

SUPPORTING THE USE OF ALGORITHMIC DESIGN IN ARCHITECTURE

 AN EMPIRICAL STUDY OF REUSE OF DESIGN KNOWLEDGE

BY

ANASTASIA GLOBA

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the requirements for the degree of

Doctor of Philosophy

Victoria University of Wellington

(2015)

Abstract

This thesis tests the reuse of design knowledge as a method to support

learning and use of algorithmic design in architecture.

 The use of algorithmic design systems and programming

environments offer architects immense opportunities, providing a powerful

means to create geometries and allowing dynamic design exploration, but

it can also impose substantial challenges. Architects often struggle with

adopting algorithmic design methods (translating a design idea into an

algorithm of actions), as well as with the implementation of programming

languages, the latter often proving frustrating and creating barriers for

both novice and advanced software users.

 The proposition explored in this thesis is that the reuse of design

knowledge can improve architects’ ability to use algorithmic design

systems, and reduce the barriers for using programming. This study

explores and compares two approaches as a means of accessing and

reusing existing design solutions. The first approach is the reuse of abstract

algorithmic ‘Design Patterns’. The second is the reuse of algorithmic

solutions from specific design cases (Case-Based Design).

 The research was set up as an experimental comparative study

between three test groups: one group using Design Patterns, a second

group using Case-Based Design, and the control group. A total of 126

designers participated in the study providing sufficient numbers within

each group to permit rigorous studies of the statistical significance of the

observed differences.

 Results of this study illustrate that the systematic inclusion of the

Design Patterns approach to the learning strategy of programming in

architecture and design, proves to be highly beneficial. The use of abstract

solutions improves designers’ ability to overcome programming barriers,

and helps architects to adopt algorithmic design methods. The use of

Design Patterns also encourages design exploration and experimentation.

The use of the Case-Based Design approach seems to be more effective

after designers and architects, who are novices in programming, gain more

experience with the tool. It encourages more focused reasoning, oriented

to the realisation of a particular (originally intended) design outcome.

 The contribution of this research is to provide empirical evidence

that the reuse of abstract and case-based algorithmic solutions can be very

beneficial. Results of this study illustrate that both reuse methods can be

strategically integrated into design education and architectural practice,

supporting learning and use of algorithmic design systems in architecture.

The study also identifies potential weaknesses of each approach,

proposing areas which could be addressed by future studies.

Acknowledgements

Victoria University of Wellington (VUW) Graduate School

supported this research. I would like to extend my most sincere thanks and

appreciation to all those people who helped me accomplish this study.

Firstly, I would like to acknowledge my PhD supervisors Dr.

Michael Donn, Prof. Jules Moloney and Simon Twose who provided

invaluable insight, guidance and expertise. I would also like acknowledge

the thesis examiners Prof. Marc Aurel Schnabel, Dr. Dermott McMeel and

Prof. Karen Kensek who gave very constructive and positive feedback.

I wish to thank the teaching, administration and technical staff of

the VUW School of Architecture and Design, in particular Selena Shaw,

Carolyn Jowsey, Mara Dougall, Stewart Milne, Eric Camplin, Martin Hanley,

Derek Kawiti and Valentina Soana, for their assistance and collaboration

in my research and teaching projects. Thanks are also extended to my

colleagues and fellow PhD students Nabil Allaf, Maryam Lesan, Ensiyeh

Ghavampour, Maz Abadi, Remy Leblanc and Dekhani Nsaliwa. I have

appreciated their encouragement and all the good times we have had

together. I am also grateful to all of the VUW students and professional

architects who took part in my design courses and algorithmic modelling

workshops, which provided the data that made this investigation possible.

Gratitude is extended to Samantha Smith, Karen Henning-

Hansen, Caitlyn Lee, Guy Marriage and Shaan Cory for their assistance

with proofreading and comments that helped to improve the manuscript.

I would also like to acknowledge all those people who

encouraged and inspired me to pursue my academic studies in

architecture and digital design. I would like to recognize Prof. Christos

Passas and Prof. Andrea Haase, my M.Arch. supervisors and extend my

thanks to the teaching staff and to my fellow master students of DIA

(Bauhaus) School of Architecture, Germany.

I would like to thank my home university in Russia, Magnitogorsk

State Technical University (MGTU) and particularly our head of faculty,

Oleg Ulchickiy, as well as the staff of the MGTU faculty of Architecture, for

their support and interest in my research. Appreciation is extended to my

first supervisor and mentor Ernst Zalmanovich Frenkel.

Finally, special recognition goes to my friends and family,

especially my husband Sergey Maximov, for their support and

encouragement during my pursuit of this Doctorate Degree in

Architecture.

I thank all these people for their direct and indirect help in

completing this research.

Papers published during study

Moloney, J. Globa, A.; Donn, M.; (2015) Urban Codes. Abstraction

and Case-Based Approaches to Algorithmic Design and Implications for

the Design of Contemporary Cities. CAAD Futures 2015 ‘The next city’,

[Proceedings of the 16th CAAD Futures Conference], Sao Paulo, Brazil

(expected to be published in July 2015)

Globa, A.; Donn, M.; Moloney, J. (2014) Abstraction versus Case-

Based: A Comparative Study of Two Approaches to Support Parametric

Design, ACADIA 14: Design Agency [Proceedings of the 34th Annual

Conference of the Association for Computer Aided Design in Architecture

(ACADIA) ISBN 9781926724478] Los Angeles, pp. 601-608

Globa, A., Ulchickiy, O., Donn, M, (2013). Metrics for measuring

the effectiveness of parametric modelling in architecture. Architecture.

Construction. Education. Proceedings of the Conference, “MGTU”,

Magnitogorsk, Russia

Globa, A., Donn, M., & Twose, S. (2012). Digital To Physical:

Comparative Evaluation Of Three Main CNC Fabrication Technologies

Adopted For Physical Modelling In Architecture. International Journal of

Architectural Computing, 10(4), 461-480.

Globa A., Donn, M., Twose S., (2012) Digital to Physical. CAADRIA

2012. Beyond codes and pixels. Proceedings of the 17th International

Conference on Computer-Aided Architectural Design Research in Asia,

Chennai, India, pp. 327-337

Globa, A., Ulchickiy, O., (2012) CNC fabrication within Design

process, Architecture. Construction. Education. Proceedings of the

Conference dedicated to the 70th anniversary of the Architectural faculty

“MGTU”, Magnitogorsk, Russia, pp. 72 – 82. Архитектура. Строительство.

Образование. Материалы конференции, ФГБОУ ВПО «МГТУ», 2012, -

C. 72 - 82

Table of Contents

Abstract ...

Acknowledgements ..

Papers published during study ...

Table of Contents ...

List of Exhibits ..

Definitions .. 1

0. Introduction .. 3

0.1 Problems with algorithmic design ... 5

0.2 Research hypothesis: reuse of knowledge as a design support

method .. 7

0.3 Research methodology .. 12

0.4 Aim ... 17

0.5 Thesis structure ... 19

1. Background .. 23

1.1 Context of this study ... 23

1.2 Abstract solutions in design and computation 39

1.3 Case-Based Design methods in architecture and computation 56

2. Methodology .. 81

2.1 Methodology for testing and comparing approaches 81

2.2 Evaluation of the approaches ... 111

2.3 Statistical methods .. 133

2.4 Design Outcomes .. 161

3. Results .. 165

3.1 Outline of the overall results .. 166

3.2 The reuse of abstract solutions in algorithmic design 186

3.3 The reuse of case-based solutions in algorithmic design......... 213

3.4 Comparison between reuse approaches: abstraction versus case-

based ... 256

4. Expanding beyond the scope of this research ... 273

4.1 Design population: novices and experienced programmers ... 274

4.2 Identified gender differences ... 277

4.3 Algorithmic modelling [visual programming] platform 280

4.4 Similarities between the DP and CBD reuse approaches 282

5. Recommendations ... 287

5.1 Recommendations for teaching programming in design, based

on the lessons learned from this study ... 287

5.2 Lessons regarding the use of patterns for parametric design. 293

5.3 Lessons regarding the use of case-based design and the

organisation of the CBD systems ... 294

6. Conclusion .. 297

Bibliography .. 299

Appendix A: Curriculum ...

Proposed Curriculum of Teaching Programming in Architecture

Using Patterns for Algorithmic Design.. A1

1 Design Pattern: Clear Names... A3

2 Design Pattern: Jig .. A5

3 Design Pattern: Mapping .. A7

4 Design Pattern: Point Collection.. A8

5 Design Pattern: Increment .. A9

6 Design Pattern: Place Holder .. A11

7 Design Pattern: Projection ... A12

8 Design Pattern: Selector ... A13

9 Design Pattern: Reactor .. A15

10 Design Pattern: Controller ... A17

11 Design Pattern: Reporter .. 19

12 Design Pattern: Goal Seeker ... A21

13 Design Pattern: Recursion.. A22

Appendix B: Report of Results ...

Report of Results ... B1

Comparison of Algorithmic Modelling Criteria B3

Explored Solution Space ... B10

Comparison of Programming Criteria ... B17

Comparison of Approach Characteristics Criteria B28

Comparison of Design Ideation Criteria ... B37

Diagrams and Illustrations .. B55

List of Exhibits

Exhibit 0.1 Traditional design languages and programming design

languages

Exhibit 0.2 Algorithmic Modelling Performance: Data/Criteria, illustrating:

Programming Algorithm which generates an Output Model; and shows the

sources of the data, informing the corresponding algorithmic Modelling

Criteria.

Exhibit 1.1 Iterative Design Loop.

Exhibit 2.1. Example of a step-by-step algorithm of actions and

corresponding output geometry. The output model and programming

definition was created using Grasshopper (Grasshopper 3D, 2014), a

graphical algorithm editor integrated with Rhino (Rhino3D, 2014).

Exhibit 2.2. Visual and Textual programming languages

Exhibit 2.3. Example of work submission (Design Idea – Sketched,

Programming Algorithm, output design model)

Exhibit 2.4. Reuse of Abstract solutions: Method

Exhibit 2.5. Reuse of Case-Based solutions: Method

Exhibit 2.6. Diagrams illustrating Design Pattern: Reactor, Sample: Circle

Radii and Point Interactor

Exhibit 2.7. Snapshot of the Case-Base of algorithmic designs, used as a

test the CBD approach. Left side: Search bar; and Action bar containing the

Blog Archive and programming solutions indexes (‘Labels’), sorted

according to the frequency of use

Exhibit 2.8 Basic elements (Geometrical Complexity)

Exhibit 2.9 Composition Space (Dimensional complexity)

Exhibit 2.10 Arithmetic of Shapes (Shape Grammars)

Exhibit 2.11. Transformations (Shape Grammars)

Exhibit 2.12. Number of Elements (Components)

Exhibit 2.13. Shape of the Element

Exhibit 2.14 Colour

Exhibit 2.15. Model complexity evaluation Graph (Excel table) Example.

Control group. No Approach

Exhibit 2.16. Algorithm complexity evaluation. Programming components.

Inputs vs Complexity points

Exhibit 2.17 Algorithm complexity evaluation Graph (Excel table) Example.

Control group. No Approach

Exhibit 2.18. Novelty points chart (Programming Algorithms Analysis)

Exhibit 2.19 Algorithm Novelty evaluation Graph (Excel table) Example. All

groups.

Exhibit 2.20. Example of Continuous variables. Algorithm Variety Score. Day

2. Design Patterns.

Exhibit 2.22 Example of the Statement from the online questionnaire with

the Likert scale, where the scale item has five points. The level of agreement

goes from 1 = Strongly Disagree to 5 = Strongly Agree.

Exhibit 2.23. Example of Categorical variables. Ability to accomplish original

design idea. Day 1. Design Patterns group.

Exhibit 2.24. Comparison chart: Ability to accomplish original design idea.

Day 1. Design Patterns. Case-Based Design groups.

Exhibit 2.25. Mean and Standard Deviation of data. Criterion: Ability to

accomplish original design idea. Day 1. Design Patterns.

Exhibit 2.26. Independent samples T-Test example. Approach Usability

Exhibit 2.27. ANOVA test example with Post Hoc Tukey’s Test. Model

Complexity

Exhibit 2.28. Univariate Analysis Of Variance example. Criterion: ‘Number

of programming difficulties’ (second day of the workshop); Fixed factor DP

and CBD approach. Control variables: Design experience and Gender.

Exhibit 2.29. Chi-Square Test example. Criterion: ‘Design Objectives’,

category ‘to experiment with parameters’;

Exhibit 2.30. Correlation Diagrams. Positive Correlation, No Correlation,

Negative Correlation

Exhibit 2.31. Correlation between the Algorithm Complexity Score and the

Algorithm Variety Score, day 1

Exhibit 2.32. Design works produced by the participants of the DP, CBD

and NA groups on the first day of the workshops

Exhibit 2.33. Design works produced by the participants of the DP, CBD

and NA groups on the second day of the workshops

Exhibit 3.1. Algorithmic form finding ‘Stretching’. Output model variations.

Exhibit 3.2. Number of programming difficulties, comparison between

three test groups: NA, DP and CBD.

Exhibit 3.3. Types of programming difficulties, comparison between three

test groups: NA, DP and CBD.

Exhibit 3.4. Algorithm Complexity, comparison between three test groups:

NA, DP and CBD.

Exhibit 3.5. Design Patterns group. Correlations between ‘Programming

Difficulties’/‘Change in design idea due to programming difficulties’ and

the other criteria (such as Algorithmic modelling criteria, Approach

characteristics criteria, and Design Ideation/Motivation criteria).

Exhibit 3.6. Design Patterns group. Correlations between ‘Ability to realise

original design idea’, ‘Ability to accomplish what was wanted’, ‘Satisfaction

with output’ and the other criteria (such as Algorithmic modelling criteria,

Approach characteristics criteria, and Programming criteria).

Exhibit 3.7. Types of Design Objectives. Comparison between the test

groups

Exhibit 3.8. Algorithmic Modelling. Explored Space of Programming

Solutions. Comparison between the groups

Exhibit 3.9. Design Patterns group. Correlations between Algorithmic

Modelling criteria (Model and Algorithm Complexity, Explored solution

space) and the other criteria.

Exhibit 3.10 Reusability of abstract and case-based solutions

Exhibit 3.11. Case-Based Design group. Correlations between

‘Programming Difficulties’/‘Change in design idea due to programming

difficulties’ and the other criteria.

Exhibit 3.12. Approach characteristics criteria. How easy to implement,

helpful and intuitive the DP and CBD approaches are.

Exhibit 3.13. Case-Based Design group. Correlations between ‘Ability to

realise original design idea’, ‘Ability to accomplish what was wanted’,

‘Satisfaction with output’, ‘Plan to use algorithmic design in future’ (Design

Performance/Satisfaction) and the other criteria.

Exhibit 3.14. Design Objective criteria. Differences between the CBD and

control (NA) groups.

Exhibit 3.15. Algorithmic Modelling criteria: Model complexity score,

Algorithm complexity score, Algorithm Variety score, Algorithm Novelty

score.

Exhibit 3.16. Case-Based Design group. Correlations between ‘Model

complexity score’, ‘Algorithm complexity score’, ‘Algorithm Variety score’,

’Algorithm Novelty score’ (algorithmic modelling performance) and the

other criteria.

Exhibit 3.17. Indexing form and geometry of designs, (all groups) day 1/day

2 key words count.

Exhibit 3.18 Indexing design associations using metaphors and distinctive

attributes, (all groups) day 1/day 2 key words count.

Exhibit 3.19. Key words used to describe parametric designs; Indexing in

Case-Based Design

Exhibit 3.20. Indexing programming solutions/algorithmic modelling (all

groups) day 1/day 2 key words count.

Exhibit 3.21. Typology and distribution of design objectives.

Exhibit 3.22. Examples of sketches (original design ideas) and

corresponding output models, designed by participants using Design

Patterns. Typical cases where designers have significantly changed their

original idea and still reported that they were able to find a Design

Pattern(s) that fit and were able to accomplish what they wanted.

Exhibit 3.23. Examples of sketches (original design ideas) and

corresponding output models, designed by participants using Case-Based

Design approach. Typical cases where designer managed to develop an

output model that was close to their original idea and reported that they

were able to find a Design Pattern(s) that fit and were able to accomplish

what they wanted.

Exhibit 3.24. Examples of models, designed by participants, who used

Design Patterns and were able to accomplish what they wanted; explored

alternative design options; significantly changed the original idea; and

developed more complex programming algorithms and output models.

Exhibit 3.25. Examples of models, designed by participants, who used Case-

Based Design approach and were able to accomplish what they wanted;

managed to model the original idea; and developed more simple

programming algorithms and output models.

Exhibit 3.26: Overall amount of difficulties. Typology and distribution of

programming difficulties.

Exhibit 3.27. Results of comparative study (all criteria).

Exhibit 4.1. Comparison between the male and female participants

 Please note that illustrations showing the results of the comparative

study are duplicated in the Report of Results (Appendix B) in section

‘Diagrams and illustrations’.

Page | 1

Definitions
CAD – Computer Aided Design. Sometimes in the field of architecture

expanded to CAAD: Computer Aided Architectural Design

Computation –refers to the use of mathematical or logic methods (Terzidis,

2006)

Computerisation – the mode of using computers in design practice

(Menges, Ahlquist, 2011)

Algorithm –textually or diagrammatically represented set of instructions

and rules. A procedure of solving a problem in a series of steps using the

logic of if-then-else operations (Terzidis, 2006)

Algorithmic Design refers to the use of rule-based procedural logic and

computation (Terzidis, 2006). It is typically performed through computer

programming languages (Leach, 2010)

Parametric Design refers broadly to the use of parametric modeling

programs. (Leach, 2010). It is based on the use of parameters (variables)

and rules. Such terms as parametric and algorithmic have a large overlap

(and are closely related), in some cases they can be interchangeable or can

be seen as a synonyms (Davis, 2013).

Visual Programming – a type of algorithmic design method, which uses

diagrammatic (e.g. box-and-wire) representation. In visual programming,

program-elements (boxes) containing specific instructions and are used to

Page | 2

represent and manipulate the outcome model (Celani, Vaz, 2012). Such

programs as: Grasshopper plugin for Rhinoceros (Grasshopper3d, 2012),

(Rhino3d, 2012), Generative Components (GC) (Bentley, 2012), etc.

Script - list of commands written in a textual programming language, such

as: Rhino Script (Rhinoscript, 2012), Mel (Autodesk, 2010), MaxScript

(Autodesk, 2012), Python (Python, 2012).

Plugin – software component of a larger application that has specific

abilities and functions within the main software framework

http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Software_application

Page | 3

0. Introduction

The architectural profession could benefit from knowing more about

knowledge reuse methods that can help architects and designers to

overcome programming barriers and make the use of algorithmic

modelling systems less problematic and more effective.

 This thesis explores the reuse of design solutions as a support

method for learning and using algorithmic design in architecture. The

focus of the study is to test whether the reuse of design knowledge can

improve architects’ ability to understand and effectively use algorithmic

modelling systems, and to help users to overcome barriers associated with

the implementation of programming languages.

 In the context of architecture the term algorithmic design refers to

the use of rule-based procedural logic and computation (Terzidis, 2006),

which typically operate through computer programming languages

(Leach, 2010). The word ‘algorithm’ has Persian roots, and means a

procedure of solving a problem in a series of steps using the logic of if-

then-else operations (Terzidis, 2006). Algorithms are the soul of the

computational design systems. They can be seen as an automated formula

(a recipe) specifying procedural operations of the system, such as

Page | 4

calculating mathematical functions, searching, selecting objects, modifying

them and generating output geometry (Menges, Ahlquist, 2011).

 An increasing number of designers and architects choose to learn

and use algorithmic modelling methods in their designs. One of the

reasons for this is that algorithmic modelling tools incorporate both

computational complexity and the creative use of computers (Terzidis,

2006). Algorithmic design combines the complexity and the creativity of

CAD (Menges, Ahlquist, 2011); and enables designers to shift their role

from ‘architecture programming’ to ‘programming architecture’ (Terzidis,

2006). It has been argued that computation allows architects to create

original and complex design solutions that are difficult, or impossible, to

achieve using other methods (McCormack, Dorin and Innocent, 2004).

 The mathematical nature of scripts and visual programming

definitions gives architects the ability to explore multiple output models,

simply by changing the rules and the values of parameters. The use of

algorithmic design enables architecture to go beyond ‘a static creature’

state, and become a fluid sequence of parametrically generated forms and

patterns. Through computation, architecture ‘transcends itself beyond the

common and predictable’ (Terzidis, 2006).

 The other reason for growing interest in algorithmic modelling

techniques is that the use of programming provides a means to overcome

limitations of predefined commands and interfaces of CAD software. It

allows CAD users more freedom and flexibility in the face of software

constraints. By using programming languages architects can overcome

‘the factory-set limitations’ of CAD software (Ibid).

0.1 Problems with algorithmic design

Page | 5

0.1 Problems with algorithmic design

While the use of algorithmic modelling systems provides architects and

designers with tremendous opportunities, it can also impose considerable

challenges (Menges, Ahlquist, 2011). These challenges are often associated

with the acquisition of programming skills that traditionally are outside the

architect’s repertoire and design education. However the main challenge

may not reside in mastering computation techniques, but rather in

assimilating ‘a mode of computational design thinking’ (Menges, Ahlquist,

2011). Because the initial principles of human and computer reasoning do

not follow the same patterns, it is not easy for some people to use

programming algorithms when translating their idea into form. The

algorithmic logic of idea-to-form translation introduces novel principles of

design thinking (Matcha, 2007). Many designers find it difficult to integrate

algorithmic thinking and programming techniques into the design process

(Woodbury, 2010).

Exhibit 0.1 Traditional design languages and programming design languages

0.1 Problems with algorithmic design

Page | 6

 One of the reasons behind these problems is that there is a distinct

gap between traditional design principles and algorithmic modelling

methods and rules. Most architects and architectural students find it

difficult to shift from conventional freehand drawing and modelling

(including manual CAD modelling) to describing their ideas through the

language of algorithms and codes (Exhibit 0.1)

 Algorithmic modelling systems are operated through symbolic

(scripting) or analogue (visual) programming languages (Exhibit 0.1), which

are used as the means to actualise an idea-to-form translation (Mitchell

1975). The implementation of these programming languages can be

frustrating and cause many difficulties for both novice and advanced users.

Many architects face difficulties with adopting their logic and syntax (Celani

and Vaz, 2012; Woodbury 2010). Understanding and learning the

programing framework syntax rules can be especially frustrating to novice

users (Celani, Vaz, 2012).

 As a result, adopting algorithmic design principles and mastering

programming techniques often requires additional effort from designers

and architects, many of whom face substantial barriers with understanding

and using algorithmic design methods. While software developers work

towards improving the characteristics of design systems (making more

intuitive and flexible programming languages and interfaces), this thesis

proposes to explore this issue from the perspective of design process itself.

 The reuse of programs, algorithms and codes (software artefacts)

is an important part of programming practice (Krueger, 1992). Software

engineers and architects using algorithmic modelling systems share similar

challenges (Davis, 2013). However, the systematic reuse of design solutions

is not a part of algorithmic design practice in architecture, and we can learn

from programming practices (Woodbury, 2010) (Davis, 2013).

0.2 Research hypothesis: reuse of knowledge as a design support method

Page | 7

0.2 Research hypothesis: reuse of knowledge as

a design support method

 This thesis proposes to test the reuse of algorithmic solutions as a

design support method with the aim of to reducing barriers to the use of

programming and improving architect’s ability to use algorithmic design

systems. Conceptually, this thesis asks how might one test experimentally

the reuse idea? The primary research strategy is to work with two

alternative radically different reuse methods that are well established and

discussed in literature. Two different approaches are proposed to test the

idea of design knowledge-sharing and the reuse of the solutions: the first

is to learn and reuse abstract solutions (Design Patterns), the second is to

reuse case-based solutions using a database system.

 The proposed methods of reusing abstract and case-based

knowledge are not new. Over the past few decades the pattern and case-

based design approaches have been adopted by educators and

practitioners in various fields of design, architecture and software

development. This thesis aims to test these approaches as a means of

accessing and reusing existing knowledge in the context of algorithmic

design in architecture. Neither of these approaches is a research target in

itself, but they are a vehicle through which this research investigates the

impact of each method on the design process. It wants to know whether

re use of knowledge may be of help. It selects two radically different

approaches to knowledge re use to test this bigger idea

 The abstraction reuse approach is tested using Design Patterns

developed by Robert Woodbury (2010). These Design Patterns focus on

generalised methods of structuring programming solutions, and address

both problems with programming (code) itself, as well as with solving

0.2 Research hypothesis: reuse of knowledge as a design support method

Page | 8

problems specific to architecture (Davis, 2013). According to Woodbury

Design Patterns are a theory, which is yet to be tested (Woodbury, 2010)

Research hypothesis

 The research objective of this thesis is to test the hypothesis that

the reuse of abstract programming solutions (Design Patterns) can help

designers to overcome programming barriers and improve their

algorithmic modelling performance (Woodbury, 2010), and to compare it

with the alternative Case-Based Design approach (the reuse of specific

programming solutions).

Reuse methods: abstract solutions versus solutions

from specific design cases

 Typically, every reuse technique (abstract or case-based) involves

selection, specialisation and integration of artefacts, though the degree of

involvement may vary depending on the reuse approach. The purpose for

the reuse of programming artefacts is usually to reduce time and effort

required to design systems (Krueger, 1992). This thesis investigates how

each approach influences designers’ ability to overcome barriers (reduce

effort) and their ability to use algorithmic design methods (improve

performance). The study tests whether the reuse of abstract and case-

based solutions can reduce programming difficulties, increase the explored

space of programming solutions, improve designers’ ability to realise

original design concepts, and accomplish all design objectives (See

‘Detailed criteria for comparing the DP and CBD approaches’ section).

0.2 Research hypothesis: reuse of knowledge as a design support method

Page | 9

 The first approach is the reuse of abstract solutions to a design

problem - Design Patterns (Woodbury, 2010). These patterns were

developed to assist designers with structuring their own programming

solutions on an abstract level. In his book ‘Elements of Parametric Design’

Woodbury states that, in architecture, designers tend to create algorithms

anew, rather than reuse them (Woodbury, 2010). The development of an

algorithmic structure is an ‘act of high-level abstraction’ (Menges, Ahlquist,

2011). Woodbury argues that designers can make their designs much

more effective by employing reusable abstract parts (Design Patterns). The

key concept of Design Patterns lies in the reuse of design knowledge

(Alexander, Ishikawa, Silverstein, 1977). Instead of solving each new

problem individually, architects can reuse the patterns successfully

implemented in the past (Gamma, Helm, Johnson, Vlissides, 1994). The

pattern methods have been adapted and tested in various disciplines

including the field of object-oriented design (software development). This

is particularly relevant, because both software design and algorithmic

design operate using programming languages.

 It has been suggested that an effective reuse technology implies

the use of a high level of abstraction (Woodbury, 2010), (Gamma, Helm,

Johnson, Vlissides, 1994), (Krueger, 1992). The idea is that a designer

should know ‘what’ the reusable artefacts do rather than ‘how’ they do it.

However, there are difficulties associated with the reuse of abstractions,

because in order to use abstract solutions a designer must be familiar with

the abstractions prior to the design process, which requires time to study

and understand these abstractions (Krueger, 1992). This suggests that for

a reuse technique to be effective it must be easier to reuse an existing

artefact (solution) than it is to develop a new system from scratch (Ibid).

0.2 Research hypothesis: reuse of knowledge as a design support method

Page | 10

 The works of both Alexander et al. (Alexander, Ishikawa, Silverstein,

1977) and Gamma et al. (Gamma, Helm, Johnson, Vlissides, 1994) helped

Robert Woodbury to identify the following structure of patterns: each

design pattern has to be explained using the ‘Name’, ‘Intent’, ‘Use When’,

‘Why’ and ‘How’ and it should be illustrated by a set of samples (examples)

(Design Patterns, 2014) (Woodbury, 2010).

 In summary, Design Patterns are generalised reusable solutions,

described with a high level of abstraction, and documented in such a way

as to be broad enough to apply to a range of different design contexts.

Woodbury has outlined the following principles of patterns for parametric

design (Woodbury, 2010):

 Explicit. Others should be able to read (understand) your patterns

in your absence.

 Partial: separate solutions to problem parts;

 Problem focused: a pattern should solve a shared problem;

 Abstract. Patterns are abstract and represent a general concept.

 The second approach is the reuse of specific programming

solutions, employing case-based reasoning principles (Kolodner, 1993).

Case–Based Reasoning (CBR) is a problem solving approach which utilises

specific knowledge from previous cases, instead of making assumptions

based on generalised relationships between a description of a problem

and conclusions (Aamodt, Plaza, 1994). In CBR a new problem is solved by

finding and reusing an existing solution from a similar case from the past.

In other words, in order to solve a new problem one finds a previous

situation and reuses the knowledge of its solution in a new context. Case-

based reasoning is a cognitive model proposing that thinking by analogy

is consistent with natural patterns of problem solving. (Kolodner, 1993). It

is argued that CBR is used by people as a primary mechanism for common

0.2 Research hypothesis: reuse of knowledge as a design support method

Page | 11

reasoning on a daily basis; there is evidence that when humans solve new

problems they predominantly rely on specific, previous encountered

situations (Ibid) (Riesbeck, Schank, 2013). Research on human cognition

shows that people tend to use previous cases as models both when they

are novices (Anderson, 2013) and when they are experts (Rouse, Hurt,

1982).

 Studies on the use of case-based design in architecture indicate

that designers can benefit from past cases, by adapting similar design

solutions (Heylighen, Verstijnen, 2000). One of the fundamental strategies

in acquiring knowledge is to learn by example. In architecture examples

are design cases, however there is a fundamental difference between

learning by example and case-based reasoning. In case-based reasoning

cases ‘are generalised with respect to the context of a specific problem

during each problem solving process’ (Hua, Fairings, Smith, 1996).

Traditionally, in the field of design, knowledge has been recorded and

formalised as examples of successful design outcomes, rather than

generalised in the form of principles (Ibid).The approaches using case-

based reasoning incorporate the following principles (Aamodt, Plaza,

1994):

 Identification of a new problem (new case);

 Finding a similar past case (existing solution in a case-base);

 Use of this past case to solve (suggest a solution for) a new problem

 Evaluation of your solution and update the case base by learning

from your new experience (new solution).

 In this thesis, the CBD (Case-Based Design) approach was tested

through an online case-base of visually represented algorithmic models

and corresponding downloadable programming algorithms. These cases,

and their illustrations, were developed specifically for this research and

0.3 Research methodology

Page | 12

were labelled according to the design concept, shape and programming

logic.

0.3 Research methodology

 This research was designed as an experimental comparative study

between three test groups: 1) a control group, 2) a group reusing abstract

solutions (Design Patterns (DP)), and 3) a group reusing solutions from

specific design cases (Case-Based Design (CBD)). The approaches are

tested in a series of algorithmic modelling workshops for architects, and

landscape and interior architects. Participants recruited to participate in the

experimental part of the study are a diverse group of students, and

practicing architects, with no age restriction, but a minimum of one year

experience in design. A total of 126 people participated in the study

providing sufficient numbers within each group to permit rigorous studies

of the statistical significance of the observed differences. Continuous

variables were compared using the t-test (for two test groups), and

ANOVA (for three test groups); binary data was compared with the chi-

square test (all statistical testing was done using SPSS) (IBM SPSS, 2014)

(See Statistical methods section).

 The study was organised in the form of two-day algorithmic

modelling workshops. Each workshop offered an introduction to

algorithmic design using Grasshopper (Grasshopper3D, 2014) for

Rhinoceros (Rhino3D, 2014) (See Methodology and Experiment set-up

sections). Grasshopper 3D is often referred to as a parametric or an

algorithmic modelling system, which is why in this study, Grasshopper

algorithms (definitions) are referred to as parametric/algorithmic solutions.

On each day participants were given one design assignment, which they

0.3 Research methodology

Page | 13

were to develop on their own. This was preceded by an introductory series

of exercises focused on familiarisation with the software and the DP and

CBD groups were additionally taught how to use the respective reuse

approach. Participants modelled and submitted their designs within a two-

hour period. The collected data consisted of submitted 3D models,

programming definitions and survey results. The 3D Rhino models were

used to calculate the level of complexity of each model. The Grasshopper

definitions were used to measure the complexity of each programming

algorithm and to determine the explored solution space of each algorithm.

Exhibit 0.2 Algorithmic Modelling Performance: Data/Criteria, illustrating: Programming Algorithm which generates

an Output Model; and shows the sources of the data, informing the corresponding algorithmic Modelling Criteria.

 In Exhibit 0.2 the image on the left (labelled ‘Data’) illustrates an

example of a programming algorithm (box-and-wire diagram made in

Grasshopper for Rhino3D). The image on the right illustrates the output

3D model that is generated by the programming algorithm. The bottom

row shows the respective ‘Criteria’ groups which were used to evaluate this

programming algorithm, for example the ‘Algorithm Complexity’ and the

0.3 Research methodology

Page | 14

‘Explored Solution Space’. The explored solution space is determined by

the variety and novelty of a programming solution (Shah, Smith and

Vargas-Hernandez, 2003). Variety refers to how many different

programming components each algorithm has. Novelty evaluates how

unusual (less frequently used at the group level) each programming

component is (Ibid). The ‘Model Complexity’ criteria are derived from the

output model. The methodology for measuring the complexity of the

output models, was informed by geometrical, combinatory and

dimensional complexity criteria for model classification– Shape Grammars

(Forrest, 1974).

 Questionnaires helped to determine the quantity and type of

programming difficulties and the number of reused algorithms. They

sought feedback from workshop participants on the levels of satisfaction

with the design outcome, and their motivation to use algorithmic

modelling systems in the future. The participants also provided data

regarding their design objectives, their ability to model the original design

idea and the degree of change made in the design due to programming

difficulties.

 The comparative study addressed the following criteria of

algorithmic modelling performance, which outlines designers’ ability to use

algorithmic design systems (See Detailed Research Methodology section):

 Number of programming difficulties/type of programming barriers;

 Explored space of programming solutions (Novelty and Variety);

 Learning precedents;

 Degree of algorithm and output model complexity (modelling

speed);

0.3 Research methodology

Page | 15

 The aesthetic and design qualities of the models were not judged

directly. However, these issues were addressed indirectly. Each participant

was asked to indicate their design intentions and, reflecting on the design

outcome, evaluate the degree of satisfaction with their produced model.

This strategy also provided insight into what each person intended relative

to what was actually achieved. To examine how each approach of reusing

programming solutions (abstract or case-based) influences designers’

ability to realise an idea-to-form translation within the algorithmic

modelling environments, the following design performance criteria were

identified:

 Ability to realise original idea

 Ability to accomplish all design objectives/typology of design

objectives

 Change in design idea due to programming difficulties

 Change in design idea due to discovery of more interesting

reusable solutions

 Participants’ satisfaction with the design outcome

 Motivation to use algorithmic design in future

To investigate further designers’ experience of the use of the DP and CBD

approaches the following criteria were used of:

 How easy-to-use

 How intuitive

 How helpful

The outlined criteria formed the evaluation metrics by which this study

measured the effect (empirical evidence) of the reuse of abstract and case-

based algorithmic solutions in algorithmic design architecture. This

evidence was used as a means to answer the research questions.

0.3 Research methodology

Page | 16

Research scope

The overall principles of both abstract and case-based reuse approaches

can potentially be used with any algorithmic design software, and used

with both textual and visual programming languages. In theory, regardless

of the type of software programs that are currently used by architects or

will be used in future, the principles of reusing abstract and specific

algorithmic solutions will remain the same. However, in the context of this

study the Design Patterns (DP) and Case-Based Design (CBD) approaches

are tested using visual programming with Grasshopper/Rhino

(Grasshopper3D, 2014) (Rhino3D, 2014). Grasshopper uses visual

programming language. The section ‘Expanding beyond the scope of this

research’ discusses the boundaries of the study in more detail.

 The target group of this study is students and professional

designers and architects, both novice and experienced programming

users. However, even though the recruited participants were a diverse

group of both students and practitioners, their experience with algorithmic

modelling tools, and particularly with the use of Grasshopper, was minimal.

Thus, it is acknowledged, that this study tests the DP and CBD approaches

using test population who are novices in programing. (See ‘Expanding

beyond the Scope of This Research’ section for more detail)

Note on language

Throughout this thesis such terms as computation and algorithmic

design/modelling are used frequently. As outlined in the introduction,

within the field of digital design the term algorithmic design refers to the

use of programming languages and procedural techniques to solve a

design problem (Leach, 2010). Computation is a term which refers to the

0.4 Aim

Page | 17

use of mathematical or logical methods (the procedure of calculating) in

the design process (Terzidis, 2006).

 Algorithmic design is closely related to the concepts of parametric

design, in many ways parametric and algorithmic can be seen as a

synonyms (Davis, 2013). The term parametric is used in a variety of

disciplines and it means working with parameters within a defined range

(Leach, 2010). Parametric design is based on the use of parameters

(variables) and form-making rules as a driving force for the design process.

Robert Woodbury states that parametric design enables the ‘parts of

design’ to relate to each other in a coordinated way (Woodbury, 2010). As

Daniel Davis (2013) notes in his thesis, in the book ‘Elements of Parametric

Design’ Woodbury does not actually give a definition for parametric

design. Currently, within the field of architecture the term parametric has

a range of meanings and there are ‘battles and misgivings’ surrounding

this term (Davis, 2013). To avoid controversy, such terms as parametric

design and parametric modelling are used throughout this thesis mostly

when discussing Design Patterns (or as Robert Woodbury (2010) describes

them ‘Patterns for Parametric Design’). However in order to have a

consistent set of terms, this thesis predominantly uses the word

algorithmic. (See ‘Definitions’ and ‘Computation, parametric and

algorithmic design in architecture’ for more details regarding the

terminology).

0.4 Aim

 The central research question addresses this aim, and asks to what

extent, and in which particular way does the reuse of abstract and case-

based algorithmic solutions improve and support a designer’s ability to

learn and use algorithmic design systems, and help users to overcome

0.4 Aim

Page | 18

barriers associated with programming? As a part of this investigation this

thesis tests Design Patterns, developed by Robert Woodbury (2010).

 The objective of this research is to investigate the effect of each

reuse method on the design process and the design outcomes. Does the

reuse of abstract/case-based solutions help to overcome some particular

types of difficulties more than other types? Do the approaches improve

designers’ performance in terms of their ability to use computation as a

means to translate design concepts into algorithmic models? Do the

abstract concepts or examples of particular design cases help learners to

understand and adopt the principles of algorithmic thinking? Do these

approaches support design exploration or supress it? Do they save time

and effort in solving design problems? And does their integration into the

design process lead to a better design performance and higher satisfaction

with the results? Ultimately, the aim is to determine whether the reuse

approaches are worth using or not.

 The secondary objective of this study is to understand the strengths

and weaknesses of each approach, and to investigate in what way each

approach can potentially be improved.

 After answering these questions, the thesis aims to suggest ways in

which re use of knowledge can be integrated into design education and

practice and whether it is likely to beneficial.

0.5 Thesis structure

Page | 19

0.5 Thesis structure

This thesis is divided into seven chapters: the introduction (current chapter

0.); the background (1.), the methodology (2.), the results (3.), the

expansion beyond the scope of this research (4.), and the

recommendations (5.) and conclusion (6.) chapters.

 Chapter one - Background (1.) is split into three main sections, and

also contains a list of set definitions. The first section is ‘Context of this

study’. It discusses the opportunities and challenges of using computation

and algorithmic design systems in architecture, expanding on the literature

regarding the research problem, stated in this thesis. It discusses the types

of barriers that designers face when they use algorithmic modelling

systems and programming languages. This section also discusses different

reuse strategies (reuse of programming artefacts) employed in

programming practice. The second section chapter ‘Abstract solutions’

explains the patterns approach in design and computation. The third

section discusses the theory behind the ‘Case-Based Design’ approach.

 Chapter two – Methodology (2.) is split into three main sections:

‘Methodology for comparing approaches’, ‘Evaluation of the approaches’,

and ‘Statistical methods’. The first section explains in detail the research

problem, aims, objectives, focus of the study, and the overall experimental

set-up. It also outlines the adaptation of the Design Patterns and Case-

Based Design to the experimental framework of this study. The second

methodology section presents the detailed metrics (criteria) for evaluating

the approaches. The third methodology section explains the statistical

methods used in this study, including hypothesis testing and correlation

analysis.

0.5 Thesis structure

Page | 20

 Chapter three presents the Results (3.) of this experimental study. It

contains four sections. The first section presents the overall results of the

study, focusing on the identified advantages and barriers that designers

face when using algorithmic design systems in architecture. This section

outlines the benefits of integrating the reuse of algorithmic solutions into

the learning narrative and design process. The second section presents

results focusing on the reuse of abstract solutions in algorithmic design,

comparing the performance of the Design Patterns (DP) group with the

control group. The third section presents results of the Case-Based Design

(CBD) approach and compares them with the control group. The fourth

section compares the performance of the DP group against the

performance of the CBD group, and contains the summary of key findings

 Chapter four talks about future research (4.) and contains the

discussion of an expansion beyond the scope of this study. It outlines the

strategies for testing the DP and CBD approaches on a group of architects

who are more advanced in algorithmic design, and the potential of testing

these approaches using textual programming languages. It is suggested

that to improve some of the issues identified for the DP and CBD

approaches a hybrid approach could be developed. This hybrid approach

would incorporate the methods of both abstract and case-based solution

reuse.

 Chapter five is a recommendations (5.) chapter, and includes a

proposal for setting up a course to teaching programming in design based

on the lessons learned from this study, outlining the lessons as a bullet

point list.

0.5 Thesis structure

Page | 21

 The final chapter (6.) is a Conclusion chapter. It concludes that the

reuse of knowledge (abstract or case-based algorithmic solutions) can be

integrated as a design support method and can significantly reduce

barriers to using programming improving the ability of architects to use

algorithmic design systems.

0.5 Thesis structure

Page | 22

1.1 Context of this study

Page | 23

1. Background

1.1 Context of this study

Algorithmic design provides architects with vast opportunities but it also

requires them to adopt a particular set of design principles and techniques

(such as programming), which some find to be very challenging. These

issues relate to the overall research problem of this thesis. Firstly, this

chapter discusses the shift in design practice caused by the use of

computer technologies. It expands on the opportunities and challenges

associated with the use of computer-aided design and computation in

architecture. As algorithmic design progresses using programming

languages, it belongs to the fields of both architecture and programming.

In many ways architects, who create algorithmic design models share

similar challenges as software engineers who create computer programs

(Davis, 2013). We can learn from programming research and practices.

Secondly this chapter discusses typical barriers associated with learning

and using programming methods and expands on the knowledge reuse

approaches that software developers use in their design practice.

Background: CAD in architecture

The conception of the twenty first century’s architectural design is strongly

linked with computer technology (Martens, Koutamanis, Brown, 2007), and

our current 'architectural design culture is being explored through new

1.1 Context of this study

Page | 24

digital techniques' (Leach, 2009). CAD tools have settled themselves as a

primary design platform in the field of architecture. Computation appears

to be one of the most rapidly developing technologies of architectural

design. It provides a unique means for architects to translate an idea into

a form through the implementation of a simple set of operations and

parameters which can link the form to wider social, aesthetic, political and

environmental relationships. Inevitably, CAD technology expands beyond

being only an aid of the design process and affects the process itself (Shih,

Williams, Gu, 2011). This new logic of translating an idea into form can

facilitate the emergence of novel principles of design thinking (Matcha,

2007).

Existing research in this area explores the future possibility of CAD

tools that are able to learn; tools that have the ability to recognise, improve

and apply appropriate knowledge to relevant problems (Gero, 1996).

According to Professor Kalay, the primary use of computers in the building

industry had already shifted two decades ago from the evaluation of

proposed design solutions to visualization and collaboration among the

various professional disciplines that operate within this industry, for

example: architects, engineers, quantity surveyors et al (Kalay, 1999). Other

studies envisage that future users of CAD for architectural design will

require tools that allow them to work collaboratively and synchronously

(Reffat 2006). Reffat suggests that CAAD (Computer-Aided Architectural

Design) processes will be performed within smart and real-time 3D virtual

environments and that the computer can be used as a ‘metaphoric

machine’ adopting the role of the generator of chances (Ibid). Huang’s

2009 paper ‘Technology in Computer Aided Architectural Design’

discusses the relationship of 3D modelling, BIM, IFC and CAAD network

technologies. Huang states that 3D geometric modelling, BIM and CAAD

1.1 Context of this study

Page | 25

networks have an additive relationship between each other and that the

future potential for CAAD lies within these relationships (Huang, 2009).

Polar opinions coexist within architectural society regarding the

relationship between the use of computers and creativity (Bonnardel,

Zenasni, 2010), (Jonson, 2005), (Musta'amal, 2010). On one hand, there is

a commonly expressed opinion that the shift from conventional manual

drafting to CAD modelling has improved design creativity (Chen, 2007). It

is also believed that CAD tools are able to accommodate a wide range of

users: from those developing quite simple product design to more

sophisticated and complex designs solutions (Zeid, 2005). However, some

architects suggest digital tools can limit or even suppress a designers’

ability (Shih, Williams, Gu, 2011). Some research recognises that, while CAD

inflicts certain limitations on architects, it also offers powerful opportunities.

To the inexperienced CAD user these opportunities can also present a

danger. It has been suggested that CAD models may be more readily

accepted as finished designs without an appropriate level of critical

development. (Walther, Robertson, Radcliffe, 2007).

There is a belief expressed by some that CAD is less effective,

particularly during the initial ideation stage (Mora, Bédard, Rivard, 2008)

(Mallasi, 2007), when an architectural concept does not have a certain form

(Cao, Protzen, 1999). Similar opinions suggest that CAD is only appropriate

for the post-development stages and should be used for refining a final

proposal. “Its value as a development tool is extremely limited”

(Charlesworth, 2007). According to Dorta, CAD tools still cannot support

ideation in the way they should. He suggests that computer technology

fails to compete with hand sketching and modelling during conceptual

design stages (Pérez, Dorta, 2011) (Dorta, Perez, Lesage, 2008). The

experimental set-up of this study addresses these issues. This research was

http://espace.library.uq.edu.au/list/author_id/8739/
http://espace.library.uq.edu.au/list/author_id/2505/
http://espace.library.uq.edu.au/list/author_id/59/

1.1 Context of this study

Page | 26

organised in such a way that throughout the course of the workshops each

participant of this study had to produce at least two conceptual design

models.

Design models in architecture

Digital design in architecture progresses as the architectural model

progresses. Architects use models as a thinking and defining mechanism

for understanding and presenting architectural ideas (Smith, 2004). Virtual

models are basically the sets of coded information that exist within the

virtual realm, and operate through computer media. Digital files and data

can be exported from one program to the other, thus providing direct

exchange of often complex and precise information. Constant dialogue

between software and virtual models, provided by computer-aided

technology, creates an effective and powerful multifunctional digital design

platform. Digital fabrication has triggered a design revolution, in particular

promoting innovative and inventive work in the field of architecture

(Iwamoto, 2009). With rapid technological development in the field of CNC

fabrication, computer-aided design has evolved from pure virtuality to a

more complex tool, which blurs the boundary between matter and space

(Andia, 2001). In this context, digital fabrication appears to be a logical

extension of computer-aided technology to the material world and

therefore to the field of computational design in architecture.

In the work ‘Material Computation: Higher Integration in

Morphogenetic Design’ Achim Menges (2012) states that the production

of architecture is on the verge of a significant change. The author predicts

that in the near future we will witness a new degree of integration between

computational design and the physical realisation of architecture. Material

1.1 Context of this study

Page | 27

characteristics and behaviour provide means to inform the design process.

The reality of the physical constraints of the material world, its self-

organisation, and structuring mean that there are limits to what is actually

possible (Ball, 2011). However, architecture, being a material practice, is

still broadly based on the design approaches that are not primarily focused

on the characteristics and performance of the materials (Menges, 2012).

Architectural design, especially during the early conceptual stages, is

usually materially abstract. It often progresses through geometrical form-

finding, the results of which have passive material properties automatically

assigned. Yet the characteristic of such material as wood for example, can

suggest amazing design opportunities and structural solutions (Ibid).

Algorithmic modelling has been proposed as an enabler of parametric

form-finding approaches, which also consider functional aspects, and

structural properties and behaviour (Baerlecken et al, 2010).

Exhibit 1.1 Iterative Design Loop.

1.1 Context of this study

Page | 28

Architectural design is not a linear process; it often involves

repeating loops and iterations (Berkel, Bos, 2006). In order to evaluate their

work, architects have to have a ‘reality check’, which design models often

provide. Design models contain the very core ingredients of architecture,

functioning as a set of compositional, organisational, and structural

principles and parameters (Ibid). The architectural design process could be

described as a series of loops (Exhibit 1.1). Each loop involves

interpretation of relevant objectives and parameters, and further

translation of these instances into architectural models. The model, being

a physical or virtual representation of an idea, becomes a reality itself, and

serves as a source for experience and exploration. Perceived information,

interpreted into a new, updated set of parameters, triggers further model

development. This design loop can iterate an infinite amount of times, in a

never ending search for the most fitting solution. The quality of design

outcome along with other conditions highly depends on the diversity of

parameters.

 It is important to understand the difference between computation

and computerisation. Computerisation and computer-aided approaches

refer to utilising computers for organising information (containing and

representing information) (Menges, Ahlquist, 2011). Computational

approaches (including parametric and algorithmic design methods) allow

production of new data, by deducing results from values and actions using

programming algorithms (Ibid).

 Computation in architectural design can have a profound influence

on how the form is perceived and how the output form and structure are

envisioned and produced (Menges, Ahlquist, 2011). Computational design

techniques, such as the use of programming algorithms as a model making

(form-generating) method, have an immense effect on the way designers

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Ben%20Van%20Berkel&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Caroline%20Bos&ie=UTF8&search-alias=books&sort=relevancerank

1.1 Context of this study

Page | 29

and architects think and act (Benton, 2007). The design process is no

longer a straight transition from an abstract idea to a design model

through a direct manipulation with the form. In form-making morphology,

there is a turning away point from end products composed of simple fixed

structures towards dynamic, ever-changing processes (Kwinter, Davidson,

2008). The use of computational design systems in architecture triggered

the shift in representation and design thinking from object-oriented

models to ‘dynamic system’ models (Menges, Ahlquist, 2011).

 Computation introduces a different level of design construct, which

operates through the use of form-generating programs (algorithms). The

emergence of algorithmic form-generating design tools led to a

fundamental change in architectural morphologies, increasing the

opportunity to create ‘innovative smart geometries’ (Abdelsalam, 2009).

Computational design approaches make it possible to generate specific

design outputs from the ‘initial abstraction’ through the use of a

programming algorithm which contains parameters and actions (Coates,

2010). These approaches re-define the role of a design model in

architecture. In computational design a model is no longer an object, but

it is an integral part of a dynamic design process, fluid and responsive to

changes in the input parameters and programming logic. In

computational design architects design process instead of designing

objects. There is a profound shift in design thinking and methods caused

by the current transition from Computer-Aided Design to computation

(algorithmic design), from crafting of objects using design software

towards the development of dynamic algorithmic systems (Menges,

Ahlquist, 2011).

1.1 Context of this study

Page | 30

Parametric and algorithmic design in architecture

Algorithmic design systems have become the subject matter of

much research recently. Architectural design rapidly and readily shifts from

the concept of static (fixed) forms to dynamic forms, defined by

interdependencies of forces and geometrical constraints (Menges,

Ahlquist, 2011). Some researchers suggest that algorithmic modelling tools

allow the creation of new and original design solutions that are difficult or

impossible to achieve via other methods (McCormack, Dorin and Innocent,

2004).

In design and architecture such terms as parametric design and

algorithmic design are closely related. They refer to the computation driven

design processes that progress through the use of programming

algorithms, defined by rules and parameters (variables). In computation,

the organisation of an architectural form (object) can be perceived as an

assembly of parts, which are defined by constraints of form-making rules

and negotiations between architectural primitives and the external forces

(Menges, Ahlquist, 2011). To use algorithmic modelling it is fundamental

to understand how the system operates and how the form and

programming constructs work together (Ibid). To understand these

operations it is essential to be able to predict the behaviour of a computer

model, which represents the system. The success of this process depends

on the architects’ ability to define and organise the system and its

parameters; and their ability to inform and further improve systems’

behaviour, using prediction and feedback from the model (Ibid).

Parametric design uses parameters and rules to express and define

the relationship between the design idea, constraints, form-making logic;

and the resulting design behaviour. Parametric design can be defined as a

series of questions, which establish the variables (parameters) of a design

1.1 Context of this study

Page | 31

and a computational algorithm that can be used to produce a variety of

outcomes (Karle, Kelly, 2011). The deeper understanding of parametrics

allows a designer to establish a method connecting the behaviour of forces

and forms and representing them as mathematical algorithms and

geometric rules (Woodbury, 2010). Parametric thinking requires a designer

to establish clear relationships by which the design parts connect, rather

than creating the design solution directly. To achieve that, one has to step

back from direct manipulations with forms and concentrate on building the

logic of the design (Woodbury, 2010) (See ‘Problems with algorithmic

design’ section).

Robert Woodbury, (2010) in his book ‘Elements of Parametric

Design’ states: “Parametrics is more about an attitude of mind than any

particular software application”. He notes that parametric design requires

a very specific way of thinking, which some designers may find alien. He

argues that parametric modelling systems simply combine basic ideas from

geometry and computer programming. It turns out that these basic ideas

do not appear so easy to grasp for people with typical design backgrounds.

In order to master parametric design techniques one has to be part-

designer, part-computer scientist and part-mathematician. Woodbury

argues that all CAD models are sets of mathematical propositions.

Therefore, in some sense, designers ‘do’ mathematics. Designers seldom

look at CAD modelling from this perspective, and they more ‘use’

mathematics than actually ‘do’ mathematics (Woodbury, 2010). It can also

be argued that learning algorithmic design in architecture can enhance

education, as it allows students to better understand how to de-code

complex structures and concepts (Howe, 2011).

When defining algorithmic and parametric design Neal Lech states

that within the field of digital design, the term parametric design refers

1.1 Context of this study

Page | 32

broadly to the use of parametric modeling software (2010). According to

him, algorithmic design refers to the use of programming languages that

allow to design through the direct manipulation not of form but of

programming algorithm (Ibid). However most of parametric modelling

software progress using programming languages; and parameters

(variables) are often utilised in scripts and programming definitions, which

makes the resulting solutions both algorithmic and parametric.

In the context of this study ‘algorithmic design’ is identified as the

most fitting term, because the objective of this study is to investigate the

ways to support ‘idea-to-algorithm’ translation and to assist the use of

programming algorithms in architecture. Therefore, the focus is on

designing through the use of programming algorithms. In this respect

algorithmic thinking and algorithmic design describe the topic of this

research most accurately.

Barriers in end-user programming systems

Algorithmic modelling progresses using visual or textual programming

languages. Architects and designers often face substantial difficulties with

adopting programming logic and syntax (Celani and Vaz, 2012);

(Woodbury 2010). The initial principles of human and computer reasoning

are often alien to each other. Many designers, who are novice to

programming, struggle to overcome barriers associated with the use codes

and algorithms. They often find it difficult to use algorithmic design

thinking and programming techniques as a part of their design process

(Woodbury, 2010). It is also problematic for architects to master

algorithmic design logic, because the practice of architecture is associated

with ‘artistic sensibility and intuitive playfulness’, whereas a programing

1.1 Context of this study

Page | 33

algorithm is perceived as ‘non-human creations’ (Menges, Ahlquist, 2011).

There could be numerous reasons why architects and designers struggle

to acquire computational thinking mode and to master programming

languages. The fact remains: end-user programmers have to overcome

substantial barriers in learning and using programming systems (Ko, Myers,

Aung, 2004). The aim of this study is to investigate whether the re-use of

algorithmic solutions can help designers reduce these barriers.

 Research on learning barriers in programming systems has

identified six types of most re-occurring barriers: design, selection,

coordination, use, understanding, and information (Ko, Myers, Aung,

2004). Ko et al. define learning barriers as programming problems that

lead to invalid assumptions, preventing the end-user from achieving the

progress. In programming languages the common causes, which often

lead to invalid assumptions, include the use of: conditions, loops, data

structures and language constructs (Pane, Ratanamahatana, Myers, 2001)

(Engebretson, Wiedenbeck, 2002) (Ko, Myers, Aung, 2004). The

experimental study that Ko et al. conducted observed 40 participants who

learned programming with Visual Basic. NET (VB) during the five week

‘Programming Usable Interfaces’ course. To understand learning barriers

their study focused on the behaviour and progress of the learner.

The focus was on ‘insurmountable’ barriers, which learners could

not overcome (understand and fix) despite considerable effort (Ko, Myers,

Aung, 2004). The first type of programming barriers was identified as

design barriers: ‘I do not know what I want the computer to do’ (Ibid).

Design barriers refer to the cognitive difficulties and represent user’s

inability to realise the idea-to-programming algorithm translation. The

second type of barrier was selection barriers, articulated as: ‘I think I know

what I want the computer to do, but I do not know what to use’ (Ibid). It

1.1 Context of this study

Page | 34

proved to be difficult for some users to locate those programming artefacts

(commands/programming components) that performed a particular

action. Ko et al. indicate that the majority of users eventually managed to

overcome these selection barriers by using the code examples of their

peers. The third type of programming barrier is coordination barriers: ‘I

know what to use, but I do not know how to make them work together’

(Ibid). These difficulties were also labelled as ‘invisible rules’ and covered

such problems as knowing how to organise, structure and coordinate a set

of programming artefacts. Use barriers were identified as the fourth type

of barriers. They can be explained as: ‘I think I know what to use, but I do

not know how to use it’ (Ibid). The fifth type is understanding barriers: ‘I

think I knew how to use it, but it did not do what I expected’. The

understanding barriers occurred when there was a mismatch between

expectations and the program’s actual behaviour, or when a program

returned an error message and learners could not figure out why. The last

type of barrier associated with learning programming environments was

identified as information barriers: ‘I think I know why it did not do what I

expected, but I do not know how to check’. The authors state that

information barriers occur due to the fact that it is often difficult to acquire

information about the internal behaviour of a program. When learners

came across information barriers their typical strategy was to try and guess

what statement caused the problem.

Ko et al. argue that while experienced programming users do face

certain types of difficulties, they are able to easily overcome barriers

associated with selection, coordination and use (Ko, Myers, Aung, 2004).

However, according to Ko et al., experts often face significant difficulties

caused by understanding and information barriers. Learners could easily

understand data and principles of programming logic. However they had

major difficulties in trying to act on it (the actual implementation of

1.1 Context of this study

Page | 35

programming). In the conclusion section of ‘Six Learning Barriers in End-

User Programming Systems’ Ko et al. state that the use of examples (case-

based reasoning) can potentially improve user’s ability to overcome some

of the barriers including, design, coordination and use barriers. One of the

research objectives of this thesis is to investigate whether these claims

(stating that the case-based reasoning helps to overcome programming

barriers) are valid in the context of algorithmic design in architecture.

Software reuse

Methods of knowledge re-use are often used in programming

practice and education as a way to help software engineers to overcome

programming barriers make the design process more efficient. The reuse

of programs and codes (software artefacts) is an important part of

programming practice and research in the field of software design

(Krueger, 1992).

The paper ‘Software reuse’ by Charles Krueger discusses different

types of software reuse techniques, which are employed in software design

(Ibid). Krueger quotes Biggerstaff and Richter (1989) and states that all

reuse approaches involve four instances: abstraction, selection,

specialisation and integration of software artefacts. According to Krueger

Abstraction plays an essential role in any reuse technique, because without

it software developers would be most likely lost in the vast collections of

reusable artefacts. There is a strong relationship between abstraction and

reusability; they are in fact ‘two sides of the same coin’ (Krueger quotes

Wegner, 1930). In software reuse Abstraction helps to determine what each

artefact does and when and how it can be applied (Krueger, 1992). There

are strong parallels to the pattern approach to architectural design

1.1 Context of this study

Page | 36

proposed by Alexander (Alexander, 1975), who identified the key principles

of design patterns structure as: what to use, when to use and how to use

(Alexander, 1975). Selection plays an important in any reuse approach as

it helps to locate, compare and select reusable items (Krueger, 1992).

Classification of reusable artefacts is used as an example that can

help to organise a library and guide the search and selection process (Ibid).

It should be noted that classification or grouping of reusable objects can

often require abstraction. Many reuse approaches merge similar solutions

(artefacts) into one generic reusable solution, as for example in the TRIZ

method (Stratton, Mann, Otterson, 2000). To reuse a generic solution,

software designers need to specialise it by changing its parameters and

constrains to suit a new design context (Krueger, 1992). Specialisation of a

reusable solution is almost inevitable as only in rare cases is it possible to

find an artefact that can be reused directly, without any modifications and

alterations. Specialisation applies to the reuse of abstract solutions such as

generic schemes and design patterns; and it also applies to specific

solutions such as codes (scripts) and visual programming algorithms. The

final instance, which is involved in almost all reuse approaches in

programming, is Integration. Integration is a framework, which helps to

combine a number of located and specialised reusable artefacts together

(Ibid). This is very similar to the idea of using design patterns as building

blocks in order to create more complex design solutions (Alexander, 1975)

(Gamma, Helm, Johnson, Vlissides, 1994) (Woodbury, 2010).

In his ‘Software Reuse’ survey Krueger describes and compares

eight different reuse techniques. The list is sorted according to how well

each technique minimises the intellectual effort required to use them

(cognitive distance) (Krueger, 1992):

1.1 Context of this study

Page | 37

 High level languages (Programming languages with strong

abstraction from the details. The reusable artefacts in a high-level

language are the assembly patterns.)

 Very high-level languages (Goal-oriented programming languages

with a very high level of abstraction)

 Application generators (High-level systems, with often have a high

level of abstraction, that generate application programs, by reusing

software system designs.)

 Software architectures (High level reusable structures that capture

a software system design, focusing on subsystems and their

interactions. Analogue to the large-scale software schemas)

 Transformational system (Transformational systems often have a

very high level of abstraction. It takes one program and through a

series of transformations generates from it another program)

 Software schemas (The goal of schema is to capture and reuse

abstract algorithms and structures rather than reusing the code

itself.)

 Source code components (The reusable artefacts are the ‘off-the-

shelf source code components’, which are organised and

categorised in a catalogues or libraries of components)

 Design and Code scavenging (The reusable artefacts in scavenging

are code fragments (scripts and algorithms), copied from existing

systems.)

(Krueger, 1992)

The outlined types of the software reuse techniques are developed

specially for designing software systems. However there are strong

similarities between the categories, proposed by Krueger for software

reuse and the reuse approaches identified for algorithmic design. The

‘Design and code scavenging’ and ‘Source code components’ refer to the

1.1 Context of this study

Page | 38

reuse of specific programming solutions. The rest of software reuse

techniques, such as ‘Software schemas’ and ‘Software architectures’ refer

to the reuse of solutions with a high level of abstraction, i.e. abstract

programming solutions.

Krueger defines software reuse as a process of using existing

programming artefacts instead of building them from scratch (Ibid) He

emphasises that typically every reuse technique involves selection,

specialisation and integration of artefacts, though the degree of

involvement may vary depending on the reuse technique. The objective of

the reuse of programming artefacts is to reduce time and effort required

to design software systems. According to Krueger, an effective reuse

technology implies the use of high level of abstraction (Ibid). Meaning that

a designer should know ‘what’ the reusable artefacts do rather than ‘how’

they do it. However, the author points out that there are difficulties

associated with the reuse of abstractions. As in order to use abstract

solutions a designer must be familiar with the abstractions prior the design

process, which requires time to study and understand these abstractions.

The study concludes that for a reuse technique to be effective:

 It must reduce an intellectual effort required to reuse artefacts

(abstract or specific programming solutions);

 it must be easier to reuse an existing artefact (solution) than it is to

develop a new system from scratch;

 a designer must know ‘what’ a solution does, to be able to select it

for reuse

 a designer must be able to find it faster than he/she can build it;

(Krueger, 1992)

All mentioned above aspects of the reuse methods apply to both

the Design Patterns (DP) and Case-Based Design (CBD) approaches. Both

1.2 Abstract solutions in design and computation

Page | 39

of these approaches can be described as methods reusing programming

artefacts. The difference is the degree of abstraction of these artefacts

(solutions). The DP approaches is at one end of the spectrum, representing

the reuse of an abstract generalised idea (construct), while the CBD

approach is at the other end of the spectrum, representing the reuse of a

very specific solution (existing within a particular design context).

1.2 Abstract solutions in design and computation

This thesis uses patterns as a means to test the reuse of algorithmic

solutions with a high level of abstraction in the field of architecture and

design. The Design Patterns method was adapted and tested in various

other disciplines including the architecture, design, human-computer

interaction, software design, object-oriented design and participatory

design.

Design Patterns

The idea of Design Patterns was introduced by the architect

Christopher Alexander. His work “A Pattern Language: Towns, Buildings,

Construction” (Alexander, Ishikawa, Murray Silverstein, 1977) has greatly

influenced the subsequent studies of the subject and was adapted for

various disciplines, such as: landscape design, product design and

computer science. According to Christopher Alexander each Design

Pattern describes a problem which occurs over and over again (Alexander,

Ishikawa, Murray Silverstein, 1977). The pattern describes the core of the

solution to the problem, so this solution can be used a million times over,

without ever doing the same thing twice (Ibid).

1.2 Abstract solutions in design and computation

Page | 40

The systematic approach proposed by Christopher Alexander is

widely referenced and used. This approach outlines the following principles

of writing a Design Pattern:

 Decomposition of the problem into sub-problems;

 Generating an abstract solution to a global problem by synthesising

the individual solutions;

 Giving a name and a reference number to the pattern;

 Providing an image and a description of the context and problem

of the pattern;

Including a diagram which illustrates the solution. (Ibid).

