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Abstract 
 

This thesis tests the reuse of design knowledge as a method to support 

learning and use of algorithmic design in architecture. 

 

 The use of algorithmic design systems and programming 

environments offer architects immense opportunities, providing a powerful 

means to create geometries and allowing dynamic design exploration, but 

it can also impose substantial challenges. Architects often struggle with 

adopting algorithmic design methods (translating a design idea into an 

algorithm of actions), as well as with the implementation of programming 

languages, the latter often proving frustrating and creating barriers for 

both novice and advanced software users. 

 

 The proposition explored in this thesis is that the reuse of design 

knowledge can improve architects’ ability to use algorithmic design 

systems, and reduce the barriers for using programming. This study 

explores and compares two approaches as a means of accessing and 

reusing existing design solutions. The first approach is the reuse of abstract 

algorithmic ‘Design Patterns’. The second is the reuse of algorithmic 

solutions from specific design cases (Case-Based Design).  

 

 The research was set up as an experimental comparative study 

between three test groups: one group using Design Patterns, a second 



 

 

group using Case-Based Design, and the control group. A total of 126 

designers participated in the study providing sufficient numbers within 

each group to permit rigorous studies of the statistical significance of the 

observed differences. 

 

 Results of this study illustrate that the systematic inclusion of the 

Design Patterns approach to the learning strategy of programming in 

architecture and design, proves to be highly beneficial. The use of abstract 

solutions improves designers’ ability to overcome programming barriers, 

and helps architects to adopt algorithmic design methods. The use of 

Design Patterns also encourages design exploration and experimentation. 

The use of the Case-Based Design approach seems to be more effective 

after designers and architects, who are novices in programming, gain more 

experience with the tool. It encourages more focused reasoning, oriented 

to the realisation of a particular (originally intended) design outcome. 

 

 The contribution of this research is to provide empirical evidence 

that the reuse of abstract and case-based algorithmic solutions can be very 

beneficial. Results of this study illustrate that both reuse methods can be 

strategically integrated into design education and architectural practice, 

supporting learning and use of algorithmic design systems in architecture. 

The study also identifies potential weaknesses of each approach, 

proposing areas which could be addressed by future studies. 
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Definitions 
CAD – Computer Aided Design. Sometimes in the field of architecture 

expanded to CAAD: Computer Aided Architectural Design 

Computation –refers to the use of mathematical or logic methods (Terzidis, 

2006) 

Computerisation – the mode of using computers in design practice 

(Menges, Ahlquist, 2011) 

Algorithm –textually or diagrammatically represented set of instructions 

and rules. A procedure of solving a problem in a series of steps using the 

logic of if-then-else operations (Terzidis, 2006) 

Algorithmic Design refers to the use of rule-based procedural logic and 

computation (Terzidis, 2006). It is typically performed through computer 

programming languages (Leach, 2010) 

Parametric Design refers broadly to the use of parametric modeling 

programs. (Leach, 2010). It is based on the use of parameters (variables) 

and rules. Such terms as parametric and algorithmic have a large overlap 

(and are closely related), in some cases they can be interchangeable or can 

be seen as a synonyms (Davis, 2013). 

Visual Programming – a type of algorithmic design method, which uses 

diagrammatic (e.g. box-and-wire) representation. In visual programming, 

program-elements (boxes) containing specific instructions and are used to 
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represent and manipulate the outcome model (Celani, Vaz, 2012). Such 

programs as: Grasshopper plugin for Rhinoceros (Grasshopper3d, 2012), 

(Rhino3d, 2012), Generative Components (GC) (Bentley, 2012), etc. 

Script - list of commands written in a textual programming language, such 

as: Rhino Script (Rhinoscript, 2012), Mel (Autodesk, 2010), MaxScript 

(Autodesk, 2012), Python (Python, 2012).  

Plugin – software component of a larger application that has specific 

abilities and functions within the main software framework 

  

http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Software_application
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0. Introduction 

 

The architectural profession could benefit from knowing more about 

knowledge reuse methods that can help architects and designers to 

overcome programming barriers and make the use of algorithmic 

modelling systems less problematic and more effective.  

 This thesis explores the reuse of design solutions as a support 

method for learning and using algorithmic design in architecture. The 

focus of the study is to test whether the reuse of design knowledge can 

improve architects’ ability to understand and effectively use algorithmic 

modelling systems, and to help users to overcome barriers associated with 

the implementation of programming languages. 

 In the context of architecture the term algorithmic design refers to 

the use of rule-based procedural logic and computation (Terzidis, 2006), 

which typically operate through computer programming languages 

(Leach, 2010). The word ‘algorithm’ has Persian roots, and means a 

procedure of solving a problem in a series of steps using the logic of if-

then-else operations (Terzidis, 2006). Algorithms are the soul of the 

computational design systems. They can be seen as an automated formula 

(a recipe) specifying procedural operations of the system, such as 
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calculating mathematical functions, searching, selecting objects, modifying 

them and generating output geometry (Menges, Ahlquist, 2011).  

 An increasing number of designers and architects choose to learn 

and use algorithmic modelling methods in their designs. One of the 

reasons for this is that algorithmic modelling tools incorporate both 

computational complexity and the creative use of computers (Terzidis, 

2006). Algorithmic design combines the complexity and the creativity of 

CAD (Menges, Ahlquist, 2011); and enables designers to shift their role 

from ‘architecture programming’ to ‘programming architecture’ (Terzidis, 

2006). It has been argued that computation allows architects to create 

original and complex design solutions that are difficult, or impossible, to 

achieve using other methods (McCormack, Dorin and Innocent, 2004). 

 The mathematical nature of scripts and visual programming 

definitions gives architects the ability to explore multiple output models, 

simply by changing the rules and the values of parameters. The use of 

algorithmic design enables architecture to go beyond ‘a static creature’ 

state, and become a fluid sequence of parametrically generated forms and 

patterns. Through computation, architecture ‘transcends itself beyond the 

common and predictable’ (Terzidis, 2006).  

 The other reason for growing interest in algorithmic modelling 

techniques is that the use of programming provides a means to overcome 

limitations of predefined commands and interfaces of CAD software. It 

allows CAD users more freedom and flexibility in the face of software 

constraints. By using programming languages architects can overcome 

‘the factory-set limitations’ of CAD software (Ibid).  
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0.1 Problems with algorithmic design 

While the use of algorithmic modelling systems provides architects and 

designers with tremendous opportunities, it can also impose considerable 

challenges (Menges, Ahlquist, 2011). These challenges are often associated 

with the acquisition of programming skills that traditionally are outside the 

architect’s repertoire and design education. However the main challenge 

may not reside in mastering computation techniques, but rather in 

assimilating ‘a mode of computational design thinking’ (Menges, Ahlquist, 

2011). Because the initial principles of human and computer reasoning do 

not follow the same patterns, it is not easy for some people to use 

programming algorithms when translating their idea into form. The 

algorithmic logic of idea-to-form translation introduces novel principles of 

design thinking (Matcha, 2007). Many designers find it difficult to integrate 

algorithmic thinking and programming techniques into the design process 

(Woodbury, 2010).  

 

 

Exhibit 0.1 Traditional design languages and programming design languages 



0.1 Problems with algorithmic design 

Page | 6 

 

 One of the reasons behind these problems is that there is a distinct 

gap between traditional design principles and algorithmic modelling 

methods and rules. Most architects and architectural students find it 

difficult to shift from conventional freehand drawing and modelling 

(including manual CAD modelling) to describing their ideas through the 

language of algorithms and codes (Exhibit 0.1)  

 Algorithmic modelling systems are operated through symbolic 

(scripting) or analogue (visual) programming languages (Exhibit 0.1), which 

are used as the means to actualise an idea-to-form translation (Mitchell 

1975). The implementation of these programming languages can be 

frustrating and cause many difficulties for both novice and advanced users. 

Many architects face difficulties with adopting their logic and syntax (Celani 

and Vaz, 2012; Woodbury 2010). Understanding and learning the 

programing framework syntax rules can be especially frustrating to novice 

users (Celani, Vaz, 2012).  

 As a result, adopting algorithmic design principles and mastering 

programming techniques often requires additional effort from designers 

and architects, many of whom face substantial barriers with understanding 

and using algorithmic design methods. While software developers work 

towards improving the characteristics of design systems (making more 

intuitive and flexible programming languages and interfaces), this thesis 

proposes to explore this issue from the perspective of design process itself.  

 The reuse of programs, algorithms and codes (software artefacts) 

is an important part of programming practice (Krueger, 1992). Software 

engineers and architects using algorithmic modelling systems share similar 

challenges (Davis, 2013). However, the systematic reuse of design solutions 

is not a part of algorithmic design practice in architecture, and we can learn 

from programming practices (Woodbury, 2010) (Davis, 2013).  
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0.2 Research hypothesis: reuse of knowledge as 

a design support method 

 This thesis proposes to test the reuse of algorithmic solutions as a 

design support method with the aim of to reducing barriers to the use of 

programming and improving architect’s ability to use algorithmic design 

systems. Conceptually, this thesis asks how might one test experimentally 

the reuse idea? The primary research strategy is to work with two 

alternative radically different reuse methods that are well established and 

discussed in literature. Two different approaches are proposed to test the 

idea of design knowledge-sharing and the reuse of the solutions: the first 

is to learn and reuse abstract solutions (Design Patterns), the second is to 

reuse case-based solutions using a database system.  

 The proposed methods of reusing abstract and case-based 

knowledge are not new. Over the past few decades the pattern and case-

based design approaches have been adopted by educators and 

practitioners in various fields of design, architecture and software 

development. This thesis aims to test these approaches as a means of 

accessing and reusing existing knowledge in the context of algorithmic 

design in architecture. Neither of these approaches is a research target in 

itself, but they are a vehicle through which this research investigates the 

impact of each method on the design process. It wants to know whether 

re use of knowledge may be of help. It selects two radically different 

approaches to knowledge re use to test this bigger idea 

 The abstraction reuse approach is tested using Design Patterns 

developed by Robert Woodbury (2010). These Design Patterns focus on 

generalised methods of structuring programming solutions, and address 

both problems with programming (code) itself, as well as with solving 
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problems specific to architecture (Davis, 2013). According to Woodbury 

Design Patterns are a theory, which is yet to be tested (Woodbury, 2010) 

 

Research hypothesis 

 The research objective of this thesis is to test the hypothesis that 

the reuse of abstract programming solutions (Design Patterns) can help 

designers to overcome programming barriers and improve their 

algorithmic modelling performance (Woodbury, 2010), and to compare it 

with the alternative Case-Based Design approach (the reuse of specific 

programming solutions).  

 

Reuse methods: abstract solutions versus solutions 

from specific design cases  

 Typically, every reuse technique (abstract or case-based) involves 

selection, specialisation and integration of artefacts, though the degree of 

involvement may vary depending on the reuse approach. The purpose for 

the reuse of programming artefacts is usually to reduce time and effort 

required to design systems (Krueger, 1992). This thesis investigates how 

each approach influences designers’ ability to overcome barriers (reduce 

effort) and their ability to use algorithmic design methods (improve 

performance). The study tests whether the reuse of abstract and case-

based solutions can reduce programming difficulties, increase the explored 

space of programming solutions, improve designers’ ability to realise 

original design concepts, and accomplish all design objectives (See 

‘Detailed criteria for comparing the DP and CBD approaches’ section). 
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 The first approach is the reuse of abstract solutions to a design 

problem - Design Patterns (Woodbury, 2010). These patterns were 

developed to assist designers with structuring their own programming 

solutions on an abstract level. In his book ‘Elements of Parametric Design’ 

Woodbury states that, in architecture, designers tend to create algorithms 

anew, rather than reuse them (Woodbury, 2010). The development of an 

algorithmic structure is an ‘act of high-level abstraction’ (Menges, Ahlquist, 

2011). Woodbury argues that designers can make their designs much 

more effective by employing reusable abstract parts (Design Patterns). The 

key concept of Design Patterns lies in the reuse of design knowledge 

(Alexander, Ishikawa, Silverstein, 1977). Instead of solving each new 

problem individually, architects can reuse the patterns successfully 

implemented in the past (Gamma, Helm, Johnson, Vlissides, 1994). The 

pattern methods have been adapted and tested in various disciplines 

including the field of object-oriented design (software development). This 

is particularly relevant, because both software design and algorithmic 

design operate using programming languages.  

 It has been suggested that an effective reuse technology implies 

the use of a high level of abstraction (Woodbury, 2010), (Gamma, Helm, 

Johnson, Vlissides, 1994), (Krueger, 1992). The idea is that a designer 

should know ‘what’ the reusable artefacts do rather than ‘how’ they do it. 

However, there are difficulties associated with the reuse of abstractions, 

because in order to use abstract solutions a designer must be familiar with 

the abstractions prior to the design process, which requires time to study 

and understand these abstractions (Krueger, 1992). This suggests that for 

a reuse technique to be effective it must be easier to reuse an existing 

artefact (solution) than it is to develop a new system from scratch (Ibid). 
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 The works of both Alexander et al. (Alexander, Ishikawa, Silverstein, 

1977) and Gamma et al. (Gamma, Helm, Johnson, Vlissides, 1994) helped 

Robert Woodbury to identify the following structure of patterns: each 

design pattern has to be explained using the ‘Name’, ‘Intent’, ‘Use When’, 

‘Why’ and ‘How’ and it should be illustrated by a set of samples (examples) 

(Design Patterns, 2014) (Woodbury, 2010). 

 In summary, Design Patterns are generalised reusable solutions, 

described with a high level of abstraction, and documented in such a way 

as to be broad enough to apply to a range of different design contexts. 

Woodbury has outlined the following principles of patterns for parametric 

design (Woodbury, 2010): 

 Explicit. Others should be able to read (understand) your patterns 

in your absence.  

 Partial: separate solutions to problem parts; 

 Problem focused: a pattern should solve a shared problem; 

 Abstract. Patterns are abstract and represent a general concept.  

 The second approach is the reuse of specific programming 

solutions, employing case-based reasoning principles (Kolodner, 1993). 

Case–Based Reasoning (CBR) is a problem solving approach which utilises 

specific knowledge from previous cases, instead of making assumptions 

based on generalised relationships between a description of a problem 

and conclusions (Aamodt, Plaza, 1994). In CBR a new problem is solved by 

finding and reusing an existing solution from a similar case from the past. 

In other words, in order to solve a new problem one finds a previous 

situation and reuses the knowledge of its solution in a new context. Case-

based reasoning is a cognitive model proposing that thinking by analogy 

is consistent with natural patterns of problem solving. (Kolodner, 1993). It 

is argued that CBR is used by people as a primary mechanism for common 
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reasoning on a daily basis; there is evidence that when humans solve new 

problems they predominantly rely on specific, previous encountered 

situations (Ibid) (Riesbeck, Schank, 2013). Research on human cognition 

shows that people tend to use previous cases as models both when they 

are novices (Anderson, 2013) and when they are experts (Rouse, Hurt, 

1982).  

 Studies on the use of case-based design in architecture indicate 

that designers can benefit from past cases, by adapting similar design 

solutions (Heylighen, Verstijnen, 2000). One of the fundamental strategies 

in acquiring knowledge is to learn by example. In architecture examples 

are design cases, however there is a fundamental difference between 

learning by example and case-based reasoning. In case-based reasoning 

cases ‘are generalised with respect to the context of a specific problem 

during each problem solving process’ (Hua, Fairings, Smith, 1996). 

Traditionally, in the field of design, knowledge has been recorded and 

formalised as examples of successful design outcomes, rather than 

generalised in the form of principles (Ibid).The approaches using case-

based reasoning incorporate the following principles (Aamodt, Plaza, 

1994): 

 Identification of a new problem (new case); 

 Finding a similar past case (existing solution in a case-base); 

 Use of this past case to solve (suggest a solution for) a new problem 

 Evaluation of your solution and update the case base by learning 

from your new experience (new solution). 

 In this thesis, the CBD (Case-Based Design) approach was tested 

through an online case-base of visually represented algorithmic models 

and corresponding downloadable programming algorithms. These cases, 

and their illustrations, were developed specifically for this research and 
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were labelled according to the design concept, shape and programming 

logic. 

 

0.3 Research methodology 

 This research was designed as an experimental comparative study 

between three test groups: 1) a control group, 2) a group reusing abstract 

solutions (Design Patterns (DP)), and 3) a group reusing solutions from 

specific design cases (Case-Based Design (CBD)). The approaches are 

tested in a series of algorithmic modelling workshops for architects, and 

landscape and interior architects. Participants recruited to participate in the 

experimental part of the study are a diverse group of students, and 

practicing architects, with no age restriction, but a minimum of one year 

experience in design. A total of 126 people participated in the study 

providing sufficient numbers within each group to permit rigorous studies 

of the statistical significance of the observed differences. Continuous 

variables were compared using the t-test (for two test groups), and 

ANOVA (for three test groups); binary data was compared with the chi-

square test (all statistical testing was done using SPSS) (IBM SPSS, 2014) 

(See Statistical methods section).  

 The study was organised in the form of two-day algorithmic 

modelling workshops. Each workshop offered an introduction to 

algorithmic design using Grasshopper (Grasshopper3D, 2014) for 

Rhinoceros (Rhino3D, 2014) (See Methodology and Experiment set-up 

sections). Grasshopper 3D is often referred to as a parametric or an 

algorithmic modelling system, which is why in this study, Grasshopper 

algorithms (definitions) are referred to as parametric/algorithmic solutions. 

On each day participants were given one design assignment, which they 
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were to develop on their own. This was preceded by an introductory series 

of exercises focused on familiarisation with the software and the DP and 

CBD groups were additionally taught how to use the respective reuse 

approach. Participants modelled and submitted their designs within a two-

hour period. The collected data consisted of submitted 3D models, 

programming definitions and survey results. The 3D Rhino models were 

used to calculate the level of complexity of each model. The Grasshopper 

definitions were used to measure the complexity of each programming 

algorithm and to determine the explored solution space of each algorithm. 

 

 

Exhibit 0.2 Algorithmic Modelling Performance: Data/Criteria, illustrating: Programming Algorithm which generates 

an Output Model; and shows the sources of the data, informing the corresponding algorithmic Modelling Criteria. 

 In Exhibit 0.2 the image on the left (labelled ‘Data’) illustrates an 

example of a programming algorithm (box-and-wire diagram made in 

Grasshopper for Rhino3D). The image on the right illustrates the output 

3D model that is generated by the programming algorithm. The bottom 

row shows the respective ‘Criteria’ groups which were used to evaluate this 

programming algorithm, for example the ‘Algorithm Complexity’ and the 
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‘Explored Solution Space’. The explored solution space is determined by 

the variety and novelty of a programming solution (Shah, Smith and 

Vargas-Hernandez, 2003). Variety refers to how many different 

programming components each algorithm has. Novelty evaluates how 

unusual (less frequently used at the group level) each programming 

component is (Ibid). The ‘Model Complexity’ criteria are derived from the 

output model. The methodology for measuring the complexity of the 

output models, was informed by geometrical, combinatory and 

dimensional complexity criteria for model classification– Shape Grammars 

(Forrest, 1974). 

 Questionnaires helped to determine the quantity and type of 

programming difficulties and the number of reused algorithms. They 

sought feedback from workshop participants on the levels of satisfaction 

with the design outcome, and their motivation to use algorithmic 

modelling systems in the future. The participants also provided data 

regarding their design objectives, their ability to model the original design 

idea and the degree of change made in the design due to programming 

difficulties. 

 The comparative study addressed the following criteria of 

algorithmic modelling performance, which outlines designers’ ability to use 

algorithmic design systems (See Detailed Research Methodology section): 

 Number of programming difficulties/type of programming barriers; 

 Explored space of programming solutions (Novelty and Variety); 

 Learning precedents; 

 Degree of algorithm and output model complexity (modelling 

speed); 
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 The aesthetic and design qualities of the models were not judged 

directly. However, these issues were addressed indirectly. Each participant 

was asked to indicate their design intentions and, reflecting on the design 

outcome, evaluate the degree of satisfaction with their produced model. 

This strategy also provided insight into what each person intended relative 

to what was actually achieved. To examine how each approach of reusing 

programming solutions (abstract or case-based) influences designers’ 

ability to realise an idea-to-form translation within the algorithmic 

modelling environments, the following design performance criteria were 

identified: 

 Ability to realise original idea  

 Ability to accomplish all design objectives/typology of design 

objectives  

 Change in design idea due to programming difficulties 

 Change in design idea due to discovery of more interesting 

reusable solutions 

 Participants’ satisfaction with the design outcome 

 Motivation to use algorithmic design in future 

To investigate further designers’ experience of the use of the DP and CBD 

approaches the following criteria were used of: 

 How easy-to-use 

 How intuitive 

 How helpful 

The outlined criteria formed the evaluation metrics by which this study 

measured the effect (empirical evidence) of the reuse of abstract and case-

based algorithmic solutions in algorithmic design architecture. This 

evidence was used as a means to answer the research questions. 



0.3 Research methodology 

Page | 16 

 

Research scope  

The overall principles of both abstract and case-based reuse approaches 

can potentially be used with any algorithmic design software, and used 

with both textual and visual programming languages. In theory, regardless 

of the type of software programs that are currently used by architects or 

will be used in future, the principles of reusing abstract and specific 

algorithmic solutions will remain the same. However, in the context of this 

study the Design Patterns (DP) and Case-Based Design (CBD) approaches 

are tested using visual programming with Grasshopper/Rhino 

(Grasshopper3D, 2014) (Rhino3D, 2014). Grasshopper uses visual 

programming language. The section ‘Expanding beyond the scope of this 

research’ discusses the boundaries of the study in more detail. 

 The target group of this study is students and professional 

designers and architects, both novice and experienced programming 

users. However, even though the recruited participants were a diverse 

group of both students and practitioners, their experience with algorithmic 

modelling tools, and particularly with the use of Grasshopper, was minimal. 

Thus, it is acknowledged, that this study tests the DP and CBD approaches 

using test population who are novices in programing. (See ‘Expanding 

beyond the Scope of This Research’ section for more detail) 

 

Note on language 

Throughout this thesis such terms as computation and algorithmic 

design/modelling are used frequently. As outlined in the introduction, 

within the field of digital design the term algorithmic design refers to the 

use of programming languages and procedural techniques to solve a 

design problem (Leach, 2010). Computation is a term which refers to the 
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use of mathematical or logical methods (the procedure of calculating) in 

the design process (Terzidis, 2006).  

 Algorithmic design is closely related to the concepts of parametric 

design, in many ways parametric and algorithmic can be seen as a 

synonyms (Davis, 2013). The term parametric is used in a variety of 

disciplines and it means working with parameters within a defined range 

(Leach, 2010). Parametric design is based on the use of parameters 

(variables) and form-making rules as a driving force for the design process. 

Robert Woodbury states that parametric design enables the ‘parts of 

design’ to relate to each other in a coordinated way (Woodbury, 2010). As 

Daniel Davis (2013) notes in his thesis, in the book ‘Elements of Parametric 

Design’ Woodbury does not actually give a definition for parametric 

design. Currently, within the field of architecture the term parametric has 

a range of meanings and there are ‘battles and misgivings’ surrounding 

this term (Davis, 2013). To avoid controversy, such terms as parametric 

design and parametric modelling are used throughout this thesis mostly 

when discussing Design Patterns (or as Robert Woodbury (2010) describes 

them ‘Patterns for Parametric Design’). However in order to have a 

consistent set of terms, this thesis predominantly uses the word 

algorithmic. (See ‘Definitions’ and ‘Computation, parametric and 

algorithmic design in architecture’ for more details regarding the 

terminology). 

 

0.4 Aim  

 The central research question addresses this aim, and asks to what 

extent, and in which particular way does the reuse of abstract and case-

based algorithmic solutions improve and support a designer’s ability to 

learn and use algorithmic design systems, and help users to overcome 
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barriers associated with programming? As a part of this investigation this 

thesis tests Design Patterns, developed by Robert Woodbury (2010).  

 The objective of this research is to investigate the effect of each 

reuse method on the design process and the design outcomes. Does the 

reuse of abstract/case-based solutions help to overcome some particular 

types of difficulties more than other types? Do the approaches improve 

designers’ performance in terms of their ability to use computation as a 

means to translate design concepts into algorithmic models? Do the 

abstract concepts or examples of particular design cases help learners to 

understand and adopt the principles of algorithmic thinking? Do these 

approaches support design exploration or supress it? Do they save time 

and effort in solving design problems? And does their integration into the 

design process lead to a better design performance and higher satisfaction 

with the results? Ultimately, the aim is to determine whether the reuse 

approaches are worth using or not.  

 The secondary objective of this study is to understand the strengths 

and weaknesses of each approach, and to investigate in what way each 

approach can potentially be improved. 

 After answering these questions, the thesis aims to suggest ways in 

which re use of knowledge can be integrated into design education and 

practice and whether it is likely to beneficial. 
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0.5 Thesis structure 

This thesis is divided into seven chapters: the introduction (current chapter 

0.); the background (1.), the methodology (2.), the results (3.), the 

expansion beyond the scope of this research (4.), and the 

recommendations (5.) and conclusion (6.) chapters.  

 Chapter one - Background (1.) is split into three main sections, and 

also contains a list of set definitions. The first section is ‘Context of this 

study’. It discusses the opportunities and challenges of using computation 

and algorithmic design systems in architecture, expanding on the literature 

regarding the research problem, stated in this thesis. It discusses the types 

of barriers that designers face when they use algorithmic modelling 

systems and programming languages. This section also discusses different 

reuse strategies (reuse of programming artefacts) employed in 

programming practice. The second section chapter ‘Abstract solutions’ 

explains the patterns approach in design and computation. The third 

section discusses the theory behind the ‘Case-Based Design’ approach. 

 Chapter two – Methodology (2.) is split into three main sections: 

‘Methodology for comparing approaches’, ‘Evaluation of the approaches’, 

and ‘Statistical methods’. The first section explains in detail the research 

problem, aims, objectives, focus of the study, and the overall experimental 

set-up. It also outlines the adaptation of the Design Patterns and Case-

Based Design to the experimental framework of this study. The second 

methodology section presents the detailed metrics (criteria) for evaluating 

the approaches. The third methodology section explains the statistical 

methods used in this study, including hypothesis testing and correlation 

analysis.  
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 Chapter three presents the Results (3.) of this experimental study. It 

contains four sections. The first section presents the overall results of the 

study, focusing on the identified advantages and barriers that designers 

face when using algorithmic design systems in architecture. This section 

outlines the benefits of integrating the reuse of algorithmic solutions into 

the learning narrative and design process. The second section presents 

results focusing on the reuse of abstract solutions in algorithmic design, 

comparing the performance of the Design Patterns (DP) group with the 

control group. The third section presents results of the Case-Based Design 

(CBD) approach and compares them with the control group. The fourth 

section compares the performance of the DP group against the 

performance of the CBD group, and contains the summary of key findings  

 Chapter four talks about future research (4.) and contains the 

discussion of an expansion beyond the scope of this study. It outlines the 

strategies for testing the DP and CBD approaches on a group of architects 

who are more advanced in algorithmic design, and the potential of testing 

these approaches using textual programming languages. It is suggested 

that to improve some of the issues identified for the DP and CBD 

approaches a hybrid approach could be developed. This hybrid approach 

would incorporate the methods of both abstract and case-based solution 

reuse. 

 Chapter five is a recommendations (5.) chapter, and includes a 

proposal for setting up a course to teaching programming in design based 

on the lessons learned from this study, outlining the lessons as a bullet 

point list.  
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 The final chapter (6.) is a Conclusion chapter. It concludes that the 

reuse of knowledge (abstract or case-based algorithmic solutions) can be 

integrated as a design support method and can significantly reduce 

barriers to using programming improving the ability of architects to use 

algorithmic design systems. 
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1. Background 

1.1 Context of this study 

Algorithmic design provides architects with vast opportunities but it also 

requires them to adopt a particular set of design principles and techniques 

(such as programming), which some find to be very challenging. These 

issues relate to the overall research problem of this thesis. Firstly, this 

chapter discusses the shift in design practice caused by the use of 

computer technologies. It expands on the opportunities and challenges 

associated with the use of computer-aided design and computation in 

architecture. As algorithmic design progresses using programming 

languages, it belongs to the fields of both architecture and programming. 

In many ways architects, who create algorithmic design models share 

similar challenges as software engineers who create computer programs 

(Davis, 2013). We can learn from programming research and practices. 

Secondly this chapter discusses typical barriers associated with learning 

and using programming methods and expands on the knowledge reuse 

approaches that software developers use in their design practice.  

 

Background: CAD in architecture 

The conception of the twenty first century’s architectural design is strongly 

linked with computer technology (Martens, Koutamanis, Brown, 2007), and 

our current 'architectural design culture is being explored through new 
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digital techniques' (Leach, 2009). CAD tools have settled themselves as a 

primary design platform in the field of architecture. Computation appears 

to be one of the most rapidly developing technologies of architectural 

design. It provides a unique means for architects to translate an idea into 

a form through the implementation of a simple set of operations and 

parameters which can link the form to wider social, aesthetic, political and 

environmental relationships. Inevitably, CAD technology expands beyond 

being only an aid of the design process and affects the process itself (Shih, 

Williams, Gu, 2011). This new logic of translating an idea into form can 

facilitate the emergence of novel principles of design thinking (Matcha, 

2007).  

Existing research in this area explores the future possibility of CAD 

tools that are able to learn; tools that have the ability to recognise, improve 

and apply appropriate knowledge to relevant problems (Gero, 1996). 

According to Professor Kalay, the primary use of computers in the building 

industry had already shifted two decades ago from the evaluation of 

proposed design solutions to visualization and collaboration among the 

various professional disciplines that operate within this industry, for 

example: architects, engineers, quantity surveyors et al (Kalay, 1999). Other 

studies envisage that future users of CAD for architectural design will 

require tools that allow them to work collaboratively and synchronously 

(Reffat 2006). Reffat suggests that CAAD (Computer-Aided Architectural 

Design) processes will be performed within smart and real-time 3D virtual 

environments and that the computer can be used as a ‘metaphoric 

machine’ adopting the role of the generator of chances (Ibid). Huang’s 

2009 paper ‘Technology in Computer Aided Architectural Design’ 

discusses the relationship of 3D modelling, BIM, IFC and CAAD network 

technologies. Huang states that 3D geometric modelling, BIM and CAAD 
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networks have an additive relationship between each other and that the 

future potential for CAAD lies within these relationships (Huang, 2009).  

Polar opinions coexist within architectural society regarding the 

relationship between the use of computers and creativity (Bonnardel, 

Zenasni, 2010), (Jonson, 2005), (Musta'amal, 2010). On one hand, there is 

a commonly expressed opinion that the shift from conventional manual 

drafting to CAD modelling has improved design creativity (Chen, 2007). It 

is also believed that CAD tools are able to accommodate a wide range of 

users: from those developing quite simple product design to more 

sophisticated and complex designs solutions (Zeid, 2005). However, some 

architects suggest digital tools can limit or even suppress a designers’ 

ability (Shih, Williams, Gu, 2011). Some research recognises that, while CAD 

inflicts certain limitations on architects, it also offers powerful opportunities. 

To the inexperienced CAD user these opportunities can also present a 

danger. It has been suggested that CAD models may be more readily 

accepted as finished designs without an appropriate level of critical 

development. (Walther, Robertson, Radcliffe, 2007).  

There is a belief expressed by some that CAD is less effective, 

particularly during the initial ideation stage (Mora, Bédard, Rivard, 2008) 

(Mallasi, 2007), when an architectural concept does not have a certain form 

(Cao, Protzen, 1999). Similar opinions suggest that CAD is only appropriate 

for the post-development stages and should be used for refining a final 

proposal. “Its value as a development tool is extremely limited” 

(Charlesworth, 2007). According to Dorta, CAD tools still cannot support 

ideation in the way they should. He suggests that computer technology 

fails to compete with hand sketching and modelling during conceptual 

design stages (Pérez, Dorta, 2011) (Dorta, Perez, Lesage, 2008). The 

experimental set-up of this study addresses these issues. This research was 

http://espace.library.uq.edu.au/list/author_id/8739/
http://espace.library.uq.edu.au/list/author_id/2505/
http://espace.library.uq.edu.au/list/author_id/59/
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organised in such a way that throughout the course of the workshops each 

participant of this study had to produce at least two conceptual design 

models. 

 

Design models in architecture  

Digital design in architecture progresses as the architectural model 

progresses. Architects use models as a thinking and defining mechanism 

for understanding and presenting architectural ideas (Smith, 2004). Virtual 

models are basically the sets of coded information that exist within the 

virtual realm, and operate through computer media. Digital files and data 

can be exported from one program to the other, thus providing direct 

exchange of often complex and precise information. Constant dialogue 

between software and virtual models, provided by computer-aided 

technology, creates an effective and powerful multifunctional digital design 

platform. Digital fabrication has triggered a design revolution, in particular 

promoting innovative and inventive work in the field of architecture 

(Iwamoto, 2009). With rapid technological development in the field of CNC 

fabrication, computer-aided design has evolved from pure virtuality to a 

more complex tool, which blurs the boundary between matter and space 

(Andia, 2001). In this context, digital fabrication appears to be a logical 

extension of computer-aided technology to the material world and 

therefore to the field of computational design in architecture.  

In the work ‘Material Computation: Higher Integration in 

Morphogenetic Design’ Achim Menges (2012) states that the production 

of architecture is on the verge of a significant change. The author predicts 

that in the near future we will witness a new degree of integration between 

computational design and the physical realisation of architecture. Material 
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characteristics and behaviour provide means to inform the design process. 

The reality of the physical constraints of the material world, its self-

organisation, and structuring mean that there are limits to what is actually 

possible (Ball, 2011). However, architecture, being a material practice, is 

still broadly based on the design approaches that are not primarily focused 

on the characteristics and performance of the materials (Menges, 2012). 

Architectural design, especially during the early conceptual stages, is 

usually materially abstract. It often progresses through geometrical form-

finding, the results of which have passive material properties automatically 

assigned. Yet the characteristic of such material as wood for example, can 

suggest amazing design opportunities and structural solutions (Ibid). 

Algorithmic modelling has been proposed as an enabler of parametric 

form-finding approaches, which also consider functional aspects, and 

structural properties and behaviour (Baerlecken et al, 2010). 

 

 

Exhibit 1.1 Iterative Design Loop. 
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Architectural design is not a linear process; it often involves 

repeating loops and iterations (Berkel, Bos, 2006). In order to evaluate their 

work, architects have to have a ‘reality check’, which design models often 

provide. Design models contain the very core ingredients of architecture, 

functioning as a set of compositional, organisational, and structural 

principles and parameters (Ibid). The architectural design process could be 

described as a series of loops (Exhibit 1.1). Each loop involves 

interpretation of relevant objectives and parameters, and further 

translation of these instances into architectural models. The model, being 

a physical or virtual representation of an idea, becomes a reality itself, and 

serves as a source for experience and exploration. Perceived information, 

interpreted into a new, updated set of parameters, triggers further model 

development. This design loop can iterate an infinite amount of times, in a 

never ending search for the most fitting solution. The quality of design 

outcome along with other conditions highly depends on the diversity of 

parameters.  

 It is important to understand the difference between computation 

and computerisation. Computerisation and computer-aided approaches 

refer to utilising computers for organising information (containing and 

representing information) (Menges, Ahlquist, 2011). Computational 

approaches (including parametric and algorithmic design methods) allow 

production of new data, by deducing results from values and actions using 

programming algorithms (Ibid). 

 Computation in architectural design can have a profound influence 

on how the form is perceived and how the output form and structure are 

envisioned and produced (Menges, Ahlquist, 2011). Computational design 

techniques, such as the use of programming algorithms as a model making 

(form-generating) method, have an immense effect on the way designers 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Ben%20Van%20Berkel&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Caroline%20Bos&ie=UTF8&search-alias=books&sort=relevancerank
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and architects think and act (Benton, 2007). The design process is no 

longer a straight transition from an abstract idea to a design model 

through a direct manipulation with the form. In form-making morphology, 

there is a turning away point from end products composed of simple fixed 

structures towards dynamic, ever-changing processes (Kwinter, Davidson, 

2008). The use of computational design systems in architecture triggered 

the shift in representation and design thinking from object-oriented 

models to ‘dynamic system’ models (Menges, Ahlquist, 2011). 

 Computation introduces a different level of design construct, which 

operates through the use of form-generating programs (algorithms). The 

emergence of algorithmic form-generating design tools led to a 

fundamental change in architectural morphologies, increasing the 

opportunity to create ‘innovative smart geometries’ (Abdelsalam, 2009). 

Computational design approaches make it possible to generate specific 

design outputs from the ‘initial abstraction’ through the use of a 

programming algorithm which contains parameters and actions (Coates, 

2010). These approaches re-define the role of a design model in 

architecture. In computational design a model is no longer an object, but 

it is an integral part of a dynamic design process, fluid and responsive to 

changes in the input parameters and programming logic. In 

computational design architects design process instead of designing 

objects. There is a profound shift in design thinking and methods caused 

by the current transition from Computer-Aided Design to computation 

(algorithmic design), from crafting of objects using design software 

towards the development of dynamic algorithmic systems (Menges, 

Ahlquist, 2011).  
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Parametric and algorithmic design in architecture 

Algorithmic design systems have become the subject matter of 

much research recently. Architectural design rapidly and readily shifts from 

the concept of static (fixed) forms to dynamic forms, defined by 

interdependencies of forces and geometrical constraints (Menges, 

Ahlquist, 2011). Some researchers suggest that algorithmic modelling tools 

allow the creation of new and original design solutions that are difficult or 

impossible to achieve via other methods (McCormack, Dorin and Innocent, 

2004).  

In design and architecture such terms as parametric design and 

algorithmic design are closely related. They refer to the computation driven 

design processes that progress through the use of programming 

algorithms, defined by rules and parameters (variables). In computation, 

the organisation of an architectural form (object) can be perceived as an 

assembly of parts, which are defined by constraints of form-making rules 

and negotiations between architectural primitives and the external forces 

(Menges, Ahlquist, 2011). To use algorithmic modelling it is fundamental 

to understand how the system operates and how the form and 

programming constructs work together (Ibid). To understand these 

operations it is essential to be able to predict the behaviour of a computer 

model, which represents the system. The success of this process depends 

on the architects’ ability to define and organise the system and its 

parameters; and their ability to inform and further improve systems’ 

behaviour, using prediction and feedback from the model (Ibid).  

Parametric design uses parameters and rules to express and define 

the relationship between the design idea, constraints, form-making logic; 

and the resulting design behaviour. Parametric design can be defined as a 

series of questions, which establish the variables (parameters) of a design 
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and a computational algorithm that can be used to produce a variety of 

outcomes (Karle, Kelly, 2011). The deeper understanding of parametrics 

allows a designer to establish a method connecting the behaviour of forces 

and forms and representing them as mathematical algorithms and 

geometric rules (Woodbury, 2010). Parametric thinking requires a designer 

to establish clear relationships by which the design parts connect, rather 

than creating the design solution directly. To achieve that, one has to step 

back from direct manipulations with forms and concentrate on building the 

logic of the design (Woodbury, 2010) (See ‘Problems with algorithmic 

design’ section).  

Robert Woodbury, (2010) in his book ‘Elements of Parametric 

Design’ states: “Parametrics is more about an attitude of mind than any 

particular software application”. He notes that parametric design requires 

a very specific way of thinking, which some designers may find alien. He 

argues that parametric modelling systems simply combine basic ideas from 

geometry and computer programming. It turns out that these basic ideas 

do not appear so easy to grasp for people with typical design backgrounds. 

In order to master parametric design techniques one has to be part-

designer, part-computer scientist and part-mathematician. Woodbury 

argues that all CAD models are sets of mathematical propositions. 

Therefore, in some sense, designers ‘do’ mathematics. Designers seldom 

look at CAD modelling from this perspective, and they more ‘use’ 

mathematics than actually ‘do’ mathematics (Woodbury, 2010). It can also 

be argued that learning algorithmic design in architecture can enhance 

education, as it allows students to better understand how to de-code 

complex structures and concepts (Howe, 2011). 

When defining algorithmic and parametric design Neal Lech states 

that within the field of digital design, the term parametric design refers 
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broadly to the use of parametric modeling software (2010). According to 

him, algorithmic design refers to the use of programming languages that 

allow to design through the direct manipulation not of form but of 

programming algorithm (Ibid). However most of parametric modelling 

software progress using programming languages; and parameters 

(variables) are often utilised in scripts and programming definitions, which 

makes the resulting solutions both algorithmic and parametric.  

In the context of this study ‘algorithmic design’ is identified as the 

most fitting term, because the objective of this study is to investigate the 

ways to support ‘idea-to-algorithm’ translation and to assist the use of 

programming algorithms in architecture. Therefore, the focus is on 

designing through the use of programming algorithms. In this respect 

algorithmic thinking and algorithmic design describe the topic of this 

research most accurately.  

 

Barriers in end-user programming systems 

Algorithmic modelling progresses using visual or textual programming 

languages. Architects and designers often face substantial difficulties with 

adopting programming logic and syntax (Celani and Vaz, 2012); 

(Woodbury 2010). The initial principles of human and computer reasoning 

are often alien to each other. Many designers, who are novice to 

programming, struggle to overcome barriers associated with the use codes 

and algorithms. They often find it difficult to use algorithmic design 

thinking and programming techniques as a part of their design process 

(Woodbury, 2010). It is also problematic for architects to master 

algorithmic design logic, because the practice of architecture is associated 

with ‘artistic sensibility and intuitive playfulness’, whereas a programing 
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algorithm is perceived as ‘non-human creations’ (Menges, Ahlquist, 2011). 

There could be numerous reasons why architects and designers struggle 

to acquire computational thinking mode and to master programming 

languages. The fact remains: end-user programmers have to overcome 

substantial barriers in learning and using programming systems (Ko, Myers, 

Aung, 2004). The aim of this study is to investigate whether the re-use of 

algorithmic solutions can help designers reduce these barriers. 

 Research on learning barriers in programming systems has 

identified six types of most re-occurring barriers: design, selection, 

coordination, use, understanding, and information (Ko, Myers, Aung, 

2004). Ko et al. define learning barriers as programming problems that 

lead to invalid assumptions, preventing the end-user from achieving the 

progress. In programming languages the common causes, which often 

lead to invalid assumptions, include the use of: conditions, loops, data 

structures and language constructs (Pane, Ratanamahatana, Myers, 2001) 

(Engebretson, Wiedenbeck, 2002) (Ko, Myers, Aung, 2004). The 

experimental study that Ko et al. conducted observed 40 participants who 

learned programming with Visual Basic. NET (VB) during the five week 

‘Programming Usable Interfaces’ course. To understand learning barriers 

their study focused on the behaviour and progress of the learner.  

The focus was on ‘insurmountable’ barriers, which learners could 

not overcome (understand and fix) despite considerable effort (Ko, Myers, 

Aung, 2004). The first type of programming barriers was identified as 

design barriers: ‘I do not know what I want the computer to do’ (Ibid). 

Design barriers refer to the cognitive difficulties and represent user’s 

inability to realise the idea-to-programming algorithm translation. The 

second type of barrier was selection barriers, articulated as: ‘I think I know 

what I want the computer to do, but I do not know what to use’ (Ibid). It 
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proved to be difficult for some users to locate those programming artefacts 

(commands/programming components) that performed a particular 

action. Ko et al. indicate that the majority of users eventually managed to 

overcome these selection barriers by using the code examples of their 

peers. The third type of programming barrier is coordination barriers: ‘I 

know what to use, but I do not know how to make them work together’ 

(Ibid). These difficulties were also labelled as ‘invisible rules’ and covered 

such problems as knowing how to organise, structure and coordinate a set 

of programming artefacts. Use barriers were identified as the fourth type 

of barriers. They can be explained as: ‘I think I know what to use, but I do 

not know how to use it’ (Ibid). The fifth type is understanding barriers: ‘I 

think I knew how to use it, but it did not do what I expected’. The 

understanding barriers occurred when there was a mismatch between 

expectations and the program’s actual behaviour, or when a program 

returned an error message and learners could not figure out why. The last 

type of barrier associated with learning programming environments was 

identified as information barriers: ‘I think I know why it did not do what I 

expected, but I do not know how to check’. The authors state that 

information barriers occur due to the fact that it is often difficult to acquire 

information about the internal behaviour of a program. When learners 

came across information barriers their typical strategy was to try and guess 

what statement caused the problem.  

Ko et al. argue that while experienced programming users do face 

certain types of difficulties, they are able to easily overcome barriers 

associated with selection, coordination and use (Ko, Myers, Aung, 2004). 

However, according to Ko et al., experts often face significant difficulties 

caused by understanding and information barriers. Learners could easily 

understand data and principles of programming logic. However they had 

major difficulties in trying to act on it (the actual implementation of 
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programming). In the conclusion section of ‘Six Learning Barriers in End-

User Programming Systems’ Ko et al. state that the use of examples (case-

based reasoning) can potentially improve user’s ability to overcome some 

of the barriers including, design, coordination and use barriers. One of the 

research objectives of this thesis is to investigate whether these claims 

(stating that the case-based reasoning helps to overcome programming 

barriers) are valid in the context of algorithmic design in architecture. 

 

Software reuse 

Methods of knowledge re-use are often used in programming 

practice and education as a way to help software engineers to overcome 

programming barriers make the design process more efficient. The reuse 

of programs and codes (software artefacts) is an important part of 

programming practice and research in the field of software design 

(Krueger, 1992).  

The paper ‘Software reuse’ by Charles Krueger discusses different 

types of software reuse techniques, which are employed in software design 

(Ibid). Krueger quotes Biggerstaff and Richter (1989) and states that all 

reuse approaches involve four instances: abstraction, selection, 

specialisation and integration of software artefacts. According to Krueger 

Abstraction plays an essential role in any reuse technique, because without 

it software developers would be most likely lost in the vast collections of 

reusable artefacts. There is a strong relationship between abstraction and 

reusability; they are in fact ‘two sides of the same coin’ (Krueger quotes 

Wegner, 1930). In software reuse Abstraction helps to determine what each 

artefact does and when and how it can be applied (Krueger, 1992). There 

are strong parallels to the pattern approach to architectural design 
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proposed by Alexander (Alexander, 1975), who identified the key principles 

of design patterns structure as: what to use, when to use and how to use 

(Alexander, 1975). Selection plays an important in any reuse approach as 

it helps to locate, compare and select reusable items (Krueger, 1992).  

Classification of reusable artefacts is used as an example that can 

help to organise a library and guide the search and selection process (Ibid). 

It should be noted that classification or grouping of reusable objects can 

often require abstraction. Many reuse approaches merge similar solutions 

(artefacts) into one generic reusable solution, as for example in the TRIZ 

method (Stratton, Mann, Otterson, 2000). To reuse a generic solution, 

software designers need to specialise it by changing its parameters and 

constrains to suit a new design context (Krueger, 1992). Specialisation of a 

reusable solution is almost inevitable as only in rare cases is it possible to 

find an artefact that can be reused directly, without any modifications and 

alterations. Specialisation applies to the reuse of abstract solutions such as 

generic schemes and design patterns; and it also applies to specific 

solutions such as codes (scripts) and visual programming algorithms. The 

final instance, which is involved in almost all reuse approaches in 

programming, is Integration. Integration is a framework, which helps to 

combine a number of located and specialised reusable artefacts together 

(Ibid). This is very similar to the idea of using design patterns as building 

blocks in order to create more complex design solutions (Alexander, 1975) 

(Gamma, Helm, Johnson, Vlissides, 1994) (Woodbury, 2010). 

In his ‘Software Reuse’ survey Krueger describes and compares 

eight different reuse techniques. The list is sorted according to how well 

each technique minimises the intellectual effort required to use them 

(cognitive distance) (Krueger, 1992):  
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 High level languages (Programming languages with strong 

abstraction from the details. The reusable artefacts in a high-level 

language are the assembly patterns.) 

 Very high-level languages (Goal-oriented programming languages 

with a very high level of abstraction) 

 Application generators (High-level systems, with often have a high 

level of abstraction, that generate application programs, by reusing 

software system designs.) 

 Software architectures (High level reusable structures that capture 

a software system design, focusing on subsystems and their 

interactions. Analogue to the large-scale software schemas) 

 Transformational system (Transformational systems often have a 

very high level of abstraction. It takes one program and through a 

series of transformations generates from it another program) 

 Software schemas (The goal of schema is to capture and reuse 

abstract algorithms and structures rather than reusing the code 

itself.) 

 Source code components (The reusable artefacts are the ‘off-the-

shelf source code components’, which are organised and 

categorised in a catalogues or libraries of components) 

 Design and Code scavenging (The reusable artefacts in scavenging 

are code fragments (scripts and algorithms), copied from existing 

systems.) 

(Krueger, 1992) 

The outlined types of the software reuse techniques are developed 

specially for designing software systems. However there are strong 

similarities between the categories, proposed by Krueger for software 

reuse and the reuse approaches identified for algorithmic design. The 

‘Design and code scavenging’ and ‘Source code components’ refer to the 
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reuse of specific programming solutions. The rest of software reuse 

techniques, such as ‘Software schemas’ and ‘Software architectures’ refer 

to the reuse of solutions with a high level of abstraction, i.e. abstract 

programming solutions.   

Krueger defines software reuse as a process of using existing 

programming artefacts instead of building them from scratch (Ibid) He 

emphasises that typically every reuse technique involves selection, 

specialisation and integration of artefacts, though the degree of 

involvement may vary depending on the reuse technique. The objective of 

the reuse of programming artefacts is to reduce time and effort required 

to design software systems. According to Krueger, an effective reuse 

technology implies the use of high level of abstraction (Ibid). Meaning that 

a designer should know ‘what’ the reusable artefacts do rather than ‘how’ 

they do it. However, the author points out that there are difficulties 

associated with the reuse of abstractions. As in order to use abstract 

solutions a designer must be familiar with the abstractions prior the design 

process, which requires time to study and understand these abstractions. 

The study concludes that for a reuse technique to be effective: 

 It must reduce an intellectual effort required to reuse artefacts 

(abstract or specific programming solutions); 

 it must be easier to reuse an existing artefact (solution) than it is to 

develop a new system from scratch; 

 a designer must know ‘what’ a solution does, to be able to select it 

for reuse 

 a designer must be able to find it faster than he/she can build it; 

(Krueger, 1992) 

All mentioned above aspects of the reuse methods apply to both 

the Design Patterns (DP) and Case-Based Design (CBD) approaches. Both 
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of these approaches can be described as methods reusing programming 

artefacts. The difference is the degree of abstraction of these artefacts 

(solutions). The DP approaches is at one end of the spectrum, representing 

the reuse of an abstract generalised idea (construct), while the CBD 

approach is at the other end of the spectrum, representing the reuse of  a 

very specific solution (existing within a particular design context). 

 

1.2 Abstract solutions in design and computation 

This thesis uses patterns as a means to test the reuse of algorithmic 

solutions with a high level of abstraction in the field of architecture and 

design. The Design Patterns method was adapted and tested in various 

other disciplines including the architecture, design, human-computer 

interaction, software design, object-oriented design and participatory 

design. 

 

Design Patterns  

The idea of Design Patterns was introduced by the architect 

Christopher Alexander. His work “A Pattern Language: Towns, Buildings, 

Construction” (Alexander, Ishikawa, Murray Silverstein, 1977) has greatly 

influenced the subsequent studies of the subject and was adapted for 

various disciplines, such as: landscape design, product design and 

computer science. According to Christopher Alexander each Design 

Pattern describes a problem which occurs over and over again (Alexander, 

Ishikawa, Murray Silverstein, 1977). The pattern describes the core of the 

solution to the problem, so this solution can be used a million times over, 

without ever doing the same thing twice (Ibid).  
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The systematic approach proposed by Christopher Alexander is 

widely referenced and used. This approach outlines the following principles 

of writing a Design Pattern:  

 Decomposition of the problem into sub-problems; 

 Generating an abstract solution to a global problem by synthesising 

the individual solutions; 

 Giving a name and a reference number to the pattern; 

 Providing an image and a description of the context and problem 

of the pattern; 

Including a diagram which illustrates the solution. (Ibid). 

An architecture example of a design pattern developed by 

Alexander et al. (Ibid) as a part of the Pattern Language can be the ‘Main 

Entrance’ pattern:  

 Name: Main Entrance 

 Context: You need to fix the entrance of the building 

 Consider these patterns first: Circulation Realms, Family of 

Entrances 

 Problem: ‘Placing the main entrance is perhaps the single important 

step you take during the evolution of a building’ (Ibid) 

 Solution: ‘The entrance must be placed in such a way that the 

people who approach the building see the entrance as soon as they see 

the building itself’ (Ibid). The two steps the solution are: 1) position the main 

entrance correctly, so it can be seen immediately from the street; 2) make 

it clearly visible (a shape that stands out in front of the building).  

 Consider next: Entrance Room, Entrance Transition, Shield Parking, 

Car connection 
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Terms related to the reuse of abstract solutions 

 The following list of terms and term explanations refer to the core 

concept of the first approach: the reuse of abstract solutions in design 

and architecture, tested by this study as a means to aid algorithmic 

modelling. It is important to point out that all these terms were originally 

used in the contexts where the reuse of an abstraction (the core 

principles of a certain type of solution) plays an important role in the 

design process or inventive problem solving. Some of the terms may 

seem rather distinct, for example ‘Design Patterns’, ‘Abstract Solutions’ 

and ‘Generic Solutions’.  

 The term ‘Abstract Solutions’ has frequently been used to 

describe the idea of Design Patterns (Alexander, 1975) (Gamma, Helm, 

Johnson, Vlissides, 1994) (Woodbury, 2010) and the term ‘Generic 

Solutions’ describe the TRIZ solution system, based on the principle of 

abstraction (Altshuller, 1988) (Terninko, Zusman, Zlotin, 1998). Both of 

those terms articulated the idea that recurring types of designs 

(solutions) can be reused effectively through the abstraction of the core 

of this design (solution) and applying it in the new context. Hence 

‘Abstract Solutions’ and ‘Generic Solutions’ describe the same underlying 

principles and ideas, even though they were originally utilised by authors 

who worked in different fields of knowledge.  

The differences in these terms, may have also occurred due to 

translation issues, as the TRIZ theory (Altshuller, 1988), was originally 

written in Russian. When talking about the reuse of abstract design 

solutions for a problem, Altshuller frequently used such terms as 

‘Standard’ (Standard for solving inventive problems) and ‘Standard 

‘Formula’’ (the terms are translated from Altshuller’s manuscript, written 
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in 1975 (Altshuller, 1975). In my own reading (as a native speaker of 

Russian) of the original Russian Alshuller text, the meaning of the term 

‘Standard’ is very similar (and almost identical) to the meaning of a term 

‘Design Pattern’ used by Alexander, Gamma and Woodbury (Alexander, 

1975), (Gamma, Helm, Johnson, Vlissides, 1994), (Woodbury, 2010) (See 

more details in Theory of Inventive Problem Solving (TRIZ) Section).  

 The terms, listed below, vary depending on the particular aspects 

of the context, intake and interpretation of the authors, but all refer to 

the same fundamental concept: the reusable abstracted design solution. 

Abstract Solutions (Abstraction) (Alexander, 1975), (Gamma, Helm, 

Johnson, Vlissides, 1994), (Woodbury, 2010) 

Typical Solution, Category/Class of the solutions (Gamma, Helm, 

Johnson, Vlissides, 1994) 

Standard, Generic Solution, Standard Solution, ‘Formula’ (Altshuller, 

1988) (Terninko, Zusman, Zlotin, 1998), (Woodbury, 2010) 

Design Patterns, Patterns (Patterns for Parametric Design) (Woodbury, 

2010), (Alexander, 1975), (Gamma, Helm, Johnson, Vlissides, 1994) 

 Design Pattern is an abstract solution, which can be applied to a 

shared problem (Woodbury, 2010). 

 Interpretation of the design idea/concept (Woodbury, 2010) 

 Pattern is a ‘pre-formal construct’, which describes the forces in 

the world and relationship between them (Lea, 1994); 

 Patterns emerge from repetitions of human behaviour (Coad, 

1992); 

 Pattern is a recurrent phenomenon or structure, ‘didactic 

medium for human readers’ (Borchers, 2001); 

 Pattern describes a problem and then describes the core of the 

solution (Gamma, 1994 quote Alexander (1977)). 
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 Pattern is a structured description of invariant solution. Invariant 

refers to a set of shared characteristics of the recommended 

solution (Winn, Calder 2002) 

 Patterns should capture ‘big ideas’ (Winn, Calder 2002) instead 

of covering every possible design decision. 

Pattern is an abstraction, which describes not some specific example, but 

it rather refers to a general concept or idea, which is often associated 

with vagueness. In computer science, an abstraction characterizes a class 

of instances which omits inessential details (Woodbury, 2010) (Gamma, 

Helm, Johnson, Vlissides, 1994).  

Design Patterns are the medium to understand and express the practice 

craft of parametric modelling (Woodbury, 2010) 

 

Studies based on the Design Patterns approach 

 This thesis tests the Design Patterns approach in the context of 

algorithmic design, which relates equally to the fields of architecture, 

design and programming. While originally pattern study was developed in 

the field of architecture (Alexander, 1975), the idea of design patterns and 

pattern languages was widely adopted in the computer sciences, such as 

programming, software design and human-computer interactions (HCI) 

(Gamma, Helm, Johnson, Vlissides, 1993), (Dearden, Finlay, Allgar, 

Mcmanus, 2002). Patterns research has been very successful and has many 

‘practical applications and benefits’ in the field of software engineering 

(Lano, 2014)  

In the early 1990s, software engineering researchers started to explore 

the means to reuse design knowledge (Coplien, Alexander, 1996); (Garlan, 

Delisle, 1990); (Gamma, Helm, Johnson, Vlissides, 1993). In 1994 the first 

conference on ‘Pattern Languages of Programming’ was organised. It was 

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
http://www.bibsonomy.org/author/Mcmanus
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followed by further conference series investigating pattern languages in 

software engineering. One of the important publications in this field was 

the book ‘Design Patterns: Elements of Reusable Object-Oriented 

Software’ by Gamma et al. (1994). 

Here are some of the various pattern definitions, given by different 

authors, discussed in Gamma’s paper: 

 Pattern is a ‘pre-formal construct’ (Lea, 1994); 

 Patterns emerge from repetitions of human behaviour (Coad, 

1992); 

 Pattern is a recurrent phenomenon or structure, ‘didactic medium 

for human readers’ (Borchers, 2001); 

 Pattern describes a problem and then describes the core of the 

solution (Gamma, 1994 quote Alexander (1977)). 

 

Design Patterns: abstraction and reuse of object-

oriented design 

A theoretical study inspired by Alexander’s work ‘Design patterns, 

Elements of Reusable Object-Oriented Software’ uses design patterns as a 

mechanism for the analysis, systemisation and reuse of knowledge in the 

field of computer science and software development (Gamma, Helm, 

Johnson, Vlissides, 1994). Object-oriented design is the approach to 

solving a software problem by treating it as a system of interacting objects. 

The authors use design patterns as a medium to express the design 

solution by identifying the ‘objects’ (data and procedures) and establishing 

their collaborations and responsibilities. The role of the patterns in this case 

is to reduce the complexity of a system by identifying abstractions and to 
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act as the reusable building blocks from which the compound software 

solutions can be composed (Ibid). 

Gamma et al. (Gamma, Helm, Johnson, Vlissides, 1994) establish the 

principles of design patterns, and develop a pattern catalogue which 

composes the major part of their book (Ibid). The authors argue that the 

key identifier of an experienced designers’ success is that they do not try 

to solve every problem from first principles; rather they reuse solutions that 

have worked for them in the past. This way they can apply existing patterns 

again and again without rediscovering them. Their study (Ibid) identifies 

four essential elements of a design pattern: the pattern name, which 

describes a problem at a high level of abstraction; the problem, which 

describes when to apply the pattern; the solution, which is an algorithm of 

actions; and the consequences, the results and trade-offs. The design 

patterns discussed in their book are descriptions of objects that solve a 

general design problem in a particular context.  

