions (C1*-C6*) hold, then for t < T

mn
d→ m = −K c.

Proof. The proof in this theorem is analogous to that of theorem 4.8, except

that the role of
√
n(rn[Nt] − 1) = − vn(t)

(1− Fn(t))

has been played by

√
n(r̄n[Nt] − 1) =

√
n

(
np̄n[Nt]
npn[Nt]

− 1

)
= cn[Nt],

and cn[Nt] → c(t).

Theorem 4.11. If the conditions (C1*-C6*) hold, then for t < T

qn
d→ q = −K

C

1− F

with C(t) =
∫ t
0
c(s)f(s)ds.

Proof. If let

K̄∗
n(t) =

1√
N

Nt∑
i=1

(
Ē
[
hni (Yni, npni)

∣∣∣F (n)
i−1

]
− Ē [hni (Yni, npni)]

)
,

then we can get another expression for qn:

qn = Kn − K̄∗
n.

The limit of K̄∗
n(t) can be derived in an analogous fashion to that in the proof

of theorem 4.8, except that the role of

vn(t)

(1− Fn(t))
=

√
n
(
F̂n(t)− Fn(t)

)
1− Fn(t)

is now played by

v̄n(t)

(1− F̄n(t))
=

√
n
(
F̂n(t)− F̄n(t)

)
1− F̄n(t)

.
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Since

F̄n(t) =
Nt∑
i=1

p̄ni =
Nt∑
i=1

p̄ni(1 +
cni√
n
) = Fn(t) +

1√
n

Nt∑
i=1

cnipni,

we have

v̄n(t)

(1− F̄n(t))
=

√
n
(
F̂n(t)− Fn(t)

)
1− F̄n(t)

+

∑Nt
i=1 cnipni

1− F̄n(t)

d→ v(t)

1− F (t)
+

C(t)

1− F (t)
,

and hence

K̄∗
n

d→ K

(
v

1− F
+

C

1− F

)
.

Since

Kn
d→ K

(
v

1− F

)
,

the theorem is proved.

Since both m and q are deterministic functions, the following assertions can

be established,

ln
d→ l = m− q = K

(
c− C

1− F

)
,

Wn
d→ W + l,

Kn
d→ K + q,

and

Xn
d→ X +m.

In the models with all Poissonian frequencies, replacing C7* by

g#ni satisfies C2, (C5)

will achieve similar results. In particular, if gni(νni, npni) is independent of

npni, i.e., gni(νni, npni) = gni(νni) then simply g#ni(νni, npni) = 0. This was

the case considered by Khmaladze (1984).
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4.6 Comparison of FLTs in two Schemes

The FLTs discussed in section 4.2 and 4.3 covered two different schemes:

Scheme A dealt with divisible statistics such that

|gni(νni, npni)| < beaνni (4.37)

in nonclassical multinomial models with all asymptotically Poissonian fre-

quencies (all npni bounded from above); and scheme B considered divisible

statistics with

|hni(Yni, npni)| < bea|Yni| (4.38)

in nonclassical multinomial models with mixed asymptotically Poissonian

and Gaussian frequencies (but all npni bounded from below).

On the one hand, these two schemes complement each other. For models in

which npni can diverge to infinity but is bounded from below2, some divisible

statistics like
∑N

i=1(νni−npni)2 may diverge. Scheme B is appropriate and we

should choose divisible statistics satisfying (4.38), say the Chi-square statis-

tic. While for models in which npni is bounded from above but can tends to

0, the Chi-square statistic is not applicable3, and we have to use scheme A

and choose a divisible statistic satisfying (4.37) such as
∑N

i=1(νni− npni)
2 or∑N

i=1 |νni − npni|.

On the other hand, there is some overlap between these two schemes and

they coincide to each other in such models. Consider models with dn → d

and all frequencies bounded from both above and below:

0 < δ = lim inf
n

inf
i
(npni) < lim sup

n
sup
i
(npni) = Λ <∞. (4.39)

2Linguistic data is an obvious example.
3For instance, if we do a GOF test for a beta distribution with both parameters greater

than 1, and N increases proportionally as n, then some of the npni tend to 0, when i is

close to 1 or N .
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It is not hard to see that (4.37) and (4.38) are equivalent under this condition.

Further,

gs(Z(s), λ(s)) = hs(Y (s), λ(s))

implies that σ2(s) defined in the theorems 4.5 and 4.7 are equivalent. And

the following equality

k(s) =
1√
d
E [gs(Z(s), λ(s)) (Z(s)− λ(s))] = E [hs(Y (s), λ(s))Y (s)]

√
f(s)

shows the equivalence of the theorems 4.6 and 4.8.





Chapter 5

Properties of Limiting

Processes and Applications

Apart from λ(s) and f(s), which represent the nature of the non-classical

models, the characteristics of the limiting processes can be fully described by

two functions σ2(s) and k(s), which depend on the structure of the divisible

statistics. Based on these characteristics for several examples of limiting pro-

cesses of divisible statistics, we can discuss some properties of the limiting

processes.

Another concern in this chapter is the application of the limiting processes.

We will show that two processes, a martingale component Wn and a 1-to-1

transformation of the partial sum processes W̃n , can both be used to con-

struct distribution-free statistics for GOF tests. The convergence of these

two processes and the statistics based on them will be evaluated and the

properties of these statistics will be discussed.

79
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5.1 Characteristics of Limiting Processes

The limiting processes for Wn, Kn and Xn have the same structure for all

divisible statistics, except that two functions σ2(s) and k(s) depend on the

form of the divisible statistics. Therefore, σ2(s) and k(s) can be regarded as

the characteristics of the limiting processes, and to describe the limit pro-

cesses, it is sufficient to specify these two functions.

We will show in this section, that the characteristics for some divisible statis-

tics are simple and explicit. Even when the characteristics do not have a

convenient form, they can still easily be calculated.

5.1.1 Chi-square Process

Like its counterpart (Pearson’s Chi-square statistic) in the classical model,

the limiting distribution of the Chi-square process

Xn(t) =
1√
N

Nt∑
i=1

(
Y 2
ni − E

[
Y 2
ni

])
=

1√
N

Nt∑
i=1

(
Y 2
ni − (1− pni)

)
has a simple explicit expression.

Characteristic of the martingale component

Recall that for λ(s) <∞

Y (s) =
Z(s)− λ(s)√

λ(s)
with Z(s) ∼ Poi(λ(s)),

so that we have

EY 2(s) = E
[
(Z(s)− λ(s))2

λ(s)

]
= 1

and

EY 4(s) = E
[
(Z(s)− λ(s))4

λ2(s)

]
= 3 +

1

λ(s)
.
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Hence

σ2(s) = var
[
Y 2(s)

]
= 2 +

1

λ(s)
.

On the other hand, Y (s) ∼ N (0, 1) for λ(s) = ∞, so that

σ2(s) = var
[
Y 2(s)

]
= 2.

Characteristic of the compensator component

Since

kni =
√
NpniEY 3

ni =
1√
dn

E
(νni − npni)

3

npni
=

1√
dn

(1− pni)(1− 2pni),

we have

k(s) = lim
n→∞

kn[Ns] =
1√
d
.

Remark 5.1. Note that as dn → ∞, for the Chi-square process, k(s) = 0

implies K(t) = 0 and

Xn(t) =
1√
N

Nt∑
i=1

(
Y 2
ni − (1− pni)

) d−→ w(τ(t))

This is an example of when the dependence of summands in the partial sum

process is asymptotically negligible.

