
Convex Optimisation for

Communication Systems

Sudhir Singh

B.E.(Hons), University of Wollongong

February 2015

A thesis submitted for the degree of Doctor of Philosophy

of Victoria University of Wellington

Faculty of Engineering
School of Engineering and Computer Science

Victoria University of Wellington





Declaration

The contents of this thesis are the results of original research and have not been

submitted for a higher degree to any other university or institution.

Much of the work in this thesis has been published as journal papers or peer

reviewed conference proceedings. Following is a list of these papers.

1. S. Singh, P. D. Teal, P. A. Dmochowski, and A. J. Coulson, “Power allocation

in underlay cognitive radio systems with feasibility detection,” In Proc. Aus-

tralian Communications Theory Workshop (AusCTW), pages 135–139, Feb.

2012.

2. S. Singh, P. D. Teal, P. A. Dmochowski, and A. J. Coulson, “Interference

management in cognitive radio systems—A convex optimisation approach,”

In Proc. IEEE Int. Conf. Commun. (ICC’12), pages 1884-1889, Jun. 2012.

3. S. Singh, P. D. Teal, P. A. Dmochowski, and A. J. Coulson, “Statistically

robust cognitive radio beamforming,” In Proc. Australian Communications

Theory Workshop (AusCTW), pages 128-133, Feb. 2013.

4. S. Singh, P. D. Teal, P. A. Dmochowski, and A. J. Coulson, “Statistically

robust cooperative beamforming for cognitive radio networks,” In Proc. IEEE

Int. Conf. Commun. (ICC’13), pages 2727-2732, Jun. 2013.

5. S. Singh, P. D. Teal, P. A. Dmochowski, and A. J. Coulson, “Interference

Management in Cognitive Radio Systems With Feasibility Detection,” IEEE

Trans. Veh. Technol., 62(8):3711–3720, Oct. 2013.

6. S. Singh, P. D. Teal, P. A. Dmochowski, and A. J. Coulson, “Robust Cog-

nitive Radio Cooperative Beamforming,” IEEE Trans. Wireless Commun.,

13(11):6370–6381, Nov. 2014.

i



ii

The research represented in this thesis has been performed jointly with Dr Paul

D. Teal, Dr Pawel A. Dmochowski, and Dr Alan J. Coulson. The substantial

majority of this work is my own.

Sudhir Singh

Victoria University of Wellington

February 2015



Acknowledgements

I would like to take this opportunity to thank all the people who have contributed

to this thesis.

I am grateful to Alan Coulson for giving me the opportunity to undertake this

project and whose research programme formed the basis for this thesis. I am

grateful to the management of Callaghan Innovation for supporting this project.

I would also like to thank my supervisors, Paul Teal and Pawel Dmochowski who

have helped shape the research direction.

My cat Billi for patiently sitting beside me as this thesis was written. Finally,

and most importantly, my partner Sunita for always encouraging and supporting

me.

iii





Abstract

In this thesis new robust methods for the efficient sharing of the radio spectrum

for underlay cognitive radio (CR) systems are developed. These methods provide

robustness against uncertainties in the channel state information (CSI) that is

available to the cognitive radios. A stochastic approach is taken and the robust

spectrum sharing methods are formulated as convex optimisation problems. Three

efficient spectrum sharing methods; power control, cooperative beamforming and

conventional beamforming are studied in detail.

The CR power control problem is formulated as a sum rate maximisation prob-

lem and transformed into a convex optimisation problem. A robust power control

method under the assumption of partial CSI is developed and also transformed

into a convex optimisation problem. A novel method of detecting and removing

infeasible constraints from the power allocation problem is presented that results

in considerably improved performance. The performance of the proposed methods

in Rayleigh fading channels is analysed by simulations.

The concept of cooperative beamforming for spectrum sharing is applied to an

underlay CR relay network. Distributed single antenna relay nodes are utilised

to form a virtual antenna array that provides increased gains in capacity through

cooperative beamforming. It is shown that the cooperative beamforming problems

can be transformed into convex optimisation problems. New robust cooperative

beamformers under the assumption of partial and imperfect CSI are developed

and also transformed into convex optimisation problems. The performance of the

proposed methods in Rayleigh fading channels is analysed by simulations.

Conventional beamforming to allow efficient spectrum sharing in an underlay

CR system is studied. The beamforming problems are formulated and transformed

into convex optimisation problems. New robust beamformers under the assumption

of partial and imperfect CSI are developed and also transformed into convex opti-

misation problems. The performance of the proposed methods in Rayleigh fading

channels is analysed by simulations.
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Notation and Symbols

R The set of real numbers

R+ The set of non-negative real numbers

R++ The set of positive real numbers

Rn The set of real n-vectors

Rm×n The set of real m× n matrices

C The set of complex numbers

Cn The set of complex n-vectors

Sn The set of symmetric n× n matrices

Sn+ The set of symmetric positive semidefinite matrices

Sn++ The set of symmetric positive definite matrices

dom Domain of a function

� Element-wise greater than or equal for vectors; Positive semidefi-

niteness for matrices

� Element-wise greater than for vectors; Positive definiteness for ma-

trices

� Element-wise less than or equal for vectors; Negative semidefinite-

ness for matrices

≺ Element-wise less than for vectors; Negative definiteness for ma-

trices

E{·} Expectation operator

Pr {·} Probability operator

NC(·, ·) Complex normally distributed with given mean and covariance

� Element by element Schur-Hadamard product

0 Vector with all elements equal to zero

1 Vector with all elements equal to one

I Identity matrix

diag(·) Square diagnonal matrix with elements of input vector placed on

the main diagonal

(·)H Complex Hermitian conjugate

(·)T Matrix or vector transpose

| · |2 Magnitude squared for scalars and element-wise magnitude

squared for vectors
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‖ · ‖2 `2 norm of a vector

(·)1/2 Square root for scalars, element-wise square root for vectors and

the matrix square root for matrices

∇ Vector differential operator

R(·) Range of a matrix

tr (·) Matrix trace

rank (·) Matrix rank

<{·} Real part

={·} Imaginary part

min(·) Minimum element of a vector

exp (·) Exponential operator

log (·) Natural logarithm

log2 (·) Base 2 logarithm



Acronyms

ACF Auto-Correlation Function

AF Amplify-and-Forward

AWGN Additive White Gaussian Noise

BER Bit Error Rate

CAF Cyclic Auto-Correlation Function

CBD Covariance Based Detection

CBF Coordinated Downlink Beamforming

CDF Cumulative Distribution Function

CP Cyclic Prefix

CR Cognitive Radio

CSD Cyclic Spectrum Density

CSI Channel State Information

CSIR Channel State Information at the Receiver

CSIT Channel State Information at the Transmitter

DF Decode-and-Forward

DSA Dynamic Spectrum Access

EBD Eigenvalue Based Detection

ED Energy Detector

FCC Federal Communications Commission

GLRT Generalised Likelihood-Ratio Test

GP Geometric Program

HMM Hidden Markov Model

KKT Karush-Kuhn-Tucker

LMI Linear Matrix Inequality

LP Linear Program

LRT Likelihood-Ratio Test

LTE Long-Term Evolution

MIMO Multiple-Input Multiple-Output

ML Maximum-Likelihood

MSE Mean Square Error

MU Multi-User

MVDR Minimum Variance Distortionless Response
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x

NF Noise Figure

OFDM Orthogonal Frequency Division Multiplexing

OSA Opportunistic Spectrum Access

OSTBC Orthogonal Space-Time Block Code

PDF Probability Density Function

PU Primary User

QCQP Quadratically Constrained Quadratic Program

QoS Quality of Service

QP Quadratic Program

SDP Semidefinite Program

SDR Semidefinite Relaxation

SICR Signal-to-Interference Channel Power Ratio

SIMO Single-Input Multiple-Output

SINR Signal-to-Interference-and-Noise Ratio

SIR Signal-to-Interference Ratio

SMI Sample Matrix Inversion

SNR Signal-to-Noise Ratio

SOCP Second-Order Cone Program

SP Stochastic Programming

SS Spectrum Sharing

SU Secondary User

TV Television

WRAN Wireless Regional Area Network
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Chapter 1

Introduction

The last decade has seen a phenomenal increase in consumer usage of smartphones,

tablets, laptops and other mobile devices. This has led to an exponential increase

of mobile data traffic as consumers surf the web, check email, use apps and watch

and send videos and photos through these mobile devices. According to Cisco’s

global mobile data traffic forecast [47], the industry’s most comprehensive annual

study, in 2013,

• Global mobile data traffic grew more than 80% from 820 petabytes per month

to 1.5 exabytes per month.

• Mobile data traffic was nearly 18 times the size of the entire global Internet

traffic in 2000.

The above statistics demonstrates the consumers’ insatiable appetite for mobile

data, but the story does not end there. In [47], it is forecasted that by 2018,

• Global mobile data traffic will exceed 15 exabytes per month.

• Smartphones will reach 66% of mobile data traffic.

• Mobile tablet traffic will surpass 2.5 exabytes per month.

• 4G traffic will be more than half of the total mobile traffic.

After analysing the projected mobile traffic data, a question that naturally arises

is; aren’t there limits to how much data the mobile networks can support? The

upper limit is of course given by Shannon’s channel capacity theorem [207], which

states that the capacity of a channel is directly proportional to the bandwidth of the

channel. A 2010 report by the Federal Communications Commission (FCC) [49]

outlined that the growth in wireless data demand will lead to a spectrum deficit,

colloquially known as the spectrum crunch, where user demand will outstrip the

capacity of the radio spectrum. Although new spectrally efficient technologies,

such as LTE [57] provide some relief, this alone will not be enough to meet user

1



2 Introduction

demand. The FCC has therefore advocated for the release of more spectrum [49]

and the more efficient use of currently allocated spectrum [48].

In 2002, a report aimed at improving the manner in which spectrum is managed

in the United States was published by the FCC Spectrum Policy Task Force [48].

One of the main findings of this report was that in many bands, spectrum access

rather than the physical scarcity of spectrum is a significant problem and there

are substantial unused resources in frequency, time and space. The efficiency of

spectrum utilisation can be significantly improved if unlicensed users are allowed to

access the spectrum when it is unoccupied by the incumbent users. Cognitive radio

(CR) [102, 163, 164] has been proposed as an intelligent and effective technology

for exploiting underutilised spectral resources by reusing unused spectrum in a

dynamic and opportunistic manner. The use of CRs will inevitably create increased

interference and thus degrade the performance of the licensed users. To maintain

the impact to an acceptable level, this interference must be intelligently managed

by the CR systems. This can be achieved in two ways. Firstly, the spectrum

could be used in a mutually exclusive manner. Here, the CRs sense the spectrum

to check for availability and only use it when it is deemed to be free. Secondly,

the CRs could use the spectrum concurrently (spectrum sharing) with the licensed

users, provided the interference is kept within some acceptable limits. This could

be achieved by controlling the transmission parameters, such as the transmit power

or the transmit direction, of the CR system. Through an appropriately formulated

optimisation problem, the transmission parameters could be designed to achieve

the goals of the CR system while providing guaranteed quality of service (QoS) to

the licensed users.

Convex optimisation [29] is one of several optimisation techniques that could

be used to solve CR spectrum sharing problems. The main advantage of a convex

formulation of a problem is that the optimisation problem has only one minimum,

which is the global minimum. Hence, convex optimisation problems can always

be solved, either analytically or numerically, to obtain the optimum solution. For

practical systems, any solutions obtained need to be robust against uncertainty

in input data. Solutions to many optimisation problems suffer from sensitivity to

uncertain data and even minor uncertainties can render the problems suboptimal

or even infeasible [21]. In wireless communications, it is common to have imperfect

or partial channel state information (CSI). The imperfections arise due to estima-

tion errors or other factors such as quantisation. Therefore, any spectrum sharing

optimisation problems developed for CR systems need to take into consideration

the uncertainty in CSI in order to guarantee QoS to the licensed users.
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1.1 Goal of this Thesis

The goal of this thesis is to develop effective methods for spectrum sharing in

cognitive radio systems by formulating and solving the following problems as convex

optimisation problems:

1. robust power allocation in networks with single antenna transmitters and

receivers,

2. robust cooperative beamforming in relay networks where single antenna nodes

cooperate to form a virtual antenna array, and

3. robust conventional beamforming in networks where the transmitter is equipped

with multiple antennas.

The main focus is on developing techniques that are robust against uncertainty in

the CSI.

In this thesis, these spectrum sharing methods are presented in the above or-

der for two reasons. Firstly, this organisation provides a logical progression from

single antenna systems to multiple antenna systems. Secondly, the insights gained

through solving the robust cooperative beamforming problem are applied to the

solution of the conventional robust beamforming problem.

1.2 Structure of this Thesis

Chapters 2–4 present important background material, and Chapters 5–7 present

original research.

A review of convex optimisation theory and techniques is presented in Chapter

2. Many communication problems can be either cast as or be converted into convex

optimisation problems. In order to recognise or convert communication problems as

convex optimisation problems, one must be familiar with the concepts of convexity

and the “tricks of the trade” that allow seemingly non-convex problems to be easily

transformed into convex problems. The concepts of convex sets, convex functions

and convex optimisation problems are introduced. A review of Lagrange duality

and the well known Karush-Kuhn-Tucker conditions for optimality are provided. A

powerful technique known as convex relaxation, which allows non-convex problems

to be relaxed into convex problems is reviewed. The chapter concludes with a

review of algorithms for solving convex optimisation problems.

An overview of robust optimisation techniques is provided in Chapter 3. Robust

optimisation is generally used when there is some degree of uncertainty in the

input data. The uncertainty may arise due to noise, measurement errors or partial

knowledge of the data. A review of the two most widely used robust optimisation



4 Introduction

methods, the bounded uncertainty based optimisation and stochastic optimisation,

is provided. Application of these methods to communication problems, specifically,

power control, conventional receive and transmit beamforming and cooperative

relay beamforming, is presented. This chapter lays the foundation needed for the

development of the problems posed in Chapters 5-7.

Chapter 4 discusses the cognitive radio concept and dynamic spectrum access

techniques. The state of the art spectrum sensing algorithms and spectrum sharing

methods are reviewed.

In Chapter 5, power allocation problems for multiple cognitive radio users shar-

ing spectrum with a pair of primary (licensed) users are formulated. The problems

are transformed into convex optimisation problems and solved numerically using

standard convex optimisation solution methods. A novel method of detecting and

removing cognitive users who are unable to satisfy their QoS requirements is pro-

posed. Using a stochastic optimisation approach, robust power allocation problems

under the assumption of partial CSI are developed. The robust problems are shown

to be convex optimisation problems and solved numerically using standard convex

optimisation solution methods. Results in the form of sum rate cumulative distri-

bution functions (CDF) for various Rayleigh fading channels are presented.

Chapter 6 considers the problem of cooperative beamforming in a cognitive ra-

dio relay network that shares spectrum with a pair of primary users. Due to poor

channel conditions, the cognitive source is unable to communicate directly with

the cognitive destination and hence employs the cognitive relays for assistance. All

transmitters and receivers are assumed to be equipped with only single antennas.

The idea of cooperative beamforming is applied to the geographically distributed

cognitive relay nodes which cooperate to beamform towards the cognitive destina-

tion while maintaining the interference generated at the primary user below some

acceptable level. Firstly, under the assumption of the availability of perfect CSI for

all links, the beamforming problems are formulated as convex optimisation prob-

lems and solved numerically using standard convex optimisation solution methods.

Secondly, under the assumption of partial and imperfect CSI at the cognitive sys-

tem, a stochastic optimisation approach is taken and new robust cognitive coop-

erative relay beamformers are proposed. These robust problems are transformed

into convex optimisation problems and solved numerically using standard convex

optimisation solution methods. CDFs of primary receiver and cognitive destination

receiver signal-to-interference-and-noise ratio (SINR) for Rayleigh fading channels

are presented.

In Chapter 7, robust cognitive radio beamformers are developed for a cognitive

transmitter equipped with multiple antennas that shares spectrum with multiple

primary user pairs. A stochastic approach is taken and new robust beamformers are

developed under the assumption of partial and imperfect CSI. The beamforming
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problems are shown to be convex optimisation problems and solved numerically

using standard convex optimisation solution methods. The performance of the

proposed robust beamformers are demonstrated through CDFs of primary receiver

SINR and cognitive receiver signal-to-noise ratio (SNR) in Rayleigh fading chan-

nels.

The thesis is concluded by Chapter 8, which summarises the original contribu-

tions of the preceding chapters and suggests topics for future research.





Chapter 2

Convex Optimisation

Convex optimisation has been studied by mathematicians for over a century [29].

Recently it has been recognised as a powerful tool by the signal processing com-

munity [146]. Convex optimisation involves minimisation of a convex objective

function subject to convex constraints. There are numerous applications, some

of which include estimation and signal processing [17], communications and net-

works [25, 149, 216], electronic circuit design [74, 195], automatic control systems

[30], statistics [29], and finance [192].

There are many advantages of formulating a problem as a convex optimisation

problem. Some of these include:

• Any local minima of convex problems is also the global minimum.

• Convex problems can always be solved numerically even though a closed form

solution may not exist.

• Constraints can be easily added to the problem.

• Convex problems can be solved very reliably and efficiently using interior-

point methods in polynomial-time [62, 175].

Many problems that arise in communications signal processing can be cast or

converted into convex optimisation problems which allow analytical or numerical

solutions to be calculated easily. This chapter provides an overview of convex

optimisation theory and techniques.

2.1 Convex Sets

A set C is convex if a line segment between any two points C lies in C [29, p. 21].

This can be mathematically represented as

θx1 + (1− θ)x2 ∈ C, (2.1)

7
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Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted convC, is the set of all convex combinations
of points in C:

convC = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull convC is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then convC ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Figure 2.1: Convex and non-convex sets. Left. The hexagon which includes its
boundary is convex. Middle. The kidney shaped set is not convex. Right. The
square contains some boundary points but not others hence is not convex. Repro-
duced from [29].

for any x1, x2 ∈ C and 0 ≤ θ ≤ 1. Examples of convex and non-convex sets are

shown in Fig. 2.1. Lines and line segments also form convex sets.

2.1.1 Cones

A set C is called a cone if for every x ∈ C and θ ≥ 0, θx ∈ C [29, p. 25]. If the set

C is convex and a cone then it is called a convex cone. Convex cones satisfy the

following condition

θ1x1 + θ2x2 ∈ C, (2.2)

for any x1, x2 ∈ C and θ1, θ2 ≥ 0. The non-negative orthant is an example of a

convex cone.

2.1.2 Hyperplanes and Halfspaces

Hyperplanes and halfspaces form convex sets. A hyperplane is given by [29, p. 27]

{x|aTx = b}, (2.3)

and a halfspace by

{x|aTx ≤ b}, (2.4)

where a ∈ Rn, a 6= 0 and b ∈ R.

2.1.3 Euclidean Balls and Ellipsoids

Euclidean balls and ellipsoids form convex sets. A Euclidean ball in Rn is given

by [29, p. 29]

B(xc, r) = {x | ‖x− xc‖2 ≤ r}, (2.5)

where xc is the center of the ball and r > 0 is its radius. Hence, B(xc, r) consists

of all points within a distance r of the center xc.
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Ellipsoids have the form

E = {x | (x− xc)
TP−1(x− xc) ≤ 1}, (2.6)

where P is a symmetric and positive definite matrix and xc the center of the

ellipsoid. By taking A = P
1
2 , ellipsoids can also be represented as

E = {xc + Au | ‖u‖2 ≤ 1}. (2.7)

2.1.4 Norm balls and Norm Cones

Norm balls and norm cones form convex sets. A norm ball of radius r and center

at xc is given by [29, p. 30]

B(xc, r) = {x | ‖x− xc‖ ≤ r}, (2.8)

where ‖ · ‖ is any norm on Rn. The norm cone associated with the norm ‖ · ‖ is

the set

C = {(x, t) | ‖x‖ ≤ t} ⊆ Rn+1, (2.9)

where t > 0. The second-order cone is the norm cone for the Euclidean norm. It

is also known as the Lorentz cone or ice-cream cone.

2.1.5 Polyhedra

A polyhedron is the intersection of a finite number of hyperplanes and halfspaces

[29, p. 31]. It forms a convex set.

2.1.6 Positive Semidefinite Cone

Positive semidefinite matrices form a convex cone, hence a convex set [29, p. 34].

This can be proven using (2.2) and the definition of positive semidefiniteness as

follows. For any θ1, θ2 ≥ 0, A,B ∈ Sn+ and x ∈ Rn, we have

xT (θ1A + θ2B)x = θ1x
TAx + θ2x

TAx ≥ 0. (2.10)

Hence θ1A + θ2B ∈ Sn+, which proves that the set of positive semidefinite matrices

form a convex cone.
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2.2 Convex Functions

A function f : Rn → R is convex if its domain is a convex set and for any two

points x,y ∈ domf , and θ with 0 ≤ θ ≤ 1, we have [29, p. 67]

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.11)

This inequality implies that the line segment between (x, f(x)) and (y, f(y))

always lies above the function f . A function f is concave if −f is convex.

The first-order and second-order conditions can also be used to test the con-

vexity of a function. The first-order condition states that a differentiable function

f is convex if and only if domf is convex and

f(y) ≥ f(x) +∇f(x)T (y − x). (2.12)

The right hand side of the inequality (2.12) is the first-order Taylor approximation

of f near x. This inequality states that for a convex function, the first-order Taylor

approximation is a global under-estimator of the function.

The second-order condition states that if a function f is twice differentiable, i.e.,

its Hessian or second derivative ∇2f exists at each point in domf then, f is convex

if and only if domf is convex and its Hessian is positive semidefinite [29, p. 71],

i.e.,

∇2f(x) � 0, ∀x ∈ domf. (2.13)

2.2.1 Examples of Convex Functions

Listed below are examples of convex functions [29, p. 71]

• exp (ax) is convex on R, for any a ∈ R.

• xa is convex on R++ when a ≥ 1 or a ≤ 0, and concave for 0 ≤ a ≤ 1.

• |x|p is convex on R for p ≥ 1.

• log (x) is concave on R++.

• x log (x) is convex on R++ or on R+.

• Every norm on Rn is convex.

• max{x1, . . . , xn} is convex on Rn.

• A quadratic function f(x) = xTPx+aTx+b is convex if P � 0 (second-order

condition).
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• The geometric mean f(x) = (
∏n

i=1 xi)
1
n , where xi is the ith element of x, is

concave on Rn
++.

2.3 Convex Optimisation Problems

A generic optimisation problem (in minimisation form) is specified as [29, p. 127]

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1 . . .m (2.14)

hi(x) = 0, i = 1 . . . p

The aim of the optimisation problem is to find the x that minimises f0(x) while

satisfying fi(x) ≤ 0, i = 1 . . .m, and hi(x) = 0, i = 1 . . . p. The variable x ∈ Rn

is called the optimisation variable and the function f0 : Rn → R is known as

the objective function. The inequalities fi(x) ≤ 0 are referred to as inequality

constraints and the functions fi : Rn → R are called inequality constraint functions.

The equalities hi(x) = 0 are called equality constraints and the functions hi : Rn →
R are known as equality constraint functions.

The domain D of the optimisation problem is the set of points for which the

objective and constraint functions are defined. A point x ∈ D is called a feasible

point if all constraints are satisfied. The optimisation problem is feasible if there

is at least one feasible point.

A feasible solution x∗ is called a globally optimum solution if f0(x∗) ≤ f0(x)

for all feasible x. A feasible solution x̄ is called a locally optimum solution if there

exists an ε > 0 such that f0(x̄) ≤ f0(x) for all feasible x that satisfies ‖x− x̄‖2 ≤ ε.

A fundamental property of convex optimisation problems is that any locally optimal

point is also globally optimal.

An optimisation problem is convex if and only if all of the following conditions

are satisfied.

• The objective function is convex.

• The inequality constraint functions are convex.

• The equality constraint functions are affine, i.e., have the form hi(x) = aTi x+

bi.

• The domain of the optimisation problem is convex.
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2.4 Classes of Convex Optimisation Problems

In this section a number of common classes of convex optimisation problems are

introduced.

2.4.1 Linear Program

An optimisation problem with affine objective and constraint functions is known

as a linear program (LP) [29, p. 146]. An LP in the general form is specified as

min
x

cTx + d

s.t. Gx � h, (2.15)

Ax = b,

where x ∈ Rn, c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n and b ∈ Rp.

Geometrically, an LP represents the minimisation of an affine function over a

polyhedron feasible set.

2.4.2 Linear-fractional Program

A linear-fractional program is specified as [29, p. 151]

min
x

cTx + d

eTx + f
s.t. Gx � h, (2.16)

Ax = b,

where x ∈ Rn, c, e ∈ Rn, d, f ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, b ∈ Rp and the

domain of the objective function is {x | eTx + f > 0}.

The objective function of problem (2.16) is a non-convex function, hence the

problem is a non-convex optimisation problem. However, the Charnes-Cooper

transformation [42] can be used to transform problem (2.16) into an equivalent

LP. The Charnes-Cooper transformation first defines the pair

y =
x

eTx + f
, z =

1

eTx + f
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which is then substituted into problem (2.16) to obtain the LP

min
y,z

cTy + dz

s.t. Gy − hz � 0, (2.17)

Ay − bz = 0,

eTy + fz = 1,

z ≥ 0.

2.4.3 Quadratic Program

A convex optimisation problem is called a quadratic program (QP) if the objective

is a convex quadratic function and the constraint functions are all affine [29, p. 152].

A QP is expressed as

min
x

xTPx + qTx + r

s.t. Gx � h, (2.18)

Ax = b,

where x ∈ Rn, P ∈ Sn+, q ∈ Rn, r ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n and b ∈ Rp.

Geometrically, a QP represents the minimisation of a convex quadratic function

over a polyhedron feasible set. The least squares optimisation problem is possibly

the most well known QP.

2.4.4 Quadratically Constrained Quadratic Program

An optimisation problem is known as a quadratically constrained quadratic pro-

gram (QCQP) when the objective and inequality constraint functions are all convex

quadratics [29, p. 152]. A QCQP is expressed as

min
x

xTP0x + qT0 x + r0

s.t.
1

2
xTPix + qTi x + ri ≤ 0, i = 1 . . .m (2.19)

Ax = b,

where x ∈ Rn, Pi ∈ Sn+, i = 0, 1 . . . ,m, qi ∈ Rn, ri ∈ R, A ∈ Rp×n and b ∈ Rp.
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2.4.5 Second-order Cone Program

The second-order cone program (SOCP) is expressed as [29, p. 156]

min
x

fTx

s.t. ‖Aix + bi‖2 ≤ cTi x + di, i = 1 . . .m (2.20)

Fx = g,

where x ∈ Rn, f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, F ∈ Rp×n and

g ∈ Rp.

The inequality constraint, ‖Aix + bi‖2 ≤ cTi x + di is called a second-order cone

constraint since it represents a second-order (norm) cone (Section 2.1.4).

The SOCP is equivalent to a QCQP when ci = 0, ∀i and it reduces to a LP

when Ai = 0, ∀i.

2.4.6 Geometric Program

Geometric programs (GP) are a class of optimisation problems that are not con-

vex; however, they can be transformed to convex optimisation problems through

a change of variables and a transformation of the objective and constraint func-

tions [8, 18, 29]. We first introduce two important functions, monomials and posyn-

omials, before delving further into GPs.

A monomial is a function f : Rn
++ → R, with dom f = Rn

++, defined as [29,

p. 160]

f(x) = cxa11 x
a2
2 · · · xann , (2.21)

where xi is the ith element of the vector x, c > 0 and ai ∈ R, i = 1, 2, . . . , n are

exponents. A sum of monomial functions is called a posynonomial. A posynomial

takes the form [29, p. 160]

f(x) =
K∑
k=1

ckx
a1k
1 xa2k2 · · · xank

n , (2.22)

where ck > 0, and aik ∈ R, i = 1, 2, . . . , n.

A GP is stated as the following optimisation problem:

min
x

f0(x)

s.t. fi(x) ≤ 1, i = 1, . . . ,m (2.23)

hi(x) = 1, i = 1, . . . , p

where f0, . . . , fm are posynomials: fi(x) =
∑Ki

k=1 cikx
a
(1)
ik

1 x
a
(2)
ik

2 . . . x
a
(n)
ik
n and h1, . . . , hp
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are monomials: hi(x) = cix
a
(1)
i

1 x
a
(2)
i

2 . . . x
a
(n)
i
n . The GP in (2.23) is a non-convex opti-

misation problem but can be transformed into a convex problem by a logarithmic

change of variables and by taking the logarithm of the objective and constraint

functions. This results in the problem [29, p. 162]

min
y

f̃0(y) = log

(
K0∑
k=1

eaT
0ky+b0k

)
,

s.t. f̃i(y) = log

(
Ki∑
k=1

eaT
iky+bik

)
≤ 0, i = 1, . . . ,m (2.24)

h̃i(y) = gTi y + di = 0, i = 1, . . . , p

where yi = log xi, i = 0, . . . , n, bik = log cik, i = 0, . . . ,m, and di = log ci, i =

1, . . . , p. The vectors aik ∈ Rn, i = 0, . . . ,m, contain the exponents of the posyno-

mials and the vectors gi ∈ Rn, i = 1, . . . , p, contain the exponents of the monomials.

Since the functions f̃i are convex, and h̃i are affine, (2.24) is a convex optimisation

problem.

2.4.7 Semidefinite Program

Semidefinite program (SDP) refers to an optimisation problem where a linear func-

tion is minimised subject to the constraint that an affine combination of symmetric

matrices is positive (negative) semidefinite [29, 105, 234, 248]. A SDP can be rep-

resented in the form

min
x

cTx

s.t. x1F1 + . . .+ xnFn + G � 0, (2.25)

Ax = b,

where G,F1, . . . ,Fn ∈ Sk, and A ∈ Rp×n. The inequality in (2.25) is called a linear

matrix inequality (LMI).

The SDP reduces to an LP when the matrices G,F1, . . . ,Fn are all diagonal

since the LMI in (2.25) becomes n linear inequalities.

2.5 Optimality, Duality and Karush-Kuhn-Tucker

(KKT) Conditions

2.5.1 Optimality Criterion

When the objective function f0 of the convex optimisation problem (2.14) is dif-

ferentiable, then using the first-order condition (2.12), a point x in the domain of
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(2.14) is optimal if and only if [29, p. 139]

∇f0(x)T (y − x) ≥ 0, (2.26)

for all y in the domain of (2.14).

For an unconstrained problem, the above condition reduces to the well known

condition

∇f0(x)T (x) = 0. (2.27)

2.5.2 Duality

The Lagrangian function of the optimisation problem (2.14) is given by [29, p. 215]

L(x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x), (2.28)

where λi ∈ R+ is called the Lagrange multiplier associated with the ith inequality

constraint fi(x) ≤ 0 and νi ∈ R is called the Lagrange multiplier associated with

the ith equality constraint hi(x) = 0. The vectors λ and ν are also known as dual

variables associated with the problem (2.14).

The dual function associated with the problem (2.14) is defined as [29, p. 216]

g(λ,ν) = inf
x
L(x,λ,ν). (2.29)

A useful property of the dual function is that it is concave, even if the original

problem (2.14) is not convex. This property arises from the fact that the dual

function is a pointwise infimum of a family of affine functions of (λ,ν) which is

known to be concave.

The dual function gives the lower bound on the optimal value p∗ of the problem

(2.14), i.e., for any λ � 0 and any ν we have

g(λ,ν) ≤ p∗. (2.30)

Using the above property we can find the best lower bound. This can be obtained

by solving the following optimisation problem

max
λ,ν

g(λ,ν)

s.t. λ � 0. (2.31)

This problem is known as the dual problem of the problem (2.14). When dealing

with the dual problem, the original problem is sometimes referred to as the primal

problem. The solution of the dual problem gives the dual optimal variables (λ∗,ν∗).
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We denote the optimal value of the dual problem as d∗. From (2.30), the

following inequality follows

d∗ ≤ p∗, (2.32)

which holds even if the primal problem is not convex. This is known as weak

duality. If (2.32) holds with equality, i.e., d∗ = p∗, then strong duality holds.

The difference p∗− d∗ is called the optimal duality gap of the original problem,

because it provides the gap between the optimal value of the primal problem and

the best lower bound obtained through the dual function. The optimal duality gap

is always nonnegative. The duality gap is zero when strict duality holds.

2.5.3 Karush-Kuhn-Tucker (KKT) Conditions

If the objective and constraint functions are differentiable and x∗ and (λ∗,ν∗)

are any primal and dual optimum points for which strong duality holds, then the

following conditions hold [29, p. 243]

fi(x
∗) ≤ 0, i = 1, . . . ,m

hi(x
∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m (2.33)

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0.

These conditions are known as Karush-Kuhn-Tucker (KKT) conditions. For

any optimisation problem with differentiable objective and constraint functions

for which strong duality holds, implies that any pair of primal and dual optimum

points must satisfy the KKT conditions [29, p. 244].

When the optimisation problem is convex, the KKT conditions are sufficient

for optimality, i.e., if x̃, λ̃ and ν̃ are points that satisfy the KKT conditions then

x̃ and (λ̃, ν̃) are the primal and dual optimum with zero duality gap.

The first two conditions of (2.33) arise due to the fact that at the optimum,

the optimisation problem has to be feasible. The third condition arises from the

definition of the Lagrange multipliers associated with the inequality constraint

functions of the optimisation problem.

The fourth condition is known as the complementary slackness condition [29,

p. 242] and is explained as follows. When strong duality holds, it means that

f0(x∗) = g(λ∗,ν∗)

= f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗). (2.34)
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Since hi(x
∗) = 0, i = 1, . . . , p, for (2.34) to be true, the following must hold

m∑
i=1

λ∗i fi(x
∗) = 0. (2.35)

Since each term in (2.35) is nonpositive, it implies that

λ∗i fi(x
∗) = 0, i = 1, . . . ,m (2.36)

The last condition of (2.33) states that since x∗ minimises L(x,λ∗,ν∗) over x, the

gradient of L(x,λ∗,ν∗) must be equal to zero at x∗.

The KKT conditions play an important role in optimisation. In some cases

it is possible to obtain analytical solutions to the KKT conditions (and hence,

to the optimisation problem). In the general case, many algorithms for convex

optimisation can be interpreted as methods for solving the KKT conditions.

2.6 The Epigraph Form

The epigraph of a function f : Rn → R is defined as [29, p. 75]

epif = {(x, t) | x ∈ domf, f(x) ≤ t}, (2.37)

which is a subset of Rn+1. The epigraph provides the link between convex sets

and convex functions. A function is convex if and only if its epigraph is a convex

set [29, p. 75].

Any optimisation problem be restated in an epigraph form. The epigraph form

of problem (2.14) is given by [29, p. 134]

min
x,t

t

s.t. f0(x)− t ≤ 0,

fi(x) ≤ 0, i = 1 . . .m (2.38)

hi(x) = 0, i = 1 . . . p

Restating the problem in the epigraph form results in a linear objective function.

