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ABSTRACT 

Gorgonian corals (Cnidaria: Anthozoa: Octocorallia) are conspicuous, diverse and often 

dominant components of benthic marine environments. Intra- & interspecific morphological 

variability in gorgonians are influenced by environmental factors such as light, sedimentation 

and flow rates. Yet, little is known about the responses of gorgonian taxa to environmental 

parameters particularly in Indonesia, despite their high regional abundance and diversity. With a 

burgeoning human population and subsequent marine resource exploitation, reefs throughout the 

Indonesian archipelago are under rapid decline and often destroyed. Conservation surveys are 

however, underway with a tendency to overlook gorgonian taxa primarily due to unresolved 

taxonomic assignment leading to difficulties in field identification.  

The aims of this study were to: 1) characterise gorgonian diversity and ecology across a gradient 

of habitat quality within the Wakatobi Marine National Park (WMNP), SE Sulawesi, Indonesia, 

2) assess morphological and genetic variability between morphotypes of the ubiquitous 

zooxanthellate isidid Isis hippuris Linnaeus 1758 from healthy and degraded reefs, 3) determine 

if I. hippuris morphotypes are environmentally induced (plastic) or genetically derived through 

reciprocal transplant experiments (RTEs) between contrasting reefs and thus, 4) identify 

mechanisms of plasticity capacity or divergence through phenotypic trait integration in response 

to environmental change. 

Ecological surveys revealed considerable gorgonian diversity with a total of 197 species and 

morphotypes from 42 genera, and 12 families within the suborders Calcaxonia and Holaxonia 

and the group Scleraxonia, with current estimates of over 21 new species and 28 new species 

records for the region. Gorgonian abundance and diversity increased with reef health and 

bathymetry. However, a clear loss of gorgonian diversity existed with increased sedimentation 

and reduced light due to anthropogenic disturbance. In particular, two distinct I. hippuris 

morphotypes were highly abundant between environmental clines: short-branched multi/planar 

colonies on healthy reefs, and long-branched bushy colonies on degraded reefs. Comparative 

morphological and molecular analyses using ITS2 sequence and predicted secondary structure, 

further corroborated haplotype differences relative to morphotypes between environments. 

However, unsatisfactory assignment of I. hippuris morphotypes to previously described 

alternatives (Isis reticulata Nutting 1910, Isis minorbrachyblasta Zou, Huang & Wang 1991) 

questions the validity to such taxonomic assignments. Phylogenetic analyses also confirm that 
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the polyphyletic nature of the Isididae lies in its type species I. hippuris, being unrelated to the 

rest of its family members. 

A one-year RTE revealed three key results, that: 1) reduced survivorship of healthy reef 

morphotypes on degraded reefs implied the onset of lineage segregation through immigrant 

inviability, 2) prominent phenotypic traits were at the morphological and bio-optical levels 

revealing high phenotypic plasticity in healthy clones, and relative insensitivity to environmental 

change in degraded reef morphotypes, indicative of local adaptation leading to incipient 

ecological divergence, and 3) photoacclimation at the bio-optical level was not attributed to 

endosymbiont diversity or shuffling, with all test colonies possessing a novel clade D1a 

Symbiodinium.  

While it is clear that gorgonian taxa within the WMNP are of exceptional diversity and 

abundance, responses to environmental perturbation highlight three pertinent, testable ideas. 

Firstly, increased species richness specifically with depth in azooxanthellate taxa, invite tests of 

deep-reef refugia previously established through geological change. Secondly, ecological 

assessment targets research on informative taxa for focused systematics and mechanisms of 

phenotypic divergence. Thirdly, exploring intrinsic and extrinsic interactions that define the 

host-symbiont relationship and differential biological success using physiological and next 

generation sequencing approaches. These objectives would provide considerable insight into the 

evolutionary processes to environmental change, accelerated by anthropogenic encroachment. 

Taken together, this work signifies that gorgonian corals within the WMNP are of foremost 

diversity and concern, exhibiting informative ecological and mechanistic responses to 

environmental perturbation. This evidence elicits tests of deep-reef refugia, priority systematics, 

mechanisms of ecological divergence and physiological assessment. Such tests inevitably 

expand our understanding of the intrinsic and extrinsic associations of gorgonian taxa to 

environmental change from an historical and predictive perspective yielding benefits to 

conservation assessment and management.    
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Genetic variance (VG) – Phenotypic variance among individual members of a population due to 

genetic effects 

Genetic and environmental interaction variance (VGxE) – Genotype by environment 

interaction whereby genotypes differentially respond to their environment 

Gonads – Reproductive cells along the septa within the gastrovascular cavity 

Gorgonin – Horny proteinaceous material forming with calcareous (loculi and/or sclerites) 

material of the inner and/or outer layers of the central axis 

Hermatypic – Reef-building corals, typically depositing aragonite structures contributing to or 

the basis of coral reef development e.g., most Scleractinian corals 

Holobiont – Biological unit including the host and its microbial associate communities 

Integration – Characters (phenotypic traits or modules) behaving as a unit with integration 

manifested as coordinated character change in ontogeny, phylogeny, space, time, magnitude 

or direction 

Internode – Hard, calcareous segment of the jointed axis (e.g., Melithaeidae, Isididae) 

Intraspecific variation – Any differences among individuals of a single species. 

ITS2 cladal type – Genetic variant of the ITS2 region below that of a clade and currently 
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Axis, Central Chord) 

Mesenteries (Septa/um) – Eight thin, radial and longitudinal, non-calcareous partitions joining 

the pharynx to the body wall and dividing the polyp gastrovascular cavity. Each septum 

bears a longitudinal retractor muscle 

Mesenteries filaments (Septal filaments) – The thickened convoluted edges of the mesenteries 

(septum) below the pharynx. The two mesenteries opposite the siphonoglyph are long and 

heavily flagellated 

Modularity – Degree to which a system’s components can be separated and recombined; thus 

organisms are considered to consist of phenotypic modules 

Monophyletic – A group of organisms descended from a common evolutionary ancestor or 

ancestral group, particularly one that is not shared with any other group 

Multiplanar - Branched colonies in which the branches grow in several planes 

Neck zone (Introvert) – Soft, thin-walled basal section of the anthocodia below the tentacles 

bearing little or no sclerites. Permits introversion of the anthocodia into the anthostele 

(calyx) 

Node – The flexible horny (gorgonin) segment of a jointed axis (see internode) 

Oral disc – Area of the polyp immediately surrounding the mouth and formed by the inner basal 

parts of the tentacles 

Pharynx – Tubular section of the digestive system connecting the mouth and the gastrovascular 

cavity; possesses one or two flagellated grooves (siphonoglyphs) 

Phenotype – The set of observable traits of an individual due to its interaction of its genotype 

with the environment 

Phenotypic plasticity – Environmentally induced changes in an organism’s phenotype within 

its lifetime; a specific form of intraspecific variation (see above). 
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Phenotypic variance (VP) – Variance within a quantitative phenotypic trait (see additive, 

dominant, epistatic, genetic, environmental, and genetic and environmental interaction) 

Polyphyletic  - A group of organisms derived from more than one evolutionary ancestor or 

ancestral group, therefore not suitable for placing in the same taxon 

PSII – Photosystem II (two); a photosystem reaction centres/protein complex that uses light 

energy for the splitting of water through oxidation in photosynthesis 

Pinnules – The lateral, hollow processes arranged in two opposite rows along each tentacle 

Planar – Arborescent branching colonies where branches generally grow in a single plane 

Plasticity - Environment-dependent phenotype expression 

Pleiotropy – The influence of a single gene on several seemingly unrelated phenotypic traits 

Point(s) – Eight longitudinal rows of chevroned sclerites around the distal part of the 

anthocodia, superposing the crown if present 

Polygenic – Phenotypic trait controlled or the product of two or more genes and its environment 

(see additive genetic variance) 

Polyp (Zooid) – Any individual within a (octocoral) colony, which may be monomorphic 

(possess single polyp type) or consist of more than one type e.g., autozooids and 

siphonozooids (e.g., Coralliidae) 

Polyphenic trait (Polyphenism) – A trait which gives rise to multiple, distinct phenotypes from 

a single genotype due to differential environmental conditions 

Radiates – Sclerites with symmetrically radiating processes in a single or multiple planes 

Reaction norms (Norms of reaction) – A single genotypes phenotypic expression as a function 

of environmental variation. 
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Sclerite – Calcareous skeletal element present in or on the Octocoral soft tissue matrix or axial 

composition 

Septa (Septum, Mesenteries) - Eight thin, radial and longitudinal, non-calcareous partitions 

joining the pharynx to the body wall and dividing the polyp gastrovascular cavity. Each 

septum bears a longitudinal retractor muscle 

Siphonoglyph (Sulcus) – Strongly ciliated groove extending down one side of the pharynx 

Solenia (Solenium) – Narrow endodermal canal lined with gastrodermis within the 

coenenchyme, forming a network by interconnecting the gastric cavities of the polyps and 

larger canals  

Spicule – Skeletal element of non-cnidarian taxa (e.g., Porifera), often confused with sclerite  

Spindles – Monaxial (single axis) sclerites that are straight or curved and pointed at both ends 

Symbiodinium Freudenthal 1962 (Zooxanthellae) – Unicellular dinoflagellate free-living or 
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Synapomorphic – Of a character trait that evolves once in the common ancestor (and not in its 

ancestors) of two or more lineages, themselves possibly exhibiting further modified versions 

of that trait   

Residual components [Verror] – Phenotypic variance accounted for by developmental noise, bet-

hedging, behavioural or other unaccountable factors 

Zooxanthellar/e (Symbiodinium) – Colloquial name for Symbiodinium Freudenthal 1962 
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CHAPTER 1: GORGONIAN RESPONSES TO ENVIRONMENTAL 

CHANGE: PLASTICITY VS. ADAPTATION? 

1.1 INTRODUCTION 

Gorgonian corals (Cnidaria: Anthozoa: Octocorallia) are conspicuous, diverse and often 

dominant components of intertidal and subtidal benthic marine environments; most notably 

tropical shallow reef, deep sea, and mesophotic habitats (Wirshing et al. 2005, McFadden et al. 

2010a, Cerrano et al. 2010). Gorgonians are modular, suspension feeding colonial sessile 

organisms defined primarily by a semi-rigid scleroproteinaceous (gorgonin) axis with varying 

amounts of calcification (Bayer 1961, Grasshoff 1999, Sánchez et al. 2003a). Originally 

classified under the order Gorgonacea (now taxonomically obsolete), Bayer (1981) included 

gorgonians within the Octocorallia order Alcyonacea on the basis of intermediate forms 

obscuring any definitive morphological boundaries. Thus, gorgonians remain in a state of 

taxonomic confusion despite being of ecological (Fabricius & De’ath 2004), commercial (Grigg 

2002), climatic (Thresher et al. 2010), evolutionary (Sánchez 2004), pharmaceutical (Bayer et 

al. 1974, Bordeleau et al. 2006, Susilaningsih et al. 2010), and conservation importance (Dayton 

2003, Linares et al. 2008). Many gorgonians have been used as conservation ‘flagship’ species 

(Tinsely 2005, Linares et al. 2008, Cerrano et al. 2010), being ecologically diverse, long-lived 

engineering taxa that maintain habitat heterogeneity and provide secondary space to other 

organisms, thereby enhancing ecosystem function (Cerrano et al. 2010, Mumby et al. 2010). 

Irrespective of their ecological diversity and global distribution, the greatest paucity of 

information however, exists in the Indonesian Archipelago (Tomasik 2004), a surprising 

reflection particularly given that zooxanthellate gorgonians are often one of the primary space 

occupants of tropical reefs (McFadden et al. 2006).  

Gorgonian responses to their environment are intriguingly complex. Their population 

demographics are principally driven, together or in part, by environmental factors including 

substrate, light, temperature, sedimentation, salinity, current regime and flow rates (Bayer 1981, 

Fabricius & Alderslade 2001). In addition, biotic factors such as competition, predation, 

symbioses, reproduction, settlement and developmental properties provide local scale 

refinement. These factors have been shown to induce intra- and inter-specific morphological 

variability (West 1997, 1998, Linares et al. 2008), habitat selection and colony orientation 

(Grigg 1972, Sánchez et al. 2003a). Anatomical and behavioural adaptations, which include 

polyp expansion, chemical or nematocyst complement, colony dynamics, branching 

morphology, sclerite type and morphology, as well as photoacclimation, zooxanthellae density 
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and content, are all responses to reef life. Yet, what stands this group apart from other marine 

metazoans, with the exception of perhaps Porifera (Bayer 1961, Shearer et al. 2002), is the 

enormous degree of variability as yet largely unexplored. Whether such variability is the result 

of phenotypic plasticity, therefore adaptive, or an adaptation potentially leading to incipient 

speciation remains to be seen. Nevertheless, to investigate evolutionary processes and create 

effective conservation strategies, it is essential to define species and species boundaries. 

However, such taxonomic resolution is often confounded by considerable phenotypic variability, 

cryptic and sibling taxa (Knowlton 1992), and lack of gorgonian research primarily due to 

difficulties in field identification (Fabricius & Alderslade 2001). In addition, molecular markers 

such as mitochondrial DNA (mtDNA) used to delineate species and/or taxonomic groups are 

highly conserved in Cnidaria revealing little or no taxonomic variation (France et al. 1996, 

Shearer et al. 2002). Thus, the ‘Species Problem’ is exemplified and of fascinating complexity 

in gorgonians. Nonetheless, with a modular, clonal nature and advancements in molecular 

markers (e.g. Conception et al. 2008, McFadden et al. 2010a), gorgonians provide an innovative 

platform from which to study the evolution of environmentally plastic or dependent characters 

(Gotthard & Nylin 1995) and subsequent modes of speciation. 

1.2 GORGONIAN ANATOMY  

Colonial, polypoid and sessile, gorgonian octocorals are characterised by polyps bearing eight 

pinnate tentacles, eight mesenteries dividing the gastrovascular cavity, and nematocyst 

(collectively ‘cnidae’) complement (Figure 1.1: Bayer 1961, Berntson 1998). What defines a 

gorgonian coral specifically is the division of the coenenchyme - the tissue between and 

containing the polyps, gastrovascular canals, sclerites and solenia (see Figure 1.1) - into the 

outer cortex and inner axial medulla (as in the Scleraxonians Figure 1.3a) or a central axis with 

or without a central cortex (Figure 1.3c,b). This tissue division may or may not give rise to the 

archetype arborescent morphology of a gorgonian and places emphasis on structural – functional 

optima of resource acquisition in particular environments. For example, encrusting 

zooxanthellate taxa in high light and hydrodynamic regimes, and tall flexible arborescent 

colonies perpendicular to the prevailing water currents. Ultimately it is the central or inner axial 

layer consisting of varying levels of calcareous and/or gorgonin (proteinaceous) material that 

lend gorgonians their name. 
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Figure 1.1 Schematic diagram of gorgonian anatomy modified from Bayer et al. (1983), with 

(a) Octocoral nematocyst capsule (modified from Grasshoff & Bargibant 2001), (b) polyp 

overhead view (taken by Eco-Divers 2008), and (c) endosymbiont dinoflagellates 

(zooxanthellae) within the polyp gastrodermis (source Hoegh-Guldberg). Yellow highlighted 

traits are particularly characteristic of gorgonian corals. Glossary of terms provided on page xvi. 

The coenenchyme growth leads to the continual addition of polyps that may retract entirely into 

the coenenchyme (Figure 1.2a), into low or high calyces (Figure 1.2b,c) or contract through 

hydrostatic deflation into low mounds or tall scleritic polyp structures (Figure 1.2d,e). The latter 

two cases do not reinforce the anthostele and thus are not termed calyces (Stachowitsch 1992). 
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Figure 1.2 Gorgonian polyp morphology. Retractile polyps of (a) Isis hippuris Linnaeus 1758 

completely into the coenenchyme, (b) Astrogorgia Verrill 1868 into a high calyx, and (c) in to a 

low calyx plus partial expansion. Non-retractile but contractile polyps of (d) Verrucella Milne-

Edwards & Haime 1857, and (e) Acanthogorgia Gray 1857 (photography by Rowley 2009). 

Gorgonian polyps consist of three thin layers: the mesoglea, a gelatinous fibrous matrix also 

containing amoeboid and scleroblast cells, sandwiched between the outer epidermis and inner 

gastro- or endodermis cellular layer lining the mesenteries, pharynx, gastric cavity and tentacles 

(Stachowitsch 1992, Fabricius & Alderslade 2001). The eight mesenteries divide and increase 

the surface area of the gastric cavity through the pharynx to the eight pinnate tentacles, 

themselves mesentery extensions. The free inner edge of each mesentery below the pharynx is 

thickly lined (mesentery filament) and varies in function with two flanking the longitudinal 

siphonglyph or sulcus, which through ciliary action beats water through the polyp into the 

solenia or canals to the rest of the colony. In zooxanthellate species the dinoflagellate 

endosymbionts are present within the gastrodermal cells or within vacuoles in the gastric cavity 

(Fabricius & Alderslade 2001).   

Nematocysts are only produced by cnidarians as key mechanisms of defence and offence (Fautin 

2009). Gorgonian nematocysts are typically in the tentacles, if present at all, with octocoral 

cnidae somewhat pitiful compared to that of other cnidarians (e.g., Hydrozoa, Scyphozoa, 

Cubozoa) consisting of a single type (Figure 1.1a) out of the thirty currently recognised for this 

phylum (Fautin 2009). Irrespective, gorgonians have continued to persist since at least the 

Lower Ordovician (Lindstrom 1978, Bengtson 1981, Cope 2005) despite their relative 

simplicity. It is not unreasonable to suggest that their current poor cnida content, diversity and 
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Figure 1.3. Gorgonian comparative axis cross-section structure. (a) Scleraxonian axis cross-

section showing coenenchyme, polyp and central medulla (Annella reticulata Ellis & Solander 

1786, 6 mm). (b) Holaxonian axis cross-section showing loculus, central core and coenenchyme 

(Astrogorgia cf. dumbea Grasshoff 1999, 7 mm). (c) Calcaxonian axis cross-section showing 

coenenchyme, axis and polyp (Viminella sp. Gray 1870, 4 mm). Ax = Axis, Cc = Central core, 

Ce = Coenenchyme, Lo = Loculus, Me = Medulla, P = Polyp. Images: Wakatobi Marine 

National Park, Indonesia, 5 – 15 m depth (Rowley) 2009, 2010. 

potency may be due to increasing redundancy over time through a greater chemical defense 

battery, which may or may not have evolved as a consequence of strong associations with their 

microbiota. 

1.3 GORGONIAN CLASSIFICATION 

Gorgonians (sea fans and sea whips) are within the subclass Octocorallia (or Alcyonaria), which 

take a basal position within Anthozoa, itself basal within the phylum Cnidaria (Bridge et al. 

1992). Octocorallia are a clearly defined monophyletic group based on both their molecular and 

anatomical characters (France et al. 1996, Bayer 1961, Berntson et al. 1998, 2001, McFaddenet 

al. 2010a).  

Gorgonian taxonomy began almost four centuries ago, being originally described and classified 

as ‘marine plants’ (Rumphius 1741, Bayer 1959, Grasshoff 2001), with eventual classification 

based on colony morphology and the shape and arrangement of calcareous sclerites found within 

the polyps and coenenchyme (Kükenthal 1919, Bayer 1981, Grasshoff 2001, Vargas et al. 2010). 

Bayer (1961, 1981) further confirmed gorgonian delineation on the basis of axis mineralogy 

(Figure 1.3a-c). Therefore, through comparative morphology gorgonians currently comprise the 

suborders, Holaxonians and Calcaxonians Grasshoff 1999 and the group Scleraxonians Studer 

1887 within the order Alcyonacea (Bayer 1981, Figure 1.4). The Scleraxonian ‘group’ however, 
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is not strictly a suborder due to several intermediate forms and the likelihood of families 

evolving from numerous separate evolutionary lines (Fabricius & Alderslade 2001). 

Nonetheless, Scleraxonians typically possess a scleritic inner medulla with varying low levels of 

gorgonin. The Holaxonians have, with one exception (Keroeididae Kinoshita 1910), a whole 

horny axis supported by non-scleritic calcareous material. The relatively recent (Grasshoff 1999) 

Calcaxonians are delineated by a solid non-scleritic calcite or aragonite axis, which may 

alternate or fuse with gorgonin fibers (Bayer 1981, Fabricius & Alderslade 2001; Figure 1.3). 

However, hollow axial members exist (Watling & France 2011, Alderslade & McFadden 2012)! 

Curiously, molecular studies confirm Octocorallia monophyly but lack phylogenetic support for 

such morphology-based sub-ordinal groupings within the Alcyonacea (reviewed by McFadden 

et al. 2010a, Figure 1.4). Sánchez et al. (2003a) using partial 16S mitochondrial rDNA, complete 

18S nuclear rDNA sequences (from France et al. 1996 & Berntson et al. 2001 respectively), 

INDELS (insertions-deletions) and predicted secondary structure of the 1su-rRNA (16S) 

revealed two main branching gorgonian clades; Calcaxonia and Alcyoniina-Holaxonia, with 

Scleraxonians present in both groups. Moreover, McFadden et al. (2006) using the 

mitochondrial protein-coding regions, msh1 (now mtMutS) and ND2 on all Octocorallia sub-

groups further supported the findings of Berntson et al. (2001), revealing three well-supported 

clades (cf. Figure 1.4). Gorgonian phylogeny therefore, typically recognises two groups, with 

further separation of deep and shallow water clades within Calcaxonians (McFadden et al. 2006, 

Pante et al. 2012), and Scleraxonians being polyphyletic (Sanchez et al. 2003a). Furthermore, 

mapping morphological characters onto molecular-derived phylogenies revealed synapomorphic 

and homoplasious characters, for example axial structure and surface sclerite morphology 

respectively in Caribbean Holaxonians (Sanchez et al. 2003b). Such phylogenetic research, 

though informative, fails to satisfactorily resolve at the subordinal or family-level (McFadden et 

al. 2010a) due to such considerable overlap and lack of reliable morphological characters 

(Wirshing et al. 2005), further confounded by remarkably slow evolving mitochondria in the 

Anthozoa (Shearer et al. 2005). However, Octocoral mitochondria contain msh1, a homolog of 

the bacterial mismatch repair gene MutS (Pont-Kingdon et al. 1995, 1998), synapomorphic for 

the subclass and twice as variable as other traditionally used mitochondrial markers (France & 

Hoover 2001, van der Ham et al. 2009, McFadden et al. 2010a). Yet, levels of msh1 inter- and 

intraspecific variation have been shown to differ between genera (McFadden et al. 2010b), and 

combined use of msh1, mitochondrial and/or nuclear genes seldom leads to increased taxonomic 

resolution (e.g., Sánchez et al. 2003b, Wirshing et al. 2005, Herrera et al. 2010). Furthermore, 

studies utilising 
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Figure 1.4 Octocoral phylogeny based on morphological characters currently in use based on 

Bayer (1981) and Fabricius & Alderslade (2001). 

nuclear rDNA internal transcribed spacers (ITS) reveal conflicting results both between and 

within gorgonian species (Aguilar & Sánchez 2007, Sánchez et al. 2007, Dueñas & Sánchez 

2009, Gutiérrez-Rodríguez et al. 2009, cf. Calderón et al. 2006). Such multicopy markers 

(tandem repeats of transcription units within a cell) are subject to intragenomic variation 

(variability between such tandem repeats), controversial in the validity of the results (cf. 

Coleman 2003, 2007, 2009). The predicted RNA secondary structure is more conserved and 

therefore, generally considered more phylogenetically informative particularly in the cases of 

Caribbean and deep-sea gorgonians (Aguilar & Sánchez 2007, Sánchez et al. 2007, Sánchez & 

Dorado 2008, Dueñas & Sánchez 2009). Nonetheless, Concepcion et al. (2008) revealed cryptic 

species delineation using the single-copy marker SRP54 (>33% variation cf. <10% in mtDNA 

ND2 & 6) within Carijoa riisei Duchassaing & Michelotti 1860, thus informative intraspecific 

variation without the caveats of intragenomic variation. In contrast, Watling & France (2011) 

discovered large numbers of indels (sequence insertions and deletions) rendered the sequences 

inoperable for phylogenetic analyses in the Keratoisidinae. 

As with morphological characteristics the choice and utility of molecular marker(s) appears 

subjective relative to their resolution efficiency (Wirshing et al. 2005) and target taxon. What is 

clear is that gorgonians, and octocorals generally, lack reliable phylogenetic hypotheses and 

much work is yet to be completed (Sánchez et al. 2003a). A combination of specific markers 

still may provide sufficient resolution to make inferences on both phylogenetic and evolutionary 
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principles, even though not being as informative as sequencing the entire genome. Thus, for the 

purpose of this review Bayer’s somewhat tenuous three-group (suborders Holaxonia and 

Calcaxonia, and Scleraxonian group) system, currently utilised by most octocoral taxonomists 

(e.g., Fabricius & Aldersade 2001, Daly et al. 2007; Figure 1.3 & 4), will be referred to with 

reference to further studies where appropriate. 

1.4 MORPHOLOGY 

Gorgonian morphological variability, whether environmentally plastic, genetically derived or 

the product of genotype-by-environment interaction(s), display a variety of forms within and 

between habitats. Colony morphology can be arborescent, flabellate/fan-shaped, spiraled, planar, 

pinnate, tangled/untangled bushes, lyrate, candelabra, reticulate, encrusting, lobular, or a 

combination of such forms (Bayer et al. 1983, Fabricius & Alderslade 2001). Colonies display 

nested modularity from branched (or unbranched): e.g., reticulate, alternate, pinnate, irregular, 

dichotomous, monopodal, fistulate, or a combination; polyps (modules sensu stricto) typically 

retracted or contracted (Figure 1.2a - e); and supra-modular traits e.g., intercalice distance, calice 

diameter and branch length (Sánchez et al. 2007, Prada et al. 2008). There is considerable 

variability within such traits, apparently independent of common ancestry, with no complete 

understanding of developmental or evolutionary processes (Sánchez 2004, France 2007, 

Sánchez et al. 2007). However, such phenotypic variation among gorgonian individuals is 

essentially the raw material of natural selection (Sánchez & Lasker 2003, Pigliucci 2005). 

Anthozoans possess developmental genes within the putative Hox1, Hox2, and Hox 9+ gene 

families giving inference to a rudimentary “Hox code” (Ryan et al. 2007). Possession of such 

highly conserved gene clusters indicates a greater complexity in form and development for 

Cnidaria, providing insight into Hox evolution; Hox genes previously considered a bilaterian 

invention (Ryan et al. 2007). However, knowledge of morphogen gradients regulating cnidarian 

morphogenesis is poor, yet crucial in developing our understanding on how morphogenesis is 

controlled by genome-by-environment interactions (Kaandorp & Kübler 2001). Nonetheless, 

advances in developmental biology in combination with integrative investigations - in vivo, in 

vitro and in silico - are beginning to provide valuable insights into the evolution of both 

developmentally constrained and environmentally dependent gorgonian characters, especially 

with regard to branching structure (Sánchez et al. 2004, 2007, Brown 2007).  

Branching systems are open networks, thus linked between any two points and not closed 

circuits (Kaandorp & Kübler 2001). Such networks are present in all complex systems from 
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rivers (Horton 1945) to the mammalian nervous system with various indices assigned to 

branches for morphometric comparisons (reviewed by Kaandorp & Kübler 2001). 

Understanding complex gorgonian architecture and developmental processes has lead to 

numerous comparative morphometeric studies often concluding the potential dependence of 

growth form on genetic and/or environmental parameters (e.g., Kim et al. 2004, Sánchez et al. 

2004, Linares et al. 2008, Prada et al. 2008). Branching gorgonians develop in a sub-apical 

process, resulting in mother-daughter relationships: the primary (mother) branch producing 

secondary ‘daughter’ branches at fixed distances/internodes (Sánchez et al. 2004). The mother-

daughter ratio (c) indicates the relationship between colony form and growth (= branching), with 

colony shape maintained when (c) is constant irrespective of gorgonian species (Sánchez et al. 

2004). This pattern is particularly constant in alternate branching taxa and is suggested to 

indicate physiological developmental constraints or canalization (Sánchez et al. 2004). 

Furthermore, determinate growth (through self-organized criticality) follows a scaling power 

law relative to mother branch size frequency distribution. Sánchez (2004) goes on to review 

differences in colony size and growth patterns whilst (c) is constant, perhaps an example of 

heterochrony – differences in colony size and shape due to changes in timing or rate of 

developmental events (Gould 1977). In addition, colony growth will slow asymptotically as the 

maximum number of mother branches is reached (Sánchez 2004). Interestingly, compensatory 

growth experiments in the Japanese scleraxonian, Melithaea flabellifera Kükenthal 1908 

revealed that optimal size and branch density were determinate by maintaining colony form 

through irregular and heterogeneous growth (Matsumoto 2004), a compensatory thus 

determinate pattern also reported in other gorgonians (Sánchez & Lasker 2003, Kim et al. 2004). 

Quantification of gorgonian branching networks has further revealed an emergent level of 

module integration at the colony level (internode distance and branch length; Sánchez & Lasker 

2003). Patterns of morphological trait integration are independent of polyp iteration; a few 

changes at the polyp level having no significant affect on colony architecture (Sánchez & Lasker 

2003, Sánchez 2004). Nevertheless, character trait inter-dependence may be the product of 

heritable pleiotropy (multiple phenotypic traits due to a single gene), linkage disequilibrium, or 

concerted evolution operating on traits for a specific function (Sánchez & Lasker 2003). 

Moreover, convergent evolution (homoplasy) in gorgonian colony architectures, first proposed 

by Bayer (1953), is both phylogenetically corroborated (Sánchez et al. 2003b, Wirshing et al. 

2005, Aguilar & Sánchez 2007, Cairns & Bayer 2009) and frequently observed between closely 

related species (Sánchez 2004, Watling et al. 2012). 
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Heterogeneity in form exists due to the feedback between growth, and micro- and macro-

physical environments (Kaandorp & Kübler 2001). Thus, branching, growth and form are 

continuously undergoing physiological adjustments relative to environmental change (Velimo 

1975, Matsumoto 2004, Roark et al. 2006). However, gorgonians have a slow growth rate 

(Grigg 1974, Noé & Dullo 2006, Tracey et al. 2007), such that investigations of eco-phenotypic 

and genetic effects using reciprocal transplants principally focus on microstructure variation 

(sclerite; e.g., West et al. 1993, West 1997) and specific genetic markers (Prada et al. 2008, 

Gutiérrez-Rodríguez et al. 2009). Furthermore, gorgonian transplant experiments at opposite 

ends of an environmental gradient such as depth, frequently revealed phenotypic plasticity, thus 

environmentally induced traits (Bayer 1961, Brazeau et al. 1991, West et al. 1993, West 1997, 

Kim & Lasker 1997, Kim et al. 2004, Skoufas 2006). Such phenotypic expression aligned with 

differences in genetic markers, but these markers (e.g. msh1, ITS – caveats discussed above) are 

not specific for the phenotypic trait(s) observed and are limited in their ability to investigate 

environmental challenge responses. Interestingly, detection of branching initiation in the 

gorgonian Pseudopterogorgia [now Antillogorgia] elisabethae Bayer 1961 using the Hox 

marker anthox revealed differences in gene expression within and between branch locations, yet 

failed to give sufficient resolution as a marker for branch initiation (Brown 2007). Thus, much 

work on the expression of genes specific to phenotypic plasticity has yet to be conducted 

whether from the genome or of epigenomic origin. 

The interplay between gorgonian developmental gene expression and resource supply is 

unknown, however use of simulation models and morphometric analyses may infer resource 

allocation structure and surplus, further triggering phenotypic plasticity events. Colony 

architecture determines its own morphological trajectory in marine hydroids. Sheet and runner-

like morphologies influence polyp pumping activity that in turn reduces or increases 

gastrovascular flow rate and relative cellular oxidation states in developing hydroids 

(Blackstone & Buss 1993). The resulting internal tensions trigger developmental gene 

expression (e.g., Cnox). Whether such colonial expansion thresholds exist in gorgonians remains 

to be seen, however, determinate growth appears to be 1) evident (e.g. Matsumoto 2004, 

Sánchez & Lasker 2003, Sánchez et al. 2004, Lasker et al. 2008), and 2) most likely influenced 

during early life stages (Cossins et al. 2006). 

1.5 ECOLOGY 

Ecologically diverse, gorgonians are important components of marine habitats from the deep sea 

to the tropical intertidal (Fabricius & Alderslade 2001, McFadden et al. 2006). Gorgonian 
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abundance, diversity and distribution depend upon environmental factors such as substrate type, 

light, temperature, sedimentation, current regime and flow rates (Garrabou et al. 2001), which 

have been shown to induce intra- and interspecific morphological variability both within and 

between individual colonies (van Oppen et al. 2005). Yet little is known of the ecology, biology 

and variable phenotypic responses of gorgonian taxa relative to environmental parameters, 

particularly in both the deep sea (Parrish 2007) and the Indo-Pacific (van Oppen et al. 2005). 

Gorgonian ecology often reflects reproductive strategies and/or changes along environmental 

gradients relative to individual species tolerances (Fabricius & Alderslade 2001). Gorgonians 

reproduce both sexually and asexually, with a variety of strategies having differing effects on 

population growth (Lasker 1990, 1996, 2006, Lasker et al. 1988 1996), even including 

parthenogenesis (Brazeau & Lasker 1998). Most research has been conducted on Caribbean and 

Mediterranean taxa, however, the majority being internal brooders (sperm cast, sensu Pemberton 

et al. 2003) with short pelagic larval duration before settlement. Nevertheless, staggered or neap 

tide spawning events, planktonic larval displacement by water currents, and chemotaxis through 

conspecific or coralline algal exudates (Fabricius & Alderslade 2001) may further influence 

local distribution, abundance and survival. In addition, gorgonians are subject to considerable 

endemism (Grasshoff & Bargibant 2001, Piccianno & Ferrier-Pagès 2007) with just a single 

shallow water gorgonian (Acabaria bicolor Nutting 1908) in the Hawaiian Islands and American 

Samoa (Fenner pers. comm., 2010). Nonetheless, shallow water gorgonians are highly abundant 

and predominantly zooxanthellate in the Caribbean compared to the Indo-Pacific, by far the 

most diverse, yet little researched taxa (Grasshoff & Bargibant 2001).  

Most gorgonian species are restricted to relatively small areas, such as islands (e.g., Aldabra, 

Bayer 1996; New Caledonia, Grasshoff & Bargibant 2001), with evolutionary processes often 

constrained by dispersal ability in terms of life history and biogeography. With a low range-size 

frequency distribution (~4 million km
2
 to > 10 million km

2
 for low and high range-size 

dispersing taxa respectively, as a proxy taken from Hughes et al. 2002) and endemism suggested 

central to the Indo-Pacific, mid-range dispersers may create the potential for the isolation of 

populations (mid-domain effect: see Colwell & Lees 2000) or subpopulations thus, vicariance 

with large dispersing, pandemic taxa having a decreased probability of speciation due to a 

greater ability to populate wider areas relative to habitat availability (Brown 2014, but see 

Hughes et al. 2002, Connolly et al. 2003, Colwell et al. 2005, ). However, the mid-domain effect 

– suggesting an increased overlap of species ranges at the centre of a ‘domain’ leading to a peak 

of species richness – appears to be positively correlated with prevailing ocean currents revealing 
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high species richness at periferal Indo-Pacific locations in numerous invertebrate groups 

(Connolly et al. 2003, Budd & Pandolfi 2010). Furthermore, increasing evidence reveals little 

correlation with short dispersion time and endemism for many taxonomic groups within the 

Coral Triangle, lending question to dispersal ability and reproductive mode as effective 

indicators of biodiversity particularly in the face of habitat availability as present in dense 

archepelago’s such as Indonesia. In other words, if there’s always somewhere to settle then 

dispersal ability is of less importance. Nevertheless, with only little knowledge of gorgonian 

species distribution, developmental strategies and taxonomy per se, it is not clear how such 

hypotheses extend to this group, diminishing their potential utility as a conservation indicator 

group for effective management strategies.   

Gorgonians show considerable phenotypic plasticity likely as an important factor contributing to 

their broad distribution as a group, which may further lead to genetic accommodation and/or 

assimilation and divergence (West-Eberhard 2003, 2005). However, gorgonian responses to 

environmental parameters vary across taxa, with zooxanthellate taxa absent in highly polluted 

areas, and tolerant azooxanthellate taxa often having a high susceptibility to fungal infections, 

colonization by fouling organisms, and a high partial mortality (Fabricius & Alderslade 2001). 

Complex habitats provide more vertical relief, colonizable area, and greater microhabitat 

variability than soft benthic substrata (Etnoyer et al. 2010). Yet even in the presence of suitable 

substratum, most gorgonians are absent in areas of high turbidity due to the physical impairment 

of settlement, feeding, reproduction and growth. Habitats characterised by low wave action, high 

turbidity and sedimentation rates, favour encrusting Briareum spp. (Fabricius & Alderslade 

2001), likely due to morphological and behavioural pre-adaptations such as phenotypic and 

photoacclimatory plasticity, colony dynamics, polyp density and size, reproductive strategy and 

recruitment survival (Stafford-Smith 1993, Anthony 2000). However, turbid habitats are 

marginal for zooxanthellate gorgonians, with no evidence of hard coral community replacement. 

Unsurprisingly, zooxanthellate gorgonian taxa follow similar depth ranges to scleractinia, 

however their relative reliance on endosymbiont photosynthetic carbon appears to be species 

specific (Sorokin 1991). Furthermore, high water motion and localized upwelling provide 

elevated nutrients for primary productivity and enhanced food availability (Jokiel 1978, Reed 

1983, Sebens 1984). Arborescent branching gorgonians orientate themselves perpendicular to 

the predominant water current in order to maximize food capture (Grigg 1972, Fabricius & 

Alderslade 2001). Pristine, high hydrodynamic conditions facilitate the largest colonies, but can 

also limit colony size (Linares et al. 2008) and enhance relative gorgonian diversity. Such 

patterns may be attributed to intermediate disturbance levels, maintaining relative species 
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diversity within a reef community (Connell 1978, Ostrander et al. 2000). Moreover, scaling 

effects may also lead to determinate growth and size whereby colony size reaches its functional 

capacity. Taken together, sedimentation, light and water flow appear major factors controlling 

local gorgonian populations (Meesters et al 2001, Linares et al. 2008).  

Gorgonians are ecologically diverse, long-lived, slow growing engineering species (species 

which “modify, maintain and create habitats.” Jones et al. 1994) with growth rates as little as 14 

m yr
-1

 (Roark et al. 2006), making them effective bioarchives (Risk et al. 2007, Williams & 

Grottoli 2010) yet vulnerable to disturbance, which can dramatically affect whole communities 

(Linares et al. 2008). Deep sea and Mediterranean gorgonian reefs are particularly vulnerable to 

the commercial harvesting of precious corals (Corallium spp.; Grigg 2001, Santangelo et al. 

1993) and bottom trawling (Watling & Norse 1998, Hall-Spencer et al. 2002). Furthermore, 

susceptibility to bleaching events and disease outbreaks has increased dramatically, having 

profound effects on gorgonian taxa in tropical (Smith et al. 1996, Geiser et al. 1998) and 

temperate regions (Cerrano et al. 2000, Garrabou et al. 2001, Hall-Spencer et al. 2007), likely 

due to global climate change. Gorgonians are therefore conservation indicator taxa, providing 

both habitat and refugia for numerous organisms including commercially important juvenile and 

adult fish species (Hall-Spencer et al. 2002). Understanding patterns of gorgonian ecology, 

physiology and morphological variation through cross-disciplinary approaches will be 

increasingly important in management and remedial conservation efforts.  

Due to their longevity and architectural diversity numerous marine organisms are associated 

with gorgonians, commonly exhibiting novel phenotypic adaptations. Most notably are 

morphological mimics such as the charismatic pigmy seahorse taxa e.g., Hippocampus denise 

Lourie & Randall 2003, facultative to various Scleraxonian and Holaxonian hosts (Lourie & 

Randall 2003). Unlike seahorses however, associates such as the gastropod Cyphoma gibbosum 

Linnaeus 1758 predate upon the polyps of their host, now the principle predator of Atlantic 

shallow water gorgonians as a result of predator release from over fishing (Birkepile & Hay 

2007). Furthermore, C. gibbosum has recently been traced as a likely vector of the fungus 

Aspergillus sydowii (Bainier & Sartory) Thom & Church 1926, which decimated populations of 

the Caribbean gorgonian Gorgonia spp. (Smith & Weil 2004). However, compared to 

hermatypic (hard) corals gorgonians have few specialist predators (Puglisis et al. 2000), 

probably the result of secondary metabolite production in response to competition (Kim & 

Lasker 1997, Van Oppen et al. 2005), predation and changes in environmental stimuli (West et 

al. 1993, Hoover et al. 2008). Interestingly, transcriptome analyses have revealed an induced 
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chemical response to predation stress by Chaetodon spp. on the soft coral Sinularia polydactyla 

Eherenberg 1834 (Hoover et al. 2008). Such metabolic responses are thought to increase in both 

variability and abundance at lower latitudes likely due to increased predation and competition 

(Puglisi et al. 2000).  

Irrespective of their battery of chemical defenses, and alloimmunity (see Salter-Cid & Bigger 

1991), certain gorgonian taxa are particularly susceptible to fouling, often as a consequence of 

mechanical damage, pollution or predation reducing reproductive output, further leading to a 

colonization cascade of opportunistic fouling organisms commonly resulting in host mortality 

(Gerhart 1990, Weinbauer & Velimirov 1996). Fouling extent has been attributed to increases in 

temperature or light (Drohan et al. 2005), as is also the case with disease (Cerrano et al. 2000, 

Harvell et al. 2001). Nevertheless, associate organisms have also been shown to remove 

sediment and consume boring and fouling larvae (Goh et al. 1999). Such symbioses are thought 

to be advantageous, gorgonians having reduced mucus secretary cells compared to other 

Cnidaria (Fabricius & Alderslade 2001).  

1.6 TROPHIC ECOLOGY 

Thus far, it is evident that gorgonians are modular organisms, with determinate colony growth, 

form and size (Lasker et al. 2003) due to the iterative addition of polyps and branches, and 

within colony canalisation providing effective resource allocation structure (Sánchez & Lasker 

2003). Furthermore, colony form can depend on feeding strategy and the same genotype can 

show different allocation patterns in different environments, consistent with the ‘partitioning’ 

hypothesis (Poorter & Nagel 2000, Weiner 2004).  

Growth form and resource allocation also change to counter the effects of environmental factors 

such as sedimentation (Riegal & Branch 1996) and depth (West 1997). Moreover, sedimentation 

has profound effects on coral metabolism by decreasing photosynthetic productivity in 

zooxanthellate gorgonian taxa, and increasing respiration (carbon-loss) by 95-100% through 

increased mucus production (Riegl & Branch 1995). The long-term effects of such expenditure 

on gorgonians are unknown, with virtually nothing known about gorgonian coral symbioses in 

the Indo-Pacific.  

Most gorgonians are colonial suspension feeding heterotrophs, predominantly capturing 

suspended particulate organic matter (POM; Tsounis et al. 2005, Picciano & Ferrier-Pagès 

2007), as well as dissolved organic matter (DOM) and zooplankton (Fabricius & Klumpp 1995, 
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Fabricius & Alderslade 2001). Certain shallow water taxa particularly in the Caribbean have a 

moderate dependence on phototrophy, harbouring symbiotic zooxanthellae within the 

gastrodermal tissue (Fabricius & Alderslade 2001), with a concomitant plasticity in growth form 

relative to the environment (Kaandorp & Kübler 2001, Prada et al. 2008). Phenotypic variability 

relative to their surrounding habitat such as colouration (Sánchez et al. 2007), branching 

dynamics (e.g., Matsumoto 2004, Sánchez 2004), colony surface area, polyp density and inter-

calice distance (West et al. 1993, Prada et al. 2008) have been shown to enhance food capture 

and efficiency. Most importantly is the extension of polyps - the primary feeding apparatus that 

can also bear photosynthetic endosymbionts (Symbiodinium Freudenthal 1962) in zooxanthellate 

taxa - into the water column whereby colony growth and form are interdependent on resource 

availability. Differential resource allocation patterns (hetero/phototrophic capacity) can vary 

relative to the environment in the same genotype, with or without morphological change (Sebens 

1997, Poorter & Nagel 2000, Weiner 2004).  

