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Abstract

An online convolutive blind source separation solution has been devel-
oped for use in reverberant environments with stationary sources. Results
are presented for simulation and real world data. The system achieves a
separation SINR of 16.8 dB when operating on a two source mixture, with
a total acoustic delay was 270 ms. This is on par with, and in many respects
outperforms various published algorithms [1],[2]. A number of instanta-
neous blind source separation algorithms have been developed, including
a block wise and recursive ICA algorithm, and a clustering based algo-
rithm, able to obtain up to 110 dB SIR performance. The system has been
realised in both Matlab and C, and is modular, allowing for easy update
of the ICA algorithm that is the core of the unmixing process.
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Chapter 1

Introduction

For most people, the ability to converse in a crowded room, whilst chal-
lenging, is a skill we use unconsciously. However, for a significant portion
of the population hearing loss significantly impairs this skill. This skill is
referred to as the cocktail party effect, the auditory ability to focus on a
particular source whilst suppressing a wide range of extraneous stimuli
[3] (refer to 2.1). For the hearing impaired, the loss of perception across
the acoustic spectrum severely diminishes this ability [4]. Modern hearing
aids take steps towards alleviating this issue. A beamforming technique is
applied to focus on sounds originating in front of the user [5]. By facing the
person they wish to converse with there, is an improvement in volume of
the speaker. However, due to reduced degrees of freedom when restricted
to the two microphones, there is still significant room for improvement.

Blind Source Separation (BSS) offers a possible solution to the cocktail
party problem in a reverberant environment. Beamforming restricts the
mixing system to a steering vector, and uses this to allow efficient selection
of the correct system to use in unmixing the sources [6]. However, in
a reverberant environment, the effective direction of arrival is frequency
dependent, and the mixing system may not be fully described by a simple
direction of arrival. BSS relaxes the restrictions on viable mixing systems 1.

1The details of the relaxation of the systems is detailed in the literature review.
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Then by using the statistical properties of the target sources, a learning al-
gorithm is able to optimise the coefficents to recover the corrupted source.
This allows identification of processes capable of recovering sources which
have been mixed by a wide variety of convolutive processes, rather than
only process defined by the free-field description as is the case for a classi-
cal beamformer [7].

This relaxation of restrictions comes at a significant cost, the search
space of unmixing systems has been widened drastically, especially when
the number of microphones increases [8] 2. As a result performing the
processing required to estimate these coefficents within a reasonable time
is a significant challenge. A variety of BSS algorithms have been proposed
[9, 10, 1, 11], which vary significantly in efficacy of separation, and com-
putational complexity.

The goal of this thesis is the development of a BSS system capable of
both estimating an unmixing system for use on a real world reverberant
process within a reasonable amount of time, and applying it with minimal
delay between recording and delivery to the user. Ideally the delay would
be so low as to be perceived as instantaneous. Modularity of the unmix-
ing system, so that differing algorithms may be comparatively evaluated
for execution time and separation efficacy, is also a prime consideration.
Finally evaluation of the practical application of contemporary state of the
art BSS approaches has been performed and conclusions are drawn about
the challenges solved and still faced by this approach.

GN resound, a world leading audiological instrumentation company
have worked closely with us in the development of this system. Their
aim is to employ a BSS system based on this work, with the first system
targeted at a classroom environment.

2Consider that a far field beamformer has two degrees of freedom, an azimuth and
elevation angle. A near field beamformer has 3 (x,y,z). A convolutive blind source system
has N2T , where N is the number of microphones and T the maximum considered delay
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1.0.1 Technical Requirements

The thesis aims to improve on current BSS algorithms, and developing
a system to run in real time. This system needs to fulfill a number of
technical requirements. It must have an audio processing latency of less
than 100 ms. It was also decided that the estimation of the unmixing
operator should take less than 5 seconds to solve. The system should
be scaleable in the number of inputs, and robust against loss of inputs.
The system should be able to handle varying numbers of users within
the room. The system needs to obtain these results on modern hardware
whilst maintaining real time operation.

3
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Chapter 2

Literature Review

2.1 Cocktail Party Phenomenon

The cocktail party phenomenon describes and characterizes the ability
of humans to focus on a particular acoustic source in a highly complex
noise environment. Most humans (and animals) possess some skill in
performing this task. However, hearing loss and disorders adversly af-
fecting processing and filtering with in the brain such as autism spectrum
disorders, can cause severely diminished ability in performing this task.

We envision a cocktail party, where a number of independent conver-
sations are in progress within an enclosed space. Each listener within this
room wishes to focus on a particular conversation, and experiences the
other conversations as interference. In addition there are an unknown
number of noise sources, from shuffling feet to clinking glasses, many of
which are nonlinear. The listener wishes to filter out the relevant conver-
sation while suppressing all interference and noise sources. Most people
with adept hearing are able to perform this filtering operation subcon-
sciously.

When looked at from a computational hearing perspective the problem
is complex, especially when the listener obtains just two observations of
the acoustic scene. It is supposed that some form of binaural directivity
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is used [4], and that a time-frequency masking is applied after [12]. How-
ever, the field is still an active area of research [13].

Approaches to solving the cocktail party problem can be divided into
two classes. Beamforming to selectively target sources within a space
can be used to separate speakers, where an acoustic search through the
target area is used to identify speakers within the room. Conventional
beamformer designs do not consider reverberation, instead assuming the
free space propagation of sound from sources within a space. BSS methods
instead focus on separation of sources statistically, eschewing prior knowl-
edge of the physical parameters of the environment. As a result they cover
a wider range of mixing systems, and in theory are capable of improved
performance in reverberant environments. However, they rely on statisti-
cal assumptions about the signals they are attempting to separate, and the
relaxation on the mixing parameters results in an expanded search space
for finding the correct parameters. As we wish to solve the problem for
the reverberant case the project is focused on the latter approach, and an
overview of current works and techniques in BSS is given below.

2.2 The Mixing Process

To develop a source separation system of any form, an understanding of
the mixing process that is corrupting the data we are trying to recover is
critical. In the following discussion lower case symbols will denote vectors
and upper case will denote matrices and t denotes the time index. In the
simplest case the mixing process is instantaneous. We represent this as:

x(t) = As(t) (2.1)

where x(t) is a vector of observed data, A a time invariant matrix, and
s(t) vector of observed source signals. In source separation we estimate
part or all of s(t). To do so some constraints on A, or s(t), or both, must be
applied, so that something meaningful can be recovered. Choice of these
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constraints will be covered in 2.4 and following sections. The matrix A

can be considered to describe a set of channels, one for each microphone-
speaker pairing.

A common extension of 2.1 is to include an additive noise source, de-
noted n(t). The noise source is generally a zero mean Gaussian random
process, denoted as N (0,Σ):

x(t) = As(t) + n(t) (2.2)

Time varying linear processes may also be described in a similar man-
ner, by allowing A to evolve over time. This is denoted by giving the A
matrix a time index:

x(t) = A(t)s(t) + n(t) (2.3)

A non-linear process may be described as some vector valued function
of the sources s(t):

x(t) = F{s(t)}+ n(t) (2.4)

A time variant process can be represented by allowing the function to
evolve over time, denoted as Ft.

x(t) = Ft{s(t)}+ n(t) (2.5)

Linear processes describe a wide variety of mixing systems, for exam-
ple functional magnetic resonance imaging applications will often model
the mixing process of the head as a time invariant linear process with
additive gaussian noise [14]. However, in other cases it is necessary to
describe mixing systems with some form of delay. The most basic case is
a noiseless delay and sum mixing process:

xm(t) =
N∑
i=1

Amisi(t− τmi) (2.6)
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Here xm is the observed signal at microphone m1. Every source is
delayed by a particular time step τ , which is unique to each source to
microphone channel. every source also receives a relative gain, described
by Ami corresponding to the relevant entry in the matrix A from 2.1. The
delay and sum process can be extended to the noisy case in the same
manner as the linear noiseless case. The time varying and non-linear
cases require more care. This process encompasses the linear case 2, and
can be used to describe a significantly wider group of processes. The
freespace acoustic propogation function can be considered as a delay and
sum mixing process [15].

To extend the representation to a fully convolutive process, the ob-
served signals are described as the sum of each source signal convolved
with the filter described by Ami(t). The process now describes a system
which introduces some non-trivial filtering to each source-microphone chan-
nel.

xm(t) =
N∑
i=1

T∑
t=1

Ami(t)si(t) (2.7)

The matrixA is now three dimensional, with an added time dimension.
While the length of the time dimension is ideally infinite, it is necessary to
truncate once the filter gains fall below a cutoff. For audio applications,
the maximum T60 time of all the channels is the natural choice.

By considering the convolution theorem of the Fourier transform, it
is possible to represent the convolution in the time domain and a set of
multiplicative, or instantaneous linear mixtures, in the frequency domain.
This is both a convenient and powerful representation of this system, and

1As an acoustic system is being developed, the sensing devices will generally by
referred to as microphones, and the sources referred to as speakers. However, the systems
described can be applied to any relevant mixture where the assumptions made about the
sources and mixing processes holds, regardless of the generating sources or the sensors
used.