The main advantage of having a linear objective function is that it simplifies the

development of algorithms that solve convex optimisation problems, since an algo-

rithm that solves convex optimisation problems with linear objective can, using the

epigraph form transformation, solve any convex optimisation problem [29, p. 134].

Using the epigraph form, some seemingly non-convex problems can be trans-

formed into convex problems. As an example, consider the minimax problem given
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by

min
x

‖Ax− b‖∞ = max{|r1|, . . . , |rm|}, (2.39)

where A ∈ Rm×n, x ∈ Rn, b ∈ Rm and ri is the ith element of the vector Ax− b.

Using the epigraph form, problem (2.39) can be cast into the following LP [29,

p. 293]

min
x,t

t

s.t. −t1 � Ax− b � t1, (2.40)

where t ∈ R and 1 is an m-element vector with all entries equal to one.

2.7 Convex Relaxations of Non-convex Problems

Many problems are non-convex and NP-hard, i.e., very difficult to solve. In this

section we show how non-convex problems can be relaxed into convex optimisation

problems. The NP-hard problems can then be solved efficiently in polynomial

time and bounds on the optimal value obtained. In many cases it is also possible

to obtain good, but not necessarily optimum, feasible solutions. Two relaxation

methods are generally used, direct relaxation and Lagrangian relaxation. In direct

relaxation, each non-convex constrained is replaced by a looser convex constraint,

while in Lagrangian relaxation, the Lagrangian dual of the non-convex is problem is

solved to obtain a lower bound on the optimal value of the non-convex problem [29,

p. 653].

Many important engineering problems can be formulated as QCQPs and gen-

erally these problems are non-convex and NP-hard. Due to their practical im-

portance, we will focus on the relaxation of non-convex QCQPs. Some of these

problems include [146, 147]:

• the Boolean least-squares problem in digital communications [153, 228].

• the maximum-likelihood detection problem in multiple-input multiple-output

(MIMO) communications [149, 152, 154, 156, 166, 213, 216, 246, 250].

• the MAXCUT problem in network optimisation [89].

• the optimum coded waveform design for radar detection [61].

• the downlink transmit beamforming problem [25, 41, 82, 119, 120, 212].

• the network beamforming problem [99, 100].
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A non-convex QCQP has the form

min
x

xTP0x + qT0 x + r0

s.t. xTPix + qTi x + ri ≤ 0, i = 1 . . .m (2.41)

where x ∈ Rn, Pi ∈ Sn, i = 0, 1 . . . ,m, qi ∈ Rn, ri ∈ R, A ∈ Rp×n and b ∈ Rp.

Problem (2.41) is non-convex when at least one of the Pi is not positive semidefinite.

A powerful direct relaxation technique, known as SDP relaxation (SDR) [29,

146], is generally used to relax and solve problems of this nature. This technique

will be described in this section.

2.7.1 Semidefinite Relaxation (SDR)

SDR makes use of the definition, X = xxT , to linearise problem (2.41). This

definition of X implies that rank (X) = 1. This definition also implies that xTPix =

tr (PiX), hence, problem (2.41) can be rewritten as

min
x,X

tr (P0X) + qT0 x + r0

s.t. tr (PiX) + qTi x + ri ≤ 0, i = 1 . . .m (2.42)

X = xxT .

The constraint X = xxT is non-convex constraint; however, it can be relaxed

by replacing it with the looser positive semidefinite constraint X−xxT � 0. With

this relaxation, the relaxed problem can be stated as the following SDP

min
x,X

tr (P0X) + qT0 x + r0

s.t. tr (PiX) + qTi x + ri ≤ 0, i = 1 . . .m (2.43)

X− xxT � 0.

Utilising the Schur complement [29, p. 650] to represent the last constraint,

problem (2.43) can then be rewritten as

min
x,X

tr (P0X) + qT0 x + r0

s.t. tr (PiX) + qTi x + ri ≤ 0, i = 1 . . .m (2.44)[
X x

xT 1

]
� 0.

Problem (2.44) is called the SDP relaxation of the original non-convex problem

(2.41). The optimal value of the relaxed problem gives the lower bound on the

optimal value of the original non-convex QCQP.

When the objective and constraints of the original problem (2.41) are homoge-
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neous, i.e., there are no linear terms qTi x, then a simpler relaxed problem can be

obtained. The definition, X = xxT , is again used to linearise the QCQP. In this

case, this definition implies that X � 0 and rank (X) = 1. Problem (2.41) can then

be rewritten as

min
X

tr (P0X) + r0

s.t. tr (PiX) + ri ≤ 0, i = 1 . . .m (2.45)

X � 0,

rank (X) = 1.

The rank constraint is the only non-convex constraint in problem (2.45) and

the problem can be relaxed by dropping this rank constraint. The resulting SDP

is stated as

min
X

tr (P0X) + r0

s.t. tr (PiX) + ri ≤ 0, i = 1 . . .m (2.46)

X � 0.

2.7.2 Lagrangian Relaxation

Lagrangian relaxation finds a lower bound on the optimal value of the non-convex

problem (2.41) by solving the dual of the problem, which is known to be always

convex. The Lagrangian of (2.41) is

L(x,λ) = xTP0x + qT0 x + r0 +
m∑
i=1

λi
(
xTPix

T + qTi x + ri
)

(2.47)

= xT

(
P0 +

m∑
i=1

λiPi

)
︸ ︷︷ ︸

P

x +

(
qT0 +

m∑
i=1

λiq
T
i

)
︸ ︷︷ ︸

q

x +

(
r0 +

m∑
i=1

λiri

)
︸ ︷︷ ︸

r

and the dual function is

g(λ)=inf
x
L(x,λ) (2.48)

=

r − 1
4
qTP†q, if P � 0 and q ∈ R(P)

−∞, otherwise.

The dual problem is therefore given by

max
λ

r − 1

4
qTP†q

s.t. P � 0, (2.49)

λ � 0.
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By introducing an auxiliary variable γ to express problem (2.49) in the epigraph

form and utilising the Schur complement, problem (2.49) can be rewritten as the

following SDP

max
λ,γ

γ

s.t.

[
P 1

2
q

1
2
qT r − γ

]
� 0, (2.50)

λ � 0.

It can be shown that problems (2.44) and (2.50) are duals of each other and

the bounds obtained are exactly the same.

2.7.3 Extracting a Rank-1 Solution

The Lagrangian relaxation method provides a lower bound on the optimal value

of the original non-convex QCQP; however, it does not provide a simple way to

compute a good feasible point. On the other hand, the SDR method provides both

a lower bound and a positive semidefinite matrix, X∗, that can be used to extract

a good feasible solution.

Note that X∗ is not necessarily rank-1 and two methods are generally used to

extract a feasible point. The first method chooses the principal eigenvector of X∗

projected into the feasible set of the original problem as the solution x∗ [146].

The second method, known as Gaussian sampling [146], tends to be more effec-

tive and is more common in practise. In this method, a number of random vectors,

x, are picked from the Gaussian distribution N (x̃,X∗ − x̃x̃T ), where x̃ is the so-

lution of problem (2.44), for the non-homogeneous QCQP or from the Gaussian

distribution N (0,X∗) for the homogeneous QCQP. After sampling enough random

vectors, a good approximate solution, x∗, is chosen as the random vector that is

feasible and results in the minimum value of the objective of the original non-

convex QCQP. This method actually solves the problem “in expectation”, i.e., it

solves the problem in which statistical expectations are taken of the objective and

constraint functions [146].

2.8 Algorithms For Solving Convex Optimisation

Problems

In a few cases, by utilising the KKT conditions, one can find an analytical solution

to the convex optimisation problem (2.14). However, usually no analytical solutions

exist and the problem can only be solved using iterative numerical algorithms.

In this section we provide a brief review of the numerical algorithms that are
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commonly used to solve convex optimisation problems.

2.8.1 A Brief History

The linear program (2.15) is one class of convex optimisation problem for which no

analytical solution exists. Dantzig’s simplex algorithm (or simplex method) [59]

has been used extensively since the 1940s to solve linear programs. The simplex

method has been extremely popular despite the fact that it has been shown to have

an exponential worst-case complexity [128]. One reason for its popularity was that

the theoretical worst-case behaviour never occurs in real world applications. For

practical applications, the simplex method was an extremely efficient algorithm

with low empirical complexity [171].

Polynomial-time interior-point methods [62, 175] for solving convex optimisa-

tion problems have recently become very popular. A polynomial-time method

has the characteristic that the arithmetic cost of the accuracy of the method is

bounded above by a polynomial of the problem size [171]. Interior-point meth-

ods for solving non-linear programming problems have been in use for a long

time [64, 72, 77, 78, 110, 141]. These methods were applied to solving linear pro-

grams; however, they could not compete with the simplex method. They were only

seen as theoretical alternatives and not as practical substitutes for the simplex

method [33, 37, 64, 79, 177]. One reason why these methods failed to gain popular-

ity was because they behaved more or less the same as their worst-case complexity

bounds and therefore, for practical applications the simplex method was far better

even for small problems [171].

In 1984, Karmarkar [121–124] introduced a revolutionary new polynomial-time

interior-point method for solving linear programs which claimed to be orders of

magnitude more efficient than the simplex method. In practical applications, this

method’s actual behaviour turned out to be much better than what was predicted

by the worst-case theoretical complexity bound. Karmarkar’s seminal work laid

the foundations for modern interior-point methods and inspired the works of many

researchers, see for example, [4, 15, 16, 91, 132, 160, 167, 189]. Interior-point meth-

ods were later extended to handle convex quadratic programs and certain linear

complementarity problems [129].

In 1988, Nesterov and Nemirovski [172–175] made an important breakthrough

and showed that interior-point methods for linear programming could be gener-

alised to all convex optimisation problems. A key element to their discovery were

barrier functions with a property known as self-concordance [173]. To be useful

in practise the barrier function must be computable and Nesterov and Nemirovski

showed that a self-concordant barrier function exists for every convex set.
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2.8.2 Unconstrained Minimisation

An unconstrained optimisation problem takes the form

min
x

f(x), (2.51)

where f : Rn → R is convex and twice continuously differentiable. We assume that

the problem has an optimum point x∗ and f(x∗) = p∗. In some cases an analytical

solution can be obtained by solving the optimality criterion ∇f(x∗) = 0. However,

in many cases an iterative algorithm needs to be employed.

An iterative algorithm computes a series of points x(0),x(1), . . . ∈ domf (known

as a minimising sequence) with f(x(k))→ p∗ as k →∞. The algorithm terminates

when f(x(k))− p∗ ≤ ε, where ε > 0 is some specified tolerance.

When f(x) is strongly convex, i.e., there exists an m > 0 such that

∇2f(x) � mI, (2.52)

then it can be shown that [29, p. 460]

p∗ ≥ f(x)− 1

2m
‖∇2f(x)‖2

2. (2.53)

This inequality can be considered as a condition for suboptimality and can be

restated as

‖∇2f(x)‖2 ≤ (2mε)
1
2 =⇒ f(x)− p∗ ≤ ε. (2.54)

Equation (2.54) implies that when the the gradient is small at a point, then the

point is nearly optimal [29, p. 460].

For a strongly convex function, the Hessian has an upper bound, i.e., there

exists a constant M such that [29, p. 460]

∇2f(x) �MI, (2.55)

and it can be shown that

p∗ ≤ f(x)− 1

2M
‖∇2f(x)‖2

2. (2.56)

The constants m and M play an important role in deriving the complexity es-

timates of iterative algorithms for solving convex optimisation problems. However,

these constants are rarely known and the inequality (2.54) cannot be used as a

practical terminating criterion.
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2.8.3 Descent Algorithms

Generally, descent algorithms produce the minimising sequence x(k), k = 1, . . .,

where [29, p. 463]

x(k+1) = x(k) + t(k)∆x(k), (2.57)

where t(k) > 0 is known as the step size and ∆x(k) is called the search or descent

direction. On each iteration the next point x(k+1) is calculated such that f(x(k+1)) <

f(x(k)).

The structure of a general descent algorithm is shown in Algorithm 1.

Algorithm 1 General descent algorithm

Input: a starting point x ∈ domf .
1: repeat
2: Compute a descent direction ∆x.
3: Perform line search. Compute a step size t > 0.
4: Update. x := x + t∆x.
5: until termination criterion is met.

Line Search

The second step in a general descent algorithm is called a line search which involves

finding a the step size, t, along the line {x + t∆x | t ∈ R+}. The aim is to find a t

that minimises f along the line {x+t∆x | t ∈ R+}. Line searches can be either exact

or inexact [29, p. 464]. Practical line searches are almost always inexact. Inexact

line searches seek to approximately minimise or just reduce f . The backtracking

line search is an example of a commonly used inexact line search [29, p. 464].

Descent Direction

The descent direction is chosen to satisfy the following condition

∇f(x(k))T∆x(k) < 0. (2.58)

This condition follows directly from the optimality criterion (2.26) and ensures that

f(x(k+1)) < f(x(k)). Gradient descent, steepest descent and Newton’s method are

the three commonly used methods for calculating the descent direction [29, p. 463].

The gradient descent method uses the negative gradient as its descent direc-

tion, i.e, ∆x = −∇f(x). The algorithm terminates when the gradient becomes

sufficiently small.

The steepest descent method chooses the descent direction as [29, p. 475]

∆xnsd = argmin{∇f(x)Tv | ‖v‖ ≤ 1}. (2.59)
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This is the direction that makes ∇f(x)T∆xnsd the most negative. ‖·‖ can be any

norm on Rn. Commonly used norms are the Euclidean norm, the quadratic norm

and the `1 norm. The steepest descent direction becomes the negative gradient

when the Euclidean norm is used. Hence, the steepest descent method can be seen

as a general form of the gradient descent method. The steepest descent method

terminates when the gradient becomes sufficiently small.

Newton’s method uses the following descent direction (known as the Newton

step) [29, p. 484]

∆xnt = −∇2f(x)−1∇f(x). (2.60)

The Newton step is both the minimiser of the second-order Taylor approximation of

f and the steepest descent direction when a quadratic norm defined by the Hessian

is used. A quantity known as the Newton decrement at x and defined as

µ(x) = (∇f(x)T∇2f(x)−1∇f(x))
1
2 , (2.61)

is generally used to determine the termination criterion for Newton’s method. The

algorithm is terminated when µ(x)2

2
≤ ε.

Convergence of Descent Methods

In this section we summarise the convergence of the three descent methods de-

scribed above. Convergence is defined as the rate at which the error f(x(k)) − p∗

converges to zero. A detailed convergence analysis is beyond the scope of this work.

Detailed analysis can be found in [29, 172–175].

The gradient descent method has approximately linear convergence. The con-

vergence rate is dependent upon the constants m and M described in Section 2.8.2,

the parameters used for the backtracking line search and the condition number of

the Hessian of f(x). Simplicity is the main advantage of the gradient method. Its

main disadvantage is that the convergence rate depends greatly on the condition

number of the Hessian; the gradient method becomes extremely slow for practical

use when the condition number is large.

The steepest descent method also has approximately linear convergence. The

convergence rate is dependent upon the constants m and M , the parameters used

for the backtracking line search and the norm used. The norm used determines the

resulting condition number of the Hessian of the transformed problem and this has

a critical effect on the convergence rate of the problem. Choosing the norm can be

a difficult task. For example, when the quadratic norm is used, it requires choosing

a matrix for the norm calculation and there can be a large number of matrices to

choose from. The steepest descent method will work very poorly for some of these

choices and very well when a good matrix can be identified.
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Newton’s method has a very rapid convergence; quadratic near x∗. The conver-

gence rate is only dependent on the constants m and M and the parameters used

for the backtracking line search. The main advantage of Newton’s method is that

the convergence rate does not depend on condition number of the Hessian of the

objective. The main disadvantage is that this method requires the computation of

the Hessian which can be computationally expensive.

2.8.4 Self-concordance

The idea of a self-concordance function was introduced in 1988 by Nesterov and

Nemirovski [172–175]. A convex function f : R→ R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)
3
2 , (2.62)

for all x ∈ domf . A function f : Rn → R is self-concordant if it is self-concordant

when restricted to a line, i.e., if the function f̂(t) = f(x + tv) is a self-concordant

function of t for all x ∈ domf and for all v.

As mentioned in Section 2.8.3, the convergence rate of the descent methods

depends on the constants m and M . However, in practise, these constants are

usually not known, hence, the number of iterations required for the algorithms

are not generally known. Self-concordant functions, on the other hand, do not

suffer from this problem. For example, the complexity of Newtown’s method when

applied to self-concordant functions does not depend on any unknown constants. It

only depends on the parameters for the backtracking line search and the accuracy

ε. Another advantage of self-concordant functions is that they are affine-invariant,

hence, the complexity estimate obtained for Newton’s method applied to a self-

concordant function is independent of affine changes of coordinates [29, 172–175].

The logarithmic barrier function used in interior-point methods is an example

of a self-concordant function.

2.8.5 Equality Constrained Minimisation

Equality constrained minimisation problems take the form [29, p. 521]

min
x

f(x)

s.t. Ax = b. (2.63)

We assume that f : Rn → R is convex and twice continuously differentiable, and

A ∈ Rp×n with rank A = p < n.

Below we describe how Newton’s method can be modified to handle problems

of this nature. The objective of problem (2.63) can be approximated near a feasible

point x with its second-order Taylor approximation near x and the problem restated
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as

min
v

f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v

s.t. A (x + v) = b, (2.64)

with variable v. Problem (2.64) is a convex quadratic minimisation problem with

equality constraints, and the KKT conditions can be used to solve it analytically.

Using the second and fifth KKT conditions from (2.33), the optimality conditions

for problem (2.64) are

A (x + v∗) = b, ∇f(x) +∇2f(x)v∗ + w∗TAv = 0,

where w is the dual variable associated with the equality constraint. From the

optimality conditions above, it is clear that Av∗ = 0 and this ensures that a

feasible solution is obtained on every step. In the modified Newton’s method, we

choose ∆xnt = v∗, i.e., the Newton step is what must be added to x to solve the

problem when the quadratic approximation is used [29, p. 526]. The optimality

conditions can be compactly written as[
∇2f(x) AT

A 0

][
∆xnt

w∗

]
=

[
−∇f(x)

0

]
. (2.65)

The matrix on the left hand side of (2.65) is known as the KKT matrix. A

solution to (2.65) only exists when the KKT matrix is nonsingular.

To summarise, equality constrained minimisation problems can be solved using

Newton’s method by analytically solving a series of convex quadratic minimisation

problem with equality constraints that approximate the original problem.

2.8.6 Interior-point Methods

In this section, we briefly discuss an interior-point method, known as the barrier

method, for solving convex optimisation minimisation problems with both equality

and inequality constraints, i.e., problems of the form

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1 . . .m (2.66)

Ax = b,

where f0, . . . , fm : Rn → R are convex and twice continuously differentiable, and

A ∈ Rp×n with rank A = p < n. The assumption is that the problem is strictly

feasible, i.e., there exists an x in the domain of the problem that satisfies Ax = b

and fi(x) < 0 for i = 1, . . . ,m. This assumption implies that strict duality holds,
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i.e., there exist primal and dual optimal points, x∗, λ∗ ∈ Rm and ν∗ ∈ Rp that

satisfy the KKT conditions (2.33).

The Barrier Method

The aim of the barrier method is to formulate the inequality constrained problem

(2.66) as an equality constrained problem to which the method discussed in Section

2.8.5 can be applied. Problem (2.66) can be converted into an equality constrained

problem by including the inequality constraint functions into the objective with

the use of an appropriate barrier function. Problem (2.66) can then be restated

as [29, p. 561]

min
x

f0(x) +
m∑
i=1

I−(fi(x))

s.t. Ax = b, (2.67)

where I− : R→ R is the barrier function. The barrier function acts like a penalty

function, applying an infinite penalty when its argument is positive and no penalty

when the argument is non-positive. The barrier function also needs to be differen-

tiable so that Newton’s method can be applied.

In practice, a logarithmic barrier function is generally used to approximate the

ideal barrier function. The function is defined as

I−(u) = −1

t
log (−u) (2.68)

where t > 0 sets the accuracy of the approximation. Larger values of t give better

approximation accuracy; but also make the objective of problem (2.67) difficult to

minimise [29, p. 563]. In practice, the problem (2.66) is solved by solving a series

of problems of the form (2.67), and t is increased at each step.

Problem (2.67) can be re-written as

min
x

f0(x)−
m∑
i=1

log (−fi(x))

s.t. Ax = b, (2.69)

with no change to the optimum point. On every step, problem (2.69) is solved

using Newton’s method for equality constrained problems with the solution of the

previous step as the starting point for the next. The set of solutions, x∗(t), are

known as the central points, and the path that these solutions follow is called

the central path of problem (2.66). The central points are strictly feasible (in the

interior of the feasible region), i.e., fi(x
∗(t)) < 0, i = 1, . . . ,m and satisfy the KKT
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conditions

Ax∗(t) = b (2.70a)

t∇f0(x∗(t)) +
m∑
i=1

1

−fi(x∗(t))
∇fi(x∗(t)) + AT ν̂ = 0, (2.70b)

where ν̂ is the dual optimal point associated with the equality constraint of problem

(2.69). Using the definitions

λ∗i (t) = − 1

tfi(x∗(t))
, i = 1, . . . ,m ν∗ =

ν̂

t
,

(2.70b) can be re-stated as

∇f0(x∗(t)) +
m∑
i=1

λ∗i (t)∇fi(x∗(t)) + ATν∗ = 0. (2.71)

Equation (2.71) is seen to be the KKT condition that the gradient of the Lagrangian

of the original problem (2.66) vanishes at x∗(t), i.e., x∗(t) is the minimiser of the

Lagrangian of the original problem. Hence, λ∗(t) and ν∗ are the dual feasible pair

of the original problem. The dual function of the original problem can be shown

to be

g(λ∗(t), ν∗) = f0(x∗(t))− m

t
, (2.72)

which gives the suboptimality of the original problem at the current central point.
m
t

is the duality gap and is used as the termination criterion for the barrier method.

Algorithm 2 shows the general structure of the barrier method. It consists of

two nested iterations. The outer iteration increases the t parameter. The inner

iteration is the Newton’s method used to solve problem (2.69). The µ and t(0)

Algorithm 2 Barrier method

Input: a strictly feasible starting point x, t := t(0) > 0, µ > 1, tolerance ε > 0.
1: loop
2: Centring step. Compute x∗(t) by solving problem (2.69), starting at x.
3: Update. x := x∗(t).
4: Termination criterion. exit if m

t
< ε.

5: Increase t. t := µt.
6: end loop

parameters need to be chosen carefully as they influence the number of iterations

required to solve the optimisation problem. General guidelines on how to choose

these parameters are available in [29, p. 569].
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Feasible Starting Point

As seen in Algorithm 2, the barrier method requires a feasible starting point x.

When such a point is not known, the barrier method is preceded by a preliminary

stage, called phase I, in which a strictly feasible point is computed or it is found

that the constraints are infeasible [29, p. 579]. One basic method of doing this is

to solve the following optimisation problem [29, p. 579]

min
x,s

s

s.t. fi(x) ≤ s, i = 1 . . .m,

Ax = b (2.73)

where s ∈ R. The variable s can be considered as the bound on the maximum

infeasibility of the inequalities, and the goal is to push the maximum infeasibility

below zero. Problem (2.73) is always strictly feasible, since a point x ∈ domf1 ∩
. . .∩domfm, with Ax = b can be chosen as a feasible starting point and s can be

chosen to be any number larger than maxi=1,...,mfi(x) [29, p. 579]. Hence, problem

(2.73) can itself be solved using the barrier method. The constraints have a strictly

feasible solution if the optimum value of problem (2.73) is less than zero, and are

infeasible if the optimum value is greater than zero. If the optimum value is equal

to zero and the minimum is attained at x∗ and s∗ = 0, then the set of inequalities

is feasible, but not strictly feasible [29, p. 579].

A variation of the above method, known as sum of infeasibilities, can also be

used as a phase I method. This method minimises the sum of the infeasibilities.

The following optimisation problem is used [29, p. 580]

min
x,s

1Ts

s.t. fi(x) ≤ si, i = 1 . . .m,

Ax = b

s � 0 (2.74)

where 1 is a vector of length m with all entries equal to one and s ∈ Rm
++. For

fixed x, the optimal value of si is max{fi(x), 0}, so in this problem the sum of the

infeasibilities is being minimised. The optimal value of problem (2.74) is zero and

achieved if and only if the original set of inequalities and inequalities is feasible [29,

p. 580].
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2.9 Summary

Convex optimisation theory and techniques used in the majority of this thesis has

been presented. The concepts of convex sets, convex functions and convex optimi-

sation problems have been introduced. A review of Lagrange duality and the well

known KKT conditions for optimality has been provided. The epigraph form which

provides the link between convex sets and convex functions and allows seemingly

non-convex problems to be transformed into convex problems has been discussed.

A powerful technique known as convex relaxation, which allows non-convex prob-

lems to be relaxed into convex problems was reviewed. Finally, algorithms for

solving convex optimisation problems have been discussed.



Chapter 3

Robust Optimisation

Robust optimisation deals with optimisation problems in which the input data has

some degree of uncertainty. The uncertainty may arise due to noise, measurement

errors or partial knowledge of the data. This occurs frequently in many real world

engineering problems and robust optimisation methods seek to find solutions that

offer robustness against the uncertainty. As demonstrated in [21], solutions to

many optimisation problems suffer from sensitivity to uncertain data and even mi-

nor uncertainties can render the problems suboptimal or even infeasible. Robust

optimisation methods can be broadly classed into two categories, namely, meth-

ods that use bounded uncertainty set models [19–23, 26, 66, 67, 218] and those that

utilise the statistical knowledge of data [28] to develop robust solutions.

Bounded uncertainty (also known as worst-case) based robust optimisation is

generally used when hard performance guarantees are sought, i.e., constraints must

be satisfied for all realisations of the data within some predefined uncertainty set

U . Generally, no underlying stochastic model for the data is assumed; however, any

such knowledge can be used to form the uncertainty set, for instance, the ellipsoidal

uncertainty set [19] naturally arises when data has a normal distribution.

The stochastic programming (SP) method is utilised when the knowledge of an

underlying stochastic model for the uncertain data exists and constraint violations

with some probability can be tolerated, for example, probability of outage in com-

munication systems [38, 117]. The probability based constraints that occur in SP

are generally referred to as soft constraints.

In this chapter, we discuss the bounded uncertainty and stochastic based robust

optimisation methods and their applications to communication systems.

33



34 Robust Optimisation

3.1 Bounded Uncertainty Based Robust Optimi-

sation

A general bounded uncertainty based robust optimisation problem is stated as

min
x

f0(x)

s.t. fi(x,ui) ≤ 0, ∀ui ∈ Ui, i = 1 . . . l (3.1)

where x ∈ Rn is the optimisation variable, f0, fi : Rn → R are functions and

ui ∈ Rk is the uncertain data that is known to belong to the set Ui. The aim of

(3.1) is to find the x∗ that minimises f0 for all realisations of ui within Ui. Gener-

ally Ui are continuous sets, therefore, (3.1) has an infinite number of constraints.

(3.1) is known as a semi-infinite optimisation problem [19] and is known to be

computationally intractable [20]. However, some geometries of Ui exist that lead

to computationally tractable solutions. These include the ellipsoidal uncertainty

set [19, 20, 66, 67] and the polyhedral and the cardinality constrained uncertainty

sets [26]. The ellipsoidal uncertainty model is the most widely used set in the

literature.

3.1.1 Ellipsoidal Uncertainty

The ellipsoidal uncertainty model is the most commonly used model for represent-

ing uncertainty. This model has many advantages, some of which include:

• An ellipsoid has a simple mathematical representation given by (2.7) and can

be easily numerically handled.

• Ellipsoids and intersections of ellipsoids can be used to represent more com-

plicated uncertainty sets [19].

• In many cases where the uncertain data has an underlying stochastic model,

the stochastic uncertainty can be replaced by a deterministic ellipsoidal un-

certainty where the ellipsoid is represented using the mean and covariance

matrix of the uncertain data [19]. Fig. 3.1 shows points drawn from a bivari-

ate normal distribution and three bounding ellipsoids.

Linear Optimisation with Ellipsoidal Uncertainty

Consider the following robust LP with uncertain data G and h that belong to the

uncertainty set U .

min
x

cTx

s.t. Gx � h, ∀(G,h) ∈ U . (3.2)
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Figure 3.1: Points drawn from a bivariate normal distribution and three bounding
ellipsoids calculated from mean and covariance matrix of data.

By defining x̃ = [xT 1]T , c̃ = [cT 0]T , G̃ = [G −h] and ã = [0 . . . 0 1]T , problem

(3.2) can be restated as

min
x̃

c̃T x̃

s.t. g̃Ti x̃i ≤ 0, ∀g̃i ∈ Ui, i = 1 . . . l (3.3)

ãT x̃ = 1,

where g̃i is the ith row of G̃ and we have assumed constraint-wise uncertainty, i.e.,

the uncertainty set U is the direct product of the partial uncertainty sets Ui [20].

For ellipsoidal uncertainty, Ui is given by

Ui = {g̃i = g̃c,i + Aiui | ‖ui‖2 ≤ 1}, (3.4)

where g̃c,i is the nominal value of g̃i which defines the center of the ith ellipsoid.

We see that the ith robust constraint, g̃Ti x̃i ≤ 0, can only be satisfied for all

g̃ ∈ Ui, if and only if

max
g̃i∈Ui

{g̃Ti x̃i} ≤ 0, s.t. ‖ui‖2 ≤ 1. (3.5)

It is easily verified that g̃Ti x̃i is maximised when ui =
AT

i x̃

‖AT
i x̃‖2

. The ith robust

constraint can therefore be stated as

‖AT
i x̃‖2 ≤ −g̃Tc,ix̃, (3.6)
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and problem (3.3) as

min
x̃

c̃T x̃

s.t. ‖AT
i x̃‖2 ≤ −g̃Tc,ix̃, i = 1 . . . l (3.7)

ãT x̃ = 1,

which is recognised as a SOCP that can be solved efficiently using interior point

methods. Hence, the ellipsoidal uncertainty model has enabled a computationally

intractable semi-infinite problem to be transformed into a convex optimisation

problem that can be solved in polynomial time.

Quadratic and Semidefinite Optimisation with Ellipsoidal Uncertainty

In [19], it was shown that QCQPs and SOCPs with ellipsoidal uncertainty can be

transformed into robust SDPs. When the uncertainty is an intersection of ellipsoids,

the robust formulation turns out to be a NP-hard problem.

The robust counterparts of SDPs with ellipsoidal uncertainty are generally NP-

hard problems [19].

3.1.2 The S-Procedure

The S-procedure [76, 249] is commonly used in system theory to derive stability

and performance results for nonlinear and uncertain systems. It began to be com-

monly used in robust control research after the advancements of [161]. In robust

optimisation, it is generally used to transform a semi-infinite problem into a convex

problem when there is one quadratic objective subject to one quadratic constraint.

The S-procedure is stated as follows. Let fi : Rn → R, i = 0, . . . ,m be real

valued functions, si ≥ 0, i = 1, . . . ,m be real numbers and consider the following

two conditions

f0(x) ≥ 0, ∀x ∈ Rn | fi(x) ≥ 0, i = 1, . . . ,m (3.8)

∃si≥0, i=1,...,m | f0(x)−
m∑
i=1

sifi(x) ≥ 0, ∀x ∈ Rn. (3.9)

It is obvious that (3.9) implies (3.8), i.e., (3.8) and (3.9) are equivalent. In this

case, the S-procedure is called lossless for the inequality f0(x) ≥ 0, subject to the

constraints fi(x) ≥ 0, i = 1, . . . ,m [249]. Therefore, the S-procedure is a method

of verifying (3.8) using (3.9). (3.9) is usually easier to verify than (3.8).

The S-procedure is applied to optimisation problems involving quadratic func-

tions as follows. Let fi(x) = xTPix + qTi x + ri, i = 1, . . . ,m, where x ∈ Rn,

Pi ∈ Rn×n, qi ∈ Rn and ri ∈ R. Pi is not assumed to be positive semidefinite,

hence fi is not necessarily convex. The aim is to verify (3.8), a semi-infinite NP
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hard problem, using (3.9). In this scenario, (3.9) can be written as

∃si≥0 | xTP0x + qT0 x + r0 −
m∑
i=1

si
(
xTPix + qTi x + ri

)
≥ 0, ∀x ∈ Rn,

∃si≥0 |

[
x

1

]T [
P0 +

∑m
i=1 siPi

1
2
(q0 +

∑m
i=1 siqi)

1
2
(q0 +

∑m
i=1 siqi)

T r0 +
∑m

i=1 siri

][
x

1

]
≥ 0, ∀x ∈ Rn,

∃si≥0 |

[
P0 +

∑m
i=1 siPi

1
2
(q0 +

∑m
i=1 siqi)

1
2
(q0 +

∑m
i=1 siqi)

T r0 +
∑m

i=1 siri

]
� 0. (3.10)

As demonstrated above, the S-procedure has allowed a semi-infinite NP hard prob-

lem to be transformed into a LMI.

The following example illustrates the use of the S-procedure in uncertain opti-

misation problems. Consider the following uncertain linear inequality where both

a and b have some bounded uncertainty on them.

(a + ∆a)Tx ≤ (b+ ∆b), ∀‖∆a‖2 ≤ ε, ∀|∆b| ≤ ε. (3.11)

By defining e = [∆aT/ε ∆b/ε]T , (3.11) can be expressed as

b− aTx + ε[−xT 1]e ≥ 0, ∀ ‖e‖2 ≤ 2. (3.12)

Applying the S-procedure to (3.12), we obtain

∃s≥0 | b− aTx + ε[−xT 1]e− s
(
2− eTe

)
≥ 0, ∀e ∈ Rn+1,

∃s≥0 |

[
e

1

]T  sI ε
2

[
−x

1

]
ε
2

[
−xT 1

]
b− aTx− 2s


[
e

1

]
≥ 0, ∀e ∈ Rn+1,

∃s≥0 |

 sI ε
2

[
−x

1

]
ε
2

[
−xT 1

]
b− aTx− 2s

 � 0. (3.13)

Here, we see that an uncertain semi-infinite linear inequality becomes a LMI.

3.2 Robust Stochastic Optimisation

Robust stochastic optimisation [28, 193] methods are used when the knowledge of

the underlying stochastic model for the uncertain data exists or can be approxi-

mated. The objectives and constraints are defined by averaging possible outcomes

or by considering probabilities of events of interest [193]. A robust stochastic opti-

misation problem where the objective and constraints are defined by the expected



38 Robust Optimisation

value of some function of the uncertain data is stated below.

min
x

E{f0(x,u0)}

s.t. E{fi(x,ui)} ≤ 0, i = 1 . . . l (3.14)

where x ∈ Rn is the optimisation variable, f0, fi : Rn → R are functions and

ui ∈ Rk is the uncertain data drawn from the sample space Si. It is assumed that

the probability distribution function of Si is known. When considering probabilities

of events, the robust stochastic optimisation problem is given by

min
x

Pr {f0(x,u0)}

s.t. Pr {fi(x,ui)} ≤ αi, i = 1 . . . l (3.15)

where αi, i = 1 . . . l are the limits on the probabilities. Any combination of expec-

tation and probabilities of functions can be used in a robust stochastic optimisation

problem.