Assessing differential resource allocation patterns at the species level particularly in contrasting 

environments may be informative of the mechanisms of phenotypic variability within and 

between taxa, and ultimately tractable responses to environmental change. Energy 

apportionment relative to food acquisition and transfer from the environments and/or symbiont 

can be measured using stable isotopes of carbon (
13

C) and nitrogen (
15

N). However, 

gorgonian research has focused on the relative isotopic signatures of the calcareous axis and 

skeletal elements (sclerites) usually as bioarchives (sensu Williams & Grottoli 2010, Risk et al. 

2002). For example, azooxanthellate gorgonian skeletal 
13

C increased as nitrogen 
15

N 

decreased with increasing depth, further correlating with suspended POM values (Williams & 

Grottoli 2010). Feeding experiments on Corallium rubrum Linnaeus 1758 also revealed a 

preference for autotrophic flagellates that increased with temperature (Picciano & Ferrier-Pagès 

2007). Yet experiments on numerous shallow water taxa within the Great Barrier Reef revealed 

that the heterotrophic food source was species-specific irrespective of zooxanthellate status 

(Sorokin 1991). Nevertheless, until recently (Baker et al. 2011) nothing was known of the 

isotopic ratios of gorgonian soft tissues, primarily due to the unsuccessful separation of sclerites 

giving erroneous 
13

C signatures (Grottoli pers. comms. 2010).  Interestingly Baker et al. (2011) 

revealed using Caribbean zooxanthellate gorgonians, that light primarily affected 
15

N 

fractionation even though the values were minimal; this still has bearing on differentiating the 

effects of pollution on coral reef taxa. Comparative analyses of soft tissue and endosymbiont 

isotopic ratios in alignment with the surrounding environment would further elucidate the 

relationship between host, symbiont and their intrinsic and extrinsic energy transfer role(s) in 
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benthic – pelagic coupling. Moreover, exploring how endosymbiont (i.e., Symbiodinium) types 

influence the physiological performance of the holobiont to environmental change would greatly 

enhance our understanding of what drives host-symbiont associations.  

The photosynthetic dinoflagellates within the genus Symbiodinium associate with numerous 

coral reef invertebrates, most notably the hermatypic (reef building) Scleractinian corals. 

Diversity within the genus Symbiodinium is under continual investigation, but is hampered by a 

lack of morphological distinction between sub-generic clades (A-I; Pochon & Gates 2010) with 

differences identified at the genetic level (e.g., LaJeunesse 2002, Pochon et al. 2006, 2012). 

Technological advances continually reveal novel and cryptic variation (e.g., Silverstein et al. 

2012) increasingly associated with photophysiological tolerance (Jones et al. 2008, LaJeunesse 

et al. 2008, Hennige et al. 2009, but see Abrego et al. 2008) and the complex interplay between 

host and symbiont. Zooxanthellate gorgonians are major reef components on Caribbean reefs, 

but only a few taxa are present in the Indo-Pacific. Most show symbiont specificity (Goulet et al. 

2008) with Briareum Gray 1859 and Isis hippuris Linnaeus 1758 known to harbour the 

putatively stress tolerant clade D Symbiodinium (van Oppen et al. 2005). Interestingly, both 

transplant and laboratory experiments on the gorgonian Briareum sp. reveal symbiont 

‘switching’ in response to environmental parameters in the Caribbean (Lewis & Coffroth 2004); 

a proposed adaptive response borne from the nonselective Symbiodinium acquisition by juvenile 

hosts (Coffroth et al. 2001). Thus, specific Symbiodinium spp. in different host species across 

unique physical-environmental conditions may be linked to abiotic regime. Furthermore, algal 

clade selection by either symbiont ‘switching’ (exogenously) or symbionts ‘shuffling’ within a 

host coral colony is controversial (Baker 2003, Goulet 2006, Apprill & Gates 2009), as either 

mechanism assumes that the coral species can host multiple algal genotypes, sequentially or 

simultaneously. Increasing evidence suggests such a phenomenon (Baker et al. 2004) as a 

mechanism of survival over the numerous climate and sea level fluctuations, with relatively little 

extinction in scleractinian corals alone over the last 220 MY (Veron, 1995). Yet many species 

host only a single Symbiodinium clade regardless of environmental conditions or transplantation 

experiments e.g., Fungia [now Lobactis] scutaria Lamarck 1801 retained its original 

zooxanthellae type (C1b) for 35 yrs after transplantation from the Indo-Pacific to the Caribbean 

(LaJeunesse et al. 2005). Mechanisms of endosymbiont acquisition and diversity however, 

remain to be elucidated in Indo-Pacific zooxanthellate gorgonians, particularly within the Coral 

Triangle. 
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Intriguingly, molecular and histological evidence revealed two previously described 

azooxanthellate gorgonian species, Junceella fragilis Ridley 1884 in the Philippines and 

Euplexaura nuttingi Kükenthal 1919 on the Great Barrier Reef, as possessing clade G of the 

symbiotic zooxanthellae Symbiodinium (van Oppen et al. 2005, Williams et al. 2010). 

Individuals were found in shallow turbid waters and lacked host pigmentation in contrast to their 

brightly coloured deeper azooxanthellate counterparts. Such evidence may represent differential 

phenotypic expression of a genotype under varying environmental conditions (West et al. 1993), 

in addition to raising questions on the obligate nature of Symbiodinium with such taxa. The 

significance of such a discovery, and if enhanced fitness through mixotrophy in turbid 

environments is adaptive plasticity or plasticity as an adaptation, remains to be elucidated. Yet a 

low reliance on photosynthetic gain increases the likelihood of survival under high temperature 

and/or irradiance stress. Interestingly, the cnidarian-algal symbiosis has been shown to be 

maintained by altering the expression of existing genes involved in vital cellular processes, and 

is thus not due to ‘symbioses-specific’ genes (Rodriguez-Lanetty et al. 2006, 2008).  

1.7 PHENOTYPIC PLASTICITY 

Central to evolutionary theory is the historical connectivity of all life within and between the 

environment, and the ability for biological change irrespective of scale. Whether at the 

population, species, individual, phenotypic trait or molecular level, evolution is considered 

inherent  - the decent of biological variation through natural selection (Darwin 1859) or the non-

adaptive influences of genetic drift (Hurst 2009). Such biological variation in response to 

environmental heterogeneity reinforces survival and reproductive success, particularly in sessile 

taxa when subject to novel environments. Variability at the phenotypic level (morphological, 

behavioural, and/or physiological) is conditionally expressed relative to environmental cue(s), 

within a single generation. In other words, phenotypic plasticity depicts multiple phenotypes 

from a single genotype in response to environmental variation (Pfenning et al. 2010). Thus, such 

phenotypic variability occurs within the lifespan of an individual as a consequence of high 

plasticity capacity or the release of cryptic genetic variability through environmental stress 

(evolutionary capacitance breakdown; Rice 2008). With such variation, particularly at the 

phenotypic level, how can one delimit a species and, therefore, differentiate between plasticity 

capacity and divergent taxa? Moreover, does phenotypic plasticity provide the foundation for 

novel species through the selection of complex traits that enhance fitness and overall 

reproductive success, or does it simply obscure selection and species boundaries? Controversy 

continues to exist with regards the roll of phenotypic plasticity in diversification and speciation 

(Pfenning et al. 2010), but first, how does it arise and how, if at all, can it be assessed?   
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Phenotypic plasticity in response to environmental heterogeneity may be adaptive or genetically 

derived (Gotthard & Nylin 1995, Hoogenboom et al. 2008). Plasticity itself can be the result of 

adaptation, with selection acting on a trait or an organism’s ability to be plastic (adaptive 

plasticity). Intrinsic (development, life history, physiological, or genetic) and extrinsic factors 

(substrate, light, temperature, sedimentation, competition, predation, and hydrodynamics), alone 

or in concert, control phenotypic plasticity, the interaction of which can be visualized through 

reaction norms (Figure 1.5; Gotthard & Nylin 1995). Reaction norms, a set of phenotypic 

expressions of a single genotype over an environmental range/gradient (Stearns et al. 1991), 

visualize the plasticity capacity of a genotype. Through reciprocal transplantation of contrasting 

phenotypes between opposing environments over an appropriate timeframe, reaction norms can 

reveal inducible plastic or fixed traits, with concomittent fitness through survivability (Prada & 

Hellberg 2013). Phenotypic trait variance (Vp) in the singular or plural may be due to genetic 

(VG), environmental (VE) or interactive effects (VGxE) where genotypes differentially respond to 

their environment, and can be expressed as:  

Vp = VG + VE + VGxE + Verror               (1) 

where Verror accounts for developmental, bet-hedging, behavioural or other unaccountable noise. 

If selection acts on more favourable genotypes this causes a shift in the average environmental 

effect on a population leading to adaptive plasticity as an adaptation (Figure 1.5d; DeWitt & 

Scheiner 2004). Thus the genetic effects of phenotypic variance, or not as the case may be (i.e., 

canalisation), underpin plasticity capacity and can be depicted as:    

VG = VG,A + VG,D + VG,I                (2) 

where additive (VG,A), dominant (VG,D) and epistatic (VG,I) genetic effects are the result of the 

relative heritability contribution of allele frequencies to the observed phenotype (Hagemann et 

al. 1999). Both additive (polygenic) and dominant genes act on specific loci, whereas an 

epistatic interaction effect is the result of modifier gene(s) at different loci (Johnson 1976, Byers 

2008). The quantification of additive variation (average effect of substituting one allele for 

another) within a given population for e.g., functionally important phenotypic trait(s) reveals the 

action of incipient divergent selection or genetic drift and ultimately gene flow (Carlon et al.  
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(a) VG Genetic variance: consistent genetic differences

between morphotypes with no phenotypic plasticity.

(b) VG Genetic variance and VE Environmental variance:

consistent phenotypic plasticity and additive genetic

differences between morphotypes with no interaction

effect, therefore suggesting two different taxa.

(c) VE Environmental variance and VGxE Genetic and

environmental interaction variance: environmental

main effect with genetic interaction variance, therefore

morphotypes are not genetically differentiated and their

response to the environment is plastic.

(d) VGxE Genetic and environmental interaction

variance: morphotypes have similarly yet opposing

reactions to the environment, thus different taxa yet

equally as plastic. Adaptive optima (asterisks) indicate

that the square morphotype/taxon would likely be

selected for; adaptive plasticity as an adaptation.

Environment/Time
 

Figure 1.5 Reaction norm means of a hypothetical scenario of two morphotypes showing (a) VG 

genetic variance, (b) VG genetic and VE environmental variance, (c) VE environmental variance and 

VGxE interaction variance, and (d) VGxE interaction variance (modified from DeWitt & Scheiner 2004). 
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2011, Bird et al. 2012). Furthermore, patterns of covariance between phenotypic traits 

particularly in contrasting environments, can be indicative of functional trade-offs leading to 

divergence, however differentiation between adaptive (canalised) and developmentally plastic 

(epigenetic) influences on the observed phenotype can be inscrutable (DeWitt & Scheiner 2004). 

Thus, reaction norms as a product of reciprocal transplant experiements (RTEs) reveal only the 

source of variation, not the mechanism. Differentiation of plasticity at the mechanistic level 

would require both field and molecular analyses assessing genetic inheritance and epigenetic 

developmental effects. Nonetheless, significant population subdivision, particularly with the 

simultaneous expression of novel phenotypic traits (adaptive radiation; West-Eberhand 2005), is 

indicative of local adaptation, and thus population and species divergence (Kawecki & Ebert 

2004, Pfenning et al. 2010). As divergent selection acts against intermediate genotypes, the 

environment is in fact the selective agent acting on plastic phenotypic traits and the ability to be 

plastic in the first place (Gilbert & Epel 2009). Thus plasticity can be a diversifying factor, with 

any number of possible trait combinations that may lead to the production of a novel phenotype, 

enhancing individual and/or population fitness in a particular environment (Santelices 1999, 

Magwene 2001b). Intrinsic and extrinsic factors will, therefore, shape species range size 

(Hughes et al. 2002), essentially reflecting processes of speciation, extinction, resilience to 

environmental change and overall species diversity and ecosystem functioning. 

Fitness enhancement through an individual’s (genotype) ability to adapt in heterogeneous 

environments is particularly important in sessile marine organisms, due to their inability to 

relocate to another environment. Selection, therefore, acts on plasticity capacity, with modular 

colonial invertebrates being arguably the most pliable to their physical environment (Kaandorp 

& Kübler 2001). Modular and colony growth and form are intrinsically linked to optimise 

resource acquisition, reproduction and minimize metabolic costs. Fundamental however, is the 

understanding of interactions between, and relative contributions of, the genome and physical 

environment to morphogenesis, which in most cases is unknown (Gutiérrez-Rodríguez et al. 

2009).  

An organism’s response to its environment involves numerous biological mechanisms with 

population dynamics closely tied to resource allocation success, thus environmental regime 

(Weiner 2004). Multivariate phenotypic traits provide the observed phenotype at any one time 

which may be a consequence of plasticity capacity, strict adaptation thus canalization 

(genotypic), a combination of the two on various traits, or unique hybridization through 

repetitive introgression (Ladner & Palumbi 2012). How to differentiate such phenotypes as 
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actual and informative species in the context of biodiversity assessment for conservation 

management, can be an onerous task. Arguably one of the greatest challenges is species 

determination on shallow reefs within the Coral Triangle, exhibiting fitness enhancement 

through intense competition and the fixation of mutation through free ionization energy (Nei 

2007) at low latitudes (‘evolutionary rate hypothesis’; Rohde 1992, but see Weir & Schluter 

2007). The Coral Triangle is a recognized “biodiversity hotspot”, characterized by high species 

numbers and endemism, extending from the Philippines to the Solomon Islands (Carpenter & 

Springer 2005, Hoeksema 2007, Veron et al. 2009, Gaither & Rocha 2013). The Indonesian 

archipelago, within the Coral Triangle, is likely one of the greatest areas of marine biodiversity 

due to geological age, highest number of islands per unit of geographic area, and ecoclimatic 

stability lending greater time for evolutionary processes. The origins of such biodiversity are, 

however, controversial (Gaston et al. 1998, Chown & Gaston 2000, Bowen et al. 2013) and 

likely taxon-specific, mechanistic convergence relative to individual fitness response, with 

latitude itself being just a correlate for the mechanism(s) concerned. Nevertheless, such 

immense biodiversity is being destroyed, in an area still relatively unexplored, resulting in 

rudimentary biodiversity assessments and theoretical postulation (e.g., Hughes et al. 2002, 

Carpenter & Springer 2005). Comparative research across contrasting (healthy versus exploited) 

environments may reveal evolutionary mechanisms from plasticity to divergence through 

evolutionary capacitance in high energy, biodiverse, yet exploited habitats; therefore elevating 

descriptive biodiversity assessments to realistic conservation measures, from necessity to 

emergency in the face of anthropogenically induced destruction. 

1.8 RESEARCH PERSPECTIVE 

Understanding patterns of gorgonian ecology, physiology and morphological variation through 

cross-disciplinary approaches is essential for characterizing species, communities and 

population resilience to environmental change - increasingly important in management and 

remedial conservation efforts. Gorgonians show considerable trait variability, independent of 

common ancestry with such phenotypic plasticity likely to be an important factor contributing to 

their broad distribution. Furthermore, fitness can be an individual’s ability to change. Whether 

such plasticity in gorgonian taxa is ecologically driven, genetically derived or a combination of 

the two is continuously explored through genetic, ecological, physiological, and recent advances 

in genomic research. Gorgonians as modular colonial organisms therefore, provide dynamic 

models in which to study evolutionary mechanisms as a consequence of their environment. 

Nonetheless, plasticity is an emergent property of the genotype, therefore it is susceptible to 

natural selection (Pigliucci 2005). 
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Clearly, gorgonian corals represent a highly diverse model group, yet it is surprising that the 

most diverse of all gorgonian taxa exist within an area that is least understood, particularly the 

Indonesian archipelago (van Ofwegen 2004), arguably the most biodiverse region of the coral 

triangle (Carpenter & Springer 2005, Hoeksema 2007, Veron et al. 2009, 2011). What species 

are present and how do such seemingly delicate organisms respond to their environment, 

especially to increasing threats through anthropogenic encroachment? What species exhibit 

marked biological success, opportunistic in the face of environmental change, and is such 

success expressed through morphological variability? Would such morphological variability 

both within and between taxa lead to resource allocation change, mitigating the effects of 

environmental change? If so, what are the relative contributions of genetic variation (plasticity 

capacity as an adaptation) and eco-phenotypic plasticity (e.g., acclimation) to the observed 

phenotypic variation? These questions are addressed utilising cross-disciplinary approaches on 

gorgonian taxa within the Wakatobi Marine National Park (WMNP), SE Sulawesi, Indonesia – 

the second largest national park in the country. Investigations are set to assess (1) shallow-water 

gorgonian diversity, and (2) subsequently infer plasticity or adaptive evolution in observed 

gorgonian morphotypes across environmental clines of both natural and anthropogenic origin. 

1.9 AIMS & OBJECTIVES 

With the purpose of highlighting the importance of gorgonian corals in marine ecosystems, 

specifically within the Coral Triangle, this research aims to evaluate gorgonian responses to 

environmental change predominantly as a consequence of anthropogenic disturbance. 

Ultimately, through underlying evolutionary principles, a sequential investigation of gorgonian 

ecology, taxonomy, and phenotypic dynamics, this study aims to increase both our 

understanding and awareness of this group as key indicators of reef health, influential in 

environmental impact management strategies.  

To address how gorgonian corals respond to environmental change within the WMNP, SE 

Sulawesi, Indonesia, this research, in order of each chapter, aims to: 

1. Characterise gorgonian diversity, abundance and distribution patterns across gradients of 

habitat quality within the WMNP.  

 

2. Identify biologically successful gorgonian species across such environmental clines. 

 

3. Further identify predictor environmental variable(s) inferred to influence the ecological 
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structure of gorgonian assemblages.  

 

The first three objectives are achieved in Chapter 2 through a stratified ecological survey 

measuring corresponding environmental variables within each site. It is hypothesized that 

gorgonian corals can tolerate only clear, moderate to fast flowing hydrodynamic reef 

environments, and are therefore markedly reduced or absent in opposing habitats.  

4. Quantify observed morphological variability in the zooxanthellate gorgonian Isis 

hippuris Linnaeus 1758 across environmental gradients on reefs within the WMNP. 

 

5. Determine whether such I. hippuris morphotypes are both phenotypically and genetically 

partitioned across contrasting reef environments. 

 

6. Further ascertain if the observed I. hippuris morphotypes represent previously described 

species, new species or a single species with highly variant, integrated phenotypic traits.  

 

These three objectives are addressed in Chapter 3 firstly, assessing the taxonomic history of I. 

hippuris in the context of the two distinct morphotypes found within the WMNP (Chapter 2); 

and secondly by using both anatomical and molecular morphometrics between such 

morphotypes on the contrasting reefs. It is hypothesized that such phenotypic variability is 

merely plasticity as an adaptation in a single species across environmental clines. Further insight 

is also given into the phylogenetic position of I. hippuris within the sub-Class Octocorallia. 

7. Determine if I. hippuris morphotypes across environmental gradients are 

environmentally induced (plastic) or genetically derived (canalized/adaptation). 

 

8. Assess differential physiological responses of the I. hippuris holobiont to environmental 

change. 

 

9. Investigate host-algal endosymbiont specificity between morphotypes across and as a 

consequence of environmental change.  

 

10. Determine integrated phenotypic traits which interact to delimit I. hippuris morphotypes 

suggesting mechanisms of divergence through phenotypic trait integration in response to 

environmental perturbation. 
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Objectives 7 to 10 are addressed in Chapter 4 using a combination of multi-trait (morphology, 

endosymbiont type, and physiological components) and environmental measurements from a 

one-year reciprocal transplant experiment between sites of contrasting reef health at comparable 

optical depths. It is hypothesized that light availability is a primary vector (causal) of I. hippuris 

morphotypes further driving integration among phenotypic traits. The quantum efficiency of the 

I. hippuris holobiont through the functional integration of optical traits was therefore assessed 

through a reciprocal transplant experiment (RTE) for evidence for the onset of light-induced 

directional selection or plasticity capacity.  

11. Summarise both the importance and status of Indonesian gorgonian octocorals as a 

consequence of this research.  

 

This final objective aims to juxtapose this study’s findings with existing and proposed research, 

highlighting integral knowledge gaps in the second-most common coral reef component in a 

region of high yet insufficiently researched biodiversity. Furthermore, the phylogenetic 

implications of this research are considered in the context of the family Isididae and the 

significance of certain phenotypic traits, in particular the central axis, as objects of selection; 

inherent or convergent?     

All chapters are to be, or are in the process of submission for publication with the exception of 

chapters 1 and 5 which will be merged for publication as a single review. 
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CHAPTER 2: ENVIRONMENTAL GRADIENTS STRUCTURE 

GORGONIAN ECOLOGY ON CORAL REEFS IN SE SULAWESI, 

INDONESIA. 

ABSTRACT  

Indonesian coral reefs are the epicentre of marine biodiversity, yet are under rapid 

anthropogenically-induced decline. Therefore, the necessity for ecological monitoring of high 

diversity taxa facilitating effective management and conservation is paramount. This study 

presents a unique and comprehensive survey of shallow-water (0-15 m) gorgonian assemblage 

composition and structure across a gradient of habitat quality within the Wakatobi Marine 

National Park (WMNP), SE Sulawesi, Indonesia. A total of 197 species and morphotypes from 

41 genera and 12 families within the Calcaxonian, Holaxonian and Scleraxonian groups, are 

reported with current estimates of 21 new species and 28 new species records for the region. 

Results from this extensive survey confirm high local gorgonian abundance, diversity and 

species richness in the absence of anthropogenic influence and increasing with depth. Notably, 

morphological variants of the zooxanthellate species Isis hippuris Linnaeus 1758 and Briareum 

Blainville 1830 drive site and habitat assemblage differences across environmental gradients. 

Azooxanthellate taxa particularly within the Plexauridae drive species richness and diversity 

with depth. However, collinearities among 14 predictor variables explained only 30% of 

gorgonian assemblage structure highlighting benthic characteristics, water flow and natural light 

as primary ecological drivers. Thus non-independence between zooxanthellate (S = 8, n = 1900) 

and azooxanthellate (S = 189, n = 1517) taxa partitioned distinct gorgonian communities into 

two trophic groups: autotrophs and heterotrophs respectively, with contrasting diversity and 

abundance patterns within and between study sites. Such trophic group partitioning and habitat 

specific morphotypes suggest resource allocation structure representing both alternate feeding 

strategies and acclimatory phenotypic responses to anthropogenic impacts on coral reefs. This 

study strongly supports the WMNP as an area of high regional gorgonian abundance and 

diversity with results undoubtedly propagating conservation and research benefits beyond those 

presented here.  

Key words: Gorgonian corals · Indonesia · Ecology · Environmental Gradient · Coral Reefs 
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2.1 INTRODUCTION  

The Indonesian Archipelago is central to marine biodiversity, likely consequential of geological 

and oceanographic processes influencing species diversification and persistence (Carpenter et al. 

2011) at local and regional scales. Eastern Indonesian reefs are particularly diverse, with low 

climatic variability and strong seasonal upwellings, yet ecological assessments are sparse 

(Edinger et al. 2000, Tomascik et al. 2004). Increases in human population growth, continual 

marine resource exploitation through coral mining, cyanide, dynamite, and subsistence fisheries 

mean such biodiverse ecosystems are being destroyed before their components are discovered. 

Therefore, comparative assessment of coral reef communities relative to their environment, 

including the increasing assortment of anthropogenic influences, provides an essential resource 

for conservation management.  

Gorgonian corals (Cnidaria: Anthozoa: Octocorallia) are conspicuous, diverse and often 

dominant components of benthic marine environments, notably tropical shallow reefs, deep-sea, 

and mesophotic habitats (Wirshing et al. 2005, Cerrano et al. 2010, McFadden et al. 2010a). 

Numerous gorgonians are conservation ‘flagship’ species (Tinsley 2005, Linares et al. 2008, 

Cerrano et al. 2010) being ecologically diverse, long-lived engineering taxa that maintain habitat 

heterogeneity and provide secondary space to other organisms (Buhl-Mortensen & Mortensen 

2004, Buhl-Mortensen et al. 2010). Nevertheless, despite their ecological importance and 

diversity, the greatest paucity of information on gorgonians continues to exist within the 

Indonesian Archipelago (Tomascik et al. 2004).  

Gorgonian corals are colonial suspension feeders primarily defined by a semi-rigid 

scleroproteinaceous (gorgonin) axis with varying amounts of calcification (Bayer 1961, 

Grasshoff 1999, Sánchez et al. 2003). Characteristic of the Octocorallia, their polyps bear eight 

pinnate tentacles, and eight mesenteries dividing the gastrovascular cavity (Bayer 1961, 

Berntson 1998). Originally classified under the order Gorgonacea (now taxonomically obsolete), 

gorgonians currently comprise the somewhat tenuous suborders, Holaxonia and Calcaxonia and 

the group Scleraxonians within the order Alcyonacea (Bayer 1981). Taxonomic efforts for Indo-

Pacific gorgonians are however, confounded by widespread homoplasy, considerable 

morphological variability, cryptic and sibling taxa (Knowlton 1993). Classified as “poorly 

known” (van Ofwegen 2004), shallow water gorgonian taxonomy within Central Indonesia 

remains in a state of flux requiring resolute cross-disciplinary systematic, molecular and 

ecological approaches. 
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Gorgonian ecology reflects, together or in part, reproductive strategies and changes along 

environmental gradients relative to individual species tolerances (Fabricius & Alderslade 2001). 

Environmental factors such as substrate type, light, temperature, sedimentation, salinity, current 

regime and flow rate (Garrabou et al. 2001) influence gorgonian demography. Biotic factors 

further provide local-scale community refinement including competition, predation, symbioses, 

reproduction, settlement and developmental properties (Sánchez 2004). Such factors have been 

shown to induce intra- and inter-specific morphological variability (West 1997, 1998, Linares et 

al. 2008, Prada et al. 2008), habitat selection and colony orientation (Sánchez et al. 2003a). 

Nevertheless, gorgonians are typically synonymized with areas of low sedimentation and high 

water flow through strong currents and upwellings (Kinzie 1973, Birkeland 1974, Yoshioka & 

Yoshioka 1989, Sanchez et al. 1998), the largest planar arborescent colonies occurring in 

healthy reef environments (Meesters et al. 2001, Linares et al. 2008). Complex habitats provide 

more vertical relief, colonizable area, and microhabitat variability than soft benthic substrata 

(Etnoyer et al. 2010). Yet even in the presence of suitable substratum, most gorgonians have 

been shown to be absent in areas of high turbidity and sediment load likely due to the physical 

impairment of settlement, feeding, reproduction and growth (Bayer 1956, Anthony & Fabricius 

2000). In contrast, high turbidity reefs in Singapore, for example, support healthy 

azooxanthellate gorgonian communities (Goh & Chou 1994). Reduced irradiance levels may 

therefore, provide competitive release (Rogers 1990) for azooxanthellate taxa; turbid habitats 

being marginal for zooxanthellate gorgonians, following similar depth ranges of Scleractinia 

with no evidence of hard coral community replacement (Fabricius & Alderslade 2001). 

Moreover, evidence for negative associations with other benthic space competitors appears 

absent in other areas (e.g., Yoshioka & Yoshioka 1989). However, resource partitioning theory 

predicts habitat specialists (Schoener 1974), as growth form and resource allocation plasticity 

counter the effects of environmental factors such as sedimentation (Riegl & Branch 1995) and 

depth (West 1997).  

Colony growth and form are determinate through the iterative addition of polyps, branches, and 

within colony canalisation providing effective resource allocation structure (Sánchez & Lasker 

2003), all of which depend on feeding strategy. Both azooxanthellate and zooxanthellate 

gorgonians show eco-phenotypic interactions which strongly correlate with depth (West et al. 

1993) and size (Sebens 1982). Yet, whether such trophic division is a consequence of 

interspecific competition in oligotrophic coral reef systems is uncertain. The question remains, 

are strong interspecific competitive forces driving shallow water gorgonian ecology within the 

Indonesian archipelago? 
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Gorgonian distribution has been positively correlated with substrate availability and type (Goh 

& Chou 1994), localized overlapping of species range sizes (as a function of temperature) and 

benthic-pelagic coupling (Matsumoto et al. 2007). Yet little is known of both reproductive 

strategies and relative range sizes for most gorgonian species in the Indo-Pacific, likely having 

limited dispersal abilities and high endemism (Grasshoff & Bargibant 2001, Picciano & Ferrier-

Pagès 2007). Moreover, larval recruitment plays a key role in gorgonian community structure 

(Yoshioka 1996), with staggered or neap tide spawning events (Benayahu & Loya 1981), 

planktonic larval displacement by water currents, and chemotaxis through conspecific or 

coralline algal exudates (Fabricius & Alderslade 2001) further influencing local distribution, 

abundance and survival. 

Prominent drivers of gorgonian ecology, therefore remain unclear, usually describing regional 

differences (Singapore, Goh & Chou 1994; Caribbean, Sanchez et al. 1997; Guam, Paulay et al. 

2003; Hong Kong, Fabricius & McCory 2006; Japan, Matsumoto et al. 2007). However, 

ecological factors that regulate species diversity, as well as consistency in species nomenclature, 

are of absolute research and conservation importance especially within the Indonesian 

archipelago, which is subject to continual overexploitation and habitat loss. Published surveys 

within Central Indonesia, such as the ‘Siboga’ (Versluys, 1902, 1906, Nutting 1910a-e, 1911, 

Stiasny 1937) and ‘Snellius’ (e.g., Stiasny 1940, Verseveldt 1966) expeditions sampled only 

deep water and Alcyoniidae taxa respectively, thus largely unrepresentative of shallow water 

gorgonians on Indonesian reefs. Annual rapid assessment surveys are increasingly conducted by 

conservation agencies (e.g., WWF, TNC) throughout the Indonesian archipelago, with a view 

for sustainable conservation management. Such surveys are rudimentary with sparse gorgonian 

taxonomic resolution. The disparity between gorgonian diversity and ecological assessment 

within Indonesia is, therefore primarily due to taxonomic uncertainty (Bayer 1981), with 

concomitant difficulties in field identification (Fabricius & Alderslade 2001) and dispersal 

patterns. Yet with continual habitat degradation across Indonesian coral reefs, will certain 

gorgonian species absorb significant magnitudes of such anthropogenic disturbance through 

succession and subsequent survival? 

Little is known of gorgonian ecology within SE Sulawesi, Indonesia despite their high regional 

abundance and diversity. The aims of this study therefore, were (1) to characterise gorgonian 

assemblage composition and structure across a gradient of habitat quality within the WMNP, (2) 

to similarly assess gorgonian diversity and abundance between reef habitats as a function of 
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depth within each site, and (3) to identify potential environmental driver(s) of gorgonian 

assemblage structure.  

2.2 METHODS 

2.2.1 Study Area 

The Wakatobi Marine National Park (Tukang Besi Islands) is a remote island group of ca. 

13,900 km
2
 in S.E. Sulawesi, Indonesia (Figure 2.1a). Established in 1996, the WMNP is the 

second largest marine park in Indonesia containing ca. 600 km
2
 of the most biodiverse coral 

reefs in the world (Scaps & Denis 2007), with a low incidence of coral disease (0.57% see 

Haapkylä et al. 2007) and ENSO-induced bleaching events (Crabbe & Smith, 2003) likely due 

to local upwelling (Gieskes et al. 1988). Approximately 100,000 people live within the 

Wakatobi, resulting in extensive subsistence marine resource dependence and destructive 

commercial fisheries in populated areas. In this study four sites were selected around the islands 

of Kaledupa (ca. 17,000 people) and Hoga (<100 people, Figure 2.1b) relative to their variability 

in natural and anthropogenic disturbance. Sampela (impacted), an enclosed lagoon with an outer 

reef wall ca. 400 m from a Bajo (sea gypsy) village of ca. 1600 people, is subject to continuous 

exploitation through coral mining, fishing activities, and high sediment loading due to natural 

re-suspension, bioturbation through gleaning, and mangrove loss. Furthermore, community 

wastewater is continually released onto the reef (Haapkylä et al. 2007). Buoy 3 (intermediate I), 

ca. 500 m offshore, is a moderately sheltered fringing reef with a shear reef wall containing 

small cryptic overhang habitats. This site has an extended reef flat, which is subject to perpetual 

 
Figure 2.1.  (a) Location map of the Wakatobi Marine National Park in S.E. Sulawesi, Indonesia. 

(b) Areas of study; Sampela, Buoy 3, Pak Kasim’s and Ridge 1 off the islands of Kaledupa and 

Hoga respectively. 

Kaledupa 



30 

‘gleaning’ of marine invertebrates by local inhabitants, in addition to recovering from coral 

mining and blast fishing since 2004. Pak Kasim’s (intermediate II), ca. 500 m offshore, is an 

intermediate topographically complex fringing reef, also subject to coral mining and blast 

fishing on the reef flat and crest until 2004. Ridge 1 (healthy), ca. 1 km offshore, is an exposed 

reef ridge with strong water currents (Figure 2.1b) and upwelling with a small amount of blast 

fishing on the reef crest in 2004. The reef slope can also be shear, possessing cryptic overhang 

habitats. All sites have a pronounced reef flat (< 3 m [Ridge 1 being the exception as an offshore 

ridge, yet still having a shallow reef plateau ca. 3 m depth]), reef crest (3 - 6 m) and slope (> 6 

m) with varying levels of sedimentation draining from the reef flats during spring tides. 

2.2.2 Sample Collection 

Gorgonian distribution and abundance. Gorgonian assemblage surveys were conducted 

between June and September 2009 using SCUBA, snorkeling and scaled digital image 

photography. Four 10 m belt (2 m either side) transects, laid ca. 20 m apart, ran parallel to the 

reef contour at each reef habitat (flat ≤ 3 m, crest ca. 6 m and slope ca. 12 m depth) within each 

site giving a total area surveyed of 1920 m
2
. Individual colonies encountered along each 

transect, including beneath canopy structures (see Goatley & Bellwood 2011), were 

photographed using a Canon IXUS 900Ti, WP-DC7 u/w housing and INON UWL-105 AD x 

0.51 lens. Each image was taken directly opposite and/or above each colony relative to colony 

morphology with a ruler aligned appropriately for scale. Voucher specimens (2 - 8 cm in length) 

were preserved in 96% EtOH for taxonomic clarification and stored at the Bernice P. Bishop 

Museum, Honolulu, USA (Accession number: 2014.005). Sclerites were dissolved from the 

surrounding tissue in 5% sodium hypochlorite solution and visualized using optical microscopy. 

Taxonomic identification followed Versluys (1902, 1906), Nutting (1910a-e, 1911), Stiasny 

(1937, 1940), Aurivillius (1931), Verseveldt (1966), van Ofwegen (1987), Grasshoff (1996, 

1999), Grasshoff & Bargibant (2001), Fabricius & Alderslade (2001), and Bayer & Cairns 

(2004) with most colonies being identified to ‘morphotypes’ within genera due to the majority 

of gorgonian species within the Indo-Pacific being undescribed. However, individuals were 

grouped in accordance with Bayer’s (1981) widely accepted three-group (suborders Holaxonia 

and Calcaxonia, and Scleraxonians group) system, family and genera therein. 

Environmental Variables. Sites were characterized through the assessment of 14 (Table 2.1) 

environmental variables throughout the study period. Benthic characteristics were determined 

using transects as described for gorgonian surveys, and categorized according to English et al. 
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Table 2.1.  Environmental characteristics of the four study sites in the Wakatobi Marine 

National Park, Indonesia. All values expressed as mean (± SE) with the exception of diurnal 

temperature range (˚C), light (Kd(PAR)) and sediment grain size (). Abiotic: rock, rubble and 

sand; biotic: sponges, ascidians, algae (English et al. 1997).  

Parameter Recorded Mean value ± SE (where appropriate) 

Site Sampela Buoy 3 Pak Kasim's Ridge 1 

Latitude (S) 005˚ 29'01" 005˚ 28'38" 005˚ 27'57" 005˚ 26'57" 

Longitude (E) 123˚45'08" 123˚45'47" 123˚45'18" 123˚45'38" 

Temperature (˚C min-max) 25.61 – 29.36 24.69 – 29.25 26.59 – 30.457 24.06 – 28.07 

Light (Kd(PAR) min-max) 0.31 – 3.14 0.27 – 1.96 0.16 – 2.55 0.1 – 1.56 

Salinity (PSU) 32.5 ± 0.45 33 ± 0.08 32.8 ± 0.52 32.6 ± 0.26 

Flow (cm/s) 5.02 ± 2.18 4.17 ± 1.35 11.22 ± 2.55 30.54 ± 2.61 

Chlorophyll-a (µg L
1
) 0.3 ± 0.01 0.27 ± 0.03 0.14 ± 0.01 0.35 ± 0.03 

Turbidity (NTU)  4.38 ± 1.80 1.04 ± 0.53 0.54. ± 0.72 0.17 ± 0.33 

Sedimentation (g d
-1

, n = 12) 3.28 ± 0.26 1.52 ± 0.2 1.23 ± 0.13 1.16 ± 0.07 

Sediment grain size (Φ, n = 12) 5 [31.25–62.5 µm] 1 [0.5–1 mm] 1 [0.5–1 mm] 1 [0.5–1 mm] 

Rugosity Index (n = 12) 0.82 ± 0.04 0.79 ± 0.7 0.71 ± 0.03 0.61 ± 0.03 

Hard Coral (%, n = 12) 5.33 ± 2.04 57.23 ± 4.6 36.72 ± 5.11 40.12 ± 3.1 

Dead Coral/Rubble (%, n = 12) 38.34 ± 7.1 10.81 ± 3.61 12.21 ± 3.2 6.96 ± 1.27 

Soft Coral (%, n = 12) 3.88 ± 1.42 9.84 ± 2.91 30.14 ± 4.85 38.98 ± 3.83 

Biotic (%, n = 12) 4.31 ± 1.21 13.12 ± 4.43 4.26 ± 1.65 6.99 ± 1.44 

Abiotic (%, n = 12) 48.14 ± 6.3 9.0 ± 3.13 16.67 ± 4.26 6.95 ± 1.9 

 

 (1997) utilizing the point (every 0.5 m) intercept transect method (Kingsford & Battershill 

1998). Values are expressed as % cover (± SE). Rugosity (quantification of habitat complexity) 

was measured with a 7.30 m length chain laid over three replicate transects per habitat and 

calculated using the ratio of contoured surface distance to linear distance method (McCormick 

1994).  

Suspended sedimentation rates were assessed using four standard 1.0 litre sediment traps 

(English et al. 1997) deployed at each habitat within all sites for a 10 day period. Sediment and 

water were filtered (Whatman 0.2 μm pore size), dried at 60°C and weighed with rates 

expressed as g dry weight day
-1

. Estimation of sediment grain diameter for all samples was 

determined using Retsch Technology
®
 test sieves (aperture size range: 2.0, 1, 0.5, 0.125, 0.25, 

0.063, <0.063 mm), logarithmically converted, expressed as phi (Φ) and classified under the 

Wentworth scale (Wentworth 1922). Water flow velocity was measured using a General 

Oceanics
® 

flow meter with a low velocity rotor and custom made aluminum pipes for reef 
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placement and expressed as cm/s. Chlorophyll-a (as µg L
-1

), salinity (PSU) and turbidity (NTU) 

were measured using RBR
®

 XR-420 CTD data loggers. Temperature (˚C) and light (Kd(PAR)) 

were measured using HOBO
®
 data loggers. The loggers were placed at each transect depth, 

recording every minute for up to 24 hours. Latitude and longitude were determined by a hand-

held GPS meter (GARMIN eTrex
®
). All variables, with the exception of latitude and longitude, 

were entered into the statistical models as raw values. Values were edited visually with 

significant outliers removed. 

2.2.3 Data Analyses 

Data were analyzed using univariate (SPSS v18.0) and multivariate routines in the PRIMER-E 

v6.1.12 statistical package (Clarke & Gorley 2006), with PERMANOVA+ v1.02 extension 

(Anderson 2001). The first hypothesis was to characterise gorgonian diversity, abundance and 

distribution patterns across gradients of habitat quality within the WMNP. Gorgonian 

assemblage data were dispersion-weighted, a transformation procedure that accounts for the 

variance structure of individual species (Clarke et al. 2006).  Differences in gorgonian 

assemblages were analysed according to a two-factor (site and habitat) crossed model with 

pairwise comparisons using 9999 permutations (PERMANOVA; Anderson 2001) based on a 

‘zero-adjusted’ Bray-Curtis similarity matrix (Clarke et al. 2006b). Results were visualized 

using non-metric multidimensional scaling (nMDS) ordination comparable with a constrained 

canonical analysis of principal coordinates (CAP; Anderson & Willis 2003). Such comparisons 

reveal real group differences to the maximum variation between groups. The second hypothesis 

was to identify biologically successful gorgonian species across such environmental clines. In 

order to test this second hypothesis; prominent taxa contributing to dissimilarities among 

gorgonian assemblages were investigated using similarity percentages (SIMPER; Clarke 1993). 

The influence of dominant species revealed from the SIMPER analyses was further investigated 

using Pearson’s product-moment correlations for each species with each canonical axes 

(Anderson & Willis 2003) and displayed as a vector overlay on CAP ordinations. Species 

diversity indices were used across sites and habitats including total number of species (S), the 

Hill numbers N1, N2 and modified ratio N21’ (Peet 1974) to assess the influence of rare and 

dominant species, and taxonomic spread (equitability) respectively (Clarke & Gorley 2006). 

Zooxanthellate and azooxanthellate gorgonian distributions were tested for independence using 

the Wald–Wolfowitz (runs) test (SPSS v18.0; Wald & Wolfowitz 1943). 

The final hypothesis was to identify predictor environmental variable(s) inferred to influence the 

ecological structure of gorgonian assemblages. This was investigated using the distance-based  
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forward selection analysis of linear models (DISTLMforward; McArdle & Anderson 2001) 

based on a Euclidean distance matrix. Variables were normalized and conditionally tested using 

9999 permutations of the residuals under a reduced model (Anderson 2001). Results were 

visualized using the distance-based redundancy analysis ordination (dbRDA; McArdle and 

Anderson 2001). 

2.3 RESULTS 

2.3.1 Gorgonian Distribution and Abundance 

A total of 3449 gorgonian colonies were documented in this study; 126, 445, 1165 and 1713 

recorded at Sampela (impacted), Buoy 3 (intermediate I), Pak Kasim’s (intermediate II) and 

Ridge 1 (healthy) respectively (Figure 2.2; Table 2.2). At present 197 gorgonian species and 

morphotypes from 37 genera, and 12 families within the suborders/group Calcaxonia, Holaxonia 

and Scleraxonia have been identified (Table 2.2). This list comprises 21 new species for the 

region, 28 new species records and another 115 as yet unidentified. Species richness, and 

diversity followed a typical pattern of increase from the impacted site Sampela to the pristine 

site Ridge 1, with 7 species at Sampela, 70 species at Buoy3, 80 species at Pak Kasim’s and 130  

 
Figure 2.2. Gorgonian species richness (a), Hill’s diversity indices N1 (b), N2 (c) and modified ratio for 

evenness N21’ (d) (mean  SE) across sites and habitats. Sa, Sampela; B3, Buoy 3; PK, Pak Kasim’s; R1, 

Ridge 1. White bars, reef flat; grey bars, reef crest; black bars, reef slope. 
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Table 2.2. Gorgonian species inventory and abundance recorded in this study across sites in the 

WMNP. Z & AZ, zooxanthellate and azooxanthellate taxa as classified for statistical analyses. 

NS, new species; NR, new record for the area; NT, not present on transects but specimen 

collected; asterisk indicates species status or record unclear requiring further investigation. 

