Imperfect Repair Strategies
for Two-Dimensional

Warranty

Sima Rouhollahi Varnosafaderani

A thesis
submitted to the Victoria University of Wellington
in partial fulfilment of the
requirements for the degree of
Master of Science with Honours

in Statistics and Operations Research.

Victoria University of Wellington
2010



Abstract

When a repairable product under warranty fails, the manufacturer (war-
rantor) has the choice to either repair or replace the failed product. When
repairing a failed product, the degree of repair which affects the working
condition of the product can vary, and this is assumed to have an impact
on the cost of the repair. The main motivation of this study is to develop
a warranty repair strategy that minimizes the costs associated with servic-
ing the warranty.

In this research, the product coverage is represented by a two-dimensi-
onal rectangular region with a free-replacement warranty. We propose an
imperfect repair strategy that suggests employing imperfect repairs of a
predefined degree, in prespecified subregions of the warranty region. The
aim is to then minimize the expected warranty servicing cost to the man-
ufacturer by determining the optimal partitioning of the warranty region
for the chosen degrees of repair.

Two imperfect repair models are considered, and for both, the expres-
sions for the distribution of the times to imperfect repair and the expected
warranty servicing cost per product sold are derived.

We numerically illustrate our findings and compare the expected costs
of the proposed imperfect repair strategy with those of previously devel-

oped repair-replacement warranty strategies.
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Chapter 1
Introduction

Warranty policies play an important role in the sales of most products and
services. A warranty policy is a statement made by the manufacturer that
outlines the type and extent of compensation offered to the consumer in
the event that the warranted product fails or does not meet the consumer’s
expectations [6].

In today’s competitive market, warranties have become an influential
and crucial constituent of manufacturer-consumer transactions. For con-
sumers, when shopping for a product, the warranty often becomes an im-
portant factor in making the decision to buy the product, since a warranty
is often assumed to be related to the reliability of the warranted product,
and also, consumers often seek products with a warranty that assumes
lower post-purchase maintenance costs [37]. To a consumer, warranties
serve as a guarantee of the quality of a product and an assurance that the
manufacturer will be responsible to provide a suitable compensation if the
product’s performance does not meet the promised standards. However,
warranties are not of benefit to the consumers alone. Manufacturers also
stand to gain from warranty policies. A warranty that is attractive from
the consumer’s point of view, and well-planned from the manufacturer’s
point of view, can increase sales and reduce post-purchase maintenance

costs and can therefore, result in larger profits [6].
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1.1 Background and Motivation

Warranties have been extensively investigated by many researchers from
various disciplines, and have been of great interest to product manufactur-
ers. For a manufacturer, a warranty may result in costs additional to those
associated with the designing and manufacturing of the product and thus,
warranties have a considerable effect on the overall returns. Inadequately
planned warranty policies often result in manufacturers losing large sums
of money. In addition, warranty servicing costs can reach 15% of net sales
and therefore, a slight reduction in these costs can result in substantial
savings for manufacturers [34].

Although they have been so widely used and researched, the exact
pricing of warranties in most situations is not determinable and should
be estimated [14]. Since warranty claims may translate to large amounts
of money for manufacturers, devising strategies that minimize these esti-
mated costs are crucial in increasing the profits generated by sales of war-

ranted products.

1.2 Problem Statement and Research Objective

Warranties are a significant component of competitive economic success.
Effective warranty policy (servicing strategy) planning can warrant prof-
its, but inadequately researched policies and deficient cost analysis may
result in losses for the manufacturer. Because of the highly confidential
nature of the warranty claims data, it is not always simple to estimate the
distribution of warranty servicing costs. Instead, the expected total war-
ranty servicing costs serve as estimates.

This research is aimed at reducing the warranty servicing cost, from
the manufacturer’s point of view, per product sold by finding an optimal
repair strategy that minimizes the expected warranty servicing cost. The

warranty considered is a two-dimensional free-replacement warranty and
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the warranted product is assumed to be repairable.

Since an “all minimal” repair model and an “all replacement” model
are not realistic and/or feasible options, the suggested repair strategy is to
employ imperfect repairs in certain situations in order to lower the war-
ranty servicing cost. Imperfect repairs can be modeled in various ways.
A brief literature review of some of the proposed methods is provided in
the next chapter. In this research, two different approaches have been em-
ployed.

The first approach, the age reduction model, is an adaptation of the vir-
tual age model proposed by Doyen and Gaudoin [16], according to which
the imperfect repair reduces the virtual age of the product by an amount
proportional to its age immediately prior to the repair, i.e. its age at the
time of failure. The class of virtual age models was first proposed by Ki-
jima [29] and it suggests that the product immediately after repair can be
described by its virtual age which is smaller than the real age of the prod-
uct. Here, the efficiency of an imperfect repair is measured by its degree,
and for consecutive imperfect repairs, these degrees are not all necessarily
the same.

The second approach, the intensity reduction model, is a modification
of the model proposed by Chukova et al. [11] which suggests that the
failure rate function of the product after an imperfect repair is between the
failure rate of the product after a minimal repair and the failure rate of the
product right after the previous repair. The reduction in the failure rate
function is proportional to the distance between these two failure rates.
Like in the age reduction model, the degrees of repairs are not necessarily
the same for all consecutive imperfect repairs.

We define the two models by the effect of the imperfect repair on the
conditional intensity function of the underlying failure process. For each
of the two models, we derive the conditional distributions of successive
times to imperfect repair and the expected warranty servicing cost that is

to be minimized, and numerically illustrate these results. The imperfect
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repair strategy proposed in this research is a generalization of the repair-
replacement strategies proposed by Iskandar et al [21] and Chukova et al.
[13], and an extension of the imperfect repair model proposed by Yun and
Kang [54].

1.3 Research Scope

The development of an effective warranty servicing strategy and careful
cost analysis are significant elements in reducing warranty servicing costs
and increasing returns from product sales. The imperfect repair strategy
suggested in this research aims at reducing the expected warranty servic-
ing cost.

The derived distributions of the times to imperfect repair provide a
good framework for warranty claims modeling where the repairs under
warranty are imperfect. The expected warranty servicing costs derived in
this research can be employed in estimating warranty costs for different
degrees of repair. Also, the estimates obtained here can easily be extended

to account for non-constant repair costs.

1.4 Thesis Outline

The outline of this thesis is as follows: in this chapter we have provided a
brief overview of the thesis.

In Chapter 2, we discuss some concepts necessary in understanding
and developing warranty policies and also included is an outline of types
of rectification actions and their associated costs to the manufacturer. We
then discuss the one-dimensional and two-dimensional mathematical mod-
eling approaches used in modeling product failures. We also discuss, in
some detail, the concepts of failure rate, intensity function and some im-
portant stochastic point processes in the context of warranty claims mod-

eling. In addition, a summary of a few imperfect repair models relevant
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to this research is included.

In Chapter 3, we provide a brief review of the literature pertaining
to the modeling and analysis of one-dimensional and two-dimensional
warranty policies, while focusing mainly on policies that use the one-
dimensional approach to modeling warranty claims. The chapter also pro-
vides a detailed description of the imperfect repair strategy proposed in
this research.

In Chapter 4, we derive the distribution of the times to imperfect repair
and the expected total warranty servicing cost for the age reduction model.

In Chapter 5, we derive the distribution of the times to imperfect re-
pair and the expected warranty servicing cost for the intensity reduction
model.

In Chapter 6, we present some numerical results to illustrate the effec-
tiveness of the proposed imperfect repair strategy, for both the age reduc-
tion and the intensity reduction models. Comparisons with two repair-
replacement strategies with minimal repairs and replacements are pro-
vided.

In Chapter 7, we present conclusions and discuss some possible future
research directions.



Chapter 2
Modeling Warranty Claims

The most fundamental element in the study of warranty analysis is build-
ing a mathematical model that adequately describes the warranty claims
process. Warranty claims are based on product failures and therefore,
modeling the warranty claims process, assuming all claims are valid, is
equivalent to modeling the failures that result in the claims. Since failures
occur at random along the time continuum, a continuous-time stochastic
structure is most appropriate in modeling product failures.

This chapter includes some basic concepts of warranty and the math-
ematical modeling of the warranty claims process, along with a detailed
discussion of the approaches that will be used to accomplish the goals
of this research. Before we begin with modeling warranty claims, in the
following section, we provide brief notes on the classification of types of
warranty, and discuss different rectification actions and their cost implica-
tions.

2.1 Warranty Policy Classification

All products are produced to perform specific designated functions. Test-
ing each product to ensure that it performs up to standards is neither sim-

ple nor feasible. After a process of random testing and analyzing historic

6
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failure data, certain assumptions are made about the performance and re-
liability of the product based on which a suitable warranty policy is cho-
sen. There are many types of warranty policies in use today and they can
be classified based on several factors. The most common factors based
on which warranty policies are classified are the dimension, duration and
type of reimbursement which are described in detail in the books on war-
ranty analysis by Blischke and Murthy [7, 6]. In this section, we provide a

summary description of each of the three factors.

Warranty Dimension

Warranty policies can be classified based on the number of variables that
are employed in defining the terms of the policy. Variables typically used
to set the warranty terms are time or age of the product, usage of the prod-
uct, etc. Based on the number of variables, the warranty policy can have
one, two or more dimensions. Although a warranty can have multiple
dimensions, the one-dimensional and two-dimensional warranties are the
ones typically used.

A one-dimensional warranty is based on a single variable usually time
from purchase or the age of the product. In this case, the warranty is de-
fined by an interval on the time axis, say [0, /), starting immediately after
the purchase of the product or, some times, at the instant the product is
first put into use. One-dimensional policies are employed when product
failures are attributed to mostly the age of the product.

A two-dimensional warranty, is based on two variables, usually time or
age and usage. Here, product failures are often attributed to the age and
the amount of usage of the product. In this case, the warranty is defined
by a region in two-dimensional space, with time along the z-axis and us-
age along the y-axis. Different two-dimensional warranty policies can be
defined based on the shape of the warranty region. However, the most
commonly used warranty is defined by a rectangular region, usually de-
noted by (2, where @ = [0, K) x [0, L), K is the maximum time and L is
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the maximum usage specified in the warranty limits. Here, the warranty
expires when either or both limits are exceeded.

Higher-dimensional warranties, based on more than two variables, are
more complex and are usually used in few applications, for instance, in
plane engines. In this research, we consider products sold with a two-
dimensional warranty policy specified by a rectangular warranty region.
Refer to "Warranty Cost Analysis’ by Blischke and Murthy [6] for detailed

descriptions of different warranty region shapes and policies.

Duration of Warranty

The duration of the warranty can be an important factor in the classifi-
cation of the warranty policy. The duration of the warranty policy, may
change following the repair or replacement of a warranted product, based
on which warranty policies can be classified into two categories; renewing
and nonrenewing.

A nonrenewing warranty policy has a fixed duration which does not
change following a repair or a replacement. The warranty period after
repair or replacement is the remaining warranty period of the product.

For a one-dimensional warranty policy, let [0, K') denote the initial war-
ranty period and let 7; denote the time of the i-th failure, i > 1. After the
i-th repair (replacement) within the warranty period, the product is cov-
ered by warranty for a period [T}, K). The i-th repair (replacement) of the
product is not covered by warranty, if 7;_; < K and 7; > K.

For a two-dimensional rectangular warranty policy with warranty re-
gion (2 = [0, K) x [0, L), let the pair (7}, U;) denote the age and usage at the
i-th repair or replacement. The i-th repair (replacement) of the product is
covered by warranty if (7;,U;) € [0,K) x [0, L). After the i-th repair or
replacement (in the warranty region), the product is covered by warranty
for a time period of length K — T; and for a usage of L — U; units, i.e. over
the warranty region [T;, K) x [U;, L). For i > 1, the i-th repair (replacement)
of the product is not covered by warranty, if 7; > K and/or U; > L.
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A renewing warranty policy is one in which the warranty period is ex-
tended for a period equal to the original warranty period after each repair
or replacement within the warranty period.

For a one-dimensional warranty policy, if the i-th product failure is
within the warranty period, i.e. 7; < K, the warranty limit is extended to
T; + K. Therefore, the repaired or replaced product has a warranty period
of K units. The warranty expires if the time between failures exceeds K
units.

For a two-dimensional rectangular warranty policy, if the i-th failure
occurs at (7;,U;) and T; < K and U; < L, after the repair or replacement,

the product is covered by warranty over the region
13, Ti + K) x [U;, Ui + L) .

The warranty expires when the time between failures exceeds K units
and/or the usage between failures exceeds L units.

The duration of the warranty period in case of a renewing warranty
policy is a random variable, while the duration of the nonrenewing war-
ranty is constant [6]. Renewing warranties are not commonly used and are
less cost-effective than nonrenewing warranty policies. In this research,

we consider a nonrenewing rectangular two-dimensional warranty policy.

Type of Reimbursement

Warranty policies can be broadly classified based on the type of reimburse-
ment into free-replacement warranty (FRW), pro-rata warranty (PRW) and
combination warranty which is often a combination of the FRW and the
PRW.

Under a free-Replacement warranty policy, the manufacturer agrees to
repair or replace the failed product, at no cost to the consumer, provided
that the product failures occur within the warranty period (region). This

type of warranty is the most commonly used policy applied to consumer
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products such as televisions, electronic components, automobile parts, etc
[6].

Under a pro-rata warranty policy, the manufacturer is liable to pay only a
portion of the repair or replacement cost of the failed product, if the prod-
uct failure occurs within the warranty period (region), and the consumer
pays the remaining. The amount paid by the manufacturer is usually in-
versely proportional to the age (or age and usage in the two-dimensional
case) of the product. That is, the refund is often a decreasing function of
the classifying variables. This type of warranty is used with less expensive
non-repairable products such as batteries and automobile tires [6].

A combination warranty policy is a combination of the FRW and the
PRW. This type of warranty is often characterized by a period of FRW
followed by a period of PRW. Combination warranty policies are some
times used to cover multicomponent products where some components
are covered by an FRW and others are covered by a PRW [7].

FRW / PRW FRW PRW
T T T
0 K Time 0 K, K Time
(i) (ii)
Usage Usage
L L
PRW
FRW / PRW L.
FRW
0 K Time 0 K, K Time

(iii) (iv)
Figure 2.1: (i) One-dimensional FRW/PRW, (ii) One-dimensional combination

warranty, (iii) Two-dimensional FRW/PRW, (iv) Two-dimensional

combination warranty
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Presented in Figure 2.1, are some examples of one-dimensional and
two-dimensional warranty policies. In this research, we confine our study

to products covered by a nonrenewing two-dimensional FRW policy.

2.2 Rectification Actions and Costs

A product is either repairable or nonrepairable. A nonrepairable product is
one which is discarded and replaced when it fails to adequately perform
and a repairable product is one which can, upon failure, be restored to an
acceptable functional state, without necessarily replacing it. Most manu-
factured products can be repaired on failure, and hence, the study of re-
pairable products is an area of great importance in reliability engineering
[45]. In this research, we consider repairable products.

All products degrade with age and/or usage and eventually fail. Prod-
uct failures can be rectified or controlled through maintenance actions [45].
Maintenance is generally classified into two categories: corrective or pre-
ventive. Preventive maintenance refers to the actions performed in order
to maintain a product in a specified working condition. Preventive main-
tenance aims to prevent the occurrence of product failures. Hence, pre-
ventive maintenance is done while the product is still in working condi-
tion. Corrective maintenance, often termed repair, is any rectification ac-
tion done to return a failed product to a working condition [46]. In this
research, we focus on corrective maintenance or repair.

When a product under warranty fails, the manufacturer can either re-
pair or replace the failed product. If the failed product is nonrepairable,
the manufacturer, assuming the warranty claim is valid, can only replace
the product. However, if a repairable product fails, the manufacturer can
either repair the product or replace it with a new one. The choice between
repairing and replacing the failed product depends on many factors such
as the cost of the types of rectification action, the working condition of the

product prior to failure, the extent of damage, etc [45, 7].
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When considering a repairable product, it is frequently assumed that a
repair upon failure either returns the product to its original working con-
dition, i.e. renews the product, or has no effect on the working condition
of the product, i.e. the repair leaves the product in the condition it was
in before failure. These assumptions, in spite making probabilistic model-
ing less complicated, are not very realistic, since a repair will not always
renew a product or leave its working condition unaltered. In more recent
studies, the concept of imperfect repair has been the subject of research. Im-
perfect repair models assume that after repair the working condition of the
product is somewhere between the two extreme cases - minimal repair, after
which the working condition of the product does not change, and perfect
repair or replacement, after which the working condition of the product is
the same as a new product. Imperfect repair models are more reasonable

and realistic than the minimal repair and replacement models [45].

2.2.1 Degree of Repair

The working condition of the repaired product depends on the degree of
the repair the product is subjected to. The degree of repair, say d, is de-
fined as the degree to which a product’s working condition can be re-
stored [46]. The degree ¢ can be random or preassigned and the range
of ¢ is usually [0, 1]. Based on the degree of repair, we use the following
three-category classification of repairs from "Handbook of Reliability En-
gineering’ by Pham [45].

1. Perfect repair or replacement: perfect repair (replacement) restores
the operating condition of a failed product to that of a new product.
Hence, the lifetime distribution (failure rate) of the product upon re-
pair is the same as the lifetime distribution (failure rate) of a new
product. For a degree of repair 6 € [0,1], a perfect repair (replace-
ment) implies that 6 = 1. This type of repair can be modeled, under

the assumption that the repair time is negligible and can be taken to
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be zero, as an ordinary renewal process. Although modeling replace-
ments of failed products is simple, it is not feasible for the manufac-
turer to provide replacement products each time the product fails
under warranty. Instead, repairing the product to improve its work-

ing condition is more feasible.

2. Minimal repair: a minimal repair restores the working condition of
the repaired product to the working condition of the product just
before failure. The failure rate of the product upon undergoing min-
imal repair is the same as the failure rate of the product before fail-
ure and the degree of repair is 6 = 0. Minimal repairs can be mod-
eled as a non-homogeneous Poisson process, since the failure rate of
the product immediately before failure is the same as the failure rate
of the product immediately after repair. From the manufacturer’s
perspective, minimal repair may be the least costly and hence, most
beneficial strategy, but not all failed products can be returned to a

working state with minimal repair.

3. Imperfect repair: replacement of a failed product is often not cost-
effective and minimal repair is not always adequate in returning the
failed product to a working condition and hence, we need imperfect
repair which restores the product’s working condition to an inter-
mediate state, between that of a new product and that of the product
prior to failure, i.e. a minimally repaired product. In this research,
we assume that the failure rate of the product after imperfect repair
is between the failure rate of a new product and the failure rate of
a minimally repaired product and hence, for § € [0,1], the degree
of repair in case of imperfect repair is 0 < § < 1. Imperfect repairs
can be modeled in various ways and we shall discuss some of these

modeling methods later in the chapter.

See Figure 2.2 for the effect of the degree of repair on the failure rate

function. The time of the failure is 7} and the degree of the imperfect repair
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- = minimal repair
-+ imperfect repair
- - replacement

AQD) .

Figure 2.2: Failure rate following repairs of different degrees.

is 6 = 0.5.

2.2.2 Cost Implications

The most important factors in making the choice between repairing or re-
placing a failed item, are cost and the working state of the product. If the
product is nonrepairable or beyond repair, it will have to be replaced by
manufacturer at any cost. However, if it is repairable, the manufacturer
has the flexibility of choosing the most cost effective option.

When a claim is made under warranty, the manufacturer incurs vari-
ous costs that are taken into consideration when determining the cost of
the repair (replacement). To simplify the modeling process, often, the ag-
gregate of these costs is considered as the cost of the repair. Since the total
number of failures and hence, the total number of warranty claims is a ran-
dom variable, the total warranty servicing cost per product sold which is
a function of the number of claims, is also random. Finding a distribution
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function for the total warranty servicing cost is not easy and therefore, it
is of importance and convenience to instead derive an expression for the
expected total warranty servicing cost [7].

Some of the variables and parameters that affect the warranty servicing
cost are the costs associated with different rectification actions and their
degrees of repair. The cost of a repair or replacement can be assumed to
be proportional to the degree of the repair. Therefore, the degree of repair
plays an important role in determining the strategy that minimizes the
warranty servicing cost. The degree of repair also has an effect on the
number of future failures of the product. In this research, we consider
an imperfect repair strategy, where 0 < § < 1, that aims to minimize the
warranty servicing cost.

We now proceed to study the mathematical modeling of the warranty
claims process. In the following section, we discuss briefly some one- and
two-dimensional stochastic processes, the simplest of which are the Pois-
son process and the Renewal process, both relevant to modeling the war-
ranty claims process. In modeling warranty claims, it is often assumed
that all failures result in immediate and valid claims and repair (or re-

placement) time is negligible and can be approximated to zero.

2.3 Warranty Claims in One Dimension

In the case of one-dimensional warranties, an appropriate model for the
warranty claims process is a stochastic counting process that models the
product failures along the time continuum. Modeling the lifetime of the
original product, i.e. the time to first failure, differs from modeling consec-
utive failures, since the rectification action performed after the first failure

has an effect on the working condition of the product [6].
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2.3.1 First Failure of the Original Product

Let 77 denote the lifetime of the original product, i.e., the age of the original
product at its first failure. The lifetime 7; is a random variable whose
distribution is either assumed or derived from the analysis of past failure
data. Let F'(t) denote the distribution function of the original product. The
density function, if it exists, is given by
d

flt) = S F (1)
Refer to ‘Continuous Univariate Distributions” by Johnson and Kotz [28]
for a comprehensive list of distribution functions which are appropriate
for modeling product lifetimes. The distribution of the lifetime 7; is char-
acterized by the product’s failure rate r(t), where r(t) dt + o(dt) is defined
as the conditional probability that a product of age ¢ fails in the small in-
terval [t,t + dt), given that the product has not failed prior to t. Hence, the
failure rate of the product is defined as

0 = lim P{t<T, < tdt+ dt | Ty >t}

P{t<T <t+dt}

= T P S

L F{d) - F() 1)
TF(t) aimo dt

_f®

Ft)

where F'(t) is often called the reliability function of the product. By rear-
ranging the terms in equation (2.1), we get the reliability function of the

product in terms of its failure rate:
d _
i ()} = - (1)

In[F(t)] = — /0 r(s) ds

F(t) = exp{—/otr(s) ds}.
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Given the above relation, the density function f(¢) and the distribution

function F'(t), can be expressed in terms of the failure rate r(¢) as follows:

F(t):l—exp{—/otr(s) ds}
F(t) =r(t) exp {— /Otr(s) ds} .

The form of the failure rate function r(¢) depends on the distribution func-

and

tion and the parameter(s) involved in describing the distribution. Based
on r(t), the distribution function F(¢) can be classified into one of three

categories. The distribution function F'(¢) has a(n)

e increasing failure rate (IFR), if r(¢) increases as t > 0 increases;
e decreasing failure rate (DFR), if r(¢) decreases as t > 0 increases;

e constant failure rate (CFR), if r(¢) remains constant for all values of
t>017,4].

In this research, we consider a product with an increasing failure rate.

A product upon failure is either repaired or replaced. If the product
is replaced upon each failure, the lifetime of each replacement product
is the same as the original product. However, if the product is repaired,
the future failure times of the product depend on the degree of the repair
performed after the previous failure. Consecutive lifetimes or failure times
are modeled as stochastic counting processes.

In the following section, we provide a brief introduction to counting

processes and their role in modeling consecutive product failures.

2.3.2 Consecutive Failures of the Product

Let the number of failures in [0,¢) be denoted by N(¢), where N(0) = 0.
The process {N(t);t > 0} is a continuous-time non-negative integer val-
ued stochastic process that counts the number of failures that have oc-

curred in the interval [0,¢). The point process is such that, if s < ¢, then
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N(s) < N(t)and for s < t, N(t) — N(s) denotes the number of failures that
have occurred in the interval [s, t). The counting process {N(t);t > 0} is

said to have independent increments if for all
to<ti<tg<---<t,,
the random variables,
N(t1) — N(to), N(ts) — N(t1),..., N(tn) — N(tn-1)

are independent, and the process is said to possess stationary increments
if N(t+ s) — N(t) has the same distribution for all ¢, i.e. the increments are
stationary if the distribution of the change in the process value between
any two points, say ¢ and ¢ + s, depends only on the distance s between
the two points [49].