Stochastic Linear Optimisation

Consider the following robust stochastic LP where the data vector a is a Gaussian

random vector with mean ā and covariance Σ.

min
x

cTx

s.t. Pr {aTx ≤ b} ≥ α. (3.16)

It is required that the constraint holds with a probability greater than α. The mean,

µ, and the variance, σ2, of the random variable aTx are given by āTx and xTΣx,

respectively. Since aTx is a Gaussian random variable, its cumulative distribution

function is given by [101]

F(u) =
1

2

[
1 + erf

(
u− µ√

2σ2

)]
, (3.17)

where erf is the error function defined as [101]

erf(z) =
2√
π

∫ z

0

exp
(
−t2
)

dt. (3.18)

Utilising (3.17), Pr {aTx ≤ b} is expressed as

Pr {aTx ≤ b} =
1

2

[
1 + erf

(
b− aTx√

2xTΣx

)]
, (3.19)



3.2 Robust Stochastic Optimisation 39

and the constraint can be restated as

√
2 erf−1 (2α− 1)‖Σ

1
2 x‖2 + aTx ≤ b. (3.20)

When α ≥ 1
2
, erf−1 (2α− 1) ≥ 0, hence (3.20) becomes a second-order cone con-

straint and (3.16) can be restated as the following SOCP

min
x

cTx

s.t.
√

2 erf−1 (2α− 1)‖Σ
1
2 x‖2 + aTx ≤ b. (3.21)

Stochastic Least Squares Optimisation

Consider the following unconstrained least squares problem.

min
x

‖Ax− b‖2
2, (3.22)

where A ∈ Rm×n is a random matrix given by A = Ā + E. Here, Ā is the mean of

A and E is a zero mean random matrix. Problem (3.22) can be transformed into

a robust stochastic optimisation problem by restating the problem in terms of the

expected value of the objective, i.e.,

min
x

E
{
‖Ax− b‖2

2

}
. (3.23)

The objective can be expressed as

E
{
‖Ax− b‖2

2

}
= E

{((
Ā + E

)
x− b

)T ((
Ā + E

)
x− b

)}
= ‖Āx− b‖2

2 + xTΣx, (3.24)

where Σ = E{ETE} is the covariance of E. The robust stochastic least squares

problem is therefore given by

min
x

‖Āx− b‖2
2 + ‖Σ

1
2 x‖2

2. (3.25)

By utilising the KKT conditions, specifically that the gradient of the objective

vanishes at the optimum, it can be shown that the above problem has an analytical

solution given by

x∗ =
(
ĀT Ā + Σ

)−1
ĀTb. (3.26)
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Figure 3.2: Multi-user wireless network.

3.3 Application of Robust Optimisation in Com-

munication Systems

In this section we present a number of applications of robust optimisation in com-

munication systems. We will mainly focus on robust power control and robust

conventional and cooperative beamforming.

3.3.1 Power Control in Wireless Networks

Transmit power control provides a method for controlling interference and for in-

creased utilisation of the wireless spectrum in multi-user communication systems

where the users access the shared channel simultaneously. Power control in wire-

less networks has been extensively studied based on different transmission models

and application needs [3, 5, 14, 46, 73, 75, 117, 133, 139, 165, 176, 186, 196, 223, 253–

255, 259]. In [117] and later in [46], geometric programming was used to formulate

and solve power control problems. The main advantage of using geometric pro-

gramming is that globally optimal power allocations can be efficiently found.

Fig. 3.2 shows the wireless network considered in [46, 117]. The network con-

sists of N transmitter and receiver pairs. Receiver i is meant to receive the signal

from transmitter i. The transmitters transmit at power level p1, . . . , pN , which are

the optimisation variables in the power control optimisation problems. Indepen-

dent, point-to-point, flat Rayleigh fading channels are assumed for all links in the

network. The instantaneous power of the channel between the jth transmitter and

the ith receiver is represented by g(ij) and has mean E
{
g(ij)

}
= G(ij).
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The SINR at the ith receiver is given by

γ(i) =
pig

(ii)∑N
j=1,j 6=i pjg

(ij) + σ2
i

, (3.27)

where σ2
i is the noise power at receiver i. Since the channel power is a random

variable, γ(i) is also a random variable.

In [117], a stochastic optimisation approach is taken and the robust power

control problems are formulated based on the outage probability of the receivers.

The ith receiver outage probability is defined as the probability that the SINR at

the ith receiver is below some predefined threshold γT , i.e.,

Po
(i) = Pr

(
γ(i) ≤ γT

)
= Pr

(
pig

(ii) ≤ γT

(
N∑

j=1,j 6=i

pjg
(ij) + σ2

i

))
. (3.28)

To simplify the analysis of the outage probability and the resulting optimisation

problems, noise power is assumed to be insignificant compared to the interference

powers and hence receiver noise is disregarded in [117]. Therefore, the outage

probability can be restated as

Po
(i) = Pr

(
pig

(ii) − γT
N∑

j=1,j 6=i

pjg
(ij) ≤ 0

)
. (3.29)

Since the channel powers are independent exponentially distributed random vari-

ables, the outage probability density function (PDF) is that of a difference between

an exponential random variable and the sum of N−1 exponentially distributed ran-

dom variables, and therefore the outage probability is known to have the following

form [222, 251, 252]

Po
(i) = 1−

N∏
j 6=i

 1

1 +
γTG(ij)pj
G(ii)pi

. (3.30)

The first robust power control problem considered in [117] is the minimisa-

tion of the maximum outage probability subject to box (minimum and maximum)

constraints on the transmit powers. This problem is mathematically represented

as

min
{pi}Ni=1

max
i

1−
N∏
j 6=i

 1

1 +
γTG(ij)pj
G(ii)pi


s.t. pmin ≤ pi ≤ pmax, i = 1, 2, . . . , N (3.31)
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where pmin and pmax are the minimum and maximum limits on transmit powers,

respectively. We note that problem (3.31) can be written in the following equivalent

form

min
{pi}Ni=1

max
i

(
N∏
j 6=i

(
1 +

γTG(ij)pj
G(ii)pi

))
s.t. pmin ≤ pi ≤ pmax, i = 1, 2, . . . , N (3.32)

By introducing the auxiliary variable t, problem (3.31) can be rewritten in the

epigraph form as

min
t,{pi}Ni=1

t

s.t.
N∏
j 6=i

(
1 +

γTG(ij)pj
G(ii)pi

)
≤ t, i = 1, 2, . . . , N

pmin ≤ pi ≤ pmax, i = 1, 2, . . . , N (3.33)

Problem (3.33) is recognised as a GP, the objective is a monomial and the first and

second constraints are a posynomial and monomial, respectively, and hence it can

be transformed into a convex optimisation problem and solved efficiently.

The second robust power control considered in [117] is the maximisation of the

minimum expected value of the receiver signal to interference ratio (SIR) subject

to non-negativity constraints on the transmit powers. The expected value of the

ith SIR is given by

SIR
(i)
E = E

{
pig

(ii)∑N
j=1,j 6=i pjg

(ij)

}

=
piG

(ii)∑N
j=1,j 6=i pjG

(ij)
(3.34)

The optimisation problem is expressed as

max
{pi}Ni=1

min
i

(
piG

(ii)∑N
j=1,j 6=i pjG

(ij)

)
s.t. pi > 0, i = 1, 2, . . . , N (3.35)

In [117], it was shown that at the optimum the SIR at all receivers will be equal.

Using this observation, problem (3.35) can be restated in the epigraph form [29] as

max
t,{pi}Ni=1

t

s.t.

(
piG

(ii)∑N
j=1,j 6=i pjG

(ij)

)
= t, i = 1, 2, . . . , N
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pi > 0, i = 1, 2, . . . , N (3.36)

The solution to problem (3.36) is given by the Perron-Frobenius theorem for the

maximum eigenvalue of a matrix that has non-negative elements [165]. By defining

τ = 1/t, problem (3.36) can be restated as

min
τ,{pi}Ni=1

τ

s.t. Ap = τp

pi > 0, i = 1, 2, . . . , N (3.37)

where p , [p1, p2, . . . , pN ] and the matrix A is defined as

Aij =
G(ij)

G(ii)
, i 6= j Aii = 0.

Problem (3.37) is recognised as a problem for finding the largest eigenvalue of the

matrix A [29]. According to Perron-Frobenius theory, the eigenvalue λ of A that is

largest in magnitude is real and positive and has an associated eigenvector v with all

positive entries [117]. The eigenvector v and the eigenvalue λ are called the Perron-

Frobenius eigenvector and eigenvalue of A. The Perron-Frobenius eigenvector v

gives the optimal power allocation, i.e., pi = vi [117].

The third problem analysed in [117] is the minimisation of total transmit power

subject to outage probability constraints and bounds on individual transmit pow-

ers. This problem is expressed as

min
{pi}Ni=1

N∑
i=1

pi

s.t. 1−
N∏
j 6=i

 1

1 +
γTG(ij)pj
G(ii)pi

 ≤ P(i)
o,max

pmin ≤ pi ≤ pmax, i = 1, 2, . . . , N (3.38)

After straightforward manipulation of the outage probability constraint, problem

(3.38) can be restated as

min
{pi}Ni=1

N∑
i=1

pi

s.t. (1− P(i)
o,max)

N∏
j 6=i

(
1 +

γTG(ij)pj
G(ii)pi

)
≤ 1

pmin ≤ pi ≤ pmax, i = 1, 2, . . . , N (3.39)

Problem (3.39) is recognised as a GP, the objective is a posynomial and the first



44 Robust Optimisation

Figure 3.3: Receive beamformer.

and second constraints are posynomial and monomial, respectively, and hence it

can be transformed into a convex optimisation problem and solved efficiently.

3.3.2 Receive Beamforming

Receive beamforming is widely used to improve system performance in wireless

communications [88, 182], radar [31, 104], sonar [55, 81, 131], audio processing [116,

279], radio astronomy [169], biomedicine [200], and many other signal processing

systems. Fig. 3.3 shows an example of a receive beamformer consisting of an N

antenna array.

The output of the narrowband beamformer is given by

y(k) = wHx(k), (3.40)

where k is the time index, x(k) = [x1(k), . . . , xN(k)]T ∈ CN is the complex vector

of the sampled array output and w = [w1, . . . , wN ]T ∈ CN is the complex vector of

beamformer weights. The sampled array output is given by

x(k) = s(k)a(θ) + v(k), (3.41)

where s(k) is the desired narrowband signal impinging upon the array from angle θ

from far-field, a(θ) ∈ CN is the response of the array to a plane wave arriving from

angle θ; commonly referred to as the steering vector or the array manifold, and

v(k) is the interference-plus-noise term. The SINR, γ, at the beamformer output
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is expressed as

γ =
σ2
s |wHa(θ)|2

wHRvw
, (3.42)

where σ2
s is the desired signal power and Rv is the interference-plus-noise co-

variance matrix. The aim is to design the optimum beamformer weight vector

that maximises γ. This can be achieved by finding the weight vector that makes

wHa(θ) ≈ 1, i.e., maintaining a distortionless response to the desired signal, and

wHv small [142, 143, 168]. If a(θ) and Rv are known, then this equates to solving

the following optimisation problem

min
w

wHRvw

s.t. wHa(θ) = 1. (3.43)

An analytical solution to the above problem can be obtained by forming the two

KKT conditions that the gradient of the Lagrangian vanishes at the optimum and

the problem is primal feasible, i.e.,

2Rvw
∗ + λ∗a(θ) = 0,

w∗Ha(θ) = 1,

where w∗ and λ∗ are the primal and dual optimum values. Solving this set of

equations gives the the optimum beamformer weights which are expressed as

w∗ =
R−1
v a(θ)

aH(θ)R−1
v a(θ)

. (3.44)

The above solution is known as the minimum variance distortionless response

(MVDR) beamformer [142, 143, 168, 280].

In practise, Rv is seldom exactly known and it needs to be estimated from the

received samples x. This estimate is known as the sample covariance matrix and

is given by

R̂v =
1

L

L∑
i=1

x(i)xH(i), (3.45)

where L is the number of samples used for the estimation. Using (3.45), one obtains

the following solution.

w∗ =
R̂−1
v a(θ)

aH(θ)R̂−1
v a(θ)

. (3.46)

This solution is known as the sample matrix inversion (SMI) algorithm [187] (also
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commonly referred to as Capon’s method [35]).

Early methods [35, 93, 168, 187] were developed based on the assumption that

the desired signal components were not present in the training data used for the

estimation (3.45). While this assumption is valid for some applications, it does

not hold for many applications such as wireless communications. In [71], it was

shown that the performance of the SMI algorithm and other adaptive beamform-

ing techniques are significantly degraded when the desired signal components are

present in the training data. Uncertainty in the knowledge of the steering vector is

also known to cause substantial performance losses in adaptive beamforming tech-

niques, especially when the desired signal components are present in the training

data [7, 27, 83, 87, 106, 113, 127, 190]. The uncertainty in the steering vector arises

principally from three sources [143]:

• uncertainty in the angle of arrival,

• uncertainty in the array manifold given perfect knowledge of the angle of

arrival, and

• variations in the gains of the signal-processing paths.

Several robust adaptive beamforming techniques have been proposed to over-

come the problem of uncertainty in the steering vector. These include introducing

point mainbeam constraints [131], diagonal loading [36, 56, 70], eigenvalue thresh-

olding [98] and eigenspace-based beamforming [40, 71]. These methods suffer from

the drawback that one needs to design a parameter which is not easy to compute

from the level of uncertainty. For instance, the diagonal loading method requires

one to find the diagonal loading factor but it is not clear how to obtain the op-

timal value of this based on the known level of uncertainty [238]. To overcome

this shortcoming, designs based on ellipsoidal [137, 142, 143, 221] and Euclidean

ball [237, 238] uncertainty sets have been proposed in the literature.

The ellipsoidal uncertainty set model can be used to design a robust beamformer

as follows. The robust beamforming problem can be restated as [142, 143]

min
w

wHRvw

s.t. <{wHa} ≥ 1, ∀a ∈ U , (3.47)

where U is an ellipsoidal uncertainty set that covers all possible realisations of a(θ).

The constraint <{wHa} ≥ 1 is used for two reasons. First, as will be shown later,

this allows the semi-infinite constraint to be expressed as a SOC constraint. Second,

the real part of wHa is an efficient lower bound for its magnitude, since the objective

is unchanged if the weight vector undergoes an arbitrary phase shift [142, 143]. The

authors of [142, 143] argue that it is unnecessary to constrain the imaginary part of
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wHa to zero, since the same rotation that maximises the real part for a given level

of wHRvw simultaneously minimises the imaginary component of the response.

Using the following definitions

x =

[
<{w}
={w}

]
z =

[
<{a}
={a}

]
R =

[
<{Rv} −={Rv}
={Rv} <{Rv}

]
, (3.48)

problem (3.47) can be transformed into the following real valued problem [142, 143]

min
x

xTRx

s.t. xTz ≥ 1, ∀z ∈ U , (3.49)

where U = {z = z̃ + Au | ‖u‖2 ≤ 1}. Using (3.5) and (3.6), the constraint of the

above problem can be restated as the following SOC constraint

‖ATx‖2 ≤ z̃Tx− 1, (3.50)

and the robust MVDR beamforming problem as the following SOCP

min
x

xTRx

s.t. ‖ATx‖2 ≤ z̃Tx− 1. (3.51)

The uncertainty ellipsoid can be computed in a number of ways. If the array

manifold can be measured in a controlled manner, the ellipsoid describing it could

be generated from the mean and covariance of the measurements [143]. When

measurements are not performed, the ellipsoid could be predicted from numerical

simulations that take into account variation in the array response due to manufac-

turing tolerance, termination impedance, and similar effects [143].

In [237, 238], a robust MVDR beamformer is designed using the Euclidean ball

uncertainty set model for the error in the steering vector. The steering vector is

modelled as

a = ã + e, (3.52)

where a and ã are the actual and presumed steering vectors, respectively, and

e is a complex vector that describes the effect of the steering vector distortions.

Additionally, the norm of e is constrained to be less than some ε > 0, i.e., ‖e‖2 ≤ ε.

Hence, the steering vector comes from the set

U = {a | a = ã + e, ‖e‖2 ≤ ε}. (3.53)

The constraint that the absolute value of the array response should not be
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smaller than one is imposed in the robust beamformer design problem, i.e.,

|wHa| ≥ 1, ∀a ∈ U . (3.54)

This constraint guarantees that a distortionless response is maintained in the worst-

case scenario, i.e., for the smallest value of |wHa|. The robust beamforming prob-

lem can therefore be expressed as

min
w

wHRvw

s.t. |wHa| ≥ 1, ∀a ∈ U (3.55)

Problem (3.55) is a non-convex semi-infinite problem. It is non-convex because

the absolute value operator in the constraint is a non-convex operator [29] and

semi-infinite due to the infinite number of constraints arising from the uncertainty

in the steering vector. The infinite number of constraints can be transformed into

a single constraint by only considering the worst-case scenario, i.e., maintaining

a distortionless response for the smallest value of |wHa|. Mathematically, this is

represented as

min
a∈U
|wHa| ≥ 1. (3.56)

Using (3.52) and (3.53), the above constraint can be rewritten as

min
e∈V
|wH ã + wHe| ≥ 1, (3.57)

where V = {e | ‖e‖2 ≤ ε}. Applying the triangle and Cauchy-Schwarz inequalities

and the inequality ‖e‖2 ≤ ε, we have that [238]

|wH ã + wHe| ≥ |wH ã| − |wHe| ≥ |wH ã| − ε‖w‖2. (3.58)

Hence, the right hand side of (3.58) provides a lower bound for |wH ã + wHe|.

Then, using (3.58), the robust beamforming problem becomes

min
w

wHRvw

s.t. |wH ã| − ε‖w‖2 ≥ 1. (3.59)

Problem (3.59) is still non-convex due to the absolute value operator in the con-

straint. However, again noting that an arbitrary phase shift applied to the beam-

forming vector does not change the objective, w can be chosen such that <{wH ã} ≥
0 and ={wH ã} = 0. The problem can therefore be transformed into a convex prob-
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lem with a quadratic objective with SOC and linear constraints, i.e.,

min
w

wHRvw

s.t. wH ã ≥ ε‖w‖2 + 1,

={wH ã} = 0. (3.60)

Note that the two constraints in the above problem ensure that <{wH ã} ≥ 0, thus

it is not required to add this constraint to the problem [238].

In [236], a stochastic approach is taken to design the robust MVDR beamformer.

Here, the steering vector error, e, in (3.52) is considered to be a random variable

with a known probability distribution function. Although the worst-case based

beamformers are known to be quite robust, they tend to be too conservative. This

is because the design protects against the worst-case scenario, which in practice may

occur with a very low probability. In [236], the deterministic distortionless response

constraint is transformed into a stochastic constraint which allows the constraint

to be satisfied with a certain prescribed probability. An important advantage of

this approach over the worst-case approach is that this approach enables better

specification of the parameters of the uncertainty region by explicity quantifying

these parameters in terms of the beamformer outage probability and second-order

statistics of the steering vector errors [236].

The probability-constrained beamformer can therefore be expressed as [236]

min
w

wHRvw

s.t. Pr {|wHa| ≥ 1} ≥ α, (3.61)

where α is a certain prescribed probability. Note that 1 − α is the beamformer

outage probability, i.e., the probability of the distortionless response constraint not

being satisfied. The constraint in its current form is quite difficult to deal with.

However, when the steering vector errors are reasonably small, i.e., |wH ã| > |wHe|,
then by applying the triangle inequality, one obtains the following simplified form

[236]

|wH(ã + e)| ≥ |wH ã| − |wHe|. (3.62)

Using this lower bound, the probability based constraint can be approximated as

Pr {|wHe| ≤ |wH ã| − 1} ≥ α. (3.63)

Using (3.63), the simplified probability-constrained beamformer can be restated as

min
w

wHRvw
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s.t. Pr {|wHe| ≤ |wH ã| − 1} ≥ α. (3.64)

If e is drawn from a complex circularly symmetric Gaussian distribution with

zero mean and the covariance matrix Σe, i.e., e ∼ NC(0,Σe), then wHe is a

complex Gaussian random variable with the distribution wHe ∼ NC(0, ‖Σ
1
2
e w‖2

2).

As a result, |wHe| is Rayleigh-distributed with the CDF given by [179]

F(u) = 1− exp

(
− u2

‖Σ
1
2
e w‖2

2

)
. (3.65)

Using (3.65), the probability based distortionless response constraint can be stated

as

‖Σ
1
2
e w‖2 ≤

1

− log (1− α)
(|wH ã| − 1). (3.66)

Due to the absolute value operator, this is a non-convex constraint. Observing

that the objective in problem (3.64) is unchanged when w undergoes an arbitrary

phase rotation, wH ã can be chosen to be real without loss of generality [236]. The

probability-constrained robust beamformer design problem can then be written as

the following convex SOCP problem

min
w

wHRvw

s.t. ‖Σ
1
2
e w‖2 ≤

1

− log (1− α)
(wH ã− 1),

<{wH ã} ≥ 0,

={wH ã} = 0. (3.67)

3.3.3 Transmit Beamforming

Transmit beamforming can be used in either single or multi-user (MU) systems.

In a MU system, transmit beamforming can be used to deliver independent infor-

mation streams to each user or common information to all users. The former is

known as unicast beamforming [24, 25, 82, 183, 235], while the latter is referred to

as multicast or broadcast [41, 82, 119, 120, 211, 212] beamforming.

Transmit beamforming, especially in a MU system, is generally more difficult

than receive beamforming, because a receive beamformer only affects the signal

quality of one user, whereas, the signal transmitted from a transmit beamformer is

not only received by the intended user but all other users in the network. Hence, the

design of transmit beamformers involves the consideration of the performance of all

users in the network. Another difference between receive and transmit beamforming

is the channel knowledge. Channel state information at the transmitter (CSIT)

is generally not required in a system employing receive beamforming while it is
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Figure 3.4: Transmit beamformer where one base station transmits to M users.

essential in transmit beamforming. CSIT can be acquired through the reciprocity

principle of electromagnetics or through feedback of the channel state information

at the receiver (CSIR). Usually CSIT is only an approximation of the true channel.

It is well known that some beamforming techniques can be extremely sensitive

to channel estimation errors that lead to severe signal cancellation [25, 56]. This

makes the design of transmit beamformers a challenging task.

Fig. 3.4 shows a base station equipped with N transmit antennas simultane-

ously serving M users, each having a single antenna. The base station transmit

signal at time instance t is given by

y(t) =
M∑
m=1

sm(t)wm, (3.68)

where sm(t) and wm are the mth user’s information symbol and beamforming

vector, respectively. The signal received at the mth user is given by

rm(t) = hHmy(t) + nm(t), (3.69)

where hm is the downlink channel vector of the mth user and nm(t) is the additive

white Gaussian noise (AWGN) at this receiver. By assuming that the information

symbols and the receiver noise are statistically independent, the SINR at the mth

user can be expressed as

γm =
|wH

mhm|2∑M
l=1,l 6=m |wH

l hm|2 + σ2
m

, (3.70)

where σ2
m is the noise power.

The beamformer design problem is commonly formulated as the SINR balancing
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problem [25]. Here, the optimisation problem minimises the total base station

transmit power while imposing the constraints that the SINR at each user is above

some predefined threshold γTm. When the channel vectors hm are known, this

problem is stated as

min
{wm}Mm=1

M∑
m=1

‖wm‖2
2

s.t.
|wH

mhm|2∑M
l=1,l 6=m |wH

l hm|2 + σ2
m

≥ γTm, m = 1, . . . ,M (3.71)

Problem (3.71) is a non-convex optimisation problem; however, by noting that

the objective remains unchanged when the beamforming vector undergoes an ar-

bitrary phase shift, the problem can be restated as the following convex quadratic

optimisation problem [25]

min
{wm}Mm=1

M∑
m=1

‖wm‖2
2

s.t. (wH
mhm)2 ≥ γTm

M∑
l=1,l 6=m

wH
l hmhHmwl + γTmσ

2
m, m = 1, . . . ,M

<{wH
mhm} ≥ 0, m = 1, . . . ,M

={wH
mhm} = 0, m = 1, . . . ,M (3.72)

In many practical systems accurate estimates of the instantaneous downlink

channel vector hm may not be available. In these cases, it may be reasonable to

assume that the base station has access to the channel correlation matrix Rm =

E{hmhHm} [25]. The SINR balancing problem can then be stated as

min
{wm}Mm=1

M∑
m=1

‖wm‖2
2

s.t.
wH
mRmwm∑M

l=1,l 6=m wH
l Rmwl + σ2

m

≥ γTm, m = 1, . . . ,M (3.73)

This is also a non-convex optimisation problem. However, by defining Wm =

wmwH
m and using the SDR concept of Section 2.7.1, the problem can be restated

as the following relaxed SDP

min
{Wm}Mm=1

M∑
m=1

tr (Wm)

s.t. tr (WmRm) ≥ γTm

M∑
l=1,l 6=m

tr (WlRm) + γTmσ
2
m, m = 1, . . . ,M

Wm � 0, m = 1, . . . ,M (3.74)
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In [25, Lemma 2], it is shown that the optimum value of problem (3.73) is the

same as the optimum value of the Lagrange dual of problem (3.74). This implies

that the optimum value of problem (3.73) is the same as the optimum value of

problem (3.74). Therefore, problem (3.74) is not a strict relaxation, but actually

an equivalent reformulation of problem (3.73). Hence, problem (3.74) does always

have at least one optimum solution where all Wm have rank one.

Since downlink beamformers designed based on the assumption of perfect CSI

are known to be quite sensitive to channel uncertainties [241], several robust meth-

ods have been proposed in the literature [25, 38, 208–210, 239–241]. Imperfections

in the channel correlation matrices are considered in [25] and [241] where the chan-

nel correlation matrix is modelled as

Rm = R̃m + ∆m, m = 1, . . . , N (3.75)

Here, Rm and R̃m are the actual and the estimated channel correlation matrices

of the mth user and ∆m is the error in the estimate. In [25], the Frobenius norm

of the error matrix is assumed to be upper-bounded by a known constant εm, i.e.,

‖∆m‖ ≤ εm and a worst-case SINR constraint is used, i.e.,

min
‖∆m‖≤εm

wH
m(R̃m + ∆m)wm∑M

l=1,l 6=m wH
l (R̃m + ∆m)wl + σ2

m

≥ γTm, m = 1, . . . ,M (3.76)

which is approximated using

wH
m(R̃m − εmI)wm∑M

l=1,l 6=m wH
l (R̃m + εmI)wl + σ2

m

≥ γTm, m = 1, . . . ,M (3.77)

In [241], the authors argue that constraint (3.77) tends to be overly conserva-

tive because the approximation can be very loose and the positive semidefiniteness

of the correlation matrices R̃m + ∆m is ignored in the approximation. The ro-

bust downlink beamformer in [241] is developed as follows. The mth worst-case

constraint (3.76) can be restated as

min
‖∆m‖≤εm

−
(

tr (∆mAm) + tr (R̃mAm) + γTmσ
2
m

)
≥ 0, (3.78)

where Am = γTm
∑M

l=1,l 6=m wlw
H
l − wmwH

m. By adding the positive semidefinite

constraint on R̃m + ∆m, the left hand side of (3.78) can be expressed as the

following optimisation problem

min
∆m

−
(

tr (∆mAm) + tr (R̃mAm) + γTmσ
2
m

)
s.t. ‖∆m‖ ≤ εm,

−R̃m −∆m � 0. (3.79)
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The dual problem associated with problem (3.79) is given by

max
λm,Zm

−‖Am + Zm‖2

4λm
− λmε2m − tr

(
R̃m(Am + Zm)

)
− γTmσ2

m

s.t. λm ≥ 0,

Zm � 0, (3.80)

where λm and Zm are the dual variables. Maximising the objective function of

(3.80) with respect to λm gives the following problem

max
Zm

−εm‖Am + Zm‖ − tr
(
R̃m(Am + Zm)

)
− γTmσ2

m

s.t. Zm � 0. (3.81)

Using (3.81), the robust downlink beamforming problem is expressed as

min
{wm,Zm}Mm=1

M∑
m=1

‖wm‖2
2

s.t. −εm‖Am + Zm‖ − tr
(
R̃m(Am + Zm)

)
− γTmσ2

m ≥ 0, m = 1, . . . ,M

Zm � 0, m = 1, . . . ,M (3.82)

Through the application of SDR, problem (3.82) can be transformed into an SDP

and solved efficiently. Simulation results in [241] show that this beamformer out-

performs the design in [25] in terms of transmitted power and feasibility of the

robust problem, i.e., this problem tends to be less conservative.

Worst-case robust downlink beamforming designs based on mean square error

(MSE) as a QoS parameter have been considered in [210, 239].

Robust downlink beamforming designs based stochastic optimisation approach

are the subject of investigation in [38, 208, 240]. In [38], the robust downlink

beamformer is formulated based on the outage probability. The authors use the

model (3.75) and consider ∆m to be random matrices. To obtain a mathemat-

ically tractable formulation, it is assumed that the real-valued diagonal and the

complex-valued upper or lower triangle elements of ∆m are zero-mean, indepen-

dent Gaussian values with a variance of σ2
δm

. The probability of non-outage of the

mth user is defined as

Pm = Pr

{
wH
m(R̃m + ∆m)wm∑M

l=1,l 6=m wH
l (R̃m + ∆m)wl + σ2

m

≥ γTm

}
. (3.83)

By defining Zm = Wm − γTm
∑M

l=1,l 6=m Wl, where Wm = wmwH
m and Wl = wlw

H
l ,

(3.83) can be restated as

Pm = Pr
{

tr ((R̃m + ∆m)Zm) ≥ γTmσ
2
m

}
. (3.84)
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Using [38, Lemma 1] and exploiting the fact that the matrix R̃m+∆m is Hermitian,

tr ((R̃m + ∆m)Zm) is shown to be a real-valued Gaussian random variable with

mean and variance equal to tr (R̃mZm) and σ2
δm

tr (ZmZH
m), respectively. Hence,

the non-outage probability is given by

Pm =
1

2
+

1

2
erf

(
tr (R̃mZm)− γTmσ2

m√
2σδm‖Zm‖

)
. (3.85)

The robust beamformer design problem imposes the constraint that the non-

outage probability of themth user is above some predefined threshold pm, i.e., Pm ≥
pm. Therefore, using (3.85), the non-outage probability constraint is expressed as

tr (R̃mZm)− γTmσ2
m ≥

√
2σδm erf−1 (2pm − 1)‖Zm‖. (3.86)

Finally, the robust non-outage probability constrained downlink beamforming

problem with linear objective function with convex SOC and SDP constraints is

stated as the following relaxed SDP

min
{Wm}Mm=1

M∑
m=1

tr (Wm)

s.t. tr (R̃mZm)− γTmσ2
m ≥

√
2σδm erf−1 (2pm − 1)‖Zm‖,

m = 1, . . . ,M

Wm � 0, m = 1, . . . ,M (3.87)

3.3.4 Relay Beamforming

A relay is typically used in a scenario where the source is unable to directly commu-

nicate with the destination due to poor channel conditions. The relay can either

amplify-and-forward (AF) or decode-and-forward (DF) the source signal. When

the relay node is equipped with multiple antennas then robust receive and transmit

beamformers at the relay can be designed using the methods described in Sections

3.3.2 and 3.3.3. The benefits offered by multiple antennas can also be realised

by systems employing multiple single antenna relay nodes through a technique

known as cooperative relaying [39, 68, 99, 136, 201, 245, 269, 277]. Geographically

distributed relay nodes are cooperatively able to form a virtual antenna array and

provide increased gains in capacity through distributed beamforming. In [201, 202],

it was shown that user cooperation could be used as a form of spatial diversity.

This not only resulted in increased capacity for the users but also a more robust

system where the users’ rates were less affected by channel variations.

Fig. 3.5 shows a wireless relay network which consists of a transmitter, a

receiver and R relay nodes. All links in the network are assumed to be flat fading

channels. The channel coefficients of the transmitter to the ith relay and the ith
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Figure 3.5: Wireless relay network.

relay to the receiver links are denoted by h
(i)
tr and h

(i)
rr , respectively. In [99], robust

cooperative relay beamformers are designed based on the knowledge of the second-

order statistics of h
(i)
tr and h

(i)
rr . A two step AF protocol is assumed. During the

first step, the transmitter broadcasts the signal
√
P0s to the relays, where P0 is the

transmit power and s is the information symbol. It is assumed that E{|s|2} = 1.

The signal received at the ith relay is given by

xi =
√
P0sh

(i)
tr + n(i)

r , (3.88)

where n
(i)
r is the noise at the ith relay with a variance of σ2

r .

During the second step, the ith relay transmits the signal

yi = xiwi

=
√
P0sh

(i)
tr wi + n(i)

r wi, (3.89)

where wi is the complex beamforming weight applied by the ith relay. At the

destination receiver, the received signal can be expressed as

zs =
R∑
i=1

yih
(i)
rr + n

=
√
P0s

R∑
i=1

h
(i)
tr h

(i)
rr wi︸ ︷︷ ︸

wanted signal

+
R∑
i=1

n(i)
r h

(i)
rr wi + n︸ ︷︷ ︸

noise

, (3.90)

where n is the destination receiver noise with variance σ2.

In [99], the beamforming weights are obtained in order to either maximise the

SINR at the destination receiver subject to some power constraints or keep it above
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a certain threshold while minimising the total transmit power.

