
1 

 

 

The interspecific relationships of black rhinoceros (Diceros bicornis) in 

Hluhluwe-iMfolozi Park 

  

 

 

Roan David Plotz 

 

B.Sc. (ConsBiolEcol) (Hons1); GradDipEd (Sec) 

 

 

 

 

 

 

 

A thesis submitted to  

Victoria University of Wellington  

in fulfilment of the requirement for the degree of  

Doctor of Philosophy in Ecology and Biodiversity  

 

 

 

 

 

 

2014 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

“To Ryker, may the wild places of this world long remain protected to captivate and 

inspire you” 

 

 

Black rhino near the Black iMfolozi River in Hluhluwe-iMfolozi Park, Zululand, 

South Africa (Photograph by Dale Morris). 

 

 

 

 

 

 

 

 

 

 

“We learn more by looking for the answer to a question and not finding it than 

we do from learning the answer itself.” Lloyd Alexander 
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ABSTRACT 

 

As habitat loss, predators (human and non-human) and disease epidemics threaten 

species worldwide, protected sanctuaries have become vital to species 

conservation. Hluhluwe-iMfolozi Park (HiP) in South Africa is at the centre of one of 

the world’s greatest conservation success stories. The formal proclamation of HiP 

in 1895 prevented the extinction of the south-central black rhino (Diceros bicornis 

minor) population. In recent times HiP has been a strategic source population for 

the D. b. minor range expansion program, facilitating an 18-fold population increase 

across southern Africa. However, HiP’s own black rhino population appears to be in 

decline. Evidence for decline is most often attributed to overpopulation and poor 

habitat quality that is driving apparently significant increases in the average home 

range sizes, poor growth rates (i.e., low calf recruitment) and poor body condition 

of black rhino. Other factors such as non-human calf predation and parasitism have 

also been raised as potential causes of decline but remain untested. HiP does have 

some of the highest densities of lion (Panthera leo) and spotted hyena (Crocuta 

crocuta). HiP’s black rhino population also suffers from remarkably severe chronic 

haemorrhaging lesions caused by a filarial parasite (Stephanofilaria dinniki). 

Empirical evidence if or indeed why the HiP black rhino population might be in 

decline is lacking. Investigating this population’s true status and any potential 

causes of an apparent decline is urgently needed.  

This thesis therefore aimed to test three hypotheses for poor performance 

that included: (1) investigations of the average black rhino home range size, (2) 

confirmation of black rhino calf predation and (3) the relationship between filarial 

lesions and black rhino body condition. I inserted horn-implant VHF radio 

transmitters into 14 adult (i.e., >5 years) female black rhino in HiP and regularly 

monitored them on-foot over a three-year period. I found that average home range 

estimates (9.77 km2) were not significantly dissimilar to estimates using a similar 

technique obtained forty years prior (i.e., 7.5 km2). I also established the first 

confirmed link between predation attempts and tail amputation during a lion 

attack on a black rhino calf. Black rhino body condition, while significantly 
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inversely and temporally correlated to lesion severity, did not appear to be driven 

by lesion severity itself and highlights the need for further research.  

An additional research focus for my thesis developed while in the field. I 

regularly witnessed red-billed oxpeckers (Buphagus erythrorynchus) feeding at 

black rhino filarial lesions while also alarm calling to alert them to my presence.  

Studies have found it difficult to empirically show how oxpecker-host interactions 

have net positive benefits that make it a mutualism. Thus, two chapters were 

designed to determine if red-billed oxpeckers were predominately mutualistic or 

parasitic when visiting black rhino. Determining this depended on whether I could 

identify net positive benefits or net costs to black rhino. Oxpeckers provide rhino 

with two possible benefits i.e., benefit 1 is cleaning ectoparasites and benefit 2 is 

increasing vigilance, and one cost i.e., lesion parasitism. More than 50 hours of 

behavioural observations established that oxpeckers favoured haemorrhaging 

filarial lesions over sites of tick attachment on black rhino. Moreover, black rhino 

appeared to be completely tolerant of oxpeckers that fed at lesions. To test whether 

oxpeckers increased rhino’s anti-predator vigilance, I conducted 84 human 

approach trials towards black rhino both with and without oxpeckers present. 

Results showed that rhino were immediately responsive to oxpecker alarm calls 

and benefitted from more than a two-fold increase in human detection rate and 

detection distance. Rhino predominately orientated to face towards their sensory 

blind spot (i.e., downwind) after an oxpecker alarm call. The traditional name 

(Askari wa kifaru) of the red-billed oxpecker, which translates as the rhino’s guard, 

appears to be validated. However, future research will need to confirm whether 

black rhino’s tolerance of parasitic oxpeckers is directly related to vigilance 

benefits.  

In summary, black rhino managers in HiP can be confident that the average 

home range sizes have not increased significantly. Further, predation of calves 

might be a greater problem than previously realised and requires further 

investigation. Monitoring changes in the filarial lesion severity of black rhino might 

be a useful tool for detecting impending changes in a rhino’s condition. Finally, 

black rhino are clearly eavesdropping and benefitting from oxpecker alarm calls – a 

co-evolution that has implications for conserving oxpecker populations as well. 
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PROLOGUE 

Bom and I avoiding trouble in the branches of a Marula tree  

(Photograph by Dale Morris) 
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My PhD thesis encompasses two central themes. The first theme was initiated 

in response to management concerns regarding the apparently poor population 

performance of an endemic black rhino population that is, inflated home range 

sizes, calf loss via predation and parasitism. The second theme evolved after I 

initiated this research and became intrigued by the black rhino’s role as a potential 

keystone in several multi-trophic parasitic interactions, in particular with the 

filarial nematode Stephanofilaria dinniki and red-billed oxpeckers. Although these 

themes might initially appear unrelated, I attempted to link these concepts through 

the chapters.  

My PhD study was conducted in the 900 km2 fenced Hluhluwe-iMfolozi Park 

(HiP) in KwaZulu-Natal, South Africa which holds the largest endemic south-central 

black rhino subspecies population. My research began as a local management 

response to better understand the dynamics of its endemic black rhino population. 

The HiP population appears to be performing poorly and is perhaps even in 

decline. Several hypotheses had been suggested as the potential cause of this 

apparent poor population performance; these include (1) poor habitat quality as 

evidenced by apparent increases in home range size, (2) undetected juvenile 

predation due to high densities of predators, as calves are difficult to sight after 

birth and (3) the potential role that endemic parasites and lesions might have on 

rhino body condition and growth rates. It was while I was developing a framework 

to investigate black rhino home ranges and under-acknowledged calf predation 

that I became intrigued about the potential influence of the remarkably severe 

filarial lesions that infect all adult HiP black rhino. Observing red-billed oxpeckers 

regularly foraging at these filarial lesions ultimately framed the design of Chapters 

5 and 6. I focussed on untangling the complexity within these interspecific 

relationships. In this way my thesis ranges from a pragmatic and applied 

investigation framed to treat a conservation problem to a behavioural ecology 

study that nonetheless also has unexpected implications for rhino conservation.  

The background to my PhD journey, including the conservation history of 

HiP’s black rhino population, has been well documented in several popular articles 

(see Appendix 1, 2, 3 and 6). Together all six Appendices provides a useful 

background to each chapter, my experiences in the field and why I began this PhD 

study in the first place. The main aims of this thesis were divided into two parts 
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which are intricately linked by the black rhino’s role in multi-trophic inter-specific 

relationships involving humans, non-human predators, oxpeckers and endo- and 

ecto-parasites. Each aim is discussed in greater detail in the Introduction (Chapter 

1) which is as mentioned divided it into two parts.  
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1.  

INTRODUCTION 
 

 

Inserting a horn-implant radio-transmitter into a sedated black rhino in Hluhluwe-

iMfolozi Park 

(Photograph by Rosalynn Anderson-Lederer) 
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Part 1: Investigating the apparent decline of a strategic donor 

population 

 

1.1. Black rhino: a history of rapid population decline to the beginnings of a 

turnaround 

Humans (Homo sapiens) have driven many large mammal species to the brink 

of extinction (e.g., black rhino, Diceros bicornis, Western and Vigne 1985; American 

bison, Bison, Isenberg 2000; Orang-utans, Pongo sp., Goossens et al. 2006).  

Endangered species are increasingly managed within fenced sanctuaries. Critically 

endangered species such as the black rhino (IUCN 2012) are today almost entirely 

managed within fenced reserves (Emslie and Brooks 1999; Linklater et al. 2011). 

Guarding black rhino from the negative human influences of illegal poaching and 

habitat destruction has slowed previously rapid population decline. The basis of a 

recent population turnaround, however, has come from an over 50 year intensively 

managed translocation and range expansion programme (e.g., c. 5, 081 today, Fig. 1, 

cf. c. 1,200 in 1992; Emslie 2001; Emslie and Knight 2014). The protection and 

relocation management of the south-central black rhino subspecies (D. b. minor), in 

particular, is one of the world’s most successful conservation stories (Morris 2009, 

App. 2).  

Historically, D. b. minor avoided inevitable extinction when the last 100 

individuals in two remaining Zululand (South Africa) populations received formal 

protection in 1895 (e.g., Hluhluwe-iMfolozi Complex and nearby Mkhuze Game 

Reserve, MGR; Skinner and Smithers 1990). After gradual stabilisation the 

attention of conservation managers shifted towards species recovery. In the 1960s 

a harvesting and relocation programme began and was first named Operation Rhino 

and is known today as the Black Rhino Range Expansion Project (BRREP). Out of 

necessity, Hluhluwe-iMfolozi Park (HiP) with the largest and most stable 

population became the major source of D. b. minor for ongoing harvesting and 

relocation (Emslie 2001).  Today the Rhino Management Group (RMG), a collection 

of select state conservation agencies tasked with the implementation of this 

strategy, monitors and evaluates the performance of the entire black rhino meta-

population (i.e., separated populations of the same species linked by 
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translocations). Achieving rapid meta-population growth rates of at least 5% 

annually has become the RMG’s underlying rationale for black rhino population 

recovery management across Africa (Emslie 2001). In HiP, ongoing harvesting at 

5% of the total population is believed to be sustainable because density dependent 

large mammals such as rhino are expected to grow faster when maintained at just 

below the maximum population size for a reserve (i.e., below carrying capacity; 

Emslie 2001). Significant population growth, however, is expected to come from 

newly established (i.e., relocated) D. b. minor populations, where rapid growth is 

supported by lower densities and abundant resources (Emslie 2001). 

For the most part the BRREP has gone as planned. As expected, HiP has been 

the source for a significant sub-species range expansion from one park in Zululand 

to a D. b. minor meta-population that covers most of southern Africa (Fig. 1).  Some 

new populations such as in the Great Fish River Reserve in the Eastern Cape, South 

Africa, achieved well above the desired 5% annual growth levels (e.g., 17% annual 

growth; Emslie 2001; Lent and Fike 2003; Fig. 2). As expected this has led to an 

increase in the overall D. b. minor population (i.e., 100 to 1,800 individuals; Skinner 

and Smithers 1990; Emslie and Knight 2014). Unexpectedly, however, there has 

been the lack of stimulation in the growth rates of the HiP black rhino population, 

currently at 3% annually (i.e., below the RMG desired 5 %; Fig. 2).  In fact, many 

report that several key performance indicators point to a black rhino population in 

decline (Emslie 2001; Fanayo et al. 2006; Adcock 2009). Unfortunately, only a 

handful of other black rhino populations, such as in Kruger National Park (South 

Africa), have developed into what the RMG define as a key source population 

suitable for ongoing harvesting (i.e., > 100 individuals and positive growth; Emslie 

and Brooks 1999; Emslie 2001). Founding populations start small and despite 

rapid growth, new black rhino reserves take time to establish themselves. The 

RMG’s short-term 10-year goal is to achieve a D. b. minor meta-population of 3 060 

individuals (i.e., up from 1 800; Fig. 1) by maintaining populations at a growth rate 

of at least 5% per annum. However, the key HiP black rhino source population is 

growing at a relatively low 3% (Fig. 2) and even thought to be declining by some 

(Emslie 2001; Reid et al. 2007). Regardless, the RMG remains heavily reliant on 

sourcing the majority of individuals from the HiP black rhino population.  
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The RMG’s attention has necessarily been focussed on expanding the range 

and population recovery of the species. Attention has begun to shift towards 

understanding the performance of the key black rhino source population within 

HiP. Achieving this will require the suspected causes of apparently poor 

performance to be identified and tested. The next section of this introduction 

focuses on some of these causes and what ultimately forms the basis of my 

investigations in Chapters 2, 3 and 4 of this thesis. 

 

1.2. Hypotheses for the poor performance of a key black rhino source 

population 

 

All available performance indicators for black rhino in HiP appear to show 

that the main indicators of growth rates, calf recruitment, inter-calving intervals 

and body condition are below average to poor (Emslie 2001; Fanayo et al. 2006; 

Adcock 2009). Regular harvesting was expected to maximise population growth 

rates to at least 5% per annum, which would correlate with above average 

performance indicators. Various hypotheses have been proposed as to why this D. 

b. minor population has failed to respond as expected to the intensive harvesting 

strategy. Hypotheses include social disruption of the population as a result of 

ongoing removals (Balfour 2001; Clinning et al. 2009), historical overestimation of 

population numbers such that apparent population declines have not actually 

occurred (Clinning et al. 2009), high levels of calf predation (Brain et al. 1999; 

Fanayo et al. 2006), increasing competition from other browsers (Emslie 1999; 

Fanayo et al. 2006; Landman et al. 2013), decreasing quality and quantity of black 

rhino browse leading to significant increases in average home range sizes (Emslie 

1999; Reid et al. 2007).  

There is no empirical evidence to indicate if or indeed why this population is 

performing poorly (Fanayo et al. 2006; Clinning et al. 2009). Central to this 

uncertainty is the variable quality of the data that is available for the HiP D. b. minor 

population (e.g., Clinning et al. 2009; Plotz and Linklater 2009; Linklater et al. 2010, 

App. 4). Studies that focus on improving data quality and testing the various 

hypotheses are needed. Clinning et al. (2009), as one of a few studies attempting to 

do so, addressed the hypothesis that historical black rhino population estimates for 
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HiP have been historically inflated. Reworking the population records, they 

identified where individual rhino had been recorded multiple times as several 

different rhino – thereby inflating overall population estimates. The reasons were 

most likely due to the historical use of ambiguous identification techniques (e.g., 

body parts such as pink lip, wrinkles). Since 1992 a much more reliable 

identification technique has been in use (ear notching sequence; Hitchins 1990). 

Clinning et al. (2009) demonstrate both the value and need for conducting 

empirical investigations into all suspected hypotheses for poor performance for 

this population. If HiP managers and the RMG are going to meet their meta-

population goals they will need a much better understanding of the status of this 

key source population. HiP managers might then be able to identify negative factors 

on performance and take action to improve performance in the long term. 

In this context, HiP management have proposed that a number of additional 

studies be initiated to test these various hypotheses (Fanayo et al. 2006; Clinning et 

al. 2009).  In response to this request I chose three hypotheses to investigate. The 

first two were raised by management; the third I proposed. They are: 

 

Hypothesis 1: Significant increases in average black rhino home range size inferred to 

be due to a decline in habitat quality  

 

Authors have reported an apparent 306% increase in HiP’s average black 

rhino home range size (i.e., from 7.50 km2 to 23.02 km2) over the last forty years as 

evidence of a reduction of black rhino habitat quality (i.e., population exceeded 

carrying capacity; Reid et al. 2007; Slotow et al. 2010; App. 5).  

Several authors contend that home range size estimates are inversely 

correlated to habitat quality for black rhino (e.g., Emslie 1999; 2001; Reid et al. 

2007; Slotow et al. 2010). Although there are some animal species with supporting 

empirical evidence for this (e.g., elk, Cervus elaphus; Anderson et al. 2005), for 

others there is not (e.g., brown bears, Ursus arctus; bobcat, Lynx rufus; Conner et al. 

2001; klipspringer, Oreotragus oreotragus; Druce et al. 2009). For some animals, 

ranges are guided more by social relationships or their predation risk (Druce et al. 

2009). Like many aspects of our understanding of black rhino ecology, there is a 

lack of qualitative data. Even if home range size was inversely proportional to 



18 

 

habitat quality for black rhino, HiP’s historical home range studies, like elsewhere 

(see Lent and Fike 2003), are fraught with a range of methodological issues that 

prevent meaningful inter-study comparison (e.g., inconsistent use and reporting of 

location number, time period and analysis - described in detail in Linklater et al. 

2010).     

Comparisons between studies continue to be made regardless and debate by 

management regarding appropriate harvesting levels are influenced by 

unsubstantiated inferences of declining habitat quality (Morris 2009; Linklater et 

al. 2010). Some argue that harvesting levels need to be increased to stimulate 

increased growth rates (Emslie 2001). Others are concerned that this population is 

being over harvested (Balfour 2001; Clinning et al. 2009). Populations are more 

heavily harvested if range sizes appear to have increased.  As a first step, 

management requires ecologically accurate and comparable home range estimates 

for the HiP population. This formed the basis of Chapter 2’s aims.       

 

Hypothesis 2: Higher than expected calf predation  

 

HiP management has speculated that long inter-calving intervals might be a 

reflection, in part, of higher than anticipated calf depredation (Fanayo et al. 2006). 

Better performing populations with high growth rates generally have relatively 

short inter-calving intervals. However, if predators are targeting calves at higher 

than anticipated levels this could be inflating inter-calving intervals of HiP’s black 

rhino population. HiP does have the full suite of Africa’s large predators, in 

particular lions (Panthera leo) at increasing densities (Grange et al. 2012) and 

some of the highest densities of spotted hyenas (Crocuta crocuta) (Graf et al. 2009) 

- both implicated in black rhino predation (Kruuk 1972; Elliot 1987; Brain et al. 

1999; Plotz and Linklater 2009). Some black rhino populations with a full array of 

large predators, like HiP, have relatively poor growth rates, while other reserves 

have good growth rates and no predators (e.g., Great Fish River Reserve, South 

Africa; Lent and Fike 2003; Fig. 2).  It might not be realistic to expect HiP and other 

reserves with higher densities of large predators to be able to grow as fast as rhino 

populations where predators are absent (Plotz and Linklater 2009), even with 

ongoing harvesting.  
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A major limitation in determining the effect of predation on juvenile black 

rhino is the lack of evidence that it occurs. Berger (1994) states that up to 94% of 

the missing ears and tails regularly seen in individual black rhino can be attributed 

to attempted predation on calves. It is possible that black rhino calf predation is 

significantly under reported. Indeed the HiP black rhino population have about 7% 

of the population with missing ears and tails suspected of being caused by lion or 

spotted hyena depredation attempts (Hitchins 1986; Plotz and Linklater 2009). 

Even if rhino are radio-tagged, young calves are not readily noticed until they are 

several months old. Thus, a significant number of calves could be born and lost to 

predators before identification and artificially inflate inter-calving intervals (Plotz 

and Linklater 2009). Apparently poor calving rates and intervals reported might 

reflect other factors such as non-human predation (i.e., lion and spotted hyenas) 

(Fanayo et al. 2006).  

Despite Hitchins (1990) and Berger (1994) warning about a link between 

failed depredation attempts and ear and tail loss in black rhino, there has been 

ambiguous evidence to support this assertion. Actual observations of juvenile black 

rhino depredation is rarely reported (Brain et al. 1999) and so managers rarely 

factor in predation when making decisions about rhino population performance. 

Thus, if observations of non-human depredation attempts on calves were made and 

the link between predation attempts and ear and tail loss in black rhino calves 

confirmed, then managers might have the impetus they need to consider this in 

their management plans. My attempts to find the link between calf depredation and 

ear and / or tail loss in HiP black rhino formed the basis of Chapter 3. 

 

Hypothesis 3:  Filarial parasitism and rhino body condition 

 

Parasitism has not to my knowledge been considered as a cause of poor 

performance in black rhino populations. However, HiP’s black rhinos are infected 

by a filarial parasite that produces distinctive chronic haemorrhaging lesions 

(Hitchins and Keep 1970). After observing the size and severity of black rhino’s 

filarial lesions (e.g., 26cm wide; Hitchins and Keep 1970), I wondered if the HiP 

population would be able to perform optimally.  
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Other than identifying the cause (Stephanofilaria dinniki; Round 1964), little 

other research on filarial lesions has occurred since the late 1960s (Hitchins and 

Keep 1970). First-hand accounts from wildlife practitioners report that filarial 

lesions become progressively more severe (i.e., flaring) whenever black rhino are 

exposed to a stressful event. For example, black rhino harvested for relocation are 

first held in enclosures for up to a week or two. In these rhino, the severity of 

filarial lesions increased dramatically (D. Cooper, Pers. comm.). ‘Flaring’ of lesions 

was also associated with marked declines in rhino body condition over time.  If 

lesion severity and body condition are indeed correlated, it poses a potential 

dilemma for management. HiP’s black rhino have the most severe filarial lesions 

recorded for any of the populations where lesions are known to occur (Schulz and 

Kluge 1960; Parsons and Sheldrick 1964; Tremlett 1964; Hitchins and Keep 1970). 

The increased severity of lesions might, in part, explain why HiP’s black rhino also 

have below average body condition scores (Fanayo et al. 2006). It might also 

explain why some non-infected populations appear to have much higher growth 

rates (Emslie 2001; Lent and Fike 2003). An ability to monitor and detect the 

flaring of lesions might be a useful to managers to detect periods of stress in 

affected black rhino populations. 

Research on domestic cattle (Bos Taurus) demonstrated that low body 

condition scores were temporally correlated with increased treatment for 

haemorrhaging lesions of the sole (i.e., lameness) two to four months later (Green 

et al. 2014). I speculated whether such a temporal relationship might also exist for 

HiP’s black rhino. If such a relationship existed I would expect to see an inverse 

temporal correlation between body condition scores and the amount that filarial 

lesions haemorrhage (i.e., severity). Testing this would require reliable field 

measures of body condition and filarial lesion severity for HiP’s black rhino. 

Fortunately there is a five point visual scoring system already in use for black rhino 

(Reuter and Adcock 1997). This body condition (BC) scoring system is reliable, as 

Perissodactyls (e.g., rhino, horses and elephants) store their body fat directly under 

their skin (Carroll and Huntington 1988; Henneke al. 1983; Keiper 1991; Reuter 

and Adcock 1998). Unfortunately a reliable field technique for scoring filarial 

lesions is not available. Thus, it is not currently possible to compare lesion severity 

and body condition scores to look for a temporal signal.  



21 

 

Filarial parasitism’s role in the welfare of black rhino is largely unknown. 

Should a temporal signal exist between lesion severity and body condition it could, 

in part, add weight to the argument that HiP’s black rhino population is performing 

poorly due to an unknown stressor (Emlsie 2001). Some suggest, for instance, that 

HiP has poor quality habitat for black rhino due to overpopulation (i.e., exceeded 

carrying capacity; Emslie 1999; Reid et al. 2007). If poor nutrition was an 

underlying stressor it could be causing HiP’s black rhino population to present with 

the most severe lesions yet recorded, as well as below average body condition 

(Fanayo et al. 2006). Nonetheless, the reasons remain unknown, including why 

there is such a disparity in lesion severity across the populations of black rhino that 

have lesions (Tremlett 1964; Hitchins and Keep 1970; Mutinda et al. 2012). To 

improve the understanding of how filarial lesions effect black rhino populations 

there is a need for greater inter-study comparisons. To facilitate comparisons 

between reserves I surveyed and plotted all current black rhino reserves 

presenting with filarial lesions. Together with investigations into a temporal signal 

this formed the basis of Chapter 4 of this thesis.  

 

1.3. Study site: Hluhluwe-iMfolozi Park  

 

Hluhluwe-iMfolozi Park (HiP) is a 960 km2 fenced reserve located in Zululand, 

KwaZulu-Natal (KZN), South Africa (Fig. 3). Mean annual rainfall and altitude 

decrease from Hluhluwe in the North (990 mm and 450 m asl), to iMfolozi in the 

south (635 mm and 60 m asl), with April to September being the dry season 

(Balfour and Howison 2001). Average monthly temperatures range between 13°C 

(winter) to 33°C (summer) (Whateley and Porter 1983).  Rainfall remains highly 

variable and seasonal, with average warm wet summers (October to March) of 378 

mm and cool dry winters of 201.9 mm (Masinda weather station; G. Clinning, 

unpubl. data). HiP also experiences periodic oscillations in rainfall lasting 

approximately nine years (Walters et al. 2004). HiP currently holds approximately 

218 south-central black rhino (D. b. minor) (Clinning et al. 2009) and is the largest 

surviving endemic population of only two in Africa (Brookes and MacDonald 1983). 

HiP undergoes annual black rhino harvesting (c. 5 to 8 % of the population) 
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because it is a strategic donor source population for species rescue and range 

expansion (Emslie 2001).  

Hluhluwe-iMfolozi Park’s non-human predator history 

 

Following local extinction in 1958 the first lone male lion re-entered the 

iMfolozi Game Reserve (Southern half of HiP), followed by two females in 1965 

(Anderson 1981; Grange et al. 2012). By the 1980s approximately 60 lions had 

been recorded (Maddock et al. 1996). Lions were eliminated from the Hluhluwe 

section (Northern part of the Park) between 1988 and 1992, to be replaced by 13 

female and 3 male lions brought from Namibia between 1999 and 2001 (Trinkel et 

al. 2008). Between 2003 and 2004, the total lion population declined from 80 to 61 

(Trinkel et al. 2008), but had rebounded to 114 by 2008 and reached an estimated 

200 individuals in 2010 (Grange et al. 2012). 

HiP’s spotted hyena population (excluding cubs) has been estimated at 321 

individuals (Graf et al. 2009). The average spotted hyena density in HiP is relatively 

high for southern Africa, but intermediate if compared to East African areas (Graf et 

al. 2009).  

 

1.4. Focal study species: south-central black rhino (D. b. minor) 

  

Black rhino are able to occupy areas wherever substantial herb and woody 

browse occurs. Their range represents a wide range of habitats from deserts, semi-

deserts, wooded savannahs, woodlands, forests and even sub-alpine heathlands 

(Amin et al. 2006).  However, sustainable population densities in these habitats 

range from 1 rhino per 100 km2 in the south-western desert plains of Namibia, to 

more than 1 rhino per 1 km2 in the thicket vegetation (Amin et al. 2006) of the 

mesic eastern parts of the continent (Swart and Ferguson 1997). Over the last two 

centuries a significant area of rhino habitat has been fragmented due to land 

clearing for human agricultural and settlement needs (Amin et al. 2006).  More 

recently, however, human demand for rhino horn threatens rhino survival (Ashley 

et al. 1990; Swart and Ferguson 1997; Rookmaaker 2005; Amin et al. 2006; Beech 

and Perry 2011). Rhino horn is used to carve ornate handles for ceremonial 
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daggers in Yemen (known as jambiyas) and in traditional Chinese medicine (Ashley 

et al. 1990; Emslie and Brooks 1999; Amin et al. 2006).   

Obtaining accurate data on black rhino calf births, survival rates and inter-

calving intervals is challenging. Firstly, black rhino require intensive long-term 

monitoring due to the asynchronous 15 month gestation periods with an additional 

three months before gestation is again possible (Skinner and Smithers 1990). 

Secondly, black rhino regularly inhabit dense vegetation, especially in the first six 

months of a calf’s life (Skinner and Smithers 1990). 

Black rhino are categorized as Critically Endangered by the IUCN Red List 

(IUCN 2012) and are divided into three (previously four) sub-species distributed 

throughout sub-Saharan Africa (Emslie and Brooks 1999; Amin et al. 2006: Fig. 1). 

The south-central black rhino sub-species, D. b. minor, are most numerous with the 

largest endemic sub-species population in HiP, KwaZulu-Natal Province, South 

Africa.  HiP’s population was estimated at 218 individuals in 2009 (Clinning et al. 

2009) and is one of only two reserves that have greater than 100 black rhino (other 

Kruger National Park).  The practice of translocating black rhino, largely from HiP, 

has been an important tool in stabilising and increasing their overall number.  

Black rhino in HiP are one of a few known populations to suffer from large 

haemorrhaging ulcerative filarial lesions (Hitchins and Keep 1970). The severity of 

lesions also varies between infected populations. Lesions are almost unnoticeable 

in some populations (Meru National Park, Kenya; Mutinda et al. 2012) but 

remarkably severe in others (Tremlett 1964; Hitchins and Keep 1970; Skinner and 

Smithers 1990). Lesions are caused by the filarial nematode Stephanofilaria dinniki 

(Schulz and Kluge 1960; Round 1964) that is vectored by blood sucking flies 

(Rhinomusca dutioti and R. brucei; Zumpt 1964; Parsons and Sheldrick 1964; Mihok 

et al. 1996).  

As with other filarial nematode species it is speculated that S. dinniki’s 

distribution is physically limited by rainfall-humidity and temperature because 

moisture limits the range of its fly vector (e.g., bloodsucking fly: R. dutoiti/ brucei; 

Zumpt 1964). Dipteran larva requires moisture in order to progress through the 

several larval stages before adulthood (Lehane 2005). Nonetheless, it is unclear 

why there should be variation in lesion severity between populations where the 
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vector does occur. Determining the causes of this variation is hindered, in part, by 

limited knowledge about this filarial nematodes biogeographic range within Africa. 
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Figure 1: Distributional range of the four black rhino sub-species including the 
estimated populations for each country within its distributional range. All current 
D.b.minor populations were sourced from Hluhluwe-iMfolozi Park and nearby 
Mkhuze Game Reserve (red circle: for security reasons precise locations of 
populations are not shown). Population estimates listed above as of 31 December 
2012 (Emslie and Knight 2014). Map Source: Emslie and Brooks 1999. Note that 
Mozambique population is extinct and Angola, Botswana and Zambia had black 
rhino relocated post the design of the map in 1999, hence uncoloured.  