Taxon Z/AZ 
NR/NS/

NT 
Sampela 

Buoy 

3 

Pak 

Kasim's 
Ridge 1 

[Group: Scleraxonians]       

  Family: Anthothelidae Broch 1916       

    Iciligorgia cf. schrammi Douchassaing 1870 AZ *NT - - - - 

    Iciligorgia sp.1 AZ *NT - - - - 

    Solenocaulon sp.1 AZ *NT - - - - 

    Solenocaulon sp.2 AZ *NT - - - - 

  Family: Briareidae Gray 1859       

    Briareum excavatum Nutting 1911 Z - 10 54 168 159 

    Briareum stechei Kükenthal 1908 Z - 3 19 35 325 

    Briareum violaceum Roule 1908 Z - 4 1 - 15 

  Family: Melithaeidae Gray 1870       

    Acabaria cinquemiglia Grasshoff 1999 AZ NR - 2 1 1 

    Acabaria variabilis Hickson 1905 AZ - - - 2 - 

    Acabaria sp.1 AZ * - 1 - - 

    Acabaria sp.2 AZ * - - - 1 

    Acabaria sp.3 n.sp. AZ NS - - - 2 

    Acabaria sp.4 AZ * - - 1 8 

    Acabaria sp.5 AZ * - - - 6 

    Acabaria sp.6 AZ * - - - 2 

    Acabaria sp.7 AZ *NT - - - - 

    Acabaria sp.8 AZ * - - - 1 

    Acabaria sp.9 n.sp. AZ NS - - - 58 

    Acabaria sp.10 n.sp. AZ NS - - 1 5 

    Acabaria sp.11 AZ * - - - 1 

    Acabaria sp.12 n.sp. AZ NS - - - 1 

    Acabaria sp.13 AZ * - - - 1 

    Acabaria sp.14 AZ * - - - 1 

    Acabaria sp.15 AZ * - - - 2 

    Acabaria sp.16 n.sp. AZ NS - - - 2 

    Acabaria sp.17 AZ * - - - 1 

    Acabaria sp.18 AZ * - 4 4 12 

    Acabaria sp.18 n.sp. AZ NS - - 6 5 

    Acabaria sp.19 AZ * - 2 - 2 

    Acabaria sp.20 AZ * - 2 - 7 

    Acabaria sp.21 AZ * - - - 1 

    Acabaria sp.22 AZ * - 1 - - 

    Acabaria sp.23 AZ * - 10 - 13 

    Acabaria sp.24 n.sp. AZ NS - 1 - - 

    Acabaria sp.25 AZ * - - - 1 

    Acabaria sp.26 AZ * - - - 4 

    Mopsella singularis Thomson 1916 AZ - - - - 8 

    Mopsella sp.1 AZ *NT - - - - 

    Mopsella sp.2 AZ * - - - 1 

    Mopsella sp.3 AZ * - - - 4 

    Melithaea ochracea Linnaeus 1758 AZ - 1 - - - 

    Melithaea squamata Nutting 1911 AZ - - 2 - 5 

    Melithaea sp.1 AZ * - - - 6 

    Melithaea sp.2 AZ * - - - 7 

    Melithaea sp.3 AZ * - 1 - 18 
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Taxon Z/AZ 
NR/NS/

NT 
Sampela 

Buoy 

3 

Pak 

Kasim's 
Ridge 1 

    Melithaea sp.4 AZ * - - - 2 

    Melithaea sp.5 AZ * - 1 - 1 

    Melithaea sp.6 AZ * - - - 3 

    Melithaea sp.7 AZ *NT - - - - 

    Melithaea sp.8 AZ * - - - 3 

    Melithaea sp.9 AZ * - - - 3 

  Family: Parisididae Aurivillius 1931       

    Parisis sp.1 AZ * - - - 1 

  Family: Subergorgiidae Gray 1859       

    Annella mollis Nutting 1910 AZ - - - - 3 

    Annella reticulata Ellis & Solander 1736 AZ - - 2 10 14 

    Annella sp.1 n.sp. AZ NS - 9 - 17 

    Annella sp.2 n.sp. AZ NS - - 4 5 

    Subergorgia rubra Gray 1857  AZ NT - - - - 

    Subergorgia suberosa Pallas 1766 AZ NT - - - - 

    Subergorgia sp.1 n.sp. AZ NS/NT - - - - 

[Suborder: Holaxonians]        

  Family: Keroeididae Kinshita 1910       

    Keroeides cf. gracilis Whitelegge 1897 AZ * - 1 - - 

 Family: Gorgoniidae Lamouroux 1812       

    Guaiagorgia sp.1 AZ *NR/NT - - - - 

    Hicksonella princeps Nutting 1910 Z * - - - 1 

    Pinnigorgia sp.1 Z * - - 2 1 

    Pseudopterogorgia sp.1 AZ * - - - 1 

    Rumphella aggregata Nutting 1910 Z - 3 - 1 5 

    Rumphella antipathes Linnaeus 1758 Z NR - - - 1 

    Rumphella sp.1 Z * - - 2 - 

  Family: Acanthogorgiidae Gray 1859       

    Acanthogorgia cf. isoyxa Grasshoff 1999 AZ NR - 2 - 6 

    Acanthogorgia spinosa Hiles 1899 AZ - - 1 6 9 

    Acanthogorgia sp.1 n.sp. AZ NS - 1 - - 

    Acanthogorgia sp.2 n.sp. AZ NS - 82 7 5 

    Acanthogorgia sp.3 AZ * - - - 1 

    Acanthogorgia sp.4 AZ * - 3 12 9 

    Acanthogorgia sp.5 AZ * - 1 14 8 

    Acanthogorgia sp.6 n.sp. AZ NS - - 3 12 

    Acanthogorgia sp.7 AZ * - 1 1 1 

    Acanthogorgia sp.8 AZ * - - 1 - 

    Acanthogorgia sp.9 AZ * - - - 1 

    Acanthogorgia sp.10 AZ * - - 1 1 

    Acanthogorgia sp.11 AZ * - - 1 2 

    Anthogorgia sp.1 AZ *NT - - - - 

    Muricella sp.1 AZ * - 2 2 - 

    Muricella sp.2 AZ *NT - - - - 

  Family: Plexauridae Gray 1859       

    Acanthomuricea sp.1 AZ * - 1 1 - 

    Astrogorgia bayeri van Ofwegen & Hoeksema 2001 AZ NR/NT - - - - 

    Astrogorgia canala Grasshoff 1999 AZ NR - - 6 11 

    Astrogorgia dumbea Grasshoff 1999 AZ NR - - 1 3 

    Astrogorgia cf. arborea Thomson & Simpson 1909 AZ *NT - - - - 

    Astrogorgia sp.1 AZ *NT - - - - 

    Astrogorgia sp.2 AZ * - 1 1 - 

    Astrogorgia sp.3 AZ * - - - 4 

    Astrogorgia sp.6 n.sp. AZ NS - 15 135 96 

    Astrogorgia sp.7 AZ * - - 13 11 

    Astrogorgia sp.8 n.sp. AZ NS - - 2 7 

    Astrogorgia sp.9 n.sp. AZ NS - 3 - 9 
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Taxon Z/AZ 
NR/NS/

NT 
Sampela 

Buoy 

3 

Pak 

Kasim's 
Ridge 1 

    Astrogorgia sp.10 AZ * - 5 9 29 

    Astrogorgia sp.11 AZ * - - 3 10 

    Astrogorgia sp.12 AZ * - - - 1 

    Astrogorgia sp.13 AZ *NT - - - - 

    Astrogorgia sp.13 AZ * - - 8 23 

    Astrogorgia sp.14 AZ *NT - - - - 

    Astrogorgia sp.15 n.sp. AZ NS - - 1 6 

    Astrogorgia sp.16 AZ *NT - - - - 

    Astrogorgia sp.17 AZ * - 1 24 14 

    Astrogorgia sp.18 AZ * - 20 19 43 

    Astrogorgia sp.19 AZ * 1 - - - 

    Astrogorgia sp.20 AZ * - 1 19 22 

    Astrogorgia sp.21 AZ * - - 4 1 

    Astrogorgia sp.22 AZ * - - 1 1 

    Astrogorgia sp.23 n.sp. AZ NS - 3 5 11 

    Bebryce hicksoni Thomson & Henderson 1905 AZ - - 3 1 3 

    Bebryce cf. indica Thomson 1905 AZ * - 6 16 59 

    Bebryce thomsoni Nutting 1910 AZ - - - 1 3 

    Bebryce sp.1 AZ *NT - - - - 

    Bebryce sp.2 AZ *NT - - - - 

    Bebryce sp.3 AZ *NT - - - - 

    Echinogorgia furfuracea Esper 1791 AZ NR - - - 2 

    Echinogorgia cf. furfuracea Esper 1791 AZ * - 1 3 3 

    Echinogorgia pseudosassapo Kölliker 1865 AZ NR - - 1 - 

    Echinogorgia sp.1 n.sp. AZ NS - - 1 - 

    Echinogorgia sp.2. n.sp AZ NS - 1 - - 

    Echinogorgia sp.3 n.sp. AZ NS - - - 1 

    Echinogorgia sp.4 AZ * - 1 2 3 

    Echinogorgia sp.5 AZ * - - - 1 

    Echinogorgia sp.6 AZ *NT - - - - 

    Echinogorgia sp.7 AZ *NT - - - - 

    Echinogorgia sp.8 AZ * - - - 1 

    Paracis rigida Thomson & Simpson 1909 AZ NR - - 2 - 

    Paracis sp.1 n.sp AZ NS - - - 1 

    Paracis sp.2 AZ *NT - - - - 

    Paracis sp.3 AZ * - - 1 1 

    Echinomuricea cf. coronalis Germanos 1896 AZ NR - 1 - - 

    Echinomuricea indomalaccensis Ridley 1884 AZ - - 2 8 7 

    Echinomuricea ochracea Thomson & Simpson 1909 AZ NR - 1 - - 

    Echinomuricea pulchra Nutting 1910 AZ NR - - 2 2 

    Echinomuricea splendens Thomson & Simpson 1909 AZ - - - 5 1 

    Echinomuricea sp.1 n.sp. AZ NS - - - 1 

    Echinomuricea sp.2 n.sp. AZ NS/NT - - - - 

    Echinomuricea sp.3  AZ * - - 6 13 

    Echinomuricea sp.4 AZ * - - - 1 

    Euplexaura rhipidalis Studer 1895 AZ NR - 1 - 4 

    Euplexaura sp.1 AZ * - 1 3 2 

    Euplexaura sp.2 AZ * - - - 1 

    Euplexaura sp.3 n.sp. AZ NS - 2 1 - 

    Euplexaura sp.4 AZ * - - - 1 

    Euplexaura sp.5 AZ * - - 2 - 

    Euplexaura sp.6 AZ *NT - - - - 

    Euplexaura sp.7 AZ * - - 1 - 

    Euplexaura sp.8 AZ * - - - 1 

    Euplexaura sp.9 AZ * - - 2 - 

    Euplexaura sp.10 AZ * - 1 1 1 
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Taxon Z/AZ 
NR/NS/

NT 
Sampela 

Buoy 

3 

Pak 

Kasim's 
Ridge 1 

    Menella indica Ridley 1888 AZ NR - 1 - - 

    Menella lenzii Studer 1895 AZ NR - 1 3 11 

    Menella praelonga Ridley 1884 AZ - - 1 1  

    Menella spinifera Kükenthal 1911 AZ - - 1 6 13 

    Menella sp.1 AZ * - 1 4 2 

    Menella sp.2 AZ * - 1 - 3 

    Menella sp.3 AZ * - - - 3 

    Trimuricea sp.1 n.sp. AZ NS/NT - - - - 

    Trimuricea sp.2 n.sp. AZ NS - - 1 - 

    Paraplexaura cf. cimenia Grasshoff 1999 AZ NR - - - 1 

    Paraplexaura sp.1 AZ * - 4 4 - 

    Paraplexaura sp.2 AZ * - 1 4 1 

    Paraplexaura sp.3 AZ * - - 6 19 

    Paraplexaura sp.4 AZ * - 1 - - 

    Villogorgia cf. citrina Grasshoff 1999 AZ *NR - 1 - 7 

    Villogorgia rubra Nutting 1910 AZ - - - 1 2 

    Villogorgia sp.1 n.sp. AZ NS - 2 1 9 

    Villogorgia sp.2 AZ * - - 1 3 

    Villogorgia sp.3 AZ * - - - 3 

    Villogorgia sp.4 AZ *NT - - - - 

    Villogorgia sp.5 AZ *NT - - - - 

[Suborder: Calcaxonians]  - -    

  Family: Ellisellidae Gray 1859       

    Ctenocella sp.1 AZ *NT - - - - 

    Ellisella ceratophyta Linnaeus 1758 AZ - - 1 - 16 

    Ellisella plexauroides Toeplitz 1919 AZ - - - - 8 

    Ellisella sp.1 AZ * - 2 - 5 

    Ellisella sp.2 AZ * - 1 1 5 

    Ellisella sp.3 AZ * - - 2 1 

    Dichotella gemmacea Milne Edwards & Haime 1857 AZ * - - 6 3 

    Heliania sp.1 AZ *NR/NT - - - - 

    Junceella fragilis Ridley 1884 AZ - - 2 - 16 

    Junceella cf. juncea Pallas 1766 AZ * - - - 1 

    Nicella sp.1 AZ *NT - - - - 

    Verrucella cf. cerasina Grasshoff 1999 AZ *NR - 2 1 5 

    Verrucella cf. rubra Nutting 1910 AZ *NR/NT - - - - 

    Verrucella sp.1 AZ * - 4 3 3 

    Verrucella sp.2 AZ *NT - - - - 

    Viminella sp.1 AZ * - - - 1 

Family: Ifalukellidae Bayer 1955       

    Ifalukella yanii Bayer 1955 Z NT - - - - 

    Plumigorgia hydroides Nutting1910 Z NT - - - - 

    Plumigorgia schuboti Alderslade 1986 Z NT - 1 - - 

  Family: Isididae Lamouroux 1812       

    Isis hippuris[N] Linnaeus 1758 Z - 41 103 413 278 

    Isis hippuris[LT] Linnaeus 1758 Z - 59 7 71 49 

    Isis hippuris[S] Linnaeus 1758 Z - 4 20 26 15 

    Zignisis sp.1 AZ *NR - 1 - - 

Unidentified AZ * - 5 10 7 

Unidentified, Holaxonian AZ *NT - - - - 

Unidentified, Holaxonian, Plexauridae AZ * - 4 4 6 

       

Total # Species:   126 445 1165 1713 
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species at Ridge 1 (Figure 2.2; Table 2.2). This pattern of increased species richness and 

diversity was similarly replicated with depth, the inverse evident in Sampela with the majority 

of colonies and species on the reef crest and flat (Figure 2.2).  

PERMANOVA results revealed that differences in gorgonian abundance across all sites and 

habitats were significant with no interaction effects (pseudo-F = 7.938, P  < 0.0001; pseudo-F = 

6.714, P < 0.0001). Pair wise comparisons revealed significant differences were between all  

 

Figure 2.3. (a, c) Constrained and (b, d) unconstrained ordinations of gorgonian assemblages 

between sites (a, b) and habitats (c, d). Sa, Sampela; B3, Buoy 3; PK, Pak Kasim’s; R1, Ridge 1. F, 

reef flat; C, reef crest; S, reef slope. 
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Figure 2.4. Zooxanthellate (a, c, e, g) and azooxanthellate gorgonian species richness (a b), 

Hill’s diversity indices N1 (c, d), N2 (e, f) and modified ratio for evenness N21’ (g, h) (mean  

SE) across sites and habitats. Sa, Sampela; B3, Buoy 3; PK, Pak Kasim’s; R1, Ridge 1 within the 

WMNP. White bars, reef flat; grey bars, reef crest; black bars, reef slope. 
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sites and habitats, most notably Sampela and Ridge 1, and the reef flat and slope respectively 

(Figure 2.3). CAP analyses were consistent with these results, where strong allocation success 

clearly defined distinct assemblage variability between sites and habitats (Figure 2.3; Table 2.2). 

SIMPER further revealed that ‘morphotypes’ within the zooxanthellate taxa Isis hippuris [LT,N] 

Linnaeus 1758 and Briareum excavatum Nutting 1911 accounted most for differences between 

both site and habitat gorgonian assemblages (Table 2.4). I. hippuris colonies with long thick 

branches were prevalent on the reef flat at Sampela (Figure 2.3b, d, Table 2.4), whereas low-

lying branching Briareum species more abundant towards the reef slope. In addition, the 

azooxanthellate Acanthogorgia sp.5 contributed considerably towards the difference between 

the reef crest and flat (Figure 2.3d, Table 2.4). This was due to its exclusive and abundant 

presence on the ceilings of caves and overhangs, characteristic of Buoy 3.  

Zooxanthellate versus Azooxanthellate Gorgonians. The dominance of the zooxanthellate 

gorgonians I. hippuris (1094) and Briareum spp. (792) obscured distribution patterns of 

azooxanthellate taxa (Figure 2.3). To highlight indicative distribution patterns and potential 

interactions between zooxanthellate and azooxanthellate gorgonian assemblages and their 

environment, tests of 1) diversity and richness; 2) independence; 3) separate assemblage 

structure, and 4) environmental driver(s) were performed.  

A total of 1900 zooxanthellate and 1517 azooxanthellate gorgonian colonies were surveyed 

across reefs within the WMNP. Calcaxonians, holaxonians, as well as scleraxonians were 

represented by both zooxanthellate and azooxanthellate taxa with 6 genera belonging to 4 

families, and 31 genera belonging to 9 families respectively. Taxonomic richness and diversity 

for azooxanthellate species largely replicated that of figure 2.2 – all taxa (Figure 2.4b, d, f, h); 

increasing towards Ridge 1 and with depth. Zooxanthellate taxonomic richness and diversity 

also increased with site, however showed an inverse relationship with depth, being greatest at 

the reef crest and flat (Figure 2.4a, c, e, g). 

Results from a Wald–Wolfowitz (runs) test revealed the distributions of zooxanthellate and 

azooxanthellate taxa were non-random, rejecting the null hypothesis of independence (P < 

0.001). The relative abundance of both zooxanthellate and azooxanthellate taxa differed 

significantly across sites (PERMANOVA, pseudo-F = 9.476, P < 0.0001 and pseudo-F = 3.997; 

P < 0.0001, respectively) and habitats (PERMANOVA, pseudo-F = 7.716, P < 0.0001 and 

pseudo-F = 4.687, P < 0.0001, respectively). Yet an interaction effect (pseudo-F = 1.925; P = 

0.012) between sites and habitats for azooxanthellate taxa revealed that significance levels were  
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Figure 2.5. (a, c) Constrained and (b, d) unconstrained ordinations of zooxanthellate gorgonian 

assemblages between sites (a, b) and habitats (c, d). Species vectors are directed where the 

species were best represented. See Figure 2.3 for factor level codes.  

principally driven by zooxanthellate gorgonians. Results were further supported by CAP 

analyses; allocation success (number of correct allocations to each factor level) was weaker for 

azooxanthellate taxa at Pak Kasim’s, Buoy 3, and the reef crest (Table 2.2). CAP and SIMPER 

analyses confirmed previous results of I. hippuris[LT] on the reef flats at Sampela, I. 

hippuris[N] and I. hippuris[L] towards the reef crest (Figure 2.5, Table 2.5 & 6). Briareum spp. 

followed a typical pattern of encrusting on the reef flats at Ridge 1, with low-lying branching 

colonies characterizing the reef crest and slope, a pattern particularly replicated at Pak Kasim’s 

(Figure 2.5, Table 2.5). It is notable that Briareum spp. and I. hippuris colonies altered in 

colouration (magenta to brown or grey and mustard-yellow to beige respectively) at depth and 

areas of high turbidity.  
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Several azooxanthellate species within 5 families principally defined the reef slope (Figure 2.6). 

Two azooxanthellate colonies (Astrogorgia sp.19, Melithaea ochracea Linnaeus 1758) were 

encountered during the survey at Sampela, 70 species at Buoy 3, 94 species at Pak Kasim’s and 

161 species at Ridge 1 (Table 2.2). Species richness and diversity, with the exception of 

Sampela, were similar to the first model (Figure 2.2) for the crest and slope (Figure 2.4b, d, f, h). 

It is notable that the pattern of Acanthogorgia sp.5 on the reef crest at Buoy 3 (Figure 2.6b, d, 

Table 2.6), was replicated by Acabaria sp.23 at Ridge 1, also inhabiting the ceilings of caves, 

overhangs and crevices. Both species are as yet undescribed. Melithaea sp.3 showed distinct 

assemblages on the ridge top at Ridge 1 (Figure 2.6d). However, the vast majority of 

azooxanthellate taxa inhabited the reef slope with similar assemblage composition and 

distribution patterns across Buoy 3 and Pak Kasim’s as evident by the reduced allocation 

success (an indicator of reduced site and habitat distinction; Table 2.3) and site x habitat 

interaction. 

Table 2.3. CAP analyses results assessing gorgonian species assemblages for all (All spp.), 

zooxanthellate (Z) and azooxanthellate (AZ) taxa between sites and habitats within the WMNP, 

Indonesia. m is the maximum number of principle coordinate (PCO) axes with minimal 

misclassification; % var. quantifies total variance explained by the first m PCO axes; allocation 

success denotes the proportion of correct allocations to each group; 
2 

is the first squared 

canonical correlation size. 

 

Factor m % var Allocation Success % 
2
 P 

 Site   Sampela Buoy 3 Pak Kasim’s Ridge 1 Total     

All spp. 27 97.86 83.33 83.33 83.33 91.67 85.42 0.979 0.0001 

Z 10 93.97 83.33 75 83.33 91.67 83.33 0.883 0.0001 

AZ 28 99.53 100 66.67 50 100 79.17 0.991 0.0001 

          

 Habitat   Flat Crest Slope       

All spp. 17 89.55 87.5 68.75 81.25 - 79.17 0.946 0.0001 

Z 5 82.24 87.5 56.25 68.75 - 70.83 0.676 0.0001 

AZ 8 71.86 100 43.75 62.5 - 68.75 0.516 0.0009 
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Table 2.4. SIMPER analysis results indicating which gorgonian species (zooxanthellate and azooxanthellate) contributed the greatest dissimilarities 

between sites and habitats. Results presented as the average abundance (AvAb1 & 2), species average (AvD) and cumulative dissimilarity contribution 

(AvD Cum%).   

All Species                     

SITE 

Av. Group 

Diss % 
AvAb1 AvAb2 AvD 

AvD Cum 

% 

  
All Species HABITAT 

Av. Group 

Diss % 
AvAb1 AvAb2 AvD 

AvD 

Cum %   

Sampela & Buoy 3 88.95 Sampela   Buoy 3    Flat & Crest 86.27 Flat Crest   

Isis hippuris[LT]  0.4 0.25 5.79 6.51  Isis hippuris[LT]  0.53 0.33 6.33 7.34 

Acanthogorgia sp.5  0 0.61 5.55 12.76  Acanthogorgia sp.5  0 0.44 4.2 12.21 

Isis hippuris[L]  0.25 0.06 4.49 17.8  Isis hippuris[L]  0.19 0.22 3.7 16.5 

Isis hippuris[N]  0.5 0 4.03 22.33  Isis hippuris[N]  1.29 1.16 3.65 20.73 

Sampela & Pak Kasim’s   93.71 Sampela Pak Kasim’s   Flat & Slope 96.14 Flat Slope   

Isis hippuris[N]  0.12 1.81 9.58 10.23  Isis hippuris[LT]  0.53 0 6.8 7.07 

Briareum excavatum  0 0.67 5.13 15.7  Isis hippuris[L]  0.22 0.01 3.86 11.09 

Isis hippuris[LT]  1.16 0.02 4.33 20.32  Isis hippuris[N]  1.29 0.04 3.61 14.84 

Isis hippuris[L]  0.79 0.25 3.34 23.88  Briareum excavatum  0.04 0.86 3.18 18.15 

Sampela & Ridge 97.73 Sampela    Ridge    Crest & Slope 84.88 Crest Slope   

Briareum stechei  0 2.98 7.05 7.21  Isis hippuris[L]  0.22 0.12 3.83 4.51 

Isis hippuris[N]  0.12 1.14 3.53 10.82  Isis hippuris[N]  0.89 0.01 3.09 8.16 

Menella lenzi  0 0.92 2.4 13.28  Briareum excavatum  0.06 0.06 2.7 11.33 

Isis hippuris[LT]  0.4 0.38 2.35 15.68  Briareum stechei  0.28 0.86 2.66 14.47 

Buoy 3 & Pak Kasim’s     84.26 Buoy 3 Pak Kasim’s         

Isis hippuris[N]  0.25 1.81 8.01 9.51        

Briareum excavatum  0.08 0.67 4.81 15.22        

Isis hippuris[L]  0 1.16 3.71 19.63        

Acanthogorgia sp.4  0.06 0.79 2.97 23.15        

Ridge & Buoy 3 89.19 Buoy 3    Ridge          

Briareum stechei  0.03 2.98 6.22 6.98        

Isis hippuris[N]  0.25 1.14 2.91 10.24        

Menella lenzi  0.08 0.92 2.13 12.63        

Astrogorgia sp.4  0.14 0.43 1.96 14.82        

Ridge & Pak Kasim’s        81.3 Pak Kasim’s   Ridge         

Briareum stechei  0.16 2.98 4.55 5.6        

Isis hippuris[N]  1.81 1.14 2.95 9.23        

Briareum excavatum  1.16 0.85 1.81 11.45        

Menella lenzi  0.25 0.92 1.69 13.53        
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Table 2.5. SIMPER analysis results indicating which zooxanthellate gorgonian species contributed the greatest dissimilarities between sites and 

habitats. Results presented as the average abundance (AvAb1 & 2), species average (AvD) and cumulative dissimilarity contribution (AvD Cum%). 

Zooxanthellate                     

SITE 

Av. Group 

Diss % 
AvAb1 AvAb2 AvD 

AvD 

Cum % 

  Zooxanthellate                     

HABITAT 

Av. Group 

Diss % 
AvAb1 AvAb2 AvD 

AvD 

Cum %   

Sampela & Buoy 3 81.37 Sampela    Buoy 3    Flat & Crest 71.23 Flat Crest   

Isis hippuris[L]  0.42 0.06 16.26 19.98  Isis hippuris[LT]  0.54 0.38 12.77 17.93 

Briareum excavatum  0.06 0.4 11.78 34.46  Isis hippuris[N]  1.32 1.22 10.71 32.96 

Isis hippuris[LT]  0.5 0.24 10.2 47  Isis hippuris[L]  0.28 1.01 8.46 44.83 

Briareum stechei  0.06 0.34 9.54 58.73  Briareum excavatum  0.69 0.1 7.89 55.91 

Sampela & Pak Kasim’s  84.66 Sampela Pak Kasim’s   Flat & Slope 87.31 Flat Slope   

Isis hippuris[N]  0.16 1.89 18.57 21.93  Isis hippuris[LT]  0.54 0 14.55 16.67 

Briareum excavatum  0.06 0.6 13.97 38.43  Isis hippuris[N]  1.32 0.05 13.2 31.79 

Isis hippuris[L]  0.01 0.98 13.43 54.29  Briareum excavatum  0.04 0.86 10.24 43.51 

Isis hippuris[LT]  0.42 0.91 8.84 64.73  Briareum stechei  0.69 0.01 9.25 54.1 

Sampela & Ridge 91.19 Sampela    Ridge    Crest & Slope 82.8 Crest Slope   

Briareum stechei  0 3.09 29.51 32.36  Briareum excavatum  0.28 0.86 14.88 17.97 

Isis hippuris[N]  0.16 1.15 10.47 43.84  Isis hippuris[N]  1.22 0.05 14.65 35.66 

Briareum excavatum  0.01 0.91 8.26 52.9  Isis hippuris[L]  1.01 0.05 13.18 51.58 

Isis hippuris[LT]  0.5 0.37 7.17 60.76  Briareum stechei  0.17 0.47 8.77 62.18 

Buoy 3 & Pak Kasim’s     77.58 Buoy 3 Pak Kasim’s         

Isis hippuris[N]  0.27 1.89 17.56 22.64        

Briareum excavatum  0.03 0.98 13.13 39.56        

Isis hippuris[L]  0.4 0.6 11.87 54.86        

Briareum stechei  0.34 0.91 9.3 66.85        

Ridge & Buoy 3 85.38 Buoy 3    Ridge          

Briareum stechei  0.03 3.09 27.92 32.7        

Isis hippuris[N]  0.27 1.15 9.25 43.53        

Briareum excavatum  0.03 0.91 7.73 52.58        

Isis hippuris[L]  0.4 0.5 6.6 60.31        

Ridge & Pak Kasim’s      71.56 Pak Kasim’s   Ridge          

Briareum stechei  0.16 3.09 20.11 28.11        

Isis hippuris[N]  1.89 1.15 8.98 40.66        

Briareum excavatum  0.98 0.91 8.56 52.62        

Isis hippuris[L]  0.91 0.4 4.93 59.52        
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Table 2.6. SIMPER analysis results indicating which azooxanthellate gorgonian species contributed the greatest dissimilarities between sites and 

habitats. Results presented as the average abundance (AvAb1 & 2), species average (AvD) and cumulative dissimilarity contribution (AvD Cum%). 

Azooxanthellate                     

SITE 

Av. Group 

Diss % 
AvAb1 AvAb2 AvD 

AvD 

Cum % 

  Azooxanthellate                     

HABITAT 

Av. Group 

Diss % 
AvAb1 AvAb2 AvD 

AvD 

Cum %   

Sampela & Buoy 3 100 Sampela    Buoy 3    Flat & Crest 97.66 Flat Crest   

Acanthogorgia sp.5  0 0.61 12.88 12.88  Acanthogorgia sp.5  0 0.44 8.8 9.01 

Astrogorgia sp.4  0.08 0 11.11 23.99  Astrogorgia sp.6  0.06 0 7.69 16.89 

Acanthogorgia sp.4  0 0.25 5.75 29.74  Acanthogorgia sp.4  0 0.69 6.3 23.33 

Acabaria sp.23  0 0.25 4.74 34.48  Bebryce cf. indica  0.32 0.14 3.1 26.51 

Sampela & Pak Kasim’s    100 Sampela Pak Kasim’s   Flat & Slope 97.4 Flat Slope   

Astrogorgia sp.4  0 0.51 9.75 9.75  Astrogorgia sp.6  0.06 0 6.36 6.5 

Ellisella ceratophyta  0 0.17 8.77 18.52  Melithaea sp.3  0 0.06 6.36 13.07 

Acanthogorgia sp.4  0.08 0 7.86 26.38  Acanthogorgia sp.4  0 0.81 2.83 15.97 

Astrogorgia sp.6  0 1 4.99 31.38  Annella sp.1  0 0.56 2.58 18.62 

Sampela & Ridge 100 Sampela     Ridge    Crest & Slope 86.38 Crest Slope   

Melithaea sp.3  0 0.25 4.32 4.32  Melithaea sp.3  0 0.06 7.69 8.9 

Menella lenzi  0 0.92 3.74 8.06  Acanthogorgia sp.5  0.44 0.08 2.24 11.5 

Astrogorgia sp.4  0 0.43 3.3 11.36  Annella sp.1  0.25 0.63 2.24 14.09 

Astrogorgia sp.6  0 0.38 3.16 14.52  Acanthogorgia sp.4  0.69 0.81 2.23 16.67 

Buoy 3 & Pak Kasim’s     92.46 Buoy 3 Pak Kasim’s         

Astrogorgia sp.4  0.31 0.51 11.75 12.7        

Ellisella ceratophyta  0 0.17 10.25 23.79        

Acanthogorgia sp.5  0.61 0.05 3.67 27.76        

Acanthogorgia sp.4  0.25 1 3.36 31.39        

Ridge & Buoy 3 92.72 Ridge    Buoy 3          

Melithaea sp.3  0 0.25 4.56 4.92        

Astrogorgia sp.4  0.14 0.43 3.68 8.89        

Menella lenzi  0.08 0.92 3.47 12.63        

Astrogorgia sp.6  0 0.38 3.25 16.13        

Ridge & Pak Kasim’s       88.52 Pak Kasim’s  Ridge          

Melithaea sp.3  0 0.25 4.15 4.69        

Astrogorgia sp.4  0.05 0.43 3.36 8.49        

Menella lenzi  0.25 0.92 3.21 12.11        

Astrogorgia sp.6  0.32 0.38 3.19 15.71        
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Figure 2.6. (a, c) Constrained and (b, d) unconstrained ordinations of azooxanthellate gorgonian 

assemblages between sites (a, b) and habitats (c, d). Species vectors are directed where the species 

were best represented. See Figure 2.3 for factor level codes. 

Gorgonian Community Structure. Univariate and multivariate analyses illustrated clear 

differences between sites and habitats within the WMNP (Figures 2.2 – 2.7). Seven families from 

the Calcaxonia (Ellisellidae S = 16, Isididae S ~ 2), Holaxonia (Acanthogorgiidae S = 16, 

Plexauridae S = 87) and Scleraxonia (Briareidae S = 3, Subergorgiidae S = 7, and Melithaeidae S= 

44) characterized reef habitats from low diversity and abundance at the impacted site Sampela to 

high diversity and abundance at Ridge 1 (Figure 2.7).  

The Isididae at Sampela were dominant across the flats and crest (11.5 ± 1 & 11.5 ± 1.4 per 20 m
-2

; 

mean ± SE), with occasional Briareidae on the slope (2 ± 1). At Buoy 3, Isididae were dominant on  
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the reef flat (30 ± 2), Acanthogorgiidae characterised overhangs on the reef crest (20 ± 1.5), and 

Plexauridae on the reef slope (18 ± 1). Pak Kasim’s was dominated by high numbers of the Isididae 

on the reef flat and crest (68 ± 3; 58 ± 2), with Plexauridae and Briareidae on the reef slope (56 ± 2; 

27 ± 1). Ridge 1 showed Isididae and Briareidae having the greatest relative abundance on the ridge 

top (48 ± 2; 30 ± 3), Plexauridae, Isididae, Briareidae and Melithaeidae on the reef crest (49 ± 2; 

36± 3; 28 ± 1; 27 ± 1), and Plexauridae and Briareidae on the reef slope (63 ± 0.1; 67 ± 1). In sum, 

phototrophic/zooxanthellate taxa added little diversity but greatest relative abundance to the reef 

flats and crest for Isididae and reef slope for Briareidae (Figure 2.7). Heterotrophic/azooxanthellate 

taxa especially within the family Plexauridae, contributed greatest to the increased biodiversity 

with depth (Figure 2.7). 

Colony size was not reported in this study however numerous azooxanthellate species were small 

and located within sheltered crevices, overhangs, or at the base or under other coral colonies (e.g., 

the soft coral Sarcophyton Lesson 1834 and tabulate scleractinian Acropora Oken 1815). 

Interestingly, small colonies of Acanthogorgia sp.4, Annella sp.1 and Bebryce hicksoni Thomson & 

Henderson 1905 were frequently encountered at the base of large Annella reticulata Ellis &  

 

Figure 2.7. Site-specific gorgonian family abundance (mean ± SE) across sites and habitats 

within the WMNP. (a) Sampela, (b) Buoy 3, (c) Pak Kasim’s, and (d) Ridge 1. E, Ellisellidae; I, 

Isididae; A, Acanthogorgiidae; P, Plexauridae; B, Briareidae; M, Melithaeidae; S, Subergorgiidae. 

White bars, reef flat; grey bars, reef crest; black bars, reef slope. 
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Figure 2.8. DISTLMforward models for the best explanatory drivers for variability across site (a, 

full variables; b, abated variables) and habitats (c, full variables; d, abated variables) of gorgonian 

variability across sites within the WMNP. See Figure 2.3 for factor level codes. 

Solander 1736, A. mollis Nutting 1910, and Melithaea spp. colonies. Observations at depths greater 

than those reported here suggest a continual increase in gorgonian diversity, abundance and size, 

plus a remarkable frequency of new recruits (< 5 cm tall). Additional gorgonian species present 

within the WMNP not encountered during the surveys are documented in Table 2.2. 

 

2.3.2 Environmental Variables 

Results from the nonparametric multivariate regression DISTLMforward revealed that taken 

together biotic (sponges, algae, ascidians, molluscs) variables, grain size, rugosity, and light 

explained 23.73% (pseudo-F = 2.453, P < 0.001) of the variability in gorgonian assemblage 

structure (Figure 2.8). Benthic variables, covariates of gorgonian assemblages, were omitted from 

an additional analysis revealing sediment grain size, light, rugosity and chlorophyll-a explaining 

25.32% (pseudo-F = 1.999, P < 0.001) of gorgonian assemblage variability (Figure 2.8). The same 
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model applied separately to zooxanthellate and azooxanthellate species revealed that soft coral, 

biotic variables and flow explained 29.3% (pseudo-F = 3.601, P = 0.001), and flow, light and 

chlorophyll-a explained 28.13% (pseudo-F = 3.904, P < 0.001) of the variability in both classes 

respectively. Results from the abated model suggested that water flow, light and chlorophyll-a 

(27.6%; pseudo-F = 3.134, P = 0.003), rugosity, sediment grain size and light (30.04%; pseudo-F = 

6.254, P = 0.001) again had a limited, yet significant degree of influence on zooxanthellate and 

azooxanthellate distributions. 

2.4 DISCUSSION 

In total, 197 gorgonian species and distinct morphotypes from 42 genera and 12 families were 

documented across shallow (0-30 m) coral reefs within the WMNP, Indonesia. Comparable with 

previously described shallow water gorgonians across the Indo-Pacific comprising 51 genera within 

14 families (Grasshoff 1999, Fabricius & Alderslade 2001), this study strongly supports the 

WMNP as an area of high regional gorgonian abundance and diversity. Distinct community types 

across sites and habitats along an environmental gradient are characterised by non-independence 

between benthic space competitors, and driven in part by habitat complexity, water flow and 

natural light. 

Gorgonian distribution patterns within the WMNP followed a gradient of low diversity and 

abundance at the impacted site Sampela to high diversity and abundance at Ridge 1. Species 

richness and diversity were proportional to depth, a pattern consistent with previous research on 

benthic invertebrates within the area (e.g., Porifera, Bell & Smith 2004), yet the inverse for 

Scleractinia (Haapkylä et al. 2007). Similarly, high gorgonian diversity with depth has been shown 

in other areas (Singapore, Goh & Chou 1994; Caribbean, Sanchez et al. 1997; Marianas, Paulay et 

al. 2003; Hong Kong, Fabricius & McCory 2006; Japan, Matsumoto et al. 2007; Philippines, 

Rowley unpublished data) with concomitant zooxanthellate octocoral abundance in the shallows 

(Great Barrier Reef, Fabricius & Klumpp 1995; Thailand, Chanmethakul et al. 2010).  

Differences in gorgonian assemblage structure between sites and habitats were driven by 

morphotypes of the zooxanthellate isidid I. hippuris and species within the genus Briareum. I. 

hippuris dominance on the shallow reef flats is likely due, in part, to differential disturbance levels 

between study sites. Continual disturbance maintains relative species composition, stability and 

biodiversity within a particular reef community (Connell 1978, Aronson & Precht 1995, Shea et al. 

2004, Gouhier & Guichard 2007, Bohn et al. 2014). For example, strong upwellings and water 

currents at Ridge 1, contrasting with continual resource exploitation and high sedimentation rates at 

Sampela, are reflected in diverse and impoverished gorgonian communities, respectively. Buoy 3 
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and Pak Kasim’s, both subject to past destructive fishing practices and bleaching on the former reef 

flats, show an increase in gorgonian abundance and diversity between Sampela and Ridge 1. 

However, considerable loose rubble and anthropogenic gleaning on the shallow (~1-3 m) reef flats 

of Buoy 3 likely impede settlement success even at low turbulence (Goh & Chou 1994), thus 

reflecting minimal recovery and gorgonian presence. Yet high I. hippuris abundance on the deeper 

(~3-5 m) reef flats at Pak Kasim’s may indicate that this species is an r-selected strategist, with its 

response to reef recovery unencumbered by inhibitors to settlement and growth, therefore, thriving 

in elevated current flow, low turbidity and minimal loose substrata.  

The ability to colonize disturbed areas reflects reproductive strategy, larval settlement choices and 

post-settlement mortality. I. hippuris is a gonochoristic (Simpson 1906) external brooder (pers. 

obs.; see also Figure 4.5), yet also displays considerable fragmentation with a proportionally high 

regeneration capacity on the reef flats across all sites. Asexual propagation through fragmentation 

is not uncommon in gorgonians yet can show intra- and inter-disturbance sensitivity (Coffroth & 

Lasker 1998). The proportional success of regenerative fragments, with most fragments being small 

and apical, across all sites suggests fragmentation in I. hippuris is not disturbance sensitive. 

Interestingly, such fragment success was morphotype-specific and may represent eco-phenotypic 

specificity or sibling taxa. Nevertheless, asexual propagation through fragmentation facilitates 

rapid post-disturbance recovery (Dauget 1992, Dahan & Benyahu 1997) resulting in high local 

population abundance as evident by I. hippuris on the reef flats in the WMNP. 

The zooxanthellate genus Briareum also influenced separations between the factors site and habitat. 

Low-lying branching species on the reef slope, predominantly at Pak Kasim’s and Ridge 1, had a 

bathymetric distribution counter to that of both I. hippuris (this study) and scleractinians (Porter 

1976). Furthermore, numerous asexual fragments and juvenile colonies were encountered. This 

pattern mirrored its Atlantic congener, Briareum asbestinum Pallas 1766, which reproduces 

through asexual fragmentation and external brooding producing low dispersal philopatric larvae 

(Brazeau & Harvell 1994). It is likely that such a dual reproductive strategy occurs in Indo-Pacific 

Briareum taxa. However, reproductive strategies for Indo-Pacific gorgonian taxa are largely 

unknown, likely having limited dispersal abilities leading to habitat specialists and high endemism 

(Grasshoff & Bargibant 2001, Picciano & Ferrier-Pagès 2007). 

Acanthogorgia sp.5 was the only azooxanthellate species driving differences between and within 

factor levels due to its exclusive abundance on the ceilings of caves and overhangs on the reef crest 

at Buoy 3. This specialized distribution may be due to within-overhang microhabitats, pre-

settlement larval preferences such as negative phototaxis (Sánchez et al. 1997), geotaxis, or 
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differential mortality following settlement in other areas. Species within the Acanthogorgia genus 

do however, possess a degree of habitat selectivity (Goh & Chou 1994, this study), frequently 

observed at the base of other large chemically well defended gorgonians such as Annella reticulata, 

A. mollis, Melithaea spp. and the soft coral Sarcophyton. Such taxa likely affect recruitment 

(Yoshioka & Yoshioka 1989, Yoshioka 1996) through waterborne exudates facilitating spatial 

refugia from predation, competition (Hay 1986) or fouling. Larval settlement preferences have 

been shown for crustose coralline algae (Harrington et al. 2004), in addition to enhanced 

photophysiological performance on carbonate substratum (Green et al. 2010). Furthermore, 

azooxanthellate Caribbean gorgonian larvae show settlement preference for consolidated 

topographically complex reefs in addition to longer pelagic larval duration (PLD; Sánchez et al. 

1997) compared to zooxanthellate taxa. Yet both fitness enhancement through substratum selection 

and PLD are unknown for Indonesian gorgonians, PLD not necessarily predictive of dispersal 

(Rosen 1988, Weersing & Toonen 2009, but see also Cowen et al. 2006). Nevertheless, diversity 

and abundance increased markedly with habitat complexity towards Ridge 1 and with depth. This 

bioenvironmental cline suggests higher larval availability through water currents and self-seeding, 

as well as selection and post-settlement success for sites with high topographic complexity and 

consolidated substratum. In contrast, low relief, unconsolidated fine-grain substratum coupled with 

low water flow, high sediment rate, continuous anthropogenic disturbance and high grazing activity 

from Diadema spp. at Sampela (Hodgson 2008) likely act in concert with reduced larval 

availability, settlement and survival to result in low biodiversity. 

Habitat structural complexity, thus colonizable area, substratum type and light intensity, can 

determine settlement choices and profoundly influence benthic community structure on coral reefs 

(Sánchez et al. 1997, Meesters et al 2001, Linares et al. 2008). Yet the combination of predictor 

variables biotic, sediment grain size, rugosity and light explained only 23% of gorgonian 

assemblage structure across clear environmental clines. Evidently, two inherently related patterns 

were occurring. Firstly, benthic variables such as sponges, algae, hard and soft coral all co-vary 

with gorgonian distribution, themselves members of coral reef benthic communities. Remodeling 

on such covariate removal revealed sediment grain size, light, rugosity and chlorophyll-a still 

explained only 25% of gorgonian assemblage structure. that, Secondly, this suggests that 

zooxanthellate and azooxanthellate gorgonian distribution are not independent of each other, 

essentially reflecting two different trophic groups, heterotrophs and phototrophs. This further 

confirms that interspecific competitive forces do exist between shallow water gorgonians relative to 

natural light as a function of bathymetry. 
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2.4.1. Zooxanthellate versus Azooxanthellate Gorgonians 

The dominance of zooxanthellate taxa driving separation between reef areas and location obscured 

azooxanthellate distribution patterns. Trophic group separation (zooxanthellate = phototrophy; 

azooxanthellate = heterotrophy) revealed a clear environmental gradient interaction with depth, 

further confirmed by non-independence between the two groups. Thus both groups displayed 

contrasting patterns with azooxanthellate species richness and diversity proportional to depth, 

consistent with other areas (Goldberg 1973, Goh & Chou 1994, Sanchez et al. 1997, Paulay et al. 