First we consider the total relay transmit power minimisation problem. Here,

the total relay transmit power, PT , is minimised while maintaining the receiver

SINR above a threshold γ. This problem is stated as [99]

min
{wi}Ri=1

PT

s.t. SINR ≥ γ. (3.91)

The total relay transmit power is given by

PT =
R∑
i=1

E{|yi|2}

= wHDw, (3.92)

where w , [w1w2 . . . wR]T and D , P0diag([E{|h(1)
tr |2} E{|h

(2)
tr |2} . . .E{|h

(R)
tr |2}]) +

σ2
r I. The wanted signal power is given by

Ps = E


∣∣∣∣∣
R∑
i=1

wih
(i)
tr h

(i)
rr

∣∣∣∣∣
2

|s|2


= wHRw, (3.93)

where R , P0E{(htr�hrr)(htr�hrr)
H}, htr = [h

(1)
tr h

(2)
tr . . . h

(R)
tr ]T , hrr = [h

(1)
rr h

(2)
rr . . . h

(R)
rr ]T

and � is the element-wise Schur-Hadamard product. The total noise power at the

destination receiver is expressed as

PnT
= E

{
R∑
i=1

R∑
j=1

wiwj
∗h(i)

rr h
(j)
rr

∗
}
E
{
|n(i)

r |2
}

+ E
{
|n|2
}

= wHQw + σ2, (3.94)

where Q , σ2
rE {hrr}. Using (3.92), (3.93) and (3.94), problem (3.91) can be stated

as [99]

min
w

wHDw

s.t.
wHRw

wHQw + σ2
≥ γ. (3.95)

By defining w̃ = D1/2w, problem (3.95) can be restated as

min
w̃

‖w̃‖2
2

s.t. w̃HD−1/2(R− γQ)D−1/2w̃ ≥ γσ2. (3.96)

As stated by the authors in [99], the constraint in (3.96) is satisfied with equality at
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the optimum, for otherwise, the optimal w̃ could be scaled down to satisfy the con-

straint with equality, thereby decreasing the objective function and contradicting

optimality. The Lagrangian function of (3.96) can therefore be written as

L(w̃, λ) = w̃Hw̃ − λ(w̃HD−1/2(R− γQ)D−1/2w̃ − γσ2) (3.97)

and the derivative of the Lagrangian function with respect to w̃ as

∂L(w̃, λ)

∂w̃
= 2w̃ − 2λD−1/2(R− γQ)D−1/2w̃. (3.98)

The KKT conditions for optimality, i.e., the gradient of the Lagrangian vanishes

at the optimum and primal feasibility, are given by

D−1/2(R− γQ)D−1/2w̃∗ =
1

λ
w̃∗ (3.99a)

w̃∗HD−1/2(R− γQ)D−1/2w̃∗ = γσ2. (3.99b)

We see that (3.99a) is an eigenvalue problem and w̃∗ is an eigenvector of

D−1/2(R − γQ)D−1/2 and 1/λ the corresponding eigenvalue. Using (3.99a) and

(3.99b), the optimum value of the objective function of (3.96) is given by

‖w̃∗‖2
2 = λγσ2. (3.100)

This implies that in order to minimise ‖w̃‖2
2, λ should be minimised. Hence, 1/λ

is selected to be the largest eigenvalue of D−1/2(R − γQ)D−1/2 [99]. Finally, the

optimum beamforming vector is given by [99]

w∗ =

(
γσ2

uHD−1/2(R− γQ)D−1/2u

)1/2

D−1/2u, (3.101)

where u is the normalised principal eigenvector of D−1/2(R− γQ)D−1/2.

The second beamformer design problem considered in [99] is the maximisation

of the destination receiver SINR subject to individual relay power constraints. This

optimisation problem is expressed as

min
w

wHRw

wHQw + σ2

s.t. Dii|wi|2 ≤ Pi, i = 1, 2, . . . , R (3.102)

where Dii is the ith diagonal entry of the matrix D. Problem (3.102) is a non-

convex optimisation problem; however, it can be transformed into a convex form as

described next. Using the definition W , wwH , problem (3.102) can be restated
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as the following SDP

min
W

tr (RW)

tr (QW) + σ2

s.t. DiiWii ≤ Pi, i = 1, 2, . . . , R

W � 0,

rank (W) = 1. (3.103)

Using the epigraph form, problem (3.103) can be written as [99]

min
W,t

t (3.104a)

s.t. tr (W(R− tQ)) ≥ tσ2 (3.104b)

DiiWii ≤ Pi, i = 1, 2, . . . , R (3.104c)

W � 0, (3.104d)

rank (W) = 1. (3.104e)

Due to the non-convex constraints (3.104b) and (3.104e), problem (3.104) is a

non-convex optimisation problem. To proceed, the authors of [99] apply the idea

of SDR and relax the problem by removing the rank constraint (3.104e). The

resulting relaxed problem is still non-convex as constraint (3.104b) remains to be

dealt with. In [29, 99], it was shown that in problems of this nature, for any fixed

value of t the set of feasible W is convex and hence the relaxed problem is quasi

convex. Therefore, for some given t, problem (3.104) can be expressed as the

following convex feasibility problem

find W

s.t. tr (W(R− tQ)) ≥ tσ2

DiiWii ≤ Pi, i = 1, 2, . . . , R

W � 0. (3.105)

The bisection method [29, p. 146] is a commonly used technique for solving

convex feasibility problems like problem (3.105). Upon completion of the bisection

algorithm, the optimum beamforming vector, w∗, needs to be recovered from W.

Since problem (3.105) is a relaxed form of the original problem, W is not guaranteed

to be rank one. In [99], the principal eigenvector of W is chosen as the optimum

beamforming vector when W happens to be rank one. When W is not rank one,

the Gaussian sampling technique discussed in Section 2.7.3 can be used to obtain

a good approximation of a rank 1 solution. In [99], it is reported that in their

extensive numerical simulations, the authors never encountered a case where the

solution had a rank higher than one.
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3.4 Summary

This chapter established the theory and application of robust optimisation to com-

munication systems. Robust optimisation is generally used when the input data

has some degree of uncertainty. This occurs frequently in many real world engi-

neering problems and robust optimisation methods seek to find solutions that offer

robustness against the uncertainty. Robust optimisation techniques are generally

based on bounded uncertainty models where bounds on data uncertainty are known

or stochastic optimisation where the statistics of the uncertain data are known.

Bounded uncertainty based optimisation offers hard performance guarantees,

i.e., constraints are guaranteed to be met in the worst-case scenario; however,

very conservative solutions are usually obtained. The ellipsoidal uncertainty model

is the most commonly used uncertainty model because an ellipsoid has a simple

mathematical representation and easily handled numerically, ellipsoids and inter-

sections of ellipsoids can be used to more complicated uncertainty sets and in some

cases where the uncertain data has an underlying stochastic model, the stochastic

uncertainty can be replaced by a deterministic ellipsoidal uncertainty.

Stochastic optimisation methods utilise the knowledge of the statistics of the

uncertain data to obtain solutions that offer some average performance or perfor-

mance that meets design requirements with a given probability. Solutions obtained

through stochastic optimisation methods tend to be less conservative than bounded

uncertainty based methods.

Applications of bounded uncertainty based optimisation and stochastic opti-

misation in communication systems, specifically robust power control, robust con-

ventional receive and transmit beamforming and cooperative beamforming, was

outlined.
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Cognitive Radio Systems

In recent years, the explosive growth in the use of wireless devices has made the

problem of spectrum utilisation more critical. Governments have traditionally

adopted a fixed spectrum access policy whereby bands of spectrum are exclusively

licensed to one or more dedicated users. This creates a situation where only the

licensed user is allowed to use the spectrum even when the spectrum is unused.

Due to this usage model and the finite availability of spectrum, most of the avail-

able spectrum has been fully allocated in several countries [138] and the problem

of spectrum scarcity is beginning to appear.

In 2002, a report aimed at improving the manner in which spectrum is managed

in the United States was published by the FCC Spectrum Policy Task Force [48].

One of the main findings of this report was that in many bands, spectrum access

rather than the physical scarcity of spectrum is a significant problem. It was

identified that the challenges to spectrum access were largely brought on by legacy

command-and-control regulation that limits the ability of potential spectrum users

to obtain such access. The FCC findings are supported by various measurements of

spectrum utilisation [60, 112, 130, 158, 159, 220]. These measurements have revealed

that, even in urban areas, there are substantial unused resources in frequency, time

and space. In [130], this underutilised spectrum is referred to as spectrum holes,

i.e., a band of frequencies assigned to a primary (licensed) user (PU), but, at a

particular time and specific geographic location, the band is not being used by

that user. To maintain sustainable wireless services, new methods of spectrum

utilisation and policy changes are needed. Clearly, if secondary (unlicensed) users

(SU) are allowed to access spectrum holes unoccupied by the PUs, then spectrum

utilisation can be significantly improved.

CR [163, 164] is a new paradigm for exploiting underutilised spectral resources

by reusing unused spectrum in a dynamic and opportunistic manner. This access

method is commonly referred to as dynamic spectrum access (DSA). In [102], a

CR is defined as an intelligent wireless communication system that is aware of its

surrounding environment and adapts its internal states to statistical variations in

61
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the incoming RF stimuli by making corresponding changes in certain operating

parameters, such as carrier frequency, bandwidth, modulation, transmit power and

beamformer parameters, in real time. In order to achieve its goals, a cognitive radio

undertakes the following fundamental tasks, known as a cognitive cycle [102, 164]

1. Radio scene analysis, which involves estimation of interference level and de-

tection of spectrum holes.

2. Channel estimation and channel capacity prediction.

3. Transceiver configuration, which may involve carrier frequency and band-

width selection, transmit power control, modulation selection and beam-

former weight selection.

Two basic spectrum access methods for CRs have been proposed in the liter-

ature [90, 138, 164, 272, 275]: Opportunistic Spectrum Access (OSA) (also referred

to as interweave) and Spectrum Sharing (SS) (also referred to as underlay or con-

current spectrum access). In the OSA model, the SUs are allowed to transmit in

the band of interest when none of the PUs are transmitting in that band. This is

achieved through spectrum sensing [1, 13, 103, 138, 150, 257, 265] where the SUs de-

tect active PU signals in the band of interest. By contrast, the SS model allows the

SUs to transmit concurrently with the PUs in the same band of interest, provided

that the SUs are able to maintain performance degradation at the PU receivers

within some acceptable margin.

The recent advancements in CR technologies have led the IEEE to finalise

the 802.22 wireless regional area network (WRAN) standard [94]. This is the

first worldwide standard aimed at utilising the white spaces in the television (TV)

spectrum for broad-band access in rural areas using CR technology.

The rest of this chapter presents an overview of the various spectrum sensing

and spectrum sharing techniques from the literature.

4.1 Spectrum Sensing for OSA

In the cognitive cycle of the OSA model, spectrum sensing forms the main part of

the radio scene analysis. The aim of spectrum sensing is to robustly and reliably

detect whether the band of interest is available or not. The basic idea of spectrum

sensing is to discriminate between two hypotheses: H0 for PU signal absent and

H1 for PU signal present. This is mathematically represented as [13]

H0 : y[k] = n[k], k = 1, . . . , K

H1 : y[k] = x[k] + n[k], k = 1, . . . , K, (4.1)
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where x[k] ∈ CM×1 is the PU’s signal at the SU receiver, n[k] ∈ CM×1 represents

the SU receiver noise, k represents time and y[k] ∈ CM×1 is the baseband signal

at the SU receiver. The mth element of y[k] could represent the received signal at

the mth antenna. In the literature [13, 150, 265], it is common to stack the vectors

in (4.1) to form vectors of length MK. Using this gives the following compact

representation of (4.1)

H0 : y = n

H1 : y = x + n. (4.2)

In (4.2), n is assumed to be a zero-mean vector with complex Gaussian entries and

the covariance matrix σ2I.

In order to determine whether y is generated under H0 or H1, a test statis-

tic, Λ(y), is generated from the received signal y and compared to a predefined

threshold γ [125, 178, 198], i.e.,

Λ(y)
H1

≷
H0

γ. (4.3)

For a detector, the probability of detection is defined as the probability that

the test statistic is greater than the threshold given hypothesis H1, i.e., PD =

Pr (Λ(y) > γ|H1). Similarly, the probability of false alarm is defined as the proba-

bility that the test statistic is greater than the threshold given hypothesis H0, i.e.,

PFA = Pr (Λ(y) > γ|H0).

In order to obtain good detection performance, Λ(y) and γ need to be chosen

carefully. Either a classical (deterministic) or Bayesian framework can be used

to design a detector. The classical framework uses the Neyman-Pearson theorem

[125, 178, 198] for detector design. The Neyman-Pearson theorem states that for a

given probability of false alarm, the test statistic that maximises the probability

of detection is the likelihood ratio test (LRT) given by

Λ(y) =
f(y|H1)

f(y|H0)
, (4.4)

where f(·) denotes the PDF. A drawback of using the LRT is that it requires the

knowledge of the exact probability distributions of the source signal, the wireless

channel and the noise, which is difficult to realise in practice.

In the Bayesian framework, it is assumed that the source selects the true hypoth-

esis at random according to some a priori probabilities Pr (H0) and Pr (H1) [198].

The aim is to marginalise the likelihood function needed in the LRT to eliminate
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the unknowns, i.e.,

f(y|H0) =

∫
f(y|H0,Θ0)f(Θ0|H0) dΘ0, (4.5)

where Θ0 represents all unknown parameters when H0 is true, f(y|H0,Θ0) denotes

the conditional PDF of y under H0 and conditioned on Θ0, and f(Θ0|H0) is the

a priori probability distribution of Θ0 under H0. The same analysis applies to

hypothesis H1. The main drawbacks of the Bayesian approach is that it requires

the knowledge of the a priori distribution of the unknowns under each of the two

hypotheses. This is generally not perfectly known but nevertheless can be chosen to

provide a meaningful result. The choice of prior distributions affects the detection

performance dramatically and therefore, this is not a trivial task [265].

In order to use the LRT, the unknown parameters need to be estimated. It is

common to use the maximum-likelihood (ML) estimates of the unknown parame-

ters, which gives rise to the generalised likelihood-ratio test (GLRT)

max
Θ1

f(y|H1,Θ1)

max
Θ0

f(y|H0,Θ0)

H1

≷
H0

γ. (4.6)

4.1.1 Energy Detection

Energy detection [63, 125, 194, 206, 217, 233] is the simplest form of spectrum sens-

ing. An energy detector (ED) does not need any knowledge of the PU’s signal

and therefore is robust against the variation of the PU’s signal. It treats the PU’s

signal as noise and makes a decision on whether the PU’s signal is present or not

based on the energy of the received signal. The ED is designed by assuming that

the received PU’s signal is zero-mean circularly symmetric complex Gaussian, i.e.,

x ∼ NC(0, ξ2I). Hence, y|H0 ∼ NC(0, σ2I) and y|H1 ∼ NC(0, (σ2 + ξ2)I). The

Neyman-Pearson LRT is therefore given by [125]

Λ(y) =
‖y‖2

2

σ2
=
H1

≷
H0

γ. (4.7)

In [108], it was shown that ED is the optimal detector if only the noise power

is known to the SUs. The ED suffers from a number of drawbacks, some of which

include i) an inability to distinguish different types of signals, which increases the

probability of false alarm when the received signal contains unintended interference

[138]; ii) a susceptibility to the uncertainty of noise power, which makes threshold

selection difficult [229]; and iii) poor performance in detecting spread spectrum

signals [34, 256].
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4.1.2 Matched Filter Detection

Wireless systems usually employ pilots, preambles or training sequences to aid

synchronisation and channel estimation. When these patterns are known to the

SUs, coherent matched filter detection can be used for spectrum sensing [108, 162,

230]. This involves correlating the received signal with a known copy of itself. In

this case, the optimal test statistic is the output of the matched filter [125, 178],

i.e.,

<(xHy)
H1

≷
H0

γ. (4.8)

In [230], it was shown that matched filter based spectrum sensing outperforms

ED in reliability and sensing time. However, the estimation error can be large in

low SNR scenarios [138].

4.1.3 Sensing Based on Feature Detection

Practical communication signals usually contain distinctive features that can be

used for detection. Unknown parameters can also be estimated from known signal

features [13, 138]. These features generally originate from modulation, coding and

burst formatting techniques used in modern communication systems [13]. For ex-

ample, orthogonal frequency division multiplexing (OFDM) modulation prepends

a cyclic prefix (CP) of length NC to every transmitted OFDM symbol to mitigate

the effects of multipath propagation. The CP is chosen to be the last NC sam-

ples of the OFDM symbol, hence, the first and last NC samples of the OFDM

symbol will be highly correlated. To aid parameter tracking, most communication

systems transmit pilots and this also introduces distinctive signal features. Space-

time coding introduces correlation into the transmitted signal which can result in

distinguishable signal features. In a MIMO system, if there are more receiving

antennas than transmitting, then the received signal will be correlated [13, 138].

This section briefly describes detectors that exploit known features in the PU’s

signal. We focus on detectors based on second-order statistics and those based on

cyclostationarity.

Detectors Based on Second-Order Statistics

Communication systems typically introduce redundancy into the transmitted sam-

ples, hence, the received samples are correlated. The CP in OFDM modulation

discussed above is one such example. The second-order statistics can therefore be

used to distinguish a white signal from a coloured one. Communication signals

are generally zero-mean and very nearly Gaussian distributed and therefore the

second-order statistics are sufficient for detection.
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Detectors based on second-order statistics of OFDM signals have been consid-

ered in [11, 43, 134]. Assume that a single receive antenna is utilised and the OFDM

symbols contain Nd data symbols and Nc CP symbols. The SU collects a number

of consecutive OFDM symbols and forms the following auto-correlation function

(ACF) of the received signal

ry[k, l] =
Nc−1∑
m=0

y[k +m]y∗[k +m+ l], (4.9)

where l is the correlation lag. Since the ACF of white noise is zero for all lags

l 6= 0, the ACF will be zero under hypothesis H0. Due to the CP in the OFDM

symbols, the AFC will be nonzero for lag l = Nd for some time instances k and zero

for others. Hence, the ACF is time-varying under hypothesis H1. Several different

statistical tests to detect the PU’s signal have been proposed in [11, 43, 134]. All

of these exploit the non-stationary property of the ACF magnitude.

Detectors Based on Cyclostationarity

Many man-made signals are not only non-stationary, but also cyclostationary, i.e.,

their statistics such as mean or auto-correlation, exhibit periodicity. This may arise

due to modulation and coding, pilots for channel estimation and synchronisation

or even can be intentionally induced to aid spectrum sensing [155, 226, 227]. For

example, due to the CP, the ACF of the OFDM modulated signal is periodic with

period Nc + Nd. Detectors based on cyclostationarity detect PU transmissions by

exploiting the cyclostationarity of the received signals [34, 58, 86, 97, 126, 145, 180,

206].

Cyclostationary detection requires the computation of the cyclic spectrum den-

sity function (CSD) of the received signal as [80]

S(f, α) =
∞∑

l=−∞

Rα
y (l) exp (−j2πfl), (4.10)

where

Rα
y(l) = E[y(k)y∗(k − l) exp (−j2παk)] (4.11)

is the cyclic auto-correlation function (CAF) and α is the cyclic frequency. When

the cyclic frequency is equal to the fundamental frequencies of the transmitted

signal, the CSD function outputs peak values. Since white noise does not have any

cyclostationarity, i.e., its CSD has zero values for all non-zero cyclic frequencies, it

is possible to distinguish noise from the PU’s signal. Furthermore, different signal

types may have different non-zero cyclic frequencies, hence, it is also possible to

distinguish between different transmitted signals.
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The cyclostationary features do not vary with the SNR, therefore, detectors

based on cyclostationarity can work in very low SNRs [44]. The main drawback of

cyclostationarity based detection is its high computational complexity compared

with ED and matched filter detection [138].

4.1.4 Blind Detection

When the SUs have no information about the PU’s transmitted signal, such as the

waveform or the cyclic frequency, blind detection methods need to be used. In this

section, we briefly describe a number of blind detection methods.

Covariance Based Detection (CBD)

In practical wireless systems, the received signal is generally temporally correlated

due to the dispersive nature of the wireless channel. This temporal correlation in

the received signal can be used to differentiate the PU’s signal from noise. Covari-

ance based detectors [262, 264] determine the presence or absence of the PU’s signal

based on the covariance of the received signal. The significance of the correlations

of the received signal with non-zero lags compared to the correlation with zero lag

specifies the presence or absence of the PU’s signal.

Sensing Using Multiple Antennas

Eigenvalue based detection (EBD) for spectrum sensing can be used when the SU

receivers are equipped with multiple antennas [10, 51, 244, 261, 263, 273]. The max-

imum and minimum eigenvalues of the received sample covariance matrix can be

used to detect the presence of the PU’s signal. When the PU’s signal is not present,

the two eigenvalues will generally have similar magnitudes; however, when the PU’s

signal is present and the sample covariance matrix is not a multiple of the identity

matrix, the difference between the maximum and minimum eigenvalues is expected

to be large [138]. Therefore, the condition number of the sample covariance matrix

can be used as the test statistic for signal detection [261, 263].

Furthermore, in [12], it was shown that some communication signals impose a

specific known structure to the sample covariance matrix, hence, the eigenvalue

structure of the covariance matrix will be different based on the communication

signal type. For instance, single-input multiple output (SIMO), MIMO, orthogo-

nal space-time block code (OSTBC) and OFDM exhibit very different eigenvalue

structures [13]. This can be used by the SUs for both detection and identification

of signalling type used by the PUs.
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Wideband Spectrum Sensing

In many cognitive radio applications, a wide band of spectrum needs to be sensed.

One method of performing this task is to divide the band into a number of narrow-

band channels and individually or jointly sense on these channels. This is known

as multiband sensing [13]. A simple approach is to assume that the subchannels

are independent and perform individual sensing using the blind methods discussed

above.

In practice, both the PU’s signal and the noise variance can be correlated across

the subchannels [9, 107]. In this case, joint detection can be performed across

the subchannels; however, the detection complexity grows exponentially with the

number of channels [9, 107]. In [52–54], a computationally tractable blind wideband

interference detection algorithm using a hidden Markov model (HMM) is proposed.

4.2 Spectrum Sharing

As discussed previously, in the SS or underlay paradigm, the SUs are allowed

to access the wireless channel concurrently with the PUs as long as the primary

system’s performance is not significantly degraded. The development of effective

spectrum sharing methods is the main subject of this thesis.

One of the approaches for safeguarding the PU is based on the concept of

interference-temperature limit [48]. The interference-temperature is defined as the

total interference power at a PU receiver and the limit serves as a “cap” on the

maximum interference level that be tolerated by the PU receiver. One of the main

drawbacks of the constant interference-temperature based protection is that it does

not take into account the PU transmitter to PU receiver link quality into account,

hence, the interference limit cannot be adapted accordingly. For instance, when

the PU transmitter to PU receiver link is strong, the PU receiver is able to tolerate

a higher level of interference compared to when this link is weak. To overcome this

shortcoming, a PU receiver SINR-based protection mechanism has been proposed

in the literature [65, 214, 224, 225]. This scheme has the advantage that it can

adapt to the PU receiver to PU transmitter link thus benefiting the SU when this

link is strong. However, it imposes additional CSI requirements [225] on the SU

and increased collaboration with the primary system is needed. In this thesis, the

SINR-based protection mechanism is adopted in the development of the spectrum

sharing methods.

SS-based systems can be mainly classified into two categories [111, 242] accord-

ing to their: i) architecture; and ii) spectrum allocation behaviour. The architec-

ture could be either centralised [32, 260] or distributed [109, 151, 181]. In centralised

spectrum sharing, a central controller controls the spectrum allocation and access

procedures. Distributed nodes generally forward CSI and spectrum measurements



4.2 Spectrum Sharing 69

to the central controller to aid spectrum allocation. Distributed spectrum sharing

is used in situations where construction of an infrastructure may not be possible.

Here, the nodes are responsible for spectrum allocation and access is generally

based on local policies. The spectrum allocation behaviour can be either coop-

erative [32, 109] or non-cooperative [181, 278]. Cooperative methods consider the

effect of each node’s communication on other nodes. Measurements made by each

node is shared among other nodes and this information is used in spectrum alloca-

tion. In non-cooperative solutions, the nodes work independently of each other and

each node tries to achieve its goals without consideration of other nodes. This may

result in reduced spectrum utilisation; however, the communication requirements

among the nodes are much lower compared to cooperative solutions.

The optimal approach to designing SS-based systems would be to consider the

PU and SU systems as one large interference network and jointly optimise their

transmissions to maximise the SU system’s throughput while guaranteeing QoS

to the PU system [271]. However, in practice, the PU systems are designed in-

dependently from the SU systems, since the PU and SU systems may belong to

different operators or the PU systems may already exist. Hence, the SU systems

would generally be designed independently with some knowledge of the PU sys-

tems. The fundamental information theoretic capacity limits of such systems have

been analysed in [65, 85, 114, 118, 170, 225, 243].

Two efficient spectrum access methods can be used in the underlay paradigm.

When the SU transmitters and receivers are equipped with single antennas, trans-

mit power control can be utilised. Transmit beamforming can be used when the

SU transmitters are equipped with multiple antennas. These two methods are

discussed next.

4.2.1 Transmit Power Control

As discussed in Section 3.3.1, transmit power control provides a method for con-

trolling interference and increased utilisation of the wireless spectrum in multi-user

communication systems where the users access the shared channel simultaneously.

The same concept can be applied to a SS-based system to manage the interference

among the SUs and to avoid harmful interference to the PUs.

The transmit power control for underlay CR systems is considered in Chapter 5.

4.2.2 Transmit Beamforming

Conventional and cooperative transmit beamforming were discussed in Sections

3.3.3 and 3.3.4, respectively. These beamforming techniques can also be applied to

SS-based CR systems to control the level of interference at the PUs while enhancing

the performance of the SUs.
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The cooperative CR beamforming and the CR beamforming problems are con-

sidered in Chapters 6 and 7, respectively.

4.3 Summary

This chapter has provided an overview of the CR concept. CR is a technology for

improving the wireless spectrum utilisation which is achieved by reusing unused

spectrum in a dynamic and opportunistic manner. A CR system is an intelligent

wireless communication system that is aware of its surrounding environment and

adapts its internal states to statistical variations in the incoming RF stimuli by

making corresponding changes in certain operating parameters. Hence, a CR sys-

tem is able to co-exist with a primary system without degrading the performance

of the primary system.

The OSA (interweave) and SS (underlay) are the two basic spectrum access

methods for CRs. In the OSA model, the SUs are allowed to transmit in the band

of interest when none of the PUs are transmitting in that band. This is achieved

through spectrum sensing where the SUs detect active PU signals in the band

of interest. A large number of spectrum sensing methods have been proposed in

the literature, some of which include energy detection, matched filter detection,

second-order statistics and cyclostationarity detection and blind detection. The SS

model allows the SUs to transmit concurrently with the PUs in the same band of

interest, provided that the SUs are able to limit performance degradation at the PU

receivers within some acceptable level. Transmit power control and beamforming

are two methods of managing interference in CR underlay systems.

The IEEE has recently ratified the 802.22 WRAN standard [94]. This is the

first worldwide standard aimed at utilising the white spaces in the TV spectrum

for broad-band access in rural areas using CR technology.



Chapter 5

Power Control in Underlay

Cognitive Radio Systems with

Feasibility Detection

This chapter considers an underlay CR system with N SU pairs1 sharing spectrum

with a pair of PUs. The SU power allocation problem is formulated as a sum rate

maximisation problem under PU and SU QoS and SU peak power constraints. It is

shown that the formulated problem is a GP and can be solved with convex optimi-

sation techniques. The effect of PU transmissions are examined in the formulations.

Solutions for both low- and high- SINR scenarios are provided. It is shown that

including the PU rate in the optimisation problem in some circumstances leads to

increased PU performance while not significantly degrading SU sum rate.

In a practical wireless communications system, accurate CSI is not often avail-

able hence power allocation problems are formulated with both perfect and partial

CSI and the performance loss incurred due to partial CSI is analysed. Furthermore,

a novel method of detecting and removing infeasible SU QoS constraints from the

SU power allocation problem that results in considerably improved SU performance

is presented.

Results in the form of rate CDFs for various Rayleigh fading channels are pre-

sented.

5.1 Introduction

In an underlay CR system the SUs protect the PU by regulating their transmit

power to maintain the PU receiver interference below a well defined threshold

level. The limits on this received interference level at the PU receiver can be

imposed by an average/peak constraint [85], or a minimum value for its SINR [65].

1A pair consists of a transmitter and a receiver

71
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While imposing an additional CSI requirement [225], the advantage of using an

SINR-based PU protection mechanism is that it removes the constant interference

threshold, thus benefiting the SUs when the PU link has large SINR.

Power control in CR systems presents unique challenges. In spectrum sharing

applications, SU’s power must be allocated in a manner that achieves the goals of

the CR system while not adversely affecting the operation of the PU. Generally

the goals of the CR are not compatible with the goals of the PU; for instance,

increasing SU’s power to increase SU’s rate will tend to increase interference to the

PU. There is a growing body of literature on power control and capacity of CR

systems. In [219], soft sensing information was used for optimal power control to

maximise capacity of one SU pair coexisting with one PU pair. The impacts of SU’s

transmission power on the occurrence of spectrum opportunities and the reliability

of opportunity detection was analysed in [188]. In [45], dynamic programming was

used to develop a power control strategy for one SU pair under a Markov model

of the PU’s spectrum usage. Optimal power allocation strategies to achieve the

ergodic capacity and the outage capacity of one SU pair coexisting with one PU pair

under different types of power constraints and fading channel models were obtained

in [118]. Power control using game-theoretic approaches has been proposed in

[2, 203]. Power control for CR systems using geometric programming has been

proposed in [115, 135, 231]. In [135], a CR relay system with one cognitive source,

one relay and a cognitive destination coexisting with a PU pair was considered and

an optimisation problem to minimise the total CR transmit power under a peak

interference constraint was formulated and solved using geometric programming. A

minimax approach was used in [231] to minimise the maximum transmit power for a

CR system coexisting with a PURx. The interference caused by a PUTx to the SURxs

was not considered in the problem formulation of [231]. In [115], a distributed

approach was used for power allocation to maximise SU sum capacity under a

peak interference constraint, but the approach did not include the interference

caused by the PUTx and the problem was only analysed for a high SINR scenario.

The contributions of this chapter are as follows.

• We formulate the SU’s power allocation problem as a sum rate maximisation

problem under PU and SU QoS and SU peak power constraints. We show

that it can be solved using geometric programming and convex optimisation

techniques.

• Unlike in [115, 135, 231, 272], where the PU’s interference at each SURx is ne-

glected, we evaluate the effect of the PU’s interference by explicitly including

it in our formulations. We present solutions for both low and high SINR

scenarios.

• Most of the CR literature adopts a SU centric view and, apart from guaran-
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teeing minimum QoS to PU, does not consider the PU-SU system as a whole.

We show that considering the system sum rate in the optimisation prob-

lem, in some circumstances, results in improved PU’s performance without

a significant penalty in SU’s sum rate. Optimisation strategies for different

channel conditions are presented.

• We develop a robust SU power allocation problem under channel uncertain-

ties by considering a PU outage probability constraint. Through numerical

simulations we show that significant losses in SU’s performance can be ex-

pected when perfect CSI is not available.

• We present a novel method of detecting and removing infeasible SU’s QoS

constraints from the SU power allocation problem that results in considerably

improved SU’s performance.

Although we only consider flat Rayleigh channels, the framework developed in

this chapter can be readily extended to other channel models such as Ricean or

Nakagami.

5.2 System Model

As shown in Fig. 5.1, we consider an underlay CR system with a single PU and

N SU transmitters communicating simultaneously over a common channel to their

respective receivers. Independent, point-to-point, flat Rayleigh fading channels are

assumed for all links in the network. Let gp = |hp|2, g
(ij)
ss = |h(ij)

ss |2, g
(i)
ps = |h(i)

ps |2 and

g
(j)
sp = |h(j)

sp |2 denote the instantaneous channel powers of the PUTx to PURx, SUTx

j to SURx i, PUTx to SURx i and SUTx j to PURx links, respectively. For notational

convenience we will denote g
(i)
s = g

(ii)
ss . Furthermore, we assume that the channel

powers for the PU and each of the N SUs are independent exponentially distributed

random variables and are governed by their corresponding parameters E(gp) = Ωp,

E(g
(i)
s ) = Ωs ∀i, E(g

(ij)
ss ) = Ωss ∀i 6= j, E(g

(i)
ps ) = Ωps ∀i and E(g

(j)
sp ) = Ωsp ∀j.

In our model the SINR at the ith SU receiver is given by

γ(i)
s =

P
(i)
s g

(i)
s

N∑
j=1,j 6=i

P
(j)
s g

(ij)
ss + Ppg

(i)
ps + σ2

s

(5.1)

and that at the PU receiver by

γp =
Ppgp

N∑
j=1

P
(j)
s g

(j)
sp + σ2

p

, (5.2)
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Figure 5.1: System Model

where P
(j)
s and Pp are the jth SU and PU transmit powers, respectively, and σ2

s

and σ2
p are the AWGN variance at the ith SURx and PURx, respectively. We also

note that that there is a maximum transmit power constraint, P
(j)
s,max, on the SU

transmitters which may be due either to regulatory or hardware limitations. This

is denoted by

P (j)
s ≤ P (j)

s,max.

Additionally, the vector Ps is used to collectively refer to the set of SU transmit

powers, i.e., Ps , [P
(1)
s . . . P

(N)
s ]T .

In an underlay CR system the secondary users are allowed to operate as long

as they can guarantee a certain level of QoS to the primary user. Hence, in our

analysis we impose an SINR constraint, γT , at the PU receiver, γp ≥ γT.

The PU’s rate is given by

Rp = log2(1 + γp), (5.3)

while the SU’s sum rate is denoted by

RΣ =
N∑
i=1

Ri, (5.4)

where the individual rate of the ith SU is given by

Ri = log2

(
1 + γ(i)

s

)
. (5.5)
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Using (5.3) and (5.4), the system sum rate can then be expressed as

Rsys = Rp +RΣ. (5.6)

RΣ and Rsys are the performance metrics optimised in Sections 5.3-5.6 of this

chapter.

The main system variables can be parameterised as follows. We denote by

c1 = Ωsp/Ωs the ratio of interference to desired channel power. Similarly,

c2 =
γT

PpΩp/σ2
p

(5.7)

represents the ratio of the minimum target SINR to the mean SNR at the PURx.

Hence, increasing c2 corresponds to reducing the allowable interference, with the

case of c2 = 1 corresponding to zero average allowable interference. Finally, c3 =

Ωss/Ωs is the ratio of desired channel power to interfering SU link channel power.

5.3 SU Power Optimisation

In this section, we aim to find the SU’s power allocation such that the SU’s sum

rate, RΣ, or the system sum rate, Rsys, is maximised while maintaining the PU

receiver QoS above the threshold γT, and keeping within the SU’s transmit power

budget. We may additionally choose to set minimum SINR thresholds, γ
(i)
s,min on the

ith SU receiver. This represents a practical limitation on SU receivers below which

the receivers fail to operate with acceptable performance. We assume that the

power allocation problem is solved by a central SU controller and a control channel

for the exchange of all necessary information needed for solving the problem exists.

Furthermore, we assume that we are unable to control the PU’s transmit power and

the PU transmits at a constant power of Pp. In this section, we formulate the SU

power allocation problem under the assumption that perfect CSI for all links are

available which allows us to obtain fundamental limits on rate. However, in practice

the channel gains would need to be estimated, hence the capacities obtained in this

section provide an upper bound. In Section 5.5, we consider the case when perfect

CSI is not available and there is a non-zero probability of PU outage which we

constrain. Mathematically we solve the following suite of optimisation problems.