Estimated population 
per country: 

 

Angola           = 1 
 
Botswana      = 9  
  

Cameroon       = extinct 
(Lagrot et al. 
2007) 

Kenya             = 631 
 
Malawi           =   26 
 
Mozambique = 0? 
 
Namibia          = 1, 750 
 
Rwanda           = 0? 
 
South Africa:  
 
D.b. minor)      = 1,792  
(D.b. bicornis) = 208         
(D.b. michaeli) = 68 
      
Swaziland      = 18   

Tanzania:          

(D.b. michaeli) = 100      
(D.b. minor)      = 27  

Zambia:               
 (D. b minor)      = 27 
 
Zimbabwe         = 424 
 
Total:                  = 5,081 
 
 

 Study Species 

 
Extinct 

Hluhluwe-

iMfolozi Park 
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      Adapted from Knight (2001) 

 
 
Figure 2. Average annual percentage growth of selected South African black rhino 

populations from 1989-1998 (Rhino Management Group Data). Achieving 
rapid meta-population growth of > 5% annually (black horizontal line) is the 
underlying rationale for black rhino population management across Africa. 
Expanded abbreviations: ANP = Addo National Park; GFR= Great Fish River; 
KNP= Kruger National Park; HiP= Hluhluwe-iMfolozi Park.  
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Figure 3. Study site showing location of Hluhluwe-iMfolozi Park in KwaZulu-Natal 
Province with inset showing location of province within South Africa (Map 
source: Darnell 2012). 
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Part 2:  Understanding the conditionality of mutualisms 

 

1.5. The cost versus benefit tug-of-war in cleaning symbioses 

 

Mutualisms, commensalism and parasitism have historically been regarded as 

discrete categories of interspecific relationships. Increasingly these relationships, 

particularly mutualisms, are being recognised for their variability under changing 

environmental conditions (Bronstein 1994a, b; Del-Claro 2004; Cheney and Cote 

2005; Plantan 2009). Mutualisms are defined as interspecific interactions where 

the benefits from the association outweigh the costs (Bronstein 1994a, b). 

However, changes to the biotic and abiotic settings within which mutualistic 

interactions occur can alter the outcome (Holland et al. 2002; Plantan 2009). 

Relationships might therefore shift from mutually beneficial (mutualism) to costly 

(parasitic) under changing environmental conditions. Cleaning symbioses, where a 

cleaner species removes ectoparasites from a larger host, are thought especially 

prone to variable outcomes because benefits between the two interacting species 

are mediated by the presence of another (Bronstein 1994a, b). Mutualistic 

interactions that vary according to such ecological factors are termed “conditional 

mutualisms” (Bronstein 1994a; Herre et al. 1999; Del-Claro 2004; Plantan 2009).  

Understanding that cleaning symbioses are prone to conditional outcomes is 

a relatively recent consideration (Cheney and Cote 2005; Plantan 2009). Since the 

early 20th century a cleaning symbiosis that has engendered considerable debate 

and research interest about its true nature is the oxpecker (Buphagus sp.) -ungulate 

relationship (Moreau 1933; Weeks 2000; Nunn et al. 2011). Some have argued that 

oxpeckers benefit ungulates by removing ticks (Craig 2009; Nunn et al. 2011). 

Others believe that ungulates are harmed by oxpeckers predilection for wound 

feeding (van Someren 1951; Attwell 1966; Keet et al. 1997; McElligot et al. 2004; 

Weeks 1999, 2000).  

Initial investigations attempted to resolve the debate by examining the 

stomach contents of oxpeckers. Ticks (Ixodiid) were found in the birds’ stomachs 

(Bezuidenhout and Sutterheim 1980; Stutterheim et al. 1988), however, blood 

digested too quickly to allow meaningful comparisons to be made. Studies began to 

focus on oxpecker feeding behaviour from a cost (blood) versus benefit (tick 
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removal) point of view. Evidence that oxpeckers meaningfully reduced tick loads 

remained elusive (Hart et al. 1990; Weeks 1999, 2000). Indeed, some authors 

discovered that oxpeckers preferred blood from wounds over ticks (Moreau 1933; 

Attwell 1966; Keet et al. 1997; Stutterheim et al. 1988; Weeks 1999, 2000; 

McElligot et al. 2004; Plantan et al. 2009). Arguments that the oxpecker-ungulate 

relationship was costly for a host and perhaps more akin to a parasitism began to 

gain traction (Weeks 2000; McElligot et al. 2004).  

When the interests of mutualists are not perfectly aligned, maintaining 

mutually beneficial outcomes and stabilizing mutualisms can come from control 

mechanisms that modulate interactions (Skelton et al. 2014). Some authors believe 

that ungulates use of oxpecker rejection behaviours (e.g., roll, run and shake) are 

specifically aimed at deterring blood feeding oxpeckers and align interests back 

towards mutual benefits (Keet et al. 1997; Koenig 1997; Plantan 2009; Bishop and 

Bishop 2014). However, a lack of qualitative data on rejection behaviours and cost-

benefit analysis in oxpecker-ungulate interactions prevents the level of conclusion 

that can be drawn from this. 

One study in particular has looked beyond just placing individual oxpecker-

ungulate interactions into discrete categories (i.e., mutualism or parasitism). 

Plantan (2009) designed and implemented foraging experiments involving 

interactions between red-billed oxpeckers (B. erythrorynchus; Fig. 4A) and a 

donkey (Equus africanus asinus) in captivity. The oxpeckers were provided with a 

variety of Ixodid tick species to select from and the ratio of the most preferred tick 

species were placed at various densities on the donkey host. At the same time a full 

container of cow’s blood was also strapped to the donkey – giving oxpeckers a clear 

choice between ticks and blood. Plantan (2009) discovered that if preferred tick 

species remained abundant, foraging oxpeckers did very little blood feeding and 

significantly reduced overall tick loads on the host (i.e., a cleaning mutualism). 

Conversely, preferred tick species kept at low densities caused oxpeckers to switch 

foraging behaviour and feed mainly on blood from the container. Plantan (2009) 

also monitored the behavioural interactions of several free-ranging ungulates (e.g., 

giraffe, Giraffa camelopardalis; zebra, Equus quagga; impala, Aepyceros melampus) 

and oxpeckers. Ungulates were found to be significantly more intolerant towards 
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oxpeckers that wound than tick fed (Plantan 2009). The idea that ungulates use 

rejection behaviours to deter blood feeding oxpeckers appears to have support. 

An investigation of the marine cleaning symbiosis adds weight to Plantan’s 

(2009) investigations. Cheney and Cote (2005) conducted field experiments 

observing Caribbean cleaning gobies (Elacatinus evelynae) feeding behaviour on 

longfin damselfish (Stegastes diencaeus) over a wide geographic range. They found 

that natural variations in ectoparasite abundance similarly influenced the parasitic 

(scales and tissue) versus mutualistic (ectoparasites) foraging behaviour of the 

cleaning goby. Rejection behaviours towards cleaners that adopt parasitic feeding 

behaviour also appeared to be the control mechanism to prevent overexploitation 

(Farrell et al. 2014). 

For a symbiosis to be a mutualism benefits received must exceed costs 

incurred for both partners. The cost versus benefit outcome of any oxpecker-

ungulate interaction appears therefore to be heavily dependent on ectoparasite 

abundance and to an unknown extent by host rejection behaviours. However, there 

is one additional benefit oxpeckers might be providing ungulates that has yet to 

receive meaningful research attention (but see Weeks 1998). Oxpeckers have 

distinctive alarm calls that are suspected of alerting hosts to the presence of 

predators (i.e., increased vigilance; Schenkel and Schenkel-Hulliger 1969; Weeks 

1998). Historically hunters attest to oxpeckers alerting their quarry (Craig 2009).  

However, it is unknown whether hosts actually benefit from increased vigilance. 

Weeks (1998) attempted to test this but results remained inconclusive. 

The lack of quantitative information of this conditional feeding association in 

the wild limits the level of conclusion that can be drawn, although the significance 

of ectoparasite abundance for oxpeckers foraging habits appears to be clear 

(Plantan 2009). Research of oxpecker-ungulate interactions with a broader scope is 

needed. The multiple hosts and variable environments that oxpeckers and 

ungulates inhabit present a plethora of conditional outcomes for any one 

interaction. Understanding interactions within its conditional context will require 

consideration for all of the known costs and benefits, host rejection behaviours and 

ectoparasite abundance at the time. The challenge therefore is to find an ideal 

ungulate species that is not only sympatric with oxpeckers but allows all of the 
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costs, benefits and rejection behaviours in oxpecker-ungulate interactions to be 

monitored and where tick densities are quantifiable.  

 

1.6. Black rhino – an ideal host to test all of the known costs versus benefits in 

oxpecker interactions  

 

I propose that black rhino in HiP are the ideal wild host species to investigate 

the conditional nature of this terrestrial cleaning mutualism because observations 

of the tick versus blood utilisation patterns on black rhino are made possible as: 

 

(1) Black rhino have three specific and easily observable (hairless) sites of tick 

attachment (i.e., nostrils, anogenital region and ears; Penzhorn et al. 1994).  

(2) HiP black rhino have two chronic and prominent haemorrhaging filarial lesions 

on their anterior flanks (see section 1.2. of the Introduction and Hitchins and 

Keep 1970).  

Moreover, (3) tick abundance is seasonally quantifiable in HiP as Ixodid tick species 

in the southern latitudes of Africa undergo a well-documented reproductive 

diapause and are absent during the cooler winter months in KwaZulu-Natal 

i.e., (April to September; Walker et al. 2000; Horak et al. 2003, 2009; 

Randolph 2008). 

Finally, (4) testing for the benefit of increased vigilance is made possible as black 

rhino are the oxpecker host most associated with oxpeckers sentinel 

behaviour (Schenkel and Schenkel-Hulliger 1969). Indeed, the Swahili name 

(Askari wa kifaru) for the red-billed oxpecker translates as the rhino’s guard. 

 

Therefore, black rhino in HiP will hopefully allow me to broaden the 

traditional scope of oxpecker-ungulate investigations (i.e., tick or wound feeding) 

into a study that examines both known benefits (i.e., 1. tick removal, 2. increased 

vigilance) and the one known cost (i.e., blood feeding), while also monitoring black 

rhino rejection behaviours towards oxpeckers. The ability to quantify seasonal tick 

densities in HiP will also enable me to factor in the mechanism (i.e., ectoparasites) 

that appears to be drive the conditionality of both marine and terrestrial cleaning 

symbioses (Cheney and Cote 2005; Plantan 2009). I predicted that in a scenario of 
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low tick abundance (i.e., during cool dry winters) that oxpeckers in HiP ought to 

target filarial lesions as a food resource but that the costs of this behaviour might 

be ameliorated by the benefit of increased vigilance from sentinel behaviour. 

Determining this will depend upon whether I can provide evidence that black rhino 

respond and receive increased vigilance benefits from red-billed oxpeckers. 

 

1.7. Focal study species: Red-billed oxpeckers and their known relationship 

with black rhinoceros 

 

The red-billed oxpeckers are an endemic African passerine species belonging 

to the family Sturnidae (Van Someren 1951; Attwell 1966; Hustler 1987; Craig 

2009). Oxpeckers distribution is fragmented across several countries as they are 

dependent on wild and/or domesticated ungulates for food (Craig 2009). Red-

billed oxpeckers are principally an east African species, ranging from the Central 

African Republic east to Ethiopia and south to South Africa (Fig. 4B). Only red-

billed oxpeckers are sympatric with HiP black rhino as the yellow billed (B. 

africanus) is locally extinct (Stutterheim and Brooke 1981).  

Oxpeckers are well adapted to clinging and crawling across ungulate bodies 

in search of food. They have sharp, curved claws and their tail feathers are long and 

stiff to provide balance and support (Plantan 2009). Plucking, pecking, scissoring 

and controlling ticks are aided by a flattened beak with a sharp edge (Attwell 1966; 

Breitwisch 1992; Koenig 1997). Oxpeckers, like other birds, have excellent eyesight 

for searching and plucking ticks on hosts (Craig 2009). Acute vision also 

contributes to their capability as sentinels; many a hunter has attested to 

oxpeckers distinct alarm calls alerting grazing animals to their approach (Craig 

2009). The benefits and role of sentinel behaviour for oxpeckers and their hosts 

within interspecific relationships has thus far received little attention in the 

literature (but see Weeks 1998). 

Analysis of the stomach contents of oxpeckers shows that ticks appear to 

form a considerable part of their diet (i.e., 52.3% by mass of stomach contents of 53 

birds; Moreau 1933; van Someren 1951; Mengesha 1978; Bezuidenhout and 

Stutterheim 1980). However, other research points towards oxpeckers preferring 

blood over ticks and might actually be parasites of their hosts (Keet et al. 1997; 
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Weeks 1999, 2000). Indeed, herders regarded oxpeckers as the killers of domestic 

stock for opening and feeding from the wounds of cattle, hence the origin of their 

genus Buphaga – Latin for ox-eater (van Someren 1951; Craig 2009). Whether 

oxpeckers are mutualists or parasites of ungulates is an ongoing debate (Weeks 

2000; Nunn et al. 2011). 

 

Background to the oxpecker- black rhino relationship 

 

Oxpeckers feeding on black rhino filarial lesions: Regular observations of red-

billed oxpeckers feeding on wounds and lesions led to suspicions that they were 

the cause of black rhino’s filarial lesions in HiP and MGR (Spinage 1960). Although 

the cause was subsequently identified to be a filarial nematode, the role that 

wounds and lesions play in oxpecker foraging habits on black rhino (Hitchins and 

Keep 1970; Skinner and Smithers 1990; McElligot et al. 2004; Craig 2009) and 

other large mammals still garners attention (Keet et al. 1997; Weeks 1999, 2000).  

Oxpeckers feeding on black rhino ticks: Both ear (Rhipicephalus 

appendiculatus; Baker and Keep 1970) and blue ticks (Boophilus decloratus; 

Stutterheim et al. 1988; Plantan 2009) have been identified as the two most 

favoured tick species by red-billed oxpeckers. However, there is currently no data 

available on oxpeckers tick feeding preferences when visiting black rhino. Although 

black rhino have been identified as the most favoured symbiont of red-billed 

oxpeckers in HiP (Stutterheim 1980), they are known to only host one of oxpeckers 

two preferred tick species (i.e., ear tick; Baker and Keep 1970).  

Black rhino intolerance towards oxpeckers: McElligot et al. (2004) showed that 

captive black rhino, without filarial lesions or ticks, were highly intolerant of red-

billed oxpeckers that attempted to feed on their wounds. There is no empirical data 

I am aware of from observations between free-ranging black rhino and oxpeckers. 

It remains to be tested whether oxpeckers are parasitic (i.e., lesions preferred over 

ticks) and whether black rhino, like other large mammals, are intolerant towards 

blood-feeding oxpeckers (Plantan 2009). 

Increased vigilance from oxpecker sentinel behaviour: The black rhino is most 

associated with oxpeckers’ anti-predator alarm calling behaviour, especially 

towards people (Alexander 1836; Leslie 1876; Schenkel and Schenkel-Hulliger 
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1969; Goddard 1970, 1973; Skinner and Smithers 1990).  Although untested, 

experienced observers describe being able to walk undetected to within a few 

paces of black rhino when no oxpeckers were in attendance (Leslie 1876; Schenkel 

and Schenkel-Hulliger 1969; Goddard 1970, 1973). Despite their large size (i.e., c. 

1000kg; Owen-Smith 1988), black rhino are solitary and visually impaired animals 

easily approached undetected (e.g., Leslie 1876; Goddard 1970). Indeed, adult 

black rhino are largely immune to non-human predation (Owen-Smith 1987), 

although young calves remain vulnerable (e.g.; lion, Panthera leo, and spotted 

hyena, Crocuta; Plotz and Linklater 2009). However, a role for non-human 

predators in anti-vigilance behaviour between oxpeckers and black rhino cannot be 

ruled out. In the context of poor eyesight, human and non-human predation 

pressure, black rhino might benefit from oxpecker sentinel behaviour and 

increased vigilance. For HiP’s non-human predator history see section 1.3 of the 

Introduction. 
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(A) 

 

                 (B) 

 
 
Figure 4 (A). A red-billed oxpecker (Buphagus erythrorynchus) (Photograph by Jed 

Bird) and (B) known distribution (Craig 2009; BirdLife International and 
Durham University 2012). Note red circle on map is the location of Hluhluwe-
iMfolozi Park in South Africa. 

http://upload.wikimedia.org/wikipedia/commons/f/f9/Buphagus_erythrorhynchus_map.svg
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1.8. Thesis structure 

 

The overall aims of this thesis are to (1) test hypotheses for the apparently 

poor growth and declining population rate of HiP’s black rhino population and (2) 

to advance the current knowledge of the cost versus benefit of the black rhino-red-

billed oxpecker relationship. To achieve this I adopted a methodological approach 

that investigated multiple inter-specific interactions spanning the disciplines of 

spatial and behavioural ecology.     

To begin, in Chapter 2 I examine the hypothesis that average black rhino 

home range sizes in HiP have increased by more than 300% in forty years. This 

shift has been used by some to support the theory of a HiP black rhino population 

in decline, as range size has been shown to increase with declining carrying 

capacity in some mammal species. Unfortunately, black rhino home range studies 

are plagued by data deficiencies, inconsistent definition and interpretation of 

analyses. This has hindered meaningful inter-study comparisons and maintained a 

generally poor understanding of black rhino spatial ecology. Home range studies 

that adequately report on methodology and other potential sources of error are 

urgently needed to improve overall accuracy and interpretation. Therefore this 

chapter’s two main aims were (1) to investigate if dissimilar methodology best 

explains the apparently significant shift in the average home range sizes of HiP 

black rhino and (2) to test a well-defined methodology and report on the effect of 

potential sources of error on home range estimations. To achieve this 24 HiP black 

rhino were fitted with horn-implant transmitters and monitored over wet and / or 

dry seasons and calendar years. Specifically, the number of locations needed to 

accurately measure home range size was calculated and the two most common 

techniques were used to construct rhino home ranges to aid inter-study 

comparison. Finally, I measured the effect of both observer and triangulation error 

on home range size calculations. It is my hope that this study will act as a baseline 

for further inter-study comparisons and encourage future black rhino home range 

studies to standardize their methods and reporting of error. 

In Chapter 3 I report on a rarely documented lion depredation attempt on a 

black rhino calf that resulted in the amputation of its tail and severe tissue damage 

around the anogenital region, ultimately causing its death. This study provides the 
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first direct link between predation as the most likely cause of tail and ear loss 

incidences sighted in several black rhino populations, including HiP. The 

conservation management implications of this observation are explored within the 

context that calf predation might be causing HiP’s apparently long inter-calving 

intervals and low calving rates.   

During field research I also noticed that adult HiP black rhino suffered from 

large haemorrhaging lesions on both anterior flanks. Although known to be caused 

by a parasitic filarial nematode there has been little to no attention given to the 

role, if any, that chronic lesions might have on the condition of black rhino. 

Research on domestic cattle has shown there to be a clear inverse temporal 

correlation between the severity of chronic lesions (non-filarial) and body 

condition. In Chapter 4 I posited that if such a temporal signal also existed 

between lesion severity and body condition for black rhino in HiP, managers could 

monitor this accordingly. Managers might be able to better predict when the black 

rhino population was under stress by monitoring BC and LS. HiP black rhino are 

known to have the most severe filarial lesions recorded for any population. The 

severity of their lesions might, in part explain why HiP’s rhino have below average 

body condition scores compared to other better performing populations. Although 

reliable five point body condition score exists there is no reliable measure for 

filarial lesion severity in the field. Therefore, the three main aims of this study were 

to (1) test the application of a novel field measuring technique for the filarial 

lesions of HiP’s black rhino population and use it to (2) test whether a temporal 

correlation exists between filarial lesion severity and black rhino body condition. 

At the same time I wanted to facilitate more inter-study comparisons in future by 

(3) updating the current biogeographic range of filarial lesions in black rhino 

populations. It is my hope that this might encourage further research into the role 

that filarial parasitism has on critically endangered black rhino populations.  

The next two chapters also have their origins from field observations. I 

regularly witnessed red-billed oxpeckers feeding at black rhino filarial lesions 

while also alarm calling to alert them to my presence.  I began to wonder how 

costly parasitic foraging behaviour balanced with the seemingly beneficial sentinel 

behaviour of oxpeckers. Studies have found it difficult to empirically show how 

oxpecker-host interactions have net positive benefits that make it a mutualism. 
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Thus, the next two chapters were designed to determine if red-billed oxpeckers 

were predominately mutualistic or parasitic when visiting black rhino. 

Determining this will depend on whether I can identify net positive benefits or net 

costs to black rhino. There are two possible benefits i.e., benefit 1 is cleaning 

ectoparasites and benefit 2 is increased vigilance, while cost 1 is lesion feeding.  

Therefore, in Chapter 5 my aim was to determine whether red-billed 

oxpeckers favoured filarial lesions (cost 1) or sites of tick attachment (benefit 1) 

when visiting black rhino. I conducted over 50 hours of observations of rhino-

oxpecker interactions where the rhino’s body was divided into several regions and 

oxpecker visits tallied according to the body locations they visited. Finally, the 

tolerance behaviour of black rhino during oxpecker visits was also monitored as 

other studies have found that hosts are highly intolerant towards oxpeckers that 

attempted to feed at wounds. 

In Chapter 6 I focussed on whether oxpeckers increased the vigilance of 

black rhino (benefit 2). This benefit has not yet been looked at before.  To achieve 

this I conducted multiple field approach experiments where I, as an observer, 

monitored the approaches of a human ‘threat’ such that I could determine whether 

oxpecker presence made a significant impact on the approach distances achievable 

by a human threat. This novel experiment completed the cost versus benefits 

investigation between oxpeckers and black rhino.      

I conclude the thesis in Chapter 7 by presenting a synthesis of my main 

findings and discuss how the three hypotheses contributed to the debate around 

whether the HiP black rhino population is performing poorly. My thesis highlights 

the need for black rhino research to evaluate data quality before making 

management recommendations for a critically endangered species.  Finally, the 

investigations of the oxpecker-black rhino interaction used a novel field 

experiment to gain a much improved understanding of how mutualisms vary 

depending on species and context.  

This thesis is presented in the style of four separate research chapters that 

are formatted for submission to peer-review journals, followed by six appendices. 

This style inevitably results in some repetition, particularly in the methods, some of 

the introductory sections and the reference lists. However, the advantage of this 

style is that specific research questions can be addressed within a broader context.  
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Rhinoceros Population are shaped by Procedural Error: a Baseline 

Study to Standardize Methods 

 

 
 
 

Bom (front) and I (back) searching for black rhino amongst the rolling hills of the 

Masinda area of Hluhluwe-iMfolozi Park (Photograph by Dale Morris). 
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ABSTRACT  

 

Home range studies of black rhino (Diceros bicornis) have been plagued by data 

deficiencies and methodological inconsistencies, and concerns about researcher 

error and influence. Recent comparisons from Hluhluwe-iMfolozi Park (HiP), South 

Africa have disregarded these problems and reported a significant range increase. 

From 2004-2009 we gathered 1939 location estimates amongst 25 black rhino in 

the same park. We tested the hypotheses that rhino ranges had increased over 

time. We demonstrated that average annual 95% MCP home ranges were 9.77 km2 

± 0.94, whereas 95% kernel home ranges were 20.36 ± 1.17 km2. Procedure alone 

accounted for a 53.36 ±1.90 % difference between estimates. Nonetheless, 

comparisons between our MCP home range sizes and earlier studies in the same 

Park indicate ranges have not increased significantly over the last forty years. 

Moreover, other sources of error investigated included number of locations 

needed, human observer influence on rhino movement and triangulation error. 

Researcher visits to black rhino did not significantly increase the daily travel 

distances of rhino. However, triangulation error increased substantially when 

researchers where >1 km from the animal (angle error) and when triangulation 

sets took longer than 1 hour to complete (animal movement). A minimum of 20 

locations per 6-month season and 40 per annum were required for accurate home 

range estimation by minimum convex polygon (MCP). We recommend that more 

care is taken to collect adequate numbers of rhino locations within standardized 

time periods (i.e., seasons or years) and comparison of home ranges constructed 

using dissimilar procedures be avoided.  

 

KEYWORDS: home ranges, observer influence, radio-telemetry, triangulation 

error, incremental accumulation curves, Diceros bicornis minor, Hluhluwe-iMfolozi 

Park, MCP, kernel, conservation management 
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INTRODUCTION 

 

Recently, managers of the critically endangered (IUCN 2013) black rhino 

(Diceros bicornis) population expressed concern that monitoring by researchers 

and others (e.g., ecotourism) might negatively impact on rhino spatial behaviour by 

displacing them from preferred habitat (Beytell 2010; Odendaal 2011; Linklater et 

al. 2010). This concern threatens to limit the contribution of research to species 

conservation and requires investigation. Previous studies of black rhino have not 

addressed the impact of observers on home range and their estimation. Black rhino 

home range studies have not measured the influence of triangulation error and 

have been plagued by data deficiencies and inconsistent definition and 

interpretation of home range analyses (Lent and Fike 2003; Linklater et al. 2010). 

The historical sequence of published home range estimates for black rhino in 

Hluhluwe-iMfolozi Park (HiP), South Africa, illustrates these problems and the 

potential for home range studies to be misleading (Linklater et al. 2010). Authors 

have used an apparent 54% increase in HiP’s black rhino home range estimates 

(1991 – 2001; Emslie 1999 cf. Reid et al. 2007) as evidence for over-population and 

deteriorating habitat quality (Reid et al. 2007) but the home ranges were calculated 

differently. How do we test hypotheses regarding shifts in the home range sizes of 

black rhino if our estimates of home ranges are dogged by inaccuracies and 

inconsistencies?  

Accurate home range estimates are important because they provide insight 

about the needs of an organism (Harless et al. 2010) and, when accurate, are relied 

upon for conservation planning and monitoring efforts towards species recovery. 

However, the accuracy of home range estimates and their reliability as a 

conservation tool has been eroded by the tendency for studies to ignore sources of 

error and use dissimilar techniques that prevent meaningful inter-study 

comparisons (Harris et al. 1990; Linklater et al. 2010; Gula and Theuerkauf 2013). 

Studies that address sources of error in home range methodology and 

interpretation are needed (Gula and Theuerkauf 2013). 

Measurement error and observer influence on animal movement may 

substantially affect the outcome of animal home range studies (Lee et al. 1985; 
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Harris et al. 1990; Schmutz and White 1990; White and Garrott 1990; Saltz 1994; 

Woodroffe 2011). Reliable home range estimates also require a minimum number 

of animal locations. Lastly, comparisons of home range estimates between studies 

depend on understanding how different procedures for defining home ranges 

influence outcomes. Quantifying the influence of observers and procedural choices 

provides confidence in home range estimates, but these are rarely achieved or 

reported.  

Tourists and hunters are implicated in the altered behaviour and distribution 

of several animal species (e.g., Adele, Pygoscelis adeliae, and Magellanic penguins, 

Spheniscus magellanicus, impala, Aepyceros melampus, kudu, Tragelaphus 

strepsiceros, lions, Panthera leo, sable, Hippotragus niger, and spotted hyena, 

Crocuta crocuta; Culik and Wilson 2002; Beale and Monaghan 2004; Matson et al. 

2005; Walker et al. 2005; Hayward and Hayward 2009; Kolowski and Holekamp 

2009; Crosmary et al. 2012).  Understanding anthropogenically induced changes in 

animal behaviour is important because they may affect animal population 

dynamics (Geist 1970; Woodroffe 2011). Conservationists are increasingly 

concerned about the effects of human disturbance on wildlife (Carney and 

Sydeman 1999), however animal disturbance by researchers, and their influence 

on home range, has rarely been considered (but see Theuerkauf and Jedrzejewski 

2002).  

Radio-telemetry has been fundamental to animal home range studies (i.e., 

>75% studies used radio-telemetry; Laver and Kelly 2008) as it facilitates the 

reliable identification and monitoring of free-ranging animals via direct sightings 

and signal triangulation. This reliability has persuaded many to treat radio-

telemetry data as exact (Lee et al. 1985; Saltz 1994). The technique, however, is 

susceptible to a number of errors. Bearings are inherently imprecise, especially as a 

consequence of radio signal reflection and bearing bias (White and Garrott 1990), 

increasing observer distance from the signal, and animal movement during 

triangulations (Schmutz and White 1990; Saltz 1994; Lee et al. 1985). Home range 

estimates, therefore, vary according to the sum of observer influenced animal 

displacement and triangulation inaccuracy. Understanding triangulation error is 

therefore vital to ensuring reliable measures of home range. The magnitude of 

observer influence and triangulation error on location and home range estimates is 
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likely to differ according to species, time, and place. Assessing and reporting such 

errors in radio-telemetry studies should be standard scientific protocol, yet for 

many studies it is not reported or reported inadequately (Saltz 1994). The number 

of locations, observation period, and methodology used to construct home ranges 

will also bias estimates in varying ways (e.g., Downs and Horner 2008; Laver and 

Kelly 2008; Boyle et al. 2009; Gula and Theuerkauf 2013) but are also often not 

reported (Laver and Kelly 2008).  

