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Abstract 

The perpetuity of coral reefs will ultimately depend on the ability of corals to adapt to 

changing conditions. Inter-specific hybridization can provide the raw genetic material 

necessary for adaptation, and stimulate macro-evolutionary leaps during periods of 

environmental upheaval. Though well-documented in corals, hybridization has yet to be 

identified in their dinoflagellate symbionts (genus Symbiodinium), despite growing evidence 

of sexual reproduction in this genus. The integral roles that these symbiotic algae play in 

coral productivity, reef accretion and ‘coral bleaching’ emphasize the need to better 

understand their short-term evolutionary potential. In this thesis, I develop new molecular and 

statistical methodology, and combine lab- and field-based analysis to explore the potential for 

hybridization between divergent Symbiodinium taxa. 

To screen for putative Symbiodinium hybrids, intra-genomic variation was examined within 

individual symbionts isolated from the reef-building coral Pocillopora damicornis at Lord 

Howe Island (Australia). A nested quantitative PCR (qPCR) assay was developed to quantify 

polymorphic internal transcribed spacer 2 (ITS2) sequences within the genome of each 

symbiont cell. Three genetically distinct Symbiodinium populations were detected co-existing 

within the symbiont consortium of P. damicornis. Mixed populations of ‘pure’ Symbiodinium 

types C100 and C109 coexisted with a population of cells hosting co-dominant C100 and 

C109 ITS2 repeats. Genetically heterogeneous Symbiodinium cells were more common than 

homogeneous symbionts in four of the six colonies analysed, with a maximum proportional 

abundance of 89%. 

Morphological, functional and ecological attributes of heterogeneous Symbiodinium cells 

were characterized to assess their candidacy as putative hybrids. The proportional abundance 

of genetically heterogeneous symbionts was spatially and temporally conserved within 

colonies, indicating a lack of competition between Symbiodinium populations. However, this 

abundance ratio varied considerably between colonies separated by metres to tens of metres, 

and to a greater extent between sites isolated by hundreds to thousands of metres. The local 

thermal maximum emerged as a significant predictor of the proportional abundance of 

genetically heterogeneous Symbiodinium cells, suggesting that the distribution of these 

‘putative hybrids’ is influenced by a reduced affinity for thermal stress. 
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Genetically heterogeneous Symbiodinium cells were around 50% larger (by volume) than 

homogeneous cells, occupied tissue of the coral host at reduced densities, and showed 

relatively poor light-harvesting efficiency. Colonies hosting a higher proportion of these 

symbionts suffered a reduction in overall photosynthetic performance (maximum gross 

photosynthesis normalised to respiration; P:R) at the ambient temperature of 25 °C. This 

disparity was maintained when the temperature was elevated to simulate the maximum 

experienced within the LHI lagoon (29 °C). Under these stressful conditions, colonies 

dominated by putative Symbiodinium hybrids were only marginally capable of net oxygen 

production. 

The influence of putative Symbiodinium hybrids on the growth and survival of P. damicornis 

was tested by reciprocally transplanting coral colonies between reef sites featuring distinct 

temperature regimes. Neither calcification nor mortality was influenced by the proportional 

abundance of genetically heterogeneous cells in the symbiont consortium. This uncoupling of 

symbiont performance and host fitness may be explained by stochastic events such as 

predation and disease, which substantially increase variation in growth and mortality in field 

experiments. Alternatively, it may represent some unknown benefit associated with hosting 

hybrid symbionts, belying their relatively poor photosynthetic performance, and explaining 

the widespread abundance of these heterogeneous Symbiodinium cells on the Lord Howe 

Island reef. 

Our inability to maintain many clade C Symbiodinium types in culture prevents direct 

observations of hybridization between C100 and C109. Unequivocal evidence of this 

phenomenon will therefore likely remain elusive until high-resolution, single-copy nuclear 

markers can be developed, since the incomplete displacement of ancestral polymorphisms 

can leave a similar genomic signature to that of hybridization. However, this study serves to 

provide an initial proof-of-principle for hybridization between divergent Symbiodinium taxa. 

In doing so, it highlights the need to better understand the evolutionary processes 

underpinning coral- and symbiont-adaptation in a changing climate. 
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Chapter 1: General introduction 

 

1.1. The value of coral reefs 

“Anybody who has had the privilege of diving on a coral reef will have seen the natural 

world at its most glorious, diverse and beautiful”. The description given by veteran naturalist 

and broadcaster Sir David Attenborough accurately depicts the spectacular biodiversity of the 

reef environment. Coral reefs and their inhabitants generate a valuable global eco-tourism 

industry, and the economies of many developing countries strongly rely on this source of 

income (Burke et al. 2011). Yet the economic contribution of the world’s coral reefs extends 

well beyond the tourist dollar. More than 10% of the world’s population lives within 100 km 

of a coral reef, and many people directly depend on the reef system for nutrition and coastal 

stability (Bryant et al. 1998; Burke et al. 2011). Around 10% of the global fishery catch takes 

place in reef areas (Smith 1978), and this figure can exceed 25% in some developing Indo-

Pacific nations (Cesar 1996). Coral reefs also play an important role in climate regulation, 

and while they comprise only 0.17% of Earth’s ocean surface area (Smith 1978), reefs 

sequester more atmospheric carbon dioxide per square meter than any other marine 

ecosystem (Nybakken & Bertness 2005). Moreover, corals and other reef-associated fauna 

have been recognized as an important source of bioactive compounds, with the potential to 

greatly benefit the field of human medicine (Carté 1996). 

Placing a monetary value on the goods and services provided by coral reefs is necessary for 

the purposes of conservation prioritisation (Costanza et al. 1997). Yet this is made difficult 

by the inter-connectivity of coral reefs with the broader ecological ‘seascape’ (Ogden 1988). 

The productivity and complex three-dimensional architecture afforded by coral reefs support 

an astonishing diversity of flora and fauna in otherwise desolate tropical waters (Odum & 

Odum 1955), with estimates of up to 9 million species worldwide (Small et al. 1998). Reefs 

also promote coastal stability through dissipation of wave energy at reef margins, thus 

enabling the development of other important tropical ecosystems such as mangrove forests 

and seagrass beds (Hoegh-Guldberg 1999). Therefore, while current evaluation estimates 

their ecosystem services at US $375 billion annually (Costanza et al. 1997), the true value of 

coral reefs to the human population is certainly much higher. 
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1.2. The distribution of coral reefs 

For net reef accretion to occur, corals require warm temperatures, high levels of 

photosynthetically active radiation (PAR), and saturation or near-saturation of aragonite, the 

inorganic substrate necessary for calcification (Barnes & Chalker 1990). As such, contiguous 

coral reef structures are predominantly confined within the equatorial band from 30 °N to 30 

°S (Sheppard et al. 2009; Figure 1.1). Maximum diversity occurs within the Indo-Australian 

archipelago (the ‘Coral Triangle’), an area inhabited by some 500 coral species (Briggs 1999; 

Green & Mous 2008). Coral diversity generally diminishes with distance from this 

biodiversity hotspot, with only around 50 species found at the Galapagos Islands (Briggs 

1999; Knowlton 2001). At higher latitudes, communities of corals can be found interspersed 

among macroalgal assemblages; however they do not form contiguous reef structures due to 

suboptimal abiotic conditions and competition with macroalgae (Veron 1995; Paulay 1997). 

The world’s northernmost coral reefs occur at Bermuda and Okinawa (Japan; 33 °N), and the 

southernmost reef is that of Lord Howe Island (Australia; 31.5 °S). Despite being situated at 

the transition zone between coral- and macroalgal-dominated benthic systems, these 

‘marginal reefs’ can feature high levels of biodiversity. In particular, the isolated reef of Lord 

Howe Island includes more than 83 scleractinian coral species, many of which are endemic 

(Veron & Done 1979; Harriott et al. 1995). 
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Figure 1.1 (previous page) The worldwide distribution of coral reefs 

Dashed lines show the latitudinal band of 30 °N and 30 °S, within which the majority of coral reefs 

are concentrated. GPS data and satellite pictures were obtained from ReefBase, with coral reef 

locations provided by the United Nations Environment Programme World Conservation Monitoring 

Centre (UNEP-WCMC; downloaded from http://reefgis.reefbase.org/ on 07/07/2014). 

 

 

1.3. The coral symbiosis: form and function 

Coral growth and reef formation are fundamentally supported by symbiosis, the persistent 

intimate coexistence of different species. The entire coral entity (referred to as the 

‘holobiont’) is composed of a diverse community of organisms, including a cnidarian host 

(Anthozoa: Scleractinia), single-celled dinoflagellate algae of the genus Symbiodinium (also 

known as ‘zooxanthellae’; Freudenthal 1962), and various other micro-eukaryotes, 

prokaryotes and viruses (Rohwer et al. 2001, 2002). A complex array of inter-specific 

interactions underlie the function of the coral holobiont, spanning the continuum from 

mutualism (both partners benefit) to parasitism (one partner benefits to the other’s detriment). 

Yet the ecological prosperity of scleractinian corals primarily stems from the mutualistic 

symbiosis between the cnidarian host and the dinoflagellate symbiont. The symbiont inhabits 

the cells of the host’s gastrodermis (Trench 1987; Figure 1.2) at densities that can exceed 10
6
 

cells per cm
2
 (Drew 1972), releasing photosynthetically-derived organic compounds such as 

glycerol and/or glucose, fatty acids, organic acids and amino acids (Trench 1971; Whitehead 

& Douglas 2003; Davy et al. 2012). The coral host may receive up to 90% of the total carbon 

fixed by its symbionts (Steen & Muscatine 1984), a nutritional contribution that can fulfil its 

energetic requirements under well-lit conditions (Muscatine 1990). The symbiont also plays 

an integral role in the nitrogen status of the symbiosis, assimilating inorganic nitrogen from 

environmental sources (e.g. dissolved nitrate) and waste products of host metabolism 

(predominantly ammonium), into host-accessible compounds (Wang & Douglas 1998; 

Tanaka et al. 2006; Burriesci et al. 2012; Kopp et al. 2013). Moreover, other essential 

micronutrients such as phosphorus and sulphur are also assimilated into organic compounds 

by the symbiont and potentially translocated to the host (Cook 1971; Muller-Parker & D’Elia 

1997; Davy et al. 2012). This highly efficient closed-system of nutrient retention and 

recycling underpins the characteristically high productivity and diversity of coral reefs in 

nutrient-poor tropical oceans (Goreau & Goreau 1959; Muscatine & Porter 1977; Muscatine 

1990; Yellowlees et al. 2008). Finally, the photosynthetic activity of the symbiont ultimately 
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supports the calcium carbonate deposition of the host, without which reef accretion would not 

occur (Pearse & Muscatine 1971; Vandermeulen et al. 1972; Colombo-Pallotta et al. 2010). 

The evolution of the cnidarian-dinoflagellate symbiosis has given rise to a wide variety of 

behavioural and physiological adaptations. Symbionts can be inherited from parent to 

offspring, via infection of the gamete and/or asexual larvae (vertical transmission), or they 

can be acquired anew each generation from environmental source populations (horizontal 

transmission; see Baird et al. 2009 for a review). In some cases, both horizontal and vertical 

transmission strategies may be employed (Byler et al. 2013). In the case of horizontal 

symbiont transmission, the establishment and maintenance of a stable endosymbiosis 

involves a complex system of symbiont recognition, assortment and phagocytosis 

(‘winnowing’; Nyholm & McFall-Ngai 2004; Dunn & Weis 2009). The winnowing process 

involves an array of surface receptor proteins (including glycan-binding lectins), and 

potentially the exchange of metabolites (reviewed in Davy et al. 2012). Lectin binding is also 

believed to play a role in the permanent transition of the symbiont from the motile, flagellated 

free-living phase to the sedentary coccoid form that the symbiont exhibits when in symbiosis 

(Koike et al. 2004). Once endosymbiosis is established, the symbiont is housed within a 

membrane complex consisting of a host vacuole (the ‘symbiosome membrane’) and a series 

of inner membranes of symbiont origin (Wakefield et al. 2000; Wakefiel & Kempf 2001). 

Nutritional exchange across the symbiosome membrane is regulated by a suite of membrane-

bound and cytoplasmic macro-molecules, which may include an enigmatic ‘host release 

factor’ (HRF; Gates et al. 1995; Wang & Douglas 1997; Ritchie et al. 1997). While our 

understanding of these cellular interactions is in its infancy, emerging ‘big-data’ fields such 

as metabolite profiling (metabolomics), high-throughput RNA-transcript and protein 

sequencing (transcriptomics and proteomics) and whole genome sequencing (genomics) 

promise to revolutionize our understanding of the functional adaptations underlying the 

establishment and maintenance of the symbiotic condition (Davy et al. 2012). 
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Figure 1.2 Anatomy of the cnidarian-dinoflagellate symbiosis 

Scleractinian corals consist of a colony of interconnected clonal polyps with an underlying calcium 

carbonate skeleton. Images show: (a-c) Pocillopora damicornis with polyps extended, at increasing 

levels of magnification; (d) coccoid Symbiodinium cells under a light microscope; and (e) schematic 

cross-section of an individual polyp with a close-up view of the three body layers, the gastrodermis G, 

the mesogloea M, and the ectodermis E (host nucleus NH). In P. damicornis, a bilayer of coccoid 

Symbiodinium cells are enclosed in the gastrodermal cells of the host (chloroplast C, accumulation 

body A, and nucleus NS; modified from Gates et al. 1992; Allemand et al. 2011). Photo credits: 

Emma Gibbin (b and c) and Tom Hawkins (d). 
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1.4. Threats to coral reefs 

Corals have evolved in concert with symbiotic dinoflagellates for over 230 million years, 

forging an obligate association (Coates & Jackson 1987; Stanley & Swart 1995; Veron 1995; 

Glynn 1996). Yet the symbiotic condition renders both partners extremely vulnerable to 

environmental disturbance. Even marginal abiotic stress can push the ‘holobiont’ beyond 

narrowly defined physiological thresholds, leading to symbiotic dysfunction (Hoegh-

Guldberg 1999). Corals are especially vulnerable to elevated temperature (Jokiel & Coles 

1977; Iglesias-Prieto et al. 1992), excess irradiance (Lesser & Shick 1989; Gleason & 

Wellington 1993), and in particular, a synergistic temperature-light interaction (Coles & 

Jokiel 1978; Lesser et al. 1990; Fitt & Warner 1995; Lesser & Farrell 2004). These factors 

stimulate the production of reactive oxygen species (ROS) such as hydrogen peroxide, singlet 

oxygen, and hydroxyl, perhydroxyl, and superoxide anion radicals. ROS are continually 

produced at low levels in both symbiotic partners, where they are scavenged and neutralized 

by a suite of antioxidant molecules (reviewed in Lesser 2006). However, ROS can 

overwhelm the natural antioxidant defences under stressful conditions (Cadenas 1989), 

disrupting the cellular constituents of both symbiotic partners through protein denaturation, 

mutagenic DNA damage, and the peroxidation of plasma membranes (particularly those of 

the mitochondria and chloroplast; Lesser 2006). 

A major source of ROS is the thylakoid membrane of the symbiont chloroplast. Here, 

temperature-induced uncoupling of the photosynthetic electron transport chain can lead to the 

transfer of electrons to oxygen, forming the highly toxic superoxide anion (the Mehler 

reaction; Jones et al. 1998). Chronic photoinhibition arises from oxidative damage to the D1-

protein and plastiquinone binding proteins of photosystem II, and the primary carboxylating 

enzyme RUBISCO (Renger et al. 1989; Lesser 1996, 1997; Lupínková & Komenda 2004). 

The loss of photosynthetic function and increased flux of ROS can induce the coral host to 

eliminate its symbionts, either by exocytosis (Steen & Muscatine 1987; Lesser 1996, 1997), 

detachment of whole gastrodermal cells (Gates et al. 1992), or intracellular degradation 

(Titlyanov et al. 1996). The loss of symbionts renders the coral tissue transparent, exposing 

the underlying white coral skeleton in a conspicuous phenomenon known as ‘coral bleaching’ 

(Figure 1.3). 
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Figure 1.3 Coral bleaching 

A partially bleached Porites colony at Lord 

Howe Island (Australia). The loss of 

Symbiodinium exposes the underlying coral 

skeleton, manifesting in a conspicuous white 

appearance. Bleaching often leads to colony 

mortality via starvation, unless the coral can 

quickly regenerate its symbiont population 

(pending subsistence of environmental 

stress) or compensate by switching to a 

heterotrophic feeding mode (e.g. Grottoli et 

al. 2006). 

 

 

Depending on the severity, coral bleaching can result in whole-colony mortality, a process 

that can occur en masse (Hoegh-Guldberg 1999). The frequency and severity of coral 

bleaching events has increased in recent decades, primarily due to rises in ocean temperatures 

associated with anthropogenic carbon dioxide emissions. In a particularly severe case, the 

1997-1998 El Niño Southern Oscillation (ENSO) caused a devastating bleaching episode that 

resulted in significant reef declines in all major geographical areas on Earth (Wilkinson et al. 

1999). As such, coral bleaching has been identified as a key threat to the perpetuity of coral 

reefs in the 21
st
 century (Hughes et al. 2003; Hoegh-Guldberg et al. 2007; Pandolfi et al. 

2011). 

While bleaching poses a significant threat to the world’s corals, a suite of other impacts also 

endanger these vulnerable organisms. Episodes of coral disease have increased sharply in 

recent decades as a consequence of elevated temperature and declining habitat quality 

(Rosenberg & Ben-Haim 2002; Bruno et al. 2007). Ocean acidification arising from the 

dissolution of anthropogenic CO2 also poses a significant threat to corals, by inhibiting 

calcification (Orr et al. 2005), and impeding physiological function (Anthony et al. 2008). As 

such, a continued reduction below pH 7.7 will likely initiate major ecosystem transitions at 

the expense of coral reefs (Fabricius et al. 2011; Bell et al. 2013). Moreover, ecosystem 

disruption arising from overfishing and pollution can lead to outbreaks of corallivores such as 

the crown-of-thorns starfish (Acanthaster planci; Brodie et al. 2005), and nutrient enrichment 

from terrestrial runoff and sewage can lower coral performance and fecundity (Tomascik & 

Sander 1985, 1987a; b). Through the combined assaults of bleaching, disease, ocean 

acidification, storm damage, overfishing, destructive fishing, predator outbreaks, pollution, 
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coastal development, and other human impacts, the majority of coral species have recently 

suffered a sharp increase in extinction risk (Carpenter et al. 2008). Concurrently, a prolific 

research effort has sought to predict the ability of corals to acclimatize and adapt to an 

environment modified by anthropogenic activity (Hoegh-Guldberg et al. 2007). 

 

1.5. Symbiodinium diversity 

1.5.1. Genetic diversity 

Members of the genus Symbiodinium form symbiosis with a diverse array of marine 

organisms. These include corals, other cnidarians such as zoanthids, octocorals, jellyfish and 

sea anemones, and several other phyla, including platyhelminths, molluscs, foraminiferans, 

ciliates and poriferans (Trench 1993; Rowan 1998; Carlos et al. 1999; Pawlowski et al. 2001; 

Lobban et al. 2002). These symbiotic dinoflagellates were all formerly considered to 

represent a single pandemic species (Symbiodinium microadriaticum; Freudenthal 1962), a 

paradigm that was supported by early morphological assessments (Kevin et al. 1969; Taylor 

1969, 1974). However, different growth rates of homologous and heterologous algae in situ 

(Schoenberg & Trench 1976), and corresponding differences in host performance (Kinzie & 

Chee 1979) gave credence to the emerging hypothesis that the genus Symbiodinium 

harboured a trove of hidden diversity. This was affirmed by early assessments of genetic 

distance based on isoenzyme polymorphism (Schoenberg & Trench 1980a), that correlated 

with subtle differences in size and ultrastructure (Schoenberg & Trench 1980b). A further 

correlation was shown between symbiont growth rates within the anemone Aiptasia tagetes 

(= pallida) and the similarity of isoenzymes to those of the homologous A. tagetes symbiont 

(Schoenberg & Trench 1980c). Following these pioneering studies, assessments of host 

specificity, morphology, physiology and biochemistry were used to describe three new 

Symbiodinium species (S. goreauii, S. kawagutii and S. pilosum; Trench & Blank 1987). Yet 

the apparent absence of sexual reproduction hindered formal genetic analysis (Trench 1987). 

The increased availability of PCR during the early 1990s facilitated the detection of sequence 

variation in the highly conserved nr18S gene (nuclear ribosomal DNA small-subunit or SSU 

rDNA Rowan & Powers 1991a; b, 1992; McNally et al. 1994). The nr18S phylogeny was 

supported by similar topologies obtained from the more rapidly-evolving nr28S rDNA region 

(Wilcox 1998; Pochon et al. 2001), and a hyper-variable region within domain V of the 

plastid-encoded cp23S gene (Santos et al. 2002). These congruent phylogenetic patterns 
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enabled the organization of the Symbiodinium complex into well-supported clades. The recent 

discovery of a novel Symbiodinium lineage in symbiosis with benthic Foraminifera in Hawaii 

extends the current phylogeny to nine major taxonomic clades, designated A-I (Pochon & 

Gates 2010; Figure 1.4). This delineation is supported by genetic distances that approximate 

order- or even class-level divergence in free-living dinoflagellates and other algae (Blank & 

Huss 1989; Rowan & Powers 1992), thus effectively invalidating the single-genus 

classification (Pochon & Gates 2010). However, a general consensus on Symbiodinium 

systematics has yet to be reached, primarily due to the existence of substantial genetic 

diversity within many of the major taxonomic clades. 

Strong purifying selection operates on rDNA coding sequences (CDS) and hence identical or 

similar sequences may occur among different species (Nei & Rooney 2005). Indeed, the 

nr18S clade-system proposed by Rowan & Powers (1991) appears to grossly underestimate 

the actual taxonomic diversity within the Symbiodinium complex (Sampayo et al. 2009; 

LaJeunesse et al. 2010a; LaJeunesse & Thornhill 2011). This limitation has been partially 

overcome by the development of high-resolution, rapidly evolving genetic markers, including 

two internal transcribed spacers of the rDNA cistron (ITS1 and ITS2; LaJeunesse 2001, 2002; 

Rodriguez-Lanetty 2003; Coffroth & Santos 2005). In particular, sequence variation within 

the ITS2 region has revealed hundreds of sub-cladal phylotypes, particularly within the highly 

divergent clade C (Baker 2003; LaJeunesse 2005; Thornhill et al. 2013a). Recently, several 

studies have explored the fine-scale genetic diversity within these ITS2 phylotypes by 

analysing polymorphic microsatellite loci and other rapidly evolving genetic regions (Santos 

et al. 2003b; Magalon et al. 2006; Thornhill et al. 2013a; b, 2009, 2010; Kirk et al. 2009; 

Howells et al. 2009, 2013; Andras et al. 2011; Pettay et al. 2011; Baums et al. 2014). These 

studies show that geographically-defined population structure and host specificity often occur 

within widely distributed ITS2 populations, intimating the existence of yet another level of 

diversity beneath the subclade level.  
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Figure 1.4 Symbiodinium rDNA phylogeny 

Neighbour-joining tree of manually assembled rDNA concatenations of the partial 18S, complete 

ITS1, 5.8S and ITS2, and the D1-D2 domain of the 28S large ribosomal subunit gene (maximum 1534 

bp), as would be amplified using the primers ITS1CLAMP (LaJeunesse et al. 2008) and 28S-reverse 

(Zardoya et al. 1995). The nucleotide alignment and tree were constructed in Geneious v7.0 

(Biomatters) using the HKY five-parameter evolutionary model (Hasegawa et al. 1985), with 

Polarella glacialis and Protodinium simplex as outgroups. The scale bar indicates the number of 

nucleotide substitutions per sequence position. Numbers at branch nodes are consensus support values 

(%) with those above 80% included in the figure. Each lineage is labelled using standard 

alphanumeric nomenclature (LaJeunesse 2001), and species names where applicable. Species in 

inverted commas lack formal description (nomen nudum; see Table 1.2). Large block letters indicate 

cladal membership (sensu Rowan & Powers 1991). See Appendix A for Genbank accession numbers 

of sequences used in rDNA concatenations. 



31 

 

1.5.2. Functional diversity 

Divergent evolutionary trajectories have fostered extensive functional variation among many 

Symbiodinium taxa. This is evident in clade- and subclade-specific differences in 

photochemical efficiency (Savage et al. 2002; Rowan 2004; Goulet et al. 2005), growth rates 

(Kinzie et al. 2001), host infectivity (Schoenberg & Trench 1980c; Davy et al. 1997; Xiang et 

al. 2013; Starzak et al. 2014), and in the quantity and quality of photosynthates translocated 

to the host (Markell & Trench 1993; Loram et al. 2007b; Stat et al. 2008b; Cantin et al. 

2009). Physiological and biochemical mechanisms underpinning these functional disparities 

include differences in chlorophyll distribution among chlorophyll-protein complexes 

(Iglesias-Prieto & Trench 1997), variation in the regulation of photo-protective compounds 

(Banaszak et al. 2000), and differential lipid saturation in thylakoid membranes (Tchernov et 

al. 2004). The potential for dynamic photo-acclimation also varies between Symbiodinium 

taxa (Chang et al. 1983). Disparity in photo-physiological plasticity arises from differences in 

the regulation of chlorophyll-protein complexes (Iglesias-Prieto & Trench 1994), the cycling 

of xanthophylls in non-photochemical quenching (Iglesias-Prieto & Trench 1997), and in the 

ability to repair and/or replace the integral D1 protein of the photosystem II reaction centre 

(Warner et al. 1999; Ragni et al. 2010). 

While the physiology of the host is important in determining its bleaching susceptibility (e.g. 

Fitt et al. 2009; Wicks et al. 2012; Paxton et al. 2013; Hawkins et al. 2014), the thermal 

adaptation of the symbiont can mean the difference between coral survival and mortality 

under stressful conditions (Baker et al. 2004; Rowan 2004; Berkelmans & van Oppen 2006; 

Jones et al. 2008; Sampayo et al. 2008). Differences in temperature and light optima are 

evident both between and within clades, and there is a strong correlation between the thermal 

optimum of the symbiont and that of the host (Iglesias-Prieto & Trench 1997; Warner et al. 

1999; Savage et al. 2002; Rowan 2004; Tchernov et al. 2004; Goulet et al. 2005; Loram et al. 

2007b; Sampayo et al. 2008; Fisher et al. 2011; Howells et al. 2011). The most striking 

example of symbiont thermal adaptation occurs in the Symbiodinium clade D species 

complex (S. trenchii, S. boreum, S. eurythalpos and S. glynni nomen nudum; LaJeunesse et al. 

2014). While S. trenchii associates with many coral genera (LaJeunesse et al. 2009, 2010a), 

S. boreum and S. eurythalpos occur exclusively with Oulastrea crispata (LaJeunesse et al. 

2014), and S. glynni is found only with Pocillopora spp. in the Indo-Pacific region 

(LaJeunesse et al. 2010b; Putnam et al. 2012). Despite their ecological differences, these 

symbionts can all confer a critical measure of thermal tolerance to their hosts under stressful 
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conditions (LaJeunesse et al. 2014). In Guam, Pocillopora verrucosa colonies hosting S. 

glynni showed considerably higher photosynthetic efficiency than those hosting clade C at 32 

°C, while efficiencies were similar at 28. 5 °C (Rowan 2004). Likewise, colonies of the brain 

coral Platygyra verwyei in close proximity to a hot water discharge from a nuclear power 

station in Taiwan exclusively harboured S. trenchii, with the prevalence of the heat-sensitive 

C3 gradually increasing with distance from the outlet (Keshavmurthy et al. 2012). 

While Symbiodinium clade D represents a known thermo-tolerant lineage, there is otherwise a 

general lack of correlation between physiological performance and cladal membership 

(Savage et al. 2002). This is primarily due to the large amount of functional variability within 

clades, with sub-cladal congeners often showing pronounced differences in stress tolerance. 

For example, Stylophora pistillata colonies on the Great Barrier Reef (GBR) hosting 

symbiont types C78 or C8a were significantly less prone to thermal bleaching and mortality 

than those hosting C79 or C35a (Sampayo et al. 2008). Differences in thermal optima have 

even been reported between members of the same subclade. Temperature stress caused 

photo-damage and host-bleaching in a population of the subclade C1 (= S. goreauii) from a 

relatively cool region of the GBR, while a conspecific population from a warmer habitat 

remained relatively unaffected (Howells et al. 2011). Significant differences in thermal 

tolerance between minimally divergent populations suggest that functional adaptation may 

occur on small evolutionary time-scales, providing some optimism for the outlook of coral 

reefs in a rapidly changing climate (van Oppen et al. 2011; Howells et al. 2011). 

 

1.5.3. Ecological diversity 

The primary axis for niche diversification and speciation in Symbiodinium is the host taxon 

(LaJeunesse 2005). Host-symbiont combinations are conspicuously non-random, reflecting a 

complex co-evolution driven by cellular recognition and functional adaptation to the distinct, 

host-specific intracellular habitat (Trench 1997; Thornhill et al. 2013a). In a fine-scale 

genetic study of Symbiodinium phylotypes in the Caribbean, 32 out of 35 lineages within the 

subclade C3 were found to exclusively associate with a single host taxon (Thornhill et al. 

2013a). Though host-symbiont fidelity appears to be the prevailing condition given current 

data, the degree of host-specificity can vary widely among symbiont taxa. For example, in a 

large-scale survey of symbiont diversity within the Indian Ocean, S. trenchii associated with 
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26 out of 58 host genera in Thailand and 11 of 70 genera in Zanzibar (LaJeunesse et al. 

2010a). 

Functional differences between Symbiodinium types are also reflected in their spatial 

distribution patterns (Iglesias-Prieto & Trench 1994, 1997; Toller et al. 2001a). 

Environmental niche partitioning represents a secondary axis of diversification, and has been 

reported over latitudinal gradients (Loh et al. 2001; Rodriguez-Lanetty et al. 2001; 

Macdonald et al. 2008), between temperature microhabitats on a reef (Oliver & Palumbi 

2011; Keshavmurthy et al. 2012), over different depth ranges (Rowan et al. 1997; Iglesias-

Prieto et al. 2004; Sampayo et al. 2007; Frade et al. 2008), and between sites featuring 

distinct turbulence regimes (Ulstrup & van Oppen 2003). The irradiance microhabitat even 

explains the vertical zonation of symbiont taxa within some individual coral colonies (Rowan 

& Knowlton 1995; Rowan et al. 1997; van Oppen et al. 2001). However, S. trenchii again 

provides an exception to this general rule, showing a wide distribution across all major 

geographic regions (LaJeunesse et al. 2010a). 

The lack of conformity by S. trenchii and other types to a single host taxon or habitat type 

can be explained by invoking the equilibrium-opportunist continuum as a third axis of 

diversification. Niche partitioning over both host-taxon and geographic/environmental axes is 

commonly observed in specialized types that show traits consistent with an ‘equilibrium’ life 

history. In particular, many phylotypes within Symbiodinium clade C exclusively associate 

with a single, vertically transmitting host species (LaJeunesse et al. 2003; Sampayo et al. 

2007; Thornhill et al. 2013a). The resulting coevolution fosters a productive mutualism, 

characterized by highly beneficial nutritional reciprocity between symbiotic partners (Stat et 

al. 2008b; Cantin et al. 2009). Equilibrium taxa typically show a low affinity for 

physiological stress (Jones et al. 2008), and thus distribute within a narrowly defined habitat. 

On the other hand, ‘opportunistic’ types such as S. trenchii and S. minutum associate with 

multiple host taxa, exhibit a high tolerance of physiological stress, and show a widespread but 

patchy distribution (Toller et al. 2001b; LaJeunesse 2005; Stat et al. 2008b; LaJeunesse et al. 

2009, 2010a). A trait commonly associated with an opportunistic life history involves a 

reduction in nutritional value to the host (Cantin et al. 2009), sometimes to the point of 

marginal mutualism (Stat et al. 2008b). The disturbance created by bleaching and disease can 

facilitate ‘outbreaks’ by opportunistic symbionts, leading to conspicuous shifts in dominance 

across the reef (Baker et al. 2004; LaJeunesse et al. 2009, 2010b; Correa & Baker 2011). This 

is generally a transient state, with return of conditions to pre-stress levels facilitating the 
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succession of equilibrium taxa (Thornhill et al. 2006b; Jones et al. 2008; LaJeunesse et al. 

2009, 2010b).  

 

1.6. Symbiodinium systematics 

1.6.1. Assigning species nomenclature 

The Symbiodinium genus clearly represents a genetically, functionally and ecologically 

diverse complex. Assigning binomial species nomenclature to the many different ‘types’ is an 

important endeavour for comparing, aligning and integrating global research efforts, and 

evaluating conservation status (Green 2005). Yet efforts to formally describe Symbiodinium 

species are hampered by morphological similarities between divergent phylotypes, and their 

primarily asexual mode of reproduction (Sampayo et al. 2009; Stat et al. 2012; LaJeunesse et 

al. 2012). Alternatives to the classic biological species concept (also known as the isolation 

species concept; Mayr 1942, 1963) such as the ecological species concept (ESC; van Valen 

1976; Andersson 1990) and the cohesion species concept (CSC; Templeton 1989) provide 

suitable criteria by which to delineate Symbiodinium species (Correa & Baker 2009; 

Thornhill et al. 2013a). Both provide faculty for clonal or predominantly clonal lineages, 

whose species candidacy cannot be assessed on the basis of reproductive isolation (Mayr 

1999). However, the delineation of species boundaries using both sets of criteria hinge on 

building well-supported phylogenetic trees based on molecular sequence data. 

 

1.6.2. The internal transcribed spacer 2 (ITS2) 

The ITS2 has emerged as the most extensively utilised marker for resolving fine-scale 

Symbiodinium systematics (Franklin et al. 2012; Tonk et al. 2013), and can provide 

taxonomic resolution roughly corresponding to the species level (LaJeunesse 2001). This 

marker can be used in conjunction with denaturing gradient gel electrophoresis (DGGE) to 

provide a relatively fast, cost-effective and reproducible means of establishing the dominant 

Symbiodinium phylotype(s) within a coral colony (LaJeunesse & Trench 2000; LaJeunesse 

2001, 2002). However, ITS2 sequence diversity may not always provide an accurate 

reflection of species diversity. Sequence variation in the ITS2 region may provide a level of 

resolution that is too coarse to distinguish species within the more derived Symbiodinium 
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lineages such as C1 and C3, necessitating the use of more rapidly evolving markers 

(Thornhill et al. 2013a). In other lineages, phylogenetic inference based on ITS2 variation can 

result in inflated diversity estimates. For example, Litaker et al. (2007) showed that inter-

genomic ITS sequence variation occurs within several well-defined species of free-living 

dinoflagellates. A cluster-based approach has been proposed to control for diversity inflation 

in Symbiodinium (Correa & Baker 2009); yet this method merely highlights groups of ITS2 

phylotypes that require further genetic, physiological and ecological analysis (Stat et al. 

2012). 

The multiple-copy nature of rDNA imposes a further limitation on the phylogenetic utility of 

the ITS2. rDNA genes in dinoflagellates (and most other eukaryotes) are arranged in 

extensive tandem arrays (Hackett et al. 2004; Zhang et al. 2006; Figure 1.5a), with some 

free-living species hosting chromosomes almost entirely composed of rRNA repeats 

(Figueroa et al. 2014). A mutation occurring within an rDNA repeat may be eliminated, or 

promoted to fixation throughout the genome via stochastic DNA repair/replication processes 

that stimulate gene conversion or duplication/deletion. These processes include unequal 

crossover during meiosis (Figure 1.5b), transposition, retrotransposition, slipped-strand 

mispairing and intra-strand exchange within and between chromatids (reviewed in Nei & 

Rooney 2005). The effect of these processes is to homogenize intra-genomic sequence 

variation and cause repetitive genetic elements to evolve in concert ('concerted evolution'; 

Brown et al. 1972; Arnheim et al. 1980; Figure 1.5c) While concerted evolution acts to 

eliminate intra-genomic sequence variation, mutations continuously arise during DNA 

replication and repair (paralogs; Hou & Lin 2009). It may take many generations for a 

mutated rDNA copy to be eliminated from the genome or to reach fixation, particularly if 

ribosome-coding genes occupy chromosomal positions near the centromere (Cronn et al. 

1996). Hence a non-diagnostic polymorphism (NDP) may remain within a lineage for 

extended periods of evolutionary time (Álvarez & Wendel 2003). The intra-genomic 

persistence of NDPs can yield false diversity signals and lead to incorrect phylogenetic 

inference, particularly when detected in plasmid cloning assays of bulk-cell Symbiodinium 

samples (van Oppen & Gates 2006; LaJeunesse & Pinzón 2007; Thornhill et al. 2007; 

Miranda et al. 2012). Single-cell PCR (scPCR) offers a solution, controlling for inflated 

diversity estimates and providing increased accuracy in phylogenetic reconstruction (Miranda 

et al. 2012). However, the difficult and time-consuming nature of this technique has 

prevented its widespread utility in Symbiodinium systematics. 
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Figure 1.5 Concerted evolution of rDNA in the nuclear genome 

The eukaryote nuclear genome contains rDNA genes in tandem arrays (a), with copy numbers ranging 

from less than 100 to several hundred thousand. Each rDNA repeat comprises two external 

transcribed spacers (5’ETS and 3’ETS), a small subunit gene (SSU; 18S), two internal transcribed 

spacers (ITS1 and ITS2), and the 5.8S and 28S genes that collectively code for the large ribosomal 

subunit (LSU). Each tandem repeat is separated from its neighbour by a non-transcribed spacer (NTS). 

A mutation may occur in an rDNA repeat during gene duplication or repair (b; mutated copy shown in 

green), and the resulting polymorphism may either dissipate from the genome or ascend to fixation 

through concerted evolutionary processes such as unequal crossing-over during meiosis. Concerted 

evolution can take many generations to homogenize all copies within the genome (c; polymorphic 

copies shown in different colours). When concerted evolution is complete, rDNA arrays are useful for 

inferring phylogenetic relationships; however when arrays are in a state of incomplete 

homogenization (e.g. following divergence or hybridization), rDNA markers can yield ambiguous 

sequence reads, inflated diversity estimates and incorrect phylogenies (Buckler et al. 1997; Álvarez & 

Wendel 2003). 
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1.6.3. Alternative genetic markers 

The limitations accompanying the use of the ITS2 for phylogenetic inference have prompted 

assessments of several alternative candidate markers. Yet each has their drawbacks and a 

general consensus on a benchmark ‘species’ level marker for Symbiodinium has yet to be 

reached. The nuclear-encoded actin gene provides an acceptable level of resolution (Pochon 

et al. 2012) and has seen limited utility (Mieog et al. 2009; Cunning et al. 2013; Cunning & 

Baker 2013); however it occurs in multiple copies and appears to follow the ‘birth and death’ 

model of evolution, thus facilitating the accumulation of intra-genomic variation arising from 

the degeneration of pseudo-genes (Kim et al. 2011). Indeed, 10 of the 46 actin genes in the 

genome of the free-living dinoflagellate Amphidinium carterae were identified as pseudo-

genes (Bachvaroff & Place 2008). Despite this, the actin copy number is suitably low in 

Symbiodinium, estimated at 7 in clade C and just a single copy in clade D (Mieog et al. 

2009). This is considerably lower than the ITS2, which numbers in the hundreds to tens of 

thousands of copies per Symbiodinium genome (Mieog et al. 2009). Length heteroplasmy in a 

hyper-variable area of domain V in the cp23S plastid rDNA can be assessed using poly-

acrylamide gel electrophoresis (PAGE) to rapidly identify dominant and coexisting symbiont 

types at the sub-cladal level (Santos et al. 2003a). However, while useful in screening taxa 

within clades A and B, this technique is not sufficiently sensitive to resolve the more 

recently-diverged members of clade C (Sampayo et al. 2009). Alternatively, the non-coding 

region of the plastid-encoded photosystem II D1 protein gene (psbA
ncr

) can show 

substantially higher rates of divergence than either the ITS2 or the cp23S (Thornhill et al. 

2013a), while generally maintaining low copy numbers (but see Koumandou & Howe 2007) 

and similarly low intra-genomic variation (Moore 2003; LaJeunesse & Thornhill 2011). 

However, universal Symbiodinium primers are not available for psbA
ncr

, and hence specific 

primers must be tailored for individual clades. Microsatellite flanking regions such as Sym15 

and Si4.86 also show high sensitivity and have the added advantage of occurring in a single-

copy per genome (Santos et al. 2004; Pettay & LaJeunesse 2007). By targeting these markers, 

Finney et al. (2010) showed that the ITS2 lineage B1 (or cp23S lineage B184) consists of a 

diverse assemblage of putative species. Yet similar to the psbA
ncr

, all microsatellite flanking 

regions characterized to date require primers that are clade- or even subclade-specific. The 

mitochondrial-encoded (mtDNA) cytochrome oxidase genes cob (Zhang et al. 2005) and coI 

(or cox1; Takabayashi et al. 2004) have also been used in Symbiodinium systematics. A large 

and expanding dataset of coI sequences is available through the ‘barcode of life’ project 
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(www.barcoding.si.edu), making this marker particularly appealing (Stern et al. 2010). 

However, mtDNA genes tend to be highly conserved in dinoflagellates, obscuring fine-scale 

diversity (Takabayashi et al. 2004; Zhang et al. 2005; Sampayo et al. 2009; Pochon et al. 

2014). 