In the earlier paper ‘Design Patterns: Abstraction and reuse of 

Object-Oriented Design’ Gamma et al. (Gamma, Helm, Johnson, Vlissides, 

1993) describe the use of design patterns as a mechanism to capture 

design intent in the field of object-oriented software design. The authors 

stress the importance of abstract design (as opposed to a particular design) 

and state that it is the essential part of any design pattern. Though Design 

patterns may specify potential implementation details, they are supposed 

to have an adequate level of abstraction to ensure their wide applicability.  

Gamma et al. tested the use of design patterns in the context of 

object-oriented software design using two tools: ‘ET++SwapsManager’ 

(Eggenschwiler, Gamma, 1992) and ‘QOCA: A Constraint Solving Toolkit’ 

(Marriott, Chok, 2002). They have observed a number of positive effects 

induced by the reuse of abstract solutions (design patterns): 

 reduce the effort required to learn new software; 



1.2 Abstract solutions in design and computation 

Page | 46 

 

 help during design development and code review stages; 

 help explore alternative design solutions; 

 motivate ‘to go beyond concrete objects’ 

 when patterns are introduced together with examples, it works out 

as an effective way to  teach object oriented design by example 

(case-based design strategy) 

(Gamma, Helm, Johnson, Vlissides, 1993) 

 

Design Patterns in participatory design 

One of the advantages of the abstractions is that design patterns 

provide ‘reusable models that can be instantiated across different domains’ 

(Ramirez, Cheng, 2010). A number of studies discuss the benefits and 

challenges of the reuse of abstract solutions, through the use of design 

patterns and pattern languages in interdisciplinary and cooperative design 

projects (Woodward, 2010), (Dearden, Finlay, Allgar, Mcmanus, 2002), 

(Dearden, Finlay, 2006). Even though these works were done outside the 

context of algorithmic design in architecture, landscape and industrial 

design the findings and discussions raised by these studies are relevant to 

this thesis, as they outline the potential strength and weaknesses of the 

method. The reviews also reflect on: What is a design pattern? How 

patterns can be used? And how pattern-based approach influences design 

process? (Ibid) 

The paper ‘An Interpretation Design Pattern Language: A 

Propositional Conceptual Tool for Interdisciplinary Team Members 

Working on Interpretation Design Projects’ (Woodward, 2010) introduces 

a ‘pattern language’ methodology, which is based on Alexander’s pattern 

language. It proposes a new, shared language for interdisciplinary teams 

working on interpretation design projects. This designer-led Interpretation 

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
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Design Pattern language aims to improve the collaboration between 

designers and professionals from the other fields of research and practice. 

The author states that the pattern finding methodology is an appropriate 

and suitable method to group and sort data. Woodward draws parallels 

between pattern-finding and design research and practice, which often 

focus on ‘problem finding’ and ‘problem solving’ approaches. The research 

concludes that the Interpretation Design Pattern language does not 

provide ready-made solutions or answers, but it may trigger new strategies 

of interpretation, which is suggested by the insights from an extended 

range of disciplines (Ibid). 

The work ‘Using pattern languages in participatory design’ 

(Dearden, Finlay, Allgar, Mcmanus, 2002) explores the potential of using 

pattern languages as tools within design processes in the field of Human 

Computer Interaction ((HCI) interaction between people and computers). 

Participatory or cooperative design is a design approach which involves 

active work of multiple types of participants, such as designers, developers, 

employees, customers, users and so on. The authors mention that 

Alexander originally developed the philosophy and concept of pattern 

languages in the radical scope of cooperative (participatory) design. In the 

Oregon Experiment Alexander and his colleagues state that all the 

decisions of what and how to design and build should be in the hands of 

the users (Alexander, 1975). They also point out that every part of a good 

environment should be highly adapted to its particularities. And that this 

adaptation can only be successful if people do it themselves. 

It is recognised that in participatory design within Human Computer 

Interaction, studying a human and a machine in conjunction, it is vital to 

write patterns in such a way that users will be able to comprehend design 

patterns (Dearden, Finlay, Allgar, Mcmanus, 2002). Nevertheless, there is 

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
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an opinion that it becomes more evident that the main goal of pattern 

languages has shifted towards sharing knowledge between professionals, 

while allowing users only to critique and participate in discussions (Borches, 

2001).  

 

Issues related to the use of design patterns 

In software engineering, patterns tend to be interpreted as the 

preliminary abstract relationships between context, problem and solution. 

The actual examples (physical presentations) of the pattern are usually seen 

as elements of secondary value. Dearden et al. (2002) argue that, in the 

context of participatory design, this viewpoint is not valid and cannot be 

sustained. The observations indicate that users often search for specific 

remembered patterns, while browsing the language (Dearden, Finlay, 

Allgar, Mcmanus, 2002).  

Other findings indicate that users subconsciously ‘trusted the 

patterns’ and considered them to be ‘correct’ by default (Dearden, Finlay, 

Allgar, McManus, 2002). The authors, who actually developed these 

patterns, on the other hand, state that they cannot really claim that they 

(themselves) trust their patterns in their present form (Ibid). 

In a Pattern Language critical review, Dearden and Finlay (2006) 

examine the history of patterns and pattern languages in HCI. The work 

aims to locate design patterns in relation to other interactive design 

approaches. This research states that recently patterns and pattern 

languages are getting more and more attention in HCI for their potential 

in supporting the design process and recording and communicating 

design knowledge. This study identifies the following established and 

emerging techniques adopted by interactive systems:  

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
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 Guidelines for Designing and heuristics (Mosier, Smith, 1986) 

(Nielsen, 1994); 

 Style-guides (Gnome project, 2003); 

 Participatory design (Schuler, Namioka, 1993) (Muller, Haslwanter, 

Dayton, 1997); 

 Claims analysis (Sutcliffe 2000); 

 Design rationale (MacLean et al., 1991); 

Talking about the history of patterns, the authors report that the 

work of Christopher Alexander and his colleagues provoked controversy 

within the architectural profession. Though it was criticised (Dovey, 1990); 

(Saunders, 2002) this work has been very influential in the field of 

architecture and several other domains (King, 1993); (Gabriel, 1996); 

(Saunders, 2002). 

The authors state that in HCI and software engineering, the term 

‘pattern’ stands for a structured description of an invariant solution. 

Invariant here refers to a set of shared characteristics of the recommended 

solution. One of the distinguishing characteristics of patterns is that they 

are rooted in practice, rather than theory. Patterns should capture ‘big 

ideas’ (Winn, Calder 2002) instead of covering every possible design 

decision. Patterns also should have a timeless quality, thus be applicable, 

regardless of a particular platform or technology. The authors (Ibid) argue 

that this is probably the weakest spot in many interaction design patterns. 

It is only possible for a pattern to be timeless when it is written in a high 

level of abstraction (Bayle et al, 1998); the more detailed a pattern is the 

more it is necessary to reflect on a particular technology and platform 

characteristic. That is why, when writing a pattern, it is important to find an 

appropriate degree of abstraction. If a pattern is too abstract it will be not 
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efficient in real design practice and if it is too specific it will be hard to reuse 

it in new scenarios. 

It is ‘difficult to formalise’ and describe patterns, as well as organise their 

selection and application methods (Lano, 2014). Ramirez and Cheng (2010) 

state that in practice it is difficult to harvest design patterns, because a) 

there is no ‘standard methodology’ for creating patterns; and b) there is 

no metrics for the evaluation of the resulting patterns. 

 

Theory of inventive problem solving (TRIZ) 

The use of abstractions and reusable items (solutions) in design and 

problem solving is common for mathematics, programming, engineering, 

design, architecture and other disciplines. This thesis tests the reuse of 

abstract solutions through an example: the Thirteen Patterns for Parametric 

Design (Woodbury, 2010). Nevertheless it is important to consider that the 

design patterns approach is not the only method that combines the reuse 

of design solutions and the use of abstractions. The investigation has 

revealed more examples of relevant works regarding the principles which 

lie behind the design methods based on the reuse of knowledge.  

One of the works, which incorporates the principle of abstraction, 

patterns and the reuse of design solutions, is the TRIZ method (Altshuller, 

1988) (Terninko, Zusman, Zlotin, 1998). This method is closely related to 

the concept of the design pattern approach and can be seen as its an 

alternative approach to use abstraction. TRIZ is a Russian acronym for 

‘Theory of Inventive Problem Solving’. It was developed by Genrich 

Altshuller et al. (1926 to 1998) as a methodology of problem solving and 

inventive thinking in engineering. It started as a study investigating whether 

there were any systematic patterns to inventive thinking (Stratton, Mann, 



1.2 Abstract solutions in design and computation 

Page | 51  

 

Otterson, 2000). Altshuller analysed over 200,000 documented inventions 

(patents) trying to identify the common sets of inventive principles and 

repetitive patterns, which afterwards were used to form the 40 principles 

of TRIZ. According to the TRIZ methodology ‘an inventive problem can be 

classified and methodically solved, as any other engineering problem’ 

(Ibid). In architectural design we usually think in terms of idea development, 

rather than problem solving (which refers mainly to the field of applied 

sciences), but the core concepts and logic behind these two processes have 

strong similarities. A number of design studies have implemented 

Altshuller’s TRIZ methodology. It was adapted for product design, for 

example in ‘A TRIZ approach to design for environment’ (Serban, Man, 

Ionescu and Roche, 2004). In the context of this thesis, TRIZ method can 

be viewed as an alternative knowledge reuse approach.  

In one his early works Altshuller introduces the idea of ‘Standards’, 

which he describes as a ‘high method’ to solve inventive problems 

(Altshuller, 1975). According to his Algorithm of Inventive Problem Solving, 

it is possible to identify a generic method (solution) to solve a certain type 

of inventive problem, by analysing the large masses of existing solutions. 

The identified generic method can be then translated into a ‘Standard’. The 

idea of ‘Standards’ is very similar to the idea of Alexander’s Design Patterns, 

which was introduced at the same time period (Alexander, 1975). 

Alexander states that a pattern describes a problem and then describes the 

core of its solution (Alexander, 1977). Altshuller describes a ‘Standard’ as 

an algorithm (method) solving a wide class of inventive problems on a 

‘high’ (abstract) level (Altshuller, 1975). According to ARIZ each ‘Standard’ 

should contain: 

 A ‘Standard Formula’, describing the core of its idea  

 An Explanation and examples  
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 An Application of a ‘Standard’ (Ibid) 

The principles and methodology for the use of Design Patterns and 

TRIZ have a large number of parallels and similarities. Firstly, both systems 

operate through the reuse of knowledge. Secondly, Design Patterns use 

the principle of abstraction to provide a generic solution for a problem. 

One of the organisation principles in the Theory of Inventive Problem 

Solving is the principle of generalised solutions (Altshuller, 1999). Thirdly, 

Design Patterns has the separation (segmentation) principle: in cases when 

the initial idea has a high degree of complexity, the project is divided into 

independent parts (Gamma, Helm, Johnson, Vlissides, 1994). The first 

principle of TRIZ is the ‘Segmentation’ principle. It is used to divide an 

object into independent parts, to make an object easy to 

assemble/disassemble or to increase the degree of fragmentation. 

Additionally, the ‘Extraction’ principle of TRIZ, used to extract (identify) a 

part or a property of an object, employs the abstractions and metaphors, 

which can be directly related to the idea of Design Patterns. 

TRIZ methodology is heavily based on the use of knowledge bases 

and computer systems, which manage the knowledge. In TRIZ the search 

for the ideal design solution is associated with the reuse of available existing 

resources (solutions) (Bakar, 2014), (Stratton, Mann, Otterson, 2000). To 

provide a framework for the ever growing knowledge TRIZ tools employ 

organised knowledge bases. The data (solutions) in the knowledge bases 

is classified and sorted into various groups. Similar to the concept of the 

Design Patterns, TRIZ uses the principle of abstraction (Kaplan, 1996). 

According to TRIZ methodology, abstraction is needed to identify and 

classify the generic problem and solution. After that, the relationships 

(correlations) can be identified between the established groups of 

problems and solutions.  
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The use of TRIZ solution system for the inventive problems can be 

described as:  

 Classify a specific problem, so it can be sorted into a generic 

problem category 

 Use the established correlations (relationships) to find a generic 

solution category 

 Use original thinking (specialisation) and a generic solution to 

develop a specific solution 

(Stratton, Mann, Otterson, 2000) 

The idea of TRIZ is closely related to the idea of Design Patterns 

(DP), as both those methods are based on the reuse of generalised 

solutions. The TRIZ method progresses through the use of abstraction, 

which directly relates to the first approach, tested in this thesis. At the same 

time TRIZ employs the use of computer systems and databases. This 

method also heavily relies on the use of cases, as a driving force for the 

identification of a typical solution (Standard). In relation to this thesis, the 

TRIZ method was investigated as a potential third approach to reuse 

knowledge. However, it was identified that has a major overlap with the 

pattern method (and the reuse of abstraction) to be considered a radically 

different knowledge reuse approach. 

 

Abstract solutions as a tool to support algorithmic 

design in architecture 

To test the abstract approach aiming to support algorithmic design, 

this thesis uses Thirteen Design Patterns developed by Robert Woodbury 

(2010) as a method representing the reuse of abstract solutions in design 

and architecture. In his book ‘Elements of Parametric Design’ Woodbury 
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discusses the theory and proposes a practical methodology for the use of 

Design Patterns (Woodbury, 2010). The author points out that the method 

is a theory, which is yet to be tested. 

The reuse of programming solutions is popular in Computer 

Science. To this extent Woodbury is proposing that the architectural design 

profession learns from the computer science profession. To help designers 

master the new complexity inflicted by parametric design systems, 

Woodbury proposes the use of design patterns as thinking and working 

tools. According to Woodbury, patterns, being themselves an old idea, are 

abstract solutions, which can be applied to shared problems. It is essential 

to think with abstraction in order to use design patterns successfully. In 

design, an abstraction describes not some specific example, but it rather 

refers to a general concept or idea, which is often associated with 

vagueness. In computer science, an abstraction characterizes a class of 

instances which omits inessential details (Ibid).  

In chapter 3.3.2, ‘Throw code away’ Woodbury (2010) points out 

that designers tend to rebuild codes rather than reuse them. He says that 

programmers would most definitely be horrified by such wasteful acts. 

Surprisingly, while abandoning their own parametric models, designers are 

eager to invest time in finding existing models (developed by others) and 

utilising them for their own purposes (copy and modify approach) (Ibid).  

A complex model usually consists of parts, which are mostly 

reusable. That is why Woodbury (2010) argues that reusable abstract parts 

are a keystone of professional practice in parametric design. The author 

describes Thirteen Design Patterns as a medium to understand and express 

the practice craft of parametric modelling. The Thirteen Design Patterns for 

Parametric Design are: Controller, Goal Seeker, Increment, Jig, Mapping, 

Organised Collection of Points, Place Holder, Projection, Reactor, 
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Recursion, Reporter, Selector, and Transformer. The author has outlined 

the following principles of patterns for parametric design (Ibid): 

 Explicit. The others should be able to read (understand) your 

patterns in your absence. Writing a pattern may aid reflection on 

reuse of design ideas (reflection in action (Schön,, 1983)); 

 Partial: separate solutions to problem parts; 

 Problem focused: a pattern should solve a shared problem; 

 Abstract. Patterns are abstract and represent a general concept 

(divide-and-conquer). Some particular examples can be given to 

illustrate this concept. 

The works of Alexander (1979), Gamma et al. (1994) and Tidwell 

(2005) helped Woodbury to identify the following structure of design 

patterns: Name, Diagram, What, When, Why, How, Samples, Related 

Patterns. The following methodology describes the steps for designers who 

want to create a Design Pattern: 

 Identify: Name, What, When, How; 

 Collect a set of sample files; 

 Look at samples together and discover what they share; 

 Refine patterns for clarity and simplicity; 

 Share it (online) and make it easy to find. 

Design Patterns developed by Robert Woodbury were used as a 

method to test the reuse of abstract algorithmic solutions in architecture. 

Participants of the DP (Design Patterns) group were introduced to the 

concept of patterns during the course of algorithmic modelling workshops. 

They learned the idea and reasoning behind each pattern and went 

through a step-by-step tutorials illustrating how patterns can be practically 

implemented (See more details on how Design Patterns were integrated 

in the algorithmic modelling course in Methodology section)  
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1.3 Case-Based Design methods in architecture 

and computation 

Case-Based Reasoning 

Design methods using case-based reasoning constitutes the core of the 

second approach tested in this thesis as a means to reuse design 

knowledge in algorithmic design. It is an example of the Case-Based Design 

approach. The aim of this approach (similar to the DP approach) is to work 

as a design support method, helping designers to better understand and 

use algorithmic modelling tools, using case-based reasoning (as opposed 

to generalised pattern-based reasoning of the DP approach). 

 Recently, the idea to use case-based reasoning to complement or 

replace other approaches supporting design has been explored by 

researchers in various fields of design (Maher, Pu, 2014). Case–based 

reasoning (CBR) is a problem solving approach, which utilises specific 

knowledge from previous cases, instead of making assumptions based on 

generalised relationships between a description of a problem and 

conclusions (Aamodt, Plaza, 1994). In CBR a new problem is solved by 

finding and reusing an existing solution from a similar case from the past 

(Riesbeck, Schank, 2013). In other words, in order to solve a new problem 

one has to remember (find) a previous similar situation and by making an 

analogy reuse the knowledge (solution) of this situation in a new context. 

In a paper discussing the principles and methods of case-based reasoning 

and problem solving Aamodt and Plaza (1994) claim that ‘reasoning by 

reusing past cases is a powerful and frequently applied way to solve 

problems for humans’. This statement is also supported by studies on 

cognitive psychology of human problem solving and case-based reasoning 

(Ross, 1989), (Schank 1982), (Anderson 1983). There is evidence that when 
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humans solve new problems they predominantly rely on specific, previous 

encountered situations (Ross, 1989). Research on problem solving by 

analogy indicates that it is natural for people to use experiences from their 

past when solving new problems (Carbonell, 1986) (Riesbeck, Schank, 

2013). Studies on human cognition show that people tend to use previous 

cases as models both when they are novices (Anderson, 2013) and when 

they are experts (Rouse, Hurt, 1982). In a recent paper, Riesbeck and 

Schank suggest that ‘case-based reasoning is the essence of how human 

reasoning works’ (Riesbeck, Schank, 2013). 

Case-based reasoning provides a cognitive model for people, 

because thinking by analogy is consistent with natural patterns of problem 

solving for humans (Kolodner, 1991) (Riesbeck, Schank, 2013). As a matter 

of fact, CBR is used by humans as a primary mechanism for common 

reasoning on a daily basis. As a general rule, it is always easier to solve a 

problem second time, than first time, because people can reuse previous 

solutions and experiences (Kolodner, 1993).  

One of the fundamental strategies to acquire knowledge is to learn 

from examples: in architecture these examples are design cases. However 

there is a fundamental difference between learning from examples and 

case-based reasoning. While acquiring knowledge similar cases (examples) 

are generalised into an abstract solution. In case-based reasoning the cases 

‘are generalised with respect to the context of a specific problem during 

each problem solving processes’ (Hua, Fairings, Smith, 1996).  
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Terms related to the reuse of case-based solutions  

The following list of terms and term explanations refers to the core 

concept of the second approach: the reuse of solutions from specific 

design cases. This approach to accessing and reusing algorithmic design 

knowledge follows case-based reasoning principles (Kolodner, 1993). 

Case–Based Reasoning (CBR) is a problem solving approach, which 

utilises specific knowledge from previous cases (Riesbeck, Schank, 2013), 

instead of making assumptions based on generalised relationships 

between a description of a problem and conclusions (Aamodt, Plaza, 

1994). In CBR a new problem is solved by finding and reusing an existing 

solution from a similar case from the past (Riesbeck, Schank, 2013) 

(Heylighen, Neuckermans, 2001). There is evidence that when humans 

solve new problems they predominantly rely on specific, previous 

encountered situations (Ross 1989). Recently, the idea to use case-based 

reasoning to complement or replace approaches supporting design has 

been explored by researches in various fields including such disciplines 

as architecture and software design (Maher, Pu, 2014). In this research, 

the CBD (Case-Based Design) design approach was tested through an 

online case-base of visually represented parametric models and 

corresponding downloadable programming algorithms. These cases, 

and their illustrations were developed specifically for this research.  

‘Cases play a central role in architectural design education’ (Zimring, 

1995). Design cases are useful in solving problems for both novices and 

experts (Maher, Pu, 2014) 

 In CBR a case can be considered as a story (experience) or a 

lesson; it can be vied as information about resulting solution; or 

it can be seen as a record of a method of how to solve a problem. 

Whichever way one defines it, the ultimate purpose of a case in 
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CBR is to help to solve a similar problem in future (Maher, de 

Silva Garza, 1997). 

 Traditionally, in the field of design, knowledge has been recorded 

and formalised in a form of examples of successful designs, rather 

than generalised in the form of principles (Hua, Fairings, Smith, 

1996).  

 Cases are stories that capture past experiences, documenting 

‘real-world situations and analysing their outcomes’ (Maher, Pu, 

2014). 

Case Adaptation implies that a new solution is created through the 

modification of a past case in order to meet the requirements 

(constrains) of a new design problem (Hua, Fairings, Smith, 1996). Design 

adaptation involves 1) mapping the differences between the new 

problem and the existing case to identify potential modification; 2) 

evaluation and execution of modifications (Maher, Pu, 2014). 

Case-Based Reasoning is a paradigm for problem solving based on the 

reuse of specific past experiences (Maher, de Silva Garza, 1997) 

(Riesbeck, Schank, 2013). 

  Case–Based Reasoning (CBR) is a problem solving approach, 

which utilises specific knowledge from previous cases, instead of 

making assumptions based on generalised relationships between 

a description of a problem and conclusions (Aamodt, Plaza, 

1994).  

 The Case-Based Reasoning mode involves more focused 

reasoning, applied to a very specific (narrow) context of a design 

problem (Pearce, 1992).  

 In Case-Based Reasoning the cases ‘are generalised with respect 

to the context of a specific problem during each problem solving 

processes’. While acquiring knowledge similar cases (examples) 
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are generalised into an abstract solution (Hua, Fairings, Smith, 

1996).  

 Case-Based Reasoning uses an abstraction from a specific 

experience (design solution) as a method to interpret and 

transfer this knowledge, in order to learn how to solve a new 

problem (Maher, de Silva Garza, 1997). 

 Case-Based Reasoning is a cyclic process of solving a problem, 

learning from it and reusing this experience (knowledge) to solve 

a new problem (Aamodt, Plaza, 1994).  

‘Case-Based Methodology provides a way to easily generate answers’ 

(Kolodner, 1991). 

Problem Solving By Analogy. It is natural for people to use experiences 

from their past when solving new problems (Carbonell, 1986) (Gentner, 

1983) (Riesbeck, Schank, 2013).  

 Case-based reasoning provides a cognitive model for people, 

because thinking by analogy is consistent with natural patterns of 

problem solving for humans (Kolodner, 1991) 

In Case-Based Design a new problem is solved by finding and reusing 

an existing solution from a similar case from the past (Aamodt, Plaza, 

1994).  

 As a general rule, it is always easier to solve a problem second 

time, then first time, because people can reuse previous solutions 

and experiences (Kolodner, 1991). 

Dynamic Knowledge Repository - is a dynamic information space, it 

refers to a collective knowledge base, which operates within a particular 

domain of knowledge (Engelbart, 2003). 

Database - a logically coherent collection of meaningful data (Robbins, 

1994) 
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Knowledge-Based Or Expert Systems - the systems which use artificial 

intelligence (AI) techniques to solve expert level problems in specific 

domains of knowledge (Akerkar, Rajendra, 2010) 

 

Role of design cases 

Cases (or examples) can be viewed as stories that capture past experiences, 

‘recording real-world situations and analysing their outcomes’ (Maher, Pu, 

2014). Traditionally, in the field of design, knowledge has been recorded 

and formalised in a form of examples of successful designs, rather than 

generalised in the form of principles (Hua, Fairings, Smith, 1996). In 

practice, it is extremely difficult to find out the ‘general principles which 

hold over all abstractions’. Alexander’s design pattern language attempted 

to formulate knowledge in an integrated and abstracted way. However, the 

rules that he describes in his work have little generalisation, his patterns 

actually refer to particular buildings within particular environments (Hua, 

Fairings, Smith, 1996).  

In CBR (Case-Based Reasoning) a ‘case’ refers to a previously 

experienced situation, which is interpreted and recorded in such a way that 

it can be reused in future (Aamodt, Plaza, 1994). According to Aamodt and 

Plaza case-based reasoning is a cyclic process of solving a problem, 

learning from it and reusing this experience (knowledge) to solve a new 

problem. That is why CBR is closely related to learning (Ibid). In fact, 

learning is a natural product of CBR problem solving, because when a 

solution is successful it is saved and recorded in a case base, so that in 

future people can learn from it to solve similar problems. Aamodt and Plaza 

also state that it is usually easier to learn by following a specific problem 

solving algorithm, than to ‘generalise from it’ (Ibid). According to Maher et 

al. a case in CBR can be considered as a story (experience) or a lesson; it 
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can be viewed as information about a resulting solution; or it can be seen 

as a record of a method of how to solve a problem (Maher, Balachandran, 

Zhang, 1995). Whichever way one defines it, the ultimate purpose of a case 

in CBR is to help to solve a similar problem in future (Maher, de Silva Garza, 

1997). 

‘Cases play a central role in architectural design education’ (Zimring, 

1995). Past cases help students to identify a design problem, to inspire a 

potential design solution; to critically evaluate a completed design and to 

suggest alternative design strategies (Ibid). In design, case-based 

reasoning can be used for various purposes. For example it can be: 

adapting an old solution to a new design context; using past cases to 

explain and interpret new problems; and to critically evaluate and refine 

new design solutions (Kolodner, 1993). It is often argued that while case-

based reasoning is an effective learning method, design cases are as useful 

in solving problems for both novices and experts (Maher, Pu, 2014) 

In CBD (Case-Based Design) prototypes can also be referred as 

design cases (solutions). As one of the methods for reusing the knowledge 

in engineering and computational design some of the most successful 

solutions are used as prototypes. Prototypes are complete, fully developed 

design solutions able to be modified and integrated into a new problem 

(Hua, Fairings, Smith, 1996).  

 

Case-Based Reasoning in design 

Case-based reasoning is a paradigm for problem solving based on the 

reuse of specific past experiences (Maher, de Silva Garza, 1997). This 

problem solving paradigm was adopted by AI practitioners as a tool for 

design support. Maher et al. carried out a survey investigating the issues 



1.3 Case-Based Design methods in architecture and computation 

Page | 63  

 

raised by the use of CBR for design (Ibid). The study focuses on two 

contrasting types of case-based design: design assistance and design 

automation; and comments on the issues and difficulties related to the 

implementation of these approaches.  

 Maher at al. points out that when designing a CBR system three 

major aspects should be taken into consideration (1997): 

 How the design cases are going to be represented; 

 What is the process for recalling cases; 

 What is the process for adapting design solutions; 

The representation of a design case requires an abstraction of this 

case, as a means to translate this particular experience into a symbolic form 

that a designer or a computer system can understand and manipulate 

(Maher, de Silva Garza, 1997). Practitioners often employ abstractions, 

based on a design model, design method or philosophical approach to 

make sense out of a particular design experience/design solution (Ibid). To 

define the best way to represent a case, it is also important to consider 

what kind of information facilitates the reuse of a design solution (Maher, 

Pu, 2014). 

The process of recalling/finding relevant design solutions involves 

several steps: indexing: to identify the features to search for in the past 

cases, relevant to finding a solution for a new problem; retrieval: to identify 

the cases with matching search features (indexes); selection: to evaluate 

the retrieved cases and choose the most fitting (Maher, de Silva Garza, 

1997). 

The design case adaptation is a process of reuse of a selected case 

in a context of a new design problem. The adaptation of a case usually 

involves: suggesting a selected case as a hypothetical solution for a new 
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design problem; evaluation of how well this this proposed solution will 

work; and the modification of parts and parameters to meet the 

requirements of a current design problem (Ibid). Maher and Pu state that 

the process of design adaptation involves two basic steps. The first step is 

to map the differences between a new design problem and the existing 

case (solution); this step is needed so a designer can identify the scope of 

potential modifications. The second step is the evaluation and execution of 

those modifications (Maher, Pu, 2014).  

 

Principles of CBR methods 

Case-based reasoning uses an abstraction from a specific 

experience (design solution) as a method to interpret and transfer this 

knowledge, in order to learn how to solve a new problem (Maher, de Silva 

Garza, 1997). CBR’s problem-solving approaches often employ analogical 

thinking, especially in cases when the reused solutions (experience) are 

outside of current problem’s context or domain. Instead of a direct 

adaptation or reuse of a design solution, analogy can indirectly provide 

valuable insight and assistance (Ibid). The basic idea of case-based 

reasoning in design can be expressed as: solving new problems by 

adapting solutions that were used to solve old problems (Riesbeck, Schank, 

2013). 

The approaches using case-based reasoning incorporate: 

 Identification of a new problem (characterising the appropriate 

features) 

 Retrieving the cases with those features (from the case-base 

memory); 
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 Evaluate the cases and find the best match for current design 

problem 

 (Riesbeck, Schank, 2013). 

The CBR problem solving methods usually can be split into four major task 

groups: 

 RETRIEVE: identify features (interpret a new problem and define its 

relevant descriptors)/search/initial match (a set of plausible 

candidates: past cases in the case-base)/select (best matching 

case); 

 REUSE: copy (a solution or a method)/adapt; 

 REVISE: evaluate solution/repair fault (detecting and fixing errors of 

a current solution); 

 RETAIN: integrate/index/extract (solution, method or relevant 

descriptors). 

(Aamodt, Plaza, 1994)  

The representation of cases in CBD, whether visual or textual, can 

typically be split into three major groups: 

 Problem-situation description 

 Solution description 

 Outcome description 

(Kolodner, 1991) 

 The outlined principles of the representation and organisation of 

the design cases have informed the methodology of the CBD system 

development (repository of the algorithmic design solutions) which was 

used as a platform testing the reuse of specific cases (See the ‘Adaptation 

of the CBD approach to the framework of this study’ section) 
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Case-Based Design tools  

One of the first works of CBR in the field of computer science and 

artificial intelligence was done by Roger Schank, who investigated the role 

of previous cases (including specific scripts and situation patterns) in 

learning and problem solving (Schank 1982). One of Schank’s colleagues 

Janet Kolodner (1983) (1988) developed one of the first case-based 

reasoned systems CYRUS, which, basically, was a question-answering 

system with access to the database containing information about meetings 

and travels of Cyrus Vance, former US Secretary of State (Aamodt, Plaza, 

1994). Later on a research group led by Kolodner and Domeshek 

developed and tested a case-based design aid system called ARCHIE, 

which worked in the domain of architecture (Domeshek, Kolodner, 1992). 

 Another exemplar-based knowledge system called PROTOS 

(Bareiss, 1989) was developed by Porter and Bareiss (1986). This research 

was pushed forward to create a new CBR system GREBE, which operated 

in the field of law (Branting, 1991). Currently numerous applications and 

systems, which use using case-based reasoning, operate in various 

domains of knowledge and practice, such as law, medicine, engineering 

and artificial intelligence. CBR tools are based on reasoning from old cases 

in order to solve new problems, evaluate proposed solutions or interpret 

situations. The core idea of aiding decision making through a CBD 

approach, is that a case-based system provides relevant past cases, which 

designers can utilise to solve a new design problem. Ultimately, it is always 

designers who do the actual decision making (Kolodner, 1991). We, as 

architects do not have a pre-defined algorithm for our designs and this fact 

could be taken either as a constraint or as a challenge. (Domeshek, 

Kolodner, 1992). 
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In the CBD study conducted by Hua et al., authors report that the 

creative adaptation (reuse) of design cases can lead to innovative designs, 

especially when two or more cases are combined (Hua, Fairings, Smith, 

1996). Innovative ideas often occur through the adaptation and 

combination of existing design solutions (Sun, Faltings, 1994). Pearce et al. 

found that the use of CBD approach (Archie system) helps architects with 

getting new design ideas and inspirations by providing an opportunity to 

explore past cases. The case-based reasoning mode involves more focused 

reasoning, applied to a very specific (narrow) context of a design problem 

(Pearce, 1992).  

Any case-based problem solving system is often composed of two 

main processes: 

 Indexing, which refers to storing and retrieving of the reusable items 

(design cases) 

 Adaptation, which is the reuse of a solution(s) within the new design 

context (problem) (Riesbeck, Schank, 2013) 

Case adaptation implies that a new solution is created through the 

modification of a past case in order to meet the requirements (constrains) 

of a new design problem (Hua, Fairings, Smith, 1996).  

Pearce et al (1992) investigated whether a large case-base (library) 

can support design in architecture by improving human decision making. 

The authors state that in order for their computer-based library of 

architectural designs to work, it was decided that: 

 The system should support the design and problem solving process 

but all the decisions should be made only by the user. 

 The system should have a specified narrow domain  
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 The system should focus on supporting the conceptual design 

stages, because a) often the decisions made on early stages have a 

major impact on how a design will progress further; and b) it is often 

more challenging to innovate conceptual design.  

(Pearce, 1992). 

 

Case-Based Reasoning in Design Education 

Case-based reasoning supports design. It helps designers with finding 

solutions for new situations by reminding them of experiences from the 

past. CBR is the way Architecture is often taught: in design education 

students learn how to be designers through experiencing design situations 

(Maher, de Silva Garza, 1997). In order to create new designs, people need 

to have previous experience or at least to have access to similar design 

experiences of others. Practice shows that ‘designers rely heavily on specific 

design experiences’ (Maher, de Silva Garza, 1997).  

In architecture the support of design computation is hindered 

because it is necessary to control both the design generation process and 

the search process. Case-based design systems can be used as a solution 

to overcome the issues associated with the complexity of design 

generation and the search process (Dave, 1994). Architectural design is a 

domain which exist somewhere in between the sciences and the art. It is 

expected to simultaneously express both ‘universals and particulars’ (Dave, 

1994). Architectural education heavily relies on the use of design cases as 

a communication medium to exchange experience and knowledge 

between teachers and students (Ibid). That is why example-based learning 

and teaching are commonly used approaches in the field of design and 

architecture. (Dave, 1994). The process of using past knowledge in order 



1.3 Case-Based Design methods in architecture and computation 

Page | 69  

 

to solve new design problems continues to be utilised in professional 

architectural practice as well as in education (Dave, 1994). 

During the early stages of design, designers almost never work in a 

vacuum, instead they invest their time analysing existing designs and 

reviewing relevant information about earlier works. This mode of learning 

from past cases is common not only for the field of architecture, but also 

for fields where ‘where designers work on something radically new ’such 

as engineering and physics. (Domeshek, Kolodner, 1992). Domeshek and 

Kolodner (1992) argue that if research in case-based design aims to 

support and improve design in architecture, conceptual design is likely to 

be the area with the potentially high payoff. 

 

Case-Based Design Systems in Architectural Practice  

Case-based reasoning and case-based aiding systems are equally useful 

for both novices and professionals. Case-based design (CBD) approaches 

can provide novices with the variety of knowledge and experience that they 

have not yet had. That is why novices are expected to improve their design 

performance using case-based systems. Case-based reasoning is 

especially helpful when ‘knowledge is incomplete’, or when there is a large 

number of unknown variables (parameters/evidence). The ‘Case-based 

methodology provides a way to easily generate answers’ (solutions) 

(Kolodner, 1991). CBD is a promising method for the design fields, which 

deal with geometry, such as: architecture, engineering and construction 

(Hua, Fairings, Smith, 1996).  

Solutions from past design cases often help architects to solve their 

current design problems, refine solutions, improve proposed designs and 

justify particular design strategies and choices (Pearce, 1992). In 
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architecture many designs are created through the process of creative 

combination and adaptation and of past design cases in the new design 

context (Dave, 1994). Despite the fact that architects extensively use past 

designs in their decision making process, it is often very problematic for 

them to have access to appropriate cases (Pearce, 1992).  

Heylighen et al. conducted a practical study testing six CBD systems 

for architecture: Archie-II, CADRE, FABEL, IDIOM, PRECEDENTS and SEED. 

The study states that CBD approach seems to be a promising method to 

develop ‘intelligent design support’ (Heylighen, Neuckermans, 2001). The 

authors define the case-based design systems as vehicles to ‘find new 

design solutions by abating similar experiences from the past’ (Ibid). 

Though all tested systems were developed for the domain of architectural 

design, each of them takes a different direction in terms of CBD 

methodology and ‘ingredients’ such as: case base content, organisation 

and representation; retrieval of cases; and reuse approaches (Ibid). The 

study states that the research on CBD tools has not reached its full potential 

and is yet to make the convincing breakthrough. However the authors 

indicate that recent experiments with the use of case-based design 

approaches in architecture show that students ‘benefit from exposure to 

cases during the design process’ (Heylighen, Verstijnen, 2000).  

 Among the possible weaknesses of the CBD approach is that the 

chosen case might be not the most suitable solution. Therefore, the major 

disadvantages of case-based design is that ‘the solution space is not fully 

explored’ (Kolodner, 1991). 
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Issues related to the implementation of CBD tools 

The main issues in developing the CBD systems is representation and 

control issues. Representation refers to how a design solution is 

represented (how information is documented and presented to the users). 

Control issues relate to how a database (repository of cases) is organised 

and how the indexing works (Maher, Pu, 2014). Indexing: how to retrieve 

the best matching solutions from the case-base, is one of the big issues in 

the design of a large CBD system (Kolodner, 1991). Kolodner developed 

the guidelines for indexing a case-based memory. They propose that 

indexes should be: 

 Predictive (to be illustrative of the solution/outcome features) 

 Predictions should be helpful (useful in later reasoning, for example 

indexing design goals, constrains and solution features) 

 Abstract (to be applicable to a variety of future problems) 

 Concrete (to be recognisable/identifiable) 

(Kolodner, 1991) 

 In CBD systems indexing and retrieval of cases can be done 

informally or formally. The informal method refers to the technique, when 

the users browse the repository and select cases themselves. The formal 

method is when the system uses the definition of a new problem as input 

and automatically retrieves solutions as output (Maher, Pu, 2014). 

Some of the recurring issues related to practical implementation of case-

based design identified by Maher et al. include: 

 How to represent complex design cases 

 How to link the specific design experiences with the generalised 

design knowledge 

 How to formalise design experiences 
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(Maher, de Silva Garza, 1997) 

 In their study of CBR applications in design Maher et al. state that 

at the moment there is a universal way to resolve the major issues in the 

development of case-based design systems, such as the representation of 

individual design cases, the organisation of case-memory and case recall 

and adaptation. Authors point out that each CBD system addresses these 

issues in its own way based on the context and objectives. The bigger case-

memories require the more efficient indexing/organisational principles of 

the system. This could be done through hierarchical indexing trees with 

multiple sub-branches and narrow specification of features. However it is a 

challenging task to predefine the set of features, which would be most 

helpful and relevant for future reuse (Maher, de Silva Garza, 1997). It also 

should be noted that, one of the main difficulties of using a CBD approach 

is to find the appropriate cases, which are scattered across various sources. 

(Zimring, 1995).  

Uniform representation, including documentation, classification and 

indexing, of all of the design cases in a CBD system is an important issue. 

A systematic representation approach is needed, because in practice the 

way a project (case) is documented can vary greatly, depending on the 

individual background and preferences of each designer. When defining 

the system for the case representation, the most important consideration 

should be the facilitation of future design reuse. Case representation is a 

part of the design process in CBR, which is why CBD tools should provide 

case information in a format that will be most helpful for future retrieval 

and adaptation of a solution within a new design context (Maher, de Silva 

Garza, 1997). 

Essentially, design case adaptation in CBD is the process of 

generation of a new design solution (Maher, de Silva Garza, 1997). The 
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adaptation process can be done either by a human designer or by a 

computer program. In option one a CBD system serves as a case library 

and provides relevant information about the cases, which can be used 

(reused) by a designer. This way a designer makes all the decisions. The 

second option means that the adaptation process is automated and 

performed by a computer program through a design algorithm, which 

finds a solution satisfying all the constraints. The role of designer in this 

case is to define these constrains and choose the design algorithm (Maher, 

de Silva Garza, 1997). Maher et al. state that the main issue of a CBD system 

development is not its degree of automation: both human and computer 

case adaptation methods can be successfully implemented in a case-based 

design system. The authors conclude that the major issue in the design of 

a CBD system is the need to develop a formal representation of the design 

experiences (Maher, de Silva Garza, 1997). 

Pearce et al. report the following practical lessons learned from testing 

a large case library supporting design in architecture (Pearce, 1992): 

 Design cases are often incomplete (not well documented), which 

makes it complicated or impossible to reuse; 

 Design cases are often too large and complex, therefore it is often 

too hard to extract the useful information. 

 The system should be able to cover multiple types of knowledge 

(reusable items): models, design methods and reasoning; which 

should be cross-indexed (labelled) so that user can find what is 

needed. 

 The system should provide (present) relevant information to users. 

Cases can be usable only when the system interface presents the 

information in an intuitive, associable and easily understood format. 

(Pearce, 1992). 
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Complex design cases 

In many domains the development of a feasible design solution often 

implicates the development of a complex system. The adequate 

representation of a complex design case is essential for the CBD approach, 

however it can often be a challenging task. There is a concept of reusable 

cases in the paradigm of case-based reasoning. In practice a design case 

is not ‘one case’, but it is a collection of various experiences and decisions 

that form a complex output system (Maher, de Silva Garza, 1997). 

One of the ways to deal with case complexity is to decompose it 

into a set of subcases. This decomposition strategy allows designers to 

focus on the particular parts of a design solution, the parts which are most 

relevant to a current design problem (Maher, de Silva Garza, 1997). 

Subdivision of a complex solution into specialised sub-cases makes the 

analytical and reasoning process more efficient. For example, a design case 

can be decomposed according to its: function (design 

intentions/purposes); behaviour (interactions and respond to the 

environment); structure (physical and geometrical properties); and context 

(design’s environments) (Ibid). Maher et al. concludes that designers’ tend 

to handle complexity by dividing a case into smaller and simpler 

abstractions (Maher, de Silva Garza, 1997).  

The investigation of structure and organisation of knowledge claims 

that (due to the specifics of the human cognitive model) knowledge in our 

memory exist both as generalisation and as a set of specific cases (events 

and experiences) (Heylighen, Neuckermans, 2001). According to this CBD 

cognitive model both generalised and specific knowledge follow the same 

organisational principles and vary mainly in the level of abstraction 

(generalisation). The study states that the central ingredient of the cognitive 

model in case-based design is the ability of the CBD system memory to 
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dynamically improve its performance. It implies that the CBD tools should 

be able to constantly update by: adding new cases to the memory base, 

re-organising the old cases (re-indexing) or establish new generalisations 

(abstractions) (Ibid). The study concludes that the structure and 

organisation of knowledge in current architectural CBD systems lack one 

of the most essential principles of the CBD approach: ‘learning from 

experience’. This means that future research on the CBD systems should 

investigate the ways to dynamically change (update) the structure of a case 

base system, so that the system becomes responsive to users’ interactions 

and inputs.  

 

Indexing and case retrieval  

In theory, recalling a case in case-based reasoning suggests that designers 

know what they are looking for in a case-base. This assumption implies that 

every design problem is fully defined. However in practice defining the 

problem is an integral part of a design process. That is why it is often 

difficult for designers to clearly identify the relevant search indexes, simply 

because they do not know yet what they are looking for. In many CBD 

systems the indexing and case retrieval is done by the user through 

informal case-base browsing and individual selection of relevant design 

cases (Maher, de Silva Garza, 1997). Design, especially conceptual design, 

is a task without a clearly defined specification (algorithm for design), 

because ‘part of the problem to be solved is identifying the problem’ 

(Domeshek, Kolodner, 1992). 

Other research in the field of CBD also suggests that, in case-based 

design the classification and indexing of cases is regarded as one of the 

main challenges of developing (designing) a CBD system. (Dave, 1994). It 
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is hard to identify the features and characteristics, which will represent a 

design case universally, because individual designers ‘see’ different features 

in a design solution, due to the differences in their personal experiences 

and associations (Dave, 1994). Therefore, it is essential that a case 

representation method allows individual users to specify their own 

classifications, features and characteristics, which when inputted in the 

database system will re-organise the structure and representation of cases 

(Ibid). It is also important that the information (reusable items) in the case 

base is easily accessible and is presented in an adequate, easily applicable 

format (Dave, 1994). 

 

Database and knowledge based systems  

Case-based design principles can be used by designers and architects 

themselves but computer programs can also reuse knowledge, reason and 

make decisions based on processed information. In theory, computer 

knowledge based systems can perform some of the current designer’s 

functions, for example solving some of the design problems by 

reusing/adapting existing solutions.  

 In this study the Case-Base Design approach was tested through 

the use of an online repository of algorithmic solutions, which is a database 

system. It is essential for this research to draw a clear distinction between 

the concepts of the ‘Database system’ and ‘Knowledge-based system'. 

Both of those notions refer to the computer programs (software) which 

deal with data (including knowledge), but they manage and draw 

conclusions from this data in quite a different manner. Both database and 

knowledgebase systems were initially considered as possible methods to 

test the CBD approach.  



1.3 Case-Based Design methods in architecture and computation 

Page | 77  

 

In order to proceed with the comparison of the knowledge and 

database systems, it is necessary to give the definitions of following key 

terms, which will be used within the context of the research. Data is basically 

a collection of facts or information, which can be digitally extracted, 

interpreted, processed and displayed on a computer. In other words it is 

an organised set of related, structured and indexed information, which may 

exist in a form of physical files (folders, documents, etc.) or system data 

files. Data in the CBD system (testing the reuse of case-based solutions) 

consist of images representing the cases and attached files containing 

programming algorithms (Grasshopper definitions and corresponding 

Rhino files).  

Current database systems are capable of operating, storing and 

managing a large amount of resources, which contain all sorts of 

information. Google, which is a hyper-textual web search engine (Brin, 

Page, 1998), has one of the top ten largest databases in the world. It is a 

very powerful and widely used tool for sharing information and knowledge 

all around the World. But it is not a ‘knowledge based system’, because it 

does not give an answer for a question or produce a new information, but 

it rather gives a list of relevant resources (existing data) when issued with a 

query. 

‘All Knowledge is information, but not all information is knowledge’ 

(Siemens, 2006). From one perspective, knowledge is a human 

understanding of a subject matter that has been obtained through a study 

or experience (Akerkar, Sajja, 2010). But from another viewpoint knowledge 

can be processes not only by humans but also by other agents, such as 

computer programs (Wigg, 1999). George Siemens in his book ‘Knowing 

Knowledge’ (2006) states that people are only able to describe, not define 

knowledge. According to Siemens (2006), there are two main 
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characteristics of knowledge. First: knowledge describes or explains 

something, and second: knowledge can be applied in some type of action. 

Both of those characteristics are more than relevant towards the concept 

of a case-base system (CBD repository) and the reuse of knowledge 

(algorithmic solutions). 

The notion of a knowledge based system is closely linked to the 

concept of an artificial intelligence. According to Akerkar and Rajendra 

(2010) a machine is intelligent if it exhibits such human characteristics as: 

respond to situations flexibly, make sense of ambiguous messages, assign 

relative importance to elements, find similarities and draw distinction 

between situations. Hence Artificial Intelligence (AI) attempts to solve 

problems by mimicking human thinking patterns, through symbolic and 

non-algorithmic problem solving approach. The systems which use AI 

techniques to solve expert level problems in specific domains of knowledge 

are called Knowledge-based or Expert systems (Ibid).  

Knowledge-based systems (KBS) are much more ambitious then the 

database systems. KBS use existing data, information and knowledge to 

generate new knowledge. These computer programs can understand 

information, reason and make decisions based on processed information 

(Ibid). KBS are currently used in medicine to interpret symptoms and 

produce diagnoses, in business and banking to interpret input data and 

offer a prediction, in design industry to propose a configuration of product 

components etc. Tuthill and Levy (1991) have identified five types of 

Knowledge based systems: Expert systems (problem solving), Linked 

Systems, Case-based systems, Database in conjunction with an intelligent 

user interface, Intelligent tutoring systems.  

However not all knowledge based systems aim to solve complex 

tasks. Some of them have a rather simple set of ‘if-then’ rules such as: for 



1.3 Case-Based Design methods in architecture and computation 

Page | 79  

 

example, to determine whether an applicant is eligible for a certain 

program or not. As Sargent (1991) points out, in practice only a tenth part 

of a typical knowledge based system consists of the actual knowledge 

manipulation, the rest of the system is mostly conventional software. More 

than that, such software techniques as: abstraction, inheritance, tree-

navigation etc., which were originally developed for artificial intelligence, 

are now adopted and routinely used in database management and control 

systems. That is why in some cases it is difficult to distinguish between data-

based and knowledge based systems (Ibid). 

 There are a number of reasons why it was decided that (as a means 

of testing the CBD approach) a database system suits the framework of this 

study better that a knowledgebase system. A database system does not 

solve a design problem (or any aspect of a design problem), instead it 

leaves all the reasoning to a designer. This way both the Design Patterns 

(DP) and Case-Based Design (CBD) approaches give the actual decision-

making to users, which ensures a more equal set-up for this experimental 

study. Even though the online CBD system performed certain actions, such 

as sorting and retrieving cases (based on their indexes), it did not produce 

any new data or solve any problems by itself. All reasoning and decision 

making towards what features to search for, which solutions to selects and 

how exactly algorithms can be reused (applied in the new design context) 

was the hands of designers and architects who used this system. (See more 

details on how the Case-Based Design approach was used in the context 

of this study in the Methodology section).  

 The literature, discussed in this chapter, has informed various 

aspects of research methodology. Firstly, it has helped to formulate and 

clearly articulate the research problem (See the Research Problem 

Description section in Methodology chapter). This was done to identify 
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what are the current set of issues and how we can test (measure) whether 

the reuse of solutions can improve designer’s performance (ability to 

overcome these issues)? This helped to formulate the focus of the study 

and identify the aims and objectives of the approaches in more detail and 

clarity (See Focus of the Study, Shared aims and objectives in Methodology 

chapter). Secondly, the theory behind the reuse of abstract and case-based 

solution provided a formative set of principles for practical application of 

the DP and CBD approaches in context of this study (See Adaptation of the 

DP/CBD Approaches in Methodology chapter). Lastly, issues discussed in 

this chapter informed the measures (evaluation criteria) that constitute the 

research metrics evaluating the reuse approaches. These measures are 

used by this thesis as evidence testing the research hypothesis: that the 

reuse of design knowledge can be an effective design support method in 

the context of algorithmic design in architecture (See Evaluation of the 

Approaches in Methodology chapter. 
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2. Methodology 

2.1 Methodology for testing and comparing 

approaches 

The Background chapter outlines the challenges that architects face when 

adopting algorithmic methods and using programming languages in 

design; and explains the principles of the reuse approaches (identified as a 

means to overcome these challenges). This methodology chapter explains 

and illustrates the core of the problem (specific to the context of 

algorithmic design in architecture: what the problem is and why it occurs); 

and relates it back to the objectives of the approaches (how the reuse of 

abstract and case-based algorithmic solutions can help to solve the 

problem). The chapter explains what this experimental study is testing, the 

effect of the approaches; and which particular criteria are being measured 

and why. 

 

Research problem 

 Algorithmic modelling tools allow designers to create design 

models via programming. Instead of direct manipulation with the form, an 

architect creates a programming logic (either by textual script or visual 

programming) (Leitão, Santos, 2011) which generates a model as an 

output. This process is fundamentally different from conventional form-

making approaches in design and architecture where a model is created 

by manipulation with the geometry itself.  
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 To use algorithmic modelling tools an architect has to think like a 

programmer and build a step-by-step algorithm of actions which are to be 

executed by a computer program. The following example illustrates the 

basic principles of creating a model through building a simple five step 

programming algorithm. 

Step One: Create a Point, with coordinates: X=0, Y=0, Z=0; 

Step Two: Create a circle at the centre of this point with a radius of 

20 (mm); 

Step Three: Divide the circle (curve) into 20 equal segments; 

Step Four: Create lines between each division point of the circle and 

the centre point of the circle; 

Step Five: Extrude lines along the Z vector, with vector value 10 

(Exhibit 2.1) 

 

 

Exhibit 2.1. Example of a step-by-step algorithm of actions and corresponding output geometry. The output model 

and programming definition was created using Grasshopper (Grasshopper 3D, 2014), a graphical algorithm editor 

integrated with Rhino (Rhino3D, 2014). 

Algorithmic modelling tools allow architects and designers to 

generate complex and mathematically precise models. They can also be 

used to produce simulations, such as particle motions, surface 

transformations and structural element movements. By a simple change 
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of parameters or a change in the form-making logic of a programming 

algorithm, a designer can obtain varying iterations or modifications of an 

output model without necessarily re-building the form manually. 

However, along with all the opportunities and advantages, the use of 

algorithmic design has its disadvantages.  

A large number of people who are currently learning and 

implementing programming in their designs face major difficulties in 

mastering and applying, in practice, the programming principles and 

grammar (Celani and Vaz, 2012) (See introduction section). This applies 

to both textual (scripting) and visual (box-and-wire) programming 

methods. In order to use programming, one not only has to know which 

commands or programming components to use in each particular case, 

but also has to be able to build the correct sequence of these commands. 

When one of these conditions is not satisfied, a flawed programming 

algorithm will return an error, generate an un-intended output model, or 

in a worst case scenario result in a software crash.  

The use of computational modelling tools requires an algorithmic, 

‘step-by-step program’ way of design thinking. Fundamentally, 

programming logic does not relate to conventional design approaches in 

architecture, such as hand sketching, building physical models or manual 

CAD modelling. Traditionally, programming has not been a part of the 

architectural syllabus (Burry, 2011). Both advanced and novice users of 

algorithmic modelling techniques often face difficulties with the 

implementation of programming languages. Many designers and 

architects struggle to integrate algorithmic thinking into design process 

(Woodbury, 2010) and it can be especially frustrating for beginners 

(Celani, Vaz, 2012). The current shift in architectural education and 

practice towards new computational technologies and design approaches 
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is still an on-going process, as much as the development of the 

computational technology itself. Algorithmic modelling tools are 

constantly being updated, adapting to the demands of the design field 

and becoming more powerful and intuitive.  

This thesis aims to contribute to that on-going process by 

investigating ways to support the use of programming in architecture. 

While developers of software and programming languages work towards 

improving various aspects of the software platforms that designers use, 

this study looks at the problem from the designer’s perspective and 

investigates ways to support learning and use of algorithmic modelling 

through integrating new approaches into the design process itself. This 

research explores methods to reduce the barriers of using programming 

in architecture and potentially improve modelling performance through 

utilising existing algorithmic design solutions. Algorithmic design belongs 

equally to the fields of design and programming, and the reuse of 

solutions as a method to support design is an important part of 

programming practice (Krueger, 1992).  

Therefore it is reasonable to suggest that the knowledge reuse 

approaches can potentially be as useful when applied in the field of 

algorithmic design in architecture.  

 

Focus of the Study 

Two approaches have been proposed as a means of accessing and 

reusing existing algorithmic design knowledge. The first approach is the 

reuse of abstract solutions to a design problem. An example of this 

approach: Robert Woodbury’s patterns for parametric design (Design 
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Patterns) (Woodbury, 2010) was used to test the first reuse method. 

Design Patterns are abstractions. They are generic reusable solutions 

which are documented in such a way that is broad enough to apply to a 

range of different design contexts (Alexander, 1977). Thirteen Design 

Patterns, identified by Robert Woodbury (2010), aim to help designers 

learn and use algorithmic modelling systems. Woodbury states that 

patterns are useful because they promote communication, and can be 

used as a vehicle for sharing design ideas. Although, as the author states, 

writing a design pattern can take a considerable amount of time and 

effort, it aids reflection on and reuse of design ideas. According to 

Woodbury, design patterns are especially effective when a designer is 

doing the same thing again and again in variations (Ibid). Originally, 

patterns for parametric design were developed to assist designers and 

architects with structuring their programming solutions on an abstract 

level by reusing one or several of the Woodbury's Thirteen Design 

Patterns. Woodbury states that the proposed Design Patterns can be an 

effective medium to understanding the essence of algorithmic modelling 

(Woodbury, 2010). The author claims that patterns can help to overcome 

complexity inflicted by parametric design systems, but also states that it is 

a theory that is yet to be tested (Ibid). This study aims to test Design 

Patterns as a learning and design support approach.  

 These claims are supported by research conducted by Gamma et 

al in the field of software design, who observed a number of positive 

effects associated with the reuse of abstract solutions (patterns) (Gamma, 

Helm, Johnson, Vlissides, 1993).  

Authors state that patterns reduce the effort required to learn software, 

helped with the design development, helped to explore alternative 

solutions and motivated users to ‘go beyond’ specific objects (Ibid). 
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Therefore an objective of this research was also to find out whether the 

use of Design Patterns in the context of algorithmic design in architecture 

would have similar positive effects. 

The second proposed approach is based on case-based reasoning 

and the reuse of specific programming solutions: Case-Based Design 

(CBD). In Case-Based Design, instead of creating a new solution for each 

individual problem, a new problem is solved by adapting an existing 

solution from a similar case from the past (Riesbeck, Schank, 2013). 

Research in the field of human reasoning indicates that case-based 

reasoning is a natural way for people to solve any problem (Aamodt, 

Plaza, 1994) (Riesbeck, Schank, 2013), because when humans solve new 

problems they primarily rely on experience from previously encountered 

situations (Ross, 1989). Learning by following a specific problem solving 

algorithm is usually easier than to learn by generalising from it (Aamodt, 

Plaza 1994). This implies that, potentially, the reuse of case-based 

solutions can be expected to be easier and more intuitive for architects 

and designers compared to the reuse of abstract solutions.  

Some authors claim that case-based reasoning is an effective 

design support method because it helps designers with solving solutions 

for new situations by reusing experiences from the past (Heylighen, 

Verstijnen, 2000) (Maher, de Silva Garza, 1997). The CBD approach is also 

claimed to help designers with overcoming problems associated with the 

complexity of design generation (Dave, 1994) and deems to be an 

especially promising method for design fields dealing with geometry (Hua, 

Fairings, Smith, 1996). There is, however, controversy regarding the effect 

of the CBD approach to design innovation. According to one opinion, the 

reuse of case-based solutions can lead to innovative design (Hua, Fairings, 

Smith, 1996) (Sun, Faltings, 1994). According to the other, Case-Based 
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Design actually limits the explored space of solutions (Kolodner, 1991), 

which can potentially supress design innovation. 

Therefore, one of the main objectives of this study is to test 

whether these claims and suggestions regarding the reuse of case-based 

solutions are valid when applied in the field of architectural algorithmic 

design.  

The secondary set of research objectives is to investigate the ways 

to overcome some of the challenges that the use of the CBD approach is 

likely to impose on designers (as well as the CBD systems developers). 

One of these issues being that it is often hard to find the appropriate 

reusable cases (Zimring, 1995). Even when cases are located in a single 

organised repository, finding them might be challenging. The problem is 

that, it is often assumed that when designers are searching for cases to 

reuse, they already know what they are looking for. In practice, defining 

the problem and, therefore, knowing which search features (indexes) to 

use, is an integral part of a design process (Maher, de Silva Garza, 1997) 

(Domeshek, Kolodner, 1992). Moreover, designers often ‘see’ different 

features in the same design solutions as they have different backgrounds 

and associations, which makes it very challenging to find universal indexes 

which would work effectively for all designers (Dave, 1994).  

