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Abstract
The Blackeye II camera, produced by Kinopta, is used for remote secu-
rity, conservation and traffic flow surveillance. The camera uses an im-
age sensor to acquire photographs which undergo image processing and
JPEG encoding on a microprocessor. Although the microprocessor per-
forms other tasks, it is the processing and encoding of images that limit
the frame rate of the camera to 2 frames per second (fps). Clients have
requested an increase to 12.5 fps while adding more image processing to
each photograph. The current microprocessor-based system is unable to
achieve this.

Custom digital logic systems perform well on processes that naturally
form a pipeline, such as the Blackeye II image processing system. This
project develops a digital logic system based on an FPGA to receive images
from the image sensor, perform the required image processing operations,
encode the images in JPEG format and send them on to the microproces-
sor. The objective is to implement a proof of concept device based upon
the Blackeye II’s existing hardware and an FPGA development board. It
will implement the proposed pipeline including one example of an image
processing operation.

A JPEG encoder is designed to process the 752 × 480 greyscale pho-
tographs from the image processor in real time. The JPEG encoder con-
sists of four stages: discrete cosine transform (DCT), quantisation, zig-zag
buffer and Huffman encoder. The DCT design is based upon the work of
Woods et al. [1], which is improved on. An analysis of the relationship be-
tween precision and accuracy in the DCT and quantisation stages is used
to minimise the system’s resource requirements. The JPEG encoder is suc-
cessfully tested in simulation.



Input and output stages are added to the design. The input stage re-
ceives data from the image sensor and removes breaks in the data stream.
The output stage must concatenate the data from the JPEG encoder and
transmit it to the microprocessor via the microprocessor’s ISI (image sen-
sor interface) peripheral. An image sharpening filter is developed and
inserted into the pipeline between the input and JPEG encoder. Because re-
mote surveillance cameras are battery powered, the minimisation of power
consumption is a key concern. To minimise power consumption a mecha-
nism is introduced to track those modules in the pipeline that are in use at
any time. Any not in use are paused by gating the module’s clock source.

Once the system is complete and tested in simulation it is loaded into
hardware. The FPGA development board is attached to the image sensor
board and microprocessor board of the Blackeye II camera by a purpose-
built breakout board. Plugging the microprocessor board into a PC pro-
vides a live stream of images proving the successful operation of the FPGA
system. The project objectives were exceeded by increasing the frame rate
of the Blackeye II to 20 fps, which will not decrease with additional image
processing operations.

The project was viewed as a success by Kinopta, who have committed
to its further development.
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Chapter 1

Introduction

Remote surveillance cameras provide a means to observe places that are
not easily accessible. For example, to monitor access points, farms that
are vulnerable to trespassers require remote cameras that don’t depend
on the electric grid or fixed communication systems. The applications for
such devices extend well beyond rural security. The conservation of native
fauna is a major issue in New Zealand. Conservation workers are too
stretched to watch out for every animal in their care, but using remote
cameras allows them to observe the animals’ behaviour, find out where
they’ve been, or if pest species are in the area.

Kinopta is a small New Zealand company whose flagship product is
the Blackeye II camera. This camera is designed to operate for days at a
time on a single battery charge. It takes photographs regularly for the en-
tire period of operation. When the batteries are low, the camera is accessed
and the batteries changed or recharged. When it is accessed by a PC, either
via USB or wirelessly, it presents itself as a website for the user to access,
browse and download the photos.

A major strength of the Blackeye II as a remote surveillance camera
is its unobtrusive night-time photography. It takes high quality photos
in dark conditions without the use of any flash perceptible to human or
animal. Most locations where remote surveillance cameras are used are

1



2 CHAPTER 1. INTRODUCTION

devoid of artificial light, so many competing cameras struggle to perform
at night. To increase battery life other camera systems stop taking and
storing photographs if the scene remains unchanged, but these systems
may miss events that happen quickly. For example, cameras are known
to use passive infra-red sensors to trigger the camera. A kakapo leaving
its nest will trigger the camera because it is warm, but when it returns its
feathers will have cooled and it will not trigger the camera. The Blackeye
II is in constant operation and will not miss events. However, this makes
it even more important that it uses as little power as possible.

Kinopta treats the Blackeye II as a product platform; they customise
the camera for different applications. Blackeye II cameras are currently
used for the applications described above as well as traffic flow planning
surveys. In each of these applications the Blackeye II was selected for its
superior night time photography. The camera system is highly flexible and
applications under development extend to medical instrumentation.

The two main components to the camera are the image sensor and
microprocessor. The image sensor captures the digital images and sends
them to the microprocessor. The microprocessor performs image process-
ing operations on the images, encodes them as JPEG files and stores them
on-board. The camera hosts a web server so that when it is networked
with a computer the user can access it with a web browser. Using an em-
bedded web server allows the camera to provide a custom interface for
easy access to the images stored on-board without the need to install cus-
tom software on the PC.

Clients are demanding new and improved features on the cameras, but
these are proving hard to fulfil with the current system. Faster frame rates
are required for traffic monitoring where cars are not in shot for long. Con-
servation workers need to observe fast events, such as pest species prey-
ing on kiwi and other endangered NZ birds, so their cameras also require
a faster frame rate. A frame rate of 12.5 fps (frames per second) has been
identified as being sufficient for these applications. However, the current
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system is only capable of taking photos at 2 fps. The microprocessor in
the camera must perform operations on every frame as it arrives and it is
unable to keep up with a faster frame rate.

In addition to a faster capture rate, clients demand improved image
quality. The nature of these improvements depends on the application.
Traffic flow planning operations require the identification of individual
cars travelling through a city, so require that the license plates on cars are
clearly legible. Monitoring of wildlife reserves requires that a wide field
of view is recorded. It should be able to detect creatures moving in the
shadows in the background. These improvements in image quality can be
achieved with image processing techniques, but as more image processing
operations are added to the system, the frame rate decreases even further.

The microprocessor could be upgraded to a more powerful one, but
this increases the cost and power consumption of the device and still
presents a trade-off between frame rate and image processing capability.
An alternative is to add a digital hardware system to the camera to per-
form the image processing and encoding. Digital hardware systems can
be designed in a pipeline to eliminate the trade-off between data rate and
the number of operations being performed.

This project proposes the use of a field programmable gate-array
(FPGA) device to implement a digital hardware image processing system.
FPGAs are highly flexible digital devices that allow for the implementa-
tion of almost any kind of digital logic. The proposed system will sit be-
tween the image sensor and microprocessor in the data flow. It will take
the images from the image sensor, perform the necessary image process-
ing operations on them, then encode them as JPEG data before sending
them to the microprocessor for storage. It was decided to continue us-
ing JPEG encoding rather than other types of image encoding due to its
compression levels and widespread use.
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1.1 Project Goal

As mentioned, there is demand for greater features and faster performance
of the Blackeye II camera. Its microprocessor is unable to provide these. It
can achieve a frame rate of only 2 fps with the current image processing
pipeline. The company, Kinopta, would like the Blackeye II camera to be
able to capture photos at a rate of 12.5 fps with the addition of more image
processing operations. The camera runs off battery for long periods, so the
power consumption of the improvements must be kept low.

This project will develop an FPGA-based system to complement the
microprocessor in the Blackeye II camera. The aim is to develop a system
that will receive data from the image sensor, perform image processing
on the data, encode it as a JPEG file and send it to the microprocessor.
A proof-of-concept device will be constructed to show the system in op-
eration. It is not the goal of this project to take the system through to a
production-ready prototype. Instead the design will consist of an archi-
tecture for an image processing pipeline, an example image processing
operation to insert in that pipeline, a JPEG encoder and interfaces to the
image sensor and microprocessor. Throughout the design process care will
be taken to minimise the power consumption of the device.

1.2 Outline of Thesis

This thesis continues in Chapter 2 by covering relevant background knowl-
edge. This includes FPGA use in industry, their advantages compared
with other devices, and how FPGAs can be included into systems. An
overview of JPEG encoding is provided along with detail of important
parts. Chapter 3 sets out the design process of the JPEG encoder. Previous
work in the field is used and improved. Particular care is taken to explore
the trade-off between precision and accuracy in the design in order to min-
imise the design resources. Chapter 4 discusses the interfaces between
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FPGA and image sensor, and FPGA and microprocessor, and the design of
the parts of the system responsible. A power saving mechanism is intro-
duced and implemented, as well as an image sharpening filter. Chapter 5
begins by discussing the final implementation of the system and its perfor-
mance. It then evaluates the system with regard to the project objectives,
and the JPEG encoder is compared with other implementations. Finally, a
discussion titled Future Work provides a path forward from this project to
a final product.
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Chapter 2

Background

2.1 FPGAs

An FPGA is a reconfigurable digital logic device. FPGAs have a config-
urable interconnect network linking from 103 to 106 logic elements. A logic
element (LE) usually consists of some type of configurable look-up-table
(LUT), a flip-flop and a multiplexer. By configuring the LEs and the inter-
connects, an FPGA can behave as almost any digital logic system provided
it has sufficient resources.

FPGAs may be used in the same roles as fully customised integrated
chips such as ASICs (Application Specific Integrated Chip). ASICs, un-
like FPGAs, are not reconfigurable, which does have advantages. There
are extra resources devoted to reconfigurability and the layout of the ac-
tive resources in a reconfigurable system is sub-optimal. This results in
longer signal paths and extra logic gates to perform the same task. There-
fore there are drawbacks to implementing the same design in an FPGA
compared with an ASIC: clock paths aren’t as efficient, and therefore the
same clock rates aren’t achievable; static and dynamic power efficiency is
worse; and silicon wafer area efficiency is poorer, therefore FPGAs have a
greater per unit cost.

The reduced per unit cost of ASICs means that for large volume pro-

7



8 CHAPTER 2. BACKGROUND

duction they are preferred to FPGAs. However, the non-recurring engi-
neering (NRE) cost of developing an ASIC is significantly higher. While
the digital logic design is a part of the NRE of both FPGA and ASIC
projects, the ASIC process requires the logic to then be organised into
a transistor-based design and the appropriate wafer patterns produced.
Not only do these additional stages add to the cost of each design itera-
tion, they add significantly to the time between iterations. Reducing de-
velopment iteration time and cost, allows for the development to proceed
more smoothly; unexpected errors can be rapidly solved before moving
on. Reconfigurability also means that systems may be upgraded after pro-
duction. Due to these advantages FPGAs are used in projects where the
volume of production isn’t sufficient to warrant the use of ASICs. The vol-
ume at which this occurs is increasing over time because FPGAs are being
more widely accepted in industry, they become more energy efficient and
their per unit cost decreases [2].

FPGAs were developed by Xilinx in the 1980s and are now a major
product market currently dominated by Xilinx and Altera, with other com-
panies taking a niche role. As the feature set of FPGAs has increased, the
development tools have matured and the per unit costs have reduced, FP-
GAs are becoming increasingly common in product design in every sector
of electronics. In addition to LEs and the interconnect network, modern
FPGAs also have specialised hardware blocks, which commonly include
RAM, multipliers, Phase Locked Loops (PLLs), and highly configurable
I/O blocks for each individual I/O pin [3].

2.1.1 FPGA Development Process

While there are a range of independent development tools for FPGAs, de-
velopment commonly utilises the toolchain produced or supported by the
manufacturer of the target FPGA. This project uses an Altera FPGA from
the Cyclone IV range.
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Altera provides the Quartus II development software for FPGAs in
both free and paid versions. The free version was used here because none
of the restrictions of the free version inhibited the project. Quartus II pro-
vides several environments to edit functional designs, including the use
of hardware description languages (HDLs). This software provides all the
toolchains required to turn a design into a programming file. It is then able
to load the programming file onto an FPGA board connected to the com-
puter. Quartus II provides a wide range of tools to customise and optimise
the system beyond just the functional design. Alongside Quartus II, Altera
recommends the use of its own customised version of Mentor Graphic’s
ModelSim software for simulation of HDL designs. Functional design of
this project is written in a language called Very-High-Speed Integrated Cir-
cuits (VHSIC) HDL, shortened to VHDL. Quartus II is used to synthesise
and ModelSim to simulate this design. The following discussion on the
development process is specific to these design tools.

A simplified VHDL-based FPGA design flow is depicted in Figure 2.1
as suggested by Pedroni [4]. The process begins with a specification stage,
often utilising block diagrams, state machine diagrams and other hard-
ware design techniques. The design is then turned into VHDL code.

VHDL specifies the functional operation of the system, and is primarily
based on the concept of signals. Signals in VHDL are strongly typed buses
within the system of specified width. While strong typing is employed,
the language does allow for significant flexibility; signals can undergo
type conversion, so that a signal of type standard logic vector (an ordered
1D array of bits) can become the input to a signal of type unsigned integer.
Signals may undergo a wide range of concurrent and sequential opera-
tions from a set of standard libraries (with the option to use user-defined
libraries as well). An unsigned integer, for example, has arithmetic op-
erations, such as addition and multiplication, available from a standard
library. The code is organised by blocks called entities, which may con-
sist of logical operations and other sub-entities known as components. An
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SYNTHESIS SIMULATION

Specifications

VHDL code

Analysis and Synthesis

Place and Route (Fitter)

Generate programming file

Download to physical device

RTL functional

simulation

Post-synthesis

functional simulation

Post-fitting

timing simulation

Figure 2.1: FPGA design flow.

entity can be thought of as corresponding to a block in a hardware block
diagram and is referred to in this document by the generic term module. A
module is defined by its I/O interface and its constituent logic.

The next stage of FPGA development is the analysis and synthesis of
the VHDL code. This is performed by the development environment, in
this case Quartus II, and the development environment will offer different
ways to optimise or otherwise influence the analysis and synthesis pro-
cess. This process converts the HDL description of a system into a netlist
of hardware blocks and interconnecting buses. The hardware blocks of
these netlists do not represent FPGA hardware components, but are ab-
stract elements that are readily translatable into FPGA hardware compo-
nents. Note that some signals and operations that are part of the VHDL
code will not be explicit in the netlist, but will instead be combined with
other signals and operations or removed entirely as part of the optimisa-
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tion process. Where signals do explicitly correspond to VHDL signals, the
VHDL labels are retained.

Following this stage, is the place and route process, also known as the
fitter. This, again performed by development software, converts the func-
tional netlist into a description of the utilisation of specific hardware com-
ponents of the target device. This process is also used to ensure timing lim-
itations of the system. Due to the complexity of FPGA hardware, signals
that pass through several hardware resources can experience significant
propagation delays. By specifying the timing requirements of a system,
the fitter will attempt to ensure these are fulfilled.

In order to use the design on an FPGA, its configuration must some-
how be sent to the FPGA. FPGAs use different communication standards
to receive configuration data, which is determined by the manufacturer.
The programming file specifies how the FPGA should configure its inter-
connect network, LUTs and other hardware components. Once generated,
FPGA programming software is used to transmit the program file to the
FPGA via some on-board communication system.

Alongside the synthesis is the simulation process. If a VHDL system
passes rigorous simulation tests it is almost guaranteed to pass physical
testing [4]. As indicated by Figure 2.1, there are three levels of simula-
tion. All reference to simulation from here on refers to functional sim-
ulation. Timing simulation involves calculating propagation delays and
displaying their effects. However, timing simulations were not necessary
in this project because at no point was the logic sufficiently complex to
cause propagation delays comparable with the clock speeds.

A VHDL simulation requires a special type of VHDL module called
a testbench. A testbench instantiates the module to be tested and speci-
fies the generation of the module’s input signals. Signals in a testbench
may be read from or written to files. Simulations can be set up to launch
from Quartus II, which will run ModelSim and provide it with an auto-
matically generated script to run. While testbenches may output infor-
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mation to a command line, a simulation is primarily viewed via a timing
diagram interface. In functional simulations the timing diagram assumes
zero propagation delays so concurrent operations will occur concurrently,
and sequential operations will occur on clock edges. The user may view
any signal of the testbench, the main module or any of its constituent mod-
ules (so long as that signal still exists post-synthesis). Many signals may
be selected simultaneously, and the waveforms of these signals are gener-
ated for a user specified simulation period. The timing diagram allows the
developer to view the entire operation of a system in great detail in order
to track down system bugs.

2.1.2 CPU-FPGA coupling

Advanced embedded systems are traditionally software driven; they are
controlled by a CPU. While FPGAs provide improvements in many pro-
cessing applications, many tasks are much better suited to software. As
FPGAs have become increasingly common in these systems the various
configurations by which they are coupled to the system’s CPU have been
categorised [5, 6]:

1. The most closely coupled case is that of a CPU with reconfigurable
hardware functions integrated into it. The purpose of such a close
coupling is to allow the reconfigurable hardware to add to the core
architecture of the CPU. Custom instructions can be implemented to
accelerate particular algorithms, passing data via shared registers.
Closely linked to this is the increasingly common phenomenon of
soft CPU cores, that is, CPUs that are implemented on an FPGA.
These CPUs are becoming increasingly mature, particularly those
provided by the major FPGA manufacturers such as Altera’s NIOS II
and Xilinx’s MicroBlaze. These allow for a highly customisable CPU
system with optional instructions easily added or removed.
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2. The next most closely coupled case is a coprocessor system. The re-
configurable hardware has more independence than the functional
unit described in 1, while still being highly integrated into the CPU.
The coprocessor may receive a trigger from the CPU and operate in-
dependently for several clock cycles until a result is achieved. A clear
advantage to this system is the core CPU and reconfigurable hard-
ware may operate in parallel, which provides performance gains at
the cost of added care required in software design. The coprocessor
has access to the CPU’s memory cache, as opposed to direct access
to CPU registers as in 1.

3. An attached processing unit is one stage further from the CPU. It is
further removed in terms of memory access too: it does have access
to the CPU’s memory, which it shares control of via a direct memory
access (DMA) system. Communication between the CPU and the
attached processing unit is therefore slower than the above cases, al-
though direct memory access does allow for such a processor to un-
dertake large tasks on data independently from the CPU and return
the result in place for the CPU to easily access it.

4. A standalone system is one where the CPU and reconfigurable hard-
ware are not integrated. The reconfigurable hardware will operate
largely independently of the CPU and only infrequently communi-
cate with it via system I/Os or a network link. This is the case where
an FPGA and CPU are both part of a single device but do not share
memory.

In general, reconfigurable hardware more closely integrated into the
CPU has greater and faster access to it, but is more dependent upon it.
Furthermore, the more highly integrated system will generally have fewer
reconfigurable hardware resources than independent systems. Garcia et
al. [7] propose a similar categorisation but with three categories: a func-
tional unit (as in point 1 above); a coprocessor, which has access to the
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CPU’s memory and possibly its cache (as in points 2 and 3 above); and a
heterogeneous multiprocessor, which may have a shared memory system
or may communicate via a network or communication architecture (as in 3
and 4 above). The latter categorisation more closely reflects the necessary
physical integration levels between reconfigurable hardware and a CPU:
amalgamated into the CPU architecture, as a peripheral of the CPU, or on
an independent chip. A general term for the reconfigurable hardware in
these systems is a hardware accelerator, though this term also applies to
other hardware systems.

2.1.3 FPGA-based Hardware Accelerators

FPGAs provide a hardware solution to many engineering problems. Soft-
ware solutions running on a microcontroller or microprocessor can pro-
vide equivalent results. Each design task has its own problems that need
to be solved, and an appropriate selection of technology is required to
provide an appropriate solution. Table 2.1 provides a list of general ad-
vantages of software over hardware and vice versa.

Table 2.1: List of advantages of software and hardware in the general case.

Software Hardware
Rapid updates Highly optimised system
Lower development time Faster system performance
Expertise widely available More power economical
Lower development cost

The choice between using software or hardware goes beyond that of
resource cost versus degree of system optimisation. The degree to which
systems can be improved through the use of hardware, or the reduction
in development time for software, depends entirely upon the task being
undertaken. While research is being done on the potential for systems
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to be accelerated by FPGAs, the advantages of software have previously
inhibited widespread uptake of FPGAs in industry [8].

CPUs excel at performing linear tasks where a lot of decision making
occurs, and software systems are highly adaptable. Hardware systems
are inherently less flexible and therefore are largely confined to tasks that
are well defined. On the other hand hardware can perform operations on
an almost limitless level of parallelism, whereas CPUs only perform one
operation at a time, so are not suited to tasks that are well pipelined.

Digital system design faces continuous performance pressures. These
pressures may be relieved by the appropriate use of hardware. This relief
is needed, but at the same time so is the flexibility and rapid development
cycles of software. To this end, there is an increasing use of digital hard-
ware solutions coupled to software systems. Hardware accelerators are
specialised hardware systems that are used to augment a software system,
providing the benefits of a hardware solution to those parts of the system
that stand to gain the most from it.

