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Abstract

In this thesis, homogenization and perturbation methods are used to de-

rive analytic expressions for effective slip lengths for Stokes flow over rough,

mixed-slip surfaces, where the roughness is periodic, and the variation in

slip length has the same period. If the classical no-slip boundary condition

of fluid mechanics is relaxed, the slip velocity of the fluid at the surface is

non-zero. For simple shear flow, the slip velocity is proportional to the shear

rate. The constant of proportionality has dimensions of length and is known

as the slip length. Any variation in the slip length over the surface will cause

a perturbation to the flow adjacent to the surface. Due to the diffusion of

momentum, at sufficient height above the surface, the flow perturbations

have diminished, and flow is smooth and uniform. The velocity and shear

rate at this height imply an effective slip length of the surface. The purpose

of this thesis is to predict that effective slip length.

Homogenization is a technique for finding approximate solutions to par-

tial differential equations. The essence of homogenization is to construct a

mathematical model of a physical problem featuring some periodic hetero-

geneity, then generate a sequence of models such that the period in question

reduces with each increment in the sequence. If the sequence is appropriately

defined, it has a limit model in the limit of vanishing period, for which a so-

lution can be found. The solution to the limit system is an approximation

to the solutions of systems with a finite period.

We use homogenization to find the effective slip length of a system of

Stokes flow over a periodically rough surface, described by periodic function

h(x, y), with a local slip length b(x, y) varying with the same period. For

systems where the period L is smaller than both the domain height P and



typical slip lengths, the effective slip length beff is well-approximated by the

harmonic mean of local slip lengths, weighted by area of contact between

liquid and surface:

beff =

〈√
1 + |∇h|2
b(x, y)

〉−1

(1)

We further use a perturbation technique to verify the above expression in

the special case of a flat surface, and to derive another effective slip length

expression: For a flat surface with local slip lengths much smaller than the

period and domain height, the effective slip length beff is well-approximated

by the area-weighted average of local slip lengths:

beff = 〈b(x, y)〉 (2)
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Chapter 1

Introduction

1.1 Background

How fast is the water at the bottom of the canal? Is it moving or at rest?

The first person to provide an answer to this question (indeed, perhaps the

first to ask it; entertainment was limited in those days) was probably Daniel

Bernoulli. He claimed: the water is at rest. This pronouncement was made

in 1738, but it was not until the twentieth century that this notion came

to be accepted as universally valid. This notion is of course the ‘no slip’

boundary condition of fluid mechanics.

The foundations of fluid mechanics were laid by Navier and Stokes by

about 1840. Their eponymous equation captured the fact that an element of

fluid obeys Newton’s Second Law F = ma just as surely as ‘solid’ matter. But

the Navier-Stokes equations are not enough: While they describe behaviour

in the bulk of the fluid, to generate a complete description of the fluid, we

need information about what goes on at the boundaries.

Unlike the case of the bulk fluid obeying Newton’s universal laws of mo-

tion, there seemed to be no fundamental a priori principle at work on the

boundary. However, there was a body of experimental work. Interestingly,

no clear picture — let alone a clear principle — had emerged from the exper-

iments. Bernoulli’s early result had later been contradicted by experiments

1



2 CHAPTER 1. INTRODUCTION

showing slip. That is, the fluid in contact with the solid surface moved, or

slipped, along the solid. By the 1840s, the issue had become sufficiently con-

troversial that Stokes himself was commissioned to sort the matter out. At

length, he determined that fluid did not slip along the solid surface. But the

matter didn’t end there; for example, Helmholtz found evidence of slip in

the 1860s. The issue wasn’t fully settled until 1927, when Tausz and Körosy

published a book in which previous evidence of slip was dismissed as ex-

perimental artefact. An overview of this early history (and much more) is

available in the excellent 2005 review article by Chiara Neto et al [39].

Thus, by the early twentieth century, the no slip boundary condition

had become cemented in fluid mechanics textbooks. However, by the the

twenty-first century, evidence was beginning to accumulate that the no slip

condition sometimes does not hold. Before discussing this, it will help to

introduce some mathematical machinery — specifically, the concept of slip

length.

1.2 Slip Length

Let us consider what is surely the simplest case of fluid flow: Couette flow. In

this canonical regime, some fluid sits between two parallel solid plates. One

of the plates is moving at a constant velocity, with respect to the other plate.

(For clarity we shall often assume that the bottom plate is stationary, and

the top plate moves; another convention is that the two plates have equal and

opposite velocities.) The plates are considered to be infinite planes; likewise,

the interstitial fluid extends infinitely in all horizontal directions, so that

there are no ‘edges’ to the system. We are interested in the flow velocity

field of the fluid in the steady state. A schematic diagram of a Couette flow

system is in Figure (1.1).
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Top Plate, at Constant Velocity uP

Fluid

Bottom Plate, Stationary

z

x

P

Figure 1.1: The system of Couette flow

This setup is amenable to experimental measurement; the point of theo-

retical physics is to generate a prediction of the measurements using math-

ematical reasoning. To that end, we need a mathematical model of the

physical situation. We work in R3, with z being the vertical direction, and

x the left-to-right horizontal direction. The fluid is modeled as a continuum

velocity field ~u(x, y, z) = (u, v, w) obeying the Navier-Stokes equations at

all points. The boundaries of the fluid – the two plates – are modeled as

perfect x, y planes, separated by a width P . The bottom boundary is the

plane z = 0, the top the plane z = P . The bottom boundary is stationary,

while the top boundary has a constant velocity ~uP in the x direction (with

magnitude uP ).

To solve the Navier-Stokes equations, a boundary condition is required.

Let’s start with the simple classical case of no slip. Since the fluid sticks to

the boundaries, the fluid at the bottom boundary has zero velocity, while

fluid at the top boundary has velocity ~uP . The fluid has viscosity, that is, a

layer of fluid atoms sliding over another layer causes a shear stress that tends

to accelerate the lower layer. By this mechanism, the driving plate drives the

entire bulk fluid, as the driving velocity propagates down through the fluid.
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The steady-state solution is that the fluid velocity is in the x direction only,

with a magnitude u(z) that changes linearly between 0 at the bottom and

uP at the top:

u(z) =
z

P
uP (1.1)

A schematic of Couette flow with its characteristic linear velocity gradient

appears in Figure (1.2).

Top Plate, Velocity uP

Velocity Vectors

Bottom Plate, Stationary

P

Figure 1.2: Couette flow

Now let’s relax the no slip condition and consider some kind of slip bound-

ary condition. The simplest such condition is that there is a finite slip velocity

at the surface, and that velocity is proportional to the shear rate in the fluid.

This condition was first proposed by Navier:

uslip = b
∂u

∂z
(1.2)

The constant of proportionality b, has units of length, and accordingly is

known as the slip length.

Since the shear stress is proportional to the shear rate, the Navier slip

relation says that the shear stress on the fluid at the boundary is proportional
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to the fluid velocity at the boundary.

In the model in use here, the slip length has a simple geometric interpre-

tation: The velocity gradient at the wall may be linearly extrapolated into

the wall. The distance into the wall at which the velocity would be zero, is

the slip length.

Couette flow with a non-zero slip length is shown in Figure (1.3).

Top Plate, Velocity uP

Velocity Vectors

Slippery Surface

P

Slip Length b

uslip

Figure 1.3: Couette flow with slip

At this point we stop to emphasize that the slip length is a feature of

the mathematical model. We have assumed two things: First, the boundary

between fluid and solid is a perfect Euclidean plane. Second, the fluid is

a continuum, allowing for a well-defined velocity gradient at the boundary.

Reconciling this Platonic ideal with a real physical experiment is non-trivial.

We shall go into some depth with this issue shortly.

The slip length is a property of the fluid/solid interface, and can in prin-

ciple vary in space. This leads us to the concept of effective slip length, the

calculation of which is the subject of this thesis.
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1.3 Effective Slip Length

Working again with the same model, let us assume the slip length b is a

parameter that varies over the solid surface. This could model the case when

the surface material changes spatially, eg. high-slip Teflon regions on a no-slip

metal surface. Again, we seek a velocity flow field description of the fluid.

In this case, a simple solution is not readily apparent — the problem has

essentially gained an extra dimension. In fact, there are no known analytical

solutions to this general problem.

The flow field near the surface will no longer be a straightforward laminar

flow, but will be perturbed by the spatial variations in slip length. However,

we would expect those perturbations to decay with increasing height above

the surface. At sufficient height, the perturbations will be essentially zero,

and the flow will be uniform laminar flow. This uniform flow has a shear

rate that does not vary over space. Therefore, the velocity gradient can be

extrapolated down to the solid surface, and into the surface, defining an

effective slip length.

This is illustrated in Figure (1.4).

The far-field flow of the system is equal to that of an effective system,

defined as follows: The effective system has the same top boundary condition,

but has a no-slip boundary condition holding on a lower surface located

distance beff below the surface of the original system.

The no-slip plane of the effective system is denoted the effective no-slip

plane. Hence, the effective slip length of the system of perturbed Couette

flow is the distance that the effective no-slip plane lies below the physical

surface plane. See Figure (1.5).
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Top Plate, Velocity uP

Velocity Vectors

Perturbed

Flow

Surface with
Variable Slip

Effective
Slip Length beff

b(x, y)

Figure 1.4: Effective slip length

Effective
Slip Length beff

Effective No-Slip Plane

Perturbed Couette Flow System Effective System

Figure 1.5: Effective no-slip plane
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1.4 Effective Slip Length of Rough Surface

We now extend the model, allowing the solid surface to be rough rather than

just flat. We allow the local slip length to vary over the surface, as before.

The definition of effective slip now acquires a subtlety: the solid-liquid

interface is no longer a flat plane. The system still behaves like an effective

system with an effective no-slip plane located below the physical surface. But

now the distance from the physical surface to the effective no-slip plane is

ambiguous. In principle, one could measure the distance from the troughs of

the rough surface, or the peaks, or any point in between. See Figure (1.6).

In fact, as we shall see in Chapter 3, this ambiguity caused apparent contra-

dictions in the measurement of effective slip on rough surfaces, as different

researchers adopted different conventions.

Top Plate, Velocity uP

Velocity Vectors

Perturbed

Flow

Rough
Surface with
Variable Slip

Effective
Slip Length beff

b(x, y)

Figure 1.6: Effective slip length of rough surface
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Defining a nominal surface plane at the tops of the peaks of the surface

roughness is a defensible choice. See Figure (1.7). That way, pure bulk con-

ditions hold above the nominal surface. Furthermore, physical instruments

probing the position of the surface would tend to encounter the tops of the

peaks, and record this as the surface position. Incidentally, this convention

has the effect of maximizing effective slip lengths measured on rough surfaces.

Nominal Surface Plane

Effective
Slip Length beff

Effective No-Slip Plane

Perturbed Couette Flow System Effective System

Figure 1.7: Effective no-slip plane with rough surface
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1.5 Purpose of Thesis

The purpose of this thesis is to present a theory with which to predict the

effective slip length, given knowledge of the local slip length:

beff = f(b(x, y)) (1.3)

Furthermore, the theory can deal with a rough surface, where the rough

surface is described by a height function h(x, y):

beff = f(b(x, y), h(x, y)) (1.4)

We present a formula for beff , in the idealized case where surface roughness

is periodic, and the local slip length varies with the same period, in the

limiting case where the local slip length is always large compared to the

period of surface roughness.

The answer turns out to be that beff is the area-weighted harmonic average

of the local slip length, where the area in question is the area of contact

between solid and liquid.

beff =

〈√
1 + h′2

b

〉−1

(1.5)

The core of this thesis is a rigorous derivation of this result.

We also confirm, using a completely different mathematical technique,

the special case of a flat surface:

beff =

〈
1

b

〉−1

(1.6)

We further show that for a flat surface, in the opposite limiting case where the

period is large compared to any local slip length, that beff is the area-weighted

average of local slip lengths:

beff = 〈b〉 (1.7)
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1.6 Application of Thesis

The question of whether or not fluid slips at the solid boundary is funda-

mental to fluid mechanics in the following sense: To solve the Navier Stokes

equation, a boundary condition is needed, and the no-slip condition was ac-

cepted by consensus only after lengthy controversy. However, in almost all

practical applications, plumbing, drainage, ship building etc., it turns out

that any slip will be too small to matter. At the macro scale, the no-slip

boundary condition is observed.

Only recently has the possibility of fluid slip become important, in the

new fields of microfluidics and nanofluidics. In these fields, researchers and

engineers fabricate devices in which fluid flows through pipes with a width

measured in microns, or even smaller. In such channels, the high surface area

to volume ratio works strongly against fluid flow. If the no-slip condition

could be relaxed, then flow rates could be increased significantly.

Hydrophobic channel walls give the possibility of a non-zero intrinsic slip

length. However, larger slip effects are attempted by creating surfaces that

contain regions of air, perhaps trapped in small pockets on the surface. Then

the fluid flows partly over an air-water interface, which is expected to have

a large intrinsic slip length. Experiments show increased flow rates through

channels with such walls [43, 25].

The question is then how much would flow rates increase with these exotic

surfaces. This can be rephrased as ‘what is the effective slip length of the

surface?’ This thesis offers a means of calculating the effective slip length for

some cases.
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1.7 Structure of Thesis

The core of this thesis is essentially the shortest possible physically and

mathematically rigorous derivation of the harmonic mean formula for beff .

The remainder of the thesis consists of an alternative derivation of a special

case of the harmonic mean formula, a derivation of another formula for beff in

the complementary regime, some numerical testing, and a brief look at some

analogues of effective slip in other physical systems.

Chapter 2 ‘Does Slip Exist?’ reviews the literature on slip, focussing at

reasonable depth on the (few) papers that credibly demonstrate intrinsic slip

on a clean, atomically flat surface. It ultimately concludes that an intrinsic

slip length of 10 - 20 nm has been seen on hydrophobic surfaces.

Chapter 3 ‘Mixed Slip Flow’ looks at flow over surfaces that are rough,

or have a varying intrinsic slip length. The focus is on ‘superhydrophobic’

surfaces and nanobubbles, and the importance of carefully locating the z = 0

plane.

Chapter 4 ‘Effective Slip Length Expressions: Prior Work’ is a literature

review of previous results for an effective slip length. Since the work in this

thesis has been published as three papers [22, 35, 36], the work is easily

placed in context with other peer-reviewed articles.

Chapter 5 ‘The Mathematical Model’ sets up the formal mathematical

framework, including the definition and explanation of the velocity gradient

tensor, and the simplification to Stokes flow.

Chapter 6 ‘The Homogenized Effective Slip Length’ is the core of the

thesis: The technique for solving partial differential equations known as ho-

mogenization is explained in some detail, and then applied to the effective

slip problem. An expression for beff is derived for the regime where the period

is much smaller than any local slip length.

Chapter 7 ‘Perturbative Effective Slip Lengths’ uses the completely dif-

ferent technique of perturbation methods to derive beff for the special case of

a flat surface. Also derived is another expression for beff that applies in the

contrasting regime where the period is much larger than slip lengths.
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Chapter 8 ‘Numerics’ shows that numerical simulations using finite ele-

ment modelling are in excellent agreement with our expression for beff .

Chapter 9 ‘Analogues of Effective Slip’ takes a brief look at other physical

problems that happen to be described by a very similar mathematical model

to that analysed in Chapter 5, and therefore have a similar solution. A

problem in thermal insulation, and a problem in catalysis are given a brief

treatment.

Chapter 10 ‘Conclusion’ summarises and considers future extensions to

the work.

1.8 Publications from the Work of this Thesis

The work of this thesis has been published as three papers, with the second

subsuming the first. The first was written by my supervisor Dr Shaun Hendy,

after he developed a perturbative method to derive effective slip lengths for

a one-dimensional flat surface, with analytical assistance from myself [22]. I

then extended the perturbation method to derive effective slip lengths for 3-

D flow over a two-dimensional flat surface. This work generalised the earlier

result, and I wrote a paper describing it in 2008 [35], with supervision from Dr

Hendy. Dr Xingyou ‘Philip’ Zhang then introduced us to the homogenization

method, which has a standard solution to a certain class of problems – like

ours – characterized by periodicity. With assistance from Philip, I applied the

homogenization method to our problem, deriving an effective slip length for

rough surfaces. I then organized testing of the result via molecular dynamics

simulations performed by a fellow student, Keoni Mahelona. I wrote a paper

describing this work in 2012 [36], with guidance from Dr Hendy and Dr

Zhang.
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Chapter 2

Does Slip Exist?

A theory of effective slip could be treated as a purely mathematical result,

with the slip length being simply a parameter in the model. However, a

theory of effective slip has practical value only if the slip length parameter

has some physical meaning: quantifying the slip effect for flow over a ho-

mogeneous physical surface. Establishing that a slip effect exists on clean,

atomically flat surfaces is far from trivial. Therefore, in this chapter we will

examine the literature on the experimental and theoretical evidence for slip.

This cannot be a comprehensive review of all available literature, but

rather will be a sample of some high-profile papers. An exhaustive review of

the experimental literature is available in the 2005 review article by Neto et

al [39]. Other comprehensive reviews are by Vinogradova in 1999 [60] and

Lauga, Brenner and Stone in 2006 [31]. A reasonable introduction is the

progress article of Granick et al from 2003 [20].

2.1 Types of Slip

So far, we have discussed slip within a mathematical model of fluid flow;

this is deliberate: in such a model the concepts of slip and slip length are

straightforward and intuitive. However, we now need to tackle slip in the

real world, disentangling a partially-ordered hierarchy of concepts.

15
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2.1.1 Definitions in the Literature

The 2006 review article by Lauga, Brenner and Stone [31] proposes the fol-

lowing definitions (some paraphrased):

• Phenomenon of slip: A fluid dynamics system behaving as if the

fluid velocity at the wall differs from the wall velocity.

• Molecular slip (also intrinsic slip): ‘Refers to the possibility of using

hydrodynamics to force liquid molecules to slip against solid molecules.’

• Apparent slip: The case when the no-slip condition holds on the

surface, but at larger length scales, the no-slip condition appears not

to be valid.

• Effective slip: ‘Refers to the case where molecular or apparent slip

is estimated by averaging an appropriate measurement over the length

scale of an experimental apparatus.’

These definitions are a good place to start. But they make no mention of

mixed-slip surfaces. We shall accept these definitions, but modify and extend

them to deal cleanly with the separate cases of pure and mixed-slip surfaces.

The first modification is to separate molecular slip from intrinsic slip.

• Intrinsic Slip: When a clean, atomically flat homogeneous surface

behaves as if the no-slip condition does not hold.

With this definition, Intrinsic Slip may be due to Molecular Slip or Ap-

parent Slip.

The second modification is to take Lauga et al ’s concept of ‘Effective Slip’

and simplify it, then relabel it as simply ‘Measured Slip’.

• Measured Slip: A slip effect measured with some experimental ap-

paratus.
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This allows us to use the phrase ‘Effective Slip’ to emphasize the possible

heterogeneity of the surface:

• Effective Slip: A slip effect imputed to liquid-solid interface, where

the surface is not known to be homogeneous and atomically flat.

We shall discuss some of these concepts in more depth.

2.1.2 Measured Slip

As we shall see shortly, all measurements are to some extent indirect: Ex-

periments cannot yet directly probe the fluid velocity in the region within

a few nanometers of the surface. A measurement of a slip effect may be

measuring molecular slip, apparent slip, or, for a heterogeneous surface, any

combination of the two.

There are no direct measurements of slip; if there were, they would be

measuring molecular slip.

2.1.3 Intrinsic Slip

Suppose we can prepare a perfectly clean, atomically flat sample of some

material. Further, suppose we can experimentally test the sample for slip

effects with some pure liquid. If a slip effect appears, and can be consistently

replicated, then the implied slip length is a meaningful, reliable parameter of

the fluid-solid system. It is reasonable to label this the intrinsic slip length.

Intrinsic slip may be due to molecular slip or apparent slip.

2.1.4 Molecular Slip

‘True slip’ means that the fluid at the boundary has a non-zero velocity. At

the smallest scale, the fluid velocity at a point is the average velocity of an

ensemble of molecules. Thus, ‘true’ slip means that the average velocity of

the molecules in contact with the wall is non-zero. This implies that the
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molecules in contact with the wall are not all sticking to the wall all the

time. If (some) fluid molecules at the surface are slipping along the surface,

this is termed molecular slip.

There are no direct observations of molecular slip, though (as explained

later) it is observed in molecular dynamics computer simulations.

A hypothetical mechanism for molecular slip in liquids could be one sim-

ilar to the (known) mechanism for slip in gases – Knudsen Slip:

Molecular Slip in Gases – Knudsen Slip

In a gas, the mean free path is many times larger than the gas molecule size,

so an interaction with the wall will almost certainly not involve another gas

particle. Therefore, the interaction can be treated as a simple reflection.

A gas particle has some momentum in the direction tangent to the wall.

If an incident gas particle simply sticks to the wall, then all of its tangential

momentum is transferred to the wall. This is the case of ‘stick’ or the no-slip

condition. If the particle subsequently detaches with a velocity in a random

direction, on average its tangential momentum will still be zero – the same

as the wall.

At the other extreme, suppose that an incident particle undergoes specu-

lar reflection, bouncing off the wall with no change in its tangential momen-

tum. With no momentum loss, there is no ‘friction’, and the gas experiences

perfect slip.

While specular reflection is defined as the equality of well-defined angles

of incidence and reflection, the key aspect of the interaction is that the wall-

particle force is always perpendicular to the wall, so the wall cannot change

the tangential momentum of the colliding particle. This will always be the

case if the wall is perfectly flat and rigid, although this is an idealised limiting

case. In real systems exhibiting Knudsen slip, only some fraction of gas

particles will undergo specular or close-to-specular reflection.

An effect similar to Knudsen slip may occur in fluids, although the mean

free path in a liquid is generally less than the molecular diameter, so angles
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of incidence and reflection become difficult to define. However, particle-wall

collisions in which the particle loses no tangential momentum may still occur.

A computer simulation where the wall is defined as perfectly flat and rigid

would allow this.

2.1.5 Apparent Slip

Perhaps the simplest alternative to molecular slip to explain slip effects is

apparent slip. The idea is that there exists a boundary layer of reduced

viscosity at the solid surface. As a consequence of the lower viscosity, the

velocity gradient in the boundary layer is steeper than in the bulk. Thus,

the velocity gradient ‘turns a corner’ at the interface between boundary layer

and bulk. The no-slip condition holds at the solid-liquid interface, but the

velocity gradient in the bulk can be extrapolated to generate a slip length,

as shown in Figure (2.1).

Solid

Low-viscosity
fluid

High-viscosity
bulk fluid

ux

Figure 2.1: Apparent slip caused by a depletion layer with lower-than-bulk

viscosity.

If the boundary layer has sufficiently low density, then only a very thin

layer is required to explain observed effects: de Gennes notes that observed

slip effects are explainable by a gas layer, only 1 or 2 atoms thick [18].
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2.1.6 Types of Slip Redux

We summarize the hierarchy of slip concepts in Figure (2.2) below:

No

Slip

Molecular

Slip

No

Slip

Molecular

Slip

Apparent

Slip

No

Slip

Molecular

Slip

Apparent

Slip

Direct

Measured Slip

Intrinsic Slip

Pure Surface

Effective Slip

Mixed Surface

Indirect

Figure 2.2: Hierarchy of slip concepts.

Note that the ‘Direct Measurement’ category is there just for complete-

ness – as mentioned, experiments cannot presently verify molecular slip.
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2.2 Experimental Intrinsic Slip

Probably the first credible experiments showing a slip effect are those by Er-

hard Schnell in 1956 [50]. In a series of careful experiments, Schnell treated

glass capillaries with dimethyldichlorosilane to make them hydrophobic. The

silicone layer decreased the capillary diameter by 0.01% to 0.04%. Neverthe-

less, at sub-turbulent velocities, the hydrophobic capillaries flowed 0% - 5%

more water than otherwise-identical untreated capillaries. He attributed this

excess flow to slip: “ ...this can only be explained by the slippage of water

over the non-wettable surface.”

After Schnell, various experiments that illustrated slip were reported.

But, it is fair to say that it wasn’t until the 21st century that truly believ-

able evidence appeared. Modern experimental techniques on slip progressed

rapidly, starting from the 1990s, particularly after the widespread availability

of the Atomic Force Microscope and its derivatives. The first of these new

experiments exposed a large host of subtle errors and competing interpreta-

tions. See for example [45], [14], [4], [67], [8], [38].

Hence, there is little benefit in examining the complete history of slip

experiments. Instead, we shall focus on more recent results, obtained with

mature experimental techniques.

The are three common experimental techniques used to study slip: Cap-

illary flow, drainage force, and particle velocimetry.

Capillary Flow

In this self-explanatory technique, the volumetric flow rates through cap-

illaries are compared to standard theory. The standard theory for flow in

a straight circular pipe with no-slip boundary conditions is Poiseuille flow.

There is another analytic solution for the same pipe with Navier slip on the

boundary. This solution is fitted to the experimental data; the parameter in

question is the slip length. Thus, an imputed slip length is found.
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Drainage Force

In this technique, a tiny sphere is repeatedly pushed towards the test surface.

As the sphere nears the surface, the fluid is squeezed out of the way. The

force required to squeeze the fluid depends on the boundary condition at the

test surface. A theoretical model due to Vinogradova [59] is used to predict

the force, with slip length as the adjustable parameter; by fitting the model

to the data, a slip length is inferred. In practice, the sphere is mounted on

a cantilever, and driven in an oscillatory fashion, with force being calculated

by the deflection of the cantilever.

An Atomic Force Microscope (AFM) in tapping mode is often used, as

well as a similar purpose-built apparatus known as the Surface Force Appa-

ratus (SFA). This technique is very sensitive to inaccuracies in the position of

the sphere relative to the surface. Recent results use sophisticated techniques

to determine this accurately.

Particle Velocimetry

In this technique, thousands of tiny fluorescent particles are dumped in the

flow. Various methods are used to track the particles, and infer their velocity.

The particles are small enough that Brownian motion is significant, so that

it is necessary to average their velocity over a finite volume. This obviously

reduces the resolution of the inferred velocity field, so that this technique is

still not ‘direct’ enough to see molecular slip. Slip lengths are inferred by

extrapolating a fitted velocity profile.

2.2.1 Recent Experimental Literature

The widespread acceptance of the no-slip boundary condition of classical

fluid mechanics was based on observation. But given that slip effects were

not noticed until the length scale of experiments became extremely small, are

we sure that the no-slip condition really holds? So our first order of business

is to verify the no-slip condition at the smallest possible scales.
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No Slip

Two recent papers show convincing evidence that the no-slip condition holds

on hydrophilic surfaces.

The first, by Vinogradova and Yakubov in 2003 [61], was a drainage force

experiment, one of the earliest to use an AFM for extra sensitivity, rather

than the usual SFA. A silicate glass sphere was tapped onto a hydrophilic

silicon surface, both of which were molecularly smooth: rms roughness was

0.3 nanometers peak-to-peak. (For comparison, a water molecule is about

the same size.) The experiment revealed no slip.

The trouble with this sort of experiment is the difficulty in determining

the exact distance between sphere and surface. This concern was taken very

seriously in the second paper by Honig and Ducker, from 2007 [23]. They

note: “It is important to note that an error in determining the position of the

solid-liquid interface (h = 0) directly translates into an error in determining

the slip length. In traditional colloidal probe measurements, the separation

is not measured explicitly; the relative separation is determined from the sum

of the displacement of a piezoelectric translation stage (“piezodisplacement”)

and the deflection of the cantilever. The zero of separation is inferred from

the shape of deflection/piezodisplacement data.” Problems include high force

gradient near zero separation, thermal drift, and the fact that net separation

is the small difference between two large measured displacements.

Honig and Ducker measure drainage forces with an AFM, but with what

they claim is an explicit measurement of the separation between sphere and

surface: “We obtain the separation from the intensity of scattering of an

evanescent wave by the particle.” The particle — the glass sphere of diameter

10µm, was hydrophilic, with an rms roughness of 0.7 nm peak-to-peak, and a

typical maximum peak-trough roughness of 4.5 nm. The glass plate was also

hydrophilic, with an rms roughness of 0.25 nm, and a typical peak-trough

roughness of 1.5 nm. A highly-wetting sucrose solution was used, with θ < 5◦.

In six experiments, no slip was found, even at shear rates of 250,000 sec−1.
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Apparent or Molecular Slip

The same level (or even greater) of care was taken in drainage force exper-

iments performed by Cecile Cottin-Bizonne et al in 2005 [13]. They used a

SFA, but measured the distance between sphere and surface with a capac-

itive sensor, to a resolution of 1 Angstrom(!). The force on the plane was

measured by the deflection of the cantilever on which it was mounted, with

a resolution of 1 Angstrom. The sphere was hydrophilic, while the plane

was rendered hydrophobic by silanization with octadecyltrichlorosilane. The

plane was examined with an AFM, revealing a peak-to-peak roughness of 1

nm. Experiments were carried out in a clean and thermally isolated room.

With this setup, an implied slip of 19± 2 nm was measured. She empha-

sizes that the value “does not depend on any pre-estimated values of liquid

properties (viscosity, diffusivity of optical tracers) or of the geometry of solid

surfaces, unlike data analysis used in AFM experiments or fluorescence mea-

surements”. She further notes that early high-slip results were probably due

to nanobubbles from cavitation or contamination with platinum nanoparti-

cles. She finally notes that changing the environment to a clean room changed

the results drastically(!).

It is worth noting that ‘conventional’ drainage force techniques continue

to improve. A very recent (2011) paper by Neto et al [66] develops a ‘best

practice experimental protocol’ for studying slip with an AFM. In a con-

ventional AFM device, a piezoelectric element drives a small platform down

towards the test surface. To the platform are mounted a laser, a photodiode

and a cantilever spring. On the end of the cantilever is a small sphere — a

colloid; hence the apparatus is known as a colloidal probe. When the col-

loid encounters hydrodynamic resistance, or hits the surface, the cantilever

deflects. This deflection is optically detected by the photodiode. Thus, the

raw outputs of a typical AFM are the displacement of the piezo element and

the photodiode voltage.

Obviously, the colloid-surface distance is not directly measured, it is in-
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ferred from raw data. This paper identifies two problems. First, the platform

flexes, causing the laser and photodiode to move relative to each other, caus-

ing a spurious deflection signal. Second, when the colloid hits the surface,

it scrapes sideways along the surface slightly. The resulting friction causes a

deflection of the cantilever in addition to the deflection caused by the normal

force. Neto et al quantify and correct for these effects in their processing of

the raw data.

With this protocol, they study slip in di-n-octylphthalate, and find a

reproducible slip length in the range 24 - 31 nm. The occasional slip length

of ∼ 60 nm prompts them to inspect the surface, after the slip experiments.

They find contamination by nanoparticles about 20 nm in diameter, and note

that this causes a false value for the zero of separation, which explains the

occasional anomalously high slip measurement.

Turning now to particle velocimetry techniques, Huang et al in 2006 [24]

presented a fairly standard application of this method, but with some care

taken to prevent the formation of nanobubbles: Purified water was used,

which was degassed by exposure to a vacuum for 30 minutes. 200 nanometer

diameter tracer particles were dispersed in the water, which flowed down

channels etched in PDMS plastic. Some channels were rendered hydrophobic

by silanization with octadecyltrimethylsilane. The hydrophilic surfaces had

rms roughness of 0.47 nanometers, while the hydrophobic surfaces has an

rms roughness of 0.35 nanometers.

Total Internal Reflection Velocimetry was used to infer slip lengths for

various shear rates. Hydrophilic surfaces showed slip lengths of 26 to 57

nm. Hydrophobic surfaces showed slip lengths of 37 to 96 nm. They say

“A quantitative comparison of the two cases shows a slip length attributed

to surface hydrophobicity ranging from -7 nm at low shear rates to 54 nm

at the highest tested shear rate, with an average value of 16 nm.” With

experimental uncertainty taken into account, an upper limit of 150 nm for a
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slip length is presented.

The problems of shear were eliminated in another particle velocimetry

paper by Joly et al also from 2006 [26]. In this work, water containing fluo-

rescent particles of typical diameter 200 nm was confined between two sur-

faces, of roughness 1 nm peak-to-peak. There was no macroscale flow, only

thermal diffusion. The diffusion coefficient D was calculated by measuring

the residence time of the particles in a detection volume, using fluorescence

correlation spectroscopy. If the surfaces are hydrophilic, the particle mobility

should be strongly reduced by the proximity of the wall. A finite element nu-

merical solution to the Stokes equation gave a theoretical prediction for the

mobility. For hydrophilic walls, the agreement between theoretical particle

mobility and experimental particle mobility was “excellent”. For hydropho-

bic silanized walls, theory agreed with experiment if the prediction included

a slip length of 18± 5 nanometers.

These results are shear-free, ruling out flow-induced nucleation of nanobub-

bles.

Another complication of shear flow is that it can increase the effective

diffusivity of particles — an effect known as Taylor dispersion. This compli-

cation is addressed in a 2009 paper by Vinogradova [58]. Glass capillaries,

with rms roughness 0.3 nanometers, and silanized capillaries with rms rough-

ness 0.7 nanometers were tested. Fluorescent nanoparticles were dumped in

the flow, and their trajectories traced by double-focus fluorescence cross-

correlation. When the predicted Taylor dispersion velocity was subtracted

from the observed particle velocity, no slip was observed for hydrophilic capil-

laries, and a slip length of no more than 80 - 100 nanometers for hydrophobic

capillaries.

Vinogradova notes “By varying the shear rate near the wall we found that

it influences the value of the apparent slip. However, the true hydrophobic

slip length remains the same.” Since the surface is flat and not obviously

contaminated, the reported 80 - 100 nm slip lengths are candidates for be-
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ing intrinsic slip lengths. Finally, she notes that particle velocimetry is not

expected to be capable of detecting slip lengths of a few tens of nanometers.

Molecular Slip?

A tantalizing glimpse of molecular slip is shown in a 2003 paper by Becker and

Mugele [5] — but not with water. Rather, they do drainage force experiments

with octamethylcyclotetrasiloxane (OMCTS), a much larger molecule than

water. The authors were primarily interested in the layering of fluid molecules

in confined geometries. Using a SFA to measure drainage force, they were

able to observe discrete jumps in the force, as individual molecular layers

escaped.

They model the system as consisting of n independent liquid layers and

“introduce two different drag coefficients µls and µll to describe the friction

between the solid substrates and the adjacent liquid layers and the mutual

friction between two adjacent liquid layers, respectively”. They fit the model

to their experimental data and find a best fit value of µll = (0.2 ± 0.04) ×
10−13s−1 which is “remarkably close” to the value 0.3 × 10−13s−1 predicted

by bulk viscosity. The best fit value for µls is 17.9 ×µll.
Becker and Mugele do not calculate a slip length from this information,

but it can be done: We adopt a similar model of n independent liquid layers,

but in a steady-state shear-driven Couette flow system. Each layer experi-

ences a force µll∆v from the layer above it, where ∆v is the velocity difference

between the two layers. Similarly for the drag force from the layer below.