 

1.6.4. A consensus on Symbiodinium systematics? 

Despite promising progress in the development of alternative markers, the rDNA cistron 

remains the benchmark for Symbiodinium systematics. In a recent evaluation of candidate 

markers, the Symbiodinium rDNA phylogeny resolved that of the combined multi-gene 

concatenation better than any of the plastid or mitochondrial genes assessed (cp23S, psbA
ncr

, 

coI and cob; Pochon et al. 2014). This may reflect well-documented errors in organelle 

phylogenies that arise from lineage sorting, organelle capture and hybridization (Rieseberg & 

Soltis 1991; Rieseberg et al. 1996; Tsitrone et al. 2003). For these and other reasons, the 

‘barcode of life’ consortium recommends that rDNA markers are more appropriate than 

mtDNA or chloroplast DNA (cpDNA) for systematic barcoding in protists (Pawlowski et al. 

2012). 

In practice, the most suitable gene(s) to target depends on the taxonomic question being 

addressed (Pochon et al. 2012, 2014). To formally describe Symbiodinium species, an 

agreeing phylogenetic topology from a combination of coding and non-coding nuclear, 

mitochondrial, and chloroplast sequences, as well as corroborative morphological, 

physiological and ecological data are necessary (Sampayo et al. 2009; LaJeunesse et al. 

2012).To date, twelve Symbiodinium species have been described (Table 1.1) and a further 

five have been assigned tentative species names (nomena nuda; Table 1.2). Yet the vast 

majority of diversity within this genus awaits taxonomic description (LaJeunesse et al. 2012). 

Several recent advances in molecular methodology facilitate progress in this area. These 

include the assembly and public availability of the Symbiodinium nuclear and plastid 

genomes (Shoguchi et al. 2013; Barbrook et al. 2014), the increased accessibility and utility 

of high-throughput sequencing platforms (Quigley et al. 2014; Thomas et al. 2014), and the 

centralization of multi-gene sequence data within comprehensive databases (Franklin et al. 

2012; Tonk et al. 2013). Such developments will likely be of considerable benefit in the 

effort to characterize new molecular markers, assign species nomenclature, establish diversity 

estimates, and reconstruct the evolutionary history of the Symbiodinium complex.
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Table 1.1 List of formally described Symbiodinium species 

Species name Synonyms ITS2 type Host (holotype) Reference 

Symbiodinium boreum  D15 Oulastrea crispata (LaJeunesse et al. 2014) 

Symbiodinium eurythalpos  D8, D8-12, D12-

13, D13 

Oulastrea crispata (LaJeunesse et al. 2014) 

Symbiodinium goreauii S. goreaui C1 Ragactis lucida  (Trench & Blank 1987; Trench 2000) 

Symbiodinium kawagutii  F1 Montipora verrucosa (Trench & Blank 1987; Trench 2000) 

Symbiodinium linucheae Gymnodinium linucheae A4 Linuche unguiculata (Trench & Thinh 1995) 

Symbiodinium microadriaticum  A1 Cassiopeia xamachana (Freudenthal 1962) 

Symbiodinium minutum  B1 Aiptasia sp. (LaJeunesse et al. 2012) 

Symbiodinium natans  A Free-living (Tenerife) (Hansen & Daugbjerg 2009) 

Symbiodinium pilosum S. meandrinae, S. corculorum A2 Zoanthus sociatus* (Trench & Blank 1987; Trench 2000) 

Symbiodinium psygmophilum  B2 Oculina diffusa (LaJeunesse et al. 2012) 

Symbiodinium trenchii S. trenchi D1a Unspecified (LaJeunesse et al. 2014) 

Symbiodinium voratum S. californium, S. varians E1 Free-living (South Korea) (Jeong et al. 2014) 

*This holotype may not represent the dominant symbiont of Z. sociatus, since S. pilosum is not known to form endosymbiosis with other cnidarians 

(LaJeunesse 2002) and free-living types are known to out-compete and over-grow symbiotic strains in culture (Santos et al. 2001). 

 

Table 1.2 List of Symbiodinium species lacking formal description (nomen nudum) 

Species name Synonyms ITS2 type Host Reference 

Symbiodinium bermudense  S. pulchrorum B1 Aiptasia pallida, A. pulchella (Banaszak et al. 1993) 

Symbiodinium cariborum S. microadriaticum subsp. 

Condylactis 

A1.1 Condylactis gigantea (Blank & Huss 1989; Banaszak et al. 1993) 

Symbiodinium fitti  A3 Acropora spp., Tridacna spp. (Pinzón et al. 2011) 

Symbiodinium glynni  D1 Pocillopora spp. (LaJeunesse et al. 2010b) 

Symbiodinium muscatineii S. muscatinei B4 Anthopleura elegantissima (LaJeunesse & Trench 2000) 
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1.7. Coral-symbiont adaptation and acclimatization 

1.7.1. ‘Adaptive’ bleaching 

The realization that genetic, functional and ecological diversity exists within the 

Symbiodinium complex prompted the formulation of the somewhat contentious ‘adaptive 

bleaching hypothesis’ (ABH; Buddemeier & Fautin 1993). The ABH postulated that, rather 

than representing an ominous threat to coral reefs, bleaching might serve as an adaptive 

mechanism by which corals could survive periods of climatic upheaval. According to the 

ABH, coral bleaching “provides an opportunity for the host to be repopulated by a different 

type of partner”, and altered environmental conditions “favour establishment of combinations 

of symbionts that were less adaptive under previous conditions” (Buddemeier & Fautin 

1993). A central assumption of the ABH in its original form was that established coral 

colonies can switch to a new symbiont phylotype obtained from an environmental source 

population (Kinzie et al. 2001). ‘Symbiont switching’ (Figure 1.6a) has been induced in the 

laboratory in anemones, octocorals and scleractinians (e.g. Schoenberg & Trench 1980; Davy 

et al. 1997; Kinzie et al. 2001; Lewis & Coffroth 2004; Coffroth et al. 2010). However, the 

experimentally manipulated host-symbiont associations in corals are generally transient, 

reverting to the original combination over time (Coffroth et al. 2010). Furthermore, there 

remains no evidence that a novel symbiont can colonize and ascend to dominance within a 

coral after a natural bleaching event. A post-bleaching change in dominant symbiont was 

reported as evidence of ‘adaptive bleaching’ in transplanted coral colonies (Baker 2001); 

however this interpretation drew criticism. In particular, Hoegh-Guldberg et al. (2002) 

pointed out that Baker had not shown evidence of adaptation, but rather an acclimatization 

mechanism, one of many that corals have at their disposal to cope with environmental stress 

(e.g. Falkowski & Dubinsky 1981; Palumbi et al. 2014). Fautin & Buddemeier (2004) 

provided semantic clarification stating that ‘adaptation’ was intended in the English sense, 

defined as “modification of an organism or its parts in a way that makes it more fit for 

existence under the conditions of its environment”, thereby extending its definition to include 

acclimation and acclimatization (note that this definition differs fundamentally from that used 

in evolutionary biology, in which adaptive modification is heritable, and therefore genetically 

encoded; Dobzhansky 1968). The concept of adaptive bleaching was thus generalized to 

include an acclimatory change in the relative proportion of pre-existing types (i.e. ‘symbiont 

shuffling’; Figure 1.6b and c), and extended to encompass the entire continuum from 



41 

 

catastrophic bleaching to visually undetectable symbiont turnover (Fautin & Buddemeier 

2004). 

 

1.7.2. Mixed symbiont populations and symbiont shuffling 

Until recently, mixed Symbiodinium infections were thought to occur in only a minority of 

coral species (Diekmann et al. 2002; Goulet 2006). However, modern ultra-sensitive 

molecular techniques such as qPCR, fluorescence in situ hybridization (FISH) and next 

generation sequencing (NGS) increasingly reveal cryptic symbiont populations (Baker & 

Romanski 2007; Loram et al. 2007a; Mieog et al. 2007; Correa et al. 2009; Silverstein et al. 

2012; Quigley et al. 2014; Thomas et al. 2014). For example, Silverstein et al. (2012) 

surveyed the symbiont consortia of 39 coral species (including 26 ‘symbiont specialists’) 

using a clade-specific qPCR assay, and found representatives from all species that hosted at 

least two Symbiodinium clades. Within-colony symbiont diversity remains particularly 

unexplored in Indo-Pacific corals, many of which simultaneously host multiple, closely 

related types within clade C (Baker 2003; LaJeunesse et al. 2004; LaJeunesse 2005; Baker & 

Romanski 2007; Stat et al. 2011). 

Theoretical virulence models predict that mixed symbiont infections should be less 

mutualistic than monoclonal populations, due to the tendency of related symbionts to 

compete for host resources (van Baalen & Sabelis 1995; Frank 1996b). Yet there remains no 

evidence of direct antagonism between symbionts within a cnidarian host (Dunn & Weis 

2009). Furthermore, if mixed infections promote symbiotic disruption, selection should 

favour vertical transmission (Douglas 1998), whereas only around 15-30% of coral species 

transmit symbionts from parent to offspring (Fadlallah 1983; Harrison & Wallace 1990; 

Richmond & Hunter 1990; Baird et al. 2009). Moreover, the limited empirical evidence 

specifically addressing symbiont competition in cnidarians suggests that mixed infection is 

not synonymous with symbiotic disruption. In a study tracking the fate of photosynthetically 

fixed carbon in the giant sea anemone Condylactis gigantea, Loram et al. (2007b) showed 

that the amount of translocated photosynthate was simply an additive function of the specific 

productivity and relative abundance of each of the types present (Symbiodinium clades A and 

B), indicating that their coexistence did not have negative implications for the host. Symbiont 

competition therefore appears to be predominantly or exclusively under the auspices of host-

regulation. This control may be exerted through symbiont compartmentalisation (Correa & 
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Baker 2011), within-colony niche partitioning (Rowan & Knowlton 1995; Rowan et al. 

1997), and/or the regulation of symbiont biomass via selective expulsion/degradation, 

nutrient limitation and chemical signalling (see Davy et al. 2012 for a review). The 

persistence of mixed infections despite host regulation suggests that, rather than promoting 

virulence, this condition may actually confer a selective advantage under certain conditions. 

Mixed symbiont infections may benefit the host by providing an ‘insurance policy’ (sensu 

Yachi & Loreau 1999), conferring resilience against abiotic stress by increasing the capacity 

to maintain function in the face of environmental change (Nyström 2006). If the dominant 

symbiont is suddenly rendered ill-adapted to a modified environment, a cryptic, more 

suitably-adapted type may take its place, thus enabling the host to survive (Baker 2003). 

Dominance shifts have been well-documented within the symbiont consortia of corals and 

anemones following changes in their environment (Rowan et al. 1997; Baker 2001; Toller et 

al. 2001b; Chen et al. 2005; Berkelmans & van Oppen 2006; Thornhill et al. 2006b; Jones et 

al. 2008; Sampayo et al. 2008; Venn et al. 2008; Jones & Berkelmans 2010). In the majority 

of cases, a symbiont change was stimulated by bleaching, with the disturbance facilitating the 

proliferation of a previously cryptic population (Figure 1.6b). For example, Berkelmans & 

van Oppen (2006) transplanted colonies of Acropora millepora to an area featuring a higher 

average temperature, and observed a post-bleaching change in the dominant symbiont type 

from the naturally present clade C in favour of clade D. Repopulation by Symbiodinium D 

conferred a 1-1.5 °C increase in heat tolerance, and enabled affected colonies to survive the 

disturbance (Berkelmans & van Oppen 2006). 

Though not as well-characterized as bleaching-induced symbiont shuffling, changes within 

the symbiont consortium can also occur in the absence of bleaching (dynamic symbiont 

shuffling; Figure 1.6c). In this case, succession occurs through gradual symbiont turnover, 

effected by differential elimination and regeneration (Yamashita et al. 2010). In many 

horizontal-transmitting species, symbiont succession is evident during the early stages of 

ontogeny, prior to the establishment of more stringent symbiont-specificity (Coffroth et al. 

2001; Little et al. 2004). Dynamic symbiont shuffling also occurs in disease-affected adult 

corals, possibly arising from compromised immunity (Toller et al. 2001b), and in healthy 

adults in response to natural environmental variation (Chen et al. 2005; Venn et al. 2008).  
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Figure 1.6 Symbiont switching and shuffling 

A change in symbiont dominance within a coral colony from a heat-sensitive type (green) to a heat 

tolerant type (red) can occur via (a) a switch to a new symbiont from an environmental source 

population following bleaching-related disturbance; (b) the post-bleaching proliferation of a residual, 

thermally tolerant type (bleaching-induced symbiont shuffling); or (c) gradual symbiont turnover in 

response to environmental change (dynamic symbiont shuffling). Symbiont ‘switching’ has not been 

documented in the natural environment. 
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While symbiont shuffling appears to offer improved host benefit relative to symbiont 

switching, optimistic predictions for corals in the face of warming temperatures are 

accompanied by several major caveats. First, similar to symbiont switching, host-symbiont 

associations modified by symbiont shuffling appear to be transient, and long-term follow up 

studies generally reveal post-bleaching reversion (Thornhill et al. 2006b; Jones et al. 2008; 

LaJeunesse et al. 2009; but see Sampayo et al. 2008). Second, symbiont shuffling may 

involve severe physiological trade-offs for the host. Opportunistic symbionts that proliferate 

within the tissue of corals after bleaching may offer comparatively less nutritional value (Stat 

et al. 2008b; Cantin et al. 2009), resulting in slower coral growth rates (Little et al. 2004; 

Jones & Berkelmans 2010) and increased susceptibility to disease (Stat et al. 2008b). 

Surviving corals may therefore suffer drastic reductions in fecundity, and take many years to 

fully recover (Hoegh-Guldberg 1999). Third, it is not known how many coral species are able 

to ‘shuffle’ symbionts. While the symbiont consortium is dynamic in some species, host-

symbiont co-evolution has fostered rigid fidelity in others (Stat et al. 2006; Putnam et al. 

2012). This is evident in several fine-scale population studies that reveal the multi-year 

persistence of a single clonal genotype within individual colonies (Goulet & Coffroth 2003a; 

Kirk et al. 2005; Thornhill et al. 2006a, 2009; Andras et al. 2011; Pettay et al. 2011). In 

particular, vertical-transmitting species characteristically show a reduced affinity for 

symbiont shuffling (Thornhill et al. 2006a). This is highlighted by the disproportionate 

number of studies reporting symbiont shuffling in horizontal-transmitting species (Rowan et 

al. 1997; Coffroth et al. 2001; Baker 2001; Toller et al. 2001b; Little et al. 2004; Chen et al. 

2005; Berkelmans & van Oppen 2006; Thornhill et al. 2006b, 2009; Jones et al. 2008; Venn 

et al. 2008; Jones & Berkelmans 2010; but see Sampayo et al. 2008). Symbionts are 

vertically-transmitted in around 15-30% of scleractinian coral species (Baird et al. 2009), 

suggesting that symbiont shuffling may not be a universally available acclimatory 

mechanism. Finally, symbiont shuffling appears to offer a maximum increase in thermal 

tolerance of around 1-1.5 °C (Berkelmans & van Oppen 2006). Given that recent model 

simulations predict a 1.5-3 °C increase by the year 2050 (Kirtman et al. 2013), symbiont 

shuffling will unlikely mitigate the environmental stress that corals are expected to face in the 

near future. Therefore, while ‘adaptive bleaching’ sensu lato has provided a source of 

optimism for the outlook of corals in the face of warming ocean temperatures (Baker 2001; 

Fautin & Buddemeier 2004; Berkelmans & van Oppen 2006), the persistence of corals in a 

changing climate will ultimately depend on the ability of both symbiotic partners to acquire 

functional adaptations to cope with abiotic stress. A shift in focus towards evolutionary 
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adaptation sensu stricto is clearly necessary if we are to gain a realistic insight into the future 

of coral reefs. 

 

1.8. Symbiodinium evolution 

1.8.1. Asexual reproduction in Symbiodinium 

The classic model of Symbiodinium evolution depicts an asexual, permanent haploid lineage 

that diversifies through host-specialization and geographic isolation (LaJeunesse 2005). 

Genetic variation accumulates through somatic mutation, and similar to asexual prokaryotic 

lineages, evolution is characterised by punctuated speciation events and ‘selective 

sweeps’(LaJeunesse 2005; Correa & Baker 2009). This is consistent with theoretical models 

that predict a higher affinity for asexual reproduction in mutualistic symbionts than in 

pathogens, whose inclination towards sexual reproduction is driven by a continuous 

evolutionary ‘arms race’ with their hosts (Law & Lewis 1983; Maynard Smith 1998). The 

proposed loss of sexual reproduction in Symbiodinium has led some authors to conclude that 

the evolutionary responsiveness within this lineage is likely minor (Buddemeier & Fautin 

1993). However, the short generation times observed in symbiosis (Wilkerson et al. 1988) 

and the high frequency at which somatic mutations occur (van Oppen et al. 2011) suggest 

that rapid adaptation could occur during periods of environmental change. This is 

exemplified by the free-living asexual dinoflagellate Prorocentrum triestinum, in which 

somatic mutations alone conferred a 5 °C increase in thermal tolerance within around 400 

generations (Flores-Moya et al. 2008). 

While somatic mutations could explain the broad genetic and functional diversity within the 

Symbiodinium complex, exclusive clonality presents a paradox when one considers the long 

evolutionary persistence of this lineage (over 50 million years; Tchernov et al. 2004). With 

very few exceptions (e.g. bdelloid rotifers, darwinuloid ostracods and arbuscular mycorrhizal 

fungi), the loss of sexual reproduction condemns lineages to early extinction (Judson & 

Normark 1996). Muller’s ratchet dictates that the gradual, irreversible accumulation of 

deleterious somatic mutations (genetic load) in an asexual population inevitably leads to the 

erosion of mean fitness over time (Felsenstein 1974). Genetic information is eventually lost 

through stochastic genetic drift, and high-fitness genotypes are successively replaced by 

deleterious mutants (Crow 1994). It is thought that mutation accumulation can only truly be 
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overcome by meiotic recombination, explaining the persistence of sexual reproduction 

despite its high cost in comparison to clonality (Muller 1964). Haploidy can lessen the speed 

of the ratchet since the mutation rate within the genome is effectively halved and deleterious 

alleles are always expressed (and hence exposed to stronger selection). However, haploids are 

not immune to ‘ratchet clicks’, even when population sizes are large (Gordo & Charlesworth 

2000). Highly efficient DNA repair mechanisms in some asexual lineages have been 

implicated in reducing genetic load (Schön & Martens 1998). In particular, ameiotic 

recombination via reciprocal crossover or non-reciprocal gene conversion can reduce the 

accumulation of deleterious alleles in asexual diploid crustaceans (Daphnia spp.; Omilian et 

al. 2006) and tetraploid rotifers (Adienta vaga; Flot et al. 2013). Yet in the absence of 

homologous chromosomes to use as templates for gene-conversion, how has genetic load not 

led to the extinction of the haploid, asexual Symbiodinium lineage? 

 

1.8.2. Sexual reproduction in Symbiodinium 

In his initial species description of Symbiodinium microadriaticum, Freudenthal (1962) 

reported putative cysts with developing stages resembling isogametes. Small zoospores 

resembling gametes were also observed by Taylor (1973, 1974), and Schoenberg & Trench 

(1980a), but the critical processes of fusion and recombination remained elusive. These 

observations, in addition to their own, led Fitt & Trench (1983) to form the hypothesis that 

the Symbiodinium life cycle includes a sexual stage. Specifically, their hypothesis suggested 

that haploid zoospores fuse and undergo plasmogamy to form a transient diploid zygote, 

which then undergoes meiosis to restore the haploid condition (i.e. a haplontic life cycle; 

Figure 1.7). This is consistent with the majority of free-living dinoflagellates, nearly all of 

which are haplontic (Pfiester & Anderson 1987; Pfiester 1989; Elbrächter 2003). 

The initial molecular evidence that Symbiodinium undergoes cryptic meiotic recombination 

came from isoenzyme analyses. Incongruence between isoenzyme phylogenies and those 

constructed from both RAPD (Baillie et al. 1998, 2000) and ITS2 sequence variation 

(LaJeunesse 2001) implicated allelic recombination, consistent with criteria outlined to 

distinguish between clonal and sexual eukaryote populations (Tibayrenc et al. 1991). More 

recently, meiotic recombination has been inferred from linkage disequilibrium between 

microsatellite loci (Santos et al. 2003b; Pettay et al. 2011; Thornhill et al. 2013a; LaJeunesse 

et al. 2014; Baums et al. 2014), indicating that extensive shuffling of alleles has occurred 
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within several Symbiodinium lineages. Additionally, a recent meta-genomic analysis revealed 

the presence of six meiosis-specific and 25 meiosis-related functional genes in published 

Symbiodinium genomes (Chi et al. 2014), suggesting that the loss of sexual reproduction has 

not occurred in this genus. 

 

 

Figure 1.7 The putative haplontic life-

cycle of Symbiodinium 

Closed arrows show observed processes 

and dashed arrows represent those that 

are inferred. While the sexual life cycle 

has not been directly observed, cryptic 

recombination is evident from several 

multi-locus genotyping studies (see 

below). Symbiodinium cells are coccoid 

and non-motile when in symbiosis 

(black circles represent accumulation 

bodies, visible under the light 

microscope) and transition to the 

flagellate motile form when in the free-

living phase. Coccoid and flagellate 

cells are primarily haploid (n). The 

putative zygote is diploid (2n) before 

undergoing meiosis to restore the 

haploid condition (modified from 

Stambler 2011). 

 

 

 

While symbiotic dinoflagellates do appear to undergo cryptic recombination, it remains 

unknown when and where sexual reproduction occurs. The Symbiodinium life cycle involves 

both a sedentary coccoid phase and a dispersive motile phase (Freudenthal 1962; Fitt & 

Trench 1983). When in symbiosis, the coccoid, non-motile symbionts are enclosed in 

membrane-bound vacuoles within the host’s gastrodermal cells (Trench 1987), presumably 

isolating them from potential mates. Reproduction occurs exclusively through mitotic 

division of haploid, vegetative cells (Santos & Coffroth 2003), a process that is tightly 

regulated by the host (Davy et al. 2012). When in the free-living phase, longitudinal and 

transverse flagella develop and cells closely resemble Gymnodinium spp. (Kawaguti 1944; 

Fitt & Trench 1983; Trench & Thinh 1995). Free-living Symbiodinium cells are motile, 
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chemotactic (Fitt 1984; Pasternak et al. 2006) and phototactic (Hollingsworth et al. 2005), 

and viable cells are found in high abundance in the reef sediment and water column (Coffroth 

et al. 2006; Littman et al. 2008; Pochon et al. 2010; Takabayashi et al. 2011). Access to 

potential mates therefore appears to be unlimited ex hospite, presenting an ideal environment 

for sexual reproduction to occur (Trench 1997). Yet the conditions required to induce the 

sexual life-cycle in Symbiodinium continue to evade researchers, presenting a challenging 

obstacle to its thorough characterization. 

Aside from providing the opportunity to eliminate deleterious mutations, recombination may 

lead to the acquisition of environmental adaptations, through the generation and proliferation 

of adaptive allele combinations under selection (Baillie et al. 1998; LaJeunesse 2001; Pettay 

et al. 2011). In the extreme case, recombination between divergent Symbiodinium lineages 

could facilitate the exchange of genetic material, vectored by a series of hybrid and backcross 

intermediates (introgression). Introgressive hybridization may provide the opportunity for a 

host-compatible symbiont lineage to rapidly acquire functional adaptations, supporting the 

evolution of the symbiosis. For these reasons, characterizing the sexual life-cycle and 

establishing the barriers of reproductive isolation in the Symbiodinium genus are important 

objectives in the effort to predict the ecological and evolutionary responses of corals in a 

changing climate. 

 

1.8.3. Hybridization in Symbiodinium? 

The crossing of individuals from genetically divergent lineages (hybridization; Arnold 1997) 

is evident in around 25% of plant species and 10% of animal species (Mallet 2005). 

Hybridization is thought to be common in the marine environment (Gardner 1997), though 

few studies have examined its occurrence in marine micro-eukaryotes (Casteleyn et al. 2009). 

While Symbiodinium does appear to reproduce sexually, it is not known whether members of 

different species, clades or subclades are sexually compatible or able to produce viable 

progeny. Analyses of polymorphic microsatellite loci have shown evidence of allelic 

recombination within, but not between Symbiodinium cp23S, ITS2 and psbA
ncr

 lineages 

(Santos et al. 2003b, 2004; Pettay et al. 2011; Thornhill et al. 2013a; LaJeunesse et al. 2014). 

In a phylogenetic analysis of clade C phylotypes on the GBR, organelle phylogenies were 

highly congruent with those of the nuclear rDNA, again indicating an absence of 

hybridization (Sampayo et al. 2009). Yet these studies represent only a small fraction of the 
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worldwide Symbiodinium diversity, and hence more extensive sampling is needed to establish 

whether hybridization naturally occurs in this group. Furthermore, ITS sequence variants that 

produce additive patterns when visualized on electrophoretic gels (such as DGGE and SSCP) 

are often dismissed as co-dominant paralogs, without considering alternative explanations for 

their intra-genomic coexistence (or indeed determining whether the observed sequence 

variation is intra-genomic). For example, the Symbiodinium C1c ITS2 sequence was initially 

reported as a paralogous intra-genomic variant of C1, since the former was only found in 

association with the DGGE profile of the latter (LaJeunesse et al. 2003); however C1c was 

later assigned the alphanumeric status C45 when further sampling revealed its presence in 

isolation of C1 (LaJeunesse 2005). It is therefore possible that the additive pattern observed 

by LaJeunesse et al. (2003) could have resulted from hybridization between Symbiodinium 

C1 and C45. 

Though yet to be identified in Symbiodinium, hybridization has been reported between 

members of divergent free-living dinoflagellate taxa (Edvardsen et al. 2003; Hart et al. 2007; 

Brosnahan et al. 2010). For example, Brosnahan et al. (2010) recovered hypnozygote cysts 

from Belfast Lough in Northern Ireland, and used nested single-cell qPCR (targeting the 

hyper-variable D1 and D2 regions of LSU rDNA) to demonstrate their hybrid origin. The 

progenitor taxa were identified as members of two ribosomal clades within the Alexandrium 

tamarense species complex (groups I and III). However, experimental crosses between these 

strains failed to yield viable progeny, with recombinant offspring undergoing no more than 

three cell divisions (Brosnahan et al. 2010). While post-zygotic mating barriers can cause 

hybrid lethality or sterility in crosses involving widely divergent taxa, more closely-related 

lineages can show comparatively weak reproductive isolation. For example, crosses of 

recently diverged, geographically isolated dinoflagellates within the Gymnodinium catenatum 

complex produced hypnozygotes with high excystment success and viable offspring 

(Blackburn et al. 2001). Successful hybridization is also apparent between the free-living 

dinoflagellates Dinophysis acuminata and D. norvegica, a species pair distinguished by eight 

nucleotide substitutions in the ITS1-5.8S-ITS2 region (Edvardsen et al. 2003). This level of 

divergence appears to be near the upper limit for reproductive compatibility in 

dinoflagellates, a threshold that roughly corresponds with other micro-eukaryote groups. In 

the freshwater diatom family Eunotiaceae, reproductive isolation and hybrid sterility 

generally evolve in mating pairs featuring ITS sequence divergence above 10% 

(Vanormelingen et al. 2008; Casteleyn et al. 2009). Barriers to reproductive isolation are also 
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evident beyond ~10% ITS divergence in the haplontic green algal family Volvocaceae 

(Coleman et al. 1994). Given that ecologically divergent Symbiodinium taxa can be 

differentiated by just a single base pair in the ITS1-5.8S-ITS2 region (0.2% divergence; e.g. 

subclades C1 and C3), a thorough investigation of the occurrence and potential evolutionary 

effects of hybridization in the Symbiodinium genus is warranted. 

 

1.9. Inferring hybridization in Symbiodinium 

Establishing the incidence of hybridization and introgression has proven difficult in many 

natural populations. Identifying the genealogical origin of Symbiodinium individuals is 

further complicated by their unicellularity, haploidy, and the inability to establish many types 

in culture. Hybridization is often revealed using standard genotyping techniques such as 

multi-locus microsatellite analysis and amplified fragment length polymorphism (AFLP); 

however these PCR-based methods require a multi-genomic DNA template, limiting their 

utility to multicellular or cultivable single-cell organisms. The recent development of single-

cell whole-genome amplification (WGA) methodology can provide the means to increase 

DNA template concentrations to sufficient levels for multi-locus genotyping, but these are 

currently expensive and technically demanding procedures (Handyside et al. 2004; Coskun & 

Alsmadi 2007). Alternatively, a single locus may provide conditional evidence of 

hybridization provided that a suitable genetic region is targeted. Mitochondrial and 

chloroplast genomes are typically uniparentally inherited, and hence are rarely useful in 

identifying hybrids (Small et al. 2004). However, the intra-genomic co-dominance 

(additivity) of diagnostic nuclear alleles can provide convincing evidence that an individual is 

of hybrid origin (Soltis et al. 1992; Wendel et al. 1995; Sang et al. 1995; Brasier et al. 1999; 

Newcombe et al. 2000). Single-copy nuclear markers are preferable for such analyses, since 

they lack the NDPs often found in multi-copy gene families (Small et al. 2004). However, 

Symbiodinium is predominantly haploid (Santos & Coffroth 2003; but see LaJeunesse et al. 

2014); therefore recombination ultimately leads to the uniparental inheritance of single-copy 

alleles. The intra-genomic coexistence of polymorphic, biparentally inherited nuclear genes 

such as those of the rDNA cistron can provide conditional evidence of hybridization (Sang et 

al. 1995; Morrell & Rieseberg 1998). In particular, the ITS2 has been extensively utilized in 

plant systematics, revealing numerous cases of hybridization, hybrid speciation and reticulate 

evolution (reviewed in Álvarez & Wendel 2003). The multi copy nature of rDNA arrays also 
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make their constituent sequences amenable to single-cell PCR amplification, circumventing 

the need to perform a WGA step or establish isoclonal cultures. However, a major limitation 

of using rDNA markers in hybridization analysis is that a similar additive genomic signature 

can also arise from the vestigial persistence of ancestral intra-genomic polymorphisms. If the 

most recent common ancestor of two putatively hybridizing taxa carried both diagnostic 

rDNA alleles within its genome, and insufficient time has passed since divergence for 

concerted evolution to fully homogenize the rDNA arrays in each lineage, an individual 

carrying both alleles may simply represent a member of one taxon that has retained copies of 

the allele diagnostic of the other (see Figure 1.5c). As such, distinguishing hybridization from 

incomplete concerted evolution requires the application of specialized statistical techniques 

(e.g. Bayesian methods that enable the inference of hybridization and introgression from 

multi-locus haplotypes; Mallet 2005), and should be reinforced with morphological, 

physiological and ecological data (Peterson et al. 2004; Vriesendorp & Bakker 2005). 

 

1.10. Aims and objectives of this study 

This study aimed to establish whether hybridization occurs, or has occurred, between 

divergent Symbiodinium taxa. To address this question, a combination of genetic, 

physiological and ecological investigations were carried out on the reef-building coral 

Pocillopora damicornis, a widely distributed, vertically-transmitting species that hosts a 

diverse array of Symbiodinium taxa. Surveys and experiments were carried out at the high-

latitude coral reef site of Lord Howe Island (LHI; Australia). The specific objectives were to: 

1. Develop a single-cell PCR-DGGE protocol and a quantitative PCR (qPCR) assay to 

quantify ITS2 ratios within individual Symbiodinium cells, and hence screen for 

putative hybrids. 

2. Develop a statistical framework to simultaneously test three competing hypotheses 

explaining the patterns of ITS2 additivity within P. damicornis symbionts: (H0) 

colonies host a single clonal population of symbionts hosting a non-diagnostic 

polymorphism; (H1) colonies host two populations of genetically distinct symbionts; 

and (H2) three symbiont populations coexist within coral colonies, including two 

divergent taxa and an intermediate population of genetically heterogeneous 

Symbiodinium cells (putative hybrids). 
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3. Develop a method to convert bulk-cell qPCR data (ITS2 sequence proportions) into 

the proportional abundance of genetically homogeneous and heterogeneous cells, and 

employ this method to model the spatiotemporal distribution of putative hybrids. The 

hypothesis tested in this objective was that homogeneous and heterogeneous 

symbionts undergo niche diversification, consistent with many natural hybrid-

progenitor systems. 

4. Assess the physiological performance of heterogeneous symbionts relative to their 

homogeneous congeners. It was hypothesized that the different cell types are 

morphologically and physiologically distinct, and that each performs differently under 

various environmental conditions. 

5. Establish whether physiological differences between genetically heterogeneous and 

homogeneous symbiont cells translate to differences in host fitness. The hypothesis 

tested was that corals hosting different proportions of homogeneous and 

heterogeneous symbionts show different growth and mortality rates in their natural 

environment. 

The four subsequent data chapters address these objectives in the following format: 

Chapter 2 addresses the first and second objectives. Individual symbionts were sampled 

from six P. damicornis colonies and analysed for intra-genomic ITS2 ratios. A finite mixture 

model was applied to test the three competing hypotheses outlined in objective 2. 

Chapter 3 addresses the third objective by reconciling ITS2 sequence proportions obtained 

from bulk-cell qPCR analysis with actual proportions of genetically homogeneous and 

heterogeneous cells. This facilitated a comprehensive analysis of the spatiotemporal 

distribution of each cell type within and between P. damicornis colonies on the LHI reef. 

Observed distribution patterns were correlated with a suite of environmental variables 

obtained from long-term monitoring. 

Chapter 4 employs the methods developed in chapters 2 and 3 to test the hypothesis outlined 

in the fourth objective. The proportional abundance of genetically heterogeneous 

Symbiodinium cells was quantified in each of 15 P. damicornis colonies, and analyses of 

photosynthetic and respiratory oxygen flux were carried out at both ambient and elevated 

temperature. Analyses of symbiont morphology and physiology were also performed to 

further assess the candidacy of heterogeneous cells as putative hybrids. 
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Chapter 5 involves the reciprocal transplantation of coral colonies between two distinct reef 

habitats. Corals were switched between a warm, well lit inner-lagoon site and a reef margin 

location characterised by low light levels, strong wave action and high macroalgal growth. 

The growth and survival of corals were assessed in relation to the proportional abundance of 

genetically heterogeneous Symbiodinium cells within their symbiont consortia. 

Chapter 6 provides a review of the combined evidence for hybridization between 

Symbiodinium phylotypes, and speculates on the possible evolutionary implications thereof. 

Future directions are suggested for the unambiguous confirmation of hybridization in 

symbiotic dinoflagellates, and the establishment of its location, frequency, and consequences 

for coral fitness. The possible application of controlled hybridization in the ‘evolutionary 

rescue’ of corals in a deteriorating environment is also discussed. 
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Chapter 2: Measuring intra-genomic variation in Symbiodinium 

 

2.1. Introduction 

Until the mid-20
th

 century, hybridization was thought to occur rarely and have little 

evolutionary significance (Mayr 1963). However, a major paradigm shift extolled the 

incidence and importance of hybridization, led principally by the pioneering work of 

American botanist Edgar S. Anderson (Anderson 1949; Anderson & Stebbins 1954). This 

was articulated by his colleague Warren H. Wagner who recalled “We used to make fun of 

Edgar Anderson by saying that he was finding hybrids under every bush – then we realized 

that even the bushes were hybrids” (Abbott et al. 2013). The so-called ‘molecular revolution’ 

has increased our awareness of natural hybridization further still, with current estimates of 

around 25% of plant species and 10% of animal species undergoing hybridization (Mallet 

2005). Yet the phylogenetic and statistical criteria that constitute convincing evidence of 

natural hybridization and introgression remain the subject of contention, and may depend on 

the life-history characteristics of the taxa in question (Vriesendorp & Bakker 2005). 

Morphological similarities among symbiotic dinoflagellates highlight the need to use 

appropriate genetic tools when establishing the incidence of hybridization in this group. The 

internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA (rDNA) is the most 

well-characterised and commonly-used marker in Symbiodinium systematics, primarily due to 

its high taxonomic resolution (van Oppen & Gates 2006; Stern et al. 2012). Unlike alternative 

mitochondrial- and chloroplast-encoded sequences and single-copy nuclear genes, the ITS2 is 

bi-parentally inherited in most sexually-reproducing organisms, and hence the intra-genomic 

coexistence of divergent sequence variants can reveal the occurrence of ancient and recent 

hybridization events (Baldwin et al. 1995; Álvarez & Wendel 2003). However, the multiple-

copy nature of the rDNA cistron renders it subject to intra-genomic variation from a variety 

of other processes, including the generation of paralogous somatic mutations and the 

degeneration of functional genes into pseudo-genes (Thornhill et al. 2007). Establishing 

whether a given ribotype is taxonomically meaningful requires the analysis of individuals 

rather than multi-genomic samples, necessitating a single-cell approach for unicellular 

organisms such as Symbiodinium (Correa & Baker 2009; Miranda et al. 2012). The 

generation of isoclonal cell-lines from individual Symbiodinium cells offers a partial solution 
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(Thornhill et al. 2007); however frequent somatic mutations may lead to cultures that are not 

representative of the original cell (van Oppen et al. 2011). Single-cell PCR (scPCR) provides 

an obvious advantage in distinguishing between intra and inter-genomic sequence variation 

(Tengs et al. 2000; Edvardsen et al. 2003); yet this method has not been widely used in 

Symbiodinium systematics. This is primarily due to its time-consuming nature, and the 

difficult task of disrupting the recalcitrant cell wall to extract the nucleic acids. A lack of 

suitable methodology for isolating, extracting and sequencing DNA from individual 

Symbiodinium cells has meant that intra-genomic variation in this genus has remained 

virtually unexplored (Stat et al. 2012). 

While establishing the dominant ribotype within individual cells is necessary to establish 

diversity estimates (Correa & Baker 2009), it is also beneficial to quantify intra-genomic 

sequence variation when assessing the incidence of hybridization. This is because F1 hybrids 

are expected to inherit relatively similar rDNA copy numbers from each parent (Baldwin et 

al. 1995; Brosnahan et al. 2010), and polymorphism ratios can indicate the direction of 

introgression and/or concerted evolution (Wendel et al. 1995; De Castro et al. 2013). 

Fluorogenic-probe based qPCR analysis now offers sufficient sensitivity to quantify ITS2 

variants at the subclade level, and when preceded by a PCR pre-amplification step (nested 

qPCR; e.g. Brosnahan et al. 2010), it can be used to quantify polymorphic ribotypes within 

the individual dinoflagellate genome. However, while the intra-genomic co-dominance 

(additivity) of diagnostic ITS2 variants can allude to the occurrence of hybridization and even 

introgression, a similar genomic signature can also rise from the incomplete concerted 

evolution of ancestral polymorphisms (ICEAP). For this reason, a statistical framework is 

needed to distinguish between these conflicting origins of intra-genomic rDNA additivity. 

In this chapter, I attempt to address these methodological limitations by developing: (1) a 

single-cell isolation and DNA extraction protocol for Symbiodinium; (2) a single-cell PCR-

DGGE method to screen for Symbiodinium individuals with additive ITS2 repeats; (3) a 

nested PCR-qPCR assay to quantify intra-genomic ITS2 sequence polymorphisms within 

individual cells; and (4) a statistical framework to identify admixture in Symbiodinium 

populations based on proportions of ITS2 sequence variants within the genome. The model 

selection criterion developed in (4) was then employed to test whether the P. damicornis 

symbiont consortium consists of (H0) a single clonal population of symbionts featuring a non-

diagnostic polymorphism (NDP); (H1) two populations of divergent, homogeneous 

symbionts; or (H2) a mixture of genetically homogeneous symbionts and heterogeneous cells, 
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representing putative hybrids (Figure 2.1a). The proportional abundance of ITS2 

polymorphisms within each Symbiodinium cell was also assessed to explore the potential for 

gene flow via introgressive hybridization (Figure 2.1b). 

 

 

Figure 2.1 Conflicting origins of intra-

genomic variation in Symbiodinium 

Red and green colorations represent divergent 

ITS2 sequences, with monocoloured cells 

featuring homogeneous or near-homogeneous 

ITS2 arrays and bicoloured cells hosting 

polymorphic ribotypes. Schematics show (a) 

competing hypotheses of sequence homology 

within P. damicornis-associated 

Symbiodinium, with a single clonal population 

hosting a non-diagnostic polymorphism 

(NDP) under H0, exclusively homogeneous 

symbionts under H1and hybridization between 

individuals from genetically distinct 

populations under H2; and (b) introgressive 

hybridization, with differential fitness 

between hybrid classes (shown in a size 

gradient). Many backcross generations (n) 

may occur before an increase in fitness is 

realized. Genetic isolation occurs when one or 

more hybrid/backcross classes suffer from 

insurmountably low mean fitness. 

 

 

2.2. Methods 

2.2.1. Study species and location 

This study was carried out at the world’s southernmost coral reef at Lord Howe Island (LHI; 

Australia). This isolated 14.5 km
2
 volcanic remnant is located around 600 km east of the 

Australian mainland, and some 200km to the south of the Elizabeth and Middleton Reefs 

Marine National Park Reserve. The LHI reef hosts at least 83 species of scleractinian coral, 

(many of which are endemic; Harriott et al. 1995), and a correspondingly diverse and 

endemic Symbiodinium assemblage (Wicks et al. 2010). Reef fauna are regularly exposed to 

widely variable thermal conditions (Harriott & Banks 2002), and cold-stress is known to play 

a defining role in determining species boundaries at this site (Veron & Done 1979). In certain 
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reef-margin areas, a stark transition from coral- to macro-algal dominated benthic 

assemblages is apparent (Allen & Paxton 1974). 