Specifically, the gains may be either in data throughput or in power
reduction, or both. As mentioned at the start of Section 2.1, FPGAs do not
provide the same gains in power reduction, nor are they capable of run-
ning at the same clock speeds as ASICs, but despite this they are capable
of outperforming a microprocessor for some tasks. However FPGAs have
made great progress in these areas in recent years [9].

The performance of hardware accelerators is measured by two met-
rics: run time and power consumption. Run time specifies how long it
takes to perform a given operation, usually its main function, which may
be compared with the equivalent run time in software. The power metric
is defined as the average power consumption during the run time. The
product of the power consumption and the run time is the operation en-
ergy. Again a direct comparison with software may be made. The over-
all power savings are more complex because the static energy (that is the
energy consumed when the operation is not being performed) of the ac-
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celerator must be taken into account as well as the proportion of time the
accelerator is operating. Furthermore, no net power savings of a system
will be achieved unless the energy consumption of the software system is
decreased. Simply put, either the processor is clocked slower, enters a low
power mode for longer periods of time, or is replaced by a lower power
processor as a result of the addition of the hardware accelerator. Alter-
natively, rather than reducing power, the addition of the accelerator may
be incorporated in order to increase the system throughput, in which case
the total power consumption of the system may remain static, or in fact
increase.

Traditionally FPGAs have been coupled to CPUs to provide what is
known as glue logic [5], that is, an interface between one digital system,
such as a CPU, and another digital system. The role of hardware ac-
celerators has taken them into new fields where they have proved suc-
cessful. These fields include networking, encryption, software-defined ra-
dio, medical imaging, scientific data acquisition and analysis, spacecraft,
robotics, automotive and image and video [7].

2.1.4 FPGA Design for Embedded Systems

Portable embedded systems are becoming increasingly ubiquitous. The
demands on embedded systems increase in the form of greater perfor-
mance and flexibility, lower power consumption, and cheaper costs [10].
The incorporation of an FPGA may reduce the requirements of the micro-
processor, so that a lower power microprocessor solution might be used.
While the addition of an FPGA will make a significant contribution to the
static power consumption of a device, they enable vast reductions in the
dynamic power consumption of algorithms. An algorithm may take many
more clock cycles to perform on a CPU than in an FPGA, if it is sufficiently
pipelinable.

To show the effects of parallelism, an example is provided based on
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the pseudo-code example in Figure 2.2. This simple algorithm takes input
array, E, performs operations OP1 and OP2 on the data then outputs the
result to array E”.

for i = 0→ 9 do
E ′[i] = OP1(E[i])

end for
E ′′[0] = OP2(E

′[0], 0)

for i = 1→ 9 do
E ′′[i] = OP2(E

′[i], E ′[i− 1])

end for

Figure 2.2: Example algorithm

Assuming both operations can be computed in a single step then a
clock by clock comparison of how this algorithm would progress on a CPU
and an FPGA is given in Table 2.2. Parallelism means that while the FPGA
may take as many clock cycles as the CPU for each data element, the FPGA
will output one result each clock cycle, whereas the CPU will output one
result every four clock cycles.

Table 2.2: Comparison of the performance of an algorithm as implemented on

CPU vs. FPGA.

clk CPU FPGA
0 fetch(E0) fetch(E0)
1 E ′0 = OP1(E0) fetch(E1) OP1(E0)

2 E ′′0 = OP2(E
′
0, 0) fetch(E2) OP1(E1) OP2(E

′
0, 0)

3 store(E ′′0 ) fetch(E3) OP1(E2) OP2(E
′
1, E

′
0) store(E ′′0 )

4 fetch(E1) fetch(E4) OP1(E3) OP2(E
′
2, E

′
1) store(E ′′1 )

4 E ′1 = OP1(E1) fetch(E5) OP1(E4) OP2(E
′
3, E

′
2) store(E ′′2 )

...
...

...
...

...
...
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The mechanism by which an FPGA may reduce power consumption
springs from parallelism. As shown in the example above, an algorithm
implemented in a parallel manner may be performed in far fewer clock cy-
cles per data element. Therefore, to achieve the same data rate as the CPU,
the FPGA must be clocked at a slower rate. As dynamic power consump-
tion is directly proportional to clock rate, the power used by the FPGA for
the algorithm is likely to be less than that off the CPU despite its inher-
ently poorer power efficiency. Conversely, if the FPGA were to be clocked
at a faster rate the overall power consumption may stay the same or even
rise, but the data rate will be increased significantly. The benefits of using
hardware accelerators can be significant, with examples showing a 90%
power reduction for the same data rate, or a 200-fold data rate increase for
the same power [11].

2.1.5 FPGA Power Considerations

The power usage of an FPGA differs across three time periods: power-up,
configuration and execution. Note that Flash-based FPGAs, as opposed to
the predominant SRAM-based chips, will be slightly different. Power-up
refers to the spike in current draw during the initial few microseconds of
power being provided. This is dependent upon the chip itself rather than
its configuration, and is largely attributed to on-chip SRAM. Configura-
tion occurs shortly after power-up, and at any point during operation in
which the system is reconfigured. The execution component accounts for
the rest of the FPGAs operation, and consists of both dynamic and static
power [12].

Static power consumption is constant for a given device. The static
power consumption of FPGA devices is a major point of competition be-
tween vendors, so that devices with equivalent resources are decreasing
in static power from one generation to the next, and vary considerably be-
tween vendors [2]. Within a family of devices the tendency is for static
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power to be proportional to the resources on the device. Dynamic power
is dependent upon the rate at which signals change value due to the na-
ture of CMOS architectures. Significant dynamic power consumption oc-
curs both in the LEs and the interconnect [12]. Different configurations of
the same functional design has different power efficiencies (for example,
minimising the number of gates that might change on every clock cycle
reduces dynamic power consumption).

To attain the best possible results from a hardware accelerator, the power
consumption of the FPGA must be carefully considered. FPGA devel-
opment software have variants of their place and route algorithms that
favour low power design over other design parameters. The system on
the FPGA, or any constituent system thereof, may not be utilised 100% of
the time, therefore clock-enable systems may significantly reduce the pro-
portion of the time that large parts of the chip are clocked without any re-
duction in performance. Specialised clock trees in the recent FPGAs’ inter-
connect have allowed hardware clock gates to be implemented which are
a vast improvement over clock gating via LEs, and furthermore are easily
implemented with the vendor-supplied development software [13]. Idling
systems for microprocessors are less flexible by comparison; the CPU, be-
ing the point of processing, must be fully active whenever any processing
is required.

A complementary approach to reducing the FPGAs power consump-
tion is to minimise the resource usage of the design, which has two effects:
it decreases the overall dynamic power usage by minimising the size of
dynamic systems; and it enables the use of FPGAs with fewer resources,
and therefore lower static power consumption.

Some vendors produce FPGAs for low-power systems. These low-
power FPGAs generally have fewer resources available than their stan-
dard counterparts. This provides further incentive to reduce the power
resource usage of systems designed for FPGA. The proof of concept sys-
tem built for this project uses an Altera Cyclone IV FPGA, which is not
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considered a low-power device. This FPGA was chosen for convenience
in the development process. However, the design of system is kept as ven-
dor neutral as possible so that it may be ported to a different FPGA range
in the future once the final resource usage and power consumption has
been considered.

2.1.6 FPGA Summary

FPGAs present a compelling alternative to ASICs in digital hardware de-
sign, particularly for low volume production. The advantage of an FPGA
system are the comparatively low development costs and rapid design it-
erations.

While they compete against CPUs in some applications, in a hardware
accelerator configuration, FPGAs are used to complement the main pro-
cessor of the digital system. The coupling between the processor and con-
figurable logic may be very close, where the hardware extends the capa-
bilities of the processor, or may be distant, where an FPGA operates on
data independently only communicating where necessary with the CPU.

The Blackeye II camera system currently does all of its image process-
ing and encoding on a microprocessor. This project proposes the use of an
FPGA in between the camera sensor and microprocessor to offload these
processes from the microprocessor (see Chapter 4). By careful design the
additional hardware may improve the overall performance of the system.

This project uses a Cyclone IV FPGA from Altera, one of the two main
FPGA manufacturers. Development is done in the hardware description
language VHDL using Altera’s Quartus II development software to syn-
thesise designs and Mentor Graphic’s ModelSim to simulate them. During
the design process, care was taken to reduce the system’s resource usage
and power consumption.
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2.2 JPEG Algorithm

The Joint Photographic Experts Group (JPEG) was formed in 1986 to es-
tablish a standard for the encoding of greyscale and colour images [14].
The resulting document published in 1992, officially titled Information
Technology–Digital Compression And Coding of Continuous-Tone Still Images–
Requirements And Guidelines, is commonly referred to by the name of the
committee: JPEG. The standard itself is not a single algorithm, but pro-
vides a set of rules for the compression of images; however, the appen-
dices elaborate on the standard by providing examples, which are com-
monly used for JPEG implementation. The standard does not specify a file
format, but provides a structure to add file information. EXIF and JFIF are
the two common file formats for JPEG images, and both are read by most
software [15].

JPEG has become the most used format in digital image storage [16].
In the case of digital photography JPEG has become the de facto standard.
The advantage of JPEG use in photography is that, of the common image
formats, it provides the greatest level of compression [17] by exploiting the
following. First, the JPEG system builds upon previous work that showed
that human perception focuses on low spatial frequencies [18]. Secondly,
photographs exhibit guassian distribution of DC data and lapplacian dis-
tribution of AC data [19]. This means that less precision is required for dif-
ferent spatial frequencies, which the JPEG standard exploits. And thirdly,
the difference between the DC representations of neighbouring parts of an
image is more likely to be smaller than the absolute value of those DC rep-
resentations. While more sophisticated human visual system models now
exist based upon psychological and neurological research these advanced
models would require more complex compression systems [20].

Due to its widespread use, and high levels of compression, JPEG is
used by the Blackeye system.

Viewed algorithmically, JPEG compression is divided into 7 or 8 dis-
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tinct steps [21]:

1. Convert from RGB to a luminescence-based colour system such as
YCbCr. In greyscale images this step is not required.

2. The chrominance components of the image are reduced in spatial
resolution, usually either 2:1 reduction in horizontal direction only,
or 2:1 in both horizontal and vertical directions. In greyscale images
this step is not required.

3. The pixels of each colour are grouped in blocks of 8×8 pixels for fur-
ther compression. If the resolution isn’t a multiple of 8× 8 then extra
pixels are inserted, copying the pixels of either the right or bottom
edge. These blocks are called minimum coding units (MCUs).

4. A two dimensional discrete cosine transform (DCT) is performed on
each MCU to produce an 8× 8 frequency map.

5. The data is quantised. This step is lossy; data is irretrievably lost.
Each DCT coefficient is divided by a specific quantisation value then
rounded to the nearest integer. These quantisation values are speci-
fied in a quantisation table. The JPEG standard provides recommended
quantisation tables.

6. A variant of Huffman encoding is performed on each data unit. This
may be replaced with arithmetic encoding.

7. Headers and requisite tables are added to the resulting file. The file
format has multiple standards, the two most common of which are
the JFIF and EXIF formats.

2.2.1 JPEG Modes

The JPEG specification is very flexible, allowing the encoders to choose
from a range of options regarding the encoding process. The main options
(indicated by bold type) are described as follows.
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There are four distinct modes of operation available to JPEG encoders:
baseline sequential, baseline progressive, lossless and hierarchical. Loss-
less is self-explanatory. Hierarchical is used for storing multiple frames in
a single file, where each frame’s encoding depends on the previous frames
(i.e. the kinds of processes used in video encoding). Sequential baseline
mode, the most common [22], encodes the data entirely in independent
8×8 data blocks, whereas baseline progressive performs DCT and quanti-
sation operations on 8×8 data blocks, but then performs entropy encoding
upon groups of these data blocks.

Multiple image components are allowed per frame. These image com-
ponents can be used to represent the colour space of the image; for ex-
ample an RGB colour space would require three image components per
frame (one for red, blue and green data samples). The JPEG specification
does not provide for different colour spaces, relegating this task to the file
format. However, it does provide example Huffman and quantisation ta-
bles for luminance and chrominance. The JFIF file format, for example,
specifies the use of YCbCr colour space. The components need not be of
the same sample rate, for example, chrominance pixel data may be binned
while luminance pixel data stays at full resolution. This means that pixels
in Bayer pattern form may be directly encoded. Only one image compo-
nent is used for greyscale images. These image components may be inter-
leaved (the first block of all image components is followed by the second
block of all components) or not (all the blocks of the first image component
are followed by all the blocks of the second component).

The specification allows for 8-bit or 12-bit sample resolutions. These
resolutions apply to the pixel data components such as luminance and
chromitacity.

The entropy coding stage (where the data compression occurs) may use
one of two different techniques: Huffman coding or arithmetic coding.

While the JPEG standard allows for many different options, the appli-
cation that this work is concerned with only requires the simplest JPEG
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implementation, namely 8-bit greyscale baseline sequential. Other aspects
of the JPEG specification are ignored in the rest of this document.

2.2.2 Discrete Cosine Transform

The discrete cosine transform (DCT), sometimes referred to as the forward
DCT to distinguish it from the inverse, is a discrete transform of data
points to a sum of cosine functions. The DCT was first proposed in 1974
as a derivative of the discrete Fourier transform, and its potential appli-
cation in image compression was immediately noted [23]. The transform
has four main variants, but the JPEG standard specifies a variant of DCT-
II [14]. The general DCT can be applied on a one-dimensional data array of
arbitrary length, although multidimensional DCTs are derived from per-
forming DCTs along each dimension sequentially. In the case of JPEG, the
algorithm is further simplified because the data is always an 8 × 8 block
of data of integers in the domain [-128, 127]. Equation 2.1 shows the form
used in the JPEG standard. The resulting 8 × 8 matrix is a representation
of the original MCU in the frequency domain. Note that element g0,0 is
the DC element: it is 1

8
of the mean of the original MCU’s pixels. The re-

maining elements are AC in nature and increase in frequency with their
indices.
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2.2.3 Quantisation

The quantisation stage of the JPEG algorithm is the lossy stage. DCT co-
efficients (the elements of an MCU after the forward DCT transform) are
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each divided by a constant, and the loss of information occurs due to main-
taining integer level precision of the result.

The quantised matrix is the Hadamard product of the DCT matrix and
some quantisation matrix. No quantisation matrix is specified by the JPEG
standard, and therefore one must be included in the JPEG file for the de-
coder to use. It is usually represented as the array of elements by which the
DCT matrix elements are divided, known as the quantisation table. While
there is no standardised matrix construction system, Annex K of the JPEG
Standard gives example chrominance and luminance quantisation tables
as shown in Table 2.3. In 1991 the Independent JPEG Group (IJG) released
one of the earliest open source JPEG software libraries, from which stems
the quality system that is widely, though far from universally, used. IJG
refers to the tables from Annex K as Q50, indicating a 50% quality factor.

Table 2.3: The sample luminance quantisation matrix provided in Annex K of the

JPEG Standard.

Q50 =



16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99



Other quantisation tables are derived from Q50 by Equation 2.2 [24].

Qx =

{
100−x
50
·Q50 x ∈ (50, 100)

50
x
·Q50 x ∈ (0, 50)

(2.2)

As discussed at the start of Section 2.2, lower frequencies are of greater
significance than higher frequencies. This is reflected in this quantisation
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table, which exhibits lower coefficients in the top left (low frequency) than
in the bottom right (high frequency). Higher coefficients lead to smaller
data values post quantisation which in turn are able to be further com-
pressed than large values [25].

2.2.4 Entropy Encoding

This is the stage of the algorithm in which compression occurs. The two
systems that can be used are Huffman encoding or Arithmetic encoding.
Arithmetic encoding usually provides greater compression at the cost of
further data processing. Huffman encoding, the one used in this project,
is explained in further detail here.

The order in which each element of an MCU is encoded is based upon
a zigzag ordering, starting with the top left element and ending in the
bottom right element. The diagram in Figure 2.3 depicts this.

Figure 2.3: Zig-zag ordering starting in the top left (0,0) and ending in the bottom

right (7,7)

As mentioned above, the lower right is more likely to have runs of
zeros and this ordering therefore clumps them together. Runs of zeros are
the most compressible form of data in this type of Huffman encoding.

The DC elements (i.e. the first element of each MCU) is considered
differently from the other elements. The DC value is replaced with the
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difference between the current and the previous DC values. In general,
photographs exhibit the frequent tendency of neighbouring MCUs having
similar average intensities. Therefore the difference between DC values
will often be small. Small values result in greater compression. Addition-
ally, different Huffman tables are used for DC elements than those for AC.

Each encoded element consists of a code followed by a value (some
values are of length 0). The code is from a Huffman table and specifies
the length of value and the size of the run of zeros preceding the value.
Huffman values are a form of binary representation where the length of
the representation is important. This conversion is shown in the Table 2.4.

Table 2.4: Huffman value encoding table. This table compares the quantised

element with its corresponding Huffman value.

Value
Quantised Values Huffman Values

Length
0 0 0
1 -1 1 0 1
2 -3, -2 2, 3 00, 01 10, 11
3 -7, -6, -5, -4 4, 5, 6, 7 000, 001, 010, 011 100, 101, 110, 111
4 -15,...,-8 8,...,15 0000,...,0111 1000,...,1111
5 -31,...,-16 16,...,31 00000,...,01111 10000,...,11111
...

...
...

...
...

11 -2047,... ...,2047 00000000000,... ...,11111111111

DC elements are always at the start of an MCU, thus they do not have
runs of zeros preceding them, so there is one Huffman code for each value
length. As in the case of quantisation tables, these values are not speci-
fied by the JPEG specification, because each Huffman table will provide
differing levels of compression for any given image. However, there are
Huffman tables provided in Annex K of the specification that provide gen-
erally good levels of compression and are widely used. Table 2.5 shows the
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Huffman table for DC elements (the equivalent AC table is in Appendix
A).

Table 2.5: Huffman Table: luminance DC coefficient differences (JPEG Standard

Annex K)

Value Length Code Word Code Length
0 00 2
1 010 3
2 011 3
3 100 3
4 101 3
5 110 3
6 1110 4
7 11110 5
8 111110 6
9 1111110 7

10 11111110 8
11 111111110 9

The table for AC elements is much longer as both value length and zero
count are encoded. Quantised AC elements that are 0 do not have a corre-
sponding Huffman output, but are only counted towards the current zero
run. If 16 consecutive zeros occur there is a special code used and the zero
run count restarts. If there are only zeros remaining in the current MCU,
there is a special code (end of block) for terminating the MCU prematurely.

As an example to clarify this encoding: suppose the first MCU has
DC element -16. This corresponds to a Huffman value of 01111 (Table
2.4). As it is value length 5 (the length in bits of the Huffman value) the
Huffman table specifies the corresponding code word to be 110 (Table 2.5).
Therefore, the entire Huffman code would be 110 01111.

The Huffman codes are concatenated into a single stream of data. The
stream must be of an integer number of bytes in length, so if the number



2.2. JPEG ALGORITHM 29

of bits in the entire stream is not a multiple of 8 then the difference in bits
is padded with 1’s. Furthermore, as the byte 0xFF is used to indicate a
marker in a JPEG file, any 0xFF that occurs in the data must have a 0x00
inserted after it.

2.2.5 File Format

The discussion in this section thus far has only considered the compression
of images, not how the data is stored. JPEG image data is stored inside a
file with extension .jpg or .jpeg, in a flexible format specified in the JPEG
document. In addition to image data a variety of parameters are stored
in the file specifying the specific implementation of JPEG being used, in-
cluding quantisation and Huffman tables. There are two main JPEG file
formats, EXIF and JFIF, both of which specify additional metadata that
may be included [15].

The diagram in Figure 2.4 shows the form that a JFIF file may take, and
in this case it is of the simplest form, as used in this work.

Note that each section preceding the data starts with a JPEG-specified
marker (always 0xFFXX), followed by 2 bytes that specifies the length of
that section; when decoding the file only the data is of unknown length.
The end of the data is signified by the end of image marker. As noted in
Section 2.2.4, bytes in the data which are 0xFF have a 0x00 byte stuffed
after them to prevent confusion with markers. If none of the parameters
vary, then the entire file, less the data, may be hardcoded into the system
producing the file.