An architecture example of a design pattern developed by

Alexander et al. (Ibid) as a part of the Pattern Language can be the ‘Main

Entrance’ pattern:

 Name: Main Entrance

 Context: You need to fix the entrance of the building

 Consider these patterns first: Circulation Realms, Family of

Entrances

 Problem: ‘Placing the main entrance is perhaps the single important

step you take during the evolution of a building’ (Ibid)

 Solution: ‘The entrance must be placed in such a way that the

people who approach the building see the entrance as soon as they see

the building itself’ (Ibid). The two steps the solution are: 1) position the main

entrance correctly, so it can be seen immediately from the street; 2) make

it clearly visible (a shape that stands out in front of the building).

 Consider next: Entrance Room, Entrance Transition, Shield Parking,

Car connection

1.2 Abstract solutions in design and computation

Page | 41

Terms related to the reuse of abstract solutions

 The following list of terms and term explanations refer to the core

concept of the first approach: the reuse of abstract solutions in design

and architecture, tested by this study as a means to aid algorithmic

modelling. It is important to point out that all these terms were originally

used in the contexts where the reuse of an abstraction (the core

principles of a certain type of solution) plays an important role in the

design process or inventive problem solving. Some of the terms may

seem rather distinct, for example ‘Design Patterns’, ‘Abstract Solutions’

and ‘Generic Solutions’.

 The term ‘Abstract Solutions’ has frequently been used to

describe the idea of Design Patterns (Alexander, 1975) (Gamma, Helm,

Johnson, Vlissides, 1994) (Woodbury, 2010) and the term ‘Generic

Solutions’ describe the TRIZ solution system, based on the principle of

abstraction (Altshuller, 1988) (Terninko, Zusman, Zlotin, 1998). Both of

those terms articulated the idea that recurring types of designs

(solutions) can be reused effectively through the abstraction of the core

of this design (solution) and applying it in the new context. Hence

‘Abstract Solutions’ and ‘Generic Solutions’ describe the same underlying

principles and ideas, even though they were originally utilised by authors

who worked in different fields of knowledge.

The differences in these terms, may have also occurred due to

translation issues, as the TRIZ theory (Altshuller, 1988), was originally

written in Russian. When talking about the reuse of abstract design

solutions for a problem, Altshuller frequently used such terms as

‘Standard’ (Standard for solving inventive problems) and ‘Standard

‘Formula’’ (the terms are translated from Altshuller’s manuscript, written

1.2 Abstract solutions in design and computation

Page | 42

in 1975 (Altshuller, 1975). In my own reading (as a native speaker of

Russian) of the original Russian Alshuller text, the meaning of the term

‘Standard’ is very similar (and almost identical) to the meaning of a term

‘Design Pattern’ used by Alexander, Gamma and Woodbury (Alexander,

1975), (Gamma, Helm, Johnson, Vlissides, 1994), (Woodbury, 2010) (See

more details in Theory of Inventive Problem Solving (TRIZ) Section).

 The terms, listed below, vary depending on the particular aspects

of the context, intake and interpretation of the authors, but all refer to

the same fundamental concept: the reusable abstracted design solution.

Abstract Solutions (Abstraction) (Alexander, 1975), (Gamma, Helm,

Johnson, Vlissides, 1994), (Woodbury, 2010)

Typical Solution, Category/Class of the solutions (Gamma, Helm,

Johnson, Vlissides, 1994)

Standard, Generic Solution, Standard Solution, ‘Formula’ (Altshuller,

1988) (Terninko, Zusman, Zlotin, 1998), (Woodbury, 2010)

Design Patterns, Patterns (Patterns for Parametric Design) (Woodbury,

2010), (Alexander, 1975), (Gamma, Helm, Johnson, Vlissides, 1994)

 Design Pattern is an abstract solution, which can be applied to a

shared problem (Woodbury, 2010).

 Interpretation of the design idea/concept (Woodbury, 2010)

 Pattern is a ‘pre-formal construct’, which describes the forces in

the world and relationship between them (Lea, 1994);

 Patterns emerge from repetitions of human behaviour (Coad,

1992);

 Pattern is a recurrent phenomenon or structure, ‘didactic

medium for human readers’ (Borchers, 2001);

 Pattern describes a problem and then describes the core of the

solution (Gamma, 1994 quote Alexander (1977)).

1.2 Abstract solutions in design and computation

Page | 43

 Pattern is a structured description of invariant solution. Invariant

refers to a set of shared characteristics of the recommended

solution (Winn, Calder 2002)

 Patterns should capture ‘big ideas’ (Winn, Calder 2002) instead

of covering every possible design decision.

Pattern is an abstraction, which describes not some specific example, but

it rather refers to a general concept or idea, which is often associated

with vagueness. In computer science, an abstraction characterizes a class

of instances which omits inessential details (Woodbury, 2010) (Gamma,

Helm, Johnson, Vlissides, 1994).

Design Patterns are the medium to understand and express the practice

craft of parametric modelling (Woodbury, 2010)

Studies based on the Design Patterns approach

 This thesis tests the Design Patterns approach in the context of

algorithmic design, which relates equally to the fields of architecture,

design and programming. While originally pattern study was developed in

the field of architecture (Alexander, 1975), the idea of design patterns and

pattern languages was widely adopted in the computer sciences, such as

programming, software design and human-computer interactions (HCI)

(Gamma, Helm, Johnson, Vlissides, 1993), (Dearden, Finlay, Allgar,

Mcmanus, 2002). Patterns research has been very successful and has many

‘practical applications and benefits’ in the field of software engineering

(Lano, 2014)

In the early 1990s, software engineering researchers started to explore

the means to reuse design knowledge (Coplien, Alexander, 1996); (Garlan,

Delisle, 1990); (Gamma, Helm, Johnson, Vlissides, 1993). In 1994 the first

conference on ‘Pattern Languages of Programming’ was organised. It was

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
http://www.bibsonomy.org/author/Mcmanus

1.2 Abstract solutions in design and computation

Page | 44

followed by further conference series investigating pattern languages in

software engineering. One of the important publications in this field was

the book ‘Design Patterns: Elements of Reusable Object-Oriented

Software’ by Gamma et al. (1994).

Here are some of the various pattern definitions, given by different

authors, discussed in Gamma’s paper:

 Pattern is a ‘pre-formal construct’ (Lea, 1994);

 Patterns emerge from repetitions of human behaviour (Coad,

1992);

 Pattern is a recurrent phenomenon or structure, ‘didactic medium

for human readers’ (Borchers, 2001);

 Pattern describes a problem and then describes the core of the

solution (Gamma, 1994 quote Alexander (1977)).

Design Patterns: abstraction and reuse of object-

oriented design

A theoretical study inspired by Alexander’s work ‘Design patterns,

Elements of Reusable Object-Oriented Software’ uses design patterns as a

mechanism for the analysis, systemisation and reuse of knowledge in the

field of computer science and software development (Gamma, Helm,

Johnson, Vlissides, 1994). Object-oriented design is the approach to

solving a software problem by treating it as a system of interacting objects.

The authors use design patterns as a medium to express the design

solution by identifying the ‘objects’ (data and procedures) and establishing

their collaborations and responsibilities. The role of the patterns in this case

is to reduce the complexity of a system by identifying abstractions and to

1.2 Abstract solutions in design and computation

Page | 45

act as the reusable building blocks from which the compound software

solutions can be composed (Ibid).

Gamma et al. (Gamma, Helm, Johnson, Vlissides, 1994) establish the

principles of design patterns, and develop a pattern catalogue which

composes the major part of their book (Ibid). The authors argue that the

key identifier of an experienced designers’ success is that they do not try

to solve every problem from first principles; rather they reuse solutions that

have worked for them in the past. This way they can apply existing patterns

again and again without rediscovering them. Their study (Ibid) identifies

four essential elements of a design pattern: the pattern name, which

describes a problem at a high level of abstraction; the problem, which

describes when to apply the pattern; the solution, which is an algorithm of

actions; and the consequences, the results and trade-offs. The design

patterns discussed in their book are descriptions of objects that solve a

general design problem in a particular context.

In the earlier paper ‘Design Patterns: Abstraction and reuse of

Object-Oriented Design’ Gamma et al. (Gamma, Helm, Johnson, Vlissides,

1993) describe the use of design patterns as a mechanism to capture

design intent in the field of object-oriented software design. The authors

stress the importance of abstract design (as opposed to a particular design)

and state that it is the essential part of any design pattern. Though Design

patterns may specify potential implementation details, they are supposed

to have an adequate level of abstraction to ensure their wide applicability.

Gamma et al. tested the use of design patterns in the context of

object-oriented software design using two tools: ‘ET++SwapsManager’

(Eggenschwiler, Gamma, 1992) and ‘QOCA: A Constraint Solving Toolkit’

(Marriott, Chok, 2002). They have observed a number of positive effects

induced by the reuse of abstract solutions (design patterns):

 reduce the effort required to learn new software;

1.2 Abstract solutions in design and computation

Page | 46

 help during design development and code review stages;

 help explore alternative design solutions;

 motivate ‘to go beyond concrete objects’

 when patterns are introduced together with examples, it works out

as an effective way to teach object oriented design by example

(case-based design strategy)

(Gamma, Helm, Johnson, Vlissides, 1993)

Design Patterns in participatory design

One of the advantages of the abstractions is that design patterns

provide ‘reusable models that can be instantiated across different domains’

(Ramirez, Cheng, 2010). A number of studies discuss the benefits and

challenges of the reuse of abstract solutions, through the use of design

patterns and pattern languages in interdisciplinary and cooperative design

projects (Woodward, 2010), (Dearden, Finlay, Allgar, Mcmanus, 2002),

(Dearden, Finlay, 2006). Even though these works were done outside the

context of algorithmic design in architecture, landscape and industrial

design the findings and discussions raised by these studies are relevant to

this thesis, as they outline the potential strength and weaknesses of the

method. The reviews also reflect on: What is a design pattern? How

patterns can be used? And how pattern-based approach influences design

process? (Ibid)

The paper ‘An Interpretation Design Pattern Language: A

Propositional Conceptual Tool for Interdisciplinary Team Members

Working on Interpretation Design Projects’ (Woodward, 2010) introduces

a ‘pattern language’ methodology, which is based on Alexander’s pattern

language. It proposes a new, shared language for interdisciplinary teams

working on interpretation design projects. This designer-led Interpretation

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus

1.2 Abstract solutions in design and computation

Page | 47

Design Pattern language aims to improve the collaboration between

designers and professionals from the other fields of research and practice.

The author states that the pattern finding methodology is an appropriate

and suitable method to group and sort data. Woodward draws parallels

between pattern-finding and design research and practice, which often

focus on ‘problem finding’ and ‘problem solving’ approaches. The research

concludes that the Interpretation Design Pattern language does not

provide ready-made solutions or answers, but it may trigger new strategies

of interpretation, which is suggested by the insights from an extended

range of disciplines (Ibid).

The work ‘Using pattern languages in participatory design’

(Dearden, Finlay, Allgar, Mcmanus, 2002) explores the potential of using

pattern languages as tools within design processes in the field of Human

Computer Interaction ((HCI) interaction between people and computers).

Participatory or cooperative design is a design approach which involves

active work of multiple types of participants, such as designers, developers,

employees, customers, users and so on. The authors mention that

Alexander originally developed the philosophy and concept of pattern

languages in the radical scope of cooperative (participatory) design. In the

Oregon Experiment Alexander and his colleagues state that all the

decisions of what and how to design and build should be in the hands of

the users (Alexander, 1975). They also point out that every part of a good

environment should be highly adapted to its particularities. And that this

adaptation can only be successful if people do it themselves.

It is recognised that in participatory design within Human Computer

Interaction, studying a human and a machine in conjunction, it is vital to

write patterns in such a way that users will be able to comprehend design

patterns (Dearden, Finlay, Allgar, Mcmanus, 2002). Nevertheless, there is

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus

1.2 Abstract solutions in design and computation

Page | 48

an opinion that it becomes more evident that the main goal of pattern

languages has shifted towards sharing knowledge between professionals,

while allowing users only to critique and participate in discussions (Borches,

2001).

Issues related to the use of design patterns

In software engineering, patterns tend to be interpreted as the

preliminary abstract relationships between context, problem and solution.

The actual examples (physical presentations) of the pattern are usually seen

as elements of secondary value. Dearden et al. (2002) argue that, in the

context of participatory design, this viewpoint is not valid and cannot be

sustained. The observations indicate that users often search for specific

remembered patterns, while browsing the language (Dearden, Finlay,

Allgar, Mcmanus, 2002).

Other findings indicate that users subconsciously ‘trusted the

patterns’ and considered them to be ‘correct’ by default (Dearden, Finlay,

Allgar, McManus, 2002). The authors, who actually developed these

patterns, on the other hand, state that they cannot really claim that they

(themselves) trust their patterns in their present form (Ibid).

In a Pattern Language critical review, Dearden and Finlay (2006)

examine the history of patterns and pattern languages in HCI. The work

aims to locate design patterns in relation to other interactive design

approaches. This research states that recently patterns and pattern

languages are getting more and more attention in HCI for their potential

in supporting the design process and recording and communicating

design knowledge. This study identifies the following established and

emerging techniques adopted by interactive systems:

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus
http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus

1.2 Abstract solutions in design and computation

Page | 49

 Guidelines for Designing and heuristics (Mosier, Smith, 1986)

(Nielsen, 1994);

 Style-guides (Gnome project, 2003);

 Participatory design (Schuler, Namioka, 1993) (Muller, Haslwanter,

Dayton, 1997);

 Claims analysis (Sutcliffe 2000);

 Design rationale (MacLean et al., 1991);

Talking about the history of patterns, the authors report that the

work of Christopher Alexander and his colleagues provoked controversy

within the architectural profession. Though it was criticised (Dovey, 1990);

(Saunders, 2002) this work has been very influential in the field of

architecture and several other domains (King, 1993); (Gabriel, 1996);

(Saunders, 2002).

The authors state that in HCI and software engineering, the term

‘pattern’ stands for a structured description of an invariant solution.

Invariant here refers to a set of shared characteristics of the recommended

solution. One of the distinguishing characteristics of patterns is that they

are rooted in practice, rather than theory. Patterns should capture ‘big

ideas’ (Winn, Calder 2002) instead of covering every possible design

decision. Patterns also should have a timeless quality, thus be applicable,

regardless of a particular platform or technology. The authors (Ibid) argue

that this is probably the weakest spot in many interaction design patterns.

It is only possible for a pattern to be timeless when it is written in a high

level of abstraction (Bayle et al, 1998); the more detailed a pattern is the

more it is necessary to reflect on a particular technology and platform

characteristic. That is why, when writing a pattern, it is important to find an

appropriate degree of abstraction. If a pattern is too abstract it will be not

1.2 Abstract solutions in design and computation

Page | 50

efficient in real design practice and if it is too specific it will be hard to reuse

it in new scenarios.

It is ‘difficult to formalise’ and describe patterns, as well as organise their

selection and application methods (Lano, 2014). Ramirez and Cheng (2010)

state that in practice it is difficult to harvest design patterns, because a)

there is no ‘standard methodology’ for creating patterns; and b) there is

no metrics for the evaluation of the resulting patterns.

Theory of inventive problem solving (TRIZ)

The use of abstractions and reusable items (solutions) in design and

problem solving is common for mathematics, programming, engineering,

design, architecture and other disciplines. This thesis tests the reuse of

abstract solutions through an example: the Thirteen Patterns for Parametric

Design (Woodbury, 2010). Nevertheless it is important to consider that the

design patterns approach is not the only method that combines the reuse

of design solutions and the use of abstractions. The investigation has

revealed more examples of relevant works regarding the principles which

lie behind the design methods based on the reuse of knowledge.

One of the works, which incorporates the principle of abstraction,

patterns and the reuse of design solutions, is the TRIZ method (Altshuller,

1988) (Terninko, Zusman, Zlotin, 1998). This method is closely related to

the concept of the design pattern approach and can be seen as its an

alternative approach to use abstraction. TRIZ is a Russian acronym for

‘Theory of Inventive Problem Solving’. It was developed by Genrich

Altshuller et al. (1926 to 1998) as a methodology of problem solving and

inventive thinking in engineering. It started as a study investigating whether

there were any systematic patterns to inventive thinking (Stratton, Mann,

1.2 Abstract solutions in design and computation

Page | 51

Otterson, 2000). Altshuller analysed over 200,000 documented inventions

(patents) trying to identify the common sets of inventive principles and

repetitive patterns, which afterwards were used to form the 40 principles

of TRIZ. According to the TRIZ methodology ‘an inventive problem can be

classified and methodically solved, as any other engineering problem’

(Ibid). In architectural design we usually think in terms of idea development,

rather than problem solving (which refers mainly to the field of applied

sciences), but the core concepts and logic behind these two processes have

strong similarities. A number of design studies have implemented

Altshuller’s TRIZ methodology. It was adapted for product design, for

example in ‘A TRIZ approach to design for environment’ (Serban, Man,

Ionescu and Roche, 2004). In the context of this thesis, TRIZ method can

be viewed as an alternative knowledge reuse approach.

In one his early works Altshuller introduces the idea of ‘Standards’,

which he describes as a ‘high method’ to solve inventive problems

(Altshuller, 1975). According to his Algorithm of Inventive Problem Solving,

it is possible to identify a generic method (solution) to solve a certain type

of inventive problem, by analysing the large masses of existing solutions.

The identified generic method can be then translated into a ‘Standard’. The

idea of ‘Standards’ is very similar to the idea of Alexander’s Design Patterns,

which was introduced at the same time period (Alexander, 1975).

Alexander states that a pattern describes a problem and then describes the

core of its solution (Alexander, 1977). Altshuller describes a ‘Standard’ as

an algorithm (method) solving a wide class of inventive problems on a

‘high’ (abstract) level (Altshuller, 1975). According to ARIZ each ‘Standard’

should contain:

 A ‘Standard Formula’, describing the core of its idea

 An Explanation and examples

1.2 Abstract solutions in design and computation

Page | 52

 An Application of a ‘Standard’ (Ibid)

The principles and methodology for the use of Design Patterns and

TRIZ have a large number of parallels and similarities. Firstly, both systems

operate through the reuse of knowledge. Secondly, Design Patterns use

the principle of abstraction to provide a generic solution for a problem.

One of the organisation principles in the Theory of Inventive Problem

Solving is the principle of generalised solutions (Altshuller, 1999). Thirdly,

Design Patterns has the separation (segmentation) principle: in cases when

the initial idea has a high degree of complexity, the project is divided into

independent parts (Gamma, Helm, Johnson, Vlissides, 1994). The first

principle of TRIZ is the ‘Segmentation’ principle. It is used to divide an

object into independent parts, to make an object easy to

assemble/disassemble or to increase the degree of fragmentation.

Additionally, the ‘Extraction’ principle of TRIZ, used to extract (identify) a

part or a property of an object, employs the abstractions and metaphors,

which can be directly related to the idea of Design Patterns.

TRIZ methodology is heavily based on the use of knowledge bases

and computer systems, which manage the knowledge. In TRIZ the search

for the ideal design solution is associated with the reuse of available existing

resources (solutions) (Bakar, 2014), (Stratton, Mann, Otterson, 2000). To

provide a framework for the ever growing knowledge TRIZ tools employ

organised knowledge bases. The data (solutions) in the knowledge bases

is classified and sorted into various groups. Similar to the concept of the

Design Patterns, TRIZ uses the principle of abstraction (Kaplan, 1996).

According to TRIZ methodology, abstraction is needed to identify and

classify the generic problem and solution. After that, the relationships

(correlations) can be identified between the established groups of

problems and solutions.

1.2 Abstract solutions in design and computation

Page | 53

The use of TRIZ solution system for the inventive problems can be

described as:

 Classify a specific problem, so it can be sorted into a generic

problem category

 Use the established correlations (relationships) to find a generic

solution category

 Use original thinking (specialisation) and a generic solution to

develop a specific solution

(Stratton, Mann, Otterson, 2000)

The idea of TRIZ is closely related to the idea of Design Patterns

(DP), as both those methods are based on the reuse of generalised

solutions. The TRIZ method progresses through the use of abstraction,

which directly relates to the first approach, tested in this thesis. At the same

time TRIZ employs the use of computer systems and databases. This

method also heavily relies on the use of cases, as a driving force for the

identification of a typical solution (Standard). In relation to this thesis, the

TRIZ method was investigated as a potential third approach to reuse

knowledge. However, it was identified that has a major overlap with the

pattern method (and the reuse of abstraction) to be considered a radically

different knowledge reuse approach.

Abstract solutions as a tool to support algorithmic

design in architecture

To test the abstract approach aiming to support algorithmic design,

this thesis uses Thirteen Design Patterns developed by Robert Woodbury

(2010) as a method representing the reuse of abstract solutions in design

and architecture. In his book ‘Elements of Parametric Design’ Woodbury

1.2 Abstract solutions in design and computation

Page | 54

discusses the theory and proposes a practical methodology for the use of

Design Patterns (Woodbury, 2010). The author points out that the method

is a theory, which is yet to be tested.

The reuse of programming solutions is popular in Computer

Science. To this extent Woodbury is proposing that the architectural design

profession learns from the computer science profession. To help designers

master the new complexity inflicted by parametric design systems,

Woodbury proposes the use of design patterns as thinking and working

tools. According to Woodbury, patterns, being themselves an old idea, are

abstract solutions, which can be applied to shared problems. It is essential

to think with abstraction in order to use design patterns successfully. In

design, an abstraction describes not some specific example, but it rather

refers to a general concept or idea, which is often associated with

vagueness. In computer science, an abstraction characterizes a class of

instances which omits inessential details (Ibid).

In chapter 3.3.2, ‘Throw code away’ Woodbury (2010) points out

that designers tend to rebuild codes rather than reuse them. He says that

programmers would most definitely be horrified by such wasteful acts.

Surprisingly, while abandoning their own parametric models, designers are

eager to invest time in finding existing models (developed by others) and

utilising them for their own purposes (copy and modify approach) (Ibid).

A complex model usually consists of parts, which are mostly

reusable. That is why Woodbury (2010) argues that reusable abstract parts

are a keystone of professional practice in parametric design. The author

describes Thirteen Design Patterns as a medium to understand and express

the practice craft of parametric modelling. The Thirteen Design Patterns for

Parametric Design are: Controller, Goal Seeker, Increment, Jig, Mapping,

Organised Collection of Points, Place Holder, Projection, Reactor,

1.2 Abstract solutions in design and computation

Page | 55

Recursion, Reporter, Selector, and Transformer. The author has outlined

the following principles of patterns for parametric design (Ibid):

 Explicit. The others should be able to read (understand) your

patterns in your absence. Writing a pattern may aid reflection on

reuse of design ideas (reflection in action (Schön,, 1983));

 Partial: separate solutions to problem parts;

 Problem focused: a pattern should solve a shared problem;

 Abstract. Patterns are abstract and represent a general concept

(divide-and-conquer). Some particular examples can be given to

illustrate this concept.

The works of Alexander (1979), Gamma et al. (1994) and Tidwell

(2005) helped Woodbury to identify the following structure of design

patterns: Name, Diagram, What, When, Why, How, Samples, Related

Patterns. The following methodology describes the steps for designers who

want to create a Design Pattern:

 Identify: Name, What, When, How;

 Collect a set of sample files;

 Look at samples together and discover what they share;

 Refine patterns for clarity and simplicity;

 Share it (online) and make it easy to find.

Design Patterns developed by Robert Woodbury were used as a

method to test the reuse of abstract algorithmic solutions in architecture.

Participants of the DP (Design Patterns) group were introduced to the

concept of patterns during the course of algorithmic modelling workshops.

They learned the idea and reasoning behind each pattern and went

through a step-by-step tutorials illustrating how patterns can be practically

implemented (See more details on how Design Patterns were integrated

in the algorithmic modelling course in Methodology section)

1.3 Case-Based Design methods in architecture and computation

Page | 56

1.3 Case-Based Design methods in architecture

and computation

Case-Based Reasoning

Design methods using case-based reasoning constitutes the core of the

second approach tested in this thesis as a means to reuse design

knowledge in algorithmic design. It is an example of the Case-Based Design

approach. The aim of this approach (similar to the DP approach) is to work

as a design support method, helping designers to better understand and

use algorithmic modelling tools, using case-based reasoning (as opposed

to generalised pattern-based reasoning of the DP approach).

 Recently, the idea to use case-based reasoning to complement or

replace other approaches supporting design has been explored by

researchers in various fields of design (Maher, Pu, 2014). Case–based

reasoning (CBR) is a problem solving approach, which utilises specific

knowledge from previous cases, instead of making assumptions based on

generalised relationships between a description of a problem and

conclusions (Aamodt, Plaza, 1994). In CBR a new problem is solved by

finding and reusing an existing solution from a similar case from the past

(Riesbeck, Schank, 2013). In other words, in order to solve a new problem

one has to remember (find) a previous similar situation and by making an

analogy reuse the knowledge (solution) of this situation in a new context.

In a paper discussing the principles and methods of case-based reasoning

and problem solving Aamodt and Plaza (1994) claim that ‘reasoning by

reusing past cases is a powerful and frequently applied way to solve

problems for humans’. This statement is also supported by studies on

cognitive psychology of human problem solving and case-based reasoning

(Ross, 1989), (Schank 1982), (Anderson 1983). There is evidence that when

1.3 Case-Based Design methods in architecture and computation

Page | 57

humans solve new problems they predominantly rely on specific, previous

encountered situations (Ross, 1989). Research on problem solving by

analogy indicates that it is natural for people to use experiences from their

past when solving new problems (Carbonell, 1986) (Riesbeck, Schank,

2013). Studies on human cognition show that people tend to use previous

cases as models both when they are novices (Anderson, 2013) and when

they are experts (Rouse, Hurt, 1982). In a recent paper, Riesbeck and

Schank suggest that ‘case-based reasoning is the essence of how human

reasoning works’ (Riesbeck, Schank, 2013).

Case-based reasoning provides a cognitive model for people,

because thinking by analogy is consistent with natural patterns of problem

solving for humans (Kolodner, 1991) (Riesbeck, Schank, 2013). As a matter

of fact, CBR is used by humans as a primary mechanism for common

reasoning on a daily basis. As a general rule, it is always easier to solve a

problem second time, than first time, because people can reuse previous

solutions and experiences (Kolodner, 1993).

One of the fundamental strategies to acquire knowledge is to learn

from examples: in architecture these examples are design cases. However

there is a fundamental difference between learning from examples and

case-based reasoning. While acquiring knowledge similar cases (examples)

are generalised into an abstract solution. In case-based reasoning the cases

‘are generalised with respect to the context of a specific problem during

each problem solving processes’ (Hua, Fairings, Smith, 1996).

1.3 Case-Based Design methods in architecture and computation

Page | 58

Terms related to the reuse of case-based solutions

The following list of terms and term explanations refers to the core

concept of the second approach: the reuse of solutions from specific

design cases. This approach to accessing and reusing algorithmic design

knowledge follows case-based reasoning principles (Kolodner, 1993).

Case–Based Reasoning (CBR) is a problem solving approach, which

utilises specific knowledge from previous cases (Riesbeck, Schank, 2013),

instead of making assumptions based on generalised relationships

between a description of a problem and conclusions (Aamodt, Plaza,

1994). In CBR a new problem is solved by finding and reusing an existing

solution from a similar case from the past (Riesbeck, Schank, 2013)

(Heylighen, Neuckermans, 2001). There is evidence that when humans

solve new problems they predominantly rely on specific, previous

encountered situations (Ross 1989). Recently, the idea to use case-based

reasoning to complement or replace approaches supporting design has

been explored by researches in various fields including such disciplines

as architecture and software design (Maher, Pu, 2014). In this research,

the CBD (Case-Based Design) design approach was tested through an

online case-base of visually represented parametric models and

corresponding downloadable programming algorithms. These cases,

and their illustrations were developed specifically for this research.

‘Cases play a central role in architectural design education’ (Zimring,

1995). Design cases are useful in solving problems for both novices and

experts (Maher, Pu, 2014)

 In CBR a case can be considered as a story (experience) or a

lesson; it can be vied as information about resulting solution; or

it can be seen as a record of a method of how to solve a problem.

Whichever way one defines it, the ultimate purpose of a case in

1.3 Case-Based Design methods in architecture and computation

Page | 59

CBR is to help to solve a similar problem in future (Maher, de

Silva Garza, 1997).

 Traditionally, in the field of design, knowledge has been recorded

and formalised in a form of examples of successful designs, rather

than generalised in the form of principles (Hua, Fairings, Smith,

1996).

 Cases are stories that capture past experiences, documenting

‘real-world situations and analysing their outcomes’ (Maher, Pu,

2014).

Case Adaptation implies that a new solution is created through the

modification of a past case in order to meet the requirements

(constrains) of a new design problem (Hua, Fairings, Smith, 1996). Design

adaptation involves 1) mapping the differences between the new

problem and the existing case to identify potential modification; 2)

evaluation and execution of modifications (Maher, Pu, 2014).

Case-Based Reasoning is a paradigm for problem solving based on the

reuse of specific past experiences (Maher, de Silva Garza, 1997)

(Riesbeck, Schank, 2013).

 Case–Based Reasoning (CBR) is a problem solving approach,

which utilises specific knowledge from previous cases, instead of

making assumptions based on generalised relationships between

a description of a problem and conclusions (Aamodt, Plaza,

1994).

 The Case-Based Reasoning mode involves more focused

reasoning, applied to a very specific (narrow) context of a design

problem (Pearce, 1992).

 In Case-Based Reasoning the cases ‘are generalised with respect

to the context of a specific problem during each problem solving

processes’. While acquiring knowledge similar cases (examples)

1.3 Case-Based Design methods in architecture and computation

Page | 60

are generalised into an abstract solution (Hua, Fairings, Smith,

1996).

 Case-Based Reasoning uses an abstraction from a specific

experience (design solution) as a method to interpret and

transfer this knowledge, in order to learn how to solve a new

problem (Maher, de Silva Garza, 1997).

 Case-Based Reasoning is a cyclic process of solving a problem,

learning from it and reusing this experience (knowledge) to solve

a new problem (Aamodt, Plaza, 1994).

‘Case-Based Methodology provides a way to easily generate answers’

(Kolodner, 1991).

Problem Solving By Analogy. It is natural for people to use experiences

from their past when solving new problems (Carbonell, 1986) (Gentner,

1983) (Riesbeck, Schank, 2013).

 Case-based reasoning provides a cognitive model for people,

because thinking by analogy is consistent with natural patterns of

problem solving for humans (Kolodner, 1991)

In Case-Based Design a new problem is solved by finding and reusing

an existing solution from a similar case from the past (Aamodt, Plaza,

1994).

 As a general rule, it is always easier to solve a problem second

time, then first time, because people can reuse previous solutions

and experiences (Kolodner, 1991).

Dynamic Knowledge Repository - is a dynamic information space, it

refers to a collective knowledge base, which operates within a particular

domain of knowledge (Engelbart, 2003).

Database - a logically coherent collection of meaningful data (Robbins,

1994)

1.3 Case-Based Design methods in architecture and computation

Page | 61

Knowledge-Based Or Expert Systems - the systems which use artificial

intelligence (AI) techniques to solve expert level problems in specific

domains of knowledge (Akerkar, Rajendra, 2010)

Role of design cases

Cases (or examples) can be viewed as stories that capture past experiences,

‘recording real-world situations and analysing their outcomes’ (Maher, Pu,

2014). Traditionally, in the field of design, knowledge has been recorded

and formalised in a form of examples of successful designs, rather than

generalised in the form of principles (Hua, Fairings, Smith, 1996). In

practice, it is extremely difficult to find out the ‘general principles which

hold over all abstractions’. Alexander’s design pattern language attempted

to formulate knowledge in an integrated and abstracted way. However, the

rules that he describes in his work have little generalisation, his patterns

actually refer to particular buildings within particular environments (Hua,

Fairings, Smith, 1996).

In CBR (Case-Based Reasoning) a ‘case’ refers to a previously

experienced situation, which is interpreted and recorded in such a way that

it can be reused in future (Aamodt, Plaza, 1994). According to Aamodt and

Plaza case-based reasoning is a cyclic process of solving a problem,

learning from it and reusing this experience (knowledge) to solve a new

problem. That is why CBR is closely related to learning (Ibid). In fact,

learning is a natural product of CBR problem solving, because when a

solution is successful it is saved and recorded in a case base, so that in

future people can learn from it to solve similar problems. Aamodt and Plaza

also state that it is usually easier to learn by following a specific problem

solving algorithm, than to ‘generalise from it’ (Ibid). According to Maher et

al. a case in CBR can be considered as a story (experience) or a lesson; it

1.3 Case-Based Design methods in architecture and computation

Page | 62

can be viewed as information about a resulting solution; or it can be seen

as a record of a method of how to solve a problem (Maher, Balachandran,

Zhang, 1995). Whichever way one defines it, the ultimate purpose of a case

in CBR is to help to solve a similar problem in future (Maher, de Silva Garza,

1997).

‘Cases play a central role in architectural design education’ (Zimring,

1995). Past cases help students to identify a design problem, to inspire a

potential design solution; to critically evaluate a completed design and to

suggest alternative design strategies (Ibid). In design, case-based

reasoning can be used for various purposes. For example it can be:

adapting an old solution to a new design context; using past cases to

explain and interpret new problems; and to critically evaluate and refine

new design solutions (Kolodner, 1993). It is often argued that while case-

based reasoning is an effective learning method, design cases are as useful

in solving problems for both novices and experts (Maher, Pu, 2014)

In CBD (Case-Based Design) prototypes can also be referred as

design cases (solutions). As one of the methods for reusing the knowledge

in engineering and computational design some of the most successful

solutions are used as prototypes. Prototypes are complete, fully developed

design solutions able to be modified and integrated into a new problem

(Hua, Fairings, Smith, 1996).

Case-Based Reasoning in design

Case-based reasoning is a paradigm for problem solving based on the

reuse of specific past experiences (Maher, de Silva Garza, 1997). This

problem solving paradigm was adopted by AI practitioners as a tool for

design support. Maher et al. carried out a survey investigating the issues

1.3 Case-Based Design methods in architecture and computation

Page | 63

raised by the use of CBR for design (Ibid). The study focuses on two

contrasting types of case-based design: design assistance and design

automation; and comments on the issues and difficulties related to the

implementation of these approaches.

 Maher at al. points out that when designing a CBR system three

major aspects should be taken into consideration (1997):

 How the design cases are going to be represented;

 What is the process for recalling cases;

 What is the process for adapting design solutions;

The representation of a design case requires an abstraction of this

case, as a means to translate this particular experience into a symbolic form

that a designer or a computer system can understand and manipulate

(Maher, de Silva Garza, 1997). Practitioners often employ abstractions,

based on a design model, design method or philosophical approach to

make sense out of a particular design experience/design solution (Ibid). To

define the best way to represent a case, it is also important to consider

what kind of information facilitates the reuse of a design solution (Maher,

Pu, 2014).

The process of recalling/finding relevant design solutions involves

several steps: indexing: to identify the features to search for in the past

cases, relevant to finding a solution for a new problem; retrieval: to identify

the cases with matching search features (indexes); selection: to evaluate

the retrieved cases and choose the most fitting (Maher, de Silva Garza,

1997).

The design case adaptation is a process of reuse of a selected case

in a context of a new design problem. The adaptation of a case usually

involves: suggesting a selected case as a hypothetical solution for a new

1.3 Case-Based Design methods in architecture and computation

Page | 64

design problem; evaluation of how well this this proposed solution will

work; and the modification of parts and parameters to meet the

requirements of a current design problem (Ibid). Maher and Pu state that

the process of design adaptation involves two basic steps. The first step is

to map the differences between a new design problem and the existing

case (solution); this step is needed so a designer can identify the scope of

potential modifications. The second step is the evaluation and execution of

those modifications (Maher, Pu, 2014).

Principles of CBR methods

Case-based reasoning uses an abstraction from a specific

experience (design solution) as a method to interpret and transfer this

knowledge, in order to learn how to solve a new problem (Maher, de Silva

Garza, 1997). CBR’s problem-solving approaches often employ analogical

thinking, especially in cases when the reused solutions (experience) are

outside of current problem’s context or domain. Instead of a direct

adaptation or reuse of a design solution, analogy can indirectly provide

valuable insight and assistance (Ibid). The basic idea of case-based

reasoning in design can be expressed as: solving new problems by

adapting solutions that were used to solve old problems (Riesbeck, Schank,

2013).

The approaches using case-based reasoning incorporate:

 Identification of a new problem (characterising the appropriate

features)

 Retrieving the cases with those features (from the case-base

memory);

1.3 Case-Based Design methods in architecture and computation

Page | 65

 Evaluate the cases and find the best match for current design

problem

 (Riesbeck, Schank, 2013).

The CBR problem solving methods usually can be split into four major task

groups:

 RETRIEVE: identify features (interpret a new problem and define its

relevant descriptors)/search/initial match (a set of plausible

candidates: past cases in the case-base)/select (best matching

case);

 REUSE: copy (a solution or a method)/adapt;

 REVISE: evaluate solution/repair fault (detecting and fixing errors of

a current solution);

 RETAIN: integrate/index/extract (solution, method or relevant

descriptors).

(Aamodt, Plaza, 1994)

The representation of cases in CBD, whether visual or textual, can

typically be split into three major groups:

 Problem-situation description

 Solution description

 Outcome description

(Kolodner, 1991)

 The outlined principles of the representation and organisation of

the design cases have informed the methodology of the CBD system

development (repository of the algorithmic design solutions) which was

used as a platform testing the reuse of specific cases (See the ‘Adaptation

of the CBD approach to the framework of this study’ section)

1.3 Case-Based Design methods in architecture and computation

Page | 66

Case-Based Design tools

One of the first works of CBR in the field of computer science and

artificial intelligence was done by Roger Schank, who investigated the role

of previous cases (including specific scripts and situation patterns) in

learning and problem solving (Schank 1982). One of Schank’s colleagues

Janet Kolodner (1983) (1988) developed one of the first case-based

reasoned systems CYRUS, which, basically, was a question-answering

system with access to the database containing information about meetings

and travels of Cyrus Vance, former US Secretary of State (Aamodt, Plaza,

1994). Later on a research group led by Kolodner and Domeshek

developed and tested a case-based design aid system called ARCHIE,

which worked in the domain of architecture (Domeshek, Kolodner, 1992).

 Another exemplar-based knowledge system called PROTOS

(Bareiss, 1989) was developed by Porter and Bareiss (1986). This research

was pushed forward to create a new CBR system GREBE, which operated

in the field of law (Branting, 1991). Currently numerous applications and

systems, which use using case-based reasoning, operate in various

domains of knowledge and practice, such as law, medicine, engineering

and artificial intelligence. CBR tools are based on reasoning from old cases

in order to solve new problems, evaluate proposed solutions or interpret

situations. The core idea of aiding decision making through a CBD

approach, is that a case-based system provides relevant past cases, which

designers can utilise to solve a new design problem. Ultimately, it is always

designers who do the actual decision making (Kolodner, 1991). We, as

architects do not have a pre-defined algorithm for our designs and this fact

could be taken either as a constraint or as a challenge. (Domeshek,

Kolodner, 1992).

1.3 Case-Based Design methods in architecture and computation

Page | 67

In the CBD study conducted by Hua et al., authors report that the

creative adaptation (reuse) of design cases can lead to innovative designs,

especially when two or more cases are combined (Hua, Fairings, Smith,

1996). Innovative ideas often occur through the adaptation and

combination of existing design solutions (Sun, Faltings, 1994). Pearce et al.

found that the use of CBD approach (Archie system) helps architects with

getting new design ideas and inspirations by providing an opportunity to

explore past cases. The case-based reasoning mode involves more focused

reasoning, applied to a very specific (narrow) context of a design problem

(Pearce, 1992).

Any case-based problem solving system is often composed of two

main processes:

 Indexing, which refers to storing and retrieving of the reusable items

(design cases)

 Adaptation, which is the reuse of a solution(s) within the new design

context (problem) (Riesbeck, Schank, 2013)

Case adaptation implies that a new solution is created through the

modification of a past case in order to meet the requirements (constrains)

of a new design problem (Hua, Fairings, Smith, 1996).

Pearce et al (1992) investigated whether a large case-base (library)

can support design in architecture by improving human decision making.

The authors state that in order for their computer-based library of

architectural designs to work, it was decided that:

 The system should support the design and problem solving process

but all the decisions should be made only by the user.

 The system should have a specified narrow domain

1.3 Case-Based Design methods in architecture and computation

Page | 68

 The system should focus on supporting the conceptual design

stages, because a) often the decisions made on early stages have a

major impact on how a design will progress further; and b) it is often

more challenging to innovate conceptual design.

(Pearce, 1992).

Case-Based Reasoning in Design Education

Case-based reasoning supports design. It helps designers with finding

solutions for new situations by reminding them of experiences from the

past. CBR is the way Architecture is often taught: in design education

students learn how to be designers through experiencing design situations

(Maher, de Silva Garza, 1997). In order to create new designs, people need

to have previous experience or at least to have access to similar design

experiences of others. Practice shows that ‘designers rely heavily on specific

design experiences’ (Maher, de Silva Garza, 1997).

In architecture the support of design computation is hindered

because it is necessary to control both the design generation process and

the search process. Case-based design systems can be used as a solution

to overcome the issues associated with the complexity of design

generation and the search process (Dave, 1994). Architectural design is a

domain which exist somewhere in between the sciences and the art. It is

expected to simultaneously express both ‘universals and particulars’ (Dave,

1994). Architectural education heavily relies on the use of design cases as

a communication medium to exchange experience and knowledge

between teachers and students (Ibid). That is why example-based learning

and teaching are commonly used approaches in the field of design and

architecture. (Dave, 1994). The process of using past knowledge in order

1.3 Case-Based Design methods in architecture and computation

Page | 69

to solve new design problems continues to be utilised in professional

architectural practice as well as in education (Dave, 1994).

During the early stages of design, designers almost never work in a

vacuum, instead they invest their time analysing existing designs and

reviewing relevant information about earlier works. This mode of learning

from past cases is common not only for the field of architecture, but also

for fields where ‘where designers work on something radically new ’such

as engineering and physics. (Domeshek, Kolodner, 1992). Domeshek and

Kolodner (1992) argue that if research in case-based design aims to

support and improve design in architecture, conceptual design is likely to

be the area with the potentially high payoff.

Case-Based Design Systems in Architectural Practice

Case-based reasoning and case-based aiding systems are equally useful

for both novices and professionals. Case-based design (CBD) approaches

can provide novices with the variety of knowledge and experience that they

have not yet had. That is why novices are expected to improve their design

performance using case-based systems. Case-based reasoning is

especially helpful when ‘knowledge is incomplete’, or when there is a large

number of unknown variables (parameters/evidence). The ‘Case-based

methodology provides a way to easily generate answers’ (solutions)

(Kolodner, 1991). CBD is a promising method for the design fields, which

deal with geometry, such as: architecture, engineering and construction

(Hua, Fairings, Smith, 1996).

Solutions from past design cases often help architects to solve their

current design problems, refine solutions, improve proposed designs and

justify particular design strategies and choices (Pearce, 1992). In

1.3 Case-Based Design methods in architecture and computation

Page | 70

architecture many designs are created through the process of creative

combination and adaptation and of past design cases in the new design

context (Dave, 1994). Despite the fact that architects extensively use past

designs in their decision making process, it is often very problematic for

them to have access to appropriate cases (Pearce, 1992).

Heylighen et al. conducted a practical study testing six CBD systems

for architecture: Archie-II, CADRE, FABEL, IDIOM, PRECEDENTS and SEED.

The study states that CBD approach seems to be a promising method to

develop ‘intelligent design support’ (Heylighen, Neuckermans, 2001). The

authors define the case-based design systems as vehicles to ‘find new

design solutions by abating similar experiences from the past’ (Ibid).

Though all tested systems were developed for the domain of architectural

design, each of them takes a different direction in terms of CBD

methodology and ‘ingredients’ such as: case base content, organisation

and representation; retrieval of cases; and reuse approaches (Ibid). The

study states that the research on CBD tools has not reached its full potential

and is yet to make the convincing breakthrough. However the authors

indicate that recent experiments with the use of case-based design

approaches in architecture show that students ‘benefit from exposure to

cases during the design process’ (Heylighen, Verstijnen, 2000).

 Among the possible weaknesses of the CBD approach is that the

chosen case might be not the most suitable solution. Therefore, the major

disadvantages of case-based design is that ‘the solution space is not fully

explored’ (Kolodner, 1991).

1.3 Case-Based Design methods in architecture and computation

Page | 71

Issues related to the implementation of CBD tools

The main issues in developing the CBD systems is representation and

control issues. Representation refers to how a design solution is

represented (how information is documented and presented to the users).

Control issues relate to how a database (repository of cases) is organised

and how the indexing works (Maher, Pu, 2014). Indexing: how to retrieve

the best matching solutions from the case-base, is one of the big issues in

the design of a large CBD system (Kolodner, 1991). Kolodner developed

the guidelines for indexing a case-based memory. They propose that

indexes should be:

 Predictive (to be illustrative of the solution/outcome features)

 Predictions should be helpful (useful in later reasoning, for example

indexing design goals, constrains and solution features)

 Abstract (to be applicable to a variety of future problems)

 Concrete (to be recognisable/identifiable)

(Kolodner, 1991)

 In CBD systems indexing and retrieval of cases can be done

informally or formally. The informal method refers to the technique, when

the users browse the repository and select cases themselves. The formal

method is when the system uses the definition of a new problem as input

and automatically retrieves solutions as output (Maher, Pu, 2014).

Some of the recurring issues related to practical implementation of case-

based design identified by Maher et al. include:

 How to represent complex design cases

 How to link the specific design experiences with the generalised

design knowledge

 How to formalise design experiences

1.3 Case-Based Design methods in architecture and computation

Page | 72

(Maher, de Silva Garza, 1997)

 In their study of CBR applications in design Maher et al. state that

at the moment there is a universal way to resolve the major issues in the

development of case-based design systems, such as the representation of

individual design cases, the organisation of case-memory and case recall

and adaptation. Authors point out that each CBD system addresses these

issues in its own way based on the context and objectives. The bigger case-

memories require the more efficient indexing/organisational principles of

the system. This could be done through hierarchical indexing trees with

multiple sub-branches and narrow specification of features. However it is a

challenging task to predefine the set of features, which would be most

helpful and relevant for future reuse (Maher, de Silva Garza, 1997). It also

should be noted that, one of the main difficulties of using a CBD approach

is to find the appropriate cases, which are scattered across various sources.

(Zimring, 1995).

Uniform representation, including documentation, classification and

indexing, of all of the design cases in a CBD system is an important issue.

A systematic representation approach is needed, because in practice the

way a project (case) is documented can vary greatly, depending on the

individual background and preferences of each designer. When defining

the system for the case representation, the most important consideration

should be the facilitation of future design reuse. Case representation is a

part of the design process in CBR, which is why CBD tools should provide

case information in a format that will be most helpful for future retrieval

and adaptation of a solution within a new design context (Maher, de Silva

Garza, 1997).

Essentially, design case adaptation in CBD is the process of

generation of a new design solution (Maher, de Silva Garza, 1997). The

1.3 Case-Based Design methods in architecture and computation

Page | 73

adaptation process can be done either by a human designer or by a

computer program. In option one a CBD system serves as a case library

and provides relevant information about the cases, which can be used

(reused) by a designer. This way a designer makes all the decisions. The

second option means that the adaptation process is automated and

performed by a computer program through a design algorithm, which

finds a solution satisfying all the constraints. The role of designer in this

case is to define these constrains and choose the design algorithm (Maher,

de Silva Garza, 1997). Maher et al. state that the main issue of a CBD system

development is not its degree of automation: both human and computer

case adaptation methods can be successfully implemented in a case-based

design system. The authors conclude that the major issue in the design of

a CBD system is the need to develop a formal representation of the design

experiences (Maher, de Silva Garza, 1997).

Pearce et al. report the following practical lessons learned from testing

a large case library supporting design in architecture (Pearce, 1992):

 Design cases are often incomplete (not well documented), which

makes it complicated or impossible to reuse;

 Design cases are often too large and complex, therefore it is often

too hard to extract the useful information.

 The system should be able to cover multiple types of knowledge

(reusable items): models, design methods and reasoning; which

should be cross-indexed (labelled) so that user can find what is

needed.

 The system should provide (present) relevant information to users.

Cases can be usable only when the system interface presents the

information in an intuitive, associable and easily understood format.

(Pearce, 1992).

1.3 Case-Based Design methods in architecture and computation

Page | 74

Complex design cases

In many domains the development of a feasible design solution often

implicates the development of a complex system. The adequate

representation of a complex design case is essential for the CBD approach,

however it can often be a challenging task. There is a concept of reusable

cases in the paradigm of case-based reasoning. In practice a design case

is not ‘one case’, but it is a collection of various experiences and decisions

that form a complex output system (Maher, de Silva Garza, 1997).

One of the ways to deal with case complexity is to decompose it

into a set of subcases. This decomposition strategy allows designers to

focus on the particular parts of a design solution, the parts which are most

relevant to a current design problem (Maher, de Silva Garza, 1997).

Subdivision of a complex solution into specialised sub-cases makes the

analytical and reasoning process more efficient. For example, a design case

can be decomposed according to its: function (design

intentions/purposes); behaviour (interactions and respond to the

environment); structure (physical and geometrical properties); and context

(design’s environments) (Ibid). Maher et al. concludes that designers’ tend

to handle complexity by dividing a case into smaller and simpler

abstractions (Maher, de Silva Garza, 1997).

The investigation of structure and organisation of knowledge claims

that (due to the specifics of the human cognitive model) knowledge in our

memory exist both as generalisation and as a set of specific cases (events

and experiences) (Heylighen, Neuckermans, 2001). According to this CBD

cognitive model both generalised and specific knowledge follow the same

organisational principles and vary mainly in the level of abstraction

(generalisation). The study states that the central ingredient of the cognitive

model in case-based design is the ability of the CBD system memory to

1.3 Case-Based Design methods in architecture and computation

Page | 75

dynamically improve its performance. It implies that the CBD tools should

be able to constantly update by: adding new cases to the memory base,

re-organising the old cases (re-indexing) or establish new generalisations

(abstractions) (Ibid). The study concludes that the structure and

organisation of knowledge in current architectural CBD systems lack one

of the most essential principles of the CBD approach: ‘learning from

experience’. This means that future research on the CBD systems should

investigate the ways to dynamically change (update) the structure of a case

base system, so that the system becomes responsive to users’ interactions

and inputs.

Indexing and case retrieval

In theory, recalling a case in case-based reasoning suggests that designers

know what they are looking for in a case-base. This assumption implies that

every design problem is fully defined. However in practice defining the

problem is an integral part of a design process. That is why it is often

difficult for designers to clearly identify the relevant search indexes, simply

because they do not know yet what they are looking for. In many CBD

systems the indexing and case retrieval is done by the user through

informal case-base browsing and individual selection of relevant design

cases (Maher, de Silva Garza, 1997). Design, especially conceptual design,

is a task without a clearly defined specification (algorithm for design),

because ‘part of the problem to be solved is identifying the problem’

(Domeshek, Kolodner, 1992).

Other research in the field of CBD also suggests that, in case-based

design the classification and indexing of cases is regarded as one of the

main challenges of developing (designing) a CBD system. (Dave, 1994). It

1.3 Case-Based Design methods in architecture and computation

Page | 76

is hard to identify the features and characteristics, which will represent a

design case universally, because individual designers ‘see’ different features

in a design solution, due to the differences in their personal experiences

and associations (Dave, 1994). Therefore, it is essential that a case

representation method allows individual users to specify their own

classifications, features and characteristics, which when inputted in the

database system will re-organise the structure and representation of cases

(Ibid). It is also important that the information (reusable items) in the case

base is easily accessible and is presented in an adequate, easily applicable

format (Dave, 1994).

Database and knowledge based systems

Case-based design principles can be used by designers and architects

themselves but computer programs can also reuse knowledge, reason and

make decisions based on processed information. In theory, computer

knowledge based systems can perform some of the current designer’s

functions, for example solving some of the design problems by

reusing/adapting existing solutions.

 In this study the Case-Base Design approach was tested through

the use of an online repository of algorithmic solutions, which is a database

system. It is essential for this research to draw a clear distinction between

the concepts of the ‘Database system’ and ‘Knowledge-based system'.

Both of those notions refer to the computer programs (software) which

deal with data (including knowledge), but they manage and draw

conclusions from this data in quite a different manner. Both database and

knowledgebase systems were initially considered as possible methods to

test the CBD approach.

1.3 Case-Based Design methods in architecture and computation

Page | 77

In order to proceed with the comparison of the knowledge and

database systems, it is necessary to give the definitions of following key

terms, which will be used within the context of the research. Data is basically

a collection of facts or information, which can be digitally extracted,

interpreted, processed and displayed on a computer. In other words it is

an organised set of related, structured and indexed information, which may

exist in a form of physical files (folders, documents, etc.) or system data

files. Data in the CBD system (testing the reuse of case-based solutions)

consist of images representing the cases and attached files containing

programming algorithms (Grasshopper definitions and corresponding

Rhino files).

Current database systems are capable of operating, storing and

managing a large amount of resources, which contain all sorts of

information. Google, which is a hyper-textual web search engine (Brin,

Page, 1998), has one of the top ten largest databases in the world. It is a

very powerful and widely used tool for sharing information and knowledge

all around the World. But it is not a ‘knowledge based system’, because it

does not give an answer for a question or produce a new information, but

it rather gives a list of relevant resources (existing data) when issued with a

query.

‘All Knowledge is information, but not all information is knowledge’

(Siemens, 2006). From one perspective, knowledge is a human

understanding of a subject matter that has been obtained through a study

or experience (Akerkar, Sajja, 2010). But from another viewpoint knowledge

can be processes not only by humans but also by other agents, such as

computer programs (Wigg, 1999). George Siemens in his book ‘Knowing

Knowledge’ (2006) states that people are only able to describe, not define

knowledge. According to Siemens (2006), there are two main

1.3 Case-Based Design methods in architecture and computation

Page | 78

characteristics of knowledge. First: knowledge describes or explains

something, and second: knowledge can be applied in some type of action.

Both of those characteristics are more than relevant towards the concept

of a case-base system (CBD repository) and the reuse of knowledge

(algorithmic solutions).

The notion of a knowledge based system is closely linked to the

concept of an artificial intelligence. According to Akerkar and Rajendra

(2010) a machine is intelligent if it exhibits such human characteristics as:

respond to situations flexibly, make sense of ambiguous messages, assign

relative importance to elements, find similarities and draw distinction

between situations. Hence Artificial Intelligence (AI) attempts to solve

problems by mimicking human thinking patterns, through symbolic and

non-algorithmic problem solving approach. The systems which use AI

techniques to solve expert level problems in specific domains of knowledge

are called Knowledge-based or Expert systems (Ibid).

Knowledge-based systems (KBS) are much more ambitious then the

database systems. KBS use existing data, information and knowledge to

generate new knowledge. These computer programs can understand

information, reason and make decisions based on processed information

(Ibid). KBS are currently used in medicine to interpret symptoms and

produce diagnoses, in business and banking to interpret input data and

offer a prediction, in design industry to propose a configuration of product

components etc. Tuthill and Levy (1991) have identified five types of

Knowledge based systems: Expert systems (problem solving), Linked

Systems, Case-based systems, Database in conjunction with an intelligent

user interface, Intelligent tutoring systems.

However not all knowledge based systems aim to solve complex

tasks. Some of them have a rather simple set of ‘if-then’ rules such as: for

1.3 Case-Based Design methods in architecture and computation

Page | 79

example, to determine whether an applicant is eligible for a certain

program or not. As Sargent (1991) points out, in practice only a tenth part

of a typical knowledge based system consists of the actual knowledge

manipulation, the rest of the system is mostly conventional software. More

than that, such software techniques as: abstraction, inheritance, tree-

navigation etc., which were originally developed for artificial intelligence,

are now adopted and routinely used in database management and control

systems. That is why in some cases it is difficult to distinguish between data-

based and knowledge based systems (Ibid).

 There are a number of reasons why it was decided that (as a means

of testing the CBD approach) a database system suits the framework of this

study better that a knowledgebase system. A database system does not

solve a design problem (or any aspect of a design problem), instead it

leaves all the reasoning to a designer. This way both the Design Patterns

(DP) and Case-Based Design (CBD) approaches give the actual decision-

making to users, which ensures a more equal set-up for this experimental

study. Even though the online CBD system performed certain actions, such

as sorting and retrieving cases (based on their indexes), it did not produce

any new data or solve any problems by itself. All reasoning and decision

making towards what features to search for, which solutions to selects and

how exactly algorithms can be reused (applied in the new design context)

was the hands of designers and architects who used this system. (See more

details on how the Case-Based Design approach was used in the context

of this study in the Methodology section).

 The literature, discussed in this chapter, has informed various

aspects of research methodology. Firstly, it has helped to formulate and

clearly articulate the research problem (See the Research Problem

Description section in Methodology chapter). This was done to identify

1.3 Case-Based Design methods in architecture and computation

Page | 80

what are the current set of issues and how we can test (measure) whether

the reuse of solutions can improve designer’s performance (ability to

overcome these issues)? This helped to formulate the focus of the study

and identify the aims and objectives of the approaches in more detail and

clarity (See Focus of the Study, Shared aims and objectives in Methodology

chapter). Secondly, the theory behind the reuse of abstract and case-based

solution provided a formative set of principles for practical application of

the DP and CBD approaches in context of this study (See Adaptation of the

DP/CBD Approaches in Methodology chapter). Lastly, issues discussed in

this chapter informed the measures (evaluation criteria) that constitute the

research metrics evaluating the reuse approaches. These measures are

used by this thesis as evidence testing the research hypothesis: that the

reuse of design knowledge can be an effective design support method in

the context of algorithmic design in architecture (See Evaluation of the

Approaches in Methodology chapter.

2.1 Methodology for testing and comparing approaches

Page | 81

2. Methodology

2.1 Methodology for testing and comparing

approaches

The Background chapter outlines the challenges that architects face when

adopting algorithmic methods and using programming languages in

design; and explains the principles of the reuse approaches (identified as a

means to overcome these challenges). This methodology chapter explains

and illustrates the core of the problem (specific to the context of

algorithmic design in architecture: what the problem is and why it occurs);

and relates it back to the objectives of the approaches (how the reuse of

abstract and case-based algorithmic solutions can help to solve the

problem). The chapter explains what this experimental study is testing, the

effect of the approaches; and which particular criteria are being measured

and why.

Research problem

 Algorithmic modelling tools allow designers to create design

models via programming. Instead of direct manipulation with the form, an

architect creates a programming logic (either by textual script or visual

programming) (Leitão, Santos, 2011) which generates a model as an

output. This process is fundamentally different from conventional form-

making approaches in design and architecture where a model is created

by manipulation with the geometry itself.

2.1 Methodology for testing and comparing approaches

Page | 82

 To use algorithmic modelling tools an architect has to think like a

programmer and build a step-by-step algorithm of actions which are to be

executed by a computer program. The following example illustrates the

basic principles of creating a model through building a simple five step

programming algorithm.

Step One: Create a Point, with coordinates: X=0, Y=0, Z=0;

Step Two: Create a circle at the centre of this point with a radius of

20 (mm);

Step Three: Divide the circle (curve) into 20 equal segments;

Step Four: Create lines between each division point of the circle and

the centre point of the circle;

Step Five: Extrude lines along the Z vector, with vector value 10

(Exhibit 2.1)

Exhibit 2.1. Example of a step-by-step algorithm of actions and corresponding output geometry. The output model

and programming definition was created using Grasshopper (Grasshopper 3D, 2014), a graphical algorithm editor

integrated with Rhino (Rhino3D, 2014).

Algorithmic modelling tools allow architects and designers to

generate complex and mathematically precise models. They can also be

used to produce simulations, such as particle motions, surface

transformations and structural element movements. By a simple change

2.1 Methodology for testing and comparing approaches

Page | 83

of parameters or a change in the form-making logic of a programming

algorithm, a designer can obtain varying iterations or modifications of an

output model without necessarily re-building the form manually.

However, along with all the opportunities and advantages, the use of

algorithmic design has its disadvantages.

A large number of people who are currently learning and

implementing programming in their designs face major difficulties in

mastering and applying, in practice, the programming principles and

grammar (Celani and Vaz, 2012) (See introduction section). This applies

to both textual (scripting) and visual (box-and-wire) programming

methods. In order to use programming, one not only has to know which

commands or programming components to use in each particular case,

but also has to be able to build the correct sequence of these commands.

When one of these conditions is not satisfied, a flawed programming

algorithm will return an error, generate an un-intended output model, or

in a worst case scenario result in a software crash.

The use of computational modelling tools requires an algorithmic,

‘step-by-step program’ way of design thinking. Fundamentally,

programming logic does not relate to conventional design approaches in

architecture, such as hand sketching, building physical models or manual

CAD modelling. Traditionally, programming has not been a part of the

architectural syllabus (Burry, 2011). Both advanced and novice users of

algorithmic modelling techniques often face difficulties with the

implementation of programming languages. Many designers and

architects struggle to integrate algorithmic thinking into design process

(Woodbury, 2010) and it can be especially frustrating for beginners

(Celani, Vaz, 2012). The current shift in architectural education and

practice towards new computational technologies and design approaches

2.1 Methodology for testing and comparing approaches

Page | 84

is still an on-going process, as much as the development of the

computational technology itself. Algorithmic modelling tools are

constantly being updated, adapting to the demands of the design field

and becoming more powerful and intuitive.

This thesis aims to contribute to that on-going process by

investigating ways to support the use of programming in architecture.

While developers of software and programming languages work towards

improving various aspects of the software platforms that designers use,

this study looks at the problem from the designer’s perspective and

investigates ways to support learning and use of algorithmic modelling

through integrating new approaches into the design process itself. This

research explores methods to reduce the barriers of using programming

in architecture and potentially improve modelling performance through

utilising existing algorithmic design solutions. Algorithmic design belongs

equally to the fields of design and programming, and the reuse of

solutions as a method to support design is an important part of

programming practice (Krueger, 1992).

Therefore it is reasonable to suggest that the knowledge reuse

approaches can potentially be as useful when applied in the field of

algorithmic design in architecture.

Focus of the Study

Two approaches have been proposed as a means of accessing and

reusing existing algorithmic design knowledge. The first approach is the

reuse of abstract solutions to a design problem. An example of this

approach: Robert Woodbury’s patterns for parametric design (Design

2.1 Methodology for testing and comparing approaches

Page | 85

Patterns) (Woodbury, 2010) was used to test the first reuse method.

Design Patterns are abstractions. They are generic reusable solutions

which are documented in such a way that is broad enough to apply to a

range of different design contexts (Alexander, 1977). Thirteen Design

Patterns, identified by Robert Woodbury (2010), aim to help designers

learn and use algorithmic modelling systems. Woodbury states that

patterns are useful because they promote communication, and can be

used as a vehicle for sharing design ideas. Although, as the author states,

writing a design pattern can take a considerable amount of time and

effort, it aids reflection on and reuse of design ideas. According to

Woodbury, design patterns are especially effective when a designer is

doing the same thing again and again in variations (Ibid). Originally,

patterns for parametric design were developed to assist designers and

architects with structuring their programming solutions on an abstract

level by reusing one or several of the Woodbury's Thirteen Design

Patterns. Woodbury states that the proposed Design Patterns can be an

effective medium to understanding the essence of algorithmic modelling

(Woodbury, 2010). The author claims that patterns can help to overcome

complexity inflicted by parametric design systems, but also states that it is

a theory that is yet to be tested (Ibid). This study aims to test Design

Patterns as a learning and design support approach.

 These claims are supported by research conducted by Gamma et

al in the field of software design, who observed a number of positive

effects associated with the reuse of abstract solutions (patterns) (Gamma,

Helm, Johnson, Vlissides, 1993).

Authors state that patterns reduce the effort required to learn software,

helped with the design development, helped to explore alternative

solutions and motivated users to ‘go beyond’ specific objects (Ibid).

2.1 Methodology for testing and comparing approaches

Page | 86

Therefore an objective of this research was also to find out whether the

use of Design Patterns in the context of algorithmic design in architecture

would have similar positive effects.

The second proposed approach is based on case-based reasoning

and the reuse of specific programming solutions: Case-Based Design

(CBD). In Case-Based Design, instead of creating a new solution for each

individual problem, a new problem is solved by adapting an existing

solution from a similar case from the past (Riesbeck, Schank, 2013).

Research in the field of human reasoning indicates that case-based

reasoning is a natural way for people to solve any problem (Aamodt,

Plaza, 1994) (Riesbeck, Schank, 2013), because when humans solve new

problems they primarily rely on experience from previously encountered

situations (Ross, 1989). Learning by following a specific problem solving

algorithm is usually easier than to learn by generalising from it (Aamodt,

Plaza 1994). This implies that, potentially, the reuse of case-based

solutions can be expected to be easier and more intuitive for architects

and designers compared to the reuse of abstract solutions.

Some authors claim that case-based reasoning is an effective

design support method because it helps designers with solving solutions

for new situations by reusing experiences from the past (Heylighen,

Verstijnen, 2000) (Maher, de Silva Garza, 1997). The CBD approach is also

claimed to help designers with overcoming problems associated with the

complexity of design generation (Dave, 1994) and deems to be an

especially promising method for design fields dealing with geometry (Hua,

Fairings, Smith, 1996). There is, however, controversy regarding the effect

of the CBD approach to design innovation. According to one opinion, the

reuse of case-based solutions can lead to innovative design (Hua, Fairings,

Smith, 1996) (Sun, Faltings, 1994). According to the other, Case-Based

2.1 Methodology for testing and comparing approaches

Page | 87

Design actually limits the explored space of solutions (Kolodner, 1991),

which can potentially supress design innovation.

Therefore, one of the main objectives of this study is to test

whether these claims and suggestions regarding the reuse of case-based

solutions are valid when applied in the field of architectural algorithmic

design.

The secondary set of research objectives is to investigate the ways

to overcome some of the challenges that the use of the CBD approach is

likely to impose on designers (as well as the CBD systems developers).

