
Quantifying Substitutability

by

David X. Wang

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2014

Abstract

In this thesis, we will tackle the problem of how keyphrase extraction
systems can be evaluated to reveal their true efficacy. The aim is to de-
velop a new semantically-oriented approximate string matching criteria,
one that is comparable to human judgements, but without the cost and
energy associated with manual evaluation. This matching criteria can also
be adapted for any information retrieval (IR) system where the evaluation
process involves comparing candidate strings (produced by the IR sys-
tem) to a gold standard (created by humans). Our contributions are three-
fold. First, we define a new semantic relationship called substitutability
– how suitable a phrase is when used in place of another – and then design a
generic system which measures/quantifies this relationship by exploiting
the interlinking structure of external knowledge sources. Second, we de-
velop two concrete substitutability systems based on our generic design:
WordSub, which is backed by WordNet; and WikiSub, which is backed
by Wikipedia. Third, we construct a dataset, with the help of human vol-
unteers, that isolates the task of measuring substitutability. This dataset
is then used to evaluate the performance of our substitutability systems,
along with existing approximate string matching techniques, by compar-
ing them using a set of agreement metrics. Our results clearly demonstrate
that WordSub and WikiSub comfortably outperform current approaches to
approximate string matching, including both lexical-based methods, such
as R-precision; and semantically-oriented techniques, such as METEOR.
In fact, WikiSub’s performance comes sensibly close to that of an average
human volunteer, when comparing it to the optimistic (best-case) inter-
human agreement.

ii

Acknowledgements

The success of my Master’s thesis required the help of many individuals.
Without them, I would not have been able the meet the deadlines and
objectives required to complete my study. My deepest gratitude goes out
to the following people, for their invaluable help and support:

To our Father in heaven, for creating and making me into the person I
am today; for giving me strength, wisdom and the curiosity to explore the
very fringes of human knowledge. Without Him, none of this would have
been possible.

To my loving parents, George and Lisa, for existing as the perpetual
anchors of my life that I can always rely on in my darkest hours; for pro-
viding the tough love I needed in the final drive to the finish line.

To my supervisors, Dr. Xiaoying Gao and Dr. Peter Andreae, for lend-
ing their continued guidance to keep my research on track; for the inspi-
ration I obtained by tapping into their shared well of knowledge; and for
bestowing me with the belief required to endure this long journey.

To Craig Watterson, for providing pastoral support when I was on the
verge of abandoning the monumental task that laid before me; for show-
ing me how to cope with the demotivating task of writing day after day.
This entire work would have remained hidden in my own mind, till this
day, without his aid and advice.

To my fellow colleagues, Roma and Sam, for being a friendly and fa-
miliar face in the office; your distractions were always a welcomed break
from work.

iii

iv

Contents

1 Introduction 1

2 Related Work 7

2.1 Semantic Relatedness . 7

2.2 Existing approaches . 11

3 Design and Implementation 19

3.1 General design . 19

3.1.1 Overview . 19

3.1.2 Targets and sub-targets 23

3.1.3 Transitions and information loss/gain 30

3.1.4 Search . 37

3.2 WordNet implementation . 41

3.2.1 Targets . 42

3.2.2 Transitions . 44

3.2.3 Examples . 48

3.3 Wikipedia implementation . 51

3.3.1 Targets . 51

3.3.2 Transitions . 53

3.3.3 Examples . 57

4 Evaluation 61

4.1 Dataset . 61

v

vi CONTENTS

4.2 Metrics . 66
4.2.1 Clear winner . 67
4.2.2 Good substitutes . 69
4.2.3 Bad substitutes . 70
4.2.4 Combo . 72
4.2.5 Substitute ranking . 75

5 Results and Analysis 81
5.1 Human Agreement . 82
5.2 Performance Evaluation . 84

5.2.1 Comparison with existing systems 84
5.2.2 WordSub vs. WikiSub 87

5.3 Improvements and optimisations 91
5.3.1 Truncated search . 92
5.3.2 Multi-search . 93
5.3.3 Caching . 94
5.3.4 Speed optimisations on WikiSub 98
5.3.5 Optimum transitions 99
5.3.6 Multiple knowledge bases 104

6 Conclusions 109
6.1 Contributions . 109
6.2 Future work . 113

List of Figures

3.1 Perfect substitutions. 31

3.2 Near-perfect substitutions. 31

3.3 Similar transitions/substitutions. 32

3.4 A simple Specialisation transition/substitution. 33

3.5 Specialisation transition/substitution with narrow breadth. . 34

3.6 Specialisation transition/substitution with wide breadth. . . 34

3.7 A simple Generalisation transition/substitution. 36

3.8 A path of maximum substitutability from food to cake. . . 38

3.9 A path of maximum substitutability from give the axe

to deactivate. 38

3.10 Synsets for the word complete. 43

3.11 Finding target sets in WordNet. 44

3.12 Simple subsitution from admire to appreciation found
by WordSub. 49

3.13 Complex subsitution path from enclose to birdcage found
by WordSub. 50

3.14 Finding target sets in Wikipedia. 54

3.15 Simple subsitution from Pennsylvania to Keystone State

found by WikiSub. 58

3.16 Complex subsitution path from natural science to or-
ganic chemistry found by WikiSub. 59

4.1 Question sheet for dataset creation. 64

vii

viii LIST OF FIGURES

4.2 Data entry program written in Java. 65

5.1 Number of input pairs successfully matched to targets. . . . 88
5.2 Searches required for multi-aspect inputs. 93
5.3 Average processing time per input for WordSub optimisa-

tions. 97
5.4 Optimising WordSub using simulated annealing. 102
5.5 A substitution path containing an Inter-knowledge transition.108

List of Tables

3.1 Target sets for admire and appreciation, generated by
WordSub. 48

3.2 Target sets for enclose and birdcage, generated by Word-
Sub. 49

3.3 Target sets for natural science and organic chemstry,
generated by WikiSub . 58

4.1 Example question given to volunteers for dataset creation. . 62

4.2 Aggregated volunteer scores for one question in the dataset. 65

4.3 Expected system scores for one question in the dataset. . . . 66

4.4 A question from the dataset without a clear winner. 67

4.5 A set of system scores that disagrees with the dataset ac-
cording to the clear winner metric. 68

4.6 A set of system scores that half agrees with the dataset ac-
cording to the good substitutes metric. 70

4.7 A question from the dataset with bad substitutes. 71

4.8 A set of system scores that two-thirds agrees with the dataset
based on the bad substitutes metric. 72

4.9 A set of substitutability scores produced by three different
systems. 74

4.10 A set of substitutability scores produced by two different
systems. 75

ix

x LIST OF TABLES

4.11 Substitutability scores that would be unfairly judged by a
ranking correlation. 78

5.1 Test machine specifications. 81
5.2 Human agreement on dataset. 83
5.3 Performance comparison of all systems. 85
5.4 A question which punishes noisy transitions. 90
5.5 Initial transition scores used by WordSub. 100
5.6 Optimised transition scores for WordSub. 103
5.7 WordSub performance after optimising transition scores. . . 103
5.8 WordSub performance on different subsets of questions. . . 105

List of Algorithms

1 Finds the targets and sub-targets that can successfully be
matched to a phrase whilst minimising the number of as-
pects. Returns a list of target sets or an empty list if no
matching is found. 25

2 Finds the aspects in a phrase that can be matched to target
sets and returns a list of those target sets. An empty list is
returned if no match is found. 26

3 Calculates the substitutability of using phrase1 in place of
phrase2. Returns a real value between 0.0 and 1.0. 29

4 Finds the best path of substitutability from the target set ts1
to ts2. Returns the score/substitutability of the path. 40

5 Finds the best paths of substitutability between from the tar-
get set ts1 to a list of target sets tss2. Returns the score of
each path. 95

xi

xii LIST OF ALGORITHMS

Chapter 1

Introduction

Over the years, there have been many advances in the field of information
retrieval (IR), but little has changed in the way we evaluate systems in
this field. IR systems perform the task of finding useful information from
a large collection. The generic approach is to compute a numeric score
for each retrieved item/entity, which represents its usefulness/relevance
according to some metric (e.g. a search query). These items could range
from textual phrases and documents, to multimedia sources such as im-
ages, videos and audio. Once a score has been attached to each item, they
are ranked according to this value. The final output of IR systems is a
portion of the top ranking items, which are then presented to the user [65].

To analyse the performance of an IR system, the quality of the retrieved
items are evaluated on their relevancy towards the task at hand. This
judgement can be made by domain experts, but this is a time-consuming
and expensive process [1]. An alternative is to integrate the IR system into
an application and then indirectly evaluate its performance based on how
it influences the application’s efficacy. However, this introduces more pa-
rameters into the mix that are not part of the IR system itself. Therefore,
experiments are difficult to control and results may become biased in un-
predictable ways [73].

As researchers strive to obtain consistent and timely results, both of

1

2 CHAPTER 1. INTRODUCTION

the previous approaches are undesirable. Instead, the preferred method
comes in the form of automatic evaluation. For this to work, researchers
must first create a labelled testing dataset, classifying each item as either
relevant or irrelevant. While this first step can be time-consuming, all sub-
sequent tests can be performed automatically by cross-referencing the out-
put of the IR system against the labelled dataset (the gold standard). An
automatic evaluator will then calculate the correctness of this comparison,
which indicates the overall performance of the IR system. The most com-
mon metrics used are precision (1.1), the fraction of items retrieved that
are relevant; recall (1.2), the fraction of items retrieved out of all relevant-
labelled items; and F-measure (1.3), the harmonic mean of precision and
recall [58].

P =
|relevant ∩ retrieved|

|retrieved|
(1.1)

R =
|relevant ∩ retrieved|

|relevant|
(1.2)

F = 2 · precision · recall
precision+ recall

(1.3)

Automatic keyphrase extraction is one form of IR that has been re-
searched in recent years. The items being retrieved are keyphrases and
the larger collection is the document with which the keyphrases are as-
sociated with. Keyphrases are n-grams (usually one to three words) that
represent the main content or key topics of a document. They are highly
beneficial in a number of fields, including information retrieval, summari-
sation and question-answering. In 1999, a landmark research KEA [71]
successfully applied the technique of supervised machine learning [47] to
the task of keyphrase extraction. KEA was evaluated against a dataset of
documents taken from FAO [11], each of which came with a set of human-
assigned keyphrases (the gold standard). For each document, the top
ranked keyphrase candidates from KEA (up to 20) were compared with
the expected gold standard and the number of direct string match-ups

3

was used to indicate the system’s overall performance. Many subsequent
keyphrase extraction systems were evaluated in a similar fashion, includ-
ing KEA++ [42], KP-Miner [10], Maui [41], Turney 2003 [63], Hulth 2003
[24], CollabRank [66] and DIKEA [67].

In the context of a keyphrase extraction system, the numerator of both
the formulas for precision (1.1) and recall (1.2) counts the number ex-
tracted keyphrases that also appear in the gold standard, commonly re-
ferred to as the true positive (TP) value in statistics. By only recognis-
ing direct string matches, the TP calculated will tend to be unfairly low,
thus lowering the score under both metrics. Given a set of candidate
keyphrases extracted by the system (C) and a set of gold standard keyphrases
(G), the TP value is formally defined by Equation (1.4).

TP =
∑
c∈C

max
g∈G

match(c, g) (1.4)

The function match is the operative component in calculating TP. Con-
ventionally, keyphrases are stemmed [15], accent folded (unicode charac-
ters are converted to their ASCII equivalent) and case folded (converted
to lower case) prior to string matching. This allows small variations in the
candidate keyphrases to still be counted towards the TP value (i.e. varia-
tions in inflection or grammar).

match(c, g) =

1, if stemfold(c) == stemfold(g)

0, otherwise
(1.5)

Conducted in this manner, automatic evaluation oversimplifies the pro-
cess by assuming relevancy is purely black and white. Retrieved items are
classified as either completely relevant or irrelevant. In practice, relevancy
comes in many shades, spanning a full continuum between relevant and
irrelevant, which is an important subtlety that traditional automatic eval-
uation methods fail to capture. In the case of keyphrase extraction, this
exact matching criteria results in a highly pessimistic evaluation of the sys-

4 CHAPTER 1. INTRODUCTION

tem. In other words, the precision, recall and F-measure scores calculated
only act as an absolute lower bound of a system’s true performance. When
testing KEA++ [42], the authors noted that the average agreement between
humans was only 38% when using this evaluation technique. They then
went on to use the gold standard with low human agreement to justify the
performance scores achieved by their own system. In fact, the problem lies
in the evaluation technique itself, and not with the consistency of human
keyphrase labelling.

The same matching criteria was also used in task 5 of the 2010 Work-
shop on Semantic Evaluation (SemEval-2010 [31]), where a total of 19 au-
tomatic keyphrase extraction systems competed against each other. Con-
ductors of this workshop observed that the performance scores were all
superficially low and calculated the human agreement to a poor 33.6%.
They then correctly concluded that the exact string matching method used
for evaluation only offers a lower bound for true performance. Semantics
(the actual meaning behind phrases) must be taken into account in order
to provide a more accurate judgement of keyphrase acceptability.

When semantics need to be considered in a comparison, a common
metric to use is semantic relatedness [19], which computes the distance
between two entities based on the relationship of their semantic content.
Some well-known implementations include LSA [9], ESA [16], NGD [4]
and WLM [70]. The problem with semantic relatedness is that it covers a
broad spectrum of relationships, including antonymy. Therefore, it does
not make for an appropriate match function, as it relaxes the matching cri-
teria too far. Several methods have been devised for approximate string
matching that avoid using semantic relatedness, such as R-precision [73]
and its successor Modified R-precision [30]. However, most of these tech-
niques either only perform simple lexical-based string manipulation, or
only consider synonymy, the simplest of semantics. As a result, current ap-
proaches fail to provide a suitable matching function. Furthermore, this re-
search area lacks a suitable dataset for evaluation. Existing test collections

5

are either targeted towards semantic relatedness (e.g. WordSimilarity-353
[13]), or were created with only lexical-based string manipulation in mind,
such as those used in [73] and [30].

In this thesis, we will address the issue of how keyphrase extraction
systems can be evaluated to reveal their true efficacy. The aim is to de-
velop a new semantically-oriented approximate string matching criteria.
One that is comparable to that of human judgements, but without the
cost and energy associated with manual evaluation. Our contributions
are threefold.

1. We precisely define and quantify substitutability – a measure of the
replaceability of one term for another. This measure can be used as
a semantically-oriented alternative to the traditional matching func-
tion in Equation (1.5), to mimic the judgement quality of a human.
Based on this definition, a generic system is designed that can com-
pute substitutability by mining external knowledge sources.

2. We develop two concrete systems based on our generic design –
one backed by WordNet [45] and the other backed by Wikipedia
(https://www.wikipedia.org/).

3. We devise a method for evaluating approximate string matching sys-
tems by isolating the task in question. The process involves both the
construction of a human-labelled dataset, and the creation an assort-
ment of metrics that can evaluate the agreement of a system with the
dataset (i.e. its ability to mimic human judgements).

The remainder of this thesis is structured as follows. Chapter 2 pro-
vides an analysis for existing solutions to approximate string matching,
including both semantic and lexical approaches. The first section of Chap-
ter 3 formally defines substitutability and proposes a generic design for a
system which can compute substitutability using an external knowledge

6 CHAPTER 1. INTRODUCTION

source. Later sections of Chapter 3 present our two concrete implementa-
tions of the generic design, WordSub and WikiSub. Chapter 4 describes the
creation of a dataset which isolates the task of computing substitutability,
and introduces a range of metrics for evaluating the performance of sys-
tems that perform this task. Chapter 5 evaluates WordSub and WikiSub
against each other and against existing approaches. It then presents some
ways that our substitutability systems can be further optimised, both in
terms of performance/agreement and speed. Finally, Chapter 6 concludes
the thesis, with a summary of our contributions and several suggested ar-
eas of research for future work.

Chapter 2

Related Work

In this chapter, we discuss the various ways in which semantics can be in-
troduced into string comparisons, briefly explaining the advantages and
disadvantages of each method. Then we showcase a range of existing sys-
tems that have either been designed with approximate string matching in
mind, or can easily be adapted to suit this task.

2.1 Semantic Relatedness

One way to soften the string matching criteria is by applying the notion
of semantic relatedness or similarity [19], which is a distance metric that
measures the likeness between two terms. Unlike exact string matching,
semantic relatedness regards more than just the lexical representation of
a term (the literal string of characters), but instead, as the name suggests,
focuses on meaning or semantic content. This distance measure can be
calculated in a variety of ways, many of which involve statistical analysis.

A well researched approach, which has yielded positive results in the
past, is to extrapolate a set of topics or concepts associated with a term.
The term can then be represented by a vector of weighted concepts, and
subsequently calculate its relatedness to other terms using a similarity
measure such as cosine similarity [57]. Latent Semantic Analysis (LSA [9])

7

8 CHAPTER 2. RELATED WORK

is a system which employs this method. Purely statistical, LSA exploits
word co-occurrence information by training itself on a large unlabelled
corpus of text. It then constructs a words-by-documents co-occurrence
matrix from the corpus. Finally, it performs dimensionality reduction by
factorising the matrix using Singular Value Decomposition [18]. The di-
mensions that remain are assumed to be latent concepts, allowing terms
to be compared by measuring their distance or similarity within this uni-
fied concept-space. Explicit Semantic Analysis (ESA [16]), a successor of
LSA, leverages Wikipedia to produce a similar concept space. In this case,
concepts are defined to be Wikipedia articles. As the name implies, ESA
uses explicit concepts that have been collected and organised by humans,
in contrast to the latent concepts learnt by LSA. This leads to a notable
improvement in the correlation between the computed relatedness score
and human judgements. Salient Semantic Analysis (SSA [20]) further im-
proves upon this approach, by exploiting the annotated links available be-
tween Wikipedia articles. Instead of examining the distribution of words
inside Wikipedia articles, SSA directly profiles terms by observing the co-
occurring inter-article links (salient concepts) within a given window size.

The downside of vector-based methods is that they require an initial
pre-processing step that is time consuming. For example, ESA has to build
an inverted index of the entirety of Wikipedia, mapping each possible term
to a set of Wikipedia articles. A different approach to measuring semantic
relatedness is by inspecting the ease with which one entity can transform
into another. The similarity metric used to calculate this measure is called
the Normalised Information Distance (NID [37]), which is formally de-
fined in Equation (2.1). K(x) is a function that expresses the Kolmogorov
Complexity [33] of x. In the context of strings, Kolmogorov Complexity is
the length of the shortest possible representation of the string in some pre-
defined universal description language. K(x|y) is then the shortest pos-
sible program that can reproduce x given y (i.e. the minimum computa-
tional resources required to transform y into x). Kolmogorov Complexity

2.1. SEMANTIC RELATEDNESS 9

is not actually computable, but its upper bound can be estimated by us-
ing real-world compressors and compression algorithms (e.g. Gzip [17],
LZSS [59], LZW [68], PPM [5] and DEFLATE [7]). The better the com-
pressor, the closer the approximation is to the true value. Equation (2.2)
shows the real-world approximation of NID, known as the Normalised
Compression Distance (NCD [3]), for a given compressor C. A direct im-
plementation of NCD is the Normalised Google Distance (NGD [4]) mea-
sure, which views Google (or any other search engine) as the compressor.
Equation (2.3) demonstrates how this measure is calculated, where f(x)
signifies the number of web pages containing x (returned by the search
engine), and f(x, y) is the number of web pages containing both x and y.
N is simply a normalisation constant, normally set to the total number of
returnable pages. For Google, a value above 1010 is suggested.

NID(x, y) =
max(K(x|y), K(y|x))
max(K(x), K(y))

(2.1)

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
(2.2)

NGD(x, y) =
max(log f(x), log f(y))− log f(x, y)

logN −min(log f(x), log f(y))
(2.3)

A third approach for computing semantic relatedness is to mine the un-
derlying graph/inter-linking structure formed by various external knowl-
edge bases. WordNet::Similarity [53] is a free software package that con-
tains a variety of different relatedness measures which utilise the rela-
tional links present in WordNet [45]. These include wup [72], lch [36] and
hso [22]. WordNet maintains a hierarchy of concepts/synsets (groups of
tightly-coupling synonyms), which follow an is-a relationship. wup calcu-
lates the relatedness of two synsets, X and Y , by finding the depth of their
least common subsumer (LCS) – the most specific synset which is still a
generalisation of both X and Y . lch performs the same task by finding
the shortest path between the two synsets. hso is similar to lch, but also
tries to minimise the number of directional changes along the path (e.g.

10 CHAPTER 2. RELATED WORK

moving up and then down in the hierarchy). Other implementations of
this approach include WikiRelate! [60], which exploits the hierarchically-
organised structure of Wikipedia categories; and Wikipedia Link Measure
(WLM [70]), which measures relatedness by inspecting hyperlinks within
Wikipedia articles. WLM stands out from other implementations in that
it does not rely on finding a path. Instead, it compares two articles by
directly examining their shared hyperlinks (both incoming and outgoing).
The greater the overlap, the higher the relatedness is. This allows semantic
relatedness to be calculated using Equation (2.4), where X and Y are the
sets of articles that link to x and y respectively, and W represents all the
articles in Wikipedia.