2consider the case where τim = 0∀i,m. This directly corresponds to 2.1
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its use and implications will be discussed in 2.7.

xm(ω) =
N∑
i=1

Ami(ω)si(ω)

= A(ω)s(ω)

(2.8)

Again we can extend the frequency domain case to consider additive
noise by including a nm(ω) term. By the fourier addition theorem this
noise source independent of the mixing filter A and can be considered as:

xm(ω) =
N∑
i=1

Ami(ω)si(ω) +
N∑
i=1

nm(ω)

= A(ω)s(ω) + n(ω)

(2.9)

A time varying convolutive process can be described by allowing the
filter bank, A(t, ω), to evolve over time. The following section covers
the main physical and algorithmic concepts surrounding a convolutive
blind source separation system. We focus on an ICA implementation and
present innovative work, which has been undertaken in the field of con-
volutive ICA.

xm(ω) =
N∑
i=1

Ami(t, ω)si(ω) + nm(ω)

= A(t, ω)s(ω) + n(ω)

(2.10)

While non-linear convolutive models exist and are used in the devel-
opment of a number of source separation schemes [16], they have not been
used in the course of this work and have therefore been omitted.

2.3 The Image Source Method

The aim of this work is to develop an acoustic source separation system.
As such, a model which can accurately describe how acoustic signals prop-
agate within a room is necessary for testing purposes. The image method
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[?] can be used to generate typical impulse responses between an idealized
point source and receiver in a simple rectangular room. By forming virtual
replications of the sources by reflecting the source location through the
walls of the room, the impulse response of the room becomes a sum of
delayed and scaled delta functions. Each delta function is the response
between a virtual source and the receiver given by free space multiplied
by the wall damping coefficients for all the walls it was reflected off. Fig-
ure 2.1 depicts the symmetric expansion of a room used to represent the
reverberations.

Figure 2.1: The symmetric tessellation of the sources used by the image method to
compute the impulse response of a rectangular room. The black circle is the microphone
and the black cross is the real source, the blue crosses are the tessellated image locations of
the source.

The image method considers each wall as a linear acoustic reflector,
and which is a realistic approximation. It is also limited to use on rooms
that have the ability to tessellate, and are simple in structure. Practically
this limits us to the case of the regular polygonal rooms. Figure 2.2 shows
a typical room transfer function generated by the image method for a 5 by
4 metre room.

A single frequency point source generating sound in free space can be
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Figure 2.2: Room Transfer Function for a 5 by 4 metre rectangular room

represented by a pressure wave as follows [17]:

P (ω, source, receiver) =
exp{iω(R/c− t)}

4πR
, (2.11)

where P is the pressure wave observed at the receiver produced by the
source, ω is 2πf , R is the distance between the source and receiver, c the
speed of sound and t time. We can represent the boundary condition of a
wall by placing an image symmetrically on the far side of the wall. The
image transfer function [17] is given by :

P (ω, image, receiver, ε) =
exp{iω(R/c− t)}Π(ε)

4πR
, (2.12)

t =
dist(image, receiver

vsound
) (2.13)

where image is the virtual location of the source on the other side of the
walls the image is reflecting from and Π(ε) is the product of the reflection
coefficients of all the walls the image is reflected by. The overall transfer
function for a particular frequency is the summation over all images. To
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do this in the frequency domain is trivial, as the Fourier representation of
the equation above is a complex delta [18]. This reduces the solution to a
sum of complex Fourier coefficients as follows [17]

F{P (ω, image, receiver, ε)} = δ(
ω

2π
± ω) exp{2πf −R/c}Π(ε), (2.14)

F{room, ω} =
∑
F{P (ω, image, receiver,Π(ε))}. (2.15)

If we restrict our transfer function to a finite length we can find its Fourier
domain representation by considering all the frequencies corresponding
to the Fourier transform of that length. This gives an approximation of the
Fourier transform of the room transfer function.

2.4 The Delay and Sum Beamformer

The delay and sum beamformer is the simplest beamforming architecture.
The aim is to recover the sources mixed by a delay and sum mixing pro-
cess:

xm(t) =
N∑
i=1

Amisi(t− τmi) (2.16)

The principle behind the delay and sum beamformer is to delay each
microphone in the array by τmi where m is the microphone being delayed
and i is the source we wish to recover. The target source will constructively
interfere, while the other j sources will now be delayed by τmj − τmi for
each microphone, resulting in a frequency selective attenuation.

When the microphone array orientation is known, by assuming that
the source is distant from the array and therefore the incident sound waves
are planar, it is possible to calculate the delay corresponding to a particular
direction. When the chosen direction is the same as a source in the sound
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field, the resulting signal should approximate the original source. This is
the delay and sum beamformer.

2.5 The MVDR Beamformer

The Minimum Variance Distortionless Response (MVDR) beamformer ad-
dresses many of the shortcomings of the delay and sum beamformer. For
an instantaneous mixing system, with a known spatial correlation, the
sensor weights are computed to minimise the total output power of the
array, while fixing the gain in a desired direction to unity. we call the
vector describing the direction of interest a steering vector, v. The vector
of weights corresponding to the MVDR result are:

w =
S−1v

vHS(−1)v
(2.17)

However, the mixing process for acoustic recordings in the real world,
as discussed in 2.3, is convolutive in nature. The spatial correlation matrix
does not accurately capture the process in the time domain. The system
must be linearised to correctly recover the signal as received along the
target direction.

As covered in 2.7 a convolutive mixing process can be linearised by the
Fourier transform to give:

xm(ω) = A(ω)s(ω) (2.18)

By operating in the frequency domain the MVDR weight function can be
solved for each frequency, provided the spatial correlation matrix at each
frequency is known.

For environments that are not well approximated by the free space
model the spatial correlation matrices must be derived via a different method.
However, due to sensitivity to modeling errors, and the complexity of
models such as the image method required to describe the richer environ-
ments, performance is difficult to guarantee. In addition, the system must
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be modeled in advance, either by an expert or via a learning algorithm.
Finally beamformers suffer from sensitivity to modeling errors. Spatial
offsets on the order of a centimeter significantly degrade performance
even in a free field environment, and as a result installations require in-
tensive calibration. For these reasons, it was decided that a beamformer
approach would not be suited to reverberant source separation.

2.6 Instantaneous Blind Source Separation

Rather than computing weights based on a pre-determined model of the
process, weights can be computed based on expectations of the properties
of the sources, and weights that result in the maximisation of those prop-
erties used to recover the original sources. These methods are referred
to as blind source separation (BSS) , as prior knowledge of the spatial
arrangement of the generating process is not used, removing reliance upon
accurate placement and tracking of the sensor elements. In general the
problem is under-determined. The signal properties used vary depending
on the approach used. For instantaneous mixing systems, the methods
can be divided into three groups: statistical; cyclostationarity and spatial.
The statistical methods were chosen as they are the most mature, and tend
to be less sensitive to the signal properties, allowing them to be used in a
wide range of situations.

2.6.1 Statistical Methods - Independent Component Anal-

ysis

Approaches include Bayesian estimation systems, hidden Markov mod-
eling [19], ICA [20], cyclostationarity [21] and time frequency masking
techniques [22]. The Independent Component Analysis (ICA) group of
approaches to BSS has been chosen due to the popularity of the method
within literature and its relatively low computational effort, suggesting
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that it can be done within the timescales required for online operation.

Independent Component Analysis (ICA) uses information theoretic prop-
erties to separate the source signals mixed by a linear process[23]. It op-
erates on the assumption that the sources we are interested in are non-
Gaussian in nature. It can be shown that for a given variance, the proba-
bility distribution which has the greatest differential entropy is the Gaus-
sian distribution. By the central limit theorem any linear mixture of non-
Gaussian distributions results in a data set with a more Gaussian distribu-
tion than the constituent distributions[24].

If we know that the mixed sources in our data are non-Gaussian in
nature, finding the least Gaussian representation of a multivariate data
set will correspond with the most statistically independent description
of the inputs. Speech can be considered non-Gaussian, in both the time
and time-frequency domains, as it is sparse in time. The distribution is
closer to Laplacian than Gaussian. To find this least Gaussian description
the differential entropy of the distribution is compared to the Gaussian
distribution of the same variance. Negentropy is another name for this
measure. When performing ICA, the negentropy of a distribution must
be estimated. The first step to ICA after aggregation of the signals is
the removal of redundant dimensions within the data, and whitening of
the input signals. Removing all covariances and setting the variance of
all the unique signals to unity reduces the negentropy calculation to the
comparison between the N dimensional source distributions vs. a unit
N dimensional Gaussian. Principal component analysis will obtain the
necessary transform efficiently [25]. This reduces the search for the least
Gaussian description to rotations in an N dimensional space.

An estimator of the negentropy is applied to rotations of the source
distribution. One estimation of the negentropy is based on the principle
that the Gaussian distribution is fully defined by its mean and variance,
and the higher order statistics are either zero or redundant. Therefore, the
higher order statistics such as skewness and kurtosis can be used to esti-
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mate the deviation from a Gaussian distribution [8]. A good contrast func-
tion will be monotonic as a function of the true entropy for mixtures of the
intended source signals, as this reduces the number of local minima in the
final search space. Finally a search algorithm, for example a grid search,
gradient descent, Markov chain Monte Carlo or expectation maximisation
is used to find the representation that maximises the negentropy[26].