Therefore the secondary aim of this research is to investigate the 

ways in which designers and architects tend to think about their 

algorithmic designs. This is planned to be done through the investigation 

of how architects describe their design concepts, models, and algorithms; 

and try to identify the types of indexes (key words) that could be more 

effective.  
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In this study the Case-Based Design approach was tested using an 

online repository of visually represented models and corresponding 

downloadable programming algorithms. This approach provided a means 

to share programming solutions, allowing direct reuse (copy/modify) of 

existing algorithms. The idea of the effective reuse of existing algorithmic 

solutions appears to be relevant, because the computer technologies and 

the Internet have already become an integral part of everyday life, as well 

as a part of the architectural design practice and education. Access to 

online databases and the ability to obtain relevant information is likely to 

continue being a part of most design practice.  

Therefore it seems sensible to investigate how architects and 

designers can utilise this opportunity of having constant access to online 

resources containing existing design knowledge and how this access to 

reusable solutions in return can influence design process. 

In theory, the reuse methods of abstract and case-based 

algorithmic solutions are applicable to any type of textual and visual 

programming. Therefore these approaches are likely to be relevant even 

when all the current versions of the modelling software and programming 

languages become outdated. 

 

Shared Aims and Objectives of the DP and CBD 

Approaches 

 One of the shared objectives of the DP and CBD approaches, 

stated in this thesis, is to reduce the number of barriers related to the use 

of programming languages. The goal is to increase users’ ability to 

overcome these barriers on their own by reusing existing solutions 

(abstract or case-based).  
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 The next objective, common for both the DP and CBD approaches, 

is to increase designers’ knowledge and awareness of the existing 

algorithmic solution space. Hypothetically both DP and CBD approaches 

can produce original design ideas and programming strategies. Thus, they 

can both contribute to the decrease of design limitations as (by default) 

each user is no longer limited by his or her own individual knowledge and 

understanding of the subject. Regular interaction with the DP and CBD 

solution can potentially lead to the expansion of the explored solution 

space.  

 The other set of objectives is associated with designers’ capability 

to enable computational design thinking, and their ability to employ 

algorithmic reasoning to translate a design idea into a step-by-step 

programming algorithm, generating an intended geometry. The objective 

is to help users structure their programming logic thereby increasing 

productivity of algorithmic modelling by offering examples which they can 

reuse in the context of their current design problems. The outlined above 

arguments and hypotheses informed the evaluation criteria used in this 

study. (See Appendix B, page B55). 

 

Research Aims and Objectives  

Through comparison of the Design Patterns (DP) and Case-Based 

Design (CBD) approaches this research investigated ways: 

 to overcome the barriers, which users face when adopting the 

principles and grammar of programming in architecture; and  

 to make the use of algorithmic design tools more effective.  

In order to evaluate and compare how each approach influences 

various aspects of algorithmic design, the study has identified five groups 
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of criteria which formed the research evaluation metrics. The metrics 

include these criteria groups: 

 algorithmic modelling performance (ability to effectively use 

algorithmic modelling systems); 

 programming criteria (ability to overcome barriers associated with 

programming),  

 design ideation (ability to realise an idea-to-form translation using 

algorithmic modelling environments);  

 motivation criteria (the level of satisfaction with the design output 

and motivation to use algorithmic modelling in future) and; 

 approach characteristics (the level of how easy to use, intuitive and 

helpful each approach is);  

These metrics provided a means to identify to what extent and in 

which particular aspect each approach improved and supported 

designers' ability to use algorithmic modelling tools in architecture and 

design. Three test groups were compared: the control group, which used 

No Approach (NA), the group which used the DP approach (reuse of 

abstract algorithmic solutions), and the group which used the CBD 

approach (reuse of case-based solutions). To test the effect of each 

approach, comparisons between the control group and approach groups 

were conducted. This gave a means to answer the main research question, 

which was: whether the reuse of abstract and case-based algorithmic 

solutions could help architects to overcome programming barriers and 

improve their algorithmic modelling performance. Ultimately, this study 

aims to test whether it is worth using the DP and CBD approaches in the 

context of algorithmic design in architecture or not. 

The comparison between the Design Pattern and Case-Based 

Design groups allowed the investigation of the strengths and the 
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weaknesses of each approach. Through this comparison the study aims to 

explore how each approach can potentially be improved. 

 

Designer Population 

The target group for this study was established as architects, landscape 

and interior designers who were learning or already using algorithmic 

modelling tools in their designs. Woodbury (2010) states that Design 

Patterns were developed for both designers who were still learning and 

who were already using parametric modelling. The second approach, 

Case-Based Design, also applies to a wide range of designer population. 

People tend to reuse previous cases both when they are novices and when 

they are experts (Anderson, 2013) (Rouse, Hurt, 1982), and by adapting 

these existing solutions designers were expected to benefit from past 

cases (Heylighen, Verstijnen, 2000). In order to carry out the proposed 

experimental study (See Experimental set-up section), and to test and 

compare the two approaches, a list of criteria was identified for selecting 

participants. The following participant selection criteria were established:  

 people who were doing/learning architectural, landscape, or 

interior design;  

 those with design experience of at least one year (to ensure certain 

fluency and confidence in design); 

 those who were interested in learning how to use algorithmic 

modelling systems/or who were already using algorithmic 

modelling systems; 

 open (flexible) towards new design methods and ideas; 

 keen on mastering and experimenting with computational design 

technologies; 

 available in terms of time; 
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 The 126 participants who were recruited to participate in the 

experimental part of the study were a diverse group of architecture and 

design students, and practicing architects. Their design experience varied 

from 2 to 33 years (including the years of studying of architecture and 

design) with an average of 4 years’ experience. When indicating 

experience with any computational design tools (including the use of 

visual or textual programming languages) the range was from 0 to 3 years 

with an average of 4 months’ experience in computational design. When 

specifying their experience using Grasshopper, participants reported an 

average of only 1.5 months, with the majority of participants having no 

experience with the software. These results indicate that the recruited test 

designer population were mostly novice programmers with an average of 

4 years design experience. 

 The test groups of at least thirty test subjects per approach (See 

Statistical Analysis Section for more details) had both male (55%) and 

female (45%) participants and were balanced in terms of design 

experience.  

 

Software Platform 

Algorithmic modelling methods are implemented through the use of 

textual and visual programming languages. The key difference between 

these methods of representation is the level of language abstraction 

(Mitchell, 1975). Visual or diagrammatic (analogue) programming 

languages are represented by a so called ‘box-and-wire’ modelling 

environments, while scripting or textual programming languages use 

sequences of text: words, punctuation, and numbers (Exhibit 2.2).  
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Exhibit 2.2. Visual and Textual programming languages 

 There are advantages and disadvantages in both (textual and 

visual) types of programming languages. The biggest disadvantage of 

scripting is that it has very strict syntax rules, which are often hard to follow 

(Celani, Vaz, 2012). Syntax errors, which occur during the scripting 

process, can be very discouraging for many designers who are learning 

how to use a computational design system. Scripting requires the user to 

have comprehensive knowledge and skills in programming language rules 

and syntax. The disadvantages of visual programming environments are 

related to the limitations that the ‘box-and-wire’ system imposes on the 

variety of available functions and components. Essentially, each ‘box’ 

contains a script that can be a function or an action; and the number of 

‘boxes’ is limited. Nevertheless; these limitations can be overcome when 

combined with textual programming, through adding a script ‘box’ 

(Leitao, Santos, 2011). Recent research in algorithmic design tools 

indicates that users (especially novices) are more enthusiastic and 

successful in understanding and realising design concepts when they use 

visual programming (Celani, Vaz, 2012). Examples of visual programming 

environments include: Grasshopper (Rhino), Generative Components’ 

(GC) Symbolic Diagram and Houdini (Sidefx) etc. 

 A recent study conducted by Janssen and Wee (2011) compared 

these three mentioned systems. The research explored the cognitive stress 
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associated with iterative construction of visual dataflow modelling (VDM) 

environments. VDM refers to a modelling approach that uses visual 

programming languages to create algorithms (which generate output 

geometry). Visual programming was undertaken through the 

manipulation of graphical elements rather than entering text (scripting) 

(Exhibit 2.2). In order to test the visual programming systems an exercise 

was conducted: each platform was used to build the same complex 

parametric model (Janssen, Wee, 2011). All three programming 

environments have completed the modelling task successfully in this 

research (Ibid). The approximate number of nodes used to generate the 

model was: 80-90 for Grasshopper, 90-100 for Generative Components 

(GC) and 70-80 for Houdini. The authors indicated that in order to perform 

certain iterations in GC, a user is forced to follow a reverse-order 

modelling method which causes additional cognitive stress. Grasshopper 

and Houdini, in contrast to GC, both use the forward-order modelling 

method. It is also noted that GC heavily relies on scripted (textual) 

expressions for manipulating such data as: lists, sets or arrays. Thus it is 

not possible to avoid scripting while working with GC (Janssen, Wee, 

2011). 

 With visual programming environments one can expect to 

have tangible design outcomes after a short series of practical tutorials, 

even from people who are new to algorithmic modelling. Both 

Grasshopper and Houdini suited the context of this study. When choosing 

the two software platforms, additional factors came into play. Firstly, both 

Rhinoceros and Grasshopper were available at Victoria University of 

Wellington in their computer labs where this study was conducted. 

Secondly, there was observed an increase of interest towards the use of 

visual programming with Grasshopper among the students of architecture 
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and design at Victoria, as its ‘box-and-wire’ environment was user friendly 

and could be explored and operated intuitively (Grasshopper3D, 2014). In 

addition, the author of this study was already experienced with both 

Grasshopper and Rhino prior to conducting this experimental research. 

That is why it was decided that the Design Patterns and Case-Based 

Design approaches would be tested on the Grasshopper (visual 

programming plugin for Rhinoceros) software platform.  

 

Experiment Setup 

The experiment was set in the framework of a two day algorithmic 

modelling workshops using Grasshopper, a visual programming platform, 

integrated into Rhino 3D (Grasshopper3D, 2014) (Rhino3D, 2014). The 

workshops were set up as a series of short lectures and intensive practical 

tutorials containing the systematic introduction into visual programming 

with Grasshopper.  

 The same experimental setup (treatment) (Groat, Wang, 2002) was 

organised for all three test groups: control group (using no approach), 

group using Design Patterns approach, and group using Case-Based 

Design approach. All participants were given an opportunity to master the 

same set of algorithmic modelling skills (See Algorithmic Modelling course 

framework Section for more details). All groups were introduced to the 

same programming components, computational and algorithmic form-

making logic, and went through the same step-be-step practical tutorials. 

The only difference was that participants of the control group did not learn 

and use any additional design support approach.  

 Participants of the Design Pattern group were introduced to the 

concept of patterns for Parametric Design and throughout the course of 
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the workshops they gradually learned all thirteen patterns developed by 

Robert Woodbury (2010). The first pattern to be introduced in the course 

was ‘Clear Names’. ‘Clear Names’ used to illustrate the concept and 

organisational structure of Design Patterns (Intent, Use When, Why, and 

How) (Ibid). The objective of the two day algorithmic modelling course 

was to use more simple algorithms and programming logic in the 

beginning and then gradually increase the complexity (See 

Recommendation Section and Appendix A ‘Proposed curriculum of 

teaching programming in architecture using patterns for parametric 

design’).  

 Participants of the Case-Based Design (CBD) group went through 

the same practical tutorials as the control group and the Design Patterns 

(DP) group. The only difference was that the CBD group participants were 

given access to the online repository of algorithmic solutions (case-base), 

were shown how to use it (searching cases by index (key words) and were 

given permission to download corresponding programming definitions).  

 At the end of each day of the workshop, participants were asked 

to design an algorithmic model (Exhibit 2.3) (See also Appendix B, pages 

B56-B63), based on a design task (the same for all test groups), and to 

answer an online questionnaire. The task for the first workshop day was 

‘abstract composition’, the task for the second day was a ‘parametric 

canopy’. Prior to modelling, participants were asked to quickly sketch their 

design ideas and think how they could build an algorithm that would 

generate the form that they envisioned. The time given for the 

development of these conceptual design models was set at 2 hours (the 

same for all test groups). It was suggested to participants of the DP group 

to use Design Patterns that they learned when developing their own 

design tasks. However, the use of Design Patterns was not compulsory, 
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and participants were free to proceed with the development of their 

algorithmic design models as they thought worked best for them. Similarly 

to the DP group, the CBD group participants were free to choose whether 

they wanted to reuse any algorithms from the Case-Base or not to reuse 

them.  

 

 

Exhibit 2.3. Example of work submission (Design Idea – Sketched, Programming Algorithm, output design model) 

The collected data (from the workshops) consisted of the screen 

recordings (snapshots of the design process), submitted sketched design 

ideas, 3D models (Rhino files), programming definitions (Grasshopper 
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files) (Exhibit 2.3) and answered online questionnaires. The 3D Rhino 

models were used to calculate the level of complexity of each model. The 

Grasshopper definitions were used to measure the complexity of each 

programming algorithm and to determine the explored solution space of 

each algorithmic solution (See Detailed Criteria for comparing the 

approaches).The data collected from the online questionnaires helped to 

determine the largest portion of the key criteria identified for this study 

including the level of programming difficulties and the amount of the 

reused algorithms. It informed such criteria as the level of satisfaction with 

the design outcome and the motivation to use algorithmic modelling 

systems in the future. The questionnaires provided data regarding the 

design objectives, the ability to model the original design idea and the 

degree of change in the design due to programming difficulties. 

The aesthetic and design qualities of the models were not judged 

directly, as any judgement regarding design qualities may have been to a 

certain degree subjective, varying in dependence to the individual 

preferences and the background of the person evaluating the design. 

However this issue was addressed indirectly. Each participant was asked 

to indicate their design intentions, reflecting on the design outcome, and 

to evaluate the degree of satisfaction with the produced model. In this 

way, the design quality of each model was, in fact, assessed by the 

designer himself/herself. This strategy also gave an opportunity to have 

an insight into what each person intended to achieve versus what was 

actually achieved. 
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Structuring the Comparisons 

The design scope and constraints of the case studies were developed 

according to the two main strategies. The first strategy was to keep the 

design tasks simple but open to various interpretations, thus ensuring an 

easily controlled short-term experimental framework, and a fast and 

efficient analysis of the outcome results. This strategy also gave an 

opportunity to test the identified algorithmic modelling criteria, such as 

the number of programming difficulties, explored solution space, and 

degree of algorithm and model complexity. The second strategy was to 

use practical exercises which allowed the potential for algorithmic design 

to be expressed to its full extent, hence the choice of the exercises: 

‘abstract composition’ and ‘parametric canopy’. Although the 

implementation of algorithmic modelling can, hypothetically, be 

implemented within the context of almost any design scenario, in design 

studios it is often used to create such geometries as surfaces (including 

canopies and building envelopes), algorithmic ornaments, or urban or 

landscape planning, etc. 

 The first practical exercise consisted of designing a simple abstract 

composition (See Appendix B, pages B56, B58, B60, B62). Participants 

were expected to develop rather simple programming definitions 

(algorithms) which would generate intended outcome geometry. The 

objective of the first exercise was to introduce and get users familiar with 

practical implementation of algorithmic modelling. The second day 

exercise consisted of a slightly more specific task: a parametric canopy 

(complex, possibly interactive, surface) (See Appendix B, pages B57, B59, 

B61, B63). In both cases participants were asked to describe their design 

ideas prior to modelling. This was done to track the relations between the 

design concept and the resulting model. It was anticipated that on the 
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second day of the workshops participants would develop more complex 

algorithms and geometries compared to the first exercise. 

 The set-up of the workshops structure was informed by a number 

of existing experimental studies in design. For example, a similar design 

scope (exercises) was used by Celani and Vaz (2012) for a comparative 

study of the use of scripting and visual programming in computational 

design, as well as by Jasses and Chen (2011) for their experimental study, 

which compared three visual dataflow modelling (VDM) systems.  

 

Algorithmic Modelling Course Framework 

To ensure equal treatment, participants of all three test groups, 

including the control group, the DP group and the CBD group, went 

through the same practical algorithmic modelling tutorials. This meant that 

all test groups had the same set of lectures and practical programming 

exercises which were given to them on the first and the second day of the 

workshops. ‘Parametric Architecture with Grasshopper’ (Arturo, 2011) and 

‘Grasshopper Primer’ (Payne, Rajaa, 2009) informed the development of 

course structure. The course was adjusted to accommodate the gradual 

introduction of the Design Patterns in the DP group (See Appendix A for 

more detail). The basic principle for course organisation was to gradually 

increase the complexity of introduced concepts and programming 

components. Practical step-by-step tutorials using Grasshopper for Rhino 

covered such topics as (in order of introduction): 

 Working area (Interface); Components and data; Components’ 

connection;  

 Parameters and components; Import from Rhino (Linking 

geometry/data); Data Management;  
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 Numeric data; Coordinates; Mathematics;  

 Vector Basics; Point; Vector Manipulation; 

 Operators (Move, Rotate, Scale); 

 Curves; Types of Curves; Creating Lines; Polylines; Curves from 

Points;  

 Surfaces; Creating Surfaces from Points and Curves 

 Lists; Shifting Data; Data Management; 

 Reparameterise; 'Remap Numbers' 

 Numerical sequences; Series; Range; Random; Fibonacci series;  

 Data Tree; Flatten Tree; Merge; Graft Tree; Tree Branch; Explode 

Tree; 

 Paneling Tools; Surfaces’ analysis; Divide Surface;  

 Transformations with shape variation; Project; Graph Mapper; 

Deformations: Morphing; 

 Conditional Statements, Split List; Cull Nth; Cull Pattern; Dispatch;  

 Distance; Attractors;  

 Colours, Gradients, Text Display,  

 Script Components, Arrays and Lists; Loops; Visual Basic, Recursion, 

Fractals 

At the end of each workshop day participants of all test groups 

developed and submitted the same design tasks and answered the same 

questionnaires (except that the control group had no questions regarding 

their experience with the approach, as they used no approach). The key 

difference was that that the CBD group had access to the online repository 

of algorithmic solution and that the DP group was introduced to thirteen 

patterns for parametric design and was shown how to use these patterns 

in practice.  
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Principles of the abstract and case-based solutions 

reuse  

Both the Design Patterns and Case-Based Design approaches are based 

on the idea of knowledge reuse. The difference between the approaches 

is that one of them utilises abstract design solutions while the other utilises 

specific design solutions. This results in the substantial difference of the 

reuse methodology between the DP and CBD approaches (Exhibit 2.4, 

Exhibit 2.5). 

 

 

Exhibit 2.4. Reuse of Abstract solutions: Method 

 Exhibit 2.4 illustrates that initially, an abstract generalised solution 

(pattern) can be formulated through the analysis of existing algorithms 

which have the same underlying logic (‘Designer A’ ‘Specific Solutions’). 

After a pattern is documented and the information is published (‘Design 

Pattern’) other designers can learn this pattern (‘Designer B’ ‘General 

solution’). When working on a new problem (‘Designer B’ ‘Specific 

Idea/Problem’) designers can apply this general solution (pattern) to help 

them solve their current design problems (‘Designer B’ ‘Specific Solution’). 
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Due to the fact that patterns are abstract, it is possible to reuse them (when 

appropriate) in different design contexts. 

 

 

Exhibit 2.4. Reuse of Abstract solutions: Method 

 Exhibit 4.5 illustrates the methodology of the reuse of Case-Based 

Design solutions. Using data-base systems (such as weblog platforms) 

designers can publish any of their algorithmic solutions, making them 

available for others to reuse (‘Designer A’ ‘Specific Solution’). When 

choosing indexes for their solutions, designers should try to identify a set 

of specific features (characteristics) of their designs that will be most useful, 

when others search for similar solutions in future (‘CBD Repository’). When 

other designers use the CBD system they also have to identify the features 

of their current design problems (ideas) to search for in the database 

(‘Designer B’ ‘Specific Idea/Problem’). Based on the match of the originally 

applied and search indexes a CBD system retrieves a set of selected cases 

(‘A Set of Selected Cases’). Thinking by analogy, designers can adapt one 

(or several) of these retrieved solutions to help them with the development 

of their current designs (‘Designer B’ ‘Specific Solution’). 
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 One of the key differences in the methodologies of the DP and 

CBD approaches (adopted for this study) is that designers using abstract 

solutions are expected to learn patterns before using them. The 

development of a pattern can also require a certain amount of effort. 

However, in theory, once a pattern is learned, designers can apply this 

general solution to a variety of different design contexts and problems 

without re-learning it. To use a Case-Based Design approach users will 

most likely have to search for a reusable solutions each time they have a 

new design problem. This process can potentially be complicated and 

time consuming. Nevertheless, those designers who publish their designs 

in the case-base system, are likely to require less time and effort, because 

they do not have to spend time on formulating and documenting a 

generalised solution (with a set of sample files).  

 Note that, that alternatively patterns can be stored, retrieved and 

reused using a database repository (similar to the CBD system). In which 

case, designers do not have to learn patterns beforehand. However, in 

this thesis the thirteen Design Patterns are used as integral part of the 

learning process. That is why here and throughout the thesis it is assumed 

that designers learn patterns prior to design process. 

 

Adaptation of the DP Approach to the Experimental 

Framework of this Study 

 To test the reuse of abstract algorithmic solutions in architecture, 

this study used the thirteen patterns for parametric design, developed and 

illustrated by Robert Woodbury (2010). In his book ‘Elements of 

parametric design’ Woodbury states that designers who use parametric 

modelling tools tend to create algorithms anew, rather than reuse them 
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(Ibid). The idea of design patterns is that instead of solving each new 

problem individually, architects can reuse the generalised algorithms 

(patterns) of existing, successfully implemented in the past, solutions 

(Gamma, Helm, Johnson, Vlissides, 1994). Patterns refer to the solutions, 

described with a high level of abstraction. This way design patterns can be 

individually interpreted depending on a particular design context. In 

Woodbury’s book and a website dedicated to the patterns for parametric 

design (Designpatterns, 2014) each of the design patterns is explained 

using the ‘Name’, ‘Intent’, ‘Use When’, ‘Why’ and ‘How’ and is illustrated 

by a set of samples (specific solutions), which are shown as a sequence of 

images.  

 The following example of the ‘Reactor’ pattern and its sample 

algorithm (Circle Radii and Point Interactor) illustrates the structure of the 

patterns’ documentation (Exhibit 2.6). 

Design Pattern: ‘Reactor’ (Name: Reactor) 

 Intent: ‘Make an object respond to the proximity to other object’ 

(Woodbury, 2010) 

 When: ‘Use this pattern, when you want to make an object respond 

to the presence of other object’ (Ibid) 

 Why: Designers often use the metaphor of response, when one part 

of a design (result) depends upon the state of the other (interactor)’. 

For this particular pattern the proximity (reference) factor drives the 

response (Ibid). 

 How: ‘Connect an interactor to a result through a reference’(Ibid)  

‘Circle Radii and Point Interactor’ is one of the samples of the ‘Reactor’ 

pattern illustrating the idea behind this design pattern (Exhibit 2.6). Pattern 

samples are documented using the following structure: 
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Sample ‘Circle Radii and Point Interactor’ (Design Pattern ‘Reactor’) 

 Use When: Control the size of a set of circles by a proximity to a 

point.  

 How: As the interactor point moves closer to the circle, the circle 

gets smaller (Ibid). 

 

 

Exhibit 2.6. Diagrams illustrating Design Pattern: Reactor, Sample: Circle Radii and Point Interactor 

It is very difficult to underestimate the role of samples in 

understanding the essence and principles of each abstract solution 

(design pattern). The samples perform a crucial role, illustrating the idea 

behind each abstract theory of the design patterns. During the 

experimental stage of the study, most of the design patterns’ samples, 

suggested and explained by Robert Woodbury (Woodbury, 2010) were 

developed as Grasshopper definitions. These definitions were analysed to 

determine which particular patterns work better with which programming 

logic and components.  

All patterns were organised in a specific order to be introduced in 

the course of the workshops (See Appendix A and Recommendation 

section for more details on the proposed curriculum to teaching 
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programming using Design Patterns). During the two days of algorithmic 

modelling workshops participants were introduced to all thirteen Design 

Patterns and were shown how to implement them in practice (on the 

examples of practical step-by-step tutorials). Three samples per design 

pattern were shown and explained through corresponding programming 

algorithms during the DP group workshops. One programming algorithm 

per design pattern was used in a step-by-step practical tutorial.  

As a part of the Design Patterns workshop preparation eighty 

pattern samples were developed as Grasshopper definitions; over thirty of 

those algorithms were shown to the DP workshop participants. The DP 

sample algorithms were not made available to download for the Design 

Pattern test group. This was done to clearly separate and test the reuse of 

abstract solutions (DP) and the reuse of specific solutions (CBD). As it often 

stated: samples are meant to be used only as the illustrations for the 

design patterns (Woodbury, 2010) (Gamma, Helm, Johnson, Vlissides, 

1994). If these algorithm were made downloadable they could have been 

reused through the ‘copy/use’ principle of the CBD approach. This might 

have blurred the differences between the approaches and altered the 

results. That is the other reason why the DP group participants were not 

given an access to all the algorithms built for patterns samples. 

 

Adaptation of the CBD Approach to the Experimental 

Framework of this Study 

The Case-Based Design (CBD) approach is based on the reuse of 

design solutions from specific design cases. In the context of this study 

the CBD approach refers to the reuse of algorithmic solutions in 

architecture. This approach was tested using an online data-base system, 
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specifically developed for this study, which contained over one hundred 

and fifty programming solutions (cases) (Exhibit 2.7). The primary purpose 

of these reusable solutions was to help designers and architects to solve 

their own (similar) design problems (Maher, de Silva Garza, 1997). In 

various fields, including architecture and software programming, the use 

of Case-Based Design approach proved to be an effective method, 

helping designers and developers to solve problems by reuse of previous 

solutions and experiences (Kolodner, 1991) (Aamodt, Plaza, 1994) 

(Riesbeck, Schank, 2013).  

 

 

Exhibit 2.7. Snapshot of the Case-Base of algorithmic designs, used as a test the CBD approach. Left side: Search bar; 

and Action bar containing the Blog Archive and programming solutions indexes (‘Labels’), sorted according to the 

frequency of use 

Among the main aspects taken into consideration when designing 

a CBD system for this study are the following points:  

 how the design solutions are going to be represented;  

 what the process is for selection and retrieval of solutions; and  

 what the process is for adapting design solutions (Maher, de Silva 

Garza, 1997).  
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In many ways, the representation of a design case can be 

understood as an abstraction, communicating the essence of each 

design, interpreted into a symbolic form that any designer or architect 

can understand (Ibid). To give participants of this experimental study an 

opportunity to see and understand, how a resulting geometry reacts to 

changes in parameters, the images, representing an output geometry of 

each case, are animated using Graphics Interchange Format (gif). In 

addition to geometry related animations (Exhibit 2.7), each solution is also 

represented with a snapshot of its source Grasshopper definition, to allow 

users to ‘read’ (comprehend) the programming logic behind each design 

case.  

The developed Case-Base for algorithmic solutions (testing the 

CBD approach) was an online database system. This system was 

organised based on the indexes assigned to each solution, which are used 

to sort and retrieve reusable items. Systematic and adequate structuring 

of the CBD database content was essential to ensure effective selection 

and retrieval of solutions. That is why various features (characteristics) of 

algorithmic designs were addressed by indexing, including: a) design 

concept features; b) geometrical/shape features; and c) programming 

logic characteristics. Up to twenty indexes were assigned to each design 

case to allow participants engage with various search features for 

recalling cases. 

To ease the process for adapting design solutions, each case in the 

developed CBD system had a corresponding downloadable Grasshopper 

files, to allow direct ‘copy/use’ or ‘copy/modify’ option.  

The CBD approach was tested on a database of programming 

solutions, specifically developed to accommodate the scope and needs 

of the algorithmic modelling workshops.  
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The following principles were established to guide the 

development of Case-Base for algorithmic solutions (informed by the 

context of this study): 

 Keep algorithms relatively simple, as a) participants are expected to 

spend only two hours on the development of their conceptual 

models; and b) most participants did not have advanced enough 

skills with Grasshopper, to tackle complex programming solutions) 

 Develop solutions that explore different programming and form –

making logic, explained during the course of the workshops; (to 

allow participants to expand the space of explored algorithmic 

solutions) 

 Complex projects are to be divided into independent parts or 

segments  

 Prior to development of the final version of the online Case Base 

system, used to test the CBD approach, three online blog platforms (web 

publishing tools) were tested as a means to host the repository of 

algorithmic designs, including: Blogger (Blogger, 2014), Tumblr (Tumblr, 

2014) and WordPress (Wordpress.com, 2014). All three of these platforms 

allowed images and programming algorithms to be published and shared; 

all allowed multiple indexes to be applied; and selected (search) solutions 

to be used based on those indexes. To determine which platform suited 

this study, the best of a hundred of algorithmic solutions were uploaded 

to each of the blog platforms and were made available to be viewed 

online (worldwide). After four months, the number of visits to each blog 

was compared between three platforms. The Blogger platform appeared 

to be the most popular compared to Tumblr and WordPress. That is why 

the Blogger platform was used to host the Case-Base of algorithmic 
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design solutions and all one hundred and fifty algorithms developed to 

test the CBD approach were uploaded to the online data-base system. 

 During the first day of the workshop the CBD group participants 

were given a link to the online Case-Base of algorithmic designs and were 

explained how to select and retrieve solutions from the database. When 

developing their design tasks the CBD group participants were provided 

with constant access to this database, so they could select and reuse any 

of these solutions.  

To use the CBD system, participants were expected to identify 

specific features (indexes) characterising their design idea in order to find 

a similar solution within a database. Each programming solution was 

represented with illustrations, so designers could visually search for a 

solution using animated images. This way the CBD users could potentially 

find a visual match to the originally sketched design concept, available in 

the repository. If a fitting CBD solution was identified, a designers could 

check a corresponding programming algorithm (by downloading its 

Grasshopper file or using a snapshot of the Grasshopper definition). This 

allowed participants to understand how the algorithm worked and to 

decide whether they wanted to reuse a particular solution, following the 

‘copy/use’ or ‘copy/modify’ method.  

 

2.2 Evaluation of the approaches 

Research methodology 

The proposed methodology has been drawn from a range of studies 

which have examined the application of CAD technologies through case 

studies (Celani, Vaz, 2012) (Hamade, Artail, 2008) (Shah, Smith, Vargas-



2.2 Evaluation of the approaches 

Page | 112 

 

Hernandez, 2003) (Groat, Wang's, 2002) (Toth et al, 2011). The criteria 

relating to the fluency and novelty of design ideation were informed by 

the work titled ‘Metrics for measuring ideation effectiveness’ (Shah, Smith, 

Vargas-Hernandez, 2003). The experimental setup was influenced by the 

recent and relevant research work by Gabriela Celani and Carlos Vaz 

(2012): ‘Cad Scripting and visual programming Languages for 

implementing computational design concepts’. The overall methodology 

was drawn from Groat and Wang's (2002) guidelines for the development 

of experimental studies: a carefully controlled study with at least two 

groups, random selection of participants, no systematic differences 

between groups, and with the same treatment applied for all groups.  

 After careful consideration and comparison between research 

objectives and the relevance of available methods (which dealt with design 

process) it was decided that the experimental methodology suited this 

study best. There were several experimental methods to study and 

evaluate design processes such as: controlled tests (Schon, 1991), protocol 

studies (Christiaans H. and Dorst K., 1991), (Sobek and Ward, 1996) and 

case studies (Ericsson, K and Simon, H, 1984). Case study analysis (namely 

students’ design works, which was produced during algorithmic modelling 

workshops) and surveys reporting participants’ experience meeting all the 

research requirements and objectives and therefore were chosen as most 

suitable.  

The data gathering methodology was based on two types of approaches:  

 Outcome-based analysis (Shah, Smith, Vargas-Hernandez, 2003); 

 Questionnaires 

 The data (values for each identified criterion) obtained from the 

questionnaires and outcome-based analysis was used to compare 
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whether and how each criterion varied depending on designers’ use of 

the Design Patterns and Case-Based Design approaches. Most of the 

collected data was interpreted as numeric values (metrics), allowing 

explicit comparison between the approaches (See Statistical Analysis 

section). This allowed the use of empirically obtained results as a means 

to determine the answers for the research questions (See Research aims 

and Objectives section). 

 

Metrics measuring the key aspects of algorithmic 

design performance 

Metrics measuring the key aspects of algorithmic modelling in architecture 

were based on criteria developed to accommodate the research 

objectives of this comparative study. These criteria were divided into five 

groups:  

 Programming criteria;  

 Design ideation criteria;  

 Motivation criteria and;  

 Approach characteristics criteria; 

 Algorithmic modelling criteria (metrics for measuring qualitative 

aspects of algorithmic models and programming solutions);  

 The questionnaires also had a design background section, where 

respondents indicated their level of experience in architecture and design; 

as well as their experience with computational design tools and specifically 

the use of Grasshopper 3D for Rhino. Furthermore participants were asked 

to indicate their gender. These characteristics were used as covariates, 
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testing whether experience or gender had any significant influence on the 

results (See Statistical Analysis Section).  

 

Programming criteria 

 The first evaluation metrics group covered such programming 

criteria as: programming difficulties, learning curve and reuse of 

algorithmic solutions. Programming difficulties criteria referred to how 

often participants came across programming difficulties, while developing 

their algorithmic designs; and what type of difficulties they had. Learning 

curve criteria evaluated how often participants implemented new 

components while developing their algorithmic designs. The reuse of 

knowledge concerned how often participants reused algorithms from any 

external sources, such as the CBD repository or other locally or internet 

based sources. 

 Number of programming difficulties (barriers) [Questionnaire]*  

*Method of information extraction 

Participants were asked to indicate how often they had come across 

programming difficulties (barriers) which they could not overcome. The 

study took into account the fact that almost every problem or mistake 

could eventually be solved (corrected). That is why the cases when users 

spent a significant amount of time on solving a particular programming 

issue (more than 30 minutes out of 2 hours given for the development of 

a task) were reported as a programming difficulty. The answers were 

gathered as numeric values (metrics). 

 Types of programming barriers [Questionnaire]* 

In order to investigate the typology of barriers that designers face when 

they used algorithmic modelling tools, participants were asked to report 

their difficulties. This question was set as an open ended type of enquiry, 
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meaning that participants had no predefined options or categories. 

Afterwards, these responses were analysed and sorted into the most re-

occurring categories (See Findings Section). 

 Learning curve [Questionnaire]*  

The amount of times that participants took to implement a new (never 

used before / not explained in the tutorials) programming component. 

The answers were reported as numeric values (metrics). 

 Reuse of solutions [Questionnaire]*  

This criterion measured how often participants had re-used algorithms or 

parts of the algorithms from any external sources while developing their 

own programming solutions. It referred to cases when participants had 

re-used existing algorithms or parts of the algorithms (copy/paste/modify 

approach), including the re-use of algorithms shown during the workshop 

tutorials. The answers were reported as numeric values (metrics). 

 

Design ideation/performance criteria 

The Design Ideation Criteria group investigated how the use of the 

Design Patterns and the online Case-Base of algorithmic solutions affected 

design thinking. This included: change in design objectives, participants’ 

ability to realise their original design ideas, ability to accomplish all that was 

wanted etc. These criteria explored how each approach affected the design 

process and the participants’ feedback regarding the ‘achieved’ versus 

‘intended’ was evaluated. The Secondary aim of the design ideation criteria 

was to evaluate the degree to which each approach was likely to affect 

(alter) a design outcome (result compared to the initial design intent). Due 

to participants’ lack of experience with programming environments 

(programming barriers) it was expected that the initial idea would often be 

modified.  
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In order to better understand the ways architects and designers 

think about their design models, workshops participants were asked to 

describe different aspects of their designs using: 

 the key words (indexes) related to geometry / shape of their 

designs;  

 metaphors and abstract attributes that characterised their models; 

 the key words related to algorithmic modelling;  

 The index (key word) study aimed to determine the effective ways 

to structure a repository of algorithmic design solutions (cases) for 

architects and designers. This investigation provided an insight into how 

one could organise and label a database of algorithmic solutions in a more 

effective way. The response, indicating the type of design objectives that 

participants had was reported as an open-ended type of answer with no 

predefined options or categories. The rest of the responses for the design 

ideation criteria were reported as closed-ended answers indicating the 

level of agreement with the statements on a five point scale (Celani, Vaz, 

2012) (See Statistical Analysis Section for more detail regarding the answer 

scales and types of questions). 

 

Change in the design intent [Questionnaire]* 

 Ability to model original idea 

 Change in the design strategy due to programming difficulties 

 Change in the design strategy because participants found 

interesting solutions, which they decided to reuse;  

 Design objectives (What participants intended to accomplish); 

 Ability to accomplish what was intended/wanted; 
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Satisfaction/Motivation criteria 

The motivation criteria group evaluated the degree of satisfaction 

with the design outcome and motivation to use algorithmic modelling in 

the future. The objective was to compare results and identify whether there 

was any dependency between the levels of satisfaction with 

output/motivation to use algorithmic design tools in future and the use of 

each approach. The responses were reported as closed-ended answers 

indicating the level of agreement with the statements on a five point scale 

(Celani, Vaz, 2012) (See Statistical Analysis Section). 

 

Degree of satisfaction/motivation [Questionnaire]* 

Degree of satisfaction with the design output and motivation to use 

algorithmic modelling in future 

 Level of satisfaction with the design outcome 

 Motivation to use algorithmic modelling tools in future 

 

Approach characteristics criteria 

The approach characteristics group referred to the usability, 

intuitiveness, flexibility and utility criteria, which were identified to represent 

the overall features related to the use of each approach. Usability was how 

easy it was for participants to learn/ implement the Design Patterns and 

the Case-Based Design approaches. Intuitiveness attributes were how 

intuitive participants found each approach. Flexibility (re-usability) referred 

to participants’ ability to find and adapt a Design Pattern or a CBD solution 

which fitted their design concept; and how often participants actually 

implemented Design Patterns or CBD solutions in their designs. Utility 

related to how helpful participants found each approach. All approach 
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criteria except ‘Flexibility’ (how often participants re-used algorithmic 

solutions) were collected with a five point scale level of agreement with the 

statement (Celani, Vaz, 2012) (See Statistical Analysis Section). When 

reporting how often participants re-used Design Patterns or Case-Based 

solutions from the online repository, they entered numeric values (metrics). 

 

Usability [Questionnaire]* 

How easy it was for participants to learn/ implement the DP and CBD 

approaches. 

 

Intuitiveness [Questionnaire]* 

How intuitive participants found each approach. 

 

Flexibility [Questionnaire]* 

 Ability to find and adapt a Design Pattern or a CBD solution, which 

fitted participants’ design concepts; 

 How often participants implemented Design Patterns or CBD 

solutions in their designs; 

 

Utility [Questionnaire]* 

How helpful participants found each approach. 

 

Algorithmic modelling performance criteria 

 This group of evaluation criteria referred to algorithmic modelling 

performance in general and can be applicable for various experimental 

frameworks. These criteria can potentially be used as a metric for 

measuring qualitative aspects of algorithmic models and programming 

solutions in architecture and design. The focus of the metrics was 
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evaluation of algorithmic modelling performance in the context of the 

early stages of design (conceptual models) where the emphasis was on 

ideation and the qualitative aspects of the models produced.  

The objective of the metric was to provide a means of systematically: 

 categorising models according to their complexity; 

 ranking the complexity of the algorithms used to generate output 

geometry;  

 evaluating the explored solution space of programming solutions 

(algorithms) as evidenced by variety and novelty. 

Only one of the metrics was limited to the visual programming context. 

That was the method of evaluating the complexity of the algorithms 

(Grasshopper definitions). The variety and novelty criteria, which formed 

the explored solutions measure, focussed on the programming 

components, but the overall logic was suited to both textual and visual 

programming. The measure of model complexity was widely suited to the 

general evaluation of geometrical complexity of architectural and design 

models.  

 

Model Complexity [Output Model Evaluation]* 

Various approaches measuring output model complexity were 

investigated, including: considering meshes to have distinguishable shape 

characteristics; Shape Grammar; and measuring the complexity of shapes 

and representation (Mitchell, 1990). From this, a point system for 

determining complexity was developed. It was informed by geometrical, 

combinatory and dimensional criteria for 3D model classification. In the 

context of this study, this measure was used to determine the speed of 

modelling because it was assumed that a more complex model developed 

within a given period of time required a greater modelling speed.  
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 3D models can be created with various form-making algorithms 

and operations, but final representation is usually stored in the form of 

polygonal meshes (Shikhare et al., 2001) or NURBS (Non-Uniform Rational 

B-Splines). That is why one of the approaches is to consider meshes to 

have distinguishable shape complexity characteristics (Garland, 1999). An 

alternative approach to classifying 3D models is based on measuring the 

complexity of shapes and representation of a model (Forrest, 1974) (Stiny, 

2008) (Krishnamurti, 2011). Forrest suggested three types of model 

classification: geometric, combinatory and dimensional. Geometric 

complexity refers to the models basic elements; such as lines, planes, 

curves, surfaces, etc. Combinatorial complexity considers the number of 

component (elements) and dimensional complexity classifies model as a 

2D, 2.5D or 3D model. The other method to analyse models refers to 

Shape Grammars. The Shape Grammars approach interprets a model as 

a set of rules (Heisserman, 1994). Shape grammars can be considered to 

be visual mathematics. This method argues that a design can be seen as 

series of transformations, such as rotation, translation, reflection, scale (Cui 

J, MX Tang, 2013). The Shape Grammar design method is based on form 

computation and logical analysis of the formal properties (Heisserman, 

1994). In practice, it can be applied using methods of shape 

decomposition into basic components (actions). 

The point system, which formed the criterion measuring complexity of 

geometric models for this research, were informed by the combination of 

geometrical, combinatory and dimensional complexity criteria for 3D 

model classification; as well as the form computation mechanism of a 

design – Shape Grammars.  
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Model Complexity Evaluation: Point System 

The method for measuring complexity of algorithmic models is based on 

a point system. Numbers in [N] brackets were the score points. Each 

model was analysed according to the following seven categories: Basic 

Elements, Composition Space, Arithmetic of Shapes, Number of Elements, 

Shape of the Element Transformations and Colour. Each model was 

awarded a certain number of points in each category. The total number 

of points was combined to form the final score.  

 The Basic elements category evaluated models according to how 

advanced the geometry was, starting with the simplest geometry – points 

and ending with most advanced – solids (Forrest, 1974). In many cases 

outcome models, submitted by participants, had various types of 

elements: points, lines, surfaces and solids. In some cases, all elements 

(including intermediary geometrical structures, such as centre points and 

surface edges) were kept visible. In other cases only the resulting 

geometry was left visible. That is why the points were not awarded to all 

the types of elements of the model, but only to the most advanced type 

of element geometry. Six types of basic elements geometry were identified 

(from simple to complex): ‘Points’ (a point can be defined by XYZ 

coordinates), ‘Lines’ (a straight line; can be defined by two points), ‘Curves’ 

(a curved or straight line, can be defined by two, three or more points. It 

includes all splines such as polylines, curves, interpolated curves; and 

primitives such as: circle, ellipse, rectangle and polygon), ‘Planes’ (a flat, 

two-dimensional surface), ‘Surfaces’ (three-dimensional open surface) and 

‘Solids’ (a solid three-dimensional geometric figure (includes closed 

surfaces)) (Exhibit 2.8). 

Basic elements (Geometrical Complexity): Points – [0]/Lines – [1]/Curves – 

[2]/Planes – [3]/Surfaces – [4]/Solids – [5] (Exhibit 2.8) 
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Exhibit 2.8 Basic elements (Geometrical Complexity) 

 While basic elements geometry could be two or three dimensional 

the distribution (composition space) of those elements could also vary. 

Two types of spatial compositions were identified: 2D Composition - a flat, 

two-dimensional distribution of elements and 3D Composition – a three-

dimensional distribution of elements. In this category, more dimensions 

mean more complexity, that is why 2D compositions were awarded [0] 

points and 3D compositions were awarded [1] point. 

Composition Space (Dimensional complexity): 2D – [0]/3D – [1] (Exhibit 

2.9) 

 

 

Exhibit 2.9 Composition Space (Dimensional complexity) 

 Arithmetic of Shapes was a category concerning operations which 

could happen when geometrical shapes intersected. They were often 
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referred to as Boolean Operations or when elements had been culled 

according to a mathematical function or condition. ‘Addition’ (+) is an 

operation of transformation of two or more intersecting objects into a 

single object, such as the union of Region, Mesh or Solid. ‘Subtraction’ (-) 

is an operation that is opposite to 'Addition' and occurs when intersecting 

objects are being deducted from one another (such as Curve, Surface or 

Solid Trim and Region, Mesh or Solid Difference). In Grasshopper ‘Cull 

Pattern’ is an operation of selecting certain elements and deleting or 

transforming them, such as Cull Index, Cull Pattern (true/false), and 

Random Reduction etc. These operations were also referred to as 

arithmetic of shapes (custom type of subtraction or addition). As the 

Evaluation method of model complexity was based on visual analysis of 

models, it was often difficult or next to impossible to define if an ‘Addition’ 

operation has been performed. In many cases, when several shapes or 

volumes intersected they formed a complex geometry and it was difficult 

to tell if they had been transformed into a unit or if they were separate 

and just intersecting. That was why, in order to avoid confusion, ‘Addition’ 

operations were given [0] points. ‘Subtraction’ operations were given [1] 

point and ‘Cull Pattern’, and a more complex function, was given [2] 

points. 

Arithmetic of Shapes (Shape Grammars): Addition – [0]/Subtraction – 

[1]/Cull Pattern (Reduce or add elements according to a certain logic) – 

[2] (Exhibit 2.10) 

  



2.2 Evaluation of the approaches 

Page | 124 

 

 

Exhibit 2.10 Arithmetic of Shapes (Shape Grammars) 

 

 The Transformation category was closely related to the ‘Arithmetic 

of Shapes' category, as it also dealt with operations. Transformations were 

divided into five clearly identified types: Scale, Rotation, Reflection, 

Deformation and Translation (Cui J, MX Tang, 2013). Each type of 

transformation was given one point. In many cases a combination of 

transformations took place, where elements of the model were both 

rotated and scaled. ‘Scale’ is a type of transformation which deals with the 

elements size change. ‘Rotation’ is the process of turning the element 

around a centre or an axis. ‘Reflection’ is a type of transformation in which 

one element is the mirror image of the other. ‘Deformation’ includes a 

variety of operations dealing with shape changes, such as Bend, Twist, 

Blend and Morph. ‘Translation’ is the process of moving an object from 

one location to another. In practice, when looking at the resulting model, 

it is near impossible to tell for certain if an object has been moved (as a 

copy) or if the same objects have been generated in different locations. 

That is why, to avoid all uncertainties regarding the type of underlying 

modelling logic, in the cases where the same elements (same type of 

elements) had reoccurred in different locations it was considered to be a 

‘Translation’.  
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Exhibit 2.11. Transformations (Shape Grammars) 

Transformations (Shape Grammars): Scale – [1]/Rotation – [1]/Reflection 

– [1]/Deformation – [1]/Translation – [1] (Exhibit 2.11) 

 Number of Elements categorises models into four types of groups. 

The first group, ‘One Element’ (where a model has only one element) is 

considered to be the most simple – [0] points. The second group of 

models are those that have from two to ten elements of the same type 

(for example, nine cylinders) – [1] point (Exhibit 2.12). The Third group is 

‘Multiple Elements’, when a model has more than ten elements and they 

have the same type (for example, a structure composed of hundreds of 

pipes) – [2] points (Exhibit 2.12). The last group in this category ‘Multiple 

elements N Types’, where ‘N’ stands for a number of types of elements 

(for example, when a model contains planes, surfaces and different types 

of solids). The score for this group was calculated according to the 

following expression: [X= N +1] points, where N stands for a number of 

types of elements. 

Number of Elements (Components): One Element – [0]/Two-Ten Elements 

– [1]/Multiple Elements (one Type) – [2]/Multiple Elements (’N’ Types) – [1 

+’N’] (Exhibit 2.12) 
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Exhibit 2.12. Number of Elements (Components) 

 

The Shape of the Elements category evaluated the characteristics of 

elements of a model. When ‘Standards and Primitives’ were used (such as 

a circle, cube, sphere etc.) [0] points were awarded. In cases where a 

certain type of element(s) had a repeating ‘Non-standard Shape’ (such as 

rhombus shaped panels with filleted corners) [1] a point was awarded. The 

third group included elements which had a non-repeating nature, (for 

example, extruded sections or non-standard shaped objects). These were 

referred to as ‘Complex Shape’ elements and were given [2] points. 

Shape of the Element: Standards and Primitives – [0], Non-standard 

Simple Shape – [1]/Complex Shape – [2] (Exhibit 2.13) 

 

 

Exhibit 2.13. Shape of the Element 
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Exhibit 2.14 Colour 

Colour: No colour – [0]/ One Colour – [1]/Multiple Colours – [2]/Colour 

Gradient – [3] 

 The final category dealt with the use of colours (shades) in the 

model. The first group of models were models with ‘No colour’, which 

were given [0] points. When at least ‘One colour’ was used the model was 

given [1] point. Models which had ‘Multiple Colours’ was given [2] points. 

When complex shading materials or ‘Colour Gradients’ were used, it was 

given [3] points (Exhibit 2.14). 

 The total Model Complexity score was calculated as a sum of all 

the scores that a model got in each category including: Basic Elements, 

Composition Space, Arithmetic of Shapes, Number of Elements, Shape of 

the Element Transformations and Colour. All Model complexity score 

calculations were done using Excel tables (Exhibit 2.15) (Microsoft Excel, 

2014). 
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Exhibit 2.15. Model complexity evaluation Graph (Excel table) Example. Control group. No 

Approach 

 Columns in Exhibit 2.15 referred to the categories such as Basic 

Elements, Composition Space, Arithmetic of Shapes etc., and rows 

referred to models developed by participants on each day. 

 Prior to calculating the scores following the logic of the model 

complexity point system, all models were sorted into five groups from 

most simple to most complex, according to visual comparison (personal 

judgement). The majority of models in both types of analyses (personal 

judgement and complexity point system) matched the complexity group 

choice. Visually simple models – got lower model complexity scores and 

visually complex models got higher model complexity scores. Although, a 

fair number of models were within the middle of the spectrum of 

complexity (according to the model complexity point system) they 

appeared to be more complex than anticipated. Some models scored 

more points than expected and were sorted into groups with higher 

complexity. The overall conclusion was that this model complexity point 

system was an adequate method to evaluate complexity of models. 

 These metrics were successfully implemented as a practical 

method to evaluate the complexity of output models developed by 

participants of the algorithmic modelling workshops using Grasshopper 



2.2 Evaluation of the approaches 

Page | 129  

 

for Rhino. In theory, these metrics were applicable for any geometric 

models including, virtual and physical. 

 

 

Exhibit 2.16. Algorithm complexity evaluation. Programming components. Inputs vs Complexity points 

Algorithm Complexity [Grasshopper definition analysis]* 

The evaluation of the degree of algorithm complexity was based on the 

analysis of the Grasshopper definitions (programming algorithms). A 

second proposed points system was utilised. Points were awarded to each 

input tub (See Exhibit 2.16) of each component used in a programming 

algorithm (Grasshopper definition). The logic behind this type of 

evaluation was that the more inputs/variables a component required the 

higher its degree of complexity (as illustrated in Exhibit 2.16).  

 The sum of the inputs of all components implemented in a 

Grasshopper definition formed a total Algorithm Complexity score. Similar 

to Model Complexity score, the calculations for Algorithm Complexity 

criterion were done using Excel tables (Exhibit 2.17) (Microsoft Excel, 2014) 

 Columns in Exhibit 2.17 referred to programming components, 

with corresponding complexity points (number of inputs) sorted from 

most simple components (left) to most complex components (right); rows 
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referred to the algorithms developed by participants on each day of the 

workshops. 

 

 

Exhibit 2.17 Algorithm complexity evaluation Graph (Excel table) Example. Control group. No 

Approach 

Explored Space of Algorithmic Solution [Grasshopper definition analysis]* 

The third algorithmic modelling metric sought to evaluate the explored 

space of algorithmic solutions developed by the workshop participants. 

Given the context of the early stages of design two criteria were identified 

to evaluate the boundaries of explored solution space: variety (range of 

explored solutions) and novelty (how original a solution was compared to 

the pool of algorithmic solutions). The methods of measuring these criteria 

were informed by research work ‘Metrics for measuring ideation 

effectiveness’ (Shah, Smith, Vargas-Hernandez, 2003).  

 Variety refers to a range of unique programming components 

used during the design generation process. The bigger the count of 

various programming components used by participants, the higher the 

variety score. 
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 Novelty refers to how unusual a programming algorithm is 

compared to other programming solutions, developed during the course 

of the workshops. In order to measure a novelty of an individual 

algorithmic solution it was necessary to work at a group level (all test 

groups). During the first stage, all algorithms developed by participants 

were analysed based on how often each programming component (logic) 

was used throughout the course of the workshops. After that each 

component was awarded a novelty score (from 0 to 10, where 0 points 

indicates not novel logic/frequently used by participants; and 10 points 

indicates a very novel programming logic/rarely or never used by others) 

(Exhibit 2.18).  

 

Exhibit 2.18. Novelty points chart (Programming Algorithms Analysis) 

 Exhibit 2.18 illustrates the distribution of Novelty scores and 

corresponding number of times a component was implemented. For 

example, if a programming component was used only 4 or less times by 

all 126 participants during two days of the workshops, it was given 10 

novelty points. Components implemented from 5 to 10 times were given 

9 novelty points, components used 11-16 times were given 8 novelty 

points; and so on (Exhibit 2.18). Most frequently used programming 

components used within the range of 100 to 1660 times get 0 Novelty 

points, such as ‘Number Slider’ components (used 1660 times throughout 
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the course of the workshops), ‘Vector Unit’ (used 431 times), or ‘Move’ 

(used 294 times) (Exhibit 2.18).  

 The sum of the novelty scores for each implemented component 

comprised the resulting total Novelty score of each programming 

algorithm. The less a characteristic programming component (logic) was 

re-occurring in the pool of all algorithmic solutions, the higher its novelty 

(Shah, Smith, Vargas-Hernandez, 2003). The calculations for both Novelty 

and Variety criteria were done using Excel tables (Exhibit 2.19)  

 

 

Exhibit 2.19 Algorithm Novelty evaluation Graph (Excel table) Example. All groups.  

 

Columns in Exhibit 2.19 referred to programming components, with 

corresponding novelty points sorted from most typical/frequently used 

(left) to most novel/rarely used programming components (right); rows 

referred to the algorithms developed by participants on each day of the 

workshops. 

See a detailed summary chart of all the evaluation criteria groups in 

Appendix B, page B55) 
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2.3 Statistical methods 

Sample size 

This research was designed as an experimental comparative study 

between the DP (reuse of abstract design solutions) and CBD (reuse of 

case-based design solutions) approaches aimed to support designers in 

use of algorithmic modelling environments in architecture. Both 

approaches were tested through a series of algorithmic modelling 

workshops, with at least thirty participants per approach.  

Obtaining the appropriate sample size, in our case it is the number 

of individuals to include in the experimental study, is an important 

consideration. In theory, the more collected data the better, since 

increasing the sample size improves statistical power (Martin, Bateson, 

1986). Determining the sample size also depends on how much confidence 

is required and what is the acceptable level of error (Alreck, Settle, 1995). 

A large sample size ensures that results are representative of the entire 

population and can be generalised. In statistical testing a large enough 

sample size is needed to achieve the results that are statistically significant 

(Mehta, Patel, 1998). The term statistically significant is used as a means to 

indicate the probability of the results occurring by chance alone. A 

probability level of 0.05 has been established as a generally acceptable 

level of confidence (Fisher, 1925). The 0.05 level indicates that there are at 

least 95 out of 100 chances that the results obtained from the study sample 

would be similar, when tested on the entire population.  

However in practice, the sample size is often limited by both the 

amount of time required for data collection and the availability or expense 

of the resources. That is why it is important to determine the ‘large enough’ 

minimum of the sample size (Gay, Diehl, 1992). Roscoe’s rule of thumb for 
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determining sample size states, that a sample size larger than thirty and 

less than five hundred is appropriate for most research cases (Roscoe, 

1975). When comparing groups of data, the appropriate sample size of at 

least thirty participants for each category, that is being compared, is 

commonly accepted, (Weisberg, Bowen, 1977).  

In this comparative study the sample population is split into three 

groups, which correspond to the Design Patterns (DP) and Case-Based 

Design (CBD) approach groups and the control group (NA - No Approach), 

therefore a minimum sample size of thirty for each category is necessary 

(Ibid). One of the other reasons, which can influence the minimum sample 

size, is that at least thirty subjects are required to establish a relationship in 

correlational research (Cohen, 2013) (See ‘Dependence between the 

criteria’ section). (See also Appendix B, Exhibit B1. Evaluation Criteria 

Groups, page B77) 

Considering all these requirements, for this experimental study, the 

sample size of minimum thirty participants per group was adopted.  

 

Collection of data 

The population size of at least thirty participants per test group 

meets the significance level of statistical testing, ensuring that the results of 

this experiment did not occur by accident. The data collected from the No 

Approach, Design Patterns and Case-Based Design workshops was 

produced in three ways: online questionnaires, output design models 

(virtual Rhino models) and programming algorithms (Grasshopper 

definitions). This data was analysed according to the five groups of criteria: 

algorithmic modelling, programming, design ideation, approach 

characteristics and motivation; which were identified as likely to typify 
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differences between the two approaches (See Research 

Methodology/Evaluation Metrics section).  

The data obtained from the design models and programming 

algorithms was used to quantify algorithmic modelling criteria (See 

Methodology Section), such as output model complexity, complexity of 

programming algorithms and explored solution space of programming 

solutions. The data obtained from online questionnaires was used to 

measure programming criteria, such as amount and typology of 

programming difficulties, learning curve and reuse of existing algorithms. 

The questionnaires also provided data for design ideation criteria, which 

include: types of design objectives, ability to model original design idea, 

change in the design strategy due to programming difficulties or the 

discovery of interesting algorithmic solutions. The data from questionnaires 

was used to measure the approach characteristics criteria, such as: usability, 

intuitiveness, flexibility and utility; as well as motivation with the design 

output and motivation to use parametric modelling in future. 

 

Typology of collected data 

The data obtained from the online questionnaires, 3D models and 

programming algorithms was originally recorded, post-factum interpreted 

or calculated as numeric values/variables (See Methodology section). 

Depending on the method of measuring the criteria, these variables have 

different range and distribution. For example; the variable of ‘Algorithm 

Complexity Score’ for Design Patterns’ (day 2) exists within a range of 

numbers, which go from 4 to 55 points. Variables for some other criteria 

had only two possible options: Yes (1) or No (0), for example in ‘Types of 
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Difficulties’, where the participants either had a particular type of difficulty 

(1) or they did not (0). 

These variables can be sorted into two types of data classes: 

continuous variables and categorical variables. Continuous variables refer 

to the numeric values, which exist within a certain domain of numbers, for 

example: 10, 5.5, 12, 8.1 and so on. They can be described as a set of 

numbers between two given points: minimum and maximum values. The 

following graph (Exhibit 2.20) illustrates the continuous type of variable on 

the example from this study. The left-hand chart shows the distribution of 

‘Algorithm Variety Score’ (evaluating the range of programming 

components used in each algorithm) for Design Patterns on the second 

day of the workshop. The vertical axis represents algorithm variety score 

and the horizontal axis represents participants. The right-hand chart shows 

the same data as a histogram, generated by SPSS (IBM, 2013) for normal 

distribution of data test. Note that, in this case, the vertical axis is frequency 

and the horizontal axis is algorithm variety score. 

 

 

Exhibit 2.20. Example of Continuous variables. Algorithm Variety Score. Day 2. Design Patterns. 