5.1.2 Log-likelihood Processes

For partial sum process of log-likelihood statistic,

Xn(t) =
2√
N

Nt∑
i=1

(
νni log

νni
npni

− E
[
νni log

νni
npni

])
the characteristics of the limiting processes can be expressed as follows.
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the martingale component

For λ(s) <∞,

σ2(s) = var

[
2Z(s) log

Z(s)

λ(s)

]
;

while for λ(s) = ∞, hs(Y (s)) = Y (s)2 with Y (s) ∼ N (0, 1) and

σ2(s) = 2.

the compensator component

For λ(s) <∞,

k(s) =
2√
d
E
[
Z(s)(Z(s)− λ(s)) log

Z(s)

λ(s)

]
;

while for λ(s) = ∞, hs(Y (s)) = Y (s)2 with Y (s) ∼ N (0, 1) and

k(s) =
√
f(s) E [hs(Y (s))Y (s)] = 0.

5.1.3 Spectral Statistics Processes

For partial sums of spectral statistic

Xn(t) =
1√
N

Nt∑
i=1

(I {νni = m} −P (νni = m)) ,

the limiting processes are also simple.

Characteristic of the martingale component

For λ(s) <∞,

σ2(s) =
(λ(s))m

m!
e−λ(s)

[
1− (λ(s))m

m!
e−λ(s)

]
.

For λ(s) = ∞, hs(Y (s)) = I{Y (s) = −∞} with Y (s) ∼ N (0, 1) and

σ2(s) = P{Y (s) = −∞} − (P{Y (s) = −∞})2 = 0.
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Characteristic of the compensator component

For λ(s) <∞,

k(s) =
1√
d
(m− λ(s))

(λ(s))m

m!
e−λ(s);

while for λ(s) = ∞,

kni =
1√
dn

(m− npni)

(
n

m

)
pmni(1− pni)

n−m

which implies

k(s) = lim
n→∞

kn[Ns] = 0.

5.2 Some Properties of Limiting Processes

5.2.1 Properties in Models with all Gaussian Frequen-

cies

Theorems 4.7 and 4.8 do not require n ∼ N . Therefore they can apply to the

model where n ≫ N such that all frequencies are asymptotically Gaussian.

The limit theorems for this model exhibit interesting properties for some

divisible statistics.

Asymptotic Equivalence to Chi-square Process

One remarkable property is that, in this model, the partial sum processes

of those divisible statistics which are asymptotically equivalent to the Chi-

square statistics, are asymptotically equivalent to the Chi-square process.

As we have seen in Log-likelihood process, when all λni = npni → ∞, the

characteristics are the same as those of the Chi-square process.

In fact, for those statistics which satisfy the conditions stated in Theorem

2.5, p. 26, it is not difficult to verify the asymptotic equivalence of the cor-

responding partial sum process to the Chi-square process.
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Asymptotic Negligibility of the compensator component

As we said, the limit of the compensator component of Chi-square process

vanishes in this model. However, the Chi-square process is not the only one

which possesses this property. For divisible statistics with hni(y) = |y|m(m
being positive integers), the compensator components are also asymptoti-

cally negligible.

5.2.2 Transformation of Partial Sum Processes

Khmaladze (1984) has showed that based on the following lemma, one can

construct an 1-to-1 mapping of the processes Xn into a process converging

in distribution to a Wiener process.

Lemma 5.1 (Khmaladze (1984)). The process X is a diffusion type process

with stochastic differential

dX(t) = − k(t)

1− ρ(t)

∫ t

0

k(s)

σ2(s)
dX(s)dt+ dW̃ (t),

where W̃ is a Wiener process with respect to time τ and

r(t) =
k2(s)

σ2(s)
, ρ(t) =

∫ t

0

r(s)ds.

The correspondence between the trajectories of X and W̃ is 1-to-1.

The transformed process W̃n with increment

∆W̃n

(
i

N

)
= ∆Xn

(
i

N

)
+

k(i/N)

N −
∑

j6i r(i/N)

∑
j6i

(
k(j/N)

σ2(j/N)
∆Xn

(
j

N

))
,

(5.1)

converges in distribution to W̃ .
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Due to the 1-to-1 property, distinguishing between null and alternative hy-

potheses based on the partial sum process Xn and the transformed processes

W̃n are equivalent, while the limiting distribution of W̃n is much simpler and

easy to compute.

By the same logic as that in Remark 4.2, we can see that this transformation

also applies to the scheme of models with mixed frequencies.

5.3 GOF tests based on Limiting Processes

Apart from the transformed process W̃n, the martingale component Wn also

converges in distribution to a Brownian motion with respect to time τ . The

computation of W̃n is a bit simpler than that of Wn, while the conditions

needed for FLTs of the martingale component are less onerous than that of

the partial sum process. Since the extra computational effort needed for Wn

and the extra conditions needed for W̃n are both insignificant, we are free to

choose either one as the basis for constructing testing statistics.

5.3.1 Evaluation of convergence of W̃n and Wn

As remarked in Haywood and Khmaladze (2008), “it is not entirely clear how

to best evaluate the convergence of distribution of a sequence of processes

to limiting process.” Therefore, we need to consider several statistics which

describe different feature of the processes to access the difference between

W̃n, Wn and Brownian Motion.

Instead of using W̃n and Wn, we consider standardized versions of the pro-

cesses,

w̃n(s) =
W̃n(t)√
τn(1)

and wn(s) =
Wn(t)√
τn(1)

,
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with s = τn(t)/τn(1). Then both w̃n and wn converge in distribution to stan-

dard Brownian motion w. And the following statistics can be constructed:

one-sided and two-sided Kolmogorov-Smirnov statistics,

wd+n = sup
0<s<1

wn(s),
wd−n = − inf

0<s<1
wn(s),

wdn = sup
0<s<1

|wn(s)|;

the Cramér-von Mises statistic,

wω2
n =

∫ 1

0

w2
n(s)ds;

and the Anderson-Darling statistic,

wA2
n =

∫ 1

0

w2
n(s)

s
ds.

We can also consider a further transform from w̃n and wn to

ṽn(s) = w̃n(s)− sw̃n(1) and vn(s) = wn(s)− swn(1),

then ṽn and vn converge in distribution to standard Brownian bridge v. And

a set of statistics “with respect to Brownian bridge” can be constructed:

Kolmogorov-Smirnov statistics,

vd+n = sup
0<s<1

vn(s),
vd−n = − inf

0<s<1
vn(s),

vdn = sup
0<s<1

|vn(s)|;

the Cramér-von Mises statistic,

vω2
n =

∫ 1

0

v2n(s)ds;

and the Anderson-Darling statistic,

vA2
n =

∫ 1

0

v2n(s)

s(1− s)
ds.

Remark 5.2. The transformation from Brownian motion to Brownian bridge

bears some risk of losing testing power. Suppose when the alternative hypoth-

esis is true, the limiting distribution of wn(s) is w(s) + l(S) with l(s) = s,
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instead of w(s) when null hypothesis is true. Then the statistics based on

Brownian motion, such as wdn can distinguish the alternative properly. How-

ever, the limiting distribution of vn(s) is (w(s)+ l(s))−s(w(1)+ l(1)) = v(s)

under both null and alternative. The shift l(t) = t has been offset by the

transformation, and the statistics based on vn(s) has no power against this

alternative. However, it is worth pointing out that this is a special situation.

The limiting distribution functions of the above statistics are all available.