The recovered signals have been separated, but their ordering is lost,
and will be scaled to have uniform energy. For complex signals the scaling
process will introduce a random phase shift as well. For instantaneous
mixtures this is usually acceptable however, this poses serious problems
when the system is extended to operate on complex mixtures.

2.7 Convolutive Blind Source Separation

To extend the ICA algorithm used in the simple linear case to use in a con-
volutive mixing environment, the mixing system needs to be linearized.
By the Convolution Theorem a convolutive process in the time domain
can be described by a multiplicative process in the frequency domain.
This implies that finding a solution in the Fourier domain will be a linear
problem. Alternatively, the field of research known as auditory scene
analysis, provides a range of approaches to convolutive source separation.
Auditory scene analysis draws on nature to provide insight into optimum
methods of tackling the problem. As the most efficient system for perform-
ing BSS is the healthy audiological sensory network of humans, applying
similar approaches is likely to offer impressive performance. The three
methods most relevant to BSS are: percepual masking [27]; pitch based
discrimination [28]; and subband filtering [29]. While this field of research
are delivering promising results, the methods are often restricted in the
number of sources to be discerned, or in the number of observations they
can handle. A more generalist approach, where the system did not rely on
a particular arrangement of the microphones was desired.
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2.8 Permutation and Scaling Ambiguity

The use of the Fourier linearisation of convolutive mixtures enables the
application of linear source separation techniques for convolutive mix-
tures. However, most linear separation techniques discussed only sepa-
rate sources up to an unknown scaling and permutation. This must be
corrected to enable the recovery of the original speech. Solving this prob-
lem is not trivial and is an active field of research [30] [11]. To solve
the permutation ambiguity, two complimentary approaches are found in
literature: inter-frequency correlation and direction of arrival estimation
[31].

2.8.1 Inter-frequency Correlation

The inter-frequency correlation approach assumes that speech occurs across
a range of frequencies and has long periods of relative silence. This results
in a correlation between frequency bins of a Short Time Fourier Transform
(STFT), as coefficients tend to be significant in unison when a speaker
is talking and insignificant when they are not. This is the core of the
algorithm proposed by NTT in a paper authored by Hiroshi Sawada [9].
This correlation is shown in Figure 2.3 where the periods of activity occur
over many frequencies at approximately the same time. Also visible in
Figure 2.3 is the independence of these periods of activity and silence
between two separate speech signals.

This correlation provides a metric for the likelihood two arbitrary fre-
quency bin signals were generated by the same speech source. A high cor-
relation coefficient corresponds to a high likelihood of a common source,
low corresponds to different sources. However, this metric is sensitive to
the relative power of each frequency at a given time, and can give incorrect
matches. A more robust method involves calculating the power ratio of
the recovered sources for each frequency and time slot. The power ratio
as described by Hiroshi Sawada[9] is as follows:
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Figure 2.3: Two spectrograms of human speech, red corresponds to greater magnitude
coefficients for a frequency-time bin, green to near zero coefficients. Note that for each
voice there are periods of activity which occur in unison across many frequencies rather
than being randomly dispersed over time. These periods are independent between the
voices.

pow{f, t, s} =
STFTs(f, t)

Nsources∑
s=1

STFTs(f, t)

(2.19)

Here the strength of a frequency-time point is described relative to the
other sources. This has been shown to be more effective for higher num-
bers of sources [31].

2.8.2 Direction of Arrival

The direction of arrival method applies a beam-forming approach to the
permutation issue. It does so by approximating the direction of arrival
from source to sensor for each frequency based upon the mixing vector
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used to reconstruct the source. It has been exploited by [31] [32] [33].

For each frequency and source in our separation algorithm a complex
vector describing how to recover that frequency and source from the mixed
observations is given. The magnitude of each coefficient approximates the
distance of the source from the sensor. If the sensor location is known
then this can be used to estimate the source location through trilateration.
Additionally, if the sensor array is compactly arranged, then it could be
treated as a far field beam former, and used to generate an estimated angle
of arrival of a given source and frequency.

The use of a compact sensor arrangement could be detrimental as it
favors sources that are near the array and reduces independence in the
recordings. This means the far field beam forming approximation is not
relevant. However, trilateration will operate in a near field beamformer,
and may provide another means of estimating the correct permutation,
assuming the errors introduced by reverberation of the sources is modest.
In the case of heavy reverberation this approach to permutation will fail,
as the spatial assumptions about direction of arrival are invalidated. As a
result we are not focusing so heavily on this approach.

2.8.3 Scaling and Delay Correction

As described in 2.6 there is a random scaling and delay applied to each
frequency bin recovered by the ICA algorithm that is fundamental to this
process. If not corrected the recovered audio sounds unnatural, and is
more difficult to distinguish from the residual noise and interference.

To correct for this problem we aim to recover the signal as it would
sound at a particular point within the room. To do so we need to re-scale
and correctly phase shift each frequency bin so it has the same relative
scale and phase as its generating source has at that particular location.
The simplest points to attempt this recovery from are the microphones
themselves. If we take the correlation between the source and the micro-
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phone, we find the phase change and relative strength of the source within
the overall recording at that time. The correlation between the recovered
source and the other sources within the room will be near zero, as those
sources are independent of the recovered source.

The absolute value of the correlation gives the relative scale of the cur-
rent frequency within the source, and the complex angle gives the phase
shift introduced by the ICA process. Multiplying the signal by the corre-
lation number reverses the frequency selective scaling and phase shift to a
common scaling and shift for a particular source.

Figure 2.4: 35 ms clip of source audio, a recovered signal with scaling correction applied
and a recovered signal without scaling correction. This voice was captured with a PDA,
and some noise is present, especially in the 1000-1500 Hz band.

Figure 2.4 shows a 35 ms clip of the original audio, recovered audio
with scaling correction and recovered audio without scaling correction.
The recovered signal with scaling correction applied exhibits a phase shift
from the original, but is relatively unchanged. The uncorrected signal is
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neither in phase nor accurately represents the signal; however, its enve-
lope approximates the original signal. In practice the uncorrected signal
exhibits a randomised frequency selective phase shift, and while intelligi-
ble is not a natural reproduction of a persons voice.
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Chapter 3

Method

A state of the art BSS system based on fastICA has been produced. The
system runs on a laptop, indefinitely, separating speech signals in real
time. The signals need to be generated by static sources, and be relatively
constant in output, i.e. any pause in speech would need to be less than the
width of one ICA block. These requirements are consistent with the test-
ing environments presented by [31, 1] and others. Additionally it draws
parallels with the setup of the CHiME challenge, as here the speaker was
defined to be within a relatively small region of space [30]. In addition a
modular system was desired, particularly around the source separation,
permutation correction, and recovery areas, to allow comparison between
contemporary systems.

The design of the system is discussed in the following chapter. The de-
sign of the various modules of the system are discussed, starting with the
derivation of the complex ICA algorithm for instantaneous unmixing, and
the recursive ICA algorithm developed to improve on the convergence
time of the system. Then the permutation and scaling solutions allowing
operation on convolutive mixtures are described. Finally the realisation of
these algorithms in both Matlab and C are discussed.
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3.1 Complex ICA

ICA is a successful algorithm in the field of BSS. The SINR results for
speech signals are on par with the systems described in section 2.6, more
than two microphones are used to collect data. In addition it is computa-
tionally efficient when compared to algorithms with comparable accuracy,
such as those used in auditory scene analysis and subband filtering. In
particular the fastICA algorithm, developed by Aapo Hyvarinen [23] con-
verges particularly fast. As the BSS algorithm will operate in the frequency
domain, it will operate on complex inputs. An algorithm extending fas-
tICA for use on complex inputs has been developed, and is derived here.

As described in section 2.6.1, maximising the non-gaussianity of a mixed
set of non-gaussian signals will recover the original signals. ICA accom-
plishes this for linear mixtures by maximizing the negentropy. FastICA
uses a Newton method to elicit convergence in a minimum number of
iterations for real datasets. In the convolutive case, the negentropy of a
number of complex random variables must be estimated, and therefore,
the mixing coefficients are complex in nature. We need to estimate the
Jacobian, and the Hessian, of the negentropy within a complex domain for
our Newton algorithm to work.

Before deriving the algorithm, it is worth discussing the difference
between the probability density function (pdf) of the sources, and the data
we observe from those sources. As we assume the source is a stochastic
process, the values it takes can be modeled by a pdf. However, we can
only make observations of the data produced by our source, and must
infer the generating pdf from these observations. It is the underlying
pdf we are trying to make as non-Gaussian as possible, and we do so by
maximising attributes of the pdf, in particular the negentropy, for each
recovered signal in the source data.