However, the bottom layer on the solid boundary is an exception. It has ve-

locity vslip, and the drag force due to moving over the stationary solid below

it is µlsvslip. Therefore, in the steady state, the bottom layer experiences two

forces that balance:

µlsvslip = µll∆v (2.1)

The layers have thickness d0, which Becker and Mugele measured to be

(0.95 ± 0.1) nanometers. The geometry relating d0 and the velocities to
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the slip length b appears in Figure (2.3). The geometry shows two similar

triangles, which means that vslip/b = ∆v/d0 .

vslip

vslip + ∆v
d0 vslip

b

d0

∆v

vslip

b
=

∆v

d0

Figure 2.3: Deriving a slip length from a molecular slip experiment.

The similar triangles relation and the force balance equation give us:

vslip =
b

d0

∆v and vslip =
µll
µls

∆v (2.2)

Therefore:

b =
µll
µls

d0 (2.3)

Plugging in the numbers yields:

b =
1

18
0.95 nm = 0.05 nm (2.4)

If the data and model are correct, then Becker and Mugele have detected

molecular slip with a slip length approximately 1/20th that of the molecule

size. While small, this non-zero slip length shows that at least in the confined

geometry of this experiment, the silicone molecules are not sticking to the

walls.

2.2.2 Conclusions

These modern, sophisticated experiments investigate slip on atomically flat

— rms roughness < 1 nanometer — solid surfaces, with efforts made to

reduce contamination by nanobubbles. They show no slip on hydrophilic

surfaces. For the hydrophobic case, an undeniable intrinsic slip length is

present. Two different particle velocimetry studies put an upper limit on
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intrinsic slip length on the order of 100 nm. Four different techniques produce

results consistent with a slip length in the range 18± 6 nanometers, at least

for moderate shear rates.

In general, no experiment provides direct evidence of molecular slip in

water, but these experiments eliminate various confounding factors, leaving

molecular slip as a distinct possibility.

2.3 Theoretical Intrinsic Slip

Theoretical arguments for or against slip are somewhat thin on the ground.

Computer experiments, in the form of molecular dynamics (MD) simulations,

form the backbone of theoretical work.

Molecular Dynamics

Molecular Dynamics simulations involve the computer simulation of systems

of particles governed by Newtonian mechanics. Each particle has a position

and momentum, and a net force on it due to the interaction with neighbouring

particles. Time is sliced into discrete timesteps. At each timestep, the force

on each particle is calculated, then the (instantaneous) acceleration, then

the resulting translation. Then the position of each and every particle is

updated simultaneously, using the calculated translations. The process is

then repeated at the next timestep.

The technique is rightly called a computer experiment, since the global

behaviour is not predictable in advance. Emergent phenomena such as melt-

ing, crystallization, annealing, etc. have been very successfully studied with

MD.

Molecular Dynamics simulations differ in their choice of interaction. A

very popular choice is the Lennard-Jones interaction, because it is computa-

tionally cheap and physically sound: the interaction features an equilibrium

distance σ between the particles, a strong repulsion at shorter distances, and
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a weak attraction at longer distances. This models dipole-dipole Van der

Waals forces quite well.

Since the power of MD studies depends on Moore’s Law, the first serious

MD study of the fluid boundary condition appeared in 1990, a paper by

Thompson and Robbins [52]. This featured a Lennard-Jones fluid under

Couette shear, in conditions equivalent to a compressed fluid about 30%

above melting temperature. This was a qualitative study of the effects of

varying two parameters: the wall-fluid interaction strength, εwf , and the wall

density.

The wall is composed of stationary atoms. The separation between them

can be arbitrarily set to any fraction or multiple of σ. The wall density

is the inverse of separation distance. As the wall density tends to infinity,

(separation diminishes to zero), the wall structure asymptotes to a flat plane.

In this case, the force between fluid atom and wall is always perpendicular

to the wall. With no tangential component, the force cannot change the

tangential momentum of an incident particle. This is the case of perfect slip,

as shown in Figure (2.4). Thompson & Robbins confirm that perfect slip

holds, regardless of the strength of εwf .

σ

Wall Density
→∞

Particle-wall force
is always normal

to wall

Figure 2.4: Infinite density of wall atoms leads to perfect slip.
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As the wall density decreases, the wall gains some ‘texture’, and fluid

atoms can be given a sideways kick by the peaks of the wall. Momentum

transfer is now possible, and perfect slip no longer holds. When the wall

density is equal to fluid density, (wall atom separation is σ), Thompson &

Robbins observe the no-slip condition. At equal density, fluid atoms can

attach epitaxially to the wall. If εwf is strong enough, one or two layers of

fluid atoms lock to the wall. This is illustrated in Figure (2.5).

High εwf :
Epitaxial Locking

Reflection Angle is
random: No Slip

Figure 2.5: Wall atom separation equal to fluid atom diameter.

At a wall density of 2.52 times the fluid density (solid atom separation is

0.397 σ), Thompson & Robbins found that fluid layering was reduced, and

slip increased. At higher εwf , however, the fluid atoms again formed a close-

packed layer, but with a periodic structure that was a harmonic of the wall

structure. At the highest εwf , the fluid atoms locked epitaxially to the wall,

in a state of elastic strain. See Figure (2.6).

High Wall Density:
Reduced Layering
More Slip

High εwf :
Mismatched Layers

Highest εwf :
Epitaxial Locking
in Elastic Strain

Figure 2.6: Wall atom separation 0.4 × fluid atom diameter.
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Following this qualitative work, Thompson and Troian report some quan-

titative results from very similar Lennard-Jones simulations in 1997 [53].

Again they vary the wall density ρwf and εwf , (as a fraction of ε, the fluid-

fluid interaction strength) as well as σwf , the equilibrium distance of wall and

fluid atoms. Slip lengths in units of σ are calculated for various regimes, and

appear in Table (2.1).

Table 2.1: Slip lengths (units of σ) for various simulation parameters.

εwf σwf ρwf b

0.6 1.0 1 0

0.1 1.0 1 2

0.6 0.75 4 4

0.4 0.75 4 8

0.2 0.75 4 18

Now, εwf < ε means that a fluid atom is more attracted to other fluid

atoms than to the wall. This could imply hydrophobicity; in general, hy-

drophobicity increases as εwf decreases. The top line of Table (2.1) describes

the case where the fluid-solid and solid-solid equilibrium distances are equal

to the fluid-fluid equilibrium distance. In this case, the fluid can lock epitax-

ially to the solid with absolutely no elastic strain. Here, no slip is recorded

(b = 0) even though the fluid-wall interaction εwf = 0.6 suggests a mildly

hydrophobic surface. Table (2.1) also shows that if the density of stable

attachment sites is too high for epitaxial locking (ρwf > 1), then slip results.

But the real story is the shear dependence of slip. The fluid is in a

Couette flow regime, with top and bottom surfaces moving with equal and

opposite velocities. At low shear rates, the slip length is a constant plateau,

but at some critical shear rate, the slip length diverges. The critical shear

rate depends on the regime. Interestingly, if the shear rates are normalised

to their critical shear rate, and the slip lengths normalised to their plateau

value, then the slip length versus shear rate data for all regimes lie on a single

curve.
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Thompson & Troian attempt to explain this “remarkable collapse of the

data” with a single parameter R describing the roughness of the potential

surface. A test particle at a fixed height experiences a potential φ(x, y).

Define A as the area integral of φ(x, y), and A∞ as the area integral of the

limiting case of a flat plane (infinite atom density). Then

R =
A

A∞
− 1 (2.5)

With a wall moving at velocity v, a test particle experiences perfect slip

for v > vc, some critical velocity. They find that vc scales as R1/2 for a wide

range of parameters. In the real fluid (with hundreds of particles) they find

vc scales as a power of R with an exponent close to 3/4.

Thompson & Troian think it is reasonable to assume that vc is set by the

liquid-solid interaction timescale, so that increasing density should lead to

larger vc. They are surprised to find the reverse.

But this is an odd expectation. Assuming that the average approach

velocity of impacting particles remains the same, a faster-moving or more

dense surface surface increases the probability that the particle will interact

with a peak. Since the peaks are the ‘flattest’ parts of the surface, the particle

has a greater chance of being deflected by a force that is closer-to-normal to

the surface plane, which will not change the tangential momentum of the

particle as much. This implies increased slip.

Barrat and Bocquet [2] study flow in both Poiseuille and Couette regimes,

using a Lennard-Jones fluid with an additional cij parameter:

vij = 4ε

[(σ
r

)12

− cij
(σ
r

)6
]

(2.6)

They use cFF = 1.2 for fluid-fluid interactions, making the fluid more

cohesive than the usual Lennard-Jones fluid. They tweak the wetting prop-

erties via the cFS fluid-solid parameter. There are several ways to calcu-

late the contact angle from this parameter. The most accurate way gives

cFS = 0.5→ θ = 140◦ and cFS = 1.0→ θ = 90◦.
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A hydrophobic liquid (θ = 140◦) requires a pressure P0 to pump it down

the pipe. At high pressure, P/P0 = 16.4, the fluid exhibited the same higher-

density layering at the wall as seen in hydrophilic liquids. At a lower pressure,

the fluid showed a strong density depletion near the wall. The slip length

varied tremendously over this pressure range: from b = 8σ for P/P0 = 16.4

to over 40σ for P/P0 ∼ 0.

Less hydrophobic fluids showed less slip, and less pressure dependence.

A cFS > 0.7 (θ ≤ 120◦) gave slip lengths of a couple of σ only.

Note that the position of the hydrodynamic boundary was treated as

an adjustable parameter. It turned out to be located one atom width into

the liquid. The arbitrary nature of the boundary position was not fully

appreciated by the experimental community until almost 10 years after this

sort of theoretical paper.

Correlation Function Tuned by Molecular Dynamics

In a theoretical study [6], Bocquet and Barrat start by constructing a phe-

nomenological model of a fluid: Each infinitesimal volume of fluid has a

momentum. This momentum field is subject to fluctuations, which quickly

dissipate, obeying the diffusion equation. Further, any pressure gradient is

proportional to the gradient of momentum divergence. Incorporating density

ρ0, shear viscosity η, bulk viscosity ξ, and dividing through by the volume

element to get a momentum density, ~j(~r, t), in the bulk:

∂t~j +∇P − ξ + η/3

ρ0

∇[∇ ·~j]− η

ρ0

∇2~j = 0 (2.7)

And on the boundary, Navier slip holds:

~j‖ = bwall
∂

∂~n
~j‖, ~j⊥ = 0 (2.8)

Bocquet & Barrat now consider a fluid contained between two x, y planes

separated by distance h. Slip lengths b0 and bh hold on the lower and upper

planes, respectively.
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A great simplification is to introduce the ‘transverse momentum density’:

jx(z, t) =
1

LxLy

∫ ∫
dxdy jx(~r, t) (2.9)

And similarly for jy(z, t).

With the pressure gradient essentially integrated out, this field obeys the

diffusion equation + Navier slip conditions:[
∂t −

η

ρ0

∂2
z

]
jx(z, t) = 0 (2.10)

jx(z, t)|z=z0 = b0∂zjx(z, t)|z=z0 , jx(z, t)|z=z0+h = −bh∂zjx(z, t)|z=z0+h

(2.11)

Work with the time-dependent correlation function:

C(z, z′, t) = 〈jx(z, t), jx(z′, 0)〉 (2.12)

where angle brackets denote a thermodynamic average.

Finally, this equilibrium correlation function also obeys the diffusion and

Navier slip equations:

[
∂t −

η

ρ0

∂2
z

]
C(z, z′, t) = 0 : 0 < z < z0 + h (2.13)

C(z, z′, t)|z=z0 = b0∂zC(z, z′, t)|z=z0 (2.14)

C(z, z′, t)|z=z0+h = −bh∂zC(z, z′, t)|z=z0+h (2.15)

There is a general solution (details omitted):

C(z, z′, t) = f(b0, bh, h) (2.16)

That is, the correlation function is a function of slip length and channel

width. The parameter ‘channel width’ is equivalent to ‘effective position of

the boundary condition’. Bocquet & Barrat note that in Couette flow, the

two parameters are not independent, but in general may be.
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Now, one can directly observe a molecular dynamics simulation, and cal-

culate the correlation function from the atomistic dynamics that occur in the

simulation. Bocquet & Barrat carry out an equilibrium MD simulation —

no shear or pressure, just thermal motion — and compute the correlation

function. The parameters of the theoretical correlation function are adjusted

to fit the MD correlation function.

Thus, a slip length and effective boundary position are derived from MD,

without inducing and measuring velocities, therefore eliminating shear de-

pendence from the slip effect.

The first MD experiment used a repulsive-only fluid/wall interaction – a

‘soft sphere’ model. The wall had a corrugation with wavelength of 1σ, and a

varying amplitude. Results for various amplitudes are shown in Table (2.2).

Table 2.2: Slip lengths for different amplitudes of wall corrugation.

Amplitude Slip Length BC Position

0 (flat) ∞ 1.60

0.01 40± 2.5 1.60

0.02 7.20± 0.05 1.60

> 0.03 0.00± 0.02 1.60

The remarkable result is that even a tiny corrugation — depth 0.03 σ —

is enough to completely suppress slip. Also, the hydrodynamic BC is located

about one atom width inside the fluid.

A second Lennard-Jones MD simulation with a corrugation depth of 0.2

σ was done. Particles locked epitaxially to the solid, with zero slip, and a

BC located two atom widths inside the fluid.

As a final test, Bocquet & Barrat do a conventional Couette flow MD sim-

ulation, extracting velocity profiles to infer slip lengths. The results agreed

with the equilibrium method.
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Depletion Layer and Drainage Force

In a landmark paper from 1995 [59], Olga Vinogradova studied the ‘drainage

of a thin liquid film confined between hydrophobic surfaces’. The results are

in two main parts.

The Boundary Conditions on the Hydrophobic Surface:

Vinogradova looks at the two candidates for intrinsic slip: molecular slip

and apparent slip. She notes that molecular slip was first proposed by Tolstoi

back in 1952; his theories were revisited by Blake in 1990, who predicted the

slip effect on flow rate in a capillary. These predictions sometimes matched

experiment, but Ruckenstein and Rajora in 1993 noted that the implied

surface diffusion coefficients are several orders of magnitude larger than those

observed even for gases.

Having found evidence for molecular slip wanting, she considers apparent

slip. A ‘gas gap’ has been suggested as the cause, but this is not experimen-

tally confirmed. Another model of apparent slip is the decrease in viscosity

in a boundary layer close to the hydrophobic surface. Crucially, she states:

“this fact follows from numerical simulation data, as well as from the di-

rect experimental results obtained by the blowoff method. (Derjaguin et al

1993)”. From this firm foundation, Vinogradova notes that if the bound-

ary layer of thickness δ has an average viscosity µslip, smaller than the bulk

viscosity µbulk, then an order of magnitude estimate of apparent slip length

is:

b = δ

(
µbulk

µslip

− 1

)
(2.17)

This model covers the case of bubbles on the surface, and Vinogradova

observes that much experimental slip may be due to dissolved gas, causing

bubbles to form on the surface or in microcavities.
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Solution of the Drainage Problem:

Vinogradova considers two perfectly spherical (no roughness) solids be-

ing squeezed together at (instantaneous) velocity v in a Newtonian fluid of

viscosity µ. The two spheres have radii R1 and R2, and slip lengths b and

b(1+k) on their surfaces, respectively. She derives a formula for the drainage

force Fz in terms of separation h:

Fz = −6πR2
eµv

h
f ∗ where Re =

R1R2

R1 +R2

=
R1

R1

R2
+ 1

(2.18)

In the limiting case of a hydrophobic sphere interacting with a similar

one:

f ∗ = (2)
h

6b

[(
1 +

h

6b

)
ln

(
1 +

6b

h

)
− 1

]
(2.19)

Note that Re = R1 in the case of a sphere approaching a flat plane (R2 =∞).

This formula has been used by the experimental community in all subse-

quent drainage force experiments.

Depletion Layer as a Gas Layer

In paper from 2002 in Langmuir [18], de Gennes derives the slip length ex-

pected of a hypothetical gas layer. De Gennes finds the then-recent very

high experimental slip lengths “unexpected and stimulating.” (These exper-

iments are now suspected of being contaminated with bubbles; de Gennes

is thus prescient in his gas layer theory.) “This led us to think about un-

usual processes which could take place near a wall. In this Letter, we discuss

one (remote) possibility: the formation of a gaseous film at the solid/liquid

interface.

“The source of the film is unclear: when the contact angle is large (θ →
180◦), a type of flat bubble can form at the surface with a relatively low

energy. But this energy is still high compared to the thermal energy kBT .”

With these caveats stated, de Gennes derives the slip length expected for

a bulk fluid of viscosity η, sliding over a gas layer of density ρ, and uniform
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thickness h. Layer thickness h is assumed to be greater than the molecule

size, but smaller than the mean free path in the gas.

Unfortunately, there are a few issues: there seem to be several typograph-

ical errors, and the result is stated in terms of the somewhat unfamiliar v̄z,

which is defined as the mean absolute value of the normal component of

gas particle velocity (the simple mean is zero). To resolve the inconsistencies,

and restate the result in a more standard way, in Appendix A we derive the

result from scratch, in terms of the mean speed in the gas, v̄. We find:

b =
4η

ρv̄
(2.20)

(We show that this is equivalent to the result of de Gennes.)

Note that b = 4η/ρv̄ is the slip length parameter found in the boundary

condition located at the bottom of the fluid. If b is instead regarded

as a property of the solid surface, then the gas layer thickness h must be

subtracted. We shall see that this is negligible:

Plugging in typical values: ρ = 1 kg/m3, v̄ = 476 m/s, η = 10−3 kg/ms,

we get b = 8 µm. De Gennes: “Thus, a gas film can indeed give a very

large slip length. Our calculation assumed complete thermalization at each

particle/boundary collision. If we had some nonzero reflectance (especially

on the solid surface), this would increase b even more.”

De Gennes notes that the amount of gas required is very small, but that a

“process which could generate such films remains obscure.” Serendipitously,

the very next year, Andrienko et al proposed an abstract description of just

such a process.
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Phase Separation causing a Depletion Layer

The depletion layer theory of slip was given another boost by Andrienko et al

in a 2003 paper [1]. Rather than focusing on what the low-viscosity boundary

is, they take an agnostic, abstract approach: They considered a toy model

of a generic admixture of two different fluids, whose viscosities differ by the

(arbitrary) ratio 1:3. A ‘phase field’ approach was used, in which an order

parameter φ varies over space. Here, φ was the fraction of low-viscosity fluid

in an infinitesimal volume.

The unmixing of the fluid is driven by energy. Andrienko et al start with

a free energy functional — the semigrand potential. With this functional set

up, they consider the physical case of Couette flow between two fairly close

plates. Variation of the functional yields an Euler-Lagrange equation and a

boundary condition.

These equations were solved numerically using the relaxation method.

With the φ field solution, the viscosity field was obtained by simply assuming

that viscosity is a linear combination of the pure viscosities. Finally the

Couette flow field was solved for the viscosity field.

The big result is that above a certain temperature, a layer of the low-

viscosity fluid suddenly forms on the surface. Andrienko et al call this a

‘prewetting transition’. This causes the sudden emergence of a significant

slip length. As temperature increases above this critical temperature, more

mixing occurs, reducing the viscosity contrast, thus reducing slip length.

Andrienko et al believe this mean-field toy model to be valid for liquid-

gas systems, binary mixtures, and polymer mixtures in the long wavelength

approximation. Thus, large slip is predicted for those systems.
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2.4 Conclusions

There exist a few recent experimental studies confirming intrinsic slip over

hydrophobic surfaces, where the solid surface is flat – less than 1 nm rms

roughness – and care has been taken to minimise contamination by nanobub-

bles.

The drainage force experiment of Cottin-Bizonne et al in 2005 [13] fea-

tured a resolution of 1 Angstrom for the probe to surface distance. They

found a slip length of 19 ± 2 nm. This is consistent with the particle ve-

locimetry experiments of Joly et al of 2006 [26], which estimated the diffu-

sion coefficient of unmoving water, thus eliminating issues of shear-induced

bubble formation. The model fitted to the results implied a slip length of

18 ± 5 nm. More conventional particle velocimetry experiments by Huang

et al in 2006 [24] with degassed water showed a shear-dependent slip length.

Given the experimental uncertainties, they present an upper limit of 150 nm

for the slip length. Vinogradova in 2009 [58] noted that shear flow can in-

crease the effective diffusivity of particles in the velocimetry experiment. Her

calculations from her experimental results take this into account, yielding a

slip length of no more than 80 - 100 nm for hydrophobic capillaries.

On the theoretical side, intrinsic slip is observed in molecular dynamics

simulations [52], [53], [2], [6]. At sufficiently low pressure in the liquid, Barrat

and Bocquet observe a depletion layer – a layer of lower-than-bulk density

liquid at the solid surface [2]. The effect of a density layer was explored by

de Gennes in 2002 [18]. He shows that observed slip effects are explainable

by a gas layer one or two atoms thick at the surface. Andrienko et al in 2003

[1] presented a model of a binary mixture of high and low viscosity fluids.

In the model, above a certain temperature, a depletion layer spontaneously

formed on the surface.

In the next chapter, we turn to flow over mixed-slip surfaces, where the

intrinsic slip length is different on different parts of the surface.
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Chapter 3

Mixed-Slip Flow

In this short chapter we look at the challenge of defining a slip length of

a surface that is rough. There is some choice as the location of the z = 0

plane, leading to some ambiguity regarding slip lengths. The issue is clarified

with the concept of the no-slip plane. We then define two rough surfaces

of mixed slip length: superhydrophobic surfaces and surfaces covered with

nanobubbles. Experimental results showing high slip over these surfaces are

discussed. Finally, the concepts in this chapter are illustrated in a description

of an experiment in which the presence of nanobubbles appears to reduce slip.

43
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3.1 Rough Surfaces

While the slip length of a perfectly flat surface is an intuitive concept, the

definition of the slip length of a rough surface is more troublesome. The ques-

tion “What is the slip length of this surface?” suddenly acquires a resonance

with the old Vaudeville joke “How’s your wife?”; the answer: “Compared to

what?”.

3.1.1 Rough No-Slip Surfaces

To clarify, consider Couette-like flow over a rough surface composed of ma-

terial with no intrinsic slip length. The system behaves like an equivalent

system with a flat no-slip boundary surface. Define this boundary as the

effective no-slip plane. Where is the position of the effective no-slip plane

in relation to the original rough surface? It is likely to be located at a level

between the troughs and peaks of the roughness, but if the roughness caused

significant turbulence, then it may be located above the peaks of the rough-

ness. See Figure (3.1).

Behaves like:

Effective no-slip plane

Figure 3.1: A rough no-slip surface behaves as if an effective no-slip plane

was located somewhere above the troughs of the roughness.

In a sense, the position of the effective no-slip plane is what is measured

by a macro-scale slip experiment. For example: a rough-walled capillary of
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nominal diameter d flows as much as a smooth-walled capillary of diameter

deff . Then, loosely speaking, the slip length is the distance between the

effective no-slip plane and the physical surface. But if rough, the physical

surface is not a plane, but a nominal surface region of finite width. The

issue then, is to decide where to locate a flat reference plane, from which to

measure the slip length. The reference plane corresponds to the z = 0 plane

in the mathematical model of the system. See Figure (3.2).

Nominal Surface

z

x

z = 0 plane

Figure 3.2: The z = 0 plane of the mathematical model maps to some part

of the nominal surface region of the physical surface.

Once the location of the z = 0 plane has been chosen, a slip length can

be defined as the distance between the z = 0 plane and the effective no-slip

plane. By convention, if the effective no-slip plane is below the z = 0 plane,

then b is positive. Obviously, if the z = 0 plane is located at the bottom

of the troughs of the roughness, then the slip length could be negative. See

Figure (3.3).



46 CHAPTER 3. MIXED-SLIP FLOW

z
z = 0 plane

Effective no-slip plane

b?
b?

Figure 3.3: The measured slip length of a rough surface depends on the choice

of location of the z = 0 plane.

The importance of defining the location of the z = 0 plane was first made

explicit in a paper by Vinogradova and Yakubov in 2006 [62]. They used a

purpose-built AFM device that tapped a roughened sphere onto a smooth

plane. The sphere had an rms roughness of 10 - 11 nm, and a maximum

peak-to-valley distance of 45 nm. With the surface taken to be at the tops of

the peaks, a reduction in drainage force was observed, compared to a smooth

sphere of equal diameter. But the reduction was not due to slip: The force

was equivalent to that of a smooth sphere whose surface was located at an

intermediate position between the peaks and valleys of the roughness.

Thus the issue is clarified: if the boundary is taken to be at the valleys

of the roughness, then roughness reduces slip. Conversely, if the boundary

is taken to be at the tops of the peaks, then roughness increases slip. They

note “We believe our paper entirely clarifies the situation with flow past rough

surfaces, highlights reasons for existing controversies, and resolves apparent

paradoxes.”

The phrase ‘effective no slip plane’ first appears in an article by Kunert

and Harting in 2007 [28]. They carried out numerical simulations using

lattice Boltzmann methods on different surfaces. Each surface has minimum

and maximum heights, hmin and hmax, and an average height haverage. They
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calculate the position of the effective no-slip plane, heff . In all cases, heff was

always considerably higher than haverage. If the surface has a few very tall

but sparsely distributed spikes, then haverage can be much smaller than hmax,

and heff lies somewhere between them and cannot be well approximated by

either.

The “existing controversies” and “apparent paradoxes” mentioned by

Vinogradova and Yakubov in [62] include a 2002 paper by Zhu and Granick

[68] showing that roughness suppresses slip, and a 2003 paper by Bonac-

curso, Butt and Craig [7] claiming that roughness could increase slip, even

on a hydrophilic surface:

In 2002, Zhu and Granick published results of drainage force experiments

on hydrophobic surfaces of varying roughness [68]. The molecularly smooth

surface showed a flow dependent slip length of up to 35 nm, while rougness

suppressed slip, with a roughness of 6 nm giving no slip at all. They defined

the z = 0 level in the surface force appartatus by ‘adhesive contact in air’.

Therefore, the z = 0 level could well be below the tops of the roughness

peaks. No effort was made to account for this.

The paper from 2003 by Bonaccurso, Butt and Craig [7] claimed that

roughness could increase slip, even on a hydrophilic (contact angle zero!)

surface. They measure drainage forces of a glass sphere approaching a sili-

con surface roughened up to 12.2 nm rms. They discuss the importance of

defining the zero distance. They end up defining it at the tops of the peaks,

as this is the first point of contact. They calculate slip lengths by fitting the

data to Vinogradova’s model. The best fit is when they fix the slip length on

the glass sphere at about 43 nm, and increase the slip length of the substrate

as roughness increases. Under ‘normal’ conditions, they find a slip length of

3.5 nm for maximum roughness of 12.2 nm. But for extremely high approach

velocities, for the same roughness they find a slip length of 900 nm!
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Surfaces with Slip

If a rough surface has a non-zero intrinsic slip length on all or part of its

surface, then the effective no-slip plane may be located well below the nominal

surface region. There will still be a range of reasonable effective slip lengths,

depending on the choice of the location of the z = 0 plane. See Figure (3.4).

z
z = 0 plane

Effective no-slip planeb?
b?

Figure 3.4: The measured slip length of a rough surface with intrinsic slip

depends on the choice of the location of the z = 0 plane.

Note that it is still possible to get a negative slip length on a surface with

high intrinsic slip lengths, if the z = 0 plane is located at the bottom of the

valleys of the roughness. In general, the best choice for the location of the

z = 0 plane is at the tops of the peaks of the roughness, ensuring that slip

lengths are usually positive.
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3.2 Mixed-Slip Surfaces

We turn now to study surfaces in which the intrinsic slip length varies over

the surface. Dramatic variations in the intrinsic slip length of a surface may

be achieved if part of the surface is composed of gas. The intrinsic slip length

of the liquid-gas interface is expected to be large compared to that of the

liquid-solid interface. There are two solid-gas surface types important to

current research: superhydrophobic surfaces and surfaces with nanobubbles.

Because the liquid-gas interface is a meniscus that is usually curved, by

their nature, these surfaces are usually rough. (Having said that, they are

sometimes modelled as being flat.)

3.2.1 Superhydrophobic Surfaces

Recall that when a droplet of water sits on a surface, a contact angle θ is

defined as in Figure (3.5).

θ < 90◦
θ > 90◦

Hydrophilic Hydrophobic

Figure 3.5: The contact angle θ of a surface.

Usually, a surface is defined as hydrophobic when the contact angle is

more than 90◦. (If θ < 90◦, the surface is hydrophilic. If θ ∼ 0◦, then

complete wetting occurs: the water spreads out as far as it can.)

Tiny, micron or nanometer scale pillars can be constructed out of hy-

drophobic material. A collection of theses hydrophobic nanopillars can be
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affixed to a suitable substrate, forming a ‘nanoforest’. (Or, more practi-

cally, a nanoforest can be constructed, then chemically treated to become

hydrophobic.) If a water droplet is placed on top of the nanoforest, two cu-

rious things happen: First, the droplet sits on the tops of the nanopillars,

supported by surface tension. Second, the apparent contact angle is very

large, well over 90◦. An illustration appears in Figure (3.6). Due to the

extremely high contact angle, these nano or micro-structured surfaces are

known as superhydrophobic surfaces.

θ

Figure 3.6: Superhydrophobicity: surface tension supports a water drop on

top of nanopillars, with a very high apparent contact angle

Such surfaces were constructed as early as 1996. Onda et al [42] discussed

the theoretical contact angle of such a surface, and demonstrated a “super-

water-repellent fractal surface” made of alkylketene dimer, with a remarkable

contact angle of 174◦.

Enormous contact angles are routinely quoted for static droplets. The

contact angle is slightly different if the droplet is advancing (or retreating).

This hysteresis was studied, for example, by Kusumaatmaja and Yeomans in

2007 [29].
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But perhaps more interestingly, superhydrophobic surfaces were first ob-

served in nature. The sacred lotus is an aquatic plant (not a water lily, but

similar) whose water-repellent qualities have been noted since antiquity. A

passage in the Baghavad Gita states “One who performs his duty without

attachment, ... is unaffected by sinful action, as the lotus is unaffected by

water.” In 1993, Barthlott and Neinhuis were taking scanning electron mi-

crographs of the leaf surfaces of some 10,000 plant species. They noticed

that flat surfaces always had to be cleaned before examination, while certain

rough waxy surfaces did not. They characterised these self-cleaning surfaces

as covered with wax crystalloids “in a regular microrelief of about 1 - 5 µm” –

i.e. superhydrophobic. They describe the cleaning mechanism: Water beads

into near-spherical droplets, which easily roll off the leaf. Dirt particles tend

to be hydrophilic, and only weakly bound to the tops of the roughness. Thus

the dirt particles are captured by the water droplets, and move with them off

the leaf. More from antiquity: a Confucian scholar wrote “I love the lotus,

because while growing in mud, it is unstained.” In a pair of papers in 1997

[3, 37], Barthlott and Neinhuis describe their studies of what they dub the

‘lotus effect’.

The image of a droplet supported by thin spikes inspires another metaphor:

a Fakir (malnourished Yoga practitioner) sitting on a bed of nails. David

Quéré’s article ‘Fakir droplets’ gives a very readable summary of the state

of affairs in 2002 [48]. The quote of relevance to this thesis is the last few

sentences of the article: “On a superhydrophobic solid, however, drops seem

to move over a dynamic film of air — which makes the friction comparable to

that experienced by a raindrop falling in air. But what happens if these tex-

tured solids are fully immersed in a pool of water? Will the water still slide

on them? Except for a few controversial studies, this question still remains

open, and designers of boats and swimsuits impatiently await an answer.”

These questions form the backdrop to the line of research leading to this

thesis.
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3.2.2 Nanobubbles

In 2001, Tyrrell and Attard discovered what appeared to be nanobubbles

on hydrophobic surfaces [56]. An extract from the abstract of their paper in

Physical Review Letters says it all: “Imaging of hydrophobic surfaces in water

with tapping mode atomic force microscopy reveals them to be covered with

soft domains, apparently nanobubbles, that are close packed and irregular in

cross section, have a radius of curvature of the order of 100 nm, and a height

above the substrate of 20 – 30 nm.” See schematic of Figure (3.7).

It had been observed that when two hydrophobic bodies were brought

together underwater, at some very close separation, a ‘hydrophobic force’

suddenly pulled them together. In 2002, Tyrrell and Attard published [57]

more AFM images of nanobubbles, and proposed them to be the origin of

the ‘hydrophobic force’.

Figure 3.7: Nanobubbles of gas on a solid surface.

The question naturally arises: when are nanobubbles present? Yang and

coworkers published in 2007 [63] an exhaustive experimental study on the

factors influencing the formation of nanobubbles, such as temperature, dis-

solved gases etc. It turns out that if a surface had been immersed in ethanol

before being immersed in water, then nanobubbles are reliably formed.

Using this ‘solvent exchange’ technique, Zhang, Quinn and Ducker in
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2008 [65] were able to do repeatable studies of nanobubbles. Using infrared

spectroscopy, they confirmed the presence of a gas phase 5 – 80 nm thick at

the surface — i.e. good evidence that the ‘soft domains’ really are nanobub-

bles. An AFM was used to determine the radius of curvature of the bubbles;

the implied Laplace pressure in the bubbles was found to be 1.0 – 1.7 at-

mospheres. This pressure allows nanobubbles of air to remain stable for

days. They find that nanobubbles form much more easily on rough surfaces,

sometimes even without the solvent exchange technique.

Given the fact that rough surfaces may spontaneously form nanobubbles,

the question arises: How many ostensibly ‘pure’ slip experiments are actually

experiments on mixed-slip surfaces? A purpose of the research in this thesis

is to give some indication of the effect of such nanobubble contamination on

a slip experiment.

In summary, mixed-slip surfaces tend to fall into the two types described

above: either a solid surface interspersed with pockets of air (nanobubble

type), or a gas-liquid interface interspersed with islands of solid material

(superhydrophobic type). Thus, a superhydrophobic type surface has a con-

tiguous air-liquid interface, while a nanobubble type surface has a contiguous

solid phase.

In the two-dimensional case, the difference disappears. Neither the solid-

liquid nor air-liquid interfaces are contiguous. Physically, this surface consists

of a grating of parallel ridges, with an air gap between the ridges. The liquid

sits on the top of the ridges, and the air-liquid interface forms a meniscus

between the ridges.
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3.3 Rough Mixed-Slip Flow

3.3.1 High Slip Over Solid-Gas Surfaces

In 2003, Cottin-Bizonne et al published a paper [12] in which they stated

“Our results show for the first time that, in contrast to common belief, surface

friction may be reduced by surface roughness.” In fact, what they discovered

is that flow over a rough surface may transition into the superhydrophobic

state, with the fluid now flowing over vapour pockets.

Cottin-Bizonne and coworkers looked at molecular dynamics simulations

of a Lennard-Jones fluid flowing over a flat surface decorated with narrow

square posts. At sufficiently low pressures, the fluid entered the Cassie state,

as a vapour phase spontaneously formed at the surface, leaving the fluid

supported on top of the posts. The surface had an intrinsic slip length of 20

- 25 σ (atom diameters). In the Cassie state, effective slip lengths up to 57

σ appeared. For very narrow posts – 4.9 σ, slip lengths could reach 130 σ.

Note that slip lengths were measured from the bottom of the cavity, so the

post height — 6 σ — could be added to the slip lengths.