One of these issues being that it is often hard to find the appropriate

reusable cases (Zimring, 1995). Even when cases are located in a single

organised repository, finding them might be challenging. The problem is

that, it is often assumed that when designers are searching for cases to

reuse, they already know what they are looking for. In practice, defining

the problem and, therefore, knowing which search features (indexes) to

use, is an integral part of a design process (Maher, de Silva Garza, 1997)

(Domeshek, Kolodner, 1992). Moreover, designers often ‘see’ different

features in the same design solutions as they have different backgrounds

and associations, which makes it very challenging to find universal indexes

which would work effectively for all designers (Dave, 1994).

Therefore the secondary aim of this research is to investigate the

ways in which designers and architects tend to think about their

algorithmic designs. This is planned to be done through the investigation

of how architects describe their design concepts, models, and algorithms;

and try to identify the types of indexes (key words) that could be more

effective.

2.1 Methodology for testing and comparing approaches

Page | 88

In this study the Case-Based Design approach was tested using an

online repository of visually represented models and corresponding

downloadable programming algorithms. This approach provided a means

to share programming solutions, allowing direct reuse (copy/modify) of

existing algorithms. The idea of the effective reuse of existing algorithmic

solutions appears to be relevant, because the computer technologies and

the Internet have already become an integral part of everyday life, as well

as a part of the architectural design practice and education. Access to

online databases and the ability to obtain relevant information is likely to

continue being a part of most design practice.

Therefore it seems sensible to investigate how architects and

designers can utilise this opportunity of having constant access to online

resources containing existing design knowledge and how this access to

reusable solutions in return can influence design process.

In theory, the reuse methods of abstract and case-based

algorithmic solutions are applicable to any type of textual and visual

programming. Therefore these approaches are likely to be relevant even

when all the current versions of the modelling software and programming

languages become outdated.

Shared Aims and Objectives of the DP and CBD

Approaches

 One of the shared objectives of the DP and CBD approaches,

stated in this thesis, is to reduce the number of barriers related to the use

of programming languages. The goal is to increase users’ ability to

overcome these barriers on their own by reusing existing solutions

(abstract or case-based).

2.1 Methodology for testing and comparing approaches

Page | 89

 The next objective, common for both the DP and CBD approaches,

is to increase designers’ knowledge and awareness of the existing

algorithmic solution space. Hypothetically both DP and CBD approaches

can produce original design ideas and programming strategies. Thus, they

can both contribute to the decrease of design limitations as (by default)

each user is no longer limited by his or her own individual knowledge and

understanding of the subject. Regular interaction with the DP and CBD

solution can potentially lead to the expansion of the explored solution

space.

 The other set of objectives is associated with designers’ capability

to enable computational design thinking, and their ability to employ

algorithmic reasoning to translate a design idea into a step-by-step

programming algorithm, generating an intended geometry. The objective

is to help users structure their programming logic thereby increasing

productivity of algorithmic modelling by offering examples which they can

reuse in the context of their current design problems. The outlined above

arguments and hypotheses informed the evaluation criteria used in this

study. (See Appendix B, page B55).

Research Aims and Objectives

Through comparison of the Design Patterns (DP) and Case-Based

Design (CBD) approaches this research investigated ways:

 to overcome the barriers, which users face when adopting the

principles and grammar of programming in architecture; and

 to make the use of algorithmic design tools more effective.

In order to evaluate and compare how each approach influences

various aspects of algorithmic design, the study has identified five groups

2.1 Methodology for testing and comparing approaches

Page | 90

of criteria which formed the research evaluation metrics. The metrics

include these criteria groups:

 algorithmic modelling performance (ability to effectively use

algorithmic modelling systems);

 programming criteria (ability to overcome barriers associated with

programming),

 design ideation (ability to realise an idea-to-form translation using

algorithmic modelling environments);

 motivation criteria (the level of satisfaction with the design output

and motivation to use algorithmic modelling in future) and;

 approach characteristics (the level of how easy to use, intuitive and

helpful each approach is);

These metrics provided a means to identify to what extent and in

which particular aspect each approach improved and supported

designers' ability to use algorithmic modelling tools in architecture and

design. Three test groups were compared: the control group, which used

No Approach (NA), the group which used the DP approach (reuse of

abstract algorithmic solutions), and the group which used the CBD

approach (reuse of case-based solutions). To test the effect of each

approach, comparisons between the control group and approach groups

were conducted. This gave a means to answer the main research question,

which was: whether the reuse of abstract and case-based algorithmic

solutions could help architects to overcome programming barriers and

improve their algorithmic modelling performance. Ultimately, this study

aims to test whether it is worth using the DP and CBD approaches in the

context of algorithmic design in architecture or not.

The comparison between the Design Pattern and Case-Based

Design groups allowed the investigation of the strengths and the

2.1 Methodology for testing and comparing approaches

Page | 91

weaknesses of each approach. Through this comparison the study aims to

explore how each approach can potentially be improved.

Designer Population

The target group for this study was established as architects, landscape

and interior designers who were learning or already using algorithmic

modelling tools in their designs. Woodbury (2010) states that Design

Patterns were developed for both designers who were still learning and

who were already using parametric modelling. The second approach,

Case-Based Design, also applies to a wide range of designer population.

People tend to reuse previous cases both when they are novices and when

they are experts (Anderson, 2013) (Rouse, Hurt, 1982), and by adapting

these existing solutions designers were expected to benefit from past

cases (Heylighen, Verstijnen, 2000). In order to carry out the proposed

experimental study (See Experimental set-up section), and to test and

compare the two approaches, a list of criteria was identified for selecting

participants. The following participant selection criteria were established:

 people who were doing/learning architectural, landscape, or

interior design;

 those with design experience of at least one year (to ensure certain

fluency and confidence in design);

 those who were interested in learning how to use algorithmic

modelling systems/or who were already using algorithmic

modelling systems;

 open (flexible) towards new design methods and ideas;

 keen on mastering and experimenting with computational design

technologies;

 available in terms of time;

2.1 Methodology for testing and comparing approaches

Page | 92

 The 126 participants who were recruited to participate in the

experimental part of the study were a diverse group of architecture and

design students, and practicing architects. Their design experience varied

from 2 to 33 years (including the years of studying of architecture and

design) with an average of 4 years’ experience. When indicating

experience with any computational design tools (including the use of

visual or textual programming languages) the range was from 0 to 3 years

with an average of 4 months’ experience in computational design. When

specifying their experience using Grasshopper, participants reported an

average of only 1.5 months, with the majority of participants having no

experience with the software. These results indicate that the recruited test

designer population were mostly novice programmers with an average of

4 years design experience.

 The test groups of at least thirty test subjects per approach (See

Statistical Analysis Section for more details) had both male (55%) and

female (45%) participants and were balanced in terms of design

experience.

Software Platform

Algorithmic modelling methods are implemented through the use of

textual and visual programming languages. The key difference between

these methods of representation is the level of language abstraction

(Mitchell, 1975). Visual or diagrammatic (analogue) programming

languages are represented by a so called ‘box-and-wire’ modelling

environments, while scripting or textual programming languages use

sequences of text: words, punctuation, and numbers (Exhibit 2.2).

2.1 Methodology for testing and comparing approaches

Page | 93

Exhibit 2.2. Visual and Textual programming languages

 There are advantages and disadvantages in both (textual and

visual) types of programming languages. The biggest disadvantage of

scripting is that it has very strict syntax rules, which are often hard to follow

(Celani, Vaz, 2012). Syntax errors, which occur during the scripting

process, can be very discouraging for many designers who are learning

how to use a computational design system. Scripting requires the user to

have comprehensive knowledge and skills in programming language rules

and syntax. The disadvantages of visual programming environments are

related to the limitations that the ‘box-and-wire’ system imposes on the

variety of available functions and components. Essentially, each ‘box’

contains a script that can be a function or an action; and the number of

‘boxes’ is limited. Nevertheless; these limitations can be overcome when

combined with textual programming, through adding a script ‘box’

(Leitao, Santos, 2011). Recent research in algorithmic design tools

indicates that users (especially novices) are more enthusiastic and

successful in understanding and realising design concepts when they use

visual programming (Celani, Vaz, 2012). Examples of visual programming

environments include: Grasshopper (Rhino), Generative Components’

(GC) Symbolic Diagram and Houdini (Sidefx) etc.

 A recent study conducted by Janssen and Wee (2011) compared

these three mentioned systems. The research explored the cognitive stress

2.1 Methodology for testing and comparing approaches

Page | 94

associated with iterative construction of visual dataflow modelling (VDM)

environments. VDM refers to a modelling approach that uses visual

programming languages to create algorithms (which generate output

geometry). Visual programming was undertaken through the

manipulation of graphical elements rather than entering text (scripting)

(Exhibit 2.2). In order to test the visual programming systems an exercise

was conducted: each platform was used to build the same complex

parametric model (Janssen, Wee, 2011). All three programming

environments have completed the modelling task successfully in this

research (Ibid). The approximate number of nodes used to generate the

model was: 80-90 for Grasshopper, 90-100 for Generative Components

(GC) and 70-80 for Houdini. The authors indicated that in order to perform

certain iterations in GC, a user is forced to follow a reverse-order

modelling method which causes additional cognitive stress. Grasshopper

and Houdini, in contrast to GC, both use the forward-order modelling

method. It is also noted that GC heavily relies on scripted (textual)

expressions for manipulating such data as: lists, sets or arrays. Thus it is

not possible to avoid scripting while working with GC (Janssen, Wee,

2011).

 With visual programming environments one can expect to

have tangible design outcomes after a short series of practical tutorials,

even from people who are new to algorithmic modelling. Both

Grasshopper and Houdini suited the context of this study. When choosing

the two software platforms, additional factors came into play. Firstly, both

Rhinoceros and Grasshopper were available at Victoria University of

Wellington in their computer labs where this study was conducted.

Secondly, there was observed an increase of interest towards the use of

visual programming with Grasshopper among the students of architecture

2.1 Methodology for testing and comparing approaches

Page | 95

and design at Victoria, as its ‘box-and-wire’ environment was user friendly

and could be explored and operated intuitively (Grasshopper3D, 2014). In

addition, the author of this study was already experienced with both

Grasshopper and Rhino prior to conducting this experimental research.

That is why it was decided that the Design Patterns and Case-Based

Design approaches would be tested on the Grasshopper (visual

programming plugin for Rhinoceros) software platform.

Experiment Setup

The experiment was set in the framework of a two day algorithmic

modelling workshops using Grasshopper, a visual programming platform,

integrated into Rhino 3D (Grasshopper3D, 2014) (Rhino3D, 2014). The

workshops were set up as a series of short lectures and intensive practical

tutorials containing the systematic introduction into visual programming

with Grasshopper.

 The same experimental setup (treatment) (Groat, Wang, 2002) was

organised for all three test groups: control group (using no approach),

group using Design Patterns approach, and group using Case-Based

Design approach. All participants were given an opportunity to master the

same set of algorithmic modelling skills (See Algorithmic Modelling course

framework Section for more details). All groups were introduced to the

same programming components, computational and algorithmic form-

making logic, and went through the same step-be-step practical tutorials.

The only difference was that participants of the control group did not learn

and use any additional design support approach.

 Participants of the Design Pattern group were introduced to the

concept of patterns for Parametric Design and throughout the course of

2.1 Methodology for testing and comparing approaches

Page | 96

the workshops they gradually learned all thirteen patterns developed by

Robert Woodbury (2010). The first pattern to be introduced in the course

was ‘Clear Names’. ‘Clear Names’ used to illustrate the concept and

organisational structure of Design Patterns (Intent, Use When, Why, and

How) (Ibid). The objective of the two day algorithmic modelling course

was to use more simple algorithms and programming logic in the

beginning and then gradually increase the complexity (See

Recommendation Section and Appendix A ‘Proposed curriculum of

teaching programming in architecture using patterns for parametric

design’).

 Participants of the Case-Based Design (CBD) group went through

the same practical tutorials as the control group and the Design Patterns

(DP) group. The only difference was that the CBD group participants were

given access to the online repository of algorithmic solutions (case-base),

were shown how to use it (searching cases by index (key words) and were

given permission to download corresponding programming definitions).

 At the end of each day of the workshop, participants were asked

to design an algorithmic model (Exhibit 2.3) (See also Appendix B, pages

B56-B63), based on a design task (the same for all test groups), and to

answer an online questionnaire. The task for the first workshop day was

‘abstract composition’, the task for the second day was a ‘parametric

canopy’. Prior to modelling, participants were asked to quickly sketch their

design ideas and think how they could build an algorithm that would

generate the form that they envisioned. The time given for the

development of these conceptual design models was set at 2 hours (the

same for all test groups). It was suggested to participants of the DP group

to use Design Patterns that they learned when developing their own

design tasks. However, the use of Design Patterns was not compulsory,

2.1 Methodology for testing and comparing approaches

Page | 97

and participants were free to proceed with the development of their

algorithmic design models as they thought worked best for them. Similarly

to the DP group, the CBD group participants were free to choose whether

they wanted to reuse any algorithms from the Case-Base or not to reuse

them.

Exhibit 2.3. Example of work submission (Design Idea – Sketched, Programming Algorithm, output design model)

The collected data (from the workshops) consisted of the screen

recordings (snapshots of the design process), submitted sketched design

ideas, 3D models (Rhino files), programming definitions (Grasshopper

2.1 Methodology for testing and comparing approaches

Page | 98

files) (Exhibit 2.3) and answered online questionnaires. The 3D Rhino

models were used to calculate the level of complexity of each model. The

Grasshopper definitions were used to measure the complexity of each

programming algorithm and to determine the explored solution space of

each algorithmic solution (See Detailed Criteria for comparing the

approaches).The data collected from the online questionnaires helped to

determine the largest portion of the key criteria identified for this study

including the level of programming difficulties and the amount of the

reused algorithms. It informed such criteria as the level of satisfaction with

the design outcome and the motivation to use algorithmic modelling

systems in the future. The questionnaires provided data regarding the

design objectives, the ability to model the original design idea and the

degree of change in the design due to programming difficulties.

The aesthetic and design qualities of the models were not judged

directly, as any judgement regarding design qualities may have been to a

certain degree subjective, varying in dependence to the individual

preferences and the background of the person evaluating the design.

However this issue was addressed indirectly. Each participant was asked

to indicate their design intentions, reflecting on the design outcome, and

to evaluate the degree of satisfaction with the produced model. In this

way, the design quality of each model was, in fact, assessed by the

designer himself/herself. This strategy also gave an opportunity to have

an insight into what each person intended to achieve versus what was

actually achieved.

2.1 Methodology for testing and comparing approaches

Page | 99

Structuring the Comparisons

The design scope and constraints of the case studies were developed

according to the two main strategies. The first strategy was to keep the

design tasks simple but open to various interpretations, thus ensuring an

easily controlled short-term experimental framework, and a fast and

efficient analysis of the outcome results. This strategy also gave an

opportunity to test the identified algorithmic modelling criteria, such as

the number of programming difficulties, explored solution space, and

degree of algorithm and model complexity. The second strategy was to

use practical exercises which allowed the potential for algorithmic design

to be expressed to its full extent, hence the choice of the exercises:

‘abstract composition’ and ‘parametric canopy’. Although the

implementation of algorithmic modelling can, hypothetically, be

implemented within the context of almost any design scenario, in design

studios it is often used to create such geometries as surfaces (including

canopies and building envelopes), algorithmic ornaments, or urban or

landscape planning, etc.

 The first practical exercise consisted of designing a simple abstract

composition (See Appendix B, pages B56, B58, B60, B62). Participants

were expected to develop rather simple programming definitions

(algorithms) which would generate intended outcome geometry. The

objective of the first exercise was to introduce and get users familiar with

practical implementation of algorithmic modelling. The second day

exercise consisted of a slightly more specific task: a parametric canopy

(complex, possibly interactive, surface) (See Appendix B, pages B57, B59,

B61, B63). In both cases participants were asked to describe their design

ideas prior to modelling. This was done to track the relations between the

design concept and the resulting model. It was anticipated that on the

2.1 Methodology for testing and comparing approaches

Page | 100

second day of the workshops participants would develop more complex

algorithms and geometries compared to the first exercise.

 The set-up of the workshops structure was informed by a number

of existing experimental studies in design. For example, a similar design

scope (exercises) was used by Celani and Vaz (2012) for a comparative

study of the use of scripting and visual programming in computational

design, as well as by Jasses and Chen (2011) for their experimental study,

which compared three visual dataflow modelling (VDM) systems.

Algorithmic Modelling Course Framework

To ensure equal treatment, participants of all three test groups,

including the control group, the DP group and the CBD group, went

through the same practical algorithmic modelling tutorials. This meant that

all test groups had the same set of lectures and practical programming

exercises which were given to them on the first and the second day of the

workshops. ‘Parametric Architecture with Grasshopper’ (Arturo, 2011) and

‘Grasshopper Primer’ (Payne, Rajaa, 2009) informed the development of

course structure. The course was adjusted to accommodate the gradual

introduction of the Design Patterns in the DP group (See Appendix A for

more detail). The basic principle for course organisation was to gradually

increase the complexity of introduced concepts and programming

components. Practical step-by-step tutorials using Grasshopper for Rhino

covered such topics as (in order of introduction):

 Working area (Interface); Components and data; Components’

connection;

 Parameters and components; Import from Rhino (Linking

geometry/data); Data Management;

2.1 Methodology for testing and comparing approaches

Page | 101

 Numeric data; Coordinates; Mathematics;

 Vector Basics; Point; Vector Manipulation;

 Operators (Move, Rotate, Scale);

 Curves; Types of Curves; Creating Lines; Polylines; Curves from

Points;

 Surfaces; Creating Surfaces from Points and Curves

 Lists; Shifting Data; Data Management;

 Reparameterise; 'Remap Numbers'

 Numerical sequences; Series; Range; Random; Fibonacci series;

 Data Tree; Flatten Tree; Merge; Graft Tree; Tree Branch; Explode

Tree;

 Paneling Tools; Surfaces’ analysis; Divide Surface;

 Transformations with shape variation; Project; Graph Mapper;

Deformations: Morphing;

 Conditional Statements, Split List; Cull Nth; Cull Pattern; Dispatch;

 Distance; Attractors;

 Colours, Gradients, Text Display,

 Script Components, Arrays and Lists; Loops; Visual Basic, Recursion,

Fractals

At the end of each workshop day participants of all test groups

developed and submitted the same design tasks and answered the same

questionnaires (except that the control group had no questions regarding

their experience with the approach, as they used no approach). The key

difference was that that the CBD group had access to the online repository

of algorithmic solution and that the DP group was introduced to thirteen

patterns for parametric design and was shown how to use these patterns

in practice.

2.1 Methodology for testing and comparing approaches

Page | 102

Principles of the abstract and case-based solutions

reuse

Both the Design Patterns and Case-Based Design approaches are based

on the idea of knowledge reuse. The difference between the approaches

is that one of them utilises abstract design solutions while the other utilises

specific design solutions. This results in the substantial difference of the

reuse methodology between the DP and CBD approaches (Exhibit 2.4,

Exhibit 2.5).

Exhibit 2.4. Reuse of Abstract solutions: Method

 Exhibit 2.4 illustrates that initially, an abstract generalised solution

(pattern) can be formulated through the analysis of existing algorithms

which have the same underlying logic (‘Designer A’ ‘Specific Solutions’).

After a pattern is documented and the information is published (‘Design

Pattern’) other designers can learn this pattern (‘Designer B’ ‘General

solution’). When working on a new problem (‘Designer B’ ‘Specific

Idea/Problem’) designers can apply this general solution (pattern) to help

them solve their current design problems (‘Designer B’ ‘Specific Solution’).

2.1 Methodology for testing and comparing approaches

Page | 103

Due to the fact that patterns are abstract, it is possible to reuse them (when

appropriate) in different design contexts.

Exhibit 2.4. Reuse of Abstract solutions: Method

 Exhibit 4.5 illustrates the methodology of the reuse of Case-Based

Design solutions. Using data-base systems (such as weblog platforms)

designers can publish any of their algorithmic solutions, making them

available for others to reuse (‘Designer A’ ‘Specific Solution’). When

choosing indexes for their solutions, designers should try to identify a set

of specific features (characteristics) of their designs that will be most useful,

when others search for similar solutions in future (‘CBD Repository’). When

other designers use the CBD system they also have to identify the features

of their current design problems (ideas) to search for in the database

(‘Designer B’ ‘Specific Idea/Problem’). Based on the match of the originally

applied and search indexes a CBD system retrieves a set of selected cases

(‘A Set of Selected Cases’). Thinking by analogy, designers can adapt one

(or several) of these retrieved solutions to help them with the development

of their current designs (‘Designer B’ ‘Specific Solution’).

2.1 Methodology for testing and comparing approaches

Page | 104

 One of the key differences in the methodologies of the DP and

CBD approaches (adopted for this study) is that designers using abstract

solutions are expected to learn patterns before using them. The

development of a pattern can also require a certain amount of effort.

However, in theory, once a pattern is learned, designers can apply this

general solution to a variety of different design contexts and problems

without re-learning it. To use a Case-Based Design approach users will

most likely have to search for a reusable solutions each time they have a

new design problem. This process can potentially be complicated and

time consuming. Nevertheless, those designers who publish their designs

in the case-base system, are likely to require less time and effort, because

they do not have to spend time on formulating and documenting a

generalised solution (with a set of sample files).

 Note that, that alternatively patterns can be stored, retrieved and

reused using a database repository (similar to the CBD system). In which

case, designers do not have to learn patterns beforehand. However, in

this thesis the thirteen Design Patterns are used as integral part of the

learning process. That is why here and throughout the thesis it is assumed

that designers learn patterns prior to design process.

Adaptation of the DP Approach to the Experimental

Framework of this Study

 To test the reuse of abstract algorithmic solutions in architecture,

this study used the thirteen patterns for parametric design, developed and

illustrated by Robert Woodbury (2010). In his book ‘Elements of

parametric design’ Woodbury states that designers who use parametric

modelling tools tend to create algorithms anew, rather than reuse them

2.1 Methodology for testing and comparing approaches

Page | 105

(Ibid). The idea of design patterns is that instead of solving each new

problem individually, architects can reuse the generalised algorithms

(patterns) of existing, successfully implemented in the past, solutions

(Gamma, Helm, Johnson, Vlissides, 1994). Patterns refer to the solutions,

described with a high level of abstraction. This way design patterns can be

individually interpreted depending on a particular design context. In

Woodbury’s book and a website dedicated to the patterns for parametric

design (Designpatterns, 2014) each of the design patterns is explained

using the ‘Name’, ‘Intent’, ‘Use When’, ‘Why’ and ‘How’ and is illustrated

by a set of samples (specific solutions), which are shown as a sequence of

images.

 The following example of the ‘Reactor’ pattern and its sample

algorithm (Circle Radii and Point Interactor) illustrates the structure of the

patterns’ documentation (Exhibit 2.6).

Design Pattern: ‘Reactor’ (Name: Reactor)

 Intent: ‘Make an object respond to the proximity to other object’

(Woodbury, 2010)

 When: ‘Use this pattern, when you want to make an object respond

to the presence of other object’ (Ibid)

 Why: Designers often use the metaphor of response, when one part

of a design (result) depends upon the state of the other (interactor)’.

For this particular pattern the proximity (reference) factor drives the

response (Ibid).

 How: ‘Connect an interactor to a result through a reference’(Ibid)

‘Circle Radii and Point Interactor’ is one of the samples of the ‘Reactor’

pattern illustrating the idea behind this design pattern (Exhibit 2.6). Pattern

samples are documented using the following structure:

2.1 Methodology for testing and comparing approaches

Page | 106

Sample ‘Circle Radii and Point Interactor’ (Design Pattern ‘Reactor’)

 Use When: Control the size of a set of circles by a proximity to a

point.

 How: As the interactor point moves closer to the circle, the circle

gets smaller (Ibid).

Exhibit 2.6. Diagrams illustrating Design Pattern: Reactor, Sample: Circle Radii and Point Interactor

It is very difficult to underestimate the role of samples in

understanding the essence and principles of each abstract solution

(design pattern). The samples perform a crucial role, illustrating the idea

behind each abstract theory of the design patterns. During the

experimental stage of the study, most of the design patterns’ samples,

suggested and explained by Robert Woodbury (Woodbury, 2010) were

developed as Grasshopper definitions. These definitions were analysed to

determine which particular patterns work better with which programming

logic and components.

All patterns were organised in a specific order to be introduced in

the course of the workshops (See Appendix A and Recommendation

section for more details on the proposed curriculum to teaching

2.1 Methodology for testing and comparing approaches

Page | 107

programming using Design Patterns). During the two days of algorithmic

modelling workshops participants were introduced to all thirteen Design

Patterns and were shown how to implement them in practice (on the

examples of practical step-by-step tutorials). Three samples per design

pattern were shown and explained through corresponding programming

algorithms during the DP group workshops. One programming algorithm

per design pattern was used in a step-by-step practical tutorial.

As a part of the Design Patterns workshop preparation eighty

pattern samples were developed as Grasshopper definitions; over thirty of

those algorithms were shown to the DP workshop participants. The DP

sample algorithms were not made available to download for the Design

Pattern test group. This was done to clearly separate and test the reuse of

abstract solutions (DP) and the reuse of specific solutions (CBD). As it often

stated: samples are meant to be used only as the illustrations for the

design patterns (Woodbury, 2010) (Gamma, Helm, Johnson, Vlissides,

1994). If these algorithm were made downloadable they could have been

reused through the ‘copy/use’ principle of the CBD approach. This might

have blurred the differences between the approaches and altered the

results. That is the other reason why the DP group participants were not

given an access to all the algorithms built for patterns samples.

Adaptation of the CBD Approach to the Experimental

Framework of this Study

The Case-Based Design (CBD) approach is based on the reuse of

design solutions from specific design cases. In the context of this study

the CBD approach refers to the reuse of algorithmic solutions in

architecture. This approach was tested using an online data-base system,

2.1 Methodology for testing and comparing approaches

Page | 108

specifically developed for this study, which contained over one hundred

and fifty programming solutions (cases) (Exhibit 2.7). The primary purpose

of these reusable solutions was to help designers and architects to solve

their own (similar) design problems (Maher, de Silva Garza, 1997). In

various fields, including architecture and software programming, the use

of Case-Based Design approach proved to be an effective method,

helping designers and developers to solve problems by reuse of previous

solutions and experiences (Kolodner, 1991) (Aamodt, Plaza, 1994)

(Riesbeck, Schank, 2013).

Exhibit 2.7. Snapshot of the Case-Base of algorithmic designs, used as a test the CBD approach. Left side: Search bar;

and Action bar containing the Blog Archive and programming solutions indexes (‘Labels’), sorted according to the

frequency of use

Among the main aspects taken into consideration when designing

a CBD system for this study are the following points:

 how the design solutions are going to be represented;

 what the process is for selection and retrieval of solutions; and

 what the process is for adapting design solutions (Maher, de Silva

Garza, 1997).

2.1 Methodology for testing and comparing approaches

Page | 109

In many ways, the representation of a design case can be

understood as an abstraction, communicating the essence of each

design, interpreted into a symbolic form that any designer or architect

can understand (Ibid). To give participants of this experimental study an

opportunity to see and understand, how a resulting geometry reacts to

changes in parameters, the images, representing an output geometry of

each case, are animated using Graphics Interchange Format (gif). In

addition to geometry related animations (Exhibit 2.7), each solution is also

represented with a snapshot of its source Grasshopper definition, to allow

users to ‘read’ (comprehend) the programming logic behind each design

case.

The developed Case-Base for algorithmic solutions (testing the

CBD approach) was an online database system. This system was

organised based on the indexes assigned to each solution, which are used

to sort and retrieve reusable items. Systematic and adequate structuring

of the CBD database content was essential to ensure effective selection

and retrieval of solutions. That is why various features (characteristics) of

algorithmic designs were addressed by indexing, including: a) design

concept features; b) geometrical/shape features; and c) programming

logic characteristics. Up to twenty indexes were assigned to each design

case to allow participants engage with various search features for

recalling cases.

To ease the process for adapting design solutions, each case in the

developed CBD system had a corresponding downloadable Grasshopper

files, to allow direct ‘copy/use’ or ‘copy/modify’ option.

The CBD approach was tested on a database of programming

solutions, specifically developed to accommodate the scope and needs

of the algorithmic modelling workshops.

2.1 Methodology for testing and comparing approaches

Page | 110

The following principles were established to guide the

development of Case-Base for algorithmic solutions (informed by the

context of this study):

 Keep algorithms relatively simple, as a) participants are expected to

spend only two hours on the development of their conceptual

models; and b) most participants did not have advanced enough

skills with Grasshopper, to tackle complex programming solutions)

 Develop solutions that explore different programming and form –

making logic, explained during the course of the workshops; (to

allow participants to expand the space of explored algorithmic

solutions)

 Complex projects are to be divided into independent parts or

segments

 Prior to development of the final version of the online Case Base

system, used to test the CBD approach, three online blog platforms (web

publishing tools) were tested as a means to host the repository of

algorithmic designs, including: Blogger (Blogger, 2014), Tumblr (Tumblr,

2014) and WordPress (Wordpress.com, 2014). All three of these platforms

allowed images and programming algorithms to be published and shared;

all allowed multiple indexes to be applied; and selected (search) solutions

to be used based on those indexes. To determine which platform suited

this study, the best of a hundred of algorithmic solutions were uploaded

to each of the blog platforms and were made available to be viewed

online (worldwide). After four months, the number of visits to each blog

was compared between three platforms. The Blogger platform appeared

to be the most popular compared to Tumblr and WordPress. That is why

the Blogger platform was used to host the Case-Base of algorithmic

2.2 Evaluation of the approaches

Page | 111

design solutions and all one hundred and fifty algorithms developed to

test the CBD approach were uploaded to the online data-base system.

 During the first day of the workshop the CBD group participants

were given a link to the online Case-Base of algorithmic designs and were

explained how to select and retrieve solutions from the database. When

developing their design tasks the CBD group participants were provided

with constant access to this database, so they could select and reuse any

of these solutions.

To use the CBD system, participants were expected to identify

specific features (indexes) characterising their design idea in order to find

a similar solution within a database. Each programming solution was

represented with illustrations, so designers could visually search for a

solution using animated images. This way the CBD users could potentially

find a visual match to the originally sketched design concept, available in

the repository. If a fitting CBD solution was identified, a designers could

check a corresponding programming algorithm (by downloading its

Grasshopper file or using a snapshot of the Grasshopper definition). This

allowed participants to understand how the algorithm worked and to

decide whether they wanted to reuse a particular solution, following the

‘copy/use’ or ‘copy/modify’ method.

2.2 Evaluation of the approaches

Research methodology

The proposed methodology has been drawn from a range of studies

which have examined the application of CAD technologies through case

studies (Celani, Vaz, 2012) (Hamade, Artail, 2008) (Shah, Smith, Vargas-

2.2 Evaluation of the approaches

Page | 112

Hernandez, 2003) (Groat, Wang's, 2002) (Toth et al, 2011). The criteria

relating to the fluency and novelty of design ideation were informed by

the work titled ‘Metrics for measuring ideation effectiveness’ (Shah, Smith,

Vargas-Hernandez, 2003). The experimental setup was influenced by the

recent and relevant research work by Gabriela Celani and Carlos Vaz

(2012): ‘Cad Scripting and visual programming Languages for

implementing computational design concepts’. The overall methodology

was drawn from Groat and Wang's (2002) guidelines for the development

of experimental studies: a carefully controlled study with at least two

groups, random selection of participants, no systematic differences

between groups, and with the same treatment applied for all groups.

 After careful consideration and comparison between research

objectives and the relevance of available methods (which dealt with design

process) it was decided that the experimental methodology suited this

study best. There were several experimental methods to study and

evaluate design processes such as: controlled tests (Schon, 1991), protocol

studies (Christiaans H. and Dorst K., 1991), (Sobek and Ward, 1996) and

case studies (Ericsson, K and Simon, H, 1984). Case study analysis (namely

students’ design works, which was produced during algorithmic modelling

workshops) and surveys reporting participants’ experience meeting all the

research requirements and objectives and therefore were chosen as most

suitable.

The data gathering methodology was based on two types of approaches:

 Outcome-based analysis (Shah, Smith, Vargas-Hernandez, 2003);

 Questionnaires

 The data (values for each identified criterion) obtained from the

questionnaires and outcome-based analysis was used to compare

2.2 Evaluation of the approaches

Page | 113

whether and how each criterion varied depending on designers’ use of

the Design Patterns and Case-Based Design approaches. Most of the

collected data was interpreted as numeric values (metrics), allowing

explicit comparison between the approaches (See Statistical Analysis

section). This allowed the use of empirically obtained results as a means

to determine the answers for the research questions (See Research aims

and Objectives section).

Metrics measuring the key aspects of algorithmic

design performance

Metrics measuring the key aspects of algorithmic modelling in architecture

were based on criteria developed to accommodate the research

objectives of this comparative study. These criteria were divided into five

groups:

 Programming criteria;

 Design ideation criteria;

 Motivation criteria and;

 Approach characteristics criteria;

 Algorithmic modelling criteria (metrics for measuring qualitative

aspects of algorithmic models and programming solutions);

 The questionnaires also had a design background section, where

respondents indicated their level of experience in architecture and design;

as well as their experience with computational design tools and specifically

the use of Grasshopper 3D for Rhino. Furthermore participants were asked

to indicate their gender. These characteristics were used as covariates,

2.2 Evaluation of the approaches

Page | 114

testing whether experience or gender had any significant influence on the

results (See Statistical Analysis Section).

Programming criteria

 The first evaluation metrics group covered such programming

criteria as: programming difficulties, learning curve and reuse of

algorithmic solutions. Programming difficulties criteria referred to how

often participants came across programming difficulties, while developing

their algorithmic designs; and what type of difficulties they had. Learning

curve criteria evaluated how often participants implemented new

components while developing their algorithmic designs. The reuse of

knowledge concerned how often participants reused algorithms from any

external sources, such as the CBD repository or other locally or internet

based sources.

 Number of programming difficulties (barriers) [Questionnaire]*

*Method of information extraction

Participants were asked to indicate how often they had come across

programming difficulties (barriers) which they could not overcome. The

study took into account the fact that almost every problem or mistake

could eventually be solved (corrected). That is why the cases when users

spent a significant amount of time on solving a particular programming

issue (more than 30 minutes out of 2 hours given for the development of

a task) were reported as a programming difficulty. The answers were

gathered as numeric values (metrics).

 Types of programming barriers [Questionnaire]*

In order to investigate the typology of barriers that designers face when

they used algorithmic modelling tools, participants were asked to report

their difficulties. This question was set as an open ended type of enquiry,

2.2 Evaluation of the approaches

Page | 115

meaning that participants had no predefined options or categories.

Afterwards, these responses were analysed and sorted into the most re-

occurring categories (See Findings Section).

 Learning curve [Questionnaire]*

The amount of times that participants took to implement a new (never

used before / not explained in the tutorials) programming component.

The answers were reported as numeric values (metrics).

 Reuse of solutions [Questionnaire]*

This criterion measured how often participants had re-used algorithms or

parts of the algorithms from any external sources while developing their

own programming solutions. It referred to cases when participants had

re-used existing algorithms or parts of the algorithms (copy/paste/modify

approach), including the re-use of algorithms shown during the workshop

tutorials. The answers were reported as numeric values (metrics).

Design ideation/performance criteria

The Design Ideation Criteria group investigated how the use of the

Design Patterns and the online Case-Base of algorithmic solutions affected

design thinking. This included: change in design objectives, participants’

ability to realise their original design ideas, ability to accomplish all that was

wanted etc. These criteria explored how each approach affected the design

process and the participants’ feedback regarding the ‘achieved’ versus

‘intended’ was evaluated. The Secondary aim of the design ideation criteria

was to evaluate the degree to which each approach was likely to affect

(alter) a design outcome (result compared to the initial design intent). Due

to participants’ lack of experience with programming environments

(programming barriers) it was expected that the initial idea would often be

modified.

2.2 Evaluation of the approaches

Page | 116

In order to better understand the ways architects and designers

think about their design models, workshops participants were asked to

describe different aspects of their designs using:

 the key words (indexes) related to geometry / shape of their

designs;

 metaphors and abstract attributes that characterised their models;

 the key words related to algorithmic modelling;

 The index (key word) study aimed to determine the effective ways

to structure a repository of algorithmic design solutions (cases) for

architects and designers. This investigation provided an insight into how

one could organise and label a database of algorithmic solutions in a more

effective way. The response, indicating the type of design objectives that

participants had was reported as an open-ended type of answer with no

predefined options or categories. The rest of the responses for the design

ideation criteria were reported as closed-ended answers indicating the

level of agreement with the statements on a five point scale (Celani, Vaz,

2012) (See Statistical Analysis Section for more detail regarding the answer

scales and types of questions).

Change in the design intent [Questionnaire]*

 Ability to model original idea

 Change in the design strategy due to programming difficulties

 Change in the design strategy because participants found

interesting solutions, which they decided to reuse;

 Design objectives (What participants intended to accomplish);

 Ability to accomplish what was intended/wanted;

2.2 Evaluation of the approaches

Page | 117

Satisfaction/Motivation criteria

The motivation criteria group evaluated the degree of satisfaction

with the design outcome and motivation to use algorithmic modelling in

the future. The objective was to compare results and identify whether there

was any dependency between the levels of satisfaction with

output/motivation to use algorithmic design tools in future and the use of

each approach. The responses were reported as closed-ended answers

indicating the level of agreement with the statements on a five point scale

(Celani, Vaz, 2012) (See Statistical Analysis Section).

Degree of satisfaction/motivation [Questionnaire]*

Degree of satisfaction with the design output and motivation to use

algorithmic modelling in future

 Level of satisfaction with the design outcome

 Motivation to use algorithmic modelling tools in future

Approach characteristics criteria

The approach characteristics group referred to the usability,

intuitiveness, flexibility and utility criteria, which were identified to represent

the overall features related to the use of each approach. Usability was how

easy it was for participants to learn/ implement the Design Patterns and

the Case-Based Design approaches. Intuitiveness attributes were how

intuitive participants found each approach. Flexibility (re-usability) referred

to participants’ ability to find and adapt a Design Pattern or a CBD solution

which fitted their design concept; and how often participants actually

implemented Design Patterns or CBD solutions in their designs. Utility

related to how helpful participants found each approach. All approach

2.2 Evaluation of the approaches

Page | 118

criteria except ‘Flexibility’ (how often participants re-used algorithmic

solutions) were collected with a five point scale level of agreement with the

statement (Celani, Vaz, 2012) (See Statistical Analysis Section). When

reporting how often participants re-used Design Patterns or Case-Based

solutions from the online repository, they entered numeric values (metrics).

Usability [Questionnaire]*

How easy it was for participants to learn/ implement the DP and CBD

approaches.

Intuitiveness [Questionnaire]*

How intuitive participants found each approach.

Flexibility [Questionnaire]*

 Ability to find and adapt a Design Pattern or a CBD solution, which

fitted participants’ design concepts;

 How often participants implemented Design Patterns or CBD

solutions in their designs;

Utility [Questionnaire]*

How helpful participants found each approach.

Algorithmic modelling performance criteria

 This group of evaluation criteria referred to algorithmic modelling

performance in general and can be applicable for various experimental

frameworks. These criteria can potentially be used as a metric for

measuring qualitative aspects of algorithmic models and programming

solutions in architecture and design. The focus of the metrics was

2.2 Evaluation of the approaches

Page | 119

evaluation of algorithmic modelling performance in the context of the

early stages of design (conceptual models) where the emphasis was on

ideation and the qualitative aspects of the models produced.

The objective of the metric was to provide a means of systematically:

 categorising models according to their complexity;

 ranking the complexity of the algorithms used to generate output

geometry;

 evaluating the explored solution space of programming solutions

(algorithms) as evidenced by variety and novelty.

Only one of the metrics was limited to the visual programming context.

That was the method of evaluating the complexity of the algorithms

(Grasshopper definitions). The variety and novelty criteria, which formed

the explored solutions measure, focussed on the programming

components, but the overall logic was suited to both textual and visual

programming. The measure of model complexity was widely suited to the

general evaluation of geometrical complexity of architectural and design

models.

Model Complexity [Output Model Evaluation]*

Various approaches measuring output model complexity were

investigated, including: considering meshes to have distinguishable shape

characteristics; Shape Grammar; and measuring the complexity of shapes

and representation (Mitchell, 1990). From this, a point system for

determining complexity was developed. It was informed by geometrical,

combinatory and dimensional criteria for 3D model classification. In the

context of this study, this measure was used to determine the speed of

modelling because it was assumed that a more complex model developed

within a given period of time required a greater modelling speed.

2.2 Evaluation of the approaches

Page | 120

 3D models can be created with various form-making algorithms

and operations, but final representation is usually stored in the form of

polygonal meshes (Shikhare et al., 2001) or NURBS (Non-Uniform Rational

B-Splines). That is why one of the approaches is to consider meshes to

have distinguishable shape complexity characteristics (Garland, 1999). An

alternative approach to classifying 3D models is based on measuring the

complexity of shapes and representation of a model (Forrest, 1974) (Stiny,

2008) (Krishnamurti, 2011). Forrest suggested three types of model

classification: geometric, combinatory and dimensional. Geometric

complexity refers to the models basic elements; such as lines, planes,

curves, surfaces, etc. Combinatorial complexity considers the number of

component (elements) and dimensional complexity classifies model as a

2D, 2.5D or 3D model. The other method to analyse models refers to

Shape Grammars. The Shape Grammars approach interprets a model as

a set of rules (Heisserman, 1994). Shape grammars can be considered to

be visual mathematics. This method argues that a design can be seen as

series of transformations, such as rotation, translation, reflection, scale (Cui

J, MX Tang, 2013). The Shape Grammar design method is based on form

computation and logical analysis of the formal properties (Heisserman,

1994). In practice, it can be applied using methods of shape

decomposition into basic components (actions).

The point system, which formed the criterion measuring complexity of

geometric models for this research, were informed by the combination of

geometrical, combinatory and dimensional complexity criteria for 3D

model classification; as well as the form computation mechanism of a

design – Shape Grammars.

2.2 Evaluation of the approaches

Page | 121

Model Complexity Evaluation: Point System

The method for measuring complexity of algorithmic models is based on

a point system. Numbers in [N] brackets were the score points. Each

model was analysed according to the following seven categories: Basic

Elements, Composition Space, Arithmetic of Shapes, Number of Elements,

Shape of the Element Transformations and Colour. Each model was

awarded a certain number of points in each category. The total number

of points was combined to form the final score.

 The Basic elements category evaluated models according to how

advanced the geometry was, starting with the simplest geometry – points

and ending with most advanced – solids (Forrest, 1974). In many cases

outcome models, submitted by participants, had various types of

elements: points, lines, surfaces and solids. In some cases, all elements

(including intermediary geometrical structures, such as centre points and

surface edges) were kept visible. In other cases only the resulting

geometry was left visible. That is why the points were not awarded to all

the types of elements of the model, but only to the most advanced type

of element geometry. Six types of basic elements geometry were identified

(from simple to complex): ‘Points’ (a point can be defined by XYZ

coordinates), ‘Lines’ (a straight line; can be defined by two points), ‘Curves’

(a curved or straight line, can be defined by two, three or more points. It

includes all splines such as polylines, curves, interpolated curves; and

primitives such as: circle, ellipse, rectangle and polygon), ‘Planes’ (a flat,

two-dimensional surface), ‘Surfaces’ (three-dimensional open surface) and

‘Solids’ (a solid three-dimensional geometric figure (includes closed

surfaces)) (Exhibit 2.8).

Basic elements (Geometrical Complexity): Points – [0]/Lines – [1]/Curves –

[2]/Planes – [3]/Surfaces – [4]/Solids – [5] (Exhibit 2.8)

2.2 Evaluation of the approaches

Page | 122

Exhibit 2.8 Basic elements (Geometrical Complexity)

 While basic elements geometry could be two or three dimensional

the distribution (composition space) of those elements could also vary.

Two types of spatial compositions were identified: 2D Composition - a flat,

two-dimensional distribution of elements and 3D Composition – a three-

dimensional distribution of elements. In this category, more dimensions

mean more complexity, that is why 2D compositions were awarded [0]

points and 3D compositions were awarded [1] point.

Composition Space (Dimensional complexity): 2D – [0]/3D – [1] (Exhibit

2.9)

Exhibit 2.9 Composition Space (Dimensional complexity)

 Arithmetic of Shapes was a category concerning operations which

could happen when geometrical shapes intersected. They were often

2.2 Evaluation of the approaches

Page | 123

referred to as Boolean Operations or when elements had been culled

according to a mathematical function or condition. ‘Addition’ (+) is an

operation of transformation of two or more intersecting objects into a

single object, such as the union of Region, Mesh or Solid. ‘Subtraction’ (-)

is an operation that is opposite to 'Addition' and occurs when intersecting

objects are being deducted from one another (such as Curve, Surface or

Solid Trim and Region, Mesh or Solid Difference). In Grasshopper ‘Cull

Pattern’ is an operation of selecting certain elements and deleting or

transforming them, such as Cull Index, Cull Pattern (true/false), and

Random Reduction etc. These operations were also referred to as

arithmetic of shapes (custom type of subtraction or addition). As the

Evaluation method of model complexity was based on visual analysis of

models, it was often difficult or next to impossible to define if an ‘Addition’

operation has been performed. In many cases, when several shapes or

volumes intersected they formed a complex geometry and it was difficult

to tell if they had been transformed into a unit or if they were separate

and just intersecting. That was why, in order to avoid confusion, ‘Addition’

operations were given [0] points. ‘Subtraction’ operations were given [1]

point and ‘Cull Pattern’, and a more complex function, was given [2]

points.

Arithmetic of Shapes (Shape Grammars): Addition – [0]/Subtraction –

[1]/Cull Pattern (Reduce or add elements according to a certain logic) –

[2] (Exhibit 2.10)

2.2 Evaluation of the approaches

Page | 124

Exhibit 2.10 Arithmetic of Shapes (Shape Grammars)

 The Transformation category was closely related to the ‘Arithmetic

of Shapes' category, as it also dealt with operations. Transformations were

divided into five clearly identified types: Scale, Rotation, Reflection,

Deformation and Translation (Cui J, MX Tang, 2013). Each type of

transformation was given one point. In many cases a combination of

transformations took place, where elements of the model were both

rotated and scaled. ‘Scale’ is a type of transformation which deals with the

elements size change. ‘Rotation’ is the process of turning the element

around a centre or an axis. ‘Reflection’ is a type of transformation in which

one element is the mirror image of the other. ‘Deformation’ includes a

variety of operations dealing with shape changes, such as Bend, Twist,

Blend and Morph. ‘Translation’ is the process of moving an object from

one location to another. In practice, when looking at the resulting model,

it is near impossible to tell for certain if an object has been moved (as a

copy) or if the same objects have been generated in different locations.

That is why, to avoid all uncertainties regarding the type of underlying

modelling logic, in the cases where the same elements (same type of

elements) had reoccurred in different locations it was considered to be a

‘Translation’.

2.2 Evaluation of the approaches

Page | 125

Exhibit 2.11. Transformations (Shape Grammars)

Transformations (Shape Grammars): Scale – [1]/Rotation – [1]/Reflection

– [1]/Deformation – [1]/Translation – [1] (Exhibit 2.11)

 Number of Elements categorises models into four types of groups.

The first group, ‘One Element’ (where a model has only one element) is

considered to be the most simple – [0] points. The second group of

models are those that have from two to ten elements of the same type

(for example, nine cylinders) – [1] point (Exhibit 2.12). The Third group is

‘Multiple Elements’, when a model has more than ten elements and they

have the same type (for example, a structure composed of hundreds of

pipes) – [2] points (Exhibit 2.12). The last group in this category ‘Multiple

elements N Types’, where ‘N’ stands for a number of types of elements

(for example, when a model contains planes, surfaces and different types

of solids). The score for this group was calculated according to the

following expression: [X= N +1] points, where N stands for a number of

types of elements.

Number of Elements (Components): One Element – [0]/Two-Ten Elements

– [1]/Multiple Elements (one Type) – [2]/Multiple Elements (’N’ Types) – [1

+’N’] (Exhibit 2.12)

2.2 Evaluation of the approaches

Page | 126

Exhibit 2.12. Number of Elements (Components)

The Shape of the Elements category evaluated the characteristics of

elements of a model. When ‘Standards and Primitives’ were used (such as

a circle, cube, sphere etc.) [0] points were awarded. In cases where a

certain type of element(s) had a repeating ‘Non-standard Shape’ (such as

rhombus shaped panels with filleted corners) [1] a point was awarded. The

third group included elements which had a non-repeating nature, (for

example, extruded sections or non-standard shaped objects). These were

referred to as ‘Complex Shape’ elements and were given [2] points.

Shape of the Element: Standards and Primitives – [0], Non-standard

Simple Shape – [1]/Complex Shape – [2] (Exhibit 2.13)

Exhibit 2.13. Shape of the Element

2.2 Evaluation of the approaches

Page | 127

Exhibit 2.14 Colour

Colour: No colour – [0]/ One Colour – [1]/Multiple Colours – [2]/Colour

Gradient – [3]

 The final category dealt with the use of colours (shades) in the

model. The first group of models were models with ‘No colour’, which

were given [0] points. When at least ‘One colour’ was used the model was

given [1] point. Models which had ‘Multiple Colours’ was given [2] points.

When complex shading materials or ‘Colour Gradients’ were used, it was

given [3] points (Exhibit 2.14).

 The total Model Complexity score was calculated as a sum of all

the scores that a model got in each category including: Basic Elements,

Composition Space, Arithmetic of Shapes, Number of Elements, Shape of

the Element Transformations and Colour. All Model complexity score

calculations were done using Excel tables (Exhibit 2.15) (Microsoft Excel,

2014).

2.2 Evaluation of the approaches

Page | 128

Exhibit 2.15. Model complexity evaluation Graph (Excel table) Example. Control group. No

Approach

 Columns in Exhibit 2.15 referred to the categories such as Basic

Elements, Composition Space, Arithmetic of Shapes etc., and rows

referred to models developed by participants on each day.

 Prior to calculating the scores following the logic of the model

complexity point system, all models were sorted into five groups from

most simple to most complex, according to visual comparison (personal

judgement). The majority of models in both types of analyses (personal

judgement and complexity point system) matched the complexity group

choice. Visually simple models – got lower model complexity scores and

visually complex models got higher model complexity scores. Although, a

fair number of models were within the middle of the spectrum of

complexity (according to the model complexity point system) they

appeared to be more complex than anticipated. Some models scored

more points than expected and were sorted into groups with higher

complexity. The overall conclusion was that this model complexity point

system was an adequate method to evaluate complexity of models.

 These metrics were successfully implemented as a practical

method to evaluate the complexity of output models developed by

participants of the algorithmic modelling workshops using Grasshopper

2.2 Evaluation of the approaches

Page | 129

for Rhino. In theory, these metrics were applicable for any geometric

models including, virtual and physical.

Exhibit 2.16. Algorithm complexity evaluation. Programming components. Inputs vs Complexity points

Algorithm Complexity [Grasshopper definition analysis]*

The evaluation of the degree of algorithm complexity was based on the

analysis of the Grasshopper definitions (programming algorithms). A

second proposed points system was utilised. Points were awarded to each

input tub (See Exhibit 2.16) of each component used in a programming

algorithm (Grasshopper definition). The logic behind this type of

evaluation was that the more inputs/variables a component required the

higher its degree of complexity (as illustrated in Exhibit 2.16).

 The sum of the inputs of all components implemented in a

Grasshopper definition formed a total Algorithm Complexity score. Similar

to Model Complexity score, the calculations for Algorithm Complexity

criterion were done using Excel tables (Exhibit 2.17) (Microsoft Excel, 2014)

 Columns in Exhibit 2.17 referred to programming components,

with corresponding complexity points (number of inputs) sorted from

most simple components (left) to most complex components (right); rows

2.2 Evaluation of the approaches

Page | 130

referred to the algorithms developed by participants on each day of the

workshops.

Exhibit 2.17 Algorithm complexity evaluation Graph (Excel table) Example. Control group. No

Approach

Explored Space of Algorithmic Solution [Grasshopper definition analysis]*

The third algorithmic modelling metric sought to evaluate the explored

space of algorithmic solutions developed by the workshop participants.

Given the context of the early stages of design two criteria were identified

to evaluate the boundaries of explored solution space: variety (range of

explored solutions) and novelty (how original a solution was compared to

the pool of algorithmic solutions). The methods of measuring these criteria

were informed by research work ‘Metrics for measuring ideation

effectiveness’ (Shah, Smith, Vargas-Hernandez, 2003).

 Variety refers to a range of unique programming components

used during the design generation process. The bigger the count of

various programming components used by participants, the higher the

variety score.

2.2 Evaluation of the approaches

Page | 131

 Novelty refers to how unusual a programming algorithm is

compared to other programming solutions, developed during the course

of the workshops. In order to measure a novelty of an individual

algorithmic solution it was necessary to work at a group level (all test

groups). During the first stage, all algorithms developed by participants

were analysed based on how often each programming component (logic)

was used throughout the course of the workshops. After that each

component was awarded a novelty score (from 0 to 10, where 0 points

indicates not novel logic/frequently used by participants; and 10 points

indicates a very novel programming logic/rarely or never used by others)

(Exhibit 2.18).

Exhibit 2.18. Novelty points chart (Programming Algorithms Analysis)

 Exhibit 2.18 illustrates the distribution of Novelty scores and

corresponding number of times a component was implemented. For

example, if a programming component was used only 4 or less times by

all 126 participants during two days of the workshops, it was given 10

novelty points. Components implemented from 5 to 10 times were given

9 novelty points, components used 11-16 times were given 8 novelty

points; and so on (Exhibit 2.18). Most frequently used programming

components used within the range of 100 to 1660 times get 0 Novelty

points, such as ‘Number Slider’ components (used 1660 times throughout

2.2 Evaluation of the approaches

Page | 132

the course of the workshops), ‘Vector Unit’ (used 431 times), or ‘Move’

(used 294 times) (Exhibit 2.18).

 The sum of the novelty scores for each implemented component

comprised the resulting total Novelty score of each programming

algorithm. The less a characteristic programming component (logic) was

re-occurring in the pool of all algorithmic solutions, the higher its novelty

(Shah, Smith, Vargas-Hernandez, 2003). The calculations for both Novelty

and Variety criteria were done using Excel tables (Exhibit 2.19)

Exhibit 2.19 Algorithm Novelty evaluation Graph (Excel table) Example. All groups.

Columns in Exhibit 2.19 referred to programming components, with

corresponding novelty points sorted from most typical/frequently used

(left) to most novel/rarely used programming components (right); rows

referred to the algorithms developed by participants on each day of the

workshops.

See a detailed summary chart of all the evaluation criteria groups in

Appendix B, page B55)

2.3 Statistical methods

Page | 133

2.3 Statistical methods

Sample size

This research was designed as an experimental comparative study

between the DP (reuse of abstract design solutions) and CBD (reuse of

case-based design solutions) approaches aimed to support designers in

use of algorithmic modelling environments in architecture. Both

approaches were tested through a series of algorithmic modelling

workshops, with at least thirty participants per approach.

Obtaining the appropriate sample size, in our case it is the number

of individuals to include in the experimental study, is an important

consideration. In theory, the more collected data the better, since

increasing the sample size improves statistical power (Martin, Bateson,

1986). Determining the sample size also depends on how much confidence

is required and what is the acceptable level of error (Alreck, Settle, 1995).

A large sample size ensures that results are representative of the entire

population and can be generalised. In statistical testing a large enough

sample size is needed to achieve the results that are statistically significant

(Mehta, Patel, 1998). The term statistically significant is used as a means to

indicate the probability of the results occurring by chance alone. A

probability level of 0.05 has been established as a generally acceptable

level of confidence (Fisher, 1925). The 0.05 level indicates that there are at

least 95 out of 100 chances that the results obtained from the study sample

would be similar, when tested on the entire population.

However in practice, the sample size is often limited by both the

amount of time required for data collection and the availability or expense

of the resources. That is why it is important to determine the ‘large enough’

minimum of the sample size (Gay, Diehl, 1992). Roscoe’s rule of thumb for

2.3 Statistical methods

Page | 134

determining sample size states, that a sample size larger than thirty and

less than five hundred is appropriate for most research cases (Roscoe,

1975). When comparing groups of data, the appropriate sample size of at

least thirty participants for each category, that is being compared, is

commonly accepted, (Weisberg, Bowen, 1977).

In this comparative study the sample population is split into three

groups, which correspond to the Design Patterns (DP) and Case-Based

Design (CBD) approach groups and the control group (NA - No Approach),

therefore a minimum sample size of thirty for each category is necessary

(Ibid). One of the other reasons, which can influence the minimum sample

size, is that at least thirty subjects are required to establish a relationship in

correlational research (Cohen, 2013) (See ‘Dependence between the

criteria’ section). (See also Appendix B, Exhibit B1. Evaluation Criteria

Groups, page B77)

Considering all these requirements, for this experimental study, the

sample size of minimum thirty participants per group was adopted.

Collection of data

The population size of at least thirty participants per test group

meets the significance level of statistical testing, ensuring that the results of

this experiment did not occur by accident. The data collected from the No

Approach, Design Patterns and Case-Based Design workshops was

produced in three ways: online questionnaires, output design models

(virtual Rhino models) and programming algorithms (Grasshopper

definitions). This data was analysed according to the five groups of criteria:

algorithmic modelling, programming, design ideation, approach

characteristics and motivation; which were identified as likely to typify

2.3 Statistical methods

Page | 135

differences between the two approaches (See Research

Methodology/Evaluation Metrics section).

The data obtained from the design models and programming

algorithms was used to quantify algorithmic modelling criteria (See

Methodology Section), such as output model complexity, complexity of

programming algorithms and explored solution space of programming

solutions. The data obtained from online questionnaires was used to

measure programming criteria, such as amount and typology of

programming difficulties, learning curve and reuse of existing algorithms.

The questionnaires also provided data for design ideation criteria, which

include: types of design objectives, ability to model original design idea,

change in the design strategy due to programming difficulties or the

discovery of interesting algorithmic solutions. The data from questionnaires

was used to measure the approach characteristics criteria, such as: usability,

intuitiveness, flexibility and utility; as well as motivation with the design

output and motivation to use parametric modelling in future.

Typology of collected data

The data obtained from the online questionnaires, 3D models and

programming algorithms was originally recorded, post-factum interpreted

or calculated as numeric values/variables (See Methodology section).

Depending on the method of measuring the criteria, these variables have

different range and distribution. For example; the variable of ‘Algorithm

Complexity Score’ for Design Patterns’ (day 2) exists within a range of

numbers, which go from 4 to 55 points. Variables for some other criteria

had only two possible options: Yes (1) or No (0), for example in ‘Types of

2.3 Statistical methods

Page | 136

Difficulties’, where the participants either had a particular type of difficulty

(1) or they did not (0).

These variables can be sorted into two types of data classes:

continuous variables and categorical variables. Continuous variables refer

to the numeric values, which exist within a certain domain of numbers, for

example: 10, 5.5, 12, 8.1 and so on. They can be described as a set of

numbers between two given points: minimum and maximum values. The

following graph (Exhibit 2.20) illustrates the continuous type of variable on

the example from this study. The left-hand chart shows the distribution of

‘Algorithm Variety Score’ (evaluating the range of programming

components used in each algorithm) for Design Patterns on the second

day of the workshop. The vertical axis represents algorithm variety score

and the horizontal axis represents participants. The right-hand chart shows

the same data as a histogram, generated by SPSS (IBM, 2013) for normal

distribution of data test. Note that, in this case, the vertical axis is frequency

and the horizontal axis is algorithm variety score.

Exhibit 2.20. Example of Continuous variables. Algorithm Variety Score. Day 2. Design Patterns.

 Continuous variables can have different numerical domains and

different distributions, but they do have one thing in common; they are

not limited by any categories.

2.3 Statistical methods

Page | 137

Categorical data, on the other hand, refers to the data that can be

sorted into categories, or can only take on one of a limited, often fixed,

number of possible values. There are several types of categorical variables.

They could be: ordinal, nominal and dichotomous (binary) (Feller, William,

1950). When data can take on exactly two values, for example in ‘Yes’/‘No’

questions, it refers to a dichotomous or binary type of categorical variables.

The difference between the ordinal and nominal variables is that for a

nominal variable the order of the categories has no meaning. Colour

categories such as ‘Blue’, ‘Green’ and ‘Orange’ can be an example of a

nominal variable. The order for these categories has no meaning, as ‘Blue’

is not less than ‘Orange’ and ‘Green’; or as ‘Male’ is not more than ‘Female’

and vice versa. An ordinal variable has a meaningful order, usually from

smallest to largest, as, for example, in level of agreement: ‘strongly

disagree’ is less than ‘neutral’ and ‘neutral’ is less than ‘strongly agree.’ An

ordinal variable, where intervals between the values are equally spaced, is

called an interval variable.

Two categorical data types: ordinal and binary data were collected

from the online questionnaires and used in this comparative study. The

data, collected from the ‘Yes’/‘No’ questions, such as, of whether

participants used any Design Patterns or Case-Based solutions in their

designs, refers to binary, whereas the level of agreement or such scale

questions as ‘never’, ‘1-3 times’, ‘4–6 times’ and so on, are ordinal.

2.3 Statistical methods

Page | 138

 Chart: types of data collected for evaluation criteria
D

A
T
A

Continuous variables

C
R

IT
E
R

IA

Experience in architectural design and programming;

Complexity of the output design model

Novelty and variety of the programming algorithms (Explored

Solution Space);

Algorithm complexity scores;

D
A

T
A

Binary categorical variables

C
R

IT
E
R

IA

Gender

Type of programming difficulties (‘Yes’ or ‘No’ option for each type

of programming difficulties)

Type of design objectives (Yes’ or ‘No’ option for each type of design

objective)

Flexibility of the approach: used or did not use Design Patterns/Case

Based solution in their design

Types of Key words (‘Yes’ or ‘No’ option for each category of key

words)

D
A

T
A

Ordinal categorical variables*

*these variables were treated as continuous variables in parametric

statistical testing

C
R

IT
E
R

IA

Programming criteria (the scale of how often participants

implemented a new components, reused algorithms or faced

programming difficulties)

Design ideation criteria (ability to model original idea and change in

design intent scales)

Approach characteristics criteria (‘Usability’, ‘Utility’, ‘Intuitiveness’ and

‘Flexibility’ scales)

Motivation criteria (satisfaction and motivation scales)

Exhibit 2.21. Criteria sorted according to the data types: Continuous variables, Binary and

Ordinal categorical variables.

2.3 Statistical methods

Page | 139

Statistical analysis of data

The ordinal variables, such as level of agreement with the statement

were treated as Likert scales (Lubke, Muthen, 2004). These scales have

points that indicate the degree of agreement with a statement. In this study

the scale went from: 1=’Strongly Agree’ to 5=’Strongly Disagree’. When it

comes to the analysis of these types of scales, the data, being in fact a set

of ordered categories, can be considered and treated as continuous

variables (Carifio, Perla, 2007). Treating the Likert scales as continuous

variables gives an opportunity to use a greater variety of statistical tests.

However, there is a split of opinions on this subject in the field of statistics.

One group of scientists insists that the intervals between the scale values

in the ordered categories are not absolutely equal. That is why the results

of the parametric testing applied to the ordered variables cannot be

considered valid (Jamieson, 2004). The other camp argues that, while Likert

scales are technically ordered, in some situations the use of parametric tests

is valid (Lubke, Muthen, 2004) and returns accurate values (Glass, Peckham,

Sanders, 1972). This study has addressed this issue by applying both

parametric and non-parametric tests on ordinal variables. In this

comparative study a number of the ordinal categorical variables, such as

Likert scales, obtained from the questionnaires were treated as continuous

data. However all the results obtained by treating the ordinal variables as

continuous, were validated by non-parametric testing.

When designing the questions for the ordinal data collection, the

study considered the following principles. In order for ordinal variable to

work properly in parametric statistical testing, the scale item should have

at least five points; the concept underlying the measuring logic should be

continuous, and the intervals between the points should be as equal as

2.3 Statistical methods

Page | 140

possible. These conditions shaped the design of scale items used in the

online questionnaires (Exhibit 2.22).

This example of the question (Exhibit 2.22), designed with Likert

scale, illustrates the logic of collecting and interpreting data. The scale,

visible to the participants, has five categories: Strongly Disagree, Disagree,

Neither Agree nor Disagree, Agree, Strongly Agree. Only one category can

be chosen. The underlined logic behind this scale item is that each category

is awarded a numeric value (the 4th row, Exhibit 2.22). The scale goes in

order from 1 = Strongly Disagree to 5 = Strongly Agree. As a result, the

collected numeric data can be mathematically analysed. For example, it

becomes possible to calculate a central tendency (a mean value) of the

ordinal variable for each study group.

Example of the question designed with the Likert scale item

Q
U

E
S
T
IO

N
 Please indicate the level of agreement with the following statement:

I was able to model my original design idea.

A
N

S
W

E
R

Strongly

Disagree
Disagree

Neither

Agree nor

Disagree

Agree
Strongly

Agree

V
A

L
U

E

1 2 3 4 5

Exhibit 2.22 Example of the Statement from the online questionnaire with the Likert scale,

where the scale item has five points. The level of agreement goes from 1 = Strongly

Disagree to 5 = Strongly Agree.

The following graph (Exhibit 2.23) illustrates the distribution of

ordinal variables for the Design Ideation criterion: ‘Ability to model original

design idea’. The left-hand chart vertical axis represents the level of

agreement from 1=’Strongly Agree’ to 5=’Strongly Disagree’; and the

2.3 Statistical methods

Page | 141

horizontal axis represents participants. Categorical data can often be

interpreted as a proportion: right hand chart, where the vertical axis is the

frequency of answers and the horizontal is the level of agreement.

Proportion, being a number considered in comparative relation to a whole,

can be calculated as a percentage for each category. For example the same

criteria: ‘Ability to accomplish original design idea’ can be represented as:

‘Strongly Disagree’: 3%, ‘Disagree’: 37%, ‘Neither Agree nor Disagree’:

33%, ‘Agree’: 23%, And ‘Strongly Agree’: 3% (right-hand chart, Exhibit

2.23).

