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Abstract

When a repairable product under warranty fails, the manufacturer (war-

rantor) has the choice to either repair or replace the failed product. When

repairing a failed product, the degree of repair which affects the working

condition of the product can vary, and this is assumed to have an impact

on the cost of the repair. The main motivation of this study is to develop

a warranty repair strategy that minimizes the costs associated with servic-

ing the warranty.

In this research, the product coverage is represented by a two-dimensi-

onal rectangular region with a free-replacement warranty. We propose an

imperfect repair strategy that suggests employing imperfect repairs of a

predefined degree, in prespecified subregions of the warranty region. The

aim is to then minimize the expected warranty servicing cost to the man-

ufacturer by determining the optimal partitioning of the warranty region

for the chosen degrees of repair.

Two imperfect repair models are considered, and for both, the expres-

sions for the distribution of the times to imperfect repair and the expected

warranty servicing cost per product sold are derived.

We numerically illustrate our findings and compare the expected costs

of the proposed imperfect repair strategy with those of previously devel-

oped repair-replacement warranty strategies.
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Chapter 1

Introduction

Warranty policies play an important role in the sales of most products and

services. A warranty policy is a statement made by the manufacturer that

outlines the type and extent of compensation offered to the consumer in

the event that the warranted product fails or does not meet the consumer’s

expectations [6].

In today’s competitive market, warranties have become an influential

and crucial constituent of manufacturer-consumer transactions. For con-

sumers, when shopping for a product, the warranty often becomes an im-

portant factor in making the decision to buy the product, since a warranty

is often assumed to be related to the reliability of the warranted product,

and also, consumers often seek products with a warranty that assumes

lower post-purchase maintenance costs [37]. To a consumer, warranties

serve as a guarantee of the quality of a product and an assurance that the

manufacturer will be responsible to provide a suitable compensation if the

product’s performance does not meet the promised standards. However,

warranties are not of benefit to the consumers alone. Manufacturers also

stand to gain from warranty policies. A warranty that is attractive from

the consumer’s point of view, and well-planned from the manufacturer’s

point of view, can increase sales and reduce post-purchase maintenance

costs and can therefore, result in larger profits [6].
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CHAPTER 1. INTRODUCTION 2

1.1 Background and Motivation

Warranties have been extensively investigated by many researchers from

various disciplines, and have been of great interest to product manufactur-

ers. For a manufacturer, a warranty may result in costs additional to those

associated with the designing and manufacturing of the product and thus,

warranties have a considerable effect on the overall returns. Inadequately

planned warranty policies often result in manufacturers losing large sums

of money. In addition, warranty servicing costs can reach 15% of net sales

and therefore, a slight reduction in these costs can result in substantial

savings for manufacturers [34].

Although they have been so widely used and researched, the exact

pricing of warranties in most situations is not determinable and should

be estimated [14]. Since warranty claims may translate to large amounts

of money for manufacturers, devising strategies that minimize these esti-

mated costs are crucial in increasing the profits generated by sales of war-

ranted products.

1.2 Problem Statement and Research Objective

Warranties are a significant component of competitive economic success.

Effective warranty policy (servicing strategy) planning can warrant prof-

its, but inadequately researched policies and deficient cost analysis may

result in losses for the manufacturer. Because of the highly confidential

nature of the warranty claims data, it is not always simple to estimate the

distribution of warranty servicing costs. Instead, the expected total war-

ranty servicing costs serve as estimates.

This research is aimed at reducing the warranty servicing cost, from

the manufacturer’s point of view, per product sold by finding an optimal

repair strategy that minimizes the expected warranty servicing cost. The

warranty considered is a two-dimensional free-replacement warranty and
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the warranted product is assumed to be repairable.

Since an “all minimal” repair model and an “all replacement” model

are not realistic and/or feasible options, the suggested repair strategy is to

employ imperfect repairs in certain situations in order to lower the war-

ranty servicing cost. Imperfect repairs can be modeled in various ways.

A brief literature review of some of the proposed methods is provided in

the next chapter. In this research, two different approaches have been em-

ployed.

The first approach, the age reduction model, is an adaptation of the vir-

tual age model proposed by Doyen and Gaudoin [16], according to which

the imperfect repair reduces the virtual age of the product by an amount

proportional to its age immediately prior to the repair, i.e. its age at the

time of failure. The class of virtual age models was first proposed by Ki-

jima [29] and it suggests that the product immediately after repair can be

described by its virtual age which is smaller than the real age of the prod-

uct. Here, the efficiency of an imperfect repair is measured by its degree,

and for consecutive imperfect repairs, these degrees are not all necessarily

the same.

The second approach, the intensity reduction model, is a modification

of the model proposed by Chukova et al. [11] which suggests that the

failure rate function of the product after an imperfect repair is between the

failure rate of the product after a minimal repair and the failure rate of the

product right after the previous repair. The reduction in the failure rate

function is proportional to the distance between these two failure rates.

Like in the age reduction model, the degrees of repairs are not necessarily

the same for all consecutive imperfect repairs.

We define the two models by the effect of the imperfect repair on the

conditional intensity function of the underlying failure process. For each

of the two models, we derive the conditional distributions of successive

times to imperfect repair and the expected warranty servicing cost that is

to be minimized, and numerically illustrate these results. The imperfect
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repair strategy proposed in this research is a generalization of the repair-

replacement strategies proposed by Iskandar et al [21] and Chukova et al.

[13], and an extension of the imperfect repair model proposed by Yun and

Kang [54].

1.3 Research Scope

The development of an effective warranty servicing strategy and careful

cost analysis are significant elements in reducing warranty servicing costs

and increasing returns from product sales. The imperfect repair strategy

suggested in this research aims at reducing the expected warranty servic-

ing cost.

The derived distributions of the times to imperfect repair provide a

good framework for warranty claims modeling where the repairs under

warranty are imperfect. The expected warranty servicing costs derived in

this research can be employed in estimating warranty costs for different

degrees of repair. Also, the estimates obtained here can easily be extended

to account for non-constant repair costs.

1.4 Thesis Outline

The outline of this thesis is as follows: in this chapter we have provided a

brief overview of the thesis.

In Chapter 2, we discuss some concepts necessary in understanding

and developing warranty policies and also included is an outline of types

of rectification actions and their associated costs to the manufacturer. We

then discuss the one-dimensional and two-dimensional mathematical mod-

eling approaches used in modeling product failures. We also discuss, in

some detail, the concepts of failure rate, intensity function and some im-

portant stochastic point processes in the context of warranty claims mod-

eling. In addition, a summary of a few imperfect repair models relevant
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to this research is included.

In Chapter 3, we provide a brief review of the literature pertaining

to the modeling and analysis of one-dimensional and two-dimensional

warranty policies, while focusing mainly on policies that use the one-

dimensional approach to modeling warranty claims. The chapter also pro-

vides a detailed description of the imperfect repair strategy proposed in

this research.

In Chapter 4, we derive the distribution of the times to imperfect repair

and the expected total warranty servicing cost for the age reduction model.

In Chapter 5, we derive the distribution of the times to imperfect re-

pair and the expected warranty servicing cost for the intensity reduction

model.

In Chapter 6, we present some numerical results to illustrate the effec-

tiveness of the proposed imperfect repair strategy, for both the age reduc-

tion and the intensity reduction models. Comparisons with two repair-

replacement strategies with minimal repairs and replacements are pro-

vided.

In Chapter 7, we present conclusions and discuss some possible future

research directions.



Chapter 2

Modeling Warranty Claims

The most fundamental element in the study of warranty analysis is build-

ing a mathematical model that adequately describes the warranty claims

process. Warranty claims are based on product failures and therefore,

modeling the warranty claims process, assuming all claims are valid, is

equivalent to modeling the failures that result in the claims. Since failures

occur at random along the time continuum, a continuous-time stochastic

structure is most appropriate in modeling product failures.

This chapter includes some basic concepts of warranty and the math-

ematical modeling of the warranty claims process, along with a detailed

discussion of the approaches that will be used to accomplish the goals

of this research. Before we begin with modeling warranty claims, in the

following section, we provide brief notes on the classification of types of

warranty, and discuss different rectification actions and their cost implica-

tions.

2.1 Warranty Policy Classification

All products are produced to perform specific designated functions. Test-

ing each product to ensure that it performs up to standards is neither sim-

ple nor feasible. After a process of random testing and analyzing historic

6
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failure data, certain assumptions are made about the performance and re-

liability of the product based on which a suitable warranty policy is cho-

sen. There are many types of warranty policies in use today and they can

be classified based on several factors. The most common factors based

on which warranty policies are classified are the dimension, duration and

type of reimbursement which are described in detail in the books on war-

ranty analysis by Blischke and Murthy [7, 6]. In this section, we provide a

summary description of each of the three factors.

Warranty Dimension

Warranty policies can be classified based on the number of variables that

are employed in defining the terms of the policy. Variables typically used

to set the warranty terms are time or age of the product, usage of the prod-

uct, etc. Based on the number of variables, the warranty policy can have

one, two or more dimensions. Although a warranty can have multiple

dimensions, the one-dimensional and two-dimensional warranties are the

ones typically used.

A one-dimensional warranty is based on a single variable usually time

from purchase or the age of the product. In this case, the warranty is de-

fined by an interval on the time axis, say [0, K), starting immediately after

the purchase of the product or, some times, at the instant the product is

first put into use. One-dimensional policies are employed when product

failures are attributed to mostly the age of the product.

A two-dimensional warranty, is based on two variables, usually time or

age and usage. Here, product failures are often attributed to the age and

the amount of usage of the product. In this case, the warranty is defined

by a region in two-dimensional space, with time along the x-axis and us-

age along the y-axis. Different two-dimensional warranty policies can be

defined based on the shape of the warranty region. However, the most

commonly used warranty is defined by a rectangular region, usually de-

noted by Ω, where Ω = [0, K) × [0, L), K is the maximum time and L is
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the maximum usage specified in the warranty limits. Here, the warranty

expires when either or both limits are exceeded.

Higher-dimensional warranties, based on more than two variables, are

more complex and are usually used in few applications, for instance, in

plane engines. In this research, we consider products sold with a two-

dimensional warranty policy specified by a rectangular warranty region.

Refer to ’Warranty Cost Analysis’ by Blischke and Murthy [6] for detailed

descriptions of different warranty region shapes and policies.

Duration of Warranty

The duration of the warranty can be an important factor in the classifi-

cation of the warranty policy. The duration of the warranty policy, may

change following the repair or replacement of a warranted product, based

on which warranty policies can be classified into two categories; renewing

and nonrenewing.

A nonrenewing warranty policy has a fixed duration which does not

change following a repair or a replacement. The warranty period after

repair or replacement is the remaining warranty period of the product.

For a one-dimensional warranty policy, let [0, K) denote the initial war-

ranty period and let Ti denote the time of the i-th failure, i ≥ 1. After the

i-th repair (replacement) within the warranty period, the product is cov-

ered by warranty for a period [Ti, K). The i-th repair (replacement) of the

product is not covered by warranty, if Ti−1 ≤ K and Ti > K.

For a two-dimensional rectangular warranty policy with warranty re-

gion Ω = [0, K)× [0, L), let the pair (Ti, Ui) denote the age and usage at the

i-th repair or replacement. The i-th repair (replacement) of the product is

covered by warranty if (Ti, Ui) ∈ [0, K) × [0, L). After the i-th repair or

replacement (in the warranty region), the product is covered by warranty

for a time period of length K − Ti and for a usage of L− Ui units, i.e. over

the warranty region [Ti, K)×[Ui, L). For i ≥ 1, the i-th repair (replacement)

of the product is not covered by warranty, if Ti > K and/or Ui > L.
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A renewing warranty policy is one in which the warranty period is ex-

tended for a period equal to the original warranty period after each repair

or replacement within the warranty period.

For a one-dimensional warranty policy, if the i-th product failure is

within the warranty period, i.e. Ti ≤ K, the warranty limit is extended to

Ti +K. Therefore, the repaired or replaced product has a warranty period

of K units. The warranty expires if the time between failures exceeds K

units.

For a two-dimensional rectangular warranty policy, if the i-th failure

occurs at (Ti, Ui) and Ti ≤ K and Ui ≤ L, after the repair or replacement,

the product is covered by warranty over the region

[Ti, Ti +K) × [Ui, Ui + L) .

The warranty expires when the time between failures exceeds K units

and/or the usage between failures exceeds L units.

The duration of the warranty period in case of a renewing warranty

policy is a random variable, while the duration of the nonrenewing war-

ranty is constant [6]. Renewing warranties are not commonly used and are

less cost-effective than nonrenewing warranty policies. In this research,

we consider a nonrenewing rectangular two-dimensional warranty policy.

Type of Reimbursement

Warranty policies can be broadly classified based on the type of reimburse-

ment into free-replacement warranty (FRW), pro-rata warranty (PRW) and

combination warranty which is often a combination of the FRW and the

PRW.

Under a free-Replacement warranty policy, the manufacturer agrees to

repair or replace the failed product, at no cost to the consumer, provided

that the product failures occur within the warranty period (region). This

type of warranty is the most commonly used policy applied to consumer
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products such as televisions, electronic components, automobile parts, etc

[6].

Under a pro-rata warranty policy, the manufacturer is liable to pay only a

portion of the repair or replacement cost of the failed product, if the prod-

uct failure occurs within the warranty period (region), and the consumer

pays the remaining. The amount paid by the manufacturer is usually in-

versely proportional to the age (or age and usage in the two-dimensional

case) of the product. That is, the refund is often a decreasing function of

the classifying variables. This type of warranty is used with less expensive

non-repairable products such as batteries and automobile tires [6].

A combination warranty policy is a combination of the FRW and the

PRW. This type of warranty is often characterized by a period of FRW

followed by a period of PRW. Combination warranty policies are some

times used to cover multicomponent products where some components

are covered by an FRW and others are covered by a PRW [7].

K1

Usage

FRW / PRW

L

Usage

L

(iii)

K1 KK0 0

FRW / PRW FRW PRW

Time Time

(i) (ii)

(iv)

0 K Time 0 Time

L1

FRW

PRW

K

Figure 2.1: (i) One-dimensional FRW/PRW, (ii) One-dimensional combination

warranty, (iii) Two-dimensional FRW/PRW, (iv) Two-dimensional

combination warranty
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Presented in Figure 2.1, are some examples of one-dimensional and

two-dimensional warranty policies. In this research, we confine our study

to products covered by a nonrenewing two-dimensional FRW policy.

2.2 Rectification Actions and Costs

A product is either repairable or nonrepairable. A nonrepairable product is

one which is discarded and replaced when it fails to adequately perform

and a repairable product is one which can, upon failure, be restored to an

acceptable functional state, without necessarily replacing it. Most manu-

factured products can be repaired on failure, and hence, the study of re-

pairable products is an area of great importance in reliability engineering

[45]. In this research, we consider repairable products.

All products degrade with age and/or usage and eventually fail. Prod-

uct failures can be rectified or controlled through maintenance actions [45].

Maintenance is generally classified into two categories: corrective or pre-

ventive. Preventive maintenance refers to the actions performed in order

to maintain a product in a specified working condition. Preventive main-

tenance aims to prevent the occurrence of product failures. Hence, pre-

ventive maintenance is done while the product is still in working condi-

tion. Corrective maintenance, often termed repair, is any rectification ac-

tion done to return a failed product to a working condition [46]. In this

research, we focus on corrective maintenance or repair.

When a product under warranty fails, the manufacturer can either re-

pair or replace the failed product. If the failed product is nonrepairable,

the manufacturer, assuming the warranty claim is valid, can only replace

the product. However, if a repairable product fails, the manufacturer can

either repair the product or replace it with a new one. The choice between

repairing and replacing the failed product depends on many factors such

as the cost of the types of rectification action, the working condition of the

product prior to failure, the extent of damage, etc [45, 7].
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When considering a repairable product, it is frequently assumed that a

repair upon failure either returns the product to its original working con-

dition, i.e. renews the product, or has no effect on the working condition

of the product, i.e. the repair leaves the product in the condition it was

in before failure. These assumptions, in spite making probabilistic model-

ing less complicated, are not very realistic, since a repair will not always

renew a product or leave its working condition unaltered. In more recent

studies, the concept of imperfect repair has been the subject of research. Im-

perfect repair models assume that after repair the working condition of the

product is somewhere between the two extreme cases - minimal repair, after

which the working condition of the product does not change, and perfect

repair or replacement, after which the working condition of the product is

the same as a new product. Imperfect repair models are more reasonable

and realistic than the minimal repair and replacement models [45].

2.2.1 Degree of Repair

The working condition of the repaired product depends on the degree of

the repair the product is subjected to. The degree of repair, say δ, is de-

fined as the degree to which a product’s working condition can be re-

stored [46]. The degree δ can be random or preassigned and the range

of δ is usually [0, 1]. Based on the degree of repair, we use the following

three-category classification of repairs from ’Handbook of Reliability En-

gineering’ by Pham [45].

1. Perfect repair or replacement: perfect repair (replacement) restores

the operating condition of a failed product to that of a new product.

Hence, the lifetime distribution (failure rate) of the product upon re-

pair is the same as the lifetime distribution (failure rate) of a new

product. For a degree of repair δ ∈ [0, 1], a perfect repair (replace-

ment) implies that δ = 1. This type of repair can be modeled, under

the assumption that the repair time is negligible and can be taken to



CHAPTER 2. MODELING WARRANTY CLAIMS 13

be zero, as an ordinary renewal process. Although modeling replace-

ments of failed products is simple, it is not feasible for the manufac-

turer to provide replacement products each time the product fails

under warranty. Instead, repairing the product to improve its work-

ing condition is more feasible.

2. Minimal repair: a minimal repair restores the working condition of

the repaired product to the working condition of the product just

before failure. The failure rate of the product upon undergoing min-

imal repair is the same as the failure rate of the product before fail-

ure and the degree of repair is δ = 0. Minimal repairs can be mod-

eled as a non-homogeneous Poisson process, since the failure rate of

the product immediately before failure is the same as the failure rate

of the product immediately after repair. From the manufacturer’s

perspective, minimal repair may be the least costly and hence, most

beneficial strategy, but not all failed products can be returned to a

working state with minimal repair.

3. Imperfect repair: replacement of a failed product is often not cost-

effective and minimal repair is not always adequate in returning the

failed product to a working condition and hence, we need imperfect

repair which restores the product’s working condition to an inter-

mediate state, between that of a new product and that of the product

prior to failure, i.e. a minimally repaired product. In this research,

we assume that the failure rate of the product after imperfect repair

is between the failure rate of a new product and the failure rate of

a minimally repaired product and hence, for δ ∈ [0, 1], the degree

of repair in case of imperfect repair is 0 < δ < 1. Imperfect repairs

can be modeled in various ways and we shall discuss some of these

modeling methods later in the chapter.

See Figure 2.2 for the effect of the degree of repair on the failure rate

function. The time of the failure is T1 and the degree of the imperfect repair
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t

minimal repair
imperfect repair
replacement

T1

λ(t)

Figure 2.2: Failure rate following repairs of different degrees.

is δ = 0.5.

2.2.2 Cost Implications

The most important factors in making the choice between repairing or re-

placing a failed item, are cost and the working state of the product. If the

product is nonrepairable or beyond repair, it will have to be replaced by

manufacturer at any cost. However, if it is repairable, the manufacturer

has the flexibility of choosing the most cost effective option.

When a claim is made under warranty, the manufacturer incurs vari-

ous costs that are taken into consideration when determining the cost of

the repair (replacement). To simplify the modeling process, often, the ag-

gregate of these costs is considered as the cost of the repair. Since the total

number of failures and hence, the total number of warranty claims is a ran-

dom variable, the total warranty servicing cost per product sold which is

a function of the number of claims, is also random. Finding a distribution
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function for the total warranty servicing cost is not easy and therefore, it

is of importance and convenience to instead derive an expression for the

expected total warranty servicing cost [7].

Some of the variables and parameters that affect the warranty servicing

cost are the costs associated with different rectification actions and their

degrees of repair. The cost of a repair or replacement can be assumed to

be proportional to the degree of the repair. Therefore, the degree of repair

plays an important role in determining the strategy that minimizes the

warranty servicing cost. The degree of repair also has an effect on the

number of future failures of the product. In this research, we consider

an imperfect repair strategy, where 0 < δ < 1, that aims to minimize the

warranty servicing cost.

We now proceed to study the mathematical modeling of the warranty

claims process. In the following section, we discuss briefly some one- and

two-dimensional stochastic processes, the simplest of which are the Pois-

son process and the Renewal process, both relevant to modeling the war-

ranty claims process. In modeling warranty claims, it is often assumed

that all failures result in immediate and valid claims and repair (or re-

placement) time is negligible and can be approximated to zero.

2.3 Warranty Claims in One Dimension

In the case of one-dimensional warranties, an appropriate model for the

warranty claims process is a stochastic counting process that models the

product failures along the time continuum. Modeling the lifetime of the

original product, i.e. the time to first failure, differs from modeling consec-

utive failures, since the rectification action performed after the first failure

has an effect on the working condition of the product [6].
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2.3.1 First Failure of the Original Product

Let T1 denote the lifetime of the original product, i.e., the age of the original

product at its first failure. The lifetime T1 is a random variable whose

distribution is either assumed or derived from the analysis of past failure

data. Let F (t) denote the distribution function of the original product. The

density function, if it exists, is given by

f(t) =
d

dt
F (t) .

Refer to ’Continuous Univariate Distributions’ by Johnson and Kotz [28]

for a comprehensive list of distribution functions which are appropriate

for modeling product lifetimes. The distribution of the lifetime T1 is char-

acterized by the product’s failure rate r(t), where r(t) dt + o(dt) is defined

as the conditional probability that a product of age t fails in the small in-

terval [t, t+ dt), given that the product has not failed prior to t. Hence, the

failure rate of the product is defined as

r(t) = lim
dt→0

P{t ≤ T1 < t+ dt | T1 ≥ t}

dt

= lim
dt→0

P{t ≤ T1 < t+ dt}

dt P{T1 > t}

=
1

F̄ (t)
lim
dt→0

F (t+ dt) − F (t)

dt

=
f(t)

F̄ (t)
,

(2.1)

where F̄ (t) is often called the reliability function of the product. By rear-

ranging the terms in equation (2.1), we get the reliability function of the

product in terms of its failure rate:

d

dt
{ln [F̄ (t)]} = − r(t)

ln [F̄ (t)] = −

∫ t

0

r(s) ds

F̄ (t) = exp

{

−

∫ t

0

r(s) ds

}

.
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Given the above relation, the density function f(t) and the distribution

function F (t), can be expressed in terms of the failure rate r(t) as follows:

F (t) = 1 − exp

{

−

∫ t

0

r(s) ds

}

and

f(t) =r(t) exp

{

−

∫ t

0

r(s) ds

}

.

The form of the failure rate function r(t) depends on the distribution func-

tion and the parameter(s) involved in describing the distribution. Based

on r(t), the distribution function F (t) can be classified into one of three

categories. The distribution function F (t) has a(n)

• increasing failure rate (IFR), if r(t) increases as t ≥ 0 increases;

• decreasing failure rate (DFR), if r(t) decreases as t ≥ 0 increases;

• constant failure rate (CFR), if r(t) remains constant for all values of

t ≥ 0 [7, 4].

In this research, we consider a product with an increasing failure rate.

A product upon failure is either repaired or replaced. If the product

is replaced upon each failure, the lifetime of each replacement product

is the same as the original product. However, if the product is repaired,

the future failure times of the product depend on the degree of the repair

performed after the previous failure. Consecutive lifetimes or failure times

are modeled as stochastic counting processes.

In the following section, we provide a brief introduction to counting

processes and their role in modeling consecutive product failures.

2.3.2 Consecutive Failures of the Product

Let the number of failures in [0, t) be denoted by N(t), where N(0) = 0.

The process {N(t); t ≥ 0} is a continuous-time non-negative integer val-

ued stochastic process that counts the number of failures that have oc-

curred in the interval [0, t). The point process is such that, if s < t, then
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N(s) ≤ N(t) and for s < t, N(t)−N(s) denotes the number of failures that

have occurred in the interval [s, t). The counting process {N(t); t ≥ 0} is

said to have independent increments if for all

t0 < t1 < t2 < · · · < tn ,

the random variables,

N(t1) −N(t0), N(t2) −N(t1), . . . , N(tn) −N(tn−1)

are independent, and the process is said to possess stationary increments

if N(t+ s)−N(t) has the same distribution for all t, i.e. the increments are

stationary if the distribution of the change in the process value between

any two points, say t and t + s, depends only on the distance s between

the two points [49].

Let [0, K) denote the warranty period and let Ti denote the time of the

i-th failure, i = 1, 2, . . .. Then, the total number of failures during the

warranty period is N(K) = max{i : Ti < K} or

N(K) =

∞
∑

i=1

I{Ti < K} ,

where I{Ti < K} is an indicator function defined as

I{Ti < K} =

{

1, Ti < K

0, Ti ≥ K .

Consider a small interval [t, t+ dt) and assume that at most one failure

can occur in this interval. Therefore, N(t + dt) − N(t) is a binary random

variable which can only take the value 0 or 1. The conditional intensity

function λc(t), t ≥ 0, is defined as the conditional probability that a failure

occurs in the interval [t, t + dt), given the history Ft of the process before

time t, divided by the length dt of this interval. Hence

λc(t) = lim
dt→0

P{N(t+ dt) −N(t) = 1 | Ft}

dt
, (2.2)
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where N(t + dt) − N(t) is the number of failures in the interval [t, t + dt)

and Ft = {N(s); 0 ≤ s < t} contains the possible trajectories of the process

before time t. The rate of occurrence of failures or the intensity function is

defined as

λ(t) = lim
dt→0

P{N(t+ dt) −N(t) = 1}

dt
(2.3)

and hence,

λ(t) = E[λc(t)]

is the mean of the conditional intensity function λc(t) over all the sample

trajectories of the failure process [18, 33]. Since N(t+dt)−N(t) is a binary

variable

P{N(t+ dt) −N(t) = 1} = E[N(t+ dt) −N(t)] . (2.4)

From (2.3) and (2.4), it follows that

λ(t) = lim
dt→0

E[N(t+ dt)] − E[N(t)]

dt
=

d

dt
E[N(t)] .

Therefore, the mean function or the cumulative intensity function Λ(t) of the

process is defined as

Λ(t) = E[N(t)] =

∫ t

0

λ(s)ds .

The failure rate of the product, in terms of the counting process, is defined

as

r(t) = lim
dt→0

P{N(t+ dt) −N(t) = 1 | N(t) = 0}

dt
,

which is a special case of the conditional intensity function in equation

(2.2). The first failure of the original item is characterized by the failure

rate, while consecutive failures after the first failure are characterized by

the conditional intensity function of the underlying counting process. The

initial conditional intensity function, i.e. the conditional intensity function

prior to the first failure, is the failure rate of the product. That is,

λc(t) = r(t) .
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Consider the two extreme cases where all the degrees of repair are ei-

ther δ = 0 (minimal repairs) or δ = 1 (replacements). In the following sec-

tions, we provide brief discussions on modeling the minimal repair and

replacement options.

Modeling Minimal Repairs: Nonhomogeneous Poisson Process

When a product is minimally repaired upon failure, it’s working condition

is restored to its condition immediately prior to failure and hence, there is

no change in the failure rate function after repair. If the failure rate of the

product just after repair is the same as the failure rate immediately before

the repair, the failure process can be modeled as a nonhomogeneous Poisson

process, with intensity function

λ(t) = λc(t) = r(t) ,

where r(t) is the failure rate of the original product [8]. See Figure 2.3.

t
T1 T2 T3

λ( t )

Figure 2.3: Conditional intensity function of a NHPP.
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A counting process {N(t); t ≥ 0} is a nonhomogeneous Poisson process

with intensity function λ(t) if

1. N(0) = 0.

2. {N(t); t ≥ 0} has independent increments.

