
Feature Manipulation with

Genetic Programming

by

Kourosh Neshatian

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science.

Victoria University of Wellington

2010

Abstract

Feature manipulation refers to the process by which the input space of

a machine learning task is altered in order to improve the learning quality

and performance. Three major aspects of feature manipulation are feature

construction, feature ranking and feature selection. This thesis proposes

a new filter-based methodology for feature manipulation in classification

problems using genetic programming (GP). The goal is to modify the input

representation of classification problems in order to improve classification

performance and reduce the complexity of classification models.

The thesis regards classification problems as a collection of variables in-

cluding conditional variables (input features) and decision variables (target

class labels). GP is used to discover the relationships between these vari-

ables. The types of relationship and the ways in which they are discovered

vary with the three aspects of feature manipulation.

In feature construction, the thesis proposes a GP-based method to con-

struct high-level features in the form of functions of original input fea-

tures. The functions are evolved by GP using an entropy-based fitness

function that maximises the purity of class intervals. Unlike existing algo-

rithms, the proposed GP-based method constructs multiple features and it

can effectively perform transformational dimensionality reduction, using

only a small number of GP-constructed features while preserving good

classification performance.

In feature ranking, the thesis proposes two GP-based methods for rank-

ing single features and subsets of features. In single-feature ranking, the

proposed method measures the influence of individual features on the

classification performance by using GP to evolve a collection of weak clas-

sification models, and then measures the contribution of input features to

the making of good models. In ranking of subsets of features, a virtual

structure for GP trees and a new binary relevance function is proposed to

measure the relationship between a subset of features and the target class

labels. It is observed that the proposed method can discover complex

relationships—such as multi-modal class distributions and multivariate

correlations—that cannot be detected by traditional methods.

In feature selection, the thesis provides a novel multi-objective GP-

based approach to measuring the goodness of subsets of features. The

subsets are evaluated based on their cardinality and their relationship to

target class labels. The selection is performed by choosing a subset of fea-

tures from a GP-discovered Pareto front containing suboptimal solutions

(subsets). The thesis also proposes a novel method for measuring the re-

dundancy between input features. It is used to select a subset of relevant

features that do not exhibit redundancy with respect to each other.

It is found that in all three aspects of feature manipulation, the pro-

posed GP-based methodology is effective in discovering relationships be-

tween the features of a classification task. In the case of feature construc-

tion, the proposed GP-based methods evolve functions of conditional vari-

ables that can significantly improve the classification performance and re-

duce the complexity of the learned classifiers. In the case of feature rank-

ing, the proposed GP-based methods can find complex relationships be-

tween conditional variables and decision variables. The resulted rank-

ing shows a strong linear correlation with the actual classification perfor-

mance. In the case of feature selection, the proposed GP-based method

can find a set of sub-optimal subsets of features which provids a trade-off

between the number of features and their relevance to the classification

task. The proposed redundancy removal method can remove redundant

features from a set of features. Both proposed feature selection methods

can find an optimal subset of features that yields significantly better clas-

sification performance with a much smaller number of features than con-

ventional classification methods.

Produced Publications

1. Kourosh Neshatian, Mengjie Zhang, and Mark Johnston. “Feature

Construction and Dimension Reduction Using Genetic Programming”.

Proceedings of the 20th Australian Joint Conference on Artificial Intelli-

gence (AI’07), Lecture Notes in Artificial Intelligence, Vol. 4830, Springer,

Gold Coast, Australia, December 2007. pp 160-170.

2. Kourosh Neshatian and Mengjie Zhang. “Genetic Programming and

Class-Wise Orthogonal Transformation for Dimension Reduction in

Classification Problems”. Proceedings of the 11th European Conference

on Genetic Programming (EuroGP 2008), Lecture Notes in Computer Sci-

ence, Vol. 4971, Springer, Napoli, Italy, March 2008. pp 242-253.

3. Kourosh Neshatian and Mengjie Zhang. “Genetic Programming for

Performance Improvement and Dimensionality Reduction of Clas-

sification Problems”. Proceedings of the 2008 IEEE World Congress

on Computational Intelligence (CEC’08), IEEE Press, Hong Kong, June

2008. pp 2811-2818.

4. Kourosh Neshatian, Mengjie Zhang, and Peter Andreae. “Genetic

Programming for Feature Ranking in Classification Problems”. Pro-

ceedings of the seventh International Conference on Simulated Evolution

and Learning (SEAL’08), Lecture Notes in Computer Science, Vol. 5361,

Springer, Melbourne, Australia, December 2008. pp 544-554.

i

ii

5. Kourosh Neshatian and Mengjie Zhang. “Genetic Programming for

Feature Subset Ranking in Binary Classification Problems”. Proceed-

ings of the 12th European Conference on Genetic Programming (EuroGP

2009), Lecture Notes in Computer Science, Vol. 5481, Springer, Tbingen,

Germany, April 2009. pp 121-132.

6. Kourosh Neshatian and Mengjie Zhang. “Pareto Front Feature Se-

lection: Using Genetic Programming to Explore the Feature Space1”.

Proceedings of the 11th Annual Conference on Genetic and Evolutionary

Computation (GECCO’09), ACM Press, Montreal, Qubec, Canada, July

2009. pp 1027-1034.

7. Kourosh Neshatian and Mengjie Zhang. “Unsupervised Elimination

of Redundant Features Using Genetic Programming2”. Proceedings of

the 22nd Australasian Joint Conference on Artificial Intelligence (AI’09),

Lecture Notes in Artificial Intelligence, Vol. 5866, Springer, December

2009. pp 432-442.

8. Kourosh Neshatian and Mengjie Zhang. “Dimensionality Reduction

in Face Detection: A Genetic Programming Approach3”. Proceedings

of the 24th International Conference on Image and Vision Computing, IEEE

Press, Wellington, New Zealand, November 2009. pp 391-396.

1The paper was nominated for the best paper award.
2The paper has received the best student paper award.
3The paper investigates one of the possible future directions of the thesis. The research

is in a prelimenary stage, and is hence not included in the thesis.

Acknowledgments

I would like to express my gratitude to those who gave me the assistance

and support I needed to complete this thesis.

My thanks goes to my advisers, A/Prof. Mengjie Zhang for his su-

pervision, guidance and attention to detail throughout the course of my

research, and Dr. Peter Andreae for his constructive and often motivating

remarks and the many interesting discussions.

I must acknowledge the financial assistance of Victoria University of

Wellington (Victoria PhD Scholarships and Marsden Fund VUW0806) with-

out which the past three years would have been far more stressful and

accompanied by far fewer Lattes and Mochaccinos.

And finally, my appreciation to all those, especially friends and fellow

researchers from the School of Computer Science, who made my time at

Victoria University of Wellington an experience that went beyond my ex-

pectations.

iii

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Goals . 3

1.3 Major Contributions . 4

1.4 Organisation of the Thesis . 6

1.4.1 Structure . 6

1.4.2 Outline . 6

1.4.3 Navigation . 8

1.5 Benchmark Problems for Evaluation 8

1.6 Notation . 9

2 Literature Review 11

2.1 Machine Learning . 11

2.1.1 Classification Algorithms 12

2.1.1.1 Training and Testing 12

2.1.1.2 Representation 13

2.1.1.3 Decision Tree Classifiers 14

2.1.1.4 Support Vector Machines 14

2.1.1.5 Bayesian Classifiers 15

2.1.1.6 Other Classification Techniques 15

2.2 Feature Manipulation . 16

2.2.1 Fundamental Concepts 16

2.2.1.1 Basic Operations 16

iv

CONTENTS v

2.2.1.2 Wrapper vs Filter Approach 17

2.2.2 Feature Construction 18

2.2.2.1 Classical Methods for Feature Construction 18

2.2.3 Feature Selection . 18

2.2.3.1 Wrappers for Feature Selection 19

2.2.3.2 Filters for Feature Selection 20

2.2.4 Feature Ranking . 20

2.2.4.1 Issues with Epistatic Features 21

2.2.5 Transformational Dimensionality Reduction 22

2.3 Genetic Programming . 23

2.3.1 Overview of Evolutionary Computation 23

2.3.1.1 Evolutionary Algorithms 23

2.3.1.2 Swarm Intelligence 25

2.3.2 GP Algorithm . 25

2.3.3 Program Representation 26

2.3.4 Creating Initial Populations 27

2.3.5 Genetic Operators . 28

2.3.5.1 Crossover . 28

2.3.5.2 Mutation . 29

2.3.5.3 Reproduction 30

2.3.6 Fitness Function and Selection Mechanism 31

2.4 GP for Feature Manipulation 31

2.4.1 A Generic Outline . 32

2.4.2 GP for Feature Construction 33

2.4.2.1 Wrapper Approaches to Using GP for Feature Construction 34

2.4.2.2 Filter Approaches to Using GP for feature Construction 34

2.4.3 GP for Feature Selection 35

2.5 Summary and Discussion . 35

3 Multiple Feature Construction 37

3.1 Introduction . 37

CONTENTS vi

3.1.1 Defining Feature Construction 37

3.1.2 The Appropriateness of Genetic Programming 38

3.1.3 Wrapper Approach vs Filter Approach 38

3.1.4 Chapter Goals . 39

3.2 Developing a Measure of Goodness 39

3.2.1 Decision Stump and Its Limitation 40

3.2.2 Extending Decision Stumps to Class Intervals 42

3.3 Proposing a Non-Wrapper Fitness Function 44

3.3.1 Class Intervals: A Mathematical Model 45

3.3.1.1 Intervals of Classes with Normally Distributed Instances 45

3.3.1.2 Intervals of Classes with Unknown Distributions 45

3.3.2 Purity Measure: A Mathematical Model 46

3.3.2.1 Using Shannon’s Entropy 47

3.3.3 The Fitness Function 48

3.3.3.1 Finding a Class Interval: The Algorithm . . 49

3.3.3.2 Fitness Evaluation: Measuring the Entropy 51

3.4 A GP System for Feature Construction 53

3.4.1 System Diagram . 53

3.4.2 The GP Search . 53

3.5 Empirical Results . 56

3.5.1 Design of Experiments 56

3.5.1.1 Datasets . 56

3.5.1.2 GP Settings 56

3.5.1.3 Evaluation Process 58

3.5.2 Results and Analysis 59

3.5.2.1 Classification Performance Using Augmented Datasets 59

3.5.2.2 Classification Performance Using Only Constructed Features 62

3.5.2.3 Effect of Constructed Features on Decision Tree Complexity 63

3.5.2.4 Analysis of A GP-Constructed Feature . . . 65

3.6 Discussion . 65

CONTENTS vii

4 Dimensionality Reduction 69

4.1 Introduction . 69

4.1.1 Transformational Reduction 69

4.1.2 Challenges in Dimensionality Reduction using GP . . 70

4.1.3 Chapter Goals . 71

4.2 Enriching GP Material through Transformations 72

4.2.1 Finding a Promising Transformation 72

4.2.1.1 The Issue of Oblique Class Boundaries in Decision Trees 72

4.2.1.2 Limitations of PCA in Classification Problems 73

4.2.1.3 Class-wise Orthogonal Transformation . . . 76

4.2.2 A Real World Example 79

4.2.3 The Enrichment Process 82

4.2.3.1 Two Options for Using Transformations as Genetic Material 82

4.2.3.2 Extended Variable Terminal Sets 84

4.2.3.3 Enrichment Algorithm 85

4.3 The Fitness Function . 86

4.3.1 A Generalised Model: Renyi’s Entropy 88

4.3.2 A Simple and Efficient Model 88

4.3.3 Algorithm . 89

4.4 A GP System for Dimensionality Reduction 91

4.4.1 Algorithm . 93

4.5 Empirical Results . 93

4.5.1 Design of Experiments 93

4.5.1.1 Datasets . 95

4.5.1.2 GP Settings 95

4.5.1.3 Evaluation Process 96

4.5.2 Results and Analysis 98

4.5.2.1 Effectiveness of the Algorithm 98

4.5.2.2 Comparison with the PCA method 101

4.6 Discussions . 102

CONTENTS viii

5 Single-Feature Ranking 104

5.1 Introduction . 104

5.1.1 Motivations . 104

5.1.2 GP Suitability for Feature Ranking 105

5.1.3 Chapter Goals . 105

5.2 GP-based Single-Feature Ranking 106

5.2.1 The Main Idea . 106

5.2.2 Overall System Diagram 107

5.3 Using GP to Build Weak Classifiers 108

5.3.1 Classification Model 109

5.3.2 GP Algorithm and the Fitness Function 110

5.4 Ranking Features . 112

5.4.1 Algorithm . 113

5.5 Empirical Results . 115

5.5.1 Design of Experiments 115

5.5.1.1 Datasets . 116

5.5.1.2 GP Settings 116

5.5.1.3 Evaluation Process 118

5.5.2 Results . 119

5.5.2.1 Scores and Ranks 119

5.5.2.2 Effectiveness of GP-based Ranking: Comparison to the Baseline119

5.5.2.3 Utility in Dimensionality Reduction 121

5.6 Summary and Discussion . 126

6 Ranking Subsets of Features 130

6.1 Introduction . 130

6.1.1 Chapter Goals . 131

6.2 GP for Ranking Subsets of Features 132

6.2.1 Overview . 132

6.2.2 Program Trees: A Virtual Structure 132

6.2.3 Relevance Measure . 133

CONTENTS ix

6.2.4 Fitness Function . 136

6.2.5 Case Studies . 139

6.2.5.1 Bimodal Class Distribution 139

6.2.5.2 Correlated Features 141

6.3 Exploring the Search Space of Subsets of Features 142

6.3.1 Search Space Topology 142

6.3.2 Difficulties in Exploring the Search Space 143

6.3.3 Improving Search Space Exploration 145

6.4 Creating a Pareto Front . 148

6.4.1 Feature Selection Objectives 148

6.4.2 Pareto Archive . 149

6.5 The Main System . 150

6.6 Empirical Results . 152

6.6.1 Design of Experiments 152

6.6.1.1 Datasets . 153

6.6.1.2 GP Settings and Implementation Details . . 153

6.6.1.3 Evaluation 155

6.6.2 Results . 155

6.6.2.1 Subset Ranking 155

6.6.2.2 The Relation between the Highest-Rank and the Best Subset of Featur

6.6.2.3 Search Space Exploration 159

6.6.2.4 Subset Selection 160

6.7 Summary and Discussion . 163

7 Elimination of Redundant Features 165

7.1 Introduction . 165

7.1.1 Chapter Goals . 166

7.2 Primary Concepts . 167

7.2.1 Redundant Features 167

7.2.2 Degrees of Redundancy 168

7.3 Using Genetic Programming to Measure Redundancy 169

CONTENTS x

7.3.1 A GP-based Redundancy Measure 170

7.3.2 A Synthetic Example 172

7.3.3 Algorithm . 174

7.4 Feature Selection . 175

7.4.1 System Diagram . 175

7.4.2 Forward Selection Algorithm 177

7.5 Empirical Results . 179

7.5.1 Design of Experiments 179

7.5.1.1 Datasets . 179

7.5.1.2 GP Settings and Implementation Details . . 179

7.5.1.3 Evaluation 181

7.6 Results and Analysis . 181

7.7 Summary and Discussion . 186

8 Conclusions 188

8.1 Achieved Objectives . 188

8.2 GP and Feature Manipulation 189

8.2.1 GP for Feature Construction 190

8.2.1.1 Improvements to the Classification Performance190

8.2.1.2 The Richness of GP-Constructed Features and Transformational Dimensionality

8.2.1.3 Reduction in the Complexity of Classification Models191

8.2.1.4 The Effect of Enrichment of Genetic Material on the Quality of Solutions

8.2.2 GP for Feature Ranking 192

8.2.2.1 Dimensionality Reduction via Using a few High-Rank Features192

8.2.2.2 Deterioration in Classification Performance due to Excessive Number

8.2.2.3 Finding the Complicated Relationships between Groups of Input Featur

8.2.2.4 High Positive Linear Correlation between Provided Ranking and Actual

8.2.3 GP for Feature Selection 193

8.2.3.1 Finding the Best Subset of Features through High-Rank Subsets193

8.2.3.2 Finding Optimal Subsets of Features on a Pareto Front194

8.2.3.3 Detecting Non-Linear and Multivariate Dependencies194

CONTENTS xi

8.2.3.4 Improving Classification Performance through Removing Redundant

8.3 Impact and Utilisation of Findings 195

8.3.1 Improving the Performance of Symbolic Learners in Numeric Domains195

8.3.2 More Promising Transformational Dimensionality Reduction196

8.3.3 Improved Feature Selection by Subset Ranking 197

8.3.4 A New Way of Detecting and Removing Redundant Features198

8.4 Future Directions . 198

8.4.1 Directions in Using GP for Feature Construction . . . 198

8.4.1.1 Handling Nominal Features and Features with Missing Values198

8.4.1.2 Cooperative Co-Evolutionary Multiple Feature Construction199

8.4.1.3 Further Enrichment of Genetic Material . . 199

8.4.1.4 Testing the Proposed Algorithm on Other Classifiers199

8.4.2 Directions in Using GP for Feature Ranking 200

8.4.2.1 Making GP Capable of Using Very Large Numbers of Features in Pr

8.4.3 Directions in Using GP for Feature Selection 200

8.4.3.1 Testing the Proposed GP-based Methods on Other Datasets200

8.4.3.2 A Complete GP Ranking and Redundancy Removal System200

8.4.3.3 Using GP to Explore the Feature Lattice Directly201

8.4.3.4 Using the GP-Based Algorithms on Problems with Large Numbers

A Benchmark Datasets 202

Bibliography 225

List of Tables

1.1 The coverage and dependency of the content of the thesis . . 8

1.2 The classification problems used throughout the thesis . . . 9

3.1 Specification of datasets used in experiments. 57

3.2 GP Settings . 58

3.3 Evaluation Settings . 59

3.4 Number of features at different stages 60

3.5 Classification accuracy over the original and augmented dataset 61

3.6 Results of the proposed approach and the basic decision tree approach. 63

3.7 Changes in Complexity of Decision Trees 64

4.1 Specification of datasets used in experiments 96

4.2 GP Settings . 97

4.3 Evaluation Settings . 98

4.4 Dimensionality reduction . 99

4.5 Classification performance before and after dimensionality reduction100

4.6 Classification Performance . 102

5.1 Specifications of datasets used in experiments 116

5.2 GP Settings . 117

5.3 Evaluation Settings . 118

5.4 Feature ranks . 119

6.1 Three relevance measures on two case studies 139

xii

LIST OF TABLES xiii

6.2 Specifications of datasets used in experiments 153

6.3 GP Settings . 154

6.4 Evaluation Settings . 155

6.5 Correlation between GP-calculated relevance and classification performance158

6.6 Selection Gain . 159

6.7 Classification Results . 162

7.1 GP Settings . 180

7.2 Evaluation Settings . 181

7.3 Corrected ranking based on different redundancy thresholds (θ)182

7.4 Number of eliminated redundant features 184

7.5 Performance of the J48 classifier using the selected features . 185

7.6 Performance of the SVM classifier using the selected features 186

List of Figures

2.1 A feature manipulation system taking a wrapper approach. 17

2.2 A Sample Tree-based Genetic Program 27

2.3 Crossover Operator in Tree-based GP 29

2.4 Mutation Operator in Tree-based GP 30

2.5 The outline of the feature creation process using GP. 32

3.1 The goodness of a feature x form the viewpoint of a decision stump: (a) the feature

3.2 The goodness of a feature x from the viewpoint of a class interval: (a) the feature is

3.3 An example feature x and an interval for class +. The class interval creates a new pr

3.4 The system diagram of the proposed GP-based multiple-feature construction system

3.5 A learnt decision tree using a constructed feature, yB. The feature has been constructed

4.1 An artificial dataset with two original features, x1 and x2, and two classes, + and ◦.
4.2 The PCA transformation of the data displayed in the previous figure. 75

4.3 Transformed input space using class-wise orthogonal transformations 78

4.4 Thyroid disease dataset represented in two dimensions. The axes are two attributes

4.5 Transformed input space of the Thyroid problem using PCA. The axes are the two principle

4.6 Two (out of six) dimensions presented after transforming the original input space of

4.7 An overview of the genetic material enrichment process and dimensionality reduction.

4.8 Overview of the proposed GP-based dimensionality reduction system. 92

5.1 Overview of the system. 108

5.2 Score of features in the Ionosphere, Sonar and WBC-Diagnostic120

5.3 Comparison of the proposed ranking with the baseline (random selection) in the Ionospher

xiv

LIST OF FIGURES xv

5.4 Comparison of the proposed ranking with the baseline (random selection) in the Sonar

5.5 Comparison of the proposed ranking with the baseline (random selection) in the WBC-Diagnostic

5.6 Accuracy of different classifiers in the John Hopkins University Ionosphere classification

5.7 Accuracy of different classifiers in the Sonar classification task by using different numbers

5.8 Accuracy of different classifiers in the WBC-Diagnostic classification task by using dif

6.1 A virtual structure for a GP program for measuring the usefulness of a subset of featur

6.2 Magnitude of parameter β in LR (top) and BR function (bottom) with respect to the

6.3 A bimodal class distribution along feature x in a binary classification problem (Left).

6.4 A binary classification task presented with respect to two of its features, x and y, which

6.5 Search space of the feature subsets in the form of a lattice where each node represents

6.6 Frequency of subsets of features in the three datasets with respect to the cardinality

6.7 An artificial binary classification problem with classes A and B (visualised at 1 and

6.8 The diagram of the proposed GP-based subset ranking/selection system.151

6.9 Relevance of subsets of features vs. classification performance obtained by using the

6.10 Pareto front of the three datasets. 161

7.1 An artificial example where x3 is redundant in the context of x1 and x2. The scatter

7.2 A non-linear transformation function (a GP program) that can detect the redundancy

7.3 Diagram of a feature selection system using GP to evaluate redundancy.177

List of Algorithms

1 Find-Interval(y, c, c⋆): Finding the Interval of a Class 50

2 MFC-Fitness(X, φ, c⋆): Evaluating the Fitness of a Constructed Feature 52

3 GP -Multiple-Feature-Constructor(D): Constructing Multiple Features: A Filter Appr

4 Create-Extended-Dataset(D): Genetic Material Enrichment: Creating an Extended Dataset

5 DR-Fitness(D+, φ, c⋆): Evaluating Fitness in Dimensionality Reduction 90

6 GP -based-Dimensionality-Reduction(D): Transformational Dimensionality Reduction

7 Evolve-Weak-Classifier(D, c⋆): Evolving Weak Classifiers . . 111

8 GP -based-Single-Feature-Ranking(D): Single-Feature Ranking114

9 BR-Fitness(D, φ): Evaluating Fitness through Binary Correlation138

10 Measure-Redundancy(x,A, θ): Measuring Redundancy 176

11 Forward-Selection(X, r, m⋆, θ): Redundancy Elimination through Forward Selection

xvi

Chapter 1

Introduction

This thesis proposes a new methodology that uses genetic programming

for feature manipulation. Feature manipulation refers to the process by

which the input space of a machine learning task is altered in order to im-

prove the learning quality and performance. Alterations to the input space

are made by means of constructing higher-level features, selecting infor-

mative features, and removing redundant or noisy features. Traditional

solutions for feature manipulation such as linear transformation of the in-

put space, single feature construction, individual feature ranking, and the

likes are highly problem-dependent and domain-specific. They usually

make assumptions that do not necessarily hold across different problems.

The thesis addresses these issues by taking an evolutionary approach to

searching through the space of functions and actions that can be applied

to features using genetic programming.

1.1 Motivations

From an abstract point of view, machine learning solutions address two

fundamental design commitments: representation and reasoning. A rep-

resentation system provides a formalism to represent different aspects of

the real world (problem domain) while a reasoning system deals with the

1

CHAPTER 1. INTRODUCTION 2

process of learning and predicting future states of the system [130]. Ob-

viously, the quality of these two systems has a significant impact on the

level of attainment in machine learning.

Inductive learning, where an agent learns from a set of observations,

is a widely-practiced paradigm of machine learning. Increasing the qual-

ity of representation in this paradigm is usually carried out through some

improvements to the input space [14]. In some learners, representational

improvements are dealt with intrinsically as part of the learning process—

for example, neural networks can implicitly build new features based on

the input signals in their hidden layers. However, for many others like de-

cision trees, there is no such implicit way of improving the representation

as part of the learning process. For the latter category, therefore, explicit

improvements to the input space are required to increase the learning per-

formance.

The goal of feature manipulation is to improve the representation system

by making changes to the feature space. Feature manipulation includes:

feature construction, feature ranking and feature selection [89]. Feature

construction is a means of enhancing the quality of representation by cre-

ating higher-level features as a function of the original features. Feature

selection is the task of finding a minimal subset of the original features that

is sufficient to describe the target concepts. Feature selection is a treatment

for the curse of dimensionality. It leads to dimensionality reduction by elim-

inating unnecessary and redundant features from the problem, which in

turn improves the learning performance. Learnt models induced by using

smaller numbers of features are also easier to interpret. Feature ranking is

an avenue to feature selection that imposes a ranking over features, rep-

resenting their relative importance; the user usually chooses the desired

number of features to be selected from a ranking scheme.

Genetic programming (GP) is an evolutionary search paradigm [71]. GP

provides a flexible and expressive tool for dynamically building programs

and functions. Given a set of primitive functions (or actions) and an objec-

CHAPTER 1. INTRODUCTION 3

tive function, GP is able to build different types of programs, ranging from

mathematical expressions to complete classification models. This flexibil-

ity of GP in searching complicated search spaces motivates this paradigm

a promising choice for non-trivial problems like feature manipulation.

There has been a growing trend in using GP for feature manipulation,

particularly for feature construction, with very promising results. Unlike

traditional feature construction algorithms—for example, principle com-

ponent analysis—which come with certain assumptions and constraints

and are limited to certain types of transformation, GP has been able to

build a variety of transformations without being bound to any predefined

templates. In the feature construction domain, GP has been successfully

used to construct high-level features that boost the performance of clas-

sifiers. GP can be used in different feature construction scenarios: along

with evolving a classifier [105, 80, 10], as a pre-processing phase [120], or

in embedded solutions [30].

The current state of the art in using GP for feature manipulation is

somewhat limited compared to the potential of GP. Most of the research

in feature construction take a wrapper approach which is learner specific

and computationally very intensive. Those research works that take a fil-

ter (non-wrapper) approach are limited to constructing one single feature

[43, 104]. Research in feature selection and feature ranking using GP is

quite young and limited to only a few works. Details of feature manipula-

tion using GP are presented in Chapter 2. The aim of this thesis is to deal

with the current challenges in this area.

1.2 Goals

The overarching goal of this thesis is to investigate a new approach to the

use of GP for feature manipulation in classification tasks. This goal can be

broken down to:

• using GP for feature transformation:

CHAPTER 1. INTRODUCTION 4

– using GP for feature construction;

– using GP for transformational dimensionality reduction;

• using GP for feature selection:

– using GP for ranking single features and groups of features;

– using GP for detecting feature redundancy.

Given a classification task presented with a set of conditional features

(input features) and decision features (class labels), to achieve the above-

mentioned goals, the thesis has to find possible answers to the following

research question:

How can genetic programming be used to discover the rela-

tionships between the features of a classification task?

When the goal is feature transformation, we need to use GP to discover the

relationship between conditional features and decision features by con-

structing higher-level features. When the goal is feature selection, we need

to use GP to discover the functional relationships between conditional fea-

tures and decision features, and the mutual relationships amongst condi-

tional features.

1.3 Major Contributions

The thesis has made the following major contributions:

• The thesis proposes a GP-based multiple feature construction sys-

tem. Unlike many existing filter-based GP systems that can only

construct a single feature, the proposed system is capable of making

multiple high-level features without wrapping any other classifica-

tion algorithms for fitness evaluation. The constructed features are

evolved as functions of original features. A family of entropy-based

CHAPTER 1. INTRODUCTION 5

fitness functions are introduced which are used by the GP search.