Let [0, K') denote the warranty period and let 7; denote the time of the
i-th failure, @ = 1,2,.... Then, the total number of failures during the
warranty period is N(K) = max{i : T; < K} or

o0

N(K)=> T, <K},

i=1

where [{7; < K} is an indicator function defined as

1, T < K

I[{T"<K}:{o T.>K

Consider a small interval [¢, ¢ + dt) and assume that at most one failure
can occur in this interval. Therefore, N (¢ + dt) — N(t) is a binary random
variable which can only take the value 0 or 1. The conditional intensity
function \.(t), t > 0, is defined as the conditional probability that a failure
occurs in the interval [t,t + dt), given the history F; of the process before
time ¢, divided by the length dt of this interval. Hence

() = Tim P{N(t+dt)— N(t) =1]|F}

dt—0 dt ’ (2.2)
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where N(t + dt) — N(t) is the number of failures in the interval [t, ¢ + dt)
and F; = {N(s);0 < s < t} contains the possible trajectories of the process
before time ¢. The rate of occurrence of failures or the intensity function is
defined as

M) = lim DAV (EHdD) = N(1) =1}

dt—0 dt (23)

and hence,
A(t) = E[Ac(t)]

is the mean of the conditional intensity function A.(¢) over all the sample
trajectories of the failure process [18, 33]. Since N (t+ dt) — N(t) is a binary

variable
P{N(t+dt)— N(t) =1} = E[N(t + dt) — N(t)] . (2.4)

From (2.3) and (2.4), it follows that

. E[N(t+dt)] - EN®)] d
MO = Jim, i — g

Therefore, the mean function or the cumulative intensity function A(t) of the

process is defined as

The failure rate of the product, in terms of the counting process, is defined

as

r(t) = Tim P{N(t+dt)— N(t)=1| N(t) =0}
dt—0 dt ’

which is a special case of the conditional intensity function in equation
(2.2). The first failure of the original item is characterized by the failure
rate, while consecutive failures after the first failure are characterized by
the conditional intensity function of the underlying counting process. The
initial conditional intensity function, i.e. the conditional intensity function

prior to the first failure, is the failure rate of the product. That is,
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Consider the two extreme cases where all the degrees of repair are ei-
ther § = 0 (minimal repairs) or § = 1 (replacements). In the following sec-
tions, we provide brief discussions on modeling the minimal repair and

replacement options.

Modeling Minimal Repairs: Nonhomogeneous Poisson Process

When a product is minimally repaired upon failure, it's working condition
is restored to its condition immediately prior to failure and hence, there is
no change in the failure rate function after repair. If the failure rate of the
product just after repair is the same as the failure rate immediately before
the repair, the failure process can be modeled as a nonhomogeneous Poisson

process, with intensity function

where 7(t) is the failure rate of the original product [8]. See Figure 2.3.

AY)

T1 T2 T3

Figure 2.3: Conditional intensity function of a NHPP.
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A counting process { N(¢); ¢t > 0} is anonhomogeneous Poisson process

with intensity function A(¢) if
1. N(0) =0.
2. {N(t);t > 0} has independent increments.
3. P{N(t+dt) — N(t) = 1} = A(t) dt + o(dt).
4. P{N(t+dt) — N(t) > 1} = o(dt).

And for n > 0, N(¢) has a Poisson distribution

PN = ny = RO
with mean E[N(t)] = A(t).

If the warranty period is [0, K'), then N(K) records the total number of
warranty claims in the warranty period, and A(K) represents the expected
number of warranty claims in the warranty period and hence, the expected

number of minimal repairs.

Modeling Replacements: Renewal Process

When a product is replaced upon failure, the failure rate after replacement
is the failure rate of the original product. In an all replacement model,
consecutive replacements upon failure can be modeled as a renewal process.

The initial conditional intensity function of a renewal process is
Ac(t) =7(t)

where 7(t) is the failure rate of the original product and all replacement
products. The conditional intensity function after the first failure is of the
form

Ac(t) =7t —Tnw)

where N (t) is the number of replacements before time ¢ and hence, Tl is

the time of the last replacement before time ¢ [2, 17, 27]. See Figure 2.4.
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A(t)

T1 T2 T3

Figure 2.4: Conditional intensity function of a renewal process.

A renewal process {N(t);t > 0} is a counting process that records the
number of failures (and hence, renewals) occurring at random in the time
interval [0,¢). The times between renewals, say X;, i = 1,2,..., are in-
dependent and identically distributed positive random variables with the
same distribution function F'(.) as the original product. The failure times

T;,1=1,2,...are defined in terms of the lifetimes X; as

Ti:ixj .
j=1

As the distribution of a sum of n independent and identically distributed
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random variables, the distribution of 7,, is given by

P{T, <t}y= P{T, 1+ X, <t}
= fooo P{T, 1+ X, <t|X,=xz}dF(x)
JoS PA{T1 <t —a} dF(z)
= J3 Fua(t—x) dF (z)
= F(”)(t)
= F(t)xF(t)*---xF(t) ,

where F(™(t) is the n-fold convolution of F' [48, 49].

In the context of warranty claims modeling, N (K) represents the num-
ber of replacements in the warranty period [0, K) and M (K) = E[N(K)],
the mean-value function or renewal function, represents the expected number
of replacements in the warranty period. For information on estimating the
renewal function refer to the works by Jaquette [26], Ross [48] and Xie [51].

Modeling Imperfect Repairs

Imperfect repair models are more reasonable and realistic than the replace-
ment and minimal repair models. In this section, we briefly discuss some
modeling methods, relevant to this research, for imperfect repairs per-
formed on a single-component repairable product.

Kijima [29] proposed two imperfect repair models for a repairable prod-
uct based on the virtual age process of the product. Suppose that a new
product begins operating at time ¢ = 0, and it is repaired each time it fails.
Let the degree of the i-th repair be denoted by d,. Then, {4;},., is a se-
quence of independent random variables, where §; € [0, 1], for_all 1 > 1.
Two models were proposed based on the effect of the repairs on the virtual
age process {V;;i > 0}.

The first virtual age model is such that the i-th repair cannot undo the
damage incurred by the product before the (i — 1)-th repair, and hence, the
additional age X; of the product after the (i — 1)-th repair is reduced to
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0;X;. Therefore, the virtual age after the i-th repair becomes
Vi=Via +0X; .

The second virtual age model is such that the i-th repair affects the
virtual age V;_ + X, accumulated until the i-th failure, and the virtual age

after the i-th repair becomes
Vi=0i(Via + Xi) .

That is, each repair removes part of the total accumulated age of the prod-
uct.

Doyen and Gaudoin [16] introduced two new classes of imperfect re-
pair models. The first is based on a reduction in the conditional intensity
function after imperfect repair and the second is based on the reduction in
the virtual age of the product after imperfect repair.

In the age reduction models, the effect of the repair is characterized by
a reduction in the virtual age of the product and this reduction is propor-
tional to the virtual age of the product at the time of the repair. The real age
of the product is ¢ and the virtual age of the product, denoted by A(?), is
a positive function of the real age which depends on the past failures and

the degrees of the repairs performed following those failures. Therefore,
A(t) = A(t7 N(t)7T17 T27 e 7TN(t)) 3

where N (t) is the number of failures (imperfect repairs) before time ¢. See
Figure 2.5.

In the intensity reduction models, the effect of the imperfect repair is
characterized by an arithmetic reduction in the conditional intensity func-
tion such that at any time ¢ the conditional intensity function is given by

N(t)—1

)\C(t p J )\0 TN(t ) I
7=0

where \y(.) is the initial intensity function. The conditional intensity be-

tween two failures is vertically parallel to the initial intensity.
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- o

T1 T2 T3 T4
t

Figure 2.5: Virtual age following imperfect repairs.

Another intensity reduction model is the one introduced by Chukova
etal. [11] according to which when a product fails, it undergoes imperfect
repair and the conditional intensity after the imperfect repair is between
the conditional intensity after a minimal repair and the conditional inten-
sity immediately after the last repair. See Figure 2.6.

Many other imperfect repair models have been suggested. In "Hand-
book of Reliability Engineering’, Pham [45] provides a good foundation
for the study of imperfect repair models. For more on modeling imperfect
repairs refer to the works by Nakagawa [40], Brown and Proschan [10],
Block et al. [9], Hollander et al. [19], Sheu and Griffith [50], Pham and
Wang [46], Jack [23], Langseth and Lindqvist [31] and Mettas and Zhao
[35].

In this research, for the first model, we employ an adaptation of the
age reduction model proposed by Doyen and Gaudoin [16] which will
be discussed in detail in Chapter 4, and for the second model, we use a

modification of the model proposed by Chukova et al. [11] which will be
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A(t)

T1 T2 T3

Figure 2.6: Conditional intensity function following imperfect repairs.

discussed in Chapter 5.

2.4 Warranty Claims in Two Dimensions

In the case of two-dimensional warranties, the failure process is mod-
eled using a two-dimensional stochastic counting process that counts the
product failures in a two-dimensional plane. Two methods have been
suggested to model failures in two dimensions: the two-dimensional ap-
proach and the one-dimensional approach [38].

Although this research uses the one-dimensional approach which will
be discussed in detail later in this section, for completeness, we first briefly
discuss the two-dimensional approach. Analogous to the one-dimensional
case, we begin with modeling the first failure of the original product and
proceed to modeling consecutive failures in two dimensions using the

two-dimensional approach.
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2.4.1 First Failure of the Original Product

Let T denote the age of a product at first failure and let U; denote the us-
age of the product at first failure. In the two-dimensional approach, the
pair (71, U;) can be modeled as a bivariate random variable with distribu-
tion function
F(t,u) = P{Ty < t,U; < u} ,
and the density function of the distribution (if it exists) is then defined as
2

flt,u) = 8tauF(t,u) )

The two-dimensional reliability function F(¢,u), i.e. the probability that
the first failure does not occur prior to time ¢ and usage u, is defined as

F(t,u) =P{Ty > t,U; > u}
=1—[P{Ty <t,U; < u}+ P{T1 < t,U; > u} + P{T1 > t,U; < u}]
=1- FTl(t) - FU1(U) + F(t,u) )

where

F, (1) = /Ot /OOO F(@,u) du da

Faw = [ [ sty aray

denote the marginal cumulative distribution functions of 77 and U; respec-

and

tively [1, 53]. In terms of the density function, the reliability function is

F(t,u):/too/uoof(x,y) dy dz .

Analogous to the one-dimensional case, the conditional probability of fail-
ure in the rectangle [¢, ¢+ dt) x [u, u+ du) (see Figure 2.7), given that 7} >t
and U; > wis r(t,u) dt du + o(dt du), where r(t,u) is the two-dimensional
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failure rate function defined as

r(t,u) :dt,légio dt du
’ P{t<T <t+dt,u <U <u-+du}

= lim

dt,du—0 dt du P{T\ > t,U; > u}

1 . P{t<Ty <t+dt,u<U; <u-+du}

== lim

F(t, u) dt,du—0 dt du
_ ()

F(t,u)

The bivariate distribution function F'(¢, u) can alternatively be derived by
F(t,u) = Fo(u | t)Fi(t) ,

where Fy(u | t) = P{U; < u | T} = t} is the conditional distribution of
the usage of the product conditional on the age 7} of the product at first
failure and Fi(t) = P{T) < t} is the one-dimensional distribution of 7; [6].

2.4.2 Consecutive Failures of the Product

Let {N(t,u);t > 0,u > 0} denote a two-dimensional stochastic counting
process which records the occurrences of failures happening at random in
the rectangle [0, ¢) x [0, u). If the warranty region is defined by the rectangle
Q =10,K) x [0,L), where K represents maximum time and L represents
maximum usage, then N(K, L) denotes the total number of failure (war-

ranty claims) in the warranty region (2 and is given by

N(K,L)=> UT, < K.U; < L} |
=1
where
1, )< Kand U; < L

0, otherwise .

Y

H{Ti<K,U,~<L}:{

As in the one-dimensional case, consider the small rectangular region

[t,t4dt) x [u, u+ du) in which at most one failure can occur. For simplicity,
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as in the paper by Baik et al. [2], we use the following notation
N(t,t+dt; u,u+du) = N(t+dt,u+du)— N (t+dt,u)— N(t,u+du)+N(t,u) ,

where N(t,t + dt;u,u + du) represents the number of failures in the rect-
angle [t,t + dt) x [u,u + du) (see Figure 2.7).

Usage !

u -+ du

o
>

0 t t 4 dt Time

Figure 2.7: The rectangular region [t,t + dt) x [u,u + du).

The conditional intensity function of the failure process is given by

Ae(t,u) = lim P{N(t,t +dt;u,u+du) =1|F .}
dt,du;»o dt du

Y

where F;,, = {N(z,y);0 < z < t,0 < y < u} is the past of the failure
process before time ¢ and usage u. The intensity function of the process or
the rate of occurrence of failures in [t,t + dt) x [u,u + du) is given by

Mbu) = Tim P{N(t,t + dt;u,u+ du) = 1}
dt,du—0 dt du

and hence, \(t,u) dt du is viewed as the probability of a failure occurring
in the region [t,t + dt) x [u,u + du). As in the one-dimensional case, the

two-dimensional cumulative intensity function is given by

A(t,u) = E[N(t,u)] = /0 /0“ Az, y) dy dx | (2.5)
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in
since )

otou
The two-dimensional minimal repairs and replacements models are

At,u) =

E[N(t,u)] .

the nonhomogeneous Poisson process and renewal process in two dimen-
sions respectively. In the following section, we briefly discuss the two

models.

Modeling Minimal Repairs: Nonhomogeneous Poisson Process

Analogous to the one-dimensional modeling of minimal repairs, minimal
repairs of a product whose failures depend both on its age and its usage
are modeled as a two-dimensional nonhomogeneous Poisson process.

Let {N(t,u);t > 0,u > 0} denote a two-dimensional nonhomogeneous
Poisson process. Then N(t¢,u) has a Poisson distribution with intensity
function

At,u) = Ae(t,u) =r(t,u) .
That is
[A(t, u)]™ e~ AW
n!

P{N(t,u) =n} = ;
where A(t, u), defined in equation (2.5), is the expected number of failures
in [0,%) x [0, u).

For the warranty region Q = [0, K) x [0, L), N(K, L) denotes the total
number of minimal repairs and A(K, L) denotes the expected number of
minimal repairs in the warranty region. For more, refer to the paper by

Baik et al. [2].

Modeling Replacements: Renewal Process

When all failures are rectified by replacements, the failure process is mod-
eled by a two-dimensional renewal process {N(t,u);t > 0,u > 0}, with

conditional intensity function

Ac(t,w) =7t = Ty, v — Unie)) s
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where 7(.,.) is the two-dimensional failure rate function, and Ty, and
Un () are the age and usage of the last replacement product in [0, ¢) x [0, u)
[2, 32, 52]. The number of failures N(t,u) can be expressed in terms of
the one-dimensional counting processes corresponding to the age and the
usage of the product:

N(t,u) = min{Ny(t), No(u)}

where N;(t) is the number of failures in the time interval [0, ¢), and Ny(u)
is the number of failures in the usage interval [0, u) [6, 18]. Let the non-
negative bivariate variable (X;,Y;) denote the age and usage of the i-th
product, i > 1. The sequence {(X;,Y;);i > 1} is a sequence of independent
and identically distributed bivariate random variables, all with the same

joint distribution function
Fo,y) = P{X; <2,Y; <y} .

The failure time-usage pairs (7;,U;), i > 1, are the sum of the interfailure
time-usage pairs (X;, Y;):

(T3, U;) = <iXJ7iYJ>

For the rectangular warranty region 2, N(K, L) represents the total
number of replacements in the warranty regionand M (K, L) = E[N(K, L)]
represents the expected number of replacements in 2.

A two-dimensional failure process can be reduced to a one-dimensional
process by assuming a relationship between the two variables of the pro-
cess. In the following section, we discuss the one-dimensional approach

to modeling warranty claims in two dimensions.

2.4.3 The One-Dimensional Approach

In the context of warranty analysis, the two variables characterizing the

two-dimensional warranty region are the age and usage of the warranted
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product. Let A(¢) and U(t) denote the age and usage of the product at time
t, and let Uyyq(t) denote the total usage of the product at time ¢ [14]. Let
the warranty begin at the moment the product is first put into use, t = 0,
which is assumed to be the time of the sale of the product. At this time, the
age and usage of the product are both taken to be zero. If no replacements
have occurred in [0,¢), then A(t) and U(t) are the age and usage of the
original item, and A(t) = t and U(t) = Upa(t). If the product has been
replaced at least once in the interval [0,¢), then A(¢) and U(t) are the age
and usage of the replacement product in use at time ¢, and A(¢) < t and
U(t) < Ugorar (t)-

In the one-dimensional approach, we assume that the usage of the

product is a linear function of the age of the product, such that
U(t) =R A(t) ,

where the coefficient R is the usage rate which varies among users and is
a non-negative random variable with some distribution G. The usage rate
R, for a given user, is assumed to be constant over the warranty region

[6, 14]. The distribution function and density function (if it exists) of R are

given by
G(r)=P{R<r}
and 4
9(r) = +-G(r)

respectively. The appropriate form for G(r) is chosen based on the con-
sumer usage rate across the population. Blischke and Murthy [6] suggest
the Beta, Gamma and uniform distributions for the usage rate R.

Let N(K, L), where K and L are the time and usage limits defined in
the warranty policy, denote the number of failures in the warranty region
Q=1[0,K)x[0,L),and let N(K, L | r) denote the number of failures in 2
conditional on R = r. Then, the distribution of N (K, L) is given by

P{N(K,L) =n} = /0 T PIN(K L | ) = n} dG(r) |
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Figure 2.8: A rectangular two-dimensional warranty region.

and since age and usage are related, N (K, L | ) can be expressed in terms

of a one-dimensional counting process as follows

N(K|r), ifr<

L
N K
N(t|r), ifr>4%L

N(K,L|r)= {
K

where {N(t | r);t > 0} denotes the one-dimensional failure process con-

ditional on R = r and

T=—.
r

See Figure 2.8. The expected number of failures in the warranty region (2

is given by

EIN(K, 1)) = [ EIN(UE.L| 7)) dG(r
0
where E[N (K, L | r)] is the expected number of failures in the warranty
region conditional on R = r and it can be expressed in terms of the one-

dimensional process {N(t | 7);t > 0} as follows:

E[N(K | )], ifr<

MMKL“N:{EW@MN ifr>

= Rl
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When all repairs are minimal, N(¢ | 7) is a nonhomogeneous Poisson
process with intensity function A(t | ) equal to the failure rate function of
the original product. In case of replacements, N(t | r) is a renewal process
with interfailure times having the distribution function

F(t|7“):1—exp{—/0tp(s|r)ds}

where p(.) is the failure rate function of the original product. For further
details refer to the warranty analysis books by Blischke and Murthy [6, 7].

Thus, one can model the two-dimensional failure process with a one-
dimensional point process. In this research, we use the one-dimensional

approach to model failures in the two-dimensional warranty region (2.



Chapter 3
Review of Literature

Most studies on warranty policy development and analysis assume that
the failures of the warranted product depend only on the age of the prod-
uct. However, for some products, the failures depend on more than one
variable: for example, in automobiles the degradation depends on both
the age and usage (mileage) of the vehicle. Studies on the modeling and
analysis of two-dimensional warranty policies are a fairly recent addition
to the warranty literature.

In this chapter, we provide a brief review of the literature on one-
dimensional and two-dimensional warranty policies. We focus mostly on
cost-minimizing (for the manufacturer) repair-replacement strategies for
two-dimensional free-replacement warranty policies where product fail-
ures are modeled using the one-dimensional point process approach as it
is more relevant to this research.

In the previous chapter, we reviewed some concepts relevant to war-
ranty policies and their classification. A taxonomy of different warranty
policies is given in "Warranty Cost Analysis” by Blischke and Murthy [6].
As a review of types of warranty policies, Figure 3.1 displays part of this

taxonomy.

35
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Single Product Warranty Policy

(One- or Two-dimensional)

l Renewaing | | Non—renewingJ
l Free—replacement|> l Free—replacement|>
_I Pro-rata I _I Pro-rata I

l Combination I l Combination I

Figure 3.1: Taxonomy for warranty policies [6]

3.1 One-Dimensional Repair-Replacement Strate-
gies

A one-dimensional warranty policy is characterized by an interval on the
time line representing the real age (time) of the product and this inter-
val, starting at the time of the sale of the product, is called the warranty
period. Most repair-replacement strategies for the one-dimensional case
have been based on minimal repairs and/or replacements. Few strategies
have been suggested for imperfect repairs of degree 0 < ¢ < 1. In this
section, we review some one-dimensional repair-replacement strategies.
Nguyen and Murthy [42] proposed a repair-replacement warranty pol-
icy for repairable products with an increasing failure rate, where the war-
ranty period [0, K) is divided into two subintervals and all products that
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fail in the first subinterval are replaced by new products and all prod-
ucts that fail in the second subinterval are replaced by repaired products.
When a product fails for the first time, if its age is less than some pre-
defined threshold, it is minimally repaired and added to the collection of
repaired products to be used as a replacement product. The replacements
are done at no cost to the consumer (also see the study by Biedenweg [5]).

Nguyen and Murthy [43] suggested a model to make optimal decisions
regarding replace-repair strategies for a combination failure-free warranty
policy with fixed and renewed periods K and W. The period (0, K] is
divided into two intervals and if the product fails in the first interval it is
replaced by a new one and if it fails in the second interval it is repaired
both free of charge to the consumer. If the product fails in the interval
(K, K + W], itis either repaired or replaced free of charge to the consumer
and the replacement product is covered by a new warranty with a renewed
period W. When W = 0 the warranty policy corresponds to a failure-free
warranty with a fixed period K, and when K = 0 the warranty policy
corresponds to a failure-free warranty with a renewed period .

Nguyen [41] proposed two repair-replacement strategies, in each the
warranty period [0, K') is divided into two subintervals [0, K) and [K;, K).
The first strategy is such that if a product fails in the first subinterval, it is
replaced by a new one and if a product fails in the second subinterval,
it is minimally repaired. Under the second strategy, if a product fails in
the first subinterval, it is minimally repaired and if a product fails in the
second subinterval, it is replaced by a new one. The decision variable K,
in each of the two strategies, is selected by minimizing the corresponding
warranty servicing cost.

Jack and Van der Duyn Schouten [24] discussed the form of a repair-
replacement strategy that minimizes the expected cost of servicing the
warranty over the warranty period, where repairs are minimal. They
showed that the optimal repair-replacement strategy is determined by com-

paring the age of the product with a control limit function which is depen-
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dent on time. If the product fails within the warranty period, it is mini-
mally repaired if and only if its age is less than this function. Therefore,
the number of replacements is determined by the shape of the control limit
function.

Jack and Murthy [25] proposed a new repair-replacement strategy for
products sold with a non-renewing free replacement warranty policy by
splitting the warranty period [0, K') into three subintervals [0, K1), [/, K»)
and [K>, K), where 0 < K < K, < K. All product failures in the first and
last subintervals are rectified by minimal repair. At the first product failure
in the middle subinterval [K;, K>), the failed product is replaced by a new
one and all subsequent product failures are rectified by minimal repairs.

Yun et al. [55] consider a variation of the strategy proposed by Jack and
Murthy [25]. The warranty period [0, &) is still split into three subinter-
vals [0, K), [K1, K3) and [K», K), where 0 < K; < Ky < K. All product
failures in the first and last subintervals are rectified by minimal repair. At
the first product failure in the middle subinterval [K}, K5), the failed prod-
uct is rectified by imperfect repair instead of replacement. All subsequent
product failures in the middle subinterval are rectified by minimal repair.

For some earlier repair-replacement corrective and preventive mainte-
nance warranty strategies refer to the works by Barlow and Hunter [3],
Park [44], Phelps [47], and Mettas [35].

3.2 Two-Dimensional Repair-Replacement Strate-
gies

A two-dimensional warranty is characterized by a region & C R? in a

two-dimensional plane with the horizontal axis usually representing the

age of a product and the vertical axis usually representing the usage of the

product. The limits of the warranty coverage are known and fixed. The

failures of the product are represented by points in the two-dimensional
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age-usage plane. We confine our research to the case where the warranty
region is the rectangular area Q2 = [0, K) x [0, L), where the warranty ex-
pires either at time K or when the total usage of the product exceeds L.

Two approaches have been proposed for modeling failures in two di-
mensions: the one-dimensional and the two-dimensional approaches. In
the two-dimensional approach, the product age and the product usage are
a bivariate random variable modeled with a bivariate distribution. In the
one-dimensional approach, the usage of the product is considered to be an
increasing linear function of the age of the product.