1. SU Sum Rate Maximisation:

max
Ps

RΣ (5.8a)

s.t. γp ≥ γT, (5.8b)

P (j)
s ≤ P (j)

s,max, j = 1, . . . , N (5.8c)

(and o.s.t.) γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N (5.8d)
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where s.t. and o.s.t. stand for “subject to” and “optionally subject to”,

respectively. The only difference between problems (5.8a)–(5.8c) and

(5.8a)–(5.8d) is that (5.8a)–(5.8d) includes SU QoS constraints, whereas

(5.8a)–(5.8c) does not.

2. System Sum Rate Maximisation:

max
Ps

Rsys (5.9a)

s.t. (5.8b) and (5.8c), (5.9b)

(and o.s.t.) (5.8d). (5.9c)

From (5.4) and (5.5) it is obvious that maximising the objective in (5.8) is

equivalent to maximising
∏N

i=1 (1 + γ
(i)
s ). Similarly, for (5.9) we seek to maximise

(1 +γp) ·
∏N

i=1 (1 + γ
(i)
s ). Problems (5.8) and (5.9) can be modified to minimisation

problems by taking the reciprocal of the objectives. The suite of optimisation

problems are nonlinear and non-convex and generally hard to solve [29]. We proceed

by dividing our problem into high and low SINR scenarios.

5.3.1 High SINR Scenario

When the SINR at every receiver is high, Rp, RΣ and Rsys given in (5.3)–(5.6) can

be approximated by

Rp ≈ log2(γp)

RΣ ≈ log2

(
N∏
i=1

γ(i)
s

)
(5.10)

Rsys ≈ log2

(
γp ·

N∏
i=1

γ(i)
s

)
.

These approximations are accurate when γp and γ
(i)
s are much larger than 0 dB,

e.g., 10 dB or more. Using the approximations in (5.10), the optimisation problems

(5.8) and (5.9) can be written in minimisation form as

1. High SINR SU Sum Rate Maximisation :

min
Ps

N∏
i=1

(
1

γ
(i)
s

)
s.t. (5.8b), (5.8c) and optionally (5.8d). (5.11)
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2. High SINR System Sum Rate Maximisation :

min
Ps

(
1

γp

)
·
N∏
i=1

(
1

γ
(i)
s

)
s.t. (5.8b), (5.8c) and optionally (5.8d). (5.12)

Problems (5.11) and (5.12) are GPs and can be transformed to convex optimisation

problems and solved efficiently in polynomial time by interior point methods [175].

Through straightforward manipulation of the second and third constraints,

problems (5.11) and (5.12) can be transformed into a standard form GP [29]. Once

in this form, they can be solved to obtain the optimum SU power allocation. The

resulting performance is evaluated in Section 5.7.

5.3.2 Low SINR Scenario

In the low SINR scenario the approximation (5.10) is no longer valid and so our

sum rate maximisation optimisation problems are given by

1. Low SINR SU Sum Rate Maximisation :

min
Ps

N∏
i=1

(
1

1 + γ
(i)
s

)
s.t. (5.8b), (5.8c) and optionally (5.8d). (5.13)

2. Low SINR System Sum Rate Maximisation :

min
Ps

(
1

1 + γp

)
·
N∏
i=1

(
1

1 + γ
(i)
s

)
s.t. (5.8b), (5.8c) and optionally (5.8d). (5.14)

The objectives in problems (5.13) and (5.14) are ratios of posynomials and hence

they are not themselves posynomials. Optimisation problems of this nature are

not GP and are known as Complementary GP [18]. Complementary GPs are

non-convex problems but can be solved with an iterative technique known as the

single condensation method [18]. In each iteration, the feasible point computed

in the previous iteration is used to approximate the denominator of the objective

monomial. Since a ratio of posynomial and monomial is a posynomial [29], the

resulting problem is a GP. The procedure is repeated until the solution converges on

an optimum of the original Complementary GP. It should be noted that convergence

to a local or global minimum is possible; however, extensive numerical experiments

(Section 5.7) have found empirically that the solution practically always converges
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to the global minimum2. The posynomial is approximated with a monomial using

the geometric-arithmetic mean inequality [18]∑
k

δkvk ≥
∏
k

vδkk , (5.15)

where vk ≥ 0, δk ≥ 0 and
∑

k δk = 1. If we let uk = δkvk, then (5.15) can be

written as

∑
k

uk ≥
∏
k

(
uk
δk

)δk
. (5.16)

Note that equality in (5.16) holds when δk = uk/
∑

k uk. The term on the left

hand side of (5.16) resembles the denominator of our objective, i.e., a sum of

monomials. Hence, if we let uk(Ps) be the monomial terms of the denominator

and δk = uk(Ps)/
∑

k uk(Ps), then from (5.16) it is clear that the denominator

can be approximated around a feasible Ps with a product of monomials. Since the

approximation is always an under-estimator of the original posynomial, minimising

the condensed objective guarantees that the solution moves towards a minimum of

the original objective function. An adaptation of a commonly used algorithm [18,

46] for solving the low SINR sum rate maximisation problem is presented below.

Algorithm 3 Single Condensation Method

1. Generate a random feasible vector P̃s.
2. Compute the individual monomial terms, uk(P̃s), and the denominator,∑

k uk(P̃s), of the objective function using P̃s.

3. Using results from step 2, compute δk with δk = uk(P̃s)/
∑

k uk(P̃s).

4. Using δk, form the condensed denominator,
∏

k (uk(Ps)/δk)
δk . Note Ps is the

optimisation variable.
5. Solve the resulting GP and assign solution to P̃l

s, where l is the loop iteration.
6. Exit loop if ‖P̃l

s − P̃l−1
s ‖ ≤ ε, where ε is the error tolerance.

7. GOTO step 2 with Pl
s computed in step 5.

The single condensation method presented above is a general method of solving

the power allocation problem and can also be used to solve the high SINR scenario

without using the approximation (5.10) or mixed scenario cases in which some of

the receivers in the system have high SINR and others have low SINR.

2Each instantiation of the problem is solved multiple times using different random but feasible
starting points and solutions checked to confirm convergence to the same point. If different
solutions are obtained then this indicates convergence to local minima, but in our extensive
numerical experiments we have never observed this behaviour. This suggests that the solution
very likely converges to the global minimum.
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5.4 SU Power Optimisation with Feasibility De-

tection

Optimisation problems (5.8a)–(5.8d) and (5.9a)–(5.9c) are infeasible if any one of

the SU QoS constraints is infeasible. This has an adverse effect on the sum rate

since no SUs are able to access the channel if the QoS constraint cannot be met

for any one (or more) SU. Thus, one SU which violates the QoS constraint renders

the entire optimisation infeasible. The sum rate can be improved by selecting the

optimum subset of SU’s that do not violate the QoS constraints and maximise the

sum rate. However, this selection process is a NP-hard combinatorial optimisation

problem which is extremely difficult to solve. A suboptimal method that improves

the sum rate is to exclude the violating SUs from transmission. In this section

we formulate a method of detecting and removing the violating SUs from the

optimisation problem. The issue of fairness among SUs and the tradeoff between

fairness and rate is beyond the scope of this work. Our method is based on the

sum of infeasibilities feasibility detection technique introduced in Section 2.8.6 on

page 31. We form the problem

min
Ps,s

1Ts

s.t.
γT

γp

≤ s0, (5.17)

γ
(i)
s,min

γ
(i)
s

≤ si, i = 1, . . . , N

P (j)
s ≤ P (j)

s,max, j = 1, . . . , N

s � 1,

where 1 is a vector of length N + 1 with all entries equal to one and s ∈ RN+1
++ . For

fixed Ps, the optimal values of s0 and si are max(γT/γp, 1) and max(γ
(i)
s,min/γ

(i)
s , 1)

respectively, so in problem (5.17), we are minimising the sum of the infeasibilities.

The optimum value of (5.17) is N + 1 and achieved if and only if the constraints

(5.8b), (5.8c) and (5.8d) are feasible. It follows that all feasible SU QoS constraints

will have the corresponding element in the vector s equal to one.

Let I represent the set of feasible SU QoS constraints determined from the

solution of problem (5.17). We then solve the following SU power optimisation

problems in which the violating SUs are removed

1. SU Sum Rate Maximisation with Feasible SU QoS Constraints:

max
Ps

RΣ (5.18a)

s.t. γp ≥ γT, (5.18b)

γ(i)
s ≥ γ

(i)
s,min, i ∈ I (5.18c)
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P (j)
s ≤ P (j)

s,max, j ∈ I (5.18d)

2. System Sum Rate Maximisation with Feasible SU QoS Constraints:

max
Ps

Rsys

s.t. (5.18b), (5.18c) and (5.18d). (5.19)

Problems (5.18) and (5.19) can be solved using methods presented in Section

5.3 for the low and high SINR scenarios.

5.5 SU Power Optimisation Under Channel Un-

certainties

So far we have assumed that perfect CSI for all links is available. However, in prac-

tise this assumption may not be valid. For our analysis, we assume that the channel

between the SUTxs and SURxs are accurately known through the SU’s channel es-

timation procedure and those between the PU transmitter and SU receivers can be

accurately measured, for example through knowledge of the PU’s pilot symbols. As

stated in Section 5.2, the PUTx to PURx and the jth SUTx to PURx channel gains

are iid and for the analysis of this section, we assume that only the mean channel

gains, Ωp and Ωsp, of these links are known (only partial CSI is available), i.e., the

instantaneous values of gp and g
(j)
sp are not known. In this section we consider the

SU power optimisation problem under these uncertainties.

We build on the approach taken in [117] (see Section 3.3.1) and consider the

PU’s outage probability as a QoS parameter. In the system under consideration,

outage occurs when the PU’s SINR, γp, falls below the PU’s SINR threshold, γT.

The outage probability is expressed as

Po = Prob (γp ≤ γT)

= Prob

(
Ppgp ≤ γT

(
N∑
j=1

P (j)
s g(j)

sp + σ2
p

))
.

In a Rayleigh fading environment, gp and g
(j)
sp are exponentially distributed random

variables with means Ωp and Ωsp respectively. Under these conditions, the outage

probability is known to have the following form [117, 222, 251, 252]

Po = 1− e−c2
N∏
j=1

 1

1 + γTP
(j)
s Ωsp

PpΩp

, (5.20)

where c2 is given by (5.7).
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To formulate the SU power optimisation problem under channel uncertainty,

we replace the PU’s SINR threshold in problems (5.8) and (5.9) by the outage

probability constraint. Furthermore, since instantaneous CSI for PUTx to PURx

and SUTxs to PURx links are not available, in the optimisation problem that seeks

to maximise the system sum rate—(5.9)—the PU’s SINR is calculated using the

expected values of these links i.e., gp and g
(j)
sp in (5.2) are replaced with Ωp and

Ωsp respectively. Hence, given a maximum allowable outage probability, Po,max, the

optimisation problems are expressed as:

1. SU Sum Rate Maximisation Under Channel Uncertainty:

max
Ps

RΣ (5.21a)

s.t.
N∏
j=1

(
1 +

γTP
(j)
s Ωsp

PpΩp

)
≤ e−c2

1− Po,max

, (5.21b)

(5.8c), (5.21c)

(and o.s.t.) (5.8d). (5.21d)

2. System Sum Rate Maximisation Under Channel Uncertainty:

max
Ps

Rsys (5.22a)

s.t. (5.8c) and (5.21b), (5.22b)

(and o.s.t.) (5.8d). (5.22c)

We have only shown the general formulations here. However, using the approxima-

tions in Section 5.3.1, sum rate maximisation problems for the high SINR scenario

can be constructed. Problems (5.21) and (5.22) can be solved using techniques

described in Sections 5.3.1 and 5.3.2.

5.6 SU Power Optimisation With Feasibility De-

tection Under Channel Uncertainties

The feasibility detection technique formulated in Section 5.4 can be incorporated

into the formulations developed in Section 5.5 to improve the SU’s performance

when SU’s QoS constraints are imposed. We form the problem

min
Ps,s

1Ts

s.t.

(
1− Po,max

e−c2

) N∏
j=1

(
1 +

γTP
(j)
s Ωsp

PpΩp

)
≤ s0, (5.23)
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γ
(i)
s,min

γ
(i)
s

≤ si, i = 1, . . . , N

P (j)
s ≤ P (j)

s,max, j = 1, . . . , N

s � 1,

the solution of which gives us the set I, the set of feasible SU QoS constraints. As

in Section 5.4, we then solve the following problems in which the violating SUs are

removed

1. SU Sum Rate Maximisation Under Channel Uncertainty with Feasible SU

QoS Constraints:

max
Ps

RΣ (5.24a)

s.t. (5.21b), (5.24b)

γ(i)
s ≥ γ

(i)
s,min, i ∈ I (5.24c)

P (j)
s ≤ P (j)

s,max, j ∈ I (5.24d)

2. System Sum Rate Maximisation Under Channel Uncertainty with Feasible

SU QoS Constraints:

max
Ps

Rsys

s.t. (5.21b), (5.24c) and (5.24d). (5.25)

Problems (5.24) and (5.25) can be solved using the methods presented in Section

5.3 for the low and high SINR scenarios.

5.7 Simulation Results and Discussion

We now present the results of simulations that require solution of the optimisation

problems formulated in this chapter, specifically evaluating the CDFs of the result-

ing capacities. We consider a system with N = 3 SUs. In all simulations we have

set Pp = 30 dBm, P
(i)
s,max = 30 dBm, σ2

p = σ2
s = −7 dBm and Ωp = Ωs = 5 dB.

This choice of parameter values allows us to contrast the optimisation problems

formulated in this chapter in the channel scenarios given below. Simulations for

optimisation problems that impose SU QoS requirements have γ
(i)
s,min = −10 dB,

i = 1, . . . , N . In SU power optimisation problems under channel uncertainties we

have set the outage probability, Po,max, to 5%. We consider the following three

channel scenarios

1. Scenario A: High Interference

In this scenario c1 = c3 = 0.9 which corresponds to each receiver being
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approximately the same distance from all transmitters. This results in high

interference among all users, thus making the PU’s QoS constraint difficult to

satisfy. The SINR is expected to be low, hence we use the low SINR method

of Section 5.3.2 to obtain the solution.

2. Scenario B : Low PU and High SU Interference

In this scenario c1 = 0.1 and c3 = 0.9. Here, the PU experiences low inter-

ference from the SUs since it is approximately 3 times (assuming 1/d2 path

loss) further away from SUTxs than the PUTx. As a result, the PU’s QoS con-

straint is easily satisfied. However, SU to SU interference is very prominent.

In this scenario, the SINR at the SUs will be low and therefore we obtain the

solution using the low SINR method of Section 5.3.2.

3. Scenario C : Low Interference

In this scenario c1 = c3 = 0.1 which corresponds to each receiver being ap-

proximately 3 times further away from the interfering transmitters than its

own transmitter. This results in low interference between all users, thus mak-

ing the PU’s QoS constraint easy to satisfy. Since the SINR at all receivers

is expected to be high, this scenario is solved using the high SINR method of

Section 5.3.1.

When solving using the low SINR (single condensation) method, each instantiation

of the problem is solved multiple times using different random but feasible starting

points, P̃s, and solutions checked to confirm convergence to the same point. If

different solutions are obtained then this indicates convergence to local minima,

but in our extensive numerical experiments we have never observed this behaviour.

This suggests that the solution practically always converges to the global minimum.

For our discussion, we define SU blocking probability as the probability that

RΣ = 0, i.e., no SUs are able to access the channel.

Results of our proposed methods are compared against the equal power alloca-

tion method and a power profile method analogous to the “poor man’s waterfilling”

method [215] where we allocate power proportionally to g
(i)
s /g

(i)
sp . We refer to these

methods as ad hoc allocation methods. Note that the ad hoc allocation methods

do not impose a minimum SU QoS requirement, hence a fair comparison is only

possible against the SU and system sum rate maximisation problems without SU

QoS constraints ((5.8a)–(5.8c) and (5.9a–5.9b)).

We also compare our proposed feasibility detection method against the brute

force method of selecting the optimum set of SU transmitters. The brute force

method performs an exhaustive search and finds the set of SUs that achieve the

highest sum rate.

Figs. 5.2–5.7 show RΣ and Rp rate CDFs for the three channel conditions

with γT = 5 dB when perfect CSI is available. The legends of Figs. 5.2 and 5.3
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Figure 5.2: Sum rate CDF with perfect CSI for Scenario A, γT = 5 dB. The same
legend is used in Figs. 5.3–5.7.

are applicable for all 6 of these figures. From Figs. 5.2, 5.4 and 5.6, we observe

that in all three scenarios, the SU sum rate maximisation problem without SU

QoS constraints ((5.8a)–(5.8c)) performs the best in terms of SU performance. All

optimisation problems result in a non-zero SU blocking probability due to either

PU’s QoS constraints or both PU’s and SU’s QoS constraints. It is evident that

feasibility detection results in a significant improvement in SU’s performance in all

channel scenarios, for instance, in Scenario A the SU blocking probability (Fig.

5.2) is reduced from 80% to approximately 42%. Figs. 5.3, 5.5 and 5.7 show the

PU’s rate CDF for the three scenarios along with the CDF for the reference case

when no SUs are transmitting. The discontinuity in the graphs correspond to the

point at which the optimisation problems become feasible and SU transmissions

start. The effect of the SU’s transmissions on the PU’s rate is clearly visible.

By noting the effects of including the PU’s rate in the optimisation problems

we are able to contrast two optimisation strategies using the SU and system sum

rate maximisation problems without SU QoS constraints ((5.8a)–(5.8c) and (5.9a)–

(5.9b)). In Scenario A, we observe that the two optimisation problems result in

similar median SU sum capacities; however, the system sum rate maximisation

problem results in a much improved median PU’s rate. Hence, when the PU expe-

riences high interference, the system sum rate maximisation problem is the better

option as it results in improved PU’s performance while not adversely affecting the

SU’s performance. On the other hand, in Scenarios B and C, where there is low

interference to the PU, using the system sum rate maximisation problem improves
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Figure 5.3: Rp CDF with perfect CSI for Scenario A, γT = 5 dB.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sum rate (bits/s/Hz)

P
(r

a
te 

≤
 a

b
sc

is
sa

)

Figure 5.4: Sum rate CDF with perfect CSI for Scenario B, γT = 5 dB.
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Figure 5.5: Rp CDF with perfect CSI for Scenario B, γT = 5 dB.
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Figure 5.6: Sum rate CDF with perfect CSI for Scenario C, γT = 5 dB.
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Figure 5.7: Rp CDF with perfect CSI for Scenario C, γT = 5 dB.

the PU’s performance but adversely affects the SU’s performance. Therefore, from

the SU’s point of view, the SU sum rate maximisation problem is the preferred

option.

As stated previously, Scenario C is solved using the high SINR approximation

method. It is also possible to solve it using the more general condensation method.

In Fig. 5.8 we compare the solution of the SU sum rate maximisation problem with

SU QoS constraints ((5.8a)–(5.8d)) obtained using the two methods. From the

results, it is evident that the high SINR approximation provides a fairly accurate

approximation of the problem.

In Fig. 5.9 we compare the results of our proposed SU and system sum rate

maximisation problems without SU QoS constraints ((5.8a)–(5.8c) and (5.9a–5.9b))

against the ad hoc power allocation methods of [215]. We see that the ad hoc

allocation methods are outperformed by the methods proposed in this chapter.

We have only shown results for Scenario A since similar results are obtained for

Scenarios B and C.

In Fig. 5.10 we compare the results of our feasibility detection for Scenario A

against the brute force method of selecting the optimum set of SUs. As expected,

the brute force method outperforms the proposed method; however, the perfor-

mance improvement comes at a price of greatly increased computational complex-

ity. Although suboptimal, the proposed feasibility detection method is an efficient

method of improving the SU performance.

Figs. 5.11 and 5.12 show RΣ and Rp rate CDFs for Scenario B with γT = 5

dB when channel uncertainties exist. The legend of Fig. 5.11 is applicable to Fig.
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Figure 5.8: Sum rate CDF (SU QoS imposed) comparison of high SINR approxi-
mation and condensation method for Scenario C, γT = 5 dB.
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Figure 5.9: Sum rate CDF comparison of proposed method and ad hoc methods
for Scenario A, γT = 5 dB.
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Figure 5.10: Sum rate CDF comparison of proposed feasibility detection and brute
force methods for Scenario A, γT = 5 dB.

5.12. We only show results for Scenario B, since results obtained for Scenario

C similar to Scenario B. Results for Scenario A are not shown because, due to

unfavourable channel conditions, the PU’s outage probability constraint is never

satisfied and no SUs are able to access the channel, i.e, there is a 100% SU blocking

probability for all optimisation problems. From Fig. 5.11, it is clear that there is a

significant loss in the SU’s performance compared to when perfect CSI is available,

for instance, the median RΣ obtained using the robust SU sum rate maximisation

problem without SU QoS constraints ((5.21a)–(5.21c)) is less than half of that ob-

tained using its full CSI counterpart (problem (5.8a)–(5.8c)). Feasibility detection

is again seen to reduce the SU blocking probability. Fig. 5.12 shows the distri-

bution of γp under channel uncertainties. The inset shows the section between 0

dB–10 dB in greater detail and confirms that all optimisation problems attain an

outage probability (probability PU’s SINR is below 5 dB) of 5% or less. From

the SU’s point of view, when channel uncertainties exist, the robust SU sum rate

maximisation problem with feasibility detection ((5.24)) and the robust SU sum

rate maximisation problem without SU QoS constraints ((5.21a)–(5.21c)) are the

preferred options depending on whether the SU’s QoS constraints are required or

not.

Figs. 5.13–5.16 plot the mean RΣ as a function of γT for problems that impose

SU’s QoS constraints. From Figs. 5.13 and 5.14 it can be seen that feasibility

detection significantly improves the SU’s performance in all three scenarios when

accurate CSI is available. Fig. 5.16 shows that when perfect CSI is not available,
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Figure 5.11: Sum rate CDF under channel uncertainties for Scenario B, γT = 5
dB, Po,max = 5%. The same legend is used in Fig. 5.12.
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Figure 5.13: Mean sum rate when SU QoS are imposed as a function of γT with
perfect CSI.

feasibility detection results in significant improvement of the SU’s performance for

Scenarios B and C while minor gains for lower values of γT are seen for Scenario

A. Figs. 5.15 and 5.16 highlight the fact that unavailability of accurate CSI ad-

versely affects the SU’s performance, where practically no SU communications are

possible in a high interference scenario. This can be improved if the PU relaxes

its QoS requirements, either through a reduction of γT or an increase of Po,max

or a combination of both. As expected, accurate knowledge of PUTx to PURx and

SUTxs to PURx links are crucial to the SU’s performance and large SU performance

losses are expected if accurate CSI of these links is not available.

5.8 Summary

In this chapter, we have formulated the SU power allocation problem in a CR

system as a GP and obtained rate CDFs in various channel conditions. We have

included the effect of the PU’s transmission in our formulations and studied the

problem in both high and low SINR scenarios. It has been demonstrated that con-

sidering the system sum rate in the optimisation problem, in some circumstances,

results in improved PU performance without a significant penalty in the SU’s sum

rate. Optimisation strategies for different channel conditions have been presented.

Furthermore, we have presented a novel method of detecting and removing infea-

sible SU’s QoS constraints from the SU power allocation problem that results in
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Figure 5.14: Mean sum rate as a function of γT with perfect CSI and feasibility
detection.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

γ
T
 (dB)

su
m

 r
at

e 
(b

it
s/

s/
H

z)

 

 

R
Σ
 max. & SU QoS − Scenario A

R
sys

 max. & SU QoS − Scenario A

R
Σ
 max. & SU QoS − Scenario B

R
sys

 max. & SU QoS − Scenario B

R
Σ
 max. & SU QoS − Scenario C

R
sys

 max. & SU QoS − Scenario C

Figure 5.15: Mean sum rate when SU QoS are imposed as a function of γT under
channel uncertainties, Po,max = 5%.
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Figure 5.16: Mean sum rate as a function of γT under channel uncertainties and
feasibility detection, Po,max = 5%

considerably improved SU performance. A robust SU power allocation problem

under channel uncertainties by considering a PU outage probability constraint has

been presented. The results quantify the intuitive importance of PUTx to PURx and

SUTxs to PURx CSI and large SU performance losses are encountered if accurate

CSI of these links is not available.





Chapter 6

Robust Cognitive Radio

Cooperative Beamforming

This chapter considers an underlay CR relay network consisting of a cognitive

source, a cognitive destination and a number of cognitive relay nodes that share

spectrum with a primary transmitter and receiver. Due to poor channel condi-

tions, the cognitive source is unable to communicate directly with the cognitive

destination and hence employs the cognitive relays for assistance. We assume that

perfect CSI for all links is not available to the CR. Under the assumption of partial

and imperfect CSI at the CR system, we propose new robust CR cooperative relay

beamformers where either the total relay transmit power or the cognitive desti-

nation SINR is optimised subject to a constraint on the primary receiver outage

probability. We formulate the robust total relay power minimisation and the cog-

nitive destination SINR maximisation optimisation problems as a convex second

order cone program and a semidefinite program, respectively. Cumulative distri-

bution functions of primary receiver and cognitive destination receiver SINR for

Rayleigh fading channels are presented.

6.1 Introduction

The performance of underlay CR systems can be significantly improved by the use

of multiple antennas. These performance improvements can also be realised by

system employing multiple single antenna relay nodes through a technique known

as cooperative relaying [99, 201, 269, 277]. Geographically distributed relay nodes

are cooperatively able to form a virtual antenna array and provide increased gains

in capacity through distributed beamforming.

Recently, there has been increasing attention to the use of cooperative beam-

forming in CR systems (see, e.g., [6, 96, 140]). The relay nodes are typically de-

ployed by the CR system to aid a SU transmitter (SUTx) to communicate with

a distant SU receiver (SURx) when the link between the SUTx and SURx is poor.

95
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Cooperative beamforming at the relays not only improves SU performance through

beamforming but also allows more control over the interference generated at the

PURx. The best beamformer performance is obviously obtained when perfect/full

CSI is available and the design of CR cooperative relay beamformers under this

assumption has been studied in [6, 96, 140]. In practical communication systems,

this assumption may be over idealistic as perfect CSI for all links is rarely available.

Channel estimation errors, limited CSI feedback and outdated channel estimates

are some of the sources of the imperfections. The design of worst-case robust co-

operative beamformers that are less susceptible to these imperfections have been

investigated in [232, 245, 277]. Unfortunately, solutions obtained through the worst-

case approach can be overly conservative because the true probability of worst-case

errors may be extremely low [38].

In a CR relay network, CSI of the PUTx to PURx and SU relays (SURls) to PURx

is generally difficult to acquire and some level of cooperation with the PU system

may be required. The level of cooperation determines the quality of the CSI that

is available to the SU. Therefore, in this chapter, we consider a CR relay network

where only partial and imperfect CSI of the PUTx to PURx and the SU relays to

PURx links is available to the CR system. We propose new robust CR cooperative

relay beamformers where either the total relay transmit power or the cognitive

destination SINR is optimised subject to a PURx outage probability constraint.

The contributions of this chapter are as follows.

• We first formulate the CR relay cooperative beamforming problem under the

assumption of full CSI at the CR system as total relay power minimisation

and cognitive destination SINR maximisation problems.

• We show that the total relay power minimisation and the cognitive destina-

tion SINR optimisation problems can be transformed into a convex second

order cone program (SOCP) [29] and a convex semidefinite program (SDP),

respectively.

• We present robust beamformers that guarantee a certain PURx outage prob-

ability for the scenarios where partial CSI is available for the PUTx to PURx

link and

1. full CSI is available for all other links;

2. partial CSI is available for the SU relays to PURx links and full CSI is

available for all other links;

3. imperfect CSI is available for the SU relays to PURx links and full CSI

is available for all other links.
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Figure 6.1: System Model

• We show that the robust total relay power minimisation and the robust cog-

nitive destination SINR optimisation problems can be transformed into a

convex SOCP [29] and a convex SDP, respectively.

The performance resulting from the optimisation problems outlined above is

demonstrated by means of SINR CDFs for flat Rayleigh channels.

In this chapter, we assume both i) the proposed optimisation problems are

solved by a central SU processing unit; and ii) a dedicated link, such as that in a

distributed antenna system [191, 266], between this central SU processing unit and

each relay node exists. Note that the techniques developed in chapter can also be

applied to a system with a single relay node equipped with multiple antennas.

6.2 System Model

Consider a CR relay network which consists of a SUTx, SURx, R SURl nodes and a

PUTx and PURx pair, as shown in Fig. 6.1. We assume that due to poor channel

conditions between the SUTx and SURx, there is no reliable link between them.

Hence, the SUTx employs the SURls to communicate with the SURx. Since the PU

and SU systems use the same frequency band, the PURx experiences interference

from the SURl transmissions and both SURl and SURx experience interference from

the PUTx transmissions. Furthermore, we assume that the link between the SUTx

and PURx is poor and the SUTx signal is sufficiently attenuated at the PURx to be

ignored. Including the SUTx interference at the PURx changes the solutions but

not their structure, hence, it has been omitted for simplicity. Each transmitter and

receiver in the system is assumed to be equipped with a single antenna.
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All links in the network are assumed to be independent, point-to-point, flat

Rayleigh fading channels. The channel coefficients of the PUTx to PURx, PUTx to

SURl i, PUTx to SURx, SUTx to SURl i, SURl i to SURx and SURl i to PURx links are

denoted by hpp, h
(i)
pr , hps, h

(i)
sr , h

(i)
rs and h

(i)
rp , respectively. The instantaneous channel

powers of these links are represented by gpp = |hpp|2, g
(i)
pr = |h(i)

pr |2, gps = |hps|2,

g
(i)
sr = |h(i)

sr |2, g
(i)
rs = |h(i)

rs |2 and g
(i)
rp = |h(i)

rp |2. The channel powers are independent

exponentially distributed random variables and have the means: Ωpp = E{gpp},
Ω

(i)
pr = E{g(i)

pr }, Ωps = E{gps}, Ω
(i)
sr = E{g(i)

sr }, Ω
(i)
rs = E{g(i)

rs } and Ω
(i)
rp = E{g(i)

rp }.

We consider a secondary system that utilises a two-step AF protocol. During

the first step, the SUTx broadcasts the signal
√
Psss to the relays, where Ps is the

SUTx transmit power and ss the information symbol. Simultaneously, the PUTx

transmits the signal
√
Pps

(1)
p , where Pp is the PUTx transmit power and s

(1)
p the

information symbol. We assume that E{|ss|2} = E{|s(1)
p |2} = 1. The signal received

at the ith relay is given by

xi =
√
Psssh

∗(i)
sr︸ ︷︷ ︸

wanted signal

+
√
Pps

(1)
p h∗(i)pr + n(i)

r︸ ︷︷ ︸
interference + noise

, (6.1)

where n
(i)
r is the AWGN with a variance of σ2

r at the ith relay.

During the second step, the ith relay transmits the signal

yi = xiwi

=
√
Psssh

∗(i)
sr wi +

√
Pps

(1)
p h∗(i)pr wi + n(i)

r wi, (6.2)

where wi is the complex beamforming weight applied by the ith relay. During this

time, the PUTx transmits the signal
√
Pps

(2)
p , where s

(2)
p is the information symbol

and is assumed to be different from that transmitted in the first step. We assume

that E{|s(2)
p |2} = 1. At the SURx, the received signal can be expressed as

zs =
R∑
i=1

yih
∗(i)
rs +

√
Pps

(2)
p h∗ps

=
√
Psss[hsr � hrs]

Hw︸ ︷︷ ︸
wanted signal

+ [nr � hrs]
Hw + ns︸ ︷︷ ︸

noise

+
√
Pps

(2)
p h∗ps +

√
Pps

(1)
p [hpr � hrs]

Hw︸ ︷︷ ︸
interference

, (6.3)

and that at the PURx as

zp =
√
Pps

(2)
p hpp +

R∑
i=1

yih
(i)
rp

=
√
Pps

(2)
p hpp︸ ︷︷ ︸

wanted signal

+ [nr � hrp]Hw + np︸ ︷︷ ︸
noise

(6.4)
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+
√
Psss[hsr � hrp]Hw︸ ︷︷ ︸

SU interference

+
√
Pps

(1)
p [hpr � hrp]Hw︸ ︷︷ ︸

self interference

,

where

hsr , [h(1)
sr h(2)

sr . . . h
(R)
sr ]T

hrs , [h(1)
rs h(2)

rs . . . h
(R)
rs ]T

hpr , [h(1)
pr h(2)

pr . . . h
(R)
pr ]T

hrp , [h(1)
rp h(2)

rp . . . h
(R)
rp ]T

w , [w1 w2 . . . wR]T

nr , [n(1)
r n(2)

r . . . n(R)
r ]T

and ns and np are AWGN with powers σ2
s and σ2

p at the SURx and PURx, respec-

tively. Note that the relays also retransmit the PU’s signal, hence, the PURx also

receives the PUTx symbol from the first step, which is treated as self interference

in our analysis.

By assuming that ss, s
(1)
p , s

(2)
p , n

(i)
r ∀i, ns and np are all uncorrelated from each

other and perfect CSI is available, and therefore considering the channel coefficients

as deterministic constants, the total relay transmit power can be expressed as

PT =
R∑
i=1

E{|yi|2}

= wHEw, (6.5)

where

E , Psdiag
(
|hsr|2

)
+ Ppdiag

(
|hpr|2

)
+ σ2

r I.

The ith relay’s transmit power is given by P
(i)
Rl = Eii|wi|2. The SINR at the SURx

is expressed as

γs =
Ps

∣∣[hsr � hrs]
Hw
∣∣2

Pp |hps|2 + Pp |[hpr � hrs]Hw|2 + σ2
r ‖hrs �w‖2 + σ2

s

=
wHQw

Pp|hps|2 + wH(R + V)w + σ2
s

, (6.6)

where

Q , Ps[hsr � hrs][hsr � hrs]
H

R , Pp[hpr � hrs][hpr � hrs]
H

V , σ2
r diag

(
|hrs|2

)
.
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Using the following definition

Ip , Ps

∣∣[hsr � hrp]Hw
∣∣2 + Pp

∣∣[hpr � hrp]Hw
∣∣2 + σ2

r ‖hrp �w‖2 ,

the SINR at the PURx can be expressed as

γp =
Pp|hpp|2

Ip + σ2
p

=
Pp|hpp|2

wH(B + C + D)w + σ2
p

, (6.7)

where

B , Ps[hsr � hrp][hsr � hrp]H

C , Pp[hpr � hrp][hpr � hrp]H

D , σ2
r diag

(
|hrp|2

)
.

To guarantee a certain level of quality-of-service (QoS) to the primary user,

in our beamformer design formulations under the assumption of perfect CSI, we

impose the PURx instantaneous SINR constraint γp ≥ γT. This constraint is trans-

formed into a probability based constraint in Section 6.4.

6.3 Beamformer Optimisation

In this section, we aim to find the optimum beamforming weight vector, w, such

that either the total relay transmit power, PT , is minimised or the SINR at the

SURx, γs, is maximised while maintaining the PURx QoS above the threshold γT.