The negentropy function is always real-valued, and non-negative, even
in the complex domain. According to the Cauchy-Riemann criteria, the
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complex gradient of such a function can be found by considering it as a
function of two sets of variables, one of the real components and one of the
real values of the imaginary components. By taking the partial derivatives
with respect to each component we can find the complex gradient of our
function. This can be extended to the Jacobian of a complex multivariate
function with a real output. Let f be a function of the complex domain, g
and h be the partial functions of f corresponding to operations upon the
real and imaginary components respectively:

f(z) = g(zr) + i h(zi), (3.1)

f ′(z) = g′r + i h′i, (3.2)

f ′(z) =
dg

dzr
g(zr)dr + i

dh

dzi
h(zi)dzi. (3.3)

We cannot find the negentropy directly as we only have a finite sam-
ple of the random variables’ distribution. To estimate the negentropy
from first principles would involve finding the approximate pdf of the
Random Variable (RV), and taking the differential entropy with respect
to a Gaussian. This process would be computationally intensive. How-
ever, a estimate of the negentropy is unnecessary, our only requirement
is that locations of local optima are preserved between the estimate and
the true negentropy. Cumulative functions that measure the higher order
moments of the RV, for example the kurtosis function, are used, as they
describe the difference of a given RV to that of the Gaussian distribution.
Correct selection of a contrast function given the distribution of the data it
will operate on is critical. Some examples of contrast functions are:

g(x) = E{tanh(X)}, (3.4)

g(x) = E{(X)3}, (3.5)

g(x) = E{ 1

ε+X2
}. (3.6)

where X is an observed random variable, and ε is a geometric factor.
The contrast functions described above are dependent on the variance
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of the RV they are operating on. The variance of each mixture needs
to be identical to obtain usable results. Thus we apply the constraint,
E{|wHX|2} = 1, where w is the unmixing vector recovering a particular
source generating the observed random variables X . wHx is the current
estimate of one source signal within the observed data. Currently (3.6) is
used as the contrast function.

We wish to find an optimal unmixing vector, woptimal = argmax{f(w)}
where f(w) = g(wHx) subject to the equality constraint above. The La-
grangian corresponding to this problem is:

L(w, µ) = f(w) + µ (|wHx|2 − 1). (3.7)

As the function and constraint are defined by a random variable we rewrite
the above equation in terms of expectations:

L(w, µ) = E{g(|wHX|2)} − µE{|wHX|2}. (3.8)

Values ofw for which the Lagrangian derivative is zero are the constrained
optima.

5L(w, µ) = 5E{g(|wHx|2))}+5µE{|wHx|2},

0 = 5E{g(|wHx|2))}+ µ5 (E{|wHx|2}).
(3.9)

The Newton method is used to solve (3.9). The Newton method finds
the roots of the derivative of the Lagrangian, and as a result the con-
strained optima. An approximation of the Jacobian of 5E{g(|wHx|2))}
is:

52E{G|wHx|2)} = 2E{(52|wHx|2)g(|wHx|2) + 2(5|wHx|2)(5|wHx|2)T g′(|wHx|2)},

≈ 2E{g(|wHx|2) + (|wHx|2)g′(|wHx|2)}I.
(3.10)

This approximation is made by separating out the expectations. The
Jacobian of µ5 (E{|wHx|2}) is µ52 E{|wHx|2)} = 2µ I , making the total
Jacobian of (3.9):
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J ≈ 2E{g(|wHx|2) + (|wHx|2)g′(|wHx|2)− µ}I. (3.11)

The Newton solution iterates wn by taking the Lagrangian and dividing
by the Jacobian above:

wn+1 = wn −
L(wn)

J(wn)
(3.12)

= wn −
5E{g(|wHn x|2)}+ µ5 (E{|wHn x|2})

2E{g(|wHn x|2) + (|wHn x|2)g′(|wHn x|2)− µ}
(3.13)

= wn −
E{x(|wHn x|) ∗ g(|wHn x|2} − µwn

E{g(|wHn x|2) + (|wHn x|2)g′(|wHn x|2)− µ}
. (3.14)

The step between 3.13 and 3.14 is made by calculating the Jacobian of 3.7.
We can remove the µ term by multiplying (3.14) by µ − E{g(|wHn x|2) +

|wHn x|2g′(|wHn x|2)}. This gives us the simplified update:

wn+1 = E{x(wHn x)g(|wHn x|2)} − E{g(|wHn x|2) + |wHn x|2g′(|wHn x|2)}w (3.15)

The Newton algorithm is iterated until wn+1 = wn±εwhere we assume
we have reached convergence. The process is repeated for each signal
present within the data.

3.2 Recursive ICA

The aim of BSS is to recover stochastic source signals S present within
an observed mixture X of the sources. For a linear mixing system one
solution is to find an unmixing matrix WH such that Y = WX and S =

PY , that isW recovers the source signals S up to some permutation matrix
P . Resolving the permutation ambiguity is not considered as there is no
natural ordering to the signals we will observe [31]. However, we do
consider an on-line method for finding W.

The fastICA algorithm is well suited to finding an unmixing filter for
instantaneous mixtures using the ICA method. However, fastICA is a
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batch mode algorithm, a recursive implementation of the fastICA algo-
rithm would be more suited to a real time BSS system. If the system were
to refine its unmixing filters at each sampling time, the delay in the time
to react to changes in the environment could be significantly reduced.

Before deriving the recursive algorithm it is useful to have an under-
standing of how it should be constructed. We want to derive an adaptive
filtering implementation of the fastICA algorithm. we aim to solve the
following system:

d(t) = x̄(t)woptimal. (3.16)

We wish to find d(t), the desired output, from x̄(t), a vector of noisy input
signals, by filtering with the filterwoptimal. note thatw is the filter to recover
a single source d(t). As we assume the mixing system to be linear, this filter
is trivial and has a one sample response length. W refers to the matrix
containing w1, w2....wn which recovers n sources. In situations where the
distortion of the desired signal is non-stationary, woptimal would itself be
varying. In general an the filtering weights w can be updated by

wn+1 = wn + φhε, (3.17)

wherewn is an FIR filter estimated by the adaptive filter, hε is the estimated
error in the previous filter and φ is the learning rate of the algorithm.

The error function hε is generally given by:

wε = E{ ¯x(t)e∗(t)}, (3.18)

where ¯x(t) is the noisy observations and e∗(t) is the error between the
observed output and the desired output, that is d(t) − d̂(t) where d̂(n) =

wn ¯x(t) and d(t) is the desired output. For consistency X is used in place of
x̄ to denote the vector of observations, and xi denotes a single observation.

An ideal algorithm for finding Wn would use an infinite number of
samples to calculate (3.17), as this would provide a theoretically perfect
reconstruction of Wn. However, as sampling takes a finite amount of
time, as does computation, there are practical limits to the number of
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samples considered. In addition, the system observed is highly unlikely to
remain static over long periods of time, restricting the number of samples
available to reconstruct a particular static unmixing matrix.

Taking a window of the data, rather than the whole data set, generally
performs better than a full length averaging function when the signal is
nonstationary. Longer window lengths result in more accurate reconstruc-
tion, but should not be so long that the system would likely have shifted
before completion of separation:

Wn+1 = Wn +
1

L

k∑
i=n−L+1

h(Wn, xi),

= Wn + ∆Wn

(3.19)

where k is an index which shifts the window along the sampling timeline,
L defines the window length and h is that of (3.17). It is intuitive to think
of the update in terms of the previous Wn and in terms of its discrete
derivative ∆Wn which is the updating term. This is equivalent to finding
Wn for a fixed length section of the overall recording starting at index n−L.

The algorithm described above has significant redundancy in its com-
putation at each step of index n. Assuming that Wn ≈ Wn+1, that is the
system has nearly converged on Woptimal, then the only new term in the
sum is that of xn and the previously used term of xn−L is now unused. The
update can be simplified to:

Wn+1 = Wn + ∆Wn +
1

L
(h(Wn, xk)− h(Wn, xk−L), (3.20)

Applying this method directly is infeasable, as the value for Wn is not
constant as has been assumed and any shifts in Wn will result in errors
when the h(Wn, xk−L) is subtracted instead of h(Wn−L, xk−L). Use of an
exponentially decaying window will cause these errors to die out.1 This

1In addition the exponential window will ensure numerical errors are also accounted
for
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allows the algorithm to converge:

Wn+1 = Wn + (1− γ)∆Wn + γh(Wn, x(k + L)), (3.21)

where γ is a forgetting factor defining the effective memory of the sys-
tem. For the case of γ = 1, this results in a memoryless estimate of Wn,
where previous estimates are ignored. A γ of near zero would result in
diminished updates of Wn. For the memoryless case fast convergence
can be expected at the cost of non-robust steady state performance, for
low γ the reverse is true, convergence would be slow with good steady
state operation. There are a number of proposed adaptive approaches to
forgetting [34], the formulation of (3.21) is one of the most straightforward.
A more optimal approach may be found.

For the case where the algorithm starts with zero memory, the addition
of an adaptive value for γ would improve convergence times without
sacrificing steady state performance. Currently the system uses a heuristi-
cally determined time-varying γ of the form:

γ(n) =
γ0
nλ

+ ε. (3.22)

The value for γ starts at γ0 + ε. It then decays exponentially, as controlled
by λ, down to a minimum value of ε. ε defines the steady state operation,
higher ε values should be used for signals where W is highly time-variant.

An assumption was made in the derivation of (3.20) that Wn ≈ Wn+1.
This is a fair assumption when the system has almost converged. How-
ever, if the system is not near convergence, then the earlier terms within
the sum are non-optimal and should all be recalculated to ensure optimum
results. A compromise can be made by instead calculating h(Wn, xi) for the
most recent values of xi. This is at the cost of added complexity propor-
tional to the size of the window, as the costly function h(Wn, xi) must be
computed for all values within the window rather than just for the latest
observation. The new scheme involves updates as follows:

Wn+1 = Wn + (1− γ)∆Wn + γ
1

T

T∑
τ=0

h(Wn, x(k + L− τ)), (3.23)
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where T is the window length for which the most current estimate of the
unmixing filter Wn is used to compute the update ∆Wn.