WLM(x, y) =
log(max(|X|, |Y |))− log |X ∩ Y |
log |W | − log(min(|X|, |Y |))

(2.4)

All three approaches successfully capture semantic information when
comparing terms against each other. But an approximate string matching
criteria based on semantic relatedness compensates too far in the other
direction (i.e. it is not strict enough). Semantic relatedness covers too
broad a range of relationships (including antonymy). When we evaluate
keyphrase extraction systems, the match function should return a non-
zero value only for inputs that are either lexically equivalent or the can-
didate is a suitable replacement for the gold standard. The higher the
value, the better the replacement is, up to a perfect match of 1.0. Thus,
Section 3.1.1 will introduce the notion of substitutability as a subclass of
semantic relatedness – covering a stricter subset of relationships. It is also
important to note that semantic relatedness is a symmetric measure (i.e.
A is related to B the same amount as B is related to A), which may not be
desirable. Section 3.1.1 formally defines substitutability and discusses the
potential benefits of an asymmetric measure. Sections 3.2 and 3.3 intro-
duce two systems which implements a substitutability-oriented approxi-
mate matching criteria using a path-based method, similar to the one de-
scribed in this section, but with a stricter matching criteria and new ways

2.2. EXISTING APPROACHES 11

for quantification.

2.2 Existing approaches

Problems with exact string matching were realised over a decade ago. In
2000, Barker and Cornacchia [1] disclosed that the task of evaluating the
quality of a set of keyphrases is a highly subjective task. At its core, the
quality of keyphrases should reflect their ability to give the reader a rough
understanding of the contents of a document. The subtleties involved
in this judgement make it very difficult to compute automatically. In-
stead, Barker and Cornacchia proposed an alternative evaluation method
which involves human judgements. But in the end, they concluded this
type of evaluation should be avoided as it is a difficult, time and energy-
consuming processing.

The difficulty of the task is further compounded by the fact that au-
thors have a tendency of assigning gold standard keyphrases that do not
occur in the actual document. This essentially puts a cap on the high-
est possible overlap between a set of automatically extracted keyphrases
and the gold standard – most keyphrase extraction systems can only re-
produce keyphrases from existing phrases in the document. Barrière and
Jarmasz (2004 [2]) determined that automatic evaluators must go beyond
exact string matching in order to yield useful and conclusive results. They
introduced a different matching criteria based on Pointwise Mutual In-
formation (PMI [62]). This marks the first occurrence of a semantically-
oriented approach to evaluating keyphrase quality.

PMI (2.5) is a statistical measure that indicates the co-occurrence be-
tween two terms, which has been shown to be a good estimator of se-
mantic relatedness [61]. A value of zero indicates two statistically inde-
pendent terms, negative values indicate a lack of co-occurrence, while a
positive value indicates high co-occurrence. To adapt this measure for the
match function from Chapter 1, it must be fed through a normalising func-

12 CHAPTER 2. RELATED WORK

tion such as a logistic sigmoid as illustrated in Equation (2.6). There are
two downsides to this technique. First, like other statistical approaches,
it requires a long set up time to process a vast unlabelled corpus of text
(one terabyte in the case of [62]). Second, co-occurrence captures all as-
pects of semantic relatedness, including undesirable relationships such as
antonymy [12].

PMI(x, y) = log
p(x ∩ y)
p(x) · p(y)

(2.5)

match(x, y) = sigmoid(PMI(x, y)) =
1

1 + e−PMI(x,y)
(2.6)

In 2009, Zesch and Gurevych [73] also reiterate the shortcomings of
exact string matching, stating that it is known to underestimate perfor-
mance as perceived by human judges. So as part of their newly proposed
evaluation metric, R-precision, the authors introduced three approximate
matching strategies. The first strategy, MORPH, simply accounts for mor-
phological variants (grammatical inflections) between two terms, which
is something that conventional evaluation methods already achieve via
stemming. The other two strategies are INCLUDES and PARTOF, which ac-
count for partially overlapping phrases at the level of words. INCLUDES

addresses situations where the extracted candidate includes the gold stan-
dard, while PARTOF is for when the candidate is part of the gold standard.

Being a purely lexical-based method, the approximate matching crite-
ria used in R-precision do not rely on an external knowledge source and
are able to return a result very quickly by performing basic string manipu-
lation and comparisons. However, by disregarding semantics, this type of
matching can over-value semantically dissimilar terms such as ”red wine”
vs. ”white wine”. Despite this, the authors showed that accounting for
partial phrasal overlaps provides a definite improvement to exact string
matching. They evaluated each approximate matching strategy by having
four human judges review term pairs that passed the matching criteria,
either accepting or rejecting the match. While this does evaluate whether

2.2. EXISTING APPROACHES 13

a match is acceptable, it neglects to check whether a mismatch is accept-
able. Because of this, MORPH trivially performs the best by returning the
least number of matches. In Section 4.2, we propose a range of evaluation
metrics to test the acceptability of both matches and mismatches against
human judgements.

R− p(x,y) = |x ∩ y|
max(|x| , |y|)

(2.7)

The matching strategies used by R-precision, whilst less strict than ex-
act string matching, are still simple binary acceptance criteria. In 2010,
R-precision was generalised by Kim, Baldwin and Kan [30] to be the frac-
tion of overlapping words between two terms over the length (number
of words) of the longer term (as shown in Equation (2.7)). This makes it
a viable formula for the match function. R-precision, in this new form,
was later used by Joty et al. (2012 [26]) for evaluating systems that per-
form automatic topic segmentation and labelling, proving such approxi-
mate matching techniques can be applied across a wide range of evalua-
tion tasks in the field of IR, especially those that concern natural language
processing.

mod. R− p(x,y) =

∑
wi∈y

 1
|y|−i , if wi ∈ x

0, otherwise∑|y|
n=1

1
n

(2.8)

Kim et al. also introduce an enhanced version of R-precision which
they coined Modified R-precision. Unlike R-precision, which is indiffer-
ent to word order, Modified R-precision weights each overlapping word
from both phrases based on its position. Equation (2.8) formally defines
this measure, where y is assumed to be the longer of the two phrases (if
they are different in length) and wi is the ith word in y (indexed from zero).
This measure is motivated by the assumption that the head noun is usually
at the end of a noun phrase. Therefore, the further a word is from the head

14 CHAPTER 2. RELATED WORK

noun, the lower its importance is towards the matching, and thus it re-
ceives a decreased weighting. For example, comparing ”applied science”
to ”natural science” would yield a match of 2

3
under Modified R-Precision,

where as the standard R-precision would yield a match of 1
2
.

Kim et al. also adapted a range of n-gram based metrics, from the field
of machine translation (MT) and summarisation, to perform approximate
matching – BLEU [51], NIST [40], ROUGE [38] and METEOR [34].

BLEU (Bilingual Evaluation Understudy) was traditionally used as an
evaluation metric for measuring the similarity between a candidate trans-
lation against a reference (gold standard) translation. It does this by count-
ing the number of overlapping n-grams, with an additional penalty if the
candidate is shorter than the reference. Equations (2.9) to (2.11) demon-
strates how the measure is calculated when adapted to the task of approx-
imate string matching. Equation (2.9) calculates the n-gram precision for a
particular n-gram length of n, which is simply the fraction of overlapping
n-grams over the total. Equation (2.10) is the brevity penalty used when
phrases are of different length. Finally, Equation (2.11) produces the actual
measure, which takes into account all possible n-gram lengths. Again, y
is assumed to be the longer of the two phrases, in terms of the number of
words.

pn(x,y) =

∑
ngram∈x

1, if ngram ∈ y

0, otherwise

|x| − n+ 1
(2.9)

BP (x,y) =

e1−|y|/|x|, if |x| ≤ |y|

1, otherwise
(2.10)

matchBLEU(x,y) = BP (x,y) · exp

 |x|∑
n=1

1

|x|
log pn(x,y)

 (2.11)

2.2. EXISTING APPROACHES 15

NIST (National Institute of Standards and Technology) is calculated
very similarly to BLEU, except pn (n-gram precision) is altered to weigh
each n-gram based on their occurrence. Higher weightings are given to
n-grams which occur less frequently, as they are reasoned to be more dis-
tinct and thus provide greater informational value. Conversely, frequently
occurring n-grams have lower weightings.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a pack-
age which includes four metrics for determining the quality of a document
summary (the candidate) when compared to an ideal summary created by
humans (the gold standard). ROUGE-N is one of these metrics, which
measures the n-gram recall between summaries for n-grams of a specific
length N. When adapted for the task of approximate string matching,
ROUGE closely resembles the n-gram precision formula (pn) from BLEU as
shown in Equation (2.12). The difference is that ROUGE iterates n-grams
over the longer phrase y, whilst pn iterates over the shorter phrase x. In
[30], Kim et al. experiments exclusively with ROUGE-1 (i.e. only considers
single word overlap). A variation of this approximate matching strategy
was also used to evaluate the TextRank system [44].

matchROUGE(x,y) =

∑
ngram∈y

1, if ngram ∈ x

0, otherwise

|y| − n+ 1
(2.12)

METEOR (Metric for Evaluation of Translation with Explicit Order-
ing) evaluates a candidate translation by finding explicit unigram (sin-
gle word) matches between the candidate and reference (gold standard)
translation. The initial step is to find a word alignment between the candi-
date and the reference strings. This alignment maps one word from the
candidate to exactly one word from the reference. In graph theory, this is
known as a maximum cardinality bipartite matching [69], where the nodes
are words and edges are potential mappings. Word mappings are assigned
over three passes, with the required criteria for a potential mapping being

16 CHAPTER 2. RELATED WORK

increasingly relaxed for each pass. In the first pass, a word can only be
mapped to other words that have the exact same string of characters. In
the second pass, a word is allowed to be mapped to other words that have
the same stem, as determined by the Porter stemmer [54]. For the final
pass, semantics are taken into consideration by allowing word mappings
that represent synonyms. This is achieved by examining synsets in Word-
Net, which are sets of synonyms that conforms to a distinct concept. In
Section 3.2, we introduce a system whose opening stage closely resembles
the alignment step in METEOR, but our system creates mappings at the
phrase/n-gram level whenever possible.

After finding the maximum word alignment, METEOR calculates the
precision and recall between the two strings using Equations (2.13) and
(2.14) respectively, where maxalign returns the number of word-to-word
mappings in the maximum valid word alignment. These are then com-
bined using a parameterised harmonic mean (or weighted f-measure [64])
as per Equation (2.15). As stated previously, y is assumed to contain the
same number or more words than x.

P (x,y) =
maxalign(x,y)

|x|
(2.13)

R(x,y) =
maxalign(x,y)

|y|
(2.14)

Fα(x,y) =
P (x,y) ·R(x,y)

α · P (x,y) + (1− α) ·R(x,y)
(2.15)

METEOR takes word ordering into consideration by applying a frag-
mentation penalty to the final score as formulated by Equation (2.16). Frag-
mentation is defined to be the fraction of the least number of chunks pos-
sible in a maximum word alignment (maxalignch) over the total number
of mappings (maxalign). A chunk is specified as an adjacent sequence
of words that occur in both strings and have been mapped together in
a maximum word alignment. For example, consider a maximum word
alignment between ABXY and ABCXY, where each character represents a

2.2. EXISTING APPROACHES 17

word. The maximal mapping will produce two chunks, AB and XY, out
of four total mappings. Therefore, the fragmentation value will be 0.5. A
higher fragmentation value results in a larger penalty, as defined by Equa-
tion (2.17), which is further parameterised by β and γ. Equation (2.18)
illustrates how the fragmentation penalty and weighted harmonic mean
is combined to form the final METEOR measure of similarity. Lavie and
Agarwal (2007 [35]) later tuned METEOR’s three system parameters for
various tasks. The optimal values for measuring the similarity between
English phrases are as follows: α = 0.81, β = 0.83 and γ = 0.28.

frag(x,y) =
maxalignch(x,y)

maxalign(x,y)
(2.16)

pen(x,y) = γ · frag(x,y)β (2.17)

matchMETEOR(x,y) = (1− pen(x,y)) · Fα(x,y) (2.18)

In Section 5.2.1, we will implement a selection of the measures covered
in this section, and compare them against the two systems we introduce
in Chapter 3. This will be done by evaluating each system’s ability to cor-
rectly compute the replaceability (or substitutability) of a candidate term
for a gold standard term, based on each measure’s agreement with human
judgements.

18 CHAPTER 2. RELATED WORK

Chapter 3

Design and Implementation

In this chapter, we present the details of designing a semantically-oriented
approximate string matching system based on the notion of substitutabil-
ity – referred to as a substitutability system from henceforth. Given this
generic design, we will then demonstrate how various external knowledge
resources can be used to implement this design. Two specific knowledge
sources will be showcased – WordNet, a database of English words and
common phrases; and Wikipedia, a vast online collection of interlinking
articles, which cover all aspects of human knowledge.

3.1 General design

3.1.1 Overview

Substitutability is a measure of how suitable a word (or phrase) is when
used in place of another. The phrase to be replaced is known as the sub-
stitutee, and the phrase to replace it with is known as the substitute. It
is a subclass of semantic relatedness that describes a stricter subset of re-
lationships. A pair of substitutable phrases implies that they are also se-
mantically related, but a pair of semantically related phrases does not nec-
essarily imply substitutability. For our purposes, we will consider substi-

19

20 CHAPTER 3. DESIGN AND IMPLEMENTATION

tutability to be a score between 0.0 and 1.0, given to a specific substitute-
substitutee pair. 0.0 would imply no substitutability (i.e. the substitute
is not suitable to be used in place of the substitutee at all) and 1.0 would
imply perfect substitutability (i.e. the substitute is perfectly suitable to be
used in place of the substitutee).

A trivial design for a substitutability system is one which gives a per-
fect 1.0 score only to substitute-substitutee pairs that are identical (i.e. two
equivalent strings), while simply assigning 0.0 to all other pairs. Such a
system is extremely conservative, in the sense that every time it produces
a 1.0 score, it is guaranteed to be correct, but many of the pairs that are
scored 0.0 will be undervalued.

A simple example is a plurality pair, such as using chair in place of
chairs. The pair clearly have perfect (or near-perfect) substitutability;
they are simply inflections (the modification of a word for grammatical
reasons, such as tense, number and person) of one another. But the trivial
system defined previously would score it incorrectly at 0.0.

A quick fix to this issue is to first reduce both terms to their stems
(removing any inflections) prior to comparing them. Note that a stem
need not be the same as a word’s morphological root. It is common for
a stem to not be a valid root, and a broader range of related words tend
to be mapped to the same stem. For example, the stem of management
is manag, while its morphological root is manage. Morphological roots
also remove any prefixes, which is especially problematic with negatively
modified words such as unfinished, which has the root finish, thus
reversing its meaning. A stem on the other hand would only reduce the
word to unfinish, making it perfect for this task. In fact, this is the most
common method for matching terms used to evaluate keyphrase extrac-
tion systems (and still the most standard approach to date, see Chapter 2).

A less trivial pair to consider is using run in place of sprint. Lexi-
cally speaking, the two words are completely different and reducing them
down to their stems will not help. However, as humans, we understand

3.1. GENERAL DESIGN 21

that they have similar meanings. Sprinting is a form of running. There-
fore, the pair run-sprint is clearly substitutable, or at least partially sub-
stitutable (i.e. a score somewhere between, but exclusive of 0.0 and 1.0).
However, it is unclear what substitutability score to give exactly.

What we need is a strict, quantifiable definition of substitutability that
is robust enough to be applicable in any situation. Below is a concise de-
scription of what we believe substitutability is:

”Substitutability is a context-free measure of how much
information is retained when one phrase is used in place of
another, whilst making as few assumptions as possible. ”

The remainder of this subsection expands on this definition into a set of
rules and restrictions for exactly how we aim to measure substitutability.

Context and disambiguation

The substitutability of a substitute is only measured in relation to the sub-
stitutee alone, disregarding any surrounding text that the terms may ap-
pear in. If either of the terms have ambiguous meanings, then it should be
disambiguated against the other term such that it maximises substitutabil-
ity. This means that the context in which the substitutee appears in has no
influence on the substitutability of the substitute in question. While this
may not always be correct, it does help to restrict and simplify the prob-
lem so that any particular substitute-substitutee pair will always have the
same substitutability score.

Grammar

We are only concerned with how well a term can substitute another in
regards to their semantic meaning. Whether the replacement results in
valid grammar or syntax is irrelevant. This is again because we are only
measuring the terms (substitute/substitutee) on their own and ignoring
the larger context that they may be part of.

22 CHAPTER 3. DESIGN AND IMPLEMENTATION

Information loss/retention

When substituting one term in place of another, it is inevitable that some of
the meaning (or information) will be lost. Exactly how much information
is lost (or how much information is retained) is a good indicator of how
suitable the substitution is. Therefore, the substitutability of a substitute-
substitutee pair should strongly reflect the information retention of the
substitution.

By this definition, the plurality pair chair-chairs would have per-
fect information retention and thus a perfect substitutability score of 1.0
(recall that grammar is irrelevant). In contrast, the pair run-sprint is
not a perfect substitution. Using run in place of sprint no longer con-
veys the speed of the run (i.e. this information is lost in the substitution). A
more extreme example of information loss is the pair emotional-excited,
which arguably loses much more meaning than run-sprint – there are
countless other emotions besides excitement. From this, we should expect
to see the pair run-sprint to receive a higher substitutability score than
emotional-excited, but definitely less than 1.0 as neither are perfect.
In Section 3.1.3, we will show exactly how information loss can be quanti-
fied.

Information gain

Just as a substitute can lose information about a substitutee, it can also
add extra information. When this happens, we say that the substitute has
made an assumption on the substitutee. Consider the pair cake-food,
that is, we want to use cake in place of food. While no information is
actually lost in the substitution, the meaning has completely changed. The
substitute has added extra information by assuming the type of food to
be cake. Therefore, substitutes that make assumptions should be avoided
when possible, as they can completely change the meaning if used in place
of the substitutee. In other words, information gain should be heavily

3.1. GENERAL DESIGN 23

penalised.

A noteworthy feature of substitutability, as a result of this rule, is that
it is an asymmetric relationship, unlike most other semantic relatedness
measures (see Chapter 2). For example, the pair food-cake is more suit-
able than the pair cake-food. That is, food can be used in place of
cake, because it does not make any assumptions (add extra information)
towards cake.

3.1.2 Targets and sub-targets

For our design of a substitutability system, we will assume that all inputs
come in the form of two phrases in plain text. The first one being the
substitute and the second one being the substitutee. In order to utilise
and mine external knowledge databases (referred to as knowledge bases
henceforth), we must first match the plain text input to a specific entity
in the knowledge base. An entity represents a basic unit of knowledge,
which could be an article, entry, page, node etc., specific to a particular
resource. We have decided to call such matchings targets, the reason for
which will become obvious later on in this section. Sections 3.2 and 3.3
will demonstrate how this step is performed for WordNet and Wikipedia.

Unfortunately, most English terms have multiple meanings (they are
ambiguous), and we must consider all of these to ensure we maximise
substitutability. Also, because grammar is irrelevant, we will stem each
term prior any matching. So each term will in fact be matched to a set of
targets (called a target set), the details of which are once again specific to
each individual knowledge base.

But what if a term fails to match any entity in a knowledge base? As
is often the case with English phrases with more than one word. When
this occurs, we should break down the phrase into its components (or as-
pects [6]) in an attempt to get a successful match. If the term in question
is a single word, then nothing can be done at this point and the entire pro-

24 CHAPTER 3. DESIGN AND IMPLEMENTATION

cess ends here, returning a default substitutability score of 0.0 to be on
the safe/conservative side. Section 5.3.6 will discuss a potential way of
getting around this problem by using multiple knowledge bases together.

To break down a phrase, we first remove any stop words (functional
words that serve only syntactic purposes in a phrase) before splitting up
the phrase into non-overlapping aspects. The list of stop words will be
taken from the same list used in DIKEA [67]. An attempt will then be
made to match these aspects to entities in the knowledge base. If success-
ful, the matching entities become sub-targets. If a match still cannot be
found, each aspect is broken down further (or the phrase is split at differ-
ent points) until either all aspects are matched up, or the phrase has been
reduced to single words. At which point the system once again returns a
conservative score of 0.0. Algorithms 1 and 2 show exactly how a phrase
is matched to its targets and/or sub-targets. The sub-routine MATCHTAR-
GETS attempts to match a phrase (list of words) to a specific set of targets
in the knowledge base, returning an empty set if no match is found.

Consider a simple example where only one of the phrases cannot be
matched. We want to test the substitutability of using stationery in
place of pen and paper. For this example, we will assume that pen
and paper cannot be matched to an entity in the knowledge base. So it
must be broken down by first removing the stop word ”and”, and then
splitting the phrase in half to produce the following aspects:

[Pen] [Paper]

Suppose both these aspects are able to be matched. We now have a
single target set for the substitute and two sub-target sets for the substitu-
tee. At this point, every unique pair of target sets (one from the substitute
side and one from the substitutee) is tested against each other to produce
a substitutability score for each pair. We then select a subset of these pairs
that produced the highest scores, such that each target set is covered at
least once. This ensures we maximise substitutability without leaving out
any part of the input.

3.1. GENERAL DESIGN 25

Algorithm 1 Finds the targets and sub-targets that can successfully be
matched to a phrase whilst minimising the number of aspects. Returns
a list of target sets or an empty list if no matching is found.

procedure FINDTARGETS(phrase)
ts← MATCHTARGETS(phrase)

if ts is empty then
p← REMOVESTOPWORDS(phrase)

5: for i← 1, p.length do
tss← FINDASPECTS(p, i)

if tss is not empty then
return tss . aspects matched to sub-targets

end if
10: end for

return [] . no possible match for phrase
else

return [ts] . phrase directly matched to targets
end if

15: end procedure

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

Algorithm 2 Finds the aspects in a phrase that can be matched to target
sets and returns a list of those target sets. An empty list is returned if no
match is found.

procedure FINDASPECTS(p, n) . splits p into n aspects
if n == 1 then

ts← MATCHTARGETS(p)

if ts is empty then
5: return [] . p could not be matched to targets

else
return [ts]

end if
else

10: for i← 1, p.length− n+ 1 do
psub1← p[0, i] . front end of p up to, but excl. ith word
ts← MATCHTARGETS(psub1)

if ts is empty then
continue

15: end if
psub2← p[i, p.length] . back end of p from the ith word
tsrest← FINDASPECTS(psub2, n− 1)

if tsrest is not empty then
return [ts] + tsrest . all targets matched

20: end if
end for
return [] . p could not be matched to targets

end if
end procedure

3.1. GENERAL DESIGN 27

H =
n∑n
i=1

1
xi

(3.1)

The final score is calculated as the harmonic mean [29] of the selected
subset of scores. Harmonic mean is calculated using Equation (3.1), where
each xi is a score out of n scores. In the current example, there is only one
possible selection of pairs, which are as follows:

stationery→ pen = 0.5

stationery→ paper = 0.3

The substitutability scores are for demonstration purposes only. The
final score for this example will be 0.375.