In the case where the total relay transmit power is minimised, we also impose a

minimum SINR threshold, γs,min, on the SURx. This represents a practical limi-

tation on the SURx below which it fails to operate with acceptable performance.

We also set individual maximum transmit power constraint, P
(i)
Rl,max, on each relay

node when maximising the SURx SINR. In practice, this constraint may be due

either to regulatory or hardware limitations.

In our formulations, we assume that we are unable to control the PU’s trans-

mit power and the PU transmits at a constant power of Pp. In this section, the

beamformers are designed under the assumption that perfect CSI for all links are

available at the SU system. This allows us to obtain fundamental limits on perfor-

mance. However, in practice, the channel would need to be estimated, hence the

performance results obtained in this section provide an upper bound. In Section

6.4, we consider the case when perfect CSI is not available.
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6.3.1 Relay Power Minimisation

Using (6.5), the total relay transmit power minimisation problem can be mathe-

matically represented as

min
w

wHEw (6.8a)

s.t. γp ≥ γT, (6.8b)

γs ≥ γs,min. (6.8c)

Similar to other beamforming problems (see, for example [99]), it can easily be

shown that constraint (6.8c) is satisfied with equality at the optimum, for otherwise

the optimum w could be scaled down to satisfy the constraint with equality, hence

decreasing the objective function and contradicting optimality. Problem (6.8) is a

non-convex optimisation problem; however, it can be reformulated into a convex

optimisation problem. We observe that neither the objective function nor the

constraints change if the beamforming vector undergoes a phase rotation. Thus,

[hsr�hrs]
Hw can be chosen to be real without the loss of generality [25, 148]. The

SINR constraints (6.8b) and (6.8c) become

Pp|hpp|2 ≥ γT

∥∥∥∥∥∥∥∥∥∥

√
Ps[hsr � hrp]Hw√
Pp[hpr � hrp]Hw

σr[hrp �w]

σp

∥∥∥∥∥∥∥∥∥∥

2

2

(6.9)

Ps

(
[hsr � hrs]

Hw
)2 ≥ γs,min

∥∥∥∥∥∥∥∥∥∥

√
Pphps√

Pp[hpr � hrs]
Hw

σr[hrs �w]

σs

∥∥∥∥∥∥∥∥∥∥

2

2

(6.10)

By taking the square root of constraints (6.9) and (6.10) the relay power minimi-

sation problem can be restated as the following convex SOCP [29]

min
w

wHEw (6.11a)

s.t.
√
Pp|hpp|2 ≥

√
γT

∥∥∥∥∥∥∥∥∥∥

√
Ps[hsr � hrp]Hw√
Pp[hpr � hrp]Hw

σr[hrp �w]

σp

∥∥∥∥∥∥∥∥∥∥
2

, (6.11b)

√
Ps[hsr � hrs]

Hw ≥ √γs,min

∥∥∥∥∥∥∥∥∥∥

√
Pphps√

Pp[hpr � hrs]
Hw

σr[hrs �w]

σs

∥∥∥∥∥∥∥∥∥∥
2

. (6.11c)
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In the interest of brevity, the further constraints <{[hsr � hrs]
Hw} ≥ 0 and ={[hsr � hrs]

Hw} =

0, are not explicitly stated in any of the SOCPs in the following sections.

6.3.2 Secondary Receiver SINR Maximisation

In this section we formulate the SURx SINR maximisation problem and present

three methods for solving the problem. In the first two methods, the problem is

transformed into convex feasibility problems with second-order cone and semidefi-

nite constraints, respectively. In both cases, the resulting problems are solved in an

iterative manner. The third method transforms the problem into a linear-fractional

program [29] and solves it without needing an iterative procedure. The SURx SINR

maximisation problem is expressed as

max
w

wHQw

wH (R + V) w + Pp|hps|2 + σ2
s

(6.12a)

s.t. Eii|wi|2 ≤ P
(i)
Rl,max, i = 1 . . . R (6.12b)

wHγT (B + C + D) w + γTσ
2
p − Pp|hpp|2 ≤ 0. (6.12c)

Solution Using A Convex Feasibility Problem With SOC Constraints

Problem (6.12) can be restated in the epigraph form [29] as

max
t,w

t (6.13a)

s.t.
wHQw

wH (R + V) w + Pp|hps|2 + σ2
s

≥ t, (6.13b)

Eii|wi|2 ≤ P
(i)
Rl,max, i = 1 . . . R (6.13c)

wHγT (B + C + D) w + γTσ
2
p − Pp|hpp|2 ≤ 0. (6.13d)

We again observe that neither the objective function nor the constraints change

if the beamforming vector undergoes a phase rotation. Thus, [hsr � hrs]
Hw can

be chosen to be real without the loss of generality. Hence, problem (6.13) can be

rewritten as

max
t,w

t (6.14a)

s.t.
√
Ps[hsr � hrs]

Hw ≥
√
t

∥∥∥∥∥∥∥∥∥∥

√
Pphps√

Pp[hpr � hrs]
Hw

σr[hrs �w]

σs

∥∥∥∥∥∥∥∥∥∥
2

, (6.14b)

√
P

(i)
Rl,max/Eii ≥

∥∥∥∥∥wi0
∥∥∥∥∥

2

, i = 1 . . . R (6.14c)
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√
Pp|hpp|2 ≥

√
γT

∥∥∥∥∥∥∥∥∥∥

√
Ps[hsr � hrp]Hw√
Pp[hpr � hrp]Hw

σr[hrp �w]

σp

∥∥∥∥∥∥∥∥∥∥
2

. (6.14d)

Due to coupling between the optimisation variables, constraint (6.14b) is a non-

convex constraint. However, as was seen in Section 3.3.4, for any fixed value of t

the set of feasible w is convex and hence the problem is quasi convex. Therefore,

for some given t, problem (6.14) can be expressed as the following convex feasibility

problem with SOCP constraints

find w

s.t. (6.14b), (6.14c) and (6.14d). (6.15)

The bisection method [29] can be used to solve problem (6.15) in an iterative

manner.

Solution Using A Convex Feasibility Problem With Linear and Semidef-

inite Constraints

Problem (6.12) can also be transformed into a SDP through the application of

SDR. Using the definition W , wwH , it can be restated as

max
W

tr (QW)

tr ((R + V) W) + Pp|hps|2 + σ2
s

(6.16a)

s.t. EiiWii ≤ P
(i)
Rl,max, i = 1 . . . R (6.16b)

γT tr ((B + C + D) W) + γTσ
2
p − Pp|hpp|2 ≤ 0, (6.16c)

W � 0, (6.16d)

rank (W) = 1, (6.16e)

and in the epigraph form as

max
W,t

t (6.17a)

s.t. tr ((Q− t(R + V))W) ≥ (Pp|hps|2 + σ2
s )t, (6.17b)

rank (W) = 1, (6.17c)

W � 0, (6.16b) and (6.16c). (6.17d)

Due to the non-convex constraints (6.17b) and (6.17c), problem (6.17) is a non-

convex optimisation problem. We apply the idea of SDR and relax problem (6.17)

by removing the non-convex rank-one constraint (6.17c). The resulting relaxed

problem is still non-convex as constraint (6.17b) remains to be dealt with. As in
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the previous solution, for any fixed value of t the set of feasible W is convex and

hence the relaxed problem is quasi convex. Therefore, for some given t, problem

(6.17) can be expressed as the following convex feasibility problem

find W

s.t. W � 0, (6.17b), (6.16b) and (6.16c). (6.18)

Problem (6.18) can be solved using the bisection method. Upon completion of

the bisection algorithm, one needs to recover the optimum beamforming vector, w∗,

from W. If W is rank-one, then w∗ can be chosen to be the principal eigenvector

of W. For the case where W has rank higher than one, the well known Gaussian

randomisation technique [146] can be used to recover a good rank-one approxi-

mation. However, in our extensive numerical simulations, we have never obtained

a solution that had a rank higher than one. This behaviour is explained by the

fact that problem (6.12) can also be solved as a convex feasibility problem with

SOC constraints which does not involve any relaxation. Therefore, since another

solution method exits, in this case the relaxed problem turns out to be equivalent

to the original problem.

Solution Using Linear-fractional Program

To develop the third method of solving problem (6.12), we observe that the relaxed

form of problem (6.16) has the same structure as a linear-fractional program which

was introduced in Section 2.4.2. Hence, the Charnes-Cooper transformation can

be used to solve it efficiently without needing an iterative procedure. To proceed,

we first define the pair

W̃ =
W

tr ((R + V) W) + Pp|hps|2 + σ2
s

,

t =
1

tr ((R + V) W) + Pp|hps|2 + σ2
s

.

Using these definitions, the relaxed form of problem (6.16) can be stated as

max
W̃,t

tr (QW̃) (6.19a)

s.t. EiiW̃ii ≤ tP
(i)
Rl,max, i = 1 . . . R (6.19b)

γT tr ((B + C + D) W̃) + t(γTσ
2
p − Pp|hpp|2) ≤ 0, (6.19c)

W̃ � 0, (6.19d)

tr ((R + V) W̃) + t(Pp|hps|2 + σ2
s ) = 1, (6.19e)

t ≥ 0. (6.19f)
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Problem (6.19) is a convex optimisation problem and can be solved using interior

point methods. After solving this problem, the beamforming matrix is obtained by

dividing W̃ by t, i.e., W = W̃/t. The optimum beamforming vector, w∗, is given

by the principal eigenvector of W.

6.4 Robust Beamformer Optimisation

So far we have assumed that perfect CSI of all links is available at the SU system.

Unfortunately, in practise, perfect CSI for all links is seldom available and the

assumption of perfect CSI may be unrealistic. For our analysis, we assume that

the channels for the SUTx to SURl and SURl to SURx links are accurately known

through the SU’s channel estimation procedure and those between the PUTx and

SURl can be accurately measured, for example, through knowledge of the PU pilot

symbols. In this section we formulate a number of robust optimisation problems

based on varying levels of uncertainty in the CSI of PUTx to PURx and SURl to PURx

links. In a cognitive radio system, this may correspond to the level of cooperation

between the primary and secondary systems. Generally, CSI of the PUTx to PURx

link would be the most difficult to obtain since this link is fully isolated from the

SU system. The SU would have to rely on the PU to provide this information

and the CSI quality would depend on the level of cooperation between the two

systems. In our robust beamformer formulations, we assume that the SU system

has only partial CSI for the PUTx to PURx link, specifically, we assume that only

the mean channel power, Ωpp, of this link is provided by the PU. CSI of the SURl

to PURx link would also be difficult to acquire and cooperation with the PU would

be needed. However, if the PU system had a bidirectional link, then the SU could

estimate the CSI of the PURx to SURl link when the PURx assumes the role of a

transmitter. In this section, we design robust beamformers based on the quality of

the CSI of this link that is available to the SU. We focus on three levels of quality:

i) perfect CSI; ii) imperfect CSI estimate; and iii) incomplete CSI in the form of

mean channel powers.

In our formulation we consider the PU outage probability as a QoS parameter.

The outage probability constraint is generally referred to as a soft constraint and

as shown in [38], tends to be more flexible than a worst-case constraint. In the

system under consideration, outage occurs when the PU SINR, γp, falls below the

PU SINR threshold, γT. The outage probability is expressed as

Po = Pr {γp ≤ γT}

= Pr

{
Pp|hpp|2

wH(B + C + D)w + σ2
p

≤ γT

}
. (6.20)

Hence, given a maximum allowable outage probability, Po,max, constraints (6.11b)
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and (6.12c) are replaced with

Pr

{
Pp|hpp|2

wH(B + C + D)w + σ2
p

≤ γT

}
≤ Po,max. (6.21)

6.4.1 Partial CSI Availability for the PUTx to PURx Link

In this section, we assume that perfect CSI is available for all links except for the

PUTx to PURx link. We assume that only the mean channel power, Ωpp, of the

PUTx to PURx link is available, i.e., instantaneous channel realisation is not avail-

able. Since hpp is a zero-mean Gaussian random variable, |hpp|2 is exponentially

distributed and therefore the outage probability can be expressed as

Po = 1− exp

(
−
γT

(
wH(B + C + D)w + σ2

p

)
PpΩpp

)
. (6.22)

Using (6.22), the PU outage probability constraint (6.21) can then be stated as

wH(B + C + D)w + σ2
p +

PpΩpp

γT

log (1− Po,max) ≤ 0, (6.23)

or equivalently as the following SOCP constraint

√
−PpΩpp log (1− Po,max) ≥ √γT

∥∥∥∥∥∥∥∥∥∥

√
Ps[hsr � hrp]Hw√
Pp[hpr � hrp]Hw

σr[hrp �w]

σp

∥∥∥∥∥∥∥∥∥∥
2

. (6.24)

The robust SURl power minimisation problem in this scenario is therefore expressed

as the following SOCP

min
w

wHEw, s.t. (6.11c) and (6.24). (6.25)

It is straightforward to show that the robust SURx SINR maximisation problem

is essentially the same as the relaxed form of problem (6.16) but with the in-

stantaneous PURx SINR constraint (6.16c) replaced by the PU outage probability

constraint as shown below

max
W

tr (QW)

tr ((R + V) W) + Pp|hps|2 + σ2
s

s.t. (6.16b) and (6.16d),

tr ((B + C + D)W) + σ2
p +

PpΩpp

γT

log (1− Po,max) ≤ 0. (6.26)

The solution of problem (6.26) can be found using the method described in Section

6.3.2.
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6.4.2 Partial CSI Availability for the PUTx to PURx and

SURl to PURx Links

In this section, we assume that full CSI is available for all links except for the PUTx

to PURx and SURl to PURx links. We assume that only the mean channel powers,

Ωpp and Ω
(i)
rp ∀i, of the PUTx to PURx and SURl to PURx links are available. To

proceed, we rewrite the outage probability expression as

Po = Pr
{
Pp|hpp|2 − γTwH(B + C + D)w ≤ γTσ

2
p

}
. (6.27)

In (6.27), we see that we are dealing with a PDF that is given by the difference of

two random variables, namely, Pp|hpp|2 and γTwH(B + C + D)w. From Section

6.4.1, it is known that Pp|hpp|2 has an exponential distribution with a mean of

PpΩpp. The probability distribution of γTwH(B + C + D)w can be found using

the following lemma.

Lemma 6.4.1 If x ∈ CR×1 is a zero-mean random vector with complex Gaussian

elements and the covariance matrix Σ, i.e. x ∼ NC(0,Σ), then for any determin-

istic positive semidefinite Hermitian matrix A ∈ CR×R, the PDF of the random

variable ψ = xHAx, ψ ≥ 0, is given by

f(ψ) =

[
N∏
i=1

λi

]
N∑
j=1

exp (−λjψ)∏N
k=1,k 6=j (λk − λj)

, (6.28)

where λi = 1/Λi, and Λi, i = 1 . . . N ≤ R are the non-zero eigenvalues of ΣA.

Note that this is precisely the distribution of the sum of N exponentially distributed

independent random variables, each with a mean of Λi.

Proof

Note that xHAx is commonly known as a quadratic form in normal random vari-

ables [157]. We first define y = Σ−
1
2 x. It is easily verified that y ∼ NC(0, I). Using

an orthogonal R×R matrix P that diagonalises Σ
1
2 AΣ

1
2 or equivalently ΣA, i.e.,

PHΣAP = diag(Λ1,Λ2, . . . ,ΛR) and Λ1,Λ2, . . . ,ΛR are the eigenvalues of ΣA, ψ

can then be expressed as

ψ = yHΣ
1
2 AΣ

1
2 y = (PHy)HPHΣ

1
2 AΣ

1
2 P(PHy)

= tr (diag(Λ1,Λ2, . . . ,ΛR)PHyyHP)

=
N∑
i=1

Λi|(PHy)i|2, (6.29)

where N ≤ R is the number of non-zero eigenvalues of ΣA and (PHy)i is the ith

element of the vector PHy. Since P is an orthogonal matrix, it is easily shown that

PHy ∼ NC(0, I), and therefore, |(PHy)i|2 is an exponentially distributed random
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variable with a mean of Λi. Hence, (6.29) is a sum of N exponentially distributed

independent random variables, each with a mean of Λi, whose PDF is given by

(6.28). The derivation of the PDF of the sum of N exponentially distributed

independent random variables has appeared in many texts, we refer the interested

reader to [117] and references therein. This completes the proof

From the definition of B, we note that it can be expressed as B = bbH , where

b =
√
Ps[hsr � hrp]. Since hsr is known perfectly, it is treated as a deterministic

constant in the following analysis. By defining W = wwH we see that wHBw =

bHWb. Using Lemma 6.4.1, and exploiting the fact that W is a rank-one matrix,

we have that γTwHBw is exponentially distributed with a mean of tr (ΣBW),

where ΣB is the covariance matrix of
√
γTb and is expressed as

ΣB = γTE{B}

= γTPsdiag
(
Ωrp � |hsr|2

)
, (6.30)

where Ωrp = [Ω1
rp Ω2

rp . . .Ω
R
rp]T . Similarly, γTwHCw also has an exponential dis-

tribution with a mean of tr (ΣCW), where ΣC is the covariance matrix defined

as

ΣC = γTE{C}

= γTPpdiag
(
Ωrp � |hpr|2

)
. (6.31)

Since D is a diagonal matrix, we have γTwHDw = γTσ
2
r

∑R
i=1 Wii|h(i)

rp |2, which

can be recognised as a sum of R exponentially distributed random variables and,

as such, the PDF is given by (6.28) whereby N = R and λi = 1/(γTσ
2
r Ω

(i)
rp Wii),

i = 1 . . . R.

Finally, from the above analysis, we see that γTwH(B + C + D)w is the sum

of R + 2 exponentially distributed independent random variables and the PDF is

once again given by (6.28), with N = R + 2, λi = 1/(γTσ
2
r Ω

(i)
rp Wii), i = 1 . . . R,

λR+1 = 1/ tr (ΣBW) and λR+2 = 1/ tr (ΣCW).

Having found the distribution of γTwH(B+C+D)w, we are now in a position

to evaluate the PU outage probability expression. We note that the PDF in (6.27)

is that of a difference between an exponential random variable and the sum of R+2

exponentially distributed random variables, and therefore the outage probability is

known to have the following form (see, for example, [117])

Po = 1− exp

(
−
γTσ

2
p

PpΩpp

) R+2∏
i=1

(
1

1 + 1
PpΩppλi

)
, (6.32)
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where λi is as defined previously. Using (6.32), the outage probability constraint

can be expressed as

R+2∏
i=1

(
1 +

1

PpΩppλi

)
≤

exp
(
− γTσ

2
p

PpΩpp

)
1− Po,max

. (6.33)

An important observation in the above constraint is that it is dependent only on

the diagonal elements of W, i.e., dependent only on the beamformer transmit

power. This is a fairly intuitive result since phase information of SURl to PURx

link is not available and therefore, power control is the only degree of freedom

available to the beamformer to control the amount of interference to the PURx.

Note that constraint (6.33) is non-convex (the term on the left hand side is in

fact concave), and is difficult to handle. For this reason, we propose to use the

geometric-arithmetic mean inequality and replace the left hand side of (6.33) with

its upper bound. The geometric-arithmetic mean inequality is expressed as

R+2∏
i=1

(
1 +

1

PpΩppλi

) 1
R+2

≤ 1

R + 2

R+2∑
i=1

(
1 +

1

PpΩppλi

)
. (6.34)

Using the inequality (6.34), the convex outage probability constraint is thus

R+2∑
i=1

(
1 +

1

PpΩppλi

)
≤ (R + 2)

exp
(
− γTσ

2
p

PpΩpp

)
1− Po,max


1

R+2

. (6.35)

By using the upper bound, the constraint is tightened and the ramifications of this

on the optimum solution are discussed later in this section. Meanwhile, we present

the robust optimisation problems by directly using (6.35).

Through straightforward manipulation, (6.35) can be rewritten as

1

PpΩpp

wH
(
ΣB + ΣC + γTσ

2
r diag(Ωrp)

)
w

+ (R + 2)

1−

exp
(
− γTσ

2
p

PpΩpp

)
1− Po,max


1

R+2

 ≤ 0, (6.36)

and the equivalent SOCP constraint is given by√√√√√√(R + 2)


exp

(
− γTσ2

p

PpΩpp

)
1− Po,max


1

R+2

− 1

 ≥√ γT

PpΩpp

∥∥∥∥∥∥∥
√
Ps[Ω

1/2
rp � hsr �w]√

Pp[Ω
1/2
rp � hpr �w]

σr[Ω
1/2
rp �w]

∥∥∥∥∥∥∥
2

,

(6.37)
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where Ω
1/2
rp is the element-wise square root of the vector Ωrp. The robust SURl

power minimisation SOCP can therefore be expressed as

min
w

wHEw, s.t. (6.11c) and (6.37). (6.38)

By directly using constraint (6.35), the robust SURx SINR maximisation problem

can again be expressed as the convex feasibility problem

max
W

tr (QW)

tr ((R + V) W) + Pp|hps|2 + σ2
s

s.t. (6.16b), (6.16d) and (6.35), (6.39)

which can be solved using the methods described in Section 6.3.2.

As previously mentioned, using the outage probability upper bound results

in a tightening of the constraint. In the SURl power minimisation problem, this

tightening may result in some feasible problems appearing infeasible. Likewise, the

SURx SINR maximisation problem may become infeasible or the solution obtained

may be sub-optimal since the power allocated to the beamformer would be less

than what would have been allocated if the original constraint was used.

Recalling that at the optimum, constraint (6.11c) is satisfied with equality, it

follows that if the robust SURl power minimisation problem (6.38) is feasible then

the solution obtained is the optimum. This follows since any further reduction of

relay transmit power would cause the SURx SINR to fall below γs,min, thus violating

the SURx SINR and rendering the problem infeasible. On the other hand, if the

problem is infeasible due to the tightened outage probability constraint then we

need to determine if a feasible solution can be obtained by relaxing the constraint.

This corresponds to finding the minimum relaxed outage probability specification,

P̃o,max ≥ Po,max, that satisfies (6.33). An efficient iterative method utilising the

bisection technique for finding P̃o,max is presented in Algorithm 4. In each iteration,

problem (6.38) is solved with the relaxed outage probability specification and the

solution is used in (6.32) to calculate the exact outage probability, Po, attained.

Po is then compared with Po,max to determine if (6.33) is satisfied. The iterations

continue until the minimum P̃o,max is found. Note that the bisection algorithm

requires the lower and upper limits of the search interval. The lower limit is Po,max

while the upper limit is chosen to be 1.

An important observation in the robust SURx SINR maximisation problem

(6.39) is that, at the optimum, either the outage probability constraint or all of the

transmit power constraints will be satisfied with equality. This is because both the

SURx SINR and the outage probability are increasing functions of relay transmit

power and, therefore, the transmit power will be increased until the outage prob-

ability constraint is met with equality or the maximum transmit power budget is
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met, at which point the SINR attains its maximum value in the feasible region.

Using this observation, we propose an iterative algorithm (see Algorithm 5), similar

to the one described above, that can be used to obtain the optimum solution of

the robust SURx maximisation problem. The algorithm finds the minimum relaxed

outage probability specification, P̃o,max ≥ Po,max, that either satisfies (6.33) with

equality or satisfies (6.12b) ∀i with equality while satisfying (6.33). The bisection

technique is used to efficiently search for the minimum relaxed outage probability

specification in the interval [Po,max, 1].

Although Algorithms 4 and 5 provide the optimum beamforming weights, through

our extensive numerical simulations we have found that the solutions obtained by

directly solving problems (6.38) and (6.39) with the tightened outage probability

constraint are very close to the optimum and, in practice, it is not necessary to use

the iterative algorithms.

Algorithm 4 Robust Iterative Total Relay Transmit Power Minimisation Algo-
rithm
Input: Search interval [l, u] and tolerance ε.

1: Initialise the boolean SolutionFound = false.
2: repeat
3: P̃o,max := (l + u)/2.
4: Using P̃o,max as the outage probability specification, solve problem (6.38).
5: if (6.38) is feasible then
6: Calculate Po using (6.32).
7: if Po ≤ Po,max then
8: u := P̃o,max.
9: SolutionFound := true.

10: Assign solution of (6.38) to w∗.
11: else
12: l := P̃o,max.
13: end
14: else
15: l := P̃o,max.
16: end
17: until u− l ≤ ε.
18: if SolutionFound then
19: Output: w∗.
20: else
21: Declare problem infeasible.
22: end
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Algorithm 5 Robust Iterative Surx SINR Maximisation Algorithm

Input: Search interval [l, u] and tolerance ε.
1: Initialise the boolean SolutionFound = false.
2: repeat
3: P̃o,max := (l + u)/2.
4: Using P̃o,max as the outage probability specification, solve problem (6.39).
5: if (6.39) is feasible then
6: Calculate Po using (6.32).

7: if ∀i,EiiWii = P
(i)
Rl,max then

8: if Po ≤ Po,max then
9: SolutionFound := true.

10: Assign solution of (6.39) to w∗.
11: else
12: u := P̃o,max.
13: end
14: else
15: if Po = Po,max then
16: SolutionFound := true.
17: Assign solution of (6.39) to w∗.
18: else if Po < Po,max then
19: l := P̃o,max.
20: else
21: u := P̃o,max.
22: end
23: end
24: else
25: l := P̃o,max.
26: end
27: until u− l ≤ ε or SolutionFound.
28: if SolutionFound then
29: Output: w∗.
30: else
31: Declare problem infeasible.
32: end
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6.4.3 Partial CSI Availability for the PUTx to PURx Link

and Imperfect CSI Availability for the SURl to PURx

Links

In this section, we assume that full CSI is available for all links except for the PUTx

to PURx and SURl to PURx links. We assume that only the mean channel power,

Ωpp, of the PUTx to PURx link is available and that SURl to PURx link CSI is

imperfect. This imperfection may be due to estimation errors or other factors such

as quantisation. Perfect CSI for all other links is available. Our aim is to design

a beamformer that is robust against CSI imperfections due to estimation errors

for one particular realisation of the SURl to PURx channel. The SURl to PURx

Rayleigh channel, having been instantiated becomes a deterministic unknown. We

model this unknown as having non-zero mean, equal to the channel estimate, and

small variance, corresponding to the channel uncertainty. (By contrast, in Section

6.4.2 the Rayleigh channel has zero mean, and large variance, equal to the channel

power). Adopting the imperfect CSI model of [274, 276], we have

hrp = h̃rp + ρe, (6.40)

where h̃rp is the imperfect SURl to PURx link CSI estimate and e is the zero-mean

estimation error vector with independently distributed complex Gaussian entries

and the diagonal covariance matrix Σe = (‖Ω1/2
rp ‖2

2/R)I, i.e., e ∼ NC(0,Σe). We

assume that h̃rp is obtained using an unbiased maximum likelihood estimator,

hence, over the ensemble of all realisations of the SURl to PURx channel, h̃rp is a

vector with zero-mean complex Gaussian entries and the covariance matrix given

by

ξ = diag(Ωrp)− ρ2Σe. (6.41)

The ith entry on the main diagonal of ξ is expressed as

ξii = Ω(i)
rp − ρ2‖Ω

1/2
rp ‖2

2

R

= Ω(i)
rp −

ρ2

R

R∑
i=1

Ω(i)
rp . (6.42)

For the purpose of constructing an optimisation problem, an instance of h̃rp is

drawn from the distribution NC(0, ξ) and treated as a deterministic constant. 0 ≤
ρ ≤ (min(Ωrp)/(‖Ω1/2

rp ‖2
2/R))1/2 determines the quality of the CSI, which is perfect

when ρ = 0 and has maximum uncertainty when ρ = (min(Ωrp)/(‖Ω1/2
rp ‖2

2/R))1/2.

The upper limit on ρ is obtained as follows. Since ξ is a covariance matrix, ξii, ∀i,
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is greater than or equal to zero. Therefore, we have

min(Ωrp)− ρ2

R

R∑
i=1

Ω(i)
rp ≥ 0. (6.43)

After rearranging the terms of (6.43), we obtain

ρ ≤
√

min(Ωrp)
1
R

∑R
i=1 Ω

(i)
rp

=

√
min(Ωrp)
1
R
‖Ω1/2

rp ‖2
2

. (6.44)

Since min(Ωrp) ≤ ‖Ω1/2
rp ‖2

2/R, the maximum value of ρ for any scenario is 1, which

occurs when all elements of Ωrp are equal.

Note that our definition of the error covariance matrix implies that the entries

are i.i.d.; however, if the entries have different variances — for instance, the quality

of the CSI estimate obtained at each relay node may be different from each other

— then the definition can easily be modified to accommodate this without affecting

the analysis that follows.

To find an expression for the outage probability (6.27), we first note that using

(6.40), γTwH(B + C + D)w can be expressed as

γTwH(B + C + D)w =

2γTPsρ<{wH [hsr � h̃rp][hsr � e]Hw}

+ 2γTPpρ<{wH [hpr � h̃rp][hpr � e]Hw}

+ 2γTσ
2
r ρ<{wHdiag((h̃Hrp)T � e)w}

+ γTPsρ
2wH [hsr � e][hsr � e]Hw

+ γTPpρ
2wH [hpr � e][hpr � e]Hw

+ γTσ
2
r ρ

2wHdiag(|e|2)w

+ γTwH
[
Ps[hsr � h̃rp][hsr � h̃rp]H

+ Pp[hpr � h̃rp][hpr � h̃rp]H + σ2
r diag(|h̃rp|2)

]
w

(6.45)

The terms on the right hand side of (6.45) are denoted by r1, r2, . . . , r7, PDFs of

which are given by Lemma 6.4.3. We first present Lemma 6.4.2 which is useful in

deriving the PDFs of some of the terms of (6.45).

Lemma 6.4.2 If x ∈ CR×1 is a zero-mean random vector with complex Gaussian

elements and the covariance matrix Σ, i.e. x ∼ NC(0,Σ), then for any determinis-

tic vectors, u, g ∈ CR×1, the random variable ψ = gHuxHg is a zero-mean complex

Gaussian random variable with variance

σ2
ψ = tr (ΣG) tr (UG), (6.46)
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where G = ggH and U = uuH .

Proof

Since the entries of x are zero-mean complex Gaussian random variables and ψ

is a linear combination of the entries of x, it implies that ψ is also a zero-mean

complex Gaussian random variable. Note that gHuxHg = xHggHu and therefore

the variance of ψ is given by

σ2
ψ = E{uHggHxxHggHu}

= uHggHE{xxH}ggHu

= uHg tr (ΣG)gHu

= tr (ΣG)uHggHu

= tr (ΣG) tr (UG).

Lemma 6.4.3 r1, r2 and r3 are zero-mean Gaussian random variables with vari-

ances, σ2
1, σ2

2 and σ3
1 given by

σ2
1 = 2γ2

TP
2
s tr

(
(hsrh

H
sr � ρ2Σe)W

)
tr
(

[hsr � h̃rp][hsr � h̃rp]HW
)

(6.47)

σ2
2 = 2γ2

TP
2
p tr

(
(hprh

H
pr � ρ2Σe)W

)
tr
(

[hpr � h̃rp][hpr � h̃rp]HW
)
, (6.48)

σ2
3 = 2γ2

Tσ
4
r (vec (WH))HΣẼ vec (WH), (6.49)

where W = wwH and ΣẼ = E{vec (Ẽ) vec (Ẽ)
H} is an R2 × R2 diagonal matrix

with entries on the main diagonal given by, ΣẼjj
= ρ2Σeii|h̃

(i)
rp |2, i = 1 . . . R, j =

i(R + 1)−R, and zeros everywhere else.

r4 and r5 are exponentially distributed random variables with means, µ4 and µ5

given by

µ4 = γTPs tr ((hsrh
H
sr � ρ2Σe)W), (6.50)

µ5 = γTPp tr ((hprh
H
pr � ρ2Σe)W). (6.51)

r6 is a sum of R independent exponentially distributed random variables with

rate parameters λi = 1/(γTσ
2
r ρ

2ΣeiiWii), i = 1 . . . R and the mean and variance,

µ6 and σ2
6, respectively, given by

µ6 =

[
R∏
i=1

λi

]
R∑
j=1

1

λ2
j

∏N
k=1,k 6=j (λk − λj)

, (6.52)

σ2
6 =

[
R∏
i=1

λi

]
R∑
j=1

2

λ3
j

∏N
k=1,k 6=j (λk − λj)

− µ2
6. (6.53)
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r7 is a deterministic constant.

Proof

Using Lemma 6.4.2, we see that r1 and r2 are zero-mean Gaussian random variables

with variances given by (6.47) and (6.48), respectively.

Since r3 is a linear combination of zero-mean Gaussian random variables, it is

also a zero-mean Gaussian random variable. By defining Ẽ = ρdiag((h̃Hrp)T � e),

the variance can be expressed as

σ2
3 = 2γ2

Tσ
4
rE{tr (WẼ) tr (WẼ)

∗}. (6.54)

Invoking [95, Theorem 1.2.22. (ii)], which states that

tr (WẼ) = (vec (WH))H vec (Ẽ),

and because Σe is a diagonal matrix, (6.54) can be rewritten as (6.49).

Using Lemma 6.4.1, r4 and r5 are recognised as exponentially distributed ran-

dom variables with means given by (6.50) and (6.51), respectively.

It is easy to show that r6 can be expressed as

r6 = γTσ
2
r ρ

2

R∑
i=1

|wi|2|ei|2. (6.55)

Since the entries of e are independently distributed Gaussian random variables,

|ei|2 ∀i, are independently distributed exponential random variables and there-

fore, (6.55) is a sum of R independent exponentially distributed random variables

whose mean and variance is known to have the forms given by (6.52) and (6.53),

respectively.

Since the expression of r7 does not contain any random variables, it is a deter-

ministic constant. This completes the proof .

Due to the correlation between the terms of (6.45), its exact PDF is difficult to

handle. However, we propose an accurate approximation of the PDF which is easier

to handle based on the following observation. In a practical cognitive radio system,

the PU requires a very reliable link, hence the outage probability specified will gen-

erally be very small. In order to satisfy the stringent outage probability constraint,

both σ2
1 and σ2

2 must also be small. Notice that the expression for σ2
1 contains the

term Pstr
(
(hsrh

H
sr � ρ2Σe)W

)
, which can be rewritten as Ps

∑R
i=1 ρ

2Σeii|h
(i)
sr |2Wii.

This term represents the SU interference that is generated at the PURx due to CSI

errors, and its level can only be controlled by adjusting the beamformer transmit

power. Hence, as the SUTx to SURl link gets stronger, the beamformer weights will

be scaled down in order to achieve the outage probability constraint. Note that

this term also appears in µ4, which is used in our final approximation, (6.63), of the
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PU outage probability constraint and its magnitude is controlled by controlling the

magnitude of µ4. We note that the beamformer is able to control interference from

the Pstr([hsr � h̃rp][hsr � h̃rp]HW) part of σ2
1 through both amplitude and phase

control and is able to keep it sufficiently low to satisfy the outage probability con-

straint. Again, note that this term appears in the deterministic constant r7, which

is used in (6.63). Hence, the magnitude of this term is controlled by controlling

the magnitude of r7.