Exhibit 2.23. Example of Categorical variables. Ability to accomplish original design idea. Day 1. Design Patterns group.

 Comparison of data

The purpose of the workshops was to collect the data and through

the comparison of the data to ascertain whether there are differences that

might be observed between results for the NA, DP and CBD test groups.

The purpose of the statistical analyses was to determine whether the

differences that were observed are statistically significant. The data

obtained from the workshops indicated that there is indeed an identifiable

difference in the results for every single criterion between the No Approach

(NA), Design Patterns (DP) and Case-Based Design (CBD) groups. For some

criteria the difference between the responses seemed to be substantial. In

2.3 Statistical methods

Page | 142

other cases the results seemed very close – almost identical. In order to

avoid ambiguity in the interpretation of the results, there needed to be a

method to determine whether the differences in results did not occur by

chance.

The role of the statistical testing can be illustrated using the example

of comparison of the Design Ideation criteria: ‘Ability to model original

design idea’ from the first day of the workshop, between the DP and CBD

groups. The information in the chart is represented both as two separate

column-charts for the Design Patterns approach and the Case-Based

Design approach (left-hand diagrams) and as the overlapping line-chart

for both approaches (right-hand diagram) (Exhibit 2.24). The vertical axis

refers to the frequency and the horizontal refers to the level of agreement

(five point scale from 1 = ‘Strongly Agree’ to 5= ‘Strongly Disagree’).

Exhibit 2.24. Comparison chart: Ability to accomplish original design idea. Day 1. Design Patterns. Case-Based Design

groups.

The distribution of categories for the Design Patterns and the Case-

Based Design approaches are seemingly different. As a result, the sensible

conclusion might have been that the participants, who used the CBD

approach, are more capable of modelling the original design idea. This

conclusion, however, was not confirmed by both parametric and non-

parametric statistical testing. Statistical tests and such statistical values, such

as mean and level of significance, are often utilised in this comparative

2.3 Statistical methods

Page | 143

study. That is why before going into the details of the interpretation of the

tests interpretation it is necessary to explain some of the most relevant

definitions and concepts.

Explanation of the statistical terms used in the

comparative study

Mean – refers to a ‘measure of central tendency of a distribution or

the arithmetic average of a set of values’ (Feller, Feller, William, 1950). In

this study mean-values are used to compare the results between the three

test groups: two test groups using the DP/CBD approaches and the group,

which used no approach (NA). Means values help to determine which

measure is greater and thus had a more positive or negative effect on a

criterion. Although, the DP, CBD and NA mean-values can be (and almost

always are) different, we cannot draw conclusions by reasoning that one

value is greater/better than the other, unless we test if the difference

between the means is statistically significant.

Exhibit 2.25. Mean and Standard Deviation of data. Criterion: Ability to accomplish original design idea. Day 1. Design

Patterns.

2.3 Statistical methods

Page | 144

Mean value example: The chart of Design Ideation criteria: ‘Ability

to accomplish original design idea’ for the Design Patterns approach on

day 1 (Exhibit 2.25.). The Mean for this distribution of ordinal variables

equals 2.87 +- .937. Number 2.87 is an average answer and .937 is a

standard deviation, which shows how much variation from the average

exists (Saeed, 2000).

Hypothesis testing

To compare approaches the study uses statistical hypothesis tests.

To illustrate, we can make a hypothesis that one of the approaches has a

better effect on the architect’s ability to model original design idea. This is

our hypothesis and we are testing whether this hypothesis is true and,

therefore, the ability to model original design concept of one of the groups

is significantly better.

The null hypothesis states that the means of two samples are equal

or not significantly different (Fadem, 2008). In our case the samples refer

to the two approaches: Design Patterns and Case-Based Design. Unless

rejected or disproved, the null hypothesis states that approaches have the

same effect on the results. When rejecting the null hypothesis the analyst

is able to state with a degree of certainty expressed as a probability that

there is a significant difference between the mean scores for two groups.

In this study, it becomes possible to determine whether there is a

statistically significant difference between the performance of the DP and

the performance of the CBD groups (and compare them to the control

group (No Approach)).

P-value is a measure used to test the null hypothesis. When a p-

value is below the statistical significance threshold, which is generally

2.3 Statistical methods

Page | 145

accepted as 0.05 (or 95 % of confidence) (Zimmerman, 1997). (Stigler,

2008), then the null hypothesis is rejected in favour of the alternative

hypothesis (Fadem, 2008). In other words:

If a p-value is above the 0.05 level, the null hypothesis is true.

Therefore we can assume that there is no significant difference between

the means;

If a p-value is below the 0.05 level, the null hypothesis is rejected

Therefore we can assume, with 95% certainty, that there is a significant

difference between the means.

It should be noted, that fundamentally the p-value is a measure of

how likely the difference in the results could have occurred by chance. That

is why, ultimately, the p-value alone does not justify the reasoning between

the different hypotheses and should be combined with other types of

evidence for and against the hypothesis (Hubbard, Lindsay, 2008).

Example:

The example of how seemingly different results for ‘Ability to

accomplish original design idea’, between the approaches on day 1 (Exhibit

6.5), when tested statistically, did not prove to be significantly different.

Design Patterns group: Mean = 2.87 +- .937;

Case-Based Design group: Mean = 3.15 +- .932;

P-value = 0.200

The 0.200 is above 0.05 (level of confidence), which means that the

null hypothesis is true, therefore, statistically speaking, there is no

significant difference between the results, shown by participants who used

the DP and CBD approaches. The confidence level of 0.200 indicates the

2.3 Statistical methods

Page | 146

likelihood that the null hypothesis is true. It implies that the risk, that the

difference in results has happened by chance, is 20%. Since the p-value

gives us only 80% certainty, we cannot reject the null hypothesis. Thus we

should assume that there is no significant difference in ability to accomplish

original design idea between the DP and CBD groups.

Statistical tests used in the comparative study

Continuous variables, such outcomes as: Model and Algorithm Complexity

Score, Novelty and Variety scores, as well as some the ordinal variables,

were compared between approaches using the Independent samples T-

test and Univariate Analysis Of Variance (ANOVA). The T-test was used to

compare result between the two approach groups in cases where the data

was relevant only to the DP and CBD groups, for example to compare how

‘Intuitive’ or ‘Easy to use’ each approach was. The No Approach (NA)

group in this case had no such criteria. When comparing the results of all

three test groups, for example ‘Number of programming difficulties’ of the

Design Pattern group, Case-Based Design group, and No Approach

group, the ANOVA testing was used. The ANOVA tests whether there is

any difference in the means of all (more than two) groups and determines

whether at least one mean is statistically different.

Comparison of the continuous variables/interpretation

of the t-test

Independent samples T-Test is a null hypothesis test, designed to compare

means of same variable between two groups. In this study the t-test was

2.3 Statistical methods

Page | 147

used to examine whether the difference between the means of the DP and

CBD approaches is statistically significant or if it is due to random chance.

The SPSS Independent samples t-test (SPSS) (IBM, 2013) provides

a large number of various values as the output, including: mean, standard

deviation, p- value, t-value, standard error difference and so on. Each of

these outcome values has its own meaning and can be used for different

aspects of the results interpretation. However, for this comparative study

we need only means and p-values to interpret the results of the t-test (See

Exhibit 2.26).

Colour-coding in the diagrams:

The following colour-coding is used for all the data-tables used

throughout the comparison chapters, in other to make the reading of the

results easier.

*green: the Mean value is greater, compared to the other group

*light green: the Mean value is minor, compared to the other group

*pink: the p- value indicates that there is a significant difference between

the groups (for this particular criterion)

*grey: the p- value indicates that there is NO significant difference between

the groups (for this particular criterion)

2.3 Statistical methods

Page | 148

T-test example table. Comparison of approach ‘Usability’ between

the DP and CBD groups

Criteria DP (Mean) CBD (Mean) t df p - value

USABILITY DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

DAY

1

DAY

2

It was easy to

implement

DP/CBD

approach.

2.90

+-

.885

3.03

+-

.809

3.66

+-

.668

3.77

+-

.666

-

4.280

-

4.326

75 75 .000 .000

Exhibit 2.26. Independent samples T-Test example. Approach Usability

Day 1: t(75) = -4.280, p = 0.000; the t-value (t), the degrees of freedom

(df) and the p-value

Day 2: t(75) = -4.326, p = 0.000;

Interpretation of the data in the t-test table (example):

The DP and CBD mean-values show the central tendencies for the

DP and CBD groups (Exhibit 2.26). These values give us an opportunity to

understand how each approach affects the criteria. For example the DP

and CBD mean values (the 2nd and 4th column of the 3rd row of the

table) indicate that (on first day of the workshop) when grading the

agreement with the statement ‘It was easy to use the approach in my

design’ on the scale from ‘1’ – Strongly Disagree to ‘5’ – Strongly Agree,

the CBD group tend to agree with this statement more compared to the

DP group (Exhibit 2.26). The average ‘Usability’ (easy to use) of the

approach on day one is 2.90 +- .885* for the DP approach and 3.66 +-

.668 for the CBD approach.

* Where 2.90 is mean and .885 is standard deviation (for the DP group);

The p-value (the 10th column, Exhibit 2.26) is used to determine

whether the difference between the two means (DP/CBD) on day one is

significant. In this example the p-values on both days are 0.000. The 0.000

2.3 Statistical methods

Page | 149

level is below the established level of significance 0.05, which is why we

can reject the null hypothesis. Hence we can state that statistically, the

Case-Based Design approach (as reported by participants) is significantly

easier to use compared to the Design Pattern approach.

When reporting the statistical results of the t-test, the t-value (t),

the degrees of freedom (df) and the p-value are stated. The following

format can be used: t(75) = -4.280, p = 0.000. In this example, comparing

the ’Usability’ criterion of the DP and CBD approaches on day one, the t-

statistics is -4.280 with 75 degrees of freedom and corresponding two-

tailed p-value is 0.000.

Determining differences between three

groups/interpretation of the ANOVA test

To determine whether there is any significant difference between the

means of all three test groups: Design Pattern group, Case-Based Design

group, and No Approach group, the One-way Analysis of Variance

(ANOVA) was used. Unlike the t-test, ANOVA provides an opportunity to

compare the means of several (more than two) groups for statistical

significance. The analysis of variance is regarded as a ‘robust procedure’

when sample sizes are similar or equal (Wallenstein et al., 1980). In this

study ANOVA was used to test the null hypothesis, stating that the effect

of the DP, CBD approaches have no effect (the same effect) on the

amount of programming barriers, which designers face, their algorithmic

modelling performance, and other established criteria. Rejecting the null

hypothesis would imply that the use of different approaches to reuse

algorithmic solutions does have a significant effect.

2.3 Statistical methods

Page | 150

 In a similar manner to the t-test, ANOVA testing gives a range of

values as output of calculations: such as p-values (Sig), F ratio, mean

square, degrees of freedom, sum of squares and so on. Most of these

values are not used in this study. The p-value is used to determine whether

the difference in results (means) of the DP, CBD and NA groups has

happened by chance or it is statistically significant. When a p-value is

below the 0.05 level, the difference in results is determined as statistically

significant. It should be noted that the ANOVA test only indicates whether

there is a difference in the mean values. ANOVA does not actually tell

which specific groups were significantly different from each other. That is

why to determine which specific mean is different from which, one needs

to use a Post Hoc tests (SPSS, 2014). This study used the Post Hoc Tukey’s

test to compare each pair of groups. The Tukey’s test is recommended for

estimation of pairwise differences and regarded as an ‘exact and optimal’

test for comparisons (Stoline, 1981). This method is also considered to be

easy to use and robust (Ibid), giving ‘reasonably accurate results’ when the

sample sizes are similar (Wallenstein et al., 1980). The p-values are used

to interpret the results of the Post Hoc Tukey’s test: above 0.05 level – not

significantly different, p-value below 0.05 level – significantly different.

Interpretation of the data in the ANOVA/Post Hoc Test table

(example):

The NA, DP and CBD mean-values of the output ‘Model

Complexity Score’ are shown on the first table (the 3rd row, the 2nd – 7th

columns) (Exhibit 2.27). The p-values (10th and 11th column of the 3rd

row) indicate the significance of difference in means (Exhibit 2.27). On day

one the p-value equals 0.560, which is above the 0.05 level. Therefore the

null hypothesis is true: the means are not significantly different. No

additional testing is needed. On day two the p-value is 0.031, which is

below the 0.05, that is why we can state that on the second day the

2.3 Statistical methods

Page | 151

average ‘Model Complexity’ is significantly different (between at least two

of three test groups). Using only ANOVA, makes it impossible to

determine which group is different from which and additional testing (Post

Hoc) is needed.

 Example of ANOVA. Comparison between the ‘Model Complexity’

of the No Approach group, the DP group and the CBD group

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

Model Complexity

Score

11.73

+-

2.465

13.94

+-

2.585

12.2

3 +-

2.04

6

14.10

+-

2.551

12.1

5 +-

2.24

6

12.74

+- 2.

246

.583

(126)

3.569

(126)

.560 .031

ANOVA/Post Hoc, Tukey’s test

Criteria No

Approach

Group

(Mean)

DP (Mean) CBD (Mean) p – value

NA with DP

p – value

NA with

CBD

p – value

DP with

CBD

 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2

Model

Complexity

Score

 13.94

+-

2.585

 14.10

+-

2.551

 12.74

+-

2.246

 .960 .062 .065

Exhibit 2.27. ANOVA test example with Post Hoc Tukey’s Test. Model Complexity

The second table (Exhibit 2.27) shows the results of the Post Hoc

Test (Tukey’s test). The p-values are used to determine which specific

groups are different from each other. The comparison between No

Approach and Design Patterns groups indicates no significant difference,

the p-value is 0.960 (above the significance threshold) (Exhibit 2.27,

Second table the 9th column of the 3rd row). The comparison between

the No Approach group and Case-Based Design group shows that even

though the p-value (0.062) is above the 0.05 level it is very close to it

(Exhibit 2.27, Second table the 11th column of the 3rd row). This means

that there is 93.8% certainty that the CBD approach had a significant effect

on model complexity. The comparison between the DP and CBD groups

2.3 Statistical methods

Page | 152

gives the p-value of 0.065 (Exhibit 2.27, Second table the 13th column of

the 3rd row). Again though technically this p-value is above the level of

significance (0.05), the results still might be interpreted as significantly

different. The final conclusions could be based on additional data, such as

the fact that the models produces by the DP group have a more advanced

colouring and a larger range of elements compared to CBD group.

To report the statistical results of the ANOVA, the F ratio (F), the

degrees of freedom (df) and the p-value are used. The following format

can be utilised (Exhibit 2.27)

Day 1: F (126) = .583, p = 0.560;

Day 2: F (126) = 3.569, p = 0.031;

The results acquired from the t-testing and ANOVA, comparing the

ordinal variables, were confirmed by the non-parametric Mann-

Whitney test, also known as Wilcoxon test (See Appendix).

Testing for the gender and design experience

influence

After determining that a criterion differs by approach, as indicated

by the t-test results or ANOVA, one cannot automatically assume that it

was the approach factor that made all the difference. There could be other

factors that might have influenced the results. Two main control variables

or covariates were identified for this comparative study: design experience

and gender. In theory, both those covariates might have influenced

participants’ performance. Experience with programming modelling tools

could have been a strong factor as well (and potentially a third covariate),

but it was not applicable, as the dominant part of workshops’ participants

(>95%) had no programming experience.

2.3 Statistical methods

Page | 153

Covariate or control variable - is a secondary variable that can

affect the relationship between the criteria variables and the approach.

Covariate example: Control Variables identified for this study are

gender and design experience.

Univariate Analysis Of Variance (ANOVA) was used to control for

the covariates and to determine whether the design experience or gender

variables have a significant effect on the criteria - dependent variables.

Design experience and gender in this case are the independent variables.

The No Approach, Design Patterns and Case-Based Design groups were

used as a fixed factor.

The ANOVA test with dependent variables (SPSS) (IBM, 2013) helps

to determine whether the changes in the independent variables

(experience/gender) have a significant effect on the dependent variables

(criteria). The only ANOVA output values that are utilised and interpreted,

when testing for gender and design experience influence (control

variables), are the p-values. Again, a p- value is used as a measure to

determine, whether there the control variables have a significant effect on

the results.

ANOVA for testing for covariates (example table):

Dependent Variable Approach/p-

value

Approach/F (df) Design

Experience/p-

value

Design

Experience/F (df)

How often you have come

across program. difficulties

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach/Design Experience .180 (1,67)

1.836

 .536 (4,67)

.790

 Approach/p-

value

Approach/F (df) Gender/p-value Gender/F (df)

Approach/Gender .014 (1,73)

6.351

 .880 (1,73)

.469

Exhibit 2.28. Univariate Analysis Of Variance example. Criterion: ‘Number of programming

difficulties’ (second day of the workshop); Fixed factor DP and CBD approach. Control

variables: Design experience and Gender.

2.3 Statistical methods

Page | 154

Interpretation of the data in the ANOVA test for covariates table

(example):

In order to check that it was indeed the approach that affected the

dependent variable the following two conditions has to be true:

First Condition:

When testing for design experience and gender, the approach

variable makes a difference to the dependent variable. The approach p-

values should be below the 0.05 level (See Exhibit 2.28). In the example

ANOVA testing for covariates table, the approach p-values are in the third

column. This table shows the data for ‘programming difficulties’ criterion.

This statistical testing helps to determine whether the number of

programming difficulties was influenced by the approach and not by the

gender and design experience factors. The p-value for approach/gender

analysis is 0.014 (See Exhibit 2.28, 3rd column, 5th row), which is below

the 0.05 significance level. That means that when testing for gender

influence, the approach makes a difference to the number of

programming difficulties. The p-value for approach/design experience is

0.180, which is above the 0.05 level (See Exhibit 2.28, 3rd column, 3rd

row). That means that the first conditions is not true and this issue might

need additional investigation. In this particular case, the results might

suggest that the difference in the number of programming difficulties

between the approaches was influenced by the ‘design experience’ factor.

It should be noted that in terms of design experience, all study groups had

very similar distribution.

Second Condition:

When testing for approach, design experience and gender

variables (control variables) do not make a difference to criteria variable.

In this case the p-values of control variables should be above the 0.05

level. In other words design experience and gender does not affect the

2.3 Statistical methods

Page | 155

results. In the example table both p-values are above the level of

significance: design experience/approach p-value is 0.536 and

gender/approach p-value is 0.880, hence the condition is true. (See Exhibit

2.28, 7th column, 3rd and 5th rows)

When one or both of two conditions are not complied, it is

necessary to carry on an additional investigation, and look at the

descriptive statistics in order to clarify the results. This should be done

individually for each criterion.

Comparison of categorical variables/interpretation of

the chi-square test

Categorical Variables, such as proportions of types of

programming difficulties, design objectives, and key words, were

compared between approaches using the Chi-square test of Significance

(X2) (SPSS/Cross Tabs) (IBM, 2013). It is used to test for significance in

relationship between categorical variables. The Chi-square test works only

with bivariate data tables, such as: Yes/No, Pass/Fail, Male/Female, which

can be mathematically represented for example as 1/0. Unlike the t-test

and ANOVA, the Chi-square test compares counts, not means. That is why

it is not applicable for comparing continuous data, such as model or

algorithm complexity score. However, there is a number of similarities

between the t-test, ANOVA and the Chi-square test. Similar to these two

tests, the Chi-Square Test of Significance is a hypothesis test. The null

hypothesis, which is being tested, states that there is no relationship

between the variables in the bivariate table. In our case, the null hypothesis

states that, any difference between the distribution of categorical data in

2.3 Statistical methods

Page | 156

the No Approach, Design Patterns and the Case-Based Design groups is

due to chance.

Chi-Square Test (example table):

Criteria No Approach

Count/Total (%)

DP

Count/Total (%)

CBD

Count/Total (%)

X2 p – value

DESIGN

OBJECTIVES

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

To

experiment

with

parameters

8%

(2/25)

12%

(3/25)

20%

(6/30)

46.7%

(14/30)

19.1%

(9/47)

8.5%

(4/47)

1.801 17.800 .406 .000

Exhibit 2.29. Chi-Square Test example. Criterion: ‘Design Objectives’, category ‘to

experiment with parameters’;

Similar to the t-test and Univariate Analysis Of Variance, the Chi-

square test of Significance uses the p-value as a measure to test the null

hypothesis. The p-value, indicates how likely it is that the differences in

distribution (count) of the NA, DP and CBD variables is due to random

sampling error. The predetermined significance level for the p-value was

set as 0.05* (Zimmerman, 1997) (See Hypothesis Testing section). *The p-

values located between 0.05 and 0.07 are considered – a strong trend.

Similar to the ANOVA (testing the NA, DP and CBD groups), the first Chi-

square test is made between all the groups. In cases when the p-values of

this initial (three groups) comparison is significant (below the 0.05)

additional testing was carried on. The multiple Chi-square test between

each pair of groups was performed to determine which group differs from

which.

Interpretation of the data in the Chi-Square Test table (example):

This particular Chi-Square test example illustrates the comparison of the

‘Design Objectives’ criterion, namely, how many participants wanted ‘to

experiment with parameters’. The test helps to determine whether there

is a significant difference in results between the NA, DP and CBD groups.

2.3 Statistical methods

Page | 157

The percentage and counts of participants who had: ‘to experiment with

parameters’ as one of their objectives are located in the 3rd column of the

2nd-3rd row for the No Approach group, in the 4th-5th column of the 3rd

row for the Design Patterns group, and the 6th-7th column for the Case-

Based Design group (See Exhibit 2.29). The values are written in % and the

‘Yes/Total’ format, where the first number in brackets refers to the count

of people who had this objective (Yes) and the second number refers to

the total number of participants in this group (Total). For example, in the

DP group 14 out of 30 participants wanted ‘to experiment with

parameters, while there were only 4 out of 47 participants in the CBD

group with the same design objective (See Exhibit 2.29). These results also

shown in percentage, as the number of participants in each groups is not

equal. The 8th-9thth column of the 3rd row shows the Chi-Square – value

and the 10th-11th column of the 3rd row shows the p-value, which, in this

case, equals 0.406 on day 1 and 0.000 on day two (See Exhibit 2.29).

The closer a p-value to zero the more significant is the difference

between the results. As on the second day the p value equals 0.000

(‘Design Objectives’ example, Exhibit 2.29) one can state that the number

of participants, who indicated ‘experimentation with parameters’ as their

design objective, is significantly bigger in at least one of the groups

compared to others: NA – 12%, DP – 46.7%, CBD – 8.5%.

To report the statistical results of the Chi-Square test, the count of

responses, the percentage, the Chi-Square – value (X2) and the p-value

are used. The following format can be utilised: NA 3/25 (12%), DP 14/30

(46.7%), CBD 4/47 (8.5%), X2 = 17.800, p = 0.000 (values are taken from

the Chi-Square test example table).

2.3 Statistical methods

Page | 158

Dependence between criteria

In statistics, correlation refers to any statistical dependence

between variables (Dowdy, Wearden, 1983). For example, this study has

identified statistical dependence between the ‘number of programming

difficulties’ that designers have and their ‘ability to realise original design

idea’. The more problems participants had with programming the less it

was likely that they will be able to model their original design idea.

Exhibit 2.30. Correlation Diagrams. Positive Correlation, No Correlation, Negative Correlation

The most common measure of correlation in statistics, which shows

the linear relationship between two variables, is the Pearson correlation

(Buda, Jarynowski, 2010). Pearson correlation test (SPSS) (IBM, 2013) is

used to determine the degree of linear dependence between algorithmic

modelling criteria, programming criteria, motivation criteria and etc. The

test gives the correlation coefficient value (r-value) between +1 and – 1

and the p-value (See Hypothesis Testing Section). The p-value indicates

the probability that the correlation has occurred by chance. The smaller

the p-value the more significant is the dependence between the variables.

When the p-value is below the 0.05 level, one can assume (with 95%

confidence) that the correlation did not happen by chance. The Pearson

correlation coefficient (r-value) indicates the strength and (negative or

2.3 Statistical methods

Page | 159

positive) direction of the correlation. When variables are absolutely

independent the correlation coefficient equals 0; and that means that

there is no correlation. The closer the correlation coefficient to +1 the

stronger is positive correlation, the closer it to -1, the stronger is the

negative correlation (See Exhibit 2.30).

Pearson correlation (example):

The ‘Algorithm Complexity’ has a strong positive correlation with the

‘Algorithm Variety’ (variety of programming components) criterion for all

the test groups. For example, on the second day of the workshops the

Pearson correlation coefficient calculated for these two criteria equals

0.599 and the p-value is 0.000 (See Exhibit 2.31). This means that there is

a very strong positive dependence between the variety of components,

which participants implement, and the level of complexity of the resulting

programming algorithm.

Exhibit 2.31. Correlation between the Algorithm Complexity Score and the Algorithm Variety Score, day 1

2.3 Statistical methods

Page | 160

The following chart (Exhibit 2.32) shows what tests were used to

compare different criteria.
T
E
S
T

ANOVA (comparing three test groups: No Approach group,

Design Patterns group, CBD group)

Post Hoc (Tukey’s) Test was used to compare between each

group

C
R

IT
E
R

IA

Model Complexity score, Algorithm complexity scores;

Novelty and Variety of programming algorithms (Explored

Solution Space);

Programming criteria (number of programming difficulties,

implemented a new components)

Design ideation criteria (ability to model original idea and change

in design intent scales)

Motivation criteria (satisfaction and motivation scales)

T
E
S
T

T-test (comparing two approach groups: Design Patterns and

Case-Based Design)

C
R

IT
E
R

IA

Approach characteristics criteria (‘Usability’, ‘Utility’, ‘Intuitiveness’

and ‘Flexibility’ scales)

T
E
S
T

Chi Squire Test comparing binary data

C
R

IT
E
R

IA

Flexibility of the approach: used or did not use Design

Patterns/Case Based solution in their design

Type of programming difficulties (‘Yes’ or ‘No’ option for each

type of programming difficulties)

Type of design objectives (Yes’ or ‘No’ option for each type of

design objective)

Types of Key words (‘Yes’ or ‘No’ option for each category of key

words)

T
E
S
T

ANOVA test for covariates

C
O

V
A

R
IA

T
E
S
 Experience in architectural design;

Gender;

Exhibit 2.32 Chart: Criteria and Statistical Tests Used For Comparison

2.4 Design Outcomes

Page | 161

(Also refer Appendix B, pages, B55, B64)

 This research was designed as an experimental comparative study.

The results of three test groups, including the control group using no

approach, the group using Design Patterns, the group using Case-Based

were compared using relevant statistical tests and analyses. The objective

was to measure and compare the effect of the knowledge reuse

approaches,

 1) by testing the null hypothesis, stating that there is no statistically

significant difference between the results of the test groups. If the testing

rejected the null hypothesis that indicated that the difference in results is

statistically significant – which was used as empirical evidence for

answering the research question); and

 2) by investigating the dependency (correlations) between the

measured criteria, this thesis aimed to attain a better insight of how

participants’ performance is related to their experience with the respective

approaches. This correlational analysis helped to interpret the results, by

suggesting why or how the reuse of abstract and case-based solutions

effects the design process and design outcomes.

 A total of 126 designers participated in the study. These numbers

provided sufficient numbers within each test group to permit rigorous

studies of the statistical significance of the observed differences.

2.4 Design Outcomes

Exhibits 2.32 and 2.33 illustrate the designs that participants of all the test

groups produced during the first and the second days of the workshops.

More detailed images of these design works can be found in the Appendix

B (pages B56-B63).

2.4 Design Outcomes

Page | 162

Exhibit 2.32. Design works produced by the participants of the DP, CBD and NA groups

on the first day of the workshops

2.4 Design Outcomes

Page | 163

Exhibit 2.33. Design works produced by the participants of the DP, CBD and NA groups

on the second day of the workshops

2.4 Design Outcomes

Page | 164

Page | 165

3. Results

The Results chapter reports the results of statistical tests and analyses and

relates them back to the discussions raised in the Background and

Methodology chapters (sections 1.1 – 2.3). How (in theory) each reuse

approach was expected to affect designers’ performance versus the

experimentally obtained results measured by this study (how it affected

designers’ performance in practice). The Results chapter is split into four

main sections. The first section presents the overall results and reflects back

to the discussion on the opportunities and challenges of algorithmic

design. The first section of this chapter discusses participants’ feedback

regarding the use of algorithmic modelling tools. It also presents the most

common types of programming barriers, which designers and architects

faced when using algorithmic modelling in their designs. The thesis

compares these barriers with the typology of programming barriers

discussed in literature in the context of software design. This comparison

indicates that, when using programming languages, designers and

architects face similar barriers to software designers. The first section also

presents the key differences between the control group (using no

approach) and the test groups that integrated the knowledge reuse

approaches into the design process.

 The second section of the Results chapter presents the comparison

between the results of the control group and the test group that used

3.1 Outline of the overall results

Page | 166

Design Patterns (abstract solutions). It refers the measured and compared

results back to the hypotheses drawn from the literature. What the

integration of Design Patterns was expected to do, versus what was

observed and measured.

 The third section of this chapter discusses the effect of the reuse of

case-based algorithmic solutions, comparing the results of the CBD (Case-

Based Design) group with the results of the control group. This section also

expands on the expected effect (informed by the literature studies) versus

the measured effect.

 The final fourth section of the Results chapter compares the

performance of the participants using Design Patterns and participants

reusing algorithmic solutions from the Case-Base. It discusses how the

reuse of abstractions affects designers and contrasts these findings with

the Case-Based Design approach. This end of this section presents the

summary of key findings.

3.1 Outline of the overall results

The use of algorithmic modelling tools in architecture

and design

Results of this experimental study suggest that despite the barriers that

programming imposes on architects, the use of algorithmic modelling

tools can provide a means for dynamic form-finding and design

exploration during conceptual design stages. Architects and designers,

who participated in the study and used programming as a drafting method

for development of their conceptual models, reported that they were able

3.1 Outline of the overall results

Page | 167

to accomplish what they wanted and were satisfied with the design

outcome.

On a five point agreement scale from 1- ‘Strongly Disagree’ to 5 –

‘Strongly agree’: (all test groups)

‘I was able to accomplish all what I wanted’ (mean, std. deviation)

Day 1: 3.37 ± 0.855 (median 4 – ‘Agree’),

Day 2: 3.53 ± 0.855, (median 4 – ‘Agree’);

‘I am satisfied with what I was able to accomplish’ (mean, std. deviation)

Day 1: 3.63 ± 0.909, (median 4 – ‘Agree’),

Day 2: 3.83 ± 0.830, (median 4 – ‘Agree’)).

 It is often argued that the use of computer-aided design tools is

not particularly effective during the conceptual form-finding stages of

design (Dorta, 2007) (Cao, Protzen, 1999) (Pérez, Dorta, 2011). One of the

arguments is that in many cases the form of a design concept is not

properly defined, while the form of a computer model has to be

specific/defined in the digital space (Ibid). Hand sketches on the other hand

can be rather vague and abstract, leaving a room for interpretations, which

allows architects to gradually reveal/develop the future form of their design

solution. In many ways the objective of the conceptual design stage is not

only about finding the right design solution, but rather figuring out what is

the right question/design problem. Design ideation is not a straightforward

process of logical reasoning and heavily relies on intuition (Shih, Williams,

Gu, 2011). A further argument is that because human and computer logics

do not always follow the same patterns the use of digital tools can limit

3.1 Outline of the overall results

Page | 168

and even suppress a designer’s ability (Ibid). Some of the recent research

findings suggest that CAD tools are unable to fully support the ideation

process during conceptual design stages and that computer technology

fails to compete with hand sketching and modelling (Dorta, 2007).

 The validity of the arguments regarding the issues and modelling

limitations of the algorithmic CAD environments can be supported by the

results of this study. However the feedback from designers, who used

algorithmic modelling for their conceptual designs, also suggests that the

advantages, which algorithmic form-making systems offer to CAD users,

can outweigh the limitations and disadvantages. Unlike hand sketching and

manual CAD drafting, algorithmic modelling gives designers an

opportunity to generate numerous variations of the output forms. The

development of design artefacts (solutions) often requires designers and

architects to explore multiple alternatives. Algorithmic (generative) design

enables users to generate thousands of design possibilities (Krish, 2011).

This enables designers to instantly see and evaluate all changes in the form

of their output models, and make alterations by changing parameters and

logic in the form-making algorithm. Unlike a sketch, an algorithmic design

model isn’t a fixed visualisation of a concept, but it is rather a fluid and

dynamic system. One programming algorithm can generate as many

configurations and iterations as necessary (Exhibit 3.1). A designer has an

opportunity to understand and evaluate different form versions. Thus an

algorithmic model has an advantage: representing not one design option,

but a range of design options.

 This type of design process can be described as an exploration of

‘if–then’ constructs, when a designer experiments with the forms and

processes to see how each model variation is going to look (Exhibit 3.1.

Model variations generated by the same programming algorithm/different

3.1 Outline of the overall results

Page | 169

parameters). It was observed that some workshop participants got results

that they did not entirely anticipate (such as form instances generated by

their programming solutions, which they did not foresee). On the one hand

this unpredictable outcome could be seen as a disadvantage (as

something that was not intended), on the other hand these unpredicted

(experimentally obtained) results could potentially lead to new discoveries

and further progress of the design concept. That is why it has been argued

that the use of algorithmic systems can enrich and improve design

innovation, contributing to the ‘pro’ arguments in the debate (controversy

in opinions) regarding the relationship between CAD and creativity (Chen,

2007), (Benton, 2007) (Zeid, 2005).

Exhibit 3.1. Algorithmic form finding ‘Stretching’. Output model variations.

3.1 Outline of the overall results

Page | 170

 The algorithmic methods of open-ended form exploration diverge

from conventional progressive form making. Design through

programming offers a dynamic way to probe conceptual designs. In this

respect algorithmic design exploration provides a unique opportunity,

which is missing from manual CAD modelling and hand sketching. This

dynamic form exploration works because the end form of their conceptual

designs was still abstract (not clearly identified or fixed). Therefore, despite

an opinion suggesting that Computer-Aided Design is only appropriate for

the post-development stages and that its value as a design development

tool is very limited (Charlesworth, 2007), it can be argued that parametric

CAD systems can be extremely effective and useful during initial design

stages. However, the use of parametric modelling systems also challenges

designers, because even on early design stages it requires a systematic

abstract thinking. That is why it is crucial to support the reusability of

knowledge during this parameterisation process (Turrin, von Buelow,

Stouffs, 2011).

Barriers associated with the use of algorithmic tools in

architecture

Although participants (in all three test groups, including the control group,

Design Patterns group and the Case-Based Design group) gave positive

feedback regarding their experience with use of algorithmic modelling

environments (ability to accomplish what was wanted/satisfaction with

output), designers also reported that the use of programming caused

substantial difficulties, which in some cases they failed to overcome on their

own.

3.1 Outline of the overall results

Page | 171

 It is acknowledged that the use of programming tools in design can

cause substantial, often insurmountable, barriers in end-users, especially

for novices (Ko, Myers, Aung, 2004). Some argue that while programming

systems offer effective and powerful means for modelling, many architects

and designers struggle to adopt their logic and syntax, because of the

mismatch in the initial principles of human and computer reasoning (Celani

and Vaz, 2012). This study confirms that many novel users find the

programing framework and syntax rules highly frustrating and not intuitive

(as was often pointed out in previous research in this field) (Ibid),

(Woodbury, 2010). In all the test groups, designers reported difficulties

when integrating algorithmic thinking into their design process. For

example, on average on the first workshop day designers had from 4 to 6

substantial difficulties, which they were not able to overcome on their own.

On the second day the average dropped to 1-3 difficulties.

On a five point scale, with 1- ‘Never‘, 2 - ’1-3 times’, 3 – ‘4-6 times’, 4 -

‘4-6 times’, 5 – ’10 times or more’;

‘How often have you come across insurmountable programming

difficulties, while developing your design model’, (mean, std. deviation)

(all test groups)

Day 1: 2.77 ± 0.989 (median 3 – ‘4-6 times’),

Day 2: 2.50 ± 0.787 (median 2 – ‘1-3’ times’).

 Parallel to examining the overall number of programming

difficulties, this study also investigated the nature (typology) of barriers

associated with the use of algorithmic modelling systems. Previous

3.1 Outline of the overall results

Page | 172

research on learning barriers in programming systems carried out by Ko et

al. identified six types of most re-occurring types of barriers: design,

selection, coordination, use, understanding, and information (Ko, Myers

and Aung, 2004) (See Context of the Study section). The participant

designers of this study were asked to indicate the overall amount of

difficulties that they had while developing their design assignments and

also to specify what type of difficulty it was. The analysis of responses was

carried out independently of previous research findings (existing

typologies). The aim was to identify the original groups of programming

barriers, and afterwards compare them to the typology discussed by Ko et

al (2004). The responses were collected as an open-ended type of enquiry,

where designers expressed and individually articulated their own

understanding of the nature (description) of the difficulty encountered.

These responses were analysed and sorted into the five most re-occurring

categories: idea-to-algorithm translation, problems with implementation

of particular components, knowing what programming component to use,

logic connections, and valid parameters. For example, the identified

category ‘Idea to Algorithm Translation’ refers to cases when participants

expressed the barriers as: not knowing how to get from a sketched idea to

an algorithm of actions (generating this form). Participants expressed it in

a variety of ways:

 ‘Not quite knowing how to create what I want’;

 ‘I just can’t get it to do what I want it to. My logic is not attuned to

that of the machine’;

 ‘Struggle to achieve the form I wanted’

 Results show that the five barrier groups identified by this study

(tested for visual programming using Grasshopper/Rhino) closely

correspond to the typology identified by Ko et al. (2004), who investigated

3.1 Outline of the overall results

Page | 173

learning barriers in programming systems on 40 participants learning

programming with Visual Basic. NET (VB).

 The five most common categories of programming barriers

(difficulties) identified by this study are explained and referred to

corresponding categories proposed by Ko et al. (2004):

 1. Idea-to-algorithm translation (Figuring out how to get from

a sketched idea to a programming algorithm, which generates a model).

61 out of 126 participants, who used algorithmic modelling for their

conceptual designs had this type of difficulty on day 1, 64 out of 126 on

day 2. This category corresponds to the design barriers (cognitive

difficulties): ‘I do not know what I want the computer to do’ (Ko, Myers and

Aung, 2004).

 2. Syntax Problems/Problems with implementation of

particular components (when participants knew which programming

component they need, but struggled with how exactly to use/implement

it. In scripting it can also refer to the syntax or ‘grammar’ errors, for

example opening brackets without closing them). 42 out of 126

participants had this type of difficulty on day 1, 48 out of 126 on day 2.

This type of difficulties corresponds to use barriers, ‘I think I know what to

use, but I do not know how to use it’ (Ibid).

 3. Knowing what programming component to use. 41 out of

126 respondents reported that the barrier was ‘not knowing what to use’

on day 1 and 34 out of 126 on day 2. This category matches the selection

barriers, described as: ‘I think I know what I want the computer to do, but

I do not know what to use’ (Ibid).

 4. Logic Connections (what is the correct sequence of

programming logic, for example should ‘vector’ go before or after ‘move’,

3.1 Outline of the overall results

Page | 174

or how to organise a correct sequence of programming components to

incrementally rotate multiple elements). ‘Logic Connections’ can also be

described as problems with syntax: structuring of statements in

programming algorithm. On the first day of the workshop 30 out of 126

designers reported problems with ‘Logic Connections’, on the second day

it was 28 out of 126. This category accommodates two corresponding

types of programming barriers identified by Ko et al. (2004): the

coordination barriers, described as: ‘I know what to use, but I do not know

how to make them work together’; and use barriers: ‘I think I know what to

use, but I do not know how to use it’ (Ibid).

 5. Valid Parameters and Unexpected Errors were grouped as

the last category of programming barriers identified for this study (these

could be, for example, the functional errors, when an action/programming

component is given an incorrect input information, such as improper

domains of numbers, or the path to a source file, which doesn’t exist. On

the first day 18 out of 126 participants encountered problems with figuring

out valid parameters/getting ‘red boxes’ and error messages, on the

second day 16 out of 126. This fifth category is very close to Ko et al.’s

understanding barriers type, occurring mainly due to the mismatch

between the designers’ expectations and program’s actual behaviour: ‘I

thought I knew how to use it, but it did not do what I expected’ (Ibid).

 Thus the most common type of barrier identified by this study for

novice users of algorithmic modelling tools was: ‘Idea-to-Algorithm

Translation’. This type of programming barrier was reported by half of the

workshop participants. Even on the second day of the workshops, when

participants were more experienced in algorithmic modelling, the number

of issues with translation of a design idea into a programming algorithm

3.1 Outline of the overall results

Page | 175

was still very high, it actually increased from 48% (day 1) to 51% (day 2).

The workshop participants expressed this in a variety of ways:

 ‘You understand the end product, but the way to derive it is

confusing and challenges the way you think about your form.’

 ‘Not able to translate concept into script logic.’

 ‘Struggling to find a method to put what I wanted to do into reality.’

 The substantial difficulties with the Idea-to-Algorithm translation

which designers and architects face when adopting the ways of

programming and algorithmic modelling systems can be explained in a

number of ways. To use algorithmic design tools, one has to step back

from direct manipulations with the form itself. Instead one has to focus on

developing a logic/step by step algorithm of a design solution. This takes

a particular attitude of mind, which people with typical design backgrounds

often find alien and counterintuitive (Woodbury, 2010). The algorithmic

design technology requires a designer to think and act like a programmer

(design developer) and therefore it inevitably affects the design process

itself (Shih, Williams, Gu, 2011). The technology shifts from being a passive

(inert) aid tool, which replicated conventional form-making principles, to

being a system which enables novel principles of design thinking (Matcha,

2007). Mastering these novel algorithmic principles, however, seems to

cause substantial difficulties in half of the design population (48-50% of the

participants: designers and architects, novices in visual programming).

 Not knowing how to use programming components and

commands, identified as the ‘syntax problems/problems with the

implementation of programming components’ was the second most

common category of barriers reported by participant designers. More than

a third of all participants (33% on day 1 and 38% on day 2) have reported

3.1 Outline of the overall results

Page | 176

this type of difficulty. This barrier has actually increased (become more

common) when designers gained more experience in using algorithmic

modelling (on the second day of the workshop). On the second day

participants often knew what particular component they needed to use,

for example ‘divide curve’ or ‘project a curve onto a Brep’, but they still

struggled with how exactly to use it. Syntax problems are closely related to

the problems with the ‘Logic Connections’ (day 1: 24%, day 2: 22%), when

participants knew (or thought that they knew) which programming

components they needed to use, but could not properly arrange/connect

them. For example, on the first day of the workshop one of the common

mistakes that participants made was putting the ‘move’ component before

the ‘vector’ component. As one of the participants explained it: ‘I want to

take this curve and move it up, so it is first ‘move’ and then ‘unit Z’ (vector)’.

This means that for some people these ‘invisible rules’ of programming

languages (Ko, Myers and Aung, 2004) do not appear to be consistent or

intuitive.

 The frustration and most of the programming barriers can decrease

after users gain enough experience (for example selection barriers,

‘knowing what to use’, which dropped from 33% to 27% on the second

day of the workshop). However, some studies point out that the

implementation of algorithmic functions and syntax of CAD programming

languages cause difficulties not only for novice but also for advanced users

(Celani, Vaz, 2012). Ko et al. claim that while experienced programming

users can easily overcome barriers associated with selection, coordination

and use, they still have significant difficulties caused by understanding

barriers (functional errors) and information barriers (not knowing how to

acquire information about the internal behaviour of a program) (Ko, Myers,

Aung, 2004).

3.1 Outline of the overall results

Page | 177

 It is recognised that the use of Computer-Aided Design tools inflicts

limitations on architects and designers (Walther, Robertson, Radcliffe,

2007). This study has shown that algorithmic design can inflict additional

limitations, associated specifically with the use of programming. As one of

the criteria investigating design ideation and ability to use algorithmic

modelling for conceptual design, participants were asked to indicate

whether they had to change their design because of unsurmountable

programming barriers.

On a five point scale, from 1 – ‘Strongly Agree’ to 5 – ‘Strongly Disagree’

(all groups)

‘I had to change my design because of programming difficulties’, (mean

value, std. deviation)

Day 1: 3.04 ± 0.852,

Day 2: 2.68 ± 0.745.

These results suggest that designers and architects can be substantially

bounded by programming barriers, and that to a certain degree

algorithmic design tools can limit designers’ abilities (as tested on novice

users).

Effect of the reuse of programming artefacts in

algorithmic design

This study concludes that both Design Patterns (DP) and Case-Based

Design (CBD) approaches to reuse of programming solutions help

designers to overcome programming barriers and improve algorithmic

http://espace.library.uq.edu.au/list/author_id/8739/
http://espace.library.uq.edu.au/list/author_id/2505/
http://espace.library.uq.edu.au/list/author_id/59/

3.1 Outline of the overall results

Page | 178

modelling performance. One of the main objectives of this study was to

test whether the reuse of abstract and case-based programming solutions

can reduce programming barriers. On each workshop day participants of

all three test groups (the control (No Approach), Design Patterns and

Case-Based Design groups) were asked to report the number of

programming difficulties they had when modelling their conceptual

designs (Exhibit 3.2) (See Methodology section).

On a five point scale: with 1 – ‘Never’; 2 - ‘1-3 times’; 3 – ‘4-6 times’; 4 –

‘7-9 times’; and 5 - ‘ 10 times or more’

‘How often have you come across programming difficulties, while

developing your design?’

The No Approach group (mean, std. deviation)

Day 1 2.88 ± 1.053

Day 2 2.71 ±0.890 (both days median=3 – ‘4-6 difficulties’).

The Design Patterns group (mean, std. deviation)

Day 1 2.37 ± 0.669

Day 2 2.10 ± 0.403 (with both days median=2 – ‘1-3 difficulties’)

The Case-Based Design group

Day 1 2.91 ± 1.039 (median=3 – ‘4-6 difficulties’)

Day 2 2.53 ±± .776 (median=2 – ‘1-3 difficulties’)

 Exhibit 3.2 illustrates the outcomes of a statistical analysis (See

Statistical Methods Section) of the differences in these means. The mean

values of ‘Programming Difficulties’ for each group are shown as the

3.1 Outline of the overall results

Page | 179

colour-coded bars: grey for the No Approach group, red for the Design

Patterns group and pink for the Case-Based Design group. First day results

are on the left and the second day results are on the right. The p-values

were used to measure the probability that the gap in results did not

happen by chance and thus that the difference in the means was

statistically significant. The p-values below the 0.05 level are shown in black

(Exhibit 3.2), indicating that the difference is statistically significant, the p-

values above the 0.05 level are shown in light grey indicating that the

difference might have happened by chance. Initial comparison tests are

done between all three test groups.

 The resulting ‘p-value All Groups’ is shown in a bigger block: for

day 1 the p-value = 0.036 (on the left), for day 2 the p-value = 0.003 (on

the right). Both p-values are below the 0.05 threshold, meaning that the

participants of at least one test group had significantly more (or

significantly less) ‘Programming Difficulties’ than participants of other

groups. In order to determine which specific groups differ from which,

additional tests were carried out. The resulting p-values are shown in the

smaller (narrow) blocks: the ‘p-value DP/CBD’ comparing the Design

Patterns and Case-Based Design groups, ‘p-value DP/NA’ comparing the

Design Pattern group with No Approach group and ‘p-value CBD/NA’

comparing Case-Based Design group with No Approach group (Exhibit

3.2).

3.1 Outline of the overall results

Page | 180

Exhibit 3.2. Number of programming difficulties, comparison between three test groups: NA, DP and CBD. [Also refer

Appendix B, section Diagrams and Illustrations pages B64-B66]

 This testing indicates that the reuse of abstract solutions (Design

Patterns) has a significant positive effect on designers’ ability to overcome

programming barriers. On both days the DP group had significantly less

difficulties then the NA and CBD groups (day 1 DP mean at 2.37 is

significantly less than the CBD mean of 2.91 with a DP/CBD p-value =

0.045; similarly, the DP mean of 2.37 is significantly less than the NA mean

of 2.88 with a DP/NA p-value = 0.064: day 2 DP/CBD p-value = 0.042;

DP/NA p-value = 0.002).

 The reuse of case-based solution did not prove to have a significant

effect on the overall number of programming difficulties compared to the

control group (day 1 CBD/NA p-value = 0.981, day 2 CBD/NA p-value =

0.467), even though on the second day of the workshop the middle

number (median) of the insurmountable difficulties, which designers faced

when using parametric modelling, dropped from ‘4-6’ difficulties (day 1) to

‘1-3’ difficulties (day 2). However the CBD approach did help to overcome

certain types (categories) of programming barriers.

3.1 Outline of the overall results

Page | 181

 Comparison of the types of barriers that designers of each test

group faced when using algorithmic modelling shows that the Case-Based

Design approach helps to overcome use barriers: ‘Problems with

implementation (Syntax Problems)’, that can be described as ‘I think I know

what to use, but I do not know how to use it’ (Ko, Myers and Aung, 2004).

Exhibit 3.3 illustrates that on both workshop days designers who used CBD

approach had significantly less difficulties with ‘Syntax/Component

Implementation’ compared to other groups. Almost half of the No

Approach group participants struggled to overcome this type of

programming barrier (44.8% on day 1 and 48.9% on day 2). More than a

third of the Deign Patterns group participants faced similar difficulties,

caused by the implementation of programming components (33.3% on

day 1 and 43.3% on day 2). Only less than a quarter of the CBD group

participants were unable to overcome these use barriers

(‘Syntax/Component implementation’) (21.3% on day 1 and 23.4% on day

2). When comparing all three groups, the p-values (on both days) indicate

that the difference in the percentages is statistically significant (day 1 p-

value = 0.049, day 2 p-value = 0.029) (See Exhibit 3.3 ‘p-value All Groups’).

The follow-up post hoc testing (See Statistical Methods Section) confirmed

that on both days the CBD group had significantly less use barriers

(‘Syntax/Component implementation’) compared to the control group that

used no approach (day 1 CBD/NA p-value = 0.012, day 2 CBD/NA p-value

= 0.008). On the second day the CBD group had less use barriers

compared to the test group that used the Design Patterns approach (day

2 DP/CBD p-value = 0.066). The 0.066 is technically above the 0.05 level,

but it is very close to it. It means that there is 93.4% of certainty that the

difference in results between the CBD and DP groups did not occur by

chance.

3.1 Outline of the overall results

Page | 182

 The comparison of designers’ ability to overcome programming

barriers confirms that the reuse of programming artefacts is an effective

strategy to support design and an important part of programming

practice, as stated by previous studies in the field of software design

[Krueger, 1992]. Algorithmic design progresses through programming;

and this study illustrates that designers and architects can improve their

ability to overcome programming barriers by reusing programming

algorithms (both abstract and case-based), as is often done in software

design. This study empirically grounds the idea that architects and

designers who use algorithmic modelling tools (programming) gain from

not trying to solve every problem from scratch, but, rather, reusing existing

solutions that worked in the past (Gamma, Helm, Johnson, Vlissides, 1994).

It further proves the point that one of the key identifiers of a designers’

success is to strategically re-cycle (reuse) existing solutions instead of

rediscovering them (Ibid)

 Many architects and designers struggle to overcome barriers

associated with the use of programming design systems. However, unlike

programmers, architects and designers who use algorithmic modelling

tend to rebuild programming algorithms rather than reuse existing

solutions (Woodbury, 2010). The results of this experimental study support

the arguments stating that the architectural design profession could learn

from the computer science profession (Ibid) and start systematically

reusing parametric solutions (both abstract and case-based). This can

become a norm in algorithmic design practice because the reuse of

programming artefacts helps to overcome difficulties with the

implementation of programming languages (as proven by the reuse of

case-based solutions (Exhibit 3.3)). The reuse of abstract solutions (Design

Patterns) can help to improve overall performance by reducing time and

3.1 Outline of the overall results

Page | 183

effort that end-users spend trying to surmount programming difficulties

(Exhibit 3.2).

Exhibit 3.3. Types of programming difficulties, comparison between three test groups: NA, DP and CBD. [Also refer

Appendix B, section Diagrams and Illustrations pages B64-B66]

 In theory, it is highly probable that reuse of programming artefacts

can make it easier for designers to build-up more complex algorithms,

based on the existing solutions, as opposed to building everything from

scratch. Some claim that the core of algorithmic design is a process of

rediscovery rather than the creation of something absolutely new (Terzidis,

2006), because it is very likely that someone already did invent ‘the wheel

you are about to reinvent’ (Mann, 2005). The re-discovery can naturally be

founded on the existing algorithmic solutions (Terzidis, 2006). Results of

this study show that both abstract and case-based reuse strategies can

help designers to learn from existing knowledge and improve their ability

to overcome programming barriers (Exhibit 3.2) (Exhibit 3.3).

3.1 Outline of the overall results

Page | 184

‘Algorithm Complexity Score’

The No Approach (NA), Design Patterns (DP), Case-Based Design (CBD)

groups

(mean, std. deviation)

Day 1 NA 40.69 ± 18.275; DP 50.60 ± 33.14; CBD 50.40 ± 30.11

Day 2 NA 54.61 ±26.988, DP 56.57 ± 28.22, CBD 53.59 ± 27.48

 There is no statistically significant evidence suggesting that the

reuse of programming artefacts helps designers to master complexity

faster. Even though comparison of the complexity of programming

algorithms produced by the participants in each test group shows that

during the initial stages of learning visual programming (first day of the

workshop) the participants of the DP and CBD groups managed to

produce noticeably more complex algorithms compared to the control

group (NA) Exhibit 3.4. On day one, two groups reusing programming

artefacts (DP/CBD) produced algorithms that were 20% more complex

compared to the group using no approach (NA). However statistical testing

indicates that differences in average algorithm complexity between the

DP/CBD and the control group (NA) are not statistically significant

(p=0.136).

3.1 Outline of the overall results

Page | 185

Exhibit 3.4. Algorithm Complexity, comparison between three test groups: NA, DP and CBD. [Also refer Appendix B,

section Diagrams and Illustrations pages B64, B65, B69]

 There are three important points that should be noted regarding

these results. Firstly, statistical testing did not prove that the difference in

‘Algorithm Complexity Score’ is statistically significant (day 1 p-value =

0.136; day 2 p-value = 0.898, both above the 0.05 threshold). Secondly,

on the second day all groups produced algorithms with very similar

complexity (Exhibit 3.4). And thirdly, in general, more complex algorithms

are not necessarily better algorithms. In some cases simple programming

solutions can be highly effective, and likewise complex algorithms can be

ineffective.

 This section discussed the overall effect of the knowledge reuse

approaches on participants’ performance, such as their ability to overcome

programming difficulties and use algorithmic modelling systems. However

the study has found that in many aspects the reuse of abstract solutions

and the reuse of case-based solutions had a very different effect. The

following two sections discuss separately 1) testing Patterns for Parametric

Designs (Woodbury, 2010); and 2) testing the use of Case-Based Design

approach in the context of algorithmic modelling in architecture.

3.2 The reuse of abstract solutions in algorithmic design

Page | 186

3.2 The reuse of abstract solutions in algorithmic

design

Testing patterns for parametric design as a medium to

reduce effort required to learn algorithmic modelling

software

The Design Patterns developed by Robert Woodbury (2010) proved to be

an effective medium to understand and learn algorithmic design in

architecture. The pattern approach was previously tested by Gamma et al.

in the context of object-oriented software design, and the results of these

tests showed a number of positive effects (Gamma, Helm, Johnson,

Vlissides, 1994). The authors state that the reuse of abstract programming

solutions (design patterns) reduces the effort required to learn new

programming software and helps during design development (Ibid).

Results of this study also show that patterns for parametric design work as

an effective support and learning method when introduced into design

process in the field of architecture. The comparison between the

performance of three test groups (No Approach Group, Design Patterns

group and Case-Based Design group) shows that the use of Design

Patterns helps designers to reduce programming barriers, which prove to

be a big issue for a large number of end-users of algorithmic modelling

tools (See ‘Effect of the reuse of programming artefacts in algorithmic

design’ section discussing the amount of programming barriers in each

test group).

 The vast majority of designer and architect participants of the DP

group found the Design Patterns to be very helpful. On the last day of the

parametric modelling workshop participants were asked to indicate their

level of agreement with the following statement:

3.2 The reuse of abstract solutions in algorithmic design

Page | 187

On a five point scale from 1 – ‘Strongly Disagree’ to 5 – ‘Strongly Agree’.

‘I find Design Patterns to be a helpful medium to learn and use

algorithmic modelling’,

3.93 ± 0.640 (mean, std. deviation) with the median = 4 (‘Agree’)

Below are some of the participants’ comments on their experience with the

use of Design Patterns, as a medium to learn and use algorithmic

modelling:

 ‘I was introduced to parametric modelling through design patterns,

and I found this to be a very successful learning method.’

 ‘They (Design Patterns) are useful starting blocks, and useful to get

familiar with the types of geometry generated by program…’

 In the book ‘Elements of Parametric Design’ Robert Woodbury

discusses the methodology for the use of thirteen Design Patterns. He

describes them as reusable abstract parts and a medium to understand

and express the craft of parametric modelling (Woodbury, 2010). He

proposed to use Design Patterns as thinking and working tools to help

designers master the complexity of algorithmic design systems. However,

he points out that the (Design Patterns) method is a theory, which is yet to

be tested (Ibid).

 One of the objectives of this study was to test this approach to

reusing abstract algorithmic solutions in design. The approach was tested

using Woodbury’s Design Patterns (Ibid). Therefore, the (empirically

measured) results of this experimental study can be viewed as a test for

Woodbury’s parametric patterns theory.

3.2 The reuse of abstract solutions in algorithmic design

Page | 188

 Along with the evaluation of the DP approach as a method helping

designers and architects to learn and use algorithmic modelling systems

(Woodbury, 2010), this study also gives an opportunity to investigate how

potentially (if necessary) the Design Patterns method can be improved. For

example, some of the participants found the DP approach to be not very

intuitive and not so easy-to-use. Although the majority of them still found

patterns to be helpful. When asked to report their agreement with the

statements:

On a five point scale from 1 – ‘Strongly Disagree’ to 5 – ‘Strongly Agree’.

(DP group)

‘I find Design Patterns intuitive’

3.37 ± 0.718 (mean, std. deviation) with the median= 3 – ‘Neither Agree

nor Disagree’

‘It was easy to use the Design Patterns approach in my design’

Day 1 2.90 ± 0.885

Day 2 3.03 ± 0.809 (both days median = 3 ‘Neither Agree nor Disagree’)

These responses indicate that on average, participants using the DP

approach would not refer to Design Patterns as being an intuitive method

(Neither Agree nor Disagree), as well as they would not refer to it as easy

to use method. These are some of the responses of the DP group

participants giving their feedback regarding the usability (how easy to use)

and intuitiveness of Design Patterns:

 ‘They are good, but not intuitive, so perhaps looking at more

examples will help to really understand what is going on.’

3.2 The reuse of abstract solutions in algorithmic design

Page | 189

 ‘The hard part is taking out what is useful for your own design ideas’

 ‘That's good to get the sense of a program (Rhino/Grasshopper),

but for my own design I do not know how to use it.’

 ‘More possible examples, actual cases that achieve the intended

design using parametric tools’

 The feedback from designers who used Design Patterns for

learning visual programming and used patterns while developing their

designs revealed two main issues. The first issue, is that some of the

designers found Design Patterns to be not completely intuitive. That is

understandable because usually, learning through abstractions is harder

(less intuitive) then learning through case-based reasoning, and it is

generally easier for humans to learn by following a specific example, than

to ‘generalise from it’ (Aamodt and Plaza, 1994). To understand each

abstract set of principles (patterns) requires a designer to look at a problem

from a specific pre-defined point of view. This point of view, however,

might not feel natural for every individual. The name of a design pattern

or the explanation (the ‘why’, the ‘what’ and the ‘how’) of an abstraction

may not necessarily agree with each person’s intuitive way of thinking and

reasoning, which can potentially lead to the increase of intellectual effort.

 The second issue is related to the application (actual reuse) of

Design Patterns for individual designs. Some of participants found it hard

to figure out which patterns could be useful (reusable) for their own design

ideas. In order to apply Design Patterns, designers have to use them as

thinking and working tools (Woodbury, 2010). More often than not

participants described their ideas as some certain type of geometry (design

output), rather than a certain type of behaviour (programming

algorithm/design pattern). Not all designers were inclined to make an

additional effort of analysing their sketches (design ideas) and trying to

3.2 The reuse of abstract solutions in algorithmic design

Page | 190

generalise from them (focus on the program rather than the form). That is

why, sometimes, when the examples used to explain a Design Pattern did

not contain the type of geometry that visually resonated with the

participant’s own design concept, a pattern was dismissed as not fitting.

 Both of outlined issues could potentially be improved (as was

suggested by some participants of the DP group) with introducing

additional examples (pattern samples) to the DP approach, perhaps

developing a library of cases for each Design Pattern, that cover multiple

practical (visually diverse) applications of patterns. The strategy of re-

enforcing case-based reasoning in the use of generalised constructs

(Design Patterns), can help designers to better understand abstractions

and easier locate patterns that can be used for their own design solutions

(engage thinking by analogy). Similar strategy was used by Gamma et al,

in the field of software design, and it was observed that introducing

patterns together with examples is an effective way to teach object oriented

design by example (Gamma, Helm, Johnson, Vlissides, 1994).

 However, despite the issues with intuitiveness and design

application, most of the DP group participants agree that Design Patterns

are an effective medium to understand and learn the principles of

algorithmic modelling. This approach is an effective support method and

definitely preferable to having no approach for learning programming in

architecture and design. Participants of the DP group found the use of

abstract programming solutions (Design Patterns) to be ‘useful starting

blocks’ * and ‘a very successful learning method’* (*quoting participants of

the DP group). From the teaching perspective the collection of thirteen

patterns for parametric design seems to work very well, providing novices

in algorithmic design with a profound and systematic insight into the basic

vocabulary of algorithmic modelling methods (as evidenced from the

3.2 The reuse of abstract solutions in algorithmic design

Page | 191

significant reduction of programming barriers and the positive feedback

from the DP group participants). (See Appendix for ‘Proposed curriculum

for teaching programming in architecture using Design patterns’).

The reuse of abstract constructs as a method to

reduce complexity and aid design performance.

Correlational analysis indicates that those designers who easily grasp the

idea of Design Patterns (abstractions) and effectively use them as building

blocks in their own designs also have less programming difficulties and

better algorithmic modelling performance. One of the objectives of the

correlation analysis was to investigate the relationship (statistical

dependency) between the designers’ ability to overcome programming

barriers and the feedback regarding their experience with the reuse

approach. This particular analysis focused on the participants’ performance

inside the DP group, and this was performed for each test group

individually.

 It was observed that designers using Design Patterns were likely to

perform consistently well or consistently poorly during both days in terms

of overcoming programming barriers (number of programming

difficulties/change in design due to programming difficulties). The

programming barriers criteria (such as number of programming difficulties

and change in design due to programming difficulties) have positive

correlations between the results on day 1 and the results on day 2 (Exhibit

3.5):

3.2 The reuse of abstract solutions in algorithmic design

Page | 192

DP group Correlations (between results on day 1 and day 2)

‘Programming Difficulties: how often’

r = 0.371

‘Change in design idea due to programming difficulties’

r = 0.356

For comparison, the group that used Case-Based Design does not have

these types of dependency. The No Approach group does have a

correlation between the amount of difficulties on day 1 and day 2 but no

significant correlation between the day 1 and day 2 ‘Change in design idea

due to programming difficulties’.

NA group Correlations (between results on day 1 and day 2)

‘Programming Difficulties: how often’

r = 0.406

 This consistency of the DP group performance (number of

programming difficulties and change in design due to programming

difficulties on day 1 and day 2) means that, those DP group participants

who faced substantial difficulties with programming in the beginning of the

course, were likely to continue having these difficulties. Likewise those

participants who could better overcome programming barriers on day 1

were likely to continue having less problems on day 2. The use of the DP

approach did not change this consistency. In contrast, the CBD group

participants did not exhibit similar performance consistency. The group

using the CBD approach did not have any significant correlation between

3.2 The reuse of abstract solutions in algorithmic design

Page | 193

amount of programming barriers on day 1 and day 2. This means that CBD

group participants who had only a few problems on day 1 could have faced

many more difficulties on day 2, and vice versa.

 Exhibit 3.5 illustrates the relationship (correlation) between the

number of programming difficulties and the rest of the investigated criteria,

such as ability to find a pattern which fits participants’ design ideas. The

diagram shows correlations between all criteria in the DP group (including

such criteria groups as: Programming criteria, Design Ideation/Motivation

Criteria, Approach Characteristics Criteria and Algorithmic Modelling

Criteria - Exhibit 3.5 left hand side groupings). The results of the

correlational analysis are shown in a form of a box-and-wire diagram.

When two criteria have a significant correlation they are connected by a

wire with the attached Pearson's correlation coefficient value (r) (See

Statistical Methods Section). The strong dependencies (correlation

coefficient r > +- 0.5) are shown as darker wires (green for the positive

correlation, red for the negative correlation) the medium correlations (r

from +- 0.35 to +- 0.5) are shown in the lighter colours (pink for negative

and light green for positive dependency). This particular diagram highlights

the correlations between the ‘Programming Difficulties’/‘Change in design

idea due to programming difficulties’ and the other criteria (the rest of

correlations, which are not connected to programming difficulties, are not

highlighted, and shown in light grey) (Exhibit 3.5).