For wd+n and wd−n , the limit distribution follows from the reflection princi-

ple and can been seen from e.g., Feller (1970). The limiting distribution

functions of wdn,
vd+n ,

vd−n and vdn can be found from Shorack and Wellner

(1986). The table of the limit distribution of wω2
n was presented in Orlov

(1973), and analytical expression of wω2
n,

wA2
n and vω2

n,
vA2

n can be obtained

from Deheuvels and Martynov (2003). Shorack and Wellner (1986) also pro-

vided expressions of distributions vω2
n and vA2

n in terms of the distribution

of weighted sums of i.i.d. Chi-square random variables.

Figure 5.2-5.5 compared wd+n ,
wd−n ,

wdn,
vd+n ,

vd−n ,
vdn,

wω2
n and

vA2
n, based on

Wn and W̃n, to their limiting distributions. Figure 5.2 and 5.3 are based on

scheme A with divisible statistic being
∑N

i=1(νni − npni)
2 and probabilities

generated from Beta(2,4) (bounded from above, see Figure 5.1); Figure 5.4

and 5.5 are based on scheme B with divisible statistic being Chi-square and

probabilities generated from Beta(0.5,0.5) (bounded from below).
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Figure 5.1: Density function of Beta(2,4) and Beta(0.5,0.5).

The results of Figure 5.2-5.5 shows that, for both scheme, the empirical dis-

tributions of statistics are very close to their limiting distributions, and the

difference between statistics base onWn and that based on W̃n are very small.

Therefore, the convergence of both Wn and W̃n are quick enough and they

can be good candidates for constructing GOF test statistics.
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Figure 5.2: Evaluation of Convergence of Wn in Scheme A: n=N=1000;

Probabilities generated from Beta(2,4) by equally partitioning; Wn being

the martingale component of partial sum process of
∑N

i=1(νni − npni)
2; 5000

replicates.
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Figure 5.3: Evaluation of Convergence of W̃n in Scheme A: n=N=1000; Prob-

abilities generated from Beta(2,4) by equally partitioning; W̃n is the trans-

formed process of partial sum process of
∑N

i=1(νni − npni)
2; 5000 replicates.
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Figure 5.4: Evaluation of Convergence ofWn in Scheme B: n=N=1000; Prob-

abilities generated from Beta(0.5,0.5) by equally partitioning; Wn being the

martingale component of Chi-square process; 5000 replicates.
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Figure 5.5: Evaluation of Convergence of W̃n in Scheme B: n=N=1000;

Probabilities generated from Beta(0.5,0.5) by equally partitioning; W̃n is the

transformed process of Chi-square process; 5000 replicates.
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We can see further in Figure 5.6 that, for divisible statistics with hni = |Yni|,
|Yni|2 and |Yni|3 respectively, the empirical distributions of Cramér-von Mises

statistic wω2
n based on W̃n or Wn are very close. In other words, the rate of

convergence of W̃n or Wn to Brownian motion is good for many different hni.
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Figure 5.6: Convergence Rate of W̃n, Wn for Different Divisible Statistic:

n = N = 1000; Probabilities generated from beta (0.1,0.9) by equally parti-

tioning; Empirical distribution of wω2
n based on W̃n, Wn of divisible statistics

with hni = |Yni|, |Yni|2 and |Yni|3 respectively; 1000 replicates.
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5.3.2 Properties of Statistics based on W̃n and Wn

One could think that, in the move from the classical multinomial models to

non-classical models, the distribution-free will be lost and the distribution of

the divisible statistics do depends on the hypothetic probabilities. However,

the statistics based on the transformed partial sum process W̃n or the mar-

tingale component Wn are again distribution-free. Furthermore, for those

divisible statistic with non-degenerate limiting processes, the original forms

of the divisible statistic are even irrelevant. These are also highly desirable

properties, since we can carry out statistical tests without calculating many

different limiting distributions.

Distribution-Free

Figure 5.4 shows that the empirical distributions of Kolmogorov-Smirnov

statistics wdn based on Chi-square processes are independent of the probabil-

ities, which are generated from Beta(0.1,0.9), Beta(0.5,0.5) and Beta(0.9,0.1)

respectively, by equally partitioning. We can see that in both W̃n and Wn

cases, the empirical distributions are almost indistinguishable.
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Figure 5.7: Distribution-free Property of Statistics Based on W̃n and Wn:

n = N = 1000; Probabilities generated from Beta(0.1,0.9), Beta(0.5,0.5),

Beta(0.9,0.1) by equally partitioning; W̃n, Wn are the transformed process

and the martingale component of Chi-square process respectively; 5000 repli-

cates.
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Power in Detecting some Contiguous Alternatives

The move from the divisible statistics to corresponding partial sum processes,

not only provide us an alternative approach to limit theorems of the divisible

statistics, but also reveal much richer information. For example, we cannot

use divisible statistics to distinguish between null hypothesis to some con-

tiguous alternative, while the statistics based on W̃n or Wn can fulfil this

mission. This is also justify the necessity of this moving.

The tests based on divisible statistic are equivalent to tests based on Xn(1).

However, for those contiguous alternatives with m(1) = 0, the limiting dis-

tributions of Xn(1) are the same under both null and alternative. Recall

that

m(t) = −K c =

∫ 1

0

k(s)c(s)ds,

any alternative satisfying
∫ 1

0
k(s)c(s)ds = 0 can not be distinguished from

null by test based on Xn(1).

We will show such an example in Figure 5.8. For simplicity, we choose n = N

and Chi-square process such that k(s) = 1. Therefore, if let c(s) = 3 cos(πs),

then

m(t) =

∫ t

0

k(s)c(s) =
3

π
sin(πt)

implies m(1) = 0. We then compare the empirical distributions of Xn(1)

under null and alternative. It shows that they are indistinguishable. While

for the empirical distributions of statistics based on W̃n or Wn, such as wdn

and wωn, the deviation of the empirical distributions under alternative from

that under null and from limiting distributions are both significant.



CHAPTER 5. PROPERTIES OF LIMITING PROCESSES 97

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

c(t)

t

c(
t)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution of X(1)

x

F
(x

)

Under Null
Under Alternative

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d_n for W
~

x

F
(x

)

limit
Under Null
Under Alternative

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d_n for W

x

F
(x

)

limit
Under Null
Under Alternative

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

ω2 for W
~

x

F
(x

)

limit
Under Null
Under Alternative

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

ω2 for W

x

F
(x

)

limit
Under Null
Under Alternative

Figure 5.8: Power of statistics based on W̃n and Wn in Detecting some Con-

tiguous Alternatives: pni = 1/N under Null; p̄ni = pni(1+c(i/N)/
√
n)) under

alternative; n = N = 1000; Empirical distribution of wdn and wω2
n based on

W̃n, Wn of Chi-square process; 1000 replicates.





Chapter 6

Asymptotics in the LNRE

models

Most non-classical multinomial models belong the so-called LNRE model,

where many frequencies are relatively small. Apart from the model with

all Gaussian frequencies, other models discussed in chapters 4 and 5 are all

LNRE models.

The spectral statistics µn(m) and empirical vocabulary µn, which were in-

troduced in section (1.2.7) play vital role in the discussion of asymptotics in

the LNRE models. One reason is that the ratios

Eµn(m)

Eµn
for m = 1, 2, . . .

usually specify different LNRE models. Besides, the symmetric divisible

statistics, such as the ML estimates of diversity measures, can be expressed

as a linear combination of the spectral statistics

N∑
i=1

gn(νni) =
n∑

m=1

gn(m)µn(m).

The asymptotics of these symmetric divisible statistics is therefore naturally

related to the asymptotic behaviour of spectral statistics.