 

 Continuous variables can have different numerical domains and 

different distributions, but they do have one thing in common; they are 

not limited by any categories. 
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Categorical data, on the other hand, refers to the data that can be 

sorted into categories, or can only take on one of a limited, often fixed, 

number of possible values. There are several types of categorical variables. 

They could be: ordinal, nominal and dichotomous (binary) (Feller, William, 

1950). When data can take on exactly two values, for example in ‘Yes’/‘No’ 

questions, it refers to a dichotomous or binary type of categorical variables. 

The difference between the ordinal and nominal variables is that for a 

nominal variable the order of the categories has no meaning. Colour 

categories such as ‘Blue’, ‘Green’ and ‘Orange’ can be an example of a 

nominal variable. The order for these categories has no meaning, as ‘Blue’ 

is not less than ‘Orange’ and ‘Green’; or as ‘Male’ is not more than ‘Female’ 

and vice versa. An ordinal variable has a meaningful order, usually from 

smallest to largest, as, for example, in level of agreement: ‘strongly 

disagree’ is less than ‘neutral’ and ‘neutral’ is less than ‘strongly agree.’ An 

ordinal variable, where intervals between the values are equally spaced, is 

called an interval variable.  

Two categorical data types: ordinal and binary data were collected 

from the online questionnaires and used in this comparative study. The 

data, collected from the ‘Yes’/‘No’ questions, such as, of whether 

participants used any Design Patterns or Case-Based solutions in their 

designs, refers to binary, whereas the level of agreement or such scale 

questions as ‘never’, ‘1-3 times’, ‘4–6 times’ and so on, are ordinal.  
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 Chart: types of data collected for evaluation criteria 
D

A
T
A

 

Continuous variables 

C
R

IT
E
R

IA
 

Experience in architectural design and programming;  

Complexity of the output design model 

Novelty and variety of the programming algorithms (Explored 

Solution Space); 

Algorithm complexity scores;  

D
A

T
A

 

Binary categorical variables 

C
R

IT
E
R

IA
 

Gender 

Type of programming difficulties ( ‘Yes’ or ‘No’ option for each type 

of programming difficulties) 

Type of design objectives (Yes’ or ‘No’ option for each type of design 

objective) 

Flexibility of the approach: used or did not use Design Patterns/Case 

Based solution in their design 

Types of Key words (‘Yes’ or ‘No’ option for each category of key 

words) 

D
A

T
A

 

Ordinal categorical variables*  

*these variables were treated as continuous variables in parametric 

statistical testing 

C
R

IT
E
R

IA
 

Programming criteria (the scale of how often participants 

implemented a new components, reused algorithms or faced 

programming difficulties) 

Design ideation criteria (ability to model original idea and change in 

design intent scales) 

Approach characteristics criteria (‘Usability’, ‘Utility’, ‘Intuitiveness’ and 

‘Flexibility’ scales) 

Motivation criteria (satisfaction and motivation scales) 

Exhibit 2.21. Criteria sorted according to the data types: Continuous variables, Binary and 

Ordinal categorical variables. 
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Statistical analysis of data 

The ordinal variables, such as level of agreement with the statement 

were treated as Likert scales (Lubke, Muthen, 2004). These scales have 

points that indicate the degree of agreement with a statement. In this study 

the scale went from: 1=’Strongly Agree’ to 5=’Strongly Disagree’. When it 

comes to the analysis of these types of scales, the data, being in fact a set 

of ordered categories, can be considered and treated as continuous 

variables (Carifio, Perla, 2007). Treating the Likert scales as continuous 

variables gives an opportunity to use a greater variety of statistical tests. 

However, there is a split of opinions on this subject in the field of statistics. 

One group of scientists insists that the intervals between the scale values 

in the ordered categories are not absolutely equal. That is why the results 

of the parametric testing applied to the ordered variables cannot be 

considered valid (Jamieson, 2004). The other camp argues that, while Likert 

scales are technically ordered, in some situations the use of parametric tests 

is valid (Lubke, Muthen, 2004) and returns accurate values (Glass, Peckham, 

Sanders, 1972). This study has addressed this issue by applying both 

parametric and non-parametric tests on ordinal variables. In this 

comparative study a number of the ordinal categorical variables, such as 

Likert scales, obtained from the questionnaires were treated as continuous 

data. However all the results obtained by treating the ordinal variables as 

continuous, were validated by non-parametric testing. 

When designing the questions for the ordinal data collection, the 

study considered the following principles. In order for ordinal variable to 

work properly in parametric statistical testing, the scale item should have 

at least five points; the concept underlying the measuring logic should be 

continuous, and the intervals between the points should be as equal as 
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possible. These conditions shaped the design of scale items used in the 

online questionnaires (Exhibit 2.22).  

This example of the question (Exhibit 2.22), designed with Likert 

scale, illustrates the logic of collecting and interpreting data. The scale, 

visible to the participants, has five categories: Strongly Disagree, Disagree, 

Neither Agree nor Disagree, Agree, Strongly Agree. Only one category can 

be chosen. The underlined logic behind this scale item is that each category 

is awarded a numeric value (the 4th row, Exhibit 2.22). The scale goes in 

order from 1 = Strongly Disagree to 5 = Strongly Agree. As a result, the 

collected numeric data can be mathematically analysed. For example, it 

becomes possible to calculate a central tendency (a mean value) of the 

ordinal variable for each study group. 

 

Example of the question designed with the Likert scale item 

Q
U

E
S
T
IO

N
 Please indicate the level of agreement with the following statement: 

I was able to model my original design idea. 

A
N

S
W

E
R

 

Strongly 

Disagree 
Disagree 

Neither 

Agree nor 

Disagree 

Agree 
Strongly 

Agree 

V
A

L
U

E
 

1  2  3  4  5  

Exhibit 2.22 Example of the Statement from the online questionnaire with the Likert scale, 

where the scale item has five points. The level of agreement goes from 1 = Strongly 

Disagree to 5 = Strongly Agree. 

The following graph (Exhibit 2.23) illustrates the distribution of 

ordinal variables for the Design Ideation criterion: ‘Ability to model original 

design idea’. The left-hand chart vertical axis represents the level of 

agreement from 1=’Strongly Agree’ to 5=’Strongly Disagree’; and the 
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horizontal axis represents participants. Categorical data can often be 

interpreted as a proportion: right hand chart, where the vertical axis is the 

frequency of answers and the horizontal is the level of agreement. 

Proportion, being a number considered in comparative relation to a whole, 

can be calculated as a percentage for each category. For example the same 

criteria: ‘Ability to accomplish original design idea’ can be represented as: 

‘Strongly Disagree’: 3%, ‘Disagree’: 37%, ‘Neither Agree nor Disagree’: 

33%, ‘Agree’: 23%, And ‘Strongly Agree’: 3% (right-hand chart, Exhibit 

2.23). 

 

 

Exhibit 2.23. Example of Categorical variables. Ability to accomplish original design idea. Day 1. Design Patterns group. 

 

 Comparison of data 

The purpose of the workshops was to collect the data and through 

the comparison of the data to ascertain whether there are differences that 

might be observed between results for the NA, DP and CBD test groups. 

The purpose of the statistical analyses was to determine whether the 

differences that were observed are statistically significant. The data 

obtained from the workshops indicated that there is indeed an identifiable 

difference in the results for every single criterion between the No Approach 

(NA), Design Patterns (DP) and Case-Based Design (CBD) groups. For some 

criteria the difference between the responses seemed to be substantial. In 
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other cases the results seemed very close – almost identical. In order to 

avoid ambiguity in the interpretation of the results, there needed to be a 

method to determine whether the differences in results did not occur by 

chance. 

The role of the statistical testing can be illustrated using the example 

of comparison of the Design Ideation criteria: ‘Ability to model original 

design idea’ from the first day of the workshop, between the DP and CBD 

groups. The information in the chart is represented both as two separate 

column-charts for the Design Patterns approach and the Case-Based 

Design approach (left-hand diagrams) and as the overlapping line-chart 

for both approaches (right-hand diagram) (Exhibit 2.24). The vertical axis 

refers to the frequency and the horizontal refers to the level of agreement 

(five point scale from 1 = ‘Strongly Agree’ to 5= ‘Strongly Disagree’).  

 

Exhibit 2.24. Comparison chart: Ability to accomplish original design idea. Day 1. Design Patterns. Case-Based Design 

groups. 

The distribution of categories for the Design Patterns and the Case-

Based Design approaches are seemingly different. As a result, the sensible 

conclusion might have been that the participants, who used the CBD 

approach, are more capable of modelling the original design idea. This 

conclusion, however, was not confirmed by both parametric and non-

parametric statistical testing. Statistical tests and such statistical values, such 

as mean and level of significance, are often utilised in this comparative 
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study. That is why before going into the details of the interpretation of the 

tests interpretation it is necessary to explain some of the most relevant 

definitions and concepts. 

 

Explanation of the statistical terms used in the 

comparative study 

Mean – refers to a ‘measure of central tendency of a distribution or 

the arithmetic average of a set of values’ (Feller, Feller, William, 1950). In 

this study mean-values are used to compare the results between the three 

test groups: two test groups using the DP/CBD approaches and the group, 

which used no approach (NA). Means values help to determine which 

measure is greater and thus had a more positive or negative effect on a 

criterion. Although, the DP, CBD and NA mean-values can be (and almost 

always are) different, we cannot draw conclusions by reasoning that one 

value is greater/better than the other, unless we test if the difference 

between the means is statistically significant. 

 

Exhibit 2.25. Mean and Standard Deviation of data. Criterion: Ability to accomplish original design idea. Day 1. Design 

Patterns.  
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Mean value example: The chart of Design Ideation criteria: ‘Ability 

to accomplish original design idea’ for the Design Patterns approach on 

day 1 (Exhibit 2.25.). The Mean for this distribution of ordinal variables 

equals 2.87 +- .937. Number 2.87 is an average answer and .937 is a 

standard deviation, which shows how much variation from the average 

exists (Saeed, 2000). 

 

Hypothesis testing 

To compare approaches the study uses statistical hypothesis tests. 

To illustrate, we can make a hypothesis that one of the approaches has a 

better effect on the architect’s ability to model original design idea. This is 

our hypothesis and we are testing whether this hypothesis is true and, 

therefore, the ability to model original design concept of one of the groups 

is significantly better.  

The null hypothesis states that the means of two samples are equal 

or not significantly different (Fadem, 2008). In our case the samples refer 

to the two approaches: Design Patterns and Case-Based Design. Unless 

rejected or disproved, the null hypothesis states that approaches have the 

same effect on the results. When rejecting the null hypothesis the analyst 

is able to state with a degree of certainty expressed as a probability that 

there is a significant difference between the mean scores for two groups. 

In this study, it becomes possible to determine whether there is a 

statistically significant difference between the performance of the DP and 

the performance of the CBD groups (and compare them to the control 

group (No Approach)). 

P-value is a measure used to test the null hypothesis. When a p-

value is below the statistical significance threshold, which is generally 
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accepted as 0.05 (or 95 % of confidence) (Zimmerman, 1997). (Stigler, 

2008), then the null hypothesis is rejected in favour of the alternative 

hypothesis (Fadem, 2008). In other words:  

If a p-value is above the 0.05 level, the null hypothesis is true. 

Therefore we can assume that there is no significant difference between 

the means; 

If a p-value is below the 0.05 level, the null hypothesis is rejected 

Therefore we can assume, with 95% certainty, that there is a significant 

difference between the means. 

It should be noted, that fundamentally the p-value is a measure of 

how likely the difference in the results could have occurred by chance. That 

is why, ultimately, the p-value alone does not justify the reasoning between 

the different hypotheses and should be combined with other types of 

evidence for and against the hypothesis (Hubbard, Lindsay, 2008). 

Example:  

The example of how seemingly different results for ‘Ability to 

accomplish original design idea’, between the approaches on day 1 (Exhibit 

6.5), when tested statistically, did not prove to be significantly different.  

Design Patterns group: Mean = 2.87 +- .937; 

Case-Based Design group: Mean = 3.15 +- .932; 

P-value = 0.200 

The 0.200 is above 0.05 (level of confidence), which means that the 

null hypothesis is true, therefore, statistically speaking, there is no 

significant difference between the results, shown by participants who used 

the DP and CBD approaches. The confidence level of 0.200 indicates the 
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likelihood that the null hypothesis is true. It implies that the risk, that the 

difference in results has happened by chance, is 20%. Since the p-value 

gives us only 80% certainty, we cannot reject the null hypothesis. Thus we 

should assume that there is no significant difference in ability to accomplish 

original design idea between the DP and CBD groups. 

 

Statistical tests used in the comparative study 

Continuous variables, such outcomes as: Model and Algorithm Complexity 

Score, Novelty and Variety scores, as well as some the ordinal variables, 

were compared between approaches using the Independent samples T-

test and Univariate Analysis Of Variance (ANOVA). The T-test was used to 

compare result between the two approach groups in cases where the data 

was relevant only to the DP and CBD groups, for example to compare how 

‘Intuitive’ or ‘Easy to use’ each approach was. The No Approach (NA) 

group in this case had no such criteria. When comparing the results of all 

three test groups, for example ‘Number of programming difficulties’ of the 

Design Pattern group, Case-Based Design group, and No Approach 

group, the ANOVA testing was used. The ANOVA tests whether there is 

any difference in the means of all (more than two) groups and determines 

whether at least one mean is statistically different.  

 

Comparison of the continuous variables/interpretation 

of the t-test 

Independent samples T-Test is a null hypothesis test, designed to compare 

means of same variable between two groups. In this study the t-test was 
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used to examine whether the difference between the means of the DP and 

CBD approaches is statistically significant or if it is due to random chance.  

The SPSS Independent samples t-test (SPSS) (IBM, 2013) provides 

a large number of various values as the output, including: mean, standard 

deviation, p- value, t-value, standard error difference and so on. Each of 

these outcome values has its own meaning and can be used for different 

aspects of the results interpretation. However, for this comparative study 

we need only means and p-values to interpret the results of the t-test (See 

Exhibit 2.26).  

 

Colour-coding in the diagrams:  

The following colour-coding is used for all the data-tables used 

throughout the comparison chapters, in other to make the reading of the 

results easier. 

*green: the Mean value is greater, compared to the other group 

*light green: the Mean value is minor, compared to the other group 

*pink: the p- value indicates that there is a significant difference between 

the groups (for this particular criterion) 

*grey: the p- value indicates that there is NO significant difference between 

the groups (for this particular criterion) 
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T-test example table. Comparison of approach ‘Usability’ between 

the DP and CBD groups 

Criteria  DP (Mean) CBD (Mean) t df p - value 

USABILITY DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

It was easy to 

implement 

DP/CBD 

approach. 

2.90 

+- 

.885 

3.03 

+-

.809 

3.66 

+-

.668 

3.77 

+-

.666 

-

4.280 

-

4.326 

75 75 .000 .000 

Exhibit 2.26. Independent samples T-Test example. Approach Usability 

 

Day 1: t(75) = -4.280, p = 0.000; the t-value (t), the degrees of freedom 

(df) and the p-value 

Day 2: t(75) = -4.326, p = 0.000; 

 

Interpretation of the data in the t-test table (example): 

The DP and CBD mean-values show the central tendencies for the 

DP and CBD groups (Exhibit 2.26). These values give us an opportunity to 

understand how each approach affects the criteria. For example the DP 

and CBD mean values (the 2nd and 4th column of the 3rd row of the 

table) indicate that (on first day of the workshop) when grading the 

agreement with the statement ‘It was easy to use the approach in my 

design’ on the scale from ‘1’ – Strongly Disagree to ‘5’ – Strongly Agree, 

the CBD group tend to agree with this statement more compared to the 

DP group (Exhibit 2.26). The average ‘Usability’ (easy to use) of the 

approach on day one is 2.90 +- .885* for the DP approach and 3.66 +-

.668 for the CBD approach. 

* Where 2.90 is mean and .885 is standard deviation (for the DP group); 

 

The p-value (the 10th column, Exhibit 2.26) is used to determine 

whether the difference between the two means (DP/CBD) on day one is 

significant. In this example the p-values on both days are 0.000. The 0.000 
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level is below the established level of significance 0.05, which is why we 

can reject the null hypothesis. Hence we can state that statistically, the 

Case-Based Design approach (as reported by participants) is significantly 

easier to use compared to the Design Pattern approach.  

When reporting the statistical results of the t-test, the t-value (t), 

the degrees of freedom (df) and the p-value are stated. The following 

format can be used: t(75) = -4.280, p = 0.000. In this example, comparing 

the ’Usability’ criterion of the DP and CBD approaches on day one, the t-

statistics is -4.280 with 75 degrees of freedom and corresponding two-

tailed p-value is 0.000. 

 

Determining differences between three 

groups/interpretation of the ANOVA test 

To determine whether there is any significant difference between the 

means of all three test groups: Design Pattern group, Case-Based Design 

group, and No Approach group, the One-way Analysis of Variance 

(ANOVA) was used. Unlike the t-test, ANOVA provides an opportunity to 

compare the means of several (more than two) groups for statistical 

significance. The analysis of variance is regarded as a ‘robust procedure’ 

when sample sizes are similar or equal (Wallenstein et al., 1980).  In this 

study ANOVA was used to test the null hypothesis, stating that the effect 

of the DP, CBD approaches have no effect (the same effect) on the 

amount of programming barriers, which designers face, their algorithmic 

modelling performance, and other established criteria. Rejecting the null 

hypothesis would imply that the use of different approaches to reuse 

algorithmic solutions does have a significant effect.  
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 In a similar manner to the t-test, ANOVA testing gives a range of 

values as output of calculations: such as p-values (Sig), F ratio, mean 

square, degrees of freedom, sum of squares and so on. Most of these 

values are not used in this study. The p-value is used to determine whether 

the difference in results (means) of the DP, CBD and NA groups has 

happened by chance or it is statistically significant. When a p-value is 

below the 0.05 level, the difference in results is determined as statistically 

significant. It should be noted that the ANOVA test only indicates whether 

there is a difference in the mean values. ANOVA does not actually tell 

which specific groups were significantly different from each other. That is 

why to determine which specific mean is different from which, one needs 

to use a Post Hoc tests (SPSS, 2014). This study used the Post Hoc Tukey’s 

test to compare each pair of groups. The Tukey’s test is recommended for 

estimation of pairwise differences and regarded as an ‘exact and optimal’ 

test for comparisons (Stoline, 1981). This method is also considered to be 

easy to use and robust (Ibid), giving ‘reasonably accurate results’ when the 

sample sizes are similar (Wallenstein et al., 1980). The p-values are used 

to interpret the results of the Post Hoc Tukey’s test: above 0.05 level – not 

significantly different, p-value below 0.05 level – significantly different. 

Interpretation of the data in the ANOVA/Post Hoc Test table 

(example): 

The NA, DP and CBD mean-values of the output ‘Model 

Complexity Score’ are shown on the first table (the 3rd row, the 2nd – 7th 

columns) (Exhibit 2.27). The p-values (10th and 11th column of the 3rd 

row) indicate the significance of difference in means (Exhibit 2.27). On day 

one the p-value equals 0.560, which is above the 0.05 level. Therefore the 

null hypothesis is true: the means are not significantly different. No 

additional testing is needed. On day two the p-value is 0.031, which is 

below the 0.05, that is why we can state that on the second day the 
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average ‘Model Complexity’ is significantly different (between at least two 

of three test groups). Using only ANOVA, makes it impossible to 

determine which group is different from which and additional testing (Post 

Hoc) is needed. 

 

 Example of ANOVA. Comparison between the ‘Model Complexity’ 

of the No Approach group, the DP group and the CBD group 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

Model Complexity 

Score 

11.73 

+- 

2.465 

13.94 

+- 

2.585 

12.2

3 +- 

2.04

6 

14.10 

+- 

2.551 

12.1

5 +-

2.24

6 

12.74 

+- 2. 

246 

.583 

(126) 

3.569 

(126) 

.560 .031 

  

ANOVA/Post Hoc, Tukey’s test 

Criteria  No 

Approach 

Group 

(Mean) 

DP (Mean) CBD (Mean) p – value  

NA with DP 

p – value  

NA with 

CBD 

p – value  

DP with 

CBD 

  DAY 2  DAY 2  DAY 2  DAY 2  DAY 2  DAY 2 

Model 

Complexity 

Score 

 13.94 

+- 

2.585 

 14.10 

+- 

2.551 

 12.74 

+- 

2.246 

 .960  .062  .065 

Exhibit 2.27. ANOVA test example with Post Hoc Tukey’s Test. Model Complexity 

 

The second table (Exhibit 2.27) shows the results of the Post Hoc 

Test (Tukey’s test). The p-values are used to determine which specific 

groups are different from each other. The comparison between No 

Approach and Design Patterns groups indicates no significant difference, 

the p-value is 0.960 (above the significance threshold) (Exhibit 2.27, 

Second table the 9th column of the 3rd row). The comparison between 

the No Approach group and Case-Based Design group shows that even 

though the p-value (0.062) is above the 0.05 level it is very close to it 

(Exhibit 2.27, Second table the 11th column of the 3rd row). This means 

that there is 93.8% certainty that the CBD approach had a significant effect 

on model complexity. The comparison between the DP and CBD groups 
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gives the p-value of 0.065 (Exhibit 2.27, Second table the 13th column of 

the 3rd row). Again though technically this p-value is above the level of 

significance (0.05), the results still might be interpreted as significantly 

different. The final conclusions could be based on additional data, such as 

the fact that the models produces by the DP group have a more advanced 

colouring and a larger range of elements compared to CBD group.  

To report the statistical results of the ANOVA, the F ratio (F), the 

degrees of freedom (df) and the p-value are used. The following format 

can be utilised (Exhibit 2.27) 

Day 1: F (126) = .583, p = 0.560;  

Day 2: F (126) = 3.569, p = 0.031; 

The results acquired from the t-testing and ANOVA, comparing the 

ordinal variables, were confirmed by the non-parametric Mann-

Whitney test, also known as Wilcoxon test (See Appendix). 

 

Testing for the gender and design experience 

influence  

After determining that a criterion differs by approach, as indicated 

by the t-test results or ANOVA, one cannot automatically assume that it 

was the approach factor that made all the difference. There could be other 

factors that might have influenced the results. Two main control variables 

or covariates were identified for this comparative study: design experience 

and gender. In theory, both those covariates might have influenced 

participants’ performance. Experience with programming modelling tools 

could have been a strong factor as well (and potentially a third covariate), 

but it was not applicable, as the dominant part of workshops’ participants 

(>95%) had no programming experience.  
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Covariate or control variable - is a secondary variable that can 

affect the relationship between the criteria variables and the approach. 

Covariate example: Control Variables identified for this study are 

gender and design experience. 

Univariate Analysis Of Variance (ANOVA) was used to control for 

the covariates and to determine whether the design experience or gender 

variables have a significant effect on the criteria - dependent variables. 

Design experience and gender in this case are the independent variables. 

The No Approach, Design Patterns and Case-Based Design groups were 

used as a fixed factor.  

The ANOVA test with dependent variables (SPSS) (IBM, 2013) helps 

to determine whether the changes in the independent variables 

(experience/gender) have a significant effect on the dependent variables 

(criteria). The only ANOVA output values that are utilised and interpreted, 

when testing for gender and design experience influence (control 

variables), are the p-values. Again, a p- value is used as a measure to 

determine, whether there the control variables have a significant effect on 

the results.  

 

ANOVA for testing for covariates (example table):  

Dependent Variable  Approach/p-

value 

Approach/F (df) Design 

Experience/p-

value 

Design 

Experience/F (df) 

How often you have come 

across program. difficulties 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach/Design Experience  .180  (1,67) 

1.836 

 .536  (4,67) 

.790 

 Approach/p-

value 

Approach/F (df) Gender/p-value Gender/F (df) 

Approach/Gender  .014  (1,73) 

6.351 

 .880  (1,73) 

.469 

Exhibit 2.28. Univariate Analysis Of Variance example. Criterion: ‘Number of programming 

difficulties’ (second day of the workshop); Fixed factor DP and CBD approach. Control 

variables: Design experience and Gender. 
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Interpretation of the data in the ANOVA test for covariates table 

(example): 

In order to check that it was indeed the approach that affected the 

dependent variable the following two conditions has to be true: 

First Condition: 

When testing for design experience and gender, the approach 

variable makes a difference to the dependent variable. The approach p-

values should be below the 0.05 level (See Exhibit 2.28). In the example 

ANOVA testing for covariates table, the approach p-values are in the third 

column. This table shows the data for ‘programming difficulties’ criterion. 

This statistical testing helps to determine whether the number of 

programming difficulties was influenced by the approach and not by the 

gender and design experience factors. The p-value for approach/gender 

analysis is 0.014 (See Exhibit 2.28, 3rd column, 5th row), which is below 

the 0.05 significance level. That means that when testing for gender 

influence, the approach makes a difference to the number of 

programming difficulties. The p-value for approach/design experience is 

0.180, which is above the 0.05 level (See Exhibit 2.28, 3rd column, 3rd 

row). That means that the first conditions is not true and this issue might 

need additional investigation. In this particular case, the results might 

suggest that the difference in the number of programming difficulties 

between the approaches was influenced by the ‘design experience’ factor. 

It should be noted that in terms of design experience, all study groups had 

very similar distribution.  

Second Condition: 

When testing for approach, design experience and gender 

variables (control variables) do not make a difference to criteria variable. 

In this case the p-values of control variables should be above the 0.05 

level. In other words design experience and gender does not affect the 
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results. In the example table both p-values are above the level of 

significance: design experience/approach p-value is 0.536 and 

gender/approach p-value is 0.880, hence the condition is true. (See Exhibit 

2.28, 7th column, 3rd and 5th rows) 

When one or both of two conditions are not complied, it is 

necessary to carry on an additional investigation, and look at the 

descriptive statistics in order to clarify the results. This should be done 

individually for each criterion.  

 

Comparison of categorical variables/interpretation of 

the chi-square test 

Categorical Variables, such as proportions of types of 

programming difficulties, design objectives, and key words, were 

compared between approaches using the Chi-square test of Significance 

(X2) (SPSS/Cross Tabs) (IBM, 2013). It is used to test for significance in 

relationship between categorical variables. The Chi-square test works only 

with bivariate data tables, such as: Yes/No, Pass/Fail, Male/Female, which 

can be mathematically represented for example as 1/0. Unlike the t-test 

and ANOVA, the Chi-square test compares counts, not means. That is why 

it is not applicable for comparing continuous data, such as model or 

algorithm complexity score. However, there is a number of similarities 

between the t-test, ANOVA and the Chi-square test. Similar to these two 

tests, the Chi-Square Test of Significance is a hypothesis test. The null 

hypothesis, which is being tested, states that there is no relationship 

between the variables in the bivariate table. In our case, the null hypothesis 

states that, any difference between the distribution of categorical data in 
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the No Approach, Design Patterns and the Case-Based Design groups is 

due to chance.  

 

Chi-Square Test (example table): 

Criteria  No Approach  

Count/Total (%) 

DP  

Count/Total (%) 

CBD  

Count/Total (%) 

X2 p – value  

DESIGN 

OBJECTIVES 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

To 

experiment 

with 

parameters  

8% 

(2/25) 

12% 

(3/25) 

20% 

(6/30) 

46.7% 

(14/30) 

19.1% 

(9/47) 

8.5% 

(4/47) 

1.801 17.800 .406 .000 

Exhibit 2.29. Chi-Square Test example. Criterion: ‘Design Objectives’, category ‘to 

experiment with parameters’; 

Similar to the t-test and Univariate Analysis Of Variance, the Chi-

square test of Significance uses the p-value as a measure to test the null 

hypothesis. The p-value, indicates how likely it is that the differences in 

distribution (count) of the NA, DP and CBD variables is due to random 

sampling error. The predetermined significance level for the p-value was 

set as 0.05* (Zimmerman, 1997) (See Hypothesis Testing section). *The p-

values located between 0.05 and 0.07 are considered – a strong trend. 

Similar to the ANOVA (testing the NA, DP and CBD groups), the first Chi-

square test is made between all the groups. In cases when the p-values of 

this initial (three groups) comparison is significant (below the 0.05) 

additional testing was carried on. The multiple Chi-square test between 

each pair of groups was performed to determine which group differs from 

which. 

Interpretation of the data in the Chi-Square Test table (example): 

This particular Chi-Square test example illustrates the comparison of the 

‘Design Objectives’ criterion, namely, how many participants wanted ‘to 

experiment with parameters’. The test helps to determine whether there 

is a significant difference in results between the NA, DP and CBD groups. 
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The percentage and counts of participants who had: ‘to experiment with 

parameters’ as one of their objectives are located in the 3rd column of the 

2nd-3rd row for the No Approach group, in the 4th-5th column of the 3rd 

row for the Design Patterns group, and the 6th-7th column for the Case-

Based Design group (See Exhibit 2.29). The values are written in % and the 

‘Yes/Total’ format, where the first number in brackets refers to the count 

of people who had this objective (Yes) and the second number refers to 

the total number of participants in this group (Total). For example, in the 

DP group 14 out of 30 participants wanted ‘to experiment with 

parameters, while there were only 4 out of 47 participants in the CBD 

group with the same design objective (See Exhibit 2.29). These results also 

shown in percentage, as the number of participants in each groups is not 

equal. The 8th-9thth column of the 3rd row shows the Chi-Square – value 

and the 10th-11th column of the 3rd row shows the p-value, which, in this 

case, equals 0.406 on day 1 and 0.000 on day two (See Exhibit 2.29).  

The closer a p-value to zero the more significant is the difference 

between the results. As on the second day the p value equals 0.000 

(‘Design Objectives’ example, Exhibit 2.29) one can state that the number 

of participants, who indicated ‘experimentation with parameters’ as their 

design objective, is significantly bigger in at least one of the groups 

compared to others: NA – 12%, DP – 46.7%, CBD – 8.5%.  

To report the statistical results of the Chi-Square test, the count of 

responses, the percentage, the Chi-Square – value (X2) and the p-value 

are used. The following format can be utilised: NA 3/25 (12%), DP 14/30 

(46.7%), CBD 4/47 (8.5%), X2 = 17.800, p = 0.000 (values are taken from 

the Chi-Square test example table).  
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Dependence between criteria 

In statistics, correlation refers to any statistical dependence 

between variables (Dowdy, Wearden, 1983). For example, this study has 

identified statistical dependence between the ‘number of programming 

difficulties’ that designers have and their ‘ability to realise original design 

idea’. The more problems participants had with programming the less it 

was likely that they will be able to model their original design idea.  

 

 

Exhibit 2.30. Correlation Diagrams. Positive Correlation, No Correlation, Negative Correlation  

The most common measure of correlation in statistics, which shows 

the linear relationship between two variables, is the Pearson correlation 

(Buda, Jarynowski, 2010). Pearson correlation test (SPSS) (IBM, 2013) is 

used to determine the degree of linear dependence between algorithmic 

modelling criteria, programming criteria, motivation criteria and etc. The 

test gives the correlation coefficient value (r-value) between +1 and – 1 

and the p-value (See Hypothesis Testing Section). The p-value indicates 

the probability that the correlation has occurred by chance. The smaller 

the p-value the more significant is the dependence between the variables. 

When the p-value is below the 0.05 level, one can assume (with 95% 

confidence) that the correlation did not happen by chance. The Pearson 

correlation coefficient (r-value) indicates the strength and (negative or 
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positive) direction of the correlation. When variables are absolutely 

independent the correlation coefficient equals 0; and that means that 

there is no correlation. The closer the correlation coefficient to +1 the 

stronger is positive correlation, the closer it to -1, the stronger is the 

negative correlation (See Exhibit 2.30).  

 

Pearson correlation (example): 

The ‘Algorithm Complexity’ has a strong positive correlation with the 

‘Algorithm Variety’ (variety of programming components) criterion for all 

the test groups. For example, on the second day of the workshops the 

Pearson correlation coefficient calculated for these two criteria equals 

0.599 and the p-value is 0.000 (See Exhibit 2.31). This means that there is 

a very strong positive dependence between the variety of components, 

which participants implement, and the level of complexity of the resulting 

programming algorithm.  

 

 

Exhibit 2.31. Correlation between the Algorithm Complexity Score and the Algorithm Variety Score, day 1 
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The following chart (Exhibit 2.32) shows what tests were used to 

compare different criteria. 
T
E
S
T
 

ANOVA (comparing three test groups: No Approach group, 

Design Patterns group, CBD group) 

Post Hoc (Tukey’s) Test was used to compare between each 

group 

C
R

IT
E
R

IA
 

Model Complexity score, Algorithm complexity scores; 

Novelty and Variety of programming algorithms (Explored 

Solution Space); 

Programming criteria (number of programming difficulties, 

implemented a new components) 

Design ideation criteria (ability to model original idea and change 

in design intent scales) 

Motivation criteria (satisfaction and motivation scales) 

T
E
S
T
 

T-test (comparing two approach groups: Design Patterns and 

Case-Based Design) 

C
R

IT
E
R

IA
 

Approach characteristics criteria (‘Usability’, ‘Utility’, ‘Intuitiveness’ 

and ‘Flexibility’ scales) 

T
E
S
T
 

Chi Squire Test comparing binary data 

C
R

IT
E
R

IA
 

Flexibility of the approach: used or did not use Design 

Patterns/Case Based solution in their design 

Type of programming difficulties ( ‘Yes’ or ‘No’ option for each 

type of programming difficulties) 

Type of design objectives (Yes’ or ‘No’ option for each type of 

design objective) 

Types of Key words (‘Yes’ or ‘No’ option for each category of key 

words) 

T
E
S
T
 

ANOVA test for covariates 

C
O

V
A

R
IA

T
E
S
 Experience in architectural design; 

Gender; 

Exhibit 2.32 Chart: Criteria and Statistical Tests Used For Comparison  
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(Also refer Appendix B, pages, B55, B64) 

 This research was designed as an experimental comparative study. 

The results of three test groups, including the control group using no 

approach, the group using Design Patterns, the group using Case-Based 

were compared using relevant statistical tests and analyses. The objective 

was to measure and compare the effect of the knowledge reuse 

approaches,  

 1) by testing the null hypothesis, stating that there is no statistically 

significant difference between the results of the test groups. If the testing 

rejected the null hypothesis that indicated that the difference in results is 

statistically significant – which was used as empirical evidence for 

answering the research question); and  

 2) by investigating the dependency (correlations) between the 

measured criteria, this thesis aimed to attain a better insight of how 

participants’ performance is related to their experience with the respective 

approaches. This correlational analysis helped to interpret the results, by 

suggesting why or how the reuse of abstract and case-based solutions 

effects the design process and design outcomes. 

 A total of 126 designers participated in the study. These numbers 

provided sufficient numbers within each test group to permit rigorous 

studies of the statistical significance of the observed differences. 

 

2.4 Design Outcomes 

Exhibits 2.32 and 2.33 illustrate the designs that participants of all the test 

groups produced during the first and the second days of the workshops. 

More detailed images of these design works can be found in the Appendix 

B (pages B56-B63). 
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Exhibit 2.32. Design works produced by the participants of the DP, CBD and NA groups 

on the first day of the workshops 
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Exhibit 2.33. Design works produced by the participants of the DP, CBD and NA groups 

on the second day of the workshops 
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3. Results 

 

The Results chapter reports the results of statistical tests and analyses and 

relates them back to the discussions raised in the Background and 

Methodology chapters (sections 1.1 – 2.3). How (in theory) each reuse 

approach was expected to affect designers’ performance versus the 

experimentally obtained results measured by this study (how it affected 

designers’ performance in practice). The Results chapter is split into four 

main sections. The first section presents the overall results and reflects back 

to the discussion on the opportunities and challenges of algorithmic 

design. The first section of this chapter discusses participants’ feedback 

regarding the use of algorithmic modelling tools. It also presents the most 

common types of programming barriers, which designers and architects 

faced when using algorithmic modelling in their designs. The thesis 

compares these barriers with the typology of programming barriers 

discussed in literature in the context of software design. This comparison 

indicates that, when using programming languages, designers and 

architects face similar barriers to software designers. The first section also 

presents the key differences between the control group (using no 

approach) and the test groups that integrated the knowledge reuse 

approaches into the design process. 

 The second section of the Results chapter presents the comparison 

between the results of the control group and the test group that used 
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Design Patterns (abstract solutions). It refers the measured and compared 

results back to the hypotheses drawn from the literature. What the 

integration of Design Patterns was expected to do, versus what was 

observed and measured.  

 The third section of this chapter discusses the effect of the reuse of 

case-based algorithmic solutions, comparing the results of the CBD (Case-

Based Design) group with the results of the control group. This section also 

expands on the expected effect (informed by the literature studies) versus 

the measured effect. 

 The final fourth section of the Results chapter compares the 

performance of the participants using Design Patterns and participants 

reusing algorithmic solutions from the Case-Base. It discusses how the 

reuse of abstractions affects designers and contrasts these findings with 

the Case-Based Design approach. This end of this section presents the 

summary of key findings. 

 

3.1 Outline of the overall results 

The use of algorithmic modelling tools in architecture 

and design 

Results of this experimental study suggest that despite the barriers that 

programming imposes on architects, the use of algorithmic modelling 

tools can provide a means for dynamic form-finding and design 

exploration during conceptual design stages. Architects and designers, 

who participated in the study and used programming as a drafting method 

for development of their conceptual models, reported that they were able 
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to accomplish what they wanted and were satisfied with the design 

outcome. 

On a five point agreement scale from 1- ‘Strongly Disagree’ to 5 – 

‘Strongly agree’: (all test groups) 

‘I was able to accomplish all what I wanted’ (mean, std. deviation)  

Day 1: 3.37 ± 0.855 (median 4 – ‘Agree’),  

Day 2: 3.53 ± 0.855, (median 4 – ‘Agree’);  

‘I am satisfied with what I was able to accomplish’ (mean, std. deviation)  

Day 1: 3.63 ± 0.909, (median 4 – ‘Agree’),  

Day 2: 3.83 ± 0.830, (median 4 – ‘Agree’)). 

 

 It is often argued that the use of computer-aided design tools is 

not particularly effective during the conceptual form-finding stages of 

design (Dorta, 2007) (Cao, Protzen, 1999) (Pérez, Dorta, 2011). One of the 

arguments is that in many cases the form of a design concept is not 

properly defined, while the form of a computer model has to be 

specific/defined in the digital space (Ibid). Hand sketches on the other hand 

can be rather vague and abstract, leaving a room for interpretations, which 

allows architects to gradually reveal/develop the future form of their design 

solution. In many ways the objective of the conceptual design stage is not 

only about finding the right design solution, but rather figuring out what is 

the right question/design problem. Design ideation is not a straightforward 

process of logical reasoning and heavily relies on intuition (Shih, Williams, 

Gu, 2011). A further argument is that because human and computer logics 

do not always follow the same patterns the use of digital tools can limit 
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and even suppress a designer’s ability (Ibid). Some of the recent research 

findings suggest that CAD tools are unable to fully support the ideation 

process during conceptual design stages and that computer technology 

fails to compete with hand sketching and modelling (Dorta, 2007).  

 The validity of the arguments regarding the issues and modelling 

limitations of the algorithmic CAD environments can be supported by the 

results of this study. However the feedback from designers, who used 

algorithmic modelling for their conceptual designs, also suggests that the 

advantages, which algorithmic form-making systems offer to CAD users, 

can outweigh the limitations and disadvantages. Unlike hand sketching and 

manual CAD drafting, algorithmic modelling gives designers an 

opportunity to generate numerous variations of the output forms. The 

development of design artefacts (solutions) often requires designers and 

architects to explore multiple alternatives. Algorithmic (generative) design 

enables users to generate thousands of design possibilities (Krish, 2011). 

This enables designers to instantly see and evaluate all changes in the form 

of their output models, and make alterations by changing parameters and 

logic in the form-making algorithm. Unlike a sketch, an algorithmic design 

model isn’t a fixed visualisation of a concept, but it is rather a fluid and 

dynamic system. One programming algorithm can generate as many 

configurations and iterations as necessary (Exhibit 3.1). A designer has an 

opportunity to understand and evaluate different form versions. Thus an 

algorithmic model has an advantage: representing not one design option, 

but a range of design options.  

 This type of design process can be described as an exploration of 

‘if–then’ constructs, when a designer experiments with the forms and 

processes to see how each model variation is going to look (Exhibit 3.1. 

Model variations generated by the same programming algorithm/different 
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parameters). It was observed that some workshop participants got results 

that they did not entirely anticipate (such as form instances generated by 

their programming solutions, which they did not foresee). On the one hand 

this unpredictable outcome could be seen as a disadvantage (as 

something that was not intended), on the other hand these unpredicted 

(experimentally obtained) results could potentially lead to new discoveries 

and further progress of the design concept. That is why it has been argued 

that the use of algorithmic systems can enrich and improve design 

innovation, contributing to the ‘pro’ arguments in the debate (controversy 

in opinions) regarding the relationship between CAD and creativity (Chen, 

2007), (Benton, 2007) (Zeid, 2005).  

 

 

Exhibit 3.1. Algorithmic form finding ‘Stretching’. Output model variations. 
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 The algorithmic methods of open-ended form exploration diverge 

from conventional progressive form making. Design through 

programming offers a dynamic way to probe conceptual designs. In this 

respect algorithmic design exploration provides a unique opportunity, 

which is missing from manual CAD modelling and hand sketching. This 

dynamic form exploration works because the end form of their conceptual 

designs was still abstract (not clearly identified or fixed). Therefore, despite 

an opinion suggesting that Computer-Aided Design is only appropriate for 

the post-development stages and that its value as a design development 

tool is very limited (Charlesworth, 2007), it can be argued that parametric 

CAD systems can be extremely effective and useful during initial design 

stages. However, the use of parametric modelling systems also challenges 

designers, because even on early design stages it requires a systematic 

abstract thinking. That is why it is crucial to support the reusability of 

knowledge during this parameterisation process (Turrin, von Buelow, 

Stouffs, 2011). 

 

Barriers associated with the use of algorithmic tools in 

architecture 

Although participants (in all three test groups, including the control group, 

Design Patterns group and the Case-Based Design group) gave positive 

feedback regarding their experience with use of algorithmic modelling 

environments (ability to accomplish what was wanted/satisfaction with 

output), designers also reported that the use of programming caused 

substantial difficulties, which in some cases they failed to overcome on their 

own. 
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 It is acknowledged that the use of programming tools in design can 

cause substantial, often insurmountable, barriers in end-users, especially 

for novices (Ko, Myers, Aung, 2004). Some argue that while programming 

systems offer effective and powerful means for modelling, many architects 

and designers struggle to adopt their logic and syntax, because of the 

mismatch in the initial principles of human and computer reasoning (Celani 

and Vaz, 2012). This study confirms that many novel users find the 

programing framework and syntax rules highly frustrating and not intuitive 

(as was often pointed out in previous research in this field) (Ibid), 

(Woodbury, 2010). In all the test groups, designers reported difficulties 

when integrating algorithmic thinking into their design process. For 

example, on average on the first workshop day designers had from 4 to 6 

substantial difficulties, which they were not able to overcome on their own. 

On the second day the average dropped to 1-3 difficulties.  

 

On a five point scale, with 1- ‘Never‘, 2 - ’1-3 times’, 3 – ‘4-6 times’, 4 - 

‘4-6 times’, 5 – ’10 times or more’; 

‘How often have you come across insurmountable programming 

difficulties, while developing your design model’, (mean, std. deviation) 

(all test groups) 

Day 1: 2.77 ± 0.989 (median 3 – ‘4-6 times’),  

Day 2: 2.50 ± 0.787 (median 2 – ‘1-3’ times’). 

 

 Parallel to examining the overall number of programming 

difficulties, this study also investigated the nature (typology) of barriers 

associated with the use of algorithmic modelling systems. Previous 
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research on learning barriers in programming systems carried out by Ko et 

al. identified six types of most re-occurring types of barriers: design, 

selection, coordination, use, understanding, and information (Ko, Myers 

and Aung, 2004) (See Context of the Study section). The participant 

designers of this study were asked to indicate the overall amount of 

difficulties that they had while developing their design assignments and 

also to specify what type of difficulty it was. The analysis of responses was 

carried out independently of previous research findings (existing 

typologies). The aim was to identify the original groups of programming 

barriers, and afterwards compare them to the typology discussed by Ko et 

al (2004). The responses were collected as an open-ended type of enquiry, 

where designers expressed and individually articulated their own 

understanding of the nature (description) of the difficulty encountered. 

These responses were analysed and sorted into the five most re-occurring 

categories: idea-to-algorithm translation, problems with implementation 

of particular components, knowing what programming component to use, 

logic connections, and valid parameters. For example, the identified 

category ‘Idea to Algorithm Translation’ refers to cases when participants 

expressed the barriers as: not knowing how to get from a sketched idea to 

an algorithm of actions (generating this form). Participants expressed it in 

a variety of ways: 

 ‘Not quite knowing how to create what I want’; 

 ‘I just can’t get it to do what I want it to. My logic is not attuned to 

that of the machine’; 

 ‘Struggle to achieve the form I wanted’ 

 Results show that the five barrier groups identified by this study 

(tested for visual programming using Grasshopper/Rhino) closely 

correspond to the typology identified by Ko et al. (2004), who investigated 
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learning barriers in programming systems on 40 participants learning 

programming with Visual Basic. NET (VB). 

 The five most common categories of programming barriers 

(difficulties) identified by this study are explained and referred to 

corresponding categories proposed by Ko et al. (2004): 

 1. Idea-to-algorithm translation (Figuring out how to get from 

a sketched idea to a programming algorithm, which generates a model). 

61 out of 126 participants, who used algorithmic modelling for their 

conceptual designs had this type of difficulty on day 1, 64 out of 126 on 

day 2. This category corresponds to the design barriers (cognitive 

difficulties): ‘I do not know what I want the computer to do’ (Ko, Myers and 

Aung, 2004).  

 2. Syntax Problems/Problems with implementation of 

particular components (when participants knew which programming 

component they need, but struggled with how exactly to use/implement 

it. In scripting it can also refer to the syntax or ‘grammar’ errors, for 

example opening brackets without closing them). 42 out of 126 

participants had this type of difficulty on day 1, 48 out of 126 on day 2. 

This type of difficulties corresponds to use barriers, ‘I think I know what to 

use, but I do not know how to use it’ (Ibid).  

 3. Knowing what programming component to use. 41 out of 

126 respondents reported that the barrier was ‘not knowing what to use’ 

on day 1 and 34 out of 126 on day 2. This category matches the selection 

barriers, described as: ‘I think I know what I want the computer to do, but 

I do not know what to use’ (Ibid).  

 4. Logic Connections (what is the correct sequence of 

programming logic, for example should ‘vector’ go before or after ‘move’, 
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or how to organise a correct sequence of programming components to 

incrementally rotate multiple elements). ‘Logic Connections’ can also be 

described as problems with syntax: structuring of statements in 

programming algorithm. On the first day of the workshop 30 out of 126 

designers reported problems with ‘Logic Connections’, on the second day 

it was 28 out of 126. This category accommodates two corresponding 

types of programming barriers identified by Ko et al. (2004): the 

coordination barriers, described as: ‘I know what to use, but I do not know 

how to make them work together’; and use barriers: ‘I think I know what to 

use, but I do not know how to use it’ (Ibid).  

 5. Valid Parameters and Unexpected Errors were grouped as 

the last category of programming barriers identified for this study (these 

could be, for example, the functional errors, when an action/programming 

component is given an incorrect input information, such as improper 

domains of numbers, or the path to a source file, which doesn’t exist. On 

the first day 18 out of 126 participants encountered problems with figuring 

out valid parameters/getting ‘red boxes’ and error messages, on the 

second day 16 out of 126. This fifth category is very close to Ko et al.’s 

understanding barriers type, occurring mainly due to the mismatch 

between the designers’ expectations and program’s actual behaviour: ‘I 

thought I knew how to use it, but it did not do what I expected’ (Ibid).  

 Thus the most common type of barrier identified by this study for 

novice users of algorithmic modelling tools was: ‘Idea-to-Algorithm 

Translation’. This type of programming barrier was reported by half of the 

workshop participants. Even on the second day of the workshops, when 

participants were more experienced in algorithmic modelling, the number 

of issues with translation of a design idea into a programming algorithm 
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was still very high, it actually increased from 48% (day 1) to 51% (day 2). 

The workshop participants expressed this in a variety of ways: 

 ‘You understand the end product, but the way to derive it is 

confusing and challenges the way you think about your form.’ 

 ‘Not able to translate concept into script logic.’ 

 ‘Struggling to find a method to put what I wanted to do into reality.’ 

 

 The substantial difficulties with the Idea-to-Algorithm translation 

which designers and architects face when adopting the ways of 

programming and algorithmic modelling systems can be explained in a 

number of ways. To use algorithmic design tools, one has to step back 

from direct manipulations with the form itself. Instead one has to focus on 

developing a logic/step by step algorithm of a design solution. This takes 

a particular attitude of mind, which people with typical design backgrounds 

often find alien and counterintuitive (Woodbury, 2010). The algorithmic 

design technology requires a designer to think and act like a programmer 

(design developer) and therefore it inevitably affects the design process 

itself (Shih, Williams, Gu, 2011). The technology shifts from being a passive 

(inert) aid tool, which replicated conventional form-making principles, to 

being a system which enables novel principles of design thinking (Matcha, 

2007). Mastering these novel algorithmic principles, however, seems to 

cause substantial difficulties in half of the design population (48-50% of the 

participants: designers and architects, novices in visual programming).  

 Not knowing how to use programming components and 

commands, identified as the ‘syntax problems/problems with the 

implementation of programming components’ was the second most 

common category of barriers reported by participant designers. More than 

a third of all participants (33% on day 1 and 38% on day 2) have reported 
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this type of difficulty. This barrier has actually increased (become more 

common) when designers gained more experience in using algorithmic 

modelling (on the second day of the workshop). On the second day 

participants often knew what particular component they needed to use, 

for example ‘divide curve’ or ‘project a curve onto a Brep’, but they still 

struggled with how exactly to use it. Syntax problems are closely related to 

the problems with the ‘Logic Connections’ (day 1: 24%, day 2: 22%), when 

participants knew (or thought that they knew) which programming 

components they needed to use, but could not properly arrange/connect 

them. For example, on the first day of the workshop one of the common 

mistakes that participants made was putting the ‘move’ component before 

the ‘vector’ component. As one of the participants explained it: ‘I want to 

take this curve and move it up, so it is first ‘move’ and then ‘unit Z’ (vector)’. 

This means that for some people these ‘invisible rules’ of programming 

languages (Ko, Myers and Aung, 2004) do not appear to be consistent or 

intuitive.  

 The frustration and most of the programming barriers can decrease 

after users gain enough experience (for example selection barriers, 

‘knowing what to use’, which dropped from 33% to 27% on the second 

day of the workshop). However, some studies point out that the 

implementation of algorithmic functions and syntax of CAD programming 

languages cause difficulties not only for novice but also for advanced users 

(Celani, Vaz, 2012). Ko et al. claim that while experienced programming 

users can easily overcome barriers associated with selection, coordination 

and use, they still have significant difficulties caused by understanding 

barriers (functional errors) and information barriers (not knowing how to 

acquire information about the internal behaviour of a program) (Ko, Myers, 

Aung, 2004).  
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 It is recognised that the use of Computer-Aided Design tools inflicts 

limitations on architects and designers (Walther, Robertson, Radcliffe, 

2007). This study has shown that algorithmic design can inflict additional 

limitations, associated specifically with the use of programming. As one of 

the criteria investigating design ideation and ability to use algorithmic 

modelling for conceptual design, participants were asked to indicate 

whether they had to change their design because of unsurmountable 

programming barriers.  

On a five point scale, from 1 – ‘Strongly Agree’ to 5 – ‘Strongly Disagree’ 

(all groups) 

‘I had to change my design because of programming difficulties’, (mean 

value, std. deviation)  

Day 1: 3.04 ± 0.852,  

Day 2: 2.68 ± 0.745.  

 

These results suggest that designers and architects can be substantially 

bounded by programming barriers, and that to a certain degree 

algorithmic design tools can limit designers’ abilities (as tested on novice 

users). 

 

Effect of the reuse of programming artefacts in 

algorithmic design 

This study concludes that both Design Patterns (DP) and Case-Based 

Design (CBD) approaches to reuse of programming solutions help 

designers to overcome programming barriers and improve algorithmic 

http://espace.library.uq.edu.au/list/author_id/8739/
http://espace.library.uq.edu.au/list/author_id/2505/
http://espace.library.uq.edu.au/list/author_id/59/
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modelling performance. One of the main objectives of this study was to 

test whether the reuse of abstract and case-based programming solutions 

can reduce programming barriers. On each workshop day participants of 

all three test groups (the control (No Approach), Design Patterns and 

Case-Based Design groups) were asked to report the number of 

programming difficulties they had when modelling their conceptual 

designs (Exhibit 3.2) (See Methodology section).  

On a five point scale: with 1 – ‘Never’; 2 - ‘1-3 times’; 3 – ‘4-6 times’; 4 – 

‘7-9 times’; and 5 - ‘ 10 times or more’  

‘How often have you come across programming difficulties, while 

developing your design?’ 

The No Approach group (mean, std. deviation) 

Day 1 2.88 ± 1.053  

Day 2 2.71 ±0.890 (both days median=3 – ‘4-6 difficulties’). 

The Design Patterns group (mean, std. deviation) 

Day 1 2.37 ± 0.669  

Day 2 2.10 ± 0.403 (with both days median=2 – ‘1-3 difficulties’) 

The Case-Based Design group 

Day 1 2.91 ± 1.039 (median=3 – ‘4-6 difficulties’) 

Day 2 2.53 ±± .776 (median=2 – ‘1-3 difficulties’) 

 

 Exhibit 3.2 illustrates the outcomes of a statistical analysis (See 

Statistical Methods Section) of the differences in these means. The mean 

values of ‘Programming Difficulties’ for each group are shown as the 
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colour-coded bars: grey for the No Approach group, red for the Design 

Patterns group and pink for the Case-Based Design group. First day results 

are on the left and the second day results are on the right. The p-values 

were used to measure the probability that the gap in results did not 

happen by chance and thus that the difference in the means was 

statistically significant. The p-values below the 0.05 level are shown in black 

(Exhibit 3.2), indicating that the difference is statistically significant, the p-

values above the 0.05 level are shown in light grey indicating that the 

difference might have happened by chance. Initial comparison tests are 

done between all three test groups.  

 The resulting ‘p-value All Groups’ is shown in a bigger block: for 

day 1 the p-value = 0.036 (on the left), for day 2 the p-value = 0.003 (on 

the right). Both p-values are below the 0.05 threshold, meaning that the 

participants of at least one test group had significantly more (or 

significantly less) ‘Programming Difficulties’ than participants of other 

groups. In order to determine which specific groups differ from which, 

additional tests were carried out. The resulting p-values are shown in the 

smaller (narrow) blocks: the ‘p-value DP/CBD’ comparing the Design 

Patterns and Case-Based Design groups, ‘p-value DP/NA’ comparing the 

Design Pattern group with No Approach group and ‘p-value CBD/NA’ 

comparing Case-Based Design group with No Approach group (Exhibit 

3.2). 
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Exhibit 3.2. Number of programming difficulties, comparison between three test groups: NA, DP and CBD. [Also refer 

Appendix B, section Diagrams and Illustrations pages B64-B66] 

 

 This testing indicates that the reuse of abstract solutions (Design 

Patterns) has a significant positive effect on designers’ ability to overcome 

programming barriers. On both days the DP group had significantly less 

difficulties then the NA and CBD groups (day 1 DP mean at 2.37 is 

significantly less than the CBD mean of 2.91 with a DP/CBD p-value = 

0.045; similarly, the DP mean of 2.37 is significantly less than the NA mean 

of 2.88 with a DP/NA p-value = 0.064: day 2 DP/CBD p-value = 0.042; 

DP/NA p-value = 0.002).  

 The reuse of case-based solution did not prove to have a significant 

effect on the overall number of programming difficulties compared to the 

control group (day 1 CBD/NA p-value = 0.981, day 2 CBD/NA p-value = 

0.467), even though on the second day of the workshop the middle 

number (median) of the insurmountable difficulties, which designers faced 

when using parametric modelling, dropped from ‘4-6’ difficulties (day 1) to 

‘1-3’ difficulties (day 2). However the CBD approach did help to overcome 

certain types (categories) of programming barriers. 
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 Comparison of the types of barriers that designers of each test 

group faced when using algorithmic modelling shows that the Case-Based 

Design approach helps to overcome use barriers: ‘Problems with 

implementation (Syntax Problems)’, that can be described as ‘I think I know 

what to use, but I do not know how to use it’ (Ko, Myers and Aung, 2004). 

Exhibit 3.3 illustrates that on both workshop days designers who used CBD 

approach had significantly less difficulties with ‘Syntax/Component 

Implementation’ compared to other groups. Almost half of the No 

Approach group participants struggled to overcome this type of 

programming barrier (44.8% on day 1 and 48.9% on day 2). More than a 

third of the Deign Patterns group participants faced similar difficulties, 

caused by the implementation of programming components (33.3% on 

day 1 and 43.3% on day 2). Only less than a quarter of the CBD group 

participants were unable to overcome these use barriers 

(‘Syntax/Component implementation’) (21.3% on day 1 and 23.4% on day 

2). When comparing all three groups, the p-values (on both days) indicate 

that the difference in the percentages is statistically significant (day 1 p-

value = 0.049, day 2 p-value = 0.029) (See Exhibit 3.3 ‘p-value All Groups’). 

The follow-up post hoc testing (See Statistical Methods Section) confirmed 

that on both days the CBD group had significantly less use barriers 

(‘Syntax/Component implementation’) compared to the control group that 

used no approach (day 1 CBD/NA p-value = 0.012, day 2 CBD/NA p-value 

= 0.008). On the second day the CBD group had less use barriers 

compared to the test group that used the Design Patterns approach (day 

2 DP/CBD p-value = 0.066). The 0.066 is technically above the 0.05 level, 

but it is very close to it. It means that there is 93.4% of certainty that the 

difference in results between the CBD and DP groups did not occur by 

chance. 
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 The comparison of designers’ ability to overcome programming 

barriers confirms that the reuse of programming artefacts is an effective 

strategy to support design and an important part of programming 

practice, as stated by previous studies in the field of software design 

[Krueger, 1992]. Algorithmic design progresses through programming; 

and this study illustrates that designers and architects can improve their 

ability to overcome programming barriers by reusing programming 

algorithms (both abstract and case-based), as is often done in software 

design. This study empirically grounds the idea that architects and 

designers who use algorithmic modelling tools (programming) gain from 

not trying to solve every problem from scratch, but, rather, reusing existing 

solutions that worked in the past (Gamma, Helm, Johnson, Vlissides, 1994). 

It further proves the point that one of the key identifiers of a designers’ 

success is to strategically re-cycle (reuse) existing solutions instead of 

rediscovering them (Ibid) 

 Many architects and designers struggle to overcome barriers 

associated with the use of programming design systems. However, unlike 

programmers, architects and designers who use algorithmic modelling 

tend to rebuild programming algorithms rather than reuse existing 

solutions (Woodbury, 2010). The results of this experimental study support 

the arguments stating that the architectural design profession could learn 

from the computer science profession (Ibid) and start systematically 

reusing parametric solutions (both abstract and case-based). This can 

become a norm in algorithmic design practice because the reuse of 

programming artefacts helps to overcome difficulties with the 

implementation of programming languages (as proven by the reuse of 

case-based solutions (Exhibit 3.3)). The reuse of abstract solutions (Design 

Patterns) can help to improve overall performance by reducing time and 
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effort that end-users spend trying to surmount programming difficulties 

(Exhibit 3.2).  