A new transformation technique that increases the chance of find-

ing new high-level discriminating features is proposed. Our results

on several benchmark problems show that the proposed method can

significantly improve the classification performance of the problems

while reducing the dimensionality and the complexity of the learnt

models. These results have been partly published in [114, 109, 113].

• The thesis proposes a GP-based single feature ranking system. The

system uses GP to find the relationship between features and target

classes and then, based on the strength of the relationship, ranks in-

dividual features. The ranking provided by the system shows strong

connections to the actual importance of features [108].

• The thesis proposes a GP-based system for measuring the relevance

of subsets of features to target concepts in a binary classification task.

A virtual program structure and an evaluation function are intro-

duced in a way that constructed GP programs can measure the good-

ness of subsets of features. The proposed system can detect relevant

subsets of features in situations where other ranking methods have

difficulties, such as multimodal class distributions and mutually cor-

related features. The GP search results form a Pareto space in which

feature selection is performed [110, 111].

• The thesis shows how GP can be used to find complex relationships

between groups of features that cannot be found by traditional tech-

niques. The method is used to measure the quotient of redundancy

between features. We then introduce an algorithm that employs the

GP-based redundancy detection system to perform feature selection

by removing redundant features and irrelevant features [112].

CHAPTER 1. INTRODUCTION 6

1.4 Organisation of the Thesis

1.4.1 Structure

The main contributions of the thesis are presented in Chapters 3–7. Each

chapter addresses some of the subgoals of the thesis by finding solutions

for the central research questions of the thesis. All five chapters share the

same high-level structure: each chapter starts by proposing some theoreti-

cal solutions followed by corresponding algorithms and diagrams. At the

end of each chapter, the proposed system is tested and evaluated against

a number of benchmark problems and the empirical results are analysed

and discussed.

1.4.2 Outline

Chapter 2 carries out a review of the literature on feature manipulation,

focusing on evolutionary approaches. The review covers the fundamental

concepts of feature manipulation including feature construction, ranking

and selection. It also visits the basics of evolutionary algorithms and ge-

netic programming. It covers recent advances in feature manipulation us-

ing GP and discusses open questions and current challenges that form the

motivations of the thesis.

Chapter 3 proposes a GP framework for constructing multiple high-

level features. It investigates the notion of discriminative features and

provides an entropy-based fitness function to measure this quality. It uses

the proposed system to construct multiple features for some benchmark

classification tasks and evaluates the system performance.

Chapter 4 proposes some advanced topics on feature construction that

are used in transformational dimensionality reduction. It investigates how

the construction process can be improved by enriching the variable termi-

nal set of the GP search. Class-wise orthogonal transformation is intro-

duced for making encapsulating features. A simplified fitness function is

CHAPTER 1. INTRODUCTION 7

proposed that makes the GP search over large input spaces computation-

ally affordable. The empirical results are presented and discussed.

Chapter 5 proposes a GP-based method for single feature ranking. It

introduces a scoring mechanism which is based on the frequency of the

appearance of features in high-fitness GP programs. The scoring mecha-

nism is then used to rank the individual (original) features. A number of

classification tasks, and a variety of classifiers restricted to just high-rank

features are tested and the performance is evaluated.

Chapter 6 proposes a new method for ranking and selection of subsets

of features in binary classification problems. A virtual program structure

and an evaluation function are defined in a way that constructed GP pro-

grams can measure the goodness of subsets of features. The outcomes of

the GP search are presented in a Pareto space in which an optimum solu-

tion has a maximum relevance and a minimum cardinality. The chapter

then investigate how the proposed ranking for each given subset of fea-

tures is correlated to the actual classification performance using that sub-

set. The performance of the system is then measured via measuring the

classification performance using selected subsets of features.

Chapter 7 proposes an evolutionary way of feature selection by remov-

ing the redundant features from the result of a ranking algorithm. The

chapter introduce a nonlinear redundancy measure which uses GP to find

the redundancy quotient of a feature with respect to a subset of features.

Then a forward selection algorithm is proposed which uses the proposed

GP system as a redundancy measure. The effectiveness of the method is

assessed by applying it to a dataset with a very large number of features.

Chapter 8 concludes the thesis by giving chapter-wise (goal-specific)

conclusions and drawing overall conclusions regarding the research ques-

tion. It also suggests some possible future research directions.

CHAPTER 1. INTRODUCTION 8

1.4.3 Navigation

To provide better navigation, Table 1.1 presents some information on the

appearance of each of the aspects of feature manipulation and its depen-

dency on chapters with the relevant background.

Table 1.1: The coverage and dependency of the content of the thesis

Chapter Aspect of Feature Manipulation Depends on

3 Construction Chapter 2

4 Construction and Reduction Chapters 2 and 3

5 Ranking Chapters 2 and 3

6 Ranking and Selection Chapters 2 and 5 (partly)

7 Selection Chapters 2 and 5 (partly)

1.5 Benchmark Problems for Evaluation

Classification problems are the main applications to which the proposed

methodology in the thesis can be applied. Therefore, evaluating the method-

ology involves testing it on a range of classifiers and benchmark classifica-

tion problems. The choice of classifier and classification problem depends

on the objective of the proposed algorithm. For example, in feature con-

struction scenarios, the proposed algorithm is tested on a classifier that is

not able to transform the input space by itself; in feature selection scenar-

ios, where one needs to find a few good features from a large set of avail-

able features, the proposed algorithms is tested on classification problems

that have a relatively large number of features.

Table 1.2 shows the classifiers and classification problems that have

been used in the thesis. All the datasets are available from the UCI ma-

chine learning repository [6]. Appendix A provides detailed descriptions

of the individual classification problems.

CHAPTER 1. INTRODUCTION 9

Table 1.2: The classification problems used throughout the thesis

Chapter Classifier(s) Benchmark Classification Problem(s)

3 Decision Tree (C4.5/J48) Balance Scale,

Glass Identification,

Iris Plant,

Liver Disorders,

Pima Diabetes,

Thyroid Disease,

Wine Recognition,

WBC-Original

4 Decision Tree (C4.5/J48) JH Ionosphere,

Sonar,

Waveform,

WBC-Diagnostic

5 Bayesian Net, JH Ionosphere,

Decision Tree (C4.5/J48), Sonar,

Naı̂ve Bayes, WBC-Diagnostic

SVM (SMO)

6 Decision Tree (C4.5/J48), JH Ionosphere,

SVM (SMO) Sonar,

WBC-Diagnostic

7 Decision Tree (C4.5/J48), Isolet5

SVM (SMO)

1.6 Notation

Throughout the thesis, we follow a certain mathematical notation. We use

capital letters like X for random variables or when we are talking about

features in abstract. Uppercase, boldfaced letters like X are used for ma-

trices. Lowercase, boldfaced letters like x are used for vectors and x[i] rep-

CHAPTER 1. INTRODUCTION 10

resents the i-th element (or observation) of the vector. Calligraphic capital

letters likeA are used for sets. The unary operator |.| is used to indicate the

cardinality of a set. The list of special symbols used in the thesis follows:

m The total number of original features in a classification problem.

m⋆ The desired number of features to be selected.

F The set of all original features in a classification problem; |F| = m.

n The number of instances in the dataset.

L A scalar value showing the total number of classes (distinct class

labels) in a classification problem1.

C The set of all class labels in a classification task; C =

{c1, c2, . . . , cL} and therefore |C| = L.

D A dataset containing instances. Each instance has its values for

the input features and the target class labels.

φ A GP program that acts like a function; for example y = φ(x).

I An interval of a class, where I = (lower, upper) shows the lower

and upper boundaries of the interval.

1This is the only exception to the convention of using lowercase letters for scalar val-

ues. The reason is that I has been frequently used in the equations and figures; a lower-

case L could have been confusing, particularly in the figures.

Chapter 2

Literature Review

This chapter provides a review on the literature that forms the background

and supports the motivations of the thesis. The chapter gives a brief in-

troduction to Machine Learning and classification algorithms, the need for

Feature Manipulation, and then an overview of Evolutionary Algorithms

and Genetic Programming. The chapter, then, provides a detailed review

of the literature on using Genetic Programming for feature manipulation.

The review covers the potential and limitations of current methods for

Feature Manipulation using Genetic Programming, which leads to the re-

search direction adopted by the thesis.

2.1 Machine Learning

Machine learning is a major research area in artificial intelligence that is con-

cerned with designing computer programs that are capable of learning

in their environment [5, 14]. Machine learning systems are expected to

be able to improve their performance as they gain more experience [100].

They should change their behaviour in a way that makes them act better

in future [152]. Michalski et al. [94] state that:

“Learning denotes changes in the system that are adaptive in

11

CHAPTER 2. LITERATURE REVIEW 12

the sense that they enable the system to do the same task or

tasks drawn from the same population more efficiently and

more effectively the next time.”

Machine learning algorithms use a feedback mechanism to change their

behaviour (learn). Depending on the type of feedback, three cases can be

distinguished: supervised, unsupervised, reinforcement learning [130]. In su-

pervised learning, a set of examples in the form of different inputs and de-

sired outputs are given and the goal is to learn a function that can do this

input-output mapping. In unsupervised learning, only inputs are available;

the learner has to find useful patterns in the input data. In reinforcement

learning, the desired outputs are not directly provided; the learner instead

has to learn based on rewards and punishments it receives for its actions

(outputs).

2.1.1 Classification Algorithms

Inductive learning is perhaps the most common paradigm of learning. In

inductive learning, learners generalise (from observations) patterns that

can distinguish positive and negative examples. Classification algorithms

are a major category of inductive learning algorithms. A classifier takes,

as input, the description of an object and gives, as output, a label for the

object. The set of class labels is defined as part of the problem (by users).

A classifier inducer, is a supervised learning algorithm that uses a set of

observations to learn a hypothesis (classifier) that can map inputs to correct

class labels.

2.1.1.1 Training and Testing

The process by which a classifier inducer uses observations to learn a new

classifier is called training [100]. During the training phase, the classifier

inducer, is presented with observations from the problem domain called

instances. The collection of instances used in the training phase is called the

CHAPTER 2. LITERATURE REVIEW 13

training set. The algorithm learns important patterns in data by building

models and adjusting the corresponding parameters. The performance of

the algorithm is then tested on a collection of unseen instances, called the

test set.

The learning capability of classifiers is usually evaluated by applying

them to a set of benchmark problems. Benchmark problems are usually

chosen from collections that are publicly accessible to researchers (e.g.

UCI Machine Learning Repository [6]). Many benchmark problems do

not have a specific test set. To evaluate the performance of a classifier on

these problems, one should use k-fold cross-validation [100]. In k-fold cross-

validation, the dataset is randomly partitioned into k folds (partitions). In

a loop of k iterations, each time one of these folds is taken as the test set

and the others are used together as a training set. The k results from the

folds can then be averaged to produce a single estimate of classification

performance. The advantage of this method over repeated random sub-

sampling is that all observations are used for both training and validation,

and each observation is used for validation exactly once. In stratified k-fold

cross-validation, the folds are selected so that the proportion of instances

from different classes, remains the same in all folds.

2.1.1.2 Representation

Instances in the training and test sets are presented to algorithms using

a representation system. In the majority of learning algorithms including

classification algorithms, the quality of the representation is of key impor-

tance. The most common representation system is feature-value. In this

system, each instance is represented in the form of a vector of values for

the features defined in the problem domain. The datasets (including train-

ing and test set) are usually represented in the form of a table where each

row is an instance and each column represents a different feature in the

problem domain. The quality of the features defined in the problem do-

main, including their number and their relevance to the desired task, has

CHAPTER 2. LITERATURE REVIEW 14

a significant effect on learning performance.

2.1.1.3 Decision Tree Classifiers

Decision tree learning is a method for approximating discrete-valued func-

tions [100]. Decision trees classify instances by sorting them down the tree

from the root to some label nodes. The tree is a hierarchy of nodes. For a

given instance, the process starts at the root node; the value of the feature

at the root node is tested and the process moves to one of the child nodes.

Then the process is repeated for the subtree rooted at the new node.

There are different algorithms for learning a decision tree but the prin-

ciples are the same [100]. The main question in learning a decision tree

is which feature should be tested at each node of the tree. Most algo-

rithms employ a top-down greedy search through the space of possible

decision trees. Examples are the ID3 algorithm [126], the C4.5 algorithm

[127], and its Java version, the J48 algorithm [152]. These algorithms use

an entropy function to measure the homogeneity of examples and choose

the best node at each stage. The most important advantage of decision

tree classifiers is their interpretability; learned decision trees can be trans-

lated to a set of ’if-then’ rules to improve human readability. The most

serious disadvantage of decision trees is perhaps their weakness in sepa-

rating non-rectangular areas in the input space [127].

2.1.1.4 Support Vector Machines

Support vector machines (SVMs) form a category of statistical supervised

learning algorithms. SVMs construct a number of hyperplanes in a high-

or infinite-dimensional space, which are used for classification. Instances

are categorised based on what side of these hyperplanes they fall on. SVMs

maximise the distances between the hyperplanes and both the nearest pos-

itive and negative data points. The points that cause the boundary (hy-

perplane) to fix in a particular place are referred to as support vectors, and

CHAPTER 2. LITERATURE REVIEW 15

a learning machine that uses such a boundary is therefore referred to as a

support vector machine. The space between the boundary and the support

vectors is called the margin [148].

2.1.1.5 Bayesian Classifiers

Bayesian classifiers provide a probabilistic approach to classification. Their

assumption is that the behaviour of data (input-output relationships) can

be captured in probability distributions [100]. Among these classifiers,

Naı̈ve Bayes classifiers are the most common and straightforward classifiers

to learn. It has been shown that Naı̈ve Bayes classifiers are quite competi-

tive with other classifiers such as decision trees and neural networks [95].

Naı̈ve Bayes classifiers make significant use of the assumption that all in-

put features are conditionally independent. This assumption cannot be

applied to many real world problems where there are some interdepen-

dency between input features. Bayesian networks have been proposed as

a remedy to this problems [48, 54]. Bayesian networks allow conditional

independence assumptions that only apply to a subset of features.

2.1.1.6 Other Classification Techniques

In addition to the above-mentioned classification algorithms—which are

used in the experiments throughout the thesis—there are many other clas-

sification algorithms that are commonly used in data mining [100]. Two

other important categories of classifiers are Artificial Neural Networks

(ANNs) [13] and Case-based Reasoning (CBR) systems [1]. In ANNs, the

information (usually in the form of numeric values) is transformed as it

travels through the layers of the network. In classification problems, the

network acts as a function which maps observations input space to target

class labels. CBR systems are categorized as lazy learners because they do

not induce any generalisation of training data until a query is received.

CHAPTER 2. LITERATURE REVIEW 16

2.2 Feature Manipulation

Feature manipulation is an umbrella term that refers to the collection of

methodologies and techniques that are practised to improve the input

space of problems represented in feature-value systems [89]. This section

reviews the most widely-known aspects of feature manipulation, namely

feature construction, feature ranking, and feature selection.

2.2.1 Fundamental Concepts

This subsection first explains some basic concepts that are shared among

all aspects of feature manipulation.

Definition A feature is a function that maps entities to one of their proper-

ties.

In this definition, entities are objects (observations) of the same type1 and a

feature represents a certain measurable property of the objects. Examples

for objects of the same type are ’Ann’, ’Ben’, and ’Colin’, all being from

the ’Student’ type. Examples for features are ’Height’ and ’Gender’ which

correspondingly map these objects to numeric (the height of the person)

and nominal (the gender of the person) values.

2.2.1.1 Basic Operations

All aspects of feature manipulation use one of the two following basic

operations to make changes in the feature space of a problem.

Transformation. This process transforms the values of one or more fea-

tures to a new set of values. The transformation functions are usually

well-defined and deterministic. Examples of this operation are feature

construction and transformational dimensionality reduction.

1In the context of learning by example and feature manipulation, the terms observation,

sample and instance are often used with the same meaning in the literature.

CHAPTER 2. LITERATURE REVIEW 17

Figure 2.1: A feature manipulation system taking a wrapper approach.

Selection. This process selects a subset of available features in a problem.

The selected features are usually used for both the training and the testing

of classification algorithms.

2.2.1.2 Wrapper vs Filter Approach

In all feature manipulation problems, when a candidate solution is found,

it should be evaluated to determine its goodness and find new search di-

rections. For example, one has to know how much relevant information

a set of constructed/selected features can provide. There are two major

approaches to evaluating a solution: wrapper and filter (or non-wrapper)

[66].

Figure 2.1 shows the diagram of a feature manipulation system taking

a wrapper approach. In the wrapper approach, the performance of an

induction algorithm (e.g. a classifier) is used to guide the search. The

wrapper approach is computationally intensive; every evaluation involves

training and testing an induction algorithm.

CHAPTER 2. LITERATURE REVIEW 18

The filter approach on the other hand, does not use any learner’s feed-

back to evaluate a solution. It instead uses other heuristics that are compu-

tationally more efficient. The diagram of the filter approach is very similar

to that of the wrapper approach depicted in Figure 2.1. However, no in-

duction algorithm is used to evaluate the solution.

2.2.2 Feature Construction

Many classification algorithms, particularly those based on symbolic learn-

ing (e.g. decision rules and decision trees), cannot achieve adequate predic-

tive performance when faced with difficult real-world problems [77]. A

known reason for this deficiency is the inability of these systems to make

any transformations to their input spaces [100]. The issue can be partially

alleviated by using feature construction as preprocessing.

2.2.2.1 Classical Methods for Feature Construction

Zheng [158] provides a review of constructive induction methods. In con-

structive induction, the original features are transformed into a new space

in a way that the learning performance is improved [159]. Inductive logic

programming is used to construct features that can model the behaviour

of data. The newly constructed features can then be used by learning al-

gorithms. The constructed features can also provide some structural in-

formation [142]. Hu [51] proposes a multi-strategy constructive inductive

algorithm which is independent of learning algorithms.

2.2.3 Feature Selection

There are different definitions for feature selection in the literature [20]:

• Idealised: feature selection is defined to be the process of finding

the minimally sized feature subset that is necessary and sufficient to

model the target concept [63].

CHAPTER 2. LITERATURE REVIEW 19

• Classical: feature selection is the process of selecting m⋆ features

from m original features, such that m⋆ < m and the value of a cri-

terion function is optimised over all subsets of size m⋆ [107].

• Improving predictive accuracy: feature selection is the process of

finding a subset of features, using which either predictive perfor-

mance is improved or the complexity of the model is reduced while

the performance is maintained at an acceptable level [67].

• Approximating original class distribution: feature selection is the

process of finding a subset of features such that the resulting class

distribution, given only the selected features, approximates the orig-

inal class distribution as closely as possible [67].

Overall, feature selection is the process of finding a minimal subset

of features that is sufficient to solve a classification problem. Feature se-

lection leads to dimensionality reduction by eliminating noisy and un-

necessary features from the problem, which in turn improves the perfor-

mance and makes the learning and execution processes faster. Models

constructed using a smaller number of features are also easier to interpret.

2.2.3.1 Wrappers for Feature Selection

The search space of a feature selection problem has 2m points where m is

the number of original features in the problem. The search space grows

exponentially with respect to m. Some wrapper approaches to feature se-

lection use an external algorithm to explore this search space. The type of

search algorithm could be anything from simple Hill-climbing to an evo-

lutionary search [66]. The search can be towards growing an initial subset

(e.g. forward selection) or towards shrinking an initial solution (e.g. back-

ward elimination) [96].

Searching the collection of all 2m possible combinations of features is

computationally infeasible when m is large. Even if an algorithm does not

CHAPTER 2. LITERATURE REVIEW 20

search the whole space exhaustively, as m grows, it needs to examine more

points in order to find a near-optimal solution. In wrapper methods, eval-

uation of candidate solutions is costly—each evaluation needs a classifier

to be trained and tested. Therefore, using wrapper methods on problems

with a large number of original features is not always viable.

2.2.3.2 Filters for Feature Selection

Feature selection methods taking the filter approach use only data to find

an optimal subset of features; they do not wrap any inductive learning

algorithm (e.g. a classifier) to evaluate their solutions. FOCUS is a classi-

cal filter-based feature selection algorithm that was originally defined for

noise-free Boolean domains [3, 4]. It exhaustively examines all subsets of

features, selects the minimal subset of features that is sufficient to deter-

mine the label value for all instances in the training set.

The Relief algorithm is another filter method that assigns a “relevance”

weight to each feature [64]. The algorithm attempts to find all relevant

features. The Relief algorithm, however, does not help with redundant

features [68]. Cardie [16] proposes a filter-based feature selection algo-

rithm that uses a decision tree algorithm to select a subset of features for

a nearest neighbourhood algorithm. Yu [155] proposes a feature selection

algorithm that takes both relevance and redundancy into account. The al-

gorithm, however, is limited to problems that only have discrete features.

2.2.4 Feature Ranking

Feature ranking is an avenue to feature selection [60]. In feature ranking, a

score is assigned to each solution [45]. In single (univariate) feature rank-

ing, a score is associated to each feature individually and independently

from other features [129]. In single feature ranking, the user selects a num-

ber of high-rank features. Normally, the number is specified by the user

[46]. There are also some analytical methods to determine the best number

CHAPTER 2. LITERATURE REVIEW 21

of features [143].

Most feature ranking methods fall into the filter approach category, and

can only measure the goodness of a single feature [129, 12, 88]. This in-

cludes all feature ranking measures from the information theoretic domain

such as information gain (IG), gain ratio, mutual information and the likes

[86].

2.2.4.1 Issues with Epistatic Features

Epistasis, a term originally from biology, is defined as interaction between

genes [8]. It is used to describe how one gene can change (suppress or ex-

press) the phenotypical effect of another gene. Epistasis later entered Ge-

netic Algorithms (GAs) and other computational evolutionary paradigms

to indicate how changing a component of a candidate solution—for ex-

ample changing a bit in a GA chromosome or changing a subtree in a GP

program—can change the behaviour of other components in the solution

[38, 150].

Epistasis happens frequently between the features of a classification

task; that is, the contribution of a feature in predicting the class label will

depend on the value of some other features. Many filter methods have

difficulties in handling epistatic features. The difficulties are twofold:

• The majority of filter methods cannot provide any explicit way of

measuring the goodness of a group (subset) of features. These meth-

ods are usually combined with a search technique to select a set of

top-ranked features. However, since the features are examined indi-

vidually, the selected subsets often suffer from the absence of groups

of related features and the presence of redundant features.

• The majority of filter methods are limited to detecting only simple

types of relationships between a feature and the target class. For

example, in the logistic regression model [18], the relationship is as-

sumed to be linear; in most of the information theoretic measures,

CHAPTER 2. LITERATURE REVIEW 22

it is assumed that instances can be classified by setting a split point

along the feature axis.

2.2.5 Transformational Dimensionality Reduction

Although, in a sense, all feature selection algorithms perform dimension-

ality reduction, the term dimensionality reduction is most often used to

refer to transformational dimensionality reduction. In transformation dimen-

sionality reduction, the original features are transformed into a new space

(new features). Then a small number of these transformed features is used

instead of the original features [147, 9, 128]. A successful reduction in

dimensionality can help in building simpler classification models. The

transformations can also be useful for interpretation.

Principle component analysis (PCA) is one of the dimensionality re-

duction techniques that is widely used in different applications. The goal

of PCA is to linearly transform data into a more meaningful construct [37].

It can eliminate the redundancy between measurements (features), and

reduce the noise by selecting more important components. This is done

by diagonalizing the covariance matrix. However, as PCA is blind to the

class labels in the training set, in many cases, it is not effective for classi-

fication problems. Another potential drawback of PCA is that, it makes

the assumption that more diversity along the axis of a generated compo-

nent (feature) is a sign of being more informative and therefore it ranks

generated components based on this factor. However, this assumption is

certainly not always true.

From a different perspective, the problem of dimensionality reduction

can be seen as a feature construction problem in which the constructed

features are functions of the original features and the total number of con-

structed features is sufficiently smaller than the number of original fea-

tures in the problem. For example, the PCA method can be treated as a

feature construction scenario in which all the constructed features are lin-

CHAPTER 2. LITERATURE REVIEW 23

ear expressions and the objective is to find the coefficients of these poly-

nomials so that PCA goals are satisfied. From this perspective, a limiting

issue of PCA and many other classical dimensionality reduction methods

is that they all have fixed models (e.g. linear, polynomial). These methods

can only find the optimal value for the parameters (e.g. the coefficients in

a polynomial model); they cannot find the right model for data by them-

selves [91, 17].

2.3 Genetic Programming

This section first gives an overview of evolutionary computation and hier-

archy of algorithms in this field, and then provides a more detailed review

of fundamental concepts in genetic programming.

2.3.1 Overview of Evolutionary Computation

Evolutionary Computation (EC) is an area of artificial intelligence that covers

the majority of nature-inspired algorithms in this field. Two main classes

of these algorithms are evolutionary algorithms and swarm intelligence.

2.3.1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) refers to a subset of algorithms in evolu-

tionary computation that are generic population-based metaheuristic op-

timisation algorithms. EAs use mechanisms inspired by biological evolu-

tion: reproduction, mutation, recombination, and selection. Each individ-

ual (member of the population) is a candidate solution. The goodness of

individuals is determined by a fitness function. Evolutionary algorithms

have been highly successful in solving complex problems in science and

engineering [23]. Some important algorithms in this category follow.

CHAPTER 2. LITERATURE REVIEW 24

Genetic Algorithms. Genetic Algorithms (GAs) are evolutionary search

and optimisation techniques [39, 38, 49]. GAs evolve a population of chro-

mosomes that can encode solutions in continuous and discrete domains.

Compared to some analytical optimisation methods like gradient-based

optimisation, they are less likely to be trapped in local optima. They, how-

ever, tend to be computationally expensive.

Evolutionary Programming. In Evolutionary Programming (EP) a popu-

lation of chromosomes is used to evolve finite-state machines (FSMs) [34].

Each FSM is in fact a program. A sequence of symbols that have been

observed up to the current time is fed to each FSM. The fitness of an indi-

vidual is evaluated by its ability in predicting future symbols. Like other

EAs, EP uses fitness values to select individuals and then applies some

evolutionary operators to find other solutions. EP has been perhaps one

of the first attempts to evolve computer programs. The structure of pro-

grams in EP is usually assumed to be fixed.

Evolutionary Strategies. In Evolutionary Strategies (ESs), each individual

represents a fixed-length real-valued vector. The real values in the vector

are parameters to a system/model that determine its behaviour. As with

the bit-strings of GAs, each position in the vector corresponds to a feature

of the individual. However, the features are considered to be behavioral

rather than structural. Since all elements are real-valued, genetic operators

can perform operations like averaging [141]. The selection of survivals in

ESs is deterministic; that is, once the genetic operators are applied, a num-

ber of individuals with highest fitness are selected for the next generation.

Genetic Programming. Genetic programming (GP) is a sophisticated EA

which is used to evolve a computer program that performs a desired task

[71, 74, 73, 75]. GP has been highly successful as a technique for getting

computers to automatically solve problems without having to tell them

CHAPTER 2. LITERATURE REVIEW 25

explicitly how. It has proved to be applicable and effective in a variety of

fields from planning and discovery of game-playing strategies to symbolic

regressions and evolving classification systems.

2.3.1.2 Swarm Intelligence

Swarm Intelligence (SI) algorithms are inspired by the collective intelligence

of social insects. SI systems are typically composed of simple interacting

individuals and the intelligence lies in the networks of interactions among

individuals, and between individuals and the environment [15]. Two main

algorithms in SI are ant colony optimisation (ACO) and particle swarm opti-

misation (PSO). ACO is a class of optimisation algorithms modeled based

on the behaviour of ant colonies [24]. ACO methods are useful in prob-

lems that need to find paths to goals. PSO is a simple search method

in which solutions are represented by inter-communicating particles [62].

