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Abstract 

 

Rationale: The profile of acquisition for MDMA self-administration differs from that 

of amphetamine and cocaine self-administration in that fewer rats meet an acquisition 

criterion and the latency to acquisition is longer. These characteristics of MDMA self-

administration may be because it preferentially stimulates serotonin (5HT) release 

whereas self-administration has generally been attributed to enhanced dopamine (DA) 

neurotransmission. Because 5HTergic agonists are not self-administered and 

increased synaptic 5HT decreased self-administration of other drugs, MDMA self-

administration may be initially inhibited by the pronounced 5HT response. 

Accordingly, the acquisition of MDMA self-administration might proceed as a result 

of deficits in 5HT neurotransmission and a corresponding disinhibition of DA 

neurotransmission.   

Objective: The primary objective was to determine the role of 5HT in the acquisition 

and maintenance of MDMA self-administration.  

Methods: MDMA-induced increases of extracellular 5HT and DA and their primary 

metabolites were measured in the DA terminal regions of the nucleus accumbens 

(NAc) using in vivo microdialysis, prior to the commencement of MDMA self-

administration. The relationship between MDMA-induced increases of 

neurotransmitter levels and the acquisition of MDMA self-administration was 

assessed. A subsequent study depleted brain 5HT by administering the neurotoxin, 5,7 

– DHT, or vehicle into the lateral ventricle of the left hemisphere, prior to the 

commencement of MDMA self-administration. The proportion of subjects that 

acquired MDMA self-administration and the latency to acquire MDMA self-

administration was compared for the two groups. In order to determine effects of 

MDMA self-administration on 5HT and DA responses, behaviours that reflect 5HT 

and/or DA neurotransmission  were measured 5 or 14 days after self-administration of 

165 mg/kg MDMA, or 14 days after vehicle self-administration. These time periods 

were chosen because they reflect a period of 5HT deficits (5 days) and recovery (14 

days). Finally, the effect of abstinence on MDMA self-administration was measured.  

Results: The MDMA-induced increase of extracellular 5HT was significantly lower 

for the group that subsequently acquired MDMA self-administration but the MDMA-

induced increase in DA was not different from the group that failed to acquire self-

administration. 5, 7-DHT administration significantly decreased tissue levels of 5HT, 
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but not DA. MDMA self-administration was facilitated by the lesion; 100% of the 

lesion group acquired MDMA self-administration, whereas only 50% of the control 

group acquired self-administration. Five days following the last MDMA self-

administration session, DAergic behaviours were enhanced and 5HTergic behaviours 

were reduced relative to the control group. These differences in 5HTergic mediated 

behaviours were not apparent 14 days after self-administration but the DAergic 

behaviours remained elevated. The pattern of self-administration did not differ as a 

function of the length of the abstinence period. 

Conclusions: The variability in acquisition of MDMA self-administration was related 

to the magnitude of the 5HT response evoked by initial exposure to MDMA. These 

findings suggested that predisposing differences in the 5HT response might explain 

differences in the variability in acquisition of MDMA self-administration. The 

negative impact of 5HT on the acquisition of MDMA self-administration was clearly 

demonstrated following a 5, 7-DHT lesion. Thus, 5HT limits the development of 

MDMA self-administration. With repeated exposure to self-administered MDMA, 

behavioural responses indicative of 5HT activation were reduced whereas behavioural 

indices of DA activation were increased. The maintenance of MDMA self-

administration was comparable regardless of whether there was a forced abstinence 

period or not. These data are consistent with the hypotheses that 5HT is inhibitory to 

the acquisition, but not the maintenance, of MDMA self-administration. Rather, the 

maintenance of self-administration might reflect sensitised DA responses that became 

apparent following repeated exposure.   
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General Introduction 

 

History of MDMA 

The pharmaceutical company, Merck, first synthesised 3, 4- 

methylenedioxymethamphetamine (MDMA) while attempting to create a medication 

to stop bleeding. Merck applied for the patent of MDMA as an intermediate chemical 

in the synthesis of the styptic, hydrastinine, in December 1912. Until 1953, MDMA 

was mentioned only twice in scientific literature and only as a by-product of chemical 

reactions (Swarts, 2006). After that the U.S. Army Chemical Center funded the testing 

of MDMA on 5 animal species: mice, rats, guinea pigs, dogs and monkeys (Hardman, 

Haavik, & Seevers, 1973). In 1975, MDMA was classified as a Class A drug under 

the Misuse of Drugs Regulation (1975) in the United Kingdom because it was 

considered to have no medicinal use (Advisory on the Misuse of Drugs, 2009).  

The first report of the effects of MDMA was published by Shulgin and 

Nichols (1978). Shulgin synthesised MDMA in 1976 and recorded his experiences 

following consumption of the drug. MDMA induced an “easily controlled altered 

state of consciousness, with emotional and sensual overtones”(Shulgin, 1986; p 299), 

and he therefore recommended the drug for use as an adjunct to psychotherapy. The 

use of MDMA in this capacity was not highly publicised (as LSD had recently been 

scheduled and thus removed from therapeutic practice (E. Greer, 1985). Recreational 

use of MDMA in the U.S.A. increased in the early 1980s and became controlled as a 

Schedule I substance in 1985. Drugs classified as Schedule I are described as having 

high abuse potential, and as having no accepted use for clinical application (The 

United States Department of Justice, 2008).  

 

Prevalence of use  

MDMA is the primary psychoactive component of the street drug, Ecstasy. 

According to the (World Drug Report, 2013) ecstasy use has declined, with an 

estimated 0.2 - 0.6% of the population having taken ecstasy annually since 2011. 

Other surveys have reported increases in ecstasy use. The latest Monitoring the Future 

survey reported that ecstasy use in U.S. college students aged between 15 and 18 has 

increased from, between 2.6-3% in 2005, to between 3.6- 4% in 2013 (Johnston, 

O'Malley, Miech, Bachman, & Schulenberg, 2014). Ecstasy use in Oceania continues 

to be highest with 2.9% of the population having consumed it in 2011. In New 
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Zealand, ecstasy is the second most widely used illegal drug, and the number of 

seizures rose markedly in 2011 (Wilkins & Sweetsur, 2008). Further, frequent users 

of ecstasy in NZ perceive the drug to be “easy” to obtain, and the mean price of pills 

has decreased since 2006 (Wilkins, Sweetsur, Smart, Warne, & Jawalkar, 2012).  

The pattern of ecstasy use differs from that of other drugs of abuse in that 

many users consume ecstasy sporadically and fail to exhibit the compulsive use that 

characterises abuse (Solowij, Hall, & Lee, 1992). Some surveys, however, indicate 

that the frequency of use increases over time for some users (Degenhardt, Barker, & 

Topp, 2004; Fox, Parrott, & Turner, 2001; George, Kinner, Bruno, Degenhardt, & 

Dunn, 2010; Scholey et al., 2004; Soar, Turner, & Parrott, 2006) and that some users 

meet the criteria for dependence and/or abuse (Cottler, Womack, Compton, & 

Ben‐Abdallah, 2001; Degenhardt et al., 2009; Leung, Ben Abdallah, Copeland, & 

Cottler, 2010; von Sydow, Lieb, Pfister, Höfler, & Wittchen, 2002), including craving 

and drug-seeking (Hopper et al., 2006). 

 

Pharmacology of MDMA  

The primary neurochemical effect of MDMA is to increase the release of the 

neurotransmitter, serotonin (5HT). MDMA was first reported to induce the release of 

5HT after the observation that both stereoisomers of the drug released 3H-5HT from 

hippocampal slices (Johnson, Hoffman, & Nichols, 1986). Subsequent experiments 

determined that MDMA induced the release of 5HT via a carrier-mediated 

mechanism (Berger, Gu, & Azmitia, 1992; Gu & Azmitia, 1993; Gudelsky & Nash, 

1996; Hekmatpanah & Peroutka, 1990). 

MDMA causes the release of 5HT via two processes. First, MDMA binds to 

the 5HT transporter (SERT), and reverses the transport of 5HT across the neuronal 

membrane so that 5HT moves out of the neuron as MDMA moves into the neuron 

(Rudnick & Wall, 1992). Second, MDMA enters the neuron and reverses the action of 

the vesicular monoamine transporter (VMAT2). In 5HTergic nerve terminals, 

VMAT2 transports unbound cytosolic 5HT into vesicles (Rudnick & Wall, 1992). 

MDMA interferes with this system by binding to VMAT2 and consequently increases 

cytosolic 5HT via two means. First, the binding of MDMA to VMAT2 blocks 5HT 

from doing so and thus prevents cytosolic 5HT from being transported into vesicles. 

Second, the binding of MDMA to VMAT2 results in the influx of MDMA into 

vesicles and concurrently, the efflux of vesicular 5HT to the cytosol. Additionally, 
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MDMA increases cytosolic 5HT by inhibiting its metabolism. MDMA inhibits the 

metabolising enzyme, monoamine oxidase (MAO; Leonardi & Azmitia, 1994). The 

interactions of MDMA with VMAT2 and MAO increase cytosolic 5HT and lead to a 

greater amount of 5HT being released through the reversed SERT into the synapse.  

Like all other drugs of abuse, MDMA increases extracellular levels of 

dopamine (DA). MDMA induces the dose- and region- dependent release of DA as 

shown in vivo, as measured by microdialysis, and in vitro, as measured in tissue slices 

(Gough, Ali, Slikker Jr, & Holson, 1991; Johnson et al., 1986; Schmidt, 1987; B. K. 

Yamamoto & Spanos, 1988).  

The increase in DA is due to decreased uptake due to inhibition of the DA 

transporter (DAT): DAT inhibitors prevented MDMA-induced increases in DA 

following local administration in vivo (Nash & Brodkin, 1991), or in brain slices 

(Koch & Galloway, 1997), or synaptosomes (Crespi, Mennini, & Gobbi, 1997). The 

affinity for DAT is at least 10-fold less than affinity for the SERT (Battaglia, Brooks, 

Kulsakdinun, & De Souza, 1988), which might explain why MDMA-produced 

increases in 5HT are so much greater than increases of DA. A summary of the 

microdialysis studies that measured MDMA-induced increases of synaptic 5HT and 

DA can be found in Schenk (2011), where table 1 shows conclusively that MDMA 

increases extracellular 5HT to a much greater extent than it does extracellular DA. For 

example, MDMA(1.5 mg/kg) administered into the peritoneum increased accumbal 

5HT by 500%, but had no effect on DA. At the higher dose of 7.5 mg/kg, MDMA 

increased 5HT by 3000% and DA by 500% (Baumann, Clark, & Rothman, 2008). 

Because MDMA preferentially increases 5HT, the possibility that 5HT release 

impacts induced DA release has been investigated. The data indicate that the 

relationship between 5HT and DA neurotransmission is complicated, and the effects 

depend on the 5HT receptor systems stimulated. Many 5HT receptors are localised on 

DA terminals (Bubar, Stutz, & Cunningham, 2011; Miner, Backstrom, Sanders-Bush, 

& Sesack, 2003; Nayak, Rondé, Spier, Lummis, & Nichols, 2000) and antagonists of 

the 5HT1A, 5HT1B and 5HT2 receptors have all been shown to increase endogenous 

levels of DA (Navailles & De Deurwaerdère, 2011). A handful of studies has 

investigated the role of the 5HT2A receptor in MDMA-produced DA release. The 

selective 5HT2A receptor antagonist, MDL 100907, and the 5HT2A/2C antagonists, 

ritanserin and ketanserin, blocked MDMA-induced increases of synaptic DA (Nash, 

1990; Schmidt, Fadayel, Sullivan, & Taylor, 1992; Schmidt, Sullivan, & Fedayal, 
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1994; B. K. Yamamoto, Nash, & Gudelsky, 1995). In contrast, the 5HT2A agonists, 

DOI and 5-MeODMT enhanced MDMA-induced DA release (Gudelsky, Yamamoto, 

& Nash, 1994). MDMA-induced increases of DA, therefore, are mediated by 

MDMA-induced 5HT release via specific receptor activation. These receptor-

mediated effects might also explain why administration of the 5HT precursor, 5-

hydroxytryptophan, potentiated MDMA-induced DA release (Gudelsky & Nash, 

1996); and why the inhibition of MDMA-induced 5HT release via administration of 

the SERT uptake inhibitor, fluoxetine (Gudelsky & Nash, 1996), or the global 

depletion of 5HT induced by the 5HT synthesis inhibitor, pCPA (Brodkin, Malyala, & 

Frank Nash, 1993), decreased MDMA-produced striatal DA release. Irrespective of 

the specific mechanism, these data support the idea that at least part of the effect of 

MDMA on DA is indirect and requires 5HT. 

 

Effects of Ecstasy 

Recreational users report that the euphoria produced by ecstasy entices them 

to take it (Cohen, 1995; Solowij et al., 1992). Other commonly reported positive 

psychological effects include increased energy, sexual arousal, well-being and self-

confidence, and an enhanced feeling of closeness to others (Cohen, 1995; Downing, 

1986; G. Greer & Tolbert, 1986; Peroutka, Newman, & Harris, 1988; Solowij et al., 

1992). MDMA also produces negative effects, including depression, anxiety and 

paranoia (Cohen, 1995).  

There are long-term psychological and physiological effects even following a 

single ingestion of ecstasy. These include depersonalisation, insomnia, depression, 

frequent headaches, back and stomach pain and joint stiffness (Cohen, 1995). 

Memory deficits (Fisk, Montgomery, & Hadjiefthyvoulou, 2011), and compromised 

executive functioning  and reasoning abilities (Fisk, Montgomery, Wareing, & 

Murphy, 2005; von Geusau, Stalenhoef, Huizinga, Snel, & Ridderinkhof, 2004) have 

also been reported. These impairments are persistent and have been reported even 

after years of abstinence (M. Morgan, McFie, Fleetwood, & Robinson, 2002; Taurah, 

Chandler, & Sanders, 2013) 

The long-term psychological and cognitive effects of ecstasy use may be due 

to the persistence of neuroadaptations and deficits in 5HT neurotransmission that are 

characteristic of ecstasy users (Cowan, Roberts, & Joers, 2008). There were increased 

levels of the 5HT precursor, tryptophan, following a tryptophan drink in ecstasy users 
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that had been abstinent for at least one year (Curran & Verheyden, 2003). SERT 

availability, as measured by positron emission topography (PET), was decreased in 

current ecstasy users (Buchert et al., 2004) and SERT density, as measured by PET, 

was decreased in users that had been abstinent for 2 or 3 weeks (McCann, Szabo, 

Scheffel, Dannals, & Ricaurte, 1998; McCann et al., 2008). Ecstasy-produced changes 

in SERT appear to depend on life-time use of ecstasy and the frequency with which it 

was consumed. Recreational users, who averaged using ecstasy 3 times every 2 

months, did not exhibit alterations of SERT as measured by endocrine responses to 

the SERT uptake inhibitor, citalopram (Allott et al., 2009). SERT binding was, 

however, negatively related to life-time use of ecstasy and the maximum dose used 

(Kish et al., 2010; McCann et al., 1998; McCann et al., 2008). These decreases in 

SERT might not be persistent since SERT binding increased with abstinence from 

ecstasy (Buchert et al., 2004).  

Ecstasy use also appears to alter the binding characteristics of post-synaptic 

5HT receptors. Both PET and single photon emission computed tomography (SPECT) 

showed increased 5HT2A receptor binding in abstinent ecstasy users (Reneman, Booij, 

Schmand, van den Brink, & Gunning, 2000; Urban et al., 2012) that was positively 

related to life-time ecstasy use (Di Iorio et al., 2011). Ecstasy users also were less 

responsive to the neuroendocrine response, and showed fewer physical effects to the 

5HT2C agonist, mCPP (McCann, Eligulashvili, Mertl, Murphy, & Ricaurte, 1999). 

 

Interpretation of Clinical Data 

Reports of the effects of ecstasy provide invaluable information; however, 

interpretation of the clinical data is problematic for a number of reasons. Due to 

ethical considerations clinical data rely on retrospective studies using current or 

abstinent ecstasy users. It is therefore unclear whether reported effects were pre-

existing or due to drug use. Because there is no accurate information about the dose of 

MDMA taken, the number of times ecstasy was consumed, and the purity of the 

ecstasy used, it is difficult to attribute doses of MDMA to long-term effects of drug 

use (Green, Mechan, Elliott, O'Shea, & Colado, 2003). Further, polydrug use is 

common in ecstasy users and prevents the attribution of long-term effects of drug use 

to MDMA (Green et al., 2003). Animal models provide a means to control for these 

factors. 
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The Effects of MDMA on Tissue Levels of 5HT and DA 

MDMA produces deficits in 5HT and markers of 5HT but not other 

monoamines. In a seminal experiment, an acute, subcutaneous administration of 10.0 

mg/kg MDMA significantly decreased tissue levels of 5HT, tryptophan hydroxylase 

(TPH; the rate-limiting enzyme of 5HT synthesis), and 5-Hydroxyindoleacetic acid 

(5HIAA; the main metabolite of 5HT) in the neostriatum, hippocampus and frontal 

cortex (FC) 3 hours post drug administration (Stone, Stahl, Hanson, & Gibb, 1986). 