2.2.6 JPEG Summary

The JPEG specification [14] provides a standard to encode images. While it
does have a lossless option, it is for the standard’s lossy compression that
it has been widely adopted for digital photographs. The Blackeye II uses
a software library to encode images from its camera chip into JPEG-based
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JFIF Image File
SOI JFIF Header Tables Frame Header Scan Header data EOI

JFIF Header
APP0 Lp ”JFIF” JFIF parameters

Tables
Quantisation Table Huffman Table restart interval

Quantisation Table
DQT Lq parameter quantisation table in zig-zag order

Huffman Table
DHT Lh DC table AC table

Frame Header
SOF Lf frame parameters

Scan Header
SOS Ls scan parameters

Figure 2.4: Example JPEG file containing in JFIF format. Standard JPEG markers

XXX are 2 bytes. Length indicators Lx, also 2 bytes, indicate the length of each

header or table in bytes.

files. This project implements a JPEG encoder on an FPGA to reduce the
load on the microprocessor.

The unencoded data is in the form of a 752 × 480 pixel image. Each
pixel is represented by an 8-bit greyscale value, which is piped into the
JPEG encoder along an 8-bit bus. This stream arrives row by row, left to
right, rows starting at the top and going down. The encoder performs a
baseline sequential greyscale encoding of the data which is stored in a JFIF
file.

The encoder performs a 2D-DCT operation on 8 × 8 blocks of pixels
called MCUs. The DCT-MCU, also an 8 × 8 block of data, represents the
original MCU in a discrete frequency domain. A quantisation operation
reduces the precision of the DCT-MCU, and in the process makes the en-
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coding process lossy. The quantised-MCU is reordered and compressed
by a Huffman encoder. The Huffman encoded data forms the JPEG data,
which is encased in a JFIF file that adds metadata, such as, specifications of
which JPEG mode was used, along with Huffman and quantisation tables.

2.3 Image Processing on FPGAs

Image processing has been an ongoing field of computing since 1957 [26].
Image processing techniques have made significant advances since then as
computer hardware and software techniques have improved, and as early
as 1991 researchers began developing imaging systems using FPGAs [27].
Hardware excels in a real-time system because the sheer number of opera-
tions that must be performed within a time frame preclude traditional soft-
ware solutions. As images consist of many data points, the fetch-decode-
execute paradigm of CPUs results in excessive overhead compared with
the parallelism of FPGAs [28]. This parallelism exists in images both spa-
tially and temporally; different parts of frames can be processed simulta-
neously, and subsequent frames can commence while the current frame
is still being processed [29]. Complex algorithms can be pipelined in an
FPGA to respond to the requirements of real-time imaging systems, which
include preprocessing, classification and encoding.

2.3.1 Image Processing Pipeline

The pipeline is made up of stages corresponding to operations. Some op-
erations require longer pipelines than others. The length of the pipeline
is the number of clocked registers the data must pass through from the
start to the finish of the pipeline. This length is equal to the latency of the
system; more specifically, the latency in clock cycles between data enter-
ing the pipeline and the corresponding data leaving the pipeline. A longer
pipeline will result in a greater latency that may put pressure on any real-
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time constraints the system has.

A longer pipeline will also consume more hardware resources. Even
stages of the pipeline that involve no operation, but only buffer, need re-
sources: either the data are stored in LEs, in the FPGA’s on chip block
RAM, or on off-chip RAM. Off-chip RAM is limited by the bandwidth of
its interface. This makes off-chip RAM inappropriate for use by several
parts of the system (different buffers or operations). The different buffers
must write and read from the RAM simultaneously. This may be possible
with the appropriate type of RAM and a well-designed memory access
system but this adds significantly to the complexity of the design. Thus
off-chip RAM is of most use in the storage of a large amount of data at a
single section of the pipeline.

On-chip block RAM is better suited for use by many operation buffers.
As the name suggests block RAM is made up of many blocks of RAM, each
highly configurable and able to be accessed independently. This means
that it is usable by several parts of the systems at once, each part having
a block, or multiple blocks configured to operate as required. The limita-
tion is that any single block RAM can only be used by one RAM interface,
meaning that any partially used block is wasteful. LEs are highly con-
figurable, but the extent of their configurability means that much of their
function is wasted if used purely for buffering. Thus both LEs and block
RAM make suitable buffers for a pipeline but both are limited resources
on an FPGA. Therefore adding many large buffers to a design will rapidly
consume the FPGAs resources.

2.3.2 Image Processing Operations

Image processing operations can be broadly divided into three cate-
gories [28]: point operations, window operations and global operations.
These refer to the portion of the image that each operation affects. Point
operations are a mapping of one input pixel to one output pixel, whereas
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window operations take a sliding rectangle, or window, of pixels as input
to produce an output pixel. Global operations are those that depend on
data from the large parts, or the entirety of the frame. While all three of
these types of operations may be performed on both CPUs and FPGAs,
point and window operations are more suitable to FPGAs due to their
short pipeline. Global operations with a much longer pipeline are more
suited to software that is better suited to repetitive memory access sys-
tems.

Point operations are the simplest image operation, they perform some
function on each pixel individually. A simple example of this would be
thresholding: values below the threshold are output as white, values above
the threshold are black. To pipeline image operations the image should be
processed serially, that is, going along each pixel on a row before starting
to the next row, or less commonly going down column by column. This
is simply a case of reading image data as it arrives, or sequentially from a
buffer. Adding a point operation will usually involve a buffer of one pixel
followed by the operation logic, as shown in Figure 2.5.

Thus the output of the point operation is a serial stream of pixel data
with a 1 clock cycle delay, or latency of 1 relative to the input.

f(x)

Figure 2.5: Point operation. Single pixel buffer followed by an operation results

in a 1 clock cycle latency.

Window operators are more complex. Assuming that pixels are being
received serially row by row, sufficient pixels must be buffered in order to
obtain a window of the desired size. In reference to Figure 2.6, a window
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of size M×N requires a buffer of (N−1)+M pixels, as the window slides
along and down the frame the buffer fills with the input pixels. The size
of the buffer determines the latency as shown in Equation 2.3.

latency = Lrow(N − 1)/2 + (M + 1)/2 (2.3)

f(X)}{
N

M

Lrow

Figure 2.6: Window operation. In this example the window is 3x3, and the grid

above shows the pixels of the frame that are buffered when the window reaches

the point indicated.

Common window operators are linear functions; the output pixel is a
weighted sum of the input pixels. An example of a linear window opera-
tion is a Gaussian blur [30].
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2.3.3 Summary of Image Processing

Image processing was identified as an application of interest early in the
history of FPGAs. Many image processing operations are appropriate for
acceleration in hardware due to their pipelinability. Operations that do
not require an entire image, but only a part, called a window, are most
suitable for efficient hardware implementation.

The Blackeye II system currently performs many image processing op-
erations on its microprocessor. This project provides an architecture by
which image processing operations may be implemented in hardware. To
provide an example of this a simple linear window operation, an image
sharpening filter, is included in the FPGA system.

2.4 Pre-existing FPGA-based JPEG Encoders

Commercial hardware designs for implementation in FPGAs (or other hard-
ware systems such as ASICs) are available as intellectual property (IP)
blocks. There are several companies offering JPEG encoder IP blocks. In-
formation was able to be obtained about ones from Entner Electronics,
VISENGI, CAST, Sundance Microprocessor Technology and Barco Silex
[31, 32, 33, 34, 35]. IP blocks are offered under many licensing schemes:
some use a royalty system, others use a one-off payment. Most provide
the IP block as an encrypted file for addition to an FPGA project so that
the source code is unavailable. Entner Electronics will provide you with
the VHDL code of their system for extra cost.

Kinopta are wanting to trial a hardware-based image processing and
encoding system in their cameras without having to fully commit them-
selves upfront to, what is for them, a new technology. For a small com-
pany, such as Kinopta, who aren’t already committed to an FPGA based
system the costs of these IP blocks can be prohibitively expensive.

The power requirements of Kinopta’s camera systems is a major con-



36 CHAPTER 2. BACKGROUND

cern of theirs. By not having access to the source code of any system they
utilise, they are severely limited in their capability to optimise the system
to their needs.

There are some open source JPEG encoder designs, these are free and
provide the source code. However, most were too limited in their capa-
bilities for this application. Furthermore, the licensing of most of these
designs was too restrictive for Kinopta.

Despite these problems, these commercial designs are important ref-
erence points by which to compare JPEG encoder designs. Most of the
examples mentioned provide their FPGA resource usage and advanced
features. In the final chapter of this thesis these will be used in the evalu-
ation of the JPEG encoder design.

2.5 Summary

An FPGA is a flexible digital system that can be configured to perform
almost any digital logic. They can be used to great effect for operations
that are inherently parallel. Paired with a CPU an FPGA may take the
role of hardware accelerator: it provides addition processing capability
for the CPU. This project uses an FPGA to perform image processing and
encoding for a CPU to increase the system’s performance.

Many image processing operations are parallel; each part of the image
is operated on separately. Therefore, FPGAs have been identified as being
good devices to perform image processing on. A pipeline can be formed
on the FPGA so that while the first part of the image is undergoing the
second operation, the next part of the image is undergoing the first opera-
tion.

The JPEG specification provides a standard to encode images. It per-
forms compression to reduce the size of the image data and is widely used
for digital photographs. The encoding process operates on 8 × 8 pixels
blocks called MCUs, which are first transformed into the frequency do-
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main by a two dimensional discrete cosine transform (2D-DCT). The data
is then reduced in precision and encoded by a Huffman encoder. The
Blackeye II uses a software library to encode images from its camera chip
into JPEG-based files. In this project an FPGA-based JPEG encoder is de-
veloped.
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Chapter 3

JPEG Encoder Implementation

Since the JPEG standard was first announced many encoder and decoders
have been developed in hardware. In recent years interest in JPEG en-
coders in FPGAs has increased for the reasons described in Section 2.1.
JPEG encoders are partitioned into four stages to modularise the design
process: 2D-DCT, Quantisation, Zigzag Buffer and Entropy Encoder [36,
37]. This chapter describes the design process of the JPEG encoder, and
is partitioned into one section for each module. The subsequent chapter
describes the design of the system in which the encoder is incorporated,
adds further context to the encoder’s design, and hence introduces further
control mechanisms.

The JPEG algorithm, as described in Section 2.2, divides the frame up
into 8× 8 blocks of pixels called MCUs. As each MCU is encoded sequen-
tially the JPEG algorithm can form a pipeline: the first MCU begins en-
coding, and while it is still being processed the second MCU commences
encoding. At this point it is assumed there is a constant stream of data.
This stream is 8-bit parallel data, each representing a greyscale pixel value
in the range [0,255], traversing an image row by row, from left to right and
top to bottom. Before the data enters the encoder it must be converted
from 8-bit unsigned data to 8-bit signed data appropriate for the DCT,
within the range of [-128,127]. As per Figure 3.1, this conversion is com-

39
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pleted in hardware by a single NOT gate. The output of this subtraction
operation flows directly into the input of the DCT module.

x(7:0)
[0,255]

x−128(7:0)
[-128,127]x(6:0)

x(7) x(7)

Figure 3.1: Subtracting 128 from an unsigned 8-bit integer and converting it to an

8-bit two’s compliment signed integer.

3.1 Discrete Cosine Transform

As described in Section 2.2.2, the JPEG variant of the DCT takes an input
of an 8×8 block of pixels, F, and outputs a frequency-based representation
of the block as an 8× 8 matrix of values, G, as in Equation 3.1. A 2D-DCT
is a process intensive operation; assuming the cosine terms are held in a
look-up-table, each of the 64 elements requires the summation of 64 terms,
each the product of 4 terms.

Gu,v =
7∑

x=0

7∑
y=0

α(u)α(v)Fx,y cos

[
π

8

(
x+

1

2

)
u

]
cos

[
π

8

(
y +

1

2

)
v

]
(3.1)

α(u) =


√

1
8

if u = 0√
2
8

if u 6= 0

The 2D-DCT is, however, separable; two 1D-DCT operations may be
performed on each dimension of F sequentially. The form of the one-
dimensional Equation 3.2 is still the same as Equation 3.1. In practical
terms, a transitional matrix is produced by performing a 1D-DCT on each
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row of the input MCU, after which each column of the transitional ma-
trix undergoes a 1D-DCT process, resulting in the 2D-DCT. By separating
the two parts the hardware required to perform the transform can be sim-
plified. Each 1D-DCT is simpler than the 2D-DCT, and by buffering the
transitional matrix, the row-DCT, buffer and column-DCT form a pipeline
ideal for a real-time hardware implementation.

gu =
7∑

x=0

α(u)fx cos

[
π

8

(
x+

1

2

)
u

]
(3.2)

3.1.1 1D-DCT Design

As the DCT algorithm is widely used throughout the field of image com-
pression, there has been extensive study of its implementation since its
conception. A very efficient algorithm for a JPEG-compatible DCT is that
of Loeffler et al. [6, 38]. A scaled version of this algorithm is presented by
Kovac and Ranganathan [39], which consists of a 1D-DCT with only 5 mul-
tiplications and 29 additions and subtractions as depicted in Figure 3.2 [6].
This already presents a huge advantage in reducing the computation over
the regular form of the 1D-DCT, shown in Equation 3.2, that consists of 64
multiplications and 64 additions. As depicted in this figure, each element
of the output vector, g, is a linear combination of the elements of the input
vector, f . Another vector, h, is introduced in this figure as an intermedi-
ate between f and g. The elements of f are paired off, and the sums and
differences of these 4 pairs constitute h as shown in Equation 3.3.
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Figure 3.2: Scaled DCT. Constant multiplicands are m1 = cos
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h =



f0 + f7

f1 + f6

f2 + f5

f3 + f4

f0 − f7
f1 − f6
f2 − f5
f3 − f4


(3.3)

From this point h is treated as the input vector. The vector h, like f ,
combines linearly to produce each element of g (Equation 3.4). Note that
to simplify the coefficient matrix, C, the elements of g are reordered as g′

defined in Equation 3.5.

g′ = C · h (3.4)

g′ =
(
g0 g2 g4 g6 g1 g3 g5 g7

)T
(3.5)

Following through Figure 3.2 (modified from Bailey [6]) the coefficient
matrix is defined in Equation 3.6, divided into two blocks, Csum and Cdif ,
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corresponding to the coefficients of the pairs of sums and the pairs of dif-
ferences in h respectively.

C =

[
Csum 04,4

04,4 Cdif

]

Csum =


1 1 1 1

−1−m1 −m1 m1 1 +m1

1 −1 −1 1

−1 +m1 m1 −m1 1−m1



Cdif =


m2 m1 +m2 m1 −m2 +m4 1−m2 +m4

−m2 −m3 −m1 −m2 −m3 −m1 +m2 1 +m2

m2 +m3 −m1 +m2 +m3 −m1 −m2 1−m2

−m2 m1 −m2 m1 +m2 −m4 1 +m2 −m4



(3.6)

The coefficients of C are evaluated approximately in Equation 3.7.

C ≈



1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

−1.71 −0.71 0.71 1.71 0.00 0.00 0.00 0.00

1.00 −1.00 −1.00 1.00 0.00 0.00 0.00 0.00

−0.29 0.71 −0.71 0.29 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.38 1.09 1.63 1.92

0.00 0.00 0.00 0.00 −0.92 −1.63 −0.32 1.38

0.00 0.00 0.00 0.00 0.92 0.22 −1.09 0.62

0.00 0.00 0.00 0.00 −0.38 0.32 −0.22 0.08


(3.7)

The accuracy of this approximation was tested by computing the out-
put of Equation 3.4 in MATLAB. A sample size of 104 sets of 8 pixels were
generated from a uniform distribution of pixel values in the range [0, 255].
The output was compared with MATLAB’s built-in DCT algorithm as a
percentage error as in Equation 3.8. A histogram of the percentage error
elements as in Figure 3.3a was expected to show a normal distribution. It
in fact reveals seven peaks, which on further investigation correspond to
the indices of the output vector as indicated by the labels in Figure 3.3a.
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Figure 3.3: Distribution of Errors of DCT Algorithm

The mean percentage error of each index is shown in Table 3.1. As out-
put values are a linear combination of the input values the errors may be
corrected by modifying the coefficient matrix. Each row of the coefficient
matrix, C, is multiplied by the reciprocal of the percentage error of the re-
spective index as in Equation 3.9, the modified coefficient matrix labelled
as Cs.

percentage error = 100% · C · f − fundct(f)
fundct(f)

(3.8)
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Table 3.1: Mean percentage error of each index of g′ in Equation 3.4.

Index Error
g0 +182.8%
g1 +292.3%
g2 +269.6%
g3 +232.7%
g4 +182.8%
g5 +122.4%
g6 +53.2%
g7 -21.8%

Cs ≈



0.35 · · · 0.35

0.27 · · · 0.27

0.35 · · · 0.35

0.65 · · · 0.65

0.25 · · · 0.25

0.30 · · · 0.30

0.45 · · · 0.45

1.28 · · · 1.28


◦C (3.9)

An approximation of the new coefficient values are shown in Equa-
tion 3.10.

Cs ≈



0.35 0.35 0.35 0.35 0 0 0 0

−0.46 −0.19 0.19 0.46 0 0 0 0

0.35 −0.35 −0.35 0.35 0 0 0 0

−0.19 0.46 −0.46 0.19 0 0 0 0

0 0 0 0 0.10 0.28 0.41 0.49

0 0 0 0 −0.28 −0.49 −0.10 0.41

0 0 0 0 0.42 0.10 −0.49 0.28

0 0 0 0 −0.49 0.41 −0.28 0.10


(3.10)
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Again a set of 104 input pixel vectors was generated, and the percent-
age error data were collected, but now using Cs as the coefficient matrix.
Figure 3.3b shows a histogram of the data that is clearly normal. The new
percentage error has a mean of -0.3% and a standard deviation of 1.1%.

3.1.2 1D-DCT Implementation

Woods et al. [1] present a hardware implementation of the system de-
scribed above, specifically for FPGAs. This implementation uses fewer
resources to perform a 1D-DCT than other implementations of the same al-
gorithm. Others, such as Agostini et al. [36] and Kusuma and Widodo [37],
have based their designs on the above algorithm, but these are more com-
plex. This is due to the focus on minimising the required multipliers of the
system, as dedicated multipliers on FPGAs have previously been scarce,
and using LEs for multiplication is resource intensive. However, mod-
ern FPGAs have dozens, if not hundreds of dedicated multipliers, usually
18 × 18 wide, hence the use of 4 such multipliers in the 1D-DCT is of lit-
tle consequence. Therefore the Woods et al. system [1] was used for this
design. Bailey [6] presents a detailed interpretation of this design. Other
than the changes to the coefficients described above, the system described
here departs from this design only in the reordering of buffers purely for
the convenience of the implementation in VHDL. This design is depicted
in Figure 3.4 and is described in detail below.

The functional blocks of of the 1D-DCT as labelled in Figure 3.4:

I Stack Buffer. This operates on a cycle of 8 clocks: for the first four
clocks it stores data from its input, and on the subsequent four clocks
it outputs the data in reverse order.

II Multiplexer. This multiplexer outputs one of its inputs for four clock
cycles, then outputs the other input for the next four clock cycles.
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Figure 3.4: Block Diagram of 1D-DCT.

III Coefficient ROM. This ROM contains 32 elements of width wdc (the
exact value of which is discussed later) corresponding to the elements
of the Cs matrix. As 8 elements correspond to each MAC unit, and
always repeat in the same order, the ROM is simplified to contain 8 el-
ements of width 4wdc , and the output bus is split in four. See Table 3.3
for the ordering of the coefficients in the ROM.

IV Multiply and Accumulate Units (MACs). These operate on a cycle
of four clocks. The accumulator buffer is initially reset to 0, the two
inputs are multiplied together and on each clock cycle the product is
added to the accumulator. After four clock cycles one of the elements
of the output DCT is obtained after which the MAC unit is reset in
preparation for the next element.