In this study, I present home range data for the largest cohort (n=25) of black 

rhino yet fitted with VHF radio-transmitters and monitored intensively over an 

extended period (2004-2009). I make the first report on the effect that observer 

influence and triangulation error has on location data in HiP. I also estimated the 

minimum number of sequential locations required for accurate black rhino home 

range estimates over annual and seasonal time periods. Finally, I apply the lessons 

learnt to test prevailing hypotheses about changing black rhino home range sizes in 

HiP, South Africa. This study aims to motivate improvements in the accuracy of 

black rhino home range studies and to facilitate more meaningful comparisons 

between studies 

 

STUDY AREA 

 

Hluhluwe-iMfolozi Park (HiP) (S28° 0´ to 28° 25´, E31° 42´ to 32° 0´) is a 960 

km2 fenced reserve located in Zululand, KwaZulu-Natal (KZN), South Africa. Mean 

annual rainfall and altitude decrease from Hluhluwe in the North (990 mm and 450 

m asl), to iMfolozi in the South (635 mm and 60 m asl), with April to September 

being the dry season (Balfour and Howison 2001). The temperature ranges from an 

average minimum of 13°C (winter) and maximum of 33°C (summer) (Balfour and 

Howison 2001).  During this six-year study (2004 – 2009) average summer 

(October to March) rainfall was 378.0 mm and winter rainfall 201.9 mm (Masinda 

weather station; G. Clinning, unpubl. data). HiP has had a quasi-periodic wet-dry 

rainfall oscillation lasting approximately nine years (Walters et al. 2004). During 

this study, the Park was in a period of below average rainfall initiated in c. 2001 

(see Berkeley and Linklater 2010).  
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 HiP holds approximately 218 south-central black rhino (D. b. minor) 

(Clinning et al. 2009) – the larger endemic population of only two in Africa 

(Brookes and MacDonald 1983). HiP undergoes annual black rhino harvesting (c. 5 

to 8 % of the population) as it serves as a strategic donor (source) population for 

species rescue by reintroduction and restocking (Emslie 2001, Linklater et al. 

2012).  

 

MATERIALS AND METHODS 

 

Transmitter Installation Procedures 

 

From January 2004 to October 2008 black rhino were intermittently captured 

after immobilization, as part of a larger investigation into the dynamics of HiP’s 

black rhino population (see Plotz and Linklater 2009; Linklater and Hutcheson 

2010). Horn implant radio-transmitters were inserted into 25 black rhino (18 

females, 7 males) as per Anderson and Hitchins (1971) and Shrader and 

Beauchamp (2001). The radio-transmitters were either Telonics (U.S.A.) or Sirtrack 

Pty Ltd. (NZ) models, and VHF radio-telemetry signals were recorded via a TR-4 

receiver (Telonics, Inc., Mesa, AZ, U.S.A.).  All capture and study procedures were 

approved by Ezemvelo KwaZulu-Natal Wildlife (EKZNW) research department (Hill 

Top; permit no: ZC/101/01), Victoria University of Wellington Animal Ethics 

Committee (2007R2) and Zoological Society of San Diego (IACUC number 169).  

 

Data Collection and Analysis 

 

Home range construction and size: Four experienced rhino researchers and 

trained field rangers collected location data from 2004 to 2008, while I collected 

data from 2007 to 2009. Rhino were located randomly at least once a fortnight 

between dawn and dusk. For seasonal home range estimates, locations for each 

rhino were ordered from the start to end of the wet (start of October to end of 

March) and dry seasons (start of April to end of September) respectively. We were 

able to gather regular locations for 14 rhino during the wet season and 32 rhino 

during dry seasons over the 6-year field study. Annual home range locations were 
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also ordered sequentially (i.e., chronological order), but over any consecutive 12-

month period. Locations over 12-months were obtainable for 17 different rhino. 

Direct sightings began by initially obtaining a signal from high elevation; this 

was then verified by tracking the rhino downwind on foot until the rhino was 

sighted. Triangulation estimates involved taking bearings from two or more 

elevated positions. A hand-held compass was used to estimate the direction of the 

radio-signal to an accuracy of 1°. Positions of direct sighting and bearing points of 

triangulation were determined via hand-held GPS units (Garmin e-trex model). All 

triangulation location estimates were converted into GPS locations using Locate III 

software (Nams 2006). Triangulation bearings less than 60 and greater than 180 

degrees apart were excluded from estimates of rhino locations because they result 

in lines that intersect gradually and are known to provide unrealistic ranges (White 

and Garrott 1990). All estimated and actual locations were transferred to a 

Geographic Information System (GIS), ArcView 10.0, to determine rhino home 

range size (ESRI, Redlands, CA, USA and its Home Range extension) (Hooge and 

Eichenlab 1997).  

Calculations of range size of individual animals should be based on subjects 

for which there are sufficient locations for a plot of range size against number of 

locations needed to reach an asymptote (e.g., Buckle 1997). These asymptotes are 

based on minimum convex polygon (MCP) estimates, which produce smoother 

asymptotes than the other methods and they are comparatively simple and more 

robust where location number is small (Mohr 1947; Harris et al., 1990; Harless et 

al. 2010).  Incremental MCPs were estimated at fixed locations to determine how 

many were needed to estimate black rhino seasonal and annual home ranges to 

within 10% of the total estimated size (Harris et al. 1990; Buckle et al. 1997; 

Hayward et al. 2009). Defining exactly where asymptotes begin and the number of 

locations required is subjective and so a 90% (i.e., within 10%) of the total home 

range was used as a defining threshold. Incremental MCP descriptions of home 

range to estimate the number of locations necessary because They are also the 

most common metric used in home range studies – facilitating comparisons with 

most other black rhino and other animal home range studies (Harris et al. 1990; 

Lent and Fike 2003). MCPs are also most comparable to Hitchins (1971) visual 
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approximation analysis also from black rhino in HiP. Only those individuals with 

sufficient locations were included for further analysis (e.g., Lent and Fike 2003). 

I compared MCP’s constructed using 95% of locations (Mohr 1947; Kenward 

1987), by removing 5% of extreme locations, with the 50% and 95% utilisation 

distribution (UD) contours from a bivariate kernel calculated using a smoothing 

parameter (h) of 500 m and a cell size of 100 m (Fig. 1) to allow comparison with 

recently evaluated home ranges of black rhino in HiP (Reid 2007; Slotow et al. 

2010). Borger et al. (2006) state that 95% kernel UDs should be avoided because of 

their significant error and recommend the use of 50 to 90 % UDs instead. Thus, 

along with 50% and 95% kernel UDs, 90% kernels were also calculated in this 

study. All MCP and kernel density estimation was carried out in R version 2.14.2 

using the packages ‘adehabitatHR’ (Calenge 2006) and ‘maptools’ (Lewin-Koh et al. 

2012), in an African Albers-Equal Area projection calculated using ArcGIS 10 (ESRI, 

U.S.A.). 

Lastly, the ratio of 50% (core) to 95% kernel home ranges was calculated to 

evaluate the intensity of home range use. Home ranges used more evenly should 

have higher ratio scores, while lower ratio scores are associated with the 

importance of smaller patches within the home range (Linklater et al. 2000; Lent 

and Fike 2003). 

 

Other Sources of Error 

 

Observer influence: From January 2004 to December 2009, the locations of 

black rhino (n=106) were estimated by remote triangulation 24 hours after they 

had been visited by a researchers to obtain a visual location. During visits the 

observers were typically <50 m from the rhino. The locations of the same 

population of black rhino were also estimated by remote triangulation 24 hours 

before they were visited by researchers (n=116). Observer influence on rhino 

movement was measured by comparing the distance (km) travelled by each rhino 

before and after an observer visit (i.e., the dependent variable). Bearings for 

triangulation data were typically taken from several hundred and sometimes 

thousands of meters away and are, therefore, unlikely to have disturbed rhino. All 
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triangulation estimates were converted into Global Positioning System (GPS) 

locations via Locate III software (Nams 2006).  

To quantify observer disturbance on the average daily displacement of rhino, 

I scored each rhino’s awareness and response to the observer during visits for the 

106 samples which were then followed up with a location triangulation 24 hours 

later. Each rhino’s disturbance by observers was scored on an ordinal scale from 0 

to 3: 0 = rhino not visibly alert and did not respond to the observer, 1 = rhino alert 

but only head and ears raised toward observer, 2 = rhino alert and walked away 

from the observer, and 3 = rhino ran from the observer. I compared the subsequent 

24-hour displacement (km) of rhino with their recorded disturbance scores. 

Rhino have a bimodal activity pattern with early morning and late afternoon 

activity peaks (Kiwia 1986) that may modify their response to observers. Also, 

repeated experience of being observed may have a habituation affect, where rhino 

displace less over time for the same level of disturbance. Moreover, due to 

individual differences some rhino may be more responsive to observer disturbance 

than others. In analyses, therefore, active (08h00-10h00, 15h00-18h00) and 

inactive (10h01-14h59) time periods, the numerical sequence of each sample, and 

rhino identity, were included as covariates. Repeated measures ANOVA was used to 

test whether observer visit, sample order, and time period (fixed effects), and rhino 

identity (random-effect), impacted on the daily distance travelled by a rhino. All 

statistical procedures were conducted in SPSS (SPSS Inc., version 19, 2010). For all 

statistical tests I regarded the critical value (α) of ≤ 0.05 as statistically significant. 

Triangulation accuracy: Triangulation accuracy was measured by comparing 

a black rhino’s estimated location by triangulation with a known location obtained 

from a direct sighting conducted immediately after said triangulation. Test data 

resulted from 62 locations of rhino first estimated by triangulation and then 

visually located. All observer positions used to take bearings during triangulations 

and the actual locations of rhino were converted into Global Positioning System 

(GPS) locations. Also, bearing locations and associated angles were entered into 

Locate III software to calculate triangulation estimated locations (Nams 2006).  

Direct sightings are absolute values while triangulations are estimates with 

associated error. Thus, factors known to induce the greatest inaccuracy in 

triangulation estimates include; the animal’s distance from the observer because 
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greater distances correspond to increased signal refraction, and compound errors 

in observer interpretation of signal direction (Lee et al. 1985; Schmutz and White 

1990; Saltz 1994). Also, increased time between completed triangulations and 

direct sightings will contribute to differences because animals move (Lee et al. 

1985; Schmutz and White 1990). The large size and undulating terrain of HiP mean 

that the bearing positions, which are the locations where an observer stands to 

measure the angle to the strongest signal received from the rhino’s radio-

transmitter, and the subsequent time required to sight that rhino varied 

substantially. Therefore, I tested the effect that bearing distance and the time taken 

to take bearings had on triangulation accuracy (i.e., distance between triangulation 

estimated and actual locations of rhino). To accomplish this I transferred 

triangulation estimates and actual sighting locations to a Geographic Information 

System (GIS), ArcView (10.0) and measured the discrepancy in distance (km) 

between triangulation and actual location estimates.  

For analysing the effect that distance of the bearing point had on the accuracy 

of triangulation estimates relative to the actual location, I used the bearing point 

location taken farthest from the rhino for each triangulation of an individual rhino. 

I also calculated the median point in time between the first and last triangulation 

bearing (for consistency) and the visual sighting of the rhino to test for the effect 

that time had on triangulation accuracy. A univariate ANOVA was used to test 

whether observer distance from rhino and time from triangulation to direct 

sighting significantly impacted on triangulation error (i.e., the dependent variable). 

Finally, the fact that HiP is large and has variable terrain meant that  the mean 

maximum distance from rhino from which triangulation bearings were taken was 

2.0 ± 0.14 km (range = 0.32- 5.71 km).  

To highlight the effect that observer distances had on triangulation error 

(distance between triangulation estimate and direct sighting) in HiP, I compared 

the mean triangulation error according to the following designated categories of 

observer distances: long (> 2km plus), medium (1.01 to 2.0 km) and short (<1km). 

Categories of distance were chosen purely on the basis that they divided the range 

of points roughly into thirds while providing the typical range of spatial distances 

that I as an observer needed to traverse when triangulating rhino in a large Park 

like HiP. Distances greater than 3 km resulted in too much interference for reliable 
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signal strengths to be received. Similarly, the average time taken to achieve a direct 

sighting was 78 ± 8.7 minutes (range = 7 - 269 minutes) and so I also compared the 

mean triangulation error relative to the following categories of time from 

triangulation to direct sighting of rhino: long (> 121 minutes plus), medium (61 to 

120 minutes) and short (<60 minutes). Categories of time were chosen purely on 

the basis that they divided the range of points roughly into thirds while providing 

the typical range of time periods that I as an observer needed to consider when 

triangulating and walking to sight rhino in a large Park like HiP. 

 

RESULTS 

 

Home Range Construction and Size  

 

A total of 1939 usable locations or location estimates were obtained. 47% (n 

= 906) were direct sightings and 53% (n = 1033) were triangulations making this 

study the most intensive radio-telemetry study reported for this species to date (cf. 

Gottert et al. 2010). Five triangulated locations were excluded because they 

estimated the individual to be outside of the reserve’s fence. 

Mean consecutive 12-month (annual) 95% MCP home range size for females 

was 10.37 ± 1.36 km2 (n=11) and 8.67 ± 0.89 km2 for males (n=6). Mean annual 

95% bivariate kernel home ranges for females were 21.01 ± 1.67 km2 and 19.01 ± 

1.27 for males and 50% core areas 4.95 ± 0.48 and 4.67 ± 0.53, respectively. Our 

95% MCP estimates of home range size were consistently around 53.36% ± 1.90 

smaller than 95% bivariate kernels (Fig. 1). Borger et al. 2006 report that 50 - 90% 

kernels are significantly more accurate than 95% kernels. Thus, to improve 

accuracy for future inter-study comparisons I calculated mean annual 90% kernel 

estimates as well: Females were 16.83 ± 1.38 km2 and 15.07 ± 1.12 km2 for males. 

Mean 95% MCP home range size over the dry season for females was 9.07 ± 

0.99 km2 (n=26) and 4.20 ± 0.63 km2 for males (n=6), and wet season for females 

was 6.24 ± 1.79 km2 (n=7) and 8.16 ± 2.37 km2 for males (n=7). 
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The ratio of 50 to 95% bivariate kernels was 0.24 ± 0.01, indicating that 

black rhino spent half their time in just 24% of their annual home range. The ratio 

of use was identical between the sexes (male 0.24 ± 0.02, female 0.25 ± 0.01). 

Achieving an accuracy of > 90 % of actual home range size for black rhino 

required a minimum of 20 locations seasonally and at least 40 locations annually 

with some variation between the sexes. Detecting asymptotes from the incremental 

total home range area plots of locations showed that at least 40 locations for 

females and 55 for males were required to achieve greater than 90% of total MCP 

home range estimate over a consecutive 12-month period. This was exceeded for 

six males with 55 to 71 locations, and 11 females with 40 to 79 locations (Fig. 3A). 

Three males with 30 to 35 locations and 19 females with 30 to 46 locations 

exceeded the approximately 30 locations that were needed to estimate home range 

size during the 6-month dry seasons (Fig. 3B). Finally, six males with 30 to 38 

locations and six females with 25 to 30 locations exceeded the minimum 20 and 25 

locations needed, respectively by the sexes, to accurately estimate wet season 

range size (Fig. 3C).  

Observer Disturbance 

 

Mean distances travelled by black rhino during the 24 hours before they were 

visited by an observer was 1.54 ± 0.10 km (± 1SE, range = 0.13 - 4.64 km; Fig. 4). In 

comparison, rhino visited 24 hours previously travelled an average of 1.82 ± 0.13 

km (range = 0.14 - 8.20 km). Visited rhino were displaced an average 300 m further 

than unvisited rhino but the difference was not statistically significant (GLM 

repeated measures: F1, 222 = 1.6, P = 0.2). There was no significant effect of observer 

visits (GLM: F1, 222 =1.6, P = 0.6), sampling order (i.e., acclimation: F1, 222 = 1.1, P = 

0.3), time of day (F1, 222 = 0.6, P=0.4) and rhino identity (F1, 222 = 1.1, P = 0.4) on daily 

displacement.  

Although rhino that were seen to run from the observer during observations 

(i.e., disturbance score 3) were displaced further on average (2.2 ± 0.29 km: range 

= 0.23 - 8.2 km) compared to unaware rhino (disturbance score 0; 1.7 ± 0.19 km: 

range = 0.25 - 4.6 km), this difference was not statistically significant (ANOVA: F1, 

106 = 0.6, P = 0.6; Fig. 4).  
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Triangulation Accuracy 

Increasing distance of an observer from a rhino when triangulating its 

location (bearing positions) significantly affected triangulation accuracy (ANOVA: 

F1, 62= 49.1, P = 0.0, R2 = 0.6; Fig. 5A). Although the larger differences between 

locations were also associated with times to complete the triangulation and visual 

location > 60 minutes, the time taken to complete the triangulation and obtain a 

direct sighting of rhino did not significantly affect triangulation accuracy (ANOVA: 

F1, 62 = 0.8, P = 0.1, R2 = 0.3; Fig. 5B). 

The mean distance between locations estimated by triangulation and actual 

locations was 0.90 ± 0.10 km (range = 0.03 - 3.8 km). Average triangulation error 

was reduced to a mean of 0.33 ± 0.05 km when taken from less than 1 kilometre 

from the rhino (short distance: Fig. 5A). Even though the time between 

triangulation and visual sighting (i.e., the potential for rhino movement) was not a 

significant factor on triangulation accuracy, spatial error was also reduced by more 

than half on average, if triangulations were completed in less than 60 minutes 

(short time: 0.45 ± 0.06 km; Fig. 5B). Results demonstrate that the accuracy of 

triangulated locations could be improved almost three-fold (e.g., 326 ± 5 m cf. to 

900 m overall) if bearings were taken from no more than 1.0 km from the rhino 

(Fig. 5A). The observers distance from an animal’s unknown location might be 

adequately gauged from the strength (gain) of the radio signal. In our experience 

estimates of radio-receiver gain < 3.0 were associated with distances too large for 

bearings to result in reliable location estimates (i.e., an average gain of 4.2 ± 0.01, 

range 3.2 to 5.1, equated to average observer distance from rhino of 492 ± 6 m, n = 

27, R.D. Plotz, Victoria University of Wellington, unpublished data; see also 

Linklater and Swaisgood 2008, P1061 for a similar estimate). 
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DISCUSSION 

 

Home Range Construction and Size 

MCPs and bivariate kernels produced very different estimates of home range 

size in this study.  Average annual 95% kernel home range estimates were more 

than twice as large as 95% MCP home range sizes, primarily due to the 

interpretation of density around peripheral locations (Fig. 1). Gula and Theuerkauf 

(2013) compared MCP and Kernels on wolf home range analysis and demonstrated 

similar discrepancies between procedures. It is now clear that black rhino home 

ranges that are estimated using different techniques cannot be compared in the 

way they have in previous studies (see Table 1, Fig. 2 and Reid et al. 2007; Linklater 

et al. 2010; Slotow et al. 2010). 

Our estimates of annual home range size are comparable with the few 

estimates in other populations where the adequacy of location numbers is 

quantified and similar home range estimate procedures are used. For example, our 

home range estimates are similar, if slightly smaller, than those reported for a 

reintroduced and expanding black rhino population in the less arid Great Fish River 

Reserve (i.e., 95% MCPs 11.7 km2; 50% kernel 6.8 km2, Lent and Fike 2003). The 

ratios of use (24% of the home range used 50% of the time) are also similar to that 

reported by Lent and Fike (2003: 21% of the home range). Compared to other 

animals for which ratios of use are available (horses 12%, and spotted turtles 8%: 

Linklater et al. 2000, Lewis and Faulhaber 1999) rhino appear to use core areas 

within their home ranges less intensively, perhaps a reflection of their larger body 

size and dependence on larger amounts of lower quality forage (Owen-Smith 

1988). 

Seasonal home ranges are seldom reported for black rhino and the number of 

locations across seasons is seldom adequate for reliable seasonal range estimates. 

Interestingly, the largest average home ranges of the sexes occurred in different 

seasons – male in the wet season and females in the dry season – which might 

reflect the interaction between resource availability (i.e., water and forage) and 

breeding activity in determining movement patterns for the sexes. Females 

probably move less during the wet season due to the greater availability of water 
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and forage. Males, however, are likely to move more during the wet breeding 

season when most conceptions occur (Berkeley and Linklater 2010). The larger 

seasonal home ranges approached the size of annual home ranges, reflecting the 

importance of seasons as drivers of annual black rhino home ranges. 

Estimating seasonal and female home ranges required fewer locations than 

annual and male home ranges, and wet season home ranges required the least 

number of locations. Males are probably more mobile with larger home ranges 

because black rhino are polygynous breeders (Garnier et al. 2001). Natal dispersal 

in males involves greater distances and dominant bulls’ ranges overlap multiple 

female ranges (Lent and Fike 2003). Estimating dry season ranges probably 

required more locations because water access is limited to fewer sites and forage 

quality is poorer, thus motivating rhinos’ greater movement between sequential 

locations. Generally, more than 20 locations per 6-month season were required but 

more than 30 per season unnecessary. These values are similar to others estimates 

(i.e., 40 per annum, Lent and Fike 2003). Home range studies of black rhino should 

report the number of locations used and not use fewer than 20 locations per season 

or 40 per annum for constructing black rhino home ranges. These sampling 

requirements are a comparatively low for such a large mammal (cf. 180 fixes for 

lions; Hayward et al. 2009) and reaffirms that the movements of black rhino are 

spatially conservative (e.g., Lent and Fike 2003; Linklater and Hutcheson 2010).  

 

Observer Disturbance 

 

Repeated radio-telemetry monitoring of black rhino that included visiting 

rhino for direct observation often resulted in animal disturbance and displacement 

but had no significant effect on their daily travel distance. Although rhino moved an 

average 300 m more during the 24-hours after a visit, they did not appear to be 

displaced sufficiently from their chosen home ranges to alter home range location 

and area. Indeed, even actively disturbed rhino (i.e., those that fled out of sight), did 

not travel significantly further over the course of 24 hours than rhino that were 

recorded as being oblivious of the observer (at least to the end of each visit, Fig. 4). 

Moreover, rhino that appeared unaware of the observer during a visit moved 1.66 
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km, similar to the average 1.54 km per day travelled by rhino that had not been 

visited (i.e., triangulations 24 hours before a direct sighting).  

Beytell (2010), in the only other study to quantify black rhino (D. b. bicornis) 

displacement by observers, found them easily disturbed by humans, slow to 

resume pre-disturbance behaviours and recommended approach distances of no 

less than 100 m.  Their recommendation mirrors those for other taxa. Theuerkauf 

and Jedrzejewski (2002), for example, recommended that observers tracking 

wolves (Canis lupus) ought to do so from between 200m and 400m to reduce their 

influence on wolf movements. In terms of displacement distances’ effects on home 

range size, no such limitations appear necessary for HiP black rhino based on our 

findings. I found the disturbance created by visiting rhino to within 50 m for visual 

identity and location as frequently as once a fortnight to have an innocuous 

influence on black rhino movements in HiP.  Nevertheless, I recommend 

precautionary measures of observers’ influence should be a standard part of 

intensive monitoring efforts of any endangered species, including rhino. 

Populations may vary in their sensitivity to anthropogenic disturbance. 

I did not, however, determine if preferred patch use within chosen ranges 

was altered by regular observer disturbance. In Kenya, for example, wild dogs in 

human versus non-human dominated areas had similar home range sizes but area 

avoidance and intra-species overlaps increased in human dominated areas 

(Woodroffe 2011). Further investigations of black rhino disturbance behaviour and 

resource use are required.  

 

Triangulation Accuracy 

  

Triangulation error will inflate home range estimates. The average 900 m 

discrepancy between triangulation-estimated locations and visually confirmed 

locations highlights the amplifying effect that observer distance can have on spatial 

error when triangulating. Although there was also a positive relationship between 

triangulation error and time to complete the triangulation – probably due to animal 
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movement while the estimate was taking place – it was a poorer explanation of 

location error. 

Ours is the first black rhino study to measure triangulation error. It raises 

concerns about the accuracy of black rhino home range studies that use substantial 

numbers of radio-triangulation estimates without considering location error (e.g., 

81% of all locations in Gottert et al. 2010 were triangulations). Spatial error should 

be measured and reported and, if necessary and possible, mitigated in home range 

studies by triangulation.  

Theuerkauf and Jedrzejewski (2002) achieved a mean radio-triangulation 

error of 0.19 km by having 75% of their triangulations on wolves conducted at an 

observer distance of between 0.20 and 1.2 km. Our results show that observers 

aiming to improve the precision of triangulations ought to pay particular attention 

to triangulate black rhino from < 1.0 km (avoiding triangulations from distances > 

2.0 km) and also consider achieving the triangulation within 60 minutes (Fig. 5A, 

B). 

The magnitude of triangulation error is likely to differ between species, 

populations and sites. Reporting measures of spatial error, like those above, would 

permit the development of objective thresholds for data inclusion (Saltz 1994; Gula 

and Theuerkauf 2013) to improve radio-telemetry data and improve inter-study 

comparisons. At this time, triangulation error is rarely reported in studies of home 

range. 

 

Home Range Ecology and Population Management 

 

Home ranges may vary amongst sites and through time as a consequence of 

variation in population demography (e.g., density, sex ratio) and resources (e.g., 

water, food, shelter). Some have used the historical sequence of home range size 

estimates in HiP (see Table 1 and Fig. 2) to draw the conclusion that habitat for 

black rhino in the park is deteriorating or the reserve is over-stocked because more 

recent home range sizes are larger than historical estimates (Reid et al. 2007, 
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Slotow et al. 2010). Previously, the short-comings of this approach have been 

identified (Linklater et al. 2010). In particular, constructing home ranges with too 

few, and fortuitous (spatially biased) animal locations collected over several years, 

and comparing adaptive kernels with more rudimentary, temporally defined, home 

range procedures might inflate home range size and differences. I am now able to 

furnish our concerns with evidence for how these impact home range size 

estimates for black rhino in HiP.  

Our kernel home range estimates using larger numbers of animal locations 

(average 51 ± 3.3 locations) from a single year are 12% smaller (2.7 km2) than the 

average of those presented by Reid et al. (2007: i.e., 20.36 km2 cf. 23.02 km2; see 

Fig. 2) that include as few as 10 locations collected fortuitously across from three to 

11 of the same years (Table 1). This comparison indicates the degree to which 

home range size in Reid et al (2007) might be inflated by multi-year data collection 

and small sample size. Also, adaptive kernel methods used by Reid et al. (2007) are 

known to consistently overestimate the area of the distribution compared to the 

fixed bivariate kernel UD techniques adopted in this study (Seaman and Powell 

1996). 

Our range size estimates were smaller than those reported by Reid et al. 

(2007) and Slotow et al. (2010), but I expected their use of small amounts of 

location data spread across multiple years, amongst other short-comings in the 

data, to result in a much larger home range inflation (Linklater et al. 2010). While 

this is expected to be generally true, it is clearly not the case for black rhino. This 

finding might be because the actual degree of home range inflation in Reid et al. 

(2007) and Slotow et al. (2010) is larger than 12% because our estimates are also 

somewhat inflated due to the spatial error from triangulations which contributed 

to about 40 % of locations used (i.e., 45 out of 105 locations > 1 km or 60 minutes; 

see Fig. 5A, B). Our finding could also indicate, however, that for established 

populations of black rhino home ranges may be remarkably stable between years, 

and perhaps for large portions of a rhino’s reproductive life (i.e., up to 11 years). 

This conservatism of range use by rhino is consistent with Linklater and 

Hutcheson’s (2010) observation that black rhino are reluctant to shift their ranges 

even when harvesting reduces the density of same-sexed conspecifics in adjacent 

habitat. Although Lent and Fike (2003) describe inter-annual range shifts, these are 
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probably a feature of their reintroduced and expanding population and not 

necessarily typical of endemic populations. 

Our average annual MCP home range estimate for all rhino was 9.77 km2, 

which is 19.5% (2.2 km2) larger than Hitchins (1971) estimate (7.50 km2) from a 

radio-telemetry study in the same Park over 40 years earlier (Table 1 and Fig. 2). 

Reasons for our marginally larger estimates overall is probably best explained by 

Hitchins (1971) not using MCPs in their strictest sense. Instead he drew a line 

around all peripheral location points in sequence i.e., approximating a type of 

maximum (cf. minimum) convex polygon, which produces ranges smaller than 

conventional MCP’s from the same location points. Hitchins (1971) estimates were 

therefore likely to be conservative – accounting for their slightly smaller ranges 

compared to this study. Our estimates are also likely to be larger because just over 

half of our locations were triangulation estimates (i.e., our average spatial error = 

900 m), whereas Hitchins (1971) locations used only direct sightings for his 

locations. Hitchins (1969) smaller ranges (c. 3.5 km2) are not meaningfully 

comparable to Hitchins (1971), or this study, as the time period and number of 

locations are not reported. 