Particles are influenced by (and can influence) their neighbouring parti-

cles and global best-performing particles, depending on the topology. Like

many other EC algorithms, PSO is derivative-free and does need specific

information about the problem domain.

2.3.2 GP Algorithm

GP optimises a population of computer programs according to a fitness

function that determines a program’s ability to perform a given computa-

tional task [124]. The search space is explored using genetic operators [84].

Apart from the representation of genetic programs, the overall search pro-

cess in GP is similar to other population-based EAs. The main steps in GP

are as follows [7]:

1. Initialise a population of individual programs as solutions;

2. Assign a fitness to each individual program in the population;

3. While the termination criterion is not met, repeat the following:

CHAPTER 2. LITERATURE REVIEW 26

(a) Select some individuals using a selection method;

(b) Produce new individuals by applying genetic operators to se-

lected members;

(c) Place new individuals into the population of the next genera-

tion;

(d) Assign a fitness to each individual program in the population

according to the fitness function;

4. Return the program with the highest fitness as the best solution.

2.3.3 Program Representation

The phenotype of each chromosome in a GP population is a program. The

program is usually executed by a program interpreter. The genotype of a

GP program (i.e. the way it is encoded) varies among different GP sys-

tems. The most common way of encoding a GP program is through using

a tree structure [19, 70]. Other common representations include Linear GP

[7, 115, 116, 52], Cartesian GP [97, 99, 98] and Grammatical GP [119, 151].

In tree-based GP, a program is represented by a hierarchy of nodes

[36, 85]. Each node is either a function or a terminal [72]. Function nodes

perform an operation. The children of a function node are the arguments

of that function. Terminal nodes, as the name implies, do not have any

children. They are either variable terminals which provide inputs to pro-

grams or constant terminals which are randomly generated values [7]. The

set of all types of function nodes available to GP is called the function set.

The set of all possible variable terminals is called the variable terminal set.

In strongly-typed GP, functions and terminals can have different types and

the GP search must take care of building valid program trees [101, 151].

Figure 2.2 shows a sample tree-based genetic program using elementary

arithmetic functions and numeric terminals.

CHAPTER 2. LITERATURE REVIEW 27

Figure 2.2: A sample tree-based genetic program representing the mathematical

expression 3x2 − 4x+ 2. The function nodes are addition, subtraction

and multiplication. The only variable terminal node is x and constant

nodes are 2, 3 and 4.

2.3.4 Creating Initial Populations

The first step in starting a GP search is to create an initial population. The

initial population is usually created randomly. There are three commonly-

used ways of creating the initial population, namely the Grow method, the

Full method, and the Ramped half-and-half method [7].

In the Grow method, all nodes are chosen randomly, and therefore, the

resulting program trees have very different shapes. To create an initial

population using the Grow method, the following steps should be taken:

1. A node is randomly selected from the union of the function set and

the terminal set as the root node;

2. Given n, the arity of the selected function, n functions or terminals

are selected as child nodes;

CHAPTER 2. LITERATURE REVIEW 28

3. For each child that is a function node, the previous step is repeated

until the maximum tree depth is reached in which case the remaining

child nodes are filled with terminals.

In the Full method, all the nodes except those at the maximum depth are

functions. Therefore, the full capacity of the tree is used. The Ramped

half-and-half method is used to enhance the diversity. In this method, half

of the population is created using the Full method and the other half using

the Grow method.

2.3.5 Genetic Operators

Genetic operators make changes to individuals in the population. They

are the primary way of moving in the search space of programs. All the

genetic operators work at the genotype level. Therefore, their implemen-

tation highly depends on the representation of GP programs [7].

2.3.5.1 Crossover

The primary function of the crossover operator is to share genetic material

between individuals in the population. The crossover operator is typically

applied to two individuals, called parents, and creates two new individu-

als as the result, called children. In the canonical tree-based representation

[71], crossover is performed by simply swapping two randomly chosen

subtrees in the parent programs. Figure 2.3 demonstrate this concept with

an example. To the top of the figure, there are two GP individuals. One

node is randomly selected in each individual. The subtrees at these nodes

are then exchanged and two new individuals are created towards the bot-

tom of the figure.

CHAPTER 2. LITERATURE REVIEW 29

parent1 parent2

child1 child2

Figure 2.3: Crossover Operator in Tree-based GP: The operator is applied to two

GP individuals, parent1 and parent2. Two nodes are randomly se-

lected and their corresponding subtrees are exchanged. The results

are two new individuals, child1 and child2.

2.3.5.2 Mutation

The primary function of the mutation operator is to bring new genetic ma-

terial to the population. The operator is typically applied to one individual

CHAPTER 2. LITERATURE REVIEW 30

at a time. It performs by randomly selecting a node in the tree and then

replacing the subtree at that node with a randomly-created subtree. Fig-

ure 2.4 shows an example of applying the operator to a GP individual. In

strongly-typed GP [101], to maintain integrity, the operation must be fail-

safe—that is, the type of arguments of the parent node of the randomly

selected node must be taken into account to create a random subtree of

the correct type.

(before mutation) (after mutation)

Figure 2.4: Mutation Operator in Tree-based GP: The operator is applied to the

GP individual on the left. A node is randomly selected and then the

subtree at that node is replaced with a new randomly-created subtree.

2.3.5.3 Reproduction

Reproduction is perhaps the most straightforward operator amongst oth-

ers. It simply clones (copies) a GP individual to create a new one [124]. The

reproduction operator is useful in two cases: i) for random preservation of

genetic material—that is, some GP programs are randomly selected (us-

ing the selection operator) and copied to the next generation; ii) for elitism

in which case the best performing individual(s) is (are) copied to the next

CHAPTER 2. LITERATURE REVIEW 31

generation to make sure that the performance does not drop during evo-

lution.

2.3.6 Fitness Function and Selection Mechanism

Fitness is a measure that determines the goodness of an individual (GP

program) with respect to one or more objectives [7]. Fitness might show

the quality/performance of a program in absolute terms or relative to

other programs. The fitness of a program affects the probability of its se-

lection and survival.

A GP algorithm might be used with different selection methods. In

Fitness-Proportional Selection, the probability of selection of each individ-

ual is proportional to its fitness [7]. In other words, the fitter (better) a

program, the more likely its selection.

In Tournament Selection, the competition is not among all individuals

in the population but between a small set of randomly sampled individu-

als in the tournament [7]. This method has a parameter called tournament

size. Given a tournament size t, t individuals are randomly sampled from

the population. The individual with the highest fitness is then selected to

be used with genetic operators. When t is 1, the selection mechanism be-

comes purely random—fitness is not considered. A large tournament size

reduces the probability of selection of weak individuals. When t equals

the population size, the selection mechanism becomes deterministic.

2.4 GP for Feature Manipulation

Evolutionary algorithms, particularly genetic algorithms (GAs), have been

successfully used for feature selection problems. GA and neural networks

have been used to rank input features in classification problems [88, 154].

Hybrid GA with local search operations has produced good results in fea-

ture selection [117]. GA has also been used to select features for Support

CHAPTER 2. LITERATURE REVIEW 32

Figure 2.5: The outline of the feature creation process using GP.

Vector Machines [35].

The capability of GP in dynamically building logical and mathematical

expressions [69] and classification models [65, 122, 134, 156, 157] has made

it particularly a good choice for feature manipulation. Recently, there has

been a new research trend in using GP for feature manipulation. In this

section, we review some state-of-the-art developments in this area and

some open problems which form the motivations of this thesis.

2.4.1 A Generic Outline

Figure 2.5 shows an overall architecture that is commonly used for feature

manipulation using GP [11, 76, 82, 79]. The figure shows a wrapper system

and the goal is to improve the performance of an inductive learner. The

fitness function (the right block) measures the performance by training

and testing the desired induction algorithm.

CHAPTER 2. LITERATURE REVIEW 33

The GP component of this architecture is a typical evolutionary search

module. It starts with initialising a new population of programs (solu-

tions). Each solution in the population suggests a feature manipulation

procedure (e.g. constructing or selecting features). A fitness value is as-

signed to each individual in the population through the fitness evaluation

process. The evaluation process applies the individuals to the original

dataset (genotype-phenotype mapping) and then uses the result to train

and test an induction algorithm. The individuals are then ranked by the

calculated fitness. Once the fitness values are assigned, the selection and

other genetic operators are applied to the individuals to navigate the search.

2.4.2 GP for Feature Construction

GP has been used for making high-level features in the form of functions

of original features. The GP-constructed features have been used to trans-

form the input space of classification and object detection tasks.

Based on the application domain, the input space transformations might

happen in different representation systems and have different objectives.

Two common feature construction scenarios are: i) feature construction for

classification problems represented in attribute-value system; ii) feature

construction for object detection problems represented in raster graph-

ics. In attribute-value representations, constructed features are scalar func-

tions of the original features [43, 104, 30]. In the raster graphics representa-

tion (image processing and machine vision domain), constructed features

are image filters (operators) acting on low level raw images [53, 56, 77, 80].

In terms of whether a classification algorithm is embedded into the

system, research in using GP for feature construction can be divided into

two areas: i) adopting a wrapper approach; that is, GP is used in conjunc-

tion with a target classifier [66]; ii) adopting a filter approach—that is, the

fitness function does not depend on any other classification algorithm.

CHAPTER 2. LITERATURE REVIEW 34

2.4.2.1 Wrapper Approaches to Using GP for Feature Construction

In some wrapper methods, each chromosome encodes only one candidate

feature (constructed feature). These methods can create only a single fea-

ture [32]. In some others, each chromosome is an array of program trees,

each of which represents a single constructed feature. The outcome of GP

is a winning chromosome, which is a structure consisting of several con-

structed features (program trees) [76, 102, 137]. Another wrapper method

for creating multiple features is to create multiple concurrent populations

of features, and then, conduct a co-evolutionary search to find the optimal

subset of chromosomes [10, 78, 81, 79].

As a sub-category of the wrapper approach, GP has been used as a

complementary tool in the learning process of a classifier. It can be used

in conjunction with a decision tree inducer to construct more discrimina-

tive features for decision stubs [26]. In the signal classification domain,

GP has been used to provide synthetic artificial features for the k-nearest

neighbour classifier [30, 31, 133] as well.

2.4.2.2 Filter Approaches to Using GP for feature Construction

In the filter approach, no classification algorithm is involved in the evalu-

ation of constructed features and therefore, the search process is expected

to be more efficient and the results are expected to be more general [136].

However, the requirement for a problem-independent and classifier-independent

measure for the goodness of constructed features makes designing the fit-

ness function a challenging task. Information theoretic measures like in-

formation gain (IG) and information gain ratio (IGR) [125, 92] have been

used as fitness functions in filter-based GP systems for feature construc-

tion [120, 103, 104]. Fisher’s distance has been another alternative for a

fitness function [44, 50, 43].

Using functions like IG and IGR for comparing the goodness of con-

structed features, one could only tell which feature is better at splitting

CHAPTER 2. LITERATURE REVIEW 35

up the data instances. When functions like these are used for fitness eval-

uation, the result of evolution is a constructed feature that provides the

highest information gain; repeated GP runs (with different random seeds)

produce very similar constructed features. This means that these methods

can create only one feature per classification problem. Since using a sin-

gle feature is not normally enough to achieve an acceptable classification

performance, the constructed feature is often added to the set of original

features and they are all fed to the classification algorithms [120, 104].

2.4.3 GP for Feature Selection

There are two categories of research work on GP for feature selection. In

the first category, a filter-based selection method is used to remove some

variable terminals from the search [106] or to bias the probabilities of se-

lection of variable terminals [22, 118]. In this category, feature selection is

used as an internal process to help the GP search achieve its objectives.

In the second category, GP is primarily used to evolve classification

systems. The evolved classifiers are then analysed to find the features that

have been used by the classifier [42, 83, 87, 139, 149]. The presence of a

feature in a well-performing evolved classifier is considered selection. In a

multi-objective approach, GP has been used to evolve classifiers with two

objectives: maximising the classification performance and minimising the

number of features being used in the classifier [105]. In that approach, the

selection is in favour of subsets with smaller numbers of features.

2.5 Summary and Discussion

Genetic programming is a flexible and expressive tool in dynamically build-

ing mathematical models based on an objective function. GP expressions

are not bound to any predefined template; they can have any type (linear,

non-linear, trigonometric, etc.) given that an objective function is satisfied.

CHAPTER 2. LITERATURE REVIEW 36

This feature has made GP an excellent choice for feature manipulation. Re-

search in the area of using GP for feature manipulation has been rapidly

growing. Despite recent developments in this area, there are still several

open issues to be addressed:

Filter Approach to Multiple Feature Construction. When a wrapper ap-

proach is taken, GP systems for feature construction suffer from intense

computation. In the filter approach, existing systems are limited to con-

structing one feature per classification problem. Adopting a filter approach

to using GP for multiple feature construction is still an open issue.

Dimensionality Reduction. Existing filter-based GP systems for feature

construction cannot achieve dimensionality reduction. Since a single fea-

ture (the output of current systems) is not typically enough to have an

acceptable classification performance, the constructed and the original fea-

tures are used together—that is, the existing filter-based methods, in fact,

cause a slight increase in the dimensionality of problems. Taking a filter

approach to using GP for dimensionality reduction is still an open issue.

Feature Ranking and Selection. Although GP has been successful in im-

plicit feature selection, its potential for explicit feature ranking and selec-

tion has not yet been explored.

The next few chapters focus on proposing new GP methods that can

address the above-mentioned issues.

Chapter 3

Multiple Feature Construction

3.1 Introduction

From an abstract viewpoint, there are two foundational design commit-

ments for machine learning solutions: representation and reasoning. The

quality of these two has a significant impact on the learning performance.

The goal of Feature construction is to improve the quality of representation

by transforming the input space using a set of one or more constructed fea-

tures. In some learning systems, this can be achieved intrinsically as part

of the learning process; for example, neural networks can implicitly build

new constructed features in their hidden layers. In some other learners,

like decision tree, original features are used directly, and this can present

a problem [127]. Providing such learners with a higher quality represen-

tation requires an explicit external feature construction process.

3.1.1 Defining Feature Construction

Although there is, more or less, a consensus on the definition of feature

construction in the existing literature, we give a formal definition for con-

structed features to avoid any ambiguity in the thesis.

Definition A constructed feature is a scalar function φ that transforms the

37

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 38

input space to a one-dimensional real value space. Given (X1, X2, . . . , Xm),

the random vector corresponding to the set of original features in a classifi-

cation problem, a constructed feature is a function of the form φ(X1, X2, . . . , Xm).

The term Feature construction refers to the process of producing constructed

features.

3.1.2 The Appropriateness of Genetic Programming

Since constructed features are in fact mathematical (or logical) expressions

of the original features, the capability of genetic programming (GP) in dy-

namically building programs and expressions, based on an objective func-

tion, makes it an excellent choice for automatic construction of new fea-

tures. A critical design issue in using GP is to choose an appropriate fitness

function. In the context of feature construction, there are two approaches

to measuring the fitness of a GP-constructed feature: wrapper approach

and filter (non-wrapper) approach.

3.1.3 Wrapper Approach vs Filter Approach

In the wrapper approach, the performance of another machine learning

algorithm (usually a classification algorithm) is used as an indicator for the

appropriateness of a constructed feature. For each fitness evaluation, the

constructed feature (usually together with the original features) is fed into

the classifier, then the classification performance is used to calculate the

fitness of the constructed feature. Since every fitness evaluation involves

training a classifier and then testing its performance, the search process is

computationally very intensive.

In the filter approach1, instead of wrapping a particular classifier in the

fitness function, the fitness of an individual is evaluated by a function that

acts as a surrogate classifier. The filter approach has some advantages over

1In this thesis, in parallel with the literature, we use the terms non-wrapper and filter

interchangeably.

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 39

the wrapper approach. Since fitness evaluation does not involve training

and testing a classifier, the search process can be performed faster or the

gained computation time can be spent on exploring more candidate solu-

tions (constructed features). Furthermore, as no particular classification

algorithm is used in fitness evaluation, the constructed features are ex-

pected to be more general. However, designing a fitness function that is

easy to evaluate and at the same time general enough to be applicable for

different problems, is quite challenging.

While existing non-wrapper methods enjoy efficiency and generality,

they have a drawback. Almost all the existing filter-based fitness functions

have a fixed formulation (with no parameter) for evaluating the goodness

of a feature. Therefore, given a fixed fitness function and a fixed dataset

even multiple GP runs tend to converge to the same solution. This means

that these methods can create only one feature per classification problem

[see Section 2.4.2.2, page 34]. Designing a filter-based GP system that con-

structs multiple features is an open research question to be answered.

3.1.4 Chapter Goals

The research goal of this chapter is to devise a GP system to construct

multiple high level features while adopting a non-wrapper approach. The

central issue in this goal is to propose a non-wrapper measure to evaluate

the goodness of features.

3.2 Developing a Measure of Goodness

The first step in constructing a feature is, of course, to have an idea of what

constitutes a good feature and how one could measure this worth. To eval-

uate the goodness of a (constructed) feature, we need to find out how it can

contribute to learning a good classifier. There are two main approaches to

evaluating a feature. One approach is based on evaluating a feature in the

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 40

context of other features, taking account of the effect of other features. We

will discuss this approach in feature selection topics. The other approach is

based on the direct influence of the feature on learning quality, regardless

of the presence or absence of other features. Unlike the former approach,

the evaluation of a (constructed) feature regardless of the quality of other

features can be achieved using simple models which are computationally

cheap to build and evaluate. In this chapter, we take the latter approach,

that is, evaluating the goodness of a standalone feature.

The goodness of a feature can be defined and measured in many dif-

ferent ways. For example for a C4.5 decision tree, a good feature is the one

that can maximise the information gain (IG) [see Chapter 2]. In principle

component analysis (PCA), a good feature (principle component) is the

one with higher deviation. In the same way, from a statistical perspective,

a good feature might be the one with higher correlation with the target

class. Finally, in a wrapper approach a good feature is one that can im-

prove the classification performance [see Chapter 2]. In fact, depending

on one’s perspective, the application domain and type of data, and the

type of classification algorithm that is going to be used, the definition of a

good feature may be different. However, despite the variation in the way

the goodness of features is measured, a feature considered good based on

one of these measures is usually good enough to satisfy a large group of

classifiers.

3.2.1 Decision Stump and Its Limitation

Our study on finding a non-wraper measure for the goodness of individ-

ual features starts with decision stumps. A decision stump is a simple ma-

chine learning model that is constructed by comparing the value of a fea-

ture against a constant value called split point. In more concrete terms, a

model of the form “if x < α then A; otherwise B ” is a decision

stump which checks the feature x against the split point α and decides

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 41

whether to take the action A or B. These actions might be assigning (pre-

dicting) a class label or branching to other decision stumps.

Decision stumps are not usually used on their own because many real

world classification problems are not solvable using a single decision stump.

However, they constitute the building blocks of a category of classification

algorithms called decision trees2. Assuming that the optimal split point can

be found by a helper algorithm, the learning performance of a decision

stump can be used as a measure of class separability which in turn can be

used as a measure for the goodness of a feature. In fact, the majority of

filter-based measures, particularly those coming from information theory

like Information Gain (IG) and Gain ratio, share the same basis.

Figure 3.1 illustrates three cases in which a decision stump has been

used to judge the quality of a feature. Each case is a binary or multi-class

classification problem with positive and negative instances represented

along a feature x. The judgement is based on how the value of the feature

can assist in separating negative and positive instances from each other. In

case (a), positive and negative instances are mixed together along the fea-

ture axis. Even the best split point cannot separate the instances of the two

classes, causing the performance of the decision stump to be quite low.

The poor performance of a decision stump on this feature is considered as

an indication of the low quality of the feature (assuming that the feature

is used alone). In case (b), a split point can perfectly separate positive and

negative instances indicating the high quality of the feature.

In case (c), although the instances are spread out in a clearly-distinguishable

pattern, one split point is not enough to separate all the instances and as

a result a decision stump would perform quite poorly on this feature. In

this case, the feature is obviously good—there is only one chunk of nega-

tive instances which, can easily be separated by two split points. However,

as one single split point does not provide enough discrimination, using a

decision stump model, the quality of the feature is considered low. The

2A hierarchy of decision stumps in the form of a tree, makes a decision tree.

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 42

situation presented in case (c) is actually quite common in classification

tasks—the distribution of a class is surrounded by the distribution of other

classes.

(a)

split point

x

+ −− +− ++ −+−+ −+ +−−+++++− +

(b)

split point

 + +++ + +++++ −− − −− −− − −− −− − −

x

(c)

split point

 + +++ + + −− − −− − o oo o oooooo o

x

Figure 3.1: The goodness of a feature x form the viewpoint of a decision stump:

(a) the feature is poor and positive and negative instances cannot be

separated using a split point; (b) the feature is good and the instances

are separable using the split point; (c) the feature is good, but one split

point is not enough to separate positive and negative instances.

3.2.2 Extending Decision Stumps to Class Intervals

To address the issues like the one depicted in Figure 3.1(c) where a simple

decision stump is not able to determine the goodness of a feature, a more

sophisticated model is needed. Sophistication however, although it might

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 43

compensate for the limitation of decision stumps, might compromise the

simplicity and efficiency of the calculation as well. Here, the aim is to

steer a middle course; we propose a measure that can address the above-

mentioned issue without much computational overhead.

We introduce the idea of class intervals. In abstract terms, a class inter-

val along a feature is the span in which the instances of that class are scat-

tered. We shall later give a more concrete definition of class intervals but

first we see how the concept of class intervals can improve our judgment

about features. Figure 3.2 shows a single feature in three different cases

where the distribution of positive and negative instances matches those in

Figure 3.1. Class intervals along each axis are rough areas with the most

occurrence of the instances of that class. The dotted double arrow lines on

top of the feature axis show the class intervals along each axis.

In Figure 3.2(a), where instances of the positive and negative classes

are all mixed together, there are two overlapping intervals, indicating that

the feature (on its own) cannot be used to separate the instances. In case

(b) there is a clear boundary between the two classes and consequently,

there are tow non-overlapping intervals. In case (c), where the decision

stump method was not able to evaluate the goodness of the feature using

one split point, there are three non-overlapping class intervals which is an

indication of a good discriminating feature.

It is observable that when class intervals overlap, they contain instances

from the other class (e.g. case (a)). By contrast, non-overlapping intervals

are quite good at separating instances from different classes. This suggests

that the quotient of overlap between class intervals could be a good indi-

cation for the goodness of a feature. Overlap can be indirectly measured

by taking account of the occurrence of the other class instances in the in-

terval of one class. This is in fact a measure of purity. A pure class interval

contains a minimum number of instances from the other classes. In other

words, a good feature has a pure class interval. Therefore, to make this

measure quantitative, one should model two components: a class interval

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 44

(a)

−

+

x

+ −− +− ++ −+−+ −+ +−−+++++− +

−

(b)

−

x

 + +++ + +++++ −− − −− −− − −− −− − −

+
−

(c)

 + +++ + ++ + −− − −− − + ooo −oooo +oo

x

+ o
−
−

Figure 3.2: The goodness of a feature x from the viewpoint of a class interval: (a)

the feature is poor and the intervals are completely overlapping; (b)

and (c) the feature is good and the instances can be separated using

class intervals.

and a purity measure.

3.3 Proposing a Non-Wrapper Fitness Function

To have a quantitative measure for the goodness of features, the above-

mentioned abstract concept of pure class intervals should be expressed in

more concrete terms. This measure, can then be used as a fitness function

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 45

in a GP search to evaluate the goodness of a candidate constructed feature.

In this section, we address the problem of quantifying the purity of a class

interval by decomposing the problem into finding a class interval and then

measuring its purity.

3.3.1 Class Intervals: A Mathematical Model

The interval of a class along a feature is determined by the dispersion of

the instances of that class along the feature axis. The dispersion of in-

stances itself is related to the distribution of data points in that class. An

interval I is represented with a pair (lower, upper) which shows the lower

and upper boundaries of the interval. Ic is used to indicate an interval for

class c. In this section, we define an interval for two different cases: a) the

distribution of the class is normal, and b) the distribution of the class is

unknown.

3.3.1.1 Intervals of Classes with Normally Distributed Instances

Assuming that the distribution of a class along a feature x is normal, the

mean and standard deviation of the distribution can be used to find the

boundaries of the interval. Given µc and σc , the estimated mean and stan-

dard deviation of a normally distributed class along feature x, the follow-

ing interval covers 99% of the class instances:

Ic = [µc − 3σc, µc + 3σc] (3.1)

In other words, the mean of the class is the center of the interval and the

standard deviation of the class determines the width of the interval. The

values of µ and σ can be estimated using a set of observations.

3.3.1.2 Intervals of Classes with Unknown Distributions

Class instances do not necessarily follow a normal distribution in all clas-

sification problems and there might not be enough observations and com-

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 46

putation time to discover whether their distribution is normal. Besides,

even if a class is normally distributed along one of the original features

in the problem, a non-linear constructed feature can easily transform the

input space in a way that changes the class distribution.

A simple solution to this problem is to consider a class interval as the

smallest interval that can cover the maximum and minimum of the class

data points. This solution, however, might include undesired outliers3. A

primitive way to deal with the issue of outliers is to exclude a few obser-

vations from both ends of the data range. In other words, all the instances

should be sorted along the new constructed feature and then a small por-

tion of them should be removed from both the left and right sides. Since

sorting is a relatively costly algorithm (at least for a fitness function), we

simplify this even further by performing only a partial sort by which the

first half of the data points before the first percentile and the second half

of the data points after the last percentile can be excluded so that the re-

sulting interval covers 99% of samples. The details of determining the

class interval in this way will be given when we give the fitness function

algorithm.

3.3.2 Purity Measure: A Mathematical Model

In the previous subsection, a mathematical model for a class interval was

defined. To quantify the purity of the interval to determine the goodness of

the associated feature. Information theory has a measure of purity called

information entropy, which is commonly used by decision trees. Entropy

is mainly used to measure the information content (aka uncertainty) of a

communication channel. To use entropy for measuring the purity of a

class interval, one must see the interval as an information channel where

different symbols (class labels) may occur with different probabilities. In

3Outliers are noisy samples (caused by measurement error, etc) which are not based

on the real characteristic of the class distribution

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 47

feature construction, we are looking for class intervals with a very low

entropy—that is, the instances of other classes are unlikely to occur in the

interval.

3.3.2.1 Using Shannon’s Entropy

The most common way of measuring entropy is perhaps Shannon’s entropy.

Given a discrete or categorical random variable C that can take values

c1, c2, . . . , cL with probabilities p(c1), p(c2), . . . , p(cL), the Shannon entropy

of C is defined by

H(C) = −
L
∑

i=1

p(ci) logb p(ci) (3.2)

where b is base of the logarithm and is usually 2. A class interval estab-

lishes a new probability space. Therefore, the probability of classes in

equation 3.2 should be conditioned on the values of the feature that fall

in the interval. Given X , a feature, C, the set of all class labels, and c⋆, the

class of interest with corresponding interval Ic⋆ , the Shannon entropy of

the interval of class c⋆ is

H(Ic⋆) = −
∑

c∈C
p(c|X ∈ Ic⋆) log2 p(c|X ∈ Ic⋆) (3.3)

The conditional probability of classes can be estimated by using a set of

observations and measuring the frequency of each class in the interval.

Since a lower entropy implies higher purity in an interval, the lower the

entropy in the interval, the better the quality of the feature.

Figure 3.3 illustrates the concept of entropy in a class interval. The

interval for class ’+’ is represented by a rectangle which includes the ma-

jority of instances from this class. Since the interval includes only a few

instances from other classes (low entropy), it is considered a fairly pure

interval, indicating that the feature x can be used to discriminate the in-

stances. If a class interval includes a lot of instances from other classes,

then there is not a good separation between classes, meaning that the fea-

ture cannot be used (individually) to separate the classes.