V Multiplexer. On any given clock cycle one of the MAC units’ outputs
will correspond to one of the elements of the output DCT vector. This
multiplexer outputs each of these in turn.
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The signal paths of the 1D-DCT as labelled in Figure 3.4:

a The pixel values arrive in row order. They have been shifted to the
range [-128,127]. Each set of 8 consecutive pixel values corresponds to
the f vector of Equation 3.2, in ascending order. Bit width: 8.

b The first multiplexer selects first the top row for four clock cycles. Dur-
ing these cycles b equals f0 + f7, f1 + f6, f2 + f5 and finally f3 + f4. Mean-
while the equivalent outputs of the subtracter have been buffered, and
are then selected by the multiplexer, in order: f0 − f7, f1 − f6, f2 − f5 and
finally f3 − f4. Note that this means that b corresponds to the h vector of
Equation 3.3, cycling through the elements in ascending order. As the
range of possible values has now increased by an order of one, due to
the addition and subtraction, the bus width has also increased by one.
As each element is used in four of the output elements they are buffered
into each of the MAC units. Bit width: 9.

c These are the elements of the coefficient matrix Cs. Rather than using
floating point numbers, it is more resource efficient to use integer values
in multiplication and addition. However rounding means that the co-
efficients have a range of [-1,1]. By bit shifting these values sufficiently,
precision is retained. Bit width: wdc .

d The product of the elements h by their corresponding coefficients of Cs.
Bit width: wdc + 9.

e The accumulation of the subsequent products of each MAC unit. After
the fourth sum these are equivalent to one of the outputs of the 1D-DCT.
Bit width: wdc + 11.

f The output of the 1D-DCT. These are the elements of g′ of Equation 3.5,
in ascending order. These values have been bit shifted down to com-
pensate for the bit shifting of the coefficient matrix. Bit width: 11 [37].
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This design uses minimal resources, and furthermore is fully pipelined.
As soon as one set of 8 values has been input the subsequent set of 8 values
begins immediately. The system introduces a latency of 11 clock cycles;
latency measures the number of clock cycles between an element arriving
at the input of a system and the corresponding output being produced.
This system is controlled by a simple cyclic state machine consisting of 8
states. The state determines the select line of each multiplexer, the reset
lines for the MAC units (one is reset on every clock cycle), the address of
the ROM and the state of the stack buffer.

In order to achieve multiplication by floating point numbers in the dis-
crete system the coefficients are bit shifted to the left and the output of the
DCT is bit shifted back to the right. Thus only integer arithmetic is re-
quired saving significantly on resources. The wider the coefficient values,
the greater the accuracy of the 1D-DCT. However, as the output is rounded
there are diminishing returns as the width of the bus is increased. To select
an appropriate level of precision an emulation of the hardware system is
constructed in MATLAB. This emulation simply applies Equation 3.4 with
the appropriate level of precision during operation. The resulting integer
vector is transformed back into pixel data via MATLAB’s inverse DCT. In-
put data is selected via a uniform distribution of pixel values, and each
input is tested with a range of coefficient precisions. The results of the in-
verse DCT are left as floating point numbers, and the absolute difference
between them and the input pixel values are collected. A total of 105 ran-
dom samples are generated, and the cumulative distribution plot of the
results is plotted for each level of precision in Figure 3.5.

This plot is continuous, whereas the reality of the system is that it is
discrete. That means that differences between 0 and 0.5 are be rounded
to 0, between 0.5 and 1.5 to 1 and so on. Consequently errors below 0.5
have no effect on the final image. As the JPEG algorithm is lossy there are
differences between the original and encoded image, therefore an error of
1 in a pixel value range of 256 is not very significant. Nevertheless it is
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Figure 3.5: Cumulative Distribution Plot of Error of the 1D-DCT algorithm for

different coefficient precisions. A floating point algorithm is included for com-

parison showing the error that occurs due to subsequent rounding.

desirable for this system to introduce errors less than 50% of the time. Ta-
ble 3.2 shows the probability of no error being introduced for given values
of wdc .

Table 3.2: Probability of algorithm being accurate up to 0.5.

wdc (bits) 5 6 7 8 9
probability 0.23 0.30 0.53 0.77 0.76

While no further advantage is gained by increasing the bit width of
the coefficients beyond 8, 7-bit is sufficient to achieve accuracy 50% of the
time. This figure will be re-evaluated with the application of the second
1D-DCT.
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3.1.3 DCT Transpose Buffer

In order to achieve a two dimensional DCT both dimensions must be pro-
cessed by a 1D-DCT. Because the data from the row-DCT arrives in row
order, at least 7 rows of the frame must be buffered before a complete col-
umn is available for the column-DCT. In fact a 16-row buffer is used to
ensure an uninterrupted flow of data into the second, column-DCT. The
transpose buffer, as depicted in Figure 3.6 consists of two parts each of 8
rows of data.

Figure 3.6: The effective operation of the transpose buffer between the two 1D-

DCT modules.

This is called the transpose buffer as it transposes the MCU; writing in
row order and reading in column order. While the data from the row-DCT
is input into one half of the buffer row by row, the column-DCT is retriev-
ing data from the other half of the buffer column by column. The two
halves of the buffer operate in ping-pong mode; one is written to while
the other is read, swapping roles simultaneously once the end of the half-
buffer is reached.

Such a buffer will be 16 rows by 752 columns by 11-bits per datum
(≈16 kB). It is appropriate to use the Block RAM of the FPGA for such a
large buffer. The Block RAM cannot be rearranged into the dimensions
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specified, but Quartus II provides an interface to the RAM of variable data
width. A module of Block RAM of dimensions 16384 by 11-bits is used as
the buffer of Figure 3.6. The read and write addresses of the block RAM
match, which is not how the transpose buffer behaves. A system to select
the appropriate address is devised.

The address width of the buffer is wtbwa = 14, the MSB (most signifi-
cant bit) of which is used to distinguish the two halves of the buffer. The
write address, tbwa, increments by 1 on every clock cycle until the ad-
dress reaches tbwa = 8 × 752 − 1 = 01 0111 0111 1111, after which point
the data begins writing to the second block, that is, the address becomes
tbwa = 8 × 752 − 1 = 10 0000 0000 0000. The read address is significantly
more complicated as it must be incremented column by column; the ad-
dress is increased by 752 to traverse down a column, and (7 × 752 − 1)
subtracted from the address to go to the start of the next column.

tbra[12 : 0] = (tbwa[12 : 0] mod 8) ∗ 752 + (tbwa[12 : 0]/8) (3.11)

Two processes to calculate an appropriate read address, tbra, are pro-
posed. The first is a calculation based upon the write address where the
MSB of the address is inverted to change blocks and Equation 3.11 calcu-
lates the rest of the address. While division by 8 is a cheap operation in
hardware, as it is a bit shift, the multiplication is a more expensive opera-
tion.

A second method to find the address is proposed to target this issue.
A 3-bit counter marks the current position within a column. This column
counter is incremented every clock cycle, while simultaneously the ad-
dress is updated. When the column counter is in the range [0,6] the ad-
dress is increased by 752, and when the column counter equals 7 the ad-
dress is reduced by 5263. Both of these systems are used successfully, how-
ever analysing the FPGA resource usage of each alternative showed that
the former in fact uses less, the latter still incurring the use of a multiplier
when compiled.
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3.1.4 2D-DCT Considerations

The column-DCT is almost identical to the row-DCT module. The pri-
mary difference is that the widths of all the signal paths are greater, as the
incoming data is 11-bit, rather than 8-bit. This does not apply to the coef-
ficients as they do not lie on the data pipeline. However, the coefficients
are again tested for precision against accuracy, just as in Section 3.1.2.

Once more 104 samples are generated, but in this case each sample con-
sists of an 8× 8 matrix of pixel values. A transitional matrix is formed by
performing the row-DCT upon the rows of a sample. The row-DCT uses
7-bit coefficients as per Section 3.1.2. The columns of the transitional ma-
trix undergo a column-DCT to achieve the 2D-DCT output. MATLAB’s
inverse 2D-DCT is applied to this, and the result is compared with the
original sample. A cumulative distribution plot of the errors is produced
for Figure 3.7a for several different coefficient precisions in the column-
DCT. In no case are more than 50% of the results within 0.5 of expected
value.

To solve this, the precision of the coefficients of the row-DCT is in-
creased to 8. Accordingly the results of the experiment improve as demon-
strated in Figure 3.7b, which shows that using 8-bit coefficients in both the
row- and column-DCTs achieves the desired accuracy.

The coefficient ROM must therefore be populated with the coefficients
of Cs of appropriate precision. The coefficients are ordered so that the cor-
responding coefficient is available to match the arrival of each element of
h at each MAC unit. This ordering, along with the values to 8-bit precision
are presented in Table 3.3.

As the ROM has a single output these four values are concatenated into
a single 32-bit value, also shown in Table 3.3, resulting in the ROM being
8 bits, or 32 bytes.

The subsequent modules of the JPEG algorithm must take into account
the ordering of the output of the 2D-DCT. The transform is shown in Equa-
tion 3.12 illustrating the reordering of the elements. The 2D-DCT outputs
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Figure 3.7: Cumulative Distribution Function plot of the absolute value of the

error of the 2D-DCT algorithm for different coefficient precisions of the column-

DCT. A floating point algorithm is included for comparison showing the error

that occurs due to subsequent rounding.
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Table 3.3: Values of the coefficient ROM. The four signed decimal values that

occur each clock, and the corresponding binary concatenation. Due to the timing

from the buffers in the system the k0 corresponds to the 4th and 0th rows of Cs, k1
to the 5th and 1st rows, staggered by one clock cycle, and so on.

clk k0 k1 k2 k3 k

0 25 118 -90 118 00011001011101101010011001110110
1 71 -71 90 -118 01000111101110010101101010001010
2 106 -125 106 49 01101010100000110110101000110001
3 125 -25 25 -125 01111101111001110001100110000011
4 90 106 -126 106 01011010011010101000001001101010
5 90 -118 71 -71 01011010100010100100011110111001
6 90 -49 90 25 01011010110011110101101000011001
7 90 49 -90 -49 01011010001100011010011011001111

Indices
of Cs

C∗,4

C∗,0

C∗,5

C∗,1

C∗,6

C∗,2

C∗,7

C∗,3

the data column by column, and in non-sequential ordering. The order of
data piped out of the 2D-DCT is indicated in G′ of Equation 3.12 as read
from left to right, top to bottom.

F′ =


f0,0 f0,1 · · · f0,7

f1,0 f1,1 · · · f1,7
...

...
. . .

...
f7,0 f7,1 · · · f7,7

→ G′ =



g0,0 g0,2 g0,4 g0,6 g0,1 g0,3 g0,5 g0,7

g2,0 g2,2 g2,4 g2,6 g2,1 g2,3 g2,5 g2,7

g4,0 g4,2 g4,4 g4,6 g4,1 g4,3 g4,5 g4,7

g6,0 g6,2 g6,4 g6,6 g6,1 g6,3 g6,5 g6,7

g1,0 g1,2 g1,4 g1,6 g1,1 g1,3 g1,5 g1,7

g3,0 g3,2 g3,4 g3,6 g3,1 g3,3 g3,5 g3,7

g5,0 g5,2 g5,4 g5,6 g5,1 g5,3 g5,5 g5,7

g7,0 g7,2 g7,4 g7,6 g7,1 g7,3 g7,5 g7,7


(3.12)

To illustrate that the scaled 2D-DCT is as effective in this application
as a true DCT, a comparison is made in simulation. A complex greyscale
image underwent the approximated DCT process, and is then inverted
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using a true DCT inversion. The original and modified images are shown
in Figures 3.8a and 3.8b respectively.

(a) Original (b) 2D-DCT

Figure 3.8: Comparison of original image with one which has undergone the DCT

algorithm used by this system.

The resultant image is visually indistinguishable from the original. A
qualitative analysis reveals that pixel values differ from the original by at
most 3, and 73% of pixels differ by no more than 1. This demonstrates that
while the DCT system presented here does not produce completely accu-
rate results, they are sufficiently accurate to be undetectable by humans.

3.1.5 Implementation and Testing

To implement the 2D-DCT in an FPGA, it must be written in a form trans-
latable to a configuration file, in this case using the language VHDL. Before
the module is developed the testbench is written. The VHDL testbench
extracts pixel data from a file, called the Random Bitmap File (RBF), instan-
tiates a 2D-DCT module, and pipes the data into the module, one pixel
per clock cycle. The testbench also extracts the output of the 2D-DCT and
stores it in a second file, the Output Test File (OTF).



3.1. DISCRETE COSINE TRANSFORM 57

A function is developed for MATLAB built on the code used for the
experiments earlier in this chapter. This function, myDCT2(), performs the
2D-DCT operation using Equation 3.4. By using the appropriate coeffi-
cients, rounding at each stage, bit shifting the output and reordering to
match Equation 3.12 this function is able to produce an output identical
to that expected from the hardware implementation. The test procedure
begins by generating the RBF from 752 by 480 uniformly distributed pixel
values in the range [0,255]. This file is run through the testbench and the
resultant OTF collected. A MATLAB script takes the RBF and OTF files,
performs myDCT2() on the data of the RBF, and compares the output with
the OTF. If the 2D-DCT implemented in VHDL is correct then the script
found the outputs identical.

The development process for the 2D-DCT in VHDL was incremental.
Initially only a single 1D-DCT was developed, and alongside it a 1D ver-
sion of the test process. By using the simulation software, ModelSIM, on
the VHDL testbench, bugs in the system can be identified by comparing in-
termediate results with those expected. After several debugging cycles the
1D-DCT passed testing. The 2D-DCT module was then developed using
two of the 1D-DCTs, specifying different path width parameters for each,
and the transpose buffer. Again simulations were used to identify bugs in
the system. The myDCT2() function was modified to provide intermediate
states of the data, such as the inputs and outputs of the transpose buffer,
and these were compared with those found in the timing diagrams of the
simulation. The debugging process was repeated until the test concluded
that the two results were identical.

The complete 2D-DCT introduces a latency of 6031 clock cycles, pri-
marily due to the transpose buffer.
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3.2 Quantisation

The design requirements of the project specify a 70% quality level JPEG
compression as per the IJG specification in Section 2.2.3. This quality level
is determined by the quantisation module. In this case the DCT-MCU is
divided by the elements of the Q70 matrix in Equation 3.13.

Q70 =



10 7 6 10 14 24 31 37

7 7 8 11 16 35 36 33

8 8 10 14 24 34 41 34

8 10 13 17 31 52 48 37

11 13 22 34 41 65 62 46

14 21 33 38 49 62 68 55

29 38 47 52 62 73 72 61

43 55 57 59 67 60 62 59


(3.13)

However, as discussed in Section 3.1.1, tighter control of resources may
be achieved by real number multiplication using bit shifting. The elements
of the Q70 table are inverted to find the matrix, Q−70. The quantised-MCU,
J, is calculated as in Equation 3.14, by taking the Hadamard product of
Q−70 and the DCT-MCU, G.

J = Q−70 ◦G (3.14)

Similar to the multiplication in the DCT algorithm described in Sec-
tion 3.1.2, the elements of Q−70 are bit shifted up and rounded so that inte-
ger multiplication occurs, and then the result bit shifted back. The same
problem arises: how many bits should the elements of Q−70 be shifted by.

A similar experiment is performed as in Section 3.1.4. A MATLAB
function is developed, qt(), which performs the operation of bit shifting
Q−70 by a value of wqt to get a matrix, Q′−70 . The Hadamard product of Q′−70
and DCT-MCU is bit shifted down by wqt to give the quantised result, J.
An inverse matrix is constructed, Q′70, by inverting the elements of Q′−70 ,
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bit shifting them up by wqt and rounding. The matrix Q′70 is in fact the
quantisation matrix that most closely matches the result of the operation
of qt(), and is approximately equal to Q70.

A single run of the experiment begins by generating a sample of an
8 × 8 matrix of uniformly distributed pixel values. This has a 2D-DCT
performed on it to produce the DCT-MCU. The DCT-MCU is quantised
using variations of qt() that differ by performing bit shifts of 6, 7, 8 and
9. Bit shifts of less than 6 result in some elements of Q′−70 being 0, which
leads to a value in the quantisation matrix of 1

0
. The resultant matrices are

inverted: they are Hadamard multiplied by the appropriate Q′70 matrix,
followed by the inverse 2D-DCT to give a resultant block of pixel values.
The resultant block is compared with the original sample, and the absolute
difference between the individual pixel values is recorded.

The experiment is performed on 104 samples, and the cumulative dis-
tribution function of the data is plotted in Figure 3.9a. For comparison, the
effect of using a true 70% quality quantisation is included. There is in fact
very little difference in the errors introduced by the different precisions of
quantisation matrix.

To further explore this, the difference between the errors of each of the
results and those from Q70 are collated. This ‘difference’ data is depicted
as a CDF in Figure 3.9b. It shows that there is little deviation from Q70,
echoing the conclusion from the previous plot. However, this plot shows
the variation in detail. The deviation is in fact normally distributed, with
variance only slightly increasing with decreasing bit shift: a bit shift of
6 has a standard deviation of 11, whereas a bit shift of 7 has a standard
deviation of 10. It makes little sense then to use a quantisation of precision
greater than six bits. The corresponding quantisation matrix is given in
Equation 3.15.
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Figure 3.9: CDF plot of accuracy of quantisation against the precision of quanti-

sation matrix.
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Q′70 =



11 7 6 11 13 21 32 32

7 7 8 11 16 32 32 32

8 8 11 13 21 32 32 32

8 11 13 16 32 64 64 32

11 13 21 32 32 64 64 64

13 21 32 32 64 64 64 64

32 32 64 64 64 64 64 64

64 64 64 64 64 64 64 64


(3.15)

The most significant elements, those towards the top left, match Q70

more closely than the less significant elements towards the bottom right.

3.2.1 Quantisation Implementation and Testing

The implementation of the quantisation module consists of a counter, look-
up-table, multiplier and an element buffer. On each clock cycle the 6-bit
counter increments, overflowing every 64 cycles. The counter provides an
input to the look-up-table which is used to select the appropriate multipli-
cand for the current element of the DCT-MCU. This look-up-table, shown
in Table 3.4, is made up of the elements of Q′−70 reordered to match the
order of the elements output from the 2D-DCT (see Equation 3.12). The
input, from the 2D-DCT, is multiplied by the multiplicand from the look-
up-table and is bit-shifted down before being stored in a buffer which is
the output of the module. As there is only a single buffer, the latency of
the quantisation module is 1 clock cycle.

The VHDL implementation went through a similar testing process to
the 2D-DCT. A file of random sample data is produced. A VHDL testbench
reads the data from the sample file, feeds it into the quantisation module,
and stores the output stream to another file. A MATLAB script performs
the same function and compares the results with those in the output file of
the VHDL simulation. Once this test is passed, a new module is developed
to link the 2D-DCT and the quantisation modules.
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Table 3.4: Elements of the matrix Q′−70 implemented as a look-up-table reordered

to match the output of the 2D-DCT module.

Addr 0 1 2 3 4 5 6 7

0x00 6 11 5 2 9 6 3 2
0x08 8 6 3 2 8 5 2 2
0x10 6 3 2 1 5 2 1 1
0x18 2 1 1 1 2 1 1 1
0x20 9 8 4 2 9 6 2 2
0x28 8 5 2 1 6 4 1 2
0x30 5 2 1 1 3 2 1 1
0x38 1 1 1 1 1 1 1 1

The combined DCT and quantisation system goes through the same
testing process. The only significant change this test introduced is to alter
the initial value of the counter in the quantisation module so that it reaches
0 at the same time as the first element of the MCU arrives from the 2D-
DCT.

Once the system reached a point where JPEG encoded files were able
to be produced, it was discovered that there were noticeable visual arte-
facts in many MCUs. Further testing attributed the cause to the quan-
tisation stage. The rounding that occurred during the quantisation was
a truncation; the value was always rounded down. The artefacts were
eliminated by ensuring that the rounding was always towards zero (i.e.
negative numbers rounded up). The MSB is the signed bit, so is 1 for neg-
ative numbers and 0 for others. By treating this as an integer, either 1 or
0, and adding it to the output all negative numbers are incremented. This
counteracts the rounding down that is inherent in the system.

No further buffering is required for this operation so the latency re-
mains at 1.
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3.3 Zig-Zag Buffer

The zig-zag buffer module changes the order of the elements within each
MCU. The order in which they arrive is the ordering introduced by the
2D-DCT as depicted in Equation 3.12. The order in which they must leave
is the zig-zag order of Figure 2.3.

To avoid any breaks in the pipeline stream a sufficient number of ele-
ments must be buffered. If insufficient elements are buffered either data
that has not yet been read will be written over or data will be read that
has not yet been updated. To simplify this, two MCU sized buffers (8 ×
8× 9 bits) are used in ping-pong mode; one is written to while the other is
read, then they switch. A 6-bit counter and a look-up-table are used to se-
lect the buffer addresses in correct order. The two buffers are implemented
in VHDL as a single block of RAM. This module introduces a latency of 65
clock cycles to the pipeline.