To show how this process works for more complicated scenarios, con-
sider an input where the substitute has to be split into three aspects and
the substitutee has to be split into two.

[A] [B] [C] → [X] [Y]

After calculating the substitutability score of each unique pair of target
sets, we can order them by their scores as follows:

[B]→ [X] = 1.00

[C]→ [X] = 0.85

[C]→ [Y] = 0.80

[A]→ [Y] = 0.60

[B]→ [Y] = 0.35

[A]→ [X] = 0.10

We then pick a subset from this list, going from top to bottom, with
the highest substitutability that covers each target set at least once. In this

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

case, the top four substitutions will be selected, giving a final result of 0.79
(2dp).

A useful property of the harmonic mean is that if any of the scores are
0, then the final score will also be 0. One cannot use the harmonic mean
formula when zeros are involved, as this would lead to division by zero.
Instead, harmonic mean is simply defined to be zero when the list of rates
being averaged also contains at least one zero. This should ensure that we
will not accidentally overvalue a substitute, just because it partially over-
laps the substitutee at the word level, as shown in the following example.

[good] [dog] → [bad] [dog]

Many lexical-based approximate string matching algorithms will give
this example a non-zero score, even though the two phrases are clearly not
substitutable; they just happen to both share the word ”dog”. Using our
method, we expect to produce a list of scores as follows:

[dog]→ [dog] = 1.0

[good]→ [dog] = 0.0

[dog]→ [bad] = 0.0

[good]→ [bad] = 0.0

As you can see, there is no way to pick a subset from this list that does
not contain a non-zero score and still cover each target set. Therefore, it
would receive a final substitutability score of 0.0 as expected.

Algorithm 3 shows exactly how targets are used to calculate the overall
substitutability of two phrases. Most of the work is done in the sub-routine
SEARCH, which is covered in Section 3.1.4.

3.1. GENERAL DESIGN 29

Algorithm 3 Calculates the substitutability of using phrase1 in place of
phrase2. Returns a real value between 0.0 and 1.0.

procedure SUBSTITUTABILITY(phrase1, phrase2)
p1← TOWORDS(phrase1) . split phrase into list of words
p2← TOWORDS(phrase2)

tss1← FINDTARGETS(p1)

5: tss2← FINDTARGETS(p2)

if tss1 or tss2 is empty then
return 0.0 . no targets found for one or both phrases

else
subs← []

10: for all ts1 in tss1 do . test all possible pairs
for all ts2 in tss2 do

score← SEARCH(ts1, ts2)

sub← {score : score, from : ts1, to : ts2}
append sub to subs

15: end for
end for
allts← {tss1 + tss2} . set of all targets
topscores← []

sort subs by descending order of sub.score
20: for all sub in subs do

if allts contains sub.ts1 or sub.ts2 then
remove sub.ts1 and sub.ts2 from allts

append sub.score to topscores
if allts is empty then . all target sets covered

25: break
end if

end if
end for
return HARMONICMEAN(topscores)

30: end if
end procedure

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.1.3 Transitions and information loss/gain

The previous section shows how the input terms can be matched to entities
in a knowledge base to become targets. The next step is to find the link or
relationship between targets. For this to work, we require the knowledge
base to have relational links between its entities. These may come in the
form of incoming and outgoing links on a page, or a hierarchical structure
for categorising entities. Either way, we need a method of transitioning
from one entity/target to another. Sections 3.2 and 3.3 will provide exact
implementation details for using WordNet and Wikipedia.

Transitions between entities convey a direct substitution, which means
that information is either lost, gained or in some cases, unchanged. Based
on this information change, we assign a score to the transition (the tran-
sition score) that is essentially the substitutability of the two entities that
are linked by the transition in question. In order to measure information
change, we also require the knowledge base to have some statistical sum-
mary or metadata on its relational links, which we can use as an indicator
towards the type and quality of the transition.

In the design of a substitutability system, we have categorised all tran-
sitions into four types – Same, Similar, Specialisation and Generalisation
– which will be explained in depth by the remainder of this section. We
will also recommend appropriate transition scores for each type of transi-
tions. These scores act as tunable parameters in a substitutability system
and is the key to quantifying substitutability.

Same

The first type of transition describe entities which have perfect (or near-
perfect) substitutability. Graphically, we have chosen to represent Same
transitions flat along the x-axis to convey no information change.

One form of this transition occurs between entities that are grammati-
cal inflections of each other. Since grammar is irrelevant, such transitions

3.1. GENERAL DESIGN 31

Figure 3.1: Perfect substitutions.

chair chairs

meditation meditate

elegant elegance

Figure 3.2: Near-perfect substitutions.

kitten baby cat

untrue false

replicate copy

are considered perfect with a transition score of 1.0 (see Figure 3.1). But
there is one constraint. When using only this form of the Same transition,
it is generally safe to assume a perfect transition score of 1.0. But when
combined with other transitions, the meaning will likely drift away from
the original term. To avoid this, we only allow perfect Same transitions
that directly link from/to entities that exist within target sets. These tran-
sitions are still allowed between non-target entities, but will be treated as
Similar (discussed in the next transition type) transitions instead.

Another form of the Same transition occurs between entities which
have the same meaning in each other’s context, but are lexically different
(e.g. synonyms) – see Figure 3.2. While these terms may have near-perfect
substitutability, the meaning of the original entity may again drift over
numerous transitions. So to discourage this behaviour, we will include a
slight penalty to this form of the Same transition – giving it a transition
score of 0.99.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.3: Similar transitions/substitutions.

unhappy dejected

quick promptness

propitious golden

Similar

The second type of transition describe entities which have good substi-
tutability, but are not perfect. Several transitions of this type could signif-
icantly drift the meaning of the original entity, so we will assign a larger
penalty. A transition score between 0.5 and 0.8 should be appropriate, but
the specifics will depend on the particular knowledge base used.

This type of transition can be difficult to identify in many knowledge
bases and therefore may be omitted in concrete implementations. For ex-
ample, WordNet, due to its dictionary-like nature, has plenty of relational
links between entities that conform to the Similar transition. Wikipedia
on the other hand, does not provide any obvious ways to do the same.
We explored the idea of following hyperlinks in the “See also” sections of
Wikipedia articles, but many of these were unrelated to the original article
in terms of substitutability.

Figure 3.3 are some examples of the Similar transition.

Specialisation

The third type of transition describe entities that are specialisations of an-
other. More specifically, the entity acting as the substitutee is a speciali-
sation of the entity acting as the substitute. Specialisation implies an is-
a or is-a-type-of relationship, and unlike the previous two transitions, is
asymmetric. This type of transition loses information, which may seem

3.1. GENERAL DESIGN 33

Figure 3.4: A simple Specialisation transition/substitution.

dessert

cake

counter-intuitive at first. But recall that all transitions move from the sub-
stitute side (e.g. dessert) to the substitutee side (e.g. cake). Therefore,
the substitute (being the more general term) would lose some of the mean-
ing of the substitutee if used in place of it.

Graphically, we have chosen to represent Specialisation transitions as
moving downwards, to convey the information loss. See Figure 3.4.

Exactly how much information is lost will depend on how common the
specialisation is. The easiest way to determine commonality is by observ-
ing the breadth of the specialisation. Given two terms, A and B, if B is
very commonly a type or form of A, then little information is lost since the
reader could potentially infer what B was when A is used in its place. In
contrast, if B is just one of many (say 30 or more) types or forms of A, then
a lot more information is lost about B when A is used in its place.

Figures 3.5 and 3.6 are some real life examples. In the first scenario,
lynx (a type of wildcat) does not have many specialisations, so a transi-
tion from lynx to bobcat or caracal would have relatively low infor-
mation loss. In the second scenario, transport has a large number of
specialisations, so a transition to any of those entities (e.g. transport-
truck) would instigate a greater loss of information than the first sce-
nario. Thus, it should receive a lower transition score.

The breadth of a Specialisation transition from A to B is then the total
number of Specialisation transitions that originate from A. If the breadth is
small, we want to give the transition a high transition score. In fact, if the
breadth is one, then the transition could be considered a Same transition.

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.5: Specialisation transition/substitution with narrow breadth.

lynx

bobcat caracal

Figure 3.6: Specialisation transition/substitution with wide breadth.

transport
bus

truck
ferry

pick up

pipe

teleport

raft

rail

freight

3.1. GENERAL DESIGN 35

In these special cases, we will give it a transition score of 0.99, which is the
highest score we will allow for a Specialisation transition: Spmax = 0.99.
As for the other end of the spectrum, we need to decide on the greatest
penalty (or lowest score) that would be assigned to a transition of effec-
tively infinite breadth. After some trial-and-error testing, 0.2 was deter-
mined to be an appropriate minimum transition score: Spmin = 0.2.

Now we can use Equation (3.2) to calculate transition scores based on
the breadth, thus quantifying the information loss in Specialisation transi-
tions. Note that the key coefficient is the inverse cube-root of the breadth,
this is to dampen the penalty as the breadth increases.

score = Spmin +
1

3
√
breadth

· (Spmax − Spmin) (3.2)

For the previous two examples (Figures 3.5 and 3.6), the transition
score from lynx to bobcat will be 0.83 (2dp), while a transition from
transport to truck will score 0.58 (2dp). In reality, the breadth of the
latter transition would be much greater, so an even lower score is ex-
pected for transport-truck. For example, with a breadth of 50, the
score would be reduced to 0.41 (2dp).

Generalisation

The fourth and final type of transition describes entities that are general-
isation of others. This is simply a Specialisation transition in the reverse
direction. Just as specialisations lose information, generalisations gain in-
formation. Graphically, we represent this as moving upwards, to convey
an increase in information (see Figure 3.7).

According to our definition of substitutability, this should be heavily
penalised, as it indicates that the entity acting as the substitute has made
an assumption towards the substitutee. For example, a transition from
truck to transport (opposite to the previous example) would assume
the exact type of transport, adding extra information to the substitutee

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.7: A simple Generalisation transition/substitution.

dessert

cake

term. Such a transition should be scored 0.0 as truck is clearly an unsuit-
able substitute for transport.

However, we do not want to simply score all Generalisation transitions
at 0.0. Once again, we will use the breadth of the transition as a guide
for calculating the score. The breadth, in this case, is the total number of
Generalisation transitions that links to the entity acting as the substitutee.
Note that this is just the breadth of the equivalent Specialisation transition
in reverse.

When the breadth is one, we will again give a maximum score of 0.99:
Gnmax = 0.99. But we are no longer concerned with the minimum score,
which will simply be 0.0. A slightly different equation will be used to cal-
culate the exact score, which magnifies the penalty as the breadth increases
(as opposed to the dampening in Specialisation transitions scores). The ex-
ponentiation applied to the breadth helps to amplify the undesirability of
generalisations/assumptions. We have also added a slight expansion to
the key coefficient term of 0.1. This expansion puts a hard limit on the
breadth allowed for Generalisation transitions, effectively clips the score
at 0.0 for any such transition with a breadth higher than four.

score = max(0, Gnmax · (
1.1

breadth1.5
− 0.1)) (3.3)

Using Equation (3.3), a transition from bobcat to lynx will have a
score of 0.29 (2dp), while truck to transport will score the expected
0.0.

3.1. GENERAL DESIGN 37

3.1.4 Search

We now have the means to match arbitrary phrases to entities in a knowl-
edge base as well as a method to quantify the information loss when mov-
ing between related entities. But what happens when the subsitute targets
are some distance away from the substitutee targets (i.e. multiple transi-
tions are required)? Information loss should be carried, or accumulated
over every transition moving from the substitute to the substitutee.

We can achieve this effect by taking the product of transition scores
along a path from the substitute to the substitutee. So as more information
is lost over each transition, the overall information retention decreases,
which eventually becomes the final substitutability score. For example, if
two transitions both retain half of the original information, then traversing
both in sequence would lower the information retention to a quarter.

food→ dessert = 0.5

desert→ cake = 0.5

food→ dessert→ cake = 0.25

All that is left to do is to find a path between the two sets of targets
which maximises substitutability, or minimises information loss. To find
such a path, we first construct a graph structure where the nodes repre-
sent entities and edges represent transitions. Then we employ a best-first
search algorithm that is similar to Dijkstra’s algorithm [8], but with a pref-
erence for the highest scoring nodes instead of lowest path cost (see Fig-
ure 3.8). The score of each node is simply the product of all the transitions
used to get to it from the initial substitute target.

The search continues until a path reaches the substitutee target. The
score of this target node is then returned as the overall substitutability of
the path found. If no path can be found, then 0.0 is returned.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.8: A path of maximum substitutability from food to cake.

Food

Dessert

Cake

cattle
cake

nutrient

feed

fodder

candy

sweets

pudding

trifle

pastry

0.5

0.5

0.7

0.4

0.8

0.9

0.8

0.3

0.2

0.9

0.1 0.5

0.6

0.9
0.7

0.8

Figure 3.9: A path of maximum substitutability from give the axe to
deactivate.

give the axe fire dismissal

superannuation

deactivation

Section Eight honorable
dischargeremoval

deactivate

3.1. GENERAL DESIGN 39

When multiple targets are present (most of the time), all targets from
the substitute’s side are initially added to the fringe of the search with a
score of 1.0. Then for every new node that is expanded to, it is checked
against all the targets from the substitutee’s side. The first path that is
found which links any substitute target to any substitutee target will be
the final path used.

The act of finding a path of maximum information retention also has
the added benefit of disambiguating the substitute and substitutee against
each other. As the two targets which are found at the ends of this path
should reflect the sense (or form) of the two phrases that put them in as
similar a context as possible, thus maximising substitutability.

Figure 3.9 showcases another example of a path of substitutability, but
displayed as a series of transitions as described in Section 3.1.3. The fi-
nal substitutability score of the pair give the axe → deactivate is
calculated as follows:

give the axe→ fire = 0.99

fire→ dismissal = 0.7

dismissal→ deactivation = 0.66

deactivation→ deactivate = 1.0

give the axe→ deactivate = 0.46

Algorithm 4 shows exactly how the search is performed given two tar-
get sets. The sub-routine EXPAND returns a set of transitions from a given
entity, along with its transition score.

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

Algorithm 4 Finds the best path of substitutability from the target set ts1
to ts2. Returns the score/substitutability of the path.

procedure SEARCH(ts1, ts2)
fringe←max heap
visited← empty set
for all t in ts1 do

5: node← TONODE(t) . converts a target to a node with score 1.0

offer node to fringe
end for
while fringe is not empty do

node← poll from fringe

10: if node.entity already in visited then
continue

else if node.entity is in ts2 then
return node.score . best path found

end if
15: add node.entity to visited

if neigh.score <= 0.0 then . ignore if score is 0
continue

end if
transitions← EXPAND(node.entity)

20: for all tr in transitions do
if tr.next not in visited then . the entity reached by tr

neigh← TONODE(tr.next)

neigh.score← node.score ∗ tr.score
offer neigh to fringe

25: end if
end for

end while
return 0.0 . no valid path found

end procedure

3.2. WORDNET IMPLEMENTATION 41

3.2 WordNet implementation

WordNet [45] is a free, publicly available database of English words and
common phrases. Words in WordNet have a many-to-one correspondence
with words in a traditional dictionary (i.e. the lexical, or string-of-letters,
representation of words). This is because every usage, meaning and con-
text of each lexical word is its own individual WordNet word. In this sec-
tion, “word” will refer specifically to a WordNet word. For example, the
lexical word complete exists as 10 individual words in WordNet – five
verbs and five adjectives.

• Verb

– come to a finish or end

– bring to a whole, with all necessary parts

– carry out

– complete a pass

– write all required information onto a form

• Adjective

– having all the normal parts, components or steps

– perfect, having all qualities

– accomplished

– pejorative intensifier

– been brought to a conclusion

Words are grouped together in sets of tightly-coupling synonyms, called
synsets. Each word can be in more than one synset. Each synset ex-
presses a distinct concept, whereby all the words in the synset can be
used in place of one another within the context of that concept. Therefore,
synsets are collections of words that have perfect substitutability within

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

the context of each other (i.e. if disambiguited against each other). Fig-
ure 3.10 lists the synsets for the word complete using WordNet’s web in-
terface (http://wordnetweb.princeton.edu/perl/webwn). Note
that each synset does not necessarily represent a different meaning for
complete. For example, consider the synsets [complete, finish]

and [complete, fill out, fill in]. The meaning/definition of
complete is almost identical in both synsets, but the usage and context
is different. Synsets are also interlinked by means of semantic and lexical
relationships. This network structure created by WordNet makes it a use-
ful tool for natural language processing and a perfect knowledge base to
mine for our WordNet-based implementation of a substitutability system
– WordSub.

To assist WordSub in the task of mining WordNet, we will be using
JWI the MIT Java WordNet Interface [14]. The library supports the latest
versions of WordNet and provides an easy to use Java API. JWI accesses
WordNet locally via an offline database (known as a dictionary). We ob-
tained the latest WordNet dictionary available at the time – version 3.1,
last updated in June 2011.

3.2.1 Targets

The first task that WordSub has to perform is to match the plain text input
terms (the substitute and the substitutee) to “entities” in WordNet. Words
are the most basic elements of WordNet, which make them a great starting
point for creating target sets. So to begin, WordSub uses JWI to match
the input terms to words. If a match cannot be found directly, then it will
be broken down as shown in Algorithm 2. After this process completes,
WordSub is left with two sets of WordNet words.

However, there is a slight problem with using words as targets. Be-
cause words in WordNet do not represent distinct concepts on their own,
they are only linked by lexical relationships (e.g. grammatical derivations

3.2. WORDNET IMPLEMENTATION 43

Figure 3.10: Synsets for the word complete.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.11: Finding target sets in WordNet.

word

word

word

word

word

word

word

word

SubstituteeSubstitute

word
synset

synset

synset

synset

word

word

word

word

word

word

word

word

synset

synset

synset

from one word to another). For example, the word compute can only be
linked to its other forms, such as computation, computational and
computer. This essentially has the same effects as simply comparing the
stems. WordSub is more interesting when exploiting the semantic rela-
tionships that exist between synsets. Therefore, it is more beneficial to
treat entire synsets are targets and entities, even though they are not the
most basic units of knowledge in WordNet. After generating the two sets
of WordNet words, the synset of each word is then retrieved using JWI to
create the target sets. Since there is a many-to-many relationship between
words and synsets, WordSub ensures duplicate synsets are removed. Fig-
ure 3.11 illustrates the process of generating target sets.

3.2.2 Transitions

Now that WordSub has the means to produce the target sets of synsets, the
next step is to find a path between the substitute and substitutee, by transi-
tioning from one synset to another. Luckily, WordNet boasts a large num-
ber of different types of relationships between synsets (and also words),

3.2. WORDNET IMPLEMENTATION 45

of which the version of JWI WordSub uses has access to 27. By examin-
ing a subset of these relationships (a.k.a. pointers in JWI), WordSub is able
to fully implement all four types of substitution transitions as defined in
Section 3.1.3 – Same, Similar, Specialisation and Generalisation.

Same

Same transitions represent a perfect or near-perfect substitution between
two entities. Since synsets represent distinct concepts, it is unlikely that
a semantic transition between any two synsets will be perfect. However,
as previously stated, the words within any one synset can be freely used
in place of one another in the context of the concept represented by that
synset. Therefore we reason that by using synsets as entities instead of
words, Same transitions are implemented implicitly by WordSub. For ex-
ample, the terms temper and harden have the same meaning in the con-
text of metal and glass work. As a result, they will generate target sets that
share a common synset, making the two terms perfectly substitutable.

Similar

Similar transitions represent good, but imperfect substitution between two
entities. WordSub will explore both lexical and semantic links between
synsets when implementing Similar transitions. For the latter, two seman-
tic pointers will be considered – similar to and see also. Both pointers link
synsets which are similar in meaning/definition, i.e. they are rough syn-
onyms which cannot be used perfectly in place of one another. For exam-
ple, the synset [nasty, awful] has the following similar to and see also
pointers, all of which can be used to implement a Similar transition. Word-
Sub scores these transitions at 0.5, which falls within the Similar transition
score range of 0.5− 0.8.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

• see also

– [unpleasant]

• similar to

– [dirty, filthy, lousy]

– [grotty]

– [hateful, mean]

WordSub also explores grammatical derivations for purpose of Similar
transitions. Recall that grammatical/lexical derivations are actually con-
sidered to be a Similar transition unless used to link directly from/to enti-
ties within target sets (see Section 3.1.3). WordNet supplies three bidirec-
tional pointer types for grammatical derivations – noun-adjective, noun-
verb and verb-adjective. The problem is, grammatical derivations only
exist between words, not synsets, as they are considered lexical relation-
ships. WordSub solves this issue by making the following assumption: if
word x is in synset A and word y is in synset B, and there exists a deriva-
tion pointer from x to y, then there is also an implied derivation from
synset A to B. WordSub scores derivation transitions at 0.7. For example,
the synset [clear, decipherable, readable] can be linked to the
following synsets via derivation pointers:

• [clarity, lucidity, clearness, limpidity]

• [clearness, clarity, uncloudedness]

• [readability]

• [legibility, readability]

Note that similar to and see also pointers only exist for adjective synsets,
while derivation pointers exist for nouns, verbs and adjectives.