3.3 Clustering Based Source Separation

An alternative to ICA is to cluster samples based on the direction of arrival
to the microphone array. It is similar to the source number and clustering
algorithm described by Loesch [35].

Speech is a sparse signal, where there are periods of activity inter-
spersed by long periods of silence. In a normal conversation, which could
be considered half duplex, this sparsity extends to speakers, that is only
one speaker is active at a time. This knowledge can be exploited when
estimating the unmixing system, indeed this sparsity is the property that
ICA is maximising in its search for the source signals.

Loesch proposes that each observation at each frequency can be de-
fined in terms of an angular direction of arrival at the microphone array.
In addition each observation can be attributed to one source, due to the
speakers only speaking one at a time. Clustering of data around these
directions of arrival corresponds to a direction of arrival along which a
source lies. This can be used to both identify the number of sources present
in a recording, and identify the beamforming angle corresponding to each
source.

Extending this concept, one does not have to consider the beamform-
ing case, and can define each observation in each frequency bin in terms
of a polar coordinate. By clustering based on the angular arguments the
vectors corresponding to the unmixing vectors of the underlying sources
can be obtained. Knowledge of the arrangement of the microphone array
is not necessary, and separation can still occur under reverberant condi-
tions that would significantly affect the angle of arrival assumed by the
beamformer. This flexibility comes at the cost of slower clustering due
to a reduction in points as each frequency bin is considered separately,
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Figure 3.1: A histogram of counts at each angle for the sparse source plotted in 3.2. 5000
observations spread over 100 bins. note the two distinct peaks in the observed data.

and introduction of the permutation problem present in most convolutive
techniques. As the angle between any two points can be described by a
single angle, even if the data lies in a much higher dimensional space,
the clustering algorithm scales by O(n) with increasing microphone array
size, compared to O(n2) seen for ICA, suggesting that for larger arrays the
clustering algorithm will be computationally favorable.

The algorithm showed promise, but currently fails to handle crowded
mixtures, where speakers are talking over each other constantly. As a
result it was decided that the ICA algorithms were more likely to succeed,
and development proceeded along that path.

3.4 Short Time Fourier Transform

The most basic approach would involve taking the Discrete Fourier Trans-
form (DFT) of a whole recording of speech; apply the ICA algorithm to
the DFT signals and inverse transform the separated signals back into the
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Figure 3.2: A scatter plot of an instantaneous mixture of two sparse sources. we have
not considered the angle given by beamforming, only the observed angle described by
atan(X1

X2
).

time domain. However, this approach assumes that the mixing system
operates uniformly across all frequencies, in other words a delayed delta
function. Outside of anechoic chambers, no environment has such a per-
fect response, and as such this system will fail to correctly identify the
original sources.

To account for more complex environments a lapped, windowed Fourier
transform is applied to the data and the ICA algorithm is applied sep-
arately to each frequency bin present in the window. An appropriate
sample of windows must be considered to accurately capture the statistics.
As suggested by Delcroix [1], the window length should be at least twice
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the length of the reverberation time.

In our algorithm a Gabor transform with a root-Hann window is used
to generate the windowed blocks. A modified Discrete Cosine Transform
(DCT) would be preferable over the Gabor transform as it provides critical
sampling with smooth windowing. This is the algorithmic sweet spot
between complexity, which increases with non-critical sampling, and the
minimum process distortion afforded by smooth windowing. However,
the DCT makes assumptions about the phase of the signal in the forward
transform and in doing so does not allow us to recover the signal with all
the frequencies in phase, leaving us with the use of the Gabor approach.
The Gabor transforms result is complex, meaning we need to apply a
linear separation algorithm capable of operating on complex signals and
complex mixing coefficients.

First the data is windowed using the root-Hann window. The use of
the root-Hann window on the source data and subsequent windowing on
the post processing result, rather than simply windowing with a Hann
window the source data and performing an overlap save without win-
dowing, leads to a unitary transform. This has the added advantage of
distortion meaning the same in both the time and frequency domains, and
reduces processing distortion near window edges. The Gabor transform is
taken for the windows, resulting in a time-frequency representation of the
data. The fast ICA algorithm is then applied to each frequency individu-
ally, and searches for the independent sources that produced a particular
frequency gain observed at each successive window time. Assuming that
the delay present in the room is less than half the width of each window,
the frequency gain at each window should be a linear combination of
the frequency components present in each source, and separable via the
ICA algorithm. The result is then inverse Gabor transformed, recovering
the original sources. This technique reduces computational complexity
sufficiently to enable real-time operation.
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3.5 Real Time System Implementation

The system was realised in Matlab first to prove the concept, then was
ported to C to obtain optimal performance. The design and implemen-
tation are described, focusing on the architecture rather than the libraries
used to obtain the results.

3.5.1 Multi-threaded Design

The original system was designed to work on a fixed length recording of
convolutively mixed speech. It performs an analysis of these recordings,
calculates the independent components, the correct permutation, and re-
turns all of the unmixed sources present in the recordings. This process
takes around 15 seconds, resulting in a delay before the user can hear any
result.

In the practical implementation of this system, the user would prefer
to hear the unrecovered recordings rather than hear nothing at all. In
addition the user would prefer that the recovered sources were presented
instantaneously, even if the presented result is not optimal. To deliver
this a multi-threaded solution has been developed, where there is one
thread capturing all the recordings and instantaneously returns the de-
sired source to the listener. In addition it collects a sample of the record-
ings, and once it has a long enough sample it sends it to the second thread.
The thread performs the estimation of the unmixing operator in the back-
ground, returning a new unmixing solution to the first when it has com-
pleted its task. This system has been implemented with the parallel com-
puting toolbox in Matlab, specifically using the single process multiple
data (SPMD) structure.

Figure 3.3 depicts the operation of the system. The individual sections
are covered below when their operation is not obvious.
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Figure 3.3: The program flow diagram of the online system.

3.5.2 SPMD and the Parallel Computing Toolbox

Recently Matlab has moved towards providing parallel computing op-
tions to users of the language through the use of the parallel computing
toolbox. The SPMD structure in Matlab allows the creation of independent
threads that are able to operate in parallel. The threads have indepen-
dent memory, but are able to send messages to each other precluding
the memory access issues that can make multi-threaded applications sig-
nificantly more difficult to debug than single threaded applications. To
use the SPMD structure the user must first create a pool of workers, or
labs as they are referred to in the Matlab documentation. These labs are
then assigned to undertake the various function calls that are undertaken
within the SMPD structure. The main process treats the SMPD structure
effectively as a holistic function call, and waits until the SMPD structure
has completed all operations before continuing its tasks.
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To implement the real time unmixing system two functions were writ-
ten intended to operate simultaneously on separate threads. Both func-
tions operate in an indefinite fashion, waiting for a stop signal to be deliv-
ered by the user from the GUI.

3.5.3 The DSP Toolbox

The Digital Signal Proceesing (DSP) toolbox provided by Matlab contains
functions to gather, process, record and play audio in real time. The Au-
dioRecorder object allows for recording data directly from the speakers in
real time. The related AudioPlayer, AudioFileReader and AudioFileWriter
objects are also used as their names suggest. A number of important func-
tions are made available, including data type, sampling frequency and
buffer size. We currently operate with a sampling frequency of 16 kHz,
and use 32 bit floating point for the samples. The buffer length provides
a tradeoff between system robustness to interruptions at the cost of delay.
Currently the shortest buffer length that can be used before suffering data
loss is 0.3 seconds in both the player and recorder. This appears to be
a limitation in Matlab, and in theory could be reduced significantly if
implemented on a different platform. However, it still demonstrates the
ability of the system to separate the sources in near real time using directly
observed data.

3.5.4 The Real Time Audio Processing Thread

The real time audio processing thread begins by instantiating the speakers,
the microphones or simulation file as directed, and the file writer. All of
these processes are implemented using the DSP toolbox. It then initializes
the unmixing matrix, which at first is simply the identity matrix resulting
in each source being the input from a given microphone.

Following instatiation the system enters the persistent unmixing loop.
This loop captures the incoming signal data, takes the Gabor window of
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this signal and stores this window for later use by the unmixing thread.
The Gabor window is then unmixed using the current unmixing system.
This result is reverse Gabor transformed back into the time domain, saved
to file and played through the speakers.

Once the thread has collected a sufficiently large set of windows it
sends this data set to the unmixing operator estimation thread. It also
checks if the unmixing operator estimation thread has returned a new
unmixing solution, or if the user is sending a request to halt operation.

The unmixing task takes on average 25 ms per loop iteration for a
window size of 1024 samples, equivalent to 64 ms. Therefore, the sys-
tem should be capable of near instantaneous demixing. However, delays
present in the DSP toolbox increase this delay to around 0.8 seconds. Im-
plementation in C++ or similar should be able to reduce this processing
delay to a usable time.