A testbench for the zig-zag buffer is written in VHDL. As this module
is significantly simpler than the previous ones, the testing is also simpler.
Two MCUs consisting of ascending values starting at zero are piped into
the buffer module. In simulation the waveform of the outputs of the mod-
ule is examined to check that the elements are in the order expected.

The zig-zag buffer module is added to the module linking the 2D-DCT
and quantisation modules. An RBF is constructed and as in the previ-
ous tests goes through both a MATLAB script and VHDL simulation and
the outputs are compared. As in the case of the quantisation module the
counter of the zig-zag buffer is offset so that it equals zero on the arrival
of the first element of an MCU.

3.4 Huffman Encoder

The Huffman encoder is distinct from the previous three modules in that
it does not produce an output for every input. Furthermore the number
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of inputs of the module upon which an output depends varies between
one and sixty-three. Here is a summary of the operation of the Huffman
encoder as described in Section 2.2.4.

1. The first element of each MCU, the DC element, is subtracted from
the DC element of the previous MCU. The difference is encoded as
a DC Huffman code concatenated with a DC Huffman value to form
the DC Huffman element of variable length.

2. The rest of the elements of the MCU are AC elements. If an AC el-
ement is zero then a zero counter increments. Once a non-zero AC
element occurs, or the zero counter reaches 16, an AC Huffman el-
ement is produced and the zero counter is reset. The AC Huffman
element is formed by the concatenation of the AC Huffman code,
derived from the AC element and zero counter, and the AC value
derived from the AC element.

3. If there are no non-zero elements left in the MCU then a special end-
of-block (EOB) Huffman code is used, and no further AC Huffman
elements are generated for the MCU. Note that in the event that the
final element of the MCU is non-zero then no EOB Huffman code is
required for that MCU.

The output of the Huffman encoder must convey three items of infor-
mation: the Huffman element, which utilises between 2 and 32 bits; the
length of the Huffman element; and a trigger to indicate that an output
has occurred. To this end, three output signals are used for each of these
three pieces of information. The Huffman element output is a 32-bit bus
to accommodate the extreme case. The Huffman length is a 5-bit unsigned
integer which equals one less than the length of the Huffman element.

The components and flow of this system are illustrated in the block
diagram of Figure 3.10. Some buffers and logic details are omitted for
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Figure 3.10: Block diagram of Huffman encoder module.

simplicity, but this diagram forms the basis of the Huffman encoder used
in this JPEG encoder.

The signal paths of the Huffman encoder, as labelled in Figure 3.10:

a Next MCU. The elements of the next MCU arrive sequentially and are
stored in a 64 element FIFO buffer.

b Current MCU. The output of the FIFO buffer are the elements of the
current MCU.

c Index of latest non-zero element of next MCU. This gets updated with
the current counter value whenever a non-zero element appears in the
next MCU. This is reset whenever the counter reaches zero and another
MCU arrives.

d Index of final non-zero element of current MCU. Once the end of the
next MCU is reached, the value c becomes the index of the final non-
zero element of the current MCU and is stored in a separate buffer.

e The Huffman encoded data. This consists of three signals: the data itself
in a 32-bit bus, an unsigned integer specifying the length of the signal
and the data valid trigger.
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The functional blocks of the Huffman encoder, as labelled in Figure 3.10:

I 6-bit counter. This is used for tracking the index of the MCUs. This
is used to distinguish DC elements from AC elements and mark the
position of the final non-zero element of the MCUs.

II Demultiplexer. This determines whether the current element of the
current MCU is DC or AC by the current counter value. If it is AC
then the data is streamed towards the zero counter. If it is DC it is
streamed towards the DC element encoder, and the enable line for the
DC element encoder is pulsed high.

III Zero counter. Checks AC elements as they arrive for zeros. If a zero
occurs a zero count is incremented. If a non-zero element arrives then
it is passed along with the current zero count to the AC element en-
coder. The zero counter is reset after every valid element. If 16 con-
secutive zeros occur then it enables the AC element decoder with the
element 0 and a zero count of 15.

IV AC element encoder. This takes the AC elements and zero run counts
and produces the appropriate Huffman code. It also outputs the length
of the code, and a high on the output trigger.

V DC element encoder. Similar to the AC element encoder. Finds the
difference between the current DC element and the previous one and
encodes it.

VI EOB element. This is effectively a ROM stored in an LE. This contains
the end-of-block Huffman code, and code length for outputting if the
multiplexer determines it is necessary.

VII Output multiplexer. This multiplexer enters four modes. It outputs
the DC Huffman data on the first clock cycle of the current MCU. It
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then outputs the AC Huffman data until the last non-zero element is
reached, or a new MCU begins. Following the final non-zero element
the multiplexer selects the EOB buffer. For the rest of the MCU the
multiplexer holds the output data trigger low.

The necessity of buffering an entire MCU means that this Huffman en-
coder design has a total latency of 67 clock cycles. The functional blocks I,
II, III, VI and VII are each comparatively simple. The AC and DC element
encoders are, however, a little more complex, so their design is explained
here in more detail.

3.4.1 AC and DC Encoder Modules

The role of the AC and DC encoder modules is to produce the individual
Huffman data elements. Both encoder modules are distinct, but they have
sufficient in common to be described together. Unless otherwise specified
this discussion applies to both. As stated in Section 2.2.4 the encoder may
use whatever Huffman tables it wishes for encoding. The investigation of
an optimised Huffman table for the application considered here is beyond
the scope of this project, therefore the use of the example Huffman tables
contained in Annex K of the JPEG specification [14] were selected. These
are reproduced in this document for convenience: the DC Huffman table
is Table 2.5, and the considerably longer AC Huffman table is in Appendix
A.

The design for the AC and DC element encoders is shown in Figure
3.11.

Each block has a quantised element input in addition to reset and en-
able lines (not shown), and the AC encoder also has a zero count input.
The DC encoder stores each element, and subtracts it from the previous
element before passing the difference on to the two look-up-tables. The
AC encoder sends the quantised element directly to both of its look-up-
tables, along with the zero count. The two look-up-tables are here referred
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Figure 3.11: Block diagram of AC and DC element encoders used in the Huffman

encoder module. Blue marking denotes AC only, and red marking denotes DC

only.

to as the value LUT, and the code LUT.

The value LUT takes the quantised element, a signed 9-bit integer, and
outputs an equivalent Huffman value according to Table 2.4. The Huffman
values vary in length, so when they are piped into the 32-bit bus the most
significant bits are padded with 0’s. Due to the nature of the Huffman
value table, positive integers require no modification; they are concate-
nated with twenty-three 0’s. The conversion of the negative numbers is a
little more complex; first an addend must be selected. Possible addends
come from the series 2i − 1 where i ∈ N. The smallest element of this se-
ries, greater than or equal to the absolute value of the quantised element,
is selected. For example the quantised element -5 would correspond to an
addend of 7, while the quantised element -8 would correspond to an ad-
dend of 15. The addend is added to negative quantised elements and the
result is padded with zeros as with the positive elements.

The code LUT is purely a look-up-table. Depending on the quantised
element, and in the case of the AC encoder the zero count, the appropriate
Huffman code is selected from the table and output, along with a length.
The length is the sum of the length of the Huffman data element (the con-
catenation of the Huffman code and value) minus one. The length is stored
as a 5-bit unsigned integer, ranging from 0 to 31, and is an output of the
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quantised element = x

zero count = y

Huffman code(x, y) = CCCCC

= CCCC C000 0000 0000 0000 0000 0000 0000

Huffman code length = 5

Huffman value(x) = VVVVVVVVV

= 0000 0000 0000 0000 0000 000V VVVV VVVV

Huffman value length = 9

total length −1 = 13 = 01101

inversed length = 10010 = 18

Huffman value(x)� 18 = 0000 0VVV VVVV VV00 0000 0000 0000 0000

Huffman data element = Huffman value(x)� 18 OR Huffman code(x, y)
= CCCC CVVV VVVV VV00 0000 0000 0000 0000

Figure 3.12: An example of the operation of the AC element encoder.

encoder. The Huffman code itself ranges in length from 2 to 16 bits and
uses a 32-bit line with the least significant bits padded with 0’s.

The length is subtracted from 31 by way of a bitwise inversion. This
resultant number is used as the input to a left bitshift operation upon the
Huffman value. Bitshifting by a fixed quantity is simple in hardware; the
signal bus is routed to select the appropriate bits of the data and fill the
rest with 0’s. A variable bitshift must be performed by way of a look-up-
table selecting which of the hardcoded fixed length bitshift operations to
route the signal through. Such hardware systems are referred to as barrel
shifters.

The bitshifted Huffman value is combined with the Huffman code by
way of a bitwise OR. The resultant signal is the concatenation of the two
parts filling the most significant bits of the 32-bit signal, and padded to the
right with 0’s. Why this works is best demonstrated by way of example as
in Figure 3.12.
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3.4.2 Huffman Encoder Testing

Compared with the other JPEG modules, writing an automated test sys-
tem for the Huffman encoder is more challenging. The test scripts for these
modules were achieved in MATLAB using the built in matrix operations.
On the other hand the Huffman encoder requires manipulation of indi-
vidual bits, a task that MATLAB is not well equipped for. An automated
test could have been written in another language or environment, but the
long Huffman tables would need to be hard coded, itself a lengthy pro-
cess. Instead it was decided to eschew an automated process in favour of
manually encoding data and comparing the results by hand.

Errors in the encoder module are likely to come from two sources. First,
a bug in the logic and control of the encoder would be obvious within a
single MCU in the case of the AC encoder, or within a couple of MCUs in
the case of the DC encoder. The second source of error is from a miscoded
table value, which would only be discovered by going through every sin-
gle possible table entry. If a mistake were made in the tables it would
become apparent in due course and is easily remedied.

Due to the nature of the potential errors, and that the testing process
would be manual, a much smaller test sample was prepared for the Huff-
man encoder than the previous modules. A sample of 3 random MCUs,
which had had DCTs performed on them before being quantised, were
used. A VHDL testbench piped the sample data through the Huffman en-
coder and the results are compared with those calculated by hand. While
there were some errors in the control systems of the encoder, these are iso-
lated by comparing the simulated waveforms of the internal signals of the
Huffman encoder with the working that had been done to calculate the
Huffman elements by hand. Once isolated, errors are fixed.
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3.5 Testing JPEG Encoder

Having tested each constituent module of the JPEG encoder, and tested
the first three modules together, a test of the overall system was necessary.
It was decided that an appropriate test would be to encode images taken
by the Blackeye II camera. To perform this operation a VHDL testbench
is written. To make them simple for the testbench to read, the bitmap
image files are reformatted into text files forming a space-separated list of
integers with line breaks at the end of each row. Thus the testbench under
simulation pipes continuous pixel data in to the encoder module.

The significant problem is how to extract the output data of the en-
coder. The data is stored in a text file as it comes out of the encoder, a
space separated list that alternates between the data itself, in hexadecimal,
and the data width, as an integer. This text file can be processed by another
program to create a JPEG file.

The text file produced by the testbench contains the JPEG data, but not
in a form readable by image viewing software. A program to reformat the
JPEG data and add the appropriate file data is written called jfifwrapper.
The program is written in C due to the nature of the data manipulation
required and the familiarity of the language.

The nature of the JFIF file is described in Section 2.2.5, and the exact
contents used in this case is detailed in Appendix B. The jfifwrapper pro-
gram writes this file data to a file followed by the condensed JPEG data
and terminates on an end of image marker (0xFFD9). The file data is hard-
coded, leaving the condensing of the JPEG data as main task of the pro-
gram. The condensing process is a case of taking all the data output from
the JPEG encoder, stripping all the padded 0’s and concatenating it all in to
a continuous data stream. Furthermore it has to keep track of byte bound-
aries; a byte entirely of 1’s requires an extra byte of 0’s stuffed immediately
afterwards. Finally it has to pad the end of the stream with 1’s so that the
stream is an integer number of bytes in length.
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The successfully encoded images are viewable by a wide range of soft-
ware. Initial JPEG files were not viewable at all due to formatting errors
caused by jfifwrapper. Once these were resolved, images were viewable but
still corrupt; they contained errors in the data that made the image either
distorted or unrecognisable. To gain insight in to the cause of the errors in
the files, a program called JPEG Snoop is used. This software is used for
JPEG file analysis, and can pinpoint down to the bit where an unexpected
value occurs, and what the nature of the error is. This is of great use in
removing bugs from jfifwrapper and the JPEG encoder.

After several iterations three successfully encoded images are produced
by a single testbench run, the images being encoded sequentially.

3.6 Overview of JPEG Encoder Implementation

The JPEG encoder module consists of four sub-modules: 2D-DCT, quanti-
sation, zig-zag buffer, and Huffman encoder. These were all implemented
in VHDL, and successfully tested in simulation to produce a JPEG encod-
ing of a 752×480 8-bit greyscale image. The IJG quality level of the encod-
ing process is hardcoded to be 70%.

The encoder requires the pixels to arrive sequentially without break
row by row. The output data is of variable bit width up to a maximum
of 32 bits, therefore the output data uses a 32-bit signal, padding the least
significant bits with zeros. In parallel another output signal provides the
width of the output data, this width is a 5-bit unsigned integer. An enable
signal is also output to indicate when data is available. Clock and reset
signals are required; each module has elements that must be reset imme-
diately prior to the commencement of encoding. These are counters used
to track the state of the data, or in the case of the DC encoder the storage
of previous data.

The form of the JPEG encoder module is summarised in Figure 3.13.

Of note is the latency, which totals 6164 clock cycles. This latency is
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data
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Figure 3.13: The JPEG encoder: its constituent modules and its interfaces.

primarily due to the necessity of buffering so many rows of data during
the first stage of the encoding process. The JPEG encoder at this point is
ready to be integrated in to a greater hardware system.



74 CHAPTER 3. JPEG ENCODER IMPLEMENTATION



Chapter 4

System Implementation

The previous chapter describes the design of an FPGA based JPEG en-
coder. This chapter puts the encoder into the context of the wider system
and begins by describing the image sensor and its interface, in Section 4.1.
Section 4.2 outlines the role of the FPGA in the camera system, and de-
scribes the hardware used for testing this project. This is followed by Sec-
tion 4.3, which describes the design of the FPGA modules that interface
with the system’s microprocessor. A discussion of methods to reduce the
system’s dynamic power consumption can be found in Section 4.4, and
one of the proposals is implemented. The chapter ends with an explo-
ration of the potential for image processing operations to be added to the
FPGA system in a modular fashion and as an example, an image sharpen-
ing process is implemented.

4.1 Image Sensor

The Blackeye II camera system is available in various versions, which em-
ploy a variety of CMOS active pixel sensors (APSs). This project focuses
on the sensor most commonly employed: the MT9V034 from Aptina. If
the FPGA system needs to be employed with a different image sensor in
the future, it is anticipated that this design will be able to be adapted to

75
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that sensor.

Electronic image sensors based upon nMOS, pMOS and bipolar tech-
nology were developed in the 1960s [40]. Due to innate noise in these early
sensors alternative technologies were sought, and one of promise was pro-
posed in 1970: charge-coupled device (CCD). By the late 1980s this was the
dominant technology in electronic imaging devices [40]. By the 1990s in-
terest grew in CMOS based APSs which offer two significant advantages
over CCDs: they use common IC manufacturing techniques, and digital
and analogue processing could be integrated into individual pixels [41].
This made them cheaper to manufacture and to use in designs, as much
of the interfacing electronics could be built into the device. Into the 2000s
CCD based cameras maintained a superior image quality compared with
CMOS sensors, but APS cameras were cheaper and therefore became in-
creasingly used in low quality consumer electronic applications such as
webcams and mobile phone cameras [42]. However, since the start of the
2010s, APS has come to surpass CCD in quality in many applications, and
have therefore become more widely used [43].

Upon activation, an APS pixel will convert incoming photons into a
voltage [43]. In the case of colour APS, a Bayer pattern configuration is
common; half the pixels are sensitive to green light, a quarter to blue and
a quarter to red [41]. The data is extracted from pixels row by row; the
first pixel of each column is extracted (i.e. the first row) followed by the
second pixel and so on. It is common for these sensors to include on-chip
analogue to digital converters (ADCs) so that the output of the sensor can
represent each pixel as a binary digital signal. This enables the sensor to
directly interface with digital systems, such as those used in this project,
without the need for external ADC systems, which add to the system cost
and require careful design.

Besides simple control signals such as standby and reset, the MT9V034
has an I2C interface to set and read the chip’s control parameters, and an
image sensor interface (ISI) to transfer the image data.
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4.1.1 Image Sensor Interface

There is a lack of standardisation in the field of image sensor interfaces,
and as such there are several different terms used to describe similar, and
sometimes identical interfaces. In this thesis the term ISI has been cho-
sen to refer to the interface used to transfer image data from the MT9V034
APS. The microprocessor used in the Blackeye II camera has an ISI periph-
eral block with dedicated pins.

The image sensor outputs the DOUT bus and the pclk, l vld and f vld
signals. While pixels are transmitted serially, each pixel’s 10-bit binary
representation is transmitted in parallel on the DOUT bus. The pclk sig-
nal is a clock used to synchronise the interface. Because transitions in the
APS’s output occur on negative clock transitions, the data should be read
by the FPGA on positive clock transitions. The function of l vld and f vld
is identical to the video display signals HSYNC and VSYNC in VGA and
its derivatives. Pixels are output serially along each row from left to right,
going along rows from the top to the bottom of the frame. There are pe-
riods in which no data is output, called blanking periods. In the case of
this sensor, these occur between rows (the equivalent of 57 pixels in du-
ration) and between frames (the equivalent of 19 rows in duration). To
distinguish between active periods and blanking periods, two signals are
used. Blanking periods between rows (or lines) are indicated by the l vld
going low, and similarly blanking periods between images (or frames) are
indicated by f vld going low. This is illustrated in Figures 4.1 and 4.2.

l vld

pclk

DOUT P0 P1 P2 P750 P751

line blanking

Figure 4.1: Timing examples of ISI signals: a single row. Line blanking is indi-

cated by red.
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f vld

l vld

DOUT

pclk

R0 R1 R2 R478 R479

Figure 4.2: Timing examples of ISI signals: a single frame (480 rows). Line blank-

ing is indicated by red and frame blanking by blue.

4.1.2 FPGA ISI Module

As stated in the introduction of Chapter 3, the JPEG encoder module ex-
pects a continual data stream. This is a design decision to simplify the
implementation of the encoder. Furthermore the encoder needs to be reset
immediately before each frame begins.

To ensure a continual data stream into the JPEG encoder, either the en-
tire frame needs to be buffered in order to remove the blanking periods
between rows, or the encoder must be paused during blanking of the in-
put. Such a buffer is impractically large for the FPGA, and would add
significantly to the latency of the system. Pausing can be easily achieved
by using an enable system on the encoder module. Rather than having
an enable network within the encoder module it is simpler to use the en-
able signal to gate the clock to the encoder. Altera recommends that clocks
not be gated asynchronously, so either the enable signal should itself be
clocked by the clock domain in question, or special enable systems on
clock domains within Altera FPGAs should be used [44].

The FPGA enable system is utilised by the use of a MegaFunction
within Quartus II. The enable signal is controlled by the expression
(l vld OR NOT f vld). The clock should be disabled whenever l vld is low,
so that the input stream remains continuous. However, once the final row
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is reached and no more data is expected, the system has no need to pause
and should finish processing the data that it still holds.

In order to achieve the reset condition, a reset line for the encoder is
set for one clock cycle on the first positive l vld edge after a positive f vld
edge. This presents two problems. First, the reset signal will be set at
the same time as the first data element is input. This is remedied by the
simple expedient of a single element buffer on the data. Secondly, the
entire module is reset at the start of each frame arriving. The latency of the
encoder module is such that an entire frame will not be fully processed by
the time the next frame begins, so the reset signal disrupts the previous
frame.

A simple fix is to have a counter keep track of frames and block the
inputs on alternate frames to allow the encoder module to finish the frame
it has started. This prevents the system from processing every frame from
the image sensor. However, such a frame rate is not required.

This solution is modified in Section 4.4.

4.2 Blackeye II Camera System

The Blackeye II camera system has an image sensor and a microprocessor.
The image sensor outputs the image to the microprocessor which in turn
performs image processing operations, compresses the image and stores
the image. To provide access to images the microprocessor runs a web
server for PCs to access. These roles are depicted in Figure 4.3 under the
existing system. This project proposes an alternative system in which an
FPGA supplants the microprocessor in its roles of image processing and
image compression.