Subsequent experiments demonstrated that the MDMA-induced 5HTergic depletions 

were dose-dependent (Schmidt, Wu, & Lovenberg, 1986). 

There was recovery of 5HT depletions that was both dose- and time- 

dependent (Schmidt et al., 1986; Stone, Hanson, & Gibb, 1987). MDMA decreased 

5HT levels 3 hours after administration. This depletion was still present up to 6 hours 

post-administration, but had recovered within 24 hours of MDMA administration. A 

second decline in tissue levels of 5HT was observed 1 day after drug administration 

and was still present 7 days (Schmidt et al., 1986), and 14 days  (Stone, Merchant, 

Hanson, & Gibb, 1987), later .  

MDMA administration produced an increase in tissue DA. In rats, tissue levels 

of DA were dose-dependently increased 1 (B. K. Yamamoto & Spanos, 1988), 2 (B. 

K. Yamamoto & Spanos, 1988), and 3 (Logan, Laverty, Sanderson, & Yee, 1988; 

Schmidt et al., 1986; Stone et al., 1986) hours after an acute administration of 

MDMA. That increased DA levels are found concurrently with 5HT deficits is in 

contrast to the effect of 5HT neurotransmission on extracellular levels of DA. The 

increase may be a reflection of MDMA inhibiting the action of MAO, as the 

concentration of the DA metabolite, 3,4-Dihydroxyphenylacetic acid (DOPAC), was 

concurrently decreased (B. K. Yamamoto & Spanos, 1988).  

 

The Effects of Repeated MDMA on Tissue 5HT & DA 

Arguably the most consistent finding of effects of repeated exposure to 

MDMA is reduced tissue levels of 5HT.  Repeated exposure to MDMA produces 

species-dependent reductions in 5HT and markers of 5HT; dose-dependent 5HTergic 

deficits were observed in non-human primates and rats (Battaglia, Yeh, & De Souza, 

1988; Insel, Battaglia, Johannessen, Marra, & De Souza, 1989), but not mice 

(Battaglia, Yeh, et al., 1988; Stone, Hanson, et al., 1987). The frequency of MDMA 

administration also influences the magnitude of 5HT deficits. O'Shea, Granados, 
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Esteban, Colado, and Green (1998) measured 5HT deficits following administration 

of 4.0 mg/kg MDMA daily for 4 days, twice-weekly for 8 weeks, or twice daily for 4 

days. Only the latter dosing regimen decreased 5HT, suggesting that the cumulative 

effects of repeated administrations of MDMA caused deficits, and that dosing with 

lower frequency allows for recovery.  

A decrease in density of SERT binding sites was found only after repeated 

exposure to high doses of MDMA (Insel et al., 1989). In rats, a dosing regimen of 

20.0 mg/kg MDMA (sc) twice daily for 4 days, led to a decrease in the density of 

cortical and striatal 5HT uptake sites 18 hours after the final drug administration. 

SERT density was still decreased one month later, but had recovered 12 months after 

MDMA (Battaglia, Yeh, et al., 1988).  

The marked effects of MDMA on tissue levels of 5HT and SERT density have 

led to a debate as to whether the decreases are due to neuroadaptation, or to 

neurotoxicity that results in degeneration of 5HT terminals or neurons (Biezonski & 

Meyer, 2011). Decreased SERT density was initially considered an indication of 

neurotoxicity (for example, Battaglia, Brooks, et al., 1988). The decreases may, 

however, reflect a reduction in functional SERT. X. Wang, Baumann, Xu, Morales, 

and Rothman (2005) hypothesised that reported decreases of SERT binding were due 

to the internalisation of SERT, which reduced the number of functional SERT. 

MDMA did not, however, alter the distribution of SERT in subcellular fractions. It 

must be noted though, that the specificity of the SERT antibody has since been 

questioned (Kivell, Day, Bosch, Schenk, & Miller, 2010). Other data suggest MDMA 

causes the internalisation of SERT; prolonged exposure to MDMA induced SERT 

internalisation in cultured 5HT neurons (Kittler, Lau, & Schloss, 2010), and dose-

dependent internalisation of SERT was found in cell lines following MDMA 

treatment (Kivell et al., 2010). These studies suggest that, at least following some 

exposure regimens, the decrease in SERT binding is due to neuroadaptive changes- 

specifically, internalisation of SERT- rather than to neurotoxicity.  

Further evidence for a neuroadaptive rather than neurodegenerative response 

to MDMA has been found in studies that measured VMAT2. Located in the terminals, 

the protein can be measured as a marker of terminal degeneration. MDMA (4 x 10.0 

mg/kg with 1 hour between each administration) decreased SERT, but not VMAT2, 

expression in rats, as measured by immunoblotting (Biezonski & Meyer, 2011). 
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Doses of MDMA that cause the long-term reduction of 5HT and markers of 

the 5HT system do not cause long-term decreases in DA neurotransmission. Markers 

of DA (Colado & Green, 1994), the function of DAT (for example; Battaglia et al., 

1987; Lew et al., 1996; Schmidt & Kehne, 1990; Stone et al., 1986) and the fibre 

density of DAergic neurons (O'Hearn, Battaglia, De Souza, Kuhar, & Molliver, 1988) 

were not altered by repeated MDMA. Stringent dosing regimens that used extremely 

high doses of MDMA, however, seem to produce a transient decrease in tissue levels 

of DA and metabolites that is region-dependent (Biezonski et al., 2013; Commins et 

al., 1987; Slikker et al., 1988). 

 

Effects of Repeated MDMA on Extracellular 5HT and DA 

Repeated exposure to MDMA does not affect basal levels of extracellular 5HT 

(Gartside, McQuade, & Sharp, 1996; Reveron, Maier, & Duvauchelle, 2010; 

Shankaran & Gudelsky, 1999), but decreased both MDMA- (Shankaran & Gudelsky, 

1999) and electrical- (Gartside et al., 1996) stimulated release of 5HT.  

Repeated exposure to MDMA, whether self-administered or experimenter-

administered, did not alter basal levels of extracellular DA (Colussi-Mas, Wise, 

Howard, & Schenk, 2010; Kalivas, Duffy, & White, 1998; A. E. Morgan, Horan, 

Dewey, & Ashby Jr, 1997; Reveron et al., 2010). Few studies have measured the 

effects of repeated MDMA on the stimulated release of extracellular DA. Repeated 

exposure to MDMA augmented cocaine- (COC; A. E. Morgan et al., 1997) and 

MDMA- (Kalivas et al., 1998) induced increases in DA in the nucleus accumbens 

(NAc). A different dosing regimen, however, had no effect on MDMA-induced 

extracellular DA in the striatum (Shankaran & Gudelsky, 1999).  

 

Self-administration 

Data from animal research reports similar neurochemical effects to clinical 

reports. The laboratory studies, however, vary markedly in the doses of MDMA used 

and questions have been asked of whether these doses are relevant to human 

consumption. The translation of doses of drugs used by humans to drug doses used for 

animal research is complicated. A number of factors influence the scaling, including 

metabolism of drug, pharmacokinetics, animal size, and drug distribution, and as a 

result a number of calculations for translating doses have been offered (for example, 

Reagan-Shaw, Nihal, & Ahmad, 2008; United States Department of Health and 
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Human Services, 2005). In addition, it has been well established that the 

neurochemical effects of drugs differ depending on whether the drug is self- 

administered or is non-contingently administered (Dworkin, Mirkis, & Smith, 1995; 

Hemby, Koves, Smith, & Dworkin, 1997). Thus the neurochemical effects produced 

following human consumption can be expected to differ from those found in animals 

after experimenter-administered drug. A typical ecstasy tablet contains about 100 mg 

of MDMA, which equates to a dose of 1.4 mg/kg in a 70 kg person. The animal 

research described previously used much higher doses of MDMA, and therefore the 

translational value of these experiments is questionable. These dosing problems are 

minimised in the self-administration model, in which the animal regulates its intake.  

 

Self-Administration History 

In 1962 the development of the chronic indwelling intravenous catheter 

permitted studies of long-term drug self-administration in laboratory animals (Weeks, 

1962). Self-administration experiments have since been conducted in a number of 

species, namely: non-human primates (T. Thompson & Schuster, 1964; Yanagita, 

Deneau, & Seevers, 1963); rats (Weeks & Collins, 1964); mice (Hillman & 

Schneider, 1975); cats (Balster, Kilbey, & Ellinwood Jr, 1976); and dogs (Risner & 

Jones, 1975). 

The self-administration paradigm is considered the “gold-standard” animal 

model of human drug-taking behaviour. Most drugs that are abused by humans are 

self-administered by animals, and drugs that are not abused by humans are not self-

administered by animals (Griffiths, 1980; Johanson & Balster, 1978; Schuster & 

Thompson, 1969). As a result, self-administration procedures are considered valid 

tests of the abuse liability of novel compounds (Schuster & Johanson, 1974). 

 

The Role of DA in Self-administration 

A large number of studies has documented the critical role of DA in the 

positively reinforcing properties of drugs using self-administration measures. Early 

studies showed that DA ligands, but not norepinephrine (NE) ligands, considerably 

altered responding for amphetamine (AMPH; Yokel & Wise, 1976), and responding 

was maintained when DA receptor agonists were made available following the self-

administration of AMPH (Yokel & Wise, 1978).  
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All drugs of abuse share the characteristic of increasing DA (Di Chiara, 

Acquas, Tanda, & Cadoni, 1992) and drugs of abuse, but not non-abused drugs, 

increased extracellular levels of DA (Di Chiara & Imperato, 1988). Further, drug-

naïve animals self-administered DAergic agonists (Self, Belluzzi, Kossuth, & Stein, 

1996; Self & Stein, 1992; Weed & Woolverton, 1995) and COC-trained animals 

continued to respond when D1 and D2 receptor agonists were made available (Ranaldi, 

Wang, & Woolverton, 2001; Weed & Woolverton, 1995; Woolverton, Goldberg, & 

Ginos, 1984). Furthermore, co-administration of DA agonists shifted the dose-effect 

curve of responding for COC leftward (Barrett, Miller, Dohrmann, & Caine, 2004), 

comparable to what is found when the dose of COC is increased.  

The attenuation of DA neurotransmission retards self-administration of drugs 

of abuse. Neurotoxic 6-OHDA lesions that decreased DA levels attenuated 

responding maintained by AMPH (Lyness, Friedle, & Moore, 1979), COC (Caine & 

Koob, 1994a; D Roberts, Corcoran, & Fibiger, 1977; D Roberts & Koob, 1982), 

morphine (J. E. Smith, Guerin, Co, Barr, & Lane, 1985) and nicotine (Singer, 

Wallace, & Hall, 1982), whereas lesions that decreased NE had no effect (D Roberts 

et al., 1977). The lesions also inhibited the acquisition of AMPH self-administration 

(Lyness et al., 1979). 

A multitude of data now show that D1 and D2 antagonists decreased 

responding for, or caused a rightward shift in the dose-effect curve of responding for, 

drugs of abuse- comparable to what is found when the dose of drug is lowered. D1 

receptor antagonists decreased responding for methamphetamine (METH; Brennan, 

Carati, Lea, Fitzmaurice, & Schenk, 2009), and caused a rightward shift in the dose-

effect curve of responding for MDMA (Daniela, Brennan, Gittings, Hely, & Schenk, 

2004) and COC (Barrett et al., 2004; Britton et al., 1991; Caine & Koob, 1994a; 

Corrigall & Coen, 1991; Hubner & Moreton, 1991; Koob, Le, & Creese, 1987). D2 

receptor antagonists decreased responding for AMPH (Amit & Smith, 1992; Fletcher, 

1998) and caused a rightward shift of the dose-effect curve for MDMA (Brennan et 

al., 2009) and COC (Barrett et al., 2004; Britton et al., 1991; Caine & Koob, 1994a; 

Corrigall & Coen, 1991; Hubner & Moreton, 1991).  

Local infusion of drugs of abuse and DA ligands has identified the DA 

projections of the mesolimbic DA system to be critical to self-administration of drugs 

of abuse. 6-OHDA lesions of the ventral tegmental area (VTA), which contains the 

cell bodies of DA neurons that comprise the mesolimbic system decreased responding 
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maintained by COC (D Roberts & Koob, 1982). 6-OHDA lesions of the DA terminals 

in the NAc decreased responding maintained by COC, AMPH, morphine, nicotine 

and morphine (Caine & Koob, 1994b; Lyness et al., 1979; Pettit, Ettenberg, Bloom, & 

Koob, 1984; D Roberts et al., 1977; D Roberts, Koob, Klonoff, & Fibiger, 1980; 

Singer et al., 1982; J. E. Smith et al., 1985). Similarly, the localised infusion of D1 and 

D2 antagonists into the NAc attenuated responding for MDMA (Shin, Qin, Liu, & 

Ikemoto, 2008) or COC (Bari & Pierce, 2005; Veeneman, Broekhoven, Damsteegt, & 

Vanderschuren, 2012), and caused a rightward shift in the dose-effect curve of 

responding for COC (Caine, Heinrichs, Coffin, & Koob, 1995) or AMPH (Phillips, 

Robbins, & Everitt, 1994). Further evidence for the role of the NAc in drug-produced 

reinforcement is found with the acquisition of MDMA (Shin et al., 2008), COC 

(Rodd-Henricks, McKinzie, Li, Murphy, & McBride, 2002) and AMPH (Ikemoto, 

Qin, & Liu, 2005) self-administration when drug was infused directly into the NAc. 

The pattern of responding also appears to be DA-dependent. An elegant 

microdialysis study showed that the time-course of COC self-administration was 

tightly linked to NAc DA levels. Responding was rapid at the beginning of a COC 

self-administration session and NAc extracellular DA was increased. When DA levels 

dropped below a certain, threshold, level a response was produced (Pettit & Justice Jr, 

1989; Wise et al., 1995).  

 

The Role of 5HT in Self-administration 

There is conclusive evidence to show that 5HT is inhibitory to self-

administration of drugs of abuse. It has been suggested that this inhibition is due to 

manipulation of DA (Czoty, Ginsburg, & Howell, 2002), but the data is inconclusive 

due to the complicated relationship between the two neurotransmitter systems. 

Serotonergic agonists are not self-administered (Götestam & Andersson, 1975; 

Howell & Byrd, 1995; D Roberts et al., 1999; Tessel & Woods, 1975; Vanover, 

Nader, & Woolverton, 1992). The DAT is the primary mechanism for limiting DA 

transmission (Caron, 1996), and has been implicated in the propensity to self-

administer drugs of abuse (D. Yamamoto et al., 2013). Binding affinity at SERT, 

however, was negatively correlated with potency as a reinforcer (Ritz & Kuhar, 

1989). Further, the potency of re-uptake blockers for DAT relative to SERT was 

positively correlated with reinforcing potency (D Roberts et al., 1999). Similarly, the 

reinforcing potency of a group of compounds with similar DA-releasing abilities was 
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dependent on their ability to release 5HT. Reinforcing potency was positively 

correlated with the relative release of DA: 5HT (Wee et al., 2005). 

Pharmacological manipulations of 5HT altered the reinforcing potency of a 

range of abused drugs. Reuptake inhibitors, the releasing stimulant d-fenfluramine (d-

fen), and the 5-HT precursor, L-tryptophan, decreased AMPH (Porrino et al., 1989; F. 

L. Smith, Yu, Smith, Leccese, & Lyness, 1986), METH (Munzar, Baumann, Shoaib, 

& Goldberg, 1999), COC (Carroll, Lac, Asencio, & Kragh, 1990a, 1990b; Czoty et 

al., 2002; Howell & Byrd, 1995; A. McGregor, Lacosta, & Roberts, 1993; Negus, 

Mello, Blough, Baumann, & Rothman, 2007; Porrino et al., 1989), heroin (Higgins, 

Wang, Corrigall, & Sellers, 1994; Y. Wang, Joharchi, Fletcher, Sellers, & Higgins, 

1995) and morphine (Raz & Berger, 2010) self-administration.  