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 48

−

x

o o+ − o −+ + ++−++ o+ + + ++ + +−o o−− −o o+ o
I+

Figure 3.3: An example feature x and an interval for class +. The class interval

creates a new probability space in which the Shannon entropy is mea-

sured.

3.3.3 The Fitness Function

In feature construction, GP individuals are interpreted as mathematical ex-

pressions that map the original features to a constructed one-dimensional

feature. To run the GP process, a fitness function is required to evaluate

the goodness of constructed features based on their discrimination power.

The result of the evaluation, depending on the selection method, is used

in ranking or selecting the individuals.

The proposed measure in equation (3.3) is one way (out of possibly

many) of looking at the characteristics of good features. According to the

measure, the entropy of a class interval indicates the probability of oc-

currence of instances from other classes in the interval. The measure is

not meant to be used directly on the original features, as in real world

problems a single original feature can hardly discriminate instances of a

class completely. However, the measure can establish a fitness landscape

for GP-constructed high level features which are in fact a combination of

several original features. The measure can guide the search towards con-

structing features that are more discriminative.

Given a GP individual, there are two main steps in calculating its fit-

ness: a) finding an interval for the class for which the individual has been

created, and b) measuring the entropy of the interval.

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 49

3.3.3.1 Finding a Class Interval: The Algorithm

The steps toward finding an interval for a class have been laid out in Al-

gorithm 1. Given a desired class label for which the interval should be

found, the algorithm finds the lower and upper boundary of an interval

that contains 99% of the class instances. The first half of the data points

before the first percentile and the second half of the data points after the

last percentile are excluded to compensate for possible outliers. During

the course of a GP run, the algorithm is called (as a function) by the fitness

function to find the requested class interval.

The algorithm takes, as input, y the values of a constructed feature

(genetic program) and c its corresponding vector of class labels. Assuming

there are n samples in the training dataset, the size of these two vectors is

n. In other words, the two vectors constitute a dataset with two columns

and n rows. At row i, y[i] is the value of the constructed feature and c[i]

is its corresponding class label. c⋆ is the class label for which a high-level

feature is being constructed, thus the algorithm should find the interval of

class c⋆. The output of the algorithm is a pair (l, u) indicating the lower

and upper boundaries of the interval.

To find the lower and upper boundaries, the algorithm finds 99% of the

instances of class c⋆ that fall in the middle of the range of all the instances

of class c⋆. In other words, the algorithm excludes 1% of instances of the

class with extreme values—that is, 0.5% of instances having the lowest and

0.5% of instances having the highest values.

To exclude the extreme values the algorithm defines two sets Left and

Right that store the lowest and highest values of the instances of class c⋆

correspondingly. The sets are initialised with one element each: +∞, the

highest possible values for Left, and −∞, the lowest possible value for

Right. The sets can grow to have up to ⌈nc⋆

200
⌉ elements (0.5% of instances).

The loop at line 4 iterates over all the instances and fills these two sets.

The loop resembles a partial sorting by the end of which 0.5% of instances

having lowest and 0.5% of instances having highest values are stored in

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 50

Algorithm 1: Find-Interval(y, c, c⋆)

/ * Given a set of observations (instances) of a

single scalar feature along with their class

labels, and a desired class label, the

algorithm finds an interval that covers 99% of

instances in the middle. * /

Input: y, a vector of n observations of a feature

Input: c, a vector containing the class label of each observation in x

Input: c⋆, the class label for which the interval should be found

Output: (l, u), a pair indicating the lower and upper boundaries of

the interval

nc⋆ = |{c[i] : i ∈ {1, 2, . . . , n}, c[i] = c⋆}| ; // no. of c⋆ instances1

Left← {+∞} ; // left half percentile2

Right← {−∞} ; // right half percentile3

for i← 1 to n do4

if c[i] = c⋆ then5

if y[i] < maxLeft then6

if |Left| ≥ ⌈nc⋆

200
⌉ then7

Left← Left \ {maxLeft};8

Left← Left ∪ {y[i]} ;9

if y[i] > minRight then10

if |Right| ≥ ⌈nc⋆

200
⌉ then11

Right← Right \ {minRight};12

Right← Right ∪ {y[i]};13

(l, u)← (maxLeft,minRight);14

return (l, u);15

Left and Right. Once Left and Right are determined, the lower and up-

per boundaries of the interval can be obtained by finding the maximum

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 51

value in Left and the minimum value in Right.

3.3.3.2 Fitness Evaluation: Measuring the Entropy

The next step in determining the fitness of a GP program (constructed fea-

ture) is to find the purity of the obtained interval through the proposed

entropy measure. A GP program, as discussed earlier, can be thought of

as a function of a number of variables (the original features). The function

maps the original features to a single feature, called the constructed fea-

ture. The value of the constructed feature is evaluated at the root of the

corresponding GP program.

Algorithm 2 depicts the process of evaluating the fitness of a GP pro-

gram. We use φ to represent the program for which the fitness should

be evaluated. The program maps m (or less) original real-valued input

feature vectors to a scalar (one-dimensional) feature vector. This is done

in the first few lines of the algorithm where each example in the train-

ing set (stored in X) is transformed to a new vector, y. The values of the

constructed feature y along with the vector of class labels c, constitute a

new dataset with 2 columns, including 1 high-level feature and n obser-

vations. Once the new dataset is ready, if instances of class c⋆ can be well-

discriminated from the others, then φ (representing the newly-constructed

feature) is good and should receive a better fitness (low entropy).

At line 2 the algorithm finds the interval of class c⋆ using Algorithm 1.

Then we need to know the probability of the occurrence of each class in

the interval. We use the prior probability of each class that is estimated

by the frequency of the occurrence of each class label in the interval. To

keep track of occurrences of different class labels within the interval, we

use the vector c′. On lines 7–8, the frequency of each class is calculated

by dividing the number of occurrences of that class in the interval of class

c⋆ by the total number of instances within the interval. The fitness is then

calculated on lines 9–11. If most of the instances falling into an interval

belong to a single class (the class for which the interval has been found),

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 52

Algorithm 2: MFC-Fitness(X, φ, c⋆)

/ * Given a training dataset, a desired class label

for which a feature is being constructed, and a

GP program (a candidate feature), the algorithm

evaluates the fitness of the GP program. * /

Input: D, a dataset of the form D = (X, c) where

X = {x1,x2, . . . ,xm} is a set of vectors of length n containing

samples from the m original features in the problem and c is a

vector of class labels for the corresponding observations in X

Input: φ, a GP program, which acts as a function Rm 7→ R

Input: c⋆, the label of the class for which a feature is being

constructed

Output: fitness, a real value showing the fitness of the program (the

lower, the better and the minimum is zero)

y[i]← φ(x1[i],x2[i], . . . ,xm[i]) , ∀i ∈ {1, 2, . . . , n} ;1

// transformation

(l, u)← Find-Interval(y, c, c⋆);2

c′ ← () ; // an empty vector3

for i← 1 to n do4

if y[i] ∈ (l, u) then5

c′ ← (c′, c[i]);6

foreach label ∈ C do7

plabel =
|{i: i∈{1,2,...,|c′|}, c′[i]=label}|

|c′| ; // frequency of class8

fitness← 0;9

foreach label ∈ C do10

fitness← fitness− plabel log(plabel);11

return fitness;12

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 53

then the fitness will be quite low. Therefore, the smaller the fitness, the

better the program, and consequently the better the constructed feature.

3.4 A GP System for Feature Construction

Now that the main component of a GP-based feature construction system,

the fitness function, is available, we propose our GP system by which mul-

tiple features can be constructed.

3.4.1 System Diagram

Figure 3.4 shows a top level view of the proposed GP-based multiple-

feature construction system. The GP system uses the training data to con-

struct a set of high-level features. The constructed features specify how the

input space should be transferred. They are used to transform the train-

ing and test data. The transformed data is used to induce and test a new

classifier. The original data (features) might be fed to the classification

algorithm as well in the form of an augmented dataset.

3.4.2 The GP Search

The main body of our GP-based feature construction algorithm is pre-

sented in Algorithm 3. The algorithm constructs one feature per class label

in the problem. The input to the algorithm is a dataset with m original fea-

ture vectors x1 to xm and one decision variable vector (the target class) c

which takes its values from C = {c1, c2, . . . , cL}. We use F to denote the

set of constructed features. At the beginning of the algorithm F is empty,

but by the end of the algorithm it will contain L constructed features, one

for each class in the problem.

The outer loop in the algorithm iterates over all the class labels in the

problem. For each class label, a separate GP run is conducted and the

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 54

Figure 3.4: The system diagram of the proposed GP-based multiple-feature con-

struction system and its relation to a classification algorithm.

resulting program (the best constructed feature) is added to F . In each

GP run, the fitness function focuses on one specific class label, optimising

GP programs to best separate the instances of that class from others. The

best program is the one with the lowest fitness value (i.e. with the lowest

entropy or maximum purity). The algorithm keeps track of the best pro-

gram by updating the value of the variable best-fitness. The inner loop,

implementing the GP search, will terminate either when the maximum

number of generations is reached or when the best possible fitness, zero,

is achieved.

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 55

Algorithm 3: GP -Multiple-Feature-Constructor(D)

/ * Given a training dataset the algorithm uses GP

to construct as many features as the number of

class labels in the problem. Each constructed

feature is a GP program which acts as a

function to transform the input space. * /

Input: D, a dataset of the form D = (X, c) where

X = {x1,x2, . . . ,xm} is a set of vectors of length n of

observations of the m original features in the problem and c

is a vector of class labels for the corresponding observations

in X

Output: F , the set of constructed features

F ← {} ; // initialising the set of constructed features1

foreach c⋆ ∈ C = {c1, c2, . . . , cL} do2

P ← create a new initial population;3

best-fitness← +∞; // initialising the best fitness to be4

the worst possible fitness.

while ¬max-generations ∧ best-fitness 6= 0 do5

foreach φ ∈ P do6

φfitness ← FindF itness(X, φ, c⋆);7

if φfitness < best-fitness then8

best-program← φ;9

best-fitness← φfitness;10

perform selection;11

perform genetic operators;12

F ← F ∪ {best-program};13

return F ;14

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 56

3.5 Empirical Results

3.5.1 Design of Experiments

The performance of the proposed GP-based multiple feature construction

system is measured by conducting two major experiments: In the first ex-

periment, we measure the changes in classification performance by aug-

menting the original dataset—that is, by adding the newly constructed

features to the original dataset. In the second experiment, the classifica-

tion performance is measured after feeding only the constructed features

to the classifier. We also carry out two minor experiments, one to study

the effect of using the constructed features on the size of decision tree clas-

sifiers, and the other to analyse how and why a constructed feature can

actually improve the classification performance. The details of the experi-

ments follow.

3.5.1.1 Datasets

We use 8 classification datasets from the UCI machine learning repository

[6]. They include binary and multiple class classification tasks. Table 3.1

summarises the main characteristics of these datasets. A common prop-

erty of these datasets is that they only have numerical features. This is

because we define a constructed feature to be a mathematical function of

the original features. In some datasets—for example, the Wisconsin Breast

Cancer dataset (WBC-Original)—instances with missing values have been

removed [see Appendix A].

3.5.1.2 GP Settings

We use the standard tree-based GP model [71]. In this model, each pro-

gram produces a single floating-point number at its root for each obser-

vation in the dataset. Table 3.2 shows various settings of the GP system

we developed for the experiments. The four standard arithmetic operators

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 57

Table 3.1: Specification of datasets used in experiments.

Problem # Features # Instances # Classes

Balance Scale 4 625 3

Glass Identification 9 214 6

Iris Plant 4 150 3

Liver Disorders 6 345 2

Pima Diabetes 8 768 2

Thyroid Disease 5 215 3

Wine Recognition 13 178 3

WBC-Original 9 683 2

were used to form the function set. The division operator is protected—that

is, it returns zero for division by zero. All the members of the function set

are binary—they take two parameters. During the search process we use

a heavy dynamic limit on tree depth [132] to control the code bloating.

The initial maximum program tree depth is set to 3, but it can increase to

6 during evolution. More discussions on the sensitivity of the algorithm

to the maximum tree depth is presented in 6.3.2 and 6.3.3. The popula-

tion size is 512 individuals 4. This is common and reasonable value for the

population size. The probability of the crossover and mutation operators

are adapted automatically at runtime [21] and finally, an elitist approach

is taken to keep the best individual of the generation.

4 When the value of a parameter is not precisely known, some computer scientists

tend to use the nearest power of two (e.g. 512 instead of 500). In certain situations, the

powers of two or variables of these sizes are easier and more efficient to store and handle.

We have been following this convention for some of the GP parameters.

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 58

Table 3.2: GP Settings

Function Set: +, −, ×, ÷ (protected division)

Variable Terminals: The original features ({x1, x2, . . . , xm})
Constant Terminals: Randomly Generated

Population Size: 512

Number of Generations: 50

Initialisation: Ramped half and half

Mutation: Subtree creation

Selection: Tournament (size=5)

Initial Tree Depth: 3

Maximum Tree Depth: 6

Mutation Probability: Adaptive[21]

Cross-over Probability: Adaptive[21]

Elitism: Yes

3.5.1.3 Evaluation Process

Since none of the datasets that are used in our experiments comes with

a specific test dataset, we adopt a 10-fold cross-validation approach. At

the start of each 10-fold cross-validation, the seed of a random number

generator is initialised and the following steps are performed:

1. Shuffle the dataset;

2. Create 10 stratified partitions (folds);

3. For each fold repeat the following:

(a) Take the current fold as the test set and the others as the training

set;

(b) Run Algorithm 3;

(c) Transform the training and test set through the constructed fea-

tures;

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 59

(d) Perform classifier learning and testing.

The dataset is shuffled and stratified to 10 folds. Stratified folds have the

same proportion of instances form different classes. Each time one of the

folds is taken as the test set and the remaining as the training set and then

Algorithm 3 is executed. The shuffling process and the inner GP algorithm

all depend on the random number generator.

We consider each execution of Algorithm 3 as one GP job and each job

involves L GP runs, where L is the number of distinct class labels in the

problem. There are 10 GP jobs in each 10-fold cross-validation. Since GP

is a stochastic process, we need to have a number of GP runs before be-

ing able to extract any reliable statistics. We repeat the above-mentioned

process three times. This gives us 3 × 10 × L GP runs in total. In all ex-

periments, the J48 implementation of C4.5 decision tree inducer [127, 152]

is used to evaluate the quality of the constructed features. Table 3.3 sum-

marises different parameters involved in the evaluation.

Table 3.3: Evaluation Settings

Validation: 10-fold cross-validation with stratified folds

GP jobs: 30

Total GP runs: 3× 10× L (L is the number of class labels)

Classifier: C4.5 Decision tree (J48 version)

Evaluation Modes: a) Using augmented datasets and

b) Using constructed features only

3.5.2 Results and Analysis

3.5.2.1 Classification Performance Using Augmented Datasets

The first group of experiments examines whether adding the newly con-

structed features to the original features—that is, making an augmented

dataset—can improve the classification performance of the decision tree

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 60

classifier. The number of features in the augmented dataset is shown in

Table 3.4. The number is simply the sum of the number of original fea-

tures and the number of constructed features. The number of constructed

features, as discussed earlier, is equal to the number of classes in the given

classification task.

Table 3.4: Number of features at different stages

Problem Original Constructed Augmented

Balance Scale 4 3 7

Glass Identification 9 6 15

Iris Plant 4 3 7

Liver Disorders 6 2 8

Pima Diabetes 8 2 10

Thyroid Disease 5 3 8

Wine Recognition 13 3 16

WBC-Original 9 2 11

Table 3.5 shows the J48 decision tree accuracy using the original and

augmented datasets for the eight classification problems. The classifica-

tion accuracy using the original dataset is obtained via 10-fold cross val-

idation (using test folds). Since the decision tree classification process is

deterministic and no other major stochastic processes are involved5, the

process is repeated only once (10-fold cross-validation) and the result is

reported in the second column of the table. For augmented datasets where

GP-constructed features are involved, the process is repeated as many

times as specified in Table 3.3. The mean and standard error of the clas-

sification accuracy are reported in the table. The t value is calculated by

t = X̄−µ0

s/
√
n

where µ0 indicate the accuracy using the original features, X̄

5We assume that the effect of random assignment of instances to different folds on

classification accuracy is negligible.

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 61

indicates the estimated mean of accuracy using augmented features, s is

the standard deviation and n is the number of repetitions which is 30. The

probability values come from a T distribution with 29 degrees of freedom

and show the confidence level at which the accuracy using augmented

features outperform the accuracy using the original features.

Table 3.5: Classification accuracy over the original and augmented dataset

Problem
Original Augmented Dataset t-test

Accuracy Accuracy s t P{T ≤ t}
Balance Scale 0.775 0.976 0.014 78.6 99.99%

Glass Identification 0.678 0.725 0.022 11.7 99.99%

Iris Plant 0.947 0.947 0.006 0.00 -

Liver Disorders 0.647 0.675 0.019 8.07 99.99%

Pima Diabetes 0.746 0.725 0.087 -1.3 -

Thyroid Disease 0.921 0.949 0.017 9.02 99.99%

Wine Recognition 0.910 0.910 0.003 0.00 -

WBC-Original 0.958 0.964 0.010 3.28 99.87%

According to Table 3.5, compared to the performance obtained using

the original datasets, the augmented datasets can improve the classifica-

tion accuracy in 5 out of the 8 classification tasks. The dominating values

are printed in bold face. For the Balance Scale dataset, the improvement is

quite significant. In 2 of the 3 datasets in which the performance has not

improved, the performance is the same, and in only one case, Pima Dia-

betes, the performance has deteriorated. For almost all cases the standard

error is quite low, suggesting that the results of different GP runs are quite

consistent. Overall, the results suggest that GP-constructed features play

a positive role in improving the classification performance.

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 62

3.5.2.2 Classification Performance Using Only Constructed Features

In the second group of experiments, we compare the performance of the

J48 decision tree using the original features with the J48 decision tree us-

ing only the GP-constructed features. Table 3.6 shows the performance

results. The accuracy values are calculated using the test folds. The means

and standard deviaitons of the accuracy using only GP-constructed fea-

tures have been reported in the table. The t value is calculated by t = X̄−µ0

s/
√
n

where µ0 indicate the accuracy using the original features, X̄ indicates the

estimated mean of accuracy using only GP-constructed features, s is the

standard deviation and n is the number of repetitions which is 30. The

probability values come from a T distribution with 29 degrees of free-

dom and show the confidence level at which the accuracy using only GP-

constructed features outperforms the accuracy using the original features.

We explain the table by taking the Wine Recognition dataset as an ex-

ample. The number of original features in this dataset is 13. GP has

constructed 3 high-level features for this problem, one for each class la-

bel. Comparing the classification accuracy when using original features

(0.910) with the classification accuracy when using only the three newly-

constructed features (0.944), there is over 3% improvement. A small stan-

dard error of 0.013 suggests that the improvement is quite significant. The

last columns shows the maximum accuracy of 0.967 can be reached by us-

ing the constructed features.

According to Table 3.6, in terms of average performance, for 7 datasets

out of 8, classifiers using the constructed features can outperform those us-

ing the original features. In terms of maximum performance (the last col-

umn, which is obtained by using the best constructed features), they can

outperform in all 8 datasets. A low standard error in almost all datasets

suggests that the improvement is quite consistent. Even for the 3 datasets

where the augmented datasets could not improve the performance in the

previous experiment, the performance has been improved using only the

high-level constructed features. Although augmented feature sets are su-

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 63

Table 3.6: Results of the proposed approach and the basic decision tree approach.

Problem
Features Org. Cnstd. Features Acc. t-test

Org. Cstd. Acc. mean s max t P{T ≤ t}
Balance Scale 4 3 0.775 0.972 0.021 1.000 51.38 99.99%

Glass 9 6 0.678 0.718 0.009 0.730 24.34 99.99%

Iris Plant 4 3 0.947 0.952 0.002 0.960 13.69 99.99%

Liver Disorders 6 2 0.647 0.688 0.007 0.704 32.08 99.99%

Pima Diabetes 8 2 0.746 0.744 0.005 0.754 -2.19 -

Thyroid Disease 5 3 0.921 0.941 0.006 0.953 18.25 99.99%

Wine Recognition 13 3 0.910 0.944 0.013 0.967 14.32 99.99%

WBC-Original 9 2 0.958 0.966 0.004 0.972 10.95 99.99%

persets of constructed features, in 5 tasks out of 8, namely Iris, Liver, Pima,

Wine and WBC, the performance of classifiers using only constructed fea-

tures is higher than those using the augmented sets. This suggests that

in many cases GP-constructed features carry all important information re-

quired for classification and augmentation might cause the inclusion of

some noisy or redundant features that are not required for classification

and can actually lead to deterioration. It also raises questions about deci-

sion trees’ capability in feature selection, but this is not in the scope of the

thesis.

3.5.2.3 Effect of Constructed Features on Decision Tree Complexity

To see how constructed features can affect the complexity of decision tree

classifiers, we study the changes in the size of decision trees using the

original and constructed features. The size of decision trees are measured

by counting the number of decision nodes they contain. The complexity

of decision trees has a direct effect on their generalisation capability and

the extent to which they can be interpreted. The less complex a decision

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 64

tree, the more its generalisation capability and the easier its interpretation.

Table 3.7: Changes in Complexity of Decision Trees

Problem
Features Max # of nodes in DT

Org Cnstd. Improvement Org. Cnstd. Shrink

Balance Scale 4 3 29.0% 86.0 5.0 94.2%

Glass Identification 9 6 7.7% 46.6 37.6 19.3%

Iris Plant 4 3 1.4% 8.4 8.4 0.0%

Liver Disorders 6 2 8.8% 44.6 8.8 80.3%

Pima Diabetes 8 2 1.1% 40.6 3.0 92.6%

Thyroid Disease 5 3 3.5% 15.4 11.2 27.3%

Wine Recognition 13 3 6.3% 9.2 8.6 6.5%

WBC-Original 9 2 1.5% 22.0 6.2 71.8%

Table 3.7 shows the results of this study. The number of original fea-

tures, the number of GP-constructed features, and the maximum improve-

ment achieved by using the GP-constructed features (instead of the orig-

inal features) are reported in the left columns. The maximum improve-

ment is obtained by
accuracymax−accuracyoriginal

accuracyoriginal
× 100% where accuracymax is

the maximum accuracy obtained by using the constructed features and

accuracyoriginal is the accuracy obtained by using the original features. The

average number of nodes in the decision tree using the original features

and the GP-constructed features are in columns 5 to 6. The last column

shows how much the decision tree classifier has shrunk when only GP-

constructed features have been used. For example, the first row shows

that by using the 3 GP-constructed features instead of the 4 original fea-

tures in the Balance Scale problem, the classification performance has in-

creased by 29% and the average decision tree size has reduced from 86.0

nodes to 5.0, i.e. a 94.2% shrinkage. This pattern is the same for almost

all the eight datasets; using the GP-constructed features, the classification

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 65

performance increases and the classifier complexity decreases.

3.5.2.4 Analysis of A GP-Constructed Feature

To have a better picture of how GP-constructed features can actually im-

prove the classification performance, we analyse one of these constructed

features as an example. One of the cases that has shown a considerable

improvement after using the GP-constructed features is the Balance Scale

dataset. The dataset has three classes, namely Left (L), Right (R), and Bal-

ance (B). We analyse one of the GP-constructed features for the class B of

this dataset. The constructed feature, yB , is the non-linear Lisp expression

(/ x 3 (* x2 (/ x 1 x4))) , which can be mathematically expressed as

yB = x3x4

x1x2
, where xi is the i-th original feature. The fitness of this con-

structed feature is zero indicating that along the axis of the constructed

feature, the interval of the class B contains only instances of B, demon-

strating a perfect separation.

Figure 3.5 shows a learnt decision tree induced by the J48 algorithm

using the constructed feature. Although only one constructed feature has

been used, the performance of the classifier on all of the test folds is 100%.

In fact, the decision tree benefits from the fact that the instances of the

three classes form three non-overlapping bands along the axis of the con-

structed features. All the instances of B have been squeezed into a narrow

band approximately between 3.28 and 3.5. The instances of the other two

classes, L and R, are at the right and left hand side of this band. The bands

are illustrated at the bottom of Figure 3.5.

3.6 Discussion

The proposed GP-based feature construction method has the capability

of making multiple features while using a filter-based fitness function.

We achieve this by making the feature evaluation measure (the fitness

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 66

 y < 3.28

R

3.50−8 8+

R B L

3.28

B L

 y < 3.50

YES NO

YES NO

Figure 3.5: A learnt decision tree using a constructed feature, yB. The feature

has been constructed for the class B of the Balance Scale problem. Al-

though using one feature, the decision tree can perfectly separate all

the instances of the three classes.

function) class-centric—that is, it evaluates the goodness of a feature with

respect to its power to discriminate between the instances of different

classes. This is an important advantage because almost all the existing

filter-based methods in the literature can construct only one feature. Since

using a single feature is usually not enough for successful classification,

the only available option when using these methods is to feed the original

features along with the constructed feature to the classification algorithm.

This is in fact a limitation of the traditional GP-based feature construction

systems, which makes them unsuitable for certain purposes like dimen-

sionality reduction.

Our observations on the eight classification tasks show that in most

cases, augmented feature sets (the union of constructed features and orig-

inal features) improve the classification performance over using the orig-

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 67

inal features (the standard approach). When comparing with using con-

structed features alone, however, the classification results achieved using

the augmented datasets were lower in most cases. Besides, due to the

larger number of features in the augmented datasets, there is a slight in-

crease in dimensionality. A possible reason for this phenomenon might

be that the constructed features and the original features are redundant.

However, if decision tree classifier inducers had good feature selection

ability—and this is what is expected according to the literature—then us-

ing augmented feature sets should not lead to decrease in performance

when compared to using only constructed features. This might suggest

that C4.5 algorithm does not really have as good feature selection ability

as mentioned in the literature.

Since constructed features are able to express the original input space

in a more concise form, the learnt decision trees using only these features

tend to be simpler (having fewer decision nodes). For example, the learnt

decision tree classifier for the Balance Scale problem, using the constructed

features, has far fewer nodes than the learnt decision tree classifier using

only the original features. The decrease in the complexity of decision trees

is due to the richness of GP-constructed features. Smaller decision trees

are easier to interpret and faster in execution. However, the constructed

features themselves might be difficult to interpret meaningfully.

As the fitness measure approaches zero, the instances of the class for

which a feature is being constructed are the only occupants of the class

interval. The instances of this class gather together in the form of a distin-

guishable band, that is easy to separate from the instance of other classes.

While the objective of this feature is to discriminate the instances of the

class of interest, it can sometimes group the instances of other classes on

either side of the interval of the class of interest. We saw an example of

this when analysing a GP-constructed feature for the Balance Scale dataset.

This suggests that sometimes GP-constructed features are potentially able

to perform the actual classification task by grouping the class instances in

CHAPTER 3. MULTIPLE FEATURE CONSTRUCTION 68

separate bands.

Overall, our results suggest that GP can be effectively used for con-

structing multiple high-level features for classification problems. The con-

structed features, either in the form of an augmented dataset or on their

own, can significantly improve the performance of classifiers. The newly-

constructed features seem to be able to give more generalisation capabil-

ity to classifiers than the original features. Therefore, the improvement in

classification usually coincides with a decrease in the complexity of classi-

fiers.

Chapter 4

Dimensionality Reduction

4.1 Introduction

The number of dimensions of a classification problem is a decisive factor in

the performance of a classifier. A high dimensional dataset might severely

suffer from the curse of dimensionality; the search space of possible models

for the data is huge and there might be a lot of redundancy. Generally,

the lower the number of dimensions, the easier to learn a system and the

higher the performance. In most cases, reducing the dimensionality of a

problem, as long as important information is not lost, makes learnt models

simpler and more general and therefore, easier to interpret. Consequently,

dimensionality reduction is a major task in feature manipulation.