In the SURx SINR maximisation problem (6.12), the individual relay transmit

power constraints also limit the beamformer weight magnitudes, which in turn limit

the levels of σ2
1 and σ2

2. From the definition of E and (6.12b), we see that for a fixed

value of P
(i)
Rl,max, the ith relay’s maximum beamformer weight magnitude achievable

decreases as either the SUTx or PUTx to the ith relay link gets stronger.

The expression for σ2
2 contains two terms that represent PU self interference

the level of which is controlled in a similar way to that described above, i.e., by

controlling the levels of µ5 and r7, both of which appear in (6.63). Since both σ2
1

and σ2
2 are expected to be small, the PDF of r1 and r2 will be concentrated around

zero and can be neglected.

Note that σ2
r is generally small — for instance, a receiver with a 2 MHz band-

width and a noise figure (NF) of 30 dB operating at a room temperature of 293

K has an effective noise power of approximately -80 dBm — σ2
3 is very small and

therefore, the PDF of r3 is concentrated around zero and can be safely ignored.

Similarly, both µ6 and σ2
6 are very small and the PDF of r6 is also concentrated

near zero and can be neglected.

From the above discussion, we see that the PDF of (6.45) can be approximated

as the sum of two correlated exponentially distributed random variables r4 and r5.

Next, we show that the correlation between r4 and r5 is small and therefore they

can be treated as independent random variables. By letting H1 = hsrh
H
sr � ρ2eeH

and H2 = hprh
H
pr � ρ2eeH , the covariance between r4 and r5 is given by

Cov(r4, r5) = γ2
TP

2
s E{tr (WH1) tr (WH2)∗} − µ4µ5

= γ2
TP

2
s vec (WH)HE{vec (H1) vec (H2)H} vec (WH)− µ4µ5

= γ2
TP

2
s

R∑
i=1

R∑
j=1

(hsrh
H
sr )ij(hprh

H
pr)
∗
ijρ

4ΣeiiΣejj |Wij|2 (6.56)

It is evident from (6.56) that for small values of ρΣeii , ∀i, the covariance is low. Re-

call that when the SUTx to SURl and PUTx to SURl links are strong, the beamformer

weights are scaled down to meet the outage probability constraint. In this scenario,

|Wij|2, ∀i, j will be small and the covariance will tend to be low. Therefore, in our

analysis, we treat r4 and r5 as independent random variables.
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Hence, γTwH(B + C + D)w can be approximated as

γTwH(B + C + D)w ≈ r4 + r5 + r7, (6.57)

and the outage probability can be approximated by

Po ≈ Pr
{
Pp|hpp|2 − (r4 + r5) ≤ γTσ

2
p + r7

}
. (6.58)

Note that the PDF in (6.58) is the difference between an exponentially distributed

random variable and the sum of two independent exponentially distributed ran-

dom variables. In Fig. 6.2, we show a comparison of the empirical CDF obtained

through Monte Carlo simulations and the approximation (6.58) for ρ = 0.5 in three

channel conditions where the signal to interference channel power ratios (SICR) are

set to 8 dB, 3 dB and 0.8 dB, i.e., Ω
(i)
sr /Ωpr = Ω

(i)
rs /Ωps = Ωpp/Ω

(i)
rp = {8, 3, 0.8} dB

∀i. In all three cases, there are 8 relay nodes, Pp = Ps = 30 dBm, P
(i)
Rl,max = 30

dBm ∀i, γT = 5 dB, γs,min = 0 dB, noise power at each receiver is assumed to

be −80 dBm, the maximum PURx outage probability, Po,max, is set to 5% and

Σeii = ‖Ω1/2
rp ‖2

2/8, ∀i. Due to space constraints, the empirical and approximated

CDF for each channel condition is shown only for one realisation of the channel

vectors, where the vectors have been scaled to obtain the required SICR. However,

the approximation holds for any realisation of the channel vectors, since no as-

sumptions have been made about channel vectors in its derivation. The empirical

and approximated CDF for each channel condition is obtained by first designing a

robust beamformer for SURx SINR maximisation problem (6.65) and then using the

resulting beamformer in Monte Carlo simulations and in the analytical expression

for the approximation. It is evident that the approximation accurately represents

the empirical CDF. Similar results are obtained for the robust SURl transmit power

minimisation problem (6.64).

Using the approximation in (6.58), the outage probability is expressed as

Po = 1− exp

(
−
γTσ

2
p + r7

PpΩpp

)(
1

1 + µ4
PpΩpp

)(
1

1 + µ5
PpΩpp

)
,

(6.59)

and the outage probability constraint is given by

exp

(
r7

PpΩpp

)(
1 +

µ4

PpΩpp

)(
1 +

µ5

PpΩpp

)
≤

exp
(
− γTσ

2
p

PpΩpp

)
1− Po,max

. (6.60)

It is worth noting that, when there are no SURl to PURx link CSI errors, con-

straint (6.60) reduces to constraint (6.23). This is expected since the only channel

uncertainty remaining is in the PUTx to PURx link, which was analysed in Sec-
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Figure 6.2: Empirical and Approximated CDF of (6.58).

tion 6.4.1.

We use the geometric-arithmetic mean inequality and rewrite (6.60) as

exp

(
r7

PpΩpp

)
+

(
1 +

µ4

PpΩpp

)
+

(
1 +

µ5

PpΩpp

)
≤ 3

exp
(
− γTσ

2
p

PpΩpp

)
1− Po,max


1
3

.

(6.61)

Note that (6.61) is a non-convex constraint and is difficult to handle. However,

the assumptions that were made to obtain the approximate outage probability

expression also imply that r7 is small. Thus, exp (r7/(PpΩpp)) ≈ (1 + r7/(PpΩpp)),

allowing us to write the outage probability constraint as the convex constraint

1

PpΩpp

(r7 + µ4 + µ5) + 3

1−

exp
(
− γTσ

2
p

PpΩpp

)
1− Po,max


1
3

 ≤ 0. (6.62)

or equivalently as the SOCP

√√√√√√3


exp

(
− γTσ2

p

PpΩpp

)
1− Po,max


1
3

− 1

 ≥√ γT

PpΩpp

∥∥∥∥∥∥∥∥∥∥∥∥

√
Ps[hsr � h̃rp]Hw√
Pp[hpr � h̃rp]Hw

σr[h̃rp �w]
√
Ps[diag([hsrh

H
sr � ρ2Σe]

1
2 )�w]√

Pp[diag([hprh
H
pr � ρ2Σe]

1
2 )�w]

∥∥∥∥∥∥∥∥∥∥∥∥
2

.

(6.63)
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The robust SURl power minimisation problem with the tightened outage prob-

ability SOCP constraint can therefore be expressed as

min
w

wHEw, s.t. (6.63) and (6.11c). (6.64)

The robust SURx SINR maximisation problem can be expressed as

max
W

tr (QW)

tr ((R + V) W) + Pp|hps|2 + σ2
s

s.t. (6.16b) and (6.16d)

1

PpΩpp

(r̃7 + µ4 + µ5) ≤ 3


exp

(
− γTσ

2
p

PpΩpp

)
1− Po,max


1
3

− 1

 , (6.65)

where

r̃7 , γTtr
((
Ps[hsr � h̃rp][hsr � h̃rp]H + σ2

r diag(|h̃rp|2)

+ Pp[hpr � h̃rp][hpr � h̃rp]H
)
W
)
.

Problem (6.65) can be solved using the method described in Section 6.3.2.

Since problems (6.64) and (6.65) have the same form as (6.38) and (6.39), re-

spectively, the iterative algorithms proposed in Section 6.4.2 can be used to improve

on the solutions obtained by solving (6.64) and (6.65). However, through our ex-

tensive numerical simulations, we have found that the improvements are marginal

and do not motivate the use of the iterative algorithms.

6.5 Simulation Results and Discussion

We illustrate the performance of our proposed methods through numerical simu-

lations in i.i.d. Rayleigh flat-fading channels. We consider a system with 8 relay

nodes. In all simulations we have set Pp = Ps = 30 dBm, P
(i)
Rl,max = 30 dBm ∀i,

γT = 5 dB and the noise power at each receiver is assumed to be −80 dBm, i.e.,

σ2
p = σ2

r = σ2
s = −80 dBm. The maximum PURx outage probability, Po,max, is

set to 5%. Channel powers of the direct paths, i.e., Ωpp, Ω
(i)
sr ∀i and Ω

(i)
rs ∀i, are

set to 10 dB. For our simulations we have set the SICR of all receivers to 5 dB.

Simulations for the total relay power minimisation problem have γs,min = 0 dB.

According to CSI error model (6.40), Σeii = ‖Ω1/2
rp ‖2

2/8 = 5 dB, ∀i. To illustrate

the impact of CSI errors and the effectiveness of our proposed method, we present

simulation results for four different values of ρ, namely, 0.05, 0.2, 0.3 and 0.5.

The results obtained from our methods are compared against the full CSI, worst-

case and non-robust designs. As the name suggests, the worst-case beamformer

guarantees that the SINR at the PURx is above the threshold γT in the worst-case
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channel condition. Since an instantaneous realisation of hpp is not available for the

beamformer design of Section 6.4.1, our worst-case design solves problems (6.8) and

(6.12) based on the expected value of (6.7). Note that (6.7) is at its minimum when

|hpp|2 = Ωpp − ε1 for some appropriately chosen value of ε1 ≥ 0. The worst-case

beamformer ensures that this minimum value is always above the threshold γT. To

provide a fair comparison with the methods proposed in this paper, ε1 is chosen

such that Pr{|hpp|2 ≥ Ωpp− ε1} = 1−Po,max. Similarly, the expected value of (6.7)

is used to design the worst-case beamformer of Section 6.4.2 since instantaneous

realisations of both hpp and hrp are not available. In this case the expected value

of (6.7) is at its minimum when |hpp|2 = Ωpp − ε1 and |h(i)
rp |2 = Ω

(i)
rp + ε2 ∀i, for

some appropriately chosen values of ε1, ε2 ≥ 0. ε1 and ε2 are chosen such that

Pr{|hpp|2 ≥ Ωpp − ε1}
∏R

i=1 Pr{|h(i)
rp |2 ≤ Ω

(i)
rp + ε2} = 1− Po,max.

To derive the worst-case beamformer of Section 6.4.3, we use channel uncer-

tainty model (6.40), with ρ = 1. Here, e is the error vector which has a norm bound

of ε3, i.e., ‖e‖2≤ ε3. The worst-case beamformer will ensure that the PURx SINR is

always above γT for all CSI error vectors satisfying ‖e‖2≤ ε3 and |hpp|2 ≥ Ωpp− ε1.

Using (6.40) and the worst-case value of |hpp|2 in (6.7), the PURx SINR constraint

can be expressed as

−h̃HrpFh̃rp − h̃HrpFe− eHFh̃rp − eHFe

−σ2
p +

Pp(Ωpp − ε1)

γT

≥ 0, (6.66)

s.t. 1−
∥∥∥∥ e

ε3

∥∥∥∥2

2

≥ 0

where F = Ps(hsrh
H
sr �W) + Pp(hprh

H
pr �W) + σ2

r (I �W). The S-Procedure,

which was introduced in Section 3.1.2, can be used to combine the two constraints

in (6.66) into one convex constraint. The S-Procedure states that

∃s≥0 | −h̃HrpFh̃rp − h̃HrpFe− eHFh̃rp − eHFe

−σ2
p +

Pp(Ωpp − ε1)

γT

≥ s

(
1−

∥∥∥∥ e

ε3

∥∥∥∥2

2

)
, (6.67)

which can be rewritten as the quadratic

∃s≥0 |
[
1 eH

]
G

[
1

e

]
≥ 0, (6.68)

where G is defined as

G =

[
−h̃HrpFh̃rp − σ2

p + Pp(Ωpp−ε1)

γT
− s −h̃HrpF

−Fh̃rp −
(
F− s

ε23
I
)] .
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Note that ensuring (6.68) is the same as ensuring that G � 0. Hence, the

worst-case PURx SINR constraint becomes a convex matrix positive semidefinite

constraint. Problems (6.8) and (6.12) are transformed into worst-case robust

problems by replacing the instantaneous PURx SINR constraints with G � 0

and the introduction of the auxiliary variable s. ε1 and ε3 are chosen such that

Pr{|hpp|2 ≥ Ωpp− ε1}Pr{‖e‖2≤ ε3} = 1−Po,max. This ensures that the probability

of encountering a scenario that the worst-case beamformer has not been designed

for is the same as the required outage probability of the proposed methods. In

our simulations of the worst-case beamformer, e is a zero-mean vector with inde-

pendently and identically distributed complex Gaussian entries and the variance

of each entry equal to 0.22‖Ω1/2
rp ‖2

2/8 = −8.98 dB. This corresponds to the scenario

where ρ = 0.2 in the simulations of our proposed robust beamformer of Section

6.4.3.

Our proposed robust beamformer of Section 6.4.3 is also compared against a

non-robust beamformer. The non-robust beamformer is designed by treating CSI

of hrp as perfect by ignoring the effects of CSI errors.

In Fig. 6.3, results are provided for the CDF of the PURx SINR obtained

through solving multiple realisations of the SU total relay power minimisation

problem (6.8), and the corresponding proposed robust problems (6.25), (6.38) and

(6.64). In each realisation of the problem, new instances of the required channels

are generated and the beamforming problem is solved to obtain the beamformer

weights. This procedure is followed for all results presented in this section. Results

are also provided for the worst-case beamformer designs. It can be seen that the

required 5% probability of PURx SINR being below 5 dB is satisfied by all three

robust optimisation schemes proposed in this paper. Being very conservative, the

worst-case designs result in almost zero PU outage probability. A feasible solution

for the worst-case beamformer of Section 6.4.2 could not be found, hence results

are not shown on the figure. This is because the worst-case method aggressively

protects the PURx and is not able to find a power allocation which guarantees QOS

to the PURx in the worst-case scenario.

Table 6.1 summarises the SU blocking probabilities and the mean total relay

power of the various total relay power minimisation problems discussed in this

paper. SU blocking probability is defined as the probability that the SU is not

able to access the channel, i.e., the probability that the optimisation problem is

infeasible due to either SU or PU QoS constraints not being able to be satisfied.

We see that increasing channel uncertainty increases the SU blocking probability.

The results also show that it is not vital to have the full CSI for the PUTx to PURx

link. Knowledge of the mean channel power of this link only is sufficient to obtain

the same SU blocking probability as for the full CSI scenario. It is evident that

the worst-case beamformers tend to have much higher SU blocking probabilities
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Figure 6.3: SINR at the PURx for the total relay power minimisation problem.

Problem Blocking Probability (%) Mean Total Relay Power (dBm)

(6.8), Full CSI 0.2 −41.0

(6.25) 0.2 −41.3

(6.38) 41 −46.5

(6.64), ρ = 0.05 0.2 −41.3

(6.64), ρ = 0.2 0.2 −41.3

(6.64), ρ = 0.3 2.1 −41.6

(6.64), ρ = 0.5 15 −43.6

Sec. 6.4.1 Worst-Case 0.3 −41.6

Sec. 6.4.2 Worst-Case 100 −
Sec. 6.4.3 Worst-Case 84 −54.0

Table 6.1: SU Blocking Probabilities and Mean Relay Power For Total Relay Power
Minimisation Problem
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than the robust beamformers proposed in this paper; for instance, the worst-case

beamformers of Sections 6.4.2 and 6.4.3 result in blocking probabilities of 100% and

84%, respectively, which would render them impractical. The results also show

that the mean total relay power decreases with increasing channel uncertainty.

This is because the channel uncertainty causes the beamformers to become more

conservative and the beamformer power is reduced to control interference at the

PURx.

In Fig. 6.4, results are provided for the CDF of the PURx SINR obtained

through solving the SURx SINR maximisation problem (6.19), and the correspond-

ing proposed robust problems (6.26), (6.39) and (6.65). Results are also provided

for the worst-case designs and a non-robust beamformer design for problem (6.65).

The non-robust beamformer treats hrp CSI as perfect and ignores the effect of CSI

errors in the design process. We see that the outage probability for the full CSI

solution is zero. Results show that the 5% PURx outage probability requirement

is satisfied by all three robust solutions proposed in this paper. The non-robust

solution achieves a PURx outage probability which is greater than 5% because the

outage probability constraint is not respected by this design. Again, the worst-case

designs result in very conservative solutions that attain PURx outage probabilities

which are close to zero.

In Fig. 6.5, the output SURx SINR CDF results for the SURx SINR maximisa-

tion problem (6.19), and the corresponding proposed robust problems (6.26), (6.39)

and (6.65) are provided. Results for the worst-case beamformers are also plotted.

We see that problems (6.26) and (6.65) (ρ = 0.05, see Fig. 6.7 for results for var-

ious values of ρ) result in almost the same performance which is very close to the

full CSI scenario. The performance loss due to partial CSI on the SURl to PURx

link, problem (6.39), is clearly visible. The worst-case beamformer for problem

(6.26) results in almost the same performance as the robust design proposed in

this paper; however, the worst-case designs for problems (6.39) and (6.65) result in

performance that is inferior to our proposed methods.

In Fig. 6.6, the CDF of the PURx SINR obtained through solving (6.65) for

various values of ρ is provided. The outage probability requirement is satisfied by

designs for all three values of ρ. We see that the solutions for ρ = 0.3 and ρ = 0.05

result in the same PU performance.

In Fig. 6.7, the CDF of the SURx SINR obtained through solving (6.65) for

various values of ρ is provided. As a reference, the CDFs of the SURx SINR for

problems (6.26) and (6.39) are also plotted. As expected, the SURx performance

degrades with increasing CSI error variance. As the CSI error variance increases,

the CDF curves are seen to move away from the CDF curve of problem (6.26) and

towards that of problem (6.39).

Tables 6.2–6.4 list the ratio of the mean execution time of the linear-fractional
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Figure 6.4: SINR at the PURx for the SURx SINR maximisation problem.
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Figure 6.5: SINR at the SURx for the SURx SINR maximisation problem.
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Figure 6.6: SINR at the PURx for various CSI error level ρ for the SURx SINR
maximisation problem.
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Figure 6.7: SINR at the SURx for various CSI error level ρ for the SURx SINR
maximisation problem.
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SICR (dB) R = 4 R = 8 R = 16

0.8 35.9 36.1 36.3

3 36.0 36.0 36.1

5 36.1 36.2 36.2

8 36.1 36.1 36.3

Table 6.2: Ratio of mean execution time of linear-fractional program to mean exe-
cution time of convex feasibility problem for solving the SURx SINR maximisation
problem under the assumption of full CSI.

SICR (dB) R = 4 R = 8 R = 16

0.8 36.2 36.3 36.3

3 36.1 36.1 36.1

5 36.1 36.1 36.2

8 36.2 36.1 36.2

Table 6.3: Ratio of mean execution time of linear-fractional program to mean
execution time of convex feasibility problem for solving the robust SURx SINR
maximisation problem (6.65) with ρ = 0.2.

program method to the mean execution time of the convex feasibility SDP method

for solving the SURx SINR maximisation problem under the assumption of full

CSI and its robust counterpart (6.65). The problems are solved using the CVX

toolbox [92] for MATLAB. Results are provided for various channel conditions,

number of relay nodes and levels of channel uncertainty. The results reveal that

in all cases, the linear-fractional program method is on average approximately 36

times faster than the convex feasibility method.

SICR (dB) R = 4 R = 8 R = 16

0.8 36.1 36.1 36.2

3 36.2 36.1 36.1

5 36.3 36.2 36.2

8 36.2 36.1 36.3

Table 6.4: Ratio of mean execution time of linear-fractional program to mean
execution time of convex feasibility problem for solving the robust SURx SINR
maximisation problem (6.65) with ρ = 0.5.

6.6 Summary

In this chapter, cooperative beamformer problems for a CR relay network have been

formulated . The first problem minimises the total relay transmit power subject to

PURx and SURx QoS constraints. It was shown that this problem can be cast into

a convex SOCP and solved efficiently using interior point methods. In the second
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problem, the SURx SINR is maximised subject to PURx QoS and individual relay

transmit power constraints. It was demonstrated that this problem can be solved

using three methods, namely, a convex feasibility SOCP, a convex feasibility SDP

and a SDP that has the form of a linear-fractional program. The linear-fractional

program formulation does not require an iterative procedure for solving it, hence, it

is the most efficient formulation among the three proposed methods. The execution

speed of the linear-fractional program formulation has been found to be on average

36 times faster than the execution speed of the convex feasibility SDP formulation.

New robust counterparts of the cooperative beamformer problems that guaran-

tee a certain PURx outage probability under the assumption of partial and imperfect

CSI have been presented. These problems have the same structure as those formu-

lated under the assumption of perfect CSI, hence, the same methods can be used

to solve the robust formulations. Simulation results have shown how the achieved

robustness varies with CSI uncertainty.



Chapter 7

Robust Cognitive Radio

Beamforming

This chapter considers a CR network consisting of a SUTx equipped with multiple

antennas and a SURx that share spectrum with multiple PUTx and PURx pairs. It is

assumed that the CR has a low level of cooperation with the primary network and

therefore, only partial channel state information of each of the PUTx to PURx and

SUTx to each PURx links is available. Furthermore, we assume that the SUTx to

SURx link CSI is imperfect, with the channel error modelled as additive Gaussian

noise. Under these assumptions, we propose three new robust CR beamformers

where i) the total SUTx transmit power is minimised subject to PURx and SURx

outage probability constraints; ii) the SURx outage probability is minimised subject

to PURx outage probability and SUTx transmit power constraints; and iii) the

maximum PURx outage probability is minimised subject to SURx outage probability

and SUTx transmit power constraints. We present expressions for PURx and SURx

outage probabilities and formulate the robust beamformer optimisation problems

as convex optimisation problems. SUTx transmit power, PURx SINR and SURx

SNR CDFs are obtained through solution of our optimisation problem.

7.1 Introduction

As discussed in Section 3.3.3, transmit beamforming has been shown to signifi-

cantly improve performance in conventional wireless systems [24, 25, 41, 69, 82, 84,

119, 120, 183–185, 199, 204, 205, 209, 211, 212, 235, 247].

Due to its advantages, beamforming has attracted much interest in CR re-

search [267, 268, 270, 276, 277]. One of the challenges of CR spectrum sharing is

guaranteeing QoS to the PU. Beamforming is seen as a way to overcome this chal-

lenge, since the SU can direct its power away from the PU receivers. Design of CR

beamformers under the assumption of full CSI has been the subject of investiga-

tion in [267, 270]. In [268, 277], the design of robust worst-case CR beamformers

129
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under the assumption of partial CSI have been studied. Most recently, in [276], the

design of a statistically robust CR beamformer under the assumption of imperfect

CSI for a CR network with a high level of cooperation with the primary network

was addressed and an iterative solution method that involved an exhaustive search

was proposed.

In this chapter, we consider the scenario where there are multiple PU trans-

mitter and receiver pairs coexisting with a SUTx and SURx pair. We assume that

the CR network has a low level of cooperation with the primary network and,

therefore, only mean channel powers of each of the PUTx to PURx and the SUTx

to each PURx links are available. Furthermore, we assume that the SUTx to SURx

link CSI is imperfect, with the channel error modelled as additive Gaussian noise.

We propose new statistically robust CR beamformers where either the total SUTx

transmit power is minimised subject to PURx and SURx outage probability con-

straints or the maximum PURx outage probability is minimised subject to SURx

outage probability and total transmit power constraints.

The contributions of this chapter are as follows.

• We first formulate the CR beamforming problem under the assumption of

full CSI at the CR system as SUTx transmit power minimisation, SURx SNR

maximisation and maximisation of the minimum PURx SINR problems.

• We show that the SUTx transmit power minimisation and the SURx SNR

maximisation problems can be transformed into convex SOCPs.

• We show that the maximisation of the minimum PURx SINR problem can be

transformed into a convex feasibility problem with SOC constraints.

• We derive the PURx and SURx outage probability expressions.

• We propose new robust beamformers that

1. minimise the SUTx transmit power while guaranteeing certain PURx and

SURx outage probabilities;

2. minimise the SURx outage probability while guaranteeing a certain PURx

outage probability and keeping within the SUTx transmit power limits;

3. minimise the maximum PURx outage probability while guaranteeing a

certain SURx outage probability and keeping within the SUTx transmit

power limits;

for the scenarios where i) partial CSI is available for the PUTx to PURx link

and SUTx to each of PURx links; and ii) imperfect CSI is available for the

SUTx to SURx link.
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Figure 7.1: System Model

• We show that the robust SUTx transmit power minimisation problem can be

transformed into a convex SDP.

• We show that the SURx outage probability minimisation and the maximum

PURx outage probability minimisation problems can be transformed into con-

vex feasibility problems.

The performance resulting from the optimisation problems outlined above is

demonstrated by means of PURx SINR, SURx SNR, SUTx transmit power and SURx

and PURx outage probability CDFs for flat Rayleigh channels.

7.2 System Model

As shown in Fig. 7.1, we consider a CR system which consists of a SUTx, a SURx

and K PUTx and PURx pairs. The SUTx has M antennas while there is only one

antenna at the SURx and each of the PUTxs and PURxs. We assume that the SUTx

is located in close proximity of the primary system while the SURx is located at

a large distance away from the PUTxs. Hence, in our analysis, we assume that

the PUTx transmit powers are sufficiently attenuated by distance to be ignored at

the SURx. Since the PU and SU systems use the same frequency band, the PURxs

experience interference from the SUTx. Due to the low cooperation level between

the PU and SU systems, we assume that the SU has no knowledge of the channel

access method employed by the PU system. Hence, in our analysis the SU assumes

that all PUTxs are active simultaneously.

Independent, point-to-point, flat Rayleigh fading channels are assumed for all
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links in the network. The channel between the ith PUTx and the ith PURx and the

SUTx and ith PURx are denoted by the scalar ci ∈ C and the vector fi ∈ CM×1,

respectively, for i = 1 . . . K. h ∈ CM×1 denotes the channel between the SUTx

and the SURx. The instantaneous channel powers of these links are represented by

g
(i)
c = |ci|2, g

(j)
fi

= |f (j)
i |2 and g

(j)
h = |h(j)|2 for j = 1 . . .M and are governed by their

corresponding parameters E{g(i)
c } = Ω

(i)
c , E{g(j)

fi
} = Ω

(j)
fi

and E{g(j)
h } = Ω

(j)
h .

The signal at the SURx is given by

y = hHw
√
Psss + ns, (7.1)

and that at the ith PURx by

zi =
√
Pps

(i)
p ci + fHi w

√
Psss + n(i)

p , (7.2)

where
√
Psss is information symbol transmitted by the SUTx, w ∈ CM×1 is the

beamforming vector at the SUTx and ns is the AWGN with variance σ2
s at the

SURx, Pp is the PUTx transmit power, s
(i)
p is the information symbol transmitted

by the ith PUTx and n
(i)
p is the AWGN with variance σ2

p, at the ith PURx. We

assume E{|
√
Psss|2} = E{|s(i)

p |2} = 1.

The power transmitted by the SUTx is given by

PT = ‖w‖2
2. (7.3)

Using (7.1) and (7.2) and assuming that
√
Psss and

√
Pps

(i)
p , are uncorrelated, the

SNR at the SURx can be expressed as

γs =
|hHw|2

σ2
s

, (7.4)

and the SINR at the ith PURx is given by

γ(i)
p =

Pp|ci|2

|fHi w|2 + σ2
p

. (7.5)

In an underlay cognitive radio system the secondary users are allowed to operate

as long as they can guarantee a certain level of quality of service to the primary

user. Hence, in our analysis we impose an SINR constraint, γ
(i)
T , at the ith PURx,

i.e., γ
(i)
p ≥ γ

(i)
T .

7.3 Beamformer Optimisation Under Full CSI

In this section, we aim to find the optimum beamforming weight vector, w, such

that i) the total SUTx transmit power, PT , is minimised while guaranteeing mini-



7.3 Beamformer Optimisation Under Full CSI 133

mum QoS to the SURx and each of the PURxs; or ii) the minimum PURx SINR is

maximised subject to SURx minimum QoS and peak transmit power constraints.

In our analysis, we assume that we are unable to control the PU’s transmit

power and that all of the PUs transmit at a constant power of Pp. In this section,

we formulate the beamforming problems under the assumption that full CSI for all

links is available. This is the basis for the development of the robust beamformers

in Section 7.4.

7.3.1 SU Transmitter Power Minimisation

The total SUTx transmit power minimisation problem can be mathematically rep-

resented as

min
w

‖w‖2 (7.6a)

s.t.
Pp|ci|2

|fHi w|2 + σ2
p

≥ γ
(i)
T , i = 1 . . . K (7.6b)

|hHw|2

σ2
s

≥ γs,min. (7.6c)

Constraint (7.6c) is satisfied with equality at the optimum. Otherwise, the opti-

mum w could be scaled down to satisfy the constraint with equality, hence decreas-

ing the objective function and contradicting optimality.

Problem (7.6) is a non-convex optimisation problem, but it can be reformulated

into a convex optimisation problem. Following [25], we observe that neither the

objective function nor the constraints change if the beamforming vector undergoes

a phase rotation. Thus, hHw can be chosen to be real without loss of generality.

The transmit power minimisation problem can therefore be restated as the following

SOCP

min
w

‖w‖2 (7.7a)

s.t.
√
Pp|ci|2 ≥

√
γ

(i)
T

∥∥∥∥∥fHi w

σp

∥∥∥∥∥
2

, i = 1 . . . K (7.7b)

hHw ≥ σs
√
γs,min. (7.7c)

In the interest of brevity, the further constraints <{hHw} ≥ 0 and ={hHw} = 0,

are not explicitly stated in any of the SOCPs in the following sections. Problem

(7.7) is in a convex form and standard interior point methods can be used to solve

it efficiently.
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7.3.2 SU Receiver SNR Maximisation

In the SURx SNR maximisation problem, the received signal power at the SURx

is maximised while placing an upper limit on the total SUTx transmit power and

guaranteeing QoS to the PURxs. This is mathematically stated as

max
w

|hHw|2 (7.8a)

s.t. (7.6b), (7.8b)

‖w‖2
2 ≤ PT,max. (7.8c)

Problem (7.8) is a non-convex optimisation problem; however, again noting that

neither the objective function nor the constraints change if the beamforming vector

undergoes a phase rotation allows us to choose hHw to be real. Hence, problem

(7.8) can be transformed into the following convex SOCP

max
w

hHw (7.9a)

s.t. (7.7b), (7.9b)√
PT,max ≥ ‖w‖2. (7.9c)

7.3.3 Minimum PU Receiver SINR Maximisation

In some cases the SU system would design the beamforming vector such that the

minimum PURx SINR is maximised while meeting its own performance require-

ments. This problem is stated as

max
w

min
i=1,...,K

(
Pp|ci|2

|fHi w|2 + σ2
p

)
(7.10a)

s.t. (7.6c), (7.10b)

‖w‖2
2 ≤ PT,max. (7.10c)

Using the epigraph form, problem (7.10) can be restated as

max
t,w

t (7.11a)

s.t.
Pp|ci|2

|fHi w|2 + σ2
p

≥ t, i = 1 . . . K (7.11b)

(7.6c), (7.11c)

‖w‖2
2 ≤ PT,max. (7.11d)

We again see that neither the objective function nor the constraints change if the

beamforming vector undergoes a phase rotation. Thus, hHw can be chosen to be
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real. Problem (7.11) can therefore be written as

max
t,w

t (7.12a)

s.t.
√
Pp|ci|2 ≥

√
t

∥∥∥∥∥fHi w

σp

∥∥∥∥∥
2

, i = 1 . . . K (7.12b)

(7.7c), (7.12c)√
PT,max ≥ ‖w‖2. (7.12d)

Due to coupling between the optimisation variables, constraint (7.12b) is a non-

convex constraint. However, as was seen in Sections 3.3.4 and 6.3.2, for any fixed

value of t the set of feasible w is convex and hence the problem is quasi convex.

Therefore, for some given t, problem (7.12) can be expressed as the following convex

feasibility problem with SOCP constraints

find w

s.t. (7.12b), (7.12c) and (7.12d). (7.13)

The bisection method [29] can be used to solve problem (7.13) in an iterative

manner.

7.4 Robust Beamformer Optimisation Under Par-

tial And Imperfect CSI

In practice, full CSI for all links is seldom available and the assumption of full or

perfect CSI may be overly idealistic. We consider a CR network with a low cooper-

ation level with the primary network. We assume that only mean channel powers

of each of the PUTx to PURx and the SUTx to each PURx links are available, i.e.,

only Ω
(i)
c ∀i and Ω

(j)
fi
∀i, j for the aforementioned links are available. Furthermore,

we assume that the CSI of the SUTx to SURx link is imperfect. The imperfection

may be due to estimation errors or other factors such as quantisation. In our anal-

ysis, we model the CSI errors as additive complex Gaussian noise. Hence, using

the imperfect CSI model (6.40), we have

h = h̃ + ρe, (7.14)

where h̃ is the imperfect SUTx to SURx link CSI estimate known at the SUTx and

e is the zero mean estimation error vector with independently distributed complex

Gaussian entries and the diagonal covariance matrix Σe = (‖Ω1/2
h ‖2

2/M)I, i.e., e ∼
NC(0,Σe). Here, Ωh = [Ω

(1)
h Ω

(2)
h . . .Ω

(M)
h ]T . 0 ≤ ρ ≤ (min(Ωh)/(‖Ω1/2

h ‖2
2/M))1/2

determines the quality of the CSI, which is perfect when ρ = 0 and has maximum
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uncertainty when ρ = (min(Ωh)/(‖Ω1/2
h ‖2

2/M))1/2.

In our formulation we consider the SU and PU outage probability as the QoS

parameter. In the system under consideration, outage at the ith PU occurs when

its SINR, γ
(i)
p , falls below the threshold γ

(i)
T . Similarly, SU outage occurs when

the SU SNR, γs, falls below the SU SNR threshold, γs,min. The ith PU outage

probability is expressed as

Po
(i) = Pr

{
γ(i)

p ≤ γ
(i)
T

}
(7.15)

= Pr
{
Pp|ci|2 − γ(i)

T wHfif
H
i w ≤ γ

(i)
T σ2

p

}
,

where we have used the relation |fHi w|2 = wHfif
H
i w. Likewise, the SU outage

probability is expressed as

Po
SU = Pr

{
|hHw|2 ≤ γs,minσ

2
s

}
. (7.16)

The probabilistic measures are performed over ci and fi statistics in (7.15) and over

CSI error statistics in (7.16).

To proceed, we observe that, in (7.15), we are dealing with a PDF that is given

by the difference of two random variables, namely, Pp|ci|2 and γ
(i)
T wHfif

H
i w. It is

easily shown that Pp|ci|2 has an exponential distribution with a mean of PpΩ
(i)
c .