Other studies have shown that decreased 5HTergic transmission facilitated 

self-administration. pCPA pre-treatment, which induced about an 80% reduction in 

whole-brain 5HT levels, increased ethanol (EtOH) self-administration (Lyness & 

Smith, 1992). Dorsal and median raphe, medial forebrain bundle (MFB) or 

intracerebroventricular (icv) lesions produced by the selective 5HT neurotoxin, 5, 7- 

dihydroxytryptamine (5,7- DHT), resulted in significantly higher levels of AMPH 

self-administration (Fletcher, Korth, & Chambers, 1999; Leccese & Lyness, 1984; 

Lyness, Friedle, & Moore, 1980). Bilateral NAc 5, 7 -DHT lesions increased 

morphine self-administration (J. E. Smith, Shultz, Co, Goeders, & Dworkin, 1987), 

but similar lesions did not alter AMPH self-administration (Lyness et al., 1980). icv, 

intra-amygdala, and MFB 5, 7-DHT lesions increased the break-points on a 

progressive ratio schedule (Loh & Roberts, 1990; DCS Roberts, Loh, Baker, & 

Vickers, 1994) 

 

Acquisition of Self-administration 

Most self-administration studies have examined effects of manipulations 

following acquisition of self-administration. Some, however, have documented 

acquisition profiles in order to determine factors that might impact susceptibility to 

drug dependence. Variability in basal extracellular DA was related to susceptibility to 

self-administer drugs; basal levels of striatal DA were inversely related to the number 

of responses produced during acquisition of COC (Glick, Raucci, Wang, Keller Jr, & 

Carlson, 1994).  
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One means of measuring factors that might influence susceptibility to the 

positive reinforcing effects of drugs is to examine acquisition profiles. The latency to 

acquire COC and AMPH self-administration was inversely related to the dose of drug; 

higher doses led to more rapid acquisition (Carroll & Lac, 1997; Schenk et al., 1993; 

Van Ree, Slangen, & de Wied, 1978). Therefore, changes in susceptibility can be 

examined by measuring shifts in the acquisition curves. More rapid acquisition would 

suggest a more sensitive response whereas delayed acquisition would suggest a less 

sensitive response.   

One factor that has been shown to alter the latency to acquisition of self-

administration is prior drug exposure. The acquisition of AMPH self-administration 

was facilitated following pre-treatment with AMPH (Piazza, Deminière, Le Moal, & 

Simon, 1989), and pre-treatment with COC produced a leftward shift in the 

acquisition curve for COC self-administration (Horger, Shelton, & Schenk, 1990). 

The acquisition of self-administration was also altered by pre-treatment with some 

drugs that were different from the self-administration drug. For example, the repeated 

administration of MDMA, nicotine, or AMPH enhanced the acquisition of self-

administration of low-doses of COC self-administration (Fletcher, Robinson, & 

Slippoy, 2001; Horger, Giles, & Schenk, 1992). The pharmacological basis for these 

data is thought to be due to the drug pre-treatment inducing sensitisation of the 

mesolimbic DAergic system (Kalivas, Sorg, & Hooks, 1993; Kalivas & Stewart, 

1991; Sorg & Kalivas, 1991) which facilitates the reinforcing effects of drug.  

There are other predisposing factors in drug self-administration that have also 

been attributed to enhanced DA responses. Rats that display a heightened behavioural 

response to a novel (but not familiar) environment (HR rats) were more likely to self-

administer COC and AMPH (Dellu, Piazza, Mayo, Le Moal, & Simon, 1996; Hooks, 

Jones, Smith, Neill, & Justice, 1991; Mandt, Schenk, Zahniser, & Allen, 2008; Piazza 

et al., 1990; Piazza et al., 1989; Rougé‐Pont, Deroche, Moal, & Piazza, 1998). HRs 

showed an upward shift of the COC dose-effect curve and COC self-administration 

was maintained by lower doses than Low Responders (LR). This might reflect the 

increased DAergic response to drugs by HR rats. Extracellular DA was higher in HRs 

after COC administered either peripherally (Hooks et al., 1991) or directly into the 

NAc (Hooks et al., 1994).  

Food restriction also facilitated the acquisition of self-administration of 

different classes of drug, using different routes of administration and in a range of 
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species (Carroll, 1985; Carroll, France, & Meisch, 1979; Carroll & Lac, 1993; Oei, 

1983; Papasava, Singer, & Papasava, 1986). The extent of the food restriction, as 

measured by percentage of body weight lost, was correlated with the rate of 

acquisition of COC self-administration (De Vry, Donselaar, & Van Ree, 1989). Food 

deprivation also enhances the DAergic response to drugs of abuse. Sensitisation of the 

increase in extracellular DA induced by repeated treatment with a range of drugs was 

augmented following food-deprivation (Cadoni, Solinas, Valentini, & Di Chiara, 

2003).  

 

MDMA Self-administration 

The data show that DA neurotransmission underlies the reinforcing effects of 

drugs of abuse; manipulations that increase DA increase self-administration. But the 

preferential neurochemical effect of MDMA is to increase 5HT neurotransmission, 

which is inhibitory to self-administration. Based on its neurochemical effects, 

therefore, MDMA would not be expected to be self-administered. MDMA, however, 

is abused by humans, and is self-administered by monkeys (Beardsley, Balster, & 

Harris, 1986; Fantegrossi, Ullrich, Rice, Woods, & Winger, 2002), baboons (Lamb & 

Griffiths, 1987), rats (Ratzenboeck, Saria, Kriechbaum, & Zernig, 2001), and mice 

(Trigo, Panayi, Soria, Maldonado, & Robledo, 2006). 

Like all other drugs of abuse, racemic, (+)- and (-)- MDMA produce dose-

dependent responding in the shape of an inverted U; high and low doses are self-

administered at low levels, and intermediate doses are self-administered at higher 

levels (Beardsley et al., 1986; Fantegrossi et al., 2002; Fantegrossi et al., 2004; Lamb 

& Griffiths, 1987; Schenk, Gittings, Johnstone, & Daniela, 2003).  

Early MDMA self-administration experiments employed a substitution 

method, whereby (±)-MDMA was introduced to COC-trained animals (Beardsley et 

al., 1986; Lamb & Griffiths, 1987; Schenk et al., 2003). In the first experiment, 3 of 

the 4 monkeys tested self-administered MDMA, indicating that MDMA produced 

reinforcing effects. Further, at one dose, 100ug/kg/ infusion, 2 of the monkeys 

responded more than when COC was self-administered (Beardsley et al., 1986).  

Subsequent studies, however, reported low levels of responding maintained by 

MDMA and high levels of variability between subjects. COC-trained baboons 

responded for about 5-6 infusions of MDMA (1.0 mg/kg/infusion) in a 24hr session 

(Lamb & Griffiths, 1987). Initial studies in rodents revealed extremely low numbers 
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of responses, and responding was not dose-dependent. Rats that were initially trained 

to perform an operant to receive food pellets self-administered about 3-4 infusions per 

session, regardless of dose (De La Garza II, Fabrizio, & Gupta, 2007; Ratzenboeck et 

al., 2001). In one study, only 1 of 5 rats tested responded reliably (De La Garza II et 

al., 2007). Because responding maintained by MDMA was low, researchers suggested 

that MDMA had relatively weak reinforcing effects (Beardsley et al., 1986; Lamb & 

Griffiths, 1987). More recent MDMA self-administration studies, however, have 

reported higher levels of responding (Bradbury et al., 2013; Do & Schenk, 2011; 

Reveron et al., 2010; Schenk, Colussi-Mas, Do, & Bird, 2012; Schenk et al., 2003; 

Schenk et al., 2007). The failure of earlier studies to find reliable MDMA self-

administration might be due to methodological disparities; in particular MDMA dose, 

and drug infusion length (De La Garza II et al., 2007), or the number of test sessions. 

High rates of MDMA self-administration was produced only after an average of 15 

daily test sessions (Schenk et al., 2012).  

There are many aspects of MDMA self-administration that differentiate it 

from the self-administration of other drugs. First, the acquisition of MDMA self-

administration is not dose-dependent. The proportion of rats that acquired MDMA 

self-administration and the latency to acquisition was comparable when 1.0 and 0.25 

mg/kg MDMA were tested (Schenk et al., 2007). The latency to acquire AMPH and 

COC self-administration, however, was inversely related to the dose of drug (Carroll 

& Lac, 1997; Schenk et al., 1993; Van Ree et al., 1978).  

Second, the latency to acquisition of MDMA self-administration is much 

longer than the latency to acquisition for COC and AMPH. Whereas self-

administration of moderate to high doses of COC and AMPH is acquired within a 

small number of limited-access daily sessions (e.g. Carroll & Lac, 1997), 15 test 

sessions are typically required for MDMA self-administration (Schenk et al., 2012). 

This is reflected in the low level of responding for MDMA found during initial 

sessions (Reveron et al., 2010; Schenk et al., 2003; Schenk et al., 2007).  

Third, the most striking difference between the acquisition of MDMA self-

administration and that of other drugs is the number of subjects that acquire self-

administration. Our laboratory consistently finds that only about 50% of test subjects 

acquire MDMA self-administration (Schenk et al., 2012). The self-administration of 

moderate and high doses of drugs such as COC and AMPH, however, is acquired by 

the vast majority of subjects (e.g. Carroll & Lac, 1997). 
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Once MDMA self-administration has been acquired, it becomes comparable to 

that of AMPH or COC in that responding became dose-dependent (Schenk et al., 

2003; Schenk et al., 2007). Coincident with the change in the behavioural profile is a 

change in the neurochemical effects of MDMA. The DAergic response to MDMA 

became augmented (Colussi-Mas et al., 2010) and the 5HT response decreased 

(Reveron et al., 2010), and tissue levels of 5HT, but not DA, were decreased (Do & 

Schenk, 2011; Schenk, Gittings, & Colussi‐Mas, 2011) following MDMA self-

administration. Further, similar to what is found with other psychostimulants, 

DAergic mechanisms were associated with MDMA-seeking following extensive self-

administration. Drug seeking following the self-administration of MDMA was 

reinstated by the D2 agonist, quinpirole, the DA releaser, AMPH, and the DA 

reuptake inhibitor, GBR 12909 (Schenk et al., 2011); and MDMA-produced drug-

seeking was attenuated by the D1 antagonist, SCH 23390, and the D2 antagonist, 

eticlopride (Schenk et al., 2011).  

It appears then, that MDMA self-administration progresses with changes of 

the neurochemical response. Initially, the 5HT response is marked and responding for 

MDMA is low. Following repeated testing, the 5HT response is decreased and the DA 

response is increased, and responding is comparable to that maintained by AMPH or 

COC. 

 

Current Thesis 

The current thesis aims to test the ideas that (1) susceptibility to acquire 

MDMA self-administration is related to the MDMA-produced 5HT response, (2) 

MDMA self-administration progresses as the MDMA-produced 5HT response 

decreases and the MDMA-produced DA response increases, and (3) that responding 

maintained by MDMA is not dependent on 5HT neurotransmission. Based on 

previous literature, it was hypothesised that the acquisition of MDMA self-

administration is initially limited by the MDMA-produced 5HT response, but that this 

response decreases with repeated exposure to MDMA. The MDMA-produced DA 

response was hypothesised to concurrently increase, and to underlie the maintenance 

of MDMA self-administration. 
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General Methods 

 

The methodology contained in this section was used for each and every experiment 

undertaken for this thesis. The methods sections contained in chapters describe any 

further methodology required for individual experiments. 

 

Animals 

Male Sprague-Dawley rats weighing between 290 and 330g at the start of the 

experiment were used. The rats were bred in the vivarium at Victoria University of 

Wellington and housed in groups of 4 until they weighed 280g. Thereafter, they were 

housed individually in hanging polycarbonate cages for 4 days prior to surgery. The 

animal colony was humidity- (55%) and temperature- (21° C) controlled, and was on 

a 12/12 hour light cycle, with lights on at 0700 hr. Food and water were available ad 

libitum except during testing. All procedures were approved by the Animal Ethics 

Committee at Victoria University of Wellington. 

 

MDMA Self-Administration Testing 

Surgery 

All rats were surgically implanted with an intrajugular catheter. Deep 

anaesthesia was produced by an injection of ketamine (90.0 mg/kg, ip, 

PhoenixPharm) and xylazine (9.0 mg/kg, ip, Provet), and this was followed by an 

injection of the anti-inflammatory anaesthetic, Carprofen® (5.0 mg/kg, sc, Pfizer 

Animal Health). Briefly, the external jugular vein was isolated from surrounding 

tissue and tied off. An incision was made in the vein and a silastic catheter (Dow 

Corning, Midland, MI, USA) was inserted and fixed. The distal end of the catheter 

was then threaded subcutaneously to the exposed skull.  

A compound sodium lactate solution (Hartmann’s solution, 2 x 6ml, sc) was 

administered to restore electrolyte balance. Carprofen® (5.0 mg/kg, sc) was 

administered on each of the two days following surgery. Catheters were infused with 

0.2 mL of a sterile 0.9% heparinised saline solution, containing penicillin G 

potassium (250,000 IU/mL) each day for 3 days post-surgery. 

 

Apparatus 
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Self-administration was conducted in operant chambers (Med Associates, 

ENV-001, St Albans, VT, USA) equipped with 2 levers. Depression of the right, 

‘active’ lever resulted in a 12 second intravenous infusion of 0.1 mL ±MDMA (1.0 

mg/kg/infusion, Environmental Science and Research Ltd, Porirua, New Zealand; 

Experiments 1 and 2) and the illumination of a stimulus light located directly above 

the active lever. Depression of the left, ‘inactive’ lever was recorded but had no 

programmed response. The 1.0 mg/kg dose of MDMA was chosen because it has 

been demonstrated to produce reliable acquisition of self-administration (Schenk et 

al., 2003; 2007; 2012).  

 

Procedure 

Each day, prior to self-administration testing, catheters were flushed with 0.2 

mL of the heparinised penicillin solution. Daily test sessions were 2 hours in duration, 

6 days a week. Each session commenced with an experimenter-administered infusion 

of 0.1 mL drug to clear the catheter of the penicillin solution. Thereafter, drug 

infusions of MDMA (1.0 mg/kg/ infusion) were delivered according to a fixed ratio 1 

schedule of reinforcement. Testing continued for 25 daily sessions, or until the session 

during which the total cumulative amount of self-administered MDMA reached 90±5 

infusions, whichever came first. Rats that met this criterion within the 25 day cut-off 

were considered to have acquired (ACQ) and those that failed to meet the criterion 

within this test period were considered to have not acquired (NO-ACQ) self-

administration. The latency to acquisition was defined as the number of test sessions 

required to meet this acquisition criterion.  
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Chapter 1 

This chapter has been adapted from Bradbury et al. (2013) 

Introduction 

The experiments of Chapter 1 sought to elucidate whether the variability in 

acquisition of MDMA self-administration could be explained by the MDMA-induced 

increase of synaptic 5HT or DA. Variability in COC and AMPH self-administration 

has previously been attributed to differences in drug-induced increases of synaptic 

DA (Nelson, Larson, & Zahniser, 2009; Piazza et al., 1991). MDMA differs from 

COC and AMPH, however, in that it preferentially increases synaptic 5HT. This 

would be expected to limit the acquisition of self-administration because of inhibitory 

effects on DA. If so, it was expected that the latency to acquisition of MDMA self-

administration would be negatively related to the MDMA- produced 5HT response 

and positively related to the DA response. In order to investigate these possibilities 

extracellular levels of 5HT and DA in response to an acute injection of MDMA were 

measured prior to the commencement of MDMA self-administration.  

Microdialysis probes were aimed at the shell of the NAc. Previous research 

has documented that drugs of abuse, including MDMA, induce a preferential increase 

in shell DA relative to the core (Cadoni et al., 2005), that has been related to the 

drugs’ reinforcing properties (Di Chiara, 1999). 

 

Method 

Experimental Overview 

 

 

 

 

 

 

 

Surgery 

Concurrent with the implantation of the jugular catheter (as described in the 

General Methods), a guide cannula (MAB 4.15.IC, microbiotech, Sweden) was 
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stereotaxically implanted 1mm above the right NAc (antero-posterior +1.0mm from 

bregma, lateral -0.85mm from midline, ventral -5.5mm from dura; Paxinos & Watson, 

2006). The cannula was fixed to the skull alongside the distal end of the catheter using 

dental screws and dental acrylic.  

 

Microdialysis 

Procedure 

Six days following surgery, the rats were transported to the testing room and 

held in a transparent plastic cage. A microdialysis probe (MAB 4.15.2.Cu, 

Microbiotech, Sweden) was inserted into the guide cannula and protruded 3mm past 

the guide (membrane length: 2mm). Artificial cerebrospinal fluid (149 mmol/L NACl; 

2.8 mmol/L KCl; 1.2 mmol/LMgCl2; 1.2 mmol/LCaCl2; 0.45 mmol/LNaH2PO4; 2.33 

mmol/LNa2HPO4, pH 7.4) was perfused through the probe overnight at a flow rate of 

1.0 µL/min. Probe recovery rates were calculated individually for each rat following 

perfusion with known concentrations of DA and 5HT and averaged 12.3 ± 1.9% for 

DA and 18.4 ± 2.2% for 5HT.  