98
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In the models discussed in chapters 4 and 5, we assume the density λ(t) =

d× f(t) is a continuous function. Hence when n ∼ N ,

Eµn(m)

n
=

1

dnN

N∑
i=1

P(νni = m) → 1

d

∫ 1

0

λm(s)

m!
e−λ(s)ds > 0,

such that both (d1) and (d2) conditions of LNRE model are satisfied. While

for models with density concentrated at countable many points in [0,1],

Eµn(1)
n

→ 0,

and the tools developed in chapters 4 and 5 are not applicable. This is the

case where (d2) are satisfied but not (d1).

In this chapter, apart from introducing the general framework and models

of LNRE in section 6.1, we focus on a particular model within the context

of multiple-choice questionnaires in section 6.2. We will establish limit the-

orems and show that this is the case that (d2) are satisfied but not (d1).

6.1 Introduction to LNRE theory

Apart from linguistic data (see Chapter 3), there are plenty of statistical

data having the LNRE properties. For example, if we are interested in the

connectivity of autonomous systems (AS) which compose the global Internet

routing system, then most of them are only connected to a few of the other

systems, and the number of connections of these systems are well described

by an LNRE model.
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number of connections 1 2 3-10 >10

number of ASs 12184 12929 6679 1534

Table 6.1: The Connectivity of Global Internet Routing System(CAIDA AS

Relationships Dataset, 2009/12/15).

The LNRE theory can be traced back to the 1980s, when the formal statistical

analysis of LNRE was established by Khmaladze (1988), in which Khmal-

adze introduced the notions, studied its different forms and found various

necessary and sufficient conditions for so-called (d1) and (d2) zone.

6.1.1 Definition of LNRE

Recall the definition of spectral statistics

µn(m) =
N∑
i=1

I {νni = m} , m = 1, 2, . . .

and empirical vocabulary

µn =
N∑
i=1

I {νni > 0} ,

introduced in Section 1.2.7.

Definition 6.1. A sequence of random vectors {νn}n≥1 forms a sequence of

large number of rare events if

lim
n→∞

Eµn(1)
n

> 0. (d1)

Definition 6.2. A sequence of random vectors {νn}n≥1 forms a sequence of

large number of rare events if

lim
n→∞

Eµn(1)
Eµn

> 0 , lim
n→∞

Eµn = ∞. (d2)
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For convenience, we will say that we are in (d1) or (d2) zone of LNRE if (d1)

or (d2) is satisfied respectively. These two definitions are not equivalent:

namely (d1) ⇒ (d2), but not vice versa.

It is easy to observe that, in classical multinomial models with fixed N and

vector of probabilities p each frequency νni → ∞ a.s. as n→ ∞, and there-

fore µn(1) → 0 and µn → N a.s. Consequently (d1) and (d2) both cannot

be satisfied.

Remark 6.1. As Khmaladze (1988) indicates, some other definitions also

may correspond to the intuitive understanding of the expression “large num-

ber of rare events”. For example {νn} could be called an LNRE sequence

if

lim
n→∞

Eµn(1) = ∞,

or if

lim
n→∞

Eµn(1) > 0,

or if

lim
n→∞

Eµn = ∞.

However, these definitions are less interesting than Definition 6.1 and 6.2,

since the ratios1

αn(m) =
Eµn(m)

Eµn
play key roles in classifying the LNRE models.

6.1.2 Law of Large Numbers of Spectral Statistics

The definition of the LNRE models involves only Eµn(m) and Eµn, while in

empirical data, only µn(m) and µn are available. Therefore, we need to firstly

establish the connection between µn(m) and µn and their expectations. The

1Called relative spectrum elements in Baayen (2001).
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following theorem achieves this target.

Theorem 6.1. If for every m = 1, 2, . . ., Eµn(m) and Eµn > a(lnn)2 for

sufficiently large n, then
µn
Eµn

→ 1 a.s.

and
µn(m)

Eµn(m)
→ 1 a.s.

Proof. See Theorem 6 of Kvizhinadze (2010).

Remark 6.2. It is necessary to point out that this condition is not difficult

to satisfy. Kvizhinadze (2010) has shown, in the LNRE model which will be

discussed in Section 6.2, that Eµn(m) and Eµn are actually of the same order

of Nu with 0 < u < 1, which is much stronger than what is required in the

theorem.

In this thesis, we assume this condition is satisfied and hence we are free to

exchange µn(m), µn and Eµn(m), Eµn.

6.1.3 Models of LNRE

The classification of the LNRE models were based on the limits of the ratio

of the spectral statistics to the empirical vocabulary

µn(m)

µn
,

or to the relative spectrum elements

Eµn(m)

Eµn
.

There is no significant difference between these two as long as the condition

required in Theorem 6.1 is satisfied. However, we prefer the latter, since they

exclude the randomness and only reflect the structure of the LNRE models.
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The most profound the LNRE model is Zip’s Law observed by French stenog-

rapher J.B. Estoup and which was systematically studied by the American

linguist and philologist G.K. Zipf (1935), which states that the ratio of spec-

tral statistics to empirical vocabulary is approximately

µn(m)

µn
≈ 1

m(m+ 1)
.

Other popular LNRE laws include Zipf-Mandelbrot law(Mandelbrot, 1952),

Yule law (Yule, 1924; Simon, 1955), Yule-Simon law(Simon, 1960), Karlin-

Rouault law(Rouault, 1978).

It was revealed that the above laws can subsumed in the Zipfian family of the

LNRE models (Baayen, 2001) 2 and have a general expression (introduced by

Orlov and Chitashvili, 1983a,b) in terms of the limit of the relative spectrum

elements,

α(m,α, β, γ) = lim
n→∞

αn(m) =

∫∞
0

(log(1+x))γ−1xα

(1+x)m+1(1+x)β
dx∫∞

0
(log(1+x))γ−1xα−1

(1+x)β+1 dx

This expression defines a family of models, which reduce to specific laws for

specific choices of the parameters α, β and γ.

Zipf

α(m, 1, 1, 1) =
1

m(m+ 1)

Zipf-Mandelbrot

α(m, 1, 1, γ) =
1

mγ
− 1

(m+ 1)γ
, (γ > 0)

2Baayen (2001) consider α(m,N,α, β, γ) instead of α(m,α, β, γ). But this is incorrect,

since the right side of the expression does not depend on N .
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Yule

α(m,β, β, 1) =
Γ(β + 1)Γ(m)β

Γ(m+ β + 1)

Yule-Simon

α(m, 1, β, 1) =
β

(m+ β − 1)(m+ β)
, (β > 0)

Waring-Herdan-Muller(Herdan,1960,1964;Muller,1979)

α(m,α, β, 1) =
Γ(β + 1)α

Γ(β + 1− α)
· Γ(m+ β − α)

Γ(m+ β + 1)
, (α > 1, β > α)

Karlin-Rouault

α(m,α, 0, 1) =
αΓ(m− α)

Γ(1− α)Γ(m+ 1)
, (0 < α < 1)

6.2 LNRE in multiple-choice questionnaires

In practice there are plenty of examples when the random variable is a q

dimensional vector with coordinates taking different number of values. For

example, imagine a system which contains a large number (say, 20) of com-

ponents and these components can be in various states in any given second,

so that the state of a system could be characterized as 20 dimensional vec-

tor. Biologists use a sequence of procedures to identify bacteria. During

each procedure bacteria is placed in a certain chemical substance where it

changes its colour. Looking on these sequence of colour biologists can say

which group of bacteria it belongs to. It is obvious that the result of this

tests is also an example of multi dimensional random variable. And finally as
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a basic example we will take a questionnaire with q multiple choice answers.