3.2. WORDNET IMPLEMENTATION 47

Specialisation and Generalisation

To move in directions of generality and specificity, WordSub exploits the
super-subordinate relationships among synsets. The most common super-
subordinate relationship exists between noun synsets. By following hyper-
nym pointers, WordSub can easily transition from one synset to its more
generic counterpart. For example, there exists a hypernym pointer from
[desk] to [table]. Similarly, WordSub can move in the direction of
specificity by following hyponym pointers. For example, there exists a
hyponym pointer from [rain, rainfall] to [drizzle, mizzle].
Super-subordinate relationships between noun synsets form a connected
tree structure, rooted at the synset [entity]. This means WordSub can
reach any noun synset in WordNet by following hyper/hyponym point-
ers. WordNet also differentiates between relationships of type (i.e. is-a-
type-of) and instance (i.e. is-a). For example, [river] is a hyponym of
[stream, watercourse], but [Nile, Nile River] is a hyponym
instance of [river], which also makes it a leaf in the overall tree network.
In practice, distinguishing between type and instance (i.e. giving different
transition scores) has little effect on the final outcome, so we treat them as
if they were the same.

Verb synsets are also organised into a hierarchical structure. WordSub
can still move in the direction of generality by following hypernym point-
ers. But to move towards specificity, troponym pointers are used instead. A
troponym is a verb that indicates a more precise (or specific) manner of do-
ing something. For example, there exists a troponym pointer from [run]

to [sprint]. Unlike noun synsets, verb synsets do not share a common
root, resulting in a forest network instead of a single connected tree. Con-
sequently, WordSub is limited in its transitions when dealing with verbs,
relying more on Similar transitions to reach more distant synsets.

The breadth of all these Specialisation and Generalisation transitions
is the branching factor of the pointer being followed. In the case of noun
synsets, the breadth is the number of hyponyms (type or instance) a synset

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

has. In the case of verb synsets, the breadth is the number of troponyms
a synset has. WordSub will then calculate transition scores as defined by
Equations (3.2) and (3.3).

3.2.3 Examples

This section will run through some examples of subsitution paths that
WordSub would produce.

For the first example, WordSub is given the input terms admire and
appreciation. That is, WordSub needs to calculate the substitutability
of using admire in place of appreciation. Table 3.1 shows the initial
target sets which WordSub will generate from the inputs. Since there is not
an overlap between the two sets, WordSub now has to find a subsitution
path between the two. During this search, WordSub will discover that the
word admire from the synset [admire, look up to] has a deriva-
tion pointer to the word admiration. Admiration can be found in the
synset [admiration, appreciation], thus completing the substitu-
tion path (see Figure 3.12). The final score of this substitution is therefore
0.7, taken from the single derivation transition.

Table 3.1: Target sets for admire and appreciation, generated by
WordSub.

admire appreciation
[admire, look up to] [appreciation, grasp, hold]

[admire] [taste, appreciation, discernment, perceptiveness]
[appreciation (expression of gratitude)]

[admiration, appreciation]
[appreciation (in value)]

3.2. WORDNET IMPLEMENTATION 49

Figure 3.12: Simple subsitution from admire to appreciation found by
WordSub.

admire admire
look up to

admiration
appreciation appreciation

admiration

Table 3.2: Target sets for enclose and birdcage, generated by WordSub.
enclose birdcage

[envelop, enfold, enwrap, wrap, enclose] [birdcage]
[enclose, hold in, confine]

[enclose, close in, inclose, shut in]
[insert, enclose, inclose, stick in, put in, introduce]

The next example is more complicated. We will see how WordSub
calculates the substitutability of using enclose in place of birdcage.
First, the two target sets are generated as shown in Table 3.2. Once again,
there is no overlap between the sets, so a search will commence. As Word-
Sub explores the network of synsets, it will eventually find that the word
enclose in the synset [enclose, close in, inclose, shut in]

has a derivation pointer to the word enclosure, which can be found in
its own synset. WordSub can then transition along a hyponym pointer
from [enclosure] to [cage, coop]. Continuing towards specificity,
[birdcage] can be reached via a further hyponym pointer, thus com-
pleting the substitution path as shown in Figure 3.13.

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.13: Complex subsitution path from enclose to birdcage found
by WordSub.

enclose

enclose
close in
shut in
inclose

enclosure

birdcage

enclosure

cage
coop

cargo area
hold

storage area
...

lock
lock chamber

recess
niche

playpen
pen

pit

pound
dog pound

... 10 more ...

hutch

squirrel cage

birdcage

The final substitutability score of enclose→ birdcage is calculated
as follows:

enclose→ [enclose, close in, ...] = 1.0

[enclose, close in, ...]→ [enclosure] = 0.7

[enclosure]→ [cage, coop] = 0.51

[cage, coop]→ [birdcage] = 0.75

enclose→ birdcage = 0.27

3.3. WIKIPEDIA IMPLEMENTATION 51

3.3 Wikipedia implementation

Wikipedia (https://www.wikipedia.org/) is a freely available, on-
line encyclopedia of interlinked articles. It represents a vast multilingual
knowledge base of concepts (i.e a particular topic or entity) and the se-
mantic relationships between concepts. This makes it an ideal resource for
natural language processing if one can effectively extract or mine semantic
information from its large database. We will be mining the semantic-rich
information contained in this knowledge base for our Wikipedia-based
implementation of a substitutability system – WikiSub.

Full data dumps of Wikipedia are available in the form of large XML
and HTML files, hosted by the Wikimedia Foundation [25]. Mining from
all this data is a slow and tedious process, because the files are enormous
in size and the markup is not friendly to parse into anything useful – mak-
ing it far too inefficient for our purposes. Luckily in 2012, the University
of Waikato released an open-source toolkit called Wikipedia Miner [46],
which can be used to perform this task much more efficiently.

We obtained a full data dump of Wikipedia of July 2011 as a single XML
file approximately 30 gigabytes in size. Wikipedia Miner was then used to
extract and parse the file into a high performance database, based on the
Berkeley database engine [49]. Wikipedia Miner then provides a Java API
to efficiently access the database through a set of predefined models.

3.3.1 Targets

Besides providing an efficient method of accessing Wikipedia, Wikipedia
Miner also includes a set of other useful features, such as comparing the
relatedness of articles and disambiguating links. The main feature that in-
terested us is the ability to match plain text input to Wikipedia labels. A
label is a model used by Wikipedia Miner to represent an anchor text (click-
able text in a hyperlink) that links to specific articles or pages in Wikipedia.
Although each label has a specific term/phrase attached to it, most are still

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

ambiguous. In other words, labels do not represent individual entities in
Wikipedia.

Instead, each label links to many articles or concepts, which are the
actual knowledge entities in Wikipedia. Given a label, Wikipedia Miner
is able to return the list of articles that it links to – known as the senses
of a label. For example, the label red planet will link to the following
articles:

• Red Planet (novel) – by Robert A. Heinlein

• Red Planet (miniseries) – a 1994 adaptation of the novel

• Mars – the 4th planet from the Sun

• Red Planet (film) – a 2000 film starring Val Kilmer

• Red Planet – a song by Little Mix

We retrieve the senses for both input phrases (substitute and substitu-
tee), which are then used as target sets in WikiSub. If a label cannot be
matched to one or both of the input phrases, then it will be broken down
into its component aspects until a match can be found as per Algorithm 2.
In WikiSub, the sub-routine MATCHTARGETS will return a set of senses if
a label can be matched to the input. The two procedures, FINDTARGETS

from Algorithm 1 and FINDASPECTS from Algorithm 2, both return lists
of such sets.

There is just one problem with using label senses. Some labels are re-
solved to a huge number of senses, most of which will be irrelevant to the
label itself. A sense will be linked to a label if even a single anchor text
exists (with that label’s text) that links to the sense. WikiSub requires a
method for determining how common a sense is in the context of a par-
ticular label. Uncommon senses can then be pruned out of the target set
returned by MATCHTARGETS. Luckily, Wikipedia Miner provides a sum-
mary statistic which is perfect for this task – a sense’s prior probability.

3.3. WIKIPEDIA IMPLEMENTATION 53

The prior probability of a sense measures the probability that a particu-
lar label actually links to that sense. Put simply, it is the fraction of anchor
texts which link directly to that sense over the total number of anchor texts
for the label in question.

WikiSub removes a label’s irrelevant senses by accepting them in de-
scending order of prior probability and keeping a running total of all the
priors. Once the total prior exceeds a certain threshold, which we call
the maximum prior coverage, the remaining senses are rejected/pruned.
WikiSub uses a maximum prior coverage value of 0.99, which means the
accepted senses cover 99% of all anchor texts within Wikipedia that are
tied to the current label being processed. To further ensure irrelevant
senses are eliminated, WikiSub also rejects any senses with a prior proba-
bility less than 0.001.

3.3.2 Transitions

By following the semantic links between the senses extracted by Wikipedia
Miner, WikiSub is able to implement three out of the four transitions de-
fined in Section 3.1.3 – Same, Specialisation and Generalisation. We ex-
plored the idea of following links in the “See also” section of Wikipedia
articles for Similar transitions, but these were not a reliable source as they
often included links to articles that were completely unrelated from the
perspective of substitutability.

Same

Recall that one form of Same transitions occur between entities that are
grammatical inflections of each other. We implemented these transitions
by first stemming the plain text input (using the Porter stemming algo-
rithm [54]) prior to matching it to Wikipedia labels. Therefore, all labels
that matched the stem of our input would be retrieved. Since this form of
the Same transition had a perfect transition score of 1.0, there is no harm

54 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.14: Finding target sets in Wikipedia.

Substitute

label

label

label

label

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

sense

label

label

label

Substitutee

in simply putting the senses of all matching labels into the initial target
set (remove any duplicates caused by overlaps in senses), which is what
WikiSub does. The initial process of generating the target sets is repre-
sented graphically in Figure 3.14.

The other form of Same transitions occur between entities with the
same meaning but are lexically different. One way of implementing these
transitions is by examining redirect links that feed into each article/sense.
Redirects are Wikipedia pages that solely connect an article to its com-
mon alternative titles. Such alternatives usually correspond to synonyms
– Baby cat redirects to Kitten; typical spelling variations – Liquorice
redirects to Licorice; and acronym expansions – AI redirects to Arti-

ficial intelligence.

Another way WikiSub implements Same transitions is by exploiting
Wikipedia categories. Most (almost all) Wikipedia articles belong to one or
more categories, which group a set of similar topics and concepts together.
Many categories also have a central article that is its equivalent. For exam-
ple, the article Computer science belongs in the category Computer

3.3. WIKIPEDIA IMPLEMENTATION 55

science and is also its central article. This occurs when the topic within
a particular article is broad enough to warrant its own category.

To determine whether an article/sense is central to its parent category,
WikiSub checks if the title of the category matches that of the article or
any alternative titles (redirects) of that article, which covers most cases.
Occasionally, a category’s central article will have a name with a different
inflection or have an additional bracketed term at the end of the category
title for disambiguation purposes. Therefore, we strip any bracketed terms
and take the stem of an article’s title when checking whether it is central
to a category or not. For example, the article Orange (fruit) belongs
to the following categories:

• Citrus hybrids

• Cocktail garnishes

• Oranges

• Symbols of California

• Symbols of Florida

• Tropical agriculture

WikiSub will recognise that the article Orange (fruit) is in fact the
central article in the category Oranges, and thus create a Same transition
between the two. By allowing such transitions, WikiSub is able to expand
its search to articles, redirects and categories.

Specialisation and Generalisation

Now that we have the means to move from a sense to a category, WikiSub
can exploit the hierarchical organisation of categories in order to transit to
and from topics that are either more general or specific. All Wikipedia cat-
egories descend from a single root category [46], the category Contents.

56 CHAPTER 3. DESIGN AND IMPLEMENTATION

So when WikiSub transits to a category, it then has access to what is es-
sentially a taxonomy representing all of human knowledge – organised in
order of generality. Consequently, it will also be able to reach almost all
other articles within Wikipedia.

There are two ways that WikiSub implements Specialisation transi-
tions. The first is by moving from a category to one of its child categories
or sub-categories. The breadth of this transition is then the number of total
sub-categories (see Section 3.1.3 for how breadth is used to calculate transi-
tion scores). For example, Lakes is a sub-category of Bodies of water,
which makes Bodies of water → Lakes a Specialisation transition.
The second way is to move from a category to one of its non-central child
articles (recall that moving from a category to its central article is handled
as a Same transition). The breadth of this transition is then the number
of total non-central child articles. For example, Latte is a child article of
Coffee beverage, which makes Coffee beverage → Latte a Spe-
cialisation transition.

Similarly, WikiSub implements the Generalisation transition in the same
two ways, but in reverse order. One is by moving from a category to its
parent category. Note that because Wikipedia categories often have more
than one parent category, the breadth of such a transition could either be
the total number of parent categories or the total number of sub-categories
belonging to the parent category. We decided to stick with the latter op-
tion as it conforms to the definitions discussed in Section 3.1.3. Another
way of obtaining a Generalisation transition is to move from an article to
one of its parent categories, as long as that article is non-central to the par-
ent category. Again, the breadth of the transition is the total number of
non-central articles in that parent category.

3.3. WIKIPEDIA IMPLEMENTATION 57

3.3.3 Examples

This subsection will run through some examples of subsitution paths that
WikiSub would produce.

For the first example, the inputs to WikiSub are the terms Pennsyl-
vania and Keystone state. That is, we would like WikiSub to mea-
sure the substitutability of using Pennsylvania in place of Keystone
State. Pennsylvania produces a large number of senses/targets, which
include the following:

• University of Pennsylvania

• Pennsylvania

• USS Pennsylvania (1837)

• Pennsylvania (steamboat)

Keystone State only produces three senses/targets as follows. One
of the targets (highlighted in bold) overlaps with one of the targets from
Pennsylvania.

• USS Keystone State (1853)

• Pennsylvania

• List of U.S. state nicknames

Since the two target sets already overlap, WikiSub does not need to
perform a search between the sets and the output substitution path will
simply be the single node representing the article Pennsylvania (see
Figure 3.15). The final substitution score is a perfect 1.0.

The second example is less trivial. WikiSub will attempt to calculate the
substitutability of using natural science in place of organic chem-

istry. The initial set of generating target sets will produce the senses

58 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.15: Simple subsitution from Pennsylvania to Keystone

State found by WikiSub.

Pennsylvania Pennsylvania Keystone State

Table 3.3: Target sets for natural science and organic chemstry,
generated by WikiSub

natural science organic chemstry
Science Organic chemistry

Natural science
Natural Sciences (Cambridge)

Science in medieval Islam
Natural Sciences (Durham)

shown in Table 3.3. Since there is no overlap between the two target sets,
WikiSub will attempt to make a connection between the two by searching
for a substitution path.

During this search, WikiSub will find that the article Natural sci-

ence is the central article for the category Natural sciences, and will
therefore create a Same transition between the two. From there, WikiSub
can reach the Physical sciences category (a sub-category of Natu-
ral sciences) via a Specialisation transition. Continuing on this path
of specificity, WikiSub will expand its search to the sub-category Chem-

istry and then Organic chemistry. Finally, it will see that the cat-
egory Organic chemistry has a central article with the same name,
which also happens to match the sense in the substitutee’s target set, thus
completing the substitution path. Figure 3.16 shows the graphical repre-
sentation of this path – rectangles represent categories while ovals repre-
sent senses/articles.

3.3. WIKIPEDIA IMPLEMENTATION 59

Figure 3.16: Complex subsitution path from natural science to or-

ganic chemistry found by WikiSub.

natural science Natural science Natural sciences

Biology

Earth sciences

Natural scientists

Natural history

Physical sciences

Astronomy PhysicsChemistry

Organic chemistry

Photochemistry

Geochemistry

Radiochemistry

Organic chemistryOrganic chemistry

Chemists

Chemical bonding

... 66 more ...

60 CHAPTER 3. DESIGN AND IMPLEMENTATION

The final substitutability score of natural science→ organic chem-

istry is calculated as follows. Terms prefixed with “C:” represent cate-
gories.

Natural science→ C:Natural sciences = 1.0

C:Natural sciences→ C:Physical sciences = 0.66

C:Physical sciences→ C:Chemistry = 0.75

C:Chemistry→ C:Organic chemistry = 0.39

C:Organic chemistry→ Organic chemistry = 1.0

Natural science→ Organic chemistry = 0.19

Chapter 4

Evaluation

In this chapter, we focus on the task of measuring the performance of sub-
stitutability systems. First, we describe the process of how we created a
dataset for the specific purpose of evaluating substitutability systems is ex-
plained. Second, a variety of different evaluation metrics are introduced,
with the motivation behind each one justified.

4.1 Dataset

We want a dataset that can test the performance of our substitutability sys-
tem against existing approximate string matching systems. This dataset
should contain both substitution pairs that are lexically similar, suitable
for non-semantic partial string matching; and pairs that are only semanti-
cally substitutable, suitable for knowledge based systems such as ours.

There are existing datasets available for evaluating systems that per-
form only approximate lexical string matching. However, none of these
are suitable for purely evaluating systems that measure substitutability.
More specifically, they do not test for semantic substitutability. For exam-
ple, in [73] and [30], the dataset consisted of substitute-substitutee pairs
that were only substrings of each other. In reality (i.e. when used to evalu-
ate the performance of a keyphrase extraction system against a set of gold

61

62 CHAPTER 4. EVALUATION

Table 4.1: Example question given to volunteers for dataset creation.
Substitutee: APPLES
Substitute: Fruit Pear Vegetables Food

standard keyphrases, see Chapter 1), approximate string matching sys-
tems have to cope with any arbitrary pair of phrases. More semantically-
oriented datasets are also available, such as the WordSimilarity-353 Test
Collection [13] – a set of English word pairs with human-assigned similar-
ity judgements. But these are focused around the notion of semantic relat-
edness, which can differ significantly to substitutability in many cases (see
Section 2.1). Therefore, we decided to create our own dataset, in order to
isolate the task of measuring substitutability.

With the help of over 130 volunteers (university students ranging from
undergraduate to doctorate), we created a dataset which consisted of 88
questions. Each question targeted a single substitutee with four potential
substitutes, as shown in Table 4.1.

For each question, the volunteers were asked to circle the best sub-
stitute out of the four and cross out any that are definitely unsuitable as
substitutes (i.e. a substitutability of 0.0 or near 0.0). They were also given
the option to circle up to two substitutes if they could not decide which
was better. We believe that making the volunteers compare a set of sub-
stitutes against a single substitutee produces more consistent and reliable
data, as opposed to asking them to assign arbitrary scores to independent
substitute-substitutee pairs. For example, it is easy to agree that Fruit is
a better substitute than Vegetables for Apple, but assigning a specific
score for the pair Fruit→ Apple is both more difficult and more subjec-
tive. To ensure there were no guesses, volunteers were told to ignore any
questions where they did not know the meaning of all five phrases – the
substitutee and four substitutes. Note that the volunteers were not given
the strict definition of substitutability laid out in Section 3.1.1, as we did
not want to bias their choices towards our expectations. Instead, they were

4.1. DATASET 63

simply told that substitutability is a measure of how suitable a phrase is
when used in place of another.

For the example in Table 4.1, a sensible answer would have Fruit cir-
cled, while crossing out Vegetables and Pear. Recall that our definition
of substitutability – a measure of how much information/meaning is re-
tained if one phrase (substitute) is used in place of another (substitutee),
whilst making as few assumptions towards the substitutee as possible (see
Section 3.1.1 for a more detailed explanation). Fruit retains more infor-
mation towards Apple than Food, which is far too general.

Questions were divided into sheets of 10 questions each, along with an
additional completed example question at the top. Each sheet contained
a unique set of questions (no question appeared twice on a single sheet)
and was numbered to assist in data entry later on. Furthermore, the order
of the 4 substitutes were also shuffled, to ensure there was no bias caused
by the order in which the substitutes were presented to the volunteers.
Each volunteer is then handed a single sheet to be completed. Figure 4.1
displays one of these question sheets.

After collecting over 130 sheets, we wrote a simple Java program to as-
sist in the monumental task of entering the data into the computer. When
each sheet of 10 questions was initially generated, a data file was saved to
track which questions were on it. By entering the sheet number into our
data entry program, it read from this data file and immediately present
us with the expected list of questions, along with an interface for entering
how each question was answered (see Figure 4.2).

A total of approximately 1,200 questions were completed by the vol-
unteers, spread out across all 88 questions (on average, each question was
completed over 13 times). The answers were then aggregated to form a
single dataset. Each question in fact consists of four substitute-substitutee
pairs, but with the same substitutee. A volunteer score is assigned to each
of the four substitutes to indicate its substitutability for the substitutee. Ev-
ery time a substitute was circled by a volunteer, its score was incremented

64 CHAPTER 4. EVALUATION

Figure 4.1: Question sheet for dataset creation.

4.1. DATASET 65

Figure 4.2: Data entry program written in Java.

Table 4.2: Aggregated volunteer scores for one question in the dataset.
Substitutee: ALTERNATING CURRENT (coverage: 15)
Substitute: Electricity AC DC Energy
Score: 0 +15 -9 -1

by one. Every time a substitute was crossed out by a volunteer, its score
was decremented by one. For the example in Table 4.1, Fruit would re-
ceive +1 whilst Pear and Vegetables would both receive −1. Table 4.2
is the aggregated result of one of the 88 questions:

Each question also records the total number of volunteers that answered
it (known as its coverage), which is used later in the various evaluation
metrics (see Section 4.2). The coverage for the example in Table 4.2 is 15,
meaning everyone agreed that AC (with a maximum volunteer score of
15 also) is the best substitute for Alternating Current, while most
agreed that DC is not a suitable substitute.