Baik et al. [2] extended the concept of minimal repair form one dimen-
sion to two dimensions. They provide comparisons between the one- and
two-dimensional failure models for an all minimal repair strategy (non-
homogeneous Poisson process) and an all replacement strategy (renewal
process). For more on the two-dimensional approach to failure modeling
refer to the works by Yang and Nachlas [53], Murthy et al. [39], Kim and
Rao [30].

Repair-replacement strategies corresponding to warranty regions with
multiple subregions are categorized as either restricted or unrestricted.
The definitions are as follows.

Definition 1 Consider a warranty region ) divided into n disjoint subregions,
0,9, ..., Q, such that

U=, and (nmi:@ ,
] =1

where
€ = {[0, K3) x [0, L)} \ {[0, Ki1) X [0, Li—1)} -

forl <i<mn,and Ky = Ly =0, K,, = K and L, = L. The corresponding

repair-replacement strategy, say S,,, is restricted if

Li Ly Lpy
K Ky 7 Kag
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and
L, L

—_—:7"2’

K, K
where ry > 0 and ro > 0. In other words, the warranty strategy is restricted if,
fori=1,2,...,n— 1, the rectangles

U Q; = {[0, K;) x [0, L;)}

are all of similar shape.

A
Usage 7 T2
,/
7
7
,/
L P » I'1
-, Phe
7 -
Qn ,’ e
e Pl
s -
// /’
Lnfl ’ Phe
. e Phe
. e -
. 7z -
7, ’/
P Phd
L2 7 ///
Q2 ,’/z
L]_ // P
Q4 LT
,’/
z
. -

0 K1 K2 Kn_lK Time

Figure 3.2: Warranty region for the restricted case where r; < 5.

Definition 2 The n-subregion strategqy S,, is unrestricted if all the rectangles

J = {0, K) x [0, L)}
j=1
wherei =1,2,...,n — 1, are not similar in shape.

See Figure 3.2 and Figure 3.3 for the restricted strategy when r; < r, and

ro < 11, respectively, and see Figure 3.4 for the unrestricted strategy when
r<ry<...<7r,
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Figure 3.3: Warranty region for the restricted case where ry < ry.
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Figure 3.4: Warranty region for the unrestricted case where r; <ry <.-. <r,.

What follows is a review of some previously developed two-dimensional
repair-replacement strategies, where the failures are modeled using the
one-dimensional approach.
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Moskowitz and Chun [36] proposed a Poisson regression model for
two-dimensional warranty policies. They assume that the number of fail-
ures of the product is distributed as Poisson and the conditional intensity
function is a linear function of the age and usage of the product.

Iskandar and Murthy [20] proposed two two-dimensional free-replace-
ment warranty policies for a repairable product, where in both policies the
rectangular warranty region €2 = [0, K) x [0, L) is divided into two disjoint
subregions (2; and €, such that Q; UQ; = Qand O = [0, K;) x [0, L) is
also a rectangle. In the first strategy, if a product fails in €, it is replaced
by a new one and if a product fails in (25, it is minimally repaired. In the
second strategy, if a product fails in €5, it is minimally repaired and if a
product fails in (2, it is replaced by a new one. These are extensions of
the one-dimensional repair-replacement strategies proposed by Nguyen
and Murthy [43, 42] and Nguyen [41]. The decision variables K; and L;,
in each policy, are determined by minimizing the associated warranty ser-
vicing cost. Product failures are modeled, conditional on the usage rate
R = r, as a Poisson process. This is a more general case of the formulation
studied by Moskowitz and Chun [36].

Iskandar et al. [21] extended the one-dimensional warranty servicing
strategy proposed by Jack and Murthy [25] to a two-dimensional warranty
policy for repairable products sold under free-replacement warranty. They
consider a rectangular warranty region with three disjoint subregions €,
(2 and 3, such that ; U Qy, U Q3 = (). The rectangles )y and ©; U €,
are assumed to be similar in shape. Hence, the strategy is restricted. If
the product fails in €2; or 3, it is minimally repaired. The first product
failure in €2, will be rectified by replacing the failed product by a new one,
and all subsequent product failures in €, will be rectified by minimally
repairing the failed product. The optimal K, K5, L, and L, are obtained
by minimizing the expected warranty servicing cost.

Chukova and Johnston [14] propose an extension of the strategy pro-
posed by Iskandar et al. [21] where the rectangles (2; and 2; U €2, are not



CHAPTER 3. REVIEW OF LITERATURE 43

necessarily similar in shape and hence, the strategy is both unrestricted
and restricted, i.e. they consider both the case where

Ly Lo

T # =

K K5
as well as the case where

Ly L

K, K,

The repair-replacement strategy is the same: product failures occurring in
(), or Q)3 are rectified by minimal repairs. The first product failure in €, is
rectified by replacement of the failed product, and all subsequent failures
in (), are rectified by minimal repair. Let

Ly Ly

— =T — = T2 and — =173 .
Ky K, '

K

They derive the expected warranty cost per unit product sold for six cases

based on the usage rates 74, r2, and r3:

(I)r <ry<rsz, (2) r1 <rg <y
(3)ra <r <3, (4)ry <r3<m
(5)rs <r <71y, (6) 13 <1y <14

Since usage is a function of age, the expected cost is a function of the
four variables (K1, Ky, Ly, Ls) or (K, Ky,71,73). These decision variables
(K4, K,71,72) are determined by minimizing the expected warranty ser-
vicing cost.

Yun and Kang [54] proposed a new warranty servicing strategy which
is an extension of the restricted strategy proposed by Iskandar et al. [21].
The warranty region is divided into three subregions 2, €2, and (3. All
repairs in the first and last subregions are minimal. The first repair in
the middle subregion is imperfect instead of a replacement and all subse-
quent repairs in this subregion are minimal (this is analogous to the one-
dimensional imperfect repair strategy proposed by Yun et al. [55]).

Chukova et al. [13] extended the 3 subregion restricted strategy by
Iskandar et al. [21] to an n subregion restricted strategy S,,. All product
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failures in the first and last subregions, namely (2, and (2, are rectified by
minimal repair and the first failure in each of the intermediate subregions
Q,1=2,3,...,n—1,isrectified by replacement and all subsequent failures
in the intermediate subregions are rectified by minimal repair. Since the

strategy is restricted, the decision variables
Vo= (K1, Ks, ..., Ky, 1)

define the shape of the subregions and are determined by minimizing the
expected warranty servicing cost.

Having minimal repairs in the first and last subregions are justified
because a new product in the first subregion will usually not have any
major problems that may cause the manufacturer to replace it and a prod-
uct in the last subregion is almost out of warranty and the manufacturer
can reduce costs by performing minimal repair after each failure in the last
subregion until the warranty expires [21].

For more warranty repair-replacement strategies refer to the works by
Iskandar et al. [22], Lawless et al. [32], Chun and Tang [15].

In this research, we consider a two-dimensional rectangular warranty
region ) = [0, K) x [0, L) which is, as in the paper by Chukova et al. [13],
partitioned into n disjoint subregions. The imperfect repair strategy is an
extension of the imperfect repair strategy proposed by Yun et al. [55]. The

following section provides the details of our imperfect repair strategy.

3.3 Imperfect Repair Strategy

We consider a restricted strategy where the warranty region € is parti-
tioned into n disjoint subregions, €;, ¢ = 1,2,...,n. The warranty region
and subregions for the two cases, r; < ry and ry < r;, are depicted in
Figure 3.2 and Figure 3.3 respectively.

Since the strategy is restricted, the warranty servicing cost is a function
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of n decision variables
(Kl, KQ, Cey anl,'f’l)

that uniquely define the subregions €;, i = 1,2,...,n. The restricted strat-
egy, although less flexible in terms of the shapes of the subregions, is sim-

pler to analyze. Let C(¢),,), where
wn - (K17 K27 ey anhtrl) )

denote the total warranty servicing cost per unit product sold over the
n-subregion warranty region Q = [0, K) x [0,L). The imperfect repair
strategy is such that

e all repairs in the first subregion 2; and the last subregion 2,, are min-

imal and have constant cost ¢,,;,,;

e the first repair in each of the subregions €2;, i = 2,3,...,n — 1is
imperfect and has a cost ¢;,,,, which is, in our derivations, assumed
to be constant, and all subsequent repairs in each of the subregions
are minimal with constant cost ¢,,;,,; later in the numerical example,
we consider costs ¢;,,, that vary with the degrees of the imperfect

repairs.

Let 87‘? denote the imperfect repair strategy, where n is the number of sub-

regions and
0 = (01,02,...,0p-2)

is the degrees of the imperfect repairs in the n — 2 intermediate subregions.
The objective of this strategy is to minimize the expected total warranty
servicing cost per unit product sold by determining the optimal partition
M, Qy, ..., ,, which is equivalent to finding the pairs

(K1, Ly), (Ka, La), ..., (K1, Ly—q)
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that minimize the expected warranty servicing cost over the entire war-
ranty region. The optimization problem, under the restricted strategy, re-
duces to finding the optimal decision variables K, K,...,K,_1 and r
that minimize the expected warranty servicing cost. As in the paper by
Chukova et al. [13], let

¢; = (Kfv K;, R K:,—17T>1k)
denote the optimal decision variables. Then

u5, = argmin BIC%(6,)]
Un
where E[C%(1,)] is the expected total warranty servicing cost per unit
product sold.

To model the failures that result in warranty claims and hence, war-
ranty servicing costs, we use the one-dimensional approach to failure mod-
eling, where it is assumed that a linear relationship exists between the age
and usage of the product (refer to Chapter 2 for details). In modeling the
failures, it is also assumed that

e all failures result in immediate warranty claims;
e all claims are valid;

e the time required to repair or replace the failed product, in compar-
ison to the operating time, is relatively small and can be approxi-

mated to zero.

To model imperfect repairs, two approaches are used. The first ap-
proach is an adaptation of the age reduction model proposed by Doyen
and Gaudoin [16], according to which the imperfect repair reduces the vir-
tual age of the product by an amount proportional to its age immediately
prior to the repair. The second approach is a modification of the intensity

reduction model proposed by Chukova et al. [11] which suggests that the
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failure rate function of the product after an imperfect repair is between
the failure rate of the product immediately after a minimal repair and the
failure rate of the product immediately after the previous repair.

The two approaches for modeling imperfect repairs and the associated
cost analyses are described in detail in Chapter 4 and Chapter 5. Numer-
ical illustrations of the results derived in both chapters are presented in
Chapter 6.



Chapter 4

Age Reduction Model

In this chapter, we discuss the first of the two imperfect repair models,
namely the age reduction model, in detail and derive the distribution of
the times to imperfect repair and the associated expected total warranty

servicing cost for the imperfect repair strategy S,‘? described in Chapter 3.

41 Model Formulation

Since we use the one-dimensional approach to modeling failures, accord-
ing to which
U(t) =R A(t) ,

where A(t) and U(t) are the age and usage of the product at time ¢, the
failure process is a one-dimensional counting process {N(t | 7);t > 0},
conditional on R = r, with a predefined initial intensity function. Let the
intensity function of the process {N(t | r);t > 0} be denoted by (¢ | r).
Since the usage is modeled as a function of the age, the intensity function
is a function of the age of the product only [6]. The quantity (¢ | ) dt can
be viewed as the probability that the product currently in use will fail in
the small interval [¢, ¢ + dt). See Chapter 2 for details.

In the age reduction model, an imperfect repair changes the virtual age

48
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of the product such that it is less than or equal to the real age of the prod-
uct. According to the imperfect repair strategy, all repairs in the first and
last subregions are minimal, but the first repair in each of the intermediate
subregions, €2y, s, .. ., 2,1, is imperfect with a corresponding degree, 4;,
92, ..., 0p—2. Let A;(t) denote the virtual age at time ¢ following the i-th

imperfect repair. The virtual age prior to the first imperfect repair is

Following the first imperfect repair of degree 4,, there is a reduction, pro-

portional to the degree of repair, in the age, such that

Al (t) =t — 51u1
= Ao(t) — 51A0(U1)
where v, is the time of the first imperfect repair. The virtual age following

the second imperfect repair depends on the degree of the first imperfect

repair, 1, and the degree of the second imperfect repair, d,, such that
Ag(t) =1t — 51U1 — 52(u2 — 51U1)
= A1 (t) - 52A1 (Ug) .

where u; and us are the time of the first imperfect repair and the time of the
second imperfect repair, respectively. Similarly, after the third imperfect

repair at time u3, we have

Ag(t) =t — (51u1 — (52("&2 — 51"&1) — (53(’&3 — 51u1 - 52("&2 - 51u1))
= AQ(Iﬁ) — 53142(”&3) s

where 43 is the degree of the third imperfect repair. In general, the virtual

age can be written (recursively) as

where §; is the degree of the i-th imperfect repair and u; is the time of the

i-th imperfect repair [29]. Since all repairs between the imperfect repairs
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are minimal, the intensity function (¢ | ) of the process after each imper-
fect repair changes only with respect to the virtual age after the imperfect
repairs. Based on the imperfect repair strategy, there can be a maximum
of n — 2 imperfect repairs if there has been at least one failure in each of
the subregions €2, 23, ..., 2,1, since all repairs in the first and last subre-

gions are minimal. Therefore, for any given set of times to imperfect repair

U, Usg, . . ., Up_2, the intensity function at time ¢ is given by
(A7), 0<t<u
AlAL(@) [ r] uyp <t <y
ANA (@) [r] ;. s <t<wug
At |r)=24 (4.2)
AAi@) [ ], Uy St Uiy
L A[Ana() | 7], upe <t <00

See Figure 4.1 for an example of this intensity function.

AL

T1 T2 T3

Figure 4.1: Intensity function following imperfect repairs of degree 0.5.
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Since all repairs between the imperfect repairs are minimal, the process
between the i-th imperfect repair at u; and the next imperfect repair at u;1,
fori =0,1,...,n—2, canbe viewed as a nonhomogeneous Poisson process
with intensity function A[4;(t) | ]. For u; <t < u;1,, the expected number
of failures in the interval (u;, t] is given by

t
E[N(t|r)— N(u; | 7)] :/5\(5 | ) ds

Us

t

:/)\[Ai(s) | r] ds
4.3)

Ai(t)
= As|r)ds
A (ui)

A[A@) | r] = AlAi(wi) [ ]

where the virtual age A;(s) after the i-th imperfect repair is a function of
all previous times to imperfect repair u;, us, . .., u;—1, and the i-th time to
imperfect repair u,. The expected number of failures before the first im-
perfect repair is given by
t
EIN(t|r)]=A]r) = /)\(S | r)ds . (4.4)
0
The expected numbers defined in equation (4.3) are conditional on the
times to imperfect repair being uy, us, . .., up_o.
In the following section, we derive the density functions of these times

to imperfect repair to account for all possible values of uy, us, . . ., u,—o.

4.2 Times to Imperfect Repair

In order to derive the expected total warranty servicing costs, we must

tirst derive the distribution functions of the times to imperfect repair. We
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begin with deriving the distribution function of the time to first failure. As
in the paper by Chukova and Johnston [14], let T}, represent the time to

first failure conditional on R = r. Then, the distribution function of 7}, is

given by
Py, (1) =P{Ty, < t}
—1— P{Ty, > t}
o [P et
o 0!
RSO

where A(t | r) is defined in equation (4.4). Therefore, the probability that

the product does not fail in the interval [0, ¢), is
Fr,, (t) = P{Ty, > t} = P{N(t | r) = 0} = ¢ 201,

The density function of T, is given by

leM"(t) :%FTlr(t) = A(t | 'r) e—Ar)

Now let the variables Tk, Tk, - - -» Tk, _,» €ach denote the time of the
first failure in the corresponding subregion 5,23, ...,€Q,_1. Therefore,
Tk,)r is the time of the first failure after K, T, is the time of the first
failure after Ky and so on. The distribution function of the time of the
first imperfect repair is a conditional form of the distribution of the time to
first failure 7}, given in equation (4.5). Hence, for ¢ > K, the distribution

function of T, |, is given by

FTKl\r(t) :P{TK1|T < t}
=1 - P{TKllr > f}}

=1— P{N(t|r)— N(K, | r) =0} 16)
_1 [A(t]| ) — A(Ky | 7)]° e A=A
o 0!

1 oA AE )]

Y
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where \(s | r) (equation (4.2)) is the intensity function prior to the first im-
perfect repair and A(s | r) (equation (4.4)) is the corresponding cumulative

intensity function [14, 21]. The density function for T, is given by

d - r)— 1|r
fTKl\r(t) :EFTKNT@) =At|r)e [A(t]r)—A(K1|r)] 7 (4.7)
and the probability that the first failure after K is after time ¢ > Kj is
Frge () = P{Tiyp > 1} = PLN( | 7) = N(Ky | 1) = 0} = o=l

The distribution of the time to first failure after K5, T.,,, depends on T,
since the virtual age changes after an imperfect repair. If there have been
no failures in the interval (K, K,], the distribution of T K| 18 similar to
that of T, |, derived in equation (4.6), however, if there have been any
failures in (K, K|, then the virtual age of the product is altered. Hence,
the distribution function of Tk, is

FTK2\r(t) :P{TKzlr < t}
=P{Tk,r <1, Tk, )p < Ko} + P{Tk,pr <8, Tk, > Ko}

Ko t
- / P{Tiog <t Ty = ur) fr () dus + / Frie, (ur) don
K1 Ko
Ko
_ / (1 — e~ AAOFTAAGRI f () duy 4 e B A
K
_ e*[A(t\T)*A(KﬂTH ’

where fTKw(ul) is given in equation (4.7), and since, conditional on the
time of the first imperfect repair being u;, K1 < u; < K5, we have
P{Tryr <t | Tieyp = wr} =1 — P{N(t | r) — N(Ky | ) = 0}
—1 — e~ (AL @] =A[AL (K2) ]}
t

=1 —exp —/)\[Al(s) | r]ds

K>
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The probability that the first failure after K is after time ¢ > K, is given
by
FTKQ\r(t) :P{TKz\T > t}
=P{Tk,r > t, T, )r < Ko} + P{Tx,)p > t, Tk, )p > Ko}
=P{Tx,)p >t | Tryr < Ko} P{Tg,r < Ko} + P{Tk,p >t}
K
_ / P{Tiyy > t| Tierp = wi} fry, (ur) dus + Fry_ (1)

Ky
Ko

- / e~ (AAOMI-AMGEDNTY f (1)) duy + ¢ IAED=AGI]

Ky

For t > K, the density function of the time to first failure after K5, Tk,

is given by
d
fTK2\T(t) :ﬁFTKQ\T(t)
Ko
:/)\[Al(t) | T]ef{A[Al(t)lr]fA[Al(Kz)\r}} fTKw(Ul) duy + fTKl\r@) 7
Ky

where fr, () is defined in equation (4.7). These results are a generaliza-
tion of those derived by Chukova et al. [13]. When instead of an imperfect

repair at u; we have a replacement, i.e. when §; = 1, we get

Ko
fTKQ\r(t) :/)\<t — | T>€—{A(t—u1\r)—A(K2—u1|r)} fTKl\'r(ul) duy
A (4.8)
+ fTKl\r(t) )

which is the density function for the time to first imperfect repair after K,
derived by Chukova et al. [13].
In deriving the distribution function of the time to first failure after K,

Tk, we must consider the failures in subregions (2, and (23. For ¢ > Kj,
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the distribution function of T, is given by

Fry,, (t) = P{Ti,r < 1}

= P{Tx,r <t,Try)r < K3, Tky)r < Ko}
+ P{Txyr < t,Tiypr < K3, T, > Ko}
+ P{Tk,)r < t,Tky)r > K3, Tx,)p < Ko}
+ P{Tk,r < t,Tiypr > K3, Tk, > K3}

= P{Tx,r <t | Tropr < K3, Tryr < Ko} P{Tiyr < K3, Tir < Ko}
+ P{Txyjr <t | Tryfr < K3, Ti))r > Ko} P{Tryr < K3, Tk > Ko}
+ P{Tk,r <t | Trypr > K3, Ti,jp < Ko} P{Ty)r > K3, T r < Ko}
+ P{Tk,r <t | Trypr > K3, Tk, p > Ko} P{Ti,r > K3, Tk r > Ko}

K3 K>

://{ (1 — ¢~ (AAOII-AA(lr )

Ko Ky

K3
n / (1 — e CAOR-AMEDRD £ () duy

Ko
Ko

N / { (1 = e~ AR OP-NA KT = (AL =A%)}

K1

X fTK1T<U1>} du1
1 (1= e(ME-AIN)Y (Al AN}

The first summand of the above density represents the case where there
has been at least one failure in each of the two intervals (K, K| and
(K, K3, i.e. there have been two imperfect repairs prior to K3. The sec-
ond and third summands are the two cases where there has been only one
imperfect repair prior to K3; in the second summand, no failures have oc-
curred in (K, K] and hence, the first failure after K is after K5, and in
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the third summand, no failures have occurred in (K5, K3]. The last sum-
mand is the case where no failures have occurred in (K7, K;3]. The density
function for T, is given by

d
fTK3\r (t) :%FTKMT (t)

K3 K>

Ky Ky
X A[Aq(u2) | T]e{A[Al(W)T]A[AI(KQ)M}JCTK”(M)} duy dus

K3
+/>\[A1(t) | T]6_{A[A1(t)‘T}_A[Al(KS)‘T}}fTKl‘T(ul)dul

Ko
Ko

- / A[A(t) | rlem CHOPAGEDID £ () duy
Ky

+ fre, ), (1)
In the third summand, the exponent term implies that no failures have
occurred in the interval (K>, t], i.e. there have been no imperfect repairs in
the previous subinterval (K5, K3]. As mentioned earlier, these results are
generalizations of those of Chukova et al. [13]. When §; = d, = 1, we get

K3 Ko

Frigy o (2) :// {)\(t — g | r) e~ (AUl —AKs —ualr)}

K» K1
X Mug —uy | 7T) e~ (Aluz—u|r)—A(Kz—u1|r)} fTK”(ul)} duy dus
K3

+ / At —uq | 1) e~ tAltmuln—A(Ks—u|n)} fTKW(Ul) duy

K>
K>

+/>\(t oy | ) e AN AGKz - ) Fr, (1) duy

K1
+ fTKl\r(t) :
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The first and second summands correspond to replacements in the third
subinterval (K5, K3]. Also, notice that the first element in the first sum-
mand is now only a function of the replacement in (K>, K3]. We use the
dummy variable u; for the replacement in (K, K5, and u, for the replace-

ment in (K5, K3]. The above equation can now be rewritten as

K3
fTK3\r(t) = / At —wug | T) o~ (Alt—ua|r)—A(Ks—uz|r)}
Ko
Ko
X {/)\(UQ — Uy | T) e*{/\(uzfm\T)*A(Kzfuﬂr)} fTKl‘T<'U/1) duy
Ky
+ fTKIT(UQ)} dus
Ko
+/)\<t — U | T) Q*{A(tfm\r)*/\(Kquﬂr)} fTKW(ul) duy
Ky
_'_ fTKl‘r<t) .

Note that the term in the curly brackets is the density function of the time
to first failure after K, given in equation (4.8), where u; denotes the last

replacement before K,. Hence, when §; = J, = 1, the above becomes

K3

K>
K>

+ / At — uy | r) e Al =AlK—un)} fre,), (wr) duy + fr, | (1)
Ky

K;

3
= / At = ujoy | r) e ID=AEGm0a 0} - (ug1) dug
j:2K371

+ fTKl\r(t> )

where u;_; is now the time of the last replacement before K.
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These results match those derived by Chukova et al. [13].