3.2 The reuse of abstract solutions in algorithmic design

Page | 194

Exhibit 3.5. Design Patterns group. Correlations between ‘Programming Difficulties’/‘Change in design idea due to

programming difficulties’ and the other criteria (such as Algorithmic modelling criteria, Approach characteristics

criteria, and Design Ideation/Motivation criteria). [Also refer Appendix B, pages B71-B82]

3.2 The reuse of abstract solutions in algorithmic design

Page | 195

 For example, the ease of the approach implementation ‘It was easy

to implement Design Patterns in my design’ (on day 1) (Exhibit 3.5,

‘Approach: easy to implement’) has a strong negative correlation with the

number of programming difficulties (Exhibit 3.5, Programming Difficulties:

how often) on day 1 (r= - 0.577), and a medium negative correlation with

the ‘number of programming difficulties’ on day 2 (r=- 0.358). These

negative correlations mean that when one of these variables (easy to

implement the DP approach) is high the other is likely to be low (number

of programming difficulties) and vice versa. This seems to suggest that

when participants were able to easily understand and successfully

implement abstract reusable solutions in their own designs (reporting that

‘It was easy to implement Design Patterns in my design’), they were less

likely to have programming difficulties (low level of ‘programming

difficulties’). These results can support the claims that the use of design

patterns can reduce complexity of programming solutions acting as the

reusable building blocks (Gamma, Helm, Johnson, Vlissides, 1994).

 The ability to overcome programming barriers, evaluated as a

degree to which participants had to change their design due to

programming difficulties, correlates to how well designers were able to use

Design Patterns. On day 1 ‘Change in design due to programming

difficulties’ has a negative correlation with both how easy to implement

designers found the DP approach: r = - 0.480, and with their ability to

figure out which pattern can be used in their own design solution (‘Found

a DP/CBD solution which fits’): r = - 0.403 (Exhibit 3.5).

 The evidence of this study seems to suggest that the better

designers deal with the reuse of abstract algorithmic solutions the better

their design performance and their ability to overcome programming

difficulties. However, these findings can be interpreted in two different

3.2 The reuse of abstract solutions in algorithmic design

Page | 196

ways. Firstly, this dependency might suggest that it is the effective use of

patterns that helps designers to perform better at algorithmic modelling. It

can be reasoned that participants learned the patterns for parametric

design before they started to work on their design task. Therefore their

performance was influenced by their ability to use patterns and not the

other way around. Secondly, it can be reasonably argued that those people

who are naturally more inclined to using algorithmic modelling and

programming, are also more likely to understand and use Design Patterns

easier than others. Either of the interpretations has valid points and it is

highly likely that the actual reality is somewhere in-between these two

points. Nevertheless there is clear evidence that the designers’ ability to

use patterns and their ability to use algorithmic modelling systems have a

statistically significant positive correlation (Exhibit 3.5).

 Exhibit 3.6 shows the results of the investigation regarding the

relationship between the designers’ performance (such as ‘Ability to

accomplish what was wanted’, ‘Ability to realise original design idea’ and

‘Satisfaction with output’ etc.) and the rest of the evaluation matrix,

including participants’ feedback regarding the use of Design Patterns. The

DP group designers’ ‘Ability to realise original design idea’, which

participants envisioned and sketched prior to modelling, did not prove to

have any significant relationship (correlation) with the approach criteria

(how easy to use, how helpful etc.) (Exhibit 3.6). However, the rest of the

design performance measures (including ‘Ability to accomplish what was

wanted’ and ‘Satisfaction with output’) have statistically significant positive

correlations with the DP approach measures (‘Approach: easy to use’,

‘Found DP/CBD solution which fits’ and ‘Approach is helpful’).

 These positive correlations mean that when one group of variables

(positive feedback regarding the use of the DP approach) is high the other

3.2 The reuse of abstract solutions in algorithmic design

Page | 197

group of variables is likely to be high as well (design performance including

Satisfaction with output’, ‘Ability to accomplish what was wanted’). Likewise,

when approach measures are low the designers’ performance measures

are likely to be low as well. These results might indicate that the more

successful designers with the use of patterns the better is their design

performance.

 Designers who identified and reused patterns in their own

algorithmic solutions were more likely to accomplish their design

objectives. ‘Ability to accomplish what was wanted’ on day 1 is correlated

with ‘Approach: easy to implement’: r = 0.486, and also correlated with

‘Found a DP solution which fits’: r = 0.432 (Exhibit 3.6). The satisfaction with

the produced designs has also a positive dependency with how effectively

designers were using algorithmic Design Patterns. ‘Satisfaction with output’

has a strong positive correlation with how easy it was for designers to reuse

abstract algorithmic solutions (‘Approach: easy to implement’): r = 0.577

(on day 1), r = 0.462/r= 0.434 (on day 2) (Exhibit 3.6). The satisfaction with

the produced designs is correlated with the designers’ ability to find a

pattern (or several patterns) that can be used in their own designs

(‘Satisfaction with output’/‘Found a DP solution which fits’) r = 0.382/r =

0.485 (on day 1), r = 0.600 (on day 2) (Exhibit 3.6). This means that those

participants who could identify patterns that fit their design solutions and

could implement patterns in their designs were more likely to be satisfied

with the results of their design work.

3.2 The reuse of abstract solutions in algorithmic design

Page | 198

Exhibit 3.6. Design Patterns group. Correlations between ‘Ability to realise original design idea’, ‘Ability to accomplish

what was wanted’, ‘Satisfaction with output’ and the other criteria (such as Algorithmic modelling criteria, Approach

characteristics criteria, and Programming criteria). [Also refer Appendix B, pages B71-B82]

3.2 The reuse of abstract solutions in algorithmic design

Page | 199

 These results indicate that the reuse of abstract constructs proves

to be an effective method to reduce complexity and aid design

performance. Even though it may not be entirely easy-to-use or intuitive

for some designers. It provides a great insight into the logic of algorithmic

modelling (helps to learn/overcome programming barriers) and when duly

used (reused) patterns help to improve design productivity. Moreover,

those designers who found the approach to reuse abstract solutions to be

helpful for learning and using algorithmic modelling, also reported a

greater satisfaction with the produced designs and higher motivation to

use algorithmic modelling in future. The ‘Approach: is helpful’ criterion has

a positive correlation with designers’ ‘Satisfaction with output’ r =0.452 (on

day 1), r = 0.454 (on day 2), and with ‘I plan to use parametric design in

future’ r = 0.406 (Exhibit 3.6).

The reuse of abstract algorithmic solutions helps to

explore and experiment

 Along with reducing programming barriers and helping with design

performance, the reuse of abstract algorithmic solutions also helps

designers to increase the explored solution space and motivates them to

‘go beyond’ and experiment. Gamma et al (1993) states that among a

number of positive effects, observed when the use of design patterns was

tested in the field of object-oriented software design, some directly relate

to the increase of the explored space of programming solutions. Authors

state that the reuse of abstract programming artefacts helps end-users to

explore alternative design solutions and motivate them ‘to go beyond

concrete objects’ (Gamma, Helm, Johnson, Vlissides, 1993). This ‘enhancing

exploration’ effect of the pattern approach proves to be also true when

applied in the field of architectural algorithmic design.

3.2 The reuse of abstract solutions in algorithmic design

Page | 200

 The results of this study support the validity of Gamma et al.

observations. The reuse of abstract programming artefacts encourages

and supports design exploration, as tested in the context of visual

programming in architecture. To come to these conclusions, three different

aspects were analysed and compared between the test groups (NA, DP,

and CBD): 1) how the DP approach affects the change in design objectives;

2) the explored space of programming solutions; 3) correlational analysis

(‘Algorithmic Modelling’ criteria, ‘Approach characteristics’ and ‘Design

Ideation’ criteria)

 The comparison of design objectives, revealed the fact that the use

of the Design Patterns (DP) and Case-Based Design (CBD) approaches has

a statistically significant effect not only on the design performance, but also

on design ideation: on how designers think and what design goals they

choose to pursue. It was identified that the reuse of abstract and case-

based programming artefacts causes a substantial shift in design objectives

(Exhibit 3.7). Exhibit 3.7 illustrates the distribution of the design objectives

(significantly different between the DP group and the control group (NA)).

The diagram shows results for each test group (shown in percentages) as

well as the results of statistical comparisons (shown as the p-values; note

that the p-values below the 0.05 level indicate statistically significant

differences in results) (See Statistical Analysis section for more detail on

statistical measures). Originally, all test group participants were asked to

describe their goals and intentions for each of their designs (individual

design tasks on day 1 and day 2) in the form of an open ended enquiry:

‘What did you want to achieve/accomplish for this design task?’

 Five most common types of design objectives and intentions were

identified using the feedback from the participants of the algorithmic

3.2 The reuse of abstract solutions in algorithmic design

Page | 201

modelling workshops (listed from most popular to least popular) (Exhibit

3.7):

 to achieve what was originally sketched;

 to explore algorithmic form-making;

 to experiment with parameters;

 to apply the programming components and logic that was

learned;

 to combine a few of existing algorithmic solutions (design

patterns or specific programming algorithms);

 The difference between the test groups in three of these categories

has proved to be statistically significant. Two of those differences can be

regarded as the effect of the DP approach (Exhibit 3.7). Firstly, statistical

testing, shows that the use of both the DP and CBD approaches motivates

designers ‘to explore algorithmic form-making’. The difference manifests

itself mostly on day 1, p – value = 0.014 (comparing all three groups). More

than a half (63%) of the Design Patterns group participants wanted to

explore algorithmic form-making. 63% is significantly more compared to

approximately a quarter (24%) of the No Approach group (p-value =

0.004) and slightly more than a Case-Based Design group 46.8% (p-value

= 0.049) (Exhibit 3.7). On the second day of the workshop statistical testing

did not indicate any statistically significant difference in results between the

three test groups (p-value = 0.263, comparing all three groups). However,

the DP group was still noticeably more motivated ‘to explore’, compared

to the other two groups: NA – 28%, DP – 40%, CBD 23.4% (Exhibit 3.7).

3.2 The reuse of abstract solutions in algorithmic design

Page | 202

Exhibit 3.7. Types of Design Objectives. Comparison between the test groups, [Also refer Appendix B, pages B64,

B67]

 Secondly, the DP group was not only interested in exploration of

algorithmic form-finding modelling techniques, but this group’s

participants were also highly invested in the experimentations with

parameters and alternative variations of their programming algorithms and

output models. On the second day of the workshops, almost half of the

designers reusing abstract solutions (46.7%) reported experimentation with

parameters as one of their design objectives (Exhibit 3.7). This percentage

is considerably higher compared to both control group (12 %) and the CBD

group (8.5%). These results suggest that the use of Design Patterns has a

significant effect on the way designers think, shifting their interest towards

exploration and experimentation.

Design Objective: ‘To experiment with parameters’

Day 1: NA 8 %, DP 20%, CBD 19.1% (p-value All Groups = 0.406)

Day 2: NA 12 %, DP 46.7%, CBD 8.5%

(p-value All Groups = 0.000, p – value DP/NA = 0.006, p-value = 0.000)

3.2 The reuse of abstract solutions in algorithmic design

Page | 203

 That apparent shift in the design objectives had an effect on the

design process and on the design output. The evidence from the analysis

of programming algorithms and comparison of results between the test

groups suggests that on day 1 the group using Design Patterns had a

greater range (variety) of explored space of programming solutions (See

Methodology Section for more detail on evaluation criteria and the

Novelty/Variety point systems). The explored space of algorithmic solutions

was evaluated through two criteria: Novelty (how original/not typical a

solution is on a group level) and Variety (how wide is the range of

implemented programming components/logic) (Exhibit 3.8).

Exhibit 3.8. Algorithmic Modelling. Explored Space of Programming Solutions. Comparison between the groups [Also

refer Appendix B, pages B64-B69]

 The Variety measure of the explored solution space is significantly

greater in the DP group compared to both NA and CBD groups (Exhibit

3.8). The statistically significant difference occurs on day 1, when designers

are still in the early stages of mastering visual programming and using

algorithmic modelling as a design tool. On the second day the difference

3.2 The reuse of abstract solutions in algorithmic design

Page | 204

between the groups evens out, even though the DP group still have the

biggest Variety score average (Exhibit 3.8). These results suggest that in the

initial stages of learning the reuse of abstract programming artefacts helps

designers to increase the explored solution space and produce algorithms

with the wider range of implemented programming logic.

Variety Score of programming algorithms (mean value)

Day 1: NA 12.4, DP 15.3 CBD 12.8

(p-value All Groups = 0.008, NA/DP p-value = 0.009, DP/CBD p-value

= 0.027)

Day 2: NA 16.6, DP 17.6, CBD 15.8 (p-value All Groups = 0.268)

 The Novelty scores of the algorithms, produced by participants of

the NA, DP, and CBD groups, were not significantly different (day 1 p-value

= 0.898, day 2 p-value = 0.171) (Exhibit 3.8). This indicates that on average,

designers off all three test groups produced algorithmic solutions of similar

novelty. Some of those solutions were more typical, containing logic often

repeated by other participants. Some solutions were very unusual,

containing original logic and programming components that were never

used by other participants of the workshops. It should be noted that even

though the statistical testing does not indicate any significant difference in

Novelty scores, on both days the DP group algorithms had the highest

average scores for both Novelty and Variety criteria. Therefore, based on

the evidence that the Variety scores of the DP group are significantly higher

compared to the control and CBD groups, it can be concluded that overall

the DP group had a greater explored space of programming solutions.

3.2 The reuse of abstract solutions in algorithmic design

Page | 205

Exhibit 3.9. Design Patterns group. Correlations between Algorithmic Modelling criteria (Model and Algorithm

Complexity, Explored solution space) and the other criteria. [Also refer Appendix B, pages B71-B82]

3.2 The reuse of abstract solutions in algorithmic design

Page | 206

 The use of the DP approach supports and encourages investigation

and exploration. The correlational study indicates that when the designers,

explore a wider range of programming solutions and produce more

complex algorithms and models, they also find the DP approach to be

more helpful and are more likely to be satisfied with what they were able

to accomplish (Exhibit 3.9). The DP group’s ‘Algorithm Variety score’ on

day 1 has a significant positive correlation with ‘Ability to accomplish what

was wanted’ (r = 0.379) and with how helpful designers found the DP

approach (‘Approach: is helpful’ r = 0.357) (Exhibit 3.9).

 There is strong evidence indicating that the use of patterns for

parametric design encourages complexity. That includes the higher

complexity levels in both programming algorithms and output design

models. Correlational analysis shows that the higher levels of model and

algorithm complexity is regarded as a positive quality by the DP group

participants. ‘Model complexity’ is positively correlated with ‘Satisfaction

with output’ (r = 0.463/r = 0.441) (Exhibit 3.9). This means that participants

of the DP group were likely to be more satisfied when they produced more

complex design models. Moreover ‘Model complexity’ has a positive

correlation with ‘Found a DP solution which fits’ (r = 0.629); and with

‘Approach: helpful’ criteria (r = 0.355/r = 0.385) (Exhibit 3.9). This suggests

that participants who successfully implemented patterns in their own

design solutions were more likely to produce more complex models as

output.

 There is also evidence indicating that when designers reusing

abstract solutions were able to produce more complex algorithms, they

were more content, finding the DP approach to be very useful. ‘Algorithm

complexity’ has a positive correlation with ‘Approach: helpful’ criterion (r =

0.434).

3.2 The reuse of abstract solutions in algorithmic design

Page | 207

 To summarise the effect of the reuse of abstract algorithmic solution

on design exploration:

 The reuse of abstract algorithmic solutions has a significant effect

on design goals and intentions. The group using Design Patterns

approach was significantly more invested in exploration of

algorithmic form-making and experimentation with parameters

compared to other test groups. (Exhibit 3.7 See design objectives)

 The use of Design Patterns helps to increase the explored space of

programming solutions, as indicated by the comparison of the

Variety and Novelty levels of programming solutions (Exhibit 3.8)

This exploration enhancement effect of the reuse of abstract

programming artefacts was previously pointed out by Gamma et

al., who tested patterns in the field of software design (Gamma,

Helm, Johnson, Vlissides, 1993).

 The higher levels of algorithm and model complexity as well as

higher explored space (variety) of programming solutions and are

perceived in a positive light by participants of the DP group. The

higher model and algorithm complexity is also associated with the

higher levels of approach utility (how useful designers find the DP

approach) (Exhibit 3.9). (See Appendix B, pages B56-B63) (Also refer

Section 3.4 Comparison between reuse approaches: abstraction

versus case-based)

The relationship between the level of abstraction of

algorithmic solutions and their reusability

The level of abstraction of the reusable artefacts does not necessarily

correspond to their reusability. The comparison between the test groups

3.2 The reuse of abstract solutions in algorithmic design

Page | 208

reusing algorithmic solutions with different levels of abstraction shows that

the CBD group has reused significantly more case-based programming

solutions, compared to the DP group, which reused abstract solutions

(Design Patterns). The CBD and DP approaches are on the opposite sides

of the abstraction spectrum. The Case-Based Design refers to the reuse of

specific solutions, developed within a narrow design context, and there is

literally no abstraction in these reusable artefacts per se (Kolodner, 1993).

Design Patterns, on the other hand, by definition are abstract solutions,

which refer to a general concept or idea and can be applied to a shared

problem (Woodbury, 2010), (Gamma, Helm, Johnson, Vlissides, 1994).

However, the approaches are not entirely specific (CBD) or abstract (DP).

For example, the online Case-Base platform uses labels (indexes) as a

grouping and search principle, thus this system employs certain aspects of

generalisation (abstraction). Similarly, each Design Pattern has a series of

examples, illustrating the abstract concept, and the use of examples is a

trait of case-based reasoning approach. Nevertheless, overall, Design

Patterns justifiably represent the reuse of abstract parametric solutions,

while a repository of specific programming cases does clearly represent

case-based reasoning.

 The relationship between the levels of abstraction and reusability

has often been discussed in literature. Contrary to the findings of this study,

it was often suggested in literature that an effective reuse technology

suggests the use of high level of abstraction (Krueger, 1992). First of all, it

is argued that it is more efficient to capture ‘big ideas’ instead of covering

every possible design solution (Winn, Calder 2002). Additionally, abstract

solutions have an advantage of being applicable to a large range of design

problems regardless of a particular design platform and technology (Ibid).

That is why it is claimed that abstraction plays an essential role in any reuse

3.2 The reuse of abstract solutions in algorithmic design

Page | 209

method, and reusability and abstraction are strongly related (Krueger,

1992).

 The findings of this study suggest that the claims regarding the

linear relationship between the reusability and abstraction (while in theory

being very sound) might not necessarily be true in practice. Comparison

between the amount of the reused programming artefacts of the DP and

CBD groups show that, a systematically organised and reasonably large

case-base of specific (not abstract) algorithmic solutions can provide

means for an efficient reuse method. It also shows that the high level of

abstraction of the reusable artefacts does not automatically ensure their

high reusability. It should be noted that the use of Design Patterns (DP

group) and the use the Case-Based solutions (CBD group) was highly

encouraged, but not strictly compulsory. Designers of both test groups

were free to decide for themselves whether to reuse the respective

DP/CBD solutions in their designs or to create their programming

algorithms from scratch.

 Prior to the design tasks, participants of the DP group were

explained the ‘why’, ‘when’, and ‘how’ of each Design Pattern; went

through the step-by-step tutorials of the corresponding examples; and

were provided with the print-outs describing and illustrating the patterns

(See Methodology Section for more detail regarding the experimental set-

up). It was also suggested to participants that they should give it a try, and

use patterns as thinking and working design tools (Woodbury, 2010),

because it would help them with the development of their design solutions.

Yet, to use or not to use patterns was entirely up to designers. The CBD

group participants were given the access to the online case-base of

algorithmic solutions; and were shown how to use the tag search (case

selection based on the assigned labels).

3.2 The reuse of abstract solutions in algorithmic design

Page | 210

Exhibit 3.10 Reusability of abstract and case-based solutions [Also refer Appendix B, pages B64, B65]

 Exhibit 3.10 illustrates that 70% of the DP group participants (on

day 1) and 66.7% (on day 2) reported that they used a Design Pattern (or

several patterns) in their algorithmic design solutions, while working on

their individual design tasks (See Methodology Section for more detail).

‘The use of a DP solution’ implies that participants have either 1) explicitly

identified the name of at least one of the thirteen patterns for parametric

design (Ibid), or 2) that they have described a pattern using their own

words. In some cases, instead of using the actual pattern names, such as

‘Jig’, ‘Projection’, or ‘Point Collection’ participants used words describing:

 design’s geometry, such as ‘Spiral’ (which can be referred back to a

‘Spiral’ example of the ‘Increment’ pattern) (Woodbury, 2010);

 modelling actions/programming components, such as ‘Project’ and

‘Select’ (which are not strictly speaking the patterns names but they

could potentially be interpreted as corresponding, ‘Projection’, and

‘Selector’ patterns);

 in some cases participants of the DP group substituted patterns with

such terms as: ‘Panelling’ (which can potentially be traced back to

the ‘Place Holder’ pattern), ‘Cloud of points’ (‘Point Collection’

pattern), ‘Gradual Repetition’ (‘Increment’ pattern), or other

3.2 The reuse of abstract solutions in algorithmic design

Page | 211

descriptions some of which still could be traced back to the original

Design Patterns: ‘Reiterating pattern’, ‘Twists projecting up’,

‘Perforation’, ‘Lift surfaces’, ‘Size based on the distance’, ‘Weave’,

‘Attractor’ etc.

 A part of these descriptions could be easily referred to the original

pattern names, for example: ‘Project’ to ‘Projector’ pattern or ‘Size based

on the distance’/‘Attractor’ to ‘Reactor’ pattern. These cases were counted

as ‘Used as a DP solution’ (Exhibit 3.10). With other descriptions it was

harder (next to impossible) to affirmatively trace back to one of the thirteen

Design Patterns, such for example as: ‘Weave’, ‘Rotate’ or ‘Perforation’.

These cases were not counted as the Design Pattern use.

At times, it was almost as if designers have identified (invented) their own

generalised solutions and reported them as canon patterns.

 The final figures in Exhibit 3.10 show the total percentage of the DP

group participants who reused patterns in their own designs: 70% on day

1, 66.7% on day 2. This includes cases when participants have identified

original pattern names: 56.6% on day 1, 60% on day 2. The total

percentage also includes cases which have been traced back to the original

Design Patterns: 13.3% on day 1, 6.6% on day 2 (such cases as: Select’ to

Selector patterns, ‘Project’ to Projection Pattern etc.). This means that only

56.6-60% (slightly more than a half) of the participants reusing abstract

algorithmic solutions reported the use patterns, using their proper (canon)

names. Other 6.6%-13.3% of the DP group participants (most probably)

did use Design Patterns in their designs (as they described the core idea

3.2 The reuse of abstract solutions in algorithmic design

Page | 212

corresponding to a particular pattern), but they failed to recall a proper

pattern name.

Reusability: ‘Used a DP/CBD solution in my own design’

Day 1 DP 70% CBD 76.6% (p-value = 0.350)

Day 2 DP 66.7% CBD 87.2% (p-value = 0.031)

 On day 1, the total percentage of the reuse of abstract solutions is

very similar to the percentage of the reused case-based solutions (Exhibit

3.10). However, on day 2, the CBD group participants have reused

significantly more (case-based) solutions (87.2%) compared to the DP

group, reusing abstract algorithms (66.7%). It should be noted that a

number of the CBD group participants have reused parts of algorithms that

were shown during tutorials: 2.2% on day 1, 6.4% on day 2. Even though

these reused solutions were not taken from the online case-base (CBD

repository), technically speaking these solutions were still reused cases.

They involved both the actual reuse of the existing algorithms and case-

based reasoning. That is why the 2.2%-6.4% were included in the total

percentage of the ‘Used a CBD solution’ criterion.

 The comparison between the reused abstract and case-based

solutions indicates that participants of the CBD group were reusing

programming solutions more often than participants of the DP group. This

might imply that specific programming artefacts can be as reusable and in

some cases even more reusable than abstract programming artefacts.

Therefore, in contrast the opinion expressed in literature stating that the

effective reuse technology implies the use of high level of abstraction

(Krueger, 1992), (Winn, Calder 2002), the evidence from this comparison

indicates that the higher level of abstraction does not automatically imply

the higher reusability of solutions.

3.3 The reuse of case-based solutions in algorithmic design

Page | 213

3.3 The reuse of case-based solutions in

algorithmic design

Case-based reasoning as a method to support

algorithmic design in architecture

 The reuse of Case-Based programming solutions (Case-Based

Design (CBD)) proved its capacity to be a helpful method aiding the use

of algorithmic design tools in architecture. The use of case-based

reasoning is often discussed in the literature on both software

programming and architectural design. It is claimed to be a highly effective

method to solve design problems, and is argued that solutions from past

design cases help architects think by analogy and solve their current

design problems (Pearce, 1992) (Riesbeck, Schank, 2013). The results of

this study indicate that the CBD approach (the use of case-based

reasoning in design) can be as effective when applied in the context of

parametric design in architecture, supporting the arguments that it is a

promising ‘intelligent design support’ method (Heylighen, Neuckermans,

2001). Participants who used the CBD approach as a part of their

algorithmic modelling process reported that they found it to be most

helpful.

 Both the DP and CBD test groups reported a median answer of 4

('Agree') when responding to the question about the utility of the

approaches (how helpful). This means that the majority of designers in

both test groups ‘agree’ that the respective approaches are helpful.

Therefore it can be stated that designers who learn and use algorithmic

modelling for their designs find both reuse approaches to be helpful.

When comparing the degree of utility of the approach, the reuse of

programming solutions from the Case-Base is identified to be the more

3.3 The reuse of case-based solutions in algorithmic design

Page | 214

helpful medium to learn and use algorithmic design (as reported/judged

by participants).

 Statistical analysis of these means shows that the CBD group

reported the Case-Based Design approach to be more helpful compared

to the DP group. The 0.007 p-value level means that there is 99.3% chance

that the difference in results is statistically significant.

On a five point scale from 1 Strongly Disagree to 5 Strongly Agree

I find the use of the DP/CBD approach to be a helpful medium to learn

and use algorithmic modelling’ (Mean, std. deviation):

CBD 4.30 ± 0.507

DP 3.93 ± 0.640,

p-value = 0.007;

 Outside the architectural design context, the CBD problem solving

paradigm (design support approaches based on the reuse of previous

experiences/case-based reasoning) is widely used in computer research

and practice such as: software engineering, artificial intelligence etc. In

programming, case-based reasoning has proven its high efficiency as a

tool for design support, helping software developers to find solutions for

their current problems by reusing past experiences (Maher, de Silva Garza,

1997) (Riesbeck, Schank, 2013). In design fields dealing with geometry,

such as design, engineering and architecture, it has also been suggested

that the CBD approach is a promising method (Hua, Fairings, Smith, 1996).

Implementation of Case-Based Design approaches in architectural

education (using non-computational design methods) has shown that

students benefit from the inclusion of case-based reasoning (exposure to

cases) in the design process (Heylighen, Verstijnen, 2000).

3.3 The reuse of case-based solutions in algorithmic design

Page | 215

 One of the objectives of this study was to test the CBD approach in

the context of algorithmic modelling in architecture, which equally relates

to the fields of computer programming and architectural design. Results

of this research suggest that the use of Case-Based Design can be as

helpful for learning and using visual programming in architecture. This is

some of the feedback illustrating participants’ experience with the use of

the online Case-Base of algorithmic solutions (CBD approach) and the

important role of the examples/thinking by analogy:

 ‘I was introduced to design processes through following the

examples shown and then referring to them to help me apply them

to my own designs, this design approach allows a good reference

and understanding of how Grasshopper works’;

 ‘It is extremely helpful to have so many examples’ (commenting on

the role of design-cases);

 ‘It allowed me to see how it was supposed to be done’ (solving

problems by analogy/learning from examples)

 ‘The way we were introduced to the parametric modelling was the

best and quickest way for me to learn the programming’

 ‘The examples were fantastic, so easy to follow and understand.’

 It is hard to overestimate the role of examples in education and

design practice. This research shows that examples play a vital role in both

understanding the theory and methods of visual programming, as well as

in practical implementation of the technology. Even though the Design

Patterns (DP) and the control (No Approach (NA)) group participants did

not have the same access as CBD group participants to a systematically

organised case-base of programming algorithms, they (in one way or

another) still utilised case-based reasoning. For example, when developing

their own algorithmic designs a number of the DP group participants were

3.3 The reuse of case-based solutions in algorithmic design

Page | 216

more inclined to reuse a specific example (programming algorithm)

illustrating the pattern rather than a pattern itself. In all the test groups

some of participants chose to reuse parts of the algorithms shown during

tutorials, others tried to find specific solutions online. In practice, it is

almost impossible to completely avoid the use of examples (specific

design solutions) when learning/implementing a new design approach or

technology. Therefore, acknowledging that both reuse approaches utilise

examples/case-based reasoning, the challenge (of this research) is to

determine whether it is more effective to focus on the reuse of generalised

solutions (abstractions) or the reuse of specific examples. In the DP

approach the balance is shifted towards the maximal use of abstract

solutions, while the CBD approach concentrates on the systematic reuse

of specific examples.

 Although, according to participants’ opinion, Design Patterns were

less useful than the Case-Base of algorithmic solutions, in some aspects

the use of generalised (abstract) solutions had a better effect on the

designers’ modelling performance, such as their ability to overcome

programming difficulties and the increase of the explored solution space.

Even though patterns (abstract solutions), unlike specific algorithms from

the case-base, did not prove to be as easy to reuse as claimed (Winn,

Calder 2002), (Krueger, 1992) (See ‘The relationship between the level of

abstraction of algorithmic solutions and their reusability’ section). Perhaps,

the biggest strength of the DP approach was to give participants a

broader and more structured understanding of a ‘big picture’ of

programming methods, thus helping designers to put their mind on

‘when’, ‘why’ and ‘how in principle’ to use this newly acquired technology.

This higher (abstracted) level of understanding might have been the

reason why the novice users, who are familiar with Design Patterns, are

able to apply programming logic more effectively (and consequently have

3.3 The reuse of case-based solutions in algorithmic design

Page | 217

significantly less programming difficulties). Abstractions gave participants

an opportunity to ‘zoom out’ from particular details and see/understand

the underlying logic, which seems to be especially important for

programming novices. That is why the use of abstract solutions, such as

patterns for parametric design (Woodbury, 2010), seems likely to be more

useful for educational purposes: teaching and learning of algorithmic

modelling tools (compared to the CBD approach).

Relationship between examples and abstractions

 There are two distinct positions identified in regard to the role of

examples and abstractions (patterns). One position states that patterns’

examples can be seen as elements of secondary value, while the

importance is stressed on the use of abstractions (patterns) (Woodbury,

2010). The other position argues that in practice this viewpoint is not valid,

because when using pattern languages, users tend to search for specific

solutions rather than rely completely on abstractions (Dearden, Finlay,

Allgar, McManus, 2002). The findings of this study support the arguments

claiming that examples are as important as abstractions (Ibid). The

participants in the DP group reported that examples played an important

role in their design processes. It seems likely therefore that the abstract

approach could benefit from the more systematic approach of case based

reasoning to the provision and classification of examples.

 The feedback from the participants, who took part in this

experimental study, indicate that it is the case-based reasoning (thinking

by analogy) that designers find to be the most helpful (based on the

evaluation of the approach utility and participants’ comments). This is very

similar to analyses of the role of examples in Alexander’s design pattern

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus

3.3 The reuse of case-based solutions in algorithmic design

Page | 218

language. Hua et al. claim that in practice it is extremely hard to identify

the general principles which outline an abstraction. It is pointed out that,

while Alexander attempted to interpret and organise design knowledge in

an abstract way, what he ended up doing had little to do with

generalisation, because each pattern actually refers to a set of specific

buildings within specific environments (Hua, Fairings, Smith, 1996).

 These arguments also seem valid in regards to Woodbury’s design

patterns. The Thirteen Patterns for Parametric Design are defined as a

method representing the reuse of abstract solutions in design and

architecture (a generalised solution which can be applied to a shared

problem). Woodbury states that in order to use design patterns

successfully it is essential to think with abstraction. The primary role is

given to the abstraction which omits ‘inessential details’ (Woodbury, 2010).

However, in practice the book ‘Elements of Parametric Design’ (which

describes the patterns) is mostly comprised of carefully selected and

systematically organised sets of specific examples (pattern samples). On

one hand, these examples can be viewed as elements of secondary value,

serving as a mere illustration and explanation of a general concept or idea

(pattern). On the other hand, it can be argued that in practice it is the

examples that make the whole method work. If we take all the ‘inessential

details’/examples away, the patterns will most likely be hard (or next to

impossible) to communicate and explain to other designers. If we take

away the pattern’s identification and description (Name, What, When,

Why, How) and leave only the subsets of examples, it is still highly possible

that designers would be able to understand and reuse their overall logic.

 Supporting this general conclusion is the most common response

of the DP group participants to the question of how to improve the

method: 'more examples'. It seems that, even when using the abstract

3.3 The reuse of case-based solutions in algorithmic design

Page | 219

constructs as a primary reuse method, it is important to acknowledge and

address the significance of examples (and the reuse of specific cases). This

study shows that in practice, the actual examples (case-based reasoning)

provide a necessary ‘reference’* and help designers to figure out how

things are ‘supposed to be done’* and ‘how to apply them’* to their own

designs (*participants’ opinions regarding the role of examples).

The use of CBD as a method to reduce programming

barriers

The reuse of specific examples (CBD approach) did not prove to be as

effective as the DP method in aiding users to overcome programming

difficulties, especially during the initial stages of learning and implementing

algorithmic modelling techniques.

On a five point scale, with 1- ‘Never‘, 2 - ’1-3 times’, 3 – ‘4-6 times’, 4 -

‘4-6 times’, 5 – ’10 times or more’;

‘How often have you come across insurmountable programming

difficulties, while developing your design model’,

Day 1 (mean, std. deviation): NA 2.88 ± 1.053, CBD 2.91 ± 1.039, p-

value = 0.981;

Day 2 (mean, std. deviation): NA 2.71 ± 0.890, CBD 2.53 ± 0.776, p-

value = 0.467;

 The data suggests that, initially, (on the first workshop day) the CBD

group had even more problems than the control group. However, when

designers gained more experience with algorithmic modelling and the use

of the case-base (on day 2) the CBD group has improved its ability to

overcome programming difficulties (from day 1 median = 3: ‘4-6

3.3 The reuse of case-based solutions in algorithmic design

Page | 220

problems’ to day 2 median = 2: ‘1-3 problems’), while the control group

failed to improve and remained having on average ‘4-6 problems’ on both

days. Statistical analysis (p-value levels) indicates that the differences in

programming difficulties between the CBD and control groups are not

statistically significant. Therefore there is no solid statistical evidence

supporting the idea that the reuse of Case-Based algorithmic solutions is

an effective method, which provides a way to easily generate solutions

(Kolodner, 1991) or that it helps users to reduce programming barriers,

even though the CBD group has improved its performance on the second

day and had on average less problems compared to the control group

(NA).

 One of the significant (statistically determined) positive effects of

the CBD approach was its capability to substantially reduce problems

associated with the implementation of programming components (use

barriers). The CBD group had two times less problems with the practical

implementation of components compared to the control group (NA) and

significantly less problems compared to the DP group.

Syntax Problems/Problems with implementation of functions and

components:

Day 1: NA 44.8%/DP 33.3%/CBD 21.3% (p-value = 0.049/comparing all

groups)

Day 2: NA 48.9%/DP 43.3%/CBD 23.4% (p-value = 0.029/comparing all

groups)

 These results can be easily explained, because the use of actual

solutions (case-based reasoning) gives designers an opportunity to

understand ‘how exactly’ a certain programming algorithm (logic) can be

done. The ‘use barriers’ (knowing what to use, but not knowing how to

3.3 The reuse of case-based solutions in algorithmic design

Page | 221

use it) (Ko, Myers and Aung, 2004) are the second most common type of

programming difficulties among the participants, topped only by the

difficulties with the ‘idea-to-algorithm translation’ (I do not know what I

want a computer to do). The use (implementation) barriers often occurred

straight after designers figured out ‘how in principle’ an algorithm can be

built. In theory, both abstract and case-based solutions can help designers

to translate their design idea into a programming logic: Design Patterns

by providing an abstract framework (construct) defining the core

principles of a new solution; Case-Based Designs by giving an existing

example, which a designer can reuse thinking by analogy. The advantage

of the CBD approach is that it also can (and, as the results of this study

show, does) help designers with practical implementation of these

algorithmic solutions (‘how exactly’ to build a certain programming

algorithm). Whereas the DP approach, by its definition, does not provide

this type of information, because patterns are abstract and the sole role

of samples is to illustrate this abstract idea.

 The correlation analysis shows that the CBD group participants

were not consistent in their ability to overcome programming difficulties

on day one and day two. Exhibit 3.11 illustrates that ‘Programming

Difficulties’ on day 1/day 2, and ‘Change in design idea due to

programming difficulties’ on day 1/day 2 do not have any significant

correlation. That means some participants could have faced a considerable

number of insurmountable programming barriers on the first day, but on

the second day they managed to perform much better and have only a

few problems that they could not solve on their own. It also means that

some of those who used the CBD approach and did well on the first day,

on the second day faced considerably more difficulties. This might imply

that the use of CBD can work really well for some designers (certain design

problems/cases), but for other designers (other design problems) the

3.3 The reuse of case-based solutions in algorithmic design

Page | 222

reuse of case-based algorithms can cause additional difficulties, instead of

reducing them. By comparison, participants of both the DP and control

(NA) groups were likely to perform similarly on both days: either having a

lot of programming difficulties on day 1 and day 2, or being able to

effectively overcome programming difficulties on both days. (See ‘The

reuse of abstract constructs as a method to reduce complexity and aid

design performance’ section). ‘Programming Difficulties’ on day 1/day 2

have statistically significant correlations for both Design Patterns and

control group participants.

 Exhibit 3.11 also illustrates that the ability to overcome

programming barriers of the CBD group has almost no correlation with

the participants’ feedback regarding the use of the approach (See the

description below the diagram). For example: on both days the

programming difficulties criteria (Exhibit 3.11 ‘Programming difficulties:

how often’, ‘Changed design due to programming difficulties’ – red colour

blocks) had no significant correlation with how intuitive, easy to use and

helpful participants found the CBD approach (Exhibit 3.11 ‘Approach:

helpful’, ‘Approach: easy to implement’, ‘Approach: intuitive’, grey colour

blocks with no connection wires to the red blocks). Unlike the DP group

participants, who were likely to have substantially less difficulties when they

effectively used the Design Patterns, the CBD group participants have

shown almost no dependent relationship between their ability to

overcome programming barriers and their ability to find and reuse the

algorithms from the case-base.

3.3 The reuse of case-based solutions in algorithmic design

Page | 223

Exhibit 3.11. Case-Based Design group. Correlations between ‘Programming Difficulties’/‘Change in design idea due

to programming difficulties’ and the other criteria. [Also refer Appendix B, pages B71-B82]

3.3 The reuse of case-based solutions in algorithmic design

Page | 224

 It is hard to judge whether the non-consistent design performance

(ability to overcome programming barriers on day one and day two) is a

positive or negative influence of the approach. On one hand, it could be

a positive thing that the use of the CBD approach can help designers to

solve their current design problems regardless of how well they performed

in the past. On the other hand, there is a chance that the reuse of the

algorithmic solutions from the case-base can cause additional difficulties

for those designers who previously managed to effectively use algorithmic

design. This contradictory effect of the CBD approach can be therefore

regarded as a potential weakness of the reuse method.

Case-based design is intuitive and easy-to-use

approach

Case-Based Design proves to be an intuitive and easy-to-use support

medium for algorithmic modelling in architecture. The surveys show that

designers find the use of the case-base (online repository of programming

solutions) to be very easy-to-use and understand. Statistical comparison

between the results of the DP and CBD groups indicates that the reuse of

specific solutions is significantly more intuitive than the use of abstractions

(Design Patterns) (Exhibit 3.12).

On a five point scale from 1 – Strongly Disagree to 5 – Strongly Agree:

The use of the approach is intuitive’; (Mean, std. deviation)

DP 3.37 ± 0.718,

CBD group 3.81 ± 0.851,

p-value 0.021;

3.3 The reuse of case-based solutions in algorithmic design

Page | 225

 The median value (middle number in a range of values) for the

intuitiveness of the DP group is 3 - ‘Neither Agree nor Disagree’, the CBD

median is 4 - ‘Agree’. This means that on average designers who used

Design Patterns do not find the use of algorithmic abstractions to come

too naturally (easily) to them. The group that used Case-Based Design, on

the other hand, tend to ‘agree’ that the reuse of case-based solutions via

online repository is intuitive. The p-value 0.021 indicates that the difference

in means between the DP and CBD groups is statistically significant (as it is

below the 0.05 threshold) (Exhibit 3.12).

 These results were anticipated prior to conducting the experimental

stage testing the DP and CBD approaches. The CBD approach was

expected to be highly intuitive (easy to understand). It is often discussed

(Carbonell, 1986) (Riesbeck, Schank, 2013) that problem-solving by

analogy (the use of experiences from the past when solving new problems)

is a default and natural way for people to solve problems. It is also pointed

out that it is usually much easier to learn from a specific problem solving

algorithm, than to ‘generalise from it’ (Aamodt, Plaza, 1994). Abstractions

(Design Patterns) are in fact generalised solutions, and the use of abstract

concepts often requires more intellectual effort (abstract reasoning) than

the use of past cases. This happens because instinctively, humans tend to

rely on specific, previously encountered situations when solving new

problems (Ross, 1989), (Schank 1982), (Anderson, 2013). Reasoning by

reusing past cases (case-based reasoning/CBD approach) appears to be a

natural very intuitive and powerful method to solve problems for designers

(Aamodt, Plaza, 1994) (Riesbeck, Schank, 2013).

3.3 The reuse of case-based solutions in algorithmic design

Page | 226

Exhibit 3.12. Approach characteristics criteria. How easy to implement, helpful and intuitive the DP and CBD

approaches are. [Also refer Appendix B, pages B64-B65, B68]

 It seems likely that this is why it is easier to understand and

implement the CBD approach compared to the DP approach (Exhibit 3.12).

Participants of the CBD and DP groups reported:

On a five point scale from 1 – Strongly Disagree to 5 – Strongly Agree:

It was easy to implement the Design Patterns/Case-Base of algorithmic

solutions in my own design’ (day 1 and day 2 design assignments)

(mean, std. deviation)

Day 1: DP 2.90 ± 0.885/CBD 3.66 ± 0.668, p-value = 0.000;

Day 2: DP 3.03 ± 0.809/CBD 3.77 ± 0.666, p-value = 0.000;

 Both p-values (0.000) suggest that statistically there is almost 100%

chance that the difference in results of the DP and CBD groups did not

happen by chance. This empirical evidence indicates that the use of

specific algorithmic solutions is considerably easier for designers then the

use of abstractions (Design Patterns).

3.3 The reuse of case-based solutions in algorithmic design

Page | 227

 The median value for the DP group (It was easy to implement the

approach) on both days is 3 ‘Neither Agree nor Disagree’’; the CBD median

is 4 ‘Agree’. Exhibit 3.12 illustrates that the results for: how easy it was to

understand the approach (‘Approach: is intuitive’), the ease of approach

implementation (‘Approach: easy to implement’) and the approach

usefulness (‘Approach: helpful’) follow a similar pattern. The CBD group

mean value is always higher than the DP group mean value (Exhibit 3.12).

It seems likely that the level of approach intuitiveness influences the ease

of its implementation and consequently effects its usefulness (how helpful

the approach is, as reported by participants). The CBD approach is easier

to understand, since the use of case-based reasoning is naturally more

intuitive for people than generalisation (abstraction) (Aamodt, Plaza, 1994).

 It can be assumed that the use of abstract algorithmic solutions

requires designers and architects to make a bigger intellectual effort

(compared to the CBD approach) in order to use Design Patterns as

‘thinking and working tools’ (Woodbury, 2010). The correlational study

shows that the reported intuitiveness of the DP and CBD approaches and

their ease of implementation have a positive dependent relationship with

‘how helpful’ participants find each of these approaches (See Statistical

Analysis section). Dependent relationship means that the two criteria have

a statistically significant correlation. Positive correlation means that when

one of the criteria increases the other (dependent) criteria is likely to

increase as well and vice versa.

 For example, the correlations to the answer to ‘Approach is helpful’

and the responses to ‘Approach is helpful’/ easy to implement’ were:

3.3 The reuse of case-based solutions in algorithmic design

Page | 228

(Pearson's correlation coefficient - r):

 ‘Approach: is helpful’ with ‘Approach: is intuitive’’

DP group r = 0.355, CBD group r = 0.438;

Approach: is helpful’ with ‘Approach: is easy to implement’

DP group r = 0.397, CBD group r = 0.434;

 It seems likely that in algorithmic architectural design the reuse of

case-based programming solutions is considerably more intuitive and

easy-to-use compared to the reuse of abstract solutions (pattern

approach). Those participants who found the CBD approach to be highly

intuitive and easy to use, also found it to be more helpful. It should be

noted, however, that this ‘helpfulness’ of the approach was reported by

participants themselves; it was not determined by the measured effect of

the approaches (such criteria as: the ability to overcome programming

barriers, explored solution space, ability to accomplish what was wanted,

etc. (See methodology section)).

Relationship between participants’ experience with the

CBD approach and their design performance

The correlational study helps to understand and interpret the dependent

relationship (correlation) between the use of case-based programming

solutions (Case-Based Design approach) and participants’ design

performance (measured effect of the approach), such as their ability to

realise their original idea or satisfaction with output. Correlation is a

statistical relation between two variables. For example, in all test groups the

3.3 The reuse of case-based solutions in algorithmic design

Page | 229

systematic changes in the value of ‘Ability to realise original design idea’

are accompanied by the systematic changes in the ‘Ability to accomplish

what was wanted’ (correlation coefficient (r) equals 0.519) (See Statistical

Analysis section for more details). Correlations can be ‘positive’: mutual

relationship between two variables, when the value of one variable

increases the other is likely to increase as well; or they can be ‘negative’:

reciprocal relationship between two variables, when the value of one

variable increases the other is likely to decrease. For example, when looking

at the whole test population (participants of all groups/on day 2), the

‘Ability to realise original design idea’ has a negative correlation with the

‘Change in design: due to programming difficulties’ (correlation coefficient

(r) equals - 0.389), meaning that when one of these variables increases the

other is likely to decrease.

 Exhibit 3.13 illustrates (statistically significant) correlations inside the

CBD group (See Statistical Analysis section for more details). For example,

the ‘Ability to accomplish what was wanted’ and ‘Satisfaction with output’

depend on (are positively correlated with):

- Participants’ ability to find a CBD solution that they can reuse in their

own designs (‘Found a DP/CBD solution which fits’) (Exhibit 3.13);

- How easy participants find the implementation of the CBD

approach (‘Approach: easy to implement’) (Exhibit 3.13);

- How helpful the CBD approach is (‘Approach: is helpful’) (Exhibit

3.13);

- Participants who find an interesting CBD solution (and change their

original design because of this discovered solution) are more

inclined to use parametric design in future (‘Changed design

because discovered a better solution’/‘Plan to use parametric

design in future’) (Exhibit 3.13).

3.3 The reuse of case-based solutions in algorithmic design

Page | 230

Exhibit 3.13. Case-Based Design group. Correlations between ‘Ability to realise original design idea’, ‘Ability to

accomplish what was wanted’, ‘Satisfaction with output’, ‘Plan to use algorithmic design in future’ (Design

Performance/Satisfaction) and the other criteria. [Also refer Appendix B, pages B71-B82]

3.3 The reuse of case-based solutions in algorithmic design

Page | 231

 These results suggest that participants’ experience with the CBD

approach is positively correlated with their design performance and

satisfaction with output. Thus, those participants who could better

understand and successfully use the Case-Based Design approach were

also more capable to accomplish their design objectives and be more

satisfied with their output designs.

 When CBD group participants could find a programming solution

in the case-base that they chose to reuse in their own designs, they were

more likely to have a better design performance (Exhibit 3.13).

Pearson’s correlation coefficient (r)

‘Found a CBD solution which fits’ is correlated with ‘Satisfaction with

output’

Day 1: r = 0.495, Day 2 r = 0.372;

‘Found a CBD solution which fits’ is correlated with ‘Ability to accomplish

what was wanted’

Day 2 r = 0.604

 The correlation coefficients (r) 0.495/0.372/0.604 indicate a positive

medium-to-strong dependency between each pair of criteria (See

Statistical Analysis section for more details). When one of the criteria

increases the other criterion is likely to increase as well. For example, when

designers are able to select a fitting reusable solution in the repository

(case-base), they are more likely to accomplish their design objectives and

be more satisfied with the design outcome. It also suggests that when

participants, using the CBD approach, are not able to find a solution (case)

3.3 The reuse of case-based solutions in algorithmic design

Page | 232

they want to reuse, they are less likely to accomplish the intended

algorithmic design and are less likely to be happy with the output.

 The challenge of the CBD system in this respect is to contain

enough programming solutions, covering as many design problems as

possible, and to be structured (organised/indexed) in such a way that the

case selection process is intuitive and effective. The CBD system used in

this study contained over 150 programming solutions. 76.6% of

participants on day 1/87.2% of participants on day 2 reported that they

successfully located and reused solutions from the repository. These CBD

group percentages are significantly higher compared to the DP group who

implemented Design Patterns in 70%/66.7% of cases (See ‘The Relationship

between the Level of Abstraction of Parametric Solutions and Their

Reusability’ Section).

 These results indicate that the amount and range of programming

solutions used in the CBD repository was sufficient to provide a base to test

the CBD approach. In practice, it is next to impossible to cover all the

possible solutions to all future design problems. A case in Case-Based

Design can be viewed in different ways. It can be seen as a resulting

solution (particular programming algorithm), or as a record of a method

suggesting how to solve a problem (design strategy), or it could be seen

as a lesson (design knowledge). In all of these definitions the purpose of a

case in CBD is to help designers and architects to solve a similar design

problem (Maher, de Silva Garza, 1997). It seems probable that the larger

systematically indexed repository (containing thousands of cases) can

provide a better design support, simply because it can cover more design

cases. It seems reasonable to assume that when designers have more cases

to select from they are more likely to be able to find what they are

searching for, and (as this research shows) designers who can find a

3.3 The reuse of case-based solutions in algorithmic design

Page | 233

reusable solution that fits their design idea are likely to have a better design

performance (‘Ability to accomplish what was wanted’ and ‘Satisfaction

with output’) (Exhibit 3.13).

 Exhibit 3.13 also illustrates that ‘Ability to accomplish what was

wanted’ and ‘Satisfaction with output’ are positively correlated with the

ease of the approach implementation and how helpful participants find the

CBD approach. These further suggest that participants’ design

performance is connected to their ability to use the Case-Based Design

approach.

Pearson’s correlation coefficient (r)

‘Approach: is easy to implement’’ is correlated with ‘Satisfaction with

output’

Day 1: r = 0.495/0.409, Day 2 r = 0.415

‘Approach: easy to implement’’ is correlated with ‘Ability to accomplish

what was wanted’

Day 1: r = 0.627/0.408, Day 2 r = 0.358)

‘Approach: is helpful’ is correlated with ‘Satisfaction with output’

Day 1: r = 0.357

 This dependent relationship between the criteria suggests that

those designers (architects) who were able to understand and easily

implement the CBD approach (use the repository of parametric solutions)

were more likely to accomplish their design objectives and produce better*

designs (*as judged by participants themselves). However, it should be

noted that, even though there is a significant statistical dependency

3.3 The reuse of case-based solutions in algorithmic design

Page | 234

(positive correlation) between the reuse of programming solutions and

participants’ design performance, this dependency can be interpreted in

different ways. The first interpretation could be that the reuse of case-

based programming solutions helps designers to use algorithmic

modelling systems and be more capable of realising their design ideas

(Exhibit 3.13). This interpretation is supported by the arguments that case-

based reasoning is an effective method, helping people to solve problems

by reusing previous solutions and experiences (Kolodner, 1991). Therefore,

it can be reasoned that it was the successful use of the CBD approach that

affected the design performance (in this case the design performance is

affected by the use of the CBD approach). The second interpretation could

be that there are people who are naturally (or due to previous experiences)

more inclined to understand and use programming languages. These

people might be more capable of mastering algorithmic design systems to

realise their design ideas (‘Ability to accomplish what was wanted’),

therefore producing more satisfactory design outcomes (‘Satisfaction with

output’), and they also could be more capable of case-based reasoning in

algorithmic design: finding the CBD approach helpful and easy-to-use.

Regardless of the interpretations there is a dependent relationship

(statistically significant correlation) between the reuse of programming

solutions (CBD approach) and design performance. When one improves

the other is likely to improve as well and vice versa (Exhibit 3.13).

The reuse of case-based algorithmic solutions induces

more focused reasoning

Comparison of the design objectives in each test group indicates that the

use of Case-Based Design (CBD) in architecture (using algorithmic

3.3 The reuse of case-based solutions in algorithmic design

Page | 235

modelling tools) induces more focused design reasoning and less design

experimentation (and potentially less innovative designs) (See ‘The Reuse

of Abstract Parametric Solutions Helps to Explore and Experiment’ section).

These findings correspond to the similar conclusions expressed by Peace

regarding the use of case-based reasoning (CBR) in design, stating that

CBR involves focused thinking, which is often applied to a narrow context

of a design problem (Pearce, 1992). Statistical analysis of the experimental

results shows that the use of the Case-Based Design approach affects the

way participants reason and develop their designs. Comparisons between

the three test groups shows that the CBD group is significantly more

focused on realisation of the initial design ideas (significantly different from

the control group (NA) and the Design Patterns group (DP) on the second

day of the workshop) (Exhibit 3.14, See the Methodology Section).

Exhibit 3.14. Design Objective criteria. Differences between the CBD and control (NA) groups. [Also refer Appendix

B, pages B64, B67]

 On the second day of the workshop, when designers gained more

experience with visual programming and the use of the CBD system

(online repository of programming solutions) the shift in design objectives

becomes evident and statistically significant (Exhibit 3.14). Designers using

3.3 The reuse of case-based solutions in algorithmic design

Page | 236

the CBD approach were more intent on realising their original design

concepts, compared to both the DP and control groups. Statistical

comparison of the objective ‘To achieve what I originally sketched’’

between all three groups gives the p-value, which equals 0.012.

Design Objective: ‘To achieve what I originally sketched’

Day 1: NA 40%/DP 56.7%/CBD 51% (p-value ‘All Groups’ = 0.460);

Day 2: NA 48%/DP 60%/CBD 80.8% (p-value ‘All Groups’ = 0.012);

 This level (0.012) is below the 0.05 level of significance, meaning

that, statistically speaking, there is at least a 98.8% chance that the

difference in the results did not happen by chance (See Statistical Analysis

Section). Further (Post Hoc) comparisons between each pair of test groups

show that the difference between the control group (NA) and the Design

Pattern group (DP) is not significant (p value DP/NA = 0.268. That suggests

that a similar percent of the DP and control group participants were intent

on realising their original design idea (Exhibit 3.14). The Post Hoc

comparison also shows that the Case-Based Design group was significantly

more focused on realising their original design idea compared to both the

DP and control (NA) groups. The CBD/DP and CBD/NA p-values are both

below the 0.05 level (significance level) (p-value DP/CBD = 0.045, p-value

CBD/NA = 0.005), indicating significant difference in results (Exhibit 3.14).

These findings suggest that the reuse of case-based parametric solutions

in architecture induces more focused (narrow) thinking and design

reasoning. The ‘more focused’ thinking and reasoning implies that it is

oriented on the realisation of a particular design concept, rather than an

open-ended design experimentation and exploration (See ‘The Reuse of

Abstract Parametric Solutions Helps to Explore and Experiment’ Section).

3.3 The reuse of case-based solutions in algorithmic design

Page | 237

 Even though in the longer run (second day of the workshop) the

CBD approach induced more focused design thinking, as opposed to

abstract ‘design experimentation’ of the DP group; in the initial stages of

learning (first day of the workshop) the use of the Case-Base also induces

the ‘exploration of algorithmic ways and form making logics’ (Exhibit 3.14).

Note: there is a difference between the ‘design experimentation’ (design

objective: ‘To experiment with parameters/model’) and the ‘exploration’ of

algorithmic form-making (design objective: ‘To explore algorithmic form-

making’). The ‘design experimentation’ refers to the modification of design

the model, such as changing the parameters of the programming

algorithm or changing the programming logic itself to see the how the

model responds (design objective focused on the experiments with the

design model). The ‘exploration’ of algorithmic form-making refers not to

the experiments with the design model itself but to finding out what are

the capabilities and limitations of the algorithmic modelling system (design

objective focused on the exploring technology).

 Both abstract (DP) and case-based (CBD) reuse methods seem to

encourage a more profound investigation of algorithmic design logic and

techniques. ‘To explore algorithmic form-making’ is one of the five most

common categories of design objectives (identified by this study) (See

Methodology Section), which refers to the exploration of the

computational technology, its form-making logic and capacity: what it can

and cannot do (note that it does not refer to the experimentation with the

design output itself).

3.3 The reuse of case-based solutions in algorithmic design

Page | 238

Design Objective ‘To explore algorithmic form-making’

Day 1: NA 24%/DP 63.3%/CBD 46.8%; (p-value ‘All Groups’ = 0.014,)

(p-value DP/CBD = 0.156, p-value DP/ NA = 0.004, p-value CBD/NA =

0.049)

Day 2: NA 28%/DP 40%/CBD 23.4%; (p-value ‘All Groups’ = 0.263)

 These results indicate that on the first day of the workshop both

DP and CBD group participants were more interested in the ‘exploration

of the algorithmic modelling technology (form-making)’ than participants

of the control group (NA) (Exhibit 3.14). The p-value comparing the

percentages of participants who wanted ‘to explore algorithmic form-

making’ between all three test groups equals 0.014, which is below 0.050

level, meaning that results are significantly different. Further comparison

between each pair of test groups shows that the DP (63.3%) and CBD

(46.8%) groups had more or less similar percentages (p-value = 0.156 is

above the significance level). Compared the control group, who only had

24%, both DP and CBD group were more intent to explore the capabilities

of an algorithmic design system (p-value DP/ NA = 0.004, p-value

CBD/NA = 0.049 are both below the 0.050 threshold). This might indicate

that during initial learning stages the reuse of abstract and case-based

solutions encourages designers to explore algorithmic design technology.

Relationship between the reuse of case-based

algorithmic solutions, innovation and design

complexity

The shift towards more focused design reasoning in the CBD group has

affected the way designers (who reused case-based solutions) built their

3.3 The reuse of case-based solutions in algorithmic design

Page | 239

programming algorithms, which consequently affected the design outputs.

The analysis of the algorithmic modelling criteria, such as: model

complexity, algorithm complexity, and explored space of the programming

solutions (algorithm Variety and Novelty), shows that the use of CBD

approach has affected various aspects of the designs. Exhibit 3.15

illustrates that ‘Algorithm Variety score’ on day 1 and ‘Model Complexity

score’ on day 2 have significantly different results, when compared

between all three test groups (See a description below the diagram). The

complexity levels of programming algorithms seem to be relatively similar

in all groups (‘Algorithm: Complexity score’), both days p-values

comparing means of the NA, DP, and CBD groups are above the

significance level: day 1 p-value ‘All Groups’ = 0.136/day 2 p-value ‘All

Groups’ = 0.898 (See Methodology Section) (Exhibit 3.15).

 There is an ambiguity of opinions regarding the relationships

between the use of Case-Based Design and explored solution space in

design (Novelty and Variety) (See Methodology Section). One end of the

spectrum of opinion suggests that innovative ideas often occur through

the reuse of existing design solutions (Sun, Faltings, 1994), especially when

two or more solutions are combined together (Hua, Fairings, Smith, 1996).

Therefore, the hypothesis is that the CBD group might be expected to

have a higher Novelty (original/not typical) of programming solutions, and

therefore increased explored solution space. The hypothesis of those at

the other end of the spectrum of opinion is that the disadvantage of the

Case-Based Design approach is that ‘the solution space is not fully

explored’, and there is no guarantee that the reused case leads to the

optimal solution (Kolodner, 1991). Following this latter hypothesis the

Variety (range of explored design options) of CBD group might expected

to be lower compared to other test groups. The results of this

3.3 The reuse of case-based solutions in algorithmic design

Page | 240

experimental study show no evidence that the reuse of case-based

solutions led to innovative programming solutions. In fact, the Variety

(explored solution space) of programming algorithms is consistently lower

in the CBD group compared to the DP group (Exhibit 3.15).

Exhibit 3.15. Algorithmic Modelling criteria: Model complexity score, Algorithm complexity score, Algorithm Variety

score, Algorithm Novelty score. [Also refer Appendix B, pages B64]

 The evaluation of programming solutions show that in terms of

explored space of algorithmic solutions, the CBD group had a very similar

range of use programming components (Algorithm Variety score) and

innovation (Algorithm Novelty score) as the control group (No Approach

group). On both days, the p-values comparing ‘Programming Algorithm

Novelty’ between all groups are above the significance threshold level

(0.898/0.171 both are larger than 0.050 level). Therefore, statistically there

is no significant difference in the ‘Novelty scores’ of algorithmic solutions

between the group that used no approach and the group that reused

3.3 The reuse of case-based solutions in algorithmic design

Page | 241

case-based designs. This study found no evidence supporting the claims

that the adaptation and combination of existing algorithmic solutions

(cases) can lead to innovative designs. In fact, on the second day of the

workshop the average Novelty score (evaluating the degree of how

unusual/not typical the solution is) of programming algorithms developed

by the CBD group is seemingly lower (43.6) compared to the control

group (NA) (50.8) and to the group reusing abstract solutions (DP) (53.7)

(Exhibit 9.5).

Programming Algorithm Variety (range of programming components):

Day 1 (mean): NA - 12.4/DP – 15.3/CBD – 12.8 (p-value ‘All Groups’ =

0.008)

Day 2 (mean): NA – 16.6/DP – 17.6/CBD – 15.8 (p-value ‘All Groups’ =

0.268)

Programming Algorithm Novelty (The degree of how unusual/not

typical a programming algorithm is.):

Day 1 (mean): NA – 28.1/DP – 29.3/CBD – 27.4 (p-value ‘All Groups’ =

0.898)

Day 2 (mean): NA – 50.8/DP – 53.7/CBD – 43.6 (p-value ‘All Groups’ =

0.171)

 The correlational analysis shows that in the CBD group there is a

negative dependency between the ‘Novelty’ of programming algorithms

and the reuse of case-based algorithms, which altered the original design

concepts (‘Changed design: because discovered a better solution’)

(Pearson’s correlation coefficient (r) equals – 0.380) (Exhibit 3.16). This

correlation might suggest that the resulting algorithmic solutions tend to

be less innovative (more typical) when participants abandon or

3.3 The reuse of case-based solutions in algorithmic design

Page | 242

significantly change their original design idea in favour of reusing an

existing solution that does not really fit their intended design concept, but

seems to be more interesting and worth changing the original plan. These

findings indicate that the use of Case-Based Design in architecture can

actually lead to the decrease of the explored solution space. This effect of

the CBD approach might not be the most desirable especially during

conceptual design stages where the experimentation and exploration of

design options can make a significant difference and effect the further

development of the project.

 The CBD group participants’ ability to accomplish their design

objectives (‘Ability to accomplish what was wanted’) has a negative

correlation with the complexity levels of resulting programming solutions

(‘Algorithm: Complexity score’) (Exhibit 3.16). This dependency is

consistent and repeats on both days (day 1 r = - 0.362/day 2 r = - 0.378).

Notice that the correlation is negative (reciprocal relationship between the

variables), meaning that the CBD group participants were more likely to

be satisfied when they managed to realise their design concepts using less

complex algorithms. Accordingly they reported that they were able to

accomplish less when they had to develop more complex programming

algorithms in order to generate the intended outcome (design model).

Interestingly, the situation in the DP is the opposite: participants who

reused abstract solutions are likely to be more satisfied when the

complexity of programming algorithms and output models is higher (See

‘The Reuse of Abstract Parametric Solutions Helps to Explore and

Experiment’ Section).

3.3 The reuse of case-based solutions in algorithmic design

Page | 243

Exhibit 3.16. Case-Based Design group. Correlations between ‘Model complexity score’, ‘Algorithm complexity score’,

‘Algorithm Variety score’, ’Algorithm Novelty score’ (algorithmic modelling performance) and the other criteria. [Also

refer Appendix B, pages B71-B82]

3.3 The reuse of case-based solutions in algorithmic design

Page | 244

 As discussed in section ‘The reuse of case-based algorithmic

solutions induces more focused reasoning’, the CBD group tend to be

more committed to a particular design goal (more focused reasoning)

then the other test groups. Participants using the Case-Based Design

approach were less interested in experimentation with the design models

or the exploration of the alternative options, and more focused on the

realisation of the original design concepts. Observations indicate that

participants of the CBD group were not particularly interested in creating

a more developed (complex) design model. Exhibit 3.16 illustrates that

there is a reciprocal relationship (negative correlation) between the ‘Ability

to accomplish what was wanted’ (on day 1) and ‘Model complexity score’

(on day 2), r = -359. Exhibit 3.16 shows that on the second workshop day

the average complexity of the output design models of the CBD group

(12.7) was significantly lower (p-value between all groups equals 0.031),

compared to the control group (13.9) (p-value CBD/NA equals 0.062) and

compared to the Design Patterns group (14.1) (p-value CBD/DP equals

0.065). Even though, technically, the 0.062/0.065 are above the

significance level (0.050), they are still very close to it. These p-values mean

that statistically, there is at least 93% chance that the differences in results

between the CBD and DP/NA groups have not happened by chance.

Therefore, it seems likely that the CBD approach induces not only the

development of the more simple programming solutions, but also more

simple design outputs (Exhibits 3.15, 3.16).

Indexing issues in case-based design systems

Designers and architects who participated in this study often used

metaphors and descriptive attributes when describing their algorithmic

designs and when applying key words (indexes/tags/labels) for their

3.3 The reuse of case-based solutions in algorithmic design

Page | 245

models, concepts and programming algorithms (Exhibit 3.17). The issue

with abstract indexes (metaphors and attributes) is that they are rarely

repeated (or searched for) by others, due to participants’ individual

backgrounds and associations. For example the same design solution one

participant would label as a ‘Cloud’, the second as a ‘Blob’, the third as a

‘Smooth Curvilinear Surface’. When browsing a repository of

programming solutions these people are likely to search for some specific

indexes, which express their own understanding and associations with the

design characteristics, which may not match the indexes assigned by

others. As a result, the retrieval of a case is likely to be unsuccessful.