2003, Fabricius & McCory 2006, Matsumoto et al. 2007, this study), with the inverse being true for 

zooxanthellate taxa. 

Replicate multivariate models for zooxanthellate and azooxanthellate taxa revealed zooxanthellate 

species drove differences between site and habitat. Distinct I. hippuris morphologies showed 

patterns of variability both within and between sites, most notably bushy colonies with long thick 

branches on the reef flat at Sampela and planar short tightly packed branched colonies at Ridge 1. 

Morphological variants in ‘sympatry’ are not uncommon in Cnidaria (Knowlton 1993, Prada et al. 

2008, Forsman et al. 2010) and may be indicative of phenotypic plasticity or incipient ecological 

divergence in response to natural light and water flow. Morphological variation in I. hippuris has 

previously been noted but not quantified (Simpson 1906, Fabricius & Alderslade 2001). However 

such variation through increased branching surface area enhancing photosynthetic efficiency in 

shallow water branching taxa (Hennige et al. 2008), coupled with a previously undocumented dual 

mode of reproduction, may likely explain the biological success of I. hippuris across environmental 

clines within the WMNP. Colony form can depend on feeding strategy and the same genotype can 

show different allocation patterns in different environments (Weiner 2004). Yet different 

morphotypes within the same environment, may represent separate clonal aggregations (Coffroth & 

Lasker 1998) consequential of fragmentation or the potential for sibling species.  

Fitness enhancement through morphological plasticity relative to water flow and light availability 

may drive I. hippuris morphotype differences particularly between Ridge 1 and Sampela. Densely 

packed, shorter branches in high flow environments - coupled with high irradiance - at Ridge 1 

maintains colony integrity and maximizes high particle capture, especially downstream of a colony 

or aggregation due to turbulence intensity (McFadden 1986, Sebens et al 1997). Conversely, long 

wide branches with a high surface area likely maximize photosynthetic gain (Hennige et al. 2008) 

otherwise absorbed by suspended particulate matter in high sedimented reefs (Anthony & Fabricius 

2000) such as Sampela, and further reducing sediment accumulation on the colony (Crabbe & 

Smith 2003). Colony surface area and metabolism are intrinsically linked whereby variations in 
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branching structure and concomitant within colony canalisation result in resource allocation 

plasticity, further representing alternate feeding strategies, size and growth patterns (Sebens 1997) 

to mitigate environmental change. Reciprocal transplant experimentation between Sampela and 

Ridge 1 assessing a suite of phenotypic traits, in addition to molecular analyses, may be fruitful in 

ascertaining species delineation or acclimatory capacity between I. hippuris morphotypes. 

A dual reproductive strategy was also observed in Briareum spp. and likely explains, in part, the 

relative success of this species at depths where few zooxanthellate taxa are encountered and 

azooxanthellate diversity is high. Briareum morphotypes also displayed habitat specificity with 

branching taxa at depth and encrusting types on the high flow reef flat/Ridge top. Encrusting 

morphologies reduce drag in such high flow environments (Bell & Barnes 2000, Bell & Smith 

2004). However, habitats characterised by low wave action, high turbidity and sedimentation rates, 

have also been shown to favour encrusting Briareum spp. (Fabricius & Alderslade 2001, Fabricius 

& De’ath 2004), likely due to morphological and behavioural pre-adaptations such as phenotypic 

and photoacclimatory plasticity, colony and polyp size, reproductive strategy and recruitment 

survival (Stafford-Smith 1993, Anthony 2000). Yet such patterns are in direct contrast with those in 

this study. Furthermore, Briareum spp. abundance at Sampela compared to I. hippuris was 

considerably less with three out of the seventeen colonies encountered being encrusting. Thus 

branching and lobe-like, upward projecting Briareum morphologies may well be selected for in low 

light and water flow, high turbidity and sedimented environments; reducing sediment smothering 

with increased SA:V for photosynthetic efficiency akin to I. hippuris.  

Predictor variables highlight water flow, light and chlorophyll-a, rugosity, sediment grain size and 

light for zooxanthellate and azooxanthellate species respectively. High water motion and localized 

upwelling further enhanced by strong water currents at Ridge 1, fertilize the reef with deep benthic 

nutrients for primary productivity and enhanced food availability (Jokiel 1978, Sebens 1984), 

maximizing species biodiversity and abundance. Therefore, increased azooxanthellate species 

richness and diversity on the Ridge top, coupled with slightly reduced zooxanthellate species 

abundance compared to Pak Kasim’s is indicative of a natural reef environment on the Ridge with 

overall reduced species dominance. Such patterns can again be attributed to intermediate 

disturbance levels, maintaining relative species diversity within a reef community, and thus acting 

in concert with nutrient and suitable substrate availability and competition (Connell 1978, Aronson 

& Precht 1995, Townsend & Scarsbrook 1997, Gouhier & Guichard 2007).   

Azooxanthellate gorgonian assemblage structure showed a relatively consistent pattern across sites 

and habitats with the exception of Sampela. However, an amplitudinal/additive interaction (i.e., not 
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due to “crossing-over”) revealed that proportionality of abundance between sites and habitats 

changed markedly for some taxa. Nevertheless, azooxanthellate gorgonians showed assemblage 

patterns consistent with an environmental decline from the healthy high energy Ridge to the 

depauperate reef communities at Sampela. Community structure of azooxanthellate taxa varied 

little within the deeper depths with only Plexauridae and Melithaeidae present across all sites. 

Species within the most diverse family, Plexauridae, drove diversity with depth, a pattern generally 

observed in other azooxanthellate families (Goh & Chou 1994, Matsumoto et al. 2007, this study). 

Increased diversity and a high frequency of recruits with depth suggest a deeper refugia and 

competitor release from zooxanthellate corals. This pattern is similarly replicated by sponge taxa 

(Bell & Smith 2004, Powell et al. 2010) inferring no or positive interactions between these two 

benthic groups (McLean & Yoshioka 2007), both typically possessing powerful secondary 

metabolites. Moreover, increased azooxanthellate diversity with depth may likely represent a 

consistent biological source pool. Such taxa being invaluable in the event of past sea level variance 

in addition to current and future natural and anthropogenic disturbance particularly with regards the 

insidious effects of destructive fishing practices and global climate change.  

Taken together, sedimentation, rugosity, light, and water flow have been shown to be major factors 

controlling local gorgonian populations (Sánchez et al. 1997, Meesters et al 2001, Linares et al. 

2008). This pattern is true, in part, across environmental gradients within the WMNP. However, 

non-independence between zooxanthellate and azooxanthellate gorgonians and coral reef benthic 

variables likely explain the large amount of gorgonian assemblage variation unexplained by the 

predictor variable model. Niche partitioning through trophic differentiation (phototrophy and 

heterotrophy) is thus epitomized by gorgonian corals, greatly contributing towards coral reef 

biodiversity in the WMNP and undoubtedly the Coral Triangle as a whole.  

2.5 CONCLUSION 

In sum, gorgonian distribution patterns within the WMNP follow a gradient from low diversity and 

abundance at the impacted site at Sampela to high diversity and abundance at Ridge. Moreover, this 

environmental gradient response interacts with habitat primarily as a function of depth (thus light) 

structuring zooxanthellate and azooxanthellate taxa on shallow and slope reef habitats respectively. 

Light availability and benthic competitors define distribution and abundance for most gorgonian 

taxa. Most notable are morphological variants of the zooxanthellate species I. hippuris and species 

within the genus Briareum, such biological success likely being a consequence of dual reproductive 

strategies and morphological responses to different environments. However, whether such 

morphological variability, particularly in I. hippuris, is due to physiological capacity or fixed 
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adaptations inferring incipient divergence due to differing resource allocation structure from 

prolonged exposure to sub-optimal environments, is unknown. Tests of physiological resilience of 

respective morphotypes would indeed be informative to management plans and coral reef 

biodiversity assessments. By determining species delineation and/or potential ‘eco-morphotype’ 

environmental specificity, monitoring of gorgonian taxa, in particular I. hippuris, can therefore 

greatly assist environmental impact assessments and identify areas of habitat degredation.  

 

 

 

 



56 

CHAPTER 3: ENVIRONMENTAL INFLUENCES ON THE INDO-PACIFIC 

GORGONIAN ISIS HIPPURIS LINNAEUS 1758: PLASTICITY CAPACITY 

OR GENETICALLY FIXED? 

ABSTRACT 

As conspicuous modular components of benthic marine habitats, gorgonian (sea fan) corals have 

perplexed taxonomists for centuries through their shear biodiversity, particularly throughout the 

Indo-Pacific. Phenotypic incongruence within and between seeming unitary lineages across 

contrasting environments can provide the raw material to investigate processes of disruptive 

selection. Two distinct phenotypes of the Isidid Isis hippuris Linnaeus 1758 partition across 

environmental clines: long-branched bushy colonies on degraded reefs, and short-branched 

multi/planar colonies on healthy reefs within the Wakatobi Marine National Park (WMNP), 

Indonesia. Multivariate analyses reveal phenotypic traits between morphotypes were likely 

integrated primarily at the colony level with increased polyp density and consistently smaller 

sclerite dimensions at the degraded site. Sediment load and turbidity, hence light availability, 

primarily influenced phenotypic division between the two sites. Thus the distinct morphological 

variability between the two sites is a reliable indicator of reef health; selection primarily acting on 

colony morphology, porosity through branching structure, as well as sclerite diversity and size. 

ITS2 sequence and predicted RNA secondary structure further revealed intraspecific variation 

between I. hippuris morphotypes relative to such environments (ΦST = 0.7683, P <0.001). This 

evidence suggests – but does not confirm - that I. hippuris morphotypes within the WMNP are two 

separate species, however to what extent and taxonomic assignment requires further investigation 

across its full geographic distribution. Incongruence between colonies present in the WMNP and 

tenuously described Isis alternatives (Isis reticulata Nutting 1910, Isis minorbrachyblasta Zou, 

Huang & Wang 1991), questions the validity of such assignments. Furthermore, phylogenetic 

analyses corroborate early taxonomic suggestion that the characteristic jointed axis of the Isididae 

is in fact a convergent trait. Thus the polyphyletic nature of the Isididae lies in its type species I. 

hippuris, being unrelated to the rest of its family members. 

Key words: Isis hippuris • Gorgonian coral • Isididae • Morphology • Indonesia • ITS2 
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3.1 INTRODUCTION 

Reef biodiversity reflects that of its environment, those within the Indo-Pacific Coral Triangle the 

most diverse of all. Intense competition in such environments leads to niche partitioning through 

resource acquisition, typically leading to coevolutionary divergence. Such diversification, the pre-

requisite for speciation, can occur with or without extrinsic barriers to gene flow and is particularly 

marked in sessile modular organisms such as cnidarians, far from passive to their environment 

(Cossins et al. 2006) in terms of growth form and chemical complement. However, delimitation 

between closely related species across steep environmental clines on coral reefs may be 

confounded by phenotypic plasticity, homoplasy, cryptic and sibling taxa (Knowlton 1993). It is, 

therefore, necessary to define environmentally driven divergent mechanisms on select phenotypic 

traits to accurately assess species biodiversity and endorse effective conservation management 

strategies (Taylor et al. 2006, Ladner & Palumbi 2012). 

Gorgonian corals (Cnidaria: Anthozoa: Octocorallia) are conspicuous modular organisms, the 

greatest diversity occurring within the Indo-Pacific coral triangle yet remarkably ‘poorly known’ 

(van Ofwegen 2004). Intra- and inter-specific morphological variability in gorgonians is influenced 

by environmental factors such as light, temperature, sedimentation and flow rates. However, little is 

known about the responses of gorgonian taxa to environmental parameters within the Coral 

Triangle. Distinct morphotypes of the isidid gorgonian Isis hippuris Linnaeus 1758 exist between 

healthy (Ridge 1) and degraded (Sampela) reefs within the Wakatobi Marine National Park 

(WMNP), SE Sulawesi, Indonesia; short-branched multi/planar colonies, and long-branched bushy 

colonies, respectively. Whether such morphological differentiation is a consequence of plasticity 

capacity, plasticity as an adaptation (Gotthard & Nylin 1995, Hoogenboom et al. 2008), or 

genetically fixed leading to two species, is unclear.  

Isis hippuris within the WMNP may be indicative of ‘robust’ canalisation where morphotypes are 

in fact two previously diverged species through disruptive (in sympatry) selection on traits between 

environments (Schluter, 1998, 2001, Campbell, 2003). Alternatively, physiological developmental 

constraints may have become decanalised through an acute perturbation or more likely 

accumulative cryptic genetic variation leading to evolutionary capacitance breakdown with 

subsequent fixation through genetic assimilation, itself a consequence of epigenetic heritability. In 

the first scenario, existence in low water velocity, high turbid environments typical of lagoon, semi-

lagoon or sea-grass beds, as seen in Sampela, gave rise to an accumulation of pre- or postzygotic 

isolation between populations leading to separate adaptive fitness peaks representing ecological 

niches of long standing. Divergent morphotypes would therefore be robust to environmental 
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change, maintaining native phenotypic traits. In the second scenario, cryptic variation more likely 

to be adaptive than random mutations, facilitate rapid mutation, as can acute perturbations (Flatt 

2005). Either case can be accelerated by pleiotropy, linkage disequilibrium or concerted evolution 

(Sánchez & Lasker 2003) leading to population level genetic assimilation of a particular phenotype 

and thus provides a testable level of emergent trait integration. Moreover, phenotypic variation can 

be largely attributed to rapid evolutionary events (Eldredge & Gould 1972, Mattila & Bokma 2008, 

Simpson 2013).  

The phenomenon of species delimitation in closely related modular organisms can be investigated 

through models of integration (Magwene 2001). Growth persists through the iterative addition of 

modules (e.g., polyps, branching properties), which may develop independently or in concert (by 

trait integration, see Magwene 2001, Sánchez & Lasker 2003, de Kroon et al. 2005, Sánchez et al. 

2007) leading to differential integration in response to environmental perturbations. The co- and 

multi-variance of certain phenotypic traits may differ due to inextricably linked developmental 

(e.g., heterochrony; Sánchez 2004) or functional integration leading to patterns of diversity through 

plasticity or divergent selection directly (extrinsic) or indirectly (intrinsic) on traits between 

populations or subpopulations (Schluter, 2001, Turelli et al. 2001). By measuring five 

morphological traits in twenty-one Caribbean gorgonian species, Sánchez & Lasker (2003) 

revealed integration within both branching and polyp dynamics yet were independent of each other. 

Furthermore, colony form and growth via branching were interconnected through the ratio of 

‘mother’ branches to ‘daughter’ branches (Sánchez et al. 2004). Whether this is replicated across 

all gorgonians i.e. from different regions and habitats, is unclear, however species-specific trait 

integration particularly in response to environmental change has been shown in other taxonomic 

groups (e.g., plants; Xu et al. 2012).  

Isis hippuris may simply possess high plasticity capacity, itself an adaptation facilitating 

considerable physiological tolerance to environmental heterogeneity, not uncommon in gorgonians 

(West et al. 1993, West 1997, Brazeau & Harvell 1994, Kim et al. 1997, 2004, Skoufas 2006). 

Long-branched bushy, porous colonies reduce sediment settlement and maximise light capture 

through increased surface area and decreased self-shading in reduced light and water flow 

environments as seen in the scleractinian Stylophora pistilata Esper 1797 (Shaish et al. 2006). 

Whereas the densely packed short branches of planar colonies in high light and water flow, coupled 

with greater densities of small micro-skeletal elements (sclerites) provide mechanical strength 

(Grigg 1972, West et al. 1993, Kim et al. 2004, but see Skoufas 2006). Sclerites are key characters 

for species delineation within Octocorallia, those of the coenenchyme surface and polyps most 
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susceptible to environmental variation (Bayer & Stefani 1987). Reduced polyp density with depth 

as a function of light in zooxanthellate taxa (West et al. 1993, Kim et al. 2004, Prada et al. 2008, 

Prada & Hellberg 2013) increases photosynthetic gain through surface area, yet polyp dimensions 

decouple integration by remaining independent of branching dynamics in Caribbean taxa (Sanchez 

& Lasker 2003, Sanchez et al. 2004, 2007). A broad trait assessment including genetic analyses 

would therefore provide further insight into the relationship between I. hippuris and its 

environment, if such trait patterns are commensurate with those described in other gorgonians, and 

thus fixed within the phylogenetic group (e.g., Lasker & Sánchez 2003, Sánchez 2004, Sánchez et 

al. 2004, 2007).  

A single representative of its genus, I. hippuris has a recognised plasticity (Wright & Studer 1889, 

Simpson 1906, Thomson & Simpson 1909, Bayer & Stefani 1987, Fabricius & Alderslade 2001) 

and taxonomic uncertainty (Watling et al. 2012), which obscures any possible species boundaries. 

In order to fully elucidate the nature of I. hippuris phenotypic variation between reef sites, a brief 

taxonomic and historical account of the genus is presented with subsequent investigation into 

potential adherence to previously documented lower taxonomic assignments. 

The family Isididae Lamouroux 1812 [nom. correct. Kükenthal 1915 (pro Isidae Lamouroux 

1812)], itself currently within the sub-Order Calcaxonia, is characterised by a unique axis of 

alternating calcareous internodes and proteinaceous (gorgonin) nodes giving a bamboo appearance. 

Calcareous internodes can be hollow or solid and are not sclerobastic (i.e., consisting of fused 

sclerites sensu the sub-group Scleraxonia). The Isididae was further subdivided into four currently 

accepted subfamilies (see Bayer & Stefani 1987, Alderslade 1998) primarily based on polyp 

retractability and sclerite composition and arrangement. Pertinent to this study, the sub-family 

Isidinae Lamouroux 1812 (sensu Studer 1887) is distinguished by small, warty and usually 

irregular sclerite forms and contains the genera Isis Linnaeus 1758 and Chelidonisis Studer 1890. 

Within the Isis genus 20 species have been assigned with currently only Isis hippuris Linnaeus 

1758, the type species for the Isididae, Isidinae and genus Isis being widely accepted (Bayer & 

Stefani 1987, Fabricius & Alderslade 2001). I. reticulata Nutting 1910 and I. minorbrachyblasta 

Zou, Huang & Wang 1991 have occasional reference yet with some taxonomic misgiving (see 

Bayer & Stefani 1987, but also Mai-Bao-Thu & Domantay 1971), therefore are briefly discussed to 

investigate divergent character traits similar to those found within the WMNP.  

Originally (pre-Linnaen) Hippuris saxea Clusius 1605 (“the stony horse-tail”), Isis hippuris 

Linnaeus 1758 has for centuries been admired for its distinct articulated axis (Figure 3.1a) and thus 

named after the most important ancient Egyptian deity, the Goddess Isis. To this day the axis can 
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be found in jewellery, art, souvenirs and even Royal collections; however, not until Ellis & 

Solander (1786) was this taxon documented with its somewhat uninspiring mustard-brown outer 

soft tissue (coenenchyme: Figure 3.2). Nevertheless, conspicuous on coral reefs and in sea grass 

beds throughout the Central Indo-Pacific, I. hippuris contains potent secondary metabolites with 

anti-viral (Bordeleau et al. 2006, Chen et al. 2011) and anti-cancer (Susilaningsih et al. 2009) 

properties, likely contributing to its ecological success (Chapter 2). That said, correct taxonomic 

assignment using multiple lines of evidence across morphotypes within different geographical 

locations, are necessary given the clear ecological, pharmaceutical and inherent conservation 

importance of I. hippuris.  

Sub-Class OCTOCORALLIA  

Order ALCYONACEA Lamouroux 1812 

Sub-Order CALCAXONIA Grasshoff 1999 

Family ISIDIDAE Lamouroux 1812 

Sub-Family ISIDINAE Lamouroux 1812 

Isis hippuris Linnaeus 1758 

(Figure 3.1a) 

See Bayer & Stefani 1987 for list of references [p. 55] 

Type Material – Unfound, however ‘authentic’ specimens were collected and fully defined from 

Amboina, Indonesia (Milne-Edwards & Haime 1857). 

Diagnosis – These arborescent colonies can be up to 1 m tall, planar or bushy with lateral or 

partially dichotomous branching but rarely anastomosing (net-like). Branch formations may also 

give a candelabrum appearance. The axis consists of alternating calcareous internodes that reduces 

to a fine rod through the non-scleritic and convex, dark proteinaceous (gorgonin) nodes, the former 

typically longer than the latter. Branching is internodal in single or multiple planes, the latter giving 

rise to the bushy appearance. Branch lengths and diameters are variable, and up to three short 

branches can arise per internode with some so close they appear nodal in highly  
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branched colonies. The expanded calcareous cup-shaped base obliterates any trace of nodal 

composition particularly in older colonies. Calcareous internodes are sclerobastic (consisting of 

fused sclerites; but also see Nutting 1910c) with fibres arranged radially from a central core, akin to 

that of the sclerites bearing close resemblance to the Scleraxonia (Bayer 1955). Internodes possess 

longitudinal grooves corresponding with 8 – 12 sinuous water vascular canals of ~1 mm diameter. 

Polyps distributed all around the branches are 0.5 – 1.25 mm apart and fully retractile to ~1.25 mm 

deep (and wide) into the thick coenenchyme. Such polyps bear eight lanceolate pinnate tentacles, 

and can possess up to three large (max. 1 mm diameter) round eggs, likely explaining the often 

swollen appearance of the branch tips as opposed to being a diagnostic feature (but see Nutting 

1910c, Mai-Bao-Thu & Domante 1971).  

A diverse range of sclerites (Figure 3.1b, e) exists within the thick coenenchyme. The surface layer 

consists of small warty clubs 0.08 x 0.001 mm [note: typographical error pg. 55, 2
nd

 paragraph, 

Bayer & Stefani 1987] typically bearing three large warts below the head wart (Figure 3.1b.i). 

Throughout the sub-surface layer some or all of the following are present in varying dimensions, 

asymmetry and commonly girdled: 6-, 7-, or 8-radiate capstans up to 0.19 mm in length, 

dumbbells/double heads (considered derivatives of 6-radiates; Bayer & Stefani 1987) up to 0.32 

mm long, warty or tuberculate spindles up to 0.25 mm long, and crosses. Very small e.g. rods of 

0.07 x 0.01 mm (Bayer & Stefani 1987), or no sclerites may be present within the polyp structures 

(Kölliker 1865). However smaller forms from those found within the coenenchyme (Simpson 1906, 

Thomson & Simpson 1909, Kükenthal 1919, 1924) as well as small warty clubs with short handles 

~0.055 x 0.045 mm located within the tentacles have been reported (Simpson 1906, Thomson & 

Simpson 1909).  

Sclerites colourless and colonies typically light brown to mustard yellow, with slightly darker 

polyps. 

Figure 3.1. (Previous page) Isis Linnaeus 1758 comparisons of (a) Isis hippuris Linnaeus 1758 

colony in Ellis & Solander 1786; (b) sclerites of: i. I. hippuris and ii. Isis reticulata in Nutting 

1910; (c) I. reticulata in Nutting 1910; (d) Isis minorbrachyblasta Zou et al. 1991 colony and (e) 

sclerites. Note, images sourced from each citation respectively.  



63 

Distribution – Central Indo-Pacific including Great Barrier Reef, Vanuatu, Papua New Guinea, 

Indonesia, Malaysia, Andaman, Philippines, Taiwan, Palau, South China Sea, Japan including 

Okinawa and the Ryukyu Islands. 

Remarks – As evident from the description above, substantial phenotypic plasticity, from colony 

and branching structure to sclerite composition, exists in described specimens of I. hippuris 

(Wright & Studer 1889, Simpson 1906, Thomson & Simpson 1909, Bayer & Stefani 1987, 

Fabricius & Alderslade 2001). Whether such plasticity is a consequence of environmental influence 

within and between its distributions, or significantly structured to be more than one species is 

unclear. Thus, for such a ubiquitous and well-known species it “has been very imperfectly 

described” (Thomson & Simpson 1909) leading to “a slender basis on which to raise a 

superstructure of classification” (Wright & Studer 1889). Clearly a revision of the Isis genus is 

required including thorough analyses of specimens throughout its geographic range, as such 

character trait variability may be ecologically dependent (Bayer & Stefani 1987). Attempts, 

however, have been made to differentiate phenotypic patterns within the Isis genus that, even 

though somewhat tenuous, may equate to the morphotypes found within the WMNP (Chapter 2). I. 

reticulata Nutting 1910 and I. minorbrachyblasta Zou, Huang & Wang 1991 are therefore 

summarized below highlighting differences between the selected taxa. 

Isis reticulata Nutting 1910 

(Figure 3.1b) 

See Mai-Bao-Thu & Domantay (1971) for list of references [p. 28] 

Type Material – Syntypes: several fragments of varying sizes, ZMA COEL. no. 2721, Siboga 

Expedition, station 149 or 273 at Pulu Jedan, Aru Islands, Maluku, Indonesia, 13 meters on sand 

and shells. Fragment donated to State University of Iowa (van Soest 1979). Specimens not located 

on request.  

Diagnosis – Slender colonies, typically arborescent with long slim terminal branches that are not 

swollen at the ends. Few very small polyps irregularly distributed around the branches, the latter 

occasionally anastomosing. Sclerites of the coenenchyme bear sharp rough warts symmetrically 

distributed around delicate spindles and clubs the latter 0.04 – 0.06 mm in length. Some spindles 

curved possessing large tubercules. Irregular radiates 0.06 x 0.03 mm to 0.2 x 0.1 mm in length and 
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width respectively, smooth warty rods 0.1 - 0.15 mm long and occasional crosses present.  No 

polyp sclerites reported. 

Sclerites colourless, colony reddish brown with slightly darker polyps in alcohol. Also noted as 

“brownish white” by Mai-Bao-Thu and Domantay (1971). 

Distribution – I. reticulata has been documented in Indonesia (fragments from a single location 13 

m depth), the Philippines (2 specimens and some fragments from a single location 12 - 15 m depth; 

Mai-Bao-Thu & Domantay 1971), and Xisha Islands of China (single specimen and location; Zou, 

et al. 1991). 

Remarks – I. reticulata is thus differentiated from I. hippuris on the basis of planar versus bushy 

colonies, long thin sinuous branches without swollen ends versus short thick antler-like branches 

with swollen ends, and all sclerites of a smaller size with sharp rough warts in I. reticulata. Sclerite 

differences between I. hippuris and I. reticulata have been considered questionable owing to the 

huge diversity in form (Stiasny 1940, Bayer & Stefani 1987). However, Nutting (1910c) observed 

smaller and more sharply warted sclerites further corroborated by Kükenthal (1924) and Mai-Bao-

Thu & Domantay (1971), with illustrations showing marked asymmetry (Figure 3.1b.ii) contrary to 

that described. Curiously, Nutting (1910c) noted I. reticulata having flaccid polyps if preserved 

when extended due to their lack of sclerites. However, in I. hippuris, polyp sclerites were “not 

being evident on account of their small size” (Nutting 1910c) with no further discussion, lending 

question to their presence at all (Simpson 1906, Simpson & Thomson 1909, Fabricius & Alderslade 

2001, but see Bayer & Stefani 1987, Kölliker 1865). Conflicting sclerite images between Nutting 

(1910c) and Mai-Bao-Thu & Domantay (1971), in addition to regional differences between 

specimens of I. hippuris (see Bayer & Stefani 1987) having some adherence to I. reticulata, lends 

further question to its validity as a taxon. Finally, colony and polyp colouration may be an artifact 

of preservation; Nutting’s ‘pink’ likely from buffered formalin used at that time (note: Rowley, 

S.J., examined a ‘pink’ specimen from the Siboga expedition at the British Natural History 

Museum [BNHM. 1889.6.28.18], which adhered closely to the I. hippuris description above and 

not the proposed I. reticulata), and Mai-Bao-Thu & Domantay’s ‘white’ from endosymbiotic 

bleaching not uncommon with, in particular, damaged Isis specimens (e.g., Thomson & Simpson 

1909). In summary, the distinction between I. hippuris and I. reticulata is conflicting and unclear, 

requiring further investigation. 
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Isis minorbrachyblasta Zou, Huang & Wang 1991 

(Figure 3.1c) 

Type Material – Holotype (G85-001) and paratype (G87-031) from two locations of the Nansha 

Islands, China. 

Diagnosis – Colonies bushy with distal branches densely aggregated, themselves bearing tufts of 

branchlets no longer than 5 cm (ave. 3.5 cm). The short, fine branches arise from the scleritic 

internodes. Tiny polyps are equally distributed around the branches. Coenenchyme sclerites up to 

0.140 x 0.091 mm being predominantly dumbbells and double heads with tubercules generally 

symmetrically arranged. Assortment of small clubs also present 0.06 x 0.025 mm with occasional 

crosses. 

Sclerites colourless, colonies light brown in alcohol. 

Distribution – Nansha Islands, China. 

Remarks – Zou et al. (1991) state that the bushy non-planar colonies of I. minorbrachyblasta differ 

from the planar ones of I. hippuris and I. reticulata, in direct contrast to previous reports (e.g., 

Nutting 1910, Mai-Bao-Thu & Domantay 1971). Furthermore, the branches for I. 

minorbrachyblasta are fine, short and densely packed, whereby I. hippuris and I. reticulata are 

thick, short, dense, and fine, long, anastomosing and loosely packed respectively; thus I. 

minorbrachyblasta an intermediate between the two. Statistical significance between select 

morphological traits (branchlet and sclerite length and width) revealed differences among taxa were 

between I. minorbrachyblasta and I. reticulata. However, it is unclear what sclerites were used for 

comparative analyses, and n = 1 in all cases. Based on the information presented here, any 

appreciable difference in colony, branch and sclerite composition especially between I. 

minorbrachyblasta and I. hippuris (e.g. Nutting 1910, Bayer & Stefani 1987) is nebulous. Finally, 

Zou et al. (1991) propose I. minorbrachyblasta based on one or two specimens per taxon, 

somewhat unsatisfactory given both the nature of Isis phenotypic variability and analyses taken 

from a single region. 

Isis within the Wakatobi - Isis morphotypes found within the WMNP bear only partial adherence to 

those described above at the colony level. The long-branched bushy colonies on degraded reefs, 

and short-branched multi/planar colonies on healthy reefs may reflect I. reticulata and I. hippuris 

respectively, or simply the widely accepted plasticity of the latter (Wright & Studer 1889, Simpson 
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1906, Thomson & Simpson 1909, Bayer & Stefani 1987, Fabricius & Alderslade 2001), likely 

through an integration effect (Magwene 2001, Sanchez & Lasker 2003, de Kroon et al. 2005).  

Clearly Isis taxonomy is in a state of flux, compromising conservation efforts due to difficulties in 

species assignment. Here an assessment of morphotypes found within the WMNP relative to reef 

health is presented, with brief comparisons to those previously described. A thorough and 

necessary examination of Isis specimens throughout its distribution is however, underway and 

outside of the scope of this study. Given the tenuous nature of previously described Isis species bar 

I. hippuris, from here on in all specimens will remain assigned to I. hippuris, unless otherwise 

specified. 

Research Question - Are populations of I. hippuris morphotypes phenotypically and genetically 

subdivided relative to environmental gradients within the WMNP, Indonesia? Do the I. hippuris 

morphotypes represent previously described species, or a single species with highly variant, 

integrated phenotypic traits?  

This study therefore, aims to: (1) investigate morphological variability in the zooxanthellate 

gorgonian I. hippuris across environmental gradients on coral reefs within the WMNP, SE 

Sulawesi, Indonesia; (2) identify patterns of genetic variability relative to such morphotypes using 

population genetics and predicted RNA secondary structure of the nuclear ribosomal ITS2 region, 

(3) to subsequently infer mechanisms of speciation or phenotypic plasticity as a consequence of 

environmental change, and (4) investigate the currently assigned phylogenetic position of I. 

hippuris within the Octocorallia using the ITS2 region.  

3.2 METHODS 

3.2.1 Study Area 

The Wakatobi Marine National Park (WMNP) is a remote archipelago of ca. 13,900 km
2
 in S.E. 

Sulawesi, Indonesia (Figure 2.1a). The epicentre of the Coral Triangle and Indonesia’s second 

largest marine park, the WMNP comprises ca. 600 km
2
 of the most biodiverse coral reefs on earth 

(Scaps & Denis 2007). Such marine biodiversity sustains >100,000 people with alarming human 

population expansion and consequential marine resource dependence and destructive commercial 

fisheries (Clifton et al. 2010, Clifton 2013). Coral reefs within the Wakatobi range from low 

current, high turbidity lagoons to highly exposed sites with strong water currents and high nutrient 

deep-water upwellings. Therefore, strong environmental gradients of natural and anthropogenic 
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disturbance exist across reefs within the Wakatobi, providing a novel natural laboratory for studies 

of environmentally induced change on reef components. 

Research was conducted between two sites spanning 5 km of anthropogenic and natural 

environmental gradients during July and August 2010. Ridge 1 (healthy) is an exposed reef ridge 

with high nutrient upwellings and water currents; Sampela (impacted) is a semi-lagoonal reef with 

low water flow and high turbidity. Sampela is situated ca. 400 m from a Bajo (sea gypsy) village of 

ca. 1600 people and subject to continuous marine resource exploitation and community waste 

disposal.  Previously informative environmental variables driving morphotype distribution for the 

two study sites (summarized in Table 3.1 adapted from Table 2.1) were selected for further 

analyses. Light (Kd(PAR)) was measured using HOBO
®
 data loggers, turbidity (NTU) expressed as 

an inverse values, and chlorophyll-a (µg L
-1

) were measured using an RBR
®

 XR-420 CTD data 

logger, a General Oceanics
®
 flow meter was used to measure water flow velocity, and sediment 

grain size was estimated using Retsch Technology
®
 test sieves, with logarithmically converted 

diameters expressed as phi () and classified using the Wentworth scale (Wentworth 1922). 

Environmental variables, with the exception of latitude and longitude,  

 

Figure 3.2. Isis hippuris morphotypes: (a) short branched predominantly planar or multiplanar 

colonies at the healthy site Ridge 1, and (b) long branched bushy colonies at the impacted site 

Sampela, with additional (c) collection localities within the WMNP. Sample number in brackets 

for molecular and asterisk for morphological analyses. 

Kaledupa 

 
Pak Kasim’s (2) 
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Table 3.1.  Environmental characteristics of the two study sites in the WMNP, Indonesia. All values 

expressed as mean (± SE). Data summarised of significant variables from Table 2.1.  

Parameter Recorded Mean value ± SE (where appropriate) 

Site Sampela Ridge 1 

Latitude (S) 005˚ 29'01" 005˚ 26'57" 

Longitude (E) 123˚45'08" 123˚45'38" 

Temperature (˚C min-max) 25.61 – 29.36 24.06 – 28.07 

Light (Kd(PAR) min-max) 0.31 – 3.14 0.1 – 1.56 

Flow (cm/s) 5.02 ± 2.18 30.54 ± 2.61 

Chlorophyll-a (µg 1
-1

) 0.3 ± 0.01 0.35 ± 0.03 

Turbidity (NTU) 4.38 ± 1.80 0.17 ± 0.33 

Sedimentation (g d
-1

, n = 12) 3.28 ± 0.26 1.16 ± 0.07 

Sediment grain size (, n = 12) 5 [31.25–62.5 µm] 1 [0.5–1 mm] 

 

were edited visually with significant outliers removed, and entered into statistical models as raw 

values. 

3.2.2 Sample Collection  

Isis hippuris colonies were sampled from the healthy site Ridge 1 (n = 24) and the 

anthropogenically-impacted site Sampela (n = 24; total n = 48), where the two distinct 

morphotypes at densities of 18 and 6 colonies per 10 m
-2

 respectively were previously documented 

(Chapter 2; Figure 3.3). A further twelve clippings were taken from five additional sites (Blue 

Bowl n = 2; Pak Kasim’s n = 2; Buoy 3 n = 4; Kaledupa n = 2; Sea Grass beds n = 2; Figure 3.2c) 

to investigate and compare genetic differences between colonies within the study area. Sample 

numbers for molecular analyses were low due to financial constraints, yet provide valuable insights 

for further study. All colonies were randomly selected within 2 - 5 m depth and a minimum of 10 m 

distance apart to avoid sampling asexual clone mates. Each colony was subject to in situ scaled 

digital photography using a Canon IXUS 900Ti, WP-DC7 u/w housing and INON UWL-105 AD x 

0.51 lens, with duplicate samples preserved in 96% EtOH and Guanidinium solution for 

morphological and molecular analyses respectively. Colonies were photographed both parallel and 

overhead for planar and bushy colonies as appropriate with a ruler for scale. 
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3.2.3 Data Analyses 

Morphological Measurements 

Population comparisons of morphological traits were conducted on 24 I. hippuris colonies from 

both Ridge 1 and Sampela (total 48 colonies). A total of 57 morphological traits were quantified 

and divided into 32 macro- and 25 micro-morphological traits (Figure 3.3; Table 3.2). Due to the 

variable nature of I. hippuris colonies (planar, multiplanar or bushy), particularly between sites, 

whole colony height [H], mean width [W] taken equidistant apart, and colony spread [CS] were 

measured with CS as the mean of two measurements taken above the colony. Branch tips [T], mid 

main branch [M] and base [B] width were also recorded but limited access to the latter meant data 

were omitted from further analyses (n = 13 & 5 for Ridge 1 & Sampela respectively). Colony sub-

sections of ~20 cm in height were selected for further comparable macro-morphometric analyses: 

sub height [sH], mean width [sW], and projected sub-colony area [PA] estimated by sH x sW 

which was then used to calculate sub-colony porosity [Po] as a ratio of PA and the projected 

branch area [PBA] itself the total branch length multiplied by the mean branch thickness (see 

below). Branch articulation was assessed using a hierarchical generation ordering system (Lasker 

et al. 2003, Sánchez & Lasker 2003, Sánchez et al. 2003a) where each branch was ascribed as 

either a ‘mother’ branch or ‘daughter’ branch, the latter emerging from the former. As the colony 

develops, daughter branches may also become mother branches (e.g. second generation mother 

branch; see Figure 3.3) quantified as follows: mother branch length [sML], mean mother branch 

width [sMW], daughterpbranch length [sDL], mean daughter branch width [sDW], total branch 

number [sTB#], total branch length [sTBL], and mean branch width [MBW]. Branch surface area 

was calculated on the geometric approximation of a cylinder from branch length and mean width 

as the radius, with subsequent polyp density [PD] per cm
2
. Twenty random measurements were 

made of both polyp diameter ([pD] mean of 2 measurements see Figure 3.3) and inter-polyp 

distance [ID]. All polyp, branch cross-section and canal [C#/Cd; Cd see Figure 3.3] quantification 

were visualised under an Olympus SZX16
®
 stereomicroscope at 10x magnification with 0.5x 

objective. 

Isis hippuris has considerable diversity in sclerite form (Simpson 1906, Bayer & Stefani 1987, 

Fabricius & Alderslade 2001). For consistency, only those represented in all test colonies were  

Figure 3.3 (Previous page).  Isis hippuris morphological trait measurements of the (a) colony; 

(b, c, d) canal and polyp dynamics; (e) sub-colony (branching) dynamics; (f) sclerites 

site/morphotype comparisons of i and ii spindles, iii and iv capstan 7-radiates, v - viii clubs from 

Ridge 1 and Sampela respectively. All abbreviations are described in Table 3.2.     
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selected for quantitative analyses. Length and mean width of three measurements were made on 20 

randomly selected sclerites per sclerite type; surface clubs [CL1/2, CW1/2]; and sub-surface 

capstans [7-radiates: CaL/W] and spindles [SL/W](Figure 3.3). Additional sclerite diversity is 

shown in Figure 3.4. Sclerites were removed by dissolving the surrounding tissue in 5% sodium 

hypochlorite solution and visualized using optical microscopy (Olympus BX51
®
) and scanning 

electron microscopy (SEM) which was performed on a Hitachi S-800 SEM at the University of 

Hawai‘i at Mānoa, USA. All micro-morphological measurements and sclerite preparation were 

taken 2 cm below the branch tip to avoid underdeveloped traits due to sub-apical branch growth 

(Lasker et al. 2003) and photographed using an Olympus 3.3MPX
TM

 camera and Rincon software 

(ImagingPlanet
®

). All macro- and micro-morphological characteristics were measured using 

ImageJ64 (Abràmoff et al. 2004). 

Phenotypic traits were analysed using routines within the PRIMER-E v6.1.12 statistical package 

(Clarke and Gorley 2006), with PERMANOVA+ v1.02 extension (Anderson 2001). Specifically, 

character traits (untransformed) were simultaneously correlated in a Draftsman plot to eliminate 

uninformative traits (P > 0.95) and to establish appropriate transformation in downstream analyses 

(Clarke and Ainsworth 1993). Informative phenotypic trait data were subsequently standardized 

and a ‘zero-adjusted’ Bray-Curtis similarity matrix (Clarke et al. 2006b) constructed for tests of 

morphological divergence between the two sites; Ridge 1 and Sampela. A single-factor model with 

9999 permutations (PERMANOVA; Anderson 2001) was performed and further visualised 

utilizing non-metric multidimensional scaling (nMDS) and constrained canonical analysis of 

principal coordinates (CAP; Anderson & Willis 2003). Informative traits contributing most to the 

dissimilarities between sites, thus specific morphotypes were investigated using similarity 

percentages (SIMPER; Clarke 1993) and displayed as a vector overlay on the CAP ordination. 

The relationship between I. hippuris morphotypes and their environment was investigated using 

nonparametric multivariate regression (McArdle & Anderson 2001) with the DISTLMforward 

routine (Anderson 2003).  Based on a Euclidean distance matrix, all raw environmental variable 

data were normalised (Table 3.1) and significance tested using 9999 permutations (Anderson 

2001). 

Figure 3.4 (Previous page) Scanning electron micrographs showing sclerite diversity of Isis 

hippuris from (a - b) Ridge 1 and (c - f) Sampela within the WMNP. Inner coenenchyme 

spindles (a, c, d), surface capstans and clubs (b, e, f).  Small rods at the end of both (a & f). 
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Table 3.2. Isis hippuris morphological traits summary table. All values expressed as metric or counts (± SE). Asterisk (*) indicate significantly 

 (< P 0.05) informative traits selected for multivariate analyses. † Depicts low sample size.  