Next, the density function for the time to first failure after Ky, Tk, is

K4 K3 Ko

fTK4\r(t) :///{)\[Ag(t) | 7’]ef{A[AS(t)|7“]*A[A3(K4)|r]}

K3 K2 Ky
X A[Ag(ug) | r]e (AlA=(us)lrl=AlA2(Ks)irl}

X A[A;(ug) | T]e—{A[Al(ug)r}—A[Al(Kg)r}}fTK1r(ul)} duy duy dus

K3 Ko

//{ [Ag(t) | rletAlA2(0lr]-AlAx() 1]}

Ko K1
X A[A;(ug) | T]G{A[Al(uz)r}A[Al(Kz)r}}fTK”(ul)} duy dus

K4 K3

//{ Ay () | rle—tAlA20lr]-AlAx )]}

K3 K»
X A[Aq(us) | ,,,]e{A[Al(uz)r}A[Al(Ks)r}}fTK”(ul)} duy dus

K4 Ko

//{ (Ag(t) | r]e— 1AMl -ALaa() )

Ks Kq
x IXL41<u2>|7ﬂe{AP%<“ﬂ’ﬂAﬂ4ﬂkb>“}f}klr<u1>} s duz
Ky

+/)\[A1(t) | T]6_{A[Al(t)|r]_A[Al(K4)|r]}fTKl‘T(Ul)dul

K3
K3

+/)\[A1(t) | T] —{A[AL ()] —A[A1(K3) |r]}f

Ky
Ko

4 [ AL 0) | e WO f (),

Ky

Tr,|r (ul)dul

+ fTKl\r(t) .
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The density function for Tk, is derived in a manner similar to fr, (1),
and hence, we have omitted the derivation process. The summands in the
density function denote the cases where none, one, two or three imperfect
repairs have been performed before K,. The first summand is the case
where there has been at least one failure (and therefore, one imperfect re-
pair) in each of the subintervals (K7, K5), (K2, K3], and (K3, K] before K.
The next three summands each represents the case where there has been at
least one failure in each of the two corresponding subintervals and the next
three summands each represents the case where there has been at least one
failure in the corresponding subinterval. The last summand represents the
case where no failures have occurred in the subinterval (K7, Kj].

When 6; = 0, = 03 = 1, as shown for fTK3\r (t), this density function
collapses to
T
fre, (1) :Z / At —uj_y | r) em ATt =AU ey ) fTKjil‘r(ujfl> duj_y

I=2 K

+ fTKl\r(t) )

where u;_, is the time of the last replacement before k4. Again, this matches
the results derived by Chukova et al. [13].

In general, to derive the density function of the first repair after K,
ie. the time T, of the [-th imperfect repair, where | = 1,2,...,n — 2,
we need to consider all possible combinations of imperfect repairs in the
previous subregions )s,€3,...,€);. Let ¢ denote the number of possible
previous imperfect repairs. For Ty, the time of the first failure after K,
wehave: = 0,1,...,l—1possible previous imperfect repairs. When i = 0,
the time of the first failure after K, Tk,,, is the time of the first failure af-
ter K. In other words, no failures have occurred in the interval (K, K]
and the case is straight-forward. When i = 1, there has been one im-
perfect repair before K;, which could be in any one of the subintervals
(K1, Ky, (K2, K3), ..., (K;_1, K;]. When i = 2, there have been two im-

perfect repairs before K;, which could be in any two of the subintervals
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(K4, K, (Ky, K3, ..., (K;—1, K)], and so on. By conditioning on the vari-
ables uy,us, ..., 11 and then removing the condition, we account for all
possible times to imperfect repair. Following the patterns in the density
functions derived earlier for T, ., T,|r, Tk, and Tk,,, for a given i > 0

and a given [, we define the sum

Kj; Kjy Ky

> / / / {A[Al-(t)\r] o~ (A1 = A LA ()]}

V{j17j2---,ji}€Ji,LKji_1 Kyy1 Kjy -1

x MAi_1(ug) | 7] e 1Al -1 (wi) Ir] = A[As -1 (K, )]}
(4.9)

x A A () | ] e (A1 @)l =AUA ()1}

x fTKlr(Ul)} duy duy ... du; |

which represents the density corresponding to all possible combinations

of the ¢ imperfect repairs before Kj;. For i > 0, the set

Jz,l:{{jl,,jl}{jh,jz}g{27,l}andjl<<jz}

provides all possible combinations of {Kj,,..., K;,} which generate the
subintervals in which the imperfect repairs have been performed [12].

Therefore, the set J;; works such that when ¢ = 1, we have

Kj,
Z A4 (2) | 7] e~ {AAL(D)Ir]—A[AL (K]} fTKl\r(ul) duy
V{jl}GJqul_l
1 Kj
— Z A[A;(t) | 7] e A O =ALALK;)]} 1, (un) duy

2
J Kij -1

which implies that when i = 1, there has been one imperfect repair before
K, which could be in any one of the subintervals (K7, Ks), (K2, K3), ...,
(K1, KiJ.



CHAPTER 4. AGE REDUCTION MODEL 61

When 7 = 2, we have

Kj, 1

2 / / {A[Az(t)\'r’] e~ AL -ALA(K5,)])

V{j17j2}€J2,lKj2_l Ky 1

K;

X A[A1(ug) | r] e A=A TG

X fTK“(ul)} duy dugy

which implies that when i = 2, there have been two imperfect repairs
before K; which could be in any two of the subintervals (K, K5|, (K>, K],

..., (K1, K], and so on. When i = [ — 1, we have the term

Kl—l K3

Kl Ko
/ / ---//{)\[Az—1(t) | 7] e~ IAAL L @)Ir]=A[A 1 (KD)]}

K1 K2 Ky K

X )‘[Al72<ul71> | r] e_{A[Al—2(ul—1)|7"]—A[Al—2(Kl—1)]}

X )\[Al,3(ul72) | T] 67{A[AZ—S(u172)|r]7A[Al—3(Kl—2)]}

X A[A;(up) | r] e~ (AAw2)Ir]=AlAL(K2)]}

X

fTKlr(ul)} du1 du2 R dul,g dul,1

which corresponds to the case where at least one failure has occurred
in all the subintervals before K;, namely (K7, Ks|, (Ks, K3, ..., (K1, K.
In other words, there has been an imperfect repair in all the subregions
Q5,€3, ..., before K.

Since the events i = 0,7 = 1, ..., i = [ — 1 are exclusive, the distribu-
tion function for Tk, is the sum of all probabilities corresponding to these
events. And hence, when i = 0, the density function component is just
fry,,.(t), and when i > 0, the density function component is the sum over
all ¢ > 0 of the summands defined in equation (4.9), thus accounting for
both the number of possible previous imperfect repairs and the combina-
tion of intervals in which they’ve been performed.
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Therefore, density function for T, is given by

fTKl\r( ) = fTKw<t)

+Z 3 / / / { (1) | ] e~ Al =AU )lr)

i=1 V{j ]2~~~7]z}€leK Kjy1 Ky -1

X )\[Az—l(ul) | T] e —{A[A; -1 (ug)|r]— A[Ai—l(Kji_l)‘T”’

X A[Aq(ug) | 7] e~ AAL@I =AML, I}

X fTKlr(ul)} duy dusy . . .du;

(4.10)
where A;(.) is the virtual age after the i-th imperfect repair given in equa-
tion (4.1) and fTKI\T(t) is defined in equation (4.7). These results are gener-
alizations of those presented in Chukova et al. [13]. When

dp=0g=...=61=1,
for t > K;, we have
fTKl\r(t) = fTKl\r(t)
B
+ Z / At — ;g | 1) e AETw—t)=AK —uj— ) Jrie, (W) duj
]ZQKJ 1

where u;_; is now the time of the replacement in the subinterval [K;_;, K)
or in 2; and may not be the time of the j-th replacement; u,_; is the time
of the last replacement before K;. This matches the results derived by
Chukova et al. [13]. We now proceed to deriving the expected total war-
ranty servicing cost per product sold over the warranty region.
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4.3 Warranty Servicing Costs

Let E[C(¢),)] denote the expected total warranty servicing cost over the

warranty region ), where
@/)n = (Kl,KQ,---,Kn—l,ﬁ) .

Since the imperfect repair strategy is restricted (see Chapter 3 for details),

such that
L, L, L, and
— =—"=...= =7 — =
K, K, K, , K

in determining the expected total warranty servicing cost E[C*}(1,,)], we

need to consider only two cases: r; < ry (Figure 3.2) and ry < r; (Figure
3.3). Let E[C}(¢n)] denote the expected total warranty servicing cost for
the first case r; < 75 and let E[C$(1,,)] denote the expected total warranty

servicing cost for the second case r, < 7 [21, 13]. That is,
e Case A: E[C%(¢,)] = E[CS ()]
o Case B: E[C*}(¢,)] = E[CE(¢n)]

The main results of this chapter are the density function derived in equa-
tion (4.10), and the expected warranty servicing costs E[C%(1,)] for Case
A and E[C%(¢,)] for Case B, for the age reduction model, which we derive

in the following sections.

4.3.1 CaseA:r; <r,

Since we are using the one-dimensional approach where the usage of the
product is a function of the age of the product, in order to derive the ex-
pected total warranty servicing cost E[C%}(1,)], we condition on R = r. As
in the papers by Iskandar et al. [21] and Chukova et al. [13], we subdi-

vide the warranty region based on the rates 7, and r5, and, conditional on
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the usage rate R = r, derive the expected warranty servicing costs for the

following three sub-cases:

Let E[CY ()], E[C (1,)], and E[C (1,)] denote the expected warranty
servicing costs, conditional on R = r, for the three sub-cases respectively

[13]. Then the expected total warranty servicing cost for Case A is given

by

BIC%(n)] = / E[CD ()] dG(r)+ / E[C®) ()] dG(r)+ / E[C®) (1)) dG(r) |

Each of the expected costs E[CY ()], 7 = 1,2,3, are the sum of the ex-
pected costs in each of the subregions 4,2, ..., (2, which are denoted
by

E[CP ()], E[C2 ()], - E[C (4n)] -
That is, the expected warranty servicing cost conditional on R = r, for the

three sub-cases, j = 1,2, 3, is given by
B[CY) (¥n) = E[CT ($n)] + E[C* (¢n)] + .. + EIC (4a)] -

For simplicity, since it is clear by the context, we omit the usage of the
index j on the right hand side of the above equation.

We now proceed to deriving the expected costs E[CS(1,)] and E[C5(1),,)]-
We will only derive the expected cost for sub-case A-(1), since the expected
costs for A-(2) and A-(3) and Case B can be obtained in a similar way, with

minor adjustments.

MDr<r; <r,

Figure 4.2 depicts the case where r < r; < r,. Let ¢, and ¢;,, denote the

cost of a minimal repair and the cost of an imperfect repair respectively.
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Figure 4.2: r <r; <rs.

The costs ¢in, and ¢;,, are assumed to be constant. Later in the numerical
example, we adjust the costs ¢;,,, of the imperfect repairs based on their
degrees.

When deriving the warranty servicing cost in a subregion, we must
consider all imperfect repairs performed in the preceding subregions, since
they alter the virtual age of the product. By considering the number of pos-
sible imperfect repairs and conditioning on the time of these repairs, we
can derive the conditional expected warranty servicing costs in the sub-
region. Later, we remove the conditioning using the summands of the
density function derived earlier to account for all possible combinations
of subintervals with these imperfect repairs and all possible repair times.

The expected warranty servicing cost in the first subregion €, is not
conditional on times to imperfect repair, since all repairs in this subregion
are minimal. Therefore, the warranty servicing cost in this subregion is
given by

Comin N(K1 | 1), N(Ky|7r)>0
{ 0, otherwise
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where N(K; | r) is the number of failures in the interval [0, ;] and the

expected warranty servicing cost in (2, is given by

Crmin A(K1 | T), N(Kl | 7") >0
0, otherwise

where
K1

A(K1|r):/)\(s|r)ds :
0
Hence, the expected warranty cost in the first subregion (2, is

E[C ()] = Cmin AK1 | 7) (4.11)

The first failure in the second subregion is rectified by an imperfect re-
pair and all subsequent failures are rectified by minimal repair. If the first
failure after K, occurs at time v, then conditional on T%,|, = u, the con-

ditional warranty servicing cost in subregion (), is given by

Cimp T Cmin [N(Kz | ) — N(Ul | 7)), u < Ko
0, Uy > K2

where N(K, | r) — N(uy | r) is the number of failures, and hence min-
imal repairs, in the interval (u;, K»]. The conditional expected warranty

servicing cost in (2, is given by

Cimp + Cmin AN[AL(K) | 7] — A[A1(ur) [ 7]}, w < Ko
0, uy > KQ

where A, (t) is the virtual age after the first imperfect repair at time u; with

degree J,. Now removing the conditioning on T, |, = u;, we get

K>

E[Cgb(i/fn)] = f {(Cimp + Comin {A[AL(K2) | 7] = A[Ay(uq) | 7’]})

K1

(4.12)
X fTKﬂ(Ul)} duy .
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The first failure in the third subregion (23 is also rectified by an imperfect
repair and all subsequent failures in this subregion are rectified by min-
imal repair. In computing the warranty cost in subregion €23, we must
consider the two cases Tk, |, < K3 and Tk, > K,. Therefore, conditional
on the first failure after K being at time 4, i.e., time of the first imperfect
repair being T, |, = u; and the time of the second imperfect repair being

us, the conditional warranty servicing cost in subregion (23 is given by

Cimp + Conin [N(Kg | 7") — N(Ul | T‘)], K2 < U S Kg
Cz'mp + Crmin [N(Kg ‘ T) — N(UQ | T’)], Ul S K2 and U9 S Kg
0, otherwise |,

where N (K3 | ) — N(uy | 7) and N (K5 | 7) — N (ug | ) count the number of
minimal repairs in the subintervals (u;, K3] and (us, K] respectively. The

conditional expected warranty servicing cost in subregion € is

Cimp + Crnin {A[Al(Kg) | T‘] — A[Al(ul) | T]}, K2 < U S Kg
Cimp + Crmin {A[AQ(Kg) | T] — A[AQ(UQ) ‘ 7’]}, Ul < K2 and U9 < Kg
0, otherwise .

On removing the conditioning on the time of the first imperfect repair u,
and the time of the second imperfect repair u,, we get the expected war-

ranty servicing cost in subregion €3

K3

BIC ()l = | { (o -+ i {A[AL(K3) | 7] = Al (un) | )
X fTK”(ul)} duy

K3 K>

n / / {(Cimﬁcmm {A[A2(K3) | 7] — A[As(uz) | 7]})

Koy K1

(4.13)
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Similar to the cost in €3, the cost in €, is derived by considering all pos-
sible imperfect repairs in previous subregions. Conditional on the time of
the first imperfect repair being u,, the time of the second imperfect repair
being u, and the time of the third imperfect repair being u;, we consider
three cases: the case where no imperfect repairs have been performed be-
fore €, (i.e, before K3), the case where one imperfect repair has been per-
formed before (4, and the case where two imperfect repairs have been
performed before 4. The first failure in this subregion is followed by an
imperfect repair and all subsequent failures are followed by minimal re-

pairs. Hence, the conditional warranty servicing cost in this subregion is

given by
( Cimp + Crmin [IN(Ky|7)— N(uy | 7)], Ks<u <Ky
Cimp + Crmin [N(K4 | r) — N(Uz | )], w < Keand K3 < ug < Ky
Cimp + Comin [N(K4 | 7) — N(ug | 7)), Ko <uy < Kyand K3 < uy < K,
Cimp + Crmin [IN(Ky|7)— N(ug | 7)], w1 < Ks,uy < Kszand us < K,
[ 0, otherwise

where the variables denote the number of minimal repairs in the intervals
(w1, K4], (u2, K4] and (ug, K4] respectively. The expected conditional war-

ranty servicing cost in this subregion is given by

([ Cimp + Conin {A[AL(KL) | 7] = A[AL(u) | 7]}, Ks <uy < Ky
Cimp + Cmin {A[A2(Ky) | 7] — A[Aa(ug) | 7]}, w < Ky and K3 < up < Ky
Cimp + Cmin {A[A2(Ky) | 7] — A[As(u2) | 7]}, Ko <up < Kj
and K35 < uy < Ky
Cimp + Cmin {A[A3(Ky) | 7] — A[As(ug) | 7]}, w < Ko, us < K3
and us < K,

0, otherwise .

\

On removing the conditioning on the times to imperfect repair u,, uy and
ug, we get the expected warranty servicing cost in the fourth subregion,
Q.
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That is
Ky
BIOR (0] = [ { (o + coin (LA | 1] = Al () | 1)
X fTKlr(ul)} dU1
K Ko
b T o+ o A1) 1) M) 1)
K3 K4
X A[Ay (us) | r]e~ (A2l -AA () 1)
X fTKlr(ul)} dU1 dUQ
Ki K
b T o+ o (A1) 1) AL 1)
K3 Ko
X AN[Aq(ug) | r]e~ tAA(u2)l ] =ALAL(KS)Ir]}
X fTKlr(ul)} du1 dUQ
K4 K3 Ko
b T T o o (ALASCED) |7 = ALt |11
X )\[AQ( ) | ]e {A[A2(us)|r]—A[A2(K3)|r]}
ANA;(us) | r]e —{A[A1 (u2)|r]—A[AL(K2)|r]}
X fTKlr(ul)} du1 dUQ dU3 .
(4.14)
In general, for any of the intermediate subregions (2, [ =2,3,...,n—1,

the number of possible previous imperfect repairs before that subregion
canbe i = 0,1,...,1 — 2. The first repair in (2; is imperfect and all subse-
quent repairs are minimal; given that at least one failure (hence, an imper-
fect repair) occurs in 2;, when the number of possible previous imperfect
repairs is ¢ = 0, the imperfect repair in (2, is the first in the warranty region;
when i = 1, the imperfect repair in €, is the second in the warranty region,
and so on.

Now, given the number of possible previous imperfect repairs i, where
i=0,1,...,1 — 2, and conditional on the time u;,; of the imperfect repair

in €, the corresponding conditional expected warranty servicing costs are
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given by
[ Cimp + Comin {A[AL(EY) | 7] = A[As(w) | 7]}, i=0and K;_; < uy < K,
Cimp “+ Conin {A[AQ(KZ) | T‘] — A[AQ(UQ) | T]}, i =1and Kl—l < U2 S Kl

Cimp “+ Crin {A[Ag(Kl) | T] — A[Ag(’u?,) ‘ T]}7 =2 and Kl,1 < Uus S Kl

Cimp + Cmin {A[Al71<Kl) ‘ T] - A[Alfl(ulfl) ‘ T]}, 1=1—2and

\ 0, otherwise .

In the first case, the imperfect repair in 2, is the first. In the second case, the
imperfect repair in (2; is the second, and hence, the first imperfect repair at
time w; could have been in any of the subregions €),, Q3, ..., {;_;. In the
third case, the imperfect repair in (2, is the third, and hence, the first and
second imperfect repairs at times «; and uy could have been in any two of
the subregions 2y, 23, ..., {_1, and so on.

To derive the expected warranty servicing cost within the subregion (2;,
we remove the conditioning on the times to imperfect repair, u;, u, . . ., 14—
1, to account for all possible combinations of subintervals in which the im-
perfect repairs have been performed.

Ky <w, <K,
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Therefore

EK&«%M:KW{@%m+%m{Ammanﬂ—Ammm>wn>
X fTK“(ul)} duy

TS f{@m+%ﬁM&MDM—M&WﬁMH

Ky V{ji}edii—1 K51

X A[A;(us) | 7] e{A[Al(uz)lr]A[Al(Kjl)lr]}fTK“(ul)} duy dus

A f{@m+%MM&mm4—M&mgmn

Kl—l V{jly]’Q}eJQ’lfl Kj2—1 Kjl—l
X A Ag(ug) | r] e~ {AA2(ua)lrl=A[A2 (K, )lrl}

% A[Ay (us) | 7] e (Al 2)Ir=AlA (K, Ir])
X fTK1T<U1)} duy dus dU3

+ o +
Kl Klfl K3 K2

i f-uff{@mpHWAAMHum|d—Mm4m4nﬂn

Ky 1 K2 K K3
X MNA_o(ug_1) | r] e A2 (un)Ir]=AlA2 (K -1)Ir]}

X )\[Al,g(ul,Q) ‘ r] e {A A3 (ui—2)[r]=A[A_3(K;—2)Ir]}

X )\[A1<U2) | 7«] e~ {A[A1(u2)|r]—A[A1(K2)|r]}

X fTK”(ul)} duy dusy . .. duj_o du;_y
(4.15)
where the set J; ;_,, defined on page 60, provides all possible combinations
of the subintervals in which the ¢ =1, ..., — 2 possible previous imperfect
repairs have been performed.
For the n-subregion warranty region, (2, denotes the last subregion
within which all repairs are minimal. The conditional expected warranty

servicing costs for i = 0,1,...,n — 1 possible previous imperfect repairs is
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given by
([ Coin MK | 7) = MKy | 7)), i=0
Cmin {A[AL(K) | 7] = A[A1 (K1) | 7]}, ¢
Comin {A[A2(K) | 7] — A[Az(K,—1) | 7]}, i =2

\

if at least one failure has occurred in [K,, 1, K), and zero if no failures have
occurred in €2,,.

When unconditioning the costs in the last subregion (2,,, we must take
into account the subregion in which the last imperfect repair occurred and
the probability that no failures have occurred in the subregions between

that subregion and (2,,. This probability is of the form

e~ (LA ) I =ALAS I}
where ¢ is the number of possible previous imperfect repairs and the time
u; of the last (i.e. i-th) imperfect repair is in the interval (K,_, K;,]; this
term implies that no failures (hence, imperfect repairs) have occurred in
the interval (K, K,_1].

Finally, to derive the expected warranty servicing cost in the last subre-
gion (2, we remove the conditioning using the summands of the density

function derived in equation (4.10) and the above mentioned probabilities
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as follows:

E[C (¥,)] = min {AK | 7) — A(K | 7) e MEnmaln=AtIn]
Kjl

| {m (ALK | 7] — A[AW(E, ) | )

V{j1}€J1,n-1Kj -1

w e {A[AL(Kn—1)Ir]=A[AL (K ))|r]} fTKlT(Ul)} duy

KJ’2 Kh
b e () |- AL 1)
V{j1.2}€J2,n—1 Kjy—1 Kj; -1
x e {A[A2(Kn—1)|r]=A[A2(Kjj, )|r]}

X A[A;(ug) | r] e IAA ()l =ALALEG, Ir]} fTKIr(“l)} duy dus

+ ...+
Kn—l K3K2

e f T {m (Al oK) | 1] — AlAn oK) | 1)

n—2 Ko K1
X A[An_s(tn_s) | ] e AR (2l =ALA s (Kn2) I}

X

A Ay (1) | 7] e~ A @2l - (K]}

fTK1T<U1)} du1 dUQ .. dun,2

X

(4.16)
where the set J;,,_1, defined on page 60, provides all possible combina-
tions of the subintervals in which the i = 1,...,n — 2 previous imperfect
repairs have been performed.

The expected total warranty servicing cost for sub-case A-(1), condi-

tional on R = r, is given by
E[CH) ()] = E[C" (¥n)] + EIC2(¢0)] + ... + EICP ()]

When summarizing the expected costs derived earlier [(4.11), (4.12), ...,
(4.16)], notice that the virtual age corresponding to the number of possi-
ble previous imperfect repairs i, for €2, is different from that of ), | =
2,...,n — 1. This is because in the last subregion (2, all repairs are mini-

mal, while in the intermediate subregions €2, (s, ..., Q,_;, the first repair
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is imperfect. Therefore, if i is the number of possible previous imperfect
repairs, when deriving the conditional costs in €, | = 2,3,...,n — 1, we
have i previous imperfect repairs and the (i + 1)-th imperfect repair which
is in €. Hence, the expected total warranty servicing cost for sub-case
A-(1) becomes

B[O (40)] = CrinA (K | 7)

+ Cmin [AMK | 7) = A(K_y | 7)]e” WEnaalr)=A(K )]
n—1 K

+> {(Cz’mp + Cmin {A[AL(KD) [ 7] = AlAy (wa) | 7]}

=2 K

Hemin (AL () | 1] = A[ds (K, 1) | r]pem A0l -AL (01
X fTKlr(ul)} du1

11-2 K K,
VST s T e
3i=1K,_1 \V{j1jo,git€ii—1Kj—1  Kjy—1 Kjj -1
A Cmin(A[Ai1 (KG) | 7] = A[Aia (wiva) | 7])
+Cmin(A[Ai1 (K) | r] — A[Ai 1 (Kq) | r])e _(A[Ai-H(Kn71)|7"]—/\[14i+1(KL)W)}
% A[Ai(tgar) | 7] e~ A=A I}
% )\[ i1 (ug) | r]e —{A[Ai 1 () ] = A[A 1 (K, )]}

X A[A;(ug) | r] e (A (u2)lr=AA (K;y)lrl}

X fTKlr(ul)} duy dus . . .dul-) du
(4.17)
The expected cost in equation (4.17) is a function of the decision variables
Ky, Ky, ..., K,_1 and the warranty time limit K. At this point, we define a

generic function ((.), such that
E[C£1)<,l/}n)] = C(K17K27"'7Kn717K) . (4:18)

The arguments of this function will later be modified to obtain the costs
for sub-cases A-(2) and A-(3), and for Case B.
The expected cost derived by Chukova et al. [13], where instead of

performing imperfect repair the failed product is replaced, is a special case
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of the cost in equation (4.17). When
51:52:---:571—2:1 5
equation (4.17) becomes

ElCO ()] = cminh(E | 7)

+ Coin [MK | 7) — A(K_y | 7)]e” AEn—alr)=A(KL )]
n—1 K
+

Sl {cm e MKy — 1 | 1)+ eoin LA — 1y | 7)—

I=2K; 4
— ANKy1 —uq | T)}e_{A(anl_“l—l|’")—A(Kl—ul—1|?“)}

X fTKl_w (Uz—1)} du—y

where u;_; is the time of the last perfect repair (replacement) which is in
the subinterval (K;_;, K| (i.e. subregion ), and ¢;,, = cpe, is the cost of a
perfect repair (replacement) [13].