3. P{N(t+ dt) −N(t) = 1} = λ(t) dt+ o(dt).

4. P{N(t+ dt) −N(t) > 1} = o(dt).

And for n ≥ 0, N(t) has a Poisson distribution

P{N(t) = n} =
[Λ(t)]n e−Λ(t)

n!

with mean E[N(t)] = Λ(t).

If the warranty period is [0, K), then N(K) records the total number of

warranty claims in the warranty period, and Λ(K) represents the expected

number of warranty claims in the warranty period and hence, the expected

number of minimal repairs.

Modeling Replacements: Renewal Process

When a product is replaced upon failure, the failure rate after replacement

is the failure rate of the original product. In an all replacement model,

consecutive replacements upon failure can be modeled as a renewal process.

The initial conditional intensity function of a renewal process is

λc(t) = r(t) ,

where r(t) is the failure rate of the original product and all replacement

products. The conditional intensity function after the first failure is of the

form

λc(t) = r(t− TN(t)) ,

where N(t) is the number of replacements before time t and hence, TN(t) is

the time of the last replacement before time t [2, 17, 27]. See Figure 2.4.
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t
T1 T2 T3

λ( t )

Figure 2.4: Conditional intensity function of a renewal process.

A renewal process {N(t); t ≥ 0} is a counting process that records the

number of failures (and hence, renewals) occurring at random in the time

interval [0, t). The times between renewals, say Xi, i = 1, 2, . . ., are in-

dependent and identically distributed positive random variables with the

same distribution function F (.) as the original product. The failure times

Ti, i = 1, 2, . . . are defined in terms of the lifetimes Xi as

Ti =

i
∑

j=1

Xj .

As the distribution of a sum of n independent and identically distributed
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random variables, the distribution of Tn is given by

P{Tn ≤ t} = P{Tn−1 +Xn ≤ t}

=
∫∞

0
P{Tn−1 +Xn ≤ t | Xn = x} dF (x)

=
∫∞

0
P{Tn−1 ≤ t− x} dF (x)

=
∫∞

0
Fn−1(t− x) dF (x)

= F (n)(t)

= F (t) ∗ F (t) ∗ · · · ∗ F (t) ,

where F (n)(t) is the n-fold convolution of F [48, 49].

In the context of warranty claims modeling, N(K) represents the num-

ber of replacements in the warranty period [0, K) and M(K) = E[N(K)],

the mean-value function or renewal function, represents the expected number

of replacements in the warranty period. For information on estimating the

renewal function refer to the works by Jaquette [26], Ross [48] and Xie [51].

Modeling Imperfect Repairs

Imperfect repair models are more reasonable and realistic than the replace-

ment and minimal repair models. In this section, we briefly discuss some

modeling methods, relevant to this research, for imperfect repairs per-

formed on a single-component repairable product.

Kijima [29] proposed two imperfect repair models for a repairable prod-

uct based on the virtual age process of the product. Suppose that a new

product begins operating at time t = 0, and it is repaired each time it fails.

Let the degree of the i-th repair be denoted by δi. Then, {δi}i≥1 is a se-

quence of independent random variables, where δi ∈ [0, 1], for all i ≥ 1.

Two models were proposed based on the effect of the repairs on the virtual

age process {Vi; i ≥ 0}.

The first virtual age model is such that the i-th repair cannot undo the

damage incurred by the product before the (i−1)-th repair, and hence, the

additional age Xi of the product after the (i − 1)-th repair is reduced to
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δiXi. Therefore, the virtual age after the i-th repair becomes

Vi = Vi−1 + δiXi .

The second virtual age model is such that the i-th repair affects the

virtual age Vi−1 +Xi accumulated until the i-th failure, and the virtual age

after the i-th repair becomes

Vi = δi(Vi−1 +Xi) .

That is, each repair removes part of the total accumulated age of the prod-

uct.

Doyen and Gaudoin [16] introduced two new classes of imperfect re-

pair models. The first is based on a reduction in the conditional intensity

function after imperfect repair and the second is based on the reduction in

the virtual age of the product after imperfect repair.

In the age reduction models, the effect of the repair is characterized by

a reduction in the virtual age of the product and this reduction is propor-

tional to the virtual age of the product at the time of the repair. The real age

of the product is t and the virtual age of the product, denoted by A(t), is

a positive function of the real age which depends on the past failures and

the degrees of the repairs performed following those failures. Therefore,

A(t) = A(t;N(t), T1, T2, . . . , TN(t)) ,

where N(t) is the number of failures (imperfect repairs) before time t. See

Figure 2.5.

In the intensity reduction models, the effect of the imperfect repair is

characterized by an arithmetic reduction in the conditional intensity func-

tion such that at any time t the conditional intensity function is given by

λc(t) = λ0(t) − ρ

N(t)−1
∑

j=0

(1 − ρ)j λ0(TN(t)−j) ,

where λ0(.) is the initial intensity function. The conditional intensity be-

tween two failures is vertically parallel to the initial intensity.
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t
T1 T2 T3 T4

A( t)

Figure 2.5: Virtual age following imperfect repairs.

Another intensity reduction model is the one introduced by Chukova

et al. [11] according to which when a product fails, it undergoes imperfect

repair and the conditional intensity after the imperfect repair is between

the conditional intensity after a minimal repair and the conditional inten-

sity immediately after the last repair. See Figure 2.6.

Many other imperfect repair models have been suggested. In ’Hand-

book of Reliability Engineering’, Pham [45] provides a good foundation

for the study of imperfect repair models. For more on modeling imperfect

repairs refer to the works by Nakagawa [40], Brown and Proschan [10],

Block et al. [9], Hollander et al. [19], Sheu and Griffith [50], Pham and

Wang [46], Jack [23], Langseth and Lindqvist [31] and Mettas and Zhao

[35].

In this research, for the first model, we employ an adaptation of the

age reduction model proposed by Doyen and Gaudoin [16] which will

be discussed in detail in Chapter 4, and for the second model, we use a

modification of the model proposed by Chukova et al. [11] which will be
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t
T1 T2 T3

λ( t )

Figure 2.6: Conditional intensity function following imperfect repairs.

discussed in Chapter 5.

2.4 Warranty Claims in Two Dimensions

In the case of two-dimensional warranties, the failure process is mod-

eled using a two-dimensional stochastic counting process that counts the

product failures in a two-dimensional plane. Two methods have been

suggested to model failures in two dimensions: the two-dimensional ap-

proach and the one-dimensional approach [38].

Although this research uses the one-dimensional approach which will

be discussed in detail later in this section, for completeness, we first briefly

discuss the two-dimensional approach. Analogous to the one-dimensional

case, we begin with modeling the first failure of the original product and

proceed to modeling consecutive failures in two dimensions using the

two-dimensional approach.
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2.4.1 First Failure of the Original Product

Let T1 denote the age of a product at first failure and let U1 denote the us-

age of the product at first failure. In the two-dimensional approach, the

pair (T1, U1) can be modeled as a bivariate random variable with distribu-

tion function

F (t, u) = P{T1 ≤ t, U1 ≤ u} ,

and the density function of the distribution (if it exists) is then defined as

f(t, u) =
∂2

∂t∂u
F (t, u) .

The two-dimensional reliability function F̄ (t, u), i.e. the probability that

the first failure does not occur prior to time t and usage u, is defined as

F̄ (t, u) =P{T1 > t, U1 > u}

=1 −
[

P{T1 ≤ t, U1 ≤ u} + P{T1 ≤ t, U1 > u} + P{T1 > t, U1 ≤ u}
]

=1 − FT1
(t) − FU1

(u) + F (t, u) ,

where

FT1
(t) =

∫ t

0

∫ ∞

0

f(x, u) du dx

and

FU1
(u) =

∫ u

0

∫ ∞

0

f(t, y) dt dy

denote the marginal cumulative distribution functions of T1 andU1 respec-

tively [1, 53]. In terms of the density function, the reliability function is

F̄ (t, u) =

∫ ∞

t

∫ ∞

u

f(x, y) dy dx .

Analogous to the one-dimensional case, the conditional probability of fail-

ure in the rectangle [t, t+dt)× [u, u+du) (see Figure 2.7), given that T1 > t

and U1 > u is r(t, u) dt du+ o(dt du), where r(t, u) is the two-dimensional
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failure rate function defined as

r(t, u) = lim
dt,du→0

P{t ≤ T1 ≤ t+ dt, u ≤ U1 ≤ u+ du | T1 ≥ t, U1 ≥ u}

dt du

= lim
dt,du→0

P{t ≤ T1 ≤ t+ dt, u ≤ U1 ≤ u+ du}

dt du P{T1 > t, U1 > u}

=
1

F̄ (t, u)
lim

dt,du→0

P{t ≤ T1 ≤ t+ dt, u ≤ U1 ≤ u+ du}

dt du

=
f(t, u)

F̄ (t, u)
.

The bivariate distribution function F (t, u) can alternatively be derived by

F (t, u) = F2(u | t)F1(t) ,

where F2(u | t) = P{U1 ≤ u | T1 = t} is the conditional distribution of

the usage of the product conditional on the age T1 of the product at first

failure and F1(t) = P{T1 ≤ t} is the one-dimensional distribution of T1 [6].

2.4.2 Consecutive Failures of the Product

Let {N(t, u); t ≥ 0, u ≥ 0} denote a two-dimensional stochastic counting

process which records the occurrences of failures happening at random in

the rectangle [0, t)×[0, u). If the warranty region is defined by the rectangle

Ω = [0, K) × [0, L), where K represents maximum time and L represents

maximum usage, then N(K,L) denotes the total number of failure (war-

ranty claims) in the warranty region Ω and is given by

N(K,L) =

∞
∑

i=1

I{Ti < K,Ui < L} ,

where

I{Ti < K,Ui < L} =

{

1, Ti < K and Ui < L

0, otherwise .

As in the one-dimensional case, consider the small rectangular region

[t, t+dt)× [u, u+du) in which at most one failure can occur. For simplicity,
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as in the paper by Baik et al. [2], we use the following notation

N(t, t+dt; u, u+du) = N(t+dt, u+du)−N(t+dt, u)−N(t, u+du)+N(t, u) ,

where N(t, t + dt; u, u + du) represents the number of failures in the rect-

angle [t, t+ dt) × [u, u+ du) (see Figure 2.7).

u

u + du

0 Time

Usage

t + dtt

Figure 2.7: The rectangular region [t, t + dt) × [u, u + du).

The conditional intensity function of the failure process is given by

λc(t, u) = lim
dt,du→0

P{N(t, t+ dt; u, u+ du) = 1 | Ft,u}

dt du
,

where Ft,u = {N(x, y); 0 ≤ x < t, 0 ≤ y < u} is the past of the failure

process before time t and usage u. The intensity function of the process or

the rate of occurrence of failures in [t, t+ dt) × [u, u+ du) is given by

λ(t, u) = lim
dt,du→0

P{N(t, t+ dt; u, u+ du) = 1}

dt du

and hence, λ(t, u) dt du is viewed as the probability of a failure occurring

in the region [t, t + dt) × [u, u + du). As in the one-dimensional case, the

two-dimensional cumulative intensity function is given by

Λ(t, u) = E[N(t, u)] =

∫ t

0

∫ u

0

λ(x, y) dy dx , (2.5)



CHAPTER 2. MODELING WARRANTY CLAIMS 30

since

λ(t, u) =
∂2

∂t∂u
E[N(t, u)] .

The two-dimensional minimal repairs and replacements models are

the nonhomogeneous Poisson process and renewal process in two dimen-

sions respectively. In the following section, we briefly discuss the two

models.

Modeling Minimal Repairs: Nonhomogeneous Poisson Process

Analogous to the one-dimensional modeling of minimal repairs, minimal

repairs of a product whose failures depend both on its age and its usage

are modeled as a two-dimensional nonhomogeneous Poisson process.

Let {N(t, u); t ≥ 0, u ≥ 0} denote a two-dimensional nonhomogeneous

Poisson process. Then N(t, u) has a Poisson distribution with intensity

function

λ(t, u) = λc(t, u) = r(t, u) .

That is

P{N(t, u) = n} =
[Λ(t, u)]n e−Λ(t,u)

n!
,

where Λ(t, u), defined in equation (2.5), is the expected number of failures

in [0, t) × [0, u).

For the warranty region Ω = [0, K) × [0, L), N(K,L) denotes the total

number of minimal repairs and Λ(K,L) denotes the expected number of

minimal repairs in the warranty region. For more, refer to the paper by

Baik et al. [2].

Modeling Replacements: Renewal Process

When all failures are rectified by replacements, the failure process is mod-

eled by a two-dimensional renewal process {N(t, u); t ≥ 0, u ≥ 0}, with

conditional intensity function

λc(t, u) = r(t− TN(t,u), u− UN(t,u)) ,
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where r(., .) is the two-dimensional failure rate function, and TN(t,u) and

UN(t,u) are the age and usage of the last replacement product in [0, t)× [0, u)

[2, 32, 52]. The number of failures N(t, u) can be expressed in terms of

the one-dimensional counting processes corresponding to the age and the

usage of the product:

N(t, u) = min{N1(t), N2(u)}

where N1(t) is the number of failures in the time interval [0, t), and N2(u)

is the number of failures in the usage interval [0, u) [6, 18]. Let the non-

negative bivariate variable (Xi, Yi) denote the age and usage of the i-th

product, i ≥ 1. The sequence {(Xi, Yi); i ≥ 1} is a sequence of independent

and identically distributed bivariate random variables, all with the same

joint distribution function

F (x, y) = P{Xi ≤ x, Yi ≤ y} .

The failure time-usage pairs (Ti, Ui), i ≥ 1, are the sum of the interfailure

time-usage pairs (Xi, Yi):

(Ti, Ui) =

(

i
∑

j=1

Xj ,

i
∑

j=1

Yj

)

.

For the rectangular warranty region Ω, N(K,L) represents the total

number of replacements in the warranty region andM(K,L) = E[N(K,L)]

represents the expected number of replacements in Ω.

A two-dimensional failure process can be reduced to a one-dimensional

process by assuming a relationship between the two variables of the pro-

cess. In the following section, we discuss the one-dimensional approach

to modeling warranty claims in two dimensions.

2.4.3 The One-Dimensional Approach

In the context of warranty analysis, the two variables characterizing the

two-dimensional warranty region are the age and usage of the warranted
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product. LetA(t) and U(t) denote the age and usage of the product at time

t, and let Utotal(t) denote the total usage of the product at time t [14]. Let

the warranty begin at the moment the product is first put into use, t = 0,

which is assumed to be the time of the sale of the product. At this time, the

age and usage of the product are both taken to be zero. If no replacements

have occurred in [0, t), then A(t) and U(t) are the age and usage of the

original item, and A(t) = t and U(t) = Utotal(t). If the product has been

replaced at least once in the interval [0, t), then A(t) and U(t) are the age

and usage of the replacement product in use at time t, and A(t) < t and

U(t) < Utotal(t).

In the one-dimensional approach, we assume that the usage of the

product is a linear function of the age of the product, such that

U(t) = R A(t) ,

where the coefficient R is the usage rate which varies among users and is

a non-negative random variable with some distribution G. The usage rate

R, for a given user, is assumed to be constant over the warranty region

[6, 14]. The distribution function and density function (if it exists) of R are

given by

G(r) = P{R ≤ r}

and

g(r) =
d

dr
G(r)

respectively. The appropriate form for G(r) is chosen based on the con-

sumer usage rate across the population. Blischke and Murthy [6] suggest

the Beta, Gamma and uniform distributions for the usage rate R.

Let N(K,L), where K and L are the time and usage limits defined in

the warranty policy, denote the number of failures in the warranty region

Ω = [0, K) × [0, L), and let N(K,L | r) denote the number of failures in Ω

conditional on R = r. Then, the distribution of N(K,L) is given by

P{N(K,L) = n} =

∫ ∞

0

P{N(K,L | r) = n} dG(r) ,
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K

Figure 2.8: A rectangular two-dimensional warranty region.

and since age and usage are related, N(K,L | r) can be expressed in terms

of a one-dimensional counting process as follows

N(K,L | r) =

{

Ñ(K | r), if r ≤ L
K

Ñ(τ | r), if r > L
K

where {Ñ(t | r); t ≥ 0} denotes the one-dimensional failure process con-

ditional on R = r and

τ =
L

r
.

See Figure 2.8. The expected number of failures in the warranty region Ω

is given by

E[N(K,L)] =

∞
∫

0

E[N(K,L | r)] dG(r)

where E[N(K,L | r)] is the expected number of failures in the warranty

region conditional on R = r and it can be expressed in terms of the one-

dimensional process {Ñ(t | r); t ≥ 0} as follows:

E[N(K,L | r)] =

{

E[Ñ(K | r)], if r ≤ L
K

E[Ñ(τ | r)], if r > L
K
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When all repairs are minimal, Ñ(t | r) is a nonhomogeneous Poisson

process with intensity function λ̃(t | r) equal to the failure rate function of

the original product. In case of replacements, Ñ(t | r) is a renewal process

with interfailure times having the distribution function

F (t | r) = 1 − exp

{

−

∫ t

0

ρ(s | r)ds

}

where ρ(.) is the failure rate function of the original product. For further

details refer to the warranty analysis books by Blischke and Murthy [6, 7].

Thus, one can model the two-dimensional failure process with a one-

dimensional point process. In this research, we use the one-dimensional

approach to model failures in the two-dimensional warranty region Ω.



Chapter 3

Review of Literature

Most studies on warranty policy development and analysis assume that

the failures of the warranted product depend only on the age of the prod-

uct. However, for some products, the failures depend on more than one

variable: for example, in automobiles the degradation depends on both

the age and usage (mileage) of the vehicle. Studies on the modeling and

analysis of two-dimensional warranty policies are a fairly recent addition

to the warranty literature.

In this chapter, we provide a brief review of the literature on one-

dimensional and two-dimensional warranty policies. We focus mostly on

cost-minimizing (for the manufacturer) repair-replacement strategies for

two-dimensional free-replacement warranty policies where product fail-

ures are modeled using the one-dimensional point process approach as it

is more relevant to this research.

In the previous chapter, we reviewed some concepts relevant to war-

ranty policies and their classification. A taxonomy of different warranty

policies is given in ’Warranty Cost Analysis’ by Blischke and Murthy [6].

As a review of types of warranty policies, Figure 3.1 displays part of this

taxonomy.

35
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Pro-rata

Renewaing Non-renewing

Single Product Warranty Policy

(One- or Two-dimensional)

Combination

Free-replacement

Pro-rata

Combination

Free-replacement

Figure 3.1: Taxonomy for warranty policies [6]

3.1 One-Dimensional Repair-Replacement Strate-

gies

A one-dimensional warranty policy is characterized by an interval on the

time line representing the real age (time) of the product and this inter-

val, starting at the time of the sale of the product, is called the warranty

period. Most repair-replacement strategies for the one-dimensional case

have been based on minimal repairs and/or replacements. Few strategies

have been suggested for imperfect repairs of degree 0 < δ < 1. In this

section, we review some one-dimensional repair-replacement strategies.

Nguyen and Murthy [42] proposed a repair-replacement warranty pol-

icy for repairable products with an increasing failure rate, where the war-

ranty period [0, K) is divided into two subintervals and all products that
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fail in the first subinterval are replaced by new products and all prod-

ucts that fail in the second subinterval are replaced by repaired products.

When a product fails for the first time, if its age is less than some pre-

defined threshold, it is minimally repaired and added to the collection of

repaired products to be used as a replacement product. The replacements

are done at no cost to the consumer (also see the study by Biedenweg [5]).

Nguyen and Murthy [43] suggested a model to make optimal decisions

regarding replace-repair strategies for a combination failure-free warranty

policy with fixed and renewed periods K and W . The period (0, K] is

divided into two intervals and if the product fails in the first interval it is

replaced by a new one and if it fails in the second interval it is repaired

both free of charge to the consumer. If the product fails in the interval

(K,K +W ], it is either repaired or replaced free of charge to the consumer

and the replacement product is covered by a new warranty with a renewed

period W . When W = 0 the warranty policy corresponds to a failure-free

warranty with a fixed period K, and when K = 0 the warranty policy

corresponds to a failure-free warranty with a renewed period W .

Nguyen [41] proposed two repair-replacement strategies, in each the

warranty period [0, K) is divided into two subintervals [0, K1) and [K1, K).

The first strategy is such that if a product fails in the first subinterval, it is

replaced by a new one and if a product fails in the second subinterval,

it is minimally repaired. Under the second strategy, if a product fails in

the first subinterval, it is minimally repaired and if a product fails in the

second subinterval, it is replaced by a new one. The decision variable K1,

in each of the two strategies, is selected by minimizing the corresponding

warranty servicing cost.

Jack and Van der Duyn Schouten [24] discussed the form of a repair-

replacement strategy that minimizes the expected cost of servicing the

warranty over the warranty period, where repairs are minimal. They

showed that the optimal repair-replacement strategy is determined by com-

paring the age of the product with a control limit function which is depen-
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dent on time. If the product fails within the warranty period, it is mini-

mally repaired if and only if its age is less than this function. Therefore,

the number of replacements is determined by the shape of the control limit

function.

Jack and Murthy [25] proposed a new repair-replacement strategy for

products sold with a non-renewing free replacement warranty policy by

splitting the warranty period [0, K) into three subintervals [0, K1), [K1, K2)

and [K2, K), where 0 ≤ K1 ≤ K2 ≤ K. All product failures in the first and

last subintervals are rectified by minimal repair. At the first product failure

in the middle subinterval [K1, K2), the failed product is replaced by a new

one and all subsequent product failures are rectified by minimal repairs.

Yun et al. [55] consider a variation of the strategy proposed by Jack and

Murthy [25]. The warranty period [0, K) is still split into three subinter-

vals [0, K1), [K1, K2) and [K2, K), where 0 ≤ K1 ≤ K2 ≤ K. All product

failures in the first and last subintervals are rectified by minimal repair. At

the first product failure in the middle subinterval [K1, K2), the failed prod-

uct is rectified by imperfect repair instead of replacement. All subsequent

product failures in the middle subinterval are rectified by minimal repair.

For some earlier repair-replacement corrective and preventive mainte-

nance warranty strategies refer to the works by Barlow and Hunter [3],

Park [44], Phelps [47], and Mettas [35].

3.2 Two-Dimensional Repair-Replacement Strate-

gies

A two-dimensional warranty is characterized by a region Ω ⊂ R
2
+ in a

two-dimensional plane with the horizontal axis usually representing the

age of a product and the vertical axis usually representing the usage of the

product. The limits of the warranty coverage are known and fixed. The

failures of the product are represented by points in the two-dimensional
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age-usage plane. We confine our research to the case where the warranty

region is the rectangular area Ω = [0, K) × [0, L), where the warranty ex-

pires either at time K or when the total usage of the product exceeds L.

Two approaches have been proposed for modeling failures in two di-

mensions: the one-dimensional and the two-dimensional approaches. In

the two-dimensional approach, the product age and the product usage are

a bivariate random variable modeled with a bivariate distribution. In the

one-dimensional approach, the usage of the product is considered to be an

increasing linear function of the age of the product.

Baik et al. [2] extended the concept of minimal repair form one dimen-

sion to two dimensions. They provide comparisons between the one- and

two-dimensional failure models for an all minimal repair strategy (non-

homogeneous Poisson process) and an all replacement strategy (renewal

process). For more on the two-dimensional approach to failure modeling

refer to the works by Yang and Nachlas [53], Murthy et al. [39], Kim and

Rao [30].

Repair-replacement strategies corresponding to warranty regions with

multiple subregions are categorized as either restricted or unrestricted.

The definitions are as follows.

Definition 1 Consider a warranty region Ω divided into n disjoint subregions,

Ω1,Ω2, . . ., Ωn such that

n
⋃

i=1

Ωi = Ω , and
n
⋂

i=1

Ωi = ∅ ,

where

Ωi = {[0, Ki) × [0, Li)} \ {[0, Ki−1) × [0, Li−1)} .

for 1 ≤ i ≤ n, and K0 = L0 = 0, Kn = K and Ln = L. The corresponding

repair-replacement strategy, say Sn, is restricted if

L1

K1

=
L2

K2

= . . . =
Ln−1

Kn−1

= r1
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and
Ln

Kn

=
L

K
= r2 ,

where r1 > 0 and r2 > 0. In other words, the warranty strategy is restricted if,

for i = 1, 2, . . . , n− 1, the rectangles

i
⋃

j=1

Ωj = {[0, Ki) × [0, Li)}

are all of similar shape.

Ωn

r2

r1L

Time0

Usage

KK2K1

L1

L2

...
...

. . .

. . .

Ω1

Ω2

Ln−1

Kn−1

Figure 3.2: Warranty region for the restricted case where r1 ≤ r2.

Definition 2 The n-subregion strategy Sn is unrestricted if all the rectangles

i
⋃

j=1

Ωj = {[0, Ki) × [0, Li)} ,

where i = 1, 2, . . . , n− 1, are not similar in shape.

See Figure 3.2 and Figure 3.3 for the restricted strategy when r1 ≤ r2 and

r2 ≤ r1, respectively, and see Figure 3.4 for the unrestricted strategy when

r1 ≤ r2 ≤ . . . ≤ rn.
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K1

r2

L

Time0

Usage

Ln−1

r1

Ω1

Ω2

Ωn

...

L2

L1

Kn−1 K

. . .

...

. . .K2

Figure 3.3: Warranty region for the restricted case where r2 ≤ r1.

Ω1

L

0

Usage

...
...

Ln−1

rn

rn−1

r2

r1

...

L2

. . .K2K1

Ωn

Ω2

. . .

Time

L1

KKn−1

Figure 3.4: Warranty region for the unrestricted case where r1 ≤ r2 ≤ · · · ≤ rn.

What follows is a review of some previously developed two-dimensional

repair-replacement strategies, where the failures are modeled using the

one-dimensional approach.
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Moskowitz and Chun [36] proposed a Poisson regression model for

two-dimensional warranty policies. They assume that the number of fail-

ures of the product is distributed as Poisson and the conditional intensity

function is a linear function of the age and usage of the product.

Iskandar and Murthy [20] proposed two two-dimensional free-replace-

ment warranty policies for a repairable product, where in both policies the

rectangular warranty region Ω = [0, K)× [0, L) is divided into two disjoint

subregions Ω1 and Ω2, such that Ω1 ∪ Ω2 = Ω and Ω1 = [0, K1) × [0, L1) is

also a rectangle. In the first strategy, if a product fails in Ω1, it is replaced

by a new one and if a product fails in Ω2, it is minimally repaired. In the

second strategy, if a product fails in Ω1, it is minimally repaired and if a

product fails in Ω2, it is replaced by a new one. These are extensions of

the one-dimensional repair-replacement strategies proposed by Nguyen

and Murthy [43, 42] and Nguyen [41]. The decision variables K1 and L1,

in each policy, are determined by minimizing the associated warranty ser-

vicing cost. Product failures are modeled, conditional on the usage rate

R = r, as a Poisson process. This is a more general case of the formulation

studied by Moskowitz and Chun [36].