4.1.1 Transformational Reduction

Transformational reduction is an approach to dimensionality reduction. In

this approach, the input space is transferred to a new input space with

lower dimensionality where each dimension (feature) in the new input

space is in fact a function of a number of dimensions in the original in-

put space. Principle Component Analysis (PCA) is a classical example of

transformational reduction in which the new dimensions (principle com-

69

CHAPTER 4. DIMENSIONALITY REDUCTION 70

ponents) are a linear combination of the original features.

Transformational reduction can be regarded as a special case of feature

construction in which the number of constructed features is considerably

less than the number of original features in the problem. In the previous

chapter, we used a GP-based feature construction algorithm in which the

number of constructed features equals the number of classes in a classifi-

cation problem. Since the number of classes in a high dimensional classi-

fication problem is usually less than the number of features, the algorithm

can implicitly provide some degree of reduction depending on the ratio of

the number of classes to the number of features.

4.1.2 Challenges in Dimensionality Reduction using GP

While in principle, the algorithm proposed in the previous chapter can

be used for dimensionality reduction for a broad category of classification

problems in which the ratio of the number of class labels to the number

of features is low, there is a subtle but very important issue that should be

taken into account before using the algorithm for dimensionality reduc-

tion. Dimensionality reduction techniques are usually applied to problems

with fairly large number of features. For a GP-based algorithm, where nor-

mally there is one variable terminal per feature in the problem, the size of

the variable terminal set grows with the number of original features in

the problem. The size of the GP search space (the space of all possible

programs), however, grows exponentially with respect to the size of the

variable terminal set.

In general, given a constant amount of computational resources, the

probability of success of an evolutionary algorithm decreases as the size

of the search space increases. The algorithm proposed in the previous

chapter is, of course, no exception. Classification problems with a larger

number of original features are generally more difficult to solve1. One

1We will see an example of this phenomenon in Chapter 6.

CHAPTER 4. DIMENSIONALITY REDUCTION 71

remedy for big search spaces is to have large population sizes. Since hav-

ing larger populations means more fitness evaluations, one would like

to have a fairly simple fitness function that is computationally affordable

when evaluated for a large number of times. The other remedy might be

to increase the probability of success by using some good heuristics.

4.1.3 Chapter Goals

This chapter aims to develop a non-wrapper GP-based approach to di-

mensionality reduction in classification problems. To deal with the GP

difficulty in searching enormous search spaces created by classification

problems with a large number of features, we aim to make two critical

improvements in the algorithm proposed in the previous chapter by:

• increasing the chance of finding (constructing) a discriminative fea-

ture in a large search space by employing some types of heuristics;

and

• making the search process computationally affordable by proposing

a new fitness function that is easy to evaluate.

We address the first objective by introducing class-wise orthogonal trans-

formation and encapsulating terminals ideas influenced by some classical

dimensionality reduction methods. We achieve the second objective by

first providing a general form of entropy-based fitness functions and then

deriving a simplified version of that. The performance of the proposed

method is measured in terms of reduction ratio and improvements in clas-

sification accuracy. The method is also compared with a classical transfor-

mational dimensionality reduction method.

CHAPTER 4. DIMENSIONALITY REDUCTION 72

4.2 Enriching GP Material through Transforma-

tions

An important factor for GP to achieve success in finding desired solutions

is the quality of the available building blocks. A piece of genetic material,

in tree-based GP, is a subtree2. Good genetic material is a partial solution

that occurs in the structure of desired solution trees. Providing the search

with good genetic material can considerably increase the likelihood of suc-

cess.

4.2.1 Finding a Promising Transformation

In the GP-based approach to feature construction and dimensionality re-

duction, a subtree is itself a transformation. Therefore, one way of find-

ing heuristics to produce good genetic material is to look for promising

transformations. To do this, we first have a look at the problem of non-

orthogonal class boundaries, a common phenomenon in decision trees.

Next, we see how PCA, a largely practised method for dimensionality

reduction, attempts to deal with non-orthogonal datasets and discuss its

shortcomings. Then, we propose an alternative transformation that will

be used, in the next section, to enrich genetic material in our proposed

GP-based dimensionality reduction system.

4.2.1.1 The Issue of Oblique Class Boundaries in Decision Trees

A decision tree is a hierarchy of decision nodes (decision stumps) that are

triggered in a top-down manner. Each node examines the value of an indi-

vidual feature and branches to one of its two child-nodes, which are either

a prediction or another decision node. In an n-dimensional input space,

this process looks like partitioning the space into different areas where

2It can also be thought of as a building block in its very basic syntactic form, without

any wild-card node.

CHAPTER 4. DIMENSIONALITY REDUCTION 73

each partition is associated with a class label and is formed by a collec-

tion of a finite number of hyper-rectangles. The decision tree classification

process works quite well when the boundaries of classes are orthogonal to

one of the features.

Now consider an n-dimensional classification problem in which in-

stances of a particular class make a hyper-ellipsoid cloud of data in a way

that its boundaries with other classes are not orthogonal to the input fea-

tures. This is in fact a very common phenomenon in real classification

problems. A two-dimensional example of this phenomenon is depicted

in Figure 4.1. The figure shows a binary classification problem with nor-

mally distributed classes. The solid lines show the direction of deviation

in each class. The dashed line shows the boundary between two classes.

The boundary between the two classes is neither perpendicular to x1 nor

x2. Since decision tree learners find the class areas by dividing the input

space into some rectangular regions, an angled class boundary like this

causes the decision tree learner to make several rectangles to include the

desired class instances and exclude the unwanted ones. This phenomenon

makes learnt trees quite big and complicated which consequently affects

their generalisation capability, classification performance, and execution

time. Some aspects of this issue have been discussed in [127] as well.

4.2.1.2 Limitations of PCA in Classification Problems

PCA is one of the transformational dimensionality reduction techniques

that is widely used in different applications. PCA performs a linear trans-

formation. The objective of the transformation is to extract features with

high variability (principle components) and no correlation (orthogonal-

ity). To understand the advantages and disadvantages of PCA in a clas-

sification context, we first need to see how principle components are ex-

tracted.

PCA diagonalises the covariance matrix by linearly transforming data

to a new space where the axes of the data distribution are orthogonal to

CHAPTER 4. DIMENSIONALITY REDUCTION 74

 x
1

 x
2

Figure 4.1: An artificial dataset with two original features, x1 and x2, and two

classes, + and ◦. Although there is a clear linear boundary between

the two classes, since the boundary between the classes is oblique,

a decision tree classifier has to separate the two classes by making

several rectangular regions.

the axes of the new space [59]. The axes of the new space are called princi-

ple components. Based on our terminology, principle components are con-

structed features that map data to a new coordinate system. The locations

of instances in the new coordinate are obtained by multiplying the loca-

tion in the original coordinate by eigen vectors of the covariance matrix.

The first principal component accounts for as much of the variability in the

data as possible, and each succeeding component accounts for as much of

the remaining variability as possible [37].

Figure 4.2 shows the PCA transformation of data presented in Figure

4.1. The solid lines show the direction of deviation of instances of all

classes. PCA has rotated the data cloud in a way that the new axes (prin-

CHAPTER 4. DIMENSIONALITY REDUCTION 75

ciple components) , pc1 and pc2, are parallel to the direction of deviation of

all instances (including the two classes). According to PCA assumptions,

the principle component with larger deviation (i.e. greater eigen values) is

more significant. That is, in Figure 4.2 the pc1 component is more impor-

tant (informative) than pc2.

 pc
1

 p
c 2

Figure 4.2: The PCA transformation of the data displayed in the previous figure.

Looking at Figure 4.2, although the new axes are now the principle

components, the boundary between the two classes (the dashed line) is

still at an angle. The new space is not still favourable from the standpoint

of a decision tree inducer. This is due to the fact that the PCA procedure

is blind to the class labels in a training set. PCA considers data as a whole

regardless of the distribution of different classes. Since the class boundary

in Figure 4.2 is not orthogonal to either of the axes, when training a deci-

sion tree in this new input space, difficulties similar to those of training a

decision tree for the data in Figure 4.1 arise. That is, a decision tree inducer

CHAPTER 4. DIMENSIONALITY REDUCTION 76

has to create a large number of partitions to separate the classes. This sug-

gests that although PCA is useful for dimensionality reduction, in some

classification problems when certain classifiers used, it might not achieve

the desired effects.

4.2.1.3 Class-wise Orthogonal Transformation

In relation to the above-mentioned limitation, we propose a transforma-

tion that takes into account the class information (class labels in the train-

ing set). As mentioned earlier, the transformation will be used as heuris-

tics to increase the chance of finding a few high-level features that provide

good class separation. These high-level features, when used instead of

the original features in a classification problem, result in dimensionality

reduction.

The Concept The PCA transformation has two main elements: an or-

thogonal transformation and a ranking mechanism. The orthogonal trans-

formation makes the axes of the data distribution (the directions of devia-

tion) parallel to those of the new coordinate system after transformation.

The ranking mechanism is not useful in our feature construction scenario.

Besides, it comes with the general assumption that higher-ranked compo-

nents (features) are those with more deviation, which is not necessarily

true for classification problems. Thus, we disregard the ranking mecha-

nism of PCA, but consider how class information can be incorporated into

the orthogonal transformation process.

Looking at the example illustrated in Figure 4.2, we see that it would

have been better if a transformation could rotate the dataset in a way that

the boundary between the two classes was perpendicular to one of the

axes. This could have possibly been achieved by considering the centre of

a class as the centre of rotation rather than using the centre of the whole

dataset. That is, data points are transformed in a way that the axes of a

certain class are parallel to the axes of the input space. This can increase

CHAPTER 4. DIMENSIONALITY REDUCTION 77

the chance of having a class boundary perpendicular to one of the axes3.

To achieve this, we propose a modified version of orthogonal transfor-

mation that is class-wise. That is, a dataset is analysed class by class, and

for each class a new n-dimensional space is obtained (by transformation)

in which the axes are along the axes of the class distribution. Such a trans-

formation for the example given in Figure 4.1 is presented in Figure 4.3.

In this figure, after the dataset has been rotated around the centre of class

’◦’, the class boundary is perpendicular to cwoc1. After transformation,

a single feature like cwoc1 is sufficient to learn the resulting space. This

effect can be very helpful in improving the search process of a GP-based

dimensionality reduction system.

Mathematical Model Let D = (X, c) be a training dataset, where X =

{x1,x2, . . . ,xm} is a set of vectors, each of length n, of observations of the

m original features in the problem and c is a vector of class labels for the

corresponding observations in X. xi[j] ∈ R and c[j] ∈ C for i ∈ {1, 2, . . .m}
and j ∈ {1, 2, . . . , n} where m is the number of original features, n is the

number of observations, C = {c1, c2, . . . , cL} is the set of class labels, and

L is the number of classes in the classification task. The training set is

divided into L partitions of the form Pk each of which containing only

instances from one of the classes.

Pk = {(x1, x2, . . . , xm) | (x1, x2, . . . , xm, c) ∈ D, c = ck} (4.1)

3Linear Discriminant Analysis (LDA) and Fisher’s measure [93, 25] could have been

other options to be used as heuristics. Although these two methods provide linear trans-

formations that maximise class separation, we assume that our proposed entropy-based

fitness function can explicitly address this objective by finding pure class intervals. There-

fore, we rather focus on orthogonal transformations that are not directly addressed (as an

objective) by the fitness function and therefore may take a long time to be found during

an evolutionary process.

CHAPTER 4. DIMENSIONALITY REDUCTION 78

 cwoc
1

 c
w

oc
2

Figure 4.3: Transformed input space using class-wise orthogonal transformations

where k ∈ {1, 2, . . . , L} and

L
⋃

k=1

Pk = X . (4.2)

Each partition represents a hyper-ellipsoid cloud. To have the axes of

deviation in the hyper-spheroids (axes along which the cloud of instances

are mostly scattered) perpendicular to the features in the newly trans-

formed space, one should diagonalise the covariance matrix of the data

in each partition. The covariance matrix of each partition Pk is

Σk = E[(Pk − E(Pk))(Pk − E(Pk))
T] (4.3)

where E denotes the expected value and Σk is an m × m square matrix

containing the covariances (and variances along the diagonal) of features

based on the data instances observed in the k-th partition. The axes of this

CHAPTER 4. DIMENSIONALITY REDUCTION 79

partition can be obtained by finding corresponding eigen vectors of the

covariance matrix of the partition [37]:

Ak = eigen(Σk) (4.4)

where each row of this matrix shows a vector in an m-dimensional space.

A transformation via these vectors makes the axes of the resulting dataset

orthogonal to the new coordinate system. Since the goal is to find a new

space in which class boundaries are perpendicular to the axes, the eigen

values are disregarded (despite what PCA does for ranking the resulting

components). The whole dataset is transformed by

X′
k = AkX (4.5)

where X′
k

is the transformed version of X (the whole dataset) using infor-

mation from the k-th class. Note that while the calculations of the covari-

ances and the eigen vectors are based on the partitioned data, the transfor-

mation is applied to the whole data set. So for each partition (distinct class

in the problem), one transformation is applied. In other words, having

L classes in a classification problem, there will be L different transforma-

tions of the original dataset, each having m dimensions4. For example,

for the dataset in Figure 4.1, two 2-dimensional transformations are cre-

ated. Figure 4.3 shows one of these two transformations. The boundary of

the two classes (dashed line) is now perpendicular to the new component

(horizontal axis).

4.2.2 A Real World Example

Dimensionality reduction is usually expected to improve or retain clas-

sification performance. To see how a single feature in the transformed

4In fact, L − 1 transformations would have been sufficient if it was certain that the

transformations discover the real boundary between classes. However, as it was pointed

out, the L transformations are distinct from each other and are only likely to transform the

boundary between classes orthogonal to the axes.

CHAPTER 4. DIMENSIONALITY REDUCTION 80

space can carry the information provided by a number of features from

the original space while improving the classification performance, an ex-

ample from a real dataset is presented. Figure 4.4 depicts a two dimen-

sional representation of the Thyroid Grand problem [6] based on its first

two attributes: T3-resin and total Serum Thyroxin. There are three differ-

ent classes in this problem, namely ’normal’, ’hyper’, and ’hypo’ which

are presented by different symbols. The boundaries of these classes are

neither linear nor perpendicular to the coordinate axes.

60 70 80 90 100 110 120 130 140 150
0

5

10

15

20

25

30

T3−resin

to
ta

l s
er

um
 th

yr
ox

in

Figure 4.4: Thyroid disease dataset represented in two dimensions. The axes are

two attributes from the dataset, T3-resin and total Serum thyroxin.

There are three classes in this dataset: normal, hyper, and hypo which

have been represented by ‘.’, ‘⋆’, and ‘+’ respectively.

For a decision tree inducer to learn a classifier on this space, it has to

divide the input space to some rectangular regions to find the class ar-

eas. Thus, the non-orthogonal class boundaries in the Thyroid problem

CHAPTER 4. DIMENSIONALITY REDUCTION 81

cause the decision tree inducer to make several such rectangular regions

to include the desired class instances and exclude the unwanted ones. To

quantify the separability of classes in an input space, we consider the per-

formance of a learnt decision tree on this space. For the dataset in Figure

4.4, a J48 decision tree inducer [152] is used. Only the two illustrated di-

mensions are used for training and testing the decision tree. 10-fold cross-

validation is used to evaluate the classification accuracy. The classifica-

tion performance measures 91.6% in the original input space. This perfor-

mance is used as a baseline to see how different transformations affect the

classification performance.

Figure 4.5 shows the result of applying PCA to the first two dimen-

sions of the thyroid grand problem. As it is seen, the shape of the whole

dataset (all three classes together) has been straightened along the new

coordinates. However, because PCA cannot distinguish between differ-

ent classes labels, the class boundaries are still at an angle. Training a

decision tree in this new input space has deficiencies similar to those of

the original input space. Using a J48 decision tree inducer to learn and

classify this new PCA-created space, the classification performance using

the first component alone is 77.2%, using the second component alone is

73.0%, and using both components (no dimension reduction) is 86.5%; all

of them cause some decrease in classification performance. As anticipated,

PCA might not be a suitable transformation for classification problems.

Figure 4.6 shows the result of applying class-wise orthogonal transfor-

mation to the first two features of the Thyroid problem depicted in Fig-

ure 4.4. After transformation, six new dimensions are generated, two for

each class (partition) in the problem. Two of these newly created dimen-

sions are shown in Figure 4.6. The dashed lines around the middle class

show boundaries of this class perpendicular to the first constructed di-

mension. If we induce a J48 decision tree classifier using the second com-

ponent alone, the average classification performance using 10-fold cross-

validation is 92.1%. Compared to the classification performance using the

CHAPTER 4. DIMENSIONALITY REDUCTION 82

−50 −40 −30 −20 −10 0 10 20 30 40
−20

−15

−10

−5

0

5

10

principle component 1

pr
in

ci
pl

e
co

m
po

ne
nt

 2

Figure 4.5: Transformed input space of the Thyroid problem using PCA. The axes

are the two principle components.

original features, although the dimensionality of the problem is reduced

from two to one, the classification performance has slightly increased.

4.2.3 The Enrichment Process

We use the proposed class-wise orthogonal transformation as heuristics

to enrich the genetic material available to GP for transformational dimen-

sionality reduction.

4.2.3.1 Two Options for Using Transformations as Genetic Material

One way to add transformations, as genetic material, to GP search is to

build their equivalent program trees and enter these new trees into the GP

population. The transformation is the inner product of an eigen vector

CHAPTER 4. DIMENSIONALITY REDUCTION 83

−25 −20 −15 −10 −5 0 5 10
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

class−wise orthogonal component 2

cl
as

s−
w

is
e

or
th

og
on

al
 c

om
po

ne
nt

 3

Figure 4.6: Two (out of six) dimensions presented after transforming the original

input space of the Thyroid Gland problem using class-wise orthogo-

nal transformations.

and the input vector. Therefore, given a set of binary functions (functions

taking two arguments), the equivalent program tree for a transformation

will have the original features and their coefficients (elements of the eigen

vector) at the leaf level (the lowest), the binary multiplication function at

the next level (for multiplying the original features with their coefficients),

and the binary addition function at higher levels (for adding all the terms

together). This way of adding genetic material has two disadvantages: A)

due to the nature of evolution in GP, the genetic material from the transfor-

mation may soon be destroyed or disappear during the evolution before

having a chance of being used in a good program, B) the transformation

takes a large number of nodes and creates deep program trees, particularly

with binary primitive functions and in problems with a large number of

CHAPTER 4. DIMENSIONALITY REDUCTION 84

original features.

Another method to add the transformations (as genetic material) to GP

is to pack each transformation into a single virtual node. The virtual node,

when it is evaluated, applies the corresponding transformation to the in-

put data. This way of enrichment has the advantage of taking only one

node in a program tree. Virtual nodes are immutable and do not change

during the evolution process. They can be evaluated once for every data

instance in the problem and cached for future references. Since virtual

nodes can serve our purpose without adding any disadvantages, they are

utilised to enrich the genetic material.

4.2.3.2 Extended Variable Terminal Sets

A terminal set is one of the ingredients that GP uses to make programs. A

variable terminal is a type of terminal that GP uses to read input data (fea-

tures). Commonly, a variable terminal is connected to an original feature

in the dataset and for each instance it returns the value of that feature. We

define an encapsulating terminal to be a special type of a variable terminal

that is virtually connected to all the m original features and encapsulates

an m-to-1 transformation. It returns a scalar real value for each instance

that is obtained by applying an m-to-1 transformation to the m feature

values of the instance. With regard to program structure, an encapsulat-

ing terminal is like any other node in a GP program; it returns a single real

value.

Having variable terminals that carry useful information for separating

data instances can improve the success rate of a GP search. In the previ-

ous subsection, we saw that class-wise orthogonal transformation demon-

strates a high potential for improving the classification performance via

increasing the chance of class separation. We use class-wise orthogonal

transformation in encapsulating terminals to enrich the genetic material

of our GP search. An extended variable terminal set is then formed that is

the union of the encapsulating terminals and standard variable terminals.

CHAPTER 4. DIMENSIONALITY REDUCTION 85

This is an attempt to increase the chance of finding (constructing) high-

level discriminative features that are informative enough to serve in place

of a large number of original features.

Figure 4.7 shows the overall process of genetic material enrichment.

The flow of data is from left to right. The process starts with the original

features of a classification problem. Class-wise orthogonal transformation

is applied to the original features to obtain encapsulating terminals. The

encapsulating terminals are then used together with the original variable

terminals to constitute an extended variable terminal set. The proposed GP

system uses the extended variable terminal set to construct a few high-

level features that can serve instead of a number of original features. The

reduction occurs when the number of constructed features is smaller than

the number of original features.

4.2.3.3 Enrichment Algorithm

The enrichment process can be performed in a pre-processing phase. Like

the way ordinary variable terminals are looked up from a dataset, encap-

sulating variable terminals are cached and stored in a table to gain effi-

ciency. The class-wise orthogonal transformation process is repeated for

each class in the problem, so that with m original features and L distinct

class labels in the problem, L × m encapsulating variable terminals are

created. All the ordinary and extended variable terminals are then stored

in a matrix called extended dataset. The extended dataset has m × (L + 1)

columns, one for each variable terminal (including ordinary and encapsu-

lating). Our proposed GP method uses the extended variable terminal set

(and the corresponding extended dataset) to build high-level features and

achieve dimensionality reduction. Algorithm 4 shows the steps taken to

prepare an extended dataset.

CHAPTER 4. DIMENSIONALITY REDUCTION 86

Figure 4.7: An overview of the genetic material enrichment process and dimen-

sionality reduction.

4.3 The Fitness Function

Another critical concept in designing a GP system is the fitness function.

The basic idea of the fitness function is a non-wrapper function similar to

that of the previous chapter; the function measures the purity of a class

interval. For dimensionality reduction, however, it is desired to simplify

the fitness function so that more fitness evaluations can be performed and

the expansion in the search space be compensated.

CHAPTER 4. DIMENSIONALITY REDUCTION 87

Algorithm 4: Create-Extended-Dataset(D)

/ * Given a training dataset with m features, the

algorithm uses class-wise orthogonal

transformation to construct m encapsulating

terminals for each class in the problem. The

encapsulating terminals together with original

variables are stored in an extended dataset */

Input: D, a dataset of the form D = (X, c) where

X = {x1,x2, . . . ,xm} is a set of vectors containing n

observations of the m original features and c is a vector of

class labels for the corresponding observations in X

Output: D+, an extended dataset containing the values of the

original and encapsulating variable terminals

D+ ← X ; // add the original features to the new dataset1

foreach c⋆ ∈ C = {c1, c2, . . . , cL} do2

P← {(x1, x2, . . . , xm) : (x1, x2, . . . , xm, c) ∈ D, c = c⋆} ; // find3

the class partition

Σ← E[(P−E(P))(P−E(P))T] ; // calculate the covariance4

of the partition

A← eigen-vectors(Σ);5

X+ ← XA ; // make encapsulating terminals by applying a6

class-wise orthogonal transformation to X for the current

class

D+ ← (D+,X+); // append the encapsulating terminals to7

the new dataset

D+ ← (D+, c); // adding the class label vector8

return D+; // returning the extended dataset9

CHAPTER 4. DIMENSIONALITY REDUCTION 88

4.3.1 A Generalised Model: Renyi’s Entropy

To simplify the fitness function introduced in the previous chapter, the

concept of Shanon’s entropy is revisited. The Shannon entropy is a specific

form of a more general entropy function, called Renyi’s entropy [28, 125]

which is defined as

Hα(Ic⋆) =
1

1− α
log2

∑

c∈C
pα(c|X ∈ Ic⋆) (4.6)

where α > 0 is the order of entropy, α 6= 1, I is the interval being investi-

gated, C is the set of all class labels, and pI(c) is the probability of class c in

interval I , which is calculated by measuring the frequency of occurrences

of class c in the interval. The relationship between Renyi’s entropy and

Shannon’s entropy can be expressed as

lim
α→1

Hα(Ic⋆) =
∑

c∈C
−p(c|X ∈ Ic⋆) log2 p(c|X ∈ Ic⋆) = H(Ic⋆)

That is, when α approaches 1, Renyi’s entropy is equal to Shannon’s en-

tropy in the limit.

4.3.2 A Simple and Efficient Model

Thinking of the whole dimensionality reduction algorithm as an optimi-

sation algorithm, the goal of GP is to find (construct) a high-level feature

that maximises the purity in a class interval. To measure the purity of a

class interval, one could use any order of the Renyi entropy. Here, we use

the second order, which can be further simplified.

H2(Ic⋆) = log2
1

∑

c∈C p
2(c|X ∈ Ic⋆)

(4.7)

The purity is maximised when the entropy function, H2(Ic⋆), is minimised.

H2(Ic⋆) is minimised when the term
∑

c∈C p2(c|X ∈ Ic⋆) is maximised. We

know that 0 ≤ p(c) ≤ 1 and
∑

c∈C p(c|X ∈ Ic⋆) = 1. Thus

0 ≤
∑

c∈C
p2(c|X ∈ Ic⋆) ≤ 1 , (4.8)

CHAPTER 4. DIMENSIONALITY REDUCTION 89

which implies that the upper bound value of this function is 1 and it is

only reached when the probability of one of the classes is 1 and the proba-

bilities of the rest of the classes are zero. Since the interval of class c⋆ will

always contain instances of that class, p(c⋆|X ∈ Ic⋆) cannot be zero. There-

fore, the sum term is maximised when the probability of the occurrence

of instances of other classes in the interval Ic⋆ approaches zero. In other

words, we are interested in having the minimum occurrence of instances

of other classes in a class interval. This is the basis for defining a simple

fitness function that counts the number of instances of other classes in a

class interval. Based on this fitness measure, a constructed feature is fitter

than another one if the value of this function is lower for that feature—that

is, a constructed feature for class c⋆ is better if the interval Ic⋆ of the class

along this feature has a smaller number of instances from other classes.

4.3.3 Algorithm

Algorithm 5 shows the steps towards calculating the fitness of a GP pro-

gram. Based on the simplified fitness model, the calculated fitness is sim-

ply the number of instances of other classes in the interval of a class. As

long as one is not concerned about the fitness of a program in absolute

terms—which is the exact entropy quotient in the class interval—the sim-

plified model is enough to find the relative fitness of GP individuals. Since

in our proposed GP algorithm we use tournament selection, we only need

the relative fitness of individuals to compare them against one another and

therefore, the proposed simplified fitness function would suffice.

The algorithm starts with using the given GP program φ to transform

the input space—which has m× (L+ 1) dimensions after enrichment—to

a one-dimensional real-valued high-level constructed feature. The values

of the constructed feature are stored in y, a vector with n elements, one for

each instance in the dataset. It then uses Algorithm 1, introduced in the

previous chapter to find the class interval. The algorithm, then, counts the

CHAPTER 4. DIMENSIONALITY REDUCTION 90

Algorithm 5: DR-Fitness(D+, φ, c⋆)

/* Given a training dataset and a GP program (as a

candidate constructed feature) and a desired

class label for which a feature is being

constructed, the algorithm evaluates the

fitness of the GP program. */

Input: D+, an extended dataset of the form D+ = (X+, c) where

X+ = {x1,x2, . . . ,xm×(L+1)} is a set of vectors of length n of

observations of the m original features and m× L

encapsulating terminals, and c is a vector of class labels for

the corresponding observations in X+

Input: φ, a GP program which acts as a function Rm×(L+1) 7→ R

Input: c⋆, the label of the desired class for which a feature is being

constructed

Output: fitness, a real value showing the fitness of the program (the

lower the better, and the minimum is zero)

y[i]← φ(x1[i],x2[i], . . . ,xm×(L+1)[i]) , ∀i ∈ {1, 2, . . . , n} ; // using1

the GP program to transform the data

(l, u)← Find-Interval(y, c, c⋆); // finding the class interval2

// based on the algorithm proposed in Chapter 3

fitness← 0 ; // initialising the fitness3

for i← 1 to n do4

if y[i] ∈ (l, u) then5

if c[i] 6= c⋆ then6

fitness← fitness+ 1;7

return fitness;8

number of instances from undesired classes in the interval and returns it

as the fitness of the individual. The fitness value is an implicit indication

CHAPTER 4. DIMENSIONALITY REDUCTION 91

of impurity in the class interval and it is better when it is lower.

