
Mixture-based
Clustering for the

Ordered Stereotype
Model

by

Daniel Fernández Martı́nez

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy in Statistics.

Victoria University of Wellington
2015





Abstract

Many of the methods which deal with the reduction of dimensionality in matri-
ces of data are based on mathematical techniques. In general, it is not possible
to use statistical inferences or select the appropriateness of a model via infor-
mation criteria with these techniques because there is no underlying probabil-
ity model. Furthermore, the use of ordinal data is very common (e.g. Likert
or Braun-Blanquet scale) and the clustering methods in common use treat or-
dered categorical variables as nominal or continuous rather than as true ordi-
nal data. Recently a group of likelihood-based finite mixture models for binary
or count data has been developed (Pledger and Arnold, 2014). This thesis ex-
tends this idea and establishes novel likelihood-based multivariate methods for
data reduction of a matrix containing ordinal data. This new approach applies
fuzzy clustering via finite mixtures to the ordered stereotype model (Fernández
et al., 2014a). Fuzzy allocation of rows and columns to corresponding clusters is
achieved by performing the EM algorithm, and also Bayesian model fitting is ob-
tained by performing a reversible jump MCMC sampler. Their performances for
one-dimensional clustering are compared. Simulation studies and three real data
sets are used to illustrate the application of these approaches and also to present
novel data visualisation tools for depicting the fuzziness of the clustering results
for ordinal data. Additionally, a simulation study is set up to empirically establish
a relationship between our likelihood-based methodology and the performance
of eleven information criteria in common use. Finally, clustering comparisons be-
tween count data and categorising the data as ordinal over a same data set are
performed and results are analysed and presented.
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Chapter 1

Introduction

1.1 Ordinal Data

An ordinal variable is one with a categorical data scale which describes order,
and where the distinct levels of such a variable differ in degree of dissimilarity
more than in quality (Agresti, 2010). This is different from nominal variables
which vary in quality, not in quantity, and thus the order of listing the categories
is irrelevant. In his seminal paper, Stevens (1946) called a scale ordinal if “any
order-preserving transformation will leave the scale form invariant”. Examples
of ordinal variables are the measures of the effectiveness of a new drug (“low”,
“medium” or “high”), the pain scale (see Figure 1.1), the Likert scale responses in
a questionnaire might be “disagree”, “neither agree nor disagree” or “agree”, or
the cover-abundance scale of Braun-Blanquet or Domin in vegetation science. An

Figure 1.1: Pain scale: This scale measures a patient’s pain intensity in which 0 means
no pain and 10 means extremely painful. Pain scales are based on self-report, observa-
tional, or physiological data.

important point to notice is the degree of dissimilarity among the different levels
of the scale in an ordinal variable might not necessarily be always the same. For
instance, the difference in the severity of an injury expressed by level 2 rather than
level 1 might be much more than the difference expressed by a rating of level 10
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CHAPTER 1. INTRODUCTION

rather than 9. In addition, the orientation of the ordered categories (from high to
low or from low to high) is not relevant to the conclusions over the ordinal data.
However, the way the categories are ordered in the data is relevant as it could
change the results of the analysis.

Although the collection and use of ordinal variables is common, most of the
current methods for analysing them treat the data as if they were nominal (Hoff-
man and Franke, 1986) or continuous data (Agresti, 2010). On the one hand,
treating an ordered categorical variable as ordinal rather than nominal provides
advantages in the analysis such as simplifying the data description and allowing
the use of more parsimonious models. The nominal approach ignores the intrin-
sic ordering of the data and thus the statistical results are less powerful than they
could be. On the other hand, models for continuous variables have similarities
to those for ordinal variables although the use of them with ordinal variables has
disadvantages such as the treatment of the output categories as equally spaced,
which they may not be (see Agresti (2010, Sections 1.2-1.3) for a list of advantages
of treating an ordinal variable as ordinal rather than nominal or continuous).

Categorical data analysis methods developed in the 1960s and 1970s (Bock
and Jones (1968); Snell (1964)) included loglinear models and logistic regression
(see the review by Liu and Agresti (2005)). An increasing interest in ordinal data
has since produced the articles by Goodman (1979) and McCullagh (1980) on log-
linear modelling relating to ordinal odds ratios, and logit modelling of cumula-
tive probabilities respectively. Recently, new ordinal data analysis methods have
been introduced such as the proportional odds model version of the cumulative
logit model, and the stereotype model with ordinal scores (Agresti, 2010, Chap-
ters 3 and 4) from which new lines of research have developed. Two recent ex-
amples of these are the application of a stereotype model in a case-control study
by Ahn et al. (2009), and a new methodology to fit a stratified proportional odds
model by Mukherjee et al. (2008). In particular, the stereotype model is a paired-
category logit model which is an alternative when the fit of cumulative logits
and adjacent-categories logit models in their proportional odds version is poor.
Anderson (1984) proposed this model as nested between the adjacent-categories
logit model and the standard baseline-category logits model (see the review by
Agresti (2002, Chapter 6)).

2



1.2. CLUSTERING OF CATEGORICAL RESPONSE DATA

1.2 Clustering of Categorical Response Data

Nowadays, many studies from different disciplines are related to variables which
are measured in subjects which are classified in clusters (see Figure 1.2). Basically,
the composition of each cluster is determined by the degree of similarity among
subjects or on a set of repeated measures of the same subject through a specific
period of time (e.g. longitudinal studies) or space (e.g. community ecology data).
In the research literature, many algorithms and techniques have been developed

Figure 1.2: Clustering: Measures of the scores of 70 students in a particular subject.
The raw data is shown on the left graph. After rearranging the data, three clusters are
identified on the right graph (students with lower, medium and higher scores).

which deal with the clustering of data such as hierarchical clustering (Johnson,
1967; Kaufman and Rousseeuw, 1990), association analysis (Manly, 2005) and
partition optimisation methods such as the k-means clustering algorithm (Job-
son, 1992; Lewis et al., 2003; McCune and Grace, 2002). There has been research
on cluster analysis for ordinal data based on latent class models (see Agresti and
Lang (1993); Moustaki (2000); Vermunt (2001); DeSantis et al. (2008); Breen and
Luijkx (2010); McPartland and Gormley (2013) and the review by Agresti (2010,
Section 10.1)). There are a number of clustering methods based on mathematical
techniques such as distance metrics (Everitt et al., 2011), association indices (Wu
et al. (2008); Chen et al. (2011)), matrix decomposition and eigenvalues (Quinn
and Keough, 2002; Manly, 2005; Wu et al., 2007). However, these do not have
a likelihood based formulation, and do not provide a reliable method of model
selection or assessment. A particularly powerful model-based approach to one-
mode clustering based on finite mixtures, with the variables in the columns being
utilized to cluster the subjects in the rows, is provided by McLachlan and Basford
(1988), McLachlan and Peel (2000), Everitt et al. (2011), Böhning et al. (2007), Wu
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CHAPTER 1. INTRODUCTION

et al. (2008) and Melnykov and Maitra (2010). We describe more details of this
approach below (Section 1.2.1).

The simultaneous clustering of rows and columns into row clusters and col-
umn clusters is called biclustering (or block clustering, two-dimensional clus-
tering or two-mode clustering). Biclustering models based on double k-means
have been developed in Vichi (2001) and Rocci and Vichi (2008). A hierarchical
Bayesian procedure for biclustering is given in DeSarbo et al. (2004). Biclustering
using mixtures has been proposed for binary data in Pledger (2000), Arnold et al.
(2010) and Labiod and Nadif (2011), and for count data in Govaert and Nadif
(2010). An approach via finite mixtures for binary and count data using basic
Bernoulli or Poisson building blocks has been developed in Govaert and Nadif
(2010) and Pledger and Arnold (2014). This work expanded previous research
for one-mode fuzzy cluster analysis based on finite mixtures to a suite of models
including biclustering. Finally, Matechou et al. (2011) have recently developed
biclustering models for ordinal data using the assumption of proportional odds
and having a likelihood-based foundation. The main difference with our work is
that we use the assumption of ordinal stereotype model which has the advantage
of allowing us to determine a new spacing of the ordinal categories, dictated by
the data. We develop the formulation of this model in Chapter 2.

1.2.1 Clustering Analysis Based on Finite Mixtures

The widespread use of finite mixture models as a mathematical-based method
for statistical modeling of unknown random phenomena in an extremely flex-
ible way has increased over the last 20 years (McLachlan and Peel, 2000). An
appropriate choice of the components that make up the finite mixture model al-
lows both the accurate representation of complex distributions and the inference
about the random phenomena observed. In addition, the application of finite
mixture models is useful in a variety of statistical techniques such as clustering,
discriminant analysis and image analysis where the main motivation is the mod-
elling of heterogeneity through the identification of different groups or classes.
Further advantages of finite mixtures modeling in comparison with other cluste-
ring methods include the better handling of missing data and the possibility to fit
structured data (e.g. longitudinal data).

Finite mixture modeling can be viewed as a latent variable analysis with a la-
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1.2. CLUSTERING OF CATEGORICAL RESPONSE DATA

tent categorical variable describing the group or subpopulation membership and
the latent classes being described by the different components of the mixture den-
sity (Skrondal and Rabe-Hesketh, 2004). The usefulness of finite mixture models
as a strategy for doing data clustering and, in that way, exposing the distinct
classes that may underlie the data was first explained in McLachlan and Basford
(1988). This approach is called the mixture model-based approach to clustering
and it is assumed that the data come from a mixture of a specified number of
groups R, where each observation is a realization y from the following finite mix-
ture density,

f(y; Ω) =
R∑
r=1

πrfr(y; θr).

Here Ω contains all the unknown parameters in the mixture, θr is the vector of
unknown parameters in the rth component density of the finite mixture fr(y; θr)

and π1, . . . , πR are nonnegative quantities where

R∑
r=1

πr = 1, 0 ≤ πr ≤ 1, r = 1, . . . , R,

and represent the probability of being a member of the group r.

The fitting of this model can be done by maximum likelihood (ML) estima-
tion. Bayesian approaches to achieve this estimation can also be used. In ML
estimation the optimisation of the likelihood is simplified considerably by using
the iterative expectation-maximisation (EM) algorithm considering group mem-
bership as missing data (Dempster et al., 1977). The problem therefore becomes a
classical case of ML estimation from data that can be viewed as being incomplete.
It is important to mention there are two possible issues to take into account using
the EM algorithm for fitting in a finite mixture model context. Firstly, it is quite
common to find multimodality of the likelihood when we deal with this type of
model. A related issue is how to select the suitable starting parameter values for
the EM algorithm since different starting values will lead the algorithm to differ-
ent local maxima. A recommended strategy is to employ an iterative framework
where several starting values are tested over the parameter space.

An important consideration with this fitting concerns the choice of the number
of components R in the finite mixture. It is common to use information criteria
such as AIC (Akaike, 1973), AICc (Hurvich and Tsai, 1989), BIC (Schwarz, 1978)
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CHAPTER 1. INTRODUCTION

and ICL.BIC (Biernacki et al., 1998) in order to select a suitable number of groups
R. Additionally, it is not possible to use likelihood ratio test (LRT) as a model
selection procedure because the regularity conditions do not hold for the log-
likelihood ratio statistic −2LLR to have asymptotic null distribution in mixture
densities framework, where LLR is the test statistic defined in eq. (3.1). How-
ever, the use of the LRT is still possible when the null distribution is assessed, for
example, by a bootstrap approach (McLachlan and Peel, 2000, Section 6.4-6.5).

Once the finite mixture model has been fitted, the estimated prior probabil-
ities (mixing proportions) are obtained, π̂1, . . . , π̂R. In addition, the probabilis-
tic (fuzzy) clustering is given in terms of the estimated posterior probabilities
of component membership for observation i being classified into each group,
(Ẑi1, . . . , ẐiR). These are defined a priori as

(Zi1, . . . , ZiR) ∼ Multinomial(1;π1, . . . , πR),

and a posteriori, conditional on the data Y , as

(Zi1, . . . , ZiR)|Y ∼ Multinomial(1; Ẑi1, . . . , ẐiR).

We note that the sample size is 1 as
∑R

r=1 Zir = 1. For that reason, one possi-
ble way to assign each realization to one single component, if that were needed,
would be allocating the observation to the cluster with highest marginal poste-
rior probability of belonging. Alternatively, randomly assign each observation
by drawing from the expected value of the posterior probabilities Zi1, . . . , ZiR,
conditional on the data.

1.3 Ordinal Modelling

Throughout this thesis the ordinal responses Y are labeled 1, 2, . . . , q. There are a
variety of approaches to the modelling of ordinal data. We will employ methods
which properly respect the ordinal nature of the data, without the assumption
that the data are continuous. Among ordinal models there are a variety of mod-
elling strategies. This thesis is focused on the ordered stereotype model (Anderson,
1984) which is thoroughly defined in Chapter 2. A brief review of some other
common logistic regression models for ordinal response variables follows (see a
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full review in Agresti (2010, Chapters 3 and 4)):

The Proportional Odds Model Version of the Cumulative Logit Model

The proportional odds model is one of the most popular models for ordinal re-
sponses, and it became popular after the article of McCullagh (1980). In order to
describe this model, first we define the cumulative logits for a q-category ordinal
response variable Y as follows,

logit [P (Y ≤ k | x)] = log

(
P (Y ≤ k | x)

1− P (Y ≤ k | x)

)
= log

(
p1 + . . .+ pk
pk+1 + . . .+ pq

)
, k = 1, . . . , q − 1,

where p1, . . . , pq are denoting the response probabilities, which satisfy
∑q

k=1 pk =

1, and x represents a set of predictor variables which can be quantitative or cat-
egorical (with indicator variables). It is important to note that each cumulative
logit depends on all q response categories. We also note that this model treats
each logit as a model for a binary variable, in which the first collapsed k catego-
ries form one of the outcomes and the categories from k + 1 to q form the other
one.

We define the proportional odds model version of the cumulative logit model by
using all q cumulative logits simultaneously,

logit [P (Y ≤ k | x)] = µk − δ′x, k = 1, . . . , q − 1, (1.1)

with the monotone increasing ordinal constraint µ1 ≤ µ2 ≤ · · · ≤ µq−1. Each
cumulative logit has its own intercept (µ1, . . . , µq−1) called its cut point. These pa-
rameters are generally of little interest, and we might usually consider them as
nuisance parameters. The parameter vector δ, which describes the effect of x on
the log odds of the response variable in the category k or below, is independent of
that category k. This independence is the proportional odds assumption. There-
fore, all the cumulative logits contain the same effect of x. This has the advantage
that we only have to fit one parameter instead of q − 1 parameters. In this man-
ner, this model assumes that all the effects δ over a set of predictor variables x on
the response variable Y for the defined log odds are the same regardless of any
collapsing of the q-level response variable to a binary variable.
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The degree of association of the response Y with the predictor variables x
is determined by the value of the effects δ. When the model fitted shows that
δ = 0, the value of P (Y ≤ k) as a function of x is a constant for each k and it
means that Y and x are statistically independent. The negative sign preceding
the effect δ for predictor x in expression (1.1) allows a parametrisation which has
a natural interpretation of the effect δ regarding whether it is positive or negative.
Therefore, if δ > 0 then higher values of x lead to higher values of Y . This
interpretation is reversed when δ < 0.

The proportional odds model version of the cumulative logit model satisfies the
proportional odds property. It is described as follows,

logit [P (Y ≤ k | x1)]− logit [P (Y ≤ k | x2)]

= log

[
P (Y ≤ k | x1) /P (Y > k | x1)

P (Y ≤ k | x2) /P (Y > k | x2)

]
= δ′(x1 − x2).

(1.2)

An odds ratio of cumulative probabilities is called a cumulative odds ratio. The
logarithm of a cumulative odds ratio is the difference between the cumulative
logits at x1 and x2 and it is proportional to the distance between them and in-
dependent of k. In addition, the odds of making response Y ≤ k at x = x1 are
exp [δ′(x1 − x2)] times the odds at x = x2.

Adjacent-Categories Logit Models

The definition for all the pairs of adjacent categories logits is as follows,

log

(
pk
pk+1

)
, k = 1, . . . , q − 1,

where (p1, ..., pq) are the set of probabilities regarding to the q outcome categories.
In this manner, we redefine the adjacent-categories logit model as follows,

log

(
pk(x)

pk+1(x)

)
= µk − δ′kx, k = 1, . . . , q − 1. (1.3)

As we observed, it takes into account the probability of two adjacent-categories
rather than considering the probability of each category versus a baseline-category.
For this reason, the effects δk are described with local log odds instead of the cu-
mulative log odds. The adjacent structure of this model recognizes the ordering
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of categories of the response variable Y (Agresti, 2010, Section 4.1.1). Thus, we
can apply the proportional odds property to the linear predictor in order to ob-
tain a more parsimonious version of the model, in the case where an explanatory
variable has a similar effect for all the logits. A version of the adjacent-categories
logit with proportional odds model for the baseline-category is

log

(
P [Y = k | x]

P [Y = 1 | x]

)
= µk − δ′x, k = 1, . . . , q − 1. (1.4)

This model is called standard baseline-category logit with proportional odds model.
The difference is that the logits are not defined by adjacency but always with
respect to a single baseline category.

Continuation-Ratio Logit Models

There are two types of settings for the continuation-ratio logit model. One is based
on the log odds of each category related to the lower categories of the variable
response,

log (P [Y = k | Y ≤ k]) = log

(
pk

p1 + . . .+ pk

)
, k = 1, . . . , q − 1,

and the other one is based on the log odds related to the higher categories,

log (P [Y = k | Y ≥ k]) = log

(
pk

pk + . . .+ pq

)
, k = 1, . . . , q − 1.

This last variety of log odds is extensively used in the case of analysis where all
the categories define states with an established order where the subject passes
through the different categories before the response outcome is determined, e.g.
recovery time of subjects who are observed after a cancer treatment (less than
1 year, 1 to 2 years, 2 to 3 years, 3 to 5 years, more than 5 years). This type of
process is called a sequential process. Finally, according to this and using the set
of predictors x, we can describe the continuation-ratio logit with proportional odds
model for a sequential process (McCullagh and Nelder, 1989) as follows,

logit (P [Y = k | Y ≥ k]) = logit

[
pk

pk + . . .+ pq

]
= µk − δ′x, k = 1, . . . , q − 1.

9
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Additionally, it is possible to describe this model in its partial proportional odds
structure (see Cole and Ananth (2001)).

Multinomial Logistic Regression

Considering the first category as the baseline category, the model is defined with
the following q − 1 simultaneous log odds,

log

(
P [Y = k | x]

P [Y = 1 | x]

)
= µk + δ′kx, k = 2, . . . , q, (1.5)

where Y is the response variable which has q categories, x is the vector of pre-
dictor variables which can be categorical or continuous variables, {µ2 . . . µq} are
the intercept parameters for each category and δk represents the vector of param-
eters of the effects of x on the log odds of the response variable for the category k
related to the baseline category. In order to identify the model, we need to place
constraints on the parameters. Commonly µ1 and δ1 are constrained to be 0.

Table 1.1: Degree of Suffering from Disturbed Dreams, by age.

Degree of Suffering
Age Not Severe Low Severe Medium Severe Very Severe
5-7 7 4 3 7
8-9 10 15 11 13

10-11 23 9 11 7
12-13 28 9 12 10
14-15 32 5 4 3

Source: Data from Maxwell (1961).

The model assumes that different linear combinations of the predictor vari-
ables are required in order to discriminate between the q − 1 pairs of log odds
of the response variable. Unlike the proportional odds version of the cumulative
logit model (1.1), the model formulated as (1.5) is not specifically embodied in
ordinal response variables. However, we present it here with the aim of helping
us in the interpretation of the ordered stereotype model in Chapter 2. Thus, this
model has q − 1 log odds, one for each comparison between the q − 1 categories
and the baseline category. Therefore, each element of the predictor vector x has
q − 1 different parameters. In order to illustrate this, we use an example of the
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severity of disturbed dreams among boys between 5 and 15 years old (see Table
1.1) which has q = 4 categories and suppose that there are three predictor var-
iables for each boy. Thus, the multinomial logistic regression model is defined
with the following pairs of log odds,

log

(
P [Y = 2 | x]

P [Y = 1 | x]

)
= µ2 + δ21x1 + δ22x2 + δ23x3,

log

(
P [Y = 3 | x]

P [Y = 1 | x]

)
= µ3 + δ31x1 + δ32x2 + δ33x3, and

log

(
P [Y = 4 | x]

P [Y = 1 | x]

)
= µ4 + δ41x1 + δ42x2 + δ43x3,

(1.6)

which has 12 parameters to estimate. For that reason, the model is not parsimo-
nious and if the number of categories q or the number of predictor variables is
large, the model might over-parametrise the data and, therefore, the interpreta-
tion of the results is difficult.

1.4 Outline of the Thesis

This thesis presents an extension of the likelihood-based models proposed in
Pledger and Arnold (2014) consisting in applying them to matrices with ordinal
data via finite mixtures to define a fuzzy clustering. We use the ordered stereo-
type model introduced by Anderson (1984) to formulate the ordinal approach.
The methodology, model fitting and data applications for our approach are sepa-
rately presented in different chapters.

Chapter 2 is a review of the stereotype model that includes its definition and
interpretation. Additionally, a formulation of this model including fuzzy cluste-
ring via finite mixtures is shown. We review the methodologies proposed in the
literature to fit this model. Model fitting for the clustering version by using the
iterative EM algorithm is described in this chapter .

There have been several approaches via finite mixture models to solve the
classification problem of deciding how many clusters are in a given data set.
Chapter 3 presents a review of several model comparison measures. In order to
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test which measure is the most reliable for our ordinal approach, we set up sim-
ulation studies to compare the performance of eleven information criteria. Their
results are shown in this chapter. Moreover, the best information criteria from the
experimental study are tested applying our approach to a real-life dataset which
is intentionally collected to be composed of a known number of clusters.

The reliability of estimation of the stereotype model parameters is demon-
strated in a simulation study in Chapter 4. Additionally, we illustrate the appli-
cation of our likelihood-based finite mixture model method with three real-life
examples. Model comparison is applied to these examples based on the results
obtained in Chapter 3.

There are a number of visualisation tools that can help to depict the reduction
of dimensionality in matrices of ordinal data such as multidimensional scaling
and correspondence analysis plots. Chapter 5 introduces new graphical tools
for ordinal data based on mosaic, level and contour plots. Furthermore, the R
function we developed including some of these novel graphs is introduced in
this chapter.

Chapter 6 presents a comparison of clustering results between count and cate-
gorised ordinal data. A review of a stochastic scheme for classifying count data in
relation to its variance-mean ratio is shown and some advantages of categorising
count data into ordinal are enumerated. In addition, a strategy for determining
the optimal number of ordinal categories is presented. Clusterings from count
and ordinal data methods are compared by using three measures over the same
data set: the adjusted Rand index, the normalized variation of information and
the normalized information distance. These comparison measures are described
in this chapter.

Chapters 7 and 8 introduce a Bayesian approach to parameter estimation for
our ordinal clustering procedure. Chapter 7 enumerates some key factors to con-
sider in Markov chain Monte Carlo (MCMC) samplers in order to assess its relia-
bility and convergence diagnostics. The framework to implement the Metropolis-
Hastings sampler for our method is developed and illustrated with a simulation
study and two real-life data examples. Additionally, the label switching problem,
which is a common drawback arising from using mixture models, is described.
Chapter 8 shows the development of a reversible jump MCMC (RJMCMC) sam-
pler which estimates the number of clusters and parameters simultaneously from
their joint posterior distribution for our clustering approach. In addition, the con-
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vergence diagnostic for RJMCMC samplers is presented and the application of
the sampler is illustrated with a simulation study and two real-life data exam-
ples.

We conclude with final remarks and discussion in Chapter 9.
All the programs throughout this thesis are written in R (Development Core Team

(2010)) with certain functions compiled in C code called from R for the sake of
computational speed.
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Chapter 2

Ordered Stereotype Model

2.1 Introduction

2.1.1 Data and Model Definition

For a set of m ordinal response variables each with q categories measured on a set
of n units, the data can be represented by a n ×m matrix Y where, for instance,
the n rows represent the subjects of the study and the m columns are the different
questions in a particular questionnaire. Although the number of categories might
be different, we assume the same q for all such questions. If each answer is a
selection from q ordered categories (e.g. strongly agree, agree, neutral, disagree,
strongly disagree), then

yij ∈ {1, . . . , q}, i = 1, . . . , n, j = 1, . . . ,m.

The ordered stereotype model was introduced by Anderson (1984) and is a model
to analyse categorical response variables (see the description of other models in
Section 1.3). This model for the probability that yij takes the category k is charac-
terized by the following log odds

log

(
P [yij = k | x]

P [yij = 1 | x]

)
= µk + φkδ

′x,

i = 1, . . . , n, j = 1, . . . ,m, k = 2, . . . , q,

(2.1)
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where the inclusion of the following monotone increasing constraint

0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1 (2.2)

ensures that the variable response Y is ordinal (see Anderson (1984)). The vector
x is a set of predictor variables which can be categorical or continuous, and the
vector of parameters δ represents the effects of x on the log odds of the response
variable for the category k relative to the baseline category. The first category is
the baseline category, p is the number of covariates, the parameters {µ2, . . . , µq}
are the cut points, and {φ2, . . . , φq} are the parameters which can be interpreted as
the “scores” for the categories of the response variable yij . We restrict µ1 = φ1 = 0

and φq = 1 to ensure identifiability. With this construction, the category response
probabilities in the ordered stereotype model are as follows

P [yij = k | x] =
exp(µk + φkδ

′x)∑q
`=1 exp(µ` + φ`δ

′x)
, for k = 1, . . . , q, (2.3)

where the probability for the baseline category, as defined in (2.3), satisfies

P [yij = 1 | x] = 1−
q∑
`=2

P [yij = ` | x],

and therefore, since µ1 = φ1 = 0, this probability can be defined as

P [yij = 1 | x] =
1

1 +
∑q

`=2 exp(µ` + φ`δ
′x)

.

Greenland (1994) showed that the stereotype model is a natural option when the
progression of the response variable occurs through various stages and Agresti
(2010, Chapter 4) showed that the stereotype model is equivalent to an ordi-
nal model such as the proportional odds version of the adjacent-categories logit
model (1.3), when the scores {φk} are a linear function of the different categories
of the response variable. That is, the stereotype model formulated in (2.1) can be
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reformulated in terms of adjacent categories logits (1.3) as follows,

log

(
P [yij = k | x]

P [yij = k + 1 | x]

)
= log

(
P [yij = k | x] /P [yij = 1 | x]

P [yij = k + 1 | x] /P [yij = 1 | x]

)
= log

(
P [yij = k | x]

P [yij = 1 | x]

)
− log

(
P [yij = k + 1 | x]

P [yij = 1 | x]

)
= (µk − µk+1) + (φk − φk+1)δ′x

= ηk + ϑkδ
′x, k = 2, . . . , q,

(2.4)

where ηk = µk − µk+1 (k = 1, . . . , q − 1). The relation between {φk} and {ϑk} is
defined by

ϑk = φk − φk+1, k = 1, . . . , q − 1,

and

φk =
k−1∑
t=1

ϑt, k = 1, . . . , q − 1.

Therefore, the adjacent-categories logit model (see eq. (1.3)) is a particular case of
the ordered stereotype model when ϑk = 1 in eq. (2.4) or, in other words, when
the {φk} scores are fixed and equally spaced.

2.1.2 Interpretation

In the stereotype model, the log odds ratio for the increase of a unit of a specific
covariate x` (from u to u+ 1) for a particular categorical response k is as follows,

log

(
P [yij = k | x` = u+ 1] /P [yij = 1 | x` = u+ 1]

P [yij = k | x` = u] /P [yij = 1 | x` = u]

)
= log

(
P [yij = k | x` = u+ 1]

P [yij = 1 | x` = u+ 1]

)
− log

(
P [yij = k | x` = u]

P [yij = 1 | x` = u]

)
= µk + φkδ`(u+ 1)− µk − φkδ`u = φkδ`.

For that reason, the odds ratio for a category k comparing with the baseline when
there is a unit increase in x` is exp(φkδ`). In other words, the coefficient φkδ`
in the stereotype model represents the log odds ratio for categories k and the
baseline category of the response variable yij with a unit increase in the predic-
tor variable x`. For example, in the data regarding the degree of suffering from
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disturbed dreams in boys by their age (see Table 1.1 in Chapter 1), the predictor
variable is the age of the boy and its estimated parameter is δ̂age = 0.31. Therefore,
the estimated odds ratio comparing the “not severe” category (the baseline) ver-
sus the “medium severe” category (with estimated score parameter φ̂3 = 0.36) is
exp(0.36(0.31)) = 1.12. In other words, the odds of a boy of suffering medium se-
vere dreams instead of not suffering severe dreams are 1.12 times the odds when
the boy is one year younger. Note that the constraint φq = 1 implies that the coef-
ficients δ`, corresponding to x`, represents the effect of a unit change in x` on the
log odds ratio of response in the highest category q versus the baseline category
of yij .

The order constraint on the scores {φk}, expressed in (2.2), implies that for a
unit increase in the predictor variable x`, the odds ratio exp(φkδ`) of category k

vs. baseline category becomes larger when category k is further from the baseline
category. One way to interpret how the order constraint on the scores {φk} gives
an ordinal character to the response variable yij is by means of the formulation of
the stereotype model for two particular categories a and b of the response variable
yij . Thus,

log

(
P [yij = a | x]

P [yij = b | x]

)
= log

(
P [yij = a | x] /P [yij = 1 | x]

P [yij = b | x] /P [yij = 1 | x]

)
= log

(
P [yij = a | x]

P [yij = 1 | x]

)
− log

(
P [yij = b | x]

P [yij = 1 | x]

)
= (µa − µb) + (φa − φb)δ′x.

The relation between these two response categories is established by the scores
parameters φa and φb. Thus, the larger the difference (φa − φb) in absolute value,
the more the odds of a and b are influenced by the predictor variables x. In that
manner, when the scores {φk} are constrained with the ordered increasing con-
straint (2.2), the effect of the covariates x is higher as the response categories
increase. Additionally, the value of the response variable yij behaves as an ordi-
nal response according to the value of δ′x when the scores {φk} are constrained.
In other words, the larger the effect δ of the covariates, the more the response var-
iable yij has the propensity to be assigned to higher categories. Figure 2.1 shows
an illustration of the q = 4 curves for the corresponding ordinal category prob-
abilities P [yij = k] from the boys with disturbed dreams example (see Table 1.1)
and when δage > 0. When δage < 0, the labels in Figure 2.1 reverse order.
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Figure 2.1: Interpretation: Depiction of the category probabilities in the ordinal stereo-
type model from the boys with disturbed dreams example (see Table 1.1) with the ordinal
score constraint 0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1 and the age effect coefficient δage > 0. Note
that the four probabilities sum to 1 at any particular x-value (i.e. at any particular age).

The stereotype model gives a way of estimating how close two adjacent cate-
gories are, e.g. k and k + 1, based on how close their scores are, i.e. φk and φk+1.
For instance, if the scores in the example described in the Table 1.1 are φ̂1 = 0,
φ̂1 = 0.32, φ̂3 = 0.45 and φ̂4 = 1 means that the stereotype model implies that
the adjacent categories “low severe” and “medium severe” are “close” given that
their corresponding score parameters are close to each other. In the case that the
scores between these two categories are the same, φa = φb, the corresponding
logit for those two response categories is the constant µa − µb and, therefore, the
covariates x do not distinguish between them. In that case, we could collapse
them in our data, as the categories have the same score. For instance, follow-
ing the same example about the disturbed dreams of boys, the predictor variable
“age” is not a useful covariate for predicting between “low” and “medium” de-
gree of suffering in a boy if the scores are φ̂1 = 0, φ̂4 = 1 and φ̂2 = φ̂3 and,
therefore, we could combine the categories “low severe” and “medium severe”
into one single response category. In the same manner, one way to evaluate if two
adjacent categories k and k + 1 are distinguishable is by inspecting the standard
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errors for their corresponding scores. Overlapping confidence intervals around
the scores φk and φk+1 may give evidence that ordinal categories k and k + 1 are
not distinguishable and we can collapse them into a single category.

An advantage of the stereotype model is that it requires a smaller number
of parameters to be estimated than the baseline-category logit model (1.4) or the
multinomial logistic regression model (1.5). As a way of illustrating this, we con-
sider again the example of the severity of disturbed dreams in boys with q = 4

and with the supposition that there are three predictor variables as we did for the
multinomial logistic regression model (see (1.6)). The pairs of log odds for the
stereotype model are as follows,

log

(
P [Y = 2 | x]

P [Y = 1 | x]

)
= µ2 + φ2(δ1x1 + δ2x2 + δ3x3),

log

(
P [Y = 3 | x]

P [Y = 1 | x]

)
= µ3 + φ3(δ1x1 + δ2x2 + δ3x3), and

log

(
P [Y = 4 | x]

P [Y = 1 | x]

)
= µ4 + (δ1x1 + δ2x2 + δ3x3),

(2.5)

which is more parsimonious (8 parameters) than the multinomial logistic regres-
sion model (12 parameters, see (1.6)). Moreover, as a result of the {φk} parame-
ters, the ordered stereotype model is more flexible than the models including the
proportional odds structure such as the version for the cumulative logit model
(1.1). However, the parameters are more difficult to estimate due to the intrinsic
nonlinearity which arises from the product of parameters φkδ′x in the predictor.
We discuss this in the next section.

2.2 Fitting the Ordered Stereotype Model

Despite its parsimonious structure, the stereotype model for ordered responses
(eq. (2.1) and (2.2)) has rarely been used in applied research (see Kuss (2006) for
some exceptions) compared to other equivalent models such as the proportional
odds model version of the cumulative logit, the adjacent-categories logit model
and the multinomial logistic regression (eq. (1.1), (1.3) and (1.5) respectively).
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This lack of use may have arisen from the lack of standard software for model
fitting, the intrinsic non-linear structure of the predictor, and the requirement of
multiple constraints in the parameter space to ensure the identifiability in the
parameters.

There have however been considerable recent developments of macros and
functions in standard software to estimate the stereotype model. Lunt (2001) de-
veloped a STATA module called SOREG that implements this model, Greenland
(1994) stated the potential of using reduced-rank multinomial logistic models
(RR-MLM) as a special case of the stereotype model without including the ordinal
constraint, and Yee and Hastie (2003) fitted RR-MLM by using the VGAM (Vector
Generalized Additive Model) package for R (Yee (2008)). Kuss (2006) modified
several standard procedures in SAS to obtain the maximum likelihood estimator
(MLE) values by applying direct maximisation of the likelihood function. A ML
estimation procedure, whether by using the EM algorithm or some numerical op-
timisation technique, requires a good set of parameter starting points to initialize
the algorithm optimiser and obtain reliable MLE values. A possible procedure
to specify good starting points may be to fit the multinomial logistic regression
model (1.5) first and use the estimated parameters for the baseline category (e.g.
the first category) as starting points. In that manner, δ1 and {µ2, . . . µq} from the
multinomial logistic regression model would be the starting points of δ and {µk}
respectively for the stereotype model. Similarly, the starting points for the score
parameters {φk} may be obtained from the relationship between both models,
given by δk = φkδ for k = 2, . . . , q. However, these computational adjustments in
SAS are based on unconstrained optimisation methods and therefore they ignore
the ordinal increasing constraint φ1 < . . . < φq in the score parameters {φk}.

The stereotype model cannot be considered as a generalized linear model
(GLM) due to the non-linear combination of parameters (i.e. a multiplicative
combination of {φk} and {δp}: yij = µk + φk

∑p
`=1 δ`x`ij). Therefore, its inference

is infeasible using software for GLMs. There are several suggestions for fitting
this model in the literature. In his seminal paper on the stereotype model, Ander-
son (1984) recommended a model fitting procedure consisting of direct iterative
optimisation of the likelihood function but the paper does not include an explicit
procedure or code. Holtbrugge and Schumacher (1991) proposed a method to es-
timate the parameters in the stereotype model by using an iteratively reweighted
least square algorithm and Feldmann and König (2002) proposed a maximum li-
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kelihood parameter estimation based on discriminant analysis. Greenland (1994)
proposed an alternating algorithm based on two iterative steps. At the first step,
the score parameters {φk} are kept fixed and then the parameters δ in the predic-
tor can be estimated. As was mentioned above, this treats the stereotype model
as a RR-MLM and then it is possible to fit it by using standard generalized linear
model software via constrained polytomous logistic regression. At a second step,
δ̂′x is treated as an estimated scalar predictor and it is possible to estimate {φk}
conditional on δ′ = δ̂′ by the same model fitting procedure. This iterative proce-
dure has the drawbacks that the ordinal increasing constraint is not included in
the fitting procedure, the convergence at the true MLE values is not guaranteed,
and the standard-error estimates obtained by the standard software at conver-
gence are not valid. Instead, the author recommends the use of a Monte Carlo
simulation from the estimated model for computing confidence intervals and p-
values.

As was mentioned above, another difficulty in the implementation of the or-
dered stereotype model is the imposition of the monotone increasing constraint
(2.2) on the score parameters {φk} in the fitting procedure. Given that difficulty,
Greenland (1994) and Lunt (2005) suggested several alternatives with the pur-
pose of avoiding the estimation of {φk} as for example determining {φk} in ad-
vance based on background information such as previous and pilot studies, so
that then we can use generalized linear models. As an alternative to the classical
frequentist approach, Ahn et al. (2009) presented comprehensive Bayesian infer-
ence and model comparison procedure for fitting the ordinal stereotype model
applied including the constraint on {φk} in the case-control studies. In addition,
Ahn et al. (2011) showed two methods for parameter estimation in this model in
the presence of missing exposure data by using a Monte Carlo approach as well
as an expectation/conditional maximisation algorithm. More recently, the fitting
of the ordered stereotype model based on the iterative alternating algorithm of
Greenland (1994) is proposed in Preedalikit (2012).

2.3 Ordered Stereotype Model Including Clustering

The structure of the predictor in the ordered stereotype model (2.1) can include
the predictor variables x as numerical covariates, or alternatively they may sim-
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ply depend on the row and/or column of the observation yij . We consider this
latter situation and build up δ′x only taking into account the row and column
effects by using a linear formulation. To do this, we define {α1, . . . , αn} and
{β1, . . . , βm} as the sets of parameters quantifying the main effects of the n rows
and m columns respectively, and the set {γ11, . . . , γnm} are the interaction effects
of the different rows and columns. In this way, we can formulate the following
saturated model

log

(
P [yij = k]

P [yij = 1]

)
= µk + φk(αi + βj + γij),

k = 2, . . . , q, i = 1, . . . , n, j = 1, . . . ,m,

(2.6)

where
∑n

i=1 αi =
∑m

j=1 βj = 0 and we impose sum-to-zero constraints on each
row and column of the association (or pattern detection) matrix γ. This model
has 2q + nm − 4 independent parameters, i.e. more parameters than the nm ob-
servations in the matrix Y , when q > 2. The relationship between models (2.3)
and (2.6) is shown in Appendix A.1. Since this model is overparametrised, the
most common submodels to formulate from the saturated model are the main
effect model (γij = 0, with 2q + n + m − 5 parameters), the row effect model
(βj = γij = 0, 2q + n − 4 parameters), the column effect model (αi = γij = 0,
2q+m− 4 parameters) and the null model (αi = βj = γij = 0, 2q− 3 parameters).

The main problem with the model in (2.6) is of course that the specific row and
column effects in this suite of models over-parameterizes the data structure. This
model is not parsimonious and it requires a lot of parameters for describing all the
effects. A way to reduce the dimensionality of the problem is to introduce fuzzy
clustering via finite mixtures. Hence, we obtain the following model formulation
including row clustering, column clustering or biclustering.

• Row clustering

log

(
P [yij = k | i ∈ r]
P [yij = 1 | i ∈ r]

)
= µk + φk(αr + βj + γrj),

k = 2, . . . , q, r = 1, . . . , R, j = 1, . . . ,m.
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• Column clustering

log

(
P [yij = k | j ∈ c]
P [yij = 1 | j ∈ c]

)
= µk + φk(αi + βc + γic),

k = 2, . . . , q, i = 1, . . . , n, c = 1, . . . , C.

• Biclustering

log

(
P [yij = k | i ∈ r, j ∈ c]
P [yij = 1 | i ∈ r, j ∈ c]

)
= µk + φk(αr + βc + γrc),

k = 2, . . . , q, r = 1, . . . , R, c = 1, . . . , C,

where we impose the sum-to-zero constrains on vectors α and β, and on each
row and column of the association matrix γ. In addition, R ≤ n is the number of
row groups, C ≤ m the number of column groups, i ∈ r means row i is classified
in the row cluster r and j ∈ c means column j is classified in the column cluster
c. It is important to note that the actual membership of the rows among the R
row-clusters and the columns among the C column-clusters is unknown and,
therefore, it is considered as missing information. Choosing R << n (C << m)
ensures that the number of independent parameters in this model is less than nm.
The parameters γrj , γic and γrc may not be necessary in some models, i.e. models
without the interaction between row and column groups, where all rows show
similar response patterns over the columns, and vice versa. Further, we define
{π1, . . . , πR} and {κ1, . . . , κC} as the (unknown) proportions of rows and columns
in each row and column group respectively, with

∑R
r=1 πr =

∑C
c=1 κc = 1. We

can view πr and κc as the a priori row and column membership probabilities.
For the case of the ordered stereotype model including fuzzy biclustering, the
model is defined with (q − 1) cut point parameters µk, (q − 2) score parameters
φk, (R − 1) row effect parameters αr, (C − 1) column effect parameters βc, (R −
1)(C−1) associations between row and column parameters γrc, (R−1) row cluster
membership parameters πr and (C − 1) column cluster membership parameters
κc. In that way, we may deduce that the model including fuzzy row clustering
has 2q+Rm+(R−1)−4 independent parameters, the column clustering version
has 2q + nC + (C − 1) − 4 independent parameters and the biclustering one has
2q +RC + (R− 1) + (C − 1)− 4 independent parameters.

Finally, in the same way as before, we can formulate the probability of the
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data response yij being equal to the category k conditional on the appropriate
clustering as,

• Row clustering

θrijk = P [yij = k | i ∈ r] =
exp(µk + φk(αr + βj + γrj))∑q
`=1 exp(µ` + φ`(αr + βj + γrj))

,

k = 1, . . . , q, r = 1, . . . , R, j = 1, . . . ,m.

(2.7)

• Column clustering

θicjk = P [yij = k | j ∈ c] =
exp(µk + φk(αi + βc + γic))∑q
`=1 exp(µ` + φ`(αi + βc + γic))

,

k = 1, . . . , q, c = 1, . . . , C, i = 1, . . . , n.

(2.8)

• Biclustering

θricjk = P [yij = k | i ∈ r, j ∈ c] =
exp(µk + φk(αr + βc + γrc))∑q
`=1 exp(µ` + φ`(αr + βc + γrc))

,

k = 1, . . . , q, r = 1, . . . , R, c = 1, . . . , C.

(2.9)

The inclusion of the interaction term allows for different slopes and possible
crossings. The additive version of these models omits the interaction term.

2.4 Basic Models. Likelihoods

In this section, we summarise the likelihood functions for the cases of row clus-
tering, column clustering and biclustering. The formulation of the complete data
log-likelihood is given in each case.

2.4.1 Row Clustering

As we noted in the previous section, the unknown data in the case of the row-
clustered model is the actual membership of the rows among the R row clusters.
Thus, the incomplete data likelihood only sums over all possible partitions of
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rows into R clusters:

L(Ω | {yij}) =
R∑

r1=1

· · ·
R∑

rn=1

πr1 · · · πrn
n∏
i=1

m∏
j=1

q∏
k=1

(θrijk)
I(yij=k),

where Ω is the parameter vector for the case of row clustering, πri is the a priori
row membership probability of row i and θrijk is the probability of the data re-
sponse defined in (2.7). Assuming independence among rows and, conditional
on the rows, independence over the columns, we can simplify the previous in-
complete data likelihood to

L(Ω | {yij}) =
n∏
i=1

[
R∑
r=1

πr

m∏
j=1

q∏
k=1

(θrijk)
I(yij=k)

]
.

We define the unknown row group memberships through the following indicator
latent variables,

Zir = I(i ∈ r) =

1 if i ∈ r

0 if i /∈ r
i = 1, . . . , n, r = 1, . . . , R, (2.10)

where i ∈ r indicates that row i is in row group r. It follows that

R∑
r=1

Zir = 1, i = 1, . . . , n,

and since their a priori row membership probabilities are {πr}

(Zi1, . . . , ZiR) ∼ Multinomial(1;π1, . . . , πR), i = 1, . . . , n.

These indicator latent variables fulfill the following convenient identity

R∏
r=1

aZiri =
R∑
r=1

aiZir for any ai 6= 0.
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Consequently, the complete data log-likelihood of this model using the known
data {yij} and the unknown data {zir} is as follows

lc(Ω | {yij}, {zir}) =
n∑
i=1

R∑
r=1

zir log(πr) +
n∑
i=1

m∑
j=1

q∑
k=1

R∑
r=1

zirI(yij = k) log (θrijk) .

(2.11)

2.4.2 Column Clustering

The model for the case of clustering the columns but not the rows is similar. It as-
sumes independence among columns and, conditional on the columns, indepen-
dence over the rows. Analogous to Zir for row clustering (see (2.10)) we define
the following indicator latent variables for the unknown data

Xjc = I(j ∈ c) =

1 if j ∈ c

0 if j /∈ c
j = 1, . . . ,m, c = 1, . . . , C. (2.12)

The complete data log-likelihood of this model using the known data {yij} and
the unknown data {xjc} is as follows

lc(Ω | {yij}, {xjc}) =
m∑
j=1

C∑
c=1

xjc log(κc) +
n∑
i=1

m∑
j=1

q∑
k=1

C∑
c=1

xjcI(yij = k) log
(
θicjk

)
,

(2.13)
where Ω is the parameter vector for the case of column clustering, κc is the a priori
column membership probability and θricjk is the probability of the data response
defined in (2.8).

2.4.3 Biclustering

In the case of clustering the rows and the columns simultaneously, the incomplete
data likelihood sums over all possible partitions of rows into R clusters and over
all possible partitions of columns into C clusters, and is given by

L(Ω | {yij}) =
C∑

c1=1

· · ·
C∑

cm=1

κc1 · · ·κcm
R∑

r1=1

· · ·
R∑

rn=1

πr1 · · · πrn
n∏
i=1

m∏
j=1

q∏
k=1

(
θricjk

)I(yij=k)
.

27



CHAPTER 2. ORDERED STEREOTYPE MODEL

Here Ω is the parameter vector for the case of biclustering and θricjk is the prob-
ability of the data response expressed in (2.9). Assuming independence among
rows and, conditional on the rows, independence over the columns, we can sim-
plify the previous incomplete data likelihood to

L(Ω | {yij}) =
C∑

c1=1

· · ·
C∑

cm=1

κc1 · · ·κcm
n∏
i=1

[
R∑
r=1

πr

m∏
j=1

q∏
k=1

(θrijk)
I(yij=k)

]
, (2.14)

which sums over the possible column cluster partitions. Similarly, if we assume
independence among columns and, conditional on the columns, independence
over the rows, we obtain the following simplified expression:

L(Ω | {yij}) =
R∑

r1=1

· · ·
R∑

rn=1

πr1 · · · πrn
m∏
j=1

[
C∑
c=1

κc

n∏
i=1

q∏
k=1

(
θicjk

)I(yij=k)

]
. (2.15)

We define the unknown data through the indicator latent variables described in
(2.10) and (2.12). Consequently, the complete data log-likelihood of this model
using the known data {yij} and the unknown data {zir} and {xjc} is as follows:

lc(Ω | {yij}, {zir}, {xjc}) =
n∑
i=1

m∑
j=1

q∑
k=1

R∑
r=1

C∑
c=1

zirxjcI(yij = k) log
(
θricjk

)
+

n∑
i=1

R∑
r=1

zir log (πr) +
m∑
j=1

C∑
c=1

xjc log (κc) .

(2.16)

We estimate the MLEs from this expression by using the EM algorithm. In the
E-step, the expected value of the first term is approximated using the variational
approximation employed by Govaert and Nadif (2005) (see Appendix A.3 for de-
tails). With the aim of ensuring a solution avoiding approximations, we use the
resulting MLEs from the EM algorithm as starting points to numerically max-
imise the incomplete-data likelihood (2.14) (or (2.15)). We note that during the
maximisation a convenient transformation for the row and column membership
parameters {πr} and {κc} is sr = logit(πr/

∑R
`=r π`) for r = 1, . . . , R − 1 and

qc = logit(κc/
∑C

`=c κ`) for c = 1, . . . , C − 1 respectively. This transformation
means that the parameters sr and qc are unconstrained, taking values over the
whole real line.
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2.5 Estimation of the Parameters

As we introduced in Section 1.2.1, a powerful and common method for finding
the maximum likelihood solution for model with missing information and, there-
fore, involving latent variables is called the expectation-maximisation algorithm or
EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). One of
the most common uses of the EM algorithm is in the case of the estimation of
the parameters for a finite mixture-density model with incomplete data which in
this case is the actual unknown cluster membership of each row and/or column.
Therefore, we can derive estimates of the parameters of the model expressed in
(2.7), (2.8) and (2.9) by using the EM algorithm, taking into account the actual un-
known cluster membership of each row and/or column. This method performs
a fuzzy assignment of rows and/or columns to clusters based on the posterior
probabilities. In this section, we develop this in detail for the case of clustering
the rows but not the columns. It has an easy interpretation which helps explain
our methodology. The development for other two cases: clustering the columns
but not the rows and biclustering are described in the Appendices A.2 and A.3.

2.5.1 The Expectation Step (E-Step). Row Clustering

We apply the E-Step in the EM algorithm by considering the Zir as latent var-
iables. In this manner, we use their a priori probabilities {πr} and the current
values for the parameters so as to evaluate their expected values, Ẑir, which are
the posterior probabilities that row i is a member of row group r. The conditional
expectation of the complete data log-likelihood at iteration t can be expressed as
follows

Q(Ω | Ω(t−1)) = E{zir}|{yij},Ω(t−1) [`c(Ω | {yij}, {zir})]

=
n∑
i=1

R∑
r=1

log(π(t−1)
r )E

[
zir | {yij},Ω(t−1)

]
+

n∑
i=1

m∑
j=1

q∑
k=1

R∑
r=1

I(yij = k) log
(
θ

(t−1)
rjk

)
E
[
zir | {yij},Ω(t−1)

]
.

(2.17)
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The latent variable Zir is a Bernoulli random variable so that

E
[
zir | {yij},Ω(t−1)

]
= P

[
zir = 1 | {yij},Ω(t−1)

]
,

and applying Bayes’ rule to this expression we obtain

Ẑ
(t)
ir = P

[
zir = 1 | {yij},Ω(t−1)

]
=

P
(
{yij},Ω(t−1) | zir = 1

)
P (zir = 1)∑R

`=1 P ({yij},Ω(t−1) | zi` = 1)P (zi` = 1)

=
π̂

(t−1)
r

∏m
j=1

∏q
k=1

(
θ̂

(t−1)
rjk

)I(yij=k)

∑R
`=1

{
π̂

(t−1)
`

∏m
j=1

∏q
k=1

(
θ̂

(t−1)
`jk

)I(yij=k)
} .
(2.18)

This is the expected value of the latent variable Zir which defines the posterior
probability that row i is in group r once we have observed {yij}. Finally, we
complete the E-step by substituting the previous expression in the complete data
log-likelihood at the iteration t expressed in (2.17),

Q̂(Ω | Ω(t−1)) =
n∑
i=1

R∑
r=1

Ẑ
(t)
ir log(π̂(t−1)

r ) +
n∑
i=1

m∑
j=1

q∑
k=1

R∑
r=1

Ẑ
(t)
ir I(yij = k) log

(
θ̂

(t−1)
rjk

)
.

(2.19)

2.5.2 The Maximisation Step (M-step). Row Clustering

The M-step of the EM algorithm is the global maximisation of the previous ex-
pression (2.19) obtained in the E-step. For the case of finite mixture models, the
updated estimation of the term containing the row-cluster proportions {π1, . . . πR}
and the one containing the rest of the parameters Ω are computed independently.
Thus, the M-step has two separate parts.

Firstly, the maximum-likelihood estimator for the parameter πr in the case that
the indicator variables {Z1r, . . . , Znr}were observable is

π̂r =
1

n

n∑
i=1

zir, r = 1, . . . , R.

However, the data zir are unobserved in our case. Because of this, we use their
conditional expectation which we found in the E-step (2.18) to replace in the pre-
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vious expression for the iteration t,

π̂(t)
r =

1

n

n∑
i=1

E
[
zir | {yij},Ω(t−1)

]
=

1

n

n∑
i=1

Ẑ
(t)
ir , r = 1, . . . , R. (2.20)

Secondly, to estimate the remaining parameters Ω, we must numerically max-
imise the conditional expectation of the complete data log-likelihood (2.17). In
the case of row clustering,

Ω̂ = argmax
Ω

[
n∑
i=1

m∑
j=1

q∑
k=1

R∑
r=1

ẐirI(yij = k) log (θrjk)

]
,

where the maximisation is conditional on the constraints on the parameters. We
repeat the two step iteration of the EM algorithm until convergence, that is until
there is a small relative change in the likelihood and the parameters between two
consecutive iterations:

||L(Ω̂(t+1) | {yij})− L(Ω̂(t) | {yij})||
||L(Ω̂(t) | {yij})||

≈ 0 and
||Ω̂(t+1) − Ω̂(t)||
||Ω̂(t)||

≈ 0.

Other criteria might be applied (see e.g. Abbi et al. (2008) for a review of various
stopping criteria). A disadvantage of mixture modelling is that the associated
likelihood surface may be multimodal. A comprehensive search over different
starting points is used to avoid finding only a local maximum. Particularly in our
case, the iterative process is repeated 10 times with random starting points and
the best MLE (those that lead to higher log-likelihood value) are kept. We have
run experiments testing up to 100 random starting points and it was sufficient
with 10 repetitions to avoid convergence to local optima. The random starting
points can be generated with simulated annealing (Kirkpatrick et al., 1983; Zhou
and Lange, 2010), a good option to avoid being locked into a local maximum.

Finally, we have implemented the EM algorithm for the ordered stereotype
model including clustering via finite mixtures and set up the simulation study
by using the statistical package R 2.15.1 (Development Core Team (2010)). The
maximisation was carried out by using the quasi-Newton method provided as
an option in optim().
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2.5.3 Reparametrisation of the Score Parameters

The increasing constraint that enforces the scores φ1, . . . , φq to be increasing in the
stereotype model defined in (2.2) must be imposed during the estimation proce-
dure. Such a constraint is complex to impose during optimisation and hence for
convenience we reparametrise φ1, . . . , φq as follows.

We first set νk = logit(φk) for k = 2, . . . , q − 1, which implies that

−∞ ≤ ν2 ≤ ν3 ≤ · · · ≤ νq−1 ≤ ∞.

We then set

νk = νk−1 + euk for −∞ < uk <∞, k = 3, . . . , q − 1.

In that manner, our parameter vector {φ1 = 0, φ2, . . . , φq−1, φq = 1} is replaced
with {ν2, u3, . . . , uq−1} which has the same number of parameters but it is more
convenient because the new parameter vector Rq−2 is completely unconstrained.
This makes the optimisation process more straightforward. Once we find the
MLEs of ν2, u3, . . . , uq−1, we can transform back to the original set of parameters
by

φk =



0 k = 1

expit(ν2) k = 2

expit
[
logit(φ2) +

∑k
`=3 e

u`

]
k = 3, . . . , q − 1

1 k = q

,

where expit(x) = (1 + e−x)−1 is the inverse of the logit function.

2.6 Discussion

The ordinal stereotype model and its formulation including fuzzy clustering via
finite mixtures has been introduced in this chapter. Additionally, model fitting
for the clustering version by using the EM algorithm was presented. Two com-
mon drawbacks of finite mixture-density likelihood are the existence of multiple
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maxima and the occurrence of singularities. As a consequence of the multiple
convergence, the EM algorithm may find local maximum likelihood estimates in-
stead of the global maximum estimates (McLachlan and Krishnan, 1997). In that
manner, a solution is running the EM algorithm repeatedly using different and
widespread sets of initial values. The observation of the same maximum likeli-
hood estimates from diverse initial points increases confidence that the solution
is a global maximum. On the other hand, the appearance of singularities may be
common when the number of parameters to estimate is large in relation to the
sample size. It produces degenerate distributions where the likelihood function
becomes infinite. Possible solutions to this problem would be to constrain the
range of the row (column) effect values or use a Bayesian estimation method as
alternative to the EM algorithm (Fraley and Raftery, 2007). The description of a
Bayesian estimation method for our approach is described in Chapters 7 and 8.
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Chapter 3

Model Selection for Ordinal Finite
Mixtures

3.1 Introduction

One of the key questions in the use of mixture models to provide a model-based
clustering is concerning the choice of the number of mixture components most
suitable to the data set. Since each component in the mixture corresponds to a
different cluster in the data, the conclusions obtained from the estimated mixture
model may be inaccurate when the estimated number of clusters is incorrect.

There have been several approaches via finite mixture models to solve the
classification problem of deciding how many clusters there are in the data. How-
ever, the majority of them are based on clustering continuous outcome variables
and, in particular, on the multivariate normal distribution (see McLachlan (1982);
McLachlan and Basford (1988); Fraley and Raftery (2002) for an extensive review).
Therefore, there has so far been minimal research on model selection for finite
mixture models in the ordinal case and, in particular, when mixture components
are based on ordinal stereotype distributions. An example of research on ordi-
nal variables for the mixture components is the work by Lanning and Bozdogan
(2004, Chapter 21) which is focused on the proportional odds and the nested cu-
mulative link model.

One of the most well documented approaches to the model choice problem
is based on assessing the number of modes in the data (see an extensive review
by McLachlan and Peel (2000, Chapter 6)). A criticism of this approach that the
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mixture components must be well separated in order to be distinguished. There-
fore, the finite mixture model once it is fitted might underestimate the number
of groups in the data. The specification of a parametric distribution family for
the mixture components may overcome this drawback. However, it is important
to take into account that the estimation of the number of mixture components
might not reflect the actual number of groups in the data. For instance, if the data
has a skewed distribution within some of the groups, then there may not be an
one-to-one correspondence between groups and mixture components. This issue
has been considered by McLachlan and Peel (2000, Chapter 6) in normal mixture
models. In addition, Ray and Ren (2012) is a useful reference on the mislead-
ing results that might be obtained using mode counting to assess the number of
components.

Other standard approaches to the problem of determining the number of clus-
ters without prior knowledge of their composition have been considered in the
literature (see e.g. Engelman and Hartigan (1969); Bock (1974); Bozdogan (1993);
Fraley and Raftery (1998)). A common methodology consists of using the EM
algorithm to estimate the composition of the finite mixture model for various as-
sumed numbers of clusters. Once the set of candidate models is estimated, the
next step is to use an information criterion to select the best number of mixture
components. The use of information criteria provides an objective method for the
selection of a best approximating model for the data while allowing a direct or-
dering of the candidate models for comparison. Furthermore, unlike significance
testing, this allows comparison of more than two models at the same time. A
hard clustering structure is then created by assigning each observation from the
data to the cluster to which it is most likely to belong a posteriori, conditionally
on the selected model and its estimated parameters. This is the so-called mixture
ML approach which is equivalent to the more computationally complex classifi-
cation ML approach (see McLachlan (1982) and McLachlan and Peel (2000, Sec-
tion 2.2.1)) with the additional assumption that the probabilities of component
memberships is an unobservable random sample as described in Section 1.2.1.
Examples showing that this methodology can perform better than standard ap-
proaches are given in Fraley and Raftery (1998) for the case of multivariate normal
mixture components. In this chapter, we use this methodology for selecting the
best model or set of models in our proposed likelihood-based approach based on
ordinal stereotype fuzzy clustering via a finite mixtures model.
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Although there is research concerning which current available information
criteria are most suitable in order to select the number of clusters for finite mixture
models, the performance of information criteria where the mixture components
are based on ordinal stereotype distributions is a question that still remains. For
this reason, we set up simulation experiments with the aim of comparing the
performance of several information criterion measures and choosing the most
suitable (or set of them) for our approach. The knowledge of the best criteria in
advance will give valuable guidance to practitioners who might later apply our
methodology. There are similar empirical comparisons in the literature. See for
example works from Fonseca and Cardoso (2007) and McLachlan and Ng (2000).

The chapter is organized as follows: in Section 3.2, we review the information
criteria this chapter is focused on. A simulation study comparing their perfor-
mance is presented in Section 3.3. In Section 3.4, the best information criteria
from the experimental study are tested by applying our approach to a real-life
dataset which is known to be composed of a certain number of clusters. Finally,
conclusions and future research are described in Section 3.5.

3.2 Model Selection Criteria in Clustering

Model selection is an important stage in any data analysis. As the full truth might
not be able to be represented in a model, the selection of an estimated best approx-
imating model from a set of candidate models is critical for statistical inference.
In a clustering context, there are two main approaches to the comparison of a
set of candidate likelihood-based models once they are fitted, in order to decide
which one (or group of them) best approximates the (unknown) true model. One
approach is to carry out a hypothesis test by using the likelihood ratio test as a
test statistic (LRT). Another approach uses information criteria which are based
on a penalised form of the likelihood function where the penalty increases as the
number of parameters increases. A review of these methods is given in the fol-
lowing two sections.
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3.2.1 Likelihood Ratio Tests

A simple hypothesis test regarding the number of groups in a mixture model is
formulated as:

H0 : g = g0 vs. Ha : g = ga,

where g is the number of mixture components and g0 and ga are two possible
number of group values. A common statistic to select the best model in a set of
candidate models is the likelihood radio test (LRT) which has test statistic

LLR = log

(
The maximised likelihood with g = g0

The maximised likelihood with g = ga

)
, (3.1)

which has known asymptotic properties under certain regularity conditions (Wilks,
1938). However, a drawback of the use of this test for mixture densities is that it
does not lead to a suitable significance test. This occurs because the null hypoth-
esis under test is defined on the boundary of the parameter space and, conse-
quently, the required regularity conditions do not hold for −2LLR to have its
usual asymptotic chi-square distribution. In particular in finite mixtures, the
mixing proportions of two mixture components become unidentifiable when the
components coincide. The consequence of this is that the LRT tends to overes-
timate the number of clusters (Stahl and Sallis, 2012; Everitt et al., 2011). Self
and Liang (1987) derived approximate asymptotic null distributions for modified
LLRs which are valid at the boundary of the parameter space. For example, if
testing between g0 and ga components where ga = g0 + 1, the null distribution is
approximately 50:50 mixture of zeros and χ2

1 values. However their results, while
computationally easy to implement, refer to normal distributions, and may not
be applicable to ordinal data.

There has been a lot of published research formulating results on the null dis-
tribution of the LLR for the finite mixture model through simulation and boot-
strapping studies (see the review in McLachlan and Peel (2000, Section 6.5) and
Everitt et al. (2011, Section 6.5.1)). One of the most common ways may be us-
ing randomisation tests to obtain the asymptotic null distribution (McLachlan,
1987; Manly, 2007; Gotelli and Graves, 1996). However once again, most of the
results reported have been focused on mixtures whose components are densi-
ties from continuous variables. In addition, a common drawback is that the use
of LRT might be computationally demanding because it requires bootstrapping
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to obtain the p-value. Therefore, there is a lack of research on this area focused
on mixtures based on densities from ordinal variables and it might be a field to
explore for future research.

In the next section, we introduce an alternative way to select the number of
mixture components based on information theoretical methods.

3.2.2 Description of Information Criteria

The use of model selection procedures based on information criteria methods
started when Akaike (1973) introduced a relationship between the Kullback-Leibler
distance 1 (DKL, Kullback and Leibler (1951)) and the log-likelihood function. The
expression of the DKL between two models f (true model) and g (approximating
model) in the case of continuous distributions is

DKL =

∫
f(Y ) log

(
f(Y )

g(Y | Ω)

)
dY

=

∫
f(Y ) log (f(Y )) dY −

∫
f(Y ) log (g(Y | Ω)) dY,

where Y denotes the data being modeled and Ω denotes the parameters in the
approximating model g. Note, each of the two terms on the right is a statisti-
cal expectation with respect to the true model f . Thus, the DKL distance can be
expressed as

DKL = Ef [log(f(Y ))]− Ef [log (g(Y | Ω))]

DKL − Ef [log(f(Y ))] = −Ef [log (g(Y | Ω))] .
(3.2)

The first expectation Ef [log(f(Y ))] depends only on the unknown true model
f . Moreover, it has an unknown value but is constant for any approximating
model g. Thus, the second expectation Ef [log (g(Y | Ω))] becomes the quantity
of interest. Therefore, the quantity DKL − Ef [log(f(Y ))] is a measure of the loss
of information when a particular candidate model g is used to approximate the
unknown true model f , if the estimation of Ef [log (g(Y | Ω))] is possible. In this
manner, all candidate models are scored regarding their relative information loss
and the best model is that with lowest loss. Unlike the LRT, information criteria

1Kullback-Leibler “distance” is not a proper distance metric, as it is not symmetric. Some
authors recently refer to it as the Kullback-Leibler discrepancy.
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allow quantification of the differences among a set of candidate models and there
may be not a single best model.

Several information criteria have been developed by measuring the loss of
information as a balanced penalty described by the lack of fit (based on the max-
imised log-likelihood function) plus a lack of parsimony (using measures of model
complexity). The general formula of an information criterion CRI is as follows:

CRI = −2`+ P (3.3)

where ` is the maximised log-likelihood and P corresponds to the penalty term,
and a lower value of CRI indicates a better model.