The host species investigated in this study was the widely-distributed coral Pocillopora 

damicornis, a thermally-sensitive but fast-growing species that forms a dominant component 

of many Indo-Pacific reefs (including that of LHI; Veron 2000). Colonies at LHI can grow to 

several metres in diameter in sheltered inner-lagoon habitats, and form a small compact 

clump-like morphology in exposed locations (Miller & Ayre 2004). P. damicornis is 

hermaphroditic and shows an unusual dual-reproductive mode, with the majority of offspring 

consisting of brooded asexual larvae, complimented by the cryptic simultaneous broadcast-

spawning of sexual gametes in some areas (Combosch & Vollmer 2013). This species shows 

a predominantly sexual reproductive mode at LHI, where it occasionally undergoes 

intergeneric hybridization with Stylophora pistillata (Miller & Ayre 2004). This may arise 

from suboptimal abiotic conditions selecting for ‘extreme’ hybrid phenotypes, and/or a low 

availability of conspecific gametes (Willis et al. 2006). P. damicornis transmits symbionts 

vertically from parent to offspring, and can form a symbiotic relationship with a large array 

of genetically and physiologically distinct Symbiodinium taxa. In Australian waters alone, P. 

damicornis is found in association with S. goreauii, S. glynni, S. trenchii, and numerous other 

undescribed ITS2 types including C1b, C1c, C1c-ff, C1h, C1j, C33, C33a, C42, C42a, C42b, 

C100, C103, C118, C125 and C126 (LaJeunesse et al. 2003, 2004; Sampayo et al. 2007; 

Ulstrup et al. 2008; Stat et al. 2008a; Wicks et al. 2010; Silverstein et al. 2011; Tonk et al. 

2013). Of these, P. damicornis colonies have been reported hosting Symbiodinium C100, 

C103 and C118 at LHI (Wicks et al. 2010). 

 

2.2.2. Sample collection and DNA isolation 

Coral sampling was carried out in March 2012 at North Bay and Ned’s Beach, Lord Howe 

Island, Australia. Three Pocillopora damicornis colonies were sampled from each site by 

divers using snorkel (North Bay; depth 1-3 m) or SCUBA (Ned’s Beach; depth 14-16m). In 

all cases, colonies were sampled at least 2 m from each other to reduce the risk of selecting 

ramets. Three small branch tips (~ 1 cm
3
) were taken from each colony using diagonal pliers, 

and preserved in DMSO preservation buffer (20% DMSO, 250 mM EDTA, NaCl saturated, 

pH 8.0; Seutin et al. 1991). Coral samples were stored at -20 °C prior to DNA analysis. A 

0.12 cm
2
 area of tissue was removed from the skeleton in 1.5 ml of 0.22 μm filtered seawater 
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(FSW), delivered at high velocity through a circular stencil. A 10 μl sub-sample was taken 

and centrifuged at 16,100 x g for 5 min to pellet the Symbiodinium fraction. The supernatant 

was discarded and the pellet re-suspended in 100 μl DNA buffer (DNAB; 0.4M NaCl, 50mM 

EDTA, pH 8.0). Individual cells (n = 30 from each colony) were hand-picked under a light 

microscope using a heat-elongated glass micro-pipette. Each cell was washed three times in 2 

μl DNAB, transferred to a 1.7 ml micro-centrifuge tube with 50 mg acid-washed glass beads 

(710-1180 μm; Sigma-Aldrich), and milled for 1 min at 50 Hz (Qiagen TissueLyser LT; 

Qiagen) to disrupt the cell-wall and release the nucleic acids. TE buffer (10 mM Tris-HCl; 1 

mM EDTA; pH = 8.0) was then added to a final volume of 20 μl. For each colony, the 

extraction process was carried out with the symbiont cell omitted (but with coral tissue 

homogenate included), to ensure that only intracellular DNA contributed to the PCR 

amplification signal. 

 

2.2.3. End-point PCR, DGGE and DNA sequencing 

Single-cell DNA template solutions generally contained insufficient DNA for direct PCR-

DGGE and qPCR analysis. The partial nr5.8S, ITS2 and partial nr28S regions were therefore 

pre-amplified using a shortened end-point PCR protocol, with the outer primers ITSintfor2 

(LaJeunesse 2002) and ITS2Rev2 (Stat et al. 2009). Thermal cycling included an initial 

denaturation step of 3 min at 95 °C followed by 24 cycles of 15 seconds at 95 °C, 15 seconds 

at 56 °C and 10 seconds at 72 °C (carried out on an Applied Biosystems Veriti thermo-

cycler). Each reaction contained 10 μl of DNA template solution, 1x MyTaq PCR reaction 

mix (Bioline), 15 pmol each primer, and deionised sterile water to a total volume of 25 μl. 

Multiple pre-amplification reactions on individual template solutions were prevented by the 

limited amount of target DNA available. A template-free control reaction was included with 

each run. 

Pre-amplified PCR products were diluted 1:10
3
 (North Bay colonies) or 1:10

4
 (Ned’s Beach 

colonies) in deionised sterile water prior to PCR-DGGE and qPCR analysis. These 

differences were due to shortages of DNA template solutions from the Ned’s Beach colonies, 

which were used for the initial assay development and optimization process. PCR 

amplification for DGGE was carried out using the primers ITSintfor2 and ITS2CLAMP 

(LaJeunesse 2002). Cycling conditions were as described above, except an additional 16 

thermal cycles were run (40 in total). PCR products (20 μl) were loaded on 200 x 200 x 0.75 
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mm, 8% denaturing polyacrylamide gels (25-50% denaturant gradient), and run in 1 x TAE at 

150 V for 7 h at 60 °C (DCode system; BioRad) alongside known ITS2 sequences of 

Symbiodinium C100 and C109. Following electrophoresis, gels were stained with ethidium 

bromide and viewed on a UV trans-illuminator (FirstLight UVP). Five representative 

(dominant) bands at each position were excised, milled for 1 minute at 50 Hz with 50 mg 

glass beads and 200 μl TE buffer, and re-amplified with both clamped and non-clamped 

primers (LaJeunesse 2002). DGGE was carried out on clamped PCR products to ensure a 

single band migrated to the identical position from where it was excised. Corresponding non-

clamped products were cleaned with ExoSAP-IT (USB), and sequenced by the Macrogen 

Sequencing Service (Macrogen Inc., Seoul, South Korea). Sequences were manually checked 

and aligned in Geneious v 7.0 (Biomatters) and a BLAST search was carried out against 

Symbiodinium ITS2 sequences available in Genbank. Novel sequences were assigned 

alphanumeric ITS2 nomenclature (c.f. LaJeunesse 2001, 2002) and deposited into the 

Genbank database. The un-rooted statistical parsimony network of Symbiodinium ITS2 

phylotypes found within Pocilloporid corals at LHI (Wicks et al. 2010) was updated in TCS v 

1.21 (95% connection limit; gaps assigned fifth character state; Clement et al. 2000). 

 

2.2.4. qPCR analysis of Symbiodinium ITS2 ratios 

For qPCR analysis, the universal primers CInnerFor (5’-

TGGCTTGTTAATTGCTTGGTTCT-3’) and CInnerRev (5’-ACCTGCATCCCAGCGGTT-

3’) were developed, in addition to the custom TaqMan fluorogenic probes C100
+
 and C100

-
 

(5’-TTTTACTTGAGTGACACCGC-3’ and 5’-CTTTACTTGAGTGACGCTGC-3’, 

respectively; Life Technologies). The probe C100
+
 was designed to quantify the number of 

ITS2 sequences of type C100 in a given sample (denoted CC100), while the C100
-
 probe was 

developed to quantify the copy-number of all clade C ITS2 sequences other than type C100. 

All primers and probes were initially checked for specificity by conducting a BLAST search 

against sequences deposited in Genbank (Altschul et al. 1990). To obtain purified DNA 

sequences for qPCR calibration, PCR products (types C100, C103, C109 and C118 extracted 

from P. damicornis, and C3 obtained from the VUW Symbiodinium laboratory culture 

collection) were cloned using the TOPO TA kit (Invitrogen Life Technologies). Plasmid 

colonies were incubated overnight on selective LB agar plates containing ampicillin, IPTG 

and XGAL (Bioline). DNA was extracted from positive transformants, purified using a 
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plasmid Mini-Prep kit (Invitrogen Life Technologies), and sequenced as above with the M13 

primer set. Plasmid DNA template concentrations were estimated using a Pearl 

Nanophotometer (Implen), diluted to approximately 10
-3

 ng µl
-1

, and five log10 serial 

dilutions were constructed to generate standard curves and test the accuracy and precision of 

the assay. All qPCR reactions were carried out in triplicate (standard curves) or duplicate 

(template solutions) on an Applied Biosystems StepOne instrument (Life Technologies), 

alongside a template-free control reaction. Each TaqMan qPCR reaction contained 4 μl 

template, 1x TaqMan Universal Mastermix II (Life Technologies), 1x TaqMan fluorogenic 

probe (Life Technologies), 18 pmol each primer, and deionised sterile water to a total volume 

of 20 μl. Thermal cycling conditions involved an initial 10 min, 95 °C denaturation step 

followed by 40 cycles of 15 seconds at 95 °C and 1 min at 60 °C. Cycle threshold (Ct) values 

were determined as the cycle at which the change in fluorescence was significantly different 

to the background level (ΔRn = 0.05; obtained using the instrument’s built-in algorithm). Ct 

values below the standard curve intercept (see Appendix B) and featuring sufficiently low 

standard deviations (< 0.5) were included in the analysis. 

To ensure that the TaqMan assays C100
+
 and C100

-
 detected all Symbiodinium clade C 

sequences present within each sample, the total ITS2 copy number (denoted CTOTAL) in each 

Symbiodinium cell from the North Bay colonies was also estimated using SYBR qPCR 

analysis. Reactions were carried out as above, except Power SYBR Green Mastermix (Life 

Technologies) was used in place of TaqMan Universal Mastermix II, fluorogenic probes were 

omitted, and Ct values were generated using the ΔRn threshold value of 0.3. A melt curve 

(temperature elevation from 60 °C to 95 °C in 0.3 °C increments each of 15 s duration) was 

included at the end of each run to ensure only detectable target sequences were amplified. 

Template solutions yielding Ct values below the standard curve intercept and melting 

temperatures (Tm) within 1 °C of plasmid Tm values were included in the analysis. The ITS2 

copy number within each cell (CTOTAL; as determined from SYBR qPCR analysis) was 

compared to the sum of those given by the C100
+
 and C100

-
 TaqMan assays using linear 

regression (parameters constrained; intercept = 0, slope = 1). Finally, a mixture test was 

carried out to assess the ability of the TaqMan qPCR assay to accurately predict the 

proportion of total Symbiodinium clade C ITS2 copies that were of type C100 (CC100:CTOTAL 

ratio). Eight mixtures were constructed from plasmid C100 and C109 DNA template 

solutions (diluted to approximately 200 ITS2 copies µl
-1

; CC100:CTOTAL ratios = 0, 0.02, 0.10, 

0.4, 0.6, 0.9, 0.98 and 1; see Appendix B for Ct values) and qPCR reactions were carried out 
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in duplicate as above. The ability of the combined TaqMan assay to predict CTOTAL and 

CC100:CTOTAL was assessed using linear regression (parameters constrained; intercept = 0, 

slope = 1). 

 

2.2.5. Statistical analysis  

To assess the relationship between the total ITS2 copy number and the proportion of copies 

that were of type C100, a non-linear regression curve (second order polynomial) was fitted to 

the bivariate CC100:CTOTAL versus CTOTAL data in Sigmaplot v11.0 (Systat). Values of 

CC100:CTOTAL were arcsin transformed and compared between colonies (Colony) and between 

branches within colonies (Branch(Colony)) using nested ANOVA (lm function in R; R 

Development Core Team 2011). Three competing hypotheses were evaluated to explain the 

ITS2 sequence variation within and between the symbionts of P. damicornis: (H0) colonies 

host a single population of genetically heterogeneous symbionts, versus (H1) colonies host 

two populations of genetically distinct, homogeneous symbionts, versus (H2) colonies host 

distinct populations of genetically homogeneous and heterogeneous symbionts, consistent 

with the occurrence of hybridization (Figure 2.1) The frequency distribution of CC100:CTOTAL 

within a coral colony (X) is expressed in model form as:  

H0: X ~ Beta (α, β), α > 1, β > 1 Equation 2.1 

H1: X ~ Beta (α, β), α < 1, β < 1 Equation 2.2 

H2: X ~ π Beta (α1, β1) + (1 – π) Beta (α2, β2), 0 < π < 1 Equation 2.3 

 

where α and β are the shape parameters of the beta function, and π denotes the proportion of 

symbionts belonging to each component of the mixture model. Mixed beta functions were 

fitted to the CC100:CTOTAL frequency distributions of each coral colony, and maximum 

likelihood parameter values were solved using the optim function in R (L-BFGS-B method; 

R Development Core Team 2011). A range of starting parameter values were used at each 

optimization stage to ensure that a universal log-likelihood maximum was reached. 

Hypothesis evaluation was based on weighted AICc values (wi), with those above 0.90 

considered to provide unambiguous support for a candidate model (Burnham & Anderson 

2002). 
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2.3. Results 

2.3.1. DGGE and DNA sequencing 

The excision and sequencing of DGGE bands revealed that all six P. damicornis colonies 

hosted Symbiodinium ITS2 types C100 (Genbank accession number HM222433; Wicks et al. 

2010) and C109 (Genbank accession number KJ530690; novel sequence). Although two 

divergent ITS2 sequences were retrieved, three distinct DGGE band profiles were observed 

among the 180 individual cells analysed. These corresponded to Symbiodinium cells featuring 

a homogeneous C100 array, those featuring a homogeneous C109 array, and those with a 

heterogeneous mixture of both ITS2 types (Figure 2.2). Four of the six colonies analysed 

hosted a consortium of Symbiodinium cells that included all three profiles (two colonies from 

each site), while the remaining two colonies hosted only homogeneous C100 symbionts and 

those producing the heterogeneous band-pattern (Figure 2.2a). No amplification signal was 

detected from template-free controls or the extractions with symbiont cells omitted, 

indicating an absence of extracellular DNA contamination. 
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Figure 2.2 Sequence variation among Pocilloporid-associated Symbiodinium at LHI 

ITS2 sequence variation between and within the Symbiodinium genome is shown by: (a) DGGE 

profiles of individual symbionts from P. damicornis colonies at Lord Howe Island, featuring a range 

of CC100:CTOTAL ratios (alongside plasmid-purified C100 and C109 DNA); and (b) an un-rooted 

statistical parsimony network showing the phylogenetic relationships between derived Pocilloporid-

associated Symbiodinium types found at Lord Howe Island (ellipses) and the ancestral C3 root 

(rectangle; modified from Wicks et al. 2010). Small circles in (b) represent hypothetical intermediate 

sequences, each distinguished from its neighbor by a single nucleotide substitution or gap. P. 

damicornis-associated types are shown in yellow, while those found in association with Stylophora 

pistillata and Seriatopora hystrix are shown in orange and green, respectively. See Appendix A for 

Genbank accession numbers. 

 

 

2.3.2. qPCR estimation of intra-genomic ITS2 ratios 

The universal primers CInnerFor and CInnerRev were identically matched to conserved 

regions within the ITS2 of Symbiodinium C100 and C109. These primers also share identical 

sequences or single-base pair mismatches with nearly all clade C sequences currently 

available in the Genbank database, including those found within the corals of LHI (Wicks et 

al. 2010). A sequence BLAST analysis of the target probe C100
+
 revealed a high specificity 

for Symbiodinium C100, with at least two nucleotide substitutions differentiating it from the 

majority of other clade C sequences in Genbank (positioned 16 and 18 base pairs from the 5’ 

end of the probe). The cytosine at the 5’ end of the probe C100
-
 is mismatched to C100, C109 

and the majority of other clade C Symbiodinium types (including the ancestral types C1 and 

C3). This mismatch had no effect on the reaction efficiency when tested on ITS2 types C109 

and C103 (95% < E < 100%; see Appendix B); however it served to prevent cross-
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hybridization with the C100 sequence. With this exception, C100
-
 shared an identical 

sequence to most clade C Symbiodinium types available in Genbank, including the ancestral 

types C1, C3 and all derived types previously found in association with P. damicornis at LHI 

(Wicks et al. 2010). Standard curve analysis of both TaqMan assays revealed acceptable 

reaction efficiencies when matched to their respective target sequences (C100
+
 to C100; 

C100
-
 to both C109 and C103; 95% < E < 100% and R

2
 > 0.99 in all cases; see Appendix B). 

qPCR analysis of known plasmid DNA mixtures yielded high accuracy and precision in 

estimating CC100:CTOTAL (constrained linear regression; R
2
 = 0.998; Appendix B) and an 

absence of cross-hybridization. TaqMan qPCR-generated CTOTAL values within each 

Symbiodinium cell were highly correlated with, and not significantly different from those 

obtained from the SYBR qPCR assay (constrained linear regression; R
2
 = 0.978; see 

Appendix B), indicating a negligible incidence of clade C ITS2 types other than those detected 

by C100
+
 and C100

-
. SYBR qPCR melt curve analysis showed no Tm differences between 

plasmid C100 and C109, and all single-cell templates yielded single Tm peaks within 1°C of 

the plasmid-generated values. 

 

 

 

Figure 2.3 Variation in ITS2 copy 

numbers within Symbiodinium cells 

A non-linear relationship existed between 

the proportion of ITS2 copies of type C100 

(CC100:CTOTAL) and the total number of 

ITS2 copies within the cell (CTOTAL). 

Homogeneous C100 cells hosted 

significantly more ITS2 copies than the 

genetically heterogeneous cells, or those 

featuring a homogeneous C109 array 

(second order polynomial regression, p = 

0.027). 

 

Within-cell ITS2 copy numbers (CTOTAL) were highly variable, ranging from less than 500 to 

over 30,000. C100 was the dominant ITS2 type in the majority of cells analysed, with 

CC100:CTOTAL ratios ranging between 0 and 0.987 (Figure 2.3; see Appendix B for Ct values). 

The remaining ITS2 copies appeared to be primarily of type C109, since this was the only 

other sequence detected in the DGGE analysis. DGGE band intensities generally reflected 
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qPCR-generated CTOTAL values, and in cases where both C100- and C109-diagnostic bands 

were present, their relative intensity gave a qualitative indication of CC100:CTOTAL. However, 

the C109 band was generally very faint in cells featuring CC100:CTOTAL ratios greater than 

0.75, and universally undetectable in those above 0.85 (Figure 2.2a; see Appendix B). A 

significant nonlinear correlation between CC100:CTOTAL and CTOTAL revealed that ITS2 copy 

numbers were higher on average in genetically homogeneous C100 cells than in either the 

heterogeneous C100/C109 cells or the homogeneous C109 cells (non-linear regression, p < 

0.027; R
2
 = 0.15; Figure 2.3). Within-cell CC100:CTOTAL ratios did not differ between branches 

within colonies, but varied between colonies (nested ANOVA, p = 0.82 and < 0.01 for 

Branch(Colony) and Colony effects, respectively; Table 2.1). 

 

Table 2.1 Nested ANOVA for intra-genomic variation in ITS2 ratios  

Source  df SS MS F P 

Between colonies 5 4.07 0.81 24.23 0.001 

Between branches within colonies 12 0.40 0.03 0.61 0.82 

Error  162 8.87 0.05   

The model design used in the nested ANOVA analysis was CC100:CTOTAL ~ Colony x Branch(Colony). 

CC100:CTOTAL ratios were arcsin transformed prior to analysis. Branches within colonies were pooled 

for subsequent mixture model fitting. 

 

The application and evaluation of competing beta models based on CC100:CTOTAL ratios 

revealed the presence of multiple symbiont clusters in all six colonies. In all cases, the two-

component beta mixture model representative of H2 provided the best fit of the candidate 

models (wi > 0.90 for all colonies; Table 2.2). Three modes were present in colonies a, b, d 

and e, representing clusters of genetically homogeneous C100 cells, homogeneous C109 

cells, and heterogeneous C100/C109 cells. Two modes were detected in colonies c and f, 

representing coexisting populations of homogeneous C100 cells and heterogeneous 

C100/C109 cells (Figure 2.4). The proportion of genetically heterogeneous symbiont cells in 

the consortium ranged from 7% in colony c to 88.5% in colony a. 
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Figure 2.4 (previous page) Frequency distributions of intra-genomic ITS2 ratios 

Colonies a-c were sampled from North Bay (1-3m), and colonies d-f from Ned’s Beach (14-18m). 

Vertical bars represent the percentage of symbiont cells within each CC100:CTOTAL category (n = 30 

cells for each colony). Overlying probability density functions are optimized two-component beta 

mixtures (see Table 2.2 for parameter estimates). 

 

 

Table 2.2 Summary of optimized beta mixture models 

Colony  

ID 

Site 

 

Best-fit 

hypothesis 

Model  

Equation 

Proportion 

heterogeneous 

wi 

 

a North 

Bay 

H2 X ~ 0.13 x Beta (0.57, 0.53) + 

0.87 x Beta (26.08, 10.89) 

0.885 > 0.99 

b North 

Bay 

H2 X ~ 0.07 x Beta (3.48, 66.21) 

+ 0.93 x Beta (10.99, 2.89) 

0.816 > 0.99 

c North 

Bay 

H2 X ~ 0.07 x Beta (13.97, 10.32) 

+ 0.93 x Beta (57.10, 3.12) 

0.007 > 0.99 

d Ned’s 

Beach 

H2 X ~ 0.33 x Beta (0.71, 0.57) + 

0.67 x Beta (108.55, 68.91) 

0.670 > 0.99 

e Ned’s 

Beach 

H2 X ~ 0.51 x Beta (16.58, 4.28) 

+ 0.49 x Beta (114.8, 2.32) 

0.512 0.96 

f Ned’s 

Beach 

H2 X ~ 0.55 x Beta (0.90, 0.34) + 

0.45 x Beta (19.40, 10.63) 

0.444 0.93 

Model support is indicated by Akaike weights (wi), representing the conditional probability that a 

particular model provides the best fit of all candidate models (i.e. H0, H1 and H2). These give 

unambiguous support for a candidate if > 0.9 (Johnson & Omland 2004). 

 

 

2.4. Discussion 

The primary focus of this chapter was to establish a molecular and statistical framework by 

which to assess the incidence of hybridization between divergent Symbiodinium lineages. 

This is made difficult by their apparent haplontic life cycle, a lack of amenability to culture in 

many types (particularly in clade C Symbiodinium), and the paucity of well-characterized 

genetic markers. This study attempts to circumvent these obstacles by developing protocols 

to isolate and extract DNA from individual Symbiodinium cells, establish and quantify the 

dominant ribotype(s) within each genome, and test competing hypotheses explaining the 

observed pattern of intra-genomic variation. Using these techniques, a population of putative 

hybrids is identified inhabiting the reef building coral Pocillopora damicornis at the isolated, 

high-latitude reef of Lord Howe Island, Australia. 
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2.4.1. Method development 

The single-cell isolation and extraction method described here facilitated the rapid 

preparation of individual Symbiodinium cells prior to PCR (around 20 per hour), with the 

potential to be further improved with the application of flow-cytometry and fluorescence 

activated cell sorting (FACS). The protocol also showed good efficiency, with around 85% of 

isolated cells undergoing successful PCR amplification. The downstream application of 

DGGE and DNA sequencing successfully revealed the dominant ribotype(s) within 

individual cells, providing a reliable assessment of inter-genomic ITS2 diversity within the P. 

damicornis symbiont consortium. Used in conjunction with plasmid cloning, this method 

could be used to evaluate levels of intra-genomic variation in other genetic markers, 

providing an important assessment of their phylogenetic utility. 

The qPCR assay developed in this study offers sufficient sensitivity to quantify ITS2 ratios at 

the subclade level. This represents a significant improvement in resolution from earlier clade-

level assays (Ulstrup & van Oppen 2003; Loram et al. 2007a; Mieog et al. 2007; Correa et al. 

2009; Yamashita et al. 2010; Cunning et al. 2013), since the subclade presents a more 

ecologically-relevant taxonomic unit (LaJeunesse 2005). This assay is also the first to 

quantify polymorphic rDNA sequences within individual Symbiodinium cells, and the second 

to do so in dinoflagellates (see also Brosnahan et al. 2010). This provides an important 

insight into the level of ITS2 variation within the Symbiodinium genome, underscoring 

concerns about its utility in establishing diversity estimates (Thornhill et al. 2007), and its 

suitability for quantifying the dynamics of mixed infections (Mieog et al. 2007). In particular, 

substantial differences in rDNA copy numbers observed between Symbiodinium types C100 

and C109 highlight the pitfalls of using ITS2-qPCR to estimate abundance ratios of 

coexisting symbionts without single-cell validation. 

Finally, the statistical methodology developed here identifies admixture in symbiont 

populations based on intra-genomic ITS2 ratios. Conflicting hypotheses of one, two and three 

coexisting populations were formulated, corresponding to the existence of a single symbiont 

clone harbouring a non-diagnostic polymorphism (NDP), the coexistence of two ‘pure’ 

(homogeneous) ribotypes, and mixed populations of genetically homogeneous and 

heterogeneous Symbiodinium cells, respectively. The model consistent with the latter 

hypotheses received unambiguous statistical support in all six P. damicornis colonies 

analysed. However, the model selection approach relies on forming a set of candidate models 
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that are representative of the biological processes under investigation (Johnson & Omland 

2004). While the mixture model representing H2 is consistent with a population of hybrids 

coexisting with parental genotypes (progenitors), it cannot explicitly infer this scenario. This 

is because a similar pattern could arise from the incomplete concerted evolution of ancestral 

polymorphisms (ICEAP). 

 

2.4.2. Hybridization or incomplete concerted evolution of ancestral polymorphisms? 

The existence of both C100 and C109 ribotypes in the homogeneous condition affirms their 

status as diagnostic of separate Symbiodinium subclades (i.e. neither sequence represents a 

degenerating pseudo-gene). Furthermore, these two ribotypes differ at 5 variable nucleotide 

sites in the ITS2 region (2% divergence), while NDPs typically feature a single nucleotide 

substitution or insertion/deletion (indel) that distinguish them from the dominant sequence 

variant (LaJeunesse 2005; Tonk et al. 2013). However, if both ribotypes were present within 

the genome of the most recent common ancestor of Symbiodinium C100 and C109, processes 

of concerted evolution may not have had sufficient time to homogenize the rDNA arrays of 

both taxa. Hence copies of the ribotype that is now diagnostic of the sister taxon may remain 

in the genome of one or both lineages. The Symbiodinium genome routinely hosts a diverse 

assemblage of ITS2 sequences (Thornhill et al. 2007), and several putative cases of ICEAP 

appear in the literature. For example, the ITS2 sequence diagnostic of Symbiodinium glynni 

(type D1) also occurs within the genome of S. trenchii (type D1a), with the incomplete 

displacement of a vestigial polymorphism invoked to explain their intra-genomic coexistence 

(Thornhill et al. 2007). However, several features of the data presented here suggest that an 

alternative explanation of hybridization should not be ruled out. First, the C100 and C109 

sequences coalesce at the ancestral type C3, as opposed to either representing an intermediate 

evolutionary step toward the other (e.g. C103 and C118 in P. damicornis and C3hh and C3n 

in Seriatopora hystrix; see Figure 2.2b). If concerted evolution has not had sufficient time to 

homogenize all C109 rDNA repeats in the C100 genome, then vestigial copies of the 

intermediate C3 sequence would also likely persist as a non-dominant intra-genomic variant. 

Rather, the C3 sequence was not detected in any of the cells analysed, despite its 

characteristic DGGE band pattern (see Wicks et al. 2010, supplementary material). Second, 

concerted evolutionary processes rapidly homogenize intra-genomic co-dominance, either 

completely displacing a non-dominant polymorphism or leaving only background traces 
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(Baldwin et al. 1995; Wendel et al. 1995; Ganley & Scott 2002). This is inconsistent with the 

similar proportional abundance of ITS2 polymorphisms within many of the genetically 

heterogeneous cells observed here, with more than a third of all symbionts featuring 

CC100:CTOTAL ratios between 0.25 and 0.75. Finally, frequency troughs along the CC100:CTOTAL 

spectrum depict a degree of genetic isolation between genetically heterogeneous 

Symbiodinium cells and either of the ‘pure’ genotypes (i.e. homogeneous C100 and C109 

cells), consistent with the substantial fitness loss often experienced by F2 and later-generation 

backcross genotypes (resulting from ‘hybrid breakdown’; see Demuth & Wade 2005). 

While hybridization represents a plausible explanation for the intra-genomic co-dominance of 

the C100 and C109 ribotypes, the distinction between hybridization and ICEAP remains 

ambiguous. Addressing this question will likely require a significant investment of resources, 

including the use of WGA and/or the generation of isoclonal cultures (in order to facilitate 

multi-locus genotyping analysis on individual cells by targeting nuclear microsatellites and/or 

single nucleotide polymorphisms), and continued attempts to induce the sexual life cycle, 

both within and between cultured Symbiodinium lineages. Next generation sequencing (NGS) 

platforms also offer tremendous potential for identifying processes underlying intra-genomic 

variation in Symbiodinium, enabling the identification of rare sequence variants and the 

generation of high-volume sequence data from large numbers of individuals (Arif et al. 2014; 

Thomas et al. 2014; Green et al. 2014). Another area requiring investigation is the 

morphological, physiological and ecological characterization of putative Symbiodinium 

hybrids. Concerted evolution operates via a series of stochastic processes that occur 

independently of natural selection (Dover 1982). By contrast, hybridization is often 

accompanied by drastic changes in morphology, performance and fitness (Barton & 

Bengtsson 1986; Barton 2001; Arnold 2007; Arnold & Martin 2010), even involving 

diversification into new habitats (Rieseberg et al. 2003). Investigating the form, function, 

distribution and ecology of genetically heterogeneous Symbiodinium cells may therefore 

provide further insight into the incidence and potential evolutionary effects of hybridization 

in this genus. The remaining chapters of this thesis are concerned with addressing these 

objectives. 
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2.4.3. Background symbiont populations 

The results of this study indicate that at least three ITS2 genotypes can coexist within the 

symbiont consortium of P. damicornis (C100, C100/C109 and C109). While homogeneous 

Symbiodinium C109 cells were only ever detected at background levels (constituting less than 

7% of the symbiont population, and possibly suggesting a non-homologous relationship with 

this host species), the biological relevance of this population may extend well beyond 

providing a presumably minor contribution to the overall productivity of the symbiosis. 

Genetically heterogeneous Symbiodinium cells outnumbered ‘pure’ genotypes in more than 

half of the colonies sampled, suggesting that rare sexual reproduction events between C100 

and C109 may facilitate asexual hybrid proliferation, with potentially important functional 

implications for the coral colony. The evolutionary contribution of Symbiodinium C109 may 

be more important still, if hybrids create a ‘bridge’ for the migration of genetic material to the 

dominant C100 lineage (i.e. introgression; see Figure 2.1b). A small number of genetically 

heterogeneous symbionts featured CC100:CTOTAL ratios near 0.75, and thus potentially 

represent F1 × C100 backcross genotypes. However, this pattern could equally have arisen 

from ICEAP, differential rDNA inheritance in F1 hybrids (arising from dissimilar copy-

numbers between parent taxa; e.g. Brosnahan et al. 2010), or even concerted evolution acting 

to homogenize rDNA variability in the hybrid genome (e.g. Wendel et al. 1995). Establishing 

the incidence of introgression would initially require the identification of individual hybrid- 

and backcross classes (i.e. F1 hybrid, F2 backcross, etc.). This in turn requires the genotyping 

of a large number of individuals, and the analysis of at least 13-50 ancestry-informative loci 

per individual (Epifanio & Phillipp 1997; Fitzpatrick 2012). This project is not sufficiently 

resourced to carry out such a comprehensive task; however it does serve to highlight the 

perils of dismissing symbionts that persist in low abundance as biologically-irrelevant or 

simply representing surface contamination. 

 

2.4.4. Conclusion 

While the results presented in this chapter do not provide unequivocal evidence of 

hybridization between divergent Symbiodinium lineages, they provide an initial ‘proof of 

principle’ for its occurrence. In doing so, this study draws attention to the important 

evolutionary implications that may accompany the generation of new genetic diversity in 

Symbiodinium, including the potential for rapid symbiont adaptation through introgression. 
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Progress in this area has been hindered by a lack of available methodology, an obstacle that is 

addressed here through the development of new molecular and statistical methods focussed 

on the individual Symbiodinium cell. Through the application of these techniques, colonies of 

P. damicornis inhabiting the reef of Lord Howe Island are identified as representing a 

putative Symbiodinium ‘hybrid zone’, requiring further molecular, morphological, 

physiological and ecological assessment. Additional development of this research may help 

to characterize and predict the evolutionary response of the coral-algal symbiosis to the many 

anthropogenic impacts currently threatening the world’s coral reefs.  
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Chapter 3: The spatiotemporal distribution of putative 

Symbiodinium hybrids 

 

3.1. Introduction 

Providing unequivocal evidence of hybridization has proven difficult in many species. In 

particular, the persistence of ancestral polymorphisms can leave a similar genomic signature 

to that of hybridization, and hence distinguishing between these fundamentally different 

evolutionary processes requires corroborative population-genetic, morphological, 

physiological and ecological evidence (Vriesendorp & Bakker 2005; Willis et al. 2006). 

Ecological data can be particularly useful for assessing the candidacy of genetically additive 

individuals as putative hybrids. While concerted evolutionary processes act independently of 

natural selection (Dover 1982), the ability of hybrids to survive and reproduce is strongly 

influenced by their biotic and abiotic environment (Lewontin & Birch 1966). As such, 

hybrids are generally more common at the ecological and/or geographical margin of the 

parental species range, where selection arising from competition with parents is weak 

(Arnold 1997; Rieseberg 1997), and opportunities exist for ‘transgressive’ hybrids to 

diversify into extreme habitats (see below). 

The lack of competition and extreme abiotic conditions found in marginal habitats can create 

opportunities for hybrids to diversify into vacant niches, through a process called 

‘transgressive segregation’. When individuals from two divergent lineages cross, the majority 

of the many possible hybrid recombinants are generally inviable or unfit, since ‘hybrid 

breakdown’ arises from the segregation of co-adapted gene complexes or the creation of 

maladapted gene combinations (Barton 2001; Demuth & Wade 2005). However, the genetic 

variation created by hybridization can occasionally produce a fit genotype, that may escape 

this ‘rat race’ of unfit congeners (Seehausen 2004; Arnold & Martin 2010). Transgressive 

segregation, the emergence of ‘extreme’ hybrid phenotypes via recombination (Rieseberg et 

al. 1999, 2000; Seehausen 2004; Bell & Travis 2005), can enable hybrids to exploit new 

environments and even develop into stable, reproductively-isolated lineages (Rieseberg et al. 

2003; Gompert et al. 2006). The ability of a fit hybrid recombinant to reproduce asexually 

can further increase its chances of establishing a foot-hold in a vacant niche, from where it 

may rapidly proliferate, stabilize, and adapt to the new conditions (Rieseberg et al. 2003). 
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The best-studied example of hybrid diversification via transgressive segregation occurs in the 

wild sunflower genus Helianthus. The hybrid species H. paradoxus acquired a particular 

combination of alleles from H. annuus and H. petiolaris that conferred additive phenotypic 

effects, resulting in substantial increases in succulence, calcium uptake, and sodium exclusion 

relative to both progenitor species (Lexer et al. 2003). Positive directional selection acting on 

these adaptations enabled the hybrid lineage to diversify into extremely saline marshes (Lexer 

et al. 2003; Rieseberg et al. 2003), where neither parental species can persist (Welch & 

Rieseberg 2002). Another hybrid species, Helianthus deserticola, diversified into arid areas 

by acquiring several transgressive ‘desert adaptations’, including reduced boron uptake, 

reduced leaf size, and rapid flowering (Rieseberg et al. 2003). Hybridization has thus been 

implicated in major ecological transitions, with hybrids commonly found beyond the range 

margins of parental taxa (Wang et al. 1990; Rieseberg 1991; Morrell & Rieseberg 1998; 

Rieseberg et al. 2003; Barrett et al. 2007; Hamilton et al. 2009). 

Marginal coral reefs may provide a suitable environment in which hybrid diversification 

could occur. These habitats are characterized by extreme conditions such as atypically high or 

low temperatures, irradiance levels outside those required for optimum photosynthesis, and/or 

a reduction in quality of other parameters such as salinity, nutrient loads or pH (Kleypas et al. 

1999). The world’s southernmost coral reef at Lord Howe Island (Australia; 31°33’S) is 

situated at the transition zone between coral- and macroalgal-dominated benthic assemblages 

(Allen & Paxton 1974), and is regularly exposed to wide fluctuations in temperature, light 

and nutrient levels (Harriott & Banks 2002). The extreme abiotic conditions at LHI reef may 

therefore provide vacant adaptive peaks that select for extreme hybrid phenotypes. Indeed, 

the lack of evidence for hybridization among other Symbiodinium taxa despite several multi-

locus genotyping studies (e.g. Santos et al. 2003b; Pettay et al. 2011; Thornhill et al. 2013a; 

LaJeunesse et al. 2014), suggests that if hybridization does occur in symbiotic 

dinoflagellates, it may well be confined to isolated, marginal habitats such as LHI. 

This chapter aimed to assess the candidacy of genetically heterogeneous Symbiodinium cells 

as putative hybrids by examining their ecological characteristics and distribution patterns on 

the LHI reef. A bulk-cell qPCR method was developed to quantify the number of genetically 

heterogeneous Symbiodinium cells (putative hybrids) as a proportion of the total number of 

symbionts in the P. damicornis consortium (Symbiodinium HETEROGENEOUS: Symbiodinium 

TOTAL, hereafter abbreviated to SH:ST). Surveys of SH:ST were carried out over three nested 

spatial scales and two summer-winter cycles. Three separate hypotheses were tested to 



75 

 

explain the spatial and temporal distribution of putative Symbiodinium hybrids. First, SH:ST 

varies within and between P. damicornis colonies, and is additionally variable between 

geographically isolated reef sites. Second, SH:ST varies within colonies through time, in 

response to cyclical changes in the abiotic environment. Third, site-averaged SH:ST values 

correlate with one or more of a suite of environmental variables obtained from long-term 

environmental monitoring at the study sites. 

 

3.2. Methods 

3.2.1. Study location and species 

This study was carried out at the high-latitude, marginal coral reef at Lord Howe Island, 

Australia (-31.5, 159.1). The host species investigated was Pocillopora damicornis, a widely 

distributed reef-building coral that forms a dominant component of the LHI reef (Veron 

2000; Miller & Ayre 2004). P. damicornis was previously shown to host Symbiodinium 

C100, C103 or C118, with the majority of colonies hosting C100 (Wicks et al. 2010). 

However, single-cell analysis revealed that these colonies also host a cryptic population of 

Symbiodinium C109 (Genbank accession number KJ530690; see chapter 2), and a third 

population of genetically heterogeneous symbionts, featuring both C100 and C109 ribotypes 

(see chapter 2). These symbionts may represent C100 × C109 hybrids, or alternatively, 

Symbiodinium cells that host a persistent ancestral polymorphism. 

 

3.2.2. Coral sampling and preservation 

To analyse the spatial distribution of genetically heterogeneous Symbiodinium cells, and 

determine whether associations exist between local temperature conditions and their 

proportional abundance within the symbiont consortium (SH:ST), five P. damicornis colonies 

were sampled from each of eight LHI reef sites (Figure 3.1). Three terminal fragments were 

removed (using diagonal pliers) from each colony, preserved in DMSO preservation buffer 

(20% DMSO, 250 mM EDTA, NaCl saturated, pH 8.0; Seutin et al. 1991) and stored at -20 

°C prior to DNA extraction. Colonies were sampled as near as possible to the in situ 

temperature data loggers operated by the Australian Institute of Marine Science (AIMS); 

however, a spacing of at least 2 m was maintained between colonies to reduce the risk of 
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sampling ramets. To explore the relationship between SH:ST and depth (a proxy for 

irradiance), a more exhaustive sampling effort was carried out at a single reef margin site 

featuring a steep sloping profile (The Arch, where P. damicornis colonies occur from 

approximately 4-12 m). Twenty one additional colonies were sampled as above at roughly 

even intervals along the depth gradient, with their apical depth recorded using a dive 

computer (Suunto Gekko). Samples were collected within the space of ~ 10 min; therefore 

negligible differences in tidal height were assumed.  

For temporal analysis of SH:ST, numbered cattle ear-tags were attached to five colonies from 

each of the three inner-lagoon sites (Sylph’s Hole, North Bay and Comet’s Hole) during 

March 2011. A single branch tip was sampled from each tagged colony during March 2011, 

September 2011, March 2012 and September 2012 (six-monthly sampling over 1.5 years). 