3.5.5 The Unmixing Operator Estimation and Permutation

Correction Thread

A second thread to find a process to separate the sources and solve the
permutation problem runs independently of the first program. Whenever
a new set of windows is available it runs the conventional fastICA algo-
rithm on each frequency bin in the data set, returning scaled and permuted
sources for each bin.

The system then estimates the most likely permutation of the sources
from the ICA algorithm. This is obtained via the inter-frequency correla-
tion method as described in section 2.8.1. Finally the scaling ambiguity
is corrected using the method described in 2.8.3. The microphone with
highest average gain for a given source is used as the microphone used to
correct the scaling factor. This approach is not ideal, as we do not calibrate
the microphones. A microphone with an inherent gain will effectively
cause the apparent gain in that microphone to be reduced. A measure
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to capture the signal to interference ratio of the source in a particular
microphone is more suitable.

3.6 Realisation in C

The system has also been written in C, as the overheads in matlab were
likely hampering the systems performance. It follows the same architec-
ture as the Matlab code, and uses the FFTW library [?] for the complex
audio processing routines. Matlabs inbuilt C compiler was considered, but
a number of the advanced libraries are not supported by it, specifically the
audio IO and threading sections. As a result the only sections that could be
automatically converted to C were short enough that writing them directly
was not an issue and resulted in clearer, more concise code.

39



40



Chapter 4

Results

There are two separate systems to test, the ability for the system to operate
in real time, and the efficacy of separation achieved by the algorithm itself.
The real time capability can be defined by the lag experienced by the
listener between the emmission of sound by the speakers and the delivery
of the recovered speech to the user. We will consider a lag of 100ms to
be sufficently small, as this corresponds with the approximate crossover
between the perception of reverberation and echo [36]. The separation
efficacy of the system can be defined by the improvement in SINR between
the recovered signal and its generating source, versus the baseline SINR
observed in the microphone recordings.

The ability of the source separation algorithms to operate on linear
mixtures will be covered first. Then an analysis of the performance on
convolutive mixtures on simulated and real world data will be given. Fi-
nally the real time performance figures will be published.

4.1 Instantaneous Performance

Two of the three instantaneous algorithms implemented over the course of
this work, the block wise ICA algorithm and the recursive ICA algorithm
were evaluated on their ability to recover instantaneously mixed speech.
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The clustering algorithm did not perform at a comparative level to the ICA
algorithms and is omitted.

4.1.1 Simulation Environment

The ICA and recursive ICA algorithms have been tested on instantaneously
mixed speech sources, of around two seconds in length, at a sampling rate
of 16 kHz. Their performance was measured by taking the signal to in-
terference and noise ratio between the recovered sources and the original
signals. The derivation of SINR for a linear system is covered.

SINR

We assume that the source we recover is of the form:

rn = αsc + βnn + γin, (4.1)

where rn is the signal recovered by the nth column in the unmixing matrix
W , sc is the source recovered by rn scaled such that it is zero mean unit
variance. nn is some additive, zero mean, unit variance noise source and
in is some additive zero mean, unit variance interference source that is
some combination of s!=c, the other sources present. Note that the source
index differs from the recovered index due to ambiguity in permutation.
α is the RMS power of the signal, β the RMS power of the noise and γ the
RMS power of the interference in rn. The SINR would be equal to α2

β2+γ2
.

However, we do not know α, β, γ, nn or in. The standard method used in
the field [37] for computing SINR given only rn and sc is derived.
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We find that:

corr(rn, sc) =
1

T
E{rnsHc },

=
1

T
E(αsc + βnn + γin)sHc ,

=
1

T
(αE{scsHc }+ βE{nnsHn }+ γE{insHc )},

=
1

T
(αE{scsHc }+ 0 + 0),

= αcorr(sc, sc).

(4.2)

We can use 4.2 to derive α. However, we cannot directly apply the same
to β or γ, as we know neither nn nor in. Instead we can find α + β + γ by:

corr(rn, rn) =
1

T
E{rnrHn },

=
1

T
E{(αsc + βnn + γin)(αsc + βnn + γin)H},

= α2corr(sc, sc) + β2corr(nn, nn) + γ2corr(in, in).

(4.3)

The correlation of all the signals is equal to one, as they are all unit variance
in our example data. Therefore 4.3 is equal to α2 + β2 + γ2 and 4.2 is equal
to α. We then find the signal coherence between sc and rn.

Csc,rn =
|corr(sc(t), rn(t))|2

corr(rn, rn)corr(sc, sc)
Csc,rn =

α2

α2 + β2 + γ2
(4.4)

The SINR can be found directly from the coherence as follows

1 =
Csc,rn(α2 + β2 + γ2)

α2
,

=
Csc,rnα

2

α2
+
Csc,rn(β2 + γ2)

α2
,

= Csc,rn +
Csc,rn(β2 + γ2)

α2
,

1− Csc,rn
Csc,rn

=
(β2 + γ2)

α2
.

(4.5)

The SINR for a recovered signal can be found by taking the coherence
with respect to its target source.
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4.1.2 Instantaneous Results

A linear mixing test was used to evaluate the recursiveICA algorithm
with respect to the fastICA algorithm. The test consisted of separating
two uniformly distributed signals, with additive gaussian noise on the
observations. The noise levels were minus 10, 20 and 30 dB with respect
to the observed power at each microphone, as well as the noiseless case.
The performance of the algorithm was plotted for forgetting factors, γ, of
0.1, 0.05, 0.01 and an adaptive rate of:

γ = 0.8(t/600) + 0.001, (4.6)

where t is the time since the initation of the algorithm in samples. While
the adaptive algorithms never outperform the fastICA algorithm in terms
of SINR values, they have the advantage of obtaining their unmixing so-
lution in real time, whereas the fastICA result is only obtained after full
analysis of the signal. The fastICA SINR can be considered as the upper
performance limit of the adaptive algorithms for a given timestep.

Figure 4.1 shows the SINR readings for the various solutions in the
case where there is no additive noise. The fastICA algorithm obtains an
unmixing system with an SINR of 123 dB, which would be imperceptible
to humans. The adaptive algorithm with the adaptive forgetting factor
performs less predictably than the fastICA algorithm, but is capable of ob-
taining similar performance. After it has converged the minimum SIR was
90 dB. The fixed learning rate algorithms obtain solutions of around 40 dB,
as shown by the red plots in figure 4.1. This is likely due to the increased
estimation noise present at higher learning rates. Their convergence time
is also closely tied to their learning rate. A higher learning rate results
faster convergence and vice versa.

Figures 4.2, and 4.3 show the effect of increasing additive gaussian
noise of the convergence of the system. Here the adaptive algorithms
perform on par with the block wise fastICA algorithm. The adaptive
learning rate still results in the fastest convergence rates as well as the
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Figure 4.1: SINR values in the noiseless case, we observe the adaptive learning rate
algorithm is obtaining higher convergence than the fixed learning rate algorithms. Note
that the variation in the SINR over time is partly due to the periodicity assumption in its
calculation.

highest convergence of the recursive algorithms at all noise levels. The
results show the system entering a noise limited maximum SINR, as all
algorithms converge to the additive noise cap in both the -30 dB and -10
dB cases.

4.2 Online Convolutive Separation Performance

for Simulated Data

The efficacy of separation when the system is applied to simulated and real
world data is presented in the following two sections, and the methods
used to obtain these results are outlined. The C algorithm has been tested
in parts to ensure it is equivalent to the Matlab code. All testing of the
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Figure 4.2: SINR values with additive gaussian noise of -30 dB.

complete system has been performed on the Matlab version.

4.2.1 Simulation Environment

The simulation environment uses the image method described in section
2.3 to generate transfer functions of four speaker to four microphone mix-
tures in a virtual room of 5 x 8 x 3 metres. The image method was used
to generate these transfer functions with reflection coefficients of 0.8 for
the walls and ceiling, 0.3 for the floor. This reflects a carpeted room with
dry wall ceilings and walls. Microphones are placed randomly about
the room. Speakers are placed randomly in the XY plane, but restricted
to being within 0.75 m and 1.8 m in the Z plane to simulate speaking
positions for sitting or standing individuals.

The transfer functions were then convolved with the each source to
simulate the observed signal at a particular microphone for that source,
and the final observation is the sum of all of the observed signals. The sys-
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Figure 4.3: SINR values with additive gaussian noise of -10 dB.

tem described by 3 was then used to unmix the sources from the observed
signals.

4.2.2 Simulation Results

Separation efficacy was tested for mixtures of two to eight voices through
up to eight microphones. We remind the reader that system was not de-
signed to handle the overcomplete case, that is where the number of voices
exceeds the number of microphones. The performance of the system for
the following number of voices by number of microphones will be dis-
cussed: three by three; six by six; and eight by eight.