The expected costs for sub-cases A-(2) and A-(3) are derived in a simi-
lar manner as the expected cost for sub-case A-(1). By adjusting the argu-
ments of the function ((.) in equation (4.18), we next define the expected
costs E[CP (¢,)] and E[C* (¢,)] for Case A.

2):r; <r<ry

Figure 4.3 depicts the case where r; < r < r;. When ry < r < 1y, the
warranty over the subregions €2, (2, . . ., Q,,_; will expire due to exceeding
the usage limits L,, Lo, ..., L,_, at time points

Iy Ly Ly

= , T2 ) ceey Tp—1 = )
r T T

respectively. Therefore, the expected total warranty cost for sub-case A-(2),
conditional on R = r, is similar to that of sub-case A-(1) in equation (4.17)
except that K; are replaced by 7;,¢ = 1,2, ..., n—1, respectively. Therefore,
as in equation (4.18) we can write this cost in terms of the above variables,
using the generic function ((.), as

E[CP ()] = C(T1, 72, - -, Tn1, K) . (4.19)
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Figure 4.3: 1y <r < ra.

B):r; <r,<r

Figure 4.4 depicts the case where r; < ry <7.
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Figure 4.4: 1y <1y <r.
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When r; < ry <1 the warranty over the entire region (2 expires at time

T=—
r

and the warranty over the subregions 2y, €, ..., Q,,_; will expire at time

points
Ly Ly Lny
7’1:7, 7'2:77 coes Tn—1 = R

respectively. The expected total warranty cost for sub-case A-(3), condi-
tional on R = r, is similar to that of sub-case A-(2) in equation (4.19) except
that K is replaced by 7. That is

E[C’ﬁ?’)(@b)] = (71,72 ooy o1, T) - (4.20)

The expected total warranty cost for Case A, is derived by uncondi-

tioning the variable R = r. Therefore, for r; < r,, we have

EIC3(6)) = [ EICO )] dG(r)+ [ EICR ()] dG(r)+ [ EICO ()] dGr)

(4.21)
where G/(r) is the distribution of the usage rate R.

4.3.2 CaseB:r, <r;

For Case B, as for Case A, we conditional on the usage rate R = r and
derive the expected warranty servicing costs for the following three sub-

cases:
1) r<r<n

(2) ro <1 <71
@) re<r <r

Let E[CY (1)), E[CH (¢,)], and E[C) (1,,)] now denote the expected war-
ranty servicing costs, conditional on R = r, for the three sub-cases of Case
B respectively [13]. Each of the expected costs E [C’ﬁj )(wn)], j=1,23, are
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the sum of the expected costs in each of the subregions €2y, ), ..., Q,. That
is
E[CY (¢n) = E[C ()] + BICT* ()] + ... + E[C7" ()] -

We have not used the index j in denoting the expected costs E[C (1,)],
[l =1,2,...,n,since it is clear by the context that these costs are specific
to the corresponding sub-cases of Case B. The expected total warranty ser-
vicing cost for Case B is similar to that of Case A in equation (4.21), with
the following adjustments.

M:r<r,<rg
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Figure 4.5: r < ry <1

Figure 4.5 depicts the case where r < ry < ry. The expected total war-
ranty servicing cost for sub-case B-(1) is the same as that of sub-case A-(1)

in equation (4.17), and is given by

EICY ()] = C(K1, Ky, ..., K1, K) .

T
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2:ra<r<n

Figure 4.6 depicts the case where ro <r <1ry.
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Figure 4.6: o <1 <1

79

The expected total warranty servicing cost for sub-case B-(2) is similar
to that of sub-case B-(1), with the exception that the warranty over the

entire region () expires at time

and is given by

E[Cf?) (wn)] = C(Klv K, ...

(3): Iy S Irq S r

7Kn—17 T) .

Figure 4.7 depicts the case where ro <r; <7.
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The expected total warranty servicing cost for sub-case B-(3) is similar to
that of sub-case B-(2), with the exception that the warranty over the sub-
regions (2, {1y, ..., 2,_; expire at time points

B Ly B Lo Ly

T1 y Ty — y ey Tp—1 —
r T T

)

respectively. This cost is the same as the cost for sub-case A-(3). Therefore,

the expected warranty servicing cost for sub-case B-(3) is given by
EIC® ()] = (11, Tay oy Tuo1, T)

Similar to the expected cost for Case A in equation (4.21), uncondition-

ing the variable R = r, we get the expected total warranty cost for Case B.
Therefore, for r, < r;, we have

EIC2()] = / E[CD ()] dG(r)+ / E[C®) (1)) dG(r)+ / E[C®) ()] dG(r) .

(4.22)
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The results derived in this chapter will be illustrated numerically in
Chapter 6, where the expected cost E[C*(1,)], given by equation (4.21)
when 7 < ry and by equation (4.22) when r, < ry, is minimized to obtain
the optimal decision variables

w; = (Kf7K§7 K:Lflfr’lk)

*)

that determine the partitions €, {2, ..., (,,.



Chapter 5
Intensity Reduction Model

In this chapter, we discuss the second of the two imperfect repair models,
namely the intensity reduction model, in detail and derive the distribution
of the times to imperfect repair and the associated expected total warranty
servicing cost. According to the intensity reduction model, the effect of
an imperfect repair is characterized by the change in the conditional in-
tensity function of the underlying failure process [16]. At any time, the
conditional intensity function of the failure process after an imperfect re-
pair is between the conditional intensity after a minimal repair and the
conditional intensity after a perfect repair (replacement).

Chukova et al. [11] consider the failure rate functions of the first life-
time and second lifetime of a process and propose that the failure rate of
the second lifetime distribution after an imperfect repair at time u; with
degree 0 < 0 < 1is

Au(t) = A(t) = 0 [A() = At —w)]

for t > wu;, where \(t) is the failure rate of the first lifetime distribution.
Chukova et al. [12] extend this to a generalized form, such that, after the

i-th imperfect repair, the failure rate of the lifetime distribution becomes

)\z<t) = )\Zfl(t) -0 [)\Zfl(t) — )\ifl(t — UZ)] y

82
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for t > u;, where u; is the time of the i-th imperfect repair. This model sug-
gests that the imperfect repair can only undo the damage that the product
has accumulated since the last imperfect repair. The intensity reduction
model considered in this research is a modification of this model. Here an
imperfect repair can undo the damage that the product has accumulated
since it was first put into use. This model is more appropriate for model-
ing failures of a single-component product. These models are analogous
to the virtual age models proposed by Kijima [29]. We now proceed to
explain in detail the intensity reduction model used in this research.

5.1 Model Formulation

Let {N(¢ | 7);t > 0} denote the one-dimensional counting process condi-
tional on R = r, and let (¢ | ) be the intensity function of the process. If
the times to imperfect repair are non-random, then the conditional inten-
sity function of the process is the intensity function of the process. There-
fore, conditional on the times to imperfect repair being wuy, us, . . ., u,,—2, the
intensity function of the process changes as follows. Let the initial inten-

sity function of the failure process, conditional on R = r, be
Xo(t|r)=At]r) .

where A(t | r) is an increasing function of time, and is equal to the failure
rate function of the original product. As before, let J; denote the degree of
the i-th imperfect repair, where i = 1,2,...,n — 2. Conditional on R = r,
the intensity function after the first imperfect repair at time u; with degree

01, becomes
ME[r)=AE[r)—a[AE|r) = At —u | )],

where u; < t < uy. Therefore, after a minimal repair, i.e. when §; = 0, we
have
ME|r)=At]r) .
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and after a replacement at time v, i.e. when 6; = 1, we have
ME|r)=At—uy|r),

which is the initial intensity function of the process at time ¢ — u;. The
intensity function after the second imperfect repair at time u, with degree
09 1S

Ao(t | 1) =Mt |r) =G M(t | 7) = At —uz [ )]

where uy < ¢t < us. Therefore, when d, = 0, we have
Xo(t]r)=X(]r)
and when §, = 1, we have
Xo(t|7r) = At —ug | )

which is the initial intensity of the process at time ¢ — u,. In general, after
the i-th imperfect repair at time u, with degree 9;, for v; < t < u;44, the

intensity function becomes
At [ 1) = Xia(t [ r) = 0i[Aia(t | ) = At —wi [ )] (5.1)
which, when §; = 0 (minimal repair), reduces to
Ai(t[r) =Xia(t]r)
and when §; = 1 (replacement), reduces to
Nt T) = At =i | r)

which is the initial intensity of the process at time ¢ — u,;. Therefore, con-

ditional on R = r, the intensity function of the process N(t | r), given the
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times to imperfect repair wu;, uy, . . ., un—_o, is given by
(Atlr) . 0<t<w
MElr) . w <t <u
Na(t]r), w<t<u
At|r)y={
)\Z(t"f’), uigtguiﬂ
[ A2t 7) , up 2 <t < oo

See Figure 5.1 for an example of this intensity function.

T1 T2 T3

Figure 5.1: Intensity function following imperfect repairs of degree 0.5.

The cumulative intensity function of the process is given by

/~\(t|r):/05\(s|r)ds.

Therefore, for i > 0 and u; < t < u;44, the expected number of failures in
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the subinterval (u;, t] is given by

E[N(tl'r’)—N(mlr)]zj
t (5.2)
A(

tlr)— A |r)

where \;(t | r) is the intensity function after the i-th imperfect repair and
is a function of all previous times to imperfect repair. For simplification
and clarity purposes, let A(t | r) — A(u; | ) be denoted by A;(t | 7). That is

Ailt | r) = At [r) = Alwi | r) (5.3)

fori =1,2,...,n — 2. For t < uy, i.e. before the first imperfect repair, we
have

/~\(t|r):A(t|T):/O)\(s|r)ds,

which is the expected number of minimal repairs (failures) before the first
imperfect repair. These expected numbers are conditional on the times to
imperfect repair being u;, us, . .., Up_2.

In the following section, we derive the density functions of the times
to imperfect repair for the intensity reduction model. These density func-
tions are derived in exactly the same manner as those derived for the age
reduction model. Also, these density functions have a similar structure as
those derived in the previous chapter, with one difference: in the density
functions for the age reduction model, the change in the intensity func-
tion after each repair is only in the virtual age and hence, the function
itself does not change; in the density functions for the intensity reduction

model, the change is in the intensity function itself. Hence, where we had

ALAit) [r]
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we will now have
Ai(t]r)

and where we had
A[Ai(t) | r] = A[A(KG) | r]

we will now have
Ni(t | r) — N(KG [ )

Therefore, we will omit the derivation process, and only provide the final

results.

5.2 Times to Imperfect Repair

As before, T}, denotes the time of the first failure conditional on R = r,
and Tk, ,, | = 1,2,...,n — 2 denotes the time of the first failure after k&,
i.e. in subregion (2,1 ,. See Chapter 4 for the distribution of the first failure
time 7', [14, 21]. The distribution function and density function of the first
failure after K, T, ., are given by

FTKHr(t) = P{TK1|7‘ S t} = 1- e*[/\(ﬂ?")*A(Kl\T)] )

and
Frie, (£) = At | r)e Men=AGI) (5.4)

respectively, where A(¢ | 7) is the initial intensity function, conditional on
R = r. For t > K, the distribution function and density function of the

time to first failure after K5, Tk,,, are given by

FTKQ\r(t) = P{TK2|T < t}
K>
= /(1 — 6_{/\1(tlr)_Al(K2|r)})fTK1‘r(ul)dul + e AU =AKL )]

K1

— e AU =A(KLr)] 7
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and
d
fTKQ\r(t) :ﬁFTKQ\r(t)
K>
Z/)q(t | T>€*{A1(t|7")*Al(K2|7“)}fTK1‘T<u1> duy + fTKl\r<t) ’
Ky

respectively, where \;(¢ | r) is the intensity function after the first imper-
fect repair at time u;, and fr, |, (¢) is defined in equation (5.4). As derived
in the previous chapter, for t > K3, the distribution function of Tk, is

given by

FTKg\r(t) :P{TKalr < t}
K3 Ko

_ / / { (1 — e MMl )\ (g | 7)o (alealr) =M (21}

Koy Ki

fTKlr(ul)} duy dus
K3
N / (1 — e~ D=2l ) (= (AR -AA) f (1) iy

K>
Ko

+ / (1 _ e*{Al(tlr)*Al(K?)lT)}) e~ 1A (Kslr)—A1(K2|r)} fTKl\r(ul) duy
Ky
+ (1 _ e{A(tI?“)—A(KS\T)}) e~ IAKG[r)—A(KAr)}

The functions A;(. | 7) and Ay(. | r) are the cumulative intensity functions
after the first imperfect repair and second imperfect repair, respectively.
The double integral is over the subintervals (K, K5] and (K», K3], where
an imperfect repair could have been performed. In the third summand,
the exponent term implies that no failures have occurred in the subinter-

val (K3, t]. In other words, there have been no imperfect repairs in the
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previous subinterval (K5, K3]. The density function of T, is given by

d
fTKg\r (t) IEFTKS\T (t)

K3 K>

Ky Ky
A1 (us | T)e_{Al(mT>_A1(K2|r)}fTK1r(U1)} duy duy

K3

+/)\1(t | ,,,)ef{Al(t\r)fAl(Ks\r)}fTKl‘r(ul)dul
K>
K>

+ / M (t | )em =Ml £ () )y

K

+ fTKl\r(t> :

Similarly, in deriving the density function of the time of the first failure
after K4, namely TY%,|,, we must consider the cases where none, one, two
or three imperfect repairs have been performed before K,. The density
function for T, is given on the following page.

Note that the first summand is the case where there has been at least
one failure (and therefore an imperfect repair) in each of the subintervals,
(K1, Ky, (K3, K3), and (K3, K4, before K4. The last summand is the case
where no failures have occurred in the subintervals (K7, K,|, (K, K3], and
(K3, K4, i.e, no failures in the subinterval (K7, K4|. The three summands
with double integrals each represents the case where there has been at
least one failure in each of the two corresponding subintervals and the
next three summands with single integrals each represents the case where

there has been at least one failure in the corresponding subinterval.
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The density function for Tk, is

K4 K3 Ko

Jrie,, (8) Z///{)\g(t | r)e= (Baltn—As(Kalr)}

K3 Ko Ky
% )\2<u3 | T)ef{/\z(u?)lr)*M(KS\T)}

X )\1(U2 | T)G{Al(u2|r)Al(KQT)}fTKIT(Ul)} dU1 du2 dU3

K3 Ko

N / / { Mot | r)e—Thaliin-Az(ain}

Ko Ky
X )\1<u2 | T>€{A1(u2|r)A1(K27’)}fTK1T<u1)} dU1 du2

Ky K3

+ / / {)\Q(t | 7)o (haltln)—Az(Kalr)

K3 Ko

Ky K>

+ / / {)\Q(t | 7)o (el —Az(Kalr)

Ks Kq
X )\1<u2 | T>€{A1(u2|r)A1(K27‘)}fTK1T<u1)} dU1 du2

Ky

+/)\1(t | T)e_{Al(t‘T)—Al(K4\7")}fTK

K3
K3

+/)\1(t | T)ef{/\l(t\r)fAl(Ks\r)}fTKl‘r(ul)dul

K>
K>

+ / A(t | )em =Ml fr () )y
K1

(ul)dul

1lr

+ fTKl\r<t> :

where the functions A;(. | ), Ay(. | r) and A3(. | ) are the cumulative
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intensity functions after the first imperfect repair, the second imperfect
repair and the third imperfect repair, respectively.

In general, to derive the density function of the first repair after K,
namely T, , where [ = 1,...,n — 2 for the n-subregion strategy, we need
to consider all possible combinations of imperfect repairs in the previous
subregions €2, (2s,...,. As before, let i denote the possible number of
previous imperfect repairs. For TKLW the time of the first failure after K,
we have ¢ = 0,1,...,l — 1 possible previous imperfect repairs. By con-
ditioning on the times to imperfect repair u;, us, . . ., u;—; and then remov-
ing the conditioning, we account for all possible times to imperfect repair
within the corresponding subintervals. Then the density function of the

time to first failure after K, Tk, is given by

fTKl\r (t> = fTKl\r (t)

+Z 3 / / /{ (1| ) o= =A, )

V{j1,J2--,Ji}€J4, UK, Kjy—1 Kj -1

X Nio(u; | ) e {Az—l(wlr)— i—1(Kj; 1]}

X Ap(ug | ) et (=M (K 0]}

X fTKlr(ul)} du1 dUQ R duz
(5.5)
where the functions A;(. | ) and A;(. | r) are defined in equation (5.1) and

equation (5.3) respectively. For i > 0, the set

Jio=Ho 0 A0 €42 b and gy < - <

provides all possible combinations of {Kj,, K, ..., K;,} which generate
these subintervals (see page 60 for details on J; ;).
Having derived the density function, we proceed to deriving the ex-

pected warranty servicing cost over the warranty region for the intensity
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reduction model. This cost is derived in the same manner as the cost for
the age reduction model in Chapter 4. Like the density functions, the struc-
ture of this cost is the same as that of the cost derived for the age reduction
model. The differences between the derived cost for the two models are
mentioned earlier on page 87 and in addition, the expected number of fail-

ures in (u;, t] for the age reduction model is denoted by
A[A(#) [r] = AlAs(wi) [ 7]
and for the intensity reduction model is denoted by
Ai(t]r) .

See page 86 for the definition of the cumulative intensity function A;(¢ | r).
Therefore, in the following section, we will derive the expected warranty

servicing costs in a more concise manner.

5.3 Warranty Servicing Costs

Like before, let E[C(1,)] denote the total expected warranty servicing
cost over the warranty region (). Since the repair strategy is restricted, in
determining the total expected warranty cost E[C*(1,)], we consider the
two cases; 71 < 19 and 7o < 7y, where r; > 0 and o > 0. As before,
E[C%}(1,,)] denotes the total expected warranty servicing cost for the first
case 11 < ry and E[C$(¢,)] denotes the total expected warranty servicing

cost for the second case 7, < r;. That is,
e Case A: E[C%(¢,)] = E[CS ()]
e Case B: E[C%(¢,)] = E[C%(¢,)]

In the following sections, we derive the expected warranty costs for Case
A and Case B.
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531 CaseA:r; <r,

As in the age reduction model, we subdivide the warranty region based
on the rates 7, and ry and conditional on the usage rate R = r derive the

expected warranty servicing costs for the following three sub-cases;

(1) r<r<nr
2 mn<r
(3) r<rg<r

The expected warranty servicing costs, conditional on R = r, for the three
sub-cases are denoted by E [C,El) (Yn)], E [C,Ez) (¢n)], and E[Cﬁ‘g) (¢n)] respec-
tively. Then the expected total warranty cost for Case A is given by

EICR () = [ BICO @G+ [ BCA w6+ [ BCP ()60

0 1 ro

Each of the expected costs F [Cﬁj )(Q/Jn)], j = 1,2,3, are the sum of the cor-
responding expected costs in each of the subregions €2y, €,,...,Q,, which

are denoted by

E[C (n)], BIC2(¢0)], ..., BICP" ()] -

Since these costs are clear in context, the use of the index j is omitted.
Therefore, the expected warranty servicing cost conditional on R = r, for
the three sub-cases, j = 1,2, 3, is given by

E[CY (1h,) = E[C ()] + E[C ()] + ... + E[C ()] -

The main results of this chapter are the density function derived in equa-
tion (5.5), and the expected warranty servicing costs for Case A, E[C%(¢,)],
and Case B, E[C(¢,,)], for the intensity reduction model which we derive
in the following sections. As in the age reduction model, we will only
derive the expected cost for sub-case A-(1), since the expected costs for A-
(2) and A-(3) and Case B can be obtained in a similar manner with minor

adjustments.
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Mr<r; <r,

Let ¢y and ¢, denote the cost of a minimal repair and the cost of an
imperfect repair, respectively. The costs c,,;, and c¢;,,, are assumed to be
constant. Later, in the numerical example, we will adjust the cost c;,,

based on the degrees of the imperfect repairs.
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Figure 5.2: r <r; <rs,.

The expected warranty servicing cost in the first subregion (2 is not
conditional on times to imperfect repair, since all repairs in this subregion
are minimal, and therefore, the warranty servicing cost in this subregion
is given by

Cmin N(K1 | 1), N(K{|7r)>0
{ 0, otherwise |,

where N (K | r) is the number of failures in the subinterval [0, K] and the

expected warranty servicing cost in (2, is given by

Cmin A(Kl ‘ 7’), N(Kl | T) > 0
0, otherwise |,
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where
K1

A(Kl\r):/)\(s\'r)ds |
0
That is

E[C?I(Q/Jn)] = Cin MK | 7). (5.6)

The first failure in the second subregion 2, is followed by an imperfect
repair and all consequent failures are followed by minimal repairs. Con-
ditional on the time of the imperfect repair being u;, the conditional war-

ranty servicing cost in subregion €2, is given by

Cimp T Cmin [N(K2 | ) — N(Ul | 7)), w < Ko
O, up > K2 )

where N (K | ) — N(uy | r) denotes the number of failures (minimal re-
pairs) in the subinterval (u;, K5]. The expected conditional warranty ser-

vicing cost in (2, is given by

Cimp + Comin M (Ko | 1), up < Ky
0, uy > K2 )

where
K>

A(Ksy|r)= /)\1(3 | ) ds
ul
is the cumulative intensity function after the first imperfect repair at time
uy and the expected number of minimal repairs in the subinterval (u;, K>).

Removing the conditioning on u;, we get
K>
EICE (0] = [ 6im + cnin M(Ka | 1) Fr, (u)dun . (5)
K
The first failure in the third subregion (25 is also followed by an imperfect
repair and all subsequent repairs in this subregion are followed by mini-

mal repairs. Therefore, conditional on the time of the first imperfect repair
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u; and the time of the second imperfect repair u,, the conditional warranty

servicing cost in subregion (23 is given by

Cimp + Cmin [N(K?) ‘ T) (ul | T’)], K2 < Uy S K3
Cimp + Cmin [N(Kg | 7") (Ug | T‘)], U1 S K2 and U9 S Kg

0, otherwise

- N
- N

where N (K3 | ) — N(uy | ) and N (K3 | ) — N(usy | r) count the number of
minimal repairs in the subintervals (u;, K3] and (us, K] respectively. The

expected conditional warranty servicing cost in subregion (23 is

Cimp +Cmin Al(K3 | T) ) KQ < up S K3
Cimp + Cmin No(K3 | 17) , up < Kyand up < K3

0, otherwise

where A (K3 | ) and Ay(K5 | r) are the expected number of minimal
repairs in the subintervals (u;, K3] and (us, K3 respectively. On removing
the conditioning on u; and u,, we get the expected warranty servicing cost
in subregion 3, i.e.

K3

E[CP(n)] = [ [Cimp + Cmin Mi(K3 | 1)] frye ), (u1) duy

K>
K3 Ko

+ [ { [€imp + Cmin Aa(K3 | 1)] Ai(ug | r) e thaluzin=Aaliein}

Ko K1
X fTKlr(ul)} duy dus .
(5.8)
Similar to the cost in (23, the conditional warranty servicing cost in subre-
gion )4, conditional on the times to imperfect repair u;, u, and us, is given
by

(

Cimp + Cmin IN(Ky|7)— N(uy | )], K3 <u <Ky
Cimp + Cmin [N(K4 | ) — N(Ug | )], u < Keand K3 < uy < Ky
Cimp + Crmin [N(K4 | r) — N('UQ | )], Ky <wu; < Kzand K3 < us < Ky
Cimp + Cmin [IN(Ky | 7) = N(us | )], w < Ky, us < Ky and us < K,
[ 0, otherwise




CHAPTER 5. INTENSITY REDUCTION MODEL 97

and the expected conditional warranty servicing cost in this subregion is
given by

;

(Kalr), Kzy<u <K,y

Cimp + Cmin No(Kq | 1) , wp < Kyand K3 < us < Ky

Cimp + Cmin No(Ky | 1), Ky <uy < Kyand K3 < uy < Ky
Cimp + Cmin Ns(Ky | 1), w1 < Ky, us < Kzand uz < Ky

0, otherwise

Cimp + Cmin Al

\

where Ay(Ky | r), Ao(Ky | r) and As(K, | r) are the expected number of
minimal repairs in the subintervals (u;, K4, (us, K4] and (us, K4] respec-
tively. On removing the conditioning on u;, u; and u3, we get the expected

warranty servicing cost in subregion (24, i.e.