The first term of this equation decreases when the model complexity increases,
improving the fit, and the penalty term P increases when the model complexity
(e.g. number of parameters) increases. Therefore, the first term rewards good-
ness of fit whereas the penalty term P discourages over-fitting in the model esti-
mation. As increasing the number of parameters in the model always improves
even minimally the goodness of the fit, this formulation of information criteria
implements a trade-off between the fitted description of the data and the number
of parameters of the model. Thus, an information criterion selects the best model
in a finite set of candidate models. However it does so even when all those mod-
els are very poor, i.e. CRI is a relative not an absolute measure. Therefore, it is
important to include well founded models in the candidate set, and to include
checks for model assessments adequately.

Some of the most common information criteria for the estimation of mixture
models are described below, and their definitions are collected in Table 3.1 on
page 48.

Akaike’s information criterion (AIC)

The most commonly used information criterion is Akaike’s information criterion
(AIC). It was introduced in Akaike (1973) and is founded on information theory.
The paper proposes the use of an estimate of the Kullback-Leibler information as
a fundamental basis for model selection. Aikake found a rigorous way to esti-
mate Kullback-Leibler distance by means of the maximum point of the empiri-
cal log-likelihood function (Burnham and Anderson, 2002). In that manner, AIC
provides an estimation of the relative distance between the fitted model and the
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unknown true model.

AIC is formulated from equation (3.3) with a penalty term of P = 2K where
K is the number of free parameters. Thus,

AIC = −2`+ 2K.

There is a relationship between AIC and LRT when the analysis regards two
nested models i and j with model i a restriction of the fuller model j (see e.g.
Haefner (2005, Section 8.4)):

LLR = AICi −AICj − 2(Ki −Kj) = 2(`j − `i),

where Ki and Kj are the number of free parameters, and `i and `j are the max-
imised log-likelihood in each model.

The choice of the number of mixture components when finite mixture models
are in the set of candidate models is the primary interest. The use of AIC as a
model selection criterion causes concern because the maximised log-likelihood
` lies on the boundary of the parameter space and, consequently, the regularity
conditions fail. Some authors observed that AIC tends to overestimate the cor-
rect numbers of components for mainly multivariate normal components in the
mixture context (Soromenho, 1994; Celeux and Soromenho, 1996). Thus, it is nat-
ural to think that AIC should be modified in that case. Despite this, Burnham
and Anderson (2002, Section 6.9.6) advocate the use of AIC without alterations
for mixture models. However, AIC must be used carefully because the model
selection procedure entails some traps that must be avoided. The general idea is
to use AIC by choosing the correct number of free parameters. For example, a 4-
component mixture model might collapse to a 3-component mixture model when
one of the mixing proportions lies on a parameter boundary (e.g. π3 = 0). How-
ever, a 3-component mixture model might have already been included within the
set of candidate models. Thus, this set would be redundant as it would include
two different models with 3-component mixtures. Therefore, the set of candi-
date models must be adjusted. One criterion of adjustment can be to select the
model with higher likelihood, among the redundant models. We have used this
principle in the simulation study which is described in Section 3.3.
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Modified AIC criterion (AIC3)

The AIC3 criterion was introduced by Bozdogan (1994) as a modification of AIC
by increasing the penalty term regarding the number of free parameters in the
model. Thus,

AIC3 = −2`+ 3K.

This measure has been found to perform empirically better in the context of
multivariate normal and Bernoulli mixture models (Andrews and Currim, 2003)
where the fitted parameters may lie on the parameter space boundary as in the
case of finite mixtures.

Fonseca and Cardoso (2007) set up a comprehensive simulation study in the
case of categorical variables and when a finite mixture model of conditionally in-
dependent multinomial distributions is adopted. As a result of their experiments,
AIC3 had best performance than AIC in terms of the detection of the information
criterion to discover the true number of clusters.

Corrected AIC criterion when sample size is small (AICc)

AIC may perform poorly with small sample sizes and, particularly, when the
number of parameters to estimate is large in relation to the sample size. The AICc

criteria was proposed by Hurvich and Tsai (1989) based on Akaike (1973) paper
as a correction of AIC when the sample size is small. To achieve this, AICc adjusts
the penalty term in formula (3.3) including a greater penalty for extra parameters,
P = 2K(K+1)

n−K−1
where K is the number of free parameters and n the sample size.

Corrected AICc criterion when sample size increases (AICu)

McQuarrie et al. (1997) remarked that despite the small sample adjustment AICc

still tends to overestimate the number of parameters as the sample size increases.
They therefore proposed the criterion AICu which includes a larger penalty term
P = n log

(
n

n−K−1

)
. They showed that this new criterion is an approximate unbi-

ased estimator of Kullback-Leibler distance and improves the results of AICc for
moderate to large sample sizes.

42



3.2. MODEL SELECTION CRITERIA IN CLUSTERING

Bayesian information criterion (BIC)

The criteria that have so far been described in this chapter are based on the as-
sumption that there is an unknown true model and the aim is to select its best
approximated candidate model. There is another point of view which is based
on the assumption that not only does an exactly true model exist, but that it is
included within the set of candidate models under consideration. Additionally,
another implicit strong assumption from this context is that the true model is of
fairly low dimension (i.e. K is less than 5 parameters). Several criteria have been
developed based on this perspective (see Bozdogan (1987) for a complete review).
The best-known is the Bayesian information criterion (BIC) and was proposed by
Schwarz (1978). BIC is formulated from equation (3.3) with a penalty term of
P = K log(n) where K is the number of free parameters and n the sample size.
This modification of the penalty term arises from considering an equal prior prob-
ability on each candidate model and obtaining the asymptotic behavior of Bayes
estimators. BIC penalizes complex models more heavily than AIC when n > 8,
because then log(n) > 2. BIC is not an estimator of Kullback-Leibler distance.

Support for BIC is mixed. For example, Fraley and Raftery (1998) note that
there is considerable support for use of BIC for finite mixture models, Leroux
(1992) shows the integrated classification criterion (ICL, Biernacki et al. (1998))
is an approximation to BIC which does not underestimate the true number of
components, and Keribin (2000) has shown that BIC performs consistently in
choosing the true number of components using a maximum penalised likelihood
method under an appropriate penalisation sequence. However, most of those
conclusions are based on the continuous case (especially normal mixture models)
or asymptotic results.

There have been a number of criticisms of BIC. For example it has been found
that BIC does not have good performance when the true model has a complex
structure (Burnham and Anderson, 2002, Section 6.3.2.) and it tends to select
models that are too simple in realistic situations. Umbach and Wilcox (1998) con-
ducted a Monte Carlo simulation study to test how the AIC and BIC perform over
different sample sizes. For sample sizes up to 100000, they found AIC performed
better than BIC in terms of selecting the true model. The two criteria were tied at
sample size 125000, and BIC had the best performance at sample sizes larger than
125000. This empirical study seems to suggest than BIC tends to select overly
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simple models when the sample size is not large enough.
There have also been a number of comparisons of all three of BIC, AIC, and

AICc (see e.g. Hjorth (1994, Section 3.7)). They note that BIC performs well
asymptotically (i.e. increasing the sample size). However, the sample size would
have to be very large in order to achieve a reasonable accuracy when more than
one model is close to the true model.

Integrated classification likelihood criterion as approximation to BIC (ICL-BIC)

The integrated classification criterion (ICL) is a complete likelihood-based infor-
mation criterion (also known as a classification-based information criterion) de-
veloped by Biernacki et al. (1998). McLachlan and Peel (2000) used ICL-BIC to
refer to an approximated form of ICL which has the same form as BIC apart from
the addition of the entropy penalisation term and showed that this criterion se-
lected the true number of clusters in all 3 simulation normal continuous data sets
that they considered. The ICL-BIC is expressed as:

ICL-BIC = −2`c +K log(n), (3.4)

where `c is the maximised complete data log-likelihood function,K is the number
of free parameters and n the sample size of the incomplete data.

Biernacki et al. (1998) argued that using the BIC for assessing mixture models
to provide a model-based clustering presents some drawbacks. From a theoret-
ical point of view, if the true model has S ′ < S mixture components where S is
the number of mixture components in the candidate model under consideration,
then S − S ′ of the mixing proportions will tend to zero as the sample size tends
to infinity. Thus, the regularity conditions will fail because the mixing proportion
estimates will lie on the boundaries of parameter space. Additionally, Biernacki
and Govaert (1997) stated that if the true model is not in the family of models un-
der consideration, BIC tends to overestimate the correct number of components
regardless of the cluster separation. Biernacki et al. (1998) showed through nu-
merical experiments that ICL-BIC increases the ability of the mixture model to
give evidence for a clustering structure of the data.

Another equivalent way to formulate the ICL-BIC is taking P = K log(n) +

2EN(S) in equation (3.3), where EN(S) is the entropy function (see Celeux and
Soromenho (1996)) and S is the number of clusters. This function is a measure of
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the ability of a particular S-component mixture model to allocate the data to the
specified clusters. EN(S) measures the overlap of the mixture components and is
defined by

EN(S) = `− `c. (3.5)

Rearranging expression (3.5) provides a decomposition of the log-likelihood ` in
a complete log-likelihood term `c and the entropy EN(S). Moreover, the entropy
EN(S) measures the difference between the maximum likelihood approach (ML)
of the mixture model and the classification maximum approach (CML) when a
model-based clustering is under consideration (see details in Celeux and Soromenho
(1996, Section 3.1)). If the entropy EN(S) is close to zero, both approaches can be
thought as equivalent and this occurs when the clusters are well separated. The
entropy takes a large value if the mixture components are poorly separated. Thus,
the use of the entropy function in the definition of ICL-BIC allows for comparing
the ML and CML approaches and assessing mixture models to provide a model-
based clustering.

Classification likelihood criterion (CLC)

The classification likelihood criterion (CLC) was introduced by Biernacki and Go-
vaert (1997) and makes use of the complete and incomplete log-likelihood func-
tion association defined by equation (3.5). Its origin derives from the fitting of
normal mixture models. The CLC is formulated as equation (3.3) with a penalty
term P = 2EN(S).

This criterion does not include a complexity term due to the number of pa-
rameters. Therefore, it should allow less parsimonious models compared to other
measures that tends to penalize against large number of parameters (i.e. complex
models) such as AIC, BIC, and ICL-BIC. In addition, the CLC tends to penalize
poorly separated clusters because it uses the entropy EN(S) of the fuzzy classifi-
cation (as the ICL-BIC does).

Biernacki et al. (1999) stated that the CLC tends to overestimate the number of
groups in the data compared to ICL-BIC and it only works well when the mixing
proportion values are restricted to be equal.
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Consistent Aikake Information Criterion (CAIC)

This criterion was proposed by Bozdogan (1987) as a variant of the AIC which
makes the AIC asymptotically consistent. Its formulation from equation (3.3) is
defining the penalty term as P = K(1 + log(n)), i.e. larger penalty term than BIC
and therefore even higher penalty against complex models.

One of the main criticisms of the CAIC is that it tends to select simpler models
than AIC does. For example, Anderson et al. (1998) compared the performance of
the AIC and CAIC in capture-recapture datasets concluding that the models se-
lected by the CAIC are overly parsimonious and with poor structure and, there-
fore, they recommend the use of the AIC instead of the CAIC.

Normalized Entropy Criterion (NEC)

The normalized entropy criterion (NEC) was originally introduced by Celeux and
Soromenho (1996). In a different approach, the NEC arises from the idea of using
the entropy function alone as a criterion for choosing the number of clusters. For
S clusters, this criterion is defined as follows:

NEC(S) =
EN(S)

`− `(1)
=

`− `c

`− `(1)
, (3.6)

where `(1) is the value of the maximised incomplete-data log-likelihood for a sin-
gle (S = 1) component. As formulated in (3.6), NEC(1) is not defined and there-
fore this criterion suffers of limitation that it cannot choose between one and more
than one cluster. Celeux and Soromenho (1996) proposed a rule of thumb for this
case, but their procedure was restricted to normal mixtures.

Biernacki et al. (1999) found that the original NEC as defined in (3.6) per-
forms in an unsatisfactory way and proposed a modification in its use. They
referred to this new procedure as improved NEC criterion. Effectively, they de-
fined NEC(1) = 1, i.e. define NEC to be one for S = 1 (see a brief review of the
justification for this in McLachlan and Peel (2000, Section 6.10.2)). The improved
NEC criterion simply then consists of choosing the number of groups S to min-
imize NEC(S). If all the S groups make NEC(S) > 1, then there is no cluster
structure in the data and we choose S = 1. Otherwise, we choose the number of
clusters S with minimum NEC value. Biernacki et al. (1999) showed through nu-
merical examples that this improved procedure of the NEC criterion corrects for
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the tendency of the original NEC to prefer S > 1 clusters when the true number
is S = 1.

Approximate weight of evidence (AWE)

The approximate weight of evidence (AWE) was proposed by Banfield and Raftery
(1993) as a Bayesian solution to the choice of the number of clusters using the
complete data log-likelihood function. The AWE criterion is formulated as:

AWE = −2`c + 2K

(
3

2
+ log(n)

)
= BIC + 3K.

This criterion selects more parsimonious models than BIC because it penalizes
more complex models (additional term 3K). The drawback of this criterion is
that parameter estimation is biased when the clusters are not well separated (see
McLachlan and Peel (2000, Section 2.21) for details).

L criterion

L criterion was introduced by Figueredo and Jain (2002) as a result of a novel
technique which is an alternative to the EM algorithm and might be applied to
any type of parametric mixture model for which it is possible to write the EM
algorithm. The L criterion has the form:

L = −`− K

2

S∑
s=1

log
(nπs

12

)
− S

2 log
(
n
12

) − S(K + 1)

2

where {πs} are the cluster membership probabilities.
A summary table with the definitions of all these information criteria mea-

sures are given in Table 3.1.

3.2.3 Information Criteria. Differences and Comparisons

A distinction among the information criteria presented in the previous section
is regarding the aim for which the criterion was proposed. We can differentiate
two groups here: a first group where the criteria were developed for regression
models (AIC, AICc, AICu, AIC3, CAIC and BIC) and second group where the
criteria were proposed for clustering (CLC, ICL-BIC, NEC, AWE and L).
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Table 3.1: Information criteria summary table for one-dimensional clustering
case.

Criteria Definition Proposed for Depending on

AIC −2`+ 2K

Regression

K
(Akaike, 1973)

AICc AIC + 2K(K+1)
nm−K−1(Akaike, 1973)

AICu AICc + nm log
(

nm
nm−K−1

)
K and nm

(McQuarrie et al., 1997)

CAIC −2`+K(1 + log(nm))
(Bozdogan, 1987)

BIC −2`+K log(nm)
(Schwarz, 1978)

AIC3 −2`+ 3K

Clustering

K
(Bozdogan, 1994)

CLC −2`+ 2EN(S)
EN(·)(Biernacki and Govaert, 1997)

NEC(S) EN(S)
`(S)−`(1)(Biernacki et al., 1999)

ICL-BIC −2`c +K log(nm)
K, nm and EN(·)(Biernacki et al., 1998)

AWE −2`c + 2K
(

3
2 + log(nm)

)
(Banfield and Raftery, 1993)

L −`− K
2

∑
log(nmπS

12
)−

K, nm and πS(Figueredo and Jain, 2002) S
2 log(nm12 )

− S(K+1)
2

Notes: nm is the total sample size which is the number of elements in the response matrix Y . K
is the number of parameters, S the number of clusters, πS the mixing cluster proportion, ` the the
maximised incomplete data log-likelihood, `c is the maximised complete data log-likelihood (see
eq. (2.11) for row clustering and eq. (2.13) for column clustering). EN(·) is the entropy function
defined by EN(S) = `− `c.

Another difference is with respect to which parameters define each criterion
apart from the maximised complete-data and incomplete-data log-likelihood. AIC
and AIC3 depend on the number of free parameters K. AICc, AICu, CAIC and
BIC are determined by both the sample size n and the number of free parame-
ters K. NEC and CLC are defined by the entropy function. ICL-BIC and AWE
depend on the sample size n, the number of free parameters K and the entropy
function. Finally, the L criterion is defined by the sample size n, the number of
free parameters K and the cluster membership probabilities {πS}.

A final distinction is that BIC, AWE and ICL-BIC are criteria motivated from a
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Bayesian perspective for choosing the number of components in a mixture model.
There might be a Bayesian interpretation for the other information criteria, but it
is questionable in many situations (Steele and Raftery, 2010).

There have been several simulation studies dealing with the empirical com-
parison of the information criteria performances for mixture models with con-
tinuous, categorical and mixed (continuous and categorical) distributions. For
example, McLachlan and Ng (2000) brought into comparison AIC, BIC, CLC,
ICL-BIC among others for three simulated data set of normal mixture compo-
nents. The main conclusions are that ICL-BIC has good overall performance and
the tendency of AIC to select too many normal components. Bezdek et al. (1997)
showed experiments from bivariate normal distribution as mixture components.
AIC3, AIC, BIC, AWE and NEC have the best results (in that order). Bozdogan
(1994) simulated 3-component mixture models with three-dimensional multivari-
ate normal distributions. AIC3 and CAIC have the best performance.

Fonseca and Cardoso (2007) and Fonseca (2008) reported experiment results
for finite mixture with continuous, categorical and mixed components. The re-
sults are that BIC has the best performance for normal multivariate distributions,
AIC3 for multinomial distributions and ICL-BIC for mixed distributions. They
conclude that AIC, AIC3, AICc and AICu are sensitive to the type of outcome
variable.

From a Bayesian perspective, Steele and Raftery (2010) showed a comprehen-
sive simulation study for Gaussian mixture models based on reported parameter
values in the literature from 43 papers. BIC has the best performance.

All these simulation experiments suggest that the type of outcome variable
may affect the results of the information criterion performance. For that reason,
in order to determine the best information criterion for our proposed likelihood-
based methodology for ordinal data, we carry out a simulation study specific to
our clustering of ordinal data.

3.3 Simulation Study

3.3.1 Methodology

In this section, we evaluate the performances of eleven of the most common in-
formation criterion measures with ordinal data and finite mixtures: AIC, AICc,
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BIC, ICL-BIC, AICu, AIC3, CLC, CAIC, NEC, AWE and the L criterion. Their
definitions are given in Table 3.1.

The goal of the experiments is to assess the performance of these information
criteria in determining the true number of clusters. In particular, the results we
are interested in are the percentage of total simulated experiments where each
information criterion correctly determines the correct number of row/column
clusters in a diverse set of scenarios. The scenarios are determined by varying
the sample size/subjects (n = 50, 100, 500) and number of measures/questions
(m = 5, 10). In addition, we made variations in the number of row clusters
(R = 2, 3, 4), column clusters (C = 2, 3, 4) and the space between the q = 4 score
parameters {φk}. The experimental design for the row clustering and the biclus-
tering cases is given in Tables 3.2 and 3.3, respectively.

Table 3.2: Factorial design for the simulation study. Row clustering.

Number of
Clusters
R

Sample
Sizes
n

Scenarios Total Replicates

2 50 Varying
m, {φk}, {πr}

3 100 32 × 5 100
4 500

Levels 3 3 5 45 4500 datasets

Table 3.3: Factorial design for the simulation study. Biclustering.

Number of
Clusters
R

Number of
Clusters
C

Sample
Sizes
n

Scenarios Total Replicates

2 2 50 Varying
m, {φk}, {πr}3 3

100 22 × 3× 5 100
500

Levels 2 2 3 5 60 6000 datasets

Through variations in the number of clusters, the number of measures/questions
and the spacing between one pair of adjacent score parameters we have con-
structed five different scenarios. The scenarios tested illustrate a comprehensive
set of situations representing from a simple to a more challenging context. The lat-
ter situation allows us to test information criteria in demanding situations where
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the estimation of the true number of clusters might be expected to be more diffi-
cult. The five scenarios for {φk}may be described by: equal spacing between any
pair of adjacent score parameters (Scenario 1), one pair of adjacent score param-
eters are very close in value (Scenario 2), one of the mixing cluster proportions
is close to zero (Scenario 3), one pair of adjacent score parameters have the same
value (Scenario 4), and the same as the first scenario but increasing the number
of measures to m = 10 (Scenario 5). Table 3.4 shows the parameter configuration
regarding the mixing proportions and the score parameters in the row clustering
case. All the parameters for each scenario in the row clustering and biclustering
cases are given in Tables B.1 and B.2 in Appendix B.1.

Table 3.4: Row clustering. Row membership probabilities {πr} and score param-
eters {φk} for 5 tested scenarios. The value of the other parameters are shown in
Table B.1 in Appendix B.1. The aspects of each scenario which we expect to be
challenging are coloured blue.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
m = 5 m = 5 m = 5 m = 5 m = 10

R = 2

π1 = 0.45 π1 = 0.45 π1 = 0.95 π1 = 0.45 π1 = 0.45
π2 = 0.55 π2 = 0.55 π2 = 0.05 π2 = 0.55 π2 = 0.55
φ2 = 0.34 φ2 = 0.34 φ2 = 0.34 φ2 = 0.5 φ2 = 0.34
φ3 = 0.66 φ3 = 0.97 φ3 = 0.66 φ3 = 0.5 φ3 = 0.66

R = 3

π1 = 0.20 π1 = 0.20 π1 = 0.47 π1 = 0.20 π1 = 0.20
π2 = 0.50 π2 = 0.50 π2 = 0.05 π2 = 0.50 π2 = 0.50
π3 = 0.30 π3 = 0.30 π3 = 0.48 π3 = 0.30 π3 = 0.30
φ2 = 0.34 φ2 = 0.34 φ2 = 0.34 φ2 = 0.5 φ2 = 0.34
φ3 = 0.66 φ3 = 0.97 φ3 = 0.66 φ3 = 0.5 φ3 = 0.66

R = 4

π1 = 0.15 π1 = 0.15 π1 = 0.31 π1 = 0.15 π1 = 0.15
π2 = 0.30 π2 = 0.30 π2 = 0.05 π2 = 0.30 π2 = 0.30
π3 = 0.25 π3 = 0.25 π3 = 0.32 π3 = 0.25 π3 = 0.25
π4 = 0.30 π4 = 0.30 π4 = 0.32 π4 = 0.30 π4 = 0.30
φ2 = 0.34 φ2 = 0.34 φ2 = 0.34 φ2 = 0.5 φ2 = 0.34
φ3 = 0.66 φ3 = 0.97 φ3 = 0.66 φ3 = 0.5 φ3 = 0.66

Notes: φ1 = 0 and φ4 = 1 for all the scenarios.
Scenarios 1-4 have 11 free parameters and scenario 5 has 16.

In the case of only clustering the rows, the simulation study is tested in 45
different combinations (see Table 3.2) over 5 scenarios. For each scenario, we
drew h = 100 datasets, and select the best model for each dataset using each
information criterion. Therefore, we worked with 4500 (9 × 5 × 100) samples. In
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the same manner, the number of samples generated in the case of biclustering
were 6000 (12× 5× 100).

The EM algorithm to obtain the estimates is repeated 10 times with random
starting points and the estimates with the highest likelihood are kept. This helps
to avoid local optima in the estimation process because the log-likelihood func-
tion has a multimodal surface.

A sketch of the simulation study procedure is given in the following section.

3.3.2 Simulation Study Outline

The simulation study procedure for the row clustering case is outlined in the
following steps:

Step 1. Model specification

Select the model, w, from a set of models w = 1, . . . ,W .
There are W = 3× 1× 5 possible models:

• Select R ∈ {2, 3, 4} (3 options).
This fixes {α1, . . . , αR} (with

∑R
r=1 αr = 0).

• Set the number of response categories: q = 4 in all cases (1 option).
This fixes {µ1, . . . , µq} (with µ1 = 0).

• Select a scenario from one of the five in a set of predefined scenarios (5
options).
Each scenario fixes:

– Prior mixing probabilities π1, . . . , πR (with
∑R

r=1 πr = 1).

– The number of columns m ∈ {5, 10}.
This fixes {β1, . . . , βm} (with

∑m
j=1 βj = 0).

– The ordinal response cut levels φ1 ≤ φ2 ≤ . . . ≤ φq (with φ1 = 0 and
φq = 1).

At the end of this step we know, for the chosen model w:

• The number of row groups Rw.

• The number of response categories qw.
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• The number of columns mw.

• The total number of free parameters Kw.

• The parameter values:

{αw1 , . . . , αwR}, {βw1 , . . . , βwm}, {πw1 , . . . , πwR}, {µw1 , . . . , µwq }, {φw1 , . . . , φwq }

and as a consequence we can calculate the values of the linear predictors

ηwkrj = µwk + φwk
(
αwr + βwj

)
for k ∈ {1, . . . , qw}, r ∈ {1, . . . , Rw} and j ∈ {1, . . . ,mw}.

Step 2. Sample size specification

Select the sample size label, s, from a set of possible labels s = 1, . . . , S.
There are S = 3 possible sample sizes, s ∈ {1, 2, 3}:

• Select ns ∈ {50, 200, 500} (3 options).

There are WS = 15 × 3 = 45 possible combinations of model and sample size:
(ws).

Step 3. Generate replicate datasets

There are H = 100 replicates.
For each model w and sample size s and each replicate h ∈ {1, . . . , H}:

• For each row i = 1, . . . , ns, generate row membership

zwshi =
(
Zwsh
i1 , ..., Zwsh

iR

)
∼Multinomial (1; {πwr }) .

• For each column j = 1, . . . ,mw within each row i = 1, . . . , ns, generate the
response ordinal variable

ywshij |zwshi = δr ∼ Stereotype
({
ηwkrj
}q
k=1

)
.
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Here δr is an indicator vector of length Rw, with 1 at location r and zero
elsewhere. This implies that

log

(
P
[
ywshij = k | zwshi = δr

]
P
[
ywshij = 1 | zwshi = δr

]) = ηwkrj.

There are WSH = 15×3×100 = 4500 possible combinations of model, sample
size, and replicate: (wsh).

Step 4. Fit models

We fit models with r = 1, . . . , Rmax row groups to each dataset with Rmax = 8.

• For each r we run the EM algorithm F = 10 times. On run f we randomly
generate a starting point Ω

(0)
rf by drawing the parameter values indepen-

dently from the following distributions,

µ
(0)
k ∼ Uniform(−5, 5) k = 2, . . . , q,

α
(0)
` ∼ Uniform(−5, 5) ` = 1, . . . , r − 1,

β
(0)
j ∼ Uniform(−5, 5) j = 1, . . . ,m− 1,

φ
(0)
k ∼ Uniform(φ

(0)
k−1, 1) k = 2, . . . , q − 1,(

π
(0)
1 , . . . , π(0)

r

)
∼ Dirichlet (1;λ1 = 1, . . . , λr = 1) .

This means running the EM algorithmRmax×F = 8×10 = 80 times on each
of the 4500 datasets, a total of 36000 runs in all.

On run f for row group number r fitted to replicate dataset wsh we obtain
parameter estimate Ω̂wsh

rf , each with its associated complete log-likelihood
value `wc (Ω̂wsh

rf ).

• For each row group number r fitted to the dataset wsh we select the param-
eter estimate Ω̂wsh

r∗ as the one which has the largest associated complete data
log-likelihood {`wc (Ω̂wsh

rf )}Ff=1. This is the best fit to the dataset wsh with r

row groups.

• Next we calculate a value for each of the L information criteria at each of
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these best fit values:

Cwsh
r` = CRI`(`wc (Ω̂wsh

r∗ ), `w(Ω̂wsh
r∗ ), ns,m

w, Kw, r, {πr}) for ` = 1, . . . , L

Note that the information criteria can depend on the complete and incom-
plete data log-likelihood value, the sample size ns, the number of columns
mw, the number of fitted parameters Kw, the number of fitted row groups
r, and the mixing proportions πr.

• For each criterion we identify over the values of r the minimum value of
Cwsh
r` , and the corresponding number of row groups r for which that occurs:

rwsh`∗ = argmin
r

Cwsh
r`

This is the number of row groups selected by criterion CRI` for the dataset
wsh.

• The proportion of times across theH replicates generated by the same model
w with the same sample size ns where this selected number of row groups
agrees with the true value Rw is of primary interest

Pws
` =

1

H

H∑
h=1

I(rwsh`∗ = Rw)

The best performing criterion ` is the one where Pws
` is consistently large,

over a wide range of scenarios w and sample sizes ns.

We are also interested in the mean, median and interquartile range of the
values {rwsh`∗ }Hh=1, to see which of these may consistently over or underesti-
mate the number of row groups R.

This simulation study procedure refers to the one-dimensional clustering case
and has been illustrated with the row clustering version. The simulation study
outline for the column clustering version is basically the same just replacing pa-
rameters related to rows with the equivalent column parameters (e.g. the column
mixing probabilities {κc} instead of the row ones {πr}). For the case of bicluste-
ring, we have evaluated the performance of the same information criterion mea-
sures as in the one-dimensional case (see Table 3.1). However, the asymptotic
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properties in the information criterion measures used in this chapter might not
apply in the case of biclustering. These properties apply to one-dimensional (e.g.
number of rows n) assuming that the other dimension (i.e. number of columns,
m) is fixed and therefore there are not asymptotic properties in m. Thus, the in-
formation criteria affects the two clusterings differently and it would be a future
research direction to explore.

3.3.3 Results

Figure 3.1 is a histogram displaying the percentage of cases in which each infor-
mation criterion determines the true number of row clusters pooling all results
across the five scenarios and the factors used in the experimental control. Its
equivalent histogram for biclustering is given in Figure 3.2. For row clustering,
the overall best performance was AIC (correctly selecting the number of row clus-
ters in 93.8% of cases), followed by AICc (89.8%) and AICu (82.4%). In the case of
biclustering, the results are very similar as AIC also performs the best, although
with a lower percentage of correctly selecting the number of row and column
clusters than the row clustering case (86.1%). AICc and AICu also perform very
well with percentages close to AIC: 85.6% and 84.2% respectively.

Figure 3.1: Simulation study results for row clustering: Bars depict the percentage
of cases for each information criterion correctly fits the true number of row clusters.

Tables 3.5 and 3.6 show the best 5 information criterion performances over the
5 scenarios in the case of row clustering and biclustering respectively. In both
cases, we can observe that the ranking is exactly the same over the 5 scenarios:
AIC, AICc, AICu, AIC3 and BIC. The best performance is the scenario 5 which
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Figure 3.2: Simulation study results for biclustering: Bars depict the percentage of
cases for each information criterion correctly fits the true number of clusters.

Table 3.5: Model comparison simulation study results. Row clustering. Ranking
of the best 5 information criterion measures.

Overall Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
AIC 93.8% 91.4% 97.6% 88.0% 92.9% 99.1%
AICc 89.8% 90.2% 94.8% 74.7% 91.1% 98.2%
AICu 82.4% 79.0% 80.0% 66.7% 88.0% 98.2%
AIC3 67.7% 61.7% 65.6% 56.7% 56.4% 98.2%
BIC 43.7% 41.2% 39.1% 40.0% 39.6% 58.7%

Table 3.6: Model comparison simulation study results. Biclustering. Ranking of
the best 5 information criterion measures.

Overall Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
AIC 86.1% 89.2% 82.3% 80.5% 85.5% 92.8%
AICc 85.6% 89.2% 81.5% 80.0% 84.5% 92.8%
AICu 84.2% 84.8% 80.7% 79.3% 83.3% 92.8%
AIC3 71.2% 75.8% 65.5% 64.7% 66.5% 83.3%
BIC 36.5% 34.5% 35.2% 33.5% 32.3% 47.2%

has the largest number of measures/questions m. On the other hand, the worst
achievement is in the challenging scenario 3 (one of the mixing cluster propor-
tions is close to zero). Regardless of the difficulty of this scenario, AIC and AICc

performances are still quite satisfactory (above 75% of accurately choosing the
correct number of clusters in row clustering and biclustering).

The full results for all the scenarios broken down by number of row/column
clusters and the sample size is given from Table B.3 to Table B.12 in Appendix
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B.2. A summary of those results broken down by scenario in the case of row clus-
tering and biclustering respectively are given in Table 3.7 and Table 3.8. BIC is
underestimating the number of clusters (incorrectly selecting a smaller number
of clusters in 56% and 63.2% of cases in row clustering and biclustering respec-
tively). The formulation of the penalty term in BIC allows us to penalize more
complex models than AIC does. The results for CAIC are very similar (under-
estimating 58.7% and 66.9% of the cases) as the penalty term is similar to BIC
and, therefore, the penalization is decreasing its performance. AWE obtains even
worse results than BIC and CAIC (underestimating 64.2% and 63.1% of cases).
This result is expected because the penalty term for AWE penalizes even more
complex models than BIC (P = 3

2
log(n) > log(n), as n ≥ 1).

Very poor performance is obtained with ICL-BIC (correctly selecting the num-
ber of clusters in only 33.1% and 31.3% of cases in row clustering and biclustering
respectively). Our results are in accordance with Fonseca and Cardoso (2007) for
the categorical case (their results were correctly selecting the number of row clus-
ters in only 16% of cases). ICL-BIC is only working correctly when the true num-
ber of row clusters is R = 2 (see the corresponding results in Tables B.3-B.12),
so that ICL-BIC only identifies that there is cluster structure in the data. How-
ever, ICL-BIC generally underestimates the number of clusters (65.9% vs. 57.6%)
probably due to its link with BIC (ICL-BIC is defined as BIC plus the entropy
function).

CLC only performs well when the unknown mixing proportions are restricted
to be very similar (Biernacki et al., 1999). For example, scenarios 1, 2, 4 and 5
have R = 2 with π1 = 0.45 and π2 = 0.55 (Tables B.3-B.4 and B.6-B.7 in the
Appendix B.2). In those cases, there CLC performs very well (above 96.3%) in
comparison with π1 = 0.95 and π2 = 0.05 (Scenario 3, Table B.5 in the Appendix
B.2) where the percentage of correctly selecting the number of clusters drops to
85.3%. However, the overall CLC performance only correctly selects the number
of clusters in 37.4% (row clustering) and 34.3% (biclustering) of cases. Finally,
NEC tends to overestimate the number of clusters more than the other criteria
(overestimating in 15.8% and 54.9% of the cases in row clustering and biclustering
respectively) and the L criterion obtains similar results to ICL-BIC.

Based on our simulation study we therefore conclude that AIC is the best in-
formation criterion when dealing with ordinal data and we fit likelihood-based
finite mixture models with the ordinal stereotype model as the components in the
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mixture.

Table 3.7: Model comparison simulation study. Overall results for 11 information
criteria over 5 scenarios. Row Clustering (µk + φk(αr + βj)).

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 5.1 31.6 9.0 16.4 64.2 56.0 58.7 61.2 47.9 65.9 65.9

Fit 93.8 67.7 89.8 82.4 32.8 43.7 41.0 37.4 36.3 33.1 32.7
Overfit 1.1 0.7 1.2 1.2 0.8 0.3 0.3 1.3 15.8 1.1 1.4

Scenario 1
Underfit 7.9 37.7 9.1 20.3 66.4 57.9 62.8 62.7 44.3 66.0 66.1

Fit 91.4 61.7 90.2 79.0 32.4 41.2 36.1 36.1 36.4 33.1 32.9
Overfit 0.7 0.7 0.7 0.7 1.1 0.9 1.1 1.2 19.2 0.9 1.0

Scenario 2
Underfit 2.0 34.2 4.9 19.8 66.4 60.9 63.3 62.2 51.8 66.0 66.4

Fit 97.6 65.6 94.8 80.0 33.6 39.1 36.7 37.8 36.0 34.0 32.9
Overfit 0.4 0.2 0.3 0.2 0.0 0.0 0.0 0.0 12.2 0.0 0.7

Scenario 3
Underfit 10.0 42.4 23.3 31.3 66.0 60.0 62.7 60.2 42.0 65.3 65.1

Fit 88.0 56.7 74.7 66.7 31.1 40.0 37.3 34.9 38.7 30.2 31.1
Overfit 2.0 0.9 2.0 2.0 2.9 0.0 0.0 4.9 19.3 4.4 3.8

Scenario 4
Underfit 5.8 43.1 7.6 10.7 66.7 60.2 62.9 61.3 45.3 66.2 65.6

Fit 92.9 56.4 91.1 88.0 33.3 39.6 37.1 38.4 36.7 33.8 33.6
Overfit 1.3 0.4 1.3 1.3 0.0 0.2 0.0 0.2 18.0 0.0 0.9

Scenario 5
Underfit 0.0 0.4 0.0 0.0 55.6 40.9 42.0 59.8 56.2 65.8 66.2

Fit 99.1 98.2 98.2 98.2 33.3 58.7 57.6 40.0 33.8 34.2 32.9
Overfit 0.9 1.3 1.8 1.8 0.0 0.4 0.4 0.2 10.0 0.0 0.9

Notes: All the data is shown in percentage form(%).

Table 3.8: Model comparison simulation study. Overall results for 11 information
criteria over 5 scenarios. Biclustering (µk + φk(αr + βc)).

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 11.7 27.4 12.3 13.9 63.1 63.2 66.9 48.5 12.0 57.6 61.7

Fit 86.1 71.2 85.6 84.2 30.5 36.5 33.0 34.3 33.1 31.3 30.9
Overfit 2.2 1.4 2.1 1.9 6.4 0.2 0.2 17.2 54.9 11.1 7.5

Scenario 1
Underfit 9.5 23.5 9.7 14.0 64.2 65.3 68.8 50.0 15.2 58.2 61.7

Fit 89.2 75.8 89.2 84.8 28.5 34.5 31.0 29.5 42.5 29.2 31.3
Overfit 1.3 0.7 1.2 1.2 7.3 0.2 0.2 20.5 42.3 12.7 7.0

Scenario 2
Underfit 16.5 33.7 17.3 18.2 61.8 64.8 68.2 52.3 15.2 57.7 58.8

Fit 82.3 65.5 81.5 80.7 31.8 35.2 31.8 31.2 35.7 32.0 32.5
Overfit 1.2 0.8 1.2 1.2 6.3 0.0 0.0 16.5 49.2 10.3 8.7

Scenario 3
Underfit 16.7 33.5 17.3 18.5 63.2 66.3 69.2 49.8 15.0 57.0 60.5

Fit 80.5 64.7 80.0 79.3 30.3 33.5 30.7 33.8 40.8 31.2 30.5
Overfit 2.8 1.8 2.7 2.2 6.5 0.2 0.2 16.3 44.2 11.8 9.0

Scenario 4
Underfit 13.3 28.3 14.5 15.8 64.3 67.5 70.2 50.2 13.2 59.3 64.2

Fit 85.5 70.8 84.5 83.3 28.2 32.3 29.7 30.5 35.0 27.3 29.2
Overfit 1.2 0.8 1.0 0.8 7.5 0.2 0.2 19.3 51.8 13.3 6.7

Scenario 5
Underfit 2.7 13.7 2.8 2.8 62.1 52.2 57.9 40.1 1.5 55.8 63.2

Fit 92.8 83.3 92.8 92.8 33.4 47.2 41.8 46.6 11.3 36.9 30.9
Overfit 4.5 3.0 4.3 4.3 4.5 0.7 0.3 13.3 87.2 7.3 5.9

Notes: All the data is shown in percentage form(%).
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3.4 Application to Real Data with Known R

In this section, we use the best 5 information criteria according to the results of the
simulation study (AIC, AICc, AICu, AIC3 and BIC) to select the fitted finite mix-
ture model which best represents a real-life ordinal dataset. The set of candidate
models is estimated with our likelihood-based clustering approach.

The real-life example we analyse is an ordinal dataset from community psy-
chology collected by Anders and Batchelder (2013) where they artificially cre-
ated three different response profiles among the participants. The data are the
responses of 83 respondents to 20 questions about a particular city. In order
to create the three distinct cultures, the respondents all received the same city-
knowledge questionnaire but were randomly assigned to answer the questions
regarding one of the following three cities: Irvine, California; New York, New
York; or Miami, Florida. Thus, 30 respondents answered for Irvine, 29 for Miami,
and 24 for New York. All the questions are related to magnitudes (e.g. amount
of rain, snow, or level of humidity in the city) and are categorised on an ordinal
7-point scale, from low to high magnitude. Tables B.13 and B.14 in Appendix B.3
shows the full set of questions and the whole data set respectively. The choice of
those three particular cities for the study was because they are well distinguished
in terms of the expected responses to the questionnaire. Therefore, the aim of
the study was to deliberately design an experiment that would encourage three
distinct cultural profiles, one for each city.

Our main goal is to apply our likelihood-based clustering approach to this
dataset in order to identify that the model which best represents the data includes
R = 3 respondent (row) clusters based on their responses over the 20 questions.
The cluster structure should identify the three distinct response profiles. We have
fitted a suite of row clustering models based on our methodology, from row clus-
tering without column effects model to row clustering with and without an in-
teraction. For each model, the 5 best-performing information criteria for the row
clustering case according to the simulation study were computed and the results
are given in Table 3.9.

The five information criteria indicate that the best model is the stereotype
model including row clustering withR = 3 row (respondent) groups and with in-
teraction factors (µk+φk(αr+βj+γrj)) with AIC=5110.62, AICc=5117.24, AICu=5149.69,
AIC3=5182.62 and BIC=5500.47. It is also remarkable that R = 3 respondent clus-
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Table 3.9: Suite of row clustering models fitted for Anders and Batchelder (2013)
data set. The calculation of the 5 best-performance information criteria for our
approach is given for each model. For each information criterion, the best model
in each category (row clustering without column effects, row clustering with and
without interactions) is shown in boldface and the overall best model in blue
boldface.

Model R C npar AIC AICc AICc AIC3 BIC

Row
clustering

µk + φkαr
(no column effects)

2 1 13 6155.33 6155.55 6161.66 6168.33 6225.72
3 1 15 6159.91 6160.20 6167.19 6174.91 6241.13
4 1 17 6106.88 6107.26 6115.12 6123.88 6198.93
5 1 19 6104.71 6105.17 6113.91 6123.71 6207.58

µk + φk(αr + βj)
(no interaction)

2 m 32 5730.54 5731.84 5746.32 5762.54 5903.81
3 m 34 5700.53 5701.99 5717.36 5734.53 5884.62
4 m 36 5709.60 5711.24 5727.50 5745.60 5904.52
5 m 38 5722.73 5724.56 5741.71 5760.73 5928.48

µk + φk(αr + βj + γrj)
(interaction)

2 m 51 5362.58 5365.88 5388.84 5413.58 5638.73
3 m 72 5110.62 5117.24 5149.69 5182.62 5500.47
4 m 93 5387.90 5399.06 5441.13 5480.90 5891.45
5 m 114 5423.60 5440.57 5492.40 6040.86 6040.86

ters is also the best model in the case of row clustering model without interaction
factors. However, the row clustering model without column effects is too simple,
and does not identify the R = 3 cluster structure as the best model.

Figure 3.3 depicts a plot with the average of the fitted scores of respondent an-
swers over the 20 city-knowledge questions where each respondent is allocated
to the row group to which the respondent belongs with highest posterior prob-
ability. The computation of this average of the fitted scores is developed in the
Section 4.2.1. The row cluster to which the respondent is allocated according to
the row clustering model with R = 3 row groups and interaction factors are in-
dicated by points of different shapes and colours. The figure shows three clearly
distinguished clusters which predominantly correspond to the three intentionally
created city groups. According to the results of Anders and Batchelder (2013),
we might name the three clusters as: “New York” cluster (green triangles), ‘Mi-
ami” cluster (red circles) and “Irvine” cluster (black squares). Likewise, Figure
3.4 shows the histogram of the number of respondents by their average fitted
score interval. The colours for each bar are related to the colour groups shown
in Figure 3.3. The histogram clearly shows the same three distinct respondent
groups. There is a single bar per each group from the histogram. That is due to
the fact that fitted scores have very small variability within each group. It might
be observed in Figure 3.3 since the three clouds of points are quite well separated.
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Figure 3.3: Anders and Batchelder (2013) data set: The x-axis depicts the respondent
index number (not informative). The y-axis depicts the average of the R = 3 fitted
respondent clusters {φ(i.)} (see eq. (4.3)) from the row clustering version model with
interaction factors.

Finally, Table 3.10 shows the comparison between the original city member-
ship allocation of the respondents and the clustering membership allocation from
our methodology. In the latter, each respondent is assigned to the row cluster to
which it is most likely to belong a posteriori. The fuzzy clustering obtains general
3 groups that mostly match the original survey they were given (the percentage of
correctly clustering the respondent to the original allocation city is 92.7%). Note
that 6 respondents are incorrectly allocated. However, these results are in accor-
dance with Anders and Batchelder (2013) clustering results and, therefore, those
respondents are appropriately clustered into a different city group. They may
have not followed directions (e.g. they responded their home city as Irvine when
given a Miami questionnaire), or some respondents may have unrealistic ideas of
the city to which they were assigned.

The conclusion is that all the best 5 information criteria according to the results
of the simulation study perform correctly when an ordinal dataset is analysed
fitting our likelihood-based clustering approach.
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Figure 3.4: Anders and Batchelder (2013) data set: Histogram of the R = 3 fitted
respondent clusters {φ(i.)} (see eq. (4.3)) from the row clustering version model with
interaction factors.

3.5 Discussion

The results of our empirical study show that AIC, AICc and AICu are reliable
information criteria to score fitted models based on our likelihood-based finite
mixture model approach for ordinal datasets. In particular, AIC is the best infor-
mation criterion for selecting the model with the correct number of clusters in a
wide range of scenarios. It correctly selects the number of clusters in 93.8% (row
clustering) and 86.1% (biclustering) of cases.

According to the results of our experiments, the best 5 information criterion
performances are from AIC, AICc, AICu, AIC3 and BIC (see Tables 3.5 and 3.6).
In order to test them in a real-life example, we used them to select the best fitted
mixture model in a community psychology dataset. The analysed dataset was
artificially generated with a known number of clusters and the aim was to con-
firm if those information criteria would correctly select the number of clusters
and correctly classify each respondent. The results of fitting our approach to this
dataset are very satisfactory because the selected estimated model identifies the
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Table 3.10: Prediction of the clustering allocation (“Clustering”) in comparison
with the original allocation (“Original”). The true city is shown in row “True”. “I”
stands for Irvine, “N” for New York and “M” for Miami. The wrong allocations
are shown in blue boldface.

Informant ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Original I N N M N I I M M I I M I M I I M N I M N N I M
Clustering I N N M N I I M M I I M I M I I I N I M N N I M

Informant ID 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Original M N I I I I M N M M M N I M N M M M N I I N M M
Clustering M N I I I I M N M M M N I M N M N M N I I N M M

Informant ID 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Original I M M M M N M N N I M I I N M I N N M I I N M N
Clustering M M N I M N M N N I M I I N M I N N I I I N M N

Informant ID 73 74 75 76 77 78 79 80 81 82 83

Original I I I M N N N I I I N
Clustering I I I M N N N I I I N

correct (known) number of clusters. In addition, the clustering membership allo-
cation resulting from our fuzzy clustering methodology concurs with the original
membership allocation.

The simulation study is empirical and the conclusions are based on a set of
information criteria in common use, none of which were developed for ordinal
data. Furthermore, there has so far been minimal research on model selection
for finite mixture models with categorical data. Because of this, development
of a specific measure for model comparison with ordinal variables is required
and should be achieved in future research. Additionally, as we indicated in Sec-
tion 3.3.2, asymptotic properties in the information criterion measures for the two
clusterings case may also be a future research direction to explore.
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Chapter 4

Data Applications

In this chapter, the reliability of estimation of the stereotype model parameters is
demonstrated in a simulation study (Section 4.1). In addition, we illustrate the
stereotype model and our likelihood-based clustering method with three real-life
examples (Section 4.2). In order to do model selection, the two best information
criteria (AIC and AICc) according to the comparison study (see Chapter 3) are
computed together with the most commonly used BIC and ICL-BIC. Thus, their
performances can be compared.

4.1 Stereotype Models. Simulation Study

We set up a simulation study to test how reliably, in a diverse range of scenarios,
we were able to estimate the parameters of stereotype models using the EM al-
gorithm. We are not testing model selection here (that was tested in Chapter 3):
instead we simulate datasets and then fit the correct model to those data.

The design of the simulation study includes an ordinal response variable with
four categories and we varied the sample size (n = 25, 50, 200, 500, 1000, 5000),
the number of columns (m = 5, 10, 15) and the number of row and/or column
clusters (R = 2, 3, 4, 5, 6 and C = 2, 3). For each combination of sample size and
number of row clusters, a single set of parameters values was chosen and 100
data sets (replicates) were generated. The MLEs and their standard errors were
found for each replicate. The general results for the score parameters {φ̂k} for
row clustering are given in Table 4.1. Table 4.2 and Table 4.3 present the equiv-
alent results for column clustering and biclustering respectively. The simulation
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scenarios including the interaction factors for row clustering and biclustering ver-
sion are showed in Tables C.1 and C.2 in Appendix C.1. In each case the tables
show the mean of the MLEs and of their corresponding standard errors over the
100 replicates.

Table 4.1: Simulation study. Estimated score and row membership parameters
for stereotype model including row clustering µk + φk(αr + βj). The number
of categories is q = 4. MLEs and their standard errors from the score and row
membership parameters ({φk},{πr}) for different number of row clusters R and
sample sizes n are shown.

R Numpar True param. n=200 n=500 n=1000 n=5000
Mean S.E. Mean S.E. Mean S.E. Mean S.E.

2 11
φ2 = 0.335 0.366 0.183 0.377 0.114 0.335 0.080 0.336 0.036
φ3 = 0.672 0.682 0.188 0.679 0.115 0.670 0.081 0.671 0.036
π1 = 0.550 0.523 0.046 0.541 0.031 0.553 0.019 0.552 0.009

3 13

φ2 = 0.335 0.330 0.184 0.332 0.114 0.337 0.080 0.335 0.035
φ3 = 0.672 0.669 0.169 0.675 0.103 0.673 0.074 0.674 0.032
π1 = 0.200 0.189 0.021 0.194 0.017 0.187 0.010 0.211 0.004
π2 = 0.500 0.529 0.118 0.491 0.121 0.489 0.091 0.496 0.044

4 15

φ2 = 0.335 0.334 0.160 0.333 0.102 0.331 0.071 0.334 0.032
φ3 = 0.672 0.682 0.158 0.670 0.100 0.668 0.069 0.671 0.031
π1 = 0.150 0.261 0.097 0.080 0.037 0.146 0.028 0.151 0.022
π2 = 0.300 0.241 0.131 0.332 0.048 0.288 0.028 0.289 0.016
π3 = 0.250 0.255 0.133 0.290 0.048 0.263 0.015 0.244 0.008

5 17

φ2 = 0.335 0.331 0.178 0.335 0.110 0.331 0.076 0.336 0.034
φ3 = 0.672 0.678 0.180 0.675 0.112 0.671 0.077 0.673 0.034
π1 = 0.150 0.153 0.027 0.146 0.031 0.145 0.015 0.145 0.003
π2 = 0.300 0.313 0.058 0.326 0.049 0.295 0.027 0.288 0.009
π3 = 0.100 0.092 0.026 0.089 0.032 0.094 0.099 0.102 0.003
π4 = 0.200 0.217 0.032 0.205 0.023 0.199 0.014 0.202 0.003

6 19

φ2 = 0.335 0.325 0.193 0.336 0.121 0.322 0.086 0.333 0.060
φ3 = 0.672 0.671 0.194 0.673 0.119 0.656 0.083 0.671 0.059
π1 = 0.150 0.156 0.033 0.150 0.023 0.139 0.007 0.140 0.004
π2 = 0.300 0.296 0.038 0.302 0.035 0.294 0.010 0.290 0.005
π3 = 0.100 0.093 0.039 0.090 0.027 0.095 0.006 0.096 0.004
π4 = 0.200 0.203 0.034 0.204 0.026 0.200 0.004 0.200 0.003
π5 = 0.150 0.158 0.019 0.161 0.015 0.162 0.006 0.160 0.003

For all models (row clustering, column clustering and biclustering) the esti-
mates of the parameters {φk}, {πr} and {κc} are close to their true values and
as expected the variability decreases with increasing the sample size n, and the
number of columns m in the case of column clustering. Figure 4.1 shows the 100
separate estimates of φ̂2 and φ̂3 for the row clustering model with R = 2 row
clusters plotted against each other for varying sample sizes. Note that all the es-

66



4.1. STEREOTYPE MODELS. SIMULATION STUDY

Table 4.2: Simulation study. Estimated score and column membership param-
eters for stereotype model including column clustering µk + φk(αi + βc). The
number of categories is q = 4. MLEs and their standard errors from the score
and column membership parameters ({φk},{κc}) for different number of column
clusters C, number of columns m and sample sizes n are shown.

C Numpar True param.
n=25

m=5 m=10 m=15
Mean S.E. Mean S.E. Mean S.E.

2 31
φ2 = 0.335 0.291 0.261 0.314 0.143 0.329 0.100
φ3 = 0.672 0.722 0.245 0.652 0.169 0.681 0.103
κ1 = 0.600 0.589 0.190 0.589 0.122 0.588 0.095

3 33

φ2 = 0.335 0.296 0.259 0.307 0.158 0.342 0.090
φ3 = 0.672 0.790 0.283 0.712 0.177 0.682 0.110
κ1 = 0.400 0.371 0.204 0.376 0.124 0.390 0.087
κ2 = 0.200 0.179 0.196 0.195 0.112 0.195 0.086

C Numpar True param.
n=50

m=5 m=10 m=15
Mean S.E. Mean S.E. Mean S.E.

2 56
φ2 = 0.335 0.397 0.215 0.348 0.119 0.335 0.081
φ3 = 0.672 0.736 0.204 0.704 0.111 0.678 0.075
κ1 = 0.600 0.618 0.176 0.609 0.092 0.599 0.063

3 58

φ2 = 0.335 0.386 0.211 0.342 0.116 0.332 0.078
φ3 = 0.672 0.724 0.227 0.693 0.117 0.675 0.065
κ1 = 0.400 0.377 0.183 0.386 0.086 0.403 0.068
κ2 = 0.200 0.204 0.179 0.201 0.083 0.201 0.055

timates in the figure show the ordering constraint φ2 < φ3, which restricts the
estimates to the upper left triangle of the plot. This sequence of plots shows that
the estimation process consistently returned MLEs for the score parameters {φk}
close to their true values (the diamond point in each plot) with reducing stan-
dard error as the sample size increases. Figures C.1 and C.2 in Appendix C.1
show similar results for the column clustering model with C = 2 clusters and the
biclustering model with R = 2 and C = 2 clusters respectively. However, the
column clustering model has the drawback that the number of {αi} parameters
is large when the sample size n is increased (e.g. 156 parameters with n = 50,
q = 4 and C = 3) and therefore estimates would be poor with large sample sizes
in that case. The consequences of this are that the standard errors are slightly
higher than for row clustering and biclustering even as the number of columns m
increases.

In addition, we have observed that sometimes the EM algorithm converges to
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Table 4.3: Simulation study. Estimated score, row and column membership pa-
rameters for stereotype model including biclustering µk + φk(αr + βc). The
number of categories is q = 4. MLEs and their standard errors from the score,
row and column membership parameters ({φk},{πr},{κc}) for different number
of row and column clusters R and C and sample sizes n are shown.

R C Numpar True param. n=25 n=50 n=100
Mean S.E. Mean S.E. Mean S.E.

2 2 9

φ2 = 0.335 0.354 0.357 0.351 0.266 0.329 0.142
φ3 = 0.672 0.686 0.379 0.658 0.260 0.693 0.143
π1 = 0.600 0.504 0.234 0.671 0.175 0.585 0.139
κ1 = 0.400 0.446 0.231 0.415 0.142 0.409 0.074

2 3 11

φ2 = 0.335 0.319 0.341 0.322 0.243 0.324 0.132
φ3 = 0.672 0.753 0.365 0.693 0.232 0.671 0.142
π1 = 0.600 0.490 0.201 0.522 0.159 0.577 0.086
κ1 = 0.400 0.387 0.209 0.388 0.169 0.411 0.121
κ2 = 0.200 0.229 0.210 0.222 0.177 0.189 0.105

3 2 11

φ2 = 0.335 0.345 0.337 0.342 0.266 0.334 0.155
φ3 = 0.672 0.712 0.302 0.688 0.201 0.669 0.146
π1 = 0.300 0.313 0.209 0.313 0.128 0.301 0.106
π2 = 0.400 0.404 0.200 0.346 0.118 0.367 0.093
κ1 = 0.400 0.381 0.196 0.397 0.131 0.400 0.062

3 3 13

φ2 = 0.335 0.362 0.341 0.355 0.219 0.337 0.145
φ3 = 0.672 0.706 0.300 0.627 0.210 0.664 0.135
π1 = 0.300 0.283 0.202 0.296 0.129 0.311 0.094
π2 = 0.400 0.368 0.181 0.373 0.113 0.398 0.088
κ1 = 0.400 0.388 0.182 0.392 0.095 0.402 0.079
κ2 = 0.200 0.195 0.195 0.197 0.099 0.200 0.081

a point far away from the true value. We do not notice this problem in the row
clustering and biclustering versions but we detected it in approximately 5% of
cases with column clustering when the sample size is n = 50. This problem is
apparently caused by the large number of individual row parameters {αi} in col-
umn clustering and the failure of our random starts to allow the true maximum
to be found.

Our initial results described above are encouraging in their ability to estimate
parameters correctly. However, we were interested to test the success of the esti-
mation in challenging situations where it might be expected that estimation might
be difficult. We chose two particular scenarios. The first case is when two of
the score parameters {φk} have equal values and, therefore, from the point of
view of detecting clustering, we could merge their corresponding response cate-
gories. A second scenario is to set a very small a priori membership probability,
e.g. π2 = 0.015, and, consequently, few data units will be classified in the related
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Figure 4.1: Simulation study: Convergence of φ̂2 and φ̂3 for the stereotype model in-
cluding row clustering (αr +βj) with R = 2 row clusters. n, h, q, m describe the sample
size, the number of replicates, the number of categories and the number of covariates
respectively. The diamond point represents the true value of the parameter.

cluster. The chosen probability must not be related to the first or last response cat-
egories because there is a relationship with the score parameters (see eq. (2.20))
and their corresponding score parameters are set to φ1 = 0 and φq = 1 to ensure
identifiability. Therefore, it is more interesting to test a free score parameter.

We have simulated these two specific scenarios for the row clustering, col-
umn clustering and biclustering models and Tables C.3-C.5 in Appendix C.1 sum-
marises the simulation results. These are very satisfactory because our approach
can identify these particular scenarios and get back values close to the true score
parameters {φk} in the suite of models tested. However, some of the approxi-
mate 95% confidence intervals for the a priori membership probabilities {πr} do
not cover their true values when the sample size is higher than n = 1000 and,
therefore, the variability is reduced (e.g. row clustering model with R = 4 clus-
ters with statistical theory (central limit theorem) providing an approximate 95%
CI for π3 and n = 5000 (Table C.3) is (0.262,0.298) when the true value is 0.23).
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It happened less than 5% of cases, which is what we expected to happen at ran-
dom. In addition, we have observed the same drawbacks described above in the
column clustering version.

4.2 Real-Life Data Examples

4.2.1 Example 1: Applied Statistics Course Feedback Forms

The example is a data set with the responses of 70 students giving feedback about
a second year Applied Statistics course at Victoria University of Wellington. The
responses were collected in feedback forms through 10 questions (e.g. “The way
this course was organised has helped me to learn”), where each question had
three possible ordinal response categories: “disagree” (coded as 1), “neither agree
or disagree” (coded as 2) and “agree” (coded as 3). Each question was written so
that “agree” indicates a positive view of the course. The list of questions and data
set are given in Tables C.6 and C.7 in Appendix C.2.

In that way, the dimensions of the data matrix Y with the responses are n = 70

rows (students) andm = 10 columns (questions) where each observation can take
one of the three possible categories. Therefore, we can represent the data in a
matrix as shown in Figure 4.2.

Figure 4.2: Applied Statistics course feedback forms data set: The dotted circle
indicates the student number 3 answered the question number 2 as “agree” (coded as 3).

The main goal is to select the model which best represents the data, including
determining the number of different groups in the data. We have fitted a suite of
models from the null model (no clustering) to the main effects model and their
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versions including row clustering, column clustering and biclustering. For each
model, the information criteria AIC, AICc, BIC and ICL-BIC were computed and
the results are summarised in Table 4.4.

AIC and AICc indicate that the best models are models with main effects
(µk + φk(αi + βj)) with AIC=965.26 and AICc=987.32, and the stereotype model
version including row clustering with R = 2, 3 or 4 row groups (µk +φk(αr +βj)).
Although the main effects model is found to be the best model, for demonstra-
tion purposes we discuss here the row clustered models, which have greater in-
terpretability. Figures 4.3-4.5 show three histograms depicting a newly-defined
average of the fitted scores of student responses over the 10 questions where
each student is allocated to the row group to which she/he belongs with high-
est posterior probability. Different shade bars represent the row cluster to which
the student is assigned according to the corresponding model. This average score
(along the x-axis) is calculated in the following way. First, we compute the fitted
response probabilities with the estimated parameters over the R row clusters and
the q response categories,

P [yij = k | i ∈ r] =
exp(µ̂k + φ̂k(α̂r + β̂j))∑q
`=1 exp(µ̂` + φ̂`(α̂r + β̂j))

,

i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , q, r = 1, . . . , R.

From the previous probabilities, we can compute the weighted average over the
q categories for each row cluster

φrj =

q∑
k=1

φ̂kP [yij = k | i ∈ r],

i = 1, . . . , n, j = 1, . . . ,m, r = 1, . . . , R.

(4.1)

From here, we can calculate the mean response level of individual i to question j,
conditional on its (fuzzy) allocation to the row clusters:

φ(ij) =
R∑
r=1

ẑirφrj, i = 1, . . . , n, j = 1, . . . ,m. (4.2)

This is a numerical measure of the typical response to question j for members
of row group r, appropriately adjusting for the uneven spacing of the levels of
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Table 4.4: Suite of models fitted for Applied Statistics course feedback forms data
set. For each information criterion, the best model in each group (no clustering,
row clustering, column clustering and biclustering) is shown in boldface.

Model R C npar AIC AICc BIC ICL-BIC
Null Model µk 1 1 3 1298.40 1298.46 1312.06 1312.06
Row effects µk + φkαi n 1 72 1224.04 1241.30 1551.72 1551.72

Column effects µk + φkβj 1 m 12 1105.50 1106.03 1160.11 1160.11
Main effects µk + φk(αi + βj) n m 81 965.26 987.32 1333.90 1333.90

Row Clustering

µk + φkαr

2 1 5 1251.70 1251.82 1274.45 1302.34
3 1 7 1241.60 1241.82 1273.47 1325.84
4 1 9 1251.56 1251.88 1292.52 1348.77

µk + φk(αr + βj)
2 m 14 1025.75 1026.45 1089.47 1109.82
3 m 16 1013.44 1014.33 1086.25 1117.53
4 m 18 1017.44 1018.56 1099.36 1176.50

µk + φk(αr + βj + γrj)
2 m 23 1042.30 1044.08 1146.98 1167.34
3 m 34 1032.43 1036.23 1187.17 1219.93
4 m 45 1020.08 1026.70 1224.88 1244.90

Column Clustering
µk + φkβc

1 2 5 1279.94 1280.06 1242.90 1302.69
1 3 7 1278.59 1278.80 1310.45 1315.47

µk + φk(αi + βc)
n 2 74 1409.09 1427.31 1435.93 1745.82
n 3 76 1430.75 1450.06 1490.43 1776.63

Biclustering

µk + φk(αr + βc)

2 2 7 1115.32 1115.53 1147.18 1182.21
3 2 9 1110.29 1110.61 1151.25 1192.03
4 2 11 1114.29 1114.75 1164.36 1206.08
2 3 9 1060.77 1061.09 1101.73 1138.13
3 3 11 1052.04 1052.49 1102.10 1148.95
4 3 13 1056.04 1056.65 1115.20 1221.54
2 4 11 1064.77 1065.23 1114.83 1151.52
3 4 13 1056.04 1056.65 1115.20 1165.96
4 4 15 1060.04 1060.84 1128.31 1234.04

µk + φk(αr + βc + γrc)

2 2 8 1117.33 1117.59 1153.73 1188.76
3 2 11 1098.29 1098.75 1148.35 1204.03
4 2 14 1104.29 1104.99 1168.01 1278.05
2 3 11 1064.56 1065.01 1114.62 1151.15
3 3 15 1058.96 1059.75 1127.22 1184.06
4 3 19 1127.46 1128.69 1213.93 1325.72
2 4 14 1070.56 1071.26 1134.28 1174.55
3 4 19 1066.96 1068.19 1153.43 1214.02
4 4 24 1076.96 1078.89 1186.18 1285.48
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the ordinal response. Finally, we determine the mean of the previous weighted
averages over them columns in order to get the average fitted scores of individual
i across all of the questions

φ(i.) =
1

m

m∑
j=1

φ(ij), i = 1, . . . , n. (4.3)

Note that the average fitted scores of question j across all of the individuals is
formulated equivalently as

φ(.j) =
1

n

n∑
i=1

φ(ij), j = 1, . . . ,m. (4.4)

Figures 4.3-4.5 display these φ(i.) values forR =2, 3 and 4 clusters. Figures 4.3-
4.4 respectively show two and three clearly distinguished groups. The histogram
from Figure 4.3 presents two modes and Figure 4.4 shows two clear modes and
one small mode located in the right-tale. However, Figure 4.5 where four groups
are fitted shows that the fourth group only includes two students and they are
not clearly distinguished from the other three groups. These graphs illustrate
the conclusion from AIC/AICc that among the row clustering models, the model
with three student groups is the best for our data.

Figures 4.6 and 4.7 display the estimated probability θ̂rk of a member of group
r responding at category level k (eq. (2.7)). We might conclude that the students
classified in the first group correspond to those with lowest opinion regarding
the course, the ones in the second group have a more moderate opinion about the
course and the students in the third group are those with more positive (though
still heterogeneous) set of opinions.