Importantly, the comparison of our MCP home range sizes with Hitchins 

(1971) estimates confirms that the home ranges for black rhino in HiP have not 

increased significantly over the last 40 years. Previously, authors have claimed a 

substantial (54%) increase in black rhino home range size in HiP and attributed it 

to deteriorating habitat or the reserve being over-stocked (Reid et a. 2007; Slotow 

et al. 2010). Unfortunately, they compared the kernel estimates using as few 

locations as 10 collected across from three to 11 years with earlier values derived 

from a smaller portion of the same dataset and using different techniques (Table 1, 

Fig. 2). The comparison is flawed because, as I demonstrate, kernel techniques 

using the same data produce much larger home range estimates (e.g., 53% larger 

than MCPs; Fig. 1). 

The debate about whether small numbers of fortuitous locations of black 

rhino across multiple years can be used to construct reliable estimates of home 

range size that are then used to evaluate the status of the black rhino population or 

its habitat (Reid et al. 2007, Linklater et al. 2010, Slotow et al. 2010) is resolved by 

our comparisons. It would be preferable that data not be used to construct home 
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ranges in the way Reid et al (2007) and Slotow et al. (2010) did as it will inflate 

home range size. Kernel home ranges should not be compared with other more 

rudimentary techniques (e.g., MCPs; Borger et al. 2006).  

Lastly, it is unlikely that black rhino home range sizes in HiP have changed 

substantially in over 40 years, rather that MCP home ranges have always been ~ 9 

km2 and kernel home ranges about 20 km2 in size. There is no evidence from 

changes in home range size for habitat deterioration or over-stocking. Moreover, if 

home ranges are mutually exclusive as with white rhino (Ceratotherium simum) 

territories (Shrader and Owen-Smith 2002) then there would be larger home 

ranges with the suspected decline in HiP’s population size and not increasing. Black 

rhino’s spatial ecology is not well enough understood to be confident that a 

predicted inverse relationship between home range size and habitat deteoriation 

exists for black rhino (Emslie 1999; Reid et al. 2007; Slotow et al. 2010). 

Management should consider a more credible explanation for larger home range 

sizes reported in Emslie (1999; 2001), Adcock (2009), Reid et al. (2007) and 

Slotow et al. (2010) is likely to be because home ranges were constructed using a 

growing multi-year dataset and different techniques are compared. 

 

Management Implications 

 

Researchers and managers monitoring black rhino, at least in HiP, will be 

reassured that direct observations often causing disturbance and animal 

displacement at bi-weekly intervals had little impact on rhino daily movements and 

the habitat-use at larger scales. However, triangulation error, insufficient numbers 

of locations and comparisons of estimates using different procedures can lead to 

substantial errors in home range location and size. Studies ought to report the 

influence of observers and triangulation error on location data, and location 

number on home range size. I recommend that bearings for triangulation of black 

rhino’ locations occur from < 2 km, and preferably <1 km most of the time, and be 

completed within 60 minutes. Further, at least 20 locations per season, or 40 per 

annum, appear to be required to build home ranges for black rhino, but more than 

30 per season is likely to be unnecessary. In southern Africa, average home range 

area estimates have been considered to determine reserve stocking (carrying 
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capacity) and harvesting levels for black rhino populations (Emslie 2001). 

Inaccurate home ranges have the potential to mislead black rhino population 

management (Linklater et al. 2010). Apparent, but spurious, increases in home 

range size could lead to over-harvesting (Clinning et al. 2009; Morgan et al. 2009; 

Slotow et al. 2010). Comparisons of home range size should not be made unless 

they are estimated in similar ways with similar location data and sources of error 

are considered.  
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Table 1. Detailed comparisons of methodology across this and previous historical 
home range studies of black rhino Diceros bicornis minor in Hluhluwe-iMfolozi 
Park, South Africa. 

Table adapted from Linklater et al. (2010)  
 

*Reid et al. (2007) used an 11-year data set (c. 1991-2002) that incorporated the 

same  Adock (1996) four-year data set (1991-1994) i.e., lack of independence between 

data sets. Also, Reid et al. (2007) did not just present home ranges from lumped together 

data over the 11-year period, but also represent seasonal ranges from data that lump 

together  locations from summer/ winter in one year with summer/ winter locations from 

several other years between 1991-2002 (See Linklater et al. 2010).  

** Locations collected twice daily 

 

 Hitchins 1969               Hitchins 1971        Adcock 1996; 

Emslie 1999 

Reid et al. 

(2007)       

This study 

Methods      

Data 

Collection 

Ground search, 

fortuitous 

observations 

Radio-telemetry 

(twice daily) 

Fortuitous 

observations 

Fortuitous 

observations 

Radio-telemetry, 

random stratified 

approach 

Data 

Analysis 

visual approximation 

using all points 

visual 

approximation 

using all points 

1km
2
 grid 

occupancy data 

95% adaptive 

kernel 

95% MCP, 50%, 

90% and 95% 

bivariate kernels 

Obser. 

period 

< 1 year 

(1962-63) 

From 3 month -            

1 year 1 month  

(Nov. 1969-

Dec. 71) 

c. 4 years* 

(c. 1991-94) 

c. 11 years* 

(c. 1991-Feb. 

2002) 

annual  and 

seasonal (wet & 

dry – see 

methods)  

(Jan. 2004-Dec. 

09) 

Locations 

per rhino 

Not Reported 47-503** ~6-20 > 10 40-79 for 12 

consecutive 

months & 

 25-38 for 6-

month seasons 

 

Focal 

population 

4f, 2m 4f, 10m Not reported 125 18f, 7m 

Park 

Sections 

Nqumeni (Hluhluwe) Nqumeni 

(Hluhluwe) 

Manzibomvu 

(Hluhluwe) 

All five 

management 

sections 

Mbhuzane, 

Masinda 

(iMfolozi) & 

Nqumeni 

(Hluhluwe) 
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Figure 1. Illustrated comparison of the two analysis techniques used for producing 
annual black rhino home-range estimates in Hluhluwe-iMfolozi Park, South Africa.  
Contours of bivariate kernel utilisation distributions are illustrated by the 50% 
(dark grey) and 95% (mid-grey), using a smoothing parameter (h) of 500 m and 
cell size of 100 m in an African Albers Equal Area projection. 95% Minimum Convex 
Polygon (MCP) range estimates are illustrated by the dark black line polygon. 
Actual positions from radio-telemetry relocation are illustrated by the white filled 
circles. Note that Rhino A and B were classified as adults (> 8 years), Rhino C was a 
sub-adult (< 8 years) and 95% kernels produced consistently larger estimates than 
95% MCPs. 
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    Female                       Male                      Male & Female 

 

 
Figure 2. Historical sequence of home range estimates for black rhino Diceros 

bicornis minor in Hluhluwe-iMfolozi Park, South Africa. Included for 
comparison are the two home range estimates from this study where 
different analysis techniques were used (i.e., 95% MCP’s and 95% kernels). 
Standard error is included for home range estimates where possible. 
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Figure 3(A). Incremental accumulation curve showing the number of locations 

required to more accurately estimate the annual (any consecutive 12-
months) home ranges for black rhinoceros in Hluhluwe-iMfolozi Park, South 
Africa. Note that the horizontal dashed line represents the within 10% level of 
the total home range recommended for increased accuracy. 
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Fig. 3B 
 

 
Fig. 3C 

 
 
Figure 3 (B). Incremental accumulation curve showing the number of locations 

required to accurately estimate the wet (Oct-Mar) and (C) dry season (Apr-
Sep) home ranges for black rhino in Hluhluwe-iMfolozi Park, South Africa. 
Note that the horizontal dashed line represents the within 10% level of the 
total home range recommended for increased accuracy. 
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Figure 4. Mean estimated black rhino displacement distance from 106 triangulated 

locations 24 hours after an observer disturbance in Hluhluwe-iMfolozi Park, 
South Africa. For each observer disturbance event (i.e., direct sighting), each 
rhino disturbance by observers was scored on an ordinal scale from 0 to 3: 0 
= rhino not visibly alert and did not respond to the observer, 1 = rhino alert 
but only head and ears raised toward observer, 2 = rhino alert and walked 
away from the observer, and 3 = rhino ran from the observer. 

 

 

 

 

 

 

 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 1 2 3

Disturbance score 

2
4

 -
 h

o
u

r 
d

is
p

la
ce

m
en

t 
(k

m
) 

 



76 

 

 
 

Figure 5 (A). Trend in discrepancy (km) observed between locations recorded 
with triangulation (estimate) and the direct sighting location of black rhino 
to the observers distance from rhino (used bearing taken farthest away) in 
Hluhluwe-iMfolozi Park, South Africa. To illustrate the effect of that an 
increasing range of observer distances had on triangulation error the 
following categories of observer distances are compared: long (white > 2km 
plus), medium (grey, 1.01 to 2.0 km) and short (black, <1km).  
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Figure 5 (B). Trend in discrepancy (km) between locations recorded with 
triangulation (estimate) and direct sightings of rhino recorded immediately 
afterwards and according to the observer’s time taken from completing the 
triangulation set to directly sighting black rhino in Hluhluwe-iMfolozi Park, 
South Africa. The discrepancy and relationship for triangulations that took 
longer to complete are shown according to the following categories (black < 
60 minutes, grey 60-120 minutes, and white >2 hours).  
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3.  
Black Rhinoceros (Diceros bicornis) Calf Succumbs after Lion 

Predation Attempt: Implications for Conservation Management 

 

 

Two short-sighted rhino seemingly oblivious to a resting lioness in a Marula tree in 

the Masinda Section of Hluhluwe-iMfolozi Park (Photograph by Roan Plotz) 

 

Authors note - this chapter is presented as the published manuscript in the format 

of the journal African Zoology where it appears as: 

 

 Plotz, R. D. and Linklater, W.L. (2009). Black rhinoceros (Diceros bicornis) calf 

succumbs after lion predation attempt: implications for conservation 

management. African Zoology 44(2): 283-287. 
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ABSTRACT  

 

Actual observations of black rhino predation are rarely reported and are limited to 

two incidences involving sub-adults. Nevertheless, some authors attribute tail and 

ear deformities in up to 7.1% of some populations to predation attempts. In August 

2008 I observed a mother with dependent c. 8-month-old female black rhino calf in 

Hluhluwe-iMfolozi Park (HiP), South Africa. The calf had a recently amputated tail, 

wounds to the anogenital region, right posterior flank and right side of the neck 

resembling a lion attack. Thirteen days later and on three subsequent occasions, 

the mother was sighted alone, suggesting that the calf had succumbed to its 

injuries. This incident provides evidence to suggest a link between attempted lion 

predation and tail amputation in black rhino. Significantly, it implies that 

amputated tails and ears throughout Africa may represent failed depredation 

attempts and that calf predation may be more prevalent than previously 

appreciated. Predation is seldom considered in the management of black rhino but 

should be when attributing cause to poor population performance of this critically 

endangered species.  

 

KEYWORDS: Diceros bicornis minor, predation, tail amputation, conservation 

management. 
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Reports of black rhino (Diceros bicornis) predation are rare. Owing to the 

large size of adults, they are largely immune to non-human predation (Schenkel 

and Schenkel-Hulliger 1969; Owen-Smith 1988; Berger 1994), but young black 

rhino may be vulnerable to predation by spotted hyenas (Crocuta crocuta) and 

lions (Panthera leo) (Skinner and Smithers 1990). The only documented case of 

lions killing black rhino are three sub-adults depredated at a waterhole in Etosha 

National Park, Namibia (Brain et al. 1999). Elliot (1987) also presents 

circumstantial, but persuasive, evidence that a lion killed a two-year-old black 

rhino in HiP. Other evidence presented in support of calf predation is limited to 

observations of unsuccessful attempts, apparently healthy and nutritionally 

dependent calves not sighted again with their mother, and particularly ill-formed 

or missing parts of ears and tails (Goddard 1967; Kruuk 1972; Hitchins and 

Anderson 1983; Sillero-Zubiri and Gottelli 1991). Ill-formed or missing ears and 

tails can be common in black rhino populations (e.g.: HiP, 3.7 to 4.0% of individuals, 

Hitchins 1990; Emslie 1999; uMkhuze Game Reserve (uMGR), 7.1% of individuals, 

D. Kelly, pers. comm.) and might indicate, therefore, the potential for high calf 

mortality. Missing calves and apparent mutilations, however, might not be injuries 

from predators but caused by accident, disease or parasitic and genetic deformities, 

and failed attempts do not necessarily indicate other successful depredations. Thus, 

there is uncertainty about how important predation is in black rhino population 

dynamics. 

Uncertainty about the frequency of juvenile black rhino predation means that 

it is rarely considered in the conservation management of this critically 

endangered species (IUCN 2008). When comparing black rhino population 

performance in different reserves, relatively poor fecundity and low population 

growth is usually attributed to over-stocking and habitat deterioration (Emslie et 

al. 2001; Reid et al. 2007), although the reserves compared differ in their densities 

of large predators. Some reserves do not have large predators, but in others 

predators occur at remarkably high densities and could contribute to poor 

population growth (Balfour 2001). Between 1990 to 2003, four out of seven calf 

deaths in the Ngorongoro Crater, Tanzania, were due to predation (Amiyo 2003), 

suggesting that for some populations predation can severely limit population 

growth.  
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In this context, the disappearance of a maternally dependent black rhino calf 

after a predation attempt that amputated its tail and left it with multiple wounds, 

resembling a lion attack, indicates that predation of juveniles may be more 

common than previously appreciated. I detail this observation and discuss the 

potential importance of predation in the management of black rhino. 

 

OBSERVATIONS 

 

Observations of adult female, ear notch sequence number 321 and 

identification code C441 were made from July to September 2008 as part of a 

project investigating the reproductive performance and ecology of black rhino in 

HiP (described in Plotz et al. 2008). Observations were made with the unaided eye 

or assisted using binoculars (Nikon 8 x 40) and field spotting scope (Bushnell 20 x 

60).  

C441 had been regularly sighted by field rangers in the Masinda and Nqumeni 

sections of HiP since 4 November 2003, when she was first ear notched and her age 

estimated as between 3.5 to seven years old. On 26 September 2007 she was 

captured for translocation but instead released at the capture site because she was 

assessed as pregnant. C441’s sighting record indicates that the subsequent female 

calf, her first documented, was born between 9 and 30 December 2007. We first 

sighted C441 when her calf was aged c. seven months (21 July 2008). The calf was 

injury free on that occasion.  

On 14 August 2008 field ranger Mr. Bom E. Ndwandwe and RDP were walking 

in the Nqumeni section monitoring a different female black rhino fitted with a 

horn-implant radio-transmitter, when they sighted female C441 accompanied by 

her female calf with injuries. The calf’s injuries included tissue trauma to the 

anogenital region with an amputated tail, claw or canine puncture wounds to the 

neck region and skin lesions resembling claw marks to the rump and right 

posterior flank (Fig. 1 and 2). On four subsequent occasions, 27 August, 9, 14 and 

22 September 2008, C441 was sighted without her calf. Observations post 22 

September 2008 were not possible as she was translocated to another reserve. 
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DISCUSSION  

 

Eight-month-old black rhino calves are still nutritionally dependent on their 

mothers and so the confirmed disappearance of C441’s calf suggests that the calf 

succumbed to its injuries. I did not witness the lion attack or recover the calf’s 

carcass and so spotted hyena cannot be ruled out as a potential cause of the calf’s 

wounds or ultimate disappearance. However, three characteristics about the 

record of sightings and photographic evidence are consistent with an attack by at 

least two lions (1) Puncture and tear wounds at the calf’s neck suggest one lion 

attempted to suffocate the calf in the fashion typical of lion attacks on ungulates 

(Skinner and Smithers 1990). Elliot (1987) and Brain et al. (1999) report similar 

puncture wounds to the neck in sub-adult black rhino killed by lion. (2) Tissue 

trauma, severed tail, and claw marks suggest that another lion attempted to feed 

from the anogenital region. Brain et al. (1999) witnessed a lioness beginning to 

feed between sub-adults back legs during an attack, while Elliot (1987) discovered 

a sub-adult carcass with anogenital wounds consistent with this feeding behaviour. 

(3) Hyena claws are unable to make the skin lesions at the rump and along the back 

and flank of the calf, all of which were characteristic in spread and size of lion claws 

and canines (Skinner and Smithers 1990). In addition, the tissue damage, including 

amputated tail, was still red and weeping with dipteran maggots embedded within 

the tissue. This implies that the wounds were inflicted relatively recently (i.e. 1 to 2 

days prior) and concomitantly, thus making it highly unlikely that spotted hyena 

were able to inflict these wounds either prior to or post this particular lion 

predation attempt.  

In this predation attempt the calf’s tail was amputated to approximately a 

third of its original length. Berger (1994) states that 97% of ear and tail deformities 

in black rhino throughout Africa (Goddard 1969; Hitchins and Anderson 1983; 

Hitchins 1986, 1990) can be interpreted as the scars of historical predation 

attempts, although there are other possible explanations such as genetic or 

parasite-induced deformities during development. Until now, however, there has 

been no direct link between these deformities and amputation during a predation 

attempt. Our observations suggest that tail and ear mutilations might indeed 

represent failed predation attempts. In 2007-08 I observed five out of 93 different 
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black rhino in HiP (5.4%) with mutilated tails or ears, similar to historical 

mutilation rates in the same reserve (i.e., 3.7 to 4.0%, Hitchins 1990; Emslie 1999). 

Importantly, nearby uMGR where spotted hyenas occur but not lions, five out of 70 

identifiable black rhino have missing ears and tails (i.e., 7.1%, D. Kelly, pers. 

comm.), so spotted hyenas can also be implicated in black rhino predation. These 

values and Ngorongoro Crater’s documented 56% calf predation rate (Amiyo 

2003), indicate that predation of juvenile black rhino may be more common than 

previously appreciated.        

Predation on black rhino juveniles might be under reported because both 

births and carcasses are rarely detected. Neonatal black rhino calves are cryptic 

and difficult to sight. Not only are they small but mothers tend to be sedentary in 

densely vegetated habitat during the calves’ first months of life. Thus, unless 

individual adult females are intensely monitored (e.g., pregnancy detection and 

radio telemetry, Plotz et al. 2008; MacDonald et al. 2008), parturition and neonatal 

mortality will typically be undetected, especially in large populations and reserves 

like HiP. Moreover, on the few occasions that field rangers recover black rhino calf 

carcasses the cause of death is rarely determinable. A good illustration of this 

difficulty was the rescue of an ill and abandoned six-month-old black rhino calf that 

died in the Ezemvelo KwaZulu-Natal Wildlife (EKZNW) Game Capture holding pens. 

The carcass was placed outside the game capture compound and on the following 

morning the EKZNW veterinarian could find almost no evidence that the calf had 

been there. Searching revealed only small pieces of its horn and jaw (D. Cooper, 

pers. comm.). Juvenile predation could, therefore, be common even though the 

evidence is not. 

Black rhino mothers have killed lion that threaten their calves (Goddard 

1967; Owen-Smith 1988, P126-7). C441 was a young mother and maternal 

inexperience may have contributed to her calf’s vulnerability. The offspring of 

inexperienced mothers tend to incur higher mortality rates (Tardif et al. 1984; 

Novak et al. 2000, Barber-Meyer and Mech 2008, P15). Nevertheless, our 

observation also indicates that maternal defence is not always sufficient to deter 

predators. 
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Conservation managers rarely factor in predation when managing a black 

rhino population for improved productivity, although predation’s role in HiP’s 

black rhino population performance has been debated before (Balfour 2001; 

Fanayo et al. 2006). Poor population performance has largely been attributed to 

density dependence but evidence suggests that predation of black rhino juveniles 

may also, at least in part, account for longer inter-calving intervals, low numbers of 

calves per adult female, and poor population growth. It might not be realistic to 

expect a black rhino population living with high densities of lion and spotted hyena 

to grow as fast as one in a reserve without large predators. When attributing cause 

to poor population performance the presence of large predators should be 

considered. 
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Figure 1. Black rhino calf (c. 8 months old) in Hluhluwe-iMfolozi Park with recent 

tissue trauma to the anogenital region, an amputated tail, and puncture and 

tear wounds on the neck consistent with a lion attack. Note also claw marks 

(dark grey lines) on rump and flank and what appears to be dipteran maggots 

(white) embedded in raw tissue on tail and anogenital area (Photograph by 

Roan Plotz). 
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Figure 2. The anterior right flank of calf showing one of two weeping puncture 

wounds on the neck consistent with the canine of a lion (other puncture 

wound obscured by reeds and shadow) (Photograph by Roan Plotz). 
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4.  
 

Temporal association between Filarial (Stephanofilaria dinniki) 

Lesion Severity and Body Condition in Black Rhino 

 

 

 
One of the study black rhino with filarial lesions and fly vectors on both anterior 

flanks in Hluhluwe-iMfolozi Park (Photograph by Dale Morris) 
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ABSTRACT 

 

The impact of parasites on animals is well known. Parasites have the potential to 

reduce individuals’ reproductive success and survival in wild animal populations, 

often through effects on body condition. It is difficult to determine the degree to 

which these impacts regulate populations, particularly in the wild, because of the 

logistics of conducting the necessary experimental manipulations of either hosts or 

parasites. Several populations of the critically endangered black rhino (Diceros 

bicornis) exhibit anterior flank filarial lesions caused by a host specific nematode 

i.e., Stephanofilaria dinniki. In Hluhluwe-iMfolozi Park (HiP), South Africa, lesions 

can be remarkably large and occur in all adult (>6 years) black rhino. Anecdotal 

reports suggest that severity of filarial lesions is temporally associated with poor 

body condition in black rhino. This population provided an ideal opportunity to 

test the relationship between lesion severity and body condition in black rhino. 

Thus, I used HiP’s endemic black rhino population to obtain detailed measurements 

of rhino’s lesion severity and body condition. I devised a novel field technique to 

measure lesion severity and compared direct measurements at close proximity 

with the remote field technique to show that variation was strongly correlated - 

justifying its viability for use in future. In HiP, black rhino’s lesions averaged a 

remarkable 441 ± 36 cm2 (from direct measures) and a significant temporal 

association existed between lesion severity and body condition. There was also no 

indication that seasonal differences (i.e., resources) played a role in lesion severity 

and body condition (i.e., both appeared non-seasonal). As a pilot study further 

investigation of the specific drivers of the significant negative temporal 

relationship between lesion severity and body condition in HiP’s black rhino needs 

to be determined.  

 Limited information on the current distribution of lesions across Africa’s 

rhino populations prevents comparisons between populations. This study 

determined that lesions were localised to two distinct regions in east Africa (i.e., 

Kenyan Highlands) and North-east South Africa and Swaziland. The biogeographic 

distribution map created in this study facilitates future intra- and inter-population 

comparisons between black rhino populations with and without lesions.  
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KEYWORDS: parasites, free-ranging, temporal association, Diceros bicornis minor, 

Hluhluwe-iMfolozi Park, Stephanofilaria dinniki, body condition, filarial lesions, 

nematode, Rhinomusca dutioti / brucei, prevalence  

 

INTRODUCTION 

 

Animals mount protective and energetically costly immune responses to 

parasite infection. Organisms have finite energy reserves and chronic responses to 

parasite infection might divert resources from other functions, including the 

maintenance and storage of energy reserves for maintaining body condition 

(reviewed in Thomas et al. 2005; Morand et al. 2006). Filarial nematodes are 

widespread, and have caused large ulcerative haemorrhaging lesions in domestic 

livestock and subclinical effects such as reduced body condition and growth rates 

(Irvine 2006; Sutherst et al. 2006). Wildlife with chronic filarial parasitism and 

healing ulcers might therefore also suffer from lower overall body condition. 

Filarial infection might be more common and severe in high-density populations 

that are nutritionally stressed (e.g., density-dependence) and less able to divert 

resources (e.g., protein) towards immunological defence and healing (Anderson 

and May 1981).  

Large haemorrhaging ulcerative filarial lesions have been reported in several 

populations of black rhino (Diceros bicornis: Rhinocerotidae) but not all (Schulz and 

Kluge 1960; Parsons and Sheldrick 1964; Tremlett 1964; Hitchins and Keep 1970; 

Mutinda et al. 2012). The severity of lesions also varies between infected 

populations. Lesions are almost unnoticeable in some populations (Mutinda et al. 

2012) but remarkably severe in others (Tremlett 1964; Hitchins and Keep 1970; 

Skinner and Smithers 1990). Lesions are caused by the filarial nematode 

Stephanofilaria dinniki (Schulz and Kluge 1960; Round 1964) that are vectored by 

blood sucking flies (Rhinomusca dutioti and R. brucei; Parsons and Sheldrick 1964; 

Zumpt 1964; Mihok et al. 1996).  

Uncertainty around S. dinniki’s effect on black rhino welfare means that it is 

rarely, if ever, considered in the conservation management of this critically 

endangered species (IUCN 2013). When comparing black rhino population 
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performance in different reserves, relatively poor fecundity and low population 

growth is usually attributed to over-stocking and habitat deterioration (e.g., Emslie 

et al. 2001; Reid et al. 2007), although the reserves compared differ in the 

prevalence and severity of filarial parasitisation. Some reserves do not have filarial 

parasites, while for others infection and lesions are severe and could result in 

reduced body condition with poor breeding rates and population growth.  

The endemic population of rhino (D. b. minor) in Hluhluwe-iMfolozi Park 

(HiP), South Africa have the most severe lesions recorded (Schulz and Kluge 1960; 

Parsons and Sheldrick 1964; Tremlett 1964; Hitchins and Keep 1970; P. Hitchins 

and D. Cooper, pers. comm.). By adulthood (i.e., six years of age; Law and Linklater 

2014) lesions are typically present to varying degrees of severity and size on both 

anterior flanks of all HiP’s black rhino (Hitchins and Keep 1970). Anecdotal 

comparisons suggest that rhino in East Africa (D. b. michaeli) have less severe 

filarial lesions. Lesions up to 15cm wide are reported in Meru National Park, Kenya 

(Mutinda et al. 2012) but up to 37 cm wide in HiP (Hitchins and Keep 1970). The 

more severe lesions in HiP’s black rhino might be significant to the debate about 

why this population appears less fecund than some others (Emslie 2001; Fanayo et 

al. 2006). The severity of their lesions might, in part, also explain why HiP’s rhino 

have below average body condition scores compared to other better performing 

populations (Emslie 2001).  

It has largely been assumed that filarial parasitism and lesions have no impact 

on rhino welfare or reproductive performance and recruitment (Skinner and 

Smithers 1990). However, first-hand accounts from wildlife practitioners in HiP 

report that filarial lesions become progressively more severe (i.e., increased 

haemorrhaging) when individual black rhino are exposed to the stress of captivity 

before relocation. For example, before relocation black rhino can be held in 

enclosures for several weeks (D. Cooper, pers. comm.). After several days in 

captivity the severity of black rhino’s lesions increased dramatically (i.e., flared; D. 

Cooper, Pers. comm.). This delayed ‘flaring’ of LS in response to a stressor was also 

associated with marked declines in rhino body condition (BC).  LS might therefore 

be temporally associated with poor BC in black rhino. Captive-raised rhino, for 

example, regularly suffer superficial necrotic dermatitis (i.e., non-filarial lesions) 

that may be associated with stress since captive rhino experience weight loss, 
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pregnancy and oestrus bleeding and a two-fold increase in mortality (Dorsey 2008; 

Dorsey et al. 2010). In other animals such as domestic cattle (Bos taurus) low body 

condition scores are also correlated with inceased treatment for haemorrhaging 

lesions of the sole (i.e., lameness) up to two to four months later (Green et al. 

2014).  

If LS is temporally associated with BC in black rhino, managers might then be 

able to monitor both factors to better predict and manage the population under 

stress. Testing for a temporal association will require the ability to reliably conduct 

field estimates for both BC and LS of black rhino. Fortunately a reliable field based 

BC scoring system already exists for black rhino (e.g., Reuter and Adcock 1998; Fig. 

1). Five-point visual BC scores presented by Reuter and Adock (1998) has proved 

to be a useful indicator of body fat in rhino’s and other Perissodactyls (e.g., horses) 

because these animals store their body fat directly under the skin surface. BC 

scores tested against subcutaneous measures of body fat (a marker of condition) 

have been shown to be accurate predictors of levels of body fat in horses (Carroll 

and Huntington 1988; Henneke al. 1983; Keiper 1991). Reuter and Adcock (1998) 

have modified the black rhino BC scoring system to closely match the one used for 

horses. However, there is no field based scoring system to estimate LS in black 

rhino and testing the temporal association between LS and BC is not currently 

possible.  

Understanding how filarial parasitism impacts upon black rhino populations 

would be improved by making intra- and inter population comparisons (see 

Diamond and Chase 1986) where traditional experiments are not possible. At this 

time however reporting of lesion prevalence within Africa’s c. 134 (Emslie and 

Knight 2012) rhino populations is incomplete. Reports of lesion occurrence are 

limited to HiP (Round 1964; Hitchins and Keep 1970), Meru National Park 

(Mutinda et al. 2012) and Tsavo National Park, Kenya (Tremlett 1964) but 

anecdotal observations suggest several other rhino populations also present with 

lesions (P.M. Hitchins, pers. comm.). The first step towards testing if filarial lesion 

severity is temporally associated with BC, or impacts upon the welfare of black 

rhino populations in general is a synthesis of current knowledge about lesion 

distribution so that comparisons between populations can be achieved.  
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Therefore, the three main aims of this study were to (1) design and test the 

reliability of a novel filarial lesion field scoring system for HiP’s black rhino 

population, (2) investigate whether there is a temporal association between BC and 

LS in black rhino and, (3) update the current biogeographic range of filarial lesions 

for all of Africa’s black rhino populations. It is my hope that this will enable 

additional research to be conducted into the role that filarial parasitism has on the 

welfare of rhino populations. 