6.2.1 The Model

Consider a set of the disjoint events which can be indexed by q-dimensional

vectors x⃗q = (x1, . . . , xi, . . . , xq) with coordinates xi ranging from 1 to ki

respectively. Then pni and νni, i = 1, · · · , N , in previous setting become p(x⃗q)

and νn(x⃗q), respectively, with x⃗q ∈ Ξq = ×q
i=1{1, . . . , ki} and N =

∏q
i=1 ki

being the cardinality of Ξq. Hence µn(m) becomes,

µn(m) =
∑
x⃗q∈Ξq

I{νn(x⃗q) = m}.

Therefore,

Eµn(m) =
∑
x⃗q∈Ξq

P{νn(x⃗q) = m} =
∑
x⃗q∈Ξq

(
n

m

)
p(x⃗q)

m (1− p(x⃗q))
n−m

and

Eµn =
∑
x⃗q∈Ξq

(1− (1− p(x⃗q))
n) .

In the context of multiple-choice questionnaires, x⃗q can be interpreted as an

opinion in a questionnaire with q multi-option or multi-choice questions (the

i-th question has ki options). And the ratios

Eµn(m)

n
and

Eµn(m)

Eµn
(6.1)

can be interpreted as: the proportion of the number of opinions with m sup-

porters in all n responses; and the total number of opinions with at least 1

supporter, respectively.

The main setting of the framework was given in Khmaladze (2009). In that

paper all xi were binary. However, in this section, we want to take advantage
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of the fact that the proofs given in Khmaladze (2009) are of a more general

nature. We demonstrate this by extending settings for questionnaires with a

general structure.

6.2.2 Preliminary Discussion

The relation among n, q and N

There are three variables n, q and N , which control the asymptotic behavior

of the ratios. Among them, q and N are directly associated with each other

by the definition of N . Therefore, it is sufficient that we discuss the relation

between n and N .

Since N is the number of disjoint events (opinions) and n is sample size

(the number of responses), when n = o(N), most frequencies tend to zero

and those nonzero frequencies will mostly be 1. On the other hand, in the

situation of N = o(n), most frequencies are nonzero and eventually tend to

infinity. However, it is more interesting to investigate the situation where N

and n are comparable, particularly, n = λN for some constant 0 < λ < ∞.

In this section, we focus on the last case.

Introduction of likelihood ratio Mq

Let Pq denote the probability measure on Ξq which is defined by probabilities

p(x⃗q):

Pq

(
X⃗q = x⃗q

)
= p(x⃗q)

and let P0,q denote the uniform measure on Ξq:

P0,q

(
X⃗q = x⃗q

)
= p0(x⃗q) =

1

N
.
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Then,

Eµn(m) =
∑
x⃗q∈Ξq

(
n

m

)
p(x⃗q)

m (1− p(x⃗q))
n−m

= NEP0,q

[(
n

m

)
p(X⃗q)

m
(
1− p(X⃗q)

)n−m]
and

Eµn = NEP0,q

[
1−

(
1− p(X⃗q)

)n]
.

Define Mq as likelihood ratio of the alternative measure Pq to null measure

P0,q, i.e.

Mq(x⃗q) =
dPq

dP0,q

(x⃗q) =
p(x⃗q)

p0(x⃗q)
= Np(x⃗q). (6.2)

Then we have

Eµn(m) = N

(
n

m

)
1

nm
EP0,q

[
(λMq(X⃗q))

m

(
1− λMq(X⃗q)

n

)n−m]
(6.3)

and

Eµn = N

(
1− EP0,q

[(
1− λMq(X⃗q)

n

)n])
. (6.4)

At first sight, it looks artificial that we introduce such a likelihood ratio Mq.

However, as it was suggested in Khmaladze (2009) the benefit of this intro-

duction is significant. Although the “physical” measure of X⃗q is Pq, using

Mq we can exploit its asymptotic properties as if X⃗q had the uniform distri-

bution P0,q. As a likelihood ratio and a martingale in q, Mq(X⃗q) possesses

some good and well-known asymptotic properties, which is very convenient.

Further, according to the Lemma 6.1 below, expressions in the right hand

side of (6.3) and (6.4) can be replaced by Poissonian limits. This suggests

that we can lay aside the role of sample size n in the asymptotic behaviour of

the ratios, and focus on the limiting behaviour of distribution of Mq(X⃗q), or
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equivalently, Np(X⃗q), under the measure P0,q (We will use the same notation

later on).

Lemma 6.1. For Mq(X⃗q) defined by (6.2),

EP0,q

(λMq(X⃗q))
m

(
1− λMq(X⃗q)

n

)n−m
 = EP0,q

[
(λMq(X⃗q))

me−λMq(X⃗q)
]
+O

(
1

n

)
.

Proof: Since

sup
06x6n

∣∣∣∣xm (1− x

n

)n−m
− xme−x

∣∣∣∣ = O

(
1

n

)
and 0 6 λMq(X⃗q) 6 n,∣∣∣∣∣EP0,q

[
(λMq(X⃗q))

m

(
1− λMq(X⃗q)

n

)n−m]
− EP0,q

[
(λMq(X⃗q))

me−λMq(X⃗q)
]∣∣∣∣∣

6
∫ ∞

−∞

∣∣∣∣xm (1− x

n

)n−m
− xme−x

∣∣∣∣ dFλMq(X⃗q)
(x) 6 O

(
1

n

)
.

The structure of p(x⃗q)

By definition, p(x⃗q) is the probability of {X⃗q = x⃗q}, and we can define

ai(j) = Pq (Xi = j)

to be the probability of answering ”j” to the i-th question. In the case that

X1, . . . , Xq are independent,

p(x⃗q) =

q∏
i=1

ai(xi)

and

Mq(x⃗q) = Np(x⃗q) =

q∏
i=1

kiai(xi).
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If we consider

ξi = ln(kiai(Xi))

then we can define

Lq(X⃗q) = lnMq(X⃗q) =

q∑
i=1

ln(kiai(Xi)) =

q∑
i=1

ξi.

In principle, discussions based on Mq and Lq are equivalent. Since Lq can be

expressed as a sum of q random variables, it is more convenient to discuss

the limiting distribution of Lq.

6.2.3 Limit theorem for neutral questionnaires

Let us call a questionnaire “neutral” if the distribution of each Xi is uniform

on its possible values. In this case ai(xi
) =

1

ki
and there is no need to study

Mq , as it is simply 1. Then we have

Eµn(m) = N

(
n

m

)
1

nm
λm
(
1− λ

n

)n−m
∼ N

λme−λ

m!
,

and

Eµn = N

(
1−

(
1− λ

n

)n)
∼ N(1− e−λ).

The limits of the ratios are therefore:

Eµn(1)
n

→ e−λ

and
Eµn(m)

Eµn
=
N
(
n
m

)
1
nmλ

m
(
1− λ

n

)n−m
N(1− (1− λ

n
)n)

→ λme−λ

m!(1− e−λ)
.
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Note that Eµn(1) ∼ n in this case, and hence the frequencies defined here

form a sequence of large number of rare events in sense of both (d1) and (d2).

In practice, the questionnaires can be neither absolutely neutral nor too “far”

from the neutral case. In other words, they are “nearly neutral”. In this case,

we assume the sequence of measures Pq is contiguous to the sequence of mea-

sure P0,q.

In more general situations, where {ai(j)} were assumed to be an arbitrary

sequence, the asymptotic behaviour of ratios in (6.1) is more complicated.

We will show that, under certain conditions, the limit theorems can still be

established.