4.4 A GP System for Dimensionality Reduction

Having two remedies for the explosion of a GP search space in high-dimensional

problems—enrichment of genetic material and an efficient fitness function—

we propose a new GP system for transformational dimensionality reduc-

tion. The output of the system will be a few high-level constructed features

that can carry the important information of a large number of original fea-

tures. The overall design of the system is similar to that of the previous

chapter; however we use the above mentioned techniques to compensate

for the computation time required in large dimensionality reduction prob-

lems.

Figure 4.8 shows the overall process of the proposed system. The dataset

with the original features is divided into the training and test sets. The

training set is first used for enrichment of genetic material; a class-wise

orthogonal transformation is applied to the original features to make en-

capsulating terminals. The original variable terminals and the encapsulat-

ing terminals constitute the extended variable terminal set. The GP search

is then conducted to construct a set of high-level features for each target

class in the problem. As the number of distinct class labels in a classifica-

tion problem is usually much smaller than the number of original features

in the problem, the dimensionality of the problem is indirectly decreased

after the GP run is completed. Based on the constructed features, the train-

ing set and test set are then transformed into a new training set and a new

test set. If a constructed feature uses an encapsulating terminal, the corre-

sponding class-wise orthogonal transformation will be applied to the test

data to calculate the value of the constructed feature.

CHAPTER 4. DIMENSIONALITY REDUCTION 92

Figure 4.8: Overview of the proposed GP-based dimensionality reduction sys-

tem.

CHAPTER 4. DIMENSIONALITY REDUCTION 93

4.4.1 Algorithm

The main body of our proposed GP-based dimensionality is represented

in Algorithm 6.

The basic principles of the algorithm are the same as those of the multiple-

feature construction algorithm presented in the previous chapter. The ma-

jor differences, however, are using an extended dataset and a more effi-

cient fitness function. The GP search is conducted for every target class

in the problem. With L class labels in a classification problem there will

be L high-level constructed features as the result of the algorithm. How-

ever, since m, the number of original features in a classification problem,

is usually far larger than L, there will be some degree of dimensionality

reduction as a result of the construction process.

4.5 Empirical Results

4.5.1 Design of Experiments

The experiments are designed to evaluate the proposed system from two

complementary aspects: changes in dimensionality and changes in classi-

fication performance. One cannot investigate either of these two aspects

individually; a mere measure of dimensionality reduction regardless of

changes in classification performance is not very meaningful as any ratio

of dimensionality reduction can be obtained by any applicable algorithm

if performance is not an important factor. On the other hand, measuring

only classification performance is a good measure for feature construction

rather than dimensionality reduction. Therefore the two factors are con-

sidered together in the experiments and it is studied how they affect each

other. We will conduct two sets of experiments.

The goal of the first set of experiments is to evaluate the effective-

ness of the proposed GP-based transformational dimensionality reduction

system. That is, we want to know, using the proposed algorithm, how

CHAPTER 4. DIMENSIONALITY REDUCTION 94

Algorithm 6: GP -based-Dimensionality-Reduction(D)

/* Given a training dataset the algorithm uses GP

to construct a few features to transform the

input space to a new space. */

Input: D, a dataset of the form D = (X, c) where

X = {x1,x2, . . . ,xm} is a set of vectors of length n of

observations of the m original features in the problem and c

is a vector of class labels for the corresponding observations

in X

Output: F , the set of constructed features

F ← {} ; // initialising the set of constructed features1

D+ ← Create-Extended-Dataset(D) ; // Algorithm 42

foreach c⋆ ∈ C = {c1, c2, . . . , cL} do3

P ← create a new initial population;4

best-fitness← +∞; // initialising the best fitness to5

the worst.

while ¬max-generations ∧ best-fitness 6= 0 do6

foreach φ ∈ P do7

φfitness ← DR-Fitness(X+, φ, c⋆) ; // Algorithm 58

if φfitness < best-fitness then9

best-program← φ;10

best-fitness← φfitness;11

perform selection;12

perform genetic operators;13

F ← F ∪ {best-program};14

return F ;15

CHAPTER 4. DIMENSIONALITY REDUCTION 95

much dimensionality reduction can be achieved and compared to the or-

dinary approach, where all the original features are fed to the classifier,

how the resulting transformational reduction affects the classification per-

formance. For this purpose, all the original features are fed to the deci-

sion tree classifier and the classification performance is recorded for each

problem. This gives a baseline for each problem without dimensionality

reduction. Then the proposed algorithm is applied and changes in dimen-

sionality and performance are compared to the baseline.

The goal of the second set of experiments is to find out how well our

proposed algorithm can perform in comparison with a widely-used clas-

sical transformational dimensionality reduction method such as PCA. For

this purpose, the datasets are transformed using PCA and then in two

batches: first all the generated components and then only high-ranked

components are fed to the classification algorithm. The classification per-

formances are then compared to those from the first set of experiments.

4.5.1.1 Datasets

Four classification problems (datasets) are used in the experiments. The

datasets are collected from the UCI machine learning repository [6]. All

the problems have relatively large number of features. Table 4.1 sum-

marises the main characteristics of these datasets. They include two-class

and multiple-class classification problems. The Waveform dataset is an ar-

tificial dataset whose instances can be created by a program. So the num-

ber of instances is arbitrary. We used 500 instances, which were distributed

evenly over three classes.

4.5.1.2 GP Settings

The standard tree-based genetic programming model is used [71]. In this

model, each program produces a single floating-point number at its root

as the result of its evaluation (output). Table 4.2 shows various settings of

CHAPTER 4. DIMENSIONALITY REDUCTION 96

Table 4.1: Specification of datasets used in experiments

Problem # Features # Instances # Classes

JH Ionosphere 34 351 2

Sonar 60 208 2

Waveform 21 500 3

WBC-Diagnostic 30 569 2

the GP system we developed for the experiments. There is one variable

terminal for each feature in the problem. A number of randomly gener-

ated constants are also used as terminals. The four standard arithmetic

operators were used to form the function set. The division operator is

protected—that is, it returns zero for division by zero. All the members of

the function set are binary—they take two parameters.

The ramped half-and-half method [71] is used for generating programs

in the initial population and for the mutation operator. The initial maxi-

mum program tree depth is set to 4, but it can increase to 8 during evo-

lution. During the search process we use a heavy dynamic limit on tree

depth [132] to control the code bloating. The probability of the crossover

and mutation operators are adapted automatically at run time [21]. An eli-

tist approach has been taken to keep the best individual of the generation.

The initial maximum program tree depth is set to 4, but it can increase to

8 during evolution.

4.5.1.3 Evaluation Process

As shown in the system diagram, the proposed algorithm only uses the

training data, and the test data is used only to measure the classification

performance. Since none of the datasets that are used in our experiments

come with a specific test dataset, we adopt a 10-fold cross-validation ap-

proach. At the start of each 10-fold cross-validation, the seed of a random

CHAPTER 4. DIMENSIONALITY REDUCTION 97

Table 4.2: GP Settings

Function Set: +, −, ×, ÷ (protected division)

Variable Terminals: The original features ({x1, x2, . . . , xm})
Constant Terminals: Randomly Generated

Population Size: 2048

Number of Generations: 50

Initialisation: Ramped half and half

Mutation: Subtree creation

Selection: Tournament (size=5)

Initial Tree Depth: 4

Maximum Tree Depth: 8

Mutation Probability: Adaptive [21]

Cross-over Probability: Adaptive [21]

Elitism: Yes

number generator is initialised and the following steps are performed:

1. Shuffle the dataset;

2. Create 10 stratified partitions (folds);

3. For each fold repeat the following:

(a) Take the current fold as the test set and the others as the training

set;

(b) Run Algorithm 6;

(c) Transform the training and test set through the constructed fea-

tures;

(d) Perform classifier learning and testing.

The dataset is shuffled and stratified to 10 folds. Stratified folds have the

same proportion of instances from different classes. Each time one of the

CHAPTER 4. DIMENSIONALITY REDUCTION 98

folds is taken as the test set and the remaining as the training set and then

Algorithm 6 is executed. The shuffling process and the inner GP algorithm

all depend on the random number generator.

We consider each execution of Algorithm 6 as one GP job and each job

involves L GP runs, where L is the number of distinct class labels in the

problem. There are 10 GP jobs in each 10-fold cross-validation. Since GP

is a stochastic process, we need to have a number of GP runs before being

able to extract any reliable statistics. We repeat the above-mentioned pro-

cess three times. This gives us 3×10×LGP runs in total. In all experiments,

the J48 implementation of the C4.5 decision tree inducer [127, 152] is used

for classification. The decision tree inducer is used to learn a new deci-

sion tree classifier based on the transformed training set. The classifier is

then applied to the transformed test set and the performance is measured.

Table 4.3 summarises different parameters involved in the evaluation.

Table 4.3: Evaluation Settings

Validation: 10-fold cross-validation with stratified folds

GP jobs: 30

Total GP runs: 3× 10× L (L is the number of class labels)

Classifier: C4.5 Decision tree (J48 version)

Evaluation Modes: a) Using augmented datasets and

b) Using constructed features only

4.5.2 Results and Analysis

4.5.2.1 Effectiveness of the Algorithm

Table 4.4 shows the number of features in different stages of the proposed

GP process. The first column shows the number of original features in the

problem. The second column is the number of features in the extended

terminal set after the encapsulating terminals are added. Note that the

CHAPTER 4. DIMENSIONALITY REDUCTION 99

Table 4.4: Dimensionality reduction

Problem
of Features Reduction

Original Extended Constructed Rate

JH Ionosphere 34 102 2 94.1%

Sonar 60 180 2 96.7%

Waveform 21 84 3 85.7%

WBC-Diagnostic 30 90 2 93.3%

number of features at this stage is m × (L + 1) where m and L are re-

spectively the number of original features and the number of distinct class

labels in a given classification problem. For example, in the JH Ionosphere

problem, there are 34× (2+ 1) = 102 features in the extended terminal set.

The third column in Table 4.4 is the number of constructed features

(output of the GP system), which is equal to the number of distinct classes

in the problem. The fourth column shows the dimension reduction ra-

tio for each problem, which is calculated using #Original−#Constructed
#Original

. The

reduction is of course due to the fact that the number of classes in these

problems is less than the number of features. In all the problems, the di-

mensionality has been decreased. The reduction rate, however, is different

from one problem to another. The average reduction rate is 92% and it is

higher than 85% in all the four problems.

Since the reduction rate on its own, without considering the changes

in the classification problem, is not very meaningful, changes in the clas-

sification performance are considered with relation to dimensionality re-

duction. In general, one would like to have as much reduction as possible

without a considerable deterioration in the classification performance.

Table 4.5 shows the classification performance of the J48 decision tree

before and after using the proposed dimensionality reduction algorithm.

The first column after the problem names shows the dimensionality re-

CHAPTER 4. DIMENSIONALITY REDUCTION 100

duction rates from the previous table. The second column shows the clas-

sification performance using the original features set. The next column

shows the average and the standard error of the classification accuracy

when the GP-constructed features are used to reduce the dimensionality.

In each row, the numbers printed in boldface are the highest performance.

The t value is calculated by t = X̄−µ0

s/
√
n

where µ0 indicate the accuracy using

the original features, X̄ indicates the estimated mean of accuracy using

transformed features, s is the standard deviation and n is the number of

repetitions which is 30. The probability values come from a T distribu-

tion with 29 degrees of freedom and show the confidence level at which

the accuracy using augmented features outperform the accuracy using the

original features.

Table 4.5: Classification performance before and after dimensionality reduction

Problem
Reduction Classification Accuracy t test

Rate Original GP s t P{T ≤ t}
JH Ionosphere 94.1% 0.896 0.914 0.014 7.042 99.99%

Sonar 96.7% 0.732 0.803 0.023 16.90 99.99%

Waveform 85.7% 0.764 0.857 0.018 28.29 99.99%

WBC-Diagnostic 93.3% 0.935 0.967 0.006 29.21 99.99%

Comparing the classification performance achieved by the GP-constructed

features with the classification performance when all the original features

are used, we find that for all the problems, the new system has been able

to improve the performance while considerably reducing the number of

dimensions. The standard error in all the four problems is quite low sug-

gesting that the GP results are fairly consistent from run to run and statis-

tically significant.

CHAPTER 4. DIMENSIONALITY REDUCTION 101

4.5.2.2 Comparison with the PCA method

In this section we intend to compare our proposed system to PCA. The

outputs of applying PCA transformation to a problem with m features

are m components (another term for constructed-feature in PCA terminol-

ogy). PCA ranks the resulting components so the user can choose as many

high-ranked components as required. Since decision trees are used for

classification and decision trees come with their own feature selection al-

gorithm, in one of the experiments all the resulting components are fed to

the decision tree classifier. In the next experiment, however, to make sure

that the comparisons are fair, we feed only as many high-ranked features

to the classifier to keep the dimensionality reduction ratio the same as that

achieved by our proposed algorithm.

Table 4.6 shows the outcome of our experiments. The first and the

last columns under “Classification Performance” are like those in Table

4.5, showing the classification performance before and after using the pro-

posed dimensionality reduction method. The second column shows the

classification performance when all the features are transformed by the

PCA method to a new set of components. This includes all the generated

components, which are as many as the number of the original features.

The third column (PCA-DR) shows the classification performance when

only high-ranked components are selected from the PCA transformation.

The number of selected components is equal to the number of features

generated by the GP system. Outperforming performances are printed in

boldface.

Comparing the classification performance obtained by using all the

components generated by PCA (PCA column), with the classification per-

formance obtained by using the L GP-constructed features (GP column), in

all the problems, the proposed GP system outperforms the PCA method.

When comparing the classification performance obtained by using L top

components generated by PCA (PCA-DR column), with the classification

performance obtained by using the L GP-constructed features (GP col-

CHAPTER 4. DIMENSIONALITY REDUCTION 102

Table 4.6: Classification Performance

Problem
Classification Performance

Original PCA PCA-DR GP s.e.

JH Ionosphere 0.896 0.866 0.818 0.914 0.014

Sonar 0.732 0.749 0.485 0.803 0.023

Waveform 0.764 0.769 0.862 0.857 0.018

WBC-Diagnostic 0.935 0.926 0.931 0.967 0.006

umn), in 3 problems out of 4, the proposed GP system outperforms the

PCA method. Only in one problem (Waveform dataset) the PCA method

perform slightly better than the proposed method; the difference, how-

ever, is very small. Overall, considering the stand error of the GP method,

the proposed algorithm demonstrates a significant superiority over PCA.

4.6 Discussions

The goal of this chapter was to develop a GP approach to transforma-

tion dimensionality reduction to reduce the dimensionality of classifica-

tion problems and improve the classification performance. The goal has

been achieved by proposing a GP-based system that transforms the origi-

nal input space into a new space via a set of GP-constructed features. The

number of dimensions in the new input space is equal to the number of

classes in the problem. Therefore, dimensionality reduction is achieved by

taking advantage of a natural characteristic of the majority of classifica-

tion problems which is having larger number of features than number of

distinct classes.

Since the space of possible transformations (GP programs) grows expo-

nentially with respect to the number of original features in a classification

task, we had to introduce some heuristics in order to be able to perform

CHAPTER 4. DIMENSIONALITY REDUCTION 103

a GP search that is likely to succeed in finding acceptable solutions in a

reasonable amount of time. A class-wise orthogonal transformation was

proposed to enrich the genetic material of the GP search by adding some

encapsulating terminals to the variable terminal set. We also introduced

an entropy-based fitness function that is computationally inexpensive.

The proposed GP system was evaluated and compared with the stan-

dard decision tree approach, and a combination of PCA and the deci-

sion tree approach. The results show that the proposed system is able to

achieve significant dimensionality reduction and performance improve-

ment in most classification problems. The results also show that, in most

cases, the proposed system can outperform the PCA method in terms of

dimensionality reduction and classification performance. This suggests

that GP is an effective approach to transformational dimensionality reduc-

tion in classification problems.

The ratio of dimensionality reduction cannot be directly controlled via

the proposed algorithm; it depends on the number of original features and

the number of distinct classes in the problem. This could be a disadvan-

tage if the user needs to have an arbitrary number of constructed features

(or reduction ratio). There are some remedies for this limitation, however.

If the user needs more features than the number of classes in the problem,

the algorithm can be modified to construct features for a combination of

classes [109]. If the user needs fewer constructed features (dimensions)

than the number of classes in the problem, the algorithm can construct

features for certain classes in the problem. As we saw in a sample con-

structed feature in the previous chapter, if a constructed feature is good

at separating instances of a certain class, it might be good at separating

instances of other classes as well. Therefore, constructing fewer features

than the number of classes in the problem might be achievable without a

significant loss in classification performance.

Chapter 5

Single-Feature Ranking

5.1 Introduction

Feature ranking is a common approach to feature selection and dimen-

sionality reduction. It provides a measure of usefulness for the conditional

variables (input features) of a classification task. Dimensionality reduction

can be achieved by ranking features and then using only a few high-rank

features for classification. In this chapter, we use GP to rank the input

features of a classification task.

5.1.1 Motivations

Most existing feature ranking methods rank single features—that is, they

measure the relative importance of a single feature in predicting target

concepts (class labels). An advantage of single-feature ranking is that

users have the freedom to have their required dimensionality reduction

ratio; users can select any number of high-rank features that gives them a

desired balance of accuracy, interpretation, dimensionality reduction and

execution time [see Section 2.2.4, page 20]. Single-feature ranking can also

be helpful in studying the underlying nature of classification problems.

Compared to subset-feature ranking algorithms, single-feature ranking al-

104

CHAPTER 5. SINGLE-FEATURE RANKING 105

gorithm have the advantage of being computationally inexpensive [146].

Almost all the existing single-feature ranking methods are filter-based.

Although these methods enjoy the typical advantages of the non-wrapper

approach, they have a common flaw. In many real-world classification

problems, an original input feature alone may not show any relevance to

target classes. The feature, nonetheless, might be quite relevant in the

presence of some other features. Therefore, for a single-feature ranking

method to be able to evaluate the importance of a feature properly, it

should take into account the context (the presence or absence of some

other features) in which the feature might provide useful information.

5.1.2 GP Suitability for Feature Ranking

GP’s expressiveness and superiority in dynamically finding mathemati-

cal functions based on an objective function make it a promising choice

for discovering the relationship between conditional and decision vari-

ables of a classification task. Because GP programs/expressions are not

bound to any predefined template and can be of any type (linear, non-

linear, trigonometric, logical, etc), they can reveal a wide variety of rela-

tionships between the input features and target classes. In this chapter, GP

is used to discover existing functional dependencies between features and

target classes and then rank the input features based on their influence on

the discovered dependencies.

5.1.3 Chapter Goals

The goal of this chapter is to devise a non-wrapper GP-based method for

ranking the individual input features of a classification problem. The rank-

ing must be in a way that important/informative features get higher ranks

while noisy and irrelevant features get lower ranks. As far as possible, it

is desired to have a system that considers the influence of other features

(context) when finding the rank of a feature. By selecting a number of

CHAPTER 5. SINGLE-FEATURE RANKING 106

high-rank features, we aim to reduce the dimensionality while maintain-

ing/improving the classification performance.

5.2 GP-based Single-Feature Ranking

A top-down approach is taken in this chapter. We first propose the general

idea for using GP for single-feature ranking and then work out the details.

5.2.1 The Main Idea

One of the desired characteristics for a single-feature ranking method is to

be context-sensitive. That is, if a feature cannot perform well individually—

and this is the case in majority of real-world problems—the feature should

be ranked considering the presence of other features that can possibly in-

crease its performance. Of course, there is always a trade-off between the

extent to which this goal can be satisfied and the computational effort; to

find the perfect solution, one could perform an exhaustive search, which

is clearly computationally infeasible.

To find the relationship between a feature and target classes, a multi-

variate model is needed; the model should map a number of input fea-

tures to target classes. If a model performs well, then one can infer that

the quality of at least a subset of the input features used in the model is

high. Of course, there might be cases where some of the features used in

the model do not actually have any effect on the performance of the model

(e.g. a feature multiplied by a zero coefficient in a linear model). There-

fore, in addition to finding a good model that embodies the mathematical

relationship between features and class labels, one should distinguish be-

tween the influential and non-influential features used in the model.

GP is used to find a good multivariate model. GP has had a very suc-

cessful history in evolving classifiers. In this chapter, GP is used to evolve

some very simple classification models called weak classifiers, each of

CHAPTER 5. SINGLE-FEATURE RANKING 107

which can only separate instances of one class from instances of other

classes. We then consider the use of a subset of features in a good weak

classifier as an indication of the subset being promising.

To distinguish influential features from those that may enter a GP-

constructed model randomly (e.g. features in an intron), we construct a

large enough number of models (weak classifiers) to have sufficient statis-

tics on the frequency of occurrence of features in good models. Frequent

participation of a feature in several good classification models indicates

the potential importance of the feature. Even if an irrelevant feature enters

a good model by chance, it is very unlikely that it can appear in a large

number of other models as well. Therefore, in the long run, the frequency

of appearance of relevant features in good models will be higher than less

relevant ones.

A scoring mechanism is defined for the single (original) features based

on their frequency of appearance in good models. Features that are more

frequent in good classification models score more. The features are then re-

ordered based on the yielded scores and users can choose a few high-rank

features to achieve dimensionality reduction. To evaluate the effectiveness

of the proposed method, different numbers of high-rank features are fed

to different classifiers and analyse the performance.

5.2.2 Overall System Diagram

Figure 5.1 depicts the abstract diagram of the system. Given a dataset for

a classification task, we conduct a number of GP runs each of which pro-

duces a high-fitness weak classifier. The classification performance of the

weak classifier is used as the fitness [see Section 5.3]. The best programs

(weak classifiers) are stored in a program collection. The input features

score points for their appearance in weak classifiers. The score is propor-

tional to the fitness of the corresponding classifier. The features are then

ranked based on their score [see Section 5.4]. A projected dataset is created

CHAPTER 5. SINGLE-FEATURE RANKING 108

by selecting a number of high-rank feature from the original dataset. The

projected dataset will be fed to a classifier inducer to train a classifier.

Figure 5.1: Overview of the system.

5.3 Using GP to Build Weak Classifiers

A weak classifier is a simple learning model that can perform slightly bet-

ter than random guessing (e.g. more than 50% performance in binary clas-

sification) [55]. Weak classifiers are generally not good as standalone clas-

sifiers, but their weighted combination is usually used to build a complete

CHAPTER 5. SINGLE-FEATURE RANKING 109

classification model (e.g. boosting). Since weak classifiers do not neces-

sarily have to separate all the instances, they are much less complex com-

pared to complete classification systems and therefore, they are computa-

tionally less expensive to learn/evolve. Here, we use GP to build weak

classifiers.

5.3.1 Classification Model

In Chapter 3, it was observed that some of the constructed features can

potentially perform simple classification by placing instances of different

classes in different bands along the axis of a constructed feature. We can

use GP to construct a transformation that gathers the majority of instances

of a particular class in a continuous interval that contains as little occur-

rence of instances from other classes as possible. Given such an interval,

one can build a weak classifier by checking the result of the transforma-

tion against the boundaries of the interval. Similar to the case of multiple

feature construction, for a classification task with L distinct class labels, L

weak classifiers can be evolved1.

The dataset of a classification task is of the form D = (X, c), where

X = {x1,x2, . . . ,xm} is a set of vectors of length n containing samples

from the m original features in the problem and c is a vector of class labels

for the corresponding observations in X. We also have c[i] ∈ C for i ∈
{1, 2, . . . , n} where C = {c1, c2, . . . , cL}. Suppose φc⋆ is a GP program that

has been evolved for a weak classifier that separates the instance of class

c⋆ from other classes. The GP program generates a mapping of the form

φc⋆ : Rm 7→ R that transforms the multi-dimensional input matrix X to a

one dimensional vector y. Consider a continuous interval Ic⋆ = (lc⋆ , uc⋆)

on y that covers the majority of instances from class c⋆. We define a binary

1As mentioned in Chapter 4, one could build more than L weak classifiers by consid-

ering weak classifiers that separate different combinations of classes from each other.

CHAPTER 5. SINGLE-FEATURE RANKING 110

weak classifier WKc⋆ as

WKc⋆(x1, x2, . . . , xm) =

{

positive, φc⋆(x1, x2, . . . , xm) ∈ Ic⋆

negative, otherwise.
(5.1)

The classifier treats c⋆ as positive and other classes as negative. An in-

stance is classified as c⋆ (positive) if y = φc⋆(x1, x2, . . . , xm) falls in the in-

terval of the class; and negative otherwise.

5.3.2 GP Algorithm and the Fitness Function

For each GP program (transformation), there is a corresponding binary

weak classifier. To find WKc⋆ , we first have to find the interval of the

given class c⋆ for the GP individual (transformation). In fact, one can think

of the upper and lower bounds of the interval as the parameters of the

weak classifier WKc⋆ . To find the interval of class c⋆, we use Algorithm 1

(Find-Interval) in Chapter 3 (page 50). The algorithm finds a continuous

interval that covers the majority of the instances of class c⋆ while exclud-

ing instances at extreme left and right to diminish the effect of possible

outliers or noisy observations.

Once the interval is found, WKc⋆ is built and its classification perfor-

mance is used to determine the fitness of the corresponding GP program.

Since the interval of c⋆ covers the majority of the instances from that class

(usually 99%), the true positive rate of the classifier is always very high

(close to 1). The false positive rate, however, depends on how many in-

stances of other classes fall in the interval of class c⋆. Therefore, to improve

the classification performance, the false positive rate should be minimised.

The fitness of a GP program is defined to be

fitness = 1− FPR = TNR =
TN

TN + FP
(5.2)

where FPR is the false positive rate, TNR is the true negative rate, TN

is the number of instances correctly rejected (true negative) and FP is the

number of instances incorrectly accepted (false positive).

CHAPTER 5. SINGLE-FEATURE RANKING 111

Algorithm 7: Evolve-Weak-Classifier(D, c⋆)

/* The algorithm returns the created GP program

whose weak classifier for class c⋆ performs the

best among others. */

Input: D, a dataset of the form D = (X, c) where

X = {x1,x2, . . . ,xm} is a set of vectors of length n of

observations of the m original features in the problem and c

is a vector containing the class labels of the observations

Input: c⋆, the class label for which a weak classifier should be built

Output: (φ, fitnessφ), a pair containing the best performing GP

individual, program φ, and its fitness

P ← create a new initial population;1

best-fitness← 0; // initialising the best fitness2

while ¬max-generations ∧ best-fitness 6= 1 do3

foreach φ ∈ P do4

y[i]← φ(x1[i],x2[i], . . . ,xm×(L+1)[i]) , ∀i ∈ {1, 2, . . . , n};5

// using the GP program to transform the data

(l, u)← Find-Interval(y, c, c⋆); // finding class interval6

TN ← 0;7

for i← 1 to n do8

if (y[i] < l ∨ y[i] > u) ∧ c[i] 6= c⋆ then9

TN ← TN + 1; // it is correctly rejected10

fitnessφ ← TN
#negative-instances

;11

if fitnessφ > best-fitness then12

best-program← φ;13

best-fitness← fitnessφ;14

perform selection and genetic operators;15

return (best-program, best-fitness);16

CHAPTER 5. SINGLE-FEATURE RANKING 112

Algorithm 7 shows the steps involved in evolving a GP program that

has a good weak classifier for class c⋆. The main loop, implementing the

GP search, will terminate either when the maximum number of gener-

ations is reached or when the best possible fitness, 1, is achieved. The

algorithm keeps track of the best program by updating the value of the

variable best-fitness. At line 5, to find the fitness of each program in the

population, the program is first used to transform the dataset; for each in-

stance, the program uses the feature values from X and produces a single

floating point value that is stored in vector y. At line 6, (l, u), the lower and

upper boundaries of the interval of class c⋆ along y, is determined. Then at

lines 8–11, the fitness of the program is determined by measuring the per-

formance of the corresponding weak classifier on the transformed dataset.