 

MATERIAL AND METHODS 

 

Study site and population 

 

Hluhluwe-iMfolozi Park (HiP: S28.000-28.430, E31.716-32.015) is a 960 km2 

fenced reserve located in Zululand, KwaZulu-Natal (KZN), South Africa. The park’s 

topography of lowland flood plains and rolling hills in the south to steep hill 

country in the North ranges from 20 to 580 m elevation above sea level. Rainfall 

remains highly variable and seasonal, with warm wet summers and cool dry 

winters (Berkeley and Linklater 2010). Also, HiP has a strong south-west (c. 

635mm annually) to North-west (c. 1000mm annually) rainfall gradient (Whateley 

and Porter 1983). During the period of data collection rainfall averaged 579.9 mm 

annually, and 378 mm and 201.9 mm over the wet and dry seasons respectively 

(central Park weather station at Masinda; G. Clinning, unpubl. data). HiP, therefore, 

experienced a below average rainfall during the study – i.e., a drought that began c. 

2001 (Berkeley and Linklater 2010). Average monthly temperatures range 

between 13°C (winter) to 33°C (summer) (Whateley and Porter 1983; Walters et al. 

2004).   

HiP currently holds approximately 218 south-central black rhino (D. b. minor) 

(Clinning et al. 2009) and is the largest of two surviving endemic populations of the 

subspecies (Brookes and MacDonald 1983). From January 2007 to October 2008, 

14 black rhino were captured by remote chemical immobilization from a the 

southern and central sections by helicopter and fitted with horn implant radio-

transmitters (combinations of Sirtrack Pty Ltd., NZ or Telonics, USA models; 

techniques used described in Shrader and Beauchamp 2001) . The Ezemvelo KZN 
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Wildlife (EKZNW) Game Capture Team, including wildlife veterinarian, 

administered capture and drug protocols that are described in detail elsewhere 

(Hitchins et al. 1972; Rogers 1993; Linklater et al. 2006; Morkel and Kennedy-

Benson 2007).  

 

Data collection 

 

From March 2007 to October 2009, I monitored the 14 adult (> 6 years) 

female black rhino fitted with horn-implant radio-transmitters. Rhino were radio-

tracked to obtain repeated visual samples in random sequence. Repeated 

observations of other male and female rhino marked with unique ear notch 

sequences were also made whenever encountered.  For all these individuals I 

collected and compared: 

 

(1) Body condition scores  

 

Black rhino body condition (BC) was estimated using Reuter and Adcock’s 

(1998) five-point visual scoring scheme, where scores are recorded in 0.5 

increments, where1 indicates poor and 5 excellent body condition (Fig. 1). HiP 

management currently use this system to score black rhino condition (Emslie 

2001).  BC scores are not dependably obtainable from rhino that are sedated and 

lying down (Reuter and Adcock 1998). Comparisons between BC scores taken at 

close quarters against field scores were therefore not possible. 

 

(2) Direct measurements of filarial lesion severity 

 

I measured the width and height of each lesion to the nearest centimetre on 

both the left and right anterior flanks of 14 chemically immobilised adult (> 6 

years) female black rhino using an L-shaped ruler.  Lesions are typically 

asymmetrically taller than they are wide (i.e., they are ovate) and so the area (cm2) 

of each lesion was estimated using the formula for the area of an oval: (width cm) x 

(height cm) *0.8. (Fig. 2). The proportion (%) of the lesion estimated to be 

haemorrhaging (PH) was also estimated. Rhino captured to meet park management 
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objectives targeted adult female rhino during the winter (i.e. April – October) and 

so all direct measurements were from 14 captured females during winter.  

 

(3) Remote estimates of filarial lesion severity 

 

Rhino were radio-tracked to obtain repeated visual samples in random 

sequence. A novel method for remotely estimating the dimensions of lesions was 

implemented. For example, the w and the height h of lesions were compared to the 

width of the rhino’s nearest upper-foreleg to that lesion. Upper foreleg width was 

always assigned a width of 1.0 and all w and h estimates were recorded at intervals 

of 0.1 relative to 1.0 (Fig. 3). To convert remotely obtained scaled lesion 

dimensions to metric measurements for subsequent analysis, I multiplied all 

estimates by the average recorded upper-foreleg width of an adult black rhino (i.e., 

26 cm). Purchase (2007) showed adult foot length for black rhino to be 26 cm, 

where foot length has an approximate 1:1 ratio with the width of the upper-foreleg. 

The entire lesion area (ELA; cm2) included both necrotic and haemorrhaging tissue. 

Unhealed haemorrhaging sections of lesions were deemed more likely to stimulate 

an ongoing immune response from rhino and require healing. Thus, I defined lesion 

severity (LS) as the proportion of the ELA haemorrhaging (PH).  

The ELA (cm2) was calculated using the same formula for the area of an oval 

that I used for calculating direct area measurements of lesions: (w: scaled from 0.1 

to 1.0 relative to upper foreleg width*26 cm) x (h: scaled 0.1 to 1.0 relative to upper 

foreleg width *26 cm) *0.8 ELA (cm2). The method used to calculate the LS is 

detailed in Fig. 3.  

 

Comparing direct and remote field lesion severity measurements  

 

I attempted to justify the novel remote field technique for measuring LS by 

comparing LS estimates from field estimates with direct measurements of the 14 

rhino within 14 days of each other i.e., reduce the effect that time has on variations 

in LS. Unfortunately, this was only possible for seven individuals. The time between 

the direct and the remote estimates for the other seven rhino was several months 

apart and therefore not included in analysis. Differences between estimates would 
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most likely be due to effect of time and not the technique that was used. To 

compare the techniques I used photographs to measure direct LS taken from 

captured rhino with estimates taken remotely.  

I compared direct (using photographs) and field measurements (novel 

technique) for estimates of the following: ELA (i.e., the whole lesion area that 

included both the haemorrhaging and healed tissue), the proportion (%) of the 

entire lesion that was haemorrhaging (PH) and finally LS estimates (i.e., amount in 

cm2 bleeding). I included regression plots of the remote versus direct scores to 

illustrate variation between them. 

 

Temporal association between lesion severity and body condition scores 

 

I predicted that a temporal association ought to exist between LS and BC in 

black rhino and used a general linear model (GLM) with random effect for rhino 

identity to statistically test for the relationship. All statistical procedures were 

conducted in SPSS (SPSS Inc., version 19, 2010). For all statistical tests I regarded 

the critical value (α) of < 0.05 as statistically significant. 

I predicted that one factor (i.e., LS or BC) ought to have a temporal influence 

on the other. Anecdotal evidence also suggests that LS and BC is negatively 

correlated in black rhino. To this end, I set up my data set chronologically and 

tested the following two hypotheses statistically. 

 

Testing for a temporal signal: 

I investigated whether the association between LS and BC had a temporal 

signal. To test this I predicted that BC and LS in future (t+1) should be inversely 

correlated to BC and LS at time (t). To test this I formulated the following 

hypothesis: 

 

(1) If BC and LS temporally associated (⟹) with each other, then I predicted 

that either LS or BC in the future (time +1) should be significantly negatively 

correlated with previous estimates of the other (time, t) respectively: e.g., If 

BC ⟹ LS, then LS time (t) +1 should predict BC t better, or If LS ⟹ BC then BC t+1 

should predict LS t better. I also analysed this hypothesis from the 
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perspective of BC’s impact on lesion healing (i.e., Lesion Healed (LH) = ELA – 

LS). I was attempting to determine if rhino’s BC in the past impacted on LH 

in future.  

Finally, I investigated whether changes in BC and LS caused the inverse 

temporal correlation. In other words, I was considering whether a specific shift in 

BC and LS over time was the significant driver of this temporal association. To test 

this I formulated the following hypothesis: 

 

(2) If BC and LS was temporally influenced by the degree of change (∆) over the 

other, then I predicted that ∆ in BC or LS over time should have a significant 

inverse influence over ∆ in LS and BC, respectively: e.g., If BC ⟹ LS ∆ BC (BC 

t+1 –BC t) should predict ∆ LS (LS t+1-LS t), or If LS ⟹ BC then ∆ LS (LS t+1 –LS t) 

should predict ∆ BC (BC t+1-BC t) better. 

 

Survey of the current bio-geographical distribution of filarial parasitism in 

black rhino populations 

 

Published reports of S. dinniki related lesions in black rhino populations are 

limited to a handful of African reserves: (e.g., HiP and Mkhuzi Game Reserve in 

South Africa and Meru and Tsavo National Parks, Kenya; Tremlett 1964; Schulz 

1961; Hitchins and Keep 1970; Tremlett 1964; Mutinda et al. 2012; Ndeereh et al. 

2012). In this context, I contacted personnel involved in rhino population 

management, veterinary work, and research in 27 parks / protected areas across 

Africa and asked if filarial lesions or parasites existed in their black rhino 

populations. I mapped the current distribution of S. dinniki and lesions using the 

volunteered and published information.  
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RESULTS 

 

Body condition scores, direct and field measurements of filarial lesion severity 

 

Average body condition scores, direct and field measurements of filarial 

lesion severity are summarised in Table 1. There was not a significant difference in 

the ELA between the left and right anterior flanks (e.g., mean LS of left was 428 ± 

32 cm2 Range: width 11-37 cm and length 18-40 cm and right 442 ± 41 cm2; Range: 

width 16-30 cm and length 18-47 cm; Paired t-test, P=0.6) and so left and right 

anterior flank lesion estimates were combined for one mean value. Average ELA 

measurements for 14 adult females captured during winter were 441 cm2, with 

average LS of 262 cm2.  I also obtained 208 remote estimates of lesions (i.e., ELA 

and PH) and BC scores from the 57 marked rhino. Mean ELA, PH and LS are 

summarized according to sex and season in Table 1.   

Females presented with larger average lesion areas (i.e., LS, PH and ELA) than 

male rhino. Males did appear to have greater variability in lesion area and almost 

double the severity in summer than winter compared to females where lesions 

were similarly severe between seasons. Although there was a discrepancy between 

remote and direct measurements in Table 1, regression plots show that the 

techniques were closely correlated and differences could reflect the large 

discrepancy in sample sizes. The average female LS in winter was 262 cm2, while 

remote estimates averaged 412 cm2.       

 

Comparing direct and remote field lesion severity measurements  

 

Comparisons of ELA, PH and LS were all plotted as direct measurements 

versus the field technique to represent R2 values (Fig. 4). I was able to compare 

direct and field estimates within 14 days for the left filarial lesions of six, and right 

filarial lesions of seven, adult female black rhino. Unfortunately, comparisons 

between direct and remote lesion measures for the other seven rhino were too far 

apart (i.e., several months) and were therefore not reliable for comparing 

techniques. Nonetheless, comparisons between direct and field estimates were 

closely correlated (See Fig. 4 for regressions and R2 values).  
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Temporal signals between lesion severity and body condition  

(1) BC was temporally associated with significantly reduced LS (R2 = 0.10: F1, 275 

=138; P=0.04) and increased LS was also temporally associated with 

significantly reduced BC (R2 =0.13: F1, 275 =150; P=0.01; Fig. 5). Prior BC did 

not significantly reduce the amount of the lesion that healed (LH) (R2 = 0.02: 

F1, 275 =152; P=0.9) and previous LH did not significantly reduce future BC 

(R2 = 0.01: F =152; P=0.9). 

(2) Change in BC and LS was not associated with a significant negative 

relationship with change in either respectively (R2=0.01: F1, 275 =152; P=0.8; 

Fig. 6). 

 

Distribution of filarial parasitism and lesions across Africa 

 

Filarial lesions appear to be localised to two regions in Eastern Africa with 

mesic climates and absent from the drier western areas of southern Africa (Fig. 7). 

Both regions with filarial lesions included several rhino reserves in close proximity 

in Swaziland i.e., Mkhaya Game Reserve and North-east South Africa i.e., North-East 

KZN: HiP, Itala, Mkhuze, Ndumo, Pongola, Tembe and Thanda Game Reserves, 

Phinda-Munyawana Conservancy, Zululand Rhino Reserve, southern Kruger 

National Park in Mpumalanga Province and East Africa i.e., Kenyan Highlands: 

Aberdares, Lake Laikapia District, Lake Nakuru District, Meru, Mount Kenya, 

Nairobi and Solio National Park, Lewa Wildlife Conservancy. 
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DISCUSSION 

 

To my knowledge this is the first study that has attempted to investigate the 

relationship between LS and BC in black rhino. Comparisons with direct measures 

of LS indicated that the remote technique appeared to be a reliable method for 

measuring the severity of black rhino’s filarial lesions in the field. However, with a 

sample of seven rhino that were able to have their lesions compared within 14 

days, comparisons are needed in future for greater confidence.  Based on direct 

measurements, however, HiP’s black rhino population presented with the largest 

filarial lesions yet recorded. Lesions covering an average 441 ± 36 cm2 were 

recorded on 14 females and more severe lesions occurred on black rhino in poor 

condition (Fig. 5).  

 

Temporal association between filarial lesion severity and body condition  

 

As predicted there was a temporal signal to the correlation between LS and 

BC for black rhino, where current BC or LS was negatively associated with future LS 

or BC respectively. Despite this inverse temporal correlation, I could not detect that 

changes in LS or BC were driving the association.  This could either be because LC 

and BC are not temporally causative on each other or the field methods used for 

estimating BC and LS are not fine scaled enough to detect causation. Therefore the 

most that this study can say is that LS and BC appeared to have an inverse temporal 

association, but neither appeared causative of the association (i.e., LS and BC do not 

appear to be driving the inverse relationship and something else is). 

 

Temporally associated but not temporally causative 

 

Pilot studies such as this one are needed because parasitism’s role in 

regulating animal populations is often dismissed. Experimental studies are few and 

the host parasite relationship is often considered to be neutral or benign due to 

host-parasite co-evolution (Tompkins et al. 2001; Bordes and Morand 2009). 

Moreover, most research on factors that regulate performance in large mammal 
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populations has focussed on mechanisms driven by predation, competition or 

resource limitation (Tompkins et al. 2001). These mechanisms also remain the 

focus of managers of black rhino (Emslie 2001; Fanayo et al. 2006). Subclinical 

effects illustrated as negative relationships between parasite abundance and host 

body condition have been difficult to quantify in the wild (Irvine 2006). Expediting 

species recovery increases pressure to understand what factors, parasites or 

otherwise, impact most on the population performance of a critically endangered 

species.   

Resource limitation due to overpopulation of HiP’s black rhino population is 

most often attributed for apparently poor performances (Emslie 1999, 2001; Reid 

et al. 2007). However, if the inverse temporal signal between LS and BC was being 

driven by resource limitation, this might explain why HiP rhino have both 

extremely severe lesions and below average body condition. However, if resource 

limitation was a driver of the temporal signal between LS and BC, there ought to be 

some evidence of seasonal fluctuations (i.e., > LS and < BC in winter when food is 

scarce and < LS and > BC in summer when food is more abundant). Data from this 

study shows females presented with larger average lesion areas (i.e., LS, LH and 

ELA) than male rhino.  Males, however, appeared to have more variable lesion area 

and almost double the severity in summer than winter compared to females where 

lesions were similarly severe between seasons. Thus, the results from this study do 

not support resource availability as a potential driver of this temporal association 

because seasonal fluctuations are not evident. Something else may be the main 

causal factor for the relationship and further investigation is essential for true 

understanding. Alternatively, a third factor as the driver of the temporal 

correlation between LS and BC may not be involved. Both LS and BC could be 

affecting each other equally. Or the time scale of causality could be much quicker, 

or longer, compared to my actual observation time intervals. Finally, the measures 

of BC and LS may not be scaled finely enough to pick up a strong temporal causal 

signal (i.e., too crude a technique). 

One of the most interesting findings from this study was the summer and 

winter differences in LS and BC between males but not females (Table 1). The 

mechanisms driving this are unclear but could be due to breeding age females 

having to partition resources to calve production. Analysis showed that female 
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black rhino’s lesions were on average larger than males but also of similar severity 

between seasons, whereas lesion appeared to heal in males during the winter 

months. In other animals, digital dermatitis, a contagious disease of cattle (Bos 

taurus), had greater risk of developing lesions in mid to late lactation than non-

lactating females (Nielsen et al. 2011). Moreover, BC in black rhino males varied 

seasonally with higher scores in summer with better habitat quality, whereas 

remained static on average for females. There is some evidence that reproductive 

pressures do have an impact on BC in captive black rhino (D. b. michaeli). Edwards 

et al. (2014), for example, demonstrated that nulliparous female black rhino had a 

higher BC scores than parous females.   

  

Distribution of filarial parasitism and lesions across Africa 

 

Populations of black rhino are scattered across sub-Saharan Africa but not all 

host S. dinniki. Filarial lesions are restricted to regions in east and southern Africa: 

the Kenyan Highlands and North-east South Africa and Swaziland.  It is not known 

for certain why lesions are restricted to these two regions, however, the suitability 

of their climate, in particular, is likely to be influenced biogeographically by several 

factors pertinent to the limitations of the nematodes and fly vectors life cycles. 

Rainfall or humidity and temperature for the parasites Dipteran vector is likely to 

play an important role (Lehane 2005). The Kenyan highlands and eastern South 

Africa are mesic and warmer than the arid climates of other rhino reserves.  

The absence of filarial lesions may also be a consequence of local extinctions 

and reintroductions of filarial free black rhino across Africa. Drastic fluctuations in 

rhino populations due to human poaching and relocation efforts over the last 

century are likely to have altered the current distribution of S. dinniki.  Rhino in 

Tsavo and Amboseli National Parks in southern Kenya historically had lesions 

(Tremlett 1964), however, are now at much lower densities and no longer present 

with lesions. Also, Amboseli N.P. black rhino are now locally extinct. Moreover, 

rhino became locally extinct in Kruger National Park (KNP), South Africa, and 

Swaziland in the 1930s (Skinner and Smithers 1990) with no known historical 

account of lesion presence. However, rhino and the nematodes fly vector (R. 

dutioti) have been re-introduced to KNP from HiP and rhino do now present with 



111 

 

lesions. Thus, as far as is ascertainable, lesion occurrence appears to have 

contracted in East Africa, while expanding to its probable former range in the 

south. Beyond this it is impossible to know for sure the former distribution of S. 

dinniki.  

 

 Future management considerations 

 

Identifying that a temporal signal between LS and BC exists, in conjunction 

with a BC and novel lesion measuring technique, allows black rhino managers the 

potential to predict if and when the population is about to be, or was, under stress.  

I was not able from the results in this study to conclude that LS and BC are causing 

the temporal correlation on each other. To improve our understanding this study 

needs to be repeated in other populations and expanded upon to consider other 

aspects such as the effect that different time lags have on changes in LS and BC. 

Rhino, like many wild animals are harvested and critically endangered and 

management have to consider how this integral source population might be 

managed for parasitic disease. Poor population performance of recently 

translocated black rhino is mostly attributed to the age and sex demographics of 

the translocated rhino (Linklater et al. 2012). However, lesions and filarial 

parasitism often recedes or vanishes from HiP black rhino when moved to new 

populations. If rapid population growth rates and improved BC of relocated HiP 

rhino reflect, in part, the absence of filarial lesions requires investigation. It might 

not be possible for black rhino populations with lesions like those observed in HiP 

to grow as fast as populations where they are absent. Comparisons of the growth 

rates of infected and non-infected black rhino populations would help to clarify 

this. There is much that needs to be investigated about filarial parasitism, not least 

the role that other agents have on LS. This pilot study provides a reliable field 

measurement technique and an updated filarial lesion distribution map that will 

allow for comparisons between populations. It is my hope that this preliminary 

study will act as a baseline for comparative research into S. dinniki’s role in Africa’s 

black rhino population. 
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(B) 

Adapted from Reuter and Adcock (1998) 

 
Figure 1 (A). The body regions and specific anatomical features to be observed 

when assessing a rhino’s condition and (B) The appearance of black rhino for 
all body condition scores. Note that I used 0.5 interval scores whenever I 
deemed a condition score to be between whole number condition categories. 

 

(A) 
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Entire Lesion Area (ELA) using area of an oval) = (W*L)*0.8 
                                                           = (22cm) x (27cm) x 0.8 
                                                           = (20.8cm) x (36.4 cm) x 0.8 
                                                           = ± 594 cm2 

 
Proportion (%) of lesion estimated haemorrhaging (PH) = 60%  
 
Lesion Severity (LS) = ELA: 594cm2 x PH: 0.6           
          = 356cm2                                                                                            
                                      

Figure 2. Example of a direct measurement of the right filarial lesion of a breeding 
age female black rhino in Hluhluwe-iMfolozi Park, South Africa (Photograph 
by Roan Plotz). 
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(A)  

                     
                

0.0        0.5         1.0       1.5       2.0                          0.0        0.5        1.0      1.5      2.0                                                                              

(B) Width (W) = estimated as 0.8                   (C) Length (L) = estimated as 1.4 

Entire Lesion Area (ELA) using area of an oval) = (W*L)*0.8 
                                                           = (0.8 x26cm) x (1.4x26cm) x 0.8 
                                                           = (20.8cm) x (36.4 cm) x 0.8 
                                                           = ± 606 cm2 

Proportion (%) of lesion haemorrhaging (PH) = 80%  
Lesion Severity (LS) = ± 80%           
          = 0.8 x 606 cm2 = 486 cm2 

Figure 3. Diagram showing how the novel method for attaining remote estimates 
of lesion area (cm2) was used to estimate entire lesion area (ELA), proportion 
of the lesion haemorrhaging (PH) and lesion severity (LS) (Photographs by 
Dale Morris). 
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                                            Left: n=6 rhino                                             Right: n=7 rhino 
 
 
Figure 4.  Comparisons between the left (n=6) and right (n=7) anterior flank filarial 

lesion estimates using direct (ruler measured) and the novel field based 
technique to calculate (A) entire lesion area (ELA), (B) estimated percentage 
that the lesion was haemorrhaging (%) and (C) lesion severity (LS), calculated 
as the area of the ELA (lesion severity = lesion area * % haemorrhaging).  
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(A) 

 
(B) 
 
 
Figure 5.  The temporal correlation between (A) filarial lesion severity estimates 

in future (t+1) with previous estimates of body condition (t) and (B) body 
condition scores in future (t+1) with previous estimates of lesion severity (t) 
in adult (> 6 years) black rhino. 
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Figure 6. The correlation between changes (positive or negative) in body condition 
against concurrent changes (positive or negative) in filarial lesion severity. 
Note the dashed black line is the relationship I predicted to see if one factor 
(i.e., LS or BC) was having a significant effect in change on the other. The red 
line indicates the relationship I determined and suggests that neither factor 
are associated with significant change over the other. 
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Figure 7. Map of current filarial lesion distribution in black rhino populations. 
Study Reserve underlined and reserves with lesions historically or uncertainty 
about filarial are listed under absent and highlighted in italics. Several reserves in 
same area are sometimes listed under one number and associated superscript 
letters link the verification sources.
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Figure 7 source verification (references for map key): a: Mihok et al. 1996; R. 

Kock, pers. comm.; b: Shulz and Kluge 1960; Schulz 1961; Hitchins and Keep 

1970; Skinner and Smithers 1990; c: D. Cooper, pers. comm.; d: P. Hitchins, pers. 

comm.; e: Authors, pers. obs.; f: M. Hofmeyr, pers. comm.; g: Kock, A.M. and Kock 

(1990); h: E. Smidt; i: P. Lent, pers. comm.; j: J. Shaw, pers. comm.; k: K. Buk, pers. 

comm.; l: C. Foggins and P. Law, pers. comm.; m: Craig Reid, pers. comm.; n: E. 

Sayer and N. Leader-Williams, pers. comm.; o: F. Alpers and Kes Smith, pers. 

comm.; p: P. Morkel, pers. comm.; q: Skinner and Smithers 1990; r: Lagrot et al. 

(2007); s: A. Stringer, pers. comm.; t: R. du Toit, pers. comm.; u: S. Clegg, pers. 

comm.; v: D. Airton, pers. comm.; w: Mutinda et al. 2012; Ndeereh et al. 2012; x: 

W. Linklater, pers. comm. 

 

Additional reference notes for each region / reserve (numbers correspond 

to key in Fig. 6): 

 

1 – 9: Filarial lesions in Kenya (D. b. michaeli) have different appearance to those 

in the southern populations (D. b. minor) (this chapter of thesis; P. Hitchins & P. 

Morkel; pers. comm; Hitchins and Keep 1970 cf. Ndeereh et al. 2012; Mutinda et 

al. 2012). Lesions are generally smaller and less severe in Kenya populations 

(e.g., typically 5cm wide) compared to 30 cm wide or more in HiP, South Africa 

(this chapter and Hitchins and Keep 1970). 1: Filarial lesions first identified as 

such in Hluhluwe Game Reserve by Shulz and Kluge (1960). HiP black rhino have 

the largest and most severe filarial lesions of any reserve in which they currently 

occur (D. Cooper, pers. comm.; this Chapter of thesis; Hitchins and Keep 1970; S. 

Clegg pers. comm). Malilangwe Wildlife Reserve, in south eastern Zimbabwe, 

imported 28 black rhino from KZN between July and September 1998. These 

rhino came from a number of areas including Hluhluwe, iMfolozi- Masinda and 

Ithala. Almost all the rhino showed some filarial scarring. Most prominent 

lesions were seen in HiP- Masinda animals. 2: Authors pers. obs: Lesions present 

on black rhino in this nearby region typically less severe than HiP black rhino 

(see this chapter and photograph of lesion on Phinda black rhino (Chapter 6). 3: 

S. Clegg (pers. comm): Malilangwe Wildlife Reserve, in south eastern Zimbabwe, 

imported black rhino from KZN between July and September 1998. These rhino 
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came from a number of areas including Itala. Almost all the rhino showed some 

filarial scarring. Most prominent lesions were seen HiP- Masinda animals and 

less significant lesions were seen in the Itala animals. 4: Photograph by Nico J. 

Van Strien of an adult black rhino in Mkaya Game Reserve., Swaziland, with 

filarial lesion on left flank behind shoulder [online access: 

http://www.rhinoresourcecenter.com/images/Black-Rhino-Mkhaya-

Swaziland_i1200176681.php] 5: Black rhino and fly vector R. dutoiti were locally 

extinct in K.N.P. (and the old Transvaal) by 1936 (Penzhorn 1971; Skinner and 

Smithers 1990). R. dutoiti was re-introduced with the dung of translocated 

female black rhino from HiP, proliferating throughout southern K.N.P. from 

Pretoriuskop to Mooiplaas (Skinner ad Smithers 1990). 6 – 9: The only areas in 

Kenya where one can still see large clouds of Rhinomusca brucei flies on rhino. 

Mihok et al. (1996) also discovered previously thought to be southern African 

specific filarial vector R. dutoiti in Nairobi N.P. & Laikipia District Highlands (i.e., 

Solio Ranch). They confirmed it against Zumpt’s (1950) museum samples of R. 

dutoiti and R. bruscei. 8 (and 25): Laikipia District black rhino (Solio Ranch) had 

their filarial skin lesions clear up shortly after being relocated to Lugard Falls in 

Tsavo (Mihok et al. 1996). 14: R. du Toit and S. Clegg (pers. comm.): Zululand 

(KwaZulu-Natal) black rhino had their filarial skin lesions clear up within 1-year 

after being relocated to Malilangwe Private Wildlife Reserve (i.e., within 1-year). 

P. Law (pers. comm.): in Sinamatella I.P.Z. of Hwange N.P. saw possible filarial 

lesion on only one black rhino just before October rains. Noted this to be unusual 

because no other black rhino’s had such a wound, probably not filarial (e.g., 

intraspecific fighting wound). R. du Toit, (pers comm): Black rhino from Chitake 

region Zambia, with pink saucer sized lesions of unknown cause, lost these 

lesions when translocated to Zimbabwe lowveld. 15: R. du Toit (pers. comm.): 

Currently, re-introduced black rhino into Matusudona N.P. do not have lesions. 

To prevent local extinction from intense poaching led to the relocation of the 

Matusodona population to Zimbabwe Lowveld from 1989 – 1991 (Baudron et al. 