A physical demonstration of this superhydrophobic Cassie state flow was

presented by Choi and Kim in 2006 [9]. They were probably the first to de-

liberately engineer a surface for maximum slip: ‘nanoturf’, silicon nanoposts

about 1 - 2 µm high, spaced about 0.5 - 1.0 µm apart, rendered hydrophobic

by a 10 - 20 nm thick layer of Teflon. They estimated the air fraction of the

surface to be 60 %.

A commercial cone-and-plate rheometer was used to measure slip lengths:

a collosal 20 µm for water and 50 µm for 30 % glycerine solution. (They

expect this, since the viscosity of the glycerine solution is 2.5 times greater

than that of water.)

Such high slip lengths were not replicated in a more careful study by

Joseph et al also in 2006 [27]. They did particle image velocimetry on chan-

nels coated with carbon nanotubes of diameter 50 - 100 nm, spaced 100 - 250
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nm apart. The tops of the nanotubes could be evenly spaced, or clumped

together like wet hair, giving inter-clump length scales of 1.7, 3.5 or 6 µm.

The derived slip lengths for the three surface morphologies were roughly 0.4,

1.0 and 1.4 µm, respectively.

They note that their results are an order of magnitude smaller than the

20 µm slip lengths of Choi and Kim, and point out that rheological methods

lack the sensitivity to measure surface effects.

An effort was made by Lee and Kim in 2011 [33] to maximize slip by

making a heirarchical structured surface — nanoposts on top of microposts.

It worked if area fraction taken up by the microposts was large enough.

Below about 10% area fraction — a realistic figure — the advantage began

to disappear, and at 4% area fraction, the heirarchical surface gave lower slip

than conventional unadorned microposts.

A one-dimensional version of the superhydrophobic surface is a nanograt-

ing — a surface covered with ridges, with the water supported by surface

tension on top of the ridges. In 2006, Choi et al [10] presented slip experi-

ments on a “well-defined nanograte”: ridges 500 nm high and 50 nm wide,

separated by a gap of 180 nm. Thus the pitch (period) was 230 nm. If the

grating was left hydrophilic, they believe that water fully wets the surface,

penetrating down into the troughs. After rendering the surface hydrophobic

with Teflon, they believe that there is air in the troughs. Experiments were

carried out with both states, with fluid flow both parallel to, and transverse

to the ridges.

They could measure slip lengths to a resolution of only 30 nm, thus they

were unsure if the hydrophobic surface had any intrinsic slip. For flow par-

allel to the ridges, there was a clear distinction between the slip lengths

of hydrophilic and hydrophobic surfaces. 30 ± 15 nm for hydrophilic, and

143 ± 35 nm for hydrophobic. For transverse flow, they found insignificant

slip, 0± 17 nm for hydrophilic, and 61± 44 nm for hydrophobic.
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Protruding Nanobubbles Reduce Slip

As noted earlier, roughness may apparently decrease the effective slip length,

if the reference z = 0 plane is taken to be at the lowest point of the roughness.

This was an appropriate choice for the experimental setup of Steinberger et

al of 2007 [51].

One can imagine the difficulties in studying a surface of nanobubbles,

given their random, uncontrolled nature. Steinberger et al addressed the

issue by studying flow over a flat surface covered with holes 1.3 µm wide and

3.5 µm deep. Air can be trapped in the holes; they derive slip lengths via

drainage force measurements on the resulting microbubble surface.

The plane z = 0 is located on the flat surface, at the tops of the holes. In

the Wenzel state, with water filling the holes, they measure a slip length of

105± 10 nm. With air trapped in the holes they find a lower slip length: a

mere 20±10 nm. They discover that the microbubbles protrude an estimated

200 - 400 nm above the flat surface, with the meniscus subtending an angle

between 30◦ and 60◦ to the flat surface. Is this protrusion into the bulk the

cause of low slip lengths?

They test this hypothesis numerically, with a finite element package (Com-

sol). They find a flat bubble (θ = 0◦) gives maximum slip length — about

160 nm. Any increase in θ decreased slip, with θ > 45◦ giving a lower slip

length than the Wenzel state.

The following year (2008) Hyväluoma and Harting replicate and extend

Steinberger’s numerics [25]. By using lattice Boltzmann methods, they can

model the bubble deforming under stress. They essentially replicate Stein-

berger: a maximum slip of about 150 nm at zero protrusion angle, plum-

meting down past zero slip length for a protrusion angle greater than about

70◦

They simulate Couette flow, so are able to investigate shear dependence.

In steady state shear-driven flow, they see a decrease in slip length with in-

creasing shear. This contradicts some earlier claims. However, higher shear
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rates deform the microbubbles, reducing the average height of the microbub-

bles.

Incidentally, the idea that slip is reduced by protruding bubbles had

been proposed by Lauga and Brenner in 2004 [30]. In a theoretical pa-

per, they present a model to explain the shear-dependent slip found by Zhu

and Granick in 2001 [67]. They assume that the surface was (unknown to

the experimenters) covered in bubbles. Slip lengths were inferred from the

drainage force of a probe slamming into the surface at various speeds. As

the probe approach velocity increases, so too does the pressure in front of

it. This increased pressure causes the bubbles to shrink, both from compres-

sion of the gas and increased diffusion into the liquid. The reduced bubble

height widens the channel, making drainage easier, for a given probe-surface

distance. Thus, this ‘leaking mattress effect’ causes a shear-dependent slip

effect to appear.

3.4 Conclusion

In summary, high slip lengths are possible over mixed-slip surfaces: more

than 100 nanometers for nanogratings, and more than 1 micron for nanoforests.

However, the effective slip length has a slightly ambiguous definition; the

quoted slip length depends on the nominal position of the z = 0 plane.

Things are clarified by introducing the concept of an effective no-slip plane.

This is an objective concept: the surface behaves as if the no-slip plane was

located at a given position. Then, the slip length is the distance between

z = 0 and the effective no-slip plane. Thus, if the no-slip plane becomes

lower, then the slip length is increased, and vice versa. A sensible choice for

the position of the nominal z = 0 plane is the top of the roughness. That way,

quoted slip lengths will often be positive. Note that if the z = 0 plane was

chosen to be below the no-slip plane to start with, lowering the no-slip plane

still increases the slip length. Another benefit is that a physical instrument
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probing the surface will tend to encounter the surface peaks, and record that

as the surface position.



Chapter 4

Effective Slip Length

Expressions: Prior Work

This thesis presents a new expression for the effective slip length of mixed-slip

surfaces. To establish the novelty, we must place our new expression in the

context of other results in this field. Hence, this chapter is a literature review

of the field of effective slip. The results of this thesis are already published

as three papers in this field [22, 35, 36]; thus, the work of this thesis is easily

placed in context amongst other peer-reviewed papers.

There are a small number of results for effective slip lengths in the lit-

erature. In this chapter, we survey a dozen or so of them. This cannot

pretend to be comprehensive — there may be results hidden in obscure jour-

nals, behind paywalls, or camouflaged by nonstandard terminology. Further,

mathematically equivalent results may exist in fields unrelated to fluid me-

chanics. There is nothing we can do about this. The best we can claim to

do is present some ‘high profile’ results in the field of fluid slip.

4.0.1 Categorizing Results by Regime of Applicability

The published results for an effective slip length are applicable in different

physical situations. It is useful to sort these different regimes by the following

59
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criteria:

• Navier Stokes versus Stokes ‘Creeping’ Flow. A few results use

the full Navier Stokes description of fluid flow. However, slip is very

small scale phenomenon, so it is relevant only if the characteristic length

scale of the flow is also very small. In that case, the Reynolds number

will be very small, and the Navier Stokes equation will be very well

approximated by the simpler Stokes flow equation. (This is covered

fully in the next chapter.) Accordingly, most results have been derived

assuming only Stokes ‘creeping’ flow.

• Flat versus Rough. Assuming the boundary to be a plane is a major

simplification, warranted on grounds of mathematical tractability. The

majority of effective slip results make this assumption.

• 2-D Flow (1-D Surface) versus 3-D Flow (2-D Surface). If the sur-

face is symmetric in one dimension, then the flow above it will have

the same symmetry. Thus, full three-dimensional flow reduces to two-

dimensional flow over a one-dimensional surface pattern. About half of

effective slip results tackle this simpler case.

• Perfect-slip/Zero-slip Binary Surface or Not. Assuming a binary

surface, comprising regions of either vanishing slip (b = 0), or per-

fect slip (b → ∞) only, can enable considerable simplification of the

mathematics. Half of all effective slip results tackle this limiting case.

These categories are used to construct Table 4.1. All the papers that we

shall survey in this section appear in the table, in their appropriate categories.

Some papers appear in more than one cell; in that case, the paper presents

more than one result. Note that if a paper gives a single result for a case

that subsumes another case (eg. a 3-D result that is automatically valid for

the 2-D case), then the paper appears in only one cell.
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Table 4.1: The papers (presenting effective slip lengths) surveyed in this

section, categorized into their applicable regimes.

2-D Flow

(1-D surface pattern)

3-D Flow

(2-D surface pattern)

F
L

A
T

S
U

R
F
A

C
E

R
O

U
G

H
S
U

R
F
A

C
E

No-slip/
Perfect-slip
Binary Surface

Other Surface

No-slip/
Perfect-slip
Binary Surface

Other Surface

SOME RESULTS FOR beff

J. R. Philip 1972 [44]

Lauga and Stone 2003 [32]

Ybert et al 2007 [64]

Ybert et al 2007 [64]

Davis and Lauga 2009b [15]

Ng and Wang 2010 [41]

Davis and Lauga 2010 [17]

Cottin-Bizonne et al 2004 [11]

Ybert et al 2007 [64]

Hendy and Lund 2007 [22]

Tretheway and

Meinhart 2004 [54, 55]

Ybert et al 2007 [64]

Lund and Hendy 2008 [35]

Ng and Wang 2010 [41]

Sbragaglia and

Prosperetti 2007 [49]

Ybert et al 2007 [64]

Davis and Lauga 2009a [16]

Einzel, Panzer, Liu 1990 [19]

Ng and Wang 2009 [40]

Lund et al 2012 [36]
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4.0.2 Categorizing Results by Mathematical Strength

As well as sorting the published beff results by the regime of applicability, we

can sort them by the rigour of their derivation.

Mathematicians may describe a result as ‘exact’. This usually means that

it is in a form that can be written down as an explicit formula. The benefit

of an exact result is practical: it can be evaluated more easily. Whether a

result is exact or not is nothing to do with the rigour of its derivation; i.e.

unrelated to the strength of the result.

In mathematics, a result is described as strong if few assumptions were

made in its derivation. The fewer the assumptions, the ‘stronger’ the result.

There are two benefits of a strong result: First, because it relies on fewer

assumptions, it is likely to be more widely applicable. So ‘strong’ means

‘more general’. Secondly, the fewer assumptions, the fewer modes of failure.

Assumptions sometimes turn out to be false; this sad event may cause various

results to be overturned. A strong result is more robust. It is less fragile to

nasty surprises as the body of human knowledge grows. (Note that a strong

result may have a long complicated derivation, and thus be vulnerable to

errors in the derivation. The point is that a stronger result has a more self

contained derivation.)
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Obviously, in theoretical physics we would like our results to be as useful

and trustworthy as possible — ‘exact’ and ‘strong’. For the purposes of

this literature review, we shall rank the published results using the following

(somewhat arbitrary) labels.

• Derived Results. A relation for beff derived (mathematically) from the

Stokes equation, an appropriate boundary condition, and perhaps an

assumption of fluid incompressibility.

Other results:

• Scaling Law Results. May or may not include more assumptions

than a Derived Result, but the result is not exact, giving beff only as a

multiple of some other length scale.

• Simplified Results. Further simplifying assumptions have been made,

from reasonable phenomenological models to mere hand waving.

• Empirical Results. Exact results that express a curve fitted to either

numerical or experimental data. May be informed by stronger results.

There are comparatively fewer Derived Results. They are listed in Table

4.2. The other results are listed in Table 4.3.
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Table 4.2: The papers surveyed here in which beff is rigorously derived from

the Stokes equation and appropriate boundary conditions.

2-D Flow

(1-D surface pattern)

3-D Flow

(2-D surface pattern)

F
L

A
T

S
U

R
F
A

C
E

R
O

U
G

H
S
U

R
F
A

C
E

No-slip/
Perfect-slip
Binary Surface

Other Surface

No-slip/
Perfect-slip
Binary Surface

Other Surface

DERIVED RESULTS

J. R. Philip 1972 [44]

Lauga and Stone 2003 [32]

Hendy and Lund 2007 [22] Lund and Hendy 2008 [35]

Sbragaglia and

Prosperetti 2007 [49]

Davis and Lauga 2009a [16]

Einzel, Panzer, Liu 1990 [19]

Lund et al 2012 [36]
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Table 4.3: The papers surveyed here in which beff is not derived from Stokes

equation and boundary conditions, but instead from scaling law arguments,

simplified models, curve fitting etc.

2-D Flow

(1-D surface pattern)

3-D Flow

(2-D surface pattern)

F
L

A
T

S
U

R
F
A

C
E

R
O

U
G

H
S
U

R
F
A

C
E

No-slip/
Perfect-slip
Binary Surface

Other Surface

No-slip/
Perfect-slip
Binary Surface

Other Surface

SCALING LAW, SIMPLIFIED AND NUMERICAL RESULTS

Ybert et al 2007 [64]

Ybert et al 2007 [64]

Davis and Lauga 2009b [15]

Ng and Wang 2010 [41]

Davis and Lauga 2010 [17]

Cottin-Bizonne et al 2004 [11]

Ybert et al 2007 [64]

Tretheway and

Meinhart 2004 [54, 55]

Ybert et al 2007 [64]

Ng and Wang 2010 [41]

Ybert et al 2007 [64]

Ng and Wang 2009 [40]
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4.1 Derived Results

All results are for 2-dimensional flow (over a 1-dimensional surface pattern),

unless otherwise noted.

4.1.1 Flat Surface, of No-Slip and Perfect-Slip

Parallel Strips

J. R. Philip 1972

The first significant result was J. R. Philip’s article in ZAMP in 1972

[44]. This comprehensive effort studied amongst other things “Shear Flow

over a Plate with a Regular Array of Longitudinal No-Shear Slots”. Note

that perfect slip gives rise to the no-shear condition. The no-shear slots are

parallel to the direction of flow, as shown in Figure (4.1). By “generalizing

the device of Karush and Young”, a conformal mapping in the complex plane,

he proves that in the far field:

beff =
L

π
ln sec

π

2
φslip (4.1)

where L is the period of the array, and φslip is the fraction of the surface that

has perfect slip. Part of this proof is replicated in Appendix B.

No
Slip

Perfect
Slip

Flow Parallel to Slots
(Into Page)

Figure 4.1: The no-slip/perfect-slip longitudinal flow system studied by

J. R. Philip in 1972.

?
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Lauga & Stone 2003

It wasn’t until 2003 that the case for flow transverse to the slots was

solved. This situation is shown in Figure (4.2). In an article in the Journal

of Fluid Mechanics that year [32], Lauga and Stone study pressure-driven

Stokes flow down a straight circular pipe. They note that there is no analytic

solution for the transverse case. They derive dual series of equations, one

for each boundary slip, which are simultaneously true. With φslip fixed, the

asymptotic limit of the solutions to these equations as period L → 0 is the

far field flow, implying an effective slip length:

beff =
1

2

L

π
ln sec

π

2
φslip (4.2)

which is exactly half the solution for parallel slots.

They provide a physical interpretation for the factor of two: “... for a

given velocity of the body in the fluid, an elongated body exerts twice as

much force on the fluid when it is aligned perpendicularly to its direction

of motion than when it is aligned parallel to it. As a consequence, for a

given wall slip velocity ... the shear in the longitudinal case will be twice as

large as the shear in the transverse case, and therefore [it is expected that]

beff,‖ = 2beff,⊥.”

No
Slip

Perfect
Slip

Flow Transverse to Slots

Figure 4.2: The no-slip/perfect-slip transverse flow system studied by

Lauga and Stone.
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4.1.2 Flat No-Slip and Curved Perfect-Slip Parallel Strips

Sbragaglia & Prosperetti 2007

Philip’s foundational solution had flat strips of perfect slip. Since these

model a stress-free liquid-gas interface, it is reasonable to extend the model

so that the perfect slip surface forms a slightly curved meniscus, as in Figure

(4.3). In 2007, Sbragaglia and Prosperetti did exactly that [49]. Using a dual-

series technique, (rather than conformal mapping), they replicate Philip’s

result, and add a perturbation due the the curved meniscus. They use as a

small perturbation parameter:

ε =
1

2π

L

2R
(4.3)

where R is the radius of curvature of the meniscus, and L is the period of

the pattern. In the far field, the effective slip length is:

beff =
L

π
ln sec

π

2
φslip −

L2

4R
φ3

slip

∫ 1

0

[1− cos(πφslips)](1− s2)

cos(πφslips)− cos(πφslip)
ds (4.4)

They note that deformation of the meniscus reduces the slip length. “The

physical origin of this phenomenon is due to the fact that, when the interface

bows into the groove, the condition of free shear (perfect slip) is moved below

the level z = 0 of the undisturbed surface so that, on z = 0, there is a residual

nonzero stress.”

No
Slip

Perfect
Slip

Flow Parallel to Slots
(Into Page)

Figure 4.3: The no-slip/perfect-slip-meniscus longitudinal flow system

studied by Sbragaglia and Prosperetti.

?
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Davis & Lauga 2009a

Another variation is that the perfect-slip strips model a bubble type ge-

ometry, with the surface bulging up into the liquid. In a 2009 paper in

Physics of Fluids, Davis and Lauga consider this scenario [16]. Their model

is still 2-dimensional Stokes flow, so that the ‘bubbles’ can be considered to

be the cross sections of spherical caps on top of channels full of air. Flow is

thus transverse to the grating. The channels have width 2c, and the greater

the air pressure therein, the further the bubble cap protrudes into the liquid.

The magnitude of protrusion is quantified by the angle θ that the bubble

wall makes to the solid surface. See Figure (4.4).

2c

θ
No Slip

Flow Transverse to Slots

Perfect
Slip

Figure 4.4: The no-slip/perfect-slip-bubble transverse flow system studied

by Davis and Lauga.

In the dilute limit, i.e. bubbles sparsely distributed on the surface, the

effective slip tends to:

beff = cπφslip

∫ ∞
0

s

sinh 2s(π − θ) + s sin 2θ[
cos 2θ +

s sin 2θ cosh sπ + sinh s(π − 2θ)

sinh sπ

]
ds (4.5)

They evaluate for various values of θ, nondimensionalized by channel

width. They find good agreement with the numerical results of Steinberger

et al [51] and Hyväluoma and Harting [25].

“The main features of the full numerical results are seen to be repro-

duced by our analytical model. There exists a critical protrusion angle θc



70CHAPTER 4. EFFECTIVE SLIP LENGTH EXPRESSIONS: PRIORWORK

above which the effect of the wall-attached bubbles displays a transition

from reduced (θ < θc) to enhanced friction (θ > θc). Our model predicts

θ ≈ 65◦, in good agreement with the results of [Steinberger et al ] (θ ≈ 62◦)

and [Hyväluoma and Harting] (θ ≈ 69◦). ”

4.1.3 Flat Surface, with Slip Length �� Period,

Otherwise Arbitrary

Hendy & Lund 2007

In 2007, Hendy and Lund published in Phys. Rev. E [22] a perturbative

analysis of the effective slip length of a flat surface with an intrinsic slip

length b(x) that varies over the surface with period L. b(x) has a maximum,

bmax, and a minimum, bmin. In the case where L� bmin , the small parameter

ε = L/bmin expresses a perturbation of plug flow, and the effective slip length

– to first order in ε – is the area-weighted harmonic mean of intrinsic slip

lengths

beff =

〈
1

b

〉−1

(4.6)

In the opposite case, where bmax � L, the small parameter ε = bmax/L

expresses a perturbation of Couette flow, and the effective slip length is

found to be the area-weighted mean of intrinsic slip lengths

beff = 〈b〉 (4.7)

These expressions are approximations that get better as their relevant per-

turbation parameters get smaller.

3-D Flow

Lund & Hendy 2008

In 2008, we published in ANZIAM Journal [35] a similar perturbation

analysis that extended the above results to 3-dimensional flow over a flat

surface with a square-periodic variation in intrinsic slip length, b(x, y). The

period in the x direction is L. If plug flow is perturbed, with perturbation
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parameter ε = L/bmin, again the effective slip length is the area-weighted

harmonic mean of b(x, y):

beff =

〈
1

b

〉−1

(4.8)

And if Couette flow is perturbed, with small parameter bmax � L, the effec-

tive slip length is the area-weighted mean of b(x, y):

beff = 〈b〉 (4.9)

These published results subsume our published results from the previous

year. They are presented in Chapter 7.

4.1.4 Rough Surface, with Slip Length � Period,

Otherwise Arbitrary

Lund et al 2012

Using a completely different technique — homogenization — we have

proved that for flow over a rough surface with a slip length varying with the

same period L as the roughness, with the minimum slip length much greater

than L,

beff =

〈√
1 + s2

b

〉−1

(4.10)

This is the harmonic mean weighted by area of contact between surface and

fluid — not just footprint area. (s is the slope and
√

1 + s2 is the arc length.)

For a flat surface, this reduces to our previous perturbative result.

This proof was published in Phys. Rev. E in 2012 [36]. It is the centre-

piece of this thesis, and is presented fully in Chapter 6.

4.1.5 Rough Surface of Single Intrinsic Slip

Einzel, Panzer & Liu 1990

Finally, there is an interesting result for a rough surface with a single

unchanging intrinsic slip length. In 1990 Einzel, Panzer and Liu [19] studied
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a ‘weakly varying surface’ of the form

y(x) =
∑
n

[
hcos
n cos(nkx) + hsin

n sin(nkx)
]

(4.11)

This Fourier surface has a single intrinsic slip length b0. In the ‘stick’ limit,

kb0 � 1, the effective slip length is:

beff = b0 −
∑
n

nk
[
(hcos

n )2 + (hsin
n )2

]
(4.12)

More interestingly, in the limit of perfect slip, kb0 � 1, they get

beff =

[
1

b0

+
∑
n

(nk)3
[
(hcos

n )2 + (hsin
n )2

]]−1

(4.13)

They get a very similar result for incommensurate sine waves, so the result

holds for pseudo-random roughness.

For clarity, we can apply this to simple sinusoidal surface chosen such

that the wave number k is the inverse of the amplitude h. Then the ‘stick’

limit kb0 � 1 is the case b� L, and

beff = b0 − h→ −h as b0 → 0 (4.14)

And the perfect slip limit kb0 � 1 is the case L� b and

beff =

[
1

b0

+
1

h

]−1

→ h as b0 →∞ (4.15)

The interesting point is that even if a rough surface has perfect slip i.e.

infinite slip length, the effective slip length of Einzel, Panzer and Liu is still

finite, because of the roughness. By contrast, our harmonic mean formula

with a single slip length b0 reduces to

beff = b0

〈√
1 + s2

〉−1

→∞ as b0 →∞ (4.16)
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4.2 Simplified Models, Scaling Laws and

Numerics

4.2.1 Models with Simplifying Assumptions

Tretheway & Meinhart 2004

In 2004, Tretheway and Meinhart [54] consider a variation of the binary

surface wherein the gas-liquid interface has some large finite slip length,

rather than an infinite slip length. Piecing together the paper and an Erratum

[55] published 2 years later, one finds they claim that the intrinsic slip length

for water of thickness 2D flowing over a rarefied gas layer of thickness δ is:

bslip =
1

2D

(
µwater
µair

)[
2Dδ + δ2 + ε(4D + 2δ)

]
(4.17)

where ε is the slip length of the rarefied gas slipping over the solid. bslip is

derived from a velocity equation uslip. They combine this with the standard

no-slip velocity equation (Couette flow): “We combine the slip and no-slip

[velocity] equations in a weighted average and calculate the cumulative ve-

locity, ucu., by

ucu. = φuslip + (1− φ)uno−slip (4.18)

where φ is the fraction covered by gas. ..., we set the cumulative velocity at

the air-water interface equal to the slip length times the shear rate at the

air-water interface to obtain an equation for slip length ...”

bcu. = φ
1

2D

(
µwater
µair

)[
2Dδ + δ2 + ε(4D + 2δ)

]
(4.19)

And that is the end of their analysis. However, the observant reader may

notice that

bcu. = φbslip (4.20)

Perhaps due to the inconsistent notation of a derivation spread over a paper

and an erratum published two years later, Tretheway and Meinhart do not

mention this. Furthermore, a careful reading seems to reveal that ∂zuslip =
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∂zuno−slip = γ̇. If the shear rate indeed does not depend on the local slip

length, we can think about a binary surface with local slip lengths defined

via uslip = bslipγ̇ and ulow−slip = blow−slipγ̇. Then one can show that a corollary

of the definition of ucu. given above is that bcu. = 〈b〉.
Tretheway and Meinhart do not give any more explanation of cumulative

velocity than the quote above; nor of cumulative slip length. If we interpret

the cumulative slip length as a candidate for an effective slip length, then

the argument in the paper would be essentially as follows: The slip length

of fluid over a gas cavity, bslip, is found. Consider a binary surface with area

fraction φ having slip length bslip, and the remainder having b = 0. Assume

beff = 〈b〉. Then beff = φbslip.

?

Cottin-Bizonne et al 2004

The harmonic mean formula for effective slip makes its first appearance

(to the best of our knowledge) in a landmark article in Eur. Phys. Journal

E in 2004 by Cecile Cottin-Bizonne et al [11]. The formula arises in the

discussion of molecular dynamics (MD) simulations, which are the basis of

the paper. Cottin-Bizonne and colleagues presented MD fluid simulations

in which they observed the ‘dewetting transition’, wherein the liquid sits on

top of posts, giving a large effective slip length. They do some numerical

calculations to predict the effective slip length in various regimes.

For the regime of No-slip/Perfect-slip strips, they find excellent agree-

ment with the analytic results of J. R. Philip [44] and Lauga and Stone [32].

Now confident in their technique, they investigate other regimes.

For strips of No-slip and Partial-slip material, they find that beff is

fixed by the smaller of the two lengths, bslip and the period L.

• For low slip (bslip < L), beff increases linearly, roughly beff = bslip/4

• For high slip ( bslip > 10L), beff asymptotes to a fraction of L. Roughly

L/10 for flow parallel to stripes, and L/20 for transverse flow.
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For stripes of Partial-slip and Perfect-slip material, they find that beff

is determined by the larger of bslip and period L.

• For small slip (bslip � L), beff is fixed by the period L.

• For high slip (bslip > L), beff increases linearly with intrinsic slip.

They advance a ‘simple phenomenological model’ to explain this linearity:

“We introduce the interfacial friction coefficient λ, defined by ... the

continuity of the tangential stress σs at the solid-liquid interface:

σs = η
∂V

∂z
= λVs (4.21)

where η is the viscosity of the liquid and Vs [is the slip velocity]. The inter-

facial friction coefficient λ is then related to the slip length b by

λ =
η

b
(4.22)

The effective friction coefficient Λ = η
beff

can be interpreted as the averaged

friction over the different stripes, and we obtain, accordingly, the following

result for the effective macroscopic slip length as a function of the microscopic

ones:

beff =

[
φ

1

bhigh

+ (1− φ)
1

blow

]−1

(4.23)

which is similar to the addition rule for resistors in parallel.

In the case bhigh →∞, we expect

beff =
blow

1− φ
” (4.24)

Cottin-Bizonne et al note “It is important to emphasize that its validity is

limited to the case where both the slip lengths, bhigh and blow, are larger than

the roughness periodicity L. Note, however, that in practice, this relationship

is valid down to blow > 0.1L.”

To the best of our knowledge, this is the first assertion that beff is the

harmonic mean of intrinsic slip lengths. This result inspired this thesis,

which provides a rigorous derivation and extension of this harmonic mean

formula.
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Ng & Wang 2009

In 2009, Ng and Wang [40] considered flow over the familiar binary surface

of flat perfect-slip/partial-slip regions, with one difference: the perfect-slip

gas-liquid interface was allowed to be some distance d below the solid surface.

They did numerical evaluations of flow both parallel and transverse to the

resulting ‘step function profile’ surface. They compare their numerics with

the continuum modeling results of Cottin-Bizonne et al. 2004 [11], and find

essentially perfect agreement.

However, their most interesting observation relates to the conventional

completely flat binary surface. They recall Cottin-Bizonne’s proposal for beff

for flow parallel to the strips:

beff =
bsolid

1− φ
(4.25)

which works very well for large bsolid. Ng and Wang have discovered that

this is much improved by simply adding on J. Philip’s exact result [44] for

bsolid = 0:

beff =
L

π
ln
[
sec
(π

2
φ
)]

+
bsolid

1− φ
(4.26)

And similarly, for transverse flow, add on the exact solution of Lauga and

Stone [32]

beff =
1

2

L

π
ln
[
sec
(π

2
φ
)]

+
bsolid

1− φ
(4.27)

Ng and Wang test these extended formulae numerically, and find that

they give a maximum error of 3% – 6%, compared with Cottin-Bizonne’s

original formula which can have a maximum error of more than 50% for

small bsolid.
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4.2.2 The Scaling Laws of Ybert et al

Ybert et al 2007

Possibly the highest-profile article relating to effective slip length is the

2007 article in Physics of Fluids by Ybert and coworkers, entitled “Achiev-

ing large slip with superhydrophobic surfaces: Scaling laws for generic ge-

ometries” [64]. The authors form a research group at Lyon, France, which

includes Cecile Cottin-Bizonne. Hence, the paper makes the same assump-

tions as the ‘phenomenological model’ of Cottin-Bizonne 2004 [11], and takes

them in a slightly different direction, to get scaling laws for various geome-

tries. The paper is sufficiently influential, and the derivation sufficiently

instructive, that we essentially reproduce it here.

At the heart of the model is the concept of stress balance. Consider the

stress on a plane of infinitesimal area located on the fluid boundary. The

stresses are illustrated in Figure (4.5).

Boundary Velocity u

Shear Rate γ̇
Viscous
Stress
ηγ̇

Friction
Stress
λu

Figure 4.5: The balanced stresses on a fluid element at the boundary.

At equilibrium, the stresses balance:

σ = ηγ̇ = λu (4.28)

If the stress balance is assumed to always hold locally – at any infinitesimal

plane, then the average stresses over the entire surface (or over one period)
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must balance:

〈σ〉 = 〈ηγ̇〉 = 〈λu〉 (4.29)

Now the viscosity η can be considered constant throughout the fluid, so that

〈ηγ̇〉 = η 〈γ̇〉. But the friction coefficient λ is not constant. Therefore, Ybert

et al define an effective friction coefficient such that:

〈λu〉 = λeff 〈u〉 (4.30)

But then of course η 〈γ̇〉 = λeff 〈u〉 rearranges to 〈u〉 =
η

λeff

〈γ̇〉 (4.31)

which defines some kind of effective slip length:

beff =
η

λeff

(4.32)

This definition of beff relates the area average boundary velocity to the area

average of the shear rate at the boundary.

〈u〉 = beff 〈γ̇〉 (4.33)

Note that the variations in boundary velocity and shear rate decay with

height, so that sufficiently far above the surface there is a uniform velocity

and shear rate, from which our far-field effective slip length can be inferred.

If the decay process (due to momentum diffusion) is equivalent to the simple

averaging done here, then the beff of Ybert et al will be identical to our

preferred far-field definition of beff . But we cannot assume this.

2-D Flow over Perfect-slip/No-slip Surface

It is assumed that the average stress on a binary surface can be decom-

posed into the area-weighted averages of the ‘subaverages’ of stress over the

liquid-gas interface and the liquid-solid interface:

Then

〈σ〉 = φ 〈σgas〉+ φsolid 〈σsolid〉 (4.34)

If the gas-liquid interface is considered to be perfect-slip or no-shear, there

is no stress; σgas = 0. Hence

〈σ〉 = φsolid 〈σsolid〉 (4.35)
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Viscosity η is constant, so 〈σsolid〉 = η 〈γ̇solid〉 (4.36)

For flow over a flat surface, ‘simple shear’ obtains: γ̇solid =
∂u

∂z
(4.37)

So

〈σsolid〉 = η

〈
∂u

∂z

〉
(4.38)

Case where φsolid → 0, Mostly Plug-like flow.

The flow is mostly plug-like, with some characteristic velocity U . The only

place that it is not plug-like is in the vicinity of the post. The fluid sticks to

the top of the post (no-slip), perturbing the plug-like flow. The perturbed

region extends some (arbitrary) distance d above the post, at which point

the velocity is (arbitrarily) close to U again. This is shown in the diagram

of Figure (4.6).

Gas
a

Solid

Perturbed
Flow

Height of
Perturbation,

dPlug-like Flow

Velocity ' U

Plug Flow, at velocity U

Figure 4.6: Plug flow perturbed by a no-slip post of width a.

Thus, the velocity changes from 0 to U in distance d. The geometry in

Figure (4.7) illustrates that the average velocity gradient is therefore〈
∂u

∂z

〉
=
U

d
(4.39)
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a

Solid

d

U

Average Velocity Gradient = U
d

Figure 4.7: The geometry of the average velocity gradient of the perturbation.

Now, d scales as a. This is shown by dimensional analysis using the Buck-

ingham Pi theorem in Appendix C.

Hence, 〈
∂u

∂z

〉
∼ U

a
(4.40)

Thus,

〈σsolid〉 ∼ η
U

a
(4.41)

and

〈σ〉 ∼ φsolidη
U

a
(4.42)

In plug-like flow most of the fluid at the boundary is moving at the charac-

teristic velocity U . So

〈u〉 ' U (4.43)

Thus we have

η 〈γ̇〉 = 〈σ〉 ∼ φsolidη

a
〈u〉 (4.44)

simplifying to:

〈u〉 ∼ a

φsolid

〈γ̇〉 (4.45)

defining

beff ∼
a

φsolid

(4.46)
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Thus in the limit of small solid fraction φsolid, Ybert et al argue that

beff ∼ α
a

φsolid

(4.47)

where α is a prefactor that depends on the geometry of the surface. This is

the main result of Ybert et al 2007 [64].

Other Results

Ybert et al compare this scaling law with the exact result of J. R. Philip

[44]. For the striped surface in question, φsolid = a/L, so the scaling law is:

beff ∼ L (4.48)

They note that in the limit of small φsolid, Philip’s exact solution is similar,

having only logarithmic dependence on φsolid: beff ∼ L log φsolid

If the surface is a forest of nanopillars, φsolid = (a/L)2, so the scaling law

is:

beff ∼
a√
φsolid

(4.49)

Finally, if the no-slip condition is relaxed and some finite slip length bs

holds on the solid post, the scaling law is modified: “Going back to the above

derivation ... in the limit φsolid → 0, one expects that a finite slip length

on the solid will reduce the shear rate over the solid regions: 〈∂u/∂z〉 ∼
U/(a+ bs). The averaged shear stress over the total surface now reads 〈σ〉 =

φsolidηU/(a+ bs). One gets accordingly ...”

beff ∼
a+ bs
φsolid

(4.50)

For completeness, they consider the case of vanishing gas area. Flow over

a surface with very narrow gas gaps of width l will be close to Couette flow,

with:

beff ∼ l(1− φsolid) (4.51)
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4.2.3 Numerics

Ng & Wang 2009

As already mentioned, Ng and Wang in 2009 [40] did numerical studies of

flow over a grating, in both parallel and transverse orientations. They derive

eigenfunction expansions of the flow solutions, which are solved numerically.