Morphological Trait 
Measures/

Counts 

Dimensions (± SE) 
Morphological Trait 

Measures/

Counts 

Dimensions (± SE) 

Ridge 1 Sampela Ridge 1 Sampela 

Macromorphology (cm)    Micromorphology (mm)    

Colony    sub Colony    

*H Colony Height 48 49.74 ± 3.99 58.78 ± 3.10 *PD Polyp Density 31,761 88.23 ± 2.6 100.21 ± 5.32 

*W Colony Mean Width 48 39.65 ± 2.24 58.03 ± 2.94 Pd Polyp Depth 398 0.08 ± 0.001 0.08 ± 0.002 

*w1    width 1 144 40.53 ± 3.24 65.31 ± 5.35 pD Polyp Diameter 1920 0.04 ± 0.002 0.03 ± 0.001 

*w2    width 2 144 57.02 ± 3.06 76.74 ± 3.6 ID Inter-polyp Distance 1920 0.05 ± 0.002 0.05 ± 0.001 

*w3    width 3 144 22.0 ± 1.35 31.86 ± 1.93 Cd Canal diameter  1,920 0.02 ± 0.001 0.02 ± 0.002 

*CS Colony overhead Spread 48 45.5 ± 5.10 78.86 ± 3.10 C# Canal# 1,677 8.17 ± 0.14 8.33 ± 0.21 

*cs1    colony spread 1 48 52.06 ± 5.34 78.86 ± 3.92     

*cs2    colony spread 2 48 38.94 ± 4.85 62.12 ± 3.99 Sclerites    
†
B Colony Base Width 18 3.47 ± 0.40 5.43 ± 0.64 *CL1 Club Length 1 960 0.073 ± 0.001 0.068 ± 0.001 

*M Colony Mid Branch Width        48 1.10 ± 0.08 1.53 ± 0.48 *CW1 Club Mean Width 1 48 0.021 ± 0.000 0.020 ± 0.000 

*T Colony Tip Branch Width 960 0.63 ± 0.02 0.95 ± 0.05 c1w1    c1width 1 960 0.022 ± 0.001 0.021 ± 0.001 

     c1w2    c1width 2 960 0.012 ± 0.000 0.011 ± 0.001 

sub Colony    c1w3    c1width 3 960 0.030 ± 0.002 0.028 ± 0.001 

*sH sHeight 48 10.8 ± 0.33 11.55 ± 0.24 *CL2 Club Length 2 960 0.072 ± 0.000 0.068 ± 0.002 

*sW sMean Width  48 3.15 ± 0.21 2.66 ± 0.17 *CW2 Club Mean Width 2 48 0.033 ± 0.000 0.031 ± 0.001 

sw1    swidth 1 144 2.50 ± 0.14 2.46 ± 0.15 c2w1    c2width 1 960 0.032 ± 0.001 0.030 ± 0.001 

sw2    swidth 2 144 4.18 ± 0.28 3.37 ± 0.22 c2w2    c2width 2 960 0.016 ± 0.000 0.016 ± 0.001 

sw3    swidth 3 144 2.76 ± 0.32 1.94 ± 0.23 c2w3    c2width 3 960 0.051 ± 0.001 0.047 ± 0.002 

sML sMean Mother Length 48 8.41 ± 0.33 9.77 ± 0.35 *CaL Capstan Length 960 0.114 ± 0.004 0.101 ± 0.002 

*sMW sMean Mother Width 48 0.44 ± 0.02 0.55 ± 0.02 *CaW Capstan Mean Width 48 0.075 ± 0.001 0.066 ± 0.001 

mw1    mwidth 1 144 0.51 ± 0.01 0.62 ± 0.03 *caw1    cawidth 1 960 0.086 ± 0.004 0.076 ± 0.003 

mw2    mwidth 2 144 0.48 ± 0.01 0.57 ± 0.02 *caw2    cawidth 2 960 0.041 ± 0.003 0.036 ± 0.020 

mw3    mwidth 3 144 0.42 ± 0.01 0.54 ± 0.02 *caw3    cawidth 3 960 0.090 ± 0.003 0.080 ± 0.002 

*sDL sMean Daughter Branch Length 48 3.08 ± 0.21 4.44 ± 0.18 SL Spindle Length 960 0.164 ± 0.003 0.162 ± 0.003 

*sDW sMean Daughter Branch Width 48 0.42 ± 0.01 0.48 ± 0.01 *SW Spindle Mean Width 48 0.069 ± 0.001 0.065 ± 0.001 

dw1    dwidth 1 480 0.44 ± 0.01 0.51 ± 0.01 sw1    swidth 1 960 0.038 ± 0.002  0.037 ± 0.002 

dw2    dwidth 2 480 0.41 ± 0.01 0.49 ± 0.01 sw2    swidth 2 960 0.080 ± 0.003 0.076 ± 0.002 

dw3    dwidth 3 480 0.38 ± 0.01 0.45 ± 0.01 *sw3    swidth 3 960 0.081 ± 0.003 0.077 ± 0.002 

*MBW Mean Branch Width 48 0.43 ± 0.01 0.52 ± 0.01      

*sTB# sTotal Branch# 48 13.5 ± 1.10 10.83 ± 1.42  Total 59,328   

sTBL sTotal Branch Length 48 51.86 ± 3.49 52.57 ± 3.76      

*PA Projected sub-colony Area 48 34.28 ± 2.65 30.79 ± 2.03          

*PBA Projected Branch Area 48 22.41 ± 1.69 26.96 ± 2.06      

*Po Porosity 48 1.61 ± 0.10 1.19 ± 0.06      
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Genetics Analyses 

Genomic DNA of I. hippuris and endosymbiotic dinoflagellates (for the latter see Chapter 4) 

were extracted from 28 colonies, 8 from each of the two test sites (n = 16) and 12 from 

additional site populations for area and morphotype comparison as described above. 

Approximately 2 - 3 mm of fresh soft tissue was immediately cut and stored in 400 µl 

Guanidinium lysis buffer (4 M guanidinium isothiocyanate, 0.05 M Tris pH 7.6, 0.01 M EDTA, 

0.07 M Sarkosyl, β-mercaptoethanol 1% v/v) (Pochon et al. 2001) for 14 days at room 

temperature during transit from the field, with subsequent storage at 4ºC. Preserved samples 

were incubated at 72ºC for 20 min, vortexed prior, during and after incubation, then centrifuged 

at 16,000 g for 5 min. The resulting DNA-containing supernatant was precipitated with an equal 

volume of 100% isopropanol, vortexed and stored over night at -20ºC. DNA was pelleted via 

centrifugation at 16,000 g for 15 min, washed with 70% EtOH, centrifuged for 10 min, dried and 

resuspended in 0.1 M Tris Buffer pH 8. The DNA solution was placed on ice for 1 hour with 

frequent vortexing and stored at -20ºC. DNA was visualized on 1% agarose gel. PCR 

amplifications of the ITS2 rDNA marker were conducted using the primers itsD (forward; 5'-

GTGAATTGCAGAACTCCGTG-3') and ITS2Rev2 (reverse; 5'-

CCTCCGCTTACTTATATGCTT-3') (Pochon et al. 2005, 2007, 2010). Total PCR volume was 

50 µl constituting: 5.0 μL of 10x PCR Buffer (Bioline), 2.0 μL of MgCl2 (2 mM), 1.0 μL of each 

primer (10 mM), 1 μL (2.5 mM of each dATP, dCTP, dGTP, and dTTP), 0.2 μL of Hotstart 

Immolase Taq polymerase (Bioline Incl., London, UK), 1.0 μL of DNA, and 39 μL of sterile 

water. Touchdown amplification was conducted as follows: denaturation at 95ºC for 10 min, 25 

cycles at 94ºC then 35 s at 65ºC (reduction in annealing temperature of 0.5ºC per cycle), and 2 

min at 72ºC. A further 14 cycles of 30 s at 94ºC, 35 s at 52ºC, 2 min at 72ºC, and a final 10 min 

extension at 72ºC. All amplicons were purified using the QIAquick
TM

 PCR Purification Kit 

(Qiagen), and separated by cloning for haplotype verification.  Purified products were ligated 

into the pGEM
®
-T Easy vector

TM
 (Promega), transformed into -Select Gold Efficiency

TM
 

competent cells (Bioline), with subsequent positive inserts verified by PCR using plasmid 

specific primers (M13). Positive inserts (8-12 per library) were purified with an ExoSAP-IT kit, 

sequenced in both directions using the ABI Prism Big Dye
TM

 Terminator Cycle Sequencing 

Ready Reaction Kit and run on an ABI 3100 Genetic Analyzer (Perkin-Elmer Applied 

Biosystems, Foster City, CA, USA) at the University of Hawai’i at Mānoa, USA.  

ITS2 clone libraries from 28 individuals were aligned using ClustalW2 (Thompson et al. 2002) 

and manually edited in Geneious Pro v.5.6.2 (Biomatters Ltd., NZ). A selection criterion of 
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Table 3.3. ITS2 Accessions of octocoral outgroups used in the analyses. 

identical sequences from two or more clone libraries was established to minimize the effect of 

intragenomic variation and/or PCR artefacts on further analyses. On average 4 - 6 host clones 

were recovered per library due to simultaneous recovery of both host and endosymbionts (see 

Chapter 4).  

Estimates of genetic differentiation relative to morphotype were investigated via an analysis of 

molecular variance (AMOVA) with pairwise population comparisons (ST) between sites using 

ARLEQUIN v.3.5 (Excoffier & Lischer 2010). Haplotype (hd), nucleotide diversity (π) and 

substitution rate (JC) were calculated with DNAsp v.5.0 (Librado & Rozas 2009). A parsimony 

haplotype network with a 95% confidence level and gaps treated as a fifth state was constructed 

using Network v.4.6.1.1 on sample sequences only.  

Taxon GenBank Reference 

[Group: Alcyoniinans]   

  Family: Alcyoniidae Lamouroux 1812   

    Alcyonium digitatum Linnaeus 1758 AF262347 McFadden et al. 2001 

[Group: Scleraxonians]   

  Family: Coralliidae Lamouroux 1812   

    Corallium rubrum Linnaeus 1758 AF413059 Constantini et al. 2003 

    Corallium sp. 1  GQ358526 Herrera et al. 2010 

  Family: Paragorgiidae Kükenthal 1916   

    Paragorgia kaupeka Sánchez 2005 GQ293292 Herrera et al. 2010 

    Sibogagorgia cauliflora Herrera, Baco & Sánchez 2010 GQ293288 Herrera et al. 2010 

[Suborder: Holaxonians]   

  Family: Gorgoniidae Lamouroux 1812   

    Africagorgia schoutedeni Stiasny 1939 AY587533 Aguilar & Sánchez 2007a 

    Gorgonia flabellum Linnaeus 1758 AY587521 Aguilar & Sánchez 2007a 

    Leptogorgia violacea Pallas 1766 AY587527 Aguilar & Sánchez 2007a 

    Lophogorgia [Synonym of Leptogorgia] euryale Bayer 1952  AY587530 Aguilar & Sánchez 2007a 

    Pacifigorgia stenobrochis Valenciennes 1846 AY587531 Aguilar & Sánchez 2007a 

    Pinnigorgia platysoma Nutting 1910 AY587536 Aguilar & Sánchez 2007a 

    Pseudopterogorgia [Synonym of Antillogorgia] bipinnata Verrill 1864 AY587524 Aguilar & Sánchez 2007a 

  Family: Plexauridae Gray 1859   

    Eunicea tourneforti Milne Edwards & Haime 1857 EF490982 Grajales et al. 2007 

    Muriceopsis bayeri Sánchez 2001 AY587538 Aguilar & Sánchez 2007a 

[Suborder: Calcaxonians]   

  Family: Isididae Lamouroux 1812   

    Acanella weberi Nutting 1910 FJ790943 Dueñas & Sánchez 2009 

    Acanella sp. FJ790921 Dueñas & Sánchez 2009 

    Isidella tentaculum Etnoyer 2008 FJ790944 Dueñas & Sánchez 2009 

    Keratoisis zelandica Grant 1976 FJ790939 Dueñas & Sánchez 2009 

    Lepidisis olapa Muzik 1978 FJ790908 Dueñas & Sánchez 2009 

  Family: Primnoidae Milne Edwards 1857   

    Calyptrophora japonica Gray 1866 EF090735 Aguilar & Sánchez 2007a 
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ITS2 Predicted RNA Secondary Structure 

ITS2 RNA secondary structures were predicted to further investigate haplotype differences 

specifically between Ridge 1 and Sampela at a more conserved level. Alcyonium digitatum 

Linnaeus 1758 (Genbank Acc. # AF262347; McFadden et al. 2001) was used as a template for 

conserved motif identification with subsequent constraints implemented into MFOLD (Zuker 

2003) using default parameters. RNA was folded at 37°C and structures with the highest 

negative free energy values, thus stability, were selected, manually edited in 4SALE (Seibel et 

al. 2006, 2008) and visually annotated in VARNA (Darty et al. 2009).  

Phylogenetic reconstructions between Isis haplotypes and twenty octocoral ITS2 outgroups 

obtained from GenBank (see Table 3.3) were conducted using the PHYML 2.1.0 (Guindon & 

Gascuel 2003) and MrBayes 2.0.5 (Huelsenbeck & Ronquist 2001) plugins within Geneious. 

Indels (insertion and deletion mutations) were considered phylogenetically informative and 

treated as separate characters using the ‘simple indel coding’ gap method (Simmons & 

Ochoterena 2000) in GapCoder v.1.0 (Young & Healy 2003). Maximum likelihood (ML) 

phylogeny was conducted using the best-fit model (JC) of nucleotide substitution as selected in 

jModelTest 2 (Darriba et al. 2012) through Akaike Information Criterion (AIC). Bayesian 

inference (BI) phylogeny was made with a JC69 substitution model and burn-in of 100,000. 

Phylogenetic trees were rooted with Paragorgia kaupeka Sánchez 2005 and node support values 

set at ≥ 70% for both ML and BI. 

 

Figure 3.5. (a) Unconstrained and (b) constrained ordinations of Isis hippuris character traits 

between Ridge 1 [ ] and Sampela [▲].  
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Table 3.4. Isis hippuris ITS2 haplotype sequence view from the seven test sites within the WMNP. Each sequence represents haplotypes present in each 

sample per site. Colour codes depict gaps (lilac), transitions (red), and transversions (yellow).  
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Table 3.5. AMOVA of genetic structure between sites within the WMNP from both cloned and 

sample sequences. R1 denotes Ridge 1; S denotes Sampela. *P < 0.001 significant. 

3.3 RESULTS 

3.3.1 Morphometrics 

Of the 57 morphological traits measured, 32 were selected for further analyses (Table 3.2). 

Based on these traits, PERMANOVA revealed significant differences between morphotypes 

across the two study sites Sampela and Ridge 1 (pseudo-F = 14.489; P < 0.0001), further 

corroborated by the CAP analysis (δ
2
 = 0.995, P = <0.0001; Figure 3.5b) with 89% variance (% 

var.) as the total variance explained by the first m PCO axes. Prominent morphological traits 

contributing most to dissimilarities between sites were primarily at the colony level (TW, W, H, 

PBA, Po, & sTB#) with the exception of a higher polyp density (PD) at Sampela (Figure 3.5). 

From both Figure 3.5b and Table 3.2 it is clear that larger colonies present at Sampela have a 

reduction in branch density yet larger colony size and spread (PBA, sTB#, Po, and H, W, TW 

respectively). Branches were also consistently longer and thicker including the branch tips at 

Sampela, however polyp parameters were relatively invariable despite significantly high polyp 

density. It is noteworthy that all sclerite trait measurements were consistently smaller at Sampela 

(Table 3.2), particularly capstans (Figure 3.3f.iii, iv & 3.4 for variability) were variable 

throughout I. hippuris distribution (Simpson 1906, Bayer & Stefani 1987, Fabricius & 

Alderslade 2001). Yet irrespective of pre-treatment the magnitude of differences between 

sclerite measurements were not that of the colony level. Nevertheless, separation and re-analyses 

under the same models for macro (e.g., colony and sub-colony: pseudo-F = 15.255; P < 0.0001;  

Source of Variation df              SS 
Variance    

    Component 
Variance %        ST 

7 Populations: Clones      

Among populations 6 122.248 Va = 1.237  80.97 0.80974* 

Within populations 113 32.844 Vb = 0.291 19.03  

Total 119 155.092 1.528   

 

7 Populations: Samples      

Among populations 6 33.768 Va = 1.401 76.83 0.76831* 

Within populations 21 8.875 Vb = 0.423 23.17  

Total 27 42.643 1.824   

 

2 Populations (R1 & S): Samples      

Among populations 1 17.688 Va = 2.161 84.32 0.84321* 

Within populations 14 5.625 Vb = 0.402 15.68  

Total 15 23.312 2.563     
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CAP δ2 = 0.976, P = <0.0001, 91% var.) and micro (e.g. sclerite: pseudo-F = 11.727; P < 0.001; 

CAP δ
2
 = 0.996, P = <0.0001, 85% var.) measurements did not significantly alter results from 

the full model, demonstrating a lack of redundancy in selected character traits.  

Results from the distance-based nonparametric regression (DISTLMforward) revealed that 

turbidity and sediment load explained 27.31% (pseudo-F = 5.100; P < 0.001) of morphotype 

differences between the two sites. 

3.3.2 ITS2 Sequence Diversity 

Of the 28 Isis samples 120 clones were recovered; Ridge (34), Sampela (29), Sea Grass (9), 

Kaledupa (12), Buoy 3 (18), Pak Kasim’s (10), and Blue Bowl (8). ITS2 sequences revealed five 

haplotypes: 1-3 per sample population with up to 8 substitutions (Table 3.4, Figure 3.6). In 

keeping with morphological traits, colonies found at Sampela were significantly different from 

all other sample sites (Table 3.5, Figure 3.6). Haplotype diversity was greatest across Hoga 

Island with overall haplotype (hd) and nucleotide diversity (π) measured as 0.780 and 0.0197 

respectively with just (JC) 0.0313 substitutions per site. Population division was strongly 

inferred by all AMOVA models (Table 3.5) and haplotype network analysis, the latter showing 

no evidence of reticulation through homoplasy (Figure 3.6). Curiously, the single haplotype 

present in the sea-grass beds (D) shared no nucleotide differences with Sampela (A) despite its 

relatively close proximity, however little can be determined without greater sampling effort. 

Pairwise ST estimates of ITS2 sequences from Sampela ranged from 1.000 (Sampela vs. Sea 

Grass, Kaledupa, Pak Kasim’s, Blue Bowl, Buoy 3) to 0.843 (Sampela vs. Ridge 1; P < 0.0001 

in all cases), and from 0.467 (Ridge 1 vs. Pak Kasim’s; P < 0.05) to no structure (Ridge 1 vs. 

Blue Bowl and Buoy 3) at Ridge 1. Note, such values, in particular the P – values, should be 

treated with caution. Low sample sizes reduce fine-scale structure detection, thus more data 

would likely yield greater insight into the level of haplotype and nucleotide diversity observed 

across sites with an increase in taxonomic certainty. 

Figure 3.6. (Previous page)  Isis haplotype network with corresponding ITS2 RNA predicted 

secondary structure relative to haplotype (A – E, see also Figure 3.7) and enthalpy values 

according to MFOLD. Roman numerals (I – IV) represent helices; red and black arrows indicate 

point mutations and loop differences respectively. Coloured bases according to transitions (red), 

transversions (yellow) and gaps (lilac), Table 3.5. Haplotype circle diameters are proportional to 

identical clone sequences. 
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ITS2 predicted RNA secondary structure analyses revealed minimal variation between 

haplotypes with the exception of Sampela (Figure 3.6) providing greater confidence in 

phenotypic trait differences. Clones were collapsed into haplotypes per sample for phylogenetic 

analyses. Phylogenetic topologies using Maximum Likelihood and Bayesian Inference were 

very similar including all outgroups and unambiguously identical with regard to WMNP 

haplotypes (Figure 3.7). Branch support was typically stronger with BI particularly regarding 

outgroup species where recognised taxonomic suborders and groups were distinct. Phylogenetic 

uncertainty leading to the addition of multiple outgroups, confirmed Isis sequences from the 

WMNP were not grouped with morphologically described sister taxa within the Isididae 

(highlighted red, Figure 3.7). Reducing the outgroup number did not alter the integrity of the 

phylogenetic signal, in fact irrespective of model or selected root Alcyonium digitatum Linnaeus 

1758 consistently positioned directly above Isis haplotypes.  

3.4 DISCUSSION 

Isis hippuris morphotypes were clearly defined both morphologically and genetically between 

the two sites (ΦST = 0.7683, P <0.001). Even with a reduced ITS2 sample size, corroboration of 

both morphometric and molecular results reveal a powerful indication that divergence has or is 

taking place, the nature of which is unclear. Multivariate trait integration at the colony level 

(including branching parameters), polyp density and sclerite size define significant differences 

between morphotypes indicative of trait dependency, yet polyp dimension and canal width 

appear canalised (genetically fixed). Nevertheless, inherent phenotypic plasticity and/or 

disruptive selection may enhance the success of two phenotypes particularly across contrasting 

environments. Trophic level interaction through differential light and nutrient exposure may 

drive such phenotypic differences, further reinforced by population structure by asexual 

fragmentation and external brooding (Chapter 2 & 4). Taxonomic assignment maybe tenuous, 

however, considering the partial adherence of morphotypes to previously described species 

within the Isis genus in addition to polyphyly within the Isididae.  

3.4.1 Isis: 1 species or 2? 

Of the 48 colonies (28 used for genetic analyses) studied here and 1094 recorded in Chapter 2, it 

cannot be said with confidence that I. hippuris morphotypes at either site within the WMNP 

adhere to the descriptions as outlined for I. reticulata (Nutting 1910, Kükenthal 1919, 1924, 

Stiasny 1940, Mai-Bao-Thu 1971) or I. minorbrachyblasta (Zou et al. 1991), and may just be an 

artifact of depth in those previously described. I. hippuris contrasts with I. reticulata on the basis  
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Figure 3.7. Phylogram based on maximum likelihood (ML) analyses of the ITS2 region from 

twenty Octocoral taxa in GenBank and Isis haplotypes within the WMNP. Branch numbers 

represent ML/BI support with low values expressed as a hyphen (--) ≤ 70% and asterisk (*) 

indicative of differences from MrBayes phylogenetic inference. Letters Sc = Scleraxonia, Ca = 

Calcaxonia, Ho = Holaxonia, Al = Alcyoniina, and A – E represent Isis haplotypes as depicted in 

Figure 3.6. 
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of short thick branches in the former, and long thin branches with smaller, coarsely articulated 

sclerites in the latter. I. minorbrachyblasta has bushy colonies with short densely packed 

branches, but considering both the lack of sampling for this taxon, documented panmixia and 

phenotypic plasticity of I. hippuris (e.g., Simpson 1906, Thomson & Simpson 1909, Bayer & 

Stefani 1987) in addition to the potential for parallel evolution throughout the I. hippuris 

distributional range relative to environmental clines, this latter taxonomic assignment is treated 

with extreme caution and may simply be an intermediate form. The two morphotypes of I. 

hippuris presented here have but partial adherence to those previously described. The short-

branched predominantly planar colonies at Ridge 1 are more akin to I. hippuris whereas the 

more open, long-branched colonies at Sampela resemble I. reticulata but with thick branches as 

opposed to thin. Swollen branch tips characteristic of I. hippuris were observed in both 

morphotypes is not a reliable trait. Such swollen branch tips were more prevalent at Sampela, 

which was the only site where external brooding was observed (Chapter 4; Figure 4.5), and 

therefore, swollen branch tips may pertain to the presence of eggs within the polyps.  

3.4.2 Isis hippuris phenotypic variability 

Measuring a broad range of phenotypic traits between I. hippuris morphotypes highlights trait 

integration, canalisation and thus those acted on by selection which may differ from those 

previously described for other gorgonian taxa (e.g., Sánchez & Lasker 2003, Sánchez et al. 

2003, 2004, 2007, Sánchez 2004, Dueñas & Sánchez 2009). Here clear patterns of colony, 

therefore branching, integration coupled with sclerite-level traits and polyp density are 

consistent between the two morphotypes. Specifically, branching dynamics and colony size 

(colony porosity as a function of total branch number and size [projected branch area]) appear to 

have a negative association with sclerite size. Whether these traits are negatively associated as 

emergent properties or of longstanding, would necessitate further investigation using reciprocal 

transplant experimentation and population coalescence (Prada et al. 2008, Prada & Hellberg 

2013). In either case, differential light attenuation and nutrient components between the two 

sites are not unnatural phenomenon, which may or may not be exacerbated by the reef resource 

dependent anthropogenic influence from Sampela.  

Colony surface area and metabolism are intrinsically linked whereby a cascade effect of 

concomitant variations in branching, polyp, canal and sclerite dynamics would be expected. 

However disintegration or canalisation was evident in both polyp and canal dimensions 

consistent with previous work (Sánchez 2004). Responses to variations in water quality, thus 

heterotrophic feeding capacity, are incurred through polyp density as opposed to size, yet both 
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canal number and dimensions remained unchanged in both morphotypes. The exact function of 

stem canals is unclear (Cadena et al. 2011), although suggested to circulate and exchange water 

and nutrients throughout the coral colony (Ellis & Solander 1786, Grillo et al. 1993, Gateño et 

al. 1998). Canalisation at this level further suggests that photosynthetic gain with nutrient 

translocation at the cellular level between endosymbionts and host, are the primary trophic 

resource. Optimal allocation theory posits an increase in the uptake of resource(s) that are most 

limiting growth (Bloom et al. 1985, Weiner 2004). Moreover, the same genotype can show 

resource allocation plasticity (Sebens 1997) in alternate environments consistent with the 

‘partitioning’ hypothesis (Poorter & Nagel 2000, Weiner 2004). Plasticity as a response is an 

emergent property of divergence (Schlichting & Pigliucci 1998, Pigliucci 2005). Therefore to 

further elucidate energy allocation patterns between morphotypes, physiological tests coupled 

with morphological and genetic analyses on reciprocal transplants between reefs would establish 

phenotypic trait plasticity, thus plasticity capacity, or ecological divergence through disruptive 

selection (Schluter 1998, 2001) in I. hippuris. 

Sclerite composition can vary relative to light and/or water motion (Muzik & Wainwright 1977, 

West et al. 1993, Kim et al. 2004, Skoufas 2006, Clavico et al. 2007, Prada et al. 2008, 2013). 

Here the presence of numerous small, articulate interlocking sclerites could provide additional 

structural support for larger colonies found at Sampela, which lack the close branching structure 

present at Ridge 1. Smaller sclerites may mitigate mechanical constraints on the axis of 

increased colony size and bushy morphology through long thick branches, and provide greater 

soft tissue support as surface area increases (Clavico et al. 2007). Small clubs increase both 

flexion and torsion capacity in less exposed areas of Eunicella singularis Esper 1791 whereas 

larger spindles were prevalent in the exposed peripheral branches, yet Eunicella cavolinii Koch 

1887 showed no selective difference (Skoufas 2006). A decrease in sclerite size with increased 

density in shallow conspecifics has been shown (e.g., Prada et al. 2008), typically due to 

increased water flow (West et al. 1993, West 1997, Brazeau & Harvell 1994, Kim et al. 1997, 

2004). Here, regardless of both morphotypes containing high densities of small sclerites, the 

consistency in small size at Sampela coupled with thicker longer branches and higher polyp 

density likely increases photosynthetic gain through greater surface area, as well as 

heterotrophic feeding. Canalisation due to a lack of variability in canal size or number, as well 

as polyp dimensions, suggests that photosynthetic gain from dinoflagellate endosymbionts is the 

primary resource for I. hippuris.  

Sclerites are key characters for species identification yet susceptible to environmental 
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perturbation and selection. All sclerites were consistently smaller in colonies from Sampela. The 

overall dimensions between the two morphotypes from both sites were within those described 

for I. hippuris with regards clubs and radiates from both I. reticulata and I. minorbrachyblasta. 

Sclerite differences between morphotypes compared to those published appeared inconclusive 

with notable crossover. For example, bent spindles characteristic of I. reticulata were present in 

colonies from Ridge 1, themselves bearing closer resemblance to I. hippuris. Interestingly, 

sclerite diversity was greater at Sampela with closer resemblance to I. reticulata, particularly 

considering sclerite asymmetry and crosses. No sclerites were found within the polyps or 

tentacles in either morphotype in this study, unlike in I. reticulata. However the small rods (0.07 

x 0.01 mm) of Bayer & Stefani (1987) were present, but their precise location within I. hippuris 

soft tissue could not be determined, questioning their presence at all. 

Enhanced fitness through an individual’s (genotype) capacity to respond to environmental 

heterogeneity - specific morphotypes predominating in certain habitats - maximises survival 

through resource acquisition and minimises metabolic costs. Most corals are polymorphic under 

varying environmental conditions (West et al. 1993), with differential phenotypic expression of 

a genotype as a consequence of astogeny (colony development), itself genetically and/or 

environmentally mediated (De Rosa et al. 1999, Sánchez & Lasker 2003, Garland & Kelly 

2006). Environmental influences on larval settlement, such as high sedimentation at Sampela or 

competition and high water flow at Ridge 1, may lead to developmental adaptational responses. 

Moreover, I. hippuris colonies survive and replicate through external brooding and asexual 

fragmentation with a propensity for philopatry and upward growth (Dauget 1992), increasing 

population structure and expansion on such degraded reefs over time.  

Phenotypic divergence and biological success in I. hippuris within the WMNP may be a 

consequence of intraspecific polymorphism due to plasticity capacity with no barriers to gene 

flow between morphotypes. This, in part, can be a consequence of epigenetic effects, which may 

be heritable and become fixed through genetic assimilation if conditions persist. This, 

particularly in the presence of evolutionary capacitance whereby suppressed variation becomes 

functionally overwhelmed or initiated by the environment, can exert pleiotropic effects on 

poignant developmental processes (Rice 2008). Such non-additive genetic covariance wields a 

stronger influence on mutation than random drift, itself much stronger in small populations 

typical of brooding and asexual taxa. Thus, phenotypic divergence as seen in I. hippuris across 

sites within the WMNP, may be a consequence of hidden genetic variation leading to emergent 

environmentally mediated fixation accelerated by anthropogenic impact. Peripheral haplotypes 
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reveal emergent lineages (Forsman 2003), those at Sampela up to seven base pairs differences 

between primary ITS2 sequence comparisons, none of which are shared with other haplotypes 

within the region. Furthermore, shared haplotypes and thus gene flow at the remaining test sites, 

with the exception of haplotype D (sea grass), suggests assortative mating with the onset of 

reproductive isolation at Sampela, the remaining haplotypes more frequent and broadly adapted, 

likely being ancestral. Greater sampling with genetic and coalescent analyses is required to 

confirm such supposition, particularly considering a minority presence of opposing morphotypes 

at each site (pers. obs.).   

The consistent mutational differences both within (clones) and between sequenced samples, 

renders PCR or base calling errors unlikely. Given the renowned caveats associated with the 

ITS2 region such as intragenomic variation, secondary structure of each haplotype confirmed 

molecular morphometric differences most notably between Sampela (haplotype A) and the 

remaining sites, yet with strong sequence similarities between the remaining haplotypes. 

Furthermore, lack of network reticulation suggests no indication of hybridization, validating 

confidence in two species taxonomic assignment, emergent or previously diverged. However, 

hybridization at this juncture cannot be overlooked, I. hippuris morphotypes across its 

distributional range may also represent an Indo-Pacific syngameon as seen in the diverse and 

polymorphic scleractinian Acropora Oken 1815 (Ladner & Palumbi 2012), with widespread 

gene flow through introgression (Vollmer & Palumbi 2002, Palumbi et al. 2011, Ladner & 

Palumbi 2012). However, any species delimitation within the Isis genus in addition to I. hippuris 

is necessary before further inference can be made.  

It is clear that pertinent crossover exists between previously described Isis taxa and those present 

within the WMNP. It is tempting to conclude that I. hippuris is a single species with an 

extensive phenotypic and geographical range, or that only I. hippuris are present in the 

Wakatobi with other taxa within the genus elsewhere. Tolerant taxa tend to possess wide 

geographic distributions compared to those that are not (Calosi et al. 2010). However, the 

historically perceived panmixia of I. hippuris is likely more than a single species and not that of 

a complex when considering similar repetitive phenotypic trait differences across its 

distributional range. Previous alternative taxonomic assignments are therefore questionable, as 

the standard error of phenotypic variance would be greatly improved by assessing differences 

between I. hippuris morphotypes with increased specimen analyses from throughout its 

distributional range; a beneficial strategy when dealing with highly polymorphic taxa. Again, 

tests of coalescence on numerous independent highly polymorphic markers (SNPs; Ladner & 
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Palumbi 2012) would be required in order to fully elucidate convergent environment-by-

genotypic effects in I. hippuris across its distributional range.  

3.4.3 Isididae polyphyly 

Phylogenetic analyses confirm haplotype differences as well as polyphyly within the Isididae; a 

phenomenon recently reported using the putative octocoral mitochondrial marker msh1 (Watling 

et al. 2012). Even as far back as the earliest part of the last century, Kükenthal (1919) considered 

the Isididae to be polyphyletic; the subfamilies within as independent groups and the axis a 

“convergent phenomenon.” Furthermore, I. hippuris, itself the type species of this family and 

the subfamily Isidinae, appears to have minimal phenotypic similarities to virtually all other 

isidid taxa with the exception of the axis, yet even this has been shown to be scleritic (consist of 

fused sclerites; Milne-Edwards & Haime 1857, Kükenthal 1919, 1924, Bayer 1955, Watling et 

al. 2012, in prep., but see Nutting 1910c). Such evidence naturally brings into question the 

validity of I. hippuris in its current classification. Polyphyly within gorgonian groups across 

bathymetry is not unknown (McFadden et al. 2006). I. hippuris is the only shallow and 

zooxanthellate representative of the Isidinae and Isididae respectively, the remainder being 

characteristic of the deep ocean.  

The scleritic composition of the I. hippuris axis further sets it apart from both the Isididae and 

the suborder Calcaxonians, these being more closely affiliated with the Alcyoniinan-Holaxonian 

clade as phylogenetically determined by Bernston et al. (2001) and McFadden et al. (2006). 

However this convergent trait holds significant evolutionary intrigue. The fused scleritic 

internodes with gorgonin nodes of the I. hippuris axis, ensures flexibility and durability in high 

water energy conditions. Yet what is the selective advantage of a jointed axis in deep-sea 

isidids? Empirically, this is undetermined but it is not unreasonable to propose that the jointed 

axis is a relictual anachronism consequential of geological (e.g., opening of the Drake Passage, 

Watling pers. comm.) as well as later glacio-eustatic sea-level changes resulting in bathymetric 

refugia from turbulent shallow coastal waters (Helm & Schülke 2003). Thus, the functional 

significance of an articulated axis at depth is still a mystery; however longer internodes in the 

colonies at Sampela – like those seen in the benign deep ocean Isidids - compared to Ridge 1 

were observed but not quantified (pers. obs.). Interestingly, deep-sea low flow specialists 

Isidella Gray 1857, have long elegant calcareous internodes compared to the larger much more 

robust internodes of Keratoisis Wright 1869, characteristic of moderate flow environments in 

the deep-sea (Watling pers. comm.), yet with no appreciable flexibility. A deep divergence with 

stabilizing selection regards a non-sclerite axis in deep-sea isidids may have occurred. Whether 
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the I. hippuris axis is a consequence of convergent evolution based on ecological necessity in 

heterogeneous environments typical of shallow reefs or deep inheritance is unclear and under 

investigation (Watling et al. in prep.).  

3.5 CONCLUSION 

The two distinct I. hippuris morphotypes within the WMNP are phenotypically segregated 

through trait integration between healthy and degraded reefs, likely reinforced through 

reproductive strategy. The co-variability of light, sediment and water flow between sites fortify 

directional trait selection (Feder 1998); colony, branching dynamics, polyp density, sclerite size 

and diversity all vary significantly between sites. Moreover, polyp and nutrient canals appear 

canalized due to the additive effect of modules to the colony as opposed to an increase in size, 

raising inference to maximizing photosynthetic yield and heterotrophy, both mitigating and 

capitalizing on environmental conditions particularly at Sampela. Diverse phenotypic trait 

assessment through character trait integration using reciprocal transplant experiments across the 

two sites would undoubtedly be insightful, particularly as shifts in metabolic function are subject 

to selection at opposite ends of environmental gradients (Feder 1998). Selection acts on 

phenotypic variation (reflecting variation in gene expression), which may have become fixed 

over time leading to ecological divergence. I. hippuris morphotypes, tentatively confirmed by 

ITS2 sequences and secondary structure analyses, have only partial adherence to previously 

described taxa. It lacks prudence to assign species at this juncture necessitating integrative 

classical taxonomic, genomic, axis composition, biogeographical and ecological analyses across 

its distributional range. Furthermore, compelling phylogenetic evidence not only confirms I. 

hippuris morphotype differences, but also reveals its disassociation within the Isididae. 

Phylogenetic discernment investigating congruence between skeletal structure, multi-locus next-

generation sequencing and coalescence modelling (Puritz & Toonen 2011, Puritz et al. 2012), 

will assist unresolved hypotheses within this group. Thus is the continuum of evolution, 

compartmentalized for the necessity of biodiversity assessment and conservation management, 

itself a human construct against its own influence. 
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CHAPTER 4: ACCLIMATORY CAPACITY OF THE GORGONIAN ISIS 

HIPPURIS LINNAEUS 1758 TO ENVIRONMENTAL CHANGE IN SE 

SULAWESI, INDONESIA. 

ABSTRACT 

Coral reefs within the Indonesian archipelago are some of the most exquisite yet 

anthropogenically compromised marine ecosystems. Within the Wakatobi Marine National Park 

(WMNP), SE Sulawesi, Indonesia, pronounced environmental clines are either caused or 

exacerbated by marine resource subsistence and destruction. The zooxanthellate gorgonian (sea 

fan coral) Isis hippuris Linnaeus 1758 however, thrives on degraded reefs, with distinct 

morphotypes across contrasting reef environments within the region. To further investigate 

whether the biological success of I. hippuris morphotypes are a consequence of selective 

mechanisms acting on phenotypic plasticity capacity or ecological divergence, reciprocal 

transplant experiments (RTEs) measuring multiple traits (morphological, physiological and 

environmental) were conducted across environmental gradients of light attenuation and 

anthropogenic disturbance. After one-year survivorship was lowest in clones transplanted from 

healthy to the degraded reef, suggesting the onset of immigrant inviability. Phenotypic traits 

were grouped into modules (colony, polyps, sclerites, optical parameters) and subject to 

duplicate multivariate models between the two sites. Significance values were consistently 

driven by differences between resident morphotype colonies from the healthy and impacted 

sites. The phenotypic traits in healthy source colonies consistently showed significant trait 

plasticity, whereas impacted residents were relatively insensitive to environmental change. Of 

the 38 phenotypic traits assessed, 17 were identified as driving test dissimilarities most notably 

in branching dynamics, polyp density, capstan and spindle sclerite dimensions, and 

Symbiodinium chlorophyll a light energy absorbance efficiency (for photosynthesis). 

Specifically, photoacclimatory responses were integrated at the morphological and bio-optical 

levels, with chlorophyll a light harvesting efficiency maintained during reduced pigment density 

through an increase in host sclerite articulation actually maximizing the internal light field in 

healthy clones on degraded reefs. Variable optical responses were not however, attributed to 

endosymbiont type as all test colonies possessed a novel Symbiodinium Clade D1a. In summary, 

patterns of phenotypic variability within the I. hippuris holobiont likely represent incipient 

ecological divergence, with high plasticity capacity becoming fixed through ongoing 

anthropogenic disturbance on degraded reefs. 



90 
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transplants · Indonesia 

4.1 INTRODUCTION 

Environmental heterogeneity and perturbation may enhance or diminish biodiversity through 

differential species responses. High-energy biodiversity hotspots such as coral reefs within the 

Coral Triangle provide ideal environments for the investigation and interpretation of phenotypic 

variation within and between populations, particularly in response to anthropogenic disturbance. 

The biological success of such reef inhabitants may be a consequence of divergent selection or 

acclimatory capacity at the phenotypic level (Weiner 2004). Mechanisms of phenotypic 

variation can be extrinsic (e.g., substrate, light, temperature, sedimentation, competition, 

predation, and hydrodynamics), intrinsic (e.g., developmental, life history, physiological, or 

genetic), a combination, or interaction of the two. Fitness enhancement producing phenotypic 

novelty through such interactions may lead to ecological divergence either as a by-product or 

direct selection if conditions persist (Schluter 2001, Hatfield & Schluter 1999). Thus, 

phenotypic variability, once considered an inconvenience (West-Eberhard 1989, DeWitt & 

Scheiner 2004), is in fact, the raw material of evolutionary processes that maximizes survival at 

the individual and population level particularly in the face of environmental change.  

Colonial sessile marine taxa are arguably the most pliable to changes in environmental regime 

through hierarchical modularity necessitated by their physical inability to relocate. Gorgonian 

corals (Cnidaria: Octocorallia) exhibit a diverse complexity, which is much greater and older 

than that of Scleractinia (Waggoner & Collins 2004), yet they are poorly understood particularly 

throughout the Indonesian archipelago (van Ofwegen 2004). Within the WMNP, two distinct 

morphotypes of the zooxanthellate gorgonian Isis hippuris Linnaeus 1758 were found to be 

segregated between healthy and exploited reefs; short-branched multi/planar colonies and long-

branched bushy colonies respectively (Chapters 2 & 3). Inferred integrated phenotypic traits at 

the colony, polyp and sclerite (skeletal element) levels were corroborated by haplotype 

differences, which suggest an emergent lineage on exploited reefs with remaining and likely 

ancestral haplotypes broadly distributed throughout the surrounding area. No indication of 

hybridization further reinforced the notion of two separate lineages whether emergent or 

previously diverged. Satisfactory taxonomic assignment to either morphotype however, was 

compromised by the historically recognised plasticity of I. hippuris (Wright & Studer 1889, 

Simpson 1906, Thomson & Simpson 1909, Bayer & Stefani 1987, Fabricius & Alderslade 2001) 

and tenuously described alternatives (Isis reticulata Nutting 1910, Isis minorbrachyblasta Zou, 
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Huang & Wang 1991). Furthermore, such phenotypic patterns have been repetitively 

documented in different regions (e.g., Philippines, Mai-Bao-Thu & Domantay 1971, Bayer & 

Stefani 1987; China, Zou et al. 1991; Okinawa, Muzik & Rowley pers. obs.), which may suggest 

selective convergence indicative of parallel evolution (Schluter & Nagel 1995). Thus, 

investigations into I. hippuris phenotypic segregation within the WMNP may act as a surrogate 

for determining the selective mechanisms that underlie the phenotypic differentiation 

recapitulated across its geographic range. 

Concomitant phenotypic and genetic differentiation between I. hippuris morphotypes across two 

contrasting reef environments clearly indicates ecological divergence is at play. Yet both 

taxonomic ambiguity and likely divergence by gene flow obscures definitive species and 

ecological boundaries at the mechanistic level. Akin to terrestrial seed dispersal, allopatric 

barriers to gene flow in the aquatic realm are seldom applicable, with arguably greater 

reinforcement of disruptive selective mechanisms in sympatry. Ecological boundaries have been 

shown to be as powerful as they are numerous, specifically with the added dimension of human 

encroachment (Palumbi 2001, Puritz & Toonen 2011). Therefore, I. hippuris on degraded reefs 

within the WMNP likely represent morphological stability that has come from phenotypic 

plasticity which has become fixed on degraded reefs, in other words, an environment-by-

genotype effect that has become (or in the process of becoming) fixed over time in a degraded 

reef environment. Phenotypic divergence may have become a necessity to maintain survivorship 

on such reefs, with the cost of plasticity capacity greater than phenotypic stability over time. 

Therefore, time to divergence would be reflected in immigrant inviability (Prada & Hellberg 

2013) and further reinforced through assortative mating, particularly considering that I. hippuris 

has a propensity for philopatry coupled with replication through external brooding and asexual 

fragmentation leading to population structure and expansion on degraded reefs. Thus the 

eventual effect of directional and stabilizing components such as prolonged ecological 

disturbance, on disruptive selection between I. hippuris morphotypes could evolve through gene 

flow (Johnson 1976) within the Wakatobi. 

Determining mechanisms of phenotypic variation provides valuable insight into the processes of 

divergence between morphotypes. Comparative measurements of I. hippuris phenotypic traits 

between contrasting environments over time are indicative of phenotypic expression patterns 

and can be visualised through the slope of a reaction norm (summarised in Chapter 1; Figure 

1.5). In sum, trait fixation depicts environmental insensitivity and therefore no slope/change; 

trait plasticity depicts environmental sensitivity through a slope in the reaction norm. Phenotypic 
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comparisons between morphotypes denote differential responses to environmental change, 

providing hypotheses for potential evolutionary mechanisms of selection (Pigliucci et al. 2006). 

However, whether trait plasticity is adaptive (genetic) or epigenetic (developmental) is 

undetermined (DeWitt & Scheiner 2004, Schluter 2000). Environmentally induced change 

within and between I. hippuris morphotypes demonstrates plasticity capacity; but phenotypic 

changes in healthy reef morphotypes only, would demonstrate plastic and canalised phenotypes 

for healthy and degraded reefs respectively, therefore two different species as would be the case 

with no change visualised in either morphotype. Multivariate trait analyses engaging a 

“pluralistic approach” (Gould & Lewontin 1979) would help discern mechanisms of 

evolutionary change within the holobiont and its environment. Yet it is surprising that studies on 

zooxanthellate gorgonians predominantly from the Caribbean, overlook the functional 

significance of their photosynthetic endosymbionts (West et al. 1993, Sánchez & Lasker 2003, 

Kim et al. 2004, Sánchez 2004, Prada et al. 2008, Prada & Hellberg 2013). Reciprocity between 

endosymbiont and host must surely bring about changes in the holobiont phenotype (Johnson 

1976, Gilbert et al. 2010): the integrated whole being greater than the sum of its parts. 

Zooxanthellate gorgonian corals typically show endosymbiont specificity (Goulet et al. 2008) 

with I. hippuris from the Great Barrier Reef known to harbour the putatively stress-tolerant 

clade D Symbiodinium (van Oppen et al. 2005). Technological advances reveal specificity 

gradients within endogenous Symbiodinium communities, irrespective of host – algal symbiosis 

assignment (‘specificity’ or ‘flexibility’; Silverstein et al. 2012). Endogenous symbiont 

‘shuffling’ between cryptic and dominant clades (A - I; Pochon & Gates 2010), or types within 

clades in response to environmental perturbation, is quite logical in terms of community 

ecology. It is not unlikely that endosymbiont community shifts function as a mechanism of 

enhanced physiological performance, enabling holobiont persistence particularly on degraded 

reefs. Alternatively, endosymbiont communities can remain constant with greater acclimatory 

capacity (Bellantuono et al. 2012) as a consequence of heritable (Molinier et al. 2006) epigenetic 

effects (Chinnusamy et al. 2009). However, both the methods and molecular markers of 

Symbiodinium detection are controversial (e.g., Apprill & Gates 2007, LaJeunesse & Thornhill 

2011, Stat et al. 2011, LaJeunesse et al. 2012, Pochon et al. 2012) with the highly variable 

internal transcribed spacer (ITS2) region detecting over 400 within clade rDNA ‘types’ 

(LaJeunesse 2002, 2005, LaJeunesse et al. 2003, 2004a, b), lending skepticism to its taxonomic 

efficacy (Stat et al. 2011). Nonetheless, the reported presence of Symbiodinium clade D within I. 

hippuris colonies may well contribute to its biological success on degraded reefs within the 

WMNP. Moreover, holobiont physiological plasticity is suggested to be of a greater fitness 



93 

advantage regards mechanisms of resilience to environmental change, than the shifting or 

alteration of photosynthetic endosymbiont cladal type alone (Bellantuono et al. 2012).   