2011). Kock and Kock (1990) recorded supposed filarial skin lesions on the 

necks of black rhino in this population but no typical behind the shoulder lesions 

were detected (Silberman and Fulton 1979; Skinner and Smithers 1990). Some 

adult filarial nematodes (unidentified sp.) found in a few tissue biopsies but not 

http://www.rhinoresourcecenter.com/images/Black-Rhino-Mkhaya-Swaziland_i1200176681.php
http://www.rhinoresourcecenter.com/images/Black-Rhino-Mkhaya-Swaziland_i1200176681.php
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in rhino blood samples. 17: N. Leader-Williams (pers. comm.): observed rhinos 

closely in Luangwa Valley, Zambia, for 5 years, and never saw the characteristic 

filarial wounds along the flank the rhinos.  Also mentions that some rhinos did 

occasionally have a circular pink patch of skin on their neck from unknown 

cause. R. du Toit (pers. comm.): In the Chitake area of the Zambezi Valley, which 

is relatively more humid compared to some other areas of the Zambezi Valley, 

black rhinos typically had circular pink lesions on their chests at the base of the 

throat and never saw any on their flanks. The chest lesions were about the size of 

coffee mug’s base.  18: F. Alpers (pers. comm.): during 2000-2005 headed the 

Selous black rhino protection and research project. During intense tracking, 

flying to find the last several remaining rhinos, saw around 5 different 

individuals and recalled no filarial lesions. Also Kes Smith (over 3 years) over the 

same period says that there were no filarial lesions on the black rhino. 19: D. 

bicornis longipes: probably extinct (Lagrot et al. 2007; IUCN 2013). Photographs 

in Lagrot et al. (2007) from 1977 showed no lesions on flank (black and white 

photograph). Also, colour photograph (cover of Pachyderm vol. 27) by Dr Hubert 

Planton (Wildlife Veterinarian, Cameroon) of female in same park without 

lesions on either side of anterior flank.   

21: P. Hitchins (pers. comm.): Confirms absence of black rhino host specific 

blood sucking fly Rhinomusca dutoiti, the vector for S. dinniki (Zumpt 1964). 25: 

Historically, Tsavo and nearby Amboseli N.P. had black rhino with filarial skin 

lesions (Shulz and Kluge 1960; Spinage 1960; Schulz 1961; Parsons and 

Sheldrick 1964; Tremlett 1964) and the fly vector - East African blood sucking fly 

(Rhinomusca bruscei) (Parsons and Sheldrick 1964). Subsequent lesion 

disappearance coincided with dramatic population reductions from mass 

poaching, large scale habitat changes and local extinction of R. brucei (Mihok et 

al. 1996). Round (1964) first identified the pathology of the filarial nematode as 

Stephanofilaria dinniki from Tremlett’s (1964) lesion biopsies in Tsavo. Black 

rhino in Amboseli National Park, Tanzania, are now locally extinct (R. Kock, pers. 

comm.). 
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Table 1: Mean direct (16 samples) and field estimates (208 samples) of entire 

lesion area (ELA), severity (LS) and healed area (LH) according to season 

and sex of rhino. Note: w=width and h=height. 

 
 

Direct 

Measurements 

  

LS (cm2) 

 

ELA (cm2) 

 

BC 

Female (n=14) Winter  262 ± 40 441 ± 36 

Range (cm): w=11-37; h=18-47 

_ * 

Field  

Estimates 

    

Male (n=11) Summer 342 ± 125 383 ± 129 3.7 ± 0.04 

 Winter 181 ± 38 288 ± 49 3.3 ± 0.09 

Female (n=24) Summer 338 ± 54 474 ± 60 3.0 ± 0.10 

 Winter 412 ± 43 540 ± 47 3.0 ± 0.07 

 

* BC scores were not dependably obtainable from sedated rhino that were lying 

down (see Reuter and Adcock 1998). 
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5.   
 

Interactions between Red-billed Oxpeckers and Black 

rhinoceros in Hluhluwe-iMfolozi Park 

 

 

 

A red-billed oxpecker feeds on the filarial lesion of a black rhinoceros in 
Zululand, South Africa (Photograph: Louise van Stuyvesant Meijn) 

 

 

 

 

 

 



130 

 

ABSTRACT 

 

The degree of parasitism or mutualism between species can depend upon the 

biotic and abiotic environment. Different or changing environments alter the 

behaviour of interacting species and make the nature of interspecific 

relationships conditional. Although the conditionality of oxpecker-ungulate 

interactions has been demonstrated in captivity it remains to be tested in the 

wild. Field observations were conducted comprising 782 instantaneous samples 

(52.1 hrs) of the interactions between red-billed oxpeckers (Buphagus 

erythrorhynchus) and black rhino (Diceros bicornis) with large haemorrhaging 

anterior flank filarial (Stephanofilaria dinniki) lesions in Hluhluwe-iMfolozi Park, 

South Africa. Oxpeckers preferentially occupied rhino’s lesions to feed and spinal 

area to perch more than three times as much as areas of tick attachment. I also 

show black rhino to be extraordinarily tolerant of oxpeckers – the only known 

wild host, even when they fed upon their lesions. Rhinos may tolerate oxpeckers 

parasitism because the birds are also sentinels, but this remains to be quantified. 

Oxpeckers use of filarial lesions during winter when tick abundance is low 

appears to reflect recent findings that ectoparasite abundance controls the 

conditional nature of oxpeckers tick versus blood foraging habits. Further 

research is needed to determine if oxpeckers actually provide black rhino with 

increased vigilance from sentinel behaviour. If oxpeckers sentinel behaviour was 

found to benefit black rhino, it raises an intriguing possibility. Oxpeckers might 

be using this additional benefit to ameliorate the cost of lesion feeding and 

manipulate black rhino’s tolerance thereof.   

 

KEYWORDS: conditional mutualism, parasitism, filarial lesions, ectoparasites, 

Diceros bicornis minor, Buphagus erythrorynchus, Ixodid ticks, Stephanofilaria 

dinniki, interspecific interactions, seasonal tick variability. 
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INTRODUCTION 

 

The benefits and costs of inter-specific interactions can, and often do, vary 

depending on the ecological setting (Holland et al. 2002). Changes in 

temperature, rainfall and resource availability can influence the behaviour of 

interacting species and the outcome of their interaction. Circumstances where 

the outcomes of the interspecific interaction are context-dependent have been 

termed conditional (Bronstein 1994 a, b). At any given time or place many 

interspecific relationships may fall into one category, but conditionally shift 

along a dynamic continuum from mutualism to commensalism to parasitism 

when conditions change (Cheney and Cote 2005; Plantan 2009). 

 A well-known example of an interspecific interaction that exhibits 

conditional outcomes is Africa’s oxpecker (Buphagus sp.) – ungulate ‘cleaner’ 

relationship. Some studies of oxpecker parasitic feeding behaviour (Weeks 1999; 

2000) are at odds with other studies that report oxpeckers to mainly be cleaner 

mutualists, removing ectoparasites from hosts (Nunn et al. 2011). Some studies 

report red-billed oxpeckers (B. erythrorynchus) conditionally feeding on the 

blood and tissue of host species rather than ectoparasites at a cost to their hosts 

(Keet et al. 1997; Plantan 2009; Plantan et al. 2012). Animals with open wounds 

and sustained blood loss risk secondary infections and suffer immune system 

and body condition suppression (Anderson and May 1981). It is unlikely that 

that a stable mutualistic relationship can be maintained if oxpeckers revert to 

parasitism, even if occasionally (Bronstein 1994a, b). In response, hosts control 

parasitic oxpeckers by adopting several oxpecker displacement behaviours 

(intolerance) such as running, shaking, horning, rolling and lying down (Watkins 

and Cassidy 1987; Keet et al. 1997; Plantan 2009; Bishop and Bishop 2014).  

Oxpeckers, however, also have the potential to employ their own 

behaviours to avoid conflict during interactions such that net positive benefits 

are maintained. For example, anti-predator alarm calling behaviour by oxpeckers 

has frequently been reported by Africa’s indigenous peoples and modern hunters 

(Craig 2009). Oxpeckers that reliably alarm call at hosts’ predators may reduce 

or even mitigate host intolerance towards costly blood feeding by oxpeckers. The 
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use of behaviours other than ectoparasite removal to mitigate conflict and costs 

in cleaning interactions is not uncommon. Cleaner wrasse (Labroides dimidiatus), 

for example, adopt pre-conflict behavioural strategies (e.g., tactile stimulation) 

that allows them to avoid conflict during interactions with coral trout 

(Plectropomus leopardus) (Bshary and Wurth 2001; Grutter 2004).  

Studies have so far been unable to quantify whether oxpecker foraging 

behaviour is unambiguously mutualistic or parasitic (cf. domestic cattle; Weeks 

1999, 2000; Plantan 2009).  This appears, in part, to be due to a historically 

narrow research focus. Previously, studies have almost explicitly focussed on one 

question: are oxpeckers targeting ticks or blood on their hosts (e.g., Hart and 

Hart 1990; Weeks 1999, 2000; Nunn et al. 2011)? Plantan’s (2009) study 

provides insights which highlight why the outcomes of the oxpecker-ungulate 

relationship remain ambiguous. Plantan (2009) manipulated tick levels on a 

captive host to show that oxpeckers favoured ticks as long as they remained 

abundant, gradually switching to blood as ticks became scarce. Moreover, 

Plantan (2009) went on to observe that several wild host species were highly 

intolerant towards oxpeckers that tried to target their wounds. Hosts appeared 

to use rejection behaviours to shift negative parasitic interactions with 

oxpeckers towards a mainly mutualistic relationship with net positive benefits. 

Field experiments in a captive setting, while illuminating, do not account for the 

plethora of variables that form part of oxpecker-ungulate interactions in the 

wild. For example, tick abundance fluctuates considerably in the wild (Randolph 

2008) and some hosts may be better than others at rejecting blood feeding 

oxpeckers. Some hosts might also gain increased vigilance from oxpeckers 

sentinel behaviour, while others have no need for it. The potential for conditional 

outcomes in any one oxpecker-ungulate interaction remains enormous.  

Unravelling the true conditional nature of any one oxpecker – ungulate 

interaction in a wild setting will require the ability to concurrently investigate 

host tolerance towards oxpeckers while factoring in all known costs and benefits. 

This remains a difficult prospect because oxpecker hosts are large fast moving 

mammals that range over large distances (Weeks 2000).   

HiP black rhino, however, may be the ideal oxpecker host to test the 

conditional nature of oxpeckers interactions. Observing whether oxpeckers 
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forage on ticks or blood is made easier by the fact that black rhino have three 

main sites of tick attachment (nostrils, anogenital region and ears) (Penzhorn et 

al. 1994) and chronic lesions caused by the filarial nematode Stephanofilaria 

dinniki (Schulz 1961; Hitchins and Keep 1970). Black rhino are also the oxpecker 

host most associated with oxpeckers sentinel behaviour (Leslie 1876; Schenkel 

and Schenkel-Hulliger 1969; Craig 2009). Finally, accounting for tick abundance 

is also made easier because HiP occurs in the Northern KwaZulu-Natal (KZN) 

region where Ixodid ticks undergo a reproductive diapause that for the most part 

makes them absent during the cool dry winter months (i.e., April to October; 

Mushi et al. 1997; Walker et al. 2000; Horak et al. 2003, 2009). Thus, HiP occurs 

in the southern fringes of red-billed oxpeckers distribution where tick 

abundance can, to a reasonable extent, be reliably estimated. 

For oxpeckers blood has similar nutritional benefits to ticks (Plantan 

2009). Therefore lesions offer a significant resource opportunity for oxpeckers 

to target (Spinage 1960). Oxpeckers that are sympatric with black rhino 

populations that have lesions could gain significant nutritional advantage if they 

increased their time and energy towards providing sentinel behaviour that 

mitigates conflict if and when they target lesions. Ostensibly, oxpeckers that 

target lesions might also to a certain extent divide their time utilising rhino’s 

spinal region, as it is well documented to be the location on rhino that oxpeckers 

gather as sentinels and alarm call (Leslie 1876; Schenkel and Schenkel-Hulliger 

1969; Weeks 1998; Authors pers. obs.). 

Determining whether or not red-billed oxpeckers are mutualists or 

parasites with black rhino will depend upon whether there is a net positive 

benefit or cost respectively to the host. There are two possible benefits i.e., 1. 

removal of ectoparasites and 2. increased vigilance (sentinels). There is one cost 

i.e., feeding on lesions (parasitism). This study aims to be the first step in 

understanding how oxpeckers utilise black rhino in a region with seasonally 

fluctuating tick abundance and in turn how black rhino respond to this 

utilisation. To this end I compared the proportion that red-billed oxpeckers 

utilised regions of tick attachment (benefit 1), filarial lesions (cost 1) and the 

spinal region (benefit 2) during the cool dry winter months when ticks were 

scarce. To understand whether black rhino might be mitigating costly foraging 
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by oxpeckers I also recorded black rhino’s tolerance towards visiting oxpeckers. I 

present results from more than 50 hours of observations of black rhino-oxpecker 

interactions, the largest data set of its kind.  

 

MATERIAL AND METHODS 

 

Details about the study site, study populations, radio transmitter 

installation and capture techniques including approvals are described in 

Chapter 1 and the material and methods section of Chapter 2 of this thesis.  For 

this study, 10 adult female black rhino in HiP’s southern and central regions 

(Mbhuzane, Masinda and Nqumeni), eight accompanied by calves and two 

without calves, were fitted with horn implant radio-transmitters installed during 

May of 2007 and 2008 and then released. Juvenile black rhino (< 6 years) that 

did not yet have filarial lesions were excluded from sampling.  

HiP’s 218 (Clinning et al. 2009) black rhinoceros are the favoured hosts of 

red-billed oxpeckers (Sutterheim 1980). Yellow-billed oxpeckers are locally 

extinct (B. africanus) (Stutterheim and Brooke 1981). HiP black rhino display 

100% prevalence of lesions on both anterior flanks approaching adulthood (> 6 

years) (Hitchins and Keep 1970 and Chapter 4 of this thesis).     

 

Oxpecker Utilisation Patterns  

Oxpeckers interactions with the 10 focal rhino were observed fortnightly 

from May 2007 to July 2009 during the cooler dry winter months (Apr-Sep). 

Field observations were made using Nikon 8 x 40 binoculars and/or a Bushnell 

field spotting scope (20 x 60). Observations were typically conducted between 

50 to a 100 m from the rhino. Study rhino were selected for observation between 

dawn and dusk in random sequence without replacement and tracked using VHF 

radio-telemetry and a TR-4 receiver (Telonics, Inc., Mesa, AZ, USA). Direct 

sightings were achieved by initially obtaining a signal from high elevation and 

walking up towards each rhino on foot until the focal rhino was sighted. While 

tracking, I also obtained sufficient fortuitous observations of an additional 17 

female and 9 male rhino because they had unique ear notches (Hitchins 1978). 
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Samples were evenly distributed throughout the daylight hours and all 

weather conditions except during heavy rain. Sampling included instantaneous 

scan samples (ISS) (Altmann 1974) every four minutes for at least one hour or 

until the rhino moved irretrievably out of view.  

In order to compare the proportion that oxpeckers utilised different areas 

of black rhino, I divided each individual rhino into five distinct body regions and 

tallied oxpeckers presence or absence for each ISS. The five regions were: 1=the 

left and right anterior flank filarial lesions, 2= the area perceived as most suitable 

for sentinel behaviour- spine and head; 3=three tick attachment sites of ears, 

anogenital region and nostrils; 4= upper body region (rest of upper half of body) 

and 5=lower body region (rest of lower body region) (Fig. 1B).  

For every ISS the number and location of red-billed oxpeckers (Fig. 1A) on 

each black rhino were recorded. The locations oxpeckers selected on rhino for 

each ISS were assigned to the three rhino body regions associated with the three 

oxpecker activities I was interested in: (1) tick foraging that occurs mostly from 

the three main tick attachment sites around the anogenitals, ears and nostrils 

(Penzhorn et al. 1994), (2) tissue and blood parasitism that occurs mostly from 

anterior flank filarial lesions and (3) sentinel behaviour, if it occurs, would occur 

best from elevated areas like the head and spine from neck to rump. For 

comparison, locations of oxpeckers were also recorded as being on the upper or 

lower body. 

 

Accounting for the visibility of body regions 

 

Attempting to compare oxpeckers utilisation of each of the five body 

regions I designated created a dilemma for subsequent analysis. For instance, 

black rhino are very large and mobile mammals. Although conspicuously large 

mammals, in reality each of the black rhino’s five designated body regions were 

not evenly visible across the entire 782 ISSs completed. For example, an 

oxpecker might be seen visiting a lesion during one ISS, but this could not be 

determined for the next because the rhino had moved and vegetation had 

blocked the view of the lesion. When not visible, any of the black rhino body 
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regions could have had oxpeckers utilising it but remain undetected. If this bias 

was not taken into account then the higher, more visible region of black rhino, 

like the spine, might seem to have higher rates of oxpecker utilisation mainly 

because it was easier to observe the spinal region and see visiting oxpeckers 

than it was for rhino’s lower regions (e.g., legs). Thus, for every ISS I recorded 

whether each region was entirely visible to me and whether oxpeckers were 

present or absent at each visible region. 

 

Black rhino intolerance behaviour  

 

During ISS I recorded whether or not black rhino were intolerant towards 

oxpeckers as has been observed for black rhino in captivity, buffalo with lesions 

in the wild, and several other wild ungulate species (Keet et al. 1997; McElligot et 

al. 2004; Plantan 2009; Bishop and Bishop 2014). Any observed rejection 

attempts by rhino towards oxpeckers was also recorded. In McElligot’s et al. 

(2004) study of black rhino in captivity, as well as other ungulates, the use of 

tails, shaking ears or head or stomping their legs, shaking their flanks, spinning 

around or running away whenever oxpeckers perched on or near these body 

parts or lesions were evidence of host intolerance (Keet et al. 1997; Weeks 

1999). Intolerance behaviour by rhino was assigned according to oxpeckers’ 

location and, thus, the three oxpecker activities I was investigating: cleaners (i.e., 

tick preference), lesions (i.e., blood-parasitism) and or sentinels (i.e., along 

spine). 

 

Estimating Tick abundance 

 

In southern Africa the favoured tick species by oxpecker undergo seasonal 

(winter) reproductive diapause due to fluctuations in temperature and rainfall 

(Tyson and Dyer 1975; Berkeley and Linklater 2010) and are less available 

(Mulilo 1985; Mushi et al. 1997; Horak et al. 2003, 2009; Randolph 2008). HiP is 

at the southern fringe of oxpeckers’ distribution and occurs in a region where 

Ixodid tick populations in Northern KZN are well documented to be absent 
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during the cool dry winter months (i.e., April to October; Mushi et al. 1997; 

Walker et al. 2000; Horak et al. 2003, 2009). Thus, seasonal tick availability can 

to a certain extent be estimated. 

 

Analyses  

 

A total of 69 sampling periods covering 57 hr 06 mins (i.e., 856 ISS’s) were 

made. I excluded 5 hours comprising 75 ISS’s because rhino were entirely 

obscured by vegetation or moved out of sight during sampling. Therefore, 52 

hours of observations were used for analyses, averaging 2 hours per rhino 

(n=26). As already mentioned, rhino body regions were not equally visible 

during sampling periods. To illustrate the inconsistency in visibility during ISSs, I 

analysed the number of ISS’s a region was visible to me, regardless of whether or 

not an oxpecker was present, and divided it by the total number of ISSs 

conducted (i.e., 782 = 52 hrs) (Fig. 2).  The proportion that each of the five 

designated body regions were utilised by oxpeckers (i.e., oxpecker present), 

relative to its visibility, was calculated and tested for significance using Chi-

square tests. Tests were two-tailed with a significance level of p<0.05 (SPSS 

Statistics v. 16.0). In summary, I calculated oxpecker utilisation for each body 

region using this formula: The total number of ISSs where oxpeckers were 

observed to be present at a body region divided by the number of ISSs that the 

region was visible (i.e., it could be observed whether or not oxpeckers were 

present at the region) (Fig. 3). 

Finally, to test the hypothesis that oxpeckers lesion-feeding should elicit 

host intolerance (McElligot et al. 2004; Plantan 2009; Plantan et al. 2012; Bishop 

and Bishop 2014), I recorded each dislodgement attempt of oxpeckers by rhino 

(i.e., intolerance) and related it to where the oxpecker was when intolerance 

behaviours were initiated. The proportion of response behaviours that were 

tolerant responses and rejection responses were calculated and tested for 

significance using Chi-square tests.  
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RESULTS 

 

Visibility of black rhino body regions   

 

As a proportion (%) of ISSs there was considerable variation in the level of 

visibility for each of the five black rhino body regions. Location visibility in 

descending order: Spine and hump for sentinel behaviour 78% (i.e., 37 of 52hrs), 

upper body 55% (i.e., 29 of 52hrs), tick sites 46% (i.e., 24 of 52hrs), lower body 

26% (i.e., 14 of 52hrs) and filarial lesions 20% (i.e., 11 of 52hrs) (Fig. 2).   

 

Oxpecker utilisation patterns relative the visibility of each body region 

 

Oxpeckers were observed to be present on rhino for a total of 6 of the 

52hrs (11%). Proportionate to a body regions visibility, filarial lesions were 

more than three times more likely to be visited by oxpeckers than all other 

locations on a rhino’s body. Oxpeckers utilised black rhino body regions over 6 

hours in descending order: filarial lesions 15% (i.e., 2 of 11hrs), spine and hump 

5% (i.e., 2 of 37hrs) which were utilised more than expected based on their 

visibility to the observer (χ²=102.3, df=4, p=0.0). The three tick attachment sites 

4% (i.e., 1 of 27hrs of anogenital region, 1%; ears, 2%; nostrils, 1%), upper body 

2% (i.e., 1 of 29hrs) and the lower body region 1% (1 of 14hrs) were all utilised 

significantly less than expected based on their visibility to the observer (Fig. 3).  

 

Black Rhino Intolerance Behaviour 

 

Evidence of rhino intolerance towards oxpeckers, even when oxpecker 

foraged at rhino’s lesions, was never observed in the 52 hours and 782 ISSs of 

behavioural observations obtained. The only intolerance behaviour by black 

rhino towards a bird I witnessed was directed at three Cape glossy starlings 

(Lamprotornis nitens) that attempted to feed at the right filarial lesion of an adult 

female black rhino. Oxpeckers were absent at the time and the rhino raised and 

stamped her right foreleg repeatedly, twitched and shook her flanks and spun 

her body around in a circle. 
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DISCUSSION 

 

For a symbiosis that is normally regarded as a classic example of a cleaner 

mutualism (Koenig 1997; Nunn et al. 2011), the significantly lower rate of tick 

than lesion foraging in this oxpecker-black rhino partnership is startling. From 

the oxpecker’s perspective, blood was clearly the main resource as foraging 

efforts were almost entirely directed at black rhino’s filarial lesions. In the 

absence of comparative studies in other wild settings and species, it is uncertain 

whether such overt blood exploitation by oxpeckers is specific to rhino or 

predominates among all of its wild hosts. What I do know, however, is that black 

rhino’s tolerance of parasitic oxpeckers is rare amongst the more than 20 other 

wild oxpecker hosts (Keet et al. 1997; Plantan 2009; Bishop and Bishop 2014).  

Johnstone and Bshary (2002) and Plantan (2009) showed that in both 

marine and terrestrial cleaning symbioses, client hosts control the relationship 

by terminating interactions with cleaners that are exploitative (parasitic). For 

example, Plantan (2009) reported that several ungulate host species were highly 

intolerant of blood feeding oxpeckers. Similarly, buffalo in Kruger National Park 

(KNP), South Africa that also developed large chronic filarial lesions (caused by 

Parafilaria bassoni), use their horns to vigorously displace oxpeckers away from 

their lesions (Keet et al. 1997). Black rhino in HiP were tolerant while African 

buffalo (Syncerus caffer) in KNP were intolerant of parasitic oxpeckers. Buffalo 

appear to be very effective at preventing oxpeckers from gaining access to 

lesions in ways also available to rhino (Keet et al. 1997).  Thus, free-ranging 

black rhino appear to be unusually tolerant of avian parasitism and the reason 

requires further investigation. 

Results from this study also appear to confirm that oxpeckers clearly 

alternated time on black rhino between occupying locations on rhino that afford 

greatest sentinel capabilities and feeding at lesions (Fig. 3). Oxpeckers have well 

documented alarm calls (e.g., Krsss, Weeks 1998). Whether they are alternating 

lesion foraging with sentinel behaviour to promote tolerance requires an 

understanding of whether black rhino actually receive increased vigilance from 

hosting oxpeckers.  Some studies have been unable to determine if oxpeckers 



140 

 

increase vigilance for domestic cattle (Weeks 1998).  It may be that only rhino 

respond and benefit from oxpeckers alarm calls as they are more visually 

impaired and asocial than most other species and exposed to greater human and 

non-human predation pressure (Schenkel and Schenkel-Hulliger 1969; Plotz and 

Linklater 2009; Beech and Perry 2011). The results of this study suggest that 

oxpeckers appear to be mitigating the costs of their parasitic foraging behaviour 

by increasing the anti-human vigilance for black rhino. The fact that free-ranging 

black rhino appear to be the only known species (McElligot et al. 2004; Plantan 

2009; Bishop and Bishop 2014) that entirely tolerates parasitic feeding 

behaviour by oxpeckers adds weight to this argument.  

 

Evidence for the conditionality of mutualisms 

 

My results appear to substantiate the variability of cleaner mutualisms 

based on ectoparasite abundance (i.e., conditional mutualisms; Becker and 

Grutter 2005; Cheney and Cote 2005). Although seasonal tick densities are well 

documented in KZN, my results were limited by the fact that I was unable to 

measure tick densities on rhino. I also could not confirm whether oxpeckers time 

on the spine and head truly reflected sentinel behaviour by the birds. To be 

certain that seasonal fluctuations of ticks are conditionally regulating parasitic 

and sentinel behaviour by oxpeckers, tick densities should be measured in future 

(cf. Plantan 2009). Also, to determine whether oxpeckers are manipulating black 

rhino’s tolerance of their parasitic feeding behaviour requires further 

investigation. Experiments which test for improvements in predator detection 

distances and tolerance levels of oxpeckers other host species is also needed. 

The key to understanding the variable nature of the African oxpecker-

ungulate cleaning symbioses appears to be the environmental mechanisms that 

drive temporal and geographical variation in tick abundance (cf. Bansemeer et al. 

2002; Cheney and Cote 2005). These mechanisms are not well understood but 

may also vary according to host’s tick levels that are affected by body condition, 

nutritional quality affecting immunity and thus rates of tick infestation (Gallivan 

and Horak 1997).   
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Future areas of research: is blood a bridging resource for oxpeckers? 

 

Oxpeckers might have used blood from lesions, in part, as a bridging 

resource to meet their nutritional requirements during a period of seasonal tick 

scarcity. Tick density and distribution is regulated by seasonal rainfall patterns 

in KZN (Mushi et al. 1997; Horak et al. 2003, 2006, 2009; Randolph 2008). In the 

more temperate climes of southern Africa, like KZN, ticks undergo a reproductive 

diapause in winter, when conditions are unfavourable to tick development (i.e., 

colder and drier; Randolph 2008). In light of this, HiP’s location and rainfall 

patterns are likely to make it a marginal habitat for tick-feeding red-billed 

oxpeckers. Moreover, Walker et al. (2000) and Horak et al. (2009) indicate that 

in North-East KZN, where HiP is located, preferred oxpecker tick species of R. 

appendiculatus and R. (Boophilis) decloratus, are at best only sparsely present or 

displaced all together by B. microplus -  a much less favoured tick species by 

oxpeckers (Plantan 2009). Oxpeckers are known to be especially reliant on ticks 

during the summer months in South Africa, when the birds have their breeding 

season (Stutterheim 1982; Craig 2009; Plantan 2009). Our results suggest that 

black rhino and their filarial lesions may be a bridging resource allowing red-

billed oxpeckers to persevere in an otherwise marginal habitat for the 

ectoparasites preferred by oxpeckers. To understand this better will require this 

study to be repeated in the wet summer months (October to March) to see if a 

period of greater tick abundance shifts oxpeckers foraging habits back towards 

tick feeding. Lesions may also be too valuable a resource for oxpeckers to ignore 

especially when black rhino tolerate such behaviour.  

In summary, our results may explain oxpeckers differential foraging 

behaviours between hosts (Hart et al. 1990; Weeks 1999, 2000; Nunn et al. 

2011) and why oxpeckers on hosts in drought conditions or in captivity, where 

tick abundance is lower or absent, are seen to parasitise more than tick forage 

(e.g., lowveld region Zimbabwe, Weeks 1999, 2000; captive zoo, McElligot et al. 

2004). 
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(A) 

 

(B) 

Figure 1 (A). Red-billed oxpecker on the spinal region of black rhino in 
Hluhluwe-iMfolozi Park, a useful location to act as sentries (photograph by Dale 
Morris). (B) Oxpeckers seen visiting rhino were marked as present in one of 
these five body regions (as marked in Fig. 1 A): 1=the left and right anterior flank 
filarial lesions, 2= the area perceived as most suitable for sentinel behaviour- 
spine and head; 3=three tick attachment sites of ears, anogenital region and 
nostrils; 4= upper body region (rest of upper half of body) and 5=lower body 
region (rest of lower body region) (photograph by Roan Plotz).  
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Figure 2. The proportion (%) of total instantaneous scan samples (ISSs) that 

each of the five selected rhino body regions were visible to the observer 

(i.e., # ISS samples location visible divided by 782 ISSs - the total 

observation time). Note that each of the five regions are presented as the 

proportion (%) that each was visible out of the 782 samples conducted 

(e.g., 159/782 samples means that this region was visible 20 % of ISSs).  
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Figure 3. The proportion (%) of instantaneous scan samples (ISSs) that 

oxpeckers were observed at each black rhino body region, relative to each 

body regions visibility (e.g., at filarial lesions oxpeckers were seen for 24 

ISSs out of the 159 ISS where lesions were visible to the observer – other 

body regions were more visible: see Fig. 2 for relative visbilities of each 

body region). Although oxpeckers presence at all five black rhino’s body 

regions are represented together on one graph, proportions do not 

collectively add up to 100%, as measures for each regions are independent 

of each other due to their varying levels of observability. 