4.2.2 Example 2: Tree Presences in Great Smoky Mountains

We use a real data set from community ecology as a second example to illustrate
our likelihood-based clustering method. The data set is regarding the distribution
of 41 different tree species along 12 different site stations located at altitudes be-
tween 3500 and 4500 ft and sorted by moisture level (wetter to drier). The obser-
vations consist of percentage of total tree species present at each station and was
presented in R.H. Whittaker’s study of vegetation of the Great Smoky Mountains
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Figure 4.3: Applied Statistics course feedback forms data set: Histogram of the
R = 2 fitted student clusters {φ(i.)} from the row clustering version model.
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Figure 4.4: Applied Statistics course feedback forms data set: Histogram of the
R = 3 fitted student clusters {φ(i.)} from the row clustering version model.
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Figure 4.5: Applied Statistics course feedback forms data set: Histogram of the
R = 4 fitted student clusters {φ(i.)} from the row clustering version model.
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Figure 4.6: Applied Statistics course feedback forms data set: R = 3 student
groups. The lines depict the probability for the category θ̂rijk = P [yij = k | i ∈ r] (see
eq. (2.7)) for each group r and the average over all students (black line). The percentage
labeling is the estimated posteriori probability π̂r that a student is member of each row
group r (eq. (2.20)).
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Figure 4.7: Applied Statistics course feedback forms data set: R = 3 student group
profiles. The percentage represents the probability θ̂rijk in each category (eq. (2.7)).

(Whittaker, 1956, Table 3). The data set is reproduced in Table C.8 in Appendix
C.3.

The data include cells with a low but nonzero detection, at levels < 0.5%.
These missing data mean we do not have true numerical data, but only ordered
data. Thus, transformations may be required (Hennig and Liao, 2013) and that
presents an appropriate opportunity to replace numerical data with an ordinal
scale. Section 6.2 describes advantages of using ordinal data instead of count
data. In order to apply our model approach, we transform the original data {xij}
regarding tree presence percentage to ordinal response categories setting

yij =



0 if xij = 0%

1 if 0% < xij ≤ 0.5%

2 if 0.5% < xij ≤ 1%

3 if 1% < xij ≤ 8%

4 if xij > 8%

based on an equitable frequency percentage for each category. Table 4.5 sum-
marises the frequencies of tree presence data for this new ordinal scale with 5
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categories. Apart from the first category, which is for sites and tree species with-
out presences recorded, the categories with the highest frequencies are 2 and 3
(tree presence percentages between 0.5% and 8%).

Table 4.5: Frequencies of tree presence percentage by station number, in ordinal
scale.

Ordinal scale 0 1 2 3 4
Tree presence No data recorded ≤0.5% ≤1% ≤8% >8%

Frequency (xij) 285 30 68 65 44

Here it is important to remark that we defined another ordinal scale with six
categories in the beginning of the data analysis. The current category 3 was split
in two subcategories (from 1% to 2% and from 2% to 8%) in that former ordi-
nal scale. However, models fitted to these data indicated that the corresponding
estimated score parameters φk for those two adjacent categories were very close
to each other. If φk = φk+1 then the adjacent category logit between those two
categories, say k and k + 1 is

log

(
P [yij = k + 1 | i ∈ r]
P [yij = k | i ∈ r]

)
= (µk+1 − µk) + (φk+1 − φk)(αr + βj + γrj)

= µk+1 − µk.

This implies that the relative frequencies in these two categories are independent
of the clustering structure. Therefore retaining the distinction between k and k+1

is not informative about the clustering structure. In that case, the model still
holds with the same scores if the ordinal scale is collapsed by combining those
two adjacent categories into one single response category. Since we regard the
{µk} as nuisance parameters, this collapsing does not limit our inference in any
way. However, they should not be collapsed if keeping the original ordinal cate-
gories is of ecological interest. For example, ecologists often prefer to keep zeros
separate from small positive numbers. Therefore, the dimensions of the data ma-
trix Y with the responses are n = 41 tree species and m = 12 site stations where
each observation can take one of the 5 possible categories described above.

After fitting a complete set of models and comparing them by using infor-
mation criteria (see the summarised results in Table C.9 in Appendix C.3), the
selected model (either using AIC or AICc) was the stereotype model version

77



CHAPTER 4. DATA APPLICATIONS

including row clustering with R = 3 row groups and with interaction factors
(µk + φk(αr + βj + γrj)). Figures 4.8 and 4.9 show the profiles for the three re-
sultant row clusters. For instance, Figure 4.8 depicts that the highest probability
for the row cluster number 3 (showed with a line with diamond symbols) is in
ordinal category 3 and Figure 4.9 shows a first set of bars where the highest prob-
abilities are in the categories with tree presence below 1%. Therefore, tree species
classified in the first row group are those with a lower level of presence.
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Figure 4.8: Tree presences data set: R = 3 tree presence groups. The lines depict the
probability for the category θ̂rijk = P [yij = k | i ∈ r] (see eq. (2.7)) for each group r and
the average over all trees (black line). The percentage labeling is the estimated posteriori
probability π̂r that a tree species is member of each group r (eq. (2.20)).

4.2.3 Example 3: Spider Data

The spider abundance data set (Van der Aart and Smeenk-Enserink, 1974) shows
the distribution of 12 different spider species across 28 different sites. The original
count data is given in Table C.10 in Appendix C.4.

The original data was categorised in order to apply the stereotype model. The
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Figure 4.9: Tree presences data set: R = 3 tree presence profiles. The percentages
represent the probability θ̂rk in each category (eq. (2.7)).

data was classified into 4 ordinal responses, setting:

yij =


(0) None No data recorded
(1) Low Species coverage is below 25%

(2) Medium Species coverage is between 25%− 65%

(3) High Species coverage is higher than 65%.

(4.5)

The whole ordinal data set is shown in Table C.11 in Appendix C.4. Table 4.6
summarises the frequencies of spider abundance data for this new ordinal scale.
All the categories have similar frequency (between 56 and 66 observations) apart
from the first category, which is for sites and spider species without presence
recorded.

Table 4.6: Frequencies of spider abundance by site, in 4-level ordinal scale.

Ordinal scale 0 1 2 3 Total
Spider abundance No data recorded Low Medium High Total

Frequency (yij) 154 66 56 60 336
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As in the previous two examples, a suite of models was fitted and information
criteria measures were computed. The results are summarised in Table C.12 in
Appendix C.4. Furthermore, a summary of the AIC results are in the bar plot
depicted in Figure 4.11. This bar plot is sorted by AIC and the model version is
distinguished by different bar colours. AIC indicates that the best model is the
stereotype model version including column (sites) clustering with C = 3 column
groups (i.e. µk + φk(αi + βc), which is labeled as {rn + cC3} in the bar plot) with
AIC= 397.28. Each column is allocated to the group to which the site belongs
with highest posterior probability. The resultant column clustering setting is C1 =

{1−7, 13, 14}, C2 = {8, 21−24, 27, 28}, and C3 = {9−12, 15−20, 25, 26}. Moreover,
other possible models are the column clustering model with C = 2, 4, 5 (labeled
as {rn + cC2}, {rn + cC4}, and {rn + cC5} respectively) and the row (spider
species) clustering version with R = 2 row clusters and an interaction factor (i.e.
µk + φk(αr + βj + γrj), which is labeled as {rR2, cm}).

Since each ordinal response category k (k = 0, . . . , 3) is associated with a score
parameter φk, the spacing between adjacent φk values shows us how similar or
different categories are (see Section 2.1.2). For this data set, the fitted score param-
eters were φ̂0 = 0, φ̂1 = 0.39, φ̂2 = 0.89 and φ̂3 = 1 (the end points being fixed at 0
and 1). Therefore, the distance between ordinal categories “Low” and “Medium”
(0.50) is greater than that between categories “None” and “Low” (0.11) or catego-
ries “Medium” and “High” (0.39).

The scatter plot and histogram (Figure 4.10) display the average fitted scores
{φ(.j)} over the 28 sites (see eq. (4.4)). Different colour and shape points and
colour bars represent the resultant C = 3 column clustering setting. Three groups
are distinguished in the scatter plot and the histogram presents three clear modes.

4.3 Discussion

The set of data graphical tools presented in this chapter allows us to visualise eas-
ily the different group profiles from the results of fitting likelihood-based multi-
variate methods for data reduction of a matrix containing ordinal data. This is a
naive representation of the clustering which allows us to assess our approach in
a preliminary way. Further development of data visualisation methods for finite
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Figure 4.10: Spider abundance data set: Scatter plot and histogram of the C = 3
fitted sites clusters {φ(.j)} from the column clustering version model (µk + φk(αi + βc)).

mixture models based on the stereotype model is given in Chapter 5. Those new
graphical tools lead to more informative visualisation. In particular, they depict
the fuzzy probabilistic clustering due to the use of finite mixtures and display the
possibly unequal fitted spacing among levels of the ordinal response variable.

In Chapter 6, we use the spider abundance data set from Section 4.2.3 to com-
pare clustering results when a data set is analysed as count data in comparison to
when the same data set is categorised on an ordinal scale (Section 6.4.2).
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Figure 4.11: Spider abundance data set: Summary of the AIC results for the best
models fitted for spider data set. The bar plot is sorted by AIC. The model version is
distinguished by different bar colours: dark green bars depict biclustering models, red
bars are for column clustering models, yellow bars are for row clustering models and
dark blue bars represent models without clustering structure. The x-axis indicates the
model which is coded as (i) homogeneous (forming a single group, denoted by rR1 or
cC1), (ii) all different (denoted by rn or cp), or (iii) coming from finite mixture groups
with membership unknown (rR or cC). Models with + in the labels are additive, with no
interaction term.
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Chapter 5

Visualisation Techniques for Our
Approach

5.1 Introduction

Using data graphical techniques allows us to present the dimensional reduction
results visually and understand them more easily and quickly. Moreover, visu-
alisation of the results is fundamental for proper communication and to improve
the interdisciplinary work between statistics and other fields, making their in-
terpretation easier. A first approach is to use exploratory data analysis (EDA)
techniques to analysing data sets, e.g. summarising their main characteristics,
assessing assumptions before applying statistical inference, and supporting the
selection of appropriate statistical techniques. There are a number of visualisa-
tion techniques available to summarise multivariate data in fewer dimensions
and to show the main features of the data, such as principal component analysis,
multidimensional scaling, association analysis, correspondence analysis and or-
dination (or gradient analysis) (see e.g. Manly (2005); Quinn and Keough (2002)).
Data visualisation is also understood as a type of unsupervised learning (see e.g.
James et al. (2014, Chapter 10)). In a machine learning context, the visualisa-
tion of high dimension data sets is obtained by means of feature extraction tech-
niques such as nonlinear dimensionality reduction (see e.g. Lee and Verleysen
(2007); Wismüller et al. (2010)). For matrices of binary or count data, Pledger
and Arnold (2014) provided likelihood-based analogues of various techniques
in multivariate analysis, including multidimensional scaling, association analy-
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sis, ordination, correspondence analysis, and the construction of mixture-based
biplots.

In Section 4.2, we used some standard graphs such as histograms and scatter,
line and bar plots to illustrate the results of the model fitting using our cluste-
ring approach, i.e. likelihood-based multivariate methods for data reduction of
a matrix containing ordinal data. In this chapter, we present a set of graphs that
help us to easily visualise these results. In particular, these graphs allow the vi-
sualisation of both the fuzziness in the clustering results due to the use of finite
mixtures and also the spacing among ordinal categories based on the fitted score
parameters {φ̂k}. In Section 5.2, a new graphical tool for ordinal data based on
mosaic plots is introduced: the spaced mosaic plot. A set of visualisation tools is
given in Section 5.3: graphs comparing the default equal spacing among ordinal
categories and the fitted spacing based on the data (Section 5.3.1), level plots to
depict a data set using the original responses (Section 5.3.2) and the fitted score
parameters (Section 5.3.3), multidimensional scaling plots and ordination plots
(Section 5.3.4), and contour and level plots to depict the fuzziness of the results
(Section 5.3.5).

5.2 Spaced Mosaic Plots

5.2.1 Mosaic Plot. Description

The mosaic plot was developed by Hartigan and Kleiner (1981) and refined by
Friendly (1991). It is a graphical method for visualising data from two quali-
tative variables which gives an overview of the data, makes it possible to rec-
ognize relationships and show the cross-sectional distribution of different vari-
ables. In our case, we consider the ordinal response variable and the number
of fitted clusters in the data as those two qualitative variables. For instance, an
ordinal data matrix following a four-category Likert scale (“Disagree”,“No Opin-
ion”,“Agree”,“Strongly Agree”) clustered into three row clusters is depicted as a
mosaic plot in Figure 5.1. The mosaic plot is divided into 3 horizontal bands over
the y-axis (one for each row cluster) and 4 vertical bands over the x-axis (one for
each ordinal response category). The areas represent the frequencies as explained
in Section 5.2.2.

One improvement we can incorporate in a mosaic plot due to the use of the
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Figure 5.1: Mosaic plot: Plot including row cluster structure R = 3 and 4 ordinal
categories.

ordinal stereotype model is the estimation of score parameters {φk}. Those pa-
rameters determine the space between two adjacent ordinal categories based on
the data (see Anderson (1984); Agresti (2010) for more detail). For instance, the
space between “Disagree” and “No Opinion” can be higher than the space be-
tween “Agree” and “Strongly Agree”. The inclusion of space within a regular
mosaic plot generates an improved graph with more information which we called
the spaced mosaic plot and which is developed in the following two sections.

5.2.2 Spaced Mosaic Plot. Description

We use an ordinal real data set from community ecology as an example to illus-
trate the spaced mosaic plots in the case of clustering the rows. The data set is
regarding the distribution of 77 different angiosperms along 30 different sites.
The study was carried out at Bola Heights in Royal National Park, about 37 km
south-west of Sydney and 200 meters above sea level (see Tozer and Bradstock
(2002) for more detail). The goal of this vegetation survey data is to group species
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observations to derive community types. The 2310 ordinal observations consist
of the level of angiosperm species (row) presence at each site (column) in combi-
nation with the percentage of coverage within the site. Thus, the ordinal scale in
this data follows a cover/abundance estimate using a modified Braun-Blanquet
scale (Westhoff and van der Maarel, 1978) determined by the field worker:

0 no data recorded
1 one/a few individuals and less than 5% cover
2 uncommon and less than 5% cover
3 common/very abundant and less than 5% cover

or coverage higher than 5%.

After fitting a complete set of models and comparing them by using the Akaike
information criteria (AIC, Akaike (1973)), the selected model was the stereotype
model version including row (angiosperm species) clustering with R = 4 species
groups. Each species i is assigned uniquely to a row group with the highest pos-
terior probability Ẑir. Figures 5.2-5.4 show the results for this example. Firstly,
Figure 5.2 depicts the raw data without including row clustering, Figure 5.3 de-
picts the data including row cluster structure and Figure 5.4 depicts the data in-
cluding both row cluster structure and fitted spacing between ordinal categories.
A comprehensive description for each Figure is as follows:

• Figure 5.2 shows the overall distribution of ordinal responses over all the
cells, ignoring rows and columns. Thus, area is simply equivalent to fre-
quency of each response value across the whole dataset. The ordinal cat-
egory 0 response is most common by far, and ordinal category 3 the least.

• Figure 5.3 shows the clustering in the rows, putting each species into one of
four row clusters according to the distribution of ordinal responses across
the columns (sites) of the original data matrix. This divides the plot into four
horizontal bands, one for each row group. The height of each band is pro-
portional to the number of rows in the group. Therefore, we can see that row
groups 1 and 4 (R1 and R4) are the largest, much larger than row groups 2
and 3 (R2 and R3). Within each row group we represent the frequencies of
the four ordinal responses by the area of each block. Angiosperm species
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Results without Row Clustering/Spacing
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Figure 5.2: Angiosperm data set: Mosaic plot without spacing or row clustering.

of row group 4 show a strong preference for ordinal response categories 0
and 1, and rarely respond at category 2 or 3. Contrast this with row group
2, which has 50% of its responses at ordinal category 3. Note that this dia-
gram does not in any way show the ordering across the sites (columns) – it
is simply a pooling of frequencies of all of the responses for species in the
same row group.

• Figure 5.4 takes the bands and blocks from Figure 5.3, but separates them
out to indicate the numerical spacing between the response categories that
the model has identified. Since each ordinal response category is associated
with a score parameter φk (k = 0, . . . , 3) the spacing between these φk values
shows us how similar or different adjacent categories are. In this model the
fitted score parameters are φ0 = 0, φ1 = 0.66, φ2 = 0.96 and φ3 = 1 (the
end points being fixed at 0 and 1). The distance between category 0 and
category 1 (0.66) is much greater than that between categories 1 and 2 (0.30)
or categories 2 and 3 (0.04). In each row group band, we have inserted space
and a different colour oblong proportional to these differences between two
adjacent ordinal categories. For instance, a yellow oblong of the same width
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Row Clustering Results
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Figure 5.3: Angiosperm data set: Mosaic plot including row cluster structure R = 4.

Row Clustering Results. Scaled Space (Fitted Scores)
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Figure 5.4: Angiosperm data set: Mosaic plot with spacing for the row clustering
model R = 4.
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has been inserted between categories 0 and 1 in each band. Note that these
oblongs do not line up vertically with each other between bands due to the
differing counts at category 0, nevertheless oblongs of the same colour are
the same width. In so doing, we can immediately see that categories 2 and
3 are close to each other, without needing to refer to the numerical values of
φk. Inspection of Figure 5.4 might lead us to conclude that categories 2 and
3 are so similar that these two groups might just as well be collapsed into a
single group.

5.2.3 Outlining Spaced Mosaic Plots

The main features of a spaced mosaic plot are:

• spread along the x-axis represents the ordinal categories in the data and the
y-axis represents the row clustering obtained by our methodology. The data
frequency of each combination in terms of ordinal category and row cluster
is shown by the area of each box.

• The greater the area of a specific box, the higher the proportion of data allo-
cated to the related ordinal category. For instance, the box located on the top
right depicts the proportional number of species (angiosperms) allocated in
the first cluster (R1) and with Braun-Blanquet scale 3.

• The greater the height of a specific box, the higher the proportion of rows
classified in that particular row group. For example, the bottom left box
corresponding to the row cluster 4 (R4) and the ordinal category 0 is the
widest and the highest because it contains 1017 combinations of species-
samples over 2310 (44%). None of the other boxes have higher frequencies.

• The spacing between two levels of the ordinal categories (x-axis) is dictated
by the data. It represents the proximity of two adjacent ordinal categories.
Determining the distance among ordinal categories is a key advantage of
the stereotype model in comparison with other similar methods.

Spaced mosaic plots allow us to see the at once the relative sizes of the row
groups, the relative frequencies of the different response categories within each
row group and the differences between the levels of the response categories.
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However they do not show the fuzziness of the clustering. We discuss methods
of showing this in Section 5.3.5 below.

The documentation of an R function we developed to generate spaced mosaic
plots is presented in Appendix D. In addition, a technical report introducing
these plots is published in Fernández et al. (2014b).

5.3 Other Visualisation Tools

5.3.1 Reassigned Ordinal Scale

The categories in an ordinal response variable have been labeled as k = 1, 2, . . . , q

throughout this thesis. For instance, we coded the ordinal response categories
“disagree”, “neither agree or disagree” and “agree” as 1, 2, and 3 respectively in
the Applied Statistics example in Section 4.2.1. The use of the first q positive inte-
gers as labels does not imply that there is equal spacing among ordinal categories.
The fitted spacing is instead determined by the distance among adjacent score
parameters {φ̂k}. Given an ordinal response variable, the purpose is to develop
a visualisation tool that allow us to compare visually the default equal spacing
among its categories with the fitted spacing dictated by the data.

Figure 5.5 depicts two graphs with a 5 level Likert scale in an ordinal re-
sponse variable (i.e. “Strongly Disagree”, “Disagree”, “No opinion”, “Agree”,
“Strongly Agree”). In the right graph, the equally spaced scale is depicted in
blue axis and the fitted score scale in green axis. The fitted score parameters
were φ̂2 = 0.252, φ̂3 = 0.748, and φ̂4 = 0.946 (φ1 = 0 and φ5 = 1 are restricted
to ensure identifiability). The left graph shows a dotted blue straight line which
corresponds to the equally spaced categories and the green line depicts how dif-
ferent the fitted score parameters are from this uniformity. The amount of non-
linearity shows the distortion of the scale from the incorrect equally-spaced scale.
Therefore, the adjacent categories are not equally spaced based on the data. The
spacing between categories “Disagree” and “No opinion” is the largest and the
shortest is between “Strongly Agree” and “Agree” categories. Thus, these two
graphs allows us to easily depict the new uneven spacing of the levels of the
ordinal response, dictated by the data.
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Figure 5.5: Reassigned ordinal scale: Scale comparison between default equal spacing
and fitted spacing given by score parameters {φ̂k} for ordinal response variable with 5
level Likert scale categories (“Strongly Disagree”, “Disagree”, “No opinion”, “Agree”,
“Strongly Agree”).

5.3.2 Data Set Level Plots

Patterns in the ordinal responses of the rows (e.g. subjects) and the columns (e.g.
questions) may be visualised in coloured level plots, each ordinal response level
being represented by colours from a chosen palette. The Applied Statistics data
set described in Section 4.2.1 is used to illustrate these graphs throughout this
section. This data set Y = {yij} shows the ordinal responses of n = 70 students
(rows) through m = 10 questions (columns). The number of ordinal categories is
q = 3: “agree”, “neither agree or disagree”, and “disagree”. We concluded that
the best fitted clustering model for this data set is a row clustering with R = 3

student groups (see the model fitting results in Table 4.4 in Section 4.2.1). The stu-
dent allocation in each group based on the highest posterior probability criterion
is:
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R1 ={8, 11, 14, 15, 18, 19, 21, 23, 24, 25, 27, 28, 31, 32, 39, 41, 42, 48,

49, 53, 55, 56, 58, 59, 61, 62, 65},

R2 ={1− 5, 7, 9, 10, 13, 16, 17, 20, 22, 26, 29, 30, 33− 38, 40, 43, 44, 46,

47, 50, 51, 52, 57, 63, 64, 66, 67− 69}, and

R3 ={6, 12, 45, 54, 60, 70}.

(5.1)

Figure 5.6 shows the original data set without any row or column rearrange-
ment. Dark green cells represent students answering the corresponding question
as “disagree”, the light green ones are related to the “neither agree or disagree”
category, and the light brown ones to the “agree” category. It seems that the stu-
dents’ tendency was to respond in lower levels in questions 1-3 and 9 (mostly
dark and light green cells) and more combined in the other questions. This data
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Figure 5.6: Applied Statistics course feedback forms data set: Level plot depicting
the data responses {yij} of 70 students (y-axis) through 10 questions (x-axis).

set sorted by student (row) according to the row cluster structure given in (5.1)
is presented in Figure 5.7. The blue lines across the figure divide the level plot
to distinguish the clusters (y-axis). Thus, the bottom cluster corresponds to the
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student group R1, the middle one is the group R2, and the top one corresponds
to R3. The students within each cluster are also sorted by their ordinal responses
{yij} to better illustrate the smooth transition between clusters, i.e. the students
with lower responses (dark green cells, yij =“disagree”) within a particular clus-
ter are allocated at the bottom of that group, and those with more moderate (light
green cells, yij =“neither agree or disagree”) and higher responses (light brown
cells, yij =“agree”) are allocated higher up. We might conclude that the students
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Figure 5.7: Applied Statistics course feedback forms data set: Level plot depicting
the data responses {yij} of 70 students (y-axis) through 10 questions (x-axis), sorted by
student cluster with R = 3 groups. The blue lines across divide the plot to show the
3 clusters (R1, R2, and R3). The students within each cluster are also sorted by their
ordinal responses {yij} to illustrate better the smooth transition between clusters.

from cluster R1 correspond to those with lowest opinion regarding the course
(mostly dark green cells), the ones in the cluster R2 have a more moderate opin-
ion about the course (the colour of the cells is quite balanced between light and
dark green and light brown) and the students in the groupR3 are those with more
positive (though still heterogeneous) set of opinions (more light brown cells).
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5.3.3 Level Plot Based on the Score Parameters

In Section 5.3.1, we developed graphs to compare the default equal spacing among
ordinal categories with the uneven fitted spacing dictated by data. This fitted
spacing determined by the score parameters {φ̂k} can be incorporated in the level
plots introduced in the previous section.

The graph of the Applied Statistics data set in Figure 5.8 is similar to Figure
5.7. However, instead of the original ordinal scale responses {yij}, this figure
shows the mean response level {φ(ij)} of student i (i = 1, . . . , n) to question j

(j = 1, . . . ,m), conditional on its fuzzy allocation to the row clusters (see eq. (4.2)
in Section 4.2 for reviewing how this average score is calculated). This is a numer-
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Figure 5.8: Applied Statistics course feedback forms data set: Level plot depicting
mean response level of each student to each question, conditional on its fuzzy allocation
to the R = 3 row clusters {φ(ij)} (eq. (4.2)). The horizontal blue lines divide the plot to
show the 3 clusters (R1, R2, and R3). The students within each cluster are also sorted by
their ordinal responses {yij} to illustrate better the smooth transition between clusters.

ical measure of the typical response to question j (j = 1, . . . ,m) for members of
student group r (r ∈ {R1, R2, R3}), appropriately adjusting for the uneven spac-
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ing of the levels in the ordinal response variable. The finest variation cell colour
in this graph is based on a terrain palette which goes from dark green to light
brown. Thus, dark green cells represent students with lowest opinion regarding
the course and light brown cells are those with more positive view. We have in-
tentionally chosen this colour palette with the aim of comparing this graph to
Figure 5.7. This comparison is shown in the side-by-side Figure 5.9.
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Figure 5.9: Applied Statistics course feedback forms data set: Level plots depicting
response level of each student (y-axis) to each question (x-axis). Level plot on the left
presents the data responses {yij}. Level plot on the right presents the fitted ordinal scaled
based on the weighted measure (4.2). The blue lines across divide the plot to show the
3 clusters (R1, R2, and R3). The students within each cluster are also sorted by their
ordinal responses {yij} to illustrate better the smooth transition between clusters.

The left level plot presents the data set responses {yij} and the one on the
right depicts the weighted numerical measure {φ(ij)} based on the fitted score
parameters: φ̂2 = 0.252, φ̂3 = 0.748, and φ̂4 = 0.946 (φ1 = 0 and φ5 = 1 are
restricted to ensure identifiability). This comparison is similar to the one shown
in Figure 5.5 between the original and the fitted ordinal scale but generalizing
the latter scale to a measure for each student and question. The horizontal blue
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lines divide both plots to show the clusters according to the row cluster structure
given in (5.1). Both graphs show a similar pattern but the right level plot has
a smoother appearance and a finer variation in colours because it is depicting a
continuous numerical measure while the left level plot is a discrete three-level
scale. Therefore, we can observe clearer differences in the right level plot. For
instance, it is difficult to detect the differences in question 9 for R2 and R3 (mid
and top clusters on the graph respectively) in the left graph. However, it is easier
to identify them in the right graph (more light green tone in R3 than R2).

5.3.4 Multidimensional Scaling Scatter Plots

The level plots in the previous section were obtained by depicting the mean re-
sponse level {φ(ij)} of row i (i = 1, . . . , n) to column j (j = 1, . . . ,m). In order
to calculate this numerical measure, the R ×m matrix {φrj} of weighted average
over the q ordinal categories for each row cluster is obtained (see eq. (4.1) in Sec-
tion 4.2 for the definition of this matrix). We can use any pair of rows (clusters) in
this matrix to depict a 2D multidimensional scaling plot (MDS) of the m columns.

Figure 5.10 presents three MDS plots for all possible pairs of clusters for the
Applied Statistics data set according to a fitted row clustering model with R = 3

student clusters (R1 vs. R2, R1 vs. R3, and R2 vs. R3). Each plot depicts {φrj}
and {φr′j} for row groups r, r′ ∈ {R1, R2, R3}. These plots of questions show
similar patterns. We note that questions 6-8 are plotted together in all three MDS
plots illustrating their similarities to each other, and differences from the other
7 questions (1-5 and 9-10). Likewise questions 5 and 10 and questions 1 and 9
coincide graphically in the three plots, illustrating that they are associated.

Each row {φrj} provides a separate one-dimensional ordination of the ques-
tions. These are the projections for each row cluster onto the axes in Figure 5.10
and are shown individually in Figure 5.11. We note that the range of values of the
ordination of the questions is different depending on the row group. Questions
in the axis pertaining to row cluster R1 (Figure 5.11(a)) are more concentrated in
lower weighted average {φrj} values which shows mostly levels of disagreement
in student responses. On the other hand, questions in axis R3 (Figure 5.11(c))
are located in higher values depicting levels of agreement and those in axis R2

(Figure 5.11(b)) show more moderate student answers. In addition to this figure,
Figure 5.12 depicts the weighted average {φrj} for the R = 3 row (student) clus-
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Figure 5.10: Applied Statistics course feedback forms data set: Multidimensional
scaling plots of the m = 10 questions using the row cluster structure given in (5.1). The
axes are the weighted average {φrj} (eq. (4.1) in Section 4.2) for two row groups. Each
plot depicts {φrj} and {φr′j} for row groups r, r′ ∈ {R1, R2, R3}. The left top plot (a)
is for student clusters R1 and R2, the right top (b) is the one for R1 and R3, and the left
bottom one (c) corresponds to R2 and R3.

ters broken down by each question (m = 1, . . . , 10). Each axis corresponds to a
question and shows the profile of the responses for a particular student group.
For instance, the students in cluster R1 have the lowest opinion on average re-
garding the course in question 5 (φ15 = 0.09) in comparison with students in
cluster R2 (φ25 = 0.39) and R3 (φ35 = 0.74). We note that the responses are very
consistent in all the questions apart from question 3: cluster R1 are consistently
low responses, R2 intermediate, and R3 high responses. In question 3, responses
fromR3 and, particularly, R2 are as low as those fromR1. We also note again that
questions 6-8 are similar as clusters R1-R3 are in the same place along these axes.

From the last two figures, we can calculate an overall ordination of clusters
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Figure 5.11: Applied Statistics course feedback forms data set: Projections onto
an axis of the m = 10 questions using the row cluster structure given in (5.1). Each axis
is related to one row (student) cluster and depicts the ordination of the question based on
the weighted average {φrj} (eq. (4.1) in Section 4.2) from the MDS plots in Figure 5.10.
Figure (a) is related to row cluster R1, Figure (b) to row cluster R2 and Figure (c) to row
cluster R3. Note that each axis has different ranges.

(from Figure 5.11):

φr =
1

m

m∑
j=1

φrj, r = 1, . . . , R,

and also an overall ordination of the questions (from Figure 5.12):

φj =
1

R

R∑
r=1

φrj, j = 1, . . . ,m.

For instance, the overall ordination of question 1 is φ1 = 0.03+0.16+0.5
3

= 0.23 and of
question 6 is φ6 = 0.25+0.65+0.89

3
= 0.60.
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Figure 5.12: Applied Statistics course feedback forms data set: Projections onto an
axis of the weighted average {φrj} (eq. (4.1) in Section 4.2) for each question. Each axis
depicts the weighted average for the R = 3 row (student) clusters related to a question.
Cluster R1 is shown in blue triangles, R2 in red squares and R3 in purple circles.

5.3.5 Contour and Level Plots to Represent Fuzziness

Our finite mixture approach performs a fuzzy assignment of rows and/or columns
to clusters based on the posterior probabilities, as we presented in its model for-
mulation (Chapter 2). In this section, different visualisation tools to represent
this fuzzy probabilistic clustering are presented. In particular, the fuzziness is
depicted in 3 graphs which are based on the allocation of each row i from the
data {yij} in each cluster r, the distances among score parameters {φ̂k}, and the
membership posterior probabilities {Ẑir} that row i is in cluster r once we have
observed the data {yij}.
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Crisp Clustering Contour Plot

Once the best fitted clustering model for a data set is identified and the cluste-
ring allocation of the rows (or columns) is determined, a crisp clustering of the
rows (i.e. each row allocated with probability one to its row group) can be easily
displayed.

For the Applied Statistics data set, we identified R = 3 different row cluster
profiles: a student group with the higher responses, another group with the in-
termediate ones and a third student group with the lower ones (see Section 4.2.1).
The student allocation in each cluster is based on highest posterior probability
criterion:

r̂i = argmax
r∈1,...,R

Ẑir, i = 1, . . . , n.

Given the crisp cluster structure we can calculate the distance between any pair
of row cluster label allocations: dii′ = |r̂i − r̂i′ | (i, i′ = 1, . . . , n). For instance,
if a particular student i is classified in the cluster R1 and another student i′ is
allocated in the cluster R3 then the value to depict is dii′ = |r̂i − r̂i′| = |1− 3| = 2.
This way of calculating the distance dii′ is based on a consecutive numbering of
the clusters (i.e. R1 is the first cluster,R2 is the second one, and so on). The graphs
in this section are calculated based on this distance. However, the numbering
of the clusters might be arbitrary and, in that case, a better distance would be
dii′ =

∣∣∣ 1
m

∑m
j=1(φr̂ij − φr̂i′j)

∣∣∣, where φr̂ij and φr̂i′j are the weighted averages over
the q ordinal categories for row cluster r̂i and r̂i′ respectively (see eq. (4.1) on page
70).

The n×nmatrix {dii′} describing the crisp clustering can be depicted in a level
plot as in Figure 5.13. On the left graph, the students (rows) are shown as they
appear in the original data set and, therefore, it is difficult to observe a group
pattern. However, the rows were sorted according to the row cluster structure
given in (5.1) over both axes on the right contour plot. The crisp cluster structure
with R = 3 is now easier to identify in this latter graph. A red cell represents that
the related two students are allocated to the same cluster, a orange cell depicts a
distance of 1 cluster between two students and a yellow cell displays a difference
of 2 clusters.

This is a naive representation of the cluster structure but allows us to compare
the results between crisp and fuzzy clusterings as we will see below.
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Figure 5.13: Applied Statistics course feedback forms data set: Contour plot de-
picting the crisp cluster structure with R = 3 groups. Both axes identify the students
(rows). The left figure shows the students without any sorting (i.e. as they appear in the
original data set). Both axes are sorted by the row cluster structure given in (5.1) on the
right contour plot.

Fuzzy Clustering Contour Plot

Our approach applies fuzzy clustering via finite mixtures and, therefore, any vi-
sualisation tool should take into account any fuzziness in the cluster structure.
Figure 5.14 shows two contour plots depicting the probability Cii′ of any pair of
students i and i′ (i, i′ = 1, . . . , n) of being allocated to the same cluster for the
Applied Statistics data set. The displayed probability Cii′ in both contours is cal-
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culated as follows:

Cii′ =
R∑
r=1

P [Zir = 1, Zi′r = 1 | {yij},Ω]

=
R∑
r=1

P [Zir = 1 | zi′r = 1, {yij},Ω]P [Zi′r = 1 | {yij},Ω]

=
R∑
r=1

P [Zir = 1 | {yij},Ω]P [Zi′r = 1 | {yij},Ω]

=
R∑
r=1

ẐirẐi′r, i, i′ = 1, . . . , n,

where Ẑir and Ẑi′r are the posterior probabilities that row i and i′ respectively
are members of row group r as defined in eq. (2.18) on page 29. It is important
to note that we are assuming that the rows are independent conditional on the
parameter vector Ω.

On the left graph it is difficult to observe a group pattern because the stu-
dents are not sorted. However, the right contour plot is sorted by taking into
account the row structure given in (5.1) and the R = 3 clusters are clearly visi-
ble. Red tones represents two students with a high probability of being allocated
to the same cluster. Otherwise, orange tones are the students with a moderate
probability and yellow tones are those students with lower probability of being
allocated to the same cluster. Thus, this pairwise graph of the individuals can
depict the cluster structure as the crisp contour plot (Figure 5.13) with the advan-
tage of including the fuzzy assignment of rows to clusters based on the posterior
probabilities {Ẑir}.

Score Parameters Distances Level Plot

An alternative way of depicting the fuzziness of the probabilistic clustering is by
means of the fitted score parameters. Thus, we can determine the average fitted
scores of each row (student) i across all of the m columns (questions) as given in
eq. (4.3) in Section 4.2.1:

φ(i.) =
1

m

m∑
j=1

φ(ij), i = 1, . . . , n, (5.2)
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Fuzzy Clustering among Students.
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Figure 5.14: Applied Statistics course feedback forms data set: Contour plot de-
picting the fuzzy cluster structure with R = 3 groups. Both axes identify the students
(rows). The left figure shows the students without any sorting (i.e. as they appear in the
original data set). Both axes are sorted by the row cluster structure given in (5.1) on the
right contour plot.

where {φ(ij)} is a matrix of the mean response level of each student to each ques-
tion, conditional on its fuzzy allocation to the R = 3 row clusters used above
(Section 5.3.3). From here, we can compute the Euclidean distance based on the
{φ(i.)} values for any two pair of rows (students) so that the differences between
the fitted spacing of the levels of the ordinal response can be depicted.

Figure 5.15 presents a side-by-side graph displaying these distances between
students. The fuzziness in the clustering is shown using a finest variation cell
colour which goes from dark green to light brown. A dark green cell represents
two students with a small distance in their fitted scores and therefore very likely
to be in the same cluster. A light brown cell depicts high spacing distance between
two students and a low possibility of being in the same cluster. The rows were
sorted according to the row cluster structure given in (5.1) over both axes on the
right graph. As we noted on the fuzzy clustering contour plots (Figure 5.14), the
three clusters are easily identifiable on the right level plot.
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Figure 5.15: Applied Statistics course feedback forms data set: Level plots depict-
ing the Euclidean distance in terms of the numerical measure {φ(i.)} (eq. (5.2)) between a
pair of students. Both axes identify the students (rows). The left figure shows the students
without any sorting (i.e. as they appear in the original data set). Both axes are sorted by
the row cluster structure given in (5.1) on the right contour plot.

5.4 Discussion

The set of data graphical tools presented in this chapter allows us to easily vi-
sualise the results of fitting likelihood-based multivariate methods for data re-
duction to a matrix containing ordinal data. In particular, these graphs depict
the fuzzy probabilistic clustering due to the use of finite mixtures. They are also
based on the fitted spacing among levels of the ordinal response variable. This
spacing is dictated by the data and arises naturally due to the use of the score
parameters {φk} from the ordinal stereotype model which are the mixture com-
ponents from our fuzzy clustering approach.

The visualisation tools presented here all all for the one-dimensional cluste-
ring case and have been illustrated with the row clustering version. The graphs

104



5.4. DISCUSSION

for the column clustering version are essentially the same, but replacing parame-
ters related to rows with the equivalent column parameters. For the case of biclus-
tering, the development of visualisation techniques is a future research direction
to explore. One possible direction would be to develop mixture-based biplots
as described in Pledger and Arnold (2014). Similar to correspondence analysis,
the biplot represents associations among rows, row groups, columns and column
groups. Additionally, the spaced mosaic plot introduced in this chapter can be
constructed in the case of biclustering. For instance, Figure 5.16 shows a spaced
mosaic plot with R = 2 row clusters (y-axis) and C = 2 column clusters (z-axis)
for the spider data set (Section 4.2.3). The description of the graph is the same
as explained in Section 5.2.3. The only difference is that we use different colours
to differentiate the column boxes within each row box. In this case, blue boxes
correspond to column cluster C = 1 and the orange ones to column cluster C = 2.

BiClustering Results. Scaled Space (Fitted Scores)
Ordinal Categories
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Figure 5.16: Spider data set: Mosaic plot with spacing for the biclustering model with
R = 2 row clusters and C = 2 column clusters.
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Chapter 6

Categorising Count Data

6.1 Count data. Description

One of the most common types of data recorded is a count of the number of times
an event occurs. A count variable is a type of variable in which the observations
arise from counting rather than ordering and take only values on the set of non-
negative integers {0,Z+}. The zero value is included in the set of possible values
because it possesses a unique and non-arbitrary meaning. A count is a frequency,
the number of occurrences of a particular event. The counts may have no upper
bound, or may have a known maximum (as in a binomial or multinomial distri-
bution of n objects over different categories). In this chapter, unbounded count
data are considered (e.g. observed number of a species in a given area).

Rogers (1974, Chapter 1) describes a stochastic scheme for classifying count
data in relation to its variance-mean ratio. When this ratio is equal to unity, i.e.
the variance is equal to the mean, the dispersion of the data relative to a pre-
defined study region follows a random point pattern (a Poisson process). On
the other hand, if the data have a variance-mean ratio greater than unity, i.e.
variance>mean (overdispersion), this indicates a more clustered (e.g. spatial or
temporal clustering) than random point pattern. Finally, if the data has a variance-
mean ratio less than unity, i.e. variance<mean (underdispersion), the point pat-
tern is more likely to result from a more regular than random or clustered process.
In the case of count data distributed as a random point pattern, the dispersion is
expected to follow a Poisson distribution as the variance of this distribution is
equal to its mean. Rogers (1974, Chapter 2) derives the densities under linearity

107



CHAPTER 6. CATEGORISING COUNT DATA

assumptions detailed below when the dispersion follows a clustered or regular
pattern. This is determined in mathematical terms from a random point pattern
resulting in a negative binomial distribution when the dispersion is clustered and
in a binomial when the dispersion follows a regular pattern. Figure 6.1 illustrates

a. Clustered b. Random c. Regular

Figure 6.1: Count data: Clustered (negative binomial), random (Poisson) and regular
(binomial) spatial point patterns over the same region (from Lee and Wong (2001)). Note
that the clustered pattern in this particular case is depicted with only one centre but it
might also be depicted with more than one centre.

these point patterns in 3 graphs. The left graph depicts a clustered point pattern
(variance>mean, negative binomial distribution) where the probability of an ob-
ject settling in a quadrat is positively linearly related to the number of objects al-
ready there (e.g. shoal of sardines). If this probability is completely independent
of the number of objects already in a quadrat (e.g. plants with well-dispersed
seeds) then the point pattern is random (variance=mean, Poisson distribution)
as shown in the middle graph. The right graph shows a regular point pattern
(variance<mean, binomial distribution) where the probability of an object set-
tling in a quadrat decreases linearly with the number of objects already there
(e.g. gannet nests in a colony). The mean-variance relationship is a critical pro-
perty of count data. When not properly controlled for, trends in location (mean
abundance) may be confounded with changes in dispersion (variance), leading
to misleading results (Warton et al., 2012). One way to deal with the variance-
mean ratio problem is to turn the count data into ordinal data. This and other
advantages of the use of ordinal data are listed in the next section.
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6.2 Advantages of Using Ordinal Data

There are several advantages of categorising an original count data set into ordi-
nal categories. Firstly, one of the causes of overdispersion in count data (variance
> mean, see Section 6.1) is the presence of outliers. An estimation approach for
count data based on Poisson distributions may be highly sensitive to outliers and
produce biased estimates, i.e. the standard errors of the estimates might be de-
flated or underestimated (Hilbe, 2008, Chapter 4). An ordinal variable is less
sensitive to the presence of outliers and therefore the ordinal stereotype model
(among other models such as the negative binomial model (NB) and uncondi-
tional fixed effects) is better for handling overdispersion.

Secondly, count data is often used on data sets that structurally exclude zero
counts (e.g. hospital length of stay data set or number of items in a customer’s
basket at a supermarket checkout line). The standard Poisson and NB distribu-
tions both include the value zero and therefore they should not be used. There
are alternative count models to fit this data such as the zero-truncated Poisson
(ZTP) and zero-truncated NB (ZTNB) models. These models adjust the proba-
bility functions of the Poisson and NB models so that zero counts are excluded,
but the sum of probabilities is still one. Another alternative is fitting an ordinal
model to a categorised version of the data. The advantage is that an ordinal scale
is not affected by the omission of zeros in the data.

A more frequent situation is count data having an excess of zero counts which
are far more that the expected zero counts under NB or Poisson distributional
assumptions (e.g. number of captured species of spatially rare or hard to de-
tect species). There are several methods for modeling zero-inflated count data
such as the hurdle models (also known as zero altered models) (Mullahy, 1986;
Heilbron, 1989) and random effect models of various types. The latter includes a
zero-inflated Poisson model (ZIP), which for each observation uses a mixture of
a Poisson loglinear model and a degenerate distribution at 0, and a zero-inflated
NB model (ZINB), which uses an equivalent mixture probability but with a NB
loglinear model. This latter model allows overdispersion relative to the zero-
inflated data. However, those models can encounter fitting difficulties if there
is zero deflation at any settings of the explanatory variables (Agresti, 2010). An
alternative to those methods is to introduce finite mixture models with either the
Poisson or the NB model as their components. In that case, the ZIP and ZINB
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models might be not needed, as the mixtures may separate off zero counts. An-
other alternative to those methods is to apply a cumulative link random effects
model (Saei et al., 1996) to a transformed count data. Thus, the first category is the
zero-inflated outcome and each other count class is a separate outcome, turning
the count data into ordinal data. If the response variable can take a large number
of count outcomes, then the outcomes are grouped into a set of ordinal ordered
outcomes. Agresti (2010) recommends grouping by at least four ordinal catego-
ries to avoid a substantial efficiency loss. The advantage of this alternative ordinal
approach is to require a single set of parameters for describing effects leading to
more parsimonious models than the zero-inflated Poisson and zero-inflated NB
models which require separate parameters for the effects.

As we described in Section 6.1, the binomial distribution is a useful model to
use when count data has underdispersion (variance<mean). The difficulty in this
scenario is the estimation of the number of trials parameter. Rogers (1974, Chap-
ter 4) advocates using the largest frequency observed in the data as a estimate
for this parameter but it might be biased due to unobserved data. An alternative
is to recode the original data into ordinal categories. The optimal categorisation
might be determined as an equal number of observations per category, which is
a common practice for the χ2 goodness-of-fit test. However, there has been re-
search showing the power of a χ2 test may vary substantially with the number
of categories (see e.g. Koehler and Gan (1990)). A comprehensive study to find
methods of selecting the optimal number of categories should be undertaken in
future research.

Conversion of count data to binary outcomes (e.g. presence/absence data)
may be seen as an extreme example of conversion to ordinal data with 2 cate-
gories (e.g. y′ij = 0 or y′ij > 0). Our method retains more information than the
conversion to binary, retaining more major features of the data but dealing with
the variance-mean ratio problem.

Finally, although different models for count data such as Poisson, NB, ZINB
and ZTP may be fitted depending on the data features, a good alternative is to
recode the data into ordinal scale to fit our ordinal model approach. It enables
the inclusion of all of the different cases in one methodology.
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6.3 How Many Ordinal Categories?

One of the questions arising from recoding count data into an ordinal scale is re-
lated to determining how many ordinal categories into which the data should be
optimally categorised. Agresti (2010, Section 2.5) referred to this issue and gives
some guidelines for ordinal category choice based on his experience. Although
there is no generally accepted methodology for doing this, multiple strategies in
different fields have been developed which deal with the categorisation of con-
tinuous data. For example, Kotsiantis and Kanellopoulos (2006) reviewed dis-
cretization techniques in machine learning context, Hammond and Bickel (2013)
summarised recoding techniques in decision analysis, and Dalenius and Hodges
(1959) and Lavallee and Hidiriglou (1988) developed algorithms to create opti-
mal stratum boundaries in sample surveys. These methods may be used when
recoding count data into ordinal scale. However, to the best of our knowledge,
there has not been a lot of research in this subject. In order theory, this recoding is
an example of ranking a partially ordered set (count data) into a non-strict weak
order or total preorder relation (ordinal scale), where groups of items are formed,
and the groups are ordered (see e.g. Ehrgott (2006, Section 1.4) and Roberts and
Tesman (2011, Section 4.2.4)).

There are several ways to recode count data into ordinal responses. The sim-
plest case is using the count data as ordinal categories, without collapsing any set
of values. For example, recoding a count data set with values (0, 1, 2, 3) as an or-
dinal variable with label values {0, 1, 2, 3}. This case would only be tractable if we
have data which are concentrated on a small range of counts, and that every count
in that range is represented. This direct categorisation implies that although the
ordering property is preserved, the property of equal spacing that the counts ac-
tually have is removed. A simple extension of this recoding is to categorise large
counts into a top-coded data set framework, i.e. data values above an upper
bound are censored. This coding is very common in economic surveys (see, for
example, the development of regression models to deal with top-coded data sets
in Tobin (1958)). For example, we can delimit the values above 2, (0, 1, 2+), and
then treat the data values in an ordinal scale {0, 1, 2+}. An extreme case of top-
coding is to dichotomize the count data into just the ordinal scale {0, 1+} which
converts the data into binary data such as presence-absence data. This implies in-
formation loss because the ordinal scale variables tell us more about interspecific

111



CHAPTER 6. CATEGORISING COUNT DATA

relationships than simple binary data. An alternative is to have equally spaced
cut points in counts (e.g. 0-4, 5-9, etc), or equally spaced in counts but on the
logarithmic scale (e.g. 0, 1-9, 10-99, 100-999, etc). This practice is common in the
formation of strata in sample surveys, where a variable is used to cut a popu-
lation into mutually exclusive, ordered subgroups. Another option is replacing
the count data by their ranks, and then cutting the ranks into groups based on
percentiles. This creates an ordinal scale variable.

We have used this latter approach because percentiles are not strongly influ-
enced by extreme values in the count data, and can be calculated even if the
counts are skewed. Therefore, percentiles do not depend on the variance-mean
ratio scheme of the count data. When recoding a matrix Y = {yij}, one option is
to recode across the whole count data set with the chosen criterion. However, it
may be more appropriate to analyse count data sets where the columns (or rows)
have a dramatically different count pattern. For instance in an ecological com-
munity, a data set of abundance of species (columns) by sites (rows) might have a
set of species with a high count pattern because they are easily detectable species,
whereas the rest of species (more difficult to observe) have a low count pattern.
This might occur if two species are in competition for the same resources in a
particular site, so presence (abundance) of one lowers probability (abundance) of
the other. An example of this pattern is observed in the spider data set (Section
4.2.3). In order to obtain a similar frequency distribution for each species, a re-
coding strategy where the columns are recoded separately. Additionally, as we
explain in Section 2.1.2, an advantage of using the ordinal stereotype model in
our mixture approach is the interpretation of the score parameters {φk}. If two
ordinal categories have the same (or very similar) score parameter values, this
provides evidence that those ordinal categories are not distinguishable and we
can collapse them into a single category in our data. It is useful to know into how
many cuts (i.e. into how many ordinal categories) the data must be divided.

Given a n × m matrix Y of count data, our strategy to categorise Y is as
follows:

1. Start by setting a large number of ordinal categories q (e.g. q = 10).

2. Rescale each observation yij (i = 1, . . . , n, j = 1, . . . ,m) as:

yst
ij =

yij −min(Yj)

max(Yj)−min(Yj)
,
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where Yj (j = 1, . . . ,m) is the column vector.

After this step, we have a new standardized n×m data matrix Y st = {yst
ij}

which lies on the range [0, 1].

3. Divide each new column vector Y st
j into q + 1 quantiles: Q(0), . . . , Q(q).

There is a number of equivalent ways of defining the sample quantiles.
However, the sample quantiles used in statistical packages in common use
such as R are all based in one or two order statistics, and can be written as:

Q(k) =



0 if k = 0,

(1− ϕ)yst
(i)j + ϕyst

(i+1)j if k = 1, . . . , q − 1,

1 if k = q,

(6.1)

where ϕ = nk + s − j, s = 1
3
(k + 1), j = bkn + sc is the floor function for

kn+ s (i.e. the largest integer not greater than kn+ s), and yst
(i)j denotes the

ith order statistics of the column vector Y st
j (see Hyndman and Fan (1996)

for more details).

4. Recode each observation yst
ij (i = 1, . . . , n, j = 1, . . . ,m) as:

y′ij =


0 if yst

ij = 0,

k if yst
ij > 0 and yst

ij ∈ (Q(k−1), Q(k)],

(6.2)

where (Q(k−1), Q(k)] is the interval of values from vector Y st
j between the

(k − 1)th and kth quantiles, for k = 1, . . . , q. Each interval contains 100
q

% of
the non-zero data.

As a result of this step, we obtain an ordinal view Y ′ of the original data set
Y .

A graphical illustration of the recoding from count data yij into ordinal re-
sponses y′ij based on the quantiles is given in Figure 6.2.

5. Fit our ordinal mixture methodology to Y ′.

6. If two or more adjacent categories have the same score parameter value,
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Figure 6.2: Quantiles: Plot illustrating the recoding from count data yij into ordinal
responses y′ij (see eq. (6.2)) based on the quantiles. The y-axis are the quantiles computed
as eq. (6.1). The x-axis are the original count data yij (after standardizing). The red lines
divide the plot over the x-axis and y-axis. Each interval between red lines in the y-axis is
(Q(k−1), Q(k)] and creates an interval in the count data (x-axis). The violet blocks are the
recoded observation y′ij (eq. (6.2)).

collapse them, set the new number of ordinal categories q and return to step
2. Otherwise, the categorisation is appropriate and returns the results of
model fitting.

Note that we standardize the original count data with the aim of reducing the
number of quantiles to calculate in the step 3. Thus, we need to calculate only
(q+1) quantiles for the whole data set Y st, instead ofm×(q+1) quantiles (i.e. q+1

quantiles for each column in Y ). However, this standardization might not work
suitably for some data sets (e.g. when there is no variation in a column and so the
maximum and minimum values in that column are the same) and other strategies
can be used. For instance, computing the q + 1 quantiles for groups of columns.
Additionally, we may wish to directly assign zero values from the original count
data into a particular category in the ordinal scale (see eq. (6.1)). The reason for
this procedure is related to the particular meaning of the zero value in some data
sets such as ecological community data regarding species abundance, where it
is important to keep absences separated from presences. However, this category
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could be removed and equation (6.1) would simply turn into

y′ij =


0 if yst

ij ∈ [Q(0), Q(1)],

k if yst
ij ∈ (Q(k), Q(k+1)],

for k = 1, . . . , q − 1. Finally, this strategy was presented on categorising through-
out columns but the same idea might be applied over the rows just exchanging
columns for rows above.

6.4 Comparing Clusterings

6.4.1 Definition of Measures

The aim of our work is to compare clustering results between count and cate-
gorised ordinal data. To the best of our knowledge, no research has been con-
ducted in this field. However, multiple measures have been developed which
deal with comparing clusterings over the same data set (see e.g. Strehl and Ghosh
(2002), Meila (2005, 2007) and a review in Vinh et al. (2010)). The recoded data
set as a result of categorising the original count data into ordinal might be con-
sidered different from the original one because some information is not retained
in the ordinal scale. Nevertheless, the first stage from our ordinal clustering ap-
proach is to take the original data set, generate an ordinal scale and obtain a
clustering later on. Therefore, this approach just changes the way in which the
data is summarised, and is in some sense similar to analysing continuous data by
non-parametric methods using ranks. Additionally, there have been only a few
attempts in the literature to develop measures for comparing clusterings over
different data sets. They are based on pattern comparison methodologies in data
mining (see e.g. Ntoutsi et al. (2006) and Bartolini et al. (2009)) which are be-
yond the scope of this thesis. Therefore, measures for comparing clusterings in
the same data set are considered in this chapter.

Let Y be a data set of N observations, then U = {U1, . . . , UK} is a partition, or
clustering, of Y intoK groups, where

⋃K
k=1 Uk = Y and Ui∩Uj = ∅ for i 6= j (non-

overlapping). Equivalently, V = {V1, . . . , VK′} on Y is an alternative of clustering
Y into K ′ groups. The information on the overlap between these two clusterings
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U and V can be summarised in form of a K ×K ′ contingency table as illustrated
in Table 6.1. Given two clusterings U and V, the following quantities are defined
via the marginal and the joint distributions of data items in U and V respectively
as (Vinh et al., 2010):

H(U) = −
K∑
i=1

ai
N

log
(ai
N

)
, (Entropy for U)

H(V) = −
K′∑
j=1

bj
N

log

(
bj
N

)
, (Entropy for V)

H(U,V) = −
K∑
i=1

K′∑
j=1

nij
N

log
(nij
N

)
, (Joint entropy for U and V)

I(U,V) =
K∑
i=1

K′∑
j=1

nij
N

log

(
nij/N

aibj/N2

)
= H(U) + H(V)− H(U,V), (Mutual information for U and V)

(6.3)

where nij is interpreted as the number of observations from Y that are common
to clusters Ui and Vj (i.e. nij = |Ui ∩ Vj|), ai is the sum of row i (i.e. ai = |Ui|), and
bj is the sum of column j (i.e. bj = |Vj|).

Table 6.1: The contingency table for clusterings U and V on Y where nij is inter-
preted as the number of observations from Y that are common to clusters Ui and
Vj (i.e. nij = |Ui ∩ Vj|), ai is the sum of row i (i.e. ai = |Ui|), and bj is the sum of
column j (i.e. bj = |Vj|).

U \ V V1 V2 . . . VK′ Total
U1 n11 n12 . . . n1K′ a1

U2 n21 n22 . . . n2K′ a2
...

...
... . . . ...

...
UK nK1 nK2 . . . nKK′ aK

Total b1 b2 . . . bK′ N =
∑K

i=1

∑K′

j=1 nij

We use three measures in common use to compare clusterings: the adjusted
Rand Index (ARI, Hubert and Arabie (1985)), the variation of information (VI,
Meila (2005)), and the normalized information distance (NID, Kraskov et al. (2005)).
In the same manner that it is not possible to define a “best” clustering method out
of context, one cannot define a measure for comparing clusterings that fits every
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problem optimally (Meila, 2007). The ARI is a pair counting-based measure de-
veloped from the Rand index (Rand, 1971) and corrected for chance as suggested
by Hubert and Arabie (1985). The ARI remains the most well-known and widely
used measure to compare clusterings. For instance, Žiberna et al. (2004) used
this measure to compare clusterings for ordinal data. The formulation of the ARI
from Table 6.1 is as follows,

ARI(U,V) =

∑K
i=1

∑K′

j=1

(
nij
2

)
− [

∑K
i=1 (ai2 )]

[∑K′
j=1 (bj2 )

]
(N2 )

1
2

[∑K
i=1

(
ai
2

)
+
∑K′

k=1

(
bj
2

)]
− [

∑K
i=1 (ai2 )][

∑K′
j=1 (bj2 )]

(N2 )

.

This measure is bounded above by 1. A 0 value indicates independent clusterings
and a 1 value indicates perfect agreement between clusterings.

An alternative to pair counting-based measures (such as ARI) are information
theoretic-based distance measures. They are based on the relationship between
an observation from Y and its cluster in each of the two clusterings that are com-
pared. Based on the quantities defined in (6.3), the VI for clustering U and V is
formulated as

VI(U,V) = H(U,V)− I(U,V) = 2H(U,V)− H(U)− H(V).

This measure is bounded between 0 and log(N). In order to bound it between 0
and 1, the normalized VI (NVI, Kraskov et al. (2005)) is defined, which consists
of dividing VI(U,V) by H(U,V):

NVI(U,V) = 1− I(U,V)

H(U,V)
.

Another distance measure is the NID which is bounded between 0 and 1 and
formulated as

NID(U,V) = 1− I(U,V)

max{H(U),H(V)}
.

A zero value indicates that U and V are exactly the same clusterings and a value
of one is interpreted as independent clusterings for both NVI and NID. Thus,
we use the unit-complements of these measures (i.e. 1-NVI and 1-NID) in our
comparisons in order to have the same scale interpretation between ARI, NVI
and NID. Vinh et al. (2010) advocates that NID is the best measure in widespread
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use after analysing the most common distance measures because NID possesses
concurrently several important properties, such as using the nominal [0, 1] range
better than other normalized distance measures, and satisfying properties of a
true metric (i.e. positive definiteness, symmetry and triangle inequality).

6.4.2 Example

In this section, three clusterings from approaches for count and ordinal data
are compared. The count data-based clusterings are obtained by applying the
likelihood-based methodology described in Pledger and Arnold (2014) for basic
Poisson and NB building blocks, and the ordinal data-based clustering are fitted
to our ordinal approach. The spider data set (Van der Aart and Smeenk-Enserink,
1974) which was described in Section 4.2.3 is used to compare the three cluster-
ings. This data set shows the distribution of 12 different spider species across
28 different sites. The original count data is shown in Table C.10 in Appendix
C.4. Note the large number of zeros and also the high counts, suggesting the NB
model is preferable to the Poisson model (Hui et al., 2014). Additionally, Figure
6.3 depicts the variance-mean ratio for all of the species of spiders throughout the
sites. The variance is greater than the mean in all the species indicating possibly
overdispersion. We categorised the original data into four ordinal responses (see
in eq. (4.5) by following the strategy described above (Section 6.3) and the ordinal
data set is shown in Table C.11 in Appendix C.4).

According to AIC, the best ordinal data-based clustering was including 3 site
groups (see Section 4.2.3 for details). For all the sites, the highest posterior proba-
bility stands out from the other two probabilities except for the sites 16, 17 and 19
(e.g. κ1 = 0.52 and κ3 = 0.42 for site 17). The clustering which allocates the sites
16, 17 and 19 to their highest a posteriori probability cluster is thus not the only
reasonable crisp clustering. For this reason we make an alternative allocation
(“Stereotype 2”) which allocates site 17 to cluster C1 and sites {16, 19} to clus-
ter C2 (whereas they had all been originally allocated to cluster C3). This enable
us to test for the effect of the fuzziness when comparing clusterings. Further-
more, we obtained the count data-based clustering for 3 site groups for Poisson
and NB building blocks, using the highest probability-based allocation criteria.
All the three clusterings are summarised in Table 6.2 and shown in Figure 6.4.

Taking into account the “Stereotype 2” clustering, the results show that sites
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Figure 6.3: Spider data set: Variance-mean ratio (sorted ascending) for the 12 spider
species over the sites. The blue lines depicts the amount variance

mean
for each species and the

orange dashed line indicates the threshold for no overdispersion
(

variance
mean

= 1
)
. Overdis-

persion (variance>mean) is observed in all the species. The green arrows indicate the
magnitude of the overdispersion in each species.

Table 6.2: Spider data set: Clustering results for Poisson, NB and ordered stereo-
type model. The number of fitted clusters is C = 3. All the allocations are based
on highest posterior probabilities except for the “Stereotype 2” clustering which
has a fuzzy allocation in the sites shown in boldface.

Groups Clustering (highest probability) Stereotype 2Poisson NB Stereotype
C1 {1-7,9-14,25} {1-7,13,14} {1-7,13,14} {1-7,13,14,17}
C2 {22-24,26-28} {9-12,22-28} {8,21-24,27,28} {8,16,19,21-24,27,28}
C3 {8,15-21} {8,15-21} {9-12,15-20,25-26} {9-12,15,18,20,25-26}

{1 − 7, 13 − 20, 22 − 24, 27, 28} are classified into the same cluster for all three
probability models. Sites 8 and 21 are allocated to group C2 according to the or-
dinal model and in group C3 according to the other two models. The opposite
happens in site 26. The rest of the sites ({9− 12, 25}) are classified into a different
cluster depending on the fitted model.

We want to compare the clustering not only graphically but also using the
measures described in Section 6.4. The measures ARI, NVI, and NID were com-

119



CHAPTER 6. CATEGORISING COUNT DATA

Site Cluster 1

Poisson

Neg. Binomial

Stereotype

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Site Cluster 2

Poisson

Neg. Binomial

Stereotype

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Site Cluster 3

Poisson

Neg. Binomial

Stereotype

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure 6.4: Spider data set: Comparison among Poisson (red blocks), NB (green blocks)
and ordered stereotype (dark blue blocks) models for theC = 3 fitted spider site clustering.
The light blue blocks are related to “fuzzy” sites which could classified in more than one
cluster.

puted for the three clusterings (Poisson, NB and Stereotype) and the results are
summarised in the Table 6.3. For the three comparison measures, the Poisson

Table 6.3: Spider data set: Clustering results for Poisson, NB, and two classi-
fications based on the ordered stereotype model (“Stereotype” and “Stereotype
2”). The number of fitted clusters is C = 3. Large values indicate similarity of
clustering. The closest clusterings are the two count data-based models (Poisson
and NB) over the three measures. Between count and ordinal data-based models,
“Stereotype 2” is closer to NB than Poisson and is shown in boldface.

Clustering Comparison ARI 1-NVI 1-NID
Poisson vs. NB 0.555 0.562 0.701

Poisson vs. Stereotype 0.280 0.229 0.361
NB vs. Stereotype 0.409 0.335 0.500

Poisson vs. Stereotype 2 0.334 0.304 0.457
NB vs. Stereotype 2 0.465 0.423 0.590

and NB clusterings are the closest as it is expected. Between count and ordinal
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data-based models, the “Stereotype 2” clustering is closer to the NB clustering
than the Poisson one. The clustering from the other ordinal data-based model
(“Stereotype”) is also closer to NB than Poisson although less similar than the
“Stereotype 2”. The observed similarity between NB and stereotype clusterings
is a satisfactory result because the data is overdispersed suggesting that NB is
preferred over Poisson.

6.5 Discussion

We have shown some features of categorising count data into ordinal data in this
chapter. In our view, the main advantage is that by using our approach for ordi-
nal data, we do not have to decide among different models for the data. It enables
the inclusion of all of the different cases in one methodology. For example, if a
count data set involves overdispersion from a set of species and underdispersion
from another set, probably the optimal strategy using the original data would be
to fit a NB model for the overdispersed set and a binomial model for the under-
dispersed one. However, we may fit our ordinal stereotype methodology to both
of these without treating the data differently. Additionally, many count data sets
have extreme variabilities, for example very high counts and very low counts in
ecological community data. Replacing these counts with “medium” and “high”
ordinal categories makes the actual counts less influential in the model fitting,
giving broad categories which enable us to detect major overall patterns.