These sampling times were chosen to closely follow the thermal maxima and minima over 

two seasonal cycles, and hence establish the relationship between the relative abundance of 

putative hybrids and natural cyclical changes in seawater temperature. 
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Figure 3.1 Locations of study sites at Lord Howe Island 

Spatial surveys were carried out at the eight sites indicated. Temporal surveying was carried out at 

Comet’s Hole, North Bay and Sylph’s Hole, at six-monthly intervals from March 2011 to September 

2012. Australian Institute of Marine Science (AIMS) data loggers are permanently deployed at all 

sites except The Arch, where a HOBO pendant logger was deployed from September 2011 to 

September 2012. Logger depths and coordinates are shown for each site. 
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3.2.3. Extraction of bulk-cell Symbiodinium DNA 

Preserved coral tissue was separated from the underlying skeleton by centrifugation through a 

fine plastic-coated wire mesh (grid size 1 mm; 16,100 x g for 10 s). The skeleton was 

discarded and 200 µl of DMSO buffer were added to the tissue homogenate. The sample was 

then vortexed and centrifuged for 10 min at 16,100 x g to separate the host and symbiont 

fractions. The supernatant (host fraction) was discarded and a further 200 µl DMSO buffer 

were added to the Symbiodinium pellet, which was re-suspended by milling without beads for 

3 min at 50 Hz (Qiagen TissueLyser LT; Qiagen). A 10 µl sub-sample was added to a 1.7 ml 

micro-centrifuge tube containing 50 mg acid-washed glass beads (710-1180 μm; Sigma-

Aldrich), and milled for 3 min at 50 Hz to disrupt the Symbiodinium cells and release nucleic 

acids. Following a 10 min incubation period at 4 °C, 90 µl of de-ionised water were added. 

The sample was then vortexed and centrifuged for 10 min at 16,100 x g to pellet cellular 

debris. The DNA-enriched supernatant (50 µl) was transferred to a new micro-centrifuge tube 

with an equal volume of 2-propanol for precipitation of nucleic acids, and centrifuged for 10 

min at 16,100 x g to collect the DNA pellet. The supernatant was discarded and 200 µl of 

wash buffer (70% v/v ethanol) were added. The sample was vortexed and returned to the 

centrifuge for a further 10 min at 16,100 x g. The supernatant was carefully removed with a 

pipette and the DNA pellet dried under a laminar flow hood for 30 min. Elution buffer (10 

mM Tris-HCl; 0.1 mM EDTA; pH = 8.0) was then added to a final volume of 50 μl. 

Following a 10 min re-hydration period, the DNA was eluted by milling without beads for 1 

min at 30 Hz. 

 

3.2.4. PCR and electrophoresis 

Denaturing gradient gel electrophoresis (DGGE) was carried out on all samples to establish 

the presence or absence of Symbiodinium types other than C100 and C109. PCR 

amplification for denaturing gradient gel electrophoresis (DGGE) was carried out with the 

primers ITSintfor2 and ITS2CLAMP (LaJeunesse 2002). Thermal cycling involved an initial 

denaturation step of 3 min at 95 °C followed by 40 cycles of 15 s at 95 °C, 15 s at 56 °C and 

10 s at 72 °C (Applied Biosystems Veriti thermo-cycler; Life Technologies). Each PCR 

reaction contained 4 μl of DNA template solution, 1x MyTaq PCR reaction mix (Bioline), 10 

pmol each primer, 10 μg bovine serum albumin (BSA; Sigma) and deionised sterile water to 

a total volume of 20 μl. A template-free control was included with each run. To ensure the 
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final product was within the intended size range (300-350 bp) and that amplification did not 

occur in the template-free control reaction, 5 μl of the final PCR product were 

electrophoresed on a 1.5% agarose gel containing 1x SYBR safe nucleic acid stain (Life 

Technologies) alongside a DNA standard (Hyperladder™ II; Bioline). Agarose gels were 

viewed and imaged on a blue light trans-illuminator (Safe Imager; Invitrogen). The remaining 

PCR product was loaded on a 200 x 200 x 1 mm, 8% denaturing polyacrylamide gel (25-50% 

denaturant gradient), and run in 1 x TAE at 150 V for 7 h at 60 °C (DCode system; BioRad) 

alongside known ITS2 sequences of Symbiodinium C100 and C109 (extracted from plasmid 

DNA; see chapter 2 for cloning methods). Following electrophoresis, denaturing gels were 

stained with ethidium bromide and viewed on a UV trans-illuminator (FirstLight; UVP) and 

the presence or absence of each ITS2 sequence type was recorded.  

 

3.2.5. Quantification of genetically heterogeneous Symbiodinium cells 

To determine the proportional abundance of ITS2 type C100 (CC100:CTOTAL) in bulk-cell 

Symbiodinium samples, quantitative PCR (qPCR) was carried out with the universal primers 

CInnerFor and CInnerRev, and the TaqMan fluorogenic probes C100
+
 and C100

-
 (see chapter 

2 for nucleotide sequences). Each qPCR reaction contained 4 μl DNA template, 1x TaqMan 

Universal Mastermix II (Life Technologies), 18 pmol each primer, 1x TaqMan fluorogenic 

probe (Life Technologies), 10 μg BSA (Sigma-Aldrich) and deionised sterile water to a total 

volume of 20 μl. Thermal cycling involved an initial 10 min, 95 °C denaturation step 

followed by 40 cycles of 15 s at 95 °C and 1 min at 60 °C (Applied Biosystems StepOne 

quantitative PCR instrument; Life Technologies). Ct values were determined as the cycle at 

which the change in fluorescence was significantly different to the background level (ΔRn = 

0.05; obtained using the instrument’s built-in algorithm). Reactions featuring Ct values below 

the standard curve intercept (36.873 and 37.119 for C100
+
 and C100

-
 assays, respectively; see 

Appendix B) and sufficiently low standard deviations (< 0.5) were included in the analysis. 

Plasmid DNA template solutions containing pure Symbiodinium C100 and C109 sequences 

were used to construct standard curves (see chapter 2 for cloning methods). To establish 

standard curve parameter estimates, 6 logarithm serial dilutions of C100 and C109 plasmid 

DNA were run in duplicate (10 pg µl
-1

 to 0.1 fg µl
-1

; corresponding to approximately 

2,120,000 and 21 ITS2 copies µl
-1

, respectively). DNA template solutions generated from 

bulk-cell Symbiodinium samples were run in duplicate with a template-free control included 
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for each probe type. The total number of ITS2 copies (CTOTAL) within each sample was 

estimated as the sum of the C100 copy number (CC100) and the number of Symbiodinium 

clade C ITS2 sequences other than type C100 (as determined by mean Ct values derived from 

C100
+
 and C100

-
 assays, respectively). The proportion of total Symbiodinium clade C 

sequences that were of type C100 was expressed as the bulk-cell CC100:CTOTAL ratio. 

The proportional abundance of genetically heterogeneous Symbiodinium cells (SH:ST) was 

derived from the bulk-cell CC100:CTOTAL ratio using parametric information generated from 

single-cell qPCR analysis carried out in chapter 2. For each of the six colonies sampled in the 

chapter 2 analysis, the proportion of individuals assigned to the heterogeneous mixture-model 

component (see Table 2.2) was plotted against the bulk-cell CC100:CTOTAL ratio. A downward 

parabola was fitted to the bivariate data (form y = ax
2
 + bx; a < 0; where y = SH:ST ; x = 

CC100:CTOTAL) using the curve fitter function in Sigmaplot v11.0 (Systat). The bulk-cell 

CC100:CTOTAL ratio approximated SH:ST via the second-order polynomial relationship y = -

3.4484x
2
 + 3.3604x (Figure 3.2). The parameters generated in this analysis were then used to 

predict SH:ST from bulk-cell ITS2 ratios obtained from each coral sample in the 

spatiotemporal distribution analysis.  

 

 

Figure 3.2 Estimating the proportional 

abundance of putative Symbiodinium hybrids 

The application of bulk-cell qPCR enabled the 

rapid approximation of SH:ST without the need 

for single-cell analysis. The qPCR-generated 

CC100:CTOTAL ratio (bulk-cell) predicted the SH:ST 

values generated in chapter 2 via the polynomial 

relationship y = -3.45x
2
 + 3.36x. The curve 

section from x = 0 to x = 0.5 is shown by a 

dashed line, since none of the six colonies 

analysed in chapter 2 or the 61 P. damicornis 

colonies analysed in the present chapter 

produced CC100:CTOTAL ratios less than 0.5. 
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3.2.6. Water temperature monitoring 

To determine whether the distribution of putative Symbiodinium hybrids is associated with 

the local temperature regime, environmental data were obtained from the in situ data loggers 

operated by the Australian Institute of Marine Science (AIMS). Monthly average 

temperatures from March 2009 to August 2012 were downloaded from the AIMS public 

website (accessed from http://www.data.aims.gov.au/ on 20/03/2014). These loggers 

continuously record seawater temperatures at Algal Hole North, Comet’s Hole, Malabar, 

Ned’s Beach, North Bay, Sugarloaf West and Sylph’s Hole (Figure 3.1). An eighth logger 

also permanently monitors water temperatures at Wheatsheaf Islet (adjacent to Ball’s 

Pyramid, 20 km to the southeast of Lord Howe Island); however P. damicornis colonies were 

not found at this site despite a thorough sampling effort. AIMS loggers are occasionally 

retrieved for battery replacement or repairs (I. Kerr, LHIMPA, pers. comm.). To correct for 

bias associated with these logging gaps, sites featuring missing data were paired with their 

most proximal site for which logging was continuous from March 2009 to August 2012. A 

correlation analysis was carried out using the available simultaneous measurements, and 

missing data were estimated using the slope and intercept of the fitted line (see Appendix B). 

In lieu of an AIMS logger at The Arch, a HOBO pendant logger (Onset Computer 

Corporation) was deployed at a depth of 11.6 m from 18/09/2011 to 31/08/2012 (measuring 

and logging temperature at 15 min intervals). Data obtained from this instrument were 

visually checked for spurious values, month-averaged and temporally aligned with 

temperature values measured by the AIMS logger deployed at Algal Holes (for which 

continuous month-averaged temperatures were available from March 2009 to August 2012, 

inclusive). Month-averaged temperatures at The Arch prior to September 2011 were 

estimated using correlation analysis as described above, with Algal Hole North used as the 

predictor site (see Appendix B). For each of the study sites, a four-parameter sine function of 

the form 

dc
b

x
ay 










π2
sin  

 

Equation 3.1 

 

was fitted to monthly mean temperature data using the curve fitter function in Sigmaplot 

v11.0 (Systat). The fitted temperature mean (d), maximum (d + a), minimum (d – a), and 

range (2a) were extracted as candidate predictor variables for regression against site-averaged 

SH:ST ratios.  
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3.2.7. Statistical analysis 

Spatiotemporal variation in SH:ST was assessed using a combination of repeated measures 

analysis of variance (rmANOVA), nested univariate ANOVA and linear regression. Spatial 

variability in SH:ST within and between P. damicornis colonies was modelled using two-

factor nested ANOVA, with Site (eight levels, random) and Colony(Site) (colony nested 

within site; five levels, random) as hierarchical factors and Branch as the residual. Temporal 

variation in SH:ST within and between colonies was assessed using rmANCOVA with Time as 

a within-subject factor (four levels, fixed), Site as a between-subject factor (3 levels, random) 

and Colony as the residual. Relative variance components for random effects were estimated 

using the MINQUE procedure (Rasch & Mašata 2006). In order to assess the effect of depth 

(a proxy for irradiance) on SH:ST within colonies, a linear regression analysis was carried out 

with colony-SH:ST as the dependent variable and depth (in metres) as the explanatory 

variable. To establish the best predictor(s) for site-averaged SH:ST, a multiple linear 

regression analysis was carried out using stepwise addition of candidate explanatory 

temperature variables (mean, minimum, maximum and range). For each linear model 

analysis, assumptions of variance homoscedasticity and residual normality were validated 

using Levene’s and Shapiro-Wilk tests, respectively. Statistical analyses were carried out 

using R v2.13.2 (R Development Core Team 2011) and SPSS Statistics v20 (IBM). 

 

3.3. Results 

3.3.1. Spatiotemporal distribution patterns 

Investigating the spatiotemporal distribution of putative hybrid symbionts involved the 

analysis of 186 individual branches taken from a total of 61 P. damicornis colonies, sampled 

from eight reef sites around Lord Howe Island. Symbiodinium C100 represented the dominant 

ITS2 type in all colonies and branches analysed. Approximately two thirds of the colonies 

also produced a non-dominant DGGE band representative of Symbiodinium C109 (41 

colonies; see Appendix B). No other Symbiodinium sequences were detected in this study, 

including the rare types C103 and C118 previously identified from P. damicornis at LHI 

(Wicks et al. 2010). This may arise from differences in host-identification specificity between 

studies. For example, two ambiguous Sylph’s Hole colonies omitted from the present study 
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(that appeared to be the P. damicornis × Stylophora pistillata hybrids described by Miller & 

Ayre 2004) were later found to exclusively host Symbiodinium C118 (unpublished data). 

The proportional abundance of genetically heterogeneous Symbiodinium cells within colonies 

(SH:ST) ranged from 0.10 to 0.82 (corresponding to bulk-cell CC100:CTOTAL ratios of 0.9438 

and 0.516, respectively; see Appendix B). The CC100:CTOTAL ratio was generally reflected in 

the relative intensity of C100- and C109-diagnostic bands observable on the DGGE gel. Both 

bands were universally visible in samples where genetically heterogeneous cells constituted 

more than 60% of the symbiont consortium (SH:ST > 0.6; CC100:CTOTAL < 0.74), while the 

C109-diagnostic band was either not visible or difficult to detect in samples where less than 

half of the resident symbionts were classified as heterogeneous (SH:ST < 0.5; CC100:CTOTAL > 

0.78; see Appendix B). Samples featuring an intermediate proportional abundance of 

genetically heterogeneous cells (0.6 < SH:ST < 0.5) either produced a DGGE profile 

diagnostic of C100 in isolation or that of both C100 and C109, underscoring the limitations of 

applying this method for DNA quantitation. 

The distribution of putative Symbiodinium hybrids was variable between colonies over spatial 

scales of metres to tens of metres, and even more so between sites separated by hundreds to 

thousands of metres. The majority of spatial variation in SH:ST partitioned at the level of 

Colony(Site) (colony nested within site; F32,80 = 58.76; p < 0.001; 72% of total variance 

explained; Table 3.1), with colony-averaged SH:ST values ranging from 0.142 to 0.813. A 

significant proportion of spatial variation also partitioned at the Site level (24% of total 

variance explained; F7,32 = 2.72; p = 0.025; Table 3.1), with site-averaged SH:ST ratios ranging 

from 0.323 (Sylph’s Hole) to 0.613 (Ned’s Beach). However, the proportional abundance of 

genetically heterogeneous Symbiodinium cells was highly conserved between branches within 

colonies (4% residual variance component; Table 3.1). Furthermore, SH:ST did not vary 

within colonies through time. A longitudinal survey of 15 tagged P. damicornis colonies at 

North Bay, Sylph’s Hole and Comet’s Hole over two summer winter cycles showed a distinct 

lack of temporal variation in the proportional abundance of genetically heterogeneous 

Symbiodinium cells (Pillai’s Trace p = 0.509 and 0.217 for Time x Site interaction and Time 

main effect, respectively; Table 3.2). When reduced to a two-factor nested ANOVA model 

(SH:ST ~ Site + Colony(Site); Branch as the residual with temporal replication), the error 

variance accounted for a similar proportion of the total variance in SH:ST as was explained in 

the original spatially-nested analysis (3.8%; Figure 3.4a; Table 3.3). 
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Table 3.1 Nested ANOVA for spatial distribution of putative Symbiodinium hybrids 

Source of variation 

 

SS 

 

Hypothesis 

df 

Error 

df 

F 

 

P 

 

Variance 

component 

Variance 

explained 

Between sites 1.048 7 32 2.718 < 0.001 0.006 24% 

Between colonies within sites 1.763 32 80 58.761 0.025 0.018 72% 

Between branches within colonies (residual)  0.075 80    0.001 4% 

 

Table 3.2 Repeated measures ANOVA for temporal changes in putative hybrid abundance  

Source of variation  SS Hypothesis df Error df F P 

Within colonies Time 0.002 3 36 1.112 0.357 

 Time × Site 0.005 6 36 1.180 0.339 

Between colonies Site 0.029 2 12 0.576 0.577 

 

Table 3.3 Reduced nested ANOVA for temporal changes in putative hybrid abundance 

Source of variation 

 

SS 

 

Hypothesis 

df 

Error df 

 

F 

 

P 

 

Variance 

component 

Variance 

explained 

Between inner-lagoon sites 0.114 2 12 0.576 0.577 0* 0% 

Between colonies within inner-lagoon sites 1.191 12 45 150.242 < 0.001 0.025 96.2% 

Between time-points within colonies 

(residual) 

0.030     0.001 3.8% 

*Rounded to zero, since estimated variance component was negative 
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3.3.2. Environmental niche partitioning 

Thermal characteristics were variable within and between sites, with the inner-lagoon Sylph’s 

Hole reef experiencing the highest level of seasonal temperature variability (Figure 3.3). This 

poorly-flushed site experienced the warmest summer maximum and coolest winter minimum 

during the logging period (March 2009 to August 2012; fitted values = 17.56 °C and 25.18 

°C, respectively). Monthly averages and raw data values were occasionally more extreme 

than the fitted maxima and minima of the climate model, particularly during the anomalously 

warm summer of 2009/2010 (Figure 3.3). Monthly temperature averages at Sylph’s Hole 

ranged from 17.06 °C in August 2012 to 26.25 °C in January 2010, while actual 10-min 

logging values at this site ranged from 14.91 °C during July 2011 to 28.05 °C during January 

2010. The absolute maximum temperature of 28.16 °C was recorded at Comet’s Hole during 

January 2010. Of the four candidate predictor variables assessed in the stepwise multiple 

regression analysis (model-fitted temperature mean, minimum, maximum, and range), the 

fitted thermal maximum emerged as the sole significant predictor of SH:ST (F1,6 = 23.137; p = 

0.003; Figure 3.4b-e). The linear relationship between maximum temperature and SH:ST 

featured a strong negative correlation (R
2
 = 0.794), with a 0.5 °C increase in the thermal 

maximum (from 24.7 °C to 25.2 °C) corresponding to a 35% reduction in SH:ST. Finally, no 

clear correlation between SH:ST and depth was evident among 26 P. damicornis colonies 

sampled along their natural bathymetric distribution at a sloping reef-margin site (The Arch; 

linear regression, F1,24 = 2.222; p = 0.149; R
2
 = 0.085; Figure 3.4b). 
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Figure 3.3 Thermal characteristics of eight Lord Howe Island reef sites 

Average monthly temperatures obtained from data-logger measurements are shown in closed circles. Open circles show average monthly temperatures 

during logging gaps, estimated using correlation analysis against sites from which continuous measurements were available. Measurements from Algal 

Hole North, Comet’s Hole, Malabar, Ned’s Beach, North Bay, Sugarloaf West and Sylph’s Hole were acquired from the Australian Institute of Marine 

Science (AIMS). Measurements from The Arch were obtained from a HOBO data logger, deployed from September 2011 to September 2012. Overlying 

fitted curves are optimized four-parameter sine functions. Note that extensive coral bleaching occurred during early 2010 (Harrison et al. 2011). 



87 

 

 

 



88 

 

Figure 3.4 (previous page) Niche partitioning of putative Symbiodinium hybrids 

The proportional abundance of genetically heterogeneous Symbiodinium cells (SH:ST) was 

characterized by: (a) temporal stability within coral colonies over two summer-winter cycles (colonies 

from Comet’s Hole are shown in red, North Bay in green and Sylph’s Hole in blue); (b) no association 

between depth and colony-averaged SH:ST at a steeply sloping reef-margin site (The Arch); and (c-f) 

relationships between site-averaged SH:ST and four candidate thermal predictor variables extracted 

from the climate model. Of the model-fitted thermal minimum (c), thermal maximum (d), seasonal 

temperature range (e), and temperature mean (f), only the thermal maximum showed a significant 

(negative) correlation with SH:ST. 

 

 

3.4. Discussion 

This study explored the relationship between the physical environment and the abundance of 

putative Symbiodinium hybrids. The methods described in chapter 2 were expanded in order 

to measure the proportional abundance of putative hybrids in mixed Symbiodinium 

communities, facilitating a thorough investigation of their spatiotemporal distribution. Each 

coral colony hosted a specific proportion of putative Symbiodinium hybrids that remained 

stable over two summer-winter cycles. The data show an absence of competition or within-

colony niche partitioning between genetically homogeneous and heterogeneous symbionts; 

however thermal niche-partitioning was evident between colonies hosting different 

proportional abundances of putative hybrid symbionts. Corals dominated by these symbionts 

were comparatively rare within the lagoon, but abundant at the reef margin near the transition 

zone between coral- and macroalgal-dominated benthic communities. While this may have 

resulted from fine-scale population structure (by geographic distance or physical resistance to 

connectivity), the significant correlation with maximum temperature strongly suggests a 

thermal basis for the observed distribution pattern. 

 

3.4.1. Method development 

A primary outcome of this study was the quantification of genetically heterogeneous 

Symbiodinium cells using bulk-cell qPCR, a development that circumvented the need to carry 

out single-cell analysis on each coral colony. rDNA markers (such as the ITS2) have been 

targeted in several quantitative assessments of mixed-clade infections (Ulstrup & van Oppen 

2003; Loram et al. 2007a; Mieog et al. 2007; Venn et al. 2008; Correa et al. 2009; 

LaJeunesse et al. 2009; Yamashita et al. 2010; Green et al. 2014). When properly calibrated, 
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these assays can provide reliable estimates of symbiont relative abundance, despite the high 

variability in rDNA total copy-numbers often detected between Symbiodinium cells (Loram 

et al. 2007a; Mieog et al. 2007). In this study, the use of the ITS2 in determining symbiont 

community dynamics was validated by single-cell analysis in conjunction with a robust 

statistical method (model selection; Burnham & Anderson 2002). Yet the conversion of bulk-

cell ITS2 ratios (CC100:CTOTAL) to the proportional abundance of genetically heterogeneous 

Symbiodinium cells (SH:ST) was supported by a small sample size and only a moderate 

correlation (six coral colonies; R
2
 = 0.6), representing an obvious weakness in this analysis. 

Furthermore, the identification of Symbiodinium ITS2 types was based on DGGE, an 

electrophoretic method that lacks sensitivity in detecting background symbiont taxa 

(Thornhill et al. 2006b; LaJeunesse et al. 2008). DGGE yielded a minimum CC100:CTOTAL 

detection limit of approximately 15% for nested PCR (see chapter 2) and ~ 20% for direct 

PCR amplification; therefore other cryptic symbiont types may have gone undetected. 

Another limitation of DGGE involves sequence co-migration. Though unlikely, other 

symbiont types may have been present and remained undetected. For example, the C103 

sequence migrates to a similar position on the denaturing gradient as C109 (see Wicks et al. 

2010, supplementary material). These limitations may eventually be overcome through the 

application of quantitative next-generation sequencing (NGS) to individual cells. 

Nonetheless, the bulk-cell qPCR method developed here showed an adequate ability to 

quantify ratios of genetically heterogeneous and homogeneous cells in the P. damicornis 

symbiont consortium.  

 

3.4.2. The spatiotemporal distribution of putative Symbiodinium hybrids 

Genetically heterogeneous and homogeneous Symbiodinium cells were co-dominant within 

many P. damicornis colonies, with SH:ST values ranging from 15% to 82%. This finding 

contrasts with several quantitative analyses of mixed-clade infections, in which the most 

common condition involves a single dominant type coexisting with one or a few 

cryptic/background populations (Ulstrup & van Oppen 2003; Mieog et al. 2007; Correa et al. 

2009; LaJeunesse et al. 2009; Yamashita et al. 2010; Byler et al. 2013; Cunning et al. 2013). 

For example, in five host species that hosted mixed-clade Symbiodinium assemblages, the 

abundance ratio of non-dominant to dominant symbionts ranged from 10
-3

 to 10
-6

 (Correa et 

al. 2009). Where symbiont co-dominance does exist, it generally involves either competitive 
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displacement or within-colony niche-partitioning (Rowan & Knowlton 1995; Rowan et al. 

1997; van Oppen et al. 2001; Ulstrup & van Oppen 2003; Chen et al. 2005; Ulstrup et al. 

2006, 2007; Thornhill et al. 2006b; LaJeunesse et al. 2010b; Pettay et al. 2011). For example, 

Caribbean Montastraea (= Orbicella) annularis colonies can simultaneously host members of 

Symbiodinium clades A, B and C, with clade C dominating shaded sides, clade B dominating 

the light-exposed tips and clade A occupying intermediate irradiance-microhabitats (Rowan 

et al. 1997). In a conspicuous example of competition among mixed symbionts, a temporary 

outbreak of the opportunistic type B1Aiptasia (= Symbiodinium minutum) was visible as yellow 

patches on branches of Pocillopora spp. following a cold-water bleaching event in the Gulf 

of California (LaJeunesse et al. 2010b).While samples were not taken from all physical 

aspects of colonies in the present study, the relative abundance of genetically homogeneous 

and heterogeneous Symbiodinium cells was noticeably uniform across the topography of all 

colonies. Indeed, the ~ 4% of total SH:ST variation that was detected within colonies is likely 

to be an inflated estimate, since this residual variance component also encompasses pipette- 

and instrument-error. The co-dominant, uniform distribution pattern of coexisting 

Symbiodinium cells within colonies suggests that neither genotype shows opportunistic 

tendencies, and that symbiont niche-partitioning does not occur within P. damicornis 

colonies.  

A lack of competition between genetically homogeneous and heterogeneous Symbiodinium 

cells is further indicated by the absence of dynamic symbiont shuffling. By contrast, 

competition between symbionts for host resources generally manifests in transient infections 

or temporal fluctuations in relative abundance (e.g. Thornhill et al. 2006; Jones et al. 2008; 

LaJeunesse et al. 2009, 2010). The temporal stability in SH:ST observed here also suggests 

that the consortium dynamic is not affected by natural fluctuations in the physical 

environment, as evident in other corals and symbiotic anemones that host mixed 

Symbiodinium infections (Chen et al. 2005; Venn et al. 2008). Rather, it indicates that either 

symbiont shuffling is prompted by severe environmental disturbance, through selective 

symbiont expulsion/regeneration during bleaching (sensu Yamashita et al. 2010), or non-

competitive clonal genotypes establish during early ontogeny/gametogenesis (sensu Padilla-

Gamiño et al. 2012) and are not subject to further modification. Several cases of bleaching-

induced symbiont shuffling are reported from tagging and transplantation studies (Baker 

2001; Toller et al. 2001b; Berkelmans & van Oppen 2006; Thornhill et al. 2006b; Jones et al. 

2008; LaJeunesse et al. 2009). Yet in studies employing long-term, follow-up monitoring, the 
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eventual return to dominance of a homologous type is usually evident (Thornhill et al. 2006b; 

Jones et al. 2008; Sampayo et al. 2008; LaJeunesse et al. 2009). While no observable 

bleaching occurred during this study, a severe bleaching episode affected the LHI lagoon 

approximately one year prior to the first round of sampling (Harrison et al. 2011). Therefore, 

if bleaching did cause symbiont shuffling in adult colonies, at least some readjustment in 

SH:ST would likely have been observed during this study. The pronounced temporal 

conservation in SH:ST within colonies despite previous bleaching suggests that, although 

thermal stress is important in determining symbiont ratios (see next section), this most likely 

occurs through early ontogenetic flexibility or natural selection acting on juvenile and/or 

larval stages. 

 

3.4.3. Niche partitioning of putative Symbiodinium hybrids and progenitors 

The summer thermal maximum emerged as a significant predictor of SH:ST, while the thermal 

minimum, average temperature, seasonal temperature variability, and depth (a proxy for 

irradiance) did not have any detectable influence. Colonies dominated by genetically 

heterogeneous Symbiodinium cells were more common at the reef-margin sites than in the 

lagoon, where reduced circulation stimulates more pronounced thermal maxima (I. Kerr, 

LHIMPA, pers. comm.). A degree of niche partitioning between genetically homogeneous 

and heterogeneous symbionts therefore appears to be supported by differences in thermal 

tolerance. Symbiont niche partitioning is evident both within and between colonies of many 

coral species, with temperature and irradiance identified as key drivers (Rowan & Knowlton 

1995; Rowan et al. 1997; van Oppen et al. 2001; Ulstrup & van Oppen 2003; Iglesias-Prieto 

et al. 2004; Ulstrup et al. 2006; Berkelmans & van Oppen 2006; Sampayo et al. 2007). This 

pattern is attributable to the evolution of physiological adaptations that enable survival in a 

particular light or thermal habitat, and the out-competition of extrinsic or generalist types 

(Ulstrup & van Oppen 2003). The observed thermal niche partitioning between genetically 

homogeneous and heterogeneous Symbiodinium cells therefore supports their delineation as 

separate genetic and ecological entities, lending further credibility to the hypothesis of 

symbiont hybridization. 

Hybrids are often rapidly out-competed by their progenitors when in the parental habitat (e.g. 

Brasier 2001). Reduced hybrid fitness is particularly conspicuous in haploids, since 

detrimental effects arising from the segregation of co-adapted gene complexes during 
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recombination (hybrid breakdown) cannot be compensated for by heterosis (i.e. ‘hybrid 

vigour’ arising from increased heterozygosity in early generation hybrids; Charlesworth & 

Charlesworth 1987). The reduced abundance of genetically heterogeneous Symbiodinium 

cells within the LHI lagoon is consistent with reduced hybrid fitness in this habitat; yet their 

ecological prosperity at the transitional reef margin sites remains an intriguing puzzle. The 

diversification of transgressive hybrids into this ‘extreme’ habitat presents a plausible 

explanation that warrants further investigation. In this context, a large-scale assessment of 

hybrid abundance along a latitudinal gradient spanning both tropical and sub-tropical reefs 

would provide a valuable contribution to this research. 

 

3.4.4. Conclusion 

The application of bulk-cell qPCR enabled the rapid estimation of the proportional abundance 

of genetically heterogeneous Symbiodinium cells in P. damicornis colonies. This facilitated a 

comprehensive assessment of the spatiotemporal distribution of these putative Symbiodinium 

hybrids. Negligible variability in symbiont abundance ratios within colonies suggested an 

early ontogenetic establishment of a few non-competitive clonal genotypes. While 

homogeneous and heterogeneous Symbiodinium cells were relatively co-dominant within 

many colonies, a degree of thermal niche-partitioning was evident between P. damicornis 

colonies hosting different symbiont abundance ratios. Specifically, those dominated by 

heterogeneous symbionts were common at the reef margin, and comparatively rare at the 

inner lagoon sites that experience more pronounced thermal peaks. Ecological differentiation 

between genetically homogeneous and heterogeneous Symbiodinium cells lends further 

credibility to the occurrence of hybridization, and may indicate the diversification of hybrids 

into the ‘extreme’ habitat at the margin of coral- and macroalgal-dominated benthic 

assemblages.  
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Chapter 4: The form and function of putative Symbiodinium 

hybrids 

 

4.1. Introduction 

Natural hybridization has played defining roles in the evolution of many species. New genetic 

variation is created through the migration of genetic material between lineages, via the 

repeated backcrossing of hybrids to parental lineages (introgression; Arnold 2007). 

Additionally, the substantial genetic variation or ‘macro-mutation’ that is created during 

outcrossing has led to several cases of hybrid speciation, and even adaptive radiations in plant 

and animal taxa (Rieseberg 1997; Bell & Travis 2005; Grant et al. 2005; Mallet 2007). 

However, the potential for hybridization to contribute to adaptation depends on the fitness of 

F1 hybrids and later-generation hybrid and backcross classes (i.e. F2, F3, etc.; Barton 2001). In 

particular, gene flow will not overcome barriers of reproductive isolation if the mean fitness 

of any of the intermediate backcross classes is insurmountably low (Barton & Bengtsson 

1986; Ingvarsson & Whitlock 2000; see chapter 2, Figure 2.1). If considerable time has 

passed since divergence, the vast majority of the innumerable possible hybrid and backcross 

recombinants will be inviable or unfit, representing biological ‘dead ends’ with little or no 

evolutionary significance (Barton 2001). This poor relative fitness arises from epistatic 

‘hybrid breakdown’, the segregation of co-adapted gene complexes or the creation of 

maladapted gene combinations (Demuth & Wade 2005). Early-generation hybrid breakdown 

is particularly evident in haploids, whose unpaired chromosomes cannot compensate for the 

detrimental effects of recombination via heterosis (i.e. ‘hybrid vigour’ arising from increased 

heterozygosity in diploid or polyploid hybrids; Charlesworth & Charlesworth 1987). In 

extreme cases, post-zygotic lethality can result from the failure to proceed from meiotic to 

mitotic cell division (e.g. Brosnahan et al. 2010). However, hybrid performance and fitness 

may occasionally equal or even exceed those of either parent taxon, where conditions are 

experienced between or outside their environmental optima (Anderson & Stebbins 1954; 

Arnold & Hodges 1995; Rieseberg et al. 2003; Arnold & Martin 2010). Under such 

conditions, the rate of gene-flow increases and hybridization can stimulate rapid adaptation 

(Ingvarsson & Whitlock 2000). 
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Genetically heterogeneous Symbiodinium cells can form an abundant component of the 

symbiont consortium of P. damicornis (> 80%; see chapters 2 and 3). The fitness of at least 

one heterogeneous clone therefore appears sufficient to overcome the selective pressures 

imposed by the abiotic environment and the coral host. Indeed, the considerable variation in 

ITS2 ratios and total copy numbers (see chapter 2) suggest that genetically heterogeneous 

symbiont populations may be comprised of several fit clonal genotypes. If frequent 

hybridization underlies this genetic variation, the fitness of each of the many different hybrid 

recombinants is likely to be correspondingly variable (Barton 2001). Addressing the question 

of hybrid fitness may be simplified by determining the average fitness of each discrete hybrid 

class. However, even if the occurrence of hybridization between Symbiodinium C100 and 

C109 can be confirmed, the frequency distribution of ITS2 ratios in a population (e.g. chapter 

2, Figure 2.4) may not provide sufficient resolution to distinguish between classes. This is 

because variation in ITS2 ratios may arise from multiple processes, including concerted 

evolution acting on ancestral polymorphisms, differential rDNA inheritance (arising from 

dissimilar copy-numbers in parent taxa; e.g. Brosnahan et al. 2010), the occurrence of 

backcrossing, and even the rapid homogenization of intra-genomic variation following 

hybridization (Wendel et al. 1995). The analysis of multiple diagnostic loci is therefore 

required to establish the incidence of hybridization and backcrossing, and evaluate the fitness 

of each hybrid class (Nason & Ellstrand 1993; Epifanio & Phillipp 1997; Fitzpatrick 2012). 

Though technically possible, this is currently a challenging task for individual cells 

(Handyside et al. 2004). 

The resource limitations of this project preclude the unambiguous confirmation of genetically 

heterogeneous Symbiodinium cells as hybrid and backcross genotypes. However, it is 

currently possible to broadly classify individuals into putative-hybrid or non-hybrid classes 

using mixture-model clustering (see chapter 2), enabling an initial comparative assessment of 

their performance and fitness relative to the putative progenitor Symbiodinium C100. This 

chapter aims to establish whether genetically homogeneous and heterogeneous Symbiodinium 

cells show overall differences in morphology, physiology and performance, and if so, 

whether the relative abundance of each type in the symbiont consortium influences the 

functioning of the coral symbiosis. Assessments of coral- and symbiont physiology were 

made at both ambient and artificially-elevated seawater temperatures (25 and 29 °C, 

respectively) to explore the influence of thermal stress on the performance of each symbiont 

cell-type. The hypotheses tested were that: (1) genetically homogeneous and heterogeneous 
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Symbiodinium cells show differences in morphology and photo-physiology; (2) corals hosting 

different proportions of genetically homogeneous and heterogeneous symbionts show 

corresponding physiological differences; and (3) elevated temperatures exacerbate the 

functional disparities between genetically homogeneous and heterogeneous symbionts, with 

corresponding effects on the host’s physiological performance. 

 

4.2. Methods 

4.2.1. Study location and species 

The corals investigated in this study were Pocillopora damicornis colonies inhabiting the reef 

at North Bay, LHI (-31.521, 159.047). At this location, P. damicornis can simultaneously 

host three genetically distinct Symbiodinium ITS2 types, C100, C109, and symbiont cells 

featuring a heterogeneous mixture of C100 and C109 sequences (putative hybrids; see 

chapters 2 and 3). Genetically heterogeneous Symbiodinium cells are generally less common 

in the LHI lagoon (including North Bay), than at the reef margin. This thermal niche-

partitioning pattern appears to be driven by temperature stress, since the site-averaged 

proportional abundance of genetically heterogeneous Symbiodinium cells is negatively 

correlated with the summer thermal maximum (see chapter 3). The poorly-flushed inner-

lagoon sites experience particularly pronounced thermal maxima, with model-fitted values of 

25.003 °C, 25.177 °C and 24.991 °C for North Bay, Sylph’s Hole and Comet’s Hole, 

respectively. However, the actual temperature can occasionally exceed these values, with the 

water temperature at Comet’s Hole reaching 28.16 °C during January 2010 (see chapter 3). 

 

4.2.2. Coral collection and acclimation 

Coral collection, acclimation and oxygen flux analysis was carried out during March 2012. 

One branch was collected from each of 15 P. damicornis colonies by divers using diagonal 

pliers. Each branch was then divided into two small fragments (surface area approximately 6 

cm
2
), which were then attached to stainless steel bases with marine epoxy putty to maintain 

an upright orientation (Knead It Aqua; Selleys). One fragment from each colony was 

assigned to a treatment group and the other to a control group. Fragments were placed in 2 l 

clear plastic tanks (5 fragments per tank; 3 tanks per treatment; Figure 4.1) and supplied with 
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flowing seawater at rate of 300 ml min
-1

, drawn from a 200 l reservoir. This reservoir was 

maintained at 25 °C using submersible heaters and an aquarium chiller unit (Hailea 

HC500A), and was fed from a larger reservoir, into which fresh seawater was continuously 

pumped from the LHI lagoon. All fragments were initially acclimated for 5 d at 25 °C, after 

which the temperature in the three tanks housing the treatment-group fragments was raised to 

29 °C over the course of 4 h (constant ramp rate of 1°C h
-1

). This was achieved by switching 

the water supply of the treatment tanks to a second temperature-controlled 200 l tank (the 

control tanks remained at 25 °C). All fragments were then left at their respective temperatures 

for a further 4 d prior to oxygen flux analysis, sample preservation (immediate freezing) and 

laboratory processing. 
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Figure 4.1 Thermal acclimation of coral fragments prior to oxygen flux analysis 

Seawater was supplied from the LHI lagoon into a large collection reservoir using a submersible 

pump (Leader Ecosub). The large reservoir fed into two 200 l tanks, in which temperatures were 

maintained using submersible aquarium heaters, circulation pumps and in the case of the 25 °C tank, 

an aquarium chiller. Water was then fed from the temperature-controlled tanks into 2 l clear plastic 

tanks housing coral fragments (five per tank), at a constant rate of 300 ml min
-1

. 
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4.2.3. Analysis of oxygen fluxes 

For the analysis of photosynthetic and respiratory oxygen fluxes, each coral fragment was 

transferred to an airtight 15 ml glass chamber filled with 1 µm filtered seawater (FSW; Figure 

4.2). The volume of the FSW displaced was measured using an analytical balance, and the 

concentration of dissolved oxygen in the chamber was calculated using coefficients derived 

from tables of oxygen solubility at 35 ‰ salinity (211.3 and 194.6 µmol O2 l
-1

 for 25 °C and 

29 °C, respectively). A pre-calibrated fiber-optic oxygen electrode (FIBOX 3; PreSens 

GmbH) and temperature sensor were inserted through the sealed openings of the chamber, 

and a visual check was carried out to ensure that no air bubbles were present. The chamber 

was then submerged in a temperature-controlled water bath containing a submersible 

aquarium heater, a temperature probe and an aquarium pump (to ensure even temperature 

distribution). FSW in the chambers was mixed by a micro-spin bar controlled by a magnetic 

stirrer, and temperatures were maintained within 0.2 °C of target values (25 °C and 29 °C for 

control and treatment fragments, respectively) by manually controlling the submersible heater 

unit. Following a 10 min dark acclimation period, fragments were exposed to eight 

consecutive irradiance levels (0, 10, 20, 40, 80, 160, 320 and 700 µmol photons m
-2

 s
-1

; 

measured using a LI-COR LI-190 underwater quantum sensor). Light was provided by a 12V 

halogen lamp, directed through a series of 50% transmittance neutral density filters. 

Fragments were acclimated to each light level for 5 min, before the dissolved oxygen in the 

chamber was measured at 5 s intervals for at least 5 min, until a linear rate of oxygen 

evolution was observable. Net oxygen evolution rates at each light level were calculated by 

fitting a linear regression line. Oxygen electrodes were subjected to two-point dissolved 

oxygen calibration prior to each run. FSW was treated with sodium sulphite (1 gl
-1 

Na2SO3) 

for the 0% dissolved oxygen calibration, and oxygenated for 30 min using an aquarium air 

pump and air-stone for the 100% dissolved oxygen calibration. The oxygen saturation in the 

chamber was maintained between 50 and 100% (Davies 1984). Following oxygen flux 

analysis, fragments were frozen at -20 °C for subsequent laboratory analysis. 
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Figure 4.2 Experimental setup for measuring coral oxygen fluxes 

Coral fragments were individually placed in a sealed 15 ml glass chamber, and maintained at a 

constant temperature of 25 or 29 °C by manually controlling a submersible heater. Water inside the 

chamber was mixed by a stir bar, controlled by a magnetic stirrer situated beneath the aquarium. 

Oxygen fluxes were measured at each of eight light levels ranging from 0 to 700 µmol photons m
-2

 s
-1

, 

generated by placing a series of neutral density filters between the light source and the aquarium. 