The best GP program (weak classifier) along its fitness (true negative rate)

will be returned as the result.

5.4 Ranking Features

A scoring mechanism is defined by which features receive credit for their

appearance in a GP program. The amount of credit will be proportional

to the performance of the corresponding weak classifier. The score gained

by a feature f due to its appearance in the GP program φ is

scoref,φ =

{

fitnessφ
|terminals-of(φ)| , f ∈ terminals-of(φ)

0, otherwise
(5.3)

where f ∈ F = {f1, f2, . . . , fm}, fitnessφ is the fitness of program φ which

is determined by equation (5.2), terminals-of(.) is a function that returns

a set of variable terminals (features) used in a the given GP program, and

|.| is the set cardinality. Effectively, this equation divides the fitness of a

program equally among the features used in the program.

GP programs may contain introns—that is, there are some portions in

the program tree with zero or very little contribution towards the acquired

CHAPTER 5. SINGLE-FEATURE RANKING 113

fitness. In other words, there might be some features used in a weak classi-

fier that do not have any effect on the performance of the classifier. Using

equation (5.3), however, non-contributing features receive as much score

as contributing features. To compensate for this effect, instead of using one

GP program, a collection of GP programs is used to determine the score of

features. Each program in the collection is the result of a GP run and has a

well-performing corresponding weak classifier.

Features accumulate the scores they receive for each GP program in

the collection. So the features that are used more frequently in the GP

programs gain higher scores. On the other hand, since the appearance of

non-contributing features in introns is completely random and they might

be different from one program to another, at the end non-contributing fea-

tures receive lower scores. The normalised score of feature f after consid-

ering all the GP programs in the collection is obtained by

scoref =

∑

φ∈Φ
scoref,φ

∑

f∈F

∑

φ∈Φ
scoref,φ

(5.4)

where Φ is the collection of GP programs. The denominator normalises

the final score relative to the total score gained by all the features. The nor-

malised score shows the relative importance of features in a classification

problem.

5.4.1 Algorithm

Algorithm 8 shows the main algorithm of the proposed GP-based single-

feature ranking system. The algorithm conducts a number of GP jobs to

create a collection of GP programs that have well-performing correspond-

ing weak classifiers. Each GP job includes L GP runs to create L weak

classifiers (GP programs), one for each class in the problem. The number

of jobs is presented by #jobs, thus in total there will be #jobs × L weak

classifiers. The algorithm calls Algorithm 7 (Evolve-Weak-Classifier) to

CHAPTER 5. SINGLE-FEATURE RANKING 114

create weak classifiers.

Algorithm 8: GP -based-Single-Feature-Ranking(D)

/* Given a training dataset, the algorithm uses GP

to build a collection of binary weak

classifiers and then rank the original features

based on their influence. */

Input: D, a dataset of the form D = (X, c) where

X = {x1,x2, . . . ,xm} is a set of vectors of length n of

observations of the m original features in the problem and c

is a vector containing the class label of observations

Output: (s, r), a pair containing the scores and rank of the features

Φ← {}; // the collection of GP programs1

current-job← 1;2

repeat3

foreach c⋆ ∈ C = {c1, c2, . . . , cL} do4

Φ← Φ ∪ {Evolve-Weak-Classifier(D, c⋆)};5

until current-job = #jobs ;6

s← 01×m; // vector of scores initialised to zero7

sum-of -scores← 0;8

foreach (φ, fitnessφ) ∈ Φ do9

for i ∈ {1, 2, . . . , m} do10

if fi ∈ terminals-of(φ) then11

s[i]← s[i] +
fitnessφ

|terminals-of(φ)| ;12

sum-of -scores← sum-of -scores+
fitnessφ

|terminals-of(φ)| ;13

for i ∈ {1, 2, . . . , m} do14

s[i]← s[i]
sum-of -scores

; // normalising the scores15

r← indexed-descending-sort(s);16

return (s, r);17

CHAPTER 5. SINGLE-FEATURE RANKING 115

At line 7 of the algorithm, a vector s of size m is defined that keeps

the scores of the features. For each program, the scores of the features is

calculated and accumulated in this vector. At line 15, the vector is then

normalised by dividing the score of each feature by the sum of the scores

of all the features. Finally at line 16, the features are ranked by sorting

them in the descending order of their score. The ranking result is stored

in vector r whose elements are indexes to the original features. The fea-

ture with the highest score is considered the best and its index is the first

element of r.

5.5 Empirical Results

5.5.1 Design of Experiments

A set of experiments have been designed to evaluate the effectiveness of

our proposed GP-based single-feature ranking method. Since there is no

direct way to measure the performance of a feature ranking system, the

system is evaluated by analysing changes in classification performance

caused by using highly ranked features. For each classification task, the

proposed algorithm is used to calculate the scores of the features and rank

them. The proposed algorithm is then evaluated from two perspectives:

its effectiveness in feature selection and its utility in dimensionality reduc-

tion.

To evaluate the effectiveness of the proposed GP-based method, we

have to find out if the provided ranking reflects the actual importance of

features. We consider a situation where one needs to select m′ features

out of the m original features to use with a classification algorithm. With

no knowledge about the importance of features, features will be selected

randomly. However, if a ranking mechanism showed the true importance

of features, one could select m′ highest-ranked features to achieve a bet-

ter classification performance. Therefore, the proposed feature ranking

CHAPTER 5. SINGLE-FEATURE RANKING 116

system is evaluated by comparing two different ways of selecting m′ fea-

tures: one is selecting randomly and the other is selecting features ranked

as high by GP. For each given value of m′, the classification performance

using the two different selection methods is compared.

The other aspect of feature ranking is its utility in dimensionality re-

duction. In particular, we are interested to know whether a high classi-

fication performance can be achieved by using just a few highest-ranked

features. If a ranking is good, we expect to see a quick rise in classification

performance by adding a few highest-ranked features. On the other hand,

low-ranked features are not expected to have a considerable effect on clas-

sification performance and therefore, one should be able to remove them

without much deterioration in performance.

5.5.1.1 Datasets

Three datasets are used with a relatively large number of features from the

UCI machine learning repository [6] in the experiments. Table 5.1 sum-

marises the main characteristics of these datasets [see Appendix A].

Table 5.1: Specifications of datasets used in experiments

Problem # Features # Instances # Classes

JH Ionosphere 34 351 2

Sonar 60 208 2

WBC-Diagnostic (WBCD) 30 569 2

5.5.1.2 GP Settings

The standard tree-based GP model is used [71]. In this model, each pro-

gram produces a single floating-point number at its root as the result of

its evaluation (output). Table 5.2 shows various settings of the proposed

CHAPTER 5. SINGLE-FEATURE RANKING 117

GP-based system. There is one variable terminal for each feature in the

problem. A number of randomly generated constants are also used as

terminals. The four standard arithmetic operators were used to form the

function set. The division operator is protected—that is, it returns zero for

division by zero. All the members of the function set are binary—they take

two parameters.

The ramped half-and-half method [71] is used for generating programs

in the initial population and for the mutation operator. The initial maxi-

mum program tree depth is set to 4, but it can increase to 8 during evo-

lution. During the search process, we use a heavy dynamic limit on tree

depth [132] to control code bloating. The probability of the crossover and

mutation operators are adapted automatically at runtime [21]. An elitist

approach has been taken to keep the best individual of the generation.

The platform is implemented in Java and grid computing is used to have

parallel GP runs.

Table 5.2: GP Settings

Function Set: +, −, ×, ÷ (protected division)

Variable Terminals: The original features ({x1, x2, . . . , xm})
Constant Terminals: Randomly Generated

Population Size: 1024

Number of Generations: 50

Initialisation: Ramped half and half

Mutation: Subtree creation

Selection: Tournament (size=5)

Initial Tree Depth: 4

Maximum Tree Depth: 8

Mutation Probability: Adaptive [21]

Cross-over Probability: Adaptive [21]

Elitism: Yes

CHAPTER 5. SINGLE-FEATURE RANKING 118

5.5.1.3 Evaluation Process

To create a program collection, Φ, that is large enough to extract statis-

tics required by feature ranking, 300 GP jobs are conducted. GP runs are

started with a different random seed to have a variety of programs in the

collection. Since all the datasets used in this chapter are binary classifica-

tion problems (L = 2), for each dataset there will be 600 GP programs in

Φ.

Table 5.3: Evaluation Settings

Validation: 10-fold cross-validation with stratified folds

GP jobs: 300

Size of Collection Φ: 300× 2 = 600 (binary classification problems)

Classifiers: Decision Tree (J48 version of C4.5), Naı̈ve Bayes,

SVM (SMO version), Bayesian Network

Evaluation Modes: Limiting classifiers to highest-ranked features

Table 5.3 shows the settings involved in the evaluation process. Four

types of classifiers are used in our experiments, namely the J48 implemen-

tation of C4.5 decision tree [127, 152], Bayesian Networks, Naı̈ve Bayes

[57], and the SMO version of the SVM classifier [61]. Since none of the

datasets that are used in our experiments come with a specific test set,

we adopt a 10-fold cross-validation approach. The dataset is shuffled and

stratified to 10 folds. Stratified folds have the same proportion of instances

from different classes. Each time one of the folds is taken as the test set and

the remaining as the training set. Weka [152] library is used for the classi-

fication and evaluation processes.

CHAPTER 5. SINGLE-FEATURE RANKING 119

5.5.2 Results

5.5.2.1 Scores and Ranks

First the scores obtained by the input features in each of the three prob-

lems are reported. Bar charts of the scores are shown in Figure 5.2. In each

chart, the horizontal axis shows the feature index, starting from 1, and the

vertical axis shows the score of each feature calculated by equation (5.4).

Note that the scores are relative and the absolute values are not impor-

tant. Table 5.4 shows the ranks of the features in each classification task.

The features are listed in the order of importance starting with the most

important one.

Table 5.4: Feature ranks

Problem Order of features

5, 1, 3, 6, 8, 14, 4, 7, 9, 16, 25, 2, 21, 10, 15, 27, 17,

JH Ionosphere 33, 34, 18, 11, 23, 13, 22, 28, 29, 20, 24, 31, 12, 19,

32, 30, 26

11, 47, 49, 12, 45, 28, 46, 9, 27, 48, 19, 10, 36, 17,

Sonar 26, 22, 13, 16, 44, 35, 34, 58, 4, 52, 5, 37, 43, 42, 54,

Dataset 21, 18, 25, 38, 39, 20, 23, 41, 50, 15, 29, 8, 40, 3, 55,

32, 1, 51, 31, 30, 59, 14, 7, 2, 33, 6, 24, 56, 53, 57, 60

WBC-Diagnostic 24, 22, 28, 25, 8, 14, 2, 21, 23, 5, 29, 4, 10, 30, 11,

1, 18, 15, 7, 16, 19, 20, 27, 9, 13, 3, 26, 17, 6, 12

5.5.2.2 Effectiveness of GP-based Ranking: Comparison to the Base-

line

For creating the baseline, where no ranking is available, we repeat the

process of random selection of m′ features several times and measure the

CHAPTER 5. SINGLE-FEATURE RANKING 120

1 5 10 15 20 25 30 34
0

0.05

0.1

0.15

0.2

0.25

feature
i

sc
or

e
ionosphere dataset

1 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

feature
i

sc
or

e

sonar dataset

1 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

feature
i

sc
or

e

wbcd dataset

Figure 5.2: Score of features in the Ionosphere, Sonar and WBC-Diagnostic

CHAPTER 5. SINGLE-FEATURE RANKING 121

average classification performance. The number of times we select a sub-

set of size m′ is min(50, (mm′))—that is, we will have 50 different subsets of

size m′ and their corresponding classification performance as long as the

number of possible combinations of m′ chosen from m is greater than 50.

To select m′ features using the ranking provided by GP, we make a subset

that contains m′ features with the highest ranks; that is, the feature at rank

1 (the best), the feature at rank 2, and so on up to the feature at rank m′.

Figures 5.3, 5.4 and 5.5 compare the performance obtained by the GP-

based ranking and the baseline performance of the four classifiers for the

three datasets respectively. Each figure has four plots corresponding to

the four classifiers used in the experiments. In each plot, the horizontal

axis shows the number of features used in the classification and the ver-

tical axis shows the classification accuracy. The classification accuracy is

obtained by 10-fold cross-validation. For each given subset of size m′, we

compare the accuracy in the baseline with that obtained by selecting fea-

tures via GP-based ranking.

In all the figures, as the number of selected features increases, the per-

formance curve of the GP ranking and the baseline get closer to each other.

This is because as the number of selected features in the two method

grows, the likelihood of them sharing similar features increases. In the

limit when m′ = m—that is, when all the available features are used for

classification—the two curves meet each other. The performance differ-

ence between the two curves varies depending on the problem, the se-

lected subset, and the type of classifier. However, it is noticeable that re-

gardless of the dataset and the type of classifier, in almost all cases, the

classification is higher when selection is based on the provided GP rank-

ing.

5.5.2.3 Utility in Dimensionality Reduction

In Figures 5.6, 5.7 and 5.8 the performance of all the four classifiers are

studied together. Each figure corresponds to one of the datasets used in

CHAPTER 5. SINGLE-FEATURE RANKING 122

J48 Naı̈ve Bayes

0 5 10 15 20 25 30 35
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

features

ac
cu

ra
cy

Baseline

GP−Ranking

0 5 10 15 20 25 30 35
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

features
ac

cu
ra

cy

Baseline

GP−Ranking

SVM Bayesian Net

0 5 10 15 20 25 30 35
0.65

0.7

0.75

0.8

0.85

0.9

features

ac
cu

ra
cy

Baseline

GP−Ranking

0 5 10 15 20 25 30 35
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

features

ac
cu

ra
cy

Baseline

GP−Ranking

Figure 5.3: Comparison of the proposed ranking with the baseline (random selec-

tion) in the Ionosphere dataset.

the experiments. In each figure, the horizontal axis shows the number of

features used in the classification and the vertical axis shows the classifi-

cation accuracy. The classification accuracy is obtained by 10-fold cross-

validation. In each dataset, one wants to find out with how many selected

CHAPTER 5. SINGLE-FEATURE RANKING 123

J48 Naı̈ve Bayes

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

features

ac
cu

ra
cy

Baseline

GP−Ranking

0 10 20 30 40 50 60

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

features
ac

cu
ra

cy

Baseline

GP−Ranking

SVM Bayesian Net

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

features

ac
cu

ra
cy

Baseline

GP−Ranking

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

features

ac
cu

ra
cy

Baseline

GP−Ranking

Figure 5.4: Comparison of the proposed ranking with the baseline (random selec-

tion) in the Sonar dataset.

features a classifier can achieve a performance close to (or even better than)

when all the available features are used.

In the Ionosphere dataset, compared to the situation where all the 34

features are used, Naı̈ve Bayes and SVM can do better by using only 2

CHAPTER 5. SINGLE-FEATURE RANKING 124

J48 Naı̈ve Bayes

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

features

ac
cu

ra
cy

Baseline

GP−Ranking

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

features
ac

cu
ra

cy

Baseline

GP−Ranking

SVM Bayesian Net

0 5 10 15 20 25 30
0.7

0.75

0.8

0.85

0.9

0.95

1

features

ac
cu

ra
cy

Baseline

GP−Ranking

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

features

ac
cu

ra
cy

Baseline

GP−Ranking

Figure 5.5: Comparison of the proposed ranking with the baseline (random selec-

tion) in the WBC-Diagnostic dataset.

features, and Decision Tree and Bayesian Network can do better by using

just 3 features. In the Sonar dataset, Decision Tree, Naı̈ve Bayes, SVM

and Bayesian Network can, by using 8, 1, 14 and 13 feature(s) respectively,

perform better than situations in which all 60 features are used. It is almost

CHAPTER 5. SINGLE-FEATURE RANKING 125

1 5 10 15 20 25 30 34
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

features

ac
cu

ra
cy

ionosphere dataset

DT−J48
Naïve Bayes
SVM−SMO
Bayesian Net

Figure 5.6: Accuracy of different classifiers in the John Hopkins University Iono-

sphere classification task by using different numbers of ranked fea-

tures.

the same in the WBC-Diagnostic dataset where for all classifiers (except

SVM) the performance obtained by using all features can be obtained by

using less than 4 features out of 30.

Considering the performance figures of the three classification tasks, it

is observed that classification performance increases very quickly as the

first few highest-ranked features are added. For almost all the classifiers,

by using less than 10% of the features, one can obtain a similar perfor-

mance or better than that obtained by using all the features. Looking at the

trends in the classification performance, it is revealed that in most cases,

using more features with these classifiers, not only does not increase the

CHAPTER 5. SINGLE-FEATURE RANKING 126

1 10 20 30 40 50 60
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

features

ac
cu

ra
cy

sonar dataset

DT−J48
Naïve Bayes
SVM−SMO
Bayesian Net

Figure 5.7: Accuracy of different classifiers in the Sonar classification task by us-

ing different numbers of ranked features.

performance, but actually causes a considerable deterioration. This is par-

ticularly true for all the classifiers in the Ionosphere dataset and all the

classifiers (except SVM) in the WBC-Diagnostic dataset.

5.6 Summary and Discussion

In this chapter, GP was used to find the importance of the input features

in a classification task and then use this information to rank the features.

GP is used to evolve weak classifiers. During the course of evolution,

GP implicitly found a group of features that are required to build a good

weak classifier. Then features were credited and ranked based on their ap-

CHAPTER 5. SINGLE-FEATURE RANKING 127

1 5 10 15 20 25 30
0.86

0.88

0.9

0.92

0.94

0.96

0.98

features

ac
cu

ra
cy

wbcd dataset

DT−J48
Naïve Bayes
SVM−SMO
Bayesian Net

Figure 5.8: Accuracy of different classifiers in the WBC-Diagnostic classification

task by using different numbers of ranked features.

pearance in good weak classifiers. Most feature ranking methods measure

the importance of features individually. However, although our algorithm

ranks single features, it considers the importance of a feature in the context

of other required features.

Our results show that the output of the proposed algorithm can reflect

the true importance of the input features of a classification problem. We

found that, a variety of different classifiers restricted to just a few highest-

ranked features work well. In most cases, by using less than 10% of the

highly-ranked features, we gained the same classification performance as

that gained when all the available features are used. In fact, in most cases,

there was a set of highest-ranked features which led to a better classifica-

CHAPTER 5. SINGLE-FEATURE RANKING 128

tion performance than that obtained by using all the features.

Using all the features does not achieve the best result in any of these

three datasets. In fact, it is observed that having too many features causes

the classification performance to considerably deteriorate in most prob-

lems and for most classifiers. This may seem counter-intuitive to our ex-

pectation that ideally, by being fed more information, a good learning al-

gorithm should perform monotonically better. However, in practice many

well-known machine learning techniques are severely sensitive to curse of

dimensionality and noisy information. This suggests that dimensionality

reduction is essential for classification tasks.

Commonly, the size of the search space of a feature selection task is 2m

which is the number of possible subsets of the input features. The pro-

posed GP-based feature ranking, however, provides heuristics for having

a smaller search space for feature selection. One can think of the cardinal-

ity of a set of highest-ranked features as a search space that contains one

point for each possible set of highest-ranked features. There are m points

(subsets) in the search space: one subset with cardinality 1 (containing

the highest-ranked feature), one subset with cardinality 2 (containing the

two highest-ranked features) and so on until a subset of cardinality m con-

taining all the input features. By looking at the performance curves of all

the datasets and all the classifiers, it is observed that there is at least one

point in this search space where the classification performance is better

than the performance obtained when all the features are used. The new

search space is so small that it can even be searched exhaustively in O(n).

Using this smaller search space can be very beneficial in a feature selection

algorithm.

All single-feature ranking methods suffer from two serious deficien-

cies. The first deficiency is evident when a group of features carry some

important information about target classes, but their importance is not in-

dividually detectable. We did partly address this issue by taking a context-

sensitive approach, but the context information was lost during scoring

CHAPTER 5. SINGLE-FEATURE RANKING 129

and single-feature ranking. The next chapter will thoroughly address this

issue, by introducing subset feature ranking and selection. The second de-

ficiency is evident when two or more features that are individually ranked

as high carry very similar information. This phenomenon is called redun-

dancy. Selecting features in the way it is done in this chapter—that is, by

making a set of highest-ranked features—is not effective when the high-

rank features are redundant. We address the issue of redundancy in Chap-

ter 7.

Chapter 6

Ranking and Selection of Subsets

of Features

6.1 Introduction

Most feature ranking methods fall into the filter approach category, and al-

most all the filter-based ranking methods can only measure the goodness

of a single feature. This includes all feature ranking measures from the in-

formation theoretic domain, such as information gain (IG), gain ratio, mu-

tual information and the like [see Section 2.2.4, page 20]. Even though in

majority of real world classification problems, one feature might not show

any sign of being useful in the absence of other features, the majority of

existing ranking methods cannot provide any explicit way of measuring

the goodness of a group (subset) of features.

Another limitation of the majority of the existing methods is that they

can only consider simple types of relationships between a feature and the

target class. For example in the logistic regression model [18], the relation-

ship is assumed to be linear; in most of the information theoretic measures,

it is assumed that instances can be classified by setting a split point along

the feature axis. As a consequence if a feature or a group of features is rel-

evant to the target concepts in a way that cannot be handled by one of the

130

CHAPTER 6. RANKING SUBSETS OF FEATURES 131

predefined templates used in these methods, then their importance cannot

be measured.

6.1.1 Chapter Goals

The main goal of this chapter is to develop a GP-based system for ranking

and selection of subsets of features. In particular, the following criteria

should be met:

1. for efficiency reasons and for the sake of generality, the proposed

algorithm should not wrap any particular classifier to explore the

search space of features. That is, a filter approach is adopted;

2. the system must evaluate the goodness of a subset of features as op-

posed to single features only;

3. the proposed system must be able to detect those good features that

are not normally detected by existing methods;

4. the algorithm must be able to explore the space of subsets of features

properly via considering the topological characteristics of the search

space;

5. the provided ranking scheme for the subsets of features should give

a good insight into the actual importance of the subsets and the clas-

sification performance that can be obtained by using them;

6. for feature selection, the system must take a multi-objective approach

where the objectives are maximising the relevance of subsets and

minimising their sizes.

CHAPTER 6. RANKING SUBSETS OF FEATURES 132

6.2 GP for Ranking Subsets of Features

In this section, we propose some conceptual elements required to build a

GP-based system for ranking and selection of subsets of features.

6.2.1 Overview

We refer to the variable terminals used in a GP program tree as a subset of

features. A GP program defines a function over its variable terminals. We

evolve GP programs in a way that the function defined by a GP program

helps evaluate the goodness of the subset of features used in the program.

We define a virtual program-tree structure and a fitness function in a way

that the fitness of a GP program shows its relevance to the classification

task. Through some case studies, we describe how the proposed system

can handle multiple features and how it can find those good features that

are usually missed by other relevance measures.

We use GP to explore different subsets of features. Since the fitness of a

program shows the relevance of its features to the target attribute, during

the course of evolution, GP goes towards finding more promising subsets

of features. We propose a mechanism to improve the exploration perfor-

mance of GP. By conducting several GP runs, the relevance of a number of

subsets of features is revealed. Among these subsets, are a group of high-

performing subsets. We will then describe how this information is used to

form a Pareto-front on which feature selection can be performed.

6.2.2 Program Trees: A Virtual Structure

We extend the concept of relevance measure by proposing a virtual struc-

ture for GP program trees. Figure 6.1 shows such a structure for a GP pro-

gram; it measures the relevance of a subset of features to a classification

task. At the top (root) of the tree, there is a relevance measure function de-

noted by RM . This function measures the relevance of its right subtree to

CHAPTER 6. RANKING SUBSETS OF FEATURES 133

the class label variable denoted by C. The node RM can be a very simple

function in terms of the types of relationships it can detect. However, by

providing a good subprogram as its right subtree, we can discover more

complex relationships between the features used in the subtree and the

class variable. For example, RM could be a linear correlation function for

one single feature, but with a sophisticated subtree underneath, we would

be able to detect nonlinear relationships between a subset of features and

the class variable. We use the power of GP to evolve a rich subtree which

leads to a high relevance at the root node. We then regard the contributing

variable terminals in that subprogram as a subset of features and the out-

put of the program as the goodness of that subset. This structure is virtual

in the sense that the top node of the tree does not take part in any genetic

operations and so, in practice, it can be implemented as part of the GP tree

evaluation process rather than the GP tree representation.

. . .

C #

RM

.

Figure 6.1: A virtual structure for a GP program for measuring the usefulness of

a subset of features.

6.2.3 Relevance Measure

In the filter approach to feature selection for classification tasks, as a widely-

used hypothesis, a good feature is considered to be highly related to the

class variable [47]. That is, knowing the value of a related feature should

CHAPTER 6. RANKING SUBSETS OF FEATURES 134

change the probability distribution of the class variable. We are looking for

a relevance measure (function) that can be used in the node RM . Since the

class label is a nominal (categorical) variable, the function used to measure

this relevance should be capable of handling this type of data. Information

theoretic measures like information gain (IG) and gain ratio can be used

only if the feature being measured is nominal itself or has already been

discretised. These methods are also limited to measuring the correlation

between the class labels and a single feature rather than a group (subset)

of features.

To measure the correlation between a continuous feature and a binary

class variable, one could use the logistic regression (LR) model

log

(

π(x)

1− π(x)

)

= α + βx (6.1)

where π(x) is the probability of an instance belonging to a particular class

given the value of feature x, and the right hand side of the equation is a lin-

ear approximation of the logit function. The magnitude of the coefficient

β is used as an indicator of linear correlation, where a value of zero shows

no linear correlation between the continuous feature x and the class label

[2]. The parameter β and constant coefficient α can be estimated by maxi-

mizing the likelihood function through the Newton-Raphson method, but

it is too expensive a procedure to be considered as a candidate function for

the node RM .

Here, we define a binary relevance function (BR) that measures the

linear relationship between a nominal and a numeric variable but is com-

putationally cheaper. We define BR to be

BR(x, c) =

(

Cov(x, ω(c))

σ(x)σ(ω(c))

)2

(6.2)

which is actually the square of Pearson’s correlation between a numeric

random variable x and a function ω, with numerical range, of a nominal

random variable c. Cov(·, ·) and σ(·) denote, the covariance function and

CHAPTER 6. RANKING SUBSETS OF FEATURES 135

the standard deviation, respectively. The squared form is used because we

only consider the magnitude of relevance and not the direction (sign). For

a binary classification task with c ∈ {CA, CB}, we define ω(c) to be

ω(c) =







+
√

nB

nA
, c = CA

−
√

nA

nB
, c = CB

(6.3)

where nA and nB are the numbers of instances belonging to class CA and

class CB, respectively, and nA + nB = n, which is the total number of

samples in the training set. The function ω(c) is a standardized variable

with the following expected value and variance:

E(ω(c)) = p(CA)

√

nB

nA
− p(CB)

√

nA

nB
=

1

n
(nA

√

nB

nA
− nB

√

nA

nB
) = 0 (6.4)

where p(.) denotes the class distribution. Consequently,

σ2(ω(c)) = E(ω2(c)) =
nA

n

nB

nA

+
nB

n

nA

nB

= 1 (6.5)

Therefore, the empirical BR can, given that the total number of instances

n is large enough, be simplified to

BR(x, c) =
(
∑n

i=1(xi − x̄)ω(ci))
2

n
∑n

i=1(xi − x̄)2
(6.6)

where xi is the i-th observation (the output of the subprogram in Figure

6.1 for the i-th instance), ci is the class label of the i-th observation, and x̄ is

the sample mean. The complexity of computing BR is O(n), which makes

it a good candidate for the node RM .