Ky
E[CP ()] = [ [Cimp + Cmin M(Ey | 7)) frye,, (w1)duy
K
1(34 Ko
+ [ f { [Cimp + Comin N2 (K4 | 7)]
Ks Ky
X >\1(U2 | 7») e—{A1(ualr)—A1(K2lr)} fTKlr(ul)} duy dus
K4 K3
+ [ f { [Cimp + Comin N2 (Ky | 7)]
K3 Ko
X )\1(71/2 | r) ef{Al(UQ‘T)*Al(KS‘T)} fTKlr(ul)} dul du2
Ky K3 Ko
b T { o+ e M 1)
K3 Ko K1

X Ag(ug | r)e A2l =A2(Ksln}k )| (4 | p)e~ {1 (uzlr)=Ar(Kzlr)}

X folr(ul)} duy duy dus .
(5.9)
In any of the intermediate subregions ;, [ = 2,3,...,n — 1, the possi-
ble number of previous imperfect repairs before the subregion, can be
i =0,1,...,1 — 2, since all repairs in the first subregion are minimal. As
derived in the age reduction model, conditional on the times to imper-

fect repair being u,, us, . . ., u;—1, the conditional expected warranty cost in
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subregion (2; corresponding to the number of possible imperfect repairs
i =0,1,...,1 — 2 before the subregion and the (i + 1)-th imperfect repair

which is in ), is given by

( Cimp+cmin Al(Kl | T), i =0and K1 <u <K,
Cimp T Cmin A2<Kl | T), 1 =1and K_1<uy <K,
Cimp T+ Cmin A3<Kl | T), i=2and K;_; < uz < K

Cimp T Cmin Mi—1 (K | 7), i=1-2and K;_; <y < K,
0, otherwise .

\

To derive the expected warranty servicing cost within the subregion (2,
we remove the conditioning on the times to imperfect repair to get

K
E[C?l ('l/fn)] - f [Cimp + Cmin A1<Kl | T)] fTKl\T<u1) dul

K

n ? ( > I}jl {[cimp+cmin Ao(Ki | )]

K1 \V{ji}eJi -1 Kj; 1

X )\1<u2 ‘ 7'-) e_{Al(UQ‘T‘)—Al(Kjl‘T')} fTK1T<u1)} dU1) du2

K, Kj, Ky
+ [ > I {[Cimp + Cin A3(K | 7)]
K1 \V{j1j2}€Jai-1Kjp—1 Kjj—1
X Ag(us | ) e~ {2 (us|r)—Az(Kjy|r)}

X)\l <u2 | 7'-) e_{Al(UQ‘T‘)—Al(Kjl‘T')} fTK1T<u1)} dU1 du2 )du3

+ ...+

Kl Kl—l K3 Ko

+ [ [ .. {[Cimp+cmin N (Ko | )]
Kl—l KL_Q Ko Ky
X N_a(u_y | r) e~ i—e(u—aln=As(Kiam)}

% )\l73<ulf2 ‘ 7») e~ {Mi—s(w—z|r)—A_s(Ki_2|r)}

X )\1<U2 ‘ T) e_{Al(UQ‘T‘)—Al(KQIT)}}

X fTKlr(ul)} du1 dUQ . dul_g dul_l s
(5.10)
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where the set J;;_1,1 =1, ...,] — 2 (see page 60), provides all combinations
of the subintervals in which the ¢ possible previous imperfect repairs have
been performed. The conditional expected warranty servicing costs in the

last subregion €2,,, for ¢ previous imperfect repairs before €2, is

( Coin [ME [ 7) = MKy | 7)], i=0
Conin [M (K| 1) — A (K1 | 7)), 1=1

Cmin [AQ(K | T) AQ( n—1 | T‘)] Z: 2

L Cmin [An—2(K | 1) = Apa(Kpy [ 7)], i=n—2,

if at least one failure has occurred in 2,, and zero otherwise. To derive the
expected warranty servicing cost in the last subregion (2, we remove the
conditioning on the times to imperfect repair as follows

E[C% (¥)] = comin [MNK | 1) — A(Kp_y | 7)] e~ AEn1lD=AEK D)}

Kjl

T {m (AL (K | 7) = Au(Foos | 7)]

VYT Ky
w e~ 1M (En_1]r)—A1(Kj; |r)} fTK " (ul)} duy

foon T T e K 1) - M )
V{j1.g2}€J2,n—1Kjy—1 Kj; -1
w e~ {M2(Kn_1lr)—Aa(Kj,|r)} Ai(ug | 1) e~ {A1 (u2|r)— AL (K5, r)}

X fTKlr(ul)} dU1 dUQ

+ ...+
Kp—1 Kn—2 K3 Ko

e ff{cmm (Aol | 1) — Ay oo | 1)}

Kp—2 Kn—3 Ko K1
D% )\n—3(un—2 | 7») e*{An—S(un—Q|T)*An—3(Kn—2‘r)}

% )\n74(un73 | 7«) e~ {An—a(un—3lr)—An—a(Kn-3[r)}

X )\1 (u2 | T) 6_{A1(u2|7’)—A1(K2|r)}}

X fTKlr(ul)} dU1 dUQ R dun_g dun_g s
(5.11)
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where the set J;,,_1,7 = 1,...,n — 2 provides all possible combinations of
the subintervals in which the i previous imperfect repairs have been per-
formed (see page 60 for details on the set .J;,,_;). Fori =1,2,...,n—2, the
probability

o (A (Kno|r)—Ai (K, |r)}

)

reflects the event that the last imperfect repair was performed in the subin-
terval (Kj,_1, K;,], i.e. no failures have occurred in the subregions between
2, and 2,,. Having derived the costs in the n subregions, we now derive
the expected cost for sub-case A-(1). Conditional on R = r, this cost is

given by
E[CV ()] = E[CI (¥n)] + E[C2 (W) + ... + E[C (1b0)] -

On summarizing the equations [(5.6),(5.7), ..., (5.11)] derived for each sub-
region, as we did for the age reduction model, the expected warranty ser-

vicing cost for sub-case A-(1) becomes

BICY ()] = cninA(E | 1)

+ Cmin [ME | 7) — MKy | 7)] e IAEn=alr)=AEK )}
n—1 K

thd {[’” + Comin A1 (K | )]+ i LA | 7) = Ay (K | 7))
=2 K

w e~ {M(En_1lr)—A1(K|r)} fTKl\r<u1) duy

n—11-2 K Kj; Kj, Ky
10 0> (D o PP A R O
1=31=1K;_ 1 \Y{j1,j2,--Ji}€Ji1-1Kj; -1 Kjy—1 Kj;—1
+Cmin Niv1 (K | 7) 4 Cmin {Nig1 (K| r) — Ar (K | 1) }
6*(A¢+1(Kn—1|T)*A¢+1(K1|T))}

X Ni(wigpq | ) e Philwinaln) = Ad(Ks; n)}

X N1 (ug | 1) e WAim1(uilr)=Ai—1 (K, )}

X )\1("&2 ‘ T) 6_{A1(u2‘7")_A1(Kj1‘7")}

X fTKlr(ul)} du1 dUQ Ce duz) dui+1
(5.12)
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The expected cost in equation (5.12) is a function of the decision variables
Ky, Ky, ..., K, and the warranty time limit K. At this point, we define a
generic function £(.), such that

E[CM ()] = (K1, K, ... K1, K) (5.13)

The arguments of this function will later be modified to obtain the costs
for sub-cases A-(2) and A-(3), and for Case B.

When §; = 9, = ... = d,_2 = 1, this cost reduces to the one derived by
Chukova et al. [13]; see page 75 for details.

Next, we use the function defined in equation (5.13) to define the costs
for sub-cases A-(2) and A-(3).

2):r; <r<ry

Figure 5.3 depicts the case where | <1 < 7,.
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Figure 5.3: 71 <1 < rg.

When r; < r < 1y, the warranty over the subregions 4, (2, ..., Q,,_; will
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expire due to exceeding the usage limits Ly, Lo, ..., L,_; at time points

Ly Lo Ln
n=—, Ta=—, cee y Tpe1 = )
T r T

respectively. Therefore, the expected warranty cost for sub-case A-(2) is
given by
E[CTQ)(’I/J,@)] = §(7'17T2, vy Tp—1, K) .

B):r; <r,<r

Figure 5.4 depicts the case where r; < ro < r. When r; < ry < r the

warranty over the entire region () expires at time

T=—
r

and the warranty over the subregions 2y, €, ..., Q,,_; will expire at time

points
Ly Ly L
7'1:77 7'2:77 ey Tp—1 = )

respectively. Therefore, the expected warranty servicing cost for sub-case
A-(3), is given by

E[CH ()] = £(T1, T2, -, T, T)

Finally, the expected total warranty cost for Case A, is derived by un-

conditioning the variable R = r. Therefore, for r; < r,, we have

T1 72 o)

IO ()] = / E[CD ()] dG(r)+ / E[C®) (1)) dG(r)+ / E[C®) (i) dG(r) |

(5.14)

where G(r) is the distribution function of the usage rate R.
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5.3.2 CaseB:r, <r;

For Case B, as for Case A, we conditional on the usage rate R = r and
derive the expected warranty servicing costs for the following three sub-

cases:

Let E[Cﬁl) (Vn)], E[CP) (¢n)], and E[Cﬁ?’) (¢,)] denote the expected warranty
servicing costs, conditional on R = r, for the three sub-cases respectively
[13]. Each of the expected costs E[Cﬁj)(z/zn)],j = 1,2, 3, is the sum of the

expected costs in each of the subregions €2y, 5, ..., Q,. Thatis
E[CY(¢n) = E[C ()] + EICE2 ()] + ...+ E[C (v,)] -

We have not used the index j in denoting the expected costs E[C*%(,)],
where [ = 1,2,...,n, since it is clear by the context that these costs are spe-

cific to the corresponding sub-cases of Case B. The expected total warranty
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servicing cost for Case B is similar to that of Case A in equation (5.14), with
the following adjustments.

M:r<r,<rg

Figure 5.5 depicts the case where r < 7, < 74.
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Figure 5.5: 1 <1y <1

The expected warranty servicing cost for sub-case B-(1) is the same as that

of sub-case A-(1), and is given by
E[CI (1)) = E(K1, K, ..., K1, K)

r

(2): Io S r S Irq

Figure 5.6 depicts the case where ro <r < ry.

The expected total warranty servicing cost for sub-case B-(2) is similar
to that of sub-case B-(1), with the exception that the warranty over the
entire region () expires at time

T =

L
it
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Therefore, the expected cost becomes

E[CPO ()] = E(Ky, Ky, ..., Ky, 7) .

r

(3): Io S Irq S r

Figure 5.7 depicts the case where ro, < r; < r. The expected warranty
servicing cost for sub-case B-(3) is the same as that of sub-case A-(3), where
the warranty over the subregions 2y, €, ..., ,_1, 2, will expire at time
points

L L  Ln, L
mn=—, To = — ey Tn—1 — y T=—
T T T r

respectively. The expected total warranty servicing cost for sub-case B-(3)
is given by
E[CH ()] = £(T1, T2, - - Tae1,T) -
Similar to the expected total warranty servicing cost for Case A, given

in equation (5.14), unconditioning the variable R = r, we get the expected
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total warranty cost for Case B. That is
T2 T1 o0
BICH )] = [ BICO (W) d6(r)+ [ BICP ()] dG(r)+ [ BICE (0] dG(r)
0 T2 1

(5.15)
Numerical results illustrating the results derived in this chapter are
presented in the following chapter.



Chapter 6
Numerical Illustration

In this research, we study an imperfect repair strategy S,‘? for a repairable
product sold with a two-dimensional free-replacement warranty policy.

The vector
0 =(01,00,...,0,2)

denotes the degrees of the imperfect repairs, and n denotes the number of
subregions. The imperfect repair strategy is restricted and hence, charac-

terized by n decision variables
U = (K1, K, .., Koy, 1)

The strategy is a generalized form of the repair-replacement strategy pro-
posed by Chukova et al. [13] in which all repairs in the first and last
subregions are minimal, and the first repair in each of the intermediate
subregions is perfect (a replacement) while all consecutive repairs in the
subregion are minimal. In the imperfect repair strategy considered here,
the first repair in each of the intermediate subregions is imperfect, i.e. the
degree of the repair is in the interval (0, 1). Refer to page 44 for a detailed
description of the imperfect repair strategy. Assuming that the cost of an
imperfect repair is proportional to the degree of the repair, with the imper-
fect repair strategy, we aim to reduce the warranty servicing cost by find-
ing the set of decision variables that minimize the expected total warranty

107
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servicing cost over the rectangular warranty region Q2 = [0, K') x [0, L).
Two methods, described in Chapter 4 and Chapter 5, have been used
to model the imperfect repairs, namely, the age reduction model in which
the effect of the repair is characterized by a reduction in the virtual age of
the product, and the intensity reduction model in which the effect of the
repair is characterized by a reduction in the conditional intensity function
of the failure process [11, 16]. Having derived the expected total warranty
servicing cost E[C(¢),)] for both models, under the restricted imperfect

repair strategy S,‘? , we use numerical optimization to find the optimal
WL = (Kfv Kékv T K;;flvri) ’

which yields the minimum expected total warranty servicing cost E[C® (¢ )].
In this chapter, we provide numerical results for the imperfect repair
strategies ngs , where the warranty region is divided into three subregions,
and Sf , where the warranty region is divided into four subregions, for
both the age and intensity reduction models. For the 3-subregion strategy,
there is one imperfect repair which is in the middle subregion, and for the
4-subregion strategy, there are two imperfect repairs which are in the two
middle subregions. The vector d of degrees of the imperfect repairs for the

two strategies are
0=19

and
0 =(61,02) ,

respectively. For r; < 7y, Figure 6.1 and Figure 6.2 depict the warranty
region for ngs and Sf , respectively.

For comparison reasons, we consider the example provided in the pa-
pers by Iskandar et al. [21] and Chukova et al. [13], and we use a numerical
procedure (grid search) similar to the one used in these two papers. The
details of the numerical example and search procedure are provided in the

following section.
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Figure 6.1: The 3-subregion rectangular warranty region
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Figure 6.2: The 4-subregion rectangular warranty region

6.1 Numerical Example

The product under consideration is an automobile component sold with

a free-replacement warranty. The time is measured in units of year and



CHAPTER 6. NUMERICAL ILLUSTRATION 110

the usage is measured in units of 10,000 kilometers. It is assumed that
K =2and L = 2, ie. the time limit of the warranty policy is two years
and the usage limit of the warranty policy is twenty thousand kilometers.
Therefore,

7"2:—:1 .

K

For the 3-subregion imperfect repair strategy ngs , in both the age and
intensity reduction models, a grid search for minimizing the expected cost
E[C%(1)3)] was done with the decision variables K; and K, incremented
in steps of 0.1, over the interval [0.1,2.0), and the decision variable r; in-
cremented in steps of 0.2, starting at 0.2. For the 4-subregion imperfect
repair strategy Sf , in both the age and intensity reduction models, a grid
search for minimizing the expected cost E[C*(1,)] was done with the deci-
sion variables K, K, and K3 incremented in steps of 0.1, over the interval
[0.1,2.0), and the decision variable r; incremented in steps of 0.2, starting

at0.2 [21].

6.1.1 Repair Costs

Let ¢iin, Cimp and c,e, denote the costs of a minimal repair, an imperfect re-
pair and a perfect repair (replacement) respectively. The costs c,,;, and ¢,
are assumed to be constant, and the cost ¢;,,,;, is assumed to be proportional

to the degree of repair. We also assume that
Crin < Cimp < Cper -

For the numerical example, we assume that the degrees of the imperfect
repairs in all the intermediate subregions are equal. That is, for Sf where
we have two intermediate subregions and hence, two possible imperfect
repairs with degrees d; and d, respectively, we assume that §; = d, = 0.
Hence, 6 = 4. This makes Sf comparable with S?fs when the values of §
are equal. We define the ratios

Cmin

:u:

Cp(i?"
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and
5 = Simp
Cper
and compute the expected warranty servicing costs E[C(¢)3)] and E[C(¢)4)]
for different values of i and § for both imperfect repair models. In this
numerical example, as suggested by Iskandar et al [21], we set ¢y, = 1,
which makes the ratios ; and ¢ the cost of a minimal repair and the cost of

an imperfect repair, respectively.

6.1.2 Initial Intensity Function

The initial intensity function, conditional on R = r, is of the form
)\(t | 7") = 00 + 01 T + 02 AQ(t) + 03 A(t) U(t) s

where 6, 0, 05, and 05 are all positive constants [6]. Since usage is a func-

tion of age, this intensity function reduces to
At [ r) =004 617+ (0 + 05 1) A(1) .

As long as the failed product is repaired minimally, this function further
reduces to
At |r)=060+0r+O+0;7) ¢, 6.1)

making the cumulative intensity function before the first imperfect repair

t

A(t|r):/)\(s|r)ds
0 (6.2)
t3
:90t+¢917’t+(92—|—¢937“)§ .

As in the example by Iskandar et al. [21], here, the values of the parameters
are fp = 0.1, #; = 0.2, 6, = 0.7 and 65 = 0.7. Therefore, equation (6.1)
becomes

Mt |r)=014+027+(0.7+0.77)*
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and the cumulative intensity function in equation (6.2) becomes

t3
A(t|7’):0.1t+0.2rt+(0.7+0.77’)g :

These functions are conditional on the usage rate R. In order to deter-
mine the intensity function and hence, the unconditional expected costs,

we need to remove the conditioning on & = r.

6.1.3 Distribution of the Usage Rate R

The usage rate R is uniformly distributed over an interval [r;, r,] with dis-

tribution and density functions

r—ry
G(r) = { rorr T E LT

0, otherwise
1
——, 7€ [r,7y]
glr)=q ™" .
0, otherwise

respectively.
In the numerical example, three usage categories are considered for
the consumer usage rate R: light, medium and heavy [21]. The distribution

functions corresponding to the three categories are

r—0.1
Light - G(r)={ 0901 r € [0.1,0.9]
0, otherwise

r—0.7
. rel0.7,13
Medium :  G(r)={ 1307 " [ | ]
0, otherwise ,

r—1.1
€ 11.1,2.9
Heavy : G(r) =4 29-1D’ re| ] ]
0, otherwise

Since, the usage rate R is uniformly distributed over [r, r,], the expected

usage rate across the population of consumers is given by

1 Tu
E(R) = /r dr =

r+ Ty

Ty — T
T
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6.1.4 Time and Usage at First Failure

The expected time to first failure of the product is given by

Tu o0

BE(T)) = / / Fry, (£) dt p dG(r)

r 0
Ty OO t
_ ! //ea:p —/[90+917’+(92+93r)52]ds dt dr .
e r 0 0

(6.3)
where Fr, (t) is the probability that the first failure after K is after ¢.
Equation (6.3) can be solved numerically. The usage rate R and the time
to first failure 73 are independent. Hence, the expected usage at first fail-
ure E(U,) is the product of the expected usage rate £/(R) and the expected
time to first failure £(7}), i.e.

E(Uh) = E(R) E(Th) .

For the numerical example considered, the expected usage rate, the
expected time to first failure and the expected usage at first failure are
presented in Table 6.1.

Table 6.1: Expected time and usage at first failure

Usage type | [r.ry] | E(R) | E(Ty) | E(Uy)
Light | [0.1,0.9] | 0.5 | L1118 0.5559
Medium [0.7,1.3] 1.0 ]0.9575 | 0.9575
Heavy [1.1,2.9] | 2.0 | 0.7755 | 1.5510

Hence, the time to first failure for the light usage category is 1.1118 years
and the corresponding usage at first failure is 5559 kilometers; the time to
tirst failure for the medium usage category is 0.9575 years and the corre-

sponding usage at first failure is 9575 kilometers; the time to first failure
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for the heavy usage category is 0.7755 years and the corresponding usage
at first failure is 15, 510 kilometers.

6.2 Results for Age Reduction Model

The expected total warranty servicing cost E[C®(1,)], for the age reduc-
tion model is given by equation (4.21) (on page 77) when r; < ry and
equation (4.22) (on page 80) when 7, < 7.

6.2.1 Expected Costs for the 3-Subregion Strategy

For strategy S;s ,whenr; <r,, the expected warranty servicing cost E[C*}(1/3)]

is given by
EIC3()] = [ BCO @aldGor)+ [ BICP (wa)ldGir)+ [ EICE (wldG(r)
where

EICP ()] = i | 7)

+ Coin [MEK | 1) — A(Ky | 7)]e AN =AU
Ko

v {<m o {ALA(ES) | 1] — AlAy(ur) | 7]}

Femn (AL | 7] = ALAES) [ 1) fry, ()} s
= C(Klv K27 K)

is the cost when r < r; < ry,
E[CP) (%)] = C(Tlv T2, K)
is the cost when r; < r < ry, and

E[CH (¢3)] = ((11,7,7)
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is the cost when r; < ry <r. When r, < 7, the expected warranty servic-
ing cost E[C(¢)3)] is given by
T2 71 [ee}

EIC2(4s)] = / B[O (45)ldC(r) + / E[C® (4,)ldC(r) + / BIC® (4,)|dG(r) .

0 ) 1

where
E[C]) (¢3)] = (K1, K2, K)

is the cost when r < ry < 14,
E[C® (45)] = (K1, K, T)
is the cost when r, < r < 1y, and

E[C® (¢3)] = ((11,7,7)

is the cost when ry < 71 < r; refer to Chapter 4 for more information.
Table 6.2 provides the minimum expected total warranty servicing cost
E[C%(¢3)], with the optimal partition

vy = (K7, K3,77)

for different values of p and 9, for the light usage category. The structure
of the table is as follows: the ratio ;. of the cost of a minimal repair to the
cost of a perfect repair is displayed in the first column, the degree ¢ of the
imperfect repair, which is also the ratio of the cost of an imperfect repair
to the cost of a perfect repair, corresponding to our strategy is displayed
in the second column, the optimal value of the decision variables K7, K3
and r} are given in the next three columns, the corresponding expected
cost E[C*(¢3)] is given in the sixth column, the expected cost F [CQ(@*)]
for the 3-subregion restricted repair-replacement strategy by Iskandar et
al. [21] is displayed in the seventh column, the expected cost E[C(7})]
for the 3-subregion unrestricted repair-replacement strategy by Chukova

and Johnston [14] is provided in the eighth column, and the expected cost
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E[C{yr(v")] for an all minimal repair strategy is presented in the last col-
umn. The expected cost E[C*}(3)] corresponding to the imperfect repair
strategy is printed in boldface if it is the minimum for a given value of .

We observe, in Table 6.2 (light usage category), that for ;1 = 0.1, the
strategy that costs the least is an all minimal repair strategy; when pn = 0.2,
there are two imperfect repair strategies that cost the least compared to
other strategies; when p > 0.2, the imperfect repair strategies all yield
lower costs than the other strategies with the strategy corresponding to
the lowest degree of repair §, u < § < 1.0, being the best for a given value
of the ratio p.

Similarly, Table 6.3 and Table 6.4 provide the minimum expected total
warranty servicing cost E[C*}(¢/;)] for the medium and heavy usage cate-
gories respectively; all three tables have the same structure, and as before,
the expected cost E[C*}(¢})] corresponding to the imperfect repair strategy
is printed in boldface if it is the minimum of the costs for a given value of
the ratio .

For the medium usage category (Table 6.3), as in the light category, for
p = 0.1, the strategy that costs the least is the all minimal repair strat-
egy and for ;1 = 0.2, two of the imperfect repair strategies cost lower than
the corresponding restricted and unrestricted repair-replacement strate-
gies and the all minimal repair strategy. For 1o > 0.2, the imperfect repair
strategies cost lower than the corresponding alternate strategies.