Keywords that work only for few people (limited population with matching

associations) are not particularly effective key words. The main function of

indexes in Case-Based Design systems is to provide a mechanism to

navigate through the data-base of solutions, to identify and retrieve cases

that a designer can potentially reuse.

 Indexing (tagging/labelling) in algorithmic design can refer to

various aspects of the solution, they can be: contextual indexes, visual

indexes, association (metaphors/emotions) indexes, conceptual indexes,

indexes describing the output geometry (forms) or programming

solutions. Effective indexing is a very challenging task, because one has to

predefine the features that will be relevant and helpful for future reuse

and that will be understood and searched by others (Maher, de Silva

Garza, 1997). In practice, even when a Case-Base contains a set of suitable

algorithmic solutions for a particular design problem, there is no

guarantee that any user can easily find and retrieve the appropriate cases,

due to the mismatch in the thinking patterns of a person who applied the

indexes and a person who searches for them. It is likely that this issue is

going to be more relevant for the large scale case-bases. That is why

3.3 The reuse of case-based solutions in algorithmic design

Page | 246

indexing and finding the cases is one of the main difficulties of designing

a Case-Based system and using a CBD approach (Zimring, 1995).

 To investigate how designers and architects tend to label their

algorithmic solutions in architecture, on each day of the workshops all 126

participants of this study were asked to describe their designs by writing

their own key words (applying indexes for their designs). Participants were

asked to address three different aspects of their design solutions (use

three categories of key words): 1) key words describing the form and

geometry of their output design model; 2) association key words,

describing design with abstractions, metaphors and attributes; 3)

algorithmic modelling key words, describing programming solution. The

key words in each category then were analysed and sorted into categories

of most re-occurring indexes, which were (See Methodology Section):

 Geometry: Standards/Primitives (x example: point, circle, polygon,

line etc.)

 Non-Standard geometry (index example: spiral, curves, surface etc.)

 Metaphors/Abstractions (index example: atom, ripples, wave etc.)

 Descriptive Attributes (index example: sharp, spiky, smooth,

twisting, etc.)

 Programming Commands and Components (index example: divide

surface, project, loft, extrude, rotate etc.)

Results of this investigation show that when describing form and geometry

of the output models, designers mostly use ‘geometry’ related indexes

(53% (276 key words)) or ‘metaphor/descriptive attributes’ related indexes

(40% (209 key words)). ‘Programming’ related indexes were rarely used

when reasoning about shape and geometry of a generated model (7%

(39 key words)) (Exhibit 3.17).

3.3 The reuse of case-based solutions in algorithmic design

Page | 247

Exhibit 3.17. Indexing form and geometry of designs, (all groups) day 1/day 2 key words count. [Also refer Appendix

B, pages B83-B84]

 When using association key words, describing design with

abstractions, metaphors and attributes designers and architects used

predominantly ‘metaphors or descriptive characteristics’ (90% (423 key

words)) and rarely referred to ‘geometry’ (4.5% (21 key words)) or

programming (5.5% (25 key words)) (Exhibit 3.18). It seems likely that

architects and designers tend to think (reason) about their design solutions

with abstraction and it is relatively easy for them to describe their designs

with associations, metaphors and characteristic attributes. However the

major part of these abstract key words are not universal, due to individual

experiences and backgrounds of participants. Many of the key words that

participants used as associations (metaphors) seem unlikely to be

considered the most helpful or effective attributes (indexes) for future

reuse. For example: ‘aesthetics’, ‘light rhythm’, ‘jittery’, ‘organic’,

‘slumping’, ‘drawn’ etc. These key words might work for some people, and

not work for others. Due to the differences in their personal experiences

and associations, individual designers ‘see’ features in a design solution

differently. These results seems to confirm that it is very hard to define the

3.3 The reuse of case-based solutions in algorithmic design

Page | 248

characteristics and distinctive attributes representing a design solution

(case) universally (Dave, 1994). This study shows that finding universal

‘abstract’ attributes is especially difficult, because even though designers

tend to use a lot of metaphors and attributes when describing their

designs, these descriptions are often too individual and far from being

universal (Exhibits 3.18, 3.19).

Exhibit 3.18 Indexing design associations using metaphors and distinctive attributes, (all groups) day 1/day 2 key

words count. [Also refer Appendix B, pages B83-B84]

 Participants used 704 key words describing their design with

abstract metaphors, attributes and associations, which is 40% of all the key

words (indexes). 380 (21%) of the key words were related to ‘geometry’ of

output models and 686 (39%) were related to parametric algorithms

(programming solutions) (Exhibit 3.18, 3.19). Out of all 1770 key words

used by participants to describe different aspects of their designs 30 key

words were repeated more than three times (counted for cases when

different participants used the same index (key word) to describe their

design solution). Out of these 30 top repeated keywords only 6 were

related to ‘abstract’ design features. This happened because the majority

3.3 The reuse of case-based solutions in algorithmic design

Page | 249

of metaphors and associations (abstract key words) were individual,

whereas the ‘form and geometry’ (10 out of 30 top repeated key words)

and programming related key words (14 out of 30 top repeated key

words) were more universal (Exhibit 3.19).

Exhibit 3.19. Key words used to describe parametric designs. Indexing in Case-Based Design, [Also refer Appendix B,

pages B83-B84]

 As a part of Case-Based Design approach evaluation the CBD

group participants were asked to suggest how the online repository (used

to test the reuse of case-based algorithmic solutions in architecture) could

be improved. It was often suggested by participants that in addition to

having the animated images of output geometry and the mechanism to

search and retrieve design cases (programming solutions), based on

specific indexes, a CBD system should have an established (pre-defined

generalised) set of categories or ‘groupings’. The suggestion to

‘potentially split cases into generalised categories’ was explained by one

of the participants using the following argument: ‘with such a wealth of

information on the screen and even in refined searches it can be hard to

remember what you are trying to find/looking for.’ The organisation

3.3 The reuse of case-based solutions in algorithmic design

Page | 250

(classification and indexing) of cases is one of the main challenges of

developing a Case-Based Design system (Dave, 1994). There are various

aspects according to which, algorithmic design cases in architecture can

be potentially sorted into categories. For example, it could be:

 design problem (what a particular design solution is trying to

achieve/goals/objectives);

 design context (when and why this particular solution is

relevant/conditions/limitations /scope),

 design output (what a resulting solution produces as

output/building or structure typology/description of forms and

geometry);

 programming solution (how a design problem is solved/logic of the

algorithm/algorithmic solution);

 All of these aspects of algorithmic solutions can help users of a CBD

system to navigate through a database of cases in order to find and

retrieve suitable solutions. Experience with the development and the

feedback from participants who used a Case-Based Design system (testing

the CBD approach in this study) shows that some of the potential

categories can be more useful than the others. The preliminary results of

the key words (indexing) investigation show that indexes, describing

geometry features of an output model (‘design output’ indexes such as:

lines, curves, circles, polygons, pipes etc.), can be useful but only to a

certain extent. Practice shows that in algorithmic modelling it is often

relatively easy to change the type of output (generated) geometry by

minimal alterations to the input parameters or replacement of some

programming components in the algorithm. For example, in an algorithm

populating circles on a grid of points (or subdividing a surface into panels),

a modeller (user) can change only one component to switch from circles

to polygons, or to spheres or boxes. Similarly, it is often relatively easy to

3.3 The reuse of case-based solutions in algorithmic design

Page | 251

change an algorithm from using lines to using polylines, or from polylines

to curves, and so on. Therefore, despite their popularity, the use of

geometrical features tags in some cases is not the most effective way to

index (categorise) an algorithmic solution.

 Indexes describing a ‘design problem’ (such for example as: tower,

canopy, pavilion, urban furniture etc.), as practice shows, also can be rather

limiting (and therefore inefficient). For example, it was observed that some

participants dismissed a potentially fitting reusable algorithm just because

the index stated that it was a ‘table’ and they needed to create a ‘tower’.

The same programming logics can potentially be reused (applied) to

model large architectural objects, or to design urban furniture, or to create

fine jewellery items. This makes it possible that in practice an algorithm can

be reused and applied to a variety of design problems: it is often only a

matter of scale and material affordances. The ‘design context’ indexes,

describing the conditions, limitations, and scope of a design problem (or

solution) were only partially addressed by this study as the CBD system

(used to test the Case-Based Design approach) contained mainly simple

algorithms which were applicable to a wide range of design contexts (See

Methodology Section). Even though this ‘design context’ category was

outside the scope of this study, this generalised case category, identifying

the features of ‘when and why each particular solution is relevant’, can

potentially be useful. It should be further investigated by the studies

dealing with more complex design cases.

 Observations and the feedback from participants using the CBD

approach show that the categorisation principles based on the aspects of

the ‘programming solutions’ seem to be among the most promising ones

(used in the context of architectural algorithmic design). Indexing based on

the aspects of a programming solution refers to the features of a

3.3 The reuse of case-based solutions in algorithmic design

Page | 252

programming algorithm: what is the program or how exactly a design

problem is solved. Exhibit 3.19 illustrates that key words describing

programming commands and components (such as divide, rotate, move,

project, morph etc.) were often used and repeated by other participants.

The vocabulary (range of indexes) of programing commands and

components is significantly narrower and clearly defined especially

compared to the use of associations, descriptive attributes and metaphor

indexes. Out of the 30 most repeated key words 14 relate to the features

of a programming solution. It should be noted that terms related to

programming and algorithmic modelling are not universal for all modelling

platforms (software). However these types of indexes are likely to be

effective when solutions are written using the same programming

language.

 When describing the features of their programming solutions

participants mostly used the key words referring to programming

commands and components (80%) rarely using references to ‘geometry’

(11%) or association indexes (attributes and metaphors) (9%) (Exhibit 3.20).

Exhibit 3.20. Indexing programming solutions/algorithmic modelling (all groups) day 1/day 2 key words count.

3.3 The reuse of case-based solutions in algorithmic design

Page | 253

[Also refer Appendix B, pages B83-B84]

 It was observed that those participants who knew what they

wanted a program to do, were able to more easily find a fitting algorithm

using indexes referring to programming commands. For example, when

designers wanted to create a pavilion surface made of rotating panels,

they could search for such indexes as: ‘divide’, ‘surface divide’, ‘sub-

surfaces’, ‘rotate’ etc., and there they were likely to find what they were

looking for. However, in order to know which indexes to use, they had to

have an understanding (knowledge) that a surface can be divided into

sub-surfaces. Some participants reported that they could easily and

effectively use the index search related to programming, while the others

had difficulties with it. Most of index search difficulties occurred on the first

day of the workshop when participants were still not too familiar and

confident with the use of Rhino and Grasshopper and their modelling logic

and commands. Here is how some of the CBD group participants

expressed their issues with the index search:

 ‘I struggled to know what key words to type since I do not use Rhino

and Grasshopper and the relevant jargon.’

 ‘I found myself unsure of what key words to search for when using

the search tool.’

 ‘Seems hard to connect visual ideas with word commands. Often I

know what I want to achieve but do not know how to achieve it!’

 It seems unlikely to expect that designers and architects (who are

amateur programming users) will know exactly which particular

programming command or component index they need to use when

searching through the case-base of algorithmic designs. The more

experienced designers get the easier it is for them to identify the relevant

key words (indexes) describing the reusable solutions, which can

3.3 The reuse of case-based solutions in algorithmic design

Page | 254

potentially help them to translate their design idea (concept) into a

programming algorithm.

 In the fields of architecture and design, the information is often

interpreted not textually, but visually in the form of diagrams and images.

When using the CBD system participants often relied on the case related

images provided (See Adaptation of the CBD approach Section for more

detail). It was observed that after locating (narrowing down) a set of

solutions using the textual indexes, designers preferred to rely on visual

information (animated images of models). These images somewhat

helped to overcome the lack of knowledge in programming terminology.

When asked ‘Which was the most helpful way to find information in the

Case-Base of algorithmic solutions?’’ participants of the CBD group

reported (choosing on three options):

 Key words (10%)

 Visual diagrams/Images (38.2%)

 A combination of keywords and visual diagrams (51%)

 This further proves the point that in architecture and design the

visual representation of cases is an important indexing of cases (or, in

some cases, is even more important). Visual representation of cases gave

participants an opportunity to get the general understanding of what each

algorithmic solution is producing as output and how the design model

responds to the changes in parameters (which was possible due to the

fact that the images were animated). However, the visual search

(evaluation of cases) is only effective when there is a reasonable amount

of cases displayed. It is likely to work for a dozen or a couple of dozen

cases, but it seems unrealistic to expect that the user of a CBD system will

be able to visually scan through hundreds or thousands of cases. The

3.3 The reuse of case-based solutions in algorithmic design

Page | 255

observations show that that the visual evaluation of cases often happens

as the method for final selection after the preliminary index search is done.

 Generalised/abstract indexes and groupings (classification of

cases) are important, because (due to the specifics of the human cognitive

model) knowledge in our memory exists as both generalisation

(abstraction) and as a collection of specific cases (solutions) (Heylighen,

Neuckermans, 2001). The pre-defined classification of cases can help

designers not only to narrow down the range of specific relevant cases,

but also to help them to understand what they should look for, so they

can effectively navigate through the database. The issue with the index

search is that, in theory, the search/finding a case in a Case-Base suggests

that designers already know that they are looking for. This implies that a

design problem: ‘What I want to do and how I want to do it’ is fully defined.

However, in practice defining the problem (and therefore knowing what

key words to search for) is actually a part of a design process. That is one

of the reasons why designers often find it very difficult to clearly identify

the relevant search indexes (Maher, de Silva Garza, 1997). In design,

especially in conceptual design, a design problem is a task (algorithm)

without a clearly defined specification, because a part of the problem is to

identify what the problem is (Domeshek, Kolodner, 1992). Nevertheless, it

is possible to assist designers in their search by providing visual

information, clear indexes and (as this study suggests) generalised

categories. As suggested by the observations and the feedback from

participants there can be several strategies of how to improve the future

algorithmic case-base systems for architectural design:

1) A dictionary of indexes – to help user navigate through the

repository;

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 256

2) A search engine that keeps track/analyses the relationship between

the indexes (key words) and can suggest solutions that are associated with

each index. For example, when a user searches for an abstract (metaphor)

index, such as ‘cloud’, and cannot find a fitting solution, a program will

suggest solutions with ‘similar’ (related or synonymous) indexes, such as

‘swarm’ or ‘cluster’. However, the implementation of this strategy can

potentially be rather complicated. This study shows that the abstract

indexes (key words) are not universal and substantially vary from person

to person. That is why the ‘similar index’ suggestions that will work for one

user could be absolutely useless for the other person.

3) The generalised categories that can be related to algorithmic

modelling (programming solutions). These algorithmic modelling

categories can potentially be based on Patterns for Parametric Design,

developed by Robert Woodbury (2010), as these abstract (generalised

solutions) proved to be an effective method of explaining and utilising the

principles and logic of algorithmic modelling in architecture (See The

Reuse of Abstract Solution section). It is planned to continue this study in

future (and explore/test this strategy of using the Design Patterns as a

grouping principle for a Case-Base of algorithmic solutions.

3.4 Comparison between reuse approaches:

abstraction versus case-based

Effect of the approaches on the design thinking

This research tested whether the reuse of knowledge (tested by the reuse

of abstract and case-based algorithmic solutions) can help designers and

architects overcome barriers associated with programming and can

improve algorithmic modelling performance. Compared to the control

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 257

group participants (No Approach), participants in both abstract and case-

based reuse approach groups demonstrated improved performance. The

differences in results were statistically significant (at 95% certainty level),

including the ways designers’ think and perform; and in what they

ultimately produce. One of the most statistically significant differences is

the major shift in the design objectives, caused by the use of approaches.

The differences in objectives manifest themselves when designers gain

more experience in algorithmic modelling. This can be seen in Exhibit 3.21.

It illustrates the measured differences in the design ideation criteria

between the abstract and the case-based study approaches on each day

of the workshops. For three of these five criteria the differences were

statistically significant: for these the p-value is highlighted in black, not

grey, and most of these differences showed themselves to be statistically

significant on day 2 of the workshops. Interpreting the measured

responses, we can see that those designers who reused abstract solutions

(the Design Patterns group) were more focused on experimenting with

parameters (Exhibit 3.21).

Design Objective: ‘To experiment with parameters’

Day 2: NA 12%, DP 46.7%, CBD 8.5%,

(p-value All groups = 0.000, p-value DP/CBD = 0.000, p-value DP/NA

= 0.006, p-value CBD/NA = 0.463)

Design Objective ‘To achieve what I originally sketched’

Day 2: NA 48%, DP 60%, CBD 80.8%, p-value All groups = 0.012, p-

value DP/CBD = 0.045, p-value DP/NA = 0.268, p-value CBD/NA =

0.005.

 Participants of both approach groups were much more likely to

explore algorithmic form-making and to try out new programming logics

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 258

compared to the participants of the control group (No Approach (NA)). It

should be noted that the group using the Case-Based Design approach

was also more invested in the investigation of the capacity of algorithmic

modelling (46.8%) compared to the control group (24.4%); however, the

DP group showed the biggest interest ‘To explore algorithmic form-

making’ (63.3%) (Exhibit 3.21). Those who reused algorithmic solutions

from specific design cases (Case-Based Design group) were more

committed to realise the originally sketched design ideas and were less

interested in explorations and experimentations (Exhibit 3.21).

Exhibit 3.21: Typology and distribution of design objectives. [Also refer Appendix B, pages B64]

 The shift in design objectives and modelling priorities appeared to

have a significant influence on the design process and, as a result, on the

final design output. The test group who reused abstract solutions (DP

group) were less committed to a particular design goal. This is illustrated

in Exhibit 3.22 by two designs from the DP group where the two

participants reported a score of 2 (out of a maximum 5) on their ability to

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 259

model their original design idea. The figure shows the original hand sketch

and the output model from their Day 2 DP workshop. These two

participants also reported a 4 (out of 5 again) on their ability to find a

Design Pattern that fitted their idea and a 4 on their ability to accomplish

what they wanted. As shown in Exhibit 3.21, participants in this group were

more likely to experiment and try alternative options of programming

logic and components. This in turn has apparently influenced the way

designers created their programming algorithms. Analysis of the

programming algorithms showed that those who reused abstractions had

a significantly greater explored solution space of the algorithms,

compared to the group who reused specific design solutions.

Exhibit 3.22: Examples of sketches (original design ideas) and corresponding output models, designed by participants

using Design Patterns. Typical cases where designers have significantly changed their original idea and still reported

that they were able to find a Design Pattern(s) that fit and were able to accomplish what they wanted.

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 260

Exhibit 3.23: Examples of sketches (original design ideas) and corresponding output models, designed by participants

using Case-Based Design approach. Typical cases where designer managed to develop an output model that was

close to their original idea and reported that they were able to find a Design Pattern(s) that fit and were able to

accomplish what they wanted. [Also refer Appendix B, pages B64]

 Statistical testing indicates that designers who used case-based

reasoning while developing their algorithmic solutions tended to focus on

modelling a particular design outcome. This is shown in Exhibit 3.22 by

two designs from the Case Based Design (CBD) group where the two

participants reported a score of 4 (out of a maximum 5) on their ability to

model their original design idea. As a group, the analysis in Exhibit 3.22

suggests they were less interested in exploring different programming

options and new strategies. Instead, those who used CBD tended to

implement components that they already knew (and which were explained

during the workshop tutorials). When browsing the online case-base,

these workshop participants predominantly used key words associated

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 261

with already familiar (used in the past) programming components, rather

than using abstract key words, thus reducing the likelihood of developing

alternative programming solutions.

 The evidence suggests that use of case-based reasoning in

parametric design will most likely decrease the variety of programming

components used to create parametric models. Designers who use CBD

also tended to produce less novel (more typical) programming solutions.

However, it should be noted, that while the CBD group did use a

substantially smaller range of programming components and developed

less novel programming solutions compared to both DP and control

groups, they reported higher overall satisfaction with the design model

and their ability to accomplish their design objectives than with the abstract

approach (Exhibits 3.22-3.23). These conclusions further confirm the

findings reported in the earlier research on the implementation of CBD

tools in design, stating that:

 ‘The major disadvantage of the case-based method is that the

solution space is not fully explored and as a result, there is no guarantee

of an optimal solution’ (Kolodner, 1993) (See Reuse of Case-Based

Solutions Section).

Change in modelling speed/model complexity

The shift in design strategies caused by the use of abstract and case-based

algorithmic solutions had a significant effect on the complexity of

produced designs. Designers who reused specific programming solutions

(CBD group) were likely to develop less complex output models, compared

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 262

to both the abstract (DP) and No Approach groups (Exhibit 3.24, 3.25). It

would appear that the ‘abstract’ group’s greater interest in experimenting

with forms and parameters produces designs less restrained by the

limitations of the original design concept. Four example designs from this

abstract group are shown in Exhibit 3.24. The suffix to the participant ID

number shows that three of these are from day 1 of the workshop, and

one from day 2. The score highlighted in black under each design has been

developed as a means of systematically ranking the complexity of the

programming algorithm. All four of the participants whose work is

illustrated reported high (5 out of 5) satisfaction with their output model,

but were far less satisfied with their ability to model their original idea (a

score of 2 or 3 out of 5).

 Designers who reuse particular programming solutions, seem to be

more focused on modelling a specific design outcome. Exhibit 3.25 shows

four example outputs from this group laid out in the same manner as

Exhibit 3.24. Two of the outputs are from Day 1 of the workshop and two

from Day 2. The overall programming complexity of these examples is

much lower than for the DP group in Exhibit 3.25. The four examples in

each figure were selected to be clustered close to the average for each

approach, but to all have a score of 5 on each workshop participant’s

satisfaction with the output model.

 It is interesting that the No Approach workshop group were like

the DP group in that they showed greater readiness than the CBD group

to change their initial concepts, and to develop and experiment with their

designs. The CBD group participants were more likely to try and develop

a particular programming sequence, which would generate the form that

they originally sketched, even though this might prove to be time-

consuming.

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 263

 Exhibit 3.24. Examples of models, designed by participants, who used Design Patterns and were able to accomplish

what they wanted; explored alternative design options; significantly changed the original idea; and developed more

complex programming algorithms and output models. [Also refer Appendix B, pages B64]

 There is likely another reason that the CBD group participants might

be slower in modelling than the abstract and no-approach groups: it is

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 264

related to the time spent by users accessing the case-base examples

looking for programming sequences that allow them to generate the form

they originally sketched. Analysis of the screen recordings indicates that

participants who reuse solutions from the case-base, tend to spend a

considerable amount of time browsing the case-base and exploring

various programming solutions. It was observed that designers rarely reuse

the very first solution from the case-base which they chose to probe.

Instead, they tend to compare several design options, before deciding

which solution they actually want to reuse. Observation of the group which

used case-based design shows that the search process for the most fitting

specific solution can take a considerable amount of time, which inevitably

slows down the overall speed of algorithmic modelling. Reuse of abstract

solutions in this case has an advantage.

 It seems likely that once designers and architects grasp the idea of

a design pattern they do not have to re-learn it each time they implement

it in a new design problem. Learning why and how to use a particular

abstract solution (design pattern) is a one-time operation. In theory, when

designers know a design pattern they might be expected to re-apply it to

a new design task straight away. Designers who reuse specific solutions are

likely to search the case-base of algorithms every time before they chose

to reuse (copy/modify) (Woodbury, 2010). The ‘modify’ part of this

copy/modify approach is very important as in most cases each reused

solution has to be adapted to suit the new design context – to achieve the

original sketch design outcome.

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 265

Exhibit 3.25. Examples of models, designed by participants, who used Case-Based Design approach and were able

to accomplish what they wanted; managed to model the original idea; and developed more simple programming

algorithms and output models. [Also refer Appendix B, pages B64]

 Correlational analysis was used to study the reasoning of the

designers in each group. Higher complexity levels of the output models

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 266

and of the programming algorithms are perceived positively by those who

reused abstract solutions (Design Pattern (DP) group) (See ‘The reuse of

abstract solutions’ section). The more complex the design models that DP

participants produced, the higher their satisfaction with the output

(correlation coefficient 0.463). Those DP designers, who managed to

develop more complex programming algorithms also found the DP

approach more helpful (correlation coefficient 0.417). Model and

programming algorithm complexity are seen by these designers in a

positive light.

 In contrast to the abstract DP group, designers who reused

algorithmic solutions from specific cases (CBD group) preferred to avoid

complexity and tended to settle for the more simple programming

algorithms. On both workshop days ‘algorithm complexity’ has a negative

correlation (correlation coefficients -0.362/-0.378) with ‘satisfaction with

the design outcome’. When CBD group participants managed to come up

with more simple programming solutions, they were apparently more

satisfied with the outcome (See Reuse of Case-Based Solutions Section).

 In summary, those who reuse specific solutions see complexity in a

negative light, which is the exact opposite of what the group who reused

abstract solutions tended to think.

Overcoming barriers associated with the use of

programming

Many designers find it difficult to integrate algorithmic thinking and

programming into the design process (Woodbury, 2010). Understanding

and learning the programing framework syntax rules can be very

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 267

frustrating, particularly to novice users (Celani, Vaz, 2012). This study tested

whether the reuse of abstract and specific algorithmic solutions can help

designers and architects to overcome these barriers. The participant

designers were asked to indicate the overall amount of difficulties that they

had while developing their design assignments and also to specify what

type of difficulty it was.

Analysis of their responses identified the five most common

categories of difficulty:

 Idea-to-algorithm translation (design barriers, figuring out how to

get from a sketched idea to a programming algorithm, which

generates a model);

 Problems with specific components (use barriers, when participants

knew which programming component they need, but struggled

with how exactly to use it);

 Knowing what programming component to use and when

(selection barriers);

 Logic Connections (coordination barriers, what is the correct

sequence of programming logic, for example should ‘vector’ go

before or after ‘move’);

 Valid Parameters, unexpected errors (use and understanding

barriers, for example, incorrect inputs or domains of numbers). (Ko,

Myers and Aung, 2004) (See Barriers associated with the use of

algorithmic tools in architecture section for more detail)

 The diagram in Exhibit 3.26 illustrates the degree to which all five

of these parameters were a problem for each approach. The length of the

pairs of bars either side of the central list of difficulties represents the

percentage of workshop participants who reported each difficulty. The

most common difficulty for people learning to use algorithmic modelling

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 268

tools is immediately clear: ‘Idea-to-Algorithm Translation’ was reported as

a problem for 43-60% of workshop participants.

 The second most common type of difficulty was problems with

actual implementation of a particular programming component (Exhibit

3.26): 21-49% of participants. The reuse of solutions from the case-base

proved to be an effective approach to overcome these types of difficulties.

There were significantly less problems with particular programming

components in the CBD group, compared to both the DP and the control

group. The difference in the average number of participants reporting

difficulties in day 2 workshops was the only statistically significant difference

observed on these particular criteria in the bottom (Type of Difficulty) of

the Exhibit 3.26. The top (How Often) portion of Exhibit 3.26 shows an

overall analysis of the number of programming difficulties encountered by

workshop participants.

 Assigning a score of 1 for no difficulties, a score of 2 for 1-3

difficulties and so on to a score of 5 for 10 or more difficulties produced

the three bars to the right for ‘No Approach’, “Abstract Approach’ and

‘Case Based Design Approach’. The average score (number of difficulties)

on day 1 and on day 2 is significantly less for the reuse of abstract solutions

(Design Patterns) approach. Reuse of abstract solutions is therefore an

effective method to help designers reduce difficulties associated with use

of algorithmic modelling tools. The DP group participants had significantly

less programming difficulties compared to both the CBD and No Approach

groups. Despite this clear difference, it is worth remembering the case-

based (CBD) approach did help to overcome certain types of difficulties.

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 269

Exhibit 3.26: Overall amount of difficulties. Typology and distribution of programming difficulties. [Also refer Appendix

B, pages B64]

 As there were very few workshop participants with significant levels

of experience with algorithmic modelling systems, it seems reasonable to

conclude that in the initial stages of learning and using of these systems,

the use of abstract solutions, such as Design Patterns, helps to reduce the

overall amount of difficulties (See ‘Expanding beyond the scope of this

research’ discussing design population: novices and experienced

programmers). Abstractions help novices to better comprehend, in

principle, ‘when’ and ‘how’ a design problem can be solved. However, in

terms of initial impressions, rather than output produced, designers

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 270

themselves appear not to realise how helpful the use of abstractions

(Design Patterns) is. When asked ‘how easy to implement’, ‘helpful’ and

‘intuitive’ each approach is, the Case-Based Design approach was

identified by designers as significantly more intuitive, helpful and easy to

use (For more details see ‘The reuse of abstract solutions’ and ‘The reuse

of case-based solutions’ sections).

Summary of key findings

The primary observation to be made is that, when learning computational

design methods, the use of a systematic approach to the reuse of

algorithmic design solutions is more beneficial than having no approach.

 In many aspects, such as for example the ability to overcome

programming difficulties, the reuse of abstract (Design Patterns) solutions

is more helpful than the reuse of solutions from a case-base (Case Based

Design). The use of CBD proves to be mostly effective in overcoming

difficulties associated with the implementation of specific programming

components and commands.

 The reuse of abstract solutions in algorithmic design helps to

reduce the barriers that designers and architects have when they use

algorithmic modelling systems and motivates designers and architects:

 to experiment more;

 to explore new programming solutions and commands;

 to produce algorithms and output models with higher levels of

complexity.

 The reuse of algorithmic solutions from specific cases (CBD), is an

effective tool to reduce difficulties associated with the implementation of

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 271

specific programming components and commands. It is intuitive, helpful

and easy to use; it promotes the development of more simple and less

novel design solutions; and motivates designers:

 to focus on realising the initial design ideas;

 to be less invested in exploration of alternative solutions and

experimentation with new programming logics.

Exhibit 3.27 illustrates the comparison of all the metrics (criteria), which

were evaluated in this study through the analysis of the design models

and programming algorithms, and using the feedback from participants.

3.4 Comparison between reuse approaches: abstraction versus case-based

Page | 272

Exhibit 3.27: Results of comparative study (all criteria). [Also refer Appendix B, pages B63 – B84]

Page | 273

4. Expanding beyond the

scope of this research

This thesis investigated the knowledge reuse as a design support method

aiming to overcome programming challenges and help designers to adopt

and to use algorithmic modelling tools more effectively. The study tested

two alternative methods: Design Pattern approach and Case-Based

approach. This investigation of ways to support learning and use of

computation in architecture shows that the reuse of abstract and case-

based algorithmic solutions helps designers overcome barriers associated

with use of programming and improve their design performance (See ‘The

reuse of solutions as a method to support design’ Section). Both of these

knowledge reuse strategies are applicable for textual and visual

programming environments. It was suggested that these approaches can

be useful for a wide designer population, including both experienced and

novice designers in programming. However, the framework of this study

had a particular scope, such as using a visual programming environment

and having a particular designer population.

 This chapter discusses the boundaries of this study and talks about

the future research aimed to expand beyond the current research scope.

It outlines the potential of testing the Design Patterns and Case-Based

Design approaches on a group of architects who are more advanced in

4.1 Design population: novices and experienced programmers

Page | 274

algorithmic design, and the potential of testing the DP and CBD

approaches using textual programming languages. It also discusses the

differences in performance between the male and female participants.

Further this chapter will canvas the issues identified for the DP and CBD

approaches. It is suggested that one of the ways to improve these

knowledge reuse methods can be the development of a hybrid approach.

This hybrid approach can incorporate the methods and techniques of

both abstract and case-based solution reuse.

4.1 Design population: novices and experienced

programmers

The target group of this study covered a wide design population, including

architectural and design students as well as practicing professionals, who

learn or routinely use algorithmic modelling systems in their design

process. However, due to the constraints of the research scope, limited

mainly by the availability of architects and designers (skilled in

programming) who use algorithmic modelling in their professional

everyday practice, this study focused on a learning environment, recruiting

designers who are programming novices (See Design Population in

Methodology section).

 The findings and lessons of this study can be adopted and applied

to the educational environments dealing with teaching and practical

implementation of programming in architecture and design. For example,

this research leads to the conclusion that the systematic use of algorithmic

abstractions (Design Patterns) when learning (mastering) algorithmic

design logic helps architects and designers to structure their computational

thinking and subsequently helps to overcome barriers associated with the

4.1 Design population: novices and experienced programmers

Page | 275

implementation of programming. Learning and implementing algorithmic

design through parametric abstractions (Design Patterns) helps to give a

more profound understanding of the high-level (abstract) logic of

programming processes. This understanding of abstract (high-level) logic

seems to be most important especially in the initial stages of learning. The

main challenges that algorithmic design imposes on architects and

designers, is not that of acquiring programming skills but it is rather

assimilating ‘a mode of computational design thinking’ (Menges, Ahlquist,

2011). The use of abstract patterns helps novices to adopt this new

algorithmic thinking mode, explaining: when and why a particular

programming logic can be used; and what ‘in principle’ an abstract

algorithmic pattern can produce as output (Woodbury, 2010).

 Research also highlights the weakness of this approach, related to

the fact that patterns do not actually show ‘how exactly’ to solve a

particular design problem. Because patterns are abstract solutions, they

rather tell ‘how in principle’ a particular problem can be solved (giving

generic guidelines instead of specific instructions). This research shows that

the use of case-based reasoning can significantly reduce these

implementation barriers, which are widely acknowledged as common for

both among novice and more experienced programming users (Ko, Myers,

Aung, 2004).

 The question, which currently lays beyond the scope of this study,

is: how effective the DP and CBD approaches can be when applied in the

context of architects and designers experienced with coding skills. To go

beyond the scope of this research requires a further study which tests the

reuse of case-based and abstract algorithmic solutions (or a combination

of those approaches) on more experienced programmers. This is the next

planned focus of this research programme. The difference between these

4.1 Design population: novices and experienced programmers

Page | 276

advanced programming users and novice users is likely to be not only in

distinct levels of coding skills, but also in the designers’ ability to employ

computational design thinking. It might be speculated that experienced

programmers will not be as keen (flexible) to re-structure their well-

established computational thinking mode, shifting from their own

practically acquired algorithmic design constructs (abstractions) to patterns

suggested by other people. However, it can also be reasoned that the

reuse of high-level (abstract) solutions can be easier for advanced users,

as they (unlike novices) are more skilled and usually know ‘how’ to

solve/implement a particular programming algorithm.

 Reuse of code (programming algorithms) is a common practice in

software programming and to that extent algorithmic modelling in

architecture should potentially benefit from algorithm reuse. To measure

whether the reuse of a case-based programming algorithm is effective and

worth using, it is necessary to test what would have been easier and faster

to do: a) to reuse (copy/modify) an existing solution or, b) to create an

algorithm from scratch. It can be assumed that for the more advanced

algorithmic design users it might be easier to create an algorithm anew

rather than spending time searching through the case-base and then

modifying the original algorithm to fit the new design context. It can also

be argued that more experienced users are usually dealing with more

complex programming solutions that can be split into simpler subtasks.

There is always a chance that there are existing solutions for some of these

subtasks which can be recycled again and again. Therefore the reuse of

algorithms can help to overcome the complexity of advanced algorithmic

designs.

 The analysis of experienced algorithmic designers' reactions to both

Design Patterns and Case-Based Design approaches should examine

4.2 Identified gender differences

Page | 277

whether the trends detected amongst novice programmers persist. For

example, would more experienced programmers who use the Design

Pattern (DP) approach be showing more exploration and would those

using the Case-Based Design (CBD) approach be more directly focused on

realizing a single result reflecting original intentions? Moreover, would the

DP approach still encourage satisfaction with complexity whereas CBD

seems to discourage it? (See ‘the Reuse of abstract parametric solutions’

section for more detail).

4.2 Identified gender differences

Male and female participants showed similar results for most of algorithmic

modelling performance criteria, which were identified and measured by

this study. Results suggest that overall, participants of both genders

performed evenly (statistically not significantly different) and had a similar

response to the use of the DP and CBD approaches. 126 participants took

part in this study. 55% of these participants were males (70) and 45% were

females (56), with uniform distribution of genders in each test group. On

average, male and female participants had a similar level of programming

difficulties; similar ability to accomplish what was wanted; and both

genders produces programming algorithms and models of similar levels

of complexity. Only four out of thirty evaluated criteria were statistically

different between the gender groups (Exhibit 4.1). Comparison between all

male and female participants showed that statistically significant

differences in results only occurred in: ‘Algorithm Novelty score’ and

‘Ability to realise original idea’ on day 1; and in: design objective ‘To

combine a few DP/CBD solutions’ and ‘Reuse of algorithms’ on day 2

(Exhibit 4.1).

4.2 Identified gender differences

Page | 278

 It was observed that in the initial stages of learning and using of

algorithmic modelling system, male designers tend to explore more

programming options compared to female participants. On the first day of

the workshops male participants were keener to try new things and

preferred to explore and test things on their own, rather than reuse existing

solutions. Unlike the female participants, they initially tend to learn by ‘trial

and error’, often using the ‘guess and check’ strategy. Comparison

between the genders shows that on day 1 the average ‘Novelty score’ of

programming algorithms is higher for male participants

Algorithm Novelty score (mean)

Day 1 Males 31. 4/Females 24.1, p-value = 0.017.

Day 2 Males 50. 7/Females 46.4, p-value = 0.335)

 ‘I was able to realise my original design idea’ (shown as mean values)

On a 5 point scale, from 1 Strongly Disagree to 5 Strongly Agree

Day 1 Males 3.20/Females 2.83, (p value = 0.047)

Day 2 Males 3.48/Females 3.24, (p value = 0.181)

 However, the difference in novelty of explored solution space of

the algorithms disappears, when female designers gain more confidence

in programming (day 2) (Exhibit 4.1). On the second day of the workshop

female participants started experimenting and exploring almost as much

as male participants (no significant difference in results on day 2). It seems

likely that in the initial stages this ‘guess and check’ approach to master a

new algorithmic modelling software was rather effective, because on day

1 male participants had shown a higher ability to realise original idea.

Again the difference in ability to model original design concept disappears

on day 2 (Exhibit 4.1).

4.2 Identified gender differences

Page | 279

Exhibit 4.1. Comparison between the male and female participants, [Also refer Appendix B]

 Statistical testing between genders also showed that female

participants are more inclined to reuse existing programming algorithms,

rather than search through the interface of a yet unfamiliar software by

themselves and try to figure out how things can be done (significantly

different on the second day of the workshop). The difference between the

reported design objectives of male and female participants shows that on

day 2 the objective: to combine several Design Patterns or Case-Based

programming algorithms during the development of their design task,

became significantly higher for female designers (‘To combine a few of

DP/CBD solutions’: Males 3.5 %, Females 15.2 %, p-value= 0.043). This

might suggest that on the second day of the workshop female participants

were keener to engage the case-based reasoning and learn from existing

solutions. It seem likely that as a result of this higher motivation to use

case-based reasoning (learn from cases which worked for others in the

past), the female participants have reused more programming algorithms,

compared to male participants. Similar to design objectives the difference

manifests itself on the second day of the workshop (Exhibit 4.1).

4.3 Algorithmic modelling [visual programming] platform

Page | 280

 ‘Reused programming algorithms: how often’

On a 5 point scale with 1 Never, 2 (1-3 times), 3 (4 - 6 times), 4 (7-9

times), 5 (10 or more times): Males 2.17 (median = 2 (1-3 times),

Females 2.61 (median = 3 (4 – 6 times)), p value = 0.006).

 It is hard to speculate on the interpretation of these results. They

might suggest that the case-based reasoning (and therefore Case-Based

Design approach) can be a slightly more natural way for female designers

to master the use algorithmic design systems. Male designers on the other

hand seem to be more inclined to explore things on their own, applying

the ‘trial and error’ approach (at least on the initial stages of learning).

However overall, there is no indication that the CBD approach (and case-

based reasoning) is a less effective support method for male designers.

There is also no evidence suggesting that the DP approach (the use of

abstract algorithmic patterns) is less effective for females. Therefore the

stated above differences (Exhibit 4.1) can simply indicate that at some

stages, female designers might prefer to reuse solutions, while male

designers might tend to ‘guess and check’ things on their own (See

Appendix for more details).

4.3 Algorithmic modelling [visual programming]

platform

The DP and CBD approaches were tested using Grasshopper

(Grasshopper3d, 2014) graphical algorithm editor tightly integrated with

Rhino’s 3-D modeling tools (Rhino3d, 2014). Grasshopper is a software

platform, which provides a visual interface to programming (box-and wire

interface). Visual programming is often considered to be more intuitive

4.3 Algorithmic modelling [visual programming] platform

Page | 281

and easier to use, causing less barriers associated with the use of

programming in architecture and design, compared to the use of textual

programming (scripting). Recent studies show that some programming

barriers have significantly decreased with the development of visual

programming software, such as Grasshopper (Celani, Vaz, 2012). Both

visual and textual programming languages are currently used in

computational design in architecture. Despite the differences, there are

fundamental similarities between both programming languages. The use

of both visual and textual programming methods require designers to

adopt ‘a mode of computational design thinking’ (Menges, Ahlquist,

2011). This thinking mode implies that a designer has a deep

understanding of algorithmic rules, methods, and behaviours of forces

and forms (Woodbury, 2010). That is why among the objectives of both

reuse approaches is to assist architects and designers with practical

implementation of algorithmic modelling, as well as to help them

understand how the form-making and programming constructs work

together. An ability to switch-on the algorithmic thinking mode, which

allows designers to translate their design concepts into programming

algorithms, is often a greater challenge than mastering computational

design techniques, such as the use of scripting (Menges, Ahlquist, 2011).

That is why it can be expected that the use of both the DP and CBD

approaches in the context of textual programming should not be

dramatically different from the results obtained in the context of visual

programming. However, it is also possible that the use of scripting can

impose different challenges on users, due to the fact that the use of visual

and textual programming languages require designers to have different

sets of skills (techniques). For example, it is possible that the use of

scripting can cause more problems with syntax (rules defining textual

programming languages). This research shows that the CBD approach is

4.4 Similarities between the DP and CBD reuse approaches

Page | 282

a more effective method to overcome or to reduce ‘use barriers’ (Ko,

Myers and Aung, 2004), which refer to problems with the implementation

of programming components and syntax problems (See Reuse of Case-

Based Solutions section). That is why, it is possible that the CBD approach

(as well as the DP approach) can work somewhat differently when applied

in the context of textual programming in architecture and design.

4.4 Similarities between the DP and CBD reuse

approaches

While the methodology and principles of ‘abstract’ (DP) and ‘case-based’

(CBD) solutions adaptation differ, both approaches seek to make reuse of

algorithmic design knowledge more effective. The core of this idea is that

algorithmic design is not properly an invention or creation of something

absolutely new, but is rather a process of rediscovery (Terzidis, 2006). This

rediscovery can be directly drawn from existing design knowledge, for

example though the reuse of programming artefacts, whether those

reusable artefacts be abstract (Design Patterns) or specific (Case-Based

Design). The objective of both the DP and CBD approaches is to re-cycle

algorithmic solutions rather than creating each one anew. In practice,

there is no actual need to create every single thing from scratch, because

it is highly possible that ‘someone, somewhere really did already invent

the wheel you are about to reinvent’ (Mann, 2005).

 The fundamental difference between the DP and CBD approaches

is the abstraction level of the reusable programming artefacts such as:

patterns with a high level of abstraction for the DP approach and the

specific programming algorithms for the CBD approach. The other

principal difference between the approaches is the method by which the

reusable artefacts are being selected, retrieved and reused. In order to use

4.4 Similarities between the DP and CBD reuse approaches

Page | 283

Design Patterns one has to learn them first; to be aware ‘when’ and ‘why’

to use each pattern, ‘what’ each pattern does and ‘how in principle’ it can

be done. Once a person knows patterns, they can be applied straight away

for each new design problem. The use of the CBD approach does not

require pre-acquired knowledge. However for each new design problem,

the architect (or designer) has to browse a repository of the case-based

solutions in order to locate and retrieve the fitting case. Observations of

the CBD group participants show that this process can take a considerable

amount of time.

 None of these two approaches is either purely abstract or purely

case based. There are abstract constructs utilised in the CBD approach and

there are also sets of specific programming solutions used in the

methodology of the DP approach. The pattern approach uses specific

solutions (cases) to illustrate each Design Pattern. To explain patterns for

parametric design Robert Woodbury uses the term ‘samples’ (Woodbury,

2010). On average six samples are used to illustrate each Design Pattern.

Combined together this is over seventy specific solutions, which can be

viewed as a case-base. There is a certain ambiguity between the

relationship and role of patterns and their samples. Some authors state

that pattern examples have only secondary value (should be used as

illustrations) (Alexander, 1975) (Winn, Calder 2002) (Woodbury, 2010),

others argue that samples are as important as the patterns themselves,

because users tend to search for specific solutions rather than rely entirely

on abstractions (Dearden, Finlay, Allgar, Mcmanus, 2002). There are

arguments stating that the original design patterns, developed by

Alexander, attempted to interpret design knowledge in an abstract and

generalised way and the result had little to do with abstraction (Hua,

Fairings, Smith, 1996). In reality, each pattern refers to a collection of

specific buildings within specific environments (Ibid). The results of this

http://www.bibsonomy.org/author/Dearden
http://www.bibsonomy.org/author/Finlay
http://www.bibsonomy.org/author/Allgar
http://www.bibsonomy.org/author/Mcmanus

4.4 Similarities between the DP and CBD reuse approaches

Page | 284

study show that when using patterns for parametric design, participants

often referred to specific pattern examples, rather than to the abstract

solution itself. This issue (of actual role of pattern samples) is likely to be

relevant for any approach dealing with the reuse of abstract artefacts. That

is why it seems reasonable to acknowledge that in practice, pattern

samples are not being a mere illustration of a ‘big idea’, but that they

perform a wider set of roles (functions).

 The similarities between the DP and CBD approaches might

suggest that, there could be a hybrid approach, which engages with the

reuse of both abstract and specific programming artefacts. The CBD

approach uses indexes, some of which have a certain level of abstraction,

such as: ‘distance’, ‘proximity’, ‘condition’, ‘panelling’ etc. These indexes

are used to sort and select cases from the repository, but they also can be

seen as a grouping principle, or generalisation. The generalisation and

abstraction of cases relate the CBD approach back to the patterns. Design

Patterns can be used as the generalisation principles, grouping and

indexing cases of a repository. Some of the CBD group participants

suggested that additional to having the index search, an algorithmic Case-

Base repository can be easier to navigate if the cases were organised into

some sort of main pre-defined meta-group(s).

 The thirteen patterns for parametric design can easily be used for

organising the current and future solutions into the meta-groups.

Potentially this could make the selection and retrieval of cases more

efficient. However the use of this hybrid (DP/CBD) approach would imply

that all users are already familiar with the concept of patterns.

Alternatively, the Case-Base system can provide designers with the

explanation of the patterns concepts and provides the description of all

the thirteen Design Patterns. From the teaching perspective, the use of

Design Patterns proved to be an effective way to systematically introduce

4.4 Similarities between the DP and CBD reuse approaches

Page | 285

designers and architects to algorithmic modelling (See Appendix). The

integration of a unified (as opposed to segmentation of pattern samples)

and organised case-based repository can potentially make the hybrid

DP/CBD method more intuitive, because participants found the CBD

method to be significantly more helpful, intuitive and easy-to-use

compared to the DP approach.

4.4 Similarities between the DP and CBD reuse approaches

Page | 286

5.1 Recommendations for teaching programming in design, based on the lessons learned

from this study

Page | 287

5. Recommendations

5.1 Recommendations for teaching

programming in design, based on the lessons

learned from this study

A range of practical lessons was learned throughout the course of this

study, testing the reuse of design knowledge as a method to support

learning and use of algorithmic design in architecture

 From a teaching perspective, the systematic inclusion of Design

Patterns and Case-Based reasoning into the learning narrative of

programming in architecture and design proves to be highly beneficial.

The use of these can improve the learners’ ability to overcome

programming barriers and help to enable computational (algorithmic)

design thinking. Since the DP and CBD approaches were tested on the

novice programmers, the findings of this study can be used to provide the

basis for strategic teaching approaches, which utilise the reuse of

programming artefacts. The lessons learned from this study can be applied

to inform and (potentially improve) the methodology for teaching

programming in architecture and design disciplines.

 During the initial learning stages the use of abstract parametric

patterns, described by Woodbury (2010), allows designers to better

understand the underlying logic of programming design methods:

learning through the systematic use of patterns assist designers to develop

5.1 Recommendations for teaching programming in design, based on the lessons

learned from this study

Page | 288

and practically employ a computational thinking mode. Gaining this

computational thinking mode is essential for ‘idea-to-algorithm

translation’, which (according to the results of this study) is one of the

biggest challenges among the novice programmers. Practice shows that

even in cases when learners do not actually reuse any Design Patterns in

the context of their current design solutions, knowing ‘why’ and ‘how’ these

abstract algorithmic concepts work is still highly beneficial to them. The

results indicate that being introduced to algorithmic modelling through

patterns is likely to significantly reduce the overall number of programming

difficulties and improve design performance (See the Reuse of Abstract

Solutions Section).

 The methodology for teaching programming by using Design

Patterns proposed and tested in this study can be summarised as a

following step–by-step program (as developed for algorithmic modelling

workshops using visual programming with Grasshopper for Rhino) (See

detailed ‘Proposed curriculum of teaching programming in architecture

using patterns for algorithmic design’ in the Appendix). The general rule

for organising the course was to gradually increase the complexity of used

programing components and programming logic. ‘Parametric Architecture

with Grasshopper’ (Arturo, 2011) and ‘Grasshopper Primer’ (Payne, Rajaa,

2009) were used to inform order and structure of the introduced concepts

and programming components. Patterns that could be illustrated using

very basic algorithms were introduced first and patterns that required more

advanced programming skills – were introduced last. Patterns were also

clustered according to their related patterns (Woodbury, 2010). In his book

‘Elements of Parametric Design’ Woodbury (Ibid) documents and explains

all the patterns. This information can also be found online (Designpatterns,

2014). Both in the book and in the website, design patterns are sorted in

alphabetical order, based on the first letter in the name of each pattern.

5.1 Recommendations for teaching programming in design, based on the lessons learned

from this study

Page | 289

The proposed curriculum of teaching programming in architecture using

patterns for parametric design is outlined below. It suggests the order in

which patterns can be introduced to learners and specifies the content of

programming tutorial topics, such as: Lists, Data Management; Numerical

sequences mathematical operations and functions, Paneling Tools, loops,

etc. The curriculum was structured to allow the combination of several

design patterns in the later stages of the course to produce more complex

programming algorithms and show how different programming logic can

work together.

 Note that prior to teaching these patterns it was necessary to make

designers familiar with the interface and software use basics. For

Grasshopper/Rhino this Introduction covered such topics as: Working area

(Interface); Components and data; Components’ connection; Parameters

and components; Direct import from Rhino (Linking geometry); Data

Management; Data Stream Matching; Scalar Component Types;

Operators Parametric control.

1) ‘Clear Names’. The first pattern to be introduced in the course is

‘Clear Names’. It has actually nothing to do with algorithmic design per se.

Its intent is to give each pattern a clear, meaningful and memorable name

(Woodbury, 2010). The ‘Clear Names’ pattern can be used to illustrate the

idea and organisational structure of design patterns (What (Intent), When,

and How) (Ibid).

2) The ‘Jig’ pattern describes a concept of using simple abstract

frameworks to isolate structure and location from geometric detail (Ibid).

This pattern can be illustrated using an example of points that control the

geometry of a curve (or a surface). ‘Jig’ can be explained using relatively

simple programming logic. (See the full collection of pattern samples

developed by Robert Woodbury on <http://www.designpatterns.ca>).

5.1 Recommendations for teaching programming in design, based on the lessons

learned from this study

Page | 290

The following concepts can be introduced together with programming

algorithms illustrating the ‘Jig’ pattern: Numeric data; Coordinates; Points,

Vector Basics; Point/Vector Manipulation, Curves; Creating

Lines/Polylines/Curves from points; Surface Types; Creating Surfaces from

Points and Curves.

3) ‘Mapping’ is a pattern, which uses a function in a new domain and

range (Ibid). ‘Mapping’ sample algorithms can include such programming

concepts as: Lists, Shifting Data, Mathematics; Functions (F(x);

Sine/Cosine); Curve analysis; Evaluate Curve; Surfaces’ analysis; Evaluate

Surface; Reparameterize.

4) The intent of the ‘Point Collection’ pattern is to organise collections

of points or point-like objects (Ibid). This pattern can be used to create

algorithms which illustrate the use of: Points; Grids of points; Vectors;

Translations (such as Move); Mathematical and logical functions;

Numerical sequences.

5) ‘Increment’. The intent of the ‘Increment’ pattern is to drive change

through a series of closely related values (Ibid). The ‘Increment’ and ‘Point

Collection’ patterns can be easily combined together. The following

concepts can be introduced using the ‘Increment’: Lists; Data

Management; Numerical sequences; Series; Range; Random; Fibonacci

series; Data Tree; Flatten Tree; Merge; Graft Tree; Tree Branch; Explode

Tree;

6) ‘Place holder’ describes the logic of using a proxy object (for

example a panel) to organise multiple inputs (multiple panels on a surface)

(Ibid). This pattern is closely related to the ‘Point collection’ pattern and

can be combined with ‘Increment’, which is why they are introduced close

to each other. The programming algorithms illustrating the ‘Place holder’

pattern can include: Paneling Tools; Surfaces’ analysis; Divide Surface;

5.1 Recommendations for teaching programming in design, based on the lessons learned

from this study

Page | 291

Isotrim (SubSrf); Translations: Move; Rotations; Orient; Transformations

with shape variation; Scale.

7) ‘Projection’ is a design pattern used to produce a transformation

of an object in another geometric context (Ibid). This patterns can be

illustrated using: Curves, Surfaces; Vectors; Project; Graph Mapper;

Deformations: Morphing.

8) ‘Selector’ refers to conditional constructs (‘If - Then – Else’ type of

programming algorithms). The intent of the ‘Selector’ pattern is to select

particular items in a collection that have specified properties; for example

the size of the objects or their index number. It can be presented using

programming algorithms which introduce: Lists; List Item; List Length;

Reverse List; Shift List; Split List; Cull Nth; Cull Pattern; Dispatch;

Conditional Statements, Range, Series, Interval.

9) ‘Reactor’ is a design pattern, which is used to make an object

respond to the proximity of another object (Ibid). Reactor can be easily

combined with almost any previously introduced patterns, such as

‘Selector’ (select objects based on their proximity to the other object) and

‘Point Collection’ (change the location of the points depending on the

proximity to an object). Reactor pattern can be illustrated using:

Conditional Statements, Distance, Attractors; Definitions; Attractor point;

Attractor curve;

10) The intent of the ‘Controller’ pattern is to control a more complex

model (or a part of this model) through a simple separate model (Ibid).

The use of this pattern implies that the main model has a relatively high

degree of complexity. That is why it might be easier to control this model

through the separate (simple) model. It is recommended to illustrate this

pattern together with a couple of other patterns (for example with ‘Point

Collection’, ‘Place Holder’, ‘Reactor’ or ‘Selector’). The programming

algorithms using the ‘Controller’ pattern can contain: Curves, Surfaces;

5.1 Recommendations for teaching programming in design, based on the lessons

learned from this study

Page | 292

Vectors; Paneling Tools; Divide Surface; Translations: Move; Rotations;

Orient; Distance, Attractors; etc.

11) ‘Reporter’. The idea behind the ‘Reporter’ pattern is to take

information from a model and to communicate it to the audience (re-

present it) (Ibid). This pattern can be very useful in the later stages of the

design (for example for the representation of elements properties using

gradient colours.) It proved to be very effective when applied during the

preparation of a digital model for fabrication. For example, ‘Reporter’ can

be used to assign a certain number (index) to each panel or section of a

model which is going to be laser-cut. The ‘Reporter’ pattern can be

illustrated with: Colours, Gradients, Text Display, Lists, Numeric data,

Series, Analysis of the curves and surfaces.

12) The ‘Goal Seeker’ pattern also refers to the conditional ‘If - Then –

Else’ type of programming constructs. The idea of this pattern is to adjust

inputs until a specific goal is reached. The illustration of this pattern will

most likely require the use of scripting. The ‘Goal Seeker’ pattern can be

illustrated using: Script Component, Visual Basic, Variables; Arrays and

Lists; Loops.

13) The idea of the ‘Recursion’ pattern is to create a pattern by

replicating a geometric object or motif (Ibid). Similar to the ‘Goal Seeker’

the illustration of the ‘Recursion’ will most likely require the use of scripting.

‘Recursion’ can be used to create fractals - repeating self-similar patterns.

The ‘Recursion’ pattern can be explained using: Script Component, Visual

Basic, Variables; Arrays and Lists; Loops, Recursion, and Fractals.

 This systematic methodology for teaching programming in

architecture using Design Patterns can provide the basis for strategic

approach that can be applied for both long term algorithmic design

courses as well as for the short term intensive workshops. This teaching

framework was successfully tested on a series of algorithmic modelling

5.2 Lessons regarding the use of patterns for parametric design

Page | 293

workshops using visual programming with Grasshopper/Rhino. This

method allows novice programmers to activate computational thinking

and gain practical skills (as tested on a diverse group of students, and

practicing architects and designers). (See Detailed ‘Proposed curriculum

of teaching programming in architecture using patterns for algorithmic

design’ in the Appendix)

5.2 Lessons regarding the use of patterns for

parametric design

 Learning the patterns for parametric design helps architects

and designers to activate computational thinking mode. Learning

programming through Design Patterns proved to reduce programming

barriers that novice programmers often face when mastering algorithmic

modelling systems.

 In many cases designers and architects tend to remember

and refer to some specific pattern examples, rather than patterns

themselves;

 In some cases designers may forget or replace certain

pattern names, but still use the patterns. For example ‘Reporter’ was often

referred to as a ‘Proximity’ or ‘Distance’ pattern; ‘Place Holder’ was

sometimes referred to as ‘Paneling’, ‘Increment’ as ‘Series’; ‘Projector’ as

‘Project’ etc.

 Participants who used Design Patterns were less committed

to actually model their original (previously sketched) designs, compared

to those participants who used the Case-Based Design approach.

 The use of the Design Pattern approach in the initial stages

of learning of programming in architecture encourages exploration of the

5.3 Lessons regarding the use of case-based design and the organisation of the CBD

systems

Page | 294

software. It proved to help designers in getting familiar with the software.

It also encourages the experimentation with forms and various design

iterations which might be useful during conceptual design stages.

5.3 Lessons regarding the use of case-based

design and the organisation of the CBD systems

 It is recommended to use the CBD approach after designers

and architects, who are novice in programming, gain some experience with

the tool. This means that they have already acquired basic programming

skills and are familiar with the fundamentals of algorithmic design methods

(if learners are taught design patterns, the use of the CBD approach is

recommended only after they have learned design patterns). It was

observed that the reuse of Case-Based Design solutions is likely to

discourage the exploration of the software interface and available

commands and options. In some cases designers might reuse algorithms

to get a desired result (outcome) without clearly understanding ‘how’ this

algorithm actually works, which defeats the whole purpose of learning.

 After designers get more familiar with the modelling tool

and the use programming algorithms (when they can use computational

thinking mode and are able to create simple algorithms on their own), the

use of the Case-Based Design approach can be very effective. Unlike

Design Patterns it can show designer ‘how exactly’ a particular problem

can be solved. The CBD approach proves to reduce programming barriers

associated with the syntax and implementation of programming

components.

 The reuse of Case-Based programming solutions motivates

designers to find simpler/more effective algorithms.

5.3 Lessons regarding the use of case-based design and the organisation of the CBD

systems

Page | 295

 Those who use the CBD approach when working on

their own projects are likely to be less inclined to experiment with

parameters and be more motivated to realise their original idea

(design task).

 When organising a repository of parametric design

solutions it is useful to:

1) Organise pre-defined ‘meta-groups’, based on the

programming logic of algorithms. This could be done using Design

Patterns typology;

2) Use consistent index dictionary, with the focus on

programming commands or geometric characteristics of the output

model, rather than using abstract indexes

(associations/metaphor/descriptive attributes)

3) Visual representation of design output is very important.

The feedback from the CBD group participants indicates that after initial

index search they often relied on visual analysis of the output geometry

when selecting a case to reuse.

4) Split complex programming solutions into parts: simple

reusable artefacts.

5.3 Lessons regarding the use of case-based design and the organisation of the CBD

systems

Page | 296

Page | 297

6. Conclusion
The evidence presented in this thesis demonstrates that, in the context of

algorithmic architectural design, the integration of knowledge reuse

approaches, with learning and design processes, is beneficial. This thesis

has been tested in empirical studies with groups of students and architects.

Three different approaches were employed; two groups used an abstract

and a case-based approach to knowledge reuse and a control group had

no structural approach. Both extremes of the knowledge reuse approach

reduced barriers to using programming in design and improved design

performance. The group size and research design enabled these results to

be established as statistically significant.

 Design Patterns developed by Robert Woodbury (an example of

the abstraction reuse) proved to be an effective design support and

learning method, significantly reducing learning barriers associated with

the use of algorithmic modelling systems and programming languages.

The use of abstract solutions (patterns) helps architects to understand and

adopt algorithmic design methods better. Even though most of the

participating designers and architects found the use of patterns to be less

intuitive and less easy-to-use compared with the reuse case-based

algorithmic solution, overall the pattern approach proved to be a more

effective design support method, particularly at the initial stages of

learning.

Page | 298

 The use of the Case-Based Design approach (reusing specific

algorithmic solutions) helps to reduce problems associated with use

barriers (the implementation programming components and syntax),

which often occur when designers know ‘what to use’, but do not know

‘how to use it’. However, the reuse of case-based solutions does not

reduce the overall number of problems, and seems to discourage design

exploration. It encourages more focused reasoning, oriented towards the

realisation of the original design intention.

Page | 299

Bibliography

Aamodt, A., & Plaza, E. (1994). Case-based reasoning:

Foundational issues, methodological variations, and system approaches.

AI communications, 7(1), 39-59.

Abdelsalam, M. (2009). The Use of the Smart Geometry through

Various Design Processes: Using the programming platform (parametric

features) and generative components. pp. 297-304

Akerkar, R., & Sajja, P. (2010). Knowledge-based systems. Jones

& Bartlett Publishers.

Alexander, C. (1979). The timeless way of building (Vol. 1). Oxford

University Press.

Alexander, C. (Ed.). (1975). The Oregon experiment (Vol. 3).

Oxford University Press.

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). Pattern

languages. Center for Environmental Structure, 2.

Alreck, P. L., & Settle, R. B. (1995). The Survey Research

Handbook: Guidelines and Strategies for Conducting a Survey, 2E.

Altshuller, G. S. (1988) TRIZ-88 Available from: Open Source

Repository <http://www.altshuller.ru/engineering/engineering16.asp>

(accessed 23 September 2014)

Altshuller G. S. (1975) Manuscript, Available from: Open Source

Repository <http://www.altshuller.ru/triz/standards1.asp> (accessed 23

September 2014)

Page | 300

Altshuller, G. S. (1984). Creativity as an exact science. Gordon and

Breach.

Altshuller, G. S. (1999). The innovation algorithm: TRIZ, systematic

innovation and technical creativity. Technical Innovation Center, Inc.

Anderson, J. R. (2013). The architecture of cognition. Psychology

Press.

Andia, A. (2001). Integrating digital design and architecture

during the past three decades. In Virtual Systems and Multimedia, 2001.

Proceedings. Seventh International Conference on (pp. 677-686). IEEE.

Arturo, T. (2011). Parametric Architecture with Grasshopper.

Autodesk, 3Ds Max. (2012). Available from: Open Source

Repository <http://usa.autodesk.com/> (accessed 23 July 2012).

Baerlecken, D., Manegold, M., Reitz, J., & Kuenstler, A. (2010).

Integrative Parametric Form-Finding Processes. In New Frontiers:

Proceedings of the 15th International Conference on Computer-Aided

Architectural Design Research in Asia CAADRIA (pp. 303-312).

Bakar, N. A., & Rahim, Z. A. (2014). Design-To-Cost Framework in

Product Design Using Inventive Problem Solving Technique (TRIZ). Journal

on Innovation and Sustainability. RISUS ISSN 2179-3565, 5(2), 3-17.

Ball, P. (2011). Shapes: nature's patterns: a tapestry in three parts

(Vol. 1). Oxford University Press.

Bareiss, R. (1989). Exemplar-based knowledge acquisition: A

unified approach to concept representation, classification, and learning.

Boston, Academic Press.

Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter,

B. & Thomas, J. (1998). Putting it all together: towards a pattern language

for interaction design: A CHI 97 workshop. ACM SIGCHI Bulletin, 30(1), 17-

23.

Page | 301

Benton, S. (2007). Mediating between Architectural Design

Ideation and Development through Digital Technology, Predicting the

Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-

5] Frankfurt am Main (Germany), 26-29 September 2007, pp. 253-260.

Biggerstaff, T. J., & Richter, C. (1989, March). Reusability

framework, assessment, and directions. In Software reusability: vol. 1,

concepts and models (pp. 1-17). ACM.

Blogger. (2014) Available from: Open Source Repository

<https://www.blogspot.com/> (accessed 1 October 2014).

Bonnardel, N., & Zenasni, F. (2010). The impact of technology on

creativity in design: An enhancement?. Creativity and innovation

management, 19(2), 180-191.

Borchers, J. O. (2001). A pattern approach to interaction design.

AI & Society, 15(4), 359-376.

Branting, L. K. (1991). Exploiting the complementarity of rules and

precedents with reciprocity and fairness. In Proceedings: Case-Based

Reasoning Workshop (pp. 39-50).

Brin, S., & Page, L. (1998). The anatomy of a large-scale

hypertextual Web search engine. Computer networks and ISDN systems,

30(1), 107-117.