In the proposed system, the microprocessor remains the centrepiece of
the design: it runs the web server for external access, it stores and retrieves
the image files using an SD card, and it controls the operation of the im-
age sensor and FPGA. The role of the FPGA is to receive image data from



80 CHAPTER 4. SYSTEM IMPLEMENTATION

Data Flow
Network

Physical Layer

Network
Host Layer

(Web Server)

Data Storage
Image

Compression
Image

Processing
Image

Capture

Comms
Port

JPEG

Control

Microprocessor

Bitmap

Control

Camera
Existing
System

SD
Card

Comms
Port

JPEG

Control

Microprocessor

JPEG

Control

FPGA
Bitmap

Camera
Proposed
System

SD
Card

Figure 4.3: Diagram of the pre-existing Blackeye Camera system compared with

the proposed system.

the image sensor, perform what image processing operations are deemed
necessary by the microprocessor, encode the image as a JPEG file and send
it, along with other information the microprocessor might want about the
image, to the microprocessor. The necessary control structures are more
complicated to design in hardware compared with software, so it is prefer-
able for the microprocessor to retain overall control of the system.

The advantage of FPGAs for image processing are discussed in Sec-
tion 2.3.2. The existing Blackeye II system is limited to recording 2 frames
per second (fps) by the rate the microprocessor can process them. Shift-
ing the image processing and compression to the FPGA has a significant
potential benefit. The frame rate may be increased because the bottleneck
– the image processing and encoding – is shifted away from the micro-
processor. The problem with adding a new device to the system is the
increased power consumption. However, reduction of the power con-
sumption of the FPGA is a focus of the design, and is mitigated by the
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microprocessor being used less, so either the clock speed is reduced or the
microprocessor is put into a low power mode between frames.

To test the FPGA system in practice, a Blackeye II camera is disassem-
bled. The image sensor and microprocessor are on two separate printed
circuit boards (PCBs) connected together. The FPGA which is used for this
test is on a very small development board, the DE0-nano made by Terasic.
A simple PCB is designed to fit between the image sensor board and mi-
croprocessor board and also connect to the FPGA board. Figure 4.4 shows
how select signals between the image sensor and microprocessor boards
are rerouted via the FPGA board, and Figure 4.5 shows a photo of the
board.

Some connections such as the battery connection and camera flash trig-
ger are not needed by the FPGA. The battery is connected to the image
sensor board but the power circuitry of the device is on the microproces-
sor board and these links simply connect the battery to the power circuitry.
The microprocessor makes decisions on the behaviour of the system, so it
decides when to and when not to use the camera flash.

In the existing system the microprocessor controls the image sensor’s
behaviour by using an I2C interface to set and read registers on the chip. In
anticipation of a similar register control system on the FPGA in the future,
the I2C interface is extended to it as well. While other serial communica-
tion systems used to connect ICs exist, such as UART and SPI, access to the
appropriate IO ports on the microprocessor is not currently available. Fur-
thermore, the engineers at Kinopta prefer to use a single interface for the
microprocessor to communicate with the two devices, which I2C allows
because it works on a single master multiple slave basis. I2C modules for
FPGAs are common, so there are plenty of designs freely available for use,
reducing the time and effort to implement the interface. Hence there is no
need to develop an alternative interface.

The existing system uses an ISI to transmit image data from the im-
age sensor to the microprocessor. The signals are rerouted to the FPGA to
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Microprocessor Board

Image Sensor Board

Image Sensor

(a) In the Blackeye II Camera the board with the microprocessor connects
to the board with the image sensor.

battery

camera flash
I2C

ISI

(b) The main signals between the image sensor board and the
microprocessor board.

I2C

ISI ISI

FPGA Dev Board
Breakout

Board

(c) The breakout board is inserted between the image sensor and
microprocessor boards. Some signals are rerouted to the FPGA
development board.

Figure 4.4: Blackeye II Camera boards, and breakout board interfacing them with

the DE0 Nano FPGA development board. Not shown are power lines.
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Figure 4.5: Photo of breakout board connecting to FPGA development board (bot-

tom), image sensor board (right) and microprocessor board (left).

receive the images, and the FPGA uses a second ISI interface to transmit
data to the microprocessor. Other interfaces between the FPGA and mi-
croprocessor were discussed with the other camera engineers, but on fur-
ther investigation they did not provide as simple a solution as using the
existing ISI of the microprocessor. The pins of the ISI port were already
available on the board, and the ISI peripheral allows the microprocessor
to receive data in real-time even though the software is not designed for
true real-time.

4.3 Microprocessor Interface

The FPGA system provides data to the microprocessor via the micropro-
cessor’s ISI interface. The ISI peripheral system on the microprocessor
chip operates independently from the CPU, and therefore may be used to
receive data in real-time even though the microprocessor is not operating
in a real-time fashion. Registers are used to set a frame width and height of
up to 2048 each, which the ISI peripheral will buffer. When the peripheral
system has finished receiving a frame it signals the CPU of its availability,
which can then access the image as a block of data in memory.

The peripheral system receives f vld and l vld lines as well as an 8-bit
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DOUT bus (in fact the bus is 12 bits wide, but 4 of these are unused). In
the existing system the ISI peripheral receives data from the image sensor
ISI interface, so the FPGA output must conform to the image sensor’s ISI
interface. A constant data stream is expected, read on positive edges of
pclk and separated at regular intervals by blanking periods as indicated by
f vld and l vld.

4.3.1 Data Format

The dimensions of the ISI frame must be fixed before transmission. The
peripheral requires l vld to go high for exactly the number of clock cycles
as the predefined width, and f vld for the number of rows of the height.
However, it does not require any uniformity in the blanking periods.

The JPEG data is not of fixed length, nor can it be divided into parts
representing individual image rows. Therefore the frame size is set to di-
mensions sufficient to store any JPEG file likely to be generated by the
FPGA system; for testing purposes this is set to 2048× 256. The data to be
transmitted is the JPEG encoded image in JFIF file format, and a low reso-
lution (94×60) bitmap. The low resolution bitmap is used by an algorithm
on the CPU for calculating settings for the image sensor.

The transmission begins with the JFIF/JPEG file and ends with the
bitmap. The ISI data elements between these two are set to 0xFF. Because
the JPEG file is not of fixed length the microprocessor must search through
the data to find the EOI (end-of-image) marker (0xFFD9) that will precede
the block of 0xFF. The bitmap is simple to identify as it is located in the
same data address range each time.

The JFIF file format is described in Section 2.2.5. A single scan baseline
sequential encoded file can be divided into three distinct parts:

Header
This contains the SOI (start-of-image) marker, JFIF header, Huffman
and quantisation tables, frame header and scan header.
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Data
The JPEG data is the concatenation of the output of the JPEG encoder
module (the Huffman encoded data). This data will always be an
integer number of bytes in length.

Footer
The footer is the EOI marker, so is always two bytes long.

If the encoding method, quantisation table and Huffman tables do not
change, then the Header need not change either. It is hardcoded into the
system in a ROM. See Appendix B for details of the Header.

This specification of the FPGA output will be used to design the output
module.

4.3.2 Output Module — Structure and State Machine

The output module must perform many tasks, therefore it is divided into
modules as shown by the block diagram in Figure 4.6. To distinguish these
modules from other items of similar name they are prefixed by output/ (for
example output/header).

h q

lr q

d q

DOUT

f vld

l vldrst
rd en
ready
eof

rst
rd en

rd en

lr d

wr en

wr en

eob

d d

width data

lowres

header

control SM

0xFF

Figure 4.6: Block diagram of output module.
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The module output/control keeps track of the output process; it sends
signals to the other modules and controls what data is sent to the output.
A cyclic finite state machine (SM in Figure 4.6) is devised upon which
output/control is based. Table 4.1 outlines the different states and the flow
between them.

Table 4.1: Output module state machine.

State f vld Output Transition
s idle 0 Does not s header: Sufficient data has been

matter (0xFF). received from the JPEG encoder
(ready is high).

s header 1 Data from s data: Final address of ROM has
header ROM been reached.
(h q).

s data 1 JPEG data s fill: Data buffer indicates the
(d q). end of JPEG frame (eof is high).

s fill 1 0xFF s lowres: Only 5640 data elements
remain in ISI frame.

s lowres 1 Low resolution s idle: End of bitmap has been
bitmap (lr q). reached.

Each state only has one potential state to transition to. The transitions
s idle→s header and s data→s fill are triggered by signals from output/data.
The other transitions are triggered by ISI addresses: the count of the data
elements in DOUT. The state s header transitions to s data once the address
329 is reached (the size of the header). Each ISI frame consists of 524287
elements. s lowres begins 5640 bytes previous to this at the address 518647.
Therefore, output/control must count the data elements output.

The simplest of the modules is output/header. This is a ROM, utilising
block RAM, filled with the 329 bytes of the file header. For each clock
cycle in which the read enable (rd en) signal is high, the internal address



4.3. MICROPROCESSOR INTERFACE 87

counter increments, rolling over once the final address is reached. Thus,
by maintaining the read enable high, the output cycles through the header
data.

The low resolution bitmap required by the microprocessor does not
need to be very precise. The resolution is reduced by 8 in each dimen-
sion from the original image, so each pixel of the low resolution bitmap
is the average pixel value of one of the MCUs of the JPEG encoder. This
simplifies the acquisition of the low resolution bitmap: the DC element of
the quantised-MCU is directly proportional to the average pixel value of
that MCU. The data has lost precision by this point, but is sufficient for the
requirements. The Huffman encoder module is modified so that on the
arrival of a DC element it is directed to the output module along with a
write enable (wr en) signal. The Huffman encoder is used for this purpose
as it already keeps track of which elements are DC and which are AC.

Block RAM is used for buffering the 5640 elements of the low resolu-
tion bitmap in output/lowres. On reset the internal write address is set to
zero. On a write enable the data on the lr d line is written to the RAM, and
the write address is incremented. On a read enable the read address is in-
cremented, so that the output cycles through the data stored in the RAM.
A reset from output/control is required between frames.

The s fill state sends 0xFF along the data line as fast as it can (minimis-
ing the blanking periods between rows). It should be noted that this state
begins by outputting 0xFFD9 (EOB marker).

Far more complex is the output/data module. It receives data of vary-
ing width from the JPEG encoder, which it must concatenate and store.
This module requires careful design to ensure its successful operation and
prevent it from using excessive resources.
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4.3.3 Output/Data Module

The structure of output/data is built around a large segment of block RAM
used to store the JPEG data until the output requires them. The block
diagram in Figure 4.7 is used to discuss the module’s design.

eob

wr en

d width

d d

flush

wr en

wr addr rd addr

d q

rd en

eof

ready

I

II

IV

III

V

VI

– =0

Figure 4.7: Block diagram of output/data module.

The functional blocks of output/data as labelled in Figure 4.7:

I Concatenate and accumulate unit (CAC). Concatenates the data re-
ceived from the encoder using the data width bus to determine how
the data fits together. Its operation is detailed below.

II Block counter. Receives a pulse from the encoder module at the end
of each MCU. The output of the block remains low until the count
reaches 5640 (the end of frame is reached) and it is set to 1.

III Write address counter. A counter increments the buffer write address
whenever a write enable is sent from the CAC to the buffer. This starts
at zero upon reset, but is allowed to overload during its operation.

IV Buffer. A large section of block RAM with independent read and write
functionality.
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V Read address counter. Identical in operation to the write address
counter but is triggered by the read enable line.

VI Comparator. The output of the comparator is high whenever the input
is greater than the ISI frame width (2048).

The input data, d d, is a 32-bit bus, and the width of the data of interest
is indicated by d width. The CAC is designed to accumulate input data
until at least 32 bits of data is concatenated together, at which point it out-
puts the 32-bit concatenation along with a pulse on the buffer’s wr en line.
Once this occurs the accumulation process starts over, beginning with the
remainder (any data bits that did not fit in 32-bit output). This is clarified
by the example in Table 4.2. Each row corresponds to a wr en signal being
received. Note that this example is simplified to a 16-bit system, but the
actual system is 32-bit.

Table 4.2: Example of the operation of concatenate and accumulate unit.

d d accumulation output remainder
011 1010 011 1010

01 1011 0 1101 1011 1010

1010 1101 1 0101 1010 1101 1011 1010 1010 1101 1011 1010 1 0101

011 0111 0101

The CAC unit also has a flush input. This is set once the end of the
frame occurs, indicating that no more data is expected. In this case the
CAC module outputs its current accumulation stuffed with 1’s. The con-
catenation that occurs is similar to that of the AC and DC encoders of the
JPEG encoder (see Section 3.4.1). A look-up-table consisting of all possible
combinations of widths of the accumulation and the input data is used to
select which bits are selected from which source.

The input to the buffer is 32 bits, whereas the output is 8 bits. This
means that read and write addresses do not directly correspond. To sub-
tract one address from the other, the write address is bit-shifted by 2. Not
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indicated in the block diagram is that the two LSBs (least significant bits)
of the write address, after bit-shifting, are supplied by the CAC. They will
always be 0’s except on the final write of the frame in which case they
indicate how many of the four bytes written to the buffer are used.

To buffer the entire JPEG image would require a substantial amount of
RAM. Instead only two ISI rows of data are buffered. The ready output
of output/data is set high whenever the write address of the buffer is 2048
(one row) greater than the read address (or the end of the frame has been
reached). It does not matter if the write address has overflowed and the
read address has not, because the subtraction will overflow.

The state machine description of Table 4.1 contains a simplification: the
s data state is in fact two states. The first state sets l vld high and transmits
one row of data (2048 elements), the other state sets l vld low and does not
transmit any data. The microprocessor does not require blanking periods
between rows to be even, so data is sent as it is available saving on the
amount of RAM required. There are localised periods during which data
arrives in output/data faster than it is sent out. The primary concern of this
is that it will lead to the buffer filling up. In testing of the final system the
number of data elements buffered was measured. These were typically
about one ISI row, and had a maximum of 37 elements more than one row.
It is highly unlikely that a state will be reached in which two rows of data
need storage.

Once the end of the frame has been reached the ready signal is main-
tained high so that output/control will continue to request data. Once the
read address reaches the write address (the difference is zero), the end-of-
frame (eof ) signal is set so the state machine of output/control transitions to
the s fill state.

The JPEG specification requires that any 0xFF byte in the JPEG data is
followed by a stuffed 0x00 byte. To this end output/control monitors the
output of output/data and on an 0xFF byte temporarily sets rd en to zero
while it outputs a 0x00 byte.
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4.4 Power Reduction

CMOS-based devices, such as FPGAs, primarily dissipate power dur-
ing the switching of gates. The dynamic power consumption of the de-
vice during a given period is proportional to the number of gates be-
ing switched during that period. When digital systems are primarily
synchronous their dynamic power consumption is effectively eliminated
when the clocking source stops.

In Section 4.1.2 a clock enable system was implemented for the purpose
of removing gaps in the incoming data stream. It is proposed that this sys-
tem is extended to ensure that systems in the image processing pipeline,
such as the JPEG encoder, are not clocked when not in use.

In order to do this, a system must be devised to recognise when a mod-
ule is in use. A given module, M, has a fixed data-path latency, mL, mea-
sured in clock cycles. Therefore each module can be considered to be in
use from the time data first arrives at its inputs until ML clock cycles after
data stops arriving at its inputs. To track this progress a signal, called data
valid (dv), is created as an input and output of every module along the im-
age processing path. The dv signal at the input of a module, M, is denoted
as dvMi and at the output as dvMo.

Supposing the image processing path consisted of modules A→B→C.
The dv signal entering module A is referred to as dvAi, and the dv signal
exiting the module is dvAo. The dvAo will respond to dvAi by mimicking
it with a delay of AL. For the purposes of this example AL= 3, BL= 1 and
CL= 2. A timing diagram depicting the responses of the relevant dv signals
of this example is shown in Figure 4.8.

Each module begins processing data as soon as dvMi is high, and stops
processing data once dvMo is low. It is during this period of module opera-
tion that the clock is required, the rest of the time it is not. A clock enable
for the module is expressed as (dvMi OR dvMo). Figure 4.9 shows how this
functions.
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Figure 4.8: Timing diagram of data valid responses through an example image

processing path.
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Figure 4.9: The data valid input and output lines of a module are used as clock

enables for that module.

There are insufficient hardware clock enable systems in the FPGA for
every module, so the alternative is to have a clocked enable line lead into
an AND gate with the clock. This adds a latency of one clock cycle to the
enable, therefore the data valid lines should lead the data by one clock
cycle to compensate. This system is implemented upon the JPEG encoder
as a single module as a proof of concept.

The mechanism by which the dv signal is delayed as it passes through
a module is by a component module called dv counter. This module is en-
coded in VHDL using generics so that different instantiations of the mod-
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ule has a different delay property. This way each module in the image
processing pipeline need only contain a dv counter module with the delay
set to equal that module’s latency. The operation of each dv counter is, as
the name suggests, by a counter that simulates the latency of the module.

4.5 Image Processing Operations

The system thus far forms a pipeline of three blocks: input, JPEG encoder
and output. It is intended that eventually several image processing oper-
ations be included in the FPGA system. These must be performed before
the image is encoded, leading to the overall system structure shown in
Figure 4.10.

data

dv
ISI ISI

IN
PU

T

O
U

T
PU

TJPEGOP1 OP2 OPn

Figure 4.10: FPGA system flow showing the integration of image processing op-

erations (OP).

The pipeline is highly modular: image processing operation (OP) mod-
ules can be added between the input module and JPEG encoder module.
The number of modules in this pipeline are only limited by the available
resources of the FPGA. Each module receives the pixel data from the pre-
vious module along with a dv signal. Each module utilises the dv signal to
switch off when not in use and put itself in a reset state in preparation for
the next frame.

The advantage of such a system is that no module depends on the pres-
ence of any other module: a module can be removed from the pipeline,
data and dv are connected directly from the output of the previous module
to the input of the subsequent one, and no part of the system would notice
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any difference in behaviour. The exception to this is if the module changes
the dimensions of the image. However, this can be anticipated by setting
width and height parameters in subsequent modules. Section 4.2 discusses
the use of an I2C connection from the microprocessor to control settings
on the FPGA. Such settings might be used to turn different OP modules
on and off, or to select different parameters for their operation.

There are several image processing operations which are performed by
the microprocessor in the existing system, or are planned for future imple-
mentation. Many of these are commercially sensitive (and are not part of
this project), but one that is not sensitive is a simple image sharpening
algorithm, which is implemented in this project as a proof of concept of
image processing pipeline.

4.5.1 Image Sharpening Operation

An image sharpening filter, also known as an edge enhancement filter,
operates as a high pass filter on local regions of an image: it accentuates
the difference between a pixel and those surrounding it. The operation is
performed by a linear transformation on a 3× 3 window.

Rm,n =k−1,−1Pm−1,n−1 + k0,−1Pm,n−1 + k+1,−1Pm+1,n−1

+ k−1,0Pm−1,n + k0,0Pm,n + k+1,0Pm+1,n

+ k−1,+1Pm−1,n+1 + k0,+1Pm,n+1 + k+1,+1Pm+1,n+1

(4.1)

Equation 4.1 gives the equation associated with such a linear transfor-
mation, where Pm,n is the input pixel, and Rm,n is the corresponding out-
put pixel. The other pixels are the ones surrounding the pixel of interest
(either the same row/column, one left/above, or right/below). The coeffi-
cients, labelled k, determine the nature of the transform. Another notation
for the operation is displayed in Figure 4.11.

It is common for the coefficients to be normalised. The consequence of
not normalising them is to apply a linear increase or decrease in brightness
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k−1,−1 k0,−1 k+1,−1

k−1,0 k0,0 k+1,0

k−1,+1 k0,+1 k+1,+1

Figure 4.11: A generic 3 × 3 linear window operation corresponding to Equa-

tion 4.1.

to the whole image, and thereby decrease the overall contrast. Normalisa-
tion is simply the requirement that the coefficients sum to 1.

Image sharpening processes usually place large positive coefficients on
the original pixel of interest, and negative coefficients on the surrounding
pixels. The complementary blurring operation is a Laplacian filter which
has a large negative coefficient on the pixel of interest, and positive coef-
ficients on the surrounding pixels [6]. In this instance the coefficients are
taken from the image sharpening filter of the microprocessor in the exist-
ing system, and are shown in Figure 4.12.

0 -1 0
-1 5 -1
0 -1 0

Figure 4.12: Coefficients of the image sharpening operation.

Note that the coefficients do add to 1, and that the corner pixels are not
used at all.