The following day, the rat was moved into a clear, plexiglass chamber of 

dimensions 42 × 42 × 30 cm, which served as the testing chamber and 3 baseline 

samples were collected at 30 min intervals in a tube containing 3.75 µL 0.01 N PCA. 

Each rat then received an injection of 1.0 mg/kg MDMA (iv) followed, 2 hours later, 

by an injection of 3.0 mg/kg MDMA (iv). Dialysis samples were collected at 30 

minute intervals for 2 hours after each injection. The microdialysis probe was then 

removed from the guide, the dummy cannula was re-inserted, and the rats were 

returned to their home cage. Self-administration testing began 2 to 3 days later. 

 

Dialysate Analysis 

The concentration of DA and 5HT in dialysates was determined using high 

performance liquid chromatography (HPLC; 1100 series, Agilent, Santa Clara, CA, 

USA) equipped with a coulometric detector (Coulochem III, ESA Inc., Chelmsford, 

MA, USA). Samples were split for the purpose of analysis. For DA, 10 L of 

dialysate was injected onto a column (C18 reversed phase; Agilent Eclipse XDB-C18, 

4.6  150 mm, 5 m particle size) and the mobile phase consisted of 75 mmol/L 

NaH2PO4, 1.7 mmol/L octanesulfonic acid, 0.25 mmol/L EDTA, 100 L/l 
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triethylamine, 10% (v/v) acetonitrile, pH 3, delivered at a constant flow rate of 

1.0 ml/min. For 5HT, 20 L of dialysate was injected into a C18 reversed phase 

column (Luna C18(2), 2.0  100 mm, 3 m particle size, Phenomenex). The mobile 

phase consisted of 90 mmol/L NaH2PO4, 1.7 mmol/L octanesulfonic acid, 50 mol/L 

EDTA, 50 mmol/L citric acid, 10% (v/v) acetonitrile, pH 3, delivered at a constant 

flow rate of 0.2 mL/min. Chromatograms were acquired with ChemStation software 

and peak heights of samples were compared to peak heights of standards with known 

concentrations of DA or 5HT. Concentrations are expressed as nmol/L, corrected for 

probe recovery. The lower limit of detection for DA was 3 fmol, and for 5HT 0.88 

fmol. 

 

Histology 

Following the completion of self-administration testing, rats were sacrificed 

by CO2 asphyxiation and the brains were removed and stored at -80°C. Brains were 

sliced on a cryostat in 60 or 80µm sections and sections were stained with Neutral 

Red. Sections were examined by an experimenter blind to the results and data from 

rats with incorrect placements were not included in any analyses. A complete set of 

samples for 5HT was collected from 14 rats (n=7 acquired; n=7 non-acquired) and for 

DA from 12 rats (n=7 acquired; n=5 non-acquired. Nb, samples from 2 non-acquired 

rats were lost due to hplc problems). 

 

Data Analysis 

Active and inactive lever responding for the ACQ and NO-ACQ groups were 

compared for the first 3 and last 3 days of responding maintained by MDMA using a 

three-way analysis of variance (ANOVA; Group X Lever X Training). Post-hoc tests 

were conducted using the Bonferroni correction. MDMA-induced changes in DA and 

5HT were expressed as a percentage of the baseline value, calculated as the average 

of the initial three baseline samples collected in the testing chamber. Changes in 

MDMA-induced DA and 5HT overflow for the ACQ or NO-ACQ group were 

evaluated using a three-way ANOVA (Group X Time X Dose) followed by post hoc 

tests using the Bonferroni correction . Correlations were conducted between the 

MDMA-induced increases of 5HT and DA, expressed as either the average 

concentration across the 4 samples or as the peak concentration, and the acquisition 
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data, expressed as either the number of sessions required to reach the acquisition 

criterion or the average MDMA intake over the last 3 days of self-administration 

testing. 
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Results 

 

MDMA self-administration 

Figure 1.1 depicts the location of the microdialysis probes. The acquisition 

criterion was met by 7 of the 14 rats.  The 90 infusions of 1.0 mg/kg/infusion MDMA 

were self-administered in an average of 15 test sessions (range = 7-22 days), 

consistent with previous findings from our laboratory (Schenk et al., 2012).  

 

 

 

 

 

Figure 1.2 shows the average number of lever responses during the first 3 and 

the last 3 days of MDMA self-administration for the ACQ and the NO-ACQ groups. 

The ACQ group reached the acquisition criterion in an average of 14.8 (±1.8) test 

sessions. A significant Group X Lever X Training interaction was found (F(1,12)= 6.05, 

p < 0.05). Significant Lever X Training (F(1,12)= 10.69, p < 0.05), and Group X Lever 

(F(1,12)= 10.79, p < 0.05) interactions were found. During initial test sessions 

responding on the active lever was low for both groups, but with repeated daily 

Figure 1.1 Location of microdialysis probes for the Acquired (left panel; n= 7) and Not 

Acquired (right panel; n= 7) groups, adapted from Paxinos& Watson (2005) 
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training, responding on the active lever increased significantly in the ACQ group ( p < 

0.05). On the last 3 days of self-administration, the number of active lever responses 

produced by the ACQ rats was significantly higher than both the number of inactive 

lever responses ( p < 0.05) and the number of active lever responses in the NO-ACQ 

group (p <0.05). 

 

Relationship between the neurochemical response to the initial exposure to MDMA 

and acquisition of MDMA self-administration  

The basal concentrations of 5HT or DA were not significantly different 

between rats from the ACQ (5HT; 1.1  0.3 nmol/L; DA; 11.7  4.5 nmol/L) and NO-

ACQ (5HT; 0.9  0.2nmol; DA; 9.1  2.3 nmol/L) groups (5HT; F(1,10)=0.020, n.s; 

DA; F(1,12)=0.388, n.s.). Figure 1.3 graphs the MDMA-induced increases of 5HT 

(upper panel) and DA (lower panel) relative to baseline. For 5HT, a 3-way ANOVA 

(Dose X Sample X Group) revealed a significant main effect of Dose (F(1,12)= 14.88, 

p < 0.05) but not of Group (F(1,12)= 4.32, n.s.).There was a significant Group X Dose 

interaction (F(1,12)= 5.13, p < 0.05) and post-hoc tests confirmed that the increase 

following 3.0 mg/kg MDMA was higher for the NO-ACQ group (p<0.05). For DA, a 

Figure 1.2 The average number of responses on the active and inactive levers for the first 3, 

and last 3, days of self-administration testing for both the ACQ (n= 10) and NO-ACQ (n= 8)  

groups. * p < 0.05 compared to inactive lever responses for the last 3 days, active lever 

responses for the first 3 days by the ACQ group, and active lever pressing for the last 3 days 

by the NO-ACQ group. 
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3-way ANOVA (Dose X Sample X Group) revealed only a significant main effect of 

Dose (F(1,10)=5.17, p < 0.05). 

Figure 1.3 shows the MDMA-produced percent increase in 5HT and DA as a function 

of baseline neurotransmitter levels. Percent increases are shown for the ACQ group 

and NO-ACQ group for 4 samples collected following 1.0 or 3.0 mg/kg MDMA. * p< 

0.05 compared to the MDMA-induced increase in 5HT of the ACQ group  
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The variability in latency to reach the acquisition criterion, however, was not 

related to 3.0 mg/kg MDMA-induced increases of 5HT or DA. The 5HT response, 

measured as the average concentration of the 4 samples (M= 13.23, SD= 12.68), or 

the peak concentration of 5HT (M= 6.26, SD= 5.66) was not correlated with days to 

acquisition (M= 14.75, SD= 5.12), r= 0.336, p= n.s and r= 0.355, p= n.s, respectively. 

Similarly, no correlation was found between average extracellular levels of DA 

averaged out over the 4 samples (M= 40.81, SD= 29.67) or the peak increase of DA 

(M=14.40, SD= 11.02) and days to acquire self-administration, r= 0.472, p= n.s and 

r=0.290, p= n.s, respectively.  

In addition, there was no significant relationship between the extracellular 

levels of 5HT- whether the average of the 4 samples or the peak concentration was 

used- and the average number of infusions over the last 3 self-administration sessions 

(M=10. 5, SD= 4.07), r= -0.398, p= n.s and r= -0.432, p= n.s, respectively. Likewise, 

neither average extracellular DA nor peak DA significantly correlated with the 

average number of infusions over the last 3 self-administration sessions, r= 0.01, n.s 

and r=-0.16, p=n.s, respectively. 

Figure 1.4 plots the number of infusions of MDMA obtained over the last 3 

self-administration test sessions as a function of the MDMA-produced increases in 

5HT (top) and DA (bottom) for individual rats. Although all analyses revealed non-

significant results, a trend exists in that greater MDMA-induced increase in 5HT 

corresponded with fewer infusions of self-administered MDMA.  



35 

 

 

 

 

 

 

 

 

Figure 1.4 plots the number of infusions of MDMA obtained over the last 3 self-administration 

test sessions as a function of the MDMA-produced increases in 5HT (top) and DA (bottom) for 

individual rats. 5HT and DA levels are represented by the area under the curve produced by 

plotting the concentration of neurotransmitter across time. 

 



36 

 

Discussion 

Acute exposure to MDMA increased both DA and 5HT overflow and as has 

been previously documented (Baumann, Clark, Franken, Rutter, & Rothman, 2008; 

Baumann, Clark, & Rothman, 2008; Kurling, Kankaanpää, & Seppälä, 2008; O'Shea 

et al., 2005; Reveron et al., 2010),  the 5HT response was more pronounced. The 

DAergic response to MDMA was dose-dependent and the magnitude of the increase 

was similar to that previously reported following administration of the same doses, 

administered in the same manner (Baumann, Clark, & Rothman, 2008).  There was, 

however, no difference in the magnitude of the DA response for the rats that acquired 

or failed to acquire MDMA self-administration. MDMA also increased 5HT overflow 

in a dose-dependent manner, and the magnitude of the increase was also comparable 

to what has previously been reported following the same injection protocol (700% and 

1445% for 1.0 mg/kg and 3.0 mg/kg, respectively; Baumann, Clark, & Rothman, 

2008). The MDMA-induced increase in 5HT following the 3.0 mg/kg injection was, 

however, significantly higher for the group that subsequently failed to meet the 

criterion for MDMA self-administration suggesting that 5HT impacts MDMA self-

administration.  

Although 1.0 mg/kg was the self-administered dose, the effect of a single 

infusion of this dose of MDMA on 5HT was not different for the acquired and not 

acquired groups. Only the effect of the higher dose of 3.0 mg/kg produced an effect 

that was different for the two groups. This might suggest that the effects are not 

relevant to the MDMA self-administration data. During self-administration testing, 

however, rats are exposed to multiple infusions of the 1.0 mg/kg dose of MDMA. 

Further, as self-administration progresses, the average intake increases and exceeds 

3.0 mg/kg per session.  One cannot, therefore, directly compare the effect of a single 

experimenter-administered infusion to effects produced by multiple self-administered 

infusions.  

The data suggest that MDMA self-administration is, at least initially, inhibited 

by MDMA-induced increases of 5HT. There was no relationship however, between 

latency to acquisition and MDMA-induced increases of 5HT. Thus individual 

differences in the 5HTergic response to MDMA may predict whether or not the 

subject will acquire MDMA self-administration, but not the latency to acquire self-

administration. 
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A wealth of data has implicated the mesolimbic DAergic system in the 

reinforcing effects of psychostimulants (for a review, see Wise, 1998), including 

MDMA (Brennan et al., 2009; Daniela et al., 2004), and propensity to acquire 

psychostimulant self-administration was correlated with greater DA turnover and 

increased drug-induced extracellular DA in the NAc (Hooks, Colvin, Juncos, & 

Justice Jr, 1992; Marinelli & White, 2000; Piazza et al., 1991). In addition, the latency 

to acquire self-administration was negatively correlated with drug-induced DA 

(Carroll & Lac, 1997; Schenk et al., 1993; Van Ree et al., 1978). Accordingly, the 

MDMA-produced DA response of the ACQ rats may have been expected to be higher 

because of either a greater direct effect of MDMA on DA or because of the indirect, 

and reduced inhibitory, effect of 5HT on DA. This response was, however, 

comparable regardless of whether the rats acquired or failed to acquire MDMA self-

administration. Further, the magnitude of the MDMA-induced DA release was not 

indicative of the latency to acquire MDMA self-administration.  

The MDMA-produced increase in DA was modest compared to effects 

produced by other self-administered drugs (Ranaldi, Pocock, Zereik, & Wise, 1999; 

Suto, Ecke, You, & Wise, 2010; Weiss et al., 1992). It is therefore possible that the 

initial MDMA-produced increase in DA was insufficient to reinforce operant 

responding. Indeed, this might explain why none of the rats reliably self-administered 

MDMA during the first several sessions. It has been suggested that repeated exposure 

to small amounts of MDMA during the first few sessions is sufficient to produce 

deficits in 5HT neurotransmission for some of the rats, leading to a disinhibition of 

mesolimbic DA and the development of reliable self-administration; increased self-

administration would then produce additional 5HT deficits and a more substantial 

disinhibition of DA (Schenk, 2011).  Following experimenter-administered MDMA 

that induced a decrease in 5HT levels equivocal results on DA overflow have been 

reported with increased (Kalivas et al., 1998), or no change in DA levels (Baumann, 

Clark, Franken, et al., 2008; Shankaran & Gudelsky, 1999). In the limited number of 

studies that have investigated the effects of self-administered MDMA, low levels of 

self-administration failed to alter MDMA-induced DA overflow (Reveron et al., 

2010) but more extensive self-administration increased MDMA-induced DA overflow 

to a greater extent for the ACQ group (Colussi-Mas et al., 2010). 

The results of Chapter 1 demonstrate that the variability to acquire MDMA 

self-administration is not likely related to small, initial increases in DA levels, but 



38 

 

might be due to differences in the ability of MDMA exposure to enhance 5HT 

neurotransmission. In particular, the data suggest that greater MDMA-induced 

increases of 5HT were inhibitory to acquisition of self-administration. If so, then a 

reduction of the MDMA-produced 5HT response should facilitate the acquisition of 

MDMA self-administration. This idea can be tested experimentally by manipulating 

MDMA-induced increases of 5HT. One way to decrease 5HT is via neurotoxic 5, 7 – 

DHT lesions. Previous research has shown that these lesions increased responding 

during acquisition of AMPH self-administration (Leccese & Lyness, 1984; Lyness et 

al., 1980). If 5HT also inhibits acquisition of MDMA self-administration, then it was 

expected that the lesion would facilitate acquisition, as measured by a decrease in 

latency. 
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Chapter 2 

 

This chapter has been adapted from Bradbury et al. (2013). 

 

Introduction 

The results of Chapter 1 showed that synaptic 5HT overflow following initial 

MDMA was increased to a lesser extent for the rats that subsequently acquired 

MDMA self-administration. If the variability in susceptibility to self-administer 

MDMA is negatively impacted by MDMA-induced increases of 5HT, then the 

widespread depletion of brain 5HT should enhance susceptibility to self-

administration. This idea was tested in the experiment of Chapter 2.  

The neurotoxin, 5, 7-DHT, produces the widespread depletion of 5HT and NE. 

The meta-substituted dihydroxytryptamine is taken up into 5HTergic and NEergic 

neurons via the uptake transporter. Once transported into the cytosol, 5,7- DHT is 

metabolised by MAO and aldehyde dehydrogenase to form a dihydroxyindoleactic 

acid. This acid, along with deaminated 5, 7- DHT interacts with cytochrome-C 

oxidase of the mitochondria and together they are subjected to enhanced oxidation. 

This oxidation appears to be the greatest factor in the production of the neurotoxic 

effects, as the resulting intermediates attack nucleophiles in peptides and proteins to 

inactivate the –SH and –NH2- functional groups. 

Because 5, 7-DHT is transported into neurons via the uptake transporters it 

can be used as a selective 5HT neurotoxin by co-administering a NE transporter 

(NET) inhibitor to prevent uptake into NE neurons. The selective depletion of 5HT 

via icv or intra-medial forebrain bundle administration of 5,7 – DHT increased initial 

responding for AMPH (Leccese & Lyness, 1984; Lyness et al., 1980). The experiment 

of chapter 2 used 5,7- DHT to produce widespread depletion of brain 5HT prior to the 

commencement of self-administration testing. It was hypothesised that depletion of 

brain 5HT would increase the proportion of subjects that self-administer MDMA, and 

decrease the latency to acquisition. 