 

 

Exhibit 3.3. Types of programming difficulties, comparison between three test groups: NA, DP and CBD. [Also refer 

Appendix B, section Diagrams and Illustrations pages B64-B66] 

 In theory, it is highly probable that reuse of programming artefacts 

can make it easier for designers to build-up more complex algorithms, 

based on the existing solutions, as opposed to building everything from 

scratch. Some claim that the core of algorithmic design is a process of 

rediscovery rather than the creation of something absolutely new (Terzidis, 

2006), because it is very likely that someone already did invent ‘the wheel 

you are about to reinvent’ (Mann, 2005). The re-discovery can naturally be 

founded on the existing algorithmic solutions (Terzidis, 2006). Results of 

this study show that both abstract and case-based reuse strategies can 

help designers to learn from existing knowledge and improve their ability 

to overcome programming barriers (Exhibit 3.2) (Exhibit 3.3).  
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‘Algorithm Complexity Score’ 

The No Approach (NA), Design Patterns (DP), Case-Based Design (CBD) 

groups  

(mean, std. deviation) 

Day 1 NA 40.69 ± 18.275; DP 50.60 ± 33.14; CBD 50.40 ± 30.11 

Day 2 NA 54.61 ±26.988, DP 56.57 ± 28.22, CBD 53.59 ± 27.48 

 

 There is no statistically significant evidence suggesting that the 

reuse of programming artefacts helps designers to master complexity 

faster. Even though comparison of the complexity of programming 

algorithms produced by the participants in each test group shows that 

during the initial stages of learning visual programming (first day of the 

workshop) the participants of the DP and CBD groups managed to 

produce noticeably more complex algorithms compared to the control 

group (NA) Exhibit 3.4. On day one, two groups reusing programming 

artefacts (DP/CBD) produced algorithms that were 20% more complex 

compared to the group using no approach (NA). However statistical testing 

indicates that differences in average algorithm complexity between the 

DP/CBD and the control group (NA) are not statistically significant 

(p=0.136). 
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Exhibit 3.4. Algorithm Complexity, comparison between three test groups: NA, DP and CBD. [Also refer Appendix B, 

section Diagrams and Illustrations pages B64, B65, B69] 

 There are three important points that should be noted regarding 

these results. Firstly, statistical testing did not prove that the difference in 

‘Algorithm Complexity Score’ is statistically significant (day 1 p-value = 

0.136; day 2 p-value = 0.898, both above the 0.05 threshold). Secondly, 

on the second day all groups produced algorithms with very similar 

complexity (Exhibit 3.4). And thirdly, in general, more complex algorithms 

are not necessarily better algorithms. In some cases simple programming 

solutions can be highly effective, and likewise complex algorithms can be 

ineffective.  

 This section discussed the overall effect of the knowledge reuse 

approaches on participants’ performance, such as their ability to overcome 

programming difficulties and use algorithmic modelling systems. However 

the study has found that in many aspects the reuse of abstract solutions 

and the reuse of case-based solutions had a very different effect. The 

following two sections discuss separately 1) testing Patterns for Parametric 

Designs (Woodbury, 2010); and 2) testing the use of Case-Based Design 

approach in the context of algorithmic modelling in architecture.  
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3.2 The reuse of abstract solutions in algorithmic 

design 

Testing patterns for parametric design as a medium to 

reduce effort required to learn algorithmic modelling 

software 

The Design Patterns developed by Robert Woodbury (2010) proved to be 

an effective medium to understand and learn algorithmic design in 

architecture. The pattern approach was previously tested by Gamma et al. 

in the context of object-oriented software design, and the results of these 

tests showed a number of positive effects (Gamma, Helm, Johnson, 

Vlissides, 1994). The authors state that the reuse of abstract programming 

solutions (design patterns) reduces the effort required to learn new 

programming software and helps during design development (Ibid). 

Results of this study also show that patterns for parametric design work as 

an effective support and learning method when introduced into design 

process in the field of architecture. The comparison between the 

performance of three test groups (No Approach Group, Design Patterns 

group and Case-Based Design group) shows that the use of Design 

Patterns helps designers to reduce programming barriers, which prove to 

be a big issue for a large number of end-users of algorithmic modelling 

tools (See ‘Effect of the reuse of programming artefacts in algorithmic 

design’ section discussing the amount of programming barriers in each 

test group).  

 The vast majority of designer and architect participants of the DP 

group found the Design Patterns to be very helpful. On the last day of the 

parametric modelling workshop participants were asked to indicate their 

level of agreement with the following statement:  
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On a five point scale from 1 – ‘Strongly Disagree’ to 5 – ‘Strongly Agree’. 

‘I find Design Patterns to be a helpful medium to learn and use 

algorithmic modelling’, 

3.93 ± 0.640 (mean, std. deviation) with the median = 4 (‘Agree’) 

 

Below are some of the participants’ comments on their experience with the 

use of Design Patterns, as a medium to learn and use algorithmic 

modelling: 

 ‘I was introduced to parametric modelling through design patterns, 

and I found this to be a very successful learning method.’ 

 ‘They (Design Patterns) are useful starting blocks, and useful to get 

familiar with the types of geometry generated by program…’ 

 In the book ‘Elements of Parametric Design’ Robert Woodbury 

discusses the methodology for the use of thirteen Design Patterns. He 

describes them as reusable abstract parts and a medium to understand 

and express the craft of parametric modelling (Woodbury, 2010). He 

proposed to use Design Patterns as thinking and working tools to help 

designers master the complexity of algorithmic design systems. However, 

he points out that the (Design Patterns) method is a theory, which is yet to 

be tested (Ibid).  

 One of the objectives of this study was to test this approach to 

reusing abstract algorithmic solutions in design. The approach was tested 

using Woodbury’s Design Patterns (Ibid). Therefore, the (empirically 

measured) results of this experimental study can be viewed as a test for 

Woodbury’s parametric patterns theory.  
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 Along with the evaluation of the DP approach as a method helping 

designers and architects to learn and use algorithmic modelling systems 

(Woodbury, 2010), this study also gives an opportunity to investigate how 

potentially (if necessary) the Design Patterns method can be improved. For 

example, some of the participants found the DP approach to be not very 

intuitive and not so easy-to-use. Although the majority of them still found 

patterns to be helpful. When asked to report their agreement with the 

statements:  

On a five point scale from 1 – ‘Strongly Disagree’ to 5 – ‘Strongly Agree’. 

(DP group) 

‘I find Design Patterns intuitive’ 

3.37 ± 0.718 (mean, std. deviation) with the median= 3 – ‘Neither Agree 

nor Disagree’ 

‘It was easy to use the Design Patterns approach in my design’  

Day 1 2.90 ± 0.885  

Day 2 3.03 ± 0.809 (both days median = 3 ‘Neither Agree nor Disagree’) 

 

These responses indicate that on average, participants using the DP 

approach would not refer to Design Patterns as being an intuitive method 

(Neither Agree nor Disagree), as well as they would not refer to it as easy 

to use method. These are some of the responses of the DP group 

participants giving their feedback regarding the usability (how easy to use) 

and intuitiveness of Design Patterns: 

 ‘They are good, but not intuitive, so perhaps looking at more 

examples will help to really understand what is going on.’ 
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 ‘The hard part is taking out what is useful for your own design ideas’ 

 ‘That's good to get the sense of a program (Rhino/Grasshopper), 

but for my own design I do not know how to use it.’ 

 ‘More possible examples, actual cases that achieve the intended 

design using parametric tools’ 

 The feedback from designers who used Design Patterns for 

learning visual programming and used patterns while developing their 

designs revealed two main issues. The first issue, is that some of the 

designers found Design Patterns to be not completely intuitive. That is 

understandable because usually, learning through abstractions is harder 

(less intuitive) then learning through case-based reasoning, and it is 

generally easier for humans to learn by following a specific example, than 

to ‘generalise from it’ (Aamodt and Plaza, 1994). To understand each 

abstract set of principles (patterns) requires a designer to look at a problem 

from a specific pre-defined point of view. This point of view, however, 

might not feel natural for every individual. The name of a design pattern 

or the explanation (the ‘why’, the ‘what’ and the ‘how’) of an abstraction 

may not necessarily agree with each person’s intuitive way of thinking and 

reasoning, which can potentially lead to the increase of intellectual effort. 

 The second issue is related to the application (actual reuse) of 

Design Patterns for individual designs. Some of participants found it hard 

to figure out which patterns could be useful (reusable) for their own design 

ideas. In order to apply Design Patterns, designers have to use them as 

thinking and working tools (Woodbury, 2010). More often than not 

participants described their ideas as some certain type of geometry (design 

output), rather than a certain type of behaviour (programming 

algorithm/design pattern). Not all designers were inclined to make an 

additional effort of analysing their sketches (design ideas) and trying to 
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generalise from them (focus on the program rather than the form). That is 

why, sometimes, when the examples used to explain a Design Pattern did 

not contain the type of geometry that visually resonated with the 

participant’s own design concept, a pattern was dismissed as not fitting.  

 Both of outlined issues could potentially be improved (as was 

suggested by some participants of the DP group) with introducing 

additional examples (pattern samples) to the DP approach, perhaps 

developing a library of cases for each Design Pattern, that cover multiple 

practical (visually diverse) applications of patterns. The strategy of re-

enforcing case-based reasoning in the use of generalised constructs 

(Design Patterns), can help designers to better understand abstractions 

and easier locate patterns that can be used for their own design solutions 

(engage thinking by analogy). Similar strategy was used by Gamma et al, 

in the field of software design, and it was observed that introducing 

patterns together with examples is an effective way to teach object oriented 

design by example (Gamma, Helm, Johnson, Vlissides, 1994). 

 However, despite the issues with intuitiveness and design 

application, most of the DP group participants agree that Design Patterns 

are an effective medium to understand and learn the principles of 

algorithmic modelling. This approach is an effective support method and 

definitely preferable to having no approach for learning programming in 

architecture and design. Participants of the DP group found the use of 

abstract programming solutions (Design Patterns) to be ‘useful starting 

blocks’ * and ‘a very successful learning method’* (*quoting participants of 

the DP group). From the teaching perspective the collection of thirteen 

patterns for parametric design seems to work very well, providing novices 

in algorithmic design with a profound and systematic insight into the basic 

vocabulary of algorithmic modelling methods (as evidenced from the 
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significant reduction of programming barriers and the positive feedback 

from the DP group participants). (See Appendix for ‘Proposed curriculum 

for teaching programming in architecture using Design patterns’).  

 

The reuse of abstract constructs as a method to 

reduce complexity and aid design performance. 

Correlational analysis indicates that those designers who easily grasp the 

idea of Design Patterns (abstractions) and effectively use them as building 

blocks in their own designs also have less programming difficulties and 

better algorithmic modelling performance. One of the objectives of the 

correlation analysis was to investigate the relationship (statistical 

dependency) between the designers’ ability to overcome programming 

barriers and the feedback regarding their experience with the reuse 

approach. This particular analysis focused on the participants’ performance 

inside the DP group, and this was performed for each test group 

individually. 

 It was observed that designers using Design Patterns were likely to 

perform consistently well or consistently poorly during both days in terms 

of overcoming programming barriers (number of programming 

difficulties/change in design due to programming difficulties). The 

programming barriers criteria (such as number of programming difficulties 

and change in design due to programming difficulties) have positive 

correlations between the results on day 1 and the results on day 2 (Exhibit 

3.5):  
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DP group Correlations (between results on day 1 and day 2) 

‘Programming Difficulties: how often’  

r = 0.371 

‘Change in design idea due to programming difficulties’  

r = 0.356 

 

For comparison, the group that used Case-Based Design does not have 

these types of dependency. The No Approach group does have a 

correlation between the amount of difficulties on day 1 and day 2 but no 

significant correlation between the day 1 and day 2 ‘Change in design idea 

due to programming difficulties’. 

NA group Correlations (between results on day 1 and day 2) 

‘Programming Difficulties: how often’  

r = 0.406 

 

 This consistency of the DP group performance (number of 

programming difficulties and change in design due to programming 

difficulties on day 1 and day 2) means that, those DP group participants 

who faced substantial difficulties with programming in the beginning of the 

course, were likely to continue having these difficulties. Likewise those 

participants who could better overcome programming barriers on day 1 

were likely to continue having less problems on day 2. The use of the DP 

approach did not change this consistency. In contrast, the CBD group 

participants did not exhibit similar performance consistency. The group 

using the CBD approach did not have any significant correlation between 
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amount of programming barriers on day 1 and day 2. This means that CBD 

group participants who had only a few problems on day 1 could have faced 

many more difficulties on day 2, and vice versa.  

 Exhibit 3.5 illustrates the relationship (correlation) between the 

number of programming difficulties and the rest of the investigated criteria, 

such as ability to find a pattern which fits participants’ design ideas. The 

diagram shows correlations between all criteria in the DP group (including 

such criteria groups as: Programming criteria, Design Ideation/Motivation 

Criteria, Approach Characteristics Criteria and Algorithmic Modelling 

Criteria - Exhibit 3.5 left hand side groupings). The results of the 

correlational analysis are shown in a form of a box-and-wire diagram. 

When two criteria have a significant correlation they are connected by a 

wire with the attached Pearson's correlation coefficient value (r) (See 

Statistical Methods Section). The strong dependencies (correlation 

coefficient r > +- 0.5) are shown as darker wires (green for the positive 

correlation, red for the negative correlation) the medium correlations (r 

from +- 0.35 to +- 0.5) are shown in the lighter colours (pink for negative 

and light green for positive dependency). This particular diagram highlights 

the correlations between the ‘Programming Difficulties’/‘Change in design 

idea due to programming difficulties’ and the other criteria (the rest of 

correlations, which are not connected to programming difficulties, are not 

highlighted, and shown in light grey) (Exhibit 3.5). 
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Exhibit 3.5. Design Patterns group. Correlations between ‘Programming Difficulties’/‘Change in design idea due to 

programming difficulties’ and the other criteria (such as Algorithmic modelling criteria, Approach characteristics 

criteria, and Design Ideation/Motivation criteria). [Also refer Appendix B, pages B71-B82] 
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 For example, the ease of the approach implementation ‘It was easy 

to implement Design Patterns in my design’ (on day 1) (Exhibit 3.5, 

‘Approach: easy to implement’) has a strong negative correlation with the 

number of programming difficulties (Exhibit 3.5, Programming Difficulties: 

how often) on day 1 (r= - 0.577), and a medium negative correlation with 

the ‘number of programming difficulties’ on day 2 (r=- 0.358). These 

negative correlations mean that when one of these variables (easy to 

implement the DP approach) is high the other is likely to be low (number 

of programming difficulties) and vice versa. This seems to suggest that 

when participants were able to easily understand and successfully 

implement abstract reusable solutions in their own designs (reporting that 

‘It was easy to implement Design Patterns in my design’), they were less 

likely to have programming difficulties (low level of ‘programming 

difficulties’). These results can support the claims that the use of design 

patterns can reduce complexity of programming solutions acting as the 

reusable building blocks (Gamma, Helm, Johnson, Vlissides, 1994). 

 The ability to overcome programming barriers, evaluated as a 

degree to which participants had to change their design due to 

programming difficulties, correlates to how well designers were able to use 

Design Patterns. On day 1 ‘Change in design due to programming 

difficulties’ has a negative correlation with both how easy to implement 

designers found the DP approach: r = - 0.480, and with their ability to 

figure out which pattern can be used in their own design solution (‘Found 

a DP/CBD solution which fits’): r = - 0.403 (Exhibit 3.5).  

 The evidence of this study seems to suggest that the better 

designers deal with the reuse of abstract algorithmic solutions the better 

their design performance and their ability to overcome programming 

difficulties. However, these findings can be interpreted in two different 
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ways. Firstly, this dependency might suggest that it is the effective use of 

patterns that helps designers to perform better at algorithmic modelling. It 

can be reasoned that participants learned the patterns for parametric 

design before they started to work on their design task. Therefore their 

performance was influenced by their ability to use patterns and not the 

other way around. Secondly, it can be reasonably argued that those people 

who are naturally more inclined to using algorithmic modelling and 

programming, are also more likely to understand and use Design Patterns 

easier than others. Either of the interpretations has valid points and it is 

highly likely that the actual reality is somewhere in-between these two 

points. Nevertheless there is clear evidence that the designers’ ability to 

use patterns and their ability to use algorithmic modelling systems have a 

statistically significant positive correlation (Exhibit 3.5).  

 Exhibit 3.6 shows the results of the investigation regarding the 

relationship between the designers’ performance (such as ‘Ability to 

accomplish what was wanted’, ‘Ability to realise original design idea’ and 

‘Satisfaction with output’ etc.) and the rest of the evaluation matrix, 

including participants’ feedback regarding the use of Design Patterns. The 

DP group designers’ ‘Ability to realise original design idea’, which 

participants envisioned and sketched prior to modelling, did not prove to 

have any significant relationship (correlation) with the approach criteria 

(how easy to use, how helpful etc.) (Exhibit 3.6). However, the rest of the 

design performance measures (including ‘Ability to accomplish what was 

wanted’ and ‘Satisfaction with output’) have statistically significant positive 

correlations with the DP approach measures (‘Approach: easy to use’, 

‘Found DP/CBD solution which fits’ and ‘Approach is helpful’).  

 These positive correlations mean that when one group of variables 

(positive feedback regarding the use of the DP approach) is high the other 
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group of variables is likely to be high as well (design performance including 

Satisfaction with output’, ‘Ability to accomplish what was wanted’). Likewise, 

when approach measures are low the designers’ performance measures 

are likely to be low as well. These results might indicate that the more 

successful designers with the use of patterns the better is their design 

performance. 

 Designers who identified and reused patterns in their own 

algorithmic solutions were more likely to accomplish their design 

objectives. ‘Ability to accomplish what was wanted’ on day 1 is correlated 

with ‘Approach: easy to implement’: r = 0.486, and also correlated with 

‘Found a DP solution which fits’: r = 0.432 (Exhibit 3.6). The satisfaction with 

the produced designs has also a positive dependency with how effectively 

designers were using algorithmic Design Patterns. ‘Satisfaction with output’ 

has a strong positive correlation with how easy it was for designers to reuse 

abstract algorithmic solutions (‘Approach: easy to implement’): r = 0.577 

(on day 1), r = 0.462/r= 0.434 (on day 2) (Exhibit 3.6). The satisfaction with 

the produced designs is correlated with the designers’ ability to find a 

pattern (or several patterns) that can be used in their own designs 

(‘Satisfaction with output’/‘Found a DP solution which fits’) r = 0.382/r = 

0.485 (on day 1), r = 0.600 (on day 2) (Exhibit 3.6). This means that those 

participants who could identify patterns that fit their design solutions and 

could implement patterns in their designs were more likely to be satisfied 

with the results of their design work. 
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Exhibit 3.6. Design Patterns group. Correlations between ‘Ability to realise original design idea’, ‘Ability to accomplish 

what was wanted’, ‘Satisfaction with output’ and the other criteria (such as Algorithmic modelling criteria, Approach 

characteristics criteria, and Programming criteria). [Also refer Appendix B, pages B71-B82] 
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 These results indicate that the reuse of abstract constructs proves 

to be an effective method to reduce complexity and aid design 

performance. Even though it may not be entirely easy-to-use or intuitive 

for some designers. It provides a great insight into the logic of algorithmic 

modelling (helps to learn/overcome programming barriers) and when duly 

used (reused) patterns help to improve design productivity. Moreover, 

those designers who found the approach to reuse abstract solutions to be 

helpful for learning and using algorithmic modelling, also reported a 

greater satisfaction with the produced designs and higher motivation to 

use algorithmic modelling in future. The ‘Approach: is helpful’ criterion has 

a positive correlation with designers’ ‘Satisfaction with output’ r =0.452 (on 

day 1), r = 0.454 (on day 2), and with ‘I plan to use parametric design in 

future’ r = 0.406 (Exhibit 3.6). 

 

The reuse of abstract algorithmic solutions helps to 

explore and experiment 

 Along with reducing programming barriers and helping with design 

performance, the reuse of abstract algorithmic solutions also helps 

designers to increase the explored solution space and motivates them to 

‘go beyond’ and experiment. Gamma et al (1993) states that among a 

number of positive effects, observed when the use of design patterns was 

tested in the field of object-oriented software design, some directly relate 

to the increase of the explored space of programming solutions. Authors 

state that the reuse of abstract programming artefacts helps end-users to 

explore alternative design solutions and motivate them ‘to go beyond 

concrete objects’ (Gamma, Helm, Johnson, Vlissides, 1993). This ‘enhancing 

exploration’ effect of the pattern approach proves to be also true when 

applied in the field of architectural algorithmic design. 
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 The results of this study support the validity of Gamma et al. 

observations. The reuse of abstract programming artefacts encourages 

and supports design exploration, as tested in the context of visual 

programming in architecture. To come to these conclusions, three different 

aspects were analysed and compared between the test groups (NA, DP, 

and CBD): 1) how the DP approach affects the change in design objectives; 

2) the explored space of programming solutions; 3) correlational analysis 

(‘Algorithmic Modelling’ criteria, ‘Approach characteristics’ and ‘Design 

Ideation’ criteria) 

 The comparison of design objectives, revealed the fact that the use 

of the Design Patterns (DP) and Case-Based Design (CBD) approaches has 

a statistically significant effect not only on the design performance, but also 

on design ideation: on how designers think and what design goals they 

choose to pursue. It was identified that the reuse of abstract and case-

based programming artefacts causes a substantial shift in design objectives 

(Exhibit 3.7). Exhibit 3.7 illustrates the distribution of the design objectives 

(significantly different between the DP group and the control group (NA)). 

The diagram shows results for each test group (shown in percentages) as 

well as the results of statistical comparisons (shown as the p-values; note 

that the p-values below the 0.05 level indicate statistically significant 

differences in results) (See Statistical Analysis section for more detail on 

statistical measures). Originally, all test group participants were asked to 

describe their goals and intentions for each of their designs (individual 

design tasks on day 1 and day 2) in the form of an open ended enquiry: 

‘What did you want to achieve/accomplish for this design task?’ 

 Five most common types of design objectives and intentions were 

identified using the feedback from the participants of the algorithmic 
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modelling workshops (listed from most popular to least popular) (Exhibit 

3.7): 

 to achieve what was originally sketched; 

 to explore algorithmic form-making; 

 to experiment with parameters; 

 to apply the programming components and logic that was 

learned; 

 to combine a few of existing algorithmic solutions (design 

patterns or specific programming algorithms); 

 The difference between the test groups in three of these categories 

has proved to be statistically significant. Two of those differences can be 

regarded as the effect of the DP approach (Exhibit 3.7). Firstly, statistical 

testing, shows that the use of both the DP and CBD approaches motivates 

designers ‘to explore algorithmic form-making’. The difference manifests 

itself mostly on day 1, p – value = 0.014 (comparing all three groups). More 

than a half (63%) of the Design Patterns group participants wanted to 

explore algorithmic form-making. 63% is significantly more compared to 

approximately a quarter (24%) of the No Approach group (p-value = 

0.004) and slightly more than a Case-Based Design group 46.8% (p-value 

= 0.049) (Exhibit 3.7). On the second day of the workshop statistical testing 

did not indicate any statistically significant difference in results between the 

three test groups (p-value = 0.263, comparing all three groups). However, 

the DP group was still noticeably more motivated ‘to explore’, compared 

to the other two groups: NA – 28%, DP – 40%, CBD 23.4% (Exhibit 3.7).  
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Exhibit 3.7. Types of Design Objectives. Comparison between the test groups, [Also refer Appendix B, pages B64, 

B67] 

 Secondly, the DP group was not only interested in exploration of 

algorithmic form-finding modelling techniques, but this group’s 

participants were also highly invested in the experimentations with 

parameters and alternative variations of their programming algorithms and 

output models. On the second day of the workshops, almost half of the 

designers reusing abstract solutions (46.7%) reported experimentation with 

parameters as one of their design objectives (Exhibit 3.7). This percentage 

is considerably higher compared to both control group (12 %) and the CBD 

group (8.5%). These results suggest that the use of Design Patterns has a 

significant effect on the way designers think, shifting their interest towards 

exploration and experimentation. 

 

Design Objective: ‘To experiment with parameters’ 

Day 1: NA 8 %, DP 20%, CBD 19.1% (p-value All Groups = 0.406) 

Day 2: NA 12 %, DP 46.7%, CBD 8.5%  

(p-value All Groups = 0.000, p – value DP/NA = 0.006, p-value = 0.000) 
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 That apparent shift in the design objectives had an effect on the 

design process and on the design output. The evidence from the analysis 

of programming algorithms and comparison of results between the test 

groups suggests that on day 1 the group using Design Patterns had a 

greater range (variety) of explored space of programming solutions (See 

Methodology Section for more detail on evaluation criteria and the 

Novelty/Variety point systems). The explored space of algorithmic solutions 

was evaluated through two criteria: Novelty (how original/not typical a 

solution is on a group level) and Variety (how wide is the range of 

implemented programming components/logic) (Exhibit 3.8).  

 

 

Exhibit 3.8. Algorithmic Modelling. Explored Space of Programming Solutions. Comparison between the groups [Also 

refer Appendix B, pages B64-B69]  

 The Variety measure of the explored solution space is significantly 

greater in the DP group compared to both NA and CBD groups (Exhibit 

3.8). The statistically significant difference occurs on day 1, when designers 

are still in the early stages of mastering visual programming and using 

algorithmic modelling as a design tool. On the second day the difference 
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between the groups evens out, even though the DP group still have the 

biggest Variety score average (Exhibit 3.8). These results suggest that in the 

initial stages of learning the reuse of abstract programming artefacts helps 

designers to increase the explored solution space and produce algorithms 

with the wider range of implemented programming logic. 

Variety Score of programming algorithms (mean value) 

Day 1: NA 12.4, DP 15.3 CBD 12.8 

(p-value All Groups = 0.008, NA/DP p-value = 0.009, DP/CBD p-value 

= 0.027) 

Day 2: NA 16.6, DP 17.6, CBD 15.8 (p-value All Groups = 0.268) 

 

 The Novelty scores of the algorithms, produced by participants of 

the NA, DP, and CBD groups, were not significantly different (day 1 p-value 

= 0.898, day 2 p-value = 0.171) (Exhibit 3.8). This indicates that on average, 

designers off all three test groups produced algorithmic solutions of similar 

novelty. Some of those solutions were more typical, containing logic often 

repeated by other participants. Some solutions were very unusual, 

containing original logic and programming components that were never 

used by other participants of the workshops. It should be noted that even 

though the statistical testing does not indicate any significant difference in 

Novelty scores, on both days the DP group algorithms had the highest 

average scores for both Novelty and Variety criteria. Therefore, based on 

the evidence that the Variety scores of the DP group are significantly higher 

compared to the control and CBD groups, it can be concluded that overall 

the DP group had a greater explored space of programming solutions. 
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Exhibit 3.9. Design Patterns group. Correlations between Algorithmic Modelling criteria (Model and Algorithm 

Complexity, Explored solution space) and the other criteria. [Also refer Appendix B, pages B71-B82] 
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 The use of the DP approach supports and encourages investigation 

and exploration. The correlational study indicates that when the designers, 

explore a wider range of programming solutions and produce more 

complex algorithms and models, they also find the DP approach to be 

more helpful and are more likely to be satisfied with what they were able 

to accomplish (Exhibit 3.9). The DP group’s ‘Algorithm Variety score’ on 

day 1 has a significant positive correlation with ‘Ability to accomplish what 

was wanted’ (r = 0.379) and with how helpful designers found the DP 

approach (‘Approach: is helpful’ r = 0.357) (Exhibit 3.9).  

 There is strong evidence indicating that the use of patterns for 

parametric design encourages complexity. That includes the higher 

complexity levels in both programming algorithms and output design 

models. Correlational analysis shows that the higher levels of model and 

algorithm complexity is regarded as a positive quality by the DP group 

participants. ‘Model complexity’ is positively correlated with ‘Satisfaction 

with output’ (r = 0.463/r = 0.441) (Exhibit 3.9). This means that participants 

of the DP group were likely to be more satisfied when they produced more 

complex design models. Moreover ‘Model complexity’ has a positive 

correlation with ‘Found a DP solution which fits’ (r = 0.629); and with 

‘Approach: helpful’ criteria (r = 0.355/r = 0.385) (Exhibit 3.9). This suggests 

that participants who successfully implemented patterns in their own 

design solutions were more likely to produce more complex models as 

output.  

 There is also evidence indicating that when designers reusing 

abstract solutions were able to produce more complex algorithms, they 

were more content, finding the DP approach to be very useful. ‘Algorithm 

complexity’ has a positive correlation with ‘Approach: helpful’ criterion (r = 

0.434).  
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 To summarise the effect of the reuse of abstract algorithmic solution 

on design exploration: 

 The reuse of abstract algorithmic solutions has a significant effect 

on design goals and intentions. The group using Design Patterns 

approach was significantly more invested in exploration of 

algorithmic form-making and experimentation with parameters 

compared to other test groups. (Exhibit 3.7 See design objectives) 

 The use of Design Patterns helps to increase the explored space of 

programming solutions, as indicated by the comparison of the 

Variety and Novelty levels of programming solutions (Exhibit 3.8) 

This exploration enhancement effect of the reuse of abstract 

programming artefacts was previously pointed out by Gamma et 

al., who tested patterns in the field of software design (Gamma, 

Helm, Johnson, Vlissides, 1993).  

 The higher levels of algorithm and model complexity as well as 

higher explored space (variety) of programming solutions and are 

perceived in a positive light by participants of the DP group. The 

higher model and algorithm complexity is also associated with the 

higher levels of approach utility (how useful designers find the DP 

approach) (Exhibit 3.9). (See Appendix B, pages B56-B63) (Also refer 

Section 3.4 Comparison between reuse approaches: abstraction 

versus case-based) 

 

The relationship between the level of abstraction of 

algorithmic solutions and their reusability  

The level of abstraction of the reusable artefacts does not necessarily 

correspond to their reusability. The comparison between the test groups 
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reusing algorithmic solutions with different levels of abstraction shows that 

the CBD group has reused significantly more case-based programming 

solutions, compared to the DP group, which reused abstract solutions 

(Design Patterns). The CBD and DP approaches are on the opposite sides 

of the abstraction spectrum. The Case-Based Design refers to the reuse of 

specific solutions, developed within a narrow design context, and there is 

literally no abstraction in these reusable artefacts per se (Kolodner, 1993). 

Design Patterns, on the other hand, by definition are abstract solutions, 

which refer to a general concept or idea and can be applied to a shared 

problem (Woodbury, 2010), (Gamma, Helm, Johnson, Vlissides, 1994). 

However, the approaches are not entirely specific (CBD) or abstract (DP). 

For example, the online Case-Base platform uses labels (indexes) as a 

grouping and search principle, thus this system employs certain aspects of 

generalisation (abstraction). Similarly, each Design Pattern has a series of 

examples, illustrating the abstract concept, and the use of examples is a 

trait of case-based reasoning approach. Nevertheless, overall, Design 

Patterns justifiably represent the reuse of abstract parametric solutions, 

while a repository of specific programming cases does clearly represent 

case-based reasoning. 

 The relationship between the levels of abstraction and reusability 

has often been discussed in literature. Contrary to the findings of this study, 

it was often suggested in literature that an effective reuse technology 

suggests the use of high level of abstraction (Krueger, 1992). First of all, it 

is argued that it is more efficient to capture ‘big ideas’ instead of covering 

every possible design solution (Winn, Calder 2002). Additionally, abstract 

solutions have an advantage of being applicable to a large range of design 

problems regardless of a particular design platform and technology (Ibid). 

That is why it is claimed that abstraction plays an essential role in any reuse 
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method, and reusability and abstraction are strongly related (Krueger, 

1992).  

 The findings of this study suggest that the claims regarding the 

linear relationship between the reusability and abstraction (while in theory 

being very sound) might not necessarily be true in practice. Comparison 

between the amount of the reused programming artefacts of the DP and 

CBD groups show that, a systematically organised and reasonably large 

case-base of specific (not abstract) algorithmic solutions can provide 

means for an efficient reuse method. It also shows that the high level of 

abstraction of the reusable artefacts does not automatically ensure their 

high reusability. It should be noted that the use of Design Patterns (DP 

group) and the use the Case-Based solutions (CBD group) was highly 

encouraged, but not strictly compulsory. Designers of both test groups 

were free to decide for themselves whether to reuse the respective 

DP/CBD solutions in their designs or to create their programming 

algorithms from scratch.  

 Prior to the design tasks, participants of the DP group were 

explained the ‘why’, ‘when’, and ‘how’ of each Design Pattern; went 

through the step-by-step tutorials of the corresponding examples; and 

were provided with the print-outs describing and illustrating the patterns 

(See Methodology Section for more detail regarding the experimental set-

up). It was also suggested to participants that they should give it a try, and 

use patterns as thinking and working design tools (Woodbury, 2010), 

because it would help them with the development of their design solutions. 

Yet, to use or not to use patterns was entirely up to designers. The CBD 

group participants were given the access to the online case-base of 

algorithmic solutions; and were shown how to use the tag search (case 

selection based on the assigned labels). 
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Exhibit 3.10 Reusability of abstract and case-based solutions [Also refer Appendix B, pages B64, B65] 

 

 Exhibit 3.10 illustrates that 70% of the DP group participants (on 

day 1) and 66.7% (on day 2) reported that they used a Design Pattern (or 

several patterns) in their algorithmic design solutions, while working on 

their individual design tasks (See Methodology Section for more detail). 

‘The use of a DP solution’ implies that participants have either 1) explicitly 

identified the name of at least one of the thirteen patterns for parametric 

design (Ibid), or 2) that they have described a pattern using their own 

words. In some cases, instead of using the actual pattern names, such as 

‘Jig’, ‘Projection’, or ‘Point Collection’ participants used words describing: 

 design’s geometry, such as ‘Spiral’ (which can be referred back to a 

‘Spiral’ example of the ‘Increment’ pattern) (Woodbury, 2010);  

 modelling actions/programming components, such as ‘Project’ and 

‘Select’ (which are not strictly speaking the patterns names but they 

could potentially be interpreted as corresponding, ‘Projection’, and 

‘Selector’ patterns); 

 in some cases participants of the DP group substituted patterns with 

such terms as: ‘Panelling’ (which can potentially be traced back to 

the ‘Place Holder’ pattern), ‘Cloud of points’ (‘Point Collection’ 

pattern), ‘Gradual Repetition’ (‘Increment’ pattern), or other 
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descriptions some of which still could be traced back to the original 

Design Patterns: ‘Reiterating pattern’, ‘Twists projecting up’, 

‘Perforation’, ‘Lift surfaces’, ‘Size based on the distance’, ‘Weave’, 

‘Attractor’ etc.  

 A part of these descriptions could be easily referred to the original 

pattern names, for example: ‘Project’ to ‘Projector’ pattern or ‘Size based 

on the distance’/‘Attractor’ to ‘Reactor’ pattern. These cases were counted 

as ‘Used as a DP solution’ (Exhibit 3.10). With other descriptions it was 

harder (next to impossible) to affirmatively trace back to one of the thirteen 

Design Patterns, such for example as: ‘Weave’, ‘Rotate’ or ‘Perforation’. 

These cases were not counted as the Design Pattern use.  

 

At times, it was almost as if designers have identified (invented) their own 

generalised solutions and reported them as canon patterns.  

 

 

 The final figures in Exhibit 3.10 show the total percentage of the DP 

group participants who reused patterns in their own designs: 70% on day 

1, 66.7% on day 2. This includes cases when participants have identified 

original pattern names: 56.6% on day 1, 60% on day 2. The total 

percentage also includes cases which have been traced back to the original 

Design Patterns: 13.3% on day 1, 6.6% on day 2 (such cases as: Select’ to 

Selector patterns, ‘Project’ to Projection Pattern etc.). This means that only 

56.6-60% (slightly more than a half) of the participants reusing abstract 

algorithmic solutions reported the use patterns, using their proper (canon) 

names. Other 6.6%-13.3% of the DP group participants (most probably) 

did use Design Patterns in their designs (as they described the core idea 
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corresponding to a particular pattern), but they failed to recall a proper 

pattern name.  

 

Reusability: ‘Used a DP/CBD solution in my own design’ 

Day 1 DP 70% CBD 76.6% (p-value = 0.350) 

Day 2 DP 66.7% CBD 87.2% (p-value = 0.031) 

 

 On day 1, the total percentage of the reuse of abstract solutions is 

very similar to the percentage of the reused case-based solutions (Exhibit 

3.10). However, on day 2, the CBD group participants have reused 

significantly more (case-based) solutions (87.2%) compared to the DP 

group, reusing abstract algorithms (66.7%). It should be noted that a 

number of the CBD group participants have reused parts of algorithms that 

were shown during tutorials: 2.2% on day 1, 6.4% on day 2. Even though 

these reused solutions were not taken from the online case-base (CBD 

repository), technically speaking these solutions were still reused cases. 

They involved both the actual reuse of the existing algorithms and case-

based reasoning. That is why the 2.2%-6.4% were included in the total 

percentage of the ‘Used a CBD solution’ criterion.  

 The comparison between the reused abstract and case-based 

solutions indicates that participants of the CBD group were reusing 

programming solutions more often than participants of the DP group. This 

might imply that specific programming artefacts can be as reusable and in 

some cases even more reusable than abstract programming artefacts. 

Therefore, in contrast the opinion expressed in literature stating that the 

effective reuse technology implies the use of high level of abstraction 

(Krueger, 1992), (Winn, Calder 2002), the evidence from this comparison 

indicates that the higher level of abstraction does not automatically imply 

the higher reusability of solutions.  
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3.3 The reuse of case-based solutions in 

algorithmic design 

Case-based reasoning as a method to support 

algorithmic design in architecture 

 The reuse of Case-Based programming solutions (Case-Based 

Design (CBD)) proved its capacity to be a helpful method aiding the use 

of algorithmic design tools in architecture. The use of case-based 

reasoning is often discussed in the literature on both software 

programming and architectural design. It is claimed to be a highly effective 

method to solve design problems, and is argued that solutions from past 

design cases help architects think by analogy and solve their current 

design problems (Pearce, 1992) (Riesbeck, Schank, 2013). The results of 

this study indicate that the CBD approach (the use of case-based 

reasoning in design) can be as effective when applied in the context of 

parametric design in architecture, supporting the arguments that it is a 

promising ‘intelligent design support’ method (Heylighen, Neuckermans, 

2001). Participants who used the CBD approach as a part of their 

algorithmic modelling process reported that they found it to be most 

helpful.  

 Both the DP and CBD test groups reported a median answer of 4 

('Agree') when responding to the question about the utility of the 

approaches (how helpful). This means that the majority of designers in 

both test groups ‘agree’ that the respective approaches are helpful. 

Therefore it can be stated that designers who learn and use algorithmic 

modelling for their designs find both reuse approaches to be helpful. 

When comparing the degree of utility of the approach, the reuse of 

programming solutions from the Case-Base is identified to be the more 
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helpful medium to learn and use algorithmic design (as reported/judged 

by participants).  

 Statistical analysis of these means shows that the CBD group 

reported the Case-Based Design approach to be more helpful compared 

to the DP group. The 0.007 p-value level means that there is 99.3% chance 

that the difference in results is statistically significant.  

 

On a five point scale from 1 Strongly Disagree to 5 Strongly Agree 

I find the use of the DP/CBD approach to be a helpful medium to learn 

and use algorithmic modelling’ (Mean, std. deviation):  

CBD 4.30 ± 0.507 

DP   3.93 ± 0.640,  

p-value = 0.007; 

 

 Outside the architectural design context, the CBD problem solving 

paradigm (design support approaches based on the reuse of previous 

experiences/case-based reasoning) is widely used in computer research 

and practice such as: software engineering, artificial intelligence etc. In 

programming, case-based reasoning has proven its high efficiency as a 

tool for design support, helping software developers to find solutions for 

their current problems by reusing past experiences (Maher, de Silva Garza, 

1997) (Riesbeck, Schank, 2013). In design fields dealing with geometry, 

such as design, engineering and architecture, it has also been suggested 

that the CBD approach is a promising method (Hua, Fairings, Smith, 1996). 

Implementation of Case-Based Design approaches in architectural 

education (using non-computational design methods) has shown that 

students benefit from the inclusion of case-based reasoning (exposure to 

cases) in the design process (Heylighen, Verstijnen, 2000).  
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 One of the objectives of this study was to test the CBD approach in 

the context of algorithmic modelling in architecture, which equally relates 

to the fields of computer programming and architectural design. Results 

of this research suggest that the use of Case-Based Design can be as 

helpful for learning and using visual programming in architecture. This is 

some of the feedback illustrating participants’ experience with the use of 

the online Case-Base of algorithmic solutions (CBD approach) and the 

important role of the examples/thinking by analogy: 

 ‘I was introduced to design processes through following the 

examples shown and then referring to them to help me apply them 

to my own designs, this design approach allows a good reference 

and understanding of how Grasshopper works’; 

 ‘It is extremely helpful to have so many examples’ (commenting on 

the role of design-cases); 

 ‘It allowed me to see how it was supposed to be done’ (solving 

problems by analogy/learning from examples) 

 ‘The way we were introduced to the parametric modelling was the 

best and quickest way for me to learn the programming’ 

 ‘The examples were fantastic, so easy to follow and understand.’ 

 It is hard to overestimate the role of examples in education and 

design practice. This research shows that examples play a vital role in both 

understanding the theory and methods of visual programming, as well as 

in practical implementation of the technology. Even though the Design 

Patterns (DP) and the control (No Approach (NA)) group participants did 

not have the same access as CBD group participants to a systematically 

organised case-base of programming algorithms, they (in one way or 

another) still utilised case-based reasoning. For example, when developing 

their own algorithmic designs a number of the DP group participants were 
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more inclined to reuse a specific example (programming algorithm) 

illustrating the pattern rather than a pattern itself. In all the test groups 

some of participants chose to reuse parts of the algorithms shown during 

tutorials, others tried to find specific solutions online. In practice, it is 

almost impossible to completely avoid the use of examples (specific 

design solutions) when learning/implementing a new design approach or 

technology. Therefore, acknowledging that both reuse approaches utilise 

examples/case-based reasoning, the challenge (of this research) is to 

determine whether it is more effective to focus on the reuse of generalised 

solutions (abstractions) or the reuse of specific examples. In the DP 

approach the balance is shifted towards the maximal use of abstract 

solutions, while the CBD approach concentrates on the systematic reuse 

of specific examples.  

 Although, according to participants’ opinion, Design Patterns were 

less useful than the Case-Base of algorithmic solutions, in some aspects 

the use of generalised (abstract) solutions had a better effect on the 

designers’ modelling performance, such as their ability to overcome 

programming difficulties and the increase of the explored solution space. 

Even though patterns (abstract solutions), unlike specific algorithms from 

the case-base, did not prove to be as easy to reuse as claimed (Winn, 

Calder 2002), (Krueger, 1992) (See ‘The relationship between the level of 

abstraction of algorithmic solutions and their reusability’ section). Perhaps, 

the biggest strength of the DP approach was to give participants a 

broader and more structured understanding of a ‘big picture’ of 

programming methods, thus helping designers to put their mind on 

‘when’, ‘why’ and ‘how in principle’ to use this newly acquired technology. 

This higher (abstracted) level of understanding might have been the 

reason why the novice users, who are familiar with Design Patterns, are 

able to apply programming logic more effectively (and consequently have 



3.3 The reuse of case-based solutions in algorithmic design 

Page | 217  

 

significantly less programming difficulties). Abstractions gave participants 

an opportunity to ‘zoom out’ from particular details and see/understand 

the underlying logic, which seems to be especially important for 

programming novices. That is why the use of abstract solutions, such as 

patterns for parametric design (Woodbury, 2010), seems likely to be more 

useful for educational purposes: teaching and learning of algorithmic 

modelling tools (compared to the CBD approach).  

 

Relationship between examples and abstractions 

 There are two distinct positions identified in regard to the role of 

examples and abstractions (patterns). One position states that patterns’ 

examples can be seen as elements of secondary value, while the 

importance is stressed on the use of abstractions (patterns) (Woodbury, 

2010). The other position argues that in practice this viewpoint is not valid, 

because when using pattern languages, users tend to search for specific 

solutions rather than rely completely on abstractions (Dearden, Finlay, 

Allgar, McManus, 2002). The findings of this study support the arguments 

claiming that examples are as important as abstractions (Ibid). The 

participants in the DP group reported that examples played an important 

role in their design processes. It seems likely therefore that the abstract 

approach could benefit from the more systematic approach of case based 

reasoning to the provision and classification of examples. 

 The feedback from the participants, who took part in this 

experimental study, indicate that it is the case-based reasoning (thinking 

by analogy) that designers find to be the most helpful (based on the 

evaluation of the approach utility and participants’ comments). This is very 

similar to analyses of the role of examples in Alexander’s design pattern 

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
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language. Hua et al. claim that in practice it is extremely hard to identify 

the general principles which outline an abstraction. It is pointed out that, 

while Alexander attempted to interpret and organise design knowledge in 

an abstract way, what he ended up doing had little to do with 

generalisation, because each pattern actually refers to a set of specific 

buildings within specific environments (Hua, Fairings, Smith, 1996).  

 These arguments also seem valid in regards to Woodbury’s design 

patterns. The Thirteen Patterns for Parametric Design are defined as a 

method representing the reuse of abstract solutions in design and 

architecture (a generalised solution which can be applied to a shared 

problem). Woodbury states that in order to use design patterns 

successfully it is essential to think with abstraction. The primary role is 

given to the abstraction which omits ‘inessential details’ (Woodbury, 2010). 

However, in practice the book ‘Elements of Parametric Design’ (which 

describes the patterns) is mostly comprised of carefully selected and 

systematically organised sets of specific examples (pattern samples). On 

one hand, these examples can be viewed as elements of secondary value, 

serving as a mere illustration and explanation of a general concept or idea 

(pattern). On the other hand, it can be argued that in practice it is the 

examples that make the whole method work. If we take all the ‘inessential 

details’/examples away, the patterns will most likely be hard (or next to 

impossible) to communicate and explain to other designers. If we take 

away the pattern’s identification and description (Name, What, When, 

Why, How) and leave only the subsets of examples, it is still highly possible 

that designers would be able to understand and reuse their overall logic.  

 Supporting this general conclusion is the most common response 

of the DP group participants to the question of how to improve the 

method: 'more examples'. It seems that, even when using the abstract 
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constructs as a primary reuse method, it is important to acknowledge and 

address the significance of examples (and the reuse of specific cases). This 

study shows that in practice, the actual examples (case-based reasoning) 

provide a necessary ‘reference’* and help designers to figure out how 

things are ‘supposed to be done’* and ‘how to apply them’* to their own 

designs (*participants’ opinions regarding the role of examples).  

 

The use of CBD as a method to reduce programming 

barriers 

The reuse of specific examples (CBD approach) did not prove to be as 

effective as the DP method in aiding users to overcome programming 

difficulties, especially during the initial stages of learning and implementing 

algorithmic modelling techniques.  

On a five point scale, with 1- ‘Never‘, 2 - ’1-3 times’, 3 – ‘4-6 times’, 4 - 

‘4-6 times’, 5 – ’10 times or more’; 

‘How often have you come across insurmountable programming 

difficulties, while developing your design model’,  

Day 1 (mean, std. deviation): NA 2.88 ± 1.053, CBD 2.91 ± 1.039, p-

value = 0.981;  

Day 2 (mean, std. deviation): NA 2.71 ± 0.890, CBD 2.53 ± 0.776, p-

value = 0.467;  

 

 The data suggests that, initially, (on the first workshop day) the CBD 

group had even more problems than the control group. However, when 

designers gained more experience with algorithmic modelling and the use 

of the case-base (on day 2) the CBD group has improved its ability to 

overcome programming difficulties (from day 1 median = 3: ‘4-6 
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problems’ to day 2 median = 2: ‘1-3 problems’), while the control group 

failed to improve and remained having on average ‘4-6 problems’ on both 

days. Statistical analysis (p-value levels) indicates that the differences in 

programming difficulties between the CBD and control groups are not 

statistically significant. Therefore there is no solid statistical evidence 

supporting the idea that the reuse of Case-Based algorithmic solutions is 

an effective method, which provides a way to easily generate solutions 

(Kolodner, 1991) or that it helps users to reduce programming barriers, 

even though the CBD group has improved its performance on the second 

day and had on average less problems compared to the control group 

(NA). 

 One of the significant (statistically determined) positive effects of 

the CBD approach was its capability to substantially reduce problems 

associated with the implementation of programming components (use 

barriers). The CBD group had two times less problems with the practical 

implementation of components compared to the control group (NA) and 

significantly less problems compared to the DP group.  

Syntax Problems/Problems with implementation of functions and 

components: 

Day 1: NA 44.8%/DP 33.3%/CBD 21.3% (p-value = 0.049/comparing all 

groups) 

Day 2: NA 48.9%/DP 43.3%/CBD 23.4% (p-value = 0.029/comparing all 

groups) 

 These results can be easily explained, because the use of actual 

solutions (case-based reasoning) gives designers an opportunity to 

understand ‘how exactly’ a certain programming algorithm (logic) can be 

done. The ‘use barriers’ (knowing what to use, but not knowing how to 
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use it) (Ko, Myers and Aung, 2004) are the second most common type of 

programming difficulties among the participants, topped only by the 

difficulties with the ‘idea-to-algorithm translation’ (I do not know what I 

want a computer to do). The use (implementation) barriers often occurred 

straight after designers figured out ‘how in principle’ an algorithm can be 

built. In theory, both abstract and case-based solutions can help designers 

to translate their design idea into a programming logic: Design Patterns 

by providing an abstract framework (construct) defining the core 

principles of a new solution; Case-Based Designs by giving an existing 

example, which a designer can reuse thinking by analogy. The advantage 

of the CBD approach is that it also can (and, as the results of this study 

show, does) help designers with practical implementation of these 

algorithmic solutions (‘how exactly’ to build a certain programming 

algorithm). Whereas the DP approach, by its definition, does not provide 

this type of information, because patterns are abstract and the sole role 

of samples is to illustrate this abstract idea. 

 The correlation analysis shows that the CBD group participants 

were not consistent in their ability to overcome programming difficulties 

on day one and day two. Exhibit 3.11 illustrates that ‘Programming 

Difficulties’ on day 1/day 2, and ‘Change in design idea due to 

programming difficulties’ on day 1/day 2 do not have any significant 

correlation. That means some participants could have faced a considerable 

number of insurmountable programming barriers on the first day, but on 

the second day they managed to perform much better and have only a 

few problems that they could not solve on their own. It also means that 

some of those who used the CBD approach and did well on the first day, 

on the second day faced considerably more difficulties. This might imply 

that the use of CBD can work really well for some designers (certain design 

problems/cases), but for other designers (other design problems) the 
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reuse of case-based algorithms can cause additional difficulties, instead of 

reducing them. By comparison, participants of both the DP and control 

(NA) groups were likely to perform similarly on both days: either having a 

lot of programming difficulties on day 1 and day 2, or being able to 

effectively overcome programming difficulties on both days. (See ‘The 

reuse of abstract constructs as a method to reduce complexity and aid 

design performance’ section). ‘Programming Difficulties’ on day 1/day 2 

have statistically significant correlations for both Design Patterns and 

control group participants. 

 Exhibit 3.11 also illustrates that the ability to overcome 

programming barriers of the CBD group has almost no correlation with 

the participants’ feedback regarding the use of the approach (See the 

description below the diagram). For example: on both days the 

programming difficulties criteria (Exhibit 3.11 ‘Programming difficulties: 

how often’, ‘Changed design due to programming difficulties’ – red colour 

blocks) had no significant correlation with how intuitive, easy to use and 

helpful participants found the CBD approach (Exhibit 3.11 ‘Approach: 

helpful’, ‘Approach: easy to implement’, ‘Approach: intuitive’, grey colour 

blocks with no connection wires to the red blocks). Unlike the DP group 

participants, who were likely to have substantially less difficulties when they 

effectively used the Design Patterns, the CBD group participants have 

shown almost no dependent relationship between their ability to 

overcome programming barriers and their ability to find and reuse the 

algorithms from the case-base.  
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Exhibit 3.11. Case-Based Design group. Correlations between ‘Programming Difficulties’/‘Change in design idea due 

to programming difficulties’ and the other criteria. [Also refer Appendix B, pages B71-B82] 
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 It is hard to judge whether the non-consistent design performance 

(ability to overcome programming barriers on day one and day two) is a 

positive or negative influence of the approach. On one hand, it could be 

a positive thing that the use of the CBD approach can help designers to 

solve their current design problems regardless of how well they performed 

in the past. On the other hand, there is a chance that the reuse of the 

algorithmic solutions from the case-base can cause additional difficulties 

for those designers who previously managed to effectively use algorithmic 

design. This contradictory effect of the CBD approach can be therefore 

regarded as a potential weakness of the reuse method.  

 

Case-based design is intuitive and easy-to-use 

approach 

Case-Based Design proves to be an intuitive and easy-to-use support 

medium for algorithmic modelling in architecture. The surveys show that 

designers find the use of the case-base (online repository of programming 

solutions) to be very easy-to-use and understand. Statistical comparison 

between the results of the DP and CBD groups indicates that the reuse of 

specific solutions is significantly more intuitive than the use of abstractions 

(Design Patterns) (Exhibit 3.12).  

On a five point scale from 1 – Strongly Disagree to 5 – Strongly Agree:  

The use of the approach is intuitive’; (Mean, std. deviation) 

DP 3.37 ± 0.718,  

CBD group 3.81 ± 0.851,  

p-value 0.021;  

 



3.3 The reuse of case-based solutions in algorithmic design 

Page | 225  

 

 The median value (middle number in a range of values) for the 

intuitiveness of the DP group is 3 - ‘Neither Agree nor Disagree’, the CBD 

median is 4 - ‘Agree’. This means that on average designers who used 

Design Patterns do not find the use of algorithmic abstractions to come 

too naturally (easily) to them. The group that used Case-Based Design, on 

the other hand, tend to ‘agree’ that the reuse of case-based solutions via 

online repository is intuitive. The p-value 0.021 indicates that the difference 

in means between the DP and CBD groups is statistically significant (as it is 

below the 0.05 threshold) (Exhibit 3.12).  

 These results were anticipated prior to conducting the experimental 

stage testing the DP and CBD approaches. The CBD approach was 

expected to be highly intuitive (easy to understand). It is often discussed 

(Carbonell, 1986) (Riesbeck, Schank, 2013) that problem-solving by 

analogy (the use of experiences from the past when solving new problems) 

is a default and natural way for people to solve problems. It is also pointed 

out that it is usually much easier to learn from a specific problem solving 

algorithm, than to ‘generalise from it’ (Aamodt, Plaza, 1994). Abstractions 

(Design Patterns) are in fact generalised solutions, and the use of abstract 

concepts often requires more intellectual effort (abstract reasoning) than 

the use of past cases. This happens because instinctively, humans tend to 

rely on specific, previously encountered situations when solving new 

problems (Ross, 1989), (Schank 1982), (Anderson, 2013). Reasoning by 

reusing past cases (case-based reasoning/CBD approach) appears to be a 

natural very intuitive and powerful method to solve problems for designers 

(Aamodt, Plaza, 1994) (Riesbeck, Schank, 2013).  
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Exhibit 3.12. Approach characteristics criteria. How easy to implement, helpful and intuitive the DP and CBD 

approaches are. [Also refer Appendix B, pages B64-B65, B68] 

 It seems likely that this is why it is easier to understand and 

implement the CBD approach compared to the DP approach (Exhibit 3.12). 

Participants of the CBD and DP groups reported:  

On a five point scale from 1 – Strongly Disagree to 5 – Strongly Agree: 

It was easy to implement the Design Patterns/Case-Base of algorithmic 

solutions in my own design’ (day 1 and day 2 design assignments) 

(mean, std. deviation) 

Day 1: DP 2.90 ± 0.885/CBD 3.66 ± 0.668, p-value = 0.000; 

Day 2: DP 3.03 ± 0.809/CBD 3.77 ± 0.666, p-value = 0.000; 

 

 Both p-values (0.000) suggest that statistically there is almost 100% 

chance that the difference in results of the DP and CBD groups did not 

happen by chance. This empirical evidence indicates that the use of 

specific algorithmic solutions is considerably easier for designers then the 

use of abstractions (Design Patterns).  
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 The median value for the DP group (It was easy to implement the 

approach) on both days is 3 ‘Neither Agree nor Disagree’’; the CBD median 

is 4 ‘Agree’. Exhibit 3.12 illustrates that the results for: how easy it was to 

understand the approach (‘Approach: is intuitive’), the ease of approach 

implementation (‘Approach: easy to implement’) and the approach 

usefulness (‘Approach: helpful’) follow a similar pattern. The CBD group 

mean value is always higher than the DP group mean value (Exhibit 3.12). 

It seems likely that the level of approach intuitiveness influences the ease 

of its implementation and consequently effects its usefulness (how helpful 

the approach is, as reported by participants). The CBD approach is easier 

to understand, since the use of case-based reasoning is naturally more 

intuitive for people than generalisation (abstraction) (Aamodt, Plaza, 1994). 

 It can be assumed that the use of abstract algorithmic solutions 

requires designers and architects to make a bigger intellectual effort 

(compared to the CBD approach) in order to use Design Patterns as 

‘thinking and working tools’ (Woodbury, 2010). The correlational study 

shows that the reported intuitiveness of the DP and CBD approaches and 

their ease of implementation have a positive dependent relationship with 

‘how helpful’ participants find each of these approaches (See Statistical 

Analysis section). Dependent relationship means that the two criteria have 

a statistically significant correlation. Positive correlation means that when 

one of the criteria increases the other (dependent) criteria is likely to 

increase as well and vice versa.  

 

 For example, the correlations to the answer to ‘Approach is helpful’ 

and the responses to ‘Approach is helpful’/ easy to implement’ were: 
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(Pearson's correlation coefficient - r): 

 ‘Approach: is helpful’ with ‘Approach: is intuitive’’  

DP group r = 0.355, CBD group r = 0.438; 

Approach: is helpful’ with ‘Approach: is easy to implement’  

DP group r = 0.397, CBD group r = 0.434; 

 

 It seems likely that in algorithmic architectural design the reuse of 

case-based programming solutions is considerably more intuitive and 

easy-to-use compared to the reuse of abstract solutions (pattern 

approach). Those participants who found the CBD approach to be highly 

intuitive and easy to use, also found it to be more helpful. It should be 

noted, however, that this ‘helpfulness’ of the approach was reported by 

participants themselves; it was not determined by the measured effect of 

the approaches (such criteria as: the ability to overcome programming 

barriers, explored solution space, ability to accomplish what was wanted, 

etc. (See methodology section)). 

 

Relationship between participants’ experience with the 

CBD approach and their design performance 

The correlational study helps to understand and interpret the dependent 

relationship (correlation) between the use of case-based programming 

solutions (Case-Based Design approach) and participants’ design 

performance (measured effect of the approach), such as their ability to 

realise their original idea or satisfaction with output. Correlation is a 

statistical relation between two variables. For example, in all test groups the 
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systematic changes in the value of ‘Ability to realise original design idea’ 

are accompanied by the systematic changes in the ‘Ability to accomplish 

what was wanted’ (correlation coefficient (r) equals 0.519) (See Statistical 

Analysis section for more details). Correlations can be ‘positive’: mutual 

relationship between two variables, when the value of one variable 

increases the other is likely to increase as well; or they can be ‘negative’: 

reciprocal relationship between two variables, when the value of one 

variable increases the other is likely to decrease. For example, when looking 

at the whole test population (participants of all groups/on day 2), the 

‘Ability to realise original design idea’ has a negative correlation with the 

‘Change in design: due to programming difficulties’ (correlation coefficient 

(r) equals - 0.389), meaning that when one of these variables increases the 

other is likely to decrease. 