6.2.4 Limit theorem for contiguous neighborhood of

neutral questionnaires

As mentioned, one reason of introducing the likelihood ratio Mq is its pos-

session of good asymptotic properties. The asymptotic normality of log-

likelihood ratio (see e.g., Oosterhoff and Zwet (1979) and Greenwood and

Shiryayev (1985)) shows that if {Pq} is contiguous to {P0,q} , and satisfies

some additional conditions, the distribution of Lq converges to the normal

distribution N (−1
2
σ2, σ2); i.e. the distribution of Mq converges to a log-

normal distribution. The limit theorem under this condition can therefore

be formulated.

Definition 6.3. A sequence Pq of probability measure is called contiguous

with respect to another sequence P0q of probability measure if limq→∞P0q(Aq) =

0 implies limq→∞Pq(Aq) = 0 for any sequence of measurable sets Aq. This

is called one-sided contiguity and can be denoted by Pq ▹P0q.

The sequences are said to be contiguous with respect to each other if both

Pq ▹ P0q and P0q ▹ Pq. This two-sided contiguity concept is denoted by
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Pq ▹ ◃P0q (Oosterhoff and Zwet, 1979).

Definition 6.4. The Hellinger distance H(P,P0) between two probability

measures P and P0 is defined as follows:

H(P,P0) = (

∫
(
√
p−√

p0)
2dµ)

1
2 = (2− 2

∫
√
p
√
p0dµ)

1
2

where p =
dP

dµ
and p0 =

dP0

dµ
are corresponding Radon-Nikodym derivatives

with respect σ-finite measure µ dominating P+P0.

Suppose Pq =
∏q

i=1 Pqi and P0q =
∏q

i=1 P0,qi, so Pq and P0q are product

measures. Then, the Hellinger distance between product measures and that

of their marginals are connected by the relationship

H2(Pq,P0q) = 2− 2

q∏
i=1

(1− 1

2
H2(Pqi,P0,qi)).

The following theorem from Oosterhoff and Zwet (1979) established the con-

nection between the Hellinger distance and contiguity.

Theorem 6.2. (Oosterhoff and Zwet, 1979) Pq ▹P0q iff

lim sup
q→∞

q∑
i=1

H2 (Pqi,P0,qi) <∞

and

lim sup
q→∞

q∑
i=1

Pqi

(
pqi
p0,qi

(Xqi) > cq

)
= 0

whenever cq → ∞.

Consider log-likelihood Pq with respect to P0q

Lq =

q∑
i=1

ln
pqi
p0,qi

(Xqi).
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Theorem 6.3 (Oosterhoff and Zwet (1979)). For a given σ > 0

Lq
d−→ N (−1

2
σ2;σ2)

under measure P0q and

lim
q→∞

max
16i6q

P0,qi

(∣∣∣∣ln pqi
p0,qi

(Xqi)

∣∣∣∣ > ϵ

)
= 0

for every ϵ > 0, iff for every ϵ > 0

lim
q→∞

q∑
i=1

H2(Pqi,P0,qi) =
1

4
σ2

and

lim
q→∞

q∑
i=1

∫
|p0,qi−pqi|>ϵpqi

(
√
p0,qi −

√
pqi)

2dµqi = 0.

In our context,

Pqi(xi) = ai(xi)

and

P0,qi(xi) = 1/ki,

We can define the Hellinger distance between Pqi and P0,qi as follows:

H(Pqi,P0,qi) =

(
2− 2

∫ (
dPqi

dP0,qi

) 1
2

dP0,qi

) 1
2

=

(
2− 2

∫ √
kiai(xi)dP0,qi

) 1
2

,

and establish the limit theorem for contiguous neighborhood of neutral ques-

tionnaires.

Theorem 6.4. If

lim
q→∞

q∑
i=1

H(Pqi,P0,qi)
2 =

1

4
σ2 <∞ (6.5)

and for every ϵ > 0,

lim
q→∞

q∑
i=1

∫
|kiai(xi)−1|>ϵ

((√
kiai(xi))− 1

))2
dP0,qi = 0, (6.6)
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then

Eµn(m) ∼ N
1

m!
E
[
λmemLe−λe

L
]

and

Eµn ∼ N
(
1− E

[
e−λe

L
])
.

Further,
Eµn(m)

n
→ 1

λm!
E
[
λmemLe−λe

L
]

(6.7)

and

Eµn(m)

Eµn
→

E
[
λmemLe−λe

L
]

m!
(
1− E

[
e−λeL

]) , (6.8)

with L ∼ N
(
−σ2

2
, σ2
)
.

Proof: Conditions 6.5 and 6.6 imply {Pq} ▹ {P0,q} , and guarantee the

asymptotic normality of Lq ( Oosterhoff and Zwet (1979), theorem 2),

Lq = lnMq
d(P0,q)−−−−→ N

(
−σ

2

2
, σ2

)
.

By Lemma 6.1,

Eµn(m) =N

(
n

m

)
1

nm
EP0,q

[
(λMq(X⃗q))

m

(
1− λMq(X⃗q)

n

)n−m]
(6.9)

∼N 1

m!
E
[
λmemLe−λe

L
]

and

Eµn =N

(
1− EP0,q

[(
1− λMq(X⃗q)

n

)n])
(6.10)

∼N
(
1− E

[
e−λe

L
])
,

which yields (6.7) and (6.8).
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In this case, both ratios are strictly greater than 0, and Eµn → ∞. Again,

both (d1) and (d2) conditions of LNRE are satisfied.

Example: Suppose we have

Pqi(j) = ai(j) =
1 +

eij√
q

ki
,

where {eij} satisfies −1 6 eij 6 1 and

lim
q→∞

1

q

q∑
i=1

1

ki

ki∑
j=1

e2ij → σ2 <∞

with constraint
∑ki

j=1 eij = 0. Then the square of the Hellinger distance

between Pqi and P0,qi becomes

H(Pqi,P0,qi)
2 = 2− 2

∫ √
kiai(xi)dP0,qi = 2− 2

1

ki

ki∑
j=1

√
1 +

eij√
q
.

Using Taylor‘s expansion we get√
1 +

eij√
q
= 1 +

1

2

eij√
q
− 1

8

e2ij
q

+
1

16

e3ij
q
√
q
· · · ,

and hence
q∑
i=1

H(Pqi,P0,qi)
2 =

1

4
σ2 +O(

1
√
q
) → 1

4
σ2.

Since when q > 1
ϵ2
, |kiai(xi)− 1| < ϵ for all i, it is easy to see that (6.6) is

satisfied. This implies the asymptotic normality of Lq.

Remark 1. In our treatment in this section, we assumed that the compo-

nents of X⃗q are independent. However, this is not a necessary condition.

In the case that components of X⃗q are dependent, we can simply replace

kia(xi) by conditional probabilities kia(xi|x⃗i−1), to achieve the same result

(see Greenwood and Shiryayev (1985)).
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6.2.5 Limit theorem for general cases

In general, if {ai(j)} is an arbitrary sequence of distributions, then unlike

the contiguity case in previous section where Lq(X⃗q) converge in distribution

to normal random variable, the expectation of Lq(X⃗q) usually tends to −∞
while the variance goes to ∞.

In this situation we can use similar technique which typically are used in

the theory of large deviations (see e.g. Feller (1970) and Kallenberg (2002)).

After applying Esscher’s transform (see, e.g. Feller (1970)), Yq =
Lq(X⃗q)√

q
will

converge under the adjoint measure, and the distribution of Yq can be ap-

proximated by Edgeworth series (see e.g. Feller (1970) and Kolassa (2006)).

Under necessary conditions, we shall see that, in this case, the limit theo-

rem can be established and result agrees with Karlin-Rouault’s law (see, e.g.