The effective slip lengths extracted have essentially perfect agreement with

the continuum modeling of Cottin-Bizonne 2004 [11].

?

Davis & Lauga 2009b

In their second paper of 2009 [15], Davis and Lauga consider Stokes flow

over a mesh of thin wires or strips, with large square air gaps in between.

The surface is considered to be flat, with no-slip on the strips, and perfect-

slip on the liquid-air interface. The period of the square-periodic mesh is L,

and the width of the strips is εL. See Figure (4.8).

L

εL

Figure 4.8: Top view of the mesh of no-slip strips and perfect-slip squares.

Davis and Lauga use a method of superposition of singularities, and end

up with an infinite system of linear equations. Then beff = L/π(A0 + B0)

where A0 and B0 are the zeroth-order coefficients of the system of equations.

They solve numerically for A0 and B0 by truncating the infinite system
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at N equations. (Truncating at N = 1000 rather than N = 100 changed the

computed beff by less than 0.01%.) After computing beff for various values of

ε, they derive a least-squares fit formula:

beff = −0.107L lnφsolid + 0.003L (4.52)

Finally, they offer ‘simple estimates’ – solutions from truncating the infi-

nite series at N = 1 and N = 2 terms. For N = 1:

beff =
L

3π
ln

(
2

πε

)
(4.53)

The simple estimate for N = 2 is more complicated. These simple esti-

mates overestimate beff by up to 10%, but converge on the correct result as

ε→ 0.

4.2.4 Coefficients Evaluated for Ybert’s Scaling Laws

The influential scaling law paper by Ybert et al [64] inspired researchers to

find the relevant coefficients by numerical or approximate methods.

Ng & Wang 2010

In 2010, Ng and Wang [41] continued their approach of numerically solv-

ing eigenfunction expansions, to find the scaling coefficients.

For flow over superhydrophobic surfaces, with the solid posts occupying

a small area fraction, Ybert had proposed:

beff ∼
1√
φsolid

(4.54)

From their numerical data, Ng and Wang fit the parameters:

beff =
0.34√
φsolid

− 0.468 for circular posts, (4.55)

beff =
0.33√
φsolid

− 0.461 for square posts. (4.56)

And other parameters for other regimes. Ng and Wang present numeri-

cally fitted parameters for the nanobubble case (φsolid → 1), for cases with



84CHAPTER 4. EFFECTIVE SLIP LENGTH EXPRESSIONS: PRIORWORK

finite slip on the solid, and for cases where the geometry is elliptical or rect-

angular rather than simply circular or square.

?

Davis & Lauga 2010

In 2010, Davis and Lauga [17] studied Stokes flow over a superhydropho-

bic surface comprising a rectangular array of circular posts, each of radius a,

as in the diagram of Figure (4.9).

2a

D

L

Figure 4.9: Top view of rectangular array of circular posts.

As their point of departure, they take the scaling law proposed in Ybert

et al 2007 for the limit of small φsolid:

beff ∼
A√
φsolid

L−BL (4.57)

“By asymptotically considering the case of low solid fraction, φsolid, we

mathematically derive the scaling coefficients A and B governing (4.57),

thereby predicting analytically the effective surface-slip length.” The asymp-

totic estimate of the coefficients yields:

beff ∼
3

16

√
π

φsolid

√
DL (4.58)

If the array is square, this reduces to:

beff ∼
3

16

√
π

φsolid

L (4.59)
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Adding the next-order correction term gives (for the square array):

beff ∼
3

16

√
π

φsolid

L− 3

2π
ln(1 +

√
2)L (4.60)

in the limit of low φsolid.

They compare their analytical asymptotic estimate with previous numer-

ical work: “The quantitative agreement between our model and previous

numerical work is remarkable... we find that the error between our simple

model, and numerics of Ng and Wang (2010) [41] is about 1.8%, while the

error between our model and the computations of Ybert et al (2007) [64] is

about 3.9%.”

4.3 Conclusion

There exists only on the order of a dozen expressions for the effective slip

length of a mixed-slip surface. Only a handful of them are exact results that

have been rigorously derived, and these results apply only in certain limits.

These include the seminal work of J. R. Philip in 1972 [44], and the work of

Lauga and Stone in 2003 [32], which assume binary surfaces of no-slip and

perfect-slip material. Our own recent papers [22, 35, 36], which form the

core of this thesis, contain results that apply when the intrinsic slip length

is much larger or much smaller than the length scales of the fluid flow.

A simple phenomenological model was proposed by the Lyon group in the

paper by Cottin-Bizonne et al [11], leading to the suggestion that

beff =

〈
1

b

〉−1

(4.61)

This thesis provides a rigorous derivation of this empirically derived result

and extends it to the case of rough surfaces. The same model inspired the

derivation of several scaling laws, which appear in the highly influential paper

of 2007 by Ybert et al [64].

The scaling laws have been refined by various researchers, by finding

appropriate coefficients via numerical or approximate methods.
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Chapter 5

The Mathematical Model

We are preparing to derive an expression for the effective slip length of a

rough, mixed-slip surface. To begin, we translate the physical problem into

the precise language of mathematics. That is, we construct a mathematical

model that maps to the essential features of physical reality. The construction

of the mathematical model is the focus of this chapter.

5.0.1 Mathematical Preliminaries

The differing needs of the maths, physics and engineering communities can

cause irritating inconsistencies in notation and nomenclature. Being at the

intersection of maths, physics and engineering, fluid mechanics is particularly

prone to this. Thus, it is necessary to define terms before ploughing into the

derivation. Disclaimer: the following language and notation may not be

‘standard’, but they follow the conventions of the (rigorous) textbooks of C.

Pozrikidis [46, 47].

We begin by defining the Fréchet derivative – this is important, because

more than one definition is in use. This makes it easy to then define the ve-

locity gradient tensor, which behaves in a manner very similar to the Fréchet

derivative.

87
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The Fréchet Derivative

The Fréchet derivative is a generalization of the familiar derivative of a func-

tion of one real variable, to the more abstract ‘functions on Banach spaces’.

Happily, for finite-dimensional spaces, it is in fact the Jacobian matrix.

Consider a vector field in R2, with Cartesian coordinates. At each point

x, y in space there is a vector ~u = (u, v), with u and v depending on x and

y so that ~u = (u(x, y), v(x, y)). Then ~u can be considered a vector valued

function on R2, with Jacobian matrix:

D~u =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
=

[
∂xu ∂yu

∂xv ∂yv

]
(5.1)

The Fréchet derivative is a spatial derivative of a vector. It gives the

change in a vector field as one moves from point ~x0 = (x0, y0) in the direction

~a. The vector at point ~x0 is ~u(~x0). What is the vector at a point a short

distance ~a away? It is approximately ~u(~x0) plus a correction D~u · ~a that

depends on ~a:

~u(~x0 + ~a) ' ~u(~x0) +D~u · ~a (5.2)

See Figure (5.1). The approximation becomes exact as the magnitude of

~a tends to zero.

~u(~x0)

~x0 + ~a

~a

~x0

~u(~x0)

D~u · ~a

~u(~x0 + ~a)

Figure 5.1: The action of the Fréchet derivative in R2.

The correction vector D~u · ~a is the tensor dot product of the Fréchet
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derivative with the vector ~a. The tensor dot product is defined as

~b = T · ~a, bi = Tijaj (5.3)

which is the same as the familiar matrix multiplication of a vector:

D~u · ~a =

[
∂xu ∂yu

∂xv ∂yv

][
ax

ay

]
=

[
(∂xu)ax + (∂yu)ay

(∂xv)ax + (∂yv)ay

]
(5.4)

D~u · ~a is known as the directional derivative of ~u in the direction ~a.

The Velocity Gradient Tensor

If the vector field is a velocity vector field ~u, then it is convenient to work

with the velocity gradient tensor, denoted ∇~u. This is the transpose of

the Fréchet derivative of the velocity field:

∇~u = D~uT =

[
∂xu ∂xv

∂yu ∂yv

]
(5.5)

This provides a linear approximation to the flow field in the vicinity of

~x0 via:

~u(~x) ' ~u(~x0) + (~x− ~x0) · ∇~u (5.6)

This is illustrated in Figure (5.2).

~u(~x0)

~x

(~x− ~x0)

~x0

~u(~x0)

(~x− ~x0) · ∇~u

~u(~x)

Figure 5.2: The action of the velocity gradient tensor.

An advantage of this convention is that the tensor dot product

~b = ~a · T = T T · ~a, bi = ajTji (5.7)
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allows the notation to follow the form of the familiar one-dimensional case:

f(x) ' f(x0) + (x− x0)
df

dx

An interesting question: how does a vector change in the direction of the

vector itself? This vector ‘self gradient’ looks like:

~u · ∇~u =
[
u v

] [∂xu ∂xv

∂yu ∂yv

]
=

[
u∂xu+ v∂yu

u∂xv + v∂yv

]
(5.8)

Compare this with the advection operator (~u·∇) = u∂x+v∂y, operating

on vector ~u:

(~u · ∇)~u = (u∂x + v∂y)

[
u

v

]
=

[
u∂xu+ v∂yu

u∂xv + v∂yv

]
(5.9)

We see that they are the same. The advection operator usually appears

in the derivation of the ‘material derivative’. This alternative derivation via

the velocity gradient tensor provides the useful intuition that the advection

operator simply gives the change in a vector as one travels in the direction

of the vector itself.
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5.1 Modeling the Bulk Fluid: Navier Stokes

Fluid is composed of molecules, and the macroscopically observable proper-

ties of fluid emerge from the statistical mechanics of ensembles of molecules.

Various properties of fluids are described by continuous mathematical func-

tions. Thus, the value of the function at point ~x in a fluid is to be thought

of as the statistical mechanical quantity emergent from the ensemble of

molecules contained in an infinitesimal fluid element located at point ~x.

The element – for clarity, consider it a cube – is large enough to provide

satisfactory statistics for the emergent quantity, but small enough that the

continuum approximation is still sound.

Density

The density ρ of a fluid is the mass per unit volume of an infinitesimal fluid

element. It is a scalar quantity that may vary if the fluid is compressible.

Velocity

The velocities of the ensemble of molecules in an infinitesimal element can be

averaged to define the fluid velocity at that point. This is true of any point,

so the fluid velocity field is a continuous vector-valued function on the fluid.

An example is shown in Figure (5.3).

Figure 5.3: A bulk of fluid with a velocity vector field.
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5.1.1 Incompressible Liquid

For a vector field, a flux can be defined. If the fluid is an incompressible

liquid, then the flux into a volume element will exactly equal the flux out of

the volume element. This is expressed in the mathematical model by stating

that the divergence of the velocity vector field is zero everywhere:

∇ · ~u = 0 (5.10)

Incompressibility is a good approximation for liquids, and also turns out to

be very mathematically convenient.

Pressure

The pressure p is a scalar function defined as the force per unit area acting

on an arbitrarily oriented plane moving with the fluid. A pressure gradient

in the fluid means that the pressure on one side of a fluid element is higher

than on the other side. This may cause a net force on the fluid element which

tends to accelerate it, as suggested in Figure (5.4).

a

p1 p2 ' p1 + a∇p
Net Force

∝ ∇p

Figure 5.4: A pressure gradient tends to accelerate a fluid element.
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5.1.2 Incompressible Viscous Newtonian Fluid

Interesting fluids have a viscosity, µ, an internal friction that allows velocity

to propagate through the fluid. At a molecular level, molecules from a fast

fluid element diffuse into an adjacent slower fluid element, and vice versa.

This diffusion of momentum tends to equalise the velocities of adjacent ele-

ments. Thus, viscosity acts with velocity gradients to cause stresses on a fluid

element caused by the differing velocities of adjacent fluid elements. If the

stresses are balanced, the element will not tend to accelerate, as suggested

in Figure (5.5).

a

u2 ' a∇u

u1

u0 ' −a∇u

Stress ' a2µa∇u

Stress ' −a2µa∇u

Stresses
Balance

Figure 5.5: Fluid element at equilibrium with viscous stresses balanced.

The velocity gradient gives a linear approximation to the local flow field;

the linearity means that the velocity differences on opposite sides of a fluid

element will be equal and opposite. However, the next level of accuracy

is a quadratic approximation using the second derivative of velocity, the

Laplacian∇2u. With the quadratic approximation, there can be a net viscous

stress on the fluid element, tending to accelerate it. This is shown in Figure

(5.6).
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a

u2 ' a∇u+ 1
2
a2∇2u

u1

u0 ' −a∇u+ 1
2
a2∇2u

Net Force ∝ µ∇2u

Figure 5.6: Net force on fluid element proportional to µ∇2u.

We have seen that a fluid element may be subjected to a net pressure

force caused by the pressure gradient ∇p, and a net viscous force caused

by the viscosity and velocity laplacian ∇2u. The fluid element has a mass,

and the total net force may accelerate the fluid element in accordance with

Newton’s second law. This law is embodied in the Navier-Stokes equation.

If no body forces (eg. gravity) are relevant, and the fluid is incompress-

ible, the Navier-Stokes equation is:

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
= −∇p+ µ∇2~u (5.11)

If the equation is multiplied by the volume of the infinitesimal fluid el-

ement, then the left-hand side is the acceleration, and the right-hand side

is the force due to the pressure gradient and viscous shear. The ‘advection

operator’ (~u · ∇) = u∂x + v∂y gives the ‘inertial’ term (~u · ∇)~u.



5.2. MICROFLUIDICS: STOKES OR ‘CREEPING’ FLOW 95

5.2 Microfluidics: Stokes or ‘creeping’ flow

The Navier-Stokes equations are an excellent description of much fluid flow.

However, the advection terms like u∂xu in the differential equation are not

linear, in the sense that they cannot be put in the form · · ·+a0u+a1∂xu+· · · .
Nonlinear partial differential equations are notoriously difficult to solve. But

there is hope. In some physical cases, the nonlinear terms may be much

smaller than the rest, and contribute only a negligible amount to the solution.

In that case, the nonlinear terms can be discarded, and the solution of the

resulting linear equation is a very good approximation. We will now show

that this is true for the microfluidic case where slip effects are noticeable.

One way to compare the relative magnitudes of the terms is to first non-

dimensionalise the terms. The idea is this: express the fundamental physical

quantities as fractions of a ‘characteristic’ value. The fraction forms a new,

dimensionless variable. Then typical values of the dimensionless variables

have a magnitude on the order of one. For example, consider Poiseuille flow

down a straight pipe, where the average velocity is U . The velocity u varies

from zero at the wall, to 3
2
U in the centre of the pipe. Now define the

dimensionless velocity û = u/U . Clearly, the magnitude of û will vary from

zero at the wall, to 3
2

in the centre. i.e. for most of the domain, û is ‘about

one’.

A non-dimensionalised equation will hopefully have many terms with a

magnitude on the order of one, with the magnitude of the remaining terms

easily evaluated. Thus, non-dimensionalising expedites the process of decid-

ing which terms are negligible enough to discard.
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5.2.1 Non-dimensionalising and the Reynolds Number

Example for Analysis: 2-D Poiseuille Flow

This thesis analyses microfluidic flow experiments that reveal slip effects.

The canonical flow experiment is flow down a capillary — a very thin pipe or

channel. We shall use this type of flow to analyse our non-dimensionalisation.

For clarity, we shall stick to two dimensions; this models pressure-driven flow

between two infinite flat planes separated by distance L. This is known as

plane Poiseuille flow. The solution is a parabolic velocity profile, the same

as for Poiseuille flow as found in a straight, circular pipe:

u(y) =
1

2µ

(
dp

dx

)(
y2 − yL

)
(5.12)

The standard way to non-dimensionalise pipe flow is to choose the pipe

diameter L as the characteristic length. Likewise, we choose channnel width

L, and average velocity U as the characteristic velocity.

Then the non-dimensional variables are:

x̂ =
x

L
, ŷ =

y

L
, û =

u

U
, v̂ =

v

U
(5.13)

The other variables are pressure and time. We would like to express them

in terms of existing quantities. It turns out that µU/L has units of pressure,

and the ratio L/U has units of time, so define characteristic pressure and

time:

P =
µU

L
, T =

L

U
(5.14)

giving dimensionless variables p̂ = p/P and t̂ = t/T :

p̂ =
L

µU
p, t̂ =

U

L
t (5.15)

Thus we can substitute

x = Lx̂, y = Lŷ, u = Uû, v = Uv̂, p =
µU

L
p̂, t =

L

U
t̂ (5.16)
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into the Navier-Stokes equation. For clarity, we focus on just the x compo-

nent:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(5.17)

Substitute:

ρ

(
∂Uû

∂ L
U
t̂

+ Uû
∂Uû

∂Lx̂
+ Uv̂

∂Uû

∂Lŷ

)
= −

∂ µU
L
p̂

∂Lx̂
+ µ

(
∂2Uû

∂(Lx̂)2
+

∂2Uû

∂(Lŷ)2

)
(5.18)

ρ
U2

L

(
∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ

)
= −µU

L2

∂p̂

∂x̂
+
µU

L2

(
∂2û

∂x̂2
+
∂2û

∂ŷ2

)
(5.19)

ρLU

µ

(
∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ

)
= −∂p̂

∂x̂
+

(
∂2û

∂x̂2
+
∂2û

∂ŷ2

)
(5.20)

Define Kinematic Viscosity

ν =
µ

ρ
(5.21)

Then define the Reynolds Number:

Re =
LU

ν
(5.22)

Thus the x component of the Navier-Stokes equations are:

Re

(
∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ

)
= −∂p̂

∂x̂
+

(
∂2û

∂x̂2
+
∂2û

∂ŷ2

)
(5.23)

We are now in a position to look at the relative magnitudes of the terms.
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Magnitudes of Velocity Terms

We have chosen Poiseuille flow to illustrate our non-dimensionalisation. Since

it has an exact solution, we know exactly what the velocity and its derivatives

are. The parabolic velocity profile looks as shown in Figure (5.7).

Wall

û

ŷ
0 1

2

1

3
2

Mean û

0.211

Direction
Of Flow

Figure 5.7: Dimensionless parabolic flow profile of plane Poiseuille flow.

By construction, the û term ranges from zero to 3
2
. Hence, û is of order

one.

For strict Poiseuille flow, the walls are perfectly flat, and the velocity

perpendicular to the wall is zero everywhere. That is, v̂ = 0 always.

But we may consider a channel with roughness on the walls, with the

amplitude of the roughness small compared to the channel width, so that

the flow is Poiseuille-like. Then, near the wall, the transverse velocity v̂ may

approach the magnitude of û. The magnitude of û near the wall is small

compared to the average, so we would expect perhaps v̂ < 0.1. That is, for

rough-walled Poiseuille-like flow, v̂ is of order 0.1, at most.

Magnitudes of Velocity Derivative Terms

A typical capillary flow experiment is carried out with flow rates held con-

stant, and at low enough flow velocities that the flow is laminar. For the

purposes of our analysis, we shall assume steady non-turbulent flow, so the
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time-dependent velocity term vanishes.

∂û

∂t̂
= 0 (5.24)

For the parabolic flow profile of Poiseuille flow, the derivative of velocity

is linear, as shown in Figure (5.8).

Wall

∂û
∂ŷ

ŷ
0 1

2

6

∂û
∂ŷ

Figure 5.8: Velocity first derivative of plane Poiseuille flow.

The average value of ∂yû over the channel width is zero. But the average

magnitude is 3. So ∂ŷû is ‘of order one’.

For strict Poiseuille flow, û has no x-dependence, so ∂x̂û = 0 everywhere.

But for rough-walled Poiseuille flow, the wall corrugations will cause ve-

locity û near the wall to change in the x direction, over the period of the

corrugation. Near the wall, û is on the order of 0.1 or less, so ∆û over the

period can be no more than 0.1. For the flow to remain Poiseuille-like, the

roughness period must be small compared to the channel width, i. e. on the

order of 0.1 or less. Thus, in the vicinity of the wall, ∂x̂û ∼ 0.1/0.1 = 1. Away

from the wall, ∂x̂û becomes smaller as flow converges on strict Poiseuille flow.

Thus, ∂x̂û is of order one, at most.

Magnitudes of Advection Terms

∂x̂û vanishes over the middle part of the domain (where û is at most 3/2)

and reaches a maximum of about 1 near the wall, where û is of order 0.1.
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Therefore, û∂x̂û is at most 0.1.

Near the wall, both v̂ and ∂ŷû are at their maxima: v̂ ∼ 0.1 and ∂ŷû ∼ 5.

Their product is about 0.5, or order 1. Thus, v̂∂ŷû is of order one, at most.

Magnitudes of Second Derivatives of Velocity

The second spatial derivative of the parabolic velocity profile is a constant,

as illustrated in Figure (5.9).

Wall

∂2û
∂ŷ2

ŷ

1
2

0

-12

∂2û
∂ŷ2

Figure 5.9: Velocity Laplacian of plane Poiseuille flow.

For Poiseuille flow nondimensionalized in the standard way, ∂2û
∂ŷ2 = −12.

That is, the magnitude is of order ten.

For strictly Poiseuille flow, the x velocity has no x dependence, so ∂x̂û = 0,

and ∂2
x̂û = 0.

For rough-walled Poiseuille-like flow, we have allowed that ∂x̂û ∼ 1 for

the 10% of the domain near the wall. This reduces to near zero for the rest

of the domain. Therefore, ∂x̂û reduces from order one to zero in distance 0.1,

hence average ∂2
x̂û near the wall is of order ten. Hence, ∂2

x̂û is of order ten

at most.

Summary of Magnitudes of Terms

At this point, we can summarize what we know about the relative magnitudes

of the terms in the Navier-Stokes equation. For steady strict Poiseuille flow
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nondimensionalized in the standard way, the velocity û(x, y) in the direction

of the flow obeys:

Re

 ∂û

∂t̂︸︷︷︸
= 0

+ û
∂û

∂x̂︸︷︷︸
= 0

+ v̂
∂û

∂ŷ︸︷︷︸
= 0

 = −∂p̂
∂x̂︸ ︷︷ ︸

unknown

+

∂2û

∂x̂2︸︷︷︸
= 0

+
∂2û

∂ŷ2︸︷︷︸
∼10

 (5.25)

Which simplifies considerably to:

0 = −∂p̂
∂x̂

+
∂2û

∂ŷ2
(5.26)

But for rough-walled Poiseuille-like flow, things are not quite so simple:

Re

 ∂û

∂t̂︸︷︷︸
= 0

+ û
∂û

∂x̂︸︷︷︸
∼0.1

+ v̂
∂û

∂ŷ︸︷︷︸
∼1

 = −∂p̂
∂x̂︸ ︷︷ ︸

unknown

+

∂2û

∂x̂2︸︷︷︸
∼10

+
∂2û

∂ŷ2︸︷︷︸
∼10

 (5.27)

That is:

Re

∂û∂t̂ + û
∂û

∂x̂
+ v̂

∂û

∂ŷ︸ ︷︷ ︸
sum is order 1

 = −∂p̂
∂x̂︸ ︷︷ ︸

unknown

+

∂2û

∂x̂2︸︷︷︸
∼10

+
∂2û

∂ŷ2︸︷︷︸
∼10

 (5.28)

Importantly, we have discovered the relative magnitudes of the terms

that do not depend on the physical situation. The above relation holds for

Poiseuille flow of any fluid at any scale. The parameters pertaining to the

specific physical system are wrapped up into the Reynolds number.

Now is a good time, then, to evaluate the Reynolds number for the kind

of microfluidic slip experiments we are considering.

Reynolds number for microfluidic channels

A recent Poiseuille-type microfluidic slip experiment appears in the 2006

paper by Huang et al in the Journal of Fluid Mechanics [24]. They looked at

steady flow in channels 50 µm deep and 250 µm wide. Particle velocimetry
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techniques showed a velocity distribution with a maximum velocity of about

600 µm s−1. When defining the Reynolds number for flow in a rectangular

duct, the standard characteristic length to use is the hydraulic diameter,

which is four times the cross-sectional area divided by the perimeter. In this

case it is 83.33 µm.

The viscosity of water at room temperatures is very close to µ = 0.001

kgs−1m−1. The density of water is ρ = 1000 kgm−3. We shall choose L =

100µm and U = 400µm s−1 as conservative characteristic length and velocity

scales. Hence the Reynolds number evaluates to:

Re =
ρLU

µ
=

1000× 0.0001× 0.004

0.001
= 0.4 (5.29)

Thus the magnitudes of terms in the Navier-Stokes equation are:

Re

(
∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ

)
︸ ︷︷ ︸

order 0.4

= −∂p̂
∂x̂︸ ︷︷ ︸

unknown

+

∂2û

∂x̂2︸︷︷︸
∼10

+
∂2û

∂ŷ2︸︷︷︸
∼10

 (5.30)

The three terms on the right-hand side sum up to something with a

magnitude at least 25 times smaller than the largest term on the right. That

is, the equation is ‘close to’ the similar equation in which the the right-hand

side terms sum to zero. Thus, we choose to solve the much simpler equation:

0 = −∂p̂
∂x̂

+

(
∂2û

∂x̂2
+
∂2û

∂ŷ2

)
(5.31)

The y component of the Navier-Stokes is:

Re

(
∂v̂

∂t̂
+ û

∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

)
= −∂p̂

∂ŷ
+

(
∂2v̂

∂x̂2
+
∂2v̂

∂ŷ2

)
(5.32)

For pure Poiseuille flow, this reduces to 0 = 0. For rough-walled Poiseuille-

like flow, we expect v̂ to be nonzero but very small compared to û. So

we anticipate no significant loss of information if we discard the left-hand

side of the y velocity equation. If we do this, then we have simplified the

Navier-Stokes vector equation to:

0 = −∇̂p̂+ ∇̂2~̂u (5.33)
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or

∇̂2~̂u = ∇̂p̂ (5.34)

This is known as the Stokes equation, and describes very slow-moving flow

described as ‘creeping’ flow or Stokes flow. Stokes flow is associated with

Reynolds numbers Re � 1. Some perspective: for flow in a pipe, flows with

Reynolds numbers below about 2,300 are always laminar, while flows with

Reynolds numbers above about 4,000 are always turbulent.

In Stokes flow, the time-dependent and inertial terms are deemed to be

negligible compared to the pressure and viscosity terms. Thus, the Stokes

equation describes the force balance between pressure and viscous stresses.

5.2.2 Redimensionalize back to Physical Units

We will convert back into physical units. Substituting the definitions of the

dimensionless variables back into the Stokes equation:(
∂2 u

U

∂( x
L

)2
+

∂2 u
U

∂( y
L

)2

)
=
∂ L
µU
p

∂ x
L

(5.35)

L2

µU

(
∂2u

∂x2
+
∂2u

∂y2

)
=

L2

µU

∂p

∂x
(5.36)

µ

(
∂2u

∂x2
+
∂2u

∂y2

)
=
∂p

∂x
(5.37)

Similarly for the other vector components of the Stokes equation.

Thus, for microfluidic flow down a capillary, the bulk fluid obeys the

Stokes equation:

µ∇2~u = ∇p (5.38)

In the field of microfluidics, it is customary to assume Stokes flow in all

cases. However, we note that for example, the capillary slip experiment of

Vinogradova 2009 [58] had velocities of up to 5 cm per second down a channel

100 µm wide, yielding a Reynolds number Re ∼ 1.



104 CHAPTER 5. THE MATHEMATICAL MODEL

5.3 Modeling the Boundary: Generalized Slip

After establishing that the Stokes equation and incompressibility condition

hold in the bulk region (domain) of our model, we now turn to the boundary.

There may be some subtlety as to where the boundary is, in the following

sense: In the mathematical model we are constructing, the distinction be-

tween bulk and boundary has the perfect discontinuity of a geometric object.

However, as noted earlier, in a physical system, there may be some ambiguity

as to what constitutes the boundary; there may be a region of finite depth

that could reasonably be called the boundary region. The question then is:

what part of the boundary region of the physical system corresponds to the

boundary surface in the mathematical model?

The justifiable choice is for the mathematical boundary to map to the top

of the physical boundary region. In the physical system, certain conditions

hold that are homogeneous through the bulk of the fluid. However, near the

surface, there may be some deviation from these conditions (caused perhaps

by a depletion layer). This is not allowed in the mathematical model (since

in the model, the domain is homogeneous), so the mathematical boundary

must map to the lowest part of the homogeneous physical bulk region. This

is illustrated in Figure (5.10).

Bulk

Boundary Region

Domain

Boundary

physical model

Bulk conditions hold

Bulk conditions
do not hold

Figure 5.10: Model boundary maps to top of physical boundary region.
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5.3.1 Simple Shear with Navier Slip

As explained in the introductory chapters, the classical boundary condition

is ‘no slip’, and the simplest extension to that is Navier slip, where the

boundary velocity is proportional to the velocity gradient:

uboundary = b
∂u

∂z

∣∣∣∣
boundary

(5.39)

This holds for a system exhibiting simple shear: a flat surface with

laminar flow above it, with each lamina parallel to the boundary surface.

There is no velocity component normal to the surface. See Figure (5.11).

b

z

x
Flat Surface

Laminar flow, streamlines
parallel to surface

Figure 5.11: Simple shear.

The laminae shear past each other, giving rise to the viscous force. The

shear rate is simply the velocity gradient: the rate of change of (parallel)

velocity as we move in the normal direction.

The shear rate has an intuitive physical meaning. Consider the action of

simple shear on an infinitesimal cube of fluid: the cube starts with all sides

at right angles, and is deformed into a parallelipiped. The internal angle θ

starts at 90◦ and gets smaller. In timeslice ∆t the change in angle ∆θ causes

the deformation shown in Figure (5.12).
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θ

r

∆t r ∂u
∂z

s

θ

Figure 5.12: Simple shear deforms an infinitesimal cube of fluid.

In timeslice ∆t, the top of the cube moves distance ∆t r∂zu, and the angle

changes by ∆θ = s/r. For sufficiently small ∆t, s is much smaller than r,

and s ' ∆t r∂yu, so that ∆θ ' ∆t ∂zu. In the limit ∆t→ 0:

shear rate =
dθ

dt
=
∂u

∂z
(5.40)

5.3.2 Oblique Shear and the Velocity Gradient Tensor

If the surface is still flat, but not oriented such that the surface maps nicely

to the plane z = 0, as in Figure (5.13), then the shear rate must be defined

with vector derivatives.

z

x

b

Laminar flow, streamlines
parallel to surface but
oblique to coordinates

Figure 5.13: Oblique shear.

We introduce the unit vectors normal and tangent to the surface, ~n and

~t. Then the tangential component of velocity is ~u ·~t. Because the streamlines
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are parallel to the flat surface, ~u is parallel to ~t, so that ~u · ~t is in fact the

magnitude of ~u.

We can define the shear rate as the rate of change of the tangential velocity

in the normal direction. That is, the tangential component of the directional

derivative of velocity in the normal direction. The directional derivative of

the velocity in the normal direction is ~n · ∇~u, and its tangential component

is ~n · ∇~u · ~t. See the schematic of Figure (5.14).

~n

~t

~n · ∇~u

1

~n · ∇~u · ~t
Magnitudes:

Shear Rate

= ~n·∇~u·~t
1

= ~n · ∇~u · ~t

Figure 5.14: The shear rate at a flat surface of arbitrary orientation.

Thus for a flat surface, with arbitrary coordinates, the shear rate is

~n · ∇~u · ~t (5.41)

5.3.3 Curved Surface and Deformation Rate Tensor

Figure 5.15: Laminar flow over a non-flat surface.
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But what if the surface is not flat? (Like Figure (5.15).)

It is tempting to assume the shear rate is the same as in the case of the

generalized flat surface, as shown in the schematic of Figure (5.16).

1

~n · ∇~u · ~t

shear rate = ~n · ∇~u · ~t ?

Figure 5.16: Is the shear rate the same as for a flat surface?

But consider the possible action on an infinitesimal cube of fluid shown

in Figure (5.17).

θ = 90◦ θ still 90◦!

Figure 5.17: An infinitesimal cube may rotate without deforming.

The infinitesimal cubical element has rotated (and perhaps translated)

but not deformed. The laminae have not slid past each other, and the cube

has not been subjected to shear. There will be no viscous stress operating

within the cube.

In this case, ~n · ∇~u · ~t is not the shear rate of the cube, but the rate of

rotation (angular velocity). To get the true shear rate, we need to somehow

remove the rotation.
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The velocity gradient tensor (and Fréchet derivative) linearize the flow

field. ∇~u is a linear transformation of a direction vector (the result being the

correction vector). Geometrically, a linear transformation can be decomposed

into a rotation, an area-preserving deformation, and an expansion. Following

the exposition in the textbook [46] of C. Pozrikidis:

∇~u = Ξ + E +
1

2
(∇ · ~u)I (5.42)

The rotation is represented in the vorticity tensor, Ξ, the deformation

in the deformation rate tensor, E, and the expansion in 1
2
(∇ · ~u)I

Working, for clarity, with 2-dimensional flow only, the vorticity tensor is:

Ξ =
1

2
(∇~u−∇~uT ) =

1

2

[
0 ∂xv − ∂yu

∂yu− ∂xv 0

]
(5.43)

The deformation rate tensor is:

E =
1

2
(∇~u+∇~uT )− 1

2
(∇ · ~u)I =

1

2

[
∂xu− ∂yv ∂xv + ∂yu

∂yu+ ∂xv ∂yv − ∂xu

]
(5.44)

The expansion rate tensor is:

1

2
(∇ · ~u)I =

1

2

[
∂xu+ ∂yv 0

0 ∂xu+ ∂yv

]
(5.45)

We will deal with liquids, which we assume to be incompressible. Thus

the divergence vanishes:

∇ · ~u = 0 (5.46)

Therefore, the expansion term vanishes, and the deformation rate tensor

simplifies to:

E =
1

2
(∇~u+∇~uT ) =

1

2

[
2∂xu ∂xv + ∂yu

∂yu+ ∂xv 2∂yv

]
(5.47)

So for incompressible fluids, the linearized flow field is fully described by

two terms, the antisymmetric and symmetric parts of the velocity gradient

tensor:

∇~u =
1

2
(∇~u−∇~uT ) +

1

2
(∇~u+∇~uT ) = Ξ + E (5.48)
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We have solved our problem: removing the rotational transforms from the

velocity gradient tensor is as simple as ∇~u−Ξ = E. So the deformation rate

tensor E contains all transformations of the velocity gradient tensor other

than rotation. Specifically, it must describe all shear.

We illustrate this in a simple example of 2-dimensional flow, where the

normal and tangent vectors happen to align with the coordinate axes, as

shown in Figure (5.18).

1

∂yu

1

∂xvθ

dθ

dt
= ∂yu+ ∂xv

y

x

Figure 5.18: The true shear rate at a point where the normal and tangent

vectors align with the coordinate axes.

We see that the true shear rate at this point is ∂yu + ∂xv. The normal

and tangent vectors at this point are:

~n =

[
0

1

]
, ~t =

[
1

0

]
, (5.49)

What is ~n · 2E · ~t ?