For the heavy usage category (Table 6.4), for i = 0.1, 0.2, the strategy
that costs the least is the all minimal repair strategy and for i = 0.3, the
imperfect repair strategy with 6 = 0.4 costs lower than the corresponding
restricted and unrestricted repair-replacement strategies and the all mini-
mal repair strategy. For ;1 > 0.3, the imperfect repair strategies cost lower
than the corresponding alternate replacement and minimal repair strate-
gies; the strategy with the smallest , 1 < 0 < 1.0, yields the lowest cost
among the imperfect repair strategies.
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Table 6.2: Age reduction S?fs : costs for light usage
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p | 6| Ki | Ks | ri | EBC®(y3)] | EIC%(ds))] | E[C®(13)] | ECTROY)
0.2 0.1 0.2 0.2 0.3209
0.3 0.1 0.2 0.2 0.3218
0.4 0.1 0.2 0.2 0.3227
0.5 0.1 0.2 0.2 0.3236
0.1 0.3281 0.3231 0.3200
0.6 0.1 0.2 0.2 0.3245
0.7 0.1 0.2 0.2 0.3254
0.8 0.1 0.2 0.2 0.3263
0.9 0.1 0.2 0.2 0.3272
0.3 0.8 1.7 1.0 0.5908
0.4 0.9 14 1.0 0.6292
0.5 0.1 0.2 0.2 0.6425
0.2 | 0.6 0.1 0.2 0.2 0.6434 0.6469 0.6427 0.6400
0.7 0.1 0.2 0.2 0.6443
0.8 0.1 0.2 0.2 0.6451
0.9 0.1 0.2 0.2 0.6460
0.4 0.7 1.9 1.0 0.7863
0.5 0.7 1.7 1.0 0.8226
0.6 0.7 1.6 1.0 0.8602
0.3 0.9656 0.9623 0.9600
0.7 0.7 1.5 1.0 0.8979
0.8 0.8 14 1.0 0.9330
0.9 0.9 1.1 1.0 0.9585
0.5 0.7 1.9 1.0 0.9488
0.6 0.7 1.8 1.0 0.9781
04 | 0.7 0.7 1.8 1.0 1.0123 1.1401 1.1400 1.2800
0.8 0.7 1.7 1.0 1.0511
0.9 0.7 1.6 1.0 1.0942
0.6 0.6 19 1.0 1.0859
0.5 07 06 L9 L0 1.1093 1.2258 1.2258 1.6000
0.8 0.6 1.8 1.0 1.1410
0.9 0.6 1.8 1.0 1.1799
0.7 0.6 19 1.0 1.2027
0.6 | 0.8 0.6 19 1.0 1.2236 1.2971 1.2971 1.9200
0.9 0.6 19 1.0 1.2558
0.7 08 06 L9 L0 1.3052 1.3627 1.3627 2.2400
0.9 0.6 1.9 1.0 1.3274
0.8 | 0.9 0.6 19 1.0 1.3990 1.4263 1.4263 2.5600
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Table 6.3: Age reduction S?fs : costs for medium usage

p | 6| Ki | Ks | ri | EBC®(y3)] | EIC%(ds))] | E[C®(13)] | ECTROY)
0.2 0.5 0.6 0.2 0.3643
0.3 0.3 0.4 0.2 0.3649
0.4 0.3 0.4 0.2 0.3655
0.5 0.3 0.4 0.2 0.3661
0.1 0.3691 0.3637 0.3637
0.6 0.2 0.3 0.2 0.3667
0.7 0.2 0.3 0.2 0.3673
0.8 0.2 0.3 0.2 0.3679
0.9 0.2 0.3 0.2 0.3685
0.3 0.8 1.7 1.0 0.6616
0.4 0.8 15 1.0 0.7013
0.5 1.2 1.3 0.8 0.7276
0.2 | 0.6 14 15 0.2 0.7295 0.7319 0.7274 0.7274
0.7 0.9 1.0 0.2 0.7301
0.8 0.8 0.9 0.2 0.7307
0.9 0.7 0.8 0.2 0.7313
0.4 0.7 1.9 1.0 0.8819
0.5 0.7 1.8 1.0 0.9139
0.6 0.7 1.7 1.0 0.9493
0.3 1.0894 1.0793 1.0911
0.7 0.7 1.6 1.0 0.9874
0.8 0.8 15 1.0 1.0265
0.9 0.8 1.3 1.0 1.0628
0.5 0.7 1.9 1.0 1.0653
0.6 0.7 1.9 1.0 1.0881
04 | 0.7 0.7 1.8 1.0 1.1170 1.2420 1.2417 1.4549
0.8 0.7 1.7 1.0 1.1532
0.9 0.7 1.7 1.0 1.1955
0.6 0.7 19 1.0 1.2197
0.5 07:\ 07 L9 L0 12356 1.3390 1.3390 1.8186
0.8 0.6 1.8 1.0 1.2617
0.9 0.6 1.8 1.0 1.2954
0.7 0.6 19 1.0 1.3517
0.6 | 0.8 0.6 19 1.0 1.3638 1.4249 1.4249 2.1823
0.9 0.6 19 1.0 1.3885
0.8 0.6 1.9 1.0 1.4658
0.7 1.5066 1.5066 2.5460
0.9 0.6 1.9 1.0 1.4789
0.8 | 0.9 0.6 19 1.0 1.5693 1.5875 1.5875 2.9097
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Table 6.4: Age reduction S?fs : costs for heavy usage

p | 6| Ki | Ks | ri | EBC®(y3)] | EIC%(ds))] | E[C®(13)] | ECTROY)
02| 05 06 | 02 0.1465
03| 04 05 | 02 0.1470
04 | 03 04 | 02 0.1475
05| 03 04 | 02 0.1480
0.1 0.1505 0.1466 0.1460
06 | 03 04 | 02 0.1485
07 | 03 04 | 02 0.1490
08 | 02 03 | 02 0.1495
09 | 02 03 | 02 0.1500
03| 1.8 19 | 02 0.2924
04 | 1.3 14 | 02 0.2929
05| 09 1.0 | 02 0.2934
02 ] 06| 08 09 | 02 0.2939 0.2959 0.2924 0.2919
07 | 07 08 | 02 0.2944
08| 07 08 | 02 0.2949
09 | 06 0.7 | 02 0.2954
04 | 1.0 19 | 08 0.4251
05| 1.8 19 | 02 0.4387
06| 1.8 19 | 02 0.4392
0.3 0.4412 0.4381 0.4379
07 | 1.8 19 | 02 0.4397
08 | 15 1.6 | 02 0.4402
09| 13 14 | 02 0.4407
05| 06 1.7 | 1.0 0.5348
06| 08 15 | 1.0 0.5672
04 | 07| 18 19 | 06 0.5838 0.5864 0.5817 0.5839
08 | 1.8 19 | 02 0.5854
09 | 1.8 19 | 02 0.5859
06| 06 1.8 | 1.0 0.6346
0.5 07\ 07 L6 10 06727 0.7313 0.7080 0.7299
08 | 1.0 1.8 | 08 0.7037
09 | 12 1.6 | 08 0.7252
07 | 05 19 | 1.0 0.7286
06 | 08| 06 1.7 | 1.0 0.7690 0.8384 0.8168 0.8758
09 | 06 1.6 | 1.0 0.8062
08 | 05 19 | 1.0 0.8177
0.7 0.9022 0.8992 1.0218
09 | 05 1.8 | 1.0 0.8609
08 | 09| 05 19 | 1.0 0.9047 0.9500 0.9500 1.1678
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6.2.2 Expected Costs for the 4-Subregion Strategy

For strategy Sf ,whenr; < ry, the expected warranty servicing cost E[CQ (14)]

is given by
E[C ()] = / B[O (0)]dG(r)+ / B[O (40)]dG(r)+ / BIC® (41)]dG(r) |
where

BICM ()] = cninA(Ky | 7)

b [ | 7) = A( | r)Jer A=At
Ko

v {<m T i (ALK | 1] — AlAu(ur) | 1]}

K

Feman (LK) [ 1] = ALAY(IG) | r]}e B -atamry
X fTKlT(ul)} dU1

K3

i {@W o {ALA(ES) | 1] — AlAy(ur) | 7]}

K>

Femin {AAL(EK) [ 7] = A[AL(KG) [ 7]}) fTKlr(ul)} duy

L {<cmp+cmm{A[Az<K3> ) = AlAa(us) | )}

Ko K1

Femin{A[A2(K) | 1] = A[A2(K3) | r]})
X A[A1(ug) | 7] e {AA )l =ALA ()]} fTK”(m)} duy dus
- g(Kla K27 K?n K)
is the cost when r < r; < ry,

E[CP ()] = (11,72, 73, K)

is the cost when r; < r < ry, and

E[CH ()] = (11, 72, 73, T)
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is the cost when r; < ry <r. When r, < 7, the expected warranty servic-
ing cost E[C%(¢,)] is given by

EIC2(s)] = / E[C™ (0)dG(r)+ / EIC®) (41)]dG(r)+ / BICH ()G |

where
E[Cﬁl) (1/}4)] = C(Kh K27 K37 K)

is the cost when r < ry <7y,
E[CP)(’IJM)] = C(Kla K2> K?n T)
is the cost when r, < r < r;, and

E[CP (i4)] = (11, 72,73, 7)

is the cost when ry < 71 < r; refer to Chapter 4 for details.
Table 6.5, Table 6.6 and Table 6.7, provide the minimum expected total
warranty servicing cost E[C(¢})], with the optimal partition

Q/JZ = (Kikv Kékv Kékv'ri)

for different values of ;i and ¢, for the light, medium and heavy usage cat-
egories respectively. The structure of the tables is as follows: the ratio u
of the cost of a minimal repair to the cost of a perfect repair is displayed
in the first column, the ratio J of the cost of an imperfect repair to the cost
of a perfect repair is displayed in the second column, the optimal decision
variables K, K;, K; and r} are given in the next four columns, the cor-
responding expected cost E[C*}(})] is given in the seventh column, the
expected cost E[C%(¢})] for the 4-subregion restricted repair-replacement
strategy by Chukova et al. [13] is provided in the eighth column, and the
expected cost E[CY;;(7*)] for an all minimal repair strategy is presented in
the last column. The expected cost E[C*}(1})] corresponding to the imper-
fect repair strategy is printed in boldface if it is the minimum for a given

value of x.. The tables for Sf show similar results as those for S?fs .



CHAPTER 6. NUMERICAL ILLUSTRATION 122

For the light usage category (Table 6.5), when ;1 = 0.1, the strategy
that costs the least is an all minimal repair strategy; when ;. = 0.2, there
are two imperfect repair strategies that cost less than the corresponding
alternate strategies; when p > 0.2, the imperfect repair strategies all yield
lower costs than the other strategies, with the strategy corresponding to
the lowest degree of repair 6, 1 < 6 < 1.0, being the best for a given value
of the ratio p.

Similarly, for the medium usage category (Table 6.6), for ;o = 0.1, the
strategy that costs the least is the all minimal repair warranty strategy and
for ;1 = 0.2, two of the imperfect repair strategies cost lower than the corre-
sponding repair-replacement strategy and the all minimal repair strategy.
And finally, for 0.2 < p < 0.8, the imperfect repair strategies cost lower
than the corresponding alternate strategies.

For the heavy usage category (Table 6.7), for = 0.1, 0.2, the strategy
that costs the least is the all minimal repair strategy and for y = 0.3,0.4,
at least one imperfect repair strategy costs lower than the correspond-
ing repair-replacement strategy and the all minimal repair strategy. For
> 0.4, the imperfect repair strategies cost lower than the correspond-
ing alternate repair strategies, and the imperfect repair strategy with the

lowest degree of repair J, 1 < § < 1.0, yields the lowest cost among them.
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Table 6.5: Age reduction Sf : costs for light usage

p |6 [ Ki | Kz | Ks | 3 | BIC°(¢3)] | BIC®(¢3)] | E[CRR()]
0.2 0.1 0.2 0.3 0.2 0.3218
0.3 0.1 0.2 0.3 0.2 0.3236
0.4 0.1 0.2 0.3 0.2 0.3255
0.5 0.1 0.2 0.3 0.2 0.3274
0.1 0.3367 0.3200
0.6 0.1 0.2 0.3 0.2 0.3292
0.7 0.1 0.2 0.3 0.2 0.3311
0.8 0.1 0.2 0.3 0.2 0.3330
0.9 0.1 0.2 0.3 0.2 0.3349
0.3 0.7 1.0 1.7 1.0 0.5893
0.4 0.9 1.0 14 1.0 0.6319
0.5 0.1 0.2 0.3 0.2 0.6450
0.2 | 0.6 0.1 0.2 0.3 0.2 0.6468 0.6540 0.6400
0.7 0.1 0.2 0.3 0.2 0.6486
0.8 0.1 0.2 0.3 0.2 0.6504
0.9 0.1 0.2 0.3 0.2 0.6522
0.4 0.5 1.1 1.8 1.0 0.7682
0.5 0.7 0.8 1.7 1.0 0.8226
0.6 0.7 0.8 1.6 1.0 0.8638
0.3 0.9712 0.9600
0.7 0.7 0.8 15 1.0 0.9037
0.8 0.8 0.9 1.3 1.0 0.9383
0.9 0.9 1.0 1.1 1.0 0.9599
0.5 0.4 1.1 1.9 1.0 0.9137
0.6 0.5 0.9 1.8 1.0 0.9698
04 | 0.7 0.6 0.7 1.8 1.0 1.0135 1.1474 1.2800
0.8 0.6 0.7 1.7 1.0 1.0556
0.9 0.6 0.7 1.6 1.0 1.1007
0.6 0.3 1.1 19 1.0 1.0377
05 0.7 0.4 0.9 19 1.0 1.0932 1.2318 1.6000
0.8 0.6 0.7 1.8 1.0 1.1400
0.9 0.6 0.7 1.8 1.0 1.1835
0.7 0.3 1.1 19 1.0 1.1464
06 | 0.8 0.4 1.0 19 1.0 1.2005 1.2982 1.9200
0.9 0.5 0.8 1.8 1.0 1.2520
0.8 0.3 1.1 1.9 1.0 1.2452
0.7 1.3552 2.2400
0.9 0.3 0.9 1.9 1.0 1.2996
08 | 09 0.3 1.0 19 1.0 1.3383 1.3952 2.5600
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Table 6.6: Age reduction

Sf : costs for medium usage

p |6 [ Ki | Kz | Ks | 3 | BIC°(¢3)] | BIC®(¢3)] | E[CRR()]
0.2 0.5 0.6 0.7 0.2 0.3649
0.3 0.3 0.4 0.5 0.2 0.3661
0.4 0.2 0.3 0.4 0.2 0.3673
01 0.5 0.2 0.3 0.4 0.2 0.3685 0.3744 0.3637
0.6 0.2 0.3 0.4 0.2 0.3697
0.7 0.2 0.3 0.4 0.2 0.3709
0.8 0.2 0.3 0.4 0.2 0.3721
0.9 0.2 0.3 0.4 0.2 0.3732
0.3 0.6 1.1 1.7 1.0 0.6574
0.4 0.8 0.9 15 1.0 0.7046
0.5 14 1.5 1.6 0.6 0.7290
0.2 | 0.6 1.3 14 15 0.2 0.7316 0.7363 0.7274
0.7 0.8 0.9 1.0 0.2 0.7328
0.8 0.7 0.8 0.9 0.2 0.7340
0.9 0.6 0.7 0.8 0.2 0.7352
0.4 0.5 1.2 1.8 1.0 0.8553
0.5 0.6 0.9 1.7 1.0 0.9129
03 0.6 0.7 0.8 1.6 1.0 0.9539 10911 10911
0.7 0.7 0.8 15 1.0 0.9953
0.8 0.7 0.8 14 1.0 1.0356
0.9 0.9 1.0 14 0.8 1.0701
0.5 0.4 1.1 1.9 1.0 1.0165
0.6 0.5 1.0 1.8 1.0 1.0736
04 | 0.7 0.6 0.7 1.8 1.0 1.1183 1.2536 1.4549
0.8 0.6 0.7 1.7 1.0 1.1587
0.9 0.6 0.7 1.6 1.0 1.2044
0.6 0.4 1.1 19 1.0 1.1541
05 0.7 0.4 1.0 19 1.0 1.2096 1.3465 1.8186
0.8 0.5 0.8 1.8 1.0 1.2582
0.9 0.6 0.7 1.8 1.0 1.2987
0.7 0.3 1.1 19 1.0 1.2747
06 | 0.8 0.4 1.0 19 1.0 1.3287 1.4268 2.1823
0.9 0.5 0.8 19 1.0 1.3814
0.8 0.3 1.1 1.9 1.0 1.3843
0.7 1.5049 2.5460
0.9 0.4 1.0 1.9 1.0 1.4392
08 | 09 0.3 1.0 19 1.0 1.4874 1.5493 2.9097
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Table 6.7: Age reduction Sf : costs for heavy usage

p |6 [ Ki | Kz | Ks | 3 | BIC°(¢3)] | BIC®(¢3)] | E[CRR()]
0.2 0.4 0.5 0.6 0.2 0.1470
0.3 0.3 0.4 0.5 0.2 0.1480
0.4 0.3 0.4 0.5 0.2 0.1490
01 0.5 0.2 0.3 0.4 0.2 0.1500 0.1550 0.1460
0.6 0.2 0.3 0.4 0.2 0.1510
0.7 0.2 0.3 0.4 0.2 0.1520
0.8 0.2 0.3 0.4 0.2 0.1530
0.9 0.2 0.3 0.4 0.2 0.1540
0.3 1.7 1.8 1.9 0.2 0.2928
0.4 1.2 1.3 14 0.2 0.2938
0.5 0.9 1.0 1.1 0.2 0.2949
0.2 | 0.6 0.7 0.8 0.9 0.2 0.2959 0.2998 0.2919
0.7 0.7 0.8 0.9 0.2 0.2969
0.8 0.6 0.7 0.8 0.2 0.2979
0.9 0.6 0.7 0.8 0.2 0.2989
0.4 1.0 1.1 1.9 0.8 0.4252
0.5 1.7 1.8 1.9 0.2 0.4394
0.6 1.7 1.8 1.9 0.2 0.4404
0.3 0.4445 0.4379
0.7 1.7 1.8 1.9 0.2 0.4415
0.8 14 1.5 1.6 0.2 0.4425
0.9 12 1.3 14 0.2 0.4435
0.5 0.6 1.0 1.7 1.0 0.5332
0.6 1.0 1.1 1.8 0.8 0.5680
04 | 0.7 1.7 1.8 1.9 0.6 0.5841 0.5888 0.5839
0.8 1.7 1.8 1.9 0.2 0.5868
0.9 1.7 1.8 1.9 0.2 0.5878
0.6 0.4 1.0 1.8 1.0 0.6306
05 0.7 0.6 0.7 1.6 1.0 0.6734 0.7331 0.7299
0.8 1.0 1.1 1.8 0.8 0.7051
0.9 1.2 1.3 15 0.8 0.7262
0.7 0.4 1.0 1.8 1.0 0.7223
06 | 0.8 0.6 0.7 1.7 1.0 0.7693 0.8404 0.8758
0.9 0.6 0.7 1.6 1.0 0.8078
0.8 0.3 0.9 1.9 1.0 0.8095
0.7 0.8919 1.0218
0.9 0.5 0.6 1.8 1.0 0.8605
08 | 09 0.3 0.9 19 1.0 0.8947 0.9148 1.1678
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6.3 Results for Intensity Reduction Model

The expected total warranty servicing cost E[C*}(1,,)], for the intensity re-
duction model is given by equation (5.14) (on page 102) when r; < ry and
equation (5.15) (on page 106) when 7, < 4.

6.3.1 Expected Costs for the 3-Subregion Strategy

For strategy S. 5, whenr; < ry, the expected warranty servicing cost E[C 2 (4h3)]

is given by
EIC2(s)] = / IO (45)ldC(r) + / E[C® (4,)ldC(r) + / BIC® (4,)|dG(r) .
where
EICM ()] = A1 | 7)
T o (A [ 1) — A(K | 7)o AUSIN =AY
" fj{@m o Aa(E | 1)+ omin TA(K | 1) — Au(E | 1))

X fTKlr(ul)} dU1
= §(Ky, Ky, K)

is the cost when r < r; < ry,

E[C (13)] = &(r1, 72, K)

is the cost when r; < r < ry, and

E[C® (3)] = &(1, 72, 7)

is the cost when r; < ry < r. When 1, < ry, the expected warranty servic-
ing cost E[C**(¢)3)] is given by
T2 T1 o0

EIC3()] = [ BC @aldGr)+ [ BICP (wa)liGir)+ [ EICE (w6t

0 T2 71
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where
E[Cﬁl) (ws)] = f(Kh K, K)

is the cost when r < ry <y,
E[C£2)(¢3)] = €(K1, K2> T)
is the cost when r, < r < r;, and

E[Cr(g) (%)] - §(7'1, T2, 7_)

is the cost when ry < 7y < r; refer to Chapter 5 for more information.
Table 6.8, Table 6.9 and Table 6.10 provide the minimum expected total

warranty servicing cost F[C%(¢3})], with the optimal partition
vy = (K, K3,77)

for different values of ;i and ¢, for the light, medium and heavy usage cat-
egories, respectively. The structure of the tables is as follows: the ratio
of the cost of a minimal repair to the cost of a perfect repair is displayed
in the first column, the ratio ¢ of the cost of an imperfect repair to the
cost of a perfect repair is displayed in the second column, the optimal de-
cision variables K}, K3 and 7} are given in the next three columns, the
corresponding expected cost E[C(13)] is given in the sixth column, the
expected cost E[C%(d3 )] for the 3-subregion restricted repair-replacement
strategy by Iskandar et al. [21] is displayed in the seventh column, and the
expected cost E[C{y ()] for an all minimal repair strategy is presented in
the last column. The expected cost E[C*}(13)] corresponding to the imper-
fect repair strategy is printed in boldface if it is the minimum for a given
value of p.

For the light usage category (Table 6.8), when 11 = 0.1, the strategy
that costs the least is an all minimal repair strategy; when ;1 = 0.2, the
imperfect repair strategy with § = 0.3 costs the least when compared to
corresponding strategies; when 0.2 < 1 < 0.5, all expect one of the imper-

fect repair strategies yield lower costs than the corresponding alternate
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strategies, with the strategy corresponding to the lowest degree of repair
0, p < 6 < 1.0, being the best for a given value of p. For 1 > 0.5, as the
degree of repair ¢ increases the cost decreases, and hence, having replace-
ments in place of imperfect repairs is more feasible.

For the medium usage category (Table 6.9), as in the light category, for
i = 0.1, the strategy that costs the least is the all minimal repair strategy
and for ;1 = 0.2, the imperfect repair strategy with § = 0.3 costs lower than
the corresponding repair-replacement strategy and the all minimal repair
strategy. For p = 0.3,0.4, the imperfect repair strategies all cost lower
than the corresponding alternate strategies. For p > 0.4, as the degree
of repair J increases the cost decreases, and therefore, the corresponding
repair-replacement strategy by Iskandar et al. [21] costs the least.