 Exhibit 3.13 illustrates (statistically significant) correlations inside the 

CBD group (See Statistical Analysis section for more details). For example, 

the ‘Ability to accomplish what was wanted’ and ‘Satisfaction with output’ 

depend on (are positively correlated with): 

- Participants’ ability to find a CBD solution that they can reuse in their 

own designs (‘Found a DP/CBD solution which fits’) (Exhibit 3.13); 

- How easy participants find the implementation of the CBD 

approach (‘Approach: easy to implement’) (Exhibit 3.13); 

- How helpful the CBD approach is (‘Approach: is helpful’) (Exhibit 

3.13); 

- Participants who find an interesting CBD solution (and change their 

original design because of this discovered solution) are more 

inclined to use parametric design in future (‘Changed design 

because discovered a better solution’/‘Plan to use parametric 

design in future’) (Exhibit 3.13). 
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Exhibit 3.13. Case-Based Design group. Correlations between ‘Ability to realise original design idea’, ‘Ability to 

accomplish what was wanted’, ‘Satisfaction with output’, ‘Plan to use algorithmic design in future’ (Design 

Performance/Satisfaction) and the other criteria. [Also refer Appendix B, pages B71-B82] 
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 These results suggest that participants’ experience with the CBD 

approach is positively correlated with their design performance and 

satisfaction with output. Thus, those participants who could better 

understand and successfully use the Case-Based Design approach were 

also more capable to accomplish their design objectives and be more 

satisfied with their output designs. 

 When CBD group participants could find a programming solution 

in the case-base that they chose to reuse in their own designs, they were 

more likely to have a better design performance (Exhibit 3.13). 

Pearson’s correlation coefficient (r) 

‘Found a CBD solution which fits’ is correlated with ‘Satisfaction with 

output’  

Day 1: r = 0.495, Day 2 r = 0.372;  

‘Found a CBD solution which fits’ is correlated with ‘Ability to accomplish 

what was wanted’  

Day 2 r = 0.604 

 

 The correlation coefficients (r) 0.495/0.372/0.604 indicate a positive 

medium-to-strong dependency between each pair of criteria (See 

Statistical Analysis section for more details). When one of the criteria 

increases the other criterion is likely to increase as well. For example, when 

designers are able to select a fitting reusable solution in the repository 

(case-base), they are more likely to accomplish their design objectives and 

be more satisfied with the design outcome. It also suggests that when 

participants, using the CBD approach, are not able to find a solution (case) 
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they want to reuse, they are less likely to accomplish the intended 

algorithmic design and are less likely to be happy with the output.  

 The challenge of the CBD system in this respect is to contain 

enough programming solutions, covering as many design problems as 

possible, and to be structured (organised/indexed) in such a way that the 

case selection process is intuitive and effective. The CBD system used in 

this study contained over 150 programming solutions. 76.6% of 

participants on day 1/87.2% of participants on day 2 reported that they 

successfully located and reused solutions from the repository. These CBD 

group percentages are significantly higher compared to the DP group who 

implemented Design Patterns in 70%/66.7% of cases (See ‘The Relationship 

between the Level of Abstraction of Parametric Solutions and Their 

Reusability’ Section).  

 These results indicate that the amount and range of programming 

solutions used in the CBD repository was sufficient to provide a base to test 

the CBD approach. In practice, it is next to impossible to cover all the 

possible solutions to all future design problems. A case in Case-Based 

Design can be viewed in different ways. It can be seen as a resulting 

solution (particular programming algorithm), or as a record of a method 

suggesting how to solve a problem (design strategy), or it could be seen 

as a lesson (design knowledge). In all of these definitions the purpose of a 

case in CBD is to help designers and architects to solve a similar design 

problem (Maher, de Silva Garza, 1997). It seems probable that the larger 

systematically indexed repository (containing thousands of cases) can 

provide a better design support, simply because it can cover more design 

cases. It seems reasonable to assume that when designers have more cases 

to select from they are more likely to be able to find what they are 

searching for, and (as this research shows) designers who can find a 
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reusable solution that fits their design idea are likely to have a better design 

performance (‘Ability to accomplish what was wanted’ and ‘Satisfaction 

with output’) (Exhibit 3.13).  

 Exhibit 3.13 also illustrates that ‘Ability to accomplish what was 

wanted’ and ‘Satisfaction with output’ are positively correlated with the 

ease of the approach implementation and how helpful participants find the 

CBD approach. These further suggest that participants’ design 

performance is connected to their ability to use the Case-Based Design 

approach.  

Pearson’s correlation coefficient (r) 

‘Approach: is easy to implement’’ is correlated with ‘Satisfaction with 

output’  

Day 1: r = 0.495/0.409, Day 2 r = 0.415 

‘Approach: easy to implement’’ is correlated with ‘Ability to accomplish 

what was wanted’  

Day 1: r = 0.627/0.408, Day 2 r = 0.358) 

‘Approach: is helpful’ is correlated with ‘Satisfaction with output’  

Day 1: r = 0.357 

 

 This dependent relationship between the criteria suggests that 

those designers (architects) who were able to understand and easily 

implement the CBD approach (use the repository of parametric solutions) 

were more likely to accomplish their design objectives and produce better* 

designs (*as judged by participants themselves). However, it should be 

noted that, even though there is a significant statistical dependency 
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(positive correlation) between the reuse of programming solutions and 

participants’ design performance, this dependency can be interpreted in 

different ways. The first interpretation could be that the reuse of case-

based programming solutions helps designers to use algorithmic 

modelling systems and be more capable of realising their design ideas 

(Exhibit 3.13). This interpretation is supported by the arguments that case-

based reasoning is an effective method, helping people to solve problems 

by reusing previous solutions and experiences (Kolodner, 1991). Therefore, 

it can be reasoned that it was the successful use of the CBD approach that 

affected the design performance (in this case the design performance is 

affected by the use of the CBD approach). The second interpretation could 

be that there are people who are naturally (or due to previous experiences) 

more inclined to understand and use programming languages. These 

people might be more capable of mastering algorithmic design systems to 

realise their design ideas (‘Ability to accomplish what was wanted’), 

therefore producing more satisfactory design outcomes (‘Satisfaction with 

output’), and they also could be more capable of case-based reasoning in 

algorithmic design: finding the CBD approach helpful and easy-to-use. 

Regardless of the interpretations there is a dependent relationship 

(statistically significant correlation) between the reuse of programming 

solutions (CBD approach) and design performance. When one improves 

the other is likely to improve as well and vice versa (Exhibit 3.13).  

 

The reuse of case-based algorithmic solutions induces 

more focused reasoning 

Comparison of the design objectives in each test group indicates that the 

use of Case-Based Design (CBD) in architecture (using algorithmic 
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modelling tools) induces more focused design reasoning and less design 

experimentation (and potentially less innovative designs) (See ‘The Reuse 

of Abstract Parametric Solutions Helps to Explore and Experiment’ section). 

These findings correspond to the similar conclusions expressed by Peace 

regarding the use of case-based reasoning (CBR) in design, stating that 

CBR involves focused thinking, which is often applied to a narrow context 

of a design problem (Pearce, 1992). Statistical analysis of the experimental 

results shows that the use of the Case-Based Design approach affects the 

way participants reason and develop their designs. Comparisons between 

the three test groups shows that the CBD group is significantly more 

focused on realisation of the initial design ideas (significantly different from 

the control group (NA) and the Design Patterns group (DP) on the second 

day of the workshop) (Exhibit 3.14, See the Methodology Section).  

 

 

Exhibit 3.14. Design Objective criteria. Differences between the CBD and control (NA) groups. [Also refer Appendix 

B, pages B64, B67] 

 On the second day of the workshop, when designers gained more 

experience with visual programming and the use of the CBD system 

(online repository of programming solutions) the shift in design objectives 

becomes evident and statistically significant (Exhibit 3.14). Designers using 
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the CBD approach were more intent on realising their original design 

concepts, compared to both the DP and control groups. Statistical 

comparison of the objective ‘To achieve what I originally sketched’’ 

between all three groups gives the p-value, which equals 0.012.  

 

Design Objective: ‘To achieve what I originally sketched’ 

Day 1: NA 40%/DP 56.7%/CBD 51% (p-value ‘All Groups’ = 0.460); 

Day 2: NA 48%/DP 60%/CBD 80.8% (p-value ‘All Groups’ = 0.012); 

 

 This level (0.012) is below the 0.05 level of significance, meaning 

that, statistically speaking, there is at least a 98.8% chance that the 

difference in the results did not happen by chance (See Statistical Analysis 

Section). Further (Post Hoc) comparisons between each pair of test groups 

show that the difference between the control group (NA) and the Design 

Pattern group (DP) is not significant (p value DP/NA = 0.268. That suggests 

that a similar percent of the DP and control group participants were intent 

on realising their original design idea (Exhibit 3.14). The Post Hoc 

comparison also shows that the Case-Based Design group was significantly 

more focused on realising their original design idea compared to both the 

DP and control (NA) groups. The CBD/DP and CBD/NA p-values are both 

below the 0.05 level (significance level) (p-value DP/CBD = 0.045, p-value 

CBD/NA = 0.005), indicating significant difference in results (Exhibit 3.14). 

These findings suggest that the reuse of case-based parametric solutions 

in architecture induces more focused (narrow) thinking and design 

reasoning. The ‘more focused’ thinking and reasoning implies that it is 

oriented on the realisation of a particular design concept, rather than an 

open-ended design experimentation and exploration (See ‘The Reuse of 

Abstract Parametric Solutions Helps to Explore and Experiment’ Section). 
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 Even though in the longer run (second day of the workshop) the 

CBD approach induced more focused design thinking, as opposed to 

abstract ‘design experimentation’ of the DP group; in the initial stages of 

learning (first day of the workshop) the use of the Case-Base also induces 

the ‘exploration of algorithmic ways and form making logics’ (Exhibit 3.14). 

Note: there is a difference between the ‘design experimentation’ (design 

objective: ‘To experiment with parameters/model’) and the ‘exploration’ of 

algorithmic form-making (design objective: ‘To explore algorithmic form-

making’). The ‘design experimentation’ refers to the modification of design 

the model, such as changing the parameters of the programming 

algorithm or changing the programming logic itself to see the how the 

model responds (design objective focused on the experiments with the 

design model). The ‘exploration’ of algorithmic form-making refers not to 

the experiments with the design model itself but to finding out what are 

the capabilities and limitations of the algorithmic modelling system (design 

objective focused on the exploring technology).  

 Both abstract (DP) and case-based (CBD) reuse methods seem to 

encourage a more profound investigation of algorithmic design logic and 

techniques. ‘To explore algorithmic form-making’ is one of the five most 

common categories of design objectives (identified by this study) (See 

Methodology Section), which refers to the exploration of the 

computational technology, its form-making logic and capacity: what it can 

and cannot do (note that it does not refer to the experimentation with the 

design output itself).  
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Design Objective ‘To explore algorithmic form-making’ 

Day 1: NA 24%/DP 63.3%/CBD 46.8%; (p-value ‘All Groups’ = 0.014,)  

(p-value DP/CBD = 0.156, p-value DP/ NA = 0.004, p-value CBD/NA = 

0.049) 

Day 2: NA 28%/DP 40%/CBD 23.4%; (p-value ‘All Groups’ = 0.263) 

 

 These results indicate that on the first day of the workshop both 

DP and CBD group participants were more interested in the ‘exploration 

of the algorithmic modelling technology (form-making)’ than participants 

of the control group (NA) (Exhibit 3.14). The p-value comparing the 

percentages of participants who wanted ‘to explore algorithmic form-

making’ between all three test groups equals 0.014, which is below 0.050 

level, meaning that results are significantly different. Further comparison 

between each pair of test groups shows that the DP (63.3%) and CBD 

(46.8%) groups had more or less similar percentages (p-value = 0.156 is 

above the significance level). Compared the control group, who only had 

24%, both DP and CBD group were more intent to explore the capabilities 

of an algorithmic design system (p-value DP/ NA = 0.004, p-value 

CBD/NA = 0.049 are both below the 0.050 threshold). This might indicate 

that during initial learning stages the reuse of abstract and case-based 

solutions encourages designers to explore algorithmic design technology. 

 

Relationship between the reuse of case-based 

algorithmic solutions, innovation and design 

complexity 

The shift towards more focused design reasoning in the CBD group has 

affected the way designers (who reused case-based solutions) built their 
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programming algorithms, which consequently affected the design outputs. 

The analysis of the algorithmic modelling criteria, such as: model 

complexity, algorithm complexity, and explored space of the programming 

solutions (algorithm Variety and Novelty), shows that the use of CBD 

approach has affected various aspects of the designs. Exhibit 3.15 

illustrates that ‘Algorithm Variety score’ on day 1 and ‘Model Complexity 

score’ on day 2 have significantly different results, when compared 

between all three test groups (See a description below the diagram). The 

complexity levels of programming algorithms seem to be relatively similar 

in all groups (‘Algorithm: Complexity score’), both days p-values 

comparing means of the NA, DP, and CBD groups are above the 

significance level: day 1 p-value ‘All Groups’ = 0.136/day 2 p-value ‘All 

Groups’ = 0.898 (See Methodology Section) (Exhibit 3.15). 

 There is an ambiguity of opinions regarding the relationships 

between the use of Case-Based Design and explored solution space in 

design (Novelty and Variety) (See Methodology Section). One end of the 

spectrum of opinion suggests that innovative ideas often occur through 

the reuse of existing design solutions (Sun, Faltings, 1994), especially when 

two or more solutions are combined together (Hua, Fairings, Smith, 1996). 

Therefore, the hypothesis is that the CBD group might be expected to 

have a higher Novelty (original/not typical) of programming solutions, and 

therefore increased explored solution space. The hypothesis of those at 

the other end of the spectrum of opinion is that the disadvantage of the 

Case-Based Design approach is that ‘the solution space is not fully 

explored’, and there is no guarantee that the reused case leads to the 

optimal solution (Kolodner, 1991). Following this latter hypothesis the 

Variety (range of explored design options) of CBD group might expected 

to be lower compared to other test groups. The results of this 
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experimental study show no evidence that the reuse of case-based 

solutions led to innovative programming solutions. In fact, the Variety 

(explored solution space) of programming algorithms is consistently lower 

in the CBD group compared to the DP group (Exhibit 3.15). 

 

 

Exhibit 3.15. Algorithmic Modelling criteria: Model complexity score, Algorithm complexity score, Algorithm Variety 

score, Algorithm Novelty score. [Also refer Appendix B, pages B64] 

 The evaluation of programming solutions show that in terms of 

explored space of algorithmic solutions, the CBD group had a very similar 

range of use programming components (Algorithm Variety score) and 

innovation (Algorithm Novelty score) as the control group (No Approach 

group). On both days, the p-values comparing ‘Programming Algorithm 

Novelty’ between all groups are above the significance threshold level 

(0.898/0.171 both are larger than 0.050 level). Therefore, statistically there 

is no significant difference in the ‘Novelty scores’ of algorithmic solutions 

between the group that used no approach and the group that reused 
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case-based designs. This study found no evidence supporting the claims 

that the adaptation and combination of existing algorithmic solutions 

(cases) can lead to innovative designs. In fact, on the second day of the 

workshop the average Novelty score (evaluating the degree of how 

unusual/not typical the solution is) of programming algorithms developed 

by the CBD group is seemingly lower (43.6) compared to the control 

group (NA) (50.8) and to the group reusing abstract solutions (DP) (53.7) 

(Exhibit 9.5).  

Programming Algorithm Variety (range of programming components): 

Day 1 (mean): NA - 12.4/DP – 15.3/CBD – 12.8 (p-value ‘All Groups’ = 

0.008) 

Day 2 (mean): NA – 16.6/DP – 17.6/CBD – 15.8 (p-value ‘All Groups’ = 

0.268) 

Programming Algorithm Novelty (The degree of how unusual/not 

typical a programming algorithm is.): 

Day 1 (mean): NA – 28.1/DP – 29.3/CBD – 27.4 (p-value ‘All Groups’ = 

0.898) 

Day 2 (mean): NA – 50.8/DP – 53.7/CBD – 43.6 (p-value ‘All Groups’ = 

0.171) 

 

 The correlational analysis shows that in the CBD group there is a 

negative dependency between the ‘Novelty’ of programming algorithms 

and the reuse of case-based algorithms, which altered the original design 

concepts (‘Changed design: because discovered a better solution’) 

(Pearson’s correlation coefficient (r) equals – 0.380) (Exhibit 3.16). This 

correlation might suggest that the resulting algorithmic solutions tend to 

be less innovative (more typical) when participants abandon or 
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significantly change their original design idea in favour of reusing an 

existing solution that does not really fit their intended design concept, but 

seems to be more interesting and worth changing the original plan. These 

findings indicate that the use of Case-Based Design in architecture can 

actually lead to the decrease of the explored solution space. This effect of 

the CBD approach might not be the most desirable especially during 

conceptual design stages where the experimentation and exploration of 

design options can make a significant difference and effect the further 

development of the project. 

 The CBD group participants’ ability to accomplish their design 

objectives (‘Ability to accomplish what was wanted’) has a negative 

correlation with the complexity levels of resulting programming solutions 

(‘Algorithm: Complexity score’) (Exhibit 3.16). This dependency is 

consistent and repeats on both days (day 1 r = - 0.362/day 2 r = - 0.378). 

Notice that the correlation is negative (reciprocal relationship between the 

variables), meaning that the CBD group participants were more likely to 

be satisfied when they managed to realise their design concepts using less 

complex algorithms. Accordingly they reported that they were able to 

accomplish less when they had to develop more complex programming 

algorithms in order to generate the intended outcome (design model). 

Interestingly, the situation in the DP is the opposite: participants who 

reused abstract solutions are likely to be more satisfied when the 

complexity of programming algorithms and output models is higher (See 

‘The Reuse of Abstract Parametric Solutions Helps to Explore and 

Experiment’ Section). 
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Exhibit 3.16. Case-Based Design group. Correlations between ‘Model complexity score’, ‘Algorithm complexity score’, 

‘Algorithm Variety score’, ’Algorithm Novelty score’ (algorithmic modelling performance) and the other criteria. [Also 

refer Appendix B, pages B71-B82] 
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 As discussed in section ‘The reuse of case-based algorithmic 

solutions induces more focused reasoning’, the CBD group tend to be 

more committed to a particular design goal (more focused reasoning) 

then the other test groups. Participants using the Case-Based Design 

approach were less interested in experimentation with the design models 

or the exploration of the alternative options, and more focused on the 

realisation of the original design concepts. Observations indicate that 

participants of the CBD group were not particularly interested in creating 

a more developed (complex) design model. Exhibit 3.16 illustrates that 

there is a reciprocal relationship (negative correlation) between the ‘Ability 

to accomplish what was wanted’ (on day 1) and ‘Model complexity score’ 

(on day 2), r = -359. Exhibit 3.16 shows that on the second workshop day 

the average complexity of the output design models of the CBD group 

(12.7) was significantly lower (p-value between all groups equals 0.031), 

compared to the control group (13.9) (p-value CBD/NA equals 0.062) and 

compared to the Design Patterns group (14.1) (p-value CBD/DP equals 

0.065). Even though, technically, the 0.062/0.065 are above the 

significance level (0.050), they are still very close to it. These p-values mean 

that statistically, there is at least 93% chance that the differences in results 

between the CBD and DP/NA groups have not happened by chance. 

Therefore, it seems likely that the CBD approach induces not only the 

development of the more simple programming solutions, but also more 

simple design outputs (Exhibits 3.15, 3.16).  

 

Indexing issues in case-based design systems 

Designers and architects who participated in this study often used 

metaphors and descriptive attributes when describing their algorithmic 

designs and when applying key words (indexes/tags/labels) for their 
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models, concepts and programming algorithms (Exhibit 3.17). The issue 

with abstract indexes (metaphors and attributes) is that they are rarely 

repeated (or searched for) by others, due to participants’ individual 

backgrounds and associations. For example the same design solution one 

participant would label as a ‘Cloud’, the second as a ‘Blob’, the third as a 

‘Smooth Curvilinear Surface’. When browsing a repository of 

programming solutions these people are likely to search for some specific 

indexes, which express their own understanding and associations with the 

design characteristics, which may not match the indexes assigned by 

others. As a result, the retrieval of a case is likely to be unsuccessful. 

Keywords that work only for few people (limited population with matching 

associations) are not particularly effective key words. The main function of 

indexes in Case-Based Design systems is to provide a mechanism to 

navigate through the data-base of solutions, to identify and retrieve cases 

that a designer can potentially reuse.  

 Indexing (tagging/labelling) in algorithmic design can refer to 

various aspects of the solution, they can be: contextual indexes, visual 

indexes, association (metaphors/emotions) indexes, conceptual indexes, 

indexes describing the output geometry (forms) or programming 

solutions. Effective indexing is a very challenging task, because one has to 

predefine the features that will be relevant and helpful for future reuse 

and that will be understood and searched by others (Maher, de Silva 

Garza, 1997). In practice, even when a Case-Base contains a set of suitable 

algorithmic solutions for a particular design problem, there is no 

guarantee that any user can easily find and retrieve the appropriate cases, 

due to the mismatch in the thinking patterns of a person who applied the 

indexes and a person who searches for them. It is likely that this issue is 

going to be more relevant for the large scale case-bases. That is why 
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indexing and finding the cases is one of the main difficulties of designing 

a Case-Based system and using a CBD approach (Zimring, 1995). 

 To investigate how designers and architects tend to label their 

algorithmic solutions in architecture, on each day of the workshops all 126 

participants of this study were asked to describe their designs by writing 

their own key words (applying indexes for their designs). Participants were 

asked to address three different aspects of their design solutions (use 

three categories of key words): 1) key words describing the form and 

geometry of their output design model; 2) association key words, 

describing design with abstractions, metaphors and attributes; 3) 

algorithmic modelling key words, describing programming solution. The 

key words in each category then were analysed and sorted into categories 

of most re-occurring indexes, which were (See Methodology Section):  

 Geometry: Standards/Primitives (x example: point, circle, polygon, 

line etc.) 

 Non-Standard geometry (index example: spiral, curves, surface etc.) 

 Metaphors/Abstractions (index example: atom, ripples, wave etc.) 

 Descriptive Attributes (index example: sharp, spiky, smooth, 

twisting, etc.) 

 Programming Commands and Components (index example: divide 

surface, project, loft, extrude, rotate etc.) 

Results of this investigation show that when describing form and geometry 

of the output models, designers mostly use ‘geometry’ related indexes 

(53% (276 key words)) or ‘metaphor/descriptive attributes’ related indexes 

(40% (209 key words)). ‘Programming’ related indexes were rarely used 

when reasoning about shape and geometry of a generated model (7% 

(39 key words)) (Exhibit 3.17). 
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Exhibit 3.17. Indexing form and geometry of designs, (all groups) day 1/day 2 key words count. [Also refer Appendix 

B, pages B83-B84] 

 When using association key words, describing design with 

abstractions, metaphors and attributes designers and architects used 

predominantly ‘metaphors or descriptive characteristics’ (90% (423 key 

words)) and rarely referred to ‘geometry’ (4.5% (21 key words)) or 

programming (5.5% (25 key words)) (Exhibit 3.18). It seems likely that 

architects and designers tend to think (reason) about their design solutions 

with abstraction and it is relatively easy for them to describe their designs 

with associations, metaphors and characteristic attributes. However the 

major part of these abstract key words are not universal, due to individual 

experiences and backgrounds of participants. Many of the key words that 

participants used as associations (metaphors) seem unlikely to be 

considered the most helpful or effective attributes (indexes) for future 

reuse. For example: ‘aesthetics’, ‘light rhythm’, ‘jittery’, ‘organic’, 

‘slumping’, ‘drawn’ etc. These key words might work for some people, and 

not work for others. Due to the differences in their personal experiences 

and associations, individual designers ‘see’ features in a design solution 

differently. These results seems to confirm that it is very hard to define the 
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characteristics and distinctive attributes representing a design solution 

(case) universally (Dave, 1994). This study shows that finding universal 

‘abstract’ attributes is especially difficult, because even though designers 

tend to use a lot of metaphors and attributes when describing their 

designs, these descriptions are often too individual and far from being 

universal (Exhibits 3.18, 3.19). 

 

 

Exhibit 3.18 Indexing design associations using metaphors and distinctive attributes, (all groups) day 1/day 2 key 

words count. [Also refer Appendix B, pages B83-B84] 

 

 Participants used 704 key words describing their design with 

abstract metaphors, attributes and associations, which is 40% of all the key 

words (indexes). 380 (21%) of the key words were related to ‘geometry’ of 

output models and 686 (39%) were related to parametric algorithms 

(programming solutions) (Exhibit 3.18, 3.19). Out of all 1770 key words 

used by participants to describe different aspects of their designs 30 key 

words were repeated more than three times (counted for cases when 

different participants used the same index (key word) to describe their 

design solution). Out of these 30 top repeated keywords only 6 were 

related to ‘abstract’ design features. This happened because the majority 
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of metaphors and associations (abstract key words) were individual, 

whereas the ‘form and geometry’ (10 out of 30 top repeated key words) 

and programming related key words (14 out of 30 top repeated key 

words) were more universal (Exhibit 3.19).  

 

 

Exhibit 3.19. Key words used to describe parametric designs. Indexing in Case-Based Design, [Also refer Appendix B, 

pages B83-B84] 

 As a part of Case-Based Design approach evaluation the CBD 

group participants were asked to suggest how the online repository (used 

to test the reuse of case-based algorithmic solutions in architecture) could 

be improved. It was often suggested by participants that in addition to 

having the animated images of output geometry and the mechanism to 

search and retrieve design cases (programming solutions), based on 

specific indexes, a CBD system should have an established (pre-defined 

generalised) set of categories or ‘groupings’. The suggestion to 

‘potentially split cases into generalised categories’ was explained by one 

of the participants using the following argument: ‘with such a wealth of 

information on the screen and even in refined searches it can be hard to 

remember what you are trying to find/looking for.’ The organisation 
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(classification and indexing) of cases is one of the main challenges of 

developing a Case-Based Design system (Dave, 1994). There are various 

aspects according to which, algorithmic design cases in architecture can 

be potentially sorted into categories. For example, it could be:  

 design problem (what a particular design solution is trying to 

achieve/goals/objectives);  

 design context (when and why this particular solution is 

relevant/conditions/limitations /scope),  

 design output (what a resulting solution produces as 

output/building or structure typology/description of forms and 

geometry); 

 programming solution (how a design problem is solved/logic of the 

algorithm/algorithmic solution); 

 All of these aspects of algorithmic solutions can help users of a CBD 

system to navigate through a database of cases in order to find and 

retrieve suitable solutions. Experience with the development and the 

feedback from participants who used a Case-Based Design system (testing 

the CBD approach in this study) shows that some of the potential 

categories can be more useful than the others. The preliminary results of 

the key words (indexing) investigation show that indexes, describing 

geometry features of an output model (‘design output’ indexes such as: 

lines, curves, circles, polygons, pipes etc.), can be useful but only to a 

certain extent. Practice shows that in algorithmic modelling it is often 

relatively easy to change the type of output (generated) geometry by 

minimal alterations to the input parameters or replacement of some 

programming components in the algorithm. For example, in an algorithm 

populating circles on a grid of points (or subdividing a surface into panels), 

a modeller (user) can change only one component to switch from circles 

to polygons, or to spheres or boxes. Similarly, it is often relatively easy to 
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change an algorithm from using lines to using polylines, or from polylines 

to curves, and so on. Therefore, despite their popularity, the use of 

geometrical features tags in some cases is not the most effective way to 

index (categorise) an algorithmic solution.  

 Indexes describing a ‘design problem’ (such for example as: tower, 

canopy, pavilion, urban furniture etc.), as practice shows, also can be rather 

limiting (and therefore inefficient). For example, it was observed that some 

participants dismissed a potentially fitting reusable algorithm just because 

the index stated that it was a ‘table’ and they needed to create a ‘tower’. 

The same programming logics can potentially be reused (applied) to 

model large architectural objects, or to design urban furniture, or to create 

fine jewellery items. This makes it possible that in practice an algorithm can 

be reused and applied to a variety of design problems: it is often only a 

matter of scale and material affordances. The ‘design context’ indexes, 

describing the conditions, limitations, and scope of a design problem (or 

solution) were only partially addressed by this study as the CBD system 

(used to test the Case-Based Design approach) contained mainly simple 

algorithms which were applicable to a wide range of design contexts (See 

Methodology Section). Even though this ‘design context’ category was 

outside the scope of this study, this generalised case category, identifying 

the features of ‘when and why each particular solution is relevant’, can 

potentially be useful. It should be further investigated by the studies 

dealing with more complex design cases.  

 Observations and the feedback from participants using the CBD 

approach show that the categorisation principles based on the aspects of 

the ‘programming solutions’ seem to be among the most promising ones 

(used in the context of architectural algorithmic design). Indexing based on 

the aspects of a programming solution refers to the features of a 
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programming algorithm: what is the program or how exactly a design 

problem is solved. Exhibit 3.19 illustrates that key words describing 

programming commands and components (such as divide, rotate, move, 

project, morph etc.) were often used and repeated by other participants. 

The vocabulary (range of indexes) of programing commands and 

components is significantly narrower and clearly defined especially 

compared to the use of associations, descriptive attributes and metaphor 

indexes. Out of the 30 most repeated key words 14 relate to the features 

of a programming solution. It should be noted that terms related to 

programming and algorithmic modelling are not universal for all modelling 

platforms (software). However these types of indexes are likely to be 

effective when solutions are written using the same programming 

language. 

 When describing the features of their programming solutions 

participants mostly used the key words referring to programming 

commands and components (80%) rarely using references to ‘geometry’ 

(11%) or association indexes (attributes and metaphors) (9%) (Exhibit 3.20). 

 

 

Exhibit 3.20. Indexing programming solutions/algorithmic modelling (all groups) day 1/day 2 key words count.  
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[Also refer Appendix B, pages B83-B84] 

 It was observed that those participants who knew what they 

wanted a program to do, were able to more easily find a fitting algorithm 

using indexes referring to programming commands. For example, when 

designers wanted to create a pavilion surface made of rotating panels, 

they could search for such indexes as: ‘divide’, ‘surface divide’, ‘sub-

surfaces’, ‘rotate’ etc., and there they were likely to find what they were 

looking for. However, in order to know which indexes to use, they had to 

have an understanding (knowledge) that a surface can be divided into 

sub-surfaces. Some participants reported that they could easily and 

effectively use the index search related to programming, while the others 

had difficulties with it. Most of index search difficulties occurred on the first 

day of the workshop when participants were still not too familiar and 

confident with the use of Rhino and Grasshopper and their modelling logic 

and commands. Here is how some of the CBD group participants 

expressed their issues with the index search: 

 ‘I struggled to know what key words to type since I do not use Rhino 

and Grasshopper and the relevant jargon.’ 

 ‘I found myself unsure of what key words to search for when using 

the search tool.’ 

 ‘Seems hard to connect visual ideas with word commands. Often I 

know what I want to achieve but do not know how to achieve it!’ 

 It seems unlikely to expect that designers and architects (who are 

amateur programming users) will know exactly which particular 

programming command or component index they need to use when 

searching through the case-base of algorithmic designs. The more 

experienced designers get the easier it is for them to identify the relevant 

key words (indexes) describing the reusable solutions, which can 
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potentially help them to translate their design idea (concept) into a 

programming algorithm.  

 In the fields of architecture and design, the information is often 

interpreted not textually, but visually in the form of diagrams and images. 

When using the CBD system participants often relied on the case related 

images provided (See Adaptation of the CBD approach Section for more 

detail). It was observed that after locating (narrowing down) a set of 

solutions using the textual indexes, designers preferred to rely on visual 

information (animated images of models). These images somewhat 

helped to overcome the lack of knowledge in programming terminology. 

When asked ‘Which was the most helpful way to find information in the 

Case-Base of algorithmic solutions?’’ participants of the CBD group 

reported (choosing on three options): 

 Key words (10%) 

 Visual diagrams/Images (38.2%) 

 A combination of keywords and visual diagrams (51%) 

 This further proves the point that in architecture and design the 

visual representation of cases is an important indexing of cases (or, in 

some cases, is even more important). Visual representation of cases gave 

participants an opportunity to get the general understanding of what each 

algorithmic solution is producing as output and how the design model 

responds to the changes in parameters (which was possible due to the 

fact that the images were animated). However, the visual search 

(evaluation of cases) is only effective when there is a reasonable amount 

of cases displayed. It is likely to work for a dozen or a couple of dozen 

cases, but it seems unrealistic to expect that the user of a CBD system will 

be able to visually scan through hundreds or thousands of cases. The 
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observations show that that the visual evaluation of cases often happens 

as the method for final selection after the preliminary index search is done. 

 Generalised/abstract indexes and groupings (classification of 

cases) are important, because (due to the specifics of the human cognitive 

model) knowledge in our memory exists as both generalisation 

(abstraction) and as a collection of specific cases (solutions) (Heylighen, 

Neuckermans, 2001). The pre-defined classification of cases can help 

designers not only to narrow down the range of specific relevant cases, 

but also to help them to understand what they should look for, so they 

can effectively navigate through the database. The issue with the index 

search is that, in theory, the search/finding a case in a Case-Base suggests 

that designers already know that they are looking for. This implies that a 

design problem: ‘What I want to do and how I want to do it’ is fully defined. 

However, in practice defining the problem (and therefore knowing what 

key words to search for) is actually a part of a design process. That is one 

of the reasons why designers often find it very difficult to clearly identify 

the relevant search indexes (Maher, de Silva Garza, 1997). In design, 

especially in conceptual design, a design problem is a task (algorithm) 

without a clearly defined specification, because a part of the problem is to 

identify what the problem is (Domeshek, Kolodner, 1992). Nevertheless, it 

is possible to assist designers in their search by providing visual 

information, clear indexes and (as this study suggests) generalised 

categories. As suggested by the observations and the feedback from 

participants there can be several strategies of how to improve the future 

algorithmic case-base systems for architectural design: 

1) A dictionary of indexes – to help user navigate through the 

repository; 
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2) A search engine that keeps track/analyses the relationship between 

the indexes (key words) and can suggest solutions that are associated with 

each index. For example, when a user searches for an abstract (metaphor) 

index, such as ‘cloud’, and cannot find a fitting solution, a program will 

suggest solutions with ‘similar’ (related or synonymous) indexes, such as 

‘swarm’ or ‘cluster’. However, the implementation of this strategy can 

potentially be rather complicated. This study shows that the abstract 

indexes (key words) are not universal and substantially vary from person 

to person. That is why the ‘similar index’ suggestions that will work for one 

user could be absolutely useless for the other person. 

3) The generalised categories that can be related to algorithmic 

modelling (programming solutions). These algorithmic modelling 

categories can potentially be based on Patterns for Parametric Design, 

developed by Robert Woodbury (2010), as these abstract (generalised 

solutions) proved to be an effective method of explaining and utilising the 

principles and logic of algorithmic modelling in architecture (See The 

Reuse of Abstract Solution section). It is planned to continue this study in 

future (and explore/test this strategy of using the Design Patterns as a 

grouping principle for a Case-Base of algorithmic solutions. 

 

3.4 Comparison between reuse approaches: 

abstraction versus case-based  

Effect of the approaches on the design thinking 

This research tested whether the reuse of knowledge (tested by the reuse 

of abstract and case-based algorithmic solutions) can help designers and 

architects overcome barriers associated with programming and can 

improve algorithmic modelling performance. Compared to the control 
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group participants (No Approach), participants in both abstract and case-

based reuse approach groups demonstrated improved performance. The 

differences in results were statistically significant (at 95% certainty level), 

including the ways designers’ think and perform; and in what they 

ultimately produce. One of the most statistically significant differences is 

the major shift in the design objectives, caused by the use of approaches. 

The differences in objectives manifest themselves when designers gain 

more experience in algorithmic modelling. This can be seen in Exhibit 3.21. 

It illustrates the measured differences in the design ideation criteria 

between the abstract and the case-based study approaches on each day 

of the workshops. For three of these five criteria the differences were 

statistically significant: for these the p-value is highlighted in black, not 

grey, and most of these differences showed themselves to be statistically 

significant on day 2 of the workshops. Interpreting the measured 

responses, we can see that those designers who reused abstract solutions 

(the Design Patterns group) were more focused on experimenting with 

parameters (Exhibit 3.21).  

Design Objective: ‘To experiment with parameters’ 

Day 2: NA 12%, DP 46.7%, CBD 8.5%,  

(p-value All groups = 0.000, p-value DP/CBD = 0.000, p-value DP/NA 

= 0.006, p-value CBD/NA = 0.463) 

Design Objective ‘To achieve what I originally sketched’ 

Day 2: NA 48%, DP 60%, CBD 80.8%, p-value All groups = 0.012, p-

value DP/CBD = 0.045, p-value DP/NA = 0.268, p-value CBD/NA = 

0.005. 

 

 Participants of both approach groups were much more likely to 

explore algorithmic form-making and to try out new programming logics 
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compared to the participants of the control group (No Approach (NA)). It 

should be noted that the group using the Case-Based Design approach 

was also more invested in the investigation of the capacity of algorithmic 

modelling (46.8%) compared to the control group (24.4%); however, the 

DP group showed the biggest interest ‘To explore algorithmic form-

making’ (63.3%) (Exhibit 3.21). Those who reused algorithmic solutions 

from specific design cases (Case-Based Design group) were more 

committed to realise the originally sketched design ideas and were less 

interested in explorations and experimentations (Exhibit 3.21). 

 

 

Exhibit 3.21: Typology and distribution of design objectives. [Also refer Appendix B, pages B64] 

 The shift in design objectives and modelling priorities appeared to 

have a significant influence on the design process and, as a result, on the 

final design output. The test group who reused abstract solutions (DP 

group) were less committed to a particular design goal. This is illustrated 

in Exhibit 3.22 by two designs from the DP group where the two 

participants reported a score of 2 (out of a maximum 5) on their ability to 
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model their original design idea. The figure shows the original hand sketch 

and the output model from their Day 2 DP workshop. These two 

participants also reported a 4 (out of 5 again) on their ability to find a 

Design Pattern that fitted their idea and a 4 on their ability to accomplish 

what they wanted. As shown in Exhibit 3.21, participants in this group were 

more likely to experiment and try alternative options of programming 

logic and components. This in turn has apparently influenced the way 

designers created their programming algorithms. Analysis of the 

programming algorithms showed that those who reused abstractions had 

a significantly greater explored solution space of the algorithms, 

compared to the group who reused specific design solutions.  

 

 

Exhibit 3.22: Examples of sketches (original design ideas) and corresponding output models, designed by participants 

using Design Patterns. Typical cases where designers have significantly changed their original idea and still reported 

that they were able to find a Design Pattern(s) that fit and were able to accomplish what they wanted. 
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Exhibit 3.23: Examples of sketches (original design ideas) and corresponding output models, designed by participants 

using Case-Based Design approach. Typical cases where designer managed to develop an output model that was 

close to their original idea and reported that they were able to find a Design Pattern(s) that fit and were able to 

accomplish what they wanted. [Also refer Appendix B, pages B64] 

 

 Statistical testing indicates that designers who used case-based 

reasoning while developing their algorithmic solutions tended to focus on 

modelling a particular design outcome. This is shown in Exhibit 3.22 by 

two designs from the Case Based Design (CBD) group where the two 

participants reported a score of 4 (out of a maximum 5) on their ability to 

model their original design idea. As a group, the analysis in Exhibit 3.22 

suggests they were less interested in exploring different programming 

options and new strategies. Instead, those who used CBD tended to 

implement components that they already knew (and which were explained 

during the workshop tutorials). When browsing the online case-base, 

these workshop participants predominantly used key words associated 
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with already familiar (used in the past) programming components, rather 

than using abstract key words, thus reducing the likelihood of developing 

alternative programming solutions. 

 The evidence suggests that use of case-based reasoning in 

parametric design will most likely decrease the variety of programming 

components used to create parametric models. Designers who use CBD 

also tended to produce less novel (more typical) programming solutions. 

However, it should be noted, that while the CBD group did use a 

substantially smaller range of programming components and developed 

less novel programming solutions compared to both DP and control 

groups, they reported higher overall satisfaction with the design model 

and their ability to accomplish their design objectives than with the abstract 

approach (Exhibits 3.22-3.23). These conclusions further confirm the 

findings reported in the earlier research on the implementation of CBD 

tools in design, stating that:  

 ‘The major disadvantage of the case-based method is that the 

solution space is not fully explored and as a result, there is no guarantee 

of an optimal solution’ (Kolodner, 1993) (See Reuse of Case-Based 

Solutions Section).  

 

Change in modelling speed/model complexity  

The shift in design strategies caused by the use of abstract and case-based 

algorithmic solutions had a significant effect on the complexity of 

produced designs. Designers who reused specific programming solutions 

(CBD group) were likely to develop less complex output models, compared 
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to both the abstract (DP) and No Approach groups (Exhibit 3.24, 3.25). It 

would appear that the ‘abstract’ group’s greater interest in experimenting 

with forms and parameters produces designs less restrained by the 

limitations of the original design concept. Four example designs from this 

abstract group are shown in Exhibit 3.24. The suffix to the participant ID 

number shows that three of these are from day 1 of the workshop, and 

one from day 2. The score highlighted in black under each design has been 

developed as a means of systematically ranking the complexity of the 

programming algorithm. All four of the participants whose work is 

illustrated reported high (5 out of 5) satisfaction with their output model, 

but were far less satisfied with their ability to model their original idea (a 

score of 2 or 3 out of 5).  

 Designers who reuse particular programming solutions, seem to be 

more focused on modelling a specific design outcome. Exhibit 3.25 shows 

four example outputs from this group laid out in the same manner as 

Exhibit 3.24. Two of the outputs are from Day 1 of the workshop and two 

from Day 2. The overall programming complexity of these examples is 

much lower than for the DP group in Exhibit 3.25. The four examples in 

each figure were selected to be clustered close to the average for each 

approach, but to all have a score of 5 on each workshop participant’s 

satisfaction with the output model. 

 It is interesting that the No Approach workshop group were like 

the DP group in that they showed greater readiness than the CBD group 

to change their initial concepts, and to develop and experiment with their 

designs. The CBD group participants were more likely to try and develop 

a particular programming sequence, which would generate the form that 

they originally sketched, even though this might prove to be time-

consuming. 
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 Exhibit 3.24. Examples of models, designed by participants, who used Design Patterns and were able to accomplish 

what they wanted; explored alternative design options; significantly changed the original idea; and developed more 

complex programming algorithms and output models. [Also refer Appendix B, pages B64] 

 

 There is likely another reason that the CBD group participants might 

be slower in modelling than the abstract and no-approach groups: it is 
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related to the time spent by users accessing the case-base examples 

looking for programming sequences that allow them to generate the form 

they originally sketched. Analysis of the screen recordings indicates that 

participants who reuse solutions from the case-base, tend to spend a 

considerable amount of time browsing the case-base and exploring 

various programming solutions. It was observed that designers rarely reuse 

the very first solution from the case-base which they chose to probe. 

Instead, they tend to compare several design options, before deciding 

which solution they actually want to reuse. Observation of the group which 

used case-based design shows that the search process for the most fitting 

specific solution can take a considerable amount of time, which inevitably 

slows down the overall speed of algorithmic modelling. Reuse of abstract 

solutions in this case has an advantage. 

 It seems likely that once designers and architects grasp the idea of 

a design pattern they do not have to re-learn it each time they implement 

it in a new design problem. Learning why and how to use a particular 

abstract solution (design pattern) is a one-time operation. In theory, when 

designers know a design pattern they might be expected to re-apply it to 

a new design task straight away. Designers who reuse specific solutions are 

likely to search the case-base of algorithms every time before they chose 

to reuse (copy/modify) (Woodbury, 2010). The ‘modify’ part of this 

copy/modify approach is very important as in most cases each reused 

solution has to be adapted to suit the new design context – to achieve the 

original sketch design outcome. 
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Exhibit 3.25. Examples of models, designed by participants, who used Case-Based Design approach and were able 

to accomplish what they wanted; managed to model the original idea; and developed more simple programming 

algorithms and output models. [Also refer Appendix B, pages B64] 

 

 Correlational analysis was used to study the reasoning of the 

designers in each group. Higher complexity levels of the output models 
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and of the programming algorithms are perceived positively by those who 

reused abstract solutions (Design Pattern (DP) group) (See ‘The reuse of 

abstract solutions’ section). The more complex the design models that DP 

participants produced, the higher their satisfaction with the output 

(correlation coefficient 0.463). Those DP designers, who managed to 

develop more complex programming algorithms also found the DP 

approach more helpful (correlation coefficient 0.417). Model and 

programming algorithm complexity are seen by these designers in a 

positive light.  

 In contrast to the abstract DP group, designers who reused 

algorithmic solutions from specific cases (CBD group) preferred to avoid 

complexity and tended to settle for the more simple programming 

algorithms. On both workshop days ‘algorithm complexity’ has a negative 

correlation (correlation coefficients -0.362/-0.378) with ‘satisfaction with 

the design outcome’. When CBD group participants managed to come up 

with more simple programming solutions, they were apparently more 

satisfied with the outcome (See Reuse of Case-Based Solutions Section).  

 In summary, those who reuse specific solutions see complexity in a 

negative light, which is the exact opposite of what the group who reused 

abstract solutions tended to think. 

 

Overcoming barriers associated with the use of 

programming 

Many designers find it difficult to integrate algorithmic thinking and 

programming into the design process (Woodbury, 2010). Understanding 

and learning the programing framework syntax rules can be very 
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frustrating, particularly to novice users (Celani, Vaz, 2012). This study tested 

whether the reuse of abstract and specific algorithmic solutions can help 

designers and architects to overcome these barriers. The participant 

designers were asked to indicate the overall amount of difficulties that they 

had while developing their design assignments and also to specify what 

type of difficulty it was.  

Analysis of their responses identified the five most common 

categories of difficulty: 

 Idea-to-algorithm translation (design barriers, figuring out how to 

get from a sketched idea to a programming algorithm, which 

generates a model); 

 Problems with specific components (use barriers, when participants 

knew which programming component they need, but struggled 

with how exactly to use it); 

 Knowing what programming component to use and when 

(selection barriers); 

 Logic Connections (coordination barriers, what is the correct 

sequence of programming logic, for example should ‘vector’ go 

before or after ‘move’); 

 Valid Parameters, unexpected errors (use and understanding 

barriers, for example, incorrect inputs or domains of numbers). (Ko, 

Myers and Aung, 2004) (See Barriers associated with the use of 

algorithmic tools in architecture section for more detail) 

 The diagram in Exhibit 3.26 illustrates the degree to which all five 

of these parameters were a problem for each approach. The length of the 

pairs of bars either side of the central list of difficulties represents the 

percentage of workshop participants who reported each difficulty. The 

most common difficulty for people learning to use algorithmic modelling 



3.4 Comparison between reuse approaches: abstraction versus case-based 

Page | 268 

 

tools is immediately clear: ‘Idea-to-Algorithm Translation’ was reported as 

a problem for 43-60% of workshop participants.  

 The second most common type of difficulty was problems with 

actual implementation of a particular programming component (Exhibit 

3.26): 21-49% of participants. The reuse of solutions from the case-base 

proved to be an effective approach to overcome these types of difficulties. 

There were significantly less problems with particular programming 

components in the CBD group, compared to both the DP and the control 

group. The difference in the average number of participants reporting 

difficulties in day 2 workshops was the only statistically significant difference 

observed on these particular criteria in the bottom (Type of Difficulty) of 

the Exhibit 3.26. The top (How Often) portion of Exhibit 3.26 shows an 

overall analysis of the number of programming difficulties encountered by 

workshop participants.  

 Assigning a score of 1 for no difficulties, a score of 2 for 1-3 

difficulties and so on to a score of 5 for 10 or more difficulties produced 

the three bars to the right for ‘No Approach’, “Abstract Approach’ and 

‘Case Based Design Approach’. The average score (number of difficulties) 

on day 1 and on day 2 is significantly less for the reuse of abstract solutions 

(Design Patterns) approach. Reuse of abstract solutions is therefore an 

effective method to help designers reduce difficulties associated with use 

of algorithmic modelling tools. The DP group participants had significantly 

less programming difficulties compared to both the CBD and No Approach 

groups. Despite this clear difference, it is worth remembering the case-

based (CBD) approach did help to overcome certain types of difficulties. 
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Exhibit 3.26: Overall amount of difficulties. Typology and distribution of programming difficulties. [Also refer Appendix 

B, pages B64] 

 

 As there were very few workshop participants with significant levels 

of experience with algorithmic modelling systems, it seems reasonable to 

conclude that in the initial stages of learning and using of these systems, 

the use of abstract solutions, such as Design Patterns, helps to reduce the 

overall amount of difficulties (See ‘Expanding beyond the scope of this 

research’ discussing design population: novices and experienced 

programmers). Abstractions help novices to better comprehend, in 

principle, ‘when’ and ‘how’ a design problem can be solved. However, in 

terms of initial impressions, rather than output produced, designers 
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themselves appear not to realise how helpful the use of abstractions 

(Design Patterns) is. When asked ‘how easy to implement’, ‘helpful’ and 

‘intuitive’ each approach is, the Case-Based Design approach was 

identified by designers as significantly more intuitive, helpful and easy to 

use (For more details see ‘The reuse of abstract solutions’ and ‘The reuse 

of case-based solutions’ sections). 

 

Summary of key findings  

The primary observation to be made is that, when learning computational 

design methods, the use of a systematic approach to the reuse of 

algorithmic design solutions is more beneficial than having no approach.  

 In many aspects, such as for example the ability to overcome 

programming difficulties, the reuse of abstract (Design Patterns) solutions 

is more helpful than the reuse of solutions from a case-base (Case Based 

Design). The use of CBD proves to be mostly effective in overcoming 

difficulties associated with the implementation of specific programming 

components and commands. 

 The reuse of abstract solutions in algorithmic design helps to 

reduce the barriers that designers and architects have when they use 

algorithmic modelling systems and motivates designers and architects: 

 to experiment more;  

 to explore new programming solutions and commands; 

 to produce algorithms and output models with higher levels of 

complexity. 

 The reuse of algorithmic solutions from specific cases (CBD), is an 

effective tool to reduce difficulties associated with the implementation of 
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specific programming components and commands. It is intuitive, helpful 

and easy to use; it promotes the development of more simple and less 

novel design solutions; and motivates designers: 

 to focus on realising the initial design ideas; 

 to be less invested in exploration of alternative solutions and 

experimentation with new programming logics. 

 

Exhibit 3.27 illustrates the comparison of all the metrics (criteria), which 

were evaluated in this study through the analysis of the design models 

and programming algorithms, and using the feedback from participants. 
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Exhibit 3.27: Results of comparative study (all criteria). [Also refer Appendix B, pages B63 – B84]  
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4. Expanding beyond the 

scope of this research 

 

This thesis investigated the knowledge reuse as a design support method 

aiming to overcome programming challenges and help designers to adopt 

and to use algorithmic modelling tools more effectively. The study tested 

two alternative methods: Design Pattern approach and Case-Based 

approach. This investigation of ways to support learning and use of 

computation in architecture shows that the reuse of abstract and case-

based algorithmic solutions helps designers overcome barriers associated 

with use of programming and improve their design performance (See ‘The 

reuse of solutions as a method to support design’ Section). Both of these 

knowledge reuse strategies are applicable for textual and visual 

programming environments. It was suggested that these approaches can 

be useful for a wide designer population, including both experienced and 

novice designers in programming. However, the framework of this study 

had a particular scope, such as using a visual programming environment 

and having a particular designer population. 

 This chapter discusses the boundaries of this study and talks about 

the future research aimed to expand beyond the current research scope. 

It outlines the potential of testing the Design Patterns and Case-Based 

Design approaches on a group of architects who are more advanced in 
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algorithmic design, and the potential of testing the DP and CBD 

approaches using textual programming languages. It also discusses the 

differences in performance between the male and female participants. 

Further this chapter will canvas the issues identified for the DP and CBD 

approaches. It is suggested that one of the ways to improve these 

knowledge reuse methods can be the development of a hybrid approach. 

This hybrid approach can incorporate the methods and techniques of 

both abstract and case-based solution reuse. 

 

4.1 Design population: novices and experienced 

programmers  

The target group of this study covered a wide design population, including 

architectural and design students as well as practicing professionals, who 

learn or routinely use algorithmic modelling systems in their design 

process. However, due to the constraints of the research scope, limited 

mainly by the availability of architects and designers (skilled in 

programming) who use algorithmic modelling in their professional 

everyday practice, this study focused on a learning environment, recruiting 

designers who are programming novices (See Design Population in 

Methodology section).  

 The findings and lessons of this study can be adopted and applied 

to the educational environments dealing with teaching and practical 

implementation of programming in architecture and design. For example, 

this research leads to the conclusion that the systematic use of algorithmic 

abstractions (Design Patterns) when learning (mastering) algorithmic 

design logic helps architects and designers to structure their computational 

thinking and subsequently helps to overcome barriers associated with the 
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implementation of programming. Learning and implementing algorithmic 

design through parametric abstractions (Design Patterns) helps to give a 

more profound understanding of the high-level (abstract) logic of 

programming processes. This understanding of abstract (high-level) logic 

seems to be most important especially in the initial stages of learning. The 

main challenges that algorithmic design imposes on architects and 

designers, is not that of acquiring programming skills but it is rather 

assimilating ‘a mode of computational design thinking’ (Menges, Ahlquist, 

2011). The use of abstract patterns helps novices to adopt this new 

algorithmic thinking mode, explaining: when and why a particular 

programming logic can be used; and what ‘in principle’ an abstract 

algorithmic pattern can produce as output (Woodbury, 2010).  

 Research also highlights the weakness of this approach, related to 

the fact that patterns do not actually show ‘how exactly’ to solve a 

particular design problem. Because patterns are abstract solutions, they 

rather tell ‘how in principle’ a particular problem can be solved (giving 

generic guidelines instead of specific instructions). This research shows that 

the use of case-based reasoning can significantly reduce these 

implementation barriers, which are widely acknowledged as common for 

both among novice and more experienced programming users (Ko, Myers, 

Aung, 2004).  

 The question, which currently lays beyond the scope of this study, 

is: how effective the DP and CBD approaches can be when applied in the 

context of architects and designers experienced with coding skills. To go 

beyond the scope of this research requires a further study which tests the 

reuse of case-based and abstract algorithmic solutions (or a combination 

of those approaches) on more experienced programmers. This is the next 

planned focus of this research programme. The difference between these 
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advanced programming users and novice users is likely to be not only in 

distinct levels of coding skills, but also in the designers’ ability to employ 

computational design thinking. It might be speculated that experienced 

programmers will not be as keen (flexible) to re-structure their well-

established computational thinking mode, shifting from their own 

practically acquired algorithmic design constructs (abstractions) to patterns 

suggested by other people. However, it can also be reasoned that the 

reuse of high-level (abstract) solutions can be easier for advanced users, 

as they (unlike novices) are more skilled and usually know ‘how’ to 

solve/implement a particular programming algorithm.  

 Reuse of code (programming algorithms) is a common practice in 

software programming and to that extent algorithmic modelling in 

architecture should potentially benefit from algorithm reuse. To measure 

whether the reuse of a case-based programming algorithm is effective and 

worth using, it is necessary to test what would have been easier and faster 

to do: a) to reuse (copy/modify) an existing solution or, b) to create an 

algorithm from scratch. It can be assumed that for the more advanced 

algorithmic design users it might be easier to create an algorithm anew 

rather than spending time searching through the case-base and then 

modifying the original algorithm to fit the new design context. It can also 

be argued that more experienced users are usually dealing with more 

complex programming solutions that can be split into simpler subtasks. 

There is always a chance that there are existing solutions for some of these 

subtasks which can be recycled again and again. Therefore the reuse of 

algorithms can help to overcome the complexity of advanced algorithmic 

designs.  

 The analysis of experienced algorithmic designers' reactions to both 

Design Patterns and Case-Based Design approaches should examine 
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whether the trends detected amongst novice programmers persist. For 

example, would more experienced programmers who use the Design 

Pattern (DP) approach be showing more exploration and would those 

using the Case-Based Design (CBD) approach be more directly focused on 

realizing a single result reflecting original intentions? Moreover, would the 

DP approach still encourage satisfaction with complexity whereas CBD 

seems to discourage it? (See ‘the Reuse of abstract parametric solutions’ 

section for more detail). 

 

4.2 Identified gender differences 

Male and female participants showed similar results for most of algorithmic 

modelling performance criteria, which were identified and measured by 

this study. Results suggest that overall, participants of both genders 

performed evenly (statistically not significantly different) and had a similar 

response to the use of the DP and CBD approaches. 126 participants took 

part in this study. 55% of these participants were males (70) and 45% were 

females (56), with uniform distribution of genders in each test group. On 

average, male and female participants had a similar level of programming 

difficulties; similar ability to accomplish what was wanted; and both 

genders produces programming algorithms and models of similar levels 

of complexity. Only four out of thirty evaluated criteria were statistically 

different between the gender groups (Exhibit 4.1). Comparison between all 

male and female participants showed that statistically significant 

differences in results only occurred in: ‘Algorithm Novelty score’ and 

‘Ability to realise original idea’ on day 1; and in: design objective ‘To 

combine a few DP/CBD solutions’ and ‘Reuse of algorithms’ on day 2 

(Exhibit 4.1).  
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 It was observed that in the initial stages of learning and using of 

algorithmic modelling system, male designers tend to explore more 

programming options compared to female participants. On the first day of 

the workshops male participants were keener to try new things and 

preferred to explore and test things on their own, rather than reuse existing 

solutions. Unlike the female participants, they initially tend to learn by ‘trial 

and error’, often using the ‘guess and check’ strategy. Comparison 

between the genders shows that on day 1 the average ‘Novelty score’ of 

programming algorithms is higher for male participants  

Algorithm Novelty score (mean) 

Day 1 Males 31. 4/Females 24.1, p-value = 0.017.  

Day 2 Males 50. 7/Females 46.4, p-value = 0.335) 

 ‘I was able to realise my original design idea’ (shown as mean values) 

On a 5 point scale, from 1 Strongly Disagree to 5 Strongly Agree  

Day 1 Males 3.20/Females 2.83, (p value = 0.047) 

Day 2 Males 3.48/Females 3.24, (p value = 0.181) 

 

 However, the difference in novelty of explored solution space of 

the algorithms disappears, when female designers gain more confidence 

in programming (day 2) (Exhibit 4.1). On the second day of the workshop 

female participants started experimenting and exploring almost as much 

as male participants (no significant difference in results on day 2). It seems 

likely that in the initial stages this ‘guess and check’ approach to master a 

new algorithmic modelling software was rather effective, because on day 

1 male participants had shown a higher ability to realise original idea. 

Again the difference in ability to model original design concept disappears 

on day 2 (Exhibit 4.1). 
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Exhibit 4.1. Comparison between the male and female participants, [Also refer Appendix B] 

 

 Statistical testing between genders also showed that female 

participants are more inclined to reuse existing programming algorithms, 

rather than search through the interface of a yet unfamiliar software by 

themselves and try to figure out how things can be done (significantly 

different on the second day of the workshop). The difference between the 

reported design objectives of male and female participants shows that on 

day 2 the objective: to combine several Design Patterns or Case-Based 

programming algorithms during the development of their design task, 

became significantly higher for female designers (‘To combine a few of 

DP/CBD solutions’: Males 3.5 %, Females 15.2 %, p-value= 0.043). This 

might suggest that on the second day of the workshop female participants 

were keener to engage the case-based reasoning and learn from existing 

solutions. It seem likely that as a result of this higher motivation to use 

case-based reasoning (learn from cases which worked for others in the 

past), the female participants have reused more programming algorithms, 

compared to male participants. Similar to design objectives the difference 

manifests itself on the second day of the workshop (Exhibit 4.1). 
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 ‘Reused programming algorithms: how often’  

On a 5 point scale with 1 Never, 2 (1-3 times), 3 (4 - 6 times), 4 (7-9 

times), 5 (10 or more times): Males 2.17 (median = 2 (1-3 times), 

Females 2.61 (median = 3 (4 – 6 times)), p value = 0.006). 