 

 

4.2.4. Assessment of morphology and physiology 

Frozen coral fragments were defrosted and coral tissue was removed from the underlying 

skeleton with a stream of 50 mM phosphate buffer (1 mM EDTA; pH = 7.8), delivered at 

high velocity through a compressed-air-generated spray nozzle. The coral skeleton was dried 

at 70 °C for 24 h and the surface area calculated using the wax method (Stimson & Kinzie 

1991). The total homogenate volume was measured using a pipette, and five 1.5 ml aliquots 



100 

 

were taken for cell density and symbiont size measurements (one aliquot), DNA extraction 

(one aliquot), and measurements of host protein biomass and symbiont chlorophyll 

composition (three aliquots). Symbiont densities were estimated using a haemocytometer 

(Neubauer Brightline; eight replicate grids for each sample). The average symbiont size was 

assessed by measuring the diameter of 50 cells from each coral fragment, using a compound 

microscope fitted with an eyepiece graticule and a 100x objective oil immersion lens. The 

three protein/chlorophyll aliquots were centrifuged at 16,100 x g for 5 min to separate host 

and algal fractions. For host protein biomass estimation, 10 µl of supernatant were added to 

each of three micro-plate wells, each containing 200 µl of Bradford reagent (Sigma-Aldrich). 

Sample absorbance was measured at 595 nm, and the content of host-derived soluble protein 

was estimated by comparing absorbance values to a standard curve obtained using BSA 

protein standards. The soluble host protein biomass from each coral fragment was normalized 

to the skeletal surface area, and expressed in mg cm
-2

. To extract and measure chlorophyll 

from within the Symbiodinium cells, algal pellets were re-suspended in 222 µl 90% acetone 

and incubated in a light-proof container for 24 h at 4 °C. Chlorophyll extracts were then 

centrifuged at 16,100 x g to pellet cellular debris and chlorophyllases. The supernatant (200 

µl) was transferred to a UV-proof micro-plate (Griener) and absorbance values were 

measured at 630, 665 and 750 nm. The concentration of chlorophylls a and c2 were calculated 

using the equations of Jeffrey & Humphrey (1975) with the coefficients for dinophytes given 

by Ritchie (2006). Chlorophyll content was expressed as pg cell
-1

. 

 

4.2.5. DNA extraction 

For bulk-cell PCR and qPCR analysis of Symbiodinium ITS2 sequences, a 1.5 ml homogenate 

sample was centrifuged at 16,100 x g for 5 min, the supernatant was discarded, and 200 µl 

DMSO preservation buffer (20% DMSO, 250 mM EDTA, NaCl saturated, pH 8.0; Seutin et 

al. 1991) were added. The pellet was re-suspended by milling without beads for 3 min at 50 

Hz. Following a 7 d incubation period at -20 °C, the settled Symbiodinium cells were re-

suspended using a vortex and 10 µl were taken for DNA extraction. Acid-washed glass beads 

were added (50 mg; 710-1180 µm; Sigma-Aldrich) and the sample was milled at 50 Hz for 3 

min (Qiagen TissueLyser LT; Qiagen) to disrupt the cell-walls and enable the release of 

nucleic acids. Following a 10 min incubation period at 4 °C, 90 µl of de-ionised water were 

added. The sample was then vortexed and centrifuged for 10 min at 16,100 x g to pellet the 
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cellular debris. The DNA-enriched supernatant (50 µl) was transferred to a new micro-

centrifuge tube with an equal volume of 2-propanol to precipitate the nucleic acids, and 

centrifuged for 10 min at 16,100 x g to collect the DNA pellet. The supernatant was discarded 

and 200 µl wash buffer (70% v/v ethanol) were added. The sample was vortexed and returned 

to the centrifuge for a further 10 min at 16,100 x g. The supernatant was carefully removed 

with a pipette and the DNA pellet was dried under a laminar flow hood for 30 min. Elution 

buffer (10 mM Tris-HCl; 0.1 mM EDTA; pH = 8.0) was added to a final volume of 50 μl. 

Following a 10 min re-hydration period, the DNA was re-suspended by milling without beads 

for 1 min at 30 Hz. 

 

4.2.6. PCR and denaturing gradient gel electrophoresis 

Denaturing gradient gel electrophoresis (DGGE) was carried out on all samples to establish 

whether Symbiodinium types other than C100 and C109 were present in the selected colonies. 

PCR amplification for DGGE was carried out with the primers ITSintfor2 and ITS2CLAMP 

(LaJeunesse 2002). Thermal cycling involved an initial denaturation step of 3 min at 95 °C 

followed by 40 cycles of 15 seconds at 95 °C, 15 seconds at 56 °C and 10 seconds at 72 °C 

(carried out on an Applied Biosystems Veriti thermo-cycler; Life Technologies). Each 

reaction contained 4 μl of DNA template solution, 1x MyTaq PCR reaction mix (Bioline), 10 

pmol each primer, 10 μg bovine serum albumin (BSA; Sigma) and deionised sterile water to 

a total volume of 20 μl. A template-free control was included with each run. To ensure the 

final product was within the intended size range of 300-350 bp, and that amplification did not 

occur in the template-free control reaction, 5 μl of the final PCR product were 

electrophoresed on a 1.5 % agarose gel containing 1x SYBR safe nucleic acid stain (Life 

Technologies) alongside a DNA standard (Hyperladder II; Bioline). Agarose gels were 

viewed and imaged on a blue light trans-illuminator (Safe Imager; Invitrogen).The remaining 

PCR product was loaded on a 200 x 200 x 1 mm, 8% denaturing polyacrylamide gel (25-50% 

urea/formamide denaturant gradient), and run in 1 x TAE at 150 V for 7 h at 60 °C (DCode 

system; BioRad) alongside known ITS2 sequences of Symbiodinium C100 and C109 (PCR-

amplified from plasmid DNA). Following electrophoresis, denaturing gels were stained with 

ethidium bromide and viewed on a UV trans-illuminator (FirstLight UVP), and the presence 

or absence of each ITS2 sequence type was scored.  
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4.2.7. Quantitative PCR 

The bulk-cell qPCR assay developed in chapter 3 was used to establish the relative proportion 

of putative Symbiodinium hybrids within the symbiont consortium of each coral fragment 

(SH:ST). Each qPCR reaction contained 4 μl DNA template, 1x TaqMan Universal Mastermix 

II (Life Technologies), 18 pmol each primer (CInnerFor and CInnerRev; see chapter 2 for 

nucleotide sequences), 1x TaqMan fluorogenic probe (C100
+
 or C100

-
; Life Technologies, 

see chapter 2 for nucleotide sequences), 10 μg BSA (Sigma-Aldrich) and deionised sterile 

water to a total volume of 20 μl. Thermal cycling involved an initial 10 min, 95 °C 

denaturation step followed by 40 cycles of 15 seconds at 95 °C and 1 min at 60 °C (Applied 

Biosystems StepOne qPCR instrument; Life Technologies). DNA template solutions 

generated from bulk-cell Symbiodinium samples were run in duplicate with a template-free 

control reaction included for each probe type. Ct values were determined as the cycle at 

which the change in fluorescence was significantly different to the background level (ΔRn = 

0.05; obtained using the instrument’s built-in algorithm). Reactions featuring Ct values below 

the intercepts of the previously-generated standard curves (36.873 and 37.119 for C100
+
 and 

C100
-
 assays, respectively; see Appendix B) and sufficiently low standard deviations (< 0.5) 

were included in the analysis. The total number of ITS2 copies in each sample (CTOTAL) was 

estimated as the sum of the C100 copy number and the number of Symbiodinium clade C 

ITS2 sequences other than type C100 (CC100 and CC100
-
, respectively). The proportion of total 

Symbiodinium clade C sequences that were of type C100 was expressed as the bulk-cell 

CC100:CTOTAL ratio. This ratio were subsequently converted to the proportional abundance of 

genetically heterogeneous cells (SH:ST) using the polynomial equation developed in chapter 3 

(y = -3.4484x
2
 + 3.3604x; where y = SH:ST and x = CC100:CTOTAL).  

 

4.2.8. Statistical analysis 

For assessments of photosynthetic performance, a three-parameter hyperbolic tangent 

function of the form  
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was fitted to the bivariate photosynthesis-irradiance data from each coral fragment (Chalker 

et al. 1983), using the least-squares curve fitter function in Sigmaplot v11.0 (Systat). The 

parameters a, b and c correspond to PGROSS, IK and R, representing the maximum gross rate of 

photosynthesis (µmol O2 h
-1

), the 50% saturation irradiance (µmol photons m
-2

 s
-1

), and the 

dark respiration rate (µmol O2 h
-1

), respectively (Figure 4.3). Following parameter estimation, 

PGROSS and R were normalized to host protein biomass, and expressed in nmol O2 mg
-1

 

protein h
-1

. The maximum gross photosynthesis to respiration ratio (P:R), the light-harvesting 

efficiency (α) and the compensation irradiance (IC) were calculated using the formulae of 

Chalker et al. (1983): 

R

P
RP GROSS :   Equation 4.2 

K

GROSS

I

P
   Equation 4.3 

GROSS

KC
P

R
II


 1tanh  Equation 4.4 

 

Parametric multivariate analysis of covariance (MANCOVA) was used to compare the 

effects of temperature and the proportional abundance of genetically heterogeneous 

symbionts on the suite of measured photo-physiological response variables (PGROSS, R, P:R, 

α, IC , and IK) and morphological and physiological attributes (host protein biomass, symbiont 

density and size, and chlorophyll a and c2 content). Significant parameter estimates were then 

combined to generate an integrated photosynthesis-irradiance model with SH:ST and 

temperature as explanatory variables. The average diameter and chlorophyll content of each 

symbiont cell type (i.e. genetically heterogeneous cells and homogeneous C100 cells) were 

estimated by extrapolating from the fitted regression lines (assuming hypothetical colonies 

with SH:ST ratios of 0 and 1). In all cases, normality and variance homoscedasticity were 

assessed using Q-Q plots and Box’s and Levene’s tests of variance equality. All statistical 

analyses were carried out using SPSS Statistics v20 (IBM). 
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Figure 4.3 Properties of the photosynthesis-irradiance (PI) curve  

The maximum net photosynthetic rate (PNET) is the observed oxygen evolution at maximum 

irradiance. Respiration (R) represents the total oxygen evolution in the dark, expressed as a negative 

value. The maximum gross photosynthetic rate (PGROSS) is the total photosynthetic oxygen evolution at 

maximum irradiance. The compensation irradiance (IC) is the irradiance at which no net oxygen 

evolution occurs (P:R = 1; PNET = 0). The sub saturating irradiance (IK) is an indicator of photo-

acclimation, calculated as the theoretical point where the initial linear section of the curve intersects 

PNET. The light harvesting efficiency (α; also known as the light utilization coefficient) represents the 

effectiveness of photosynthesis at low light, and is calculated as the angle between the line y = 0 and 

the initial linear section of the PI curve. Diagram adapted from Chalker et al. (1983). 

 

 

4.3. Results 

All 30 coral fragments analysed in this study produced bulk-cell DGGE band patterns 

consistent with the presence of Symbiodinium C100, either in apparent isolation or in 

coexistence with Symbiodinium C109. No other Symbiodinium sequences were detected, 

including the rare types C103 and C118 previously identified from P. damicornis at LHI 

(Wicks et al. 2010). The relative C100 and C109 band intensities generally corresponded 

with the relative proportions of each ITS2 type, as determined by bulk-cell qPCR (see 

Appendix B). Conversion of bulk-cell ITS2 ratios (CC100:CTOTAL) to the proportional 

abundance of genetically heterogeneous symbionts (SH:ST) revealed that genetically 

heterogeneous Symbiodinium cells constituted between 0.15% and 0.72% of the symbiont 

consortium (Figure 4.4). The variation in SH:ST between fragments sampled from the same 

colony was negligible, despite experiencing a 4 °C difference in temperature for 4 d (7.7% 

residual variance component; Figure 4.4). 
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Figure 4.4 Within-colony variation in symbiont 

abundance ratios 

Similar SH:ST ratios between control (25 °C) and 

treatment (29 °C) fragments reflect a lack of intra-

colony variation in the proportional abundance of 

genetically heterogeneous symbionts following a 

4 d exposure to different temperatures. A 7.7% 

residual variance component (calculated as 1 – 

R
2
) corresponds with the low between-branch 

variability observed in chapters 2 and 3, and 

suggests that the coral host does not selectively 

expel symbionts over short time-frames.  

 

 

4.3.1. Morphology and physiology 

Temperature treatment and SH:ST jointly explained a significant proportion of the variation in 

the multi-parameter physiological response of P. damicornis (MANCOVA, Pillai’s Trace p-

value = 0.029 and 0.004 for covariate and treatment effects, respectively; Table 4.1). 

Subsequent univariate testing revealed a significant main effect of SH:ST on the majority of 

the variables measured, either in isolation or in conjunction with temperature (Table 4.2). The 

total soluble protein biomass per unit surface area (used here as a proxy for host tissue 

thickness) was unaffected by temperature (p = 0.746) and was not significantly correlated 

with SH:ST. However, a trend towards a higher tissue biomass in corals hosting more putative 

hybrids was observable (p = 0.075; Figure 4.5a; Table 4.2). Symbiont density was negatively 

correlated with SH:ST when normalised to both host protein biomass and coral surface area. A 

1% increase in SH:ST was associated with approximately 13,500 fewer symbiont cells per mg 

host protein, regardless of temperature (p = 0.002; Figure 4.5b). Similarly, a 1% increase in 

SH:ST corresponded to ~ 3,000 fewer symbiont cells per cm
2
 (p = 0.023; Figure 4.5c). 

However, in contrast to the host protein-normalized symbiont density, the density of 

Symbiodinium cells per unit surface area was also dependent on temperature, with corals 

acclimated at 25 °C maintaining around 120,000 more symbiont cells per cm
2
 than those kept 

at 29 °C (p = 0.012; Figure 4.5c). A reduced symbiont density in corals hosting 

proportionally more putative Symbiodinium hybrids was consistent with an observed 

difference in symbiont cell size (p = 0.022; Figure 4.5d); extrapolation from the MANCOVA 

fitted regression line indicated that the average diameter of genetically heterogeneous 
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symbionts was 11.53 µm, compared to 10.15 µm for the homogeneous cells (corresponding 

cell volume = 803 µm3 and 548 µm
3
 respectively). 

 

 

Figure 4.5 Host protein biomass, symbiont density and cell-size 

Differences in morphology and physiology were evident between genetically homogeneous and 

heterogeneous symbionts, and between high- and low-SH:ST colonies, with (a) similar host protein 

biomass among colonies and temperature treatments (although a positive trend was indicated by a 

near-significant p-value of 0.075); (b) reduced protein-normalised symbiont densities in high-SH:ST 

colonies; (c) reduced surface area-normalised symbiont densities in high-SH:ST colonies, that were 

further reduced in all colonies at elevated temperature; and (d) larger average symbiont cell diameters 

in high-SH:ST colonies (extrapolated estimates = 11.53 µm and 10.15 µm for genetically 

heterogeneous and homogeneous symbiont cells, respectively). Blue and red circles represent coral 

fragments following exposure to 25 °C and 29 °C, respectively. Coloured lines show the ANCOVA 

model when both SH:ST and the temperature produced significant effects. A single sloping black line is 

fitted in cases where temperature effect was non-significant (i.e. reduced to a linear regression), and a 

single horizontal black line indicates an absence of both SH:ST and temperature effects. 
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The total chlorophyll a content per Symbiodinium cell was similar across all coral fragments, 

regardless of SH:ST and temperature (p = 0.221 and 0.497 for SH:ST and treatment effects, 

respectively; mean = 3.36 pg cell
-1

; Figure 4.6a). By contrast, the symbionts of colonies 

hosting comparatively more genetically heterogeneous Symbiodinium cells contained more 

chlorophyll c2 per cell than those of low-SH:ST colonies, with a 1% increase in SH:ST 

conferring an increase of 0.614 pg cell
-1

 (p = 0.006; Figure 4.6b). As such, genetically 

heterogeneous symbionts featured a correspondingly higher chlorophyll c2:a ratio than 

homogeneous cells (extrapolated estimates = 0.50 for putative hybrids and 0.25 for non-

hybrids; p = 0.002; Figure 4.6c). The chlorophyll c2 composition also showed an increase at 

elevated temperature, with treated symbiont cells containing an additional 0.18 pg 

chlorophyll c2 at the end of the 4-d acclimation period (p = 0.019; Figure 4.6b). However, 

this temperature effect was not of sufficient magnitude to significantly increase the c2:a ratio 

(p = 0.248; Figure 4.6c). 
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Figure 4.6 Chlorophyll a and c2 content  

The chlorophyll content per-symbiont cell varied among colonies and treatments, with (a) no effect of 

either SH:ST or temperature on the content of chlorophyll a per cell; (b) a positive correlation between 

SH:ST and the chlorophyll c2 content per cell (with a further positive effect of elevated temperature); 

and (c) increased chlorophyll c2:a ratios in colonies dominated by genetically heterogeneous 

symbionts. Blue and red circles represent coral fragments following exposure to 25 °C and 29 °C, 

respectively. Coloured lines show the ANCOVA model when both SH:ST and the temperature 

produced significant effects. A single sloping black line is fitted in cases where temperature effect 

was non-significant (i.e. reduced to a linear regression), and a single horizontal black line indicates an 

absence of both SH:ST and temperature effects. 

  



109 

 

4.3.2. Photosynthetic efficiency 

All photosynthesis-irradiance parameters were influenced by the proportional abundance of 

genetically heterogeneous symbionts, either alone or in conjunction with temperature (Figure 

4.7; Figure 4.8). The maximum gross photosynthetic rate (PGROSS) was not affected by the 

temperature treatment (p = 0.972), but declined by 16 nmol O2 mg
-1

 protein h
-1

 with each 1% 

increase in SH:ST (p = 0.003; Figure 4.7a). The net oxygen uptake in the dark (respiration; R) 

similarly declined by 6 nmol O2 mg
-1

 protein h
-1

 for each 1% increase in SH:ST (p = 0.041). 

However, in contrast to PGROSS, R was also influenced by temperature, with fragments 

exposed to 29 °C consuming an additional 0.245 µmol O2 mg
-1

 protein h
-1

 relative to the 

controls (p = 0.024; Figure 4.7b). As such, the maximum photosynthesis to respiration ratio 

(P:R) was dependent on both temperature and the proportional abundance of genetically 

heterogeneous symbionts. A 1% increase in SH:ST corresponded to a 5.14 x 10
-3

 unit linear 

reduction in P:R, and the temperature-treated fragments exhibited a 0.368 unit reduction in 

P:R relative to the controls (p = 0.003 and p < 0.001 for SH:ST and temperature treatment, 

respectively; Figure 4.7c). 

 

Table 4.1 MANCOVA for multi-parameter physiological response 

Source Pillai’s Trace Hypothesis df Error df F P 

SH:ST  0.677 12 16 2.791 0.029 

Treatment 0.793 12 16 5.109 0.002 

SH:ST was entered as a continuous covariate, and the temperature treatment entered as a fixed factor 

(at two levels, control and elevated). 

 

An increase in the proportional abundance of genetically heterogeneous symbionts 

corresponded with a decline in light harvesting efficiency (α; p = 0.001). However, this 

parameter remained unaffected by the temperature treatment (p = 0.831; Figure 4.7d). The 

irradiance required to produce net oxygen evolution (compensation irradiance; IC) was 

significantly higher in corals hosting a relatively higher abundance of genetically 

heterogeneous Symbiodinium cells (p = 0.012), with an increase of 0.76 µmol photons m
-2

 s
-1

 

for each 1% increase in SH:ST. The average IC increased by a further 32 µmol photons m
-2

 s
-1

 

in fragments exposed to 29 °C relative to those kept at 25 °C (p = 0.003; Figure 4.7e). 

Finally, the 50%-saturation light intensity (IK) declined by 0.402 µmol photons m
-2

 s
-1

 for 
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every 1% increase in SH:ST (p = 0.038), but was not affected by temperature (p = 0.786; 

Figure 4.7f).  
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Figure 4.7 (previous page) Respiratory and photosynthetic oxygen fluxes 

The proportional abundance of genetically heterogeneous symbionts had an influence on all measured 

photosynthesis-irradiance parameters, with (a) a negative linear correlation between SH:ST and 

maximum gross photosynthesis; (b) an increase in respiratory oxygen consumption in low-SH:ST 

colonies (further intensified in all colonies at elevated temperature); (c) disproportionately high 

photosynthetic rates relative to respiration in low-SH:ST colonies, conferring an increase in P:R; (d) 

reduced light harvesting efficiency in genetically heterogeneous Symbiodinium cells, compared with 

homogeneous C100 symbionts; (e) an associated increase in compensation irradiance in high-SH:ST 

colonies, particularly at the elevated temperature (corresponding with an increase in respiration); and 

(f) an increased 50%-saturation irradiance in high-SH:ST colonies. Blue and red circles represent coral 

fragments following exposure to 25 °C and 29 °C, respectively. Coloured lines show the ANCOVA 

model when both SH:ST and the temperature produced significant effects. A single sloping black line is 

fitted in cases where temperature effect was non-significant (i.e. reduced to a linear regression), and a 

single horizontal black line indicates an absence of both SH:ST and temperature effects. 

 

 

 

 

Figure 4.8 Photosynthesis-irradiance model for P. damicornis 

The photosynthetic performance of P. damicornis is shown at ambient temperature (a) and under 

thermal stress (b), with the proportional abundance of genetically heterogeneous symbionts depicted 

as a colour gradient. Ambient and stressful thermal conditions are represented by the average mid-

summer temperature at North Bay (25 °C), and that slightly exceeding the thermal maximum 

experienced in the LHI lagoon (29 °C). An increase in SH:ST was associated with a reduction in (i) 

maximum net photosynthetic oxygen evolution (PGROSS); (ii) the irradiance required to reach 50% 

photosynthetic saturation (IK); (iii) the light harvesting efficiency (α); and (iv) the ratio of 

photosynthesis to respiration (P:R). A corresponding increase was detected in the irradiance required 

to meet respiratory oxygen requirements (IC). The total oxygen uptake during respiration (R) was 

lower in colonies hosting comparatively more genetically heterogeneous symbionts, corresponding 

with a reduced symbiont cell density. Colonies dominated by heterogeneous symbionts were only 

marginally capable of net photosynthesis at elevated temperature, even under saturating irradiance. 
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Table 4.2 Univariate ANCOVA for individual physiological response variables  

Source  Dependent variable df SS MS F P 

SH:ST Protein (surface area) 1 0.041 0.041 3.418 0.075 

 Density (protein) 1 1.67901E+12 1.67901E+12 11.706 0.002 

 Density (surface area) 1 87313961439 87313961439 5.852 0.023 

 Symbiont diameter 1 1.745 1.745 5.873 0.022 

 Chlorophyll a (cell) 1 0.572 0.572 1.572 0.221 

 Chlorophyll c2 (cell) 1 0.346 0.346 8.827 0.006 

 Chlorophyll c2:a 1 0.07 0.07 12.096 0.002 

 PGROSS (protein) 1 2.22 2.22 10.301 0.003 

 R (protein) 1 0.361 0.361 4.608 0.041 

 P:R 1 0.243 0.243 11.063 0.003 

 α (protein) 1 0.001 0.001 12.53 0.001 

 IK 1 1491.185 1491.185 4.742 0.038 

 IC 1 5242.373 5242.373 7.305 0.012 

Treatment Protein (surface area) 1 0.001 0.001 0.107 0.746 

 Density (protein) 1 2.86542E+11 2.86542E+11 1.998 0.169 

 Density (surface area) 1 1.08932E+11 1.08932E+11 7.301 0.012 

 Symbiont diameter 1 0.259 0.259 0.873 0.358 

 Chlorophyll a (cell) 1 0.173 0.173 0.474 0.497 

 Chlorophyll c2 (cell) 1 0.243 0.243 6.206 0.019 

 Chlorophyll c2:a 1 0.008 0.008 1.396 0.248 

 PGROSS (protein) 1 0 0 0.001 0.972 

 R (protein) 1 0.45 0.45 5.743 0.024 

 P:R 1 1.015 1.015 46.315 < 0.001 

 α (protein) 1 2.73E-06 2.73E-06 0.046 0.831 

 IK 1 23.742 23.742 0.076 0.786 

 IC 1 7657.407 7657.407 10.67 0.003 

Error Protein (surface area) 27 0.326 0.012   

 Density (protein) 27 3.87274E+12 1.43435E+11   

 Density (surface area) 27 4.02825E+11 14919426866   

 Symbiont diameter 27 8.022 0.297   

 Chlorophyll a (cell) 27 9.833 0.364   

 Chlorophyll c2 (cell) 27 1.058 0.039   

 Chlorophyll c2:a 27 0.157 0.006   

 PGROSS (protein) 27 5.82 0.216   

 R (protein) 27 2.117 0.078   

 P:R 27 0.592 0.022   

 α (protein) 27 0.002 5.86E-05   

 IK 27 8490.012 314.445   

 IC 27 19376.082 717.633   

SH:ST was entered as a continuous covariate, and the temperature treatment entered as a fixed factor 

(at two levels, control and elevated). Denominators for normalised variables are shown in parentheses. 
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4.4. Discussion 

The aim of this chapter was to investigate the form and function of genetically heterogeneous 

Symbiodinium cells (putative hybrids) in comparison to genetically homogeneous symbionts 

(putative progenitors), under ambient and stressful conditions. A suite of diagnostic variables 

were measured, with morphological and physiological differences observed at both the 

symbiont- and holobiont level. Consistent with the findings of the previous chapter, 

genetically heterogeneous symbionts performed poorly at ambient and elevated summer 

temperatures, with their host colonies suffering substantial reductions in photosynthetic 

efficiency. However, this did not prevent net photosynthetic production, even when the 

maximum temperature experienced in their natural habitat was exceeded. 

 

4.4.1. Physical attributes of putative Symbiodinium hybrids 

Genetically heterogeneous Symbiodinium cells were 50% larger by volume (applying the 

sphere radius to volume conversion V = 4/3πr
3
) than the homogeneous C100 symbionts. This 

disparity is likely to have an underlying genetic basis, since conspecific Symbiodinium cells 

generally show only minor variation in size (LaJeunesse 2001; LaJeunesse et al. 2012, 2014). 

Corals dominated by these large heterogeneous symbiont cells showed corresponding 

reductions in symbiont density. However, while two-dimensional space availability is known 

to be important factor in limiting algal densities in corals (Jones & Yellowlees 1997), an 

estimated 10% difference in cell diameter did not entirely explain the two-fold difference in 

density observed between corals at opposite ends of the SH:ST spectrum (i.e. 15% versus 75% 

proportional abundance of genetically heterogeneous symbionts). Symbionts are typically not 

space limited in corals during the summer months (Fitt et al. 2000), and P. damicornis 

colonies from other locations are known to accommodate a double layer Symbiodinium of 

cells at densities exceeding 10
6
 cm

-2
 (Gates & Muscatine 1992; Muller-Parker et al. 1994). 

This suggests that the colonies dominated by genetically heterogeneous Symbiodinium cells 

were not ‘symbiont saturated’. Rather, they appear to have previously experienced higher 

rates of symbiont loss, and/or suffered from lower symbiont division rates that may have 

been unable to maintain pace with terminal coral growth (e.g. Oliver 1984). 

Rates of temperature-induced symbiont loss were similar among all colonies in this study, 

with a 4 °C increase in temperature resulting in the expulsion/degradation of an extra ~ 
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30,000 symbionts per cm
2
 per day. This meant that thermally-stressed colonies dominated by 

genetically heterogeneous Symbiodinium cells lost a greater percentage of their symbionts 

than those hosting predominantly homogeneous C100 cells (since the former initially hosted 

fewer symbionts). Under prolonged thermal stress, high-SH:ST colonies may therefore exhaust 

their energy reserves sooner unless they can compensate by switching to a heterotrophic 

feeding mode (e.g. Grottoli et al. 2006). Interestingly, colonies dominated by genetically 

heterogeneous symbionts showed a high protein biomass, even in comparison to nitrogen-

enriched P. damicornis colonies (Muller-Parker et al. 1994). Similar increases in protein 

biomass were observed in Hawaiian Montipora capitata colonies that switched to 

heterotrophy after bleaching (Grottoli et al. 2006), suggesting a possible role of heterotrophic 

feeding in the survival of the corals analysed here. The influence of symbiont hybridization 

on the feeding behaviour and morphology of the coral host presents an interesting area for 

future research. 

The concentration of the primary photosynthetic pigment chlorophyll a was similar among 

genetically heterogeneous and homogeneous (C100) Symbiodinium cells. However, the 

former showed a substantially higher content of the accessory pigment chlorophyll c2 and a 

corresponding two-fold increase in the c2:a ratio, suggesting inherent differences in the 

composition of light harvesting antennae (membrane-bound chlorophyll a-chlorophyll c2-

peridinin-protein complexes) between the two cell types. The stoichiometry of light-

harvesting antennae varies widely among symbiont taxa, with species-specific differences 

explained by a combination of adaptation and acclimatization to different habitats (Chang et 

al. 1983; Iglesias-Prieto & Trench 1994, 1997). For example, in the symbiont of the shade-

adapted coral Montipora verrucosa (Symbiodinium kawagutii; type F1), c2:a was negatively 

correlated with light intensity (Chang et al. 1983; Iglesias-Prieto & Trench 1994), while c2:a 

showed a positive correlation with light intensity in the clade A symbiont of the light-adapted 

giant clam Tridacna maxima (Chang et al. 1983). The differences in c2:a observed here may 

represent a heritable modification; however dynamic changes in light-harvesting antennae 

can also occur within individual cells, through remodelling, de novo synthesis, or differential 

degradation (Iglesias-Prieto & Trench 1997). It is therefore unclear whether the observed 

differences in c2:a represents an adaptive (i.e. genetically encoded) modification, an 

acclimatory response to subtle differences in microhabitat, or a combination of both 

processes. The role(s) of accessory pigments in the ecological diversification of genetically 
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homogeneous and heterogeneous Symbiodinium cells presents another area for future 

investigation. 

 

4.4.2. Relative photosynthetic performance of putative Symbiodinium hybrids 

Corals dominated by genetically heterogeneous Symbiodinium cells showed lower overall 

rates of gross photosynthesis, respiration, and P:R than those predominantly hosting 

genetically pure C100 symbionts. This loss of photosynthetic performance can be partially 

attributed to the reduced symbiont densities in these colonies (see above). However, a 

corresponding reduction in light-harvesting efficiency can be entirely attributed to the 

photosynthetic function of the symbiont. Symbiont populations at low density generally show 

increased light harvesting efficiency, reduced compensation irradiance, and higher rates of 

net photosynthesis (Crossland & Barnes 1977; Muller-Parker 1984). For example, freshly 

isolated symbionts from the coral Acropora acuminata showed high light-harvesting 

efficiency when maintained at a low density, while this efficiency declined at higher cell 

concentrations and in the intact symbiosis (as a result of shading; Crossland & Barnes 1977). 

By contrast, high-SH:ST colonies (hosting low symbiont densities), showed poor light-

harvesting efficiency, and a correspondingly high irradiance was required to meet the 

comparatively lower overall oxygen demands of the symbiosis. While the underlying cellular 

mechanisms of this disparity remain unknown, the impaired photosynthetic performance of 

these genetically heterogeneous cells is consistent with ‘hybrid breakdown’, a reduction in 

performance and fitness due to the segregation of co-adapted gene complexes or the creation 

of maladapted gene combinations (Demuth & Wade 2005). Haploids such as Symbiodinium 

are especially prone to hybrid breakdown, since the deleterious effects of recombination 

cannot be compensated for by heterosis (Barton 2001). Furthermore, while ‘transgressive’ 

hybrids can outperform parental genotypes in extreme habitats (Rieseberg et al. 2003), 

hybrids are generally expected to function poorly in the parental habitat. This is consistent 

with an overall reduction in performance shown by the genetically heterogeneous symbionts 

under conditions simulating those within the LHI lagoon (the average and absolute summer 

thermal maximum) where homogeneous C100 cells tend to be more dominant. While it 

remains a possibility that the observed physiological disparities arose from fine-scale genetic 

structure among sympatric asexual Symbiodinium populations, the poor photosynthetic 

performance of genetically heterogeneous Symbiodinium cells reinforces their candidacy as 
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putative hybrids, and suggests that reduced symbiont fitness (and hence host fitness) may 

accompany the occurrence of hybridization between divergent Symbiodinium taxa. 

 

4.4.3. Implications of reduced performance in putative Symbiodinium hybrids 

Corals dominated by putative Symbiodinium hybrids suffered relatively poor overall 

photosynthetic function under both ambient and extreme summer temperatures. Extrapolation 

from the photosynthesis irradiance model suggests that a further marginal temperature 

increase beyond 29 °C would render this symbiosis incapable of net oxygen production, even 

under saturating irradiance. This would likely result in substantial loss of fitness for both the 

host and the symbiont, raising several questions about the potential functional and 

evolutionary role(s) of hybridization in the Symbiodinium genus. First, do hybrids out-

perform non-hybrids under extreme and/or intermediate conditions (i.e. those between the 

parental optima)? The putative hybrids studied here may be more suitably adapted to cooler 

conditions, given that thermal stress appears to drive their distribution patterns (see chapter 

3). A physiological assessment over a broader range of temperature and light conditions may 

reveal ‘redeeming’ features that offset their relatively poor performance under the conditions 

simulated in this study. Second, how does the observed physiological performance distribute 

among the different genotypes and classes (i.e. F1 hybrid, F2 backcross, etc)? If hybridization 

has occurred among the symbionts of P. damicornis, the cluster of genetically heterogeneous 

cells may solely represent F1 hybrids, or it may also include second- and later-generation 

backcross genotypes. Backcross genotypes are expected to suffer poor performance relative 

to the F1 generation, and hence suffer further reductions in fitness (Barton 2001). 

Furthermore, the functional performance of the putative C109 progenitor remains unknown, 

since this type has only been detected forming a cryptic population in P. damicornis (< 7% 

proportional representation; see chapter 2). Establishing clonal cultures of the various 

genotypes would be necessary to address the fine-scale variation in both performance and 

fitness, and the underlying physiological mechanisms. Finally, does the observed disparity in 

physiological performance translate to differences in coral growth, survival and 

reproduction? Symbiont shuffling is not evident in this symbiosis (see chapter 3), suggesting 

that an individual coral’s symbiont compliment is either inherited or determined early in its 

ontogeny. Natural selection acting on the coral host may therefore play an important role in 
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determining the distribution of genetically homogeneous and heterogeneous Symbiodinium 

cells. This consideration will be addressed in chapter 5. 

 

4.4.4. Conclusion 

Genetically heterogeneous and homogeneous Symbiodinium cells were morphologically and 

physiologically distinct, both in terms of cell size and their constituent photosynthetic 

pigments. The former also showed poor light-harvesting efficiency, despite being subject to 

less shading (resulting from low symbiont densities). These physiological differences 

translated into functional disparities in the coral holobiont, with colonies dominated by 

genetically heterogeneous Symbiodinium cells showing disproportionately low symbiont 

densities and poor photo-physiological performance under both ambient and elevated summer 

temperatures. These results add to the accumulating evidence in favour of hybridization 

between divergent Symbiodinium taxa, and provide a conditional indication of the 

performance and fitness of the resulting progeny. This is an important step towards 

understanding the potential for hybridization to contribute to adaptation in a changing 

climate. 

  



119 

 

Chapter 5: Symbiont hybridization and coral fitness 

 

5.1. Introduction 

In obligate mutualisms, the performance of the symbiont is a key determinant of host fitness. 

Corals are no exception, since the photosynthetic activity of the algal symbiont ultimately 

supports the energetic requirements of the host through the translocation of energy-rich 

compounds (Muscatine & Porter 1977; Muscatine 1990; Davy et al. 2012). Yet hosting 

symbionts inevitably incurs a basal metabolic cost (Grube et al. 2010), and as such, poor-

performing symbionts are expected to occupy a less-beneficial position along the parasitism-

mutualism continuum (Cantin et al. 2009). For example, under normal conditions, a twofold 

increase in photosynthate translocation within juvenile Acropora millepora colonies hosting 

Symbiodinium C1 (= S. goreauii) resulted in substantially higher growth rates than those 

harbouring clade D (Little et al. 2004; Cantin et al. 2009; Jones & Berkelmans 2010). 

Symbiont performance is also an important determinant of host fitness under stressful 

conditions. There is a firm link between the thermal optimum of the symbiont and the coral 

host’s resistance or susceptibility to bleaching-related mortality (Rowan 2004; Berkelmans & 

van Oppen 2006; Sampayo et al. 2008). However, emerging evidence suggests that the 

physiological and behavioural attributes of the host can be at least as important as those of the 

symbiont in determining thermal stress tolerance (e.g. Fitt et al. 2009; Paxton et al. 2013; 

Hawkins et al. 2014). For example, in Pocillopora damicornis and Acropora millepora 

colonies subjected to elevated temperatures, nitric oxide accumulation and host-cell apoptosis 

preceded symbiont dysfunction by several days (Hawkins et al. 2014). Expelled symbionts 

can be healthy and photosynthetically active upon expulsion, further suggesting that 

photosynthetic breakdown does not always precede or cause the bleaching response 

(Bhagooli & Hidaka 2004; Hill & Ralph 2007). Also, some coral species such as Montipora 

capitata can survive the loss of symbionts by switching to a predominantly heterotrophic 

feeding mode (Grottoli et al. 2006), providing another situation where symbiont performance 

may be uncoupled from the fitness of host. Indeed, high-performing symbionts can even be 

detrimental to host fitness. Excessive symbiont reproduction in situ can lead to burgeoning 

densities, and an increased bleaching risk via a density-dependent signalling cascade 

(Cunning & Baker 2013). In extreme cases, a functional mutualistic symbiont may even tend 
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towards parasitism through preferential photosynthate retention and pathogenic proliferation 

within the host (Sachs & Wilcox 2006; Stat et al. 2008b). 

The genetically heterogeneous symbionts of P. damicornis (putative hybrids) showed 

relatively poor photosynthetic performance compared to their putative progenitor 

(Symbiodinium C100) in a controlled environment (see chapter 4). In particular, a 

comparative reduction in light-harvesting efficiency meant that higher levels of 

photosynthetically active radiation (PAR) were required to meet the overall oxygen demands 

(and hence energy demands) of the symbiosis. This suggests that symbiont hybridization may 

associate with negative fitness consequences for the host, by introducing poor-performing 

hybrids at the expense of highly mutualistic ‘pure’ genotypes. Alternatively, symbiont 

hybridization could be of benefit to the host, even at the cost of functional performance, if 

hybrids show reduced antagonistic/parasitic tendencies (Schardl & Craven 2003). For 

example, asexual hybrid fungal symbionts of the cool-season grass family Poaceae are 

selected for by their hosts, since the sexually reproductive progenitor Epichloë sp. can 

‘hijack’ the plant’s reproductive structures in order to facilitate spore dispersal (choke 

disease; Schardl & Clay 1997). Biological fitness is broadly defined as the ability of an 

individual to survive and contribute genes to the next generation (Maynard Smith 1998). 

Therefore, while short-term assessments of symbiont performance may give an indication of 

host fitness, establishing this link requires long-term assessments of host survival, growth and 

reproduction. This objective can only realistically be achieved in a natural setting (Arnold 

1983). 

This chapter aimed to establish the relationship between symbiont performance and host 

fitness on the reef, where many biotic and abiotic factors interact to determine coral survival, 

growth and fecundity (Correa & Baker 2011). The specific objectives of this study were to 

establish whether observed disparities in functional performance between genetically 

homogeneous and heterogeneous Symbiodinium cells translate to differences in the growth 

and survival of their coral hosts. This was assessed through the reciprocal transplantation of 

coral colonies between two reef sites featuring different thermal characteristics, and 

corresponding differences in the proportional abundance of putative Symbiodinium hybrids. 

The hypothesis tested in this study was that colonies hosting higher proportions of genetically 

heterogeneous Symbiodinium cells show lower growth rates and an increased risk of 

mortality, compared to those predominantly hosting homogeneous symbionts. 
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5.2. Methods 

5.2.1. Study location and species 

This study was carried out at two reef sites at Lord Howe Island (Australia), North Bay (-

31.521, 159.047) and the reef margin site known as The Arch (-31.539, 159.055; Figure 5.1) 

The former is a sheltered inner-lagoon site that is subject to pronounced thermal maxima (see 

chapter 3). Here, P. damicornis colonies can grow to several metres in diameter and form 

large monoculture stands (Miller & Ayre 2004). By contrast, The Arch is an exposed reef-

margin location characterised by heavy wave action, where P. damicornis forms a small 

dense clump-like morphology (Veron 2000; Miller & Ayre 2004). The Arch features a lower 

maximum temperature than North Bay, and P. damicornis colonies host a correspondingly 

higher proportional abundance of genetically heterogeneous Symbiodinium cells (putative 

hybrids; see chapter 3). The genomes of these symbionts feature both C100 and C109-

diagnostic ITS2 sequences (see chapter 2), and they show reduced light-harvesting efficiency 

compared to their putative progenitor (Symbiodinium C100) at both average- and maximum-

summer temperatures (25 °C and 29 °C, respectively; see chapter 4). Genetically 

heterogeneous Symbiodinium cells are also approximately 50% larger by volume, feature 

two-fold higher chlorophyll c2:a ratios, and exist in lower densities in the host tissue 

compared to homogeneous Symbiodinium C100 cells. As such, P. damicornis colonies 

dominated by putative hybrids show lower overall photosynthesis-to-respiration ratios (P:R; 

see chapter 4). Symbiodinium cells with homogeneous C109 arrays are also found in P. 

damicornis colonies at LHI; however these symbionts only form a cryptic population (< 7% 

proportional abundance; see chapter 2). Therefore, this study invokes the assumption that 

Symbiodinium C109 forms a minor contribution to the overall photosynthetic activity of the 

symbiosis.  
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Figure 5.1 (previous page) Location and method of coral transplantation  

Reciprocal transplantation of P. damicornis colonies was carried out between North Bay, a sheltered 

inner-lagoon site, and The Arch, an exposed reef-margin location (a). From each colony, three branch 

tips were transferred between sites and three were transplanted at the original site from where the 

parent colony was sampled. The transplantation method is shown in (b); coral fragments were 

attached to iron anchor weights using two zip ties, a transverse tie around the base of the fragment 

(red) and a longitudinal tie attached to the weight (green). 