Iskandar et al. [21] extended the one-dimensional warranty servicing

strategy proposed by Jack and Murthy [25] to a two-dimensional warranty

policy for repairable products sold under free-replacement warranty. They

consider a rectangular warranty region with three disjoint subregions Ω1,

Ω2 and Ω3, such that Ω1 ∪ Ω2 ∪ Ω3 = Ω. The rectangles Ω1 and Ω1 ∪ Ω2

are assumed to be similar in shape. Hence, the strategy is restricted. If

the product fails in Ω1 or Ω3, it is minimally repaired. The first product

failure in Ω2 will be rectified by replacing the failed product by a new one,

and all subsequent product failures in Ω2 will be rectified by minimally

repairing the failed product. The optimal K1, K2, L1 and L2 are obtained

by minimizing the expected warranty servicing cost.

Chukova and Johnston [14] propose an extension of the strategy pro-

posed by Iskandar et al. [21] where the rectangles Ω1 and Ω1 ∪ Ω2 are not
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necessarily similar in shape and hence, the strategy is both unrestricted

and restricted, i.e. they consider both the case where

L1

K1
6=
L2

K2
,

as well as the case where
L1

K1

=
L2

K2

.

The repair-replacement strategy is the same: product failures occurring in

Ω1 or Ω3 are rectified by minimal repairs. The first product failure in Ω2 is

rectified by replacement of the failed product, and all subsequent failures

in Ω2 are rectified by minimal repair. Let

L1

K1
= r1,

L2

K2
= r2, and

L

K
= r3 .

They derive the expected warranty cost per unit product sold for six cases

based on the usage rates r1, r2, and r3:

(1) r1 ≤ r2 ≤ r3 , (2) r1 ≤ r3 ≤ r2

(3) r2 ≤ r1 ≤ r3 , (4) r2 ≤ r3 ≤ r1

(5) r3 ≤ r1 ≤ r2 , (6) r3 ≤ r2 ≤ r1

Since usage is a function of age, the expected cost is a function of the

four variables (K1, K2, L1, L2) or (K1, K2, r1, r2). These decision variables

(K1, K2, r1, r2) are determined by minimizing the expected warranty ser-

vicing cost.

Yun and Kang [54] proposed a new warranty servicing strategy which

is an extension of the restricted strategy proposed by Iskandar et al. [21].

The warranty region is divided into three subregions Ω1, Ω2 and Ω3. All

repairs in the first and last subregions are minimal. The first repair in

the middle subregion is imperfect instead of a replacement and all subse-

quent repairs in this subregion are minimal (this is analogous to the one-

dimensional imperfect repair strategy proposed by Yun et al. [55]).

Chukova et al. [13] extended the 3 subregion restricted strategy by

Iskandar et al. [21] to an n subregion restricted strategy Sn. All product
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failures in the first and last subregions, namely Ω1 and Ωn, are rectified by

minimal repair and the first failure in each of the intermediate subregions

Ωi, i = 2, 3, . . . , n−1, is rectified by replacement and all subsequent failures

in the intermediate subregions are rectified by minimal repair. Since the

strategy is restricted, the decision variables

γn = (K1, K2, . . . , Kn−1, r1)

define the shape of the subregions and are determined by minimizing the

expected warranty servicing cost.

Having minimal repairs in the first and last subregions are justified

because a new product in the first subregion will usually not have any

major problems that may cause the manufacturer to replace it and a prod-

uct in the last subregion is almost out of warranty and the manufacturer

can reduce costs by performing minimal repair after each failure in the last

subregion until the warranty expires [21].

For more warranty repair-replacement strategies refer to the works by

Iskandar et al. [22], Lawless et al. [32], Chun and Tang [15].

In this research, we consider a two-dimensional rectangular warranty

region Ω = [0, K) × [0, L) which is, as in the paper by Chukova et al. [13],

partitioned into n disjoint subregions. The imperfect repair strategy is an

extension of the imperfect repair strategy proposed by Yun et al. [55]. The

following section provides the details of our imperfect repair strategy.

3.3 Imperfect Repair Strategy

We consider a restricted strategy where the warranty region Ω is parti-

tioned into n disjoint subregions, Ωi, i = 1, 2, . . . , n. The warranty region

and subregions for the two cases, r1 ≤ r2 and r2 ≤ r1, are depicted in

Figure 3.2 and Figure 3.3 respectively.

Since the strategy is restricted, the warranty servicing cost is a function
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of n decision variables

(K1, K2, . . . , Kn−1, r1)

that uniquely define the subregions Ωi, i = 1, 2, . . . , n. The restricted strat-

egy, although less flexible in terms of the shapes of the subregions, is sim-

pler to analyze. Let CΩ(ψn), where

ψn = (K1, K2, . . . , Kn−1, r1) ,

denote the total warranty servicing cost per unit product sold over the

n-subregion warranty region Ω = [0, K) × [0, L). The imperfect repair

strategy is such that

• all repairs in the first subregion Ω1 and the last subregion Ωn are min-

imal and have constant cost cmin;

• the first repair in each of the subregions Ωi, i = 2, 3, . . . , n − 1 is

imperfect and has a cost cimp which is, in our derivations, assumed

to be constant, and all subsequent repairs in each of the subregions

are minimal with constant cost cmin; later in the numerical example,

we consider costs cimp that vary with the degrees of the imperfect

repairs.

Let Sδ
n denote the imperfect repair strategy, where n is the number of sub-

regions and

δ = (δ1, δ2, . . . , δn−2)

is the degrees of the imperfect repairs in the n−2 intermediate subregions.

The objective of this strategy is to minimize the expected total warranty

servicing cost per unit product sold by determining the optimal partition

Ω1, Ω2, . . ., Ωn, which is equivalent to finding the pairs

(K1, L1), (K2, L2), . . . , (Kn−1, Ln−1)
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that minimize the expected warranty servicing cost over the entire war-

ranty region. The optimization problem, under the restricted strategy, re-

duces to finding the optimal decision variables K1, K2, . . . , Kn−1 and r1

that minimize the expected warranty servicing cost. As in the paper by

Chukova et al. [13], let

ψ∗
n = (K∗

1 , K
∗
2 , . . . , K

∗
n−1, r

∗
1)

denote the optimal decision variables. Then

ψ∗
n = arg min

ψn

E[CΩ(ψn)] ,

where E[CΩ(ψn)] is the expected total warranty servicing cost per unit

product sold.

To model the failures that result in warranty claims and hence, war-

ranty servicing costs, we use the one-dimensional approach to failure mod-

eling, where it is assumed that a linear relationship exists between the age

and usage of the product (refer to Chapter 2 for details). In modeling the

failures, it is also assumed that

• all failures result in immediate warranty claims;

• all claims are valid;

• the time required to repair or replace the failed product, in compar-

ison to the operating time, is relatively small and can be approxi-

mated to zero.

To model imperfect repairs, two approaches are used. The first ap-

proach is an adaptation of the age reduction model proposed by Doyen

and Gaudoin [16], according to which the imperfect repair reduces the vir-

tual age of the product by an amount proportional to its age immediately

prior to the repair. The second approach is a modification of the intensity

reduction model proposed by Chukova et al. [11] which suggests that the
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failure rate function of the product after an imperfect repair is between

the failure rate of the product immediately after a minimal repair and the

failure rate of the product immediately after the previous repair.

The two approaches for modeling imperfect repairs and the associated

cost analyses are described in detail in Chapter 4 and Chapter 5. Numer-

ical illustrations of the results derived in both chapters are presented in

Chapter 6.



Chapter 4

Age Reduction Model

In this chapter, we discuss the first of the two imperfect repair models,

namely the age reduction model, in detail and derive the distribution of

the times to imperfect repair and the associated expected total warranty

servicing cost for the imperfect repair strategy Sδ
n described in Chapter 3.

4.1 Model Formulation

Since we use the one-dimensional approach to modeling failures, accord-

ing to which

U(t) = R A(t) ,

where A(t) and U(t) are the age and usage of the product at time t, the

failure process is a one-dimensional counting process {Ñ(t | r); t ≥ 0},

conditional on R = r, with a predefined initial intensity function. Let the

intensity function of the process {Ñ(t | r); t ≥ 0} be denoted by λ̃(t | r).

Since the usage is modeled as a function of the age, the intensity function

is a function of the age of the product only [6]. The quantity λ̃(t | r) dt can

be viewed as the probability that the product currently in use will fail in

the small interval [t, t+ dt). See Chapter 2 for details.

In the age reduction model, an imperfect repair changes the virtual age

48
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of the product such that it is less than or equal to the real age of the prod-

uct. According to the imperfect repair strategy, all repairs in the first and

last subregions are minimal, but the first repair in each of the intermediate

subregions, Ω2, Ω3, . . ., Ωn−1, is imperfect with a corresponding degree, δ1,

δ2, . . ., δn−2. Let Ai(t) denote the virtual age at time t following the i-th

imperfect repair. The virtual age prior to the first imperfect repair is

A0(t) = t .

Following the first imperfect repair of degree δ1, there is a reduction, pro-

portional to the degree of repair, in the age, such that

A1(t) = t− δ1u1

= A0(t) − δ1A0(u1)

where u1 is the time of the first imperfect repair. The virtual age following

the second imperfect repair depends on the degree of the first imperfect

repair, δ1, and the degree of the second imperfect repair, δ2, such that

A2(t) = t− δ1u1 − δ2(u2 − δ1u1)

= A1(t) − δ2A1(u2) .

where u1 and u2 are the time of the first imperfect repair and the time of the

second imperfect repair, respectively. Similarly, after the third imperfect

repair at time u3, we have

A3(t) = t− δ1u1 − δ2(u2 − δ1u1) − δ3(u3 − δ1u1 − δ2(u2 − δ1u1))

= A2(t) − δ3A2(u3) ,

where δ3 is the degree of the third imperfect repair. In general, the virtual

age can be written (recursively) as

Ai(t) = Ai−1(t) − δiAi−1(ui) , (4.1)

where δi is the degree of the i-th imperfect repair and ui is the time of the

i-th imperfect repair [29]. Since all repairs between the imperfect repairs
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are minimal, the intensity function λ̃(t | r) of the process after each imper-

fect repair changes only with respect to the virtual age after the imperfect

repairs. Based on the imperfect repair strategy, there can be a maximum

of n − 2 imperfect repairs if there has been at least one failure in each of

the subregions Ω2, Ω3, . . ., Ωn−1, since all repairs in the first and last subre-

gions are minimal. Therefore, for any given set of times to imperfect repair

u1, u2, . . . , un−2, the intensity function at time t is given by

λ̃(t | r) =























































λ(t | r) , 0 ≤ t ≤ u1

λ[A1(t) | r] , u1 ≤ t ≤ u2

λ[A2(t) | r] , u2 ≤ t ≤ u3

...

λ[Ai(t) | r] , ui ≤ t ≤ ui+1

...

λ[An−2(t) | r] , un−2 ≤ t <∞

(4.2)

See Figure 4.1 for an example of this intensity function.

t
T1 T2 T3

λ( t )

Figure 4.1: Intensity function following imperfect repairs of degree 0.5.
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Since all repairs between the imperfect repairs are minimal, the process

between the i-th imperfect repair at ui and the next imperfect repair at ui+1,

for i = 0, 1, . . . , n−2, can be viewed as a nonhomogeneous Poisson process

with intensity function λ[Ai(t) | r]. For ui < t ≤ ui+1, the expected number

of failures in the interval (ui, t] is given by

E[Ñ(t | r) − Ñ(ui | r)] =

t
∫

ui

λ̃(s | r) ds

=

t
∫

ui

λ[Ai(s) | r] ds

=

Ai(t)
∫

Ai(ui)

λ(s | r) ds

= Λ[Ai(t) | r] − Λ[Ai(ui) | r] ,

(4.3)

where the virtual age Ai(s) after the i-th imperfect repair is a function of

all previous times to imperfect repair u1, u2, . . . , ui−1, and the i-th time to

imperfect repair ui. The expected number of failures before the first im-

perfect repair is given by

E[Ñ(t | r)] = Λ(t | r) =

t
∫

0

λ(s | r)ds . (4.4)

The expected numbers defined in equation (4.3) are conditional on the

times to imperfect repair being u1, u2, . . . , un−2.

In the following section, we derive the density functions of these times

to imperfect repair to account for all possible values of u1, u2, . . . , un−2.

4.2 Times to Imperfect Repair

In order to derive the expected total warranty servicing costs, we must

first derive the distribution functions of the times to imperfect repair. We
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begin with deriving the distribution function of the time to first failure. As

in the paper by Chukova and Johnston [14], let T1|r represent the time to

first failure conditional on R = r. Then, the distribution function of T1|r is

given by

FT1|r
(t) =P{T1|r ≤ t}

=1 − P{T1|r > t}

=1 − P{Ñ(t | r) = 0}

=1 −
[Λ(t | r)]0 e−Λ(t|r)

0!

=1 − e−Λ(t|r) ,

(4.5)

where Λ(t | r) is defined in equation (4.4). Therefore, the probability that

the product does not fail in the interval [0, t), is

F̄T1|r
(t) = P{T1|r > t} = P{Ñ(t | r) = 0} = e−Λ(t|r) .

The density function of T1|r is given by

fT1|r
(t) =

d

dt
FT1|r

(t) = λ(t | r) e−Λ(t|r) .

Now let the variables TK1|r, TK2|r, . . ., TKn−2|r each denote the time of the

first failure in the corresponding subregion Ω2,Ω3, . . . ,Ωn−1. Therefore,

TK1|r is the time of the first failure after K1, TK2|r is the time of the first

failure after K2 and so on. The distribution function of the time of the

first imperfect repair is a conditional form of the distribution of the time to

first failure T1|r given in equation (4.5). Hence, for t > K1, the distribution

function of TK1|r is given by

FTK1|r
(t) =P{TK1|r ≤ t}

=1 − P{TK1|r > t}

=1 − P{Ñ(t | r) − Ñ(K1 | r) = 0}

=1 −
[Λ(t | r) − Λ(K1 | r)]

0 e−[Λ(t|r)−Λ(K1|r)]

0!

=1 − e−[Λ(t|r)−Λ(K1|r)] ,

(4.6)
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where λ(s | r) (equation (4.2)) is the intensity function prior to the first im-

perfect repair and Λ(s | r) (equation (4.4)) is the corresponding cumulative

intensity function [14, 21]. The density function for TK1|r is given by

fTK1|r
(t) =

d

dt
FTK1|r

(t) = λ(t | r) e−[Λ(t|r)−Λ(K1|r)] , (4.7)

and the probability that the first failure after K1 is after time t > K1 is

F̄TK1|r
(t) = P{TK1|r > t} = P{Ñ(t | r) − Ñ(K1 | r) = 0} = e−[Λ(t|r)−Λ(K1|r)] .

The distribution of the time to first failure afterK2, TK2|r, depends on TK1|r,

since the virtual age changes after an imperfect repair. If there have been

no failures in the interval (K1, K2], the distribution of TK2|r is similar to

that of TK1|r derived in equation (4.6), however, if there have been any

failures in (K1, K2], then the virtual age of the product is altered. Hence,

the distribution function of TK2|r is

FTK2|r
(t) =P{TK2|r ≤ t}

=P{TK2|r ≤ t, TK1|r ≤ K2} + P{TK2|r ≤ t, TK1|r > K2}

=P{TK2|r ≤ t | TK1|r ≤ K2} P{TK1|r ≤ K2} + P{K2 < TK1|r ≤ t}

=

K2
∫

K1

P{TK2|r ≤ t | TK1|r = u1} fTK1|r
(u1) du1 +

t
∫

K2

fTK1|r
(u1) du1

=

K2
∫

K1

(1 − e−{Λ[A1(t)|r]−Λ[A1(K2)|r]}) fTK1|r
(u1) du1 + e−[Λ(K2|r)−Λ(K1|r)]

− e−[Λ(t|r)−Λ(K1|r)] ,

where fTK1|r
(u1) is given in equation (4.7), and since, conditional on the

time of the first imperfect repair being u1, K1 < u1 < K2, we have

P{TK2|r ≤ t | TK1|r = u1} =1 − P{Ñ(t | r) − Ñ(K2 | r) = 0}

=1 − e−{Λ[A1(t)|r]−Λ[A1(K2)|r]}

=1 − exp







−

t
∫

K2

λ[A1(s) | r]ds







.
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The probability that the first failure after K2 is after time t > K2 is given

by

F̄TK2|r
(t) =P{TK2|r > t}

=P{TK2|r > t, TK1|r ≤ K2} + P{TK2|r > t, TK1|r > K2}

=P{TK2|r > t | TK1|r ≤ K2} P{TK1|r ≤ K2} + P{TK1|r > t}

=

K2
∫

K1

P{TK2|r > t | TK1|r = u1} fTK1|r
(u1) du1 + F̄TK1|r

(t)

=

K2
∫

K1

e−{Λ[A1(t)|r]−Λ[A1(K2)|r]} fTK1|r
(u1) du1 + e−[Λ(t|r)−Λ(K1|r)] .

For t > K2, the density function of the time to first failure after K2, TK2|r,

is given by

fTK2|r
(t) =

d

dt
FTK2|r

(t)

=

K2
∫

K1

λ[A1(t) | r]e
−{Λ[A1(t)|r]−Λ[A1(K2)|r]} fTK1|r

(u1) du1 + fTK1|r
(t) ,

where fTK1|r
(t) is defined in equation (4.7). These results are a generaliza-

tion of those derived by Chukova et al. [13]. When instead of an imperfect

repair at u1 we have a replacement, i.e. when δ1 = 1, we get

fTK2|r
(t) =

K2
∫

K1

λ(t− u1 | r)e
−{Λ(t−u1|r)−Λ(K2−u1|r)} fTK1|r

(u1) du1

+ fTK1|r
(t) ,

(4.8)

which is the density function for the time to first imperfect repair after K2

derived by Chukova et al. [13].

In deriving the distribution function of the time to first failure after K3,

TK3|r, we must consider the failures in subregions Ω2 and Ω3. For t > K3,
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the distribution function of TK3|r is given by

FTK3|r
(t) = P{TK3|r ≤ t}

= P{TK3|r ≤ t, TK2|r ≤ K3, TK1|r ≤ K2}

+ P{TK3|r ≤ t, TK2|r ≤ K3, TK1|r > K2}

+ P{TK3|r ≤ t, TK2|r > K3, TK1|r ≤ K2}

+ P{TK3|r ≤ t, TK2|r > K3, TK1|r > K2}

= P{TK3|r ≤ t | TK2|r ≤ K3, TK1|r ≤ K2} P{TK2|r ≤ K3, TK1|r ≤ K2}

+ P{TK3|r ≤ t | TK2|r ≤ K3, TK1|r > K2} P{TK2|r ≤ K3, TK1|r > K2}

+ P{TK3|r ≤ t | TK2|r > K3, TK1|r ≤ K2} P{TK2|r > K3, TK1|r ≤ K2}

+ P{TK3|r ≤ t | TK2|r > K3, TK1|r > K2} P{TK2|r > K3, TK1|r > K2}

=

K3
∫

K2

K2
∫

K1

{

(

1 − e−{Λ[A2(t)|r]−Λ[A2(K3)|r]}
)

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}fTK1|r

(u1)

}

du1 du2

+

K3
∫

K2

(

1 − e−{Λ[A1(t)|r]−Λ[A1(K3)|r]}
)

fTK1|r
(u1) du1

+

K2
∫

K1

{

(

1 − e−{Λ[A1(t)|r]−Λ[A1(K3)|r]}
)

e−{Λ[A1(K3)|r]−Λ[A1(K2)|r]}

× fTK1|r
(u1)

}

du1

+
(

1 − e{Λ(t|r)−Λ(K3|r)}
)

e−{Λ(K3|r)−Λ(K1|r)} .

The first summand of the above density represents the case where there

has been at least one failure in each of the two intervals (K1, K2] and

(K2, K3], i.e. there have been two imperfect repairs prior to K3. The sec-

ond and third summands are the two cases where there has been only one

imperfect repair prior to K3; in the second summand, no failures have oc-

curred in (K1, K2] and hence, the first failure after K1 is after K2, and in
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the third summand, no failures have occurred in (K2, K3]. The last sum-

mand is the case where no failures have occurred in (K1, K3]. The density

function for TK3|r is given by

fTK3|r
(t) =

d

dt
FTK3|r

(t)

=

K3
∫

K2

K2
∫

K1

{

λ[A2(t) | r]e
−{Λ[A2(t)|r]−Λ[A2(K3)|r]}

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}fTK1|r

(u1)

}

du1 du2

+

K3
∫

K2

λ[A1(t) | r]e
−{Λ[A1(t)|r]−Λ[A1(K3)|r]}fTK1|r

(u1)du1

+

K2
∫

K1

λ[A1(t) | r]e
−{Λ[A1(t)|r]−Λ[A1(K2)|r]}fTK1|r

(u1)du1

+ fTK1|r
(t) .

In the third summand, the exponent term implies that no failures have

occurred in the interval (K2, t], i.e. there have been no imperfect repairs in

the previous subinterval (K2, K3]. As mentioned earlier, these results are

generalizations of those of Chukova et al. [13]. When δ1 = δ2 = 1, we get

fTK3|r
(t) =

K3
∫

K2

K2
∫

K1

{

λ(t− u2 | r) e
−{Λ(t−u2|r)−Λ(K3−u2|r)}

× λ(u2 − u1 | r) e
−{Λ(u2−u1|r)−Λ(K2−u1|r)} fTK1|r

(u1)

}

du1 du2

+

K3
∫

K2

λ(t− u1 | r) e
−{Λ(t−u1|r)−Λ(K3−u1|r)} fTK1|r

(u1) du1

+

K2
∫

K1

λ(t− u1 | r) e
−{Λ(t−u1|r)−Λ(K2−u1|r)} fTK1|r

(u1) du1

+ fTK1|r
(t) .
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The first and second summands correspond to replacements in the third

subinterval (K2, K3]. Also, notice that the first element in the first sum-

mand is now only a function of the replacement in (K2, K3]. We use the

dummy variable u1 for the replacement in (K1, K2], and u2 for the replace-

ment in (K2, K3]. The above equation can now be rewritten as

fTK3|r
(t) =

K3
∫

K2

λ(t− u2 | r) e
−{Λ(t−u2|r)−Λ(K3−u2|r)}

×

{

K2
∫

K1

λ(u2 − u1 | r) e
−{Λ(u2−u1|r)−Λ(K2−u1|r)} fTK1|r

(u1) du1

+ fTK1|r
(u2)

}

du2

+

K2
∫

K1

λ(t− u1 | r) e
−{Λ(t−u1|r)−Λ(K2−u1|r)} fTK1|r

(u1) du1

+ fTK1|r
(t) .

Note that the term in the curly brackets is the density function of the time

to first failure after K2 given in equation (4.8), where u1 denotes the last

replacement before K2. Hence, when δ1 = δ2 = 1, the above becomes

fTK3|r
(t) =

K3
∫

K2

λ(t− u2 | r) e
−{Λ(t−u2|r)−Λ(K3−u2|r)} fTK2|r

(u2) du2

+

K2
∫

K1

λ(t− u1 | r) e
−{Λ(t−u1|r)−Λ(K2−u1|r)} fTK1|r

(u1) du1 + fTK1|r
(t)

=
3
∑

j=2

Kj
∫

Kj−1

λ(t− uj−1 | r) e
−{Λ(t−uj−1|r)−Λ(Kj−uj−1|r)} fTKj−1|r

(uj−1) duj−1

+ fTK1|r
(t) ,

where uj−1 is now the time of the last replacement before K3.
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These results match those derived by Chukova et al. [13].

Next, the density function for the time to first failure after K4, TK4|r, is

fTK4|r
(t) =

K4
∫

K3

K3
∫

K2

K2
∫

K1

{

λ[A3(t) | r]e
−{Λ[A3(t)|r]−Λ[A3(K4)|r]}

× λ[A2(u3) | r]e
−{Λ[A2(u3)|r]−Λ[A2(K3)|r]}

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}fTK1|r

(u1)

}

du1 du2 du3

+

K3
∫

K2

K2
∫

K1

{

λ[A2(t) | r]e
−{Λ[A2(t)|r]−Λ[A2(K3)|r]}

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}fTK1|r

(u1)

}

du1 du2

+

K4
∫

K3

K3
∫

K2

{

λ[A2(t) | r]e
−{Λ[A2(t)|r]−Λ[A2(K4)|r]}

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K3)|r]}fTK1|r

(u1)

}

du1 du2

+

K4
∫

K3

K2
∫

K1

{

λ[A2(t) | r]e
−{Λ[A2(t)|r]−Λ[A2(K4)|r]}

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}fTK1|r

(u1)

}

du1 du2

+

K4
∫

K3

λ[A1(t) | r]e
−{Λ[A1(t)|r]−Λ[A1(K4)|r]}fTK1|r

(u1)du1

+

K3
∫

K2

λ[A1(t) | r]e
−{Λ[A1(t)|r]−Λ[A1(K3)|r]}fTK1|r

(u1)du1

+

K2
∫

K1

λ[A1(t) | r]e
−{Λ[A1(t)|r]−Λ[A1(K2)|r]}fTK1|r

(u1)du1

+ fTK1|r
(t) .
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The density function for TK4|r is derived in a manner similar to fTK3|r
(t),

and hence, we have omitted the derivation process. The summands in the

density function denote the cases where none, one, two or three imperfect

repairs have been performed before K4. The first summand is the case

where there has been at least one failure (and therefore, one imperfect re-

pair) in each of the subintervals (K1, K2], (K2, K3], and (K3, K4] before K4.

The next three summands each represents the case where there has been at

least one failure in each of the two corresponding subintervals and the next

three summands each represents the case where there has been at least one

failure in the corresponding subinterval. The last summand represents the

case where no failures have occurred in the subinterval (K1, K4].

When δ1 = δ2 = δ3 = 1, as shown for fTK3|r
(t), this density function

collapses to

fTK4|r
(t) =

4
∑

j=2

Kj
∫

Kj−1

λ(t− uj−1 | r) e
−{Λ(t−uj−1|r)−Λ(Kj−uj−1|r)} fTKj−1|r

(uj−1) duj−1

+ fTK1|r
(t) ,

where uj−1 is the time of the last replacement beforeK4. Again, this matches

the results derived by Chukova et al. [13].

In general, to derive the density function of the first repair after Kl,

i.e. the time TKl|r
of the l-th imperfect repair, where l = 1, 2, . . . , n − 2,

we need to consider all possible combinations of imperfect repairs in the

previous subregions Ω2,Ω3, . . . ,Ωl. Let i denote the number of possible

previous imperfect repairs. For TKl|r
, the time of the first failure after Kl,

we have i = 0, 1, . . . , l−1 possible previous imperfect repairs. When i = 0,

the time of the first failure after Kl, TKl|r
, is the time of the first failure af-

ter K1. In other words, no failures have occurred in the interval (K1, Kl]

and the case is straight-forward. When i = 1, there has been one im-

perfect repair before Kl, which could be in any one of the subintervals

(K1, K2], (K2, K3], . . . , (Kl−1, Kl]. When i = 2, there have been two im-

perfect repairs before Kl, which could be in any two of the subintervals



CHAPTER 4. AGE REDUCTION MODEL 60

(K1, K2], (K2, K3], . . . , (Kl−1, Kl], and so on. By conditioning on the vari-

ables u1, u2, . . . , ul−1 and then removing the condition, we account for all

possible times to imperfect repair. Following the patterns in the density

functions derived earlier for TK1|r, TK2|r, TK3|r and TK4|r, for a given i > 0

and a given l, we define the sum

∑

∀{j1,j2...,ji}∈Ji,l

Kji
∫

Kji−1

. . .