Khmaladze and Chitashvili (1989), Baayen (2001)).

For any fixed sequence {ai(j)}, the cumulant generating function of ξi under

P0,qi can be defined by

ψi(u) = lnEP0,qi
euξi = ln

(
ki∑
j=1

[kiai(j)]
u

)
− ln(ki).

Then the cumulant generating function of Lq(X⃗q) is

lnEP0,qe
uLq(X⃗q) =

q∑
i=1

ψi(u).

By Esscher’s transform, the distribution Qu,q of Lq(X⃗q) adjoint to P0,q can

be defined as follows,

dQu,q,Lq(X⃗q)

dP0,q,Lq(X⃗q)

(z) = euz−
∑q

i=1 ψi(u).
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Consequently, the logarithm of moment generating function of Yq = Lq(X⃗q)√
q

under Qu,q is,

lnEQu,qe
rYq =

q∑
i=1

ψi(u+
r
√
q
)−

q∑
i=1

ψi(u).

We can choose u = uq such that EQuq,q
Lq(X⃗q) =

∑q
i=1 ψ

′
i(uq) = 0. The

variance of Yq under Quq ,q is

σ2
q =

1

q

q∑
i=1

ψ′′
i (uq),

and therefore Yq =
Lq(X⃗q)√

q
becomes a random variable with mean 0 and vari-

ance σ2
q under Quq ,q.

Theorem 6.5. Assume uq is the solution of
∑q

i=1 ψ
′
i(u) = 0. If {ai(j)} is

such that

c <
1

q

q∑
i=1

ψ′′
i (uq) < C, (6.11)

and if there exists δ > 0 such that∣∣∣e∑q
i=1[ψi(uq+r)−ψi(uq)]

∣∣∣ = o

(
1
√
q

)
uniformly in r > δ > 0, (6.12)

then

Eµn(m) ∼ Ne
∑q

i=1 ψi(uq)
λuq
√
q
ϕ0,σ2

q
(0)

Γ(m− uq)

m!
, (6.13)

Eµn ∼ Ne
∑q

i=1 ψi(uq)
λuq
√
q
ϕ0,σ2

q
(0)

Γ(1− uq)

uq
(6.14)

and

Eµn(m)

Eµn
→ u∗Γ(m− u∗)

Γ(m+ 1)Γ(1− u∗)
, (6.15)

where u∗ = limq→∞ uq.
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Proof: Applying Esscher’s transform we get

EP0,q

[
(λMq(X⃗q))

me−λMq(X⃗q))
]

=e
∑q

i=1 ψi(uq)

∫ ∞

−∞
λme(m−uq)xe−λe

x

dQuq ,q,Lq(X⃗q)
(x), (6.16)

then replace Lq(X⃗q) by Yq,∫ ∞

−∞
λme(m−uq)xe−λe

x

dQuq ,q,Lq(X⃗q)
(x)

=

∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy

dQuq ,q,Yq(y). (6.17)

In Lemma 6.2 , we will prove that under condition (6.11) and (6.12),

∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy

dQuq ,q,Yq(y)

=

∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy

dΦ0,σ2q
(y) + o

(
1
√
q

)
, (6.18)

where Φ0,σ2
q
is normal distribution function with mean 0 and variance σ2

q .

Then by Lemma 6.3, ∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy

dΦ0,σ2q
(y)

∼λ
uq

√
q
ϕ0,σ2q

(0)Γ(m− uq) = O

(
1
√
q

)
. (6.19)

Combine (6.9), Lemma 6.1, (6.16), (6.17), (6.18), (6.19), and note that 1
n
=

o
(

1√
q

)
, we conclude that for any m > 1,

Eµn(m) ∼ Ne
∑q

i=1 ψi(uq)
λuq
√
q
ϕ0,σ2

q
(0)

Γ(m− uq)

m!
.

Combining the last equation with

∞∑
m=1

Γ(m− uq)

m!
=

Γ(1− uq)

uq
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and considering Eµn(m) > 0, we get

Eµn ∼ Ne
∑q

i=1 ψi(uq)
λuq
√
q
ϕ0,σ2

q
(0)

Γ(1− uq)

uq

and consequently (6.15).

Lemma 6.2. If conditions (6.11) and (6.12) are satisfied, then (6.18) holds.

Proof: Denote g(y, q) = λme(m−uq)
√
qye−λe

√
qy

and g′(y, q) = ∂g(y,q)
∂y

, then

limy→∞ g(y, q) = 0 and limy→−∞ g(y, q) = 0 when uq < m,∫ ∞

−∞
g(y, q)dQuq ,q,Yq(y)−

∫ ∞

−∞
g(y, q)dΦ0,σ2q

(y)

=

∫ ∞

−∞

(
Quq ,q,Yq(y)− Φ0,σ2q

(y)
)
g′(y, q)dy.

Under the condition (6.11) and (6.12), the Edgeworth expansion (see Feller

(1970)) shows,

Quq ,q,Yq(y) = Φ0,σ2
q
(y)−

∑q
i=1 ψ

(3)
i (uq)

6σ3
qq

3
2

H2(σqy)ϕ(σqy) + o

(
1
√
q

)
.

Here H2(y) = y2−1 is the second Hermite polynomial. Since
∫∞
−∞ |g′(y, q)|dy

is bounded,∫ ∞

−∞

(
Quq ,q,Yq(y)− Φ0,σ2

q
(y)
)
g′(y, q)dy

=−
∫ ∞

−∞

∑q
i=1 ψ

(3)
i (uq)

6σ3
qq

3
2

H2(σqy)ϕ(σqy)g
′(y, q)dy + o

(
1
√
q

)

=−
1
q

∑q
i=1 ψ

(3)
i (uq)

6σ2
q

√
q

∫ ∞

−∞
H3(σqy)ϕ(σqy)g(y, q)dy + o

(
1
√
q

)
. (6.20)

Here H3(y) = y3 − 3y is the third Hermite polynomial. Now, since

∫ ∞

−∞
H3(σqy)ϕ(σqy)g(y, q)dy

=

∫ ∞

−∞
((σqy)

3 − 3σqy)ϕ(σqy)λ
me(m−uq)

√
qye−λe

√
qy

dy → 0
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and limq→∞
1
q

∑q
i=1 ψ

(3)
i (uq) <∞, the right side of (6.20) is o( 1√

q
) and (6.18)

holds.

Lemma 6.3. Suppose uq is solution of
∑q

i=1 ψ
′
i(u) = 0, then∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy

dΦ0,σ2q
(y) ∼ λuq

√
q
ϕ0,σ2

q
(0)Γ(m− uq).

Proof: Since for any β > 0 and m > 1 > uq, we have for large values of q,

∫ −βq−
1
4

−∞
λme(m−uq)

√
qye−λe

√
qy

dΦ0,σ2
q
(y)

6λme−(m−uq)βq
1
4 e−λe

−βq
1
4

∫ −βq−
1
4

−∞
dΦ0,σ2

q
(y) < o(

1
√
q
)

and ∫ ∞

βq−
1
4

λme(m−uq)
√
qye−λe

√
qy

dΦ0,σ2
q
(y)

6λme(m−uq)βq
1
4 e−λe

βq
1
4

∫ ∞

βq−
1
4

dΦ0,σ2
q
(y) < o(

1
√
q
)

while, ∫ βq−
1
4

−βq−
1
4

λme(m−uq)
√
qye−λe

√
qy

dΦ0,σ2
q
(y)

=λuq
∫ βq

1
4

−βq
1
4

(λez)m−uqe−λe
z

dΦ0,qσ2
q
(z)

=λuq
∫ βq

1
4

−βq
1
4

(λez)m−uqe−λe
z 1

σq
√
2πq

e
− z2

2qσ2
q dz

∼λ
uq

√
q
ϕ0,σ2

q
(0)

∫ ∞

−∞
(λez)m−uqe−λe

z

dz

=
λuq
√
q
ϕ0,σ2

q
(0)Γ(m− uq).