66 CHAPTER 4. EVALUATION

Table 4.3: Expected system scores for one question in the dataset.
Substitutee: ALTERNATING CURRENT
Substitute: Electricity AC DC Energy
Score: 0.5 1.0 0.0 0.3

4.2 Metrics

To evaluate a substitutability system, it is given each question from the
dataset and made to calculate a substitutability score for each substitute-
substitutee pair. We expect a system to give substitutability scores of real
values between 0.0 and 1.0, 0.0 being no substitutability and 1.0 being per-
fect substitutability. Table 4.3 is an expected response from a system to the
question in Table 4.2.

The tricky part now is to score/evaluate a system based on how correct
or incorrect its response is when compared to the aggregated dataset. For
this, we devised five metrics which give an agreement score between 0.0

and 1.0, 0.0 being complete disagreement and 1.0 being completely agree-
ment with the dataset.

The following subsections contain many equations that formally de-
fine each metric. D is used to represent the entire dataset of 88 questions
and each Q ∈ D is a particular question from the dataset. The coverage
of each question is written as cover(Q) and each individual substitute is
denoted as Qi where 1 ≤ i ≤ 4. A specific substitute’s volunteer score is
then written as score(Qi). When evaluating a substitutability system, each
question is processed by that system to produce a substitutability score for
each substitute. So in the context of any Q, P = processed(Q), where P is
essentially a mirror of Q but score(Pi) gives the system’s substitutability
score instead of the volunteer score from the dataset.

4.2. METRICS 67

Table 4.4: A question from the dataset without a clear winner.
Substitutee: BRIGHT (coverage: 16)
Substitute: Dull Intelligent Stupid Smart
Score: -13 +11 -14 +14

4.2.1 Clear winner

The first metric tests whether a system can identify the best substitute
when there is a clear winner in the question. Not all questions are suitable
for this metric, as some have more than one good substitute. A question
is considered to have a clear winner (an obvious best substitute) if the top
volunteer score for any substitute is at least two-thirds of the question’s
coverage (number of total attempts) and all other runner-ups are scored
below this threshold. Using the example in Table 4.2 again, AC is a clear
winner as no other potential substitute has a volunteer score above 10;
recall that the question has a coverage of 15.

In contrast, Table 4.4 is an example that does not have a clear winner.
This question has a coverage of 16 and the best two substitutes are both
scored above 10.

Equations (4.1) to (4.3) are used to determine clear winners in the dataset.
Best determines the highest volunteer score of any substitute, e.g. 14 for
Table 4.4; Topv finds all substitutes that have a volunteer score above two-
thirds of a question’s coverage, Smart and Intelligent in this case;
and HasCW determines whether a question in the dataset has a single
clear winner or not, which will be false for this example.

Best(Q) =
4

max
i=1

score(Qi) (4.1)

Topv(Q) = {Qi

∣∣score(Qi) >
2 · cover(Q)

3
, 1 ≤ i ≤ 4} (4.2)

HasCW (Q) = |Topv(Q)| == 1 (4.3)

After removing questions that did not have clear winners, we were left

68 CHAPTER 4. EVALUATION

Table 4.5: A set of system scores that disagrees with the dataset according
to the clear winner metric.

Substitutee: ALTERNATING CURRENT
Substitute: Electricity AC DC Energy
Score: 0.7 0.9 0 0.3

with 62 questions. These questions were then evaluated against a substi-
tutability system. For each question, the system either agrees (score of 1.0)
or disagrees (score of 0.0) with the dataset. A system agrees if only one
substitute is given a score that is above 2

3
and that substitute is the same as

the clear winner identified by the volunteers.

In Equation (4.4), Tops is similar to Topv but is specifically used for a
system substitutability scores as opposed to volunteer scores. CW (P,Q)

in Equation (4.5) scores the actual agreement between a system against the
dataset for a particular question Q and its processed counterpart P .

Tops(P) = {Pi
∣∣score(Pi) > 2

3
, 1 ≤ i ≤ 4} (4.4)

CW (P,Q) =

1, if Tops(P) == Topv(Q)

0, otherwise
(4.5)

The substitutability scores from Table 4.3 agrees with the dataset ques-
tion – the runner-up substitute is scored at 0.5 (below the threshold) and
AC is correctly identified as the best substitute. Counter to this is a set
of substitutability scores that would disagree with the dataset (Table 4.5,
where Electricity has been given too high a substitutability score.
Therefore its score sits above the threshold along with ACand there is no
clear winner (i.e. Tops will return a set with more than one element).

An average is taken of all the agreements (as a set of ones and zeros)
to give the final metric – average clear winners identified (CW in Equa-
tion (4.7)).

4.2. METRICS 69

DCW = {Q
∣∣Q ∈ D,HasCW (Q)} (4.6)

CW =

∑
Q∈DCW

CW (P,Q)

|DCW |
(4.7)

4.2.2 Good substitutes

The second metric tests whether a system can identify good substitutes,
which includes clear winners as well as questions that contain multiple
highly scored substitutes. In the dataset, a substitute is considered good
if it has a volunteer score that is at least half of the question’s coverage
(number of volunteers that answered it). In other words, at least half of
the volunteers agreed that the substitute is suitable. Using the “BRIGHT”
example in Table 4.4, substitutes Intelligent and Smart are considered
to be good substitutes, as they both have a volunteer score higher than
eight (recall that the question had a coverage of 16).

In Equation (4.8), Goodv determines all the good substitutes of a partic-
ular question in the dataset based on volunteer scores. HasGS in Equa-
tion (4.9) determines whether a question has any good substitutes (i.e. at
least one). Note that by this definition, all questions that have a clear win-
ner qualifies for this metric.

Goodv(Q) = {Qi

∣∣score(Qi) ≥
cover(Q)

2
, 1 ≤ i ≤ 4} (4.8)

HasGS(Q) = |Goodv(Q)| > 0 (4.9)

Questions that do not have good substitutes are removed, which left 87
questions (only one question did not have good substitutes). For each of
the 87 questions, the system being evaluated receives an agreement score
between 0.0 and 1.0 that reflects the fraction of good substitutes identi-
fied. A substitute is identified as being good if the system gives it a substi-
tutability score of at least 0.5.

70 CHAPTER 4. EVALUATION

Table 4.6: A set of system scores that half agrees with the dataset according
to the good substitutes metric.

Substitutee: BRIGHT
Substitute: Dull Intelligent Stupid Smart
Score: 0.0 0.4 0.0 0.7

In Equation (4.10), as with the previous metric, Goods is similar to
Goodv but is specifically used for a system’s substitutability scores. GS(P,Q)
in Equation (4.11) scores the agreement between a system and the dataset
for a particular question Q and its processed counterpart P .

Goods(P) = {Pi
∣∣score(Pi) ≥ 0.5, 1 ≤ i ≤ 4} (4.10)

GS(P,Q) =
|Goods(P) ∩Goodv(Q)|

|Goodv(Q)|
(4.11)

For example, consider a system which calculated the substitutability
scores shown in Table 4.6 against the dataset question in Table 4.4. Smart
has successfully been identified as a good substitute, but the system missed
Intelligent (substitutability score is below 0.5). Therefore it would re-
ceive an agreement of 0.5, or 50%, for this question.

An average is taken of all the agreements to give the final metric –
average good substitutes identified (GS in Equation (4.13)).

DGS = {Q
∣∣Q ∈ D,HasGS(Q)} (4.12)

GS =

∑
Q∈DGS

GS(P,Q)

|DGS|
(4.13)

4.2.3 Bad substitutes

The third metric tests whether a system can successfully identify bad sub-
stitutes. That is, phrases which clearly cannot be used in place of the sub-
stitutee. A substitute is considered bad if it has a volunteer score that is

4.2. METRICS 71

Table 4.7: A question from the dataset with bad substitutes.
Substitutee: FAST (coverage: 12)
Substitute: Quick Slow Big Small
Score: +12 -9 -10 -10

sufficiently below zero. We decided that anything below a threshold of
negative one-fifth of a question’s cover is bad. This meant that more vol-
unteers crossed-out the substitute (rejected it as being a suitable substitute)
than those that circled it (believed it to be the best substitute).

In Equation (4.14), Badv determines all the bad substitutes of a partic-
ular question in the dataset based on volunteer scores. HasBS in Equa-
tion (4.15) determines whether a question has any bad substitutes (i.e. at
least one).

Badv(Q) = {Qi

∣∣score(Qi) <
−cover(Q)

5
, 1 ≤ i ≤ 4} (4.14)

HasBS(Q) = |Badv(Q)| > 0 (4.15)

Table 4.7 is a question with a coverage of 12, so any substitute with
a volunteer score less than -2 would be considered a bad substitute. I.e.
Slow, Big and Small.

For these bad substitutes, we expect a substitutability system to pro-
duce a score that is zero or near-zero. We decided that any score below 0.1

is acceptable. The agreement between a system and a particular question
in the dataset is the fraction of bad substitutes it is able to identify, giving
it an agreement score between 0.0 and 1.0.

In Equation (4.16), as with the previous metric, Bads is similar to Badv
but is specifically used for a system’s substitutability scores. BS(P,Q) in
Equation (4.17) scores the agreement between a system and the dataset,
for a particular question Q and its processed counterpart P .

72 CHAPTER 4. EVALUATION

Table 4.8: A set of system scores that two-thirds agrees with the dataset
based on the bad substitutes metric.

Substitutee: FAST
Substitute: Quick Slow Big Small
Score: 0.85 0.0 0.15 0.03

Bads(P) = {Pi
∣∣score(Pi) < 0.1, 1 ≤ i ≤ 4} (4.16)

BS(P,Q) =
|Bads(P) ∩Badv(Q)|

|Badv(Q)|
(4.17)

Consider a system which produced the set of scores shown in Table 4.8
for the question in Table 4.7. Slow and Small have both been successfully
identified as a bad substitutes, but the system missed Big (with a substi-
tutability score above 0.1). Therefore it would receive an agreement of 0.67
(2dp), or two-thirds, for this particular question.

Questions that did not have bad substitutes, as previously defined,
were removed, leaving 84 questions. Then each question is tested against
a system to determine its average agreement towards the dataset for bad
substitutes – average bad substitutes identified (BS in Equation (4.19)).

DBS = {Q
∣∣Q ∈ D,HasBS(Q)} (4.18)

BS =

∑
Q∈DBS

BS(P,Q)

|DBS|
(4.19)

4.2.4 Combo

The previous two metrics, GS and BS, are great for penalising systems
which fail to recognise suitable substitutes or incorrectly give unsuitable
substitutes non-zero substitutability scores. However, on their own, each
metric is flawed. If a system (A) gives a perfect score to every potential

4.2. METRICS 73

substitute (i.e. 1.0), then the GS metric will evaluate this system as having
a perfect agreement to the dataset. Similarly, if a system (B) gives every
substitute a score of 0.0, the BS metric would score this system as having
perfect agreement with the dataset.

We decided that these two metrics needed to be combined into a single
metric. While GS will evaluate system A with a perfect agreement of 1.0,
it will fully penalise system B with an agreement of 0.0. Vice versa for
BS. So combining the two metrics should give a fair indication towards a
system’s true performance.

One method is to simply combine the two metrics using their arith-
metic mean (i.e. the average), but this type of mean is heavily influenced
by high outliers. So if one of the metrics produces a trivially high agree-
ment, the mean will drastically pulled up even if the opposing metric
scores 0.0. An alternative is the harmonic mean [29], which is typically
used when an average of rates is required (values between 0.0 and 1.0).
It takes the reciprocal of the arithmetic mean of reciprocals as shown by
Equation (3.1) back in Section 3.1.2. Harmonic mean tends strongly to-
wards the smallest number, due to its reciprocal nature to the arithmetic
mean. This is a highly desirable property, as it will punish systems that re-
ceive trivially high agreement scores in only one of the GS or BS metrics.

Equation (4.20) is a simplified version of harmonic mean when there
are only two rates [21]. Combining rates in this manner is very similar to
the F-measure [39], a frequently used metric in information retrieval and
natural language processing that tests for general accuracy, where the two
rates being combined are precision and recall. F-measure is also param-
eterised by a weight, which alters the final value to favour one rate over
another. Our Combo metric most closely resembles the F1-score, which is
simply the traditional harmonic mean with even weighting.

Combo = 2 · BS ·GS
BS +GS

(4.20)

We will use the example in Table 4.9 to demonstrate how the Combo

74 CHAPTER 4. EVALUATION

Table 4.9: A set of substitutability scores produced by three different sys-
tems.

Substitutee: WATERMELON (coverage: 15)
Substitute: Fruit Melon Honeydew Rockmelon
Volunteer Score: +4 +11 -10 -11
Good/Bad: - Good Bad Bad
System X: 0.4 0.8 0.0 0.0
System Y: 0.3 0.7 0.2 0.0
System Z: 0.1 0.1 0.0 0.0

metric is used to evaluate a system against a particular question in the
dataset. This question has a coverage of 15, which makes Honeydew and
Rockmelon bad substitutes and Melon a good substitute (recall that a
substitute is considered good if it has a volunteer score at least half of the
question’s coverage).

System X successfully identifies the good substitute and both bad sub-
stitutes, so it performances perfectly according to both metrics.

GSX = 1.0

BSX = 1.0

ComboX = 1.0

System Y successfully identifies the good substitute, but over-values
the bad substitute Honeydew (recall that a substitute is considered bad
only if a system scores it below 0.1). Therefore it is penalised by BS, which
will also be reflected in the Combo metric.

GSY = 1.0

BSY = 0.5

ComboY = 0.67 (2dp)

4.2. METRICS 75

System Z successfully identifies both bad substitutes, but undervalues
the good substitute, so it receives an agreement score of 0.0 under the GS
metric and is also penalised heavily by the Combo metric.

GSZ = 0.0

BSZ = 1.0

ComboZ = 0.0

We believe that Combo is a good overall metric for indicating a sub-
stitutability system’s true performance, by punishing systems that receive
trivially high agreements from either GS or BS on their own, whilst still
providing a fair evaluation for systems that have a partial agreement to
the dataset. Note that while the previous examples calculated Combo us-
ing a single question, the actual metric will use the average GS and BS
agreements over the entire dataset.

4.2.5 Substitute ranking

The final metric measures how well a system ranks substitutes against
each other in the context of a particular substitutee. More specifically, for
every pair of substitutes in a question, can the system correctly identify
which one is better? Consider the question in Table 4.10 from the dataset
and a set of scores provided by two substitutability systems.

Table 4.10: A set of substitutability scores produced by two different sys-
tems.
Substitutee: VIOLIN (coverage: 14)
Substitute: Guitar Instrument Stringed Instrument Orchestra
Volunteer Score: -12 -1 +14 -6
System X: 0.0 0.8 0.7 0.2
System Y: 0.9 0.5 0.8 0.1

76 CHAPTER 4. EVALUATION

The ranking of the substitutes is clear, as determined by the volunteer
scores. Stringed Instrument is a better substitute than Instrument

for the substitutee Violin, Instrument is better than Orchestra and
Orchestra is better than Guitar.

A simple way to compare the ranking produced by a system against
the volunteer’s ranking is to check every pairwise comparison to see if the
two agrees (there are six pairs in total,

(
4
2

)
= 6). Using this method, the

two systems (X and Y) will achieve the following rank scores:
System X incorrectly values Instrument over Stringed Instru-

ment, but gets everything else correct in terms of ranking order. There-
fore, out of the six possible pairs of potential substitutes, System X only
misranks one of them – receiving a substitute rank score of 0.83 (2dp) or
5
6
. More formally, Equations (4.21) and (4.22) are used to make this cal-

culation. Note that Equation (4.21) can be applied to both volunteer and
system scores.

Comp(Qi, Qj) =

−1, if score(Qi) < score(Qj)

1, otherwise
(4.21)

SR(P,Q) =

∑4
i=1,j=2,i<j

1, if Comp(Pi, Pj) == Comp(Qi, Qj)

0, otherwise

6
(4.22)

System Y also makes one mistake, but this mistake has appointed the
worst substitute Guitar to be the best substitute; a relatively large error
when compared to System X. This is reflected by the pairwise compar-
isons, in which System Y fails half of them, receiving a substitute rank
score of only 0.5 (three out of six pairs correct).

Used in this manner, our metric is calculated in a similar fashion to the
Kendall tau rank correlation coefficient [27] (based on the Kendall tau or
bubble-sort distance) in the sense that it counts the number of concordant
(agreement in rank order) and discordant (disagreement in rank order)

4.2. METRICS 77

pairs between two lists (see Equation (4.23)).

Kendall − tau =
concordant− discordant

no.ofpairs
(4.23)

However, being a ranking correlation coefficient, the Kendall’s tau pro-
duces a value between −1 and 1. A value of zero implies no correla-
tion at all between two rankings (0.5 by our metric), while values be-
low zero imply an opposing correlation. If a system produces an op-
posing ranking of substitute scores when compared to the dataset (i.e. a
negative rank correlation), then inverting all of its substitutability scores
(inverted = 1 − score) would effectively multiply its rank correlation by
−1, thus improving it. Given this fact, it may appear strange that our sub-
stitute rank metric ranges from 0.0 to 1.0, considering values below 0.5 are
not helpful.

The reason behind our decision should become clear if we analyse the
question and scores in Table 4.11. In this question, Estimate is clearly the
best substitute for the substitutee Approximate according to the human
volunteers, while the remaining three substitutes are all bad and ranked
very closely together.

At first glance, System X seems to have done very well, it would cer-
tainly receive perfect agreement scores from all the previous metrics (CW,
GS, BS and Combo). But on closer inspection, it has incorrectly ranked
the three bad substitutes, however subtle the differences may be. So using
our substitute rank metric in its current state would rate System X at just
0.5 and the Kendall’s tau coefficient would produce a value of 0.0, or no
correlation at all; a rather unfair result.

In contrast, System Y seems to do a very poor job on this question at a
glance – it fails to identify the best substitute or the three bad substitutes
(it would receive 0.0 using all previous metrics) . But because it has cor-
rectly ranked the three bad substitutes in the correct order, which should
be irrelevant, it will be rated as having performed better than System X. It
correctly ranks four out of the six pairs, receiving a score of 0.67 (2dp), or

78 CHAPTER 4. EVALUATION

Table 4.11: Substitutability scores that would be unfairly judged by a rank-
ing correlation.

Substitutee: APPROXIMATE (coverage: 16)
Substitute: Reason Estimate Calculate Process
Volunteer Score: -6 +16 -5 -7
System X: 0.07 0.9 0.0 0.1
System Y: 0.7 0.6 0.9 0.5

0.33 (2dp) using Kendall’s tau coefficient (4−2
6

).
To remedy this inherent unfairness, we decided that pairs of substi-

tutes should be considered equally good (or bad) if their scores are simi-
lar. For the volunteer scores, substitutes that are scored with a difference
no greater than one-fifth of the question’s coverage are considered equal.
For system scores, we used a threshold of 0.1. Note that volunteer scores
can potentially range from−cover(Q) to +cover(Q), which is why we used
a fifth of the coverage as the threshold instead of a tenth.

The equations from (4.24) to (4.26) have been adjusted to accommodate
this new addition to the metric.

Compv(Qi, Qj) =


−1, if score(Qi) < score(Qj)− cover(Q)

5

1, if score(Qi) > score(Qj) +
cover(Q)

5

0, otherwise

(4.24)

Comps(Pi, Pj) =


−1, if score(Pi) < score(Pj)− 0.1

1, if score(Pi) > score(Pj) + 0.1

0, otherwise

(4.25)

SR(P,Q) =

∑4
i=1,j=2,i<j

1, if Comps(Pi, Pj) == Compv(Qi, Qj)

0, otherwise

6
(4.26)

4.2. METRICS 79

These new set of equations form a metric that calculates a ranking
agreement between the dataset and a system, with a small threshold for
noise. Re-evaluating the example in Table 4.11, the question has a cover-
age of 16, so all three bad substitutes are considered equal (scores within
three points of each other). System X also considers them equally bad, by
scoring them within 0.1 of each other, thus it receives a perfect agreement
score of 1.0.

System Y on the other hand, would completely disagree with the vol-
unteer ranking under this new metric (i.e. all six pairs are in disagree-
ment), receiving a punishing agreement score of 0.0. This new metric also
no longer behaves like a rank correlation. Even if we inverted the substi-
tutability scores produced by System Y, it would barely increase its sub-
stitute rank agreement, as opposed to a perfect 1.0 that is expected from a
rank correlation.

Unlike the previous metrics, substitute ranking can be applied to all 88
questions. The final metric is then simply the average agreement score for
each question – average substitute rank agreement (SR in Equation (4.27)).

SR =

∑
Q∈D SR(P,Q)

|D|
(4.27)

80 CHAPTER 4. EVALUATION

Chapter 5

Results and Analysis

In this chapter, we first analyse the agreement between the human vol-
unteers who helped create our dataset. Then various existing systems are
evaluated using the methods described in Section 4.2, along with our sub-
stitutability systems from Chapter 3. Next, we take a closer look at the
major differences between WordSub and WikiSub. In the final part of this
chapter, we focus on techniques that will allow our substitutability sys-
tems to be further optimised, both in terms of performance and speed.

All tests were run on a Windows machine with the specifications shown
in Table 5.1 and all systems were written in Java. Any charts displayed in
this chapter were created either using R [55] or Google Sheets.