We note that γ
(i)
T wHfif

H
i w = γ

(i)
T fHi Wfi, where W = wwH . Using Lemma 6.4.1

in Chapter 6, page 107, and exploiting the fact that W is a rank-one matrix, we

have that γ
(i)
T wHfif

H
i w is exponentially distributed with a mean of γ

(i)
T tr (ΣfiW),

where Σfi is the covariance matrix of fi and is expressed as

Σfi = diag (Ωfi) , (7.17)

where Ωfi = [Ω
(1)
fi

Ω
(2)
fi
. . .Ω

(M)
fi

]T .

The PDF in (7.15) is that of a difference between two independent exponential

random variables and can easily be shown to have the following form

f(ψ) =

 λ1λ2
λ1+λ2

exp (−λ1ψ) if ψ ≥ 0

λ1λ2
λ1+λ2

exp (λ2ψ) if ψ < 0
(7.18)

where λ1 = 1/(PpΩ
(i)
c ) and λ2 = 1/(γ

(i)
T tr (ΣfiW)).

Using (7.18) and utilising the fact that γ
(i)
T σ2

p ≥ 0, (7.15) can be rewritten as

Po
(i) = 1−

∫ ∞
γ
(i)
T σ2

p

λ1λ2

λ1 + λ2

exp (−λ1ψ) dψ

= 1− λ2

λ1 + λ2

exp
(
−λ1γ

(i)
T σ2

p

)
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= 1− PpΩ
(i)
c

γ
(i)
T tr (ΣfiW) + PpΩ

(i)
c

exp

(
−
γ

(i)
T σ2

p

PpΩ
(i)
c

)
. (7.19)

In (7.16), |hHw|2 is recognised to be a non-central Chi-square random variable

whose CDF is given by the generalised Marcum’s Q function [179]. The generalised

Marcum’s Q function is difficult to handle and so to obtain a mathematically

tractable solution, we rewrite (7.16) as follows

Po
SU = Pr {wHh̃h̃Hw + ρwH(h̃eH + eh̃H)w

+ρ2wHeeHw ≤ γs,minσ
2
s }

= Pr {2ρ<{wHh̃eHw}︸ ︷︷ ︸
u

+ ρ2wHeeHw︸ ︷︷ ︸
v

≤ γs,minσ
2
s −wHh̃h̃Hw}. (7.20)

Since u in (7.20) is a linear combination of zero-mean independent Gaussian

random variables, it itself is a zero-mean Gaussian random variable with variance

σ2
u given by

σ2
u = 4E{ρ2wHh̃eHwwHeh̃Hw}

= 4ρ2wHh̃wHE{eeH}wh̃Hw

= 4ρ2 tr (h̃h̃HW) tr (ΣeW)

= 4ρ2 tr (h̃h̃HWΣeW)

= 4ρ2‖(Σeh̃h̃H)
1
2 W‖2

2, (7.21)

where W = wwH . Using Lemma 6.4.1 in Chapter 6, page 107, v in (7.20) is recog-

nised as an exponentially distributed random variable with mean µv = ρ2 tr (ΣeW)

and variance σ2
v = ρ4 tr (ΣeW)2.

When channel uncertainty is large, beamforming loses its effectiveness since the

beam width has to be widened to handle the channel uncertainty. In this work

we focus on the scenario where the channel uncertainty is in the acceptable range

for beamforming to be practical. In this scenario, σ2
v is much smaller than σ2

u

and as a result the PDF in (7.20) is dominated by the Gaussian random variable

v. Therefore, the PDF in (7.20) can be approximated by the zero-mean Gaussian

distribution with variance σ2
u. Figs. 7.2–7.6 compares the true distribution obtained

using the Marcum’s Q function with its Gaussian approximation for various values

of ρ. In all cases there are 4 transmit antennas at the SUTx and all entries of Ωh

are equal. As a reference, maximum uncertainty occurs when ρ = 1. From the

figures, it is evident that the approximation provides a good representation of the

true CDF for values of ρ less than 0.4.
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Figure 7.2: True CDF and approximation for ρ = 0.05.

The SU outage probability can therefore be approximated as

Po
SU ≈ 1− 1

2
erfc

(
γs,minσ

2
s − tr (h̃h̃HW)

2ρ‖(Σeh̃h̃H)
1
2 W‖2

)
. (7.22)

7.4.1 Robust SU Transmitter Power Minimisation

To develop the robust transmit power minimisation problem, the PU SINR and

the SU SNR constraints in problem (7.6) are replaced by outage probability con-

straints, i.e., given maximum allowable PU and SU outage probabilities, α(i) and

β, constraints (7.6b) and (7.6c) are replaced with Po
(i) ≤ α(i) and Po

SU ≤ β, re-

spectively. Using (7.19), the ith PU outage probability constraint can be written

as the following convex constraint

tr (ΣfiW) ≤
PpΩ

(i)
c

(
exp

(
− γ

(i)
T σ2

p

PpΩ
(i)
c

)
− 1 + α(i)

)
γ

(i)
T (1− α(i))

. (7.23)

An important observation in the above constraint is that it is dependent only on the

diagonal elements of W, i.e., dependent only on the beamformer transmit power.

This is a fairly intuitive result since phase information of the SUTx to PURx links are

not available and, therefore, power control is the only degree of freedom available

to the beamformer to control the amount of interference to the PURxs.

Similarly, using (7.22), the SU outage probability constraint can be expressed
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Figure 7.3: True CDF and approximation for ρ = 0.1.
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Figure 7.4: True CDF and approximation for ρ = 0.2.
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Figure 7.5: True CDF and approximation for ρ = 0.3.
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Figure 7.6: True CDF and approximation for ρ = 0.4.
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as the convex constraint

γs,minσ
2
s − tr (h̃h̃HW)

erfc−1 (2(1− β))
≥ 2ρ‖(Σeh̃h̃H)

1
2 W‖2. (7.24)

The robust transmit power minimisation problem can therefore be stated as the

following SDP

min
W

tr (W) (7.25a)

s.t. (7.23), i = 1 . . . K (7.25b)

(7.24), (7.25c)

W � 0, (7.25d)

rank(W) = 1. (7.25e)

Constraints (7.25d) and (7.25e) are included in the above optimisation problem

because of the definition of W. Note that constraint (7.25e) is a non-convex con-

straint hence, we apply the idea of SDR and relax problem (7.25) by dropping the

non-convex rank-one constraint and obtain the following convex robust transmit

power minimisation SDP

min
W

tr (W) (7.26a)

s.t. (7.23), i = 1 . . . K (7.26b)

(7.24) and (7.25d) . (7.26c)

Problem (7.26) is in a convex form and standard interior point methods can be

used to solve it efficiently.

After solving (7.26) one needs to recover the optimum beamforming vector, w∗,

from W. If W is rank-one, then w∗ can be chosen to be the principal eigenvector

of W. For the case where W has rank higher than one, the well known Gaussian

randomisation technique [146] can be used to recover a good rank-one approxima-

tion. However, in our extensive numerical simulations, we have never obtained a

solution that had a rank higher than one. This behaviour is similar to that reported

in other beamforming problems [82, 99].

7.4.2 Robust SU Outage Probability Minimisation

The SURx outage probability minimisation problem is the robust counterpart of

the SURx SNR maximisation problem. This problem seeks to minimise the SURx

outage probability while constraining the total SUTx transmit power and the outage
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probability of the PURxs. Mathematically this problem is stated as

min
W

1− 1

2
erfc

(
γs,minσ

2
s − tr (h̃h̃HW)

2ρ‖(Σeh̃h̃H)
1
2 W‖2

)
(7.27a)

s.t. (7.23), i = 1 . . . K (7.27b)

tr (W) ≤ PT,max, (7.27c)

W � 0, (7.27d)

rank(W) = 1. (7.27e)

Using the epigraph form and through the application of SDR, the relaxed form

of problem (7.27) can be restated as

min
W,t

t (7.28a)

s.t.
γs,minσ

2
s − tr (h̃h̃HW)

erfc−1 (2(1− t))
≥ 2ρ‖(Σeh̃h̃H)

1
2 W‖2, (7.28b)

(7.23), i = 1 . . . K (7.28c)

(7.27c) and (7.27d), (7.28d)

where t is an auxiliary variable. Problem (7.28) is a non-convex optimisation

problem. However, for any fixed value of t the set of feasible W is convex and

hence the problem is quasi convex. Therefore, for some given t, problem (7.28) can

be expressed as the following convex feasibility problem

find W

s.t. (7.28b), (7.28c), (7.27c) and (7.27d). (7.29)

The bisection method [29] can be used to solve problem (7.29) in an iterative man-

ner. Since the rank constraint was relaxed to obtain (7.29), W is not guaranteed

to be a rank one matrix. However, in our extensive numerical simulations we have

never obtained a solution that had a rank higher than one, therefore, the optimum

beamforming vector, w∗, is chosen to be the principal eigenvector of W. This

behaviour is similar to that reported in other beamforming problems [82, 99].

7.4.3 Robust Maximum PU Outage Probability Minimisa-

tion

Since PURx SINR directly influences the PURx outage probability, minimisation of

the maximum PURx outage probability is an analogous problem to the maximisa-

tion of the minimum PURx SINR problem. Mathematically this is represented as
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the following relaxed SDP

min
W

max
i=1,...,K

1−
PpΩ

(i)
c exp

(
− γ

(i)
T σ2

p

PpΩ
(i)
c

)
γ

(i)
T tr (ΣfiW) + PpΩ

(i)
c

 (7.30a)

s.t. (7.24) and (7.25d) , (7.30b)

tr (W) ≤ PT,max. (7.30c)

It is easily shown that problem (7.30) can be equivalently expressed as

max
W

min
i=1,...,K

 PpΩ
(i)
c exp

(
− γ

(i)
T σ2

p

PpΩ
(i)
c

)
γ

(i)
T tr (ΣfiW) + PpΩ

(i)
c

 (7.31a)

s.t. (7.24), (7.25d) and (7.30c) . (7.31b)

Using the epigraph form, problem (7.31) can be rewritten as

max
t,W

t (7.32a)

s.t. (1− t)
(
γ

(i)
T tr (ΣfiW) + PpΩ(i)

c

)
≤

PpΩ(i)
c exp

(
−
γ

(i)
T σ2

p

PpΩ
(i)
c

)
, i = 1 . . . K (7.32b)

(7.24), (7.25d) and (7.30c) . (7.32c)

Problem (7.32) is a non-convex optimisation problem. However, for any fixed

value of t the set of feasible W is convex and hence the problem is quasi convex.

Therefore, for some given t, problem (7.32) can be expressed as the following convex

feasibility problem

find W

s.t. (7.24), (7.25d), (7.30c) and (7.32b). (7.33)

The bisection method [29] can be used to solve problem (7.33) in an iterative man-

ner. Since the rank constraint was relaxed to obtain (7.33), W is not guaranteed

to be a rank one matrix. However, in our extensive numerical simulations we have

never obtained a solution that had a rank higher than one, therefore, the optimum

beamforming vector, w∗, is chosen to be the principal eigenvector of W. This

behaviour is similar to that reported in other beamforming problems [82, 99].
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7.5 Simulation Results and Discussion

We illustrate the performance of our proposed methods through numerical simula-

tions in i.i.d. Rayleigh flat-fading channels. We consider a system with four PUs

and one SU with four transmit antennas, i.e., K = 4 and M = 4. In all simulations

we have set Pp = 30 dBm, γ
(i)
T = 10 dB, γs,min = 10 dB and the noise power at each

PU and SU receiver is assumed to be −30 dBm, i.e., σ2
p = σ2

s = −30 dBm. The

channel powers of all PUTx to PURx links are set to 0 dB, i.e., Ω
(i)
c = 0 dB, ∀i. The

SICR at each PURx is set to −20 dB, i.e., the interference channel powers are 20

dB higher than the wanted signal channel powers. This corresponds to Ω
(j)
fi

= −20

dB, ∀i, j. The channel powers of all links between the SUTx and the SURx are set

to −10 dB, i.e., Ω
(j)
h = −10 dB, ∀j. This set-up represents the scenario where the

PU receivers experience high interference from the SU system and the link between

the SU transmitter and receiver is weak. This makes it difficult for the SU sys-

tem to guarantee the required QoS to the PU system while meeting its own QoS

requirements.

The maximum PU outage probability, α(i), in optimisation problems that im-

pose PU outage probability constraints is set to 5%. Similarly, the maximum SU

outage probability, β in optimisation problems that impose a SU outage proba-

bility constraint is also set to 5%. According to CSI error model (7.14), Σeii =

‖Ω1/2
h ‖2

2/4 = −10 dB, ∀i. To illustrate the impact of CSI errors and the effec-

tiveness of our proposed method, we present simulation results for three different

values of ρ, namely, 0.1, 0.2, and 0.3.

Results of our proposed method are compared against the full CSI, worst-case

and non-robust designs. The non-robust design treats the SUTx to SURx channel

estimate as perfect and imposes an instantaneous SURx SNR constraint. The design

of the worst-case beamformer is described in the next 2 paragraphs.

The worst-case beamformer that minimises the SUTx transmit power is designed

such that the SINR at the ith PURx is above the threshold γ
(i)
T and the SNR at

the SURx is above the threshold γs,min for every possible realisation of ci, fi and e.

Since instantaneous realisations of ci and fi are not available, our worst-case design

solves problem (7.6) based on the expected value of (7.5). Note that (7.5) is at

its minimum when |ci|2 = Ω
(i)
c − εc and |f (j)

i |2 = Ω
(j)
fi

+ εf , for some appropriately

chosen values of εc, εf ≥ 0. The worst-case beamformer ensures this minimum value

is always above the threshold γ
(i)
T . Furthermore, we impose a norm bound [238] on

e, i.e., ‖e‖2 ≤ εe and the worst-case beamformer ensures that the SNR at the SURx

is above the threshold γs,min for every possible realisation of e within this bound.

The worst-case SURx constraint is mathematically represented as

min
‖e‖2≤εe

∣∣∣h̃Hw + eHw
∣∣∣2 ≥ σ2

s γs,min. (7.34)
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Utilising the method used for developing the worst-case MVDR beamformer of

Section 3.3.2 (Equation 3.58), the above worst-case constraint can be replaced by

its lower bound:

|h̃Hw| − εe‖w‖2 ≥
√
σ2

sγs,min. (7.35)

The worst-case beamformer that minimises the transmit power can therefore be

stated as the following SOCP:

min
w

‖w‖2

s.t.

(
Pp(Ω

(i)
c −εc)

γ
(i)
T

− σ2
p

)
Ω

(1)
fi

+ εf
≥ ‖w‖2, i = 1 . . . K

hHw ≥ εe‖w‖2 + σs
√
γs,min. (7.36)

The facts that Ω
(j)
fi

, ∀j are equal in this simulation scenario and neither the objective

nor the constraints change if the beamforming vector undergoes an arbitrary phase

rotation have been used in the derivation of (7.36).

To provide a fair comparison of the worst-case method with the method pro-

posed in this chapter, εc, εf and εe are chosen such that Pr {|ci|2 ≥ Ω
(i)
c − εc}∏R

j=1 Pr {|f (j)
i |2 ≤ Ω

(j)
fi

+ εf} = 1 − α(i), ∀i and Pr {‖e‖2 ≤ εe} = 1 − β. This

ensures that the probability of encountering a scenario that the worst-case beam-

former has not been designed for is the same as the required outage probability

of the proposed methods. In our simulations of the worst-case beamformer, e is

a zero-mean vector with independently and identically distributed complex Gaus-

sian entries and the variance of each entry equal to 0.12‖Ω1/2
h ‖2

2/4 = −30 dB. This

corresponds to the scenario where ρ = 0.1 in the simulations of our proposed SUTx

transmit power minimising robust beamformer.

In Fig. 7.7, the CDF of the SINR at the PURx 1 resulting from solving multiple

realisations of the SUTx power minimisation problem is provided. In each realisa-

tion of the problem, new instances of the required channels are generated and the

beamforming problem is solved to obtain the beamformer weights. This procedure

is followed for all results presented in this section. We see that the required prob-

ability of the achieved PURx SINR being below 10 dB is satisfied by the robust

optimisation scheme proposed in this chapter for all three levels of CSI estimate

error. We see that increasing the CSI estimate error does not significantly degrade

the PU’s performance. Being very conservative, the worst-case design correspond-

ing to ρ = 0.1 achieves a lower outage probability than the proposed robust method

for all three levels of CSI estimate error. As a reference, the PU’s achievable SINR

when the SU doesn’t exist is also provided. This has been obtained by assuming

that the PURx is able to perfectly cancel the interference generated by other PUs.
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Figure 7.7: CDF of SINR at PURx 1 for the SUTx power minimisation problem.

The performance loss due to the SU’s transmission is clearly visible.

The CDF of the SNR at the SURx obtained by solving the SUTx power minimi-

sation problem for the proposed robust method along with the full CSI, non-robust

and the worst-case designs are shown in Fig. 7.8. We see that the probability of

outage for the full CSI design is zero. The full CSI design performance serves as a

benchmark for the other methods. The proposed robust beamformer satisfies the

outage probability constraint for all three levels of CSI estimate error. We observe

that as the level of the channel estimation error increases, the SNR curves move

away from the ideal step function response of the full CSI case. The probability

that the SNR is below 10 dB in the worst-case approach is almost zero which im-

plies that very conservative solutions are obtained. Since the non-robust design

does not take into consideration the error in the SUTx to SURx channel estimate,

the outage probability of this design is almost 50%. This level of performance is

generally unacceptable for most practical systems and highlights the importance

of robust designs.

The extremely conservative nature of the worst-case design for the SUTx power

minimisation problem is further demonstrated by the SU blocking probabilities

listed in Table 7.1. SU blocking probability is defined as the probability that the

SU is not able to access the channel, i.e., the probability that the optimisation

problem is infeasible due to either SU or PU QoS constraints not being able to be

satisfied. As can be seen in Table 7.1, the worst-case design results in extremely

high SU blocking probability which would render it impractical.

In Fig. 7.9, the CDF of the total SU transmit power obtained by solving the



7.5 Simulation Results and Discussion 147

8 9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
(γ

s ≤
 a

b
sc

is
sa

)

 

 

Full CSI

ρ=0.1

ρ=0.2

ρ=0.3

Worst−Case

ρ=0.1 Non−Robust

Figure 7.8: CDF of SNR at the SURx for the SUTx power minimisation problem.

Problem Blocking Probability (%)

(7.7), Full CSI 0
(7.26), ρ = 0.1 3.8
(7.26), ρ = 0.2 6.6
(7.26), ρ = 0.3 14.4

Worst-Case 92.3

Table 7.1: SU Blocking Probabilities for the SUTx Power Minimisation Problem.
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Figure 7.9: CDF of total SU transmit power for the SUTx power minimisation
problem.

SUTx power minimisation problem is shown. Being very aggressive in protecting

the PU, the worst-case design consumes the least amount of transmit power. We see

that for the proposed robust design, the power consumption increases as the channel

uncertainty increases. This is because the beamformer’s beam width is increased

to handle the increased channel uncertainty which reduces the amount of signal

power that arrives at the SURx. Hence, in order to meet the SU’s outage probability

requirement, the beamformer compensates for the reduction in the received power

by increasing the transmitted power.

Figs. 7.10 and 7.11 compare the CDF of the SINR at PURx 1 and the CDF

of the SNR at the SURx obtained by solving the robust SUTx power minimisation

problem for two PURx outage probabilities, respectively. The CDFs shown are

for PURx outage probabilities of 1% and 5%, while ρ = 0.1 and the SURx outage

probability is set to 5% in both cases. We see that the required probability of

the achieved PURx SINR being below 10 dB is satisfied for both cases. Similarly,

the SURx outage probability requirement is also satisfied for both cases. As ex-

pected, the performance of the PURx improves when the PURx outage probability

is reduced from 5% to 1%. This is due to the reduction in the allowed level of

SU interference at the PU. We also see that the SURx SNR curve moves towards

the ideal step function response of the full CSI case (see Fig. 7.8) when the PURx

outage probability is reduced from 5% to 1%. This is because the SUTx has to

reduce its transmitted power in order to satisfy the lower PURx outage probability

requirement. Furthermore, we have observed that the SU blocking probability in-
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Figure 7.10: CDF of SINR at PURx 1 for α(1) = 1% and 5% for the SUTx power
minimisation problem. ρ = 0.1 and β = 5% in both cases.

creases from 3.8% to 40% when the PURx outage probability is reduced from 5%

to 1%. This is because the reduced PURx outage probability causes the SUTx to

reduce its transmitted power thus making it harder for the SURx outage probability

requirement to be satisfied. This reduction in the SUTx’s transmitted power can

be clearly seen in Fig. 7.12.

Fig. 7.13 shows the CDF of the SINR at the PURx 1 obtained by solving the

SURx outage probability minimisation problem. We see that the required outage

probability of 5% is satisfied for all three levels of CSI estimate error. The CDF

of the attainable SURx outage probability in the simulated channel is shown in

Fig. 7.14. This CDF is obtained by solving multiple instances of the SURx outage

probability minimisation problem. In each realisation of the problem, new instances

of the required channels are generated and the beamforming problem is solved to

obtain the beamformer weights. The attained outage probability of each solution is

calculated using the generalised Marcum’s Q function [179]. It can be seen that the

probability of achieving a certain outage probability decreases as the level of the CSI

estimate error increases. This is particularly pronounced for outage probabilities

close to zero; for instance, the probability of no outage is approximately 97% for

ρ = 0.1, 62% for ρ = 0.2 and 15% for ρ = 0.3.

In Fig. 7.15, the CDF of the attainable outage probability at PURx 1 result-

ing from solving the maximum PURx outage probability minimisation problem is

shown. This CDF is obtained by solving multiple instances of the PURx outage

probability minimisation problem. In each realisation of the problem, new instances
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Figure 7.11: CDF of SNR at the SURx for α(1) = 1% and 5% for the SUTx power
minimisation problem. ρ = 0.1 and β = 5% in both cases.
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Figure 7.12: CDF of the SUTx transmit power for α(1) = 1% and 5% for the SUTx

power minimisation problem. ρ = 0.1 and β = 5% in both cases.
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Figure 7.13: CDF of SINR at PURx 1 for the SURx outage probability minimisation
problem.
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Figure 7.14: CDF of the SURx outage probability for the SURx outage probability
minimisation problem.
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Figure 7.15: CDF of the PURx 1 outage probability for the maximum PU outage
probability minimisation problem.

of the required channels are generated and the beamforming problem is solved to

obtain the beamformer weights. The attained outage probability of each solution

is calculated using (7.19). It can be seen that the probability of achieving a cer-

tain outage probability decreases as the level of the CSI estimate error increases.

This is because the beamformer increases its transmit power to deal with increased

channel uncertainty (see Fig. 7.17), which in turn generates more interference at

the PU and thereby increases the probability of outage at the PURx.

The CDF of the SINR at the SURx obtained by solving the maximum PURx

outage probability minimisation problem is given in Fig. 7.17. It can be seen that

the proposed robust beamformer satisfies the outage probability constraint for all

three levels of CSI estimate error.

7.6 Summary

This chapter has considered the problem of beamforming in an underlay CR net-

work. Under the assumption of perfect CSI, three beamforming problems have been

considered, namely i) the SUTx power minimisation problem with SURx and PURx

SINR constraints; ii) the SURx SINR maximisation problem with SUTx power and

PURx SINR constraints; and iii) the minimum PURx SINR maximisation problem

with SUTx power and SURx SINR constraints. It has been shown that the SUTx

power minimisation and the SURx SINR maximisation problems can be transformed

into convex SOCPs and the minimum PURx SINR maximisation problem can be
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Figure 7.16: CDF of SNR at the SURx for the maximum PU outage probability
minimisation problem.
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transformed into a convex feasibility problem with SOC constraints.

Under the assumption of partial and imperfect CSI, SURx and PURx outage

probability expressions have been derived which has led to the development of new

robust beamformers. It was demonstrated that the robust SUTx power minimi-

sation problem can be transformed into a convex SDP. It has been shown that

the robust SURx outage probability minimisation and the maximum PURx out-

age probability minimisation problems can be transformed into convex feasibility

problems.

The performance of the proposed robust beamformers have been demonstrated

through the CDFs of the PURx SINR, the SURx SNR and the transmit power and

the outage probability at the PURx and SURx. Our results reveal that the robust

beamformers meet the required performance targets for various levels of channel

uncertainty. It was also seen that the SUTx power increases with increasing levels

of channel uncertainty.



Chapter 8

Conclusions and Further Research

In this chapter the conclusions of this research are summarised, the presented work

is critiqued, and further research directions are outlined.

8.1 Conclusions

The advent of ubiquitous mobile computing has resulted in an exponential increase

in mobile data traffic. Industry projections [47] show that mobile data traffic

will continue to grow at the same rate in the foreseeable future. Most countries

are facing a looming spectrum crisis whereby customer demand is threatening to

outstrip the capacity of the available spectrum. It has been identified that this

crisis is largely due to inefficiencies in spectrum access rather than the physical

scarcity of the spectrum [48, 60, 112, 130, 158, 159, 220].

CR technology, with its ability to exploit underutilised spectral resources by

reusing unused spectrum in a dynamic and opportunistic manner, has been pro-

posed as a viable solution for the efficient use of the radio spectrum [163, 164]. CRs

are able to access spectrum resources either on a mutually exclusive basis or con-

currently with the PUs. Spectrum sharing or concurrent access has the potential

to significantly degrade the PU’s performance if interference generated by the SUs

is not appropriately managed. Through an appropriately formulated optimisation

problem, the transmission parameters of the SUs can be designed to achieve the

goals of the CR system while guaranteeing QoS to the PUs.

The problem of spectrum sharing in underlay CR systems has been considered

in detail in this thesis. A particular focus has been on the robust formulation

of these problems in convex form. In practical wireless communication systems,

the assumption of perfect CSI for all links may be over idealistic as it is rarely

available. Hence, all of the spectrum sharing optimisation problems proposed in

this thesis have sought to provide robustness against partial and imperfect CSI.

Convex optimisation has recently been recognised as a powerful tool by the signal

processing community. The main advantage of a convex formulation of a problem is

155
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that the optimisation problem has only one minimum, which is the global minimum.

Hence, convex optimisation problems can always be solved, either analytically or

numerically, to obtain the optimum solution.

Chapter 2 provided a review of convex optimisation theory and techniques. The

concepts of convex sets, convex functions and convex optimisation problems were

introduced. Lagrange duality and KKT conditions for optimality were reviewed. A

powerful technique known as convex relaxation, which allows non-convex problems

to be relaxed into convex problems was presented. Algorithms for solving convex

optimisation problems were discussed.

Chapter 3 discussed robust optimisation techniques. Robust optimisation is

generally used when there is some degree of uncertainty in the input data. The

bounded uncertainty based optimisation and stochastic optimisation was reviewed.

Application of these methods to communication problems, specifically, power con-

trol, conventional receive and transmit beamforming and cooperative relay beam-

forming were presented.

The cognitive radio concept and dynamic spectrum access techniques were re-

viewed in Chapter 4. The state of art spectrum sensing algorithms and spectrum

sharing methods were reviewed.

The SU power allocation problem in an underlay CR system was formulated as

a GP in Chapter 5. The effect of the PU’s transmission was included in the formu-

lations and the problems were studied in both high and low SINR scenarios. It was

demonstrated that considering the system sum rate in the optimisation problem,

in some circumstances, resulted in improved PU performance without a significant

penalty in the SU’s sum rate. Optimisation strategies for different channel condi-

tions were presented. A novel method of detecting and removing infeasible SU’s

QoS constraints from the SU power allocation problem was proposed. Application

of this method was shown to result in considerably improved SU performance. Ro-

bust SU power allocation problems under CSI uncertainties by considering a PU

outage probability constraint were proposed. The results obtained in this chapter

quantify the importance of PUTx to PURx and SUTxs to PURx CSI and large SU

performance losses are expected if accurate CSI of these links are not available.

In Chapter 6, two cooperative beamformer problems for an underlay CR relay

network were formulated . The first problem minimised the total relay transmit

power subject to PURx and SURx QoS constraints. It was shown that this problem

can be cast into a convex SOCP and solved efficiently using interior point methods.

In the second problem, the SURx SINR was maximised subject to PURx QoS and

individual relay transmit power constraints. It was demonstrated that this problem

can be solved using three methods, namely, a convex feasibility SOCP, a convex

feasibility SDP and a SDP that has the form of a linear-fractional program. The

linear-fractional program formulation does not require an iterative procedure for



8.2 Discussion 157

solving it, hence, it is the most efficient formulation among the three proposed

methods. New robust counterparts of the cooperative beamformer problems that

guarantee a certain PURx outage probability under the assumption of partial and

imperfect CSI were developed. These problems have the same structure as those

formulated under the assumption of perfect CSI, and hence the same methods can

be used to solve the robust formulations. Simulation results have shown how the

achieved robustness varies with CSI uncertainty.

Three beamforming problems for an underlay CR network under the assump-

tion of perfect CSI were studied in Chapter 7. These were the SUTx power min-

imisation problem with SURx and PURx SINR constraints, the SURx SINR max-

imisation problem with SUTx power and PURx SINR constraints and the minimum

PURx SINR maximisation problem with SUTx power and SURx SINR constraints.

It was shown that the SUTx power minimisation and the SURx SINR maximisa-

tion problems can be transformed into convex SOCPs and the minimum PURx

SINR maximisation problem can be transformed into a convex feasibility problem

with SOC constraints. Under the assumption of partial and imperfect CSI, new

robust beamformers were developed. It was demonstrated that the robust SUTx

power minimisation problem can be transformed into a convex SDP. It was also

shown that the robust SURx outage probability minimisation and the maximum

PURx outage probability minimisation problems can be transformed into convex

feasibility problems. The performance of the proposed robust beamformers was

demonstrated through the CDFs of the SINR, the transmit power and the outage

probability. Our results revealed that the robust beamformers meet the required

performance targets for various levels of channel uncertainty.

8.2 Discussion

This section reflects on the application of the research presented in this thesis,

particularly in the context of wireless system design.

The performance of wireless communication systems can be measured using

a number of metrics, two of which include the data rate and the bit error rate

(BER). Both the data rate and the BER are functions of either the SNR or the

SINR. In a single user system, it suffices to optimise the system SNR or SINR as

this directly determines the resulting data rate or BER. In a multi-user system, the

definition of a global performance measure is not clear, since each user has their

individual performance requirements. However, if a network-centric approach is

taken then the system sum rate can be used as a global measure of the system-wide

efficiency. While optimising the sum rate achieves the system-wide goal, individual

users’ QoS requirements also need to be satisfied. Hence, an optimisation problem

that optimises a global performance metric must also include constraints for the
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minimum QoS requirements of individual users. Such a constrained optimisation

problem represents the tradeoff between user-centric constraints and some network-

centric objective [46].

Chapter 5 considered the power allocation problem for a multi-user cognitive

radio network. Hence, a network-centric approach was taken and the sum rate

was maximised subject to user-centric constraints. This approach achieved the

system-wide goal of maximising the system data throughput and also ensured that

the individual users’ demands were met. Although a network-centric approach is

reasonable, it is also possible to tackle the problem in a user-centric manner. For

instance, one could maximise the QoS metric of a user in the highest QoS class, or

maximise the QoS metric of the user with the minimum QoS metric (as was done

in Section 7.4.3). The user-centric approaches would provide valuable results for

comparison against our proposed methods.

The interference from other SU’s was treated as noise in the problems formu-

lated in Chapter 5. While this is a valid approach, it does not give the full benefits.

Instead of ignoring the information contained in the interference signal, it could be

utilised to further improve the SU’s performance. The proposed methods would

thus benefit from the application of interference cancellation [50, 197]. A joint in-

terference cancellation and power control scheme could be explored to evaluate the

achievable performance improvements.

Chapter 6 considered a single destination SU cognitive relay network. Since

there was only one destination SU receiver, the SINR at the destination receiver

was the most meaningful metric to optimise as any other metric is a function of

it. The robust beamformers were designed to be robust against CSI uncertainty of

the PUTx to PUTx and SURl to PURx links. CSI of these links would be the most

difficult to acquire in a practical cognitive radio network and as a starting point,

it is reasonable to focus on these links. However, the other links in the system are

not immune against CSI uncertainty and the assumption of perfect CSI on these

links may not be very practical. Hence, the proposed robust beamformer could be

improved by considering uncertainty on other links.

The problems posed in Chapters 5 and 6 have been solved using a centralised

algorithm, i.e., a central processor is required to acquire CSI for all links, solve

the optimisation problems and distribute the resulting control parameters to all

transmitting nodes in the CR network. A control channel is needed to facilitate the

exchange of the required information. The bandwidth requirements for this control

channel will grow as the network size increases and may become prohibitive for

practical implementation. Distributed methods [46, 75] which minimise the amount

of information exchanged to solve the proposed optimisation problems would be

preferred.

Due to the existence of a single SU receiver in Chapter 7, the SNR at the SU
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receiver represents the most meaningful metric to optimise. The system model

assumed that the SU receiver was located at a large distance away from the PU

transmitters, hence, PU transmit powers were sufficiently attenuated by distance

to be ignored at the SU receiver. A drawback of this approach is that the solu-

tion heavily relies on this assumption and no margin has been allocated to deal

with any interference. The performance is expected to degrade in the presence of

interference. Hence, the solution could be improved by taking into account the

interference from the PUs.

Despite some of the shortcomings identified above, we believe that the research

presented in this thesis provides valuable insights into robust methods of spectrum

sharing for cognitive radio systems and lays a solid groundwork for future research

in this area.

8.3 Suggestions for Future Research

As discussed above, the robust beamformers proposed in Chapter 6 could be im-

proved by taking into account CSI uncertainty of all links in the system. A signif-

icant contribution could be made by developing robust cooperative beamformers

that consider CSI uncertainty of all links in the system.

A significant contribution could be made by developing distributed algorithms

for solving the optimisation problems proposed in Chapters 5 and 6.

To realise the full benefits of transmit beamforming, full CSIT is required. Un-

fortunately, this requirement is impractical in real systems. Limited feedback sys-

tems [144] in which the receivers send highly quantised CSI to the transmitter have

been shown to provide benefits nearly identical to unrealisable perfect transmitter

channel knowledge systems when they are judiciously designed. A significant con-

tribution could be made by extending the stochastic robust optimisation methods

for imperfect CSI (Chapters 6 and 7) to limited feedback systems, both conven-

tional and CR systems. Specifically, if one is able to compute the PDF of the

error between un-quantised channel coefficients and the codebook entries, then the

robust stochastic methods developed in this thesis could be directly applied.

Finally, base-station cooperation or coordinated downlink beamforming (CBF)

[258] in cellular networks has received much recent attention as a means to raise

overall data rate capacity. This idea could be extended to cellular CR systems.

Significant contributions could be made to the problem of robust optimum user

allocation under channel uncertainty and to methods that reduce the CSI exchange

requirements between base-stations.
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