Although the results shown in this chapter are promising, a more compre-
hensive study is required in future research. Possible ways to investigate the
differences between recoded and original data may be to set up numerical ex-
periments to compare them across a wide range of scenarios or to analyse other
data sets with different type of dispersion. Additionally, another future direction
might be to study this issue analytically. For instance, developing a measure to
quantify the loss of information due to use of the ordinal categorisation instead
of the original count data.

121



CHAPTER 6. CATEGORISING COUNT DATA

122



Chapter 7

Inference in the Bayesian Paradigm.
Fixed Dimension

As we explained in Chapter 2, this thesis proposes a methodology of likelihood-
based models for ordinal data including clustering via finite mixtures to define
a fuzzy clustering. The ordinal stereotype regression model is used to formu-
late the ordinal approach. Matechou et al. (2011) developed biclustering mod-
els for ordinal data using the proportional odds version of the cumulative logit
model and applying a likelihood-based foundation. In Section 2.5, we developed
a model fitting procedure to perform a fuzzy clustering assignment for the ordi-
nal stereotype model using the iterative EM algorithm to estimate the parameters.
A Bayesian approach to estimate the parameters is introduced in this chapter.

The basics of a Bayesian inference approach are explained in Section 7.1. The
framework to implement the Metropolis-Hastings algorithm to our one-dimensional
clustering approach is developed and illustrated with a simulation study and two
real-life data examples in Section 7.2. Additionally, the label switching problem,
which is a common drawback arising from using mixture models, is described in
the same section. Finally, conclusions are described in Section 7.3.
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7.1 Bayesian Inference

7.1.1 Introduction

The interest in using Bayesian statistics among statisticians from diverse areas
has recently increased and so has the area of using finite mixture models for clus-
tering. A good introduction to Bayesian modeling of finite mixtures was given
by Marin et al. (2005), Jasra et al. (2005) and Marin and Robert (2007, Chapter
6). Frühwirth-Schnatter (2006) gave a detailed review of Bayesian methods for
finite mixtures. With the growth of computing power in the 1990s, the use of
Bayesian estimation methods using a Markov chain Monte Carlo (MCMC) pro-
cedure as an alternative to the EM algorithm has become increasingly popular
(see e.g. McLachlan and Peel (2000) and Lee et al. (2008)). The MCMC algorithm
is used in Bayesian inference as a result of the difficulty of constructing the joint
and marginal posterior distributions analytically. There are numerous examples
of the use of Bayesian methodology with finite mixtures for continuous data. For
example, Richardson and Green (1997) and Fraley and Raftery (2007) considered
Bayesian methods for the analysis of univariate normal mixtures. Additionally,
Stahl and Sallis (2012) showed some examples with Anderson’s Iris and Pearson’s
Crab datasets. However, there is a lack of development of a Bayesian inference
approach with mixture models for ordinal data.

A Bayesian inference procedure can deal with some of the difficulties arising
in fitting the ordered version of the stereotype model under a likelihood based
approach. An advantage of applying a Bayesian approach to our ordinal mix-
ture model is that an appropriate choice for the prior distribution of the score
parameters {φk} can incorporate their monotone increasing ordinal constraint,
0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1, so that it is automatically satisfied when gener-
ating posterior distributions. Furthermore, we can compute credible intervals of
{φk} without any additional effort because the Bayesian paradigm is based on
simulation of the posterior distribution of the parameters without the need for
large sample approximations. Another advantage is that parameter estimation
and model selection methodologies do not depend on the regularity conditions
required by the LRT and which are violated in the fitting of finite mixtures (see
Sections 1.2.1 and 3.2.1). Additionally, there are general advantages in the use
of a Bayesian paradigm such as the possibility of incorporating in the estimation
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procedure prior knowledge regarding the parameters, the opportunity to update
the estimates as new data is available, and the results are more informative as
they include the whole joint posterior distribution of the parameters (see a re-
view of advantages in Wagenmakers et al. (2008, Chapter 9)). A Bayesian pro-
cedure might be also seen as a method to overcome the problem of occurrence
of singularities in the likelihood function (see the approach given by Fraley and
Raftery (2007) where the MLE values are replaced by the mode of the posterior).
This latter difficulty is one of the main drawbacks when the EM algorithm is used
to find the MLE values (see Section 2.5).

However, a Bayesian mixture modeling approach also has drawbacks to over-
come such as the choice of suitable prior distributions because the posterior dis-
tributions may be heavily influenced by the choice of prior, the high computa-
tional cost in MCMC implementations to converge to the results, and the label
switching difficulty during MCMC sampling. This latter drawback arises when
the label of the mixture components may be arbitrarily permuted on different it-
erations creating a lack of identifiability. A complete review of the label switching
problem for our approach is shown in Section 7.2.5.

In this thesis, the joint posterior distribution of the parameters is obtained
by MCMC simulation (see e.g. a comprehensive review by Gilks et al. (1996),
Gamerman and Lopes (2006, Chapters 4-6), and Robert and Casella (2010, Chap-
ters 5-8)). The MCMC sampler draws samples from a target distribution (i.e. the
posterior distribution) by generating a chain whose stationary distribution is that
distribution. In the next section, we introduce some key factors to consider in
MCMC in order to assess its reliability.

7.1.2 Considerations for the Use of MCMC

There are three important factors to consider when we use a MCMC sampler: the
starting values to initiate the chain, burn-in, and thinning the chain.

Starting values

Assuming that the chain ultimately converges, the choice of starting values does
not have influence in making inferences over the stationary distribution because
we only use the values obtained in the iterations after the stationary distribution
is reached by the MCMC algorithm. At that point, the chain has been running

125



CHAPTER 7. INFERENCE IN THE BAYESIAN PARADIGM. FIXED DIMENSION

enough to lose its dependence on the starting values. However, the selection
of starting values may affect the performance of the chain in terms of the time
it takes to converge to the stationary distribution. Additionally, there is a risk
of convergence to local modes and therefore a dispersion of starting points is
required for adequate assessment of convergence.

Any values which would be possible to obtain in a sample from the poste-
rior distribution are good starting values. Therefore, the ideal choice of starting
values for initiating the MCMC algorithm would be those sampled directly from
the posterior distribution, but this is not possible in our case. Thus, we adopt an
ad-hoc method for selecting starting values in which a random sample from the
prior distribution is used. Section 7.2.2 describes the selection of the prior distri-
butions for all the parameters. A variety of starting values in parallel is necessary
to ensure that the sampler has found the mode of the posterior.

Burn-in

A burn-in period in a MCMC sampler means to discard a certain number of the
first draws in order to make the chain less dependent on the starting values and
only retain the draws closer to the stationary distribution. After the burn-in pe-
riod, the chain generates values that are presumed samples from the target dis-
tribution.

There is nothing in MCMC theory that justifies or even motivates the size of
the burn-in period because it relies on the mixing time of the chain to the station-
ary distribution. A possible procedure would be to do series of short preliminary
MCMC runs and to select the iteration number where the chain seems to con-
verge to the stationary distribution as the length of the burn-in period (Geyer,
2011, Chapter 1). In Section 7.1.3, we introduce the measures of convergence di-
agnostics used throughout this chapter. Another suggestion is to use a visual in-
spection of the MCMC convergence to determine the burn-in period (Gilks et al.,
1996). The most common of those visual tools are briefly described in Section
7.1.3.

Thinning

A MCMC sampler might experience slow convergence (poor mixing) in some
particular cases when the dependence between draws is high. In Section 7.1.3,
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the autocorrelation plot is described which might be useful to detect high auto-
correlations in the chain. In order to reduce sample autocorrelations, a common
strategy is to thin the chain by only keeping every dth draw (d > 0). Thinning is a
practical procedure to increase the efficiency of computer storage or plotting time
(see e.g. Link and Eaton (2012) for a discussion of circumstances when thinning
might be regarded as a reasonable option).

7.1.3 Convergence Diagnostics for Fixed-Dimensional MCMC

There is no general theory to guarantee the convergence of a MCMC sampler to
the target distribution after a given number of runs. However, any implementa-
tion of a MCMC algorithm must include a convergence test. The interest relies
on how well the chain is mixing over the parameter space in order to obtain re-
liable parameter estimates. A preliminary procedure to test convergence would
be to run a number of parallel chains with overdispersed starting values. If all
those chains converge to the same target distribution, then the MCMC simulation
has converged to the same stationary distribution. Nevertheless, this procedure
should not be taken as a formal diagnosis of convergence since all the chains
might be stuck at a local maximum instead of at a global maximum. Unfortu-
nately, if this has happened no convergence test can ever detect this fact.

There are several diagnostic tests that can be used to diagnose convergence.
There have been considerable developments in this field in the literature and
most of them are based on visual inspections and statistical tests. Common vi-
sual inspection tools for the MCMC output are:

• Trace plot: It is a plot of the iteration number versus sampled estimations for
a parameter at each iteration in the chain. Thus, this graph can be useful to
visually check whether the chain has a good mixing in its convergence to-
wards the posterior distribution (i.e. the chain is dense, and remains stable
for a long period of time).

• Probability density function plot: This plot displays the distribution of the es-
timations for a parameter during the runtime of the chain. Basically, it is
the smoothed histogram of the estimates from the trace plot, i.e. the distri-
bution of the estimates of the parameter in the chain. Convergence is not
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easily assessed by this. However, a very noisy highly multimodal plot (i.e.
many minor modes) is an indication of convergence failure.

• Cumulative quantile plot: It is a plot of the evolution of the sampled quantiles
for a estimated parameter as a function of the number of iterations. A sign
of a chain with a satisfactory convergence is when each monitored quantile
remains stable for a long period of time.

• Autocorrelation plot: It shows the autocorrelation function of the chain for
an estimated parameter as a function of the number of iterations. High
autocorrelations within the chain indicate slow mixing. Moreover, this plot
might also be useful as a sign that higher variance proposals would be more
efficient when the chain shows high autocorrelations (see Section 7.1.2).

• Correlation matrix plot: Since multiple parameters are estimated, we are in-
terested in inspecting the correlation between them. This plot provides an
image of the cross-correlation matrix between the estimated parameters.
This plot does not inform about convergence, but may assist in constructing
a more efficient sampler if a one at a time update strategy is used.

In addition to the visual inspections, convergence should be tested by more
formal statistical techniques. Throughout this thesis, we use four of the most
common statistical tests in the literature: Geweke time series diagnostic (Geweke,
1992), Gelman and Rubin’s multiple sequence diagnostic (Gelman and Rubin,
1992; Brooks, 1998), Heidelberger and Welch diagnostic (Heidelberger and Welch,
1983), and effective sample size (ESS) (Kass et al., 1998). Technical details and an
outline of these methods are described in Appendix F. In brief, the Geweke time
series diagnostic is based on the comparison of the means of parameter’s poste-
rior distributions from two non-overlapping portions of a single chain by using
a test for equality of the means. The Gelman and Rubin multiple sequence di-
agnostic is based on the comparison of a set of chains drawn with overdispersed
starting points. The criterion to assess whether the chain converges contrasts the
variance within and between chains. The Heidelberger and Welch diagnostic is
based on the Cramér-von Mises test statistic to evaluate the null hypothesis that
the values drawn from a chain come from a stationary distribution. This diag-
nostic consists of two tests: a stationary test and a halfwidth test. The stationary
test is an iterative procedure based on removing portions of the chain and the
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halfwidth test validates the results from the stationary test. The ESS diagnostic
uses the autocorrelation function and trace plots as a measure of how well each
chain is mixing. Finally, all these diagnostics are implemented in the coda (Con-
vergence Diagnosis and Output Analysis) package which is available in R (see
details in Best et al. (1996) and Plummer et al. (2006, 2012)).

7.1.4 Selecting Models in Bayesian Paradigm

In the data applications of Chapter 4, we mentioned the use of information crite-
ria such as AIC, AICc, BIC and ICL.BIC in order to apply model selection among
different alternatives, i.e. select the type of clustering model which best repre-
sents the data (row clustering, column clustering and biclustering) and deter-
mines the number of different groups in the data. In this section, we describe
an information criterion which is commonly used in a Bayesian approach: the
deviance information criterion.

Deviance Information Criterion (DIC)

The DIC (Spiegelhalter et al., 2002) is a useful criterion for selecting models under
a Bayesian approach. This criterion is defined as a hierarchical modeling gener-
alization of the AIC and BIC and is based on the average of the deviances over
the realizations from the posterior distribution, penalized by the effective sample
size (ESS) of the chain. The interpretation of DIC is such as the model with a
lower DIC is the one with a higher posterior probability and, therefore, it should
be selected.

Assume p(Y |Ω) is a considered model where Y is the data and Ω is the param-
eter vector. The formulation of the DIC starts with the definition of the Bayesian
deviance D(Ω) as

D(Ω) = −2 log (p(Y |Ω)) + 2 log(g(Y )), (7.1)

where g(Y ) is a function of the data only. Spiegelhalter et al. (2002) stated that
the function g(Y ) does not need to be specified because this term will be the
same when we compare two models and thus it will be cancelled. In addition, if
Ω̂ represents the posterior mean of the parameter vector then the equation (7.1)
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becomes
D(Ω̂) = −2 log

(
p(Y |Ω̂)

)
,

which is defined as the Bayesian deviance of the posterior mean. Furthermore,
the effective dimension of the model pD is defined as

pD = D(Ω)−D(Ω̂),

which gives a measure of the model complexity based on its effective number of
parameters. The termD(Ω) is called the posterior mean of Bayesian deviance and
is defined as

D(Ω) = EΩ|Y [D(Ω)] . (7.2)

It can be estimated by the average deviances over the T posterior draws of the
parameter vector {Ω1, . . . ,ΩT} as follows

D(Ω) =
1

T

T∑
i=1

D(Ωi) =
1

T

T∑
i=1

{−2 log (p(Y |Ωi))} .

Finally, the DIC is defined by the expression

DIC = D(Ω) + pD = 2D(Ω)−D(Ω̂).

There is controversy about the use of DIC in finite mixture models as a model-
choice criterion, as noted by several contributors to the discussion of Spiegelhal-
ter et al. (2002). DeIorio and Robert (2002) described some possible inconsisten-
cies in the definition of DIC for mixture models. Plummer (2008) affirmed that
the posterior mean (7.2) is not a suitable estimate for the model parameters since
it lies in between multiple modes of the posterior density. Celeux et al. (2006)
explored eight different and natural versions of DIC for missing data problems,
including mixture models, but finally were unable to recommend any of them.
Therefore, implementation of alternatives to DIC in finite mixture models would
be a future research directions to consider (Spiegelhalter et al., 2014).

In the following section, we describe the general structure of the Metropolis-
Hastings algorithm which is one of the most common Bayesian MCMC samplers.
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7.1.5 Description of the Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953) is a MCMC
method for obtaining a set of samples from the target probability distribution p(Ω)

for which direct sampling is difficult. This algorithm is often used to simulate
multivariate distributions. A comprehensive exposition of this algorithm is given
in Siddhartha and Greenberg (1995). Basically, the main idea is the simulation of
values from a proposal distribution q(Ω∗|Ω) for the parameter vector Ω, and then
apply an acceptance/rejection step to assure the accepted samples come from
p(Ω).

The Metropolis-Hastings algorithm for sampling from a Bayesian posterior
distribution p(Ω|Y ) is made up of the following iterative steps:

1. Specify an arbitrary initial value for the parameter vector Ω(0) for which
p(Ω(0)|Y ) > 0 where p(·|Y ) is the posterior distribution and Y is the ob-
served data set.

2. Repeat for t = 1, 2, . . . , T

• Generate a new value for the parameter vector Ω∗ from the candidate-
generating density (proposal distribution) q(Ω∗|Ω(t−1)).

• Compute the acceptance ratio as

r =
p(Ω∗|Y )q(Ω(t−1)|Ω∗)

p(Ω(t−1)|Y )q(Ω∗|Ω(t−1))
. (7.3)

It is important to note that using Bayes’ theorem

p(Ω|Y ) =
p(Y |Ω)π(Ω)

p(Y )
=
L(Ω|Y )π(Ω)

p(Y )
,

where L(Ω|Y ) ∝ p(Y |Ω) is the likelihood function and π(Ω) the prior
density for the parameter vector Ω. The marginal data distribution
p(Y ) cancels in the ratio (7.3) and therefore r can be expressed as a
sequence of the following three ratios:

r =
L(Ω∗|Y )

L(Ω(t−1)|Y )

π(Ω∗)

π(Ω(t−1))

q(Ω(t−1)|Ω∗)
q(Ω∗|Ω(t−1))

.
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We can name the left term as the likelihood ratio, the term in the middle
as the prior ratio and the right term as the proposal ratio.

• Compute the probability of move α(Ω∗|Ω(t−1)) = min {r, 1}

• Generate a value u from a U(0, 1) distribution.

• If u ≤ α(Ω∗|Ω(t−1)), we accept the new value Ω(t) = Ω∗. Otherwise, we
reject it and set Ω(t) = Ω(t−1).

3. Return the values {Ω(1),Ω(2), . . . ,Ω(T )}.

4. Test whether convergence has been achieved. If not, increase T and return
to step 2.

Although the proposal distribution q(·|·) is essentially arbitrary, it has to be
chosen carefully in order to avoid long sampling runs and, consequently, mini-
mize computational time. A recommendation is to choose q(·|·) so that a reason-
able proportion of candidates are accepted. One possible option is to choose q(·|·)
so that the new candidate point is close to the current point, so that is likely to be
accepted. However, if it is too close, the chain will mix very slowly.

Gibbs sampling (Geman and Geman, 1984) is a special case of Metropolis-
Hastings sampling where the new value is always accepted (i.e. the probability of
move is always 1). Gibbs sampling performs a random walk where random vari-
ables are simulated sequentially from univariate conditional distributions rather
than from the full joint distribution. The Gibbs sampler only considers univariate
conditional distributions where all of the random variables but one are assigned
fixed values. Compared with the Gibbs sampler, M-H algorithms can be tuned
toward a much wider range of possibilities.

The sampled posterior distribution can be summarised by means of its mean,
median, standard deviation (SD), time-series standard error, and 95% highest
posterior density (HPD) interval. Given a predetermined level such as α = 0.05,
the (1 − α)% HPD interval for a parameter θ is a credible interval which is con-
structed from the marginal posterior distribution of the parameter as the small-
est possible length interval for which the difference in the probability values
of the interval endpoints is (1 − α)%. That is, HPD(Y ) = {Ω; p(Ω|Y ) ≥ kα}
where Y is the observed data set and kα is determined by the coverage constraint
p(Ω ∈ HPD(Y )) = 1− α. We use this definition throughout this thesis.
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7.2 Fixed Dimension: Metropolis-Hastings Sampler

In this section, we develop the methodology to estimate the parameters for our
one-dimensional clustering finite mixture-density model with incomplete data
(the unknown row (column) membership probability). Sections 7.2.1-7.2.3 de-
scribe the components for formulating the Bayesian inference for our approach:
the likelihood function (Section 7.2.1), the prior distributions imposed upon score,
cut point and row cluster parameters and their corresponding full conditional
distributions (Section 7.2.2), and the joint posterior distribution (Section 7.2.3).
Finally, Section 7.2.4 describes the parameter estimation procedure by using the
M-H sampler. This development is focused on the row clustering model version
(the procedure for column clustering model is similar).

7.2.1 Likelihood Function

As explained in Section 2.1.1, for ordinal response variables with q categories, the
data are represented by a n × m matrix Y where for instance the n rows might
represent the subjects in a particular questionnaire and the m columns be the
different questions, and

yij ∈ {1, . . . , q} i = 1, . . . , n j = 1, . . . ,m.

As formulated on eq. (2.7) on page 25 (Section 2.3), the probability of the data
response yij being equal to category k given that individual i is in row group r

(i ∈ r) including row clustering and interaction factor is

θrjk = P [yij = k|i ∈ r] =
exp(µk + φk(αr + βj + γrj))∑q
`=1 exp(µ` + φ`(αr + βj + γrj))

r = 1, . . . , R, j = 1, . . . ,m, k = 1, . . . , q,

(7.4)

including the monotone increasing constraint 0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1

in the score parameters and µ1 = 0 for reasons of identifiability. Identifiability
also necessitates imposing

∑R
r=1 αr =

∑m
j=1 βj = 0 and sum-to-zero constraints

on each row and column of the association matrix {γrj}, i.e.
∑R

r=1 γrj = 0 for
j = 1, . . . ,m and

∑m
j=1 γrj = 0 for r = 1, . . . , R. We can formulate the likelihood
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function as

L(Ω|{yij}) =
n∏
i=1

[
R∑
r=1

πr

m∏
j=1

q∏
k=1

(θrjk)
I(yij=k)

]
, (7.5)

where Ω is the parameter vector.

7.2.2 Prior Distributions

There are six sets of parameters in Ω:

• q − 1 cut point parameters {µk},

• q − 2 score parameters {φk},

• R− 1 row clustering effects {αr},

• m− 1 column effects {βj},

• (R− 1)(m− 1) interaction factors {γrj}, and

• R− 1 row group membership probability parameters {πr}.

Proper prior distributions for each set of parameters are described below.
They chose to minimize the impact of the priors on the inference by choosing
noninformative priors for all parameters, but in situations where prior knowledge
is available these can easily be replaced with more concentrated distributions

Cut Point Parameters

In the case of the independent cut point parameters, we impose a normal prior
distribution:

µk ∼ N (µµ = 0, σ2
µ) (k = 2, . . . , q and µ1 = 0), (7.6)

where σ2
µ follows a hyperprior

σ2
µ ∼ InverseGamma (νµ, δµ) ,

where νµ = 3 and δµ = 40.
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Score Parameters

We reparametrise the score parameters in terms of their differences in order to
handle with their monotone increasing ordinal constraint 0 = φ1 ≤ φ2 ≤ · · · ≤
φq = 1. Thus, we define a new variable νk as νk = φk+1 − φk for k = 1, . . . , q − 2.
Given this reparametrisation and the constraint in the score parameters {φk}, the
new parameters {νk} all lie in 0 ≤ νk ≤ 1. In addition,

∑q−1
k=1 νk = 1 and therefore

νq−1 = 1 −
∑q−2

k=1 νk. Finally, it is easy to prove that the set of original parameters
{φk} satisfy φk =

∑k−1
`=1 ν`.

We assume that a priori these differences (ν1, . . . , νq−1) follow a Dirichlet joint
distribution with parameters λφ = (λφ1 , λφ2 , . . . , λφq−1) (Ahn et al., 2009):

π(ν1, ..., νq−1) =
Γ(λφ1 + · · ·+ λφq−1)

Γ(λφ1)Γ(λφ2) · · ·Γ(λφq−1)

q−1∏
k=1

ν
λφk−1

k . (7.7)

Moreover, we can establish a random variable transformation from {νk} to {φk}
as

π(φ2, ..., φq−1) = π(ν1, ..., νq−2)

∣∣∣∣ ∂(ν1, ..., νq−2)

∂(φ2, ..., φq−1)

∣∣∣∣
(
νq−1 = 1−

q−2∑
k=1

νk

)
,

where the determinant of the Jacobian matrix is:

∣∣∣∣ ∂(ν1, ..., νq−2)

∂(φ2, ..., φq−1)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∂ν1
∂φ2

∂ν1
∂φ3

· · · ∂ν1
∂φq−1

∂ν2
∂φ2

∂ν2
∂φ3

· · · ∂ν2
∂φq−1

...
... · · · ...

∂νq−2

∂φ2

∂νq−2

∂φ3
· · · ∂νq−2

∂φq−1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

... . . . . . . 0

0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1.

In that manner, we can formulate the joint prior distribution for the score param-
eters {φk}with hyperparameters λφ:

π({φk}) =
Γ(λφ1 + · · ·+ λφq−1)

Γ(λφ1)Γ(λφ2) · · ·Γ(λφq−1)

q−1∏
k=1

ν
λφk−1

k

=
Γ(λφ1 + · · ·+ λφq−1)

Γ(λφ1)Γ(λφ2) · · ·Γ(λφq−1)

q−1∏
k=1

(φk+1 − φk)λφk−1 (φ1 = 0 and φq = 1).

(7.8)
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If {φk} are the order statistics of q − 2 draws from a uniform distribution U(0, 1)

with φ1 = 0 and φq = 1, then the successive differences of the order statistics
{νk} follow a Dirichlet(λφ) distribution with λφ = 1. This prior is equivalent to
imposing an equal expected value over the score parameters.

Row Clustering Effect and Column Effect Parameters

Regarding the R row clustering effect parameters {αr} and the m column effect
parameters {βj}, we impose the following one-dimensional degenerate normal
prior distributions:

(α1, . . . , αR) ∼ DegenNormal(R;µα = 0, σ2
α)

(
R∑
r=1

αr = 0

)
, and

(β1, . . . , βm) ∼ DegenNormal(m;µβ = 0, σ2
β)

(
m∑
j=1

βj = 0

)
,

(7.9)

where the parameters σα and σβ follow hyperpriors

σ2
α ∼ InverseGamma (να, δα) and σ2

β ∼ InverseGamma (νβ, δβ) ,

where να = νβ = 3 and δα = δβ = 40. The reason to set parameters µα and
µβ to zero is because the row clustering effect and column effect parameters are
constrained to have a zero sum. In that manner, {αr} and {βj} are vectors of
draws from a normal distribution:

αr ∼ N
(

0,
R− 1

R
σ2
α

)
r = 1, . . . , R− 1, and

βj ∼ N
(

0,
m− 1

m
σ2
β

)
j = 1, . . . ,m− 1,

constrained to have a zero sum
(
αR = −

∑R−1
r=1 αr and βm = −

∑m−1
j=1 βj

)
. Any

pair of distinct components from {αr} and {βj} are negatively correlated with
Cov(αa, αb) = −σ2

α/R and Cov(βa, βb) = −σ2
β/m (a 6= b). Proofs and brief details

of the one-dimensional degenerate normal distributions are given in Appendix
E.1.1.
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Interaction Factor Parameters

The prior distribution for the interaction factor parameters {γrj} follows a two-
dimensional degenerate normal distribution,

{γrj} ∼ DegenNormal(R,m;µγ = 0, σ2
γ)

r = 1, . . . , R, j = 1, . . . ,m,
(7.10)

where the variance σ2
γ of the prior follows a hyperprior distribution:

σ2
γ ∼ InverseGamma (νγ, δγ) ,

where νγ = 3 and δγ = 40. In addition, the parameter µγ is set to zero so that
{γrj} is a matrix of draws from a normal distribution, satisfying that on each row
and column have zero sum. Any individual component of the matrix {γrj} is
distributed as:

γrj ∼ N
(

0,
(R− 1)(m− 1)

Rm
σ2
γ

)
r = 1, . . . , R, j = 1, . . . ,m,

constrained to have a zero sum (
∑R

r=1 γrj = 0 for j = 1, . . . ,m and
∑m

j=1 γrj = 0

for r = 1, . . . , R). Any pair of components from {γrj} is correlated as

Cov(γrj, γr′j′) =
σ2
γ

Rm
,Cov(γrj, γrj′) = −σ2

γ

(R− 1)

Rm
, and Cov(γrj, γr′j) = −σ2

γ

(m− 1)

Rm

where i 6= i′, j 6= j′. Proofs and brief details of the two-dimensional degenerate
normal distribution are given in Appendix E.1.2.

Row Membership Probability Parameters

We directly impose a Dirichlet distribution on theR parameters corresponding to
the unknown row membership probabilities {πr}

(π1, . . . , πR) ∼ Dirichlet(λπ)

(
R∑
r=1

πr = 1

)
. (7.11)

where λπ = (λπ1 , . . . , λπR) are the hyperparameters. We set λπ = 1. This prior
is equivalent to imposing an equal expected value over the row membership pa-
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rameters.

7.2.3 Joint Posterior Distribution

Combining the prior distributions (7.6) and (7.8)-(7.11), and the formulation of
the likelihood function (7.5), then we can derive the following joint posterior dis-
tribution conditional to the data Y and the number of row clusters R as

p(Ω|Y , R) ∝ L(Ω|Y , R)× π({µk})π({φk})π({αr})π({βj})π({γrj})π({πr}), (7.12)

where the factor π(·) are the prior distributions for each parameter. The priors
for this model are listed in Table 7.1, with default values of the relevant defining
constants given alongside.

Table 7.1: Metropolis-Hastings sampler. Priors and default settings for the hy-
perparameters defining their distributions.

Parameter Prior Distribution Hyperparameters

σ2
µ InverseGamma (νµ, δµ)

νµ = 3
δµ = 40

{µk} N (0, σ2
µ)

{φk}
{νk} ∼ Dirichlet(λφ) λφ = 1
νk = φk+1 − φk

σ2
α InverseGamma (να, δα)

να = 3
δα = 40

{αr} DegenNormal(R; 0, σ2
α)

σ2
β InverseGamma (νβ , δβ)

νβ = 3
δβ = 40

{βj} DegenNormal(m; 0, σ2
β)

{γrj} DegenNormal(R,m; 0, σ2
γ) σ2

γ = 5

{πr} Dirichlet(λπ) λπ = 1

7.2.4 Posterior Estimation

The parameter vector to estimate Ω is composed of the q-vectors φ = {φk} and
µ = {µk}, the R-vectors α = {αr} and π = {πr}, the m-vector β = {βj} and
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the (R × m) matrix γ = {γrj}. We now use the Metropolis-Hastings algorithm
(as described in the Section 7.1.5) to construct a sampler for the joint posterior
p(Ω|Y , R) given an observed data matrix Y and assuming R row clusters. This
iterative process is summarised in the following way:

1. Specify arbitrary initial values for the parameter vector Ω(0). All the initial
values for Ω(0) are drawn from the prior distributions (Table 7.1):

• Initial value for µ: All cut point parameters {µk} are a priori inde-
pendent. Thus, we use the marginal distributions and take a random
draw from a univariate normal distribution N (0, σ2

µ) as an arbitrary
initial value for each element µ(0)

k (k = 2, . . . , q). The hyperprior for σ2
µ

and its hyperparameters are stated in Table 7.1.

• Initial value for φ: We draw a random sample from (7.7):

(ν
(0)
1 , . . . , ν

(0)
q−2) ∼ Dirichlet(λφ1 , . . . , λφq−2),

and then we establish the starting values for {φ(0)
k } by setting φ

(0)
k =∑k−1

`=1 ν
(0)
` for k = 2, . . . , q − 1, φ(0)

1 = 0 and φ
(0)
q = 1.

• Initial value for α and β: We draw a random sample from the one-
dimensional degenerate normal prior distributions (7.9):

(α
(0)
1 , . . . , α

(0)
R ) ∼ DegenNormal(R; 0, σ2

α),

(β
(0)
1 , . . . , β(0)

m ) ∼ DegenNormal(m; 0, σ2
β),

where
∑R

r=1 α
(0)
r = 0 and

∑m
j=1 β

(0)
j = 0. In the case of the row cluster

effect parameters {αr}, the prior on the parameter σ2
α is

InverseGamma (να, δα). The same idea states for the column effect pa-
rameters {βj} (InverseGamma (νβ, δβ)). The imposed values for hyper-
parameters {να, δα, νβ, δβ} are given in Table 7.1.

• Initial value for γ: We draw a random sample from the two-dimensional
degenerate normal prior distributions (7.10):

{γ(0)
rj } ∼ DegenNormal(R,m; 0, σ2

γ) r = 1, . . . , R, j = 1, . . . ,m,

where
∑R

r=1 γ
(0)
rj = 0 for all j,

∑m
j=1 γ

(0)
rj = 0 for all r, and a fix value
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σ2
γ = 5 is taken.

• Initial value for π: We specify a random sample from a Dirichlet dis-
tribution with parameter vector λπ = 1 as starting values for {πr(0)}.
This hyperparameter choice minimizes the impact of the prior on the
inference for the row cluster membership parameters (noninformative
prior).

2. At tth iteration (t = 1, 2, . . . , T ):

(a) We define the likelihood ratio at iteration t (LR) from (7.5) as

LR =

∏n
i=1

[∑R
r=1 π

∗
r

∏m
j=1

∏q
k=1

(
θ∗rjk
)I(yij=k)

]
∏n

i=1

[∑R
r=1 π

(t−1)
r

∏m
j=1

∏q
k=1

(
θ

(t−1)
rjk

)I(yij=k)
] , (7.13)

where θ∗rjk is the probability defined as (7.4).
Additionally, the prior distribution for parameter vector α (π(α)) is
a DegenNormal(R; 0, σ2

α) distribution (see Table 7.1) and therefore the
pdf is (see eq. (E.1) in Appendix E.1.1):

π(α) = fDegN (α|R, σ2
α) = (2πσ2

α)−(R−1
2 )R

1
2 exp

(
− 1

2σ2
α

R∑
r=1

α2
r

)
δ

(
R∑
r=1

αr

)

∝ exp

(
− 1

2σ2
α

R∑
r=1

α2
r

)
δ

(
R∑
r=1

αr

)
.

.

(7.14)

Similarly the formulation of the prior distribution for parameter vector
β is

π(β) = fDegN (β|m,σ2
β) ∝ exp

(
− 1

2σ2
β

m∑
j=1

β2
j

)
δ

(
m∑
j=1

βj

)
, (7.15)
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and the pdf of γ is (see eq. (E.5) in Appendix E.1.1):

π(γ) = fDegN (γ|R,m, σ2
γ) = (2πσ2

γ)
− (R−1)(m−1)

2 R
(m−1)

2 m
(R−1)

2

× exp

(
− 1

2σ2
γ

R∑
r=1

m∑
j=1

γ2
rj

)
R∏
r=1

δ

(
m∑
j=1

γrj

)
m−1∏
j=1

δ

(
R∑
r=1

γrj

)

∝ exp

(
− 1

2σ2
γ

R∑
r=1

m∑
j=1

γ2
rj

)
R∏
r=1

δ

(
m∑
j=1

γrj

)
m−1∏
j=1

δ

(
R∑
r=1

γrj

)
.

(7.16)

(b) Generate a new candidate for the parameter Ω∗ and test whether we
accept it as a new value for the parameter. At each iteration, we up-
date blocks of parameters in turn (e.g. first φ∗, then µ∗, and so on) but
within each block we just select a random component, or a neighbour-
ing pair of parameters, to update in order to avoid slow mixing.
The parameter vector Ω is updated as follows:

• New candidate for µ: We update a randomly selected element `
of µ (` ∈ 2, . . . , q). Therefore, the probability that a particular µ` is
selected is 1/(q − 1). The proposal distribution q(µ∗|µ(t−1)), is im-
posed via the randomly selected candidate µ` according to a ran-
dom walk process by means of a univariate normal distribution:

µ∗` ∼ N (µ
(t−1)
` , σ2

µp), (7.17)

where the proposal variance σ2
µp is specified as shown in Table 7.2.

The remaining components are set with the same value as at itera-
tion t−1, i.e. µ∗`′ = µ

(t−1)
`′ for ` 6= `′. The acceptance ratio for the new

component candidate based on the updating of the component µ∗`
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is:

rµ =
p(Ω∗|Y )q(µ(t−1)|µ∗)

p(Ω(t−1)|Y )q(µ∗|µ(t−1))

=
p(µ∗` |Y , (Ω\µ`)∗)

(
1
q−1

)
q(µ

(t−1)
` |µ∗`)

p(µ
(t−1)
` |Y , (Ω\µ`)(t−1))

(
1
q−1

)
q(µ∗` |µ

(t−1)
` )

=

p(µ∗` |Y , (Ω\µ`)∗)fN
(
µ
(t−1)
` −µ∗`
σµp

)
p(µ

(t−1)
` |Y , (Ω\µ`)(t−1))fN

(
µ∗`−µ

(t−1)
`

σµp

) =
p(µ∗` |Y , (Ω\µ`)∗)

p(µ
(t−1)
` |Y , (Ω\µ`)(t−1))

,

where fN (·) is the density of the standard normal distribution and
p(µ∗` |Y , (Ω\µ`)∗) is the full conditional posterior distribution of Ω∗

formulated as

p(µ∗` |Y , (Ω\µ`)∗) ∝
n∏
i=1

[
R∑
r=1

π∗r

m∏
j=1

q∏
k=1

(
θ∗rjk
)I(yij=k)

]
1

σµ
exp

(
− 1

2σ2
µ

µ∗
2

`

)
,

where the unknown variance σ2
µ is specified as shown in Table 7.1.

Thus, the acceptance ratio rµ is formulated as

rµ = LR× exp

(
− 1

2σ2
µ

(
µ∗

2

` − µ
(t−1)2

`

))
, (7.18)

where LR is defined as (7.13).

• New candidate for φ: We update a randomly selected element of
φ. The component to update is selected randomly. Therefore, the
probability for a particular φ` (` ∈ 2, . . . , q − 1) of being selected
is 1/(q − 2). The new candidate φ∗ is as a result of drawing an
uniform distribution as

φ∗` ∼ U
[
φ

(t−1)
`−1 , φ

(t−1)
`+1

]
(7.19)

to set the new value for φ∗` at the iteration t. The remaining compo-
nents are set with the same value as at iteration t−1, i.e. φ∗`′ = φ

(t−1)
`′

for ` 6= `′. This proposal ensures the new state for φ∗ achieves the
monotone constraint in the score parameters. From here, we com-
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pute the acceptance ratio rφ for the new component candidate φ∗

as

rφ =
p(φ∗` |Y , (Ω\φ`)∗)

(
1
q−2

)
q(φ

(t−1)
` |φ∗`)

p(φ
(t−1)
` |Y , (Ω\φ`)(t−1))

(
1
q−2

)
q(φ∗` |φ

(t−1)
` )

=
p(φ∗` |Y , (Ω\φ`)∗)

(
1

φ∗`+1−φ
∗
`−1

)
p(φ

(t−1)
` |Y , (Ω\φ`)(t−1))

(
1

φ
(t−1)
`+1 −φ

(t−1)
`−1

) =
p(φ∗` |Y , (Ω\φ`)∗)

p(φ
(t−1)
` |Y , (Ω\φ`)(t−1))

because φ∗`+1 − φ∗`−1 = φ
(t−1)
`+1 − φ

(t−1)
`−1 . Additionally, the full con-

ditional posterior distribution of φ∗ is defined by using the likeli-
hood density (7.5) and the joint prior distribution (7.8) as

p(φ∗` |Y , (Ω\φ`)∗) ∝
n∏
i=1

[
R∑
r=1

π∗r

m∏
j=1

q∏
k=1

(
θ∗rjk
)I(yij=k)

]
× (φ∗`+1 − φ∗`)λ`+1−1 (φ∗` − φ∗`−1)λ`−1.

Thus, the acceptance ratio rφ is formulated as,

rφ = LR×

(
φ∗`+1 − φ∗`

φ∗`+1 − φ
(t−1)
`

)λ`+1−1(
φ∗` − φ∗`−1

φ
(t−1)
` − φ∗`−1

)λ`−1

. (7.20)

• New candidate for α: Each row group effect αr (r = 1, . . . , R)
is updated separately by a Gaussian random walk proposal. The
selection of the component αr to update is done randomly. In order
to update αr in the iteration t, a disturbance δα is drawn from

δα ∼ N (0, σ2
αp), (7.21)

where the unknown variance σ2
αp is specified as shown in Table 7.2.

The disturbance δα is added to α(t−1)
r . In order to preserve the sum-

to-zero constraint in the new candidate α∗, δα is subtracted from
α

(t−1)
r′ where r′ is the index of another distinct row group which is
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also chosen at random:

α∗r = α(t−1)
r + δα and α∗r′ = α

(t−1)
r′ − δα (r 6= r′). (7.22)

The remaining components are set with the same value as at itera-
tion t− 1, i.e. α∗` = α

(t−1)
` for ` /∈ {r, r′}. Given equations (7.21) and

(7.22), the distribution of the updated component α∗` given α(t−1)

is:

α∗r|α(t−1) ∼ N (α(t−1)
r , σ2

αp),

α∗r′ = α
(t−1)
r′ − (α∗r − α(t−1)

r ).
(7.23)

Thus, the proposal function for the new candidate q(α∗|α(t−1)) is:

q(α∗|α(t−1)) = q(α∗r , α
∗
r′|α(t−1))

=
1

R

1

R− 1
fN

(
α∗r − α

(t−1)
r

σαp

)

× δ(α∗r + α∗r′ +
R∑

`/∈{r,r′}

α∗`)δ
R−2(α∗−{r,r′} −α

(t−1)
−{r,r′}),

where α−{r,r′} indicates the parameter vector α without the com-
ponents αr and αr′ and δd(·) is the delta function to apply the sum-
to-zero constraint on a d-dimensional vector. The acceptance ratio
for the new candidate α∗ is:

rα =
p(α∗r , α

∗
r′|Y , (Ω\{αr, αr′})∗)q(α(t−1)|α∗)

p(α
(t−1)
r , α

(t−1)
r′ |Y , (Ω\{αr, αr′})(t−1))q(α∗|α(t−1))

=
p(α∗r , α

∗
r′|Y , (Ω\{αr, αr′})∗)fN

(
α
(t−1)
r −α∗r
σαp

)
p(α

(t−1)
r , α

(t−1)
r′ |Y , (Ω\{αr, αr′})(t−1))fN

(
α∗r−α

(t−1)
r

σαp

)
=

p(α∗r , α
∗
r′|Y , (Ω\{αr, αr′})∗)

p(α
(t−1)
r , α

(t−1)
r′ |Y , (Ω\{αr, αr′})(t−1))

.

As indicated above, the prior distribution for α follows the one-
dimensional degenerate normal (7.14). Thus, the full conditional
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posterior distribution p(α∗r|Y , (Ω\αr)∗) is formulated as:

p(α∗r , α
∗
r′ |Y , (Ω\{αr, αr′})∗) ∝

n∏
i=1

[
R∑
r=1

π∗r

m∏
j=1

q∏
k=1

(
θ∗rjk
)I(yij=k)

]

× exp

− 1

2σ2
α

(α∗
2

r + α∗
2

r′ +
R∑

`/∈{r,r′}

α∗
2

` )

 ,

(7.24)

where the unknown variance σ2
α is specified as shown in Table 7.1.

Thus, the acceptance ratio rα is,

rα = LR× exp

(
− 1

2σ2
α

(α∗
2

r + α∗
2

r′ − α(t−1)2

r − α(t−1)2

r′ )

)
. (7.25)

• New candidate for β: Each column effect βj (j = 1, . . . ,m) is up-
dated separately by a Gaussian random walk proposal similar to
the previous update in α. Thus, the acceptance ratio rβ is formula-
ted as,

rβ = LR× exp

(
− 1

2σ2
β

(β∗
2

j + β∗
2

j′ − β
(t−1)2

j − β(t−1)2

j′ )

)
, (7.26)

where LR is defined as (7.13) and σ2
β is specified in Table 7.1.

• New candidate for γ: Each interaction factor parameter γrj (r =

1, . . . , R and j = 1, . . . ,m) is updated separately by using a random
walk Metropolis proposal. Again we must take care to preserve
the zero means in each row and column of the interaction matrix
γ∗ in the new candidate. Therefore, a disturbance δγ is drawn from
a univariate normal distribution:

δγ ∼ N (0, σ2
γp),

where the proposal variance σ2
γp is specified as shown in Table 7.2.

In order to generate the new candidate γ∗, we proceed in the fol-
lowing way: First, the disturbance δγ is added to a randomly se-
lected component of the iteration matrix γuv. Then, we randomly
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select another row u′ and column v′ which the disturbance δγ is
subtracted and added in the following way:

γ∗uv = γ(t−1)
uv + δγ γ∗uv′ = γ

(t−1)
uv′ − δγ

γ∗u′v = γ
(t−1)
u′v − δγ γ∗u′v′ = γ

(t−1)
u′v′ + δγ (u 6= u′, v 6= v′).

The remaining components are set with the same value as at itera-
tion t − 1, i.e. γ∗`ϑ = γ

(t−1)
`ϑ for ` /∈ {u, u′} and ϑ /∈ {v, v′}. Further-

more, the distribution of the updated component γ∗`ϑ given γ(t−1)

is:
γ∗uv|γ(t−1) ∼ N (γ(t−1)

uv , σ2
γp). (7.27)

The probability of selecting a random component γuv from the in-
teraction matrix is 1

Rm
and therefore the probabilities of selecting

the corresponding elements in row u′ and column v′ are 1
R−1

and
1

m−1
respectively. Thus, the proposal function for the new candi-

date q(γ∗|γ(t−1)) is:

q(γ∗|γ(t−1)) = q(γ∗uv|γ(t−1))

=
1

Rm

1

R− 1

1

m− 1
fN

(
γ∗uv − γ

(t−1)
uv

σγp

)

× δ(γ∗uv + γ∗u′v + γ∗uv′ + γ∗u′v′ +
R∑

`/∈{u,u′}

m∑
ϑ/∈{v,v′}

γ∗`ϑ)

× δRm−4(γ∗−UV − γ
(t−1)
−UV ).

where γ−UV indicates the parameter matrix γ without the com-
ponents γuv, γu′v, γuv′ , and γu′v′ . The acceptance ratio for the new
candidate γ∗ is:

rγ =
p(γ∗UV |Y , (Ω\γUV )∗)q(γ(t−1)|γ∗)

p(γ
(t−1)
UV |Y , (Ω\γUV )(t−1))q(γ∗|γ(t−1))

=
p(γ∗UV |Y , (Ω\γUV )∗)fN

(
γ
(t−1)
uv −γ∗uv
σγp

)
p(γ

(t−1)
UV |Y , (Ω\γUV )(t−1))fN

(
γ∗uv−γ

(t−1)
uv

σγp

) =
p(γ∗UV |Y , (Ω\γUV )∗)

p(γ
(t−1)
UV |Y , (Ω\γUV )(t−1))

,

where γUV = {γuv, γu′v, γuv′ , γu′v′} and Ω\γUV indicates the param-
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eter vector Ω without the parameter set γUV . The prior distribution
for γ follows the two-dimensional degenerate normal (7.16). Sim-
ilarly to the update in α and β update, the acceptance ratio rγ is

rγ = LR× exp

− 1

2σ2
γ

 R∑
`∈{u,u′}

m∑
ϑ∈{v,v′}

γ∗
2

`ϑ −
R∑

`∈{u,u′}

m∑
ϑ∈{v,v′}

γ
(t−1)2

`ϑ

 ,

(7.28)

where σ2
γ is specified as shown in Table 7.1.

• New candidate for π: Each row membership probability πr (r =

1, . . . , R) is updated separately by exchanging probability between
two row groups. We randomly select a pair of candidate clusters
to update, ` and `′, and calculate the proportion of their combined
probability assigned to group ` at iteration t− 1:

ωπ =
π

(t−1)
`

π
(t−1)
` + π

(t−1)
`′

.

We draw a new proportion ω′π from a logistic normal distribution
with mean ωπ and constant variance σ2

πp = 0.3, which is defined as:

flogisticN (ω′π | π(t−1)) = fN (logit(ω′π))
1

ω′π(1− ω′π)
, (7.29)

where fN (·) is the pdf of a normal distribution with mean logit(ωπ)

and variance σ2
πp . As the new candidate π∗ is only valid if the sum-

to-one constraint is preserved, we update the two random candi-
dates ` and `′ as follows:

π∗` = ω′π(π
(t−1)
` + π

(t−1)
`′ ) and π∗`′ = (1− ω′π)(π

(t−1)
` + π

(t−1)
`′ ).

The remaining components are set with the same value as at itera-
tion t− 1, i.e. π∗s = π

(t−1)
s for s /∈ {`, `′}.

The acceptance ratio for the new candidate π∗ is:

rπ =
p(π∗` |Y , (Ω\π`)∗)

(
1
R

) (
1

R−1

)
q(π

(t−1)
` |π∗)

p(π
(t−1)
` |Y , (Ω\π`)(t−1))

(
1
R

) (
1

R−1

)
q(π∗` |π(t−1))

. (7.30)
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In order to compute q(π∗ | π(t−1)), we apply the variable change

q(π∗ | π(t−1)) = q(π∗` | π(t−1)) = flogisticN (ω′π | π(t−1))

∣∣∣∣∂ω′π∂π∗`

∣∣∣∣
= flogisticN (ω′π | π(t−1))

1

π
(t−1)
` + π

(t−1)
`′

,
(7.31)

where flogisticN (·|π(t−1)) is the pdf formulated in (7.29). Finally, us-
ing eq. (7.31) and (7.29) the proposal distribution ratio is obtained:

q(π
(t−1)
` | π∗)

q(π∗` | π(t−1))
=
fN (logit(ω′π))ω′π(1− ω′π)(π

(t−1)
` + π

(t−1)
`′ )

fN (logit(ω′π))ωπ(1− ωπ)(π∗` + π∗`′)

=
ω′π(1− ω′π)

ωπ(1− ωπ)
=

π∗`π
∗
`′

π
(t−1)
` π

(t−1)
`′

,

because π∗` + π∗`′ = π
(t−1)
` + π

(t−1)
`′ . Additionally, the marginal pos-

terior distribution of π at iteration t is defined by using the likeli-
hood density (7.5) and the prior Dirichlet distribution with hyper-
parameter vector λπ (see Table 7.1) as:

p(π∗` |Y , (Ω\π`)∗) ∝
n∏
i=1

[
R∑
r=1

π∗r

m∏
j=1

q∏
k=1

(
θ∗rjk
)I(yij=k)

]
(π∗` )

λ`−1(π∗`′)
λ`′−1.

Thus, the acceptance ratio rπ is formulated as,

rπ = LR×

(
π∗`

π
(t−1)
`

)λ`−1(
π∗`′

π
(t−1)
`′

)λ`′−1

. (7.32)

(c) We accept the new candidate Ω(t) = Ω∗ if a random draw from an
U(0, 1) distribution is less than the minimum between 1 and the ac-
ceptance ratio. Otherwise, we reject it and set Ω(t) = Ω(t−1).

(d) Change the iteration from t to t+ 1.

3. Return the values {Ω(B+1), . . . ,Ω(T )}, where B is the number of iterations
used in the burn-in period .

4. Test whether convergence has been achieved. If not, increase T and return
to step 2.
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Summary details of the default parameter settings are collected together in Ta-
ble 7.2. We use Geweke Time Series, ESS and Heidelberger and Welch diagnostics
to test the convergence of a single chain and the Gelman and Rubin diagnostic to
test the convergence using several chains. In the latter, we pool all the MCMC
chains used once the convergence is reached (see brief description in Appendix
F.2).

Table 7.2: Default settings for the parameters controlling the proposal distribu-
tions for the Metropolis-Hastings sampler in the estimation of the row clustering
model.

Move Parameter Proposal Constants
{µk} σ2

µp = 0.3

{αr} σ2
αp = 0.3

{βj} σ2
βp

= 0.3

{γrj} σ2
γp = 0.3

{πr} σ2
πp = 0.3

7.2.5 Label Switching Problem

One of the most common drawbacks associated with the MCMC application of
mixture models is the non-identifiability of the labels of the mixture components.
For example, the two fitted row cluster mixture models π̂1f(Θ̂1;Y ) + π̂2f(Θ̂2;Y )

and π̂2f(Θ̂2;Y ) + π̂1f(Θ̂1;Y ) have the same likelihood. Therefore, we cannot
uniquely identify π̂1f(Θ̂1;Y ) as the “first” component of the mixture. The compo-
nents may be ordered arbitrarily. As a consequence, various functions of interest
such as the marginal posterior distribution of the parameters and their associated
moments may be invariant under permutations of the labels of its components.
In a Bayesian inference approach, if the prior distributions are the same for all
the permutations of parameters (i.e. they do not distinguish between the mixture
components) then the posterior distributions will show modes which will be sim-
ilarly symmetric (Stephens, 2000a). This difficulty is so-called label switching prob-
lem (see for example Stephens (2000a), Jasra et al. (2005), and Marin and Robert
(2007, Section 6.4) for a review and illustrative examples of this problem). In our
clustering model approach, this problem is crucial as clustering inference requires
an unequivocal assignment of the labels to the mixture components. Therefore, a
procedure addressing the label switching problem is required to both reach con-
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vergence of a MCMC sampler and produce a satisfactory Bayesian analysis of
the data. Figure 7.1 illustrates the effects of label switching on a simulated data
when fitting a row clustering stereotype model (µk + φk(αr + βj)) by using a
Metropolis-Hastings sampler, as introduced in Section 7.2.4. Multimodality in
the estimated marginal posterior densities and distinct jumps in the traces of row
effects α̂1 and α̂2 are indicative of a label switching problem. Obtaining summary
statistics from the cluster dependent on the basis of this MCMC output is not
straightforward.
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Figure 7.1: Label switching: Marginal posterior densities and trace plots of row effects
α̂1 and α̂2 when fitting a row clustering stereotype model (µk + φk(αr + βj)). The
sample size is n = 500, the number of categories is q = 4, the number of columns is
m = 3 and the number of row clusters is R = 3. The fitting is performed with the
Metropolis-Hastings sampler (Section 7.2.4). The blue line is the true parameter value.
Jumps in the trace plots and multimodality in the densities indicates that label switching
problem is occurring.

There have been several possible strategies proposed to deal with the label
switching problem. A good review of them can be found in Stephens (2000a, Sec-
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tion 3), McLachlan and Peel (2000, Section 4.9), Jasra et al. (2005, Section 1.3), and
Sperrin et al. (2010). A common solution is to impose an identifiability constraint
(IC) on the parameter space such as α1 < α2 < . . . < αR with the aim of obtain-
ing marginal posterior distributions satisfying this constraint. This constraint is
chosen so that just one labelling permutation satisfies the constraint in each it-
eration. This solution is simple and works well in many situations. However,
many choices of IC will be ineffective to solve the problem because chain mix-
ing will be impeded (see Stephens (2000a, Section 3.1) for a descriptive example).
Additionally, McLachlan and Peel (2000, Section 4.9) observed that estimations of
adjacent parameters will be a biased sample (over-estimated) if we sample under
the ordering constraint. This is due to the fact that the IC is providing information
which limits the prior distribution of the parameters despite the fact that the prior
distributions were non-informative in relation to the components of the mixture
model. Even if an appropriate prior is specified, one which incorporates the IC,
MCMC mixing may be slowed or made difficult by the constraint.

Other approaches avoiding the identifiability constraint difficulties have been
proposed. Most of them are algorithms based on deterministic posterior rela-
belling of the MCMC outputs. For example, Stephens (2000a) and Celeux (1998)
described relabelling algorithms based on the k-means clustering of the MCMC
outputs with the purpose of obtaining unimodal marginal posterior distributions.
Moreover, the pivotal reordering strategy described in Marin and Robert (2007, Sec-
tion 6.4) which consists of selecting one of the modes of the posterior distribution
and relabel the MCMC output according to the vicinity to that mode. Addition-
ally, Frühwirth-Schnatter (2001) developed a random permutation sampler designed
to improve the mixing in a MCMC output when an IC is applied. Celeux et al.
(2000) and Hurn et al. (2003) used a decision theoretic approach to minimize the
posterior expectation of label invariant loss functions.

In this thesis, the relabelling algorithm described in Stephens (2000a) was im-
plemented. Its outline is described in Appendix G. Technical details can be found
in the Section 4.1 from his paper. In brief, the procedure is based on measuring
the loss for reporting the membership distribution matrix Ẑ = (ẑir) where ẑir is
the mean over all the samples of the probability of observation i (i = 1, . . . , n)
being classified a posteriori into cluster r (r = 1, . . . , R). The n× R matrix Ẑ rep-
resents the estimated distribution on R-group clusters of the data and the loss for
reporting this matrix instead of the true distribution on clustering P = (pir) is
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measured by using the Kullback-Leibler divergence (DKL, see its general defini-
tion in eq. (3.2) on page 39) in the case of discrete distributions. Thus,

DKL(P, Ẑ) =
n∑
i=1

R∑
r=1

pir log

(
pir
ẑir

)
.

For our approach, pir = P [zir = 1 | {yij},Ω] which is described in eq. (2.18) on
page 30. The procedure finds the minimum pir of DKL(P, Ẑ) under all permuta-
tions of the parameter vectors that are involved in the label switching problem.
This DKL measure can be seen as the expectation of the logarithmic difference be-
tween the distributions P and Ẑ, where the expectation is taken using the proba-
bilities {pir}. It can also be formulated as the difference of two entropies:

DKL(P, Ẑ) = −
n∑
i=1

R∑
r=1

pir log(ẑir) +
n∑
i=1

R∑
r=1

pir log(pir),

where the first term is the cross entropy between distributions P and Ẑ and the
second term is the entropy of P .

Figure 7.2 shows the marginal posterior distributions and the trace plots for
the row effect parameters α1 and α2 after applying this relabelling procedure to
the MCMC samples shown in Figure 7.1. The results are very satisfactory as the
multimodality in the density plots has been removed and the trace plots show
good mixing. Thus, the algorithm was effectively able to solve the label switch-
ing problem for the parameters. To conclude, in order to obtain a satisfactory
Bayesian analysis of the data and reach convergence for our finite mixture ap-
proach, the combination of using a MCMC sampler and, later, a label switching
procedure is a required strategy.

7.2.6 Simulation Study. One-Dimensional Clustering

We set up a simulation study to test how reliably we were able to estimate the
parameters of our one-dimensional clustering approach using the Metropolis-
Hastings sampler developed in Section 7.2.4. Similarly to the simulation study
for testing the fitting by using the EM algorithm (Section 4.1), the experiment
consisted of the simulation of datasets and then fit the correct model to those
data.
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Figure 7.2: Label switching: Marginal posterior densities and trace plots of row effects
α̂1 and α̂2 when fitting a row clustering stereotype model (µk + φk(αr + βj)). The
sample size is n = 500, the number of categories is q = 4, the number of columns is
m = 3 and the number of row clusters is R = 3. The fitting is performed with the
Metropolis-Hastings sampler (Section 7.2.4). The blue line is the true parameter value.
Unimodality in the densities and a satisfactory mixing in the trace plots indicates that
the label switching problem is solved.

The design of the study includes an ordinal response variable with q = 4 cat-
egories, sample size n = 500, number of columns (m = 3, 5), and we varied the
number of row clusters (R = 2, 3, 4). For each combination of number of row clus-
ters, a single set of parameters values was chosen and H = 100 data sets (repli-
cates) were generated from an underlying row clustering model. For each data
set, we assessed the convergence of the M-H sampler by running S = 3 chains
in parallel from widely dispersed starting points. We ran each chain for a initial
20000 iterations which were discarded (burn-in period). We then ran each chain
for a further 100000 iterations, storing only every 5th state (thinning period). We
used the convergence diagnostics described in Section 7.1.3 and Appendix F to
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asses the convergence of these chains. This simulation study procedure is out-
lined in Appendix H.1.

We have simulated over several scenarios. As we are interested in testing the
success of parameter estimation in challenging situations where it might be ex-
pected that estimation might be difficult, we chose two particular scenarios. The
first case is when two of the score parameters {φk} have equal values and there-
fore we could in fact merge their corresponding response categories. A second
scenario is to set a very small a priori membership probability (e.g. π2 = 0.015)
and, consequently, few observations will be seen and classified as members of
that cluster.

For each chain and replicate, we summarised results computing mean, me-
dian, standard deviation, time series standard error, 95% highest posterior den-
sity interval (HPD) and Gelman-Rubin’s potential scale reduction factor (PSRF)
for the elements of the free parameter vector Ω = ({µk}, {φk}, {αr}, {βj}, {πr}).
The average over the HS = 300 chains for each statistical measure are shown in
Tables 7.3 and 7.4. The results show that the mean and median of all the param-
eters are close to their true values and as expected the 95% HPD credible inter-
vals include the true parameters in all the cases. Additionally, Gelman-Rubin’s
PSRF values are less than 1.2 throughout all the scenarios diagnosing that con-
vergence was reached. For the specific case of the 2 particular scenarios shown in
Table 7.4, these results are very satisfactory because our M-H sampler can iden-
tify these particular scenarios and get back values close to the true parameters.
The marginal posterior distributions, trace plots for each parameter and an il-
lustration of convergence diagnostic plots related to the all the scenarios of this
simulation study are shown in Appendix H.2.

7.2.7 Real-Life Data Examples Using M-H Sampler

In this section, we use our Metropolis-Hasting sampler to estimate the param-
eters for two real-life data examples: the Applied Statistics feedback forms and
the tree presences in great smoky mountains. The description for both examples
was given in Sections 4.2.1 and 4.2.2 respectively. In the first example, we ran 6
different samplers fitting the row clustering model. Equivalently, we fitted the
row clustering including iteration factors model in the second example.

In both examples, we assessed the convergence of the each M-H sampler by
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Table 7.3: MH simulation study: Summary statistics for estimated parameters
for stereotype model including row clustering µk + φk(αr + βj). The true pa-
rameter values, Gelman-Rubin’s PSRF, mean, median, standard deviation (SD),
time-series standard error, and 95% highest posterior density interval (HPD) for
different number of row clusters (R = 2, 3, 4) are shown. The sample size is
n = 500, the number of categories is q = 4, and the number of columns is m = 3.

R
True

parameters

Metropolis-Hastings
Gelman-

Rubin
PSRF

Mean Median S.D.
Time-
series
S.E.

HPD
95% lower

HPD
95% upper

2

µ2 = 0.414

1.0023

0.334 0.547 0.326 0.0080 -0.311 0.965
µ3 = 2.551 2.230 2.188 0.361 0.0115 1.582 3.055
µ4 = 1.507 1.314 1.274 0.407 0.0128 0.565 2.129
φ2 = 0.355 0.246 0.247 0.076 0.0014 0.099 0.396
φ3 = 0.672 0.694 0.694 0.041 0.0010 0.616 0.774
α1 = 3.571 3.185 3.150 0.334 0.0100 2.586 4.013
β1 = −0.427 -0.338 -0.338 0.138 0.0010 -0.615 -0.074
β2 = 1.871 1.785 1.784 0.157 0.0010 1.477 2.092
π1 = 0.350 0.354 0.353 0.041 0.0003 0.275 0.434

3

µ2 = 0.414

1.0016

0.375 0.347 0.316 0.0103 -0.198 1.019
µ3 = 2.551 2.487 2.448 0.432 0.0181 1.729 3.396
µ4 = 1.507 1.391 1.349 0.613 0.0249 0.288 2.674
φ2 = 0.355 0.284 0.287 0.095 0.0014 0.093 0.464
φ3 = 0.672 0.636 0.636 0.056 0.0011 0.524 0.743
α1 = 3.571 3.201 3.169 0.675 0.0091 1.876 4.637
α2 = −0.919 -0.698 -0.777 0.583 0.0100 -1.816 0.727
β1 = −0.427 -0.294 -0.294 0.142 0.0011 -0.579 -0.019
β2 = 1.871 1.557 1.552 0.158 0.0019 1.215 1.897
π1 = 0.200 0.230 0.310 0.147 0.0033 0.085 0.629
π2 = 0.500 0.416 0.317 0.140 0.0031 0.208 0.794

4

µ2 = 0.414

1.0113

0.398 0.380 0.301 0.0108 -0.404 0.891
µ3 = 2.551 2.133 2.127 0.429 0.0186 1.303 3.108
µ4 = 1.507 1.398 1.409 0.700 0.0302 -0.274 2.246
φ2 = 0.355 0.299 0.301 0.073 0.0010 0.157 0.442
φ3 = 0.672 0.683 0.583 0.048 0.0007 0.586 0.776
α1 = 3.571 3.738 3.719 0.759 0.0089 2.269 5.197
α2 = −0.919 -1.038 -0.976 0.794 0.0122 -2.616 0.306
α3 = 1.228 1.086 1.034 0.743 0.0080 -0.174 2.536
β1 = −0.427 -0.411 -0.410 0.153 0.0012 -0.709 -0.112
β2 = 1.871 1.744 1.740 0.158 0.0018 1.396 2.092
π1 = 0.250 0.248 0.242 0.108 0.0018 0.048 0.411
π2 = 0.320 0.293 0.299 0.076 0.0014 0.101 0.483
π3 = 0.150 0.206 0.204 0.107 0.0019 0.045 0.451
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Table 7.4: MH simulation study. Special scenarios: Summary statis-
tics for estimated parameters for stereotype model including row clustering
µk + φk(αr + βj). The true parameter values, Gelman-Rubin’s PSRF, mean, me-
dian, standard deviation (SD), time-series standard error, and 95% highest pos-
terior density interval (HPD) for R = 3 number of row clusters are shown. The
sample size is n = 500, the number of categories is q = 4, and the number of
columns is m = 5. π2 = 0.015 in first subtable and φ2 = φ3 = 0.500 in the second
subtable.

R
True

parameters

Metropolis-Hastings
Gelman-

Rubin
PSRF

Mean Median S.D.
Time-
series
S.E.

HPD
95% lower

HPD
95% upper

3

µ2 = 0.814

1.0809

0.827 0.823 0.135 0.0067 0.558 1.093
µ3 = 0.951 0.980 0.983 0.182 0.0094 0.616 1.350
µ4 = 0.207 0.281 0.294 0.249 0.0133 -0.237 0.801
φ2 = 0.355 0.360 0.359 0.019 0.0007 0.323 0.397
φ3 = 0.672 0.663 0.664 0.016 0.0004 0.632 0.697
α1 = 3.634 3.668 3.644 0.335 0.0093 3.528 4.097
α2 = −0.819 -0.809 -0.816 0.244 0.0116 -1.298 -0.305
β1 = −0.427 -0.547 -0.548 0.114 0.0023 -0.750 -0.311
β2 = 1.285 1.177 1.181 0.110 0.0022 1.012 1.383
β3 = 1.872 2.004 2.003 0.120 0.0028 1.795 2.256
β4 = −0.097 0.037 0.036 0.114 0.0021 -0.189 0.257
π1 = 0.400 0.410 0.411 0.093 0.0024 0.368 0.437
π2 = 0.015 0.053 0.056 0.182 0.0024 0.008 0.089

3

µ2 = 0.814

1.0798

0.865 0.824 0.237 0.0097 0.466 1.370
µ3 = 0.951 1.045 1.002 0.244 0.0104 0.638 1.559
µ4 = 0.207 0.276 0.288 0.445 0.0199 -0.271 1.476
φ2 = 0.500 0.480 0.480 0.031 0.0006 0.419 0.540
φ3 = 0.500 0.499 0.499 0.030 0.0006 0.441 0.559
α1 = 3.634 3.242 3.271 0.362 0.0100 2.534 3.945
α2 = −0.819 -0.881 -0.975 0.545 0.0222 -1.729 0.276
β1 = −0.427 -0.498 -0.497 0.148 0.0015 -0.791 -0.206
β2 = 1.285 1.373 1.372 0.155 0.0017 1.082 1.687
β3 = 1.872 1.824 1.822 0.162 0.0018 1.490 2.130
β4 = −0.097 -0.113 -0.154 0.149 0.0016 -0.435 0.051
π1 = 0.200 0.181 0.183 0.034 0.0087 0.111 0.245
π2 = 0.500 0.473 0.461 0.041 0.0070 0.413 0.541

running three chains in parallel from widely dispersed starting points. As in the
simulation study (Section 7.2.6), each chain was run for an initial burn-in period
of 20000 iterations which are discarded. We then ran each chain for a further
100000 updates, storing only every 5th state (thinning). We used the convergence
diagnostics described in Section 7.1.3 and Appendix F to assess the convergence
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of these chains. Finally, the results are summarised and compared with those
obtained from fitting our suite of models by running the EM algorithm and using
AIC to do model comparison (Sections 4.2.1 and 4.2.2).