Table 5.1: Test machine specifications.
Processor Intel Core i7-2600K @ 3.4GHz
Memory (RAM) 8GB DDR3
Operating System Windows 7 Professional 64-bit
Java Runtime Environment Version 6 Update 31

81

82 CHAPTER 5. RESULTS AND ANALYSIS

5.1 Human Agreement

Before we evaluate substitutability systems against our dataset, we wanted
to acquire a benchmark of just how difficult the task is. To do so, we will
calculate the human agreement of the volunteers against the dataset (i.e.
how much the volunteers agreed with each other). This will provide an
idea on how tricky the task is, even for humans, and also gives meaning
to arbitrary agreement scores when we do come to evaluate substitutabil-
ity systems.

By taking the raw answers from the volunteers, a benchmark agree-
ment score can be calculated using each of the metrics from the previous
section. However, recall that a volunteer’s answers are excluded from the
dataset if they do not recognise/understand one of the terms, so we will
not evaluate the agreement of any answers where the volunteer has ticked
the ”Don’t know all the terms” box (see Section 4.1). Substitutability sys-
tems will not have the same luxury. If a system cannot match a term to any
targets, then it is forced to produce a conservative substitutability score of
0.0, which will likely lower its agreement on that particular question. We
reason that this is still fair, as the human agreement will be treated as an
optimistic (best-case) agreement score – a ceiling performance which sub-
stitutability systems should aim for.

The volunteers answered each question by circling good (or the best)
substitutes and crossing out bad ones. So functions such as Tops (4.4),
Goods (4.10) and Bads (4.16) can easily be adapted to measure human
agreement. Tops and Goods will both return substitutes that were circled
by the volunteer, while Bads will return substitutes that were crossed out.
Each metric can then be calculated as per the same process defined in Sec-
tion 4.2.

Substitute ranking is the only exception to this procedure, as there is
no explicit ranking in a volunteer’s answers. Instead, we create an implied
ranking by assigning real numbers to the answers. 0.8 is given to any sub-

5.1. HUMAN AGREEMENT 83

Table 5.2: Human agreement on dataset.
Metric Agreement
Clear Winner (CW) 0.795
Good Substitutes (GS) 0.821
Bad Substitutes (BS) 0.600
Combo 0.693
Substitute Ranking (SR) 0.666

stitute that is circled, 0.0 is given to any substitute that is crossed out, and
0.4 is given to the others (unmarked substitutes). The selected values en-
sure that circled substitutes are above the good threshold of 0.5, unmarked
substitutes are below this threshold and crossed out substitutes fall within
the bad threshold of 0.1. A value of 0.8 for circled substitutes also ensures
that the CW metric functions correctly, requiring a score of at least 2

3
.

There is also an issue with the BS metric. On closer inspection of the
raw answers, and from interviewing some of the volunteers, we discov-
ered that many people were reluctant about crossing out a substitute un-
less they were certain of its unsuitability. Additionally, a small minority of
volunteers did not cross out any substitutes at all across all the questions
they answered. Substitutability systems behave in the exact opposite man-
ner. Being conservative, they will label a substitute as bad when it is not
certain of its suitability. A system will not have a clue regarding a sub-
stitute’s unsuitability. To compensate for this bias, and to ensure that the
human agreement is a truly optimistic score, we will exclude the evalua-
tion of answers from volunteers who refused to cross out any substitutes.
Note that this only affects the BS metric, the other metrics will still evalu-
ate all volunteer answers.

Results from the evaluation of human agreement are listed in Table 5.2.
As mentioned previously, these agreement scores are optimistic, which
means any system that achieves similar agreement scores can be viewed
as performing at least as well as an average human.

84 CHAPTER 5. RESULTS AND ANALYSIS

5.2 Performance Evaluation

5.2.1 Comparison with existing systems

We implemented five existing approximate string match systems in Java,
which allowed us to evaluate our substitutability systems together with
the existing systems on a common testing platform. Two of these sys-
tems are the current state-of-the-art approximate matching algorithms,
both specifically designed for evaluating keyphrase extraction systems –
R-precision and Modified R-precision. The other systems are the three
newest techniques tested in [30] from the field of machine translation and
summarisation – BLEU, ROUGE and METEOR. METEOR, similar to Word-
Sub, also employs WordNet as a knowledge base. As such, we imple-
mented the system with the help of the JWI library, in order to provide
efficient access to WordNet’s dictionary. We also used optimal values
for METEOR’s system parameters as presented in [35], tuned for English:
α = 0.81, β = 0.83 and γ = 0.28. See Chapter 2 for a detailed explanation
on each of the existing systems.

Table 5.3 compares the performance of all the aforementioned systems
using each of the metrics introduced in Section 4.2. It includes GS and BS,
two metrics which are unreliable on their own as discussed previously,
but are listed in the table to report the components of the Combo metric.
Highlighted in bold, are the top agreement scores achieved by any system
for the three relevant metrics – CW, Combo and SR.

It is immediately obvious that our two substitutability systems, Wiki-
Sub and WordSub, far outperform existing systems. This is not surprising
when considering the composition of the dataset. Most of the questions
require a system to make a semantic connection between the input terms
in order to produce appropriate substitutability scores, but almost all of
the existing systems rely on some form of lexical processing (i.e. string
manipulation). So while they are able to suitably process input terms such
as applied science → computer science, the same cannot be said

5.2. PERFORMANCE EVALUATION 85

Table 5.3: Performance comparison of all systems.
System CW Combo SR GS BS

Human Agreement 0.798 0.693 0.666 0.821 0.520

WikiSub 0.355 0.680 0.580 0.661 0.700

WordSub 0.356 0.609 0.508 0.483 0.823

R-precision 0.000 0.187 0.170 0.103 0.946

Modified R-precision 0.065 0.205 0.167 0.115 0.950

BLEU 0.000 0.000 0.152 0.000 0.980

METEOR 0.065 0.300 0.212 0.178 0.946

ROUGE 0.058 0.000 0.170 0.000 0.946

for input terms without any lexical overlap, such as money → cash. The
majority of input terms in our dataset are of the latter category, which ex-
plains the relatively poor performance achieved by the existing systems.
This is even more apparent when observing the extreme discrepancy be-
tween the GS and BS agreement scores. Failing to see any lexical overlap
between input terms, the existing systems produce conservative scores of
0.0, which results in a trivially high BS agreement. Simultaneously, the
GS agreement is dragged downwards by the same notion.

METEOR deviates from the existing systems by exploiting WordNet
synsets in a similar fashion to our system WordSub. As a result, METEOR
is able to identify both lexical and semantic overlaps between input terms.
Thus it outperforms other existing system under the Combo and SR met-
rics, while matching Modified R-precision under the CW metric. But this
is limited to direct synonyms that reside within WordNet synsets. With-
out any exploration beyond synsets, METEOR, while outperforming other
existing systems, still struggles with our dataset.

However, the higher performance obtained by our substitutability sys-
tem does come at the cost of speed. WordSub runs on the order of 100x
slower than the lexically-oriented systems (e.g. R-precision, BLEU etc.)
and 10x slower than METEOR. WikiSub on the other hand, with its sig-

86 CHAPTER 5. RESULTS AND ANALYSIS

nificantly larger knowledge base, has to spend much longer processing
each input – on the order of 800x slower than WordSub, at 8.5 seconds
per input. Note that these processing times are from versions of our sub-
stitutability systems that have already implement all the speed optimisa-
tions discussed in Section 5.3. Please refer to that section for exact pro-
cessing times. We also noted that most volunteers completed their sheet
of 10 questions within five minutes. Since each question containing four
substitute-substitutee pairs, WikiSub processes at a similar speed to hu-
mans. But being an automatic evaluator, the time, energy and monetary
costs associated with organising domain experts for manual evaluation is
avoided.

In the real life context of evaluating keyphrase extraction systems, be-
ing able to perform timely evaluations is important. We can estimate how
long this process will take by using the SemEval-2010 workshop [31] as an
example. 19 substitutability systems participated in the workshop, each
were trained and evaluated against a testing set of 100 documents. The en-
tire evaluation process required the comparison of a vast number of input
pairs, on the order of half a million. WordSub, with an average process-
ing time of approximately one-hundredths of a second per input, would
take just over an hour to evaluate all the systems; a perfectly acceptable
time frame. However, WikiSub would require over a month of continuous
processing for the same task, which is simply infeasible.

The top of Table 5.3 also lists the optimistic human agreement scores,
which all sit comfortably above the best system agreements. Under the
CW metric, the best system result (achieved by WordSub) sits at an unim-
pressive 44.5% of the human agreement. We believe this may have been
a consequence of how we specified the metric, leading to a high human
agreement. Recall that a question has a clear winner when there is only
a single candidate substitute that is scored above two-thirds of the ques-
tion’s coverage. So by definition, such questions require at least two-thirds
of the volunteers to agree on what the best substitute is, thus arriving at an

5.2. PERFORMANCE EVALUATION 87

inherently high human agreement. Under the two other relevant metrics,
the best system results sit much closer to the human agreement. At 98.1%
of the human agreement under the Combo metric and 87.1% under the SR
metric; both achieved by WikiSub.

5.2.2 WordSub vs. WikiSub

When implementing the two substitutability systems, we believed that a
larger, more diverse knowledge base would provide better performance.
Two reasons were hypothesised for this. First, a larger knowledge base
contains a greater number of entities, which should result in higher qual-
ity targets that match directly to the input terms. A smaller knowledge
base may have to frequently break a term into aspects, or fail to match
any targets all together. Second, a larger knowledge base is likely to offer
more potential transitions between entities, allowing the system to find
substitution paths that would have otherwise been missing in a smaller
knowledge base.

Figure 5.1 provides clear proof that our first hypothesis is correct. Us-
ing Wikipedia, the larger knowledge base compared to WordNet, WikiSub
is able to match significantly more input pairs to targets than WordSub.
Out of the 352 total pairs in our dataset, WikiSub matches 350 of them
(99.4%), while WordSub matches only 311 (88.4%). This means WordSub
has to give a conservative substitutability score of 0.0 for 11.6% of inputs
from the dataset. Moreover, WikiSub can directly match 345 input pairs to
targets (98.0%), while WordSub is only able to directly match a mere 263
pairs (74.7%). So for one in every four input pairs from the dataset, Word-
Sub has to either resort to breaking a term up into its aspects or giving up
and producing a trivial substitutability score of 0.0. In contrast, WikiSub
only has this problem for one in every 50 input pairs. Section 5.3.6 fur-
ther explains the downside of having to match targets to aspects instead
of directly to the full term itself.

88 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.1: Number of input pairs successfully matched to targets.

WordSub WikiSub

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Matches
Direct Matches

5.2. PERFORMANCE EVALUATION 89

When a system, such as WordSub, resorts to scoring input pairs conser-
vatively, it fails to identify substitutes which are in fact good. This flaw is
reflected accordingly by a decrease in the GS agreement score. Seen in Ta-
ble 5.3, WikiSub significantly outperforms WordSub by almost 37% under
this metric – 0.661 vs 0.483.

Following the same rationale, WikiSub should similarly outperform
WordSub under the CW metric. But this is not the case. WikiSub receives
a CW agreement score that is in fact slightly worse than WordSub, albeit
the difference is a negligible 0.001. So why does WikiSub not have the su-
perior performance that we expect under this metric? After all, the CW
metric is essentially the same as the GS metric, but evaluated on a smaller
subset of questions (see Section 4.2.2). We turned to our second hypothesis
in the hopes of finding an explanation.

In terms of options for transitions, Wikipedia certainly offers plenty
more than WordNet. On average, entities from Wikipedia exhibit five to
10 times the number of transitions than WordNet entities. For example,
the category Cameras boasts nine sub-categories, 99 child articles and two
parent categories, giving a total of 110 potential transitions. WordNet on
the other hand, only has nine synsets leading out of the synset [camera,
photographic camera] via hyponym pointers and one other synset
can be reached via a hypernym pointer, giving a total of only 10 potential
transitions.

The CW metric is actually implicitly two-sided, in a similar fashion to
the Combo metric. But this two-sidedness is less formally defined than the
individual components of Combo – GS and BS. On one side, the system
must first correctly ascertain that the clear winner substitute, as identified
by the human volunteers, does in fact have high substitutability (i.e. there
exists a relatively short substitution path to it). This task is helped greatly
by the increased number of entities and transitions present in Wikipedia,
as reflected by the higher GS agreement. The other side of CW requires
the system to register the other three substitutes in the question as being

90 CHAPTER 5. RESULTS AND ANALYSIS

Table 5.4: A question which punishes noisy transitions.
Substitutee: PUBLIC TOILET (coverage: 17)
Substitute: Toilet Room Powder Room Bedroom
Volunteer Score: +16 -3 -3 -13
WordSub: 0.70 0.27 0.11 0.00
WikiSub: 1.00 0.68 0.00 0.00

subpar, with substitutability scores that fall below the threshold of 2
3
. It is

this second side of CW which penalises systems such as WikiSub.

Even though WordNet offers less transitions, the ones it does have tend
to stay focused towards the emitting entity. Transitions are strict and well-
defined, presenting little chance for the search process to drift unexpect-
edly in meaning. However, as the number of available transitions increase,
so too does the likelihood of encountering noisy transitions. Admittedly,
a greater number transitions will naturally introduce more potentially ap-
propriate entities for the search process to explore, but it equally intro-
duces potentially inappropriate entities as well. The existence of this noise
within WikiSub’s knowledge base causes it to sporadically over-value cer-
tain input pairs that should otherwise have a lower substitutability score
according to human judgement.

Consider the question in Table 5.4 and the substitutability scores cal-
culated by WordSub and WikiSub. Both systems correctly score the best
substitute Toilet above the clear winner threshold of 2

3
, but WikiSub also

over-values the runner up substitute Room, putting it above the clear win-
ner threshold along with Toilet. Such a mistake would not have affected
the agreement of GS, but is punished severely by CW with a score of 0.0.

A closer inspection of the substitution paths found by the respective
systems explains why this occurs. Due to the highly-connected structure
of Wikipedia, WikiSub’s path passes from the Wikipedia category Rooms

directly to its sub-category Public toilets via a single Specialisation
transition. On the other hand, with its more strict, less-connected struc-

5.3. IMPROVEMENTS AND OPTIMISATIONS 91

ture, WordNet requires two Specialisation transitions for the same input,
moving through the entity Toilet along the way. The result is an appro-
priately lower substitution score than the score calculated by WikiSub.

Having more available transitions can negatively impact CW in an-
other way also. Recall that the transition score of a Specialisation is heavily
influenced by its breadth (the number of other possible Specialisation tran-
sitions from the more generic entity), as defined in Section 3.1.1. There-
fore, the abundance of transitions offered by Wikipedia will typically re-
sult in a lower than expected substitutability score. In limited cases, the
subsequent score of the best substitute will be lowered enough to fall be-
low the clear winner threshold. The bottom line is, unwanted noise is
introduced by the plethora of transitions available in Wikipedia. Conse-
quently, WikiSub is liable to manufacture substitutability scores which de-
viate more from the expected value than a system which uses a smaller,
stricter knowledge base.

Despite its few shortcomings, WikiSub still performs markedly bet-
ter than WordSub, with its superior access to a larger number of entities
and transitions. However, the comparatively expensive processing time,
makes it difficult to justify this increase in performance. In Section 5.3.6,
we propose a system which could combine the best traits of both of our
substitutability systems – taking WordSub’s speed along with WikiSub’s
performance.

5.3 Improvements and optimisations

This section covers a range of optional enhancements to the general design
of a substitutability system (as presented in Section 3.1), both in terms of
performance/agreement and speed. Some of these enhancements have
already been added to one or both of our systems, WordSub and WikiSub,
while others are left for future work.

92 CHAPTER 5. RESULTS AND ANALYSIS

5.3.1 Truncated search

The two most costly operations (in terms of time) of a substitutability sys-
tem are FINDTARGETS in Algorithm 1 and SEARCH in Algorithm 4. All
other operations are negligible in comparison. We wanted to get a sense
of exactly how much time the system is spending on each operation. So
we used WordSub as a reference point, by tracking its processing times
when being evaluated against the dataset. Recall that the dataset consists
88 questions, each containing four substitute-substitutee pairs, resulting
in a total of 352 individual runs of the substitutability system during each
complete pass of the dataset.

After 10 complete passes of the dataset, we found that WordSub spent
an average time of 317.7 milliseconds to process each substitute-substitutee
pair. However, only an average of 0.9 milliseconds was spent on the FIND-
TARGETS procedure, a mere 0.3% of the total. Therefore, it makes sense to
first optimise the SEARCH procedure.

On closer inspection, we realised that WordSub struggles with input
pairs that have low or no substitutability. Such inputs require the system
to perform a near-exhaustive search of the entire knowledge base (Word-
Net), just in case there exists some long, obscure path linking the inputs.
More often than not, these pairs are not substitutable at all, or have so little
substitutability that it is not worth scoring it. If WordSub can recognise this
particular scenario, it should truncate the search early to avoid exploring
fruitless paths. To achieve this, we introduce a threshold score, whereby
a node will no longer be expanded (have its neighbours explored further)
if it has a score lower than the threshold – the stopping threshold. This
change is added to the if-statement in line 16 of Algorithm 4, replacing 0.0

with the stopping threshold.

The stopping threshold needs to be a non-zero value that is high enough
to reduce the average search time, but also low enough to not affect the
overall performance of the system (i.e. WordSub should receive the same
agreement from the evaluation metrics). After trying out a range of values,

5.3. IMPROVEMENTS AND OPTIMISATIONS 93

we found that the performance was not affected as long as the stopping
threshold is below 0.1. Staying on the side of caution, we opted for a value
of 0.08.

Using this slight modification to the SEARCH procedure, we completed
another 10 passes of the dataset using WordSub. This time, the total av-
erage time spent processing each input pair was only 33.9 milliseconds, a
reduction of almost 90%. FINDTARGETS now took up 2.7% of the overall
processing time (still at 0.9 milliseconds), which is still relatively small. So
we continued to explore ways of reducing the cost of SEARCH.

5.3.2 Multi-search

Figure 5.2: Searches required for multi-aspect inputs.

A

B

X

Y

Z

Recall that certain terms generate a list of target sets, as opposed to a
single target set. This occurs when the term itself cannot be matched di-
rectly to an entity in the knowledge base, and instead has to be broken
down into aspects as per Algorithm 2. Input pairs that contain these dif-
ficult terms will require multiple search passes, one for each unique pair
of aspects. For example, consider an input pair where the substitute has
to be broken down into two aspects and the substitutee into three aspects
(see Figure 5.2). A total of six searches would be required, but many of the
searches share the same starting point, either from aspect A or aspect B.

94 CHAPTER 5. RESULTS AND ANALYSIS

When more than one search originates from the same point, it is a waste to
restart the entire search from scratch each time. So WordSub was modified
to handle searches from a single origin target set to multiple destination
target sets, all in a single search pass which we called MULTISEARCH. Al-
gorithm 5 outlines this new procedure.

To get a baseline, we timed the single SEARCH version of WordSub
against a subset of the dataset that only contained difficult input pairs (con-
taining terms that had to be broken down into multiple aspects). There
are 48 of such pairs out of 352 in the dataset. On average, WordSub spent
130.3 milliseconds in the SEARCH procedure for these difficult pairs. This
is almost four times over the average for the whole dataset, which was to
be expected. After adjusting WordSub to use MULTISEARCH, the average
time decreased to 90.9 milliseconds, a noticeable reduction of 30%. Re-
testing against the entire dataset, the average processing time per input
pair has decreased to 27.3 milliseconds.

5.3.3 Caching

The next step is to see if we can further optimise MULTISEARCH. We
profiled our Java implementation using a tool called VisualVM [50] and
found that a significant portion of time was spent on the EXPAND sub-
routine (line 23 in Algorithm 5). This was not surprising as EXPAND di-
rectly queries the knowledge base. In the case of WordSub, EXPAND uses
JWI (see Section 3.2) to access WordNet pointers/relations. During a full
pass over the dataset, WordSub revisits many of the synsets from previ-
ous searches. This means that the same synset is expanded multiple times,
each requiring costly calls to the knowledge base, which is a waste of time.
So to speed things up, we altered WordSub to maintain a cache of all the
pointers that have been expanded during searches, as well as the transi-
tion scores associated with each expansion. EXPAND is then able to check
this cache first and directly return the desired result if it already exists,

5.3. IMPROVEMENTS AND OPTIMISATIONS 95

Algorithm 5 Finds the best paths of substitutability between from the tar-
get set ts1 to a list of target sets tss2. Returns the score of each path.

procedure MULTISEARCH(ts1, tss2)
fringe←max heap, visited← empty set, scores← []

fill scores with -1s to the same length as tss2
populate fringe with ts1 converted to nodes

5: while fringe is not empty do
node← poll from fringe

if node.entity already in visited then
continue

else
10: for i← 0, tss2.length− 1 do

if scores[i] == −1 and tss2[i] contains node then
scores[i]← node.score . found a path

end if
end for

15: if no -1s left in score then . all paths found
break

end if
end if
add node.entity to visited

20: if neigh.score < 0.08 then . stopping threshold
continue

end if
transitions← EXPAND(node.entity)

for all tr in transitions do
25: if tr.next not in visited then . the entity reached by tr

neigh← TONODE(tr.next)

neigh.score← node.score ∗ tr.score
offer neigh to fringe

end if
30: end for

end while
replace any -1s with 0s in scores
return scores

end procedure

96 CHAPTER 5. RESULTS AND ANALYSIS

without having to make expensive queries to the knowledge base.