Buda, A., & Jarynowski, A. (2010). Life-time of correlations and its

applications vol. 1, Wydawnictwo Niezalezne: 5–21, December 2010. ISBN

978-83-915272-9-0.

Burry, M. (2011). Scripting cultures: Architectural design and

programming. John Wiley & Sons.

Cao, Q. and Protzen, J. (1999). Managing Design Information.

Design Studies, 20(24), 343–362.

Carbonell, J. G. (1986). Derivational analogy; A theory of

reconstructive problem solving and expertise acquisition. In R.S. Michalski,

Page | 302

J.G. Carbonell, T.M. Mitchell (eds.): Machine Learning - An artificial

Intelligence Approach, Vol.II, Morgan Kaufmann, pp. 371-392.

Carifio, J., & Perla, R. J. (2007). Ten common misunderstandings,

misconceptions, persistent myths and urban legends about Likert scales

and Likert response formats and their antidotes. Journal of Social Sciences,

3(3), 106.

Celani, G., & Vaz, C. E. V. (2012). Cad scripting and visual

programming languages for implementing computational design

concepts: A comparison from a pedagogical point of view. International

Journal of Architectural Computing, 10(1), 121-138.

Charlesworth, C. (2007). Student Use of Virual Physical Modeling

in Design Development-An Experiment in 3D Design Education. The

Design Journal, 10(1), 35-45.

Chen, Z. R. (2007). How to improve Creativity: Can Designers

Improve Their Design Creativity by Using Conventional and Digital media

simultaneously?, CAAD Futures 2007, Australia.

Christiaans, H. H. C. M., & Dorst, K. (1992). An empirical study into

design thinking. Research in Design Thinking, N. Roozenburg and K. Dorst,

eds., Delft University Press, Delft.

Coad, P. (1992). Object-oriented patterns. Communications of

the ACM, 35(9), 152-159.

Coates, P. (2010). Programming. Architecture. Routledge.

Cohen, J. (2013). Statistical power analysis for the behavioral

sciences. Routledge Academic.

Coplien, J. O., & Alexander, A. W. O. (1996). Software patterns.

Cui, J., & Tang, M. X. (2013). Integrating shape grammars into a

generative system for Zhuang ethnic embroidery design exploration.

Computer-Aided Design, 45(3), 591-604.

Page | 303

Dave, B., Schmitt, G., Faltings, B., & Smith, I. (1994, January). Case

based design in architecture. In Artificial Intelligence in Design’94 (pp. 145-

162). Springer Netherlands.

Davis, D. (2013). “Modelled on Software Engineering: Flexible

Parametric Models in the Practice of Architecture.” PhD dissertation, RMIT

University.

Dearden, A. M., Finlay, J., Allgar, E., & McManus, B. (2002). Using

pattern languages in participatory design.

Dearden, A., & Finlay, J. (2006). Pattern languages in HCI: A critical

review. Human–computer interaction, 21(1), 49-102.

Designpatterns. (2014). Available from: Open Source Repository

<http://www.designpatterns.ca> (accessed 1 October 2014)

Domeshek, E. A., & Kolodner, J. L. (1992). A case-based design

aid for architecture. In Artificial Intelligence in Design’92 (pp. 497-516).

Springer Netherlands.

Dorta, T. (2007). Augmented sketches and models: the hybrid

ideation space as a cognitive artifact for conceptual design. Proceedings

of Digital Thinking in Architecture, Civil Engineering, Archaeology, Urban

Planning and Design: Finding the Ways, EuropIA, 11, 251-264.

Dorta, T. (2007). Implementing and assessing the hybrid ideation

space: a cognitive artefact for conceptual design. Moon, 61, 77.

Dorta, T., Perez, E., & Lesage, A. (2008). The ideation gap:: hybrid

tools, design flow and practice. Design Studies, 29(2), 121-141.

Dovey, K. (1990). The pattern language and its enemies. Design

Studies, 11(1), 3-9.

Dowdy, S., & Wearden, S. (1983). Statistics for Research, 1983.

Eggenschwiler, T., & Gamma, E. (1992). ET++ SwapsManager:

Using object technology in the financial engineering domain. ACM Sigplan

Notices, 27(10), 166-177.

Page | 304

Engebretson, A., & Wiedenbeck, S. (2002). Novice

comprehension of programs using task-specific and non-task-specific

constructs. In Human Centric Computing Languages and Environments,

2002. Proceedings. IEEE 2002 Symposia on (pp. 11-18). IEEE.

Englebart, D. C. (2003, September). Improving our ability to

improve: A call for investment in a new future. In IBM Co-Evolution

Symposium.

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis. MIT-press.

Fadem, B. (2008). BRS Behavioral Science, Lippincott Williams &

Wilkins

Feller, W. (1950). An Introduction to Probability Theory and Its

Applications: Volume One. John Wiley & Sons.

Fisher, R. A. (1925). Statistical methods for research workers.

Genesis Publishing Pvt Ltd.

Forrest, A. R. (1974). Computational geometry-achievements and

problems. Computer Aided Geometric Design, 17-44.

Gabriel, R. P. (1996). Patterns of software (Vol. 62). New York:

Oxford University Press.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design

patterns: Abstraction and reuse of object-oriented design (pp. 406-431).

Springer Berlin Heidelberg.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design

patterns: elements of reusable object-oriented software. Pearson

Education.

Garlan, D., & Delisle, N. (1990). Formal specifications as reusable

frameworks. In VDM'90 VDM and Z—Formal Methods in Software

Development (pp. 150-163). Springer Berlin Heidelberg.

Garland, M. (1999). Multiresolution modeling: Survey & future

opportunities. State of the Art Report, 111-131.

Page | 305

Gay, L. R., & Diehl, P. L. (1992). Research methods for business

and management. Macmillan Coll Div.

Generative components. (2012). Available from: Open Source

Repository <http://www.bentley.com/> (accessed 23 July 2012).

Gentner, D. (1983). Structure‐Mapping: A Theoretical Framework

for Analogy*. Cognitive science, 7(2), 155-170.

Gero, J. S. (1996). Design tools that learn: A possible CAD future.

Information Processing in Civil and Structural Design, Civil-Comp Press,

Edinburgh, 17-22.

Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972).

Consequences of failure to meet assumptions underlying the fixed effects

analyses of variance and covariance. Review of educational research, 237-

288.

Grasshopper 3D. (2014) Available from: Open Source Repository

<http://www.grasshopper3d.com/> (accessed 1 October 2014).

Groat, L., & Wang, D. (2002). Architectural research methods.

New York.

Hamade, R. F., & Artail, H. A. (2008). A study of the influence of

technical attributes of beginner CAD users on their performance.

Computer-Aided Design, 40(2), 262-272.

Heisserman, L. (1994). Generative geometric design. Computer

Graphics and Applications, IEEE, 14(2), 37-45.

Heylighen, A., & Neuckermans, H. (2001). A case base of case-

based design tools for architecture. Computer-Aided Design, 33(14),

1111-1122.

Heylighen, A., & Verstijnen, I. M. (2000). Exposure to examples. In

Artificial Intelligence in Design’00 (pp. 413-432). Springer Netherlands.

Howe, N. (2011). Algorithmic Modeling: Teaching Architecture in

Digital Age. Do Not Print, 17.

Page | 306

Hua, H. (2014). A case-based design with 3D mesh models of

architecture. Computer-Aided Design.

Hua, K., Fairings, B., & Smith, I. (1996). CADRE: case-based

geometric design. Artificial Intelligence in Engineering, 10(2), 171-183.

Huang, L. (2009). Technology in Computer Aided Architectural

Design, ICIC '09 Proceedings of the 2009 Second International Conference

on Information and Computing Science - Volume 02 Pages 221-223

Hubbard, R., & Lindsay, R. M. (2008). Why P values are not a

useful measure of evidence in statistical significance testing. Theory &

Psychology, 18(1), 69-88.

IBM SPSS. (2014) Available from: Open Source Repository

<http://www-01.ibm.com/software/analytics/spss/> (accessed 1 October

2014).

Iwamoto, L. (2013). Digital fabrications: architectural and material

techniques. Princeton Architectural Press.

Jamieson, S. (2004). Likert scales: how to (ab) use them. Medical

education, 38(12), 1217-1218.

Janssen, P., & Wee, C. K. (2011). Visual Dataflow Modelling: A

Comparison of Three Systems.

Jonson, B. (2005). Design ideation: the conceptual sketch in the

digital age. Design studies, 26(6), 613-624.

Kalay, Y. E. (1999). The future of CAAD: From computer-aided

design to Computer-aided collaboration. In Computers in Building (pp.

13-30). Springer US.

Kaplan, S. (1996). An introduction to TRIZ: The Russian theory of

inventive problem solving. Ideation International.

Karle, D., & Kelly, B. (2011). Parametric Thinking. In Proceedings

of ACADIA Regional 2011 Conference (pp. 109-113).

Page | 307

King, I. (1993). Christopher Alexander and Contemporary

Architecture. Special issue of Architecture and Urbanism, August 1993

Ko, A. J., Myers, B. A., & Aung, H. H. (2004, September). Six

learning barriers in end-user programming systems. In Visual Languages

and Human Centric Computing, 2004 IEEE Symposium on (pp. 199-206).

IEEE.

Kolodneer, J. L. (1991). Improving human decision making

through case-based decision aiding. AI magazine, 12(2), 52.

Kolodner, J. L. (1983). Reconstructive Memory: A Computer

Model*. Cognitive science, 7(4), 281-328.

Kolodner, J. L. (Ed.). (1993). Case-based learning (Vol. 10, No. 3).

Springer.

Krish, S. (2011). A practical generative design method. Computer-

Aided Design, 43(1), 88-100.

Krishnamurti, R. (2011). Bridging parametric shape and

parametric design. In SDC’10: NSF International Workshop on Studying

Visual and Spatial Reasoning for Design Creativity.

Krueger, C. W. (1992). Software reuse. ACM Computing Surveys

(CSUR), 24(2), 131-183.

Kwinter, S., & Davidson, C. (2008). Far from equilibrium: essays on

technology and design culture. ACTA Press.

Lano, K. (2014). Design patterns: applications and open issues. In

Cyberpatterns (pp. 37-45). Springer International Publishing.

Lea, D. (1994). Christopher Alexander: An Introduction for

Object-Oriented Designers, Software Engineering Notes, 19 (1) 39-46

Leach, N. (2009). Digital morphogenesis. Architectural Design,

79(1), 32-37.

Page | 308

Leach N. (2010). Parametric and Algorithmic research in

architecture, Definitions: Parametric and Algorithmic Design, University of

Southern California, US <http://parasite.usc.edu/?p=443>.

Leach N., Schumacher P. (2012). On Parametricism’- A Dialogue

between Neil Leach and Patrik Schumacher. Published in: T + A (Time +

Architecture) Digital Fabrication, International Architectural Magazine in

China

Leitão, A., & Santos, L. (2011). Programming Languages for

Generative design: Visual or Textual?. In Zupancic, T., Juvancic, M.,

Verovsek., S. and Jutraz, A., eds., Respecting Fragile Places, 29th eCAADe

Conference Proceedings, University of Ljubljana, Faculty of Architecture

(Slovenia), Ljubljana (pp. 549-557).

Lubke, G. H., & Muthén, B. O. (2004). Applying multigroup

confirmatory factor models for continuous outcomes to Likert scale data

complicates meaningful group comparisons. Structural Equation

Modeling, 11(4), 514-534.

MacLean, A., Young, R. M., Bellotti, V. M., & Moran, T. P. (1991).

Questions, options, and criteria: Elements of design space analysis.

Human–computer interaction, 6(3-4), 201-250.

Maher, M. L., & de Silva Garza, A. G. (1997). Case-based

reasoning in design. IEEE Intelligent Systems, 12(2), 34-41.

Maher, M. L., & Pu, P. (Eds.). (2014). Issues and applications of

case-based reasoning to design. Psychology Press.

Maher, M. L., Balachandran, M., & Zhang, D. M. (1995). Case-

based reasoning in design. Psychology Press.

Mallasi, Z. (2007). Applying Generative Modeling Procedure to

Explore Architectural Forms. In Proceedings of the ASCAAD Conference

(pp. 335-342).

Page | 309

Mann, D. Someone, Somewhere Really Did Already Invent The

Wheel You’re About To Re-Invent., HKIVM 7th International Conference,

2005.

Marriott, K., & Chok, S. S. (2002). Qoca: A constraint solving toolkit

for interactive graphical applications. Constraints, 7(3-4), 229-254.

Martens, B., Koutamanis, A., & Brown, A. (2007). Predicting the

future from past experience. Predicting the future, 523-531.

Martin, P., & Bateson, P. (1986). Measuring BehaviourCambridge

University Press. Cambridge UK.

Matcha, H. (2007). Parametric Possibilities: Designing with

Parametric Modelling. In Predicting the Future: 25th eCAADe Conference

Proceedings (pp. 849-856).

MaxScript. (2012). Available from: Open Source Repository

<http://docs.autodesk.com/> (accessed 23 July 2012).

Maya. (2012). Available from: Open Source Repository

<http://usa.autodesk.com/> (accessed 23 July 2012).

McCormack, J., Dorin, A., & Innocent, T. (2004). Generative

design: a paradigm for design research. Proceedings of Futureground,

Design Research Society, Melbourne.

Mehta, C. R., & Patel, N. R. (1998). Exact inference for categorical

data. Encyclopedia of biostatistics, 2, 1411-1422.

Mel. (2012). Available from: Open Source Repository

<http://download.autodesk.com/us/maya/2010help/files/Glossary_M_ME

L.htm> (accessed 23 July 2012).

Menges, A. (2012). Material computation: Higher integration in

morphogenetic design. Architectural Design, 82(2), 14-21.

Menges, A., & Ahlquist, S. (Eds.). (2011). Computational Design

Thinking: Computation Design Thinking. John Wiley & Sons.

Page | 310

Meredith M. (2008). From Control to Design,

Parametric/Algorithmic Architecture\ 2008-10-15.

Microsoft Excel. (2014) Available from: Open Source Repository

<http://office.microsoft.com/en-us/excel/> (accessed 1 October 2014).

Mitchell, W. J. (1975). The theoretical foundation of computer-

aided architectural design. Environment and Planning B, 2(2), 127-150.

Mitchell, W. J. (1990). The logic of architecture: Design,

computation, and cognition. MIT press.

Mora, R., Bédard, C., & Rivard, H. (2008). A geometric modelling

framework for conceptual structural design from early digital architectural

models. Advanced Engineering Informatics, 22(2), 254-270.

Mosier, J. N., & Smith, S. L. (1986). Application of guidelines for

designing user interface software. Behaviour & information technology,

5(1), 39-46.

Muller, M. J., Haslwanter, J. H., & Dayton, T. (1997). Participatory

practices in the software lifecycle. Handbook of human-computer

interaction, 2, 255-297.

Musta'amal, A. H. (2010). An empirical investigation of the

relationship of CAD use in designing and creativity through a creative

behaviours framework (Doctoral dissertation, © Aede Hatib Musta’amal).

Nielsen, J. (1994). Usability engineering. Elsevier.

Pane, J. F., Ratanamahatana, C., & Myers, B. A. (2001). Studying

the language and structure in non-programmers' solutions to

programming problems. International Journal of Human-Computer

Studies, 54(2), 237-264.

Paneling-tools. (2009) Available from: Open Source Repository

<http://tips.rhino3d.com/2009/04/basics-of-paneling-tools.html>

(accessed 24 July 2012).

Page | 311

Payne, Rajaa (2009). Grasshopper Primer. Second edition. LIFT

Architects. Accessed September 2014.

Pearce, M., Goel, A. K., Kolodner, J. L., Zimring, C., Sentosa, L., &

Billington, R. (1992). Case-based design support: A case study in

architectural design. IEEE Expert, 7(5), 14-20.

Pérez, E., Dorta T. (2011). Assessment of design tools for ideation,

Proceedings of the 16th International Conference on Computer Aided

Architectural Design Research in Asia / The University of Newcastle,

Australia 27-29 April 2011, pp. 429-438.

Porter, B. W., & Bareiss, E. R. (1986). PROTOS: An Experiment in

Knowledge Acquisition for Heuristic ClassificationTasks.

Processing. (2012). Available from: Open Source Repository

<http://processing.org/> (accessed 23 July 2012).

Python. (2012). Available from: Open Source Repository

<http://www.python.org/>(accessed 23 July 2012).

Ramirez, A. J., & Cheng, B. H. (2010, May). Design patterns for

developing dynamically adaptive systems. In Proceedings of the 2010 ICSE

Workshop on Software Engineering for Adaptive and Self-Managing

Systems (pp. 49-58). ACM.

Recio-García, J. A., González-Calero, P. A., & Díaz-Agudo, B.

(2014). jcolibri2: A framework for building Case-based reasoning systems.

Science of Computer Programming, 79, 126-145.

Reffat, R. M. (2006). Computing in architectural design: reflections

and an approach to new generations of CAAD. Journal of Information

Technology in Construction (ITCON), 11, 655-668.

Rhino3d. (2012). Available from: Open Source Repository

<http://www.rhino3d.com/> (accessed 23 July 2012).

Rhinoscript. (2012). Available from: Open Source Repository

<http://www.rhinoscript.org/> (accessed 23 July 2012).

Page | 312

Riesbeck, C. K., & Schank, R. C. (2013). Inside case-based

reasoning. Psychology Press.

Robbins, R. J. (1994). Database Fundamentals. Johns Hopkins

University, rrobbins@ gdb. org.

Roscoe, J. T. (1975). Fundamental research, statistics for the

behavioral sciences (2nd Ed.). New York: Holt, Rinehart & Winston

Ross, B.H (1989). Some psychological results on case-based

reasoning, Case-Based Reasoning Workshop, DARPA 1989. Pensacola

Beach. Morgan Kaufmann. pp. 144-147.

Rouse, W. B., & Hunt, R. M. (1982). Human problem solving in

fault diagnosis tasks. Georgia Inst. of Tech Atlanta Center for Human-

Machine Systems Research Report no 82-3, 1982.

Saeed, G. (2000). Fundamentals of Probability.

Sargent (1991) Knowledge-based systems, Available from: Open

Source Repository

<http://home.klebos.net/philip.sargent/book/7_knowledge_based_syste

ms.html> (accessed 1 October 2014).

Saunders, W. S. (2002). Book reviews: A pattern language.

Harvard Design Magazine, 16, 1-7.

Schank, R. C. (1982). Dynamic memory: A theory of reminding

and learning in computers and people. Cambridge University Press.

Schön, D. (1991). Teaching and learning as a design transaction.

Research in design thinking.

Schön, D. A. (1983). The reflective practitioner: How professionals

think in action (Vol. 5126). Basic books.

Schuler, D., & Namioka, A. (1993). Participatory design: Principles

and practices. L. Erlbaum Associates Inc.

Page | 313

Serban, D., Man, E., Ionescu, N., & Roche, T. (2004). A TRIZ

approach to design for environment. In Product Engineering (pp. 89-100).

Springer Netherlands.

Shah, J. J., Smith, S. M., & Vargas-Hernandez, N. (2003). Metrics

for measuring ideation effectiveness. Design studies, 24(2), 111-134.

Shih Y. T., Williams A., Gu N. (2011). A method to investigate

differences of sketching before and during CAD modelling design process,

Architecture @ the Edge: Association of Architecture Schools of

Australasia 2011 International Conference (AASA 2011) The School of

Architecture & Building, Deakin University.

Shikhare, D., Bhakar, S., & Mudur, S. P. (2001). Compression of

large 3D engineering models using automatic discovery of repeating

geometric features. Signal Processing, 19(20), 15.

Siemens, G. (2006). Knowing knowledge. Lulu. com.

Smith, A. C. (2004). Architectural model as machine: A new view

of models from antiquity to the present day. Routledge.

Sobek, D and Ward, (1996). A Principles from Toyota’s Set-Based

Concurrent Engineering Process, Proceedings of ASME Computers in

Engineering Conference, Irvine, CA.

Stigler, S. (2008). Fisher and the 5% level. Chance, 21(4), 12-12.

Stiny, G. (2008). Shape: talking about seeing and doing. The MIT

Press.

Stoline, M. R. (1981). The status of multiple comparisons:

simultaneous estimation of all pairwise comparisons in one-way ANOVA

designs. The American Statistician, 35(3), 134-141.

Stratton, R., Mann, D., & Otterson, P. (2000). The Theory of

Inventive Problem Solving (TRIZ) and Systematic Innovation-a Missing Link

in Engineering Education?. TRIZ Journal.

Page | 314

Sun, K., & Faltings, B. (1994, January). Supporting creative

mechanical design. In Artificial Intelligence in Design’94 (pp. 39-56).

Springer Netherlands.

Sutcliffe, A. (2000). On the effective use and reuse of HCI

knowledge. ACM Transactions on Computer-Human Interaction (TOCHI),

7(2), 197-221.

Terninko, J., Zusman, A., & Zlotin, B. (1998). Systematic

innovation: An introduction to TRIZ (theory of inventive problem solving).

CRC press.

Terzidis, K. (2006). Algorithmic architecture. Routledge.

Tidwell, J. (2005). Deigning Interfaces-Patterns for Effective

Interaction Design. O'Reilly Media, Inc.

Toth, B., Salim, F., Drogemuller, R., Frazer, J. H., & Burry, J. (2011).

Closing the loop of design and analysis: Parametric modelling tools for

early decision support. In Circuit Bending, Breaking and Mending:

Proceedings of the 16th International Conference on Computer-Aided

Architectural Design Research in Asia (pp. 525-534). The Association for

Computer-Aided Architectural Design Research in Asia (CAADRIA).

Tsatsoulis, C., & Alexander, P. (1997). Integrating cases, sub-

cases, and generic prototypes for design. Issues and Applications of Case-

Based Reasoning in Design, 261-300.

Tumblr. (2014) Available from: Open Source Repository

<https://www.tumblr.com/> (accessed 1 October 2014).)

Turrin, M., von Buelow, P., & Stouffs, R. (2011). Design

explorations of performance driven geometry in architectural design using

parametric modeling and genetic algorithms. Advanced Engineering

Informatics, 25(4), 656-675.

Tuthill, G. S., & Levy, S. T. (1991). Knowledge-based systems: a

manager's perspective. TAB Books.

Page | 315

Van Berkel, B., & Bos, C. (2006). After Image. Design Models:

Architecture, Urbanism, and Infrastructure. Thames & Hudson. London,

UK, 370-379.

Wallenstein, S. Y. L. V. A. N., Zucker, C. L., & Fleiss, J. L. (1980).

Some statistical methods useful in circulation research. Circulation

Research, 47(1), 1-9.

Walther, J., Robertson, B. F., & Radcliffe, D. F. (2007). Avoiding the

potential negative influence of CAD tools on the formation of students’

creativity. Department of Computer Science and Software Engineering,

the University of Melbourne.

Weisberg, H. F., & Bowen, B. D. (1977). An introduction to survey

research and data analysis San Francisco. WH. Freeman and Company,

13, 59-62.

Wiig, K. M. (1999). What future knowledge management users

may expect. Journal of knowledge management, 3(2), 155-166.

Winn, T., & Calder, P. (2002). Is this a pattern?. Software, IEEE,

19(1), 59-66.

Woodbury, R. (2010). Elements of parametric design.

Woodward, M. (2010). An Interpretation Design Pattern

Language: A propositional conceptual tool for interdisciplinary team

members working on interpretation design projects, Cumulus Working

Papers, Aalto University School of Art and Design, Melbourne

Wordpress.com. (2014) Available from: Open Source Repository

<https://wordpress.com/> (accessed 1 October 2014).

Zeid, I. (2005). Mastering Cad/Cam. McGraw-Hill, Inc.

Zimmerman, J. L. (1997). EVA and divisional performance

measurement: Capturing synergies and other issues. Journal of Applied

Corporate Finance, 10(2), 98-109.

Page | 316

Zimring, C., Do, E., Domeshek, E., & Kolodner, J. (1995).

Supporting case-study use in design education: A computational case-

based design aid for architecture. In Computing in Engineering:

Proceedings of the Second Congress. New York: American Society of Civil

Engineers.

Proposed Curriculum of Teaching Programming in Architecture Using Patterns for

Algorithmic Design

Page | A 1

Appendix A

Proposed Curriculum of Teaching Programming

in Architecture Using Patterns for Algorithmic

Design

This systematic methodology for teaching programming in architecture

using Design Patterns can provide the basis for strategic approach that

can be applied for both long term algorithmic design courses as well as

for the short term intensive workshops. This teaching framework was

successfully tested on a series of algorithmic modelling workshops using

Grasshopper for Rhino. This method allows novice programmers to

activate computational thinking and quickly gain practical skills.

 Prior to introducing Design Patterns, there should be a basic

introduction of the software interface and the structure of programming

components. For Grasshopper this includes finding and selecting different

types of programming components, connecting and disconnecting them;

linking and modifying existing geometry and creating geometry from

scratch. The first step involves making learners familiar with the concepts

of domains of numbers, introduction of ‘number sliders’, mathematical

functions and operations, coordinates. It should also include an overview

of how to create geometry (2D and 3D primitives) and how to use some

of the basic operations, such as: move, rotate, scale; and Boolean

operations: intersection, subtraction, addition.

Proposed Curriculum of Teaching Programming in Architecture Using Patterns for

Algorithmic Design

Page | A 2

Tutorial Content:

Working area (Interface);

Components and data;

Components’ connection;

Parameters and components;

Direct import from Rhino (Linking geometry);

Data Management;

Data Stream Matching;

Scalar Component Types;

2D and 3D Primitives (points, lines, curves, planes, circles, polygons,

spheres, boxes etc.)

Operators (move, rotate, scale);

Parametric control;

1 Design Pattern: Clear Names

Page | A 3

1 Design Pattern: Clear Names

After designers gain an overall understanding of the software interface

and basics of modelling methods, they can be introduced to the concept

of patterns for parametric design.

See <http://www.designpatterns.ca> for details.

 The first pattern to be introduced in the course is ‘Clear Names’. It

has actually nothing to do with parametric design per se. Its intent is to

give each pattern a clear, meaningful and memorable name. The ‘Clear

Names’ pattern can be used to illustrate the concept and organisational

structure of design patterns (Intent, Use When, Why, and How)

(Woodbury, 2010). Design Patterns can be understood as re-usable

abstracted parametric design solutions. To better understand the concept

of Design Patterns please refer to the following explanations:

 Design Pattern is an abstract solution, which can be applied to

a shared problem (Woodbury, 2010).

 Interpretation of the design idea / concept (Woodbury, 2010);

 Pattern is a ‘pre-formal construct’ (Lea, 1994);

 Patterns emerge from repetitions of human behaviour (Coad,

1992);

 Pattern is a recurrent phenomenon or structure, ‘didactic

medium for human readers’ (Borchers, 2001);

 Pattern describes a problem and then describes the core of the

solution (Gamma, 1994 quote Alexander (1977));

 Pattern is a structured description of invariant solution. Invariant

refers to a set of shared characteristics of the recommended

solution (Winn, Calder, 2002)

 Patterns should capture ‘big ideas’ (Winn, Calder 2002) instead

of covering every possible design decision.

1 Design Pattern: Clear Names

Page | A 4

 Pattern is an abstraction, which describes not some specific

example, but it rather refers to a general concept or idea, which

is often associated with vagueness. In computer science, an

abstraction characterizes a class of instances which omits

inessential details (Woodbury, 2010), (Gamma, Helm, Johnson,

Vlissides, 1994).

 Design Patterns are the medium to understand and express the

practice craft of parametric modelling (Woodbury, 2010)

*Patterns for parametric design used in this course were developed by

Robert Woodbury (2010)

2 Design Pattern: Jig

Page | A 5

2 Design Pattern: Jig

‘Jig’ pattern describes a concept of using simple abstract frameworks to

isolate structure and location from geometric detail*.

Tutorial Content:

Numeric data;

Coordinates;

Points,

Vector Basics;

Point/Vector Manipulation,

Curves;

Types of Curves

Creating Lines / Polylines / Curves from Points;

Surfaces

Creating Surfaces from Points and Curves

Notes:

The use of ‘Jig’ allows designers to learn how they can control an object

using its isolated structure. ‘Jig’ is chosen to be the first design pattern

introduced to learners, due to a number of reasons. Firstly, the concept

of changing a geometry using, for example, control points is relatively

easy to understand, even for novice modellers. Secondly the

modification of a geometrical object (such as a curve or a surface) using

2 Design Pattern: Jig

Page | A 6

control points can be done through a very simple programming

algorithm. The objective of the course is to use more simple algorithms

and programming logic in the beginning and then gradually increase

the complexity.

3 Design Pattern: Mapping

Page | A 7

3 Design Pattern: Mapping

The intent of the ‘Mapping’ pattern is to use a function in a new domain

and range*.

Tutorial Content:

Lists, Shifting Data, Mathematics;

Functions (F(x); Sine / Cosine);

Curve analysis; Evaluate Curve;

Surfaces’ analysis;

Evaluate Surface;

Reparameterize; 'Remap Numbers'

Notes:

‘Mapping’ can be combined with further (more detailed) introduction of

the use of mathematical functions in parametric design, such as sine,

cosine, x*x etc. The introduction of ‘Mapping’ and illustration of it using

programming algorithms can be used to explain the ‘Remap Numbers’

components and ‘Reparameterize’ option. The ‘Reparameterize’ sets

the domain from 0 to 1 instead of the real size, which can be really

useful for the evaluation of curves and surfaces. Woodbury states that

‘It is much, much easier to think about a function in its natural domain

and range’ (2010)

4 Design Pattern: Point Collection

Page | A 8

4 Design Pattern: Point Collection

The intent of the ‘Point Collection’ pattern is to organise collections of

points or point-like objects*.

Tutorial Content:

Points;

Grids of points;

Vectors;

Functions (F(x); Sine / Cosine / x*x);

Translations (such as Move);

Mathematical and logical functions;

Numerical sequences.

Mathematics;

Notes:

Similar to ‘Jig’, the concept behind the ‘Point Collection’ pattern is

relatively easy to grasp: locating the repeating elements using various

organisational methods. The use of ‘Point Collection’ also allows the

integration of mathematical functions, defining the distribution

(location) of each point in the collection. The following examples can be

used to illustrate the idea of this pattern: spirals, waves, random point

clouds or specifies a position of points on curves and surfaces.

5 Design Pattern: Increment

Page | A 9

5 Design Pattern: Increment

The intent of the ‘Increment’ pattern is to drive change through a series

of closely related values*.

Tutorial Content:

Lists; Data Management;

Numerical sequences;

Series; Range; Random; Fibonacci series;

Data Tree; Flatten Tree; Merge; Graft Tree; Tree Branch; Explode Tree;

Notes:

‘Increment’ is one of the patterns that is often re-used by designers in

their own design works. Observations show that novice programmers

often get excited by the complexity of geometry that can be generated

using gradual rotation or move of the objects. Some of designers might

not (foresee) predict what kind of geometry can be created using

programming algorithms that gradually transforming an object with

incremental changes. The ‘Increment’ and ‘Point Collection’ patterns can

be easily combined together.

It should be noted that, even though designers often use the logic of

‘Increment’ in their parametric projects, they may tend to forget the

name of this pattern. ‘Increment’ is often referred to it as ‘Series’, which

is a programming component in Grasshopper. Similarly the ‘Projection’

5 Design Pattern: Increment

Page | A 10

pattern is sometimes referred as ‘Project’ or the ‘Reactor’ pattern is often

called ‘Distance’ (both of which are programming components). This

trend might indicate a couple things: a) these names pattern could be

not the most universal, or b) designers and architects tend to remember

and associate some specific programming commands (such as: project,

series, distance) rather than use the original (more abstract) pattern

name.

6 Design Pattern: Place Holder

Page | A 11

6 Design Pattern: Place Holder

‘Place holder’ describes the logic of using a proxy object (for example a

panel) to organise multiple inputs (panels on a surface)*.

Tutorial Content:

Paneling Tools;

Surfaces’ analysis;

Divide Surface; Isotrim (SubSrf);

Translations: Move; Rotations; Orient;

Transformations with shape variation;

Scale.

Notes:

The ‘Place holder’ pattern is related to the ‘Point Collection’ pattern. It

can also easily be combined with ‘Increment’ (for example, by rotation

or scaling of repeating elements) and with ‘Jig’ (for example, to control

the surface). ‘Place Holder’ is often associated by designers with the

concept of Paneling (however is only one of ‘Place Holder’s’ possible

applications). Here is an example how ‘Point Collection’ and ‘Place

holder’ can be used together: a) use ‘Point Collection’ to define

coordinates of the input objects; b) use ‘Place holder’ by creating a

proxy object (for example ‘spines’) and referencing it to the locations.

7 Design Pattern: Projection

Page | A 12

7 Design Pattern: Projection

‘Projection’ is a design pattern, which is used to produce a transformation

of an object in another geometric context.

Tutorial Content:

Curves,

Surfaces;

Vectors;

Project;

Image sampler,

Graph Mapper;

Deformations: Morphing;

Notes:

Even though the concept and the application of the ‘Projection’ patterns

is relatively simple, it allows to create very complex outcomes. One of

the algorithms illustrating the ‘Projection’ pattern can be split it into two

parts: creating a relatively complex and detailed 2D pattern using

‘Increment’, ‘Point Collection’ and ‘Place holder’ and then using

‘Projection’ logic transform this 2D pattern onto a different geometric

context (for example project or morph it into a complex curvilinear

surface (receiving object)). Alternatively the initial 2D pattern can be

created using data from an image (‘Image Sampler’).

8 Design Pattern: Selector

Page | A 13

8 Design Pattern: Selector

The intent of the ‘Selector’ pattern is to select particular items in a

collection that have specified properties (for example, their size or their

index number).

Tutorial Content:

Lists;

List Item;

List Length; Reverse List;

Shift List; Split List;

Cull Nth; Cull Pattern;

Dispatch;

Conditional Statements,

Range, Series, Interval.

Notes:

‘Selector’ refers to conditional constructs (‘If - Then – Else’ type of

programming algorithms). From teaching perspective, the ‘Selector’

pattern can be used to give designers a better and more advanced

understanding of how the lists of data work. Including the illustrations

on how multiple numbers, objects and coordinates can be placed in lists

and how this data can be organised and manipulated (data tree

structure). ‘Selector’ can be illustrated with programming algorithms

which introduce such concepts as splitting the lists of data, based on the

8 Design Pattern: Selector

Page | A 14

item’s number (index); based on a specific pattern (true / false); or

reversing / shuffling the order of data in the list etc. Study shows that

designers can easily grasp the idea of the ‘Selector’ pattern. However

practical implementation of conditional constructs and managing the

lists of data is often frustrating for novice programmers. That is one of

the reasons why this pattern was not introduced in the beginning of the

course.

9 Design Pattern: Reactor

Page | A 15

9 Design Pattern: Reactor

‘Reactor’ is a design pattern, which is used to make an object respond to

the proximity of another object*.

Tutorial Content:

Conditional Statements,

Distance,

Attractors;

Definitions;

Attractor point;

Attractor curve;

Notes:

‘Reactor’ can be easily combined with almost any previously introduced

patterns, such as ‘Place Holder’ and ‘Selector’. For example, selecting

objects (sorting them into different lists) based on their proximity to a

curve or an attractor points. ‘Rector’ can be paired with other introduced

patterns to create proximity responsive designs. That is one of the

reasons why it was introduced later in the course. Proximity is often used

to create responsive (interactive) structures. Distance between the

objects (for example between the attractor point and elements of the

structure) can be used as a parameter that informs the size or a degree

of elements’ rotation. Some designers, who learned parametric

9 Design Pattern: Reactor

Page | A 16

modelling using Design Patterns had a tendency to intuitively substitute

the name ‘Reactor’ with such words as ‘Distance’ and ‘Proximity’. This

might suggest that the name ‘Reactor’ might not be the most universal

and memorable.

10 Design Pattern: Controller

Page | A 17

10 Design Pattern: Controller

The intent of the ‘Controller’ pattern is to control a more complex model

(or a part of a model) through a simple separate model*.

Tutorial Content:

Curves, Surfaces;

Vectors;

Paneling Tools;

Divide Surface;

Translations: Move; Rotations; Orient;

Distance,

Attractors;

Notes:

The use of the ‘Controller’ pattern implies that the design model has a

relatively high degree of complexity. Which is why it might be easier to

control this model through a separate (more simple) model. It is

recommended to illustrate this pattern together with a couple of other

patterns (for example with ‘Point Collection’, ‘Place Holder’, ‘Reactor’ or

‘Selector’). The idea of ‘Controller’ is closely related to the idea of ‘Jig’.

Similar to the ‘Controller’ pattern the objective of the ‘Jig’ pattern is to

control an object using its isolated structure (using for example a set of

control points). The difference between these patterns is that the

10 Design Pattern: Controller

Page | A 18

‘Controller’ description implies that a separate simple model should be

used to control a more complex model (object). When creating their

own algorithms, designers sometimes have a tendency to skip the

creation of a separate model and instead use isolated structures (points

or curves) to control their resulting models.

11 Design Pattern: Reporter

Page | A 19

11 Design Pattern: Reporter

The idea behind the ‘Reporter’ pattern is to extract information from a

model and to communicate it to the audience (represent this

information)*.

Tutorial Content:

Colours,

Gradients,

Text Display,

Lists,

Numeric data,

Series,

Analysis of the Curves and Surfaces.

Notes:

This pattern can be very useful on the later stages of the design (for

example for the representation of elements’ properties using gradient

colours.) The representation of the information could be done through

the use of colours / gradients (for example shading larger elements as

red and smaller elements as green) or it could be represented with text

(for example showing the area / volume of each element, their proximity

to each other, or their index number). The use of the ‘Reporter’ pattern

11 Design Pattern: Reporter

Page | A 20

has proved to be very useful for the preparation of a digital model for

fabrication. For example, by showing an index number of each element

(panel or section) of a model that has to be laser-cut.

12 Design Pattern: Goal Seeker

Page | A 21

12 Design Pattern: Goal Seeker

The idea of ‘Goal Seeker’ is to adjust inputs until a specific goal is reached*.

Tutorial Content:

Variables;

Arrays and Lists;

Loops.

Script Components,

Visual Basic,

Notes:

The ‘Goal Seeker’ pattern refers to the conditional ‘If - Then – Else’ type

of programming constructs. ‘Goal Seeker’ can be illustrated by gradually

scaling objects in a collection until they reach a specific size (volume),

or until a specific distance between the objects is reached. In this regard,

the ‘Goal Seeker’ pattern is related to the ‘Selector’ pattern, which also

employs conditional algorithms (sorting items in a collection according

to specified properties). ‘Goal Seeker’ gives an opportunity to introduce

designers to the idea of loops and iterations. It should be noted that in

Grasshopper the implementation of conditional statements, and

iterations: loops and recursions will most likely require the use of

scripting or the use of additional plugins.

13 Design Pattern: Recursion

Page | A 22

13 Design Pattern: Recursion

The idea of ‘Recursion’ is to create a pattern by replicating a geometric

object or motif *.

Tutorial Content:

Recursion,

Fractals

Variables;

Arrays and Lists;

Loops.

Script Components,

Visual Basic,

Notes:

‘Recursion’ is also related to the concept of loops and iterations. Hence

it is clustered with the ‘Goal Seeker’ pattern. ‘Recursion’ can be used to

create fractals, which are often used as examples of recursions in

programming. Similar to the ‘Goal Seeker’ pattern the illustration of the

‘Recursion’ pattern will most likely require the use of scripting.

Report of Results

Page | 1

Appendix B

Report of Results

Colour coding of diagrams:

*pink: the p- value indicates that there is a significant difference between

the approaches (for this particular criterion)

*grey: the p- value indicates that there is NO significant difference between

the approaches (for this particular criterion)

COMPARISON BETWEEN THE NO APPROACH, THE DESIGN PATTERNS

APPROACH AND THE CASE-BASED DESIGN APPROACH GROUPS

(ANOVA / CHI-SQUARE).

*Only the cases when the p-value is below 0.05 are shown

Criteria No App.(Mean /

%)

DP (Mean / %) CBD (Mean / %) t (df) / X2 p - value

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

DAY

1

DAY

2

Model

Complexity

Score

11.73

+-

2.465

13.94

+-

2.585

12.23

+-

2.046

14.10

+-

2.551

12.15

+-

2.246

12.74

+-

2.246

.583

(125)

3.5

(12

5)

.560 .031

Algorithm

Variety

Score

12.43

+-

3.565

16.65

+-

5.851

15.13

+-

4.718

17.60

+-

5.137

12.77

+-

3.595

15.77

+-

3.218

4.99

(125)

1.3

(12

5)

.008 .268

How Often

You Have

Come

Across

Programmin

g Difficulties

2.88

+-

1.053

2.71

+-

.890

2.37

+-

.669

2.10

+-

.403

2.91

+-

1.039

2.53

+-

.776

3.41

4 (2)

6.2

(2)

.036 .003

Programmin

g Difficulties:

Problems

With

Particular

Components

44.8%

(22/49

)

48.9%

(24/49

)

33.3%

(10/30

)

43.3%

(13/30

)

21.3%

(10/47

)

23.4%

(11/47

)

6.02 7.1

1

.049 .029

Report of Results

Page | B 2

It Was Easy

To

Implement

DP/CBD

Approach In

My Design

 2.90

+-

.885

3.03

+-

.809

3.66

+-

.668

3.77

+-

.666

-

4.28

0

(75)

-

4.3

26

(75)

.000 .000

I Find

DP/CBD

Approach -

Intuitive

 3.37

+-

.718

 3.81

+-

.851

 -

2.3

57

(75)

 .021

Used

DP/CBD

Solution

 70%

(21/30

)

66.7%

(20/30

)

76.4%

(35/47

)

87.2%

(38/47

)

.414 4.7

06

.350 .031

I Find

DP/CBD

Approach -

Helpful

 3.93

+-

.640

 4.30

+-

.507

 -

2.7

75

(75)

 .007

Design

Objective:

To Achieve

The Form I

Originally

Sketched

40%

(10/25

)

48%

(12/25

)

56.7%

(17/30

)

60%

(18/30

)

51%

(24/47

)

80.8%

(38/47

)

1.55

5

8.7

75

.460 .012

Design

Objective:

To

Explore/Lear

n

Algorithmic

Form-

Making

Process

24%

(6/25)

28%

(9/25)

63.3%

(19/30

)

40%

(12/30

)

46.8%

(22/47

)

23.4%

(11/47

)

8.51

0

2.6

72

.014 .263

Design

Objective:

To

Experiment

With

Parameters /

Iterations /

Variables

8%

(2/25)

12%

(3/25)

20%

(6/30)

46.7%

(14/30

)

19.1%

(9/47)

8.5%

(4/47)

1.80

1

17.

800

.406 .000

Comparison of Algorithmic Modelling Criteria

Page | 3

Comparison of Algorithmic Modelling Criteria

Model Complexity

Model Complexity Score.

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

MODELLING SPEED DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

Model Complexity

Score

11.73

+-

2.465

13.94

+-

2.585

12.2

3 +-

2.04

6

14.10

+-

2.551

12.1

5 +-

2.24

6

12.74

+-

2.246

.583

(125)

3.569

(125)

.560 .031

Day 1: F (125) = .583, p = 0.560; F ratio (F), the degrees of freedom (df)

and the p-value are used.

Day 2: F (125) = 3.569, p = 0.031;

ANOVA Post-Hoc, Tukey’s test

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) p – value

NA with DP

p – value

NA with CBD

p – value

DP with CBD

MODELLING

SPEED

DAY

1

DAY 2 DAY

1

DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

Model

Complexit

y Score

 13.9

4 +-

2.58

5

 14.1

0 +-

2.55

1

 12.7

4 +-

2.24

6

 .96

0

 .06

2

 .06

5

Comparison of Algorithmic Modelling Criteria

Page | B 4

Categories of Model Complexity

Comparison of Model Complexity categories between the DP and CBD

groups:

Criteria DP (Mean) CBD (Mean) t (df) p - value

CATEGORIES DAY 1 DAY

2

DAY

1

DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

DAY

1

DAY

2

Basic elements 4.53+-

.507

4.43

+-

.774

4.30

+-

.883

4.28

+-

.949

1.326 .758 75 75 .189 .451

Composition

Space

.80 +-

.407

.77

+-

.430

.81

+-

.398

.70

+-

.462

-.091 .614 75 75 .928 .541

Arithmetic of

Shapes

.27 +-

.691

.43

+-

.898

.28

+-

.743

.36

+-

.735

-.059 .382 75 75 .953 .703

Transformations 2.10

+-

.548

2.27

+-

.521

2.32

+-

.556

2.13

+-

.679

-

1.697

.955 75 75 .094 .343

Number of

Elements

2.40

+-

.675

2.67

+-

.844

2.38

+-

.795

2.17

+-

1.049

.097 2.179 75 75 .923 .032

Shape of the

Element

1.30

+-

.837

1.50

+-

.900

1.49

+-

.975

1.62

+-

1.012

-.877 -.516 75 75 .383 .607

Colour .83 +-

.874

2.03

+-

.890

.57

+-

.773

1.49

+-

1.081

1.361 2.302 75 75 .177 .024

Comparison of Algorithmic Modelling Criteria

Page | 5

Correlation between Model Complexity and the other criteria. ALL groups:

M
O

D
E
L

C
O

M
P

LE
X

IT
Y

N
o

ve
lt
y

 V
a
ri

e
ty

DAY 2 DAY 2 DAY 2

Pearson

Correlation

.468**

.458**

Sig. (2-tailed)

.000

.000

N
126 126

Correlation between Model Complexity and the other criteria. NA group:

M
O

D
E
L

C
O

M
P

LE
X

IT
Y

V
a
ri

e
ty

A
b

ili
ty

 T
o

 M
o

d
e
l

O
ri
g

in
a
l
Id

e
a

M
O

D
E
L

C
O

M
P

LE
X

IT
Y

N
o

ve
lt
y

DAY 1 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.504**

-.386 Pearson C

correlation

.398**

Sig. (2-tailed)

.000

.057

Sig. (2-tailed)

.005

N
49 25

N
49

Correlation between Model Complexity and the other criteria. DP group:

M
O

D
E
L

C
O

M
P

LE
X

IT
Y

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

R
e
-U

se
 O

f
K
n

o
w

le
d

g
e

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

Im
p

le
m

e
n

te
d

 A
 D

p
/C

b
d

S
-N

 T
h

a
t

F
it
s

I
F
in

d
 D

p
/C

b
d

 A
p

p
ro

a
ch

H
e
lp

fu
l

M
O

D
E
L

C
O

M
P

LE
X

IT
Y

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

C
h

a
n

g
e
 I
d

e
a
,
fo

u
n

d

In
te

re
st

in
g

 S
o

lu
ti
o

n
s

I
F
in

d
 D

p
/C

b
d

 A
p

p
ro

a
ch

H
e
lp

fu
l

N
o

ve
lt
y

 V
a
ri

e
ty

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

DAY 1
DAY

1
DAY 2

DAY

1

DAY

2

DAY 2 DAY

2
DAY 2 DAY 1

DAY 2 DAY 2
DAY 2 DAY 2

DAY

2

Pearson

Correlatio

n

.37

7

-

.482**

.463
*

.441
*

.629*

*

.35

5

Pearson

Correlatio

n

.413

*

-

.371

*

.385

*

.688*

*

.764*

*

.79

7

Sig. (2-

tailed)

.04

0

.007 .010 .015 .000 .05

4

Sig. (2-

tailed)

.023 .044 0.36 .000 .000 .00

0

N
30 30 30 30 30 30

N
30 30 30 30 30 30

Comparison of Algorithmic Modelling Criteria

Page | B 6

Correlation between Model Complexity and the other criteria. CBD group:

M
O

D
E
L

C
O

M
P

LE
X

IT
Y

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h

w
h

a
t

w
a
s

w
a
n

te
d

N
o

ve
lt
y

V
a
ri

e
ty

DAY 2 DAY 1 DAY 2 DAY 2

Pearson

Correlation

-.359* .414** .377**

Sig. (2-tailed)
.013 .004 .009

N
47 47 47

Dependent variable control (Experience / Gender):

Dependent Variable Approach / p-

value

Approach / F (df) Design

Experience / p

Design

Experience / F

Model Complexity Score DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach / Design

Experience

 .017 (1,67)

5.966

 .538 (4,67)

.786

 Approach / p-

value

Approach / F Gender / p Gender / F

Approach / Gender .019 (1, 73)

5.797

 .146 (1, 73)

.704

Comparison of Algorithmic Modelling Criteria

Page | 7

Algorithm Complexity

Algorithm Complexity Score

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

ALGORITHM

COMPLEXITY

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY

2

DAY

1

DAY

2

Algorithm

Complexity

Score

40.69

+-

18.275

54.61

+-

26.988

50.6

0 +-

33.1

4

56.57

+-

28.22

50.4

0 +-

30.1

1

53.59

+-

27.48

2.02

5

(125)

.107

(125)

.136 .898

Day 1: F (125) = 2.025, p = 0.136; F ratio (F), the degrees of freedom (df)

and p-value are used.

Day 2: F (125) = .107, p = 0.898;

Categories Of Programming Components Implemented

Comparison of implemented components by category (input tubs)

between the DP and CBD groups:

Criteria DP (Mean) CBD (Mean) t df p - value

COMPONENTS

COMPLEXITY

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

0 - 1 Input

Comp.

6.23

+-

1.675

6.67

+-

2.218

5.38

+-

1.895

5.96

+-

1.574

2.007 1.641 75 75 .048 .105

2 Input Comp 4.83

+-

1.895

6.80

+-

2.188

3.79

+-

1.473

6.02

+-

2.202

2.714 1.517 75 75 .008 .133

3 Input Comp. 3.47

+-

2.193

2.43

+-

1.455

2.57

+-

1.331

2.43

+-

1.347

2.005 .024 42.750 75 .051 .981

4 Input Comp. .50

+-

.820

1.57

+-

.774

.85

+-

.978

1.23

+-

.937

-

1.633

1.621 75 75 .107 .109

5 Input Comp. .00 .13

+-

.346

.02

+-

.146

.09

+-

.282

-.797 .670 75 75 .428 .505

6 Input Comp. .10

+-

.305

.00 .15

+-

.360

.04

+-

.204

-.616 -

1.430

75 46.000 .540 .160

Comparison of Algorithmic Modelling Criteria

Page | B 8

Correlation between Programming Algorithm Complexity and the other

criteria. All groups:
A

LG
O

R
IT

H
M

C
O

M
P

LE
X

IT
Y

V
a
ri

e
ty

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

A
LG

O
R

IT
H

M

C
O

M
P

LE
X

IT
Y

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

N
o

ve
lt
y

V
a
ri

e
ty

DAY 1 DAY 1 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2

Pearson

Correlation

.498** .401** Pearson

Correlation

.401** .458** .599**

Sig. (2-tailed)
.000 .000

Sig. (2-tailed)
.000 .000 .000

N
126 126

N
126 126 126

No Approach group:

A
LG

O
R

IT
H

M

C
O

M
P

LE
X

IT
Y

V
a
ri

e
ty

A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

A
LG

O
R

IT
H

M

C
O

M
P

LE
X

IT
Y

N
o

ve
lt
y

V
a
ri

e
ty

A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

S
a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

N
o

ve
lt
y

V
a
ri

e
ty

DAY 1 DAY 1 DAY 2 DAY 2 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2

Pearson

Correlation

.610** .525** Pearson

Correlation

.478** .352* .525** .363* .614** .675**

Sig. (2-tailed)
.000 .000

Sig. (2-tailed)
.001 .013 .000 .010 .000 .000

N
49 49

N
49 49 49 49 49 49

DP group:

A
LG

O
R

IT
H

M

C
O

M
P

LE
X

IT
Y

M
o

d
e
l

C
o

m
p

le
xi

ty

N
o

ve
lt
y

V
a
ri

e
ty

U
ti
lit

y
A

p
p

ro
a
ch

 I
s

H
e
lp

fu
l

M
o

d
e
l

C
o

m
p

le
xi

ty

A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

A
LG

O
R

IT
H

M

C
O

M
P

LE
X

IT
Y

A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

U
ti
lit

y
A

p
p

ro
a
ch

 I
s

H
e
lp

fu
l

M
o

d
e
l

C
o

m
p

le
xi

ty

N
o

ve
lt
y

V
a
ri

e
ty

DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2
DAY

2

DAY

2

Pearson

Correlatio

n

.377* .403

*

.511*

*

.434

*

.413* .374

*

Pearson

C

orrelatio

n

.374

*

.361

*

.797 .58

3

.79

5

Sig. (2-

tailed)

.040 .027 .004 .017 .023 .042 Sig. (2-

tailed)

.042 .050 .000 .00

1

.00

0

N
30 30 30 30 30 30

N
30 30 30 30 30

Comparison of Algorithmic Modelling Criteria

Page | 9

CBD group:

A
LG

O
R

IT
H

M

C
O

M
P

LE
X

IT
Y

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

V
a
ri

e
ty

V
a
ri

e
ty

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

A
LG

O
R

IT
H

M

C
O

M
P

LE
X

IT
Y

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2

Pearson

Correlation

-.362 .432 .363 .383 Pearson

Correlation

.383 -.378

Sig. (2-tailed)
.013 .002 .012 .008

Sig. (2-tailed)
.008 .009

N
47 47 47 47

N
47 47

Explored Solution Space

Page | B 10

Explored Solution Space

Variety

Variety Score

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

VARIETY SCORE DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

ALGORITHM

VARIETY Score

12.43

+-

3.565

16.65

+-

5.851

15.1

3 +-

4.71

8

17.60

+-

5.137

12.7

7 +-

3.59

5

15.77

+-

3.218

4.99

2

(125)

1.332

(125)

.008 .268

Day 1: F (125) = 4.992, p = 0.008; F ratio (F), the degrees of freedom (df)

and p-value are used.

Day 2: F (125) = 1.332, p = 0.268;

ANOVA Post-Hoc, Tukey’s test

Criteria No Approach

Group

(Mean)

DP (Mean) CBD (Mean) p – value

NA with DP

p – value

NA with

CBD

p – value

DP with CBD

VARIETY

SCORE

DAY 1 DA

Y 2

DAY 1 DA

Y 2

DAY 1 DA

Y 2

DAY

1

DA

Y 2

DAY

1

DA

Y 2

DAY

1

DA

Y 2

ALGORITH

M VARIETY

Score

12.4

3 +-

3.56

5

 15.1

3 +-

4.71

8

 12.7

7 +-

3.59

5

 .00

9

 .90

5

 .02

7

Explored Solution Space

Page | 11

Correlation between Algorithm (Programming Solution) Variety and the

other criteria. All groups:

V
A

R
IE

T
Y

N
o

ve
lt
y

 A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

V
A

R
IE

T
Y

M
o

d
e
l

C
o

m
p

le
xi

ty

N
o

ve
lt
y

 A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.698** .498** Pearson

Correlation

.458** .766** .599**

Sig. (2-tailed)
.000 .000

Sig. (2-tailed)
.000 .000 .000

N
126 126

N
126 126 126

No Approach group:

V
A

R
IE

T
Y

A
b

ili
ty

 T
o

 M
o

d
e
l
O

ri
g

in
a
l

Id
e
a

S
a
ti
sf

a
ct

io
n

 W
it
h

 T
h

e

O
u

tp
u

t

M
o

d
e
l

 C
o

m
p

le
xi

ty

N
o

ve
lt
y

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

V
A

R
IE

T
Y

N
o

ve
lt
y

N
o

ve
lt
y

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2

Pearson

Correlation

.480* .406** .504** .687** .610** .352* Pearson

Correlation

.471** .809** .675**

Sig. (2-tailed)
.015 .004 .000 .000 .000 .013

Sig. (2-tailed)
.001 .000 .000

N
25 49 49 49 49 49

N
49 49 49

DP group:

V
A

R
IE

T
Y

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h

W
h

a
t

W
a
s

W
a
n

te
d

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

N
o

ve
lt
y

A
p

p
ro

a
ch

 H
e
lp

fu
l

V
A

R
IE

T
Y

M
o

d
e
l

C
o

m
p

le
xi

ty

N
o

ve
lt
y

 A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

DAY 1 DAY 1 DAY 1 DAY 1 DAY2 DAY 2 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.350 .511

**

.794 .357 Pearson

Correlation

.764 .777 .795

Sig. (2-tailed)
.058 .004 .000 .053

Sig. (2-tailed)
.000 .000 .000

N
30 30 30 30

N
30 30 30

Explored Solution Space

Page | B 12

CBD group:

V
A

R
IE

T
Y

N
o

ve
lt
y

 V
a
ri

e
ty

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

N
o

ve
lt
y

V
A

R
IE

T
Y

N
o

ve
lt
y

M
o

d
e
l

C
o

m
p

le
xi

ty

 V
a
ri

e
ty

A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 1

Pearson

Correlation

.679 .544 .432 .374** Pearson

Correlation

.613 .377** .544 .363*

Sig. (2-tailed)
.000 .000 .002 .010

Sig. (2-tailed)
.000 .009 .000 .012

N
47 47 47 47

N
47 47 47 47

Dependent variable control (Experience / Gender):

Dependent Variable Approach / p-

value

Approach / F (df) Design

Experience / p

Design

Experience / F

TOTAL VARIETY SCORE DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach / Design

Experience

.032 .134 (1,67)

4.797

(1,67)

2.304

.739 .495 (4,67)

.496

(4,67)

.856

 Approach / p-

value

Approach / F Gender / p Gender / F

Approach / Gender .005 .056 (1,73)

8.441

(1,73)

3.760

.003 .575 (1,73)

9.526

(1,73)

.318

Descriptive Statistics

Dependent Variable: DAY 1 Total Variety Score

Gender DP

Mean

DP Std.

Deviation

DP N CBD

Mean

CBD Std.

Deviation

CBD N Total

Mean

Total Std.

Deviation

Total N

Male 16.87 4.984 15 13.57 3.510 30 14.67 4.301 45

Female 13.40 3.851 15 11.35 3.390 17 12.31 3.702 32

Total 15.13 4.718 30 12.77 3.595 47 13.69 4.203 77

Descriptive Statistics

Dependent Variable: DAY 2 Total Variety Score

Design Experience

Groups

DP

Mean

DP Std.

Deviation

DP N CBD

Mean

BCD Std.

Deviation

CBD N Total

Mean

Total Std.

Deviation

Total N

0. - 1.9 years of

experience
19.18 5.671 11 16.25 3.793 12 17.65 4.905 23

2.0 - 3.9 years of

experience
15.57 3.207 7 15.47 3.623 15 15.50 3.419 22

4.0 - 5.9 years of

experience
17.37 6.739 8 15.94 2.645 18 16.38 4.234 26

6.0 - 7.9 years of

experience
17.00 1.414 2 13.00 . 1 15.67 2.517 3

8 or more years of

experience
17.50 2.121 2 14.00 . 1 16.33 2.517 3

Total 17.60 5.137 30 15.77 3.218 47 16.48 4.141 77

Explored Solution Space

Page | 13

Novelty

Novelty Score

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

NOVELTY

SCORE

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

ALGORITH

M NOVELTY

Score

28.16

+-

16.69

7

50.82

+-

31.64

6

29.30

+-

19.19

3

53.67

+-

20.86

0

27.43

+-

16.56

2

43.57

+-

17.82

0

.108

(125

)

1.79

1

(125)

.89

8

.17

1

Day 1: F (125) = 0.108, p = 0.898; F ratio (F), the degrees of freedom (df)

and p-value are used.

Day 2: F (125) = 1.791, p = 0.171;

Novelty Categories of Implemented Components

Comparison between the DP and CBD groups

Criteria DP (Mean) CBD (Mean) t df p - value

NOVELTY

CATEGORIE

S

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY

2

DAY

1

DAY

2

0 Novelty

Points

Comp.

21.87

+-

15.53

8

22.80

+-

13.850

21.45

+-

15.42

3

20.83

+-

12.908

.116 .635 75 75 .908 .527

1 Novelty

Points

Comp

1.87

+-

2.300

1.57

+-

1.305

1.53

+-

2.578

1.51

+-

1.586

.579 .162 75 75 .564 .872

2 Novelty

Points

Comp

1.07

+-

1.258

.93

+-

1.112

1.47

+-

2.063

1.21

+-

1.382

-1.061 -.931 74.891 75 .292 .355

3 Novelty

Points

Comp

1.27

+-

1.530

1.23

+-

1.040

.72

+- .994

1.17

+-

1.167

1.727 .241 44.675 75 .091 .810

4 Novelty

Points

Comp

1.10 .50 .77 .79 1.207 -

1.195

75 75 .231 .236

Explored Solution Space

Page | B 14

+-

1.185

+-

.777

+-

1.183

+-

1.160

5 Novelty

Points

Comp

.50

+-.900

1.97

+-

1.671

.85

+-

1.335

1.53

+-

1.653

-1.267 1.121 75 75 .209 .266

6 Novelty

Points

Comp

.53

+-.776

1.00

+-

1.017

.94

+-

1.275

1.26

+-

1.421

-1.554 -.853 75 75 .124 .396

7 Novelty

Points

Comp

.90

+-

1.185

1.37

+-

1.129

.79

+-

1.122

.79

+-

1.020

.421 2.331 75 75 .675 .022

8 Novelty

Points

Comp

1.27

+-

2.638

1.03

+-

1.189

.47

+-.654

.77

+-

.983

1.626 1.072 31.292 75 .114 .287

9 Novelty

Points

Comp

.13

+-.346

1.13

+-

1.548

.19

+-.495

1.13

+-

1.825

-.561 .014 75 75 .576 .989

10 Novelty

Points

Comp

.27

+-.691

.90

+-

1.423

.51

+-

1.120

.72

+-

1.192

-

1.181

.587 74.94

7

75 .241 .559

Explored Solution Space

Page | 15

Correlation between Algorithm (Programming Solution) Novelty and the

other criteria. All groups:

N
O

V
E
LT

Y

 V
a
ri

e
ty

N
o

ve
lt
y

N
O

V
E
LT

Y

M
o

d
e
l

C
o

m
p

le
xi

ty

 V
a
ri

e
ty

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.698** .350** Pearson

Correlation

.468** .766** .458**

Sig. (2-tailed)
.000 .000

Sig. (2-tailed)
.000 .000 .000

N
126 126

N
126 126 126

No Approach group:

N
O

V
E
LT

Y

 V
a
ri

e
ty

V
a
ri

e
ty

A
lg

o
ri

th
m

C
o

m
p

le
xi

ty

N
o

ve
lt
y

N
O

V
E
LT

Y

N
o

ve
lt
y

M
o

d
e
l

C
o

m
p

le
xi

ty

 V
a
ri

e
ty

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.687** .471** .478** .451** Pearson

Correlation

.451** .398** .809** .614**

Sig. (2-tailed)
.000 .001 .001 .001

Sig. (2-tailed)
.001 .005 .000 .000

N
49 49 49 49

N
49 49 49 49

DP group:

N
O

V
E
LT

Y

 V
a
ri

e
ty

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

P
ro

g
ra

m
m

in
g

D
if
fi
cu

lt
ie

s
H

o
w

 O
ft

e
n

N
O

V
E
LT

Y

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h

T
h

e
 O

ri
g

in
a
l
Id

e
a

M
o

d
e
l

C
o

m
p

le
xi

ty

 V
a
ri

e
ty

 A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.794 .403* -.374* Pearson

Correlation

.379* .688 .777 .583

Sig. (2-tailed)
.000 .027 .041

Sig. (2-tailed)
.039 .000 .000 .001

N
30 30 30

N
30 30 30 30

Explored Solution Space

Page | B 16

CBD group:

N
O

V
E
LT

Y

C
h

a
n

g
e
d

 t
h

e
 d

e
si

g
n

 i
d

e
a
,

b
e
ca

u
se

 y
o

u
 d

is
co

ve
re

d
 n

e
w

so
lu

ti
o

n
s

V
a
ri

e
ty

N
O

V
E
LT

Y

V
a
ri

e
ty

M
o

d
e
l

C
o

m
p

le
xi

ty

 V
a
ri

e
ty

DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2

Pearson

Correlation

-.380** .679** Pearson

Correlation

.374** .414** .613**

Sig. (2-tailed)
.009 .000

Sig. (2-tailed)
.010 .004 .000

N
47 47

N
47 47 47

Dependent variable control (Experience / Gender):

Dependent Variable Approach / p-

value

Approach / F (df) Design

Experience / p

Design

Experience / F

TOTAL NOVELTY SCORE DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach / Design Experience .145 (1,67)

2.178

 .973 (4,67)

47.251

 Approach / p-

value

Approach / F Gender / p Gender / F

Approach / Gender .024 (1,73)

5.333

 .462 (1,73)

.548

Descriptive Statistics

Dependent Variable: DAY 2 Total Novelty Score

Design Experience

Groups

DP

Mean

DP Std.

Deviation

DP N CBD

Mean

CBD Std.

Deviation

CBD N Total

Mean

Total Std.

Deviation

Total N

0. - 1.9 years of

experience
58.91 23.763 11 39.75 20.951 12 48.91 23.914 23

2.0 - 3.9 years of

experience
49.00 17.117 7 46.53 17.517 15 47.32 17.019 22

4.0 - 5.9 years of

experience
51.63 17.246 8 44.17 16.100 18 46.46 16.488 26

6.0 - 7.9 years of

experience
61.50 19.092 2 20.00 . 1 47.67 27.502 3

8 or more years of

experience
41.50 43.134 2 58.00 . 1 47.00 31.953 3

Total 53.67 20.860 30 43.57 17.820 47 47.51 19.565 77

Comparison of Programming Criteria

Page | 17

Comparison of Programming Criteria

Programming Difficulties

How Often You Come Across Programming Difficulties

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

PROGRAMMING

DIFFICULTIES

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

How often you

have come across

programming

difficulties

2.88

+-

1.053

2.71

+-

.890

2.37

+-

.669

2.10

+-

.403

2.91

+-

1.039

2.53

+-

.776

3.414

(125)

6.200

(125)

.036 .003

Day 1: F (125) = 3.414, p = .036; F ratio (F), the degrees of freedom (df)

and the p-value are used.