~n · 2E · ~t =

[
0

1

]
·

[
2∂xu ∂xv + ∂yu

∂yu+ ∂xv 2∂yv

][
1

0

]
= ∂yu+ ∂xv (5.50)

We have intuitively confirmed that for a general fluid flow, the shear rate

associated with an infinitesimal plane is:

shear rate =
dθ

dt
= ~n · 2E · ~t (5.51)

where ~n and ~t are the unit normal and tangent vectors to the plane.
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5.3.4 Generalized Slip Condition

We have discovered the generalized shear rate: the rate of shear of an in-

finitesimal plane sliding over another infinitesimal plane. If the plane is on

the solid surface, then we can now write down a generalized Navier-type slip

condition: the tangential velocity on the plane is proportional to the shear

rate at the plane. The constant of proportionality is of course the slip length

b.

~u · ~t = b ~n · 2E · ~t (5.52)

Now E is symmetric, so ~n · E = E · ~n. Furthermore, both sides of the

equation are a dot product with ~t, so we may simplify to:

~u = b 2E · ~n (5.53)

or,

~u = b (∇~u+∇~uT ) · ~n (5.54)

It remains only to note that the slip length could be a function of position

on the boundary, and the boundary on which Equation (5.54) holds may also

be described by a function. The boundary function will typically be a surface

– a ‘height’ function h(x, y) on the x, y plane.

5.3.5 Top Boundary Condition

The simplest type of flow where an effective slip length is meaningful is

Couette-like flow, driven by a constant velocity condition at the top of the

bulk of fluid. In a physical system, the constant velocity is provided by plate

moving at a constant velocity in the x direction only, located at some height

P above the slip surface. The classic no-slip condition holds on the plate, so

fluid at the top of the bulk has the same constant velocity.



112 CHAPTER 5. THE MATHEMATICAL MODEL

In our model, at some height P above the slip surface, there is a constant

velocity uP in the x direction only:

~u(x, y, P ) = (uP , 0, 0) (5.55)

(Incidentally, the homogenization procedure we employ in Chapter 6 does

not actually need this top boundary condition, though the perturbation

method used in Chapter 7 does. This is a strength of the homogenization

technique.)

5.4 Complete Mathematical Model

Our mathematical model can now be formally stated. A bulk of fluid is

situated above a boundary surface. The boundary surface is a function on

the x, y plane, and the z direction is in general perpendicular to the boundary.

The fluid is an incompressible liquid, so the divergence is zero everywhere

in the bulk:

∇ · ~u = 0 (5.56)

The liquid is Newtonian and the flow has a low Reynolds number, so flow

at each point in the bulk obeys Stokes equation:

µ∇2~u = ∇p (5.57)

The velocity of the fluid at each point on the boundary satisfies the general-

ized slip boundary condition:

~u = b (∇~u+∇~uT ) · ~n (5.58)

At some height P above the slip surface, there is a constant velocity uP in

the x direction only:

~u(x, y, P ) = (uP , 0, 0) (5.59)

In the next chapter we shall find an expression for the effective slip by

finding a homogenized solution to these partial differential equations.



Chapter 6

The Homogenized Effective

Slip Length

In this chapter, we shall find the homogenized slip length of a bulk of fluid

flowing over a rough slippery surface. We start by giving a high-level overview

of the homogenization technique, then explain each aspect of homogenization

in detail. The first aspect we explain is the variational formulation and its

relation to the calculus of variations. Then the Stokes equations are put

into variational form, then we find the variational formulation of the Stokes

equation with the full tensor slip boundary condition. We then take a step

sideways and tackle the concept of weak convergence, and show that periodic

functions weakly converge to their mean. With all the machinery finally in

place, we homogenize the variational formulation of the Stokes equation with

tensor slip. From the homogenized formulation, we derive the homogenized

effective slip length. We close the chapter with discussion of the physical

interpretation of the result and its likely range of applicability.

113
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In our mathematical model of the system, fluid flow at each point in the

bulk obeys Stokes equation:

µ∇2~u = ∇p (6.1)

And fluid at each point on the boundary satisfies the generalized slip bound-

ary condition:

~u = b (∇~u+∇~uT ) · ~n (6.2)

The boundary is a surface described by a periodic height function h(x, y)

on the x, y plane. h(x, y) may be defined so that the z = 0 plane is at the

tops of the peaks of h(x, y). The fluid may be supposed to be flowing in the

x direction. The model is summarized in Figure (6.1).

Bulk Condition: µ∇2~u = ∇p

Boundary Slip Condition: ~u = b (∇~u+∇~uT ) · ~n

Surface is Function h(x, y)

Figure 6.1: Summary of the mathematical model.

The effective slip length of a rough surface was defined back in Chapter 1.

At sufficient height above the surface, perturbations due to the rough surface

have died away, and the flow behaves like flow in an effective system: flow

over a flat ‘effective’ surface with a uniform slip length, beff . We illustrate

this with Couette-type flow in Figure (6.2).



115

?

Smooth Couette flow in far field

beff

Same flow profile

u = γ̇(z + beff)

physical system effective system

Figure 6.2: The effective slip length of Couette-type flow.

6.0.1 Homogenization

Homogenization is a modern technique for approximating the solutions of

partial differential equations, developed in the 1960s and ’70s. It began with

the study of PDEs with rapidly oscillating coefficients. The basic idea was

to identify the period of oscillation with a small parameter ε, and to consider

the limit as the period tended to zero. Depending on the problem, one may

get a solution as a series in ε: u = u0 +εu1 + · · · , or one may obtain a limiting

PDE for which a solution can be found. The technique can be applied to

PDEs that hold on periodic structure; ε is the period of the structure. Then

we find an ‘effective’ structure as the period of the structure tends to zero.

The first book describing homogenization appeared in 1978: “Asymptotic

Analysis for Periodic Structure”, by Alain Bensoussan, Jacques-Louis Lions

and George Papanicolaou.

In standard homogenization techniques, it turns out to be necessary to

cast the differential equations into variational or integral form. As a con-

sequence, in some cases it may be possible to exploit the fact that periodic

functions weakly converge to their average. (Weak convergence — a ‘conver-
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gence under the integral sign’ — will be defined shortly.) The homogenized

solution is an approximation to the solution for a system with a finite period.

The smaller the period, the better the approximation.

Thus, homogenization is perfectly suited to our task. In order to use

homogenization, we must slightly extend our mathematical model with the

following assumptions:

First of all, we must assume that our surface roughness is periodic. That

is, h(x, y) is a periodic function. This is reasonable, many real rough surfaces

are at least quasi-periodic; there seems no loss of information by assuming

that the surface is periodic.

Secondly, we must assume the the intrinsic slip length is a periodic func-

tion with the same period as the roughness. This is applicable in many

situations – though there may be interesting exceptions – since in many phys-

ical systems, the change in intrinsic slip length is due to the roughness, eg.

the increased slip over nanobubbles.

Then, broadly speaking, the homogenization procedure is as follows: The

period is reduced sequentially, eg. the period is halved at each step in a

sequence. The amplitude of the roughness must be reduced at the same rate,

so that local gradient and curvature of the surface remain unchanged. In

the limit of the period tending to zero, we have the homogenized equa-

tions of flow, which we can consider to model a homogenized system. The

homogenized equations contain a slip length parameter. In the language of

homogenization theory, this is known as the effective slip length parameter.

We illustrate this with Couette-type flow in Figure (6.3).

For Couette-type flow, we have defined the effective slip length as the slip

length of an ‘effective’ physical system, with flow solution u = γ̇(z + beff).

If the same system is homogenized, the solution to the homogenized equa-

tions is u = γ̇(z + beff). We see immediately that the homogenized effective

slip length exactly matches our physical definition of effective slip length.
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Periodic

Surface

beff

Homogenized

flow profile

u = γ̇(z + beff)

physical system homogenized system

Figure 6.3: The homogenized effective slip length of Couette-type flow.

Let us now homogenize the Stokes equations for flow over rough periodic

surfaces with variations in slip of the same period. The particular homoge-

nization technique we shall use comprises the following steps:

Homogenization Process Overview

1. Convert the model PDEs to variational (integral) form.

2. Create a sequence of variational formulations.

3. Find the limit formulation of the sequence:

• Periodic functions weakly converge to their mean;

• This lets us find the limit formulation.

4. Convert the limit formulation back to classical formulation

5. Extract the implied slip length as the homogenized slip length.
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6.1 Variational Form

The variational form comes originally from the Calculus of Variations. The

canonical use for the calculus of variations is with a minimization problem.

We seek a function on a domain that minimizes some quantity. The quantity

to be minimized is a functional, a mapping from the space of functions to

the real numbers. The functional will be some kind of integral, with the

integrand being some combination of the function, its derivatives (of various

order), and position in the domain.

F (u) =

∫ b

a

f(u, u′, ... , x) dx, F (u) 7→ R (6.3)

The boundary values of the function u(x) are given. The basic concept

of calculus of variations is to take u(x) to be the solution function that

minimizes the functional F . That being the case, any variation away from

u, however small, will increase F . Let v(x) be an arbitrary function that is

zero at the boundary (i.e. zero at a and b), and let ε be a small parameter.

Then:

F (u) ≤ F (u+ εv) ∀v : v(a) = v(b) = 0 (6.4)

This minimizing function and variation are depicted in Figure (6.4).

u(x)

xa b

variation v

u

u+ εv

Figure 6.4: The minimizing function u(x) and an arbitrary variation v(x)

added to it.
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For an arbitrary variation v, the small parameter ε can be treated as a

variable, so that F (u+ εv) is a function from R to R. Since u minimizes F ,

ε = 0 minimizes F (ε) : R 7→ R. The minimum is a stationary point, so the

slope of F (ε) is zero also at the minimum. That is, for minimizing function

u, for any variation v,

d

dε
F (u+ εv) = 0 (6.5)

This is shown in Figure (6.5).

ε0

F (u+ εv)

d
dε
F (u+ εv) = 0

Figure 6.5: The slope of F (ε) is zero at the minimum of F (ε).

6.1.1 Example: Energy Balance

The fully-worked standard example of energy balance appears in Appendix

D. We give a summary here.

Consider a film of soapy water suspended across an aperture. At equi-

librium, the soap film lies in the x, y plane. Let u(x, y) be the the height of

the film above the x, y plane (at point (x, y)), as in the schematic of Figure

(6.6).

u(x, y)

Figure 6.6: A film of soapy water suspended across an aperture.
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Assume a pressure below the film distorts it, pushing it upwards. If

f is the pressure, then the pressure force does work on the film equal to:

W =
∫

Ω
fu dA. The work done on the soap film is stored as elastic potential

energy. The soap film has a constant surface tension k that acts tangentially

to the surface. The change in potential energy is proportional to the change

in surface area, specifically U = k 1
2

∫
Ω
|∇u|2 dA. A summary schematic is

shown in Figure (6.7).

pressure f(x, y)

W =

∫
Ω

fu dAU = k
1

2

∫
Ω

|∇u|2 dA

Increase in surface
area 1

2

∫
Ω
|∇u|2 dA

Figure 6.7: The work done distorting the soap film is equal to the elastic

potential energy due to the increase in area.

The elastic potential energy is exactly equal to the work done on the soap

film by the pressure:

k
1

2

∫
Ω

|∇u|2 dA =

∫
Ω

fu dA (6.6)

We can express this as a functional to be minimized:

F (u) = k
1

2

∫
Ω

|∇u|2 dA−
∫

Ω

fu dA (6.7)

And take the functional derivative:

d

dε
F = lim

ε→0

F (u+ εv)− F (u)

ε
(6.8)

= k

∫
Ω

∇u · ∇v dA−
∫

Ω

fv dA (6.9)

Thus the variational form d
dε
F = 0 is:

k

∫
Ω

∇u · ∇v dA−
∫

Ω

fv dA = 0 (6.10)
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This relation is true for any almost arbitrary variation v. In fact, v must be

integrable on the domain Ω, and its first derivatives must be integrable on Ω.

The space of functions meeting these requirements is known as the Sobolev

space H1(Ω). So formally, v belongs to the Sobolev space:

v ∈ H1(Ω) (6.11)

Moreover, because the value of u is given at the boundary, v must be zero at

the boundary. Formally, v is in the Sobolev space:

v ∈ H1
0 (Ω) (6.12)

6.2 Alternative Route to Variational Form

The point is that the variational form

k

∫
Ω

∇u · ∇v dA−
∫

Ω

fv dA = 0 ∀v ∈ H1
0 (Ω) (6.13)

may be easier to solve than the original energy functional:

k
1

2

∫
Ω

|∇u|2 dA−
∫

Ω

fu dA = 0 (6.14)

However, the variational form can be derived by other means. In fact, there

are variational formulations for which there is no corresponding functional

to minimize. So in a sense the variational formulation is more fundamental

than the calculus of variations.

To illustrate: The functional 1
2

∫
Ω
|∇u|2 dA is known as Dirichlet’s energy

functional. A solution u that minimizes the functional is also a solution to

the Laplace equation ∇2u = 0. This energy functional can be put into the

variational form
∫

Ω
∇u · ∇v dA by using the calculus of variations. However,

the variational form
∫

Ω
∇u · ∇v dA can also be derived directly from the

Laplace equation.

u minimizing
1

2

∫
Ω

|∇u|2 dA also satisfies

∫
Ω

∇u·∇v dA = 0 iff ∇2u = 0



122 CHAPTER 6. THE HOMOGENIZED EFFECTIVE SLIP LENGTH

We shall use this alternative derivation as part of our homogenization

procedure. We bootstrap by building up from simpler cases: First, we derive

the variational form −
∫

Ω
∇u · ∇g dA =

∫
Ω
gf dA directly from the Poisson

equation ∇2u = f , which we can think of as the x velocity equation of Stokes

flow with the pressure gradient given as (scalar) f .

Note on notation: In an integral such as
∫

Ω
gf dA, the integration mea-

sure dA is implied by the subscript Ω denoting integration over the domain.

Therefore, to improve readability – without loss of clarity – we shall usually

drop the integration measures (such as dA) from the integrals.

6.2.1 Variational Form of Poisson Equation inspired

by Stokes Flow

Here we derive the variational form −
∫

Ω
∇u · ∇g =

∫
Ω
gf directly from the

Poisson equation∇2u = f . This is the x velocity equation of Stokes flow with

the pressure gradient given as scalar f , and the no-slip boundary condition.

Before beginning, we recall a vector identity. For scalars g and u:

g∇2u = ∇ · (g∇u)−∇u · ∇g (6.15)

On some domain Ω, as in Figure (6.8), the Poisson equation holds:

∇2u = f on Ω (6.16)

Ω Γ

Figure 6.8: A domain Ω with boundary Γ.
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We introduce a test function g, from the appropriate Sobolev space: g

and its first derivatives are integrable on Ω, and g is zero on the boundary

Γ:

g ∈ H1
0 (Ω) (g = 0 on Γ) (6.17)

We multiply the Poisson equation by the test function g:

g∇2u = gf (6.18)

and integrate over the domain Ω:∫
Ω

g∇2u =

∫
Ω

gf (6.19)

then substitute g∇2u = ∇ · (g∇u)−∇u · ∇g:∫
Ω

∇ · (g∇u)−
∫

Ω

∇u · ∇g =

∫
Ω

gf (6.20)

Recall the Divergence Theorem:

∫
Ω

∇ · ~a =

∫
Γ

~a · ~n (6.21)

Therefore the first term of Eq. (6.20) is:∫
Ω

∇ · (g∇u) =

∫
Γ

(g∇u) · ~n =

∫
Γ

g(∇u · ~n) =

∫
Γ

g
∂u

∂n
(6.22)

Now the test function g was defined to be zero on Γ, thus∫
Ω

∇ · (g∇u) =

∫
Γ

g
∂u

∂n
= 0 (6.23)

This leaves finally:

−
∫

Ω

∇u · ∇g =

∫
Ω

gf (6.24)

which closely resembles the variational form derived from the energy func-

tional.
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6.2.2 Variational Form of Poisson Equation inspired

by Stokes Flow with Slip

We now progress to the variational form of the Poisson equation inspired by

Stokes flow over a flat boundary with Navier slip.

On the domain Ω, the Poisson equation holds:

∇2u = f on Ω (6.25)

Now the boundary of the entire domain, Γ, must be split up into the

bottom boundary Γb, and the rest of the boundary, Γ0, as shown in Figure

(6.9). The bottom boundary Γb is the solid surface with slip. The boundary

condition on Γb has the form of Navier slip:

u = b
∂u

∂n
on Γb (6.26)

Ω

Γb

Γ0

Figure 6.9: Domain Ω with slip boundary Γb and remainder of boundary Γ0.

Now care must be taken to choose the appropriate function space for our

test function. As before, the test function and its first derivatives must be

integrable on Ω. But now, g must vanish on all of the boundary except the

bottom boundary Γb:

g ∈ H1
Γb

(Ω) = {g ∈ H1(Ω) : g = 0 on Γ0} (g 6= 0 on Γb) (6.27)

Multiply by g and integrate over Ω:∫
Ω

g∇2u =

∫
Ω

gf (6.28)
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ending up with ∫
Γ

g
∂u

∂n
−
∫

Ω

∇u · ∇g =

∫
Ω

gf (6.29)

Now, g = 0 on all of Γ except the bottom boundary, so:∫
Γ

g
∂u

∂n
=

∫
Γb

g
∂u

∂n
(6.30)

The slip condition on Γb implies:

∂u

∂n
=

1

b
u (6.31)

So we substitute this, to get our variational form:∫
Γb

g
1

b
u−

∫
Ω

∇u · ∇g =

∫
Ω

gf (6.32)
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6.3 Variational Form of Stokes Flow with

Tensor Slip

6.3.1 Tensor Identities

Before deriving the variational formulation of our full model of 3-D flow with

tensorial slip, we define the tensor double dot product and recall a tensor

identity.

Tensor Double Dot Product

The double dot product of two tensors, also known as the Frobenius inner

product, is a generalization of the vector inner product:

A =

[
a b

c d

]
, Z =

[
x y

z w

]
, A : Z = ax+ by + cz + dw (6.33)

Tensor Identity with Deformation Rate Tensor

In Appendix E, we prove the following identity:

∇2~u · ~g = ∇ · ((∇~u+∇~uT ) · ~g)− 2E(~u) : E(~g) (6.34)

This identity assumes ∇ · ~u = 0.
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6.3.2 Variational Form of Stokes Flow with Tensor Slip

We have a domain Ω, the boundary of which is made up of two parts, Γb

and Γ0, as shown in Figure (6.10). On the domain Ω we have incompressible

Stokes flow:

∇2~u =
1

µ
∇p (6.35)

∇ · ~u = 0 (6.36)

On the rough boundary Γb we have the tensor slip condition:

1

b
~u = (∇~u+∇~uT ) · ~n or

1

b
~u = 2E(~u) · ~n (6.37)

Γb

Γ0Ω

Figure 6.10: Domain Ω with rough slip boundary Γb and remainder of bound-

ary Γ0.

We introduce an arbitrary test function ~g from the appropriate Sobolev

space:

~g ∈ H1
Γb

(Ω) = {~g ∈ H1(Ω), ∇ · ~g = 0 in Ω, ~g = 0 on Γ0} (6.38)

We take the dot product of the Stokes PDE with ~g:

∇2~u · ~g =
1

µ
∇p · ~g (6.39)

and integrate over the domain:∫
Ω

∇2~u · ~g =
1

µ

∫
Ω

∇p · ~g (6.40)
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Substitute ∇2~u · ~g = ∇ · (2E(~u) · ~g) − 2E(~u) : E(~g), (the tensor identity

Equation (6.34)):∫
Ω

∇ · (2E(~u) · ~g)− 2

∫
Ω

E(~u) : E(~g) =
1

µ

∫
Ω

∇p · ~g (6.41)

By the Divergence Theorem:∫
Ω

∇ · (2E(~u) · ~g) =

∫
Γ

(2E(~u) · ~g) · ~n (6.42)

and E is symmetric, so:∫
Γ

(2E(~u) · ~g) · ~n =

∫
Γ

(2E(~u)T · ~n) · ~g =

∫
Γ

(2E(~u) · ~n) · ~g (6.43)

The boundary integral can be split into separate integrals over Γb and Γ0.∫
Γ

(2E(~u) · ~n) · ~g =

∫
Γb

(2E(~u) · ~n) · ~g +

∫
Γ0

(2E(~u) · ~n) · ~g (6.44)

Now, ~g = 0 on Γ0, so
∫

Γ0
(2E(~u) · ~n) · ~g vanishes.

While on Γb, the slip condition holds. So we substitute the tensor slip

boundary condition 2E(~u) · ~n = 1
b
~u, (Equation (6.37)):∫

Γb

(2E(~u) · ~n) · ~g =

∫
Γb

1

b
~u · ~g (6.45)

Therefore: ∫
Γ

(2E(~u) · ~n) · ~g =

∫
Γ

1

b
~u · ~g (6.46)

Thus: ∫
Ω

∇ · (2E(~u) · ~g) =

∫
Γ

1

b
~u · ~g (6.47)

Hence the variational formulation for Stokes flow with tensor slip is:∫
Γ

1

b
~u · ~g = 2

∫
Ω

E(~u) : E(~g) +
1

µ

∫
Ω

∇p · ~g (6.48)
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6.4 Weak Convergence

Homogenizing our variational formulation involves setting up sequences of

functions, taking the limits of those sequences, and exploiting the fact that

periodic functions weakly converge to their mean. Therefore, in this section,

we explain the types of sequences we shall use, and give an explanation of

weak convergence.

6.4.1 Sequence of Functions

Consider a function, say f(x) = sin(x), with an additional parameter n,

where n is a positive integer. For example:

fn =
1

n
sin(x) (6.49)

For each n ∈ Z we have a new function. Thus we have a sequence of functions,

indexed by n. The first three are shown in Figure (6.11).

f1
f2

f3

Figure 6.11: The first 3 functions of the sequence defined in Equation (6.49).

As n → ∞, a sequence of functions may converge to a limit. (Or not.)

A function fn in the sequence may be made arbitrarily ‘close to’ the limit

function, by simply making n large enough. (All subsequent functions after

fn are at least as close.)

The functions, and the limit function, are points in a function space.

We need to define a ‘distance’ between two points, that is, the notion of a

function being ‘close to’ another function.
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6.4.2 Strong Convergence

In a vector space, the distance between two points ~a and ~b is found by finding

the difference vector ~b− ~a, and calculating its length, the norm

‖~b− ~a‖ =

√
(~b− ~a) · (~b− ~a) (6.50)

How do we extend this simple Pythagorean calculation to vectors of infinite

dimension? For the components ai of an infinite-dimensional vector, the

index i has an infinite domain, so the components can be thought of as a

function a(i) on a continuum. So the dot product ~a · ~a naturally extends to

become the square integral:

Inner Product ~a · ~a =

∫
|a(x)|2 dx, Norm ‖~a‖ =

√
~a · ~a (6.51)

Coming from the other direction, the space of functions now has a natural

inner product: 〈a, b〉 =
∫
fḡ dx which for 〈a, a〉 is the same as the square

integral above.

The space of functions that are square-integrable, together with the inner

product defined above, is the Lebesgue space L2. Our sequence of functions

naturally live in this space. We now have a natural notion of the ‘closeness’

of a function to another: roughly speaking, the area between the functions.

The sequence of functions strongly converges to the limit function f

if:

‖fn − f‖ → 0 as n→∞ (6.52)

Explicitly: ∫
|fn − f |2 dx→ 0 as n→∞ (6.53)

This is notated:

fn → f (6.54)
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6.4.3 Weak Convergence

Consider a sequence of functions defined by:

fn = sin(nx) (6.55)

the first three functions of which appear in Figure (6.12).

f1f2f3

Figure 6.12: The first three functions in the sequence sin(nx).

As n increases, the period of the sine wave gets smaller and smaller, but

the amplitude is unchanged. In the limit as n → ∞, the waveform gets

infinitely ‘spiky’. What does the sequence converge to? There is no intuitive

sense of the sinewave sequence getting ‘closer to’ some limit function. In fact,

the sequence does not strongly converge.

However, there is a sense in which the function sequence converges.

We multiply each function in the sequence by an arbitrary test function

g, and integrate, thus creating a sequence of integrals:∫
gfn dx (6.56)

If the sequence of integrals (strongly) converges to a limit integral:∫
gfn dx→

∫
gf dx (6.57)

then we say that fn weakly converges to f , and the ‘limit function’ f

appearing in the limit integral is known as the weak limit. This is also

written:

fn ⇀ f (6.58)
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What is the weak limit f? If fn is a sequence of periodic functions (like

our sine wave example) then f is the mean of fn, denoted 〈fn〉.

6.4.4 Periodic Functions Weakly Converge to their Mean

It is a ‘standard result’ that periodic functions weakly converge to their mean.

In a 2002 paper [34], Lukkassen and Wall state: “We have not found proofs of

[this] fact in the literature. The aim of this paper is to present such proofs.”

Their paper provides a rigorous proof (and generalization) of this proof. In

Appendix F, however, we present a simple intuitive proof, suitable for this

thesis.

We show that periodic functions weakly converge to their mean:∫
gfn dx→

∫
g 〈f〉 dx (6.59)

We shall use this incredibly useful result to homogenize our variational form.
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6.5 Homogenizing the Variational Form

Our variational form:∫
Γ

1

b
~u · ~g = 2

∫
Ω

E(~u) : E(~g) +
1

µ

∫
Ω

∇p · ~g (6.60)

can now be homogenized. The homogenization procedure we shall employ

embodies two key concepts.

The first key concept is to model the slip boundary as a periodic func-

tion, and to set up a sequence of such functions, thus creating a sequence of

boundaries. Each boundary corresponds to a domain, so there is a sequence

of domains. Equation (6.60) holds on each domain, so we have a sequence of

systems to solve, and therefore a sequence of velocity and pressure field solu-

tions. The n-th variational formulation (that holds on the n-th domain with

n-th boundary) contains slip length function bn and is satisfied by velocity

field ~un and pressure field pn:∫
Γn

1

bn
~un · ~gn = 2

∫
Ωn

E(~un) : E(~gn) +
1

µ

∫
Ωn

∇pn · ~gn (6.61)

The second key concept is to define the sequence such that it converges

to a limit system. The idea is that while it may be difficult to solve any

system in the sequence, the limit system is easy to solve. We could define

a sequence of boundaries such that the period and amplitude of the surface

function halve with each increment of n. We similarly reduce the period

of the slip length function with each increment of n. The amplitude of b

remains unchanged. Then, the sequence of systems converges to a system

with a flat plane boundary with a limiting slip length of the same order as

that in the sequence systems. The overall size P of the domain also remains

approximately constant for all n. This is illustrated in Figure (6.13).
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b b beff

n n+ 1 limit

P

Figure 6.13: A sequence of domains, where the period and amplitude of the

boundary halve with each increment of n, converging on a limit domain.

Sequence of Boundaries

The physical boundary is a periodic function h(x, y). (For simplicity we

shall illustrate it as a sine function, but it need not be.) The slip length is a

periodic function b(x, y) with the same period as h(x, y).

Define a sequence of surface functions by:

hn =
1

n
h(nx, ny) (6.62)

As n → ∞, the amplitude of hn → 0. This ensures convergence to a plane.

Similarly, define a sequence of slip functions by:

bn = b(nx, ny) (6.63)

In this case, as n increases, the period shortens, but the amplitude of bn does

not decrease. We have a sequence of boundaries Γn that (strongly) converges

to the flat x, y plane, as shown in Figure (6.14).
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Γn Γn+1 Γ

Figure 6.14: The sequence of boundaries converges to the flat x, y plane.

Sequence of Gradient Functions

Consider our definition of the sequence of surfaces: hn = 1
n
h(nx, ny). As n

increases, the period and amplitude reduce by the same factor. This means

that for a point on the surface at a given fraction of the period, the slope at

that point does not change with n. This is best explained by example. If the

the base function is simple sinusoids in x and y: h(x, y) = sin(x) sin(y), then

hn =
1

n
sin(nx) sin(ny) ⇒

∂xhn = cos(nx) sin(ny)

∂yhn = cos(ny) sin(nx)
(6.64)

Clearly, the amplitudes of ∇hn = (∂xhn, ∂yhn) over one period do not change

with increasing n. However, with increasing n, the period reduces, leading to

a more and more ‘spiky’ function. As shown in Appendix F, such a sequence

of functions weakly converges to its mean.

Slip Integral

Let us look more closely at the integral containing the slip length term, on

the left-hand-side of Equation (6.60). The integral is over a surface; each

infinitesimal area element dA is the area of the tangent plane to h(x, y).

Specifically:

dA =
√

1 + |∇h|2 dxdy (6.65)

Furthermore, the velocity function on the boundary is ~u(x, y, h). Similarly,

for the test function ~g(x, y, h). Therefore, the slip integral is explicitly:∫
Γ

1

b
~u · ~g dA =

∫
Γ

1

b(x, y)
~u(x, y, h) · ~g(x, y, h)

√
1 + |∇h|2 dxdy (6.66)
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For the n-th domain in the sequence, the slip integral is:∫
Γn

√
1 + |∇hn|2

bn
~un(x, y, hn) · ~gn(x, y, hn) dxdy (6.67)

As illustrated by the example of Equation (6.64), the magnitude of ∇hn
does not change with n. Thus the the magnitude of

√
1 + |∇hn|2 does not

change with increasing n. Furthermore, the slip function bn is constructed to

exhibit the same behaviour: unchanging amplitude with decreasing period.

Therefore, the compound function
√

1 + |∇hn|2/bn exhibits this common be-

haviour, getting ‘spikier’ with increasing n. This type of sequence of functions

weakly converges to its mean:∫
Γn

√
1 + |∇hn|2

bn
~gn dxdy →

∫
Γ

〈√
1 + |∇h|2

b

〉
~g dxdy (6.68)

(Where the test function strongly converges: ~gn(x, y, hn)→ ~g(x, y, 0).)

We add the velocity term ~un(x, y, hn) to the above weak integral, to get

the full slip integral. Since the boundary converges to the flat x, y plane, we

expect the velocity term to strongly converge to a single constant velocity

on the flat limit boundary:

~un(x, y, hn)→ ~u(x, y, 0) as n→∞ (6.69)

Therefore, the integrand with the velocity term still weakly converges to its

mean:∫
Γn

√
1 + |∇hn|2

bn
~un · ~gn dxdy →

∫
Γ

〈√
1 + |∇h|2

b

〉
~u · ~g dxdy (6.70)

Sequence of Variational Formulations and its Limit

Thus we have a sequence of variational formulations:∫
Γn

√
1 + |∇hn|2

bn
~un ·~gn dxdy = 2

∫
Ωn

E(~un) : E(~gn) +
1

µ

∫
Ωn

∇pn ·~gn (6.71)

which strongly converges to:∫
Γ

〈√
1 + |∇h|2

b

〉
~u · ~g dxdy = 2

∫
Ω

E(~u) : E(~g) +
1

µ

∫
Ω

∇p · ~g (6.72)
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6.5.1 Convert to Classical Formulation

The limit variational formulation Equation (6.72) corresponds to the classical

formulation with

∇2~u =
1

µ
∇p (6.73)

on the domain, while on the boundary Γb we would have the tensor slip

condition: 〈√
1 + |∇h|2

b

〉
~u = 2E(~u) · ~n (6.74)

This slip boundary condition defines our effective slip length:

beff =

〈√
1 + |∇h|2

b

〉−1

(6.75)

This is the central result of this thesis. It was published in 2012 [36].
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6.5.2 Interpretation

We now discuss a physical interpretation of the result. Note that the integral∫
Ω

√
1 + |∂xh|2 dx is the arc length of the function h over the domain Ω.

Extending to a three-dimensional surface,
∫

Ω

√
1 + |∇h|2 dxdy is the area of

the surface function h(x, y).

Hence, our effective slip is the harmonic mean of the local slip length,

weighted by the fluid-solid contact area. See Figure (6.15).

Fluid-Solid Contact Area∫
Ω

√
1 + |∇h|2

b(x, y)

Figure 6.15: beff incorporates the contact area between liquid and solid.

If the surface is flat, then beff is simply the harmonic mean of the intrinsic

slip length:

beff =

〈
1

b

〉−1

(6.76)

If the surface is a flat binary surface, comprising discrete areas of high-

slip surface and low-slip surface, with high-slip regions occupying fraction φ

of the surface, then:

beff =

[
φ

1

bhigh

+ (1− φ)
1

blow

]−1

(6.77)

as first proposed by Cottin-Bizonne et al in 2004 [11].
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6.5.3 Applicability

The effective slip length derived via homogenization is the limiting slip

length as the period of the surface variation tends to zero. A real surface

obviously has a finite period of surface variation. The effective slip length

can in principle be measured experimentally.

The critical question is:

For what range of surfaces is the homogenized slip length a good approx-

imation to the measured slip length?

Equivalently, when is the flow over a rough, heterogeneous surface close

to the flow over an effective homogenized surface?

One approach to answer this is to ask: when is a rough surface close to

the limit surface? A reasonable answer is: when the period L is small

compared to other length scales. There are two other length scales, the

domain size P and slip length b. Therefore, we expect Equation (6.75) to be

a good approximation to measured slip length when:

L� b, P (6.78)

In our numerical testing (described in Chapter 8), we discover that our ho-

mogenized effective slip length (Eq. (6.75)) is a surprisingly good approxi-

mation even when slip lengths are of the same order as the period:

L ∼ b� P (6.79)



140 CHAPTER 6. THE HOMOGENIZED EFFECTIVE SLIP LENGTH



Chapter 7

Perturbative Effective Slip

Lengths

We derived an expression for the effective slip length using the homogeniza-

tion technique; this is presented in the previous chapter. However, prior to

doing this, we derived an expression for the effective slip length using a dif-

ferent technique – the method of perturbation. The homogenized expression

for beff holds for a non-flat surface, while the perturbative expression assumes

a flat surface. The derivation of beff by perturbation methods is presented

here.

7.0.4 Model

We model the fluid system as incompressible, Stokes ‘creeping’ flow, with

velocity vector ~u = (u, v, w):

∇2~u =
1

µ
∇p (7.1)

∇ · ~u = 0 (7.2)

141
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The bottom solid surface is modeled as the z = 0 plane. The surface is

flat, so simple Navier slip holds:

u(0) = b(x, y)
∂u

∂z
|z=0 (7.3)

The intrinsic slip length of the surface b(x, y) is a rectangular-periodic

function, with period L in the x direction.

The flow is Couette-like, shear-driven by a driving plate at height P above

the surface, with a constant driving velocity of uP .

~u(x, y, P ) = (uP , 0, 0) (7.4)

Since flow is generally in the x direction, driven by shear only, there is no

pressure gradient, and the pressure has the same x-periodicity as the surface:

p(x, y, z) = p(x+ L, y, z) (7.5)

Elements of the model are summarized in the schematic of Figure (7.1).

Driving Plate at velocity uP

P

L

z

x
Flat surface with varying slip length

Figure 7.1: The model for the perturbation analyses.
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7.1 Perturbing Plug Flow

7.1.1 Plug Flow

Our method is to perturb an exact case of fluid flow known as plug flow,

which we shall describe forthwith. If fluid is shear-driven by a constant-

velocity plate at the top boundary, and experiences perfect slip at the

bottom boundary:

u(x, y, top) = uP (constant) (7.6)

∂u

∂z
|z=0 = 0 (7.7)

then the fluid has no resistance at the bottom, so the entire bulk quickly

accelerates up to velocity of the driving plate. So fluid flows as a plug of

fluid all at the same velocity. This flow solution is known as plug flow, and

is shown in Figure (7.2).