When using substitutability systems such as WordSub in a real life con-
text, entities will also be frequently revisited. Therefore, this particular
optimisation is not specific to just being able to process a dataset of input
pairs quickly. For example, WordSub may be used to evaluate the overall
substitutability of a list of candidate keyphrases against a gold standard,
in order to test the performance of a keyphrase extraction system. In doing
so, each candidate keyphrase has to be tested against each gold standard
keyphrase. Furthermore, all the keyphrases will likely be closely related
to each other, as they all came from the same document. As a result, the
chance of revisiting entities will be high, and so the hit-rate of the cache
will be high also.

Timing our system (with caching) once again against the dataset, Word-
Sub managed to reduce its average processing time per input pair to just
10.9 milliseconds. This is yet another significant reduction of a further 60%
(down from 27.3 milliseconds).

With the search process optimised to the best of our abilities, we turned
our heads to the FINDTARGETS procedure. Still sitting at an average of 0.9
milliseconds per input, it now took up 8.3% of the overall processing time,
high enough to warrant a closer look. Once again, we profiled this pro-
cedure using VisualVM and found that most of the time was spent inside
the sub-routine MATCHTARGETS. Just as with EXPAND, MATCHTARGETS

makes costly queries to the knowledge base in its attempts to match a plain
text phrase to entity targets. This is especially true for multi-aspect inputs,
where MATCHTARGETS has to be called repeatedly to test out all potential
aspect split points.

Since caching worked so well when optimising the sub-routine EX-
PAND, we tried it again with MATCHTARGETS. WordSub now maintains
a second cache of all target sets returned from MATCHTARGETS, allow-
ing the sub-routine to return immediately when it receives a hit from the
cache. With this final alteration in place, we timed the system once more

5.3. IMPROVEMENTS AND OPTIMISATIONS 97

Figure 5.3: Average processing time per input for WordSub optimisations.

None Stopping Threshold MultiSearch Expand Cache Targets Cache

FindTargets
Search

M
ill

is
ec

on
ds

0
50

10
0

15
0

20
0

25
0

30
0

35
0

98 CHAPTER 5. RESULTS AND ANALYSIS

using our dataset. The results were clear – for the FINDTARGETS sub-
routine, WordSub now only spends 0.4 milliseconds on average per input,
a reduction of over half, down from 0.9 milliseconds. The overall aver-
age processing is now 10.4 milliseconds per input pair. This is minuscule
when compared to the original 317.7. By implementing all the speed opti-
misations discussed in this section, WordSub reduced its overall process-
ing time by 96.7%. Figure 5.3 is a stacked bar plot summarising the time
savings achieved at each stage of optimising WordSub.

5.3.4 Speed optimisations on WikiSub

WikiSub has a much long processing time than WordSub, because it uses
a larger knowledge base. WordNet dwarfs in size when compared to
Wikipedia. Without any speed optimisations, WikiSub takes on average
two to four minutes to process non-trivial input terms (inputs which re-
sult in substitution paths of length greater than one). In the case where a
near-exhaustive search of Wikipedia is performed (input terms that have
little or no substitutability), WikiSub often fails to terminate as the fringe
and visited sets of the search grow beyond the memory capacity of our
test machine (see Table 5.1). Therefore, speed optimisations were neces-
sary just to make the system functional.

Modifying WikiSub’s SEARCH procedure to use a stopping threshold
(introduced in Section 5.3.1), the average processing time was reduced to
an acceptable 15 seconds per input. It also guaranteed that the system
could always run to completion well before it ran into memory issues.
Next, we altered WikiSub to use the MULTISEARCH procedure in the same
manner described in Section 5.3.2. Doing so further reduced the average
processing time to 12.3 seconds per input.

The final speed optimisation to be added is caching, as discussed in
Section 5.3.3. However, this proved to be tricky. With Wikipedia being so
vast, maintaining caches once again resulted in memory issues. So Wiki-

5.3. IMPROVEMENTS AND OPTIMISATIONS 99

Sub had to frequently remove the least used entries from the cache when-
ever it came close to running out of memory. Consequently, the speed in-
crease from the caches was not as impressive as when applied to WordSub.
The final average processing time, after implementing all speed optimisa-
tion on WikiSub, is 8.5 seconds per input pair, still almost a factor of 27
slower than the unoptimised version of WordSub.

5.3.5 Optimum transitions

The final substitutability score given to any input pair is calculated as the
product of all the transition scores along the best substitution path (see
Section 3.1.4). Conversely, the best substitution path is defined to be the
path which maximises substitutability (has the highest product of transi-
tion scores). This means that the transition scores themselves influence the
resulting path found by the system, which directly affects the final substi-
tutability score.

In the initial design of our systems, we chose transitions scores based
on common sense intuitions and a bit of trial-and-error. But now that we
have a dataset specifically designed for evaluating substitutability, it is
possible to alter the current transition scores to optimise a system’s per-
formance on the dataset. Once again, we decided to experiment on Word-
Sub, since it is much faster to work with. Table 5.5 lists the set of transition
scores used by WordSub, which will be optimised in order to improve the
system’s overall performance on the dataset. These can also be thought of
as adjustable parameters to the system.

Manually adjusting each transition score proved to be unrealistic. In-
stead, we employed a simulated annealing algorithm [32] to perform this
task automatically. Simulated annealing is a generic algorithm used for
approximating the global optimum of a large search space, where an ex-
haustive search is too costly. It is an adaptation of the Metropolis-Hastings
algorithm [43], originally proposed by Nicholas Metropolis in 1953. Metropolis-

100 CHAPTER 5. RESULTS AND ANALYSIS

Table 5.5: Initial transition scores used by WordSub.
Transition Score
Sim – Similar/See Also 0.5
Der – Derivation 0.7
Spmin – Specialisation Minimum 0.2
Spmax – Specialisation Maximum 0.99
Gnmax – Generalisation Maximum 0.99

Hastings (MH) is a Markov chain Monte Carlo (MCMC) [56] technique to
sample from a distribution for which direct sampling is difficult (e.g. the
unknown distribution formed by five adjustable transition scores used by
WordSub).

Simulated annealing differs from MH in that it is designed for hill
climbing, not sampling. The algorithm begins by picking a random start-
ing point s in the search space. In WordSub’s case, this is simply a set
of random transition scores (between 0.0 and 1.0) with the exception that
Spmin ≤ Spmax. Then for each iteration, s is moved in a random direc-
tion by a random amount, to the point s′. We implemented this step by
moving one of the five transitions scores (chosen at random) by a value
drawn from a normal distribution [52] (denoted as x ∼ N (µ, σ2)) and then
clamping the new value within valid ranges as shown in Equations (5.1).

NewScore = max(0,min(1, OldScore+ x ∼ N (0, 0.25)))

NewSpmin = max(0,min(Spmax, OldSpmin + x ∼ N (0, 0.25)))

NewSpmax = max(Spmin,min(1, OldSpmax + x ∼ N (0, 0.25)))

(5.1)

Next, the algorithm decides to either move to the new point s′ or stick
with the current point s. The probability of accepting the new point is
calculated using Equation (5.2), where the function metric produces an
agreement score based on one or a combination of the metrics introduced
in Section 4.2. T is the temperature, a key concept in the thermodynamic

5.3. IMPROVEMENTS AND OPTIMISATIONS 101

analogy used by simulated annealing. When the temperature is non-zero,
there is a chance of accepting a new point even if it is worse than the cur-
rent one. This lowers the chance of the algorithm getting stuck at local
optima. As the temperature decreases, it becomes less likely that the algo-
rithm will accept a new point that performs worse than the current one.
In fact, with a temperature of zero, simulated annealing is effectively the
same as greedy hill climbing. Note that because transition scores influence
the way a node expands to its neighbours, the cache added to WordSub in
Section 5.3.3 had to be cleared at the start of each iteration.

acceptance = e
metric(s′)−metric(s)

T (5.2)

The algorithm is repeated for a set number of iterations, reducing the
temperature each time until it reaches zero or near-zero. We began with a
temperature of 2.0 and reduced it by a factor of 0.995 each iteration for a
total of 1500 iterations, resulting in a final temperature of 0.001 (3dp). The
set of transition scores that corresponded to the best performing iteration
is then selected as an approximation of the global optimum. For themetric
function, we used the product of the Combo and SR metrics, as we wanted
to optimise the transition scores in relation to both (we observed that using
just one of the metrics had a detrimental effect on the performance under
the other metric). However, the metrics were not used against the entire
dataset. Out of the 88 questions, 20 contained at least one term that Word-
Sub could not match to any target entities (even after breaking it down
into aspects). When encountering such terms, WordSub defaults to a con-
servative substitutability score of 0.0, which is a result that isn’t affected by
transition scores. Optimising/training against such questions will not im-
prove performance. Therefore, we decided to exclude these 20 questions
(leaving 68 questions for training) when optimising WordSub’s transition
scores, for the same reason human volunteers were asked to only attempt
questions where they understood all the terms (see Section 4.1).

Despite starting with a temperature of 2.0, we were unconvinced that

102 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.4: Optimising WordSub using simulated annealing.

a single simulated annealing run would produce a set of transition scores
sufficiently close to the global optimum. So we restarted the algorithm
with a new random starting point at the end of each run. 50 full passes of
simulated annealing was conducted over a period of two weeks, totalling
75,000 iterations and over 60 hours of processing time. Figure 5.4 shows
the result of a single run of 1500 iterations. As expected, the performance
of each iteration fluctuates wildly at the start, when the temperature is
high and the Markov Chain explores all parts of the search space even if
performance drops. But as the temperature nears zero, the Markov Chain
settles around an optimum solution. In Figure 5.4’s case, the best solu-
tion actually occurred at the 1133rd iteration, after which the search got
trapped at a local optimum due to the near-zero temperatures.

Taking the best set of transition scores obtained during the 50 simu-
lated annealing passes, we re-evaluated WordSub against the entire dataset
using this new set of transition scores. The optimised scores are displayed
in Table 5.6 under the column labelled Score*. Most of the optimised tran-

5.3. IMPROVEMENTS AND OPTIMISATIONS 103

Table 5.6: Optimised transition scores for WordSub.
Transition Score Score*
Sim – Similar/See Also 0.5 0.534
Der – Derivation 0.7 0.644
Spmin – Specialisation Minimum 0.2 0.675
Spmax – Specialisation Maximum 0.99 0.930
Gnmax – Generalisation Maximum 0.99 0.915

Table 5.7: WordSub performance after optimising transition scores.
Metric WordSub WordSub* Improvement
Clear Winner (CW) 0.356 0.419 +17.7%
Good Substitutes (GS) 0.483 0.592 +22.6%
Bad Substitutes (BS) 0.823 0.790 -4.0%
Combo 0.609 0.677 +11.2%
Substitute Ranking (SR) 0.508 0.542 +6.7%

sition scores fall relatively close (within 0.1) to our initial estimates, with
the exception of Spmin, which differs significantly by 0.475. We believe
this is due to the fine-grained nature of WordNet’s hierarchical structure,
where the information loss is lessened when transitioning towards speci-
ficity. Table 5.7 summarises the performance improvement over the origi-
nal system (WordSub) when using optimised transition scores (WordSub*).
There is a notable improvement in performance under almost every met-
ric. The exception being BS, which has a small decrease in performance of
4.0%. However, this is more than offset by the significant improvement of
22.6% under the GS metric. The outcome is a respectable Combo agree-
ment of 0.677, which comes very close to matching WikiSub’s agreement
of 0.680. Similar conclusions can be drawn by observing the SR agree-
ment, coming behind WikiSub by only 0.038, while further increasing its
lead over WikiSub under the CW metric.

With such positive results, we conclude that, given a suitable training

104 CHAPTER 5. RESULTS AND ANALYSIS

set, simulated annealing is an effective technique for optimising the tran-
sition scores of a specific knowledge base. It has enabled a system, which
is backed by a relatively small knowledge base (i.e. WordSub), to become
competitive against a system which is backed by a much larger knowledge
base (i.e. WikiSub). Note that the results displayed here only demonstrate
the potential for improvement. Since the transitions scores were optimised
on a subset of the dataset used to also evaluate it, we cannot conclusively
compare it to other systems. The disadvantage of using this method, like
many other MCMC algorithms, is that the process takes a long time. We
were able to obtain good results within an acceptable time frame only after
including all the time saving improvements discussed in the previous sec-
tions for WordSub. Running simulated annealing on a system backed by
a much larger knowledge base such as WikiSub, despite the same speed
optimisations, would prove to be unrealistic. A rough calculation puts the
approximate processing time of 50×1500 iterations on the order of 6 years.

5.3.6 Multiple knowledge bases

Using optimum transition scores whilst searching for substitution paths
can result in a notable improvement in dataset agreement, but it relies on
the correct matching of input terms to target sets. The procedure respon-
sible for this task is FINDTARGETS in Algorithm 1. If line 13 is triggered,
then the input term was matched directly to a set of targets. This means
that the knowledge base contains an entity that perfectly reflects the input
term, so the match is of a high quality. On the other hand, if line 11 is
triggered, then the input term failed to match any entity and the system
is forced to return a conservative score of 0.0. Line 8 falls somewhere in
between, when the input term has to be broken down in to two or more
aspects before a match could be found. While this is much better than no
match at all, the quality of the match may be questionable. For example,
consider the phrase acts of god and assume a direct match cannot be

5.3. IMPROVEMENTS AND OPTIMISATIONS 105

Table 5.8: WordSub performance on different subsets of questions.
Metric Direct only Non-empty All
Clear Winner (CW) 0.543 0.469 0.419
Good Substitutes (GS) 0.786 0.709 0.592
Bad Substitutes (BS) 0.711 0.740 0.790
Combo 0.746 0.724 0.677
Substitute Ranking (SR) 0.703 0.625 0.542

found. If it were to be broken down into the aspects [acts][god], then
some of the original meaning of the term would have been lost.

To test out this theory, we evaluated WordSub (using optimum transi-
tion scores from Section 5.3.5) against three subsets of the dataset. The first
is a subset of 50 questions, where all the terms could be matched directly
to targets by WordSub. The second is a subset of 68 questions, where all
the terms could either be matched directly to targets, or had to be split
into aspects. The last subset is simply the entire dataset of 88 questions.
Table 5.8 lists the results of WordSub’s performance for the three subsets in
respective order. As expected, the performance drops with each successive
subset of questions under all metrics. With the exception of BS, but this is
no surprise as it is susceptible to giving trivially high agreement scores to
systems that give conservatively low substitutable scores (as discussed in
Section 4.2.3).

Whether a term can be matched directly to targets is dependent on
the knowledge base used by the system. One knowledge base is likely to
contain entities that are missing from another knowledge base, and vice
versa. For example, consider the input pair consensus reality →
mother wit. Consensus reality can be matched directly to a target
by WikiSub, returning a Wikipedia article with the same name. But Wiki-
Sub cannot do the same with mother wit, unless the term is split into
aspects, which is something we would like to avoid. Conversely, Word-
Sub cannot match consensus reality to targets without breaking it

106 CHAPTER 5. RESULTS AND ANALYSIS

down into aspects, but it has no problem with mother wit, being an ex-
isting word in WordNet. What this shows is that knowledge bases can
complement each other. While an individual system using a single knowl-
edge base might struggle with particular input terms, using two or more
knowledge bases in conjunction could lead to superior results.

We propose a system that is able to search for substitution paths across
multiple knowledge bases. For the previous example, it will find a path
from a Wikipedia target set to a WordNet target set. At some point during
this search, the system has to move from a Wikipedia entity to a Word-
Net entity. For this, we introduce a new type of transition – an Inter-
knowledge transition. To implement this fifth transition, the system will
convert an entity back into its plain text form, then feed this into a MATCHTAR-
GETS procedure which is attached to a different knowledge base. The re-
turned results will then allow the system to transit the search to the new
knowledge base. Note that by using MATCHTARGETS, we avoid aspects
all together when making such transitions; only direct matches are al-
lowed. We also reason that the quality of Inter-knowledge transitions falls
somewhere between a Same transition to a Similar transition (a transition
score of 0.5− 1.0). The specific number would depend on the strictness of
MATCHTARGETS.

Going back to the previous example, this new system will first be-
gin the search from the Wikipedia article Consensus reality. Moving
through the hierarchical structure of Wikipedia, the search will soon reach
the article titled Common sense. At this point, it will explore the option of
crossing knowledge bases by feeding the phrase common sense into the
MATCHTARGETS procedure for WordNet. Doing so will produce a synset
which contains both common sense and mother wit, thus successfully
completing the search, without the need of splitting any term into aspects.

Figure 5.5 displays the final substitution path, where the diamond-
headed arrow represents the Inter-knowledge transition. Using the origi-
nal transition scores set out in Section 3.1.3 and assuming a transition score

5.3. IMPROVEMENTS AND OPTIMISATIONS 107

of 0.9 for the Inter-knowledge transition, the substitutability score of this
path can be calculated as follows:

Consensus reality→ C:Consensus reality = 1.0

C:Consensus reality→ Common sense = 0.48

Common sense→ [common sense, ..., mother wit] = 0.9

consensus reality→ mother wit = 0.43

Inter-knowledge transitions can also have asymmetric transition scores,
which will weigh the search process to favour one knowledge base over
another. This is especially useful when one knowledge base is significantly
faster than the other and speed is of concern. For example, WordSub has
a vastly superior processing time when compared to WikiSub (see Sec-
tion 5.2), but lacks the extensive collection of entities and transitions that
WikiSub has access to. So in order to exploit the best of both systems,
an Inter-knowledge transition may encourage a move towards WordNet
over Wikipedia, but fall back to following Wikipedia transitions when the
search gets stuck on WordNet’s side. More specifically, a transition from
Wikipedia to WordNet will have a higher transition score than the op-
posing transition from WordNet to Wikipedia. This transition will be ad-
dressed in our future work (see Section 6.2).

108 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.5: A substitution path containing an Inter-knowledge transition.

consensus reality Consensus reality Consensus reality

mother witCommon sense

common sense
good sense
gumption

horse sense
mother wit

Common
knowledge

Convention

MainstreamNorm
(social)

... 17 more ...

Chapter 6

Conclusions

In this chapter, we conclude the work presented in this thesis. First, the
major contributions made by this research are summarised. Then, further
areas of exploration are proposed as future work, along with recommen-
dations of how each one could be approached.

6.1 Contributions

The motivation of this thesis is to devise a method of automatically eval-
uating automatic keyphrase extraction systems that can mimic the quality
of human judgements as if the evaluation was performed manually. We
pinpointed the problem to the matching criteria used when determining
the true positive rate of a keyphrase extraction system. Conventionally,
the true positive rate is calculated by identifying exact, or near-exact string
matches between candidates (produced by the system) and expected gold
standards (produced by humans). However, this type of evaluation takes
a pessimistic view of the system, and only measures the lower bound of
a system’s true performance. In order to mimic human judgements, the
actual meaning contained in strings (semantics) must be considered.

To include the appropriate semantics into the string matching crite-
ria, we introduced the notion of substitutability as a subclass of seman-

109

110 CHAPTER 6. CONCLUSIONS

tic relatedness that focuses on a smaller subset of relationships. Our first
major contribution lies in the formal definition and quantification of sub-
stitutability, defining it to be a context-free measure of how much information
is retained when one phrase is used in place of another, whilst making as few
assumptions as possible. Based on this definition, we then designed a gener-
alised system that can compute the substitutability of any two input terms,
by exploiting the interlinking structure of external knowledge sources.

This system performs two main steps to accomplish the task. First, the
input terms, which are expected to be in plain text form, are matched to
entities in a knowledge base. An entity is defined to be a basic unit of
knowledge within the knowledge base, and the entities which match to
the initial inputs are defined as target sets. Second, the system attempts to
find a path of maximal substitutability between the two target sets, mov-
ing from the substitute (first input term) to the substitutee (second input
term). This step is achieved through a best-first search on the implicit
graph structure inherent in the knowledge base. As the search expands
from one entity to another, information retention from the original term
is reduced. We take this into account by assigning transition scores to
the movement from one entity to the next. These scores are real numbers
between 0.0 and 1.0 depending on the type of transition, where 1.0 im-
plies perfect information retention and 0.0 implies total information loss.
The final substitutability score between two terms is then calculated as the
product of all transition scores along the path of maximal substitutability.
We categorised transitions into the following four types:

Same transitions have near-perfect information retention, such as terms
that have the same stem or are closely-related synonyms.

Similar transitions have good information retention, where the two enti-
ties are related but do not have the same meaning.

Specialisation transitions are a movement towards specificity. The exact
information retention depends on how common the substitution is,

6.1. CONTRIBUTIONS 111

which is computed based on the breadth of the transition (the num-
ber of other possible specialisations).

Generalisation transitions are a movement away from specificity. The
information retention is calculated in a similar manner to Specialisa-
tion transitions, but the scores are much smaller. Because Generali-
sation transitions make inherent assumptions, so we penalise them
heavier when compared to Specialisation transitions.

Based on this generalised design of a substitutability system, we devel-
oped two concrete implementations of this design, which forms our sec-
ond major contribution. The first system, WordSub, employed WordNet as
its knowledge base. Entities were represented by synsets (sets of tightly-
coupling synonyms that share a common concept) and were matched to
the inputs using JWI, the MIT Java WordNet Interface. Transitions were
represented by WordNet pointers, that form relationships between words
and synsets. Same transitions were implicitly included by using synsets
instead of individual words as the system’s entities. Similar transitions
were implemented by grammatical derivation, ”see also” and ”similar
to” pointers. Specialisation transitions were implemented by hyponym
type and hyponym instance pointers, while Generalisation transitions
followed hypernym pointers. The second system, WikiSub, employed
Wikipedia as its knowledge base. Entities were represented by articles
(distinct concepts in human knowledge) and categories (groups of simi-
lar articles or concepts), which were matched to inputs using Wikipedia
Miner, a Java toolkit released by the University of Waikato. Same transi-
tions were implemented following redirects between articles and moving
between a category and its central article. Specialisation transitions were
implemented by exploring the child articles and sub-categories of a cat-
egory, while Generalisation transitions were implemented by inspecting
parent categories.