For the heavy usage category (Table 6.10), for ;1 = 0.1, 0.2, the strategy
that costs the least is the all minimal repair strategy and for ;. = 0.3,0.4,
two of the imperfect repair strategies cost lower than the corresponding
repair-replacement strategy and the all minimal repair strategy. For ;1 >
0.4, the imperfect repair strategies cost lower than the corresponding al-
ternate strategies, with the strategy corresponding to the smallest degree
of repair §, ;1 < § < 1.0, being the best among them.
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Table 6.8: Intensity reduction S?fs

: costs for light usage

p |6 | Ki | Kz [ ri | BIC®(W3)] | EIC%($5)] | BICHR(")]
0.2 0.1 0.2 0.2 0.3209
0.3 0.1 0.2 0.2 0.3218
0.4 0.1 0.2 0.2 0.3227
0.5 0.1 0.2 0.2 0.3236
0.1 0.3281 0.3200
0.6 0.1 0.2 0.2 0.3245
0.7 0.1 0.2 0.2 0.3254
0.8 0.1 0.2 0.2 0.3263
0.9 0.1 0.2 0.2 0.3272
0.3 0.7 15 1.0 0.6260
0.4 0.2 0.3 0.2 0.6416
0.5 0.1 0.2 0.2 0.6425
02 | 0.6 0.1 0.2 0.2 0.6434 0.6469 0.6400
0.7 0.1 0.2 0.2 0.6443
0.8 0.1 0.2 0.2 0.6451
0.9 0.1 0.2 0.2 0.6460
0.4 0.6 1.8 1.0 0.8531
0.5 0.6 1.6 1.0 0.8885
03 0.6 0.7 15 1.0 0.9180 0.9656 0.9600
0.7 0.8 1.3 1.0 0.9410
0.8 0.9 1.2 1.0 0.9569
0.9 0.9 1.0 1.0 0.9623
0.5 0.6 1.9 1.0 1.0425
0.6 0.6 1.8 1.0 1.0661
04 | 0.7 0.6 1.7 1.0 1.0872 1.1401 1.2800
0.8 0.6 1.6 1.0 1.1065
0.9 0.6 1.6 1.0 1.1239
0.6 0.6 19 1.0 1.1978
05 0.7 0.6 1.8 1.0 1.2072 1.2258 1.6000
0.8 0.6 1.8 1.0 1.2141
0.9 0.6 1.8 1.0 1.2211
0.7 0.6 19 1.0 1.3202
0.6 | 0.8 0.6 19 1.0 1.3132 1.2971 1.9200
0.9 0.6 19 1.0 1.3062
0.8 0.5 1.9 1.0 1.4097
0.7 1.3627 2.2400
0.9 0.6 1.9 1.0 1.3862
0.8 | 0.9 0.5 19 1.0 1.4661 1.4263 2.5600
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0

Table 6.9: Intensity reduction Sg': costs for medium usage

p |6 | Ki | Kz [ ri | BIC®(W3)] | EIC%($5)] | BICHR(")]
0.2 0.5 0.6 0.2 0.3643
0.3 0.3 0.4 0.2 0.3649
0.4 0.3 0.4 0.2 0.3655
041 0.5 0.3 0.4 0.2 0.3661 0.3691 03637
0.6 0.2 0.3 0.2 0.3667
0.7 0.2 0.3 0.2 0.3673
0.8 0.2 0.3 0.2 0.3679
0.9 0.2 0.3 0.2 0.3685
0.3 0.7 15 1.0 0.7033
0.4 1.8 1.9 0.4 0.7281
0.5 1.5 1.6 0.2 0.7289
02 | 0.6 0.9 1.0 0.2 0.7296 0.7319 0.7274
0.7 0.8 0.9 0.2 0.7301
0.8 0.7 0.8 0.2 0.7307
0.9 0.7 0.8 0.2 0.7313
0.4 0.6 1.8 1.0 0.9579
0.5 0.6 1.6 1.0 0.9908
03 0.6 0.7 15 1.0 1.0189 1.0894 10911
0.7 0.7 14 1.0 1.0431
0.8 0.8 1.3 1.0 1.0635
0.9 0.9 14 0.8 1.0791
0.5 0.6 1.9 1.0 1.1713
0.6 0.6 1.8 1.0 1.1884
04 | 0.7 0.6 1.7 1.0 1.2038 1.2420 1.4549
0.8 0.6 1.7 1.0 1.2178
0.9 0.6 1.6 1.0 1.2304
0.6 0.6 19 1.0 1.3463
05 0.7 0.6 19 1.0 1.3459 1.3390 1.8186
0.8 0.6 1.8 1.0 1.3440
0.9 0.6 1.8 1.0 1.3417
0.7 0.6 19 1.0 1.4834
0.6 | 0.8 0.6 19 1.0 1.4642 1.4249 2.1823
0.9 0.6 19 1.0 1.4449
0.8 0.6 1.9 1.0 1.5829
0.7 1.5066 2.5460
0.9 0.6 1.9 1.0 1.5447
0.8 | 0.9 0.6 19 1.0 1.6445 1.5875 2.9097
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Table 6.10: Intensity reduction S?fs

: costs for heavy usage

p |6 | Ki | Kz [ ri | BIC®(W3)] | EIC%($5)] | BICHR(")]
0.2 0.5 0.6 0.2 0.1465
0.3 0.3 0.4 0.2 0.1470
0.4 0.3 0.4 0.2 0.1475
0.5 0.3 0.4 0.2 0.1480
0.1 0.1505 0.1460
0.6 0.3 0.4 0.2 0.1485
0.7 0.2 0.3 0.2 0.1490
0.8 0.2 0.3 0.2 0.1495
0.9 0.2 0.3 0.2 0.1500
0.3 1.8 1.9 0.2 0.2924
0.4 1.0 1.1 0.2 0.2929
0.5 0.8 0.9 0.2 0.2934
02 | 0.6 0.7 0.8 0.2 0.2939 0.2959 0.2919
0.7 0.7 0.8 0.2 0.2944
0.8 0.6 0.7 0.2 0.2949
0.9 0.6 0.7 0.2 0.2954
0.4 1.1 1.6 0.8 0.4365
0.5 1.8 1.9 0.2 0.4387
0.6 1.8 1.9 0.2 0.4392
0.3 0.4412 0.4379
0.7 1.6 1.7 0.2 0.4397
0.8 14 15 0.2 0.4402
0.9 1.2 1.3 0.2 0.4407
0.5 0.6 1.6 1.0 0.5569
0.6 1.1 1.6 0.8 0.5811
04 | 0.7 1.8 1.9 0.2 0.5849 0.5864 0.5839
0.8 1.8 1.9 0.2 0.5854
0.9 1.8 1.9 0.2 0.5859
0.6 0.5 1.7 1.0 0.6630
05 0.7 0.8 19 0.8 0.6943 0.7313 0.7299
0.8 1.0 1.7 0.8 0.7164
0.9 1.6 1.9 0.6 0.7286
0.7 0.5 1.8 1.0 0.7585
0.6 | 0.8 0.6 1.7 1.0 0.7908 0.8384 0.8758
0.9 0.8 19 0.8 0.8172
0.8 0.5 1.9 1.0 0.8451
0.7 0.9022 1.0218
0.9 0.5 1.8 1.0 0.8757
0.8 | 0.9 0.4 19 1.0 0.9220 0.9500 1.1678
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6.3.2 Expected Costs for the 4-Subregion Strategy

For strategy Sf ,whenr; < ry, the expected warranty servicing cost E[CQ (14)]

is given by
E[CS ()] = / B[O (0)]dG(r)+ / B[O (40)]dG(r)+ / BIC® (4)]dG(r) |
where

EICM (1)) = cminA(K1 | 7)

+  Cmin [A(K ‘ 7’) — A(K3 | 7’)] e_[A(KS\T)—A(Kl\T)]
Ko

+ f {(Cz‘mp + Conin Al(KQ | T) “+ Conin {Al(K | T) — Al(K?, | r)}
Ky

X ef{Al(Kg"r)*Al(KQ'r)}) fTK”(lu)} duy

+ 73{(c,~mp + Comin M (K3 | 7) + cpin {A (K | 7) — A (K3 | 7“)})

Ko

X fTKlr(ul)} du1
K3 Ko

+ f f {(Cimp + CminAQ(KZS | T) + len{A2<K | T) — AQ(Kg ‘ 7’)}
Ko K1
% e—{A2(K3|r)—A2(K3|?“)})

x Ap(ug | 1) e~ 1M1 (uz|r)— A1 (Ka2|r)} fTK”(Ul)} duy dus
= (K1, Ky, K3, K)
is the cost when r < r; <y,
BICP ()] = &(r1, 72,73, K)
is the cost when r; < r <7y, and
BICP ()] = £(11, 72, 73,7)

is the cost when r; < r; < r. When r, < ry, the expected warranty servic-
ing cost E[C%(1,)] is given by
EICHw0)] = [ EICOW0ld+ [ ECP @0ldG)+ [ EIC(wla60) |

0 T2 1
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where
E[Cvgl) (1/}4” = g(Kh K27 K37 K)

is the cost when r < ry, <y,
E[ngQ) (¢4)] = g(Klv K27 K37 7_)
is the cost when r, < r < r;, and

E[CP ()] = &(T1, T2, 73, 7)

is the cost when r, < r; < r; see Chapter 5 for information on deriving the
expected cost for the intensity reduction model.
Table 6.11, Table 6.12 and Table 6.13 provide the minimum expected

total warranty servicing cost E[C(¢})], with the optimal partition
vy = (K7, K3, K§,r7)

for different values of it and 4, for the light, medium and heavy usage cat-
egories, respectively. The structure of the tables is as follows; the ratio
of the cost of a minimal repair to the cost of a perfect repair is displayed
in the first column, the ratio J of the cost of an imperfect repair to the cost
of a perfect repair is displayed in the second column, the optimal decision
variables K7, K5, K3 and r] are given in the next four columns, the cor-
responding expected cost E[C*}(1})] is given in the seventh column, the
expected cost E[C(¢})] for the 4-subregion restricted repair-replacement
strategy by Chukova et al [13], where all repairs in the first and last subre-
gions are minimal, the first repair in each of the intermediate subregions is
perfect (replacement) and all subsequent repairs in the subregion are min-
imal, is displayed in the eighth column, and the expected cost E[C{}(7*)]
for an all minimal repair strategy is presented in the last column. The
expected cost F[C% ()] corresponding to the imperfect repair strategy is
printed in boldface if it is the minimum for a given value of ..

For the light usage category (Table 6.11), when p = 0.12, the strategy

that costs the least is an all minimal repair strategy; when 1 = 0.2, the
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imperfect repair strategy with 0 = 0.3 costs less than the other strategies;
when 0.2 < 1 < 0.7, all except one of the imperfect repair strategies yield
lower costs than the corresponding alternate strategies, with the strategy
corresponding to the lowest degree of repair J, 1 < d < 1.0, being the
best for a given value of p. For u > 0.7, having replacements in place of
imperfect repairs costs the least.

For the medium usage category (Table 6.12), as in the light category, for
i = 0.1, the strategy that costs the least is the all minimal repair strategy
and for ¢ = 0.2, the imperfect repair strategy with 6 = 0.3 costs lower
than the corresponding repair-replacement strategy and the all minimal
repair strategy. For 0.2 < p < 0.7, all except one of the imperfect repair
strategies cost lower than the corresponding alternate strategies. For ;1 >
0.7, the corresponding repair-replacement strategy by Chukova et al. [13]
costs lower than the imperfect repair strategy and the all minimal repair
strategy.

For the heavy usage category (Table 6.13), for ;1 = 0.1, 0.2, the strategy
that costs the least is the all minimal repair strategy and for ;. = 0.3,0.4,
at least one imperfect repair strategy costs lower than the corresponding
repair-replacement strategy by Chukova et al. [13] and the all minimal
repair strategy. For 0.4 < p < 0.8, the imperfect repair strategies cost
lower than the corresponding alternate strategies, with the strategy with
the smallest §, 1 < § < 1.0, yielding the lowest cost among them.
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Table 6.11: Intensity reduction Sf : costs for light usage

p |6 [ Ki | Kz | Ks | 3 | BIC°(¢3)] | BIC®(¢3)] | E[CRR()]
0.2 0.1 0.2 0.3 0.2 0.3218
0.3 0.1 0.2 0.3 0.2 0.3237
0.4 0.1 0.2 0.3 0.2 0.3255
0.5 0.1 0.2 0.3 0.2 0.3274
0.1 0.3367 0.3200
0.6 0.1 0.2 0.3 0.2 0.3293
0.7 0.1 0.2 0.3 0.2 0.3311
0.8 0.1 0.2 0.3 0.2 0.3330
0.9 0.1 0.2 0.3 0.2 0.3349
0.3 0.7 0.8 14 1.0 0.6262
0.4 0.1 0.2 0.3 0.2 0.6433
0.5 0.1 0.2 0.3 0.2 0.6450
0.2 | 0.6 0.1 0.2 0.3 0.2 0.6468 0.6540 0.6400
0.7 0.1 0.2 0.3 0.2 0.6486
0.8 0.1 0.2 0.3 0.2 0.6504
0.9 0.1 0.2 0.3 0.2 0.6522
0.4 0.4 1.1 1.7 1.0 0.8411
0.5 0.6 0.7 1.6 1.0 0.8889
0.6 0.6 0.7 14 1.0 0.9211
0.3 0.9712 0.9600
0.7 0.7 0.8 1.3 1.0 0.9454
0.8 0.9 1.0 1.1 1.0 0.9588
0.9 0.8 0.9 1.0 1.0 0.9666
0.5 0.4 1.1 1.8 1.0 1.0119
0.6 0.4 0.9 1.7 1.0 1.0592
04 | 0.7 0.6 0.7 1.7 1.0 1.0885 1.1474 1.2800
0.8 0.6 0.7 1.6 1.0 1.1106
0.9 0.6 0.7 1.6 1.0 1.1308
0.6 0.3 1.1 19 1.0 1.1496
05 0.7 0.4 1.0 1.8 1.0 1.1881 1.2318 1.6000
0.8 0.5 0.7 1.8 1.0 1.2124
0.9 0.5 0.6 1.7 1.0 1.2237
0.7 0.3 1.1 19 1.0 1.2593
06 | 0.8 0.3 1.0 19 1.0 1.2867 1.2982 1.9200
0.9 0.4 0.8 1.8 1.0 1.3001
0.8 0.3 1.1 1.9 1.0 1.3425
0.7 1.3552 2.2400
0.9 0.3 0.9 1.9 1.0 1.3551
08 | 09 0.3 1.1 19 1.0 1.3999 1.3952 2.5600
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Table 6.12: Intensity reduction Sf : costs for medium usage

p |6 [ Ki | Kz | Ks | 3 | BIC°(¢3)] | BIC®(¢3)] | E[CRR()]
0.2 0.4 0.5 0.6 0.2 0.3649
0.3 0.3 0.4 0.5 0.2 0.3661
0.4 0.2 0.3 0.4 0.2 0.3673
01 0.5 0.2 0.3 0.4 0.2 0.3685 0.3744 0.3637
0.6 0.2 0.3 0.4 0.2 0.3697
0.7 0.2 0.3 0.4 0.2 0.3709
0.8 0.2 0.3 0.4 0.2 0.3721
0.9 0.2 0.3 0.4 0.2 0.3732
0.3 0.6 0.8 15 1.0 0.7032
0.4 1.7 1.8 1.9 0.2 0.7290
0.5 1.2 1.3 14 0.2 0.7304
0.2 | 0.6 0.9 1.0 1.1 0.2 0.7317 0.7363 0.7274
0.7 0.7 0.8 0.9 0.2 0.7328
0.8 0.7 0.8 0.9 0.2 0.7340
0.9 0.6 0.7 0.8 0.2 0.7352
0.4 0.4 1.1 1.8 1.0 0.9390
0.5 0.6 0.7 1.6 1.0 0.9904
03 0.6 0.6 0.7 15 1.0 1.0226 10911 10911
0.7 0.7 0.8 14 1.0 1.0498
0.8 0.8 0.9 14 0.8 1.0706
0.9 1.0 1.1 1.3 0.8 1.0843
0.5 0.4 1.1 1.9 1.0 1.1279
0.6 0.4 1.0 1.7 1.0 1.1753
04 | 0.7 0.6 0.7 1.7 1.0 1.2043 1.2536 1.4549
0.8 0.6 0.7 1.7 1.0 1.2231
0.9 0.6 0.7 1.6 1.0 1.2388
0.6 0.3 1.1 19 1.0 1.2800
05 0.7 0.4 1.0 1.8 1.0 1.3163 1.3465 1.8186
0.8 0.5 0.8 1.8 1.0 1.3396
0.9 0.6 0.7 1.8 1.0 1.3453
0.7 0.3 1.1 19 1.0 1.4006
06 | 0.8 0.3 1.0 19 1.0 1.4245 1.4268 2.1823
0.9 0.4 0.8 1.8 1.0 1.4351
0.8 0.3 1.1 1.9 1.0 1.4921
0.7 1.5049 2.5460
0.9 0.3 1.0 1.9 1.0 1.5002
08 | 09 0.3 1.1 19 1.0 1.5553 1.5493 2.9097
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Table 6.13: Intensity reduction Sf : costs for heavy usage

p |6 [ Ki | Kz | Ks | 3 | BIC°(¢3)] | BIC®(¢3)] | E[CRR()]
0.2 0.4 0.5 0.6 0.2 0.1470
0.3 0.3 0.4 0.5 0.2 0.1480
0.4 0.2 0.3 0.4 0.2 0.1490
01 0.5 0.2 0.3 0.4 0.2 0.1500 0.1550 0.1460
0.6 0.2 0.3 0.4 0.2 0.1510
0.7 0.2 0.3 0.4 0.2 0.1520
0.8 0.2 0.3 0.4 0.2 0.1530
0.9 0.2 0.3 0.4 0.2 0.1540
0.3 1.7 1.8 1.9 0.2 0.2928
0.4 1.0 1.1 1.2 0.2 0.2939
0.5 0.8 0.9 1.0 0.2 0.2949
0.2 | 0.6 0.7 0.8 0.9 0.2 0.2959 0.2998 0.2919
0.7 0.6 0.7 0.8 0.2 0.2969
0.8 0.6 0.7 0.8 0.2 0.2979
0.9 0.6 0.7 0.8 0.2 0.2987
0.4 1.1 1.2 15 0.8 0.4366
0.5 1.7 1.8 1.9 0.2 0.4395
0.6 1.7 1.8 1.9 0.2 0.4405
0.3 0.4445 0.4379
0.7 15 1.6 1.7 0.2 0.4415
0.8 1.3 14 15 0.2 0.4425
0.9 12 1.3 14 0.2 0.4435
0.5 0.6 1.0 1.6 1.0 0.5561
0.6 1.1 1.2 15 0.8 0.5815
04 | 0.7 1.7 1.8 1.9 0.2 0.5859 0.5888 0.5839
0.8 1.7 1.8 1.9 0.2 0.5869
0.9 1.7 1.8 1.9 0.2 0.5879
0.6 0.4 1.0 1.7 1.0 0.6594
05 0.7 0.8 0.9 19 0.8 0.6947 0.7331 0.7299
0.8 1.0 1.1 1.7 0.8 0.7176
0.9 1.7 1.8 1.9 0.6 0.7290
0.7 0.3 1.0 1.8 1.0 0.7522
06 | 0.8 0.5 0.6 1.7 1.0 0.7910 0.8404 0.8758
0.9 0.8 0.9 19 0.8 0.8184
0.8 0.3 1.0 1.9 1.0 0.8364
0.7 0.8919 1.0218
0.9 0.5 0.6 1.8 1.0 0.8755
08 | 09 0.3 0.9 19 1.0 0.9118 0.9148 1.1678
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6.4 Optimal Warranty Repair Strategy

In this section, we summarize the results obtained and displayed in previ-
ous sections. In the numerical example, we have applied the 3-subregion
and 4-subregion imperfect repair strategies. In Chukova et al. [13], the nu-
merical results for the 5 and 6 subregion repair-replacement strategies are
presented. Even though in some cases the higher-subregion strategies cost
less, the strategy comparisons here are based on the 3- and 4-subregion
strategies. The all minimal repair strategy is denotes by Syr, and for
d € (0,1], the imperfect repair strategies and the repair-replacement strat-
egy are denoted by S,‘? , where n is the number of subregions, and 4 is the
vector of degrees of repair, which in this example is just § = §. For each of
the imperfect repair models, presented in Table 6.14 and Table 6.15, respec-
tively, are the optimal restricted warranty repair strategies corresponding

to different costs p of minimal repairs.

Table 6.14: Optimal warranty repair strategy - Age reduction model

p | Light usage | Medium usage | Heavy usage
0.1 SMR SMR SMR
0.2 823 823 SMR
03|  sp 594 594
04| 89 59% 595
0.5 89° 896 896
06| ST 597 597
07| & 598 598
0.8 S99 S99 S99
0.9 S0 S0 S0

In the age reduction model, for the light and medium usage categories,
when the cost of a minimal repair is low p = 0.1, the optimal warranty
repair strategy is the all minimal repair strategy, and when the cost of a
minimal repair is high ;1 = 0.9, the optimal strategy is the 4-subregion
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repair-replacement strategy. For 0.1 < u < 0.9, the 4-subregion imperfect
repair strategy with the lowest degree of repair , u < § < 1.0, is optimal.
For the heavy usage category, when 1 is low, the optimal warranty repair
strategy is either the all minimal repair strategy or the 3-subregion imper-
fect repair strategy with the lowest degree of repair J. For higher values
of 11, the optimal strategy is the 4-subregion imperfect repair strategy with
the smallest §, and when ;¢ = 0.9, the optimal warranty repair strategy for

the heavy usage category is the 4-subregion repair-replacement strategy.

Table 6.15: Optimal warranty repair strategy - Intensity reduction model

p | Light usage | Medium usage | Heavy usage
0.1 SMR SMR SMR
0.2 Sg'?’ 32'3 SMR
03|  sv4 504 594
04| 8§05 505 505
0.5 S9°¢ 896 896
0.6 897 ST ST
07| s 508 508
08|  SLo S10 509
0.9 S0 S0 S0

In the intensity reduction model, for the light and heavy usage cate-
gories, for low values of i the optimal warranty repair strategy is either
the all minimal repair strategy or the 3-subregion imperfect repair strat-
egy; for intermediate values of 1, the 4-subregion strategies result in lower
costs when compared to the 3-subregion strategies; for high values of j,
the 4-subregion repair-replacement strategy is optimal. For the medium
usage category, the optimal strategy when ;. = 0.1 is the all minimal re-
pair strategy; for all intermediate values of 1, the optimal strategy is the
4-subregion imperfect repair strategy with the lowest corresponding ¢; for
high values of i the optimal strategy is the 4-subregion repair-replacement
strategy.



Chapter 7
Conclusion and Future Research

In this thesis, we extended the warranty repair-replacement strategy pro-
posed by Iskandar et al. [21] and Chukova et al. [13] to an imperfect repair
strategy. The new strategy is a generalization of the repair-replacement
strategy in terms of the degree of repairs. The imperfect repair strat-
egy studied, is for repairable products sold under a nonrenewing two-
dimensional free-replacement warranty policy. The warranty region is di-
vided into n subregions; all repairs in the first and last subregion are min-
imal; in each of the intermediate subregions, the first repair is imperfect
and all subsequent repairs are minimal. Since the strategy is restricted,
these subregions are defined by n decision variables whose optimal val-
ues are found by minimizing the expected warranty servicing cost over
the warranty region.

In the new warranty repair strategy, repairs with different degrees ¢,
0 < § < 1, are considered. For comparison reasons, we used an example
proposed by Iskandar et al. [21] and extended by Chukova et al. [13] to
numerically illustrate our findings for the imperfect repair strategy.

To model the imperfect repairs, we used an extension of the age reduc-
tion model purposed by Doyen and Gaudoin [16], and a modification of
the intensity reduction model by Chukova et al. [11].

140
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For each of the two imperfect repair models, we

e derived the density functions for the imperfect repair times in the

intermediate subregions;

e derived an expression for the expected total warranty servicing costs

for the n-subregion warranty repair strategy;

e numerically illustrated the procedure for finding the optimal parti-
tioning of the warranty region and the optimal warranty repair strat-

egy, using an example by Iskandar et al. [21].

For the chosen example, we presented numerical results for the 3- and
4-subregion imperfect repair strategies, and provided comparison with
previously studied repair-replacement strategies. The unrestricted strat-
egy by Chukova and Johnston [14] did better in some cases, but since the
imperfect repair strategy proposed here is restricted, the final comparison
for finding the optimal repair strategy was with the restricted 3-subregion
strategy by Iskandar et al. [21] and the restricted 4-subregion strategy by
Chukova et al. [13]. Also included were comparisons with an all minimal
repair strategy. For both the age reduction model and the intensity re-
duction model, the results show that in many cases performing imperfect
repairs in place of replacements can significantly reduce warranty costs.

The results derived in this thesis can be extended and modified in a

number of ways:

e In the expressions derived for the expected warranty servicing costs,
the repair costs were assumed to be constant; in the numerical exam-
ple we modified these costs to be proportional to the degree of the
imperfect repair. They can be further modified into more realistic

cost functions based on actual or empirical data.

e In the numerical example, we considered the 3- and 4-subregion im-
perfect repair strategies. It is possible that an imperfect repair strat-

egy with more than four subregions is the optimal strategy. Finding
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the optimal number of subregions for the imperfect repair strategy
could be the next step in finding the best repair strategy.

e The derived results are for a free-replacement warranty policy. Simi-
larly, the imperfect repair strategy can be developed for pro-rata and

combination warranty policies.

e The repair strategy is for a two-dimensional non-renewing warranty;
it would be of interest to study a two-dimensional renewing repair-

replacement warranty strategy.

e The optimization procedure used to obtain the numerical results is
based on a coarse grid. The suggested strategies are optimal when
optimizing over this grid. Finding an efficient optimization proce-
dure that would produce more accurate results could be another di-

rection to further this study.
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