Example 1: Applied Statistics Course Feedback

The dimensions of the ordinal data matrix for the Applied Statistics course feed-
back data set are n = 70 rows (students) and m = 10 columns (questions) where
each observation can take one of the three possible categories (q = 3). Table 7.5
shows the summary of the MH sampler results for a fitted row clustering model
with R = 3 clusters. The MLE values from EM algorithm fall within the 95%
HPD interval, as expected due to our use of noninformative priors. Moreover,
Gelman-Rubin PSRF value diagnoses that the MCMC sampler converged. We
graph Figures 7.3-7.4 in order to compare results. Thus, Figure 7.3 depicts the
marginal posterior distributions for all the parameters. The expected values of
the posterior distribution are very close to the MLE values (blue vertical lines).
The trace plots on Figure 7.4 show a good mixing in the sampling of all the pa-
rameters.

Example 2: Tree presences in Great Smoky Mountains

The second example relates to the distribution of n = 41 tree species alongm = 12

sites where each observation can take one of the four possible categories (q = 4)
after categorising the original count data. In order to compare the results with
those from the EM algorithm, we fit a row clustering model with interaction fac-
tor and R = 3 tree (row) groups. A summary of the results and the comparison
with the results obtained by using the EM algorithm are shown in Table 7.6. As
the previous example, these results are very close to those from EM algorithm.
Additionally, the Gelman-Rubin PSRF value diagnoses that the MH sampler con-
verged.

7.3 Discussion

A Bayesian inference procedure for our ordinal stereotype mixture model has
been introduced in this chapter. The procedure is based on MCMC sampling
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Table 7.5: Applied Statistics course feedback forms data set: Estimated param-
eters for stereotype model including row clustering without interaction factors
µk + φk(αr + βj) with R = 3 clusters. MLE values from EM algorithm and
summary statistics from M-H sampler are shown. The sample size is n = 70, the
number of categories is q = 3, and the number of questions is m = 10.

Par.

EM algorithm Metropolis-Hastings

Estim. S.E.
Gelman-

Rubin
PSRF

Mean Median S.D. S.E. HPD
95% lower

HPD
95% upper

µ̂2 -0.306 0.140

1.02124

-0.403 -0.385 0.291 0.0097 -0.964 0.165
µ̂3 -2.291 0.307 -2.399 -0.238 0.547 0.0193 -3.524 -1.359
φ̂2 0.541 0.195 0.552 0.549 0.066 0.0016 0.426 0.683
α̂1 3.496 0.346 3.268 3.275 0.564 0.0114 2.112 4.348
α̂2 -3.571 0.222 -3.390 -3.404 0.276 0.0049 -4.374 -2.434
β̂1 -1.390 0.312 -1.382 -1.373 0.524 0.0086 -2.392 -0.342
β̂2 -2.998 0.351 -2.906 -2.887 0.563 0.0129 -4.202 -1.650
β̂3 -6.272 0.318 -5.750 -5.644 0.613 0.0377 -8.491 -3.818
β̂4 0.300 0.437 0.233 0.232 0.442 0.0073 -0.633 1.111
β̂5 1.015 0.432 0.945 0.935 0.436 0.0085 0.082 1.786
β̂6 3.391 0.451 3.255 3.255 0.463 0.0107 2.363 4.145
β̂7 3.561 0.452 3.416 3.421 0.459 0.0098 2.498 4.310
β̂8 3.029 0.463 2.885 2.881 0.489 0.0120 1.930 3.841
β̂9 -1.601 0.332 -1.591 -1.567 0.518 0.0098 -2.697 -0.543
π̂1 0.377 0.218 0.413 0.412 0.107 0.0032 0.200 0.593
π̂2 0.532 0.231 0.437 0.441 0.106 0.0033 0.272 0.671
Notes: The S.E. in Bayesian approach is the Time-series S.E.

using the Metropolis-Hastings algorithm. We have illustrated this Bayesian ap-
proach with a simulation study and two real-life data examples. The simulation
showed reliable results and the data applications obtained similar results to the
inference based on the EM algorithm (Section 2.5). The combination of using the
M-H sampler (Sections 7.2.1-7.2.4) and, later, a label switching procedure based
on the relabelling algorithm proposed by Stephens (2000a) (Section 7.2.5) is a re-
quired strategy in order to obtain a satisfactory Bayesian analysis of the data and
reach convergence for our finite mixture approach.

The Bayesian methodology introduced in this chapter does not allow us to
make inference regarding the unknown dimension of the model because the M-
H algorithm considers a fixed number of components in the mixture. Reversible
jump MCMC is however a methodology to estimate the number of clusters and
parameters simultaneously. Further development of a RJMCMC sampler to ap-
ply to our mixture approach is described in Chapter 8.
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Table 7.6: Tree presences in Great Smoky mountains data set: Estimated pa-
rameters for stereotype model including row clustering with interaction factors
µk + φk(αr + βj + γrj) with R = 3 clusters. MLE values from EM algorithm
and summary statistics from M-H sampler are shown. The sample size is n = 41
tree species, the number of categories is q = 5, and the number of sites is m = 12.

Par.

EM algorithm Metropolis-Hastings

Estim. S.E.
Gelman-

Rubin
PSRF

Mean Median S.D. S.E. HPD
95% lower

HPD
95% upper

µ̂2 1.259 0.379

1.04140

1.684 1.638 0.502 0.0144 0.750 2.684
µ̂3 1.828 0.208 1.667 1.652 0.581 0.0169 0.563 2.879
µ̂4 0.052 0.268 0.124 0.141 0.868 0.0238 -1.646 1.779
φ̂2 0.200 0.197 0.242 0.234 0.098 0.0025 0.055 0.443
φ̂3 0.467 0.397 0.423 0.417 0.122 0.0025 0.188 0.657
φ̂4 0.987 0.243 0.814 0.837 0.130 0.0025 0.570 0.999
α̂1 1.083 0.342 1.988 1.919 0.434 0.0241 -0.250 4.331
α̂2 -5.557 0.378 -4.542 -4.546 0.462 0.0335 -7.330 -1.314
β̂1 3.725 0.238 2.116 2.113 1.990 0.0348 -1.668 6.117
β̂2 1.882 0.233 0.031 0.036 2.067 0.0371 -3.990 4.131
β̂3 1.159 0.372 0.360 0.353 2.040 0.0358 -3.551 4.389
β̂4 -3.311 0.388 -1.449 -1.418 1.847 0.0344 -5.120 2.143
β̂5 -1.440 0.213 -0.689 -0.670 1.833 0.0384 -4.307 2.826
β̂6 -2.286 0.260 -0.727 -0.731 1.795 0.0371 -4.314 2.774
β̂7 -3.134 0.372 -2.306 -2.279 1.969 0.0396 6.308 1.435
β̂8 -2.427 0.287 -0.957 -0.955 1.826 0.0386 -4.659 2.472
β̂9 0.029 0.195 1.370 1.352 1.942 0.0381 -2.435 5.181
β̂10 2.584 0.373 2.358 2.342 1.963 0.0356 -1.537 6.194
β̂11 0.341 0.205 0.532 0.520 2.110 0.0401 -3.625 4.630
γ̂21 -1.298 0.350 -0.538 -0.532 1.487 0.0211 -6.361 5.263
γ̂22 2.061 0.373 -0.641 -0.661 1.465 0.0299 -6.146 5.412
γ̂23 4.189 0.296 0.507 0.478 2.063 0.0351 -5.387 6.606
γ̂24 2.861 0.236 0.230 0.232 1.910 0.0206 -5.240 6.064
γ̂25 1.748 0.382 0.306 0.291 1.864 0.0283 -5.228 5.921
γ̂26 -2.865 0.207 -0.580 0.584 1.902 0.0205 -6.361 4.977
γ̂27 2.198 0.188 0.351 0.370 2.295 0.0304 -7.836 9.017
γ̂28 2.820 0.374 0.272 0.331 2.278 0.0434 -8.135 8.638
γ̂29 3.863 0.328 -1.405 -1.378 2.339 0.0738 -10.663 7.800
γ̂210 -1.868 0.307 0.891 0.904 2.269 0.0231 5.633 7.158
γ̂211 2.926 0.439 0.891 0.886 2.313 0.0235 -5.648 7.304
γ̂31 -2.923 0.312 0.246 0.256 2.281 0.0234 -6.164 6.607
γ̂32 3.833 0.382 0.312 0.295 2.414 0.0393 -5.970 6.865
γ̂33 2.585 0.309 -1.046 -1.025 2.268 0.0371 -7.735 5.613
γ̂34 -0.092 0.297 0.712 0.732 2.229 0.0243 -6.383 7.076
γ̂35 -3.228 0.207 0.664 0.693 2.404 0.0263 -6.177 7.081
γ̂36 4.311 0.355 -0.570 -0.589 2.313 0.0492 -7.841 6.565
γ̂37 2.405 0.393 -0.301 -0.117 2.004 0.0212 -6.023 5.788
γ̂38 3.391 0.294 0.800 -0.299 2.030 0.0218 -6.353 5.436
γ̂39 3.305 0.259 0.615 0.618 2.161 0.0332 -5.423 6.965
γ̂310 1.601 0.293 -0.456 -0.456 2.007 0.0225 -6.314 5.408
γ̂311 -3.654 0.387 -0.370 -0.354 2.011 0.0245 -6.071 5.701
π̂1 0.315 0.388 0.338 0.333 0.111 0.0023 0.132 0.559
π̂2 0.277 0.346 0.321 0.314 0.106 0.0022 0.125 0.529

Notes: The S.E. in Bayesian approach is the Time-series S.E.
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Figure 7.3: Applied Statistics course feedback forms data set: Density plot depict-
ing the marginal posterior distribution of the parameters for stereotype model including
row clustering without interaction factors model µk + φk(αr + βj) with R = 3 row
(student) clusters. The blue vertical lines are the MLE values from EM algorithm. 95%
HPD credible intervals are shown with shading area.
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Figure 7.4: Applied Statistics course feedback forms data set: Trace plot of the pa-
rameters for stereotype model including row clustering without interaction factors model
µk + φk(αr + βj) with R = 3 row (student) clusters. The blue horizontal lines are the
MLE values from EM algorithm.
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Chapter 8

Inference in the Bayesian Paradigm.
Variable Dimension

8.1 Introduction. Reversible Jump MCMC Sampler

One of the key difficulties in the use of mixture models to provide a model-based
clustering is inference of the unknown dimension of the model, i.e. the number
of clusters K most suitable to the data set (see e.g. Böhning and Seidel (2003)
and Böhning et al. (2007) for a brief summary). Numerous methods have been
proposed to estimate the number of components K in a mixture model. Some
research has provided estimates of the marginal likelihoods of K components
and used Bayes theorem to obtain the posterior distribution of K (see e.g. No-
bile (1994) and Roeder and Wasserman (1997)), or to test K versus K + 1 number
of components (Carlin and Chib (1995); Chib (1995); Raftery (1996)). Mengersen
and Robert (1996) introduced a methodology derived from the Kullback-Leibler
divergence (DKL, see its general definition in eq. (3.2) on page 39) to compute the
distance between mixture models with K and K + 1 components. Another tech-
nique is based on a MCMC sampler using a composite model where the poste-
rior distribution of K can be estimated by the relative frequency with which each
model is visited during the simulation (see Phillips and Smith (1996)). Richardson
and Green (1997) described a similar sampler based on reversible jump MCMC
(RJMCMC) algorithm, which was introduced by Green (1995) and is capable
of jumping between parameter subspaces corresponding to different number of
components K. An alternative is the birth-and-death process (Stephens, 2000b),
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whose mechanism has been shown to be essentially the same as RJMCMC algo-
rithm (Cappé et al., 2003).

RJMCMC is the methodology we have used to estimate the number of clus-
ters and parameters simultaneously from their joint posterior distribution for
our clustering mixture approach. In Section 7.2, we introduced the Metropolis-
Hastings (M-H) sampler for our approach. RJMCMC can be seen as a trans-
dimensional extension of the M-H algorithm. On the one hand, the simple M-
H algorithm considers a fixed number of components in the mixture so that it is
necessary to apply the algorithm to the data as many times as the number of com-
ponents we want to estimate. In other words, a run of this algorithm for a partic-
ular number of clusters K is independent from another run for another number
of groups K ′ (K 6= K ′). Once we have the results from all the independent runs,
we can apply a model selection procedure based on the deviance information cri-
terion (DIC) (see Section 7.1.4 for details) in order to select the best model, and
consequently the appropriate number of clusters. Alternatively, the implementa-
tion described in Link and Barker (2010, Chapter 7) and Barker and Link (2013)
may be applied. It consists of fitting a relatively small number of models one at
a time and then to be compared. In that case, BIC can be used as an approxima-
tion to the Bayes factor to compute posterior model weights. On the other hand,
the RJMCMC algorithm allows us to simulate the posterior distributions when
the dimension of the model is unknown, can vary and has to be estimated. This
algorithm allows us to estimate the model parameters and, concurrently, explore
the space of models of different dimensions. Therefore, a RJMCMC sampler in-
corporates the model selection procedure into the estimation stage. Moreover,
when the number of clusters is not clearly determined, the RJMCMC approach is
a natural way to implement model averaging. Posterior summaries of quantities
independent of the number of clusters is simple and straightforward, with mod-
els of different dimension appropriately weighted by their posterior probabilities.

In the following sections, the basics of the RJMCMC algorithm are explained
(Section 8.2). The use of this algorithm for our approach devising prior distri-
butions, proposal distributions and reversible jump moves for the parameters
(including the number of components) is defined in Section 8.3. Assessment of
convergence for RJMCMC samplers is described in Section 8.4. A simulation
study and two real-life data examples are analysed in Section 8.5 and Section 8.6.
Closing remarks are in Section 8.7. Additionally, Appendix I outlines the Castel-
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loe and Zimmerman (2002) methodology to assess the convergence of RJMCMC
samplers and applies this method to the two real-life data examples.

8.2 RJMCMC Algorithm Outline

Description

In order to outline the RJMCMC algorithm, we have closely followed Arnold
et al. (2010). MCMC methods are a class of algorithms for sampling from a prob-
ability distribution (target distribution) based on constructing a Markov chain
that has the target distribution as its equilibrium distribution (see e.g. a review of
these methods in Gilks et al. (1996)). In our row clustering approach, the number
of components is the number of row groupsR and thus the target probability dis-
tribution is the posterior distribution p(Ω | Y , R) of the parameter vector Ω as a
current state given data Y and number of groups R (see eq. (7.12)). In particular,
the fixed-dimensional M-H algorithm is a MCMC method that simulates a new
state of parameters Ω∗ from a proposal distribution q(Ω∗ | Ω,Y , R) (see Section
7.1.5) given the current state Ω, data Y and number of groups R. This new state
Ω∗ is accepted with probability αMH = min(1, rMH) where rMH is the acceptance
ratio defined as

rMH =
p(Ω∗ | Y , R)

p(Ω | Y , R)

q(Ω | Ω∗,Y , R)

q(Ω∗ | Ω,Y , R)
=
p(Y | Ω∗, R)

p(Y | Ω, R)

p(Ω∗ | R)

p(Ω | R)

q(Ω | Ω∗,Y , R)

q(Ω∗ | Ω,Y , R)
.

Note that this ratio is the product of a likelihood ratio (LRMH = p(Y | Ω∗, R)/p(Y |
Ω, R)), a prior distribution ratio (PRMH = p(Ω∗ | R)/p(Ω | R)) and a proposal dis-
tribution ratio (QRMH = q(Ω | Ω∗,Y , R)/q(Ω∗ | Ω,Y , R)). Another feature is
the reversibility of QRMH which involves not only the probability of the proposed
move q(Ω∗ | Ω,Y , R) but also that of its reverse move q(Ω | Ω∗,Y , R). We accept
the new state Ω∗ from the Markov chain if a random draw from an U(0, 1) distri-
bution is less than probability αMH. Otherwise, the new state is rejected and the
current state Ω becomes the new state for the chain. Details of the Metropolis-
Hasting method for our approach are described in detail in Section 7.2.

The RJMCMC algorithm was introduced by Green (1995). This method is an
extension to MCMC methodology which treats the number of groups R as an
unknown parameter of interest and is able to propose the increase or reduction
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of a single group. Therefore, this technique is a random sweep M-H algorithm
adapted for examining the space of models of different dimensions. Green (1995)
gave a comprehensive description of this algorithm. However, an outline of the
RJMCMC algorithm for our one-dimensional clustering approach is as follows.
We suppose the current state Ω (which now includes the number of clusters R in
the parameter vector Ω) corresponds to a model MΩ which has dimension DΩ,
and the proposed state Ω∗ is the parameter vector for a modelMΩ∗ with dimen-
sion DΩ∗ . Note thatMΩ andMΩ∗ can have identical dimensions but they might
also differ when the proposed state involves an increase or a reduction in the
number of clusters R. Thus, in order to propose a new state Ω∗ the generation
of ` ≥ 0 additional random variates u are required, where DΩ + ` ≥ DΩ∗ . In
the same manner, the reverse move (from Ω∗ to Ω) also necessitates the gener-
ation of `′ ≥ 0 random variates u′. These variates u and u′ are used to match
dimensions. Once the random variates u and u′ are drawn, the formulation of
functions BΩ→Ω∗(Ω, u | MΩ,MΩ∗) and its inverse BΩ∗→Ω(Ω∗, u′ | MΩ∗ ,MΩ) is de-
veloped such that the mapping between (Ω, u) and (Ω∗, u′) defined by (Ω∗, u′) =

BΩ→Ω∗(Ω, u | MΩ,MΩ∗) and (Ω, u) = BΩ∗→Ω(Ω∗, u′ | MΩ∗ ,MΩ) is diffeomor-
phism, i.e. differentiable bijection map whose inverse is also differentiable.

In order to achieve the detailed balance required in order for the Markov chain
to correctly generate samples from the posterior distribution (target distribution),
the RJMCMC sampler has to be reversible. Using an updated Metropolis-Hastings
move allows us to accomplish this requirement when the move does not imply
changes in dimensionality. In the case of a move where the dimensionality of the
model varies, we must match dimensions DΩ + ` = DΩ∗ + `′ and the acceptance
ratio rMH is modified as

rRJ =
p(Ω∗,MΩ∗ | Y )

p(Ω,MΩ | Y )

q(u′,MΩ | Ω∗,MΩ∗ ,Y )

q(u,MΩ∗ | Ω,MΩ,Y )

∂(Ω∗, u′)

∂(Ω, u)


=
p(Y | Ω∗,MΩ∗)

p(Y | Ω,MΩ)

p(Ω∗ | MΩ∗)

p(Ω | MΩ)

p(MΩ∗)

p(MΩ)

q(u′ | MΩ,Ω
∗,MΩ∗ ,Y )

q(u | MΩ∗ ,Ω,MΩ,Y )

× g(MΩ | Ω∗,MΩ∗ ,Y )

g(MΩ∗ | Ω,MΩ,Y )

∂(Ω∗, u′)

∂(Ω, u)


where g(MΩ∗ | Ω,MΩ,Y ) is the probability of moving to modelMΩ∗ given the
data Y and the current modelMΩ with parameter vector Ω and | · | is the Jacobian
matrix determinant from the change of dimensionality. Note that rRJ can be seen
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as the multiplication of the rates

rRJ = LRRJ × PRRJ ×MPRRJ ×QRRJ ×NMPRRJ × JRJ (8.1)

where LRRJ = p(Y | Ω∗,MΩ∗)/p(Y | Ω,MΩ) is the likelihood ratio, PRRJ =

p(Ω∗ | MΩ∗)/p(Ω | MΩ) is the parameter prior distribution ratio, MPRRJ =

p(MΩ∗)/p(MΩ) is the model prior ratio,
QRRJ = q(u′ | MΩ,Ω

∗,MΩ∗ ,Y )/q(u | MΩ∗ ,Ω,MΩ,Y ) is the proposal distribu-
tion ratio, the probability to move to a new model ratio is NMPRRJ = g(MΩ |
Ω∗,MΩ∗ ,Y )/g(MΩ∗ | Ω,MΩ,Y ), and JRJ =

∂(Ω∗,u′)
∂(Ω,u)

 is the Jacobian matrix de-
terminant mapping between (Ω, u) and (Ω∗, u′).

RJMCMC sampler

The general RJMCMC sampler is outlined as follows:

1. Specify an arbitrary initial value for the state Ω(0) | MΩ for which
p(Ω(0) | Y ,MΩ) > 0 where Y is the data set andMΩ is the current model.

2. At tth iteration (t = 1, 2, . . . , T ):

(a) Select a modelMΩ∗ with probability g(MΩ∗ | Ω,MΩ,Y ) which is re-
lated to a proposed state Ω∗ .

(b) IfMΩ∗ =MΩ(t−1) (i.e. there is no change in model), then

i. Update the parameters from the current state Ω(t−1) by using a
sweep from the Metropolis-Hastings algorithm (see Section 7.1.5).
It provides a new state Ω∗ = ΩMH.

ii. Set Ω(t) = Ω∗ and return to step 2.

(c) Otherwise (MΩ∗ 6=MΩ(t−1)), then

i. Generate the random variates u(t−1) from a continuous and discrete
distributions as appropriate.

ii. Set (Ω∗, u∗) = BΩ(t−1)→Ω∗(Ω
(t−1), u(t−1) | MΩ(t−1) ,MΩ∗).

iii. Calculate the acceptance probability αRJ = min(1, rRJ) where the
acceptance ratio rRJ is defined as eq. (8.1).
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iv. Accept the modelMΩ∗ and set Ω(t) = Ω∗ andMΩ(t) = MΩ∗ with
probability αRJ. Otherwise, rejectMΩ∗ and Ω∗ and set Ω(t) = Ω(t−1)

andMΩ(t) =MΩ(t−1) .

3. Return the set of T samples {(Ω(t),MΩ(t)), t = 1, . . . , T} from the posterior
distribution p(Ω | Y ).

4. Test whether convergence has been achieved. If not, increase T and return
to step 2.

5. Summarise the set of T samples in a convenient way, such as computing
posterior means, medians, credible intervals of the population size T , and
in the posterior probability p(MΩ | Y ) of each modelMΩ.

In the following section, the RJMCMC sampler to our approach is developed.

8.3 Application of the RJMCMC Sampler to Our Ap-

proach

In this section, the application of the RJMCMC sampler in the case of a one-
dimensional clustering finite mixture-density model is illustrated. In particular,
its application in the case of the row clustering model with unknown row mem-
bership probability (incomplete data). This model was described in Section 2.3.
The analysis for the column clustering version is basically the same, but just re-
placing parameters related to rows with the equivalent column parameters. For
the case of biclustering, the development may be a future research direction to
explore.

Bayesian Estimation for Row Clustering Model

To estimate the parameters for the row clustering model, we have adopted a fully
Bayesian approach based on M-H and RJMCMC samplers. We put priors on all
unknown parameters and hyperpriors when necessary. Figure 8.1 depicts the
directed acyclic graph (DAG) describing this fully Bayesian approach estimation
for the row clustering model. The graph shows the priors, hyperparameters and
their relationships, which are detailed in the following subsection.
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{yij}

µk {νk} {φk} βj αr {zir}

σ2
µ {λφ} σ2

β σ2
α R

{πr}

{λπ}

aµ bµ aβ bβ aα bα ρ Rmin Rmax

k=2,...,q

νk=φk−1−φk

j=1,...,m i=1,...,n

InvGamma(aµ, bµ)

N (0, σ2
µ) Dir({λφ})

InvGamma(aβ , bβ)

(
∑m
j=1 βj = 0)

ND
(
0, m−1m σ2

β

)

Stereotype({µk}, {φk}, {αr}, {βj}, {πr})

InvGamma(aα, bα)

(
∑R
r=1 αr = 0)

ND
(
0, R−1R σ2

α

)

TrGeometric(ρ,Rmin, Rmax)

Dir({λπ})

Mult({πr})

k=2,. . ., q−1 r=1,. . .,R

Figure 8.1: Directed acyclic graph: Hierarchical Stereotype Mixture Model. Row
Clustering. “TrGeometric” refers to a truncated Geometric distribution.

Each step in the RJMCMC simulation is the result of one of these three moves:
“update”, “birth” and “death”. In our case, we use a “split” move as a particular
case of the birth move and a “merge” move as a specific death move in the corre-
sponding parameters. We fully explain these two moves below. The parameters
to estimate can be grouped into two main sets based on their dimensionality:

1. Cut point ({µk}), score ({φk}), and column effect ({βj}) parameters: They have
a fixed dimension (the number of categories q for {µk} and {φk} and the
number of columns m for {βj}) which do not vary during the sampling. In
order to update these parameters, we use a sweep of the M-H algorithm.
This does not alter the dimension of the parameter vector.

2. Row cluster effect ({αr}) and row membership probability ({πr}) parameters: They
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may have a variable dimension as the number of row clusters R may be
altered during the RJMCMC sampling. In this case, the use of a reversible
jump step is necessary and therefore the split and merge moves apply to
these parameters. The value of R changes by 1 and the dimension of the
parameter vector is altered. On the other hand, if the move does not alter the
number of clusters R (therefore the move is within the same family class),
then we apply an update move by using a sweep from the M-H algorithm.

Update Move. Prior Distributions and Hyperparameters

The update move for each parameter from the row clustering model is defined
as a simple M-H move. We adopt the same prior distributions and their related
hyperparameters as they were described in Section 7.2.2. The prior distributions
for the model are listed in Table 8.1 with the default values of the relevant defining
hyperparameters given alongside. These default setting can be altered to suit
another particular problem. All priors are proper.

Table 8.1: RJMCMC sampler. Priors and default settings for the hyperparameters
defining their distributions.

Parameter Prior Distribution Hyperparameters Notes

σ2
µ InverseGamma

(
νσµ , δσµ

) νσµ = 3
δσµ = 40

{µk} N (0, σ2
µ)

{φk}
{νk} ∼ Dirichlet(λφ)

λφ = 1
νk = φk+1 − φk

σ2
α InverseGamma (νσα , δσα )

νσα = 3
δσα = 40

{αr} DegenNormal(R; 0, σ2
α)

∑R
r=1 αr = 0

σ2
β InverseGamma

(
νσβ , δσβ

) νσβ = 3

δσβ = 40

{βj} DegenNormal(m; 0, σ2
β)

∑m
j=1 βj = 0

{γrj} DegenNormal(R,m; 0, σ2
γ) σ2

γ = 5
∑R
r=1 γrj =

∑m
j=1 γrj = 0

{πr} Dirichlet(λπ) λπ = 1
∑R
r=1 πr = 1

R TrGeometric (1− ρ,Rmin, Rmax)
ρ = 0.8

Rmin ≤ R ≤ RmaxRmin = 1, Rmax = 10
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RJMCMC Sweep

In implementing the RJMCMC sampler in this model we break the parameters
into three blocks. Each sweep of the sampler updates each block in sequence. For
blocks 1 and 2, the sampler sequentially updates one parameter at a time leaving
the other components unchanged. For block 3 a choice is made at random among
update, split and merge moves. The first block contains the hyperparameters
for the prior distributions, which can be updated by using Metropolis-Hastings
proposals with acceptance ratio equal to 1 (Gibbs sampling). The second block
relates to the cut point {µk}, score {φk} and column effect {βj} parameters. They
can be updated using a M-H sweep as they have a fixed dimension and they
do not increase or decrease when the sampler moves from one model to another
model with different numbers of clusters R. In the third block, the focus is on
the row cluster {αr} and row membership {πr} parameters and there are three
different move options:

• an update move when it does not alter the number of clusters R,

• split a randomly chosen cluster into two, and

• merge a randomly selected neighbouring pair of clusters into a single cluster.

As noted above, an update move is a conventional MCMC move, which is made
by Metropolis-Hastings proposals. Split and merge moves form a reversible pair
of dimension changing moves which take place using a reversible jump step. See
more details about these two moves below. Summary details of the different
move types and default parameter settings are collected together in Table 8.2. The
sampler always run a M-H step when a parameter from block 1 or 2 is chosen
randomly (indicated as Pr(Move)=1 in Table 8.2). However, the moves in the
parameters from the third block have assigned probabilities as is explained in the
following Section.

Probabilities of Dimension-Changing Moves

The moves in the third block (see Table 8.2) have assigned probabilities
(pα, pπ, psplit, pmerge) where pα and pπ are related to the update move for {αr} and
{πr} respectively. The probabilities (psplit, pmerge) are related to the split and merge
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Table 8.2: Transition groups, move types, move probabilities and default settings
for the hyperparameters controlling the proposal distributions for the RJMCMC
sampler in the estimation of the row clustering model. The move types are la-
belled M-H=Metropolis-Hastings and RJ=Reversible jump. The split and merge
moves are emphasized in bold.

Block Move Param. Prop. Constants Pr(Move) Move Type

1 σ2
µ νσµ = 3 δσµ = 40 1 M-H

Hyperpar. σ2
α νσα = 3 δσα = 40 1 M-H
σ2
β νσβ = 3 δσβ = 40 1 M-H

2 {µk} σ2
µp = 0.3 1 M-H

General {φk} 1 M-H
Parameters {βj} σ2

βp
= 0.3 1 M-H

3 {αr} σ2
αp = 0.3 pα = 1

2 (1− p) M-H
Row {πr} σ2

πp = 0.3 pπ = 1
2 (1− p) M-H

Parameters Split p = 0.3 psplit = p ρ
1+ρ RJ

Merge ρ = 0.8 pmerge = p 1
1+ρ RJ

moves respectively and are the probabilities of dimension-changing moves which
we have formulated following Green (1995) as

psplit = p ρ
1+ρ

, pmerge = p 1
1+ρ

for Rmin < R < Rmax

psplit = p, pmerge = 0 for R = Rmin

psplit = 0, pmerge = p for R = Rmax,

where ρ is the parameter of the truncated Geometric prior for R (see Table 8.1)
and p is the probability related to the proportion of times a split or merge move is
proposed. This choice means that the probability of a dimension-changing move,
i.e. psplit + pmerge, is p for Rmin ≤ R ≤ Rmax, and also implies that pmerge

psplit
ρ = 1

for Rmin < R < Rmax. This latter property means that the proposal and prior
ratios for R conveniently cancel in the construction of the acceptance ratio. The
truncated Geometric prior distribution for the number of clusters R is cancelled
out by the acceptance ratio for the dimension-changing moves (see development
of rsplit

RJ and rmerge
RJ below) depending only on the parameter ρ. Finally, we take

the constant p = 0.3, which is large enough so that dimension-changing moves
are proposed frequently, but not so large that the parameters within models of
a given dimension do not have time to mix. The remaining probability of 0.7 is
divided equally between the {αr} and {πr} update moves.
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Split and Merge Moves. Description

The split and merge moves consider an alteration of the dimensionality in the pa-
rameter space (Richardson and Green, 1997). These are particular birth and death
moves. The merge move reduces the dimension of the model and the split move
increases it. Choosing randomly between these moves proposes a new model. In
the row clustering model, these characteristic RJ moves vary the row effect {αr}
and row membership {πr} parameters. They also alter the number of row clusters
R which is considered a parameter in this scheme. The procedure to apply these
moves must preserve both the reversible requirement and the constraints for iden-
tifiability reasons (

∑R
r=1 αr = 0 and

∑R
r=1 πr = 1). At iteration t (t ∈ {1, 2, . . . , T}),

an outline of how we use those dimension-changing moves is:

• Split move :

1. Draw randomly two uniform variates ∆1,∆2 ∼ U(0, 1).

2. Select randomly one cluster r ∈ {1, . . . , R(t−1)}.

3. Generate two new parameters for αr and πr halving them from itera-
tion (t− 1) as follows:

α(t)
r = ∆1α

(t−1)
r and α

(t)
r+1 = (1−∆1)α(t−1)

r ,

π(t)
r = ∆2π

(t−1)
r and π

(t)
r+1 = (1−∆2)π(t−1)

r .
(8.2)

4. Increase the number of row clusters R(t−1) by 1: R(t) = R(t−1) + 1.

5. Relabel {r + 1, . . . , R(t−1)} as {r + 2, . . . , R(t)} in {α(t)
r } and {π(t)

r }.

• Merge move:

1. Choose randomly one cluster r ∈ {1, . . . , R(t−1) − 1}.

2. Select the adjacent component r + 1.

3. Generate two new parameters merging the two components from iter-
ation (t− 1) as:

α(t)
r = α(t−1)

r + α
(t−1)
r+1 ,

π(t)
r = π(t−1)

r + π
(t−1)
r+1 .

(8.3)

4. Reduce the number of row clusters R(t−1) by 1: R(t) = R(t−1) − 1.
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5. Relabel {r + 2, . . . , R(t−1)} as {r + 1, . . . , R(t)} in {α(t)
r } and {π(t)

r }.

Split Move. Acceptance Ratio

A split move is accepted with the probability of αsplit = min(1, rsplit
RJ ) where the

acceptance ratio rsplit
RJ is defined as eq. (8.1) where

• Likelihood function ratio:

LRsplit
RJ = LRRJ =

p(Y | Ω(t),MΩ(t))

p(Y | Ω(t−1),MΩ(t−1))
,

where MΩ(t) is the model after splitting and MΩ(t−1) is the model before
splitting.

• Prior distribution ratio:

PRsplit
RJ = PRsplit

α × PRsplit
π × PRsplit

R

=
p(α(t) | MΩ(t))

p(α(t−1) | MΩ(t−1))

p(π(t) | MΩ(t))

p(π(t−1) | MΩ(t−1))

p(R(t) | MΩ(t))

p(R(t−1) | MΩ(t−1))
,

where

p({α(t)} | MΩ(t)) = p(α(t)
r , α

(t)
r+1 | MΩ(t))

=
1√

2πσ2
α

exp

{
− 1

2σ2
α

(α(t)2

r + α
(t)2

r+1)

}
,

p({α(t−1)} | MΩ(t−1)) = p(α(t−1)
r | MΩ(t−1)) =

1√
2πσ2

α

exp

{
− 1

2σ2
α

α(t−1)2

r

}
,

p({π(t)} | MΩ(t)) =
Γ(R(t)λπ)

R(t)Γ(λπ)

R(t)∏
r=1

(π(t)
r )λπ−1 with R(t) = R(t−1) + 1,

p({π(t−1)} | MΩ(t−1)) =
Γ(R(t−1)λπ)

R(t−1)Γ(λπ)

R(t−1)∏
r=1

(π(t−1)
r )λπ−1,

p(R(t) | MΩ(t)) = 1 and p(R(t−1) | MΩ(t−1)) = 1.
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Therefore,

PRsplit
α = exp

{
− 1

2σ2
α

(
α(t)2

r + α
(t)2

r+1 − α(t−1)2

r

)}
,

PRsplit
π =

Γ(R(t)λπ)

Γ(R(t−1)λπ)Γ(λπ)

(
π

(t)
r π

(t)
r+1

π
(t−1)
r

)λπ−1

, and PRsplit
R = 1.

• Model prior ratio:

MPRsplit
RJ =

p(MΩ(t))

p(MΩ(t−1))
=

p(R(t))

p(R(t−1))
=

(1−ρ)ρR
(t)−1

ρRmin−ρRmax

(1−ρ)ρR
(t−1)−1

ρRmin−ρRmax

=
ρR

(t)−1

ρR(t−1)−1
= ρ.

• Proposal distribution ratio:

We define u(t−1) = {∆1,∆2} and u(t) = ∅, where ∆1,∆2 ∼ U(0, 1). There-
fore,

QRsplit
RJ =

q(u(t) | MΩ(t−1) ,Ω(t),MΩ(t) ,Y )

q(u(t−1) | MΩ(t) ,Ω,MΩ(t−1) ,Y )
= 1.

• Probability to move to a new model ratio:

NMPRsplit
RJ =

g(MΩ(t−1) | Ω(t),MΩ(t) ,Y )

g(MΩ(t) | Ω(t−1),MΩ(t−1) ,Y )
=
pmerge

psplit

=
1

ρ
,

for Rmin ≤ R ≤ Rmax.

• Jacobian determinant between (α
(t−1)
r ,∆1, π

(t−1)
r ,∆2) and (α

(t)
r , π

(t)
r , α

(t)
r+1, π

(t)
r+1)

where ∆1,∆2 ∼ U(0, 1) and (α
(t)
r , α

(t)
r+1, π

(t)
r , π

(t)
r+1) are defined as equation

(8.2):

Jsplit
RJ =


∂
(
α

(t−1)
r ,∆1, π

(t−1)
r ,∆2

)
∂
(
α

(t)
r , π

(t)
r , α

(t)
r+1, π

(t)
r+1

)
 =

∣∣∣∣∣∣∣∣∣∣
∆1 1−∆1 0 0

α
(t−1)
r −α(t−1)

r 0 0

0 0 ∆2 1−∆2

0 0 π
(t−1)
r −π(t−1)

r

∣∣∣∣∣∣∣∣∣∣
= α(t−1)

r π(t−1)
r .
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Merge Move. Acceptance Ratio

A merge move is accepted with the probability of αmerge = min(1, rmerge
RJ ) = min(1, rsplit−1

RJ )

where the acceptance ratio rmerge
RJ is defined as eq. (8.1) where

• Likelihood function ratio:

LRmerge
RJ = LRRJ =

p(Y | Ω(t),MΩ(t))

p(Y | Ω(t−1),MΩ(t−1))
,

where MΩ(t) is the model after merging and MΩ(t−1) is the model before
merging.

• Prior distribution ratio:

PRmerge
RJ = PRmerge

α × PRmerge
π × PRmerge

R

=
p(α(t) | MΩ(t))

p(α(t−1) | MΩ(t−1))

p(π(t) | MΩ(t))

p(π(t−1) | MΩ(t−1))

p(R(t) | MΩ(t))

p(R(t−1) | MΩ(t−1))
,

where

p({α(t)} | MΩ(t)) = p(α(t)
r | MΩ(t)) =

1√
2πσ2

α

exp

{
− 1

2σ2
α

α(t)2

r

}
,

p({α(t−1)} | MΩ(t−1)) = p(α(t−1)
r , α

(t−1)
r+1 | MΩ(t))

=
1√

2πσ2
α

exp

{
− 1

2σ2
α

(α(t−1)2

r + α
(t−1)2

r+1 )

}
,

p({π(t)} | MΩ(t)) =
Γ(R(t)λπ)

R(t)Γ(λπ)

R(t)∏
r=1

(π(t)
r )λπ−1 with R(t) = R(t−1) − 1,

p({π(t−1)} | MΩ(t−1)) =
Γ(R(t−1)λπ)

R(t−1)Γ(λπ)

R(t−1)∏
r=1

(π(t−1)
r )λπ−1,

p(R(t) | MΩ(t)) = 1 and p(R(t−1) | MΩ(t−1)) = 1.

Therefore,

PRmerge
α = exp

{
− 1

2σ2
α

(
α(t)2

r − α(t−1)2

r − α(t−1)2

r+1

)}
,

PRmerge
π =

Γ(R(t)λπ)Γ(λπ)

Γ(R(t−1)λπ)

(
π

(t)
r

π
(t−1)
r π

(t−1)
r+1

)λπ−1

, and PRmerge
R = 1.
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• Model prior ratio:

MPRmerge
RJ =

p(MΩ(t))

p(MΩ(t−1))
=

p(R(t))

p(R(t−1))
=

(1−ρ)ρR
(t)−1

ρRmin−ρRmax

(1−ρ)ρR
(t−1)−1

ρRmin−ρRmax

=
ρR

(t−1)−2

ρR(t−1)−1
=

1

ρ
.

• Proposal distribution ratio:

We define u(t−1) = ∅ and u(t) = {∆1,∆2}where ∆1,∆2 ∼ U(0, 1). Therefore,

QRmerge
RJ =

q(u(t) | MΩ(t−1) ,Ω(t),MΩ(t) ,Y )

q(u(t−1) | MΩ(t) ,Ω,MΩ(t−1) ,Y )
= 1.

• Probability to move to a new model ratio:

NMPRmerge
RJ =

g(MΩ(t−1) | Ω(t),MΩ(t) ,Y )

g(MΩ(t) | Ω(t−1),MΩ(t−1) ,Y )
=

psplit

pmerge

= ρ,

for Rmin ≤ R ≤ Rmax.

• Jacobian determinant between (α
(t−1)
r , π

(t−1)
r , α

(t−1)
r+1 , π

(t−1)
r+1 ) and (α

(t)
r ,∆1, π

(t)
r ,∆2)

where ∆1 = α
(t−1)
r

α
(t)
r

, ∆2 = π
(t−1)
r

π
(t)
r

and (α
(t)
r , α

(t)
r+1, π

(t)
r , π

(t)
r+1) are defined as equa-

tion (8.3):

Jmerge
RJ =


∂
(
α

(t)
r ,∆

(t)
1 , π

(t)
r ,∆

(t)
2

)
∂
(
α

(t−1)
r , π

(t−1)
r , α

(t−1)
r+1 , π

(t−1)
r+1

)
 =

∣∣∣∣∣∣∣∣∣∣
1 1 0 0
1

α
(t)
r

0 0 0

0 0 1 1

0 0 1

π
(t)
r

0

∣∣∣∣∣∣∣∣∣∣
=

1

α
(t)
r π

(t)
r

.

There are two final considerations for our RJMCMC approach. Firstly, the ap-
plication of a label switching procedure is required as we are dealing with finite
mixtures (see Section 7.2.5). Secondly, the use of a specific technique to diagnose
convergence for RJMCMC as we will describe in the following section.

8.4 Convergence Diagnostic for RJMCMC Samplers

Monitoring of MCMC convergence on the basis of empirical statistics of the chain
is important, although not a substitute for a good theoretical understanding of
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the chain. There are several well-known techniques to diagnose convergence for
a fixed-dimensional MCMC sampler as discussed in Section 7.1.3. A major diffi-
culty arises when diagnosing convergence applies to a MCMC sampler such as
the RJMCMC sampler, which involves jumping between models of different di-
mensions and therefore both the length and interpretation of the state vector may
change from iteration to iteration. Green and Hastie (2009) stated that the degree
of confidence that convergence has been achieved provided by “passing” a fixed-
dimensional diagnostic convergence test declines very rapidly as the dimension
of the state space changes.

Not many convergence diagnostic methods for RJMCMC are available. In
finite mixtures, one 2-step strategy consists of monitoring the convergence of pa-
rameter related to the number of components in the mixture individually and,
later, testing the convergence within each model individually after that (Richard-
son and Green, 1997). The drawback of this approach is that some models will
not be visited very often even in long run samplings and therefore diagnostic con-
vergence within those models is almost impossible (Brooks, 1997). An approach
extending the Gelman and Rubin method (Gelman and Rubin (1992) and Brooks
(1998), see Appendix F.2) to the RJMCMC case is given in Brooks and Giudici
(2000). It is based on a 2-way ANOVA analysis of the simulation output over
multiple chain replications for those parameters that do not change their inter-
pretation as the sampler moves from model to model. In this framework, the po-
tential scale reduction factor (PSRF) can be computed and monitored. The draw-
back is that those parameters may not characterize the whole set of parameters
and therefore mislead the convergence assessments. Castelloe and Zimmerman
(2002) modified the method proposed by Brooks and Giudici (2000) to a weighted
2-way ANOVA analysis with the weights being specified in proportion to the fre-
quency of model visits. This approach prevents the PSRF being dominated by a
few visits to rare models. The approach utilizes multiple chain replications and
detects the following:

1. variation that is not homogeneous between chains (like in the Gelman and
Rubin method),

2. between-model variation that differs from one chain to another, and

3. significant differences in the frequencies of model visits from one chain to
another.
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Alternative approaches are a nonparametric method for assessing RJMCMC sam-
pler performance based on distance measures (Brooks et al., 2003) and a distance-
based diagnostic when the underlying model can be formulated in the marked
point process framework (Sisson and Fan, 2007).

In this thesis, the method proposed by Castelloe and Zimmerman (2002) to
assess the convergence of RJMCMC sampler was implemented. Technical details
can be found in the Section 4 of their paper and an outline of the method is de-
scribed in Appendix I.1.

8.5 Simulation Study

We set up a simulation study to test how reliably we were able to estimate the
parameters (including the number of clusters) for our row clustering approach
by using the RJMCMC algorithm. Generally speaking, we simulate datasets and
then run multiple RJMCMC samplers to fit the more appropriate model.

The design of the RJMCMC sampler refers to an ordinal response variable
with four categories (q = 4) and we varied the number of row clusters (R =

2, . . . , 6) in order to test if the RJMCMC sampler returns the correct number of
clusters. The sample size (n = 1000) and the number of columns (m = 3) is fixed.
For each number of row clusters R, a single set of parameters values was chosen
and H = 100 data sets (replicates) were generated. For each data set, we assessed
the convergence of the RJMCMC sampler by running S = 10 chains in paral-
lel from random starting points. We ran each chain for a initial 20000 iterations,
but discarded these initial samples (burn-in period). We then ran each chain for
a further 200000 updates, storing only every 10th state (thinning). We used the
methods of Castelloe and Zimmerman (2002) to assess the convergence of these
chains. For each chain, we summarised results computing the mean, median, in-
terquartile range, standard deviation, time series standard error highest posterior
density interval (HPD) and maximum a posteriori estimator (MAP) for the free
parameter vector Ω. Additionally, we computed the proportion of times where
the estimation agrees with true parameters over the total number of chains. The
simulation study procedure for the RJMCMC with row clustering case is outlined
in the following steps:
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Step 1. Model specification

One row clustering without interaction model (µk+φk(αr+βj)) is specified based
on:

• Set Rmin = 2, Rmax = 6.

• Select the number of clusters R from the set {Rmin, . . . , Rmax} (1 option).
R acts as the true number of row clusters.
This fixes the row effects {α1, . . . , αR} (with

∑R
r=1 αr = 0) and

the prior mixing probabilities {π1, . . . , πR} (with
∑R

r=1 πr = 1).

• Select the number of response categories: q = 4 in all cases (1 option).
This fixes {µ1, . . . , µq} (with µ1 = 0) and
the ordinal response cut levels φ1 ≤ φ2 ≤ . . . ≤ φq (with φ1 = 0 and φq = 1).

• Select the number of columns: m = 3 in all cases (1 option).
This fixes {β1, . . . , βm}with

∑m
j=1 βj = 0).

• Set the sample size n = 1000 (1 option).

At the end of this step we know, for the chosen model:

• The number of row groups R.

• The number of response categories q.

• The number of columns m.

• The sample size n.

• The total number of free parameters K = 2q + 2R +m− 6.

• The parameter vector Ω consisting of free parameters:

{α1, . . . , αR}, {β1, . . . , βm}, {π1, . . . , πR}, {µ1, . . . , µq}, and {φ1, . . . , φq},

and as a consequence we can calculate the values of the linear predictors

ηkrj = µk + φk (αr + βj) ,

for k ∈ {1, . . . , q}, r ∈ {1, . . . , R} and j ∈ {1, . . . ,m}.
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Step 2. Simulator specification

Set the parameters for the simulator specifying:

• The number of replicates to run (i.e. distinct datasets): H = 100.

• The number of chains in each replicate: S = 10.

As a result we run 1000 RJMCMC chains.

Step 3. Markov Chain specification

Set the chain parameters specifying:

• The number of iterations in the burn-in period: nburn=20000.

• The number of iterations to store: nstore=20000.

• The thinning rate: nthin=10.

As a result we run each chain for a overall of T=nburn+(nthin × nstore)=220000
iterations.

Step 4. RJ move parameter and hyperparameter specification

Set the constant related to the proportion of times that a split or merge move is
proposed: p = 0.3.
Set the hyperparameters values specifying:

• The parameters of a truncated Geometric distribution which is the prior for
the number of row clusters R:

– The range of number of possible row clusters: RRJ
min = 1 and RRJ

max = 10.

– The success parameter: 1− ρ = 0.2.

• Shape and scale parameters to specify an Inverse Gamma distribution which
is the prior for the standard deviation parameter from a Normal distribu-
tion related to

– the cut point parameters {µk}: νµ = 3, δµ = 40,

– the row cluster parameters {αr}: να = 3, δα = 40, and
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– the column parameters {βj}: νβ = 3, δβ = 40.

• Parameter vector regarding a Dirichlet distribution related to

– the score parameters {φk}: λφ = 1, and

– the prior mixing probabilities λπ = 1.

As a result a dimension-changing move is proposed 30% of times and we know
the hyperparameters for the parameters of the priors.

Step 5. Proposal parameter specification

Set the parameter values for all the proposal distributions q(·|·) to:

• an update in the cut point parameters {µk}: σ2
µp = 0.3,

• an update in the row cluster parameters {αr}: σ2
αp = 0.3,

• an update in the column parameters {βj}: σ2
βp

= 0.3,

• an update in the row group membership prob. parameters {πr}: σ2
πp = 0.3.

Step 6. Generate replicate datasets

For each replicate h ∈ {1, . . . , H} and each chain s ∈ {1, . . . , S}:

• For each row i = 1, . . . , n, generate row membership as an indicator vector

zhsi =
(
Zhs
i1 , ..., Z

hs
iR

)
∼Multinomial (1; {πr}) .

• For each column j = 1, . . . ,m within each row i = 1, . . . , n, generate the
response ordinal variable

yhsij |zhsi = δr ∼ Stereotype
(
{ηkrj}qk=1

)
.

Here δr is an indicator vector of length R, with 1 at location r and zero
elsewhere. This implies that

log

(
P
[
yhsij = k | zhsi = δr

]
P
[
yhsij = 1 | zhsi = δr

]) = ηkrj.
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There are HS = 100× 10 = 1000 possible combinations of replicate and chain:
hs.

Step 7. Fit models. Run the RJMCMC sampler

• We run the RJMCMC sampler for the combination dataset hs and we obtain
the chain RJhs.

This means running the sampler HST = 100× 10× 220000 iterations in all.

At iteration t (t = 1, . . . , nstore) we obtain the estimated parameter vector
Ω̂hs

(t) for the combination dataset hs consisting of free parameters:

{α̂1, . . . , α̂R−1}, {β̂1, . . . , β̂m−1}, {π̂1, . . . , π̂R−1}, {µ̂2, . . . , µ̂q}, and {φ̂2, . . . , φ̂q−1}.

The dimension of Ω̂hs
(t) is variable depending on which dimension (in terms

of number of rows RRJ) the sampler is exploring. So, the chain s in the hth

replicate RJhs can be divided into a set of RRJ
max−RRJ

min + 1 subchains of fixed
dimension (RRJ

min = 1, RRJ
max = 10)

RJhs = RJhs
(
RRJ

min

)
∪ RJhs

(
RRJ

min+1

)
∪ · · · ∪ RJhs

(
RRJ

max

)
,

where RJhs are the chains with r clusters, r = Rmin, . . . , Rmax.

• Return the values
{

Ω̂hs
(1), Ω̂

hs
(2), . . . , Ω̂

hs
(nstore)

}
for h = 1, . . . , H and s = 1, . . . , S.

• Test whether the convergence has been achieved. If not, increase nstore and
return to step 7.

• Test whether the label-switching problem is present in the posterior distri-
butions of {αr} and {πr}. If so, perform the procedure described in Section
7.2.5.

Step 8. Obtain overall results

• Merge the HS combinations of replicate and chain into one chain:

RJoverall =
H⋃
h=1

S⋃
s=1

RJhs.
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• Graph a bar diagram depicting the number of iterations at which the chain
RJoverall visits the model with RRJ row clusters (RRJ

min ≤ RRJ ≤ RRJ
max).

• For each chain RJhs, calculate the mode of the number of row clusters vis-
ited by the chain:

R̂RJ
mode = argmax

RRJ
min≤RRJ≤RRJ

max

dim
(
RJhs

(
RRJ

))
and select the section of the chain where the number of row clusters is the
same as the mode:

RJhsmode = RJhs
(
RRJ = R̂RJ

mode

)
.

After this point, we will have HS modes.

• The proportion of times across the HS possible combinations of replicate
and chain where the mode R̂RJ

mode agrees with the true value R is of primary
interest:

PR

(
R, R̂RJ

mode

)
=

1

HS

H∑
h=1

S∑
s=1

I(R = R̂RJ
mode),

• We also compute a measure of spread as the proportion of chains RJhs across
the HS possible chains where the mode R̂RJ

mode falls into the range from R−1

to R + 1 row clusters. Thus, we can show the spread from the previous
expression PR(·, ·) as the interval:[

PR

(
max{RRJ

min,R− 1}, R̂RJ
mode

)
, PR

(
min{R + 1,RRJ

max}, R̂RJ
mode

)]
.

• We are also interested in the proportion of times the 95% HPD region in-
cludes the true value of the parameter across the HS possible chains for the
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following parameters (those not dimensional-dependent):

Pµk =
1

HS

H∑
h=1

S∑
s=1

I(µtrue
k ∈ HPDhs

µk
) k = 2, . . . , q,

Pφk =
1

HS

H∑
h=1

S∑
s=1

I(φtrue
k ∈ HPDhs

φk
) k = 2, . . . , q − 1, and

Pβj =
1

HS

H∑
h=1

S∑
s=1

I(βtrue
j ∈ HPDhs

βj
) j = 1, . . . ,m− 1.

and the same for parameters {αr} and {πr} (those dimensional-dependent)
for the set of chains where the number of row clusters is R̂RJ

mode:

Pαr =
1

HS

H∑
h=1

S∑
s=1

I(αtrue
r ∈ HPDhs

αr) r = 1, . . . , R− 1, and

Pπr =
1

HS

H∑
h=1

S∑
s=1

I(πtrue
r ∈ HPDhs

πr) r = 1, . . . , R− 1.

Step 9. Summarising results for each chain

• For chain RJhs,

– We summarise the chain RJhs computing the mean, median, interquar-
tile range, standard deviation, time series standard error, highest pos-
terior density interval (HPD) and maximum a posteriori estimator (MAP)
for each element of the parameter vectors {Ω̂hs

(1), . . . , Ω̂
hs
(nstore)}.

– Calculate the model averaged estimates computing the marginal pos-
terior distributions conditional to the data Y and any possible model
with RRJ row clusters (RRJ

min ≤ RRJ ≤ RRJ
max) for the following free pa-

rameters:

p(µ2|Y , R ∈ {RRJ
min, . . . , R

RJ
max}), . . . , p(µq|Y , R ∈ {RRJ

min, . . . , R
RJ
max}),

p(φ2|Y , R ∈ {RRJ
min, . . . , R

RJ
max}), . . . , p(φq−1|Y , R ∈ {RRJ

min, . . . , R
RJ
max}), and

p(β1|Y , R ∈ {RRJ
min, . . . , R

RJ
max}), . . . , p(βm−1|Y , R ∈ {RRJ

min, . . . , R
RJ
max}).

In addition, we also calculate model specific estimates computing the
marginal posterior distributions conditional on the data Y and the
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model with the mode of number of row clusters visited by the chain
for the following free parameters:

p(α1|Y , R̂RJ
mode), . . . , p(αRRJ−1|Y , R̂RJ

mode), and

p(π1|Y , R̂RJ
mode), . . . , p(πRRJ−1|Y , R̂RJ

mode).

This simulation study is for the one-dimensional clustering case and is illus-
trated with the row clustering version. The column clustering version is essen-
tially the same, but replacing parameters related to rows with the equivalent col-
umn parameters. The biclustering version may be a future direction to explore.

8.6 Results

In this section, the use of the RJMCMC sampler to estimate the stereotype model
parameters for our one-dimensional likelihood-based clustering approach is il-
lustrated. We show the results of the simulation study described above (Section
8.5). Additionally, the results of this estimation approach for two real-life dataset
examples are demonstrated.

Simulation Study Results

We summarise the simulation study results by computing the mean, median, in-
terquartile range (IQR), standard deviation (SD), time-series standard error, high-
est posterior density interval (HPD) and maximum a posteriori estimator (MAP)
for each parameter vector Ωhs (h = 1, . . . , 100 and s = 1, . . . , 10).

Tables 8.3 and 8.4 show the results for the row clustering model for different
number of row clusters R (from R = 2 to R = 6). In each case the tables show
the mean of those statistical measures over the HS = 100 × 10 = 1000 possible
combinations of replicate and chain. The MAP estimators of all the parameters
are close to their true values and as expected the 95% HPD credible interval in-
cludes the true parameter values in all the cases. Additionally, Figure 8.2 shows
the HS = 100 × 10 = 1000 separate MAP estimators of all the parameters taken
in pairs and plotted against each other for the row clustering model with R = 2

row clusters. The red diamond point represents the true value of the parameter.
The MAP estimators are around the true value of the parameter in all the scat-
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ter plots. Note that all the MAP estimators on the top left plot which relates to
the comparison between φ̂2 vs. φ̂3 show the ordering constraint φ̂2 < φ̂3. Also
note that top right plot comparing the (µ̂2, µ̂3) pair shows a positive relationship.
This is because the parameters {µk} determine the proportion of subjects per re-
sponse category and therefore when the relative size of one high ordinal category
increases then the adjacent categories also tend to increase. Figures J.1-J.4 in Ap-
pendix J show similar results for the row clustering model with R = 3, . . . , 6 row
clusters respectively.
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Figure 8.2: RJMCMC simulation study R=2: Scatter plots depicting the maximum a
posteriori estimator (MAP) across all the replicates (H = 100) and chains (S = 10) for
stereotype model including row clustering µk + φk(αr + βj) with R = 2 row clusters.
The sample size for each chain and replica is n = 1000, the number of categories is q = 4,
and the number of columns is m = 3. The black points are the MAP estimators and the
red diamond point represents the true value of the parameter.

For each number of row clusters tested, we have merged theHS possible com-
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Table 8.3: RJMCMC simulation study: Summary statistics for estimated param-
eters for stereotype model including row clustering µk + φk(αr + βj). Mean,
median, interquartile range (IQR), standard deviation (SD), time-series standard
error, 95% highest posterior density interval (HPD), and maximum a posteriori
estimator (MAP) for different number of row clusters R (R = 2, R = 3 and R = 4)
are shown. The sample size is n = 1000, the number of categories is q = 4 and the
number of columns is m = 3.

R
True

parameters

RJMCMC

Mean Median IQR S.D.
Time-
series
S.E.

HPD
95% lower

HPD
95% upper MAP

2

µ2 = 0.414 0.300 0.055 0.579 0.240 0.014 -0.153 0.776 0.321
µ3 = 2.551 2.421 1.976 1.118 0.245 0.015 1.968 2.907 2.428
µ4 = 1.507 1.380 0.725 1.668 0.275 0.017 0.868 1.928 1.389
φ2 = 0.355 0.329 0.328 0.066 0.049 0.002 0.236 0.424 0.332
φ3 = 0.672 0.664 0.665 0.038 0.028 0.001 0.611 0.718 0.664
β1 = −0.427 -0.387 -0.392 0.137 0.100 0.003 -0.549 -0.163 -0.387
β2 = 1.872 1.818 1.837 0.160 0.115 0.004 1.595 2.041 1.824
α1 = 3.571 3.458 3.445 0.303 0.235 0.014 3.027 3.915 3.460
π1 = 0.350 0.319 0.358 0.029 0.025 0.001 0.288 0.368 0.338

3

µ2 = 0.414 0.466 0.394 0.375 0.278 0.016 -0.039 1.022 0.460
µ3 = 2.551 2.649 2.528 0.570 0.407 0.026 1.925 3.471 2.605
µ4 = 1.507 1.671 1.508 0.812 0.572 0.037 0.656 2.823 1.602
φ2 = 0.355 0.344 0.347 0.086 0.064 0.002 0.218 0.467 0.350
φ3 = 0.672 0.674 0.675 0.047 0.035 0.001 0.607 0.741 0.682
β1 = −0.427 -0.449 -0.450 0.148 0.109 0.003 -0.661 -0.238 -0.459
β2 = 1.872 1.860 1.863 0.194 0.144 0.004 1.585 2.141 1.870
α1 = 3.571 3.254 3.253 0.853 0.680 0.024 1.892 4.566 3.624
α2 = −0.919 -0.710 -0.798 0.724 0.683 0.029 -1.699 0.737 -0.757
π1 = 0.200 0.169 0.168 0.091 0.067 0.002 0.045 0.288 0.135
π2 = 0.500 0.529 0.531 0.172 0.117 0.005 0.319 0.743 0.581

4

µ2 = 0.414 0.253 0.234 0.407 0.311 0.019 -0.335 0.855 0.346
µ3 = 2.551 2.306 2.292 0.637 0.490 0.034 1.350 3.216 2.474
µ4 = 1.507 1.194 1.182 0.937 0.725 0.050 -0.217 2.523 1.434
φ2 = 0.355 0.358 0.358 0.071 0.053 0.001 0.254 0.461 0.362
φ3 = 0.672 0.661 0.661 0.042 0.032 0.001 0.600 0.722 0.663
β1 = −0.427 -0.442 -0.442 0.147 0.109 0.003 -0.654 -0.232 -0.444
β2 = 1.872 1.783 1.782 0.176 0.130 0.003 1.531 2.036 1.804
α1 = 3.571 3.726 3.726 0.969 0.750 0.023 2.257 5.169 4.024
α2 = −0.919 -0.944 -0.871 1.170 0.829 0.030 -2.611 0.386 -0.788
α3 = 1.228 1.191 1.119 1.052 0.790 0.027 -0.069 2.811 0.933
π1 = 0.250 0.251 0.251 0.054 0.049 0.001 0.150 0.355 0.253
π2 = 0.320 0.341 0.339 0.082 0.074 0.002 0.170 0.481 0.343
π3 = 0.150 0.123 0.128 0.073 0.049 0.001 0.025 0.209 0.129
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Table 8.4: RJMCMC simulation study: Summary statistics for estimated param-
eters for stereotype model including row clustering µk + φk(αr + βj). Mean,
median, interquartile range (IQR), standard deviation (SD), time-series standard
error, 95% highest posterior density interval (HPD), and maximum a posteriori
estimator (MAP) for different number of row clusters R (R = 5 and R = 6) are
shown. The sample size is n = 1000, the number of categories is q = 4 and the
number of columns is m = 3.

R
True

parameters

RJMCMC

Mean Median IQR S.D.
Time-
series
S.E.

HPD
95% lower

HPD
95% upper MAP

5

µ2 = 0.414 0.183 0.226 0.540 0.361 0.030 -0.510 0.880 0.174
µ3 = 2.551 2.091 2.217 0.934 0.604 0.055 0.910 3.218 2.057
µ4 = 1.507 0.792 1.004 1.383 0.886 0.081 -0.936 2.437 0.709
φ2 = 0.355 0.358 0.355 0.053 0.039 0.002 0.282 0.434 0.358
φ3 = 0.672 0.674 0.674 0.039 0.029 0.001 0.618 0.729 0.673
β1 = −0.427 -0.392 -0.391 0.170 0.126 0.005 -0.634 -0.147 -0.409
β2 = 1.872 1.859 1.854 0.196 0.145 0.006 1.579 2.138 1.901
α1 = 2.571 2.779 2.817 1.595 1.116 0.050 0.604 4.800 2.853
α2 = −2.919 -2.726 -2.676 1.202 0.924 0.045 -4.618 -0.992 -2.722
α3 = 1.528 0.665 0.320 1.517 1.613 0.078 -1.671 4.550 1.425
α4 = 6.012 6.091 6.094 1.251 1.187 0.055 4.331 7.978 6.455
π1 = 0.200 0.200 0.200 0.028 0.024 0.001 0.152 0.247 0.202
π2 = 0.200 0.197 0.195 0.070 0.044 0.002 0.121 0.276 0.195
π3 = 0.200 0.174 0.158 0.100 0.063 0.003 0.077 0.290 0.167
π4 = 0.200 0.161 0.126 0.153 0.096 0.004 0.026 0.329 0.140

6

µ2 = 0.414 0.344 0.314 0.449 0.337 0.022 -0.301 1.003 0.341
µ3 = 2.551 2.378 2.345 0.755 0.559 0.040 1.297 3.457 2.333
µ4 = 1.507 1.223 1.187 1.117 0.819 0.058 -0.378 2.773 1.134
φ2 = 0.355 0.353 0.353 0.057 0.042 0.001 0.272 0.436 0.358
φ3 = 0.672 0.673 0.673 0.041 0.031 0.001 0.614 0.733 0.679
β1 = −0.427 -0.430 -0.429 0.164 0.122 0.003 -0.666 -0.194 -0.438
β2 = 1.872 1.841 1.838 0.194 0.144 0.004 1.563 2.122 1.864
α1 = 2.571 2.564 2.545 1.322 0.953 0.027 0.743 4.396 2.369
α2 = −2.919 -2.719 -2.670 1.309 0.945 0.032 -4.587 -0.989 -2.843
α3 = 1.528 0.932 0.769 1.237 1.172 0.034 -1.040 3.686 1.514
α4 = 6.012 5.819 5.773 1.249 0.968 0.036 3.992 7.720 6.064
α5 = −0.512 -0.227 -0.421 1.248 1.872 0.058 -3.049 5.055 -0.264
π1 = 0.170 0.169 0.169 0.024 0.021 0.001 0.125 0.212 0.174
π2 = 0.170 0.162 0.158 0.058 0.038 0.001 0.094 0.232 0.152
π3 = 0.170 0.163 0.152 0.097 0.057 0.002 0.069 0.262 0.169
π4 = 0.170 0.140 0.114 0.123 0.072 0.002 0.041 0.278 0.131
π5 = 0.170 0.132 0.088 0.181 0.097 0.003 0.012 0.299 0.124
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binations of replicate and chain into one single chain RJoverall in order to show the
results summarised globally. In each case, the resultant merged chain RJoverall

is thinned to 6000 iterations to ease its depiction. Figures 8.3 and 8.4 show the
marginal posterior distribution and trace plot for all the parameters for R = 2

number of row clusters respectively. The expected values of the posterior distri-
bution are very close to the true values (green vertical lines) and the 95% HPD
credible interval includes the true parameter values in all the cases. The trace
plots on Figure 8.4 show a good mixing on all the parameters. The related graph-
ics for R = 3, . . . , 6 are shown in Figures J.5-J.12 in Appendix J showing similar
satisfactory results.