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

λ[Ai(t) | r] e
−{Λ[Ai(t)|r]−Λ[Ai(Kji

)]}

× λ[Ai−1(ui) | r] e
−{Λ[Ai−1(ui)|r]−Λ[Ai−1(Kji−1

)]}

...

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(Kj1

)]}

× fTK1|r
(u1)

}

du1 du2 . . . dui ,

(4.9)

which represents the density corresponding to all possible combinations

of the i imperfect repairs before Kl. For i > 0, the set

Ji,l = {{j1, . . . , ji} : {j1, . . . , ji} ⊆ {2, . . . , l} and j1 < · · · < ji}

provides all possible combinations of {Kj1, . . . , Kji} which generate the

subintervals in which the imperfect repairs have been performed [12].

Therefore, the set Ji,l works such that when i = 1, we have

∑

∀{j1}∈J1,l

Kj1
∫

Kj1−1

λ[A1(t) | r] e
−{Λ[A1(t)|r]−Λ[A1(Kj1

)]} fTK1|r
(u1) du1

=

l
∑

j1=2

Kj1
∫

Kj1−1

λ[A1(t) | r] e
−{Λ[A1(t)|r]−Λ[A1(Kj1

)]} fTK1|r
(u1) du1 ,

which implies that when i = 1, there has been one imperfect repair before

Kl, which could be in any one of the subintervals (K1, K2], (K2, K3], . . .,

(Kl−1, Kl].
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When i = 2, we have

∑

∀{j1,j2}∈J2,l

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

λ[A2(t) | r] e
−{Λ[A2(t)|r]−Λ[A2(Kj2

)]}

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(Kj1

)]}

× fTK1|r
(u1)

}

du1 du2 ,

which implies that when i = 2, there have been two imperfect repairs

before Kl which could be in any two of the subintervals (K1, K2], (K2, K3],

. . ., (Kl−1, Kl], and so on. When i = l − 1, we have the term

Kl
∫

Kl−1

Kl−1
∫

Kl−2

. . .

K3
∫

K2

K2
∫

K1

{

λ[Al−1(t) | r] e
−{Λ[Al−1(t)|r]−Λ[Al−1(Kl)]}

× λ[Al−2(ul−1) | r] e
−{Λ[Al−2(ul−1)|r]−Λ[Al−2(Kl−1)]}

× λ[Al−3(ul−2) | r] e
−{Λ[Al−3(ul−2)|r]−Λ[Al−3(Kl−2)]}

...

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(K2)]}

× fTK1|r
(u1)

}

du1 du2 . . . dul−2 dul−1

which corresponds to the case where at least one failure has occurred

in all the subintervals before Kl, namely (K1, K2], (K2, K3], . . . , (Kl−1, Kl].

In other words, there has been an imperfect repair in all the subregions

Ω2,Ω3, . . . ,Ωl before Kl.

Since the events i = 0, i = 1, . . ., i = l − 1 are exclusive, the distribu-

tion function for TKl|r is the sum of all probabilities corresponding to these

events. And hence, when i = 0, the density function component is just

fTK1|r
(t), and when i > 0, the density function component is the sum over

all i > 0 of the summands defined in equation (4.9), thus accounting for

both the number of possible previous imperfect repairs and the combina-

tion of intervals in which they’ve been performed.
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Therefore, density function for TKl|r is given by

fTKl|r
(t) = fTK1|r

(t)

+

l−1
∑

i=1

∑

∀{j1,j2...,ji}∈Ji,l

Kji
∫

Kji−1

. . .

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

λ[Ai(t) | r] e
−{Λ[Ai(t)|r]−Λ[Ai(Kji

)|r]}

× λ[Ai−1(ui) | r] e
−{Λ[Ai−1(ui)|r]−Λ[Ai−1(Kji−1

)|r]}

...

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(Kj1

)|r]}

× fTK1|r
(u1)

}

du1 du2 . . . dui ,

(4.10)

where Ai(.) is the virtual age after the i-th imperfect repair given in equa-

tion (4.1) and fTK1|r
(t) is defined in equation (4.7). These results are gener-

alizations of those presented in Chukova et al. [13]. When

δ1 = δ2 = . . . = δl−1 = 1 ,

for t > Kl, we have

fTKl|r
(t) = fTK1|r

(t)

+

l
∑

j=2

Kj
∫

Kj−1

λ(t− uj−1 | r) e
−{Λ(t−uj−1|r)−Λ(Kj−uj−1|r)} fTKj−1|r

(uj−1) duj−1 ,

where uj−1 is now the time of the replacement in the subinterval [Kj−1, Kj)

or in Ωj and may not be the time of the j-th replacement; uj−1 is the time

of the last replacement before Kl. This matches the results derived by

Chukova et al. [13]. We now proceed to deriving the expected total war-

ranty servicing cost per product sold over the warranty region.
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4.3 Warranty Servicing Costs

Let E[CΩ(ψn)] denote the expected total warranty servicing cost over the

warranty region Ω, where

ψn = (K1, K2, . . . , Kn−1, r1) .

Since the imperfect repair strategy is restricted (see Chapter 3 for details),

such that
L1

K1

=
L2

K2

= . . . =
Ln−1

Kn−1

= r1 and
L

K
= r2 ,

in determining the expected total warranty servicing cost E[CΩ(ψn)], we

need to consider only two cases: r1 ≤ r2 (Figure 3.2) and r2 ≤ r1 (Figure

3.3). Let E[CΩ
A(ψn)] denote the expected total warranty servicing cost for

the first case r1 ≤ r2 and let E[CΩ
B(ψn)] denote the expected total warranty

servicing cost for the second case r2 ≤ r1 [21, 13]. That is,

• Case A: E[CΩ(ψn)] = E[CΩ
A(ψn)]

• Case B: E[CΩ(ψn)] = E[CΩ
B(ψn)]

The main results of this chapter are the density function derived in equa-

tion (4.10), and the expected warranty servicing costs E[CΩ
A(ψn)] for Case

A and E[CΩ
B(ψn)] for Case B, for the age reduction model, which we derive

in the following sections.

4.3.1 Case A: r1 ≤ r2

Since we are using the one-dimensional approach where the usage of the

product is a function of the age of the product, in order to derive the ex-

pected total warranty servicing cost E[CΩ
A(ψn)], we condition onR = r. As

in the papers by Iskandar et al. [21] and Chukova et al. [13], we subdi-

vide the warranty region based on the rates r1 and r2, and, conditional on
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the usage rate R = r, derive the expected warranty servicing costs for the

following three sub-cases:

(1) r ≤ r1 ≤ r2

(2) r1 ≤ r ≤ r2

(3) r1 ≤ r2 ≤ r

LetE[C
(1)
r (ψn)], E[C

(2)
r (ψn)], andE[C

(3)
r (ψn)] denote the expected warranty

servicing costs, conditional on R = r, for the three sub-cases respectively

[13]. Then the expected total warranty servicing cost for Case A is given

by

E[CΩ
A(ψn)] =

r1
∫

0

E[C(1)
r (ψn)] dG(r)+

r2
∫

r1

E[C(2)
r (ψn)] dG(r)+

∞
∫

r2

E[C(3)
r (ψn)] dG(r) .

Each of the expected costs E[C
(j)
r (ψn)], j = 1, 2, 3, are the sum of the ex-

pected costs in each of the subregions Ω1,Ω2, . . . ,Ωn, which are denoted

by

E[CΩ1

r (ψn)], E[CΩ2

r (ψn)], . . . , E[CΩn

r (ψn)] .

That is, the expected warranty servicing cost conditional on R = r, for the

three sub-cases, j = 1, 2, 3, is given by

E[C(j)
r (ψn) = E[CΩ1

r (ψn)] + E[CΩ2

r (ψn)] + . . .+ E[CΩn

r (ψn)] .

For simplicity, since it is clear by the context, we omit the usage of the

index j on the right hand side of the above equation.

We now proceed to deriving the expected costsE[CΩ
A(ψn)] andE[CΩ

B(ψn)].

We will only derive the expected cost for sub-case A-(1), since the expected

costs for A-(2) and A-(3) and Case B can be obtained in a similar way, with

minor adjustments.

(1) r ≤ r1 ≤ r2

Figure 4.2 depicts the case where r ≤ r1 ≤ r2. Let cmin and cimp denote the

cost of a minimal repair and the cost of an imperfect repair respectively.
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r

r2

r1L

Time0

Usage

KK2K1

L1

L2

...
...

. . .

. . .

Ω1

Ω2

Ln−1

Kn−1

Ωn

Figure 4.2: r ≤ r1 ≤ r2.

The costs cmin and cimp are assumed to be constant. Later in the numerical

example, we adjust the costs cimp of the imperfect repairs based on their

degrees.

When deriving the warranty servicing cost in a subregion, we must

consider all imperfect repairs performed in the preceding subregions, since

they alter the virtual age of the product. By considering the number of pos-

sible imperfect repairs and conditioning on the time of these repairs, we

can derive the conditional expected warranty servicing costs in the sub-

region. Later, we remove the conditioning using the summands of the

density function derived earlier to account for all possible combinations

of subintervals with these imperfect repairs and all possible repair times.

The expected warranty servicing cost in the first subregion Ω1 is not

conditional on times to imperfect repair, since all repairs in this subregion

are minimal. Therefore, the warranty servicing cost in this subregion is

given by
{

cmin Ñ(K1 | r), Ñ(K1 | r) > 0

0, otherwise
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where Ñ(K1 | r) is the number of failures in the interval [0, K1] and the

expected warranty servicing cost in Ω1 is given by

{

cmin Λ(K1 | r), Ñ(K1 | r) > 0

0, otherwise

where

Λ(K1 | r) =

K1
∫

0

λ(s | r) ds .

Hence, the expected warranty cost in the first subregion Ω1 is

E[CΩ1

r (ψn)] = cmin Λ(K1 | r) . (4.11)

The first failure in the second subregion is rectified by an imperfect re-

pair and all subsequent failures are rectified by minimal repair. If the first

failure after K1 occurs at time u1, then conditional on TK1|r = u1, the con-

ditional warranty servicing cost in subregion Ω2 is given by

{

cimp + cmin [Ñ(K2 | r) − Ñ(u1 | r)], u1 ≤ K2

0, u1 > K2

where Ñ(K2 | r) − Ñ(u1 | r) is the number of failures, and hence min-

imal repairs, in the interval (u1, K2]. The conditional expected warranty

servicing cost in Ω2 is given by

{

cimp + cmin {Λ[A1(K2) | r] − Λ[A1(u1) | r]}, u1 ≤ K2

0, u1 > K2

where A1(t) is the virtual age after the first imperfect repair at time u1 with

degree δ1. Now removing the conditioning on TK1|r = u1, we get

E[CΩ2

r (ψn)] =
K2
∫

K1

{

(

cimp + cmin {Λ[A1(K2) | r] − Λ[A1(u1) | r]}
)

× fTK1|r
(u1)

}

du1 .

(4.12)
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The first failure in the third subregion Ω3 is also rectified by an imperfect

repair and all subsequent failures in this subregion are rectified by min-

imal repair. In computing the warranty cost in subregion Ω3, we must

consider the two cases TK1|r ≤ K2 and TK1|r > K2. Therefore, conditional

on the first failure after K1 being at time u1, i.e., time of the first imperfect

repair being TK1|r = u1 and the time of the second imperfect repair being

u2, the conditional warranty servicing cost in subregion Ω3 is given by











cimp + cmin [Ñ(K3 | r) − Ñ(u1 | r)], K2 < u1 ≤ K3

cimp + cmin [Ñ(K3 | r) − Ñ(u2 | r)], u1 ≤ K2 and u2 ≤ K3

0, otherwise ,

where Ñ(K3 | r)−Ñ (u1 | r) and Ñ(K3 | r)−Ñ (u2 | r) count the number of

minimal repairs in the subintervals (u1, K3] and (u2, K3] respectively. The

conditional expected warranty servicing cost in subregion Ω3 is











cimp + cmin {Λ[A1(K3) | r] − Λ[A1(u1) | r]}, K2 < u1 ≤ K3

cimp + cmin {Λ[A2(K3) | r] − Λ[A2(u2) | r]}, u1 ≤ K2 and u2 ≤ K3

0, otherwise .

On removing the conditioning on the time of the first imperfect repair u1

and the time of the second imperfect repair u2, we get the expected war-

ranty servicing cost in subregion Ω3

E[CΩ3

r (ψn)] =

K3
∫

K2

{

(

cimp + cmin {Λ[A1(K3) | r] − Λ[A1(u1) | r]}
)

× fTK1|r
(u1)

}

du1

+

K3
∫

K2

K2
∫

K1

{

(

cimp + cmin {Λ[A2(K3) | r] − Λ[A2(u2) | r]}
)

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}fTK1|r

(u1)

}

du1 du2 .

(4.13)
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Similar to the cost in Ω3, the cost in Ω4 is derived by considering all pos-

sible imperfect repairs in previous subregions. Conditional on the time of

the first imperfect repair being u1, the time of the second imperfect repair

being u2 and the time of the third imperfect repair being u3, we consider

three cases: the case where no imperfect repairs have been performed be-

fore Ω4 (i.e, before K3), the case where one imperfect repair has been per-

formed before Ω4, and the case where two imperfect repairs have been

performed before Ω4. The first failure in this subregion is followed by an

imperfect repair and all subsequent failures are followed by minimal re-

pairs. Hence, the conditional warranty servicing cost in this subregion is

given by































cimp + cmin [Ñ(K4 | r) − Ñ(u1 | r)], K3 < u1 ≤ K4

cimp + cmin [Ñ(K4 | r) − Ñ(u2 | r)], u1 ≤ K2 and K3 < u2 ≤ K4

cimp + cmin [Ñ(K4 | r) − Ñ(u2 | r)], K2 < u1 ≤ K3 and K3 < u2 ≤ K4

cimp + cmin [Ñ(K4 | r) − Ñ(u3 | r)], u1 ≤ K2, u2 ≤ K3 and u3 ≤ K4

0, otherwise

where the variables denote the number of minimal repairs in the intervals

(u1, K4], (u2, K4] and (u3, K4] respectively. The expected conditional war-

ranty servicing cost in this subregion is given by



















































cimp + cmin {Λ[A1(K4) | r] − Λ[A1(u1) | r]}, K3 < u1 ≤ K4

cimp + cmin {Λ[A2(K4) | r] − Λ[A2(u2) | r]}, u1 ≤ K2 and K3 < u2 ≤ K4

cimp + cmin {Λ[A2(K4) | r] − Λ[A2(u2) | r]}, K2 < u1 ≤ K3

and K3 < u2 ≤ K4

cimp + cmin {Λ[A3(K4) | r] − Λ[A3(u3) | r]}, u1 ≤ K2, u2 ≤ K3

and u3 ≤ K4

0, otherwise .

On removing the conditioning on the times to imperfect repair u1, u2 and

u3, we get the expected warranty servicing cost in the fourth subregion,

Ω4.
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That is

E[CΩ4

r (ψn)] =
K4
∫

K3

{

(

cimp + cmin {Λ[A1(K4) | r] − Λ[A1(u1) | r]}
)

× fTK1|r
(u1)

}

du1

+
K4
∫

K3

K2
∫

K1

{

(

cimp + cmin {Λ[A2(K4) | r] − Λ[A2(u2) | r]}
)

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}

× fTK1|r
(u1)

}

du1 du2

+
K4
∫

K3

K3
∫

K2

{

(

cimp + cmin {Λ[A2(K4) | r] − Λ[A2(u2) | r]}
)

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K3)|r]}

× fTK1|r
(u1)

}

du1 du2

+
K4
∫

K3

K3
∫

K2

K2
∫

K1

{

(

cimp + cmin {Λ[A3(K4) | r] − Λ[A3(u3) | r]}
)

× λ[A2(u3) | r]e
−{Λ[A2(u3)|r]−Λ[A2(K3)|r]}

× λ[A1(u2) | r]e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}

× fTK1|r
(u1)

}

du1 du2 du3 .

(4.14)

In general, for any of the intermediate subregions Ωl, l = 2, 3, . . . , n−1,

the number of possible previous imperfect repairs before that subregion

can be i = 0, 1, . . . , l − 2. The first repair in Ωl is imperfect and all subse-

quent repairs are minimal; given that at least one failure (hence, an imper-

fect repair) occurs in Ωl, when the number of possible previous imperfect

repairs is i = 0, the imperfect repair in Ωl is the first in the warranty region;

when i = 1, the imperfect repair in Ωl is the second in the warranty region,

and so on.

Now, given the number of possible previous imperfect repairs i, where

i = 0, 1, . . . , l − 2, and conditional on the time ui+1 of the imperfect repair

in Ωl, the corresponding conditional expected warranty servicing costs are
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given by























































cimp + cmin {Λ[A1(Kl) | r] − Λ[A1(u1) | r]}, i = 0 and Kl−1 < u1 ≤ Kl

cimp + cmin {Λ[A2(Kl) | r] − Λ[A2(u2) | r]}, i = 1 and Kl−1 < u2 ≤ Kl

cimp + cmin {Λ[A3(Kl) | r] − Λ[A3(u3) | r]}, i = 2 and Kl−1 < u3 ≤ Kl

...

cimp + cmin {Λ[Al−1(Kl) | r] − Λ[Al−1(ul−1) | r]}, i = l − 2 and

Kl−1 < ul−1 ≤ Kl ,

0, otherwise .

In the first case, the imperfect repair in Ωl is the first. In the second case, the

imperfect repair in Ωl is the second, and hence, the first imperfect repair at

time u1 could have been in any of the subregions Ω2, Ω3, . . ., Ωl−1. In the

third case, the imperfect repair in Ωl is the third, and hence, the first and

second imperfect repairs at times u1 and u2 could have been in any two of

the subregions Ω2, Ω3, . . ., Ωl−1, and so on.

To derive the expected warranty servicing cost within the subregion Ωl,

we remove the conditioning on the times to imperfect repair, u1, u2, . . . , ul−

1, to account for all possible combinations of subintervals in which the im-

perfect repairs have been performed.
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Therefore

E[CΩl
r (ψn)]=

Kl
∫

Kl−1

{

(

cimp + cmin {Λ[A1(Kl) | r] − Λ[A1(u1) | r]}
)

× fTK1|r
(u1)

}

du1

+
Kl
∫

Kl−1

∑

∀{j1}∈J1,l−1

Kj1
∫

Kj1−1

{

(

cimp + cmin{Λ[A2(Kl) | r] − Λ[A2(u2) | r]}
)

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(Kj1

)|r]}fTK1|r
(u1)

}

du1 du2

+
Kl
∫

Kl−1

∑

∀{j1,j2}∈J2,l−1

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

(

cimp + cmin{Λ[A3(Kl) | r] − Λ[A3(u3) | r]}
)

× λ[A2(u3) | r] e
−{Λ[A2(u3)|r]−Λ[A2(Kj2

)|r]}

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(Kj1

)|r]}

× fTK1|r
(u1)

}

du1 du2 du3

+ . . . +

+
Kl
∫

Kl−1

Kl−1
∫

Kl−2

. . .
K3
∫

K2

K2
∫

K1

{

(

cimp + cmin{Λ[Al−1(Kl) | r] − Λ[Al−1(ul−1) | r]}
)

× λ[Al−2(ul−1) | r] e
−{Λ[Al−2(ul−1)|r]−Λ[Al−2(Kl−1)|r]}

× λ[Al−3(ul−2) | r] e
−{Λ[Al−3(ul−2)|r]−Λ[Al−3(Kl−2)|r]}

...

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}

× fTK1|r
(u1)

}

du1 du2 . . . dul−2 dul−1

(4.15)

where the set Ji,l−1, defined on page 60, provides all possible combinations

of the subintervals in which the i = 1, ..., l − 2 possible previous imperfect

repairs have been performed.

For the n-subregion warranty region, Ωn denotes the last subregion

within which all repairs are minimal. The conditional expected warranty

servicing costs for i = 0, 1, . . . , n− 1 possible previous imperfect repairs is
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given by



































cmin {Λ(K | r) − Λ(Kn−1 | r)}, i = 0

cmin {Λ[A1(K) | r] − Λ[A1(Kn−1) | r]}, i = 1

cmin {Λ[A2(K) | r] − Λ[A2(Kn−1) | r]}, i = 2
...

cmin {Λ[An−2(K) | r] − Λ[An−2(Kn−1) | r]}, i = n− 2 ,

if at least one failure has occurred in [Kn−1, K), and zero if no failures have

occurred in Ωn.

When unconditioning the costs in the last subregion Ωn, we must take

into account the subregion in which the last imperfect repair occurred and

the probability that no failures have occurred in the subregions between

that subregion and Ωn. This probability is of the form

e−{Λ[Ai(Kn−1)|r]−Λ[Ai(Kji
)|r]} ,

where i is the number of possible previous imperfect repairs and the time

ui of the last (i.e. i-th) imperfect repair is in the interval (Kji−1, Kji]; this

term implies that no failures (hence, imperfect repairs) have occurred in

the interval (Kji, Kn−1].

Finally, to derive the expected warranty servicing cost in the last subre-

gion Ωn, we remove the conditioning using the summands of the density

function derived in equation (4.10) and the above mentioned probabilities



CHAPTER 4. AGE REDUCTION MODEL 73

as follows:

E[CΩn
r (ψn)] = cmin

{

Λ(K | r) − Λ(Kn−1 | r)
}

e−{Λ(Kn−1|r)−Λ(K1|r)}

+
∑

∀{j1}∈J1,n−1

Kj1
∫

Kj1−1

{

cmin
(

Λ[A1(K) | r] − Λ[A1(Kn−1) | r]
)

× e−{Λ[A1(Kn−1)|r]−Λ[A1(Kj1
)|r]} fTK1|r

(u1)

}

du1

+
∑

∀{j1,j2}∈J2,n−1

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

cmin
(

Λ[A2(K) | r] − Λ[A2(Kn−1) | r]
)

× e−{Λ[A2(Kn−1)|r]−Λ[A2(Kj2
)|r]}

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(Kj1

)|r]} fTK1|r
(u1)

}

du1 du2

+ . . . +

+
Kn−1
∫

Kn−2

. . .
K3
∫

K2

K2
∫

K1

{

cmin
(

Λ[An−2(K) | r] − Λ[An−2(Kn−1) | r]
)

× λ[An−3(un−2) | r] e
−{Λ[An−3(un−2)|r]−Λ[An−3(Kn−2)|r]}

×
...

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]}

× fTK1|r
(u1)

}

du1 du2 . . . dun−2

(4.16)

where the set Ji,n−1, defined on page 60, provides all possible combina-

tions of the subintervals in which the i = 1, ..., n − 2 previous imperfect

repairs have been performed.

The expected total warranty servicing cost for sub-case A-(1), condi-

tional on R = r, is given by

E[C(1)
r (ψn)] = E[CΩ1

r (ψn)] + E[CΩ2

r (ψn)] + . . .+ E[CΩn

r (ψn)]

When summarizing the expected costs derived earlier [(4.11), (4.12), . . . ,

(4.16)], notice that the virtual age corresponding to the number of possi-

ble previous imperfect repairs i, for Ωn is different from that of Ωl, l =

2, . . . , n − 1. This is because in the last subregion Ωn all repairs are mini-

mal, while in the intermediate subregions Ω2,Ω3, . . . ,Ωn−1, the first repair
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is imperfect. Therefore, if i is the number of possible previous imperfect

repairs, when deriving the conditional costs in Ωl, l = 2, 3, . . . , n − 1, we

have i previous imperfect repairs and the (i+1)-th imperfect repair which

is in Ωl. Hence, the expected total warranty servicing cost for sub-case

A-(1) becomes

E[C
(1)
r (ψn)] =cminΛ(K1 | r)

+cmin [Λ(K | r) − Λ(Kn−1 | r)]e
−[Λ(Kn−1|r)−Λ(K1|r)]

+
n−1
∑

l=2

Kl
∫

Kl−1

{

(

cimp + cmin {Λ[A1(Kl) | r] − Λ[A1(u1) | r]}

+cmin {Λ[A1(K) | r] − Λ[A1(Kn−1) | r]}e
−{Λ[A1(Kn−1)|r]−Λ[A1(Kl)|r]}

)

× fTK1|r
(u1)

}

du1

+
n−1
∑

l=3

l−2
∑

i=1

Kl
∫

Kl−1

(

∑

∀{j1,j2,...,ji}∈Ji,l−1

Kji
∫

Kji−1

. . .

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

[

cimp+

+cmin(Λ[Ai+1(Kl) | r] − Λ[Ai+1(ui+1) | r])

+cmin(Λ[Ai+1(K) | r] − Λ[Ai+1(Kn−1) | r])e
−(Λ[Ai+1(Kn−1)|r]−Λ[Ai+1(Kl)|r])

]

× λ[Ai(ui+1) | r] e
−{Λ[Ai(ui+1)|r]−Λ[Ai(Kji

)|r]}

× λ[Ai−1(ui) | r] e
−{Λ[Ai−1(ui)|r]−Λ[Ai−1(Kji−1

)|r]}

...

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(Kj1

)|r]}

× fTK1|r
(u1)

}

du1 du2 . . . dui

)

dui+1

(4.17)

The expected cost in equation (4.17) is a function of the decision variables

K1, K2, . . . , Kn−1 and the warranty time limit K. At this point, we define a

generic function ζ(.), such that

E[C(1)
r (ψn)] = ζ(K1, K2, . . . , Kn−1, K) . (4.18)

The arguments of this function will later be modified to obtain the costs

for sub-cases A-(2) and A-(3), and for Case B.

The expected cost derived by Chukova et al. [13], where instead of

performing imperfect repair the failed product is replaced, is a special case
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of the cost in equation (4.17). When

δ1 = δ2 = . . . = δn−2 = 1 ,

equation (4.17) becomes

E[C
(1)
r (ψn)] = cminΛ(K1 | r)

+ cmin [Λ(K | r) − Λ(Kn−1 | r)]e
−[Λ(Kn−1|r)−Λ(K1|r)]

+
n−1
∑

l=2

Kl
∫

Kl−1

{

cimp + cmin Λ(Kl − ul−1 | r) + cmin {Λ(K − ul−1 | r)−

− Λ(Kn−1 − ul−1 | r)}e
−{Λ(Kn−1−ul−1|r)−Λ(Kl−ul−1|r)}

× fTKl−1|r
(ul−1)

}

dul−1

where ul−1 is the time of the last perfect repair (replacement) which is in

the subinterval (Kl−1, Kl] (i.e. subregion Ωl), and cimp = cper is the cost of a

perfect repair (replacement) [13].

The expected costs for sub-cases A-(2) and A-(3) are derived in a simi-

lar manner as the expected cost for sub-case A-(1). By adjusting the argu-

ments of the function ζ(.) in equation (4.18), we next define the expected

costs E[C
(2)
r (ψn)] and E[C

(3)
r (ψn)] for Case A.

(2): r1 ≤ r ≤ r2

Figure 4.3 depicts the case where r1 ≤ r ≤ r2. When r1 ≤ r ≤ r2, the

warranty over the subregions Ω1, Ω2, . . ., Ωn−1 will expire due to exceeding

the usage limits L1, L2, . . ., Ln−1, at time points

τ1 =
L1

r
, τ2 =

L2

r
, . . . , τn−1 =

Ln−1

r
,

respectively. Therefore, the expected total warranty cost for sub-case A-(2),

conditional on R = r, is similar to that of sub-case A-(1) in equation (4.17)

except that Ki are replaced by τi, i = 1, 2, . . . , n−1, respectively. Therefore,

as in equation (4.18) we can write this cost in terms of the above variables,

using the generic function ζ(.), as

E[C(2)
r (ψn)] = ζ(τ1, τ2, . . . , τn−1, K) . (4.19)
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. . .
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. . .
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Ln−1

Kn−1

Ωn

r

τn−1τ1 τ2

. . .