Figure 4.4 depicts the separation efficacy of the algorithm for a three
by three simulation. The envelope of the recovered signals can be seen
to correlate strongly with the original signals. The rightmost set demon-
strates the scaling system, as the structures of the recovered source are
time aligned with the corresponding structures in the mixture, rather than
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Figure 4.4: Comparison between the generating source signals (top), simulated mixed
signals (middle) and recovered signals (bottom) in the time domain for a three by three
mixture. Note that the envelope of the recovered signal at the bottom strongly correlates
with the original source signal in the top figure.

that of the original source. This results in a well scaled, and phase aligned
signal, delayed slightly, as discussed in section 2.8.3. The centre signal
demonstrates the weakness of the scaling approach, as a strong low fre-
quency wave has corrupted the recovered signal. This is due to the loss of
directionality of low frequency sound, which does not permit separation
through a beam-forming vector reconstitution. In this case the corrupting
signal is 7.5 Hz below 20 Hz and imperceptible to humans. This effect has
been observed in frequencies of up to 60 Hz in the simulated results and
140 Hz in the Real world tests.

Figure 4.5 depicts the separation efficacy of the algorithm for a six by
six simulation, showing a selection of three of the sources. While the
mixtures clearly have an increased number of underlying sources, the
recovered signals show similar levels of corruption to the three by three
case. In addition the low frequency corruption observed in the middle
signal of figure 4.4 is not exhibited here.

In the eight by eight simulation (depicted in Figure 4.6) we observe a
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Figure 4.5: Comparison between the generating source (top), simulated mixture (middle)
and recovered (bottom) signals in the time domain for a six by six mixture.The mixtures
are visibly more crowded, However, the recovered signals have similar, if not better acuity
than those of the three by three mixture.

relatively minor increase in additive noise over the six speaker case. The
central recovered signal again exhibits a low frequency corruption.

The signal to interference ratio, as experienced at each frequency is
displayed in figure 4.7. The two by two simulation shows an improvement
of 16.1 dB on average, while the 8 by 8 simulation shows an average
improvement of 12 dB.

Figure 4.8 compares the spectrogram of a particular source with a sim-
ulated microphone and the recovered estimation of the source. The ability
to capture the original sources harmonic structure is demonstrated by the
aligned red bands in the source and recovered signals (top and bottom
figures respectively). There is a reduction in energy, particularly in the
low frequency bands of the recovered signal. This is due to incorrect
permutation alignment, and results in that particular bin being suppressed
in the scaling stage and causing the observable reduction in energy.
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Figure 4.6: Comparison between the generating source(top), simulated mixture(middle)
and recovered(bottom) signals in the time domain for an eight by eight mixture.The
mixtures are more crowded again, and there is an increase in additive noise for all the
signals present.

4.3 Online Convolutive Separation Performance

for Real World Data

The simulation environment of 4.2 has two major oversights:

• it assumes perfect point sources with omnidirectional directivity.

• It assumes the room is a perfect box, with no furnishings or interior
reflectors.

People speaking are not point sources and are directive. Therefore, the
transfer functions between each speaker and microphone differs from that
given by the image method. It is likely that the transfer function for a
directive pattern would be easier to estimate as the energy of the signal
will be spread over fewer reflections, resulting in less reverberation.
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Figure 4.7: The signal to interference ratio, as experienced at each frequency, averaged
over all sources and over five runs. The two by two simulation shows an improvement of
16.1 dB on average, while the 8 by 8 simulation shows an average improvement of 12 dB,
with the other two simulations falling betwen these results.

Furnishings and non-regular room structure significantly alter the room
impulse response from that idealized by the image method, especially in
the late reverberation period.

It was decided that a real world test to verify the operation of the
system, and justify the use of the simulation in initial testing was required.

4.3.1 Experimental Setup

The electroacoustic lab at VUW was chosen as the test room, as it is sound
proofed to reduce the effects of ambient noise. The room is relatively
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Figure 4.8: Comparison between the generating source (top), recorded mixture(middle)
and recovered signal(bottom) in spectrogram form. The harmonic structures present in
the source file are mostly recovered from the mixture, however, gaps in certain freqency
ranges can be observed at all frequencies.

’dead’ acoustically (reflected in a low T60 time) and as such, many real
environments would likely have more challenging acoustics. However,
the ability to control external noise sources and the access to the necessary
components made it a favorable choice. Eight Mackie MR5 speakers are
used to play speech recordings and eight Studio Project B3 microphones
record the sound from within the room. Using speakers gives control
over the speech, and allows us to make accurate comparisons between
the recovered and original signals. The Presonus FP10 preamplifier was
used as the sound card handling audio IO.
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Figure 4.9: The speaker array in the electroacoustics laboratory comprising 24 Mackie
MR5 monitors in a circular array. To provide a mixture of closely spaced and spread
out emitters, the four leftmost speakers played the first four sources, and then the last
four speakers were assigned to the rest of the array at even intervals. The first three
microphones within the array can be seen in the foreground

The room is 3 m by 3 m by 2.5 m. It has some baffling on the walls
and as a result they have lower than average sonic reflectivity. The T60
time of the room is 0.25 seconds. Figures 4.9 and 4.10 show the test equip-
ment, and 4.11 depicts where the elements are located within the room
in an overhead view. The layout was chosen to provide a challenge to
the system with a mix of both tightly spaced and spread out speakers.
This should make the mixing coefficients highly correlated for the tightly
spaced speakers. In addition the microphone array has a mixture of ran-
domized placement and a circular array, as well as a mixture of central and
peripheral location. The apparent randomness of the layout was chosen to
prove the robustness of the system to spatial arrangements.
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Figure 4.10: The 24 microphone array, missing the three microphones from figure 4.9.
Five microphones spread evenly around the array were used to complete the 8 microphone
system. This simulated a far field array, as it was located in the corner of the room.

Figure 4.11: The layout of the electroacoustics laboratory, and the active elements of the
system.

54



4.3.2 Real World Results

The same tests applied to the simulation have been used to analyse the
performance of the system when applied to data captured in the testing
framework described above.

Figure 4.12: Comparison between the generating source(top), simulated mixture(middle)
and recovered(bottom) signals in the time domain for a three by three mixture. The relative
noise of each signal is significantly increased over the equivalent simulation.

Figure 4.12 depicts the performance obtained in the three by three case.
In contrast with the simulation, a significant increase in additive noise
can be observed in the three recovered signals. However, the system still
improves significantly over the mixed recordings in two out of three cases.
The central case demonstrates a failure to recover the original source. While
hard to demonstrate visually, the intelligibility of the speech is improved
over the mixed recording, as the noise is focused in the low frequency
range and is significantly distorted.

The eight by eight case is depicted in Figure 4.13. Again we observe
and increase in noise over the equivalent simulation. In the central case
there is a significant level of interference, which is the presence of a second
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Figure 4.13: Comparison between the generating source(top), simulated mixture(middle)
and recovered(bottom) signals in the time domain for an eight by eight mixture.The
mixtures are more crowded again, and there is an increase in additive noise for all the
signals present.

source. The source has a higher than average correlation, possibly due
to the fact that the speech signals were looped and the two had similar
lengths, resulting in unintended artificial correlation being introduced.

Figure 4.14 shows the SINR results for the real data set. The two by two
case shows an SINR improvement of 10.9 dB and the 8 by 8 case shows
an improvement of 8.6dB. Finally Figure 4.15 gives a comparative look at
the two results, highlighting the loss of separation performance observed
when moving from a simulation to a real world system. This is likely due
to the processing noise.

Figure 4.16 compares the spectrogram of a particular source with a
simulated microphone and the recovered estimation of the source. The
ability to capture the original sources harmonic structure is demonstrated
by the aligned red bands in the source and recovered signals (top and
bottom figures respectively).
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Figure 4.14: The signal to interference ratio, as experienced at each frequency, averaged
over all sources and over five runs. The two by two simulation shows an improvement of
10.9 dB on average, while the 8 by 8 simulation shows an average improvement of 8.6 dB.
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Figure 4.15: Comparison between SINR figures for the simulated and real data sets.
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Figure 4.16: Comparison between the generating source (top), recorded mixture (middle)
and recovered signal (bottom) in spectrogram form. The harmonic structures present in
the source file are mostly recovered from the mixture, but gaps in certain freqency ranges
can be observed at all frequencies. In additon noise can be observed filling in periods of
total silence in the original source.
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4.4 Real Time Performance

To test the real time performance, measurement of the delays experienced
in the C implementation was required. In particular the acoustic delay and
the estimation delay were characterised.

4.4.1 Acoustic Delay

An important measure of system performance is the total delay from audio
capture to playback. To measure this a test using the presonus FP10 audio
capture device has been designed to allow for measurement of the total
delay between capture of voice and playback through the speakers. The
test setup is depicted in Figure 4.17.

Figure 4.17: wiring diagram of the test setup used to calculate the total delay introduced
while processing, note the two FP10 units are asynchronous.
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The system uses the first four microphone inputs of the FP10 to recover
audio from four speakers within the electroacoustics laboratory at Victoria
University of Wellington. In addition one recovered source is played out
through the first output of the FP10. A second FP10 is driving the four
speakers, and simultaneously recording the recovered source from the first
FP10. This FP10 is operated by a separate computer, and by comparing
the attack of the sound being delivered to the speakers with the recovered
source signal the delay can be approximated.

Figure 4.18: The total delay of the real time system is observed to be approximately 270
ms.