 

 

 



40 

 

Method 

 

Experimental Overview 

 

 

 

 

 

 

Self-administration 

5, 7 - DHT was infused following implantation of the i.v catheter. In order to 

prevent uptake into NEergic neurons, the uptake inhibitor, desipramine (25mg/kg, ip, 

Sigma Aldrich, Australia), was administered at least 30 minutes prior to 

administration of 5,7-DHT. In preliminary tests, xylazine produced adverse effects in 

rats subjected to the lesion, and so, instead, sodium pentobarbital (20.0mg/kg, ip, 

Provet) was used as the aneasthetic. Following the insertion of a jugular catheter (see 

General Methods), a 28 gauge cannula (Plastics One, C313I-SPC; USA) was 

stereotaxically inserted into the left ventricle (antero-posterior -1.5mm from bregma, 

lateral -1.7mm from midline, ventral -3.5mm from dura; Paxinos & Watson, 2006) 

and 10µL 5,7-DHT (150µg freebase; Tran-Nguyen, Bellew, Grote, & Neisewander, 

2001) or the 1% ascorbic acid vehicle was infused  over a 10 min period ( 1 µL/min). 

The cannula remained in situ for 2 minutes post-injection to allow diffusion of the 

neurotoxin. Self-administration testing began 10 days later. 

 

Neurochemical Consequences of the Lesion 

Separate groups of rats (n =5 per group) were treated with 5, 7- DHT or 

vehicle, as above, and sacrificed 10 days later to measure tissue levels of 5HT and DA 

and their metabolites. Following CO2 asphyxiation, rats were sacrificed by 

decapitation, the FC and striatum were extracted and samples were stored at -80º C 

until assay. The FC was chosen because it is richly innervated with 5HTergic neurons, 

and the striatum because it is richly innervated with DAergic neurons. The samples 

were combined with 10 µL 0.1 N PCA per mg of tissue. Samples were homogenised 

Day 0 Day 7 Day y 

Catheter surgery 

and 5,7-DHT 

infused 

Self-administration 

testing commences 
Self-administration 

testing completed. 

Brains Removed. 

Histology 

Day x 
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and then centrifuged at 13,000 rpm for 30 minutes at 4º C. The supernatant was then 

filtered into vials and injected onto the column. The column and mobile phase used 

was identical to that used for DA analysis in the microdialysis experiment. 

Chromatograms were acquired with ChemStation software and peak heights of 

samples were compared to peak heights of standards with known concentrations of 

5HT, 5HIAA, DA and the DA metabolite, homovanillic acid (HVA). Regression 

analysis of the calibration curves was then used to calculate the concentration of the 

neurochemicals.  

 

Self-administration 

MDMA self-administration was carried out as reported in the General 

Methods: testing continued for 25 daily sessions, or until the session during which the 

total cumulative amount of self-administered MDMA reached 90±5 infusions, 

whichever came first. Additionally, the effect of the 5, 7-DHT lesion on the 

acquisition curve for low-dose COC self-administration (0.25 mg/kg/infusion) was 

measured for comparison. The acquisition criterion used was the same, with 90±5 

infusions required within 25 test sessions. The protocol used for COC self-

administration testing was identical to that of MDMA. 

 

Histology 

Following the completion of self-administration testing, rats were sacrificed 

by CO2 asphyxiation and the brains were removed and stored at -80°C. Brains were 

sliced on a cryostat in 60 or 80µm sections and sections were stained with Neutral 

Red. Sections were examined by an experimenter blind to the results and data from 

rats with incorrect placements were not included in any analyses. The self-

administration data from 19 rats of the MDMA groups (lesion=8; control=11) and 12 

rats of the COC groups (lesion=5; control=7) were used. 

 

Data Analysis 

The number of test sessions required to self-administer 90 infusions of 

MDMA and COC was compared for vehicle and lesion groups using the Kaplan-

Meier estimator for survival analysis that compared the mean time to event (latency to 

acquisition) between groups. The log-rank test was used to compare the survival 

curves of the lesion and control groups. The level of significance was set at p < 0.05. 
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Results 

Table 2.1 shows tissue levels of 5HT, 5HIAA, DA and HVA in the FC and 

striatum following 5, 7-DHT or vehicle. One-way ANOVAs revealed that 5,7-DHT 

substantially reduced 5HT and 5HIAA in the FC (F (1, 9) = 18.92, p< 0.05; F (1, 9) = 

17.57, p<0.05) and striatum (F (1, 9) = 5.82, p < 0.05; F( 1, 9) = 14.03, p < 0.05). 

There were no differences in DA or HVA in the FC (F( 1, 9) = 0.10, p= n.s; F (1, 9) = 

.44, p= n.s) or striatum (F (1, 9) = 0.86, p =n.s; F(1, 9) = 0.02, p=n.s.).  

 

 Frontal Cortex Striatum 

5HT  Vehicle 0.45 (0.02) 0.54 (0.06) 

5, 7- DHT 0.15 (0.02)* 0.35 (0.05)* 

5HIAA  Vehicle 0.51 (0.04) 0.82 (0.08) 

5, 7- DHT 0.23 (0.05)* 0.43 (0.07)* 

DA Vehicle 0.04 (0.00) 14.37 (1.33) 

 

5, 7- DHT 0.04 (0.00) 19.76 (5.67) 

HVA Vehicle 0.03 (0.00) 1.77 (0.58) 

 

5, 7- DHT 0.03 (0.00) 1.67 (0.27) 

 

Table 2.1 5HT and 5HIAA levels (ng/mg tissue) in the FC and striatum following administration of 5, 7- DHT or 

the vehicle. Values are mean (SEM). * denotes p< 0.05 compared to vehicle. 

 

 

Figure 2.1 shows the cumulative percentage of rats that met the criterion for 

acquisition of MDMA (left) and COC (right) self-administration as a function of test 

session. Of the 11 rats in the control MDMA group, 5 (45.45%) met the acquisition 

criterion. Following the lesion, all of the rats met the acquisition criterion for MDMA 

self-administration and the curve was shifted upwards compared to the control group 

(χ2 (1) = 7.13, p < 0.05). All control and lesioned rats met the criterion for acquisition 

of COC self-administration. The curve for the lesion group was shifted leftwards 

compared to the control group (χ2 (1) = 8.49, p < 0.05).  
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Figure 2.2 shows active lever responses for a representative control (top panel) 

and lesion (bottom panel) rat during 2-hour self-administration test sessions on days 

during acquisition testing. The lesion rat met criterion on Day 4 and the control rat on 

Day 8. Total responses during each daily session are noted on the right axis. During 

initial test sessions, both rats responded on the active lever throughout the 2 hours. 

During subsequent sessions, however, the lesioned rat responded during the first third 

of the test session only, whereas the control rat continued to respond throughout the 2 

hours. 

 

Figure 2.1shows the cumulative acquisition curves for the lesion and control groups 

self-administering MDMA (top) or COC (bottom). 
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Discussion 

In order to directly test the idea that 5HT negatively impacts the acquisition of 

MDMA self-administration, the latency to acquisition of self-administration was 

Figure 2.2 shows the temporal pattern of active lever responding for a representative control (top panel 

and lesion (bottom panel) rat during the 2-hour self-administration sessions. Data from the lesioned rat 

are shown during the 4 days required to reach criterion and for the control rat during the 8 days required 

to reach criterion. Each vertical symbol represents a lever response. Total number of responses for each 

session is noted on the right side 
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measured following brain 5HT depletion produced by neurotoxic 5,7-DHT lesions. 

The lesion markedly increased the percentage of rats that acquired MDMA self-

administration and appeared to decrease the latency to acquisition defined as the 

number of test sessions required to reach the criterion for acquisition of self-

administration. When COC self-administration was measured, all rats in both the 

lesion and control groups met the criterion for acquisition of self-administration but  

the latency to acquisition of COC self-administration was reduced by the lesion. 

These findings are similar to the effect of the lesion that has been observed when the 

acquisition or maintenance of self-administration of other drugs was measured 

(Leccese & Lyness, 1984; Lyness et al., 1980; Pelloux, Dilleen, Economidou, 

Theobald, & Everitt, 2012).  

A leftward shift in the COC self-administration acquisition curve has been 

attributed to an increased potency since it is comparable to the effect of increasing 

drug dose; in both cases, the latency to acquisition of self-administration is shorter 

(Schenk, Horger, Peltier, & Shelton, 1991; Schenk et al., 1993). Unlike COC self-

administration, however, the latency to acquisition of MDMA self-administration is 

not altered by dose. In particular, the acquisition curve for self-administration of dose 

of 0.25 mg/kg/ infusions MDMA was not significantly different from the acquisition 

curve produced when 1.0 mg/kg/ infusion was self-administered (Schenk et al., 2007); 

both the percentage of subjects that met criterion and the number of days to acquire 

self-administration were comparable regardless of dose. This suggests that, for a 

substantial proportion of subjects, MDMA self-administration is limited by specific 

effects of the drug. This specific effect was overcome following the 5,7 DHT lesion 

so that the percentage of rats that met the criterion with the 25 day test period 

increased to 100%. These findings are consistent with the idea that susceptibility to 

self-administer MDMA is limited by the 5HTergic response to MDMA during initial 

exposures, as was suggested by the data obtained in Chapter 1. 

Analysis of the pattern of responding within test sessions highlighted 

differences in responding between the lesion and control groups. During initial test 

sessions, rats in both groups responded sporadically throughout the session. With 

repeated testing, responding increased for rats in both treatment groups. Responding 

by the control rat was distributed throughout the test session but responding by the 

lesioned rat became restricted to the initial portion of the session. MDMA-produced 

5HT may, therefore, limit rapid responding for the drug. Perhaps the most pronounced 
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feature of the lesion group’s time-course of responding was that no responses were 

made in the second half of the test session, which probably reflects the long half-life 

of MDMA (Schenk et al., 2003).  

The data of Chapter 2 show that the global reduction of 5HT facilitates the 

acquisition of MDMA self-administration. The results therefore provide further 

support for the idea that the acquisition of MDMA self-administration is inhibited by 

MDMA-induced increases of 5HT. For some rats, this inhibiting action of 5HT must 

be overcome and MDMA self-administration is acquired. It has been suggested that 

this occurs as repeated exposures to small amounts of MDMA produce deficits in 

5HT neurotransmission, leading to a disinhibition of DA (Schenk, 2011). If this is the 

case, MDMA-induced increases of 5HT should be reduced and MDMA-induced 

increases of DA augmented, following the acquisition of MDMA self-administration. 
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Chapter 3 

 

Introduction 

The results from Chapters 1 and 2 support the idea that MDMA-induced 

increases of 5HT delay the acquisition of MDMA self-administration. If this is the 

case, the inhibitory effect must be overcome for MDMA self-administration to 

progress. It has been hypothesised that repeated exposure to MDMA during initial 

self-administration sessions produces deficits in 5HT neurotransmission, thereby 

disinhibiting DA neurotransmission, and increasing the reinforcing efficacy of 

MDMA (Schenk, 2011). Some data support this idea. Following self-administration 

of about 100 mg/kg MDMA across 20 sessions, the MDMA-produced 5HT response 

was decreased, but DA was unchanged (Reveron et al., 2010). Following more 

extensive exposure to self-administered MDMA, however, the DA response became 

sensitised (Colussi-Mas et al., 2010). Accordingly, behavioural responses to MDMA 

following MDMA self-administration should reflect these changes: 5HT-mediated 

behaviours should be reduced and DA-mediated behaviours should be increased.  

A distinctive behavioural response to increased synaptic 5HT is the so-called 

‘5HT syndrome’. This repertoire of behaviours includes head weaving, fore-limb 

treading, and low body posture. Administration of the 5HT precursor, 5-

hydroxytryptamine (5-HTP), produced these behavioural effects that were then 

enhanced by co-administering an MAO inhibitor that decreased 5HT metabolism 

(Bogdanski, Weissbach, & Udenfriend, 1958; Page, 1958; Shore & Brodie, 1958). 

Subsequent research showed that a number of non-selective 5HT agonists produced 

the 5HT syndrome. The majority of the behaviours that comprise the 5HT syndrome 

have been attributed to 5HT1A, 5HT2A and 5HT2C receptor mechanisms (for a review, 

see Haberzettl, Bert, Fink, & Fox, 2013).  

One behavioural correlate of increased synaptic DA is stimulated horizontal 

activity (hyperlocomotion). Local infusions of DA, but not 5HT or NE, into terminals 

of the mesolimbic DA system increased forward locomotion (Pijnenburg, Honig, Van 

der Heyden, & Van Rossum, 1976). A wealth of data has subsequently shown similar 

effects following administration of DA agonists, and these effects are blocked by 

neurotoxic 6-OHDA lesions in the mesolimbic DA system (for example, Kelly & 

Iversen, 1976) and by DA antagonists (Pijnenburg et al., 1976; Pijnenburg, Honig, & 

Van Rossum, 1975). Repeated exposure to MDMA (Ball, Budreau, & Rebec, 2006; 
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Ball, Klein, Plocinski, & Slack, 2011; Ball, Wellman, Fortenberry, & Rebec, 2009; 

Ball, Wellman, Miller, & Rebec, 2010; Bradbury, Gittings, & Schenk, 2012; 

Colussi‐Mas & Schenk, 2008; Kalivas et al., 1998; Lettfuss, Seeger-Armbruster, & 

von Ameln-Mayerhofer, 2013; Ludwig, Mihov, & Schwarting, 2008; McCreary, 

Bankson, & Cunningham, 1999; Modi, Yang, Swann, & Dafny, 2006), produced an 

augmented horizontal activity response following some dosing regimens, 

corresponding with an enhanced DA response (Kalivas et al., 1993; Kalivas & 

Stewart, 1991; Sorg & Kalivas, 1991). Enhanced synaptic DA also underlies 

increased vertical activity (rearing), although relatively fewer investigations of the 

neurochemical underpinnings of this behaviour have been conducted. The responses 

were produced by DA agonists (Cornish & Kalivas, 2001; Costall, Eniojukan, & 

Naylor, 1982; Nordquist et al., 2008), and were blocked when extracellular DA was 

decreased by administration of administration of the endogenous neuropeptide, 

Nociceptin/Orphanin FQ (Vazquez-DeRose et al., 2013).  

In the current experiment, head-weaving, hyperlocomotion and rearing were 

measured either 5 or 14 days after MDMA self-administration. These time periods 

were chosen based on findings that MDMA self-administration produced 5HT deficits 

after 5, but not14, days of abstinence (Do & Schenk, 2011). A potential complication 

is that behavioural measurements can sometimes be difficult to interpret because of 

competing behaviours produced by some doses of drugs. For example, the dose-effect 

curve for horizontal activity produced by psychostimulants is in the shape of an 

inverted “U”. The ascending limb of the curve reflects dose-dependent increases of 

horizontal activity with low doses of drug. Following administration of higher doses, 

however, horizontal activity declines as psychostimulant-produced behaviour 

becomes dominated by repetitive stereotyped behaviour (Flagel & Robinson, 2007; 

Randrup & Munkvad, 1967). An increase in the dose of psychostimulant could 

therefore result in either an increase or decrease in horizontal behaviour. In addition, 

previous research has described difficulty in measuring 5HT syndrome during the 

simultaneous expression of other behaviours (Curzon, Fernando, & Lees, 1979). In an 

effort to negate these potential confounds, three different measures of 

hyperlocomotion will be recorded, and the time course of all behaviours will be 

analysed. 
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Method 

 

Experimental Overview 

 

 

 

 

 

 

 

 

 

 

Pilot Studies 

To find the dose of MDMA needed to induce 5HT syndrome, and to deduce a 

method to measure 5HT syndrome behaviours, a series of pilot studies were 

undertaken. Rats with varying drug histories were injected with 5.0 mg/kg (n=3) or 

10.0 mg/kg  (n=4) MDMA and videoed for 60 minutes. The videos were watched by 

multiple people and the head-weaving, fore-paw treading and low body posture were 

identified. It became obvious that the 10.0 mg/kg MDMA dose was required to induce 

5HT syndrome.  

 

Self-administration Testing 

For these groups, the dose of MDMA was decreased to 0.5 mg/kg/ infusion 

following the initial acquisition period. Testing continued until a total intake of 165 

mg/kg was reached (an additional 150 infusions), because previous research showed 

this dose of self-administered MDMA produced tissue deficits in 5HT. Each rat in the 

vehicle self-administration group (n=9) was matched to an MDMA self-administering 

rat. Behavioural testing was conducted after 5 days (5D; n=8) or 14 days (14D; n=8) 

of abstinence following the last self-administration session for the MDMA group, and 

14 days of abstinence following the last self-administration session for the vehicle 

(Control) group.  
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Behavioural Testing 

Apparatus 

A single clear Plexiglas chamber (Med Associates Inc, USA; model ENV-

515) measuring 42 × 42 × 30 cm, set in a sound-attenuating box, was used to measure 

the behaviours. Four sets of 16 infra-red sensors spaced evenly 2.5 cm above the floor 

on each side of the box produced a lattice of beams that created squares of dimension 

25 × 25 mm. One forward locomotor count was recorded following the sequential 

interruption of 3 beams, which equates to the approximate size of the body of the rat. 