Figure 4.3: r1 ≤ r ≤ r2.

(3): r1 ≤ r2 ≤ r

Figure 4.4 depicts the case where r1 ≤ r2 ≤ r.

. . .
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Time0

Usage
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Ω1

Ω2

Ln−1
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r

τ1 τn−1 τ

. . .

. . .K2K1

τ2

Figure 4.4: r1 ≤ r2 ≤ r.
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When r1 ≤ r2 ≤ r the warranty over the entire region Ω expires at time

τ =
L

r

and the warranty over the subregions Ω1, Ω2, . . ., Ωn−1 will expire at time

points

τ1 =
L1

r
, τ2 =

L2

r
, . . . , τn−1 =

Ln−1

r
,

respectively. The expected total warranty cost for sub-case A-(3), condi-

tional onR = r, is similar to that of sub-case A-(2) in equation (4.19) except

that K is replaced by τ . That is

E[C(3)
r (ψ)] = ζ(τ1, τ2, . . . , τn−1, τ) . (4.20)

The expected total warranty cost for Case A, is derived by uncondi-

tioning the variable R = r. Therefore, for r1 ≤ r2, we have

E[CΩ
A(ψn)] =

r1
∫

0

E[C(1)
r (ψn)] dG(r)+

r2
∫

r1

E[C(2)
r (ψn)] dG(r)+

∞
∫

r2

E[C(3)
r (ψn)] dG(r) ,

(4.21)

where G(r) is the distribution of the usage rate R.

4.3.2 Case B: r2 ≤ r1

For Case B, as for Case A, we conditional on the usage rate R = r and

derive the expected warranty servicing costs for the following three sub-

cases:
(1) r ≤ r2 ≤ r1

(2) r2 ≤ r ≤ r1

(3) r2 ≤ r1 ≤ r

LetE[C
(1)
r (ψn)],E[C

(2)
r (ψn)], andE[C

(3)
r (ψn)] now denote the expected war-

ranty servicing costs, conditional on R = r, for the three sub-cases of Case

B respectively [13]. Each of the expected costs E[C
(j)
r (ψn)], j = 1, 2, 3, are
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the sum of the expected costs in each of the subregions Ω1,Ω2, . . . ,Ωn. That

is

E[C(j)
r (ψn) = E[CΩ1

r (ψn)] + E[CΩ2

r (ψn)] + . . .+ E[CΩn

r (ψn)] .

We have not used the index j in denoting the expected costs E[CΩl
r (ψn)],

l = 1, 2, . . . , n , since it is clear by the context that these costs are specific

to the corresponding sub-cases of Case B. The expected total warranty ser-

vicing cost for Case B is similar to that of Case A in equation (4.21), with

the following adjustments.

(1): r ≤ r2 ≤ r1

r

r2

L

Time0

Usage

Ln−1

r1

Ω1

Ω2

Ωn

...

L2

L1

Kn−1 K

. . .

...

. . .K2K1

Figure 4.5: r ≤ r2 ≤ r1

Figure 4.5 depicts the case where r ≤ r2 ≤ r1. The expected total war-

ranty servicing cost for sub-case B-(1) is the same as that of sub-case A-(1)

in equation (4.17), and is given by

E[C(1)
r (ψn)] = ζ(K1, K2, . . . , Kn−1, K) .
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(2): r2 ≤ r ≤ r1

Figure 4.6 depicts the case where r2 ≤ r ≤ r1.

τ

r2

L

Time0

Usage

Ln−1

r1

Ω1

Ω2

Ωn

...

L2

L1

Kn−1 K

. . .

...

. . .K2K1

r

Figure 4.6: r2 ≤ r ≤ r1

The expected total warranty servicing cost for sub-case B-(2) is similar

to that of sub-case B-(1), with the exception that the warranty over the

entire region Ω expires at time

τ =
L

r
,

and is given by

E[C(2)
r (ψn)] = ζ(K1, K2, . . . , Kn−1, τ) .

(3): r2 ≤ r1 ≤ r

Figure 4.7 depicts the case where r2 ≤ r1 ≤ r.
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. . .K2K1
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τn−1. . .τ2τ1

Figure 4.7: r2 ≤ r1 ≤ r

The expected total warranty servicing cost for sub-case B-(3) is similar to

that of sub-case B-(2), with the exception that the warranty over the sub-

regions Ω1, Ω2, . . ., Ωn−1 expire at time points

τ1 =
L1

r
, τ2 =

L2

r
, . . . , τn−1 =

Ln−1

r
,

respectively. This cost is the same as the cost for sub-case A-(3). Therefore,

the expected warranty servicing cost for sub-case B-(3) is given by

E[C(3)
r (ψn)] = ζ(τ1, τ2, . . . , τn−1, τ) .

Similar to the expected cost for Case A in equation (4.21), uncondition-

ing the variable R = r, we get the expected total warranty cost for Case B.

Therefore, for r2 ≤ r1, we have

E[CΩ
B(ψn)] =

r2
∫

0

E[C(1)
r (ψn)] dG(r)+

r1
∫

r2

E[C(2)
r (ψn)] dG(r)+

∞
∫

r1

E[C(3)
r (ψn)] dG(r) .

(4.22)
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The results derived in this chapter will be illustrated numerically in

Chapter 6, where the expected cost E[CΩ(ψn)], given by equation (4.21)

when r1 ≤ r2 and by equation (4.22) when r2 ≤ r1, is minimized to obtain

the optimal decision variables

ψ∗
n = (K∗

1 , K
∗
2 , . . . , K

∗
n−1, r

∗
1)

that determine the partitions Ω1, Ω2, . . ., Ωn.



Chapter 5

Intensity Reduction Model

In this chapter, we discuss the second of the two imperfect repair models,

namely the intensity reduction model, in detail and derive the distribution

of the times to imperfect repair and the associated expected total warranty

servicing cost. According to the intensity reduction model, the effect of

an imperfect repair is characterized by the change in the conditional in-

tensity function of the underlying failure process [16]. At any time, the

conditional intensity function of the failure process after an imperfect re-

pair is between the conditional intensity after a minimal repair and the

conditional intensity after a perfect repair (replacement).

Chukova et al. [11] consider the failure rate functions of the first life-

time and second lifetime of a process and propose that the failure rate of

the second lifetime distribution after an imperfect repair at time u1 with

degree 0 < δ < 1 is

λ1(t) = λ(t) − δ [λ(t) − λ(t− u1)] ,

for t > u1, where λ(t) is the failure rate of the first lifetime distribution.

Chukova et al. [12] extend this to a generalized form, such that, after the

i-th imperfect repair, the failure rate of the lifetime distribution becomes

λi(t) = λi−1(t) − δ [λi−1(t) − λi−1(t− ui)] ,

82
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for t > ui, where ui is the time of the i-th imperfect repair. This model sug-

gests that the imperfect repair can only undo the damage that the product

has accumulated since the last imperfect repair. The intensity reduction

model considered in this research is a modification of this model. Here an

imperfect repair can undo the damage that the product has accumulated

since it was first put into use. This model is more appropriate for model-

ing failures of a single-component product. These models are analogous

to the virtual age models proposed by Kijima [29]. We now proceed to

explain in detail the intensity reduction model used in this research.

5.1 Model Formulation

Let {Ñ(t | r); t ≥ 0} denote the one-dimensional counting process condi-

tional on R = r, and let λ̃(t | r) be the intensity function of the process. If

the times to imperfect repair are non-random, then the conditional inten-

sity function of the process is the intensity function of the process. There-

fore, conditional on the times to imperfect repair being u1, u2, . . . , un−2, the

intensity function of the process changes as follows. Let the initial inten-

sity function of the failure process, conditional on R = r, be

λ0(t | r) = λ(t | r) ,

where λ(t | r) is an increasing function of time, and is equal to the failure

rate function of the original product. As before, let δi denote the degree of

the i-th imperfect repair, where i = 1, 2, . . . , n − 2. Conditional on R = r,

the intensity function after the first imperfect repair at time u1 with degree

δ1, becomes

λ1(t | r) = λ(t | r) − δ1[λ(t | r) − λ(t− u1 | r)] ,

where u1 < t ≤ u2. Therefore, after a minimal repair, i.e. when δ1 = 0, we

have

λ1(t | r) = λ(t | r) ,



CHAPTER 5. INTENSITY REDUCTION MODEL 84

and after a replacement at time u1, i.e. when δ1 = 1, we have

λ1(t | r) = λ(t− u1 | r) ,

which is the initial intensity function of the process at time t − u1. The

intensity function after the second imperfect repair at time u2 with degree

δ2 is

λ2(t | r) = λ1(t | r) − δ2[λ1(t | r) − λ(t− u2 | r)] ,

where u2 < t ≤ u3. Therefore, when δ2 = 0, we have

λ2(t | r) = λ1(t | r) ,

and when δ2 = 1, we have

λ2(t | r) = λ(t− u2 | r)

which is the initial intensity of the process at time t − u2. In general, after

the i-th imperfect repair at time ui with degree δi, for ui < t ≤ ui+1, the

intensity function becomes

λi(t | r) = λi−1(t | r) − δi[λi−1(t | r) − λ(t− ui | r)] , (5.1)

which, when δi = 0 (minimal repair), reduces to

λi(t | r) = λi−1(t | r) ,

and when δi = 1 (replacement), reduces to

λi(t | r) = λ(t− ui | r) ,

which is the initial intensity of the process at time t − ui. Therefore, con-

ditional on R = r, the intensity function of the process Ñ(t | r), given the
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times to imperfect repair u1, u2, . . . , un−2, is given by

λ̃(t | r) =























































λ(t | r) , 0 ≤ t ≤ u1

λ1(t | r) , u1 ≤ t ≤ u2

λ2(t | r) , u2 ≤ t ≤ u3

...

λi(t | r) , ui ≤ t ≤ ui+1

...

λn−2(t | r) , un−2 ≤ t <∞

See Figure 5.1 for an example of this intensity function.

t
T1 T2 T3

λ( t )

Figure 5.1: Intensity function following imperfect repairs of degree 0.5.

The cumulative intensity function of the process is given by

Λ̃(t | r) =

∫ t

0

λ̃(s | r) ds .

Therefore, for i > 0 and ui < t ≤ ui+1, the expected number of failures in
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the subinterval (ui, t] is given by

E[Ñ(t | r) − Ñ(ui | r)] =

t
∫

ui

λ̃(s | r) ds

=

t
∫

ui

λi(s | r) ds

= Λ̃(t | r) − Λ̃(ui | r) ,

(5.2)

where λi(t | r) is the intensity function after the i-th imperfect repair and

is a function of all previous times to imperfect repair. For simplification

and clarity purposes, let Λ̃(t | r) − Λ̃(ui | r) be denoted by Λi(t | r). That is

Λi(t | r) = Λ̃(t | r) − Λ̃(ui | r) , (5.3)

for i = 1, 2, . . . , n − 2. For t < u1, i.e. before the first imperfect repair, we

have

Λ̃(t | r) = Λ(t | r) =

∫ t

0

λ(s | r) ds ,

which is the expected number of minimal repairs (failures) before the first

imperfect repair. These expected numbers are conditional on the times to

imperfect repair being u1, u2, . . . , un−2.

In the following section, we derive the density functions of the times

to imperfect repair for the intensity reduction model. These density func-

tions are derived in exactly the same manner as those derived for the age

reduction model. Also, these density functions have a similar structure as

those derived in the previous chapter, with one difference: in the density

functions for the age reduction model, the change in the intensity func-

tion after each repair is only in the virtual age and hence, the function

itself does not change; in the density functions for the intensity reduction

model, the change is in the intensity function itself. Hence, where we had

λ[Ai(t) | r] ,
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we will now have

λi(t | r) ,

and where we had

Λ[Ai(t) | r] − Λ[Ai(Kj) | r] ,

we will now have

Λi(t | r) − Λi(Kj | r) .

Therefore, we will omit the derivation process, and only provide the final

results.

5.2 Times to Imperfect Repair

As before, T1|r denotes the time of the first failure conditional on R = r,

and TKl|r, l = 1, 2, . . . , n − 2 denotes the time of the first failure after Kl,

i.e. in subregion Ωl+1. See Chapter 4 for the distribution of the first failure

time T1|r [14, 21]. The distribution function and density function of the first

failure after K1, TK1|r, are given by

FTK1|r
(t) = P{TK1|r ≤ t} = 1 − e−[Λ(t|r)−Λ(K1|r)] ,

and

fTK1|r
(t) = λ(t | r)e−[Λ(t|r)−Λ(K1|r)] , (5.4)

respectively, where λ(t | r) is the initial intensity function, conditional on

R = r. For t > K2, the distribution function and density function of the

time to first failure after K2, TK2|r, are given by

FTK2|r
(t) = P{TK2|r ≤ t}

=

K2
∫

K1

(1 − e−{Λ1(t|r)−Λ1(K2|r)})fTK1|r
(u1)du1 + e−[Λ(K2|r)−Λ(K1|r)]

− e−[Λ(t|r)−Λ(K1|r)] ,
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and

fTK2|r
(t) =

d

dt
FTK2|r

(t)

=

K2
∫

K1

λ1(t | r)e
−{Λ1(t|r)−Λ1(K2|r)}fTK1|r

(u1) du1 + fTK1|r
(t) ,

respectively, where λ1(t | r) is the intensity function after the first imper-

fect repair at time u1, and fTK1|r
(t) is defined in equation (5.4). As derived

in the previous chapter, for t > K3, the distribution function of TK3|r is

given by

FTK3|r
(t) =P{TK3|r ≤ t}

=

K3
∫

K2

K2
∫

K1

{

(

1 − e−{Λ2(t|r)−Λ2(K3|r)}
)

λ1(u2 | r)e
−{Λ1(u2|r)−Λ1(K2|r)}

fTK1|r
(u1)

}

du1 du2

+

K3
∫

K2

(

1 − e−{Λ1(t|r)−Λ1(K3|r)}
)

e−{Λ1(K3|r)−Λ1(K3|r)} fTK1|r
(u1) du1

+

K2
∫

K1

(

1 − e−{Λ1(t|r)−Λ1(K3|r)}
)

e−{Λ1(K3|r)−Λ1(K2|r)} fTK1|r
(u1) du1

+
(

1 − e{Λ(t|r)−Λ(K3|r)}
)

e−{Λ(K3|r)−Λ(K1|r)} .

The functions Λ1(. | r) and Λ2(. | r) are the cumulative intensity functions

after the first imperfect repair and second imperfect repair, respectively.

The double integral is over the subintervals (K1, K2] and (K2, K3], where

an imperfect repair could have been performed. In the third summand,

the exponent term implies that no failures have occurred in the subinter-

val (K2, t]. In other words, there have been no imperfect repairs in the
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previous subinterval (K2, K3]. The density function of TK3|r is given by

fTK3|r
(t) =

d

dt
FTK3|r

(t)

=

K3
∫

K2

K2
∫

K1

{

λ2(t | r)e
−{Λ2(t|r)−Λ2(K3|r)}

λ1(u2 | r)e
−{Λ1(u2|r)−Λ1(K2|r)}fTK1|r

(u1)

}

du1 du2

+

K3
∫

K2

λ1(t | r)e
−{Λ1(t|r)−Λ1(K3|r)}fTK1|r

(u1)du1

+

K2
∫

K1

λ1(t | r)e
−{Λ1(t|r)−Λ1(K2|r)}fTK1|r

(u1)du1

+ fTK1|r
(t) .

Similarly, in deriving the density function of the time of the first failure

after K4, namely TK4|r, we must consider the cases where none, one, two

or three imperfect repairs have been performed before K4. The density

function for TK4|r is given on the following page.

Note that the first summand is the case where there has been at least

one failure (and therefore an imperfect repair) in each of the subintervals,

(K1, K2], (K2, K3], and (K3, K4], before K4. The last summand is the case

where no failures have occurred in the subintervals (K1, K2], (K2, K3], and

(K3, K4], i.e, no failures in the subinterval (K1, K4]. The three summands

with double integrals each represents the case where there has been at

least one failure in each of the two corresponding subintervals and the

next three summands with single integrals each represents the case where

there has been at least one failure in the corresponding subinterval.
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The density function for TK4|r is

fTK4|r
(t) =

K4
∫

K3

K3
∫

K2

K2
∫

K1

{

λ3(t | r)e
−{Λ3(t|r)−Λ3(K4|r)}

× λ2(u3 | r)e
−{Λ2(u3|r)−Λ2(K3|r)}

× λ1(u2 | r)e
−{Λ1(u2|r)−Λ1(K2|r)}fTK1|r

(u1)

}

du1 du2 du3

+

K3
∫

K2

K2
∫

K1

{

λ2(t | r)e
−{Λ2(t|r)−Λ2(K3|r)}

× λ1(u2 | r)e
−{Λ1(u2|r)−Λ1(K2|r)}fTK1|r

(u1)

}

du1 du2

+

K4
∫

K3

K3
∫

K2

{

λ2(t | r)e
−{Λ2(t|r)−Λ2(K4|r)}

× λ1(u2 | r)e
−{Λ1(u2|r)−Λ1(K3|r)}fTK1|r

(u1)

}

du1 du2

+

K4
∫

K3

K2
∫

K1

{

λ2(t | r)e
−{Λ2(t|r)−Λ2(K4|r)}

× λ1(u2 | r)e
−{Λ1(u2|r)−Λ1(K2|r)}fTK1|r

(u1)

}

du1 du2

+

K4
∫

K3

λ1(t | r)e
−{Λ1(t|r)−Λ1(K4|r)}fTK1|r

(u1)du1

+

K3
∫

K2

λ1(t | r)e
−{Λ1(t|r)−Λ1(K3|r)}fTK1|r

(u1)du1

+

K2
∫

K1

λ1(t | r)e
−{Λ1(t|r)−Λ1(K2|r)}fTK1|r

(u1)du1

+ fTK1|r
(t) .

where the functions Λ1(. | r), Λ2(. | r) and Λ3(. | r) are the cumulative
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intensity functions after the first imperfect repair, the second imperfect

repair and the third imperfect repair, respectively.

In general, to derive the density function of the first repair after Kl,

namely TKl|r
, where l = 1, . . . , n − 2 for the n-subregion strategy, we need

to consider all possible combinations of imperfect repairs in the previous

subregions Ω2,Ω3, . . . ,Ωl. As before, let i denote the possible number of

previous imperfect repairs. For TKl|r
, the time of the first failure after Kl,

we have i = 0, 1, . . . , l − 1 possible previous imperfect repairs. By con-

ditioning on the times to imperfect repair u1, u2, . . . , ul−1 and then remov-

ing the conditioning, we account for all possible times to imperfect repair

within the corresponding subintervals. Then the density function of the

time to first failure after Kl, TKl|r, is given by

fTKl|r
(t) = fTK1|r

(t)

+

l−1
∑

i=1

∑

∀{j1,j2...,ji}∈Ji,l

Kji
∫

Kji−1

. . .

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

λi(t | r) e
−{Λi(t|r)−Λi(Kji

|r)]}

× λi−1(ui | r) e
−{Λi−1(ui|r)−Λi−1(Kji−1

|r)]}

...

× λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(Kj1

|r)]}

× fTK1|r
(u1)

}

du1 du2 . . . dui

(5.5)

where the functions λi(. | r) and Λi(. | r) are defined in equation (5.1) and

equation (5.3) respectively. For i > 0, the set

Ji,l = {{j1, . . . , ji} : {j1, . . . , ji} ⊆ {2, . . . , l} and j1 < · · · < ji}

provides all possible combinations of {Kj1, Kj2 . . . , Kji} which generate

these subintervals (see page 60 for details on Ji,l).

Having derived the density function, we proceed to deriving the ex-

pected warranty servicing cost over the warranty region for the intensity



CHAPTER 5. INTENSITY REDUCTION MODEL 92

reduction model. This cost is derived in the same manner as the cost for

the age reduction model in Chapter 4. Like the density functions, the struc-

ture of this cost is the same as that of the cost derived for the age reduction

model. The differences between the derived cost for the two models are

mentioned earlier on page 87 and in addition, the expected number of fail-

ures in (ui, t] for the age reduction model is denoted by

Λ[Ai(t) | r] − Λ[Ai(ui) | r] ,

and for the intensity reduction model is denoted by

Λi(t | r) .

See page 86 for the definition of the cumulative intensity function Λi(t | r).

Therefore, in the following section, we will derive the expected warranty

servicing costs in a more concise manner.

5.3 Warranty Servicing Costs

Like before, let E[CΩ(ψn)] denote the total expected warranty servicing

cost over the warranty region Ω. Since the repair strategy is restricted, in

determining the total expected warranty cost E[CΩ(ψn)], we consider the

two cases; r1 ≤ r2 and r2 ≤ r1, where r1 > 0 and r2 > 0. As before,

E[CΩ
A(ψn)] denotes the total expected warranty servicing cost for the first

case r1 ≤ r2 and E[CΩ
B(ψn)] denotes the total expected warranty servicing

cost for the second case r2 ≤ r1. That is,

• Case A: E[CΩ(ψn)] = E[CΩ
A(ψn)]

• Case B: E[CΩ(ψn)] = E[CΩ
B(ψn)]

In the following sections, we derive the expected warranty costs for Case

A and Case B.
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5.3.1 Case A: r1 ≤ r2

As in the age reduction model, we subdivide the warranty region based

on the rates r1 and r2 and conditional on the usage rate R = r derive the

expected warranty servicing costs for the following three sub-cases;

(1) r ≤ r1 ≤ r2

(2) r1 ≤ r ≤ r2

(3) r1 ≤ r2 ≤ r

The expected warranty servicing costs, conditional on R = r, for the three

sub-cases are denoted by E[C
(1)
r (ψn)], E[C

(2)
r (ψn)], and E[C

(3)
r (ψn)] respec-

tively. Then the expected total warranty cost for Case A is given by

E[CΩ
A(ψn)] =

r1
∫

0

E[C(1)
r (ψn)]dG(r)+

r2
∫

r1

E[C(2)
r (ψn)]dG(r)+

∞
∫

r2

E[C(3)
r (ψn)]dG(r) .

Each of the expected costs E[C
(j)
r (ψn)], j = 1, 2, 3, are the sum of the cor-

responding expected costs in each of the subregions Ω1,Ω2, . . . ,Ωn, which

are denoted by

E[CΩ1

r (ψn)], E[CΩ2

r (ψn)], . . . , E[CΩn

r (ψn)] .

Since these costs are clear in context, the use of the index j is omitted.

Therefore, the expected warranty servicing cost conditional on R = r, for

the three sub-cases, j = 1, 2, 3, is given by

E[C(j)
r (ψn) = E[CΩ1

r (ψn)] + E[CΩ2

r (ψn)] + . . .+ E[CΩ3

r (ψn)] .

The main results of this chapter are the density function derived in equa-

tion (5.5), and the expected warranty servicing costs for Case A,E[CΩ
A(ψn)],

and Case B, E[CΩ
B(ψn)], for the intensity reduction model which we derive

in the following sections. As in the age reduction model, we will only

derive the expected cost for sub-case A-(1), since the expected costs for A-

(2) and A-(3) and Case B can be obtained in a similar manner with minor

adjustments.
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(1) r ≤ r1 ≤ r2

Let cmin and cimp denote the cost of a minimal repair and the cost of an

imperfect repair, respectively. The costs cmin and cimp are assumed to be

constant. Later, in the numerical example, we will adjust the cost cimp

based on the degrees of the imperfect repairs.

r

r2

r1L

Time0

Usage

KK2K1

L1

L2

...
...

. . .

. . .

Ω1

Ω2

Ln−1

Kn−1

Ωn

Figure 5.2: r ≤ r1 ≤ r2.

The expected warranty servicing cost in the first subregion Ω1 is not

conditional on times to imperfect repair, since all repairs in this subregion

are minimal, and therefore, the warranty servicing cost in this subregion

is given by
{

cmin Ñ(K1 | r), Ñ(K1 | r) > 0

0, otherwise ,

where Ñ(K1 | r) is the number of failures in the subinterval [0, K1] and the

expected warranty servicing cost in Ω1 is given by

{

cmin Λ(K1 | r), Ñ(K1 | r) > 0

0, otherwise ,
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where

Λ(K1 | r) =

K1
∫

0

λ(s | r) ds .

That is

E[CΩ1

r (ψn)] = cmin Λ(K1 | r) . (5.6)

The first failure in the second subregion Ω2 is followed by an imperfect

repair and all consequent failures are followed by minimal repairs. Con-

ditional on the time of the imperfect repair being u1, the conditional war-

ranty servicing cost in subregion Ω2 is given by

{

cimp + cmin [Ñ(K2 | r) − Ñ(u1 | r)], u1 ≤ K2

0, u1 > K2 ,

where Ñ(K2 | r) − Ñ(u1 | r) denotes the number of failures (minimal re-

pairs) in the subinterval (u1, K2]. The expected conditional warranty ser-

vicing cost in Ω2 is given by

{

cimp + cmin Λ1(K2 | r), u1 ≤ K2

0, u1 > K2 ,

where

Λ1(K2 | r) =

K2
∫

u1

λ1(s | r) ds

is the cumulative intensity function after the first imperfect repair at time

u1 and the expected number of minimal repairs in the subinterval (u1, K2].

Removing the conditioning on u1, we get

E[CΩ2

r (ψn)] =

K2
∫

K1

[cimp + cmin Λ1(K2 | r)] fTK1|r
(u1) du1 . (5.7)

The first failure in the third subregion Ω3 is also followed by an imperfect

repair and all subsequent repairs in this subregion are followed by mini-

mal repairs. Therefore, conditional on the time of the first imperfect repair
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u1 and the time of the second imperfect repair u2, the conditional warranty

servicing cost in subregion Ω3 is given by











cimp + cmin [Ñ(K3 | r) − Ñ(u1 | r)], K2 < u1 ≤ K3

cimp + cmin [Ñ(K3 | r) − Ñ(u2 | r)], u1 ≤ K2 and u2 ≤ K3

0, otherwise

where Ñ(K3 | r)−Ñ (u1 | r) and Ñ(K3 | r)−Ñ (u2 | r) count the number of

minimal repairs in the subintervals (u1, K3] and (u2, K3] respectively. The

expected conditional warranty servicing cost in subregion Ω3 is











cimp + cmin Λ1(K3 | r) , K2 < u1 ≤ K3

cimp + cmin Λ2(K3 | r) , u1 ≤ K2 and u2 ≤ K3

0, otherwise

where Λ1(K3 | r) and Λ2(K3 | r) are the expected number of minimal

repairs in the subintervals (u1, K3] and (u2, K3] respectively. On removing

the conditioning on u1 and u2, we get the expected warranty servicing cost

in subregion Ω3, i.e.

E[CΩ3

r (ψn)] =
K3
∫

K2

[cimp + cmin Λ1(K3 | r)] fTK1|r
(u1) du1

+
K3
∫

K2

K2
∫

K1

{

[cimp + cmin Λ2(K3 | r)] λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(K2|r)}

× fTK1|r
(u1)

}

du1 du2 .