 

 

 

 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Filarial Lesions Sentinel: Spine
(most vigilant)

Ticks: anogenital,
ears & nostrils

Upper body (less
vigilant)

Lower body
(least vigilant)

1 2 3 4 53 1 2 4 5 

ISSs 
n = 24 of 

159 

ISSs 
n = 29 of 

552 

ISSs 
n = 12 of 

354 

ISSs 
n= 9 of 

432 

ISSs 
n= 9 of 

204 
%

 



145 

 

REFERENCE: 

Altmann, J. (1974). Observational study of behaviour – sampling methods. 

Behavior 49: 227 -267. 

Anderson, R.M. and May, R.M. (1981). The population dynamics of 

microparasites and their invertebrate hosts. Philosophical Transactions of 

the Royal Society. Series B. Biological Sciences. 29: 451 – 524.  

Bansemeer, C., Grutter, A.A. and Poulin, R. (2002). Geographic variation in the 

behaviour of the cleaner fish Labriodes dimidiatus (Labridae). Ethology 

108: 353-366. 

Becker, J.H.A. and Grutter, A.S. (2005). Client fish ectoparasite loads and cleaner 

shrimp (Urocaridella sp.) hunger levels affect cleaning behaviour. Animal 

Behaviour 70: 991-996. 

Beech, H. and Perry, A. (2011). Killing fields. Time Magazine, Washington D.C.  

Berkeley, E. V. and Linklater, W. L. (2010). Annual and seasonal rainfall may 

influence progeny sex ratio in the black rhinoceros. South African Journal of 

Wildlife Research 40: 53-57. 

Bishop, A.L. and Bishop, R.P. (2014). Resistance of wild African ungulates to 

foraging by red-billed oxpeckers (Buphagus erythrorynchus): evidence that 

this behaviour modulates a potentially parasitic interaction. African Journal 

of Ecology 52: 103-110. 

Bronstein, J.L. (1994a). Conditional outcomes in mutualistic interactions. Trends 

in Ecology and Evolution 9: 214-217.  

Bronstein, J.L. (1994b). Our current understanding of mutualism. Quarterly 

Review of Biology 69: 31-51. 

Bshary, R. and Wurth, M. (2001). Cleaner fish Labroides dimidiatus manipulate 

client reef fish by providing tactile stimulation. Proceedings of the Royal 

Society London B, Biological Sciences 268: 1495–1501.  

Cheney, K.L. and Cote, I.M. (2005). Mutualism or parasitism? The variable 

outcome of cleaning symbioses. Biology Letters 1: 162-165. 

Clinning, G., Druce, D., Robertson, D., Bird, J. and Nxele, B. (2009). Black rhino in 

Hluhluwe-iMfolozi Park: Historical records, status of current population 



146 

 

and monitoring and future management recommendations: Ezemvelo 

KwaZulu-Natal Wildlife Report, Pietermaritzburg, South Africa. 

Craig, A. J. F. K. (2009). Family Buphagidae. Handbook of the Birds of the World, 

Volume 14, Bush-Shrikes to Old World Sparrows. J. del Hoyo, Elliot, A., 

Christie, D.A. eds Barcelona, Lynx Edicions: 642-653.  

Gallivan, G.J. and Horak, I.G. (1997). Body size and habitat as determinants of tick 

infestations of wild ungulates of South Africa. South African Journal of 

Wildlife Research 27: 63-70. 

Grutter, A.S. (2004). Cleaner fish use tactile dancing behavior as a preconflict 

management strategy. Current Biology 14: 1080-1083. 

Hart, B.L., Hart, L.A. and Mooring, M.S. (1990). Differential foraging of oxpeckers 

on impala in comparison with sympatric antelope species. African Journal 

of Ecology 28: 240-249. 

Hitchins, P. M. and Keep, M.E. (1970). Observations on skin lesions of the black 

rhinoceros (Diceros bicornis linn.) in the Hluhluwe Game Reserve Zululand. 

Lammergeyer 12: 56–65. 

Hitchins, P. M. (1978).  Age determination of the black rhinoceros (Diceros 

bicornis Linn.) in Zululand. South African Journal of Wildlife Research 8: 71-

80. 

Holland, J. N., DeAngelis, D. L. and Bronstein, J. L. (2002). Population dynamics 

and mutualism: Functional responses of benefits and costs. The American 

Naturalist 159: 231-244. 

Horak, I.G., Gallivan, G.J., Braack, L.E.O., Boomker, J. and De Vos, V. (2003). 

Parasites of domestic and wild animals in South Africa. XLI. Arthropod 

parasites of impalas (Aepyceros melampus) in the Kruger National Park. 

Onderstepoort Journal of Veterinary Research 70: 131–163. 

Horak, I.G., Gallivan, G.J., Spickett, A.M. and Potgieter, A.L.F. (2006). Effect of 

burning on the numbers of questing ticks collected by dragging. 

Onderstepoort Journal of Veterinary Research 73: 163-174. 

Horak, I.G., Nyangiwe, N., De Matos, C. and Neves, L. (2009). Species composition 

and geographic distribution of ticks infesting cattle, goats and dogs in a 

temperate and in a subtropical region of south-east Africa. Onderstepoort 

Journal of Veterinary Research 76: 263–276. 



147 

 

Johnstone, R.A. and Bshary, R. (2002). From parasitism to mutualism: partner 

control in asymmetric interactions. Ecology Letters 5: 634-639. 

Keet, D.F., Boomker, J., Kriek, N.P.J., Zakrisson, G., and Meltzer, D.G.A. (1997). 

Parafilariosis in African buffaloes (Syncerus caffer). Onderstepoort Journal 

of Veterinary Research 64: 217-225. 

Koenig W.D. (1997). Host preferences and behaviour of oxpeckers: coexistence 

of similar species in a fragmented landscape. Evolutionary Ecology 11: 91-

104. 

Leslie, F. (1876). The Rhino: it’s bird-guardian and how it is hunted. Frank 

Leslie’s Popular Monthly 1 (March): 344-346. 

McElligott, A., Maggini, I., Hunziker, L. and Koenig, B. (2004). Interactions 

between red-billed oxpeckers and black rhinos in captivity. Zoo Biology 23: 

347-354. 

Mulilo, J. (1985). Species quantification and seasonal abundance of ticks 

(Acarina: Ixodidae) in the eastern province of Zambia: ticks from cattle. 

Tropical Pest Management 31: 204-207. 

Mushi, E. Z., Isa, J. F., Proctor, J., Machete, J.B. and Kapaata, R.W. (1997). Seasonal 

Fluctuation of Ixodid Ticks on a Herd of Indigenous Goats at Oodi, Kgatleng 

District, Botswana. Tropical Animal Health Production 29: 29-30.  

Nunn, C. L., Ezenwa, V.O., Arnold, C. and Koenig, W.D. (2011). Mutualism or 

Parasitism? Using a Phylogenitic Approach to Characterize the Oxpecker-

Ungulate Relationship. Evolution 65: 1297-1304. 

Penzhorn, B.L., Krecek, R.C., Horak, I.G., Verster, V.J.M., Walker, J.B., Boomker, 

J.D.F., Knapp, S.E. and Quandt, S.K.F. (1994). Parasites of African rhinos: a 

documentation. Proceedings of a symposium on rhinos as game ranch 

animals. Onderstepoort Republic of South Africa: 9-10.  

Plantan, T. B. (2009). Feeding behavior of wild and captive oxpeckers (Buphagus 

spp.): a case of conditional mutualism. Unpublished Ph.D thesis, University 

of Miami, Coral Gables Florida, USA: 159 pp. 



148 

 

Plantan, T.B., Howitt, M., Kotze, A. and Gaines, M. (2012). Feeding preferences of 

the red-billed oxpecker, Buphagus erythrorhynchus: a parasitic mutualist? 

African Journal of Ecology 51: 325-336. 

Plotz, R.D. and Linklater, W.L. (2009). Black rhinoceros (Diceros bicornis) calf 

succumbs after lion predation attempt: implications for conservation 

management. African Zoology 44: 283-287. 

Randolph, S. E. (2008). Dynamics of tick-borne disease systems: minor role of 

recent climate change. Rev. sci. tech. Off. int. Epiz. 27: 367-381. 

Schenkel, R. and Schenkel-Hulliger, L. (1969). Ecology and Behaviour of the Black 

Rhino (Diceros bicornis L.), Mammalia depicta (series), 101 pp. Verlag Paul 

Parey Scientific Publishers, Hamburg and Berlin. 

Schulz, K.C.A. (1961). Ulcerating wound behind the shoulder of black rhinoceros 

(Diceros bicornis) in the Hluhluwe and Mkuzi Game Reserves of Zululand. 

African Wildlife 15: 55-59.  

Spinage, C. A. (1960). Some Notes on the Rhinoceros. African Wildlife 14: 95-100. 

SPSS inc. (2010). SPSS 19.0 for Microsoft Windows. Chicago, USA. 

Stutterheim, C.J. (1980). Symbiont selection of redbilled oxpecker in the 

Hluhluwe-Umfolozi Game Reserve Complex. Lammergeyer 30: 21-25. 

Stutterheim, C. J. (1982). The movements of a population of red-billed oxpeckers 

(Buphagus erythrorhyncus) in the Kruger National Park. Koedoe 24: 99-107. 

Stutterheim, C.J. and Brooke, R.K. (1981). Past and present ecological distribution 

of the yellow-billed oxpecker (Buphagus africanus) in South Africa. South 

African Journal of Zoology 16: 44–49. 

Tyson, P.D. and Dyer, T.G.J. (1975). Mean annual fluctuations of precipitation in 

the summer rainfall region of South Africa. South African Geographical 

Journal 57: 104–110. 

Walker, J.B., Keirans, J.E. and Horak, I.G. (2000). The genus Rhipicephalus (Acari, 

Ixodidae): a guide to the brown ticks of the world. Cambridge: Cambridge 

University Press.  

Watkins, B.P. and Cassidy, R.J. (1987). Evasive action taken by waterbuck to 

redbilled oxpeckers. Ostrich 58: 90. 

Weeks, P. (1998). Interactions between red-billed oxpeckers and their hosts. 

Unpublished PhD thesis, Cambridge University, UK. 



149 

 

Weeks, P. (1999). Interactions between red-billed oxpeckers, Buphagus 

erythrorhynchus, and domesticated cattle, Bos taurus, in Zimbabwe. Animal 

Behavior 58: 1253-1259.  

Weeks, P. (2000). Red-billed oxpeckers: vampires or tickbirds? Behavioral 

Ecology 11: 154-160. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 

 

6.  

The Rhino’s Guard 

 

 

Black rhino adopting a characteristic alarm response (ears and head up facing 

downwind) after red-billed oxpecker alarm calls (Photograph by Jed Bird) 
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ABSTRACT 

 

Africa’s oxpeckers (Buphagus sp.) are suspected of sentinel behaviour where 

their alarm calls are thought to warn their ungulate hosts to approaching 

predators. Anecdotal reports from human (Homo sapiens) hunters propose that 

oxpeckers regularly alerted grazing animals to their approaches as well. In fact, 

the Swahili name for the red-billed oxpecker (B. erythrorynchus) is “Askari wa 

kifaru” and translates as the rhinos’ guard. Hence, I tested the widely held but 

unproven belief that red-billed oxpeckers warn black rhino (Diceros bicornis) of 

approaching predators. Eighty-four unconcealed approaches by a person to 

seven marked adult female black rhino were monitored. I recorded detection 

probability and approach distances that could be related to the presence-

absence and number of oxpeckers resident on the rhino and corresponded to 

their alarm calling. When oxpeckers were absent black rhinos were able to 

detect the person on 23% (11of 48) of occasions at an average detection distance 

of 23 ± 2 m (average 1 SE). However, oxpecker presence increased the rhino’s 

detection rate to 100% (36 of 36) and more than doubled detection distance to 

59 ± 6 m. The 36 detections were an immediate response to an oxpecker alarm 

call. There was a significant positive relationship between increasing number of 

oxpeckers on a rhino’s back and detection probability and distance. Finally, I 

recorded that black rhino alerted by oxpecker’s alarm calls typically re-

orientated to face in a downwind direction (34 of 36). Thus, I show 

experimentally that oxpeckers acted as sentinels for rhino against a human 

predatory threat but that rhino also covered their sensory blind spot i.e. 

downwind, where they cannot smell and from where humans stalk rhino. This 

study validates the traditional name of the red-billed oxpecker as the rhino’s 

guard.   

 

KEYWORDS: conditional mutualism, parasitism, sentinels, Buphagus 

erythrorynchus, Diceros bicornis minor, Homo sapiens, approach trials, tolerance, 

vigilance 
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INTRODUCTION  

 

“Black rhino can only see what is immediately before it, so if one hunts 

downwind of it, it is not difficult to approach within a few paces. But the tick bird 

who sees all the better…alerts the rhino by a shrill warning cry…”Leslie (1876) 

 

Mutualism and parasitism are not static conditions of an interspecific 

relationship but extremes of a dynamic continuum (Herre et al. 1999; Del-Claro 

2004). The degree of parasitism or mutualism between species can depend upon 

the biotic and abiotic environment (Bronstein 1994; Bronstein and Barbosa 

2002). Changes in temperature, rainfall and resource availability can influence 

the symbiotic behaviour of interacting species. Apparently mutualistic cleaning 

relationships, where an organism removes a third species (e.g., ectoparasite) 

from the host, are prone to become parasitic when conditions change (Cheney 

and Cote 2005). Such relationships involving three or more species are for this 

reason progressively termed “conditional mutualisms” (e.g., cleaner – client fish-

gnathiids, Cheney and Cote 2005; oxpecker-ungulates-Ixodid ticks, Buphagus sp.; 

Plantan 2009). However, the role of a third or more species as the condition 

which modifies a mutualism has received little attention (but see Cheney and 

Cote 2005; Plantan 2009; Plantan et al. 2012).  

The apparently mutualistic oxpecker (Buphagus sp.) - ungulate relationship 

is folklore but a largely untested hypothesis. Oxpeckers on ungulates are thought 

to be feeding on ectoparasites, particularly ticks and blood-sucking flies. 

Oxpeckers are also suspected of sentinel behaviour where their alarm calls warn 

ungulates of danger (Alexander 1836; Leslie 1876; Schenkel and Schenkel-

Hulliger 1969; Dean and MacDonald 1981; Craig 2009). Human (Homo sapiens) 

hunters report oxpecker alarm calls alerting grazing animals to their approach 

(Craig 2009). Alternatively, herders regarded oxpeckers as the killers of 

domestic stock for opening and feeding from the ungulate’s wounds, hence the 

origin of their genus name Buphaga – Latin for ox-eater (Attwell 1966; Craig 

2009). Thus, whether oxpeckers are mutualists or parasites of ungulates is 

debated (Weeks 2000; Nunn et al. 2011). 
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Mutualisms are characterised by net positive benefits to participant species 

(e.g., cleaner fish, Labroides dimidiatus; Grutter 1999). Central to the uncertainty 

about the oxpecker-ungulate relationship has been that the bird’s supposed anti-

parasitic cleaner benefits to ungulates (i.e., ectoparasite removal, Nunn et al. 

2011) might be secondary to their own parasitism because they also feed on host 

tissue and blood, especially from extant wounds (Keet et al. 1997; Weeks 1999, 

2000; Plantan 2009). Moreover, oxpecker sentinel behaviour and anti-predator 

benefits to their hosts have largely been inferred from anecdotal observations 

(e.g., van Someren 1951; Pitman 1956; Spinage 1962; Attwell 1966; Schenkel 

and Schenkel-Hulliger 1969) and the only empirical test was inconclusive (e.g., 

Weeks 1998). A major challenge, therefore, has been to quantify whether 

oxpeckers benefit their ungulate hosts.  

In the cleaner-client fish mutualistic association cleaner fish cooperate by 

gleaning ectoparasites from client fish. But cleaners actually prefer to cheat by 

feeding on tissue and mucus (Bshary et al. 2008). Mutualisms that are subject to 

such exploitation lead to conflicts of interests between partner species that 

disrupt the relationship (Bronstein 2001). Although such conflicts of interest are 

common in interspecific associations, they are generally controlled (Douglas 

2008). Client fish jolt their bodies or terminate interactions by swimming away 

in response to cheating behaviour (Bshary and Grutter 2002; Bshary et al. 2008). 

Similarly, when oxpeckers turn to wound-feeding, hosts will adopt rejection 

behaviours to deter exploitation and reinforce the mutualistic tick-feeding 

actions of oxpeckers (e.g., Keet et al. 1997; Plantan 2009; Bishop and Bishop 

2014). Several large herbivores, for example, will run through the bush, use their 

horns, kick their legs, swing their tails, and roll on the ground to dislodge the 

birds (Watkins and Cassidy 1987; Keet et al. 1997; Weeks 1999; Bishop and 

Bishop 2014). Another factor that may control conflict and a host’s tolerance 

verse intolerance behaviour are additional services. For example, in order to 

promote interspecific tolerance for their otherwise costly klepto-parasitic 

foraging behaviour, fork-tailed drongos (Dicrurus adsimilis) will specifically 

alarm call at predators that threaten their host but not themselves to cause hosts 

to flee a food source to gain access to additional resources (e.g., dwarf mongoose, 

Helogale parvula; Ridley et al. 2007). Sharpe et al. (2010) even observed drongos 
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go so far as to assist mongooses in the mobbing of puff adders (Bitis arietans) 

and an African civet (Civettictis civetta), neither of which posed a threat to 

drongos.  

Are wound feeding oxpeckers that alarm call able to gain access to a 

typically intolerant host’s wounds? The critically endangered (IUCN 2012) black 

rhino is a favoured oxpecker host (Stutterheim 1980) and most associated with 

oxpeckers’ anti-predator alarm calling behaviour, especially towards people 

(Alexander 1836; Leslie 1876; Schenkel and Schenkel-Hulliger 1969; Goddard 

1970, 1973; Skinner and Smithers 1990). Moreover, black rhino (Diceros 

bicornis) appear to remain tolerant of oxpeckers that predominately feed at 

lesions (See Chapter 5). Despite their large size (i.e., c. 1000kg; Owen-Smith 

1988), black rhino are solitary living animals with poor eye sight easily stalked 

undetected (e.g., Leslie 1876; Goddard 1970). Indeed, organised groups of 

humans with projectile weapons like spears began successfully hunting rhino 

from the late Pleistocene (i.e., < 50 000 years; Leslie 1876; Klein 1977; Owen-

Smith 1987; Diamond 1997). However, in the last 150 years, people with rifles 

hunted rhino to the brink of extinction from over 1 million to c. 2100 by 1992 

(Emslie 2008). Despite fenced reserves and paramilitary protection of rhino 

populations, both illegal and legal hunting of rhino still occurs (Nelson 2006; 

Beech and Perry 2011). In comparison, adult black rhino are largely immune to 

non-human predation (Owen-Smith 1987), although young calves remain 

vulnerable, e.g.; lion, Panthera leo, and spotted hyena, Crocuta crocuta; Plotz and 

Linklater 2009). Oxpeckers anti-predator alarm calls could therefore be directed 

at both human and non-human predators. 

The Swahili name for oxpeckers: “Askari wa kifaru” translates to ‘the 

rhino’s guard’. Experienced observers describe being able to walk undetected to 

within a few paces of black rhino without oxpeckers in attendance and when 

approaching from downwind (Leslie 1876; Goddard 1970, 1973). In contrast, 

others report black rhino becoming alert and orientating downwind in an 

apparent response to red-billed oxpeckers (B. erythrorynchus: hereafter 

oxpeckers) alarm calls (described as hissing Krsss by Weeks 1998) directed at 

humans (e.g., Alexander 1836; Leslie 1876; Schenkel and Schenkel-Hulliger 

1969). Humans have never been known to hunt oxpeckers (Craig 2009). 
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Nonetheless, oxpeckers may significantly improve black rhino’s anti-human 

vigilance (i.e., detection rate and distance) to promote tolerance in black rhino 

for improved access (i.e., host tolerance) to the remarkable resource that is the 

filarial lesion.  

Parasitism generally imposes a cost to their victims, yet many victims 

appear to tolerate their parasites (Radford et al. 2011). I suggest that in the case 

of the black rhino-oxpecker interaction this may be because oxpeckers 

(parasites) provide black rhino (hosts) with the mitigating benefit of increased 

predator vigilance even though they appear to predominately parasitise their 

lesions (see Chapter 5). I designed this study to define one aspect of the complex 

African oxpecker-black rhino relationship that has not been looked at before i.e., 

increased vigilance from sentinel behaviour. I hypothesised that if rhino respond 

to oxpeckers alarm calls, then they ought to orientate towards their sensory 

blind spot (i.e., downwind: as suggested by Schenkel and Schenkel-Hulliger 

1969). To this end, an anti-human vigilance approach trial was implemented. A 

field experiment that improved upon Schenkel and Schenkel-Hulliger’s (1969) 

more subjective observations was conducted to test for the mutualistic sentinel 

behaviour of oxpeckers on black rhino. Human approaches to individually 

known black rhino were made and the influence of oxpecker alarm calling on 

rhino vigilance and human-predator detection evaluated. In this work I tested 

whether oxpecker sentinel behaviour improves black rhino’s anti-human 

vigilance such that human detection rate and distance is enhanced. 

Determining whether or not red-billed oxpeckers are mutualists or 

parasites with black rhino will depend upon whether there is a net positive 

benefit or cost respectively to the host. There are two possible benefits i.e., 1. 

removal of ectoparasites and 2. increased vigilance (sentinels). There is one cost 

i.e., feeding on lesions (parasitism). In Chapter 5 I demonstrated that oxpeckers 

targeted lesions but were tolerated by black rhino while doing so. In this study I 

focussed on whether oxpeckers increased the vigilance of black rhino (benefit 2), 

which has yet to be investigated. This benefit has not yet been looked at before.  

To achieve this I conducted multiple field approach experiments where I, as an 

observer, monitored the approaches of a human ‘threat’ such that I could 
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determine whether oxpecker presence made a significant impact on the 

approach distances achievable by the human threat.      

 

MATERIAL AND METHODS 

 

Study site and population 

 

Approximately 200-300 black rhino (D. b. minor) (Clinning et al. 2009) are 

sympatric with red-billed oxpeckers in HiP (Stutterheim 1980). HiP’s red-billed 

oxpecker population size is not known but they are regularly seen foraging on 

several ungulates, including black rhino and their lesions (Hitchins and Keep 

1970; Stutterheim 1980). Yellow-billed oxpeckers (B. africanus) are locally 

extinct (Stutterheim and Brooke 1981). Incessant hunting of rhino by humans 

with rifles during the 19th century motivated the proclamation of the then 

separated Hluhluwe and iMfolozi Game Reserves in 1875. HiP now holds one of 

only two remaining endemic D. b. minor populations the other being nearby 

Mkhuze Game Reserve.  

HiP’s spotted hyena population (excluding cubs) has been estimated at 321 

individuals (Graf et al. 2009). The average spotted hyena density in HiP is 

relatively high for southern Africa, but intermediate if compared to East African 

areas (Graf et al. 2009). Following local extinction in 1958 the first lone male lion 

re-entered the iMfolozi Game Reserve (Southern half of HiP), followed by two 

females in 1965 (Anderson 1981; Grange et al. 2012). By the 1980s 

approximately 60 lions had been recorded (Maddock et al. 1996). Between 2003 

and 2004, the total lion population declined from 80 to 61 (Trinkel et al. 2008), 

but had rebounded to 114 by 2008 and reached an estimated 200 individuals in 

2010 (Grange et al. 2012). Unchecked human hunting of all ungulates in HiP 

resumed for thirty years (c. 1920 to 1950) after de-proclamation and the black 

rhino population was as low as c. 85 individuals by 1935 (Emslie 2001). Since re-

proclamation illegal rhino poaching in HiP has been sporadic but has increased 

again since 2008 (Beech and Perry 2011; Coniff 2011; Swart 2011). Hunting for 

live capture and translocation has occurred for both black and white rhino since 

1961 when animals were chemically immobilised by tranquilizer dart delivered 
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initially on foot, horseback or vehicle and more recently from a helicopter (Keep 

et al. 1969; Hitchins et al. 1972, Hitchins 1984; Emslie 2001).  

 For this study, ten adult female black rhino (eight with calves and two 

without) in HiP’s southern and central region were chemically immobilised from 

a helicopter and had horn implant radio-transmitters installed (five rhino in May 

of 2007 and 2008 received combinations of Sirtrack Pty Ltd., NZ or Telonics, USA 

models installed using techniques described in Shrader and Beauchamp 2001; 

Linklater et al. 2006) and were then released. EKZNW Game Capture Team, 

including wildlife veterinarian, administered capture and drug protocols using 

chemical immobilisation from a helicopter (described in detail: Morkel and 

Kennedy-Benson 2007).  This study made use of standard approved techniques 

to capture, monitor and approach black rhino the research methods were 

approved by Victorian University of Wellington, New Zealand (AEC) and EKZNW 

ethics approval (research permit number: ZC/ 101/1).  

 

Human Approach Trials  

Trials consisted of unconcealed human approaches to rhino and sampling 

by a stationary distant observer to quantify the influence of oxpeckers on rhino 

vigilance and human-threat detection. To improve the probability that human 

approaches were unconcealed and observations uninterrupted trials were only 

carried out in open habitat. Typically, open habitat was grassland or savannah 

with short to medium grass. Rhino were selected in a random sequence and 

located via radio-telemetry triangulation (see methods in Chapter 2). Approach 

trials began immediately after a black rhino was first sighted. The following 

attributes recorded by a stationary observer included the date, time, rhino 

identity and if they were alert (i.e., head and ears raised in vigilance posture; 

Schenkel and Schenkel-Hulliger 1969). Also, the number of oxpeckers resident 

on rhino and if alarm calls (e.g., Krsss; Weeks 1998) were heard. Finally, the 

observer recorded the wind direction and rhino’s initial and alert orientations 

relative to prevailing wind directions (i.e., up, down or cross-wind – see Fig. 1). 

The orientation of a rhino was the direction anterior shoulders were facing. The 

wind directions and rhino orientations were recorded by envisaging 12 points of 
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an analogue clock encircling the rhino with the static observer always at 6 o’ 

clock. The following attributes were determined by the person approaching the 

rhino (hereafter threat). The distance attained to rhino before it was either 

alerted or it was unsafe for the threat to go any closer but they remained 

undetected by the rhino. Distances were measured by the threat using a 

Rangefinder (Leica Pty Ltd.).  

Each approach by the threat had the following sequence (Fig. 1 for 

illustration). First, the observer with a field spotting scope remained static at a 

fixed location (i.e., 6 o’ clock). The threat starting from the observer at 6 o’ clock 

moved at a constant walking speed in a wide arc to the left or right of the 

observer until they reached a position approximately perpendicular to the 

observer-rhino axis (i.e., 3 or 9 o’ clock). From here the threat moved in a 

straight line toward the rhino. If at any point during a recording session the 

rhino became alert the suspected reason was recorded (i.e., oxpecker alarm call 

or noise or scent of threat) and the rhino’s selected orientation after becoming 

alerted was recorded (Fig. 1). Schenkel and Schenkel-Hulliger (1969) report 

anecdotally that East African black rhino (D. b. michaeli) alerted by oxpeckers’ 

alarm calls orientated downwind (i.e., facing where the wind was blowing 

towards), the direction that rhino predators are most likely to successfully stalk 

rhino. Human hunters typically approach rhino from downwind to remain 

undetected by rhino for longer. To determine whether a downwind orientation 

was selected preferentially or rhino with resident oxpeckers were able to 

distinguish the exact direction of the approaching threat, the threat alternated 36 

approach starts to individual rhino between 18 downwind and 18 crosswind 

(i.e., perpendicular to wind direction) directions. If during the approach the 

threat was not visible to the rhino, the distances to the observer too large to hear 

oxpecker alarm calls, or oxpeckers flew onto the rhino during the trial such that 

they had an aerial view of the threat the approach was not used in analyses. 

 

Statistical Analyses 

 I conducted 85 approaches to rhinos, 48 without and 36 with oxpeckers 

resident on the rhinos. I analysed the percentage of occasions and average 
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distance (m) the threat was detected by rhino. Similarly, the distance attained by 

the threat to each rhino with and without oxpeckers was related to the number 

of oxpeckers resident on rhino at the time of approach using a GLM ANOVA with 

a Log10 transformed data to compensate for significant positive skew in 

dependent variable distance and oxpecker frequency. Levene’s test for equality 

of variances was performed to determine data normality.  

The percentage proportion that black rhino selected a downwind 

orientation when oxpeckers were absent and present pre- and post- alarm call 

were calculated and tested for significance using Chi-square tests. Tests were 

two-tailed with a significance level of p<0.05 (SPSS Statistics v. 19.0). 

 

RESULTS 

 

Oxpeckers consistently alarm called during 36 threat approaches and rhino 

consistently reacted immediately to the calls. The dominant rhino response was 

to adopt an alert standing posture (36 of 36 approaches) regardless of prior 

position (e.g., lying) and direct flight in one of 36 approaches. Oxpeckers always 

came together on the hump and spine of black rhino immediately after alarm 

calls.  