 

 It is hard to speculate on the interpretation of these results. They 

might suggest that the case-based reasoning (and therefore Case-Based 

Design approach) can be a slightly more natural way for female designers 

to master the use algorithmic design systems. Male designers on the other 

hand seem to be more inclined to explore things on their own, applying 

the ‘trial and error’ approach (at least on the initial stages of learning). 

However overall, there is no indication that the CBD approach (and case-

based reasoning) is a less effective support method for male designers. 

There is also no evidence suggesting that the DP approach (the use of 

abstract algorithmic patterns) is less effective for females. Therefore the 

stated above differences (Exhibit 4.1) can simply indicate that at some 

stages, female designers might prefer to reuse solutions, while male 

designers might tend to ‘guess and check’ things on their own (See 

Appendix for more details). 

 

4.3 Algorithmic modelling [visual programming] 

platform 

The DP and CBD approaches were tested using Grasshopper 

(Grasshopper3d, 2014) graphical algorithm editor tightly integrated with 

Rhino’s 3-D modeling tools (Rhino3d, 2014). Grasshopper is a software 

platform, which provides a visual interface to programming (box-and wire 

interface). Visual programming is often considered to be more intuitive 
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and easier to use, causing less barriers associated with the use of 

programming in architecture and design, compared to the use of textual 

programming (scripting). Recent studies show that some programming 

barriers have significantly decreased with the development of visual 

programming software, such as Grasshopper (Celani, Vaz, 2012). Both 

visual and textual programming languages are currently used in 

computational design in architecture. Despite the differences, there are 

fundamental similarities between both programming languages. The use 

of both visual and textual programming methods require designers to 

adopt ‘a mode of computational design thinking’ (Menges, Ahlquist, 

2011). This thinking mode implies that a designer has a deep 

understanding of algorithmic rules, methods, and behaviours of forces 

and forms (Woodbury, 2010). That is why among the objectives of both 

reuse approaches is to assist architects and designers with practical 

implementation of algorithmic modelling, as well as to help them 

understand how the form-making and programming constructs work 

together. An ability to switch-on the algorithmic thinking mode, which 

allows designers to translate their design concepts into programming 

algorithms, is often a greater challenge than mastering computational 

design techniques, such as the use of scripting (Menges, Ahlquist, 2011). 

That is why it can be expected that the use of both the DP and CBD 

approaches in the context of textual programming should not be 

dramatically different from the results obtained in the context of visual 

programming. However, it is also possible that the use of scripting can 

impose different challenges on users, due to the fact that the use of visual 

and textual programming languages require designers to have different 

sets of skills (techniques). For example, it is possible that the use of 

scripting can cause more problems with syntax (rules defining textual 

programming languages). This research shows that the CBD approach is 
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a more effective method to overcome or to reduce ‘use barriers’ (Ko, 

Myers and Aung, 2004), which refer to problems with the implementation 

of programming components and syntax problems (See Reuse of Case-

Based Solutions section). That is why, it is possible that the CBD approach 

(as well as the DP approach) can work somewhat differently when applied 

in the context of textual programming in architecture and design.  

 

4.4 Similarities between the DP and CBD reuse 

approaches 

While the methodology and principles of ‘abstract’ (DP) and ‘case-based’ 

(CBD) solutions adaptation differ, both approaches seek to make reuse of 

algorithmic design knowledge more effective. The core of this idea is that 

algorithmic design is not properly an invention or creation of something 

absolutely new, but is rather a process of rediscovery (Terzidis, 2006). This 

rediscovery can be directly drawn from existing design knowledge, for 

example though the reuse of programming artefacts, whether those 

reusable artefacts be abstract (Design Patterns) or specific (Case-Based 

Design). The objective of both the DP and CBD approaches is to re-cycle 

algorithmic solutions rather than creating each one anew. In practice, 

there is no actual need to create every single thing from scratch, because 

it is highly possible that ‘someone, somewhere really did already invent 

the wheel you are about to reinvent’ (Mann, 2005).  

 The fundamental difference between the DP and CBD approaches 

is the abstraction level of the reusable programming artefacts such as: 

patterns with a high level of abstraction for the DP approach and the 

specific programming algorithms for the CBD approach. The other 

principal difference between the approaches is the method by which the 

reusable artefacts are being selected, retrieved and reused. In order to use 
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Design Patterns one has to learn them first; to be aware ‘when’ and ‘why’ 

to use each pattern, ‘what’ each pattern does and ‘how in principle’ it can 

be done. Once a person knows patterns, they can be applied straight away 

for each new design problem. The use of the CBD approach does not 

require pre-acquired knowledge. However for each new design problem, 

the architect (or designer) has to browse a repository of the case-based 

solutions in order to locate and retrieve the fitting case. Observations of 

the CBD group participants show that this process can take a considerable 

amount of time.  

 None of these two approaches is either purely abstract or purely 

case based. There are abstract constructs utilised in the CBD approach and 

there are also sets of specific programming solutions used in the 

methodology of the DP approach. The pattern approach uses specific 

solutions (cases) to illustrate each Design Pattern. To explain patterns for 

parametric design Robert Woodbury uses the term ‘samples’ (Woodbury, 

2010). On average six samples are used to illustrate each Design Pattern. 

Combined together this is over seventy specific solutions, which can be 

viewed as a case-base. There is a certain ambiguity between the 

relationship and role of patterns and their samples. Some authors state 

that pattern examples have only secondary value (should be used as 

illustrations) (Alexander, 1975) (Winn, Calder 2002) (Woodbury, 2010), 

others argue that samples are as important as the patterns themselves, 

because users tend to search for specific solutions rather than rely entirely 

on abstractions (Dearden, Finlay, Allgar, Mcmanus, 2002). There are 

arguments stating that the original design patterns, developed by 

Alexander, attempted to interpret design knowledge in an abstract and 

generalised way and the result had little to do with abstraction (Hua, 

Fairings, Smith, 1996). In reality, each pattern refers to a collection of 

specific buildings within specific environments (Ibid). The results of this 

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
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study show that when using patterns for parametric design, participants 

often referred to specific pattern examples, rather than to the abstract 

solution itself. This issue (of actual role of pattern samples) is likely to be 

relevant for any approach dealing with the reuse of abstract artefacts. That 

is why it seems reasonable to acknowledge that in practice, pattern 

samples are not being a mere illustration of a ‘big idea’, but that they 

perform a wider set of roles (functions).  

 The similarities between the DP and CBD approaches might 

suggest that, there could be a hybrid approach, which engages with the 

reuse of both abstract and specific programming artefacts. The CBD 

approach uses indexes, some of which have a certain level of abstraction, 

such as: ‘distance’, ‘proximity’, ‘condition’, ‘panelling’ etc. These indexes 

are used to sort and select cases from the repository, but they also can be 

seen as a grouping principle, or generalisation. The generalisation and 

abstraction of cases relate the CBD approach back to the patterns. Design 

Patterns can be used as the generalisation principles, grouping and 

indexing cases of a repository. Some of the CBD group participants 

suggested that additional to having the index search, an algorithmic Case-

Base repository can be easier to navigate if the cases were organised into 

some sort of main pre-defined meta-group(s).  

 The thirteen patterns for parametric design can easily be used for 

organising the current and future solutions into the meta-groups. 

Potentially this could make the selection and retrieval of cases more 

efficient. However the use of this hybrid (DP/CBD) approach would imply 

that all users are already familiar with the concept of patterns. 

Alternatively, the Case-Base system can provide designers with the 

explanation of the patterns concepts and provides the description of all 

the thirteen Design Patterns. From the teaching perspective, the use of 

Design Patterns proved to be an effective way to systematically introduce 
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designers and architects to algorithmic modelling (See Appendix). The 

integration of a unified (as opposed to segmentation of pattern samples) 

and organised case-based repository can potentially make the hybrid 

DP/CBD method more intuitive, because participants found the CBD 

method to be significantly more helpful, intuitive and easy-to-use 

compared to the DP approach.  
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5. Recommendations  

5.1 Recommendations for teaching 

programming in design, based on the lessons 

learned from this study 

A range of practical lessons was learned throughout the course of this 

study, testing the reuse of design knowledge as a method to support 

learning and use of algorithmic design in architecture 

 From a teaching perspective, the systematic inclusion of Design 

Patterns and Case-Based reasoning into the learning narrative of 

programming in architecture and design proves to be highly beneficial. 

The use of these can improve the learners’ ability to overcome 

programming barriers and help to enable computational (algorithmic) 

design thinking. Since the DP and CBD approaches were tested on the 

novice programmers, the findings of this study can be used to provide the 

basis for strategic teaching approaches, which utilise the reuse of 

programming artefacts. The lessons learned from this study can be applied 

to inform and (potentially improve) the methodology for teaching 

programming in architecture and design disciplines.  

 During the initial learning stages the use of abstract parametric 

patterns, described by Woodbury (2010), allows designers to better 

understand the underlying logic of programming design methods: 

learning through the systematic use of patterns assist designers to develop 
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and practically employ a computational thinking mode. Gaining this 

computational thinking mode is essential for ‘idea-to-algorithm 

translation’, which (according to the results of this study) is one of the 

biggest challenges among the novice programmers. Practice shows that 

even in cases when learners do not actually reuse any Design Patterns in 

the context of their current design solutions, knowing ‘why’ and ‘how’ these 

abstract algorithmic concepts work is still highly beneficial to them. The 

results indicate that being introduced to algorithmic modelling through 

patterns is likely to significantly reduce the overall number of programming 

difficulties and improve design performance (See the Reuse of Abstract 

Solutions Section).  

 The methodology for teaching programming by using Design 

Patterns proposed and tested in this study can be summarised as a 

following step–by-step program (as developed for algorithmic modelling 

workshops using visual programming with Grasshopper for Rhino) (See 

detailed ‘Proposed curriculum of teaching programming in architecture 

using patterns for algorithmic design’ in the Appendix). The general rule 

for organising the course was to gradually increase the complexity of used 

programing components and programming logic. ‘Parametric Architecture 

with Grasshopper’ (Arturo, 2011) and ‘Grasshopper Primer’ (Payne, Rajaa, 

2009) were used to inform order and structure of the introduced concepts 

and programming components. Patterns that could be illustrated using 

very basic algorithms were introduced first and patterns that required more 

advanced programming skills – were introduced last. Patterns were also 

clustered according to their related patterns (Woodbury, 2010). In his book 

‘Elements of Parametric Design’ Woodbury (Ibid) documents and explains 

all the patterns. This information can also be found online (Designpatterns, 

2014). Both in the book and in the website, design patterns are sorted in 

alphabetical order, based on the first letter in the name of each pattern. 
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The proposed curriculum of teaching programming in architecture using 

patterns for parametric design is outlined below. It suggests the order in 

which patterns can be introduced to learners and specifies the content of 

programming tutorial topics, such as: Lists, Data Management; Numerical 

sequences mathematical operations and functions, Paneling Tools, loops, 

etc. The curriculum was structured to allow the combination of several 

design patterns in the later stages of the course to produce more complex 

programming algorithms and show how different programming logic can 

work together. 

 Note that prior to teaching these patterns it was necessary to make 

designers familiar with the interface and software use basics. For 

Grasshopper/Rhino this Introduction covered such topics as: Working area 

(Interface); Components and data; Components’ connection; Parameters 

and components; Direct import from Rhino (Linking geometry); Data 

Management; Data Stream Matching; Scalar Component Types; 

Operators Parametric control.  

1) ‘Clear Names’. The first pattern to be introduced in the course is 

‘Clear Names’. It has actually nothing to do with algorithmic design per se. 

Its intent is to give each pattern a clear, meaningful and memorable name 

(Woodbury, 2010). The ‘Clear Names’ pattern can be used to illustrate the 

idea and organisational structure of design patterns (What (Intent), When, 

and How) (Ibid).  

2) The ‘Jig’ pattern describes a concept of using simple abstract 

frameworks to isolate structure and location from geometric detail (Ibid). 

This pattern can be illustrated using an example of points that control the 

geometry of a curve (or a surface). ‘Jig’ can be explained using relatively 

simple programming logic. (See the full collection of pattern samples 

developed by Robert Woodbury on <http://www.designpatterns.ca>). 
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The following concepts can be introduced together with programming 

algorithms illustrating the ‘Jig’ pattern: Numeric data; Coordinates; Points, 

Vector Basics; Point/Vector Manipulation, Curves; Creating 

Lines/Polylines/Curves from points; Surface Types; Creating Surfaces from 

Points and Curves. 

3)  ‘Mapping’ is a pattern, which uses a function in a new domain and 

range (Ibid). ‘Mapping’ sample algorithms can include such programming 

concepts as: Lists, Shifting Data, Mathematics; Functions (F(x); 

Sine/Cosine); Curve analysis; Evaluate Curve; Surfaces’ analysis; Evaluate 

Surface; Reparameterize.  

4) The intent of the ‘Point Collection’ pattern is to organise collections 

of points or point-like objects (Ibid). This pattern can be used to create 

algorithms which illustrate the use of: Points; Grids of points; Vectors; 

Translations (such as Move); Mathematical and logical functions; 

Numerical sequences.  

5) ‘Increment’. The intent of the ‘Increment’ pattern is to drive change 

through a series of closely related values (Ibid). The ‘Increment’ and ‘Point 

Collection’ patterns can be easily combined together. The following 

concepts can be introduced using the ‘Increment’: Lists; Data 

Management; Numerical sequences; Series; Range; Random; Fibonacci 

series; Data Tree; Flatten Tree; Merge; Graft Tree; Tree Branch; Explode 

Tree; 

6)  ‘Place holder’ describes the logic of using a proxy object (for 

example a panel) to organise multiple inputs (multiple panels on a surface) 

(Ibid). This pattern is closely related to the ‘Point collection’ pattern and 

can be combined with ‘Increment’, which is why they are introduced close 

to each other. The programming algorithms illustrating the ‘Place holder’ 

pattern can include: Paneling Tools; Surfaces’ analysis; Divide Surface; 
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Isotrim (SubSrf); Translations: Move; Rotations; Orient; Transformations 

with shape variation; Scale. 

7) ‘Projection’ is a design pattern used to produce a transformation 

of an object in another geometric context (Ibid). This patterns can be 

illustrated using: Curves, Surfaces; Vectors; Project; Graph Mapper; 

Deformations: Morphing. 

8) ‘Selector’ refers to conditional constructs (‘If - Then – Else’ type of 

programming algorithms). The intent of the ‘Selector’ pattern is to select 

particular items in a collection that have specified properties; for example 

the size of the objects or their index number. It can be presented using 

programming algorithms which introduce: Lists; List Item; List Length; 

Reverse List; Shift List; Split List; Cull Nth; Cull Pattern; Dispatch; 

Conditional Statements, Range, Series, Interval. 

9) ‘Reactor’ is a design pattern, which is used to make an object 

respond to the proximity of another object (Ibid). Reactor can be easily 

combined with almost any previously introduced patterns, such as 

‘Selector’ (select objects based on their proximity to the other object) and 

‘Point Collection’ (change the location of the points depending on the 

proximity to an object). Reactor pattern can be illustrated using: 

Conditional Statements, Distance, Attractors; Definitions; Attractor point; 

Attractor curve;  

10) The intent of the ‘Controller’ pattern is to control a more complex 

model (or a part of this model) through a simple separate model (Ibid). 

The use of this pattern implies that the main model has a relatively high 

degree of complexity. That is why it might be easier to control this model 

through the separate (simple) model. It is recommended to illustrate this 

pattern together with a couple of other patterns (for example with ‘Point 

Collection’, ‘Place Holder’, ‘Reactor’ or ‘Selector’). The programming 

algorithms using the ‘Controller’ pattern can contain: Curves, Surfaces; 
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Vectors; Paneling Tools; Divide Surface; Translations: Move; Rotations; 

Orient; Distance, Attractors; etc. 

11) ‘Reporter’. The idea behind the ‘Reporter’ pattern is to take 

information from a model and to communicate it to the audience (re-

present it) (Ibid). This pattern can be very useful in the later stages of the 

design (for example for the representation of elements properties using 

gradient colours.) It proved to be very effective when applied during the 

preparation of a digital model for fabrication. For example, ‘Reporter’ can 

be used to assign a certain number (index) to each panel or section of a 

model which is going to be laser-cut. The ‘Reporter’ pattern can be 

illustrated with: Colours, Gradients, Text Display, Lists, Numeric data, 

Series, Analysis of the curves and surfaces.  

12) The ‘Goal Seeker’ pattern also refers to the conditional ‘If - Then – 

Else’ type of programming constructs. The idea of this pattern is to adjust 

inputs until a specific goal is reached. The illustration of this pattern will 

most likely require the use of scripting. The ‘Goal Seeker’ pattern can be 

illustrated using: Script Component, Visual Basic, Variables; Arrays and 

Lists; Loops.  

13) The idea of the ‘Recursion’ pattern is to create a pattern by 

replicating a geometric object or motif (Ibid). Similar to the ‘Goal Seeker’ 

the illustration of the ‘Recursion’ will most likely require the use of scripting. 

‘Recursion’ can be used to create fractals - repeating self-similar patterns. 

The ‘Recursion’ pattern can be explained using: Script Component, Visual 

Basic, Variables; Arrays and Lists; Loops, Recursion, and Fractals.  

 This systematic methodology for teaching programming in 

architecture using Design Patterns can provide the basis for strategic 

approach that can be applied for both long term algorithmic design 

courses as well as for the short term intensive workshops. This teaching 

framework was successfully tested on a series of algorithmic modelling 
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workshops using visual programming with Grasshopper/Rhino. This 

method allows novice programmers to activate computational thinking 

and gain practical skills (as tested on a diverse group of students, and 

practicing architects and designers). (See Detailed ‘Proposed curriculum 

of teaching programming in architecture using patterns for algorithmic 

design’ in the Appendix) 

 

5.2 Lessons regarding the use of patterns for 

parametric design 

 Learning the patterns for parametric design helps architects 

and designers to activate computational thinking mode. Learning 

programming through Design Patterns proved to reduce programming 

barriers that novice programmers often face when mastering algorithmic 

modelling systems. 

 In many cases designers and architects tend to remember 

and refer to some specific pattern examples, rather than patterns 

themselves; 

 In some cases designers may forget or replace certain 

pattern names, but still use the patterns. For example ‘Reporter’ was often 

referred to as a ‘Proximity’ or ‘Distance’ pattern; ‘Place Holder’ was 

sometimes referred to as ‘Paneling’, ‘Increment’ as ‘Series’; ‘Projector’ as 

‘Project’ etc. 

 Participants who used Design Patterns were less committed 

to actually model their original (previously sketched) designs, compared 

to those participants who used the Case-Based Design approach. 

 The use of the Design Pattern approach in the initial stages 

of learning of programming in architecture encourages exploration of the 
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software. It proved to help designers in getting familiar with the software. 

It also encourages the experimentation with forms and various design 

iterations which might be useful during conceptual design stages.  

 

5.3 Lessons regarding the use of case-based 

design and the organisation of the CBD systems  

 It is recommended to use the CBD approach after designers 

and architects, who are novice in programming, gain some experience with 

the tool. This means that they have already acquired basic programming 

skills and are familiar with the fundamentals of algorithmic design methods 

(if learners are taught design patterns, the use of the CBD approach is 

recommended only after they have learned design patterns). It was 

observed that the reuse of Case-Based Design solutions is likely to 

discourage the exploration of the software interface and available 

commands and options. In some cases designers might reuse algorithms 

to get a desired result (outcome) without clearly understanding ‘how’ this 

algorithm actually works, which defeats the whole purpose of learning. 

 After designers get more familiar with the modelling tool 

and the use programming algorithms (when they can use computational 

thinking mode and are able to create simple algorithms on their own), the 

use of the Case-Based Design approach can be very effective. Unlike 

Design Patterns it can show designer ‘how exactly’ a particular problem 

can be solved. The CBD approach proves to reduce programming barriers 

associated with the syntax and implementation of programming 

components.  

 The reuse of Case-Based programming solutions motivates 

designers to find simpler/more effective algorithms. 
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 Those who use the CBD approach when working on 

their own projects are likely to be less inclined to experiment with 

parameters and be more motivated to realise their original idea 

(design task).  

 When organising a repository of parametric design 

solutions it is useful to: 

1) Organise pre-defined ‘meta-groups’, based on the 

programming logic of algorithms. This could be done using Design 

Patterns typology; 

2) Use consistent index dictionary, with the focus on 

programming commands or geometric characteristics of the output 

model, rather than using abstract indexes 

(associations/metaphor/descriptive attributes) 

3) Visual representation of design output is very important. 

The feedback from the CBD group participants indicates that after initial 

index search they often relied on visual analysis of the output geometry 

when selecting a case to reuse. 

4) Split complex programming solutions into parts: simple 

reusable artefacts. 
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6. Conclusion 
The evidence presented in this thesis demonstrates that, in the context of 

algorithmic architectural design, the integration of knowledge reuse 

approaches, with learning and design processes, is beneficial. This thesis 

has been tested in empirical studies with groups of students and architects. 

Three different approaches were employed; two groups used an abstract 

and a case-based approach to knowledge reuse and a control group had 

no structural approach. Both extremes of the knowledge reuse approach 

reduced barriers to using programming in design and improved design 

performance. The group size and research design enabled these results to 

be established as statistically significant. 

 Design Patterns developed by Robert Woodbury (an example of 

the abstraction reuse) proved to be an effective design support and 

learning method, significantly reducing learning barriers associated with 

the use of algorithmic modelling systems and programming languages. 

The use of abstract solutions (patterns) helps architects to understand and 

adopt algorithmic design methods better. Even though most of the 

participating designers and architects found the use of patterns to be less 

intuitive and less easy-to-use compared with the reuse case-based 

algorithmic solution, overall the pattern approach proved to be a more 

effective design support method, particularly at the initial stages of 

learning.  
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 The use of the Case-Based Design approach (reusing specific 

algorithmic solutions) helps to reduce problems associated with use 

barriers (the implementation programming components and syntax), 

which often occur when designers know ‘what to use’, but do not know 

‘how to use it’. However, the reuse of case-based solutions does not 

reduce the overall number of problems, and seems to discourage design 

exploration. It encourages more focused reasoning, oriented towards the 

realisation of the original design intention. 
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Appendix A 

Proposed Curriculum of Teaching Programming 

in Architecture Using Patterns for Algorithmic 

Design 

This systematic methodology for teaching programming in architecture 

using Design Patterns can provide the basis for strategic approach that 

can be applied for both long term algorithmic design courses as well as 

for the short term intensive workshops. This teaching framework was 

successfully tested on a series of algorithmic modelling workshops using 

Grasshopper for Rhino. This method allows novice programmers to 

activate computational thinking and quickly gain practical skills.  

 Prior to introducing Design Patterns, there should be a basic 

introduction of the software interface and the structure of programming 

components. For Grasshopper this includes finding and selecting different 

types of programming components, connecting and disconnecting them; 

linking and modifying existing geometry and creating geometry from 

scratch. The first step involves making learners familiar with the concepts 

of domains of numbers, introduction of ‘number sliders’, mathematical 

functions and operations, coordinates. It should also include an overview 

of how to create geometry (2D and 3D primitives) and how to use some 

of the basic operations, such as: move, rotate, scale; and Boolean 

operations: intersection, subtraction, addition. 

 



Proposed Curriculum of Teaching Programming in Architecture Using Patterns for 

Algorithmic Design 

Page | A 2 

 

Tutorial Content: 

Working area (Interface);  

Components and data;  

Components’ connection;  

Parameters and components;  

Direct import from Rhino (Linking geometry);  

Data Management;  

Data Stream Matching;  

Scalar Component Types;  

2D and 3D Primitives (points, lines, curves, planes, circles, polygons, 

spheres, boxes etc.) 

Operators (move, rotate, scale); 

Parametric control; 
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1 Design Pattern: Clear Names 

After designers gain an overall understanding of the software interface 

and basics of modelling methods, they can be introduced to the concept 

of patterns for parametric design. 

See <http://www.designpatterns.ca> for details.  

 The first pattern to be introduced in the course is ‘Clear Names’. It 

has actually nothing to do with parametric design per se. Its intent is to 

give each pattern a clear, meaningful and memorable name. The ‘Clear 

Names’ pattern can be used to illustrate the concept and organisational 

structure of design patterns (Intent, Use When, Why, and How) 

(Woodbury, 2010). Design Patterns can be understood as re-usable 

abstracted parametric design solutions. To better understand the concept 

of Design Patterns please refer to the following explanations: 

 Design Pattern is an abstract solution, which can be applied to 

a shared problem (Woodbury, 2010). 

 Interpretation of the design idea / concept (Woodbury, 2010); 

 Pattern is a ‘pre-formal construct’ (Lea, 1994); 

 Patterns emerge from repetitions of human behaviour (Coad, 

1992); 

 Pattern is a recurrent phenomenon or structure, ‘didactic 

medium for human readers’ (Borchers, 2001); 

 Pattern describes a problem and then describes the core of the 

solution (Gamma, 1994 quote Alexander (1977)); 

 Pattern is a structured description of invariant solution. Invariant 

refers to a set of shared characteristics of the recommended 

solution (Winn, Calder, 2002) 

 Patterns should capture ‘big ideas’ (Winn, Calder 2002) instead 

of covering every possible design decision. 
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 Pattern is an abstraction, which describes not some specific 

example, but it rather refers to a general concept or idea, which 

is often associated with vagueness. In computer science, an 

abstraction characterizes a class of instances which omits 

inessential details (Woodbury, 2010), (Gamma, Helm, Johnson, 

Vlissides, 1994).  

 Design Patterns are the medium to understand and express the 

practice craft of parametric modelling (Woodbury, 2010) 

 

*Patterns for parametric design used in this course were developed by 

Robert Woodbury (2010) 
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2 Design Pattern: Jig 

 

 

‘Jig’ pattern describes a concept of using simple abstract frameworks to 

isolate structure and location from geometric detail*.  

Tutorial Content: 

Numeric data;  

Coordinates;  

Points,  

Vector Basics;  

Point/Vector Manipulation,  

Curves;  

Types of Curves 

Creating Lines / Polylines / Curves from Points;  

Surfaces  

Creating Surfaces from Points and Curves 

Notes: 

The use of ‘Jig’ allows designers to learn how they can control an object 

using its isolated structure. ‘Jig’ is chosen to be the first design pattern 

introduced to learners, due to a number of reasons. Firstly, the concept 

of changing a geometry using, for example, control points is relatively 

easy to understand, even for novice modellers. Secondly the 

modification of a geometrical object (such as a curve or a surface) using 
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control points can be done through a very simple programming 

algorithm. The objective of the course is to use more simple algorithms 

and programming logic in the beginning and then gradually increase 

the complexity. 
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3 Design Pattern: Mapping 

 

 

The intent of the ‘Mapping’ pattern is to use a function in a new domain 

and range*.  

Tutorial Content: 

Lists, Shifting Data, Mathematics;  

Functions (F(x); Sine / Cosine);  

Curve analysis; Evaluate Curve;  

Surfaces’ analysis;  

Evaluate Surface;  

Reparameterize; 'Remap Numbers' 

Notes: 

‘Mapping’ can be combined with further (more detailed) introduction of 

the use of mathematical functions in parametric design, such as sine, 

cosine, x*x etc. The introduction of ‘Mapping’ and illustration of it using 

programming algorithms can be used to explain the ‘Remap Numbers’ 

components and ‘Reparameterize’ option. The ‘Reparameterize’ sets 

the domain from 0 to 1 instead of the real size, which can be really 

useful for the evaluation of curves and surfaces. Woodbury states that 

‘It is much, much easier to think about a function in its natural domain 

and range’ (2010) 

  



4 Design Pattern: Point Collection 

Page | A 8 

 

4 Design Pattern: Point Collection 

  

 

The intent of the ‘Point Collection’ pattern is to organise collections of 

points or point-like objects*.  

Tutorial Content: 

Points;  

Grids of points;  

Vectors;  

Functions (F(x); Sine / Cosine / x*x); 

Translations (such as Move);  

Mathematical and logical functions;  

Numerical sequences.  

Mathematics;  

Notes: 

Similar to ‘Jig’, the concept behind the ‘Point Collection’ pattern is 

relatively easy to grasp: locating the repeating elements using various 

organisational methods. The use of ‘Point Collection’ also allows the 

integration of mathematical functions, defining the distribution 

(location) of each point in the collection. The following examples can be 

used to illustrate the idea of this pattern: spirals, waves, random point 

clouds or specifies a position of points on curves and surfaces. 
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5 Design Pattern: Increment 

 

 

The intent of the ‘Increment’ pattern is to drive change through a series 

of closely related values*.  

Tutorial Content: 

Lists; Data Management;  

Numerical sequences;  

Series; Range; Random; Fibonacci series;  

Data Tree; Flatten Tree; Merge; Graft Tree; Tree Branch; Explode Tree; 

Notes: 

‘Increment’ is one of the patterns that is often re-used by designers in 

their own design works. Observations show that novice programmers 

often get excited by the complexity of geometry that can be generated 

using gradual rotation or move of the objects. Some of designers might 

not (foresee) predict what kind of geometry can be created using 

programming algorithms that gradually transforming an object with 

incremental changes. The ‘Increment’ and ‘Point Collection’ patterns can 

be easily combined together. 

It should be noted that, even though designers often use the logic of 

‘Increment’ in their parametric projects, they may tend to forget the 

name of this pattern. ‘Increment’ is often referred to it as ‘Series’, which 

is a programming component in Grasshopper. Similarly the ‘Projection’ 



5 Design Pattern: Increment 

Page | A 10 

 

pattern is sometimes referred as ‘Project’ or the ‘Reactor’ pattern is often 

called ‘Distance’ (both of which are programming components). This 

trend might indicate a couple things: a) these names pattern could be 

not the most universal, or b) designers and architects tend to remember 

and associate some specific programming commands (such as: project, 

series, distance) rather than use the original (more abstract) pattern 

name. 
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6 Design Pattern: Place Holder 

 

 

‘Place holder’ describes the logic of using a proxy object (for example a 

panel) to organise multiple inputs (panels on a surface)*.  

Tutorial Content: 

Paneling Tools;  

Surfaces’ analysis;  

Divide Surface; Isotrim (SubSrf);  

Translations: Move; Rotations; Orient;  

Transformations with shape variation;  

Scale. 

Notes: 

The ‘Place holder’ pattern is related to the ‘Point Collection’ pattern. It 

can also easily be combined with ‘Increment’ (for example, by rotation 

or scaling of repeating elements) and with ‘Jig’ (for example, to control 

the surface). ‘Place Holder’ is often associated by designers with the 

concept of Paneling (however is only one of ‘Place Holder’s’ possible 

applications). Here is an example how ‘Point Collection’ and ‘Place 

holder’ can be used together: a) use ‘Point Collection’ to define 

coordinates of the input objects; b) use ‘Place holder’ by creating a 

proxy object (for example ‘spines’) and referencing it to the locations.  
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7 Design Pattern: Projection 

 

 

‘Projection’ is a design pattern, which is used to produce a transformation 

of an object in another geometric context. 

Tutorial Content: 

Curves,  

Surfaces;  

Vectors;  

Project;  

Image sampler, 

Graph Mapper;  

Deformations: Morphing; 

Notes: 

Even though the concept and the application of the ‘Projection’ patterns 

is relatively simple, it allows to create very complex outcomes. One of 

the algorithms illustrating the ‘Projection’ pattern can be split it into two 

parts: creating a relatively complex and detailed 2D pattern using 

‘Increment’, ‘Point Collection’ and ‘Place holder’ and then using 

‘Projection’ logic transform this 2D pattern onto a different geometric 

context (for example project or morph it into a complex curvilinear 

surface (receiving object)). Alternatively the initial 2D pattern can be 

created using data from an image (‘Image Sampler’). 
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8 Design Pattern: Selector 

   

The intent of the ‘Selector’ pattern is to select particular items in a 

collection that have specified properties (for example, their size or their 

index number).  

Tutorial Content: 

Lists;  

List Item;  

List Length; Reverse List;  

Shift List; Split List;  

Cull Nth; Cull Pattern;  

Dispatch;  

Conditional Statements,  

Range, Series, Interval. 

Notes: 

‘Selector’ refers to conditional constructs (‘If - Then – Else’ type of 

programming algorithms). From teaching perspective, the ‘Selector’ 

pattern can be used to give designers a better and more advanced 

understanding of how the lists of data work. Including the illustrations 

on how multiple numbers, objects and coordinates can be placed in lists 

and how this data can be organised and manipulated (data tree 

structure). ‘Selector’ can be illustrated with programming algorithms 

which introduce such concepts as splitting the lists of data, based on the 
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item’s number (index); based on a specific pattern (true / false); or 

reversing / shuffling the order of data in the list etc. Study shows that 

designers can easily grasp the idea of the ‘Selector’ pattern. However 

practical implementation of conditional constructs and managing the 

lists of data is often frustrating for novice programmers. That is one of 

the reasons why this pattern was not introduced in the beginning of the 

course. 
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9 Design Pattern: Reactor 

    

 

‘Reactor’ is a design pattern, which is used to make an object respond to 

the proximity of another object*.  

Tutorial Content: 

Conditional Statements,  

Distance,  

Attractors;  

Definitions;  

Attractor point;  

Attractor curve;  

Notes: 

‘Reactor’ can be easily combined with almost any previously introduced 

patterns, such as ‘Place Holder’ and ‘Selector’. For example, selecting 

objects (sorting them into different lists) based on their proximity to a 

curve or an attractor points. ‘Rector’ can be paired with other introduced 

patterns to create proximity responsive designs. That is one of the 

reasons why it was introduced later in the course. Proximity is often used 

to create responsive (interactive) structures. Distance between the 

objects (for example between the attractor point and elements of the 

structure) can be used as a parameter that informs the size or a degree 

of elements’ rotation. Some designers, who learned parametric 
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modelling using Design Patterns had a tendency to intuitively substitute 

the name ‘Reactor’ with such words as ‘Distance’ and ‘Proximity’. This 

might suggest that the name ‘Reactor’ might not be the most universal 

and memorable. 
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10 Design Pattern: Controller 

    

 

The intent of the ‘Controller’ pattern is to control a more complex model 

(or a part of a model) through a simple separate model*.  

Tutorial Content: 

Curves, Surfaces;  

Vectors;  

Paneling Tools;  

Divide Surface;  

Translations: Move; Rotations; Orient;  

Distance, 

Attractors; 

Notes: 

The use of the ‘Controller’ pattern implies that the design model has a 

relatively high degree of complexity. Which is why it might be easier to 

control this model through a separate (more simple) model. It is 

recommended to illustrate this pattern together with a couple of other 

patterns (for example with ‘Point Collection’, ‘Place Holder’, ‘Reactor’ or 

‘Selector’). The idea of ‘Controller’ is closely related to the idea of ‘Jig’. 

Similar to the ‘Controller’ pattern the objective of the ‘Jig’ pattern is to 

control an object using its isolated structure (using for example a set of 

control points). The difference between these patterns is that the 
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‘Controller’ description implies that a separate simple model should be 

used to control a more complex model (object). When creating their 

own algorithms, designers sometimes have a tendency to skip the 

creation of a separate model and instead use isolated structures (points 

or curves) to control their resulting models. 
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11 Design Pattern: Reporter 

    

 

 

The idea behind the ‘Reporter’ pattern is to extract information from a 

model and to communicate it to the audience (represent this 

information)*. 

Tutorial Content: 

Colours,  

Gradients,  

Text Display,  

Lists,  

Numeric data,  

Series,  

Analysis of the Curves and Surfaces. 

Notes: 

This pattern can be very useful on the later stages of the design (for 

example for the representation of elements’ properties using gradient 

colours.) The representation of the information could be done through 

the use of colours / gradients (for example shading larger elements as 

red and smaller elements as green) or it could be represented with text 

(for example showing the area / volume of each element, their proximity 

to each other, or their index number). The use of the ‘Reporter’ pattern 
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has proved to be very useful for the preparation of a digital model for 

fabrication. For example, by showing an index number of each element 

(panel or section) of a model that has to be laser-cut.  
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12 Design Pattern: Goal Seeker 

    

 

The idea of ‘Goal Seeker’ is to adjust inputs until a specific goal is reached*.  

Tutorial Content: 

Variables;  

Arrays and Lists;  

Loops.  

Script Components,  

Visual Basic,  

Notes: 

The ‘Goal Seeker’ pattern refers to the conditional ‘If - Then – Else’ type 

of programming constructs. ‘Goal Seeker’ can be illustrated by gradually 

scaling objects in a collection until they reach a specific size (volume), 

or until a specific distance between the objects is reached. In this regard, 

the ‘Goal Seeker’ pattern is related to the ‘Selector’ pattern, which also 

employs conditional algorithms (sorting items in a collection according 

to specified properties). ‘Goal Seeker’ gives an opportunity to introduce 

designers to the idea of loops and iterations. It should be noted that in 

Grasshopper the implementation of conditional statements, and 

iterations: loops and recursions will most likely require the use of 

scripting or the use of additional plugins. 
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13 Design Pattern: Recursion 

 

   

 

The idea of ‘Recursion’ is to create a pattern by replicating a geometric 

object or motif *.  

Tutorial Content: 

Recursion,  

Fractals 

Variables;  

Arrays and Lists;  

Loops.  

Script Components,  

Visual Basic,  

 

Notes: 

‘Recursion’ is also related to the concept of loops and iterations. Hence 

it is clustered with the ‘Goal Seeker’ pattern. ‘Recursion’ can be used to 

create fractals, which are often used as examples of recursions in 

programming. Similar to the ‘Goal Seeker’ pattern the illustration of the 

‘Recursion’ pattern will most likely require the use of scripting. 
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Appendix B 

Report of Results 

Colour coding of diagrams: 

*pink: the p- value indicates that there is a significant difference between 

the approaches (for this particular criterion) 

*grey: the p- value indicates that there is NO significant difference between 

the approaches (for this particular criterion) 

 

COMPARISON BETWEEN THE NO APPROACH, THE DESIGN PATTERNS 

APPROACH AND THE CASE-BASED DESIGN APPROACH GROUPS 

(ANOVA / CHI-SQUARE). 

*Only the cases when the p-value is below 0.05 are shown 

 

Criteria  No App.(Mean / 

%) 

DP (Mean / %) CBD (Mean / %) t (df) / X2 p - value 

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Model 

Complexity 

Score 

11.73 

+- 

2.465 

13.94 

+- 

2.585 

12.23 

+- 

2.046 

14.10 

+- 

2.551 

12.15 

+-

2.246 

12.74 

+- 

2.246 

.583 

(125) 

3.5 

(12

5) 

.560 .031 

Algorithm 

Variety 

Score 

12.43 

+- 

3.565 

16.65 

+- 

5.851 

15.13 

+- 

4.718 

17.60 

+- 

5.137 

12.77 

+- 

3.595 

15.77 

+- 

3.218 

4.99 

(125) 

1.3 

(12

5) 

.008 .268 

How Often 

You Have  

Come 

Across 

Programmin

g Difficulties 

2.88 

+- 

1.053 

2.71 

+- 

.890 

2.37 

+- 

.669 

2.10 

+- 

.403 

2.91 

+- 

1.039 

2.53 

+- 

.776 

3.41

4 (2) 

6.2 

(2) 

.036 .003 

Programmin

g Difficulties: 

Problems 

With 

Particular 

Components 

44.8% 

(22/49

) 

48.9% 

(24/49

) 

33.3% 

(10/30

) 

43.3% 

(13/30

) 

21.3% 

(10/47

) 

23.4% 

(11/47

) 

6.02 7.1

1 

.049 .029 
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It Was Easy 

To 

Implement 

DP/CBD 

Approach In 

My Design 

  2.90 

+- 

.885 

3.03 

+-

.809 

3.66 

+-

.668 

3.77 

+-

.666 

-

4.28

0 

(75) 

-

4.3

26 

(75) 

.000 .000 

I Find 

DP/CBD 

Approach - 

Intuitive 

   3.37 

+- 

.718 

 3.81 

+-

.851 

 -

2.3

57 

(75) 

 .021 

Used 

DP/CBD 

Solution 

  70% 

(21/30

) 

66.7% 

(20/30

) 

76.4% 

(35/47

) 

87.2% 

(38/47

) 

.414 4.7

06 

.350 .031 

I Find 

DP/CBD 

Approach - 

Helpful 

   3.93 

+-

.640 

 4.30 

+-

.507 

 -

2.7

75 

(75) 

 .007 

Design 

Objective: 

To Achieve 

The Form I 

Originally 

Sketched 

40% 

(10/25

) 

48% 

(12/25

) 

56.7% 

(17/30

) 

60% 

(18/30

) 

51% 

(24/47

) 

80.8% 

(38/47

) 

1.55

5 

8.7

75 

.460 .012 

Design 

Objective: 

To 

Explore/Lear

n 

Algorithmic 

Form-

Making 

Process 

24% 

(6/25) 

28% 

(9/25) 

63.3% 

(19/30

) 

40% 

(12/30

) 

46.8% 

(22/47

) 

23.4% 

(11/47

) 

8.51

0 

2.6

72 

.014 .263 

Design 

Objective: 

To 

Experiment 

With 

Parameters / 

Iterations / 

Variables 

8% 

(2/25) 

12% 

(3/25) 

20% 

(6/30) 

46.7% 

(14/30

) 

19.1% 

(9/47) 

8.5% 

(4/47) 

1.80

1 

17.

800 

.406 .000 
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Comparison of Algorithmic Modelling Criteria 

Model Complexity 

Model Complexity Score.  

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

MODELLING SPEED DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

Model Complexity 

Score 

11.73 

+- 

2.465 

13.94 

+- 

2.585 

12.2

3 +- 

2.04

6 

14.10 

+- 

2.551 

12.1

5 +-

2.24

6 

12.74 

+- 

2.246 

.583 

(125) 

3.569 

(125) 

.560 .031 

 

Day 1: F (125) = .583, p = 0.560; F ratio (F), the degrees of freedom (df) 

and the p-value are used.  

Day 2: F (125) = 3.569, p = 0.031; 

 

ANOVA Post-Hoc, Tukey’s test 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) p – value  

NA with DP 

p – value  

NA with CBD 

p – value  

DP with CBD 

MODELLING 

SPEED 

DAY 

1 

DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Model 

Complexit

y Score 

 13.9

4 +- 

2.58

5 

 14.1

0 +- 

2.55

1 

 12.7

4 +- 

2.24

6 

 .96

0 

 .06

2 

 .06

5 
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Categories of Model Complexity 

Comparison of Model Complexity categories between the DP and CBD 

groups: 

Criteria  DP (Mean) CBD (Mean) t (df) p - value 

CATEGORIES DAY 1 DAY 

2 

DAY 

1 

DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Basic elements 4.53+- 

.507 

4.43 

+- 

.774 

4.30 

+-

.883 

4.28 

+- 

.949 

1.326  .758 75 75 .189 .451 

Composition 

Space 

.80 +- 

.407 

.77 

+- 

.430 

.81 

+- 

.398 

.70 

+- 

.462 

-.091 .614 75 75 .928 .541 

Arithmetic of 

Shapes 

.27 +- 

.691 

.43 

+- 

.898 

.28 

+- 

.743 

.36 

+- 

.735 

-.059 .382 75 75 .953 .703 

Transformations 2.10 

+- 

.548 

2.27 

+- 

.521 

2.32 

+- 

.556 

2.13 

+- 

.679 

-

1.697 

.955 75 75 .094 .343 

Number of 

Elements 

2.40 

+- 

.675 

2.67 

+- 

.844 

2.38 

+- 

.795 

2.17 

+- 

1.049 

.097 2.179 75 75 .923 .032 

Shape of the 

Element 

1.30 

+- 

.837 

1.50 

+- 

.900 

1.49 

+- 

.975 

1.62 

+- 

1.012 

-.877 -.516 75 75 .383 .607 

Colour .83 +- 

.874 

2.03 

+- 

.890 

.57 

+- 

.773 

1.49 

+- 

1.081 

1.361 2.302 75 75 .177 .024 
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Correlation between Model Complexity and the other criteria. ALL groups: 

M
O

D
E
L 

C
O

M
P

LE
X

IT
Y
 

N
o

ve
lt
y 

 V
a
ri

e
ty

 

DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.468** 

 

.458** 

Sig. (2-tailed) 

.000 

 

.000 

N 
126 126 

 

Correlation between Model Complexity and the other criteria. NA group: 

M
O

D
E
L 

C
O

M
P

LE
X

IT
Y
 

V
a
ri

e
ty

 

A
b

ili
ty

 T
o

 M
o

d
e
l 

O
ri
g

in
a
l 
Id

e
a
 

M
O

D
E
L 

C
O

M
P

LE
X

IT
Y
 

N
o

ve
lt
y 

DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.504** 

 

-.386 Pearson C 

correlation 

.398** 

Sig. (2-tailed) 

.000 

 

.057 

Sig. (2-tailed) 

.005 

N 
49 25 

N 
49 

 

Correlation between Model Complexity and the other criteria. DP group: 

M
O

D
E
L 

C
O

M
P

LE
X

IT
Y
 

A
lg

o
ri

th
m

 C
o

m
p

le
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ty
 

R
e
-U

se
 O

f 
K
n

o
w

le
d

g
e
 

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 

W
it
h

 O
u

tp
u
t 

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 

W
it
h

 O
u

tp
u
t 

Im
p

le
m

e
n

te
d

 A
 D

p
/C

b
d

 

S
-N

 T
h

a
t 

F
it
s 

I 
F
in

d
 D

p
/C

b
d

 A
p

p
ro

a
ch

 

H
e
lp

fu
l 

M
O

D
E
L 

C
O

M
P

LE
X

IT
Y
 

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty
 

C
h

a
n

g
e
 I
d

e
a
, 
fo

u
n

d
 

In
te

re
st

in
g

 S
o

lu
ti
o

n
s 

I 
F
in

d
 D

p
/C

b
d

 A
p

p
ro

a
ch

 

H
e
lp

fu
l 

N
o

ve
lt
y 

 V
a
ri

e
ty

 

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty
 

DAY 1 
DAY 

1 
DAY 2 

DAY 

1 

DAY 

2 

DAY 2 DAY 

2 
DAY 2 DAY 1 

DAY 2 DAY 2 
DAY 2 DAY 2 

DAY 

2 

Pearson 

Correlatio

n 

.37

7 

-

.482** 

.463
* 

.441
* 

.629*

* 

.35

5 

Pearson  

Correlatio

n 

.413

* 

-

.371

* 

.385

* 

.688*

* 

.764*

* 

.79

7 

Sig. (2-

tailed) 

.04

0 

.007 .010 .015 .000 .05

4 

Sig. (2-

tailed) 

.023 .044 0.36 .000 .000 .00

0 

N 
30 30 30 30 30 30 

N 
30 30 30 30 30 30 
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Correlation between Model Complexity and the other criteria. CBD group: 

M
O

D
E
L 

C
O

M
P

LE
X

IT
Y
 

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 

w
h

a
t 

w
a
s 

w
a
n

te
d
 

N
o

ve
lt
y 

V
a
ri

e
ty

 

DAY 2 DAY 1 DAY 2 DAY 2 

Pearson  

Correlation 

-.359* .414** .377** 

Sig. (2-tailed) 
.013 .004 .009 

N 
47 47 47 

 

Dependent variable control (Experience / Gender): 

Dependent Variable  Approach / p-

value 

Approach / F (df) Design 

Experience / p 

Design 

Experience / F 

Model Complexity Score DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach / Design 

Experience 

 .017  (1,67) 

5.966 

 .538  (4,67) 

.786 

 Approach / p-

value 

Approach / F Gender / p Gender / F 

Approach / Gender  .019  (1, 73) 

5.797 

 .146  (1, 73) 

.704 
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Algorithm Complexity 

Algorithm Complexity Score 

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

ALGORITHM 

COMPLEXITY 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 

2 

DAY 

1 

DAY 

2 

Algorithm 

Complexity 

Score 

40.69 

+-

18.275 

54.61 

+-

26.988 

50.6

0 +- 

33.1

4 

56.57 

+- 

28.22 

50.4

0 +- 

30.1

1 

53.59 

+- 

27.48 

2.02

5 

(125) 

.107 

(125) 

.136 .898 

 

Day 1: F (125) = 2.025, p = 0.136; F ratio (F), the degrees of freedom (df) 

and p-value are used.  

Day 2: F (125) = .107, p = 0.898; 

 

Categories Of Programming Components Implemented 

Comparison of implemented components by category (input tubs) 

between the DP and CBD groups: 

Criteria  DP (Mean) CBD (Mean) t df p - value 

COMPONENTS 

COMPLEXITY 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

0 - 1 Input 

Comp. 

6.23 

+-

1.675 

6.67 

+- 

2.218 

5.38 

+- 

1.895 

5.96 

+- 

1.574 

2.007 1.641 75 75 .048 .105 

2 Input Comp 4.83 

+- 

1.895 

6.80 

+- 

2.188 

3.79 

+- 

1.473 

6.02 

+- 

2.202 

2.714 1.517 75 75 .008 .133 

3 Input Comp. 3.47 

+- 

2.193 

2.43 

+- 

1.455 

2.57 

+- 

1.331 

2.43 

+- 

1.347 

2.005 .024 42.750 75 .051 .981 

4 Input Comp. .50 

+- 

.820 

1.57 

+- 

.774 

.85 

+- 

.978 

1.23 

+- 

.937 

-

1.633 

1.621 75 75 .107 .109 

5 Input Comp. .00 .13 

+- 

.346 

.02 

+- 

.146 

.09 

+- 

.282 

-.797 .670 75 75 .428 .505 

6 Input Comp. .10 

+- 

.305 

.00 .15 

+- 

.360 

.04 

+- 

.204 

-.616 -

1.430 

75 46.000 .540 .160 
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Correlation between Programming Algorithm Complexity and the other 

criteria. All groups: 
A
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H
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N
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V
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e
ty

 

DAY 1 DAY 1 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 

Pearson  

Correlation 

.498** .401** Pearson  

Correlation 

.401** .458** .599** 

Sig. (2-tailed) 
.000 .000 

Sig. (2-tailed) 
.000 .000 .000 

N 
126 126 

N 
126 126 126 

 

No Approach group: 
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m

 

C
o

m
p

le
xi

ty
 

A
LG

O
R

IT
H

M
 

C
O

M
P

LE
X

IT
Y
 

N
o

ve
lt
y 

V
a
ri

e
ty

 

A
lg

o
ri

th
m

  

C
o

m
p

le
xi

ty
 

S
a
ti
sf

a
ct

io
n

 W
it
h

 

O
u

tp
u

t 

N
o

ve
lt
y 

V
a
ri

e
ty

 
DAY 1 DAY 1 DAY 2 DAY 2 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 

Pearson 

Correlation 

.610** .525** Pearson  

Correlation 

.478** .352* .525** .363* .614** .675** 

Sig. (2-tailed) 
.000 .000 

Sig. (2-tailed) 
.001 .013 .000 .010 .000 .000 

N 
49 49 

N 
49 49 49 49 49 49 

 

DP group: 
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d
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ty

 

DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 
DAY 

2 

DAY 

2 

Pearson  

Correlatio

n 

.377* .403

* 

.511*

* 

.434

* 

.413* .374

* 

Pearson 

C 

orrelatio

n 

.374

* 

.361

* 

.797 .58

3 

.79

5 

Sig. (2-

tailed) 

.040 .027 .004 .017 .023 .042 Sig. (2-

tailed) 

.042 .050 .000 .00

1 

.00

0 

N 
30 30 30 30 30 30 

N 
30 30 30 30 30 
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CBD group: 

A
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 C
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W
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DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 

Pearson  

Correlation 

-.362 .432 .363 .383 Pearson  

Correlation 

.383 -.378 

Sig. (2-tailed) 
.013 .002 .012 .008 

Sig. (2-tailed) 
.008 .009 

N 
47 47 47 47 

N 
47 47 
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Explored Solution Space 

Variety 

Variety Score 

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

VARIETY SCORE DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

ALGORITHM 

VARIETY Score 

12.43 

+- 

3.565 

16.65 

+- 

5.851 

15.1

3 +- 

4.71

8 

17.60 

+- 

5.137 

12.7

7 +- 

3.59

5 

15.77 

+- 

3.218 

4.99

2 

(125) 

1.332 

(125) 

.008 .268 

 

Day 1: F (125) = 4.992, p = 0.008; F ratio (F), the degrees of freedom (df) 

and p-value are used.  

Day 2: F (125) = 1.332, p = 0.268; 

 

ANOVA Post-Hoc, Tukey’s test 

Criteria  No Approach 

Group 

(Mean) 

DP (Mean) CBD (Mean) p – value  

NA with DP 

p – value  

NA with 

CBD 

p – value  

DP with CBD 

VARIETY 

SCORE 

DAY 1 DA

Y 2 

DAY 1 DA

Y 2 

DAY 1 DA

Y 2 

DAY 

1 

DA

Y 2 

DAY 

1 

DA

Y 2 

DAY 

1 

DA

Y 2 

ALGORITH

M VARIETY 

Score 

12.4

3 +- 

3.56

5 

 15.1

3 +- 

4.71

8 

 12.7

7 +- 

3.59

5 

 .00

9 

 .90

5 

 .02

7 
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Correlation between Algorithm (Programming Solution) Variety and the 

other criteria. All groups: 
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DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.698** .498** Pearson  

Correlation 

.458** .766** .599** 

Sig. (2-tailed) 
.000 .000 

Sig. (2-tailed) 
.000 .000 .000 

N 
126 126 

N 
126 126 126 

 

No Approach group: 
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DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 

Pearson  

Correlation 

.480* .406** .504** .687** .610** .352* Pearson  

Correlation 

.471** .809** .675** 

Sig. (2-tailed) 
.015 .004 .000 .000 .000 .013 

Sig. (2-tailed) 
.001 .000 .000 

N 
25 49 49 49 49 49 

N 
49 49 49 

 

DP group: 
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DAY 1 DAY 1 DAY 1 DAY 1 DAY2 DAY 2 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.350 .511

** 

.794 .357 Pearson  

Correlation 

.764 .777 .795 

Sig. (2-tailed) 
.058 .004 .000 .053 

Sig. (2-tailed) 
.000 .000 .000 

N 
30 30 30 30 

N 
30 30 30 
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CBD group: 
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DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 1 

Pearson  

Correlation 

.679 .544 .432 .374** Pearson  

Correlation 

.613 .377** .544 .363* 

Sig. (2-tailed) 
.000 .000 .002 .010 

Sig. (2-tailed) 
.000 .009 .000 .012 

N 
47 47 47 47 

N 
47 47 47 47 

 

Dependent variable control (Experience / Gender): 

Dependent Variable  Approach / p-

value 

Approach / F (df) Design 

Experience / p 

Design 

Experience / F 

TOTAL VARIETY SCORE DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach / Design 

Experience 

.032 .134 (1,67) 

4.797 

(1,67) 

2.304 

.739 .495 (4,67) 

.496 

(4,67) 

.856 

 Approach / p-

value 

Approach / F Gender / p Gender / F 

Approach / Gender .005 .056 (1,73) 

8.441 

(1,73) 

3.760 

.003 .575 (1,73) 

9.526 

(1,73) 

.318 

Descriptive Statistics 

Dependent Variable: DAY 1 Total Variety Score 

Gender DP 

Mean 

DP Std. 

Deviation 

DP N CBD 

Mean 

CBD Std. 

Deviation 

CBD N Total 

Mean 

Total Std. 

Deviation 

Total N 

Male 16.87 4.984 15 13.57 3.510 30 14.67 4.301 45 

Female 13.40 3.851 15 11.35 3.390 17 12.31 3.702 32 

Total 15.13 4.718 30 12.77 3.595 47 13.69 4.203 77 

Descriptive Statistics 

Dependent Variable: DAY 2 Total Variety Score 

Design Experience 

Groups 

DP 

Mean 

DP Std. 

Deviation 

DP N CBD 

Mean 

BCD Std. 

Deviation 

CBD N Total 

Mean 

Total Std. 

Deviation 

Total N 

0. - 1.9 years of 

experience 
19.18 5.671 11 16.25 3.793 12 17.65 4.905 23 

2.0 - 3.9 years of 

experience 
15.57 3.207 7 15.47 3.623 15 15.50 3.419 22 

4.0 - 5.9 years of 

experience 
17.37 6.739 8 15.94 2.645 18 16.38 4.234 26 

6.0 - 7.9 years of 

experience 
17.00 1.414 2 13.00 . 1 15.67 2.517 3 

8 or more years of 

experience 
17.50 2.121 2 14.00 . 1 16.33 2.517 3 

Total 17.60 5.137 30 15.77 3.218 47 16.48 4.141 77 
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Novelty 

Novelty Score 

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

NOVELTY 

SCORE 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

ALGORITH

M NOVELTY 

Score 

28.16 

+- 

16.69

7 

50.82 

+- 

31.64

6 

29.30 

+- 

19.19

3 

53.67 

+- 

20.86

0 

27.43 

+- 

16.56

2 

43.57 

+- 

17.82

0 

.108 

(125

) 

1.79

1 

(125) 

.89

8 

.17

1 

 

Day 1: F (125) = 0.108, p = 0.898; F ratio (F), the degrees of freedom (df) 

and p-value are used.  

Day 2: F (125) = 1.791, p = 0.171; 

 

Novelty Categories of Implemented Components 

Comparison between the DP and CBD groups 

Criteria  DP (Mean) CBD (Mean) t df p - value 

NOVELTY 

CATEGORIE

S  

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 

2 

DAY 

1 

DAY 

2 

0 Novelty 

Points 

Comp. 

21.87 

+- 

15.53

8 

22.80  

+- 

13.850 

21.45 

+- 

15.42

3 

20.83  

+- 

12.908 

.116 .635 75 75 .908 .527 

1 Novelty 

Points 

Comp 

1.87 

+- 

2.300 

1.57  

+- 

1.305 

1.53  

+- 

2.578 

1.51  

+- 

1.586 

.579 .162 75 75 .564 .872 

2 Novelty 

Points 

Comp 

1.07  

+- 

1.258 

.93  

+- 

1.112 

1.47  

+- 

2.063 

1.21  

+- 

1.382 

-1.061 -.931 74.891 75 .292 .355 

3 Novelty 

Points 

Comp 

1.27  

+- 

1.530 

1.23  

+- 

1.040 

.72  

+- .994 

1.17  

+- 

1.167 

1.727 .241 44.675 75 .091 .810 

4 Novelty 

Points 

Comp 

1.10  .50  .77  .79  1.207 -

1.195 

75 75 .231 .236 
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+- 

1.185 

+-

.777 

+- 

1.183 

+- 

1.160 

5 Novelty 

Points 

Comp 

.50  

+-.900 

1.97  

+- 

1.671 

.85  

+- 

1.335 

1.53  

+- 

1.653 

-1.267 1.121 75 75 .209 .266 

6 Novelty 

Points 

Comp 

.53  

+-.776 

1.00  

+- 

1.017 

.94  

+- 

1.275 

1.26  

+- 

1.421 

-1.554 -.853 75 75 .124 .396 

7 Novelty 

Points 

Comp 

.90  

+- 

1.185 

1.37  

+- 

1.129 

.79  

+- 

1.122 

.79  

+- 

1.020 

.421 2.331 75 75 .675 .022 

8 Novelty 

Points 

Comp 

1.27  

+- 

2.638 

1.03  

+- 

1.189 

.47  

+-.654 

.77  

+-

.983 

1.626 1.072 31.292 75 .114 .287 

9 Novelty 

Points 

Comp 

.13  

+-.346 

1.13  

+- 

1.548 

.19  

+-.495 

1.13  

+- 

1.825 

-.561 .014 75 75 .576 .989 

10 Novelty 

Points 

Comp 

.27  

+-.691 

.90  

+- 

1.423 

.51  

+- 

1.120 

.72  

+- 

1.192 

-

1.181 

.587 74.94

7 

75 .241 .559 
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Correlation between Algorithm (Programming Solution) Novelty and the 

other criteria. All groups: 
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DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.698** .350** Pearson  

Correlation 

.468** .766** .458** 

Sig. (2-tailed) 
.000 .000 

Sig. (2-tailed) 
.000 .000 .000 

N 
126 126 

N 
126 126 126 

 

No Approach group: 
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DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.687** .471** .478** .451** Pearson  

Correlation 

.451** .398** .809** .614** 

Sig. (2-tailed) 
.000 .001 .001 .001 

Sig. (2-tailed) 
.001 .005 .000 .000 

N 
49 49 49 49 

N 
49 49 49 49 

 

DP group: 
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 C
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DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.794 .403* -.374* Pearson  

Correlation 

.379* .688 .777 .583 

Sig. (2-tailed) 
.000 .027 .041 

Sig. (2-tailed) 
.039 .000 .000 .001 

N 
30 30 30 

N 
30 30 30 30 
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CBD group: 
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e
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DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 

Pearson  

Correlation 

-.380** .679** Pearson  

Correlation 

.374** .414** .613** 

Sig. (2-tailed) 
.009 .000 

Sig. (2-tailed) 
.010 .004 .000 

N 
47 47 

N 
47 47 47 

 

Dependent variable control (Experience / Gender): 

Dependent Variable  Approach / p-

value 

Approach / F (df) Design 

Experience / p 

Design 

Experience / F 

TOTAL NOVELTY SCORE DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach / Design Experience  .145  (1,67) 

2.178 

 .973  (4,67) 

47.251 

 Approach / p-

value 

Approach / F Gender / p Gender / F 

Approach / Gender  .024  (1,73) 

5.333 

 .462  (1,73) 

.548 

Descriptive Statistics 

Dependent Variable: DAY 2 Total Novelty Score 

Design Experience 

Groups 

DP 

Mean 

DP Std. 