 

 

5.2.2. Coral collection, transplantation and retrieval 

The initial collection of coral samples took place during September 2011, shortly after the 

winter thermal minimum. A single branch was collected from each of ten P. damicornis 

colonies at each site, and each branch was further divided into seven finger-sized terminal 

fragments (each approximately 7 g dry weight). One fragment was immediately frozen at -20 

°C for DNA analysis, while the remaining six were weighed using the buoyant weight 

technique (Jokiel et al. 1978). These fragments were immediately transplanted onto the reef, 

three to the original site from where they were collected (transplanted controls) and three to 

the alternative site (i.e. from North Bay to The Arch or vice versa). Corals were attached to 

large cast-iron anchor weights using two plastic zip-ties, a transverse tie around the base of 

the fragment, and a larger longitudinal tie attached to the weight (Figure 5.1). The transplant 

sites were re-visited in March 2012 (shortly after the summer thermal maximum), and the 

identities of the fragments that had perished recorded. Two live fragments from each colony 

were retrieved (one from the original site and one from the new site), weighed (using the 

buoyant weight technique), and frozen at -20 °C prior to DNA analysis. All remaining coral 

fragments were retrieved, weighed and frozen in September 2012. 

 

5.2.3. Skeletal mass estimation 

For each surviving coral fragment, the buoyant mass in water (MW) was converted to dry 

mass in air (MA) using the formula of (Jokiel et al. 1978): 
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Equation 5.1 

where DW is the density of seawater at a given temperature and salinity (calculated using 

oceanographic reference tables; UNESCO 1981), and DM is the species-specific aragonite 

density (2.703 g cm
-3

 for P. damicornis; Spinaze et al. 1996). Larger coral fragments are 

expected to secrete comparatively more calcium (Ferrier-Pagès et al. 2000), therefore daily 

growth rates were converted to compounding growth rates (in % d
-1

; G) using the formula: 
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where t is the time since transplantation (in d) and MA(initial) and MA(final) are the initial and 

final estimated dry masses, respectively. 

 

5.2.4. DNA extraction 

DNA analysis of Symbiodinium ITS2 sequences in bulk-cell samples was similar to that 

described in chapters 3 and 4. For DNA analysis, a small branch tip was removed from each 

frozen coral fragment (surface area approximately 5-10 cm
2
). Coral tissue was removed from 

the underlying skeleton with a stream of 50 mM phosphate buffer (1 mM EDTA; pH = 7.8), 

delivered at high velocity through a compressed-air-generated spray nozzle. The homogenate 

was centrifuged at 16,100 x g for 5 min to pellet the Symbiodinium cells, and the supernatant 

was discarded. DMSO preservation buffer (20% DMSO, 250 mM EDTA, NaCl saturated, pH 

8.0; Seutin et al. 1991) was added to a volume of 200 µl, and the pellet was re-suspended by 

milling without beads for 3 min at 50 Hz. Following a 7 d incubation at -20 °C, the settled 

Symbiodinium cells were re-suspended using a vortex, and 10 µl of suspension were taken for 

DNA extraction. Acid-washed glass beads were added (50 mg; 710-1180 µm; Sigma-

Aldrich) and the sample was milled at 50 Hz for 3 min (Qiagen TissueLyser LT; Qiagen) to 

disrupt the cell-walls and enable the release of nucleic acids. Following a 10 min incubation 

period at 4 °C, 90 µl of de-ionised water were added. The sample was then vortexed and 

centrifuged for 10 min at 16,100 x g to pellet the cellular debris. The DNA-enriched 

supernatant (50 µl) was transferred to a new micro-centrifuge tube with an equal volume of 

2-propanol to precipitate the nucleic acids, and centrifuged for 10 min at 16,100 x g to collect 
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the DNA pellet. The supernatant was discarded and 200 µl wash buffer (70% v/v ethanol) 

were added. The sample was vortexed and returned to the centrifuge for a further 10 min at 

16,100 x g. The supernatant was carefully removed with a pipette and the DNA pellet was 

dried under a laminar flow hood for 30 min. Elution buffer (10 mM Tris-HCl; 0.1 mM 

EDTA; pH = 8.0) was added to a final volume of 50 μl. Following a 10 min re-hydration 

period, the DNA was re-suspended by milling without beads for 1 min at 30 Hz. 

 

5.2.5. PCR and denaturing gradient gel electrophoresis 

Denaturing gradient gel electrophoresis (DGGE) was carried out on all samples to establish 

the presence or absence of Symbiodinium types other than C100 and C109. PCR 

amplification for DGGE was carried out with the primers ITSintfor2 and ITS2CLAMP 

(LaJeunesse 2002). Thermal cycling involved an initial denaturation step of 3 min at 95 °C 

followed by 40 cycles of 15 seconds at 95 °C, 15 seconds at 56 °C and 10 seconds at 72 °C 

(carried out on an Applied Biosystems Veriti thermo-cycler; Life Technologies). Each 

reaction contained 4 μl of DNA template solution, 1x MyTaq PCR reaction mix (Bioline), 10 

pmol each primer, 10 μg bovine serum albumin (BSA; Sigma) and deionised sterile water to 

a total volume of 20 μl. A template-free control was included with each run. To ensure the 

final product was within the intended size range (300-350 nucleotides), and that amplification 

did not occur in the template-free control reaction, 5 μl of the final PCR product were 

electrophoresed on a 1.5 % agarose gel containing 1x SYBR safe nucleic acid stain (Life 

Technologies) alongside a DNA standard (Hyperladder II; Bioline). Agarose gels were 

viewed and imaged on a blue light trans-illuminator (Safe Imager; Invitrogen).The remaining 

PCR product was loaded on a 200 x 200 x 1 mm, 8% denaturing polyacrylamide gel (25-50% 

urea/formamide denaturant gradient), and run in 1 x TAE at 150 V for 7 h at 60 °C (DCode 

system; BioRad) alongside known ITS2 sequences of Symbiodinium C100 and C109 (PCR-

amplified from plasmid DNA). Following electrophoresis, denaturing gels were stained with 

ethidium bromide and viewed on a UV trans-illuminator (FirstLight UVP), and the presence 

or absence of each ITS2 sequence type was scored. 
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5.2.6. Quantitative PCR 

The bulk-cell qPCR assay developed in chapter 3 was used to establish the relative proportion 

of putative hybrids within the symbiont consortium of each coral fragment (SH:ST). Each 

qPCR reaction contained 4 μl DNA template, 1x TaqMan Universal Mastermix II (Life 

Technologies), 18 pmol each primer (CInnerFor and CInnerRev; see chapter 2 for nucleotide 

sequences), 1x TaqMan fluorogenic probe (C100
+
 or C100

-
; Life Technologies; see chapter 2 

for nucleotide sequences), 10 μg BSA (Sigma-Aldrich) and deionised sterile water to a total 

volume of 20 μl. Thermal cycling involved an initial 10 min, 95 °C denaturation step 

followed by 40 cycles of 15 seconds at 95 °C and 1 min at 60 °C (Applied Biosystems 

StepOne qPCR instrument; Life Technologies). DNA template solutions generated from 

bulk-cell Symbiodinium samples were run in duplicate with a template-free control reaction 

included for each probe type. Ct values were determined as the cycle at which the change in 

fluorescence was significantly different to the background level (ΔRn = 0.05; obtained using 

the instrument’s built-in algorithm). Reactions featuring Ct values below the intercepts of the 

previously-generated standard curves (36.873 and 37.119 for C100
+
 and C100

-
 assays, 

respectively; see Appendix B) and sufficiently low standard deviations (< 0.5) were included 

in the analysis. The total number of ITS2 copies in each sample (CTOTAL) was estimated as the 

sum of the C100 copy number and the number of Symbiodinium clade C ITS2 sequences 

other than type C100 (CC100 and CC100
-
, respectively). The proportion of total Symbiodinium 

clade C sequences that were of type C100 was expressed as the bulk-cell CC100:CTOTAL ratio. 

This ratio were subsequently converted to the proportional abundance of genetically 

heterogeneous cells (SH:ST) using the polynomial equation developed in chapter 3 (y = -

3.4484x
2
 + 3.3604x; where y = SH:ST and x = CC100:CTOTAL).  

 

5.2.7. Statistical analysis 

Mortality rates were compared between sites (North Bay and The Arch) and transplant times 

(195 d and 374 d) using a three-way Pearson’s chi-squared cross-tabulation test. For corals 

transplanted at The Arch, mortality rates were further assessed after 195 d using a binomial 

logistic regression model, with the proportional abundance of genetically heterogeneous 

Symbiodinium cells (SH:ST) as a putative explanatory variable and mortality as the binary 

response. Initial dry weight (in g) was added as a nuisance covariate and given first 

opportunity to explain variance within the model, in order to control the type II error rate (see 
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Quinn & Keough 2002). Variation in compounding growth rates (G; in % d
-1

) and SH:ST were 

assessed using blocked MANCOVA, with Transplant site and Time as factors (fixed-effects; 

each with two levels), original SH:ST as a covariate, and Original site as a block variable. In 

all cases, normality and homoscedasticity were assessed using Q-Q plots, and Box’s and 

Levene’s tests of variance equality. All statistical analyses were carried out using SPSS 

Statistics v20 (IBM). 
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5.3. Results 

5.3.1. Coral mortality 

Coral mortality varied according to transplant-site and time since transplantation, but not as a 

function of the proportional abundance of genetically heterogeneous Symbiodinium cells 

(SH:ST ). Mortality was consistently higher at The Arch than at North Bay (χ
2

1 = 6.656 and 

30.313; p = 0.010 and < 0.001, after 195 d and 374 d, respectively). A further partial 

association existed between mortality and time since transplantation, with corals at The Arch 

experiencing higher mortality rates during the final 179 d of deployment (χ
2

1 = 9.87; p = 

0.002). Of the 60 coral fragments deployed at The Arch, 11 perished during the first 195 d, 

and of the 29 that remained after the first retrieval only seven survived to the end of the 374-d 

experiment. Conversely, mortality was consistently low at North Bay, with only one of the 60 

coral fragments perishing during the first six months, and four more during the subsequent 

six-month period (χ
2
1 = 0.539; p = 0.463 for 195 d versus 374 d comparison). This prevented 

assessment of the association between SH:ST and mortality at North Bay, due to a lack of 

balance in the binomial logistic regression model. Indeed, this assessment could only be 

reliably carried out at The Arch after the first retrieval round (195 d since transplantation) due 

to the low number of surviving fragments at this site after 374 d. High mortality in 

transplanted corals at The Arch was consistent with the established colonies at this site, many 

of which perished during the particularly cold winter of 2012 (see chapter 3, Figure 3.3), and 

were overgrown with macroalgae by the end of the experiment. By contrast, very few of the 

transplanted corals at North Bay perished, and no noticeable mortality occurred among the 

established P. damicornis colonies at this site over the course of the experiment. 

The initial dry weight of transplanted coral fragments emerged as a significant factor in 

determining the likelihood of mortality, with smaller fragments showing a reduced likelihood 

of survival. A 1.37-fold increase in survival likelihood was associated with a 1 g increase in 

dry weight (Wald test statistic with one degree of freedom = 4.076; p = 0.043). After 

accounting for site- and size-related factors, no association was detected between SH:ST and 

mortality (binomial logistic regression, χ
2

1 = 0.241; p = 0.632; Figure 5.2). 
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Figure 5.2 Effect of putative 

Symbiodinium hybrids on coral 

mortality 

Boxes show the median and interquartile 

range in the proportional abundance of 

genetically heterogeneous Symbiodinium 

cells in corals that perished (n = 11) or 

survived (n = 49) after 195 d of 

deployment at The Arch. Closed circles 

represent 10
th
/90

th
 percentile outliers. 

Mortality rates were not significantly 

affected by SH:ST (p = 0.632). 

 

 

5.3.2. Physical response to transplantation 

Surviving coral fragments from both sites exhibited high variability in growth, and minor 

changes in the proportional abundance of genetically heterogeneous Symbiodinium cells. A 

significant interaction between Transplant site and Time was evident in determining the 

combined physical response (G and SH:ST; MANCOVA F2,75 = 4.337; omnibus p-value = 

0.017; Table 5.1). Subsequent univariate testing revealed the Transplant site x Time 

interaction applied only to coral growth (F1,76 = 8.129 and 0.510; p = 0.006 and 0.477 for G 

and SH:ST , respectively; Table 5.2). Simple-effects tests for coral growth at each retrieval 

time-point revealed that differences between the two sites occurred only during the final 179 

d (during which the winter thermal minimum occurred; F1,77 = 0.183, p = 0.670 for 195-d and 

F1,77 = 10.761, p = 0.002 for 374-d transplant time; Table 5.3 and Table 5.4, respectively). 

Average (± S.E.) daily growth rates over the first 195 d were 1.755 x 10
-3

 ± 0.119 x 10
-3

 % d
-1

 

for both sites, and those over the entire 374-d duration were 0.859 x10
-3

 ± 0.374 x10
-3

 % d
-1

 

at the Arch and 1.902 x10
-3

 ± 0.160 x 10
-3

 % d
-1

 at North Bay. The interpolated growth rates 

during the final 179 d were therefore -0.133 x10
-3

 ± 0.780 x 10
-3

 % d
-1

 at The Arch and 2.044 

x10
-3

 ± 0.253 x 10
-3

 % d
-1

 at North Bay (Figure 5.3a). The highest growth rate by a single 

coral fragment was recorded at North Bay, with an increase in dry weight from 8.65 g to 

38.83 g in 374 d, representing a compounding growth rate of 4.02 x 10
-3

 % d
-1

. Of 84 

surviving colonies in total, three recorded net skeletal erosion over the 374-d period, all of 

which were deployed at The Arch.  
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Figure 5.3 Physical responses of P. damicornis colonies following transplantation 

Coral fragments showed a variety of responses to transplantation, with (a) high variation in growth 

rates between the transplant sites of North Bay and The Arch (shown in red and blue, respectively; 

double asterisk denotes a p-value of less than 0.01); and (b) minor temporal changes in the 

proportional abundance of genetically heterogeneous Symbiodinium cells. Changes in SH:ST occurred 

independently of transplant site and transplant time (shown in red and blue for North Bay and The 

Arch, and open and closed circles for 195-d and 374-d, respectively). A relatively high level of 

temporal variation in SH:ST was detected between ramets of the same parent colony (16.7% residual 

variance component), compared with an earlier longitudinal analysis of established coral colonies (4% 

residual variance component; see chapter 3). 

 

 

An intrinsically higher proportional abundance of genetically heterogeneous Symbiodinium 

cells in P. damicornis colonies at The Arch (see chapter 3) was evident in a significant effect 

of Original site (i.e. ‘block’ effect; mean SH:ST = 0.583 and 0.551 and The Arch and North 

Bay, respectively; F1,78 = 4.053; p = 0.048; Table 5.2). However, neither Transplant site nor 

Time had a significant influence on the SH:ST ratio measured upon retrieval (F1,76 = 0.046 and 

1.561, p = 0.830 and 0.215, respectively; Table 5.2). The proportional abundance of 

homogeneous and heterogeneous Symbiodinium cells did not change deterministically 

throughout the course of the experiment, with the initial SH:ST (measured from the parent 

colony prior to transplantation) emerging as a strong predictor of final SH:ST (F1,76 = 486.576; 

p < 0.001; Table 5.2). As such, when the initial and final SH:ST ratios were analysed using a 

before and after paired-differences t-test, no significant change in SH:ST was detected (t81 = 

1.112; p = 0.269; Figure 5.3b). 
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Table 5.1 MANCOVA for coral growth and temporal changes in the proportional abundance of 

putative Symbiodinium hybrids  

Source Pillai’s Trace Hypothesis df Error df F P 

Initial SH:ST (covariate) 0.865 2 75 240.094 < 0.001 

Original site (block) 0.052 2 75 2.076 0.133 

Transplant site 0.068 2 75 2.729 0.072 

Time 0.063 2 75 2.511 0.088 

Transplant site x Time 0.104 2 75 4.337 0.017 

 

 

Table 5.2 Univariate ANCOVA for coral growth and temporal changes in the proportional 

abundance of putative Symbiodinium hybrids 

Source Variable df SS MS F P 

Initial SH:ST (covariate) Growth 1 0.451 0.451 0.766 0.384 

 SH:ST 1 1.532 1.532 486.576 < 0.001 

Original site (block) Growth 1 0.062 0.062 0.105 0.746 

 SH:ST 1 0.013 0.013 4.053 0.048 

Transplant site Growth 1 3.205 3.205 5.443 0.022 

 SH:ST 1 <0.001 <0.001 0.046 0.830 

Time Growth 1 1.981 1.981 3.364 0.071 

 SH:ST 1 0.005 0.005 1.561 0.215 

Transplant site x Time Growth 1 4.786 4.786 8.129 0.006 

 SH:ST 1 0.002 0.002 0.510 0.477 

Error Growth 76 44.748 0.589   

 SH:ST 76 0.239 0.003   

 

 

Table 5.3 Simple-effects analysis of coral growth over 195 days  

Source df SS MS F P 

Transplant site 1 0.107 0.107 0.180 0.673 

Error 76 45.199 0.595   

 

 

Table 5.4 Simple-effects analysis of coral growth over 374 days 

Source Df SS MS F P 

Transplant site 1 6.317 6.317 10.62 0.002 

Error 76 45.199 0.595   
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5.4. Discussion 

The photosynthetic performance of the symbiont is often a strong determinant of coral 

fitness; however the host’s physiology and behaviour can uncouple this association (reviewed 

in Baird et al. 2008). Similarly, the performance of the symbiont may not necessarily reflect 

its mutualistic scope (Stat et al. 2008b). This study aimed to determine whether physiological 

differences observed between genetically homogeneous and heterogeneous Symbiodinium 

cells (see chapter 4) affect the growth and survival of their coral hosts in the natural reef 

setting. Colonies were reciprocally transplanted between two distinct reef habitats, an inner 

lagoon site exposed to pronounced thermal peaks, and a well-flushed site situated at the 

transition zone between coral- and macroalgal-dominated communities. The proportional 

abundance of putative hybrid symbionts did not influence coral mortality or calcification, nor 

did it change in response to habitat modification. Instead, coral fitness appeared to be 

predominantly driven by local environmental factors, with the inner-lagoon site providing a 

more suitable habitat for coral growth and survival. 

 

5.4.1. The influence of putative Symbiodinium hybrids on coral fitness 

Coral calcification and mortality were not affected by the proportional abundance of 

genetically heterogeneous Symbiodinium cells. This was inconsistent with the comparatively 

poor photosynthetic performance shown by these symbionts in a controlled setting (see 

chapter 4). This discrepancy may have arisen via several processes. First, conditions 

simulated in an experimental setting are not representative of those experienced on the reef. 

While the earlier assessment of photosynthetic performance was carried out using stable 

temperatures approximating the summer average and absolute thermal maximum experienced 

within the Lord Howe Island lagoon (25 and 29 °C, respectively; see chapter 4), pronounced 

fluctuations in temperature and light characterise the LHI reef environment (Veron & Done 

1979; Harrison et al. 2011). Coral fragments were also exposed to temperatures that were 

consistently lower than 25 °C throughout the course of this study. While it is presently 

unknown how heterogeneous Symbiodinium cells perform under cold-stress, their spatial 

distribution pattern indicates a possible adaptation to cooler environments (see chapter 3). 

The extreme thermal minimum experienced at LHI plays an important role in determining 

range boundaries of corals and other reef fauna at this site (Veron & Done 1979), and cold 

stress is a known causal factor underlying coral bleaching and symbiont community change 
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in Pocillopora colonies in the Gulf of California (LaJeunesse et al. 2010b). Cold-adaptation 

or other factors may have equalized the disparity in photosynthetic performance between 

homogeneous and heterogeneous Symbiodinium cells in their natural setting. Second, the 

biochemical and/or behavioural activity of the coral host may have compensated for the poor 

photosynthetic performance of its symbionts. Corals may employ various strategies to ensure 

that their metabolic requirements are met, with some species even switching to a 

heterotrophic feeding mode in the absence of symbiont-derived compounds (Grottoli et al. 

2006). Indeed, P. damicornis colonies hosting predominantly heterogeneous Symbiodinium 

cells showed marginal increases in protein biomass, a response consistent with this mode of 

nutrient assimilation (see chapter 4). Finally, a reduction in photosynthetic performance may 

be offset if a symbiont occupies a particularly beneficial position along the parasitism-

mutualism continuum. In the majority of cases, coral fitness varies according to the degree of 

host-symbiont co-operation rather than host- or symbiont factors in isolation (Bhagooli & 

Hidaka 2003; Abrego et al. 2008). In particular, the quality and quantity of translocated 

photosynthate may differ widely among symbiont taxa, with important implications for host 

fitness (Little et al. 2004; Loram et al. 2007b; Stat et al. 2008b; Cantin et al. 2009; Jones & 

Berkelmans 2010; Starzak et al. 2014). For example, the clade A symbionts of the coral 

Acropora cytherea released significantly less carbon compared with those of clade C, with 

colonies hosting the former showing a corresponding increase in disease risk (Stat et al. 

2008b). The uncoupling of symbiont performance and host fitness observed in this study 

suggests that some beneficial feature of putative hybrid Symbiodinium cells may warrant their 

persistence in the P. damicornis symbiont consortium. This may explain their widespread 

abundance on the LHI reef, and the lack of temporal variation within colonies (see chapter 3 

and next section). Identification of this ‘redeeming’ characteristic presents an interesting area 

for future investigation. 

 

5.4.2. Changes in symbiont ratios following transplantation 

Minor temporal changes in ratios of genetically homogeneous and heterogeneous symbionts 

were apparently random, and not attributable to environmental factors. Corals that transmit 

their symbionts vertically (such as P. damicornis) generally show reduced symbiotic 

flexibility (Thornhill et al. 2006a); however this contrasted with several previous transplant 

studies that show deterministic symbiont shuffling in both horizontal- and vertical-
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transmitting species (Baker 2001; Toller et al. 2001b; Berkelmans & van Oppen 2006). For 

example, colonies of the vertically-transmitting coral Porites astreoides underwent a change 

in dominant symbiont from clade C to clade A when transplanted to a shallower habitat on a 

Caribbean reef (Baker 2001), a response that ostensibly led to an improvement in thermal 

tolerance. While no deterministic symbiont shuffling was observed in the present study, 

symbiont ratios were temporally variable in transplanted corals compared with those 

established colonies (see chapter 3). This increased random variation in SH:ST may have 

arisen from the fragmentation process, causing stochastic drift in the proportional abundance 

as a result of a ‘population bottleneck’. Indeed, the effect may have been compounded by 

partial bleaching experienced by fragments following transplantation. The sudden exposure 

of previously-shaded branch areas to excess irradiance resulted in visible paling in all 

transplanted colonies (including the transplanted controls) on the North Bay reef 

approximately one week after transplantation, while no such bleaching was apparent in the 

parent colonies (pers. obs; a follow-up visual assessment of fragments and parent colonies 

could not be carried out at The Arch, due to difficulties accessing this site). These findings 

support the assertion made in chapter 3: that the symbiont consortium of P. damicornis is 

determined during early ontogeny and/or bleaching, with genetically homogeneous and 

heterogeneous Symbiodinium cells apparently not subject to intra-specific competition or 

selective expulsion by the host. 

 

5.4.3. Methodological considerations 

While symbiont performance was apparently uncoupled from host fitness in this study, 

several factors may have prevented the detection of underlying patterns. Stochastic events 

such as abiotic disturbance, interspecific competition, predation and disease can substantially 

increase the variability in coral growth and survival on the reef (Correa & Baker 2011). 

Gaining reliable estimates of fitness in the field is hampered by these processes, particularly 

when sample sizes are small (Garrison & Ward 2012). Measuring the influence of putative 

Symbiodinium hybrids on host survival was further hindered by the inability to retrieve coral 

fragments at a time when approximately equal numbers had perished and survived (thus 

maximizing statistical power; Quinn & Keough 2002). Future assessments of coral- and 

symbiont-fitness may benefit from employing larger sample sizes and attempting to control 

for the many sources of extraneous variation encountered in the natural setting. Moreover, 
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fitness is a measure of an individual’s genetic contribution to subsequent generations 

(Maynard Smith 1998). Estimates of performance, growth and survivorship can give an 

indication of fitness, but may not provide an absolute measure (Arnold 1983). For example, 

in a comparison of the effects of different symbiont types on the fitness of the anemone 

Aiptasia sp., homologous algae stimulated increased biomass while heterologous algae 

prompted an increase in reproductive output (Kinzie & Chee 1979). Further attempts to 

establish a link between symbiont hybridization and coral fitness should therefore also 

incorporate measures of reproductive success. 

 

5.4.4. Conclusion 

The relative abundance of genetically heterogeneous Symbiodinium cells did not appreciably 

affect the growth or survival of transplanted corals in the field, despite the impaired 

photosynthetic function of these symbionts at elevated temperature. These findings highlight 

the fact that a coral’s fitness may be uncoupled from the photosynthetic performance of its 

symbiont, through processes mediated by either or both symbiotic partners. An apparent lack 

of negative long-term effects associated with hosting putative Symbiodinium hybrids may 

help to explain their temporal stability within colonies and their widespread abundance on the 

Lord Howe Island reef. Further research into the mutualistic scope of hybrid Symbiodinium 

cells may reveal concealed benefits, such as adaptation to extreme conditions or reduced 

virulence. Establishing the implications of symbiont hybridization for coral fitness will 

ultimately help to evaluate the evolutionary significance of this process in a rapidly changing 

environment.  

  



136 

 

Chapter 6: General discussion 

 

The preceding data chapters provide several lines of indirect evidence for hybridization in 

symbiotic dinoflagellates. These include: (1) the intra-genomic co-dominance of divergent 

ITS2 sequences; (2) significant genetic clustering of heterogeneous and homogeneous 

symbionts; (3); the coexistence of genetically heterogeneous symbionts with both putative 

progenitors; (4) thermal niche partitioning, consistent with the diversification of hybrids into 

‘extreme’ habitats (i.e. the coral-macroalgal transition zone); (5) differences in morphology 

and physiology, with putative hybrids 50% larger by volume and showing a two-fold increase 

in chlorophyll c2:a; and (6) disparities in photosynthetic function, consistent with the 

deleterious segregation of unlinked genes in haploid hybrids (‘hybrid breakdown’). A review 

of the literature also indicates that hybridization may have occurred among other 

Symbiodinium taxa. In particular, this hypothesis is advanced by emerging evidence of sexual 

reproduction in symbiotic dinoflagellates (Baillie et al. 1998, 2000; LaJeunesse 2001; Santos 

et al. 2003b; Pettay et al. 2011; Thornhill et al. 2013a; Chi et al. 2014; Baums et al. 2014), a 

maximum divergence threshold of around 5-10% ITS dissimilarity for viable hybridization in 

other dinoflagellates, diatoms and haplontic green algae (Coleman et al. 1994; Edvardsen et 

al. 2003; Vanormelingen et al. 2008), and the recent finding of diploidy and allelic additivity 

in the heat-tolerant species Symbiodinium trenchii (LaJeunesse et al. 2014). While evidence 

remains indirect, these results collectively provide a compelling argument that hybridization 

is a naturally occurring phenomenon in the Symbiodinium genus. 

 

6.1.1. Confirming hybridization in Symbiodinium 

The findings of this study highlight the need for direct evidence of hybridization in 

Symbiodinium. This is likely best accomplished through continued attempts to induce the 

sexual life-cycle within and between Symbiodinium lineages in culture. While putative 

gametes have been observed by several authors (Freudenthal 1962; Taylor 1973, 1974; Fitt & 

Trench 1983), life-cycle stages are often misinterpreted in dinoflagellates (Elbrächter 2003). 

This is particularly true of gametogenesis, which often involves simple vegetative division 

(hologamy; Pfiester & Anderson 1987). Conclusive evidence of this process has continued to 

evade researchers, presenting a major challenge to determining the evolutionary significance 
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of recombination in the Symbiodinium genus. Yet cryptic sexual life cycles have been 

increasingly exposed in free-living ‘asexual’ dinoflagellates (e.g. Parrow & Burkholder 

2003a; b, 2004), with the simulation of nutrient stress often proving the necessary stimulant 

(Turpin et al. 1978; Anderson et al. 1984; Chesnick & Cox 1987; Figueroa et al. 2007, 2011). 

Experimental crossing of closely related types may also help to induce the sexual life-cycle, 

since mating incompatibilities often prevent isoclonal dinoflagellates from conjugating 

(Destombe & Cembella 1990; Parrow & Burkholder 2003a). The experimental stimulation of 

sexual reproduction in Symbiodinium would constitute an important scientific breakthrough, 

with potentially major implications for coral adaptation in a changing climate. As such, 

research in this area should be a high priority. 

In the absence of direct evidence of sexual reproduction and hybridization in culture, 

convincing evidence of these processes may be obtained from genomic analysis. A 

preliminary objective is to determine the multi-locus genotype (MLG) of each clone within a 

symbiont assemblage. Yet MLG techniques require DNA from individual organisms or 

isoclonal cell-lines (Santos et al. 2003b). While some corals appear to harbour a single 

symbiont genotype (Goulet & Coffroth 2003a; b; Pettay & LaJeunesse 2007; Thornhill et al. 

2009; Andras et al. 2011; Pettay et al. 2011; Baums et al. 2014), and thus effectively provide 

a ‘culture vessel’ of vegetative growth (LaJeunesse et al. 2012), this is clearly not the case for 

many species (e.g. Rowan & Knowlton 1995; Stat et al. 2011; Green et al. 2014). Indeed, the 

results presented in this thesis suggest that the P. damicornis symbiont consortium can 

consist of at least three (and possibly many more) clonal genotypes. These symbionts do not 

readily survive in culture (S. Pontasch, VUW, pers. comm.), a trait characteristic of many 

vertically-transmitted Symbiodinium lineages (Krueger & Gates 2012). However, a solution 

may be found in whole genome amplification (WGA). Recent developments in WGA using 

the bacteriophage Φ29 DNA polymerase (Dean et al. 2002) show promising results for 

obtaining MLG data from single cells. For example, WGA facilitated the successful 

amplification of 20 different loci from a single human lymphocyte (Handyside et al. 2004). 

Application of this technology to the unicellular organisms of the coral holobiont could 

greatly improve the resolution of population genetic studies, and thus help to identify the 

genealogical origins of non-culturable Symbiodinium cells. 

The inability to culture Symbiodinium C100, C109 or their putative hybrids necessitated 

genotyping by single-cell PCR (scPCR). While this method enabled the unambiguous 

distinction of intra- and inter-genomic sequence variation, it is currently restricted to 
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targeting a single, high-copy-number marker from each Symbiodinium cell. The ITS2 locus 

was chosen for its wide utility, phylogenetic sensitivity and amenability to scPCR (since it 

occurs in multiple copies per genome). However, its multi-copy nature also renders it subject 

to intra-genomic variation arising from the incomplete concerted evolution of ancestral 

polymorphisms, presenting an unavoidable limitation to this study. Despite its drawbacks, the 

ITS2 can reveal important evolutionary processes, including hybridization, hybrid speciation, 

reticulate evolution and adaptive radiation (Álvarez & Wendel 2003), particularly when used 

in conjunction with morphological, physiological and ecological data (Peterson et al. 2004; 

Vriesendorp & Bakker 2005). DNA meta-barcoding now offers semi-quantitative estimates 

of ITS2 copy numbers and other genetic markers at the subclade level through the generation 

of high-throughput sequence data (Green et al. 2014). Applying this powerful molecular tool 

to the individual symbiont cell could facilitate large-scale assessments of intra-genomic 

variation and inter-genomic diversity, helping to establish the incidence of hybridization and 

solve the complex puzzle of Symbiodinium evolution. 

 

6.1.2. Implications of Symbiodinium hybridization 

Over the past two decades or so, a prolific research effort has sought to predict the future of 

coral reefs in a changing climate. While symbiont shuffling has been identified as an 

important acclimatory mechanism offering short-term relief from environmental stress, the 

so-called ‘adaptive bleaching’ response does not appear to be a heritable modification, and 

hence its potential benefits are ostensibly limited. Understanding the means by which corals 

and their symbionts adapt sensu stricto is therefore of paramount importance. This will 

require a major shift in focus towards the evolutionary effects of somatic mutation 

accumulation and meiotic recombination within and between lineages. In particular, symbiont 

hybridization has the potential to offer rapid heritable modification to the coral holobiont, and 

hence play a critical role in its evolution in a shifting adaptive landscape. The putative 

emergence of this phenomenon prompts several questions about its ecological and 

evolutionary significance: When, where and how does symbiont hybridization occur? What 

are the immediate mutualistic effects and long-term adaptive consequences for the coral host? 

Could symbiont hybridization be applied in future attempts to improve reef resilience? These 

considerations are discussed in detail below and accompanied by suggested areas for future 

research. 



139 

 

 

6.1.2.1. When, where and how does hybridization occur?  

For hybridization to contribute to adaptation, reproductive barriers must initially be 

overcome. Establishing the timing, location and divergence thresholds for sexual 

reproduction in Symbiodinium are therefore important objectives for understanding the 

evolutionary significance of hybridization in this genus. While the ITS2 admixture depicted 

in chapter 2 suggests that frequent recombination events may have produced several hybrid 

genotypes (see Figure 2.4), the absence of MLG data prevents the identification of individual 

hybrid classes. On one hand, a single ancient hybridization event may have given rise to a 

divergent, reproductively isolated hybrid lineage whose genome is in various stages of 

concerted evolution. On the other hand, hybridization and backcrossing may occur on a 

regular basis, with the occasional fit recombinant undergoing asexual proliferation. The 

findings of several fine-scale population-level studies indicate that sexual reproduction occurs 

frequently within Symbiodinium lineages (e.g. Santos et al. 2003b; Pettay et al. 2011; 

Thornhill et al. 2013a; LaJeunesse et al. 2014; Baums et al. 2014). However, none of these 

studies detected the recombination of alleles between lineages, indicating that if successful 

hybridization does occur in this group it is likely an isolated and/or infrequent occurrence. 

Competition with parental taxa and ‘transgressive segregation’ (the emergence of extreme 

hybrid phenotypes) often confine hybrids to the range margins of parental taxa (Arnold 1997; 

Rieseberg 1997; Rieseberg et al. 2003), and hybrid symbionts of terrestrial plants show a 

similar distribution pattern (e.g. Barrett et al. 2007; Hamilton et al. 2009). Therefore, 

Symbiodinium hybridization may occur exclusively in marginal coral reef habitats. Yet 

hybridization is stimulated both by disturbance (Anderson & Stebbins 1954) and species 

range shifts (Hoffmann & Sgrò 2011); hence an increase in frequency may occur as 

conditions continue to deteriorate.  

Ancient hybridization: Hybridization may not necessarily occur frequently to have 

important evolutionary effects. The chance occurrence of a single fit hybrid recombinant can 

give rise to a novel lineage, provided that the adaptive allele combination can stabilize and 

that reproductive isolation is upheld (Grant 1981; Figure 6.1). This mode of speciation has 

been implicated in major adaptive radiations, particularly when hybrids occupy vacant niches 

arising from environmental upheaval (Anderson & Stebbins 1954; Seehausen 2004; Bell & 

Travis 2005; Grant et al. 2005; Mallet 2007). Hybrid speciation is commonly associated with 
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allopolyploidy (when an F1 hybrid inherits a set of chromosomes from each parent), since 

chromosome doubling can offer instant genetic isolation from both progenitors (reviewed in 

Mallet 2007; Abbott et al. 2013). Yet an increasing number of cases of homoploid hybrid 

speciation have been identified, particularly when hybrids diversify into extreme habitats via 

transgressive segregation (Rieseberg 1997; Buerkle et al. 2000; Rieseberg et al. 2003; 

Gompert et al. 2006). For example, in the wild sunflower genus Helianthus, hybrid species 

have diversified into deserts and salt marshes (Rieseberg et al. 2003), and in the butterfly 

genus Lycaeides, a homoploid hybrid species of L. melissa and L. idas occurs exclusively in 

extreme alpine habitats (Gompert et al. 2006). Hybrid diversification and speciation are also 

prevalent in symbiont lineages. A hybrid strain of the poplar rust pathogen Melampsora sp. 

occurs at the southern range margin of its progenitor Melampsora lini in Australia (Barrett et 

al. 2007), and in the endophytic fungal symbionts of the grass family Poaceae, hybrid species 

of the genus Neotyphodium are common in habitats characterised by low moisture and 

reduced nutrients, in comparison to their Epichloë progenitors (Hamilton et al. 2009). 

Hybridization may have played an important role in recent adaptive radiations of symbiotic 

dinoflagellates. Host-taxon niche diversification can present a powerful diverging force 

(Thornhill et al. 2013a), and may provide the ecological isolation necessary to reinforce 

hybrid speciation (Buerkle et al. 2000). The polytomic clade D lineage presents a particularly 

feasible case of adaptive radiation via hybridization. This group includes at least four species 

that show adaptation to ‘extreme’ environmental conditions (Symbiodinium trenchii, S. 

boreum, S. eurythalpos and S. glynni nomen nudum; LaJeunesse et al. 2014). In particular, 

several characteristics of S. trenchii suggest a possible origin of hybrid speciation. S. trenchii 

has one of the largest genomes of all symbiotic dinoflagellates (LaJeunesse et al. 2005), it 

routinely possesses two alleles at microsatellite loci (Pettay & LaJeunesse 2009; Wham et al. 

2011; LaJeunesse et al. 2014), and its ITS2 profile shows a co-dominant pattern diagnostic of 

both Symbiodinium D1a and S. glynni (LaJeunesse 2002).While polyploidy can 

spontaneously arise in asexual lineages through abnormal mitotic cell division (resulting in 

whole-genome duplication), this species also shows ecological traits resembling a hybrid 

species. For example, S. trenchii characteristically inhabits thermally-extreme environments 

(Berkelmans & van Oppen 2006; Keshavmurthy et al. 2012) and rapidly colonises bleached 

corals, aggressively out-competing other symbiont taxa under thermally-stressful conditions 

(LaJeunesse et al. 2009). 
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Figure 6.1 Adaptive divergence via hybridization 

Two species, A (black) and B (white) are superimposed on an adaptive landscape alongside A × B 

hybrids (grey, with many possible haploid genotypes). The plane represents two quantitative 

phenotypic characters that are subject to ‘fitness optima’ (shown in a colour gradient). In reality, 

environmental change causes the landscape to shift continuously, and natural selection simultaneously 

acts on many phenotypic traits, meaning that the landscape is multi-dimensional (Wright 1932). 

Hybridization can lead to macro-evolutionary ‘jumps’. If a fortunate hybrid recombinant hits an 

unoccupied adaptive peak, it may exploit the vacant niche, stabilize and undergo hybrid speciation 

(shown by arrow; adapted from Wright 1932; Simpson 1953; Mallet 2007). 
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While S. trenchii presents an obvious candidate hybrid species, several other symbiotic 

dinoflagellates also warrant further investigation. For example, the C3m ITS2 sequence is co-

dominant with that of C3 in symbionts of the zoanthid Protopalythoa sp. in Hawaii 

(LaJeunesse et al. 2004); yet C3m aligns with the C1 radiation. This suggests that, either the 

same ITS2 nucleotide substitution that arose during the divergence of C1 from the C3 lineage 

arose independently during the more recent divergence of C3m from the C3 lineage (i.e. 

homoplasy), or hybridization has occurred between members of the C1 and C3 radiations 

(LaJeunesse et al. 2005). Could the genetically heterogeneous Symbiodinium C100 × C109 

cells represent a divergent, reproductively isolated hybrid species? The diversification of 

heterogeneous symbionts into a more ‘marginal’ habitat from that of the putative progenitor 

(C100) is consistent with hybrid speciation, since niche partitioning is often a necessary 

precursor for this mode of divergence (Buerkle et al. 2000). However, while morphological, 

physiological and ecological evidence may allude to hybrid speciation, this process can be 

notoriously difficult to demonstrate. In order to provide convincing evidence that a species is 

of hybrid origin, natural selection should favour similar gene combinations in experimental 

crosses (i.e. synthetic hybrids) under similar environmental conditions (e.g. Rieseberg et al. 

2003). Yet even this may be insufficient to unambiguously confirm a species’ genealogical 

origin (Morrell & Rieseberg 1998). 

Frequent hybridization: Another scenario that could explain the genotypic clustering 

patterns observed in chapter 2 is that Symbiodinium C100 and C109 remain reproductively 

compatible. Under this scenario, the cluster of genetically heterogeneous Symbiodinium cells 

may arise from frequent hybridization events, and hybrids may occasionally backcross to the 

parental types. If this is the case, where and when does hybridization occur? The majority of 

adult coral colonies appear to host just one or a few Symbiodinium clones, and symbiont 

reproduction appears to be exclusively asexual when in hospite (LaJeunesse et al. 2012). 