Perfect Slip Surface

Driving Plate at Velocity uP

Fluid flows as ‘plug’
at velocity uP

Figure 7.2: Plug flow.
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7.1.2 Perturbed Plug Flow

We now consider shear-driven flow that is perturbed slightly away from true

plug flow. What does it mean for a flow to be close to plug flow?

In true plug flow, the velocity at the bottom of the fluid is the same as

the driving velocity at the top of the fluid uP . So, fluid flow is close to plug

flow if the bottom velocity is close to the driving velocity uP . Such plug-like

flow is shown in Figure (7.3).

Slip Surface

Uniform velocity uP at top of fluid

P Plug-like flow:
bottom velocity
close to uP

Figure 7.3: Plug-like flow.

If the slip surface is heterogeneous, then the slip velocity (at the bottom

of the fluid) may vary across the surface. The flow may be described as

plug-like if the lowest slip velocity is still close to uP . Since the lowest slip

velocity is expected to occur over the region with the lowest intrinsic slip

length, bmin, flow is plug-like if bmin is sufficiently large. By simple geometry,

flow can be described as plug-like if bmin is large compared to driving height

P , as shown in Figure (7.4).
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uP

P

bmin

Figure 7.4: Geometry of plug-like flow.

Thus, a flow may be described as perturbed away from pure plug flow

if the ratio P/bmin is small compared to unity. The lengths in this dimen-

sionless ratio are fixed, measurable lengths of the physical system. Hence,

we can carry out a formal perturbation analysis with the small perturbation

parameter:

ε =
P

bmin

(7.8)
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7.1.3 Requirement that L� P

The surface is patterned with a rectangular-periodic variation in slip length

with period L in the x direction. The surface patterning causes a pertur-

bation to the otherwise-laminar velocity profile of plug flow. Due to the

diffusion of momentum, the perturbation decays with height, so that the

velocity solution converges to smooth laminar flow, as suggested in Figure

(7.5).

Driving Plate

P

L

Streamlines

Streamlines

High
Slip

Low
Slip

Perturbations decay with height
Flow converges to laminar flow

Figure 7.5: Plug-like flow over patterned slip with L < P .

Calculating the effective slip length involves finding the shear rate at

the driving plate, which is assumed to be constant over the plate. For the

shear rate to be constant, the flow near the plate must be unperturbed. In

our analysis, we find that elements of the velocity perturbation are of order

exp(−P/L) at z = P . These must be negliglible, which requires that:

L� P (7.9)
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7.1.4 Perturbed Navier Slip

The Navier slip condition relates the shear rate to the slip velocity. With

ε, we can express the slip condition as a perturbation away from shear-free

plug flow. Multiplying both sides by ε gives:

P

bmin

b(x, y)
∂u

∂z
= εu(0) (7.10)

Define the normalised slip length:

b̂ =
b(x, y)

bmin

, b̂ ≥ 1 (7.11)

So the perturbed slip condition is:

P b̂
∂u

∂z
= εu(0) (7.12)

7.1.5 Perturbation Expansion

The velocity solution to Stokes flow is assumed to be expressible as a power

series in ε:

~u = ~u0 + ε~u1 +O(ε2) (7.13)

where

~u0 + ε~u1 = (u0, v0, w0) + ε(u1, v1, w1) (7.14)

The pressure is similarly expressed as a power series in ε:

p = p0 + εp1 +O(ε2) (7.15)

Both are inserted into the equations of Stokes flow with perturbed slip,

giving to first order:
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∇2~u0 + ε∇2~u1 =
1

µ
∇p0 + ε

1

µ
∇p1 (7.16)

∇ · ~u0 + ε∇ · ~u1 = 0 (7.17)

p0(x, y, z) + εp1(x, y, z) = p0(x+ L, y, z) + εp1(x+ L, y, z) (7.18)

u0(x, y, P ) + εu1(x, y, P ) = uP (7.19)

P b̂
∂u0

∂z
+ εP b̂

∂u1

∂z
= εu0 (7.20)

7.1.6 Zeroth Order

By construction, setting ε to zero gives shear-free flow:

∇2~u0 =
1

µ
∇p0 (7.21)

u0(x, y, P ) = uP (7.22)

∂u0

∂z
|z=0 = 0 (7.23)

whose solution is plug flow. That is, u0(x, y, z) = uP , constant everywhere.

7.1.7 First Order

Cancelling the zeroth order terms and dividing by ε gives the first order

problem:

∇2~u1 =
1

µ
∇p1 (7.24)

∇ · ~u1 = 0 (7.25)

p1(x, y, z) = p1(x+ L, y, z) (7.26)

u1(x, y, P ) = 0 (7.27)

P b̂
∂u1

∂z
|z=0 = u0 = uP (7.28)

Note that the zeroth order solution appears in the slip condition.
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Eliminate Pressure with Vorticity

The standard way to eliminate the pressure is to use the vorticity ∇ × ~u.

Taking the curl of both sides of the Stokes equation gives:

∇×∇2~u1 = ∇× 1

µ
∇p1 (7.29)

The right hand side is identically zero, leaving ∇ × ∇2~u1 = 0. Recall that

the vector Laplacian is:

∇2~u1 =
(
∇2u1,∇2v1,∇2w1

)
(7.30)

so that ∇×∇2~u1 = 0 is(
∂

∂y
∇2w1 −

∂

∂z
∇2v1,

∂

∂z
∇2u1 −

∂

∂x
∇2w1,

∂

∂x
∇2v1 −

∂

∂y
∇2u1

)
= (0, 0, 0)

(7.31)

This gives three PDEs. It turns out that the successfull strategy is to use

the last two. Expanding out the Laplacian operator, these are:

∂3u1

∂z∂x2
+

∂3u1

∂z∂y2
+
∂3u1

∂z3
=
∂3w1

∂x3
+

∂3w1

∂x∂y2
+

∂3w1

∂x∂z2
(7.32)

∂3u1

∂y∂x2
+
∂3u1

∂y3
+

∂3u1

∂y∂z2
=
∂3v1

∂x3
+

∂3v1

∂x∂y2
+

∂3v1

∂x∂z2
(7.33)

It also happens that the successful strategy is to convert the last equation

into an expression in u1 and w1. We can do this because the incompressibility

couples u, v and w. Specifically, the continuity equation ∇ · ~u1 = 0 can be

rearranged to:
∂v1

∂y
= −∂u1

∂x
− ∂w1

∂z
(7.34)

To use this substitution, we first differentiate the last equation with respect

to y:

∂4u1

∂y2∂x2
+
∂4u1

∂y4
+

∂4u1

∂y2∂z2
=

∂4v1

∂y∂x3
+

∂4v1

∂x∂y3
+

∂4v1

∂x∂y∂z2
(7.35)
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then make the substitution, giving:

∂4u1

∂y2∂x2
+
∂4u1

∂y4
+

∂4u1

∂y2∂z2
=

− ∂3

∂x3

[
∂u1

∂x
+
∂w1

∂z

]
− ∂3

∂x∂y2

[
∂u1

∂x
+
∂w1

∂z

]
− ∂3

∂x∂z2

[
∂u1

∂x
+
∂w1

∂z

]
(7.36)

Simplified:

∂4u1

∂x4
+ 2

∂4u1

∂x2∂y2
+
∂4u1

∂y4
+

∂4u1

∂x2∂z2
+

∂4u1

∂y2∂z2
=

− ∂4w1

∂x3∂z
− ∂4w1

∂x∂y2∂z
− ∂4w1

∂x∂z3
(7.37)

Thus we have two PDEs in two variables, u1 and w1.

∂3u1

∂z∂x2
+

∂3u1

∂z∂y2
+
∂3u1

∂z3
=
∂3w1

∂x3
+

∂3w1

∂x∂y2
+

∂3w1

∂x∂z2
(7.38)

∂4u1

∂x4
+ 2

∂4u1

∂x2∂y2
+
∂4u1

∂y4
+

∂4u1

∂x2∂z2
+

∂4u1

∂y2∂z2
= − ∂4w1

∂x3∂z
− ∂4w1

∂x∂y2∂z
− ∂4w1

∂x∂z3

(7.39)

Fourier Series

Because the flow is periodic, it is natural to write u1 as a Fourier series:

u1(x, y, z) =
∞∑
~k

U~k(z) exp(i~k · ~r) (7.40)

where ~r = (x, y) and the wave vector ~k is a reciprocal lattice vector defined

by integers a and b:

~k = (m,n) =

(
2πa

L
,
2πb

L

)
, k =

2πq

L
(7.41)

where k2 = m2 + n2, q2 = a2 + b2 (7.42)

The Fourier coefficient is:

U~k(z) =
1

L2

∫ L

0

∫ L

0

u(x, y, z) exp(i~k · ~r) dxdy (7.43)
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Similarly for w1:

w1(x, y, z) =
∞∑
~k

W~k(z) exp(i~k · ~r) (7.44)

The two Fourier expansions for velocity are inserted into the two PDEs.

At this point, resulting algebra was tackled with the computer package

Maple.

At length, one has two expressions that are true for arbitrary ~r = (x, y).

As a consequence, the following two ODEs in U and W are true for all ~k:

d3U

dz3
− k2dU

dz
= i

(
d2W

dz2
− k2W

)
m (7.45)

k2d
2U

dz2
− k4U = i

(
d3W

dz3
− k2dW

dz

)
m (7.46)

(The parameters k and m are of course not independent.)

Solving the DEs

It turns out that a successful strategy is to solve for W (z) first, then substi-

tute the solution back into Equation (7.45), allowing us to solve for U(z).

Solve for W (z)

After multiplying Equation (7.45) by k2, and differentiating Equation

(7.46) with respect to z, the two equations may be combined to:

d4W

dz4
− 2k2d

2W

dz2
+ k4W = 0 (7.47)

The general solution of which is:

W (z) =
(
P~k +Q~kz

)
e−kz +

(
R~k + S~kz

)
ekz (7.48)

Now, at the top of the fluid, flow is in the x direction only. Therefore

w1(x, y, P ) = 0, which requires that

W (P ) = 0 (7.49)
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At z = P the ekz term is exp(2πqP/L) where q ≥ 1. Since we have

assumed P � L, this term is large. Therefore we must have R~k = S~k = 0.

Furthermore, the bottom surface is impermeable, so w1(x, y, 0) = 0, which

requires that W (0) = 0. An immediate corollary is that W (0) = P~k = 0. We

are left with:

W (z) = Q~kze
−kz (7.50)

Solving for U(z)

We insert the solution for W (z) into Equation (7.46), yielding an ODE

in U(z):
d3U

dz3
− k2dU

dz
= iQ~kmk

2e−kz (7.51)

For non-zero k, the general solution is:

U~k(z) =
(
P~k + iQ~k

m

k2

)
e−kz +B~ke

kz (7.52)

For k = 0, the ODE reduces to:

d3U

dz3
= 0 (7.53)

whose solution is:

U0 = A0 +B0z + C0z
2 (7.54)

Assemble u1(x, yz) solution

We have found the Fourier coefficients in their most general form. We now

insert them into the Fourier series expression u1(x, y, z) =
∑∞

~k U~k(z) exp(i~k ·
~r):

u1(x, y, z) = A0 +B0z + C0z
2 +

∑
k 6=0

(
A~ke

−kz +B~ke
kz
)

exp(i~k · ~r) (7.55)

where A~k =
(
P~k + iQ~k

m

k2

)
(7.56)

Use periodicity to eliminate C0

Inserting our expression for u1(x, y, z) into the x component of the Stokes

equation:
∂2u1

∂x2
+
∂2u1

∂y2
+
∂2u1

∂z2
=

1

µ

∂p1

∂x
(7.57)
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gives:

−m2
∑
k 6=0

(
A~ke

−kz +B~ke
kz
)

exp(i~k ·~r)−n2
∑
k 6=0

(
A~ke

−kz +B~ke
kz
)

exp(i~k ·~r)

+ 2C0 + k2
∑
k 6=0

(
A~ke

−kz +B~ke
kz
)

exp(i~k · ~r) =
1

µ

∂p1

∂x
(7.58)

Since k2 = m2 + n2, this reduces to:

2C0 =
1

µ

∂p1

∂x
(7.59)

Integrate this over one period:∫ L

0

2C0 dx =

∫ L

0

1

µ

∂p1

∂x
dx (7.60)

2C0L =
1

µ
[p1(L, y, z)− p1(0, yz)] = 0 (7.61)

The flow is shear-driven only, so the pressure is periodic: p1(x, y, z) = p1(x+

L, y, z). Therefore the right-hand side of the integral vanishes, and we are

left with C0 = 0.

Use top boundary condition to find A0

At the top of the fluid, the flow is uniform laminar flow with velocity uP

in the x direction only. At this point, the zeroth order solution is exact, so

the first order term vanishes:

u1(x, y, P ) = 0 (7.62)

Inserting our expression gives:

A0 +B0P +
∑
k 6=0

(
A~ke

−kP +B~ke
kP
)

exp(i~k · ~r) = 0 (7.63)

The ekP term is exp(2πqP/L) with q ≥ 1. Since we have assumed P � L,

this term is large. Therefore we require that B~k = 0 for all k 6= 0. Conversely,

the e−kP term is very small. Then A~ke
−kP may be considered negligible;

otherwise, we simply stipulate that A~k = 0 for all k 6= 0.
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Then the sum term is negligible or zero, and we are left with:

A0 +B0P = 0 (7.64)

from which it follows that A0 = −B0P . Our first-order velocity term is now:

u1(x, y, z) = B0(z − P ) +
∑
k 6=0

(
A~ke

−kz) exp(i~k · ~r) (7.65)

Use Slip Boundary Condition to find B0

We have found that the Fourier coefficient for ~k = (0, 0) is U0 = B0(z−P ).

We may equate this with the formal definition:

U0 = B0(z − P ) =
1

L2

∫ L

0

∫ L

0

u1(x, y, z) dxdy (7.66)

and differentiate with respect to z:

d

dz
(B0z −B0P ) =

1

L2

∫ L

0

∫ L

0

d

dz
u1(x, y, z) dxdy (7.67)

then evaluate at z = 0:

B0 =
1

L2

∫ L

0

∫ L

0

du1

dz
|z=0 dxdy (7.68)

At this point we can substitute the slip boundary condition:

du1

dz
|z=0 =

1

P b̂
uP (7.69)

to get:

B0 =
1

L2

∫ L

0

∫ L

0

1

P b̂
uP dxdy (7.70)

The double integral is the area-weighted average:

B0 =
uP
P

1

L2

∫ L

0

∫ L

0

1

b̂
dxdy =

uP
P

〈
1

b̂

〉
(7.71)

So the first order velocity term is:

u1(x, y, z) =
uP
P

〈
1

b̂

〉
(z − P ) +

∑
k 6=0

(
A~ke

−kz) exp(i~k · ~r) (7.72)
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7.1.8 Bolt Together Velocity Solution

We now have all the parts of the x velocity perturbaton expansion u(x, y, z) =

u0(x, y, z) + εu1(x, y, z). Bolting it together gives:

u(x, y, z) = uP + ε
uP
P

〈
1

b̂

〉
(z − P ) + ε

∑
k 6=0

(
A~ke

−kz) exp(i~k · ~r) (7.73)

Recall that:

ε =
P

bmin

and b̂ =
b

bmin

(7.74)

therefore:

ε
uP
P

〈
1

b̂

〉
=

P

bmin

uP
P

〈
bmin

b

〉
= uP

〈
1

b

〉
(7.75)

Thus, the final velocity solution is:

u(x, y, z) = uP + uP

〈
1

b

〉
(z − P ) + ε

∑
k 6=0

(
A~ke

−kz) exp(i~k · ~r) (7.76)

7.1.9 Effective Slip Length

Since we know the height P and the velocity uP of the driving plate, if we

know the shear rate at the driving plate, we can calculate the effective slip

length. The flow is uniform and laminar at the driving plate, so simple shear

holds, and the shear rate is simply the velocity gradient d
dz
u:

d

dz
u(x, y, z) = uP

〈
1

b

〉
− ε
∑
k 6=0

(
kA~ke

−kz) exp(i~k · ~r) (7.77)

At z = P , the term e−kz < exp(−2πP/L) and is negligible since P � L. So:

du

dz
|z=P = uP

〈
1

b

〉
(7.78)

Rearranging to the familiar form of Navier slip:

uP =

〈
1

b

〉−1
du

dz
|z=P (7.79)
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This defines an effective slip length:

beff =

〈
1

b

〉−1

(7.80)

The true slip length of the solid surface is less by the distance P from the

driving plate to the surface:

beff =

〈
1

b

〉−1

− P (7.81)

This result is derived by perturbing plug flow; the smallness of the pertur-

bation is expressed by the smallness of the ratio P/bmin. Since bmin <
〈

1
b

〉−1
,

the assumption P � bmin implies that

P �
〈

1

b

〉−1

(7.82)

Therefore, the P may be neglected, leaving Equation (7.80).

The perturbative method has reconciled with the homogenization method:

If the homogenized effective slip length formula is applied to a flat surface,

it simplifies to Equation (7.80).

Equation (7.80) and its derivation by perturbation methods was published

in 2008 [35].
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7.2 Perturbed Couette Flow

A similar analysis can be done for perturbed Couette flow. We still assume

that the height of the driving plate is much larger than the period of surface

patterning :

P � L (7.83)

In this case, flow is close to Couette flow if the maximum slip length bmax

of the surface is small compared to the height P of the driving plate. So a

suitable choice of perturbation parameter is:

ε =
bmax

P
(7.84)

And the normalised slip length can be defined as:

b̂ =
b(x, y)

bmax

, 0 ≤ b̂ ≤ 1 (7.85)

Then both sides of the Navier slip condition can be divided by ε:

1

ε
u(x, y, 0) =

P

bmax

b(x, y)
∂u

∂z
|z=0 (7.86)

So the perturbed slip condition is:

u(x, y, 0) = εP b̂
∂u

∂z
|z=0 (7.87)

As before, the velocity solution is written as a perturbation expansion:

~u = ~u0 + ε~u1 = (u0, v0, w0) + ε(u1, v1, w1) (7.88)

which is inserted into the Stokes, continuity, and various boundary equations.

The only difference is of course the slip condition. To first order in ε:

u0 + εu1 = εP b̂
∂u0

∂z
|z=0 (7.89)
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7.2.1 Zeroth Order

By construction, setting ε = 0 gives classic Couette flow:

u0(x, y, P ) = uP (7.90)

u0(x, y, 0) = 0 (7.91)

whose solution is a linear interpolation between the top and no-slip boundary

conditions:

u0(x, y, z) =
uP
P
z (7.92)

7.2.2 First Order

Cancelling the zeroth order terms and dividing by ε gives the first order slip

condition:

u1 = P b̂
∂u0

∂z
|z=0 = P b̂

uP
P

(7.93)

u1 = b̂uP (7.94)

Again, the zeroth order solution enters the slip condition.

The analysis proceeds exactly as before, until the point where we solve

for the coefficient B0.

Use Slip Boundary Condition to find B0

We have found that the Fourier coefficient for ~k = (0, 0) is U0 = B0(z−P ).

We may equate this with the formal definition:

U0 = B0(z − P ) =
1

L2

∫ L

0

∫ L

0

u1(x, y, z) dxdy (7.95)

If we evaluate this at z = 0, we may substitute the first order slip condition:

−B0P =
1

L2

∫ L

0

∫ L

0

b̂uP dxdy (7.96)
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The double integral is the area-weighted average:

B0 = −uP
P

1

L2

∫ L

0

∫ L

0

b̂ dxdy = −uP
P

〈
b̂
〉

(7.97)

So the first order velocity term is:

u1(x, y, z) =
uP
P

〈
b̂
〉

(P − z) +
∑
k 6=0

(
A~ke

−kz) exp(i~k · ~r) (7.98)

7.2.3 Bolt Together Velocity Solution

We now have all the parts of the x velocity perturbaton expansion u(x, y, z) =

u0(x, y, z) + εu1(x, y, z). Bolting it together gives:

u(x, y, z) =
uP
P
z + ε

uP
P

〈
b̂
〉

(P − z) + ε
∑
k 6=0

(
A~ke

−kz) exp(i~k · ~r) (7.99)

Recall that:

ε =
bmax

P
and b̂ =

b

bmax

(7.100)

therefore:

ε
uP
P

〈
b̂
〉

=
bmax

P

uP
P

〈
b

bmax

〉
=
uP
P 2
〈b〉 (7.101)

so that:

ε
uP
P

〈
b̂
〉

(P − z) =
uP
P
〈b〉 − uP

P 2
〈b〉 z (7.102)

Thus, the final velocity solution is:

u(x, y, z) =
uP
P

[
z

(
1− 〈b〉

P

)
+ 〈b〉

]
+ ε
∑
k 6=0

(
A~ke

−kz) exp(i~k · ~r) (7.103)

7.2.4 Effective Slip Length

As before, we calculate the effective slip length with the velocity gradient:

∂

∂z
u(x, y, z) =

uP
P

(
1− 〈b〉

P

)
− ε
∑
k 6=0

(
kA~ke

−kz) exp(i~k · ~r) (7.104)
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At z = P , the term e−kz < exp(−2πP/L) and is negligible since P � L. So:

∂

∂z
u(x, y, z) =

uP
P

(
1− 〈b〉

P

)
(7.105)

Rearranging to the form of Navier slip:

uP = P

(
1− 〈b〉

P

)−1
∂u

∂z
|z=0 (7.106)

Implying an effective slip length at the top boundary of:

beff(P ) = P

(
1− 〈b〉

P

)−1

=
P

1− 〈b〉
P

(7.107)

The slip length of the surface is found by subtracting P from this:

beff =
P

1− 〈b〉
P

− P (7.108)

=
P − P

[
1− 〈b〉

P

]
1− 〈b〉

P

=
P − P + 〈b〉

1− 〈b〉
P

=
〈b〉

1− 〈b〉
P

(7.109)

We have assumed that for Couette-like flow, bmax � P . Clearly 〈b〉 < bmax,

therefore 〈b〉 � P , and so 〈b〉 /P is negligible. We are left with:

beff = 〈b〉 (7.110)

(Note that for this Couette-like flow, the effective slip length ‘seen’ at the

driving plate, beff(P ), is negligibly different from P , as expected.)

Equation (7.110) and its perturbative derivation was published in 2008

[35].
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7.3 Conclusion

The effective slip length found by perturbing plug flow reconciles with the

effective slip length found by homogenization. Our perturbation analysis

assumed a strict definition of plug-like flow: P � bmin, and further assumed

that near the driving plate, the perturbations had diffused into laminar flow,

expressed by L� P . In summary, the regime satisfied:

L� P � bmin (7.111)

Based on this perturbation analysis, a physical regime that is close to

plug flow will have a measured effective slip length that is well approximated

by the harmonic mean formula of Equation (7.80):

beff =

〈
1

b

〉−1

(7.112)

A system is certainly close to plug flow if P � bmin. However, flow may be

sufficiently plug-like if the slip velocities are of the same order as the driving

velocity. This would imply that P ∼ bmin. Thus, the perturbation analysis

suggests that the harmonic mean formula of Equation (7.80) applies if:

L� P ∼ bmin (7.113)

This is confirmed in the numerical testing described in Chapter 8; we

further discover that Equation (7.80) works quite well as an approximation

even when slip lengths are of the same order as the period:

L ∼ b� P (7.114)

The perturbative approach can also be applied to the limit of vanishing

slip length. If bmax is smaller than other length scales of the flow, then the

effective slip length is best approximated by the simple area-weighted average

of Equation (7.110).

beff = 〈b〉 (7.115)

This is confirmed by numerical simulations, as described in Chapter 8.
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Chapter 8

Numerical Testing

We have derived two analytic formulae for the effective slip length of a mixed

slip surface, using two different mathematical techniques. The homogenized

effective slip length is exact in the limit of vanishing period, and is expected

to be a useful approximation if a physical system is ‘near the limit’. A way to

quantify ‘nearness to the limit’ is to compare the magnitudes of the relevant

length scales of the system: the period L of the surface patterning, and the

domain height P . Thus, a physical system is near the limit if:

L� P (8.1)

Our perturbative effective slip lengths were also derived with the assumption

that L� P ; furthermore, the beff = 〈b〉 expression is expected to be a good

approximation when b� L.

We wish to test our predictions against the ‘true’ slip lengths of physi-

cal systems as they get closer and closer to the relevant limits. Ideally, one

would measure effective slip lengths in physical experiments. Such experi-

ments are beyond the scope of this thesis. However, the next best thing are

numerical simulations carried out by a computer. Therefore, in this chapter

we compare our predicted beff expressions with effective slip lengths derived

from numerical simulations.

163
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8.1 Finite Element Modelling

Perhaps the most powerful and versatile numerical method for solving partial

differential equations is Finite Element Modelling (FEM). Many industrial-

strength implementations are available; we chose the free and open-source

package FreeFem++, available from www.freefem.org [21].

The input to FEM software is a precise description of the model, including

the size and shape of the domain, and the equations that hold on the domain

and its boundaries. The output of an FEM simulation is a velocity field on

the domain.

In our FEM simulations, we used a model with Laplace’s equation holding

on a rectangular domain of height P , with a fixed shear rate γ̇ at the top of

the domain, periodic boundary conditions on the sides of the domain, and

the full tensor slip boundary condition at the bottom of the domain. See

Figure (8.1).

Γb

Γ0Γ0

Γtop

Ω

shear rate = γ̇

Figure 8.1: Domain Ω with rough slip boundary Γb, top boundary Γtop and

periodic side boundaries Γ0.

For convenience when working with slip boundary conditions, in this the-

sis we adopted the convention that the unit normal vector ~n on the surface

points ‘up’ into the fluid, that is, into the domain. (An increase in x velocity

with increasing z gives a positive velocity gradient ∂u/∂z. On a flat surface,

the convention of the inward-pointing ~n ensures that the velocity gradient in

the direction of ~n, ∂u/∂n, has the same sign (and magnitude) as ∂u/∂n.) A

consequence is that the normal vector ~n on the top boundary points down.
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The flow is shear-driven only. The top fixed-shear boundary condition

can be expressed in terms of the deformation rate tensor:

2E(~u) · ~n = (−γ̇, 0) (8.2)

(The negative sign is due to the downward-pointing ~n on the top boundary.)

Then the derivation of Section 6.2.3 (page 126) can be augmented with

the top shear boundary condition to get:∫
Γb

1

b
~u · ~g +

∫
Γtop

(−γ̇, 0) · ~g = 2

∫
Ω

E(~u) : E(~g) +
1

µ

∫
Ω

∇p · ~g (8.3)

However, the flow is shear-driven only, with no pressure drop across the

domain, so the integral containing the pressure gradient vanishes, leaving:∫
Γb

1

b
~u · ~g −

∫
Γtop

(γ̇, 0) · ~g = 2

∫
Ω

E(~u) : E(~g) (8.4)

Note that the viscosity has vanished due to the periodicity of the pressure.

While our convention of an inward-pointing normal vector ~n was appro-

priate for studying slip, an outward-pointing unit normal is the more common

convention in mathematics, including in finite element modelling. To use the

formula of Equation (8.4) in Freefem++, we must change to the outward-

pointing convention. This alters the boundary conditions by a negative sign

to 2E(~u) · ~n = −1
b
~u and 2E(~u) · ~n = (γ̇, 0), which amounts to multiplying b

and γ̇ by −1 in Equation (8.4). Thus, the variational formula used for the

Freefem++ simulations was:

2

∫
Ω

E(~u) : E(~g)−
∫

Γtop

(γ̇, 0) · ~g +

∫
Γb

1

b
~u · ~g = 0 (8.5)

The shear rate γ̇ was set to one. The only other parameter is the slip length

b, which in simulations was expressed as a fraction of the domain height P

or period L.
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Figure 8.2: The mesh (left) and velocity streamline plot (right) for FEM

simulations on a domain with a rough slip surface with one period (top) and

four periods (bottom).
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Several simulations were done, with different period lengths, on both

sinusoidal and flat slip boundaries. An FEM simulation has a mesh defined

on the domain, specifying the points at which a velocity solution is found.

An adaptive mesh was used, so that each full sine cycle always had at least

six mesh points on it, even for very short period lengths.

The mesh and corresponding velocity streamline plot for a couple of sim-

ulations are shown in Figure (8.2). Notably, within a period length or two

of the sinusoidal surface, the velocity has become uniform horizontal flow.

The top of the domain, at height P above the slip surface, is known as the

far field. The velocity and shear rate in the far field, together with the height,

define an effective slip length, as described in Chapter 1. We shall denote

this FEM far-field effective slip length as bfar. In all of our simulations,

the far-field velocity turned out to be constant and in the x direction only,

even when the period was as large 1
2

of the domain height. Therefore, bfar

was always a well-defined single value.

8.1.1 Flat Surface

We start with the simplest case of a flat surface, with a binary slip patterning

consisting of alternating stripes of high slip (bmax) and low slip (bmin) material.

The stripes are of equal width; two stripe widths equal the period L.
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Harmonic Mean Formula

The homogenization analysis yielded beff =
〈√

1 + |∇h|2/b
〉−1

, which is ex-

pected to be a good approximation in the limit L� P, b. The perturbation

analysis yielded beff =
〈

1
b

〉−1
– the same formula simplified for flat surfaces.

Therefore, we set bmax = P and bmin = 1
5
P , and ran a series of FEM simula-

tions for different values of L, starting with L = 1
2
P , going down to L = 1

320
P .

The far-field FEM effective slip length bfar was calculated for each simulation.

The results are plotted in Figure (8.3).
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Comparing predicted beff with FEM-simulated bfar

Figure 8.3: Comparison of numerical bfar values with predicted beff for differ-

ent period sizes, with b ∼ P . The dots are values of bfar. The solid line is the

beff =
〈

1
b

〉−1
prediction.

As Figure (8.3) shows, if b ∼ P , the harmonic mean beff =
〈

1
b

〉−1
formula

is an excellent approximation of bfar if L� P , and still a good approximation

even if L ∼ P . Thus, at least in this numerical simulation, the requirement

L� P is in practice met by the condition L ≤ 1
10
P .
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Simple Mean Formula

The perturbation analysis also yielded a formula beff = 〈b〉 in the limit of

vanishing slip length. This simple area-weighted mean was derived assuming

L � P , and is expected to be a good approximation to bfar in the limit

b� L� P . To explore this, we ran a series of FEM simulations with fixed

L = 1
10
P , and bmax varying from bmax = P down to bmax = 1

400
P . The bfar of

each simulation is plotted as a dot in Figure (8.4).

11/21/41/81/251/501/1001/400
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Figure 8.4: Comparison of numerical bfar values with beff predictions, for

different values of bmax, with L = 1
10
P . The dots are values of bfar. The lower

solid line is the beff =
〈

1
b

〉−1
prediction, and the upper solid line is beff = 〈b〉

prediction. The vertical dotted line indicates where bmax = L.

The values of bfar in Figure (8.4) demonstrate a gradual transition from

the regime where beff =
〈

1
b

〉−1
applies to the regime where beff = 〈b〉 applies.

Figure (8.4) affirms that beff =
〈

1
b

〉−1
is an excellent approximation in the

regime L � b, P , and reveals that beff =
〈

1
b

〉−1
is a surprisingly good ap-
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proximation in the regime L ∼ b � P . The ‘limit of vanishing slip length’

is shown to be quite a strong condition: The regime b ≈ 1
10
L � P is a

‘transition regime’, with the bfar values midway between the simple mean

and the harmonic mean; the simple mean is not a good approximation until

bmax ≤ 1
40
L.
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8.1.2 Rough Surface

The FEM testing on a flat surface showed our harmonic mean beff =
〈

1
b

〉−1

formula to be an excellent approximation in the regime L � P, bmax. We

now wish to investigate the importance of the arc-length correction – the

correction due to the increased area of liquid-solid contact on a rough surface.

To that end, we ran a series of FEM simulations with sinusoidal surfaces.

Each surface was a corrugation with the standard sine-wave profile – the

amplitude and period are always in the ratio 1 : 2π. The slip length varied

in a binary fashion, with high slip in the valleys of the sinusoid, and low slip

on the peaks of the sinusoid. This models a nanograting with air pockets in

the grooves. The flow was shear-driven by a fixed shear rate, and the slip

lengths were fixed at bmin = 1
5
P, bmax = P . A schematic appears in Figure

(8.5).

Top Boundary Condition: ∂u
∂z

= 1

L

High
Slip

Low
Slip

Figure 8.5: Schematic of the FEM model with corrugated mixed-slip surface.

A series of FEM simulations were done with different periods of the sinu-

soidal corrugation, starting from L = 1
2
P , down to L = 1

200
P . The bfar from
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each simulation appears as a dot in the plot of Figure (8.6).
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Figure 8.6: Comparison of numerical bfar values with beff predictions for si-

nusoidal surfaces for different periods, with b ∼ P . The dots are values of

bfar. The solid line is the beff =
〈√

1 + |∇h|2/b
〉−1

prediction. The upper

dashed line is the beff(flat) =
〈

1
b

〉−1
predicted if the surface were assumed to

be flat.

Figure (8.6) clearly shows the significance of the arc length correction:

The full beff =
〈√

1 + |∇h|2/b
〉−1

expression with arc length correction is

shown as the solid line, and the bfar values converge on this line as L gets

smaller. The beff(flat) =
〈

1
b

〉−1
calculated if the surface were assumed to be

flat is shown as the upper dotted line. Thus, if b ∼ P , then the full beff

prediction is an excellent approximation when L� P .

To better test the accuracy of the beff prediction, we calculated the differ-

ences between the bfar values and beff , expressed as a percentage of beff . The

resulting percentage differences are plotted in Figure (8.7).
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Figure 8.7: Percentage comparisons between numerical bfar values and

contact-area-corrected beff =
〈√

1 + |∇h|2/b
〉−1

predictions. The dots are

values of bfar, expressed as the percentage (bfar − beff)/beff × 100.

The percentage differences of Figure (8.7) reveal that our contact-area-

corrected beff =
〈√

1 + |∇h|2/b
〉−1

prediction for rough surfaces is accurate

to within a few % when L � P, bmax. For example: Accurate to within 5%

when L ≤ 1
5
P , and within 1% when L is less than 5% of P .

The slip lengths in these FEM simulations were calculated with respect

to the z = 0 line, about which the sinusoids oscillate. In Chapter 3 we noted

the ambiguity in the definition of slip length – does the surface begin at

the z = 0 line or at the tops of the sine wave peaks? To investigate this

issue, we recalculated the measured slip lengths with respect to the tops of

the peaks. These are plotted as the crosses in Figure (8.8) (along with the

‘uncorrected’ slip lengths).
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Figure 8.8: Comparison of numerical bfar values with beff predictions for si-

nusoidal surfaces for different periods, with b ∼ P . The dots are values of

bfar calculated w.r.t. the z = 0 line, and the crosses are bfar values calculated

w.r.t. the top of the sinusoid. The solid line is the beff =
〈√

1 + |∇h|2/b
〉−1

prediction. The upper dashed line is the beff(flat) =
〈

1
b

〉−1
predicted if the

surface were assumed to be flat.

Figure (8.8) shows that the slip lengths defined with respect to the tops

of the surface peaks differ from the predicted beff by about the same amount

as the z = 0 based slip lengths – but in the other direction. In other words,

for a given period L, the predicted beff value lies between the two numeri-

cal bfar values calculated with respect to the two different reference points.