Figure 4.18 depicts the delay experienced by the user of the real time
system. The vertical red lines show the chosen attack, and the dotted line
is the projection of the attack from the speaker output to the measured
input. This shows a total delay of 270 milliseconds. This means that the
recovered sources fall into the perceivable echo region, and the user would
likely perceive the delay that is present.
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4.4.2 Delay Between Unmixing Operators

There is also a measurable delay due to the time it takes to estimate the
unmixing process. This delay describes the minimum time required to
respond to a change in the environment, either the movement of a speaker
within the room, or a change in the layout of the room (for example the
opening of a door). This time varies with the parameters of the system,
in particular the window length of the Gabor transform, the number of
frames used in computing the estimate and the number of observations.

Table 1: Execution times for varying system parameters

Nmicrophones NFrames Window Tblock TMatlab TC T%

2 100 2048 12.8 s 1800ms 120ms 1%
6 100 2048 12.8 s 27000ms 1500ms 12%
8 100 2048 12.8 s 55000ms 3700ms 28%
10 100 2048 12.8 s 105000ms 7500ms 58%
6 200 2048 25.6 s 51000ms 2800ms 10%
6 100 4096 25.6 s 52000ms 2900ms 11%

The table above compares the effect of altering the unmixing parame-
ters on execution time. These parameters are: the number of microphones;
the number of frames used by the algorithm to estimate the operator for
recovering the sources; the number of samples per Gabor frame; the time
required to collect the given number of frames; the execution times of
the Matlab and C programs respectively; and the execution time of the C
algorithm, as a percentage of the time in column three. The percentage of
the time taken to estimate the block is an important reference, as keeping
up with the block time allows for all of the data to be used by the unmixing
process, due to the way the data is processed as described in Section 3.5.5.
The execution time as a fraction of the time to capture the data block is
observed to be nearly independent of both the window length and frame
number, and scales exponentially with the number of observations.
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Chapter 5

Discussion

Previous work in this field of BSS has focused on obtaining high fidelity
source separation under a variety of conditions. However, relatively few
publications in the field have tested their systems against real world mix-
tures. Pedersen [38] states that of the 400 papers he reviewed in the field,
only 37 of them tested against real world data. Of those that have pub-
lished this data the work of Sawada [39] and Ukai [40] are among the top
of the field. Few have also attempted to do so in a real time fashion, most
operate on a full length recording before playing back the sources. The
work of Taniguchi [37] and Kim [41] are two well cited researchers who
have published results for real time Blind Source Separation Systems.

The maximum published signal to interference ratio for a BSS scheme
operating on real world data is 20 dB in the two by two case, by both
Sawada and Ukai. In the eight by eight case the maximum achieved SIR
was 12 dB [42] by Mukai.

In the case of real time algorithms, Tanguchi reported an SIR improve-
ment of 12 dB for simulated data, for two sources. Kim reported an SIR
improvement of 16 dB for simulated data, for three sources. In both cases
the simulation is equivalent to that proposed in Section 4.

The proposed system has been shown to obtain a 15.6 dB improvement
in SIR in simulation for the two sources case, and an improvement of
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12.1 dB in the 8 sources case. This is on par to the figures published in
both the offline and online cases. When operating on real world data,
the SINR figures drop to 10.5 dB in the two source case and 8.2 dB in the
eight source case. While less than the improvements seen in the offline
results published by Sawada and Ukai, the fact that the system exhibits
this performance on a high number of sources, and scales favourably is
promising. In addition, the system could in theory operate in real time on
an increased number of sources simultaneously. Extrapolating from the
execution time figures, operation on ten or more sources simultaneously
is possible, with an SINR figures around 6 to 7 dB. In addition optimized
placement of microphones would likely improve the performance.

Currently a number of challenges must be solved before these systems
are ready for real world applications. Firstly current systems require the
speakers to converse constantly. If there is a pause of over 5 seconds, then
the set of unmixing vectors for that voice is lost. In real speech this is
common, in normal conversation one participant will pause for periods
of time well over 5 seconds while listening to another. No publications
have attempted to correct this shortcoming of contemporary BSS systems,
assuming that the system will not wander significantly in this period.
From experimentation this is not the case.

This is where the clustering based algorithm, described in 3.3 could
prove more effective than ICA. Its operation depends on the periods of
time where only a few of the people in the room are speaking. In addition
the clustering system is computationally efficient, scaling especially well
for high numbers of recording elements. This is because the distance
measure used for clustering is an angle, and therefore can be considered
as a scalar between two points in a space of any dimension. Operating
on scalar values, rather than increasingly long vectors due to the extra
microphones, is significantly more efficient.

Finally the delay of 270 ms is unacceptable for real world use in the
case of someone who is hearing impaired. The sound delivered is a side
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channel to the tools such as lip reading, sign language, and body language.
Providing this information in a timely manner is critical to having a system
which integrates seamlessly. To not do so would only distract them and
they would likely not use it.

When timed internally the algorithmic delay between the incoming
audio interrupt and the write of the data to the output buffer is 48 ms. This
suggests that from a computational standpoint, it is possible to achieve
less than 100 ms delay. The most significant delay is the time spent col-
lecting a full Gabor window frame. Audio must be stored for at least that
long before it can begin to be processed in the Fourier domain, which is
the natural approach.

There are a number of approaches to solving this. One possibility
is to operate on shorter Gabor frames in the audio processing step, and
processing out the reverberation observed at previous steps. This is a form
of Subband processing, and algorithms such as Nordholms [7] would be
applicable. Another option is to convert the unmixing operator into a set
of ARMA filters, which can trade delay for stability. Aichner [43] used
a geometric beamforming technique to obtain a BSS solution in the time
domain, avoiding the issue. He published SIR figures of between 6 and 10
dB, for simulated data. His work used ARMA filters of over 2048 taps. His
work may provide insight into how to formulate long time domain filters
which remain stable.
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Chapter 6

Conclusion and Future Work

A cutting edge BSS system operating on real world data, in real time, has
been implemented in Matlab and C. The proposed system shows that it is
possible to operate on systems with a high microphone and source count,
verified to work on up to eight sources. It also shows that this is achievable
with an audio processing delay of 48 ms. It is conceivable that the delay
caused by the Gabor transform can be reduced to an imperceptible level,
without major alteration to the core of the algorithm. The achieved SIR
of 15.6 dB for a two source mixture is comparable to contemporary blind
source separation algorithms. The 12.1 dB SIR achieved for an eight source
mixture exceeds the results obtained by Mukai. The work on the cluster-
ing based algorithm is promising, particularly in solving the problem of
extended source silence. Applying this clustering algorithm in a recursive
fashion over extended timescales could prove fruitful.

The contemporary beamformer is currently the industry standard ap-
proach to spatially selective filtering. However, it does not address the
problem of reverberation, and its performance degrades quickly in rever-
berant environments. In addition a beamformer is sensitive to the spatial
positioning of its microphones, errors of a few centimetres will result in
significant degradation. As a result a rigid array is often used, limiting the
options for microphone placement. BSS has the potential to solve these
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shortcomings, it can account for reverberation just as well as for the free
space system, and as it requires no calibration, will adjust to changes in
the system layout.

However, a number of shortcomings mean that while blind source
separation has been used successfully in certain fields, particularly func-
tional Magnetic Resonance Imaging (fMRI), it has not been applied in any
commercial acoustic systems. There are a number of reasons this is the
case. Firstly they are resource intensive algorithms, and it is often assumed
that obtaining acceptable results from a system with a high number of
speakers, or microphones, is not practical. This thesis suggests that stable,
real time operation for the eight by eight case is possible, and that it is
reasonable to expect operation past the ten by ten case.

Secondly the ability to handle conversational speech is necessary. With-
out handling the long pauses present in real world communication, prac-
tical applications are limited. As mentioned in Chapter 5, clustering al-
gorithms may prove well suited to this problem. In addition, the prob-
lem is similar to the concept of landmarking in Simultaneous Localisation
And Mapping (SLAM) algorithms, where a landmark may go unseen for
an extended period of time. Quickly and consistently identifying corre-
sponding landmarks is key to a robust SLAM algorithm, and may provide
insight. With more research, these problems can likely be solved, and in
doing so real world applications may be found.
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6.1 Future work

The current system operates well under controlled conditions, but has two
shortcomings that, once solved, will provide significant improvements in
performance and robustness: Firstly, it is assumed that all speakers in a
room will constantly talk. This is not generally the case; speakers will for
the most part not be speaking over each other from within a conversation,
although people involved in independent conversations will. As a result
there may be extended periods, conceivably hours, where the mixing pro-
cess is relatively static, but certain speakers are quiet for significant periods
of time (on the order of 10 minutes). Tracking these silent voices in the
room would allow for improved acquisition when those people decide to
start speaking again. This problem is complex, there needs to be some
method of discarding unmixing vectors where the speaker has left the
environment, and for deciding if a new speaker is really new or is just
a stored voice becoming active again. However, this is the major issue
standing between the current system and real world operation.

The second is that the speakers produce signals that are sparse in time
and frequency; however, the permutation and scaling correction must as-
sign a signal to each frequency, even if the source is not producing any sig-
nal at that frequency. A solution is a time-frequency mask, which would
allow certain frequencies and certain time slots within a frequency band to
be suppressed. There are a number of researchers working on this [45][46],
and it is one of the techniques employed by Sawada in their state of the
art DOLPHIN II system that was the top performer in the CHiME speech
challenge [30]. This should reduce noise significantly in frequencies that
are not excited by a particular speakers voice.
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