The number of locomotor counts produced, and the time (sec) spent in forward 

locomotion, were determined. The average velocity of forward locomotion (cm 

travelled per second) was also measured. A second set of identical infra-red sensors 

located 14cm above the floor of the chamber measured rearing counts.  

A camera was mounted on the ceiling of the sound-attenuating box to record 

head-weaving, fore-limb treading and low body posture. It became apparent after 

watching the videos, however, that the orientation of the camera only allowed the 

measurement of head-weaving- MDMA self-administration markedly altered the 

behaviours produced by 10.0 g/kg MDMA. The videos were then studied to derive a 

sound measurement system for head-weaving. Following extensive examination, it 

was decided that head-weaving was best measured by dividing the session into 5-

minute blocks and head weaving was measured for the first 60 seconds of each block. 

an ordinal scale of severity was decided on, as has been consistently used in previous 

research (Haberzettl et al., 2013; Jacobs, 1974a, 1974b). The head-weaving of every 

rat was quantified by one experimenter blind to the conditions. Measurement quality 

was checked by randomly assigning 3 videos each to 9 other experimenters. Previous 

studies have scored head-weaving using ordinal scales of severity. Head weaving was 

measured according to the following: 0- absent; 0.5- some signs of head weaving; 1- 

occasional head weaving; 1.5- frequent head weaving; 2- constant head weaving. 

A white noise generator masked extraneous noise. Prior to each test, chambers 

were wiped with Virkon ‘S’ disinfectant (Southern Veterinary Supplies, NZ). All 

experiments were conducted between 1300 and 1900 h in a temperature-controlled 

room (19°C) illuminated by red light. 
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Procedure 

Rats were habituated to the activity box for 30 minutes before the injection of 

MDMA (10.0 mg/kg; ip). The high dose of MDMA was chosen because a pilot study 

revealed that this dose evoked head-weaving most reliably. Forward locomotion, 

rearing and head-weaving were measured during the habituation period and for a 

further 45 minutes after MDMA administration.  

 

Statistical Analysis 

To measure the effect of MDMA administration on the behaviour of drug-

naïve animals, individual one-way ANOVAs were conducted for the all of the 

behaviours of the Control group produced during the eleven 5-minute time intervals 

between Time = -5, and Time = 45. Tukey post-hoc tests were used to identify the 

time-point(s) at which MDMA-produced behaviour significantly differed from that 

measured 5 minutes prior to MDMA administration (Time = -5). To determine the 

effects of abstinence, MDMA-produced behaviours were compared using separate 

repeated measures ANOVAs (Time X Group) for each of the behavioural measures. 

Main effects of Group or an interaction between Time and Group were further 

assessed using Tukey post-hoc tests. 

 

Results 

Control Group 

MDMA (10.0 mg/kg; i.p) administration caused an immediate head-weaving 

response, followed by hyperlocomotion. Figure 3.1 shows the time-course of head-

weaving for the control group during the habituation phase and after the 

administration of MDMA. The time-course exhibited an unusual pattern; pronounced 

head-weaving was produced during the initial and final portions of the session but not 

during the intervening time period. The decrease in the middle of the test session 

might reflect the emergence of competing behaviours. Indeed, forward 

hyperlocomotion gradually increased after MDMA administration (see Fig 3.2A; F 

(10, 88) = 10.27, p < 0.05) and was significantly increased from 15 minutes onward (p 

<0.05). Hyperlocomotion peaked about 25 minutes after MDMA administration and 

during this time head-weaving became more difficult to distinguish from generalised 

hyperactivity. Because head-weaving could only be confidently scored during the first 

20 minutes after MDMA, only these data were analysed. Head-weaving increased 



52 

 

with time (F (5, 48) = 5.23, p < 0.05) and was significantly increased 10 minutes after 

MDMA administration (p <0.05). 

Figure 3.2 shows the number of ambulatory counts (A), velocity of forward 

locomotion (B),  time spent in forward locomotion (C), and the number of rears (D) 

for the control group after administration of MDMA (10.0 mg/kg; i.p). The velocity of 

forward locomotion increased rapidly following MDMA administration (F (10, 88) = 

1.96, p < 0.05; Fig 3.2B) and was significantly increased during the first 5-minute 

interval (p < 0.05). The time spent in forward locomotion increased with time (F (10, 

88) = 13.73, p < 0.05; Fig 3.2C) and was significantly elevated from 10 minutes after 

MDMA (p <0.05). Rearing (Fig 3.2D) was higher prior to MDMA administration and 

was not increased subsequent to MDMA (F (10, 88) = 4.93, p < 0.05). 

 

 

Figure 3.1 displays Head-weaving for the Control group following vehicle self-administration. Rats were 

subjected to 14 days of abstinence prior to behavioural testing. MDMA (10.0 mg/kg; ip) was administered at 

Time= 0. * denotes p < 0.05 vs behaviour at Time = -5 minutes. 
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The effect of abstinence on behaviours 

There were no differences in the various responses during the 30 min 

habituation period. Thus, abstinence failed to alter the baseline levels of head-

Figure 3.2 displays Ambulatory Counts (A), Velocity of Forward Locomotion (B), Time Spent in Forward 

Locomotion (C), and Rearing (D) for the Control group following vehicle self-administration. Rats were 

subjected to 14 days of abstinence prior to behavioural testing. MDMA (10.0 mg/kg; ip) was administered at 

Time= 0. * denotes p < 0.05 vs behaviour at Time = -5 minutes. 

A B 

C D 
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weaving, various measures of forward locomotion, or rearing. The effect of 

abstinence on MDMA-produced responses depended on the behaviour.  

Table displays the The magnitude of MDMA-produced head-weaving was 

dependent on abstinence. A significant interaction was found for head-weaving (F 

(18, 207) = 1.90 p< 0.05). Head-weaving and was decreased 10 and 15 min following 

injection for the 5D (p<0.01), but not the 14D, group.  

Effects of abstinence on MDMA-produced hyperactivity depended on the 

measure. Time spent in forward locomotion was decreased following both abstinence 

periods, velocity was increased for both abstinence periods, and the number of 

ambulatory counts was unchanged as a result of abstinence.  Rearing was increased 

for both abstinence groups (p<0.01). 

 

Table 3.1: Statistical results from ANOVAs conducted on data from each of the behavioural responses to MDMA 

as a function of time and abstinence group(*=p<0.05, **=p<0.01, NS=not significant) 

 

 

 

 Head-

weaving 

Time 

locomotion 

Velocity Counts Rears 

Time F(9,207)=14.67 

** 

F(14,308)=57.0 

** 

F(14,308)=2.18 

** 

F(14,308)=54.2 

** 

F(14,308)=9.94 

** 

Group F(2,22)=2.4  

NS 

F(2,22)=4.031 

 * 

F(2,22)=7.537  

** 

F(2,22)=0.502  

NS 

F(2,22)=11.993 

** 

TimeXGroup F(18,207)=1.902 

* 

F(28,308)=2.20 

NS 

F(28,308)=1.232 

NS 

F(28,308)=1.24 

NS 

F(28,308)=3.09 

** 
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Figure 3.3 shows the behavioural responses to MDMA (10.0 mg/kg, IP) for control rats that had self-

administered vehicle and for rats that had self-administered MDMA. MDMA was administered at 

Time= 0. a  indicates a difference (p<0.05) between the 5 day abstinence group and control and b 

indicates a difference between the 14 day abstinence group and control (p<0.05). Symbols represent 

mean + SEM.. 
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Discussion 

This experiment was designed to compare behavioural correlates of 5HT 

(head-weaving) and DA neurotransmission (rearing and hyperlocomotion) for control 

rats and rats that had self-administered MDMA. In accordance with previous research 

(Spanos & Yamamoto, 1989), MDMA produced pronounced head-weaving in the 

control group. Head-weaving in the 5D abstinence group was significantly lower, 

suggesting a decrease in the 5HT response after MDMA self-administration, as has 

been suggested previously (Reveron et al., 2010). The results are consistent with 

previous research that showed a decrease in MDMA-produced 5HT syndrome 

following repeated experimenter-administered MDMA (Shankaran & Gudelsky, 

1999). The head-weaving for the 14D group was comparable to that of the control 

group, supporting the results of neurochemical analyses that also showed recovery of 

5HT (Do & Schenk, 2011). 

The length of abstinence required for recovery of 5HT following self-

administration was shorter than that reported by some other studies following 

experimenter-administered MDMA. This may be due to the different dosing regimens 

since the persistence of 5HT deficits were dose-dependent, with higher doses 

producing greater deficits (for example, Battaglia, Yeh, et al., 1988; Do & Schenk, 

2011; Insel et al., 1989). The dose of MDMA eventually self-administered in the 

current study was similar to, or greater than, some experimenter-administered doses 

of MDMA that showed more persistent 5HT deficits (for example, Battaglia, Brooks, 

et al., 1988; Sabol, Lew, Richards, Vosmer, & Seiden, 1996; Scanzello, 

Hatzidimitriou, Martello, Katz, & Ricaurte, 1993), but the frequency of dosing 

differed. The studies that used experimenter-administered MDMA injected 

consistently high daily doses of MDMA (10-80 mg/kg) for 4-5 days. In contrast, the 

daily dose of self-administered MDMA was initially low (about 3 mg/kg) and 

increased across test sessions (to about 15 mg/kg). Further, self-administration testing 

continued for a much longer period of time (about 30 days). These differences in 

frequency of dosing might account for the differences in time required for recovery of 

5HT deficits. The low dose of MDMA self-administered during initial test sessions 

might have produced a neuroprotective effect to the high doses of MDMA self-

administered during later test sessions. Indeed, previous research reported smaller 

MDMA-produced 5HT following pre-exposure to an intermittent dosing regimen of 

MDMA (Piper, Ali, Daniels, & Meyer, 2010). 
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It must be noted that the measurement of behavioural correlates of 5HT 

transmission was limited. The psychostimulant effects of MDMA produced 

behaviours that masked all of the behaviours (bar head-weaving) encompassed within 

5HT syndrome, rendering them unmeasurable. Thus only one behaviour, head-

weaving, was used as a measure of 5HT transmission. The measurement of 5HT 

neurotransmission in this experiment is therefore not ideal.  

MDMA did not produce rearing in the control group, as has been previously 

reported (O'Loinsigh, Boland, Kelly, & O'Boyle, 2001). Repeated exposure to self-

administered MDMA resulted in pronounced MDMA-produced rearing, as has also 

been reported previously (Lettfuss et al., 2013). Because rearing is a behavioural 

correlate of increased synaptic DA (Costall et al., 1982), the data are consistent with 

the ideas that acute MDMA produced a negligible DA response, and that repeated 

exposure to MDMA during self-administration enhanced the MDMA-produced DA 

response. The enhanced response is in accordance with one study that reported 

augmentation of the DA response produced by the same dose of MDMA (10.0 mg/kg) 

following self-administration of about 360 mg/kg MDMA (Colussi-Mas et al., 2010). 

Another study, however, reported no change in the MDMA-produced DA response 

following self-administration of about 100 mg/kg MDMA (Reveron et al., 2010). 

Thus, the enhanced DA response found following exposure during MDMA self-

administration appears to be dose-dependent.  

MDMA-produced rearing was also produced following 14 days of abstinence. 

This result is particularly interesting because it appears that the enhanced DA 

response was produced independent of 5HT deficits. Therefore, although there is 

evidence to suggest that the DA response produced by acute MDMA is modulated by 

5HT, repeated exposure to MDMA during self-administration appears to alter this 

relationship. This might be due to changes in specific receptor mechanisms following 

self-administration.  

It was expected that the enhanced DA response found following MDMA self-

administration would also be reflected in an enhanced hyperlocomotor response, as 

has been reported previously (Ball et al., 2006; Ball et al., 2011; Ball et al., 2009; Ball 

et al., 2010; Bradbury et al., 2012; Colussi‐Mas & Schenk, 2008; Kalivas et al., 1998; 

Lettfuss et al., 2013; Ludwig et al., 2008; McCreary et al., 1999; Modi et al., 2006), 

but the number of ambulatory counts produced by the self-administration and control 

groups was comparable. The MDMA self-administration groups exhibited a different 
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profile of horizontal locomotion, however: the velocity of forward hyperlocomotion 

was increased, and the time spent in forward locomotion was decreased. The number 

of ambulatory counts therefore did not reflect that MDMA self-administration altered 

MDMA-produced horizontal locomotion. The decreased time spent in forward 

locomotion combined with the increase in rearing, suggests that horizontal 

locomotion might have been limited by this competing behaviour. 

The complicated nature of the analysis of behavioural responses to 

psychostimulants has been addressed previously (Flagel & Robinson, 2007). In 

particular, high doses of psychostimulants produced stereotypy (Forster, Falcon, 

Miller, Heruc, & Blaha, 2002; Kuczenski & Segal, 1999; Nordquist et al., 2008) that 

interfered with the forward locomotion response. For example, low doses of AMPH 

produced hyperlocomotion throughout a test session. High doses of AMPH, however, 

produced stereotypy and therefore hyperlocomotion was restricted to the end of a test 

session, when stereotypy decreased (Kuczenski & Segal, 1999; Robinson & Becker, 

1986). The combination of the three measures of the hyperlocomotor response in the 

current study indicates that horizontal locomotion was similarly impacted. 

Alternatively, the high dose of MDMA used for behavioural testing may have 

produced a ceiling effect for the hyperlocomotor response. If this is the case, a lower 

dose of MDMA should allow the observation of group differences in the number of 

MDMA-produced ambulatory counts.  

The results show that exposure to MDMA during the acquisition of self-

administration decreased MDMA-produced head-weaving, a behavioural correlate of 

the 5HT response, and increased rearing, a behavioural correlate of the DA response. 

The results therefore support the idea that MDMA self-administration progresses as 

MDMA exposure produces deficits of the 5HT response and augmentation of the DA 

response. Serotonin deficits recovered with extended abstinence, as evidenced by the 

recovery of MDMA-produced head-weaving. Importantly, the enhanced rearing 

response was produced even following an abstinence period that produced recovery of 

the 5HT response. The two abstinence periods therefore provide a measure to 

investigate the roles of the 5HT and DA responses in the maintenance of MDMA self-

administration. If the 5HT response is critical to self-administration then responding 

should be decreased after 14, but not 5, days of abstinence. On the other hand, if an 

enhanced DA response is critical to self-administration, then responding should be 

comparable after both abstinence periods. 
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Chapter 4 

Introduction 

The results from Chapter 3 showed that MDMA-produced head-weaving, a 

behavioural correlate of the 5HT response, was decreased 5, but not 14, days after 

self-administration. Further, a behavioural correlate of the MDMA-produced DA 

response, rearing, was only observed after rats had been exposed to MDMA self-

administration and this response persisted for at least 14 days following the last self-

administration session. Since neurochemical (Do & Schenk, 2011) and behavioural 

measures indicated a recovery of the 5HT response after 14 days, the sensitised DA 

response observed after 14 days following the last self-administration session cannot 

be attributed to continued disinhibition of DA resulting from reduced 5HT.  

Because, following MDMA self-administration, the MDMA-produced DA 

response was enhanced irrespective of the 5HT response, the inhibitory effect of 5HT 

on MDMA self-administration found during the acquisition phase might be reduced 

during the maintenance phase. Indeed, the progression of self-administration of other 

drugs of abuse has been attributed to sensitisation of the DA response resulting from 

repeated exposure (Vezina, 2004). The present study sought to determine whether 

5HT deficits impact responding maintained by MDMA. If so, then responding should 

be reduced following 14 days abstinence when 5HT responses had recovered. 

Alternatively, if a sensitised DA response maintains self-administration, as has been 

proposed for other drugs of abuse (Robinson & Berridge, 1993, 2001), then 

responding after either 5 or 14 days of abstinence should not differ.  
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Method 

 

Experimental Overview 

 

 

 

 

 

 

 

Self-administration Testing 

Rats underwent self-administration testing and, following acquisition, the dose 

of MDMA was decreased to 0.5 mg/kg/ infusion. Testing continued until a further 

150 infusions of this dose were self-administered (total self-administered = 165 

mg/kg). An abstinence period was then imposed for some groups before MDMA (0.5 

mg/kg/ infusion) self-administration resumed for 9 daily test sessions. For all tests 

responding was reinforced according to an FR1 schedule. One group was tested 

continuously and did not experience an abstinence period (0D; n=7); another group 

was subjected to 5 days of abstinence (5D; n=8); and a third group were subjected to 

14 days of abstinence (14D; n=10). The 0-day period represented the self-

administration protocol that is usually employed. The 5-day period was chosen 

because the results of Chapter 3 suggest that the MDMA-produced DA response was 

enhanced, and the 5HT response was reduced, after 5 days of abstinence. The 14-day 

period was chosen because the results of Chapter 3 suggest that the DA response to 

MDMA was augmented, and the 5HT response recovered, after 14 days of abstinence.  