(5.8)

Similar to the cost in Ω3, the conditional warranty servicing cost in subre-

gion Ω4, conditional on the times to imperfect repair u1, u2 and u3, is given

by































cimp + cmin [Ñ(K4 | r) − Ñ(u1 | r)], K3 < u1 ≤ K4

cimp + cmin [Ñ(K4 | r) − Ñ(u2 | r)], u1 ≤ K2 and K3 < u2 ≤ K4

cimp + cmin [Ñ(K4 | r) − Ñ(u2 | r)], K2 < u1 ≤ K3 and K3 < u2 ≤ K4

cimp + cmin [Ñ(K4 | r) − Ñ(u3 | r)], u1 ≤ K2, u2 ≤ K3 and u3 ≤ K4

0, otherwise
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and the expected conditional warranty servicing cost in this subregion is

given by































cimp + cmin Λ1(K4 | r) , K3 < u1 ≤ K4

cimp + cmin Λ2(K4 | r) , u1 ≤ K2 and K3 < u2 ≤ K4

cimp + cmin Λ2(K4 | r) , K2 < u1 ≤ K3 and K3 < u2 ≤ K4

cimp + cmin Λ3(K4 | r) , u1 ≤ K2, u2 ≤ K3 and u3 ≤ K4

0, otherwise ,

where Λ1(K4 | r), Λ2(K4 | r) and Λ3(K4 | r) are the expected number of

minimal repairs in the subintervals (u1, K4], (u2, K4] and (u3, K4] respec-

tively. On removing the conditioning on u1, u2 and u3, we get the expected

warranty servicing cost in subregion Ω4, i.e.

E[CΩ4

r (ψn)] =
K4
∫

K3

[cimp + cmin Λ1(K4 | r)] fTK1|r
(u1)du1

+
K4
∫

K3

K2
∫

K1

{

[cimp + cmin Λ2(K4 | r)]

× λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(K2|r)} fTK1|r

(u1)

}

du1 du2

+
K4
∫

K3

K3
∫

K2

{

[cimp + cmin Λ2(K4 | r)]

× λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(K3|r)} fTK1|r

(u1)

}

du1 du2

+
K4
∫

K3

K3
∫

K2

K2
∫

K1

{

[cimp + cmin Λ3(K4 | r)]

× λ2(u3 | r)e
−{Λ2(u3|r)−Λ2(K3|r)}λ1(u2 | r)e

−{Λ1(u2|r)−Λ1(K2|r)}

× fTK1|r
(u1)

}

du1 du2 du3 .

(5.9)

In any of the intermediate subregions Ωl, l = 2, 3, . . . , n − 1, the possi-

ble number of previous imperfect repairs before the subregion, can be

i = 0, 1, . . . , l − 2, since all repairs in the first subregion are minimal. As

derived in the age reduction model, conditional on the times to imper-

fect repair being u1, u2, . . . , ul−1, the conditional expected warranty cost in
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subregion Ωl corresponding to the number of possible imperfect repairs

i = 0, 1, . . . , l − 2 before the subregion and the (i + 1)-th imperfect repair

which is in Ωl, is given by










































cimp + cmin Λ1(Kl | r), i = 0 and Kl−1 < u1 ≤ Kl

cimp + cmin Λ2(Kl | r), i = 1 and Kl−1 < u2 ≤ Kl

cimp + cmin Λ3(Kl | r), i = 2 and Kl−1 < u3 ≤ Kl

...
...

cimp + cmin Λl−1(Kl | r), i = l − 2 and Kl−1 < ul−1 ≤ Kl

0, otherwise .

To derive the expected warranty servicing cost within the subregion Ωl,

we remove the conditioning on the times to imperfect repair to get

E[CΩl
r (ψn)] =

Kl
∫

Kl−1

[cimp + cmin Λ1(Kl | r)] fTK1|r
(u1) du1

+
Kl
∫

Kl−1

(

∑

∀{j1}∈J1,l−1

Kj1
∫

Kj1−1

{

[cimp + cmin Λ2(Kl | r)]

× λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(Kj1

|r)} fTK1|r
(u1)

}

du1

)

du2

+
Kl
∫

Kl−1

(

∑

∀{j1,j2}∈J2,l−1

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

[cimp + cmin Λ3(Kl | r)]

× λ2(u3 | r) e
−{Λ2(u3|r)−Λ2(Kj2

|r)}

×λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(Kj1

|r)} fTK1|r
(u1)

}

du1 du2

)

du3

+ . . . +

+
Kl
∫

Kl−1

Kl−1
∫

Kl−2

. . .
K3
∫

K2

K2
∫

K1

{

[cimp + cmin Λl−1(Kl | r)]

× λl−2(ul−1 | r) e
−{Λl−2(ul−1|r)−Λl−2(Kl−1|r)}

× λl−3(ul−2 | r) e
−{Λl−3(ul−2|r)−Λl−3(Kl−2|r)}

...

× λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(K2|r)]}

× fTK1|r
(u1)

}

du1 du2 . . . dul−2 dul−1 ,

(5.10)
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where the set Ji,l−1, i = 1, ..., l − 2 (see page 60), provides all combinations

of the subintervals in which the i possible previous imperfect repairs have

been performed. The conditional expected warranty servicing costs in the

last subregion Ωn, for i previous imperfect repairs before Ωn is


































cmin [Λ(K | r) − Λ(Kn−1 | r)], i = 0

cmin [Λ1(K | r) − Λ1(Kn−1 | r)], i = 1

cmin [Λ2(K | r) − Λ2(Kn−1 | r)], i = 2
...

cmin [Λn−2(K | r) − Λn−2(Kn−1 | r)], i = n− 2 ,

if at least one failure has occurred in Ωn and zero otherwise. To derive the

expected warranty servicing cost in the last subregion Ωn, we remove the

conditioning on the times to imperfect repair as follows

E[CΩn
r (ψn)] = cmin [Λ(K | r) − Λ(Kn−1 | r)] e

−{Λ(Kn−1|r)−Λ(K1|r)}

+
∑

∀{j1}∈J1,n−1

Kj1
∫

Kj1−1

{

cmin [Λ1(K | r) − Λ1(Kn−1 | r)]

× e−{Λ1(Kn−1|r)−Λ1(Kj1
|r)} fTK1|r

(u1)

}

du1

+
∑

∀{j1,j2}∈J2,n−1

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

cmin {Λ2(K | r) − Λ2(Kn−1 | r)}

× e−{Λ2(Kn−1|r)−Λ2(Kj2
|r)} λ1(u2 | r) e

−{Λ1(u2|r)−Λ1(Kj1
|r)}

× fTK1|r
(u1)

}

du1 du2

+ . . . +

+
Kn−1
∫

Kn−2

Kn−2
∫

Kn−3

. . .
K3
∫

K2

K2
∫

K1

{

cmin {Λn−2(K | r) − Λn−2(Kn−1 | r)}

× λn−3(un−2 | r) e
−{Λn−3(un−2|r)−Λn−3(Kn−2|r)}

× λn−4(un−3 | r) e
−{Λn−4(un−3|r)−Λn−4(Kn−3|r)}

...

× λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(K2|r)]}

× fTK1|r
(u1)

}

du1 du2 . . . dun−3 dun−2 ,

(5.11)
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where the set Ji,n−1, i = 1, ..., n − 2 provides all possible combinations of

the subintervals in which the i previous imperfect repairs have been per-

formed (see page 60 for details on the set Ji,n−1). For i = 1, 2, . . . , n− 2, the

probability

e−{Λi(Kn−1|r)−Λi(Kji
|r)} ,

reflects the event that the last imperfect repair was performed in the subin-

terval (Kji−1, Kji], i.e. no failures have occurred in the subregions between

Ωji and Ωn. Having derived the costs in the n subregions, we now derive

the expected cost for sub-case A-(1). Conditional on R = r, this cost is

given by

E[C(1)
r (ψn)] = E[CΩ1

r (ψn)] + E[CΩ2

r (ψn)] + . . .+ E[CΩn

r (ψn)] .

On summarizing the equations [(5.6),(5.7), . . . , (5.11)] derived for each sub-

region, as we did for the age reduction model, the expected warranty ser-

vicing cost for sub-case A-(1) becomes

E[C
(1)
r (ψn)] = cminΛ(K1 | r)

+ cmin [Λ(K | r) − Λ(Kn−1 | r)] e
−{Λ(Kn−1|r)−Λ(K1|r)}

+
n−1
∑

l=2

Kl
∫

Kl−1

{

[cimp + cmin Λ1(Kl | r)] + cmin {Λ1(K | r) − Λ1(Kn−1 | r)}]

× e−{Λ1(Kn−1|r)−Λ1(Kl|r)} fTK1|r
(u1)

}

du1

+
n−1
∑

l=3

l−2
∑

i=1

Kl
∫

Kl−1

(

∑

∀{j1,j2,...,ji}∈Ji,l−1

Kji
∫

Kji−1

. . .

Kj2
∫

Kj2−1

Kj1
∫

Kj1−1

{

[

cimp

+cmin Λi+1(Kl | r) + cmin {Λi+1(K | r) − Λi+1(Kn−1 | r)}

e−(Λi+1(Kn−1|r)−Λi+1(Kl|r))
]

× λi(ui+1 | r) e
−{Λi(ui+1|r)−Λi(Kji

|r)}

× λi−1(ui | r) e
−{Λi−1(ui|r)−Λi−1(Kji−1

|r)}

...

× λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(Kj1

|r)}

× fTK1|r
(u1)

}

du1 du2 . . . dui

)

dui+1

(5.12)
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The expected cost in equation (5.12) is a function of the decision variables

K1, K2, . . . , Kn−1 and the warranty time limit K. At this point, we define a

generic function ξ(.), such that

E[C(1)
r (ψn)] = ξ(K1, K2, . . . , Kn−1, K) . (5.13)

The arguments of this function will later be modified to obtain the costs

for sub-cases A-(2) and A-(3), and for Case B.

When δ1 = δ2 = . . . = δn−2 = 1, this cost reduces to the one derived by

Chukova et al. [13]; see page 75 for details.

Next, we use the function defined in equation (5.13) to define the costs

for sub-cases A-(2) and A-(3).

(2): r1 ≤ r ≤ r2

Figure 5.3 depicts the case where r1 ≤ r ≤ r2.

. . .

r2

r1L

Time0

Usage

KK2K1

L1

L2

...
...

. . .

Ω1

Ω2

Ln−1

Kn−1

Ωn

r

τn−1τ1 τ2

. . .

Figure 5.3: r1 ≤ r ≤ r2.

When r1 ≤ r ≤ r2, the warranty over the subregions Ω1, Ω2, . . ., Ωn−1 will
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expire due to exceeding the usage limits L1, L2, . . ., Ln−1 at time points

τ1 =
L1

r
, τ2 =

L2

r
, . . . , τn−1 =

Ln−1

r
,

respectively. Therefore, the expected warranty cost for sub-case A-(2) is

given by

E[C(2)
r (ψn)] = ξ(τ1, τ2, . . . , τn−1, K) .

(3): r1 ≤ r2 ≤ r

Figure 5.4 depicts the case where r1 ≤ r2 ≤ r. When r1 ≤ r2 ≤ r the

warranty over the entire region Ω expires at time

τ =
L

r

and the warranty over the subregions Ω1, Ω2, . . ., Ωn−1 will expire at time

points

τ1 =
L1

r
, τ2 =

L2

r
, . . . , τn−1 =

Ln−1

r
,

respectively. Therefore, the expected warranty servicing cost for sub-case

A-(3), is given by

E[C(3)
r (ψn)] = ξ(τ1, τ2, . . . , τn−1, τ) .

Finally, the expected total warranty cost for Case A, is derived by un-

conditioning the variable R = r. Therefore, for r1 ≤ r2, we have

E[CΩ
A(ψn)] =

r1
∫

0

E[C(1)
r (ψn)] dG(r)+

r2
∫

r1

E[C(2)
r (ψn)] dG(r)+

∞
∫

r2

E[C(3)
r (ψn)] dG(r) ,

(5.14)

where G(r) is the distribution function of the usage rate R.
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. . .
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Figure 5.4: r1 ≤ r2 ≤ r.

5.3.2 Case B: r2 ≤ r1

For Case B, as for Case A, we conditional on the usage rate R = r and

derive the expected warranty servicing costs for the following three sub-

cases:
(1) r ≤ r2 ≤ r1

(2) r2 ≤ r ≤ r1

(3) r2 ≤ r1 ≤ r

LetE[C
(1)
r (ψn)], E[C

(2)
r (ψn)], andE[C

(3)
r (ψn)] denote the expected warranty

servicing costs, conditional on R = r, for the three sub-cases respectively

[13]. Each of the expected costs E[C
(j)
r (ψn)], j = 1, 2, 3, is the sum of the

expected costs in each of the subregions Ω1,Ω2, . . . ,Ωn. That is

E[C(j)
r (ψn) = E[CΩ1

r (ψn)] + E[CΩ2

r (ψn)] + . . .+ E[CΩn

r (ψn)] .

We have not used the index j in denoting the expected costs E[CΩl
r (ψn)],

where l = 1, 2, . . . , n, since it is clear by the context that these costs are spe-

cific to the corresponding sub-cases of Case B. The expected total warranty
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servicing cost for Case B is similar to that of Case A in equation (5.14), with

the following adjustments.

(1): r ≤ r2 ≤ r1

Figure 5.5 depicts the case where r ≤ r2 ≤ r1.

r

r2

L

Time0

Usage

Ln−1

r1

Ω1

Ω2

Ωn

...

L2

L1

Kn−1 K

. . .

...

. . .K2K1

Figure 5.5: r ≤ r2 ≤ r1

The expected warranty servicing cost for sub-case B-(1) is the same as that

of sub-case A-(1), and is given by

E[C(1)
r (ψn)] = ξ(K1, K2, . . . , Kn−1, K) .

(2): r2 ≤ r ≤ r1

Figure 5.6 depicts the case where r2 ≤ r ≤ r1.

The expected total warranty servicing cost for sub-case B-(2) is similar

to that of sub-case B-(1), with the exception that the warranty over the

entire region Ω expires at time

τ =
L

r
.
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τ
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Ln−1

r1

Ω1

Ω2

Ωn

...

L2

L1

Kn−1 K

. . .

...

. . .K2K1

r

Figure 5.6: r2 ≤ r ≤ r1

Therefore, the expected cost becomes

E[C(2)
r (ψn)] = ξ(K1, K2, . . . , Kn−1, τ) .

(3): r2 ≤ r1 ≤ r

Figure 5.7 depicts the case where r2 ≤ r1 ≤ r. The expected warranty

servicing cost for sub-case B-(3) is the same as that of sub-case A-(3), where

the warranty over the subregions Ω1, Ω2, . . ., Ωn−1, Ωn will expire at time

points

τ1 =
L1

r
, τ2 =

L2

r
, . . . , τn−1 =

Ln−1

r
, τ =

L

r
,

respectively. The expected total warranty servicing cost for sub-case B-(3)

is given by

E[C(3)
r (ψn)] = ξ(τ1, τ2, . . . , τn−1, τ) .

Similar to the expected total warranty servicing cost for Case A, given

in equation (5.14), unconditioning the variable R = r, we get the expected



CHAPTER 5. INTENSITY REDUCTION MODEL 106

τ

r2

L

Time0

Usage

Ln−1

r1

Ω1

Ω2

Ωn

...

L2

L1

Kn−1 K

. . .

...

. . .K2K1

r

τn−1. . .τ2τ1

Figure 5.7: r2 ≤ r1 ≤ r

total warranty cost for Case B. That is

E[CΩ
B(ψn)] =

r2
∫

0

E[C(1)
r (ψn)] dG(r)+

r1
∫

r2

E[C(2)
r (ψn)] dG(r)+

∞
∫

r1

E[C(3)
r (ψn)] dG(r) .

(5.15)

Numerical results illustrating the results derived in this chapter are

presented in the following chapter.



Chapter 6

Numerical Illustration

In this research, we study an imperfect repair strategy Sδ
n for a repairable

product sold with a two-dimensional free-replacement warranty policy.

The vector

δ = (δ1, δ2, . . . , δn−2)

denotes the degrees of the imperfect repairs, and n denotes the number of

subregions. The imperfect repair strategy is restricted and hence, charac-

terized by n decision variables

ψn = (K1, K2, . . . , Kn−1, r1) .

The strategy is a generalized form of the repair-replacement strategy pro-

posed by Chukova et al. [13] in which all repairs in the first and last

subregions are minimal, and the first repair in each of the intermediate

subregions is perfect (a replacement) while all consecutive repairs in the

subregion are minimal. In the imperfect repair strategy considered here,

the first repair in each of the intermediate subregions is imperfect, i.e. the

degree of the repair is in the interval (0, 1). Refer to page 44 for a detailed

description of the imperfect repair strategy. Assuming that the cost of an

imperfect repair is proportional to the degree of the repair, with the imper-

fect repair strategy, we aim to reduce the warranty servicing cost by find-

ing the set of decision variables that minimize the expected total warranty

107
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servicing cost over the rectangular warranty region Ω = [0, K) × [0, L).

Two methods, described in Chapter 4 and Chapter 5, have been used

to model the imperfect repairs, namely, the age reduction model in which

the effect of the repair is characterized by a reduction in the virtual age of

the product, and the intensity reduction model in which the effect of the

repair is characterized by a reduction in the conditional intensity function

of the failure process [11, 16]. Having derived the expected total warranty

servicing cost E[CΩ(ψn)] for both models, under the restricted imperfect

repair strategy Sδ
n , we use numerical optimization to find the optimal

ψ∗
n = (K∗

1 , K
∗
2 , . . . , K

∗
n−1, r

∗
1) ,

which yields the minimum expected total warranty servicing costE[CΩ(ψ∗
n)].

In this chapter, we provide numerical results for the imperfect repair

strategies Sδ
3 , where the warranty region is divided into three subregions,

and Sδ
4 , where the warranty region is divided into four subregions, for

both the age and intensity reduction models. For the 3-subregion strategy,

there is one imperfect repair which is in the middle subregion, and for the

4-subregion strategy, there are two imperfect repairs which are in the two

middle subregions. The vector δ of degrees of the imperfect repairs for the

two strategies are

δ = δ

and

δ = (δ1, δ2) ,

respectively. For r1 ≤ r2, Figure 6.1 and Figure 6.2 depict the warranty

region for Sδ
3 and Sδ

4 , respectively.

For comparison reasons, we consider the example provided in the pa-

pers by Iskandar et al. [21] and Chukova et al. [13], and we use a numerical

procedure (grid search) similar to the one used in these two papers. The

details of the numerical example and search procedure are provided in the

following section.
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Figure 6.1: The 3-subregion rectangular warranty region
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Time0

Figure 6.2: The 4-subregion rectangular warranty region

6.1 Numerical Example

The product under consideration is an automobile component sold with

a free-replacement warranty. The time is measured in units of year and
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the usage is measured in units of 10, 000 kilometers. It is assumed that

K = 2 and L = 2, i.e. the time limit of the warranty policy is two years

and the usage limit of the warranty policy is twenty thousand kilometers.

Therefore,

r2 =
L

K
= 1 .

For the 3-subregion imperfect repair strategy Sδ
3 , in both the age and

intensity reduction models, a grid search for minimizing the expected cost

E[CΩ(ψ3)] was done with the decision variables K1 and K2 incremented

in steps of 0.1, over the interval [0.1, 2.0), and the decision variable r1 in-

cremented in steps of 0.2, starting at 0.2. For the 4-subregion imperfect

repair strategy Sδ
4 , in both the age and intensity reduction models, a grid

search for minimizing the expected costE[CΩ(ψ4)] was done with the deci-

sion variables K1, K2 and K3 incremented in steps of 0.1, over the interval

[0.1, 2.0), and the decision variable r1 incremented in steps of 0.2, starting

at 0.2 [21].

6.1.1 Repair Costs

Let cmin, cimp and cper denote the costs of a minimal repair, an imperfect re-

pair and a perfect repair (replacement) respectively. The costs cmin and cper

are assumed to be constant, and the cost cimp is assumed to be proportional

to the degree of repair. We also assume that

cmin < cimp < cper .

For the numerical example, we assume that the degrees of the imperfect

repairs in all the intermediate subregions are equal. That is, for Sδ
4 where

we have two intermediate subregions and hence, two possible imperfect

repairs with degrees δ1 and δ2 respectively, we assume that δ1 = δ2 = δ.

Hence, δ = δ. This makes Sδ
4 comparable with Sδ

3 when the values of δ

are equal. We define the ratios

µ =
cmin

cper
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and

δ =
cimp

cper

and compute the expected warranty servicing costsE[CΩ(ψ3)] andE[CΩ(ψ4)]

for different values of µ and δ for both imperfect repair models. In this

numerical example, as suggested by Iskandar et al [21], we set cper = 1,

which makes the ratios µ and δ the cost of a minimal repair and the cost of

an imperfect repair, respectively.

6.1.2 Initial Intensity Function

The initial intensity function, conditional on R = r, is of the form

λ(t | r) = θ0 + θ1 r + θ2 A
2(t) + θ3 A(t) U(t) ,

where θ0, θ1, θ2, and θ3 are all positive constants [6]. Since usage is a func-

tion of age, this intensity function reduces to

λ(t | r) = θ0 + θ1 r + (θ2 + θ3 r) A
2(t) .

As long as the failed product is repaired minimally, this function further

reduces to

λ(t | r) = θ0 + θ1 r + (θ2 + θ3 r) t
2 , (6.1)

making the cumulative intensity function before the first imperfect repair

Λ(t | r) =

t
∫

0

λ(s | r) ds

=θ0 t+ θ1 r t+ (θ2 + θ3 r)
t3

3
.

(6.2)

As in the example by Iskandar et al. [21], here, the values of the parameters

are θ0 = 0.1, θ1 = 0.2, θ2 = 0.7 and θ3 = 0.7. Therefore, equation (6.1)

becomes

λ(t | r) = 0.1 + 0.2 r + (0.7 + 0.7 r) t2 ,
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and the cumulative intensity function in equation (6.2) becomes

Λ(t | r) = 0.1 t+ 0.2 r t+ (0.7 + 0.7 r)
t3

3
.

These functions are conditional on the usage rate R. In order to deter-

mine the intensity function and hence, the unconditional expected costs,

we need to remove the conditioning on R = r.

6.1.3 Distribution of the Usage Rate R

The usage rate R is uniformly distributed over an interval [rl, ru] with dis-

tribution and density functions

G(r) =

{

r−rl
ru−rl

, r ∈ [rl, ru]

0, otherwise

g(r) =

{

1
ru−rl

, r ∈ [rl, ru]

0, otherwise

respectively.

In the numerical example, three usage categories are considered for

the consumer usage rate R: light, medium and heavy [21]. The distribution

functions corresponding to the three categories are

Light : G(r) =

{

r−0.1
0.9−0.1

, r ∈ [0.1, 0.9]

0, otherwise ,

Medium : G(r) =

{

r−0.7
1.3−0.7

, r ∈ [0.7, 1.3]

0, otherwise ,

Heavy : G(r) =

{

r−1.1
2.9−1.1

, r ∈ [1.1, 2.9]

0, otherwise .

Since, the usage rate R is uniformly distributed over [rl, ru], the expected

usage rate across the population of consumers is given by

E(R) =
1

ru − rl

ru
∫

rl

r dr =
rl + ru

2
.
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6.1.4 Time and Usage at First Failure

The expected time to first failure of the product is given by

E(T1) =

ru
∫

rl







∞
∫

0

F̄T1|r
(t) dt







dG(r)

=
1

ru − rl

ru
∫

rl

∞
∫

0

exp







−

t
∫

0

[θ0 + θ1 r + (θ2 + θ3 r) s
2]ds







dt dr .

(6.3)

where F̄T1|r
(t) is the probability that the first failure after K1 is after t.

Equation (6.3) can be solved numerically. The usage rate R and the time

to first failure T1 are independent. Hence, the expected usage at first fail-

ure E(U1) is the product of the expected usage rate E(R) and the expected

time to first failure E(T1), i.e.

E(U1) = E(R) E(T1) .

For the numerical example considered, the expected usage rate, the

expected time to first failure and the expected usage at first failure are

presented in Table 6.1.

Table 6.1: Expected time and usage at first failure

Usage type [rl, ru] E(R) E(T1) E(U1)

Light [0.1, 0.9] 0.5 1.1118 0.5559

Medium [0.7, 1.3] 1.0 0.9575 0.9575

Heavy [1.1, 2.9] 2.0 0.7755 1.5510

Hence, the time to first failure for the light usage category is 1.1118 years

and the corresponding usage at first failure is 5559 kilometers; the time to

first failure for the medium usage category is 0.9575 years and the corre-

sponding usage at first failure is 9575 kilometers; the time to first failure
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for the heavy usage category is 0.7755 years and the corresponding usage

at first failure is 15, 510 kilometers.

6.2 Results for Age Reduction Model

The expected total warranty servicing cost E[CΩ(ψn)], for the age reduc-

tion model is given by equation (4.21) (on page 77) when r1 ≤ r2 and

equation (4.22) (on page 80) when r2 ≤ r1.

6.2.1 Expected Costs for the 3-Subregion Strategy

For strategy Sδ
3 , when r1 ≤ r2, the expected warranty servicing costE[CΩ(ψ3)]

is given by

E[CΩ
A(ψ3)] =

r1
∫

0

E[C(1)
r (ψ3)]dG(r)+

r2
∫

r1

E[C(2)
r (ψ3)]dG(r)+

∞
∫

r2

E[C(3)
r (ψ3)]dG(r) ,

where

E[C
(1)
r (ψ3)] = cminΛ(K1 | r)

+ cmin [Λ(K | r) − Λ(K2 | r)]e
−[Λ(K2|r)−Λ(K1|r)]

+
K2
∫

K1

{

(

cimp + cmin {Λ[A1(K2) | r] − Λ[A1(u1) | r]}

+cmin {Λ[A1(K) | r] − Λ[A1(K2) | r]}
)

fTK1|r
(u1)

}

du1

= ζ(K1, K2, K)

is the cost when r ≤ r1 ≤ r2,

E[C(2)
r (ψ3)] = ζ(τ1, τ2, K)

is the cost when r1 ≤ r ≤ r2, and

E[C(3)
r (ψ3)] = ζ(τ1, τ2, τ)
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is the cost when r1 ≤ r2 ≤ r. When r2 ≤ r1, the expected warranty servic-

ing cost E[CΩ(ψ3)] is given by

E[CΩ
B(ψ3)] =

r2
∫

0

E[C(1)
r (ψ3)]dG(r)+

r1
∫

r2

E[C(2)
r (ψ3)]dG(r)+

∞
∫

r1

E[C(3)
r (ψ3)]dG(r) ,

where

E[C(1)
r (ψ3)] = ζ(K1, K2, K)

is the cost when r ≤ r2 ≤ r1,

E[C(2)
r (ψ3)] = ζ(K1, K2, τ)

is the cost when r2 ≤ r ≤ r1, and

E[C(3)
r (ψ3)] = ζ(τ1, τ2, τ)

is the cost when r2 ≤ r1 ≤ r; refer to Chapter 4 for more information.

Table 6.2 provides the minimum expected total warranty servicing cost

E[CΩ(ψ∗
3)], with the optimal partition

ψ∗
3 = (K∗

1 , K
∗
2 , r

∗
1)

for different values of µ and δ, for the light usage category. The structure

of the table is as follows: the ratio µ of the cost of a minimal repair to the

cost of a perfect repair is displayed in the first column, the degree δ of the

imperfect repair, which is also the ratio of the cost of an imperfect repair

to the cost of a perfect repair, corresponding to our strategy is displayed

in the second column, the optimal value of the decision variables K∗
1 , K∗

2

and r∗1 are given in the next three columns, the corresponding expected

cost E[CΩ(ψ∗
3)] is given in the sixth column, the expected cost E[CΩ(φ̂3

∗
)]

for the 3-subregion restricted repair-replacement strategy by Iskandar et

al. [21] is displayed in the seventh column, the expected cost E[CΩ(γ∗3)]

for the 3-subregion unrestricted repair-replacement strategy by Chukova

and Johnston [14] is provided in the eighth column, and the expected cost
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E[CΩ
MR(γ∗)] for an all minimal repair strategy is presented in the last col-

umn. The expected cost E[CΩ(ψ∗
3)] corresponding to the imperfect repair

strategy is printed in boldface if it is the minimum for a given value of µ.