The interplay between I. hippuris morphotypes at the morphological and physiological level 

through phenotypic trait integration would reveal mechanisms of physiological tolerance to 

environmental change. Primarily, photoacclimatory responses of the I. hippuris holobiont 

through the adjustment of optical and biophysical properties could maximize light harvesting 

and photosynthetic efficiency, key to its survival and biological success. Translocation of 

photosynthetically fixed carbon from Symbiodinium, as well as the conservation and recycling 

of essential nutrients such as nitrogen from the host, enables the holobiont to persist in nutrient-

poor tropical waters, with concomitant calcium carbonate deposition by the symbionts 

(Muscatine & Weis 1992). Variations in physiological photoacclimatory properties are 

indicative of holobiont responses but are not necessarily limited by Symbiodinium (Falkowski & 

Dubinsky 1981), with photophysiological optima controlled at both the colony (Kim & Lasker 

1998, Enríquez et al. 2005, Shaish et al. 2006) and cellular levels (Kirk 1994). High light 

intensities can provoke increased branching and/or pigment concentrations within endosymbiont 

cells minimizing photoinhibition (irradiance damage to photosystem II [PSII]) through self-

shading (Hoegh-Guldberg & Jones 1999, Enríquez et al. 2005). Self-shading at the cellular level 

- a more rapid and possibly only self-shading response if colony morphology is fixed – can 

maintain relative zooxanthellar cell densities in fluctuating irradiances (Falkowski & Dubinsky 

1981, Porter et al. 1984, Dubinsky et al. 1990). However, acute environmental perturbation(s) 

such as increased nutrient levels, light and/or temperature can lead to marked endosymbiont 

proliferation (Muscatine et al. 1989, Dubinsky et al. 1984, 1990) or reduction (Wilkerson et al. 

1988), particularly in non-acclimated colonies (e.g., Bellantuono et al. 2012). Still, trait 

mitigation of environmental susceptibility through prolonged exposure (Brown et al. 2000, 

2002, Middlebrook et al. 2008, Bellantuono et al. 2012) may eventually become fixed (Molinier 

et al. 2006). Furthermore, utilization of the internal light field through skeletal light scattering 

reduces pigment investment and self-shading, whilst maintaining light-harvesting efficiency 

(Enríquez et al. 2005, Stambler & Dubinsky 2005). Therefore, particular sclerite morphology 

and size may affect internal light reflection thereby facilitating and maximizing the harvesting of 

solar energy within I. hippuris morphotypes. Subsequent photosynthetic yield and hence 

productivity will therefore be dependent on integrative phenotypic mechanisms within the 

holobiont and should be considered in its entirety when assessing differential phenotypic 

responses of I. hippuris morphotypes to environmental change. 
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Previous descriptive results segregate three phenotypic modules for I. hippuris morphotypes at 

opposing reef environments within the WMNP: colony, polyp, and sclerite level traits (Figure 

4.1a; Chapter 3). The probability that any number of possible trait combinations can give rise to 

a novel phenotype, maximizing individual and/or population fitness in any one environment 

(Santelices 1999, Magwene 2001b) appears vast. However, multivariate selection recognises 

and delimits integrated traits, leading to tests of plasticity capacity or divergence through 

reaction norms as a product of reciprocal transplant experiments (RTEs). Here, it is 

hypothesized that light availability is a primary vector (causal; Figure 4.1b) of I. hippuris 

morphotypes between opposing sites (with distinct light regimes) within the WMNP, further 

driving integration among phenotypic traits. The quantum efficiency of the I. hippuris holobiont 

through the functional integration of optical traits (as a phenotypic module sensu lato; Figure 

4.1c) was therefore assessed for evidence for the onset of light-induced directional selection or 

plasticity capacity. This was achieved through a one-year RTE measuring multiple traits 

(morphological, physiological, and environmental) between sites of contrasting reef health at 

comparable optical depths. Research objectives were as follows: (1) determine if I. hippuris 

morphotypes across environmental gradients are environmentally induced (plastic) or 

genetically derived (canalised/fixed); (2) assess differential physiological responses of the I. 

hippuris holobiont to environmental change; (3) investigate host algal endosymbiont specificity 

between morphotypes across and as a consequence of environmental change; (4) determine 

integrated phenotypic traits which interact to delimit I. hippuris morphotypes suggesting 

mechanisms of divergence through phenotypic trait integration in response to environmental 

perturbation. 

 
(a)                                                  (b)                                                 (c)  

Figure 4.1 Isis hippuris (a) descriptive, (b) hypothesized causal and (c) proposed phenotypic module 

integration models.  
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Figure 4.2.  Comparative test site location map of (a) Ridge 1 and (b) Sampela off the islands of 

Hoga and Kaledupa respectively, within the WMNP, Indonesia.  

4.2 METHODS 

4.2.1 Study Area 

The Wakatobi Marine National Park (WMNP) is the second largest national marine park in 

Indonesia (ca. 13,900 km
2
). Comprising ca. 600 km

2
 of the most biodiverse coral reefs centered 

within the Coral Triangle, the WMNP sustains a burgeoning human population of >100,000 

people within S.E. Sulawesi supporting extensive marine resource reliance and subsequent 

destructive marine fisheries (Clifton et al. 2010, Clifton 2013). The dynamic coalescence 

between natural coral reef environments including the interplay between sea-grass beds, 

mangroves and human settlements renders the WMNP an ideal natural laboratory in which to 

study the effects of environmentally induced plasticity or divergence, particularly in the case of 

I. hippuris.  

This research was conducted between two contrasting reef sites at opposite ends of a marked 

environmental gradient ca. 5 km apart (Figure 4.2) characterised by differential light attenuation, 

sedimentation and hydrodynamic regime (Table 4.1). Ridge 1 (healthy) is a high hydrodynamic, 

biodiverse offshore reef ridge with shear walls, strong deep-water nutrient rich upwellings and 
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Table 4.1.  Characteristic environmental variables at optical equivalent depths (ζ) between the 

two study sites in the WMNP, Indonesia.  

low turbidity. Sampela (impacted) is a low water flow, high sedimented, semi-lagoonal reef ca. 

400 m distance from a sea gypsy (Bajo) village of ca. 1600, resulting in continual reef resource 

exploitation, destructive fisheries and wastewater exposure for at least 90 years (Webber H., 

pers. comm.). Additional sites within the area were not considered due to logistical constraints. 

Characteristic environmental variables suggested to drive morphotype distribution at the two 

study sites (Chapter 2 & 3) were quantified (Table 4.1). Optical equivalent depths (ζ = Kd(PAR)) 

were calculated from the average Kd(400-700 nm) for source colony collection and transplant block 

deployment at the two study sites. Light Kd(PAR) was taken every 1 m depth at 12:00 pm over 

consecutive days using the external photosynthetically active radiation (PAR) sensor on a 

Diving-Pulse Amplitude Modulation (Diving-PAM) fluorometer (Walz GmbH), calibrated 

against a Li-Cor quantum sensor. The average site Kd per optical equivalent test depth was 

calculated as described by Hennige et al. (2010) and is expressed in a reverse scale. Surface 

layer (i.e., recently settled) sedimentation rate was assessed using four replicate 1 litre sediment 

traps (English et al. 1997; Chapter 2) deployed for ca. 10 days each year at the calculated optical 

equivalent site depths. Grain size was estimated using Retsch Technology
® 

test sieves, with 

logarithmically converted diameters expressed as phi (Φ) and classified using the Wentworth 

scale (Wentworth 1922). Additional suspended material was determined through turbidity (NTU 

as an inverse measure) and chlorophyll-a (as μg L
-1

) measurements, using RBR
® 

XR-420 data 

loggers placed adjacent to each block repetitively throughout the duration of the experiment. 

Temperature (°C) was determined using HOBO
®

 data loggers placed on a single block at each 

depth per site, recording every 15 min throughout  

Parameter Recorded Mean value ± SE (where appropriate) 

Site Sampela Ridge 1 

Optical Depth (ζ) 2-3 m 10 m 5 m 18 m 

         

Latitude, Longitude 005˚ 29'01" S, 005˚ 26'57" E 005˚ 26'57" S, 123˚45'38" E 

Temperature (˚C min-max) 27.88 - 29.26 25.61 - 28.09 26.96 - 28.10 24.06 - 28.07 

Light (Kd(PAR) min-max) 0.44 - 0.66 2.21 - 2.65 0.5 - 0.625 2.25  - 2.5 

Flow (cm/s) 0.86 ± 0.19 1.54 ± 0.62 34.38 ± 1.33 29.28 ± 2.85 

Chlorophyll-a (µg 1
-1

) 0.38 ± 0.001 0.39 ± 0.001 0.30 ± 0.001 0.30 ± 0.001 

Turbidity (NTU) 4.73 ± 0.72 3.76 ± 0.24 0.15 ± 0.43 0.11 ± 0.21 

Sedimentation (g d
-1

, n = 12) 3.85 ± 0.11 3.22 ± 0.10 1.2 ± 0.05 1.14 ± 0.05 

Sediment grain size (, n = 12) 2.5 [125–250 µm] 5 [31.25–62.5 µm] 1 [0.5–1 mm] 1 [0.5–1 mm] 
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Figure. 4.3. Isis hippuris reciprocal transplant experimental design of source morphotypes from 

(a) Ridge 1, and (b) Sampela. (c) Transplant blocks baring eight clippings were placed (d) 

reciprocally with controls between optical equivalent (ζ) depths 5 & 18 m at the Ridge, and 2 & 

12 m at Sampela. Arrows indicate direction of reciprocity and the number of transplanted test 

clippings. Transplant codes: RRs, Ridge – Ridge shallow; RSs, Sampela – Ridge shallow; RRd – 

Ridge – Ridge deep; RSd, Sampela – Ridge deep; SSs, Sampela – Sampela shallow; SRs, Ridge 

– Sampela shallow; SSd, Sampela – Sampela deep; SRd, Ridge – Sampela deep. 
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the test period. Water flow velocity was measured using a General Oceanics
®
 flow meter with a 

low velocity rotor and custom made aluminum pipes for reef placement and expressed as cm s
-1

. 

A hand-held GPS meter (GARMIN eTrex
®
) determined latitude and longitude site coordinates 

which were not used in the statistical analyses. 

4.2.2 Field Experimentation 

I. hippuris test colony cuttings were reciprocally transplanted between the healthy reef Ridge 1 

and impacted reef Sampela from June 2010 – July 2011 (Figure 4.3). Source colonies from each 

site (n = 24; total n = 48) were selected at optical equivalent (ζ = Kd(PAR)) depths from the Ridge 

top (5 m) and Sampela reef crest (3 m) ≥ 10 m apart and of similar size to counter colony-level 

surplus resource variance. Scaled photographs were taken directly opposite and above each 

source colony using a Canon IXUS 900Ti, WP-DC7 u/w housing and INON UWL-105 AD x 

0.51 lens. For each source colony, five ~10cm cuttings were sub-sampled, four for 

transplantation and one for comparative down stream analyses (see below). Scaled digital 

photographs were further taken of each cutting before and after transplantation for comparative 

annual growth and morphological measurements. A total of 24 cement blocks bearing eight 

colony cuttings (192 in total), secured using standard marine epoxy, were reciprocally 

transplanted between the two sites with additional blocks at optical equivalent depths as 

described above (Figure 4.3), to test for the effect of light on colony morphology, symbiont 

type, photobiology and stable isotope ratio (see below). Each block was placed such that 

transplant cuttings were perpendicular to the prevailing water flow.  

All test colonies were sampled (n = 48 in 2010, n = 192 in 2011; total n = 240) 2 cm below the 

apex and preserved in 95% EtOH, 70% EtOH with prior overnight 4% formalin wash, and 

guanidinium solution for morphometric, taxonomic and zooxanthellar density, and genetic 

analyses respectively. Chlorophyll was immediately methanol extracted upon live sample 

recovery on site (see “Optical Assessments” section below and Enriquez et al. 2005). 

4.2.3 Comparative Phenotypic Traits 

To investigate potential mechanisms underlying distinct I. hippuris morphotypes, test (including 

controls) colony clippings between 2010 and 2011, were subject to a suite of phenotypic trait 

measurements with subsequent modelling for integrative traits.  
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Morphological Measurements 

Morphological trait comparisons were conducted on all I. hippuris test and control colony 

clippings, and divided into 14 macro-morphological (colony level) and 13 micro-morphological 

(polyp dynamics and sclerite level) traits (Figure 4.3, Table 4.3 - 5). Colony level measurements 

included colony height [H], and mean width [W] taken equidistant apart, colony base [B] and 

the projected colony area [PA] estimated by H x W. The PA was subsequently used to calculate 

colony porosity [Po] as a ratio of PA; the projected branch area [PBA] itself as the total branch 

length multiplied by the mean branch thickness (see below). Branch growth and development 

were further assessed using the hierarchical ‘mother’/‘daughter’ branch ordering system (Lasker 

et al. 2003, Sánchez & Lasker 2003, Sánchez et al. 2003a). To correct for both temporal growth 

and positive association, thus size variation not related simply to growth, PA [incl.  Po], PBA 

and TBL (see below) were also adjusted in equation (1) from Bayer et al. (1994):  

e.g., PA(log) = (log [final PA] – log [initial PA])/t      (1) 

where t represents experimental duration in days. As growth persists nascent branches emerge 

(Bud# [Bu]), daughter branches typically also become mother branches (e.g., second generation 

mother branch; see Figure 4.4) with the assumption of increased branch density over time. 

However, resource allocation change with growth would alter essential branching parameters 

such as [c; Sánchez 2004] defined as the ratio between the total branch number [TB#] and total 

mother branch number [MB#]; and [r] (Weinbauer & Velimirov 1995) as the ramification rate 

defined as the annual growth difference between total branch length [TBL] and [TB#]. 

Additional branching parameters were assessed via the quantification of daughter branch 

number [DB#], mother branch length [ML], mean mother branch width [MW], daughter branch 

length [DL], and mean daughter branch width [DW]. Branch surface area was calculated on the 

geometric approximation of a cylinder from branch length and mean width as the radius, with 

subsequent polyp density [PD] per cm
2
. Twenty random measurements were taken per sample 

for inter-polyp distance [ID], and polyp diameter [pD] as the mean of two measurements (see 

Figure 4.4c). All polyp, branch cross-section and canal ([Cd] see Figure 4.4b) quantification 

were visualised under an Olympus SZX16
®
 stereomicroscope at 10x magnification with 0.5x 

Figure 4.4. (Previous page) Isis hippuris morphological trait measurements of (a) test colony 

cuttings and branch dynamics; (b, c, d) canal and polyp dynamics; (e) sclerite 

site/morphotype comparisons of i and ii spindles, iii and iv capstan 7-radiates, v-viii clubs 

from Ridge 1 and Sampela respectively. Abbreviations as described in the above text and 

Tables 4.2 - 5. 
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objective. 

Sclerites, typically the initial objects of selection (Bayer & Stefani 1987), were quantified 

through the length and mean width of three measurements on 20 randomly selected sclerites per 

sclerite type; surface clubs [CL1/2, CW1/2]; and sub-surface capstans [7-radiates: CaL/W] and 

spindles [SL/W](Figure 4.4e,i - viii). Sclerites were removed by soft tissue dissolution in 5% 

sodium hypochlorite solution and observed using optical microscopy (Olympus BX51
®
) and 

scanning electron microscopy (SEM) performed on a Hitachi S-800 SEM at the University of 

Hawai’i at Mānoa, USA. All micro-morphological measurements and sclerite preparation were 

taken 2 cm below the branch tip to avoid underdeveloped traits due to sub-apical branch growth 

(Lasker et al. 2003) and photographed using an Olympus 3.3MPX
TM

 camera and Rincon 

software (ImagingPlanet
®
). All macro- and micro-morphological characteristics were measured 

using ImageJ64 (Abràmoff et al. 2004). 

Optical Assessments 

Population dynamics of zooxanthellae within all test I. hippuris morphotypes were characterized 

from ~1 cm fixed (4% O/N formalin wash and storage at -40ºC in 70% EtOH) host branches. 

Cells were isolated via repetitive (3 x at 4,000 g) centrifugation-wash cycles (Muscatine et al. 

1989) in filtered sea-water, and eight replicate 15 µL aliquots of suspended cells per sample 

were enumerated using a haemocytometer. Zooxanthellar cell density [ZD] was normalized to 

coral surface area through the approximation of a cylinder as described above and expressed as 

cells cm
-2

. Cell division (cytokinesis) was qualified by a doublet appearance with observable 

plates and expressed as the percentage of total cells (mitotic index [MI], Wilkerson et al. 1988). 

Zooxanthellae mean diameter [Zd] and surface area to volume ratio [SA:V] were measured 

using light microscopy at 200x magnification with an Olympus 3.3MPX
TM

 camera and 

ImageJ64. 

Optical density was determined using a U-3000 spectrophotometer with φ−60 integrating sphere 

(Hitachi) on live samples to assess chlorophyll-a specific absorption [a*] (Enriquez et al. 2005), 

concentration [A], and subsequent concentration per cell [CZ], testing the “packaging effect” or 

“self-shading” (Dubinsky et al. 1986, Kirk 1994). Live colonies were measured in triplicate with 

absorbance D values taken from a single peak at 675 nm to minimize accessory host and algal 

pigment interference, whereby: 

a*chla = (D/p)ln 10          (2) 
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with D as the spectrophotometry absorbance via reflectance measurements for absorptance [A], 

p is the pigment content per unit branch surface area expressed as mg m
-2

 (Enríquez & Sand-

Jensen 2003, Enríquez et al. 2005, Hennige et al. 2010). Bleached (24 h chloride emersion) 

skeletal elements (axis and sclerites) were further measured as described by Enríquez et al. 

(2005) and the corresponding live soft tissue (ca. 1 cm
2
) was weighed, measured and dissolved 

in 5 mL of 100% methanol (Porra et al. 1989, Ritchie 2006) for 36 h at 4ºC in darkness. 

Chlorophyll-a concentration was then calculated from the dichroic equation: 

[A] = 13.6849 E665 – 3.4551 E632 µg mL
-1

        (3) 

where Eλ is the extinction coefficient of light (photon) absorption at the given wavelength. All 

optical values were normalised to branch surface area, and chlorophyll-a content per cell 

expressed as pg cell
-1

.   

Prior to sub-sampling, light adapted (open photosystem II reaction centres) maximal quantum 

yield (∆F/Fm’) of PSII (photosystem II) was measured using a Diving-PAM fluorometer set at 

measuring light intensity = 8; actinic light factor = 0.5; saturation pulse width = 0.8; saturation 

intensity = 3; gain = 3; and signal damping = 2. Distance between the coral branch surface tissue 

and the fiber optic probe was standardized (10 mm) using a DIVING-SH Walz surface holder. 

Light adapted yield (∆F/Fm’) was assessed averaging measurements taken in triplicate from the 

top (2 cm from the branch tip), middle, and base of each colony parallel to the coral-water 

interface. This was replicated on transplant retrieval in 2011, where measurements were taken 2 

cm (top), 6 cm (middle), and 10 - 12 cm (base) from the apex of the colony. In both years 

quantum yield was consistently taken at 07:20 h ± 10 min over eight consecutive days. 

Symbiodinium Genetics Analyses 

Genomic DNA of endosymbiotic dinoflagellates was extracted from all test colony clippings (n 

= 48 in 2010, n = 192 in 2011; total n = 240) using a Guanidinium procedure as previously 

described (Pochon et al. 2001, Chapter 3). Three molecular markers were used to test for 

Symbiodinium diversity and marker utility. The relatively conservative mitochondrial-encoded 

cytochrome oxidase 1 (COX1_F2; forward; 5’-AAA TTG TAA TCA TAA ACG CTT AGG-3’ 

and reverse COX1_R1; 5’-GGC ATA ACA TTA AAT CCT AAG AA-3’) was used for all 

samples (n = 240). For a deeper diversity and phylogenetic assessment clone libraries were 

constructed using the ITS-LSU region including the 3’-end of the 5.8S (SSU) region, the entire 

internal transcribed spacer (ITS2) region to the 5’-end of the LSU rDNA region (itsD forward; 
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5'- GTG AAT TGC AGA ACT CCG TG-3' and LO reverse; 5'- GCT ATC CTG AGR GAA 

ACT TCG -3'), and the plastid-coding psbA minicircle (psbA
 
Clade D specific primers; 

psbAFor_1; 5’-GCA GCT CAT GGT TAT TTT GGT AGA C-3’ and psbARev_1; 5’-AAT TCC 

CAT TCT CTA CCC ATC C-3’; LaJeunesse & Thornhill 2011) were used on a subset of test 

samples (n = 24 and n = 8 respectively). PCR amplifications for each marker were conducted 

according to the following conditions, with a product volume of 50 μL constituting: 5.0 μL of 

10x PCR Buffer (Bioline), 2.0 μL of MgCl2 (2 mM), 1 μL of each primer (10 mM), 1 μL (2.5 

mM of each dATP, dCTP, dGTP, and dTTP), 0.2 μL of Hotstart Immolase Taq polymerase 

(Bioline Incl., London, UK), 1 μL of DNA, and 39 μL of sterile water. PCR amplification for 

COI and psbA
ncr

 initiated at 95ºC for 10 min, followed by 40 cycles at 94ºC then 35 s at 

annealing temperatures of 55ºC and 56ºC respectively, 1.3 min at 72ºC, with a final extension at 

72ºC for 10 min. Touchdown amplification was conducted for ITS-LSU as follows: denaturation 

at 95ºC for 10 min, 25 cycles at 94ºC then 35 s at 65ºC (reduction in annealing temperature of 

0.5ºC per cycle), and 2 min at 72ºC. A further 14 cycles of 30 s at 94ºC, 35 s at 52ºC, 2 min at 

72ºC, and a final 10 min extension at 72ºC. Purified ITS-LSU and psbA products were ligated 

into the pGEM
®
-T Easy vector

TM
 (Promega), transformed into α- Select Gold Efficiency

TM
 

competent cells (Bioline), with subsequent positive inserts verified by PCR using plasmid 

specific primers (M13). All sequences including clone library positive inserts (8 - 12 per 

library), were purified with an ExoSAP-IT kit, sequenced in both directions using the ABI Prism 

Big Dye
TM

 Terminator Cycle Sequencing Ready Reaction Kit and run on an ABI 3100 Genetic 

Analyzer (Perkin-Elmer Applied Biosystems, Foster City, CA, USA) at the University of 

Hawai’i at Mānoa, USA. All genomic DNA and PCR amplicons were visualized on 1% agarose 

gel. 

Sequences were aligned using ClustalW2 (Thompson et al. 2002) and manually edited in 

Geneious Pro v.5.6.2 (Biomatters Ltd., NZ). A selection criterion of identical sequences from 

two or more clone libraries from independent samples was established for both ITS-LSU and 

psbA to minimize the effect of intragenomic variation and/or PCR artifacts on downstream 

analyses. All single variants were reverted to the library consensus. Phylogenetic reconstructions 

with comparative in house and GenBank sequences (see Table 4.2) were conducted using 

plugins within Geneious.  
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Table 4.2 Accessions of comparative sequences of Symbiodinium clades used in the 

phylogenetic analyses. Asterisks indicate the COX1 outgroup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phylogenetic inferences for the markers ITS-LSU and psbA were constructed using the 

neighbour joining (NJ) (Jukes & Cantor 1969) and maximum likelihood (ML) (PHYML 2.1.0; 

Guindon & Gascuel 2003) methods with 1000 bootstrap replicates (Felsenstein, 1985) and 

unrooted circle trees constructed with the latter (ML). Phylogenetic inference for COX1 was 

constructed using MrBayes 2.0.5 (Huelsenbeck & Ronquist 2001) in addition to NJ and ML, 

rooted with the dinoflagellate Gymnodinium simplex (Lohmann) Kofoid & Swezy 1921. 

Maximum likelihood (ML) phylogeny was conducted using the best-fit model (JC) of nucleotide 

substitution as selected in jModelTest 2 (Darriba et al. 2012) using the Akaike Information 

Criterion (AIC). Bayesian inference (BI) phylogeny was made with a JC69 substitution model 

and burn-in of 100,000.  

Multivariate Analyses of Integration 

Investigations of trait integration were conducted using routines within the PRIMER-E v6.1.12 

statistical package (Clarke & Gorley 2006), with PERMANOVA+ v1.02 extension (Anderson 

2001). To identify phenotypic trait integration on a functional level as a consequence of 

developmental (VE), environmental (VG) or an interaction of the two (VGxE) processes, an initial 

multivariate correlative (p < 0.05) approach was conducted as a Draftsman plot. Trait ‘subsets’  

Marker 

 

Symbiodinium Clade  

 

GenBank Reference 

 

COX1 All Clades  AY289689–AY289712 Takishita et al. 2004 

COX1 *Gymnodinium simplex CCMP419 Santos et al. 2002 

ITS D KC597691 Padilla-Gamino et al. Unpub. 

ITS D AF396631 Santos et al. 2003 

ITS D1a JN558076 Pochon et al. 2012 

ITS D1a AJ311948 Pochon et al. 2001 

ITS D1a AJ308900 Pochon et al. 2001 

ITS D1a JN558080 Pochon et al. 2012 

ITS D1a EU074897 Thornhill et al. 2007 

ITS D2 AF396627 Pochon et al. 2006 

psbA D AB086877 Takishita et al. 2003 

psbA D AB086878 Takishita et al. 2003 

psbA D AB086863 Takishita et al. 2003 

psbA D JQ043586 LaJeunesse & Thornhill 2011  
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or ‘phenotypic modules’ (Magwene 2001b) were subsequently selected on the basis of 

conditionality through correlation for downstream analyses. Reaction norms were constructed 

for all phenotypic traits tested and partitioned into the aforementioned phenotypic modules: 

colony, polyp, sclerite and optical dynamics. Phenotypic trait data were log transformed 

(correcting for positive association) and ‘zero-adjusted’ Bray-Curtis resemblance matrices 

constructed (Clarke et al. 2006b) for tests of plasticity vs. adaptation between and within the two 

study sites: Ridge 1 and Sampela. Sites were segregated by clone origin and multi-factorial 

models with 9999 permutations (PERMANOVA; Anderson 2001) were performed with reduced 

trait dimensionality visualised in the constrained canonical analysis of principal coordinates 

(CAP; Anderson and Willis 2003). Topological equivalent traits were identified using similarity 

percentages (SIMPER; Clarke 1993) and displayed as a vector overlay on the CAP ordination. 

Specific traits within and between delimited subsets were then modelled for phenotypic 

integration primarily in response to irradiance; environmental influence was investigated using 

nonparametric multivariate regression (McArdle & Anderson 2001) with the DISTLMforward 

routine (Anderson 2003). Based on a Euclidean distance matrix, all raw environmental variables 

(Table 4.1) were normalised and significance tested using 9999 permutations (Anderson 2001).  

 

Figure 4.5. Isis hippuris colonies of (a) damaged transplant block clippings from Ridge 1 to 

Sampela at 3 m depth, (b) an adjacent resident, and (c) a close up of large pink externally brooded 

eggs and extended yellow polyps. (d) Mean (± SE) polyp depth (mm) from test colonies between 

2010 (white bars) and 2011 (grey bars). Red ring highlights no change in polyp depth in 

transplanted colonies compared to all other test colonies.  
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Table 4.3. Isis hippuris test colony annual mortality and survival. Values calculated out of 24 

test clippings per treatment. Asterisk indicates likely reduction in test colony numbers due to a 

human disturbance event; revised values out of 16 in brackets. 

 

 

 

 

 

 

All variables, with the exception of latitude and longitude, were entered into the statistical 

models as raw values. Values were edited visually with significant outliers removed. 

4.3 RESULTS 

4.3.1 Comparative Phenotypic Traits 

A total of 38 phenotypic traits were assessed on all test colonies; 17 at the colony level, 5 at the 

polyp and canal level, 8 at the sclerite level, and 8 optical parameters including chlorophyll 

fluorescence (Tables 4.4 - 7). Of the 192 test colony clippings transplanted, 171 were recovered in 

2011 and standardized to 5 colonies per test block for all subsequent trait assessments. Overall 

431,761 phenotypic measurements/counts were made (2010 & 2011). Survivorship between the 

two sites was considerable with 86.5% and 90.6% for Ridge and Sampela clones respectively and 

no signs of bleaching or predation observed. Only a single block (Sampela shallow transplanted 

from the Ridge, Figure 4.5) was damaged due to accidental human interference such that it was 

excluded from further analyses. The greatest test colony mortality was at Sampela (Table 4.3) 

specifically those transplants from Ridge 1 (SRs), which even with the exclusion of the damaged 

block, still had the lowest survivorship across all tests. Nevertheless, surviving colonies appeared 

healthy, probably by being elevated from reef competition for 12 months. The bivalve Pteria cf. 

tortirostris Dunder 1848 often associated with gorgonians, was present on shallow (SSs = 2; SRs = 

2) and deep (SSd = 2; SRd = 6) clippings at Sampela and a single observation at Ridge  (RSd = 1). 

Treatment 
Mortality 

Survivorship rate 
n % 

Ridge (Source)    

[RRs] Ridge - Ridge shallow 1 4.2 0.958 

[RRd] Ridge - Ridge deep 0 0 1.000 

[SRs] Ridge - Sampela shallow* 11(6) 45.8(37.5) 0.583(0.625) 

[SRd] Ridge - Sampela deep 2 8.3 0.917 

Sampela (Source)    

[SSs] Sampela - Sampela shallow 3 12.5 0.875 

[SSd] Sampela - Sampela deep 2 8.3 0.917 

[RSs] Sampela - Ridge shallow 2 8.3 0.917 

[RSd] Sampela - Ridge deep 1 4.2 0.958 
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Table 4.4. Isis hippuris macro-morphological (colony level) traits of reciprocal transplant and control colony clippings sourced from Ridge 1. Test codes 

defined in Figure 4.2. 

Phenotypic Trait 
Ridge 1 (mean ± SE) 

RRs(10) RRs(11) RRd(10) RRd(11) SRs(10) SRs(11) SRd(10) SRd(11) 

Clipping (cm)         

[H] Height 10.62 ± 0.45 13.45 ± 0.59  10.25 ± 0.41 13.36 ± 0.7 10.12 ± 0.36 12.50 ± 0.48  11.48 ± 0.47 13.67 ± 0.54 

[W] Width 3.03 ± 0.25 4.98 ± 0.43 2.61 ± 0.20 4.20 ± 0.35 2.79 ± 0.30 4.26 ± 0.40 3.06 ± 0.25 3.75 ± 0.30 

[B] Base  0.55 ± 0.03 0.78 ± 0.09 0.54 ± 0.03 0.61 ± 0.04 0.60 ± 0.05 0.86 ± 0.10 0.57 ± 0.03 0.64 ± 0.05 

[TBL] Total Branch Length 51.83 ± 4.24 76.55 ± 6.6 46.35 ± 3.11 65.49 ± 4.7 48.47 ± 4.58 79.60 ± 6.25 47.28 ± 2.97  59.89 ± 4.83 

[ML] Mother Length 8.20 ± 0.43 9.96 ± 0.49 7.90 ± 0.42 9.88 ± 0.62 8.06 ± 0.43 9.40 ± 0.60 8.59 ± 0.53 9.90 ± 0.64 

[MW] Mother Width 1.18 ± 0.17 1.82 ± 0.09 1.03 ± 0.15 1.28 ± 0.16 1.09 ± 0.16 1.72 ± 0.12 1.14 ± 0.14 1.42 ± 0.17 

[DL] Daughter Length 2.85 ± 0.17 3.84 ± 0.21 3.17 ± 0.17 3.86 ± 0.20 3.26 ± 0.22 4.14 ± 0.31 2.83 ± 0.17 3.44 ± 0.18 

[DW] Daughter Width 0.34 ± 0.02 0.38 ± 0.017 0.35 ± 0.03 0.33 ± 0.01 0.33 ± 0.02 0.38 ± 0.03 0.35 ± 0.02 0.35 ± 0.01 

[Bu] Bud # 3.27 ± 0.6 4.13 ± 0.55 3.07 ± 0.64 4.33 ± 0.53 2.58 ± 0.65 3.8 ± 0.52 3.33 ± 0.59 3.0 ± 0.58 

[TB#] Total Branch # 13.67 ± 1.48 18.6 ± 1.54 12.13 ± 0.91 16.07 ± 1.24 12.5 ± 1.45 16.67 ± 1.72 12.67 ± 1.15 13.67 ± 1.17 

[DB#] Total Daughter Branch # 10.53 ± 1.16 14.47 ± 1.3 9.27 ± 0.68 12.47 ± 0.86 9.58 ± 1.10 13.1 ± 0.8 9.80 ± 0.85 10.6 ± 0.84 

[MB#] Total Mother Branch # 3.13 ± 0.38 4.13 ± 0.42  2.87 ± 0.40 3.60 ± 0.51 2.92 ± 0.43 3.56 ± 0.36 2.87 ± 0.34 3.07 ± 0.37 

[c] MB#:TB# 4.76 ± 0.38 4.69 ± 0.32 5.15 ± 0.60 5.60 ± 0.77 4.72 ± 0.40 4.75 ± 0.34 4.85 ± 0.41 4.93 ± 0.40 

[r] Ramification rate 0.268 ± 0.117 0.258 ± 0.060 0.205 ± 0.060 0.230 ± 0.109 

[PA] Projected Area 32.24 ± 3.04 67.34 ± 6.97 27.11 ± 2.62 57.0 ± 6.68 28.46 ± 3.5 53.05 ± 5.21 35.11 ± 3.14 51.71 ± 4.84 

[PBA] Projected Branch Area 43.03 ± 7.09 86.98 ± 10.24 34.0 ± 5.48 56.15 ± 8.65 38.09 ± 7.10 88.69 ± 9.08 38.16 ± 5.2 57.29 ± 8.31 

[Po] Porosity % 87.02 ± 0.26 86.70 ± 0.12 87.03 ± 0.26 89.82 ± 0.80 87.03 ± 0.26 83.64 ± 0.18 87.03 ± 0.26 89.33 ± 0.12 
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Table 4.5. Isis hippuris macro-morphological (colony level) traits of reciprocal transplant and control colony clippings sourced from Sampela.  

Test codes defined in Figure 4.2. 

 

Phenotypic Trait 
Sampela (mean ± SE) 

SSs(10) SSs(11) SSd(10) SSd(11) RSs(10) RSs(11) RSd(10) RSd(11) 

Clipping (cm)         

[H] Height 11.37 ± 0.26 12.9 ± 0.54 11.54 ± 0.34 13.53 ± 0.5 11.31 ± 0.34 12.71 ± 0.49 11.83 ± 0.37 13.90 ± 0.56  

[W] Width 2.82 ± 0.15 3.52 ± 0.25 2.92 ± 0.20 3.50 ± 0.28  2.32 ± 0.16 3.18 ± 0.39 2.79 ± 0.23 3.49 ± 0.41 

[B] Base 0.63 ± 0.02 0.77 ± 0.08 0.61 ± 0.03 0.65 ± 0.05 0.65 ± 0.04 0.97 ± 0.18 0.67 ± 0.04 0.72 ± 0.11 

[TBL] Total Branch Length 54.06 ± 3.94 68.51 ± 7.12 49.28 ± 3.34 70.92 ± 4.22 49.07 ± 5.06 68.03 ± 8.0 47.65 ± 4.01 69.67 ± 7.0 

[ML] Mother Length 8.97 ± 0.49 10.23 ± 0.53 8.82 ± 0.52 10.42 ± 0.55 9.68 ± 0.47  9.48 ± 0.6 10.09 ± 0.50 11.42 ± 0.55 

[MW] Mother Width 0.98 ± 0.17 1.20 ± 0.02 0.98 ± 0.18 1.33 ± 0.20 0.75 ± 0.02 1.16 ± 0.02 0.79 ± 0.18 1.45 ± 0.02 

[DL] Daughter Length 3.93 ± 0.22 4.57 ± 0.26 4.14 ± 0.23 4.85 ± 0.26 4.18 ± 0.26 4.69 ± 0.28 4.18 ± 0.24 4.60 ± 0.28 

[DW] Daughter Width 0.44 ± 0.04 0.41 ± 0.03 0.36 ± 0.03 0.34 ± 0.02 0.34 ± 0.02 0.31 ± 0.02 0.36 ± 0.02 0.32 ± 0.02 

[Bu] Bud # 1.8 ± 0.34 2.27 ± 0.66 1.33 ± 0.42 2.67 ± 0.59 2.2 ± 0.47 2.21 ± 0.52 1.53 ± 0.36 2.8 ± 0.73 

[TB#] Total Branch # 11.6 ± 1.01 15.64 ± 2.7 9.53 ± 0.80 12.6 ± 1.23 11.4 ± 2.16 13.8 ± 1.8 9 ± 0.62 13.2 ± 1.28 

[DB#] Total Daughter Branch # 9.33 ± 0.81 11.8 ± 2.47 7.33 ± 0.61 10.27 ± 0.73 9.27 ± 1.71 10.0 ± 1.1 7.27 ± 0.48 10.6 ± 1.0 

[MB#] Total Mother Branch # 2.27 ± 0.30 3.00 ± 0.47 2.2 ± 0.26 2.73 ± 0.32 2.13 ± 0.48 3.8 ± 1.04 1.73 ± 0.21 2.6 ± 0.34 

[c] MB#:TB# 5.91 ± 0.56 5.78 ± 5.67 4.92 ± 0.51 4.86 ± 0.45 5.8 ± 0.33 5.01 ± 0.37 5.78 ± 0.45 5.83 ± 0.90 

[r] Ramification rate 0.200 ± 0.081 0.146 ± 0.082 0.142 ± 0.083 0.146 ± 0.082 

[PA] Projected Area 31.90 ± 1.65 44.19 ± 4.94 33.49 ± 2.19 47.72 ± 4.48 26.26 ± 1.83 40.77 ± 5.45 33.12 ± 3.08 49.82 ± 6.97 

[PBA] Projected Branch Area 42.15 ± 7.20 61.25 ± 12.53 36.73 ± 7.42 64.45 ± 11.13 43.03 ± 7.99 58.91 ± 12.81 32.81 ± 8.2 62.50 ± 6.41 

[Po] Porosity % 88.90 ± 0.14 87.81 ± 0.23 88.90 ± 0.14 86.66 ± 0.18 88.90 ± 0.14 86.62 ± 0.21 88.90 ± 0.14 86.41 ± 0.19 
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Table 4.6. Isis hippuris micro-morphological traits of reciprocal transplant and control colony clippings sourced from Ridge 1 and Sampela. Test codes 

defined in Figure 4.2. 

 

Phenotypic Trait 

Dimensions (mean ± SE) 

Ridge  

2010 

2011 Sampela 

 2010 

2011 

RRs RRd SRs SRd SSs SSd RSs RSd 

Micromorphology (mm)           

[PD] Polyp Density (cm
-2

) 87.13 ± 2.60 94.63 ±3.07 94.43 ± 6.98 88.56 ± 5.74 95.33 ± 6.03 100.21 ± 5.32 100.77 ± 4.17 102.74 ± 6.61 93.91 ± 4.65 89.15 ± 7.00 

[Pd] Polyp Depth 0.081 ± 0.00 0.074 ± 0.004 0.063 ± 0.002 0.081 ± 0.004 0.064 ± 0.003 0.081 ± 0.001 0.077 ± 0.002 0.066 ± 0.002 0.068 ± 0.002 0.060 ± 0.003 

[pD] Polyp Diameter 0.035 ± 0.00 0.031 ± 0.002 0.023 ± 0.001 0.033 ± 0.003 0.018 ± 0.001 0.030 ± 0.001 0.030 ± 0.001 0.021 ± 0.001 0.033 ± 0.001 0.029 ± 0.001 

[ID] Inter-polyp Distance 0.052 ± 0.00 0.06 ± 0.002 0.060 ± 0.003 0.058 ± 0.003 0.063 ± 0.003 0.055 ± 0.001 0.060 ± 0.002 0.060 ± 0.002 0.057 ± 0.002 0.057 ± 0.003 

[Cd] Canal Diameter 0.02 ± 0.00 0.020 ± 0.002 0.018 ± 0.001 0.019 ± 0.002 0.017 ± 0.001 0.02 ± 0.001 0.018 ± 0.001 0.017 ± 0.001 0.018 ± 0.001 0.019 ± 0.002 

           

Sclerites (mm)           

[CL1] Club Length 1 0.073 ± 0.001 0.072 ± 0.001 0.074 ± 0.002 0.074 ± 0.001 0.073 ± 0.001 0.068 ± 0.001 0.069 ± 0.001 0.069 ± 0.001 0.071 ± 0.001 0.069 ± 0.001 

[CW1] Club mean Width 1 0.021 ± 0.000 0.022 ± 0.000 0.021 ± 0.001 0.022 ± 0.001 0.021 ± 0.001 0.019 ± 0.000 0.018 ± 0.001 0.020 ± 0.001 0.021 ± 0.001 0.019 ± 0.001 

[CL2] Club Length 2 0.072 ± 0.000 0.067 ± 0.003 0.068 ± 0.002 0.071 ± 0.001 0.071 ± 0.001 0.068 ± 0.002 0.068 ± 0.001 0.069 ± 0.001 0.069 ± 0.001 0.068 ± 0.001 

[CW2] Club mean Width 2 0.033 ± 0.000 0.034 ± 0.001 0.032 ± 0.001 0.033 ± 0.001 0.033 ± 0.001 0.031 ± 0.001 0.030 ± 0.001 0.031 ± 0.001 0.031 ± 0.001 0.030 ± 0.001 

[CaL] Capstan Length 0.115 ± 0.004 0.117 ± 0.003 0.116 ± 0.003 0.1143 ± 0.003 0.110 ± 0.002 0.100 ± 0.002 0.104 ± 0.003 0.107 ± 0.002 0.104 ± 0.002 0.104 ± 0.002 

[CaW] Capstan mean Width 0.073 ± 0.001 0.072 ± 0.002 0.072 ± 0.002 0.070 ± 0.002  0.067 ± 0.002 0.066 ± 0.001 0.066 ± 0.001  0.065 ± 0.001 0.066 ± 0.001 0.063 ± 0.002 

[SL] Spindle Length 0.165 ± 0.003 0.176 ± 0.004 0.170 ± 0.004 0.174 ± 0.005 0.165 ± 0.003 0.161 ± 0.003 0.169 ± 0.004 0.168 ± 0.004 0.171 ± 0.005 0.163 ± 0.005 

[SW] Spindle Width 0.067 ± 0.001 0.075 ± 0.002 0.073 ± 0.002 0.071 ± 0.002 0.069 ± 0.002 0.063 ± 0.001 0.063 ± 0.001 0.062 ± 0.001 0.069 ± 0.002 0.065 ± 0.002 
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Table 4.7. Isis hippuris optical parameters of reciprocal transplant and control colony clippings sourced from Ridge 1 and Sampela.  

Test codes defined in Figure 4.2. 