 

Statistical Analysis 

Self-administration was compared following the various abstinence periods 

using a repeated-measures ANOVA (Group X Day) on the active lever responses 

produced during the 9 days of testing.   
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Results 

Figure 4.1 shows the average number of responses as a function of group prior 

to the abstinence period, and during the 9 test sessions after the abstinence session for 

all groups. Pre-abstinence responding represents the average number of responses on 

the 3 days prior to the abstinence period. There was no effect of abstinence (F (2, 23) 

= 1.045, NS) or an interaction between days and group (F (16, 185) = 1.318, NS) on 

responding maintained by MDMA infusions. 

 

 

 

 

 

 

 

 

Discussion 

A previous study showed that tissue levels of 5HT were reduced 5 days, but 

not 14 days, following MDMA self-administration (Do & Schenk, 2011). In addition, 

the results from Chapter 3 showed that MDMA-produced head-weaving, a 

behavioural correlate of synaptic 5HT, was reduced 5 days, but not 14 days, after self-

administration. MDMA self-administration was therefore measured following 5 or 14 

days of abstinence. As expected, the self-administration profile of the 5D and 0D 

groups was comparable. However, the profile of self-administration for the 14D group 

Figure 4.1. Effects of abstinence on MDMA self-administration. The number of infusions self-

administered prior to the abstinence period is an average of the number of infusions self-administered 

during the 3 sessions prior to the abstinence period. Self-administration was measured for 9 days 

following either 0 (control) 5 or 14 days abstinence. Symbols represent mean number of responses 

during each daily 2 hr session  + SEM 
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was also similar to the 0D group. Thus, although there was recovery of the 5HT 

response following 14 days of abstinence, responding maintained by MDMA was 

unaltered. These findings suggest that 5HT does not impact the maintenance of 

MDMA self-administration.  

Recovery of 5HT function might have been expected to decrease responding 

maintained by MDMA because manipulations that increased synaptic 5HT attenuated 

responding maintained by a range of drugs of abuse. Reuptake inhibitors, the 

releasing stimulant, d-fen, and the 5-HT precursor, L-tryptophan, decreased AMPH 

(Porrino et al., 1989; F. L. Smith et al., 1986), METH (Munzar et al., 1999), COC 

(Carroll et al., 1990a, 1990b; Czoty et al., 2002; Howell & Byrd, 1995; A. McGregor 

et al., 1993; Negus et al., 2007; Porrino et al., 1989), heroin (Higgins et al., 1994; Y. 

Wang et al., 1995) and morphine (Raz & Berger, 2010) self-administration. The 

specific receptor mechanisms that underlie this inhibitory effect are not yet known. 

However, increased synaptic 5HT attenuated self-administration in a way that 

resembles the attenuation produced by DA antagonists, suggesting that this effect may 

be driven by 5HTergic inhibition of the DA response. A growing literature has 

described 5HTergic modulation of DA neurotransmission by a number of 5HT 

receptors (see Chapter 3), though the downstream effects of stimulation of these 5HT 

receptors are potentially very complex and, so far, poorly understood.  

The complexity of the 5HT-DA relationship is reflected by findings that 

stimulation of some 5HT receptors enhanced the MDMA-produced DA response. 

Agonists of the 5HT2A receptor enhanced MDMA-produced DA (Gudelsky et al., 

1994), and 5HT2A receptor antagonists decreased MDMA-produced DA (Nash, 1990; 

Schmidt et al., 1992; Schmidt et al., 1994; B. K. Yamamoto et al., 1995). Based on 

the idea that DA is critical to MDMA self-administration, antagonism of 5HT2A 

receptors would be expected to decrease MDMA self-administration. Indeed, the 

5HT2A antagonists, ketanserin and MDL100907, reduced responding maintained by 

MDMA in non-human primates (Fantegrossi et al., 2002). Another study reported that 

the 5HT1A agonist, 8-OHDPAT, abolished responding for MDMA in a single rat 

study (De La Garza II et al., 2007). The effects of stimulating 5HT1A receptors on DA 

are unknown, but the authors note that the highest dose of 8-OHDPAT inhibited 

motor behaviour. Therefore, the reduction in responding in this study could be 

attributed to a non-specific effect.  
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In light of the previous research, it might be surprising that the current results 

showed no effect of abstinence on MDMA self-administration. This discrepancy 

might be due to the magnitude of MDMA exposure in the current study, which has 

been associated with reduced extracellular and tissue 5HT (see Chapter 3; Do & 

Schenk, 2011; Reveron et al., 2010) that might reflect altered 5HT receptor 

mechanisms. The downstream effects of an increased 5HT response could therefore 

differ considerably in these rats. Perhaps more importantly, chronic exposure to self-

administered MDMA also enhanced the DA response (see Chapter 3; Colussi-Mas et 

al., 2010). It might be the case that the recovered 5HT response had no effect because 

this sensitised DA response becomes the critical determinant of responding 

maintained by MDMA. Indeed, the rearing response measured in Chapter 3 was not 

altered by the recovery of the 5HT response; probably because the critical determinant 

of rearing, the DA response, was enhanced. Since the DAergic response and self-

administration profiles following either abstinence period were comparable for both 

groups, it seems reasonable that the sensitised DA response mediates the maintenance 

of MDMA self-administration following abstinence. 

A substantial amount of literature supports the idea that enhanced DA 

responses underlie compulsive drug-taking and drug-seeking (see Robinson & 

Berridge, 1993, 2001). These ideas are based, in part, on the observation that  a 

sensitised DA response is found in neural pathways that have been associated with 

drug-produced reinforcement (Wise & Bozarth, 1987). Repeated intermittent 

exposure to a wide range of abused drugs enhanced DA neurotransmission, as shown 

by both behavioural and neurochemical measures (Vezina, 2004). A number of 

studies have reported behavioural sensitisation of locomotor-stimulating effects of 

MDMA following repeated experimenter-administered MDMA (Ball et al., 2006; 

Ball et al., 2011; Ball et al., 2009; Ball et al., 2010; Bradbury et al., 2012; 

Colussi‐Mas & Schenk, 2008; Kalivas et al., 1998; Lettfuss et al., 2013; Ludwig et al., 

2008; McCreary et al., 1999; Modi et al., 2006). Further, repeated exposure to 

experimenter-administered (Kalivas et al., 1998) or self-administered (Colussi-Mas et 

al., 2010) MDMA produced neurochemical sensitisation of extracellular DA. Direct 

support for the idea that an enhanced DA response underlies the maintenance of 

MDMA self-administration was found when both D1 and D2 receptor antagonists 

decreased self-administration (Brennan et al., 2009; Daniela et al., 2004; Shin et al., 

2008).  
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MDMA-seeking has also been attributed to enhanced DAergic mechanisms. 

The reinstatement paradigm is a model of relapse and craving which measures drug-

seeking behaviour in subjects with extensive self-administration experience, 

following a phase of forced abstinence/extinction. MDMA-seeking was reinstated by 

the DAT inhibitor, GBR 12909, the DA releaser, AMPH, and the D2 receptor agonist, 

quinpirole. Furthermore, both D1 and D2 receptor antagonists decreased MDMA-

seeking (Schenk et al., 2011). MDMA-seeking was not, however, reinstated by the 

SERT inhibitor, clomipramine, the 5HT2A agonist, DOI, or the 5HT2C agonist, mCPP 

(Schenk et al., 2011). The research therefore suggests that DAergic, but not 5HTergic, 

mechanisms underlie MDMA-seeking and further supports the idea that the DA 

response is critical to MDMA self-administration.  

It is possible that responding maintained by MDMA was not altered by 

abstinence because of an increased susceptibility to the reoccurrence of 5HT deficits.  

Responding was measured after 14 days of abstinence because the results from 

Chapter 3 suggested that the MDMA-produced 5HT response had recovered after this 

period. That is, MDMA-produced head-weaving, a behavioural correlate of synaptic 

5HT, was comparable to that produced by drug-naïve rats. Head-weaving was 

measured, however, in response to only one administration of MDMA. In the current 

experiment, the response to MDMA was measured following multiple doses of 

MDMA across multiple days, and thus it might be the case that repeated exposure to 

self-administered MDMA reproduced pre-abstinence 5HT deficits. There are two 

observations that suggest this explanation is unlikely. First, responding maintained by 

MDMA was not inhibited on the first day of testing after abstinence when the 

MDMA-produced 5HT response had recovered. Second, previous research described 

a protective effect of pre-exposure to MDMA when 5HT deficits produced by 

subsequent MDMA were measured. Deficits of tissue levels of 5HT and SERT 

produced by a binge dose of MDMA were reduced by previous exposure to repeated 

intermittent high doses of MDMA (Bhide, Lipton, Cunningham, Yamamoto, & 

Gudelsky, 2009; Piper et al., 2010).  

It must also be noted that the recovered 5HT response might have altered 

responding maintained by other doses of MDMA. To test this, a future study should 

measure responding for a range of MDMA doses following abstinence.  

While it appears that the MDMA-produced 5HT response is an important 

factor during the acquisition of self-administration (see Chapters 1 and 2), findings 
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from the current experiment suggest that the 5HT response might not play an 

important role once self-administration has been acquired. Instead, the data support 

the idea that sensitisation of the DA response underlies the maintenance of MDMA 

self-administration. 
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General Discussion 

There is a general conception amongst laypeople and researchers that MDMA 

is a drug with low abuse liability, and that use poses minimal harm. Recent data, 

however, suggest otherwise. Surveys indicate that some users become dependent and 

that dependence is associated with increased frequency of use, greater consumption 

on each occasion and tolerance to some of the behavioural effects (for example, 

Degenhardt et al., 2004; Degenhardt et al., 2009). There is now a substantial data base 

indicating that MDMA use compromises 5HT neurotransmission and also leads to 

persistent behavioural and cognitive deficits. 

The pharmacology of MDMA is not, however, consistent with a drug of 

abuse. Virtually all other drugs of abuse preferentially increase synaptic levels of DA 

but MDMA preferentially increases 5HT, and increases in DA are relatively small. 

Resolution of this paradox has focussed on changes in MDMA pharmacology 

following repeated exposure. It has been shown that repeated exposure decreases 

MDMA-produced 5HT responses (Reveron et al., 2010) and it has been suggested 

that this decrease disinhibits the DA response, making MDMA comparable to other 

drugs of abuse (Schenk, 2011). There have been limited data to address this intriguing 

hypothesis. The present thesis was, therefore, undertaken to more fully investigate the 

role of 5HT in the acquisition and maintenance of MDMA self-administration and to 

assess the idea that 5HTergic responses limit initial acquisition of self-administration 

but that continued drug taking becomes dependent on DAergic substrates. 

Unlike other drugs of abuse, the latency to acquisition of MDMA self-

administration was not dose-dependent (Schenk et al., 2007), acquisition criteria were 

achieved in a relatively small percentage of rats subjects and when these criteria were 

met the latency was relatively long (Schenk et al., 2012). Chapter 1 was designed to 

determine whether some of these differences might be attributed to the substantial 

5HT response to initial MDMA exposure.  

The MDMA-induced increase in extracellular 5HT was smaller for the group 

that subsequently acquired MDMA self-administration supporting the idea that 5HT 

limits the acquisition of MDMA self-administration. Somewhat surprisingly, the 

MDMA-produced DA response was not related to the initial response to the 

reinforcing effects of MDMA. This was unexpected because a wealth of data has 

shown that self-administration of other drugs of abuse is dependent on DAergic 

mechanisms (Vezina, 2004). Thus the mechanisms underlying this aspect of MDMA 
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self-administration appear to differ considerably from other drugs of abuse. The role 

of 5HT in the acquisition of MDMA self-administration was further investigated in 

Chapter 2 by examining effects of widespread 5HT depletion produced by a 

neurotoxic 5, 7-DHT lesion. Following this lesion, 100% of rats tested met an 

acquisition criterion for MDMA self-administration. This result is striking because 

MDMA self-administration is usually acquired by only about 50% of subjects. The 

marked increase in the proportion of subjects that acquired MDMA self-

administration complements the correlational study that suggests a role of 5HT in the 

acquisition of MDMA self-administration and provides experimental data indicating 

that 5HT is inhibitory to the acquisition of MDMA self-administration.  

Rats with a lower propensity to self-administer MDMA might therefore 

exhibit a distinctive phenotype. Specifically, MDMA-produced 5HT syndrome should 

be greater in rats with a lower propensity to self-administer MDMA. This idea could 

be explored by measuring MDMA-produced behaviours such as head-weaving and 

low body posture prior to the commencement of MDMA self-administration. 

With continued exposure to MDMA, 5HT neurotransmission becomes 

compromised; tissue levels of 5HT (Do & Schenk, 2011), SERT binding (Schenk et 

al., 2007) and MDMA-produced increase in 5HT overflow (Reveron et al., 2010) 

were decreased following self-administration. Because the previous studies showed 

that 5HT limits MDMA self-administration, it is reasonable to suggest that self-

administration progresses as a result of these decreased 5HT responses. If so, it was 

hypothesised that this decreased response might “permit” the expression of a more 

prominent DA response.  

In order to assess these possibilities, behavioural responses to MDMA were 

measured following self-administration in Chapter 3. In particular, behavioural 

measures of 5HT (head weaving) and DA (forward locomotion and rearing) activation 

were obtained. Repeated exposure to MDMA during self-administration produced 

transient deficits in the MDMA-produced 5HT response that were apparent 5, but not 

14, days following the last self-administration session. The time course of recovery is 

consistent with a previous study that showed deficits and recovery of tissue levels of 

5HT following MDMA self-administration (Do & Schenk, 2011).  

A novel and important result was that MDMA self-administration increased 

the DA response of rearing, consistent with  the enhanced DA overflow that had been 

reported following MDMA self-administration in another study (Colussi-Mas et al., 
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2010). In contrast to the transient nature of the decreased 5HT response, the sensitised 

DA response was persistent. These data suggest that the effects of MDMA on 5HT 

and DA are dissociable. It is possible, however, that alterations of 5HT receptor 

mechanisms might persist and that these alterations might modulate DA responses. 

There are at least 14 different 5HT receptor subtypes from 7 different families but 

only some of these receptors have been linked to DA.  

The majority of research on 5HT modulation of DA has focussed on the 

5HT1A, 5HT1B, 5HT2A and 5HT2C receptors, as these receptors have been located on a 

number of projections that innervate the mesocorticolimbic DA pathway. 

Investigations of the specific 5HT receptor mechanisms that modulate the acute 

MDMA-produced DA response have addressed the role of 5HT2A and 5HT2C 

receptors. The selective 5HT2A receptor antagonist, MDL 100907, and the 5HT2A/2C 

receptor antagonists, ritanserin and ketanserin, blocked the increase in DA produced 

by MDMA (Nash, 1990; Schmidt et al., 1992; Schmidt et al., 1994; B. K. Yamamoto 

et al., 1995) and 5HT2A receptor agonists enhanced the MDMA-produced DA 

response (Gudelsky et al., 1994). Following MDMA self-administration, however, the 

decreased influence of 5HT on DA suggests that 5HT2A receptor modulation of the 

MDMA-produced DA response might be reduced.  

All investigations of the effects of repeated MDMA on 5HT receptors have 

used experimenter-administered MDMA. Further, the majority employed high-

frequency regimens of high doses of MDMA. Thus it is difficult to conjecture how 

the alterations of 5HT receptors in these studies might compare with the effects of 

self-administered MDMA in the current study.  

A small number of studies have investigated the effect of repeated MDMA on 

the 5HT2A receptor, and some results suggest that that a down-regulation of the 

receptor is produced. A regimen of repeated MDMA that resulted in the 

administration of a total dose similar to that of the current study decreased 5HT 

levels, but did not produce a change in hippocampal 5HT2A mRNA 14 days later 

(Yau, Kelly, Sharkey, & Seckl, 1994) or alter head-twitching or locomotion produced 

by the 5HT2A receptor agonist, DOI (Granoff & Ashby Jr, 1997). A handful of studies 

reported alterations of the 5HT2A receptor after a moderate dose of MDMA. Repeated 

MDMA produced small decreases in 5HT levels and a widespread decrease of 5HT2A 

receptor density (I. McGregor et al., 2003). There are data to suggest that alterations 

of 5HT2A receptor density produced by repeated MDMA are related to the magnitude 
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of 5HT depletion. The recovery of 5HT2A receptor density was correlated with the 

extent of 5HT depletion (Reneman et al., 2002). Moderate doses of repeated MDMA 

also decreased function of 5HT2A receptor mechanisms. Nearly 2 months after 

MDMA DOI-produced anxiogenic effects and wet-dog shakes were decreased, 

showing persistent down regulation of 5HT2A receptor mechanisms (Bull, Hutson, & 

Fone, 2004). Interestingly, the same regimen of MDMA resulted in an increase of 

DOI-induced glucose utilization in the NAc. This result suggests that, following 

repeated MDMA, stimulation of 5HT2A receptors produced increased neuronal 

activity (Bull, Porkess, Rigby, Hutson, & Fone, 2006). 