The difference between the two types of bfar values increases as L increases,

because the roughness amplitude increases in concert. The accuracy of beff

depends on how the measured bfar values are calculated, and the ‘correct’

way to calculate bfar depends on the circumstance. If effective slip lengths

are measured with respect to the tops of the roughness, then our beff predic-
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tions will underestimate measured effective slip lengths.

A final note about numerical issues: A close look look at the data plotted

in Figure (8.7) reveals that the numerics and the prediction agree better and

better as L gets smaller and smaller — up to a point. Then the prediction

underestimates the numerical values. We believe this to be a computational

artefact, due to an insufficient number of lattice points on a very rapidly

oscillating boundary: When we noticed that the bfar values overshot the

prediction, we ran the same simulations with double the number of lattice

points. The overshoot reduced, so we further increased the number of lattice

points, which gave even better results. At some point we hit the limit of

our computational power, but it is reasonable to think that given sufficient

computational power, the discrepancy would disappear.
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8.2 Finite Difference Numerics

As an exercise, the same slip problem was also solved numerically using

the finite difference method. The main benefit of this exercise (apart from

educational) was that the software employed allowed the easy visualisation

of 3-dimensional flow fields. We employed Python using the Numpy library,

which is a front end to various very fast C and Fortran libraries, and the

Mayavi library for visualisation. A curved boundary is difficult to implement

in this approach, so the case of the flat slip boundary was studied.

Three-dimensional velocity profiles were generated. The x-velocity u for

flow over a mixed-slip surface is shown in Figure (8.9).

x
z

u

uP

u with mixed-slip boundary

Figure 8.9: The coloured surface is u, the x-velocity component of a velocity

field of a finite difference simulation of flow over a flat mixed-slip surface.

The x-velocity is high and uniform at the top boundary condition (large

z), and varies periodically over the slip boundary.
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To provide some perspective, flow profiles over pure high-slip and low-slip

surfaces were generated. These are plotted together, along with the mixed-

slip flow profile, in Figure (8.10).

x
z

u

uP

u with high-slip boundary

u with mixed-slip boundary

u with low-slip boundary

Figure 8.10: The same mixed-slip flow field as in Figure (8.9), plus the flow

solutions for flow over the purely high-slip surface (pink), and the purely

low-slip surface (yellow).

There is an interesting feature in the mixed-slip flow field: while the

velocity at the slip boundary varies periodically, the variation is not very

large. The slip velocity does not swing between the extremes of velocities

over the pure high-slip and low-slip surfaces. Instead, the slip velocity has

only a moderate periodic variation about a central value.

What is that central value? Of course, we expect it to be the slip velocity

that would occur if the surface had a single slip length equal to our predicted

beff . We explore this by generating a last flow profile with a pure beff slip

length surface. We plot this (in black) together with the mixed-slip flow

profile in Figure (8.11).
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x
z

u

uP

u with beff slip boundary (black)
u with mixed-slip boundary

Figure 8.11: The same mixed-slip flow field as in Figure (8.9), plus the flow

field corresponding to a homogeneous boundary of slip length beff (black).

Figure (8.11) shows excellent agreement between the effective flow profile

and the mixed-slip profile. For most of the domain, they are almost indistin-

guishable. Only very close to the slip boundary does the mixed-slip profile

exhibit a periodic variation about the effective slip profile.

The plot of Figure (8.11) also throws light on another issue: how thick

is the boundary layer? The boundary layer can be arbitrarily defined to

end where the flow becomes (arbitrarily close to) uniform. Without being

quantitative, we can see that a reasonable choice for boundary layer thickness

d could be less than the period L.
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8.3 Conclusion

Numerical simulations reveal that if the period of surface patterning L is

much less than the domain height P and typical slip lengths, then the effective

slip length as defined in the far field of the system is very well approximated

by:

beff =

〈√
1 + |∇h|2

b

〉−1

(8.6)

The beff expression incorporates a correction for the increased area of solid-

liquid contact in rough surfaces. Numerical testing shows this correction to

be accurate, so therefore our beff expression of Equation (8.6) is valid for both

flat and rough surfaces.

Numerical simulations further reveal that if L � P and slip lengths are

of the same order as the period, L ∼ b, then Equation (8.6) is a surprisingly

good approximation for effective slip lengths.

If slip lengths are much smaller than any other length scale, then the

effective slip length is best approximated by a simple area-weighted mean.

Numerical testing with a flat surface showed that if bmax ≤ 1
40
� P , then the

effective slip length is well approximated by:

beff = 〈b〉 (8.7)
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Chapter 9

Analogues of Effective Slip

We have found the effective slip length for Stokes flow over a periodic mixed-

slip surface. However, on a purely mathematical level we have shown that if

Laplace’s equation holds on a domain, and a particular boundary condition

holds on a boundary:

∇2u = f (9.1)

u = b(x, y)
∂u

∂z
(9.2)

where b is some periodic function on the boundary with units of length and

period L, then there exists an effective boundary parameter beff that is a

good approximation in the appropriate limits:

beff =

〈
1

b

〉−1

if L� b, and beff = 〈b〉 if b� L (9.3)

This models our slip problem. It is also interesting to ask what other

physical systems these results might apply to. If we can find appropriate

systems, then we automatically have an effective boundary parameter —

some analogue of effective slip length.

We shall investigate two such physical systems forthwith: a thermal in-

sulation problem and a heterogeneous catalyst problem.

181
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9.1 Thermal Insulation

Consider an atypical New Zealand house: one with insulation in the roof. A

standard house has an angled roof situated above a flat ceiling, with a fairly

large crawlspace in between. The ceiling panels are attached to the underside

of wooden beams known as rafters, which are spaced 600 mm apart. It is

traditional to devote several entire weekends to laying insulating material on

top of the ceiling panels, in the gaps between the rafters. Thus, above the

warm living space of a house, is a heterogeneous insulator, comprising wood

(the rafters), highly insulating material, and those air gaps that are left over

because you couldn’t be bothered cutting scratchy, unwieldy fibreglass batts

to exactly the right size. A schematic is presented in Figure (9.1).

Warm Room

Rafters

Insulation

Figure 9.1: Schematic of ceiling insulation in a house.

9.1.1 Mathematical Model

We are interested in the ‘net’ insulating properties of the heterogeneous in-

sulator comprising wood, insulating material and possibly air gaps. To that

end, we model the heterogeneous insulator as a bulk material with: a warm

room at the lower boundary, and convection-dominated heat loss on the top

boundary. For consistency with our slip model, we shall invert the vertical

dimension, and let z = 0 denote the top of the bulk and z = P the bottom
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of the bulk. The temperature field is T (x, y, z), with boundary conditions at

T (x, y, 0) and T (x, y, P ), denoted T (0) and T (P ). See Figure (9.2).

Warm room

Ω

Convective boundary condition

z

x

P

0

Figure 9.2: The domain Ω is the wooden rafters plus any insulating material.

For consistency with the slip model, the domain is ‘upside down’.

Dirichlet Condition

The warm room can be considered to be held at a constant temperature,

due to the interventions of its human occupants. Therefore, on the z = P

boundary is the Dirichlet condition

T (P ) = Troom = constant (9.4)

Bulk Condition

The distribution of temperature T in a material is governed by the heat

equation:
∂T

∂t
=

k

ρCp
∇2T (9.5)

where k is the thermal conductivity, and Cp is the specific heat capacity.

We shall assume that the system is steady-state, so that the time depen-

dent term vanishes. Hence, the solid material – wooden rafters and insulating

material – is governed simply by Laplace’s equation:

∇2T = 0 (9.6)
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Conductive Heat Current

Consider a bar of test material of cross-sectional area A clamped between a

hot reservoir and a cold reservoir, as shown in Figure (9.3).

Hot Cold

A

Figure 9.3: Bar of material of cross-section A between hot and cold reservoirs.

The heat current in the bar (Joules per second) depends on the temper-

ature gradient, the thermal conductivity k and the area A:

dQ

dt
= kA

∂T

∂x
(9.7)

Convective Heat Current

Convection is harder to quantify than conduction. A plate at temperature

T convecting into an infinite reservoir of gas at temperature T0 shows a

heat flux approximately proportional to (T − T0)5/4. However, consider the

experimental setup in the diagram of Figure (9.4): a body of convecting air

between a hot body and a cold body.

Convecting Air

Hot

Cold

dQ

dt
= hA(T − T0)

T

T0

Figure 9.4: Convection between hot and cold reservoirs of surface area A.

For such a system, the heat flux is usually considered to have a simple



9.1. THERMAL INSULATION 185

linear relationship to temperature difference:

dQ

dt
= hA(T − T0) (9.8)

This is known as Newton’s law of cooling. h is the heat transfer coefficient

of the system, and depends on the fluid and the physical situation.

Convective Boundary Condition

The highly-conductive steel roof of a house can be presumed to be at the

same low temperature T0 as the outside air. We assume that radiative heat

transfer is negligible, and that the only heat transfer is due to convection

occurring between the bulk heterogeneous insulator and the cold roof.

The heat flux leaving the boundary is given approximately by Newton’s

law of cooling. Furthermore, heat flux will arrive at the boundary in accor-

dance with the heat conduction equation. See Figure (9.5).

Flux to boundary:
dQ

dt
= kA

∂T

∂z

Flux from boundary:
dQ

dt
= hA(T − T0)

Figure 9.5: Heat fluxes conducted to boundary and convected from boundary.

Since the boundary is a virtual plane with no heat capacity, the fluxes

are always equal:

hA(T − T0) = kA
∂T

∂z
(9.9)

For convenience, define a new variable τ = T − T0. Then the convective

boundary condition is:

τ =
k

h

∂τ

∂z
(9.10)
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The heat transfer coefficient h is constant for a given system. But the

thermal conductivity k varies spatiallly because the insulation layer is het-

erogenous. Define:

b(x, y) =
k

h
(9.11)

Then b(x, y) is periodic function on the boundary and has dimensions of

length.

We now have a system of equations similar to those describing Stokes

flow with Navier slip:

∇2τ = 0 (9.12)

τ = b
∂τ

∂z
(9.13)

Note that while the boundary condition is heterogeneous – b(x, y) is a

function of position on the boundary plane – this is due to the fact that bulk

is heterogeneous. The coupling occurs because the heat fluxes match at the

boundary.

The function b(x, y) has units of length, and we can now solve to find

an effective ‘insulation length’ for the heterogeneous insulation. We assume

that all heat in the room is ultimately lost by convection above the insulator.

Since the convective heat flux depends on the temperature on the convective

boundary, to minimize heat loss for a given room temperature, we want the

lowest temperature on the convective boundary. This in turn demands the

lowest effective insulation length. See Figure (9.6).
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0

Troom

beff

T (0)

Figure 9.6: Minimizing heat loss requires minimal T (0), which implies mini-

mal ‘insulation length’ beff .

9.1.2 Ready-Made Solution

To apply one of the two formulae we have already found, we need to know

which regime the system is in. We first use empirical data on typical insu-

lating materials to estimate a range for b.

The heat transfer coefficient for air is experimentally determined to be in

the range 10 - 100 Wm−2K−1. The thermal conductivity for wood depends

on the moisture content: from 0.04 - 0-.12 Wm−1K−1 for oven-dry wood, and

up to 0.4 Wm−1K−1 for wood with more than 12% water content. Typical

highly-insulating materials might be polystyrene foam or polyurethane foam,

with k = 0.03 Wm−1K−1, or mineral wool, sheep’s wool, or fibreglass wool, at

k = 0.04 Wm−1K−1. Air itself – if sufficiently constrained to avoid convection

– has a very low thermal conductivity of k = 0.024 Wm−1K−1.

Thus values of b = k/h are in the range 0.0003 to 0.012 meters, i.e. at

most about one centimeter.

This analysis of effective insulation parameter was motivated by the fa-

miliar example of ceiling insulation in a house, with domain height P being

the 10 - 15 centimeter thickness of ceiling insulation, and period L being the

rafter-to-rafter spacing of 60 centimeters. Then b is clearly much less than
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the other length scales. However, in this example, we do not have L � P ,

so strictly speaking, none of our results can be assumed to be good approxi-

mations. But, for general macroscale insulation layers made up of materials

like those mentioned above, if they are constructed such that L � P , then

we would be in the regime b � L � P , and the effective insulation length

would be reasonably approximated by the area-weighted average:

beff = 〈b〉 (9.14)

For ‘deep’ insulation layers with L� P , Equation (9.14) has serious im-

plications. An insulator may be constructed with steel components, which

has a thermal conductivity of around 40 Wm−1K−1. An air gap in the insu-

lator may form a closed convective cell with a heat transfer coefficient of 10

- 100 Wm−2K−1; for convenience say 40 Wm−2K−1. Then a one meter tall

convection cell would have the same heat current per unit area as solid steel.

Thus, it is possible to have regions with a thermal conductivity 3 or more

orders of magnitude higher than the best regions. If the worst regions occupy

1% of the surface area, the effective insulating length is 10 times worse than

if the insulator were constructed purely of a good insulator like polystyrene.

For a deep insulating layer, then, it is critical to eliminate any air gaps that

are big enough to allow convection.

An interesting historical note: The first expression for effective slip is the

one by J.R. Philip from 1972. His method ‘generalizes a device of Karush

and Young’. The 1952 paper by Karush and Young dealt with the effect of

a periodic array of perfectly insulating stripes or circles, that partially block

the loss of heat from a lump of radioactive material.
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9.2 Catalysis

One particularly widespread application of catalysts is in the catalytic con-

verters fitted to the exhaust systems of motorcars. Efforts are underway to

improve these catalysts by the use of nanostructured material. The improve-

ment is partly from the increased surface area, and partly from a geometric

effect: the sharp corners of a catalyst nanoparticle seem to be more active

than flat surfaces of the same catalyst.

Thus, it is possible that a nanostructured catalyst has a catalytic activity

that varies across a nominal surface – the catalyst is heterogeneous, and may

be a candidate for modelling as a homogenization problem. We shall attempt

this here.

Figure (9.7) is a schematic diagram of a catalyst in action. We shall

consider the simplest case of a single gas species – say N2O4, that diffuses to

the surface of the catalyst, where a catalysed reaction breaks the molecule

down into separate N2 and O2 molecules. The catalyst surface has some

‘sharp bits’ that have greater catalytic activity than the flat regions.

Catalyst

Highly Active Sites

Gas Diffusing Down to Catalyst

Figure 9.7: Schematic of a catalyst with surface structure.
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9.2.1 Model

The concentration of the gas species (eg. N2O4) is C. The presence of

the reaction products is presumed to not influence the behaviour of the gas

species, so they are ignored.

The system is a flat (ish) plane of catalytic material, with gas flowing

past parallel to the surface. The velocity of the gas is not important; the

gas species of interest diffuse down to the surface. At some height P above

the surface, the gas concentration can be considered static, constantly being

replenished by uncatalysed exhaust gas. Thus the system is ‘driven’ by a

fixed concentration CP at the top of the domain. The size of P depends

on how the catalyst is engineered; for example the catalyst could consist of

hundreds of parallel pipes, each with a diameter of several millimeters. Then

P would be the radius of a pipe, with a magnitude of several millimeters.

Bulk Condition: Laplace

Oxides of nitrogen comprise less than 1% of exhaust gas, so our gas species

is very dilute, and so its concentration is governed by the diffusion equation.

Furthermore, we shall assume steady-state conditions, so the time-dependent

term vanishes, and the bulk gas obeys Laplace’s equation:

∇2C = 0 (9.15)

Boundary Layer

For convenience, we shall define the layer of gas adjacent to the surface as

the boundary layer. All atoms that rain down onto the surface come from

the boundary layer. There are four fluxes of molecules associated with the

boundary layer: the flux of particles into the boundary layer from the bulk

gas; the flux of particles that adsorb to the surface; the flux of particles

that desorb from the surface before being catalysed; and the virtual flux of
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molecules destroyed by the catalyst, that leave the boundary layer by ceasing

to exist. These fluxes are illustrated in the schematic of Figure (9.8).

Bulk Gas

Boundary Layer

Catalyst

Finc

Fcat

Fads
Fdes

Figure 9.8: Balance of gas fluxes. In the steady-state, the net molecular flux

into the boundary layer must equal the (virtual) flux of catalysed molecules

leaving the boundary layer.

Mass Balance

There is a net flux Finc of molecules per second entering the boundary layer.

There is a flux Fcat of molecules per second permanently leaving the boundary

layer by adsorbing to the surface and being catalysed out of existence. Eg. if

we are concerned with the concentration C of N2O4, the catalysed reaction

N2O4 → 2O2 + N2 causes the N2O4 molecule to cease to exist (the N2 and

O2 detach from the catalyst and diffuse away from the surface).

In the steady state, the concentration C in the boundary layer is constant,

so by conservation of mass, the incoming flux must equal the outgoing flux:

Finc = Fcat (9.16)

As an aside, there may also be an auxiliary flux cycle: In order to be

catalysed, a molecule must first adsorb to the catalyst. However, in principle,
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an adsorbed molecule may desorb before being catalysed. Thus:

Fads = Fcat + Fdes (9.17)

A desorbed molecule may adsorb again, or it may diffuse out of the boundary

layer. Since Finc is defined as a net incoming flux, we may not need to worry

about this. In any case, for the sake of simplicity, we shall assume that

desorption can be neglected.

Incoming Flux

The flux of molecules entering the boundary layer – moles per second per

square meter – is given by Fick’s first law of diffusion:

Finc = D
∂C

∂z
(9.18)

For an ideal gas, the diffusion coefficient D is given by 1
3
λū, where λ is the

mean free path in the gas and ū is the mean speed of gas particles. We will

use this as an approximation to the diffusion coefficient of our gas. So:

Finc =
1

3
λū
∂C

∂z
(9.19)

Catalyzed Flux

One can imagine how the behaviour of a catalyst could be studied experi-

mentally. Keeping a well-mixed body of gas in contact with a catalyst at

a constant temperature and pressure, for a given concentration of gas, the

experimentalist will observe a certain number of moles catalysed per second

(per square meter). If the concentration is not too high, then we would ex-

pect the catalyzed flux to be proportional to concentration. That is, if we

double the concentration, we double the number of molecules hitting the sur-

face, thus double the number of opportunities for a molecule to be catalysed.

(At higher concentrations, the catalyst will saturate.)

Fcat ∝ C (9.20)
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We are assuming that if a molecule strikes the surface, it has an opportunity

to be catalysed, and the probability that it is catalysed does not change

with C. Define kcat as the probability that a particle striking the surface is

subsequently catalysed (rather than bouncing off or desorbing before being

catalysed).

(It is possible to break kcat down into a probability kads that an incident

particle adsorbs, and a conditional probability (per unit time) kads→cat that

an already-adsorbed particle is catalysed. Essentially, we are assuming that

kads→cat is large enough that the dwell time 1/kads→cat is shorter than the

mean time between impacts at a catalyst site. In the fuller treatment, one

accounts for a pool of adsorbed particles that may build up if kads→cat is low.

At some level of coverage, there is a non-negligible chance that an incident

particle will bounce off an adsorbed particle, rather than striking the catalyst.

In these saturated conditions, kcat stops being a constant and becomes a

function of C. This treatment leads to the Langmuir equation. However, the

simplified treatment we give here is compatible with our effective boundary

parameter expressions.)

We can apply some gas kinetics. In Appendix A, we show that the flux

incident on a surface in a gas of concentration C is:

F =
1

4
ūC (9.21)

Since kcat is the probability that an incident particle is subsequently catal-

ysed, the flux of particles hitting the surface and being catalysed out of

existence is:

Fcat =
1

4
kcatūC (9.22)

Catalyst Boundary Condition

As noted, in the steady-state, by mass balance, Finc = Fcat. Therefore:

1

3
λū
∂C

∂z
=

1

4
kcatūC (9.23)
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Let us introduce the catalytic parameter:

b =
4

3

λ

kcat

(9.24)

Then the catalyst boundary condition is:

C = b
∂C

∂z
(9.25)

which once again resembles the Navier slip condition. Furthermore, b again

has units of length, since it is a multiple of the mean free path.

If the catalyst is heterogeneous, perhaps due to nanostructure, then the

catalytic parameter b(x, y) is a function on the surface of the catalyst.

9.2.2 Solution

We can provide a ready-made solution to

∇2C = 0 in the bulk (9.26)

C = b
∂C

∂z
on the boundary (9.27)

provided that we know b(x, y) as a function of position on the catalyst surface.

The homogenization technique may be applied, and an effective parameter

for catalytic activity beff can be calculated.

Since kcat is a probability between 0 and 1, b is in the range 4
3
λ to∞. The

mean free path of air at standard temperature and pressure is λ = 68nm.

However temperatures and pressures in automotive catalytic converters are

much higher: they need a temperature of at least 250◦C to work properly,

and actual operating temperatures vary from 300◦C at idle up to 1000◦C if

driven by bogans. Now,

λ =
kBT√
2πd2p

(9.28)

(where kB is Boltzmann’s constant, T is temperature, p is pressure and d is

the diameter of the gas particle). So, if typical T is double or triple room
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temperature, and p is somewhat higher than ambient, then we would expect

λ ∼ 100nm, and similarly:

b ≥ 100 nanometers (9.29)

The height of the domain P depends on how the catalytic converter is en-

gineered, but is at least millimeters. If the catalyst is truly ‘nanostructured’,

with a period L of at most tens of nanometers, then obviously L � P , and

the harmonic mean formula for rough surfaces should give a good approx-

imation for the effective catalytic parameter of the surface. If the catalyst

surface is described by the periodic function h(x, y), then we have:

beff =

〈√
1 + |∇h|2

b

〉−1

(9.30)

Conversely, if the effective catalytic activity of a nanostuctured catalyst

is measured, and compared with the standard flat plane morphology, then

the activity of the most active regions of the catalyst may be estimated using

the homogenized harmonic mean (or mean) formula.

In the dilute limit, the mean free path λ is approximately constant. There-

fore, since b = 4
3

λ
kcat

, we have

beff =
4λ

3
〈
kcat

√
1 + |∇h|2

〉 (9.31)

Solving b = 4
3

λ
kcat

for kcat we may define an effective catalytic activity:

kcat(eff) =
4λ

3beff

(9.32)

which gives:

kcat(eff) =
〈
kcat

√
1 + |∇h|2

〉
(9.33)

Therefore, the effective catalytic activity of a nanostructured catalyst

with a short dwell time and negligible desorption, is simply the average ac-

tivity of its various regions, weighted by the area of contact between solid

and gas.
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Chapter 10

Conclusion

10.1 Summary

In this PhD thesis we studied the effective slip length of Stokes flow over

rough heterogeneous surfaces. In our mathematical model, the rough surface

is modelled as a periodic function h(x, y), and the local intrinsic slip length is

modelled as a periodic function b(x, y). The period L of both functions is the

same. The slip function b(x, y) has a minimum bmin and a maximum bmax.

At some height P above the surface, a fixed velocity or shear rate drives the

fluid.

Using the homogenization technique for partial differential equations, we

showed that if L is much smaller than other length scales, then the effec-

tive slip length is well-approximated by the harmonic mean of intrinsic slip

lengths, weighted by area of contact between fluid and surface:

beff =

〈√
1 + |∇h|2
b(x, y)

〉−1

(10.1)

197
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Using a quite different technique, a perturbation method, we replicated

this result for the simplified case where the surface is flat, not rough:

beff =

〈
1

b(x, y)

〉−1

(10.2)

The perturbative result reconciles with the homogenized result, since for

a flat surface
√

1 + |∇h|2 = 1. The perturbative result also applies when L

is much smaller than other length scales.

Also using the perturbation method, we studied flat surfaces in the limit

of vanishing slip length. If bmax � P , then the slip length is expected to be

best approximated by the area-weighted average of intrinsic slip lengths:

beff = 〈b(x, y)〉 (10.3)

We then tested these effective slip length formulae with numerical simula-

tions using the finite element method. The tests confirmed that the formula

are excellent approximations in their respective limits. For example, if L is

5% of P , then beff =
〈

1
b

〉−1
is within 1% of the effective slip length calculated

from the FEM simulation. The numerics also revealed that the harmonic

mean formula is a surprisingly good approximation in the case where L is

of the same order as b, and both are smaller than P . Finally, the numerics

suggested that the simple mean formula is a good approximation only when

b is on the order of two orders of magnitude smaller than L, which itself is

much smaller than P .

To summarise:

If L� P, b : beff '

〈√
1 + |∇h|2

b

〉−1

(10.4)

If L ∼ b� P : beff ≈

〈√
1 + |∇h|2

b

〉−1

(10.5)

If b� L� P : beff ' 〈b〉 (10.6)
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10.2 Consequences

What are the consequences of these formulae for the engineers of, say, nanos-

tructured superhydrophobic surfaces?

Consider a binary surface, composed of two different surface types, low-

slip regions (eg. Teflon), and high-slip regions (eg. air gaps). Let φ be the

area fraction of the surface that is occupied the low-slip region. Then given

fixed intrinsic slip lengths blow and bhigh for the two regions, the two effective

slip expressions are:

beff =

〈
1

b

〉−1

=

[
φ

1

blow

+ (1− φ)
1

bhigh

]−1

(10.7)

and

beff = 〈b〉 = φblow + (1− φ)bhigh (10.8)

We plot the predicted effective slip lengths as a function of φ in Figure

(10.1).

beff

φ0 1

blow

bhigh

〈b〉

〈
1
b

〉−1

Figure 10.1: The harmonic mean beff formula (blue), and mean formula (red,

straight), as functions of φ, for a flat binary surface where φ is the area

fraction with blow.
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The graph of Figure (10.1) is possibly bad news for a nanoengineer aiming

to maximise effective slip. A typical nanoengineering effort may involve a

nanopatterned surface, say nanogrooves, with a period of tens of nanometers,

on the wall of a micron-sized pipe. Air trapped in the nanogrooves creates a

liquid-gas interface with a slip length on the order of microns. A credible slip

length for the solid surface is perhaps 20 nm (see Chapter 2). Then L� P, b

or L ∼ b � P , and the harmonic mean formula of Equation (10.7) applies.

As Figure (10.1) shows, beff is dominated by the lowest slip present,

and a large beff is achieved only with a very small fraction of low-slip surface.

10.3 Future Work

We have mathematically rigorous results for an approximate beff that is a

good approximation if L � P , and a progressively better approximation as

L/P gets smaller. Assuming L� P , we have a perturbative approximation

that in the limit of b vanishing, beff is given by the simple average.

We do not have any mathematically rigorous results for regimes where

L ∼ P or L > P . These regimes could apply in some lubrication systems

for example. The concept of effective slip length could be different in these

situations – it may not arise from the diffusion of momentum, but could

be some kind of ‘forced’ average caused by the constraints of the physical

system. Work on these regimes is a possibility for the future.

Finally, the homogenization technique is a very powerful method that

can be applied to many problems featuring periodic heterogeneous media.

Finding further applications of homogenization is of definite future interest.



Appendix A

De Gennes’s Gas Kinetic

Theory of Slip

We seek to replicate the work of de Gennes. In his elegant little paper

in Langmuir from 2002, entitled simply “On Fluid/Wall Slippage” [18], he

presented a gas kinetic expression for slip length. However, the paper seems

to contain a few typographical errors, and the result is stated in terms of the

non-standard quantity v̄z, which is apparently defined as the average of the

absolute value of the z component of velocity.

As an exercise, we derive the expression from scratch using the more

standard scalar quantity of particle speed, v, with our final expression in

terms of average speed v̄. We show that our results ultimately agree with

those of de Gennes.

We start by figuring out the number of gas molecules hitting a surface

per second, then calculate the momentum transferred per second, yielding a

shear stress, from which a slip length follows.

201
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A.1 Particle Flux

Consider a gas of density ρ. If the mass of each particle is m, then the number

density of the gas is ρ/m. This has units of number per cubic meter, and is

therefore a concentration, C.

Each particle in the gas has a different velocity. The directions of motion

will be uniformly distributed over all solid angles. In an ideal gas, the speeds

come from the Maxwell-Boltzmann distribution. In general, the gas has some

speed probability distribution P (v), in the frequentist sense that fraction

P (v) of all atoms have speed v.

Our strategy is to split the gas into separate ensembles of particles, each

ensemble defined as a group of particles all with the same speed vens. At

the end of the derivation, we will sum over all ensembles – for now we work

with a single arbitrary ensemble, identified by its speed vens.

Consider a layer of gas over some area A on the surface. Let the layer

width be l, where l is well under the mean free path in the gas. So, particles

within the layer are sparsely distributed, and we can assume they do not

interact.

There are CAl molecules in the layer, and fraction P (vens) of them have

speed vens. Thus, the ensemble indexed by vens contributes

CAlP (vens) (A.1)

atoms to the layer.

We are interested in how many atoms from the layer hit the surface in

some timeslice; during the time interval, we do not want outside atoms to

enter the layer then hit the surface. To ensure this, we define an ‘isolation’

time:

First, define the layer to be the closed interval z ∈ [0, l]; then an atom at

distance l from the wall is the outermost atom in the layer.
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Such an atom, at distance l from the wall, travelling via the shortest path

to the wall, i.e. perpendicular to the wall, will hit the wall in time:

t0 =
l

vens

(A.2)

Therefore, any atom outside the layer – further than l from the wall –

cannot hit the wall in time t0. So t0 is the isolation time we need.

By construction, in time t0, each ensemble atom travels distance l (in a

random direction).

Now, we want to know what fraction of the ensemble atoms in the layer

hit the wall in time interval t0.

Consider a sphere of radius l centred on an atom. The surface of the

l-sphere is the set of all possible positions of the atom after time t0. The

probability that an atom hits the wall is equal to the fraction of the area of

the l-sphere that intersects the wall. This area of intersection area depends

on the distance h that the l-sphere protrudes into the wall. See Figure (A.1).

Layer Width l

Solid Wall

Atom

h h

l

Possible positions
after time t0

Figure A.1: Some fraction of the l-sphere intersects the wall.
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Area of sphere: 4πl2

Area of spherical cap: 2πlh

∴ fraction of spherical surface inside solid is:

φ(h) =
2πlh

4πl2
=
h

2l
(A.3)

The distance h that the sphere penetrates into the wall is equal to the

distance from the layer boundary to the atom’s starting position. So, h varies

from 0 to l, as the starting position of the atom may be anywhere between

the layer boundary and the solid wall.

For a group of atoms with starting position a distance h inside the layer,

we know what fraction of them hit the wall. To find the fraction for all atoms

in the layer, we average over all positions in the layer. That is, we integrate

φ(h) over the layer, and divide by domain size l:

φ =
1

l

∫ l

0

h

2l
dh =

1

2l2

∫ l

0

h dh =
1

2l2
[
1

2
h2]l0 =

1

4l2
[l2 − 0] =

1

4
(A.4)

So, in time interval t0, 1/4 of ensemble atoms within the layer hit the

wall.

Recall that the number of ensemble atoms in the layer is CAlP (vens),

thus, the number hitting area A per second is:

1
4
CAlP (vens)

t0
=

1
4
CAlP (vens)

l
vens

=
1

4
CAP (vens)vens (A.5)

Note that layer width l has cancelled out.

Define the ‘ensemble flux’ as the number of particles with given speed

vens hitting the wall per second per unit area:

F (vens) =
1

4
CP (vens)vens (A.6)
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To find the total number of atoms hitting of all speeds, we simply need

to integrate over all speeds. In other words, sum over all possible ensembles:

F =

∫ ∞
0

F (v) dv =

∫ ∞
0

1

4
CP (vens)vens dv =

C

4

∫ ∞
0

P (vens)vens dv (A.7)

Now – here’s the cunning bit – the construction
∫
P (vens)vens dv is just

the average of v, denoted v̄. Hence:

F =
1

4
Cv̄ (A.8)

Note that we did not need to know the specific statistical mechanical

probability distribution for the particle speeds.

In the next section, we deal with the momentum of gas particles, so it is

expedient to express concentration as C = ρ/m, where m is the mass of a

gas particle. Then the flux is:

F =
ρv̄

4m
(A.9)

A.2 Lateral Momentum Transfer = Shear Stress

Consider a bulk of water separated from a solid surface by a very thin gas

layer of thickness l. Assume l is less than the mean free path in the gas, so

that the previous analysis is valid.

Assume that the water bulk is moving, and that the bottom surface (fac-

ing the gas) has a constant tangential velocity vs.

The gas is a vapour of liquid molecules, detaching and reattaching from

the bulk liquid. Each molecule detaches from the liquid in a random direc-

tion, with an average tangential velocity of vs. Each atom has mass m, so

has average lateral momentum mvs. Each atom subsequently hits the solid

surface, and sticks to the surface – an inelastic collision that transfers all of

momentum mvs to the surface. See Figure (A.2)
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Liquid

Surface Velocity vs

Mass m Average
horizontal
velocity vs

Atom sticks,
transferring all
momentum mvs

Figure A.2: Each incident atom transfers average momentum mvs to the

solid surface.

Recall, the number of particles hitting the solid surface is ρv̄/4m per

second per area.

Thus, momentum transferred to the surface per second per area:

1

A

dP

dt
=

ρv̄

4m
mvs =

1

4
ρv̄vs (A.10)

This force per unit area is a shear stress:

σ =
1

4
ρv̄vs (A.11)

Now, a velocity gradient in the bulk of a viscous fluid of viscosity η causes

a shear stress:

σ = η

∣∣∣∣dv(z)

dz

∣∣∣∣ (A.12)

At the surface, however, dv/dz may be infinite, so surface shear stress

may be better conceptualized — by analogy with solid-solid friction — with

a friction coefficient k:

σ = kvs (A.13)

Equating the gas kinetic shear stress with the frictive shear stress:

σ = kvs =
1

4
ρv̄vs ⇒ k =

1

4
ρv̄ (A.14)
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Alternatively, since dv/dz is defined above the surface, we may extrapo-

late dv/dz down into the surface, getting the Navier slip condition:

vs = b

∣∣∣∣dv(z)

dz

∣∣∣∣ (A.15)

Equating frictive and viscous shear stresses, and substituting vs:

σ = kvs = kb

∣∣∣∣dv(z)

dz

∣∣∣∣ = η

∣∣∣∣dv(z)

dz

∣∣∣∣ (A.16)

Therefore, quite generally:

b =
η

k
(A.17)

And for our de Gennes-inspired gas kinetic theory:

b =
4η

ρv̄
(A.18)

This is the slip length in the Navier slip boundary condition as experi-

enced by the fluid at the bottom of the liquid. If we consider the slip

length to be a parameter of the solid surface, then we must subtract the gas

layer thickness l:

b = −l +
4η

ρv̄
(A.19)

If the gas layer is only a few atom diameters thick, then l < 1 nm, and is

therefore negligible.

de Gennes himself says:

b = −l +
η

ρv̄z
' η

ρv̄z
(A.20)

— Note that I have corrected what I think are typos; his original paper says:

b = −l +
η

ρv̄x
' η

ρvz
(A.21)
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A.3 Reconciling with de Gennes

We use average speed (in any direction) v̄. De Gennes used average speed in

the z direction, v̄z.

We have shown: b ' 4η

ρv̄
, de Gennes claims: b ' η

ρv̄z
(A.22)

If

v̄ = 4v̄z (A.23)

then our analyses are in perfect agreement.

De Gennes defines v̄z like this:

v̄z =

∫ ∞
0

1

(2π)1/2vth

vze
−v2

z/2v
2
th dvz = vth/(2π)1/2 (A.24)

where v2
th = kT/m.