Hence, we conclude,∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy

dΦ0,σ2q
(y) ∼ λuq

√
q
ϕ0,σ2

q
(0)Γ(m− uq).
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Note that in this case,

Eµn(m) ∼ Ne
∑q

i=1 ψi(uq)
λuq
√
q
ϕ0,σ2

q
(0)

Γ(m− uq)

m!
,

implies
Eµn(1)
n

∼ O

(
1
√
q

)
→ 0,

and therefore (d2) are satisfied but not (d1).





Chapter 7

Conclusions

In spite of having wide application and being of various forms, the essen-

tial nature of divisible statistics is simple: they are the sum of functions of a

sequence of frequencies, which follow a joint multinomial distribution. There-

fore, the asymptotic properties of divisible statistics can be discussed in a

unified framework. In this thesis, we established such a framework for divis-

ible statistics in both classical multinomial models and non-classical models.

In classical multinomial models, the probabilities are fixed and the expec-

tation of all frequencies tends to infinity, hence the limit distribution of the

vector of normalized frequencies is multivariate normal. As we have shown

in chapter 2, based on this limiting distribution of normalized frequencies,

the limit theorems of general divisible statistics can be established; and some

useful properties such as the asymptotic equivalence to Chi-square for some

classes of divisible statistics, and the distribution-free nature of this class,

can be obtained.

However, in the move from classical to non-classical models, these good prop-

erties are lost. The asymptotic behaviour of the divisible statistics becomes

very complicated and it is difficult to establish limit theorems. We illustrate

these difficulties in chapter 3 and carried out preliminary analysis to the

121
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asymptotic behaviour of some objects, which are important in specifying the

models.

The most important results of this thesis come from chapter 4, in which

we discussed a powerful method for establishing limit theorems of divisible

statistics. This advanced approach, first established by Khmaladze (1984),

has not yet attracted much attention in applied statistics. In addition to de-

scribing this martingale approach in detail, we show that this approach can

be extended to a more general situation, where both asymptotically Poisso-

nian and Gaussian frequencies can be allowed. The functional limit theorems

have been established in this new scheme and the comparison between these

two schemes has been discussed.

Chapter 5 was devoted to discussion of the properties and applications of

the limiting processes, arising from the FLTs of chapter 4. We showed that

the limiting processes can be determined by two characteristics, and gave

examples of them for different divisible statistics. Some properties of these

characteristics have been discussed, in particular for the non-classical models

with all frequencies asymptotically Gaussian. Furthermore, we have shown

that a new class of statistics can be constructed based on the martingale com-

ponent or a 1-to-1 transformation of the partial sum process. We have shown

that this new class of statistics possesses some very desirable properties such

as being distribution-free and having power to detect some contiguous alter-

natives which cannot be detected by divisible statistics.

At the end of this thesis, we discussed selected topics in LNRE theory.

The LNRE models covered most non-classical multinomial models, including

those discussed in chapters 4 and 5. While in chapter 6, we focused on the

LNRE models which satisfy (d2) but not (d1) condition. In particular, we

established limit theorems for the model with context of diversity of question-

naires. The asymptotics of spectral statistics and vocabulary was revealed
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and the ratios

αn(m) =
Eµn(m)

Eµn
can be seen satisfying the so-called Karlin-Rouault law.

Due to the complex nature of the problem, there are still some aspects which

need to be investigated in the future, such as the limit theorems of partial

sum processes when parameters are estimated and the convergence rates of

the partial sum processes. There is also room in further development in

LNRE theory.





Appendix A

Some discussion on Large

Deviations

Large Deviation

Consider a sequence of i.i.d. random variables ξ1, . . . , ξi, . . . , ξn. If Eξi = µ <

∞ and σ2 = var(ξi) <∞, then the CLT implies as n→ ∞,

Yn =
Sn − nµ√

n
→ Y ∼ N (0, σ2)

so that Yn can be approximated by a normal random variable Y .

However, the approximation of Yn by Y is good only in the central part,

but not in the tail. For example if all ξi are iid Bernoulli r.v. with pa-

rameter p, then P(Yn >
√
n(1 − p)) = 0 which is obviously different from

P(Y >
√
n(1− p)).

There are many situation where the tail is of interest. For example, some-

times we want to investigate the relative error of 1 − FYn(x) approximated

by 1− FYn(x), when y ∼ nα.
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Esscher’s transforms

To cope with the difficulty resulted from the “large deviation”, we can employ

the technique of Esscher’s transforms.

Definition A.1. Given a probability space (Ω,F ,P) and a random variable

Y , the adjoint probability measures Qu (sometime called conjugate measure)

with Radon-Nikodým density

dQu

dP
(y) = euy−ΛY,P (u)

for some real number u , with ΛY,P (u) = lnEP e
uY being cumulant-generating

function of Y under P , are called Esscher transforms (Esscher 1932).

The cumulant-generating function of Yn under Qu is

ΛYn,Qu(r) = ln

∫
ery

dQu

dP
dP = ΛYn,P (u+ r)− ΛYn,P (u)

then expectation of Yn under Qu is therefore a function of u,

EQu(Yn) =
dΛYn,Qu(r)

dr

∣∣∣∣
r=0

= Λ′
Yn,P (u).

Hence we can choose u such that,

EQu(Yn) = Λ′
Yn,P (u) = cnα

such that the deviations are NOT large any more. The tail in origin measure

is now moved to the central of the adjoint measure.

Example: Asymptotic Expansion of the Distribution of a Sum

Consider the following problem: For x > 0, what is the asymptotic expansion

of

P(Sn > x) = P

(
Yn >

x√
n
− µ

√
n

)
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Choose u such that EQuYn = Λ′
Yn,P

(u) = −µ
√
n, then varQuYn = Λ′′

Yn,P
(u) =

σ2 and

P(Sn > x) =eΛYn,P (u)

∫ ∞

x√
n
+Λ′

Yn,P (u)

e−uydQu,Yn(y)

=eΛYn,P (u)−uΛ′
Yn,P (u)

∫ ∞

x
σ
√

n

e−uσzdQu,Zn(z)

∼eΛYn,P (u)−uΛ′
Yn,P (u)

∫ ∞

x
σ
√

n

e−uσzdΦ(z)

=eΛYn,P (u)−uΛ′
Yn,P (u)+

u2Λ′′
Yn,P (u)

2

[
1− Φ

(
x

σ
√
n
+ uσ

)]
Further,

1− Φ

(
x√
n
+ uσ

)
∼
φ
(

x√
n
+ uσ

)
x√
n
+ uσ

∼ 1√
2πuσ

e−

(
x√
n
+uσ

)2

2 ∼ e
u2σ2

2

√
2πuσ

e
− xu√

n

Set t = u√
n
, then since

Λ′
Yn,P (u) = nλ′(

u√
n
)− µ

√
n = −µ

√
n,

λ′(t) = 0 and eventually,

P(Sn > x) ∼ eΛYn,P (u)−uΛ′
Yn,P (u)+

u2Λ′′
Yn,P (u)

2
e

u2σ2

2

√
2πuσ

e
− xu√

n = A(t)e−xt

with A(t) being some term irrelevant to x.
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