Here, symbionts are enclosed in membrane-bound vacuoles within the host’s gastrodermal 

cells (see Davy et al. 2012), presumably preventing them from accessing potential mates. 

Furthermore, theory predicts that hosts should actively limit the reproductive opportunities of 

the symbionts, in order to prevent symbiotic disruption arising from competition between 

closely-related individuals (Frank 1996a). It therefore seems unlikely that Symbiodinium 

sexual reproduction occurs in the multicellular coral host. By contrast, free-living 

Symbiodinium cells can be highly mobile, showing directed movement towards chemical and 

physical cues (Fitt 1984; Hollingsworth et al. 2005; Pasternak et al. 2006), and existing in 
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high densities in the reef sediment and water column (Coffroth et al. 2006; Littman et al. 

2008; Pochon et al. 2010; Takabayashi et al. 2011). The unlimited access to potential mates 

suggests that the symbionts of horizontally-transmitting corals probably undergo sexual 

reproduction outside of the host (Trench 1997; but see Baums et al. 2014). However, 

extensive recombination of alleles has also occurred in S. glynni populations isolated from 

closely related, vertically-transmitting Pocillopora spp. in the Gulf of California (Pettay et al. 

2011). This is clearly at odds with the theory that symbiont sexual reproduction occurs 

exclusively ex hospite. 

Frank (1996a) suggested that symbiotic hosts may derive adaptive benefit from the 

delineation of symbionts into transmissible germ lineages and non-transmissible somatic 

lineages. If a portion of a coral’s symbionts are sexual, and these symbionts are transmitted to 

the progeny, then symbiont fusion, plasmogamy and recombination may occur early during 

the host’s ontogenetic development. The ovum of vertically-transmitting corals presents a 

unique situation where several non-clonal symbionts coexist within a single host cell. 

Information on the assortment of symbionts into the ovum is scarce (Davy & Turner 2003; 

Davy et al. 2012); however Padilla-Gamiño et al. (2012) showed that Hawaiian Montipora 

capitata colonies release eggs containing between 2300 and 4200 Symbiodinium cells, and 

many eggs contain distinct symbiont consortia from that of the parent colony. These authors 

suggested that adaptive diversification may result from the selective assortment of symbionts 

into gametes. The hypothesis outlined here takes the suggestion of Padilla-Gamiño et al. 

(2012) a step further, by proposing that under certain conditions, an adaptive advantage may 

be realized by both partners if symbiont sexual reproduction occurs in synchrony with that of 

the host. Under this scenario, the onset of symbiont sexual reproduction occurs in the host 

gamete, zygote and/or developing embryo. Natural selection then acts on a cohort of coral 

juveniles with a wide range of genotypes and hosting a wide range of recombinant symbionts, 

thus conferring maximum likelihood of hitting a vacant ‘adaptive peak’ (see Figure 6.1). 

It is not unusual for symbiont sexual reproduction to occur in synchrony with that of the host. 

For example, the dinoflagellate Peridinium balticum and its membrane-bound endosymbiotic 

heterokont (Bacillariophyta) undergo concomitant sexual reproduction (Chesnick & Cox 

1987). Indeed, major hybridization events in symbiont lineages appear to track those of their 

hosts. For example, a hybrid poplar was widely grown in California on account of its 

resistance to the two rust pathogens that infected its parent species (Melampsora medusa, the 

parasite of Populus deltoids, and M. occidentalis, the parasite of P. trichocarpa). However, in 
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1997 these pathogens crossed to produce the hybrid species Melampsora × columbiana, 

which was able to infect the hybrid poplar (Newcombe et al. 2000). In another example, the 

tall fescue grass Lolium arundinaceum (=Festuca arundinacea) and its fungal endosymbiont 

Neotyphodium × coenophialum have each undergone two separate hybridizations, 

culminating in the combination of three plant genomes and three fungal genomes (Tsai et al. 

1994; Humphreys et al. 1995; Schardl & Craven 2003; Moon et al. 2004). 

The possibility that P. damicornis and its symbionts have undergone synchronous 

hybridization presents an interesting topic for investigation. P. damicornis undergoes 

extensive hybridization in nature (Combosch et al. 2008), and shows a predominantly sexual 

reproductive mode at Lord Howe Island, where it is even known to undergo intergeneric 

hybridization with Stylophora pistillata (Miller & Ayre 2004). While sexual reproduction in 

P. damicornis appears to be more prevalent at marginal reefs, the majority of offspring 

produced are brooded asexual larvae, and the cryptic simultaneous broadcast-spawning of 

gametes can be difficult to detect (Combosch & Vollmer 2013). As such, testing the 

hypothesis that the reproductive mode of the symbiont is intertwined with that of the host will 

likely require a population genetics approach, tracking the genealogical origins of both 

symbiotic partners over several generations. In the interim, the feasibility of this hypothesis 

may be assessed by evaluating the potential costs and benefits in terms of host fitness. 

 

6.1.2.2. How does symbiont hybridization affect coral fitness? 

The occurrence of natural hybridization between symbiotic dinoflagellates may have a major 

influence on the fitness of the coral host. Symbiont-derived compounds constitute the 

primary source of energy for reef-building corals (Muscatine 1990; but see Grottoli et al. 

2006), and hence even minor disparities in photosynthetic performance can have a profound 

impact on the host’s ability to survive and reproduce (e.g. Cantin et al. 2009). Symbiont 

hybridization may therefore be detrimental to the host if hybrid breakdown inhibits 

performance, but similar microbe-associated molecular patterns are inherited (MAMPs; see 

Davy et al. 2012) and hence the host is unable to recognize deleterious hybrids. Alternatively, 

symbiont hybridization may benefit host fitness through the instantaneous production of a 

novel asexual lineage with increased competitive ability (Stebbins 1950) and a ‘clean slate’ 

from deleterious mutations.  
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The effects of symbiont hybridization on host fitness are highlighted by the example of 

symbiotic fungi in the genera Epichloë and Neotyphodium. These endophytic ascomycetes 

infect cool-season grasses of the family Poaceae (subfamily Poöideae), an association that 

spans the parasitism-mutualism continuum. Most asexual Neotyphodium spp. symbionts are 

of hybrid origin (Schardl et al. 1994; Tsai et al. 1994; Moon et al. 2004; Hamilton et al. 

2009), a process that has been implicated in their recent radiation (Tsai et al. 1994). 

Hybridization has also been central to the evolution of mutualism in Neotyphodium spp., 

which are transmitted from parent to offspring and offer a wide range of adaptive benefits to 

their hosts. For example, repeated hybridization events have led to the accumulation of 

alkaloid-production genes in the hybrid species Neotyphodium × coenophialum, which can 

produce three of the four known classes of endophyte- associated anti-herbivore alkaloids 

(Clay & Schardl 2002). Indeed, grasses hosting asexual Neotyphodium hybrids often show 

increased fitness compared to those that host ‘pure’ types, including resistance to herbivory 

and disease, and the ability to survive in extreme environments (Malinowski & Belesky 2000; 

Clay & Schardl 2002; Hamilton et al. 2009; Saari & Faeth 2012). By contrast, the 

horizontally-transmitted, sexual progenitor Epichloë sp. can reduce host fitness by ‘hijacking’ 

the plant’s reproductive structures in order to facilitate spore dispersal (choke disease; 

Schardl & Clay 1997). Hybridization may also benefit both symbiotic partners by preventing 

the accumulation of deleterious mutations in a vertically-transmitted symbiont lineage (i.e. 

the counteraction of Muller’s ratchet; Muller 1964; Felsenstein 1974). The occasional 

recombination that occurs between Neotyphodium and Epichloë lineages is thought to play a 

key role in preventing ‘ratchet clicks’ in mutualistic fungal endophytes (Schardl et al. 1991; 

Clay & Schardl 2002; Schardl & Craven 2003). While fungal hybridization outside the 

symbiosphere is uncommon, the diverse array of fungal hybrids in vertically-transmitting 

grasses implies a host role in the outcrossing process (Clay & Schardl 2002). It is not known 

whether the host actively selects beneficial asexual hybrid genotypes or the particular 

ecological niche simply favours hybrids when they occur (Schardl & Craven 2003; Moon et 

al. 2004). However, the hybrid fungal endophyte example serves to illustrate the substantial 

fitness benefits that a host may derive from symbiont hybridization. 

The corals that were dominated by putative hybrid symbionts in this study showed significant 

reductions in overall photosynthetic performance (P:R; see chapter 4). Yet these colonies did 

not suffer from decreased growth rates or higher mortality in the field (chapter 5). The 

apparent uncoupling of symbiont photosynthetic performance and host fitness suggests that 
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corals may realize compensatory adaptive benefits from hosting hybrid Symbiodinium. The 

literature on fungal-plant mutualisms suggests that these benefits could include an increased 

ability to survive in extreme environments, a reduced risk of symbiont virulence, the 

production of secondary compounds, and the release from mutation accumulation in 

vertically-transmitted symbiont lineages. This suite of potential adaptive benefits indicates 

that the coral host may indeed play an active role in the creation of new symbiont lineages. 

 

6.1.2.3. What are the evolutionary implications of symbiont hybridization?  

Hybridization can expedite the evolutionary process by providing the raw genetic material 

necessary for adaptation (Anderson 1949). In spatial areas where related species hybridize 

frequently (‘hybrid zones’), fertile F1 hybrids may ‘backcross’ with individuals from one or 

both progenitor populations. The mating of progenitors with progressively later-generation 

backcross genotypes can lead to the migration of genetic material between lineages 

(introgression; see Figure 2.1b). Introgressive hybridization can incur profound evolutionary 

consequences for the recipient population(s). These range from the introduction of ‘genetic 

pollution’ to a native lineage (even leading to extinction; reviewed in Rhymer & Simberloff 

1996) to the acquisition of novel genetic diversity, providing a ‘fast track’ to adaptive 

evolution (Anderson & Stebbins 1954; Lewontin & Birch 1966; Arnold & Martin 2010). 

Adaptive trait introgression may be particularly important in a changing environment, since 

this mechanism can confer rapid evolutionary modification. In their pioneering experiments 

on the fruit fly Dacus tryoni, Lewontin & Birch (1966) showed that the introduction of genes 

from another species (Dacus neohumeralis) was responsible for substantial changes in 

thermal optima, despite the absence of heterosis (i.e. F1 hybrids and backcross generations 

were less fit than either progenitor). The introgressive transfer of thermally-adaptive gene 

combinations was thus identified as the mechanism underlying the rapid shift southward of 

this invasive Australian pest during the twentieth century (Lewontin & Birch 1966). 

Introgressive hybridization can lead to rapid evolution in symbiont lineages, with important 

effects on their mutualistic scope. Recent studies, particularly those focussed on plant-

pathogen interactions, have revealed extensive evolutionary developments arising from 

introgression. These can range from the acquisition of new host specificities and pathogenic 

aggressiveness to the adaptive divergence of new symbiont taxa (Brasier 1995, 2000; Et-

Touil et al. 1999; Brasier et al. 1999; Schardl & Craven 2003). A particularly well studied 
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case is the fungal agent of Dutch elm disease, Ophiostoma novo-ulmi, the cause of 

devastating losses of elms across Europe, Asia and America. While O. novo-ulmi × O. ulmi 

F1 hybrids are severely unfit and are quickly outcompeted by parental taxa, they serve to 

provide a bridge for unidirectional flow of genes, and possibly even viruses (Brasier 2001). 

O. novo-ulmi recently acquired the pathogenicity gene Pat1 from O. ulmi via introgressive 

hybridization, a factor implicated in its increased virulence and concomitant intercontinental 

spread (Et-Touil et al. 1999).  

Introgression can represent an especially potent macro-evolutionary force in haplontic 

organisms, particularly those with rapid generation times (Schardl & Craven 2003). The 

potential for accelerated Symbiodinium evolution through introgressive hybridization may 

therefore have profound implications for corals in a shifting adaptive landscape. In particular, 

the transfer of genes between divergent Symbiodinium lineages has the potential to produce 

novel, host-compatible algal phenotypes, facilitating rapid adaptation of the symbiosis to 

warming ocean temperatures. In plants, introgressive hybridization can even lead to the 

transfer of chloroplasts between lineages (‘chloroplast capture’; Rieseberg & Soltis 1991). 

Chloroplast capture could have major implications for corals, since the symbiont chloroplast 

has been identified as a key target for oxidative damage, a precursor to thermal bleaching 

(reviewed in Lesser 2006). Yet the occurrence of introgression depends on many factors, 

including the frequency of hybridization events, the regions of the genome that are permeable 

to gene-flow, the relative fitness of each hybrid and backcross genotype, and the associated 

genotype × environment interactions (Barton 2001; Arnold 2007; Taylor et al. 2009). The 

abundance of putative Symbiodinium hybrids observed within many P. damicornis colonies 

suggests that a fitness advantage may be realized by some hybrid genotypes/classes under 

certain conditions; however further analyses of multiple diagnostic loci are needed to confirm 

this. The potential for introgression to expedite coral adaptation highlights the need to make 

timely progress in this area. 

 

6.1.2.4. Could hybridization be applied to improve reef resilience? 

The profound influence of hybridization on species evolution makes it a potentially powerful 

tool for restoring ecological systems. Attempts to improve habitats impacted by human 

activity can be enhanced by the directed translocation and/or outcrossing of individuals, with 

the intention of facilitating adaptation to changing conditions (assisted gene flow or AGF; 
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Aitken & Whitlock 2013). AGF is an emerging field that holds promise for mitigating 

maladaptation in a rapidly shifting adaptive landscape (Thomas et al. 2013; Aitken & 

Whitlock 2013). However, there are several risks associated with restorative outcrossing, 

including the dilution of locally-adapted alleles (Montalvo & Ellstrand 2000; Fenster & 

Galloway 2000), the segregation of co-adapted gene complexes (Edmands 2007; Schiffers et 

al. 2013), the introduction of ‘genetic pollution’(Rhymer & Simberloff 1996; Hufford & 

Mazer 2003), and in the case of symbiotic organisms, the stimulation of virulence (Brasier 

2001). These factors could impart unforeseeable, possibly unmanageable consequences, and 

hence extensive feasibility assessments are necessary before any genetic interventions should 

be considered (Thomas et al. 2013).  

For corals, the genetic enhancement of host-symbiont combinations through directed 

hybridization could enable the introduction of pre-adapted host-symbiont combinations to 

denuded reefs. These actions may expedite the restoration process and promote increased 

resilience to future environmental perturbation. Human-assisted evolution of symbiotic 

dinoflagellates could yield particularly effective results, due to their short generation times 

and known potential for rapid adaptation (van Oppen et al. 2011; Howells et al. 2011). 

Initially, establishing the efficacy of AGF in Symbiodinium would benefit from research 

aimed at inducing the sexual life cycle, determining the frequency and location of 

hybridization events, establishing barriers of genetic exchange, and identifying areas of the 

genome permeable to introgressive gene flow. While such ‘evolutionary rescue’ is 

fundamentally reactive in scope, this emerging area of research is a priority due to the 

continued reef degradation caused by human activity. 

 

6.1.3. Concluding remarks 

While usually deleterious in nature, hybridization can occasionally produce a fit individual 

whose genetic contribution can have a disproportionately large influence on adaptation. The 

resulting burst of genetic variation can provide evolutionary innovation two or three orders of 

magnitude greater than that offered by the gradual accumulation of mutations (Grant & Grant 

1994). The immense biodiversity and ecosystem services provided by the world’s coral reefs 

emphasize the need to better understand the ‘macro-evolutionary’ potential of the many 

species constituting the coral holobiont. In particular, the integral roles of the symbiotic alga 

Symbiodinium in coral productivity, reef accretion and thermal bleaching highlight the critical 
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importance of this research. This thesis takes a tentative step forward by providing indirect 

evidence of natural hybridization between two Symbiodinium lineages. Gaining a wider 

understanding of sexual reproduction and hybridization in both the host and the symbiont is 

needed to assess the potential for coral adaptation, both natural and human-assisted, as our 

destructive activity continues to jeopardize their future. 
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Table A.1 Genbank accession numbers for sequences used in rDNA phylogeny (Figure 1.4) 

Alphanumeric designation Species name Genbank accession number(s)  

A1 Symbiodinium microadriaticum AF333505, U63483 

A2 Symbiodinium pilosum AF333506, JN558097, AF060894 

A3 ‘Symbiodinium fitti’ AF333507, JN558091, KF364601 

A4  Symbiodinium linucheae AF427465, AY074949, AF333509 

AIII Symbiodinium natans AB704015, AB704056, EU315917 

B1 Symbiodinium minutum AF333511, JN558059, AF060892 

B2 Symbiodinium psygmophilum AF333512, JN558061 

C1 Symbiodinium goreauii AF333515, JN558040, JN558041 

C3  AB 294654, EU786077, FJ529524, JF834208, J834209 

C3nt  FJ529569, FJ529594-FJ529604, FJ529530 

C8a  FJ529563, FJ529612-FJ529619, FJ529526 

C33  FJ529566, FJ529567, AY258498, AY765400, FJ529532 

C33a  FJ529564, FJ529565, FJ529624- FJ529626, FJ529531 

C35a  FJ529559, FJ529584-FJ529593, FJ529529, EF541146, EU808002, AY258501 

C42a  FJ529561, FJ529634-FJ529655, FJ529525, HQ650837 

C78a  FJ529562, FJ529605-FJ529611, FJ529527, EU808000 

C79  FJ529560, FJ529570-FJ525581, FJ529528, AY765414, EU807997 

C91  AJ291519, JN558048 

D1a Symbiodinium trenchii EU074894, EU074898, EU074903-EU074906, JN558078, KJ019889, KF740689 

D1 ‘Symbiodinium glynni’ AF334660, JN558075, JN558076, AF396626-AF396628, JN601885, DQ312315 

E1 Symbiodinium voratum AF334659, JN558084- JN558086, KF364603- KF364605 

F1 Symbiodinium kawagutii AF360577, AF333517, JN558066, AF427462 

F2  AF333516, JN558065, KF740673 

G  AJ291537 

H  AJ291513 

I  FN561559 

 Polarella glacialis GQ375263, AB704041, AB704042, FJ939578, AY571373 

 Protodinium simplex JF791031, AY686651, JN558103, AF060900 

*Species names in inverted commas are yet to be formally described 
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Table A.2 Deposition of novel internal transcribed spacer 2 (ITS2) sequence (chapter 2) 

> KJ530690 Symbiodinium sp. C109 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, 

complete sequence; and 28S ribosomal RNA gene, partial sequence 

 

AACCAATGGCCTCCTGAACGTGCGTTGCACTCTTGGGATTTCCTGAGAGTACGTCTGCTTCAGTGC

TTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTGCCTTGCGTTCTTATGAGCTATTGCCCTCT

GAGCCAATGGCTTGTTAATTGCTTGGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTAC

CTTCGTGGTTTTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGCCTCTA

GCATGAAGTCAGACAAGTGA 

 

 

Table A.3 ITS2 sequences used in statistical parsimony network (Figure 2.2) 

Alphanumeric designation  Genbank accession number 

C1 (Symbiodinium goreauii) AF333515 

C1bb HM222430 

C100 HM222433 

C103 HM222435 

C109 KJ530690 

C118 HM222440 

C3 GU111863 

C3gg HM222431 

C3hh HM222432 

C3n EU449106 
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Table B.1 Standard curve analysis for nested qPCR (North Bay colonies; chapter 2) 

Assay 

 

Template 

sequence 

Concentration 

(ng µl
-1

) 

Concentration 

(copies µl
-1

) 

Mean Ct 

 

Slope 

 

Intercept 

 

Efficiency 

 

C100
+
  C100 1 x 10

-3
 212345 7.66 -3.5255 26.472 96.08% 

(TaqMan)  1 x 10
-4

 21234 11.12    

  1 x 10
-5

 2123 14.91    

  1 x 10
-6

 212 18.34    

  1 x 10
-7

 21 21.68    

 C103 1 x 10
-3

 212345 -    

 C109 2.5 x 10
-3

 530862 -    

 C118 1 x 10
-3

 212345 -    

 C3 1 x 10
-3

 212345 -    

        

C100
-
  C109 2.5 x 10

-3
 530862 6.14 -3.5296 26.392 96.00% 

(TaqMan)  2.5 x 10
-4

 53086 9.66    

  2.5 x 10
-5

 5309 13.4    

  2.5 x 10
-6

 531 16.8    

  2.5 x 10
-7

 53 20.22    

 C103 1 x 10
-3

 212345 8.33 -3.5305 27.054 95.99% 

  1 x 10
-4

 21234 11.67    

  1 x 10
-5

 2123 15.45    

  1 x 10
-6

 212 18.54    

  1 x 10
-7

 21 22.51    

 C100 1 x 10
-3

 212345 -    

        

SYBR C100/C109  1 x 10
-3

 212345 5.79 -3.4024 23.775 98.37% 

  1 x 10
-4

 21234 8.9    

  1 x 10
-5

 2123 12.48    

  1 x 10
-6

 212 15.73    

  1 x 10
-7

 21 19.38    

Mean cycling threshold (Ct) values were calculated from triplicate reactions. Template solutions were 

plasmid-purified DNA of known ITS2 sequences. A C100/C109 mixture with CC100:CTOTAL = 0.5 was 

used for calibration of the SYBR assay. Dashes represent no-amplification reactions, and show an 

absence of cross-hybridization. R
2
 values exceeded 0.99 in all cases 
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Table B.2 Standard curve analysis for nested qPCR (Ned’s Beach colonies; chapter 2) 

qPCR 

assay 

Template 

sequence 

Concentration 

(ng µl
-1

) 

Concentration  

(copies µl
-1

) 

Mean Ct 

 

Slope 

 

Intercept 

 

Efficiency 

 

C100
+
  C100 6.67 x 10

-4
 142,271 7.66 -3.5325 30.057 95.95% 

  1 x 10
-4

 21,234 11.12    

  1 x 10
-5

 2,123 14.91    

  1 x 10
-6

 212 18.34    

  1 x 10
-7

 21 21.68    

        

 C109 1 x 10
-3

 212,344 -    

        

C100
-
  C109 1 x 10

-3
 212,344 6.14 -3.553 29.866 95.59% 

  2.5 x 10
-4

 53,086 9.66    

  2.5 x 10
-5

 5,309 13.4    

  2.5 x 10
-6

 531 16.8    

  2.5 x 10
-7

 53 20.22    

        

 C100 6.67 x 10
-4

 142,271 -    

Mean cycling threshold (Ct) values are calculated from triplicate reactions. Template solutions were 

plasmid-purified DNA of known ITS2 sequences (C100 or C109). Dashes represent no-amplification 

reactions, and show an absence of cross-hybridization. R
2
 values exceeded 0.99 in both cases. 
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Table B.3 Assay validation for TaqMan nested qPCR (chapter 2) 

Mixture 

 

CC100:CTOTAL 

(actual) 

Mean Ct (C100
+
) 

 

Mean Ct (C100
-
) 

 

CTOTAL 

(predicted) 

CC100:CTOTAL 

(predicted) 

1 1 18.45 - 188 1 

2 0.98 18.44 23.7 195 0.970 

3 0.9 18.53 21.26 207 0.863 

4 0.6 19.09 19.54 211 0.586 

5 0.4 19.67 19.08 203 0.418 

6 0.1 21.49 18.51 197 0.132 

7 0.02 24.99 18.38 189 0.014 

8 0 - 18.4 184 0 

Mixtures were generated from plasmid C100 and C109 template solutions diluted to approximately 

200 ITS2 copies µl
-1

. The assay predicted CC100:CTOTAL with a high degree of accuracy and precision 

(linear regression with constrained parameters; intercept = 0 and slope = 1; R
2
 = 0.998). Dashes 

represent no-amplification reactions, and show an absence of cross-hybridization. 

 

 

 

Figure B.1 Single-cell qPCR assay validation (chapter 2) 

The TaqMan qPCR assay was validated by: (a) testing with known mixtures of clonal DNA; and (b) 

comparing copy-number estimates for each Symbiodinium cell (North Bay colonies) with those 

obtained from the independent SYBR qPCR assay. TaqMan and SYBR qPCR methods gave highly 

congruent results, implying that the number of ITS2 copies present within the genome that were not 

detected by either TaqMan probe was negligible. 
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Table B.4 Mean Ct values for individual Symbiodinium cells (colony a; chapter 2) 

Branch C100 band C109 band Mean Ct (C100
+
) Mean Ct (C100

-
) Mean Ct (SYBR) CTOTAL (TaqMan) CTOTAL (SYBR) CC100:CTOTAL 

1 Y Y 19.72 20.89 16.97 2364 1998 0.6945 

 Y N 20.45 24.89 17.89 1077 1072 0.9505 

 N Y - 21.22 19.26 584 426 0 

 Y Y 19.32 20.73 16.65 2944 2479 0.7278 

 Y Y 19.75 20.69 16.84 2435 2178 0.6616 

 Y Y 21.43 21.69 18.12 970 917 0.5566 

 Y Y 20.52 21.13 17.35 1598 1542 0.6111 

 Y Y 21 22.25 18 1010 995 0.7049 

 Y N 19.37 21.24 16.65 2644 2482 0.7822 

 Y Y 20.69 22.4 17.88 1145 1083 0.7639 

2 Y Y 20.24 21.54 17.79 1645 1150 0.7126 

 Y Y 20.95 20.51 17.21 1662 1701 0.4424 

 Y Y 22.34 23.25 18.97 453 516 0.6561 

 Y Y 21.19 23.05 17.86 809 1097 0.7805 

 Y N 19.31 21.58 16.82 2606 2215 0.8233 

 Y Y 19.52 20.56 16.26 2767 3226 0.6758 

 Y Y 19.09 20.49 16.46 3426 2825 0.7254 

 Y Y 18.82 20.6 15.93 3828 4031 0.7721 

 Y Y 21.69 23.12 18.36 625 782 0.7288 

 Y N 19.89 22.1 17.16 1804 1758 0.8179 

3 Y Y 17.05 18.48 13.91 12896 15919 0.7292 

 Y Y 19.27 20.42 16.4 3200 2947 0.692 

 Y Y 22.08 22.78 18.5 565 710 0.625 

 Y N 18.97 20.5 16.26 3626 3224 0.7418 

 Y Y 19.3 21.02 16.5 2830 2755 0.7646 

 Y N 19.03 21.09 16.36 3210 3033 0.8025 

 Y Y 20.66 21.15 17.57 1504 1331 0.5924 

 Y Y 20.43 21.52 17.27 1515 1627 0.6826 

 Y Y 19.27 19.49 15.8 4004 4416 0.55 

 Y Y 19.53 20.26 16.73 2948 2360 0.6302 

C100- and C109-diagnostic DGGE bands are scored as present or absent (Y or N). Dashes represent no-amplification reactions 
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Table B.5 Mean Ct values for individual Symbiodinium cells (colony b; chapter 2) 

Branch C100 band C109 band Mean Ct (C100
+
) Mean Ct (C100

-
) Mean Ct (SYBR) CTOTAL (TaqMan) CTOTAL (SYBR) CC100:CTOTAL 

1 Y Y 20.14 21.99 17.3 1607 1603 0.7798 

 Y Y 18.72 21.25 16.17 3736 3446 0.8466 

 Y N 19.51 21.26 16.45 2459 2852 0.7682 

 Y N 20.13 22.74 17.35 1475 1550 0.8532 

 Y Y 19.99 21 16.87 2057 2138 0.672 

 Y Y 20.01 20.87 16.54 2094 2667 0.6499 

 Y Y 20.38 21.2 17.27 1663 1638 0.6434 

 Y N 19.43 21.45 16.57 2489 2626 0.7977 

 Y Y 18.57 20.84 16.02 4245 3812 0.8232 

 Y N 19.78 22.72 17.31 1800 1588 0.878 

2 N Y - 21.89 18.81 377 577 0 

 Y N 19.18 21.94 15.66 2708 4864 0.8653 

 Y Y 19.7 21.11 16.43 2298 2884 0.7276 

 N Y 25.18 20.74 18.32 848 801 0.0549 

 Y N 18.13 22.15 15.46 4974 5542 0.9361 

 Y N 19.55 22.19 16.98 2149 1987 0.8552 

 Y N 20.11 23.16 17.5 1439 1401 0.8853 

 Y Y 18.2 19.22 15.38 6597 5882 0.6727 

 Y N 20.35 22.96 17.78 1277 1160 0.8528 

 Y N 19.53 21.74 16.96 2282 2017 0.8178 

3 Y Y 20.52 21.88 17.75 1354 1178 0.7203 

 Y N 17.5 20.02 14.46 8302 10922 0.8462 

 Y Y 20.52 20.93 16.93 1683 2052 0.5812 

 Y Y 19.29 20.1 15.87 3393 4212 0.6438 

 Y N 20.54 26.28 17.9 985 1066 0.9781 

 Y N 19.55 22.53 17.3 2088 1602 0.8808 

 Y N 19.33 21.03 16.51 2783 2727 0.7626 

 Y Y 18.92 20.34 16.24 3803 3289 0.7279 

 Y N 17.97 20.34 15.47 6187 5535 0.832 

 Y N 17.61 21.04 15.35 7168 5981 0.9082 

C100- and C109-diagnostic DGGE bands are scored as present or absent (Y or N). Dashes represent no-amplification reactions  
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Table B.6 Mean Ct values for individual Symbiodinium cells (colony c; chapter 2) 

Branch C100 band C109 band Mean Ct (C100
+
) Mean Ct (C100

-
) Mean Ct (SYBR) CTOTAL (TaqMan) CTOTAL (SYBR) CC100:CTOTAL 

1 Y N 16.87 20.74 14.57 11391 10152 0.9299 

 Y N 17.88 23.9 15.67 5557 4834 0.9817 

 Y N 17.36 23.9 14.87 7778 8259 0.9869 

 Y N 16.54 21.34 14.3 13651 12210 0.9603 

 Y N 17.24 21.22 14.7 8895 9301 0.9345 

 Y N 17.6 21.65 15.19 7026 6683 0.9372 

 Y N 15.67 20.37 13.25 24149 24764 0.958 

 Y N 16.18 21.75 13.64 17066 18997 0.9757 

 Y N 17.6 21.96 15.23 6915 6473 0.9478 

 Y N 17.77 22.99 15.44 6048 5620 0.9695 

2 Y N 17.93 23.1 15.07 5460 7233 0.9686 

 Y N 16.14 20.73 13.7 17854 18335 0.955 

 Y N 17.12 21.02 14.57 9625 10166 0.931 

 Y N 15.4 19.49 12.91 29461 31310 0.9388 

 Y N 17.16 20.78 14.71 9559 9239 0.9184 

 Y N 17.35 22.28 14.95 8019 7854 0.9635 

 Y N 18.47 21.43 15.46 4231 5547 0.8799 

 Y Y 21.24 20.95 18.07 1305 951 0.4659 

 Y N 17.45 21.7 15.18 7667 6733 0.9445 

 Y N 17.31 23.75 15.01 8034 7554 0.986 

3 Y N 16.84 20.33 14.19 11815 13153 0.9116 

 Y N 16.89 21.16 14.46 11056 10918 0.945 

 Y N 17.35 21.32 14.98 8266 7697 0.9338 

 Y Y 19.52 20.56 16.7 2776 2396 0.6758 

 Y N 17.15 20.7 14.59 9661 10009 0.9149 

 Y N 16.87 22.02 14.37 10947 11643 0.9684 

 Y N 17.38 20.77 15.05 8387 7339 0.9066 

 Y N 16.88 21.62 14.43 10956 11144 0.959 

 Y N 17.65 23.72 15.21 6491 6571 0.9824 

 Y N 17.32 21.89 14.82 8276 8585 0.9545 

C100- and C109-diagnostic DGGE bands are scored as present or absent (Y or N). Dashes represent no-amplification reactions  
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Table B.7 Mean Ct values for individual Symbiodinium cells (colony d; chapter 2) 

Branch C100 band C109 band Mean Ct (C100
+
) Mean Ct (C100

-
) CC100 CTOTAL CC100:CTOTAL 

1 N Y 27.01 23.92 146 1092 0.1339 

 Y Y 23.26 23.75 1685 2741 0.6147 

 Y Y 23.63 23.56 1324 2515 0.5264 

 Y Y 24.01 24.49 1033 1685 0.6132 

 Y Y 24.64 25 683 1153 0.5925 

 Y Y 25.16 24.78 487 1029 0.4732 

 Y Y 22.58 23.16 2616 4164 0.6282 

 Y Y 25.02 25.36 533 905 0.589 

 Y Y 22.28 23.6 3192 4356 0.7327 

 Y Y 23.65 23.88 1307 2278 0.5737 

2 Y N 23.25 30.62 1690 1703 0.9928 

 Y Y 26.5 27.41 203 301 0.6741 

 Y Y 22.76 22.58 2334 4589 0.5086 

 Y N 23.13 25.44 1828 2180 0.8385 

 Y Y 21.98 22.47 3868 6282 0.6158 

 Y Y 20.69 20.98 8968 15307 0.5859 

 Y Y 28.19 28.94 68 104 0.6495 

 Y Y 23.4 23.88 1533 2501 0.613 

 Y Y 27.72 28.52 92 140 0.6565 

 Y Y 22.84 23.02 2208 3898 0.5665 

3 Y Y 26.96 27.41 151 250 0.6052 

 Y N 21.19 23.37 6474 7821 0.8278 

 Y Y 24.32 24.89 844 1349 0.6259 

 Y Y 21.67 22.19 4750 7653 0.6207 

 Y Y 25.2 25.73 476 769 0.6191 

 Y Y 26.77 27.69 171 253 0.6753 

 Y Y 27.33 27.98 118 186 0.6354 

 Y N 19.94 23.11 14622 16221 0.9014 

 N Y 32.31 24.13 5 828 0.0056 

 Y Y 21.27 21.6 6145 10400 0.5908 

C100- and C109-diagnostic DGGE bands are scored as present or absent (Y or N). Dashes represent no-amplification reactions  
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Table B.8 Mean Ct values for individual Symbiodinium cells (colony e; chapter 2) 

Branch C100 band C109 band Mean Ct (C100
+
) Mean Ct (C100

-
) CC100 CTOTAL CC100:CTOTAL 

1 Y N 20.81 28.04 8320 8386 0.9922 

 Y N 23.74 30.54 1232 1245 0.9896 

 Y N 23.73 25.9 1236 1498 0.825 

 Y Y 23.6 25 1350 1820 0.7418 

 Y Y 23.34 25.19 1599 2013 0.7943 

 Y N 21.36 24.31 5814 6548 0.8878 

 Y N 24.62 27.33 692 796 0.8696 

 Y N 18.78 25.26 31145 31541 0.9875 

 Y N 19.48 23.86 19799 20783 0.9527 

 Y Y 21.75 22.94 4494 6274 0.7163 

2 Y Y 20.66 22.41 9175 11692 0.7847 

 Y Y 21.5 22.69 5307 7399 0.7172 

 Y N 21.45 26 5482 5727 0.9572 

 Y N 20.24 26.01 12025 12268 0.9802 

 Y Y 23.67 24.45 1290 1959 0.6585 

 Y N 21.99 24.35 3843 4557 0.8434 

 Y N 22.37 29.11 3010 3042 0.9893 

 Y N 22.58 29.74 2625 2646 0.9918 

 Y N 20.32 27.56 11414 11503 0.9923 

 Y N 27.74 29.88 91 111 0.8204 

3 Y N 23.64 30.62 1315 1328 0.9908 

 Y N 24.39 31.05 804 813 0.9885 

 Y N 24.83 31.47 604 611 0.9884 

 Y N 19.83 23.11 15709 17308 0.9076 

 Y N 21.34 26.63 5890 6053 0.973 

 Y Y 21.05 23.12 7092 8681 0.817 

 Y Y 26.72 27.19 176 290 0.6077 

 Y N 21.76 26.76 4479 4629 0.9676 

 Y N 23.07 27.5 1907 2000 0.9535 

 Y N 22.19 24.91 3373 3870 0.8717 

C100- and C109-diagnostic DGGE bands are scored as present or absent (Y or N). Dashes represent no-amplification reactions  
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Table B.9 Mean Ct values for individual Symbiodinium cells (colony f; chapter 2) 

Branch C100 band C109 band Mean Ct (C100
+
) Mean Ct (C100

-
) CC100 CTOTAL CC100:CTOTAL 

1 Y N 27.91 30.16 81 98 0.8306 

 Y Y 26.25 28.12 240 302 0.7947 

 Y N 24.37 32.07 815 819 0.9941 

 Y Y 22.59 23.17 2608 4146 0.629 

 Y Y 22.83 22.84 2230 4135 0.5393 

 Y Y 22.68 23.59 2459 3627 0.678 

 Y Y 22.44 22.12 2866 5904 0.4855 

 Y N 21.9 29.65 4075 4098 0.9944 

 Y N 24.68 32.27 666 670 0.9937 

 Y Y 28.9 30.18 43 59 0.7227 

2 Y N 21.77 26.08 4450 4684 0.9502 

 N Y 32.94 23.46 3 1274 0.0024 

 Y N 23.09 30.7 1882 1894 0.9938 

 Y Y 20.99 21.69 7375 11389 0.6476 

 Y Y 25.18 25.07 480 929 0.5169 

 Y Y 28.12 29 71 106 0.6678 

 Y Y 26.99 27.55 148 238 0.622 

 Y N 24.51 28 746 813 0.9173 

 Y N 23.56 30.55 1386 1399 0.9908 

 Y Y 22.92 23.87 2096 3073 0.682 

3 Y Y 21.99 22.88 3843 5693 0.675 

 Y N 22.93 26.7 2082 2239 0.9303 

 Y N 19.57 21.65 18671 22777 0.8197 

 Y Y 22.88 24.71 2151 2717 0.792 

 Y Y 24.29 25.36 861 1233 0.6982 

 Y Y 25.27 25.73 455 746 0.609 

 Y N 23.4 30.44 1538 1552 0.9911 

 Y Y 23.84 23.76 1154 2201 0.5246 

 Y N 22.78 26.21 2304 2518 0.9151 

 Y Y 22.82 23.23 2237 3717 0.6019 

C100- and C109-diagnostic DGGE bands are scored as present or absent (Y or N). Dashes represent no-amplification reactions 
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Table B.10 Standard curve parameter estimation for bulk-cell qPCR analysis (chapter 3) 

qPCR 

assay 

Template 

sequence 

Concentration 

(ng µl
-1

) 

Concentration  

(copies µl
-1

) 

Mean Ct 

 

Slope 

 

Intercept 

 

Efficiency 

 

C100
+
 C100 1 x 10

-2
 2,123,448 15.41 -3.379 36.873 98.84% 

  1 x 10
-3

 212,345 18.87    

  1 x 10
-4

 21,234 22.16    

  1 x 10
-5

 2,123 25.91    

  1 x 10
-6

 212 29.2    

  1 x 10
-7

 21 32.11    

        

 C109 2.5 x 10
-2

 5,308,621 -    

        

C100
-
 C109 2.5 x 10

-2
 5,308,621 14.59 -3.373 37.119 98.96% 

  2.5 x 10
-3

 53,0862 17.83    

  2.5 x 10
-4

 53,086 20.68    

  2.5 x 10
-5

 5,309 24.94    

  2.5 x 10
-6

 531 27.82    

  2.5 x 10
-7

 53 31.35    

        

 C100 1 x 10
-2

 2,123,448 -    

Mean cycling threshold (Ct) values are calculated from triplicate reactions. Template solutions were 

plasmid-purified DNA of known ITS2 sequences (C100 or C109). Dashes represent no-amplification 

reactions, and show an absence of cross-hybridization. R
2
 values exceeded 0.99 in both cases. 
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Table B.11 Nested analysis of spatial variance in SH:ST (chapter 3) 

Site ID Branch C100 band C109 band Mean Ct (C100
+
) Mean Ct (C100

-
) CC100 CC100

-
 CTOTAL C100:CTOTAL SH:ST 

Sylph's  1 1 Y N 21.62 25.6 32698 2609 35306 0.926 0.154 

Hole 
 

2 Y N 21.14 25 45173 3915 49088 0.92 0.172 

  
3 Y N 21.35 25.76 39250 2338 41588 0.944 0.1 

 
2 1 Y Y 25.63 27.89 2128 545 2673 0.796 0.49 

  
2 Y Y 20.25 22.52 82843 21228 104071 0.796 0.49 

  
3 Y Y 24.44 26.85 4772 1111 5883 0.811 0.457 

 
3 1 Y Y 27.33 29.28 666 210 876 0.76 0.562 

  
2 Y Y 25.36 27.41 2561 755 3317 0.772 0.539 

  
3 Y N 22.7 24.7 15628 4795 20423 0.765 0.552 

 
4 1 Y N 28.55 31.85 290 37 326 0.888 0.264 

  
2 Y N 29.61 33.31 141 13 155 0.913 0.194 

  
3 Y N 19.33 22.88 155268 16667 171936 0.903 0.222 

 
5 1 Y N 24.02 27.7 6379 620 7000 0.911 0.198 

  
2 Y N 25.83 29.73 1856 156 2012 0.923 0.165 

  
3 Y N 24.96 28.15 3348 455 3804 0.88 0.286 

North  6 1 Y Y 24.97 26.87 3329 1096 4426 0.752 0.576 

Bay 
 

2 Y Y 24.02 25.85 6347 2188 8535 0.744 0.592 

  
3 Y Y 23.42 25.25 9584 3295 12878 0.744 0.591 

 
7 1 Y N 26.8 30.26 958 108 1066 0.899 0.235 

  
2 Y N 24.22 27.56 5540 683 6223 0.89 0.259 

  
3 Y N 23.58 27.08 8588 947 9535 0.901 0.229 

 
8 1 Y N 20.95 24.51 51669 5464 57133 0.904 0.219 

  
2 Y N 22.43 26.03 18771 1942 20714 0.906 0.213 

  
3 Y N 19.97 23.23 100557 13159 113717 0.884 0.275 

 
9 1 Y Y 23.87 26.07 7059 1889 8948 0.789 0.505 

  
2 Y N 23.94 26.44 6725 1468 8194 0.821 0.435 

  
3 Y N 23.38 25.35 9822 3091 12913 0.761 0.561 

 
10 1 Y Y 20.98 22.99 50532 15412 65944 0.766 0.55 

  
2 Y Y 24.43 26.25 4804 1672 6476 0.742 0.595 

  
3 Y Y 20.18 22.12 86928 28009 114936 0.756 0.569 

Comet's  11 1 Y N 24.86 27.08 3592 947 4539 0.791 0.5 

Hole 
 

2 Y Y 22.33 24.58 20130 5223 25353 0.794 0.494 

  
3 Y Y 22.1 24.26 23474 6483 29957 0.784 0.516 
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12 1 Y N 25.35 28.56 2579 346 2925 0.882 0.282 