That is:

v̄z =

∫ ∞
0

√
m

2πkT
vze

− 1
2mv

2
z

kT dvz =

√
kT

2πm
(A.25)

Now, in the Maxwell-Boltzmann statistics for an ideal gas, the distribu-

tion of a given component of velocity is:

fv(vz) =

√
m

2πkT
exp

[
−mv2

z

2kT

]
(A.26)

which is clearly what de Gennes is playing with.

This is a Gaussian distribution, therefore the average of vz, given by∫∞
−∞ fv(vz)vz dvz is zero.

Hence, de Gennes’s definition v̄z =
∫∞

0
fv(vz)vz dvz is the average of the

absolute value of vz.

So to reconcile. The Maxwell-Boltzmann statistics yield an average value

of the particle speed:

v̄ =

√
8kT

πm
(A.27)
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which is:

v̄ =

√
8kT

πm
=

√
16kT

2πm
=
√

16

√
kT

2πm
= 4

√
kT

2πm
= 4v̄z (A.28)

So we have found that v̄ = 4v̄z, hence our analysis and that of de Gennes

reconcile perfectly. Therefore

b ' 4η

ρv̄
=

η

ρv̄z
(A.29)
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Appendix B

Replicating John Philip 1972

The first known expression for an effective slip length appeared in 1972, in a

paper in ZAMP by John R. Philip entitled “Flows Satisfying Mixed No-Slip

and No-Shear Conditions” [44].

In the paper, John R. Philip says that the limit of

W3 = =
[
α−1 cos−1

{
cos(αΘ)

cosα

}
−Θ

]
(B.1)

as y →∞ is

W3 = α−1 ln secα (B.2)

Let us prove this forthwith.

Θ = x + iy is a complex number, α is real. Trig identities for complex

cosine and exponential:

cos z =
eiz + e−iz

2
(B.3)

eiθ = cos θ + i sin θ (B.4)

211



212 APPENDIX B. REPLICATING JOHN PHILIP 1972

B.1 Expand cosine term, dump negligible parts

In Euler’s formula eiθ = cis(θ), if θ is real, then eiθ traces out the unit circle

in C, with θ being the angle.

C
θ

Figure B.1: Euler’s formula eiθ for real θ .

This gives insight into the cos z function. If z is real, then 1
2
eiz and 1

2
e−iz

are two vectors of length 1
2

that cycle in opposite directions, with z being the

angle. Then cos z is the sum of the two vectors, which always ends on the

real line between -1 and 1, as shown in Figure (B.2).

C

1-1 cos z

1
2
eiz 1

2
e−iz

z
−z

Figure B.2: The complex cosine.

With this insight, it is useful to rewrite cos z as:

cos(x+ iy) =
ei(x+iy) + e−i(x+iy)

2
= ey

1

2
e−ix + e−y

1

2
eix (B.5)

Then it is clear that cos(x + iy) is the sum of two rotating vectors in C
with amplitudes ey and e−y. A consequence is that for large y, ey is very
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large, while e−y is negligible, therefore cos(x+ iy) is dominated by the vector

ey 1
2
e−ix. See Figure (B.3).

C
ey 1

2
e−ix

cos(x+ iy)
for large |y|

Figure B.3: Complex cosine at large |y|.

Therefore cos(x+ iy)→ eye−ix

2
as y →∞ (B.6)

cos z → 1

2
e−iz as y →∞ (B.7)

B.2 Inverse Cosine at Large y

As y →∞:

w = cos z → 1

2
e−iz (B.8)

Solve w = cos z for z to get:

arccosw = z

Likewise solve w = 1
2
e−iz for z:

w =
1

2
e−iz

2w = e−iz

ln(2w) = −iz

i ln(2w) = −i2z

i ln(2w) = z
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Equate the two expressions to obtain the inverse cosine in terms of a loga-

rithm:

arccos z = i ln(2z) (B.9)

B.3 Put into J. R. Philip’s Expression

W3 = =
[
α−1 cos−1

{
cos(αΘ)

cosα

}
−Θ

]
(B.10)

As y →∞, the cosine expression may be substituted:

W3 = =
[
α−1 cos−1

{ 1
2
e−iαΘ

cosα

}
−Θ

]
(B.11)

And the inverse cosine expression may also be substituted:

W3 = =
[
iα−1 ln

{
2

1
2
e−iαΘ

cosα

}
−Θ

]
(B.12)

W3 = =
[
iα−1 ln

{
e−iαΘ 1

cosα

}
−Θ

]
(B.13)

Recall that ln ab = ln a+ ln b.

W3 = =
[
iα−1 ln

{
e−iαΘ

}
+ iα−1 ln

{
1

cosα

}
−Θ

]
(B.14)

Invoke definition of logarithm: ln ez = z.

W3 = =
[
iα−1 {−iαΘ}+ iα−1 ln

{
1

cosα

}
−Θ

]
(B.15)

W3 = =
[
Θ + iα−1 ln

{
1

cosα

}
−Θ

]
(B.16)

W3 = =
[
iα−1 ln

{
1

cosα

}]
(B.17)

W3 = α−1 ln secα (B.18)

We have demonstrated that which we set out to prove.



Appendix C

Dimensional Analysis of

Perturbation Height

The highly influential paper “Achieving large slip with superhydrophobic

surfaces: Scaling laws for generic geometries” by Christophe Ybert et al.

[64] gives several scaling laws. In the derivation for the first scaling law, they

appear to assume that if a surface feature of width a causes a perturbation

in the flow that extends a height d, then d scales as a.

In this appendix we use dimensional analysis to argue that for a flow with

a fixed velocity and pressure, then it is indeed true that d scales as a.

C.1 Simple Analysis

The physical situation is that of two-dimensional perturbed plug flow. The

liquid sits on top of a sparse nanograting, so that most of the fluid boundary

is a liquid-air interface, which is assumed to have negligible drag (perfect

slip). The ridges of the nanograting have width a, and the liquid sticks to

the top them (no slip). The flow is transverse to the ridges, and is very close

to plug flow, since the fluid boundary is mostly perfect slip.

The plug-like flow is perturbed by the presence of the no-slip ridges;

the perturbation can be considered to be the region where flow is different

215
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from pure plug flow to some (arbitrary) degree. The perturbed region has a

perturbation height d. See Figure (C.1).

Air Solid

a

Plug Flow, at velocity U

Perturbed

Flow
Perturbation

Height, d

Figure C.1: Plug-like flow perturbed by widely-separated no-slip ridges.

What is perturbation height d?

It will be a function of some fundamental physical parameters:

• Ridge width a

• Velocity U

• Viscosity η

• Density ρ

• Pressure p

In other words d = g(a, U, η, ρ, p). Or equivalently, f(d, a, U, η, ρ, p) = 0.

Physical variables have dimensions:

d = [m], a = [m], U =
[m
s

]
, η =

[
kg

ms

]
, ρ =

[
kg

m3

]
, p =

[
kg

ms2

]
(C.1)
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Units are arbitrary, so it is useful to obtain the height d in terms of the

other length scale a. In other words, d and a have some ratio that is a

dimensionless function of the other physical variables:

d

a
= Dimensionless f(U, η, ρ, p) (C.2)

Furthermore, the physical variables will appear as powers, multiplied

by some constant, or as the argument of functions such as log and cosine.

Those functions are dimensionless, so their arguments must be dimension-

less. Wrapping those functions into the dimensionless variable C, we have

something like:
d

a
= C Uwηxρypz (C.3)

Now, the physical variables on the right hand side must be in powers such

that the units cancel out to be a dimensionless constant.

Constant =
[m
s

]w [ kg
ms

]x [
kg

m3

]y [
kg

ms2

]z
=

[
mwkgxkgykgz

swmxsxm3ymzs2z

]
=

[
mwkgx+y+z

mx+3y+zsw+x+2z

]
Constant =

[
kgx+y+zmw−x−3y−zs−w−x−2z

]
(C.4)

Thus, the units cancel iff the indices w, x, y, z simultaneously satisfy:

x+ y + z = 0 (C.5)

w − x− 3y − z = 0 (C.6)

−w − x− 2z = 0 (C.7)

We can express and solve these three simultaneous equations with matrix

algebra.

 0 1 1 1

1 −1 −3 −1

−1 −1 0 −2



w

x

y

z

 =


0

0

0

0

 (C.8)



218APPENDIX C. DIMENSIONAL ANALYSIS OF PERTURBATION HEIGHT

Gauss-Jordan reduction:

 0 1 1 1

1 −1 −3 −1

−1 −1 0 −2

 Swap

R1 & R2

 1 −1 −3 −1

0 1 1 1

−1 −1 0 −2


R3 + R1

1 −1 −3 −1

0 1 1 1

0 −2 −3 −3



R3 + 2R2

1 −1 −3 −1

0 1 1 1

0 0 −1 −1

R1 + R2
1 0 −2 0

0 1 1 1

0 0 −1 −1

R2 + R3

1 0 −2 0

0 1 0 0

0 0 −1 −1



R3 × -1

1 0 −2 0

0 1 0 0

0 0 1 1

R1 + 2R3
1 0 0 2

0 1 0 0

0 0 1 1


Our simultaneous equations have simplified to:

1 0 0 2

0 1 0 0

0 0 1 1



w

x

y

z

 =


0

0

0

0

 ⇒
w + 2z = 0

x = 0

y + z = 0

so

w = −2z

x = 0

y = −z

As a check, we substitute w = −2z, x = 0 and y = −z back into

x+ y + z = 0 0 +−z + z = 0 0 = 0

w − x− 3y − z = 0 getting −2z + 0 + 3z − z = 0 which is 0 = 0

−w − x− 2z = 0 2z − 0− 2z = 0 0 = 0

Hence, our formula must be of the form:

d

a
= C U−2zη0ρ−zpz (C.9)

Interestingly, our formula is not a function of viscosity η. For the simplest

case of z = 1, we have:
d

a
= C

p

ρU2
(C.10)
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The dimensionless quantity

ρU2

p
=

[kgm−3][ms−1]2

[kgm−1s−2]
=

[kgm−1s−2]

[kgm−1s−2]
(C.11)

has the obscure name of the Ruark number.

But the expressions

d

a
= C

(
ρU2

p

)7

or
d

a
=

√
ρU2

p
cos

(
ρU2

p

)
(C.12)

would be equally valid. How can we refine further?

Note that we have explicitly assumed that the ratio d/a is a function of

U, η, ρ, p only. i.e. d and a do not appear on the right hand side. A more

complete treatmeat would relax that assumption. Such a treatment is the

Buckingham Pi Theorem. We shall explore this now.
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C.2 Formal Treatment - Buckingham π

Theorem

Assume there is a physical relationship that can be expressed as f(a, ρ, U, η, p, d) =

0. Formally, there are 6 dimensional variables, and 3 physical units. So if f

expresses a valid physical law, there will be 6 - 3 = 3 dimensionless variables,

π1, π3 and π2. Then f can be expressed as:

Φ(π1, π2, π3) = 0 (C.13)

The relations between physical variables and dimensions are expressed in

the dimensional matrix M :

a ρ U η p d

m 1 -3 1 -1 -1 1

kg 0 1 0 1 1 0

s 0 0 -1 -1 -2 0

The components of the dimensional matrix M are the exponents on the

fundamental units. The components of a vector ~x are the exponents of the

physical variables. The simultaneous equations that express the constraint

that the physical formula be dimensionless are expressed as:

M~x = 0 (C.14)

We are solving for the appropriate exponents on the physical variables that

satisfy the non-dimensionality requirement.

However, there will be a whole family of solutions. They form a space;

the set of all ~x satisfying M~x = 0. The set is known as the null space or

kernel of M . We would like a basis for the space. The basis vectors will

represent the dimensionless variables π1, π2, π3; they will be things like the

Reynolds number.
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C.2.1 Basis of Nullspace from Column Echelon Form

To find a basis for the null space of M , we use the following technique:

Glue the identity matrix I underneath M . Transpose the result, forming a

new matrix A. Row reduce A until the part corresponding to M is in row

echelon form. Then, the basis vectors are: any row of I with all zeros in the

corresponding row of M .

Here goes:



1 −3 1 −1 −1 1

0 1 0 1 1 0

0 0 −1 −1 −2 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



T

=



1 0 0 1 0 0 0 0 0

−3 1 0 0 1 0 0 0 0

1 0 −1 0 0 1 0 0 0

−1 1 −1 0 0 0 1 0 0

−1 1 −2 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1



R3 + 3R1

R3 - R1

R4 + R1

R5 + R1

R6 - R1



1 0 0 1 0 0 0 0 0

0 1 0 3 1 0 0 0 0

0 0 −1 −1 0 1 0 0 0

0 1 −1 1 0 0 1 0 0

0 1 −2 1 0 0 0 1 0

0 0 0 −1 0 0 0 0 1



R3 × -1

R4 - R2

R5 - R2



1 0 0 1 0 0 0 0 0

0 1 0 3 1 0 0 0 0

0 0 1 1 0 −1 0 0 0

0 0 −1 −2 −1 0 1 0 0

0 0 −2 −2 −1 0 0 1 0

0 0 0 −1 0 0 0 0 1


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R4 + R3

R5 + 2R3



1 0 0 1 0 0 0 0 0

0 1 0 3 1 0 0 0 0

0 0 1 1 0 −1 0 0 0

0 0 0 −1 −1 −1 1 0 0

0 0 0 0 −1 −2 0 1 0

0 0 0 −1 0 0 0 0 1


At this point we can stop; the part corresponding to M (the left three

columns) is in row echelon form, with the bottom three rows consisting en-

tirely of zeros. Therefore, the three basis vectors are the bottom three rows

of what was the identity matrix:[
−1 0 0 0 0 1

]
,
[
0 −1 −2 0 1 0

]
,
[
−1 −1 −1 1 0 0

]
whose components are the exponents of our physical variables[

a ρ U η p d
]

We are free to take the negative of the basis vectors. If we do this, then

the corresponding dimensionless variables appear in the convenient form:

π1 =
d

a
, π2 =

ρU2

p
, π3 =

ρaU

η
(C.15)

Then, the dimensionless number

π3 =
ρaU

η
=

[kgm−3][m][ms−1]

[kgm−1s−1]
=

[kgm−1s−1]

[kgm−1s−1]
= 1

is the familiar Reynolds number, while π2 = ρU2

p
is the more obscure Ruark

number.

(The three vectors are linearly independent – none can be obtained by

a linear combination of the other two, since each contains a unique physical

variable (specifically d, p and η ). But π3 is coupled to the other two; in

some physical sense, the variables are not independent.)
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So while our naive treatment showed that d/a is a function of the Ruark

number, the full Buckingham Pi theorem shows that there is a third possible

dimensionless variable, the Reynolds number:

π1 =
d

a
, π2 =

ρU2

p
, π3 =

ρaU

η

Note that these are not the only possible basis vectors for the nullspace of

M . But any basis can be expressed in terms of the basis we have found here.

Therefore, any formula Φ(π1, π2, π3) = 0 (for any basis π1, π2, π3) can be

rewritten so that the ratio d/a appears as a variable, and can be rearranged

to:

d

a
= Φ(Ru,Re) (C.16)

where Ru =
ρU2

p
, Re =

ρaU

η
(C.17)

C.3 Conclusion

The ratio d/a is an unknown function of the Ruark number and the Reynolds

number. Therefore:

In a series of experiments with a fluid of constant density and viscosity,

for fixed velocity and pressure, perturbation height d scales as anomaly

width a.

Note that the ratio d/a is not fixed, so d is not determined by a. If a is

fixed, then d may change as a function of U, ρ, p etc.
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Appendix D

The Variational Formulation

In this appendix, we provide an in-depth explanation of the variational for-

mulation of PDEs and its relation to the calculus of variations. This appendix

is intended to be a stand-alone document, that can be read without reference

to Chapter 6. As such, it contains material which is duplicated in Chapter

6.

225
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D.1 Variational Form

The variational form comes originally from the Calculus of Variations. The

canonical use for the calculus of variations is with a minimization problem.

We seek a function on a domain that minimizes some quantity. The quantity

to be minimized is a functional, a mapping from the space of functions to

the real numbers. The functional will be some kind of integral, with the

integrand being some combination of the function, its derivatives (of various

order), and position in the domain.

F (u) =

∫ b

a

f(u, u′, ... , x) dx, F (u) 7→ R (D.1)

The boundary values of the function u(x) are given. The basic concept

of calculus of variations is to take u(x) to be the solution function that

minimizes the functional F . That being the case, any variation away from

u, however small, will increase F . Let v(x) be an arbitrary function that is

zero at the boundary (i.e. zero at a and b), and let ε be a small parameter.

Then:

F (u) ≤ F (u+ εv) ∀v : v(a) = v(b) = 0 (D.2)

This minimizing function and variation are depicted in Figure (D.1).

u(x)

xa b

variation v

u

u+ εv

Figure D.1: The minimizing function u(x) and an arbitrary variation v(x)

added to it.
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For an arbitrary variation v, the small parameter ε can be treated as a

variable, so that F (u+ εv) is a function from R to R. Since u minimizes F ,

ε = 0 minimizes F (ε) : R 7→ R. The minimum is a stationary point, so the

slope of F (ε) is zero also at the minimum. That is, for minimizing function

u, for any variation v,

d

dε
F (u+ εv) = 0 (D.3)

This is shown in Figure (D.2).

ε0

F (u+ εv)

d
dε
F (u+ εv) = 0

Figure D.2: The slope of F (ε) is zero at the minimum of F (ε).

D.1.1 Example: Energy Balance

For example, consider a film of soapy water suspended across an aperture.

At equilibrium, the soap film lies in the x, y plane. Let u(x, y) be the the

height of the film above the x, y plane (at point (x, y)), as in the schematic

of Figure (D.3).

u(x, y)

Figure D.3: A film of soapy water suspended across an aperture.

Assume some force below the film distorts it, pushing it upwards. The

force does work on the soap film. If f is the force on the film per unit area

(pressure), then the work done moving an infinitesimal area element dA a
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distance u(x, y) is dW = ufdA. Thus the total work done on the soap film

is the integral:

W =

∫
Ω

fu dA (D.4)

The geometry of the work done appears in Figure (D.4).

pressure f(x, y)

W =

∫
Ω

fu dA

Figure D.4: The work done by the pressure distorting the soap film.

The work done on the soap film is stored as elastic potential energy. The

soap film has a surface tension that acts tangentially to the surface. A virtual

length dy has a force 2γdy acting perpendicularly to it. The force is constant,

so if the length is moved distance dx, creating new area dxdy, the work done

is 2γdxdy. Thus, the change in potential energy is proportional to the change

in area.

Consider a tangent plane of u(x, y) located above an infinitesimal area

element dxdy. The tangent plane is bounded by the vectors (dx, 0, dx∂xu)

and (0, dy, dy∂yu). Their cross product is the normal vector to the plane

~n = (−dxdy∂xu,−dxdy∂yu, dxdy). The area of the infinitesimal tangent

plane is equal to the magnitude of the normal vector:

dA = |~n| = dxdy
√

1 + ∂xu2 + ∂yu2 (D.5)

For convenience, we use |∇u|2 = ∇u · ∇u = ∂xu
2 + ∂yu

2. The total area of

the soap film is:

A =

∫
Ω

√
1 + |∇u|2 dxdy (D.6)
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If the soap bubble is distorted not too far from its equilibrium shape,

then ∂xu� 1 and ∂yu� 1, so that:

√
1 + |∇u|2 ≈

√
1 + |∇u|2 +

1

4
|∇u|4 =

√
(1 +

1

2
|∇u|2)2 = 1 +

1

2
|∇u|2

(D.7)

Then the change in area from the equilibrium area is:∫
Ω

1 +
1

2
|∇u|2 dxdy −

∫
Ω

dxdy =

∫
Ω

1

2
|∇u|2 dxdy (D.8)

Let k be the surface tension coefficient. Then the elastic potential energy is:

U = k
1

2

∫
Ω

|∇u|2 dA (D.9)

This shown in the schematic of Figure (D.5).

U = k
1

2

∫
Ω

|∇u|2 dA

Increase in surface
area 1

2

∫
Ω
|∇u|2 dA

Figure D.5: The elastic potential energy due to the increase in area of the

soap film.



230 APPENDIX D. THE VARIATIONAL FORMULATION

The elastic potential energy is exactly equal to the work done on the soap

film by the pressure:

k
1

2

∫
Ω

|∇u|2 dA =

∫
Ω

fu dA (D.10)

A summary schematic is shown in Figure (D.6).

pressure f(x, y)

W =

∫
Ω

fu dAU = k
1

2

∫
Ω

|∇u|2 dA

Increase in surface
area 1

2

∫
Ω
|∇u|2 dA

Figure D.6: The work done distorting the soap film is equal to the elastic

potential energy due to the increase in area.

NOTE: This also models the energy balance of a deformed rubber mem-

brane, if the deformation is small enough that the tension is considered to

be constant throughout the deformation (rather than increasing linearly with

area).

We can express this as a functional to be minimized:

F (u) = k
1

2

∫
Ω

|∇u|2 dA−
∫

Ω

fu dA (D.11)
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And take the functional derivative:

d

dε
F = lim

ε→0

F (u+ εv)− F (u)

ε
(D.12)

= lim
ε→0

k 1
2

∫
Ω
|∇(u+ εv)|2 − |∇u|2 dA−

∫
Ω
f(u+ εv)− fu dA

ε
(D.13)

= lim
ε→0

k 1
2

∫
Ω
|∇u+ ε∇v|2 − |∇u|2 dA−

∫
Ω
fu+ εfv − fu dA

ε
(D.14)

= lim
ε→0

k 1
2

∫
Ω

(∇u+ ε∇v) · (∇u+ ε∇v)−∇u · ∇u dA−
∫

Ω
εfv dA

ε
(D.15)

= lim
ε→0

k 1
2

∫
Ω
∇u · ∇u+ 2ε∇u · ∇v + ε2∇v · ∇v −∇u · ∇u dA−

∫
Ω
εfv dA

ε
(D.16)

= lim
ε→0

k 1
2

∫
Ω

2ε∇u · ∇v + ε2∇v · ∇v dA−
∫

Ω
εfv dA

ε
(D.17)

= lim
ε→0

k
1

2

∫
Ω

2∇u · ∇v + ε∇v · ∇v dA−
∫

Ω

fv dA (D.18)

= k

∫
Ω

∇u · ∇v dA−
∫

Ω

fv dA (D.19)

Thus the variational form d
dε
F = 0 is:

k

∫
Ω

∇u · ∇v dA−
∫

Ω

fv dA = 0 (D.20)

This relation is true for any almost arbitrary variation v. In fact, v must

be integrable on the domain Ω, and its first derivatives must be integrable

on Ω. The space of functions meeting these requirements is known as the

Sobolev space H1(Ω). So formally, v belongs to the Sobolev space:

v ∈ H1(Ω) (D.21)

Moreover, because the value of u is given at the boundary, v must be zero at

the boundary. Formally, v is in the Sobolev space:

v ∈ H1
0 (Ω) (D.22)
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D.2 Alternative Route to Variational Form

The point is that the variational form

k

∫
Ω

∇u · ∇v dA−
∫

Ω

fv dA = 0 ∀v ∈ H1
0 (Ω) (D.23)

may be easier to solve than the original energy functional:

k
1

2

∫
Ω

|∇u|2 dA−
∫

Ω

fu dA = 0 (D.24)

However, the variational form can be derived by other means. In fact, there

are variational formulations for which there is no corresponding functional

to minimize. So in a sense the variational formulation is more fundamental

than the calculus of variations.

To illustrate: The functional 1
2

∫
Ω
|∇u|2 dA is known as Dirichlet’s energy

functional. A solution u that minimizes the functional is also a solution to

the Laplace equation ∇2u = 0. This energy functional can be put into the

variational form
∫

Ω
∇u · ∇v dA by using the calculus of variations. However,

the variational form
∫

Ω
∇u · ∇v dA can also be derived directly from the

Laplace equation.

u minimizing
1

2

∫
Ω

|∇u|2 dA also satisfies

∫
Ω

∇u·∇v dA = 0 iff ∇2u = 0

(D.25)



Appendix E

Tensor Identities

In this Appendix, we introduce the double dot product of two tensors, and

work with the velocity gradient tensor to ultimately derive the tensor identity

∇2~u · ~g = ∇ · ((∇~u+∇~uT ) · ~g)− 2E(~u) : E(~g)

for use in Chapter 6.

E.0.1 Tensor Double Dot Product

The double dot product of two tensors, also known as the Frobenius inner

product, is a generalization of the vector inner product:

A =

[
a b

c d

]
, Z =

[
x y

z w

]
, A : Z = ax+ by + cz + dw (E.1)

As expected, addition distributes over this form of multiplication:

(A+B) : (Z +W ) = A : Z + A : W +B : Z +B : W (E.2)

233
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E.0.2 Tensor Vector Divergence Identity

For a tensor T and vector ~g:

T : ∇~g = T11∂xgx + T12∂xgy + T21∂ygx + T22∂ygy (E.3)

and

∇ · T =
[
∂x , ∂y

] [T11 T12

T21 T22

]
=
[
∂xT11 + ∂yT21 , ∂xT12 + ∂yT22

]
(E.4)

so that

(∇ · T ) · ~g = gx∂xT11 + gx∂yT21 + gy∂xT12 + gy∂yT22 (E.5)

Furthermore

T · ~g =

[
T11 T12

T21 T22

][
gx

gy

]
=

[
T11gx + T12gy

T21gx + T22gy

]
(E.6)

Therefore

∇ · (T · ~g) = ∂x(T11gx) + ∂x(T12gy) + ∂y(T21gx) + ∂y(T22gy) (E.7)

= gx∂xT11 + T11∂xgx + gy∂xT12 + T12∂xgy (E.8)

+ gx∂yT21 + T21∂ygx + gy∂yT22 + T22∂ygy (E.9)

= [T11∂xgx + T12∂xgy + T21∂ygx + T22∂ygy] (E.10)

+ [gx∂xT11 + gx∂yT21 + gy∂xT12 + gy∂yT22] (E.11)

= T : ∇~g + (∇ · T ) · ~g (E.12)

We have shown:

∇ · (T · ~g) = T : ∇~g + (∇ · T ) · ~g (E.13)
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E.0.3 Application to Velocity Gradient Tensor

Substituting T = ∇~u in the identity gives:

∇ · (∇~u · ~g) = ∇~u : ∇~g + (∇ · ∇~u) · ~g (E.14)

and the ‘vector Laplacian’ is defined:

∇ · ∇~u =
[
∂x∂xu+ ∂y∂yu , ∂x∂xv + ∂y∂yv

]
=
[
∇2u , ∇2v

]
= ∇2~u

(E.15)

So

∇ · (∇~u · ~g) = ∇~u : ∇~g +∇2~u · ~g (E.16)

Similarly for the transpose of the velocity gradient tensor:

∇ · (∇~uT · ~g) = ∇~uT : ∇~g + (∇ · ∇~uT ) · ~g (E.17)

Now, however, the last term vanishes:

∇ · ∇~uT =
[
∂x∂xu+ ∂x∂yv , ∂y∂xu+ ∂y∂yv

]
(E.18)

=
[
∂x(∂xu+ ∂yv) , ∂y(∂xu+ ∂yv)

]
(E.19)

=
[
∂x(∇ · ~u) , ∂y(∇ · ~u)

]
(E.20)

=
[
0 , 0

]
(E.21)

since we assume the fluid is incompressible, so ∇ · ~u = 0 everywhere.

Thus

∇ · (∇~uT · ~g) = ∇~uT : ∇~g (E.22)
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E.0.4 Deformation Rate Tensor Identity

Extending our notation slightly to include vector fields other than ~u, recall

that the deformation rate tensor is:

E(~u) =
∇~u+∇~uT

2
(E.23)

so that:

2E(~g) = ∇~g +∇~gT (E.24)

Then the double dot product of two such tensors is:

2E(~u) : 2E(~g) = (∇~u+∇~uT ) : (∇~g +∇~gT ) (E.25)

4E(~u) : E(~g) = ∇~u : ∇~g +∇~u : ∇~gT +∇~uT : ∇~g +∇~uT : ∇~gT (E.26)

Now, transposition affects the double dot product such that

∇~u : ∇~g = ∇~uT : ∇~gT and ∇~uT : ∇~g = ∇~u : ∇~gT , so

4E(~u) : E(~g) = 2∇~u : ∇~g + 2∇~uT : ∇~g (E.27)

2E(~u) : E(~g) = ∇~u : ∇~g +∇~uT : ∇~g (E.28)

Finally,

∇ · ((∇~u+∇~uT ) · ~g) = ∇ · (∇~u · ~g +∇~uT · ~g) (E.29)

= ∇ · (∇~u · ~g) +∇ · (∇~uT · ~g) (E.30)

= ∇2~u · ~g +∇~u : ∇~g +∇~uT : ∇~g (E.31)

= ∇2~u · ~g + 2E(~u) : E(~g) (E.32)

Therefore:

∇2~u · ~g = ∇ · ((∇~u+∇~uT ) · ~g)− 2E(~u) : E(~g) (E.33)



Appendix F

Periodic Functions Weakly

Converge To Their Mean

In this Appendix we prove that periodic functions weakly converge to their

mean, a fact we use in Chapter 6. To keep the Appendix self-contained,

we start by defining weak convergence, using the definitions duplicated in

Chapter 6.
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F.1 Weak Convergence

Consider a sequence of functions defined by:

fn = sin(nx) (F.1)

the first three functions of which appear in Figure (F.1).

f1f2f3

Figure F.1: The first three functions in the sequence sin(nx).

As n increases, the period of the sine wave gets smaller and smaller, but

the amplitude is unchanged. In the limit as n → ∞, the waveform gets

infinitely ‘spiky’. What does the sequence converge to? There is no intuitive

sense of the sinewave sequence getting ‘closer to’ some limit function. In fact,

the sequence does not strongly converge.

However, there is a sense in which the function sequence converges.

We multiply each function in the sequence by an arbitrary test function

g, and integrate, thus creating a sequence of integrals:∫
gfn dx (F.2)

If the sequence of integrals (strongly) converges to a limit integral:∫
gfn dx→

∫
gf dx (F.3)

then we say that fn weakly converges to f , and the ‘limit function’ f

appearing in the limit integral is known as the weak limit. This is also

written:

fn ⇀ f (F.4)
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F.1.1 Periodic Functions Weakly Converge to their Mean

It is a ‘standard result’ that periodic functions weakly converge to their

mean. In a 2002 paper [34], Lukkassen and Wall state: “We have not found

proofs of [this] fact in the literature. The aim of this paper is to present such

proofs.” Their paper provides a rigorous proof (and generalization) of this

proof. Here, however, we present a simple intuitive proof, suitable for this

thesis.

Consider our example of a sine wave sequence, together with an arbitrary

test function g, integrated over the domain 0 to 2π. Each integral in the

sequence is of the form: ∫ 2π

0

g(x) sin(nx) dx (F.5)

Over the domain 0 to 2π, the function sin(nx) has exactly n periods, each of

width 2π/n. We chop up the integral into n separate integrals, each with a

subdomain of width 2π/n.

n∑
k=1

∫ k 2π
n

(k−1) 2π
n

g(x) sin(nx) dx (F.6)

This is shown in Figure (F.2).

x

sin(nx)

g(x)

2π

2π
n

Figure F.2: The periodic function sin(nx) and test function g(x).
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By a change of variable, we ‘stretch’ the domain so that in terms of the

new variable, the period of the sine wave is again 2π. The domain is dilated

by factor n and now has width 2πn. With change of variable x = t/n, we

have dx = 1/n dt. Pulling the Jacobian 1/n out of the sum, we have:

1

n

n∑
k=1

∫ k2π

(k−1)2π

g

(
t

n

)
sin(t) dt, x =

t

n
, dx =

1

n
dt (F.7)

Put another way, we move the n dependence from the sine function to the

test function g. See Figure (F.3).

t

sin(t)

g( t
n
)

2π 4π 2πn

2π

Figure F.3: Change of variable dilates the domain.

We note that a period of sin(t) is the same for all k, so we use only the

integral from 0 to 2π, and ‘transport’ the appropriate bit of g(t) back to

the interval 0 to 2π. This is accomplished by adding (k − 1)(2π/n) to the

argument of g(t/n). For clarity, we shall change variables again, t → ξ, to

highlight the fact that while the domain of t is the interval 0 to 2πn, the

domain of ξ is only the interval 0 to 2π.

1

n

n∑
k=1

∫ 2π

0

g

(
ξ

n
+ (k − 1)

2π

n

)
sin(ξ) dξ, x =

ξ

n
(F.8)

The reduced domain is shown in Figure (F.4).
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ξ

sin(ξ)

g( ξ
n
)

2π

Figure F.4: Reduced domain with g parameterised by k.

So we have:

1

n

∫ 2π

0

g

(
ξ

n

)
sin(ξ) dξ +

1

n

∫ 2π

0

g

(
ξ + 2π

n

)
sin(ξ) dξ + · · · (F.9)

The sum can go under a single integral sign, and the sin(ξ) common factor

can be pulled out of the sum:

1

n

∫ 2π

0

sin(ξ)
n∑
k=1

g

(
ξ + (k − 1)2π

n

)
dξ (F.10)

For later convenience, introduce a 2π and shift the 1/n factor:

1

2π

∫ 2π

0

sin(ξ)
n∑
k=1

g

(
ξ + (k − 1)2π

n

)
2π

n
dξ (F.11)

What happens as n→∞? The summation term can be written:

n∑
k=1

g

(
(k − 1)

2π

n
+
ξ

n

)
2π

n
(F.12)

Since ξ is between 0 and 2π, the ξ/n term is between 0 and 2π/n. As k

ranges from 1 to n, the g(k) term provides n ‘samples’ of the function at

discrete points a distance 2π/n apart, with the starting point offset from

0 by the amount ξ/n. Each sample g(k) is multiplied by the width of the

inter-sample distance, giving n rectangles to sum up. In the limit n → ∞,
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this is one definition of the Riemann integral of g over the interval 2π.

lim
n→∞

n∑
k=1

g

(
(k − 1)

2π

n
+
ξ

n

)
2π

n
=

∫ 2π

0

g(x) dx (F.13)

The geometry of this Riemann integral is depicted in Figure (F.5).

x2π

ξ
n

Figure F.5: The geometry of the Riemann integral of g.

Thus we have:

1

2π

∫ 2π

0

sin(ξ)

∫ 2π

0

g(x) dx dξ =

(
1

2π

∫ 2π

0

sin(ξ) dξ

)(∫ 2π

0

g(x) dx

)
(F.14)

Now the integral with the sine function defines the mean of a function:

〈sin(x)〉 =
1

2π

∫ 2π

0

sin(ξ) dξ (F.15)

Therefore, we have shown that:

lim
n→∞

∫ 2π

0

g(x) sin(nx) dx = 〈sin(x)〉
∫ 2π

0

g(x) dx (F.16)

Or: ∫ 2π

0

g(x) sin(nx) dx→
∫ 2π

0

g(x) 〈sin(x)〉 dx (F.17)

The mean of sin(x) happens to be zero, so the limit vanishes. But the

foregoing argument holds for any periodic function. Therefore we have shown

that periodic functions weakly converge to their mean:∫
gfn dx→

∫
g 〈f〉 dx (F.18)
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