Deviation 

DP N CBD 

Mean 

CBD Std. 

Deviation 

CBD N Total 

Mean 

Total Std. 

Deviation 

Total N 

0. - 1.9 years of 

experience 
58.91 23.763 11 39.75 20.951 12 48.91 23.914 23 

2.0 - 3.9 years of 

experience 
49.00 17.117 7 46.53 17.517 15 47.32 17.019 22 

4.0 - 5.9 years of 

experience 
51.63 17.246 8 44.17 16.100 18 46.46 16.488 26 

6.0 - 7.9 years of 

experience 
61.50 19.092 2 20.00 . 1 47.67 27.502 3 

8 or more years of 

experience 
41.50 43.134 2 58.00 . 1 47.00 31.953 3 

Total 53.67 20.860 30 43.57 17.820 47 47.51 19.565 77 
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Comparison of Programming Criteria 

Programming Difficulties 

How Often You Come Across Programming Difficulties 

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

PROGRAMMING 

DIFFICULTIES 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

How often you 

have  come across 

programming 

difficulties 

2.88 

+- 

1.053 

2.71 

+- 

.890 

2.37 

+- 

.669 

2.10 

+- 

.403 

2.91 

+- 

1.039 

2.53 

+- 

.776 

3.414 

(125) 

6.200 

(125) 

.036 .003 

 

Day 1: F (125) = 3.414, p = .036; F ratio (F), the degrees of freedom (df) 

and the p-value are used.  

Day 2: F (125) = 6.200, p = .003; 

 

ANOVA Post-Hoc, Tukey’s test 

Criteria  No Approach 

Group 

(Mean) 

DP (Mean) CBD (Mean) p – value  

NA with DP 

p – value  

NA with 

CBD 

p – value  

DP with CBD 

PROGRAMMIN

G DIFFICULTIES 

DAY 1 DAY 

2 

DAY 

1 

DAY 

2 

DAY 1 DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

How often 

you have  

come across 

programmin

g difficulties 

2.88 

+- 

1.05

3 

2.7

1 

+- 

.89

0 

2.3

7 

+- 

.66

9 

2.1

0 

+- 

.40

3 

2.91 

+- 

1.03

9 

2.5

3 

+- 

.77

6 

.06

4 

.00

2 

.98

1 

.46

7 

.04

5 

.04

2 
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Types of Difficulties 

Chi-square test Comparison between the all tree groups: NA, DP and CBD 

Criteria  No Approach  

Count / Total (%) 

DP  

Count / Total (%) 

CBD  

Count / Total (%) 

X2 p – value  

TYPES OF 

DIFFICULTIES 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

Problems 

with 

Particular 

component

s 

44.8% 

(22/49

) 

48.9% 

(24/49

) 

33.3% 

(10/30

) 

43.3% 

(13/30

) 

21.3% 

(10/47

) 

23.4% 

(11/47

) 

6.02

3 

7.11

2 

.04

9 

.02

9 

Logic 

Connection

s 

18.3% 

(9/49) 

20.4% 30% 

(9/30) 

23.3% 

(7/30) 

25.5% 

(12/47

) 

23.4% 

(11/47

) 

1.51

1 

.153 .47

0 

.92

6 

Knowing 

what 

component 

to use 

30.6% 

(15/49

) 

24.5% 

(12/49

) 

26.7% 

(8/30) 

20% 

(6/30) 

38.3% 

(18/47

) 

34% 

(16/47

) 

1.26

4 

2.08

6 

.53

1 

.35

2 

Valid 

Parameters 

12.2% 

(6/49) 

12.2% 

(6/49) 

13.3% 

(4/30) 

16.7% 

(5/30) 

17% 

(8/47) 

10.6% 

(5/47) 

.476 .615 .78

8 

.73

5 

Idea to 

Algorithm 

translation 

44.9% 

(22/49

) 

42.8% 

(21/49

) 

53.3% 

(16/30

) 

60% 

(18/30

) 

48.9% 

(23/47

) 

53.2% 

(25/47

) 

.538 2.36

0 

.76

4 

.30

7 

 

Problems with Particular components: 

Day 1: NA 22/49 (44.8%), DP 10/30 (33.3%), CBD 10/47 (21.3%), X2 = 

6.023, p = .049, the count of responses, the percentage, the Chi-Square – 

value (X2) and the p-value are used. 

Day 2: NA 22/49 (48.9%), DP 12/30 (43.3%), CBD 11/47 (23.4%), X2 = 

7.112, p = .029, 

  



Comparison of Programming Criteria 

Page |  19  

 

Chi-square test Comparison between the DP and CBD groups 

Criteria  DP 

(yes/30) 

DP (%) CBD 

(yes/47) 

CBD (%) X2 p - value 

TYPES OF 

DIFFICULTIES 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 1 DAY 2 DAY 

1 

DAY 

2 

Problems 

with 

Particular 

components 

10 13 33.3 43.3 10  11 21.3 23.4 1.384 3.390 .239 .066 

Logic 

Connections 

9 7 30 23.3 12 11 25.5 23.4 .184 .000 .668 .994 

Knowing 

what 

component 

to use 

8 6 26.7 20 18 16 38.3 34 1.108 1.769 .293 .183 

Valid 

Parameters 

4 5 13.3 16.7 8 5 17 10.6 .189 .589 .663 .443 

Idea to 

Algorithm 

translation 

16 18 53.3 60 23 25 48.9 53.2 .142 .344 .707 .557 

Problems 

with the 

approach 

0 4 0 13.3 0 1 0 2.1  3.787  .052 

 

Chi-square test Comparison between No Approach group and the DP/ 

CBD groups 

Criteria  No 

Approach 

(yes/ 49) 

No 

Approach 

(%) 

DP (%) CBD (%) p – value 

between N/A 

and DP 

group 

p – value 

between N/A 

and CBD 

group 

TYPES OF 

DIFFICULTIES 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Problems 

with 

Particular 

components 

22 24 44.8 48.9 33.3 43.3 21.3 23.4 .218 .400 .012 .008 

Logic 

Connections 

9 10 18.3 20.4 30 23.3 25.5 23.4 .178 .485 .274 .457 

Knowing 

what 

component 

to use 

15 12 30.6 24.5 26.7 20 38.3 34 .456 .431 .282 .211 

Valid 

Parameters 

6 6 12.2 12.2 13.3 16.7 17 10.6 .573 .407 .354 .530 

Idea to 

Algorithm 

translation 

22 21 44.9 42.8 53.3 60 48.9 53.2 .310 .106 .424 .209 
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DEPENDENCY BETWEEN THE TYPES OF DIFFULTIES AND THE OVERALL 

AMOUNT OF PROBLEMS 

All test groups 

Programming difficulties 1.  

No 

Difficulties 

2.  

1- 3 

Problems 

3.  

4 – 6 

Problems 

4.  

7 – 9 

Problems 

5.   

10 > 

Problems 

p – value 

between YES 

/ NO group 

TYPES OF DIFFICULTIES DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Problems with 

Particular 

components 

NO 4 2 30 44 26 20 15 10 9 2 .029 .711 

YES 1 1 25 31 13 12 3 4 1 0 

Logic 

Connections 

NO 4 2 41 63 30 23 13 8 8 2 .896 .161 

YES 1 1 14 12 9 9 5 6 1 0 

Knowing what 

component 

to use 

NO 3 3 42 60 25 22 9 6 6 1 .307 .036 

YES 2 0 13 15 14 10 9 8 3 1 

Valid 

Parameters 

NO 4 3 47 67 36 28 16 10 5 2 .079 .381 

YES 1 0 8 8 3 4 2 4 4 0 

Idea to 

Algorithm 

translation 

NO 3 2 32 34 17 15 10 10 3 1 .491 .455 

YES 2 1 23 41 22 17 8 4 6 1 

 

No Approach group 

Programming difficulties 1.  

No 

Difficulties 

2.  

1- 3 

Problems 

3.  

4 – 6 

Problems 

4.  

7 – 9 

Problems 

5.   

10 > 

Problems 

p – value 

between YES 

/ NO group 

TYPES OF DIFFICULTIES DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Problems with 

Particular 

components 

NO 1 1 7 8 7 10 8 5 4 1 .060 .512 

YES 1 1 13 13 6 6 2 4 0 0 

Logic 

Connections 

NO 2 1 16 20 11 13 8 4 3 1 .952 .023 

YES 0 1 4 1 2 3 2 5 1 0 

Knowing what 

component 

to use 

NO 2 2 16 19 7 12 6 4 3 0 .420 .027 

YES 0 0 4 2 6 4 4 5 1 1 

Valid 

Parameters 

NO 2 2 18 19 12 14 9 7 2 1 .201 .845 

YES 0 0 2 2 1 2 1 2 2 0 

Idea to 

Algorithm 

translation 

NO 1 2 14 10 7 7 5 8 0 1 .145 .095 

YES 1 0 6 11 6 9 5 1 4 0 
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DP group 

Programming difficulties 1.  

No 

Difficulties 

2.  

1- 3 

Problems 

3.  

4 – 6 

Problems 

4.  

7 – 9 

Problems 

5.   

10 > 

Problems 

p – value 

between YES 

/ NO group 

TYPES OF DIFFICULTIES DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Problems with 

Particular 

components 

NO 2 1 9 13 8 3 1 - - - .482 .464 

YES 0 0 7 12 3 1 0 - - - 

Logic 

Connections 

NO 1 1 11 20 8 2 1 - - - .835 .359 

YES 1 0 5 5 3 2 0 - - - 

Knowing what 

component 

to use 

NO 1 1 13 21 7 2 1 - - - .580 .253 

YES 1 0 3 4 4 2 0 - - - 

Valid 

Parameters 

NO 1 1 15 21 10 3 0 - - - .021 .815 

YES 1 0 1 4 1 1 1 - - - 

Idea to 

Algorithm 

translation 

NO 2 0 8 10 4 2 0 - - - .296 .659 

YES 0 1 8 15 7 2 1 - - - 

 

CBD group 

Programming difficulties 1.  

No 

Difficulties 

2.  

1- 3 

Problems 

3.  

4 – 6 

Problems 

4.  

7 – 9 

Problems 

5.   

10 > 

Problems 

p – value 

between YES 

/ NO group 

TYPES OF DIFFICULTIES DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Problems with 

Particular 

components 

NO 1 - 14 23 11 7 6 5 5 1 .667 .242 

YES 0 - 5 6 4 5 1 0 0 0 

Logic 

Connections 

NO 1 - 14 23 11 8 4 4 5 1 .528 .773 

YES 0 - 5 6 4 4 3 1 0 0 

Knowing what 

component 

to use 

NO 0 - 13 20 11 8 2 2 3 1 .192 .545 

YES 1 - 6 9 4 4 5 3 2 0 

Valid 

Parameters 

NO 1 - 14 27 14 11 7 3 3 1 .214 .161 

YES 0 - 5 2 1 1 0 2 2 0 

Idea to 

Algorithm 

translation 

NO 0 - 10 14 6 6 5 2 3 0 .538 .790 

YES 1 - 9 15 9 6 2 3 2 1 
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Correlation between amount of programming difficulties and the other 

criteria. All groups: 
P
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IF

F
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U
LT

IE
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P
ro
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ra
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m
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 D
if
fi
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s 

DAY 1 DAY 2 DAY 1 DAY 2 Day 1 

Pearson 

Correlation 

.385** .371** Pearson  

Correlation 

.385** 

Sig. (2-tailed) 
.000 .000 

Sig. (2-tailed) 
.000 

N 
126 126 

N 
126 

 

No Approach group: 
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n

 W
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h

 O
u

tp
u

t 
DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.371** .449** .406** Pearson  

Correlation 

.406** -.408** -.426* .456** -.400** 

Sig. (2-tailed) 
.009 .001 .004 

Sig. (2-tailed) 
.004 .004 .034 .001 .004 

N 
49 49 49 

N 
49 49 25 49 49 
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 D
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 D
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s 
 

DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 

Pearson  

Correlation 

-.577** .371* .420* .365* -.490** Pearson  

Correlation 

.435* .371* -

.358 

-

.374* 

.446* 

Sig. (2-tailed) 
.001 .043 .021 .048 .006 

Sig. (2-tailed) 
.016 .043 .052 .041 .014 

N 
30 30 30 30 30 

N 
30 30 30 30 30 
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CBD group: 
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DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 

Pearson  

Correlation 

-.350* -.503** .353* -.357* 

Sig. (2-tailed) 
.016 .000 .015 .014 

N 
47 47 47 47 

 

Dependent variable control (Experience / Gender): 

Dependent Variable  Approach / p-

value 

Approach / F(df) Design 

Experience / p 

Design 

Experience / F 

How often: program. difficulties DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach / Design Experience .011 .180 (1,67) 

6.930 

(1,67) 

1.836 

.601 .536 (4,67) 

.690 

(4,67) 

.790 

 Approach / p-

value 

Approach / F Gender / p Gender / F 

Approach / Gender .012 .014 (1,73) 

6.664 

(1,73) 

6.351 

.880 .496 (1,73) 

.023 

(1,73) 

.469 

Descriptive Statistics 

Dependent Variable: DAY 2. How often you have  come across programming difficulties 

Design Experience 

Groups 

DP 

Mean 

DP Std. 

Deviation 

DP N CBD 

Mean 

CBD Std. 

Deviation 

CBD N Total 

Mean 

Total Std. 

Deviation 

Total N 

0. - 1.9 years of 

experience 
2.18 .405 11 2.67 .651 12 2.43 .590 23 

2.0 - 3.9 years of 

experience 
2.29 .488 7 2.33 .617 15 2.32 .568 22 

4.0 - 5.9 years of 

experience 
2.00 .000 8 2.67 .970 18 2.46 .859 26 

6.0 - 7.9 years of 

experience 
1.50 .707 2 2.00 . 1 1.67 .577 3 

8 or more years of 

experience 
2.00 .000 2 2.00 . 1 2.00 .000 3 

Total 2.10 .403 30 2.53 .776 47 2.36 .687 77 
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Learning Curve 

How Often Participants Have Implemented New Components 

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

LEARNING CURVE DAY 1 DAY 

2 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

How often 

participants have 

implemented new 

programming 

components 

2.16 

+- 

1.143 

2.16 

+- 

.986 

2.43 

+- 

1.13

5 

1.87 

+- 

.819 

2.21 

+- 

1.12

2 

2.09 

+- 

.830 

.561 

(99.4) 

1.051 

(99.4) 

.572 .353 

 

Correlation between how often participants implemented new 

components and the other criteria.  

All groups: 

LE
A

R
N

IN
G

 C
U

R
V

E
 

Le
a
rn

in
g

 C
u

rv
e
 

LE
A

R
N

IN
G

 C
U

R
V

E
 

Le
a
rn

in
g

 C
u

rv
e
 

DAY 1 DAY 2 DAY 2 DAY 1 

Pearson  

Correlation 

.366** Pearson  

Correlation 

.366** 

Sig. (2-tailed) 
.000 

Sig. (2-tailed) 
.000 

N 
126 

N 
126 

 

No Approach group: 
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DAY 1 DAY 1 

Pearson  

Correlation 

.400* 

Sig. (2-tailed) 
.047 

N 
25 
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DP group: 
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DAY 1 DAY 2 DAY 2 DAY 1 

Pearson  

Correlation 

.658** Pearson  

Correlation 

.658** 

Sig. (2-tailed) 
.000 

Sig. (2-tailed) 
.000 

N 
30 

N 
30 

 

CBD group: 
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DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 

Pearson  

Correlation 

.359* Pearson  

Correlation 

.348* .457** 

Sig. (2-tailed) 
.013 

Sig. (2-tailed) 
.017 .001 

N 
47 

N 
47 47 
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Re-Use of Algorithms 

Re-Use Of Knowledge 

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

RE-USE OF 

KNOWLEDGE 

DAY 

1 

DAY 

2 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

How often 

participants have 

re-used 

algorithms from 

the external 

sources 

1.98 

+- 

.968 

2.31 

+- 

.962 

2.37 

 +-

.928 

2.50 

+-

.682 

2.32 

+-

.980 

2.34 

+-

.867 

2.09

1 

(118) 

.496 

(93.2) 

.128 .610 

 

Correlation between how often participants have re-used algorithms from 

the external sources and the other criteria. All groups: 
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Pearson  

Correlation 

.428** Pearson  

Correlation 

.428** 

Sig. (2-tailed) 
.000 

Sig. (2-tailed) 
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N 
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N 
126 

 

No Approach group: 
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Correlation 
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Sig. (2-tailed) 
.001 

N 
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DP group: 
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Correlation 

-.382* .681** Pearson  

Correlation 

.681** -.482** -.380* 

Sig. (2-tailed) 
.037 .000 

Sig. (2-tailed) 
.000 .007 .038 

N 
30 24 

N 
30 30 30 

 

CBD group: 
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Correlation 
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Sig. (2-tailed) 
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N 
47 

N 
47 
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Comparison of Approach Characteristics Criteria 

Usability 

Usability  

T-test. Comparison between the DP and CBD groups 

Criteria  DP (Mean) CBD (Mean) t df p - value 

USABILITY DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

It was easy to 

implement 

DP/CBD 

approach in 

my design. 

2.90 

+- 

.885 

3.03 

+-

.809 

3.66 

+-

.668 

3.77 

+-

.666 

-

4.280 

-

4.326 

75 75 .000 .000 

 

Day 1: t(75) = -4.280, p = 0.000; the t-value (t), the degrees of freedom 

(df) and the p-value 

Day 2: t(75) = -4.326, p = 0.000; 

 

Correlation between approach usability and the other criteria. DP group: 
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Pearson 

Correlati
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.48

6 

-

.480 

-

.577 

.57

7 

.39

5 

.35

0 

-

.35

8 

.43

4 

.430
* 

.58

3 

Pearson 

Correlati

on 

.58

3 

.46

2 

.45

9 

Sig. (2-

tailed) 

.00

6 

.007 .001 .00

1 

.03

1 

.05

8 

.05

2 

.01

7 

.018 .00

1 

Sig. (2-

tailed) 

.00

1 

.01

0 

.01

1 

N 
30 30 30 30 30 30 30 30 30 30 

N 
30 30 30 
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Correlation between approach usability and the other criteria. CBD group: 
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DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlatio

n 

.627*

* 

.397*

* 
.408*

* 

.495*

* 

.354

* 
.409*

* 

.434*

* 

Pearson  

Correlatio

n 

.354

* 

.358

* 

.415*

* 

.400*

* 

Sig. (2-

tailed) 

.000 .006 .004 .000 .015 .004 .002 Sig. (2-

tailed) 

.015 .013 .004 .005 

N 
47 47 47 47 47 47 47 

N 
47 47 47 47 

 

Dependent variable control (Experience / Gender): 

Dependent Variable  Approach / p-

value 

Approach / F (df) Design 

Experience / p 

Design 

Experience / F 

It was easy to implement DP/CBD 

approach in my design 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach / Design Experience .021 .022 (1,67) 

5.610 

(1,67) 

5.465 

.675 .793 (4,67) 

.585 

(4,67) 

.421 

 Approach / p-

value 

Approach / F Gender / p Gender / F 

Approach / Gender .000 .000 (1,73) 

17.272 

(1,73) 

17.646 

.548 .845 (1,73) 

.364 

(1,73) 

.039 
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Intuitiveness 

Intuitiveness 

Comparison between the DP and CBD groups 

Criteria  DP (Mean) CBD (Mean) t df p - value 

INTUITIVENESS DAY 

1 

DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 2 

I find DP/CBD 

approach - 

intuitive. 

 3.37 

+- 

.718 

 3.81 

+-

.851 

 -

2.357 

 75  .021 

 

t(75) = -2.357, p = 0.021; the t-value (t), the degrees of freedom (df) and 

the p-value 

 

Correlation between approach intuitiveness and the other criteria. DP 

group: 
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DAY 2 DAY 2 

Pearson  

Correlation 

.355 

Sig. (2-tailed) 
.054 

N 
30 

 

CBD group: 
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DAY 2 DAY 2 

Pearson  

Correlation 

.438** 

Sig. (2-tailed) 
.002 

N 
47 
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Dependent variable control (Experience / Gender): 

Dependent Variable  Approach / p-

value 

Approach / F (df) Design 

Experience / p 

Design 

Experience / F 

INTUITIVNESS DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach / Design Experience  .562  (1,67) 

.339 

 .552  (4,67) 

.765 

 Approach / p-

value 

Approach / F Gender / p Gender / F 

Approach / Gender  .024  (1,73) 

5.352 

 .563  (1,73) 

.337 

Descriptive Statistics 

Dependent Variable: DAY 2 INTUITIVNESS 

Design Experience 

Groups 

DP 

Mean 

DP Std. 

Deviation 

DP N CBD 

Mean 

CBD Std. 

Deviation 

CBD N Total 

Mean 

Total Std. 

Deviation 

Total N 

0. - 1.9 years of 

experience 
3.45 .820 11 3.92 .996 12 3.70 .926 23 

2.0 - 3.9 years of 

experience 
3.29 .756 7 3.60 .986 15 3.50 .913 22 

4.0 - 5.9 years of 

experience 
3.38 .744 8 4.00 .594 18 3.81 .694 26 

6.0 - 7.9 years of 

experience 
3.00 .000 2 3.00 . 1 3.00 .000 3 

8 or more years of 

experience 
3.50 .707 2 3.00 . 1 3.33 .577 3 

Total 3.37 .718 30 3.81 .851 47 3.64 .826 77 
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Flexibility 

Flexibility 

Comparison between the DP and CBD groups 

Criteria  DP (Mean) CBD (Mean) t df p - value 

FLEXIBILITY DAY 

1 

DAY 2 DAY 

1 

DAY 2 DAY 1 DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

I have 

successfully 

found / 

implemented a 

DP/Case-Base 

solution that fits 

my design idea. 

3.47 

+-

.730 

3.80 

+- 

.761 

3.66 

+-

.562 

3.64 

+- 

.735 

-

1.305 

.929 75 75 .196 .356 

 

Day 1: t(75) = -1.305, p = 0.196; the t-value (t), the degrees of freedom 

(df) and the p-value 

Day 2: t(75) = 0.929, p = 0.356; 

 

Used DP/CBD solutions [from the documented Design Patterns / Online 

Case-Base]. Comparison between the DP and CBD groups 

Criteria  DP (yes/30l)  DP(%) CBD 

(yes/47l) 

CBD(%) X2 p - value 

FLEXIBILIT

Y 

DA

Y 1 

DA

Y 2 

DAY 1 DAY 

2 

DA

Y 1 

DA

Y 2 

DAY 1 DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Used 

DP/CBD 

solution 

 

17 18 56.7

% 

60

% 

35 38 74.4

% 

80.8

% 

2.64

7 

4.01

4 

.08

5 

.04

2 

 

Day 1: DP 17/30 (56.7%), CBD 35/47 (74.4%), X2 = 2.647, p = 0.085. Chi-

Square – value (X2)  

Day 2: DP 18/30 (60%), CBD 38/47 (80.8%), X2 = 4.014, p = 0.042. 
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Used DP/CBD solution [from the documented Design Patterns and 

patterns for which participants used different names / On-line case-Base 

and cases from tutorials]. Comparison between the DP and CBD groups 

Criteria  DP (yes/30l)  DP(%) CBD 

(yes/47l) 

CBD(%) X2 p - value 

FLEXIBILIT

Y 

DA

Y 1 

DA

Y 2 

DAY 

1 

DAY 2 DA

Y 1 

DA

Y 2 

DAY 1 DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Used 

DP/CBD 

solutions 

(from the 

Case-

base and 

from 

tutorials) 

21 20 70

% 

66.7

% 

36 41 76.6

% 

87.2

% 

.41

4 

4.70

6 

.35

0 

.03

1 

 

Day 1: DP 21/30 (70%), CBD 36/47 (76.6%), X2 = 0.414, p = 0.350.  

Day 2: DP 20/30 (66.7%), CBD 41/47 (87.2%), X2 = 4.706, p = 0.031. 

 

Correlation between approach flexibility and the other criteria. DP group: 
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DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 

Pearson  

Correlation 

.432
* .382* -.403* .395* Pearson  

Correlation 

.430* .485** .600** .459* .397* .629** 

Sig. (2-tailed) 
.017 .037 .027 .031 

Sig. (2-tailed) 
.018 .007 .000 .011 .030 .000 

N 
30 30 30 30 

N 
30 30 30 30 30 30 

 

Correlation between approach flexibility and the other criteria. CBD group: 
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Pearson  

Correlation 

.495** .359* -.387** Pearson  

Correlation 

.604** .372* .400** 

Sig. (2-tailed) 
.000 .013 .007 

Sig. (2-tailed) 
.000 .010 .005 

N 
47 47 47 

N 
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Dependent variable control (Experience / Gender): 

Dependent Variable  Approach / p-

value 

Approach / F (df) Design 

Experience / p 

Design 

Experience / F 

Used DP/CBD DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach / Design Experience .026 .007 (1,58) 

5.200 

(1,62) 

7.651 

.534 .774 (4,58) 

.793 

(4,62) 

.447 

 Approach / p-

value 

Approach / F Gender / p Gender / F 

Approach / Gender .001 .000 (1,64) 

13.077 

(1,68) 

14.206 

.472 .662 (1,64) 

.523 

(1,68) 

.193 
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Utility 

Approach Helpful 

Comparison between the DP and CBD groups 

Criteria  DP (Mean) CBD (Mean) t df p - value 

UTILITY DAY 

1 

DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 2 

I find DP/CBD 

approach - 

helpful. 

 3.93 

+-

.640 

 4.30 

+-

.507 

 -

2.775 

 75  .007 

 

Day 1: t(75) = -2.775, p = 0.007; the t-value (t), the degrees of freedom 

(df) and the p-value 

 

Correlation between how helpful is each approach and the other criteria. 

DP group: 
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DAY 2 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.434 .357 .355 .452* .454* .397* .355 .385* .361* .406* 

Sig. (2-tailed) 
.017 .053 .054 .012 .012 .030 .054 .036 .050 .026 

N 
30 30 30 30 30 30 30 47 30 30 

 

CBD group: 
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N 
47 47 47 
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Dependent variable control (Experience / Gender): 

Dependent Variable  Approach / p-

value 

Approach / F (df) Design 

Experience / p 

Design 

Experience / F 

UTILITY / Approach helpful DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 

Approach / Design Experience  .008  (1,67) 

7.591 

 .238  (4,67) 

1.415 

 Approach / p-

value 

Approach / F Gender / p Gender / F 

Approach / Gender  .014  (1,73) 

6.394 

 .230  (1,73) 

1.462 
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Comparison of Design Ideation Criteria 

Change in the Design Intent 

Change in the Design Intent 

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

CHANGE IN THE 

INTENT 

DAY 

1 

DAY 

2 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

Ability to model 

original idea 

3.00 

+- 

.957 

3.20 

+- 

.957 

2.80 

+- 

.925 

3.30 

+-

.750 

3.15 

+-

.932 

3.53 

+-

.997 

1.274 

(101) 

1.229 

(101) 

.284 .297 

Change in the 

design strategy 

due to 

programming 

difficulties 

2.96 

+-

.841 

2.67 

+- 

.689 

2.93 

+-

.828 

2.70 

+-

.750 

3.19 

+-

.876 

2.68 

+-

.810 

1.201 

(125) 

.012 

(125) 

.304 .988 

Change in the 

design strategy 

because 

participants found 

some interesting 

solutions, which 

they decided to 

use 

3.29 

+- 

.866 

3.27 

+- 

.811 

3.23 

+- 

1.040 

3.27 

+-

.868 

3.45 

+-

.996 

3.47 

+-

.747 

.553 

(125) 

.937 

(125) 

.577 .395 

. I was able to 

accomplish all 

what I wanted 

3.41 

+- 

.888 

3.39 

+- 

.837 

3.33 

+- 

.802 

3.50 

+-

.630 

3.36 

+-

.870 

3.70 

+-

.976 

.077 

(125) 

1.666 

(125) 

.926 .193 
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Design Objectives 

Chi-square test Comparison between the all tree groups: NA, DP and CBD 

Criteria  No Approach  

Count / Total (%) 

DP  

Count / Total (%) 

CBD  

Count / Total (%) 

X2 p – value  

DESIGN 

OBJECTIVES 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

To achieve 

the form I 

originally 

Sketched 

40% 

(10/25

) 

48% 

(12/25

) 

56.7% 

(17/30

) 

60% 

(18/30

) 

51% 

(24/47

) 

80.8% 

(38/47

) 

1.55

5 

8.775 .46

0 

.01

2 

To 

explore/lear

n 

algorithmic 

form-

making 

process 

24% 

(6/25) 

28% 

(9/25) 

63.3% 

(19/30

) 

40% 

(12/30

) 

46.8% 

(22/47

) 

23.4% 

(11/47

) 

8.51

0 

2.672 .01

4 

.26

3 

To 

experiment 

with 

parameters 

/ iterations / 

variables 

8% 

(2/25) 

12% 

(3/25) 

20% 

(6/30) 

46.7% 

(14/30

) 

19.1% 

(9/47) 

8.5% 

(4/47) 

1.80

1 

17.80

0 

.40

6 

.00

0 

To 

understand 

/ apply the 

logics and 

components 

that I have 

learned (test 

my skills) 

28% 

(7/25) 

20% 

(5/25) 

26.7% 

(8/30) 

30% 

(9/30) 

23.4% 

(11/47

) 

21.2% 

(7/47) 

.212 1.004 .89

9 

.60

5 

to combine 

/ explore a 

few Design 

Patterns / 

DRR or 

other 

definitions 

to create a 

complex 

form 

4% 

(1/25) 

8% 

(2/25) 

6.7% 

(2/30) 

13.3% 

(4/30) 

2.1% 

(1/47) 

6.4% 

(3/47) 

1.00

2 

1.127 .60

6 

.56

9 

 

To achieve the form I originally sketched  

Day 2: NA 12/25 (48%), DP 18/30 (60%), CBD 38/47 (80.8%), X2 = 8.775, 

p = .012, the count of responses, the percentage, the Chi-Square – value 

(X2) and the p-value are used. 

To explore/learn algorithmic form-making process 
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Day 1: NA 6/25 (24%), DP 19/30 (63.3%), CBD 22/47 (46.8%), X2 = 8.510, 

p = .014,  

To experiment with parameters / iterations / variables:  

Day 2: NA 3/25 (12%), DP 14/30 (46.7%), CBD 4/47 (8.5%), X2 = 8.510, p 

= .014,  

 

Chi-Square Comparison between the DP and CBD groups 

Criteria  DP (yes/30) DP (%) CBD 

(yes/47) 

CBD (%) X2 p - value 

DESIGN 

OBJECTIVES 

DA

Y 1 

DA

Y 2 

DAY 

1 

DAY 

2 

DA

Y 1 

DA

Y 2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

To achieve 

the form I 

originally 

Sketched 

17 18 56.

7 

60 24 38 51 80.

8 

.231 4.014 .63

1 

.04

5 

To 

explore/lear

n 

algorithmic 

form-

making 

process 

19 12 63.

3 

40 22 11 46.

8 

23.

4 

2.00

9 

2.408 .15

6 

.12

1 

To 

experiment 

with 

parameters 

/ iterations / 

variables 

6 14 20 46.

7 

9 4 19.

1 

8.5 .008 14.88

4 

.92

7 

.00

0 

To 

understand 

/ apply the 

logics and 

components 

that I have 

learned (test 

my skills) 

8 9 26.

7 

30 11 10 23.

4 

21.

2 

.105 .750 .74

6 

.38

7 

to combine / 

explore a 

few Design 

Patterns / 

DRR or 

other 

definitions 

to create a 

complex 

form 

2 4 6.7 13.

3 

1 3 2.1 6.4 1.00

8 

1.070 .31

5 

.30

1 
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Chi-Square Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No 

Approach 

(yes/ 25) 

No 

Approach 

(%) 

DP (%) CBD (%) p – value 

between N/A 

and DP 

group 

p – value 

between N/A 

and CBD 

group 

DESIGN 

OBJECTIVES 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

To achieve 

the form I 

originally 

Sketched 

10 12 40 48 56.7 60 51 80.8 .169 .268 .259 .005 

To 

explore/learn 

algorithmic 

form-making 

process 

6 7 24 28 63.3 40 46.8 23.4 .004 .260 .049 .438 

To 

experiment 

with 

parameters / 

iterations / 

variables 

2 3 8 12 20 46.7 19.1 8.5 .193 .006 .184 .463 

To 

understand / 

apply the 

logics and 

components 

that I have 

learned  

7 5 28 20 26.7 30 23.4 21.2 .575 .297 .438 .577 

to combine / 

explore a few 

Design 

Patterns / 

DRR or other 

definitions to 

create a 

complex 

form 

1 

 

2 

 

4 

 

8 

 

6.7 13.3 2.1 6.4 .569 .427 .577 .572 
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Correlation between the ability to realise original idea and the other 

criteria. All groups: 

A
b
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o
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p
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 r
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p
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C
h

a
n

g
e
d

 D
e
si

g
n

 I
d

e
a
 

B
e
ca

u
se

 O
f 

D
if
fi
cu

lt
ie

s 
 

DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.457** Pearson  

Correlation 

.519** -.386** 

Sig. (2-tailed) 
.000 

Sig. (2-tailed) 
.000 .000 

N 
102 

N 
102 102 

 

No Approach group: 

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
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A

L 
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E
A
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e
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 C
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e
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w
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M
o
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a
ti
sf

a
ct

io
n

 W
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V
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 D
e
si

g
n
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B
e
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u
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f 

D
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s 

M
o

d
e
l 
C

o
m

p
le

xi
ty

 

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s 

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 

Pearson  

Correlation 

.734** -.418* .400* .533** .480* Pearson  

Correlation 

.667** -.634** -.386 -.426** 

Sig. (2-tailed) 
.000 .038 .047 .006 .015 

Sig. (2-tailed) 
.000 .001 .057 .034 

N 
25 25 25 25 25 

N 
25 25 25 25 

 

DP group: 

A
b

ili
ty

 t
o
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e
a
lis
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R
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L 
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 D
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D
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p
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h
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W
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N
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y 

A
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ili
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 t
o

 r
e
a
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e
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R
IG
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A

L 

ID
E
A

 

D
e
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g
n

 O
b

je
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e
s 

 

A
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o
m

p
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h
 W

h
a
t 

W
a
n

te
d

 

DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

-.378* .418* .379* Pearson  

Correlation 

.402* 

Sig. (2-tailed) 
.039 .021 .039 

Sig. (2-tailed) 
.028 

N 
30 30 30 

N 
30 
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CBD group: 

A
b
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 D
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 r
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 D
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P
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m
m
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g

 D
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cu
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ie

s 
 

DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 

Pearson  

Correlation 

.361* -.503** Pearson  

Correlation 

.350* .479** -.512** 

Sig. (2-tailed) 
.013 .000 

Sig. (2-tailed) 
.016 .001 .000 

N 
47 47 

N 
47 47 47 

 

Correlation between change in design intent due to programming 

difficulties and other criteria.  

All groups: 

C
H

A
N

G
E
 I
N

 D
E
S
IG

N
 

IN
T
E
N

T
 p

ro
g
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m

m
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g
 

d
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s 
 

P
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ra
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 D
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s 

C
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G
E
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N

 D
E
S
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N
 

IN
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E
N

T
 p
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g
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m

m
in

g
 

d
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lt
ie

s 
 

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L 

ID
E
A

 

DAY 1 DAY 1 DAY 2 DAY 2 

Pearson  

Correlation 

.371** Pearson  

Correlation 

-.386** 

Sig. (2-tailed) 
.000 

Sig. (2-tailed) 
.000 

N 
126 

N 
102 

 

No Approach group:  

C
H

A
N

G
E
 I
N

 D
E
S
IG

N
 

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g
 

d
if
fi
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lt
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s 
 

A
b
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o
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l 
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a
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 D
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s 
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E
S
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N
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N
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m
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d
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A
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e
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l 

Id
e
a
 

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s 

DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

-.418* .371** Pearson  

Correlation 

-.634** .456* 

Sig. (2-tailed) 
.038 .009 

Sig. (2-tailed) 
.001 .001 

N 
25 49 

N 
25 49 
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DP group: 

C
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 D
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 D
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s 

R
e
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se
d

 A
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o
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th
m

s:
 H

o
w

 

O
ft

e
n
 

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s 

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 
DAY

2 
DAY 2 DAY 2 

DAY 

1 
DAY 1 DAY 1 DAY 2 

Pearson 

Correlati

on 

-

.433

* 

-

.378* 

.420

* 

-

.439* 

-

.403

* 

-

.480*

* 

.35

6 

.435

* 

Pearson  

Correlati

on 

.35

6 

.365

* 

-

.382

* 

.446

* 

Sig. (2-

tailed) 

.017 .039 .021 .015 .027 .007 .05

4 

.016 Sig. (2-

tailed) 

.05

4 

.048 .037 .014 

N 
30 30 30 30 30 30 30 30 

N 
30 30 30 30 

 

CBD group: 

C
H

A
N

G
E
 I
N

 D
E
S
IG

N
 

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g
 

d
if
fi
cu

lt
ie

s 
 

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t 

In
te

re
st

in
g

 S
o

lu
ti
o

n
 

P
ro

g
ra

m
m

in
g

 

D
if
fi
cu

lt
ie

s 

C
H

A
N

G
E
 I
N

 D
E
S
IG

N
 

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g
 

d
if
fi
cu

lt
ie

s 
 

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h
 W

h
a
t 

W
a
s 

W
a
n

te
d

 

Im
p

le
m

e
n

te
d

 A
 D

p
/C

b
d

 

S
o

lu
ti
o

n
 T

h
a
t 

F
it
s 

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l 

Id
e
a
 

DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 1 DAY 2 

Pearson  

Correlation 

.423** .353* Pearson  

Correlation 

-.357* -.387** -.512** 

Sig. (2-tailed) 

.003 .015 

Sig. (2-tailed) 

.014 

 

.007 .000 

N 
47 47 

N 
47 47 47 

 

Correlation between change in design intent, because ‘discovered 

solutions’ and the other criteria.  

No Approach group: 
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DAY 1 DAY 1 DAY 2 

Pearson  

Correlation 

.414** Pearson  

Correlation 

Sig. (2-tailed) 
.003 

Sig. (2-tailed) 

N 
49 

N 
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DP group: 
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DAY 2 DAY 1 DAY 2 

Pearson  

Correlation 

.350 -.371* 

Sig. (2-tailed) 
.058 .044 

N 
30 30 
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DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.423** .397** -.380** Pearson  

Correlation 

.374** .386** 

Sig. (2-tailed) 
.003 .006 .009 

Sig. (2-tailed) 
.010 .007 

N 
47 47 47 

N 
47 47 

 

Correlation between ability to accomplish what was wanted and the other 

criteria. All groups: 
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DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.457** .578** Pearson  

Correlation 

.628** .519** 

Sig. (2-tailed) 
.000 .000 

Sig. (2-tailed) 
.000 .000 

N 
102 126 

N 
126 30 
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No Approach group: 
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DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.734** .414** .565** .455** Pearson  

Correlation 

.667** -.408** .663** 

Sig. (2-tailed) 
.000 .003 .000 .001 

Sig. (2-tailed) 
.000 .004 .000 

N 
25 49 49 49 

N 
25 49 49 

 

DP group: 
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DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 

Pearson  

Correlation 

.486 .418* -.433 .591 .352 .432 Pearson  

Correlation 

.402 

Sig. (2-tailed) 
.006 .021 .017 .001 .056 .017 

Sig. (2-tailed) 
.028 

N 
30 30 30 30 30 30 

N 
30 

 

CBD group: 
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DAY 1 
DAY 

1 

DAY

2 

DAY

2 

DAY

2 

DAY 

1 

DAY 

1 

DAY 

1 

DAY 

1 
DAY 2 

DAY 

1 

DAY 

2 

DAY

2 

DAY 

2 

DAY 

2 

DAY 

2 

DAY 

2 

Pears

on 

Corr-

n 

.36

1 

-

.35

9 

.35

0 

-

.35

7 

-

.36

2 

-

.35

0 

.62

7 

.62

6 

Pears

on 

Corr-

n 

.40

8 

.47

9 

.37

4 

.70

2 

.60

4 

.35

8 

-

.37

8 

Sig.  

 

.01

3 

.01

3 

.01

6 

.01

4 

.01

3 

.01

6 

.00

0 

.00

0 

Sig. 

 

.00

4 

.00

1 

.01

0 

.00

0 

.00

0 

.01

3 

.00

9 

N 
47 47 47 47 47 47 47 47 

N 
47 47 47 47 47 47 47 
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Comparison of Motivation Criteria 

Satisfaction with Outcome / Motivation  

ANOVA Comparison between No Approach group and the DP/ CBD 

groups 

Criteria  No Approach 

Group (Mean) 

DP (Mean) CBD (Mean) F (df) p – value  

MOTIVATION DAY 

1 

DAY 

2 

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

I am satisfied with 

what I  was able to 

accomplish 

3.47 

+- 

.981 

3.69 

+- 

.895 

3.72 

+- 

.826 

3.80 

+-

.664 

3.70 

+-

.805 

3.98 

+-

.847 

1.35

9 

(125) 

1.440 

(125) 

.261 .241 

In the near future, 

I plan to use 

Grasshopper for 

Rhino very often  

 3.96 

+- 

.815 

 3.80 

+- 

.610 

 4.04 

+- 

.908 

 .825 

(125) 

 .441 

 

Satisfaction with output 

Day 1: F (125) = 1.359, p = 0.261; F ratio (F), the degrees of freedom (df) 

and p-value are used.  

Day 2: F (125) = 1.440, p = 0.241;  

Motivation to use algorithmic design tools in future 

Day 2: F (125) = 0.825, p = 0.441; 

Correlation between satisfaction with output model and the other criteria. 

All groups: 
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DAY 1 DAY 1 DAY 2 DAY 2 

Pearson  

Correlation 

.578** Pearson  

Correlation 

.628** 

Sig. (2-tailed) 
.001 

Sig. (2-tailed) 
.000 

N 
126 

N 
126 
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Correlation between satisfaction with output model and the other criteria. 

No Approach group: 
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DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.565** .533** .363* .406** Pearson  

Correlation 

.663** .400* 

Sig. (2-tailed) 
.000 .006 .010 .004 

Sig. (2-tailed) 
.000 .004 

N 
49 25 49 49 

N 
49 49 

 

DP group: 
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DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 DAY 1 DAY 1 

Pearson  

Correlation 

.577** .591** -.439* .439* .382* .485** .452* .463* .350 

Sig. (2-tailed) 
.001 .001 .015 .015 .037 .007 .012 .010 .058 

N 
30 30 30 30 30 30 30 30 30 
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DAY 2 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 

Pearson  

Correlation 

.434* .439* -.380 .600** .462* .454* .441* 

Sig. (2-tailed) 
.017 .015 .038 .000 .010 .012 .015 

N 
30 30 30 30 30 30 30 
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Correlation between satisfaction with output model and the other criteria. 

CBD group: 
M

O
T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

 

w
it
h

 o
u

tp
u
t 

U
sa

b
ili

ty
 E

a
sy

 T
o

 

Im
p

le
m

e
n

t 

D
e
si

g
n

 O
b

je
ct

iv
e
s 

A
cc

o
m

p
lis

h
 W

h
a
t 

W
a
n

te
d

 

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s 

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n
 

W
h

ic
h

 F
it
s 

A
p

p
ro

a
ch

 H
e
lp

fu
l 

M
O

T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

 

w
it
h

 o
u

tp
u
t 

U
sa

b
ili

ty
 E

a
sy

 T
o

 

Im
p

le
m

e
n

t 

D
e
si

g
n

 O
b

je
ct

iv
e
s 

A
cc

o
m

p
lis

h
 W

h
a
t 

W
a
n

te
d

 

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n
 

W
h

ic
h

 F
it
s 

U
sa

b
ili

ty
 E

a
sy

 T
o

 

Im
p

le
m

e
n

t 

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.495** .626** -.357* .495** .357* Pearson  

Correlation 

.409** .702** .372* .415** 

Sig. (2-tailed) 
.000 .000 .014 .000 .014 

Sig. (2-tailed) 
.004 .000 .010 .004 

N 
47 47 47 47 47 

N 
47 47 47 47 

 

Correlation between motivation to use Grasshopper in future and the other 

criteria. No Approach group: 
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DAY 2 DAY 1 

Pearson  

Correlation 

.455** 

Sig. (2-tailed) 
.001 

N 
49 

 

Correlation between motivation to use Grasshopper in future and the other 

criteria. DP group: 
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Pearson  

Correlation 

.352 -.490** .406* 

Sig. (2-tailed) 
.056 .006 .026 

N 
30 30 30 
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Correlation between motivation to use Grasshopper in future and the other 

criteria. CBD group: 
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DAY 2 DAY 2 DAY 2 

Pearson  

Correlation 

.386** .457** 

Sig. (2-tailed) 
.007 .001 

N 
47 47 
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Gender as Influence Factor  

*Only the cases when the p-value is below .05 are shown 

Comparison between All Male and Female Participants (All Groups) T-Test 

/ Chi-Square: 

Criteria  MALE (Mean / %) FEMALE (Mean/ 

%) 

t df p - value 

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

I was able to 

model the 

original 

design idea. 

3.20 

+- 

.923 

3.48 

+- 

.894 

2.83 

+- 

.926 

3.24 

+- 

.923 

2.013 1.346 100 100 .047 .181 

How often 

have you re-

used the 

algorithms 

from any 

external 

sources 

2.14 

+- 

.921 

2.17 

+- 

.701 

2.27 

+- 

1.036 

2.61 

+- 

.985 

-.716 -

2.792 

124 96.071 .475 .006 

DESIGN 

OBJECTIVES: 

To combine a 

few Design 

Patterns / 

Case-Base 

solutions 

3.5 % 

 

3.5 % 4.3% 

 

15.2% 

 

    .614 .043 

Algorithm 

Novelty 

31.40 

+- 

17.088 

50.71 

+- 

22.734 

24.11 

+- 

16.483 

46.39 

+- 

27.755 

2.418 .968 124 124 .017 .335 

 

Design Patterns Approach. Comparison between Male And Female 

Participants: 

Criteria  MALE (Mean) FEMALE (Mean) t df p - value 

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 

2 

DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Algorithm 

Novelty 

36.60 

+- 

22.443 

55.40 

+- 

19.813 

22.00 

+- 

12.048 

51.193 

+- 

22.413 

2.220 

 

.449 

 

28 28 .037 .657 

Algorithm 

Variety 

16.87 

+- 

4.984 

16.87 

+- 

5.680 

13.00 

+- 

4.984 

18.33 

+-

4.608 

2.132 

 

-.777 

 

28 28 .042 .444 

Algorithm 

Complexity 

64.40 

+- 

40.57 

52.94 

+- 

29.85 

36.80 

+- 

14.87 

60.20 

+- 

27.04 

2.240 

 

-

0.699 

 

28 28 .020 .490 

How often 

have you re-

used the 

algorithms 

from any 

external 

sources 

2.20  

+-  

.775 

2.13 

+- 

.352 

2.53  

+- 

1.060 

2.87 

+- 

.743 

-.983 

 

-

3.454 

 

28 28 .334 .003 
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Case-Based Design Approach. Comparison between Male And Female 

Participants: 

Criteria  MALE (Mean) FEMALE (Mean) t df p - value 

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

DAY 

1 

DAY 

2 

Algorithm 

Novelty 

31.17 

 +-  

15.676 

44.77 

+-  

16.768 

20.82 

 +-  

16.452 

41.47 

+-  

19.900 

2.135 

 

.605 

 

45 45 .038 .548 

Algorithm 

Variety 

13.57 

+-  

3.510 

15.90 

+-  

2.551 

11.35 

+-  

3.390 

15.53 

+-  

4.230 

2.103 

 

.376 

 

45 45 .041 .709 

Algorithm 

Complexity 

53.06 

+- 

32.67 

54.00 

+- 

29.27 

45.70 

+- 

25.20 

52.88 

+- 

24.87 

0.802 .132 45 45 .427 .895 

How often 

have you re-

used the 

algorithms 

from any 

external 

sources 

2.37 

+-  

.928 

 

2.20 

+-  

.761 

2.24 

 +-  

1.091 

2.59 

+-  

1.004 

.438 

 

-

1.495 

 

45 45 .664 .142 

 

Male Participants. Comparison between The Approaches: 

Criteria  DP(Mean) CBD (Mean) t df p - value 

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 2 DAY 

1 

DAY 

2 

How often you 

have  come 

across 

programming 

difficulties 

2.40 

+-  

.632 

2.07 

+-  

.458 

2.87 

+-  

1.008 

2.63 

+-  

.850 

-

1.634 

-

2.904 

43 42.668 .110 .006 

Algorithm 

Variety 

16.87 

+-  

4.984 

16.87 

+-  

5.680 

13.57 

+-  

3.510 

15.90 

+-  

2.551 

2.577 .792 43 43 .013 .433 

Algorithm 

Complexity 

64.40 

+- 

40.57 

52.93 

+- 

29.85 

53.07 

+- 

32.67 

54.00 

+- 

29.27 

1.011 -.114 43 43 .318 .909 

Model 

Complexity 

12.67 

+-  

1.952 

13.93 

+-  

2.764 

12.13 

+-  

2.270 

13.03 

+-  

2.606 

.777 1.071 43 43 .442 .290 

It was easy to 

implement 

DP/CBD 

approach in 

my design. 

3.07 

+-  

.704 

 3.77 

+-  

.626 

  -

3.393 

 43  .001 

 I find DP/CBD 

approach - 

intuitive 

3.27 

+-  

.704 

 3.80 

+-  

.847 

  -

2.100 

 43  .042 

I find DP/CBD 

approach - 

helpful. 

4.00 

+-  

.655 

 4.37 

+-  

.556 

  -

1.965 

 43  .056 
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Female Participants. Comparison between the Approaches: 

Criteria  DP(Mean) CBD (Mean) t df p - value 

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 

1 

DAY 

2 

How often you 

have  come 

across 

programming 

difficulties 

2.33 

+-  

.724 

2.13 

+-  

.352 

3.00 

+-  

1.118 

2.35 

+-  

.606 

-

2.024 

 

-

1.270 

 

27.673 

 

26.185 

 

.053 

 

.215 

 

Algorithm 

Variety 

13.40 

+-  

3.851 

18.33 

+-  

4.608 

11.35 

 +-  

3.390 

15.53 

+-  

4.230 

1.600 

 

1.795 

 

30 

 

30 .120 

 

.083 

 

Algorithm 

Complexity 

36.80 

+- 

14.87 

60.20 

+- 

27.04 

45.70 

+- 

25.20 

52.88 

+- 

24.87 

-

1.196 

.797 30 30 .241 .432 

Model 

Complexity 

11.80 

+-  

2.111 

14.27 

+-  

2.404 

12.18 

+-  

2.270 

12.24 

+-  

2.437 

-.484 

 

2.368 

 

30 30 .632 

 

.025 

 

It was easy to 

implement 

DP/CBD 

approach in 

my design. 

 3.00 

+-  

.926 

 3.76 

+-  

.752 

 -2.577 

 

 30  .015 

 

 I find DP/CBD 

approach - 

intuitive 

 3.47 

+-  

.743 

 3.82 

+-  

.883 

 -1.228 

 

 30  .229 

 

I find DP/CBD 

approach - 

helpful. 

 3.87 

+-  

.640 

 4.18 

+-  

.393 

 -1.672 

 

 30  .105 
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Results of the Comparative Study  

Criteria No Approach 

(Mean / %) 

DP Approach 

(Mean / %) 

CBD Approach 

(Mean / %) 

 p value 

MODELLING SPEED / MODEL COMPLEXITY  Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Model complexity score 11.73 13.94 12.23  14.10  12.15  12.74  .560 .031 

ALGORITHM COMPLEXITY Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Algorithm complexity score  40.69 54.61 50.60  56.56  50.40  53.59    

EXPLORED SOLUTION SPACE  Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Algorithm Variety score 12.43 16.65 15.13  17.60  12.77  15.77  .008 .268 

Algorithm Novelty score 28.16 50.82 29.30  53.67  27.43  43.57  .898 .171 

PROGRAMMING DIFFICULTIES Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

How often participants came across programming 

difficulties 

2.88 2.71 2.37  2.10  2.91  2.53  .036 .003 

Type of difficulties (5) Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Problems with particular Components 44.8% 48.9% 33.3% 43.3%  21.3% 23.4% .049 .029 

LEARNING CURVE  Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

How often participants have implemented new 

components 

2.16 2.16 2.43 1.87 2.21 2.09 .572 .353 

RE-USE OF KNOWLEDGE Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

How often participants have re-used algorithms 1.98 2.31 2.37 2.50 2.32 2.34 .128 .610 

USABILITY Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

How easy to learn/ implement each approach   2.90 3.03 3.66 3.77 .000 .000 

INTUITIVENESS Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

How intuitive participants find each approach    3.37  3.81  .021 

FLEXIBILITY Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Ability to find and adapt/ implement Design Pattern / 

CBD Solution which fits 

  3.37 3.80 3.66 3.64 .196 .356 

How often participants have implemented DP / CBD 

solutions  

  70% 66.7% 76.6% 87.2% .350 .031 

UTILITY / usefulness Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

How helpful did participants find each approach    3.93  4.30  .007 

CHANGE IN THE DESIGN INTENT Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Ability to model original idea 3.00 3.20 2.87 3.30 3.15 3.51 .284 .297 

Change in the design strategy due to programming 

difficulties 

2.96 2.67 2.93 2.70 3.19 2.68 .304 .988 

Change in the design strategy because participants 

found some interesting solutions 

3.29 3.27 3.23 3.27 3.45 3.47 .577 .395 

Ability to accomplish what was intended / wanted 3.41 3.39 3.33 3.50 3.36 3.70 .926 .193 

Design objectives Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

To achieve the form I originally sketched 56% 68% 56.7% 60% 51% 80.8% .460 .012 

To explore/learn algorithmic form-making  24% 28% 63.3% 40% 46.8% 23.4% .014 .263 

To experiment with parameters / iterations 8% 12% 20% 46.7% 19.1% 8.5% .406 .000 

IDEATION / KEY WORDS Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Geometry/ Shape key words         

Non-standard Geometry   70%  48.9%  .069  

Commands / Programming Components    30%  12.7%  .063 

Abstract attributes / Metaphors key words         

Descriptive Attributes   60%  80.0%  .045  

Algorithmic Modelling key words         

Non-Standard Geometry   0% 0% 19.1% 19.1% .011 0.11 

Descriptive Attributes    0%  12.7%  0.42 

Commands / Programming Components   96.7%  80.8%  .044  

DEGREE OF SATISFACTION Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Level of satisfaction with the design outcome 3.47 3.69 3.77 3.80 3.70 3.98 .261 .241 

Motivation to use algorithmic design in future  3.96  3.80  4.04  .441 
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Diagrams and Illustrations 

 

Exhibit B1. Evaluation Criteria Groups. 



Diagrams and Illustrations 

Page | B 56 

 

 

Exhibit B2. Design works produced by the participants of the DP, CBD and NA groups on the 

first day of the workshops 
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Exhibit B3. Design works produced by the participants of the DP, CBD and NA groups on the 

second day of the workshops 
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Exhibit B4. Design works produced by the participants of the DP group on the first day of the workshops 
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Exhibit B5. Design works produced by the participants of the DP group on the second day of the 

workshops 
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Exhibit B6. Design works produced by the participants of the CBD group on the first day of the 

workshops 



Diagrams and Illustrations 

Page |  61  

 

 

Exhibit B7. Design works produced by the participants of the CBD group on the second day of the 

workshops 
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Exhibit B8. Design works produced by the participants of the control group on the first day of the 

workshops 
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Exhibit B9. Design works produced by the participants of the control group on the second day of the 

workshops 
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Exhibit B10. All criteria groups: Results of the comparative study  
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Exhibit B11. Main criteria groups: Results of the comparative study  
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Exhibit B12. Amount of programming barriers chart / Typology of programming barriers comparison  
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Exhibit B13. Ideation Criteria chart: Types of design objectives 

 

 

Exhibit B14. Design Ideation. Comparison chart: Approach objectives vs Performance 
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Exhibit B15. Approach Characteristics. Comparison chart: Approach objectives vs Performance 

 

 

Exhibit B16. Satisfaction / Motivation criteria. Comparison chart: Approach objectives vs Performance 
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Exhibit B17. Algorithmic modelling criteria. Comparison chart: Approach objectives vs Performance 

 

  



Diagrams and Illustrations 

Page | B 70 

 

 

Exhibit B18. Comparison between all male and female participants. Only criteria with the significant difference in 

results are shown 
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Exhibit B19. DP group. Correlations between all criteria. 
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Exhibit B20. CBD group. Correlations between all criteria. 
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Exhibit B21. Control group. Correlations between all criteria. 
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Exhibit B22. DP group. Correlations between Design Performance/ Satisfaction criteria and the other criteria. 
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Exhibit B23. CBD group. Correlations between Design Performance/ Satisfaction criteria and the other criteria. 
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Exhibit B24. Control group. Correlations between Design Performance/ Satisfaction criteria and the other criteria. 
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Exhibit B25. DP group. Correlations between Algorithmic Modelling criteria and the other criteria. 
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Exhibit B26. CBD group. Correlations between Algorithmic Modelling criteria and the other criteria. 
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Exhibit B27. Control group. Correlations between Algorithmic Modelling criteria and the other criteria. 
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Exhibit B28. DP group. Correlations between the Programming criteria and the other criteria. 
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Exhibit B29. CBD group. Correlations between the Programming criteria and the other criteria. 
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Exhibit B30. Control group. Correlations between the Programming criteria and the other criteria. 
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Exhibit B31. Indexing form and geometry of designs, (all groups) day 1/day 2 key words count. 

 

 

Exhibit B32. Indexing design associations using metaphors and distinctive attributes, (all groups) day 1/day 2 key 

words count. 
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Exhibit B33. Indexing programming solutions/algorithmic modelling (all groups) day 1/day 2 key words count. 

 

 

Exhibit B33. Key words used to describe parametric designs 