Two studies measured MDMA-produced alterations of the 5HT2A receptor 

following intermittent dosing regimens. The frequency of dosing in these studies also 

differed markedly from that of the current study, in that MDMA was administered 

only every 5th or 7th day. A regimen of MDMA that administered a total dose of 60 

mg/kg produced a decrease in 5HT2A receptor mRNA (Kindlundh-Högberg, 

Svenningsson, & Schiöth, 2006). A higher dose of MDMA (total dose 120 mg/kg) 

produced increased behavioural and endocrine responses to DOI, but did not alter 

5HT2A/2C receptor density (Biezonski, Courtemanche, Hong, Piper, & Meyer, 2009). 

Thus the function of 5HT2A receptors appears to have been enhanced by this regimen. 

In monkeys, a moderate dose of repeated MDMA that decreased 5HT levels 

produced a trend of increased sensitivity to the 5HT2A/2C receptor antagonist, 

ketanserin, (Taffe et al., 2002). This finding, therefore, contrasts to those reported in 

rats. Similarly, increased functional activity of 5HT2A receptors was found following 

repeated exposure to MDMA in mice (Varela, Brea, Loza, Maldonado, & Robledo, 

2011). The relevance of this finding to self-administered MDMA in rats must be 

interpreted cautiously, however, because repeated MDMA does not produce 5HTergic 

deficits in mice (Stone, Hanson, et al., 1987). 

The aforementioned research reported equivocal results. In addition, relating 

the data to the current study is made more difficult by the markedly different dosing 

regimens used. Furthermore, the results of studies that used DOI or ketanserin must 

be interpreted cautiously due to the compounds’ affinity for 5HT2C receptors in 

addition to 5HT2A receptors. Irrespective of these issues, however, there are some data 

that show decreased function of 5HT2A receptor mechanisms following repeated 

MDMA. Because stimulation of 5HT2A receptors has been associated with increased 

synaptic DA, and because the DA response is enhanced following MDMA self-
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administration, the data do not support the idea that the decreased influence of 5HT 

on the MDMA-produced DA response is due to alterations of 5HT2A receptor 

mechanisms.  

In contrast to the 5HT2A receptor, systemic administration of the 5HT2C 

receptor agonist, Ro60-0175, dose-dependently decreased the basal firing rate of VTA 

DA neurons (Gobert et al., 2000) and decreased extracellular levels of DA in the 

NAc, FC and striatum (De Deurwaerdère, Navailles, Berg, Clarke, & Spampinato, 

2004; Gobert et al., 2000; Ji et al., 2006). Systemic administration of the 5HT2C 

receptor inverse agonist, SB 206553, or the antagonist, SB 242, 084, dose-

dependently increased the basal firing rate of VTA and substantia nigra DA neurons, 

increased burst activity in the NAc (Di Giovanni et al., 1999; Gobert et al., 2000), and 

increased basal levels of extracellular levels of DA in the PFC, NAc and striatum (Di 

Giovanni et al., 1999; Gobert et al., 2000). The decreased influence of 5HT 

modulation of the MDMA-produced DA response following MDMA self-

administration might therefore be due to downregulation of this receptor subtype. 

Few studies have investigated the effect of repeated MDMA on 5HT2C 

receptor mechanisms. Following repeated MDMA the inhibitory effect of the dual D1 

receptor antagonist/ 5HT2C receptor agonist, SCH 23390, on MDMA-produced 

hyperlocomotion was enhanced. A subsequent investigation showed this effect to be 

due to 5HT2C receptor mechanisms in the PFC, suggesting that repeated MDMA 

induced an enhancement of 5HT2C receptor function (Ramos, Goñi-Allo, & Aguirre, 

2004, 2005). Lower doses of repeated MDMA that decreased 5HT levels, however, 

did not alter hyperlocomotor or anxiogenic response to the 5HT2C receptor agonist, 

mCPP (Bull, Hutson, & Fone, 2003; Jones, Brennan, Colussi‐Mas, & Schenk, 2010). 

It must be noted that receptor function was tested 2 (Jones et al., 2010) or 3 (Bull et 

al., 2003) weeks after the final MDMA administration, and therefore any MDMA-

produced alteration of 5HT2C receptor function might have recovered during 

abstinence. In the one study that intermittently administered MDMA (every 7th day), 

5HT2C mRNA was dose-dependently increased (Kindlundh-Högberg et al., 2006). In 

monkeys, repeated high-dose MDMA that decreased 5HT levels produced increased 

sensitivity to the 5HT2C agonist, mCPP, in sustained attention tasks and progressive 

ratio responding (Taffe et al., 2002). The data suggest that repeated MDMA might 

induce an enhancement of 5HT2C receptor mechanisms. Because stimulation of 5HT2C 

receptor mechanisms has been associated with decreased DA neurotransmission, 



71 

 

enhancement of the 5HT2C receptor would not support the idea that alterations of this 

receptor subtype underlie the decrease in influence of 5HT on the MDMA-produced 

DA response found following MDMA self-administration. 

The 5HT1A receptor is found pre-synaptically on cell bodies of 5HT neurons 

where they regulate 5HT synthesis (Hamon et al., 1988; Neckers, Neff, & Wyatt, 

1979). Previous research failed to observe changes in 5HT1A autoreceptor 

mechanisms following MDMA exposure (Schenk, Abraham, Aronsen, Colussi-Mas, 

& Do, 2013). Post-synaptic 5HT1A heteroceptors are localised on mesolimbic DA 

projections (Doherty & Pickel, 2001) and are therefore well-placed to modulate DA 

neurotransmission. Systemic administration of a high, post-synaptic receptor-

stimulating, dose of the 5HT1A agonist, 8-OH-DPAT, increased extracellular levels of 

DA in the PFC (Assié, Ravailhe, Faucillon, & Newman-Tancredi, 2005), but 

decreased activity of DA neurons in the VTA (Arborelius et al., 1993).  

Repeated administration of high doses of MDMA produced region-dependent 

alterations of 5HT1A receptor density. Density was increased in the FC, but decreased 

in the hippocampus, 7 days after the last MDMA exposure. Furthermore, the density 

of 5HT1A receptors was positively correlated with 5HT1A mRNA levels (Aguirre, 

Frechilla, García‐Osta, Lasheras, & Del Río, 1997; Aguirre, Galbete, Lasheras, & Del 

Río, 1995). The same dosing regimen increased 8-OH DPAT-produced hyperthermia, 

which was correlated with the increase in 5HT1A receptor density in the FC (Aguirre, 

Ballaz, Lasheras, & Del Rıo, 1998). In monkeys, a high-dose regimen of MDMA also 

increased sensitivity to 8-OH-DPAT in a progressive ratio task (Taffe et al., 2002).  

It appears that a moderate dose of repeated MDMA does not alter 5HT1A 

receptors. Hippocampal 5HT1A mRNA levels were unchanged (Yau et al., 1994), and 

8-OH DPAT-produced hyperthermia (McNamara, Kelly, & Leonard, 1995), social 

interaction (M. R. Thompson, Callaghan, Hunt, & McGregor, 2008) and increases of 

extracellular acetylcholine in the FC (Nair & Gudelsky, 2006), were not altered. One 

study, however, reported decreased 8-OH DPAT-produced fore-paw treading after an 

abstinence period, suggesting down-regulation of 5HT1A receptor mechanisms 

(Granoff & Ashby Jr, 2001). A regimen of intermittent MDMA did not alter 5HT1A 

receptor density (I. McGregor et al., 2003; Piper, Vu, Safain, Oliver, & Meyer, 2006), 

5HT1A receptor mRNA levels (Kindlundh-Högberg et al., 2006) or 8-OH DPAT-

produced hyperthermia (Piper et al., 2006), but did decrease 8-OH DPAT-produced 5-

HT syndrome (Piper et al., 2006). The varying effect of the MDMA pre-treatment on 
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behavioural responses to 8-OH DPAT might be due to the different behavioural 

responses reflecting regional differences in MDMA-produced alterations of the 

5HT1A receptor. 

The data suggest that repeated MDMA only alters 5HT1A receptor function 

following administration of high doses. A total dose of MDMA that was similar to 

that self-administered in the current study (160 mg/kg), produced tolerance to the 

behavioural effects of 8-OH DPAT following abstinence (Granoff & Ashby Jr, 2001). 

It is possible, therefore, that the self-administered MDMA in the current study 

produced a similar effect. Because stimulation of post-synaptic 5HT1A receptors has 

been associated with reduced function of VTA DA neurons, such an alteration of 

5HT1A receptor mechanisms would support the idea that the decreased influence of 

5HT modulation on the MDMA-produced DA response after MDMA self-

administration was due to changes of specific 5HT receptor mechanisms. 

The 5HT1B receptor is located on pre-synaptic 5HT neurons, where it acts as 

an autoreceptor that controls 5HT release, and post-synaptically where it is a 

heteroceptor that modulates the release of other neurotransmitters (Bruinvels et al., 

1994; Sari et al., 1999). Post-synaptic 5HT1B heteroceptors are localised on inhibitory 

gamma- aminobutyric acid (GABA) projections from the NAc to the VTA, and on 

excitatory glutamatergic projections from the PFC to the NAc. Stimulation of 5HT1B 

receptors on GABA neurons inhibits release and thus disinhibits mesolimbic DA. 

Stimulation of these receptors might therefore be expected to enhance self-

administration. Stimulation of 5HT1B receptors on glutamatergic terminals decreases 

release of glutamate and DA, and therefore might be expected to decrease self-

administration since self-administration has been attributed to increases of synaptic 

DA (for a review, see Sari, 2004). The downstream effects of stimulating 5HT1B 

receptors are complicated and depend on the functional balance of stimulating both 

autoreceptor and post-synaptic heteroceptor populations.  

The effect of repeated MDMA on 5HT1B receptor mechanisms appears to be 

dependent on the dose and/ or the frequency of administrations. A high-frequency 

regimen of a moderate dose of MDMA produced tolerance to the locomotor-

activating effects of MDMA and the 5HT1B/1A receptor agonist, RU24969 (Callaway 

& Geyer, 1992). A lower dose of MDMA, however, induced behavioural sensitisation 

and enhanced the hyperlocomotor response to RU24969 (McCreary et al., 1999). It is 

not known how self-administered MDMA might alter the function of post-synaptic 
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5HT1B receptors. However, because behavioural sensitisation, rather than tolerance, 

was found following self-administration, it might be expected that enhancement of 

5HT1B receptor mechanisms would occur, akin to the results of McCreary et al. 

(1999). That behavioural sensitisation, a behavioural correlate of an enhanced DA 

response, was accompanied by sensitised 5HT1B receptor mechanisms supports the 

idea that the decreased modulatory effect of 5HT on the MDMA-produced DA 

response is due to alterations of 5HT receptors. 

The available data support the idea that changes in either 5HT1A or 5HT1B 

hetereceptor mechanisms could account for the sensitised DA response. To 

investigate this idea further, the function of 5HT1A and 5HT1B receptor mechanisms 

should be measured following MDMA self-administration. One behavioural measure 

of 5HT1A receptor activation is reciprocal forepaw treading (Granoff & Ashby Jr, 

2001). Thus this response to the selective 5HT1A agonist, 8-OH-DPAT, would provide 

valuable information. A response to 5HT1B receptor agonists is adipsia (Aronsen, 

Webster, & Schenk, in press) as well as hyperlocomotion (McCreary et al., 1999) and 

so measurement of these behavioural responses would provide an indication of the 

status of these receptors following MDMA self-administration. 

The decreased influence of 5HT on the MDMA-produced DA response might 

be due to sensitised DA receptor mechanisms in addition to, or instead of, altered 5HT 

receptor mechanisms, as has been suggested as a mechanism underlying other drugs 

of abuse (for a review, see Vezina, 2004). Neurochemical and behavioural studies 

have shown that repeated MDMA induces an enhanced DA response (for example, 

Kalivas et al., 1998). There are data to suggest that this enhanced response is 

accompanied by sensitised D2 receptor mechanisms. Repeated exposure to MDMA 

induced sensitisation of the locomotor-stimulating effects of a subsequent 

administration of MDMA, that was accompanied by sensitisation of the behavioural 

effects of the D2 receptor agonist, quinpirole (Bradbury et al., 2012).  

Further, sensitised D2 receptor mechanisms appear to play a role in MDMA-

seeking. Compulsive drug-seeking has been attributed to sensitised DA mechanisms 

(for a review, see Robinson & Berridge, 1993, 2001). Following extensive MDMA 

self-administration, administration of the DAT inhibitor, GBR 12909, or the DA 

releaser, AMPH, induced MDMA-seeking. In addition, the D2 receptor agonist, 

quinpirole, but not the D1 receptor agonist, SKF 81297, produced MDMA-seeking 

(Schenk et al., 2011). Thus the data suggest that exposure to MDMA during self-
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administration produced an enhanced DA response that was accompanied by 

sensitised D2 receptor mechanisms and therefore support the idea that sensitisation of 

DA receptor mechanisms occurs independent of 5HT modulation. 

It would be of interest to obtain more direct measures of the effect of MDMA 

self-administration on MDMA-produced 5HT and DA responses using in vivo 

microdialysis. This was the original plan for the experiment of Chapter 3 and the 

study was initiated. The experiment could not be completed, however, due to 

equipment failure. The results of this study would be expected to reflect the data from 

Chapter 3. Augmented MDMA-induced increases of extracellular DA would be 

expected in the MDMA self-administration groups after either abstinence period. An 

attenuated MDMA-induced increase of extracellular 5HT would be expected 5 days, 

but not 14 days, following MDMA self-administration.  

The role of 5HT in the maintenance of MDMA self-administration was 

investigated in Chapter 4 by measuring responding in rats that had, or did not have, 

5HT deficits. Responding maintained by MDMA was comparable for the two groups, 

suggesting that following acquisition of self-administration 5HT deficits are not a 

critical determinant. An interesting study that would further determine the role of 5HT 

in the maintenance of MDMA self-administration could measure the effect of a 

neurotoxic 5, 7-DHT lesion following acquisition of self-administration. In fact this 

experiment was also part of the initial plan but in preliminary studies, a large 

percentage of the rats became ill and so the experiment was abandoned. A more 

reasonable approach might be to determine the effects of 5HT antagonists on MDMA 

self-administration. 

Taken together, the data support the idea that the DA response becomes 

critical to the maintenance of MDMA self-administration. This change in the critical 

determinant of MDMA self-administration from 5HT (acquisition) to DA 

(maintenance) might underlie the change in the profile of MDMA self-administration. 

Following extended testing, MDMA self-administration begins to share the 

characteristics of responding found with other psychostimulants. Responding 

increases, becomes dose-dependent (Schenk et al., 2012), and is attenuated by DA 

receptor antagonists (Brennan et al., 2009; Daniela et al., 2004). Further, after 

extended self-administration DAergic mechanisms induce MDMA-seeking (Schenk et 

al., 2011). Thus after using a range of experimental procedures to examine the role of 

5HT in MDMA self-administration, the data of this thesis suggest that, like other 



75 

 

drugs of abuse, MDMA self-administration is dependent on stimulation of DA 

neurotransmission.  

 

A future study could further investigate this by measuring responding 

maintained by MDMA following depletion of DA. In rats that have acquired MDMA 

self-administration, the DA neurotoxin, 6-OHDA, or vehicle could be infused 

centrally into the VTA to lesion mesolimbic DA neurons. Thereafter, responding 

maintained by MDMA could be measured. Attenuated or abolished responding would 

support the idea that the DAergic response is the critical determinant of the 

maintenance of MDMA self-administration. 

The findings of this thesis support the wealth of literature that suggests drug-produced 

reinforcement is mediated by DAergic mechanisms, and adds to the relatively small 

literature that describes a decrease in drug-produced reinforcement following an 

increased 5HT response. The findings of this thesis also suggest that the repeated use 

of ecstasy, of which MDMA is the active ingredient, could result in a sensitised 

DAergic system and thus lead to an increase in the reinforcing efficacy of ecstasy and 

other drugs of abuse. In addition, the findings suggest that this enhancement of the 

DAergic system is persistent, and therefore might lead to the experience of heightened 

sensitivity remaining for significant periods of time after last ecstasy use. 

Conclusions 

The susceptibility to acquire MDMA self-administration is dependent on the 

5HT response to initial MDMA, with the propensity to meet an acquisition criterion 

inversely related to the magnitude of the response. Repeated exposure to MDMA 

during self-administration produced a reduction of the 5HT response, and 

sensitisation of the DA response. The enhanced DA response is proposed to underlie 

the progression of MDMA self-administration. The progression of MDMA self-

administration therefore reflects a shift in the predominant neurochemical effect of 

MDMA from being 5HTergic to DAergic.  
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