The implementation of window operations requires the buffering of
rows, as described in Section 2.3.2. A 3 × 3 operation requires that two
rows be buffered as well as the window itself. Each row is stored as a
FIFO buffer: as a new element enters, the element that has been stored
the longest exits. Instead of multiplying by 5, which requires a hardware
multiplier, a bit-shift and addition occur: 5Pm,n = Pm,n � 2 + Pm,n. Bit-
shifting operations are effectively ‘free’ in hardware because they are only
a reroute of the signals corresponding to the bits.
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Additional logic is required for edge cases; where the pixel of interest
is on the edge of the frame then the window goes over the edge. Any
missing input pixel of a window operation is commonly filled with a con-
stant, the adjacent pixel within the frame, or the pixel opposite it in the
window [45]. Using a constant for this filter leads to unpredictable results
because the constant will not correspond to the rest of the pixels within
the window. The adjacent edge pixel in this case will always be the pixel
of interest, and using it as a contrasting neighbour pixel counteracts the
effect of sharpening. The opposite pixel within the window is the suitable
solution. Logic is added to the operation so that when the window is in
the top row of the frame then the top pixel of the window is a duplicate of
the bottom pixel of the window.

Although two rows are buffered, output occurs only one row after the
corresponding pixel has entered the operator because the pixel of interest
is in the centre of the window. This means that the total latency of the
module is 756 clock cycles.

(a) Original (b) Sharpened

Figure 4.13: Comparison of image before and after the application of the image

sharpening filter.
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Figure 4.13 demonstrates the effect of this image sharpening filter.
While edges and details become more defined so does image noise. A
trade-off is made in the design of image sharpening filters between the im-
provement to edges and details and the exacerbation of noise; in this case
the design decision was previously made by other Kinopta engineers.

4.6 System Summary

The existing Blackeye II system comprises a CMOS image sensor and a
microprocessor. The microprocessor sends control signals to the image
sensor, which in turn sends 752 × 480 greyscale bitmap images back via
the ISI. The microprocessor performs image processing operations upon
the image then encodes it in a JPEG based file and stores it on an SD card.
The microprocessor also operates a web server, which provides retrieval
of the images from the SD-Card to an external PC. Although the image
sensor can produce 60 fps, the microprocessor cannot process more than 2
fps under full load, severely limiting the capabilities of the system.

This project proposes to supplement the microprocessor with an FPGA.
The task of the FPGA will be to receive the data directly from the image
sensor’s ISI, perform image processing operations upon the images as they
arrive, encode them as JPEG files and send them to the microprocessor for
storage. The microprocessor maintains overall control of the system, so
infrastructure is put in place for the FPGA to receive control signals.

The FPGA system forms a pipeline through which the data from the
image sensor passes to the microprocessor. This pipeline is divided into
four distinct stages:

Input
Receives data from the image sensor via ISI. It forwards the data on
to the rest of the system, stopping the clock to the image process-
ing and JPEG encoding modules during row blanks in the incoming
data.
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Image Processing Operations
These independent modules receive a stream of pixel data and out-
puts pixel data in the same form. They modify the pixel values to
achieve some visual effect. In addition to the data line there is also a
dv line which is used to turn modules off when not in use. Modules
can be disabled by multiplexing the data line to bypass the module.

JPEG Encoder
Receives pixel data and encodes it into a JPEG data stream. It then
outputs this data stream, along with a low resolution bitmap of the
image to the output module.

Output
Upon receiving data from the JPEG encoder the output module be-
gins to send a frame to the microprocessor via ISI. It sends out a com-
plete JPEG file by prepending the JPEG metadata to the data from the
JPEG encoder. This is followed by empty data packets, and finishes
with a low resolution bitmap.

This system is implemented in VHDL on an Altera Cyclone FPGA de-
velopment board attached via a breakout board to the microprocessor and
image sensor boards of the Blackeye II camera.



Chapter 5

Evaluation and Conclusion

This chapter begins by describing the implementation and testing of the
system in hardware. Section 5.2 goes on to evaluate the JPEG encoder
by comparing it with commercial designs. The system is assessed in Sec-
tion 5.3 against the project’s objectives. This is followed by an outline of
how Kinopta intends to build on this project for their product. Section 5.5
provides a summary of the project and its success. The chapter ends with
a statement from Kinopta’s CEO.

5.1 The System in Operation

The entire system is tested in simulation because bugs are easier to track
and identify in simulation than in hardware. A VHDL testbench is written
that provides stimuli to the system imitating the image sensor. Actual
bitmaps previously taken from the Blackeye II’s image sensor are used as
test data. The testbench saves the output of the system to files, which are
inspected to determine if the data is as expected. The output files should
each consist of a JPEG JFIF file followed by a run of bytes of value 0xFF
and ending in a 5640 byte bitmap. In each case the JPEG file was manually
extracted from the output data and saved separately. To test the JPEG file
it is opened with a program called JPEGsnoop. This software is designed

99
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for the debugging of JPEG encoders and is useful for identifying where
errors occur in the encoding.

Once the system performs without error in simulation, the design is
loaded onto the FPGA development board, which is connected to the
image sensor board and microprocessor board. To test the camera, it is
plugged into a PC via a USB cable, and a web browser on the PC is used
to view the images from the camera in real time.

Although simulations are able to accurately test the performance of an
FPGA, the stimuli provided by the testbench can’t always cover every sit-
uation that may arise in deployment. Therefore it is not entirely surprising
that further bugs were encountered in the hardware implementation. To
facilitate debugging of systems in hardware, Altera developed the Signal-
Tap II system. SignalTap II provides the means to analyse internal signals
on the FPGA. It does so by supplementing the FPGA design with addi-
tional logic during the synthesis of the design. SignalTap II systems are
limited in their complexity and amount of data they may acquire by the
availability of resources.

A SignalTap II system is built using Quartus II, and is implemented
by selecting the signals that are of interest and defining trigger conditions
for the system to report data back to the PC. When the trigger conditions
are met, the waveforms of the signals of interest are sent to the PC. They
extend a predefined number of clock cycles before and after the trigger
event. By selecting appropriate signals and triggers, bugs are traced to
their source and solved. Figure 5.1 shows the Blackeye II with FPGA sys-
tem operating successfully.

During testing the system operated without issue, and achieved a frame
rate of 20 fps. The usage of FPGA resources is shown in Table 5.1.
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Figure 5.1: Camera system in operation with the FPGA-based image processing

pipeline. The web browser on the PC is displaying images from camera in real

time.

5.2 Comparison of JPEG Encoder

The JPEG encoder presented in this thesis is referred to as the project en-
coder for this section to prevent ambiguity.

There are several commercial JPEG encoder IP blocks (see Section 2.4),
which are compared with the project encoder to evaluate it. Only the data
that is publicly available for these encoders can be retrieved, so there are
gaps that are noted by blanks in tables. Table 5.2 presents a summary of
these encoders.

Most of the encoders are labelled as baseline JPEG standard compliant.
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Table 5.1: Usage of FPGA resource by module.

Entity LEs RAM Blocks RAM (Kbits) Multipliers

Image Sharpener 226 2 12 0
JPEG Encoder 1 960 25 182 9

2D-DCT 618 23 180 8
Quantisation 46 0 0 1
Zig-Zag Buffer 76 1 1.4 0
Huffman Encoder 1 177 1 0.7 0

Output Block 1 054 13 102 0

Total 3 286 39 297 9

FPGA 22 320 66 594 66

The CAST encoder claims to support all JPEG formats, so it is expected to
require more resources than encoders that do not. All the encoders pro-
vide JFIF header data. All except the Sundance encoder describe the colour
formats that they offer. They all have flexible frame sizes, for example
VISENGI and CAST encoders specify a maximum frame size of 64k×64k
pixels (as per the maximum in the JPEG standard). Three of them specif-
ically state that the user may configure the quantisation and Huffman ta-
bles. They all have greater capabilities than the project encoder, but this
is necessary for their deployment in unknown and varied applications.
There will be trade-offs in their design, which make them less optimal for
most applications than a purpose-built encoder does.

The encoders are advertised as providing fast encoding speeds; for
example, the Sundance encoder claims to be able to encode up to 660
megapixels per second in a Virtex II FPGA. Speed comparisons are very
difficult, as they depend on the device the system is implemented in. No
clock speed performance measurements were made of the project encoder,
because the data rate it is capable of is far in excess of the rate it receives
data. The architecture of the system restricts the project encoder to 20 fps,
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Table 5.2: Comparison of commercial JPEG encoder IP blocks [31, 32, 33, 34, 35].

Company Product Tables Input Resources
Entner JPEG Cyclone IV
Electronics CODEC 2250 LEs

Encoder 5 RAM Blocks
8 Multipliers

VISENGI JPEG Cyclone III
Encoder 8125 LEs

4 RAM Blocks
3 Multipliers

CAST, Inc JPEG-C Configurable Cyclone III
10154 LEs
9 RAM Blocks
36 Multipliers

Sundance FC-JPEG04 Configurable 10 pixels Virtex II
Multi- 10750 Slices
processor 45 RAM Blocks
Technology 34 Multipliers
Barco Silex BA116 Configurable 64 pixels

which is equivalent to 7 megapixels per second.

Next to four of the encoders in Table 5.2 are resource usage of an FPGA.
This resource usage will be dependent upon the device itself and the soft-
ware that generates the FPGA design. However, resource usage of FPGAs
in the same family of devices is comparable, which is why the device fam-
ily is mentioned under the resource usage. Note that the Sundance en-
coder is only quoted on a Xilinx Virtex device which makes it difficult to
compare with Altera devices. The architecture of the logic elements and
the architecture multipliers and the size of the RAM blocks does not vary
between the Cyclone III and Cyclone IV devices, so they make good com-
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parisons. A summary of resource usage of the encoders is presented in
Table 5.3.

Table 5.3: Comparison of resource usage of the JPEG encoder from this thesis

with commercial encoders. The number of resources available in the FPGA used

for testing (Cyclone IV EP4CE22), is included for comparison.

Encoder LEs RAM Blocks Multipliers
Project 1 960 25 9
Entner 2 250 5 8
VISENGI 8 125 4 3
CAST 10 154 9 36
FPGA 22 320 66 66

An initial appraisal of the data would suggest that the project encoder
uses the fewest logic elements, a moderate amount of multipliers and by
far the most RAM blocks. The importance of these figures is enhanced by
discussing them in terms of their availability, which can be achieved by
expressing them as a percentage of the available resources on an FPGA:
the project encoder uses 9% of LEs, 38% of RAM blocks and 14% of mul-
tipliers. If the proportions of the different resources used are unbalanced,
waste occurs; the device will have excess resources of types in less demand
by the system. Excess resources cost money and power consumption, par-
ticularly static power consumption. This assumes that FPGAs will typi-
cally have a comparable ratio of different resources available.

The most obvious issue with the project encoder is that it utilises so
much of the block RAM on the device. Referring back to Table 5.1 the
main use of the block RAM is the 2D-DCT module which uses 23 of the
25 blocks. In fact all 23 of these blocks are used by the transpose buffer
between the two parts of the DCT. The need for such a buffer is due to the
difference between the ordering of the data from the image sensor (pixels
are output row by row), and the ordering required by the JPEG standard
(pixels in 8× 8 square blocks). Considering that the size of this buffer de-
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pends on the frame, and that the commercial encoders are designed to deal
with frames larger than the ones in this application, the encoders would
require at least as many RAM blocks in order to do the necessary reorder-
ing. This suggests that the commercial encoders do not include such a
buffer, and instead expect the data to be in a more JPEG-friendly order to
begin with. This conclusion is bolstered by the Barco Silex encoder stating
it takes an 8× 8 block of pixels as input. Using image sensors like the one
in this project, the pixels would need to be reordered for use with these
commercial encoders, adding 23 RAM blocks to their utilisation, making
them in fact more RAM intensive than the project encoder design.

Steps were taken to reduce the use of multipliers, such as bit-shifting
followed by addition, in the design of the project encoder. However, in
Section 3.1.1, a 1D-DCT design was selected that used more multipliers
than the alternatives considered, in exchange for less logic, and therefore
LEs, as well as a simpler development process. It appears that this was a
good design decision as the utilisation of multipliers did not prove exces-
sive: only 14% of those available. While the VISENGI design uses a third
of the number, the project encoder is on a par with the Entner Electronics
design and uses significantly less than the CAST design.

Thus far it appears that the project encoder compares very favourably
in terms of resource usage with the commercial alternatives. This is to
be expected of a system focused on a single application when compared
with general purpose systems. However, the comparisons are not of like
systems; each of these (although it is not clear in the case of the Entner
Electronics system), include the generation of the JFIF file header. The data
of these systems is output as an 8-bit bus in an unbroken stream for each
file. In the system presented here, these features are included as part of
the output module and not in the JPEG encoder itself. The output module
adds a further 1054 LEs and 13 RAM blocks to total resource usage, but
part of this is used for other purposes, such as the control of the ISI, and
the low resolution bitmap storage. If the resource of output are added to
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those of the project encoder the multiplier usage remains the same, the LEs
increase to 3014 and RAM blocks to 38. In this case the LE utilisation is still
favourable, being only 34% greater than the best competitor. However, the
RAM usage is significant, so should be a primary focus of future revisions
of the system.

5.3 Evaluation of System

The aim of this project was to design a hardware-based system to improve
the performance and capabilities of the Blackeye II camera system. The
existing Blackeye II system utilises a microprocessor for all its processing,
and this is proving insufficient for some applications of the camera. Fea-
tures that Kinopta would like to add to the camera include a faster frame
rate, more real-time image processing operations and improved power
management of the system.

An FPGA-based hardware accelerator system was designed for the
Blackeye II. This hardware system is intended as a proof of concept; it
implements key aspects of the final system to demonstrate its potential,
so it was designed with further development in mind. Because the design
of a proof of concept is only a limited commitment to a system, this sys-
tem is designed to be tested with the existing camera hardware with no
modification; only a simple breakout board was required.

The previous camera system could only achieve a frame rate of 2 fps
with a 752×480 greyscale frame. Applications such as wildlife monitoring
and traffic flow surveying require the camera system to achieve a frame
rate of 12.5 fps. Each frame requires certain image processing operations,
and the frame is encoded in the JPEG format for compression. Kinopta
would like to add more image processing operations to the camera, but
this would lead to a further reduction in frame rate. This project imple-
mented an image processing pipeline, including a JPEG encoder, on an
FPGA so that the system may achieve a higher throughput. Because FPGA
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systems are pipelined, the addition of further image processing stages do
not have an adverse affect on the throughput of the system, though they
do add slightly to the latency of frames. Frame latency is not a primary
concern of the design because the microprocessor will store the images for
later use in most cases.

The FPGA system in the form presented in this thesis is able to send
encoded JPEG images to the microprocessor of the Blackeye II at a rate
of 20 fps. This significantly exceeds the requirements of the system (12.5
fps), and there is scope with further revisions to increase this frame rate
even more if future applications require it. As current applications do not
require such a high frame rate the system clock speed may be reduced,
resulting in power savings.

The system receives data from the image sensor, applies image process-
ing operations as required and outputs it as a JPEG image. Currently the
only image processing operation that has been implemented is an image
sharpening filter, but the modularity of the design makes it simple to add
modules. Furthermore, modules can be removed and added back in to the
processing pipeline on-the-fly by way of a bypass multiplexer. The mod-
ularity extends to the power control system; each module is only clocked
when in use. This reduces the power consumption of the FPGA system,
which is of great significance in the camera’s applications.

Data is transferred from the FPGA to the microprocessor via ISI. The
operating system of the microprocessor is not real-time, so without ded-
icated hardware the FPGA would need to wait for the microprocessor to
poll the data. Instead, by using the microprocessor’s hardware ISI, the
FPGA can push the data directly to system memory, where it is stored as a
block of memory for the operating system to access when it is ready. The
ISI specifies that data is transferred in frames of a predefined size. The size
of an image after JPEG encoding cannot be accurately predicted, so this
size was set to one which is expected to be sufficient for any JPEG image.
In addition to the JPEG file, the ISI can also be used to transfer other infor-
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mation the microprocessor might need. For example, the microprocessor
uses lighting conditions to make changes to the image sensor settings and
uses a very low resolution image as input to the algorithm. Therefore a
low resolution bitmap (1 pixel per 8 × 8 block of original pixels) is sent in
conjunction with each JPEG frame. The low resolution image is obtained
by the FPGA with very little extra overhead by using the processes of the
JPEG encoder to extract an average of each 8× 8 pixel block.

By adding the FPGA system to the Blackeye II it can be used in new
applications where previously the frame rate had been insufficient. And
the camera has the potential to be developed further for other planned
applications. This project succeeded in the goals it set out to achieve: the
development of a suitable architecture, including a JPEG encoder, and suc-
cessful testing with the Blackeye II hardware. It exceeded its goals by im-
plementing a power management system that pauses modules whenever
they’re not in use. The camera originally could only achieve 2 fps, but this
project achieves a frame rate of 20 fps with the Blackeye II hardware.

5.4 Future Work

This project developed a proof of concept system for the improved per-
formance of the Blackeye II camera. This system is intended to be the ba-
sis of further development and this was borne in mind during the design
process. These future developments can be divided into three categories:
further refinements and improvements to the system architecture ; new
image processing operations can be added to the pipeline; and a degree of
on-the-fly configurability is added to the current components.

5.4.1 Improvement

In remote surveillance cameras power consumption needs to be minimised
as much as possible. Any chip added to the camera will increase the power
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consumption, but the added power consumption of the FPGA will be mit-
igated by a decrease in the demand on the microprocessor. Nevertheless,
any way in which the power consumption may be reduced should be con-
sidered.

One way to reduce the power consumption of the FPGA system is
to use a smaller FPGA, that is, one which has fewer resources. As was
noted in Section 5.2 the JPEG encoding system uses a disproportionately
high amount of RAM compared with other FPGA resources. Therefore it
should be a goal in revising the system to reduce the RAM requirements
where possible. One immediate step would be to change the ISI frame size
between the FPGA and microprocessor. The required size of this frame is
uncertain due to the variation in file size produced by the JPEG algorithm.
Further investigation is required to establish how much this frame may be
reduced by. In any case, the width of the ISI frame may be decreased by
increasing the height without affecting the total capacity of the frame. The
size of the buffer in the output/data module is proportional to the width of
the ISI frame, so a reduction in the frame width will result in a reduction
in the required RAM. There will be a limit to this reduction, and this needs
to be investigated.

Future versions of the Blackeye camera system may use a different mi-
croprocessor. Dedicated ISI peripherals are not common features on mi-
croprocessors, so unless an alternative transmission scheme is developed,
the choice of microprocessor is greatly restricted. To remove this restric-
tion, alternate transmission mechanisms should be investigated. One po-
tential solution is to use a RAM chip to buffer data between FPGA and
microprocessor.

Some applications may require colour images. The JFIF file format re-
quires colour data to be in a YCbCr format (in practice very similar to
YUV): one luminance component, Y, and two chrominance components,
Cr and Cb. This format is also particularly useful in image processing op-
erations, and is commonly used by colour image sensors. The other com-
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mon colour format is RGB, but there is a transform for converting RGB
data to YCbCr data. The JPEG standard treats each of these components
similarly and separately. This means that three instantiations of the JPEG
encoder module are used and the data is processed in parallel. The only
difference between the encoder modules are the quantisation and Huff-
man tables. This makes the implementation of a colour encoder a compar-
atively simple process. The biggest change that would be required of the
system would be in the output/data module, which would have to order
the data from the three encoders.

5.4.2 Image Processing

The architecture of the FPGA system allows for the insertion of image pro-
cessing operations. One of the strengths of the Blackeye II is its low-light
performance, this can be further enhanced by contrast and brightness ad-
justment techniques. Traffic monitoring requires the that number plates
on cars are clearly readable. These applications and others have the po-
tential for improvement by such operations as pixel binning, stuck pixel
repair, thresholding and morphological filters.

Pixel binning involves the grouping of pixels, for example in 2 × 2

blocks. The operation takes each block as an input, sums the intensities
of the constituent pixels, and outputs this number as a single pixel repre-
senting the whole block. The effect is to increase intensity resolution and
reduce high spatial frequency noise, but at the cost of reducing the spatial
resolution. High spatial frequency noise is a problem endemic to CMOS
image sensors [42], and this provides a solution where the trade off is ac-
ceptable. However, the most important benefit for the Blackeye II camera
is in night vision operation. The increase in intensity resolution enables
details in the dark, that would otherwise be obscure, to be seen.

Stuck pixels refer to particular pixels of an image sensor that no longer
respond to light, and instead always output the same value. This is not
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an uncommon occurrence, but once identified, a filter can be designed to
approximate a stuck pixel by taking the mean of the surrounding pixels.