When oxpeckers were absent, black rhino detected (i.e., adopted alert 

posture) the approaching threat on 23% (11 of 48) of occasions with an average 

detection distance of 23 ± 2m. However, when oxpecker were present and alarm 

called, the rhino’s human threat detection rate improved to 100% (36 of 36) at 

an average detection distance of 59 ± 4m. Oxpeckers always alarm called before 

their rhino hosts detected the approaching threat. Rhino without oxpeckers that 

detected the approaching threat appeared to do so acoustically (i.e., 6 heard the 

threat approach) and olfactory (i.e., 5 direction reversals and spoor detection by 

rhino). For each occasion that rhino detected the approaching human, the rhino 

orientated directly at the threat.  

There was a significant positive relationship between the number of 

oxpeckers resident on rhino at the time of the approaching threat and the 

dependent variable detection distance (R2 = 0.6; n=85, F1, 84 =12, p<0.0; Fig. 2). 
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The interaction between the variables rhino identity (n=85, F1, 9 =0.3, p=0.1) and 

the number of oxpeckers resident on rhino was not significant (n=85, F11, 38 =0.8, 

p=0.7).  

The dominant wind orientation selected by rhino after an alarm call was 

downwind (e.g., 94 %, 34 of 36) rather than crosswind (6 %, 2 of 36) or upwind 

(0%, 0 of 36), which was utilised significantly more than expected (χ²=50.167, df 

=2, p=0.0; Fig. 3).  Rhino faced the threat only when approaching from directly 

downwind (18 of 36) and never when approaching from crosswind (18 of 36; i.e., 

at right-angles to the observer rhino-axis). Also, black rhino typically selected to 

orientate in a downwind direction after they were alerted by the alarm calls of 

resident oxpeckers. Downwind orientations were selected considerably more by 

alert rhino compared to un-alert rhino when oxpeckers were absent, or when 

resident but had not yet alarm called.  

 

DISCUSSION 

 

Human approach trials demonstrate that red-billed oxpeckers significantly 

increase black rhino human-threat detection more than four-fold (i.e., number of 

detections) and more than doubled detection distance. Detection probability and 

distance also improved with increasing numbers of oxpecker. Black rhino 

responded to oxpecker’s sentinel behaviour by directing their vigilance 

behaviour to their sensory ‘blind-spot’ (i.e., 95 % of post-alarm call alert 

postures orientated downwind). Clearly oxpeckers alarm calls do not include 

information about the direction of the threat.  

Predation risk has been an important natural selection influence on animal 

behaviour. Mega-herbivores immune to large predators are nevertheless 

vulnerable to human predation – more so than smaller mammal species (Owen-

Smith 1987, 1988). They are large conspicuous animals with a slow recruitment 

rate. The kind of anti-predator weaponry (e.g., size, horns and behaviour) to 

defend immature calves against carnivores would be ineffective against 

organised groups of humans hurling projectile weapons (Owen-Smith 1987). 

Non-human predators, however, cannot be ruled out also contributing to the 
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oxpecker-black rhino relationship especially because calves remain vulnerable to 

lions and spotted hyenas (Plotz and Linklater 2009).  

Given the tendency for black rhino to orientate downwind after oxpecker 

alarm calls raises the question as to why? Humans are well known rhino 

predators known to hunt prey consistently from downwind (Leslie 1876; Owen-

Smith 1987; Lamprecht 2009). Lions, contrary to popular belief, do not appear to 

take as much notice of wind direction when hunting and stalking ungulate prey. 

Schaller (1972), for example, documented over 300 hunts by Serengeti lions that 

approached from upwind as readily as they did from crosswind or downwind. 

Proximity to vegetation cover appeared to determine the direction from which 

lion stalk prey.  However, there is no data on the tactics lions use to hunt large 

and dangerous prey like rhino. Lions may hunt from all wind directions to 

disorientate rhino so that calves become easier to separate from their mothers. 

There is also no evidence that oxpeckers alarm call at non-human predators. All 

this remains to be tested before the findings of this study can be placed in its true 

context.  

One inconsistency with the human hunter induced oxpecker-black rhino 

vigilance response remains: why do black rhino not flee immediately when they 

hear an oxpecker’s alarm call? Rhino flee after detecting human scent but not the 

presence of other large predators (Owen-Smith 1987). When offered an 

oxpecker alarm call I found that black rhino stood alert facing downwind but 

only fled once.  

Lion and spotted hyena density has been high enough to exert significant 

predation pressure to drive the evolution of black rhino-oxpecker anti-predator 

vigilance interactions (Graf et al. 2009; Grange et al. 2012). It therefore remains a 

possibility that that this oxpecker-black rhino vigilance interaction can also be 

explained by a role for other large non-human predators. Whether the oxpecker-

black rhino mutualism is in response to long term or more recent intense human 

predation pressure in the last 150 years is unknown. Nevertheless, human 

overkill where numbers were reduced by 96% in the last 150 years raises the 

intriguing possibility (Beech and Perry 2011). 

Mutualisms can develop between a bird and ungulate in less than 100 

years. Recently introduced banteng (Bos javanicus) in have developed a cleaning 



162 

 

mutualism with the Torresian Crow (Corvus orru) in Northern Australia 

(Bradshaw and White 2006). However, a second inconsistency is the magnitude 

of the human detection distance improvement for black rhino. It is difficult to 

imagine that a 59m on average improvement has consequences for a modern 

hunter’s ability to shoot a rhino, especially a rhino seemingly reluctant to flee 

after an oxpeckers alarm call. It is entirely possible that oxpeckers, resident on 

black rhino or in the air, alert black rhino to human presence at greater distances 

than I was able to quantify. The results of my human approach trials are likely to 

be conservative as trials were limited by my ability to accurately hear alarm calls 

and observe oxpecker-rhino-human interactions (i.e., typically not greater than 

150m’s). Whether oxpeckers provide black rhino with greater increases in 

detection rate and distance to humans and if it actually increases a rhino’s 

overall fitness (i.e., survival), still needs to be quantified.  

 

CONCLUSION 

 

My results in this chapter raise the intriguing possibility that rhino tolerate 

oxpecker parasitism (Chapter 5) because they are provided with increased 

vigilance. If this were so this relationship appears to provide benefits to both 

participants – blood for oxpeckers and increased vigilance for rhino. My findings 

involving wild co-evolved hosts are an important confirmation of recent research 

on the oxpecker-ungulate relationship in captivity which showed that the 

outcomes of oxpecker-host interactions were indeed highly variable and 

conditional (Plantan 2009; Plantan et al. 2012).  

The oxpecker-ungulate interaction is inherently more complex than 

currently represented in text books – even those which acknowledge oxpecker 

parasitism (Craig 2009). Interspecific interactions, such as this apparent cleaning 

symbiosis, may therefore not be definable under a single definition. Any given 

interaction is likely to be conditional upon the ratio between costs and benefits 

that will be mediated by the species interacting, time and place.  

 

 



163 

 

 

                                                                                                    
 

 

Figure 1. Schematic of human-rhino approach trials. Imagining an analogue clock with the 

rhino at the centre, the observer (me) remained at 6 o’ clock, while the human ‘threat’ 

(Bom) walked around to approach at  right angles (at 3, or in this example 9 ‘o clock). Thus 

orientations selected by rhino relative to three wind directions could be determined (i.e., 

Up, Cross and Down-wind), both before (i.e., at first sighting) and during approaches. 

Typically rhino’s noticed the threat at about 22m, but this increased to about 59m with 

rhino’s turning to face downwind when oxpeckers were present to give the alarm. Diagram 

adapted from Plotz (2012, App. 6).Grey shapes at 1 and 7/8 o’clock represent vegetation. 

Wind 
direction: 

Corresponding 
Range of Clock: 

Colour 
code: 

Upwind 11 – 1 o’ clock  

Downwind 5 – 7  o’ clock  

Crosswind 2 – 4    o’ clock 

8 – 10 o’ clock 

 

 

OBSERVER (with field scope)  

---------------------------------------------------------- 

The ‘imagined clock’ around the rhino was divided into four segments (see key & diagram) that corresponded 

with three wind directions (i.e., Up-, Cross- or Downwind). Information recorded for each trial included:  

 Oxpeckers presence (number of birds and alarm calls) or absence on rhino. 

  The prevailing wind direction (in this example = 6 o’ clock i.e., downwind)  

 Rhino responses and orientation, before and after alerted, and relative to wind and threat direction. 

HUMAN ‘THREAT’ (with Range Finder) 

------------------------------------------- 

Approaches from 3 or 9 o’ clock were halted and the 

distance to rhino recorded when he was either: 

 Detected by the rhino and / or oxpecker(s) 

 Not detected but it was unsafe to move any closer. 

6 

12 

Key for determining which wind direction rhino’s orientated: 

9 3 

Photo: Dale Morris 

Photo: Roan Plotz 

4 

5 7 

8 

10 

11 
1 

2 
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                                           * y = detection distance, x = number of oxpeckers 

 

Figure 2. The relationship between the number of oxpeckers resident on black 
rhino and the distance the approaching human threat was detected by 
rhino.  
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         n=320                                       n=176                              n=36 

 

 
 
Figure 3. The relationship between the orientation (i.e., direction of head and 

chest) selections of un-alert black rhino (at first sighting) relative to the 
prevailing wind directions (i.e., Down-, Cross- and Up-Wind) when: (A) 
oxpeckers were absent and (B) oxpeckers were present but had not yet 
alarm called. (C) Represents the orientation a rhino turned towards 
immediately  after responding to an oxpecker’s alarm calls (note: after an 
approach by the human threat). The horizontal dashed lines are the 
expected levels if rhino were making random selections when orientating. 
Note that rhino had two options for making orientations that faced cross-
wind (i.e., 90 degrees to up or cross wind, hence, 50% expected selection 
level). In contrast, rhino only had one option if facing Up- or Down-wind , 
hence the 25% expected level for each. Also, the observer used the 
‘imagined clock’ method to determine the relative prevailing wind 
directions and the orientations of the rhino at the time they were first 
sighted and after becoming alerted by oxpecker alarm calls (see key and 
schematic in Fig. 1).  
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Supplementary: 
 
Table 1:   GLM ANOVA table for detection distance (Log transformed) (DF = 

degrees of freedom, F= F-value, P = statistical significance: P<0.05) 

          DETECTION DISTANCE (Log10 transformed data) 

                                                 DF                     F                               P  

 

Individual rhino                                        9                    0.328                 0.957    

 

Number of oxpeckers                               8                  11.455               0.000 

 

RhinoID x Number of Oxpeckers           21                  0.774              0.734   

 

Levene’s Test                     df1=38, df2=46                   0.992              0.5 
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7.  

DISCUSSION 

 

 
 

Last day in the field with the well trodden Nqumeni Area behind us (in picture: 

Bom Ndwandwe, left, and myself, right; photograph by Andrew Stringer). 
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Thesis Summary and Applications 

 

7.1 Introduction 

 

This thesis examined aspects of the reproductive performance and 

behavioural ecology (i.e., interspecific relationships) of an apparently poorly 

performing black rhino (Diceros bicornis minor) population in Hluhluwe-iMfolozi 

Park (HiP), South Africa. Combining spatial and behavioural analyses provides 

the most comprehensive insight into the home range and relationship with 

predators and between filarial lesion severity and body condition for black rhino 

in Hluhluwe-iMfolozi Park (HiP) to date. In particular I investigated the variously 

mutualistic and parasitic relationship between the red-billed oxpecker 

(Buphagus erythrorynchus) and D. b. minor in greater detail. I revealed that 

oxpeckers are both mutualists and parasites to black rhino. Rather than 

ectoparasite removal (i.e., cleaner mutualist), red-billed oxpeckers in HiP 

provided the benefit of increased vigilance (i.e., sentinels).  However, oxpeckers 

were also predominately parasitic lesion foragers (i.e., cost). The benefit of 

increased vigilance may explain why I found black rhino to be unusually tolerant 

of parasitic oxpeckers, compared to several other ungulate hosts (Plantan 2009; 

Bishop and Bishop 2014). Oxpecker’s role in providing hosts with increased 

vigilance has not really been investigated before this PhD study (but see Weeks 

1998), particularly for wild co-evolved hosts like rhino. The intriguing interplay 

between the net costs versus benefits in the oxpecker-rhino interaction 

illustrates the need for research that covers the range of variations in cost-

benefit ratios across varying spatial and temporal scales. 

 

7.2 Summary of major findings 

 

     Despite some authors reporting a 306% increase in average home range 

sizes, my study suggested that black rhino home range sizes have not 

significantly increased over the past 40 years within HiP (Chapter 2). Moreover, 

regular observer monitoring over a 6-year period did not significantly inflate 
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black rhino home range sizes either. Nevertheless, observations obtained via 

radio-telemetry triangulations had the potential to significantly inflate black 

rhino home range size, especially when readings were taken from greater than 

one kilometre from individual rhino. Managers can therefore be confident that 

home range studies of black rhino that use radio-telemetry monitoring provide 

relatively accurate estimates of home range size as long as care is taken when 

triangulating positions. This study provides an essential baseline for future 

research that both managers and researchers can use for meaningful 

comparisons of home range size and structure. 

Black rhino calf depredation was proposed by management as one of 

several suspected causes of apparently low calf survival in HiP. Evidence has 

been restricted to anecdotal observations of juvenile black rhino attacked by 

lions and spotted hyenas. For this reason black rhino with missing ears and tails 

are often cited as direct evidence of failed predation attempts. Nevertheless, a 

direct causal link (i.e., observation) remained elusive and was debated such that 

the phenomenon could not continue to be ignored when designing population 

management and policy (Fanayo et al. 2006). This study identified an 8-month-

old black rhino calf that succumbed to severe anogenital and flank and neck 

wounds inflicted by a lion (Chapter 3). Most significantly the associated tail 

amputation confirmed that tail, and perhaps ear, loss in calves can indeed be 

caused by failed depredation attempts. Managers ought to consider the role that 

predators might have when managing black rhino populations for improved 

performance as populations with high predator densities might not be capable of 

growing as fast as those that have low densities of predators. 

This study found that HiP black rhino suffer from the largest and most 

severe filarial lesions yet recorded. Chronic lesions in some animals can cause 

poor body condition (Sutherst et al. 2006). However, the relationship between 

filarial parasitic lesions and reduced body condition in black rhino had yet to be 

determined. I found significant inverse relationship between lesion severity and 

body condition but neither factor was driving this relationship. An as yet 

unknown factor or factors were implicated (Chapter 4). Finally, to facilitate 

research into the role that filarial lesions might play in black rhino welfare I 

mapped the current known locations of populations known to present with 
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lesions.  Filarial lesions are localised to two distinct regions in east and southern 

Africa. It was apparent that an understanding of what other factors might drive 

lesion severity in black rhino requires investigation. 

Factors other than body condition appear to be driving lesion severity for 

black rhino.  Early 20th century observers suspected that oxpeckers caused 

filarial lesions but their suspicions were forgotten.  Oxpeckers were believed to 

forage on ectoparasites (e.g., ticks) of rhino and other ungulates and their role as 

cleaner mutualists gained credence. Most other ungulates are intolerant of 

wound feeding oxpeckers and deter such parasitic activities when they occur.  

My investigations challenged the notion of oxpeckers as classic examples of 

terrestrial mutualists, however in Chapter 6, I found that the birds significantly 

favoured feeding from filarial lesions over other sites of tick attachment on black 

rhino and that black rhino were wholly tolerant of their parasitic feeding. 

Further analysis determined that lesion preferences by oxpeckers were seasonal. 

Oxpeckers significantly favoured lesions over ticks in winter while in summer 

the preferences were reversed. These results add evidence to the developing 

idea that cleaner (i.e., ectoparasite removalists) mutualists are conditionally 

mutualistic depending on ectoparasite abundance. They also raise the possibility 

that oxpeckers depress black rhino body condition and population performance. 

It remained unclear to me how a seemingly predominately parasitic 

relationship between black rhino and oxpecker (Chapter 6) persisted unless 

other benefits were accrued by rhino from the relationship. Rhino have been 

subjected to substantial overkill by humans and oxpeckers are, anecdotally, 

reported to alert rhino to human approach through their distinct shrilling alarm 

calls. In order to untangle the apparent complexity within the oxpecker-rhino 

association I conducted human approach trials to test whether the birds’ sentinel 

alarm calling behaviour actually benefitted HiP’s black rhino. I discovered that 

oxpeckers afforded black rhino three and four fold increases in human detection 

distance and rate respectively. Moreover, black rhino responded by facing most 

often in the direction of downwind (i.e., with the direction of the wind) that 

suggested a potential evolutionary response to downwind hunting approaches 

by humans. In sum, I propose a new understanding of the oxpecker-rhino 

relationship – a conditional mutualism-parasitism that is driven by filarial lesion 
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and tick availability and human overkill providing the impetus for a new anti-

predator cooperation and greater lesion parasitism by oxpecker. 

 

7.3 Implications and applications 

 

Using animal population indicators to evaluate conservation achievement 

is widely practised, yet seldom empirically tested (Hoare et al. 2013). Measuring 

conservation goals for black rhino recovery is a prime example of this tendency.  

As already mentioned, several authors have concluded that HiP’s black rhino 

population is in rapid decline i.e., exceeded its carrying capacity (i.e., ‘crashing’: 

e.g., Emslie 1999, 2001; Reid et al. 2007; Adcock 2009; Slotow et al. 2010). The 

term carrying capacity (hereafter CC), however, is widely used yet frequently 

misunderstood (Morgan et al. 2009). Originally adopted by agricultural scientists 

(e.g., sheep, Ovis aries) the CC was equated to optimal stocking rate, the 

population density giving maximum yield of animal products for money. For 

ecologists, in contrast, it is the zero growth density (i.e., births match deaths). 

Moreover, the density level at which births match deaths is limited by any 

factor(s) changing birth or death rates. Predation can thus affect the density level 

attained, as can harvests. For black rhino in reserves like HiP with high densities 

of large predators and ongoing annual harvesting makes it inherently difficult to 

be confident of CC levels (e.g., Morgan et al. 2009).   

Further complicating the matter is that for large mammals, density 

dependence arising largely from exploitative competition may not become 

effective until population density exceeds some threshold level. In other words 

the vital rates, defined as the overall change in births and deaths per 1000 

individuals, are density vague for black rhinoceros (Owen-Smith 2001). 

Therefore, vital rates of animal populations relative to increasing density, rather 

than being a linear relation projected by a simple logistic model are convex (e.g., 

human populations: slow decline in vital rates that increases at high densities) or 

concave downwards (e.g., small mammals: rapid decline in vital rates as soon as 

densities increase). Black rhino do not reach the same high vital rates that small 

and even large mammal populations at low densities are able to and for this 

reason crash quickly after an unknown density threshold is reached (Fig. 1). 
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Thus, the relationship between black rhino populations’ vital rates and its 

density and subsequent range size may be ramp-like with no obvious indication 

that vital rates and habitat are deteriorating along with increasing range sizes 

until the threshold is reached. For this reason caution is advised when trying to 

use my or other studies findings as evidence of population status and 

performance. Although, I discovered that range sizes have not changed (Chapter 

2), calf predation does occur (Chapter 3), lesion severity is temporally linked 

with black rhino body condition (Chapter 4) and oxpeckers are conditional 

parasites that target lesions over tick sites in periods of low tick density 

(Chapter 5) but that black rhino might tolerate this due to increased vigilance 

benefits (Chapter 6). This study’s major conservation application therefore is 

that it is the first systematic monitoring of HiP’s black rhino population in over 

forty years. Being confident in the meaning of my findings and detecting changes 

in this population’s status and ongoing performance will require similar studies 

to be repeated in the future. Nevertheless, knowing that radio-triangulation 

home range studies are reliable and home range size does not appear to have 

increased significantly over the last forty years (Chapter 2) ought to encourage 

conservation managers and researchers to be more discerning when using 

historical black rhino home range studies to infer reductions in CC (e.g., Reid et 

al. 2007). Further, research into how black rhino respond spatially to habitat 

changes would benefit our understanding of Chapter 2’s results and basic black 

rhino spatial dynamics. 

Another concern for apparent population decline has been predators 

(Fanayo et al. 2006). Research has shown that overall lion: prey ratio within HiP 

around the time of this study (i.e., 2010) had actually increased markedly from 

historically low densities (Grange et al. 2012).  Thus, the black rhino calf 

depredation attempt I recorded (Chapter 3) might be a reflection of recent 

increases in predator density. A concurrent decline in alternative prey such as 

kudu and buffalo (Grange et al. 2012) might be driving lion to seek unusual prey 

such as black rhino calves. Conservation managers, however, rarely factor 

predation in their management plans or projections but perhaps they ought to 

regularly monitor predator/ prey densities when managing black rhino for 

improved performance. 
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 Body condition is above average (i.e., average score > 3.0; Reuter and 

Adcock 1998) for black rhino in HiP (Chapter 4). The severity of the 

management challenge at hand and the danger of misleading conservation policy 

requires the systematic monitoring of unbiased sample of individuals and their 

habitat through time (Linklater et al. 2010). Despite the remarkably severe 

filarial lesions observed on HiP black rhino, lesions themselves do not appear to 

drive poor body condition that might impact on rhino fecundity. Discerning 

whether this is likely has significant implications as it will allow us to determine 

if HiP’s below desired population performance might be due to the occurrence of 

filarial parasites. Black rhino’s exposure to human overkill and greater than 

realised calf depredation might have made them unusually tolerant towards 

overt lesion feeding by oxpeckers. To be certain future studies ought to conduct 

concurrent measures of tick densities that are repeated in other black rhino-

oxpecker sympatric populations with filarial lesions of varying severity (e.g., 

southern and east Africa; Stutterheim and Brooke 1981; Stutterheim 1982a; 

Craig 2009) and different human exposure histories. Chapter 4 also provides a 

map of locations that enables such comparisons in future. Therefore, the results 

of this thesis can be applied toward improving our understanding of black rhino 

welfare in several ways (also see Linklater et al. 2010) and act as preliminary 

baseline studies for additional conditional parasitism-mutualism investigations 

in future.  

 

7.4 Directions for future research 

 

This thesis has answered some of the questions regarding factors 

suspected of being driving the poor performance of HiP’s black rhino population. 

Throughout the course of this research many new questions have arisen. The 

groundwork has now been laid for more empirical investigations into other 

current performance indicators (e.g., inter-calving intervals, calving rates) 

frequently used to measure the conservation success of this critically 

endangered species (Emslie 2001). Further, investigations into the role that 

oxpeckers play as rhino ‘parasites’ themselves, will hopefully tease apart the 

inherent complexity of Africa’s most well-known terrestrial cleaner mutualism.  
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If oxpeckers are mainly targeting black rhino’s lesions, while providing sentinel 

benefits, it might actually be detrimental to black rhino welfare especially in the 

cooler drier winter months when ticks are absent and habitat conditions are 

poorer. It will then be necessary to determine how much anti-predator vigilance 

benefits provided by oxpeckers (Chapter 6) increases rhino fecundity and 

whether it actually mitigates the negative effects of lesion exploitation.  To better 

understand the interspecific evolutionary ecology of black rhino and encourage 

others to expand on my work I use the current literature to speculate below on 

Chapters 4, 5 and 6 as presented in this thesis. 

 

7.4.1 Is the oxpecker-black rhino interaction an example of a conditional 

mutualism? 

 

No evidence previously existed for oxpeckers foraging preferences of wild 

free-ranging black rhino. Oxpeckers apparent predilection for blood (Keet et al. 

1997; Weeks 1999, 2000; McElligot et al. 2004; Chapter 5) over ticks has 

challenged the view that oxpecker-host interactions are a classic example of a 

cleaner mutualism (Weeks 2000; Nunn et al. 2011). Plantan (2009) and Plantan 

et al. (2012) recently demonstrated that oxpeckers appear to be conditional 

cleaner mutualists that alternate mutualistic tick verse parasitic blood foraging 

depending on the availability of a handful of favoured Ixodid ticks (e.g., R. 

appendiculatus, and R. (B) decloratus). Seasonal tick density and distribution is 

heavily regulated by rainfall patterns in KwaZulu-Natal (KZN) (Tyson and Dyer 

1975), South Africa (Short et al. 1989; Gallivan and Horak 1997; Mushi et al. 

1997; Horak et al. 2003, 2006; Randolph 2008). In KZN and the more temperate 

climes of southern Africa, ticks undergo a complete diapause in development in 

the cold dry season i.e., winter (Madder et al. 2002; Randolph 2008). Moreover, 

Walker et al. (2000) and Horak et al. (2009) indicate that in North-East KZN, 

where HiP is located, that R. appendiculatus and R. (Boophilis) decloratus are at 

best only sparsely present or displaced all together by the tick species (i.e., B. 

microplus). Oxpeckers are especially reliant on ticks during the summer months 

in South Africa, when the birds have their breeding season (Stutterheim 1982b; 

Craig 2009). Indeed, ticks contain more than 10 times the selenium and other 
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minerals necessary for eggshell production and moulting (Plantan 2009). In light 

of this, HiP’s location and rainfall patterns are likely to make it a marginal habitat 

for red-billed oxpeckers. Black rhino only host one of oxpeckers two favoured 

species of ticks (i.e., R. appendiculatus; Baker and Keep 1970), further limiting 

ectoparasite availability for visiting oxpeckers. Nevertheless, our discovery that 

red-billed oxpeckers in HiP seasonally alternated the amount of time spent 

foraging at filarial lesions verse tick sites on black rhino supports the recent 

literature and lays the foundation for further investigations into the black rhino 

oxpecker relationship and the conditionality of mutualisms in general (cf. Cheney 

and Cote 2005). 

An obvious limitation to Chapter 5, however, was my inability to 

concurrently measure tick densities on black rhino or in the surrounding habitat. 

Therefore, to be certain that seasonal fluctuations of ticks are conditionally 

regulating parasitic behaviour by oxpeckers, tick densities should be 

concurrently measured. Moreover, if tick availability was the driver of oxpeckers 

parasitic activity than I speculate that in central equatorial Africa, where tick 

densities do not significantly change across seasons (Madder et al. 2002; 

Randolph 2008),  oxpeckers ought to predominately favour tick sites over black 

rhino’s filarial lesions at all times (cf. Chapter 5). This pan-African disparity in 

tick abundance might explain why black rhino in central Africa have less severe 

filarial lesions (Mutinda et al. 2012) compared to infected black rhino in 

southern Africa. Oxpeckers might spend less time foraging and exacerbating 

lesions of black rhino (D. michaeli) in central African reserves when tick 

abundance remains level throughout the year.  

 

7.4.2 Is the novel mutualism between black rhino and oxpeckers triggered 

by the barrel of a gun or non-human predators? 

 

Humans have hunted rhino since the late Pliocene and in recent times 

driven black rhino to the brink of extinction (Beech and Perry 2011).  

Unsurprisingly therefore, rhino’s rapid fleeing behaviour is restricted to humans 

(i.e., scent) and is not seen when similarly exposed to non-human predators 

(Schenkel and Schenkel-Hulliger 1969; Owen-Smith 1987). For this reason, 
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perhaps, available evidence suggests that oxpeckers do not actually alarm call at 

the non-human terrestrial predators of their hosts (e.g., lions; Weeks 1998). 

However, without empirical testing we cannot rule out a role for non-human 

predators in the potential anti-vigilance behaviour between oxpeckers and black 

rhino and research into this possibility is needed.  

The fact that black rhino predominately faced downwind during the human 

approach trials raises the possibility of an adaptive response to human hunters, 

who unlike lions (Schaller 1972), always approach from downwind. Lions 

however, are known to deliberately scatter prey via scent and have other 

members of the pride available to attack (Skinner and Smithers 1990). Chapter 

6 raises the possibility that the vigilance benefits afforded to rhino might be in 

exchange for tolerance of lesion exploitation (Chapter 5). Understanding 

whether humans have driven this adaptive response will require further 

investigation into oxpecker’s reaction to non-human predators and comparing 

oxpecker-black rhino interactions in reserves where lesions do not occur. Where 

black rhino do not have lesions, oxpeckers might have less incentive to provide 

black rhino without lesions with the same time constraining sentinel benefits. 

Also, black rhino in areas not as exposed to human hunters or non-human 

predators might not be as responsive to parasitic sentinel oxpeckers and so 

determining the conditionality of various scenarios requires investigation.  

In closing the rhino-oxpecker relationship may be a consequence of a wider 

web of inter-specific relationships – filarial nematodes, ectoparasitic ticks and 

human hunters – and as such inter-specifically conditional. 
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Figure 1: Diagram showing the relationship between increasing density (n) and 
vital rates for small short lived, large and very large mammals. For large 
mammals, density dependence arises largely from exploitative competition 
and may not become effective until population density exceeds some 
threshold level i.e., vital rates are density vague (see red arrow). Therefore, 
vital rates of animal populations relative to increasing density, rather than 
being a linear relation projected by a simple logistic model are convex (e.g., 
human populations: slow decline in vital rates that increases at high 
densities) or concave downwards (e.g., small mammals: rapid decline in 
vital rates as soon as densities increase).    
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Me searching for bhejane (Zulu for black rhino) up a Marula tree  

(Photograph by Liana Cahill) 
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