We observe, in Table 6.2 (light usage category), that for µ = 0.1, the

strategy that costs the least is an all minimal repair strategy; when µ = 0.2,

there are two imperfect repair strategies that cost the least compared to

other strategies; when µ > 0.2, the imperfect repair strategies all yield

lower costs than the other strategies with the strategy corresponding to

the lowest degree of repair δ, µ < δ < 1.0, being the best for a given value

of the ratio µ.

Similarly, Table 6.3 and Table 6.4 provide the minimum expected total

warranty servicing cost E[CΩ(ψ∗
3)] for the medium and heavy usage cate-

gories respectively; all three tables have the same structure, and as before,

the expected costE[CΩ(ψ∗
3)] corresponding to the imperfect repair strategy

is printed in boldface if it is the minimum of the costs for a given value of

the ratio µ.

For the medium usage category (Table 6.3), as in the light category, for

µ = 0.1, the strategy that costs the least is the all minimal repair strat-

egy and for µ = 0.2, two of the imperfect repair strategies cost lower than

the corresponding restricted and unrestricted repair-replacement strate-

gies and the all minimal repair strategy. For µ > 0.2, the imperfect repair

strategies cost lower than the corresponding alternate strategies.

For the heavy usage category (Table 6.4), for µ = 0.1, 0.2, the strategy

that costs the least is the all minimal repair strategy and for µ = 0.3, the

imperfect repair strategy with δ = 0.4 costs lower than the corresponding

restricted and unrestricted repair-replacement strategies and the all mini-

mal repair strategy. For µ > 0.3, the imperfect repair strategies cost lower

than the corresponding alternate replacement and minimal repair strate-

gies; the strategy with the smallest δ, µ < δ < 1.0, yields the lowest cost

among the imperfect repair strategies.
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Table 6.2: Age reduction Sδ
3 : costs for light usage

µ δ K
∗
1

K
∗
2

r
∗
1

E[CΩ(ψ∗
3
)] E[CΩ(φ̂3

∗
)] E[CΩ(γ∗

3
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.1 0.2 0.2 0.3209

0.3281 0.3231 0.3200

0.3 0.1 0.2 0.2 0.3218

0.4 0.1 0.2 0.2 0.3227

0.5 0.1 0.2 0.2 0.3236

0.6 0.1 0.2 0.2 0.3245

0.7 0.1 0.2 0.2 0.3254

0.8 0.1 0.2 0.2 0.3263

0.9 0.1 0.2 0.2 0.3272

0.2

0.3 0.8 1.7 1.0 0.5908

0.6469 0.6427 0.6400

0.4 0.9 1.4 1.0 0.6292

0.5 0.1 0.2 0.2 0.6425

0.6 0.1 0.2 0.2 0.6434

0.7 0.1 0.2 0.2 0.6443

0.8 0.1 0.2 0.2 0.6451

0.9 0.1 0.2 0.2 0.6460

0.3

0.4 0.7 1.9 1.0 0.7863

0.9656 0.9623 0.9600

0.5 0.7 1.7 1.0 0.8226

0.6 0.7 1.6 1.0 0.8602

0.7 0.7 1.5 1.0 0.8979

0.8 0.8 1.4 1.0 0.9330

0.9 0.9 1.1 1.0 0.9585

0.4

0.5 0.7 1.9 1.0 0.9488

1.1401 1.1400 1.2800

0.6 0.7 1.8 1.0 0.9781

0.7 0.7 1.8 1.0 1.0123

0.8 0.7 1.7 1.0 1.0511

0.9 0.7 1.6 1.0 1.0942

0.5

0.6 0.6 1.9 1.0 1.0859

1.2258 1.2258 1.6000
0.7 0.6 1.9 1.0 1.1093

0.8 0.6 1.8 1.0 1.1410

0.9 0.6 1.8 1.0 1.1799

0.6

0.7 0.6 1.9 1.0 1.2027

1.2971 1.2971 1.92000.8 0.6 1.9 1.0 1.2236

0.9 0.6 1.9 1.0 1.2558

0.7
0.8 0.6 1.9 1.0 1.3052

1.3627 1.3627 2.2400
0.9 0.6 1.9 1.0 1.3274

0.8 0.9 0.6 1.9 1.0 1.3990 1.4263 1.4263 2.5600
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Table 6.3: Age reduction Sδ
3 : costs for medium usage

µ δ K
∗
1

K
∗
2

r
∗
1

E[CΩ(ψ∗
3
)] E[CΩ(φ̂3

∗
)] E[CΩ(γ∗

3
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.5 0.6 0.2 0.3643

0.3691 0.3637 0.3637

0.3 0.3 0.4 0.2 0.3649

0.4 0.3 0.4 0.2 0.3655

0.5 0.3 0.4 0.2 0.3661

0.6 0.2 0.3 0.2 0.3667

0.7 0.2 0.3 0.2 0.3673

0.8 0.2 0.3 0.2 0.3679

0.9 0.2 0.3 0.2 0.3685

0.2

0.3 0.8 1.7 1.0 0.6616

0.7319 0.7274 0.7274

0.4 0.8 1.5 1.0 0.7013

0.5 1.2 1.3 0.8 0.7276

0.6 1.4 1.5 0.2 0.7295

0.7 0.9 1.0 0.2 0.7301

0.8 0.8 0.9 0.2 0.7307

0.9 0.7 0.8 0.2 0.7313

0.3

0.4 0.7 1.9 1.0 0.8819

1.0894 1.0793 1.0911

0.5 0.7 1.8 1.0 0.9139

0.6 0.7 1.7 1.0 0.9493

0.7 0.7 1.6 1.0 0.9874

0.8 0.8 1.5 1.0 1.0265

0.9 0.8 1.3 1.0 1.0628

0.4

0.5 0.7 1.9 1.0 1.0653

1.2420 1.2417 1.4549

0.6 0.7 1.9 1.0 1.0881

0.7 0.7 1.8 1.0 1.1170

0.8 0.7 1.7 1.0 1.1532

0.9 0.7 1.7 1.0 1.1955

0.5

0.6 0.7 1.9 1.0 1.2197

1.3390 1.3390 1.8186
0.7 0.7 1.9 1.0 1.2356

0.8 0.6 1.8 1.0 1.2617

0.9 0.6 1.8 1.0 1.2954

0.6

0.7 0.6 1.9 1.0 1.3517

1.4249 1.4249 2.18230.8 0.6 1.9 1.0 1.3638

0.9 0.6 1.9 1.0 1.3885

0.7
0.8 0.6 1.9 1.0 1.4658

1.5066 1.5066 2.5460
0.9 0.6 1.9 1.0 1.4789

0.8 0.9 0.6 1.9 1.0 1.5693 1.5875 1.5875 2.9097
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Table 6.4: Age reduction Sδ
3 : costs for heavy usage

µ δ K
∗
1

K
∗
2

r
∗
1

E[CΩ(ψ∗
3
)] E[CΩ(φ̂3

∗
)] E[CΩ(γ∗

3
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.5 0.6 0.2 0.1465

0.1505 0.1466 0.1460

0.3 0.4 0.5 0.2 0.1470

0.4 0.3 0.4 0.2 0.1475

0.5 0.3 0.4 0.2 0.1480

0.6 0.3 0.4 0.2 0.1485

0.7 0.3 0.4 0.2 0.1490

0.8 0.2 0.3 0.2 0.1495

0.9 0.2 0.3 0.2 0.1500

0.2

0.3 1.8 1.9 0.2 0.2924

0.2959 0.2924 0.2919

0.4 1.3 1.4 0.2 0.2929

0.5 0.9 1.0 0.2 0.2934

0.6 0.8 0.9 0.2 0.2939

0.7 0.7 0.8 0.2 0.2944

0.8 0.7 0.8 0.2 0.2949

0.9 0.6 0.7 0.2 0.2954

0.3

0.4 1.0 1.9 0.8 0.4251

0.4412 0.4381 0.4379

0.5 1.8 1.9 0.2 0.4387

0.6 1.8 1.9 0.2 0.4392

0.7 1.8 1.9 0.2 0.4397

0.8 1.5 1.6 0.2 0.4402

0.9 1.3 1.4 0.2 0.4407

0.4

0.5 0.6 1.7 1.0 0.5348

0.5864 0.5817 0.5839

0.6 0.8 1.5 1.0 0.5672

0.7 1.8 1.9 0.6 0.5838

0.8 1.8 1.9 0.2 0.5854

0.9 1.8 1.9 0.2 0.5859

0.5

0.6 0.6 1.8 1.0 0.6346

0.7313 0.7080 0.7299
0.7 0.7 1.6 1.0 0.6727

0.8 1.0 1.8 0.8 0.7037

0.9 1.2 1.6 0.8 0.7252

0.6

0.7 0.5 1.9 1.0 0.7286

0.8384 0.8168 0.87580.8 0.6 1.7 1.0 0.7690

0.9 0.6 1.6 1.0 0.8062

0.7
0.8 0.5 1.9 1.0 0.8177

0.9022 0.8992 1.0218
0.9 0.5 1.8 1.0 0.8609

0.8 0.9 0.5 1.9 1.0 0.9047 0.9500 0.9500 1.1678
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6.2.2 Expected Costs for the 4-Subregion Strategy

For strategy Sδ
4 , when r1 ≤ r2, the expected warranty servicing costE[CΩ(ψ4)]

is given by

E[CΩ
A(ψ4)] =

r1
∫

0

E[C(1)
r (ψ4)]dG(r)+

r2
∫

r1

E[C(2)
r (ψ4)]dG(r)+

∞
∫

r2

E[C(3)
r (ψ4)]dG(r) ,

where

E[C
(1)
r (ψ4)] = cminΛ(K1 | r)

+ cmin [Λ(K | r) − Λ(K3 | r)]e
−[Λ(K3|r)−Λ(K1|r)]

+
K2
∫

K1

{

(

cimp + cmin {Λ[A1(K2) | r] − Λ[A1(u1) | r]}

+cmin {Λ[A1(K) | r] − Λ[A1(K3) | r]}e
−{Λ[A1(K3)|r]−Λ[A1(K2)|r]}

)

× fTK1|r
(u1)

}

du1

+
K3
∫

K2

{

(

cimp + cmin {Λ[A1(K3) | r] − Λ[A1(u1) | r]}

+cmin {Λ[A1(K) | r] − Λ[A1(K3) | r]}
)

fTK1|r
(u1)

}

du1

+
K3
∫

K2

K2
∫

K1

{

(

cimp + cmin{Λ[A2(K3) | r] − Λ[A2(u2) | r]}

+cmin{Λ[A2(K) | r] − Λ[A2(K3) | r]}
)

× λ[A1(u2) | r] e
−{Λ[A1(u2)|r]−Λ[A1(K2)|r]} fTK1|r

(u1)

}

du1 du2

= ζ(K1, K2, K3, K)

is the cost when r ≤ r1 ≤ r2,

E[C(2)
r (ψ4)] = ζ(τ1, τ2, τ3, K)

is the cost when r1 ≤ r ≤ r2, and

E[C(3)
r (ψ4)] = ζ(τ1, τ2, τ3, τ)
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is the cost when r1 ≤ r2 ≤ r. When r2 ≤ r1, the expected warranty servic-

ing cost E[CΩ(ψ4)] is given by

E[CΩ
B(ψ4)] =

r2
∫

0

E[C(1)
r (ψ4)]dG(r)+

r1
∫

r2

E[C(2)
r (ψ4)]dG(r)+

∞
∫

r1

E[C(3)
r (ψ4)]dG(r) ,

where

E[C(1)
r (ψ4)] = ζ(K1, K2, K3, K)

is the cost when r ≤ r2 ≤ r1,

E[C(2)
r (ψ4)] = ζ(K1, K2, K3, τ)

is the cost when r2 ≤ r ≤ r1, and

E[C(3)
r (ψ4)] = ζ(τ1, τ2, τ3, τ)

is the cost when r2 ≤ r1 ≤ r; refer to Chapter 4 for details.

Table 6.5, Table 6.6 and Table 6.7, provide the minimum expected total

warranty servicing cost E[CΩ(ψ∗
4)], with the optimal partition

ψ∗
4 = (K∗

1 , K
∗
2 , K

∗
3 , r

∗
1)

for different values of µ and δ, for the light, medium and heavy usage cat-

egories respectively. The structure of the tables is as follows: the ratio µ

of the cost of a minimal repair to the cost of a perfect repair is displayed

in the first column, the ratio δ of the cost of an imperfect repair to the cost

of a perfect repair is displayed in the second column, the optimal decision

variables K∗
1 , K∗

2 , K∗
3 and r∗1 are given in the next four columns, the cor-

responding expected cost E[CΩ(ψ∗
4)] is given in the seventh column, the

expected cost E[CΩ(φ∗
4)] for the 4-subregion restricted repair-replacement

strategy by Chukova et al. [13] is provided in the eighth column, and the

expected cost E[CΩ
MR(γ∗)] for an all minimal repair strategy is presented in

the last column. The expected cost E[CΩ(ψ∗
4)] corresponding to the imper-

fect repair strategy is printed in boldface if it is the minimum for a given

value of µ. The tables for Sδ
4 show similar results as those for Sδ

3 .
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For the light usage category (Table 6.5), when µ = 0.1, the strategy

that costs the least is an all minimal repair strategy; when µ = 0.2, there

are two imperfect repair strategies that cost less than the corresponding

alternate strategies; when µ > 0.2, the imperfect repair strategies all yield

lower costs than the other strategies, with the strategy corresponding to

the lowest degree of repair δ, µ < δ < 1.0, being the best for a given value

of the ratio µ.

Similarly, for the medium usage category (Table 6.6), for µ = 0.1, the

strategy that costs the least is the all minimal repair warranty strategy and

for µ = 0.2, two of the imperfect repair strategies cost lower than the corre-

sponding repair-replacement strategy and the all minimal repair strategy.

And finally, for 0.2 < µ ≤ 0.8, the imperfect repair strategies cost lower

than the corresponding alternate strategies.

For the heavy usage category (Table 6.7), for µ = 0.1, 0.2, the strategy

that costs the least is the all minimal repair strategy and for µ = 0.3, 0.4,

at least one imperfect repair strategy costs lower than the correspond-

ing repair-replacement strategy and the all minimal repair strategy. For

µ > 0.4, the imperfect repair strategies cost lower than the correspond-

ing alternate repair strategies, and the imperfect repair strategy with the

lowest degree of repair δ, µ < δ < 1.0, yields the lowest cost among them.
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Table 6.5: Age reduction Sδ
4 : costs for light usage

µ δ K
∗
1

K
∗
2

K
∗
3

r
∗
1

E[CΩ(ψ∗
4
)] E[CΩ(φ∗

4
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.1 0.2 0.3 0.2 0.3218

0.3367 0.3200

0.3 0.1 0.2 0.3 0.2 0.3236

0.4 0.1 0.2 0.3 0.2 0.3255

0.5 0.1 0.2 0.3 0.2 0.3274

0.6 0.1 0.2 0.3 0.2 0.3292

0.7 0.1 0.2 0.3 0.2 0.3311

0.8 0.1 0.2 0.3 0.2 0.3330

0.9 0.1 0.2 0.3 0.2 0.3349

0.2

0.3 0.7 1.0 1.7 1.0 0.5893

0.6540 0.6400

0.4 0.9 1.0 1.4 1.0 0.6319

0.5 0.1 0.2 0.3 0.2 0.6450

0.6 0.1 0.2 0.3 0.2 0.6468

0.7 0.1 0.2 0.3 0.2 0.6486

0.8 0.1 0.2 0.3 0.2 0.6504

0.9 0.1 0.2 0.3 0.2 0.6522

0.3

0.4 0.5 1.1 1.8 1.0 0.7682

0.9712 0.9600

0.5 0.7 0.8 1.7 1.0 0.8226

0.6 0.7 0.8 1.6 1.0 0.8638

0.7 0.7 0.8 1.5 1.0 0.9037

0.8 0.8 0.9 1.3 1.0 0.9383

0.9 0.9 1.0 1.1 1.0 0.9599

0.4

0.5 0.4 1.1 1.9 1.0 0.9137

1.1474 1.2800

0.6 0.5 0.9 1.8 1.0 0.9698

0.7 0.6 0.7 1.8 1.0 1.0135

0.8 0.6 0.7 1.7 1.0 1.0556

0.9 0.6 0.7 1.6 1.0 1.1007

0.5

0.6 0.3 1.1 1.9 1.0 1.0377

1.2318 1.6000
0.7 0.4 0.9 1.9 1.0 1.0932

0.8 0.6 0.7 1.8 1.0 1.1400

0.9 0.6 0.7 1.8 1.0 1.1835

0.6

0.7 0.3 1.1 1.9 1.0 1.1464

1.2982 1.92000.8 0.4 1.0 1.9 1.0 1.2005

0.9 0.5 0.8 1.8 1.0 1.2520

0.7
0.8 0.3 1.1 1.9 1.0 1.2452

1.3552 2.2400
0.9 0.3 0.9 1.9 1.0 1.2996

0.8 0.9 0.3 1.0 1.9 1.0 1.3383 1.3952 2.5600
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Table 6.6: Age reduction Sδ
4 : costs for medium usage

µ δ K
∗
1

K
∗
2

K
∗
3

r
∗
1

E[CΩ(ψ∗
4
)] E[CΩ(φ∗

4
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.5 0.6 0.7 0.2 0.3649

0.3744 0.3637

0.3 0.3 0.4 0.5 0.2 0.3661

0.4 0.2 0.3 0.4 0.2 0.3673

0.5 0.2 0.3 0.4 0.2 0.3685

0.6 0.2 0.3 0.4 0.2 0.3697

0.7 0.2 0.3 0.4 0.2 0.3709

0.8 0.2 0.3 0.4 0.2 0.3721

0.9 0.2 0.3 0.4 0.2 0.3732

0.2

0.3 0.6 1.1 1.7 1.0 0.6574

0.7363 0.7274

0.4 0.8 0.9 1.5 1.0 0.7046

0.5 1.4 1.5 1.6 0.6 0.7290

0.6 1.3 1.4 1.5 0.2 0.7316

0.7 0.8 0.9 1.0 0.2 0.7328

0.8 0.7 0.8 0.9 0.2 0.7340

0.9 0.6 0.7 0.8 0.2 0.7352

0.3

0.4 0.5 1.2 1.8 1.0 0.8553

1.0911 1.0911

0.5 0.6 0.9 1.7 1.0 0.9129

0.6 0.7 0.8 1.6 1.0 0.9539

0.7 0.7 0.8 1.5 1.0 0.9953

0.8 0.7 0.8 1.4 1.0 1.0356

0.9 0.9 1.0 1.4 0.8 1.0701

0.4

0.5 0.4 1.1 1.9 1.0 1.0165

1.2536 1.4549

0.6 0.5 1.0 1.8 1.0 1.0736

0.7 0.6 0.7 1.8 1.0 1.1183

0.8 0.6 0.7 1.7 1.0 1.1587

0.9 0.6 0.7 1.6 1.0 1.2044

0.5

0.6 0.4 1.1 1.9 1.0 1.1541

1.3465 1.8186
0.7 0.4 1.0 1.9 1.0 1.2096

0.8 0.5 0.8 1.8 1.0 1.2582

0.9 0.6 0.7 1.8 1.0 1.2987

0.6

0.7 0.3 1.1 1.9 1.0 1.2747

1.4268 2.18230.8 0.4 1.0 1.9 1.0 1.3287

0.9 0.5 0.8 1.9 1.0 1.3814

0.7
0.8 0.3 1.1 1.9 1.0 1.3843

1.5049 2.5460
0.9 0.4 1.0 1.9 1.0 1.4392

0.8 0.9 0.3 1.0 1.9 1.0 1.4874 1.5493 2.9097
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Table 6.7: Age reduction Sδ
4 : costs for heavy usage

µ δ K
∗
1

K
∗
2

K
∗
3

r
∗
1

E[CΩ(ψ∗
4
)] E[CΩ(φ∗

4
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.4 0.5 0.6 0.2 0.1470

0.1550 0.1460

0.3 0.3 0.4 0.5 0.2 0.1480

0.4 0.3 0.4 0.5 0.2 0.1490

0.5 0.2 0.3 0.4 0.2 0.1500

0.6 0.2 0.3 0.4 0.2 0.1510

0.7 0.2 0.3 0.4 0.2 0.1520

0.8 0.2 0.3 0.4 0.2 0.1530

0.9 0.2 0.3 0.4 0.2 0.1540

0.2

0.3 1.7 1.8 1.9 0.2 0.2928

0.2998 0.2919

0.4 1.2 1.3 1.4 0.2 0.2938

0.5 0.9 1.0 1.1 0.2 0.2949

0.6 0.7 0.8 0.9 0.2 0.2959

0.7 0.7 0.8 0.9 0.2 0.2969

0.8 0.6 0.7 0.8 0.2 0.2979

0.9 0.6 0.7 0.8 0.2 0.2989

0.3

0.4 1.0 1.1 1.9 0.8 0.4252

0.4445 0.4379

0.5 1.7 1.8 1.9 0.2 0.4394

0.6 1.7 1.8 1.9 0.2 0.4404

0.7 1.7 1.8 1.9 0.2 0.4415

0.8 1.4 1.5 1.6 0.2 0.4425

0.9 1.2 1.3 1.4 0.2 0.4435

0.4

0.5 0.6 1.0 1.7 1.0 0.5332

0.5888 0.5839

0.6 1.0 1.1 1.8 0.8 0.5680

0.7 1.7 1.8 1.9 0.6 0.5841

0.8 1.7 1.8 1.9 0.2 0.5868

0.9 1.7 1.8 1.9 0.2 0.5878

0.5

0.6 0.4 1.0 1.8 1.0 0.6306

0.7331 0.7299
0.7 0.6 0.7 1.6 1.0 0.6734

0.8 1.0 1.1 1.8 0.8 0.7051

0.9 1.2 1.3 1.5 0.8 0.7262

0.6

0.7 0.4 1.0 1.8 1.0 0.7223

0.8404 0.87580.8 0.6 0.7 1.7 1.0 0.7693

0.9 0.6 0.7 1.6 1.0 0.8078

0.7
0.8 0.3 0.9 1.9 1.0 0.8095

0.8919 1.0218
0.9 0.5 0.6 1.8 1.0 0.8605

0.8 0.9 0.3 0.9 1.9 1.0 0.8947 0.9148 1.1678
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6.3 Results for Intensity Reduction Model

The expected total warranty servicing cost E[CΩ(ψn)], for the intensity re-

duction model is given by equation (5.14) (on page 102) when r1 ≤ r2 and

equation (5.15) (on page 106) when r2 ≤ r1.

6.3.1 Expected Costs for the 3-Subregion Strategy

For strategy Sδ
3 , when r1 ≤ r2, the expected warranty servicing costE[CΩ(ψ3)]

is given by

E[CΩ
A(ψ3)] =

r1
∫

0

E[C(1)
r (ψ3)]dG(r)+

r2
∫

r1

E[C(2)
r (ψ3)]dG(r)+

∞
∫

r2

E[C(3)
r (ψ3)]dG(r) ,

where

E[C
(1)
r (ψ3)] = cminΛ(K1 | r)

+ cmin [Λ(K | r) − Λ(K2 | r)]e
−[Λ(K2|r)−Λ(K1|r)]

+
K2
∫

K1

{

(

cimp + cmin Λ1(K2 | r) + cmin {Λ1(K | r) − Λ1(K2 | r)}
)

× fTK1|r
(u1)

}

du1

= ξ(K1, K2, K)

is the cost when r ≤ r1 ≤ r2,

E[C(2)
r (ψ3)] = ξ(τ1, τ2, K)

is the cost when r1 ≤ r ≤ r2, and

E[C(3)
r (ψ3)] = ξ(τ1, τ2, τ)

is the cost when r1 ≤ r2 ≤ r. When r2 ≤ r1, the expected warranty servic-

ing cost E[CΩ(ψ3)] is given by

E[CΩ
B(ψ3)] =

r2
∫

0

E[C(1)
r (ψ3)]dG(r)+

r1
∫

r2

E[C(2)
r (ψ3)]dG(r)+

∞
∫

r1

E[C(3)
r (ψ3)]dG(r) ,
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where

E[C(1)
r (ψ3)] = ξ(K1, K2, K)

is the cost when r ≤ r2 ≤ r1,

E[C(2)
r (ψ3)] = ξ(K1, K2, τ)

is the cost when r2 ≤ r ≤ r1, and

E[C(3)
r (ψ3)] = ξ(τ1, τ2, τ)

is the cost when r2 ≤ r1 ≤ r; refer to Chapter 5 for more information.

Table 6.8, Table 6.9 and Table 6.10 provide the minimum expected total

warranty servicing cost E[CΩ(ψ∗
3)], with the optimal partition

ψ∗
3 = (K∗

1 , K
∗
2 , r

∗
1)

for different values of µ and δ, for the light, medium and heavy usage cat-

egories, respectively. The structure of the tables is as follows: the ratio µ

of the cost of a minimal repair to the cost of a perfect repair is displayed

in the first column, the ratio δ of the cost of an imperfect repair to the

cost of a perfect repair is displayed in the second column, the optimal de-

cision variables K∗
1 , K∗

2 and r∗1 are given in the next three columns, the

corresponding expected cost E[CΩ(ψ∗
3)] is given in the sixth column, the

expected cost E[CΩ(φ̂3

∗
)] for the 3-subregion restricted repair-replacement

strategy by Iskandar et al. [21] is displayed in the seventh column, and the

expected cost E[CΩ
MR(γ∗)] for an all minimal repair strategy is presented in

the last column. The expected cost E[CΩ(ψ∗
3)] corresponding to the imper-

fect repair strategy is printed in boldface if it is the minimum for a given

value of µ.

For the light usage category (Table 6.8), when µ = 0.1, the strategy

that costs the least is an all minimal repair strategy; when µ = 0.2, the

imperfect repair strategy with δ = 0.3 costs the least when compared to

corresponding strategies; when 0.2 < µ ≤ 0.5, all expect one of the imper-

fect repair strategies yield lower costs than the corresponding alternate
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strategies, with the strategy corresponding to the lowest degree of repair

δ, µ < δ < 1.0, being the best for a given value of µ. For µ > 0.5, as the

degree of repair δ increases the cost decreases, and hence, having replace-

ments in place of imperfect repairs is more feasible.

For the medium usage category (Table 6.9), as in the light category, for

µ = 0.1, the strategy that costs the least is the all minimal repair strategy

and for µ = 0.2, the imperfect repair strategy with δ = 0.3 costs lower than

the corresponding repair-replacement strategy and the all minimal repair

strategy. For µ = 0.3, 0.4, the imperfect repair strategies all cost lower

than the corresponding alternate strategies. For µ > 0.4, as the degree

of repair δ increases the cost decreases, and therefore, the corresponding

repair-replacement strategy by Iskandar et al. [21] costs the least.