To show why BR is a good alternative to LR for feature ranking, we

generate a set of artificial data. We consider one feature, x, and a binary

class variable c ∈ {CA, CB}. Instances of classes CA and CB are distributed

based on the same distribution but different parameters. We chose nor-

mal distributions with means µA and µB each having 21 values, namely,

{0,±1, . . . ,±10}, and variances σ2
A = σ2

B = 1. In total we have 441 (21×21)

CHAPTER 6. RANKING SUBSETS OF FEATURES 136

artificial datasets, each containing one feature with 200 instances (100 for

each class).

Figure 6.2 shows the BR function and the magnitude of the parameter

β from the logistic regression with respect to µA and µB. In both graphs,

there is a valley-like area along the diagonal where the means of the two

classes are close to each other. In this area, the instances of the two classes

are almost mixed together and the knowledge of the value of x would not

be helpful in discriminating the instances.

In the figure, as we go towards the areas off the diagonal, where the dis-

tance between the means becomes larger, the magnitude starts increasing

in both figures. However, there is a difference between these two func-

tions. When the means of the classes get far away from each other, |β| in
LR starts decreasing, indicating a lower relevance. However, from a clas-

sification point of view, as the margin between the instances of two the

classes provided by a feature increases, the feature is considered to be bet-

ter. In contrast to LR, the BR function returns larger values as the distance

between the two classes increases. So BR is a better measure than LR for

feature ranking.

6.2.4 Fitness Function

Algorithm 9 shows how the fitness of a GP individual is calculated using

the BR function. The class label vector c[i] can take only two values in

{A,B}, each representing one of the classes in the task. The values of nA

and nB (the number of instances in the two classes) are calculated once

at the beginning of the GP runs. With only one for loop, the algorithm

can calculate the fitness in a single pass. The value obtained at line 12 is

effectively equal to equation (6.6).

CHAPTER 6. RANKING SUBSETS OF FEATURES 137

Logistic Regression Coefficient

Binary Relevance Measure

Figure 6.2: Magnitude of parameter β in LR (top) and BR function (bottom) with

respect to the mean of classes A and B.

CHAPTER 6. RANKING SUBSETS OF FEATURES 138

Algorithm 9: BR-Fitness(D, φ)

/* Given the dataset (training or validation) of a

binary classification task and a GP program,

the relevance between the subset of features

used in the program and the target class is

calculated. */

Input: D, a dataset of the form D = (X, c) where

X = {x1,x2, . . . ,xm} is a set of vectors of length n containing

samples from the m original features in the problem and c is a

vector of class labels for the corresponding observations in X

Input: φ, a GP program which acts as a function R
m 7→ R

Output: fitness, a real value in [0, 1] showing the relevance between

the features used in φ and the target class

sumy, sumy2 , sumω, sumyω ← 0; // initialising the sums1

for i← 1 to n do2

y ← φ(x1[i],x2[i], . . . ,xm[i]) ; // transformation3

sumy ← sumy + y; // updating the sum4

sumy2 ← sumy2 + y2; // updating the sum of squares5

if c[i] = A then6

ω ← +
√

nB

nA
;7

else8

ω ← −
√

nA

nB
;9

sumω ← sumω + ω; // updating the sum10

sumyω ← sumyω + yω; // updating the sum of products11

fitness← sumyω− sumy sumω
n

n sum
y2

−sum2
y

;12

return fitness;13

CHAPTER 6. RANKING SUBSETS OF FEATURES 139

6.2.5 Case Studies

We set up a number of experiments on artificial data to investigate what

type of relevance the proposed GP system is able to capture, but the other

methods are not. In particular, we study a bimodal class distribution sce-

nario in which a system seeks to capture non-linear changes in the class

probability, and a binary classification problem with two correlated fea-

tures in which the system is to measure the goodness of a subset of fea-

tures rather than individuals. Single GP runs are conducted in each case

and the results are compared to those of other methods. Values regarding

this comparison are presented in Table 6.1, and the details of the two cases,

bimodal class distribution and correlated features, follow.

Table 6.1: Three relevance measures on two case studies

Ranking Bimodal Correlated

Method Distribution Features

Logistic Regression

|β| coefficient x: 0.03 x: 0.15, y: 0.13

Information Gain (IG)

Entropy 0.61 0.69

Split point x: 2.8 x: 7.4, y: 4.6

Gain x: 0.23 x: 0.29, y: 0.00

Gain rate x: 38% x: 42%, y: 0.0%

GP Relevance Measure

GP-based relevance x: 82% {x, y}: 87%

6.2.5.1 Bimodal Class Distribution

Figure 6.3 shows a binary classification problem with a single feature x,

where the distribution of one of the classes, A, is bimodal.

CHAPTER 6. RANKING SUBSETS OF FEATURES 140

−2 0 2 4 6 8 10 12

x

class A
class B

SBC

C Add

-3.9 Mul

Sub Sub

5.1 X 4.8 X

Figure 6.3: A bimodal class distribution along feature x in a binary classification

problem (Left). The evolved GP program tree for measuring the good-

ness of x (Right).

This feature is observably good because by setting up an interval around

instances of class B, the classification problem can be solved. However,

since the class probability does not change linearly with respect to x, the

LR method does not consider x to be a good feature, returning a β coef-

ficient close to zero (0.03, Table 6.1). The IG method tries to find the best

split point (2.8, Table 6.1) using which, instances from different classes can

be separated. However, as all the instances cannot be separated around

one split point, IG does not report this feature to be a very good one. In

contrast, GP evolves a program tree like the one in Figure 6.3 (right) which

transforms the relationship to a linear form that can be detected by the BR

function. These results show how this feature is dismissed as irrelevant by

methods like LR and IG, but it is successfully detected by the proposed

GP-based measure. Notice that the gain rate and GP-based relevance are

calculated differently, but they can be regarded as an indicator of how

good a feature is for the problem.

CHAPTER 6. RANKING SUBSETS OF FEATURES 141

6.2.5.2 Correlated Features

Figure 6.4 shows another binary classification problem with two features,

x and y, that are correlated.

−10 −5 0 5 10 15 20
−5

0

5

10

15

X

Y

class A
class B

SBC

C Sub

Mul Mul

1.8 X 2.1 Y

Figure 6.4: A binary classification task presented with respect to two of its fea-

tures, x and y, which are correlated (Left). The evolved GP program

tree for measuring the goodness of the subset {x, y} (Right).

These two features can be very useful for this classification task as a

(straight) line passing through the boundary of the two classes can identify

the class of instances. However, to those relevance measures that consider

each feature individually, neither feature is necessarily good. LR returns

a |β| of less than 0.2 for each of these features and the gain rate of IG for

x is pretty low and for y is zero (Table 6.1, column 3). On the other hand,

GP maximises the BR function by finding an appropriate program tree.

This program tree is shown in Figure 6.4 (right). The subprogram, as the

right child of the root node, actually constructs (by combining x and y) a

meta-feature along which the instances are easily separable. The relevance

of {x, y} is measured to be 87% by GP.

CHAPTER 6. RANKING SUBSETS OF FEATURES 142

6.3 Exploring the Search Space of Subsets of Fea-

tures

6.3.1 Search Space Topology

The size of the search space of a feature selection problem grows expo-

nentially with respect to the number of features in any given classification

task. With m features in a classification task, the search space includes 2m

points, one for each candidate subset (solution). A common representa-

tion of these solutions is to use a string of zeros and ones with length m,

where a zero or one at the i-th position specifies the absence or presence of

the i-th feature in the solution. This representation is common in genetic

algorithms for feature selection [137, 117]. This representation can be im-

proved by mapping the string to a lattice of subsets of features in which

adjacent nodes are obtained by inclusion or exclusion of a feature from

the existing node (subset). One such lattice is depicted in Figure 6.5. The

lattice can give more topological information to a feature manipulation

algorithm [155].

Figure 6.5: Search space of the feature subsets in the form of a lattice where each

node represents a feature subset with a string of zeros and ones show-

ing the absence and presence of the corresponding original features.

CHAPTER 6. RANKING SUBSETS OF FEATURES 143

6.3.2 Difficulties in Exploring the Search Space

As a common practice in using GP for feature ranking/selection, the pres-

ence or absence of a variable terminal in a program tree is used as an indi-

cation of the selection of the corresponding feature [87, 105]. This practice,

although effective, in certain situations cannot explore some points on the

search lattice. Theoretically, a binary GP tree (i.e., a GP tree including only

binary primitive functions) of depth d is capable of hosting up to 2d−1 fea-

tures. That is, to explore subsets of features of size up to max-cardinality,

we need GP trees of a minimum depth of ⌈log2max-cardinality + 1⌉. In

practice, however, the GP behaviour can be quite different.

Some preliminary experiments are conducted to see how GP explores

the search space of feature subsets. We use the proposed fitness function

and three datasets, namely Ionosphere, Sonar and WBC-Diagnostic. The

details of these datasets which are later used in our main experiments will

be described in Section 6.6. We use a standard GP system with maximum

tree depth of 6, a population of size 2048 and a maximum number of gen-

erations of 50.

Figure 6.6 gives some statistics on the results. The horizontal axes show

the cardinality of a feature subset and the vertical axes show the frequency

(number of occurrences) of such subsets in logarithmic scale. The solid

line with ’◦’ marks shows the size of the lattice (in terms of number of

points) for the given subset cardinalities. This curve is obtained by calcu-

lating the binomial coefficient
(

m
s

)

where s is the cardinality of the subset.

The other two curves show the number of subsets of features explored

by GP: one for the number of all unique feature subsets that appeared in

the structure of one or more program trees and the other is a subset of

the GP-explored subsets where the relevance (fitness) of the correspond-

ing program is higher than a minimum acceptable relevance, τ . Feature

subsets appearing in program trees with a fitness of less than τ could not

be considered as truly explored subsets as the low fitness might be due

to poor program structure rather than the quality of the features. We set

CHAPTER 6. RANKING SUBSETS OF FEATURES 144

τ = 0.3, however, any value in [0.3, 0.5] seems reasonable.

0 5 10 15 20 25 30 34
10

0

10
2

10
4

10
6

10
8

10
10

Ionosphere feature subsets statistics

cardinality

fr
eq

ue
nc

y

search space

explored by GP

GP (relevance ≥ 30%)

0 10 20 30 40 50 60
10

0

10
5

10
10

10
15

10
20

cardinality

fr
eq

ue
nc

y

Sonar feature subsets statistics

search space

explored by GP

GP (relevance ≥ 30%)

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

10
10

cardinality

fr
eq

ue
nc

y

WBCD feature subsets statistics

search space

explored by GP

GP (relevance ≥ 30%)

Figure 6.6: Frequency of subsets of features in the three datasets with respect to

the cardinality of subsets. The three curves are for: all possible com-

binations in the search space, subsets explored by standard GP, and

subsets explored by standard GP having a relevance greater than 0.3.

CHAPTER 6. RANKING SUBSETS OF FEATURES 145

The most noticeable observation we can make based on these figures

is that although a complete binary tree of depth 6 is theoretically capable

of using 32 features, in practice, in none of these problems the cardinality

of the explored feature subsets is greater than 15. This could be due to a

variety of reasons:

• the fitness of GP trees with large numbers of features is so low that

they are not selected to enter the next generations or contribute in

making larger trees;

• high fitness programs happen to have non-full binary tree structures

which consequently reduce their capacity for hosting larger numbers

of features;

• the complexity of the problem requires a lot of other operations (e.g.

functions, constant values, etc), occupying a lot of nodes and leaving

very little room for variable terminals (features).

The observations in this experiment may suggest that the GP search is

generally biased towards exploring subsets with relatively low cardinality.

This is potentially a good property for a feature selection algorithm where

smaller subsets are more desirable (solution points which are as close as

possible to the left side of the search lattice depicted in Figure 6.5). How-

ever, one should make sure that the cardinality of the optimum subset is

not beyond the exploration power of GP (the maximum number of fea-

tures that can be practically reached in each GP program). On the other

hand, there is no explicit way of finding the optimal cardinality for a sub-

set of features without conducting a search.

6.3.3 Improving Search Space Exploration

One solution to the problem mentioned previously would be to lift the

depth control or set it to a large number. This remedy, however, may cause

CHAPTER 6. RANKING SUBSETS OF FEATURES 146

bloating in GP programs [145]. So we start with a basic idea which is sim-

ilar to the concept of dynamic bloat control by changing the depth limit

during runtime [132]. We make some alterations to the standard GP al-

gorithm in a way that depth limit is set to a low number at the start of

a GP run and it can, when genetic operators are applied, increase only if

the resulting program tree has a higher relevance (fitness) than the best

relevance so far.

Although the optimistic intention of having deeper program trees with

higher fitness is to explore towards the right side of the search lattice and

consider larger subsets with higher relevance, it comes with two potential

side effects:

1. a deeper program tree with higher fitness is not necessarily incor-

porating a larger set of features with higher relevance; it might be

an overfitted model using the same features as explored previously.

Figure 6.7 illustrates a situation in which a 4th degree GP program

transforms a bimodally distributed dataset to a unimodal one where

the true relevance can be calculated using equation 6.6. The demon-

strated 4th degree model is general enough to exclude the noisy ob-

servations. However, a higher degree model using the same features

can produce slightly higher relevance by overfitting the data and in-

cluding the noisy observations as well;

2. in a similar scenario to that of Figure 6.7, a deeper GP program might

overfit the data by incorporating a redundant feature x′, which is

highly correlated to an existing feature x. In this case, although the

program is using a larger subset of features, the resulting relevance

is not completely true due to the overfitted model.

To address these issues, in our modified version of the GP algorithm,

we adopt the notion of using validation data to avoid overfitting [130].

The training data is virtually partitioned into a training set and a valida-

tion set. Two fitness values are kept for each individual in the population:

CHAPTER 6. RANKING SUBSETS OF FEATURES 147

Figure 6.7: An artificial binary classification problem with classes A and B (visu-

alised at 1 and -1) along a numerical feature x. The feature is observ-

ably good, as one can find certain boundaries along it to separate class

A from class B. However, since the class distribution is bimodal, the

feature does not seem important to many feature selection methods

like Pearson’s correlation (showing only 5% relevance) and Informa-

tion Gain (showing only 43% relevance). A 4th degree GP program

0.01x4 + 0.12x3 − 0.6x2 + 0.24x + 1.8, however, maps the data to a

new space where the fitness function shows 85% relevance. The GP

model is simple enough not to overfit the problem (considering the

noisy observations).

fitnesst, which is obtained by applying the program to the training sam-

ples in order to transform them into a new space and then calculate the

fitness (relevance measure) by using the BR function, and fitnessv , which

is obtained by applying the same procedure to the validation data. The

CHAPTER 6. RANKING SUBSETS OF FEATURES 148

training fitness of the fittest individual, fitness⋆t , and the corresponding

fitness using the validation data, fitness⋆v, are kept globally during the GP

run. Selection operators use only fitnesst to select individuals to apply

other genetic operators to. If a new individual, resulting from applying

GP operators, with fitness values fitness′t and fitness′v, is deeper than the

current depth limit and

fitness′t >fitness⋆t

and fitness′v ≥fitness⋆v (6.7)

then the individual can enter the next generation and the depth limits are

updated. Otherwise, the new program will be discarded and there will be

no changes in the depth limits.

6.4 Creating a Pareto Front

6.4.1 Feature Selection Objectives

In feature selection we are interested in finding a subset of a minimal num-

ber of features that satisfies a learning objective (e.g. improving the classi-

fication performance). By concentrating on the smallest possible solutions

we implicitly address the need to eliminate irrelevant and redundant fea-

tures from the solution. Therefore, there are two aspects in determining

the best solution: relevance and cardinality. During the search process, as

long as a new candidate solution (subset) is smaller than the previously

discovered subsets and results in higher relevance, making choices is easy;

that is, the new candidate subset can replace the previous best solution.

However, the situation is not trivial when the feature selection algorithm,

for example, finds a considerably smaller feature subset by compromising

only a little relevance. This is because in some scenarios having a simpler

efficient model is better than having a very complex model, which is just

slightly fitter than the simple one.

CHAPTER 6. RANKING SUBSETS OF FEATURES 149

In some algorithms, there are a priori assumptions based on which a

solution (candidate subset) should be chosen when the above-mentioned

situation arises. In [87, 83, 42, 22] the winner is simply the solution that

produces higher relevance. In more formal terms, in single objective fea-

ture selection algorithms, given two solutions (subsets of features) S and

S ′, if relevance(S ′) > relevance(S), then S ′ dominates S. In [105], a more

sophisticated system has been proposed, where a composite fitness func-

tion determines, through some parameters, the importance of relevance

and smallness. That is, S ′ dominates S if and only if

composite(relevance(S ′), |S ′|) > composite(relevance(S), |S|)

where composite is an objective function that returns a single scalar value

as the goodness/fitness of a subset with respect to its size and relevance.

Designing such an objective function requires a set of assumptions about

the relative importance of the objectives through some parameters. These

parameters need to be set before starting the search process on the basis

of the designer’s (user’s) experience. However, since a feature selection

search is computationally expensive, finding the optimal value of these

parameters by trial and error could be an issue.

6.4.2 Pareto Archive

Instead of having one single best solution, a group of solutions that are the

best at least in one of the objectives is kept. From this standpoint, given

two solutions S and S ′, S ′ dominates S if and only if relevance(S ′) >

relevance(S) and |S ′| ≤ |S|. However, if relevance(S ′) > relevance(S)
but |S ′| > |S|, neither solution can dominate the other. The collection of

all non-dominating solutions constitutes a surface called the Pareto front.

The Pareto front consists of those solutions for which there exists no better

solution in both criteria [140]. Having a Pareto front in feature selection,

there is no need for any a priori assumptions about the importance of objec-

tives [138]. The pareto front can also serve as a trade-off matrix, showing

CHAPTER 6. RANKING SUBSETS OF FEATURES 150

what relevance can be gained in return for increased complexity due to

using larger subsets of features.

The measurements in the second objective of our algorithm, cardinal-

ity, are discrete. That is, the cardinality of a subset of features is a discrete

variable that can take values from {1, 2, ..., m}. This means that the whole

Pareto front can be stored in a vector of size m. In other words, having a

Pareto front archive for all the individuals of a GP population is, in terms

of memory usage, O(m), which is quite efficient. The Pareto front vector,

p, is formally defined as

p = (S⋆
1 ,S⋆

2 , . . . ,S⋆
m : S⋆

i ⊆ F and |S⋆
i | = i, ∀i ∈ {1, 2, . . . , m}) (6.8)

where

∀S ⊆ F, |S ′| = i⇒ relevance(S ′) ≤ relevance(S⋆
i) .

During a GP run, after each fitness calculation, the Pareto front must be

updated to meet the above-mentioned criteria.

6.5 The Main System

Figure 6.8 depicts the overall architecture of the system. The dataset of a

binary classification task including a training set and a test set is given as

the input. A number of GP runs are conducted; each of them maximise

the relevance function over the data. The BR function in equation (6.6) is

used as the fitness (relevance) function. We regard the relevance obtained

from each individual as the quality of the features being used in that GP

program. Over the course of evolution the search moves towards finding

more promising subsets of features. A small proportion of the training

data is put aside to be used as validation data. There are two fitness values

for each GP individual: one calculated over the training data and the other

calculated over the validation data. The latter is used to update the depth

limits according to equation (6.7).

CHAPTER 6. RANKING SUBSETS OF FEATURES 151

Figure 6.8: The diagram of the proposed GP-based subset ranking/selection sys-

tem.

Whenever the algorithm visits a new subset of features, the subset, the

corresponding GP program and the corresponding fitness (relevance) is

stored in a hash table called the ranking table. At the end of the GP runs

the ranking table is used to analyse the way GP explores the space of the

subsets of features. We also keep a Pareto front that contains a subset of

CHAPTER 6. RANKING SUBSETS OF FEATURES 152

solutions in the ranking table that meet the criteria in equation (6.8). The

ranking table and the Pareto front are persistent through the GP runs and

the elements are accumulated gradually. After each fitness calculation,

the cardinality of the subset of features being used in the program and its

relevance are compared to the ranking table and the Pareto front, and the

two are updated if necessary.

Once the GP runs are finished, the ranking table and the correspond-

ing Pareto front of size up to m are available as outputs. The dataset is

then projected through the subsets in the Pareto front, generating up to

m new partial datasets each including only certain selected features of the

original dataset D. These new datasets, denoted by D1, D2, ..., Dm, are fed

to a classification algorithm. The users can then compare the results and

select their most desirable subset of features. The objective of this compar-

ison could be maximising the classification performance or minimising the

model complexity while retaining an acceptable performance.

6.6 Empirical Results

6.6.1 Design of Experiments

Generally, there is no explicit way to evaluate a subset ranking/selection

system for two reasons: (A) there is no global specification for the best

subset of features. Even if the objective is to maximise the classification

performance, the best subset for one classification algorithm is not neces-

sarily the best for others [113]; (B) as the search space grows exponentially,

and there are vast numbers of different feature combinations to examine;

therefore for a large n, one cannot make sure that a particular solution is

a global optimum. Therefore, the proposed system is implicitly evaluated

by measuring different properties of the system via answering the follow-

ing questions:

1. to what extent the ranking provided by the proposed system reflects

CHAPTER 6. RANKING SUBSETS OF FEATURES 153

the actual importance (usefulness) of the subsets of features;

2. how the provided ranking can be used to find the best subset of fea-

tures;

3. how well the proposed system can actually explore the search space

and create a Pareto front; and

4. how the classification performance and complexity obtained by us-

ing selected features compare to the initial performance (without se-

lection).

6.6.1.1 Datasets

Three datasets with a relatively large number of features from the UCI

machine learning repository [6] are used in the experiments. Table 6.2

summarises the main characteristics of these datasets.

Table 6.2: Specifications of datasets used in experiments

Problem # Features # Instances # Classes

JH Ionosphere 34 351 2

Sonar 60 208 2

WBC-Diagnostic (WBCD) 30 569 2

6.6.1.2 GP Settings and Implementation Details

We use the standard tree-based GP model [71]. In this model, each pro-

gram produces a single floating-point number at its root as the result of

its evaluation (output). Table 6.3 shows various settings of the GP system

we developed for the experiments. There is one variable terminal for each

feature in the problem. A number of randomly generated constants are

CHAPTER 6. RANKING SUBSETS OF FEATURES 154

also used as terminals. The four standard arithmetic operators were used

to form the function set. The division operator is protected—that is, it re-

turns zero for division by zero. All the members of the function set are

binary—they take two parameters.

The ramped half-and-half method [71] is used for generating programs

in the initial population and for the mutation operator. The initial maxi-

mum program tree depth is set to 5, but it can increase using the proposed

mechanism in Section 6.3. The probability of the crossover and mutation

operators are adapted automatically at runtime [21]. An elitist approach

has been taken to ensure that the performance of the fittest individual in

the population never deteriorates. The evolution is terminated, at the lat-

est, after the 50th generation or when a solution of fitness (relevance) 1.0 is

found. The platform is implemented in Java and we use grid computing

to have parallel GP runs.

Table 6.3: GP Settings

Function Set: +, −, ×, ÷ (protected division)

Variable Terminals: The original features ({x1, x2, . . . , xm})
Constant Terminals: Randomly Generated

Population Size: 2048

Number of Generations: 50

Initialisation: Ramped half and half

Mutation: Subtree creation

Selection: Tournament (size=5)

Initial Tree Depth: 5

Maximum Tree Depth: Based on the proposed mechanism in Section 6.3

Mutation Probability: Adaptive [21]

Cross-over Probability: Adaptive [21]

Elitism: Yes

CHAPTER 6. RANKING SUBSETS OF FEATURES 155

6.6.1.3 Evaluation

Table 6.4 shows the settings involved in the evaluation process. Two types

of classifiers are used in our experiments, namely the J48 implementation

of the C4.5 decision tree [127, 152], and the SMO version of the SVM classi-

fier [61]. Since none of the datasets that are used in our experiments come

with a specific test set, we adopt a 10-fold cross-validation approach. The

dataset is shuffled and stratified to 10 folds. Stratified folds have the same

proportion of instances form different classes. Each time one of the folds

is taken as the test set and the remaining as the training set. We use 10% of

the instances of the training data as the validation set. We conduct 50 GP

jobs which combined with 10-fold cross-validation means there will be 500

GP runs. This number of runs allows us to explore the feature space prop-

erly and accumulates a rich Pareto front archive. To compensate for the

effect of defective GP individuals which can misrepresent a subset of fea-

tures, we only consider GP programs (subsets) whose relevance is higher

than 0.3. We use the Weka [152] library for the classification and evalua-

tion processes.

Table 6.4: Evaluation Settings

Validation: 10-fold cross-validation with stratified folds

Classifiers: Decision Tree (J48 version of C4.5), SVM (SMO)

GP jobs: 50

GP runs: 50× 10 = 500

τ : 0.3 (Minimum Acceptable Relevance)

6.6.2 Results

6.6.2.1 Subset Ranking

In Figure 6.9, there is a plot for each of the three datasets that shows the

relevance values calculated by GP versus classification performance (ac-

CHAPTER 6. RANKING SUBSETS OF FEATURES 156

curacy on test fold) for all the subsets of features explored during 500 GP

runs. An explored subset is represented by two points, one dark for clas-

sification performance using SVM, and one light for classification perfor-

mance using the J48 decision tree. The dark and light points are along the

same vertical line, showing the relevance of the subset. There are more

than 20,000 feature subsets processed for each dataset.

The plots indicate that there is roughly a linear relationship between

the GP-calculated relevance and the classification performance, where the

higher the relevance value, the better the classification performance. This

linear relationship is particularly obvious in the Ionosphere and Sonar

datasets. In the breast cancer dataset, SVM exhibits a strong linear rela-

tionship while J48 exhibits a weaker one which is due to the fact that the

decision tree classifier does not generally perform as well as SVM on this

dataset [113].

Table 6.5 illustrates quantitative measurements of the linear relation-

ship between the GP-calculated relevance and the classification perfor-

mances of SVM and J48. The second column, #subsets represents the total

number of explored subsets of features by the end of the GP runs. The next

two columns show the coefficient of linear correlation between the rele-

vance and the classification performance using SVM and J48 respectively.

Almost all the cases show a strong correlation between the GP-calculated

relevance and the classification performance. We conduct a test to deter-

mine the statistical significance of our results. The test statistic for testing

the significance of the correlation coefficient ρ is T = ρ
√
s−2√
1−ρ2

, where T has

a t-distribution with s− 2 degrees of freedom [90]. For the given values of

s and ρ in Table 6.5, p-values corresponding to the above test statistic are

all smaller than 0.01, which implies that all the estimated correlation co-

efficient values in the table are statistically significant at a 99% confidence

level.

CHAPTER 6. RANKING SUBSETS OF FEATURES 157

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Ionosphere

relevance

Cl
as

sif
ica

tio
n P

er
for

ma
nc

e

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Sonar

relevance

Cl
as

sif
ica

tio
n P

er
for

ma
nc

e

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
WBCD

relevance

Cl
as

sif
ica

tio
n P

er
for

ma
nc

e

Figure 6.9: Relevance of subsets of features vs. classification performance ob-

tained by using the subsets and SVM (the dark cloud) and J48 decision

tree (light cloud on top of the dark one) in the three datasets.

CHAPTER 6. RANKING SUBSETS OF FEATURES 158

Table 6.5: Correlation between GP-calculated relevance and classification perfor-

mance

Dataset #subsets ρrelevance,SVM ρrelevance,J48

JH Ionosphere 22592 0.86 0.78

Sonar 20972 0.84 0.81

WBC-Diagnostic 29266 0.93 0.64

6.6.2.2 The Relatio