  
2 Y N 20.42 24.04 73843 7566 81409 0.907 0.211 

  
3 Y N 20.68 24.29 62054 6376 68429 0.907 0.212 

 
13 1 Y Y 23.83 26.01 7245 1961 9206 0.787 0.509 

  
2 Y N 24.67 26.8 4099 1149 5248 0.781 0.521 

  
3 Y Y 26.12 28.19 1525 444 1968 0.774 0.534 

 
14 1 Y N 23.46 26.48 9335 1426 10761 0.867 0.32 

  
2 Y N 19.81 23.04 112118 14917 127035 0.883 0.28 

  
3 Y N 19.28 22.43 161302 22583 183885 0.877 0.294 

 
15 1 Y Y 27.65 29.84 536 144 680 0.789 0.506 

  
2 Y N 21.8 23.93 28813 8141 36954 0.78 0.524 

  
3 Y N 20.82 23.03 56351 15078 71430 0.789 0.505 

The Arch 16 1 Y N 23.18 26.02 11273 1949 13222 0.853 0.358 

  
2 Y N 22.68 25.84 15821 2213 18034 0.877 0.294 

  
3 Y N 22.6 25.62 16790 2572 19362 0.867 0.321 

 
17 1 Y Y 26.89 28.82 902 289 1191 0.757 0.567 

  
2 Y Y 23.93 25.86 6770 2171 8941 0.757 0.567 

  
3 Y Y 23.82 25.7 7288 2423 9711 0.75 0.58 

 
18 1 Y Y 23.82 25.21 7303 3399 10702 0.682 0.687 

  
2 Y Y 24.25 25.67 5443 2481 7924 0.687 0.681 

  
3 Y Y 22.44 23.86 18674 8506 27180 0.687 0.681 

 
19 1 Y Y 23.7 25.56 7906 2671 10576 0.747 0.585 

  
2 Y N 29.48 31.84 154 37 191 0.808 0.463 

  
3 Y N 26.05 28.05 1597 487 2084 0.766 0.55 

 
20 1 Y Y 24.4 25.56 4917 2664 7582 0.649 0.729 

  
2 Y Y 25.46 26.77 2387 1169 3556 0.671 0.702 

  
3 Y Y 25.82 27.19 1873 880 2753 0.68 0.69 

Malabar 21 1 Y Y 20.21 22.15 85302 27453 112755 0.757 0.569 

  
2 Y N 22.41 24.43 19120 5779 24899 0.768 0.547 

  
3 Y Y 20.22 22.02 84787 30006 114793 0.739 0.601 

 
22 1 Y Y 20.22 22.5 84570 21636 106206 0.796 0.489 

  
2 Y N 24.41 26.97 4879 1020 5899 0.827 0.42 

  
3 Y N 21.75 24.28 29954 6397 36351 0.824 0.428 

 
23 1 Y Y 21.88 23.82 27294 8748 36042 0.757 0.567 

  
2 Y Y 19.61 21.76 128258 35751 164009 0.782 0.519 
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3 Y Y 20.04 22.09 95688 28596 124284 0.77 0.543 

 
24 1 Y Y 22.62 24.6 16492 5157 21648 0.762 0.559 

  
2 Y Y 20.59 22.63 65731 19824 85555 0.768 0.546 

  
3 Y N 19.9 22.25 105462 25629 131091 0.804 0.472 

 
25 1 Y Y 21.92 23.76 26660 9119 35779 0.745 0.589 

  
2 Y N 20.55 22.53 67606 21174 88780 0.761 0.559 

  
3 Y Y 23.33 25.12 10159 3618 13777 0.737 0.603 

Sugarloaf  26 1 Y Y 24.12 26.01 5944 1963 7907 0.752 0.577 

West 
 

2 Y Y 25.46 27.31 2386 811 3197 0.746 0.587 

  
3 Y Y 23.19 25.21 11177 3394 14571 0.767 0.549 

 
27 1 Y Y 25.97 27.7 1690 622 2311 0.731 0.614 

  
2 Y Y 24.19 25.66 5664 2499 8163 0.694 0.671 

  
3 Y Y 23.61 25.09 8396 3682 12078 0.695 0.67 

 
28 1 Y Y 29.23 31.14 182 59 241 0.755 0.572 

  
2 Y Y 26.25 27.96 1388 520 1908 0.728 0.619 

  
3 Y Y 28.13 30.21 388 112 499 0.777 0.53 

 
29 1 Y N 23.61 25.89 8419 2130 10549 0.798 0.486 

  
2 Y N 24.45 26.89 4749 1078 5827 0.815 0.448 

  
3 Y N 25.57 28.06 2218 486 2705 0.82 0.436 

 
30 1 Y Y 23.62 25.06 8384 3757 12141 0.691 0.676 

  
2 Y Y 20.98 22.48 50567 21956 72523 0.697 0.667 

  
3 Y Y 23.51 25.24 9013 3334 12347 0.73 0.615 

Ned's  31 1 Y Y 22.18 23.91 22299 8260 30559 0.73 0.616 

Beach 
 

2 Y Y 22.51 23.94 17835 8098 25933 0.688 0.68 

  
3 Y Y 21.8 23.38 28896 11878 40775 0.709 0.65 

 
32 1 Y Y 24.84 25.2 3651 3424 7075 0.516 0.816 

  
2 Y Y 26.96 27.41 861 759 1620 0.532 0.812 

  
3 Y Y 23.4 23.86 9744 8561 18305 0.532 0.812 

 
33 1 Y N 21.65 24.39 31960 5936 37897 0.843 0.381 

  
2 Y N 25.06 27.64 3141 645 3786 0.83 0.414 

  
3 Y N 24.06 26.8 6204 1144 7349 0.844 0.379 

 
34 1 Y Y 22.34 23.89 19933 8366 28299 0.704 0.656 

  
2 Y Y 26.6 27.9 1098 542 1640 0.669 0.704 

  
3 Y Y 25.15 26.34 2946 1574 4520 0.652 0.725 

 
35 1 Y Y 21.72 23.97 30438 7936 38374 0.793 0.496 
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2 Y N 24.03 26.23 6313 1694 8007 0.788 0.506 

  
3 Y Y 23.29 25.28 10464 3231 13695 0.764 0.554 

Algal  36 1 Y Y 22.31 24.12 20411 7165 27576 0.74 0.598 

Hole 
 

2 Y Y 22.48 24.38 18165 5986 24150 0.752 0.577 

North 
 

3 Y Y 25.4 27.36 2480 780 3260 0.761 0.561 

 
37 1 Y Y 24.48 26.14 4661 1797 6458 0.722 0.629 

  
2 Y Y 23.09 24.76 11959 4614 16573 0.722 0.629 

  
3 Y Y 22.99 24.52 12878 5436 18314 0.703 0.658 

 
38 1 Y Y 21.16 23.3 44704 12503 57207 0.781 0.52 

  
2 Y Y 22.53 24.65 17613 4983 22596 0.779 0.524 

  
3 Y Y 19.95 21.99 101930 30586 132516 0.769 0.545 

 
39 1 Y N 20.62 22.96 64765 15802 80568 0.804 0.473 

  
2 Y N 21.47 23.79 36084 8931 45015 0.802 0.478 

  
3 Y N 21.93 24.45 26359 5692 32051 0.822 0.431 

 
40 1 Y N 21.38 23.72 38501 9381 47881 0.804 0.472 

  
2 Y N 22.39 24.92 19308 4138 23447 0.824 0.429 

  
3 Y N 18.3 20.74 313079 71992 385071 0.813 0.453 
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Table B.12 Variation in SH:ST along a depth gradient at The Arch (chapter 3) 

ID Depth (m) C100 band C109 band  Mean Ct (C100
+
) Mean Ct (C100

-
) CC100 CC100

-
 CTOTAL CC100:CTOTAL SH:ST  

1 9.5 Y Y 21.24 23.18 42460 13556 56016 0.758 0.566 

2 7.5 Y N 22.16 25.32 22613 3152 25765 0.878 0.293 

3 5.1 Y Y 20.6 22.47 65548 21976 87524 0.749 0.583 

4 4.4 Y N 26.12 28.44 1521 375 1896 0.802 0.477 

5 4.4 Y Y 22.34 24.72 20025 4753 24778 0.808 0.463 

6 9.7 Y N 21.04 23.64 48649 9939 58588 0.83 0.413 

7 7.5 Y Y 23.16 25.3 11401 3190 14591 0.781 0.52 

8 5.4 Y N 19.34 22.53 154749 21089 175838 0.88 0.287 

9 8.8 Y Y 20.3 22.23 80366 25883 106249 0.756 0.569 

10 11 Y N 23.77 26.49 7542 1421 8963 0.841 0.386 

11 11.6 Y Y 25.2 27.05 2854 966 3820 0.747 0.586 

12 4.4 Y N 27.34 29.49 662 183 844 0.784 0.516 

13 4.7 Y Y 20.12 22.16 90742 27213 117955 0.769 0.544 

14 4.8 Y N 20.96 23.65 51184 9847 61030 0.839 0.393 

15 10.8 Y Y 22.26 24.69 21140 4856 25997 0.813 0.452 

16 6.8 Y Y 21.82 23.05 28543 14876 43419 0.657 0.719 

17* 9.9 Y N 23.18 26.02 11273 1949 13222 0.853 0.358 

18* 11.1 Y Y 26.89 28.82 902 289 1191 0.757 0.567 

19* 10.2 Y Y 23.82 25.21 7303 3399 10702 0.682 0.687 

20* 10.6 Y Y 23.7 25.56 7906 2671 10576 0.747 0.585 

21* 11.6 Y Y 24.4 25.56 4917 2664 7582 0.649 0.729 

22 9.9 Y Y 21.86 23.76 27675 9134 36809 0.752 0.577 

23 11.2 Y Y 23.44 25.07 9442 3724 13167 0.717 0.636 

24 10.5 Y Y 22.36 23.7 19756 9532 29288 0.675 0.698 

25 11 Y Y 22.65 23.99 16239 7797 24036 0.676 0.696 

26 10.4 Y N 23.06 26.18 12250 1756 14006 0.875 0.301 

Asterisks indicate colonies used in nested analysis 
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Table B.13 Longitudinal analysis of temporal variation in SH:ST (chapter 3) 

Site ID Time Ct (C100
+
) Ct (C100

-
) CC100 CC100

-
 CTOTAL C100:CTOTAL SH:ST  

Comet's  1 Mar 2011 22.41 24.63 19090 5030 24119 0.791 0.5 

Hole 
 

Sep 2011 24.86 27.08 3592 947 4539 0.791 0.5 

 
 

Mar 2012 19.74 21.97 117800 31077 148877 0.791 0.5 

 
 

Sep 2012 18.68 20.94 242570 62740 305310 0.795 0.493 

 2 Mar 2011 20.88 24.06 54042 7424 61466 0.879 0.289 

 
 

Sep 2011 25.35 28.56 2579 346 2925 0.882 0.282 

 
 

Mar 2012 20.93 24.41 52327 5880 58207 0.899 0.234 

 
 

Sep 2012 19.38 22.89 150383 16518 166902 0.901 0.228 

 3 Mar 2011 27.8 30.07 485 123 608 0.797 0.487 

 
 

Sep 2011 23.83 26.01 7245 1961 9206 0.787 0.509 

 
 

Mar 2012 23.57 25.96 8675 2040 10715 0.81 0.46 

 
 

Sep 2012 20.83 23.16 55972 13777 69749 0.802 0.476 

 4 Mar 2011 19.14 22.42 177333 22833 200166 0.886 0.271 

 
 

Sep 2011 23.46 26.48 9335 1426 10761 0.867 0.32 

 
 

Mar 2012 21.26 24.24 41778 6560 48338 0.864 0.328 

 
 

Sep 2012 20.56 23.78 67451 8993 76444 0.882 0.28 

 5 Mar 2011 21.44 23.79 36954 8920 45875 0.806 0.469 

 
 

Sep 2011 27.65 29.84 536 144 680 0.789 0.506 

 
 

Mar 2012 21.82 24.3 28414 6301 34715 0.818 0.44 

 
 

Sep 2012 20.59 22.65 65985 19505 85491 0.772 0.539 

North  6 Mar 2011 22.37 24.26 19579 6514 26093 0.75 0.58 

Bay 
 

Sep 2011 23.42 25.25 9584 3295 12878 0.744 0.591 

 
 

Mar 2012 24.9 26.77 3500 1174 4673 0.749 0.583 

 
 

Sep 2012 21.82 23.53 28446 10662 39109 0.727 0.62 

 7 Mar 2011 23.5 27.17 9047 889 9935 0.911 0.201 

 
 

Sep 2011 26.8 30.26 958 108 1066 0.899 0.235 

 
 

Mar 2012 24.29 27.51 5288 706 5995 0.882 0.281 

 
 

Sep 2012 24.36 27.59 5057 668 5725 0.883 0.278 

 8 Mar 2011 19.95 23.65 101785 9855 111640 0.912 0.197 

 
 

Sep 2011 20.95 24.51 51669 5464 57133 0.904 0.219 

 
 

Mar 2012 21.09 24.34 46818 6158 52976 0.884 0.276 

 
 

Sep 2012 22.51 26 17804 1980 19784 0.9 0.231 

 9 Mar 2011 24.86 27.07 3582 951 4533 0.79 0.502 
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Sep 2011 23.87 26.07 7059 1889 8948 0.789 0.505 

 
 

Mar 2012 21.31 23.65 40406 9819 50225 0.804 0.472 

 
 

Sep 2012 21.07 23.49 47457 10949 58406 0.813 0.454 

 10 Mar 2011 23.06 25.26 12258 3272 15531 0.789 0.504 

 
 

Sep 2011 20.98 22.99 50532 15412 65944 0.766 0.55 

 
 

Mar 2012 24.37 26.36 5019 1551 6569 0.764 0.555 

 
 

Sep 2012 23.75 25.87 7654 2164 9818 0.78 0.524 

Sylph's  11 Mar 2011 22.3 26.37 20525 1539 22064 0.93 0.142 

Hole 
 

Sep 2011 21.62 25.6 32698 2609 35306 0.926 0.154 

 
 

Mar 2012 20.56 24.49 67320 5550 72870 0.924 0.161 

 
 

Sep 2012 18.14 21.94 350788 31739 382527 0.917 0.182 

 12 Mar 2011 25.97 28.12 1689 467 2156 0.784 0.516 

 
 

Sep 2011 25.63 27.89 2128 545 2673 0.796 0.49 

 
 

Mar 2012 19.35 21.56 153834 41070 194903 0.789 0.504 

 
 

Sep 2012 20.98 23.19 50579 13482 64061 0.79 0.504 

 13 Mar 2011 27.15 29.3 754 208 961 0.784 0.515 

 
 

Sep 2011 27.33 29.28 666 210 876 0.76 0.562 

 
 

Mar 2012 24.27 26.47 5358 1437 6795 0.788 0.506 

 
 

Sep 2012 19.57 21.66 132194 38247 170441 0.776 0.532 

 14 Mar 2011 25.08 28.4 3093 385 3477 0.889 0.261 

 
 

Sep 2011 19.33 22.88 155268 16667 171936 0.903 0.222 

 
 

Mar 2012 23.22 26.83 10997 1127 12124 0.907 0.211 

 
 

Sep 2012 19.49 23.03 139659 15004 154663 0.903 0.223 

 15 Mar 2011 21.17 25.08 44297 3716 48013 0.923 0.165 

 
 

Sep 2011 24.02 27.7 6379 620 7000 0.911 0.198 

 
 

Mar 2012 22.54 26.43 17497 1478 18975 0.922 0.166 
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Figure B.2 Site-correlation to estimate missing temperature data (chapter 3) 

Donor sites were either Algal Holes or Sugarloaf West, both of which had continuous temperature 

measurements available over the entire period. Circles represent monthly average temperatures during 

periods of simultaneous logging. Following correlation analysis, the parameters of the fitted line were 

used to predict missing monthly-temperature values. 
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Table B.14 Climate model parameters for eight LHI study sites (chapter 3) 

Site a b c d d + a d - a 2a R
2
 

Algal Holes 3.052 11.977 1.537 21.841 24.893 18.789 6.104 0.91 

Comet's Hole 3.271 11.985 -4.659 21.72 24.991 18.45 6.541 0.912 

Malabar 3.079 11.997 1.472 21.683 24.762 18.604 6.158 0.909 

Ned's Beach 3.217 12.007 1.48 21.637 24.854 18.42 6.434 0.919 

North Bay 3.159 12.07 -4.627 21.844 25.003 18.686 6.317 0.909 

Sugarloaf West 3.024 11.996 1.489 21.842 24.866 18.817 6.048 0.91 

Sylph's Hole 3.811 12.021 1.788 21.366 25.177 17.555 7.621 0.918 

The Arch 2.883 11.992 1.544 21.975 24.857 19.092 5.765 0.909 

The four sine-function parameters a, b, c and d represent the amplitude, period, phase shift and 

vertical shift, respectively. Parameter information can be interpreted as: d, mean temperature; d + a, 

temperature maximum; d – a, temperature minimum; 2a, seasonal temperature variability. 
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Table B.15 Calculation of SH:ST ratios for physiology analysis (chapter 4) 

Fragment no. Colony no. Temperature C100 band C109 band Ct (C100
+
) Ct (C100

-
) CC100 CTOTAL CC100:CTOTAL SH:ST 

1 1 25 °C Y Y 22.55 24 17284 25024 0.691 0.676 

2 2 25 °C Y Y 22.43 23.73 18871 28172 0.67 0.704 

3 3 25 °C Y N 22.16 24.52 22567 28021 0.805 0.47 

4 4 25 °C Y N 22.93 24.88 13362 17614 0.759 0.565 

5 5 25 °C Y Y 24.49 26.52 4622 6011 0.769 0.545 

6 6 25 °C Y Y 23.62 25.25 8337 11632 0.717 0.637 

7 7 25 °C Y N 21.94 25.05 26269 30049 0.874 0.302 

8 8 25 °C Y Y 22.45 24.11 18562 25734 0.721 0.63 

9 9 25 °C Y Y 24.52 26.75 4526 5709 0.793 0.497 

10 10 25 °C Y N 22.82 25.18 14422 17892 0.806 0.468 

11 11 25 °C Y N 23.89 25.96 6942 8979 0.773 0.537 

12 12 25 °C Y N 21.99 25.39 25410 28411 0.894 0.247 

13 13 25 °C Y N 22.52 26.23 17687 19376 0.913 0.194 

14 14 25 °C Y N 21.52 24.76 34956 39569 0.883 0.277 

15 15 25 °C Y N 20.94 24.61 51927 57050 0.91 0.202 

16 1 29 °C Y Y 24.1 25.45 6018 8908 0.676 0.696 

17 2 29 °C Y Y 23.69 24.93 7992 12106 0.66 0.716 

18 3 29 °C Y N 22.58 25.02 17004 20863 0.815 0.448 

19 4 29 °C Y N 23.36 25.42 9987 12930 0.772 0.538 

20 5 29 °C Y Y 24.63 26.65 4196 5464 0.768 0.547 

21 6 29 °C Y Y 23.39 25.12 9784 13403 0.73 0.616 

22 7 29 °C Y N 21.02 25.03 49136 52979 0.927 0.15 

23 8 29 °C Y Y 22.21 23.97 21872 29775 0.735 0.608 

24 9 29 °C Y N 24 25.95 6454 8498 0.759 0.563 

25 10 29 °C Y N 23.95 26.3 6688 8303 0.805 0.47 

26 11 29 °C Y N 24.22 26.18 5552 7306 0.76 0.562 

27 12 29 °C Y N 24.2 27.66 5617 6255 0.898 0.237 

28 13 29 °C Y N 23.48 26.83 9200 10320 0.891 0.255 

29 14 29 °C Y N 22.2 25.53 22071 24803 0.89 0.26 

30 15 29 °C Y N 21.84 25.38 28141 31168 0.903 0.223 
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Table B.16 Physiological diagnostics (chapter 4) 

Fragment 

no. 

Colony 

no. 

Treatment 

Temperature 

SH:ST 

 

Surface 

area (cm
2
) 

Host protein 

(mg cm
-2

) 

Symbiont density 

(x 10
3
 cells mg

-1
) 

Symbiont density  

(x 10
3
 cells cm

-2
) 

Chlorophyll a 

(pg cell
-1

) 

Chlorophyll c2 

(pg cell
-1

) 

Chlorophyll 

c2:a ratio 

1 1 25 °C 0.676 5.71 0.351 1314 461 3.98 0.97 0.243 

2 2 25 °C 0.704 5.29 0.754 952 717 2.46 1.26 0.491 

3 3 25 °C 0.47 6.58 0.436 1036 452 2.84 1.1 0.387 

4 4 25 °C 0.565 5.96 0.57 843 480 2.66 1.25 0.461 

5 5 25 °C 0.545 6.11 0.442 1052 465 2.8 1.27 0.458 

6 6 25 °C 0.637 4.38 0.489 1070 524 3.03 1.15 0.406 

7 7 25 °C 0.302 3.86 0.45 1582 713 3.05 0.97 0.294 

8 8 25 °C 0.63 6.38 0.313 1127 353 3.38 1.02 0.301 

9 9 25 °C 0.497 4.32 0.405 1325 537 3.03 1.1 0.362 

10 10 25 °C 0.468 5.16 0.508 1744 886 3.33 1.12 0.343 

11 11 25 °C 0.537 8.76 0.435 762 332 3.67 0.89 0.242 

12 12 25 °C 0.247 5.41 0.328 2461 807 2.84 0.9 0.317 

13 13 25 °C 0.194 7.26 0.462 1056 488 3.63 0.84 0.232 

14 14 25 °C 0.277 5.44 0.342 1702 582 4.17 0.71 0.171 

15 15 25 °C 0.202 4.26 0.47 1344 632 4.33 1.07 0.26 

16 1 29 °C 0.696 7.77 0.374 643 240 2.08 1.06 0.509 

17 2 29 °C 0.716 3.74 0.654 635 415 3.77 1.67 0.443 

18 3 29 °C 0.448 4.57 0.422 912 385 3.88 1.12 0.288 

19 4 29 °C 0.538 3.64 0.632 630 398 2.91 1.44 0.494 

20 5 29 °C 0.547 4.41 0.535 802 429 2.99 1.63 0.513 

21 6 29 °C 0.616 4.75 0.438 1224 536 4.96 1.66 0.345 

22 7 29 °C 0.15 5.06 0.295 1549 457 3.26 0.97 0.298 

23 8 29 °C 0.608 8.28 0.325 1118 363 3.17 1.05 0.331 

24 9 29 °C 0.563 4.55 0.488 842 411 3.72 1.3 0.356 

25 10 29 °C 0.47 4.97 0.276 1961 540 3.69 1.1 0.311 

26 11 29 °C 0.562 6.11 0.424 822 349 2.97 0.85 0.289 

27 12 29 °C 0.237 4.57 0.264 2081 548 2.99 1.02 0.34 

28 13 29 °C 0.255 5.43 0.471 955 450 3.64 1.27 0.348 

29 14 29 °C 0.26 4.98 0.515 1224 630 3.61 1.22 0.326 

30 15 29 °C 0.223 4.71 0.432 1124 486 3.86 0.92 0.255 
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Table B.17 Photosynthesis-irradiance measurements (chapter 4) 

Fragment  

no. 

Colony  

no. 

Treatment  

temperature 

SH:ST 

 

PGROSS (µmol O2 

mg
-1

 protein h
-1

) 

R (µmol O2 mg
-1

 

protein h
-1

) 

P:R 

 

α (µmol O2 mg
-1

 protein h
-1

 

(µmol photons m
-2

 s
-1

)
-1

) 

IK (µmol 

photons m
-2

 s
-1

) 

IC (µmol 

photons m
-2

 s
-1

) 

1 1 25 °C 0.676 1.95 -1.24 1.57 0.0203 95.8 72.4 

2 2 25 °C 0.704 1.52 -0.91 1.67 0.0172 88.5 61 

3 3 25 °C 0.47 1.09 -0.61 1.77 0.0126 86.5 55.3 

4 4 25 °C 0.565 1.35 -0.85 1.59 0.0124 108.5 80.4 

5 5 25 °C 0.545 1.53 -0.88 1.74 0.0176 87.2 57.2 

6 6 25 °C 0.637 1.25 -0.65 1.93 0.0141 88.4 50.8 

7 7 25 °C 0.302 2.52 -1.36 1.86 0.0239 105.6 63.5 

8 8 25 °C 0.63 1.9 -1.16 1.64 0.0234 80.9 57.4 

9 9 25 °C 0.497 1.68 -1.09 1.54 0.0198 84.9 65.5 

10 10 25 °C 0.468 1.29 -0.72 1.79 0.0135 95.6 60.2 

11 11 25 °C 0.537 1.4 -1.04 1.35 0.0154 91.1 86.4 

12 12 25 °C 0.247 2.68 -1.34 2 0.0399 67.1 36.8 

13 13 25 °C 0.194 1.59 -0.79 2.02 0.0165 95.9 52 

14 14 25 °C 0.277 1.9 -1.08 1.76 0.0305 62.2 40.2 

15 15 25 °C 0.202 2.23 -1.21 1.84 0.0273 81.6 49.6 

16 1 29 °C 0.696 1.1 -0.92 1.2 0.0151 73 88.2 

17 2 29 °C 0.716 1.18 -0.85 1.4 0.0084 140.9 126.7 

18 3 29 °C 0.448 2.32 -1.66 1.4 0.0347 66.9 59.8 

19 4 29 °C 0.538 1.1 -1.03 1.07 0.0114 96.1 163.6 

20 5 29 °C 0.547 1.54 -1.2 1.28 0.0199 77.6 81.2 

21 6 29 °C 0.616 1.7 -1.09 1.56 0.0222 76.6 58.1 

22 7 29 °C 0.15 2.98 -1.92 1.55 0.0383 77.7 59.7 

23 8 29 °C 0.608 1.93 -1.32 1.46 0.0241 80 67.2 

24 9 29 °C 0.563 1.28 -1.15 1.12 0.0112 114 164.9 

25 10 29 °C 0.47 2.52 -1.76 1.43 0.0216 116.7 100.6 

26 11 29 °C 0.562 1.24 -1.01 1.23 0.01 124.1 141.5 

27 12 29 °C 0.237 2.52 -1.68 1.5 0.0426 59.1 47.6 

28 13 29 °C 0.255 1.48 -0.97 1.53 0.0207 71.6 56.2 

29 14 29 °C 0.26 1.6 -1.04 1.54 0.0181 88.4 68.4 

30 15 29 °C 0.223 1.37 -1.03 1.33 0.0168 81.3 79.7 
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Table B.18 Mortality, growth, and temporal changes in SH:ST (chapter 5) 

Colony 

 

Original  

site 

Transplant 

site 

Survived 

195 d 

Survived 

374 d 

Initial dry 

weight (g) 

Final dry 

weight (g) 

Time 

(d) 

Growth 

(mg d-1) 

Growth 

(× 103 % d-1) 

Original 

SH:ST 

Mean Ct 

(C100+) 

Mean Ct 

(C100-) 

CC100 

 

CTOTAL 

 

C100: 

CTOTAL 

Final 

SH:ST 

1 North Bay North Bay Y *N/A 6.20 8.91 195 13.88 1.86 0.70 23.41 24.79 9655 14175 0.68 0.69 

  North Bay Y Y 9.05 26.26 374 46.02 2.85 
 

24.61 25.64 4251 6783 0.63 0.75 

  North Bay Y Y 6.30 14.28 374 21.33 2.19 
 

24.70 25.86 4001 6184 0.65 0.73 

  The Arch Y *N/A 5.80 8.97 195 16.26 2.24 
 

25.14 26.22 2962 4669 0.63 0.74 

  The Arch Y N 8.26 
   

 
      

 

  The Arch Y N 7.52 
   

 
      

 

2 North Bay North Bay Y *N/A 10.37 13.66 195 16.87 1.41 0.65 21.90 23.55 26925 37475 0.72 0.63 

  North Bay Y Y 10.50 24.76 374 38.12 2.30 
 

23.65 25.20 8188 11613 0.71 0.65 

  North Bay Y Y 7.99 20.22 374 32.69 2.49 
 

24.27 25.90 5372 7488 0.72 0.64 

  The Arch Y *N/A 10.58 15.78 195 26.69 2.05 
 

28.78 30.38 248 348 0.71 0.64 

  The Arch N N 9.50 
   

 
      

 

  The Arch Y N 7.25 
   

 
      

 

3 North Bay North Bay Y *N/A 9.73 13.03 195 16.91 1.50 0.60 23.97 26.13 6600 8409 0.78 0.51 

  North Bay Y Y 12.36 21.34 374 24.02 1.46 
 

28.37 30.22 328 439 0.75 0.59 

  North Bay Y Y 4.80 10.71 374 15.80 2.15 
 

24.64 26.70 4183 5408 0.77 0.54 

  The Arch Y *N/A 4.66 6.11 195 7.44 1.39 
 

30.71 33.01 67 84 0.80 0.48 

  The Arch Y N 17.14 
   

 
      

 

  The Arch Y Y 8.25 7.55 374 -1.86 -0.24 
 

23.16 24.94 11413 15504 0.74 0.61 

4 North Bay North Bay Y *N/A 11.66 15.36 195 18.96 1.41 0.62 25.62 27.12 2139 3063 0.70 0.67 

  North Bay Y Y 10.95 31.49 374 54.92 2.83 
 

23.41 24.98 9657 13627 0.71 0.65 

  North Bay Y Y 10.70 14.72 374 10.74 0.85 
 

24.82 26.52 3694 5086 0.73 0.62 

  The Arch Y *N/A 11.39 14.02 195 13.47 1.06 
 

25.43 27.07 2437 3387 0.72 0.63 

  The Arch Y N 12.16 
   

 
      

 

  The Arch Y N 10.18 
   

 
      

 

5 North Bay North Bay Y *N/A 10.95 15.29 195 22.27 1.71 0.50 25.04 27.55 3177 3865 0.82 0.43 

  North Bay Y Y 13.48 19.31 374 15.59 0.96 
 

23.05 25.21 12286 15676 0.78 0.52 

  North Bay Y Y 14.13 26.34 374 32.65 1.67 
 

25.33 27.54 2607 3299 0.79 0.50 

  The Arch Y *N/A 12.92 16.37 195 17.71 1.22 
 

26.59 28.76 1103 1404 0.79 0.51 

  The Arch Y N 13.47 
   

 
      

 

  The Arch Y Y 9.78 8.54 374 -3.32 -0.36 
 

28.88 30.90 232 302 0.77 0.55 

6 North Bay North Bay Y *N/A 5.80 10.81 195 25.69 3.20 0.59 27.35 29.32 657 862 0.76 0.56 

  North Bay Y Y 7.99 13.66 374 15.17 1.44 
 

25.30 26.83 2655 3775 0.70 0.66 
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  North Bay Y Y 9.75 20.51 374 28.76 1.99 
 

22.96 24.75 13078 17730 0.74 0.60 

  The Arch Y *N/A 6.41 11.93 195 28.31 3.19 
 

24.78 26.42 3782 5269 0.72 0.64 

  The Arch N N 3.91 
   

 
      

 

  The Arch Y Y 6.41 11.27 374 12.99 1.51 
 

23.59 25.33 8526 11658 0.73 0.61 

7 North Bay North Bay Y *N/A 11.81 14.63 195 14.48 1.10 0.22 22.23 24.61 21575 26676 0.81 0.46 

  North Bay Y Y 6.75 12.97 374 16.63 1.75 
 

21.66 25.63 31702 34251 0.93 0.16 

  North Bay Y Y 7.70 16.92 374 24.66 2.11 
 

22.37 25.43 19655 22573 0.87 0.31 

  The Arch Y *N/A 9.12 9.80 195 3.48 0.37 
 

22.30 25.80 20530 22794 0.90 0.23 

  The Arch Y N 5.72 
   

 
      

 

  The Arch Y N 6.57 
   

 
      

 

8 North Bay North Bay Y *N/A 7.12 10.87 195 19.24 2.17 0.23 23.03 26.28 12506 14144 0.88 0.28 

  North Bay Y Y 12.23 26.87 374 39.15 2.11 
 

24.36 27.59 5057 5725 0.88 0.28 

  North Bay Y Y 5.46 10.92 374 14.60 1.86 
 

25.88 29.05 1787 2033 0.88 0.29 

  The Arch Y *N/A 14.06 22.09 195 41.20 2.32 
 

24.68 28.04 4071 4562 0.89 0.25 

  The Arch N N 4.54 
   

 
      

 

  The Arch Y Y 7.73 9.25 374 4.06 0.48 
 

22.58 26.14 16923 18725 0.90 0.22 

9 North Bay North Bay Y *N/A 3.62 6.45 195 14.52 2.97 0.65 25.70 27.20 2030 2902 0.70 0.66 

  North Bay Y N 5.56 
   

 
      

 

  North Bay Y Y 8.25 15.42 374 19.17 1.67 
 

23.68 25.24 8019 11349 0.71 0.65 

  The Arch Y *N/A 3.13 4.55 195 7.27 1.92 
 

23.49 25.03 9126 12970 0.70 0.66 

  The Arch N N 3.56 
   

 
      

 

  The Arch Y N 7.75 
   

 
      

 

10 North Bay North Bay Y *N/A 7.30 9.37 195 10.63 1.28 0.75 24.02 25.33 6356 9480 0.67 0.70 

  North Bay Y Y 5.01 8.10 374 8.27 1.29 
 

26.66 27.92 1056 1589 0.66 0.71 

  North Bay Y Y 7.14 15.86 374 23.32 2.14 
 

25.61 26.80 2157 3302 0.65 0.72 

  The Arch Y *N/A 8.13 10.29 195 11.08 1.21 
 

23.98 25.18 6549 10014 0.65 0.72 

  The Arch Y N 6.07 
   

 
      

 

  The Arch Y N 10.63 
   

 
      

 

11 The Arch North Bay Y *N/A 2.87 4.22 195 6.94 1.98 0.36 24.86 27.95 3581 4105 0.87 0.31 

  North Bay Y Y 4.38 7.91 374 9.44 1.58 
 

26.15 28.77 1489 1787 0.83 0.41 

  North Bay Y Y 3.91 7.07 374 8.45 1.59 
 

24.39 27.21 4958 5824 0.85 0.36 

  The Arch Y *N/A 3.29 4.84 195 7.94 1.98 
 

27.37 30.75 651 729 0.89 0.25 

  The Arch Y N 4.80 
   

 
      

 

  The Arch Y N 4.22 
   

 
      

 

12 The Arch North Bay Y *N/A 2.53 3.51 195 5.02 1.68 0.57 22.06 24.06 24190 31640 0.76 0.55 
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  North Bay Y Y 8.09 15.57 374 20.00 1.75 
 

24.46 26.43 4719 6198 0.76 0.56 

  North Bay Y Y 3.21 5.05 374 4.92 1.21 
 

25.37 27.18 2531 3417 0.74 0.60 

  The Arch Y *N/A 5.49 8.58 195 15.87 2.29 
 

26.49 28.00 1182 1687 0.70 0.66 

  The Arch N N 1.64 
   

 
      

 

  The Arch Y N 6.28 
   

 
      

 

13 The Arch North Bay Y *N/A 4.43 5.70 195 6.53 1.30 0.69 26.03 27.74 1619 2223 0.73 0.62 

  North Bay Y N 3.03 
   

 
      

 

  North Bay Y Y 2.08 3.97 374 5.05 1.73 
 

25.14 26.34 2968 4538 0.65 0.72 

  The Arch Y *N/A 2.77 4.82 195 10.52 2.85 
 

25.33 26.85 2610 3717 0.70 0.66 

  The Arch N N 4.25 
   

 
      

 

  The Arch Y Y 3.80 8.90 374 13.64 2.28 
 

24.88 26.33 3539 5115 0.69 0.67 

14 The Arch North Bay Y *N/A 11.36 15.01 195 18.73 1.43 0.59 25.29 27.78 2676 3263 0.82 0.44 

  North Bay N N 7.97 
   

 
      

 

  North Bay Y Y 13.14 27.10 374 37.33 1.94 
 

23.50 25.47 9086 11922 0.76 0.56 

  The Arch Y *N/A 6.62 6.45 195 -0.86 -0.13 
 

25.21 27.39 2833 3601 0.79 0.51 

  The Arch Y N 10.04 
   

 
      

 

  The Arch Y N 4.72 
   

 
      

 

15 The Arch North Bay Y *N/A 5.62 7.07 195 7.41 1.17 0.73 25.65 26.86 2103 3200 0.66 0.72 

  North Bay Y Y 3.43 4.04 374 1.64 0.44 
 

26.52 27.86 1158 1715 0.68 0.70 

  North Bay Y Y 3.37 4.65 374 3.42 0.86 
 

24.93 26.37 3422 4954 0.69 0.68 

  The Arch Y *N/A 9.57 10.70 195 5.78 0.57 
 

25.25 26.81 2749 3885 0.71 0.65 

  The Arch N N 3.59 
   

 
      

 

  The Arch N N 3.01 
   

 
      

 

16 The Arch North Bay Y *N/A 5.73 7.90 195 11.13 1.65 0.58 25.23 26.76 2782 3961 0.70 0.66 

  North Bay Y Y 10.60 20.74 374 27.11 1.80 
 

22.29 24.10 20638 27895 0.74 0.60 

  North Bay Y Y 6.38 13.52 374 19.08 2.01 
 

25.21 26.68 2830 4078 0.69 0.67 

  The Arch Y *N/A 3.99 6.02 195 10.43 2.11 
 

24.26 26.04 5407 7334 0.74 0.60 

  The Arch Y N 11.74 
   

 
      

 

  The Arch Y Y 6.14 11.24 374 13.62 1.62 
 

24.91 26.59 3464 4785 0.72 0.63 

17 The Arch North Bay Y *N/A 3.61 5.00 195 7.14 1.67 0.64 26.18 27.72 1462 2072 0.71 0.65 

  North Bay Y Y 8.65 38.83 374 80.69 4.02 
 

23.27 25.09 10641 14321 0.74 0.59 

  North Bay Y Y 5.17 20.48 374 40.92 3.69 
 

23.79 25.73 7439 9820 0.76 0.57 

  The Arch Y *N/A 3.33 6.15 195 14.45 3.15 
 

24.31 26.36 5224 6771 0.77 0.54 

  The Arch N N 5.38 
   

 
      

 

  The Arch Y N 9.70 
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18 The Arch North Bay Y *N/A 3.96 5.37 195 7.22 1.56 0.70 26.77 28.56 976 1322 0.74 0.60 

  North Bay Y Y 9.57 22.45 374 34.44 2.28 
 

25.52 27.38 2290 3063 0.75 0.59 

  North Bay Y Y 2.27 5.01 374 7.34 2.12 
 

25.57 27.55 2214 2900 0.76 0.56 

  The Arch Y *N/A 4.64 6.92 195 11.70 2.05 
 

24.66 26.53 4112 5495 0.75 0.58 

  The Arch N N 2.92 
   

 
      

 

  The Arch Y N 7.30 
   

 
      

 

19 The Arch North Bay Y *N/A 7.81 10.49 195 13.73 1.51 0.70 24.86 26.29 3600 5227 0.69 0.68 

  North Bay Y N 2.35 
   

 
      

 

  North Bay Y Y 4.72 8.35 374 9.72 1.53 
 

22.95 24.54 13217 18585 0.71 0.65 

  The Arch Y *N/A 7.23 13.13 195 30.28 3.07 
 

23.32 24.83 10268 14683 0.70 0.66 

  The Arch Y N 10.31 
   

 
      

 

  The Arch Y Y 3.99 5.24 374 3.34 0.73 
 

25.67 27.05 2068 3036 0.68 0.69 

20 The Arch North Bay Y *N/A 5.48 7.31 195 9.37 1.48 0.30 24.29 27.46 5287 6017 0.88 0.29 

  North Bay Y N 8.89 
   

 
      

 

  North Bay Y Y 3.46 7.15 374 9.88 1.94 
 

23.16 26.16 11403 13176 0.87 0.33 

  The Arch Y *N/A 2.08 2.63 195 2.84 1.21 
 

24.05 26.98 6245 7258 0.86 0.34 

  The Arch N N 13.32 
   

 
      

 

  The Arch Y N 3.87 
   

 
      

 

Asterisks indicate coral fragments collected after 195 d 
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