 

Phenotypic Trait 

Dimensions (mean ± SE) 

Ridge 2010 
2011 

RRs RRd SRs SRd 

Optical Parameters       

[ZD] Zooxanthellar Density (cells cm
-2

) x10
6
 6.71 ± 0.33 5.07 ± 0.20 3.39 ± 0.94 4.98 ± 0.58 3.22 ± 0.19 

[MI] Mitotic Index % 1.93 ± 0.16 1.36 ± 0.17 1.92 ± 0.91 2.81 ± 0.51 2.48 ± 0.32 

[Zd] Zooxanthellar mean Diameter (µm) 7.449 ± 0.027 7.767 ± 0.026 7.834 ± 0.027 8.164 ± 0.027 7.859 ± 0.029 

[SA:V] Zooxanthellar SA:V 0.813 ± 0.003 0.779 ± 0.003 0.775 ± 0.003 0.741 ± 0.003 0.771 ± 0.003 

[a*] Chl a Specific Absorption (m
-2 

mg chl a) 0.030 ± 0.005 0.033 ± 0.007 0.028 ± 0.001 0.046 ± 0.005 0.040 ± 0.004 

[A] Chl a Absorbance (µg cm
-2

) 13.72 ± 1.01 12.28 ± 1.88 14.25 ± 3.52 6.34 ± 0.85 6.67 ± 0.61 

[CZ] Chl a Absorbance (pg cell
-1

) 2.19 ± 0.17 2.38 ± 0.35 4.06 ± 0.27 1.58 ± 0.31 2.21 ± 0.25 

[∆F/Fm'] Light Adapted Yield 0.520 ± 0.013 0.564 ± 0.006 0.550 ± 0.006 0.579 ± 0.007 0.587 ± 0.006 

            

Phenotypic Trait 

Dimensions (mean ± SE) 

Sampela 2010 
2011 

SSs SSd RSs RSd 

Optical Parameters       

[ZD] Zooxanthellar Density (cells cm
-2

) x10
6
 5.47 ± 0.20 5.06 ± 0.52 3.05 ± 0.20 5.00 ± 0.43 3.27 ± 0.31 

[MI] Mitotic Index % 2.57 ± 0.17 2.38 ± 0.24 1.82 ± 0.29 1.77 ± 0.27 1.90 ± 0.30 

[Zd] Zooxanthellar mean Diameter (µm) 7.912 ± 0.028 8.213 ± 0.027 8.184 ± 0.027 8.303 ± 0.025 8.127 ± 0.027  

[SA:V] Zooxanthellar SA:V 0.764 ± 0.002 0.737 ± 0.002 0.739 ± 0.002 0.728 ± 0.002 0.744 ± 0.002 

[a*] Chl a Specific Absorption (m
-2 

mg chl a) 0.037 ± 0.003 0.026 ± 0.003 0.026 ± 0.003 0.020 ± 0.002 0.027 ± 0.009 

[A] Chl a Absorbance (µg cm
-2

) 10.93 ± 0.87 11.15 ± 0.51 10.41 ± 0.42 14.38 ± 1.83 10.21 ± 0.85 

[CZ] Chl a Absorbance (pg cell
-1

) 2.04 ± 0.15 2.37 ± 0.27 3.50 ± 0.27 3.12 ± 0.44 3.37 ± 0.31 

[∆F/Fm'] Light Adapted Yield 0.530 ± 0.012 0.537 ± 0.007 0.527 ± 0.006 0.589 ± 0.005 0.580 ± 0.006 
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Results from the full PERMANOVA model across all tests revealed annual, site and depth 

differences with no interaction effects (Table 4.8; Figure 4.6). Principle traits overlaying such 

differences were at the colony (PBA 13%, Bu 9%, PA, TBL & TB# 6% dissimilarity) and chl a 

absorbance levels (A 6% dissimilarity). Models segregated by site show that differences in depth 

and chl a irradiance response [A] from the full model, were specifically attributed to the Ridge 

(Table 4.8; Figure 4.6a,b). Ridge dissimilarities between depth and site averaged 11% for PBA 

and 7% for Bu, PA and A, whereas only the annual difference was significant at Sampela 

primarily being at the colony branching level (PBA 14%, Bu 9%, TB# 6%, TBL 5% 

dissimilarity). These results imply that growth and chl a absorbance efficiency maintain fixed 

and plastic responses of the holobiont phenotype for Sampela and Ridge source colonies 

respectively. To further investigate this, the same statistical model was parsed into each 

phenotypic module (colony, polyp, sclerite and optical dynamics) testing for both within and 

between factor variance (Table 4.8).  

 

Figure 4.6. CAP ordinations of (a) all Isis hippuris phenotypic traits and tests, with the same 

model repeated for (b) the Ridge and (c) Sampela. Test labels 2010 ( ) and 2011 ( ); see table 

4.4 - 7 for vector trait codes.  
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Table 4.8. PERMANOVA of Isis hippuris test colony phenotypic traits. Repetitive analyses 

results on full (all tests and traits) and parsed models between sites (Ridge, Sampela) and 

phenotypic modules (colony, polyps, sclerites and optical parameters). Note, only interactions 

with a significant effect are presented. *P < 0.01, **P < 0.001, ***P < 0.0001, ns, not 

significant. Y, S and D, denotes year, site and depth respectively. 

Source 
  All Tests Ridge Sampela 

df SS pseudo-F df SS pseudo-F df SS pseudo-F 

                    

All Variables 

Year 1 1410.2 33.292
***

 1 799.05 22.427
***

 1 720.5 14.659
***

 

Site 1 471.27 11.126
***

 1 76.658 2.1515
ns

 1 54.257 1.1039
ns

 

Depth 1 1115.66 2.7304
*
 1 1117.25 3.2908

*
 1 74.286 1.5114

ns
 

Total 225 11522  107 4711.1  117 6349.5  

Colony 

Year 1 1962.5 32.364
***

 1 1066.8 22.868
***

 1 934.14 12.391
**

 

Site 1 706.51 11.651
**

 1 43.754 0.93791
ns

 1 84.12 1.1158
ns

 

Depth 1 104.27 1.7195
ns

 1 131.4 2.8166
*
 1 76.697 1.0173

ns
 

Total 225   107 6045.6  117 9462.8  

Polyps 

Year 1 26.016 4.3663
*
 1 21.475 4.0458

*
 1 14.972 2.2393

ns
 

Site 1 18.603 3.1222
ns

 1 0.5288 0.09625
ns

 1 13.532 2.0238
ns

 

Depth 1 7.501 1.2589
ns

 1 4.1891 0.78922
ns

 1 5.17 0.77325
ns

 

Total 225 1371.9  107 564.74  117 788.14  

Sclerites 

Year 1 110.62 8.4485
***

 1 70.468 5.0004
*
 1 47.065 3.7412

*
 

Site 1 443.85 33.899
***

 1 15.792 1.1206
ns

 1 11.916 11.916
ns

 

Depth 1 26.615 2.0327
ns

 1 14.884 1.0562
ns

 1 14.029 14.029
ns

 

Total 225 3456.9  107 1544.3  117 1474.4  

Optical Parameters 

Year 1 1190.7 29.61
***

 1 790.94 18.661
***

 1 785.07 23.491
***

 

Site 1 203.81 5.0682
*
 1 365.71 8.6282

**
 1 40.362 1.2077

ns
 

Depth 1 249.62 6.2075
*
 1 200.95 4.7411

*
 1 121.26 3.6284

ns
 

YxS 1 383.72 9.5422
**

 1 335.96 7.9264
**

 1 53.075 1.5881
ns

 

YxD 1 324.82 8.0775
**

 1 241.63 5.7008
*
 1 143.49 4.2936

*
 

SxD 1 53.949 1.3416
ns

 1 30.831 0.7274
ns

 1 34.472 1.0315
ns

 

YxSxD 1 36.672 0.91195
ns

 1 -11.222 - 1 2.4987 0.074766
ns

 

Total 225 11201  107 6150.8  117 4856.7  

Optical Parameters: 2-Factor Model 

Site 1 203.81 4.2269
**

 1 365.71 6.8263
**

 1 40.362 0.98718
ns

 

Depth 1 249.62 5.1772
*
 1 200.95 3.751

*
 1 121.26 2.9658

*
 

Total 225 11201  107 6150.8  117 4856.7  
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Figure 4.7. Isis hippuris morphological traits with: (a) CAP ordination of all test traits. Reaction 

norms of annual growth (adjusted for positive association, see equation 1) for branching parameters 

between 2010 - 2011 with (b) the projected branch area [PBA], (d) the projected colony area [PA], 

(f) the total branch length [TBL]. Reaction norms of (c) bud number and (e) total branch number 

[TB#]. Factor level labels 2010 ( ) and 2011 ( ), Ridge (
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Colony Morphometrics 

Colony growth was one of the principal drivers of annual site differences (see Table 4.4 - 5 & 

4.8), typically greater for Ridge colonies with a notable reduction at depth (Figure 4.7b, f). 

Correction for positive association through annual growth (Eq.1; Figure 4.7) reveals both growth 

rate and colony form was relatively preserved in Sampela colonies compared to those from the 

Ridge. Initial bursts in branching and bud number are likely attributed to increased resource 

allocation to colony growth and form (Figure 4.7c, e). Reaction norms reveal VG and VE 

variance, particularly for budding and less so for total branch number. Total branch length 

accounted for the variability in projected branch area, mirroring the pattern of greater to reduced 

branching intensity for Ridge source colonies with increased depth (as a function of light 

intensity). To a far lesser extent was the opposite true for Sampela, increasing branch length 

with increased light attenuation, highlighting a clear VGxE interaction between the two 

morphotypes (Figure 4.7b, f). Projected area (PA) remained constant for Sampela yet varied 

slightly for the Ridge, likely a reflection of differential growth; finally, VG existed between both 

source colonies with environmentally induced plasticity at Sampela shallow for Ridge colonies 

(Figure 4.7d). Trait dissimilarities were similar however for both sites (PBA 15% and 18%, Bu 

11% and 12% for Ridge [also with PA 9%] and Sampela with TB# & TBL at 7%) often 

juxtaposing each other as with the case of PBA and TBL (VGxE). Branching trait integration 

probably explains such differences, particularly facilitating Ridge colony plasticity relative to 

increased water flow and differential light availability. Branching trait integration was also 

evident in the parameter c, which remained constant, with no evidence for dissimilarity between 

tests in alignment with previous studies (Table 4.4 - 5; Sánchez 2004). Branch width was not as 

independently influential as branch length and number, but was reflected in PBA. Taken 

together, within phenotypic module integration between branching traits was evident in the 

differential morphotype responses to environmental change. 
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Polyps 

Little variation in polyp dimensions was observed with only an annual significant difference at 

the Ridge (Table 4.8). On average there was 85% dissimilarity due to polyp densities in Ridge 

colonies irrespective of a clear reduction in polyp density in Sampela transplants at the Ridge 

(Figure 4.8b; Table 4.8). Thus, there appears to be a similar response to depth by both source 

colonies at the opposite environment suggesting additional nutritional factors are of influence as 

well as a VExG interaction. Furthermore, both polyp density and diameter reduced at depth 

specifically at the Ridge, but with only minimal influence on the analyses for the latter (pD; 

Table 4.6). Polyp depth was considerably reduced in nearly all but one of the transplant blocks 

(Figure 4.5). This block was omitted from the remainder of the analyses due to disturbance (see 

above), however it is noteworthy that two of the three remaining clippings were externally 

brooding pink eggs also observed in the surrounding native reef colonies (Figure 4.5), but not 

present on any other reef within the area, only Sampela. Dissection also revealed the presence of 

eggs within polyps of 2 control colonies (see SSs polyp depth; Table 4.6) in 2011, yet eggs were 

regularly encountered within source colony polyps in 2010 with no site preference suggesting 

resource allocation to growth not reproduction in 2011.  

 

 

 

Figure 4.8. (a) CAP ordination of Isis hippuris polyp dimensions with (b) reaction norms of polyp 

density as the most variable trait observed. Factor level labels 2010 ( ) and 2011 ( ), Ridge (
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 Sclerites 

Variations in sclerite dimensions were primarily in coenenchyme surface capstans and 

subsurface spindles, with dissimilarities of SL 24 and 29%, CaL 19.5% and 17%, SW 13% and 

12%, CaW 13 and 10% for Ridge and Sampela respectively (Figure 4.9). A consistent decrease 

in sclerite size with reduced irradiance was observed for all tests, most markedly with spindle 

length and within colonies particularly from the Ridge (Figure 4.9b, c).  Most notable, however, 

was the consistency in reduced size in all sclerites from Sampela suggesting VG and VE in both 

cases.  

 

 

Figure 4.9. Isis hippuris annual sclerite size distribution across all tests. (a) CAP analyses of 

sclerite variation with prominent vectors represented as reaction norms for (b) capstan, and (c) 

spindle dimensions. Sclerite (see Table 4.6) and test codes are 2010 ( ) and 2011 ( ), Ridge 
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Optical Parameters 

The influence of light-dependent phenotypic responses was most apparent on Ridge source 

colonies  (Table 4.8; Figure 4.10). Significant main effects of both full and site-specific optical 

 

Figure 4.10. Optical parameters from test colonies with CAP constrained ordinations of (a) Ridge 

and, (b) Sampela. Reaction norms of principal driver traits including chl a absorbance normalised 

to (c) surface area, (d) per zooxanthellar cell, (e) zooxanthellar density and (f) mitotic index. Test 

codes are: deep ( ) and shallow ( ), Ridge (
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trait PERMANOVA models were countered by interactions between year x depth for both sites 

in addition to year x site for the Ridge (Table 4.8). This suggests that the differences between 

source colony responses to environmental change were variable; neither adjusting to the same 

magnitude nor in the same way when placed in the opposite environment (Figure 4.10). Pairwise 

differences were significant between sites in both years (P ≤ 0.01), depth in 2011 (P < 0.0001), 

and depth within sites (P ≤ 0.04). Naturally, pairwise comparisons revealed no difference 

between depths in 2010 considering all source colonies were selected at shallow optical 

equivalent depths (Figure 4.3d). Therefore, a two-factor model was constructed, omitting the 

factor ‘year’. This confirmed pairwise comparisons for depth at both sites on transplantation, but 

no difference within Sampela colonies suggested a consistent response to reduced irradiance by 

depth irrespective of location or colony source (Table 4.8). Average dissimilarities across all 

tests in alignment with CAP vector overlays were A 30% and 27%, CZ 24% and 24.5%, MI 18% 

and 21%, and ZD 22% and 21% for the Ridge and Sampela respectively. Chl a concentration 

[A] increased with irradiance being consistently lower in Sampela colonies until transplanted to 

the shallow Ridge and vice versa, with a stronger response from Ridge colonies to Sampela 

(Figure 4.10c). This would suggest a VGxE interaction response between I. hippuris holobionts 

across the two sites. Chl a per cell [CZ] increased with depth in both cases but also dropped 

considerably in Ridge transplants to Sampela and increased from Sampela to Ridge at both 

depths (Figure 4.10d).  

Overall, reaction norms demonstrate magnitudinal differences indicating VG and VE responses 

between holobionts to environmental change. Zooxanthellae cell density [ZD] drove differences 

between depth but not site, both morphotypes responding similarly to their environments 

indicating a VE and VGxE interaction, i.e., plastic response (Figure 4.10e). Cell division was 

greater at Sampela irrespective of colony origin, being most dramatic in Ridge colonies (Figure 

4.10f). Furthermore, zooxanthellar cell size was slightly larger at Sampela irrespective of 

treatment: average 8.2 µm and 7.8 µm for Sampela and Ridge respectively. Zooxanthellae SA:V 

was inversely related to cell density at the Ridge providing greater diffusion efficiency. Coupled 

with pigment concentration and density, this provides no evidence for self-shading through 

packing in test colonies from the Ridge at depth. Zooxanthellae SA:V in Sampelan colonies 

however, were relatively unresponsive to environmental change with consistently larger cells 

(Table 4.7). Chl a specific absorption [a*] appeared to have little effect on Sampela
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Figure 4.11. Phylograms of Symbiodinium clades based on neighbour joining (NJ), bayesian 

inference (BI), and maximum likelihood (ML) analyses (1000 bootstrap) of the (a) mitochondrial-

encoded cytochrome oxidase COX1 region (Takabayashi et al. 2004), unrooted trees (NJ/ML) of 

(b) the plastid-coding psbA minicircle, and (c) the internal transcribed spacer (ITS) region. Red 

bars and letters indicate clade D GenBank sequences. Scale bars correspond to base changes per 

site. 
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colonies decreasing with depth at the Ridge, the latter also the case with Ridge colonies plus a 

consistent increase on transplantation to Sampela for both depths (Table 4.7). Effective quantum 

yield [∆F/Fm’] in light-adapted (in situ) colonies revealed an increase in those transplanted to 

and from Sampela with only a slight decrease at the native depth (Table 4.7).  

Taken together, in virtually all optical traits the response to transplantation was greater and/or 

more variable in colonies from the Ridge, further corroborating an increased plastic response of 

the Ridge holobiont to environmental change compared to a somewhat more restrained and 

often contrasting response within Sampelan colonies.  

Environmental Parameters 

With no annual differences between measured abiotic traits all DISTLMforward analyses were 

performed on within (depth) and between site differences based on reduced test models as 

outlined in Table 4.8. Results comparing all phenotypic traits within and between sites showed 

that light (Kd(PAR)), water flow and turbidity explained 69.2% of test colony differences. 

Segregation by source colony site revealed that water flow, light (Kd(PAR)) and turbidity 

explained 57.5% for Ridge colony differences and that sediment, light (Kd(PAR)) and water flow 

explained 69.5% for Sampela source colonies. These patterns were consistent for all phenotypic 

module and integrated trait analyses.  

Symbiodinium Genetic Analyses 

Symbiodinium were identified using the mitochondrial marker COX1, rDNA ITS2, and the 

plastid-coding psbA minicircle. A total of 186 COX1 sequences were recovered for phylogenetic 

analyses with previously published results (Table 4.2; Figure 4.11). Without exception all 

sequences were a novel strain of D1a, differing by only a single base pair from previously 

published results (Takishita et al. 2004; Figure 4.11). Of the 80 ITS2 cloned sequences 

recovered, there included no less than 7 for each test, a total of 9 haplotypes with 1 - 6 bp 

difference between them and 1-11 bp difference from previous studies (Table 4.2), and thus also 

novel. Sequenced clones from the psbA marker totaled 46 with 4 or more clones for each test 

and 5 haplotypes 1 - 2 bp apart with 1 - 3 bp difference from previous work (D1a, Takishita et 

al. 2003). No patterns of annual, site or depth specificity were present between haplotypes for 

either marker. Of the three gene regions and methods utilized in this study, there was no 

evidence of symbiont shuffling within the I. hippuris holobiont across all tests.  
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Table 4.9. Phenotypic trait correlation table with Ridge above the diagonal and Sampela below. 

Values indicate:  0.7 very strong positive correlation, 0.4 to 0.69 strong positive correlation, 

0.20 to 0.39 weak to moderate positive correlation, -0.19 to 0.19 negligible,  -0.20 to -0.39 weak 

to moderate negative correlation, -0.4 to -0.69 strong negative correlation,  -0.7 very strong 

negative correlation. Trait codes see Tables 4.5-7. 

 

Multivariate Analyses of Integration 

Multivariate analyses revealed 14 prominent phenotypic traits within and between I. hippuris 

morphotypes that drive the differences between tests; PBA, Bu, PA, TBL, TB#, PD, CaL, CaW, 

SL, SW, A, ZD, CZ, and MI. These traits were isolated and re-modeled confirming their 

distributional influence (year: pseudo-F 24.111/16.21, P < 0.0001 Ridge and Sampela; with 

additional site; pseudo-F 3.001, P < 0.03 and depth: pseudo-F 3.7882, P < 0.01 for the Ridge), 

as were the remaining traits as a likely indication of canalised integration confirming 

magnitudinal trait differences within and between the two morphotypes (site: pseudo-F 13.084,  

 TB# TBL Bu PA PBA PD SL SW CaL CaW A CZ ZD MI% 

               

TB# 1 0.739 0.395 0.576 0.735 -0.140 0.062 0.126 -0.004 -0.013 -0.280 -0.192 -0.054 0.017 

               

TBL 0.721 1 0.285 0.693 0.865 0.004 0.350 0.395 0.119 0.057 -0.224 -0.113 -0.103 -0.055 

               

Bu 0.339 0.279 1 0.319 0.309 -0.102 0.156 0.116 0.002 -0.067 -0.232 -0.166 -0.045 0.019 

               

PA 0.476 0.733 0.222 1 0.632 -0.100 0.238 0.401 0.080 -0.123 -0.281 -0.054 -0.274 -0.099 

               

PBA 0.756 0.904 0.256 0.607 1 -0.031 0.112 0.248 -0.002 0.004 -0.245 -0.167 -0.059 0.024 

               

PD -0.166 -0.103 -0.029 -0.166 -0.095 1 0.226 0.089 0.065 0.007 -0.048 -0.061 -0.003 0.017 

               

SL 0.303 0.434 0.196 0.264 0.349 -0.203 1 0.689 0.440 0.198 -0.081 -0.075 -0.002 -0.061 

               

SW 0.313 0.387 0.119 0.265 0.330 -0.067 0.703 1 0.350 0.332 -0.020 0.065 -0.128 -0.208 

               

CaL 0.071 0.077 0.230 0.127 0.009 -0.066 0.154 0.155 1 0.482 0.145 0.030 0.124 -0.225 

               

CaW -0.021 0.027 0.126 0.083 -0.039 -0.003 0.331 0.345 0.559 1 0.142 0.075 0.062 0.090 

               

A 0.148 0.209 0.006 -0.011 0.212 0.275 -0.060 0.172 -0.218 -0.078 1 0.751 0.207 -0.110 

               

CZ 0.171 0.318 0.047 0.164 0.286 0.224 -0.040 0.095 -0.098 -0.087 0.714 1 -0.487 -0.067 

               

ZD -0.073 -0.209 -0.073 -0.262 -0.158 0.036 -0.024 0.072 -0.127 0.027 0.192 -0.548 1 -0.061 

               

MI% -0.120 -0.230 -0.032 -0.156 -0.203 -0.036 -0.007 -0.087 -0.092 -0.096 -0.124 -0.280 0.244 1 
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P < 0.0001). Tests of within and between trait integration, which act to delimit I. hippuris 

morphotypes across sites, were modelled through covariance matrices (Table 4.9) corroborating 

vector values throughout the analyses. Phenotype module (colony, polyps, sclerites, and optical 

parameters) vertices were all significantly correlated within and between other modules with the 

consistent exception of polyps (Figure 4.12; Table 4.9). Polyps were the most weakly correlated 

trait, particularly at the Ridge, with those present typically responding differently, if at all, 

between the two sites/morphotypes to environmental change (polyps to sclerites and optical 

parameters). A similar scenario existed between colony responses and optical parameters with 

pigment densities positively correlated at Sampela. Colony level traits were moderately well 

correlated with sclerites regards both sites. Sclerites had a weak negatively correlation with chl a 

pigmentation [A] at Sampela and mitotic index [MI] at the Ridge, yet doubtful that such 

associations have any meaning in terms of integration. Typically stronger in Sampela chl a 

cellular pigment density [CZ] was positively correlated with [A] yet both having a weak negative 

association with ZD, suggestive of self-shading. Generally the majority of correlations between 

phenotypic modules were weak with some in contrast which tends to suggest a lack of 

coordination in development and growth between the two morphotypes and limited integration 

between phenotypic modules.  

 

Figure 4.12. Phenotypic module integration models of Isis hippuris morphotypes from (a) Ridge, 

and (b) Sampela. Line key: (       ) very strong to strong correlation,((        ) weak to moderate 

correlation, (           ) and grey lettered modules are negligible, (+/-) positive/negative correlation. 



123 

4.4 DISCUSSION 

Previous research revealed that I. hippuris morphotypes within the WMNP were genetically 

segregated, strongly suggesting ecological divergence between healthy and anthropogenically 

impacted reefs (Chapter 3). Here, differential responses to environmental change illustrate 

phenotypic plasticity in healthy reef morphotypes, with reduced trait variability in colonies from 

the impacted reef, suggestive of genetic differentiation (VG) or genotype-by-environmental 

interactions (VGxE) between most traits. Specifically, colonies parsed annually primarily due to 

growth and source colony differences. With the exception of optical traits, all bathymetric 

differences were at the Ridge at the colony and chl a absorbance levels. Irrespective of test, 

Sampela clones did not differ significantly between sites or depth; again with the exception of 

optical traits largely driven by chl a absorbance levels. Most striking however was the lack of 

polyp, and to a lesser extent, sclerite differentiation between tests expressing trait canalisation 

particularly at the primary module level (polyps sensu stricto). Optical trait parameters were 

highly variable particularly in Ridge clones, yet Symbiodinium cladal type remained unchanged 

across all test colonies indicative of both plasticity capacity yet under some degree of host 

control. Trait integration was largely at the within phenotypic module level indicative of residual 

influences (e.g., developmental, trophic, and the cumulative effect of low variable traits) within 

and between traits. Such patterns coupled with known genetic differences and low dispersal 

properties (Chapter 3) make pertinent two notions; that I. hippuris morphotypes have 1) a high 

plasticity capacity as seen in Ridge colonies which, 2) over time through continual 

anthropogenic encroachment is resulting in incipient ecological divergence gradually leading to 

phenotypic canalisation at the module level in Sampela colonies. Therefore, two genetic and 

phenotypically divergent lineages partition at opposite ends of an environmental cline largely 

driven by differential light attenuation, hydrodynamics and poor dispersal, all likely exacerbated 

by anthropogenic influence at Sampela itself semi-lagoonal. 

4.4.1 Isis hippuris Plastic or Fixed? 

Results for the first objective demonstrate clearly that I. hippuris morphotypes within the 

WMNP show differential phenotypic responses in contrasting reef environments. Tests of local 

adaptation through reciprocal transplant experiments suggest phenotypically plastic colonies 

from the Ridge and incipient ecological divergence in Sampelan residents, the latter relatively 

insensitive to environmental change. Such patterns basically indicate that I. hippuris is 

inherently plastic, yet at Sampela may possibly have become functionally overwhelmed through 

prolonged anthropogenic disturbance leading to a breakdown in evolutionary capacitance 

(accumulated cryptic genetic variation). Fixation of adaptive cryptic variation over that of 
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random mutations, lead to genetic assimilation of the adaptive phenotype through epigenetic 

heritability. Separate adaptive fitness peaks through ecological niche specialization start to 

emerge. Peaks become further reinforced by the actions of pleiotropy, linkage disequilibrium or 

concerted evolution (Sánchez & Lasker 2003, Naidoo et al. 2013) as well as a reproductive 

strategy that overrides processes such as genetic drift and migration in an inherently plastic 

phenotype over time (Levene 1953, Hereford 2009, Blanquart et al. 2013). Thus, local 

adaptation at Sampela enhances diversity whereby selection in a novel environment may 

eventually supersede other evolutionary forces should conditions persist.  

Resilience to environmental change will naturally be reflected in a population’s ecology and 

survival, with habitat-dependent phenotypes showing immigrant inviability on transplantation 

(Prada & Hellberg 2013). I. hippuris test clones from Sampela were robust to environmental 

change, suggesting that a robust phenotype may be evolving in, and to, an anthropogenically 

compromised environment. This scenario has been observed in other taxa (e.g., Barshis 2009, 

Bellantuono et al. 2012), whereby low cost adaptation is reflected in weak or absent functional 

trade-offs (Hereford 2009). Conversely, greater plasticity as seen in Ridge residents leads to 

functional trade-offs on transplantation to degraded shallow reefs irrespective of accidental 

human interference. Thus, even when controlled for competition through block elevation and 

clipping distance, I. hippuris phenotypes from the Ridge have greater habitat dependency for 

shallow clear water reefs, exhibiting less survivorship under environmental change. Divergence 

in trade-off necessity between morphotypes, therefore provide further evidence for the onset of 

ecological speciation (Rundle & Nosil 2005) with Sampela residents relatively resilient to 

environmental change. 

Plasticity capacity is shaped by natural selection leading to genetic stability through genetic 

assimilation in a stress-induced phenotype and may further lead to genetic incompatibility with 

non-native I. hippuris corals. However, this idea appears unlikely at this point, due to the 

presence of eggs on disturbed transplanted clones at Sampela from the Ridge. Test colonies 

were externally brooding pink eggs, also observed in the surrounding native colonies, but not 

present on either test control or colonies within the area. This suggests the presence of 

waterborne exudates inducing coordinated reproductive activity between colonies only at 

Sampela and that such exudates remained functional at the induction level. However, post 

zygotic isolation between source and transplanted colonies is still not out of the question, 

warranting further investigation. Nonetheless, it may be interpreted that resources in the 

clippings on the disturbed block, were allocated to reproduction for survival whereas all other 
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test colonies were in a state of juvenile growth – note that the presence of eggs in 2010 source 

colonies discounts the notion that all were male. Time to sexual maturity in these animals is 

unknown, however it is not unlikely that sexual maturity is typically limited to ~20 cm in height, 

previous years being dedicated to growth as seen in other gorgonians (e.g., Brazeau & Lasker 

1990, Coma et al. 1995, Beiring & Lasker 2000) in order to establish the colony.  

4.4.2 Isis hippuris Holobiont Responses 

For the second objective, tests of divergence through local adaptation using reciprocal transplant 

experiments, demonstrated differential physiological responses of I. hippuris morphotypes 

within the WMNP in contrasting reef environments. Annual growth accounted for multivariate 

model differences, yet when adjusted for positive association, revealed clear colony (viz., 

branching) plasticity at the Ridge particularly across bathymetry. Reductions in colony porosity, 

branch articulation (TB#, Bu#), and chl a absorptance (A, CZ) with increased branch length 

primarily in transplants to Sampela maximizes light capture, reducing self-shading as well as 

sediment settlement typical of low light and water flow environments (Kawaguti 1943, Shaish et 

al. 2006). Functional integration at the morph-optical trait level is only moderately correlated, 

however, opposed between I. hippuris morphotypes. Similarly, polyp density was only weakly 

correlated with optical traits at Sampela, with a slight reduction on transplantation to the Ridge, 

which may be concomitant with reduced allochthonous food sources and/or differential light 

availability. Low polyp densities are typically encountered in low light (as a function of depth) 

environments (West et al. 1993, Kim et al. 2004, Prada et al. 2008, Prada & Hellberg 2013), 

possibly a regulatory mechanism to reduced resource availability. Overall, fine-scale differences 

within polyp and canal dimensions, particularly at depth, with concomitant variations in 

zooxanthellae and pigment densities, are further indicative of dynamic shifts in resource reliance 

at the optical and colony level facilitating the additive effect of polyps (module sensu stricto) as 

a growth response and primary resource facilitator.  

Colony growth and form are dependent on feeding strategy, with the same genotype often 

showing differential resource allocation patterns (hetero/phototrophic capacity) in different 

environments (Sebens 1997, Poorter & Nagel 2000, Weiner 2004). The relative dependency of 

phototrophy and heterotrophy in I. hippuris morphotypes in the different environments have, 

however, likely shifted without significant changes in endosymbiont or, as in the case of 

Sampela, phenotype. Previous work revealed species specificity in octocoral heterotrophic food 

source with I. hippuris from the Seychelles and the Great Barrier Reef only feeding on 

bacterioplankton and curiously low photosynthetic rates (Sorokin 1991). This implies minimal 
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resource translocation, yet results presented here are in agreement with bio-optical and bio-

physical values for other cnidarian taxa (e.g., Falkowski & Dubinsky 1981). Moreover, 

holobiont metabolism can be profoundly affected by light (Baker et al. 2011), sedimentation 

(Riegl & Branch 1995) and nutrient enrichment (Risk et al. 2009), which often act in 

exacerbated concert (e.g., Baker et al. 2011).  

The sclerites of gorgonian corals are suggested to be most susceptible to selection through 

environmental change (Bayer & Stefani 1987, West et al. 1993, West 1997, Prada et al. 2008; 

but see Skoufas 2006). Here, only subtle variations in coenenchyme surface and subsurface 

capstans and spindles respectively occurred within the test period. Notably, the sclerites of the 

Sampelan clones remained consistently smaller in size reducing further at the Ridge. A decrease 

in calcification through reduced photosynthate translocation may account for this growth 

reduction in Sampela transplants to the Ridge, in addition to a greater former reliance on 

heterotrophic feeding through nitrogenous and allochthonous sources at Sampela. Utilization of 

various nitrogenous sources (e.g., nitrate, nitrite, ammonium) can also increase zooxanthellae 

densities (Muscatine et al. 1989, Fagoonee et al. 1999) and subsequent fixed carbon production 

through increased photosynthetic efficiency (Koop et al. 2001, Lesser et al. 2010). Furthermore, 

nitrogenous compounds stimulate calcification with or without light (Crossland & Barnes 1974). 

Thus the mutual exchange of photosynthetic carbon and nitrogen (whether from the host and/or 

eutrophic sea water) likely act synergistically in the formation of skeletal elements and growth, 

which may account for reduced sclerite growth when removed from high nutrient waters in 

adapted I. hippuris phenotypes. Therefore, assessing energy apportionment within and between 

I. hippuris morphotypes, endosymbionts, and the environment using comparative stable isotope 

analyses (δ
13

C and δ
15

N) would greatly elucidate energy transfer roles and thus, differential 

trophic allocation as a mechanism of phenotypic plasticity and divergence to environmental 

change. 

The consistency in reduced sclerite size of and to Sampela may be host regulated, enhancing the 

internal light field under reduced pigment density in order to maintain overall absorption 

efficiency (Schlichter et al. 1986, Stambler & Dubinsky 2005, Enríquez et al. 2005). Dynamic 

stability was further established in Sampela colonies with evident adjustments in Ridge 

transplants to Sampela. Moreover, the effective quantum yield (∆F/Fm’), expressing the 

variation in PSII photochemical efficiency under ambient light (in situ; the capacity to use the 

absorbed light energy), was relatively invariable with slight increases in colonies transplanted to 

and from Sampela. Assessing light-adapted fluorescent yield is on an immediate time scale and 
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does not depict reaction centre dynamics which may be disrupted mirroring the >50% pigment 

loss in Ridge transplants to Sampela (see Dove et al. 2006). Therefore, to assess light absorption 

efficiency and utilization (= photosynthesis), in situ rapid light response vs. irradiance (PAR) 

curves would reveal if morphotypes differentially modify non-photochemical quenching, 

maintaining constant photoacclimatory operating efficiency in their respective environments 

(Hennige et al. 2008). 

All test colonies exhibited identical patterns in zooxanthellae density, specifically reductions 

with increased bathymetry irrespective of site. This suggests regulation through irradiance and 

anatomical-specific carrying capacity particularly considering a concomitant reduction in colony 

growth and area with depth, also previously noted in scleractinians for seasonal irradiance (Fitt 

et al. 2000, Warner et al. 2002) and nutrient shifts (Fagonee et al. 1999). Typically, 

photoacclimatory responses to heterogeneous irradiances involve variations in chl a 

concentrations at the cellular level (Falkowski & Dubinsky 1981, McCloskey & Muscatine 

1984, Porter et al. 1984, Fitt & Cook 2001). In this study, chl a absorbance efficiencies (A, CZ) 

were positively correlated. Characteristic increases in light absorption efficiency via greater 

pigment density at depth (McCloskey & Muscatine 1984, Porter et al. 1984, Enriquez et al. 

2005, Lesser et al. 2010) were evident only in Ridge residents, the inverse being true in Sampela 

clones, further homogenised at the cellular level indicative of photoadaptation over time. 

Interestingly, however, Ridge transplants to Sampela revealed clear photoacclimatory responses 

to variable irradiance levels through both optical and morphological trait adjustment. Increased 

branch and chl a per cell densities are typical photoacclimatory responses to increased light 

attenuation in Scleractinia (Falkowski & Dubinsky 1981, McCloskey & Muscatine 1984, Porter 

et al. 1984), yet the opposite was largely true for these gorgonian Ridge transplants. A 

combination of reduced branch density and > 50% reduction in chl a concentration indicate 

stress responses to increased irradiance. But a reduction and maintenance in chl a densities per 

cell in shallow and deep test colonies respectively, concomitant with increased total branch 

length and overall reduced articulation suggest stress responses to increased irradiance are either 

masked or exacerbated by elevated nutrient levels and sedimentation at Sampela. Nevertheless, 

absorbance through pigment density at Sampela may indicate the onset of genetic 

accommodation demonstrated by an evolutionary shift in slope elevation of the reaction norm 

(Aubin-Horth & Renn 2009). Photoacclimatory control within the I. hippuris holobiont may 

therefore lie to some degree with the host particularly considering enhanced physiological 

performance in free-living Symbiodinium (e.g., Enríquez et al. 2005). However, 

photoacclimation in effective antennae-absorption is relatively conserved across certain 
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Symbiodinium cladal types, modifications present at the biophysical level (A - B, F; Hennige et 

al. 2009). Whether this is the same for clade D variants is unclear requiring investigations into 

PSII light curve interception to elucidate if endosymbionts within I. hippuris morphotypes 

differentially modify non-photochemical quenching to maintain constant photoacclimatory 

operating efficiency in alternate environments (see Hennige et al. 2008). The dynamic interplay 

between host-symbiont regulatory roles leading photoacclimatory capacity within the holobiont 

is fascinating (reviewed by Yellowlees et al. 2008, Davy et al. 2012, Fay & Webber 2012, 

Lesser et al. 2013) yet outside the scope of this study. 

Photoacclimation combining optical and morphological traits can be seen in the increase of a* in 

Ridge clones when transplanted to Sampela. Here, results strongly suggest that multi-scattering 

of the local light field and enhanced incident radiation capture were facilitated through the 

intricate geometry of the sclerites and axis. This down regulation of light absorption efficiency 

through reduced pigment density (Enriquez et al. 2005), coupled with increased zooxanthellae 

cell division (MI) is indicative of increased nutrient load and heterotrophic uptake (Fitt & Cook 

2001, Davy et al. 2012). The generally small (cf. Wilkerson et al. 1988) zooxanthellae cell size 

and SA:V in Ridge colonies compared to Sampela started to increase in size on transplantation, 

emulating that of Sampela residents. Such subtleties maybe supportive of more variable trait 

responses, or may simply reflect increased intracellular space through reduced symbiont cell 

density at Sampela. Cell division and size vary with depth and coral taxa, previously negatively 

correlated (Wilkerson et al. 1988); yet the opposite is the case in I. hippuris. Symbiodinium cells 

between host morphotypes were consistently 5% larger within the Sampela holobiont but 

reduced to < 1.4% difference due to an increased cell size in Ridge transplants to Sampela, 

suggesting non-heritability within the Ridge. However, heritability or the onset of is unlikely in 

Sampela clones - contrasted with those noted in Jamaican scleractinians (Schoenberg & Trench 

1980) - considering the invariable Symbiodinium cladal types across all test taxa. Taken 

together, Sampela clones showed a repetitive level of dynamic stability in optical and overall 

phenotypic traits across all tests, delimiting them from Ridge colonies. Photoacclimatory 

responses at the physiological and morphological level facilitated Ridge colonies at Sampela, 

likely unaccustomed to high nutrient, sedimented and low water flow environments further 

exacerbated by variable irradiance levels interacting with the light absorbing and scattering 

properties of the water itself (Stambler & Dubinsky 2005) and its elevated particulates (Porter 

1976).  
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4.4.3 Endosymbiont Specificity 

Resource allocation structure within the I. hippuris holobiont maximises fitness through 

physiological optima set by a novel Symbiodinium clade D1a. Technological advances reveal 

multiple cryptic endosymbiont types providing acclimatory ‘flexibility’ to environmental change 

in 39 scleractinian species (Silverstein et al. 2012 see also Putnam et al. 2012). Yet clear coral-

algal specificity within the I. hippuris holobiont was evident with little genetic variation across 

highly variable (ITS2, psbA) and relatively conserved (COX1) molecular markers. Host-

symbiont specificity is not uncommon in Octocorallia (Goulet & Coffroth 2003, van Oppen et 

al. 2005, Goulet 2006, Goulet et al. 2008, Baker & Romanski 2007) and has been attributed to 

an assumption of reduced autotrophic dependence within this group (Baker & Romanski 2007, 

but see Sorokin 1991). As stated, relative trophic structure is undetermined in I. hippuris 

colonies within the Wakatobi, however harbouring putatively stress tolerant clade D1a 

Symbiodinium (Jones et al. 2008, LaJeunesse et al. 2009, Stat & Gates 2011, but see Abrego et 

al. 2008) likely adds to the holobiont biological success, host-symbiont phylotype specialists 

apparently the most resistant to environmental stress (Putnam et al. 2012). Contrary however, is 

the currently perceived opportunistic (Stat & Gates 2011) or parasitic (Sachs et al. 2011, Lesser 

et al. 2013) nature of clade D. Tests of Symbiodinium diversity and reciprocal metabolic 

pathways within the holobiont using next generation sequencing and predictive modeling 

(PRMT; Larsen et al. 2011a) would determine both cryptic symbiont communities and 

metabolic interactions that structure holobiont trophic adaptations across environmental 

gradients. Resulting metabolic hypotheses may then be addressed through metabolic profiling, 

providing strong insights into integral metabolic links within the coral-Symbiodinium symbiosis, 

further elucidating nutrient cycling and the role of endosymbiont(s) in response to 

environmental change (Larsen et al. 2011b). 

4.4.4 Isis hippuris Trait Integration 

In order to test the theoretical framework of local adaptation leading to divergent selection 

through the action of environmental perturbation, the suite of phenotypic traits considered were 

summarised into phenotypic modules with topological equivalent traits driving the overall 

distributions determined. In the final objective, significant trait integration was greatest within, 

yet low between, phenotypic modules, likely indicative of residual errors (Verror) through 

developmental, trophic, and the cumulative effect of low variable traits. These factors as well as 

optical dampers such as mycosporine-like amino acids (MAAs; Gates et al. 1995, Lesser & 

Farrell 2004) and green fluorescent proteins (GFP; Dove et al. 2006) may also contribute to the 

residual variance (Hageman et al. 1999) between phenotypic correlates. Furthermore, 
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developmental covariance between traits, coupled with the action of pleiotropy can lead to 

covariance of seemingly unrelated traits. Tests of conditional dependence/independence (partial 

correlation coefficients; Magwene 2001, Sánchez & Lasker 2003, Wille & Bühlmann 2006) may 

yield insight into the relative integration within and between phenotypic traits and how they 

associate under environmental change. However, as evident in tables 4.4 - 7, 4.9 and respective 

phenotype module figures, the collective effect of each trait likely pull together even in synergy 

to determine the overall phenotype at any one point in time and space (Blanquart et al. 2013). 

Thus, an integrated trait cascade effect may act in unison – it is of interest that omission of 

primary traits on the same multivariate modules yield identical results. Hence, such traits may 

act as facilitators, by-products of the main adaptive traits or an interaction of the two, the former 

consequential of the latter (Gould & Lewontin 1979). In sum, trait integration was typically 

higher within Ridge sourced colonies indicating greater plasticity through integration – a 

necessary component for rapid responses to environmental change. Yet phenotypic invariability 

was evident in Sampela clones pre-adapted to variable light and high nutrient loads. 

It is essential to distinguish between the ‘primary adaptive’ and ‘by-product’ traits; a relatively 

low/invariant trait may in fact be the adaptive framework of which an organism is constructed. 

In the case of I. hippuris – and gorgonians per se - it is clear that polyps are the primary 

adaptation, considered canalised with only their variable profusion indicative of environmental 

influence. Phenotypic characters such as the coenenchyme (soft tissue), sclerites, and axis etc. 

have in fact originated from the polyp wall, are by-products and subsequent facilitators of the 

primary modules, the polyps and thus coined ‘exaptations’ (evolved not for their original utility; 

Gould 1997). Yet selection acts on plasticity capacity (Kaandorp & Kübler 2001) resulting in 

divergent phenotypes often evident at the phenotypic level with favoured (often facilitative/by-

product) traits the subject of evolutionary change (Kawecki & Ebert 2004). It can therefore be 

considered that by the interaction of light, nutrient and hydrodynamic regime, branching 

dynamics are simply ‘exaptive’ (Gould 1997) or the platform for polyps, the primary adaptation. 

The developmental influence of polyps on the colony therefore, should be the research target for 

processes of evolutionary change. Theoretical supposition aside, evolutionary changes on the 

phenotypic level are nature’s manifesto of how human influences are affecting evolutionary 

change, which in itself will continue to persist irrespective of our presence.  

4.5 CONCLUSION 

Reciprocal transplant experiments across contrasting reef sites within the WMNP, strongly 

suggest plasticity capacity and incipient divergence in phenotypic traits for Ridge and Sampela 
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I. hippuris morphotypes respectively. I. hippuris morphotypes present at the Ridge and in 

previously sampled locations within the region (Chapter 3) are therefore, the ancestral type. 

Tests of coalescence would provide validation to this hypothesis (Puritz et al. 2012). Patterns of 

divergence suggested also by immigrant inviability, are likely determined through prolonged 

anthropogenic disturbance underpinned by reproductive strategy, which overrides processes 

such as genetic drift in an inherently plastic phenotype (Levene 1953, Hereford 2009, Blanquart 

et al. 2013). Resource allocation structure within the holobiont likely reaches differential 

physiological optima for each I. hippuris type, which maximises fitness in their respective 

environments through morph-optical trait integration. Both morphological and physiological 

photoacclimatory responses confirm mechanistic adjustments to maintain such fitness optima. 