Figure 8.5 shows a bar diagram depicting the number of iterations at which
the merged chain RJoverall visits the model with R̂RJ row clusters (1 ≤ R̂RJ ≤ 10)
for each number of true row clusters R tested (from Rmin = 2 to Rmax = 6). The
mode R̂RJ

mode for each plot always corresponds to the related true value R show-
ing that the model related to this cluster dimension was the most visited by the
RJMCMC sampler. Additionally, Table 8.5 shows the posterior probabilities by
all the sub-models. In all the cases, the RJMCMC sampler does spend more time
in sub-models in the vicinity of the true model with R clusters. The posterior

Table 8.5: RJMCMC simulation study: Posterior probabilities by sub-model for
row clustering µk + φk(αr + βj) model with R = 2, . . . , 6. The number of clus-
ters visited by the RJMCMC sampler are RRJ = 1 . . . 10. The highest probability
for each true number of cluster R (depicted in the columns) is shown in boldface.

RRJ Posterior Probabilities (%)
R = 2 R = 3 R = 4 R = 5 R = 6

1 0.11 0.17 0.05 0.05 0.01
2 58.42 31.48 7.17 1.45 0.08
3 25.70 51.40 26.52 3.77 3.51
4 12.31 12.67 41.92 20.81 8.40
5 3.02 3.18 17.75 41.26 18.83
6 0.41 0.82 5.20 22.77 31.27
7 0.01 0.22 1.17 7.69 27.55
8 0.01 0.04 0.19 1.81 9.13
9 0.00 0.01 0.02 0.35 1.16
10 0.00 0.01 0.01 0.04 0.06

probabilities of these models are typically between 30% and 60% showing that
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Figure 8.3: RJMCMC simulation study R=2: Density plot of the parameters for
stereotype model including row clustering µk + φk(αr + βj). The sample size is
n = 1000, the number of categories is q = 4, the number of columns is m = 3 and
the number of row clusters are R = 2. The density plots depict the marginal posterior
distribution for a sample of 6000 iterations over all the replicates (H = 100) and chains
(S = 10). The green vertical lines are the true parameter value and 95% HPD credible
intervals are shown with shading area.

the number of clusters is not easy to identify by the sampler particularly when
the true number of clusters is R ≥ 4. However, most of the posterior mass is on
models with R in the neighborhood (R̂RJ

mode ± 1) of the true number of clusters
(typically more than 75%). Table 8.6 summarise this results showing the propor-
tion of times across the HS possible combinations where the mode R̂RJ

mode agrees
with the true value R. We also show on this table a spread measure computed as
the proportion of chains where the mode R̂RJ

mode falls into the range from R̂RJ
mode−1

to R̂RJ
mode + 1. All the proportions are greater than 77% and best results are for

the scenario when R = 3 where 95.6% of times the spread is covering the true
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Figure 8.4: RJMCMC simulation study R=2: Trace plot of the parameters for stereo-
type model including row clustering µk + φk(αr + βj). The sample size is n = 1000,
the number of categories is q = 4, the number of columns is m = 3 and the number of
row clusters are R = 2. The plots depict the results of the RJMCMC sampler for a sample
of 6000 iterations over all the replicates (H = 100) and chains (S = 10). The green
horizontal lines are the true parameter value.

Table 8.6: RJMCMC simulation study: Proportion of times across the HS =
100 × 10 = 1000 possible combinations of replicate and chain where the mode
R̂RJ

mode agrees with the true value R (from R = 2 to R = 6) for the stereotype
model including row clustering µk + φk(αr + βj). The posterior probabilities
of the spread interval (Rmode ± 1) are also shown.

TrueR R = 2 R = 3 R = 4 R = 5 R = 6

Mode (R̂RJ
mode) 58.4% 51.4% 41.9% 41.3% 31.3%

Spread (R̂RJ
mode ± 1) 84.2% 95.6% 86.2% 84.8% 77.7%
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Figure 8.5: RJMCMC simulation study: Bar plots depicting the number of rows R
visited by the RJMCMC sampler in the estimation procedure for row clustering model
µk + φk(αr + βj). Each plot represents the scenario with a true number of row clusters
R (R = 2 to R = 6). The y-axis limits (posterior probabilities) are the same to make plots
comparable. The sample size is n = 1000, the number of categories is q = 4 and the
number of columns is m = 3.

number of clusters R.

The proportion of times across the HS possible chains where the 95% HPD
region includes the true value of the parameters with fixed dimension ({µk},{φk},
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and {βk}) is shown in Table 8.7. Table J.1 in Appendix J shows the equivalent
results for those parameters with variable dimension ({αr} and {πr}). In both
cases, the proportion of times that true parameters are covered by the 95% HPD
is 90% at least which is very satisfactory.

Table 8.7: RJMCMC simulation study: Proportion of times the 95% HPD region
includes the true value of the fixed-dimensional parameters across the HS possi-
ble chains for the stereotype model including row clustering without interaction
factors µk + φk(αr + βj).

True parameters Proportion of times within 95% HPD region
R = 2 R = 3 R = 4 R = 5 R = 6

µ2 = 0.414 93% 90% 94% 94% 93%
µ3 = 2.551 92% 95% 93% 94% 91%
µ4 = 1.507 98% 96% 93% 94% 92%
φ2 = 0.355 97% 99% 90% 90% 97%
φ3 = 0.672 97% 100% 91% 99% 92%
β1 = −0.427 96% 98% 97% 97% 93%
β2 = 1.872 94% 90% 91% 90% 94%

In conclusion, the initial results described above for our RJMCMC sampler
are encouraging in their ability to estimate parameters correctly. Nevertheless,
a comprehensive test of the success of the estimation in challenging situations
where it might be expected that estimation might be difficult would be required
and is left as a possible future development.

Real-Life Data Results

In this section we use our RJMCMC sampler to estimate the parameters for two
real-life data examples, which were introduced in Sections 4.2.1 and 4.2.3 respec-
tively. The RJMCMC results are compared with those obtained from fitting our
suite of models by running the EM algorithm and using AIC to do model com-
parison. Using the RJMCMC sampler as described in this thesis allows us not to
have to make model choices among the possible models accessible to the sampler.

In both examples, we have applied the RJMCMC sampler to one-dimensional
clustering described in Section 8.3. In the Example 1, we ran the sampler for the
row clustering case, and we did the same for the column clustering version in the
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Example 2. We did this in order to compare with the maximum likelihood esti-
mator values (MLE) from the EM algorithm. Additionally, we assessed the con-
vergence of the RJMCMC sampler by running five chains in parallel from widely
dispersed starting points. As in the simulation study (Section 8.5), each chain was
run for an initial burn-in period of 20000 iterations which are discarded. We then
ran each chain for a further 200000 updates, storing only every 10th state (thin-
ning). We used the methods of Castelloe and Zimmerman (2002) to assess the
convergence of these chains and the results are given in Appendices I.2 and I.3.
Finally, we merged the chains and the resulting chain was thinned which is sum-
marised computing the mean, standard deviation, median, interquartile range,
standard error, highest posterior density interval and maximum a posteriori esti-
mator for the free parameter vector.

Example 1: Applied Statistics Course Feedback

The dimensions of the ordinal data matrix for the Applied Statistics course feed-
back data set are n = 70 rows (students) and m = 10 columns (questions) where
each observation can take one of the three possible categories (q = 3). Figure
8.6 shows a bar diagram depicting the number of iterations at which the chain
visits the model with R row clusters within a range from R = 1 to R = 10. The
mode was R̂ = 3 which coincides with the number of clusters in the row clus-
tering model selected by AIC using the EM algorithm estimation approach (see
Table 4.4 in Section 4.2.1). Table 8.8 shows the summary of the RJMCMC sampler
results and they are compared with those MLE values from the EM algorithm.
These results include estimates related to dimensional-independent parameters
({µk}, {φk}, and {βj}) over all possible models visited by the sampler, and also
includes estimates for parameters {αr} and {πr} (those dimensional-dependent)
from the set of submodels with fixed dimension R̂ = 3. Moreover, Figure 8.7
depicts the marginal posterior distributions for all the parameters. The expected
values of the posterior distribution are very close to the MLE values (blue vertical
lines). The trace plots on Figure 8.8 show a good mixing in the sampling of all the
parameters.
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Figure 8.6: Applied Statistics course feedback forms data set: Bar plot depict-
ing the number of row clusters R visited by the RJMCMC sampler within the range
R = 1, . . . , 10 student clusters in the estimation procedure for row clustering model
µk + φk(αr + βj).

Example 2: Spider Data

The dimensions of the original count data matrix for the Spider data set are n = 12

spider species over m = 28 sites. Each observation was categorised in q = 4 or-
dinal responses as described in Section 4.2.3. Figure 8.9 shows a bar diagram
depicting the number of iterations at which the chain visits the model with C

site (column) clusters within a range from C = 1 to C = 10. The mode was
Ĉ = 3 which agrees with the number of column clusters related to the best model
using the EM algorithm approach and according to AIC (see Table C.12 in Ap-
pendix C.4). The comparison of the results for the two estimation approaches are
described in Table 8.9 and Figure 8.10. The expected values on the marginal pos-
terior distributions coincide with the MLE values (blue vertical lines). The trace
plots on Figure 8.11 depict an acceptably good mixing in the sampling of all the
parameters.
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Table 8.8: Applied Statistics course feedback forms data set: Summary statistics
for estimated parameters for stereotype model including row clustering model
µk + φk(αr + βj) with R = 3 row (student) clusters. The RJMCMC sampler
results are compared with the MLE values from the EM algorithm.

Par.

EM algorithm RJMCMC

Estim. S.E. Mean Median IQR S.D.
Time-
series
S.E.

HPD
95% lower

HPD
95% upper MAP

µ̂2 -0.306 0.140 -0.385 -0.339 0.361 0.339 0.010 -1.113 0.224 -0.122
µ̂3 -2.291 0.307 -2.271 -2.237 0.708 0.568 0.015 -3.516 -1.277 -1.905
φ̂2 0.541 0.195 0.553 0.549 0.093 0.070 0.002 0.422 0.693 0.515
α̂1 3.496 0.346 3.249 3.439 0.999 0.903 0.034 1.110 4.621 3.695
α̂2 -3.571 0.222 -3.869 -3.750 1.309 0.874 0.042 -5.590 -2.340 -3.530
β̂1 -1.390 0.312 -1.365 -1.355 0.695 0.530 0.010 -2.482 -0.382 -1.419
β̂2 -2.998 0.351 -3.063 -3.023 0.932 0.695 0.015 -4.457 -1.765 -3.440
β̂3 -6.272 0.318 -6.318 -6.222 1.612 1.231 0.037 -8.782 -4.040 -6.381
β̂4 0.300 0.437 0.246 0.251 0.609 0.457 0.009 -0.708 1.102 0.528
β̂5 1.015 0.432 1.027 1.015 0.610 0.451 0.009 0.135 1.874 1.425
β̂6 3.391 0.451 3.433 3.429 0.632 0.477 0.012 2.496 4.353 3.365
β̂7 3.561 0.452 3.538 3.529 0.669 0.487 0.012 2.638 4.518 3.770
β̂8 3.029 0.463 2.937 2.931 0.693 0.508 0.013 1.938 3.910 3.013
β̂9 -1.601 0.332 -1.653 -1.612 0.736 0.565 0.011 -2.873 -0.644 -1.926
π̂1 0.377 0.218 0.358 0.368 0.076 0.055 0.002 0.241 0.449 0.387
π̂2 0.532 0.231 0.502 0.517 0.092 0.082 0.002 0.310 0.630 0.476

8.7 Discussion

The development of a RJMCMC sampler to apply to likelihood models based on
the ordinal stereotype model and introducing fuzzy clustering via finite mixtu-
res has been described in this chapter. The use of RJMCMC jointly with a la-
bel switching procedure allows for selection of the best model dimension while
the sampler is estimating the model parameters. This is an advantage over a
MCMC sampler such as the Metropolis-Hastings algorithm where the jump be-
tween models is not possible and therefore the different models have to be sam-
pled independently. The reliability of using our one-dimensional models using
RJMCMC has been tested with a simulation study and it was also compared with
the MLE values for two real-data examples. Two of the drawbacks of this ap-
proach are that the sampler requires selection of suitable proposal distributions
and the mixing might be slower than in fixed-dimensional MCMC samplers. Fu-
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Figure 8.7: Applied Statistics course feedback forms data set: Density plot depict-
ing the marginal posterior distribution of the parameters for stereotype model including
row clustering model µk + φk(αr + βj) with R = 3 row (student) clusters. The blue
vertical lines are the MLE values. 95% HPD credible intervals are shown with shading
area.

ture developments in this area would include the development of an extra layer
in our RJMCMC sampler allowing both jumps between different class families
(i.e., between with and without interaction models from the same family) and
jumps between one-dimensional and two-dimensional models (biclustering).
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Figure 8.8: Applied Statistics course feedback forms data set: Trace plot of the pa-
rameters for stereotype model including row clustering model µk + φk(αr + βj) with
R = 3 row (student) clusters. The blue horizontal lines are the MLE values.
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Figure 8.9: Spider data set: Bar plot depicting the number of column clusters C visited
by the RJMCMC sampler within the range C = 1, . . . , 10 site clusters in the estimation
procedure for column clustering model µk + φk(αi + βc).
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Table 8.9: Spider data set: Summary statistics for estimated parameters for ste-
reotype model including column clustering model µk + φk(αi + βc) with C = 3
column (site) clusters. The RJMCMC sampler results are compared with MLE
values from the EM algorithm.

Par.

EM algorithm RJMCMC

Estim. S.E. Mean Median IQR S.D.
Time-
series
S.E.

HPD
95% lower

HPD
95% upper MAP

µ̂2 0.131 0.195 0.173 0.179 0.312 0.239 0.006 -0.294 0.640 0.401
µ̂3 -0.812 0.162 -0.910 -0.885 0.680 0.558 0.019 -2.028 0.126 -1.371
µ̂4 -9.442 0.134 -9.974 -10.037 2.744 2.101 0.127 -14.609 -6.464 -12.743
φ̂2 0.397 0.139 0.398 0.399 0.122 0.090 0.003 0.227 0.578 0.364
φ̂3 0.889 0.119 0.889 0.890 0.061 0.045 0.001 0.811 0.979 0.915
α̂1 2.054 0.132 2.119 2.145 2.623 2.027 0.053 -1.769 6.167 2.016
α̂2 -1.470 0.098 -1.500 -1.435 2.671 2.079 0.054 -5.404 2.689 -1.142
α̂3 -0.005 0.097 -0.088 -0.093 2.940 2.203 0.054 -4.354 4.316 -2.074
α̂4 -3.816 0.125 -3.781 -3.660 3.801 2.899 0.076 -9.285 2.096 -6.147
α̂5 3.369 0.161 3.373 3.379 3.494 2.660 0.066 -1.813 8.585 4.688
α̂6 -2.245 0.082 -2.181 -2.053 3.215 2.466 0.072 -7.017 2.713 1.525
α̂7 -1.511 0.120 -1.434 -1.429 2.864 2.111 0.052 -5.816 2.479 -1.967
α̂8 0.524 0.105 0.549 0.571 2.527 1.901 0.058 -3.389 4.058 0.644
α̂9 -2.190 0.191 -2.265 -2.246 2.976 2.279 0.072 -6.678 2.309 -3.272
α̂10 -0.249 0.147 -0.315 -0.406 2.854 2.166 0.071 -4.373 4.128 -2.973
α̂11 5.744 0.105 5.791 5.765 2.841 2.123 0.058 1.893 10.176 8.407
β̂1 -0.415 0.207 -0.346 -0.319 1.493 1.257 0.045 -2.853 1.979 0.687
β̂2 -0.291 0.120 -0.212 -0.174 1.490 1.302 0.045 -2.790 2.117 1.587
κ̂1 0.295 0.180 0.301 0.377 0.260 0.176 0.007 0.073 0.710 0.464
κ̂2 0.348 0.194 0.381 0.402 0.256 0.180 0.009 0.090 0.747 0.470
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Figure 8.10: Spider data set: Density plot depicting the marginal posterior dis-
tribution of the parameters for stereotype model including column clustering model
µk + φk(αi + βc) with C = 3 column (site) clusters. The blue vertical lines are the
MLE values. 95% HPD credible intervals are shown with shading area.
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Figure 8.11: Spider data set: Trace plot of the parameters for stereotype model including
column clustering model µk + φk(αi + βc) with C = 3 column (site) clusters. The
blue horizontal lines are the MLE values.
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Chapter 9

Conclusions and Future Research
Directions

We have developed a set of likelihood models based on the ordinal stereotype
model and have introduced fuzzy clustering via finite mixtures in order to re-
duce the dimensionality of the problem and simplify its interpretation. In the
research literature, there are numerous methodologies dealing with the cluste-
ring of data in fields where multivariate techniques are necessary. The advan-
tage of our approach is its likelihood-based foundation because maximum like-
lihood theory provides estimators and model selection. In addition, the fitted
spacing {φ̂k} among ordinal categories of the response variable is dictated by the
data and arises from the use of the ordinal stereotype model. This is an advan-
tage over other ordinal-based models such as the proportional odds model and
the continuation-ratio model, which do not provide a direct interpretation of the
spacing between ordinal levels. More research in performance comparison with
others equivalent methods is needed and may be a direction for future research.

We have described two procedures to fit the suite of developed models. The
first procedure is based on deriving the maximum likelihood estimators of the
parameters using the EM algorithm. The second procedure is based on a Bayesian
inference approach which has been implemented in two different methodologies
whether if we consider the number of components in the mixture as a known
value or an unknown parameter. In the first methodology, the models were fitted
using the MCMC techniques through the Metropolis-Hastings algorithm and the
fitting was achieved using the reversible jump MCMC sampler in the second case.
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We have demonstrated both procedures by means of three examples with real-
life data. We have considered the case where responses in each column have the
same number of ordinal response levels. This can be varied but may require a
separate set of parameters {µjk} and {φjk} in the formulation of the models. All
the programs in this thesis have been written in R. Computation can be slow
in this stage, though we have substantially reduced the time required by calling
compiled C code from R.

The reliability of our methodology was tested through a simulation study us-
ing the EM algorithm and the two Bayesian inference methodologies. We de-
tected that there is an indication of multimodality of the likelihood surface. One
way to deal with this is to implement a convergence strategy where several start-
ing values are tested over the parameter vector in order to obtain the global max-
imum.

In a frequentist framework, we tested model comparison conducting a sim-
ulation study in which the results show that AIC, AICc and AICu are effective
information criteria to score fitted models based on our likelihood-based finite
mixture model approach for ordinal datasets. In particular, AIC consistently per-
forms best among the tested information criteria to select the model with the
correct number of clusters in a wide range of scenarios. In the research litera-
ture, there has so far been minimal research on model selection for finite mixture
models with categorical data. Thus, this was an empirical simulation study and
the conclusions are based on a set of information criteria in common use, none of
which were developed for ordinal data. Additionally, we used the same informa-
tion criterion measures for the biclustering case as in the one-dimensional case.
We are aware that the asymptotic properties which apply to the one-dimensional
case might not apply in the two-dimensional case. Thus, the information cri-
teria affect the two clusterings differently. Because of this, development of a
specific measure for model comparison with ordinal variables and for the two-
dimensional case is required and should be achieved in future research.

In a Bayesian framework, we implemented methodologies to diagnose the
convergence of the MCMC samplers. Moreover, the selection of the best model
was achieved using DIC, in the fixed-dimensional case. In addition, we imple-
mented a relabelling algorithm to deal with the label switching problem. This
problem arises when MCMC samplers are applied to parameter estimation and
clustering using mixture models. The use of RJMCMC jointly with a label switch-
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ing procedure allows selection of the best model dimension while the sampler is
estimating the model parameters. This is an advantage over fixed-dimensional
MCMC samplers (e.g. Metropolis-Hastings algorithm) where the different mod-
els to test have to be sampled independently. Based on our experience, two draw-
backs of the RJMCMC sampler are that it requires accuracy in the selection of
suitable proposal distributions and the mixing might be slower than in fixed-
dimensional MCMC samplers. This thesis was focused on the development of a
RJMCMC algorithm to sample from one-dimensional mixture models. Thus, fu-
ture developments in this area would include the development of an extra layer
in our RJMCMC sampler allowing both jumps between different class families
(i.e., between with and without interaction models from the same family) and
jumps between one-dimensional and two-dimensional models (biclustering).

We have presented new data visualisation methods for depicting the results of
our approach. Output from our models allows us to determine a new spacing of
the ordinal categories, dictated by the data. Thus, these graphical tools used this
more appropriate spacing to lead to more informative visualisation. In particu-
lar, we developed multidimensional scaling plots, ordination plots, mosaic plots
including the new spacing, and level plots which depict the fuzzy probabilistic
clustering. These graphical tools allow us to present the dimensional reduction
results visually, to understand them more easily, and to lead to the identification
of patterns in the data. The development of visualisation techniques focused on
the biclustering case may warrant future research. A possible direction would be
to develop mixture-based biplots as described in Pledger and Arnold (2014) to
represent associations among rows, row groups, columns and column groups.

A strategy of categorising count data into ordinal data was carried out and a
set of measures to compare different cluster structures were implemented. Count
data sets may involve overdispersion from a set of species and underdispersion
from another set which would require to fit different models (e.g. a negative
binomial model for the overdispersed set and a binomial model for the underdis-
persed one). In our view, the main advantage of using our ordinal approach is
that it allows for the inclusion of all of the different variance-mean ratio cases in
the data in one methodology, without treating the data differently. Additionally,
many count data sets have very high counts and very low counts. Categorising
these counts into ordinal categories makes the actual counts less influential in
the model fitting, giving broad categories which enable us to detect major overall

205



CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

patterns. Two future research directions may be set in order to investigate the
differences between recoded and original count data. Firstly, setting up an em-
pirical comprehensive study through numerical experiments across a wide range
of scenarios. Secondly, developing a measure to quantify the loss of information
due to use of the ordinal categorisation instead of the original count data.

Part of the work presented in this thesis (Chapters 1-4) was published in
Fernández et al. (2014a). Other more general future research directions to con-
sider will be:

• Create an R package including the finite mixture models for ordinal data
introduced in this thesis. This package will include routines to fit models
based on the EM algorithm and Bayesian inference approaches and to de-
pict the clustering results using the visualisation tools introduced in Chap-
ter 5.

• Develop measures of goodness of fit for our ordinal stereotype approach
based on the inspection of the discrepancy between the observed and the
expected values under the model. The detection of patterns in the residuals
may indicate a stronger association than is predicted by the fitted model.

• Compare results of our approach versus other similar methodologies such
as k-means and the proportional odds model version of the cumulative
logit. In order to do that, we will simulate a continuous latent variable
from a logistic or normal distribution and chop it into categories to get the
ordinal response. Then, we will run the different methodologies with this
ordinal data and compare the observed results between the different ap-
proaches. This comparison will allow us to determine the scenarios where
our methodology based on the stereotype model has better results than
other comparable approaches.

• Extend our finite mixture approach to other ordinal models such as logit
models, loglinear models, cumulative link models and association models
that do not have loglinear structure but can describe ordinal association.

• Investigate models involving other correlation structures such as column
dependence based on repeated measurements, i.e. longitudinal data. We
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could then generalize the approach to the development of clustering meth-
ods of three-way data, i.e. biclustering individuals and questions, with re-
peated measures.

• Include row or column covariates such as environmental site factors in eco-
logical data, or respondent characteristics in questionnaire data.

• Regarding the number of components in the mixture, we are interested
in exploring approaches where the number of components is not fixed in
advance. It might be possible to consider a Dirichlet process prior in a
Bayesian nonparametric framework. This assumes that an infinite number
of components exists, but most of them are never seen. The method would
be created for including, adding or reducing components in the process.

207



CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

208



Appendices

209





Appendix A

Model Formulation. Column
Clustering and Biclustering

A.1 Response Probabilities in the Ordered Stereotype

Model

In this appendix, we describe the relationship between models (2.3) and (2.6),
which were formulated in Section 2.3.

From equation (2.6) with the predictor including the covariates and
∑q

k=1 P [yij = k | x] =

1, we calculate

P [yij = 1 | x]

(
1 +

q∑
`=2

exp(µ` + φ`δ
′x)

)
= 1.

Using the identifiability constraints µ1 = φ1 = 0 it follows that

P [yij = 1 | x] =
1∑q

`=1 exp(µ` + φ`δ
′x)

. (A.1)

Therefore, equation (2.3) can be obtained from (2.6) just using the above expres-
sion (A.1) for P [yij = 1 | x].
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A.2 EM Algorithm Formulae. Column clustering

In section 2.5, we described the model fitting procedure for the row clustering
case. In this appendix, the fitting procedure is formulated for the case of column
clustering.

The latent variable encoding the missing information for the actual member-
ship of the columns is Xjc. The posterior probabilities of membership once we
have observed the data {yij} are X̂jc and the set of a priori probabilities are {κc}.
Ω is the parameter vector for the case of column clustering. For the M-step, we
use the sum-to-zero constraints on each row and column of the γ iteration matrix
and on the column effect parameters {βc} (

∑
c βc = 0) in order to ensure identifi-

ability.

The column clustering model-specific formulae of EM algorithm follow.

E-step:

X̂
(t)
jc =

κ̂
(t−1)
c

∏n
i=1

∏q
k=1

(
θ̂

(t−1)
ick

)I(yij=k)

∑C
`=1

{
κ̂

(t−1)
`

∏n
i=1

∏q
k=1

(
θ̂

(t−1)
i`k

)I(yij=k)
}

and

Q̂(Ω | Ω(t−1)) =
m∑
j=1

C∑
c=1

X̂
(t)
jc log(κ̂(t−1)

c )

+
n∑
i=1

m∑
i=1

q∑
k=1

C∑
c=1

X̂
(t)
jc I(yij = k) log

(
θ̂

(t−1)
ick

)
.

M-step:

κ̂(t)
c =

1

m

m∑
j=1

 κ̂
(t−1)
c

∏n
i=1

∏q
k=1

(
θ̂

(t−1)
ick

)I(yij=k)

∑C
l=1

{
κ̂

(t−1)
l

∏n
i=1

∏q
k=1

(
θ̂

(t−1)
ilk

)I(yij=k)
}


and
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max
Ω

[
n∑
i=1

m∑
j=1

q∑
k=1

C∑
c=1

X̂jcI(yij = k) log
(
θ̂ick

)]
,

conditional on the identifiability constraints on the parameters.

A.3 EM Algorithm Formulae. Biclustering

In Section 2.5, we described the model fitting procedure for the row clustering
case. In this appendix, the fitting procedure is formulated for the case of biclus-
tering.

The latent variables encoding the missing information for the actual member-
ship of the rows and columns are Zir and Xjc respectively. The posterior proba-
bilities of membership once we have observed the data {yij} are Ẑir for the rows
and X̂jc for the columns. The set of a priori probabilities are {πr} (rows) and {κc}
(columns). Ω is the parameter vector for the case of biclustering. For the M-
step, we use the sum-to-zero constraints on each row and column of the γ itera-
tion matrix and on row effect parameters {αr} and column effect parameters {βc}
(
∑

r αr =
∑

c βc = 0) in order to avoid identifiability problems. The biclustering
model-specific formulae of EM algorithm follow (see the detailed formulation of
the biclustering model by Pledger and Arnold (2014)).

E-step:

Ẑ
(t)
ir =

π̂
(t−1)
r

∏m
j=1

∏q
k=1

{∑C
c=1 κ̂c

(
θ̂

(t−1)
rck

)I(yij=k)
}

∑R
`=1 π̂

(t−1)
`

∏m
j=1

∏q
k=1

{∑C
c=1 κ̂c

(
θ̂

(t−1)
`ck

)I(yij=k)
}

and

X̂
(t)
jc =

κ̂
(t−1)
c

∏n
i=1

∏q
k=1

{∑R
r=1 π̂r

(
θ̂

(t−1)
rck

)I(yij=k)
}

∑C
`=1 κ̂

(t−1)
`

∏n
i=1

∏q
k=1

{∑R
r=1 π̂r

(
θ̂

(t−1)
r`k

)I(yij=k)
} .

The E-step of the EM algorithm calls for the expected value of the complete data
log-likelihood taking into account the fact that the only data unknown is {zir}
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and {xjc} conditional on the observed data {yij}:

Q̂(Ω | Ω(t−1)) =
n∑
i=1

R∑
r=1

log
(
π̂(t−1)
r

)
E
[
zir | {yij},Ω(t−1)

]
+

m∑
j=1

C∑
c=1

log
(
κ̂(t−1)
c

)
E
[
xjc | {yij},Ω(t−1)

]
+

n∑
i=1

m∑
j=1

q∑
k=1

R∑
r=1

C∑
c=1

I(yij = k) log
(
θ̂

(t−1)
rck

)
E
[
zirxjc | {yij},Ω(t−1)

]
.

The expectations in the former two terms are simply Ẑir and X̂jc. However,
the lack of a posteriori independence of the {zir} and {xjc} makes the evaluation
of E [zirxjc | {yij},Ω] computationally expensive as it requires a sum either over
all possible allocations of rows to row groups, or over all possible allocations of
columns to column groups.

The variational approximation employed by Govaert and Nadif (2005) is a
solution to this problem:

E [zirxjc | {yij},Ω] ' E [zir | {yij},Ω]E [xjc | {yij},Ω] = ẐirX̂jc.

In that manner, the E-step of the EM algorithm is approximated as:

Q̂(Ω | Ω(t−1)) =
n∑
i=1

R∑
r=1

Ẑir log
(
π̂(t−1)
r

)
+

m∑
j=1

C∑
c=1

X̂jc log
(
κ̂(t−1)
c

)
+

n∑
i=1

m∑
j=1

q∑
k=1

R∑
r=1

C∑
c=1

ẐirX̂jcI(yij = k) log
(
θ̂

(t−1)
rck

)
.

(A.2)

M-step:

κ̂(t)
c =

1

m

m∑
j=1

 κ̂
(t−1)
c

∏n
i=1

∏q
k=1

(
θ̂

(t−1)
ick

)I(yij=k)

∑C
l=1

{
κ̂

(t−1)
l

∏n
i=1

∏q
k=1

(
θ̂

(t−1)
ilk

)I(yij=k)
}


and
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π̂(t)
r =

1

n

n∑
i=1

 π̂
(t−1)
r

∏m
j=1

∏q
k=1

(
θ̂

(t−1)
rjk

)I(yij=k)

∑R
l=1

{
π̂

(t−1)
l

∏m
j=1

∏q
k=1

(
θ̂

(t−1)
ljk

)I(yij=k)
}
 .

and

max
Ω

[
n∑
i=1

m∑
j=1

q∑
k=1

R∑
r=1

C∑
c=1

I(yij = k) log
(
θ̂rck

)
Ẑ

(t)
ir X̂

(t)
jc

]
,

conditional on the identifiability constraints on the parameters and assume in-
dependence between Ẑir and X̂jc.

The variational approximation presents several drawbacks (see e.g. Keribin
et al. (2012) for a discussion on this topic). In our work, we have not employed
the variational approximation for the ultimate MLEs. Instead, we have used an
alternative procedure with the aim of ensuring a solution avoiding approxima-
tion. Thus, the MLEs from the EM algorithm are used as starting points in order
to numerically maximise the incomplete-data log-likelihood (2.14) (or (2.15)).
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Appendix B

Model Comparison. Results

B.1 Parameter Configuration

Tables B.1 and B.2 summarise the parameter configuration for each scenario in
the row clustering and biclustering cases.

B.2 Row Clustering and Biclustering Results

The full results for all the scenarios broken down by number of rows/columns
and sample size is given from Table B.3 to Table B.7 for the row clustering case
and from Table B.8 to Table B.12 for the biclustering case.

B.3 Questionnaire. Three Cultures

The full set of questions in (Anders and Batchelder, 2013) study is given in Table
B.13. The data set with the responses of 83 respondents over 20 questions is given
in Table B.14.
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Table B.1: Parameter configuration for 5 tested scenarios in the row clustering
case.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
m = 5 m = 5 m = 5 m = 5 m = 10

R = 2

π1 = 0.450 π1 = 0.450 π1 = 0.950 π1 = 0.450 π1 = 0.450
µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814
µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951
µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.662 φ3 = 0.972 φ3 = 0.662 φ3 = 0.500 φ3 = 0.662
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427
β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285
β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872
β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097

R = 3

π1 = 0.200 π1 = 0.200 π1 = 0.470 π1 = 0.200 π1 = 0.200
π2 = 0.500 π2 = 0.500 π2 = 0.050 π2 = 0.500 π2 = 0.500
µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814
µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951
µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.662 φ3 = 0.972 φ3 = 0.662 φ3 = 0.500 φ3 = 0.662
α1 = 3.634 α1 = 3.634 α1 = 3.634 α1 = 3.634 α1 = 3.634
α2 = −0.819 α2 = −0.819 α2 = −0.819 α2 = −0.819 α2 = −0.819
β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427
β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285
β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872
β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097

R = 4

π1 = 0.150 π1 = 0.150 π1 = 0.310 π1 = 0.150 π1 = 0.150
π2 = 0.300 π2 = 0.300 π2 = 0.050 π2 = 0.300 π2 = 0.300
π3 = 0.250 π3 = 0.250 π3 = 0.320 π3 = 0.250 π3 = 0.250
µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814
µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951
µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.662 φ3 = 0.972 φ3 = 0.662 φ3 = 0.500 φ3 = 0.662
α1 = 3.634 α1 = 3.634 α1 = 3.634 α1 = 3.634 α1 = 3.634
α2 = −0.819 α2 = −0.819 α2 = −0.819 α2 = −0.819 α2 = −0.819
α3 = 2.911 α3 = 2.911 α3 = 2.911 α3 = 2.911 α3 = 2.911
β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427
β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285
β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872
β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097

Notes: µ1 = 0, φ1 = 0, φ4 = 1 for all the scenarios.
β5 = 2.20, β6 = 3.00, β7 = −2.00, β8 = 3.90 and β9 = −3.50 in Scenario 5.
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Table B.2: Parameter configuration for 5 tested scenarios in the biclustering case.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
m = 5 m = 5 m = 5 m = 5 m = 10

R = 2
C = 2

π1 = 0.450 π1 = 0.450 π1 = 0.450 π1 = 0.450 π1 = 0.450
κ1 = 0.450 κ1 = 0.450 κ1 = 0.950 κ1 = 0.450 κ1 = 0.450
µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914
µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511
µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.672 φ3 = 0.972 φ3 = 0.672 φ3 = 0.500 φ3 = 0.672
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
β1 = 0.777 β1 = 0.777 β1 = 0.777 β1 = 0.777 β1 = 0.777

R = 2
C = 3

π1 = 0.450 π1 = 0.450 π1 = 0.450 π1 = 0.450 π1 = 0.450
κ1 = 0.200 κ1 = 0.200 κ1 = 0.470 κ1 = 0.200 κ1 = 0.200
κ2 = 0.500 κ2 = 0.500 κ2 = 0.050 κ2 = 0.500 κ2 = 0.500
µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914
µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511
µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.672 φ3 = 0.972 φ3 = 0.672 φ3 = 0.500 φ3 = 0.672
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
β1 = −2.128 β1 = −2.128 β1 = −2.128 β1 = −2.128 β1 = −2.128
β2 = 3.212 β2 = 3.212 β2 = 3.212 β2 = 3.212 β2 = 3.212

R = 3
C = 2

π1 = 0.200 π1 = 0.200 π1 = 0.200 π1 = 0.200 π1 = 0.200
π2 = 0.500 π2 = 0.500 π2 = 0.500 π2 = 0.500 π2 = 0.500
κ1 = 0.450 κ1 = 0.450 κ1 = 0.950 κ1 = 0.450 κ1 = 0.450
µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914
µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511
µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.672 φ3 = 0.972 φ3 = 0.672 φ3 = 0.500 φ3 = 0.672
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
α2 = 3.251 α2 = 3.251 α2 = 3.251 α2 = 3.251 α2 = 3.251
β1 = 0.777 β1 = 0.777 β1 = 0.777 β1 = 0.777 β1 = 0.777

R = 3
C = 3

π1 = 0.200 π1 = 0.200 π1 = 0.200 π1 = 0.200 π1 = 0.200
π2 = 0.500 π2 = 0.500 π2 = 0.500 π2 = 0.500 π2 = 0.500
κ1 = 0.200 κ1 = 0.200 κ1 = 0.47 κ1 = 0.20 κ1 = 0.200
κ2 = 0.500 κ2 = 0.500 κ2 = 0.050 κ2 = 0.500 κ2 = 0.500
µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914
µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511
µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.672 φ3 = 0.972 φ3 = 0.672 φ3 = 0.500 φ3 = 0.672
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
α2 = 3.251 α2 = 3.251 α2 = 3.251 α2 = 3.251 α2 = 3.251
β1 = −2.128 β1 = −2.128 β1 = −2.128 β1 = −2.128 β1 = −2.128
β2 = 3.212 β2 = 3.212 β2 = 3.212 β2 = 3.212 β2 = 3.212

Notes: µ1 = 0, φ1 = 0, φ4 = 1 for all the scenarios.
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Table B.3: Model comparison simulation study results for 11 information criteria.
Row Clustering (µk + φk(αr + βj)). Scenario 1.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 7.9 37.7 9.1 20.3 66.4 57.9 62.8 62.7 44.3 66.0 66.1

Fit 91.4 61.7 90.2 79.0 32.4 41.2 36.1 36.1 36.4 33.1 32.9
Overfit 0.7 0.7 0.7 0.7 1.1 0.9 1.1 1.2 19.2 0.9 1.0

Sample
size

n = 50
Underfit 18.7 54.7 18.7 43.3 66.0 61.3 65.3 56.7 42.7 65.3 65.3

Fit 80.3 44.3 80.3 55.7 32.3 37.7 33.3 41.7 41.3 33.7 33.3
Overfit 1.0 1.0 1.0 1.0 1.7 1.0 1.3 1.7 16.0 1.0 1.3

n = 100
Underfit 3.7 34.7 5.0 10.3 66.7 58.7 66.0 64.7 46.7 66.0 66.3

Fit 95.3 64.3 94.0 88.7 32.3 40.3 32.7 34.0 38.7 33.0 33.0
Overfit 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.3 14.7 1.0 0.7

n = 500
Underfit 1.3 23.7 3.7 7.3 66.7 53.7 57.0 66.7 43.7 66.7 66.7

Fit 98.7 76.3 96.3 92.7 32.7 45.7 42.3 32.7 29.3 32.7 32.3
Overfit 0.0 0.0 0.0 0.0 0.7 0.7 0.7 0.7 27.0 0.7 1.0

Number
of row
clusters

R = 2
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 98.0 98.0 98.0 96.7 97.3 96.7 96.3 61.7 97.3 97.0
Overfit 2.0 2.0 2.0 2.0 3.3 2.7 3.3 3.7 38.3 2.7 3.0

R = 3
Underfit 15.7 30.7 15.0 20.3 99.3 73.7 88.3 91.3 50.7 98.0 99.0

Fit 84.3 69.3 85.0 79.7 0.7 26.3 11.7 8.7 35.3 2.0 1.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 0.0 0.0

R = 4
Underfit 8.0 82.3 12.3 40.7 100.0 100.0 100.0 96.7 82.3 100.0 99.3

Fit 92.0 17.7 87.7 59.3 0.0 0.0 0.0 3.3 12.3 0.0 0.7
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.3 0.0 0.0

R = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 97.0 97.0 97.0 97.0 95.0 97.0 96.0 95.0 64.0 97.0 96.0
Overfit 3.0 3.0 3.0 3.0 5.0 3.0 4.0 5.0 36.0 3.0 4.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 97.0 97.0 97.0 97.0 97.0 97.0 96.0 96.0 66.0 97.0 98.0
Overfit 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 34.0 3.0 2.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 98.0 98.0 98.0 98.0 55.0 98.0 97.0
Overfit 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 45.0 2.0 3.0

R = 3

n = 50
Underfit 44.0 70.0 42.0 58.0 98.0 84.0 96.0 78.0 38.0 96.0 98.0

Fit 56.0 30.0 58.0 42.0 2.0 16.0 4.0 22.0 50.0 4.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0

n = 100
Underfit 3.0 22.0 3.0 3.0 100.0 76.0 98.0 96.0 46.0 98.0 99.0

Fit 97.0 78.0 97.0 97.0 0.0 24.0 2.0 4.0 44.0 2.0 1.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0

n = 500
Underfit 0.0 0.0 0.0 0.0 100.0 61.0 71.0 100.0 68.0 100.0 100.0

Fit 100.0 100.0 100.0 100.0 0.0 39.0 29.0 0.0 12.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0

R = 4

n = 50
Underfit 12.0 94.0 14.0 72.0 100.0 100.0 100.0 92.0 90.0 100.0 98.0

Fit 88.0 6.0 86.0 28.0 0.0 0.0 0.0 8.0 10.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 100
Underfit 8.0 82.0 12.0 28.0 100.0 100.0 100.0 98.0 94.0 100.0 100.0

Fit 92.0 18.0 88.0 72.0 0.0 0.0 0.0 2.0 6.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 500
Underfit 4.0 71.0 11.0 22.0 100.0 100.0 100.0 100.0 63.0 100.0 100.0

Fit 96.0 29.0 89.0 78.0 0.0 0.0 0.0 0.0 21.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.0 0.0

Notes: All the data is shown in percentage form(%).
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Table B.4: Model comparison simulation study results for 11 information criteria.
Row Clustering (µk + φk(αr + βj)). Scenario 2.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 2.0 34.2 4.9 19.8 66.4 60.9 63.3 62.2 51.8 66.0 66.4

Fit 97.6 65.6 94.8 80.0 33.6 39.1 36.7 37.8 36.0 34.0 32.9
Overfit 0.4 0.2 0.3 0.2 0.0 0.0 0.0 0.0 12.2 0.0 0.7

Sample
size

n = 50
Underfit 4.0 36.7 7.3 28.0 66.0 61.3 64.0 54.0 40.0 64.7 66.7

Fit 96.0 63.3 92.7 72.0 34.0 38.7 36.0 46.0 44.0 35.3 31.3
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.0 2.0

n = 100
Underfit 0.0 42.0 4.7 28.7 66.7 62.7 64.0 66.0 57.3 66.7 66.0

Fit 99.3 58.0 94.7 71.3 33.3 37.3 36.0 34.0 30.0 33.3 34.0
Overfit 0.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 12.7 0.0 0.0

n = 500
Underfit 2.0 24.0 2.7 2.7 66.7 58.7 62.0 66.7 58.0 66.7 66.7

Fit 97.3 75.3 97.0 96.7 33.3 41.3 38.0 33.3 34.0 33.3 33.3
Overfit 0.7 0.7 0.3 0.7 0.0 0.0 0.0 0.0 8.0 0.0 0.0

Number
of row
clusters

R = 2
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 74.7 100.0 98.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.3 0.0 2.0

R = 3
Underfit 3.3 19.3 5.3 10.7 99.3 84.0 90.7 91.3 63.3 98.0 100.0

Fit 95.3 80.0 93.7 88.7 0.7 16.0 9.3 8.7 26.0 2.0 0.0
Overfit 1.3 0.7 1.0 0.7 0.0 0.0 0.0 0.0 10.7 0.0 0.0

R = 4
Underfit 2.7 83.3 9.3 48.7 100.0 98.7 99.3 95.3 92.0 100.0 99.3

Fit 97.3 16.7 90.7 51.3 0.0 1.3 0.7 4.7 7.3 0.0 0.7
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

R = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 68.0 100.0 94.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.0 0.0 6.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 70.0 100.0 100.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 86.0 100.0 100.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 0.0 0.0

R = 3

n = 50
Underfit 10.0 26.0 16.0 18.0 98.0 86.0 92.0 76.0 38.0 94.0 100.0

Fit 90.0 74.0 84.0 82.0 2.0 14.0 8.0 24.0 46.0 6.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.0 0.0

n = 100
Underfit 0.0 32.0 0.0 14.0 100.0 88.0 92.0 98.0 76.0 100.0 100.0

Fit 98.0 68.0 98.0 86.0 0.0 12.0 8.0 2.0 16.0 0.0 0.0
Overfit 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0

n = 500
Underfit 0.0 0.0 0.0 0.0 100.0 78.0 88.0 100.0 76.0 100.0 100.0

Fit 98.0 98.0 99.0 98.0 0.0 22.0 12.0 0.0 16.0 0.0 0.0
Overfit 2.0 2.0 1.0 2.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0

R = 4

n = 50
Underfit 2.0 84.0 6.0 66.0 100.0 98.0 100.0 86.0 82.0 100.0 100.0

Fit 98.0 16.0 94.0 34.0 0.0 2.0 0.0 14.0 18.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 100
Underfit 0.0 94.0 14.0 72.0 100.0 100.0 100.0 100.0 96.0 100.0 98.0

Fit 100.0 6.0 86.0 28.0 0.0 0.0 0.0 0.0 4.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 500
Underfit 6.0 72.0 8.0 8.0 100.0 98.0 98.0 100.0 98.0 100.0 100.0

Fit 94.0 28.0 92.0 92.0 0.0 2.0 2.0 0.0 0.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0

Notes: All the data is shown in percentage form(%).
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Table B.5: Model comparison simulation study results for 11 information criteria.
Row Clustering (µk + φk(αr + βj)). Scenario 3.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 10.0 42.4 23.3 31.3 66.0 60.0 62.7 60.2 42.0 65.3 65.1

Fit 88.0 56.7 74.7 66.7 31.1 40.0 37.3 34.9 38.7 30.2 31.1
Overfit 2.0 0.9 2.0 2.0 2.9 0.0 0.0 4.9 19.3 4.4 3.8

Sample
size

n = 50
Underfit 5.3 51.3 24.7 43.3 66.7 64.7 66.7 57.3 41.3 66.0 63.3

Fit 94.0 48.0 74.7 56.0 31.3 35.3 33.3 37.3 36.7 30.0 27.3
Overfit 0.7 0.7 0.7 0.7 2.0 0.0 0.0 5.3 22.0 4.0 9.3

n = 100
Underfit 11.7 48.7 32.0 36.0 66.0 63.3 65.3 58.0 40.7 64.7 65.3

Fit 88.3 51.3 68.0 64.0 32.0 36.7 34.7 38.7 38.7 32.0 32.7
Overfit 0.0 0.0 0.0 0.0 2.0 0.0 0.0 3.3 20.7 3.3 2.0

n = 500
Underfit 13.0 27.3 13.3 14.7 65.3 52.0 56.0 65.3 44.0 65.3 66.7

Fit 81.7 70.7 81.3 80.0 30.0 48.0 44.0 28.7 40.7 28.7 33.3
Overfit 5.3 2.0 5.3 5.3 4.7 0.0 0.0 6.0 15.3 6.0 0.0

Number
of row
clusters

R = 2
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 96.7 98.0 96.7 96.7 91.3 100.0 100.0 85.3 61.3 86.7 88.7
Overfit 3.3 2.0 3.3 3.3 8.7 0.0 0.0 14.7 38.7 13.3 11.3

R = 3
Underfit 0.0 42.7 7.3 25.3 98.0 81.3 88.7 82.7 34.7 96.0 96.7

Fit 98.0 56.7 90.7 72.7 2.0 18.7 11.3 17.3 47.3 4.0 3.3
Overfit 2.0 0.7 2.0 2.0 0.0 0.0 0.0 0.0 18.0 0.0 0.0

R = 4
Underfit 30.0 84.7 62.7 68.7 100.0 98.7 99.3 98.0 91.3 100.0 98.7

Fit 69.3 15.3 36.7 30.7 0.0 1.3 0.7 2.0 7.3 0.0 1.3
Overfit 0.7 0.0 0.7 0.7 0.0 0.0 0.0 0.0 1.3 0.0 0.0

R = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 98.0 98.0 98.0 94.0 100.0 100.0 84.0 56.0 88.0 72.0
Overfit 2.0 2.0 2.0 2.0 6.0 0.0 0.0 16.0 44.0 12.0 28.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 94.0 100.0 100.0 90.0 56.0 90.0 94.0
Overfit 0.0 0.0 0.0 0.0 6.0 0.0 0.0 10.0 44.0 10.0 6.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 92.0 96.0 92.0 92.0 86.0 100.0 100.0 82.0 72.0 82.0 100.0
Overfit 8.0 4.0 8.0 8.0 14.0 0.0 0.0 18.0 28.0 18.0 0.0

R = 3

n = 50
Underfit 0.0 64.0 0.0 46.0 100.0 94.0 100.0 76.0 34.0 98.0 92.0

Fit 100.0 36.0 100.0 54.0 0.0 6.0 0.0 24.0 46.0 2.0 8.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0

n = 100
Underfit 0.0 54.0 22.0 30.0 98.0 90.0 96.0 76.0 30.0 94.0 98.0

Fit 100.0 46.0 78.0 70.0 2.0 10.0 4.0 24.0 54.0 6.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.0 0.0

n = 500
Underfit 0.0 10.0 0.0 0.0 96.0 60.0 70.0 96.0 40.0 96.0 100.0

Fit 94.0 88.0 94.0 94.0 4.0 40.0 30.0 4.0 42.0 4.0 0.0
Overfit 6.0 2.0 6.0 6.0 0.0 0.0 0.0 0.0 18.0 0.0 0.0

R = 4

n = 50
Underfit 16.0 90.0 74.0 84.0 100.0 100.0 100.0 96.0 90.0 100.0 98.0

Fit 84.0 10.0 26.0 16.0 0.0 0.0 0.0 4.0 8.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0

n = 100
Underfit 35.0 92.0 74.0 78.0 100.0 100.0 100.0 98.0 92.0 100.0 98.0

Fit 65.0 8.0 26.0 22.0 0.0 0.0 0.0 2.0 6.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0

n = 500
Underfit 39.0 72.0 40.0 44.0 100.0 96.0 98.0 100.0 92.0 100.0 100.0

Fit 59.0 28.0 58.0 54.0 0.0 4.0 2.0 0.0 8.0 0.0 0.0
Overfit 2.0 0.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Notes: All the data is shown in percentage form(%).

221



APPENDIX B. MODEL COMPARISON. RESULTS

Table B.6: Model comparison simulation study results for 11 information criteria.
Row Clustering (µk + φk(αr + βj)). Scenario 4.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 5.8 43.1 7.6 10.7 66.7 60.2 62.9 61.3 45.3 66.2 65.6

Fit 92.9 56.4 91.1 88.0 33.3 39.6 37.1 38.4 36.7 33.8 33.6
Overfit 1.3 0.4 1.3 1.3 0.0 0.2 0.0 0.2 18.0 0.0 0.9

Sample
size

n = 50
Underfit 14.7 49.3 17.3 22.7 66.7 64.0 65.3 53.3 37.3 65.3 64.0

Fit 85.3 50.7 82.7 77.3 33.3 36.0 34.7 46.7 48.0 34.7 34.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 0.0 2.0

n = 100
Underfit 0.0 44.7 2.7 6.7 66.7 60.0 62.7 64.0 42.0 66.7 66.0

Fit 100.0 55.3 97.3 93.3 33.3 40.0 37.3 35.3 38.7 33.3 33.3
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 19.3 0.0 0.7

n = 500
Underfit 2.7 35.3 2.7 2.7 66.7 56.7 60.7 66.7 56.7 66.7 66.7

Fit 93.3 63.3 93.3 93.3 33.3 42.7 39.3 33.3 23.3 33.3 33.3
Overfit 4.0 1.3 4.0 4.0 0.0 0.7 0.0 0.0 20.0 0.0 0.0

Number
of row

clusters

R = 2
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.7 99.3 98.7 98.7 100.0 99.3 100.0 99.3 60.0 100.0 98.7
Overfit 1.3 0.7 1.3 1.3 0.0 0.7 0.0 0.7 40.0 0.0 1.3

R = 3
Underfit 14.7 40.7 18.0 24.7 100.0 81.3 89.3 90.7 50.7 98.7 98.0

Fit 82.7 58.7 79.3 72.7 0.0 18.7 10.7 9.3 36.0 1.3 0.7
Overfit 2.7 0.7 2.7 2.7 0.0 0.0 0.0 0.0 13.3 0.0 1.3

R = 4
Underfit 2.7 88.7 4.7 7.3 100.0 99.3 99.3 93.3 85.3 100.0 98.7

Fit 97.3 11.3 95.3 92.7 0.0 0.7 0.7 6.7 14.0 0.0 1.3
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

R = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 72.0 100.0 96.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 0.0 4.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.0 58.0 100.0 100.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 42.0 0.0 0.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 96.0 98.0 96.0 96.0 100.0 98.0 100.0 100.0 50.0 100.0 100.0
Overfit 4.0 2.0 4.0 4.0 0.0 2.0 0.0 0.0 50.0 0.0 0.0

R = 3

n = 50
Underfit 38.0 58.0 40.0 48.0 100.0 92.0 96.0 74.0 36.0 96.0 96.0

Fit 62.0 42.0 60.0 52.0 0.0 8.0 4.0 26.0 50.0 4.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 0.0 2.0

n = 100
Underfit 0.0 42.0 8.0 20.0 100.0 82.0 90.0 98.0 46.0 100.0 98.0

Fit 100.0 58.0 92.0 80.0 0.0 18.0 10.0 2.0 38.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.0 2.0

n = 500
Underfit 6.0 22.0 6.0 6.0 100.0 70.0 82.0 100.0 70.0 100.0 100.0

Fit 86.0 76.0 86.0 86.0 0.0 30.0 18.0 0.0 20.0 0.0 0.0
Overfit 8.0 2.0 8.0 8.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0

R = 4

n = 50
Underfit 6.0 90.0 12.0 20.0 100.0 100.0 100.0 86.0 76.0 100.0 96.0

Fit 94.0 10.0 88.0 80.0 0.0 0.0 0.0 14.0 22.0 0.0 4.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0

n = 100
Underfit 0.0 92.0 0.0 0.0 100.0 98.0 98.0 94.0 80.0 100.0 100.0

Fit 100.0 8.0 100.0 100.0 0.0 2.0 2.0 6.0 20.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 500
Underfit 2.0 84.0 2.0 2.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Fit 98.0 16.0 98.0 98.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Notes: All the data is shown in percentage form(%).
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Table B.7: Model comparison simulation study results for 11 information criteria.
Row Clustering (µk + φk(αr + βj)). Scenario 5.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 0.0 0.4 0.0 0.0 55.6 40.9 42.0 59.8 56.2 65.8 66.2

Fit 99.1 98.2 98.2 98.2 33.3 58.7 57.6 40.0 33.8 34.2 32.9
Overfit 0.9 1.3 1.8 1.8 0.0 0.4 0.4 0.2 10.0 0.0 0.9

Sample
size

n = 50
Underfit 0.0 0.0 0.0 0.0 33.3 48.0 46.7 51.3 50.0 64.7 66.7

Fit 98.7 100.0 99.3 99.3 33.3 52.0 53.3 48.0 38.0 35.3 32.0
Overfit 1.3 0.0 0.7 0.7 0.0 0.0 0.0 0.7 12.0 0.0 1.3

n = 100
Underfit 0.0 0.0 0.0 0.0 66.7 42.0 46.7 62.0 57.3 66.0 66.0

Fit 100.0 100.0 100.0 100.0 33.3 58.0 53.3 38.0 32.0 34.0 32.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 0.0 1.3

n = 500
Underfit 0.0 1.3 0.0 0.0 66.7 32.7 32.7 66.0 61.3 66.7 66.0

Fit 98.7 94.7 95.3 95.3 33.3 66.0 66.0 34.0 31.3 33.3 34.0
Overfit 1.3 4.0 4.7 4.7 0.0 1.3 1.3 0.0 7.3 0.0 0.0

Number
of row
clusters

R = 2
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 99.3 100.0 100.0 100.0 100.0 100.0 100.0 99.3 72.7 100.0 97.3
Overfit 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.7 27.3 0.0 2.7

R = 3
Underfit 0.0 0.0 0.0 0.0 100.0 26.0 28.0 89.3 73.3 98.7 100.0

Fit 98.0 96.0 94.7 94.7 0.0 72.7 70.7 10.7 24.0 1.3 0.0
Overfit 2.0 4.0 5.3 5.3 0.0 1.3 1.3 0.0 2.7 0.0 0.0

R = 4
Underfit 0.0 1.3 0.0 0.0 66.7 96.7 98.0 90.0 95.3 98.7 98.7

Fit 100.0 98.7 100.0 100.0 0.0 3.3 2.0 10.0 4.7 1.3 1.3
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

R = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 100.0 100.0 100.0 100.0 100.0 100.0 98.0 70.0 100.0 96.0
Overfit 2.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 30.0 0.0 4.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 70.0 100.0 96.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 4.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 78.0 100.0 100.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.0 0.0 0.0

R = 3

n = 50
Underfit 0.0 0.0 0.0 0.0 100.0 48.0 44.0 72.0 56.0 98.0 100.0

Fit 98.0 100.0 98.0 98.0 0.0 52.0 56.0 28.0 38.0 2.0 0.0
Overfit 2.0 0.0 2.0 2.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0

n = 100
Underfit 0.0 0.0 0.0 0.0 100.0 30.0 40.0 96.0 78.0 98.0 100.0

Fit 100.0 100.0 100.0 100.0 0.0 70.0 60.0 4.0 20.0 2.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0

n = 500
Underfit 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 86.0 100.0 100.0

Fit 96.0 88.0 86.0 86.0 0.0 96.0 96.0 0.0 14.0 0.0 0.0
Overfit 4.0 12.0 14.0 14.0 0.0 4.0 4.0 0.0 0.0 0.0 0.0

R = 4

n = 50
Underfit 0.0 0.0 0.0 0.0 100.0 96.0 96.0 82.0 94.0 96.0 100.0

Fit 100.0 100.0 100.0 100.0 0.0 4.0 4.0 18.0 6.0 4.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 100
Underfit 0.0 0.0 0.0 0.0 100.0 96.0 100.0 90.0 94.0 100.0 98.0

Fit 100.0 100.0 100.0 100.0 0.0 4.0 0.0 10.0 6.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 500
Underfit 0.0 4.0 0.0 0.0 100.0 98.0 98.0 98.0 98.0 100.0 98.0

Fit 100.0 96.0 100.0 100.0 0.0 2.0 2.0 2.0 2.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Notes: All the data is shown in percentage form(%).
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Table B.8: Model comparison simulation study results for 11 information criteria.
Biclustering (µk + φk(αr + βc)). Scenario 1.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 9.5 23.5 9.7 14.0 64.2 65.3 68.8 50.0 15.2 58.2 61.7

Fit 89.2 75.8 89.2 84.8 28.5 34.5 31.0 29.5 42.5 29.2 31.3
Overfit 1.3 0.7 1.2 1.2 7.3 0.2 0.2 20.5 42.3 12.7 7.0

Sample
size

n = 50
Underfit 2.0 13.3 2.0 2.0 57.3 54.0 57.3 26.7 6.0 42.7 44.0

Fit 96.0 85.3 96.7 96.7 38.7 45.3 42.0 52.0 61.3 45.3 42.0
Overfit 2.0 1.3 1.3 1.3 4.0 0.7 0.7 21.3 32.7 12.0 14.0

n = 100
Underfit 5.3 8.0 5.3 6.0 51.3 55.3 60.7 37.3 8.7 46.0 51.3

Fit 93.3 91.3 93.3 92.7 38.7 44.7 39.3 38.0 32.7 38.7 40.7
Overfit 1.3 0.7 1.3 1.3 10.0 0.0 0.0 24.7 58.7 15.3 8.0

n = 500
Underfit 1.3 3.3 1.3 1.3 48.0 52.0 57.3 40.0 13.3 44.0 54.0

Fit 96.7 96.0 96.7 96.7 36.7 48.0 42.7 24.7 27.3 32.7 42.0
Overfit 2.0 0.7 2.0 2.0 15.3 0.0 0.0 35.3 59.3 23.3 4.0

Number
of row
clusters

R = 2
C = 2

Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fit 98.0 99.3 98.0 98.0 86.7 100.0 100.0 67.3 30.7 78.7 96.0

Overfit 2.0 0.7 2.0 2.0 13.3 0.0 0.0 32.7 69.3 21.3 4.0

R = 2
C = 3

Underfit 4.7 10.0 4.7 5.3 57.3 76.0 84.0 17.3 14.7 35.3 55.3
Fit 93.3 88.7 93.3 92.7 26.7 24.0 16.0 36.0 40.7 36.0 25.3

Overfit 2.0 1.3 2.0 2.0 16.0 0.0 0.0 46.7 44.7 28.7 19.3

R = 3
C = 2

Underfit 4.0 14.7 4.0 4.0 99.3 85.3 91.3 86.7 13.3 97.3 94.0
Fit 94.7 84.7 95.3 95.3 0.7 14.0 8.0 11.3 50.0 2.0 3.3

Overfit 1.3 0.7 0.7 0.7 0.0 0.7 0.7 2.0 36.7 0.7 2.7

R = 3
C = 3

Underfit 29.3 69.3 30.0 46.7 100.0 100.0 100.0 96.0 32.7 100.0 97.3
Fit 70.7 30.7 70.0 53.3 0.0 0.0 0.0 3.3 48.7 0.0 0.7

Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 18.7 0.0 2.0

R = 2
C = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 98.0 98.0 98.0 92.0 100.0 100.0 78.0 86.0 84.0 94.0
Overfit 2.0 2.0 2.0 2.0 8.0 0.0 0.0 22.0 14.0 16.0 6.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 100.0 98.0 98.0 88.0 100.0 100.0 78.0 2.0 84.0 96.0
Overfit 2.0 0.0 2.0 2.0 12.0 0.0 0.0 22.0 98.0 16.0 4.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 100.0 98.0 98.0 80.0 100.0 100.0 46.0 4.0 68.0 98.0
Overfit 2.0 0.0 2.0 2.0 20.0 0.0 0.0 54.0 96.0 32.0 2.0

R = 2
C = 3

n = 50
Underfit 4.0 8.0 4.0 4.0 74.0 82.0 88.0 10.0 16.0 36.0 46.0

Fit 96.0 92.0 96.0 96.0 22.0 18.0 12.0 54.0 50.0 46.0 24.0
Overfit 0.0 0.0 0.0 0.0 4.0 0.0 0.0 36.0 34.0 18.0 30.0

n = 100
Underfit 6.0 14.0 6.0 8.0 54.0 76.0 86.0 20.0 22.0 38.0 58.0

Fit 92.0 84.0 92.0 90.0 28.0 24.0 14.0 28.0 24.0 32.0 24.0
Overfit 2.0 2.0 2.0 2.0 18.0 0.0 0.0 52.0 54.0 30.0 18.0

n = 500
Underfit 4.0 8.0 4.0 4.0 44.0 70.0 78.0 22.0 6.0 32.0 62.0

Fit 92.0 90.0 92.0 92.0 30.0 30.0 22.0 26.0 48.0 30.0 28.0
Overfit 4.0 2.0 4.0 4.0 26.0 0.0 0.0 52.0 46.0 38.0 10.0

R = 3
C = 2

n = 50
Underfit 2.0 32.0 2.0 2.0 98.0 80.0 84.0 70.0 2.0 92.0 86.0

Fit 94.0 66.0 96.0 96.0 2.0 18.0 14.0 24.0 48.0 6.0 8.0
Overfit 4.0 2.0 2.0 2.0 0.0 2.0 2.0 6.0 50.0 2.0 6.0

n = 100
Underfit 10.0 10.0 10.0 10.0 100.0 90.0 96.0 92.0 4.0 100.0 96.0

Fit 90.0 90.0 90.0 90.0 0.0 10.0 4.0 8.0 72.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.0 0.0 2.0

n = 500
Underfit 0.0 2.0 0.0 0.0 100.0 86.0 94.0 98.0 34.0 100.0 100.0

Fit 100.0 98.0 100.0 100.0 0.0 14.0 6.0 2.0 30.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.0 0.0 0.0

R = 3
C = 3

n = 50
Underfit 78.0 92.0 80.0 82.0 100.0 100.0 100.0 94.0 0.0 100.0 96.0

Fit 22.0 8.0 20.0 18.0 0.0 0.0 0.0 4.0 98.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 4.0

n = 100
Underfit 4.0 68.0 4.0 52.0 100.0 100.0 100.0 98.0 44.0 100.0 96.0

Fit 96.0 32.0 96.0 48.0 0.0 0.0 0.0 2.0 32.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.0 0.0 2.0

n = 500
Underfit 6.0 48.0 6.0 6.0 100.0 100.0 100.0 96.0 54.0 100.0 100.0

Fit 94.0 52.0 94.0 94.0 0.0 0.0 0.0 4.0 16.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0