Thresholding refers to a type of filter that performs a transformation
on each individual pixel, usually producing a binary output. A common
example would be to output a 1 when the pixel value is above a preset
threshold, otherwise output 0. Thresholding is often used for selecting
regions of interest for other processes.

In their simplest form, morphological filters work on binary data, so
pair well with thresholding, but the principles can be extended to greyscale
images. A morphological filter affects the shape of the image and is par-
ticularly useful for smoothing and separating object boundaries.

5.4.3 Configurability

The breakout board in the test setup included an I2C communications link
from the microprocessor to the FPGA. The FPGA does not currently utilise
this connection, but it is intended for use as a mechanism for the micro-
processor to set control parameters on the FPGA. An I2C interface would
provide a simple control scheme to allow the microprocessor to set and
read a group of registers on the FPGA. The content of these registers will
be used by the FPGA to set control signals used by different modules.

One such control signal, which has been previously mentioned, is an
image process bypass signal. This signal would be used to multiplex the
outputs of an image processing module, to use either the module’s func-
tionality, or to bypass it by directly outputting its inputs.

The system currently implements the JPEG encoder using an approxi-
mation of the IJG 70% quality quantisation table. Additional tables could
be added for other IJG quality settings and the appropriate table selected
by the configuration register. This also involves a change to part of the
JFIF file header because this includes the table.

There is a possibility that different frame sizes may be used in the fu-
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ture. In such a case the only changes required are to adjust parameters for
counters (address counters, pixel counters etc.) and the size of buffers. Pa-
rameters can be changed globally through the use of VHDL generics, which
were used in the implementation for this reason. If an application requires
a frame size other than 752 × 480 pixels then the parameters and buffer
sizes can be changed during the generation of the configuration file. If the
application requires the frame size to change during operation, for exam-
ple if pixel binning is turned on or off, then the buffer must be generated to
cope with the maximum size, and the counter parameters will read from
an active signal. Changes in frame size do not affect the frame rate, unlike
software, which has an inverse relationship between frame size and po-
tential frame rate. Therefore the hardware system has an advantage over
software in scalability.

5.5 Conclusion

Kinopta developed the Blackeye II camera system for use in wildlife ob-
servation, rural security, traffic monitoring and other applications. These
types of application require constant operation in anticipation of events
that can occur at any time, so frames must be taken at regular intervals.
The cameras are often in remote locations so must operate without human
intervention for extended periods, which means that power consumption
is of great importance to the design. They must also store all the im-
ages that they take, so the images must be compressed. For compres-
sion, a JPEG encoder is used. The cameras are designed to not require
any specialised software to retrieve images – only a web browser on a
modern operating system. Therefore any processing that needs to be per-
formed on the images before the viewer sees them must be done in the
camera as the images are retrieved and encoded. Kinopta wants to im-
prove the performance of the Blackeye II in its current applications, and
expand into new applications. They have reached a point where the cur-
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Figure 5.2: Blackeye II camera with breakout board connecting the FPGA devel-

opment board to the image sensor board and microprocessor board.

rent microprocessor-based architecture is unable to provide the improve-
ments they now seek. This project provides a solution to this problem in
the form of an FPGA-based hardware accelerator.

The existing microprocessor system is unable to achieve a frame rate
greater than 2 fps. The addition of planned image processing operations
will cause it to slow down even more. Planned applications of the Black-
eye II require a frame rate of 12.5 fps. A solution is required that enables
the camera to operate at higher frame rates while performing additional
image processing operations. Furthermore, the solution must be designed
with power consumption in mind.

In this project a solution was proposed, and from this a proof of concept
system was designed, built and tested. The solution is an FPGA-based
hardware accelerator. For operations that can be performed in parallel,
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hardware solutions provide improved performance for low energy costs
compared with software. Such a system is an image processing pipeline
because it is highly parallel. FPGAs are an ideal platform for the design of
digital hardware solutions, particularly in low volume production, such
as the Blackeye II, due to the low NRE costs compared with other ASICs.
JPEG encoders for FPGAs are available for licensing, but a custom solu-
tion is preferred by Kinopta. This project implements a JPEG encoder
which improves upon existing designs. The project then creates an im-
age processing pipeline that receives data from the camera’s image sensor,
performs image processing operations upon it, encodes it as a JPEG file
before transferring it to the microprocessor of the camera.

The JPEG standard is based around blocks of 8 × 8 pixels, referred to
as MCUs. Each MCU is transformed into a frequency domain represen-
tation by way of a 2D-DCT. The frequency precision is reduced by way
of a quantisation operation. This data is reordered by a zig-zag buffer for
encoding. The final stage is a Huffman encoder, which is the stage where
data compression occurs. These four sections form distinct modules in
the FPGA design. The 2D-DCT is the most process-intensive operation,
and therefore is the focus of much research. The DCT algorithm in this
project was based upon the work of Woods et al. [1]. It was found that the
coefficients used in this approximation of the algorithm did not provide
accurate results, and new coefficients were found. The trade-off between
precision and accuracy in operations in the DCT and quantisation mod-
ules was explored. By identifying this relationship the design minimised
the resources it required for the desired accuracy. The JPEG encoder was
designed in VHDL, and was found to work successfully in simulation.

The FPGA system receives data from the camera’s image sensor via
ISI. This provides a greyscale bitmap of the image, which is forwarded
on to the image processing pipeline. The ISI includes blanking periods in
which no data is sent, so a mechanism was developed to pause the image
processing pipeline until data transmission resumes. Data is tracked by a
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data valid signal as it passes through the image processing pipeline so that
modules may be identified as in use or not. A clock gating mechanism is
used to pause modules whenever they are not use in order to reduce the
power consumption of the design.

The architecture of the pipeline is designed to allow for convenient se-
quential insertion of image processing modules. For this project an exam-
ple image processing module was implemented. This module performs
an image sharpening operation, and operates successfully within the sys-
tem architecture. The image processing pipeline concludes with the JPEG
encoder. To transfer the data to the microprocessor, the microprocessor’s
dedicated ISI peripheral is used. A dedicated output module was devel-
oped as an interface between the JPEG encoder modules and the ISI. A
state machine controls the output module and makes sure that the output
data conforms to the microcontroller’s ISI specifications. A module, out-
put/data, concatenates and buffers data from the JPEG encoder in prepara-
tion for the output module to transmit it in bursts. With the completion of
the output module the system was able to be tested in hardware.

An FPGA development board was used for testing the system. A break-
out board was used to interface the FPGA development board with the
boards of the Blackeye II camera. The camera’s webserver was used to
observe the images as they arrived from the FPGA system to the micro-
processor. The system was found to operate successfully at frame rates of
up to 20 fps.

The JPEG encoder compares favourably against the commercially avail-
able encoders, and provides the flexibility and performance that the project
required. The proof of concept system required minimal changes to the
existing camera hardware in its implementation. It provided a tenfold in-
crease in frame rate, which exceeds the project’s requirements. The system
also demonstrates how image processing operations can be added without
affecting the frame rate. The power consumption of the FPGA system is
minimised by the use of control mechanisms to turn off modules when
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not in use, and by reducing the resource usage through careful analytic
design.

This project produced a proof of concept of a hardware accelerator for
the Blackeye II camera. The architecture this system introduces allows a
small company to increase the performance of its product. The camera
will provide a more competitive solution in its existing applications, and
be able to offer solutions in new applications. Kinopta intends to use the
work done in this project as the basis for upcoming revisions to its cam-
eras, and is currently engaging in a hardware redesign to incorporate it.
The features of the system developed in this project enable this redesign
to be achieved with minimal effort. They have hired me to continue de-
veloping the FPGA system for them.
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5.6 Statement from Kinopta

The following is a statement about this project from the founder of Kinopta,
Don Peat:

Alexander Kane has engaged in a project for Kinopta Ltd, to
implement a JPEG algorithm on an FPGA, suitable for inclu-
sion into our Blackeye II camera system.

Kinopta is a company that had its origins in a different
technology business (satellite communications), but moved
into remote imaging as a strategic business decision. The
company developed two initial cameras systems for remote
resource management and protection, such as coastal fish-
eries. First Farsight, then Blackeye1, using OEM camera mod-
ules, and a simple controller to store images on an SD card.
It soon became clear that there were other markets in this
space, and that a much more sophisticated and more auto-
matic camera platform was needed, to give both the image
quality and a simple user experience.

The company is still on this trajectory – the Blackeye II
camera system went a good distance to reaching these mar-
ket and strategic requirements. But always, there are the
drivers for faster imaging, lower power and longer endurance,
better photos, and very importantly, better tools to find the
photos of interest in very large archives. On that last point,
Kinopta has a proprietary and ’patent applied for’ method of
indexing and rapidly locating individual images in massive
photo archives, which can easily contain millions of individ-
ual images.



118 CHAPTER 5. EVALUATION AND CONCLUSION

Although we have a relatively fast processor for an em-
bedded system, a 400MHz ARM9 computer, the JPEG algo-
rithm in particular, takes a good amount of time, and lim-
its the sustained photo rate to about 2 frames per second
(fps) for our standard WVGA image sensor. The JPEG al-
gorithm for a 5 megapixel sensor we have been testing takes
seconds. The company has long recognised that an FPGA
could do this and other image processing tasks at the na-
tive frame rate of the sensor, allowing faster performance,
and/or lower power by virtue of the fact that the system can
potentially sleep between image tasks. But we are a small
company with limited resources at this time, so we were
grateful when Alexander embarked on a project to integrate
an FPGA into our Blackeye II system specifically to imple-
ment an efficient JPEG algorithm for the reasons just men-
tioned. It needed someone with talent and commitment to
own and champion this process to see it through.

For a number of reasons we strongly believe this is an
important strategic capability for the company, not just for
the initial advantages of a hardware JPEG processor, but ul-
timately (and in conjuction with the CPU) for other ways to
analyse images on-the-fly to look for certain characteristics.
Number plate recognition with our traffic survey camera, is
a good example of the potential of this.

Alexander has worked extraordinarily well and diligently
on this project. It would have been tough for him working
with a small company that is still trying to develop its mar-
ket, but with a good and resourceful Kiwi spirit, he took it
all in his stride.
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And, at the end of it all, it worked. The hardware config-
uration of the proof of concept design is almost identical to
the actual system that is now being used on the final printed
circuit board which is now in the final stages of design. I
have no doubt that this will work, the final process of a cus-
tom PCB is really just a CAD job, the hard engineering has
already been done by Alexander. But we all look forward to
this working in the final camera housing for real field trials.

We believe that this is just the beginning of FPGA-based
applications for us. It has always been my view as CEO, that
we need to develop cameras that solve real problems, and
that are significantly different from the miriad of low cost
off-the-shelf products that are available out of China. And
we believe that packing enough technology into our cam-
eras, in order to take the right photo at the right time is what
will make our cameras different, and commercially success-
ful. It has been a pleasure to work with Alexander. This
was my first experience with hosting a postgraduate project,
and we’ve certainly learnt a few things about this, but I will
certainly be keen to do this again. I hope it has worked for
Alexander – it was a tough and ambitious project, but one in
which he has ultimately succeeded.

I would also like to commend the VUW engineering school,
on a job well done. I had to make myself remember that
Alexander had just finished an honours degree, and didn’t
have years of professional experience behind him, yet I al-
ways worked with him at the demanding level of an experi-
enced professional engineer. This was a big ask for a newly
graduated engineer, but in my view, he certainly stepped up
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to that mark, and beyond it.

I am most appreciative,

Sincerely,
Don Peat, (BE Hons 1st class, Cant’y 1979)
CEO Kinopta Ltd.

06/12/2012
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Appendix A

JPEG Huffman Tables

The example Huffman tables provided in the JPEG standard Annex K and
utilised in this project are in Table A.1 (DC table) and Tables A.2,A.3,A.4,A.5,A.6,A.7
(AC table).

Category Code Length Code Word
0 2 00
1 3 010
2 3 011
3 3 100
4 3 101
5 3 110
6 4 1110
7 5 11110
8 6 111110
9 7 1111110
10 8 11111110
11 9 111111110

Table A.1: Luminance DC coefficient differences (JPEG Standard Annex K)
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Run/Size Code Length Code Word
0/0 (EOB) 14 1010
0/1 2 00
0/2 2 01
0/3 3 100
0/4 4 1011
0/5 5 11010
0/6 7 1111000
0/7 8 11111000
0/8 10 1111110110
0/9 16 1111111110000010
0/A 16 1111111110000011
1/1 4 1100
1/2 5 11011
1/3 7 1111001
1/4 9 111110110
1/5 11 11111110110
1/6 16 1111111110000100
1/7 16 1111111110000101
1/8 16 1111111110000110
1/9 16 1111111110000111
1/A 16 1111111110001000
2/1 5 11100
2/2 8 11111001
2/3 10 1111110111
2/4 12 111111110100
2/5 16 1111111110001001
2/6 16 1111111110001010

Table A.2: Luminance AC coefficients (part 1 of 6)
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Run/Size Code Length Code Word
2/7 16 1111111110001011
2/8 16 1111111110001100
2/9 16 1111111110001101
2/A 16 1111111110001110
3/1 6 111010
3/2 9 111110111
3/3 12 111111110101
3/4 16 1111111110001111
3/5 16 1111111110010000
3/6 16 1111111110010001
3/7 16 1111111110010010
3/8 16 1111111110010011
3/9 16 1111111110010100
3/A 16 1111111110010101
4/1 6 111011
4/2 10 1111111000
4/3 16 1111111110010110
4/4 16 1111111110010111
4/5 16 1111111110011000
4/6 16 1111111110011001
4/7 16 1111111110011010
4/8 16 1111111110011011
4/9 16 1111111110011100
4/A 16 1111111110011101
5/1 7 1111010
5/2 11 11111110111
5/3 16 1111111110011110

Table A.3: Luminance AC coefficients (part 2 of 6)
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Run/Size Code Length Code Word
5/4 16 1111111110011111
5/5 16 1111111110100000
5/6 16 1111111110100001
5/7 16 1111111110100010
5/8 16 1111111110100011
5/9 16 1111111110100100
5/A 16 1111111110100101
6/1 7 1111011
6/2 12 111111110110
6/3 16 1111111110100110
6/4 16 1111111110100111
6/5 16 1111111110101000
6/6 16 1111111110101001
6/7 16 1111111110101010
6/8 16 1111111110101011
6/9 16 1111111110101100
6/A 16 1111111110101101
7/1 8 11111010
7/2 12 111111110111
7/3 16 1111111110101110
7/4 16 1111111110101111
7/5 16 1111111110110000
7/6 16 1111111110110001
7/7 16 1111111110110010
7/8 16 1111111110110011
7/9 16 1111111110110100
7/A 16 1111111110110101

Table A.4: Luminance AC coefficients (part 3 of 6)
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Run/Size Code Length Code Word
8/1 9 111111000
8/2 15 111111111000000
8/3 16 1111111110110110
8/4 16 1111111110110111
8/5 16 1111111110111000
8/6 16 1111111110111001
8/7 16 1111111110111010
8/8 16 1111111110111011
8/9 16 1111111110111100
8/A 16 1111111110111101
9/1 9 111111001
9/2 16 1111111110111110
9/3 16 1111111110111111
9/4 16 1111111111000000
9/5 16 1111111111000001
9/6 16 1111111111000010
9/7 16 1111111111000011
9/8 16 1111111111000100
9/9 16 1111111111000101
9/A 16 1111111111000110
A/1 9 111111010
A/2 16 1111111111000111
A/3 16 1111111111001000
A/4 16 1111111111001001
A/5 16 1111111111001010
A/6 16 1111111111001011
A/7 16 1111111111001100

Table A.5: Luminance AC coefficients (part 4 of 6)
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Run/Size Code Length Code Word
A/8 16 1111111111001101
A/9 16 1111111111001110
A/A 16 1111111111001111
B/1 10 1111111001
B/2 16 1111111111010000
B/3 16 1111111111010001
B/4 16 1111111111010010
B/5 16 1111111111010011
B/6 16 1111111111010100
B/7 16 1111111111010101
B/8 16 1111111111010110
B/9 16 1111111111010111
B/A 16 1111111111011000
C/1 10 1111111010
C/2 16 1111111111011001
C/3 16 1111111111011010
C/4 16 1111111111011011
C/5 16 1111111111011100
C/6 16 1111111111011101
C/7 16 1111111111011110
C/8 16 1111111111011111
C/9 16 1111111111100000
C/A 16 1111111111100001
D/1 11 11111111000
D/2 16 1111111111100010
D/3 16 1111111111100011
D/4 16 1111111111100100

Table A.6: Luminance AC coefficients (part 5 of 6)
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Run/Size Code Length Code Word
D/5 16 1111111111100101
D/6 16 1111111111100110
D/7 16 1111111111100111
D/8 16 1111111111101000
D/9 16 1111111111101001
D/A 16 1111111111101010
E/1 16 1111111111101011
E/2 16 1111111111101100
E/3 16 1111111111101101
E/4 16 1111111111101110
E/5 16 1111111111101111
E/6 16 1111111111110000
E/7 16 1111111111110001
E/8 16 1111111111110010
E/9 16 1111111111110011
E/A 16 1111111111110100
F/0 (ZRL) 11 11111111001
F/1 16 1111111111110101
F/2 16 1111111111110110
F/3 16 1111111111110111
F/4 16 1111111111111000
F/5 16 1111111111111001
F/6 16 1111111111111010
F/7 16 1111111111111011
F/8 16 1111111111111100
F/9 16 1111111111111101
F/A 16 1111111111111110

Table A.7: Luminance AC coefficients (part 6 of 6)
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Appendix B

JPEG Header

The JPEG standard specifies the application markers in Table B.1.

Table B.1: JPEG application markers

0xFFC0 Start of Frame Marker: Baseline DCT (SOF0)
0xFFC4 Define Huffman tables (DHT)
0xFFD8 Start of image (SOI)
0xFFD9 End of image (EOI)
0xFFDA Start of scan (SOS)
0xFFDB Define quantisation table(s) (DQT)
0xFFDC Define number of lines (DNL)
0xFFDD Define restart interval (DRI)
0xFFE0 Application marker 0 (APP0)
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The JPEG JFIF file as created by the encoder in this project consists of
the following stages:

• SOI (marker)
• JFIF Header
• Tables
• Frame Header
• Scan Header
• data
• EOI (marker)

Content of each section is specified in the following tables.

B.1 JFIF Header

Table B.2: JFIF Header

Content Data
APP0 marker 0xFFE0

JFIF Header length 0x0010

JFIF in ASCII 0x4A46494600

JFIF version 0x0102

JFIF parameters 0x00000100010000
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B.2 Tables

The tables consist of the quantisation table specification, followed by the
Huffman table specifications and the restart interval.

Table B.3: Quantisation Table

Content Data
DQT marker 0xFFDB

Section length 0x0043

Parameters 0x00

Quantisation table 0x0A07070807060A0808080B0A0A0B0E17

in zig-zag order 0x100E0D0D0E1C15151117252025252020

0x2020252B3333252B332B202033403333

0x4040404040252B404040404033404040
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Table B.4: Huffman Tables

Content Data
DHT marker 0xFFC4

Section length 0x00D2

DC Parameters 0x00

DC Huffman table 0x00010501010101010100000000000000

0x000102030405060708090A0B

AC Parameters 0x10

AC Huffman table 0x0002010303020403050504040000017D

0x01020300041105122131410613516107

0x227114328191A1082342B1C11552D1F0

0x2433627282090A161718191A25262728

0x292A3435363738393A43444546474849

0x4A535455565758595A63646566676869

0x6A737475767778797A83848586878889

0x8A92939495969798999AA2A3A4A5A6A7

0xA8A9AAB2B3B4B5B6B7B8B9BAC2C3C4C5

0xC6C7C8C9CAD2D3D4D5D6D7D8D9DAE1E2

0xE3E4E5E6E7E8E9EAF1F2F3F4F5F6F7F8

0xF9FA

Table B.5: Restart interval specification

Content Data
DRI marker 0xFFDD

Section length 0x0004

Restart not used 0x0000
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B.3 Frame Header

Table B.6: Frame Header

Content Data
SOF marker 0xFFC0

Section length 0x000B

Frame height 0x01E0

Frame width 0x02F0

Sampling parameters 0x01001100

B.4 Scan Header

Table B.7: Scan Header

Content Data
SOS marker 0xFFDa

Section length 0x0008

Image component count 0x0100

Huffman tables 0x00

Scan parameters 0x00003F00