Multivariate models reveal polyp dynamics being largely canalised and determinate traits; the 

density and size of which controlling resource acquisition and capacity (in terms of 

endosymbiont density). Investigations into the relative dependence on autotrophy verses 

heterotrophy leading to resource allocation change within the I. hippuris holobiont would 

undoubtedly confirm mechanisms of both biological success and incipient divergence 

consequential of genetically assimilated phenotypes to environmental change. It is proposed that 

I. hippuris morphotypes are in a state of ecological divergence and act as viable indicators on 

the effects of burgeoning anthropogenic encroachment on mechanisms of biodiversity and reef 

health within the Coral Triangle. 
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CHAPTER 5: GORGONIANS IN THE WAKATOBI MARINE NATIONAL 

PARK, INDONESIA: WHAT CAN THEY TELL US ABOUT 

EVOLUTIONARY PROCESSES IN ENVIRONMENTAL CHANGE? 

5.1 CONTEXTUAL SUMMARY 

The Wakatobi Marine National Park (WMNP), SE Sulawesi, Indonesia, comprises possibly the 

most biodiverse marine ecosystems on the planet with gorgonian corals epitomising such 

diversity. Central within the Coral Triangle, the WMNP’s human population and inherent 

exploitations are as diverse as its natural resources. In fact the natural laboratory this region 

presents, encompasses natural and anthropogenic interactions bestowed upon the researcher as a 

haven for discovery and local collaborations akin to those by the marine fauna and flora itself. 

This work clearly demonstrates the utility of gorgonian corals as conservation indicator taxa 

through straightforward ecological assessment and experimentation, specifically across 

environmental clines.  

As conspicuous members of any marine community, the modular nature of gorgonians continues 

to baffle scientists. Still, unresolved questions of plasticity, divergence, or homoplasy hamper 

species delimitation and biodiversity assessments, particularly on coral reefs throughout the 

Indo-Pacific (van Ofwegen 2004) despite their high regional abundance and diversity (Tomascik 

et al. 2004). The present work substantiates these notions, whereby 197 species and 

morphotypes from 42 genera, and 12 families within all currently accepted suborders were 

recognised from the shallow waters of the WMNP, increasing with depth inviting tests of 

refugia (Chapter 2). Meticulous morphological differentiation is not, however, indicative of non-

interbreeding taxa, and may in fact represent differential phenotypic responses to environmental 

heterogeneity.  

Assessment of gorgonian abundance and diversity across environmental gradients within the 

WMNP revealed a clear loss of gorgonian diversity relative to increased sedimentation and 

reduced light associated with anthropogenic disturbance. Zooxanthellate and azooxanthellate 

taxa were clearly parsed between depth and reef health, the former more tolerant to 

anthropogenic perturbation than the latter. Notably, the two distinct morphotypes of the 

zooxanthellate isidid Isis hippuris Linnaeus 1758, were highly abundant across environmental 

clines: long-branched bushy colonies on degraded reefs, and short-branched multi/planar 

colonies on healthy reefs. Such morphological differentiation may be a consequence of high 
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plasticity capacity of the I. hippuris holobiont, two previously diverged species, or 

anthropogenically driven incipient ecological divergence on degraded reefs. Morphological and 

molecular results reveal unsatisfactory assignment of I. hippuris morphotypes to previously 

described alternatives (Isis reticulata Nutting 1910, Isis minorbrachyblasta Zou, Huang & 

Wang 1991), further suggesting incipient ecological divergence through clear haplotype division 

between sites of differing reef health (Chapter 3). Multivariate analyses consistently revealed 

light availability, sedimentation and water flow as significant explanatory variables for 

morphotype differences, suggesting a dynamic interplay between I. hippuris morphotypes and 

their environment. To further assess potential mechanisms of divergence and survivorship in 

alternate reef habitats, a reciprocal transplant experiment (RTE) for one year yielded insightful 

results (Chapter 4). Firstly, reduced survivorship of healthy reef morphotypes on degraded reefs 

implied the onset of lineage segregation through immigrant inviability. Secondly, multivariate 

analyses revealed differences were attributed to I. hippuris morphotype origin, with phenotypic 

responses to environmental change typically plastic in colonies from the healthy site, whereas 

those from the degraded site were relatively insensitive to change. Prominent phenotypic traits 

were at the morphological and bio-optical levels integrated to maintain functional optima, 

ultimately influenced by resource availability and acquisition. Thirdly, that such optical 

responses were not attributed to endosymbiont diversity or shuffling, with all test colonies 

possessing a novel clade D1a Symbiodinium throughout. Residual error (Verror) unaccounted for 

by measured phenotypic traits, invite tests of energy transfer roles within and between the 

holobiont including biophysical photoacclimatory responses assessing functional thresholds to 

environmental stress.  

This research aimed to investigate gorgonian responses to environmental change within the 

WMNP, SE Sulawesi, Indonesia. Collectively, this was achieved, challenging notions of 

ecological importance, taxonomic validity, and the overall effects of anthropogenic 

encroachment on mechanisms of plasticity and divergence within the coral holobiont. Key 

issues as a consequence of this work include tests of 1) deep-reef refugia, 2) priority 

systematics, and 3) mechanisms of ecological divergence and physiological assessment 

exploring intrinsic and extrinsic interactions that may define the host-symbiont relationship.  

5.2 BIODIVERSITY & REFUGIA 

Gorgonian corals within the WMNP exhibited high species diversity and abundance particularly 

on healthy coral reefs (Chapter 2). Of the 51 genera and 14 families recognised for shallow-

water gorgonians in the Indo-Pacific (Fabricius & Alderslade 2001), 42 genera and 12 families 
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were present within the WMNP, comprising all higher order groups. Coral reef biodiversity is 

considered at its peak within the Coral Triangle, most notably in the Indo-Malay-Philippine 

(IMP) region (Stehli & Wells 1971, Veron et al. 2009, 2011, Bellwood et al. 2012, Briggs & 

Bowen 2013, Gaither & Rocha 2013). The origin of such diversity remains the source of much 

intrigue and investigation with various hypotheses being proposed. Firstly, the Centre of Origin 

hypothesis predicts the IMP as a centre of speciation where species disperse marginally (Ekman 

1953). Secondly, the Centre of Overlap hypothesis predicts species diversity to be a 

consequence of dispersal overlap in all directions from numerous biogeographic provinces 

(Woodland 1983). Thirdly, the Centre of Accumulation hypothesis predicts that peripheral 

speciation through dispersal is extended unidirectionally by prevailing currents into the IMP 

(Ladd 1960), and finally, the Centre of Survival hypothesis whereby species are buffered by 

extinction in contrasting peripheral locations (Paulay 1990). All likely pull in unison, with 

differential responses of marine taxa and biodiversity feedback between hypothesised models, 

attributing to the current high biodiversity (Bowen et al. 2013). Yet how such hypotheses stand 

in the face of anthropogenic impact accelerating and/or exacerbating natural processes of 

environmental change is unknown. Furthermore, such hypotheses are almost solely based on 

reef fish and scleractinian corals (see Bellwood & Hughes 2001 but now see Bowen et al. 2013, 

Sanciangro et al. 2013) advocating latitudinal gradients of species richness driven by the 

universal currency of energy availability (Gaston & Spicer 2004, Evans et al. 2005). In its 

simplicity, most biodiversity may be a synergistic combination of increased habitat (Sanciangro 

et al. 2013) and energy/resource availability (Rohde 1992). Yet how these hypotheses relate to 

gorgonian corals without greater sampling effort is unknown, further exacerbated by a paucity of 

knowledge on gorgonian reproductive strategies throughout the Indo-Pacific, casting doubt on 

dispersal ability, range size and subsequent taxonomic assignment. Nevertheless, comparative 

global coral diversity primarily lies within the Octocorallia, comprising estimates of 64% (3400 

species) compared to that of Scleractinia 27% (1450 species; Williams & Cairns 2013). 

Moreover, gorgonian corals are phylogenetically older than the Scleractinia (Lindstrom 1978, 

Bengtson 1981, Cope 2005, Stolarski et al. 2011). Therefore, as one of the most diverse 

invertebrate groups in benthic marine ecosystems, typically conservation ‘flagship’ species 

(Tinsley 2005, Linares et al. 2008, Cerrano et al. 2010) in many regions, it is curious that 

gorgonians are generally overlooked on coral reefs within the Indo-Pacific. 

In the WMNP, gorgonian diversity increases with depth, almost exclusively by azooxanthellate 

taxa (Chapter 2). Such diversity, colony size and number of recruits were observed to  
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Figure 5.1. Distribution of Indo-Pacific tropical gorgonians found at shallow (0 – 39 m; green 

spots) and mesophotic (40 – 200 m; blue spots) depths. Data sources: USNM, AMNH, BPBM, 

NIWA, Nutting (1910a - e, 1911), Stiasny (1937, 1940), Mai-Bao-Thu & Domantay (1970, 

1971), Muzik & Wainwright (1977), Colin et al. (1986), Goh & Chou (1994, 1996), Paulay et al. 

(2003), Fabricius et al. (2007), Rowley (2013; Chapter 2). 

continually increase to depths way beyond 60 m (pers. obs.). This pattern is consistent with 

other Indo-Pacific regions where benthic communities become dominated by gorgonian corals 

at 40 - 200 m (Figure 5.1; Marshall Islands, Colin et al. 1986; Palau, Mariana Islands, Paulay et 

al. 2003; Palau, Fabricius et al. 2007; Great Barrier Reef, Australia, Bridge et al. 2012; 

Philippines 2013, Rowley unpublished data). Deeper reefs (“mesophotic coral reefs” [MCEs] or 

the “twilight zone”) are posited to act as refugia against disturbances as well as a haven for 

larval source pools (Glynn 1996, Reigl & Piller 2003, Bongaerts et al. 2010). Most importantly, 

such deep reef refugia are hypothesised to harbour reef components largely unaffected by 

geological sea-level change during times of markedly reduced shallow water habitats (Helm & 

Schülke 2003; RL Pyle, BW Bowen & J Copus pers. comm.). Increasing evidence reveals deep 

reefs possess unique communities with less than 50% overlap of shallow taxa (Pyle 1988, 1990, 

Macintyre et al. 1991, Bongaerts et al. 2010). In the WMNP, gorgonian diversity increased with 

depth, with numerous taxa distributed from 5 > 60 m, a pattern consistent with records from 

other Indo-Pacific regions (USNM, BPBM, BNHM, Nutting 1910a - e, 1911, Stiasny 1937, 

1940, Mai-Bao-Thu & Domantay 1970, 1971, Paulay et al. 2003, Fabricius et al. 2007). 
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Overlapping taxa across bathymetry are ideal targets for tests of resilience and comparative 

divergence through local adaptation within certain genera, as well as ‘twilight’ habitat 

specialists. Interestingly, azooxanthellate gorgonian genera such as Acanthogorgia Gray 1857, 

Annella Gray 1858, Bebryce Philippi 1841, Ellisella Gray 1858, and Villogorgia Duchassaing & 

Michelloti 1862 span remarkable depths (5  1000 m) across their distributional range. Yet 

within-group polyphyly across bathymetry (deep-water monophyly typically disrupted by 

shallow-water taxa; McFadden et al. 2006, Pante et al. 2012, Chapter 3) calls for further 

systematic assessment (e.g., coalescence; Puritz & Toonen 2011, Puritz et al. 2012b), with 

polyphyletic groups either a consequence of convergent evolution or deep divergence.    

The question of shallow reefs becoming seeded by deep reefs is determined by species-specific 

responses to intrinsic (e.g., reproduction, settlement, development, symbioses) and extrinsic 

(e.g., hydrodynamics, light, temperature, sedimentation, water quality) factors (Fabricius et al. 

2007), as well as evolutionary processes such as speciation, extinction and dispersal (Mora et al. 

2003). Determining how and whether certain taxa are habitat specialists or bathymetric 

migrators remains to be elucidated, undoubtedly unveiling key evolutionary mechanisms 

facilitating survival over geological time. Moreover, assessing evolutionary principles on taxa 

inhabiting mesophotic reefs may shed light on the origin of deep-sea and shallow-water taxa. 

Before the opening of the Drake Passage ~25MYA (late Eocene) and the onset of the 

thermohaline circulation, much of the deep oceans were decidedly warmer and often anoxic 

(Chase et al. 1975, Scher 2006). Thus, the deep-sea gorgonians we know today would have 

migrated and evolved from shallower depths with huge depth ranges still apparent (e.g., > 4000 

m range in deep-sea Chrysogorgiidae; USNM records 2013). Naturally, such benign marine 

environments invite deep-sea specialists such as Metallogorgia melanotrichos Wright & Studer 

1889, with just a single haplotype across its geographic range of three oceans (Pante et al. 2012), 

similarly with its associate ophiuroid within the Atlantic (Cho & Shank 2010). Conversely, in 

the shallows, environmental heterogeneity selects high plasticity capacity that may become fixed 

at functional optima (as suggested in Isis hippuris at Sampela in Chapter 4), leading to restricted 

geographic range size and endemicity (e.g., Calosi et al. 2008, 2010).  

Clearly, a high number of gorgonian taxa are widely distributed throughout the Indo-Pacific is 

present, particularly at mesophotic depths (Figure 5.1). Such unique communities may be 

relatively consistent throughout the Indo-Pacific and particularly prevalent within the 

Philippines (Figure 5.1) consisting of over 7100 islands (Williams & Chen in review) likely 

acting as habitat stepping-stones for dispersal within and between this and other regions. This, 
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coupled with ecoclimatic stability within the Coral Triangle, provides testable hypotheses for the 

distinct gorgonian diversity as shown in the WMNP and other regions (Colin et al. 1986, Paulay 

et al. 2003, Fabricius et al. 2007, Bridge et al. 2012, this study). Nevertheless, many regions 

require greater sampling efforts across bathymetry using advanced rebreather diving technology 

(e.g., Pyle 1996, Pyle et al. 2008) in order to begin addressing mechanisms of diversity and 

refugia. However, tests of diversity and evolution without historical investigation are 

inconclusive (Gould 1997, Rohde 1999), further requiring tests of coalescence.  

5.3 SYSTEMATICS IN THE SEA 

Ecological and taxonomic investigations indicate much work has yet to be completed to achieve 

effective gorgonian taxonomic assignment, in terms of conservation biodiversity assessments. 

Nevertheless, indicator taxa can and have been teased out as surrogates for reef component 

responses to environmental change (Chapter 2). In the case of Isis hippuris, gaining an historical 

perspective in the context of a structure-function relationship with its environment may provide 

insight into evolutionary divergent mechanisms between morphotypes (see Chapter 4). It is 

interesting, however, that phylogenetic analyses reveal that the Isididae is polyphyletic with the 

addition of its type species I. hippuris, and therefore seemingly unrelated (Chapter 3; Figure 

3.7). The jointed bamboo-like axis (Figure 5.2a, b) that unites the family may simply be a 

relictual anachronism consequential of geological processes over time, yet phylogenetic 

analyses corroborate the early taxonomic suggestion that the characteristic jointed axis of the 

Isididae is in fact a convergent trait. Again, tests of phylogenomic coalescence using next 

generation sequencing (NGS) would differentiate evolutionary mechanisms acting between 

members within the Isididae; testing the evolutionary origin of the axis as either 1) deep 

divergence or, 2) convergent evolution. However, what would be the purpose of a jointed axis in 

the deep ocean when structurally there is no significant requirement for hydrodynamic flexibility 

in such a benign environment? A relictual anachronism therefore seems innately plausible with 

the evolution of flexibility through ecological necessity in shallow and steep wall environments, 

the latter often subject to high nutrient deep-water upwellings as seen at the healthy Ridge site in 

the WMNP (Gieskes et al. 1988). Even though unknown, the stratigraphic history may therefore 

evolve from either the high hydrodynamics on shallow reefs and/or refugial depths (e.g., 40 – 

200 m), which then migrate through bathymetric expansion in response to resource competition, 

predation, random or specific settlement cues, encompassing any number or combination of 

ecological or developmental processes. Whatever the scenario, survival requires an individual 

and/or species to have the capacity to respond, and thus, not be entirely passive to its  
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environment, which is particularly true for those taxa which are sessile (Cossins et al. 2006). 

Migration to the shallows necessitates functionally advantageous traits to increases in light, 

hydrodynamics and temperature, including shorter more flexible axis joints (Figure 5.2c,e; Helm 

& Schülke 2003) and photosynthetic endosymbionts as seen in Isis hippuris. Conversely, deep-

water migration particularly in the advent of the thermohaline circulation (Chase et al. 1975, 

Scher 2006), facilitates expansion into benign environments whereby flexible widely spaced and 

fibrous proteinaceous horny nodes become taught and robust (Figure 5.2d, f) and often 

reinforced with calcareous material (Grasshoff & Zibrowius 1983, Helm & Schülke 2003). 

Clearly, isidids are functionally adapted to differential hydrodynamic regimes across 

bathymetry, however this does not explain the significant polyphyly within the family.  

The consistent phylogenetic incongruence at the subordinal and family-levels (McFadden et al. 

2006, Pante et al. 2012, Sanchez et al. 2003b) seemingly lacks functional divergence to 

environmental change. Fixed traits when redundant (such as a jointed axis in the deep-ocean) 

may well be maintained through continuous sea level changes over geological time; bet hedging 

with insurance if you will. Furthermore, a loss and re-gain of traits may occur through the 

differential expression of genes in response to environmental change over the millennia. It lacks 

empirical sense to have the repetitive evolution of multiple traits in the absence of any 

functional cause, however. For example, the fused scleritic composition of the calcareous 

internodes of I. hippuris contrasted with the non-scleritic axis of deep-sea isidids, characteristic 

of the Calcaxonia per se, is another logical trait differentiation parsing the Isididae across 

bathymetry (Figure 5.3). Clearly a scleritic axis would permit greater flexibility in high water 

flow environments, however numerous deep-sea taxa, namely of the Scleraxonia (e.g., 

Corallium Cuvier 1798 [see Figure 5.3b], Paragorgia Milne-Edwards 1857, Anthothela Verrill 

1879) possess this same trait. Furthermore, the only exception to the Holaxonian axis 

composition of a horny axis supported by non-scleritic calcareous material including a central 

core is the Keroeididae Kinoshita 1910, notable again for its scleritic axis. Bathymetric 

distribution within the Keroeididae are again akin to previous adaptation to high flow shallower 

waters with subsequent bathymetric migration to safer depths e.g., Keroeides Studer 1887 of 51 

> 650 m, similarly with Corallium 96 > 2500 m. Henceforth, such patterns provide target 

Figure 5.2. (Previous page)  Isididae jointed axis comparison between Isis hippuris Linnaeus 

1758 and Circinisis circinata Grant 1976 of the (a, b) denuded colony, (c, d) horny proteinaceous 

(gorgonin) node, and (e, f) node fibres.  
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Figure 5.3. Phylogenetic reconstruction based on maximum likelihood (ML) analyses of the mt MutS (1800 bp) region (Heestand-Saucier et al. in prep.,). 

Axis cross-sections of (a) Isis hippuris with inset showing outline of capstan radiate composition, (b) Corallium rubrum with inset showing sclerite outline 

(white arrows; Debreuil et al. 2011), and (c) Keratoisis sp. (Noé & Dullo 2006). Branch numbers represent ML support. Letters Sc = Scleraxonians, Ca = 

Calcaxonians, Ho = Holaxonians, and Al = Alcyoniinans. Large red arrow depicts Isis separation to the rest of the Isididae (also seen in Figure 3.7). 
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taxonomic groups and traits (e.g., the axis) to further investigate functional divergence or 

convergence within gorgonians as a consequence of environmental and/or climatic change. 

Finally, it is noteworthy that I. hippuris is consistently phylogenetically situated next or close to 

members of the Alcyoniina (Figure 3.7, 5.3), a prominent soft coral group. Suggestions of the 

evolution of a central axis from the soft corals may be discarded, however, through the fossil 

record revealing primitive gorgonians possessing a solid axis that becomes jointed coinciding 

with habitat change (Helm & Schülke 2003). Water energy is therefore considered the most 

selective agent for gorgonian corals (Langer 1989), further substantiating the notion of 

mesophotic refugia distributing bathymetric migrators which themselves evolve through local 

adaptation into habitat specialists.  

Evidently there is a need for phylogenetic reconstruction exploiting recent advances in next 

generation sequencing and bioinformatics coupled with radiometric dating of fossil skeletal 

material (Abbey et al. 2013, Nelson et al. 2013). Targeting gorgonian taxa across specific 

bathymetric ranges, will inevitably shed light on both phylogenetic and evolutionary processes 

within the Octocorallia.  

5.4 MECHANISMS OF ECOLOGICAL DIVERGENCE 

Fitness enhancement through plasticity capacity produces phenotypic novelty in response to 

environmental change, particularly in modular marine organisms, ultimately leading to enhanced 

biodiversity over time (Levene 1953, Blanquart et al. 2013). Here, in order to test the theoretical 

framework of local adaptation leading to divergent selection through the action of environmental 

perturbation, a suite of phenotypic traits were considered and parsed into phenotypic modules 

(Figure 4.1; Chapter 4). Results suggested inherent plasticity capacity as evident in healthy reef 

morphotypes, yet through the continual action of anthropogenic disturbance on a semi-lagoonal 

reef, local adaptation has led to incipient divergent selection in I. hippuris within the WMNP. 

This can be depicted through a ‘sliding scale’ of phenotypic evolution between I. hippuris 

morphotypes in response to environmental change (Figure 5.4). The biological success of I. 

hippuris is therefore likely due to its pliable modular nature combined with a dynamic symbiotic 

association maintaining functional optima. Thus, further reinforcement through low 

reproductive dispersal and asexual fragmentation with trait fixation at the population level, 

plasticity capacity may then lead to genetic stability in a stress-induced phenotype with genetic 

incompatibility in the former, but further lead to enhanced phenotypic resilience. Whether such 

patterns are recapitulated throughout the I. hippuris distributional range remains to be  
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Figure 5.4. Sliding scale of phenotypic evolution within and between Isis hippuris morphotypes 

across habitat gradients within the WMNP, Indonesia. (a) Ridge (healthy site) morphotype 

responses to environmental change; (b) Sampela (impacted site) morphotype responses to 

environmental change, and (c) summary evolutionary trait development suggested as a 

consequence of plasticity capacity at the Ridge and incipient divergence through genetic 

assimilation of beneficial traits on degraded reefs. Red arrows depict phenotypic module position 

along the sliding scale of phenotypic evolutionary continuum between environmentally sensitive 

(VE) to insensitive (VG). Codes: C, colony; P, polyps; S, sclerites; O, optical parameters. 

elucidated. Nonetheless I. hippuris can clearly be considered as a significant indicator of reef 

health, with a view for two species delineation in light of tests on reproductive isolation 

ascertained through cross fertilisation, and subsequent coalescence (time to divergence, as seen 

in Asteroidea, Puritz & Toonen 2011, Puritz et al. 2012b). 

Restricted gene flow in the face of anthropogenic disturbance likely acts at the trophic level. 

Polyps are the primary phenotypic module (sensu stricto) for resource acquisition through the 

proportional variability of heterotrophy verses autotrophy. In each I. hippuris morphotype, polyp 

dynamics were relatively constrained compared to other traits and consistently so in Sampela



 

143 

 

Figure 5.5. Isis hippuris morphotypes across bathymetry from the Ridge at (a) 2 m, (b) 6 m, (c) 

14 m. Sampela at (d) 2 m, (e) 6 m, (f) 10 m. 

colonies (Figure 5.4a, b). Therefore, photoacclimatory responses at the morphological and 

physiological level facilitate mechanistic adjustments maintaining resource acquisition by the 

polyp within the I. hippuris holobiont (Chapter 4). Resource, thus fitness optima in contrasting 

reef health environments would inevitably be reflected in photosynthetic efficiency through the 

non-photochemical quenching and electron transfer of PSII (Hennige et al. 2008). Moreover, 

phenotypic variability in native colonies across bathymetry (Figure 5.5) would therefore reveal 

differential photoacclimatory responses not accounted for by light-adapted yield alone, to 

differential environmental regimes.  

Phenotypic responses across environmental gradients such as bathymetry are not unknown, 

particularly in zooxanthellate gorgonians (e.g., West et al. 1993, Kim et al. 2004, Prada et al. 

2008, Prada & Hellberg 2013; Figure 5.5). In figure 5.5, I. hippuris colonies exhibit clear 

morphological plasticity with decreased light availability. However, this response may be due to 
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a differential photoacclimatory capacity between sites, which may further reinforce ecological 

divergent mechanisms between morphotypes. Tests of electron transfer efficiency through 

photosystem reaction centres would provide a much more elaborate explanation of 

photosynthetic responses and efficiency, and can be achieved via in situ rapid light response 

curve analyses with additional considerations for the photosynthetically useable radiation (PUR; 

MacIntyre et al. 2002, Suggett et al. 2007, Hennige et al. 2008) available to the individual at any 

one time. Furthermore, even though multi-marker molecular analysis strongly suggested 

symbiont specificity in I. hippuris irrespective of test or sampling site (Chapter 4), Rowley et al. 

(2011) discovered colonies that were occasionally associated with Symbiodinium clade C on 

degraded reefs at depth (Figure 5.6). It was concluded in Chapter 4 that the tight association 

with a novel type within the putatively stress tolerant clade D Symbiodinium strongly accounted 

for the biological success of I. hippuris morphotypes particularly on degraded reefs. 

Symbiodinium D cladal-types are known for their high photoacclimatory capacity, particularly in 

variable irradiance and highly sedimented reefs (Toller et al. 2001a, b, Baker et al. 2004, 

Fabricius et al. 2004, Rowan 2004, Stat & Gates 2011). However, association with 

Symbiodinium Clade C particularly at depth can also be characteristic of this clade (Rowan & 

Knowlton 1995, Rowan et al. 1997, Baker 2003, Chan et al. 2009, Bongaerts et al. 2010, Lesser 

et al. 2010). The sparse presence detected within I. hippuris morphotypes at depth may be either 

a consequence of developmental constraints or limited analytical detection methods. The mode 

of endosymbiont transmission is unknown for I. hippuris, however the additional association 

with a C cladal-type may be due to non-selective horizontal Symbiodinium acquisition by 

juvenile colonies leading to host selectivity as an adaptive environmentally-induced response. 

Tests of symbiont transmission and selection mechanisms, as well as fine scale Symbiodinium 

diversity using high resolution real-time PCR, would determine the presence of cryptic 

communities within individual colonies across bathymetry and reef health (Silverstein et al. 

2012).  

The relative contribution of light harvesting efficiency through photoacclimatory responses 

between I. hippuris morphotypes likely contributes to the residual error (Verror) between 

phenotypic traits (Chapter 4). Additional inherent contributors such as trophic interactions 

within and between holobiont morphotypes will inevitably lead to differential resource 

allocation patterns in contrasting reef environments. Therefore, shifts in resource reliance (e.g., 

phototrophy versus heterotrophy) relative to the environment would result in different  
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Figure 5.6. (a) Phylogenetic reconstruction of Symbiodinium clades within Isis hippuris at source 

depth based on maximum likelihood (ML) and bayesian inference (BI) analyses (1000 bootstrap) of 

the mitochondrial-encoded cytochrome oxidase COX1 region (Takabayashi et al. 2004), rooted with 

Gymnodinium simplex (Lohmann) Kofoid & Swezy 1921. (b) Inset image of Isis hippuris at 12 m 

depth at Sampela containing clade C. 
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physiological optima for each I. hippuris morphotype, essentially working to maximise fitness in 

their respective environments. Here, morphological and physiological photoacclimatory 

responses confirm mechanistic adjustments that maintain such fitness optima between I. 

hippuris morphotypes on contrasting reefs. Assessment of trophic sources, allocation structure, 

and thus extrinsic and intrinsic energy transfer role(s) within and between holobiont 

morphotypes would inevitably provide insight into differential benthic-pelagic coupling patterns 

particularly on degraded reefs. Thus, mechanisms of environmentally mediated phenotypic 

changes in I. hippuris at the trophic level can be tested through; 1) coral-microbiome metabolic 

reciprocity, and 2) comparative energy apportionment between the host soft tissue, 

endosymbiont and environment via carbon (δ
13

C) and nitrogen (δ
15

N) isotopic analyses.  

Firstly, alternative adaptive mechanisms may exist within the coral holobiont as a consequence 

of functional (e.g., nutrient) reciprocal metabolic pathways between the host and its microbiome 

(associate microbial ecological community). Tests of coral holobiont reciprocity through 

metabolic interactions using next generation sequencing (NGS) approaches, would further 

elucidate nutrient cycling between contrasting environments. Therefore, the characterisation of 

microbial community dynamics (e.g., species-specificity versus functional guilds), functional 

gene families and subsequent metabolic profiling through the mapping of gene expression data 

onto specific metabolic pathways (e.g., Larsen et al. 2011), would provide invaluable insights 

into integral metabolic links within the coral microbiome essentially predicted to structure 

holobiont trophic adaptations between environments. 

Secondly, investigations into resource allocation structure within the holobiont and its 

environment using carbon (δ
13

C) and nitrogen (δ
15

N) isotopic analyses, would determine if a 

trophic shift has occurred in response to anthropogenic disturbance, and thus, provide further 

corroborative evidence for environmentally mediated phenotypic responses to anthropogenic 

impacts. By removal of the CaCO3 skeletal elements, an accurate assessment of the carbon 

(δ
13

C) and nitrogen (δ
15

N) isotopic signatures in both I. hippuris soft tissue and algal 

endosymbionts has been obtained (Appendix I). Preliminary isotope results (Figure 5.7) 

revealed increased carbon and nitrogen levels in the degraded site morphotype and its 

endosymbionts compared to that of the healthy reef. What’s more, comparative signatures 

clearly demonstrate that both host and endosymbionts at Sampela primarily obtain heterotrophic 

nutrients from fish sources contained in sinking particulates (POM). With a burgeoning human 

population of ~1600 continuously releasing waste matter onto the reef, such corroborative 

isotopic values are likely sourced from human fish consumption, a heavily relied upon resource  
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Figure 5.7. Isis hippuris holobiont (n = 8) and environmental (n = 72) stable isotope results 

(mean  SE) from the Ridge and Sampela for carbon (δ
13

C) and nitrogen (δ
15

N). Data are 

superimposed on to coral reef (in bold), sea grass and mangrove (normal font) food source values 

with the shaded area taken from fish muscle tissue (Figure 2; Cocheret de la Morinière et al. 

2003). Icons represent host soft tissue for the Ridge ( ) and Sampela ( ), and Symbiodinium 

from the Ridge ( ) and ( ). Surface sediment and plankton values for the Ridge ( , ) and 

Sampela ( , ) respectively.   

within the community (Clifton 2013). Nevertheless, values for the Ridge (healthy site) suggest a 

greater reliance on phototrophy compared to allochthonous sources (Figure 5.7). It seems 

unlikely that light may have a significant effect on the fractionation of nitrogen as seen in the 

Caribbean zooxanthellate gorgonians Gorgonia ventalina Linnaeus 1758 and 

Pseudopterogorgia americana Gmelin 1791 between healthy and polluted reefs (Baker et al. 

2011). Firstly, I. hippuris samples were taken at optical equivalent depths at the two sites and 

secondly, holobiont (host and Symbiodinium) isotope values were both higher and more akin to  

fish levels, again suggesting alternative and greater resource supply at the degraded reef. The 

effect of light utilisation and trophic shifts between morphotypes could be determined through 

comparative δ
13

C and δ
15

N values coupled with photosynthetic efficiency through measuring the 

electron transfer efficiency of PSII via in situ rapid light response curves between reciprocal 

transplants. Henceforth, resource allocation structure will likely shift leading to compensatory 
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morpho-optical phenotypic responses as seen in Chapter 4. To fully investigate mechanisms of 

divergence at the trophic level, a thorough analysis between transplanted morphotypes (e.g., 

those in Chapter 4) would further elucidate resource allocation shifts and thus the role of 

phototrophy versus heterotrophy in maintaining nutritional intake under different environmental 

regimes.  

5.5 CONSERVATION IMPLICATIONS 

From the evidence presented here and throughout this research it is clear that human 

encroachment exacerbates or accelerates evolutionary processes within the marine environment, 

specifically gorgonian octocorals (Chapters 2 – 5). Undoubtedly the issue at hand is at a social 

and economic level, and yet the situation within the WMNP appears complex (Pilgrim et al. 

2007a, b, Webber 2008, Clifton et al. 2010, Clifton 2013), with continuous reproaches 

manifesting social and economic repercussions that are counterproductive (Clifton 2003). 

Traditional folklore strategies particularly in the Bajo (sea gypsy) communities (e.g., Sampela) 

are increasingly shifting from subsistence to income fisheries through economic development 

(Pilgrim et al. 2007a). Such income fisheries discard folklore and engage in unsustainable and 

destructive fishing practices such as cyanide, dynamite (Pilgrim et al. 2007b) and fish fences 

(Exton 2010). In fact the prolific use of fish fences with a 50% decrease in mesh size has 

inevitably led to a marked decrease in coral reef fish abundance within the region (Exton 2010). 

With a concomitant increase in human population size, resource reliance and economic 

development, local marine resources seldom replenish with algal and/or sediment-dominated 

reefs, the latter increasingly the case at Sampela (see Figure 4.2b). The disturbing reality of 

human encroachment is acknowledged by government agencies and local communities alike, 

however enforcement is often favoured over community education (Clifton 2003). Well 

meaning in part, remedial fisheries management strategies are often implemented by 

conservation agencies, yet no-take zone (Unsworth et al. 2007) payoff strategies are withdrawn 

instilling false hope and a lack of trust in cross-cultural cooperation. It is clear that simple 

beneficial strategies at the local scale are productive with fisheries stock depletion ameliorated 

through cooperative long-term management schemes and education. Through fostering trust and 

cooperation with local communities in Madagascar for example, Oleson (2008) and Barnes-

Mauthe et al. (2013) demonstrated that regular temporary octopus fishery closures and local 

community involvement both at the fisheries monitoring and education levels, led to significant 

increases in catch (Oliver et al. in prep.) and local income (Barnes-Mauthe et al. 2013, Oleson et 

al. in prep.). One can only hope that work such as this may be of some benefit to the local 

WMNP communities, yet in the face of human necessity and dogmatic perception it is hard to 



149 

predict and sadly out of the scope of this research. Nonetheless, gorgonian octocorals are clear 

indicators of reef health (Chapter 2) and biological resilience, particularly in the case of I. 

hippuris – with local adaptation at the phenotypic level likely leading to ecological divergence 

in sympatry (Chapters 3 & 4).  

Conservation measures as a consequence of this work would undoubtedly benefit both coral reef 

and local village inhabitants alike. Ongoing ecological monitoring on an annual or six monthly 

basis, using belt transects as outlined in Chapter 2, would give an accurate assessment of 

gorgonian abundance and diversity across anthropogenic and bathymetric clines. Ecological 

assessments with concomitant abiotic parameter measurements would help identify areas of 

conservation concern for protection. Identifying the presence and abundance of the alternative 

yet conspicuous phenotype of I. hippuris – long-branched bushy colonies – inhabiting degraded 

reefs would assist in reef health assessments. Moreover, such ecological assessments coupled 

with trophic monitoring using stable isotope analyses of the I. hippuris holobiont and its 

environment (Figure 5.5 and Appendix I), would further provide a concise record of 

anthropogenic population expansion effects on coral reef habitats within the Wakatobi. Given 

the wide distribution of Isis morphotypes throughout the Indo-Pacific it is not unreasonable to 

propose this genus be specifically added to conservation agency annual survey lists and 

considered for CITES protection. This last point may seem a little severe, however, Isis hippuris 

(sensu lato) is still widely collected for the curios and jewellery industry (Cooper et al. 2011, 

Rowley pers obs.). Therefore, its presence is threatened by human encroachment and worthy of 

widespread monitoring awareness and protection. 

Azooxanthellate gorgonian corals such as those in the deep-ocean, Mediterranean and temperate 

waters (e.g., Eunicella verrucosa Pallas 1766, Corallium spp. Cuvier 1798) are CITES protected 

and/or classified under ‘vulnerable marine ecosystems’ (VMEs). Deep-ocean gorgonians are a 

principle taxonomic group designation by the United Nations General Assembly (UNGA), 

safeguarded under the VME umbrella for protection against fishing activities throughout the 

world oceans (Rogers & Gianni 2010, Watling et al. 2011). Yet when it comes to the tropics, 

this highly diverse and abundant taxonomic group receives little, if any, conservation concern. 

This thesis highlights two clear patterns when considering azooxanthellate gorgonians on coral 

reefs within the WMNP (Chapter 2) and the tropical Indo-Pacific (Figure 5.1); firstly that 

azooxanthellate gorgonians increase in diversity and abundance with increasing depth, and yet 

secondly, are sensitive to anthropogenic disturbance. These are two key points of biodiversity 

conservation concern, ecological response patterns not uncommon to most reef taxa. However, 
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what sets gorgonians apart from other, in particular, benthic invertebrate groups, is their ubiquity 

and diversity throughout Indo-Pacific shallow and twilight reefs, most of which as yet 

undescribed (Bayer 1981). Gorgonians are also host to the CITES protected Hippocampus spp., 

as well as numerous species being actively exploited for commercial endeavours (e.g., Grigg 

2010, Cooper et al. 2011; 21 kg of gorgonian and black coral were impounded by the Philippine 

Bureau of Fisheries and Aquatic Resources (BFAR) in 2011 for the international jewellery trade 

(Labe L, pers. comm., 2013). Hence, gorgonian corals are a viable conservation priority group 

throughout the Indo-Pacific and tropics per se, extending and/or initiating monitoring survey 

initiatives to the family level assessment at the very least. 

With a geological age greater than Scleractinia, coupled with increased abundance and diversity 

on deep reefs, it is not unreasonable to propose the success of gorgonian communities over time 

being due to shallow reef re-population from deeper communities in the face of global climate 

change. Furthermore, with gorgonian skeletal material consisting of magnesium calcite (Bayer 

1973), and therefore a saturation state far less sensitive to ocean acidification than scleractinia 

(McCulloch et al. 2012), gorgonian corals are a prominent taxonomic group within the marine 

realm, acting as surrogates for local and global environmental change. So even though as 

humans we are unable to save habitats through their ongoing destruction, mesophotic reefs of 

refugia likely replenish many of their inhabitants. 

5.6 CONCLUDING REMARKS 

This work summarises the importance of gorgonian sea-fan corals on reefs within the WMNP, 

Indonesia (and the Coral Triangle per se); an area of huge biodiversity increasingly subject to 

anthropogenically-induced decline. Ongoing taxonomic investigations will undoubtedly reveal 

new species, evolutionary processes by which they emerged, and their relative diversity over 

geological time enabling predicted phenotypic, and inherent population responses to 

environmental change. Yet these animals, and the reefs in which they reside are on borrowed 

time, unless the validity of the hypothesised mesophotic reef refugia holds true. Considerable 

polyphyly across bathymetry within groups hold valuable insights into evolutionary mechanisms 

over geological time as a consequence of convergence through ecological necessity, or deep 

divergence. Studies on ubiquitous taxa such as the zooxanthellate isidid I. hippuris provide 

valuable insight into reef health, in addition to the processes by which ongoing environmental 

perturbations lead to ecological divergence on degraded reefs. For example, the biological 

success of I. hippuris within the WMNP, coupled with a strong association with the putatively 

stress tolerant Symbiodinium clade D, makes the case for environmentally robust gorgonian 
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species. However, the detection of Symbiodinium clade C at depth on degraded reefs invites tests 

of greater sensitivity in endosymbiont communities further reinforcing host selection control of 

the holobiont, and ultimately environmentally-mediated phenotypic responses to anthropogenic 

impacts on coral reefs. Moreover, the residual error (Verror) between phenotypic traits (Chapter 

4) further leads to tests of divergence through metagenomic community analyses and isotopic 

assessment in order to elucidate mechanisms of divergence at the trophic level. Ultimately, 

however - and from a historical perspective - it is important to discover how traits evolved to 

their current utility, adaptive or exaptive, therefore as the original adaptation or the by-product 

(Gould 1997), which often eventually facilitates the action of the whole organism. Therefore, in 

order to study biodiversity in its truest form, it is necessary to know what a species is, its 

historical origin (Rohde 1999), evolution and hence how and why individuals and populations 

may respond to environmental perturbations and change. A lofty task, yet awareness brings 

about accurate interpretation of the quintessential biological system presented before us. Thus, 

investigations to further understand patterns of gorgonian ecology and biology through cross-

disciplinary approaches are increasingly important in management and remedial conservation 

efforts. 
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APPENDIX I: METHODS FOR STABLE ISOTOPE ANALYSES 

A:1 Host and Symbiodinium Separation 

To determine the acclimatory capacity of the zooxanthellate gorgonian Isis hippuris Linnaeus 

1758 between two contrasting environments, a novel analysis was successfully adapted from the 

hard coral literature, separating host soft tissue, algal endosymbionts and CaCO3 skeletal 

elements (sclerites). Host soft tissue and algal endosymbionts (n = 8) were first separated 

through three cycles of centrifugation (5 min at 6000 g), vortexing (30 s), and resuspension in 

1.5 ml FSW (0.2 μm filtered sea water). The subsequent supernatant (host slurry) was filtered 

through replicate 0.7 μm Whatman® GF/F (glass fiber filters, muffled at 550ºC for 3 h). The 

remaining CaCO3/endosymbiont pellet was resuspended in 1 ml Milli-Q
®
 deionised water (MQ-

DI) with three wash cycles (as above). Residual zooxanthellae were then retained through 

filtration (as above). Replicate filters (GF/F x 6 per sample including host and endosymbiont 

acid and non-acidified filters, as well as ash free dry weight heated at 550ºC for 6 h) for each 

sample colony were dried (56°C for 48 h) with 3N HCL addition to one replicate set – two 

filters, host and endosymbiont - for comparative analyses ensuring CaCO3 removal and 

accuracy. Replicate sample filters were folded into pre-acetone soaked 9 x 10 mm tin capsules 

(Costech Analytical
®
) for downstream δ

13
Carbon and δ

15
Nitrogen analyses at the University of 

Hawai’i at Mãnoa (see below). 

A:2 SEDIMENT 

Environmental δ
13

C and δ
15

N signature comparisons were conducted at both sample sites (Ridge 

and Sampela) in 2010 and 2011. Surficial sediment was sampled (n = 24) from optical 

equivalent depths adjacent to transplant blocks (see Figure 4.3, Chapter 4). Sediment was dried 

on site at 60º for 48 h and transported in muffled (550ºC for 3 h) tin foil to the University of 

Hawai’i at Mãnoa for further processing and analyses. Samples were ground with a marble 

mortar and pestle, and sieved (< 125 µm). All instruments were sequentially cleaned prior to 

each sample with MQ-DI, dichloromethane, methanol and acetone to minimise cross-

contamination. Untreated ground samples were weighed into 5 x 9 mm tin capsules for δ
15

N 

analysis. For δ
13

C analysis, replicate ground sediment samples were acidified through the 

aqueous/rinse-acidification method being the most effective for high carbonate (>70%) sediment 

(see Komada et al. 2008, Briggs 2011, Briggs et al. in press). Hydrochloric acid (3N HCL) was 

slowly added to ground sediment samples in pre-weighed 50 mL centrifuge tubes until no 

further effervescence was detected. Acid-treated sediments underwent 3 x 10 mL MQ-DI, 

vortex, and centrifuge (5 min at 3000 g) wash cycles, and subsequently dried O/N at 60ºC. Dried 
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samples were re-weighed into 5 x 9 mm silver capsules for δ
13

C analysis. Note: results were 

similar within sites (i.e., depth) and therefore pooled and presented in Figure 5.7 (Chapter 5).  

A:3 PLANKTON 

Water column δ
13

C and δ
15

N signature comparisons were conducted using vertical and 

horizontal plankton tows between 00:00 – 01:00 h and 07:00 – 08:00 h at both sample sites 

(Ridge and Sampela) in 2010 and 2011. Plankton samples (n = 48) were dried on site at 60ºC for 

48 h and transported in muffled tin foil for downstream processing and analyses. Dried samples 

were ground and directly weighed into 5 x 9 tin capsules for δ
15

N, and silver capsules for δ
13

C 

via acidification. Acidified (3 drops of 3N HCL or until effervescence ceased) replicates were 

dried O/N 60ºC and re-weighed prior to δ
13

C analysis. Note: results were indeterminate within 

sites (i.e., vertical and horizontal) and so pooled and presented in Figure 5.7 (Chapter 5).  

All δ
13

Carbon and δ
15

Nitrogen were determined using a Carlo Erba NA 2500 elemental 

analyser, interfaced via a ConFlo II to a Delta Plus mass spectrometer (Finnigan, Inc), at the 

University of Hawai’i at Mãnoa, USA.  
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