Day 2: F (125) = 6.200, p = .003;

ANOVA Post-Hoc, Tukey’s test

Criteria No Approach

Group

(Mean)

DP (Mean) CBD (Mean) p – value

NA with DP

p – value

NA with

CBD

p – value

DP with CBD

PROGRAMMIN

G DIFFICULTIES

DAY 1 DAY

2

DAY

1

DAY

2

DAY 1 DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

How often

you have

come across

programmin

g difficulties

2.88

+-

1.05

3

2.7

1

+-

.89

0

2.3

7

+-

.66

9

2.1

0

+-

.40

3

2.91

+-

1.03

9

2.5

3

+-

.77

6

.06

4

.00

2

.98

1

.46

7

.04

5

.04

2

Comparison of Programming Criteria

Page | B 18

Types of Difficulties

Chi-square test Comparison between the all tree groups: NA, DP and CBD

Criteria No Approach

Count / Total (%)

DP

Count / Total (%)

CBD

Count / Total (%)

X2 p – value

TYPES OF

DIFFICULTIES

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

Problems

with

Particular

component

s

44.8%

(22/49

)

48.9%

(24/49

)

33.3%

(10/30

)

43.3%

(13/30

)

21.3%

(10/47

)

23.4%

(11/47

)

6.02

3

7.11

2

.04

9

.02

9

Logic

Connection

s

18.3%

(9/49)

20.4% 30%

(9/30)

23.3%

(7/30)

25.5%

(12/47

)

23.4%

(11/47

)

1.51

1

.153 .47

0

.92

6

Knowing

what

component

to use

30.6%

(15/49

)

24.5%

(12/49

)

26.7%

(8/30)

20%

(6/30)

38.3%

(18/47

)

34%

(16/47

)

1.26

4

2.08

6

.53

1

.35

2

Valid

Parameters

12.2%

(6/49)

12.2%

(6/49)

13.3%

(4/30)

16.7%

(5/30)

17%

(8/47)

10.6%

(5/47)

.476 .615 .78

8

.73

5

Idea to

Algorithm

translation

44.9%

(22/49

)

42.8%

(21/49

)

53.3%

(16/30

)

60%

(18/30

)

48.9%

(23/47

)

53.2%

(25/47

)

.538 2.36

0

.76

4

.30

7

Problems with Particular components:

Day 1: NA 22/49 (44.8%), DP 10/30 (33.3%), CBD 10/47 (21.3%), X2 =

6.023, p = .049, the count of responses, the percentage, the Chi-Square –

value (X2) and the p-value are used.

Day 2: NA 22/49 (48.9%), DP 12/30 (43.3%), CBD 11/47 (23.4%), X2 =

7.112, p = .029,

Comparison of Programming Criteria

Page | 19

Chi-square test Comparison between the DP and CBD groups

Criteria DP

(yes/30)

DP (%) CBD

(yes/47)

CBD (%) X2 p - value

TYPES OF

DIFFICULTIES

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY 1 DAY 2 DAY

1

DAY

2

Problems

with

Particular

components

10 13 33.3 43.3 10 11 21.3 23.4 1.384 3.390 .239 .066

Logic

Connections

9 7 30 23.3 12 11 25.5 23.4 .184 .000 .668 .994

Knowing

what

component

to use

8 6 26.7 20 18 16 38.3 34 1.108 1.769 .293 .183

Valid

Parameters

4 5 13.3 16.7 8 5 17 10.6 .189 .589 .663 .443

Idea to

Algorithm

translation

16 18 53.3 60 23 25 48.9 53.2 .142 .344 .707 .557

Problems

with the

approach

0 4 0 13.3 0 1 0 2.1 3.787 .052

Chi-square test Comparison between No Approach group and the DP/

CBD groups

Criteria No

Approach

(yes/ 49)

No

Approach

(%)

DP (%) CBD (%) p – value

between N/A

and DP

group

p – value

between N/A

and CBD

group

TYPES OF

DIFFICULTIES

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

Problems

with

Particular

components

22 24 44.8 48.9 33.3 43.3 21.3 23.4 .218 .400 .012 .008

Logic

Connections

9 10 18.3 20.4 30 23.3 25.5 23.4 .178 .485 .274 .457

Knowing

what

component

to use

15 12 30.6 24.5 26.7 20 38.3 34 .456 .431 .282 .211

Valid

Parameters

6 6 12.2 12.2 13.3 16.7 17 10.6 .573 .407 .354 .530

Idea to

Algorithm

translation

22 21 44.9 42.8 53.3 60 48.9 53.2 .310 .106 .424 .209

Comparison of Programming Criteria

Page | B 20

DEPENDENCY BETWEEN THE TYPES OF DIFFULTIES AND THE OVERALL

AMOUNT OF PROBLEMS

All test groups

Programming difficulties 1.

No

Difficulties

2.

1- 3

Problems

3.

4 – 6

Problems

4.

7 – 9

Problems

5.

10 >

Problems

p – value

between YES

/ NO group

TYPES OF DIFFICULTIES DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

Problems with

Particular

components

NO 4 2 30 44 26 20 15 10 9 2 .029 .711

YES 1 1 25 31 13 12 3 4 1 0

Logic

Connections

NO 4 2 41 63 30 23 13 8 8 2 .896 .161

YES 1 1 14 12 9 9 5 6 1 0

Knowing what

component

to use

NO 3 3 42 60 25 22 9 6 6 1 .307 .036

YES 2 0 13 15 14 10 9 8 3 1

Valid

Parameters

NO 4 3 47 67 36 28 16 10 5 2 .079 .381

YES 1 0 8 8 3 4 2 4 4 0

Idea to

Algorithm

translation

NO 3 2 32 34 17 15 10 10 3 1 .491 .455

YES 2 1 23 41 22 17 8 4 6 1

No Approach group

Programming difficulties 1.

No

Difficulties

2.

1- 3

Problems

3.

4 – 6

Problems

4.

7 – 9

Problems

5.

10 >

Problems

p – value

between YES

/ NO group

TYPES OF DIFFICULTIES DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

Problems with

Particular

components

NO 1 1 7 8 7 10 8 5 4 1 .060 .512

YES 1 1 13 13 6 6 2 4 0 0

Logic

Connections

NO 2 1 16 20 11 13 8 4 3 1 .952 .023

YES 0 1 4 1 2 3 2 5 1 0

Knowing what

component

to use

NO 2 2 16 19 7 12 6 4 3 0 .420 .027

YES 0 0 4 2 6 4 4 5 1 1

Valid

Parameters

NO 2 2 18 19 12 14 9 7 2 1 .201 .845

YES 0 0 2 2 1 2 1 2 2 0

Idea to

Algorithm

translation

NO 1 2 14 10 7 7 5 8 0 1 .145 .095

YES 1 0 6 11 6 9 5 1 4 0

Comparison of Programming Criteria

Page | 21

DP group

Programming difficulties 1.

No

Difficulties

2.

1- 3

Problems

3.

4 – 6

Problems

4.

7 – 9

Problems

5.

10 >

Problems

p – value

between YES

/ NO group

TYPES OF DIFFICULTIES DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

Problems with

Particular

components

NO 2 1 9 13 8 3 1 - - - .482 .464

YES 0 0 7 12 3 1 0 - - -

Logic

Connections

NO 1 1 11 20 8 2 1 - - - .835 .359

YES 1 0 5 5 3 2 0 - - -

Knowing what

component

to use

NO 1 1 13 21 7 2 1 - - - .580 .253

YES 1 0 3 4 4 2 0 - - -

Valid

Parameters

NO 1 1 15 21 10 3 0 - - - .021 .815

YES 1 0 1 4 1 1 1 - - -

Idea to

Algorithm

translation

NO 2 0 8 10 4 2 0 - - - .296 .659

YES 0 1 8 15 7 2 1 - - -

CBD group

Programming difficulties 1.

No

Difficulties

2.

1- 3

Problems

3.

4 – 6

Problems

4.

7 – 9

Problems

5.

10 >

Problems

p – value

between YES

/ NO group

TYPES OF DIFFICULTIES DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

Problems with

Particular

components

NO 1 - 14 23 11 7 6 5 5 1 .667 .242

YES 0 - 5 6 4 5 1 0 0 0

Logic

Connections

NO 1 - 14 23 11 8 4 4 5 1 .528 .773

YES 0 - 5 6 4 4 3 1 0 0

Knowing what

component

to use

NO 0 - 13 20 11 8 2 2 3 1 .192 .545

YES 1 - 6 9 4 4 5 3 2 0

Valid

Parameters

NO 1 - 14 27 14 11 7 3 3 1 .214 .161

YES 0 - 5 2 1 1 0 2 2 0

Idea to

Algorithm

translation

NO 0 - 10 14 6 6 5 2 3 0 .538 .790

YES 1 - 9 15 9 6 2 3 2 1

Comparison of Programming Criteria

Page | B 22

Correlation between amount of programming difficulties and the other

criteria. All groups:
P

R
O

G
R

A
M

M
IN

G

D
IF

F
IC

U
LT

IE
S

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

H
o

w
 O

ft
e
n

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

P
R

O
G

R
A

M
M

IN
G

D
IF

F
IC

U
LT

IE
S

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

DAY 1 DAY 2 DAY 1 DAY 2 Day 1

Pearson

Correlation

.385** .371** Pearson

Correlation

.385**

Sig. (2-tailed)
.000 .000

Sig. (2-tailed)
.000

N
126 126

N
126

No Approach group:

P
R

O
G

R
A

M
M

IN
G

D
IF

F
IC

U
LT

IE
S

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

R
e
-U

se
d

 A
lg

o
ri

th
m

s

H
o

w
 O

ft
e
n

P
ro

g
ra

m
m

in
g

D
if
fi
cu

lt
ie

s

P
R

O
G

R
A

M
M

IN
G

D
IF

F
IC

U
LT

IE
S

P
ro

g
ra

m
m

in
g

D
if
fi
cu

lt
ie

s

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h

T
o

 A
cc

o
m

p
lis

h
 W

h
a
t

W
a
s

W
a
n

te
d

A
b

ili
ty

 T
o

 M
o

d
e
l
O

ri
g

in
a
l

Id
e
a

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n

S
a
ti
sf

a
ct

io
n

 W
it
h

 O
u

tp
u

t
DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.371** .449** .406** Pearson

Correlation

.406** -.408** -.426* .456** -.400**

Sig. (2-tailed)
.009 .001 .004

Sig. (2-tailed)
.004 .004 .034 .001 .004

N
49 49 49

N
49 49 25 49 49

DP group:

P
R

O
G

R
A

M
M

IN
G

D
IF

F
IC

U
LT

IE
S

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

P
ro

g
ra

m
m

in
g

D
if
fi
cu

lt
ie

s

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n
 T

o
 U

se

A
lg

o
ri

th
m

ic
 I
n

 F
u

tu
re

P
R

O
G

R
A

M
M

IN
G

D
IF

F
IC

U
LT

IE
S

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

E
a
sy

 T
o

 I
m

p
le

m
e
n

t

A
p

p
ro

a
ch

 U
sa

b
ili

ty

N
o

ve
lt
y

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2

Pearson

Correlation

-.577** .371* .420* .365* -.490** Pearson

Correlation

.435* .371* -

.358

-

.374*

.446*

Sig. (2-tailed)
.001 .043 .021 .048 .006

Sig. (2-tailed)
.016 .043 .052 .041 .014

N
30 30 30 30 30

N
30 30 30 30 30

Comparison of Programming Criteria

Page | 23

CBD group:

P
R

O
G

R
A

M
M

IN
G

D
IF

F
IC

U
LT

IE
S

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h

W
h

a
t

W
a
s

W
a
n

te
d

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n

S
a
ti
sf

a
ct

io
n

 W
it
h

 O
u

tc
o

m
e

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1

Pearson

Correlation

-.350* -.503** .353* -.357*

Sig. (2-tailed)
.016 .000 .015 .014

N
47 47 47 47

Dependent variable control (Experience / Gender):

Dependent Variable Approach / p-

value

Approach / F(df) Design

Experience / p

Design

Experience / F

How often: program. difficulties DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach / Design Experience .011 .180 (1,67)

6.930

(1,67)

1.836

.601 .536 (4,67)

.690

(4,67)

.790

 Approach / p-

value

Approach / F Gender / p Gender / F

Approach / Gender .012 .014 (1,73)

6.664

(1,73)

6.351

.880 .496 (1,73)

.023

(1,73)

.469

Descriptive Statistics

Dependent Variable: DAY 2. How often you have come across programming difficulties

Design Experience

Groups

DP

Mean

DP Std.

Deviation

DP N CBD

Mean

CBD Std.

Deviation

CBD N Total

Mean

Total Std.

Deviation

Total N

0. - 1.9 years of

experience
2.18 .405 11 2.67 .651 12 2.43 .590 23

2.0 - 3.9 years of

experience
2.29 .488 7 2.33 .617 15 2.32 .568 22

4.0 - 5.9 years of

experience
2.00 .000 8 2.67 .970 18 2.46 .859 26

6.0 - 7.9 years of

experience
1.50 .707 2 2.00 . 1 1.67 .577 3

8 or more years of

experience
2.00 .000 2 2.00 . 1 2.00 .000 3

Total 2.10 .403 30 2.53 .776 47 2.36 .687 77

Comparison of Programming Criteria

Page | B 24

Learning Curve

How Often Participants Have Implemented New Components

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

LEARNING CURVE DAY 1 DAY

2

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

How often

participants have

implemented new

programming

components

2.16

+-

1.143

2.16

+-

.986

2.43

+-

1.13

5

1.87

+-

.819

2.21

+-

1.12

2

2.09

+-

.830

.561

(99.4)

1.051

(99.4)

.572 .353

Correlation between how often participants implemented new

components and the other criteria.

All groups:

LE
A

R
N

IN
G

 C
U

R
V

E

Le
a
rn

in
g

 C
u

rv
e

LE
A

R
N

IN
G

 C
U

R
V

E

Le
a
rn

in
g

 C
u

rv
e

DAY 1 DAY 2 DAY 2 DAY 1

Pearson

Correlation

.366** Pearson

Correlation

.366**

Sig. (2-tailed)
.000

Sig. (2-tailed)
.000

N
126

N
126

No Approach group:

LE
A

R
N

IN
G

 C
U

R
V

E

A
b

ili
ty

 t
o

 m
o

d
e
l

O
ri
g

in
a
l
Id

e
a

DAY 1 DAY 1

Pearson

Correlation

.400*

Sig. (2-tailed)
.047

N
25

Comparison of Programming Criteria

Page | 25

DP group:

LE
A

R
N

IN
G

 C
U

R
V

E

Le
a
rn

in
g

 C
u

rv
e

LE
A

R
N

IN
G

 C
U

R
V

E

Le
a
rn

in
g

 C
u

rv
e

DAY 1 DAY 2 DAY 2 DAY 1

Pearson

Correlation

.658** Pearson

Correlation

.658**

Sig. (2-tailed)
.000

Sig. (2-tailed)
.000

N
30

N
30

CBD group:

LE
A

R
N

IN
G

 C
U

R
V

E

Im
p

le
m

e
n

te
d

 a

D
P

/C
B

D
 s

o
lu

ti
o

n
 t

h
a
t

fi
ts

LE
A

R
N

IN
G

 C
U

R
V

E

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h

w
h

a
t

w
a
s

w
a
n

te
d

M

o
ti
va

ti
o

n
 T

o
 U

se

A
lg

o
ri

th
m

ic
 I
n

 F
u

tu
re

DAY 1 DAY 1 DAY 2 DAY 1 DAY 2

Pearson

Correlation

.359* Pearson

Correlation

.348* .457**

Sig. (2-tailed)
.013

Sig. (2-tailed)
.017 .001

N
47

N
47 47

Comparison of Programming Criteria

Page | B 26

Re-Use of Algorithms

Re-Use Of Knowledge

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

RE-USE OF

KNOWLEDGE

DAY

1

DAY

2

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

How often

participants have

re-used

algorithms from

the external

sources

1.98

+-

.968

2.31

+-

.962

2.37

 +-

.928

2.50

+-

.682

2.32

+-

.980

2.34

+-

.867

2.09

1

(118)

.496

(93.2)

.128 .610

Correlation between how often participants have re-used algorithms from

the external sources and the other criteria. All groups:

R
E
-U

S
E
 O

F

K
N

O
W

LE
D

G
E

R
e
-U

se
 O

f

K
n

o
w

le
d

g
e

R
E
-U

S
E
 O

F

K
N

O
W

LE
D

G
E

R
e
-U

se
 O

f

K
n

o
w

le
d

g
e

DAY 1 DAY 2 DAY 2 DAY 1

Pearson

Correlation

.428** Pearson

Correlation

.428**

Sig. (2-tailed)
.000

Sig. (2-tailed)
.000

N
126

N
126

No Approach group:

R
E
-U

S
E
 O

F

K
N

O
W

LE
D

G
E

P
ro

g
ra

m
m

in
g

D
if
fi
cu

lt
ie

s

DAY 2 DAY 1

Pearson

Correlation

.449**

Sig. (2-tailed)
.001

N
49

Comparison of Programming Criteria

Page | 27

DP group:

R
E
-U

S
E
 O

F

K
N

O
W

LE
D

G
E

C
h

a
n

g
e
 i
n

 D
e
si

g
n

 d
u

e

to
 d

if
fi
cu

lt
ie

s

R
e
-U

se
 O

f
K
n

o
w

le
d

g
e

R
E
-U

S
E
 O

F

K
N

O
W

LE
D

G
E

R
e
-U

se
 O

f
K
n

o
w

le
d

g
e

M
o

d
e
l
C

o
m

p
le

xi
ty

M
o

ti
va

ti
o

n

S
a
ti
sf

a
ct

io
n

 W
it
h

 O
u

tp
u

t

DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 1 DAY 1

Pearson

Correlation

-.382* .681** Pearson

Correlation

.681** -.482** -.380*

Sig. (2-tailed)
.037 .000

Sig. (2-tailed)
.000 .007 .038

N
30 24

N
30 30 30

CBD group:

R
E
-U

S
E
 O

F

K
N

O
W

LE
D

G
E

R
e
-U

se
 O

f
K
n

o
w

le
d

g
e

R
E
-U

S
E
 O

F

K
N

O
W

LE
D

G
E

R
e
-U

se
 O

f
K
n

o
w

le
d

g
e

DAY 1 DAY 2 DAY 2 DAY 1

Pearson

Correlation

.535** Pearson

Correlation

.535**

Sig. (2-tailed)
.000

Sig. (2-tailed)
.000

N
47

N
47

Comparison of Approach Characteristics Criteria

Page | B 28

Comparison of Approach Characteristics Criteria

Usability

Usability

T-test. Comparison between the DP and CBD groups

Criteria DP (Mean) CBD (Mean) t df p - value

USABILITY DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

DAY

1

DAY

2

It was easy to

implement

DP/CBD

approach in

my design.

2.90

+-

.885

3.03

+-

.809

3.66

+-

.668

3.77

+-

.666

-

4.280

-

4.326

75 75 .000 .000

Day 1: t(75) = -4.280, p = 0.000; the t-value (t), the degrees of freedom

(df) and the p-value

Day 2: t(75) = -4.326, p = 0.000;

Correlation between approach usability and the other criteria. DP group:

U
S
A

B
IL

IT
Y

 e
a
sy

 t
o

 i
m

p
le

m
e
n

t

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

F
o

u
n

d
 N

e
w

 S
o

lu
ti
o

n
s

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

U
S
A

B
IL

IT
Y

 e
a
sy

 t
o

 i
m

p
le

m
e
n

t

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2

Pearson

Correlati

on

.48

6

-

.480

-

.577

.57

7

.39

5

.35

0

-

.35

8

.43

4

.430
*

.58

3

Pearson

Correlati

on

.58

3

.46

2

.45

9

Sig. (2-

tailed)

.00

6

.007 .001 .00

1

.03

1

.05

8

.05

2

.01

7

.018 .00

1

Sig. (2-

tailed)

.00

1

.01

0

.01

1

N
30 30 30 30 30 30 30 30 30 30

N
30 30 30

Comparison of Approach Characteristics Criteria

Page | 29

Correlation between approach usability and the other criteria. CBD group:

U
S
A

B
IL

IT
Y

 e
a
sy

 t
o

im
p

le
m

e
n

t

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

F
o

u
n

d
 N

e
w

 S
o

lu
ti
o

n
s

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

U
ti
lit

y
A

p
p

ro
a
ch

 I
s

 H
e
lp

fu
l

U
S
A

B
IL

IT
Y

 e
a
sy

 t
o

im
p

le
m

e
n

t

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlatio

n

.627*

*

.397*

*
.408*

*

.495*

*

.354

*
.409*

*

.434*

*

Pearson

Correlatio

n

.354

*

.358

*

.415*

*

.400*

*

Sig. (2-

tailed)

.000 .006 .004 .000 .015 .004 .002 Sig. (2-

tailed)

.015 .013 .004 .005

N
47 47 47 47 47 47 47

N
47 47 47 47

Dependent variable control (Experience / Gender):

Dependent Variable Approach / p-

value

Approach / F (df) Design

Experience / p

Design

Experience / F

It was easy to implement DP/CBD

approach in my design

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach / Design Experience .021 .022 (1,67)

5.610

(1,67)

5.465

.675 .793 (4,67)

.585

(4,67)

.421

 Approach / p-

value

Approach / F Gender / p Gender / F

Approach / Gender .000 .000 (1,73)

17.272

(1,73)

17.646

.548 .845 (1,73)

.364

(1,73)

.039

Comparison of Approach Characteristics Criteria

Page | B 30

Intuitiveness

Intuitiveness

Comparison between the DP and CBD groups

Criteria DP (Mean) CBD (Mean) t df p - value

INTUITIVENESS DAY

1

DAY 2 DAY

1

DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

DAY

1

DAY 2

I find DP/CBD

approach -

intuitive.

 3.37

+-

.718

 3.81

+-

.851

 -

2.357

 75 .021

t(75) = -2.357, p = 0.021; the t-value (t), the degrees of freedom (df) and

the p-value

Correlation between approach intuitiveness and the other criteria. DP

group:

IN
T
U

IT
IV

N
E
S
S

U
ti
lit

y
A

p
p

ro
a
ch

 I
s

H
e
lp

fu
l

DAY 2 DAY 2

Pearson

Correlation

.355

Sig. (2-tailed)
.054

N
30

CBD group:

IN
T
U

IT
IV

N
E
S
S

U
ti
lit

y
A

p
p

ro
a
ch

 I
s

H
e
lp

fu
l

DAY 2 DAY 2

Pearson

Correlation

.438**

Sig. (2-tailed)
.002

N
47

Comparison of Approach Characteristics Criteria

Page | 31

Dependent variable control (Experience / Gender):

Dependent Variable Approach / p-

value

Approach / F (df) Design

Experience / p

Design

Experience / F

INTUITIVNESS DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach / Design Experience .562 (1,67)

.339

 .552 (4,67)

.765

 Approach / p-

value

Approach / F Gender / p Gender / F

Approach / Gender .024 (1,73)

5.352

 .563 (1,73)

.337

Descriptive Statistics

Dependent Variable: DAY 2 INTUITIVNESS

Design Experience

Groups

DP

Mean

DP Std.

Deviation

DP N CBD

Mean

CBD Std.

Deviation

CBD N Total

Mean

Total Std.

Deviation

Total N

0. - 1.9 years of

experience
3.45 .820 11 3.92 .996 12 3.70 .926 23

2.0 - 3.9 years of

experience
3.29 .756 7 3.60 .986 15 3.50 .913 22

4.0 - 5.9 years of

experience
3.38 .744 8 4.00 .594 18 3.81 .694 26

6.0 - 7.9 years of

experience
3.00 .000 2 3.00 . 1 3.00 .000 3

8 or more years of

experience
3.50 .707 2 3.00 . 1 3.33 .577 3

Total 3.37 .718 30 3.81 .851 47 3.64 .826 77

Comparison of Approach Characteristics Criteria

Page | B 32

Flexibility

Flexibility

Comparison between the DP and CBD groups

Criteria DP (Mean) CBD (Mean) t df p - value

FLEXIBILITY DAY

1

DAY 2 DAY

1

DAY 2 DAY 1 DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

I have

successfully

found /

implemented a

DP/Case-Base

solution that fits

my design idea.

3.47

+-

.730

3.80

+-

.761

3.66

+-

.562

3.64

+-

.735

-

1.305

.929 75 75 .196 .356

Day 1: t(75) = -1.305, p = 0.196; the t-value (t), the degrees of freedom

(df) and the p-value

Day 2: t(75) = 0.929, p = 0.356;

Used DP/CBD solutions [from the documented Design Patterns / Online

Case-Base]. Comparison between the DP and CBD groups

Criteria DP (yes/30l) DP(%) CBD

(yes/47l)

CBD(%) X2 p - value

FLEXIBILIT

Y

DA

Y 1

DA

Y 2

DAY 1 DAY

2

DA

Y 1

DA

Y 2

DAY 1 DAY 2 DAY

1

DAY

2

DAY

1

DAY

2

Used

DP/CBD

solution

17 18 56.7

%

60

%

35 38 74.4

%

80.8

%

2.64

7

4.01

4

.08

5

.04

2

Day 1: DP 17/30 (56.7%), CBD 35/47 (74.4%), X2 = 2.647, p = 0.085. Chi-

Square – value (X2)

Day 2: DP 18/30 (60%), CBD 38/47 (80.8%), X2 = 4.014, p = 0.042.

Comparison of Approach Characteristics Criteria

Page | 33

Used DP/CBD solution [from the documented Design Patterns and

patterns for which participants used different names / On-line case-Base

and cases from tutorials]. Comparison between the DP and CBD groups

Criteria DP (yes/30l) DP(%) CBD

(yes/47l)

CBD(%) X2 p - value

FLEXIBILIT

Y

DA

Y 1

DA

Y 2

DAY

1

DAY 2 DA

Y 1

DA

Y 2

DAY 1 DAY 2 DAY

1

DAY

2

DAY

1

DAY

2

Used

DP/CBD

solutions

(from the

Case-

base and

from

tutorials)

21 20 70

%

66.7

%

36 41 76.6

%

87.2

%

.41

4

4.70

6

.35

0

.03

1

Day 1: DP 21/30 (70%), CBD 36/47 (76.6%), X2 = 0.414, p = 0.350.

Day 2: DP 20/30 (66.7%), CBD 41/47 (87.2%), X2 = 4.706, p = 0.031.

Correlation between approach flexibility and the other criteria. DP group:

F
LE

X
IB

IL
IT

Y
 f

o
u
n

d

so
lu

ti
o

n
 w

h
ic

h
 f

it
s

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

M

o
ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

C
h

a
n

g
e
 I
n

 D
e
si

g
n

In
te

n
t

D
if
fi
cu

lt
ie

s

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

F
LE

X
IB

IL
IT

Y
 f

o
u
n

d

so
lu

ti
o

n
 w

h
ic

h
 f

it
s

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

U
ti
lit

y

A
p

p
ro

a
ch

 H
e
lp

fu
l

M
o

d
e
l
C

o
m

p
le

xi
ty

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1

Pearson

Correlation

.432
* .382* -.403* .395* Pearson

Correlation

.430* .485** .600** .459* .397* .629**

Sig. (2-tailed)
.017 .037 .027 .031

Sig. (2-tailed)
.018 .007 .000 .011 .030 .000

N
30 30 30 30

N
30 30 30 30 30 30

Correlation between approach flexibility and the other criteria. CBD group:

F
LE

X
IB

IL
IT

Y
 f

o
u
n

d

so
lu

ti
o

n
 w

h
ic

h
 f

it
s

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

Le
a
rn

in
g

 C
u

rv
e

Im
p

le
m

e
n

te
d

 A
 N

e
w

C
o

m
p

o
n

e
n

t
C

h
a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

D
if
fi
cu

lt
ie

s

F
LE

X
IB

IL
IT

Y
 f

o
u
n

d

so
lu

ti
o

n
 w

h
ic

h
 f

it
s

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

M

o
ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.495** .359* -.387** Pearson

Correlation

.604** .372* .400**

Sig. (2-tailed)
.000 .013 .007

Sig. (2-tailed)
.000 .010 .005

N
47 47 47

N
47 47 47

Comparison of Approach Characteristics Criteria

Page | B 34

Dependent variable control (Experience / Gender):

Dependent Variable Approach / p-

value

Approach / F (df) Design

Experience / p

Design

Experience / F

Used DP/CBD DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach / Design Experience .026 .007 (1,58)

5.200

(1,62)

7.651

.534 .774 (4,58)

.793

(4,62)

.447

 Approach / p-

value

Approach / F Gender / p Gender / F

Approach / Gender .001 .000 (1,64)

13.077

(1,68)

14.206

.472 .662 (1,64)

.523

(1,68)

.193

Comparison of Approach Characteristics Criteria

Page | 35

Utility

Approach Helpful

Comparison between the DP and CBD groups

Criteria DP (Mean) CBD (Mean) t df p - value

UTILITY DAY

1

DAY 2 DAY

1

DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

DAY

1

DAY 2

I find DP/CBD

approach -

helpful.

 3.93

+-

.640

 4.30

+-

.507

 -

2.775

 75 .007

Day 1: t(75) = -2.775, p = 0.007; the t-value (t), the degrees of freedom

(df) and the p-value

Correlation between how helpful is each approach and the other criteria.

DP group:

U
T
IL

IT
Y

 a
p

p
ro

a
ch

 i
s

h
e
lp

fu
l

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

V
a
ri

e
ty

M
o

d
e
l
C

o
m

p
le

xi
ty

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

W
it
h

 O
u

tp
u
t

Im
p

le
m

e
n

te
d

 A
 D

p
/C

b
d

S
o

lu
ti
o

n
 T

h
a
t

F
it
s

A
p

p
ro

a
ch

 I
n

tu
it
iv

e

M
o

d
e
l
C

o
m

p
le

xi
ty

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

M
o

ti
va

ti
o

n
 T

o
 U

se

A
lg

o
ri

th
m

ic
 I
n

 F
u

tu
re

DAY 2 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.434 .357 .355 .452* .454* .397* .355 .385* .361* .406*

Sig. (2-tailed)
.017 .053 .054 .012 .012 .030 .054 .036 .050 .026

N
30 30 30 30 30 30 30 47 30 30

CBD group:

U
T
IL

IT
Y

 a
p

p
ro

a
ch

 i
s

h
e
lp

fu
l

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

M
o

ti
va

ti
o

n

S
a
ti
sf

a
ct

io
n

 W
it
h

 O
u

tp
u

t

A
p

p
ro

a
ch

In
tu

it
iv

e

DAY 2 DAY 1 DAY 1 DAY 2

Pearson

Correlation

.434** .357* .438**

Sig. (2-tailed)
.002 .014 .002

N
47 47 47

Comparison of Approach Characteristics Criteria

Page | B 36

Dependent variable control (Experience / Gender):

Dependent Variable Approach / p-

value

Approach / F (df) Design

Experience / p

Design

Experience / F

UTILITY / Approach helpful DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2

Approach / Design Experience .008 (1,67)

7.591

 .238 (4,67)

1.415

 Approach / p-

value

Approach / F Gender / p Gender / F

Approach / Gender .014 (1,73)

6.394

 .230 (1,73)

1.462

Comparison of Design Ideation Criteria

Page | 37

Comparison of Design Ideation Criteria

Change in the Design Intent

Change in the Design Intent

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

CHANGE IN THE

INTENT

DAY

1

DAY

2

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

Ability to model

original idea

3.00

+-

.957

3.20

+-

.957

2.80

+-

.925

3.30

+-

.750

3.15

+-

.932

3.53

+-

.997

1.274

(101)

1.229

(101)

.284 .297

Change in the

design strategy

due to

programming

difficulties

2.96

+-

.841

2.67

+-

.689

2.93

+-

.828

2.70

+-

.750

3.19

+-

.876

2.68

+-

.810

1.201

(125)

.012

(125)

.304 .988

Change in the

design strategy

because

participants found

some interesting

solutions, which

they decided to

use

3.29

+-

.866

3.27

+-

.811

3.23

+-

1.040

3.27

+-

.868

3.45

+-

.996

3.47

+-

.747

.553

(125)

.937

(125)

.577 .395

. I was able to

accomplish all

what I wanted

3.41

+-

.888

3.39

+-

.837

3.33

+-

.802

3.50

+-

.630

3.36

+-

.870

3.70

+-

.976

.077

(125)

1.666

(125)

.926 .193

Comparison of Design Ideation Criteria

Page | B 38

Design Objectives

Chi-square test Comparison between the all tree groups: NA, DP and CBD

Criteria No Approach

Count / Total (%)

DP

Count / Total (%)

CBD

Count / Total (%)

X2 p – value

DESIGN

OBJECTIVES

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

To achieve

the form I

originally

Sketched

40%

(10/25

)

48%

(12/25

)

56.7%

(17/30

)

60%

(18/30

)

51%

(24/47

)

80.8%

(38/47

)

1.55

5

8.775 .46

0

.01

2

To

explore/lear

n

algorithmic

form-

making

process

24%

(6/25)

28%

(9/25)

63.3%

(19/30

)

40%

(12/30

)

46.8%

(22/47

)

23.4%

(11/47

)

8.51

0

2.672 .01

4

.26

3

To

experiment

with

parameters

/ iterations /

variables

8%

(2/25)

12%

(3/25)

20%

(6/30)

46.7%

(14/30

)

19.1%

(9/47)

8.5%

(4/47)

1.80

1

17.80

0

.40

6

.00

0

To

understand

/ apply the

logics and

components

that I have

learned (test

my skills)

28%

(7/25)

20%

(5/25)

26.7%

(8/30)

30%

(9/30)

23.4%

(11/47

)

21.2%

(7/47)

.212 1.004 .89

9

.60

5

to combine

/ explore a

few Design

Patterns /

DRR or

other

definitions

to create a

complex

form

4%

(1/25)

8%

(2/25)

6.7%

(2/30)

13.3%

(4/30)

2.1%

(1/47)

6.4%

(3/47)

1.00

2

1.127 .60

6

.56

9

To achieve the form I originally sketched

Day 2: NA 12/25 (48%), DP 18/30 (60%), CBD 38/47 (80.8%), X2 = 8.775,

p = .012, the count of responses, the percentage, the Chi-Square – value

(X2) and the p-value are used.

To explore/learn algorithmic form-making process

Comparison of Design Ideation Criteria

Page | 39

Day 1: NA 6/25 (24%), DP 19/30 (63.3%), CBD 22/47 (46.8%), X2 = 8.510,

p = .014,

To experiment with parameters / iterations / variables:

Day 2: NA 3/25 (12%), DP 14/30 (46.7%), CBD 4/47 (8.5%), X2 = 8.510, p

= .014,

Chi-Square Comparison between the DP and CBD groups

Criteria DP (yes/30) DP (%) CBD

(yes/47)

CBD (%) X2 p - value

DESIGN

OBJECTIVES

DA

Y 1

DA

Y 2

DAY

1

DAY

2

DA

Y 1

DA

Y 2

DAY

1

DAY

2

DAY

1

DAY 2 DAY

1

DAY

2

To achieve

the form I

originally

Sketched

17 18 56.

7

60 24 38 51 80.

8

.231 4.014 .63

1

.04

5

To

explore/lear

n

algorithmic

form-

making

process

19 12 63.

3

40 22 11 46.

8

23.

4

2.00

9

2.408 .15

6

.12

1

To

experiment

with

parameters

/ iterations /

variables

6 14 20 46.

7

9 4 19.

1

8.5 .008 14.88

4

.92

7

.00

0

To

understand

/ apply the

logics and

components

that I have

learned (test

my skills)

8 9 26.

7

30 11 10 23.

4

21.

2

.105 .750 .74

6

.38

7

to combine /

explore a

few Design

Patterns /

DRR or

other

definitions

to create a

complex

form

2 4 6.7 13.

3

1 3 2.1 6.4 1.00

8

1.070 .31

5

.30

1

Comparison of Design Ideation Criteria

Page | B 40

Chi-Square Comparison between No Approach group and the DP/ CBD

groups

Criteria No

Approach

(yes/ 25)

No

Approach

(%)

DP (%) CBD (%) p – value

between N/A

and DP

group

p – value

between N/A

and CBD

group

DESIGN

OBJECTIVES

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

To achieve

the form I

originally

Sketched

10 12 40 48 56.7 60 51 80.8 .169 .268 .259 .005

To

explore/learn

algorithmic

form-making

process

6 7 24 28 63.3 40 46.8 23.4 .004 .260 .049 .438

To

experiment

with

parameters /

iterations /

variables

2 3 8 12 20 46.7 19.1 8.5 .193 .006 .184 .463

To

understand /

apply the

logics and

components

that I have

learned

7 5 28 20 26.7 30 23.4 21.2 .575 .297 .438 .577

to combine /

explore a few

Design

Patterns /

DRR or other

definitions to

create a

complex

form

1

2

4

8

6.7 13.3 2.1 6.4 .569 .427 .577 .572

Comparison of Design Ideation Criteria

Page | 41

Correlation between the ability to realise original idea and the other

criteria. All groups:

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

C
h

a
n

g
e
d

 D
e
si

g
n

 I
d

e
a

B
e
ca

u
se

 O
f

D
if
fi
cu

lt
ie

s

DAY 1 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.457** Pearson

Correlation

.519** -.386**

Sig. (2-tailed)
.000

Sig. (2-tailed)
.000 .000

N
102

N
102 102

No Approach group:

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

C
h

a
n

g
e
d

 D
e
si

g
n

 I
d

e
a

B
e
ca

u
se

 O
f

D
if
fi
cu

lt
ie

s

Le
a
rn

in
g

 C
u

rv
e

Im
p

le
m

e
n

te
d

 N
e
w

C
o

m
p

o
n

e
n

ts

M
o

ti
va

ti
o

n

S
a
ti
sf

a
ct

io
n

 W
it
h

 O
u

tp
u

t

V
a
ri

e
ty

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

C
h

a
n

g
e
d

 D
e
si

g
n

 I
d

e
a

B
e
ca

u
se

 O
f

D
if
fi
cu

lt
ie

s

M
o

d
e
l
C

o
m

p
le

xi
ty

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 1 DAY 2

Pearson

Correlation

.734** -.418* .400* .533** .480* Pearson

Correlation

.667** -.634** -.386 -.426**

Sig. (2-tailed)
.000 .038 .047 .006 .015

Sig. (2-tailed)
.000 .001 .057 .034

N
25 25 25 25 25

N
25 25 25 25

DP group:

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

C
h

a
n

g
e
d

 D
e
si

g
n

 I
d

e
a

B
e
ca

u
se

 O
f

P
ro

g
ra

m
m

in
g

D
if
fi
cu

lt
ie

s

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

N
o

ve
lt
y

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

-.378* .418* .379* Pearson

Correlation

.402*

Sig. (2-tailed)
.039 .021 .039

Sig. (2-tailed)
.028

N
30 30 30

N
30

Comparison of Design Ideation Criteria

Page | B 42

CBD group:

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2

Pearson

Correlation

.361* -.503** Pearson

Correlation

.350* .479** -.512**

Sig. (2-tailed)
.013 .000

Sig. (2-tailed)
.016 .001 .000

N
47 47

N
47 47 47

Correlation between change in design intent due to programming

difficulties and other criteria.

All groups:

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g

d
if
fi
cu

lt
ie

s

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g

d
if
fi
cu

lt
ie

s

A
b

ili
ty

 t
o

 r
e
a
lis

e
 O

R
IG

IN
A

L

ID
E
A

DAY 1 DAY 1 DAY 2 DAY 2

Pearson

Correlation

.371** Pearson

Correlation

-.386**

Sig. (2-tailed)
.000

Sig. (2-tailed)
.000

N
126

N
102

No Approach group:

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g

d
if
fi
cu

lt
ie

s

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g

d
if
fi
cu

lt
ie

s

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

-.418* .371** Pearson

Correlation

-.634** .456*

Sig. (2-tailed)
.038 .009

Sig. (2-tailed)
.001 .001

N
25 49

N
25 49

Comparison of Design Ideation Criteria

Page | 43

DP group:

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g

d
if
fi
cu

lt
ie

s

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h

W
h

a
t

W
a
s

W
a
n

te
d

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n

S
a
ti
sf

a
ct

io
n

 W
it
h

 O
u

tp
u

t

Im
p

le
m

e
n

te
d

 A
 D

p
/C

b
d

S
o

lu
ti
o

n
 T

h
a
t

F
it
s

A
p

p
ro

a
ch

 E
a
sy

 T
o

Im
p

le
m

e
n

t

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g

d
if
fi
cu

lt
ie

s

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

R
e
-U

se
d

 A
lg

o
ri

th
m

s:
 H

o
w

O
ft

e
n

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 1
DAY

2
DAY 2 DAY 2

DAY

1
DAY 1 DAY 1 DAY 2

Pearson

Correlati

on

-

.433

*

-

.378*

.420

*

-

.439*

-

.403

*

-

.480*

*

.35

6

.435

*

Pearson

Correlati

on

.35

6

.365

*

-

.382

*

.446

*

Sig. (2-

tailed)

.017 .039 .021 .015 .027 .007 .05

4

.016 Sig. (2-

tailed)

.05

4

.048 .037 .014

N
30 30 30 30 30 30 30 30

N
30 30 30 30

CBD group:

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g

d
if
fi
cu

lt
ie

s

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

In
te

re
st

in
g

 S
o

lu
ti
o

n

P
ro

g
ra

m
m

in
g

D
if
fi
cu

lt
ie

s

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 p

ro
g

ra
m

m
in

g

d
if
fi
cu

lt
ie

s

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h
 W

h
a
t

W
a
s

W
a
n

te
d

Im
p

le
m

e
n

te
d

 A
 D

p
/C

b
d

S
o

lu
ti
o

n
 T

h
a
t

F
it
s

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 1 DAY 2

Pearson

Correlation

.423** .353* Pearson

Correlation

-.357* -.387** -.512**

Sig. (2-tailed)

.003 .015

Sig. (2-tailed)

.014

.007 .000

N
47 47

N
47 47 47

Correlation between change in design intent, because ‘discovered

solutions’ and the other criteria.

No Approach group:

C
H

A
N

G
E
 I
N

 D
E
S
IG

N
 I
N

T
E
N

T

in
te

re
st

in
g

 s
o

lu
ti
o

n

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
s

w
a
n

te
d

C
H

A
N

G
E
 I
N

 D
E
S
IG

N
 I
N

T
E
N

T

in
te

re
st

in
g

 s
o

lu
ti
o

n

DAY 1 DAY 1 DAY 2

Pearson

Correlation

.414** Pearson

Correlation

Sig. (2-tailed)
.003

Sig. (2-tailed)

N
49

N

Comparison of Design Ideation Criteria

Page | B 44

DP group:

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 i
n

te
re

st
in

g

so
lu

ti
o

n

A
p

p
ro

a
ch

 E
a
sy

 T
o

Im
p

le
m

e
n

t

M
o

d
e
l
C

o
m

p
le

xi
ty

DAY 2 DAY 1 DAY 2

Pearson

Correlation

.350 -.371*

Sig. (2-tailed)
.058 .044

N
30 30

CBD group:

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 i
n

te
re

st
in

g
 s

o
lu

ti
o

n

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

A
p

p
ro

a
ch

 E
a
sy

 T
o

Im
p

le
m

e
n

t

N
o

ve
lt
y

C
H

A
N

G
E
 I
N

 D
E
S
IG

N

IN
T
E
N

T
 i
n

te
re

st
in

g
 s

o
lu

ti
o

n

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h
 W

h
a
t

W
a
s

W
a
n

te
d

M
o

ti
va

ti
o

n
 T

o
 U

se

A
lg

o
ri

th
m

ic
 I
n

 F
u

tu
re

DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.423** .397** -.380** Pearson

Correlation

.374** .386**

Sig. (2-tailed)
.003 .006 .009

Sig. (2-tailed)
.010 .007

N
47 47 47

N
47 47

Correlation between ability to accomplish what was wanted and the other

criteria. All groups:

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.457** .578** Pearson

Correlation

.628** .519**

Sig. (2-tailed)
.000 .000

Sig. (2-tailed)
.000 .000

N
102 126

N
126 30

Comparison of Design Ideation Criteria

Page | 45

No Approach group:

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l
Id

e
a

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

F
o

u
n

d
 N

e
w

 S
o

lu
ti
o

n
s

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

M
o

ti
va

ti
o

n
 T

o
 U

se
 G

h
 I
n

F
u

tu
re

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l
Id

e
a

P
ro

g
ra

m
m

in
g

D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.734** .414** .565** .455** Pearson

Correlation

.667** -.408** .663**

Sig. (2-tailed)
.000 .003 .000 .001

Sig. (2-tailed)
.000 .004 .000

N
25 49 49 49

N
25 49 49

DP group:

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

M
o

ti
va

ti
o

n
 T

o
 U

se
 G

h
 I
n

F
u

tu
re

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2

Pearson

Correlation

.486 .418* -.433 .591 .352 .432 Pearson

Correlation

.402

Sig. (2-tailed)
.006 .021 .017 .001 .056 .017

Sig. (2-tailed)
.028

N
30 30 30 30 30 30

N
30

CBD group:

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

M
o

d
e
l
C

o
m

p
le

xi
ty

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

A
b

ili
ty

 T
o

 R
e
a
lis

e
 O

ri
g

in
a
l

Id
e
a

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

F
o

u
n

d
 N

e
w

 S
o

lu
ti
o

n
s

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

DAY 1
DAY

1

DAY

2

DAY

2

DAY

2

DAY

1

DAY

1

DAY

1

DAY

1
DAY 2

DAY

1

DAY

2

DAY

2

DAY

2

DAY

2

DAY

2

DAY

2

Pears

on

Corr-

n

.36

1

-

.35

9

.35

0

-

.35

7

-

.36

2

-

.35

0

.62

7

.62

6

Pears

on

Corr-

n

.40

8

.47

9

.37

4

.70

2

.60

4

.35

8

-

.37

8

Sig.

.01

3

.01

3

.01

6

.01

4

.01

3

.01

6

.00

0

.00

0

Sig.

.00

4

.00

1

.01

0

.00

0

.00

0

.01

3

.00

9

N
47 47 47 47 47 47 47 47

N
47 47 47 47 47 47 47

Comparison of Design Ideation Criteria

Page | B 46

Comparison of Motivation Criteria

Satisfaction with Outcome / Motivation

ANOVA Comparison between No Approach group and the DP/ CBD

groups

Criteria No Approach

Group (Mean)

DP (Mean) CBD (Mean) F (df) p – value

MOTIVATION DAY

1

DAY

2

DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

I am satisfied with

what I was able to

accomplish

3.47

+-

.981

3.69

+-

.895

3.72

+-

.826

3.80

+-

.664

3.70

+-

.805

3.98

+-

.847

1.35

9

(125)

1.440

(125)

.261 .241

In the near future,

I plan to use

Grasshopper for

Rhino very often

 3.96

+-

.815

 3.80

+-

.610

 4.04

+-

.908

 .825

(125)

 .441

Satisfaction with output

Day 1: F (125) = 1.359, p = 0.261; F ratio (F), the degrees of freedom (df)

and p-value are used.

Day 2: F (125) = 1.440, p = 0.241;

Motivation to use algorithmic design tools in future

Day 2: F (125) = 0.825, p = 0.441;

Correlation between satisfaction with output model and the other criteria.

All groups:

M
O

T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

 w
it
h

o
u

tp
u

t

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

M
O

T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

 w
it
h

o
u

tp
u

t

A
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

DAY 1 DAY 1 DAY 2 DAY 2

Pearson

Correlation

.578** Pearson

Correlation

.628**

Sig. (2-tailed)
.001

Sig. (2-tailed)
.000

N
126

N
126

Comparison of Design Ideation Criteria

Page | 47

Correlation between satisfaction with output model and the other criteria.

No Approach group:

M
O

T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

 w
it
h

o
u

tp
u

t

A
b

ili
ty

 T
o

 A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

A
b

ili
ty

 T
o

 M
o

d
e
l
O

ri
g

in
a
l
Id

e
a

A
lg

o
ri

th
m

 C
o

m
p

le
xi

ty

V
a
ri

e
ty

M
O

T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

 w
it
h

o
u

tp
u

t

a
b

ili
ty

 t
o

 a
cc

o
m

p
lis

h
 w

h
a
t

w
a
n

te
d

p
ro

g
ra

m
m

in
g

 d
if
fi
cu

lt
ie

s

DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.565** .533** .363* .406** Pearson

Correlation

.663** .400*

Sig. (2-tailed)
.000 .006 .010 .004

Sig. (2-tailed)
.000 .004

N
49 25 49 49

N
49 49

DP group:

M
O

T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

w
it
h

 o
u

tp
u
t

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

C
h

a
n

g
e
 I
n

 D
e
si

g
n

 I
n
te

n
t

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

U
ti
lit

y
A

p
p

ro
a
ch

 I
s

 H
e
lp

fu
l

M
o

d
e
l
C

o
m

p
le

xi
ty

V
a
ri

e
ty

DAY 1 DAY 1 DAY 1 DAY 1 DAY 2 DAY 1 DAY 2 DAY 2 DAY 1 DAY 1

Pearson

Correlation

.577** .591** -.439* .439* .382* .485** .452* .463* .350

Sig. (2-tailed)
.001 .001 .015 .015 .037 .007 .012 .010 .058

N
30 30 30 30 30 30 30 30 30

M
O

T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

w
it
h

 o
u

tp
u
t

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

M
o

ti
va

ti
o

n
 S

a
ti
sf

a
ct

io
n

 W
it
h

O
u

tp
u

t

R
e
-U

se
d

 A
lg

o
ri

th
m

s

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

U
sa

b
ili

ty
 E

a
sy

 T
o

 I
m

p
le

m
e
n

t

U
ti
lit

y
A

p
p

ro
a
ch

 I
s

 H
e
lp

fu
l

M
o

d
e
l
C

o
m

p
le

xi
ty

DAY 2 DAY 1 DAY 1 DAY 2 DAY 2 DAY 2 DAY 2 DAY 1

Pearson

Correlation

.434* .439* -.380 .600** .462* .454* .441*

Sig. (2-tailed)
.017 .015 .038 .000 .010 .012 .015

N
30 30 30 30 30 30 30

Comparison of Design Ideation Criteria

Page | B 48

Correlation between satisfaction with output model and the other criteria.

CBD group:
M

O
T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

w
it
h

 o
u

tp
u
t

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

A
p

p
ro

a
ch

 H
e
lp

fu
l

M
O

T
IV

A
T
IO

N
 s

a
ti
sf

a
ct

io
n

w
it
h

 o
u

tp
u
t

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

F
le

xi
b

ili
ty

 F
o

u
n

d
 S

o
lu

ti
o

n

W
h

ic
h

 F
it
s

U
sa

b
ili

ty
 E

a
sy

 T
o

Im
p

le
m

e
n

t

DAY 1 DAY 1 DAY 1 DAY 1 DAY 1 DAY2 DAY 2 DAY 1 DAY 2 DAY 2 DAY 2

Pearson

Correlation

.495** .626** -.357* .495** .357* Pearson

Correlation

.409** .702** .372* .415**

Sig. (2-tailed)
.000 .000 .014 .000 .014

Sig. (2-tailed)
.004 .000 .010 .004

N
47 47 47 47 47

N
47 47 47 47

Correlation between motivation to use Grasshopper in future and the other

criteria. No Approach group:

M
O

T
IV

A
T
IO

N
 t

o
 u

se

a
lg

o
ri

th
m

ic
 i
n

 f
u

tu
re

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

DAY 2 DAY 1

Pearson

Correlation

.455**

Sig. (2-tailed)
.001

N
49

Correlation between motivation to use Grasshopper in future and the other

criteria. DP group:

M
O

T
IV

A
T
IO

N
 t

o
 u

se

a
lg

o
ri

th
m

ic
 i
n

 f
u

tu
re

D
e
si

g
n

 O
b

je
ct

iv
e
s

A
cc

o
m

p
lis

h
 W

h
a
t

W
a
n

te
d

P
ro

g
ra

m
m

in
g

 D
if
fi
cu

lt
ie

s

U
ti
lit

y
A

p
p

ro
a
ch

 I
s

 H
e
lp

fu
l

DAY 2 DAY 1 DAY 1 DAY 2

Pearson

Correlation

.352 -.490** .406*

Sig. (2-tailed)
.056 .006 .026

N
30 30 30

Comparison of Design Ideation Criteria

Page | 49

Correlation between motivation to use Grasshopper in future and the other

criteria. CBD group:

M
O

T
IV

A
T
IO

N
 t

o
 u

se

a
lg

o
ri

th
m

ic

in
 f
u

tu
re

C
h

a
n

g
e
d

 D
e
si

g
n

 I
d

e
a
 :

F
o

u
n

d
 N

e
w

 S
o

lu
ti
o

n
s

Le
a
rn

in
g

 C
u

rv
e
:

Im
p

le
m

e
n

te
d

 N
e
w

C
o

m
p

o
n

e
n

ts

DAY 2 DAY 2 DAY 2

Pearson

Correlation

.386** .457**

Sig. (2-tailed)
.007 .001

N
47 47

Comparison of Design Ideation Criteria

Page | B 50

Gender as Influence Factor

*Only the cases when the p-value is below .05 are shown

Comparison between All Male and Female Participants (All Groups) T-Test

/ Chi-Square:

Criteria MALE (Mean / %) FEMALE (Mean/

%)

t df p - value

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

I was able to

model the

original

design idea.

3.20

+-

.923

3.48

+-

.894

2.83

+-

.926

3.24

+-

.923

2.013 1.346 100 100 .047 .181

How often

have you re-

used the

algorithms

from any

external

sources

2.14

+-

.921

2.17

+-

.701

2.27

+-

1.036

2.61

+-

.985

-.716 -

2.792

124 96.071 .475 .006

DESIGN

OBJECTIVES:

To combine a

few Design

Patterns /

Case-Base

solutions

3.5 %

3.5 % 4.3%

15.2%

 .614 .043

Algorithm

Novelty

31.40

+-

17.088

50.71

+-

22.734

24.11

+-

16.483

46.39

+-

27.755

2.418 .968 124 124 .017 .335

Design Patterns Approach. Comparison between Male And Female

Participants:

Criteria MALE (Mean) FEMALE (Mean) t df p - value

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY

2

DAY

1

DAY

2

DAY

1

DAY

2

Algorithm

Novelty

36.60

+-

22.443

55.40

+-

19.813

22.00

+-

12.048

51.193

+-

22.413

2.220

.449

28 28 .037 .657

Algorithm

Variety

16.87

+-

4.984

16.87

+-

5.680

13.00

+-

4.984

18.33

+-

4.608

2.132

-.777

28 28 .042 .444

Algorithm

Complexity

64.40

+-

40.57

52.94

+-

29.85

36.80

+-

14.87

60.20

+-

27.04

2.240

-

0.699

28 28 .020 .490

How often

have you re-

used the

algorithms

from any

external

sources

2.20

+-

.775

2.13

+-

.352

2.53

+-

1.060

2.87

+-

.743

-.983

-

3.454

28 28 .334 .003

Comparison of Design Ideation Criteria

Page | 51

Case-Based Design Approach. Comparison between Male And Female

Participants:

Criteria MALE (Mean) FEMALE (Mean) t df p - value

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

DAY

1

DAY

2

Algorithm

Novelty

31.17

 +-

15.676

44.77

+-

16.768

20.82

 +-

16.452

41.47

+-

19.900

2.135

.605

45 45 .038 .548

Algorithm

Variety

13.57

+-

3.510

15.90

+-

2.551

11.35

+-

3.390

15.53

+-

4.230

2.103

.376

45 45 .041 .709

Algorithm

Complexity

53.06

+-

32.67

54.00

+-

29.27

45.70

+-

25.20

52.88

+-

24.87

0.802 .132 45 45 .427 .895

How often

have you re-

used the

algorithms

from any

external

sources

2.37

+-

.928

2.20

+-

.761

2.24

 +-

1.091

2.59

+-

1.004

.438

-

1.495

45 45 .664 .142

Male Participants. Comparison between The Approaches:

Criteria DP(Mean) CBD (Mean) t df p - value

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY 2 DAY

1

DAY

2

How often you

have come

across

programming

difficulties

2.40

+-

.632

2.07

+-

.458

2.87

+-

1.008

2.63

+-

.850

-

1.634

-

2.904

43 42.668 .110 .006

Algorithm

Variety

16.87

+-

4.984

16.87

+-

5.680

13.57

+-

3.510

15.90

+-

2.551

2.577 .792 43 43 .013 .433

Algorithm

Complexity

64.40

+-

40.57

52.93

+-

29.85

53.07

+-

32.67

54.00

+-

29.27

1.011 -.114 43 43 .318 .909

Model

Complexity

12.67

+-

1.952

13.93

+-

2.764

12.13

+-

2.270

13.03

+-

2.606

.777 1.071 43 43 .442 .290

It was easy to

implement

DP/CBD

approach in

my design.

3.07

+-

.704

 3.77

+-

.626

 -

3.393

 43 .001

 I find DP/CBD

approach -

intuitive

3.27

+-

.704

 3.80

+-

.847

 -

2.100

 43 .042

I find DP/CBD

approach -

helpful.

4.00

+-

.655

 4.37

+-

.556

 -

1.965

 43 .056

Comparison of Design Ideation Criteria

Page | B 52

Female Participants. Comparison between the Approaches:

Criteria DP(Mean) CBD (Mean) t df p - value

 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY 1 DAY 2 DAY

1

DAY

2

How often you

have come

across

programming

difficulties

2.33

+-

.724

2.13

+-

.352

3.00

+-

1.118

2.35

+-

.606

-

2.024

-

1.270

27.673

26.185

.053

.215

Algorithm

Variety

13.40

+-

3.851

18.33

+-

4.608

11.35

 +-

3.390

15.53

+-

4.230

1.600

1.795

30

30 .120

.083

Algorithm

Complexity

36.80

+-

14.87

60.20

+-

27.04

45.70

+-

25.20

52.88

+-

24.87

-

1.196

.797 30 30 .241 .432

Model

Complexity

11.80

+-

2.111

14.27

+-

2.404

12.18

+-

2.270

12.24

+-

2.437

-.484

2.368

30 30 .632

.025

It was easy to

implement

DP/CBD

approach in

my design.

 3.00

+-

.926

 3.76

+-

.752

 -2.577

 30 .015

 I find DP/CBD

approach -

intuitive

 3.47

+-

.743

 3.82

+-

.883

 -1.228

 30 .229

I find DP/CBD

approach -

helpful.

 3.87

+-

.640

 4.18

+-

.393

 -1.672

 30 .105

Comparison of Design Ideation Criteria

Page | 53

Comparison of Design Ideation Criteria

Page | B 54

Results of the Comparative Study

Criteria No Approach

(Mean / %)

DP Approach

(Mean / %)

CBD Approach

(Mean / %)

 p value

MODELLING SPEED / MODEL COMPLEXITY Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Model complexity score 11.73 13.94 12.23 14.10 12.15 12.74 .560 .031

ALGORITHM COMPLEXITY Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Algorithm complexity score 40.69 54.61 50.60 56.56 50.40 53.59

EXPLORED SOLUTION SPACE Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Algorithm Variety score 12.43 16.65 15.13 17.60 12.77 15.77 .008 .268

Algorithm Novelty score 28.16 50.82 29.30 53.67 27.43 43.57 .898 .171

PROGRAMMING DIFFICULTIES Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

How often participants came across programming

difficulties

2.88 2.71 2.37 2.10 2.91 2.53 .036 .003

Type of difficulties (5) Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Problems with particular Components 44.8% 48.9% 33.3% 43.3% 21.3% 23.4% .049 .029

LEARNING CURVE Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

How often participants have implemented new

components

2.16 2.16 2.43 1.87 2.21 2.09 .572 .353

RE-USE OF KNOWLEDGE Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

How often participants have re-used algorithms 1.98 2.31 2.37 2.50 2.32 2.34 .128 .610

USABILITY Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

How easy to learn/ implement each approach 2.90 3.03 3.66 3.77 .000 .000

INTUITIVENESS Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

How intuitive participants find each approach 3.37 3.81 .021

FLEXIBILITY Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Ability to find and adapt/ implement Design Pattern /

CBD Solution which fits

 3.37 3.80 3.66 3.64 .196 .356

How often participants have implemented DP / CBD

solutions

 70% 66.7% 76.6% 87.2% .350 .031

UTILITY / usefulness Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

How helpful did participants find each approach 3.93 4.30 .007

CHANGE IN THE DESIGN INTENT Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Ability to model original idea 3.00 3.20 2.87 3.30 3.15 3.51 .284 .297

Change in the design strategy due to programming

difficulties

2.96 2.67 2.93 2.70 3.19 2.68 .304 .988

Change in the design strategy because participants

found some interesting solutions

3.29 3.27 3.23 3.27 3.45 3.47 .577 .395

Ability to accomplish what was intended / wanted 3.41 3.39 3.33 3.50 3.36 3.70 .926 .193

Design objectives Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

To achieve the form I originally sketched 56% 68% 56.7% 60% 51% 80.8% .460 .012

To explore/learn algorithmic form-making 24% 28% 63.3% 40% 46.8% 23.4% .014 .263

To experiment with parameters / iterations 8% 12% 20% 46.7% 19.1% 8.5% .406 .000

IDEATION / KEY WORDS Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Geometry/ Shape key words

Non-standard Geometry 70% 48.9% .069

Commands / Programming Components 30% 12.7% .063

Abstract attributes / Metaphors key words

Descriptive Attributes 60% 80.0% .045

Algorithmic Modelling key words

Non-Standard Geometry 0% 0% 19.1% 19.1% .011 0.11

Descriptive Attributes 0% 12.7% 0.42

Commands / Programming Components 96.7% 80.8% .044

DEGREE OF SATISFACTION Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Level of satisfaction with the design outcome 3.47 3.69 3.77 3.80 3.70 3.98 .261 .241

Motivation to use algorithmic design in future 3.96 3.80 4.04 .441

Diagrams and Illustrations

Page | 55

Diagrams and Illustrations

Exhibit B1. Evaluation Criteria Groups.

Diagrams and Illustrations

Page | B 56

Exhibit B2. Design works produced by the participants of the DP, CBD and NA groups on the

first day of the workshops

Diagrams and Illustrations

Page | 57

Exhibit B3. Design works produced by the participants of the DP, CBD and NA groups on the

second day of the workshops

Diagrams and Illustrations

Page | B 58

Exhibit B4. Design works produced by the participants of the DP group on the first day of the workshops

Diagrams and Illustrations

Page | 59

Exhibit B5. Design works produced by the participants of the DP group on the second day of the

workshops

Diagrams and Illustrations

Page | B 60

Exhibit B6. Design works produced by the participants of the CBD group on the first day of the

workshops

Diagrams and Illustrations

Page | 61

Exhibit B7. Design works produced by the participants of the CBD group on the second day of the

workshops

Diagrams and Illustrations

Page | B 62

Exhibit B8. Design works produced by the participants of the control group on the first day of the

workshops

Diagrams and Illustrations

Page | 63

Exhibit B9. Design works produced by the participants of the control group on the second day of the

workshops

Diagrams and Illustrations

Page | B 64

Exhibit B10. All criteria groups: Results of the comparative study

Diagrams and Illustrations

Page | 65

Exhibit B11. Main criteria groups: Results of the comparative study

Diagrams and Illustrations

Page | B 66

Exhibit B12. Amount of programming barriers chart / Typology of programming barriers comparison

Diagrams and Illustrations

Page | 67

Exhibit B13. Ideation Criteria chart: Types of design objectives

Exhibit B14. Design Ideation. Comparison chart: Approach objectives vs Performance

Diagrams and Illustrations

Page | B 68

Exhibit B15. Approach Characteristics. Comparison chart: Approach objectives vs Performance

Exhibit B16. Satisfaction / Motivation criteria. Comparison chart: Approach objectives vs Performance

Diagrams and Illustrations

Page | 69

Exhibit B17. Algorithmic modelling criteria. Comparison chart: Approach objectives vs Performance

Diagrams and Illustrations

Page | B 70

Exhibit B18. Comparison between all male and female participants. Only criteria with the significant difference in

results are shown

Diagrams and Illustrations

Page | 71

Exhibit B19. DP group. Correlations between all criteria.

Diagrams and Illustrations

Page | B 72

Exhibit B20. CBD group. Correlations between all criteria.

Diagrams and Illustrations

Page | 73

Exhibit B21. Control group. Correlations between all criteria.

Diagrams and Illustrations

Page | B 74

Exhibit B22. DP group. Correlations between Design Performance/ Satisfaction criteria and the other criteria.

Diagrams and Illustrations

Page | 75

Exhibit B23. CBD group. Correlations between Design Performance/ Satisfaction criteria and the other criteria.

Diagrams and Illustrations

Page | B 76

Exhibit B24. Control group. Correlations between Design Performance/ Satisfaction criteria and the other criteria.

Diagrams and Illustrations

Page | 77

Exhibit B25. DP group. Correlations between Algorithmic Modelling criteria and the other criteria.

Diagrams and Illustrations

Page | B 78

Exhibit B26. CBD group. Correlations between Algorithmic Modelling criteria and the other criteria.

Diagrams and Illustrations

Page | 79

Exhibit B27. Control group. Correlations between Algorithmic Modelling criteria and the other criteria.

Diagrams and Illustrations

Page | B 80

Exhibit B28. DP group. Correlations between the Programming criteria and the other criteria.

Diagrams and Illustrations

Page | 81

Exhibit B29. CBD group. Correlations between the Programming criteria and the other criteria.

Diagrams and Illustrations

Page | B 82

Exhibit B30. Control group. Correlations between the Programming criteria and the other criteria.

Diagrams and Illustrations

Page | 83

Exhibit B31. Indexing form and geometry of designs, (all groups) day 1/day 2 key words count.

Exhibit B32. Indexing design associations using metaphors and distinctive attributes, (all groups) day 1/day 2 key

words count.

Diagrams and Illustrations

Page | B 84

Exhibit B33. Indexing programming solutions/algorithmic modelling (all groups) day 1/day 2 key words count.

Exhibit B33. Key words used to describe parametric designs