For the heavy usage category (Table 6.10), for µ = 0.1, 0.2, the strategy

that costs the least is the all minimal repair strategy and for µ = 0.3, 0.4,

two of the imperfect repair strategies cost lower than the corresponding

repair-replacement strategy and the all minimal repair strategy. For µ >

0.4, the imperfect repair strategies cost lower than the corresponding al-

ternate strategies, with the strategy corresponding to the smallest degree

of repair δ, µ < δ < 1.0, being the best among them.
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Table 6.8: Intensity reduction Sδ
3 : costs for light usage

µ δ K
∗
1

K
∗
2

r
∗
1

E[CΩ(ψ∗
3
)] E[CΩ(φ∗

3
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.1 0.2 0.2 0.3209

0.3281 0.3200

0.3 0.1 0.2 0.2 0.3218

0.4 0.1 0.2 0.2 0.3227

0.5 0.1 0.2 0.2 0.3236

0.6 0.1 0.2 0.2 0.3245

0.7 0.1 0.2 0.2 0.3254

0.8 0.1 0.2 0.2 0.3263

0.9 0.1 0.2 0.2 0.3272

0.2

0.3 0.7 1.5 1.0 0.6260

0.6469 0.6400

0.4 0.2 0.3 0.2 0.6416

0.5 0.1 0.2 0.2 0.6425

0.6 0.1 0.2 0.2 0.6434

0.7 0.1 0.2 0.2 0.6443

0.8 0.1 0.2 0.2 0.6451

0.9 0.1 0.2 0.2 0.6460

0.3

0.4 0.6 1.8 1.0 0.8531

0.9656 0.9600

0.5 0.6 1.6 1.0 0.8885

0.6 0.7 1.5 1.0 0.9180

0.7 0.8 1.3 1.0 0.9410

0.8 0.9 1.2 1.0 0.9569

0.9 0.9 1.0 1.0 0.9623

0.4

0.5 0.6 1.9 1.0 1.0425

1.1401 1.2800

0.6 0.6 1.8 1.0 1.0661

0.7 0.6 1.7 1.0 1.0872

0.8 0.6 1.6 1.0 1.1065

0.9 0.6 1.6 1.0 1.1239

0.5

0.6 0.6 1.9 1.0 1.1978

1.2258 1.6000
0.7 0.6 1.8 1.0 1.2072

0.8 0.6 1.8 1.0 1.2141

0.9 0.6 1.8 1.0 1.2211

0.6

0.7 0.6 1.9 1.0 1.3202

1.2971 1.92000.8 0.6 1.9 1.0 1.3132

0.9 0.6 1.9 1.0 1.3062

0.7
0.8 0.5 1.9 1.0 1.4097

1.3627 2.2400
0.9 0.6 1.9 1.0 1.3862

0.8 0.9 0.5 1.9 1.0 1.4661 1.4263 2.5600
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Table 6.9: Intensity reduction Sδ
3 : costs for medium usage

µ δ K
∗
1

K
∗
2

r
∗
1

E[CΩ(ψ∗
3
)] E[CΩ(φ∗

3
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.5 0.6 0.2 0.3643

0.3691 0.3637

0.3 0.3 0.4 0.2 0.3649

0.4 0.3 0.4 0.2 0.3655

0.5 0.3 0.4 0.2 0.3661

0.6 0.2 0.3 0.2 0.3667

0.7 0.2 0.3 0.2 0.3673

0.8 0.2 0.3 0.2 0.3679

0.9 0.2 0.3 0.2 0.3685

0.2

0.3 0.7 1.5 1.0 0.7033

0.7319 0.7274

0.4 1.8 1.9 0.4 0.7281

0.5 1.5 1.6 0.2 0.7289

0.6 0.9 1.0 0.2 0.7296

0.7 0.8 0.9 0.2 0.7301

0.8 0.7 0.8 0.2 0.7307

0.9 0.7 0.8 0.2 0.7313

0.3

0.4 0.6 1.8 1.0 0.9579

1.0894 1.0911

0.5 0.6 1.6 1.0 0.9908

0.6 0.7 1.5 1.0 1.0189

0.7 0.7 1.4 1.0 1.0431

0.8 0.8 1.3 1.0 1.0635

0.9 0.9 1.4 0.8 1.0791

0.4

0.5 0.6 1.9 1.0 1.1713

1.2420 1.4549

0.6 0.6 1.8 1.0 1.1884

0.7 0.6 1.7 1.0 1.2038

0.8 0.6 1.7 1.0 1.2178

0.9 0.6 1.6 1.0 1.2304

0.5

0.6 0.6 1.9 1.0 1.3463

1.3390 1.8186
0.7 0.6 1.9 1.0 1.3459

0.8 0.6 1.8 1.0 1.3440

0.9 0.6 1.8 1.0 1.3417

0.6

0.7 0.6 1.9 1.0 1.4834

1.4249 2.18230.8 0.6 1.9 1.0 1.4642

0.9 0.6 1.9 1.0 1.4449

0.7
0.8 0.6 1.9 1.0 1.5829

1.5066 2.5460
0.9 0.6 1.9 1.0 1.5447

0.8 0.9 0.6 1.9 1.0 1.6445 1.5875 2.9097
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Table 6.10: Intensity reduction Sδ
3 : costs for heavy usage

µ δ K
∗
1

K
∗
2

r
∗
1

E[CΩ(ψ∗
3
)] E[CΩ(φ∗

3
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.5 0.6 0.2 0.1465

0.1505 0.1460

0.3 0.3 0.4 0.2 0.1470

0.4 0.3 0.4 0.2 0.1475

0.5 0.3 0.4 0.2 0.1480

0.6 0.3 0.4 0.2 0.1485

0.7 0.2 0.3 0.2 0.1490

0.8 0.2 0.3 0.2 0.1495

0.9 0.2 0.3 0.2 0.1500

0.2

0.3 1.8 1.9 0.2 0.2924

0.2959 0.2919

0.4 1.0 1.1 0.2 0.2929

0.5 0.8 0.9 0.2 0.2934

0.6 0.7 0.8 0.2 0.2939

0.7 0.7 0.8 0.2 0.2944

0.8 0.6 0.7 0.2 0.2949

0.9 0.6 0.7 0.2 0.2954

0.3

0.4 1.1 1.6 0.8 0.4365

0.4412 0.4379

0.5 1.8 1.9 0.2 0.4387

0.6 1.8 1.9 0.2 0.4392

0.7 1.6 1.7 0.2 0.4397

0.8 1.4 1.5 0.2 0.4402

0.9 1.2 1.3 0.2 0.4407

0.4

0.5 0.6 1.6 1.0 0.5569

0.5864 0.5839

0.6 1.1 1.6 0.8 0.5811

0.7 1.8 1.9 0.2 0.5849

0.8 1.8 1.9 0.2 0.5854

0.9 1.8 1.9 0.2 0.5859

0.5

0.6 0.5 1.7 1.0 0.6630

0.7313 0.7299
0.7 0.8 1.9 0.8 0.6943

0.8 1.0 1.7 0.8 0.7164

0.9 1.6 1.9 0.6 0.7286

0.6

0.7 0.5 1.8 1.0 0.7585

0.8384 0.87580.8 0.6 1.7 1.0 0.7908

0.9 0.8 1.9 0.8 0.8172

0.7
0.8 0.5 1.9 1.0 0.8451

0.9022 1.0218
0.9 0.5 1.8 1.0 0.8757

0.8 0.9 0.4 1.9 1.0 0.9220 0.9500 1.1678
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6.3.2 Expected Costs for the 4-Subregion Strategy

For strategy Sδ
4 , when r1 ≤ r2, the expected warranty servicing costE[CΩ(ψ4)]

is given by

E[CΩ
A(ψ4)] =

r1
∫

0

E[C(1)
r (ψ4)]dG(r)+

r2
∫

r1

E[C(2)
r (ψ4)]dG(r)+

∞
∫

r2

E[C(3)
r (ψ4)]dG(r) ,

where

E[C
(1)
r (ψ4)] = cminΛ(K1 | r)

+ cmin [Λ(K | r) − Λ(K3 | r)] e
−[Λ(K3|r)−Λ(K1|r)]

+
K2
∫

K1

{

(

cimp + cmin Λ1(K2 | r) + cmin {Λ1(K | r) − Λ1(K3 | r)}

× e−{Λ1(K3|r)−Λ1(K2|r)}
)

fTK1|r
(u1)

}

du1

+
K3
∫

K2

{

(

cimp + cmin Λ1(K3 | r) + cmin {Λ1(K | r) − Λ1(K3 | r)}
)

× fTK1|r
(u1)

}

du1

+
K3
∫

K2

K2
∫

K1

{

(

cimp + cminΛ2(K3 | r) + cmin{Λ2(K | r) − Λ2(K3 | r)}

× e−{Λ2(K3|r)−Λ2(K3|r)}
)

× λ1(u2 | r) e
−{Λ1(u2|r)−Λ1(K2|r)} fTK1|r

(u1)

}

du1 du2

= ξ(K1, K2, K3, K)

is the cost when r ≤ r1 ≤ r2,

E[C(2)
r (ψ4)] = ξ(τ1, τ2, τ3, K)

is the cost when r1 ≤ r ≤ r2, and

E[C(3)
r (ψ4)] = ξ(τ1, τ2, τ3, τ)

is the cost when r1 ≤ r2 ≤ r. When r2 ≤ r1, the expected warranty servic-

ing cost E[CΩ(ψ4)] is given by

E[CΩ
B(ψ4)] =

r2
∫

0

E[C(1)
r (ψ4)]dG(r)+

r1
∫

r2

E[C(2)
r (ψ4)]dG(r)+

∞
∫

r1

E[C(3)
r (ψ4)]dG(r) ,
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where

E[C(1)
r (ψ4)] = ξ(K1, K2, K3, K)

is the cost when r ≤ r2 ≤ r1,

E[C(2)
r (ψ4)] = ξ(K1, K2, K3, τ)

is the cost when r2 ≤ r ≤ r1, and

E[C(3)
r (ψ4)] = ξ(τ1, τ2, τ3, τ)

is the cost when r2 ≤ r1 ≤ r; see Chapter 5 for information on deriving the

expected cost for the intensity reduction model.

Table 6.11, Table 6.12 and Table 6.13 provide the minimum expected

total warranty servicing cost E[CΩ(ψ∗
4)], with the optimal partition

ψ∗
4 = (K∗

1 , K
∗
2 , K

∗
4 , r

∗
1)

for different values of µ and δ, for the light, medium and heavy usage cat-

egories, respectively. The structure of the tables is as follows; the ratio µ

of the cost of a minimal repair to the cost of a perfect repair is displayed

in the first column, the ratio δ of the cost of an imperfect repair to the cost

of a perfect repair is displayed in the second column, the optimal decision

variables K∗
1 , K∗

2 , K∗
3 and r∗1 are given in the next four columns, the cor-

responding expected cost E[CΩ(ψ∗
4)] is given in the seventh column, the

expected cost E[CΩ(φ∗
4)] for the 4-subregion restricted repair-replacement

strategy by Chukova et al [13], where all repairs in the first and last subre-

gions are minimal, the first repair in each of the intermediate subregions is

perfect (replacement) and all subsequent repairs in the subregion are min-

imal, is displayed in the eighth column, and the expected cost E[CΩ
MR(γ∗)]

for an all minimal repair strategy is presented in the last column. The

expected cost E[CΩ(ψ∗
4)] corresponding to the imperfect repair strategy is

printed in boldface if it is the minimum for a given value of µ.

For the light usage category (Table 6.11), when µ = 0.12, the strategy

that costs the least is an all minimal repair strategy; when µ = 0.2, the
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imperfect repair strategy with δ = 0.3 costs less than the other strategies;

when 0.2 < µ ≤ 0.7, all except one of the imperfect repair strategies yield

lower costs than the corresponding alternate strategies, with the strategy

corresponding to the lowest degree of repair δ, µ < δ < 1.0, being the

best for a given value of µ. For µ > 0.7, having replacements in place of

imperfect repairs costs the least.

For the medium usage category (Table 6.12), as in the light category, for

µ = 0.1, the strategy that costs the least is the all minimal repair strategy

and for µ = 0.2, the imperfect repair strategy with δ = 0.3 costs lower

than the corresponding repair-replacement strategy and the all minimal

repair strategy. For 0.2 < µ ≤ 0.7, all except one of the imperfect repair

strategies cost lower than the corresponding alternate strategies. For µ >

0.7, the corresponding repair-replacement strategy by Chukova et al. [13]

costs lower than the imperfect repair strategy and the all minimal repair

strategy.

For the heavy usage category (Table 6.13), for µ = 0.1, 0.2, the strategy

that costs the least is the all minimal repair strategy and for µ = 0.3, 0.4,

at least one imperfect repair strategy costs lower than the corresponding

repair-replacement strategy by Chukova et al. [13] and the all minimal

repair strategy. For 0.4 < µ ≤ 0.8, the imperfect repair strategies cost

lower than the corresponding alternate strategies, with the strategy with

the smallest δ, µ < δ < 1.0, yielding the lowest cost among them.
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Table 6.11: Intensity reduction Sδ
4 : costs for light usage

µ δ K
∗
1

K
∗
2

K
∗
3

r
∗
1

E[CΩ(ψ∗
4
)] E[CΩ(φ∗

4
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.1 0.2 0.3 0.2 0.3218

0.3367 0.3200

0.3 0.1 0.2 0.3 0.2 0.3237

0.4 0.1 0.2 0.3 0.2 0.3255

0.5 0.1 0.2 0.3 0.2 0.3274

0.6 0.1 0.2 0.3 0.2 0.3293

0.7 0.1 0.2 0.3 0.2 0.3311

0.8 0.1 0.2 0.3 0.2 0.3330

0.9 0.1 0.2 0.3 0.2 0.3349

0.2

0.3 0.7 0.8 1.4 1.0 0.6262

0.6540 0.6400

0.4 0.1 0.2 0.3 0.2 0.6433

0.5 0.1 0.2 0.3 0.2 0.6450

0.6 0.1 0.2 0.3 0.2 0.6468

0.7 0.1 0.2 0.3 0.2 0.6486

0.8 0.1 0.2 0.3 0.2 0.6504

0.9 0.1 0.2 0.3 0.2 0.6522

0.3

0.4 0.4 1.1 1.7 1.0 0.8411

0.9712 0.9600

0.5 0.6 0.7 1.6 1.0 0.8889

0.6 0.6 0.7 1.4 1.0 0.9211

0.7 0.7 0.8 1.3 1.0 0.9454

0.8 0.9 1.0 1.1 1.0 0.9588

0.9 0.8 0.9 1.0 1.0 0.9666

0.4

0.5 0.4 1.1 1.8 1.0 1.0119

1.1474 1.2800

0.6 0.4 0.9 1.7 1.0 1.0592

0.7 0.6 0.7 1.7 1.0 1.0885

0.8 0.6 0.7 1.6 1.0 1.1106

0.9 0.6 0.7 1.6 1.0 1.1308

0.5

0.6 0.3 1.1 1.9 1.0 1.1496

1.2318 1.6000
0.7 0.4 1.0 1.8 1.0 1.1881

0.8 0.5 0.7 1.8 1.0 1.2124

0.9 0.5 0.6 1.7 1.0 1.2237

0.6

0.7 0.3 1.1 1.9 1.0 1.2593

1.2982 1.92000.8 0.3 1.0 1.9 1.0 1.2867

0.9 0.4 0.8 1.8 1.0 1.3001

0.7
0.8 0.3 1.1 1.9 1.0 1.3425

1.3552 2.2400
0.9 0.3 0.9 1.9 1.0 1.3551

0.8 0.9 0.3 1.1 1.9 1.0 1.3999 1.3952 2.5600
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Table 6.12: Intensity reduction Sδ
4 : costs for medium usage

µ δ K
∗
1

K
∗
2

K
∗
3

r
∗
1

E[CΩ(ψ∗
4
)] E[CΩ(φ∗

4
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.4 0.5 0.6 0.2 0.3649

0.3744 0.3637

0.3 0.3 0.4 0.5 0.2 0.3661

0.4 0.2 0.3 0.4 0.2 0.3673

0.5 0.2 0.3 0.4 0.2 0.3685

0.6 0.2 0.3 0.4 0.2 0.3697

0.7 0.2 0.3 0.4 0.2 0.3709

0.8 0.2 0.3 0.4 0.2 0.3721

0.9 0.2 0.3 0.4 0.2 0.3732

0.2

0.3 0.6 0.8 1.5 1.0 0.7032

0.7363 0.7274

0.4 1.7 1.8 1.9 0.2 0.7290

0.5 1.2 1.3 1.4 0.2 0.7304

0.6 0.9 1.0 1.1 0.2 0.7317

0.7 0.7 0.8 0.9 0.2 0.7328

0.8 0.7 0.8 0.9 0.2 0.7340

0.9 0.6 0.7 0.8 0.2 0.7352

0.3

0.4 0.4 1.1 1.8 1.0 0.9390

1.0911 1.0911

0.5 0.6 0.7 1.6 1.0 0.9904

0.6 0.6 0.7 1.5 1.0 1.0226

0.7 0.7 0.8 1.4 1.0 1.0498

0.8 0.8 0.9 1.4 0.8 1.0706

0.9 1.0 1.1 1.3 0.8 1.0843

0.4

0.5 0.4 1.1 1.9 1.0 1.1279

1.2536 1.4549

0.6 0.4 1.0 1.7 1.0 1.1753

0.7 0.6 0.7 1.7 1.0 1.2043

0.8 0.6 0.7 1.7 1.0 1.2231

0.9 0.6 0.7 1.6 1.0 1.2388

0.5

0.6 0.3 1.1 1.9 1.0 1.2800

1.3465 1.8186
0.7 0.4 1.0 1.8 1.0 1.3163

0.8 0.5 0.8 1.8 1.0 1.3396

0.9 0.6 0.7 1.8 1.0 1.3453

0.6

0.7 0.3 1.1 1.9 1.0 1.4006

1.4268 2.18230.8 0.3 1.0 1.9 1.0 1.4245

0.9 0.4 0.8 1.8 1.0 1.4351

0.7
0.8 0.3 1.1 1.9 1.0 1.4921

1.5049 2.5460
0.9 0.3 1.0 1.9 1.0 1.5002

0.8 0.9 0.3 1.1 1.9 1.0 1.5553 1.5493 2.9097
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Table 6.13: Intensity reduction Sδ
4 : costs for heavy usage

µ δ K
∗
1

K
∗
2

K
∗
3

r
∗
1

E[CΩ(ψ∗
4
)] E[CΩ(φ∗

4
)] E[CΩ

MR
(γ∗)]

0.1

0.2 0.4 0.5 0.6 0.2 0.1470

0.1550 0.1460

0.3 0.3 0.4 0.5 0.2 0.1480

0.4 0.2 0.3 0.4 0.2 0.1490

0.5 0.2 0.3 0.4 0.2 0.1500

0.6 0.2 0.3 0.4 0.2 0.1510

0.7 0.2 0.3 0.4 0.2 0.1520

0.8 0.2 0.3 0.4 0.2 0.1530

0.9 0.2 0.3 0.4 0.2 0.1540

0.2

0.3 1.7 1.8 1.9 0.2 0.2928

0.2998 0.2919

0.4 1.0 1.1 1.2 0.2 0.2939

0.5 0.8 0.9 1.0 0.2 0.2949

0.6 0.7 0.8 0.9 0.2 0.2959

0.7 0.6 0.7 0.8 0.2 0.2969

0.8 0.6 0.7 0.8 0.2 0.2979

0.9 0.6 0.7 0.8 0.2 0.2987

0.3

0.4 1.1 1.2 1.5 0.8 0.4366

0.4445 0.4379

0.5 1.7 1.8 1.9 0.2 0.4395

0.6 1.7 1.8 1.9 0.2 0.4405

0.7 1.5 1.6 1.7 0.2 0.4415

0.8 1.3 1.4 1.5 0.2 0.4425

0.9 1.2 1.3 1.4 0.2 0.4435

0.4

0.5 0.6 1.0 1.6 1.0 0.5561

0.5888 0.5839

0.6 1.1 1.2 1.5 0.8 0.5815

0.7 1.7 1.8 1.9 0.2 0.5859

0.8 1.7 1.8 1.9 0.2 0.5869

0.9 1.7 1.8 1.9 0.2 0.5879

0.5

0.6 0.4 1.0 1.7 1.0 0.6594

0.7331 0.7299
0.7 0.8 0.9 1.9 0.8 0.6947

0.8 1.0 1.1 1.7 0.8 0.7176

0.9 1.7 1.8 1.9 0.6 0.7290

0.6

0.7 0.3 1.0 1.8 1.0 0.7522

0.8404 0.87580.8 0.5 0.6 1.7 1.0 0.7910

0.9 0.8 0.9 1.9 0.8 0.8184

0.7
0.8 0.3 1.0 1.9 1.0 0.8364

0.8919 1.0218
0.9 0.5 0.6 1.8 1.0 0.8755

0.8 0.9 0.3 0.9 1.9 1.0 0.9118 0.9148 1.1678
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6.4 Optimal Warranty Repair Strategy

In this section, we summarize the results obtained and displayed in previ-

ous sections. In the numerical example, we have applied the 3-subregion

and 4-subregion imperfect repair strategies. In Chukova et al. [13], the nu-

merical results for the 5 and 6 subregion repair-replacement strategies are

presented. Even though in some cases the higher-subregion strategies cost

less, the strategy comparisons here are based on the 3- and 4-subregion

strategies. The all minimal repair strategy is denotes by SMR, and for

δ ∈ (0, 1], the imperfect repair strategies and the repair-replacement strat-

egy are denoted by Sδ
n , where n is the number of subregions, and δ is the

vector of degrees of repair, which in this example is just δ = δ. For each of

the imperfect repair models, presented in Table 6.14 and Table 6.15, respec-

tively, are the optimal restricted warranty repair strategies corresponding

to different costs µ of minimal repairs.

Table 6.14: Optimal warranty repair strategy - Age reduction model

µ Light usage Medium usage Heavy usage

0.1 SMR SMR SMR

0.2 S0.3
4

S0.3
4

SMR

0.3 S0.4
4 S0.4

4 S0.4
3

0.4 S0.5
4

S0.5
4

S0.5
4

0.5 S0.6
4 S0.6

4 S0.6
4

0.6 S0.7
4

S0.7
4

S0.7
4

0.7 S0.8
4 S0.8

4 S0.8
4

0.8 S0.9
4

S0.9
4

S0.9
4

0.9 S1.0
4

S1.0
4

S1.0
4

In the age reduction model, for the light and medium usage categories,

when the cost of a minimal repair is low µ = 0.1, the optimal warranty

repair strategy is the all minimal repair strategy, and when the cost of a

minimal repair is high µ = 0.9, the optimal strategy is the 4-subregion
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repair-replacement strategy. For 0.1 < µ < 0.9, the 4-subregion imperfect

repair strategy with the lowest degree of repair δ, µ < δ < 1.0, is optimal.

For the heavy usage category, when µ is low, the optimal warranty repair

strategy is either the all minimal repair strategy or the 3-subregion imper-

fect repair strategy with the lowest degree of repair δ. For higher values

of µ, the optimal strategy is the 4-subregion imperfect repair strategy with

the smallest δ, and when µ = 0.9, the optimal warranty repair strategy for

the heavy usage category is the 4-subregion repair-replacement strategy.

Table 6.15: Optimal warranty repair strategy - Intensity reduction model

µ Light usage Medium usage Heavy usage

0.1 SMR SMR SMR

0.2 S0.3
3 S0.3

4 SMR

0.3 S0.4
4

S0.4
4

S0.4
3

0.4 S0.5
4 S0.5

4 S0.5
4

0.5 S0.6
4

S0.6
4

S0.6
4

0.6 S0.7
3 S0.7

4 S0.7
4

0.7 S0.8
4

S0.8
4

S0.8
4

0.8 S1.0
4 S1.0

4 S0.9
4

0.9 S1.0
4

S1.0
4

S1.0
4

In the intensity reduction model, for the light and heavy usage cate-

gories, for low values of µ the optimal warranty repair strategy is either

the all minimal repair strategy or the 3-subregion imperfect repair strat-

egy; for intermediate values of µ, the 4-subregion strategies result in lower

costs when compared to the 3-subregion strategies; for high values of µ,

the 4-subregion repair-replacement strategy is optimal. For the medium

usage category, the optimal strategy when µ = 0.1 is the all minimal re-

pair strategy; for all intermediate values of µ, the optimal strategy is the

4-subregion imperfect repair strategy with the lowest corresponding δ; for

high values of µ the optimal strategy is the 4-subregion repair-replacement

strategy.



Chapter 7

Conclusion and Future Research

In this thesis, we extended the warranty repair-replacement strategy pro-

posed by Iskandar et al. [21] and Chukova et al. [13] to an imperfect repair

strategy. The new strategy is a generalization of the repair-replacement

strategy in terms of the degree of repairs. The imperfect repair strat-

egy studied, is for repairable products sold under a nonrenewing two-

dimensional free-replacement warranty policy. The warranty region is di-

vided into n subregions; all repairs in the first and last subregion are min-

imal; in each of the intermediate subregions, the first repair is imperfect

and all subsequent repairs are minimal. Since the strategy is restricted,

these subregions are defined by n decision variables whose optimal val-

ues are found by minimizing the expected warranty servicing cost over

the warranty region.

In the new warranty repair strategy, repairs with different degrees δ,

0 < δ < 1, are considered. For comparison reasons, we used an example

proposed by Iskandar et al. [21] and extended by Chukova et al. [13] to

numerically illustrate our findings for the imperfect repair strategy.

To model the imperfect repairs, we used an extension of the age reduc-

tion model purposed by Doyen and Gaudoin [16], and a modification of

the intensity reduction model by Chukova et al. [11].

140
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For each of the two imperfect repair models, we

• derived the density functions for the imperfect repair times in the

intermediate subregions;

• derived an expression for the expected total warranty servicing costs

for the n-subregion warranty repair strategy;

• numerically illustrated the procedure for finding the optimal parti-

tioning of the warranty region and the optimal warranty repair strat-

egy, using an example by Iskandar et al. [21].

For the chosen example, we presented numerical results for the 3- and

4-subregion imperfect repair strategies, and provided comparison with

previously studied repair-replacement strategies. The unrestricted strat-

egy by Chukova and Johnston [14] did better in some cases, but since the

imperfect repair strategy proposed here is restricted, the final comparison

for finding the optimal repair strategy was with the restricted 3-subregion

strategy by Iskandar et al. [21] and the restricted 4-subregion strategy by

Chukova et al. [13]. Also included were comparisons with an all minimal

repair strategy. For both the age reduction model and the intensity re-

duction model, the results show that in many cases performing imperfect

repairs in place of replacements can significantly reduce warranty costs.

The results derived in this thesis can be extended and modified in a

number of ways:

• In the expressions derived for the expected warranty servicing costs,

the repair costs were assumed to be constant; in the numerical exam-

ple we modified these costs to be proportional to the degree of the

imperfect repair. They can be further modified into more realistic

cost functions based on actual or empirical data.

• In the numerical example, we considered the 3- and 4-subregion im-

perfect repair strategies. It is possible that an imperfect repair strat-

egy with more than four subregions is the optimal strategy. Finding
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the optimal number of subregions for the imperfect repair strategy

could be the next step in finding the best repair strategy.

• The derived results are for a free-replacement warranty policy. Simi-

larly, the imperfect repair strategy can be developed for pro-rata and

combination warranty policies.

• The repair strategy is for a two-dimensional non-renewing warranty;

it would be of interest to study a two-dimensional renewing repair-

replacement warranty strategy.

• The optimization procedure used to obtain the numerical results is

based on a coarse grid. The suggested strategies are optimal when

optimizing over this grid. Finding an efficient optimization proce-

dure that would produce more accurate results could be another di-

rection to further this study.
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