Notes: All the data is shown in percentage form(%).
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B.3. QUESTIONNAIRE. THREE CULTURES

Table B.9: Model comparison simulation study results for 11 information criteria.
Biclustering (µk + φk(αr + βc)). Scenario 2.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 16.5 33.7 17.3 18.2 61.8 64.8 68.2 52.3 15.2 57.7 58.8

Fit 82.3 65.5 81.5 80.7 31.8 35.2 31.8 31.2 35.7 32.0 32.5
Overfit 1.2 0.8 1.2 1.2 6.3 0.0 0.0 16.5 49.2 10.3 8.7

Sample
size

n = 50
Underfit 4.0 16.0 4.0 4.7 56.0 56.7 62.7 34.0 7.3 45.3 44.0

Fit 95.3 83.3 95.3 94.7 40.0 43.3 37.3 46.7 32.7 44.0 43.3
Overfit 0.7 0.7 0.7 0.7 4.0 0.0 0.0 19.3 60.0 10.7 12.7

n = 100
Underfit 2.0 14.7 2.0 2.0 47.3 54.7 58.0 41.3 3.3 43.3 46.0

Fit 97.3 84.7 97.3 97.3 46.0 45.3 42.0 38.0 44.7 42.7 42.7
Overfit 0.7 0.7 0.7 0.7 6.7 0.0 0.0 20.7 52.0 14.0 11.3

n = 500
Underfit 0.7 18.7 0.7 0.7 44.0 49.3 52.7 38.7 12.7 42.0 47.3

Fit 96.7 79.3 96.7 96.7 41.3 50.7 47.3 35.3 22.0 41.3 43.3
Overfit 2.7 2.0 2.7 2.7 14.7 0.0 0.0 26.0 65.3 16.7 9.3

Number
of row
clusters

R = 2
C = 2

Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fit 98.7 98.7 98.7 98.7 96.0 100.0 100.0 78.7 8.0 90.7 96.7

Overfit 1.3 1.3 1.3 1.3 4.0 0.0 0.0 21.3 92.0 9.3 3.3

R = 2
C = 3

Underfit 2.7 8.0 2.7 2.7 47.3 70.7 78.7 19.3 10.7 31.3 41.3
Fit 94.7 90.0 94.7 94.7 31.3 29.3 21.3 36.0 46.0 36.7 31.3

Overfit 2.7 2.0 2.7 2.7 21.3 0.0 0.0 44.7 43.3 32.0 27.3

R = 3
C = 2

Underfit 4.0 41.3 4.0 4.7 100.0 90.0 94.7 94.7 12.7 99.3 96.0
Fit 96.0 58.7 96.0 95.3 0.0 10.0 5.3 5.3 45.3 0.7 1.3

Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.0 0.0 2.7

R = 3
C = 3

Underfit 59.3 85.3 62.7 65.3 100.0 98.7 99.3 95.3 37.3 100.0 98.0
Fit 40.0 14.7 36.7 34.0 0.0 1.3 0.7 4.7 43.3 0.0 0.7

Overfit 0.7 0.0 0.7 0.7 0.0 0.0 0.0 0.0 19.3 0.0 1.3

R = 2
C = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 98.0 98.0 98.0 98.0 100.0 100.0 82.0 18.0 94.0 98.0
Overfit 2.0 2.0 2.0 2.0 2.0 0.0 0.0 18.0 82.0 6.0 2.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 98.0 98.0 98.0 96.0 100.0 100.0 72.0 6.0 84.0 92.0
Overfit 2.0 2.0 2.0 2.0 4.0 0.0 0.0 28.0 94.0 16.0 8.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 94.0 100.0 100.0 82.0 0.0 94.0 100.0
Overfit 0.0 0.0 0.0 0.0 6.0 0.0 0.0 18.0 100.0 6.0 0.0

R = 2
C = 3

n = 50
Underfit 4.0 14.0 4.0 4.0 68.0 82.0 94.0 14.0 10.0 38.0 42.0

Fit 96.0 86.0 96.0 96.0 22.0 18.0 6.0 46.0 50.0 36.0 28.0
Overfit 0.0 0.0 0.0 0.0 10.0 0.0 0.0 40.0 40.0 26.0 30.0

n = 100
Underfit 4.0 6.0 4.0 4.0 42.0 74.0 78.0 26.0 8.0 30.0 40.0

Fit 96.0 94.0 96.0 96.0 42.0 26.0 22.0 40.0 62.0 44.0 36.0
Overfit 0.0 0.0 0.0 0.0 16.0 0.0 0.0 34.0 30.0 26.0 24.0

n = 500
Underfit 0.0 4.0 0.0 0.0 32.0 56.0 64.0 18.0 14.0 26.0 42.0

Fit 92.0 90.0 92.0 92.0 30.0 44.0 36.0 22.0 26.0 30.0 30.0
Overfit 8.0 6.0 8.0 8.0 38.0 0.0 0.0 60.0 60.0 44.0 28.0

R = 3
C = 2

n = 50
Underfit 8.0 34.0 8.0 10.0 100.0 88.0 94.0 88.0 12.0 98.0 90.0

Fit 92.0 66.0 92.0 90.0 0.0 12.0 6.0 12.0 30.0 2.0 4.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 58.0 0.0 6.0

n = 100
Underfit 2.0 38.0 2.0 2.0 100.0 90.0 96.0 98.0 2.0 100.0 98.0

Fit 98.0 62.0 98.0 98.0 0.0 10.0 4.0 2.0 66.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.0 0.0 2.0

n = 500
Underfit 2.0 52.0 2.0 2.0 100.0 92.0 94.0 98.0 24.0 100.0 100.0

Fit 98.0 48.0 98.0 98.0 0.0 8.0 6.0 2.0 40.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.0 0.0 0.0

R = 3
C = 3

n = 50
Underfit 68.0 94.0 76.0 78.0 100.0 98.0 100.0 92.0 58.0 100.0 96.0

Fit 32.0 6.0 24.0 22.0 0.0 2.0 0.0 8.0 14.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 0.0 2.0

n = 100
Underfit 64.0 86.0 66.0 72.0 100.0 98.0 98.0 96.0 52.0 100.0 100.0

Fit 36.0 14.0 34.0 28.0 0.0 2.0 2.0 4.0 24.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.0 0.0 0.0

n = 500
Underfit 46.0 76.0 46.0 46.0 100.0 100.0 100.0 98.0 2.0 100.0 98.0

Fit 52.0 24.0 52.0 52.0 0.0 0.0 0.0 2.0 92.0 0.0 0.0
Overfit 2.0 0.0 2.0 2.0 0.0 0.0 0.0 0.0 6.0 0.0 2.0

Notes: All the data is shown in percentage form(%).
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APPENDIX B. MODEL COMPARISON. RESULTS

Table B.10: Model comparison simulation study results for 11 information crite-
ria. Biclustering (µk + φk(αr + βc)). Scenario 3.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 16.7 33.5 17.3 18.5 63.2 66.3 69.2 49.8 15.0 57.0 60.5

Fit 80.5 64.7 80.0 79.3 30.3 33.5 30.7 33.8 40.8 31.2 30.5
Overfit 2.8 1.8 2.7 2.2 6.5 0.2 0.2 16.3 44.2 11.8 9.0

Sample
size

n = 50
Underfit 4.7 18.0 4.7 6.0 58.0 57.3 62.0 27.3 1.3 44.0 44.7

Fit 92.0 80.7 92.7 92.0 37.3 42.0 37.3 50.7 56.0 43.3 37.3
Overfit 3.3 1.3 2.7 2.0 4.7 0.7 0.7 22.0 42.7 12.7 18.0

n = 100
Underfit 8.0 28.0 8.7 9.3 49.3 60.0 62.7 38.7 5.3 44.0 52.0

Fit 90.0 70.0 89.3 88.7 41.3 40.0 37.3 42.0 44.0 42.0 41.3
Overfit 2.0 2.0 2.0 2.0 9.3 0.0 0.0 19.3 50.7 14.0 6.7

n = 500
Underfit 2.7 6.0 2.7 2.7 45.3 48.7 52.0 38.0 12.0 40.0 49.3

Fit 92.0 90.0 92.0 92.7 42.7 51.3 48.0 38.0 24.7 39.3 43.3
Overfit 5.3 4.0 5.3 4.7 12.0 0.0 0.0 24.0 63.3 20.7 7.3

Number
of row
clusters

R = 2
C = 2

Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fit 97.3 99.3 98.0 98.0 92.0 100.0 100.0 82.7 5.3 87.3 93.3

Overfit 2.7 0.7 2.0 2.0 8.0 0.0 0.0 17.3 94.7 12.7 6.7

R = 2
C = 3

Underfit 9.3 31.3 9.3 11.3 54.7 78.7 82.7 15.3 10.7 31.3 48.0
Fit 85.3 64.0 85.3 84.0 28.0 21.3 17.3 38.7 61.3 34.7 28.7

Overfit 5.3 4.7 5.3 4.7 17.3 0.0 0.0 46.0 28.0 34.0 23.3

R = 3
C = 2

Underfit 6.0 20.7 6.7 6.7 98.0 87.3 94.0 88.7 8.0 96.7 98.0
Fit 91.3 77.3 90.7 91.3 1.3 12.0 5.3 9.3 58.0 2.7 0.0

Overfit 2.7 2.0 2.7 2.0 0.7 0.7 0.7 2.0 34.0 0.7 2.0

R = 3
C = 3

Underfit 51.3 82.0 53.3 56.0 100.0 99.3 100.0 95.3 41.3 100.0 96.0
Fit 48.0 18.0 46.0 44.0 0.0 0.7 0.0 4.7 38.7 0.0 0.0

Overfit 0.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 20.0 0.0 4.0

R = 2
C = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 96.0 100.0 98.0 98.0 92.0 100.0 100.0 86.0 2.0 90.0 86.0
Overfit 4.0 0.0 2.0 2.0 8.0 0.0 0.0 14.0 98.0 10.0 14.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 100.0 100.0 100.0 100.0 92.0 100.0 100.0 84.0 8.0 88.0 98.0
Overfit 0.0 0.0 0.0 0.0 8.0 0.0 0.0 16.0 92.0 12.0 2.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 96.0 98.0 96.0 96.0 92.0 100.0 100.0 78.0 6.0 84.0 96.0
Overfit 4.0 2.0 4.0 4.0 8.0 0.0 0.0 22.0 94.0 16.0 4.0

R = 2
C = 3

n = 50
Underfit 8.0 48.0 8.0 12.0 76.0 88.0 92.0 10.0 2.0 38.0 40.0

Fit 92.0 52.0 92.0 88.0 20.0 12.0 8.0 42.0 82.0 36.0 26.0
Overfit 0.0 0.0 0.0 0.0 4.0 0.0 0.0 48.0 16.0 26.0 34.0

n = 100
Underfit 18.0 36.0 18.0 20.0 52.0 92.0 94.0 22.0 4.0 36.0 56.0

Fit 76.0 58.0 76.0 74.0 28.0 8.0 6.0 38.0 80.0 34.0 26.0
Overfit 6.0 6.0 6.0 6.0 20.0 0.0 0.0 40.0 16.0 30.0 18.0

n = 500
Underfit 2.0 10.0 2.0 2.0 36.0 56.0 62.0 14.0 26.0 20.0 48.0

Fit 88.0 82.0 88.0 90.0 36.0 44.0 38.0 36.0 22.0 34.0 34.0
Overfit 10.0 8.0 10.0 8.0 28.0 0.0 0.0 50.0 52.0 46.0 18.0

R = 3
C = 2

n = 50
Underfit 6.0 6.0 6.0 6.0 98.0 84.0 94.0 72.0 2.0 94.0 94.0

Fit 88.0 90.0 88.0 90.0 0.0 14.0 4.0 24.0 84.0 4.0 0.0
Overfit 6.0 4.0 6.0 4.0 2.0 2.0 2.0 4.0 14.0 2.0 6.0

n = 100
Underfit 6.0 48.0 8.0 8.0 96.0 88.0 94.0 94.0 12.0 96.0 100.0

Fit 94.0 52.0 92.0 92.0 4.0 12.0 6.0 4.0 44.0 4.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 44.0 0.0 0.0

n = 500
Underfit 6.0 8.0 6.0 6.0 100.0 90.0 94.0 100.0 10.0 100.0 100.0

Fit 92.0 90.0 92.0 92.0 0.0 10.0 6.0 0.0 46.0 0.0 0.0
Overfit 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 44.0 0.0 0.0

R = 3
C = 3

n = 50
Underfit 68.0 90.0 72.0 78.0 100.0 100.0 100.0 90.0 64.0 100.0 90.0

Fit 30.0 10.0 26.0 22.0 0.0 0.0 0.0 10.0 18.0 0.0 0.0
Overfit 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 18.0 0.0 10.0

n = 100
Underfit 60.0 86.0 62.0 64.0 100.0 100.0 100.0 98.0 6.0 100.0 100.0

Fit 40.0 14.0 38.0 36.0 0.0 0.0 0.0 2.0 92.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0

n = 500
Underfit 26.0 70.0 26.0 26.0 100.0 98.0 100.0 98.0 54.0 100.0 98.0

Fit 74.0 30.0 74.0 74.0 0.0 2.0 0.0 2.0 6.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 0.0 2.0

Notes: All the data is shown in percentage form(%).
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B.3. QUESTIONNAIRE. THREE CULTURES

Table B.11: Model comparison simulation study results for 11 information crite-
ria. Biclustering (µk + φk(αr + βc)). Scenario 4.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 13.3 28.3 14.5 15.8 64.3 67.5 70.2 50.2 13.2 59.3 64.2

Fit 85.5 70.8 84.5 83.3 28.2 32.3 29.7 30.5 35.0 27.3 29.2
Overfit 1.2 0.8 1.0 0.8 7.5 0.2 0.2 19.3 51.8 13.3 6.7

Sample
size

n = 50
Underfit 2.7 10.0 3.3 4.7 61.3 62.0 64.0 30.7 6.0 54.0 54.0

Fit 96.7 90.0 96.0 95.3 34.0 38.0 36.0 48.7 47.3 35.3 34.0
Overfit 0.7 0.0 0.7 0.0 4.7 0.0 0.0 20.7 46.7 10.7 12.0

n = 100
Underfit 1.3 20.0 1.3 2.0 51.3 59.3 62.7 36.7 8.0 42.0 54.7

Fit 96.7 78.0 96.7 96.0 38.7 40.0 36.7 34.0 23.3 38.0 36.7
Overfit 2.0 2.0 2.0 2.0 10.0 0.7 0.7 29.3 68.7 20.0 8.7

n = 500
Underfit 2.0 7.3 2.0 2.0 44.7 48.7 54.0 38.7 8.0 41.3 49.3

Fit 96.7 91.3 96.7 96.7 40.0 51.3 46.0 34.0 28.0 36.0 45.3
Overfit 1.3 1.3 1.3 1.3 15.3 0.0 0.0 27.3 64.0 22.7 5.3

Number
of row
clusters

R = 2
C = 2

Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fit 97.3 98.0 97.3 98.0 89.3 99.3 99.3 66.7 4.7 80.0 90.7

Overfit 2.7 2.0 2.7 2.0 10.7 0.7 0.7 33.3 95.3 20.0 9.3

R = 2
C = 3

Underfit 3.3 14.0 3.3 5.3 58.0 81.3 87.3 21.3 6.7 39.3 62.0
Fit 95.3 84.7 95.3 93.3 22.7 18.7 12.7 35.3 60.0 27.3 22.0

Overfit 1.3 1.3 1.3 1.3 19.3 0.0 0.0 43.3 33.3 33.3 16.0

R = 3
C = 2

Underfit 2.7 23.3 3.3 3.3 99.3 88.7 93.3 84.7 15.3 98.0 96.0
Fit 97.3 76.7 96.7 96.7 0.7 11.3 6.7 14.7 34.0 2.0 3.3

Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 50.7 0.0 0.7

R = 3
C = 3

Underfit 47.3 76.0 51.3 54.7 100.0 100.0 100.0 94.7 30.7 100.0 98.7
Fit 52.0 24.0 48.7 45.3 0.0 0.0 0.0 5.3 41.3 0.0 0.7

Overfit 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 0.0 0.7

R = 2
C = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 100.0 98.0 100.0 92.0 100.0 100.0 74.0 8.0 86.0 84.0
Overfit 2.0 0.0 2.0 0.0 8.0 0.0 0.0 26.0 92.0 14.0 16.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 96.0 96.0 96.0 96.0 88.0 98.0 98.0 58.0 2.0 80.0 88.0
Overfit 4.0 4.0 4.0 4.0 12.0 2.0 2.0 42.0 98.0 20.0 12.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 98.0 98.0 98.0 88.0 100.0 100.0 68.0 4.0 74.0 100.0
Overfit 2.0 2.0 2.0 2.0 12.0 0.0 0.0 32.0 96.0 26.0 0.0

R = 2
C = 3

n = 50
Underfit 4.0 24.0 4.0 8.0 84.0 100.0 100.0 28.0 2.0 66.0 70.0

Fit 96.0 76.0 96.0 92.0 10.0 0.0 0.0 38.0 92.0 16.0 12.0
Overfit 0.0 0.0 0.0 0.0 6.0 0.0 0.0 34.0 6.0 18.0 18.0

n = 100
Underfit 2.0 14.0 2.0 4.0 56.0 88.0 96.0 18.0 12.0 28.0 68.0

Fit 96.0 84.0 96.0 94.0 26.0 12.0 4.0 36.0 40.0 32.0 18.0
Overfit 2.0 2.0 2.0 2.0 18.0 0.0 0.0 46.0 48.0 40.0 14.0

n = 500
Underfit 4.0 4.0 4.0 4.0 34.0 56.0 66.0 18.0 6.0 24.0 48.0

Fit 94.0 94.0 94.0 94.0 32.0 44.0 34.0 32.0 48.0 34.0 36.0
Overfit 2.0 2.0 2.0 2.0 34.0 0.0 0.0 50.0 46.0 42.0 16.0

R = 3
C = 2

n = 50
Underfit 4.0 6.0 6.0 6.0 100.0 86.0 92.0 64.0 16.0 96.0 92.0

Fit 96.0 94.0 94.0 94.0 0.0 14.0 8.0 34.0 42.0 4.0 6.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 42.0 0.0 2.0

n = 100
Underfit 2.0 46.0 2.0 2.0 98.0 90.0 92.0 92.0 12.0 98.0 96.0

Fit 98.0 54.0 98.0 98.0 2.0 10.0 8.0 8.0 28.0 2.0 4.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 0.0 0.0

n = 500
Underfit 2.0 18.0 2.0 2.0 100.0 90.0 96.0 98.0 18.0 100.0 100.0

Fit 98.0 82.0 98.0 98.0 0.0 10.0 4.0 2.0 32.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0

R = 3
C = 3

n = 50
Underfit 74.0 90.0 78.0 86.0 100.0 100.0 100.0 90.0 46.0 100.0 96.0

Fit 26.0 10.0 22.0 14.0 0.0 0.0 0.0 10.0 32.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.0 0.0 2.0

n = 100
Underfit 62.0 84.0 70.0 72.0 100.0 100.0 100.0 96.0 22.0 100.0 100.0

Fit 36.0 16.0 30.0 28.0 0.0 0.0 0.0 4.0 48.0 0.0 0.0
Overfit 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0

n = 500
Underfit 6.0 54.0 6.0 6.0 100.0 100.0 100.0 98.0 24.0 100.0 100.0

Fit 94.0 46.0 94.0 94.0 0.0 0.0 0.0 2.0 44.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.0 0.0 0.0

Notes: All the data is shown in percentage form(%).
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APPENDIX B. MODEL COMPARISON. RESULTS

Table B.12: Model comparison simulation study results for 11 information crite-
ria. Biclustering (µk + φk(αr + βc)). Scenario 5.

Results AIC AIC3 AICc AICu AWE BIC CAIC CLC NEC ICL-BIC L

Overall
Underfit 2.7 13.7 2.8 2.8 62.1 52.2 57.9 40.1 1.5 55.8 63.2

Fit 92.8 83.3 92.8 92.8 33.4 47.2 41.8 46.6 11.3 36.9 30.9
Overfit 4.5 3.0 4.3 4.3 4.5 0.7 0.3 13.3 87.2 7.3 5.9

Sample
size

n = 50
Underfit 4.0 6.0 4.0 4.0 61.3 42.7 52.0 28.0 0.7 51.3 52.0

Fit 92.7 92.7 92.7 92.7 38.0 57.3 48.0 55.3 12.7 44.7 39.3
Overfit 3.3 1.3 3.3 3.3 0.7 0.0 0.0 16.7 86.7 4.0 8.7

n = 100
Underfit 2.0 8.7 2.7 2.7 51.3 38.0 43.3 34.0 0.7 46.0 52.7

Fit 96.0 90.0 96.0 96.0 44.7 62.0 56.7 50.0 4.0 46.7 42.7
Overfit 2.0 1.3 1.3 1.3 4.0 0.0 0.0 16.0 95.3 7.3 4.7

n = 500
Underfit 1.3 2.7 1.3 1.3 38.0 31.3 41.3 32.7 0.7 33.3 52.7

Fit 86.0 88.0 86.0 86.0 48.7 66.0 57.3 46.7 1.3 48.7 40.0
Overfit 12.7 9.3 12.7 12.7 13.3 2.7 1.3 20.7 98.0 18.0 7.3

Number
of row
clusters

R = 2
C = 2

Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fit 93.3 94.7 93.3 93.3 98.0 98.7 98.7 85.3 0.0 92.0 96.0

Overfit 6.7 5.3 6.7 6.7 2.0 1.3 1.3 14.7 100.0 8.0 4.0

R = 2
C = 3

Underfit 6.0 14.7 6.7 6.7 50.7 72.0 78.7 9.3 0.0 34.0 58.0
Fit 84.7 80.0 84.7 84.7 33.3 26.7 21.3 53.3 4.0 44.7 25.3

Overfit 9.3 5.3 8.7 8.7 16.0 1.3 0.0 37.3 96.0 21.3 16.7

R = 3
C = 2

Underfit 1.3 2.7 1.3 1.3 100.0 40.0 58.0 85.3 2.0 96.7 99.3
Fit 96.7 96.0 96.7 96.7 0.0 60.0 42.0 13.3 14.0 3.3 0.7

Overfit 2.0 1.3 2.0 2.0 0.0 0.0 0.0 1.3 84.0 0.0 0.0

R = 3
C = 3

Underfit 3.3 37.3 3.3 3.3 97.7 96.7 95.0 65.7 4.0 92.3 95.3
Fit 96.7 62.7 96.7 96.7 2.3 3.3 5.0 34.3 27.3 7.7 1.7

Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 68.7 0.0 3.0

R = 2
C = 2

n = 50
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 92.0 96.0 92.0 92.0 98.0 100.0 100.0 84.0 0.0 94.0 100.0
Overfit 8.0 4.0 8.0 8.0 2.0 0.0 0.0 16.0 100.0 6.0 0.0

n = 100
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 98.0 98.0 98.0 98.0 100.0 100.0 100.0 92.0 0.0 96.0 94.0
Overfit 2.0 2.0 2.0 2.0 0.0 0.0 0.0 8.0 100.0 4.0 6.0

n = 500
Underfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fit 90.0 90.0 90.0 90.0 96.0 96.0 96.0 80.0 0.0 86.0 94.0
Overfit 10.0 10.0 10.0 10.0 4.0 4.0 4.0 20.0 100.0 14.0 6.0

R = 2
C = 3

n = 50
Underfit 8.0 12.0 8.0 8.0 84.0 82.0 88.0 14.0 0.0 62.0 56.0

Fit 92.0 88.0 92.0 92.0 16.0 18.0 12.0 54.0 4.0 32.0 18.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.0 96.0 6.0 26.0

n = 100
Underfit 6.0 24.0 8.0 8.0 54.0 72.0 78.0 14.0 0.0 38.0 60.0

Fit 90.0 74.0 90.0 90.0 34.0 28.0 22.0 48.0 8.0 44.0 32.0
Overfit 4.0 2.0 2.0 2.0 12.0 0.0 0.0 38.0 92.0 18.0 8.0

n = 500
Underfit 4.0 8.0 4.0 4.0 14.0 62.0 70.0 0.0 0.0 2.0 58.0

Fit 72.0 78.0 72.0 72.0 50.0 34.0 30.0 58.0 0.0 58.0 26.0
Overfit 24.0 14.0 24.0 24.0 36.0 4.0 0.0 42.0 100.0 40.0 16.0

R = 3
C = 2

n = 50
Underfit 4.0 6.0 4.0 4.0 100.0 46.0 68.0 70.0 2.0 92.0 100.0

Fit 94.0 94.0 94.0 94.0 0.0 54.0 32.0 28.0 34.0 8.0 0.0
Overfit 2.0 0.0 2.0 2.0 0.0 0.0 0.0 2.0 64.0 0.0 0.0

n = 100
Underfit 0.0 2.0 0.0 0.0 100.0 42.0 52.0 88.0 2.0 100.0 98.0

Fit 100.0 98.0 100.0 100.0 0.0 58.0 48.0 10.0 4.0 0.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 94.0 0.0 0.0

n = 500
Underfit 0.0 0.0 0.0 0.0 100.0 32.0 54.0 98.0 2.0 98.0 100.0

Fit 96.0 96.0 96.0 96.0 0.0 68.0 46.0 2.0 4.0 2.0 0.0
Overfit 4.0 4.0 4.0 4.0 0.0 0.0 0.0 0.0 94.0 0.0 0.0

R = 3
C = 3

n = 50
Underfit 6.0 48.0 6.0 6.0 100.0 100.0 100.0 72.0 4.0 100.0 98.0

Fit 94.0 52.0 94.0 94.0 0.0 0.0 0.0 28.0 20.0 0.0 0.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 76.0 0.0 2.0

n = 100
Underfit 3.0 36.0 3.0 3.0 98.0 97.0 94.0 67.0 4.0 91.0 94.0

Fit 97.0 64.0 97.0 97.0 2.0 3.0 6.0 33.0 27.0 9.0 3.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.0 0.0 3.0

n = 500
Underfit 1.0 28.0 1.0 1.0 95.0 93.0 91.0 58.0 4.0 86.0 94.0

Fit 99.0 72.0 99.0 99.0 5.0 7.0 9.0 42.0 35.0 14.0 2.0
Overfit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.0 0.0 4.0

Notes: All the data is shown in percentage form(%).
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B.3. QUESTIONNAIRE. THREE CULTURES

Table B.13: Full city-knowledge questionnaire. Informants rated the following 20
questions for either Irvine, New York, or Miami.

Questions

Q1. Rate the amount of rain experienced during the fall.

Q2. Rate the amount of snow experienced during the winter.

Q3. Rate the level of humidity in the summer.

Q4. Rate the general wind factor during the fall.

Q5. Rate how cold it is during the winter.

Q6. Rate how hot it is during the summer.

Q7. Rate the range of temperatures experienced across the year.

Q8. Rate the amount of people that use public

transportation as the primary mode of transport.

Q9. Rate the amount of crime that occurs.

Q10. Rate the amount of ethnic/racial diversity.

Q11. Rate how liberally minded the general population is.

Q12. Rate how much “nightlife” the city has.

Q13. Rate the population density of the city.

Q14. Rate how close the ocean is.

Q15. Rate how modernized the city is.

Q16. Rate the air quality (smog level) of the city.

Q17. Rate the cleanliness of the city.

Q18. Rate how well-known the city is compared to other cities in the state.

Q19. Rate the cost of living in the city.

Q20. Rate the amount of homeless people living in the city.
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APPENDIX B. MODEL COMPARISON. RESULTS

Table B.14: Full city-knowledge questionnaire responses (Anders and Batchelder,
2013). 83 respondents (rows) answering 20 knowledge questions (Q1-Q20) per-
taining to particular city on a 7-point scale categories.

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 True City

1 2 1 3 2 2 3 1 3 1 5 3 3 3 6 6 4 6 4 5 1 Irvine
2 5 7 4 5 7 5 4 5 5 4 4 5 6 7 5 5 5 7 4 5 New York
3 4 5 7 3 7 7 6 7 6 6 5 7 7 3 6 7 1 7 7 5 New York
4 5 1 6 5 3 6 2 2 3 4 5 6 5 7 6 4 5 7 6 4 Miami
5 4 2 1 7 7 3 6 5 5 7 6 6 7 5 6 3 3 7 6 5 New York
6 2 1 4 5 5 5 5 2 2 3 4 3 4 1 5 3 6 5 6 1 Irvine
7 4 1 2 5 6 6 4 2 1 4 4 2 5 6 7 6 7 4 6 2 Irvine
8 2 1 6 4 3 7 5 6 5 5 4 6 6 7 6 6 3 6 5 5 Miami
9 6 3 7 5 3 7 5 4 5 7 6 7 6 6 7 6 5 7 6 7 Miami

10 2 1 3 2 3 6 4 2 1 4 4 3 4 6 7 3 6 6 7 2 Irvine
11 2 1 4 2 4 4 4 2 1 3 6 2 4 7 7 5 7 2 7 1 Irvine
12 2 1 7 3 4 7 4 5 6 6 5 7 5 7 6 4 3 5 6 5 Miami
13 2 1 5 3 3 6 4 2 1 3 4 1 2 6 5 3 6 2 6 1 Irvine
14 4 1 7 3 3 5 2 3 6 7 4 6 5 6 6 2 4 7 5 5 Miami
15 2 1 2 4 2 6 4 2 1 6 4 2 4 6 5 6 6 3 4 1 Irvine
16 3 1 2 2 3 5 2 1 1 2 2 2 3 6 5 3 6 4 6 1 Irvine
17 3 2 2 5 6 6 5 3 2 6 5 2 3 6 6 4 5 5 5 2 Miami
18 6 6 6 4 5 5 4 7 5 6 6 7 6 6 7 3 4 7 7 5 New York
19 2 1 4 5 6 7 4 6 1 5 6 1 5 5 6 2 7 4 6 1 Irvine
20 6 1 7 4 2 7 4 1 5 5 4 7 7 7 6 7 1 7 5 6 Miami
21 5 6 7 5 7 6 7 7 7 6 7 7 7 6 7 7 3 7 7 6 New York
22 6 7 6 6 7 4 6 7 6 6 6 6 5 5 6 3 4 5 7 5 New York
23 4 1 3 4 6 5 5 7 1 5 5 3 5 5 6 1 7 5 7 1 Irvine
24 5 1 7 4 2 7 5 6 6 6 7 7 6 7 5 4 5 7 4 5 Miami
25 4 4 5 3 3 7 5 5 4 6 4 7 6 7 6 4 5 7 3 5 Miami
26 4 4 5 4 6 5 6 7 6 6 6 7 7 6 6 7 3 7 7 7 New York
27 2 1 5 5 6 4 5 2 2 6 3 2 2 6 4 6 6 4 6 2 Irvine
28 1 1 6 6 2 4 3 1 1 5 1 2 3 7 2 6 6 3 5 2 Irvine
29 3 1 3 5 5 5 3 4 1 3 4 4 4 6 5 2 6 5 5 1 Irvine
30 3 1 1 4 4 6 5 6 2 3 4 1 3 6 7 7 6 3 6 1 Irvine
31 6 1 7 5 5 7 5 4 6 4 4 7 6 7 5 2 1 6 5 6 Miami
32 3 7 2 3 6 3 4 7 5 5 7 7 6 6 7 1 2 7 7 7 New York
33 3 2 6 4 5 6 4 5 2 4 4 5 5 6 4 3 3 4 4 4 Miami
34 5 1 3 6 1 6 4 3 2 6 7 7 7 7 7 4 6 7 4 6 Miami
35 5 1 7 4 3 7 5 3 4 5 4 6 5 6 5 5 4 6 6 4 Miami
36 5 4 3 5 6 5 4 7 4 5 5 6 6 4 6 6 3 7 6 5 New York
37 4 1 3 5 5 5 4 3 2 5 3 3 4 4 5 6 6 4 6 1 Irvine
38 2 2 6 4 4 7 4 3 3 4 5 6 3 7 5 6 5 6 5 4 Miami
39 4 6 4 3 6 5 7 7 5 7 6 7 7 7 7 2 4 7 6 6 New York
40 7 1 7 5 1 7 5 2 5 3 4 7 7 7 7 7 2 7 7 6 Miami
41 6 5 7 7 7 7 5 5 5 5 5 7 7 7 7 1 4 5 7 6 Miami
42 3 4 5 6 3 7 3 1 5 6 6 7 4 7 5 4 5 3 4 6 Miami
43 5 4 4 4 6 5 5 7 5 6 5 5 7 6 6 4 4 7 5 5 New York
44 5 1 6 4 5 6 3 2 1 1 1 1 1 7 4 6 7 3 7 1 Irvine
45 3 1 5 3 5 6 6 7 1 4 1 3 2 3 5 5 6 7 6 2 Irvine
46 5 6 6 5 6 5 6 7 5 5 5 7 6 6 7 3 2 6 6 5 New York
47 3 1 5 4 6 7 3 3 6 6 2 7 6 5 5 2 3 7 6 4 Miami
48 6 2 7 4 6 7 6 5 6 5 4 7 6 7 7 3 2 7 6 6 Miami
49 2 3 6 5 4 7 5 4 3 5 4 6 5 7 6 3 4 6 6 2 Irvine
50 2 1 6 4 3 6 4 4 3 7 3 7 6 7 6 4 4 7 6 3 Miami
51 4 5 3 5 6 6 4 5 6 4 6 7 6 7 6 1 3 7 5 6 Miami
52 3 1 3 5 4 5 5 1 1 2 3 1 2 6 5 6 7 4 6 1 Miami
53 2 1 6 3 2 6 4 5 5 4 5 6 5 7 5 4 3 6 5 5 Miami
54 6 6 2 5 7 3 3 7 4 4 6 7 7 6 7 4 4 7 6 4 New York
55 6 2 6 4 4 5 4 3 4 6 6 5 5 6 5 5 5 6 5 4 Miami
56 5 5 5 3 6 6 5 6 5 6 5 5 6 6 6 6 4 7 6 5 New York
57 6 6 5 7 7 6 6 7 5 5 4 2 7 7 7 7 3 7 7 6 New York
58 3 1 6 4 4 6 4 2 2 1 1 1 3 3 2 3 5 3 7 1 Irvine
59 4 2 5 4 3 4 4 4 3 4 4 5 4 6 6 5 5 7 5 4 Miami
60 4 1 5 3 4 6 5 6 2 7 7 2 5 2 6 5 7 4 5 5 Irvine
61 2 1 3 5 6 6 5 2 1 3 4 2 5 6 6 5 6 3 6 2 Irvine
62 6 7 4 5 7 4 4 7 5 6 6 7 5 4 6 1 1 7 6 6 New York
63 6 1 6 4 3 6 5 5 5 4 4 6 6 7 6 5 5 6 6 5 Miami
64 1 1 1 4 6 5 6 2 1 3 4 2 5 4 6 1 7 6 6 1 Irvine
65 6 7 5 5 7 3 5 7 5 7 7 7 7 3 7 7 4 7 7 7 New York
66 4 7 5 3 6 6 7 7 6 7 4 7 5 6 6 2 3 6 3 4 New York
67 1 2 1 4 6 3 6 3 5 6 5 4 5 7 7 5 5 5 6 4 Miami
68 1 1 1 3 3 7 5 2 1 1 2 2 3 6 6 7 7 5 7 2 Irvine
69 2 1 3 3 3 5 5 2 1 2 1 1 2 6 7 7 7 2 6 1 Irvine
70 7 7 7 5 7 7 7 7 7 5 5 7 7 3 7 7 1 7 7 7 New York
71 7 1 7 7 5 7 5 7 7 7 4 7 7 7 7 7 3 7 7 6 Miami
72 4 3 4 4 6 3 4 6 6 3 4 6 6 6 6 6 4 7 5 6 New York
73 3 1 6 5 3 6 4 1 1 3 4 1 5 4 5 4 6 7 7 2 Irvine
74 3 1 4 3 5 3 5 2 1 2 3 2 2 6 7 7 7 4 7 2 Irvine
75 3 1 4 5 5 6 5 2 1 4 5 2 4 6 6 7 7 5 6 2 Irvine
76 3 1 7 4 3 7 5 1 5 5 5 6 6 7 7 6 3 7 7 5 Miami
77 4 4 6 5 7 3 5 7 5 7 5 7 7 5 5 7 5 7 7 6 New York
78 6 7 5 5 7 4 7 7 6 5 6 7 7 3 6 2 2 7 7 7 New York
79 5 7 2 6 7 4 6 7 5 6 7 7 5 2 6 3 2 6 6 5 New York
80 1 3 6 5 6 3 4 3 2 3 4 2 4 5 6 1 7 6 6 2 Irvine
81 1 1 6 6 4 6 6 2 2 3 4 3 5 7 5 4 6 5 6 1 Irvine
82 2 1 3 5 4 6 4 3 1 4 1 1 3 6 7 6 7 4 6 1 Irvine
83 5 6 7 4 7 7 5 7 6 7 7 7 7 5 6 7 2 7 7 7 New York
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Appendix C

Data Applications. Results EM
Algorithm

C.1 Simulation Study. Other Scenarios

Tables C.1 and C.2 summarise the results for the simulation scenarios (Section
4.1) including the interaction factors for row clustering and biclustering version
respectively. Figures C.1 and C.2 show how the precision of the estimates of the
score parameters φ̂2 and φ̂3 depends on sample size n in the case with R = 2 row
groups with C = 2 column groups and biclustering with R = 2 and C = 2 row
and column groups, respectively. Tables C.3, C.4 and C.5 show two particular
scenarios described in Section 4.1 for the row clustering, column clustering and
biclustering respectively.

C.2 Applied Statistics Course Feedback Forms

The list of questions are shown in Table C.6 and the data set with the responses
of 70 students over 10 questions giving feedback about a second year Applied
Statistics course is given in Table C.7.

C.3 Tree Presences in Great Smoky Mountains

The data set of R. H. Whittaker’s study of vegetation of the Great Smoky Moun-
tains (Whittaker, 1956, Table 3) is shown in Table C.8. The data set consists of the
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APPENDIX C. DATA APPLICATIONS. RESULTS EM ALGORITHM

Table C.1: Simulation study (Section 4.1). Estimated score parameters for stereo-
type model including row clustering µk + φk(αr + βj + γrj). MLEs and their
standard errors from the score and row membership parameters ({φk},{πr}) for
different number of row clusters R and sample sizes n are shown.

R Numpar True param. n=200 n=500 n=1000 n=5000
Mean S.E. Mean S.E. Mean S.E. Mean S.E.

2 15
φ2 = 0.335 0.324 0.235 0.336 0.140 0.337 0.098 0.336 0.044
φ3 = 0.672 0.655 0.206 0.674 0.123 0.672 0.087 0.671 0.038
π1 = 0.550 0.556 0.063 0.542 0.035 0.550 0.024 0.554 0.010

3 21

φ2 = 0.335 0.372 0.236 0.321 0.142 0.331 0.100 0.339 0.069
φ3 = 0.672 0.709 0.165 0.668 0.102 0.678 0.074 0.675 0.052
π1 = 0.200 0.201 0.091 0.219 0.015 0.172 0.008 0.202 0.007
π2 = 0.500 0.353 0.148 0.487 0.114 0.451 0.031 0.491 0.015

4 27

φ2 = 0.335 0.373 0.236 0.374 0.144 0.348 0.093 0.345 0.049
φ3 = 0.672 0.727 0.167 0.771 0.095 0.692 0.070 0.682 0.031
π1 = 0.200 0.084 0.129 0.099 0.118 0.179 0.101 0.181 0.059
π2 = 0.350 0.327 0.201 0.401 0.141 0.334 0.128 0.346 0.022
π3 = 0.230 0.196 0.181 0.259 0.128 0.179 0.099 0.214 0.059

5 33

φ2 = 0.335 0.323 0.243 0.374 0.154 0.335 0.102 0.335 0.073
φ3 = 0.672 0.698 0.152 0.744 0.097 0.684 0.071 0.675 0.050
π1 = 0.200 0.151 0.128 0.214 0.107 0.212 0.051 0.209 0.003
π2 = 0.120 0.114 0.155 0.136 0.121 0.128 0.061 0.121 0.003
π3 = 0.230 0.210 0.186 0.224 0.130 0.228 0.057 0.234 0.008
π4 = 0.300 0.462 0.198 0.440 0.157 0.388 0.111 0.311 0.011

6 39

φ2 = 0.335 0.442 0.238 0.404 0.147 0.333 0.103 0.346 0.071
φ3 = 0.672 0.741 0.166 0.766 0.106 0.709 0.075 0.680 0.056
π1 = 0.150 0.181 0.172 0.167 0.121 0.131 0.081 0.138 0.012
π2 = 0.300 0.182 0.155 0.221 0.091 0.225 0.058 0.227 0.009
π3 = 0.100 0.091 0.161 0.081 0.102 0.087 0.077 0.093 0.014
π4 = 0.200 0.246 0.139 0.166 0.081 0.194 0.044 0.194 0.005
π5 = 0.150 0.235 0.166 0.191 0.118 0.178 0.099 0.165 0.012

distribution of 41 different tree species along 12 different site stations located at
altitudes between 3500 and 4500 ft and sorted by moisture level (wetter to drier).
Table C.9 summarises the suite of fitted models for this data set. For each model,
the information criteria AIC, AICc, BIC and ICL-BIC were computed.

C.4 Spider Data

The spider abundance data set (Van der Aart and Smeenk-Enserink, 1974) shows
the distribution of 12 different spider species across 28 different sites. The original
count data is shown in Table C.10 and the categorised ordinal data set following
eq. (4.5) is shown in Table C.11. Table C.12 summarises the suite of fitted models

232



C.4. SPIDER DATA

Table C.2: Simulation study (Section 4.1). Estimated score parameters for
stereotype model including biclustering µk + φk(αr + βc + γrc). MLEs and
their standard errors from the score, row and column membership parameters
({φk},{πr},{κc}) for different number of row and column clusters R and C and
sample sizes n are shown.

R C Numpar True param. n=25 n=50 n=100
Mean S.E. Mean S.E. Mean S.E.

2 2 10

φ2 = 0.335 0.383 0.304 0.346 0.178 0.339 0.138
φ3 = 0.672 0.705 0.260 0.699 0.232 0.678 0.118
π1 = 0.600 0.604 0.173 0.583 0.107 0.601 0.078
κ1 = 0.400 0.366 0.178 0.407 0.097 0.402 0.076

2 3 13

φ2 = 0.335 0.391 0.325 0.342 0.183 0.337 0.140
φ3 = 0.672 0.696 0.294 0.659 0.197 0.669 0.099
π1 = 0.600 0.628 0.188 0.591 0.087 0.604 0.061
κ1 = 0.400 0.412 0.171 0.398 0.102 0.400 0.088
κ2 = 0.200 0.189 0.168 0.201 0.094 0.199 0.059

3 2 13

φ2 = 0.335 0.298 0.299 0.341 0.131 0.336 0.111
φ3 = 0.672 0.713 0.297 0.693 0.166 0.675 0.109
π1 = 0.300 0.288 0.176 0.304 0.101 0.303 0.077
π2 = 0.400 0.371 0.163 0.388 0.099 0.397 0.065
κ1 = 0.400 0.421 0.181 0.401 0.137 0.400 0.111

3 3 17

φ2 = 0.335 0.401 0.313 0.388 0.201 0.347 0.131
φ3 = 0.672 0.701 0.277 0.669 0.181 0.671 0.093
π1 = 0.300 0.325 0.182 0.312 0.106 0.304 0.066
π2 = 0.400 0.371 0.178 0.381 0.101 0.397 0.071
κ1 = 0.400 0.384 0.157 0.398 0.092 0.402 0.063
κ2 = 0.200 0.219 0.148 0.210 0.104 0.195 0.061

for this data set. For each model, the information criteria AIC, AICc, BIC and
ICL-BIC were computed.
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Figure C.1: Simulation study (Section 4.1): Convergence of φ̂2 and φ̂3 for the ste-
reotype model including column clustering (αi + βc) with C = 2 column clusters. n,
h, q, m describe the sample size, the number of replicates, the number of categories and
the number of covariates respectively. The diamond point represents the true value of the
parameter.
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Figure C.2: Simulation study (Section 4.1): Convergence of φ̂2 and φ̂3 for the stereo-
type model including biclustering (αr +βc) with R = 2 row and C = 2 column clusters.
n, h, q, m describe the sample size, the number of replicates, the number of categories and
the number of covariates respectively. The diamond point represents the true value of the
parameter.
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Table C.3: Simulation study (Section 4.1). Estimated score parameters for stereo-
type model including row clustering µk + φk(αr + βj + γrj) when φ2 = φ3 or
π2 is small. MLEs and their standard errors from the score and row membership
parameters ({φk},{πr}) for different number of row clusters R and sample sizes n
are shown.

R Numpar True param. n=200 n=500 n=1000 n=5000
Mean S.E. Mean S.E. Mean S.E. Mean S.E.

2 15
φ2 = 0.500 0.492 0.221 0.483 0.131 0.501 0.091 0.498 0.041
φ3 = 0.500 0.524 0.089 0.502 0.056 0.511 0.036 0.503 0.017
π1 = 0.550 0.595 0.060 0.572 0.036 0.525 0.027 0.551 0.011

3 21

φ2 = 0.500 0.495 0.217 0.484 0.133 0.492 0.093 0.498 0.040
φ3 = 0.500 0.525 0.456 0.504 0.256 0.509 0.146 0.511 0.094
π1 = 0.200 0.202 0.097 0.180 0.013 0.171 0.010 0.203 0.009
π2 = 0.500 0.495 0.140 0.512 0.087 0.504 0.040 0.453 0.012

4 27

φ2 = 0.500 0.498 0.212 0.520 0.083 0.517 0.067 0.506 0.055
φ3 = 0.500 0.545 0.242 0.491 0.116 0.524 0.063 0.513 0.025
π1 = 0.200 0.196 0.165 0.188 0.102 0.193 0.058 0.197 0.016
π2 = 0.350 0.416 0.181 0.406 0.125 0.373 0.042 0.375 0.012
π3 = 0.230 0.240 0.262 0.285 0.163 0.249 0.021 0.280 0.009

3 21

φ2 = 0.335 0.332 0.228 0.336 0.096 0.334 0.068 0.341 0.047
φ3 = 0.672 0.666 0.207 0.674 0.088 0.661 0.064 0.682 0.045
π1 = 0.400 0.344 0.052 0.419 0.031 0.414 0.018 0.422 0.012
π2 = 0.015 0.010 0.123 0.024 0.065 0.012 0.042 0.019 0.026

Table C.4: Simulation study (Section 4.1). Estimated score parameters for stereo-
type model including column clustering µk + φk(αi + βc + γic) when φ2 = φ3

or κ2 is small and m = 15. MLEs and their standard errors from the score and col-
umn membership parameters ({φk},{κc}) for different number of column clusters
C, number of columns m and sample sizes n are shown.

C True param. n=25 n=50
Numpar Mean S.E. Numpar Mean S.E.

2
φ2 = 0.700

31
0.776 0.100

56
0.706 0.056

φ3 = 0.700 0.882 0.111 0.856 0.076
κ1 = 0.400 0.382 0.121 0.409 0.097

3

φ2 = 0.700

33

0.761 0.123

58

0.734 0.068
φ3 = 0.700 0.796 0.111 0.768 0.056
κ1 = 0.400 0.411 0.105 0.423 0.045
κ2 = 0.200 0.176 0.077 0.200 0.035

3

φ2 = 0.335

33

0.328 0.209

58

0.362 0.080
φ3 = 0.672 0.713 0.157 0.633 0.140
κ1 = 0.400 0.401 0.170 0.373 0.086
κ2 = 0.015 0.026 0.149 0.027 0.084
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Table C.5: Simulation study (Section 4.1). Estimated score parameters for stereo-
type model including biclustering µk + φk(αr + βc + γrc) when φ2 = φ3 or π2

and κ2 are small. MLEs and their standard errors from the score, row and col-
umn membership parameters ({φk},{πr},{κc}) for different number of row and
column clusters R and C and sample sizes n are shown.

R C Numpar True param. n=25 n=50 n=100
Mean S.E. Mean S.E. Mean S.E.

2 2 10

φ2 = 0.500 0.477 0.361 0.507 0.164 0.522 0.141
φ3 = 0.500 0.602 0.388 0.593 0.208 0.529 0.174
π1 = 0.600 0.573 0.273 0.540 0.110 0.638 0.103
κ1 = 0.400 0.367 0.289 0.406 0.168 0.401 0.062

2 3 13

φ2 = 0.500 0.659 0.346 0.620 0.141 0.539 0.078
φ3 = 0.500 0.664 0.281 0.612 0.205 0.629 0.088
π1 = 0.600 0.514 0.284 0.689 0.149 0.670 0.146
κ1 = 0.400 0.363 0.401 0.410 0.188 0.358 0.089
κ2 = 0.200 0.253 0.311 0.249 0.142 0.237 0.029

3 2 13

φ2 = 0.500 0.628 0.247 0.429 0.164 0.544 0.065
φ3 = 0.500 0.651 0.230 0.576 0.137 0.546 0.060
π1 = 0.300 0.297 0.225 0.278 0.136 0.268 0.037
π2 = 0.400 0.408 0.228 0.409 0.130 0.362 0.059
κ1 = 0.400 0.482 0.285 0.418 0.143 0.409 0.088

3 3 17

φ2 = 0.500 0.404 0.210 0.497 0.106 0.447 0.036
φ3 = 0.500 0.563 0.212 0.558 0.110 0.518 0.039
π1 = 0.300 0.340 0.127 0.317 0.045 0.307 0.014
π2 = 0.400 0.358 0.149 0.396 0.105 0.385 0.014
κ1 = 0.400 0.458 0.141 0.382 0.108 0.399 0.016
κ2 = 0.200 0.239 0.085 0.219 0.076 0.204 0.013

2 3 13

φ2 = 0.335 0.390 0.320 0.338 0.141 0.301 0.057
φ3 = 0.672 0.760 0.271 0.620 0.107 0.642 0.080
π1 = 0.400 0.382 0.142 0.488 0.100 0.423 0.090
κ1 = 0.400 0.457 0.136 0.479 0.185 0.402 0.079
κ2 = 0.015 0.013 0.089 0.014 0.064 0.018 0.018

3 2 13

φ2 = 0.335 0.326 0.223 0.356 0.156 0.332 0.076
φ3 = 0.672 0.691 0.307 0.618 0.146 0.613 0.079
π1 = 0.400 0.463 0.180 0.373 0.068 0.397 0.024
π2 = 0.015 0.028 0.194 0.019 0.078 0.020 0.055
κ1 = 0.400 0.403 0.113 0.385 0.070 0.408 0.033

3 3 17

φ2 = 0.335 0.386 0.256 0.320 0.125 0.331 0.063
φ3 = 0.672 0.685 0.221 0.631 0.140 0.674 0.080
π1 = 0.400 0.391 0.170 0.311 0.098 0.415 0.068
π2 = 0.015 0.025 0.159 0.021 0.079 0.017 0.043
κ1 = 0.400 0.445 0.188 0.386 0.079 0.398 0.038
κ2 = 0.015 0.019 0.130 0.014 0.043 0.022 0.015
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Table C.6: List of 10 questions of Applied Statistics course feedback forms data
set. Each question was written so that “agree” indicates a positive view of the
course.

Questions
Q1. The way this course was organised has helped me to learn.

Disagree Neither Agree nor Disagree Agree
� � �

Q2. Important course information-such as learning objectives, deadlines,
assessments and grading criteria-was communicated clearly.

Disagree Neither Agree nor Disagree Agree
� � �

Q3. Preparing for the assessments has helped me to learn.

Disagree Neither Agree nor Disagree Agree
� � �

Q4. Comments and feedback I received during the course
have helped me learn more effectively.

Disagree Neither Agree nor Disagree Agree
� � �

Q5. This course encouraged me to think critically.

Disagree Neither Agree nor Disagree Agree
� � �

Q6. This course encouraged me to think creatively.

Disagree Neither Agree nor Disagree Agree
� � �

Q7. This course has helped me to develop my communication skills.

Disagree Neither Agree nor Disagree Agree
� � �

Q8. This course has stimulated my interest in learning
more about this subject.

Disagree Neither Agree nor Disagree Agree
� � �

Q9. I value highly what I have learned from this course.

Disagree Neither Agree nor Disagree Agree
� � �

Q10. Overall, I would rate the quality of this course as very good:

Disagree Neither Agree nor Disagree Agree
� � �
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Table C.7: Applied Statistics feedback forms data set. 70 students (rows), 10
questions (Q1-Q10) and 3 categories for each question: “disagree” (coded as 1),
“neither agree or disagree” (coded as 2) and “agree” (coded as 3).

Students ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
1 1 1 1 1 2 2 2 2 1 1
2 1 1 1 1 3 3 3 3 1 1
3 1 1 1 2 1 2 3 2 2 2
4 2 2 1 1 2 2 3 3 2 2
5 1 1 1 1 2 3 3 3 1 3
6 3 2 1 2 1 3 3 3 2 3
7 1 1 1 3 2 2 3 1 1 1
8 1 1 1 1 1 2 2 1 2 1
9 2 1 1 1 2 3 2 3 1 2
10 1 1 1 1 2 2 2 2 2 2
11 1 1 1 1 1 1 1 1 1 1
12 2 1 1 3 3 3 3 2 1 3
13 2 1 1 2 3 3 3 1 1 2
14 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 2 1 1
16 1 1 1 2 2 1 3 2 1 2
17 1 1 1 2 2 2 2 2 1 2
18 1 1 1 1 1 2 2 1 1 2
19 1 1 1 1 2 2 1 1 1 1
20 2 2 1 2 1 2 2 2 1 2
21 1 1 1 1 1 2 2 1 1 1
22 3 3 1 1 1 1 2 1 1 1
23 1 1 1 1 1 2 2 1 1 1
24 1 1 1 1 1 2 2 2 1 1
25 1 1 1 1 1 2 2 2 1 1
26 1 1 2 2 1 1 2 3 1 2
27 1 1 1 1 1 1 2 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29 1 1 1 2 2 2 2 2 2 2
30 1 1 1 2 2 3 3 2 1 2
31 1 1 1 1 1 1 1 2 1 1
32 1 1 1 1 1 2 1 1 1 1
33 2 1 1 2 1 2 2 2 1 2
34 1 1 1 2 2 2 2 2 2 2
35 1 2 1 1 2 2 2 3 1 2
36 1 1 1 2 1 2 1 2 2 2
37 1 1 1 2 2 2 2 2 1 2
38 1 1 1 2 2 2 2 1 1 1
39 1 1 1 1 1 1 1 2 1 2
40 1 1 2 2 1 3 3 1 2 2
41 1 1 1 1 1 3 1 3 1 1
42 1 1 1 1 2 2 2 1 1 1
43 1 1 1 2 2 3 3 3 2 2
44 2 1 1 2 2 3 2 3 1 1
45 3 1 1 2 3 3 3 1 1 3
46 1 1 1 1 2 2 2 2 1 2
47 1 1 1 1 1 2 2 3 1 1
48 1 1 1 2 1 1 2 1 1 2
49 1 1 1 2 1 2 1 2 1 1
50 1 1 1 1 2 2 2 3 2 2
51 1 1 1 1 2 3 3 2 2 2
52 1 1 1 1 1 2 2 3 2 1
53 1 1 1 1 1 1 1 1 1 1
54 2 3 1 3 3 3 3 3 3 2
55 1 1 1 2 1 1 1 2 1 1
56 1 1 1 1 1 1 1 1 1 1
57 1 1 1 2 2 3 2 2 1 1
58 1 1 1 1 1 2 2 2 1 1
59 1 1 1 1 1 1 2 1 2 1
60 2 1 1 2 3 3 3 3 2 2
61 1 1 1 1 1 1 2 1 1 2
62 1 1 1 1 2 2 2 1 1 1
63 1 1 1 2 1 2 2 3 1 2
64 1 1 1 1 3 3 3 3 1 1
65 1 1 1 1 1 1 3 1 1 1
66 1 1 1 2 1 2 2 2 1 2
67 3 1 1 1 1 1 1 3 1 3
68 1 1 1 1 2 2 2 3 1 1
69 1 3 1 1 2 2 2 2 1 1
70 3 1 1 3 3 3 1 3 1 2
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Table C.8: Great Smoky Mountains data set (Whittaker, 1956). Presence distri-
bution of tree species along different site stations. All figures are percentages of
total stems presence in station.

Tree species Station number
1 2 3 4 5 6 7 8 9 10 11 12

Fangus grandifolia 10 5 1 1 1 .. .. .. .. .. .. ..
Ilex opaca .. 1 .. <0.5 .. .. .. .. .. .. .. ..

Picea rubens .. <0.5 .. <0.5 <0.5 .. .. .. .. .. .. ..
Cornus alternifolia 1 1 .. <0.5 <0.5 .. .. .. .. .. .. ..
Aesculus octandra 8 9 4 2 6 1 .. .. .. .. .. ..
Tilia heterophylla 29 11 9 1 14 3 .. .. .. .. .. ..

Acer spicatum .. 16 11 .. 17 1 .. .. .. .. .. ..
Acer saccharum 17 7 1 1 5 1 .. .. .. .. .. ..
Prunus serotina 2 1 .. 1 <0.5 2 .. .. .. .. .. ..

Fraxinus americana 1 1 .. 1 1 <0.5 .. .. .. .. .. ..
Betula allegheniensis 5 17 10 15 4 1 <0.5 .. .. .. .. ..
Magnolia acuminata .. <0.5 .. .. <0.5 .. 1 .. .. .. .. ..

Magnolia fraseri .. .. 20 4 1 .. 1 .. .. .. .. ..
Tsuga canadensis 20 22 34 62 18 <0.5 <0.5 1 .. .. .. ..
Halesia monticola 5 8 4 1 9 13 3 1 1 .. .. ..

Ilex montana 1 <0.5 .. 1 1 1 2 .. .. .. .. ..
Acer pensylvanicum 1 <0.5 1 3 8 3 <0.5 1 .. .. .. ..
Amelanchier laevis .. <0.5 .. <0.5 <0.5 .. .. .. .. .. .. ..
Quercus borealis .. 1 .. .. 2 40 10 4 15 11 2 1

Acer rubrum .. 1 .. .. 1 6 37 21 13 10 8 1
Prunus pensylvanica .. .. 2 .. .. .. 1 .. .. .. .. ..

Betula lenta .. .. 1 4 4 1 2 2 .. .. .. ..
Clethra acuminata .. .. .. 1 <0.5 .. .. .. .. .. .. ..

Hamamelis virginiana .. .. .. .. 2 5 17 7 1 .. 2 ..
Cornus florida .. .. .. .. 1 .. <0.5 4 .. .. .. ..

Liriodendron tulipifiera .. .. .. .. 2 .. .. 1 .. <0.5 .. ..
Rhododendron calendulaceum .. .. .. .. .. 1 .. 1 4 .. .. ..

Craya glabra .. .. .. .. .. 4 <0.5 2 6 5 .. ..
Carya tomentosa .. .. .. .. .. .. .. 2 .. .. .. ..

Carya ovalis .. .. .. .. .. .. .. <0.5 .. .. .. ..
Nyssa sylvatica .. .. 1 .. .. .. 2 4 1 2 7 ..

Oxydendrum arboreum .. .. <0.5 1 .. 1 3 8 14 16 1 1
Castanea dentata .. .. .. .. 2 5 7 9 10 12 1 ..
Sassafras albidum .. .. .. .. .. 1 1 1 1 4 <0.5 ..

Quercus alba .. .. .. .. .. 2 1 8 24 10 <0.5 ..
Robinia pseudoacacia .. .. .. .. .. 4 5 1 3 8 3 <0.5

Quercus prinus .. .. .. .. .. 3 4 15 4 16 11 1
Quercus veluntina .. .. .. .. .. .. <0.5 <0.5 1 1 .. ..
Quercus coccinea .. .. .. .. .. .. 1 .. .. .. .. 1

Pinus rigida .. .. .. .. .. .. .. 7 1 1 11 46
Pinus pungens .. .. .. .. .. .. .. .. 1 4 54 49
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Table C.9: Suite of models fitted for R.H. Whittaker’s study of vegetation. For
each information criterion, the best model in each group (no clustering, row clus-
tering, column clustering and biclustering) is shown in boldface.

Model R C npar AIC AICc BIC ICL-BIC
Null Model µk 1 1 7 671.41 671.70 700.79 700.79
Row effects µk + φkαi n 1 47 572.15 582.77 769.48 769.48

Column effects µk + φkβj 1 m 18 581.09 582.70 656.67 656.67
Main effects µk + φk(αi + βj) n m 58 544.22 560.61 787.83 787.83

Row Clustering

µk + φkαr

2 1 9 549.10 549.56 586.88 605.18
3 1 11 553.05 553.70 599.24 617.32
4 1 13 556.94 557.82 611.52 630.75

µk + φk(αr + βj)
2 m 20 555.65 557.62 639.62 655.14
3 m 22 558.91 561.27 651.28 671.11
4 m 24 563.56 566.35 664.32 712.84

µk + φk(αr + βj + γrj)
2 m 31 534.06 538.66 664.21 669.38
3 m 44 518.01 527.30 702.75 712.35
4 m 57 529.27 545.07 768.58 779.42

Column Clustering
µk + φkβc

1 2 9 549.10 549.56 586.88 605.18
1 3 11 570.25 570.90 616.43 699.76

µk + φk(αi + βc)
n 2 49 580.88 592.45 646.61 703.41
n 3 51 594.38 606.93 648.50 679.20

Biclustering

µk + φk(αr + βc)

2 2 11 551.49 552.14 597.67 621.13
3 2 13 580.14 581.02 634.72 698.37
2 3 13 581.17 582.12 634.89 697.80
3 3 15 584.14 585.29 647.12 712.45

µk + φk(αr + βc + γrc)

2 2 12 553.49 554.25 603.87 625.57
3 2 15 586.65 587.80 619.63 655.07
2 3 15 559.49 560.63 622.46 657.83
3 3 19 569.77 571.55 649.54 676.11
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Table C.10: Spider data set (Van der Aart and Smeenk-Enserink, 1974). Abun-
dances of m = 12 species of spiders recorded at n = 28 sites.

Sites
Species of spiders

Alopacce Alopcune Alopfabr Arctlute Arctperi Auloalbi Pardlugu Pardmont Pardnigr Pardpull Trocterr Zoraspin

1 25 10 0 0 0 4 0 60 12 45 57 4
2 0 2 0 0 0 30 1 1 15 37 65 9
3 15 20 2 2 0 9 1 29 18 45 66 1
4 2 6 0 1 0 24 1 7 29 94 86 25
5 1 20 0 2 0 9 1 2 135 76 91 17
6 0 6 0 6 0 6 0 11 27 24 63 34
7 2 7 0 12 0 16 1 30 89 105 118 16
8 0 11 0 0 0 7 55 2 2 1 30 3
9 1 1 0 0 0 0 0 26 1 1 2 0
10 3 0 1 0 0 0 0 22 0 0 1 0
11 15 1 2 0 0 1 0 95 0 1 4 0
12 16 13 0 0 0 0 0 96 1 8 13 0
13 3 43 1 2 0 18 1 24 53 72 97 22
14 0 2 0 1 0 4 3 14 15 72 94 32
15 0 0 0 0 0 0 6 0 0 0 25 3
16 0 3 0 0 0 0 6 0 2 0 28 4
17 0 0 0 0 0 0 2 0 0 0 23 2
18 0 1 0 0 0 0 5 0 0 0 25 0
19 0 1 0 0 0 0 12 0 1 0 22 3
20 0 2 0 0 0 0 13 0 0 0 22 2
21 0 1 0 0 0 0 16 1 0 1 18 2
22 7 0 16 0 4 0 0 2 0 0 1 0
23 17 0 15 0 7 0 2 6 0 0 1 0
24 11 0 20 0 5 0 0 3 0 0 0 0
25 9 1 9 0 0 2 1 11 6 0 16 6
26 3 0 6 0 18 0 0 0 0 0 1 0
27 29 0 11 0 4 0 0 1 0 0 0 0
28 15 0 14 0 1 0 0 6 0 0 2 0

Table C.11: Spider data set (Van der Aart and Smeenk-Enserink, 1974). Abun-
dances of n = 12 species of spiders recorded at m = 28 sites grouped in ordinal
categories (as described in eq. (4.5)).

Sites
Species of spiders

Alopacce Alopcune Alopfabr Arctlute Arctperi Auloalbi Pardlugu Pardmont Pardnigr Pardpull Trocterr Zoraspin

1 2 2 0 0 0 1 0 3 2 3 3 1
2 0 2 0 0 0 3 1 1 2 3 3 2
3 2 3 1 1 0 2 1 3 2 3 3 1
4 1 2 0 1 0 2 1 2 3 3 3 2
5 1 2 0 1 0 2 1 1 3 3 3 2
6 0 1 0 1 0 1 0 2 3 2 3 3
7 1 1 0 2 0 2 1 2 3 3 3 2
8 0 3 0 0 0 2 3 1 1 1 3 2
9 1 1 0 0 0 0 0 3 1 1 3 0
10 2 0 1 0 0 0 0 3 0 0 1 0
11 3 1 2 0 0 1 0 3 0 1 2 0
12 3 2 0 0 0 0 0 3 1 1 2 0
13 2 3 1 1 0 2 1 2 3 3 3 2
14 0 1 0 1 0 2 1 2 2 3 3 3
15 0 0 0 0 0 0 2 0 0 0 3 1
16 0 1 0 0 0 0 3 0 1 0 3 2
17 0 0 0 0 0 0 1 0 0 0 3 1
18 0 1 0 0 0 0 2 0 0 0 3 0
19 0 1 0 0 0 0 3 0 1 0 3 2
20 0 1 0 0 0 0 2 0 0 0 3 1
21 0 1 0 0 0 0 3 1 0 1 3 2
22 3 0 3 0 2 0 0 1 0 0 1 0
23 3 0 3 0 2 0 1 2 0 0 1 0
24 2 0 3 0 2 0 0 1 0 0 0 0
25 2 1 2 0 0 1 1 3 2 0 3 2
26 2 0 2 0 3 0 0 0 0 0 1 0
27 3 0 2 0 2 0 0 1 0 0 0 0
28 3 0 3 0 1 0 0 2 0 0 1 0
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Table C.12: Suite of models fitted for spider data set (Van der Aart and Smeenk-
Enserink, 1974). For each information criterion, the best model in each group
(no clustering, row clustering, column clustering and biclustering) is shown in
boldface.