Our third major contribution involves the evaluation of approximate

112 CHAPTER 6. CONCLUSIONS

string matching systems, including both lexically and semantically ori-
ented systems. We created a dataset which isolated the task of measuring
substitutability, with the help of 130 volunteers, which consisted of uni-
versity students ranging from undergraduate to doctorate. The dataset
contained 88 questions, each of which presented four substitutes against
a single substitutee, resulting in a total of 352 substitute-substitutee pairs
that can be used for testing. For each question, volunteers were asked to
identify the best substitute (out of the four available) to be used in place of
the substitutee, or best substitutes in the case where it was hard to decide a
single best substitute. They were also asked to identify any substitutes that
were definitely unsuitable. After two months worth of data collection and
entry, we aggregated the answers from the volunteers to assign a score
that ranks the four substitutes against each other in light of a particular
question’s substitutee. In order to evaluate the performance of approxi-
mate string matching systems, we presented each system with the same
task as the volunteers and measured its agreement to human judgements
using the following metrics:

Clear Winner (CW) – When the human judgement indicates that one sub-
stitute is significantly better than the other three for a specific ques-
tion, how often does the system also come to the same conclusion?

Good Substitute (GS) – How often the system agree with human judge-
ments on which substitutes are good?

Bad Substitute (BS) – How often the system agree with human judge-
ments on which substitutes are bad?

Combo – A combination of GS and BS by taking their harmonic mean,
thus catching out systems which receive trivially high agreement
scores for only one of the two metrics.

Substitute Ranking (SR) – The degree of agreement between the system
and human judgements on the overall ranking of the four substitutes

6.2. FUTURE WORK 113

in each question.

Using these metrics, we evaluated the performance of our substitutabil-
ity systems against existing approximate string matching techniques – R-
precision, Modified R-precision, BLEU, METEOR and ROUGE. Our sys-
tems came out on top by a clear margin, especially against the lexical-
based approaches that relied on string manipulation alone. Such non-
semantic approaches struggled greatly with our dataset, as it was created
with semantics in mind. METEOR, a system that did consider semantics in
its matching criteria, performed notably better than the others, but our sys-
tems were still comfortably ahead of it. We also calculated the agreement
between the volunteers who helped create the dataset, which was used as
an optimistic upper-bound agreement score. Comparing this score against
our two substitutability systems, we found that our systems’ agreement
was sensibly close to the optimistic human agreement. Therefore, we con-
clude that by leveraging external knowledge sources, automatic evalua-
tion systems can have comparable quality to that of human judgements
made in manual evaluation. As a result, such evaluation systems can pro-
duce consistently repeatable results, whilst avoiding the cost and energy
of organising human evaluators.

6.2 Future work

There are many ways in which the contributions made in this thesis can
be further extended. This section will cover three areas that we believe are
worth exploring further.

The first of these is to implement and test further substitutability sys-
tems that use other knowledge bases. A promising source is Wiktionary
[48], a side project started by the WikiMedia Foundation [25] near the end
of 2002. Like WordNet, Wiktionary maintains a synonymy network of
terms (words and common phrases), but unlike WordNet, it is multilin-
gual, spanning over a hundred different languages. Another benefit of

114 CHAPTER 6. CONCLUSIONS

Wiktionary lies in its crowd-sourced nature, which allows it to evolve over
time, following the natural progression of human knowledge.

Wiktionary also provides an inbuilt method for implementing the Inter-
knowledge transition proposed in Section 5.3.6. Instead of converting
entities to plain text and re-invoking the MATCHTARGETS sub-routine,
most Wiktionary entries link directly to their equivalent Wikipedia ar-
ticles. Furthermore, the same Wikipedia articles also link back to Wik-
tionary. Thus, Inter-knowledge transitions can be implemented by simply
following these explicit links for moving reliably between Wikipedia and
Wiktionary.

In terms of speed, we reason that Wiktionary will have a comparable
processing speed to WordNet, as they are similar in both structure and
size. Therefore, as discussed in Section 5.3.6, the search routine in such
a hybrid system should favour transitions within or into Wiktionary (the
fast knowledge base) over Wikipedia. A depth-limited approach could be
taken to achieve this effect. For example, an initial search is attempted
using only Wiktionary. If no suitable substitutability paths are found, then
the search is repeated with the inclusion of Inter-knowledge transitions.
Since the processing time associated with Wikipedia dwarfs that of other
knowledge bases (see Section 5.2.1), any overlap in the second search pass
should be negligible.

A second direction of furthering this thesis lies in the exploration of
alternative methods for evaluating approximate string matching systems.
The format of our current dataset (questions containing four substitutes
each against a single substitutee) is only one of many possible ways for
isolating the task of computing substitutability. No doubt other formats
could prove to be just as effective or potentially be even better. One ap-
proach we considered involves making volunteers compare two sets of
substitute-substitutee pairs against each other, to decide whether one sub-
stitution is better than the other or are both similar in quality (i.e. A → B

vs. C→ D).

6.2. FUTURE WORK 115

This comparative approach once again avoids the need for humans to
explicitly assign scores to the individual substitution pairs, which as we
mentioned in Section 4.1, is not as reliable or consistent. Once the pro-
cess of manual labelling is complete, a dataset can be created by construct-
ing an ordered list of substitution pairs based on the data gathered from
the human volunteers. Approximate string matching systems can then be
evaluated using a ranking agreement, similar in fashion to our SR metric
(see Section 4.2.5).

Evaluation can also be taken a step further, to go beyond substitutabil-
ity as an isolated task. Systems could be tested in the context of a real-
life IR evaluation task, such as evaluating the quality of automatically ex-
tracted keyphrases. More specifically, approximate string matching sys-
tems should be integrated as the matching criteria of the IR evaluation
process described in Chapters 1 and 2. This less strict matching criteria
will cause an increase in the true positive rate when compared to exact
string matching, and subsequently result in higher overall performance
scores (i.e. precision, recall and F-measure) given to the IR systems being
evaluated. However, currently, there is no good way to reliably measure
the correctness of these elevated scores.

One solution is to have humans judge the quality of sets of candidates
against sets of gold standards, just as one would undertake in a manual
evaluation process. For the specific example of keyphrase extraction, hu-
mans would label/score the quality of a set of candidate keyphrases (gen-
erated by real-life keyphrase extraction systems) against a set of profes-
sionally or author assigned keyphrases (e.g. from manually-indexed doc-
ument collections such as FAO [11] and SemEval-2010 [31]). These human
quality judgements can then be used to compare against the performance
scores produced by automatic evaluation systems with integrated approx-
imate string matching, as a kind of meta-evaluation.

The third area of future work concerns the optimisation of transition
scores as explained in Section 5.3.5. These scores directly affect the final

116 CHAPTER 6. CONCLUSIONS

substitutability score given to any pair of input terms, thus having a sig-
nificant impact on the overall agreement of the system when compared to
human judgements. Transition scores can be learnt by tuning them against
a dataset to maximise the performance over a certain metric. We used sim-
ulated annealing [32] to accomplish this task, but the process can be time-
intensive and often got stuck at local optima, despite the measures taken
to avoid it. Part of the problem could be due to the fact that we optimised
our system over the product of two metrics (Combo and SR), forcing it to
compromise between the two potentially conflicting measures. A dataset
that relies on only a single metric, such as the rank agreement based one
mentioned previously, could produce more consistent results.

Other hill climbing techniques should also be tried and tested, as they
may prove to be more effective. Some promising methods include Par-
ticle Swarm Optimisation (PSO [28]) and Genetic Algorithm (GA [23]).
Both PSO and GA maintain a population of candidate solutions, each re-
quiring an evaluation pass over the dataset to calculate its fitness, before
proceeding to the next iteration. To speed up this evaluation process, we
propose that the entire population be evaluated in a parallel manner over
the dataset. In other words, every candidate solution is first evaluated
against the same question in the dataset, and their fitness/agreement for
that question is recorded individually. The process is then repeated for
every other question until the entire dataset has been covered. We be-
lieve this will be faster than a serial approach, as it should substantially
increase the chance of a cache hit when utilising the caching technique in-
troduced in Section 5.3.3. However, one slight change needs to be made
to the caching implementation. The cache we implemented recorded the
transition scores associated with each expansion, but because each candi-
date solution contains its own unique set of transition scores, the scores
must be recalculated each time.

Bibliography

[1] BARKER, K., AND CORNACCHIA, N. Using noun phrase heads to
extract document keyphrases. In Advances in Artificial Intelligence.
Springer, 2000, pp. 40–52.

[2] BARRIÈRE, C., AND JARMASZ, M. Keyphrase extraction: enhancing
lists.

[3] CILIBRASI, R., AND VITÁNYI, P. M. Clustering by compression. In-
formation Theory, IEEE Transactions on 51, 4 (2005), 1523–1545.

[4] CILIBRASI, R. L., AND VITANYI, P. M. The google similarity distance.
Knowledge and Data Engineering, IEEE Transactions on 19, 3 (2007), 370–
383.

[5] CLEARY, J. G., AND WITTEN, I. Data compression using adaptive
coding and partial string matching. Communications, IEEE Transac-
tions on 32, 4 (1984), 396–402.

[6] CRABTREE, D. W., ANDREAE, P., AND GAO, X. Exploiting underrep-
resented query aspects for automatic query expansion. In Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discov-
ery and data mining (2007), ACM, pp. 191–200.

[7] DEUTSCH, L. P. Deflate compressed data format specification version
1.3.

117

118 BIBLIOGRAPHY

[8] DIJKSTRA, E. W. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[9] DUMAIS, S. T. Latent semantic analysis. Annual review of information
science and technology 38, 1 (2004), 188–230.

[10] EL-BELTAGY, S. R. Kp-miner: A simple system for effective
keyphrase extraction. In Innovations in Information Technology, 2006
(2006), IEEE, pp. 1–5.

[11] FAO, J., AND FOODS, M. H. I. Food and agriculture organization
of the united nations. Rome, URL: http://faostat. fao. org (2004).

[12] FELLBAUM, C. Co-occurrence and antonymy. International journal of
lexicography 8, 4 (1995), 281–303.

[13] FINKELSTEIN, L., GABRILOVICH, E., MATIAS, Y., RIVLIN, E.,
SOLAN, Z., WOLFMAN, G., AND RUPPIN, E. Placing search in con-
text: The concept revisited. In Proceedings of the 10th international con-
ference on World Wide Web (2001), ACM, pp. 406–414.

[14] FINLAYSON, M. A. Code for java libraries for accessing the princeton
wordnet: Comparison and evaluation.

[15] FRAKES, W. B. Term conflation for information retrieval. In Proceed-
ings of the 7th annual international ACM SIGIR conference on Research
and development in information retrieval (1984), British Computer Soci-
ety, pp. 383–389.

[16] GABRILOVICH, E., AND MARKOVITCH, S. Computing semantic re-
latedness using wikipedia-based explicit semantic analysis. In IJCAI
(2007), vol. 7, pp. 1606–1611.

[17] GAILLY, J.-L., AND ADLER, M. The gzip compressor, 1991.

[18] GOLUB, G., AND KAHAN, W. Calculating the singular values and
pseudo-inverse of a matrix. Milestones in Matrix Computation: The

BIBLIOGRAPHY 119

selected works of Gene H. Golub with commentaries: The selected works of
Gene H. Golub with commentaries (2007), 237.

[19] HARISPE, S., RANWEZ, S., JANAQI, S., AND MONTMAIN, J. Semantic
measures for the comparison of units of language, concepts or entities
from text and knowledge base analysis. arXiv preprint arXiv:1310.1285
(2013).

[20] HASSAN, S., AND MIHALCEA, R. Semantic relatedness using salient
semantic analysis. In AAAI (2011).

[21] HAVIL, J., AND GAMMA, J. Exploring euler’s constant, 2003.

[22] HIRST, G., AND ST-ONGE, D. Lexical chains as representations of
context for the detection and correction of malapropisms. WordNet:
An electronic lexical database 305 (1998), 305–332.

[23] HOLLAND, J. H. Adaptation in natural and artificial systems: An intro-
ductory analysis with applications to biology, control, and artificial intelli-
gence. U Michigan Press, 1975.

[24] HULTH, A. Improved automatic keyword extraction given more lin-
guistic knowledge. In Proceedings of the 2003 conference on Empirical
methods in natural language processing (2003), Association for Compu-
tational Linguistics, pp. 216–223.

[25] INC., W. F. Wikimedia downloads, July 2011.

[26] JOTY, S., CARENINI, G., AND NG, R. Automatic topic labeling in
asynchronous conversations.

[27] KENDALL, M. G. A new measure of rank correlation. Biometrika
(1938).

[28] KENNEDY, J., EBERHART, R., ET AL. Particle swarm optimization.
In Proceedings of IEEE international conference on neural networks (1995),
vol. 4, Perth, Australia, pp. 1942–1948.

120 BIBLIOGRAPHY

[29] KENNEY, J., AND KEEPING, E. Harmonic mean. Mathematics of Statis-
tics, Pt. 1, 3rd ed., Van Nostrand, Princeton, NJ (1962), 57–58.

[30] KIM, S. N., BALDWIN, T., AND KAN, M.-Y. Evaluating n-gram based
evaluation metrics for automatic keyphrase extraction. In Proceedings
of the 23rd international conference on computational linguistics (2010),
Association for Computational Linguistics, pp. 572–580.

[31] KIM, S. N., MEDELYAN, O., KAN, M.-Y., AND BALDWIN, T.
Semeval-2010 task 5: Automatic keyphrase extraction from scientific
articles. In Proceedings of the 5th International Workshop on Semantic
Evaluation (2010), Association for Computational Linguistics, pp. 21–
26.

[32] KIRKPATRICK, S., VECCHI, M., ET AL. Optimization by simulated
annealing. science 220, 4598 (1983), 671–680.

[33] KOLMOGOROV, A. N. On tables of random numbers. Theoretical Com-
puter Science 207, 2 (1998), 387–395.

[34] LAVIE, A., AND AGARWAL, A. Meteor: An automatic metric for
mt evaluation with high levels of correlation with human judgments.
In Proceedings of the Second Workshop on Statistical Machine Translation
(2007), Association for Computational Linguistics, pp. 228–231.

[35] LAVIE, A., AND AGARWAL, A. Meteor: An automatic metric for
mt evaluation with high levels of correlation with human judgments.
In Proceedings of the Second Workshop on Statistical Machine Translation
(2007), Association for Computational Linguistics, pp. 228–231.

[36] LEACOCK, C., AND CHODOROW, M. Combining local context and
wordnet similarity for word sense identification. WordNet: An elec-
tronic lexical database 49, 2 (1998), 265–283.

BIBLIOGRAPHY 121

[37] LI, M., CHEN, X., LI, X., MA, B., AND VITÁNYI, P. M. The similarity
metric. Information Theory, IEEE Transactions on 50, 12 (2004), 3250–
3264.

[38] LIN, C.-Y. Rouge: A package for automatic evaluation of summaries.
In Text Summarization Branches Out: Proceedings of the ACL-04 Work-
shop (2004), pp. 74–81.

[39] MAKHOUL, J., KUBALA, F., SCHWARTZ, R., AND WEISCHEDEL, R.
Performance measures for information extraction. In In Proceedings of
DARPA Broadcast News Workshop (1999), pp. 249–252.

[40] MARTIN, A., AND PRZYBOCKI, M. The nist 1999 speaker recognition
evaluationan overview. Digital signal processing 10, 1 (2000), 1–18.

[41] MEDELYAN, O. Human-competitive automatic topic indexing. PhD the-
sis, The University of Waikato, 2009.

[42] MEDELYAN, O., AND WITTEN, I. H. Thesaurus based automatic
keyphrase indexing. In Proceedings of the 6th ACM/IEEE-CS joint con-
ference on Digital libraries (2006), ACM, pp. 296–297.

[43] METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N.,
TELLER, A. H., AND TELLER, E. Equation of state calculations by
fast computing machines. The journal of chemical physics 21, 6 (1953),
1087–1092.

[44] MIHALCEA, T., AND TARAU, P. T. Bringing order into texts. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing (2004).

[45] MILLER, G. A. Wordnet: a lexical database for english. Communica-
tions of the ACM 38, 11 (1995), 39–41.

[46] MILNE, D., AND WITTEN, I. H. An open-source toolkit for mining
wikipedia. Artificial Intelligence 194 (2013), 222–239.

122 BIBLIOGRAPHY

[47] MOHRI, M., ROSTAMIZADEH, A., AND TALWALKAR, A. Foundations
of machine learning. MIT Press, 2012.

[48] NAVARRO, E., SAJOUS, F., GAUME, B., PRÉVOT, L., SHUKAI, H.,
TZU-YI, K., MAGISTRY, P., AND CHU-REN, H. Wiktionary and nlp:
Improving synonymy networks. In Proceedings of the 2009 Workshop
on The People’s Web Meets NLP: Collaboratively Constructed Semantic Re-
sources (2009), Association for Computational Linguistics, pp. 19–27.

[49] OLSON, M. A., BOSTIC, K., AND SELTZER, M. I. Berkeley db. In
USENIX Annual Technical Conference, FREENIX Track (1999), pp. 183–
191.

[50] ORACLE. Java VisualVM (version 1.3.7). http://visualvm.java.
net/, Jan. 2014.

[51] PAPINENI, K., ROUKOS, S., WARD, T., AND ZHU, W.-J. Bleu: a
method for automatic evaluation of machine translation. In Proceed-
ings of the 40th annual meeting on association for computational linguistics
(2002), Association for Computational Linguistics, pp. 311–318.

[52] PATEL, J. K., AND READ, C. B. Handbook of the normal distribution,
vol. 150. CRC Press, 1996.

[53] PEDERSEN, T., PATWARDHAN, S., AND MICHELIZZI, J. Word-
net::similarity: measuring the relatedness of concepts. In Demonstra-
tion Papers at HLT-NAACL 2004 (2004), Association for Computational
Linguistics, pp. 38–41.

[54] PORTER, M. F. An algorithm for suffix stripping. Program: electronic
library and information systems 14, 3 (1980), 130–137.

[55] R CORE TEAM. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2014.

BIBLIOGRAPHY 123

[56] ROBERT, C., CASELLA, G., ET AL. A short history of markov chain
monte carlo: subjective recollections from incomplete data. Statistical
Science 26, 1 (2011), 102–115.

[57] SALTON, G., WONG, A., AND YANG, C. S. A vector space model for
automatic indexing. Commun. ACM 18, 11 (Nov. 1975), 613–620.

[58] SINGHAL, A. Modern information retrieval: A brief overview. IEEE
Data Eng. Bull. 24, 4 (2001), 35–43.

[59] STORER, J. A., AND SZYMANSKI, T. G. Data compression via textual
substitution. Journal of the ACM (JACM) 29, 4 (1982), 928–951.

[60] STRUBE, M., AND PONZETTO, S. P. Wikirelate! computing semantic
relatedness using wikipedia. In AAAI (2006), vol. 6, pp. 1419–1424.

[61] TERRA, E., AND CLARKE, C. L. Frequency estimates for statistical
word similarity measures. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics
on Human Language Technology-Volume 1 (2003), Association for Com-
putational Linguistics, pp. 165–172.

[62] TURNEY, P. Mining the web for synonyms: Pmi-ir versus lsa on toefl.

[63] TURNEY, P. Coherent keyphrase extraction via web mining.

[64] VAN RIJSBERGEN, C. Information retrieval. dept. of com-
puter science, university of glasgow. URL: citeseer. ist. psu.
edu/vanrijsbergen79information. html (1979).

[65] VAN RIJSBERGEN, C. Information retrieval: theory and practice. In
Proceedings of the Joint IBM/University of Newcastle upon Tyne Seminar
on Data Base Systems (1979), pp. 1–14.

[66] WAN, X., AND XIAO, J. Collabrank: towards a collaborative ap-
proach to single-document keyphrase extraction. In Proceedings of

124 BIBLIOGRAPHY

the 22nd International Conference on Computational Linguistics-Volume
1 (2008), Association for Computational Linguistics, pp. 969–976.

[67] WANG, D. X., GAO, X., AND ANDREAE, P. Dikea: domain-
independent keyphrase extraction algorithm. In AI 2012: Advances
in Artificial Intelligence. Springer, 2012, pp. 719–730.

[68] WELCH, T. A. A technique for high-performance data compression.
Computer 17, 6 (1984), 8–19.

[69] WEST, D. B., ET AL. Introduction to graph theory, vol. 2. Prentice hall
Upper Saddle River, 2001.

[70] WITTEN, I., AND MILNE, D. An effective, low-cost measure of se-
mantic relatedness obtained from wikipedia links. In Proceeding of
AAAI Workshop on Wikipedia and Artificial Intelligence: an Evolving Syn-
ergy, AAAI Press, Chicago, USA (2008), pp. 25–30.

[71] WITTEN, I. H., PAYNTER, G. W., FRANK, E., GUTWIN, C., AND

NEVILL-MANNING, C. G. Kea: Practical automatic keyphrase ex-
traction. In Proceedings of the fourth ACM conference on Digital libraries
(1999), ACM, pp. 254–255.

[72] WU, Z., AND PALMER, M. Verbs semantics and lexical selection.
In Proceedings of the 32nd annual meeting on Association for Computa-
tional Linguistics (1994), Association for Computational Linguistics,
pp. 133–138.

[73] ZESCH, T., AND GUREVYCH, I. Approximate matching for evaluat-
ing keyphrase extraction. In Proceedings of the 7th International Confer-
ence on Recent Advances in Natural Language Processing (2009), Citeseer,
pp. 484–489.