Model R C npar AIC AICc BIC ICL-BIC
Null effects µk + φk 1 1 5 441.63 441.81 460.71 460.71
Row effects µk + φkαi n 1 16 428.81 430.52 489.89 489.89

Column effects µk + φkβj 1 m 32 463.85 470.82 586.00 586.00
Main effects µk + φk(αi + βj) n m 43 422.54 421.50 547.67 547.67

Row Clustering

µk + φkαr

2 1 7 415.70 416.04 442.42 442.49
3 1 9 419.42 419.97 453.77 470.37
4 1 11 423.36 424.17 465.35 481.86
5 1 13 427.40 428.53 477.02 496.25
6 1 15 430.96 432.46 488.22 488.24

µk + φk(αr + βj)

2 m 34 431.02 438.92 560.80 572.87
3 n 20 435.91 444.82 573.33 594.32
4 n 22 439.57 449.55 584.62 593.90
5 n 24 443.91 455.03 596.60 599.43
6 n 26 447.69 460.02 608.01 618.21

µk + φk(αr + βj + γrj)

2 m 61 406.22 423.83 629.06 639.08
3 n 42 424.71 491.57 668.25 776.26
4 n 55 426.25 558.47 680.49 681.49
5 n 68 549.95 585.80 681.88 684.89
6 n 81 531.77 630.58 707.40 717.40

Column Clustering

µk + φkβc

1 2 7 412.46 412.81 439.18 463.05
1 3 9 418.12 418.67 452.47 482.00
1 4 11 421.90 422.71 463.89 515.37
1 5 13 426.43 427.56 476.06 507.19
1 6 15 429.96 431.46 487.22 547.28

µk + φk(αi + βc)

n 2 18 410.13 415.81 520.82 526.18
n 3 20 397.28 409.28 561.54 565.73
n 4 22 401.23 413.55 607.22 609.89
n 5 24 412.15 447.29 671.71 675.77
n 6 26 460.91 513.21 770.10 772.98

µk + φk(αi + βc + γic)

n 2 29 534.06 538.66 664.21 669.38
n 3 42 436.57 439.24 512.92 542.04
n 4 55 440.43 443.66 524.41 549.82
n 5 68 444.03 447.89 535.64 554.73
n 6 81 450.14 454.68 549.38 595.48

Biclustering

µk + φk(αr + βc)

2 2 9 421.76 422.31 456.11 498.31
2 3 11 419.64 420.20 454.00 490.75
2 4 13 425.74 426.88 475.37 549.88
2 5 15 431.31 432.81 488.56 572.19
3 2 11 423.22 424.03 465.20 517.86
3 3 13 476.66 477.79 501.77 526.29
3 4 15 439.87 441.37 497.13 522.80
3 5 17 435.21 437.13 500.10 567.88
4 2 13 482.98 484.11 492.13 532.60
4 3 15 433.70 435.20 490.96 550.30
4 4 17 435.22 437.14 500.11 571.15
4 5 19 464.04 466.44 536.56 568.45

µk + φk(αr + βc + γrc)

2 2 10 427.97 429.10 477.59 527.43
2 3 13 422.00 422.68 460.17 486.88
2 4 16 434.39 436.09 495.46 520.85
2 5 19 438.61 441.01 511.13 538.56
3 2 13 497.76 498.89 505.27 547.38
3 3 17 433.91 435.84 498.80 540.76
3 4 21 441.89 444.83 522.05 559.23
3 5 25 453.08 457.27 548.50 615.81
4 2 16 445.85 447.55 506.92 528.75
4 3 21 448.82 451.76 528.98 538.18
4 4 26 468.71 473.25 567.95 622.25
4 5 31 530.60 537.12 619.79 648.93
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Appendix D

Spaced Mosaic Plots. R function

In this section we describe the R function to fit a spaced mosaic plot. The pur-
pose of showing the function here is to use it independently of any package. This
function will be included within an R package and its structure might change (e.g.
defining a R class object related to the mosaic). In the meantime, you can e-mail
the corresponding author (D. Fernández - daniel.fernandez@msor.vuw.ac.nz)
to obtain this function.

The description of the R function we have developed is:

spaced.mosaic.plot Draw spaced mosaic plots for clustering ordinal data

Description

The function spaced.mosaic.plot computes a spaced mosaic plot of a
given ordinal data, clustering structure and fitted score parameters.

Usage

spaced.mosaic.plot(mdata, phi, R, ClusterRow, labels)

Arguments

mdata numeric matrix containing the ordinal data set.
phi numeric vector representing the fitted score parameters ({φk})
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from the ordinal stereotype model.
R integer value specifying the number of row clusters.
ClusterRow an integer vector with the allocated cluster to each row.
labels (optional) a list comprising 4 items:

categ contains the labels for the ordinal categories.

cluster contains the labels for the clusters.

row contains the labels for the data rows.

col contains the labels for the data columns.

Value(s)

The function returns a data frequency table with R rows and one column for
each category. In addition, three pdf files are generated in the working direc-
tory with the overall distribution (MosaicPlot withoutRowCluster.pdf), the row
clustering structure (MosaicPlot R=R.pdf) and the inclusion of the space between
adjacent ordinal categories (MosaicPlot SPACING R=R.pdf).

Author(s)

Daniel Fernández

References

Fernández, D., Pledger, S. and Arnold, R. (2014). Introducing spaced mosaic
plots. Research Report Series. ISSN: 1174-2011. 14-3, School of Mathematics, Sta-
tistics and Operations Research, VUW, 2014. URL http://msor.victoria.

ac.nz/foswiki/pub/Main/ResearchReportSeries/TechReport_Spaced_

Mosaic_Plots.pdf.

See Also

mosaicplot
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Example

library(grid)

library(vcd)

#Score parameters

phi <- c(0,0.5,0.7,1)

#Generation of simulated data

q <- length(phi)

n <- 28

m <- 12

R <- 3

labels <- list(categ=c("Disagree", "No Opinion", "Agree",

"Strongly Agree"), cluster=paste("R",1:R,sep=""),

row=paste("r",1:n,sep=""),

col=paste("c",1:m,sep=""))

y.mat <- matrix(NA,n,m)

for(i in 1:n) for (j in 1:m) y.mat[i,j] <- sample(1:q,1,prob=c())

ClusterRowY <- array(NA,n)

for (i in 1:n) ClusterRowY[i] <- sample(1:R,1)

rownames(ClusterRowY) <- labels$row

#Generate spaced mosaic plot

spaced.mosaic.plot(y.mat, phi, R, ClusterRowY, labels)

Col

Row Disagree No Opinion Agree Strongly Agree

R1 31 41 29 31

R2 34 32 27 27

R3 21 21 21 21
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Appendix E

Metropolis-Hastings. Definitions

E.1 Degenerate Normal Distribution

When we define a n-multivariate normal distribution, N (µ,Σ), with µ ∈ Rn

and Σ ∈ Rn×n, we assume that the covariate matrix Σ is a strictly positive def-
inite and symmetric matrix and the support of the distribution is the full space
Rn. We may however be interested in a distribution confined to a hyperplane
of lower dimension contained in Rn. We refer to this type of distribution as a
degenerate normal distribution with mean and covariance matrix µ and Σ re-
spectively (DegenNormal (µ,Σ)). However, Σ is no longer positive definite. In
the following two sections we formally define this distribution for the one and
two-dimensional cases in the particular case when we have equal mean µ and
impose the constraint

∑n
i=1 xi = nµ on the random variable x.

E.1.1 One-Dimensional

If a n× 1 vector x follows an one-dimensional degenerate normal with mean µ1n

and variance-covariance matrix Σ then we write

x ∼ DegenNormal(n;µ1n,Σ),

where

Σij =


−σ2

n
if i 6= j

σ2
(
1− 1

n

)
if i = j

,
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which is confined to the hyperplane
∑n

i=1 xi = nµ. We use a delta function to
apply this constraint and then the formulation of the density of this distribution
is given by

fDegN (x|n, µ, σ2) = (2πσ2)−
1
2

(n−1)n
1
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)

× δ

(
n∑
i=1

xi − nµ

)
.

(E.1)

Any individual component of x has a marginal normal distribution:

xi ∼ N
(
µ,
n− 1

n
σ2

)
i = 1, . . . , n. (E.2)

Any two different components xi and xj (i 6= j) are negatively correlated with

Cov(xi, xj) = −σ2/n. (E.3)
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Proof eq. (E.2). We define n independent and identically distributed random
standard normal variables: zi ∼ N (0, 1) (i = 1, . . . , n).
Set xi = σ(zi − z) + µ as a linear combination of zi (i = 1, . . . , n),
where z = 1

n

∑n
i=1 zi and the hyperplane

∑n
i=1 xi is

n∑
i=1

xi = σ(nz − nz) + nµ = nµ.

In addition,

xi = σ(zi − z) + µ = σ

(
zi −

1

n

n∑
i=1

zi

)
+ µ = σ

zi − 1

n
zi −

1

n

n∑
`=1
`6=i

z`

+ µ

= σ

(
1− 1

n

)
zi − σ

1

n

n∑
`=1
6̀=i

z` + µ.

Therefore, xi is normally distributed with

E[xi] = E

[
σ

(
1− 1

n

)
zi

]
− E

σ 1

n

n∑
`=1
` 6=i

z`

+ E [µ]

= σ

(
1− 1

n

)
E[zi]−

σ(n− 1)

n
E[zi] + µ = µ and

V [xi] = V

[
σ

(
1− 1

n

)
zi

]
+ V

σ 1

n

n∑
`=1
` 6=i

z`

+ V [µ]

= σ2

(
1− 1

n

)2

V [zi] +
σ2(n− 1)

n2
V [zi] =

(
n− 1

n

)2

σ2 +
n− 1

n2
σ2 =

=
n− 1

n2

(
σ2(n− 1) + σ2

)
=
n− 1

n2
σ2n =

n− 1

n
σ2.
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Proof eq. (E.3). We define n independent and identically distributed random
standard normal variables: zi ∼ N (0, 1) (i = 1, . . . , n).
Set xi = σ(zi − z) + µ as a linear combination of zi, where z = 1

n

∑n
i=1 zi and

E[z2
i ] = V [zi] + (E[zi])

2 = 1 (i = 1, . . . , n).
Thus, the covariance between any two different individuals components is for-
mulated as:

Cov(xi, xj) = E[(xi − x)(xj − x)] = E [(σ(zi − z) + µ− µ) (σ(zi − z) + µ− µ)]

= σ2E


zi − 1

n
zi −

1

n
zj −

1

n

n∑
`=1

`/∈{i,j}

z`


zj − 1

n
zi −

1

n
zj −

1

n

n∑
`′=1

`′ /∈{i,j}

z`′




= σ2E


(1− 1

n

)
zi −

1

n
zj −

1

n

n∑
`=1

`/∈{i,j}

z`


(1− 1

n

)
zj −

1

n
zi −

1

n

n∑
`′=1

`′ /∈{i,j}

z`′




= σ2E

(1− 1

n

)(
−1

n

)
z2
i +

(
1− 1

n

)(
−1

n

)
z2
j +

1

n2

n∑
`/∈{i,j}
`′ /∈{i,j}

z`z`′ + ���
0

∆


= −σ2

(
1− 1

n

)(
1

n

)
E[z2

i ]− σ2

(
1− 1

n

)(
1

n

)
E[z2

j ] + σ2n− 2

n2
E[z2

i ]

= σ2

(
− 2

n

(
1− 1

n

)
+
n− 2

n2

)
= σ2

(
−2n+ 2 + n− 2

n2

)
=
−σ2

n
,

where ∆ is the set of cross terms which value is zero because all are in the form
E[zi]E[zi′ ] = 0 (i 6= i′).
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E.1.2 Two-Dimensional

If a n×mmatrixX follows a two-dimensional degenerate normal with mean µ1n

and variance Σ then we write

X ∼ DegenNormal(n,m;µ1nm,Σ),

where Var(xij) = σ2 (n−1)(m−1)
nm

, Cov(xij, xij′) = −σ2(n−1)
nm

and Cov(xij, xi′j) = −σ2(m−1)
nm

.
In addition, the matrixX satisfies that each row and column have the same mean
µ. This correspond to the n+m− 1 constraints

1

m

m∑
j=1

xij = µ for i = 1, . . . , n,

1

n

n∑
i=1

xij = µ for j = 1, . . . ,m− 1,

(E.4)

which imply the additional relationship in the last column m: 1
n

∑n
i=1 xim = µ.

In the same manner as above for the one-dimensional case, we use two delta
functions to apply these constraints and then the formulation of the density of
this distribution is

fDegN (X|n,m, µ, σ2) = (2πσ2)−
1
2

(n−1)(m−1)n
1
2

(m−1)m
1
2

(n−1) exp

(
− 1

2σ2

n∑
i=1

m∑
j=1

(xij − µ)2

)

×
n∏
i=1

δ

(
m∑
j=1

xij −mµ

)
m−1∏
j=1

δ

(
n∑
i=1

xij − nµ

)
.

(E.5)

Any individual component ofX has a marginal normal distribution:

xij ∼ N
(
µ,

(n− 1)(m− 1)

nm
σ2

)
i = 1, . . . , n j = 1, . . . ,m. (E.6)
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Proof eq. (E.6). We define nm independent and identically distributed random
standard normal variables: zij ∼ N (0, 1) (i = 1, . . . , n and i = j, . . . ,m).
Set xij = σ(zij − zi· − z·j + z··) + µ as a linear combination of zij (i = 1, . . . , n and
i = j, . . . ,m), where zi· = 1

m

∑m
j=1 zij , z·j = 1

n

∑n
i=1 zij , z·· = 1

nm

∑n
i=1

∑m
j=1 zij , the

hyperplane
∑n

i=1 xij is

n∑
i=1

xij = σ

(
nz·j −

n∑
i=1

(
1

m

m∑
j=1

zij

)
−

n∑
i=1

(
1

n

n∑
i=1

zij

)
+

n∑
i=1

(
1

nm

n∑
i=1

m∑
j=1

zij

))
+ nµ

= σ

(
nz·j −

1

m
nmz·· − nz·j + nz··

)
+ nµ = nµ,

and the hyperplane
∑m

j=1 xij is

m∑
j=1

xij = σ

(
mzi· −mzi· −

m∑
j=1

(
1

n

n∑
i=1

zij

)
+mz··

)
+mµ

= σ

(
− 1

n
nmz·· +mz··

)
+mµ = mµ.

In addition,

xij = σ

(
zij −

1

m

m∑
j=1

zij −
1

n

n∑
i=1

zij +
1

nm

n∑
i=1

m∑
j=1

zij

)
+ µ

= σ

zij − 1

m
zij −

1

m

m∑
`′=1
`′ 6=j

zi`′ −
1

n
zij −

1

n

n∑
`=1
` 6=i

z`j +
1

nm
zij



+ σ

 1

nm

n∑
`=1
` 6=i

m∑
`′=1
`′ 6=j

z``′ +
1

nm

n∑
`=1
`6=i

z`j +
1

nm

m∑
`′=1
`′ 6=j

zi`′

+ µ

= σ

(
1− 1

n
− 1

m
+

1

nm

)
zij + σ

(
1

nm
− 1

n

) n∑
`=1
` 6=i

z`j

+ σ

(
1

nm
− 1

m

) m∑
`′=1
`′ 6=j

zi`′ + σ
1

nm

n∑
`=1
`6=i

m∑
`′=1
`′ 6=j

z``′ + µ.
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Therefore, xij is normally distributed with

E[xij] = σ
(n− 1)(m− 1)

nm
E[zij] + σ

(
1

nm
− 1

n

)
(n− 1)E[zij]

+ σ

(
1

nm
− 1

m

)
(m− 1)E[zij] + σ

1

nm
(n− 1)(m− 1)E[zij] + E[µ] = µ.

V [xij] = σ2

(
(n− 1)(m− 1)

nm

)2

V [zij] + σ2

(
1

nm
− 1

n

)2

(n− 1)V [zij]

+ σ2

(
1

nm
− 1

m

)2

(m− 1)V [zij] + σ2

(
1

nm

)2

(n− 1)(m− 1)V [zij] + V [µ]

= σ2 (n− 1)(m− 1)

nm

[
(n− 1)(m− 1)

nm
+

(n− 1)

nm
+

(m− 1)

nm
+

1

nm

]
= σ2 (n− 1)(m− 1)

nm

[
1

nm
(nm− n−m+ 1 + n− 1 +m− 1 + 1)

]
= σ2 (n− 1)(m− 1)

nm

(
1

nm
nm

)
= σ2 (n− 1)(m− 1)

nm
.

252



E.1. DEGENERATE NORMAL DISTRIBUTION

Proof: The covariances Cov(xij, xij′) = −σ2(n−1)

nm
and Cov(xij, xi′j) = −σ2(m−1)

nm
.

We define nm independent and identically distributed random standard normal
variables: zij ∼ N (0, 1) (i = 1, . . . , n and i = j, . . . ,m).
Set xij = σ(zij − zi· − z·j + z··) + µ as a linear combination of zij (i = 1, . . . , n and
i = j, . . . ,m), where zi· = 1

m

∑m
j=1 zij , z·j = 1

n

∑n
i=1 zij , z·· = 1

nm

∑n
i=1

∑m
j=1 zij , and

E[z2
ij] = V [zij] + (E[zij])

2 = 1 (i = 1, . . . , n and i = j, . . . ,m).
Thus, the covariance between any two different individuals components is for-
mulated as:

Cov(xij, xij′) = E [(xi − x)(xj − x)]

= E [(σ(zij − zi· − z·j + z··) + µ− µ) (σ(zij′ − zi· − z·j′ + z··) + µ− µ)]

= σ2E

[(
zij −

1

m

m∑
j=1

zij −
1

n

n∑
i=1

zij +
1

nm

n∑
i=1

m∑
j=1

zij

)
(
zij′ −

1

m

m∑
j′=1
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n
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zij′
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[(
zij −

1

m
zij −

1

m
zij′ −

1

m

m∑
`=1

` 6={j,j′}

zi` −
1

n
zij −

1

n

n∑
`=1
` 6=i

z`j

+
1

nm
zij +

1

nm
zij′ +

1

nm

n∑
`=1
`6=i

m∑
`′=1

`′ 6={j,j′}

z``′ +
1

nm

n∑
`=1
`6=i

z`j

+
1

nm

n∑
`=1
` 6=i

z`j′ +
1

nm

m∑
`=1

`6={j,j′}

zi`

)
(
zij′ −

1

m
zij −

1

m
zij′ −

1

m

m∑
`=1

`6={j,j′}

zi` −
1

n
zij′ −

1

n

n∑
`=1
`6=i

z`j′

+
1

nm
zij +

1

nm
zij′ +

1

nm

n∑
`=1
`6=i

m∑
`′=1

`′ 6={j,j′}

z``′ +
1

nm

n∑
`=1
`6=i

z`j

+
1

nm

n∑
`=1
` 6=i

z`j′ +
1

nm

m∑
`=1

`6={j,j′}

zi`
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= σ2E

[(
(n− 1)(m− 1)

nm
zij +

(
1

nm
− 1

m

)
zij′ +

(
1

nm
− 1

m

) m∑
`=1

`6={j,j′}

zi`

+

(
1

nm
− 1

n

) n∑
`=1
6̀=i

z`j +
1

nm

n∑
`=1
`6=i

z`j′ +
1

nm

n∑
`=1
`6=i

m∑
`′=1

`′ 6={j,j′}

z``′

)
(

(n− 1)(m− 1)

nm
zij′ +

(
1

nm
− 1

m

)
zij +

(
1

nm
− 1

m

) m∑
`=1

`6={j,j′}

zi`

+

(
1

nm
− 1

n

) n∑
`=1
6̀=i

z`j′ +
1

nm

n∑
`=1
`6=i

z`j +
1

nm

n∑
`=1
`6=i

m∑
`′=1

`′ 6={j,j′}

z``′

)]

= σ2E

[(
(n− 1)(m− 1)

nm

)(
1− n
nm

)
z2
ij +

(
(n− 1)(m− 1)

nm

)(
1− n
nm

)
z2
ij′

+

(
1− n
nm

)2 m∑
`/∈{j,j′}
`′ /∈{j,j′}

zi`zi`′ +

(
1−m
nm

)(
1

nm

) n∑
`6=i
`′ 6=i′

z`jz`′j

+

(
1−m
nm

)(
1

nm

) n∑
`6=i
`′ 6=i′

z`j′z`′j′ +

(
1

nm

)2 n∑
`6=i
t6=i′

m∑
`′ 6={j,j′}
t′ 6={j,j′}

z``′ztt′ + ���
0

∆

]

= σ2

(
(n− 1)(m− 1)

nm

)(
1− n
nm

)
E[z2

ij] + σ2

(
(n− 1)(m− 1)

nm

)(
1− n
nm

)
E[z2

ij′ ]

+ σ2

(
1− n
nm

)2

(m− 2)E[z2
ij] + 2σ2

(
1−m
nm

)(
1

nm

)
(n− 1)E[z2

ij]

+ σ2

(
1

nm

)2

(n− 1)(m− 2)E[z2
ij]

=
−σ2(n− 1)

nm

(
1

nm
(2(n− 1)(m− 1) + (1− n)(m− 2)− 2(1−m)− (m− 2))

)
=
−σ2(n− 1)

nm

(
1

nm
nm

)
=
−σ2(n− 1)

nm
,

where ∆ is the set of cross terms which value is zero because all are in the form
E[zij]E[zij′ ] = 0 (j 6= j′).

The proof of Cov(xij, xi′j) = −σ2(m−1)
nm

has the same steps exchanging rows (n)
by columns (m).

254



Appendix F

Convergence Diagnostics for MCMC

The purpose of convergence diagnostics is to determine when it is reasonable to
believe that the samples generated by MCMC samplers are representative of the
underlying target probability distribution (i.e. the posterior distribution). The in-
terest relies on how well the chain is mixing over the parameter space in order to
obtain reliable parameter estimates. In this thesis, we use four of the most com-
mon convergence diagnostic tests in the literature to assess whether a chain has
converged to the stationary distribution: Geweke time series diagnostic (Geweke
(1992), Section F.1), Gelman and Rubin’s multiple sequence diagnostic (Gelman
and Rubin (1992); Brooks (1998), Section F.2), Heidelberger and Welch diagnos-
tic (Heidelberger and Welch (1983), Section F.3), and effective sample size (ESS)
(Kass et al. (1998), Section F.4).

The following sections describe these methods and their technical details are
outlined.

F.1 Geweke Time Series Diagnostic

The Geweke time series diagnostic proposed in Geweke (1992) is based on the
comparison of the means of parameters’ posterior distributions from two non-
overlapping portions of a single MCMC chain by using a test for equality of the
means. The portions are usually the first 10% of draws and the last 50% of draws
from the complete Markov chain. If a model has converged, then the mean from
the first portion of the chain will be approximately equal to the mean from the
second portion of the chain.
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The test statistic is a standard Z-score calculated by the difference between
the two sample means divided by their estimated standard error. The standard
error is estimated from the spectral density at zero and so takes into account
any autocorrelation. This test is calculated assuming that the 2 portions of the
chain are asymptotically independent (non-overlapping portions) and is asymp-
totically distributed as a standard normal distribution.

We suppose Ω is the parameter vector of interest. For simplicity of notation, Ω

is assumed to be one-dimensional in this section. Define {Ωt}, where t = 1, . . . , T ,
to be a single MCMC output of length T . The procedure to calculate the Geweke
time series diagnostic is as follows:

1. Preselect two non-overlapping portions from the Markov chain: {Ωt1
1 : t1 =

1, . . . , n1} of length n1 and {Ωt2
2 : t2 = 1, . . . , n2} of length n2 .

2. Calculate the Geweke’s standard Z-score:

G =
Ω1 − Ω2√
s1(0)
n1

+ s2(0)
n2

∼ N(0, 1),

where

Ωj =

∑nj
tj=1 Ω

tj
j

nj
, (F.1)

is the mean of the portion j (j = 1, 2), i.e. {Ωtj
j : tj = 1, . . . , nj} and sj(0)

(j = 1, 2) is the estimated standard error by using the spectral density at
zero (i.e. it does not take into account any autocorrelation) defined for the
time series confined within the corresponding portion.

3. Interpret Geweke’s diagnostic G as

|G| =


≤ 2 The chain has converged

> 2 The chain has not converged

.
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F.2 Gelman and Rubin’s Multiple Sequence Diagnos-

tic

The Gelman and Rubin’s multiple sequence diagnostic proposed in Gelman and
Rubin (1992) and is based on the comparison of a set of chains drawn with differ-
ent starting points which are overdispersed relative to the target distribution. The
comparison uses within and between chain variances for each parameter in order
to test whether the set of Markov chains are overlapping. The criterion to assess
whether the Markov chain converges is contrasting the variance within and the
variance between chains. We assume Ω is the parameter vector to estimate and a
set of m Markov chains each of length 2n are available for Ω. The procedure to
calculate the Gelman and Rubin’s multiple sequence diagnostic is as follows:

1. Run m ≥ 2 chains of lengths 2n each from over-dispersed starting values.
In that manner, the set {Ωt

j : t = 1, . . . , 2n} is generated for j = 1, . . . ,m.

2. Discard the first half of draws (n) in each chain as burn in.

3. Calculate the within-chain variance W as

W =
1

m

m∑
j=1

s2
j ,

where s2
j is the variance of the jth chain:

s2
j =

1

n− 1

n∑
t=1

(
Ωt
j − Ωj

)2
.

The within-chain variance W could underestimate the true variance of the
target distribution of Ω because all m chains may not cover the full support
of the stationary distribution.

4. Calculate the between-chain variance B as

B =
n

m− 1

m∑
j=1

(
Ωj − Ω

)2

,
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where Ω is the mean of the means of the chains defined as

Ω =
1

m

m∑
j=1

Ωj.

5. Calculate the estimated variance of the parameter vector Ω as

V̂ar(Ω) =

(
1− 1

n

)
W +

1

n
B,

which is the weighted sum of the within-chain W and between-chain vari-
ance B.

6. Calculate the potential scale reduction factor (PSRF) as

PSRF =

√
V̂ar(Ω)

W
.

7. Evaluate PSRF as

PSRF =


≤ 1.2 Convergence has been achieved

> 1.2 No convergence. Longer chain is required

.

When the convergence is reached (PSRF ≤ 1.2) means that the mn draws
from them chains derive from the same stationary distribution (overlapped
chains) and therefore we can pool them to produce a set of draws from the
target distribution.

F.3 Heidelberger and Welch Diagnostic

The Heidelberger and Welch diagnostic (Heidelberger and Welch, 1983) is based
on the Cramér-von Mises test statistic to evaluate the null hypothesis that the
values drawn from a Markov chain come from a stationary distribution. This
diagnostic consists of two tests: a stationary test and a halfwidth test. The sta-
tionary test is an iterative test which is successively applied, firstly to the whole
chain, then after removing progressively portions of 10% of the draws from the
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first draws of the chain. This procedure is repeated until either the null hypothe-
sis is accepted, or 50% of the chain has been discarded. Moreover, the halfwidth
test validates the results obtained in the stationary test when the null hypothesis
is accepted and is based on the computation of a (1-α)% credible interval for the
sampled mean (α is the type I error of the hypothesis test).

The procedure to calculate the Heidelberger and Welch diagnostic is as fol-
lows:

• Stationary test:

1. Generate a chain of n draws and specify a type I error level α for the
test (the most common value is α = 0.05).

2. Calculate the test statistic on the whole Markov chain. This test is
based on the Cramer-von Mises statistic; that is

∫ 1

0
Bn(`)2d`whereBn(`)

(` = 1
n
, 2
n
, . . . , 1) is a sequence formulated as:

Bn(`) =
(S[n`] − [n`]Ω)√

ns(0)
,

where S0 = 0, Sn =
∑n

t=1 Ωt, and [ ] is the rounding operator. The
function s(0) is the symmetric spectral density function at zero and Ω

is the mean for the whole MCMC as shown in eq. (F.1) in Section F.1.

3. Decide whether to accept or reject the null hypothesis H0 : the chain
has reached stationarity, by using the previous test statistic. The com-
mon significance level value of this test is α = 0.05.

4. If the null hypothesis is rejected, then remove the first 10% draws from
the Markov chain and return to step 2. Repeat this iterative procedure
until either the 50% of the chain is removed or the null hypothesis is
accepted.

5. If the null hypothesis is accepted, then we perform the halfwidth test.
Otherwise, we need to increase the number of draws n and return to
step 1. In their paper, Heidelberger and Welch suggested increasing
the run length by a factor higher than 1.5 each time so that there is
a reasonably large proportion of new draws and we avoid problems
caused by sequential testing due to repeating the test too frequently on
the same data.

259



APPENDIX F. CONVERGENCE DIAGNOSTICS FOR MCMC

• Halfwidth test:

1. Take the part of the Markov chain which remains at the end of the
stationary test.

2. Calculate half of the width HW of the 100(1−α)% (commonly α = 0.05)
credible interval around the sample mean Ω:

HW =
halfwidth

mean
=

tn,α/2
sd(Ω)√

n

Ω
.

3. Choose the required relative error ε (the most common value is ε = 0.1,
i.e. 10%).

4. Evaluate the following

HW =


< ε Convergence has been achieved

≥ ε No convergence. Longer chain is required

.

F.4 Effective Sample Size

The effective Sample Size (ESS) diagnostic was recommended by Radford Neal in
the panel discussion of Kass et al. (1998). This measure is based on the principle
that the higher the autocorrelation in the MCMC samples, the lower the informa-
tion in the posterior distributions. In other words, the autocorrelation reduces the
effective sample size of representing the posterior distribution.

The ESS is formulated as follows:

ESS =
T

1 + 2
∑∞

k=1 ρk(ω)
,

where T is the number of posterior samples, ω is the parameter vector of marginal
posterior samples, and ρk is the autocorrelation function for ω at lag k.

The ESS is a quantity that estimates the number of independent draws in the
chain. Thus, a smaller ESS is due to correlated draws in the chain. Stopping the
MCMC updates is not recommended until the ESS is greater than some threshold
value (the most common threshold is ESS ≥ 200).

260



Appendix G

A Relabelling Algorithm for Mixture
Models

The relabelling procedure we implemented to overcome the label switching prob-
lem for our finite mixture model approach closely follows Stephens (2000a, Sec-
tion 4.1). We develop here the row clustering version. The column clustering ver-
sion is the same except exchanging rows for columns. The application of this pro-
cedure for the biclustering approach case consists of two steps: First relabelling
in one dimension (e.g. rows) and, once the label switching problem is solved for
that dimension, running it for the other dimension (e.g. columns).

We define R as the number of clusters, Y = (yij) as an ordinal n × m data
matrix, q as the number of ordinal categories, T as the length of the chain sample
(after burn-in period), Ω(t) as the parameter vector at iteration t, θ(t) as the set
of parameters involved in the label switching problem at iteration t, η(t) as the
set of parameters from Ω(t) not included in θ(t), and νt(θ) is the permutation of
the parameter vector θ at iteration t. The algorithm can be summarised in the
following iterative steps:

1. Specify an arbitrary initial permutation values for ν1, . . . , νT (Stephens (2000a)
suggested the identity permutation).

2. Compute the n×R matrix Ẑ = (ẑir) where

ẑir =
1

T

T∑
t=1

pir[νt(θ
(t))] (G.1)

261



APPENDIX G. A RELABELLING ALGORITHM FOR MIXTURE MODELS

and

pir[νt(θ
(t))] =

π̂
(t)
r

∏m
j=1

∏q
k=1

(
P [yij = k|i ∈ r, η(t), νt(θ

(t))]
)I(yij=k)∑R

`=1

{
π̂

(t)
`

∏m
j=1

∏q
k=1 (P [yij = k|i ∈ r, η(t), νt(θ(t))])

I(yij=k)
} ,

is the posterior probability that subject i is classified in cluster r (as defined
in eq. in (2.18) in Section 2.5.1), once we have observed the data {yij} and
given the permutation values νt(θ(t)) at iteration t.

3. For t = 1, 2, . . . , T choose νt to minimize

n∑
i=1

R∑
r=1

pir[νt(θ
(t))] log

(
pir[νt(θ

(t))]

ẑir

)
. (G.2)

The most easy way to achieve this step is by exploring all R! possible re-
arrangements for each νt, and select the one with the lowest value in eq.
(G.2). The matrix Z is recalculated in each possible rearrangement, as its
values depend on νt(θ(t)) (see eq. (G.1)).

4. Test whether a fixed point is reached. Otherwise, return to step 2.
A fixed point is when νt(θ

(t)) = ν(t−1)(θ
(t−1)), i.e. there is no change in the

values of the permutation of θ at iteration t and t− 1.
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Appendix H

Metropolis-Hastings Sampler

Section H.1 outlines a simulation study we have carried out to test the reliability
of the M-H sampler for our one-dimensional clustering approach. Section H.2
depicts the results of the simulation study for several scenarios.

H.1 Simulation Study. Outline

The simulation study procedure for the row clustering model by using a M-H
sampler is outlined in this Section. The simulation study outline for the column
clustering version is basically the same to the row clustering version just replac-
ing parameters related to rows for their equivalent to columns.

Step 1. Model specification

Select the model, w, from a set of models w = 1, . . . ,W .
There are in total W = (1× 3) + 2 = 5 possible models:

• Set the number of response categories: q = 4 in all cases (1 option).
This fixes {µ1, . . . , µq} (with µ1 = 0).

• Select R ∈ {2, 3, 4} (3 options + 2 special cases).
This fixes {α1, . . . , αR} (with

∑R
r=1 αr = 0).

If R = 3 there are three possible scenarios to select. Two of them are special
scenarios:

– two adjacent response categories having equal values, and
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– one component with a very small prior mixing probability.

Each scenario fixes:

– Number of columns m ∈ {3, 5} (m = 5 only in the 2 special cases)
This fixes {β1, . . . , βm} (with

∑m
j=1 βj = 0).

– Prior mixing probabilities π1, . . . , πR (with
∑R

r=1 πr = 1).

– The ordinal response cut levels φ1 ≤ φ2 ≤ . . . ≤ φq (with φ1 = 0 and
φq = 1).

At the end of this step we know, for the chosen model w:

• The number of row groups Rw.

• The number of response categories qw.

• The number of columns mw.

• The total number of free parameters Kw.

• The parameter values:

{αw1 , . . . , αwR}, {βw1 , . . . , βwm}, {πw1 , . . . , πwR}, {µw1 , . . . , µwq }, {φw1 , . . . , φwq }

and as a consequence we can calculate the values of the linear predictors

ηwkrj = µwk + φwk
(
αwr + βwj

)
for k ∈ {1, . . . , qw}, r ∈ {1, . . . , Rw} and j ∈ {1, . . . ,mw}.

Step 2. Simulator specification

Set the parameters for the simulator specifying:

• The number of replicates to run (i.e. distinct datasets): H = 100.

• The number of chains in each replicate: S = 3.
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Step 3. Markov Chain specification

Set the chain parameters specifying:

• The number of iterations in the burn-in period: nburn=20000.

• The number of iterations to store: nstore=20000.

• The thinning rate: nthin=5.

Step 4. MH parameters and hyperparameters specification

Set the hyperparameter values specifying:

• Shape and scale parameters to specify an Inverse Gamma distribution which
is the prior for the variance parameter from Normal distributions for each
of

– the cut point parameters {µk}: νµ = 3, δµ = 40,

– the row cluster parameters {αr}: να = 3, δα = 40, and

– the column parameters {βj}: νβ = 3, δβ = 40.

• Parameter vector for a Dirichlet distribution for each of

– the score parameters {φk}: λφ = 1, and

– the prior mixing probabilities {πr}: λπ = 1.

Step 5. Proposal parameters specification

Set the parameter values for all the proposal distributions q(·|·) to:

• an update of the cut point parameters {µk}: σ2
µp = 0.3,

• an update of the row cluster parameters {αr}: σ2
αp = 0.3,

• an update of the column parameters {βj}: σ2
βp

= 0.3, and

• an update of the row group membership probability parameters {πr}: σ2
πp =

0.09.
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Step 6. Generate replicate datasets

For each replicate h ∈ {1, . . . , H} and each chain s ∈ {1, . . . , S}:

• For each row i = 1, . . . , n, generate row membership as an indicator vector

zhsi =
(
Zhs
i1 , ..., Z

hs
iR

)
∼Multinomial (1; {πr}) .

• For each column j = 1, . . . ,m within each row i = 1, . . . , n, generate the
response ordinal variable

yhsij |zhsi = δr ∼ Stereotype
(
{ηkrj}qk=1

)
.

Here δr is an indicator vector of length R, with 1 at location r and zero
elsewhere. This implies that

log

(
P
[
yhsij = k | zhsi = δr

]
P
[
yhsij = 1 | zhsi = δr

]) = ηkrj = µk + φk(αr + βj).

Step 7. Fit model. Run the Metropolis-Hastings sampler

• We run the Metropolis-Hastings sampler for the dataset hs.
On iteration t (t = 1, . . . , nstore) we obtain the estimated parameter vector
Ω̂hs

(t) for the dataset hs consisting of parameters:

{α̂1, . . . , α̂R−1}, {β̂1, . . . , β̂m−1}, {π̂1, . . . , π̂R−1}, {µ̂2, . . . , µ̂q}, and {φ̂2, . . . , φ̂q−1}.

• Return the values
{

Ω̂hs
(1), Ω̂

hs
(2), . . . , Ω̂

hs
(nstore)

}
for h = 1, . . . , H and s = 1, . . . , S.

• Test whether the convergence has been achieved. If not, increase nstore and
run the Metropolis-Hasting sampler again.

• Test whether the label-switching problem is observed in the posterior distri-
butions of {αr} and {πr}. If so, perform the procedure described in Section
7.2.5 and Appendix G.

Step 8. Summarising results

• For each replicate, merge the s chains into one chain.
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• Summarise the results by computing the mean, median, standard deviation,
time series standard error and highest posterior density interval (HPD) for
each element of the parameter vectors {Ω̂h

(1), . . . , Ω̂
h
(nstore)}.

• Report the marginal posterior distribution and trace plot for each element
of the parameter vectors {Ω̂h

(1), . . . , Ω̂
h
(nstore)}.

One way to report this is sampling 10000 iterations from all the pooled repli-
cates H in order to reduce the storage and make the depiction easier.

• Report the following convergence diagnostics,

– PSRF from Gelman and Rubin’s multiple sequence diagnostic.

– Gelman-Rubin-Brooks plots showing the evolution of Gelman and Ru-
bin’s shrinkage factor.

– Marginal posterior distributions and trace plots overlapping the S chains.

H.2 Simulation Study. Results

Figures H.1-H.10 show the marginal posterior distribution and trace plot for all
the parameters for R = 2, 3, 4 number of row clusters respectively and the two
special cases. The expected values of the posterior distribution are very close to
the true values (green vertical lines) and the 95% HPD credible interval includes
the true parameter values in all the cases. The trace plots on Figures H.2, H.4, and
H.6 show a good mixing on all the parameters. Additionally, Figure H.11 shows
the Gelman and Rubin diagnostic plots to assess convergence over the S = 3

chains and for one particular replicate. The evolution of the shrinkage factor as
the number of iterations increases shows good convergence in the MCMC output
from the Metropolis-Hasting sampler.
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Figure H.1: MH simulation study: Density plots of the parameters for stereotype
model including row clustering µk + φk(αr + βj). The sample size is n = 500, the
number of categories is q = 4, the number of columns is m = 3 and the number of
row clusters is R = 2. The density plots depict the marginal posterior distribution for a
sample of 6000 iterations over all the replicates (H = 100) and chains (S = 3). The green
vertical lines are the true parameter values and 95% HPD credible intervals are shown
with shading area.
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Figure H.2: MH simulation study: Trace plots of the parameters for stereotype model
including row clustering µk + φk(αr + βj). The sample size is n = 500, the number
of categories is q = 4, the number of columns is m = 3 and the number of row clusters
is R = 2. The plots depict the results of the Metropolis-Hastings sampler for a sample
of 6000 iterations over all the replicates (H = 100) and chains (S = 3). The green
horizontal lines are the true parameter values.
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Figure H.3: MH simulation study: Density plots of the parameters for stereotype
model including row clustering µk + φk(αr + βj). The sample size is n = 500, the
number of categories is q = 4, the number of columns is m = 3 and the number of
row clusters is R = 3. The density plots depict the marginal posterior distribution for a
sample of 6000 iterations over all the replicates (H = 100) and chains (S = 3). The green
vertical lines are the true parameter values and 95% HPD credible intervals are shown
with shading area.
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Figure H.4: MH simulation study: Trace plots of the parameters for stereotype model
including row clustering µk + φk(αr + βj). The sample size is n = 500, the number
of categories is q = 4, the number of columns is m = 3 and the number of row clusters
is R = 3. The plots depict the results of the Metropolis-Hastings sampler for a sample
of 6000 iterations over all the replicates (H = 100) and chains (S = 3). The green
horizontal lines are the true parameter values.

271



APPENDIX H. METROPOLIS-HASTINGS SAMPLER

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

1.
2

µ̂2 
Posterior µ̂ 

µ2                 =0.414

0 1 2 3 4 5

0.
0

0.
4

0.
8

µ̂3 
Posterior µ̂ 

µ3                 =2.551

−2 0 2 4
0.

0
0.

2
0.

4

µ̂4 
Posterior µ̂ 

µ4                 =1.507

0.0 0.2 0.4 0.6

0
1

2
3

4
5

φ̂2 
Posterior φ̂ 

φ2                 =0.355

0.4 0.5 0.6 0.7 0.8 0.9

0
2

4
6

8

φ̂3 
Posterior φ̂ 

φ3                 =0.672

−1.0 −0.5 0.0

0.
0

1.
0

2.
0

β̂1 
Posterior β̂ 

β1                 =−0.427

1.0 1.5 2.0 2.5

0.
0

1.
0

2.
0

β̂2 
Posterior β̂ 

β2                 =1.872

−2 0 2 4 6 8 10

0.
0

0.
2

0.
4

α̂1 
Posterior α̂ 

α1                 =3.571

−8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

α̂2 
Posterior α̂ 

α2                 =−0.919

−5 0 5

0.
0

0.
2

0.
4

α̂3 
Posterior α̂ 

α3                 =1.228

−0.2 0.0 0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

π̂1 
Posterior π̂ 

π1                 =0.250

0.0 0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

π̂2 
Posterior π̂ 

π2                 =0.320

−0.2 0.0 0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

π̂3 
Posterior π̂ 

π3                 =0.150

Figure H.5: MH simulation study: Density plots of the parameters for stereotype
model including row clustering µk + φk(αr + βj). The sample size is n = 500, the
number of categories is q = 4, the number of columns is m = 3 and the number of
row clusters is R = 4. The density plots depict the marginal posterior distribution for a
sample of 6000 iterations over all the replicates (H = 100) and chains (S = 3). The green
vertical lines are the true parameter values and 95% HPD credible intervals are shown
with shading area.
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Figure H.6: MH simulation study: Trace plots of the parameters for stereotype model
including row clustering µk + φk(αr + βj). The sample size is n = 500, the number
of categories is q = 4, the number of columns is m = 3 and the number of row clusters
is R = 4. The plots depict the results of the Metropolis-Hastings sampler for a sample
of 6000 iterations over all the replicates (H = 100) and chains (S = 3). The green
horizontal lines are the true parameter values.
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Figure H.7: MH simulation study: Density plots of the parameters for stereotype
model including row clustering µk + φk(αr + βj) when the parameter π2 takes a very
small value. The sample size is n = 500, the number of categories is q = 4, the number
of columns is m = 5 and the number of row clusters is R = 3. The density plots depict
the marginal posterior distribution for a sample of 6000 iterations over all the replicates
(H = 100) and chains (S = 3). The green vertical lines are the true parameter values
and 95% HPD credible intervals are shown with shading area.
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Figure H.8: MH simulation study: Trace plots of the parameters for stereotype model
including row clustering µk + φk(αr + βj) when the parameter π2 takes a very small
value. The sample size is n = 500, the number of categories is q = 4, the number of
columns is m = 5 and the number of row clusters is R = 4. The plots depict the results
of the Metropolis-Hastings sampler for a sample of 6000 iterations over all the replicates
(H = 100) and chains (S = 3). The green horizontal lines are the true parameter values.
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Figure H.9: MH simulation study: Density plots of the parameters for stereotype
model including row clustering µk + φk(αr + βj) when the adjacent parameters φ2 =
φ3. The sample size is n = 500, the number of categories is q = 4, the number of columns
is m = 5 and the number of row clusters is R = 3. The density plots depict the marginal
posterior distribution for a sample of 6000 iterations over all the replicates (H = 100)
and chains (S = 3). The green vertical lines are the true parameter values and 95% HPD
credible intervals are shown with shading area.
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Figure H.10: MH simulation study: Trace plots of the parameters for stereotype model
including row clustering µk + φk(αr + βj) when the adjacent parameters φ2 = φ3.
The sample size is n = 500, the number of categories is q = 4, the number of columns
is m = 5 and the number of row clusters is R = 4. The plots depict the results of
the Metropolis-Hastings sampler for a sample of 6000 iterations over all the replicates
(H = 100) and chains (S = 3). The green horizontal lines are the true parameter values.
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Figure H.11: MH simulation study: Evolution of Gelman and Rubin’s shrink fac-
tor as the number of iterations increases. Row clustering without interaction factors
µk + φk(αr + βj). The sample size is n = 500, the number of categories is q = 4, the
number of columns is m = 3, and the number of row clusters is R = 2. The plots depict
the results for the S = 3 chains for one replicate. For each parameter, the shrink factor
converges to values lower than 1.2 diagnosing that convergence is reached.
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Appendix I

Convergence Diagnostic for
RJMCMC Samplers

This chapter contains an outline of the method proposed by Castelloe and Zim-
merman (2002) to assess the convergence of RJMCMC samplers is described in
Section I.1 and its application for two real-life data examples is illustrated in Sec-
tions I.2 and I.3.

I.1 Description of the Method

We define Ω as the vector of all the parameters to estimate, ω as a p-vector of
all the parameters retaining the same interpretation across models, ωi is the ith

component of ω, and k is a parameter in Ω (but not in ω) which is an indicator
of “model” (e.g. the number of components in a mixture model). Additionally,
C > 1 is the number of chains (of all equal length T ) simulated via RJMCMC
with over-dispersed starting points, M is the number of distinct models visited
by all of the chains, and Dcm is the number of times model m occurred in chain
c. Thus,

∑
cmDcm = CT and

∑
mDcm = T ∀c. The procedure to diagnose the

convergence is outlined as follows:
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1. Calculate the following estimates of variation for parameter ωi (i = 1, . . . , p):

V (ωi) =
1

CT − 1

C∑
c=1

M∑
m=1

Dcm∑
d=1

(ωdcm − ω̄···)2,

Wc(ωi) =
1

C(T − 1)

C∑
c=1

M∑
m=1

Dcm∑
d=1

(ωdcm − ω̄·c·)2,

Wm(ωi) =
1

CT −M

C∑
c=1

M∑
m=1

Dcm∑
d=1

(ωdcm − ω̄··m)2, and

Wmc(ωi) =
1

C(T −M)

C∑
c=1

M∑
m=1

Dcm∑
d=1

(ωdcm − ω̄·cm)2,

(I.1)

where ωdicm is the value of the parameter ωi for dth occurrence of model m in
chain s, and

ω·i·· =
1

CT

C∑
c=1

M∑
m=1

Dcm∑
d=1

ωdicm, ω·icm =
1

Dcm

Dcm∑
d=1

ωdicm,

ω·ic· =
1

T

M∑
m=1

Dcm∑
d=1

ωdicm, and ω·i·m =
1∑C

c=1Dcm

C∑
c=1

Dcm∑
d=1

ωdicm.

2. Calculate the equivalent estimates of variation for the vector of parameters
ω (multivariate version):

V (ω) =
1

CT − 1

C∑
c=1

M∑
m=1

Dcm∑
d=1

(ωdcm − ω̄···)(ωdcm − ω̄···)′ (total),

Wc(ω) =
1

C(T − 1)

C∑
c=1

M∑
m=1

Dcm∑
d=1

(ωdcm − ω̄·c·)(ωdcm − ω̄·c·)′ (within chain),

Wm(ω) =
1

CT −M

C∑
c=1

M∑
m=1

Dcm∑
d=1

(ωdcm − ω̄··m)(ωdcm − ω̄··m)′ (within model), and

Wmc(ω) =
1

C(T −M)

C∑
c=1

M∑
m=1

Dcm∑
d=1

(ωdcm − ω̄·cm)(ωdcm − ω̄·cm)′ (within model,

within chain).

(I.2)
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3. Select a base batch size b (Brooks and Gelman (1998) recommend b ≈ T
20

).

4. For batches h = 1, . . . , T
b

do the following:

(a) Select the parameter batch in each chain:

(ω
((h−1)b+1)
1 , . . . ,ω

(hb)
1 ), . . . , (ω

((h−1)b+1)
C , . . . ,ω

(hb)
C ).

(b) Compute the following set of univariate potential scale reduction fac-
tors:

PSRF1(ωi) =
V (ωi)

Wc(ωi)
and PSRF2(ωi) =

Wm(ωi)

Wmc(ωi)
for i = 1, . . . , p.

(I.3)

(c) Compute the following set of multivariate potential scale reduction
factors:

MPSRF1(ω) = maximum eigenvalue of [Wc(ω)]−1V (ω) and

MPSRF2(ω) = maximum eigenvalue of [Wmc(ω)]−1Wm(ω).
(I.4)

5. Summarise the convergence diagnostic plotting:

(a) Plot MPSRF1(ω) and PSRF1(ωi) for i = 1, . . . , p vs. h.

(b) Plot MPSRF2(ω) and PSRF2(ωi) for i = 1, . . . , p vs. h.

(c) Plot maximum eigenvalues of V (h)(ω) and W
(h)
c (ω) together vs. h.

(d) Plot V (h)(ωi) and W
(h)
c (ωi) together vs. h, for i = 1, . . . , p .

(e) Plot maximum eigenvalues of W (h)
m (ω) and WmW

(h)
c (ω) together vs. h.

(f) Plot W (h)
m (ωi) and WmW

(h)
c (ωi) together vs. h, for i = 1, . . . , p.

6. Determine h0 such that for h ≥ h0 the plots in Steps 5a-5b have settled
close to 1, and the plots in both Steps 5c-5d and Steps 5e-5f have settled
approximately to a common value.
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I.2 Example 1: Applied Statistics Course Feedback

Forms

The convergence diagnostic plots for the Applied Statistics course feedback data
set are shown in Figures I.1-I.4. Figures I.1 and I.2 imply that convergence is likely
to have occurred by the 7th batch where the MPSRF’s and PSRF’s stay below 1.02
for all the fixed-dimensional parameters. Figures I.3 and I.4 show that pairs of
plots for both Steps 5c-5d and Steps 5e-5f stay very close together throughout.
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Figure I.1: Applied Statistics course feedback forms data set: Potential scale reduc-
tion factor (see PSRF1 in eq. (I.3) and MPSRF1 in eq. (I.4)) plots for fixed-dimensional
parameters {µk}, {φk} and {βj} for the row clustering model. Five RJMCMC chains
were used and h = 20 batches were generated. The blue line in each plot corresponds to
the PSRF1 for one particular parameter. The green line is the multivariate MPSRF1 ver-
sion and is the same throughout all the plots. The convergence is likely to have occurred by
the 7th batch where the MPSRF1 and PSRF1 stay below 1.02 for all the fixed-dimensional
parameters.
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Figure I.2: Applied Statistics course feedback forms data set: Potential scale reduc-
tion factor (see PSRF2 in eq. (I.3) and MPSRF2 in eq. (I.4)) plots for fixed-dimensional
parameters {µk}, {φk} and {βj} for the row clustering model. Five RJMCMC chains
were used and h = 20 batches were generated. The blue line in each plot corresponds to
the PSRF2 for one particular parameter. The green line is the multivariate MPSRF2 ver-
sion and is the same throughout all the plots. The convergence is likely to have occurred by
the 7th batch where the MPSRF2 and PSRF2 stay below 1.02 for all the fixed-dimensional
parameters.

I.3 Example 2: Spider Data

The convergence diagnostic plots for the Spider data set are shown in Figures
I.5-I.8. Figures I.5 and I.6 imply that convergence is likely to have occurred by
the 9th batch where the MPSRF’s and PSRF’s stay below 1.02 for all the fixed-
dimensional parameters. Figures I.7 and I.8 show that pairs of plots for both
Steps 5c-5d and Steps 5e-5f stay very close together throughout.
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Figure I.3: Applied Statistics course feedback forms data set: Plots of V (h)(ωi),
W

(h)
c (ωi) (see eq. (I.1)) and the maximum eigenvalues of V (h)(ω) and W (h)

c (ω) (see eq.
(I.2)) for fixed-dimensional parameters {µk}, {φk} and {βj} for row clustering model.
Five RJMCMC chains were used and h = 20 batches were generated. The red line cor-
responds to V (h)(ω), the black line to W (h)

c (ω), the blue line to V (h)(ωi), and the green
line to W (h)

c (ωi). The plots imply convergence as the pair V (h)(ωi) and W (h)
c (ωi) and also

the pair of the maximum eigenvalues of V (h)(ω) and W (h)
c (ω) stay very close together

throughout the batches.
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Figure I.4: Applied Statistics course feedback forms data set: Plots of W (h)
m (ωi),

WmW
(h)
c (ωi) (see eq. (I.1)) and the maximum eigenvalues of W (h)

m (ω) and WmW
(h)
c (ω)

(see eq. (I.2)) for fixed-dimensional parameters {µk}, {φk} and {βj} for row clustering
model. Five RJMCMC chains were used and h = 20 batches were generated. The red
line corresponds to W (h)

m (ω), the black line to WmW
(h)
c (ω), the blue line to W (h)

m (ωi),
and the green line to WmW

(h)
c (ωi). The plots imply convergence as the pair V (h)(ωi) and

W
(h)
c (ωi) and also the pair of the maximum eigenvalues of V (h)(ω) and W (h)

c (ω) stay
very close together after the 7th batch.
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Figure I.5: Spider data set: Potential scale reduction factor (see PSRF1 in eq. (I.3) and
MPSRF1 in eq. (I.4)) plots for fixed-dimensional parameters {µk}, {φk} and {βj} for row
clustering model. Five RJMCMC chains were used and h = 20 batches were generated.
The blue line in each plot corresponds to the PSRF1 for one particular parameter. The
green line is the multivariate MPSRF1 version and is the same throughout all the plots.
The convergence is likely to have occurred by the 9th batch where the MPSRF1 and PSRF1

stay below 1.02 for all the fixed-dimensional parameters.
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Figure I.6: Spider data set: Potential scale reduction factor (see PSRF2 in eq. (I.3) and
MPSRF2 in eq. (I.4)) plots for fixed-dimensional parameters {µk}, {φk} and {βj} for row
clustering model. Five RJMCMC chains were used and h = 20 batches were generated.
The blue line in each plot corresponds to the PSRF2 for one particular parameter. The
green line is the multivariate MPSRF2 version and is the same throughout all the plots.
The convergence is likely to have occurred by the 9th batch where the MPSRF2 and PSRF2

stay below 1.02 for all the fixed-dimensional parameters.
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Figure I.7: Spider data set: Plots of V (h)(ωi), W (h)
c (ωi) (see eq. (I.1)) and the maxi-

mum eigenvalues of V (h)(ω) andW (h)
c (ω) (see eq. (I.2)) for fixed-dimensional parameters

{µk}, {φk} and {αi} for column clustering model. Five RJMCMC chains were used and
h = 20 batches were generated. The red line corresponds to V (h)(ω), the black line to
W

(h)
c (ω), the blue line to V (h)(ωi), and the green line to W (h)

c (ωi). The plots imply con-
vergence as the pair V (h)(ωi) and W (h)

c (ωi) and also the pair of the maximum eigenvalues
of V (h)(ω) and W (h)

c (ω) stay very close together throughout the batches.
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Figure I.8: Spider data set: Plots of W (h)
m (ωi), WmW

(h)
c (ωi) (see eq. (I.1)) and the

maximum eigenvalues of W (h)
m (ω) and WmW

(h)
c (ω) (see eq. (I.2)) for fixed-dimensional

parameters {µk}, {φk} and {αi} for column clustering model. Five RJMCMC chains
were used and h = 20 batches were generated. The red line corresponds to W (h)

m (ω), the
black line to WmW

(h)
c (ω), the blue line to W (h)

m (ωi), and the green line to WmW
(h)
c (ωi).

The plots imply convergence as the pair V (h)(ωi) and W (h)
c (ωi) and also the pair of the

maximum eigenvalues of V (h)(ω) and W (h)
c (ω) stay very close together throughout the

batches.
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Appendix J

RJMCMC Sampler. Simulation
Study

In this appendix, the results of the simulation study of the RJMCMC sampler for
one-dimensional clustering are shown. Given the number of replicates (data sets)
H and the number of chains S, Figures J.1-J.4 show theHS = 100×10 = 1000 sepa-
rate MAP estimators of all the parameters taken in pairs and plotted against each
other for the row clustering model with R = 3, . . . , 6 row clusters respectively.
The red diamond point represents the true value of the parameter. The MAP esti-
mators are around the true value of the parameter in all the scatter plots. Figures
J.5-J.12 show the marginal posterior distribution and trace plot for all the param-
eters for R = 3, . . . , 6 number of row clusters respectively. The expected values
of the posterior distribution are very close to the true values (green vertical lines)
and the 95% HPD credible interval includes the true parameter values in all the
cases. The trace plots on Figures J.6-J.12 show a good mixing on all the parame-
ters. Finally, Table J.1 shows the proportion of times across theHS possible chains
where the 95% HPD region includes the true value of the parameters with vari-
able dimension ({αr} and {πr}). The proportion of times that true parameters are
covered by the 95% HPD is 90% at least which is very satisfactory.
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Figure J.1: RJMCMC simulation study R=3: Scatter plots depicting the maximum a
posteriori estimator (MAP) across all the replicates (H = 100) and chains (S = 10) for
stereotype model including row clustering µk + φk(αr + βj) with R = 3 row clusters.
The sample size for each chain and replica is n = 1000, the number of categories is q = 4,
and the number of columns is m = 3. The black points are the MAP estimators and
the red diamond point represents the true value of the parameter. The plots comparing
adjacent pair of {µ̂k} parameters show its correlation. The results are centered on the true
parameters.
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Figure J.2: RJMCMC simulation study R=4: Scatter plots depicting the maximum a
posteriori estimator (MAP) across all the replicates (H = 100) and chains (S = 10) for
stereotype model including row clustering µk + φk(αr + βj) with R = 4 row clusters.
The sample size for each chain and replica is n = 1000, the number of categories is q = 4,
and the number of columns is m = 3. The black points are the MAP estimators and
the red diamond point represents the true value of the parameter. The plots comparing
adjacent pair of {µ̂k} parameters show its correlation. The results are centered on the true
parameters.
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Figure J.3: RJMCMC simulation study R=5: Scatter plots depicting the maximum a
posteriori estimator (MAP) across all the replicates (H = 100) and chains (S = 10) for
stereotype model including row clustering µk + φk(αr + βj) with R = 5 row clusters.
The sample size for each chain and replica is n = 1000, the number of categories is q = 4,
and the number of columns is m = 3. The black points are the MAP estimators and
the red diamond point represents the true value of the parameter. The plots comparing
adjacent pair of {µ̂k} parameters show its correlation. The plots comparing a pair of {π̂r}
parameters show label switching (inverse correlation of {π̂r} values). The results are
centered on the true parameters.
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Figure J.4: RJMCMC simulation study R=6: Scatter plots depicting the maximum a
posteriori estimator (MAP) across all the replicates (H = 100) and chains (S = 10) for
stereotype model including row clustering µk + φk(αr + βj) with R = 6 row clusters.
The sample size for each chain and replica is n = 1000, the number of categories is q = 4,
and the number of columns is m = 3. The black points are the MAP estimators and
the red diamond point represents the true value of the parameter. The plots comparing
adjacent pair of {µ̂k} parameters show its correlation. The plots comparing a pair of {π̂r}
parameters show label switching (inverse correlation of {π̂r} values). The results are
centered on the true parameters.
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Figure J.5: RJMCMC simulation study R=3: Density plot of the parameters for stereo-
type model including row clustering µk + φk(αr + βj). The sample size is n = 1000,
the number of categories is q = 4, the number of columns is m = 3 and the number
of row clusters are R = 3. The density plots depict the marginal posterior distribution
for a sample of 6000 iterations over all the replicates (H = 100) and chains (S = 10).
The green vertical lines are the true parameter value and 95% HPD credible intervals are
shown with shading area.
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Figure J.6: RJMCMC simulation study R=3: Trace plot of the parameters for stereo-
type model including row clustering µk + φk(αr + βj). The sample size is n = 1000,
the number of categories is q = 4, the number of columns is m = 3 and the number of
row clusters are R = 3. The plots depict the results of the RJMCMC sampler for a sample
of 6000 iterations over all the replicates (H = 100) and chains (S = 10). The green
horizontal lines are the true parameter value.
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Figure J.7: RJMCMC simulation study R=4: Density plot of the parameters for stereo-
type model including row clustering µk + φk(αr + βj). The sample size is n = 1000,
the number of categories is q = 4, the number of columns is m = 3 and the number
of row clusters are R = 4. The density plots depict the marginal posterior distribution
for a sample of 6000 iterations over all the replicates (H = 100) and chains (S = 10).
The green vertical lines are the true parameter value and 95% HPD credible intervals are
shown with shading area.
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Figure J.8: RJMCMC simulation study R=4: Trace plot of the parameters for stereo-
type model including row clustering µk + φk(αr + βj). The sample size is n = 1000,
the number of categories is q = 4, the number of columns is m = 3 and the number of
row clusters are R = 4. The plots depict the results of the RJMCMC sampler for a sample
of 6000 iterations over all the replicates (H = 100) and chains (S = 10). The green
horizontal lines are the true parameter value.
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Figure J.9: RJMCMC simulation study R=5: Density plot of the parameters for stereo-
type model including row clustering µk + φk(αr + βj). The sample size is n = 1000,
the number of categories is q = 4, the number of columns is m = 3 and the number
of row clusters are R = 5. The density plots depict the marginal posterior distribution
for a sample of 6000 iterations over all the replicates (H = 100) and chains (S = 10).
The green vertical lines are the true parameter value and 95% HPD credible intervals are
shown with shading area.
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Figure J.10: RJMCMC simulation study R=5: Trace plot of the parameters for stereo-
type model including row clustering µk + φk(αr + βj). The sample size is n = 1000,
the number of categories is q = 4, the number of columns is m = 3 and the number of
row clusters are R = 5. The plots depict the results of the RJMCMC sampler for a sample
of 6000 iterations over all the replicates (H = 100) and chains (S = 10). The green
horizontal lines are the true parameter value. Jumps in the trace plot of α̂4 indicates that
label switching problem is occurring.
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Figure J.11: RJMCMC simulation study R=6: Density plot of the parameters for
stereotype model including row clustering µk + φk(αr + βj). The sample size is n =
1000, the number of categories is q = 4, the number of columns is m = 3 and the number
of row clusters are R = 6. The density plots depict the marginal posterior distribution
for a sample of 6000 iterations over all the replicates (H = 100) and chains (S = 10).
The green vertical lines are the true parameter value and 95% HPD credible intervals are
shown with shading area.
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Figure J.12: RJMCMC simulation study R=6: Trace plot of the parameters for stereo-
type model including row clustering µk + φk(αr + βj). The sample size is n = 1000,
the number of categories is q = 4, the number of columns is m = 3 and the number of
row clusters are R = 6. The plots depict the results of the RJMCMC sampler for a sample
of 6000 iterations over all the replicates (H = 100) and chains (S = 10). The green
horizontal lines are the true parameter value.
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Table J.1: RJMCMC simulation study: Proportion of times the 95% HPD region
includes the true value of the variable-dimensional parameters across theHS pos-
sible chains for the for the stereotype model including row clustering without
interaction factors µk + φk(αr + βj).

R True parameters
Proportion of times

within 95% HPD
region

2 α1 = 3.571 91%
π1 = 0.350 94%

3

α1 = 3.571 94%
α2 = −0.919 96%
π1 = 0.200 95%
π1 = 0.500 91%

4

α1 = 3.571 92%
α2 = −0.919 91%
α3 = 1.228 95%
π1 = 0.250 92%
π2 = 0.320 93%
π3 = 0.150 94%

5

α1 = 2.571 95%
α2 = −2.919 90%
α3 = 1.528 91%
α4 = 6.012 96%
π1 = 0.200 91%
π2 = 0.200 97%
π3 = 0.200 91%
π4 = 0.200 93%

6

α1 = 2.571 92%
α2 = −2.919 96%
α3 = 1.528 99%
α4 = 6.012 91%
α5 = −0.512 91%
π1 = 0.170 94%
π2 = 0.170 91%
π3 = 0.170 92%
π4 = 0.170 90%
π5 = 0.170 92%
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